Lithium-IonBatteryRoadmap–IndustrializationPerspectivesToward2030December2023Lithium-IonBatteryRoadmap–IndustrializationPerspectivesToward20302ContentsContentsExecutiveSummary����������������������������������������������������������������������������������������������������������������2Zusammenfassung����������������������������������������������������������������������������������������������������������������51.Introduction��������������������������������������������������������������������������������������������������������������������81.1.IntroductionandMotivation������������������������������������������������������������������������������91.2.Methodology��������������������������������������������������������������������������������������������������111.3.LIBPatentAnalysis������������������������������������������������������������������������������������������132.ApplicationsandRequirements����������������������������������������������������������������������������������152.1.TechnicalRequirements����������������������������������������������������������������������������������162.2.VolumeRequirements��������������������������������������������������������������������������������������202.3.Ecological,EconomicandotherRequirements����������������������������������������������223.IndustryandTechnologyRoadmaps.�������������������������������������������������������������������������263.1.BatteryMaterials����������������������������������������������������������������������������������������������293.1.1.CathodeMaterials����������������������������������������������������������������������������������������������293.1.2.CathodeMaterialProductionCapacities��������������������������������������������������������������353.1.3.AnodeMaterial��������������������������������������������������������������������������������������������������373.1.4.AnodeMaterialProductionCapacities����������������������������������������������������������������393.1.5.OtherCellComponents��������������������������������������������������������������������������������������413.1.6.CellProductionCapacitiesbyChemistry��������������������������������������������������������������433.2.BatteryCells������������������������������������������������������������������������������������������������������453.2.1.BatteryCellDesignTrends����������������������������������������������������������������������������������453.2.2.BatteryProductionTrends������������������������������������������������������������������������������������493.2.3.CellProductionCapacitiesbyLocationandOriginofManufacturer��������������������533.2.4.CellProductionCapacitiesbyFormat������������������������������������������������������������������553.2.5.PlausibilityofProductionImplementationandIndustryStructure������������������������573.3.BatteryPacksandSystem��������������������������������������������������������������������������������593.4.BatteryRecycling����������������������������������������������������������������������������������������������654.ImplementationOutlook��������������������������������������������������������������������������������������������674.1.TechnologyRoadmaps������������������������������������������������������������������������������������684.1.1.Performance-Optimized��������������������������������������������������������������������������������������684.1.2.Cost-Optimized��������������������������������������������������������������������������������������������������694.1.3.Ecologically-Optimized����������������������������������������������������������������������������������������714.2.BatteryDemandandProduction.������������������������������������������������������������������734.2.1.BatteryMarketsandDemandForecast����������������������������������������������������������������734.2.2.BatteryMaterialandCellProduction������������������������������������������������������������������744.3.AEuropeanBattery.����������������������������������������������������������������������������������������77ListofAbbreviations����������������������������������������������������������������������������������������������������������80References����������������������������������������������������������������������������������������������������������������������������82Acknowledgements��������������������������������������������������������������������������������������������������������101Imprint��������������������������������������������������������������������������������������������������������������������������������102ExecutiveSummaryExecutiveSummary2ExecutiveSummaryExecutiveSummaryThemarketforlithium-ionbatteries(LIB)continuestoexpand,moreimportantdevelopmentgoalofreducingbatterycosts.acrossbordersanddespitecrises.In2023,salescouldexceedThecosttargetatthebatterypacklevelisstillwellbelowthe1TWhmarkforthefirsttime.By2030,demandisexpec-100EUR/kWh.Comparedtotoday'scosts,thiscouldmeanatedtomorethantripletoover3TWh.Thehighgrowthratesreductionof30to50%.Theindustryaimstoachievethisbyofrecentyearsaresettocontinue.usingbothcobalt-freeandnickel-freematerials,standardizingcellsandintegratingthemdirectlyintothebatterypack.NewThetransitionfromgigawatthourstoterawatthoursinmanufacturingprocessescouldalsocontributetoreducingdemandandproductionhasmanyimplicationsfortheindus-costs,bothbyleveragingenergyandequipmentcostsandbytry,butalsofortechnologydevelopmentandtherequirementsstandardizingthefactoryitself.Costsalsoshowthattechnolo-forbatteries.Forexample,recentregulatoryrequirementsgiesarenotnecessarilylocation-neutral.Achievingthelowestmandatebatterysustainability.ThemassuseofLIBsinelectricbatterycostcouldbelinkedtositingfactoriesatthemostvehicleshaspushedtheissueofbatterypricetotheforeadvantageousproductionlocation.andmoretechnicalfactorssuchasenergydensityandrangeintothebackground,atleastinthesmallervehicleandmassVerysimilarconsiderationsapplytotheproductionofsustai-segments.Asthemarketcontinuestogrow,questionsofnablebatteriesasrequiredbytheEUBatteryDirective,amongproductionlocalizationandtheshareofvaluecreationthatothers,butalsobyanincreasingnumberofcarmanufacturers.stakeholdersandnationswillhaveinthefuturewillbecomeSpecifically,sustainabilitycanaffectmanyfactors,fromrawmoreimportant.materialextractiontoproductionandusescenarios.Inthecomingyears,industrialdevelopmentsarelikelytofocusonThisstudy"Lithium-IonBatteryRoadmap-Industrializationcelltechnologiesandproductiontechnologies,someofwhichPerspectivesToward2030"attemptstotakeintoaccounttheevencombinesustainability,e.g.,alowCO2footprintwithlowstatusofLIBasanestablishedtechnologybyfocusingonthecost.Theseincludeiron-andmanganese-basedcathodes,scalingactivitiesoftheindustry,whilestillconsiderungthewater-basedordryelectrodeprocessing,andusingrecyclingnumeroustechnologicalchallengesthatrangefrommaterialstorecovermaterialsattheendofthebattery'slife.Theloca-tothefinaltreatmentofend-of-lifebatteries.Theresultisationofproductionalsoplaysanimportantroleinsustainability,quantificationofthisindustryuntil2030andanevaluationofinfluencedbyfactorssuchastheavailableenergymixandtheapproachesintheareasofmaterials,cells,production,systemsdistancetoupstreamanddownstreamproductionsites.andrecycling,notonlyaccordingtotheirperformancebutalsoaccordingtotheirsignificanceforthreekeytrends:Thepro-Thethreekeytrendsandtargetsystemsdiscussedintheductionofperformance-optimizedbatteries,theproductionofstudyarepartlycontradictory.Highperformanceissometimesparticularlylow-costbatteriesandtheproductionofparticular-expensiveandatthelimitsofwhatistechnicallyfeasible.Thelysustainablebatteries.highpriorityofalowenvironmentalfootprintmaylimittheuseofsometechnologiesandmustalsotakeintoaccountend-LIBtargetsystemandindustrialimplementationof-lifetreatmentinthedesignphase.Whiletherearesomecompromisetechnologiesthatcombineseveraloftheseobjec-Thereareambitiousdevelopmentgoalsforperformance-tives,thecurrenttrendintheindustryseemstobemoreintheoptimizedbatteries.Overthenextfewyears,theaimistodirectionofdiversificationandtheproductionofbatterieswithsignificantlyincreasetheparametersofenergydensityclearprofilesandusecases.andfast-chargingcapabilityinparticular.Itisnotuncommontoseetargetsofmorethan800Wh/landmorethanThedevelopmentofbatteriestailoredtospecificapplication350Wh/kginindustryroadmaps.Forsomeflagshipvehicles,requirementsgoeshandinhandwithscalingupproduction.chargingrateswillbeacceleratedto4CandthusintotheInrecentyears,therehasbeenastrongfocusoncellproduc-rangeof10to20minutes.Toachievethesegoals,theindustrytion.Thereareplanstobuildmorethan10TWhofannualisturningtohigh-nickelcathodes,siliconanodesandnewcellproductioncapacityby2028.Evenifthisfigureisadjustedtoandpackdesignsthatchangespacerequirements,thermaltakeintoaccountthelikelihoodofimplementationandtypicalcouplingandsafetycharacteristics.Thegoalssoundimpres-delays,upto5TWhofcellproductioncapacitycouldstillbesive,andthetechnologicalapproachesareverypromising.availablein2028.However,itisincreasinglybeingaskedwhethersuch“bestofclass”approachesaresuitableformassproduction,andwhet-Lookingattheupstreamvaluechain,itisclearthatthisfigurehertheyarecompatiblewithasecondmajorandmaybeevenishighandreflectsakindofgoldrush.Here,scalingprojectshavebeenannouncedthatwouldenabletheproductionof3ExecutiveSummaryaround3TWhofanodeandcathodeactivematerialsin2028,areplansinplacetobuildproductioncapacitiesofaroundwhichisclosertotheprojectedbatterydemandoftheapplica-200GWh,mainlyforgraphite,by2028.Thefigureforcat-tionmarketsof2to3.5TWh.Thesefiguressuggestthattherehodematerialsisexpectedtorangefrom400tomorethancouldbeaconsolidationofcellproductionprojectsinthe600GWh,whichisroughlyinlinewiththeprojecteddemandcomingyears.Atthesametime,itislikelythattherewillsoonforbatteries.beagreaterfocusonmaterialsproduction,asjointventureswithautomotiveOEMsincreasinglyenterthissegmentoftheAtfirstglance,therefore,Europeappearstobewellonthevaluechain.waytobecomingself-sufficientinthevaluecreationstepsexaminedinthisstudyfrommaterialtobatterysystem.Howe-Howbatteryrecyclingcapacitywilldevelopisstillunclear.Byver,gapsstillexistandnotjustintermsoftheanodemate-2030,therecyclingofproductionwasteinparticularwillplayrials,e.g.,inpassivecellcomponentsorthekeytechnologyofanimportantrolefortheindustry.Itisnotyetknownhowsca-lithiumironphosphate,whichisextremelyimportantforlow-lingwillworkwiththeEoLbatteriesthatwillthenbereturned.costbatteries.Sofar,therehavebeennosubstantialannoun-cementsregardingtheexpansionofproductioncapacitiesEuropeonthewaytoself-sufficiency?forthismaterial.Italsoremainsunclearwhichmanufacturersintendtocoverthistechnologyincellproduction.Similarly,noInInEurope,too,thereisstillalargeimbalancebetweenmaterialmanufacturerhasyetcommittedtobuildingsignifi-supplyanddemand.Thelatterisexpectedtobearoundcantcapacityforsiliconmaterials,whichareconsideredtobe550GWhin2028duetoincreasedelectricvehicleproduction.thenextgenerationofLIBtechnology.Thiscontrastswithannouncementsofplanstobuildcellproductioncapacitiesof1.7TWh,ormorerealisticallyaroundTofillinthesegapsandcreateacompetitive,self-sufficient1TWhafteradjustmentsforthelikelihoodofimplementationandsustainableEuropeanbatteryecosystem,anumberofanddelays.ThesefiguresforEuropethereforeconfirmthechallengesstillneedtobeovercome.Theseincludeinvest-globaltrendofastrongfocusonprojectsandinvestmentsmentsandinvestmentconditions,energycosts,thetrainingincellproduction.Thegoaloflocating30%ofglobalcellofqualifiedworkersandthecreationofacontinuouslocalproductiononEuropeansoilcouldbeachieved.valuechain.Streamliningbureaucraticprocessesandreducingtime-consumingprocedures,aswellasimprovinggovernmentHowever,Europeislikelytoremainweakintheproductionsubsidiesandfinancingmechanismscouldhelptoattractofanodematerialsandwillhavetorelyonimports.Theremoreindustrialplayersandensurealevelplayingfieldwithnon-Europeancountries.Figure1:SchematicrepresentationofthethreeLIBtargetsystemsunderconsideration:(1)performance-optimized,(2)cost-optimizedand(3)ecologically-optimizedandavailabletechnologies.CelltopackNi-richCAMStandardizedSiAAMcellsEnergyandCost-Performance-800VlocationcostoptimizedoptimizedsystemFe-,SmartBMSMn-basedEcologically-CAMoptimizedRecyclingMiniDrycoatingenvironmentsEnergymixPFAS-free4ZusammenfassungZusammenfassung5ZusammenfassungZusammenfassungDerMarktfürLithium-IonenBatterien(LIB)wächst,überGren-z.B.mitder800VTechnologieeineneueOptionzurPerfor-zenundauchüberKrisenhinweg.ImJahr2023könntedermanceverbesserungzurVerfügungundauchsoftwareseitigAbsatzzumerstenMaldieMarkevon1TWhBatteriekapazitätsoll,z.B.durchintelligenteManagementsysteme,nochmalüberschreiten.Bis2030sollsichdieNachfragesogaraufübermehrausderBatterieherausgeholtwerdenkönnen.3TWhmehralsverdreifachen.DiehohenWachstumsratenderletztenJahresetzensichfort.DerÜbergangvonderNachfrageDieseEntwicklungszieleklingeneindrucksvollunddietechno-undProduktionimGigawattstundenbereichindenTerawatt-logischenAnsätzesindvielversprechend.DennochstelltsichstundenbereichhatzahlreicheImplikationenfürdieIndustrie,immermehrdieFrage,wiemassentauglichsolche„bestofaberauchfürdieTechnologieentwicklungunddieAnforderun-class“AnsätzeseinkönnenundinwieferneinKonfliktmitgenanBatterien.UnlängstsindregulatorischeAnforderungeneinemzweitengroßenundvielleichtsogarbedeutsamerementstanden,diez.B.VorgabenzurNachhaltigkeitvonBatte-Entwicklungszielbesteht:derRedukionvonBatteriekosten.rienmachen.DerMasseneinsatzvonLIBinElektrofahrzeugenNachwievorliegtdasKostenzielaufBatteriepackebenebeihatdasThemaBatteriepreisindenVordergrundundtechni-sehrdeutlichunter100EUR/kWh.GegenüberheutigenKostenschereFaktorenwieEnergiedichteundReichweite,zumindestkanndiesdurchausdieReduktionum30bis50%bedeu-imKleinwagen-undMassensegment,indenHintergrundten.DieIndustriewilldiesesZieldurchdieNutzungsowohltretenlassen.UndjeweiterderMarktwächst,destogewichti-cobalt-alsauchnickelfreierMaterialien,dieStandardisierunggerwirdauchdieFragenachderProduktionslokalisierungundvonZellenunddieDirektintegrationinsBatteriepackerreichen.demAnteilanderWertschöpfung,denAkteureundNationenAuchneueProduktionsprozessekönntenbeitragen,sowohlinZukunfthabenwerden.durchdenHebelderEnergie-undAnlagenkostenalsauchübereineStandardisierungderFabrikselbst.AuchzeigtsichDieStudie„Lithium-IonBatteryRoadmap–IndustrializationbeidenKosten,dassTechnologienebendochnichtunbedingtPerspectivesToward2030“versuchtdemStatusderLIBalsstandortneutralsind.DieErreichungniedrigsterBatteriekostenkommerzialisierteTechnologieRechnungzutragen,indemeinkönnteandieNutzungdesgünstigstenProduktionsstandortsklarerFokusaufdieSkalierungsaktivitätenderIndustriegelegtgekoppeltsein.wird,ohnedievielentechnologischenHerausforderungenvondenMaterialienbiszumEndverbleibausgedienterBatterienzuGanzähnlicheÜberlegungengeltenfürdieHerstellungnach-vernachlässigen.ImErgebnisstehteineQuantifizierungdieserhaltigerBatterien,wiesieu.a.vonderEUBatterieverordnungIndustrieaktivitätenbis2030undeineBewertungtechnolo-aberauchvonimmermehrAutomobilherstellerngefordertgischerAnsätzeindenBereichenMaterial,Zelle,Produktion,werden.KonkretkannNachhaltigkeitvieleFaktorenvomSystemundRecyclingnichtnurnachihrerLeistungsfähigkeitRohstoffabbaubiszurProduktionundzuNutzungsszenariensondernnachihrerBedeutungfürdreiSchlüsseltrendsderbetreffen.ImFokusindustriellerEntwicklungendürftenindenIndustrieundAnwendung:DieHerstellungvonleistungsop-nächstenJahrenZelltechnologienundProduktionstechnolo-timiertenBatterien,dieHerstellungvonbesondersgünstigengienstehen,dieteilweisesogarNachhaltigkeit,z.B.imSinneBatterienunddieHerstellungvonbesondersnachhaltigeneinesgeringenCO2-Fußabdrucks,undniedrigeKostenkom-Batterien.binieren.Dazuzähleneisen-undmanganbasierteKathoden,einewasserbasierteodertrockeneElektrodenprozessierungZielsystemLIBundindustrielleUmsetzungunddieRückgewinnungvonMaterialienamBatterielebens-endedurchRecycling.AuchinPunktoNachhaltigkeitspieltderDieEntwicklungszielefürleistungsoptimierteBatteriensindProduktionsstandorteinegroßeRolleundwirktsichbeispiels-ambitioniert.IndennächstenJahrensolleninsbesondereweisedurchdenzurVerfügungstehendenEnergiemixoderdiedieParameterEnergiedichteundSchnellladefähigkeitnochmalEntfernungzuvor-undnachgelagertenProduktionsortenaus.deutlicherhöhtwerden.AufdenIndustrieroadmapssindnichtseltenZielevonüber800Wh/lundüber350Wh/kgzuDiedreiinderStudiediskutiertenSchlüsseltrendsbzw.Ziel-lesen.IneinigenFlagschifffahrzeugensollendieLaderatensystemestehenteilweiseimWiderspruch.HohePerformanceauf4CunddamitindenBereichzwischen10und20MinutenisthäufigteuerundbewegtsichanderGrenzedestechnischbeschleunigtwerden.ZurErreichungdieserZielesetztmachbaren.DiehohePriorisierungeinesökologischniedrigendieIndustrieaufKathodenmithöchstemNickelgehalt,Silziu-FußabdruckskanndieNutzungeinigerTechnologienein-manodenundneuenZell-undPackdesigns,diesowohldenschränkenundmussauchdieBehandlungnachdemLebens-PlatzbedarfalsauchdiethermischeAnkopplungundSicher-endeberücksichtigen.TeilweiseexistierenzwarKompromiss-heitseigenschaftenverändern.AufderSystemebenestehttechnologien,diemehreredieserZielevereinenkönnen,jedochscheintderTrendinderIndustriezurDiversifizierung6ZusammenfassungundHerstellungvonBatterienmitklaremProfilundAnwen-vonZellproduktionskapazitätenvon1,7TWh,bzw.nachdungsfallzuführen.KorrekturhinsichtlichUmsetzungswahrscheinlichkeitundVer-zögerungvonrealistischetwa1TWh.DieseZahlenfürEuropaHandinHandmitderEntwicklungspezifischererundanforde-bestätigenalsodenglobalenTrendeinerstarkenFokussierungrungsgerechterBatteriengehtdieSkalierungderProduktion.vonProjektenundInvestitionenaufdieZellfertigung.DasZiel,IndenletztenJahrenlageinstarkerFokusaufderZellproduk-30%derglobalenZellfertigungaufeuropäischemBodention.Mittlerweilehäufensichbis2028dieAnkündigungenvonanzusiedeln,könnteerreichtwerden.Zellherstellern,AutomobilOEM,Start-UpsundJointVenturesderselbenzumAufbauvonmehrals10TWhjährlicherPro-BeiderHerstellungvonAnodenmaterialiendürfteEuropaduktionskapazität.KorrigiertmandiesenWertunterBerück-derweilweiterhinschwächelnundaufImporteangewiesensichtigungderUmsetzungswahrscheinlichkeitundmittlerweilesein.Bis2028sollenProduktionskapazitäten,vornehmlichtypischerVerzögerungen,sostündenimJahr2028dennochfürGraphit,vonetwa200GWhaufgebautwerden.Beidenbiszu5TWhanZellproduktionskapazitätenzurVerfügung.Kathodenmaterialiensollenes400bisüber600GWhsein,wasinetwaderprognostiziertenBatterienachfrageentspricht.DassdieserWerthochistundeineArtGoldgräberstimmungausdrückt,verdeutlichtderBlickaufdievorgelagerteWert-EuropascheintdamitbeidenimRahmenderStudieuntersuch-schöpfungskette.HierwurdenSkalierungsprojekteangekün-tenWertschöpfungsschrittenvomMaterialbiszumBatterie-digt,dieeineHerstellungvonetwa3TWhanAnoden-undsystemaufdenerstenBlickaufeinemgutenPfadinRichtungKathodenaktivmaterialienin2028ermöglichenwürden,wasSelbstversorgungzusein.ImDetailbestehenjedochnochnäheranderprognostiziertenBatterienachfragederAnwen-Lücken,auchabseitsderAnodenmaterialien,z.B.beidenpas-dungsmärktevon2bis3,5TWhliegt.DieZahlenlegennahe,sivenZellkomponentenoderauchbeiderfürniedrigeKostendassesindennächstenJahreneineKonsolidierungbeidenwichtigenSchlüsseltechnologieLithiumeisenphosphat.BislangZellproduktionsprojektengebenkönnte.GleichzeitigistwurdenkeinenennenswertenAnkündigungenfürdenAufbaueswahrscheinlich,dassdieMaterialherstellungdemnächstvonMaterialproduktionskapazitätengemacht.AuchbeiderstärkerindenFokusgerät,z.B.indemzunehmendJointZellherstellungerscheintweiterhinunklar,welcheProduzentenVenturesmitAutomobilOEMauchindiesenWertschöpfungs-dieseTechnologieabdeckenwollen.Ebenfallshatsichnochschritteinsteigen.keinMaterialproduzentzumAufbaugrößererKapazitätenfürSiliziummaterialien,diealsLIBTechnologiedernächstenGene-UnklaristaktuellnochderKapazitätsaufbaufürdasBatterie-rationgelten,bekannt.recycling.Bis2030wirdinsbesonderedieVerwertungvonProduktionsabfälleneinegroßeRollefürdieIndustriespielen.UmdieLückenzuschließenundeinwettbewerbsfähiges,WiesichdieSkalierungmitdendannzurückkommendenEoLsouveränesundnachhaltigeseuropäischesBatterie-ÖkosystemBatteriengestaltet,istaktuellnochunbekannt.zuschaffensindnocheinigeHerausforderungenzumeistern.ZudiesengehörenInvestitionenundInvestitionsbedingungen,EuropaaufdemWegzurSelbstversorgung?hoheEnergiekosten,dieAusbildungqualifizierterFachkräfteunddieSchaffungeinerdurchgängigenlokalenWertschöp-AuchinEuropabestehtnocheinhohesUngleichgewichtzwi-fungskette.DieStraffungbürokratischerProzesseunddieschenAngebotundNachfrage.Letzteredürfte2028aufgrundVerringerungzeitaufwändigerVerfahrensowiestaatlichederstarkenElektrofahrzeugproduktionbeietwa550GWhSubventionenundFinanzierungsmechanismenkönnenweitereliegen.DemgegenüberstehenAnkündigungenfürdenAufbauindustrielleAkteureanlockenundfürgleicheWettbewerbsbedingungenmitdemaußereuropäischenAuslandsorgen.7Introduction1.Introduction8Introduction1.1.IntroductionandMotivationLithium-ionbatteries(LIBs)haveemergedasindispensableandincontinuousoptimizationratherthansuddenbreakthroughs.widelyadoptedenergystoragesolutionsinelectricvehicles,ForLIBs,theemphasishasshiftedfromdiscoveringentirelyespeciallyinhigh-energyconfigurations.Nonetheless,theirnovelmaterialstoenhancingtheperformanceofexistingapplicationalsoextendsbeyondelectricmobilityandisrapidlyones.Theescalatingpublicdiscourseonclimatechangeanddiversifyingacrossotherindustries,includingaerospace,thethenecessityforsustainableenergysourceshasamplifiedenergysector,andconsumerelectronics.thesignificanceofthisroadmap.CurrentdevelopmentsshowthatoptimizationisnolongersolelyconfinedtoresearchScopeandfunctionofroadmaps.endeavorsbutprimarilyenabledbyindustry-driveneffortsandinitiatives.Hence,thisLIBtechnologyroadmapisorientedRoadmapsareintendedtobeusedasastrategicguidelinetowardmonitoringthetechnologychoicesandadvancementsforthefurtherdevelopmentandoptimizationoftherespectiveanticipatedbyindustryplayersratherthanjustdocumentingtechnologies.Theyfacilitatecontinuousimprovementand(public)research.canhelptoovercomecurrentperformancelimitationsthroughtargetedresearchanddevelopment,drivinginnovation.Focusonmarketramp-upRoadmapssupportindustryplayersbyprovidingoverviewsofplannedproductioncapacities,investments,andsupplychainLIBshavesolidifiedtheirpresenceasaversatilesolutionexpansion.Aroadmapfocusingonimprovementstoandappli-acrossvariousapplications.Technologicaladvancementspri-cationsforhigh-energyLIBsiscrucialtopromotesustainablemarilystemfromcompetitivedynamicsamongmanufacturers,batterytechnologiesandcontributetotheenergytransition.emphasizingimprovementsinperformanceandcostefficiency.Thiscanhelptoempowertheindustrytoaddresschallenges,Thefocushasshiftedfrombasictechnologydevelopmentsprepareforfuturedevelopments,andfullyharnessthepoten-neededforapplicationstomassproductionandscalinguptialofthistechnology.lithium-ionbatteryproductiontomeettherisingdemand.Thisisalsotruefortheprinciplesofthecirculareconomy.Thisroadmapfocusingonhigh-energyLIBswascompiledAsaresult,thepivotalKeyPerformanceIndicators(KPIs)out-todescribethetechnologicaldevelopment,availability,andlinedinthisandcompetingroadmapshavetransitionedfromcostoptimizationoflithium-ionbatteries.Technologically,solelymaterialorcell-levelmetricstosystem-levelconsiderati-thereisstillpotentialtoimproveperformance,sustainability,ons.Theynowencompasslargerscaleissues,including(raw)andoptimizecosts.Thisroadmapisevenmoreimportantmaterialavailabilityandprocurementinkilotonsorsooningiventhedebateonclimatechangeandtheneedtodecarbo-megatons,meetingdemandatGWh-scaleorsoonatTWh-nizetheeconomy,currentgeopoliticaltensions,andcountries’scale,andinvestmentvolumesinbillionsofeuros.attemptstoachievetechnologicalsovereignty.TherearesubstantialinvestmentsdedicatedtoadvancingWhatdoesthismeanLIBtechnologyandproduction.ForecastsanticipateatenfoldfortheFraunhoferISIroadmap?increaseintheseinvestmentsintheshortterm.Inaddition,thereisagrowingglobaltrendtowardestablishingcircularThisroadmapcomplementsandexpandstheexistingFraun-batteryecosystems,aimingtopromotesustainabilitythroughhoferISIroadmaps,adaptingandenlargingtheirmethodologyefficientbatteryrecyclingandresourceconservation.andobjectivesinparallelwiththetechnologicalmaturityandmarketevolutionofLIBs.Earlieriterationslikethe"LIB2015Inthenearfuture,LIBsaretheonlygiga-scalebatterytech-Roadmaps"concentratedondiverseapplications,employingnologysuitableforautomotiveapplications,withlead-acidvarioustechnologyapproachestomeetdistinctrequirements.batteries(PbA)remainingthesolealternativeatGWhproduc-Conversely,the"BEMA2020Roadmaps"emphasizeddifferenttionlevels.Hence,theroadmaprepresentsastrategicinitiativebatterytechnologiesandtheirpotentialadvancements,parti-focusedonoptimizingandadvancingLi-iontechnology.cularlyinperformanceenhancement.Incontrast,thisroadmapistailoredtoaddresstheindustry'sstrategiesformeetingtheWhatdoestheroadmapmeaninthiscontext?growingdemandforLIBsanddeterminingtheextenttowhichindividualstakeholderscanaddvalue.Atechnologyroadmapstrategicallymonitorsandprojectstheevolutionofaparticulartechnology,withprogressembodied9IntroductionFigure2:FurtherdevelopmentoftheresearchfocusofBMBF-fundedISIbatteryroadmapsinparalleltotheindustry'sprogressinscalingup.2023+BEMA2020IILithium-IonBatteryRoadmap–Technologyandindustryscale-up2018IndustrializationPerspectivesTechnologyandapplicationmatch,2015BEMA2020Toward2030researchandindustryfocusLIB2015AlternativeBatteryTechnologyfocus,research-focusedTechnologiesRoadmap2030+Technologyopen,research-focusedSolid-StateBatteryRoadmap2035+EnergyStorageRoadmap–HEBatteries2030+andPerspectivesofFutureTechnologiesApplicationroadmaps(mobile,stationary)ExplorativetechnologyroadmapsDoestheroadmapfocusonlyonmarketshareWhatinsightsdoesthisroadmapoffer?andvaluecreation?ThisroadmapexploresadvancedandmatureLIBtechnologies,Alongsideeconomicconsiderations,environmentalaspectsfocusingonindustrialscale-up(When?)andindustrialarealsobecomingmoreimportant.Althoughbatteriesaimtostakeholders(Who?)ratherthantechnicalspecifics(How?)addresssocietalchallengeslikeclimatechangeanddecarbo-(chapter3).ItoffersastructuredanalysisofplannedLIBnization,theirproductioninvolvescriticalrawmaterialsandmaterialandcellproductioncapacities,anddiscussesregionalleavesasubstantialecologicalfootprint.Thus,effectivemarketshares,keyplayers,andscale-uppotentials.Additional-recyclingprocessesareessentialattheendoftheirlifecycle.ly,itevaluatestrendsintechnology,production,andkeyareaslikeperformanceimprovement,sustainability,cost-effectiveThediscoursesurroundingbatteryoriginandglobalsupplymanufacturing(chapter4.1),andmeetingthegrowingdemandchains,bothcloselytiedtotechnologicalsovereignty,isintheautomotivesector(chapter4.2).gainingsignificanceinEurope.Thisroadmapwascompiledinthecontextofdiverselegalandpoliticalregulations,suchThisroadmapcloseswithafocusonGermanyandEurope,astheEUBatteryRegulation,theEUCriticalRawMaterialsanalyzingthestrengthsofthedomesticindustryandinterpre-Act,theUSInflationReductionAct,andnotabletradepolicytingthepresenceofAsiancompaniesinEuropeasanindicatordynamicsbetweenmajorglobalcenterslikeChina,Northofthelocation'sviability(chapter4.3).Accordingly,itincludesAmerica,andEurope.Publicdiscourseandpoliticaladvance-discussionsaboutEuropeanLIBsorwhatshareofEurope’smentshavefurtherunderscoredtherelevanceofthisroadmapowndemandcanbemetbydomesticproduction.Italsopro-concerningsustainablebatterytechnologyandtechnologyvidesanoutlooktofurtherdevelopmentsinthepublicdebatesovereignty.TherearealsolinkstootherFraunhoferISIstudiesandpolicydevelopments.focusingontechnologicalsovereigntyandoverarchingpoliticalmeta-roadmaps.10Introduction1.2.MethodologyThisroadmapfocusesprimarilyonthefurtherdevelopmentofTousetheinformationinthisroadmap,over600datasetsonLIBtechnologyfromanindustrialproductionperspective.Thepast,presentorfutureproductioncapacitiesofcellmanufactu-roadmapisglobal,technology-neutralandlimitedtotheperiodrersandaround250datasetsonmaterialmanufacturerswereupto2030,althoughmanyoftheactivitiesdiscussedrelatecollectedandintegratedintoanoveralldatabase.Thedatabasetothenextfewyears,e.g.,upto2025.Inthisrespect,thisLIBcontainsinformationonthelocation,operatorand,ifapplicable,roadmapdiffersfromotherFraunhoferISIroadmapstudiesfinancerofaproductionplant,thestatusofproduction[1,2],whichlookatamuchlongerdevelopmentperiodandthe-announcementsandtheproductsthemselves(e.g.,materialreforealsoplaceamuchgreaterfocusonresearchactivities.type,celltype).BatterytechnologyandKPItargetsInordertobeabletocombineandusedifferentsourcesofinformationanddifferentlevelsofdetail,allthedatasetswereResearchisbeingdoneonavarietyoftechnologiesintheareasevaluatedintermsoftheirvalidity,feasibilityandaccuracy.ofmaterials,cells,productionandrecycling.Onlyasmallpro-portionofthesemakeitintoindustrialapplication.Inthisroad-Thisisparticularlyimportantfortheevaluationandcomparisonmap,welimitourselvestotechnologiesforLIBsthathaveeitherofannouncementsconcerningtheexpansionofproductionalreadybeenadoptedbytheindustryorforwhichtheindustrycapacities.Companiessometimescommunicateverydifferentlyhasclearlypositioneditselfforfutureuse.here,bothintermsofthetimingoftheannouncementanditsspecifics.FourparameterswerethereforedocumentedtoTheanalysesarethereforebasedinparticularonindustryroad-evaluateannouncements:mapsandotherannouncementsconcerningtheproductionoruseofspecifictechnologies.Asmanyofthetechnologiesare1.Experienceofcompany:newcellmanufacturer,establishedstillunderdevelopment,concretetimetablesfortheirimplemen-cellmanufacturertationmustbetreatedwithcaution.2.Backgroundofcompany:carmanufacturer,jointventureTheplannedimplementationdatesofvariouscompaniesareofcarmanufacturer/cellmanufacturerpresentedinthetechnologychapters.Wedonotevaluatetheseinthecontextofthisroadmap.However,thetechnol-3.Typeofannouncement:newsite,expansionofogychaptersalsoincludeadescriptionofthekeydevelopmentanexistingsitechallengesassociatedwiththesetechnologies.Thesearebasedontheevaluationofscientificliteratureandthereforemostlyon4.Progressofconstruction:existingproductionsite,informationthatdoesnotcomefromtheplayerswhowanttoproductionsitespecified,financingavailable,usethetechnologiesindustrially.constructionstartedInInsomecases,weprovideKPIsforthesetechnologies,eitherFortheanalysesandforecasts,theindividualannouncementsbasedoninformationprovidedbyindustryorourownevalua-wereweightedandtotaledusingtheseparameters.Ifthetion,e.g.,usingtheFraunhoferISIcelldesigntool(seealso[3]).productionsitewasspecifiedandtheinvestmentexpectedtobesecured,theannouncementwasclassifiedas“expected”.MaterialandcellproductioncapacitiesIftheplanswereoptionalexpansionsofexistingplants,ortheproductionsitewasnotconcretelyspecified(e.g.,onlyonCurrentandfutureproductioncapacitieswerecompiledbasedcountrylevel)orthedecisiontoinvestdidnotseemfinal,theonproducerinformation,eitherdirectlyfromtheproducersannouncementwasclassifiedas“potential”.Plansthatlackthemselves,e.g.,intheformofpressreleases,annualreportsconvincingindicationsthattheywillberealized(e.g.,lackoforcompanypresentations,orindirectly,e.g.,fromstudiesandfinancingoronlyroughplansonagloballevel)wereclassifiedasnewspaperreports.Thevariousdatasourcesarenothomo-“doubtful”.Additionally,cellmanufacturerswereclassifiedintogeneousintermsofformatandinformationandrangefromestablishedandnewbasedontheirexperiencewithlarge-scalespeculativestatementstovalidateddata.Thedatabasisforthebatterycellmanufacturing.Threealternativeclassificationswereevaluationonlyincludescommunicatedproducerinformation.usedtoaccountfortheadditionaluncertaintiesinthechoiceIfmanufacturersdonotcommunicatetheircapacitiesorexpan-ofcellformat.Announcedproductioncapacitieswithreliablesionplans,thesecouldnotbeincludedinthestudy.informationaboutthecellformatsandwhichareassumedtohaveahighlikelihoodofrealizationweredenotedas“certain”;announcementswitheitherreliableinformationaboutthecell11IntroductionformatorahighrealizationlikelihoodweredenotedasRecyclingcapacities“expected”;announcementswithneitherreliableinformationnorahighrealizationlikelihoodweredenotedas“potential”.Toestimatefuturerecyclingcapacitiesandidentifytherelevantactors,announcementsofcapacityadditionswerecollectedInadditiontothisproject-specific"likelihoodofimplementa-inadatabaseandanalyzed.Similartotheapproachtakenfortion",twootherfactorscaninfluenceactualfutureproductionmaterialandcellproducers,directinformation,e.g.,inthecapacities:(1)delaysinsettingupproductioncomparedformofpressreleases,annualreportsorcompanypresenta-totheSoPcommunicatedbythecompanies;(2)productiontions,orindirectinformation,e.g.,fromstudiesandnewspa-rejectsorset-uptimesthatreducethestatedproductionperreports,wasused.Thissearchresultedinatotalof163capacity.Wehavelongobservedthatcompaniestendtocom-announcements.Thefindingsweresupplementedbyliteraturemunicatethecommissioningofnewproductionfacilitieswithsearcheswhereapplicable.Thedataqualityofnon-Europeanoptimistictimeassumptions.Forourscenarios,wethereforemanufacturers,particularlythosefromAsia,islimitedduetotookintoaccountthepossibilityofadelayuntiltheactualSoPpooraccessibility.Thisisespeciallyvalidforthecurrentstatus.insales-readyquality.Wealsoconsideredtoolingtimes,pro-Newandlargerrecyclingplants,ontheotherhand,areoftenductionwasteandfactorsthatcanreduceannualproductionannouncedpublicly.capacityinlong-termoperations.Withinthisstudy,theproductioncapacitiesforEuropealsoPatentanalysesincludecountrieswhoarenotpartoftheEuropeanUnion(theUK,Norway,SwitzerlandandSerbia).ThepatentanalyseswereperformedusingIPCclasses(InternationalPatentClassification)undertheclassificationDemandforecastH01Mforchemicalenergystorage(e.g.,batteries).WeusedtheDerwentWorldsPatentsIndex(WPI)databasehostedTheforecastofthedemandforbatteriesisbasedonabytheScientific&TechnicalInformationNetwork.Thesear-marketmodeldevelopedbyFraunhoferISI,whichdescribescheswerelimitedtotransnationalpatentapplicationsdifferentbatterysubmarkets(passengerandcommercialEV,totheEuropeanPatentOffice(EPO)ortheWorldIntellectualstationarystorage,consumer,communication,computing,PropertyOrganization(WIPO),astheserequireahighleveltwo-andthree-wheeler,others).Themodelcanbeevaluatedofinvestmentinthepatentapplicationprocessandenableregionally(e.g.,globally,Europe)andusesvariousforecastingafaircomparisonbetweencountries.approaches:TheIPCclasseswithhighestnumberofpatentapplicationsinThebatterydemandofvehiclemarketsisdescribedonthemostrecentyear(2021)werecomparedtotheapplicationsthebasisofsegment-specificregistrationfiguresintheBassin2016(fiveyearsearlier)inordertoidentifytheIPCclassesDiffusionModel[4].Forthispurpose,adistinctionismadebet-withthehighestdynamics.Thecut-offcriteriaweremorethanweensevensubmarkets(A,B-segmentcars,C-segmentcars,50applicationsin2021and,whencomparing2016with2021,D,E,F-andSUV-segmentcars,lightcommercialvehicles,heavyadynamicdevelopmentlargerthan200percent(factor>2).commercialvehiclesbuses,motorcycles)andfourdrivetechno-logies(BEV,PHEV,HEV,ICE),eachwithdifferentassumptionsCompilationofaroadmapforthedevelopmentoftypicalbatterycapacities.Thedrivetechnologiesarenotmodeledindependentlyofeachother,Thisstudyyieldedthreeverytarget-specificroadmapsfor(1)sodisplacementeffectsbetweenthetechnologiescanalsoparticularlyhigh-performance,(2)particularlylow-costand(3)bemodeled,whichisrelevantinthecaseofhighmarketparticularlysustainablebatteries.ThewiderangeofindividualpenetrationofEVs[5].technologiesfromtheareasofmaterials,cells,systemsandrecyclingwereevaluatedandcombinedforthispurpose.BothDemandinothersubmarkets(ESS,3C,others)isdescribedtheevaluationwithregardto(1)to(3)andthediscussionofbydecayingexponentialfunctions.Thedevelopmentofpre-theadvantagesanddisadvantagesoftechnologycombinati-vioussalesfiguresfortherespectiveapplications(homeandonswerecarriedoutqualitativelybyexperts.Itispreciselythelarge-scalestoragesystems,electronics,powertools,etc.)istrade-offsbetweendifferenttechnologycharacteristics:energyalsousedasabasisforthis.Industrialdemandforbatteriesversuspowerdensity,costsversusflexibility,andmanyothersisbasedonOICAproductiondataformotorvehicles[6].thatcanleadtoaslowerimplementationoftechnologiesintheoverallbatterysystemthanmaybeimpliedwhenlookingattheroadmapsoftheindividualtechnologyproviders.12Introduction1.3.LIBPatentAnalysisGlobaltransnationallithium-ionbatterypatentapplicationsIntermsofR&Dandpatentactivities,thelargestandmosthaveincreasedmorethantenfoldinthepast20years,fromdynamicfieldsareLi-accumulators(secondarycells)withovermorethan300peryeararound2000toalmost4,000peryear2,700patentapplicationsin2021anda156%increasesincein2021.Japanusedtodominatepatentactivitieswithaglobal2016.Thisisusedasabenchmarkforfurtherpatentanalyses.shareofaround50%,butitsapplicationshavestagnatedatAmongtheIPCsub-classesanalyzed,theclassesforelectrodesaround1,000eachyearforseveralyears,causingitsglobalwerementionedin85%ofallLIBapplications.IPCclassesonsharetodeclinetobelow30%.Recently,othermajorplayerscellsarethesecondbiggestgroupwitha168%increaseinliketheUSA,SouthKorea,andtheEU27+theUnitedKing-patentdynamicsoverthepastfiveyears(numberofpatentsindomhavehadsharesbetween10-15%.Incontrast,China2021relativetonumberofpatentsin2016).Europeanpatenthasbecometheleadingcountryinpatentapplicationswithaapplicantshavelowerdynamicscomparedtoglobalactivities.recentshareofmorethan30%share.Othercountriesandworldregionshavealsoincreasedtheiractivities,withpatentTheIPCclasseswiththehighestapplicationdynamicsintheapplicationsharesreaching9%in2021comparedto2-4%pastfiveyears(morethan200%increasefrom2016to2021)inpreviousyears.weregroupedbytopics,resultinginsevengroups,eachofFigure3:Transnationalpatentapplicationsforelectrochemicalenergystorage(Batteries,IPCH01M).Numberoftransnat.patentapplications(#)1,400US1,200EU1,000CNJP800600KR400RoW20020052010201520200200013Introductionwhichhadmorethan100applicationsin2021.Theseshowrelatedtoreclaimingserviceablepartsofwasteaccumulators,ashiftofactivitiestowardoptimizingbatterycellsandthecompanyHunanBrunp(RecyclingTechnologyCo.,Ltd.),systemparts.asubsidiaryofCATL,isaleadingplayer.HunanBrunpwasfoundedin2008andisagiantenterpriseinthelithiumbatteryThisindicatesthatpurelymaterials-basedapplicationsareindustryandaprivateenterprisethatspecializesinthegreennolongerthemainR&Dtrend,andareassuchaselectroderecyclingofwastebatteries.connections,casingsealing,jacketsandheatingandcoolingcontrolareemergingtrendsinthebatterypatentlandscape.OthermajorapplicantsincludeLGEnergySolutions,SamsungSDI,SKOn(KR),Panasonic/PPES(JP),andvariousotherAsianAdditionally,thereareconsiderabledynamicsandhighsharescompanies.ActiveJapaneseandKoreancompaniesincludeforactivitiesfocusedonreclaimingserviceablepartsofMurata,GSYuasa,Sanyo,Toyota.Chinesecompaniesincludewasteaccumulators,particularlyinEUactivities,accountingforSVOLT,ATL,BTR,ShenzhenCapchem.Non-Chinesecompa-about11%comparedtoLIBcellapplications.Thissuggestsanniesweremajorapplicantsin2016buthavesincebeenoverta-increasingfocusonsustainabilityissuesalongsideperformancekeninallsubfieldsofactivities.optimization.EuropeanapplicantsactiveintheidentifiedfieldswithhighAstheanalysisofleadingcountriesalreadysuggests,thenewdynamicsincludeBMW,VW,BASF,Umicore,Northvolt,andbatteryapplicantsdrivingtheseactivitiesaremainlyfromVARTA.USandCanadiancompanies,suchastheGlobalGra-China.CATL(CN)istheabsoluteleaderamongpatentappli-pheneGroupandLi-Cycle,arealsoinvolvedintheseactivities.cantsacrossallfieldswithhighdynamics.EvenforactivitiesFigure4:IPCH01Msub-fieldswiththehighestapplicationnumbersanddynamics(2021vs2016).16Reclaimingserviceableparts14ofwasteaccumulators12Ratioof2021to2016applications10Electrodeconnections8insideabatterycasing64Reclaimingserviceable2partsofwasteaccumulators0Casings,Jackets1ElectrodeconnectionsinsideabatterycasingMeansforpreventingSealingSealing;ArrangementsforxfacilitatingescapeofgasesundesireduseordischargeCasings,JacketsSeparators,MembranesElectrodesLIBHeatingorcooling;100Temperaturecontrol10ShareofIPCassignmentsinallLIBpatents(%)EUGlobal14ApplicationsandRequirements2.ApplicationsandRequirements15ApplicationsandRequirements2.1.TechnicalRequirementsThissubchapterdiscussesdifferentrequirementsandspecial-forseveralreasons.First,electrochemicalprocessesinsidethetiesfocusingonbatteryelectricvehicles(BEVs).Thesemainlybatterycellsslowdownandincreaseinternalbatteryresistan-comprisetechno-economicaspectssuchastherequiredce,meaningitcanneithertakenordeliveritschargeasquicklyenergyorpowerlevels,costs,aswellascyclicandcalendarasunderidealconditions.Thus,on-boardbatteryandthermalaging.Wealsodiscusssustainable,technologicallysovereign,managementsystems(BTMS)aredesignedtodrawenergytoandcompetitivebatteryproductionandvaluechains,aswellwarmorcoolthebatterycellsasneededinordertomaximizeasbatteryproductionscalescomparedtoBEVproductiontheeffectiverangeandpreventexcessivebatterydegradation.numbers.Inaddition,weextendanddiscusstheseaspectsbySecond,additionalenergyisrequiredforheatinganddriverincludingotherapplicationssuchasPHEVs,stationarystoragecomfortaswellasotherauxiliarysystems.Third,unfavorableaswellase-bikesanddrones.roadandweatherconditionsmayincreasedrivingresistanceandconsequentlyenergyusage.Asaresult,manufacturersBEVpacksize,energyandrangerequirementsaimtomaximizetheeffectiverangeovertheentireservicelifeandawiderrangeofambientconditionstoremainclosertoPackcapacitiesandtheresultingelectricdrivingrangedependWLTPspecifications.heavilyonthevehiclepurposeandsegment.Vehiclesegmentsrangefromminiandsmallvehicles(ABsegment)throughcom-Mostmanufacturersareaimingatupto1,000kmrangeforpactcarsandmulti-purposevehicles(CMsegment)uptolargetheirleadmodelsandbalancetheirremainingmodelportfolioandpremium-typevehicles(DEFsegment),andSUVs.Moreo-bylowerrangetargetstoavoidunnecessarybatterymass,ver,manufacturerstypicallyoffershort-rangeandlong-rangewhichimpairsperformance,vehicledynamicsandefficiency,modelversionsandcountry-specificmodelportfolios,com-andincreasescosts.SeveralOEMssuchasTesla[15],BMWplicatingthepackcapacityassessment.Theassociatedpack[16],Volvo[17],Toyota[18]andVW[19]haveannouncedcapacitieshaveevolveddifferentlyovertime,buthavetypicallytargetsaroundbutnotexceeding1,000kmofrangewithinincreasedduetolargerpacksizesaccompaniedbyincreasingthisdecadewhenusinghigh-energyLIBs.Accordingly,theenergydensityatthecellandpacklevel.Thus,theaverageEuropeanCouncilforAutomotiveR&D(EUCAR)specifiesnetpackcapacitiescurrentlyrangefromaround30kWhforaround400kmofrangeforaveragelow-rangemodelsandABvehicles,to50-60kWhforCMvehiclesandsmallSUVs,morethan600kmofrangeforaveragelong-rangemodels70-80kWhforDEFvehicles,and70-90kWhforlargeSUVs.by2030[20].Incontrast,ToyotaannouncedBEVswithuptoCertainlargeSUVsandpremium-typevehicleshavealso1,500kmbytheendofthisdecadewhenintroducingall-solid-crossedthe100kWhthresholdandareevenapproachingstatebatteries[21].Theserangeimprovementsarebasedon150kWh.Overall,theaveragecross-segmentpackcapacityisthreecorrelatedstrategies:(1)largerpackcapacities;(2)bat-around50-65kWh[8,9].Thisisequivalenttoanaverageelec-terieswithhigherenergydensity;(3)improvedvehicleenergytricrangeofroughly200kmforsmallorlow-rangevehiclesefficiency.Thepotentialforlargerpacksisrestrictedbyspaceandaround450kmoreven650kmforlargeSUVs,long-ran-andweightconstraints,althoughoptimizedplatformsandagemodels,andpremium-typevehiclesundernormedconditi-higherdegreeofbatteryintegrationintothechassismayofferonsandcertificationstandards(WorldwideHarmonizedLightsomescopeforimprovement.Therefore,higherenergydensi-VehicleTestProcedure–WLTP).Despitetheseimprovementstiesarekey.SeveralOEMssuchasVW,Tesla,PSA,Mercedes,andconsiderableranges,rangeanxietyandtheperceivedRenaultandBYDaretargetingaround700-800Wh/land300-real-worldrangearestilltwomajorconcernsfordriverswhen350Wh/kgatthecelllevelby2025.800-1,000Wh/land350-consideringthepurchaseofaBEV[10,11].Therefore,thefol-400Wh/kgaretargetedby2030.Theseareroughlyinlinelowingsectionaddressesreal-worldperformanceandoutlineswiththeEUCAR’scell-leveltargetsof450Wh/kgand1,000futureOEMtargets.Wh/lby2030[20].Additionally,theEUCARspecifiespack-levelcapabilitiesof360Wh/kg(80%comparedtothecelllevel)BatteryperformanceandthustheeffectiveBEVrangeisand750Wh/l(75%comparedtothecelllevel).TheMercedesheavilyaffectedbytheambientconditions,withreal-worldBenzEQXXshowcasedtheeffectofoptimizingvehicleenergyconditionsbeingverydifferenttoandmorevolatilethanWLTPefficiencytomaximizerangeandindicatedthatitisfeasiblestandards.ThefocushereisusuallyondriversandtheirdrivingforamoderatelysizedEQSbatterypack(108kWh)toachievestyleaswellasambienttemperatures,withtheidealoperating1,000-1,200kminreal-worldtests[22].Similarly,theLucidAirtemperaturesforbatteriesbetween20and30°C.Empiricalreachesnearly900kmofWLTPrangewithdataandstudies[12-14]suggestthatwhilebothcoldandhotits118kWhbatterypack[23].Toconclude,wehighlightthattemperatureslowertheeffectiverange,colderclimateshaveatheseBEVrangestrategiescruciallyrelyontheassociatedlargerimpact.ColdclimatesmayhalvetheeffectiveBEVrangefast-chargingcapabilitytoenabletherespectivedailyorlong-distanceranges.16ApplicationsandRequirementsFigure5:RoadmaponcurrentandfutureBEVcapabilities,includingtheelectricrangeinkm(WLTP),energydensityinWh/l,andspecificenergyinWh/kg[9,17,20,24-27].Low-rangeWLTP202320252030Long-rangeWLTPTop-classWLTP200km~800Wh/l350-500kmPeakenergydensity450-550km300-350Wh/kg600-800kmPeakspec.energy600-800km~1,000km1PSA,VW,Volvo,Tesla650-750Wh/l12PSA,VW,Tesla250-300Wh/kg~1,000Wh/l2350-400Wh/kgRequiredenergydensityforotherapplicationsdemandsonthebatteryandbatterythermalmanagementsystemBTMS.Amongothers,fastchargingissuspectedofIncontrasttoBEVs,batteryrequirementsforfuturePlug-inacceleratingbatteryaging,especiallyatlowtemperatures.HybridElectricVehicle(PHEVs)arelikelytofocusmoreonThus,theBTMSmustwarmorcoolthebatterycellsasneed-specificpowerandpowerdensity,withtheEUCARstatingedtooptimizethechargingprocessandpreventexcessive350Wh/kgand800Wh/lasenergy-leveltargets[20].Thesebatterydegradation.Likewise,itisequallyimportantthatolderareachievedusingsubstantiallysmallerbatteriescomparedtobatteriesstillmaintaintheirinitialfastchargingperformanceBEVs,yettheelectricrangeofPHEVsisstillexpectedtoincrea-oratleastofferanacceptablechargingrate.setolowertheirCO2footprint.Current800Vplatformmodels-mostlypremium-typevehiclesAerospaceapplicationshavesignificantlyincreasedpower-–suchasthePorscheTaycanGTSST,Audie-tronGT,KIAandenergy-levelrequirementscomparedtoBEVs,particularlyEV6orHyundaiIoniq5haveaveragechargeratesofaroundconcerninggravimetriccapabilities.Forlongerflightdistances2.5-2.7C(20-25min,SOC10-80%)atmoderatetemperaturesofseveral100km,cellswithaspecificenergyofwellover[30,31].Thisisequivalenttomorethan300kmofrecharged300Wh/kgarerequired.Therearealsohighdemandsontherangewithin20minforlargebatterypacks(90kWh).powerdensityofbatteriesofover400W/kgincontinuousMaximumpeakchargepowerisaround270kW,whiletheoperation[28,29].CombinedChargingSystem(CCS)standardiscurrentlycerti-fiedupto350kW.Standardandvolumemodels–mostlywithTherequirementsforstationarystoragesystemsdivergefrom400Vplatformarchitectures–arearound1.4-1.7C(40min,mobileapplications,althoughacompactsystemfootprintSOC10-80%)[30,31].TheEUCARtargetschargingratesofremainsapriority.Inindustrialanddomesticapplications,the3.5C(17min,SOC0-80%)by2030,whichrepresentaroundenergydensityrequirementsofstationarystoragesystemscan350kmofrechargedrangewithin20min.MostOEMtargetsoftenbemetbycurrentLIB.arelessthan20mintoreachthe80%SOClevel,equivalentto250tomorethan400kmofchargedrangedependingonFastchargingcapabilityforBEVsbatterysize[32].Toyotaannouncedaround10minofchargingtimeforfuturesolid-statebatteries[33].Fastchargingmaybecrucialtoenablelong-distancetripsbeyondthesinglechargeBEVrange,butthisplacesseveral17ApplicationsandRequirementsFigure6:Roadmaponrangerequirementsandfastchargecapabilities.Differentiationbetweenrechargedrange(10min,SOC10-80%)andC-rate[20,30-32].Standardrechargedrange(10min)20232030Top-classrechargedrange(10min)StandardchargeC-rate100-150km250-300kmTop-classchargeC-rate200km350-450km1.5C2-2.5C2.5-3C3.5-4CBatteryswappingTherearestillsomesystemicchallenges,suchasthefurtherdevelopmentofstandardizationandtheinteroperabilityInadditiontoincreasedbatterycapacityandfastchargingofbatteries,establishingdedicatedinfrastructure,dealingcapability,batteryswappingisprominentlydiscussedasanot-withdamagedanddefectivebatteriesaswellastheissueofheroptiontoenhancetherangeofanelectricvehicle.Tech-ownershipresponsibility[38].Inparticular,thelatteraddressesnicalrequirementsforbatteryswappingvarydependingonrequirementstoindicatethebattery’sstateofhealth(SoH),theapplicationandvehicletype.Batteryswappingforelectricpredictitsremainingusefullifeandbatteryagingmanagementvehiclesisaconceptwherebyanemptybatteryisswappedforcontrol.However,strongeffortsarecurrentlybeingmadeafullychargedoneinsteadofrechargingit.TheemptybatterytoaddressthesechallengesandsomeprogresshasbeenmadecanthenbefullyrechargedunderoptimizedconditionsbytheSwappableBatteryMotorcycleConsortiumfounded(e.g.,Nio[34]:<1Cat40kWandambienttemperatureofin2021[39]tostandardizeaswappablebatterysystem20°C),whichhelptoprolongbatterylifetime.Batteryswap-for2Ws/3Wswithregardtogeneral&safetyrequirements,pingrequiresspecialinfrastructurecalledbatteryswappingmechanicalparts,connectors,BMS,electricalpartsandteststations.Thesestationsmusthaveasufficientnumberoffullyspecifications.chargedbatteriesandhaveautomated,roboticsystemsorhumanoperatorstoswapthebatteries.EVbatterylifetimerequirementsBatteryswappingisviewedquitepositivelyinemergingReal-worldempiricaldataonbatterylifetimesarescarce.markets,particularlyinAsia,ASEANandAfricancountriesthatHowever,BEVbatteries–withanend-of-lifelimitof70-80%focuson2-wheel(2Ws)and3-wheel(3Ws)electricvehiclesSoH–areprojectedtolastbetween160,000and320,000km.[35].ItisparticularlyattractiveforthesesegmentsduetotheThisisequivalenttolessthan1,500cyclesorabout15tolowinitialvehiclecosts,costsforinfrastructureanditssuita-20years,whichissufficientformostvehicles.Empiricaldatabilityforfleetandcommercialvehicleapplications,especiallyfromTesla[40]andrecentstudies[41]underlinethesecapabili-duetothesmallsizeandlightweightofthebattery,whichties.TheEUCARspecifiesthatthebatterylifemustcorrespondcanbemanuallyhandled,andgiventhelackofchargingtothatofthevehicleandmustlastforatleast150,000km.infrastructureinthesemarkets[36].ThesefactorsenablequickMostBEVmanufacturersofferaround8-10yearswarrantybatteryswapsandminimizedowntimesinvehicleoperationontheirbatterypack.[37].Forpowertoolssuchascordlessscrewdriversorhedgetrimmers,smallandremovablelithium-ionbatterypackshaveIffutureBEVsareintegratedintotheenergysystembeenstate-of-the-artforsomeyearsnow,althoughcustomers(Vehicle-to-Grid,V2G),meaningthatelectricalenergyfromstillcomplainaboutthelackofinteroperabilityinsomecases.thebatteriescanbefedbackintotheenergysystemortheForklifttrucks,ontheotherhand,havehadastandardizedlocalhouseholdwithaphotovoltaicorhomestoragesystem,swappingsysteminplacefordecadesinordertoincreasethecycleliferequirementsmayincreaseaccordingly.However,vehicleavailability,especiallywiththepredominantlead-acidV2GwithnarrowSoCwindowsandlowC-rateswilllikelynotbatterytechnology.leadtoexcessiveageing.18ApplicationsandRequirementsESSandotherapplicationsbatterylifetimeindifferentregionsandconsequentlyindifferentmarketsallrequirementsovertheworld[46].Theinternationalstandardforthetrans-portationoflithium-ionbatteriesiscoveredbysection38.3inSettargetsandannouncementsforBEVsalsocovervariousthe7threvisededitionoftheUNManualofTestsandCriteriamobileapplicationsliketwo-andthree-wheelersandmicro-withatotalof8testsforinternalandexternalinfluences[47].mobility,buttherearedistinctdemandsforaviationappli-cationsthatemphasizehighenergydensitywhileoperatingBatterysafetyisacriticalaspectthatbeginsatcelllevel.withlowercyclenumbers.TherearemorestringentcriteriaforTherearedifferentapproachestoensuringsafetyatthisindustrialmobileapplicationsandstationarystoragesystems.level,butnotallsafetyfeaturesaresuitableforeverytypeofForinstance,heavy-dutytruckscanhaveservicelivesspan-battery.Forinstance,hard-casehousingcanwithstandinternalning1.2to1.6millionkmover5to15years[42-44].Thisispressurebetterthanpouchfoilhousing[3].Toensurecom-equivalentto3,000to7,000cycles,whichisbeyondthescopeprehensivesafety,cell-levelsafetyfeaturesareusedincon-ofstandardLIBs.TherequirementsforESSarealsosignificantlyjunctionwithmodule-levelsafetyfeaturestopreventthermalhigherdependingontheapplication.Dailycyclesmaybeusedrunawayinasinglecelldevelopingintothermalpropagationforloadshifting,sothataservicelifeof10yearscorrespondsinthewholepack.Thermalrunawaypreventionisthemosttoacyclelifeof3,000.Frequencyregulationorothergrid-prominentsafetyrequirementforbatteries,asthestoredsupportingapplicationscouldrequiresignificantlyhigherelectricalandchemicalenergycangenerateintenseheatandusagerates,sothatrequirementsincreaseto10,000cyclesleakgasesduringthermalrunawaythusendangeringpeopleandmore.Ingeneral,mostESSsystemsshouldbedesignedandtheenvironment.Triggersinclude,e.g.,overloading(BMSforaround20years(80%nominalcapacity),withstandardmalfunction),physicaldamage(lossofseparatorintegrity),warrantyperiodsofaround10years.heatexposureorinternalshortcircuitsduetomanufacturingdefects[48].Themaximum(ambient)temperatureaswellasaBatterysafetyrequirementsriseintemperatureaffecttheprobabilityofthermalrunaway,whichiswhyadangerousgoodstransportregulationsetsaElectricvehiclesandtractionbatteriesmustbeapprovedbythemaximumexternaltemperatureof100°C[49].Thermalbarrierauthorities(homologation)beforetheirmarketentrance.Thematerials(e.g.,ceramiccoatings)orheattransferspacesaswellUNECERegulationNo.100(ECER100-PartII)istheEuropeanasgasventing/routingandelectricalisolation-especiallyinstandardfortherechargeableenergystoragesystemsusedinhighvoltage(800V)systems-areofgreatinterestforsystem-xEVs[45].ToobtainEUapproval,severalthermal,mechanicallevelsafety[48].Thereareadditionalprotectivemechanismsandelectricaltestsatpacklevelarenecessary,e.g.,mechanicalforbatteriesinstalledinavehicle,suchasinsulationoftheHVintegrity,vibration,shockandcyclingtestsaswellassafetycomponentsandautomaticshutdownoftheHVsysteminthemeasures.Theregulationsandcertificationrequirementsdiffereventofanaccident.19ApplicationsandRequirements2.2.VolumeRequirementsThevehiclemarketwillcontinuetogrowinthecomingyears.scalabilityandstreamlinesbatteryprocurementacrossdiverseForexample,themarketforlightvehicles(<6t),whichcurrent-cellsuppliers.Sofar,Volkswagen(VW)haspredominantlylydominatestheEVmarketandthusglobalbatterydemand,utilizedprismaticandpouchcells.By2022,thedeploymentofisexpectedtogrowfromaround79millionunitsin2022topouchcellsincreasednotablyacrossmostVWGroupvehicles,110millionby2040[50].In2023,itislikelythatmostelectrictotaling17GWh.Around3.5GWhofthesepouchcellswerevehicleswillbebuiltbyTeslaandBYD,witharound1.8-2millionintegratedintotheVWID.3model.Inthefuture,VWaimstocarseach[51,52].However,futuredemandforBEVisexpectedfocusonprismaticcelldesign.TeslaemploysbothcylindricaltoincreasesharplyinparallelwiththerespectiveOEMs’needandprismaticcellformatsinstandardizedconfigurations.Inforbatterycells.Teslahasoneofthemostambitiousgoalsfor2022,Tesla's18650and21700cylindricalcellformatscontri-thefuture.By2030,themanufacturerwantstoproduce20buted5GWhand40GWh,respectively.Around25GWhofmillionvehiclesannually[53].Today’slargestvehicleproducersthe21700cellswereintegratedintotheTeslaModel3,whileintermsofnumberofvehiclesproduced(regardlessofdrivetheprismaticcellformatintwoTeslamodelsaccountedforatype)alsohavestrategiesforelectrifyingtheirunitsinthefuture.cumulative35GWh.BesidesCATL,prismaticcellsfromBYD,Thenumberofvehiclesproducedbysomelargemanufactu-alsoknownasbladecells,wereinstalled.BYDusesthesestan-rerstodayissignificantlyhigherthanthefiguresforTeslaanddardizedcellsinmanyofitsownvehicles(approx.30GWhinBYDandthesemanufacturershavethepotentialtoretaintheir2022)[58].Inthefuture,Teslawantstouse4680formatroundmarketpositioninafuturedominatedbyelectricmobility.Incellsonalargescale.OthercarmanufacturerssuchasGMand2022,Toyotahadthelargestmarketsharewithnearly10millionNIOalsointendtousethesamecellformatandBMWwantsvehiclessold,followedbyVolkswagen(about8million)andtosupplythenewgenerationBEVswithstandardized4695orHyundai/Kia(6.5million).GMandStellantisranked4thand5th,49120cellsinthefuture[59].GMcurrentlyemploysastandard-respectively(6and5.7million).izedUltiumpouchcellformatacrossvariousvehicles[60].SupplyvolumesforindividualvehiclesWithincreasingsalesfiguresforindividualmodelsofuptoonemillionvehiclespermodel,thedemandforstandardizedDuetorisingmarketdemand,salesofindividualmodelsarecellsforindividualmodelscouldcontinuetorisesharplycurrentlyatmorethanamillionannually(e.g.,HondaRAV4in(50-100GWh).Demandwillescalateifthelargestworldwide2022)[54].WithsalessuspectedtoreachmorethanonemillionglobalOEMs(seeabove)electrifymostoftheirmodelportfoliovehicles,theModelYcouldbecomethebest-sellingvehicleinanddeploystandardizedcells.Asanexample,abatteryrequi-2023[55,56],somethingnoEVhasachievedbefore.rementofupto300GWhcouldresultfortheVWGroup's2030target(80%BEVinEuropeandmorethan50%inThecorrespondingbatterydemandisalreadyhugeforjustNorthAmericaandChina).Installingstandardizedcellsin80%onevehiclemodeltoday.TheonemillionModelYcorrespondofallVWvehicleswouldmeanademandof200to250GWhtoabatterycelldemandofaround60to70GWh.TheVWforjustthisonecelltypeandonlythisoneOEM[60].Tiguan,whichwasVW'sbest-sellingmodelin2022with458,000vehicles[57],wouldrequire25-28GWhofbatteryCellmanufacturerscanproducearoundfourtofiveGWhofcapacityiffullyelectrified.cellsperproductionlineperyear.While,forexample,aroundfourlinesarerequiredtodayforVW'spouchcells,thedemandConsequently,ifanautomobilemanufactureraimstodeployforstandardizedprismaticcellscouldincreasetoupto40-60identicalbatterycellsacrossallversionsofjustonevehicleproductionlinesby2030.Approximatelyfourtosixproductionmodel,withtheobjectiveofstreamliningdesignandreducinglinesareoperatedinparallelatoneproductionsite,soaroundmanufacturingexpenses,thiswouldrequirebatterycellsup-tenproductionfacilitieswillberequiredtomanufactureVW'splierstoscaleuptheirproductioncapacitiessignificantly.Thisstandardizedcellsin2030.couldimplyfutureproductioncapabilitiesrangingfrommorethan10GWh(forlow-sellingmodels)topotentiallyexceedingThenumberofcellsandproductionsitesposesvarious100GWh(fortop-sellingmodels)forthisrespectivecelltype.challengesintermsofsecurityofsupply,logisticsandmain-tainingconsistentqualityinallplants.ItisalreadyapparentStandardizedcellformatsthatOEMsoftenpursueso-calledmulti-sourcingstrategiestosecuresupply.Tesla,forexample,sourcesitsroundcellsfromOEMandcellmanufacturersarealreadyworkingonstan-LGESandPanasonic.BMWrecentlyannounceditsintentiondardizedcelldesigns.Thisapproachfacilitatesproductiontopurchase46formatroundcellsfromCATL,AESCandEVEEnergy.GMalsointendstohavethecurrentUltiumcellsmanu-facturedbySDIinadditiontoLG[60].Besidesboostingsupply20ApplicationsandRequirementsFigure7:StandardizationandpossiblesourcingstrategiesofOEMsandresultingdemandscenariosforcellsofonetype[51,61].StatusQuo/2022StandardizationStandardizedwithinwithinonemodeloneentiregroup,20303.580%ofVWGroupdemand,GWh60%electrifiedfleetVWID.3pouchcelldemand60-70GWhVehiclewithonemillionsales200-250GWhperyear(e.g.TeslaModelY)25GWhTeslaModel321700demandVWGrouptargets:80%EVsalesinEurope,50%EVsalesinUSandChinaby2030securityandcompetition,thisalsoreducesthedependencyonandconsumermarket(3C)forthefirsttime,butstilllagswellonemanufacturer.Evenif,forexample,threemanufacturersbehindEVbatterydemand.areconsideredforthesupplyofstandardizedcellsforonebigOEMgroup,thedemandforcellsfromeachsuppliercanstillTherefore,theissuesoflinesizingandcellstandardizationdoamountto100GWhoruptofourproductionsites.notapplytoESStothesameextentasforEVs.Apartfromafewlargemanufacturers,theESSindustryischaracterizedbyThelargequantitiesofcellsmakesingle-sourcingstrategiesmanysmallerproducerswithmanageablepurchasevolumes.unlikely,particularlyinEuropeandAmerica.Incontrast,someItisthereforeunlikelythattherewillbecellproductionlineslargeChinesecellmanufacturersmightbeabletosupplycellsdesignedspecificallyforindividualcustomers.Onthecontrary,onsuchalargescale.Reasonsforpursuingsuchasingle-sourcecellsthatwereactuallydesignedforotherapplications(EV)strategycouldbein-housecellproductionatBYDfortheirownarestillfrequentlyusedintheESSsectortoday.Theaforemen-EVs,forexample,ortobeabletoofferauniquetechnologicaltioned4-5GWhperyearandproductionlineisthereforealsosellingpoint(e.g.,newandinnovativecellchemistries).acriticalthresholdforthedemandofanindividualESScusto-merwhocanenforcethedesignofcustomer-specificcells.ThehighdemandforstandardizedcellsalsoimpactstheTeslaachievedacomparablevolumeofESSinstallationsinupstreamproductionstepsinbatterymanufacturingtriggering2022[62].acorrespondingdemandforcellmaterialsandrawmaterials.Here,again,wecanseethatcellmanufacturerspurchaseESSindustrycustomersarethereforeunlikelytoplacehighactivematerialsfromdifferentmanufacturers.volumedemandsoncellmanufacturersinthemediumterm.Instead,itismorelikelythatthestandardizationofESScellswillESSindustrybatterydemandcomefromthecellmanufacturersthemselvesandthattheywillaimtosupplyseveralcustomerswiththesameESScell.Sofar,themarketforstationaryenergystoragesystems(ESS)hasbeenrathersmallcomparedtotheEVbatterymarket.In2023,ESSbatterydemandcouldexceedthatoftheelectronics21ApplicationsandRequirements2.3.Ecological,EconomicandotherRequirementsBEVbatterycostdiscourseoncreatingasustainablebatteryvaluechain,socialaspectsareprominentasathirdsustainabilitydimension.BNEFspecified115USD/kWhasvolume-weightedaveragecell-levelcostsin2022.Accordingly,thepack-levelvaluewasSinceelectricmobilityandotherapplicationsusinghigh-energy138USD/kWh(+20%)[63].Futurebatterycostsareassoci-batterysystemsareusuallymotivatedbythedesiredtransitionatedwithhighuncertaintyduetopotentialnon-negligibletowardacarbon-neutraleconomy,theecologicalsustainabilitydisruptionscausedbyrawmaterialshortages,supplychainofthebatteryvaluechain-anditscarbonfootprintinparti-disruptions,higherinflationlevels,orincreasedenergycosts.cular-isacrucialaspect.ThisisexpectedtobecomeamajorInaddition,costsdependonthechosenchemistryandformat.sellingpointandcouldbeawaytoimprovethecompetitive-Renaulthasannouncedpack-leveltargetcostsofaroundnessoftheEuropeanbatteryindustry.Thecarbonfootprintof100USD2019/kWhby2024andlessthan80USD2019/kWhabatterythroughoutitslifedependsheavilyontheapplicationby2030[27].Teslaalreadyconfirmedcell-levelcosttargetsitisusedin,aswellasonexternalfactors,suchastheenergyforits4680cylindricalcellsofaround70USD/kWhattheirmixoftheenergystoredinit.ThesphereofinfluenceforcellQ3EarningCallin2022-evenbeforeaccountingforUSincen-manufacturersincludesthesourcingofthebatterymaterialstivessuchastheInflationReductionAct(IRA).TheEUCARandtheenergyusedincellproduction.specifiescell-leveltargetcostsof70EUR2019/kWhanda15%surchargeforpackintegration(80EUR2019/kWh)byTheenvironmentalbalanceofabatteryisdeterminedonthe2030.TheBATT4EUStrategicResearchandInnovationAgendaonehandbythematerialsandcomponentsusedinitand,(SRIA)targetspack-levelcostsoflessthan100EUR/kWhbyontheotherhand,bycellproduction.Dependingonthetypearound2025andlessthan75EUR/kWhby2030formobileofbatteryandtheplaceofmanufacture,theshareofcellapplications[64].Recentstudiesandassessments[65]indicateproductionintotalgreenhousegasemissionsvariesbetweenthatpack-levelcostsof100USD/kWhmayfacilitatelarge-20and50%.VariousstudieshaveidentifiedtheoptimizationscaleBEVbreakthrough,whichwouldthenunlockfurtherofthermalprocesses(e.g.,dryroom,electrodedrying),whichcostreductionpotentials.accountforabout80%ofenergyconsumption,asacentralleverforimprovingtheCO2footprint.ProcessinnovationsinSustainabilitythisareacouldreduceemissionsbyapprox.25%upto2030.AnelectricitymixmoreorientedtowardrenewableenergiesWhiletheprojectcallsofGermanandEuropeanfundingagen-couldenhancethiseffect[66,67].cieshighlightecologicalandeconomicsustainability,thetermsustainabilityextendswellbeyondtheseaspects.InthepublicMaterialproductionisresponsibleforalargeproportionoftheemissions.DuetothedifferentvaluechainstepsandoptionsFigure8:Roadmaponfuturecell-orpack-levelcostsinEUR2020/kWh.[27,63-65]Av.cellcostsinEUR2020/kWh202320252030Av.packcostsinEUR2020/kWh~120€/kWh~90€/kWh~70€/kWh~150€/kWh~110€/kWh~80€/kWh22ApplicationsandRequirementsforthevariouscellchemistries,itisdifficulttomakeageneralThenewBatteriesRegulationsetsclearcollectiontargetsstatementhere,butminingandprocessingplayanimportantforend-of-lifeportableandLMTbatteries,startingat45%roleintermsoftheGHGbalance[67,68].Thesourceoftheforportablebatteriesbytheendof2023(LMT:51%byendlithiumused,whetherthisisextractedfrombrineorore,alsoof2028)andincreasingto73%bytheendof2030(LMT:hasasignificantimpactontheGHGbalance:Arecentstudy61%bytheendof2031).Nocollectionratetargetsare[69]concludesthatthedifferentlithiumsourcescanmakeadefinedforlargerbatteries,suchasthoseneededforelectricdifferenceofupto20%inGHGsforNMC811cathodesandvehicles,butitwillbemandatorytosetupatake-backandupto45%inGHGsforNMC622cathodes.Atthebatterycellcollectionsystemforthesetypesofbatteries.Additionally,thelevel,thismeansadifferenceofupto9%forNMC811batte-removabilityandreplaceabilityofportablebatteriesandLMTriesandadifferenceof20%forNMC622batteries.batterieswillbecomemandatoryby2027(knownas“DesignforRecycling”).Furthermore,arecyclingefficiencyisdefi-InEurope,batteryrecyclingisbeingstronglydrivenbythenewnedfordifferentbatterytypes.Forlithium-ionbatteries,thisBatteriesRegulation(Regulation(EU)2023/1542)[70],whichefficiencyoughttoreachatleast65%(inrespecttobatteryenteredintoforceinAugust2023.Thenewregulationappliesweight)bytheendof2025and70%bytheendof2030.toallbatteriesincludingwastebatteriesandstrengthenstheirForbatterymaterials,therecyclingquotamustreach50%forsustainability,safetyandcircularity.lithiumand90%forcobalt,copper,leadandnickelbytheendof2027.Bytheendof2031,thisvaluemusthaveincrea-UnderthenewBatteriesRegulation,acarbonfootprintsedtoatleast95%(Co,Cu,Pb,Ni)or80%(Li),respectively.declarationwillbecomemandatoryforeachbatterymodelFinally,by2031,electricvehiclebatteriesaresupposedto(>2kWhandbatteriesforlightmeansoftransport(LMT),containatleast16%recycledcobalt,85%recycledlead,suchase-scooters)andeachmanufacturingplant.Thiswillbe6%recycledlithiumand6%recyclednickel.ThesevaluesareintroducedfromFebruary2025forEVbatteries,fromFebruarysettoincreasein2036to26%(Co),12%(Li)and15%(Ni),2026forindustrialbatteries,fromAugust2028forLMTbatte-whilealsoapplyingtootherbatterytypes,suchasthoseusedriesandfromAugust2030forindustrialbatterieswithexternalinlighttransport.storage.StartingfromAugust2026,batteriesforelectricvehic-lesmustcarryalabelshowingtheircarbonfootprintovertheirWhiletheEuropeanUnionprovidesacleargoalforthelifecycle(andatalaterdatefortheothertypes).Amaximumtransitiontowardasustainableandcircularbatteryeconomy,thresholdforthecarbonfootprintwillbestipulated(forEVOEMhavestartedtoformulatetheirownsustainabilitygoalsbatteries)fromFebruary2028,butthiswillnotbedefineduntiltoaddresspotentialcustomerrequirements.ThefivelargestAugust2026.TofurtherimprovebatteryhandlingintermsofEuropeancarmanufacturershavecommittedtoreachingdismantlingandsafetymeasures,therelevantinformationistonetcarbonneutralitywithinthenextdecades(2038-2050)besavedinadigitalbatterypassport,whichcanbeaccessed(Stellantis2038,BMW2050,Renault2040inEurope/2050usingaQRcode.Thiswillbecomemandatoryin2027.global,Mercedes-Benz2039,Volkswagen2050[71-75]).Figure9:ImplementationroadmapfortheEUbatteryregulationanditssub-aspects[70].202320242025202620272028202920302031CO2footprintDeclarationCO2DefinitionofupperCO2limitsRecyclingefficiencyMin.recycledmaterials65%forLIB70%forLIBOtherCo,Cu,Pb,Co,Cu,Pb,Ni:95%Ni:90%,Li:50%Li:80%DueDiligenceBatteryPass23ApplicationsandRequirementsFurthercommitmentsconcernenvironmentalandsocialsus-foritswelfare,competitivenessandabilitytoact,andtobetainabilityaspects,includingDesignforRecycling(e.g.,[76])abletodevelopthemitselforobtainthemfromotherecono-andduediligenceinthesupplychain(e.g.,[77]).Thelattermicareaswithoutunilateralstructuraldependence.Establis-incorporatestakingresponsibilityfortheconditionsofrawhinglarge-scaledomesticmanufacturingofsuchtechnologymaterialextraction,whichisacontroversialissueforexampleinordertosafeguardvaluecreationintheEUanditsmemberforcobaltminingintheDRCduetothepoorconditionsforstatesisoftendemandedontopofthis.Severalpoliticianstheworkers[78,79],andforlithiummininginChileduetothehaveformulatedgoalsinthisdirection,suchasmeetingathirdhighconsumptionofwaterincomparativelydryregions[80].oftheglobalbatterycelldemandwithEuropeanproductionby2030[82].GeopoliticalaspectsarebecomingmoreandmoreManyothersustainabilityaspectsarediscussedthatconcernimportant,asindicatedbythedifferentstrategiesandactivi-batteryproduction.Theseincludetheuseofpotentiallytoxictiesofmanynationsandregionsthataffectelectricmobility.materialsinmanufacturing,suchassolventslikeNMPandtheExamplesincludetheInflationReductionAct,whichspecifical-discussedbanofPFASinEurope,duetotheirpotentialtoxicitylyaimstoadvanceanddeployAmerican-madecleanenergyandlongdurability.technologiesintheUS[83],theCriticalRawMaterialsActoftheEUorthebanonnickeloreexportsofIndonesia[84].Technologicalsovereignty,supplychainWithintheInflationReductionAct,incentivesandcreditsandsourcingwereannouncedforthepurchaseof“cleanvehicles”.VehiclespurchasedsinceApril2023onlyqualifyforthiscreditofuptoSincetheemergingbatteryeconomyiscriticalforenabling7,500USDiftheymatchtherequirements.Theseincludefinaltransformationinnumerousindustrialsectors,manyactorsassemblyofthevehicleinNorthAmericaaswellasrequire-havecalledforEuropetoachieveandsafeguarditstechno-mentsforthecriticalmineralsandbatterycomponents[85].logicalsovereigntyinthisfield.However,thistermisinterpre-Thelatterspecifythatthecriticalmineralscontainedinthetedinmanydifferentways.ThewidelyaccepteddefinitionofbatteryhavetobeeitherextractedintheUSoranycountrytechnologysovereignty[81]istheabilityofastateoranasso-withwhichtheUShasafreetradeagreement,orrecycledinciationofstatestoprovidethetechnologiesconsideredcrucialNorthAmericawithapercentagegreaterthan40-80%withFigure10:RegulationsinfluencingEurope’sbatterytechnologysovereignty.20232024202520262027...2030Locallysourcedcomponents40%45%55%EU‘sRulesofOriginMandatoryauditofMemberStates:Locallyextracted,processedsupplychainbylarge10%extracted,40%orrecycledrawmaterials(EU)companiesevery2yearsprocessed,15%recycled40%ofcriticalmineralsAnnual10%increaseto80%inextractedorrecycledin2027USorpartnercountryInflationReductionAct(US)50%ofbatterycom-ponentsmanufactured/Annual10%increaseto100%in2029assembledinNorthAmerica24ApplicationsandRequirementsrespecttotheyearinwhichthevehiclewasplacedinserviceDRC,whilearoundtwo-thirdsoftheglobalextractionof(increasingyearlyinstepsof10%from2023to2027)[86].naturalgraphitetakesplaceinChina.DiversifyingthesupplySimilarly,acertain(value)percentageofthebatterycompo-ofthesematerialsisthereforeamajorchallenge.NotbeingnentsmustbemanufacturedorassembledinNorthAmerica.dependentonsuppliersfromsinglecountriesbecomesevenThispercentagestartsat50%forvehiclesputintoservicemorerelevantforEuropeancellmanufacturers,giventhebefore2024,increasesto60%in2024/2025andsubsequent-recentgeopoliticaltensionsandconflicts,whichcantriggerlyinannualstepsof10%,reachingto100%in2029.traderestrictionsandembargoes,asalreadydemonstratedinthepast.IntheEU,theCriticalRawMaterialsActwaspassedin2023tolowerthesupplyriskforcertainrawmaterials[87,88].WhileTheEUBatteryRegulation,whichwasenforcedinJuly2023,settinggoalsfortheMemberStatesontheamountofmate-includesseveralArticlesthatindirectlyaddressthelocalizationrialsthatareextracted(10%),processed(40%)orrecycledofthevaluechain.TheBatteryRegulationannouncesthat(15%)by2030withintheEU,italsoholdslargecompaniesCO2-footprintswillbedefinedinthefuture,andthusindirectly(>500employees,or>150millionEURturnover)inthebatteryincentivizesalocalizationofthevaluechaintoshortentrans-valuechainresponsibleforaddressingtherisksassociatedwithportroutes.ItalsoobligesdistributorsandOEMtocarryoutdependenciesalongthevaluechain.Thecompaniesidentifiedduediligencemeasuresandriskassessment,whichincludesbytheMemberStatesmustperformanauditoftheirsupplythevolatilityofthesupplychain,inparticularconsideringrawchaineverytwoyears.Thisincludesmappingwherestrategicmaterialsandmetals.rawmaterialsareextracted,processedorrecycled,aswellasastresstestoftheirsupplychainbyassessingitsvulnerabilityFurthermore,variousfreetradeagreementsbetweentheEUtotheimpactofdifferentscenarios.Thecriticalrawmaterialsandothercountriesintroducefavorableconditions,suchaspotentiallyneededforcrucialbatterycellcomponentsincludereducedcustomduties,forproductsthatarerecognizedascobalt,nickel,manganeseandphosphateforthecathode,domesticallyproduced.Forexample,theTradeandCoope-fluorsparfortheelectrolyte,copperandbauxite(aluminum)rationAgreementbetweentheUKandtheEU[89]setthefortherespectivecurrentcollectors,aswellasgraphiteandrequiredlocallysourcedcomponentsforelectricvehiclesinpotentiallysiliconorgermaniumfortheanode.these“RulesofOrigin”at40%before2024,risingto45%afterwardsandfinallyto55%bythebeginningof2027.ForFurthermore,theCriticalRawMaterialsActhassetthegoalbatteries,30%ofboththecellandpackneedtobelocal,ofnotimportingmorethan65%oftheEuropeanUnion’sincreasingto50%(65%)forthebatterycelland60%annualconsumptionfromanysinglethirdcountryforany(70%)forthebatterypackuntiltheendof2026(beginningstrategicrawmaterialatanystageofprocessing.Thisvalueof2027),respectively.ThisrequiressitingthemanufacturingofisputintoperspectivewhenconsideringthatmorethanthemostimportantbatterycomponentswithintheEUinthe70%oftheglobalextractionofcobalttakesplaceinthenextfewyears.25IndustryandTechnologyRoadmaps3.IndustryandTechnologyRoadmaps26IndustryandTechnologyRoadmaps3.IndustryandTechnologyRoadmapsBatterymaterialselectrodestostackingpre-cutones,progressingtosingle-sheetstackingforprismaticandpouchcells.TheselectionofactiveandpassivebatterymaterialsisakeyfactorindeterminingtheperformancecharacteristicsoftheTheautomotiveindustrynavigatesbetweensingleandbatterycellsandpacks.Thestoragecapacityandkineticsofmulti-formatstrategies(seechapter3.2),withmostplayersthematerials,voltagelevelandbehaviorduringcyclizationoptingformulti-formatstrategiesandaimforstandardizedtranslatedirectlyintopropertiessuchasenergyandpowercellformatswithcustomiseddimensions.Noteworthytrendsdensity,butalsorobustnessandservicelife.Atthesametime,includetheresurgenceofprismaticcells(includingcell-to-packthematerialsintheoverallbatterysystemalsorepresentthedesigns),advancementsinlargercylindricalcellssuchas4680,largestshareofthecosts,whichisnotleastduetotheexpen-andevolvingpouchcellswithincreasedcapacityandcustomi-sivematerialsLi,CoandNicontainedinthecathode.zeddesigns.Forecastsanticipateformat-independenthigherenergydensitiesdrivenbymaterialimprovementsanddesignAmongthecathodematerials,threemainstrandshavenowinnovations.Morespecifically,itisassumedthatnearlyemergedwhicharelikelytocontinuetoplayamajorrolein1,000Wh/land400Wh/kgwillbeachievedbyaround2030,thefuture:(1)low-costFe-andMn-basedmaterialssuchaswithpouchcellsbeingtheleadingformat.LiFePO4(LFP)orfutureLi-andMn-richso-calledLMRs;(2)high-NimaterialswiththehighestspecificcapacitancesuchasBatterypacksandsystemsLiNi0.8Mn0.1Co0.1O2(NMC811)andfurtherdevelopmentsuptoalmostCo-freematerialswithaNicontentwellabove90%;Atthebatterysystemlevel,anumberofpromisingnewtrendsand(3)furtherternaryLi(Ni,Mn,Co)O2-basedmaterials(NMC)areemerging.TheCell2Pack(C2P)approachintegratesbatterywithhighstability,goodcapacityandmod-eratecost,e.g.cellsdirectlyintothebatterypack,eliminatingtheneedforwithsingle-crystalmorphologyandhighcellvoltage.Ontheindividualmodules.Thisconceptallowsforoptimaluseofanodeside,Si-basedmaterialswithhighspecificcapacityandspace.Asaresult,C2Pbatteriescanofferanincreasedspecificadvantageousfast-chargepropertiesareincreasinglyjoiningenergyanddrivingrange.TheCell2Chassis(C2C)designgoesthewell-establishedgraphites.Thematerialclassshowsaastepfurtherbyintegratingbatterycellsintothevehiclebody,highrangefromcompositesofSiorSiOxnanoparticlesandservingasastructuralsupportforthechassis.Thisreducesgraphite,whichcanratherbedescribedas"graphite-like",tovehicleweight,maximizesinteriorspaceutilization,andoffersSi-dominatedanodes,whichbringcompletelynewpropertiescostsavingsincomparisontomodule-basedbatteries.Howe-tothebatterycell.ver,thechallengesincludeprotectingtheexposedbatteryandensuringeaseofrecyclingandreplacement.AnothertrendisIndustryispreparingtoscaleupandimplementthesenewthe800Vtechnology,whichoffersadvantagesover400Vmaterials.OftentheseareaimedattheEVmarket,butinsystems,suchasdoublingthepowerorhalvingthecurrent.somecasestheyareclearlyaimedatotherapplications.IntheThehighervoltageenablesfastercharging,butthechallengesareaofSianodes,manyinnovationsarebeingintroducedbyincludealackofstandardizationandincreasedsafetyrequi-start-ups.rements.Batteryswappinginvolvesreplacingemptybatterieswithfullychargedones,eliminatingthechargingtime.IntermsBatterycellsofcoolingmethods,aircooling,indirectcooling,andimmer-sioncoolingareusedforthethermalmanagementofbatte-Thebatterycelldesigninvolvesseveralaspectswhichtogetherries.Indirectcoolingwithawater-glycolmixtureiswidelyusedleadtothelevelofenergyorpowerdensity,theseincludeincurrentvehiclemodels,offeringimprovedefficiencybutatelectrodethickness,coatingporosity,assemblytechniques,highercomplexityandcost.Immersioncoolingprovidesevenandchoiceofcellformat.Inordertoachievemaximumenergybettercoolingperformance,reducedcomplexity,andweightorpowerdensityinLIBs,certaintrade-offsmustbemade.butposesachallengeintheselectionofsuitablecoolingfluids.ElectrodecoatingsinautomotiveLIBstypicallyrangefromWithregardtothebatterymanagementsystem(BMS),itis50to80μm,althoughthetrendistowardover100µmwhichbecomingincreasinglyinterconnectedandsophisticatedingoeshandinhandwithlowercoatingporosities(aroundordertooptimizebatterycontrolandthusincreaseitsperfor-20%),thinnercurrentcollectors,andthinnerseparators.manceandservicelife.Electrodeassemblytechniquesrangefromwindingcontinuous27IndustryandTechnologyRoadmapsUp-scalingandproductionorinlinemonitoring,whichbringimprovementsatvariouspointsintheprocess.Ifthroughputsincrease,particularlyincellInadditiontoimprovementsontheproductside,thereareassembly,higherthroughputsofanentireproductionlinecouldalsovariousimprovementmeasuresontheproductionside,inbeachievedandadditionalprocessstepssuchaspre-lithiationparticulartoproducebatteriesmorecost-effectively,butalsocanhaveapositiveimpactontheproductitself.moresustainably.Driven,amongotherthings,byinvestmentsofvariousOEMstheproductionlinesarecurrentlystillgrowinginRecyclingsizeandindividualproductionsitesareplanningtoproduceupto100GWhofbatterycells.AsincreasesinthethroughputofAccordingtorecentcompanyannouncementsthereisagro-individualproductionlinesarelimited,severalproductionlineswinginterestinLIBrecycling.Recyclingfacilitiesdifferintheirarebeingusedinparallelinlarge-scaleproductionfacilities.processes,whichcanincludetheprocessingofproductionThroughoverheadsavingsontheinfrastructureandbuildingsscrap,thepre-treatmentofEoLbatteriesortheuseofmetall-required,forexample,astheygrowinsizelargerproductionurgicalmethodsformaterialrecovery.Ongoingacitivitiesfocusfacilitiesbecomemorecompetitive.onimprovingmetallurgicalefficiencyanditsindustrialscale-up.ThedominantsourceofmaterialtoberecycledisexpectedtoOntheotherhand,therearevariousoptimizationapproachesshiftfromproductionscraptoEVbatteriesbythe2030s.LIBalongtheentireproductionprocessthataffectnotonlycostsrecyclingcorrespondstothegoalsofsustainability,resourceandsustainabilitybutalsothroughputandquality.Themostfre-conservationandreducedenvironmentalimpact,andisimport-quentlymentionedproductinnovationsthatcouldsignificantlyantinthecontextofacirculareconomy.Inadditiontorecycling,changecellproductioninthefuturearedrycoatingandtheusesecond-lifeapplicationsarealsoofincreasinginterest.ofminienvironmentsinsteadoflargedryingrooms.However,therearealsootherprocessinnovationssuchaslasertechnologyFigure11:StructureofthechapterandinvestigationlevelsforLIB.3.2.Batterycells3.1.BatterymaterialsScale-up&production3.3.Batterypacks&systems3.4.Recycling28IndustryandTechnologyRoadmaps3.1.BatteryMaterials3.1.1.CathodeMaterialscontinuousprogressisbeingmadeinR&Donthismaterial(e.g.,usingnanocrystallineLFP)andLFPbatteriesingeneralCathodematerialsrepresentnotonlythelargestcostcom-(e.g.,cell-to-packconcepts),leadingtoanimprovedperfor-ponentinLIBs,buttheirfurtherdevelopmenthasalsohadmanceofLFPbatteries(e.g.,fast-chargingupto4CinCATL'sthegreatestinfluenceontheperformanceofLIBsinthepast.Shenxingbattery)[101,102].Effortstooptimizematerialsanddevelopnewmaterialsarecorrespondinglyhigh.Inthefollowing,wedistinguishbetweenLithiummanganeseironphosphate(LMFP)thecategories(1)iron-andmanganese-basedcathodeactivematerials(CAM)and(2)nickel-basedCAM.Theadvantageoflithiummanganeseironphosphate(LiMnxFe1-xPO4-LMFP)overLFPisthehigheroperatingLithiumIronPhosphate(LFP)potentialandthushigherenergydensityandspecificenergycomparedtoLFP.Atthesametime,stillnoexpensivematerialsLithiumironphosphate(LiFePO4-LFP)belongstotheclassareneeded(exceptforLi),sothatcostssimilartothoseforofpolyanionmaterialsandcrystallizesinanolivinestructureLFPcanbeexpected[103].Thechargeanddischargecurve[90,91].DuetoitshighertemperaturestabilityLFPisinherent-ofLMFPshowstwovoltageplateaus,correspondingtothelysaferthanlayeredoxidematerials[92].Additionally,LiistheFe3+/Fe2+(at~3.6Vvs.Li/Li+)andMn3+/Mn2+(at~4.1Vvs.onlycriticalorexpensivematerialthatitcontains,asitdoesLi/Li+)transitions[104].Hence,highMn-contentsaredesirednotcontainNiorCo,whichresultsinalowerpriceforthisforachievingahighenergydensity.However,highMn-materialcomparedtoNMC/NCA.contentsleadtoslowkinetics(Li-iondiffusion)andthustheMncontentshouldtypicallynotbeabovex=0.8[105].MostTheolivinecrystalstructurewithone-dimensionaldiffusionstate-of-the-artLMFPshaveaMn-contentofaboutx=0.6.pathwaysfortheLi-ionsresultsinarelativelyslowdiffusionofLi-ions.Moreover,LFPhasalimitedelectricalconductivity[92].OneofthechallengesforLMFPisitspoorrateperformance,Tocompensatefortheselimitations,asuccessfulapproachiscausedbyevenlowerelectronicandionicconductivitycompa-toreducetheparticlesizeandtouseconductivecarboncoa-redtoLFP[105].Thislimitationcouldbepartiallycompensatedtings[93].LFPexhibitsadischargepotentialof3.2V[94]andthroughcarboncoatingsandsmall(nano-)particlesizes.Fur-amediumspecificcapacityof150-160mAh/g(Table1),whichtherchallengesincludealowercyclelifethanLFP(duetoMnresultsinamediumenergydensityandspecificenergyofthedissolution)andhighersensitivitytomoistureandwater[104].battery(lowerthanNMC/NCA).LFPshowsflatvoltagecharac-teristicsinthemiddleSOCrange,whichmakesitdifficulttoBYDcarriedoutresearchonLMFPalreadyin2013buttermin-determinetheexactSOC.However,advancedapproachesincl.atedthedevelopmentin2016duetolimitationsofthemate-AIandmachinelearningalgorithmsmighthelptosolvetherialsintermsofcyclelifeandhighinternalresistance[103].issue[90].Today,industryseemstohavesolvedtheseissuestoasatisfac-torydegreeandconsequentlyvariousbatterycompaniesareLFPisawell-establishedCAMandcurrentlyoneofthemostactivelyworkingonthedevelopmentofLMFPcells.However,widelyusedcathodeactivematerialsforLIBwithanestimatedthetimingofvolumeproductionisuncertainformostcompa-37%marketshare(byvolume)amongCAMs[95].Trendsnies(incl.CALB,JEVE,REPTBATTERO)[106].incell-to-packconceptshaveincreasedtheattractivenessforLFPbatteries,astheenergydensityoftheLFPpackscouldTheChinesecellmanufacturerGotionhasannounceditsapproachthatofNMCpacksduetotheinherentlyhigher"AstroinnoL600"LMFPcellthat,accordingtoGotion,achie-safetyofLFPcellsascomparedtoNMCcells.Althoughthevesaspecificenergyof240Wh/kgandavolumetricenergyenergydensityislower,soistheprice,which,especiallyfordensityof525Wh/landcyclelifeof4,000cyclesatroomthesmallEVsector,isoneofthemostimportantKPIs.LFPtemperatureand1,800cyclesathightemperature[107,108].isparticularlypopularinChina(in2023,morethantwoMassproductionisplannedfor2024[109].SVoltannouncedthirdsofpowerbatteryinstallationsinChinainvolveLFP)[96].theproductionofLMFPbatterieswithaspecificenergyofAnincreasingnumberofcarmanufacturersoutsideChina220Wh/kgandavolumetricdensityof503Wh/l2024[110].arealsoconsideringoralreadyusingLFPbatteriesfortheirAccordingtoreports,Niowillstartsmall-scaleproductionEV[97-100].Hence,itcanbeassumedthatLFPwillcontinuetoofLMFPbatterypacksthatareexpectedtohitthemarketinplayamajorroleintheneartomediumterm(seealsobelow).2024[111].Accordingtotheirannouncements,CATLalreadyAsaresultofthehugecommercialinterestinthismaterial,startedtomassproduceso-calledM3Pbatteriesin2023[112].29IndustryandTechnologyRoadmapsTheirmaterialhasprobablyamorecomplexchemicalstructuresmalldevicessuchaselectricbikes,e-scooters,orpowertools,containingadditionalmetalstoMnandFe[103,113].aswellaslow-capacityEVsandinlogisticswherethefocusisonlow-cost[95].ChinaremainsthemajormarketforLMO,LithiumManganeseOxide(LMO)andChinesecathodematerialmanufacturersarethemajorLMOmanufacturers[95,114].Lithiummanganeseoxide(LiMn2O4-LMO)crystallizesinaLithiummanganesenickeloxide(LMNO)spinelstructurethatallowsforLi-iondiffusioninallthreedimensions.Asaconsequence,LMObatteriesexhibitaLithiummanganesenickeloxide(LiMn1.5Ni0.5O4-LMNO;alsorelativelyhighpowercapability[93].Additionally,LMOofferscalledlithiumnickelmanganeseoxide-LNMO)hasstructu-greatersafetythanlayeredoxides,aslessenergyisreleasedatralandchemicalsimilaritieswithLMO[114].Whiletheratiohightemperatures(thermalrunaway),andnocriticalorcostlybetweenNiandMncanbevaried,thematerialLiMn1.5Ni0.5O4ismetalsotherthanLiarerequired.Ontheotherhand,LMOhasofparticularinterest[115].ThismaterialusestheNi2+/Ni4+redoxalowerspecificenergyandenergydensitycomparedtoLFPreactionat4.7-4.75Vvs.Li/Li+.TheMn3+/Mn4+redoxcoupleandNMC/NCACAM(Tables1and2).Astrategytoincreasecouldalsobeused,however,atasignificantlylowerpoten-theenergydensityistoreplacepartoftheMnwithNi(seetialandinalessreproduciblemanner.Therefore,inpracticeLMNOparagraphbelow).onlytheNi2+/Ni4+redoxreactionisusedandtheMnremainsinastableoxidationstate[115].ThebenefitsofthismaterialLMOwasusedasaCAMinthefirstsuccessfulmassmarketarethehighreversiblepotential,theavoidanceofCoandBEV(NissanLeaf)[93].Today,however,itismostlyusedinFigure12:IndustrialactivitiesonnextgenerationFe-andMn-richcathodeactivematerials.Theillustrationisnotexhaustive.Referencescanbefoundinthetextabove.20232024202520262027...2030LFPvariousplayersinvolvedwidemarketadoptionLMFPfurthermassproductionstartsexpected(incl.CALB,Farasis,JEVE,etc.)LMO1234limitedmarketadoptionLMNOvariousplayersinvolvedLMRs5671M3PbatteryCATLCellMaterialApplication2Massproduction;Gotion3Massproduction;SVolt4Small-scaleproduction;Nio5Pilotproduction;Morrow6Commercialproduction;Umicore7Implementationinelectricvehicles30IndustryandTechnologyRoadmapstherequirementofonlymediumquantitiesofNi(comparedbecommercializedsoonandtoachieveamarketshareofsixtohigh-NiNMC/NCA)andtheimprovedenergydensityandpercentby2030[120].cyclingstabilitycomparedtoLMO.ThechallengesfacingLMNOincludethedissolutionofMnLithium-andmanganese-richlayeredoxides(LMRs)(Mn3+ionsindisorderedLMNO(spinel)disproportionateintoMn4+andMn2+ions)[116-118]andsevereinterfacialsidereac-Lithium-andmanganese-richoxides(LMRs,e.g.tionsbetweenLMNOandtheelectrolyteathighvoltageorLi1.1(Ni0.21Mn0.65Al0.04)O2[121])canbeconsideredacompositehightemperature[116],whichleadstocapacityfadingduringofthetwooxidesLi2MnO3andLiMO2(withM=Mn,Ni,Co,cyclingandalimitedcyclelife[115].SpecificelectrolytesareFe,etc.)andcanbewrittenasxLi2MnO3·(1-x)LiMO2[122].neededwithhighchemicalstability,evenatthehighpoten-VariouscombinationsoftransitionmetalsarepossibleinLMRs,tials,toenablelongcycleandcalendarlife(oxidationpotentialssuchasLi1.2Ni0.13Mn0.54Co0.13O2[123]orLi1.1(Ni0.21Mn0.65Al0.04)O2ofelectrolytes>5Vvs.Li/Li+).Otherstrategiestoovercome[121].Theadvantageofthesematerialsisthehighoperatingthesechallengesincludereducingparticlesize,optimizingpotentialcombinedwiththehighspecificcapacity,leadingtotheparticlemorphology,dopingandsurfacemodificationstobatterieswithhighenergydensityandspecificenergy(Table1).reduceinterfacialsidereactionsbetweentheLMNOsurfaceandliquidelectrolytes[115,118].Someofthechallengesincludeasignificantvoltageandcapa-cityfadingduringcycling,whichisattributedtostrain-inducedAsof2023,LMNO-basedLIBarenotyetonthemarket.structuralinstabilitiesinthecompositestructureduring(de-)MorrowBatteriesisplanningtostartpilotproductionoflithiation[123].Furthermore,LMRsexhibitalimitedrateper-prismaticLMNOcellsattheirCustomerQualificationLineinformanceduetothepoorelectronicconductivityoftheman-Q12024[119].Greatermarketpenetrationisexpectedtotakeganese-basedoxide[122].Thesechallengescouldbeovercomesometime.Nevertheless,themarketintelligencefirmBench-withoptimizedmorphologydesignandbulkdesign,aswellmarkMineralIntelligenceexpectsLMNObatterychemistriestoasbyapossiblesurfacemodification[123].Table1:TypicalvaluerangesforrelevantparametersofFe-andMn-richcathodeactivematerials[104,121,123,125-129]:LFPLMFPLMOLMNOLMRs148146>300Theoreticalspecific170170capacity(mAh/g)Practicalspecific150-160135-16090-120115-125>200capacity(mAh/g)Operatingpotential3.2-3.53-5-4.1;3.84.04.7<4.4(VvsLi/Li+)Materialcost8-1510-16(estimate)8-1512-20(estimate)20-30(EUR/kg)(estimate)Massmar-ImprovedenergyLimitedmarketNotonthemarketyet,Commentketmaterialdensitycomparedadoption,mostlybutpilotproductionCurrentlystilllowTRL;usedwidelytoLFP;marketinsmall-scaleplanned;capacitycapacityfadingrepre-inEVadoptionplannedapplicationsfadingrepresentssentsbiggestchallengeshortlybiggestchallenge31IndustryandTechnologyRoadmapsIn2023,thetechnologyreadinesslevelofLMRiscurrentlycapacityretentionandlowerthermalstabilityofNMCswithstillratherlowandbatteriesusingtheseCAMarenotyethigh-Nicontent[132].Theultimategoalofachieving100%onthemarket.UmicorehasannouncedthatitisaimingforNi-content(LNO),whichgivesthehighesttheoreticalcapacity,thecommercialproductionofaso-calledHLM(highlithium,facessimilarchallengessuchasmechanicalinstabilityduringmanganese)CAManditsimplementationinelectricvehiclescyclingleadingtocracksintheparticles,limitedthermalstabili-by2026[124].ty,(electro-)chemicalinstabilityaswellasthesynthesiswithaperfectlayeredstructureandstoichiometry[135].Lithiumnickelmanganesecobaltoxides(NMC)Strategiestoovercomechallengesincludesurfacecoatingsandlithiumnickeloxide(LNO)tosuppresssidereactions,gradientparticles,doping(variouselementsarepossible,incl.AlwhichthenleadstoNMCA,seeLithiumnickelmanganesecobaltoxides(LiNi1−x−yMnxCoyO2-below),andmorphologyoptimization,suchasusingsingle-NMC)andlithiumnickeloxide(LiNO2–LNO)belongtothecrystalCAMparticlesforlayeredoxideCAMwiththehighestclassoflayeredtransitionmetaloxides,asdoeslithiumcobaltNi-content,toincreasehigh-voltagestabilityandtopreventoxide(LiCoO2-LCO)whichisfrequentlyusedinconsumertheformationofcracksthusmitigatingdegradation[132].devices.InNMC,theNi-ionsarethedominantredox-acti-vespecies.TheCo3+ionsincreasetheelectronicandionicLithiumnickelcobaltaluminumoxides(NCA)andconductivityandtheMn4+ionshelptomaintainthermalandLithiumnickelmanganesecobaltaluminumoxidesstructuralstability[122,130,131].Thefirstcommerciallyrele-(NMCA)vantNMCmaterialLiNi1/3Mn1/3Co1/3O2(NMC111)exhibitshighelectrochemicalperformanceandsafetyandwasusedinsomeLikeNMCmaterials,lithiumnickelcobaltaluminumoxidesoftheearlybatteryelectricvehicles[131].ApartfromNMC111,(LiNi1−x−yCoxAlyO2-NCA)belongtotheclassoflayeredtransiti-variouscompositionsarepossible.Inanefforttoincreasetheonmetaloxides.Also,inNCA,theNi-ionsaretheredox-activeenergydensityofthebatteriesandreducetheamountofthespecies;CoandAlarenotactivelyparticipatingintheelectro-expensiveandcriticalCo,theNi-contenthasbeenincreasedinchemicalreaction.TheCo3+ionsincreasetheelectronicandNMCmaterials.NMCswithlowtomediumNi-content(relativeionicconductivityandtheAl3+ionsarestabilizingthesystem.contentof30%to<70%NiinrelationtoMnandCo)haveSimilartoNMCmaterials,NCAsexhibitgoodperformanceatbeenandareincreasinglybeingreplacedbyNMCswithhighareasonablecostinallrelevantparameters,suchasenergyNi-content(e.g.NMC811).Thecurrenttrendistowardultra-densityandspecificenergy,rateperformance,calendarandhighNilayeredoxideswithrelativeNi-contentsofmorethancyclelife.Atthesametime,similarchallengesexist,including90%(e.g.NMC9.5.5)[132].structuralinstabilitiesduringcyclingleadingtocapacityfadingandlimitingthecyclelife,aswellaslimitedthermalstabilityTheadvantageofNMCovermostotherCAMliesinitsgood[133].AnincreaseinNicontent,whichisaimedatincreasingperformanceinthemostrelevantparameters,suchasenergytheenergydensity,increasesthesestructuralinstabilitiesanddensityandspecificenergy,rateperformance,calendarandleadstocapacityfade,whichreducescyclelife.Strategiestocyclelifeandcosts.Becauseofthisbalanceofgoodper-overcomethesechallengesincludesurfacecoatingstosup-formanceindicators,NMCmaterialshavebecomethemostpresssidereactionsanddoping[133].widelyusedCAMinelectricvehicles[93,95].ThechallengesfacingNMCmaterialsarethelimitedthermalThemovetolithiumnickelmanganesecobaltaluminumoxidesstabilityandtheirthermalrunawaybehaviorthatmakesatight(LiNi1−x−y−zMnxCoyAlzO2-NMCA)byaddingsmallamountsofBMScontrolnecessary[133].Furthermore,Mn-iondissolutionMnresultsinbettercyclingstability,lowerintrinsicvolumeandsurfacestructuralreconstruction,aswellasstructuralvariationandhighermechanicalstrengthcomparedtoNMCinstabilitiesduringcyclinglimitthecyclelife[134].Thesechal-andNCAwithasimilarlyhighNi-content[134,136].lengesintensifywithincreasingNi-contentresultinginlower32IndustryandTechnologyRoadmapsTable2:TypicalvaluerangesforrelevantparametersofNi-basedcathodeactivematerials[125,136,147,148].LowtomediumNi(30HighNiUltra-highNiNCA(>80%Ni)to<70%Ni)(70to<90%Ni)(≥90%Ni)190->20023-30Theoreticalspecific150-190170to>200275-280capacity(mAh/g)>200Practicalspecific22-30capacity(mAh/g)Generalcomment:190to>200OperatingpotentialcostdependsonNi-/Co-(VvsLi/Li+)contentandparticle23-3025-32(estimate)Materialcostmorphology(EUR/kg)IncreasingenergydensityanddecreasingstabilitywithincreasingNi-contentCommentFigure13:IndustrialactivitiesonnextgenerationNi-richcathodeactivematerials.Theillustrationisnotexhaustive.Referencescanbefoundinthetextabove.20232024202520262027...2030LowtomediumNivariousplayersinvolvedwidemarketadoptioninthepast;slowlyfadingoutMediumtohighNivariousplayersinvolvedwidemarketadoption,likelytoplayamajorroleintheshorttomediumfutureHighestNi(≥90%Ni)1236NCAvariousplayersinvolvedwidemarketadoption;increasingNi-content(>90%)NMCA4512Ultra-highNi;CATLforNioCellMaterialApplication3ImplementationofNMC955inEV;Toyota4Market-readybattery;Leclanché5StartofNMCAmassproduction;LGChem6120kilotonsannualproduction;LGChemIndustrializationofhigh-NiCAMchemistries[9,93].NCA-basedbatteriesarebeingproducedmainlybyPanasonicandSamsungSDI[95].ThesebatteriesNMCCAMarecurrentlythemostwidelyusedCAMinEVareusedforelectricvehicles(TeslaisusingNCAbatteriesfromapplication,ifthedifferenttypesofNMCarecombined[9,93].Panasonicfortheirlong-rangemodels)andpowertools.WhereasearlyEVsusedNMC111,inrecentyearstherehasbeenashifttoNMC532,NMC622andNMC811,andmediumtoTheindustryismovingtowardsevenhigherNi-contents,bothhighNi-contentarecurrentlythemostcommonlyusedNMCsforNMCandNCA(e.g.Ni>90%)toincreasetheenergy33IndustryandTechnologyRoadmapsdensityandthusrangeoftheEVs.Suchultrahigh-NiNMCsBlendsofdifferentCAMandNCAsareexpectedtogainsignificantmarketsharesbytheendofthisdecade[132].MajorcellproducerssuchasSKThecathodeactivematerialsdiscussedabovecanalsobeusedOnandSamsungSDIarealreadyproducingcellswithultra-asblends,i.e.mixturesofdifferentCAM.Thegoalistocombi-high-Nicontent[137].CATLhasannouncedtheproductionofnetheadvantagesofthedifferentmaterials,whilemitigatingbatterieswithanultra-highnickeltechnologythatwasinitiallytheirlimitations[149].AnexampleofsuchaCAMblendistheplannedtogointomassproductionin2025[138].Leclanchélow-capacityEV"HongguangMINI"thatusesablendofLMOannouncedthatitwillmanufactureNMCA-basedbatteriesandNMCwhichcanprovideagoodenergydensity(NMC)withaNi-contentofaround90percentusingawater-basedandhighpowerandsafety(LMO)atthesametime[95].Otherproductionprocess.TheyareplanningforthesebatteriestobecombinationsmayinvolveLFP(lowcost,safety)andNMC(highavailableonthemarketin2024[139].LGChemannouncedthespecificenergy)orblendsofCAMofsimilarstoichiometry(e.g.constructionofacathodemanufacturingplantintheUSAthatNMC)butwithdifferentparticlepropertiessuchasparticleissupposedtomassproduceNMCAmaterialstartingin2025sizeorsingle-crystalandpoly-crystalmorphology.Thiscan[140].However,LGChemislikelytoproduceNMCAearlierimprovethevolumeutilizationinthecathode(highercompac-throughitsjointventurewithHuayouCobaltinSouthKoreation)orcompensateforthelossofstabilityandperformanceat[141].Both,TeslaandGMareexpectedtobeusingNMCAcellsdifferenttemperaturesorhighchargestates.fromLGES(thatislikelytousetheNMCAfromLGChem)forautomotiveapplications[142].BMW,GMandToyotaplantoWiththetransitiontoSi-basedanodes(seesection3.1.3),implementultra-high-Nitechnologyin2025,2026and2028otherblendsofCAMandLi-containingmaterialsmayalsorespectively[143-145].Otherindustryeffortsaremovinginthebecomerelevant.ThelossofLiduetoSEIbuild-upinhigh-directionofcompletelyeliminatingCointheNMCchemistry,capacityanodematerialssuchasSiinthefirstcyclecanbesuchasSVOLT’scobalt-freecathodematerialNMX[146].considerableandreducestheLiavailableforthereversiblereactionandthusthecellcapacity.BlendsofCAMandLisac-rificialsaltsinthecathodecancounteractthis.TheLisacrificialsaltsdonotprovideareversiblecapacityandonlyactduringformationorinthefirstcycles.34IndustryandTechnologyRoadmaps3.1.2.CathodeMaterialProductionTheincreasingdemandfromcarmanufacturersisdrivingtheCapacitiesexpansionofCAMcapacityforward.FreyrBatteryisacom-panythatspecializesincleanbatterysolutions.ThecompanyCathodeactivematerialproductionismainlyfocusedonAsianhasstartedtheconstructionofitsfirstfactoryinNorwayandcountries,especiallyonthethreelargestplayers:China,Korea,hasannounceditsfurtherexpansionplansinFinlandandtheandJapan.However,anincreasingnumberoflargecompaniesUS.TheyplantohaveaCAMproductioncapacityof90kilo-andstart-upshaveannouncedplanstoestablishorexpandtonsperyearby2025and173kilotonsperyearby2030[151].CAMproductioncapacityinEuropeandNorthAmerica[95].Northvolthassimilarambitions,withtheconstructionoftwoProductionfacilitiesaremainlyforlithiumironphosphate(LFP)productionfacilitiesinSwedenandoneinCanada.Theyplanandnickel-manganese-cobalt(NMC)(seeFigure14)[150].tohaveaCAMproductioncapacityof312kilotonsperyearin2028[152](seeTable3).TheestablishmentofatotalcapacityThelargestCAMproducersworldwideareprimarilylocatedof980kilotonsperyearofCAMproductioninEuropeby2028inChina.ThebiggestoftheseareShenzenDynanonic,Hunanhasbeenannounced.YunengandLOPAL.ThosethreemainlyfocusonLFPproduc-tionandhadacumulativeCAMproductioncapacityofmoreSimilartoEurope,theCAMproductioncapacityinNorththan1,000kilotonsperyear(seeTable3).TheyplantoexpandAmericaiscurrentlylow,butsomecompaniesplantoincreasetheirCAMproductioncapacityoverthenextfewyears.it.Forexample,thereareBASF,Ecopro,Posco,andUmicore;DynanonicandHunanYunengeachplantoreachanannualadditionally,therearesmallerstart-upslikeReedwoodcapacityofalmost900kilotonsperyearby2028[95,106].MaterialsandMitraChem.RedwoodMaterialsspecializesinTheonlycompaniesoutsideChinawithsimilarcapacitiesarerecyclingandexpectsaCAMproductioncapacityofaroundSouthKorean.L&F,Posco,andEcoprohaveacombinedannual71kilotonsperyearby2025and430kilotonsannuallybyCAMproductioncapacityofmorethan400kilotons,partof2030[153].Basedonannouncements,weexpectatotalwhichislocatedinChina[95].In2028,theyareexpectedtoproductioncapacityofabout700kilotonsperyearby2028haveanannualproductioncapacityofalmost1,000kilotons,inNorthAmerica.partlyproducedinnewproductionfacilitiesinEuropeandNorthAmerica.Overall,theworldwideannualCAMproduc-TheSituationintherestoftheworldtioncapacityiscurrently3,700kilotons,ofwhich78%isproducedinChina.TheCAMproducersarepreparingtofaceAfewmorecountriesareactiveorplantobecomeactiveinthesignificantincreaseindemandthatisexpectedovertheCAMproduction,mainlyIndiaandIndonesia.Indiawantstonextfewyears.Until2028theworldwidecapacitywillgrowtobecomeindependentintermsofCAMproduction[154].Untilabout8,350kilotons,59%ofwhichwillbeproducedinChinarecently,therewasnoCAMproductioninIndia,buttheyplan(seeFigure14).tohaveanannualproductionof75kilotonsin2028.Indonesiaisoneofthelargestnickelproducersworldwide.Untilrecently,ThesituationinEuropeandNorthAmericahowever,theymainlyexportedthenickel,afactwhichtheIndonesiangovernmentwantstochange.TheyarethereforeAfewcompanieshaveannouncedtheirplanstoestablishCAMrestrictingtheexportofnickel,sothatlargecompaniesnowproductioncapacityinEurope.ApartfromlargecompanieshavetolookintoestablishingCAMproductionfacilitiesinlikeBASF,Ecopro,andUmicore,therearealsosomesmallerIndonesia[155].TheyareexpectedtohaveanannualCAMcompaniesandstart-upslikeFreyrBatteryandNorthvolt.productioncapacityof160kilotonsby2028[156].35IndustryandTechnologyRoadmapsTable3:Majorcathodematerialproducersandproductioncapacitiesin2023and2028(announcements).:includingpartsofBTR(LOPALboughteverythingLFP-relatedfromBTR);:announced/future.CompanyHQLocationsMaterialsProductioncapacityProductioncapacity20232028NorthvoltSESE,CANMC(kilotonsperyear)(kilotonsperyear)PoscoKRCN,KR,CANMC,LMO0312L&FKRKRNMC,LMO128264UmicoreBEKR,CN,PL,BE,CANMC,LCO131281EcoproKRKR,HU,CANMC,NCA149648EaspringCNCN,FI,INLCO,NMC,LMFP179422NingboRonbayCNCN,KRNMC,NCA,LFPLOPALCNCN,IDLFP246566HunanYunengCNCNLFP253348ShenzhenDynanonicCNCNLFP,LMFP270440317900540870Figure14:Planned(announced)cathodematerialproductioncapacitiesbasedonplantlocation(left)andtype(right).9,000Capacity(kilotons)9,0008,000Capacity(kilotons)8,0007,0007,0006,0006,0005,0005,0004,0004,0003,0003,0002,0002,0001,0001,000002020202220242026202820202022202420262028CNKRJPEURNCMNCANCAorNCMLFPLMFPUSCAROWLCOLMO36IndustryandTechnologyRoadmaps3.1.3.AnodeMaterialswaterpollution[161].Therefore,oneofthebiggestchallengesinusinggraphiteinbothcaseswillbethereductionofproduc-GraphiteisstillthestateoftheartasanodematerialforLIBtion-relatedenvironmentalimpacts.Amongotherthings,theandwillprobablyretainthispositionfortheforeseeablefuture.newEUbatteryregulation,aswellasthestrictenvironmentalDespitetheadvantagesofthematerial,whichareitslowregulationsinChina,themainmanufacturingcountry,arecostandhighstoragecapacity,thereisanincreasingdemandlikelytoactasmotivatingfactorsfortheindustry[70,161].forhigherenergydensityandfastchargingcapability,whichcannotbeachievedwithgraphiteoronlyatgreatexpense.AInindustry,thistopicisalsobeingaddressedinpartthroughmajorfocusofindustrialdevelopmentisthereforeontheusethedevelopmentofnewprocesses.TheEstonianstart-upofsilicon-basedmaterials."UpCatalyst",forexample,isworkingontheconversionofCO2fromindustrialprocessesintographiteandothercarbonNaturalandsyntheticgraphiteproductsandclaimstowanttoscaleuptheprocessby2030[162].OtheractorssuchasCarbonscapefromNewZealandorAlthoughgraphitehasbeenusedasanodematerialinLIBforKibaranResourcesfromTanzaniaareworkingongraphitiza-morethan30years,thematerialanditsproductionhavenottionprocessesforbiomass[163]andtheuseoflesshazardousreachedtheirfinalstageofdevelopment.Inprinciple,naturalchemicalsinthepurificationofnaturalgraphites[164].graphites(NG)canbeextractedinminesandsyntheticgraphi-tes(SGorAG)canbeproducedinhigh-temperatureprocessesInadditiontotheadaptationofstartingmaterialsandproduc-fromorganicprecursorssuchastar.Bothtypesofmaterialaretionprocesses,graphitesarealsobeingfurtherdevelopedatusedinbatteries,althoughtheuseofsyntheticgraphitesforthemateriallevel.Althoughcommerciallyavailablegraphiteselectricmobilityhasgainedgroundinrecentyears.Insynthe-alreadyalmostreachthetheoreticallypossiblestoragecapaci-ticproduction,thepropertiesofthematerialcanbemuchty,challengesstillexistintheareasofservicelife,fast-chargingbettertailoredtotheapplicationrequirements.However,withcapabilityandtheirreversiblelossesduringcellformationthatincreasingdemandsformaterialswiththelowestpossibleareassociatedwiththebuild-upofasolidelectrolyteinterpha-CO2footprint,naturalgraphitescouldalsoregainimportance:se(SEI).Dependingontheprocess,miningmethodorstartingmaterialandenergymix,theCO2emissionsofsyntheticallyproducedOneofthemainapproachestochangethematerialpropertiesgraphitecanbesignificantlyhigherthanthoseofnaturalgra-istotunetheparticlesizeandmorphology.NGsoftenoccurphiteobtainedunderfavorableconditions[157-160].However,asflakegraphite,sometimesasmicrocrystallinegraphite.Typi-theproductionofnaturalgraphiteinbatteryqualityalsohascally,thematerialsarespheroidizedforuseinbatteries,whichastrongenvironmentalimpact.Thepurificationprocessinimprovesperformancecharacteristicsandlifetime.Therightparticular,whichmostlyrequireshydrofluoricacidorextremelychoiceofsizedetermines,amongotherthings,theLikinetichightemperatures,canhavestronglocalimpactsonairandoftheanode.SmallgraphiteparticleshavefastLiintercalationkineticsandalongservicelife,butcauselowinitialcoulombTable4:Propertiesofanodeactivematerials.GraphiteGraphite-siliconSilicondominatedLithiumTitanatesandcomposites3,579NiobatesTheoreticalspecific>3600.223,842175,400360(chargedcell)0.1-0.220~1.5capacity(mAh/g)Operatingpotential>10>3080-200(metalcost)>150.1~300Wh/kg,>300-500Wh/kg,>300-400Wh/kg,70-150Wh/kg,(VvsLi/Li+)~800Wh/l>900Wh/l[171-174]1,000Wh/l150-250Wh/lMaterialcostdemonstrated/[169,170]claimsclaimsdemonstrated,5-9claimsclaims(EUR/kg)Practicalperformance<280Wh/kg,oncelllevel<750Wh/lCommentdemonstrated37IndustryandTechnologyRoadmapsFigure15:IndustrialactivitiesonnextgenerationSi-basedanodematerialsandotheranodematerials[180,181,183,184,193-196].Theillustrationisnotexhaustive.20232024202520262027...2030GraphiteStatusQuo,2023widemarketadoption,likelytoplayamajorroleintheshorttomediumfutureGraphite/Sior9Si-doinated15Other248367101Group146Lilium/CustomCellsCellMaterialApplication2SiLa7Amprius0.5GWh3Enovoix8SiLa/Mercedes4IonicMT9Morrow/EchionXNO5Panasonic/Nexeon10Nyoboltefficiency(CE)duetotheirhighsurfacearea[165].MostCurrently,itisbeingusedasanadditivetoimprovegraphite-graphitesusedinbatteriesarethereforeadditionallycoated.basedanodes,butinthefuturetheimportanceofSiisexpec-Acarboncoatingisusuallyused,whichinfluencestheSEIfor-tedtoincrease.TherangeofpossibleSimaterialsisverywide,mationandthusincreasestheinitialCEandimprovesthecyclerangingfrom2Dor3DSistructurestocarbon/siliconcompo-lifeandthermalbehavior.Othersurfacemodificationssuchassites,whichcanconsistofawidevarietyofcarbonmaterialstargetedoxidationcanalsoimproveproperties.suchasgraphite,CNTsandamorphouscarbons,aswellasawidevarietyofSimaterialssuchassphericalparticlesorfibers.ThesemeasureshoweverdonotaffectthebulkpropertiesofAccordingly,thecompositescanconsistofcarbonmatricesgraphite.Otherstrategies,especiallyforincreasingthefast-withembeddedSi,mixturesofSiandcarbonparticles,carbonchargingcapabilityofthematerial,useetchingprocesses,forcoatingsforSiparticles,orotherconfigurations[165].example,tocreateporesinthegraphiteandthuscreatenewLitransportchannels,oraimatproducingso-called"mildlyThemainchallengesinusingSiarerelatedtoitshighchemicalexfoliatedgraphites",i.e.chemicallymodifiedgraph-iteswithreactivityincontactwithcommonelectrolytesandthelargeslightlyincreasedspacingbetweengraphenelayers,whichvolumechangewhenforminganalloywithLi.ThereactivitycansignificantlyimproveLikineticsandstoragecapabilitywiththeelectrolyteleadstohighirreversiblelossesduringcell[167,168].formationandathickSEI,whichcanbreakduetothelargechangeinvolumeduringcyclization.Intheparticlebulk,theSiliconincompositesandasastand-alonematerialvolumechangesalsoleadtohighstresses,whichcancauseparticlebreakageorlossofcontact.SiliconisusedasananodematerialinhighenergyLIBduetoPossiblesolutionsinvolvecoatingorsurfacemodificationofitshighcapacityandfavora-blevoltagecomparedtoLi/Li+.theSiparticles.SiOxmaterials,forexample,offeraLi-Sioxide38IndustryandTechnologyRoadmapsmatrixsurroundingtheSidomainswhichismuchlessreactiveandlifetime.By2024,materialproductionistobescaledupto[175].Otherapproachesusecoatingswithcarbonorconduc-thekilotonscale[189].MorrowBatteriesisalreadyapotentialtive,flexibleor"self-healing"polymers[176,177].Si-basedEuropeancustomerthatwouldliketointegratethematerialprelithiatedanodematerialsareincreasinglybeingdevelopedintospecialbatterycells[190].TheUKcompanyNyoboltispreciselytocompensatefortheLilossassociatedwithirreversi-workingonasimilarclassofmaterial.Productionistobeblereactions.Fullcelllevelcapacityandcyclingstabilitycanbeestablishedby2024[191].Toshiba,alargeandestablishedsignificantlyincreasedbyusingsuchconcepts,butthemethodcompanyinthebatterysector,isalsopursuingthistopic[192].requiresnewandadditionalprocessstepsinmaterialproduc-tion[178,179].SimilarlytothemultitudeofpossibleSianodes(e.g.,withdiffe-3.1.4.AnodeMaterialProductionrentSitocarbonratio,particlesizeandmorphology,manu-Capacitiesfacturingprocess,etc.),avarietyofplayershaveaddressedthetopic.Establishedmanufacturers,especiallyfromChina,JapanGlobalproductioncapacitiesforanodeactivematerials,especi-andSouthKorea,arescalingtheirproductionsforalreadyallygraphite,arestronglyfocusedonChina.Chinahasoneofcommercializedornear-marketconceptslikeSiOx[95].Specificthelargestdepositsofnaturalgraphite,withthemaindepositscapacitiesofover1,400mAh/gareachievedwiththematerial.locatedinInnerMongoliaandHeilongjiangProvince[197].Comparedtomanyotherdeposits,certaindepositsinChinaAnumberofstart-ups,especiallyfromtheUSA,areworkingcanbeconsidered"super-large",makingtheirdevelopmentonverynewmaterials,someofwhichrequirenewmanufactu-economicallyveryadvantageous.Althoughtheproductionofringprocesses.Forexample,Group14planstostartindustrialartificialgraphiteisnotsostronglylinkedtohavinglocalaccessproductionofitssilicon-carbonnano-compositematerialintorawmaterials,productioncapacitiesarestillheavilyconcen-2024[180].ThetechnologyofSiLaNanotechnologiesseemstratedinChina.tobebasedonmulti-layerSimaterialsandisalsoexpectedtobebroughttoindustrialproductionin2024.By2026,theSomeofthelargestproducersforbothtypesofgraphiteinmaterialisexpectedtobeusedinEVs,specificallyintheelec-ChinaareBTRwithlargeplantsinShenzhen,TianjinandtricG-ClassfromMercedesBenz[181].ThecompanyAmpriusHuizhouandJixiShanshanandShanghaiPutailaiwithproduc-Technologiesdevelopscompositematerialscontainingnano-tionbasesinJiangxi.Chinesemanufacturersareplanningtowiresandhaspresentedcelldatawithhighspecificenergyofmassivelyexpandtheirproductioncapacitiesinthenextfew350Wh/kgandwantstostartgiga-scaleproductionin2025years.BTRisbuildingaplantinYunnanwithacapacityof[182,183].TheUK'sNexeonisalsoworkingonneedle-like200kilotonsperyear[198]andinHeilongjiangwithacapacitysilicon.TogetherwithSKCfromSouthKorea,massproductionofupto600kilotonsperyear,mainlyforNG[199].Shanshanistoberealizedby2026[184].Panasonicisonecustomerisbuildingproductionfacilitiesofupto200and300kilotonsalreadywaitinginthewings[185].NeoBatteryfromCanadaperyearforbothAGandNG,inSichuanandYunnanrespecti-isan-otherexampleforaSistart-up.Theyclaimtoachievevely[200].ShanghaiPutailai(Zichen)isbuildinganother>2,500mAh/gwiththeirmaterial[186].Sofar,thereisno100kilotonsperyearinSichuan[201].informationonscale-upplansofthecompany.InEurope,Umicore,amajorplayer,isalsoworkingonthistopic.TheBasedontheseannouncements,ChinacouldevenexpandcompanyreliesonSi/Cmaterials,whichachieveacapacityitsmarketshareinglobalproductioncapacityfrommorethanof>1,000mAh/g[187].Plansforscalinguphave,however,80%atpresenttoalmost90%inthemediumterm.notyetbeenannounced.TheonlyheavyweightproducerofgraphiteanodematerialOtheranodematerialsoutsideChinaistheSouthKoreancompanyPoscowhichope-ratesplantsinSejongandPohang.ThereareexpansionplansEventhoughthesemostlydonothavethehighenergyden-forthePohangplantsinparticular,butthesearesmallerthansitiesofgraphiteandsilicon,otheranodematerialsarestillthoseoftheChinesecompetitors[202,203].Startingfrombeingdeveloped,somewithexcellentperformancecharac-today'sshareofabout4%ofglobalproductioncapacities,teristicsandstability.Amaterialwithhighstructuralandthisvalueshouldneverthelessincreaseslightlyby2030duechemicalstabilityislithiumtitanate(LTO,LixTi5O12)whichhastoPosco'sexpansionplans.beeninuseforalongtime[188].Intheinsertionreaction,aspecificcapacityof175mAh/g,andavolumechangeoflessSituationinEuropeandtheUSthan1%canberealized.ThecompanyEchionfromtheUKisworkingonthecommercializationofniobium-basedanodeIInEurope,too,someproducershaveannouncedthematerialswhicharealsoexpectedtohaveverygoodkineticsestablishmentofproductioncapacities,especiallyforgraphite.39IndustryandTechnologyRoadmapsFigure16:Planned(announced)anodematerialproductioncapacitybasedonplantlocation(left)andtype(right).NG:Naturalgraphite,AG:artificialGraphite,NG/AG:unknowntypeofgraphite,Si:Si-basedmaterials,Other:OthercarbonsandLTO.5,000Capacity(kilotons)5,0004,500Capacity(kilotons)4,5004,0004,0003,5003,5003,0003,0002,5002,5002,0002,0001,5001,5001,0001,000500500002020202220242026202820202022202420262028CNKRJPEURNAMROWNGNG/AGAGSiOther(C,LTO)TheseincludeTalga,whichoperatesinSweden,Vianode/announcementsforthedevelopmentofproductioncapacitiesElkemandMineralCommoditiesinNorway,andGrafintecinforgraphiteasananodematerialamounttoabout4millionFinland.Inaddition,theChinesegiantShanghaiPutailaihastonsby2027/2028.Atleast50%ofthisisattributabletothealsotargetedEuropeasaproductionsiteandisplanningacapacitiesofAG.ThetotalgraphitequantitycorrespondstoplantinSweden.TheannouncementsaremainlyrelatedtoNGjustunder4.5TWhofbatterystoragecapacity.andarequitesizeable.BothPutailaiandVianodeareplanningproductioncapacitiesofaround100kilotonsperyearby2030Siliconproductioncapacities[204,205].Theothermanufacturersplanseveraltensofkilo-tonsperyear[206-208].Comparedtothegraphiteproductionplantscurrentlyinoperationandthoseannouncedforthefuture,thedevelop-IntheUSA,therearealsomajoreffortstoincreaseproductionmentofSiproductionasananodematerialistakingplaceoncapacitiesforbatteryanodes,eventhough,asinEurope,thereasmallerscale.Thelargestplantsproducingafewkilotonsperisstillonlyasmallscaleindustryinthisarea.AnumberofyeararecurrentlyoperatedbyBTR,ShanshanandChengdunewbutalsoestablishedplayers,includingNovonix,Epsilon,GuibaofromChinaandDaejoofromSouthKorea.TheseandAnovion,GraphiteOneandSyrah,havepositionedthemselvesotherproducerssuchasShidaShenghuaplantoexpandtheirtobuildplantsforgraphiteproduction[209-216].Mostofcapacitiestoseveraltensofkilotonsperyearinthenextfewtheannouncementsregardingcapacityareforseveraltensofyears[95].Thismeansthatfromabout2027onwardsuptokilotonsperyear.Duetothepressuretolocalizesupplychains300kilotonsperyearofSiOx-basedandotherSi-basedmate-triggeredbytheIRA,somealreadyhavecustomerrelationshipsrialsshouldbeavailableworldwide.With70to80%,ChinawithcellmanufacturerswhowanttousethematerialsintheisalsolikelytoaccountforthemajorityofthemarketshareinUS[211,217].termsofproductioncapacity.TheSouthKoreanmanufacturersDaejoo,Posco,SKMaterialsandothers[95]couldaccountforBasedontheseannouncementsglobalproductioncapa-afuturemarketshareinthiscountry15to20%.Theannoun-citymarketsharesof<1%todayforbothEuropeandthecementsoftheUSmanufacturersSiLa,Amprius,Group14andU.S.couldincreasesignificantlyinthefuture.By2030,bothotherscorrespondtoashareof6to8%[180,181,183].regionscouldreachglobalsharesof5-6%.Intotal,the40IndustryandTechnologyRoadmaps3.1.5.OtherCellComponentsThecompanyLanxess,forexample,hasannounceditsinten-tiontoproduceelectrolytesinGermanybasedonTinci'stech-Electrolytesnology[221].TheSouthKoreancompanyEnchemalreadyrunsafactoryinPolandandhasannouncedtheconstructionofCommonelectrolytesforLIBallconsistofamixtureoforganicasecondelectrolyteproductionplantcapableofproducingsolventsandLisalts.However,theexactcompositionvaries20kilotonperyearelectrolyteinHungary[222].SimilarlygreatlydependingonthecelltypeandcanberegardedasDongwhaalsorunsafactoryinHungarycapableof20kilotonsthecoreIPofthecellandelectrolytemanufacturers.Variousperyear[223].TherearealsomajorexpansionplansforthefluoridatedsaltssuchasLiFSIorLiPO2F2playamajorroleintheUSA.ThemanufacturersEnchemandDongwhaareplanningcurrentdevelopments,which,inadditiontothecommonLiPF6,tobuildfactoriesinatotaloffivestateswithacombinedcandecisivelyinfluencethebehaviouroftheelectrolytesathighcapacityofover300kilotonsperyear[224,225].OtherAsianandlowtemperatures[218].CurrentandfuturedevelopmentssupplierssuchasSoulbrainandShenzhenCapchemalsoseemalsoconcernthestabilityathighcellvoltages>4.2V,whichistobefollowingthistrend[225].alreadystateoftheartinsmartphones(e.g.4.45V)andcouldbecomesointheEVsectorinthefuture.AnothertopicinSeparatorselectrolytedevelopmentiscompatibilitywithSianodes.Here,too,thereareapproachesinvolvingtheuseofadditives,e.g.Industriallyusedseparatorsoftenconsistofaporous,polyole-LiDFBOPorFEC,whichleadtoamorerobustSEIontheparticlefin-basedpolymerlayerandaceramiccoating.Whilethesesurface[219,220].systemshavegoodmechanicalproperties,theyofferlimitedstabilityathightemperatures.Whencellsarethermallyover-ThelargestproductionplantsforelectrolytesareinChina,loaded,thepolymerlayerbeginstoshrink,whichcanleadtowherebythecompaniesTinci,Guotai-HuarongandShenzhenshortcircuitsinthecell.Capchemcurrentlyhavethelargestproductioncapacities.OutsideChina,onlyJapanandSouthKoreahaveotherpro-Thestateoftheartforpolymerseparators,includingapoten-ducerswithrelevantglobalmarketshares.Here,too,themaptialceramiccoating,is10to12µm.Recentfindings[9]indicateofproducersislikelytoshiftinthenextfewyearsasaresultthattheseparatorsareslightlythickerforpouch-typecellsoftheUSIRAandthefurtherdevelopmentofthebattery(~15µm)andthinnerforprismaticorcylindricalcells,mostindustryinEurope.likelyduetothesolidhousingofcylindricalandprismaticcells.Separatorfoilswitharound8µmarecommerciallyavailable.Figure17:ComponentsofLIBcells.Case,sealing,ElectrolytesafetyfeaturesSeparatorCurrentcollector41Binder,additivesIndustryandTechnologyRoadmapsCurrentresearchactivitiesconcerntheuseofotherpolymers,somestudiesrefertothisthicknessaspracticablelimitduetoforinstancethosebasedonpolyimides,PEEKorpolyacryloni-mechanicalstrengthorprocessability.However,somemarkettrile,whichinsomecasescansignificantlyimprovethecriticalanalystsanticipatethataround4µmwillbefeasible,andcer-thermalloadaswellaspropertiessuchaselectrolytewetabilitytainmaterialsuppliersarealreadyofferingthosefoilsforfuture[226,227].Intheindustry,developmentsinrecentyearshavebatterygenerations[233].Afurtherdevelopmenttoreducefocusedonreducingproductioncostsandfurtherreducingfilmweightandvolumeistheuseofmultilayersystems,e.g.ofseparatorlayerthicknesses.CeramiccoatinghasnowbecomeapolymerfilmthinlycoatedonbothsideswithCu[234-236].thestandardintheautomotivesector,withseparatorscoatedSputtering,electroplatinganddensificationprocessesareononeorbothsidesdependingonthecelldesign.Differentusedforthispurpose.Filmswithatotalthicknessof6µmmaterials,e.g.Al2O3orAlO(OH)(Boehmite),areusedforthe(1µmCuperside)havealreadybeenpresentedbytheindus-inorganiccoating.try.Thefutureuseofsuchthinfoilsisconceivableinhigh-energybatterieswithlowpowerrequirements.ThelargestmanufacturersandproductioncapacitiesforseparatorsarecurrentlylocatedinChina.SemCorp,currentlyBindersandconductiveAdditivesthelargestmanufacturer,isplanningcapacityexpansionsinChinaandpotentiallyintheUS.WithitsplantinHungary,Polymer-basedbindersandconductivecarbonsareusedtothecompanynowalsohasaEuropeanproductioncapacityproducemechanicalandstructuralstabilityaswellaselectro-of350millionm²[228].Similarplanshavealsobeenimple-nicconductivityinthebatteryelectrodes.ThechoiceofeithermentedbytheSouthKoreansupplierSKIETechnologies.typeofadditivetypedependsontherequirementsforpowerInPoland,anannualcapacityofmorethan1,000millionm²density,themanufacturingprocessandtheactivematerials.InofseparatorwillbecreatedinseveralexpansionstagesbythetheaqueousprocessingofgraphiteanodesandLFPcathodes,endof2024[229].TheJapanesecompanyAsahiKaseiisalsomixturesofstyrene-butadienerubberandcellulosederivativesplanningexpansiontotheUS[230].Overall,theshareofpro-havebecomeestablishedasbinders.Polyvinylidenefluorideductioncapacitiesoutsidetheestablishedcountriesoforigin(PVDF)isusedinNMP-basedprocessing.FortheestablishmentChina,SouthKoreaandJapanislikelytoincreasesignificantlyofelectronicconductivity,nano-scaleconductiveblacksarestillinthecomingyears.predominantlyused.Moreandmore,specialnanomaterialssuchascarbonnanotubes(CNTs)arebeingusedincommercialCurrentcollectorsLIBs.ThehighconductivityofCNTsandtheir1Dmorpholo-gycanincreasetherobustnessoftheelectrodecomposite,Inadditiontotheirfunctionascurrentconductors,theAlespeciallyforactivematerialswithhighvolumeexpansionsuchandCufoilsusedinLIBalsofunctionasathermalbridgeasSi,andthusincreasetheservicelifeofcells[237].Theusebetweentheelectrodeandthecellandensurethemechani-ofSiintheanodealsoincreasesthedemandsonthebinders,calstabilityoftheelectrodestackorwinding.Inrecentyears,asconventionalbindersoftendonothavesufficientelasticity.therehasbeenacleartrendtowardsreducingthethicknessPossibleapproachesincludetheuseofpropylene-basedbin-ofthefoils,whichhasessentiallybeenimplementedtoders[238]orsupramolecularbinders,andinsomecasesbio-increasetheenergydensityofthecells.Around15µmisbasedmaterials[239].Workisalsobeingdoneoncombiningthestateoftheartforaluminumfoilsonthecathode,withbindersandconductiveadditivesintheformofelectronically10to12µmbeingexpectedforfuturegenerations.Certainconductivepolymerbinders[240].Oneofthemaincriteriamaterialsuppliersalreadyofferaluminumfoilswith10µmfortheirusabilityisthecompatibilityofthematerialswith[231].Forcopperfoilsontheanode,8to10µmarestateofwidelyusedmixing,coatinganddryingprocessesusedintheart.WhileLGChemannouncedthemassproductionofelectrodeproduction.EVpouch-typebatterieswith6µmcopperfoilsin2020[232],42IndustryandTechnologyRoadmaps3.1.6.CellProductionCapacitiesMn-based,theremaining25%couldn’tbeallocatedduetobyChemistryinsufficientinformation.AlthoughtheshareofthesecathodechemistriesinthepredictedglobalcellproductionseemstobeThemaintrendsinthechoiceofcathodematerialscanberelativelystableinthecomingyears,absolutecapacitieswillderivedbyanalyzingtheproductioncapacitiesplannedincreaserapidly.(announced)forLIBcells.Evenifinmanycasesthecathodematerialusedisnotspecified,itcanbeinferredbasedoninfor-Theregionaldifferencesarewell-pronounced,whereascellmationaboutthecellmanufacturerorthepotentialcustomer.productionforLFPplaysamajorroleinChina,thetrendistheAssumptionsweremadereagrdingthemostlikelycathodeoppositeinEurope.IntheUScellproductionannouncementsmaterialsusedtogeneratetheforecastsshowninFigure18.thereisacleardominanceofnickel-basedcathodematerials,TheannouncementswerecategorizedontheonehandbyLFPwhich,inadditiontoNMCincludealargeshareofcellswithandotheriron-basedcathodematerialsandontheotherhandNCAchemistry.bynickel-basedmaterials,suchasNMCandNCA.Thetwoadditionalcategoriesare“othercathodematerials”,includingHowever,theregionaldynamicswithinthisdecaderevealaMn-basedcathodematerials(e.g.LNMO),and“unknown”,formorecomplexpicture:TheshareofLFP-basedcellproductionproductionwherenoreasonableassumptionswerepossible.inEuropeissettoincreaseoverthecomingyears,indicatingthatlow-costbatterycellsarebecomingincreasinglyimportantAccordingtothisassessment,44%oftheglobalcellpro-here.AsimilareffectcanbeobservedintheUS,eveniftheductioncapacitywillbeforNi-basedand26%forFe-basedshareofLFPcellproductioncapacityisonlypredictedtoreachcellchemistriesby2030.Whilelessthan5%areexpectedtoaminimumof8%.(Itshouldbenotedthattheproportionofhaveanalternativecathodechemistry,suchasthosewhichareproductioncapacitywithunknowncellchemistryishigher).Figure18:Planned(announced)cellproductionbyCAMandregion.Announcedproductioncapacity(GWh)3,50020303,000NMC/NCA2,500202220242026202820302,000Fe-based1,5001,000ChinaUSA500Europe0RoW2020NMC/NCAFe-basedOtherUnknown43IndustryandTechnologyRoadmapsThissituationcaneasilybetransferredtothecountries/regi-than500GWh.TogetherwithEVE,BYDandCALB,theymakeonswiththelargestplanned(announced)capacitiesforcellsupnearlyhalfoftheexpectedproductioncapacitiesforLFPusingthedifferentcathodeactivematerials:Theproductionbatterycells.ofLFPbatterycellswillbeheavilydominatedbyChina,wherearound90%ofproductioncapacitieswillbelocatedby2025.InthecaseofbatterycellswithNMCcathodes,anAsianHowever,thissharewilldecreasetoaroundtwothirdsbythemanufacturerisalsoexpectedtobethelargestproducerbyendofthedecade,mainlyduetotheincreaseinactivitywithin2030.Nearly500GWhofLGES’splannedcellproductionisEurope.InthecaseofNMCandNCA,thepredictedsharesofestimatedtouseanNMCcathode.Inadditiontothem,CATL,cellproductioncapacitiesinthedifferentcountries/regionsareSKOnandCALBareexpectedtobethemostimportantplay-morediverse,wherebyEuropehasashareofaroundonethirdersbytheendofthedecade.TogethertheymakeuparoundandChinaashareofaroundonequarter.halfoftheexpectedproductioncapacitiesofNMCbatterycellsbythen.NorthvoltcouldbecomethemostimportantThecellmanufacturerswiththelargestproductioncapacitiesEuropeancellmanufacturerinthisfield,followedbyPowerCoforbatterycellswithanLFPoranotheriron-basedCAMallandACC,accordingtotheirrespectiveannouncementsandcomefromChina.By2030CATLcouldpotentiallyestablishPanasonicislikelytobecomethemostsignificantmanufactu-productioncapacitiesforcellsbasedonLFPcathodesofmorererrelyingonNCAcathodes.44IndustryandTechnologyRoadmaps3.2.BatteryCells3.2.1.BatteryCellDesignTrendspathways(lowtortuosity)tofacilitateverythickelectrodescapableofhighC-rates.Ontheotherhand,itiscrucialtoBatterycelldesignconcernstheelectrodelevelandcoversmaintainthemechanicalintegrityoftheelectrode.Adjustedcomponentthicknesses,electrodeporosity,andtheassemblyslurrycastingwithnewsolventsoraddednanoparticlesarefromsinglesheetstostackedorwoundelectrodesuptothethemostmaturetechnologies,whiletemplate-basedconceptschoiceofcellformatandsize.(suchassaltorice),additivemanufacturingconcepts,orlaserablationmaybecomemorerelevantinthefuture[247].HEelectrodes-anengineeringtrade-offbetweenElectrodeassemblyenergydensityandpowerdensityTheLIBengineeringprocessrequiresseveraldesignchoicesThetypeofelectrodeassemblyusedinthecellhousinghasafromelectrodecompositiontocoatingweightsandthick-stronginfluenceonoverallcellperformance,andthefinalelec-nesses,electrodeporosities,currentcollectorsandconnec-trodegeometryshouldbeascloseaspossibletothecellhou-tiontags,theseparatorandtheelectrolyte.Thesechoicessingtoavoidanydeadvolume.Whiletherearetwoprincipalarecomplicatedbythefactthatmaximumenergydensitytechniques,namely(1)windingofcontinuouselectrodesandandhighpowerdensityoftenhaveopposingrequirements.(2)stackingofpre-cutelectrodes,inpractice,thereareseveralOptimizingpowerdensity,forexample,requiresminimizingcombinationssuchasZ-foldingorstack-winding.Thefirsttech-anycellcomponent'selectronic,ionic,andthermalresistance.nique,electrodewinding,ismostcommonamongprismaticSuitablemeasuresherecompriselowercoatingweightsandandcylindricalcells.Thewindingprocessandtheequipmentthicknesses,higherelectrodecoatingporosities,thickercurrentusedarehighlyoptimized,wellestablished,veryaccurateandcollectors,thickerandwidertags,orincreasedsharesofhighlyfast.Thesecondtechnique,stackingandZ-folding,isusedconductivecarbon.Incontrast,optimizingenergydensityinpouchcells.Thebiggestchallengehereistocombinefullyrequiresmaximizingtheratioofactivematerialtothetotalautomatedhandlingandpositioningaccuracyathighprocesselectrodevolume.Suitablemeasuresherearetheoppositeofspeeds.Industryannouncementsimplythatfuturegenerationsthosementionedabovetooptimizepowerdensityandincludeofprismaticandpouchcellswillbeassembledusingsingle-increasedcoatingweightsandthickness,lowerelectrodecoa-sheetstackingorstack-windingwhilewindingconceptswilltingporosities,thinnercurrentcollectors,thinnerandsmallercontinuetobeusedincylindricalcells[248].tags,orminimalsharesofconductivecarbons.OEMsandcellsuppliersmustfindtherighttrade-offbetweenvehiclerangeBalancingsingle-andmulti-formatstrategiesgiventhelimitedinstallationspace(energydensity)andfast-chargingcapability(powerdensity).Cylindricalcells,hardcaseprismaticcellsandpouchbagcellsarethethreeformatsusedinlargeLIBs.Consolidatingcellfor-AutomotiveHE-LIBshaveatypicalcoatingthickness(single-matsanddevelopingcommonstandardsarewell-establishedsided)of50to80μmforbothcathodesandanodes[9,241-approachesintheautomotiveindustrytoleverageeconomies243].ForHEcathodechemistries,graphiteanodesmaybeofscaleorfacilitatemulti-sourcingstrategies.Earlyon,thecloseto100µmtosustainanappropriateanodetocathodeGermanAssociationoftheAutomotiveIndustry(VDA)andthebalancingratio(N/P).IncreasingcoatingthicknesspromisesGermanInstituteforStandardization(DIN)proposedseveralhigherenergydensitiesandcostsavings[244],butiscurrentlyindustry-widestandards.Theseincludeprismaticcellswithunexploited.Between100and150µmareconsideredtobetheHEV1,PHEV2,HEV1,HEV2,orBEV1toBEV4formatandpractical,achievablelimitsforsingle-sidedcoatingthicknessespouchcellswiththeHEV,PHEV1,PHEV2,orBEVformat(DIN[242,245].Recentfindings[9]suggestthatLFP-typecellstend91252:2016-11).However,manufacturersandalliancegroupstobethickerthantheirNickel-richcounterpartsandatthehavealsostarteddevelopingandusingmodifiedformatsupperendofthespectrum,andaremostlikelytocompensatethataretailoredtotheirspecificrequirementsandtargets.thelowercapacity,probablyfacilitatedbytheirhigherintrinsicMostOEMscombinesingleandmulti-formatstrategies(cf.safety.Forthesereasons,itislikelythatfutureHE-LIBswillbeFigure19),andmosthaveselectedamainformat.Whilesomeequippedwithslightlythickerelectrodes.Finalcoatingporosi-manufacturersaimtoestablishtheirowncellproduction(owntiesforautomotiveHE-LIBstendtodecreaseslightlytowardcompanies,jointventures,start-upinvestments),othersare20%[9],with10to40%referencedasatypicalLIBopti-seekingcooperationwithestablishedcellsuppliers.Therearemizationcorridor[246].Severalconceptsaimtoincreasethehighexpectationsandobvioustrendstowardcellswithhardactiveelectrodesurfaceandshortenthelithium-iontransport45IndustryandTechnologyRoadmapsFigure19:Roadmaponcurrentandplannedcellformatsperalliancegroup/OEM[249-257].Theillustrationisnotexhaustive.20232030VWGroupPrismaticCylindricalPouch(VW,Audi,Bentley,Skoda,Seat,Cupra,Porsche)RNMGroup(Renault,Dacia,Nissan,Infiniti,Mitsubishi)BMWGroup(BMW,Mini,Rolce-Royce)GM(GMC,Chevrolet,Cadillac,Corvette,Buick,Pontiac,Hummer)DaimlerAG(MercedesBenz,Smart,Maybach)Toyota(Toyota,Lexus,Scion,Daihatsu)Hyundai(Hyundai,KIA,Genesis)MazdaMotorCorp.Ford(Ford,Lincoln)Stellantis(Fiat,Chrysler,AlfaRomeo,Jeep,Dodge,Opel,Peugeot,Citroen,Ram,Abarth,DSAutomobiles)Suzuki,SubaruTesla(Suspected)add.format(Suspected)mainformathousing,i.e.,prismaticorcylindricalcells.Despitethis,theandatruerenaissanceofprismaticcellsinthelastfewyears.announcementsmadeindicatethatallthreecellformatsareOntheonehand,therearethinner(12-36mm)andsmallerlikelytoretainsubstantialmarketshares.cells(uptoaround400mm)thatprimarilyfeaturehigh-energynickel-richcathodes(mainlyNMC).ThisresultsinTailoredprismaticcellsandblade-typecellsaveragesingle-cellcapacitiesofupto100Ahduetohigherenergyactivematerialsandoptimization.Ontheotherhand,Largeprismaticcellsfeaturehighsingle-cellcapacities,goodtherearelarger(400-900mm)andthickercells(upto80mm)mechanicalstabilityanddurabilityduetothesolidalumi-withaveragesingle-cellcapacitiesofaround150Ahthatpri-numhousing,easyinstallationandhighpackingdensity,butmarilyfeatureLFPcathodes,especiallysince2019.Inparticular,challengingcoolingcharacteristics.Thereisawiderangeofthereisatransitiontowardcell-to-pack(C2P)conceptswithutilizedcellgeometrieswithintheglobalautomotiveindustry.counter-tabdesignsand,thus,greaterintegrationofcellsintoOverall,verylargeprismaticcellsfrom2,000to3,500mlhavethevehiclechassis(seealsochapter3.3).ThisC2Pconceptismostlydisappeared,whileanewcorridorhasrecentlyformedtypicallyassociatedwitheitherhighvolumeorverylongcellsbetween500and1,500ml[9].Thus,singleprismaticcells(uptoaround900mm)andpromisescostadvantagesduehavenotgrowninvolumebuthaveratherbeentailoredtothetohigherprocessefficiencyandfewercomponents,andper-spaceavailableinthevehicle.Wehighlighttwomarkettrendsformanceadvantagesduetohigherachievablespecificenergyandenergydensityatpacklevel.Asof2023,manyOEMs46IndustryandTechnologyRoadmapssuchasVW,Ford,Honda,Toyota,BMW,Mercedes,orBYD46-millimeterdiameterbatterycellssuchas4640(170-180g,haveannouncedtheirintentiontokeepusingorshifting~60ml,~11Ah)and4660[270]toallowlowerfloorheighttowardprismaticcellsforfuturevehiclegenerations[259-262].inafinishedcarorotherlargecylindricalformats,suchasEvenTeslaintroducedprismaticLFPcells(276x80x62mm³,4080batterycells.~3,200g,1,370ml,183Ah)intotheirportfoliofortheirentry-levelModel3andModelYvariantsin2020.Inparallel,Tailoredpouchcellsandblade-typecellsleadingsupplierssuchasCATL,SamsungSDI,Gotion,North-volt,SVOLT,orPPEShavealsocommittedtothisformat.PouchcellshaveflexibledesignsenablinghighpackagingAsanexample,wehighlighttheunifiedcellapproachofVW,efficiencyandenergydensities,butsufferfromrelativelypoorwhoseprismaticone-celldesign(approx.320x120x30mm³,mechanicalstabilityanddurabilityduetotheirnon-solidfoil~2,200g,~1,150ml)shouldworkacrossnearly80%ofitshousing.Thus,singlepouchcellsneedextramodule-orpack-productportfolio,withdifferentiationsachievedbyvaryingthelevelprotectionagainstbatterydamageandthermalrunaway.activematerialfromLFPtoLMNOandNMC[263].Inaddition,Before2018,mostautomotivepouchcellsweretypicallywehighlighttheBYDLFPbladebattery(960x90x13.5mm³,upto300mmlong.Sincethen,moreelongatedandblade-3,900g,1,200ml,~200Ah)withapotentialstacked-elec-typepouchcellswithalengthofmorethan500mmhavetrodeNMC-variantexpectedtoreachover280Ah,andtheenteredthemarket[9].Forexample,theVWMEBpouchcellsSVOLTproductportfoliowithitsL300(220x102.5x33.4mm³,witharound530mmortheAESCpouchcellswitharound~1,800g,~750ml,115Ah)toL600(574x118x21.5mm³,590mm.However,thesecelldimensionsarestillcompati-~3,500g,~1,400ml,226Ah)cells.blewithtypicalbatterymodulesizes.Pouchcellshavealsobecomesubstantiallythickerfromaround7mmbetweenLargercylindricalcells2012and2016toaround11-12mminthe2020s,withupto15-16mmnowbeingpossibleduetothemanufacturabilityofCylindricalcellshavenumerousadvantages.Theyarerobust,thermoformedfoilsandimprovedcellstability.Despitethesevibration-andshock-resistant,canwithstandelevatedinter-elongatedandthickerpouchcells,totalcellvolumeincreasednalpressureaswellasmechanicalstressmakingitfeasibletoonlyslightlybetween2010and2021andremainedbetweenintegratethemstructurallyintothevehicle,andareinexpensive400and500ml.Thisindicatesthatsinglepouchbagshavetomanufacture.Teslastartedwiththeir18650cellsearlyon,notbecomelarger,buthavebeenbettertailoredtothespacemakingthemtheonlyautomotiveOEMtorelyonthiscellavailableinthevehicle.However,averagesingle-cellcapacitiesformat.Thosecellshadaround40gofcellmass,16mlofcellhavedoubledtoaround70Ahduetonewactivematerials[9].volumeand<34Ahofcellcapacity.ThesubsequentupdatetoAsof2023,manyofthelatestvehicleplatformsfromseverallarger21700cellsincreasedthosepropertiestoaroundOEMssuchasVW,Mercedes,Renault,Hyundai,Kiausepouch>60g,23ml,and5Ah[9].In2020,Teslaannouncedtheircells,ensuringhighdemandinthecomingyears.Renault4680cellformat(diameter:46mm,height:80mm)withhasmadefuturecommitmentstopouchcells[271]ashavepotentiallyevenhigherenergyandpowerdensity,featuringHyundaiandKia[272]andleadingsupplierssuchasLGEnergy120mlofcellvolumeand24-27Ahcapacity.ThenewSolutions,SKInnovation,VERKOR,orEnvisionAESC.tablessdesignsolvedthepotentiallyhigherinternalresistanceInthefuture,expertsaretalkingabouttheendofthisdecadeproblem.Sincethen,cylindricalcellshaveexperiencedaforearlycom-mercialization,pouchcellsareexpectedtoboomandamorediverseproductportfolioisexpected.garnerfurtherattention,asthismaybethepreferredtechno-SeveralOEMssuchasBMWandGMaswellasstart-upslikelogyforsolid-statebatteries(SSB)[1].Nio,RivianandLucidMotorhaveannouncedtheirintentiontouselargecylindricalcellsforfuturevehiclegenerations.Energydensities–toward1,000Wh/lMoreprecisely,BMWplanstouse4695(420-450g,~140ml,and400Wh/kg32-36Ah)and46120(530-560g,~180ml,40-46Ah)cellsinitsupcomingnext-generation"NeueKlasse"electriccars,Historicaldataandtheannouncedpropertiesoffuturecellsexpectedby2025[264,265],withhighercellsmorelikelyinindicateasteadyincreaseinenergydensityacrossallthreelargervan-typecarsandSUVs.Nio[266]andGM[267]haveformatsaswellasahead-to-headracebetweencylindricalannouncedplanstoadoptthe4680formatfrom2024/25andpouchcells.onwards,withothermajorOEMssuchasMazda[268]andSubaru[269]alsoshowinginterestinusingthisformat.Forcylindricalcells,averagevalueshaveplateauedaroundLikewise,manylargecellmanufacturerssuchasLGEnergy250Wh/kgand700Wh/lsince2021.Withtheintroduc-Solutions,SamsungSDI,BAK,CATL,Panasonic,SVOLT,tionof46-millimeterdiameterbatterycells,similarlevelsandEVEEnergyaredevelopingtherespectiveproductport-forearlyNMC/GrorNCA/Grvariantsareexpectedwhilefoliosandproductioncapacities.Thesealsoincludeshorter47IndustryandTechnologyRoadmapsnext-generationcylindricalcellswithhigh-energycathodeplateauedataround210-220Wh/kgin2018,butsurpassedmaterial(suchasNMCA)andsilicon-enhanced(10-20%)gra-500Wh/lin2020andreached550Wh/lin2022.Maximumphiteanodesmayachieve300Wh/kgand800-850Wh/l[49].energydensitieshaveevensurpassedthe650Wh/l,250Wh/kgthreshold,meaningthatprismaticcellsareclosingForpouchcells,performanceimprovedgreatlybetweenthegaptotheotherformats[273].Recentlyannouncedtar-2015and2018,reachingaveragevaluesover260Wh/kggetssuggestthat>280Wh/kgand700Wh/lcouldbereachedandaround600Wh/lintheearly2020s,witharoundwithinthisdecadewhenusinghigh-energycathodes(NMC,300Wh/kgand670Wh/lasthemarket-leadingvalues.NCA,andNMCA)andsilicon-enhanced(10-20%)graphiteThesevaluesareverysimilartothoseofcylindricalcells.anodesaswellasstackedelectrodes[3].Ifalmostsolid-stateNext-generationpouchcellsareexpectedtosurpassthislevelelectrolytesareused,>300Wh/kgmaybefeasible[274].andreach350Wh/kgby2025andupto400Wh/kgbyIncontrast,prismaticLFPcellscurrentlyfeature>160Wh/kg2030,correspondingto800-850Wh/lbythemid-2020sandand>400Wh/l[273,275].Usingstackedelectrodes,potentiallycloseto1000Wh/lneartheendofthisdecade[17].manganese-dopedLMFP,andsilicon-enhanced(~5%)graphi-teanodescouldachievethetargetsof>200Wh/kgandPrismaticcellshadacleardeficitincell-levelenergydensity>500Wh/lwithinthisdecade,e.g.,GotionHigh-Tech’sAstro-tostartwithbuthavesinceimprovedsignificantly.Averageinno[3,276].Thus,itisconsideredlikelythatfutureprismaticvaluesforHEprismaticcellswithnickel-richcathodesLMFPcellswillreachtheleveloftheircurrentHEcounterparts.Figure20:Roadmaponenergydensitydevelopmentbycellformatandchemistrytype[9,26,107,277-281].Theillustrationisnotexhaustive.Energydensity202320252030Spec.energy~400Wh/l~500Wh/l~550Wh/lEnergydensity~550Wh/l600-650Wh/l~700Wh/lSpec.energy~160Wh/kg~220Wh/kg~250Wh/kgEnergydensity200-220Wh/kg~250Wh/kg300Wh/kgSpec.energy250-350Wh/l~450Wh/l~500Wh/l~700Wh/l800-850Wh/l850-950Wh/l100-150Wh/kg~180Wh/kg~200Wh/kg~250Wh/kg280-300Wh/kg~350Wh/kg~700Wh/l750-800Wh/l850-1000Wh/l250-300Wh/kg300-350Wh/kg~400Wh/kgNickel-richNMC/NCALMO,LMNO,LFP,LMFP48IndustryandTechnologyRoadmaps3.2.2.BatteryProductionTrendsCellassemblyThefinishedelectrodefoilsfromthevacuumdryercanthenbeDuetotheincreasingdemandforbatteries,acorrespondinglayeredincellassemblytogetherwithaseparatorfoiltoformupstreamramp-upofproductioncapacitiesmusttakeacellstackor,dependingonthecellformat,acellcoil(jellyplace.Asaresult,manyso-calledgigafactoriesarebeingbuiltrole).Thisisfollowedbyappropriatecontactingandinsertionworldwide,whichproducecellsonlargeandmostlyfullyaswellasweldinginacellhousing.Thenextandfinalstepofautomatedproductionlines.In2023,thecellsproducedincellassemblyiselectrolytefilling.Alltheprocessstepsofcellsuchgigafactorieswillachieveamarketvolumeofapproxima-assemblyhavetotakeplaceinadryroom.tely120billionUSD[282].CellfinishingCellproductioncanbedividedintothreemainsteps.First,theThecell,whichisnowstructurallycomplete,mustthenbeelectrodesofthebatteryhavetobemanufactured.Theseareelectrochemicallyactivated.Todoso,itisfirstalternatelythenassembledintocompletecellsinaprocessknownascellchargedanddischargedduringtheformingprocess,whichassembly.Duringcellfinalization,thecellsareactivatedandcantakeupto24hours,andthenstoredforacertainperiodtested[243,283].oftime(upto3weeks),knownasaging.Thefinalstepisqualitycontrol.ElectrodeproductionInthefirststepofelectrodeproduction,thestartingmaterialsProcessinnovationsoftheanodeandcathodearemixedwithasolvent,additivesThecostandsustainabilityrequirementsofthebatterymen-andbinderinabatchprocesstoformaslurry.Theslurryistionedinchapter2.3canbetransferredtobatteryproductionthenappliedtoametalfoil(madeofcopperontheanodeandindicatewhatneedstobeoptimizedhereaswell.Sincesideandaluminumonthecathodeside)inacoatingstep.Incellproductionaccountsforapproximately15to25percentofadryingstepdirectlydownstream,alargeproportionofthethetotalcostofabattery,thereisanincentivetokeepproduc-solventisremovedfromthecoatedslurry.Thisisfollowedbytioncostsaslowaspossibleandtofurtherreducethem[284,acalenderingstepinwhichthecoatinglayerisrolledunder285].Inaddition,arelevantproportionoftheCO2emissionsacertainpressureandthuspost-compacted.Afterwards,thefromthelifecycleassessmentofabatterycanbetracedbackelectrodefoils,someofwhichareuptotwometerswide,toitsproduction(inadditiontotheproductionandprocessingarecutintonarrowerpieces(slitting)andthenusuallythelastoftherawmaterialsandrecycling)[67].Besidesthecostsandmoistureisremovedfromthecoatedlayerinavacuumoven.sustainability,however,theothertwoimportantcriteriaforTheprocesssequencefromcoatingtoslittingtakesplaceinaproductionaretheachievablethroughputoftheindividualcleanroomatmospheretopreventcontamination.machinesandtheproductionquality.Figure21:Overviewofthebatterymanufacturingprocess.ElectrodeSlurryproductionCoating/DryingCalenderingSlittingVacuumdryingproductionElectrolytefillingWindingorStackingContactingHousing&WeldingCellCellassemblyFormationandAgingQualitycontrolCellfinishing49IndustryandTechnologyRoadmapsThesecriteriamutuallyinfluenceeachother.Forexample,ifOualityimprovementenergysavingsreducecosts,thisisalsobeneficialforsustaina-Thereductionofscrapthroughinlinemonitoringofproductionbility.Betterqualitycontrolandlessscrapalsohelptoreduceisessentialforcost-optimizedandsustainablebatteryproduc-costsand,inturn,haveapositiveeffectonthroughputandtion.Thereisusuallyaveryhighscraprate,especiallyduringsustainability.Becausethesefourcriteriaaresoinfluential,itistheramp-upofnewproductionsites.Thismustbereducedasvitalfornewtechnologytrendstoofferadvantagesinatleastquicklyaspossibleafterproductioncommences.High-qualityoneofthethem.productionsystems,sensortechnologyandprocessexpertisecanhelptoensurethis.ApproachestoreducecostsTotalcellcostsaremadeupofsimilarsharesofinvestmentProductionscrapoccursthroughouttheentireprocess.Howe-costs(andtheassociateddepreciation)andOPEX(labor,ver,rejectratesareparticularlyhighduring(batch)mixingasenergy,other)[284].Thehighestinvestmentcostsforthebat-wellascoatinganddrying.Therearefewerproductfailuresinteryproductionfacilityarethedryroomsforcellassemblyandcellassemblyandcellfinishing,butthecontactingandweldthelargeautomatedinfrastructureforcellformationandfinis-spotsmustbecheckedincellfinishing,forexample.Itisprefe-hing.Aftertheinvestmentcosts,themostexpensiveprocessesrableiffaultsaredetectedimmediatelybeforecelltestingandarethosewiththehighestenergyconsumption.Inbatteryhavenotpassedthroughtheentireproductionprocess.production,theseareprimarilythedryroomsandthedryingprocessinelectrodeproduction.CellformationalsorequiresEarlydetectionofscrapthroughinlinemeasurements(5)canhighenergyinput.Drycoating(1)cansavetheenergyneededhelptooptimizequality.Pre-lithiation(6)isaprocessforanodefortheactualdryingprocessorsolventrecovery[67,286].treatmentduringorpriortocellmanufacturing.ItisstillrarelyMicroandminienvironments(2)canreplacethedryroomandusedinbatterycells,butcouldplayarolefornewhigh-requirelessenergyduetothesmallervolumethathastobeenergymaterials.Integratingitintotheproductionprocessconditioned[67,287]aswellaslowerinvestmentcostsforthecouldmakeasignificantcontributiontoimprovingbatteryinfrastructure.Laserprocessing(3)canalsobeusedatvariousproduction.stepsintheproductionprocesstoreplaceotherstate-of-the-artprocesses(e.g.,inweldingbutpossiblyalsoindrying)inaSustainabilityofcellproductioncost-optimizedmanner.Sustainabilitydependsheavilyonthetypeandamountofenergyused.Inbatteryproduction,electricityornaturalApproachestoincreasethroughputgascanbeusedasanenergysource.ElectricitycanhaveaInordertomeetthehighdemandforbatteriesandreducelowerenvironmentalfootprintthannaturalgasdependingoverheadandinvestmentcostsatthesametime,eachproduc-ontheelectricitymixused.Itisimportantforproductiontotionstephastobeoptimizedtoachievethehighestpossiblebeasenergy-efficientaspossible,butalsotouselow-carbonthroughput.Thisiswhatenablesefficientproduction(resultingelectricityprocesseswhereverpossible(especiallyinEurope,incostandsustainabilitybenefits).Thethroughputsofthewherepolicymeasuresfocusonsustainability).Boththedryingindividualproductionstepsdiffersignificantly.Forexample,cellprocessandthedryroomsareusuallyoperatedwithheatorassemblyandcellfinishinghavedisadvantagescomparedtocoolingenergyobtained,e.g.,fromnaturalgas.Formation,electrodeproduction.Roundcellsandprismaticcells(winding)ontheotherhand,requireselectricalenergytochargeandhavecellassemblyadvantagesoverpouchcells(stacking).Indischargethecells.Energy-efficientdryinganddryroomope-cellassembly,manymachineshavetobeusedinparallelincur-rationinparticulararethereforecriticalforbatterysustainabi-rentstate-of-the-artproductionsystemsinordertoachievelity.Itisalsodesirabletoavoidtheuseoftoxicsolventsinthethethroughputofupstreamelectrodeproduction.Formationproductionprocess,particularlyduringelectrodecoating.If(duetoslowcharginganddischargingcycles)andagingalsotoxicsolventsareused,theyhavetoberecovered,whichalsorequireasignificantamountoftime.Forthisreason,veryrequireshighenergyuse.large,fullyautomatedplantsmustbeabletoprocessmanycellssimultaneously.Asmentionedabove,technologiesthatleadtocostsavingsduetolowerenergydemand(1-3)orthatproducelessBesidesoptimizingformationprotocols,therearealsoapproa-waste(5)contributetoimprovingthesustainabilityofthechestoincreasethethroughputofcellassembly(4),e.g.,productionprocess.acceleratetheelectrolytefillingortoshortenandacceleratethestackingprocess.50IndustryandTechnologyRoadmapsTechnologiesDescriptionDryCoating[288-290]Inordertomaketheelectrodeproductionprocessmoreeffective,anattemptismadetoworkwithoutorwithonlyasmallamountofsolvent.Therearedifferenttypesofprocessing(extrusion,directcalenderingImpact:process,powderapplicationandsinglelayerapplication).CostsSustainabilityDrycoatinghasadvantagesintermsofenergyconsumption.Nooronlyareducedamountoftoxicsol-QualityThroughputventsisusedandtheplant’senvironmentalfootprintismuchsmaller.LaserProcessingDrycoatingstillfaceschallengesbecauseoftheimpactonup-streamanddownstreamprocesses,the[291-297]adhesionofactivematerialtothecurrentcollectorfoil,andbinderprocessing.Impact:Outlook:CostsSustainabilityBecauseofthepositiveimpactonenergysavingsandtheeffortsofmajorcompaniessuchasTeslaandVW,QualityThroughputitislikelythatthistechnologywillmakeitswayintoseriesproductionoverthenextfewyears.IndustrialPlayers:CellAssamblyDirectcalendering:Tesla/Maxwell(US)Extrusion:Liten(FR),EAS(DE)Unknown:VW(DE),Targay(CA)[298,299]Lasersystemscanbeusedatmanypointsintheprocesschainforcutting,drying,structuring,contactingImpact:andpackagingorimprovingquality.CostsSustainabilityLaserapplicationscanofferadvantagesoverotherstate-of-the-artprocesses,e.g.,reducingenergyQualityThroughputdemand(drying),reducingoperationalexpenditures(cutting),increasingpowerdensity(structuring)orincreasingthroughputandflexibility.Laserprocessingfaceschallengesconcerningcontaminationincuttingprocesses,materialdamageduetohighenergyinput(cuttingordrying)orscalingtheapplicationspeedtoserialproductionwiththerequiredquality(drying,structuring,cuttingofcoatedelectrodes).Outlook:Duetothewiderangeofapplications,alargenumberofplayersareactiveinlaserprocessing.Technicalsolutionsarealreadyinseriesproductioninwelding,andcutting.IndustrialPlayers:Welding:e.g.Trumpf(DE),Manz(DE),Vitronics(DE),IPGPhotonics(US),Coherent(US),Cutting:e.g.Trumpf(DE),IPGPhotonics(US),Rofin-Sinar(DE/US),Han’sLaser(CN)Cleaning:LaserPhotonics(US)Drying:Laserline(DE),Trumpf(DE)Marking:Trumpf(DE),Rofin-Sinar(DE/US),Lumentum(US)Structuring:edgewave(DE),IPGPhotonics(US)Incellassembly,optimizingtheproductionstepsisprimarilyaboutincreasingthroughput.Thisisespeciallynecessaryforstacking(e.g.,high-speedsingle-sheetstackingorworkingwithrotatingtools)andelectrolytefilling(monitoringofthewettingprocessoraccelerationofwetting).Acceleratedcellassemblyhasadvantagesbecausefewersynchronizedmachinesarenecessary,reducingthecostsforinvestmentsanddryrooms.Increasedthroughputischallengingbecauseofprecisionrequire-mentswithfasterprocessesandprocessautomation.Outlook:Inthefieldofcellassembly,manyalreadyestablishedmanufacturersarecontinuouslyimprovingtheirmachines.Majorbreakthroughssuchasthosemadebyrotatingtoolsinstackingorbystructuredelectrodesinelectrolytefillingarestillattheresearchstage.IndustrialPlayers:Stacking:SVolt(CN),Manz(DE),Mühlbauer(DE),Sovema(IT),HitachiPowerSolutions(JP)Z-folding:e.g.Manz(DE),Mühlbauer(DE),Jonas&Redmann(DE),Sovema(IT),WuxiLead(CN)ElectrolyteFilling:e.g.MercedesBenz(DE),SKOn(KR),BMW(DE),Industrie-Partner(DE)51IndustryandTechnologyRoadmapsTechnologiesDescriptionInlineMonitoringTherearemanypointsovertheentireproductionprocesswheredifferentparameterscanbecheckedusing[299-306]variousmeasurementtechniques:detectionofdefectsorcontaminationinthecoating(e.g.,withcameras),measurementofthecompressiveloadduringcalendering,monitoringofelectrolytefillingandespeciallyImpact:wetting(e.g.,withweightingorultrasound)ormonitoringofcontactingincellassembly(e.g.,withX-rays).CostsSustainabilityInlinemonitoringhasadvantagesbecauseitcanimprovetrans-parency(traceability),increasethroughputQualityThroughput(electrolytewetting)andreducescrap.Inlinemonitoringfaceschallengesbecauseoftheneedforfastandcontactlessmeasurementaswellastheevaluationandin-terpretationofthedata.Theadditionalsensorsandanalyticsrequiredarealsoexpensive.Outlook:Duetoincreasedautomation,inlinemeasurementoptionsarealsobecomingmoreimportant.Digitalizationofproductionisageneraltrendthatcanacceleratetheuseofin-linemeasurementtechnology.IndustrialPlayers:X-Ray:Viscom(DE),Waygate(DE),Nikon(JP),Dürr(DE),VisiConsult(DE)Ultrasound:LiminalInsights(US)Optic:e.g.Ametek(US),IsraVision(DE),Xiris(CA),KohYoung(KR),Dr.Schenk(DE),BST(DE)Weighing:Metter-Toledo(CH)MinienvironmentsMinienvironmentsencapsulateindividualproductionlines,sothatonlyasmallvolumeneedstobemain-[287]tainedinacleanordryroomatmosphere.Thereisadifferentiationbetweenminienvironments(e.g.,singleproductionmachinesareseparated)andmacroenvironments(severalmachinesareinthesameenclosure).Impact:ThemainadvantagesofminiandmacroenvironmentsarethereducedenergydemandandthuslowerCostsSustainabilityCO2footprintsandenergycosts.QualityThroughputThechallengesforminiandmacroenvironmentsrelatetomanagingtheintralogisticsbetweendifferentmachinesanddeterminingtheoptimalprocessconditions.Outlook:Duetothemanyadvantagesthatminiandmacroenvironmentscanoffer,manydryroommanufacturersarealreadybusywiththetechnicaldevelopmentofproductsolutions.Atpresent,however,thisisstillattheresearchstage.Concretesystems(especiallyonalargescale)couldgointoseriesproductionby2030.IndustrialPlayers:WuxiLead(CN),FISAIR(ES),WeissKlimatechnik(DE),ULTDry-Tec(DE),Munters(DE)Pre-LithiationInpre-lithiation,introducinglithiumintotheanodeisintendedtocompensateforlithiumlossesoverthe[299,307]batterylifetime.Thetwoprocessingroutesareelectrochemicalpre-lithiation(anodeispassedthroughanelectrolysisbathwithalithiumsource)andcontactpre-lithiation(lithiumisfirstappliedtoacarrierfoil,e.g.,Impact:byPVD,andthenbroughtintocontactwiththeelectrode).CostsSustainabilityPre-lithiationhasadvantagesbecauseitincreasestheenergydensitythroughfullutilizationofthecathodeQualityThroughputcapacity.TherearealsoimprovementstotheSEIandareductionoftheformationcyclesispossible.Pre-lithiationfaceschallengesduetothenecessityofworkingwithpurelithium(highlyreactiveandcomplexmaterialhandlingforcontactpre-lithiation),thehomogenizationofthelithiation(electrochemicalpre-lithiation),complexproductionmachinery,andmonitoringthedegreeoflithiationandscaling.Outlook:Whilethetechnologyrepresentsanadditionalprocessinelectrodemanufacturing,itcanreduceformationtimeandprovidelongerbatterylife.Althoughthetechnologyisstillattheresearchstage,someindustryplayersaretryingtocommercializeit.IndustrialPlayers:Electrochemical:MusashiEnergySolution(JP),Rena(DE),Nanoscale(US),Mercedes-Benz(DE)Contact:AppliedMaterials(US),Livent(US),LGChem(KR)52IndustryandTechnologyRoadmaps3.2.3.CellProductionCapacitiesThemoststrikingfeatureintoday’sglobalbatterycellmanu-byLocationandOriginoffacturingisthedominanceofAsiancompaniesandthelocali-ManufacturerzationofproductioninChina.Morethanhalfoftheannoun-cedproductioncapacitiesarelocatedinAsia.Nevertheless,byWithinthisdecade,astrongincreaseinhigh-energybattery2030,aroundonequarterofcellproductioncouldbesitedincellproductioncapacitiesisexpectedtotakeplaceworldwide,Europe,andaroundonefifthintheUnitedStates(seeFiguredrivenbythediffusionofelectricmobilityandrenewableener-22).Similarly,halfoftheannouncedcapacitiesarebyChinesegies.Batteryplantshavebeenannouncedbyestablishedandcompanies(withCATLthelargestcellmanufactureraccordingpotentialfuturecellmanufacturerswithproductioncapacitiestotheseannouncements).Furthermore,theannouncementsofmorethan8TWh,whichexceedstheexpecteddemandofKoreancompaniesaresimilartothesumofallthepotentialconsiderably.However,itisunlikelythatthesecapacitieswillEuropeanbatterycellmanufacturers.befullyrealizedandutilizedwithintheannouncedschedules,duetothehigheconomicriskrelatedtothelarge-scaleKoreanandJapanesemanufacturers,inparticular,plantoscaleinvestments.Thisisexpectedtoleadtothefailureofsomeuptheirproductioncapacitiesoutsidetheirhomecountries.projects,delaysandlimitedutilizationduetohighscrapratesChinese,US-AmericanandEuropeancompanies,ontheotheranddowntimes,aswellastechnologicalchallengesduringhand,mostlyplantoestablishfacilitieswithintheirhomeregi-productionramp-up.Despitethis,theanalysisoftheannoun-ons.Itisremarkablethatmorethan80%oftheannouncedcedproductioncapacitiesprovidesextensiveinsightsintotheproductioncapacitiesofEuropeancompanieswillbelocatedemergingglobalbatterycellindustry.inEuropeandnearly10%intheUS,whichisthereforetheFigure22:Planned(announced)globalbatterycellproductioncapacitiesuntil2030.Ontheleftthebarsrepresentlocations,thelinesrepresentcapacitiesatheadquarters.Plannedproductionin2030accordingtoregion,subdividedintocompanyHQandproductionsiteinshownontheright.8,000TWh247,000US-AmericanComp.HQProd.siteAnnouncedproductioncapacity(GWh)6,000European20305,000Comp.HQ4,000Prod.site3,0002,000KoreanComp.HQProd.siteJapaneseComp.HQProd.site1,000Chinese0Comp.HQ2020Prod.site20222024202620282030TWh24CompanyHQin...Productionsitein...CNJPKREURUSROW53IndustryandTechnologyRoadmapscountrywiththelargestcellproductionofEuropeancompa-batteryproduction,areexpectedtohaveahigherlikelihoodniesoutsideEurope.However,thisvalueisstillrelativelysmall,tofailthanthoseofestablishedAsiancompanies,suchasLGindicatingthattheInflationReductionActhasnotyetledtoEnergySolutions,CATL,SamsungSDI,SKOn,andsoon.extensiverelocationplansofEuropeancompanies,asfearedbysomeactors(e.g.,[308]).TheannouncedcellproductioninEuropeisspreadovermanycountriesandmanyplayers.LGESinPoland,SamsungSDIWhilejointventuresbetweenlocalandforeigncompaniesandSKOninHungaryandNorthvoltinSwedencurrentlyhaveonlyplayasmallroleinChinaandEurope,theseseemtobethelargestproductioncapacitiesinEurope,makingtheseadedicatedstrategyoflargeUS-AmericancarmanufacturerscountriesthelargestLIBcellproducers.Until2030,mostofplanningtoenterbatterycellproduction.ThesejointventurestheannouncedproductioncapacitiesforbatterycellsareforcouldmakeupmorethanaquarterofUScellproductionGermany,Hungary,UK,andFrance.Eightdifferentcountriescapacitiesby2030.ExamplesincludeFordandCATL,orGMhaveannouncedplansformorethan100GWh,indicatingtheandLGES.Inthemediumterm,foreigncompanieswilldriveintensiveramp-uptakingplacealloverthecontinent.UntildomesticproductionintheUSandinEurope.Cellproduc-2025,theannouncementsaddupto500GWh,andcapaci-tioninChinaismostlyinthehandsofChinesecompanies.tiesareexpectedtoquadruplebetween2025and2030.TheWhilenon-EuropeancompaniesareexpectedtodominatelargestnumberofcompaniesareactiveinGermany(14),whilecellproductionwithinEuropeuntilaroundthemid-2020s,thisUKandFranceareinsecondjointplacewithsixcompaniesintrendwillbeevenedoutbytheendofthedecade.However,eachcountry.Additionalproductioncapacitiesof175GWhitshouldalsobenotedthattheplansofEuropeancompanies,havebeenannouncedforEuropeingeneralwithoutspecifyingnearlyallofwhichconcerncompletelyneworlarge-scaleaparticularcountry.54IndustryandTechnologyRoadmaps3.2.4.CellProductionCapacitiesduetotheactivitiesoflargeChinesecellmanufacturers,suchbyFormatasCATL,CALBandBYD.Until2030,productioncapacitiesof2.3TWhforpouchcellsand1.5TWhforcylindricalcellshaveAspreviouslymentioned(section3.2.1),differentcellformatsareusedfordifferentrea-sons.Recenttrendsincludelargerbeenannounced(Figure23).ExcludingChinesecompaniesformatsintermsofsizeandenergycapacity(e.g.,theBYDfromthiscalculationresultsinverysimilarproductioncapa-bladecellorTesla’scylindrical4680format),andsomeOEMcities(1.1TWhcylindrical,1.3TWhprismaticand1.4TWhpushingastandardizedformatforalltheirproducts(e.g.,pouchcells).Itwasnotpossibletoallocatearound0.5TWhtoVolkswagen).Therefore,categorizingtheformatsintopouch,anyofthethreemainformatcategoriesduetothelackprismaticandcylindricalcellsisthebestwaytogaininsightsofspecificationinsomeannouncements.onagenerallevel.However,asthisforecastdependsontherealizationoftheTheannouncedproductioncapacitiesdonotindicateanyannouncementsandestimationsmade,itcomeswithsignifi-consolidationofformatssofar.Allformatswillcontinuetobecantuncertainties,asvisualizedintherespectiveFiguresused.However,intermsoftheannouncedproductioncapacity23and24.Itwasassumedthatmostmanufacturerswillstickuntil2030,prismaticcellsdominatewithupto4TWh,equiva-totheiroriginalformatchoiceinfutureplants,ifnocontrarylenttoapprox.halfofglobalcellproduction.Thisismainlyannouncementshavebeenmade.Furthermore,estimationsFigure23:Planned(announced)maximalproductioncapacitiesbycellformatsfortheupcomingdecade.Thepiechartindicatestherelativeshareofformatsin2025and2030.20304,000Announcedproductioncapacity(GWh)Certain3,0002025Expected2,000Potential1,000020222024202620282030Pouch2020PrismaticCylindricalUnknown55IndustryandTechnologyRoadmapsfortheshareofformatsweremadeformanufacturerswhoAsshowninFigure24,prismaticcellsarethedominantformatareknowntoalreadyproducethem(e.g.,insomecases50/50forChinaandEuropeintermsofproductionsiteaswellasthedistributionwasassumed).Amoreindepthdiscussionoftheoriginofthecellmanufacturers.Thepictureismorediverseassessedprobabilityofrealizationisincludedinchapter1.2.forproductioncapacitiesintheUS,whenincludingnon-USmanufacturersaswell,witharoundone-thirdcylindricalandSomecompaniesareknowntopushforonecellformat,whileone-thirdpouch-typecells.Thelargeshareofcylindricalcellsotherstrytodiversifytheirportfolio.Theproductionofprisma-inUScompaniesisexplainedbyUS-AmericanOEMthatoftenticcellscouldbedominatedbytheChinesecompaniesCATLbuildbatterycellplantsasjointventureswithAsiancompanies(potentiallymorethan800GWh),CALB(around600GWh),(TeslaandPanasonic,GMandLGES,FordandCATL).KoreanandBYD(around400GWh).Theproductionofpouch-typecompanies(e.g.,SKOnandLGES)haveastrongfocusoncellscouldbedominatedbySKOn(morethan300GWh),pouchcells,whileJapanesecompanies(e.g.,PanasonicandfollowedbyLGESandAESCEnvision.TeslacouldbecometheAESC)haveannouncedproductioncapacitiesmostlyforpouchlargestmanufacturerofcylindricalcellswithproductioncapa-andcylindricalcells(40%each).Figure24showstherelativecitiesofupto350GWhby2030.LGESisanotherlargeplayershareofproductionofthethreeformatsbycompaniesfromforcylindricalcells.differentcountries/regionsaswellasbyproductionsite.Figure24:Estimatedshareofformatsfortheplannedcellproductionin2030inrespecttotheoriginofcellmanufacturer(left)andproductionsite(right).CompanyHQProductionsite0,61,41,20,54,10,5TWhTWh3,71,52,10,10,10,8100%100%80%80%60%60%40%40%20%20%0%0%CNUSEURKRJPROWCNUSEURKRJPROWPouchPrismaticCylindricalCertainExpectedPotentialUnknown56IndustryandTechnologyRoadmaps3.2.5.PlausibilityofProductionCellproductionwillbestronglydominatedbyafewlargecellImplementationandIndustrymanufacturers.CATLalonehasannouncedmorethan1TWhStructureproductioncapacitiesbytheendofthedecadewithplantsallovertheworld.LGES,CALBandBYDhaveallannoun-Thediscussionsabovearebasedsolelyontheannouncedcedmorethan400GWh,followedby15othercompaniesproductioncapacitiesorinformationgatheredfrommarketthathaveannouncedmorethan100GWhbytheendofthereportsorcomparablesources.Thesenumbersdonotindicatedecade.AsindicatedbyFigure26,thefivecompanieswiththerealisticproductioncapacitiesthatcanbeexpectedwithinthislargestscale-upannouncementsmakeuparoundhalfofthedecade.However,wewanttogivemoredetailedinsightsintogloballyannouncedtotalproductioncapacitiesin2025,whilethequalityoftheseannouncements,whichmighthelptoindi-thetoptencompaniesaccountforaroundtwo-thirds.Evencatethefeasibilityoftherespectiveprojectsbeingrealized.thoughtheirmarketsharemaydecreaseduetotheactivitiesofemergingcellmanufacturers,thetenlargestcellmanufacturersAsshowninFigure25,around8.3TWhoftheannouncedarestillexpectedtoretainhalfofthemarketbytheendproductioncapacitiescanbeclassifiedasexpectedorpotentialofthedecade.–thisvalueformsthebasisfortheanalysisinchapters4.2and4.3.Theannouncementsclassifiedas“expected”until2030Manycarmanufacturersplantogetinvolvedinbatteryaredominatedbyestablishedmanufacturers,whilethoseclas-manufacturingaspartoftheirstrategytoelectrifytheirportfo-sifiedas“potential”haveroughlyequalsharesofestablishedlio.Someintendtoinvestinexistingcellmanufacturers,whileandnewmanufacturers.Inadditiontotheseannouncements,otherswanttosetuptheirownproductionlines.another5.7TWhofcapacityannouncementswereclassifiedas“doubtful”.Figure25:Announcedglobalproductioncapacitiesclassifiedbytheirfeasibilityofrealizationandtheexperienceofthepotentialcellmanufacturer.15,000Announcedproductioncapacities(GWh)12,0009,0006,0003,000020212022202320242025202620272028202920302020doubtfulpotentiallyexpectedestablishednewcellmanufacturer57IndustryandTechnologyRoadmapsCellmanufacturingbyEVOEMcouldaccountforaroundWithinthisdecade,theproductioncapacitiesperproduction18%ofglobalbatteryproductioncapacitiesby2030,whilesitearesettoincrease.By2030,around30%ofglobaljointventuresbetweencarmanufacturersandcellmanufactu-productioncapacitywillbeatplantsproducingmorethanrerscouldmakeup13%.50GWh,andlessthan8%willbeatplantswithcapacitiesoflessthan10GWh,accordingtotheannouncements.Figure26:Shareofplannedglobalcellproductioncapacitiesaccordingtodifferenttypesofmanufacturer,magnitudeandproductioncapacities.CarmanufacturersProductioncapacitiesLargeincellproductionofplantscellmanufacturers20302035EVOEM<10GWhTop5NoEV<50GWhTop10JointVenture>50GWhAll58IndustryandTechnologyRoadmaps3.3.BatteryPacksandSystemsBatterypackperformanceisinfluencedbyvariousdesignaspects.assemblingthemfirstintoindividualmodules.ACell2PackItisnecessarytooptimizethedesignandconfigurationoftheconceptthereforeavoidsthe(passive)componentsatmodulebatterypackinordertoachievethebestpossiblecellperfor-levelandmakesoptimaluseoftheavailableinstallationspace.manceatsystemlevel.Intermsofbatterydesign,Cell2PackandAprominentapplicationexampleistheBladeLFPcellbyBYD,Cell2Chassisconcepts,forexample,aregainingtheattentionwhichenteredthemarketin2020.TheBladebatteryconsistsofdifferentOEMs.Batteryswappingsolutionshavealsobeenofseveralindividualcellswithalengthofupto96cm.BYDrecentlyreintroduced.Withregardtocoolingthebatterysystem,isusingtheconceptintheirHanmodelsandothers.Otherimmersioncoolingisseenasanalternativetoindirectcooling.examplesincludeCATL'sQilinbattery,whichwasannouncedAnothermajortrendconcernstheconnectivityanddigitalizationin2022[309],andSVOLT'sDragonArmorbattery[310].Theofthebatterysystem,withdigitaltwinsofthebatterysystemspecificenergyoftheQilinbatteryatpacklevelisclaimedtoconsideredparticularlyimportant.Ofcoursetherearenumerousbe255Wh/kgforNMCcellsand160Wh/kgforLFPcells.Theotherpossibilitiesforimprovement,butthosementionedaboveDragonArmorbatterywasannouncedtoachieveadrivingareexplainedinmoredetailbelow.rangeofbetween800kilometers(LFP)andover1,000kilo-meters(NMC).C2PconceptsarealsopossiblewithothercellStructuralBattery–CelltoPack(C2P)formatssuchasthehardcasecylindricalcellsusedintheC2PbatterypacksofTesla’sModelY.ManyOEMincludingBMW,ACell2PacksystemutilizesthecellsasstructuralelementsMercedes,Volkswagenandothershaveannouncedtheirinten-byinstallingthemdirectlyintothebatterypackwithouttiontouseC2Pconceptsinfuturemodels[311-313].Figure27:Illustrationofbatterysystemcomponents.EnergysupplyBatterymanagementsystemThermalmanagementSystemarchitectureBatterydesign59IndustryandTechnologyRoadmapsStructuralbattery–CelltoChassis(C2C)SwappablebatteryTheC2CdesignrepresentsafurtherevolutionoftheC2PIncontrasttocharginganelectricvehiclebypluggingitintodesign,inwhichbatterycellsareintegrateddirectlyintotheapowersource,batteryswappingremovetheemptybatteryvehiclechassis.Thisallowstheinstallationspacetobeusedfromthevehicleandreplacesitwithanalreadychargedbat-evenmoreefficiently.Thebatteryexplicitlyservesasastruc-teryfullyautomatically.Theadvantageofthissolutionistheturalsupportforthechassis,whichmeansthattheoveralleliminationofchargingtime,althoughswappingthebatteryweightofthevehiclecanbereducedatthesamebatteryca-alsotakesseveralminutes[325].Inaddition,usingexchange-pacitythusalsosavingcosts.Anotheradvantageisthelowerablebatteriespermitsdifferentbusinessmodelsforcarsales,interiorfloor,whichpermitsmoreefficientuseofthevehicle'sasthebatterycanbeconsideredarentalgoodwhichreducesinteriorspace[314].Volumeutilizationcanbeincreasedbythepurchasingcostsofanelectricvehicle.Inadditiontotheabout50%comparedtoconventionalmodule-baseddesigns.directuseofthebatteryasatractionbattery,thereisalsoanC2Cconceptscanalsoachievecostsavingsofaround35%additionalbusinessmodelfortheexchangestationoperator,comparedtoconventionalmodule-basedbatteries[315].wherethebatteriescanalsobeusedforgridregulation,forexample.Inaddition,batteryswappingmeansitiseasyHowever,duetoitsmoreexposedposition,thebatterymusttochangethesizeofbatteryinthevehicleandappropriatelybeprotectedfromexternalimpactsorcorrosion.Inaddition,sized,application-dependentbatteriescanberented.integrateddesignscanmakeitmoredifficulttorecycleorreplaceabattery.Thismustbeaddressedbythecorrespon-Sinceswappablebatteriesarenotstandardizedintermsofdingchassisdesign[316].InadditiontoC2C,therearealreadyinteroperabilitybetweendifferentOEMs,theexchangestationsapproachesthatgoevenfurther.Thecompany24Mannoun-areusuallybrand-specificandnotavailabletoothermanufac-cedanelectrode-to-packsystemattheJapanMobilityShowturers.Theinfrastructureavailablesofarhasbeenbuiltmainlyin2023.SuchanapproachwouldfurtheroptimizetheuseofinChina,whereindividualOEMsplayaleadingrole.passivematerialsandthusenergydensityaswellascosts[317].Figure28:IndustryannouncementsonthemanufactureandimplementationofC2Pconcepts[309,310,318-324].Theillustrationisnotexhaustive.20232024202520262027...20307159268341SVoltDragonArmorAnnouncementFirstApplicationMass-marketing2BYDBlade,CATLc2p(2.0)BYD,Tesla,Hyundai,...3CATLQilin(3.0),Zeekr4Tesla46805FordMachE6Aito7Mercedes(BYD)8BMWsGen6Batteries9Stellantis60IndustryandTechnologyRoadmapsThebatteryswappingideaisnotanewone.Asearlyas2013,announcedmorethan20,000swapstationsforBEVsby2025,theIsraelicompanyBetterPlacewantedtosetupanation-mainlyfocusedonChinesecities[328].wideinfrastructureforbatteryexchangeincooperationwithRenault-Nissan.Adecadeago,Teslawasworkingonbatte-Coolingconceptsryswappinginordertomakethechargingtimeofitscarscomparabletorefuelingatafillingstation[326].Sincethen,Coolingisnecessarytokeepthebatterycellswithinanoptimalhowever,TeslanowreliesprimarilyonitsSuperchargernet-thermalwindow.Typically,threedifferenttypesofcoolingmet-work.InAsia,especiallyinChina,batteryswappinghasbeenhodsareused:(1)aircooling,(2)indirectcoolingand(3)immer-offeredbyseveralmanufacturersforsomeyearsnow.Thesioncooling.Aircoolingdissipatesheatviaanairflow,butthisChinesecompanyNiohasadoptedthisconceptandcurrentlymethodhasalowcoolingcapacityandisthereforenotreallyoperatesaroundseven"PowerSwapStations"inGermanysuitableforautomotiveapplications[329],eventhoughitwasandaround27acrossEurope.Worldwide,NiohasmorethanusedinanolderversionoftheNissanLeaf,forexample[330].2,000swapstations,thevastmajorityofwhicharelocatedinChina(approx.1,975stations)[327].Nio’scurrentswapToday'svehiclemodelspredominantlyuseindirectcoolingstationscanstore21batteries(atpresentonlysuitableforNiosystemsbasedonawater-glycolmixture.Here,thereisnoEVs)andthecompanyclaimsswapsareperformedinabout3directcontactbetweencoolantandbatterycells,andheatisminutes[327].Itisworthmentioningthatthestandardizationtransferredindirectlyviacoolingplates.Comparedtoaircooling,ofbatteriesinChinawaspropelledbyNioandGeely,whoindirectcoolingismoreefficient,butassociatedwithhighernowofferthefirstcross-manufacturerbatteryswapsinChina.complexityandcosts.Nioisnottheonlymanufactureractiveinthisfield.Contem-poraryAmperexEnergyServiceTechnologyLtd.