21-WWS-145CountriesVIP专享VIP免费

A Solution to Global Warming, Air Pollution, and Energy
Insecurity for 145 Countries
By Mark Z. Jacobson, Stanford University, October 25, 2021
This infographic summarizes results from simulations that demonstrate the ability of 145 countries within 24 regions
(11 multi-country regions--Africa, Central America, Central Asia, China region, Europe, Haiti-Dominican Republic,
India region, Mideast, Russia-Georgia, South America, and Southeast Asia--and 13 individual countries-- Australia,
Canada, Cuba, Iceland, Israel, Jamaica, Japan, Mauritius, New Zealand, Philippines, South Korea, Taiwan, and
United States), to match all-purpose energy demand with wind-water-solar (WWS) electricity and heat supply,
storage, and demand response continuously every 30 seconds for three years (2050-2052) in each region. All-
purpose energy is for electricity, transport, buildings, industry, agriculture/forestry/fishing, and the military. Results
are shown for the sum of all countries, which emit 99.7% of world anthropogenic CO2. The ideal transition timeline
is 100% WWS by 2035; but results are shown for 2050-2052, after more population growth has occurred.
WWS electricity-generating technologies include onshore and offshore wind, solar photovoltaics (PV) on rooftops
and in power plants, concentrated solar power (CSP), geothermal, hydro, tidal, and wave power. WWS heat-
generating technologies include geothermal and solar thermal. WWS storage includes electricity, heat, cold, and
hydrogen storage. WWS equipment includes electric and hydrogen fuel cell vehicles, heat pumps, induction
cooktops, arc furnaces, induction furnaces, resistance furnaces, lawnmowers, etc. No fossil fuels, nuclear, bioenergy,
carbon capture, direct air capture, or blue hydrogen is included.
The results for each grid region are derived from the LOADMATCH grid model using 2018 business-as-usual
(BAU) country load data by energy sector and fuel type (IEA, 2021), projected to 2050 then converted to load
powered by wind-water-solar (WWS) electricity and heat. LOADMATCH also uses 30-second resolution WWS
supply plus building heating/cooling load data from the GATOR-GCMOM weather-prediction model. The models
are described in the following publications (results are described in the last publication):
Jacobson, M.Z. (2021) On the correlation between building heat demand and wind energy supply and how it helps to avoid
blackouts, Smart Energy, 1, 100009, doi:10.1016/j.segy.2021.100009,
http://web.stanford.edu/group/efmh/jacobson/Articles/Others/21-Wind-Heat.pdf
Jacobson, M.Z. (2021) The cost of grid stability with 100% clean, renewable energy for all purposes when countries are isolated
versus interconnected, Renewable Energy, 179, 1065-1075, doi:10.1016/j.renene.2021.07.115,
http://web.stanford.edu/group/efmh/jacobson/Articles/Others/21-CountriesVRegions.pdf
Jacobson, M.Z., A.-K. von Krauland, S.J. Coughlin, et al. (2022), A solution to global warming, air pollution, and energy
insecurity for 145 countries, in review.
Main results. Transitioning 145 countries to 100% WWS for all energy purposes…
Keeps the grid stable 100% of the time. This is helped by the fact that, during cold
storms, winds are stronger and wind/solar are complementary in nature;
Saves 5.3 million lives from air pollution per year in 2050 in 145 countries;
Eliminates 57 billion tonnes-CO2e per year in 2050 in 145 countries;
Reduces 2050 all-purpose, end-use energy requirements by 56.4%;
Reduces 145-country 2050 annual energy costs by 62.7% (from $17.8 to $6.64 tril/y);
Reduces annual energy, health, plus climate costs by 92.0% (from $83.2 to $6.64 tril/y);
Costs ~$61.5 trillion upfront. Upfront costs are paid back through energy sales. Costs
are for WWS electricity, heat, and H2 generation; electricity, heat, cold, and H2
storage; heat pumps for district heating; all-distance transmission; and distribution;
Requires 0.17% of the 145-country land area for footprint, 0.36% for spacing;
Creates 28.4 million more long-term, full-time jobs than lost.
Table of Contents
Table 1. Reduced End-Use Demand Upon a Transition From BAU to WWS
Table 2. 2050 WWS End-Use Demand by Sector
Table 3. WWS End-Use Demand by Load Type
Table 4. Nameplate Capacities Needed by 2050 and Installed as of 2020
Table 5. Capacity Factors of WWS Generators
Table 6. Percent of Load Met by Different WWS Generators
Table 7. Characteristics of Storage Resulting in Matching Demand With 100% WWS Supply
Table 8. Summary of Energy Budget Resulting in Grid Stability
Table 9. Details of Energy Budget Resulting in Grid Stability
Table 10. Breakdown of Energy Costs Required to Keep Grid Stable
Table 11. Energy, Health, and Climate Costs of WWS Versus BAU
Table 12. Air Pollution Mortalities, Carbon Dioxide Emissions, and Associated Costs
Table 13. Land Areas Needed
Table 14. Changes in Employment
References.
Table 1. Reduced End-Use Demand (Load) Upon a Transition From BAU to WWS
1st row: 2018 annually-averaged end-use load (GW) and percentage of the load by sector. 2nd row: estimated 2050
total annually-averaged end-use load (GW) and percentage of the total load by sector if conventional fossil-fuel,
nuclear, and biofuel use continues to 2050 under a BAU trajectory. 3rd row: estimated 2050 total end-use load (GW)
and percentage of total load by sector if 100% of BAU end-use all-purpose delivered load in 2050 is instead
provided by WWS. Column (k) shows the percentage reductions in total 2050 BAU load due to switching from
BAU to WWS, including the effects of (h) energy use reduction due to the higher work to energy ratio of electricity
over combustion, (i) eliminating energy use for the upstream mining, transporting, and/or refining of coal, oil, gas,
biofuels, bioenergy, and uranium, and (j) policy-driven increases in end-use efficiency beyond those in the BAU
case. Column (l) is the ratio of electricity load (=all energy load) in the 2050 WWS case to the electricity load in the
2050 BAU case. Whereas Column (l) shows that electricity consumption increases in the WWS versus BAU cases,
Column (k) shows that all energy decreases.
Scenario
(a)
Total
annual
average
end-use
load (GW)
(b)
Res-
ident-
ial %
of total
end-
use
load
(c)
Com-
mer-
cial
% of
total
end-
use
load
(d)
Indus
-try
% of
total
end-
use
load
(e)
Trans
-port
% of
total
end-
use
load
(f)
Ag/for/
fish % of
total end-
use load
(g)
Military
/ other
% of
total
end-use
load
(h)
%
change
end-
use
load
with
WWS
due to
higher
work:
energy
ratio
(i)
%
change
end-
use
load
with
WWS
due to
elim-
inating
up-
stream
(j)
%
change
end-
use
load
w/W
WS
due to
effic-
iency
beyon
d BAU
(k)
Ove-
rall
%
change
in end-
use
load
with
WWS
(l)
WWS:
BAU
elec-
tricity
load
145 countries
BAU 2018
13,102.3
20.8
8.2
38.1
29.2
2.22
1.52
BAU 2050
20,358.8
19.1
8
37.6
31.7
2.05
1.48
WWS 2050
8,880.6
17.5
10.5
50.5
17.9
1.84
1.84
-38.4
-11.3
-6.6
-56.4
1.85
The reductions in Column (h) are due primarily to the efficiency of electric and hydrogen fuel cell vehicles over
internal combustion engine vehicles, the efficiency of heat pumps for air and water heating over combustion and
electric resistance heaters, and the efficiency of electricity rather than combustion for high-temperatures.
Table 2. 2050 WWS End-Use Demand by Sector
2050 annual average end-use electric plus heat load (GW) by sector in 145 countries after energy in all sectors has
been converted to WWS. Instantaneous loads can be higher or lower than annual average loads. Values for a region
equal the sum of values among all countries in the region.
Country or region
Res-
idential
Com-
mercial
Trans-
port
Industrial
Agricul-
ture/fores-
try/fishing
145 countries
1555.7
928.5
4482.2
1587.0
163.52
Table 3. WWS End-Use Demand by Load Type
Annual average WWS all-sector inflexible and flexible loads (GW) for 2050 in 145 countries. “Total load” is the
sum of “inflexible load” and “flexible load.” “Flexible load” is the sum of “cold load subject to storage,” “low-
temperature heat load subject to storage,” “load for H2production, compression, and storage (accounting for leaks
as well), and “all other loads subject to demand response (DR).” Annual average loads are distributed in time at 30-s
resolution, as described in the text. Instantaneous loads, either flexible or inflexible, can be much higher or lower
than annual average loads. Also shown is the annual hydrogen mass needed in each region, estimated as the H2 load
multiplied by 8,760 hr/yr and divided by 59.01 kWh/kg-H2.
Country or
region
Total
end-use
load
(GW)
Inflex-
ible
load
(GW)
Flex-
ible
load
(GW)
Cold
load
subject
to
storage
(GW)
Load
sub-
ject to
DR
Load
for H2
(GW)
H2
needed
(Tg-
H2/yr)
145 countries
8,880.6
4142.9
4,738.
95.6
605.6
3,467.
89.9
ASolutiontoGlobalWarming,AirPollution,andEnergyInsecurityfor145CountriesByMarkZ.Jacobson,StanfordUniversity,October25,2021Thisinfographicsummarizesresultsfromsimulationsthatdemonstratetheabilityof145countrieswithin24regions(11multi-countryregions--Africa,CentralAmerica,CentralAsia,Chinaregion,Europe,Haiti-DominicanRepublic,Indiaregion,Mideast,Russia-Georgia,SouthAmerica,andSoutheastAsia--and13individualcountries--Australia,Canada,Cuba,Iceland,Israel,Jamaica,Japan,Mauritius,NewZealand,Philippines,SouthKorea,Taiwan,andUnitedStates),tomatchall-purposeenergydemandwithwind-water-solar(WWS)electricityandheatsupply,storage,anddemandresponsecontinuouslyevery30secondsforthreeyears(2050-2052)ineachregion.All-purposeenergyisforelectricity,transport,buildings,industry,agriculture/forestry/fishing,andthemilitary.Resultsareshownforthesumofallcountries,whichemit99.7%ofworldanthropogenicCO2.Theidealtransitiontimelineis100%WWSby2035;butresultsareshownfor2050-2052,aftermorepopulationgrowthhasoccurred.WWSelectricity-generatingtechnologiesincludeonshoreandoffshorewind,solarphotovoltaics(PV)onrooftopsandinpowerplants,concentratedsolarpower(CSP),geothermal,hydro,tidal,andwavepower.WWSheat-generatingtechnologiesincludegeothermalandsolarthermal.WWSstorageincludeselectricity,heat,cold,andhydrogenstorage.WWSequipmentincludeselectricandhydrogenfuelcellvehicles,heatpumps,inductioncooktops,arcfurnaces,inductionfurnaces,resistancefurnaces,lawnmowers,etc.Nofossilfuels,nuclear,bioenergy,carboncapture,directaircapture,orbluehydrogenisincluded.TheresultsforeachgridregionarederivedfromtheLOADMATCHgridmodelusing2018business-as-usual(BAU)countryloaddatabyenergysectorandfueltype(IEA,2021),projectedto2050thenconvertedtoloadpoweredbywind-water-solar(WWS)electricityandheat.LOADMATCHalsouses30-secondresolutionWWSsupplyplusbuildingheating/coolingloaddatafromtheGATOR-GCMOMweather-predictionmodel.Themodelsaredescribedinthefollowingpublications(resultsaredescribedinthelastpublication):Jacobson,M.Z.(2021)Onthecorrelationbetweenbuildingheatdemandandwindenergysupplyandhowithelpstoavoidblackouts,SmartEnergy,1,100009,doi:10.1016/j.segy.2021.100009,http://web.stanford.edu/group/efmh/jacobson/Articles/Others/21-Wind-Heat.pdfJacobson,M.Z.(2021)Thecostofgridstabilitywith100%clean,renewableenergyforallpurposeswhencountriesareisolatedversusinterconnected,RenewableEnergy,179,1065-1075,doi:10.1016/j.renene.2021.07.115,http://web.stanford.edu/group/efmh/jacobson/Articles/Others/21-CountriesVRegions.pdfJacobson,M.Z.,A.-K.vonKrauland,S.J.Coughlin,etal.(2022),Asolutiontoglobalwarming,airpollution,andenergyinsecurityfor145countries,inreview.Mainresults.Transitioning145countriesto100%WWSforallenergypurposes…•Keepsthegridstable100%ofthetime.Thisishelpedbythefactthat,duringcoldstorms,windsarestrongerandwind/solararecomplementaryinnature;•Saves5.3millionlivesfromairpollutionperyearin2050in145countries;•Eliminates57billiontonnes-CO2eperyearin2050in145countries;•Reduces2050all-purpose,end-useenergyrequirementsby56.4%;•Reduces145-country2050annualenergycostsby62.7%(from$17.8to$6.64tril/y);•Reducesannualenergy,health,plusclimatecostsby92.0%(from$83.2to$6.64tril/y);•Costs~$61.5trillionupfront.Upfrontcostsarepaidbackthroughenergysales.CostsareforWWSelectricity,heat,andH2generation;electricity,heat,cold,andH2storage;heatpumpsfordistrictheating;all-distancetransmission;anddistribution;•Requires0.17%ofthe145-countrylandareaforfootprint,0.36%forspacing;•Creates28.4millionmorelong-term,full-timejobsthanlost.TableofContentsTable1.ReducedEnd-UseDemandUponaTransitionFromBAUtoWWSTable2.2050WWSEnd-UseDemandbySectorTable3.WWSEnd-UseDemandbyLoadTypeTable4.NameplateCapacitiesNeededby2050andInstalledasof2020Table5.CapacityFactorsofWWSGeneratorsTable6.PercentofLoadMetbyDifferentWWSGeneratorsTable7.CharacteristicsofStorageResultinginMatchingDemandWith100%WWSSupplyTable8.SummaryofEnergyBudgetResultinginGridStabilityTable9.DetailsofEnergyBudgetResultinginGridStabilityTable10.BreakdownofEnergyCostsRequiredtoKeepGridStableTable11.Energy,Health,andClimateCostsofWWSVersusBAUTable12.AirPollutionMortalities,CarbonDioxideEmissions,andAssociatedCostsTable13.LandAreasNeededTable14.ChangesinEmploymentReferences.Table1.ReducedEnd-UseDemand(Load)UponaTransitionFromBAUtoWWS1strow:2018annually-averagedend-useload(GW)andpercentageoftheloadbysector.2ndrow:estimated2050totalannually-averagedend-useload(GW)andpercentageofthetotalloadbysectorifconventionalfossil-fuel,nuclear,andbiofuelusecontinuesto2050underaBAUtrajectory.3rdrow:estimated2050totalend-useload(GW)andpercentageoftotalloadbysectorif100%ofBAUend-useall-purposedeliveredloadin2050isinsteadprovidedbyWWS.Column(k)showsthepercentagereductionsintotal2050BAUloadduetoswitchingfromBAUtoWWS,includingtheeffectsof(h)energyusereductionduetothehigherworktoenergyratioofelectricityovercombustion,(i)eliminatingenergyusefortheupstreammining,transporting,and/orrefiningofcoal,oil,gas,biofuels,bioenergy,anduranium,and(j)policy-drivenincreasesinend-useefficiencybeyondthoseintheBAUcase.Column(l)istheratioofelectricityload(=allenergyload)inthe2050WWScasetotheelectricityloadinthe2050BAUcase.WhereasColumn(l)showsthatelectricityconsumptionincreasesintheWWSversusBAUcases,Column(k)showsthatallenergydecreases.Scenario(a)Totalannualaverageend-useload(GW)(b)Res-ident-ial%oftotalend-useload(c)Com-mer-cial%oftotalend-useload(d)Indus-try%oftotalend-useload(e)Trans-port%oftotalend-useload(f)Ag/for/fish%oftotalend-useload(g)Military/other%oftotalend-useload(h)%changeend-useloadwithWWSduetohigherwork:energyratio(i)%changeend-useloadwithWWSduetoelim-inatingup-stream(j)%changeend-useloadw/WWSduetoeffic-iencybeyondBAU(k)Ove-rall%changeinend-useloadwithWWS(l)WWS:BAUelec-tricityload145countriesBAU201813,102.320.88.238.129.22.221.52BAU205020,358.819.1837.631.72.051.48WWS20508,880.617.510.550.517.91.841.84-38.4-11.3-6.6-56.41.85ThereductionsinColumn(h)aredueprimarilytotheefficiencyofelectricandhydrogenfuelcellvehiclesoverinternalcombustionenginevehicles,theefficiencyofheatpumpsforairandwaterheatingovercombustionandelectricresistanceheaters,andtheefficiencyofelectricityratherthancombustionforhigh-temperatures.Table2.2050WWSEnd-UseDemandbySector2050annualaverageend-useelectricplusheatload(GW)bysectorin145countriesafterenergyinallsectorshasbeenconvertedtoWWS.Instantaneousloadscanbehigherorlowerthanannualaverageloads.Valuesforaregionequalthesumofvaluesamongallcountriesintheregion.CountryorregionTotalRes-identialCom-mercialTrans-portIndustrialAgricul-ture/fores-try/fishingMilitary/other145countries8880.61555.7928.54482.21587.0163.52163.84Table3.WWSEnd-UseDemandbyLoadTypeAnnualaverageWWSall-sectorinflexibleandflexibleloads(GW)for2050in145countries.“Totalload”isthesumof“inflexibleload”and“flexibleload.”“Flexibleload”isthesumof“coldloadsubjecttostorage,”“low-temperatureheatloadsubjecttostorage,”“loadforH2”production,compression,andstorage(accountingforleaksaswell),and“allotherloadssubjecttodemandresponse(DR).”Annualaverageloadsaredistributedintimeat30-sresolution,asdescribedinthetext.Instantaneousloads,eitherflexibleorinflexible,canbemuchhigherorlowerthanannualaverageloads.Alsoshownistheannualhydrogenmassneededineachregion,estimatedastheH2loadmultipliedby8,760hr/yranddividedby59.01kWh/kg-H2.CountryorregionTotalend-useload(GW)Inflex-ibleload(GW)Flex-ibleload(GW)Coldloadsubjecttostorage(GW)Low-temp-eratureheatloadsubjecttostorage(GW)Loadsub-jecttoDRLoadforH2(GW)H2needed(Tg-H2/yr)145countries8,880.64142.94,738.95.6570.1605.63,467.89.9Table4.NameplateCapacitiesNeededby2050andInstalledasof2020Final(fromLOADMATCH)2050total(existingplusnew)nameplatecapacity(GW)ofWWSgeneratorsneededtomatchpowerdemandwithsupply,storage,anddemandresponsecontinuouslyduring2050-2052in145countries.Alsogivenarenameplatecapacitiesalreadyinstalledasof2020end.Nameplatecapacityequalsthemaximumpossibleinstantaneousdischargerate.YearOnshorewindOff-shorewindResi-dentialroof-topPVComm/govtrooftopPVUtilityPVCSPwithstor-ageGeothermal-elec-tricityHydropowerWaveTidalSolarthermalGeothermalheat2020712.735.50141.2141.2423.66.4714.011,164.00060.53456.4107.720509,4304,4213,4225,91216,247419.797.31,16450.319.2456.4107.7Table5.CapacityFactorsofWWSGeneratorsSimulation-averaged2050-2052capacityfactors(percentofnameplatecapacityproducedaselectricitybeforetransmission,distributionormaintenancelosses)in145countries.Themeancapacityfactorsinthistableequalthesimulation-averagedpowersuppliedbyeachgeneratorineachregion(Table6)dividedbythenameplatecapacityofeachgeneratorineachregion(Table4).CountryorregionOn-shorewindOff-shorewindRooftopPVUtilityPVCSPwithstorageGeo-thermalelec-tricityHydropowerWaveTidalSolarthermalGeo-thermalheat145countries0.4010.3430.1960.2180.770.8870.4990.1820.2390.1080.54Capacityfactorsofoffshoreandonshorewindturbinesaccountforarraylosses(extractionofkineticenergybyturbines).Thesymbol“--“indicatesnoinstallationofthetechnology.RooftopPVpanelsarefixed-tiltattheoptimaltiltangleofthecountrytheyresidein;utilityPVpanelsarehalffixedoptimaltiltandhalfsingle-axishorizontaltracking.Table6.PercentofLoadMetbyDifferentWWSGeneratorsProjectedsimulation-averaged2050-2052all-sectorWWSenergysupplybeforetransmissionanddistributionlosses,storagelosses,orsheddinglosses,in145countries,andpercentofsupplymetbyeachgenerator,basedonLOADMATCHsimulations.Simulation-averagepowersupply(GW)equalsthesimulationtotalenergysupply(GWh/yr)dividedbythenumberofhoursofsimulation.Thepercentagesforeachregionaddto100%.Multiplyeachpercentagebythe2050totalsupplytoobtaintheGWsupplybyeachgenerator.DividetheGWsupplyfromeachgeneratorbyitscapacityfactor(Table5)toobtainthe2050nameplatecapacityofeachgeneratorneededtomeetthesupply(Table4).CountryorregionTotalWWSsupply(GW)On-shorewind(%)Off-shorewind(%)RoofPV(%)UtilityPV(%)CSPwithstor-age(%)Geothermalelec-tricity(%)Hydropower(%)Wave(%)Tidal(%)Solarther-malheat(%)Geo-ther-malheat(%)145countries11,77832.1012.8915.5630.032.730.734.930.0780.0390.4190.494Table7.CharacteristicsofStorageResultinginMatchingDemandWith100%WWSSupplyMaximumchargerates,dischargerate,storagecapacity,andhoursofstorageatthemaximumdischargerateofallelectricity,coldandheatstorageneededforsupplyplusstoragetomatchdemandin145countries.StoragetypeMaxchargerate(GW)Maxdischargerate(GW)Maxstoragecapacity(TWh)Maxstoragetimeatmaxdischargerate(hr)PHS1,0501,05014.7014CSP-elec.420420----CSP-PCM677--9.4722.6Batteries21,12921,12984.514Hydropower5211,1644,5673,925CW-STES38.338.30.53614ICE57.457.40.80314HW-STES2,0462,04614.437.1UTES-heat5622,049781.94382UTES-elec.2,178------PHS=pumpedhydropowerstorage;PCM=Phase-changematerials;CSP=concentratedsolarpower;CW-STES=Chilled-watersensibleheatthermalenergystorage;HW-STES=Hotwatersensibleheatthermalenergystorage;andUTES=Undergroundthermalenergystorage(eitherboreholes,waterpits,oraquifers).Thepeakenergystoragecapacityequalsthemaximumdischargeratemultipliedbythemaximumnumberofhoursofstorageatthemaximumdischargerate.Pumpedhydrostoragefor2050inacountryorregionisestimatedastheexisting(in2020)nameplatecapacityinthecountryorregionmultipliedbytheratioofexistingpluspendingcapacitytoexistingcapacityfor145countries(fromFERC,2021).Ifacountryhasnoexistinghydro,aminimumisimposedtoaccountfortheadditionofpumpedhydrobetween2021and2050.HeatcapturedinaworkingfluidbyaCSPsolarcollectorcaneitherbeusedimmediatelytoproduceelectricitybyevaporatingwaterandrunningitthroughasteamturbineconnectedtoagenerator,storedinaphase-changematerial,orboth.ThemaximumdirectCSPelectricityproductionrate(CSP-elec)equalsthemaximumelectricitydischargerate,whichequalsthenameplatecapacityofthegenerator.ThemaximumchargerateofCSPphase-changematerialstorage(CSP-PCM)issetto1.612multipliedbythemaximumelectricitydischargerate,whichallowsmoreenergytobecollectedthandischargeddirectlyaselectricity.Thus,sincethehigh-temperatureworkingfluidintheCSPplantcanbeusedtoproduceelectricityandchargestorageatthesametime,themaximumoverallelectricityproductionplusstoragechargerateofenergyis2.612multipliedbythemaximumdischargerate.Thisratioisalsotheratioofthemirrorsizewithstorageversuswithoutstorage.Thisratiocanbeupto3.2inexistingCSPplants.Themaximumenergystoragecapacityequalsthemaximumelectricitydischargeratemultipliedbythemaximumnumberofhoursofstorageatfulldischarge,setto22.6hours,or1.612multipliedbythe14hoursrequiredforCSPstoragetochargewhenchargingatitsmaximumrate.Hydropower’smaximumdischargeratein2050isits2020nameplatecapacity.Hydropowercanberechargedonlynaturallybyrainfallandrunoff,anditsannual-averagerechargerateapproximatelyequalsits2020annualenergyoutput(TWh/yr)dividedbythenumberofhoursperyear.Hydroisrechargedeachtimestepatthisrechargerate.Themaximumhydropowerenergystoragecapacityavailableinallreservoirsisalsoassumedtoequalhydro’s2020annualenergyoutput.Whereasthepresenttablegiveshydro’smaximumstoragecapacity,itsoutputfromstorageduringagiventimestepislimitedbythesmallestamongthreefactors:thecurrentenergyavailableinthereservoir,thepeakhydrodischargeratemultipliedbythetimestep,andtheenergyrequired.TheCW-STESpeakdischargerateissetequalto40%oftheannualaveragecoldload(forairconditioningandrefrigeration)subjecttostorage.TheICEstoragedischargerateissetto60%ofthesameannualaveragecoldloadsubjecttostorage.Thepeakchargerateissetequaltothepeakdischargerate.TheHW-STESpeakdischargerateissetequaltothemaximuminstantaneousheatloadsubjecttostorageduringany30-secondperiodofthetwo-yearsimulation.Thevalueshavebeenconvertedtoelectricityassumingtheelectricityproducesheatforheatpumpswithacoefficientofperformanceof4.Becausetheyarebasedonmaximumratherthantheannualaverageloads,theyarehigherthantheannual-averagelow-temperatureheatloadssubjecttostorageinTable3.Thepeakchargerateissetequaltothepeakdischargerate.UTESheatstoredinundergroundsoil(boreholestorage)orwater(waterpitoraquiferstorage)canbechargedwitheithersolarorgeothermalheatorexcesselectricity(assumingtheelectricityproducesheatwithanelectricheatpumpatacoefficientofperformanceof4).Themaximumchargerateofheat(convertedtoequivalentelectricity)toUTESstorage(UTES-heat)issettothenameplatecapacityofsolarthermalcollectorsdividedbythecoefficientofperformanceofaheatpump=4).Whennosolarthermalcollectorsareused,suchasinallsimulationshere,themaximumchargerateforUTES-heatiszero,andUTESischargedonlywithexcessgridelectricityrunningheatpumps.ThemaximumchargerateofUTESstorageusingexcessgridelectricity(UTES-elec.)issetequaltothemaximuminstantaneousheatloadsubjecttostorageduringany30-secondperiodofthetwo-yearsimulation.ThemaximumUTESheatdischargerateissetequaltothemaximuminstantaneousheatloadsubjecttostorage.Themaximumchargerate,dischargerate,andcapacityofUTESstorageareallinunitsofequivalentelectricitythatwouldgiveheatatacoefficientofperformanceof4.Table8.SummaryofEnergyBudgetResultinginGridStabilityBudgetofsimulation-averagedend-usepowerdemandmet,energylost,WWSenergysupplied,andchangesinstorage,summedoverthethree-year(26,291.4875hour)simulationsforall24worldregions(145countries).AllunitsareGWaveragedoverthesimulationsandarederivedfromthedatainTable9bydividingvaluesfromthetableinunitsofTWhpersimulationbythenumberofhoursofsimulation.TD&Mlossesaretransmission,distribution,andmaintenancelosses.Windturbinearraylossesarealreadyaccountedforinthe“WWSsupplybeforelosses”numbers,”sincewindsupplyvaluescomefromGATOR-GCMOM,whichaccountsforsuchlosses.Countryorregion(a)Annualaverageend-useload(GW)(b)TD&Mlosses(GW)(c)Storagelosses(GW)(d)Sheddinglosses(GW)(e)End-useload+losses=a+b+c+d(GW)(f)WWSsupplybeforelosses(GW)(g)Changesinstorage(GW)(h)Supply+changesinstorage=f+g(GW)145countries8,880.5771.2279.41,861.411,79311,778.414.111,793Table9.DetailsofEnergyBudgetResultinginGridStabilityBudgetoftotalend-useenergydemandmet,energylost,WWSenergysupplied,andchangesinstorage,summedoverthethree-year(26,291.4875hour)simulationsforall24gridregions(encompassing145countries).AllunitsareTWhoverthesimulation.Dividebythenumberofhoursofsimulationtoobtainsimulation-averagedpowervalues,whichareprovidedinTable8forkeyparameters.145countriesA1.Totalendusedemand233,482Electricityforelectricityinflexibledemand111,161Electricityforelectricity,heat,coldstorage+DR106,399ElectricityforH2directuse+H2storage15,921A2.Totalendusedemand233,482Electricityfordirectuse,electricitystorage,+H2218,616Low-Theatloadmetbyheatstorage14,397Coldloadmetbycoldstorage469A3.Totalendusedemand233,482Electricityfordirectuse,electricitystorage,DR200,059ElectricityforH2directuse+H2storage15,921Electricity+heatforheatsubjecttostorage14,988Electricityforcoldloadsubjecttostorage2,513B.Totallosses76,560Transmission,distribution,downtimelosses20,276LossesCSPstorage50LossesPHSstorage54Lossesbatterystorage2,835LossesCW-STES+ICEstorage85LossesHW-STESstorage1,852LossesUTESstorage2,471Lossesfromshedding48,938Netend-usedemandpluslosses(A1+B)310,042C.TotalWWSsupplybeforeT&Dlosses309,672Onshore+offshorewindelectricity139,318Rooftop+utilityPV+CSPelectricity149,616Hydropowerelectricity15,278Waveelectricity241Geothermalelectricity2,269Tidalelectricity121Solarheat1,298Geothermalheat1,531D.Nettakenfrom(+)oraddedto(-)storage370CSPstorage3.4819PHSstorage-0.9768Batterystorage7.9036CW-STES+ICEstorage0.1640HW-STESstorage8.1379UTESstorage288.0287H2storage63.2392Energysuppliedplustakenfromstorage(C+D)310,042End-usedemandsinA1,A2,A3shouldbeidentical.Generatedelectricityisshedwhenitexceedsthesumofelectricitydemand,coldstoragecapacity,heatstoragecapacity,andH2storagecapacity.OnshoreandoffshorewindturbinesinGATOR-GCMOM,usedtocalculatewindpoweroutputforuseinLOADMATCH,areassumedtobeSenvion(formerlyRepower)5MWturbineswith126-mdiameterblades,100mhubheights,acut-inwindspeedof3.5m/s,andacut-outwindspeedof30m/s.RooftopPVpanelsinGATOR-GCMOMweremodeledasfixed-tiltpanelsattheoptimaltiltangleofthecountrytheyresidedin;utilityPVpanelsweremodeledashalffixedoptimaltiltandhalfsingle-axishorizontaltracking.Allpanelswereassumedtohaveanameplatecapacityof390Wandapanelareaof1.629668m2,whichgivesa2050panelefficiency(WattsofpoweroutputperWattofsolarradiationincidentonthepanel)of23.9%,whichisanincreasefromthe2015valueof20.1%.EachCSPplantbeforestorageisassumedtohavethemirrorandlandcharacteristicsoftheIvanpahsolarplant,whichhas646,457m2ofmirrorsand2.17km2oflandper100MWnameplatecapacityandaCSPefficiency(fractionofincidentsolarradiationthatisconvertedtoelectricity)of15.796%,calculatedastheproductofthereflectionefficiencyof55%andthesteamplantefficiencyof28.72%.TheefficiencyoftheCSPhotfluidcollection(energyinfluiddividedbyincidentradiation)is34%.Table10.BreakdownofEnergyCostsRequiredtoKeepGridStableSummaryof2050WWSmeancapitalcostsofnewelectricityplusheatgenerators;electricity,heat,cold,andhydrogenstorage(includingheatpumpstosupplydistrictheatingandcooling),andall-distancetransmission/distribution($trillionin2020USD)andmeanlevelizedprivatecostsofenergy(LCOE)(USD¢/kWh-all-energyor¢/kWh-electricity-replacing-BAU-electricity)summedoraveragedoverthesimulationsforall24worldregions(encompassing145countries).Alsoshownistheenergyconsumedperyearineachcaseandtheresultingaggregateannualenergycost.145countriesCapitalcostnewgeneratorsonly($trillion)45.697Capcostnewgenerators+storage($trillion)61.470ComponentsoftotalLCOE(¢/kWh-all-energy)Short-dist.transmission1.050Long-distancetransmission0.172Distribution2.375Electricitygeneration3.799Additionalhydroturbines0Geothermal+solarthermalheatgeneration0.079LIbatterystorage0.554CSP-PCM+PHSstorage0.027CW-STES+ICEstorage0.002HW-STESstorage0.013UTESstorage0.092Heatpumpsforfillingdistrictheating/cooling0.066H2production/compression/storage0.310TotalLCOE(¢/kWh-all-energy)8.538LCOE(¢/kWh-replacingBAUelectricity)8.046GWannualavg.end-usedemand(Table1)8,880.6TWh/yend-usedemand(GWx8,760h/y)77,794Annualenergycost($billion/yr)6,642.0TheLCOEsarederivedfromcapitalcosts,annualO&M,andend-of-lifedecommissioningcoststhatvarybytechnology(andthatareafunctionoflifetimeandasocialdiscountrateforanintergenerationalprojectof2.0(1-3)%,alldividedbythetotalannualizedend-usedemandmet,giveninthepresenttable.Capitalcostofgenerators-storage-H2-HVDC($trillion)isthecapitalcostofnewelectricityandheatgenerators;electricity,heat,cold,andhydrogenstorage;hydrogenelectrolyzersandcompressors;andlong-distance(HVDC)transmission.Sincethetotalend-useloadincludesheat,cold,hydrogen,andelectricityloads(allenergy),the“electricitygenerator”cost,forexample,isacostperunitallenergyratherthanperunitelectricityalone.The‘TotalLCOE’givestheoverallcostofenergy,andthe‘ElectricityLCOE’givesthecostofenergyfortheelectricityportionofloadreplacingBAUelectricityenduse.ItisthetotalLCOElessthecostsforUTESandHW-STESstorage,H2,andlesstheportionoflong-distancetransmissionassociatedwithH2.Short-distancetransmissioncostsare$0.0105(0.01-0.011)/kWh.Distributioncostsare$0.02375(0.023-0.0245)/kWh.Long-distancetransmissioncostsare$0.0089(0.0042-0.010)/kWh(inUSD2020),whichassumes1,500to2,000kmHVDClines,acapacityfactorusageofthelinesof~50%andacapitalcostof~$400(300-460)/MWtr-km.Table11.Energy,Health,andClimateCostsofWWSVersusBAU2050145countriesannual-averageend-use(a)BAUloadand(b)WWSload;(c)percentdifferencebetweenWWSandBAUload;(d)presentvalueofthemeantotalcapitalcostfornewWWSelectricity,heat,cold,andhydrogengenerationandstorageandall-distancetransmissionanddistribution;meanlevelizedprivatecostsofall(e)BAUand(f)WWSenergy(¢/kWh-all-energy-sectors,averagedbetweentodayand2050);(g)meanWWSprivate(equalssocial)energycostperyear,(h)meanBAUprivateenergycostperyear,(i)meanBAUhealthcostperyear,(j)meanBAUclimatecostperyear,(k)BAUtotalsocialcostperyear;(l)percentdifferencebetweenWWSandBAUprivateenergycost;and(m)percentdifferencebetweenWWSandBAUsocialenergycost.Allcostsarein2020USD.H=8,760hoursperyear.Countryorregion(a)12050BAUAnnualavg.end-useload(GW)(b)12050WWSAnnualavg.end-useload(GW)(c)2050WWSminusBAUload=(b-a)/a(%)(d)2WWSmeantotalcap-italcost($tril2020)(e)3BAUmeanprivateenergycost¢/kWh-allenergy(f)4WWSmeanprivateenergycost¢/kWh-allenergy(g)5WWSmeanannualall-energyprivateandsocialcost=bfH$bil/(h)5BAUmeanannualall-energyprivatecost=aeH$bil/y(i)6BAUmeanannualBAUhealthcost$bil/y(j)7BAUmeanannualclimatecost($bil/y)(k)BAUmeanannualBAUtotalsocialcost=h+i+j$bil/y(l)WWSminusBAUprivateenergycost=(g-h)/h(%)(m)WWSminusBAUsocialenergycost=(g-k)/k(%)145countries20,3598,880.6-56.461.59.988.546,642.017,80533,60131,75783,163-62.7-92.01FromTable1.2Capitalcostofgenerators-storage-H2-HVDC($trillion)isthecapitalcostofnewelectricityandheatgenerators;electricity,heat,cold,andhydrogenstorage;hydrogenelectrolyzersandcompressors;andlong-distance(HVDC)transmission.3ThisistheBAUelectricity-sectorcostofenergyperunitenergy.ItisassumedtoequaltheBAUall-energycostofenergyperunitenergy.4TheWWScostperunitenergyisforallenergy,whichisalmostallelectricity(plusasmallamountofdirectheat)5TheannualprivatecostofWWSorBAUenergyequalsthecostperunitenergyfromColumn(f)or(g),respectively,multipliedbytheenergyconsumedperyear,whichequalstheend-useloadfromColumn(b)or(a),respectively,multipliedby8,760hoursperyear.6The2050annualBAUhealthcostequalsthenumberoftotalairpollutionmortalitiesperyearin2050fromTable12,Column(a),multipliedby90%(theestimatedpercentoftotalairpollutionmortalitiesthatareduetoenergy)andbyastatisticalcostoflifeof$11.56($7.21-$17.03)million/mortality(2020USD)andamultiplierof1.15formorbidityandanothermultiplierof1.1fornon-healthimpacts(Jacobsonetal.,2019).7The2050annualBAUclimatecostequalsthe2050CO2eemissionsfromTable12,Column(b),multipliedbythesocialcostofcarbonin2050of$548($315-$1,188)/metrictonne-CO2(in2020USD),whichisupdatedfromvaluesinJacobsonetal.(2019),whichwerein2013USD.Table12.AirPollutionMortalities,CarbonDioxideEmissions,andAssociatedCosts145countries(a)estimatedairpollutionmortalitiesperyearin2050-2052duetoanthropogenicsources(90%ofwhichareenergy);(b)carbon-equivalentemissions(CO2e)intheBAUcase;(c)costpertonne-CO2eofeliminatingCO2ewithWWS;(d)BAUenergycostpertonne-CO2eemitted;(e)BAUhealthcostpertonne-CO2eemitted;(f)BAUclimatecostpertonne-CO2eemitted;(g)BAUtotalsocialcostpertonne-CO2eemitted;(h)BAUhealthcostperunitall-BAU-energyproduced;and(i)BAUclimatecostperunit-all-BAU-energyproduced.Countryorregion(a)12050BAUairpollutionmortalities(Deaths/y)(b)22050BAUCO2e(Mtonne/y)(c)32050WWS($/tonne-CO2e-elim-inated)(d)42050BAUenergycost($/tonne-CO2e-emitted)(e)42050BAUhealthcost($/tonne-CO2e-emitted)(f)42050BAUclimatecost($/tonne-CO2e-emitted)(g)42050BAUsocialcost=d+e+f($/tonne-CO2e-emitted)(h)52050BAUhealthcost(¢/kWh)(i)52050BAUclimatecost(¢/kWh)145countries5,292,57656,873116.793135915581,46218.817.812050countryBAUmortalitiesduetoairpollutionareextrapolatedfrom2016valuesfromWHO(2017)usingthemethoddescribedinJacobsonetal.(2019).2CO2e=CO2-equivalentemissions.ThisaccountsfortheemissionsofCO2plustheemissionsofothergreenhousegasesmultipliedbytheirglobalwarmingpotentials.3CalculatedastheWWSprivateenergyandtotalsocialcostfromTable11,Column(g)dividedbytheCO2eemissionsfromColumn(b)ofthepresenttable.4Columns(d)-(g)arecalculatedastheBAUprivateenergy,health,climate,andtotalsocialcostsfromTable11,Columns(h)-(k),respectively,eachdividedbytheCO2eemissionsfromColumn(b)ofthepresenttable.5Columns(h)-(i)arecalculatedastheBAUhealthandclimatecostsfromTable11,Columns(i)-(j),respectively,eachdividedbytheBAUannualaverageend-useloadfromTable11,Column(a)andby8,760hoursperyear.Table13.LandAreasNeededFootprintareasfornewutilityPVfarms,CSPplants,solarthermalplantsforheat,geothermalplantsforelectricityandheat,andhydropowerplantsandspacingareasfornewonshorewindturbines.CountryorregionCountryorregionlandarea(km2)FootprintArea(km2)Spacingarea(km2)Footprintareaaspercentageofthecountryorregionlandarea(%)Spacingareaasapercentageofthecountryorregionlandarea(%)145countries121,464,428205,758440,1990.170.36Spacingareasareareasbetweenwindturbinesneededtoavoidinterferenceofthewakeofoneturbinewiththenext.Suchspacingareacanbeusedformultiplepurposes,includingfarmland,rangeland,openspace,orutilityPV.Footprintareasarethephysicallandareas,watersurfaceareas,orseafloorsurfaceareasremovedfromuseforanyotherpurposebyanenergytechnology.RooftopPVisnotincludedinthefootprintcalculationbecauseitdoesnottakeupnewland.Conventionalhydronewfootprintiszerobecausenonewdamsareproposedaspartoftheseroadmaps.Offshorewind,wave,andtidalarenotincludedbecausetheydon’ttakeupnewland.Areasaregivenbothasanabsoluteareaandasapercentageofthecountryorregionallandarea,whichexcludesinlandorcoastalwaterbodies.Forcomparison,thetotalareaandlandareaofEarthare510.1and144.6millionkm2,respectively.Table14.ChangesintheEmploymentEstimatedlong-term,full-timejobscreatedandlostduetotransitioningfromBAUenergyto100%WWSacrossallenergysectorsin145countries.Thejobcreationaccountsfornewjobsintheelectricity,heat,cold,andhydrogengeneration,storage,andtransmission(includingHVDCtransmission)industries.Italsoaccountsforthebuildingofheatpumpstosupplydistrictheatingandcooling.Howeveritdoesnotaccountforchangesinjobsintheproductionofelectricappliances,vehicles,andmachinesorinincreasingbuildingenergyefficiency.ConstructionjobsarefornewWWSdevicesonly.Operationjobsarefornewandexistingdevices.Thelossesareduetoeliminatingjobsformining,transporting,processing,andusingfossilfuels,biofuels,anduranium.Fossil-fueljobsduetonon-energyusesofpetroleum,suchaslubricants,asphalt,petrochemicalfeedstock,andpetroleumcoke,areretained.Fortransportationsectors,thejobslostarethoseduetotransportingfossilfuels(e.g.,throughtruck,train,barge,ship,orpipeline);thejobsnotlostarethosefortransportingothergoods.Thetabledoesnotaccountforjobslostinthemanufactureofcombustionappliances,includingautomobiles,ships,orindustrialmachines.CountryorregionConstructionjobsproducedOperationjobsproducedTotaljobsproducedJobslostNetchangeinjobs145countries25,374,57530,185,55855,560,13427,190,15928,369,975References.FERC(FederalRegulatoryEnergyCommission)(2021).Pumpedstorageprojects.https://www.ferc.gov/industries-data/hydropower/licensing/pumped-storage-projects.IEA(InternationalEnergyAgency)(2021),DataandStatisticsfor2018,OECDPublishing,Paris.RetrievedOctober5,2021fromhttps://www.iea.org/data-and-statisticsJacobson,M.Z.,Delucchi,M.A.,Cameron,M.A.,Coughlin,S.J.,Hay,C.,Manogaran,I.P.,Shu,Y.andvonKrauland,A.-K.(2019).ImpactsofGreenNewDealenergyplansongridstability,costs,jobs,health,andclimatein143countries.OneEarth1,449-463.WHO(WorldHealthOrganization)(2017).Globalhealthobservatorydata.RetrievedAugust10,2021,from,https://www.who.int/gho/phe/outdoor_air_pollution/en

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

小星学习库
已认证
内容提供者

满天繁星 学无止境

确认删除?
回到顶部
微信客服
  • 管理员微信
QQ客服
  • QQ客服点击这里给我发消息
客服邮箱