(CAES),aDirectcoolingorliquidimmersioncoolingisevenmoreefficient.subsidiaryofCATL,alsolaunchedthebattery-swappingbrandAsthenamesuggests,batterycellsarecooledindirectcontactEVOGOin2022,andiscurrentlysettingupabattery-swap-withthecoolant.ThiscoolsbetterthanindirectorevenairpinginfrastructureinChina.SeveralChinesecompanieshaveFigure29:Illustrationofcoolingconceptsforbatterypacks[338].AircoolingAirflowImmersioncoolingCellsImmersionfluidCellsInletInOutletOutPhaseChangeMaterials(PCMs)IndirectliquidcoolingPhaseChangematerial(PCM)CellsCoolantoutCoolantinCellsCoolant,outCoolantpipe61IndustryandTechnologyRoadmapscooling[331].Inaddition,thiscoolingvariantislesscomplexhighlatentheat,PCMscanabsorbtheenormousamountsofthanindirectcooling,whichisalsoreflectedinthereducedtotalheatandthusreduceboththemaximumtemperatureandtheweightforcooling[331].Eventhoughthecoolantisindirecttemperaturedifferenceinthebatterypack.PCMsundergoacontactwiththecells,fireprotectioncanbeensuredbymixinginphasechangefromsolidtoliquidwhenheated.OrganicPCMsappropriateflame-retardantadditives.Theriskofshortcircuiting(e.g.,paraffin)orinorganicPCMs(e.g.,hydratedsalts)canbeisevenlowerhereduetotheuseofdielectricmaterials.Despiteused.PCMsarerelativelyinexpensiveand,duetotheirpassivetheseadvantages,directcoolingstillfacescertainchallenges.Formodeofoperation,relativelyenergy-efficient.However,sinceexample,selectinganelectricallynon-conductivebasefluidandheatisnormallyonlystoredandnotdissipated,itisimportanttoheat-resistantadditivesishardtodoandimpuritiescanbeformedavoidexhaustingthisstoragecapacityathigherambienttempe-inthefluidduringoperation[329].raturesorchargingrates.CombiningthiswithanactivecoolingOneapplicationexampleforthistechnologyisXingMobility'ssystemisanoption.Unfortunately,theactivecoolingsystemImmersionCTP,announcedinAugust2023[332].TheBYD'scounteractstheadvantagesofPCMs.Forthisreason,PCMsareSealwillalsohavedirectcooling[333].OthermanufacturershavestillthesubjectofresearchandnotyetusedinEVs[336,337].alsouppedtheireffortsinthisarea.In2020,KreiselElectricandShellannouncedabatterysolutionthatcombinesKreisel'sLi-ion800VbatterysystemsmoduletechnologywithShell'sthermalmanagementfluid[334].Thetwocompaniesclaimthattheirsolutionincreasesefficiency,In2019,PorschelauncheditsTaycan.Thiswasthefirstseriesenablesfastchargingandoffersimprovementsinsafetyandvehiclebasedon800Vtechnology,eventhoughmostelectricstability.In2021,automotivesupplierMahledevelopedanovelvehiclesonthemarkettodayarestillequippedwitha400Vbatterycoolingsystemthatusesimmersioncoolingasakeytech-system[339].Switchingfroma400Vsystemtoan800Vnologytoenablefasterchargingofelectriccars[335].systemoffersseveralad-vantages,e.g.,doublingthepoweratthesamecurrentor,conversely,halvingthecurrentatTheuseofphasechangematerials(PCMs)isapassivecoolingthesamepower.Thiscandirectlyincreaseperformance.alternativeforthermalmanagement.TakingadvantageoftheFigure30:Industryannouncementsontheuseof800Vsystems[343-350].Theillustrationisnotexhaustive.20232024202520262027...20302913647581AudiE-TronGT,PorscheTaycan,GACAionV,BYDOcean,XPengG9,KiaEV6...2LiAutoLiMEGA,GACAionHyperHT,Zeekr0013LucidMotorsAir4HyundaiIoniq55LotusType132(UK)6LeapmotorC107LucidMotorsGravity,ChevroletSilverado,GMC8KiaEV9HummerSUV,SierraEV,TeslaCybertruck9BMW"NeueKlasse"FirstapplicationMass-marketing62IndustryandTechnologyRoadmapsTheresistancelossesinthecables,whichscalewiththeDatafromthebatterycouldthenbestoredinacloudBMS,currentsquared,areminimized.Inadditiontoincreasingtheandanalyzedviacloudcomputing,e.g.,usingmachinelear-efficiencyofthebatterysystem,thisalsomeansthatexternalning.Theuseofacloud-basedBMSreducestheburdenoncoolingcansometimesbeavoidedduringcharging.OneofthetheonboardBMS.Adigitaltwinofthebattery,whichisthegreatestadvantagesofthe800Vsystemisparticularlyevidentdigitalimageofthephysicalbattery,alsoplaysanimportantduringcharging.Whilea400Vsystem,forexample,isonlyrole.ThecombinationofcloudcomputingandtheInternetofabletochargeat200kW,asimilar800VarchitectureallowsaThings(IoT)makesitpossibletodeterminetheSoCandSoHtheoreticalchargingpowerof400kW.Thismeans,intheory,ofthebatteryandtocontroltheminthemosteffectiveway.thatchargingtimecanbehalved.Usingmachinelearning,thedatastoredinthecloudcanbeanalyzedandthesystemcanbeoptimizedtoincreasebatte-Itsnoveltyandtheassociatedlackofstandardizationaredraw-rylife.Thewirelesslinkingofslaveandmasteralsomakesitbacksassociatedwiththe800Vconcept.The400Vsystempossibletoreducecomponentcostsandthesystem'sphysicalrepresentstheinternationalstandardandchargingstationsetc.susceptibilitytoerrors.Furthermore,thedigitaltwinoffersarepredominantlyequippedforthistechnology.Additionally,thepossibilityofdocumentingandtransparentlydisplayingthehighervoltageplacesadditionaldemandsonsafety.Fortherelevantvehicledataoverthevehicle'sservicelife.Thisisexample,componentssuchasswitches,fusesorcablesmightimportant,forexample,ifthevehicleisresold.WiththeBatte-havetobereplacedbycomponentswithahighervoltageryRegulationandtheplannedintroductionofaDigitalProductresistance,andadditionalsafetyelementsmighthavetoPassport(DPP),thispossibilitytodocumentandtransparentlybeadded.displaybatterypropertieswillbehighlyrelevantandissettoplayanimportantroleintheintroductionofacircularecono-Despitethesedrawbacks,manyothermanufacturerssuchmyforbatteries[351-354].asAudi,BYDorKIAhavealreadylaunchedtheirown800Vmodelsorhaveannouncedtheirintentiontodoso(e.g.,HybridbatterypacksVW,BMW)[340-342].Thecurrentandannouncedvehiclesaremainlyhigh-performanceandinuppermiddle-classorTheperformancerequirementsforelectricvehiclescanbeveryluxurysegments.diverseandsometimescontradictoryintermsofthedemandsonthecells.AmixtureofcellscanbeusedtofulfiltheSmartBatteryManagementSystemsrequirementsofanapplication.Thebest-knownexampleofthisisthecombinationofhigh-energyandhigh-performanceThetaskoftheBatteryManagementSystem(BMS)istocells.Theapplicationcanthenbenefitfromtheadvantagesofcontrolandprotectthebattery.TheBMSmonitorschargebothcelltypes,althoughcompromiseshavetobemade,forstatus(SoC),batteryhealth(SoH)andoptimizesbatteryexampleintermsofabsolutepowerorenergycapacity[355].performance.TheBMSusuallyconsistsofaBMSslave,CombiningNMCcellswithLTOcellsenableshightotalenergywhichisresponsibleforsignalreceptionandfiltering,andaand,atthesametime,theLTOcellsenablehighchargingratesBMSmaster,whichdiagnosesthebattery.Theseareconnec-andincreasethelifetimeofthehigh-energycellsbyrelievingtedtoeachother.CurrenttrendsinBMSincludemakingthemfrompowerpeaks.ThecombinationofLFPandNMCisthesystemmoreintelligentandadvancingitsdigitalization.avariantthatcombinesthehighsafetyandservicelifeoftheAmajorsteptowardmakingtheBMSmoreintelligentistomorecost-effectiveLFPcellswiththesuperiorperformanceoflinkitdirectlytothepowerelectronics.TraditionalbatterytheNMCcells.In2021,themanufacturerNioannouncedthemanagementsystemsareseparatefromthepowerelectronics.introductionofsuchamixedbatteryincombinationwiththeirBMScontrolsthepowerconverter,whilethepowerelectronicsC2Parchitecture[356].CATLalsopresentedacombinationisresponsibleforcharging,dischargingandmotorcontrol.oflithium-ionandsodium-ioncellsinaratioof2:1andinaWiththedevelopmentofbroad-bandsemiconductors,futurecertainarrangementthroughseriesand/orparallelintegration.powerelectronicscouldbeusedforbatterymanagementInadditiontolowercosts,thisresultsinfurtheradvantageswithoutaseparateBMS.Whencombinedwithcloudcompu-intermsofthebattery'slowtemperaturebehavior,increasedtingtechnology,intelligentpowerelectronicscouldalsooffersafetywithregardtothermalrunawayandreducedcoolingthediagnosticsupport[351,352].requirements[357].AlthoughthesehybridconceptsincreasethedemandsontheBMSandpowerelectronics,theyalsoallowahighdegreeofflexibilitywhenadaptingbatterysystemstospecificapplicationrequirements.63IndustryandTechnologyRoadmaps3.4.BatteryRecyclingBatteryrecyclingattheendofabattery'slifecyclespecificallyIndustrialoperationsthatutilizethehydrometallurgicalasaincludestherecoveryofbatterycomponentsandmaterials.coreprocessincludeBASF[365],SungEelHiTech[366],ACEVariousdifferentrecyclingprocessesexistthatcanbecate-GreenRecycling[367],Neometals[368]orNorthvolt[369].gorizedintothreegroups:pyrometallurgicalrecycling,hydro-OtherindustrialoperationsareforexampleDuesenfeld[370],metallurgicalrecyclingandmechanicalrecycling.ProcessesTES[371],Mercedes-Benz[372]orVolkswagen[373].fromthesegroupsaretypicallycombinedinordertoachievethemostefficientmaterialrecoveryintermsofquantityandBoththeveryhightemperaturesrequiredforpyrometallurgyquality.Thefirststepsbeforetheactualrecyclingprocessesareandthewastewatertreat-mentofthehydrometallurgicalpro-thetesting,discharging,sortinganddisassemblyoftheEoLcessarecriticalintermsofsustainability.Newprocesses,suchbatterypacksintomodulesandcells.Afterthis,manyprocessasmechanochemical[374]orfrothflotation[375],areunderroutesstartwithmechanicalprocessingsteps,e.g.shreddinginvestigationtoimprovematerialseparationandrecoveryratesandmechanicalsortinginordertoobtaintheblackmass.whilereducingtheenvironmentalimpact.TherecyclingoftheSomecomponentssuchashousingscanbeextractedinthisgraphiteanodehasalsobeeninvestigatedrecently[376-378].step.Theblackmassisthenrecycledviahydro-orpyrome-Althoughitisstilloflesseconomicinterest,itmightbeofstra-tallurgicalprocessestorecoverthevaluablebatterymaterials.tegicinterestsinceitisacriticalrawmaterialwhichishighlyDifferentrecyclingroutesarepossible,manyofwhicharedependentontheChinesesupplychain[379].Therecycledcurrentlybeingdevelopedorarealreadyatpilotorindustrialgraphitecanbereusedinbatteries,butalsoinotherareasscale[7,358].suchasinsupercapacitorsorforcatalysis[380].OnemainareaoffocusintheindustryistheautomationoftheMaterialrecoveryisnotonlyimportantatthebatteryEoLbutsortinganddismantlingprocess,whichcansignificantlyincrea-alsoduringcellproduction.Inthiscontextandinadditionsethespeedofpre-treatmentandthusreducethecostsofthetotherathercomplex,costlyandenvironmentallyharmfulupstreamrecyclingprocess.Oneofthebiggestchallengesfor(established)processes,researchisalsobeingcarriedoutintothedisassemblyitselfisthewidevarietyofLIBs,orpacks,cellthedirectrecyclingofproductionwasteforimmediatereuseformatsandchemistries.Becauseofthisdiversity,semi-auto-oftheactivematerialsfornewelectrodes.Inthisapproach,maticdisassemblyisprovingtobeagoodoptionforthetimethedefectiveelectrodeiscrushedandthecathodeoranodebeing[359].Inthelongerterm,recycling-friendlydesigncouldmaterialisseparatedfromtheelectrode,wherebythesepara-contributetotheintroductionofmoreautomateddissassemb-tedblackmasscanbereturnedtotheelectrodeproduction.lyprocesses[360].Directrecyclingisstillintheresearchphaseandrepresentsarelativelynewtechnique(thereissomefirstindustrialactivity,Inthepyrometallurgicalprocess[7],batterycellsormodulese.g.byPNE[381])butithasthepotentialtooptimizematerialareheatedinaseriesoftemperaturerangesdirectlyaftertheutilizationintheproductionandreduceenvironmentalimpactdismantelingprocessoflargerbatterypacks,forexample,intermsofproductionwastehandlingandcirculareconomyinordertofirstutilizetheorganiccomponentsenergeticallydiscussions[382].Inadditiontothedirectrecyclingofmanu-andthen,dependingonthetemperaturestage,reducethefacturingscrap,thereisalsodiscussionofitspotentialformetalcompounds.Theresultingliquidmetalalloyconsistsofrecyclingtractionbatteries.Co,Ni,Cu,Fe,withLi,MnandAlendingupinformofoxidecompoundsintheslag.BoththeseparationofthemetalsfromTheapproachesofreusing(i.e.analreadyusedtractionbatterythealloyandtherecoveryoflithiumfromtheslagareusual-isusedin(another)mobileapplicationwithlessdemandinglycarriedoutbyhydrometallurgypost-treatment.Industrialrequirements),repurposing(i.e.asecondlifeESSbuiltwithoperationsthatutilisepyrometallurgyasacoreprocessincludeusedtractionbatteries)orremanufacturing(refurbishingandUmicore[361]NickelhütteAue[362],NipponRecycleCenterrestoringthebatteryforanextendedlifetime)arealsobeingCorp[363]orGlencore[364].discussedascrucialforamoresustainablebatterylifecycle.Forexample,second-liferesultsincostandenvironmentalbenefitsThehydrometallurgicalprocess[7]uses(acid-based)dissolutionbyextendingthebatteries'lifetime[383,384].Inparticular,andprecipitation,filtrationorsolventextractionprocessestousedbatteriesfromelectricvehicleswithasufficientcapacityseparateandrecoverthemetals.Thisprocesscanalsobeusedoftypically70-80%SoHmightserveinasecondlifeinalesswithoutpyrometallurgicalpretreatment.Inthiscase,themetaldemandingstationaryapplicationandthuscovertheincreasingcompoundsintheblackmassfromthemechanicalpretreat-demandforstationarybatterystorage.Becauseofthehighmentarechemicallydissolved,andhigh-purityrawmaterialspotentialofsecondlife,severalmajorautomotiveOEMshavearerecoveredbytheabove-mentionedextractionprocesses.startedtoinvestigatesecond-lifeapplicationsforusedelectric64IndustryandTechnologyRoadmapsvehiclebatteries[385-387].However,second-lifeapplicationsperspective,sothatintialmarketactivityhasstartedtostillfacechallengesbeforebecomingwidelyadopted.Theseemerge.Inaddition,theLIBsusedtodaycontainnumerouschallengesrelatetoaspectssuchastheadditionalprocessesvaluableand,insomecases,criticalmaterialsthatmakerequired,amismatchoffirstandsecondliferequirements,recyclingparticularlyattractivefromaneconomicperspective.batteryhealthandadvancedbatterydiagnostics,missingopenTheseincludecobalt,nickel,lithium,copperandaluminum.standardsfortheexchangeofdesignandstatusinformation,Intermsofquantity,aluminum,nickelandcoppermakeuporwarrantiesandliabilityissues[384].thelargestshare.Intermsofvalue,cobaltandlithiumarethemostimportant.CapacitydevelopmentsRecyclingsitescanbeclassifiedaccordingtorecyclingdepthintoso-calledspokesandhubs.Spokesarecapableofper-Whilecurrentlyreycyclingactivitycentersaroundusedbatte-formingthefirststepsofthebatteryrecyclingprocesstotheriesfromconsumerelectronicapplications(i.e.,mobilephones,so-calledblackmass,containingthecathodeandanodeactivelaptops)andscrapfromcellproduction,end-of-lifebatteriesmaterials(whichin-cludemostofthevaluablemetals).Hubsfromelectricvehiclesareexpectedtorepresentthehighestcanperformthesecondstepofbatteryrecycling:Theblacksharefrom2035onwards[7].Duetothehighdemandforbat-massisrefinedusingthe(electro-)chemical,hydrometallurgi-teriesandthesmallnumberofreturningbatteries,recyclatescalorpyrometallurgicalprocessesmentionedabove,allowingwillonlybeabletoprovideasmallproportionofthebatteryvaluablesubstancessuchascobalt,nickelandlithiumtomaterialsrequiredinthemediumterm.Yet,inthelongtermberecovered.theycanreducethedependenceonbatteryrawmaterialstoasignificantextent[7].Figure31showsthegloballyannouncedLIBrecyclingcapacityforhubs,spokes,fullyintegratedrecyclingplants(hub+spoke)Togetherwiththeincreasingquantitiesreturned,thisincrea-andforsitesthatcannotbeclassified.Cumulativeglobalsestheattractivenessofrecyclingalsofromaneconomicbatteryrecyclingannouncementsfor2030indicateacapacityFigure31:Plannedcumulativeglobalrecyclingcapacitiesinkilotonsperyearaccordingtofacilitytypeandplanned(announced)constructiondate.5,0004,000Spokedisassembly,pre-treatment,Capacity(kilotons)3,000mechanicalprocessing2,000Hubmetallurgicalrefinement1,000materialrecovery02024202620282030nodateHub+Spoke2022pre-treatment+mechanicalandmetall-urgicalprocessingmergedinonesitenotclassifiednodataaboutprocessingstepsoroutputofthesiteHubSpokeHub+Spokenotclassified65IndustryandTechnologyRoadmapsofapprox.4,000kilotonsperyearofprocessingcapacityforinGermanyisapprox.100kilotonsperyearin2023[389].materialrecoveryandapprox.400kilotonsperyearifonlytheAnnouncementsindicateadditionalcapacityofapprox.pre-treatmentprocessesandblackmassproductionareconsi-kiltonsperyear(hubs)and130kilotonsperyear(spokes)bydered.From2024,Chinaisexpectedtodominatetheramp-up2030.Inthecomingyears,however,countriessuchasSpain,ofhubcapacities,whereasEuropeanindustrialactivitiesinpar-andtheUKaswellasEasternEuropeancountriessuchasticularwilldominatetheramp-upofspokecapacitiesinrelativeRomania,PolandandHungarywillalsoincreasetheircapacitiesterms.Notethatbasedonthesedata,aforecastofbatteryandthusdiversifytheprojectsituationinEurope.recyclingprocessingcapacitiesupto2030isonlypossibletoalimitedextent:Thein-andoutputsoftherecyclingfacitilitesThehighestcapacityannouncementscomefromtheChineseareoftennotexactlyclearanddataavailabilityislimited,espe-companyBrunp,asubsidiaryofCATL.AnotherChinesecom-ciallywhereAsiaisconcerned.Hence,itcanbeassumedthatpany,GEM,hasalreadybuiltsubstantialbatteryrecyclingcapa-collection,sortingandmechanicalpre-treatment,especiallycities.Othercompanieswithannouncementsoflargecapaci-intheso-calledspokes,isratherinformal[388]andthereforetiesareCamel(China),Gotion(China),Gravita(India),SungEeldifficulttoidentify.WhereasinEurope,theexistingcapacityHiTech(SouthKorea),Li-Cycle(US),RedwoodMate-rials(US),andannouncementsarebasedonaverylargenumberofGuanghuaSci-Tech(China),Eramet(France).Eachofthesecompaniesandstart-upsinbatteryrecycling,inAsiatherearecompaniesisexpectedtohaveacapacitysharelowerthannumerousannouncementsregardingsignificantcapacitiesby15%in2030.TheEuropeancompanieswiththebig-gestlargeandestablishedcompanies.capacityannouncementsby2030areUmicore(Belgium),Eramet(France),InoBatAuto(Slovakia),AvestaBatteryandGlobally,approx.89%(59%inEurope)oftheannouncedEnergyEngineering(Belgium),AltilliumMetals(UnitedKing-recyclingcapacitycanbecategorizedashubs,7%(35%indom),Librec(Switzerland),BASF(Germany)andNorthvoltEurope)asspokes,and4%(13%inEurope)oftheannoun-(Sweden).cedsitescouldnotbecategorized,i.e.,itisunclearwhethertheannouncementsrefertohuborspokecapacity.TogetherSitesareoftenplannedincloseproximitytobatterymaterialwiththegenerallylowavailabilityofdata(e.g.,constructionproducers,batterycellmanufacturersorautomotivemanufac-yearsorcapacitiesfortheannouncedsites),andahighshareturers.Duringtheramp-upphaseofcellproduction,butalsoofunclassifiedsites(ofwhichapprox.25%ofthecapacityisduringongoingoperations,relevantquantitiesofproductionlocatedinChina)thisresultsinahighdegreeofuncertaintyscraphavetoberecycled.Forexample,thehighdensityofregardingoverallrecyclingcapacity.recyclingfacilitiesintheeasternregionofGermanycan,forexample,beexplainedbythebatterycellproductionfacili-Currently,andpresumablyinthefuture,mostofthecapacitytiesofTeslaandCATL.SungEelHighTech,forexample,hasislocatedinChina,butsubstantialcapacitieshavealsobeeninstalleditsnewrecyclingplantforproductionscrapnotfarannouncedforEurope,amountingtomorethan400kilotonsfromtheLGEScellmanufacturingfacilityWroclawinPoland.peryear(spokesandunclassifiedsites)and470kilotonsperHence,marketdynamicsforrecyclingintheEuropeanregionyear(hubs)by2030.Theparticularlyhighnumberofrecyc-aredriven,amongotherthings,bytheestablishmentoflingsitesinGermanyisstriking.Theexistingcurrentcapacitybatterycellproductionsites.664.ImplementationOutlook67ImplementationOutlook4.1.TechnologyRoadmapsManyproductandmanufacturinginnovationshavethepoten-applications.Asanexample,thereisatrade-offbetweentialtoimproveLIB.Thespecifictypeofimprovementdependsincreasingtheenergydensityandimplementingpassivesafetylargelyontheapplication’sortargetsystem’srequirements.componentsinthebattery(cell)design.Here,wechosethreeobjectivesfortheimplementationofnew4.1.1.Performance-OptimizedLIBtechnologies:(1)tooptimizetheperformanceofLIBs,e.g.,intermsofenergydensityandfastchargingcapability;(2)toHighperformanceinLIBoftenmeanshighenergydensityandoptimizethecostofLIBs;and(3)tominimizetheenvironmen-fastcharging.However,inmanycasesthesetwoparameterstalfootprintofLIBs.Whilethesethreeobjectivessounddesi-conflict.Thereareopposingdesignsofmaterials,electrodes,rableoverall,theindividualKPIsofaLIBoftenhaveconflictingcellsandsystemsforhighenergyandforhighpower/fastobjectives,makingitimpossibletooptimizeallthecharacteris-charging(seesection3.2.1),sinceenergyincreasesinpropor-ticsatthesametime.Forexample,thereiscross-talkbetweentiontothevolumeofactivematerials,whilepowerincreasesincomponents:newactivematerialsrequireadjustmentstoproportiontotheirsurfacearea.theelectrolytes;inaddition,changesinbatterydesignaffectseverallevelsofthebatteryhierarchy:newactivematerialsHighenergyLIBcanbestbeachievedusingSi-dominatedaffectthewaycellscanbebuiltandrequireadjustmentstoanodesandhighcapacitycathodes,namelyhigh-NiCAM.Athesystem-levelBMS.Alltheseinteractionsmustbetakenintofurtherincreaseinenergy,independentoftheactivematerialsaccountwhenoptimizingLIB.used,canbeachievedbyincreasingelectrodethicknessanddecreasingelectrodeporosity.ThedownsideofthisapproachThetargetsystemofLIBisverycomplexandcannotbesum-isthechallengesassociatedwiththestabilityofbothanodemarizedusingonlythethreechosenparameters:performance,andcathode,whichaffectsbothcyclestabilityandsafety.costandenvironmentalfootprint.Inthefollowing,weassumePossiblesolutionsaretheuseofstabilizingblends(CAM)andthattheothernon-mentionedparameters,suchassafety,life-advancedSi-compatiblebindersandelectrolytes.time,temperaturestability,manufacturabilityandothers,canbemaintainedatleastatthelevelrequiredfortherespectiveFigure32:TechnologicalapproachesandimplementationperspectivefortheperformanceoptimizationofLIB.StatusQuoMid-term2030HighestenergyHigh-NiUltra-high-NiThick&low-Si-basedReq:300Wh/kgGraphite/C2PporosityelectrodesC2CSiOxFastchargingtablessdesignThinCCandSepReq:2C-4CSide/tabcoolingBatteryswapping<400VImmersionOptimizedcoolingBMS800VMateriallevelPacklevelCelllevelManufacturinglevelRecyclinglevel68ImplementationOutlookIftheannouncementsofthemajorcellmanufacturersareAcompletelydifferentsolutionisofferedbybatteryswapanythingtogoby,ultra-highNiCAMcanbetakenforgran-conceptsthatcouldachieveveryshortrefuelingtimesforEVsted.Cellswithmorethan90%Niandwellover200mAh/gwithoutfast-chargingcapability.Sofar,thisoptionisonlyatmateriallevelwillsoonbeonthemarket.ThesituationwithwidelyusedinChina.Si-dominatedAAMismorecautious.Mostoftheannoun-cementsaboutproductionandusearenotcomingfromtheManufacturingprocessesandrecyclingapproachesarenotlargecellmanufacturers,butfromsmallerplayersandstart-explicitlyconsideredintheconceptsaimingtooptimizeLIBups.ThecommercializationofSi-AAMwithcapacitiesaboveperformance.Infact,thebestperformancecanoftenbe1,000mAh/gonalargescalecouldtakeuntilafter2025.achievedbyusingestablishedmanufacturingmethodssuchasNMP-basedcoatingwithPVDF-basedbindersforthecathodeThearrangementofthecellsinthebatterypackalsohasaandsolvent-basedprocesseswithspecializedbindersforthemajorimpactontherealenergydensityattheapplicationanode.Recyclingdesignisalsooftennotconsistentwithachie-level.TheabsenceofmodulesinC2Pconceptscansignificant-vingmaximumperformanceandismademoredifficultbythelyincreaseenergydensity.However,becauseoftheomitteduseofmaterialblends.level,safetymustbeestablishedatthecellandpacklevel.Thiscanbechallenging,particularlyforhigh-energymate-4.1.2.Cost-OptimizedLIBrials.Batteryanalytics,usingdatafromtheBMSinpredictivediagnosticsforageingprediction,performancemonitoringorMaterialandcomponentcostscontinuetorepresentthefailureprevention,isonewaytopreventthermalrunaway.TolargestproportionofLIBcosts.Toreducerawmaterialcosts,thisend,themonitoringofvoltage,currentandtemperatureistheindustryisfocusingonNi-freeandCo-freeLFP.Lithiumcrucialanddifferfortherangeofcellformatsandchemistries.remainsthemaincostdriverinthissystem,butsignificantlylowermaterialcostsarepossiblecomparedtoNMC-basedIndustryroadmapsarehoweverclearonthepointofdirectcellcathodes.Atthecelllevel,however,theadvantageofLFPintegration.Withtheexceptionofsomesportandpremiumcathodesisoffsetbytheirlowerenergydensity.Forthesamesegments,theannouncementsofalmostallmajorOEMsindi-storagecapacity,LFPcellsrequiremoreanodematerial,currentcatethatfuturebatteryconceptswillallowdirectC2P,evenforcollector,separator,electrolyte,andotherpassivecomponentscellswithhigh-energymaterialssuchasNi-richCAM.thanNMCcells.AlthoughthelowercellvoltageofLFPmeansthatfewerexpensiveadditivesneedtobeusedinelectrolytes,Inelectrodeandcelldesign,higherfast-chargingrequirementscostoptimizationstillrequiresfurtherreductionsinpassivemightmeanthatelectrodelayerthicknessesarenotincreasedcomponents,suchasreducingthethicknessofthecurrentanyfurtherandporositiesandcurrentcollectorthicknessescollectorandseparator.arenotreducedanyfurther.Thisadditionalleverforincreasingenergydensitywouldthereforeremainunused.Insomecases,Asecondlevertooptimizecoststhatisincreasinglybeingusedhowever,increasingenergydensityandimprovingfastchar-isthetransitiontolargercellvolumes.Costsavingscanbegingcapabilitygohandinhand,orareatleastnotmutuallyachievedincellmanufacturingandsystem-levelintegration.exclusive.SiasanAAMisoneexample,asthealloyingkineticsThisiswherethecharacteristicsoflow-costLFPgohandinwithLiappeartobesignificantlyfasterthantheintercalationhandwiththeabilitytobeintegrated.C2PapproachesarekineticsofLiingraphite.Thishigh-energymaterialwouldbasedonensuringahighlevelofsafetyatthecelllevel,sothethereforealsoincreasepowerdensity.OtherapproachestomajorityofC2Ppackagesinusetodayactuallyuseprismaticfastchargingaffectthehigherlevelsofcellandsystemdesign.LFPcells,whichcanalsobeclassifiedascomparativelysafe.The"tabless"designofcurrentcollectorsinlargecylindri-calcellscanalreadybeconsideredastandardforallfutureTheuseoftheseapproaches(largeformatLFPcellswithdevelopmentsinthisarea.Atthesystemlevel,approachesreducedpassivecomponents)alsohasdisadvantages.Duetosuchasimmersioncooling,software-basedoptimizationofthethelimitedvoltageandcapacity,LFPwillnotreachtheenergychargingprocessbytheBMSorincreasingthecellvoltagetodensityofthemoreexpensiveNi-basedcells.Thetransitionto800Vshouldfurthercontributetofastchargingcapability.TheLMFP,andinthelong-termtoLMRs,asaCAMcoulddecreaselatterapproach,inparticular,isbeingpursuedbymanyOEMsthisdifference,butitisunclearwhetherthelowcostofLFPandislikelytobecomeincreasinglycommoninthepremiumcellscanbemaintainedwhentransitioningtoLMFPorLMRs.segmentsoverthenextfewyears.TheextenttowhichmoreAtthesystemlevel,largecellsizesalsoimposelimitations.Theexpensivepowerelectronicswillleadtodifferentiationinmid-greatertheenergyinasinglecell,thegreaterthedamageinrangeandentry-levelvehiclesisstillunclear.69ImplementationOutlooktheeventofanaccident.Inaddition,conceptssuchas800VNewproductiontechnologiescouldbringfreshimpetustosystemvoltagebecomeimpossibleduetotherathersmallthecompetitionforlow-costcellsbychangingthecoststruc-numberofcellsinthepack.tureofcellproduction.Althoughcellproductiondoesnotaffectmaterialcosts,itdoesaffectimportantcostcompo-ManyinternationalOEMshavecommittedtoLFPasalow-costnentssuchasenergyandequipment.Thisiswheremanynewoption,atleastfortheirentry-levelmodels.ChineseOEMsprocesstechnologiescomeintoplay:Dryingtimeandenergyhavebeenusingthetechnologyforsometime,whileUSandconsumptioncanbereducedbyfurtherdecreasingthesolventEuropeanOEMseitheralreadyhavemodelswithLFPbatteriescontentintheelectrodecoating.Theuseofaqueouspastesorplantointroducethemby2025.Thistrendalsocontinuescaneliminatetheneedforexpensiveandtime-consuminginthesupplierindustry.Accordingtoannouncements,ChineseNMPrecovery.Newdryingmethods(infra-red,laser)makeitLFPcellmanufacturerswillsoonbejoinedbysomeoftheirpossibletoreducethesizeoftheproductionline.TheultimateSouthKoreanandJapanesecounterparts.SomeEuropeancellgoalhereisdrycoatingandthussignificantcostsavingsinmanufacturersorjointventuresbetweenUSOEMsandAsianelectrodeproduction.Incellassembly,mini-environments,cellmanufacturersarealsoplanningtoentertheLFPmarket.forexample,aredesignedtoreducetheoperatingcostsofWhilethetechnologyitselfisofcourselocation-neutral,atdryingrooms.present,notonlycellproductionbutalsomaterialproductionisessentiallylimitedtoChina.ThisistheresultofthestrategyTodate,allofthesetechnologieshaveonlybeenusedinadoptedbytheChinesegovernmentafewyearsago,aswellisolatedindustrialcases.AholisticmachineryconceptisnotasthefactthatLFPisalow-costtechnology.Chinacurrentlyyetcommerciallyavailable,sothatonlygradualdiffusioncanoffersthemostfavorablelocationconditionsintermsoflabor,beexpectedby2030.Theapplicabilityofsomeoftheaboveenergy,materials,andothercosts.Whethercompetitionfrommentionedprocessesalsodependsstronglyontheactiveotherplayersandregionswillbesuccessful,orwhetherlow-materialsandcelldesignused.Fortunately,mostofthenewcostoptimizationofLIBwillcontinuetobesynonymouswithprocesstechnologiesseemtobecompatiblewiththelow-costmanufacturinginChina,remainstobeseen.materialsLFPandgraphite.ThisispromisingforthelowestFigure33:TechnologicalapproachesandimplementationperspectiveforthecostoptimizationofLIB.StatusQuo20252030LFP,AqueousLMFPDryLMRGraphiteprocesscoatingLowestcostProducationC2PC2CMaterialDirectReq:<100EUR/kWhlocationofrecoveryrecyclinglowestcostLargeStandardizedrecyclingformatsformatsFormatStandardizedvarietyfactoryMateriallevelPacklevelCelllevelManufacturinglevelRecyclinglevel70ImplementationOutlookconceivablecostcell,butitalsomeansthatmanyoftheavailable.Asafutureoption,directrecyclingofactivematerialshigh-energytechnologieswillnotbenefitfromtheseprocesscouldhelptoreducecosts,astheprocessingcostsmightbeinnovationsforthetimebeingandwillstillbeexpensive.lowerthannewsynthesis.Inadditiontotheuseofspecificmanufacturingprocesses,4.1.3.Ecologically-OptimizedLIBproductionscalingisoneofthemostimportantleversforreducingcosts.ThehighproportionofmaterialsinLIBcostsLIBshaveahighecologicalfootprintbecauseofthematerialsisalsotheresultofextensiveoptimizationincellproductionusedandthecomplexmanufacturingprocess.Theadvantagescosts.Sofar,economiesofscalehavebeenachievedprimarilyofLIB-poweredapplicationssuchasEVoftenonlybecomebyincreasingthethroughputofindividualLIBlines.Asecondapparentduringtheirusephase.Thisiswhytheecologicalleveristhestandardizationofcellformatsacrossmodelsandevaluationshouldbebasedonalifecycleassessment(LCA),OEMs,wherebytheproductionvolumeofasinglecelltypewhichincludesthemanufacturingandusephaseaswellasbecomessolargethatitcanbeproducednotonlyonthepost-EoLrecycling.Fortheusephaseinparticular,factorssuchsamelinesinonefactory,butinseveralstandardizedfactories.astheround-tripefficiencyofbatteriesaswellastheircycleThissavescostsinfactorydesignandconstruction,equipmentlifeandcalendarlifecanplayamajorrole.procurement,andpossiblyevenregulatoryapprovals.ThefactthattheindustryismovinginthisdirectionisevidentThetechnologiesusedtooptimizetheecologicalfootprintofnotonlyfromtheopenlycommunicatedmedium-termstrate-LIBsare,inmanycases,thesameasthoseusedtooptimizegiesoftheOEMs(46mmcylindricalcell,"Einheitszelle",etc.),costs.Thismakessense,ascostdriverssuchasenergyandbutalsothe“incidental”appearanceofthesamecelltypesinresourceconsumptionareoftenalsolinkedtothegenerationvehiclesfromdifferentOEMs.ofCO2orotherenvironmentalimpacts.TheimplementationperiodthereforelargelycorrespondstotheroadmapdescribedTheimpactofLIBrecyclingonLIBcostsisstillcontroversial.intheprevioussection(see4.1.2).However,itisoftenassumedthattherecoveryofimportantmetalsfromwasteLIBsshouldbecheaperthanprimarypro-TheenvironmentalimpactofresourceextractionresultsfromductiononceacriticalmarketvolumeofEoLbatteriesbecomesthesometimesextremelyhighquantitiesofmaterialthathaveFigure34:TechnologicalapproachesandimplementationperspectivefortheecologicaloptimizationofLIB.StatusQuomedium-term2030LFPMn-,Fe-basedCAM(LFP,LMFP,LMRs)Prod.locationofHighcyclelifeAAM(LTO)MaterialhighestrenewablesrecoveryEcologically-availability&shortAqueousDryrecyclingDirectoptimizedlogisticsprocesscoatingrecyclingUseofPFASDesignforandsolventsrecyclingMateriallevelPacklevelCelllevelManufacturinglevelRecyclinglevel71ImplementationOutlooktobemovedandprocessedinordertoextractmetalssuchparticular,newproductionsiteswithgoodaccesstorenewableaslithium,cobaltandnickel.Inaddition,chemicals,waterandenergyarebeingtargeted,e.g.,inNorthernEurope,whichhighamountsofenergyareusedduringextraction.ThereshouldhaveverylowCO2emissions.Otherlocationsalsopro-arecorrespondingadvantagestousingiron-andmanganese-misethis.Sofar,however,thelocationofcellfactoriesseemsbasedmaterials,asbothrawmaterialsareeasiertoextracttobebasedsolelyonenergycostsandnotontheavailablethannickelandcobalt.Graphitecanbeminedandproducedelectricitymix.InEurope,forexample,manylocationdecisionssynthetically.TheenvironmentalimpactofminingresultsfromfavorPolandandHungary,whichstillhaveacomparativelythemovementofearthandrock,andthatofsynthesisfromhighshareoffossilfuelsintheirelectricitygenerationmix.thehightemperaturesinvolvedrequiringhighenergyinput.IntermsoftheCO2footprintofmanufacturing,LFPandnaturalThechoiceoflocationaffectsnotonlythecarbonfootprintofgraphite-basedcellsinparticulararelikelytoperformwell.production,butalsotheemissionsassociatedwiththelengthHowever,iftheservicelifeisalsotakenintoaccount,syntheticofthesupplychain.LIBproductiontodayisextremelyglobal,graphitescouldperformbetteroverall(highercyclelife),evennotleastduetothesitesofrawmaterialdeposits.Anecologi-iftheinitialCO2budgetishigher.Thismayalsoapplytoothercallysoundproductionsiteshortensthesupplychainoraimsanodematerials,suchastitanates,whichhaveanextremelytoprocessrawmaterials"onsite".EventhougheconomiclongcyclelifeandleadtolowLCAresultsinapplicationswithmotivationsarelikelytohaveplayedamajorrole,theeffortscorrespondinglyhighrequirements.ofmanyresourcerichcountries,suchasIndonesia(nickel),toincreasethevalueshareofbatteryproductionathomealsoRecently,ecologicalassessmenthasfocusedonanothergrouphaveenvironmentalbenefits,providedthatrenewableelectrici-ofmaterials,theso-calledper-andpolyfluorinatedsubstancestyandotherkeyfactorsareavailable.(PFAS).TheseincludetheelectrolytesaltsusedinLIBsandthebindermaterialPVDF.TherearenoalternativestothesaltsinTheend-of-lifeofLIBsalsohasanimpactontheirenvironmentaltheforeseeablefuture.However,thepossibilitiesforaqueousfootprint.Comparedtotheprimaryextractionofrawmaterials,processingofmanycathodematerialsandgraphiteandtheirrecycledmaterialscanmassivelyreducelocalenvironmentalsmallvolumechangesduringcyclizationallowtheuseofnon-impactssuchasenergyconsumption,earthandrockmovement,PFAS(e.g.,rubberandcellulose-based)binders.andwaterconsumption,especiallyifrecyclingishighlyefficientandthebatteriesaredesignedaccordingly.However,eventhisIncellproductionitself,energyconsumptionprobablyhasapproachdoesnotseemtoplayamajorroleatpresent,asthebiggestinfluenceontheenvironmentalfootprint.Allreflectedforexampleintheuseofadhesivesandfoamsinpackapproachestoreducethis(low-solventcoating,drycoating,constructionorthecontinuingdifficultiesinaccessingSoHdatamini-environments)haveadirectimpactonbothcostsandtheforusedbatteries.“DesignforRecycling”thereforeremainsacarbonfootprint.Inadditiontotheamountofenergyrequi-long-termvisionandisnotincorporatedintoindustryroadmaps.red,productionlocationisalsoanimportantlever.InEuropein72ImplementationOutlook4.2.BatteryDemandandProductionTheglobaldemandforbatterieshasrisenrapidlyinrecentyears,themobilitysectorwereinstalledinpassengercarsandtheparticularlyduetotheshiftinthemobilitysectorfrominter-majoritywereinstalledine-buses.Theveryhighgrowthratesnalcombustionenginevehiclestoelectrically-poweredones.ofrecentyearsarenowslowingdown.In2030,thebatteryHowever,inadditiontothemobilitysector(xEV),batteriesaredemandinthissectorcouldbejustunder3TWh.alsousedinelectroniccommunicationandhouseholdapplian-ces(3C)aswellasinstationaryenergystorage(ESS).Additional3CapplicationsconstitutethesecondlargestmarketforLIB.Inmobilityapplicationsareemergingsuchaselectrifiedtwo-whee-fact,until2015,theywerethelargestmarket.Thegrowthratelers(micromobility).Overall,thebatterymarkethasrecentlyseeninthismarkethasbeenconsistentlybelowthatofxEVandESSannualgrowthratesofbetween30and40%.Accordingto(approx.5-10%).optimisticestimates,totaldemandforLIBcouldexceed1TWhforthefirsttimein2023andsurpass3TWhin2030(2.5toTheESSmarketcouldexpandthemostinthenextfewyears4.5TWhaccordingtoourminimumandmaximumscenarios).andachievegrowthratesabove20%.Thismarketisessentialforglobalpowersupplyduetotheexpansionofrenewable4.2.1.BatteryMarketsenergyandcouldovertakethe3CmarketforthefirsttimeinandDemandForecast2023.Theprojectedmarketsizein2030isaround300GWh.Micromobility(e.g.,two-wheelerslikemotorcyclesorscoo-Themobilitysectordominatesoverallbatterydemand.Intersandthree-wheelersliketuk-tuks)playsamajorrolehere,2022,approximately75%oflithium-ionbatterieswereespeciallyinemergingmarkets.IndiaandChinaarethelargestinstalledinvehiclesandthemajorityofthese(>90%)weredemandregionsfortheseapplications.By2030,theESSinstalledinpassengercars.Thisratiowasdifferentuntilthemarketcouldbesimilarinsizetothe3Cmarket(approximatelymid-2010s.In2015,forexample,justunder40%ofLIBin130GWh).Inadditiontotheexamplesgiven,thereareotherLIBapplicationsintrains,shipsoraircraft.However,batteryFigure35:Forecastofthedemandforlithium-ionbatteriesinvariousapplications.5,0004,000LIBdemand(GWh)3,0002,0001,0000202220242026202820302020MaxxEVESS3CMicromobilityOtherMin73ImplementationOutlookelectrificationisnotexpectedtoplayamajorroleintheseForecastanodematerialsectors(especiallyinaviation)untilafter2030.GraphitewillremainthemostwidelyusedanodematerialOverthepastfewyears,thedemandforecastforLIBhasuntil2030.Accordingly,therearelargeglobalproductionincreasedsteadily.However,somefactorscouldnowslowthiscapacitiesandindividualproductionsites,particularlyforarti-growth.Ontheonehand,subsidyprogramsforelectricmobil-ficialgraphite.Upto4megatonsofproductioncapacitycouldityarecomingtoanend[390],andontheother,demandbeinstalledby2028,mainlyinAsia.Infullcells,graphitecanforBEVs,forexample,isfallingduetothecurrenteconomicdeliveraspecificenergyof1,100to1,300Wh/kg.Takingintosituation[391,392].accountscraprates,utilizationandgenerallosses,4megatonsofproductioncapacityyieldsapprox.2.8TWhofcellcapacity.4.2.2.BatteryMaterialGraphiteisalsorequiredfortheproductionofsomesiliconandCellProductioncompositeanodes.Comparedtographiteanodes,silicon(com-posite)anodescanachievesignificantlyhigherspecificenergyIfthecurrentcapacitiesofmaterialandcellmanufacturersdensitiesof2,500Wh/kgand,dependingontheSicontent,(production)arecomparedwithcurrentdemand,thereseemsupto10,000Wh/kgforfullsiliconutilization.Togetherwithtobeaslightoversupply.Inordertoanalyzethesupplysit-smallerquantitiesofLTOaswellashardandsoftcarbons,uationinthefuture,wereviewedandcomparedtheannoun-anodematerialforalmost3.5TWhofLIBcouldbeproducedcedproductioncapacitiesofactivematerialmanufacturersin2028.discussedinchapter3.1andtheproductioncapacityofcellmanufacturers(chapter3.2).Todoso,theproductionvolumesForecastcathodematerialneedtobecorrectedbyscrapratesandcapacityutilizationofindividualproductionfacilities.WhiletherewasthreetimesmoreNMCproductioncapacityin2020comparedtoLFPproductioncapacity,by2028,theDuetotheannouncement-basedapproach,nomeaningfuldifferencewillonlyamountto30%byweightaccordingcapacityforecastscanbemadeuntilafter2028.Manufactu-toindustryannouncements.NMCcathodes(dependingonrersusuallyannouncetheconstructionofnewfactorieswithatheexactcomposition)achieveanaverageof600Wh/kg,shortertimeline.whereasLFPcathodescanonlyachievearound500Wh/kg.Figure36:Basescenariooftheplanned(announced)globalproductioncapacitiesforactivematerialsandcellsaswellasdemandforecast.5,000Productionanddemand(GWh)4,0003,0002,0001,0000202220252028202220252028202220252028202220252028AnodeproductionCathodeproductionCellproductionMarketdemand74ImplementationOutlookBasedontheconversionfactors,around1.2TWhcouldbeThemaximumscenariocouldreachaproductioncapacityproducedfromthe3.4megatonsofannouncedNMCcathodeofmorethan8TWhby2030(around7.4TWhin2028).productioncapacityin2028,andaround800GWhfromtheThisrepresentsafourfoldincreasefromthemaximumcapa-2.6megatonsLFPproductioncapacity.NCAproductioncapa-citiesannouncedbytheendof2023.Theminimumscenariocitiescouldaccountfor250GWhofbatterycapacity(approx.onlyachievesroughlyonethirdofthisvaluein2028(2.8TWh).600kilotons).LCOandLMOonlyaccountforsmallerquanti-Thebasescenarioachievesnearly6TWhby2030,andisties.Intotalandcorrectedbyscrapratesandplantutilization,thereforeclosertothemaximumscenario.However,in2028,itapprox.2.4TWhofcellscouldbeproducedwiththematerialsiscenteredbetweentheminimumandmaximumscenariowithfromtheannouncedCAMproductionfacilitiesin2028.roughly5TWh.Since,comparedtothemaximumsce-nario,thebasescenarioassumesasignificantlylowerrealisticForecastcellproductionproductioncapacitybytheendof2023(around1TWh),theincreasehereuntiltheendofthedecadeisevengreaterWhetherornotglobalbatterydemandin2030canbemetthaninthemaximumscenario(increasessixfolduntil2030).willdependheavilyonhowmanyofthegloballyannouncedproductionfacilitiescanbeimplementedandoperatedintime.ComparisonofproductioncapacitiesThreescenarios(maximum,baseandminimum)weredevelo-withcelldemandpedtoestimaterealisticproductioncapacities:Toassessthefuturesupplysituation,thebatterydemandfore-Themaximumscenarioassumesfullrealizationofallproduc-castfor2028wascomparedwiththeannouncedproductiontioncapacitiesthatwerean-nouncedwithaspecifiedproduc-capacityscenariosoftheactivematerialandcellproducers.tionsiteorwheretherequiredinvestmentsseemsecure.Figure36showsthattheannouncedproductioncapacitiesThebasescenarioincludedadelayofoneyear(realSoPversusexceedthedemandforLIB.IfthisexcesscapacitycontinuesinannouncedSoP)aswellasa75%utilizationofthecapaci-thefuture,someoftheannouncedproductionsitesmaybetiesduetoscrapormaintenance.Theminimumscenarioonlypostponedorevencancelled.However,itcannotberuledoutincludedtheannouncementsofmanufacturerswhoalreadythatadditionalannouncementsmaybemadeorthatbatteryproducebatterycellsonalargescaletodayandthetimedelaydemanddevelopsevenmoredynamicallythanassumedintheandutilizationratewerethesameasinthebasescenario.comingyears.Figure37:ComparisonofglobalactivematerialandcellproductioncapacitiesaswellasbatterycelldemandProductionanddemand(GWh)for2028.8,0006,0004,0002,0000CathodeCellMarketAnodeproductionproductiondemandproductionMinBaseMaxRelativetobasescenario:ProductionovercapacityProductionundercapacity75ImplementationOutlookIntermsofactivematerials,itcanbeseenthattheannoun-regardingmaterialproductioncapacitiesinthenextfiveyears.cedanodecapacitiesareslightlyhigherthantheannouncedItisthusverylikelythatthesupplycapacityforactivematerialscathodecapacities,butthatbothfallshortoftheannouncedwillincreasefurthertoward2030.cellproductioncapacities.Thesupplygapinactivematerialproductionwouldbemorethan2.5TWhonthecathodesideEstimatedrecyclingvolumeandaround1.5TWhontheanodesideinthebasescenario.Comparedtothebatterydemandforecast,thesupplygapThedataavailabledonotmakeitpossibletoforecastrecyclingofactivematerialproductionismuchsmallerforcathodecapacitieswiththesamedegreeofreliabilityasforproductionmaterialorevenexceedsthedemand(anodeproduction)involumes.Thedemandforrecyclingisstilllowatpresentduetothebasescenario.thesmallnumberofEoLbatteries,andthematerialtoberecycledmainlyconsistsofproductionscrap.However,fromItmustbemonitoredhowtheannouncedoversupplyofcell2030onwards,tractionbatteriesareexpectedtoplayanproductionfacilitiesdevelops(section3.2.5).Lookingattheincreasinglyimportantroleandwillbecomedominantinrecyc-supplychainfromrawmaterialstocells,manyOEMshavelatereturnquantitiesinthe2030s.Theglobalrecyclingvolumebeenfocusingoncellproduction.OtherprojectsseemtobefromEoLLIBandproductionscrapcouldrisetoapprox.investor-drivenandindicatethatthehighmarketdynamicsin1.6megatonsin2030[282].Otheraspectsmakeprojectionsthebatterysectorarecloselylinkedtocellproduction.Thisisevenmoredifficultsuchasuncertaintiesaboutbatteryservicewhytherearecurrentlymanyannouncementsconcerningcelllifeandwhetherbatteryusageinsecond-lifeapplicationswillgigafactories.Theup-streamproductionsteps,ontheotherpostponerecycling.Itislikelythatfurtherindustrialactivitieshand,havenotyetreceivedasmuchattentionfromtheauto-willbeannouncedinthenextfewyearssothatsufficientmotiveindustry.Theseareofteninthehandsoflargecong-recyclingcapacitiesarerealistic.Intermsofsecond-lifeapplica-lomerates.Thesegroupsarekeepingacloseeyeonmarkettions,forexample,volumesbetween110and>200GWhdemandandareabletoplanandcommunicateanycorre-areestimatedperyear[393]–assumingthatthecurrentspondingincreasesincapacityatshortnoticeandmuchmorechallengesareovercome.conservatively.Thisfocusoncellproductioncouldchangeinthefutureandweexpecttoseeadditionalannouncements76ImplementationOutlook4.3.AEuropeanBatteryAnumberofchallengesneedtobeaddressedtobuildupaImportantplayershereareUmicore,BASFandNorthvolt,competitive,independent,andsustainableEuropeanbatterybutalsotheChineseandSouthKoreanmanufacturersBeijingecosystem:Easpring,XTCandEcopro.CAPEX,investmentconditions:SubsidiesandfundingIntheLFPsector,however,theindustryinEuropeappearstomechanisms(suchasIPCEI)canhelpcreateamorelevelbeweaker.LMFP,oneofthemorerecentandveryimportantplayingfieldandattractinvestments.However,streamlininginnovations,originatedinChinaandwascommercializedthere.bureaucraticprocessesandreducingtime-intensiveproce-Sofar,thereisnomajororestablishedplayerthatwantstodureswouldalsohelptoacceleratethedevelopmentoftheproduceLFPinEurope.CompaniessuchasIBU-TecandNanobatteryecosysteminthiscriticalphase.OneMaterialsareactiveonasmallerscale,buttheydonotplantooperatelarge-scaleplants.EuropeancellmanufacturersEnergycosts:Ensuringinternationallycompetitiveenergywillthereforecontinuetobedependentonimportsofthiscostsisessentialtonarrowthegaptootherregionslikeimportantmaterialforlow-costbatteriesinthelongterm.ChinaandtheUSA.Thiscanbeachievedthroughpoliciesthatpromotecost-effectiveandsustainableenergysources.Bothstart-upsandestablishedplayersarealsoworkingonanodematerials,especiallynext-generationmaterials(e.g.,Skilledworkforce:Developingaskilledworkforcewithsilicon,graphene),sothatEuropecertainlyhastechnologicalexpertiseinscaledproductionisessentialforasuccessfulexpertiseinthesematerials.However,thisexpertiseisratherEuropeanbatteryecosystem.Investmentsineducation,sporadicanddoesnotfullyencompassallcellcomponentstraining,andre/upskillingprogramscanhelpbridgethe(e.g.,alsoelectrolytes,separators,etc.).skillsgap.WhilecathodematerialsarealreadybeingproducedinEurope,Localvaluechaincreation:Establishingasustainableandsofar,thereisnomajormanufacturerofanodematerials.self-sufficientvaluechainiscrucial.ThisincludesaddressingTheplantsplannedinthenextfewyearsbyEuropeanandissuesrelatedtotheEuropeanBatteryDirective,ensuringAsiancompanies,e.g.,Vianode,Talga,ShanghaiPutailaiandaccesstorawmaterials,promotingrecycling,andexploringEpsilon,relatetographiteproduction.Largeplantsforthepro-potentialalternativetechnologieslikeNa-ionbatteries.ductionofSimaterialshavenotyetbeenannounced,althoughElkem,Wakkerandotherscertainlyhavetherelevanttechno-ThestillfragmentednatureoftheEU-widebatterylandscapelogicalexpertiseinEurope.requiresjointeffortsandcollaborationamongcountries.Com-biningcomplementarystrengthsandresourcescanhelpbuildCellproductionastrongerandmorecompetitiveecosystemthatcanserveasacounterweighttoAsia.TherearedynamicactivitieswithinEuropewithmorethan2TWhofcellproductioncapacitiesannounced,whichwouldTherearestrongOEMinthedownstreamvaluechain,whoarecomeclosetothegoalofhaving30%ofglobalbatterycelldrivingthedemandforbat-teriesinEuropeandconsequentlyproductionlocatedinEurope.ManycompaniesarejostlingtheneedtodeveloplocalupstreamsupplychainsaswellasforapositionontheEUmarket,whichmakestheupcomingrecyclingcapacitiesinordertoachievehigh-volumeproductionramp-upmoreresilient,e.g.,tostart-upfailure.BothEuro-andacircularbat-teryeconomyinthecomingyears.Thespeci-peanandnon-EuropeancompanieshaveannouncedplanstoficEuropeanindustrializationactivitiesfrommaterials,compo-developproductioncapacitiesofasimilarmagnitudeby2030.nents,cellstorecyclingcanbesummedupasshownbelow.Currently,therearemorenon-Europeancompanies,butashifttowardEuropeancompaniesispossibleafter2025.ActivematerialsInthefieldofhighNiCAM,someEuropeanmanufacturersAnincreasingshareofLFPbatteriescouldmaketheEuropeanhaveproductsonthemarketandsupplytocellproduction,batterycelleconomymorecostcompetitive.Energycostshavee.g.,UmicoreanditscustomersSamsungSDIandSKOn.Theasignificantimpact,butrawmaterialcostsaremoreimport-developmentofproductionfacilitiesforcathodematerialsant,andthesefluctuatestrongly.Securingcontractsandstock-mainlyrelatestoNMCsandthustohigh-energymaterials.piling,asplannedbytheEU,couldmitigatetheseeffects.77ImplementationOutlookFigure38:BasescenariooftheplannedproductioncapacitiesforactivematerialsandcellsaswellasdemandforecastinEurope.Additionallyacomparisonofdemandandsupplyin2028.1,000Productionanddemand(GWh)8006004002000202220252028202220252028202220252028202220252028AnodeproductionCathodeproductionCellproductionIndustrydemandRelativetobasescenario:ProductionovercapacityProductionundercapacityThereareonlyafewdirectjointventures(JV)tosetupcellaswellasnon-EuropeancompanieslikeLi-CycleandRedwoodfactories,butfurtherstrategicJVs(e.g.,PowerCo+Gotion)Materials.ParticularlyinAmericaandEurope,recyclingactivi-canleadtoatransferofknowledge.tiesaredividedintospokes(pre-treatmentandproductionofblackmass)andhubs(materialrecovery).AccordingtorecentAttractingcellmanufacturerstoEuropewasthereforesuccess-announcements,spokestendtobemoredecentralizedandful,butnowitisimportanttorealizetheplanswithinhubslargeplantsforactualmetallurgicalrecycling.theannouncedtimeframes.MostindustrycapacityformaterialrecoveryisexpectedtoRecyclingbelocatedinChina(amountingtoapprox.3,300kilotonsperyearuntil2030)butsubstantialcapacitieshavealsobeenRecyclinginEuropeisdrivenmainlybytheEuropeanannouncedforEurope.Anadditionalcapacityof~40kilotonsBatteriesRegulation,whichenteredintoforceinAugust2023.peryear(hubs)and130kilotonsperyear(spokes)isplannedTheregulationfeaturestargetsforwastebatterycollection,inGermanyaloneuntil2030.Sitesareoftenplannedinclosematerialrecoveryfromwastebatteries,mandatoryminimumproximitytobatterymaterialproducers,batterycellmanufac-levelsofrecycledcontentandrecyclingefficiency.Therespecti-turersorautomotivemanufacturers.Thus,marketdynamicsinvetargetswillbeintroducedgraduallyfrom2025onwards.theEuropeanregionaredriven,amongotherthings,bytheestablishmentofbatterycellproductionsites.Marketactivitieshavealreadystartedtoemerge,ashighreturnIstheannouncedsupplyofmaterialsandvolumesofusedbatteriesfromelectricvehiclesareexpectedcellssufficienttomeetthedemandforbatteries?fromthe2030sonwards.ProjectsinEuropeincludebigandwell-establishedcompaniessuchasUmicore,BASFandauto-Inordertoanalyzethesupplyanddemandforcellsinanindi-motiveOEMSsuchasMercedes-BenzorVolkswagen,new-vidualregion,cellproductionmustbecomparedwithdemandcomersinstallingpilots,suchasNorthvolt’sRevolt,Düsenfeld78ImplementationOutlookinindustry,whichtheninstallsthecellsinBEVsorsmart-Todate,thereisnorelevantmaterialproductioncapacityphones,forexample.Marketdemandcanbeequatedwith(7MWhanodeand11MWhcathode)locatedinEurope.industrialbatterydemandsothatitbecomesclearwhetherMaterialsforthesitesalreadyproducingcellshavetobearegionimportsorexportsmoreproductscontainingbatte-imported.Overthenextfewyears,theaimistodeveloparies.Comparedtotheinternationalaverage,thedemandforsupplystructureinEuropetolowertheneedforimports.InbatteriesinEuropeisdominatedbytheautomotiveindustry.particular,cathodeproductioncapacities(375GWh)butalsoLargeOEMssuchasVolkswagenandStellantishaveseveralanodeproductioncapacities(160GWh)willbeinstalledbyvehicleplantsaswellassalesmarketsinEuropeand,as2028.Ascathodesaremoreexpensiveduetotheirrawmate-discussedinchapter2.2,theirdemandforcellsisveryhigh.rials,thecorrespondingrevenuesarehigherhereandIn2022,thedemandforbatteriesinEuropeanindustryproductioninEuropeitselfismoreinteresting.However,amountedtoaround150GWhandthiscouldrisetoalmostneithercathodenoranodeproductioncanmeetindustry’s200GWhin2023.Thedemandforbatteriescurrentlyexceedsdemandforbatteriesofaround550GWhin2028andthuscellproductionbyaround200%.However,manynewpro-thereisscopeforadditionalcapacityannouncements.Theductionsiteshavebeenannouncedforthecomingyears.deficitsincreasecorrespondinglyifcellproductionexpandsinInabasescenario,upto4,000GWhofproductioncapacitylinewiththeannouncementsmade.Therewouldbeaproduc-couldbedevelopedinEuropeby2030.Someoftheseannoun-tioncapacityshortfallof600or800GWh.cementsarefromnewplayersonthemarket.TheirlackofexperiencemightmeandelaysincommissioningproductionMarketdemandisabout10%lowerthanindustrialbatteryfacilities(section3.2.5).Aswiththeanalysisofglobalproduc-demand.Germancarmanufacturersinparticularareexpectedtionsites,someproductionsitesmightnotgointooperationtobeabletoexporthighvolumesofelectricvehiclesintheatall,e.g.,duetolessfavorableeconomicconditions.Somefuture.Thisoverdemandwillbereducedbyimports,particular-oftheannouncedproductioncapacitiesarealreadyonhold.lyfromChina.Possiblereasonsincludeelectricitypricesortaxadvantages,suchastheIRA,inotherregions.79ListofAbbreviationsListofAbbreviations80AbbreviationDescription2W,3WTwowheel,threewheel(electricvehicle)3CConsumer,computing,communicationAAMAnodeactivematerialBEVBatteryelectricvehicleBMSBatterymanagementsystemBTMSBatterythermalmanagementsystemCChargeordischargeC-rateC2CCell-to-chassisconceptC2PCell-to-packconceptCAMCathodeactivematerialCNTCarbonnanotubeEoLEnd-of-lifeEPOEuropeanPatentOfficeESSEnergystoragesystem(stationary)EVElectricvehicleGHGGreenhousegasHEHigh-energyHPHigh-powerHVHigh-voltageICE(Vehiclewith)internalcombustionengineIoTInternetofthingsIRAUSinflationreductionactKPIKeyperformanceindicatorLCALifecycleassessmentLFPLithium-iron-phosphate(olivine-like)ListofAbbreviationsAbbreviationDescriptionLIBLithium-ionbatteryLMFPLithium-manganese-iron-phosphate(olivine-like)LMNOLithium-manganese-nickel-oxide(spinel)LMOLithium-manganese-oxide(spinel)LMRLithium-andmanganese-richoxideLMTLightmeansoftransportLTOLithium-titanateNCALithium-nickel-cobalt-aluminum-oxide(layered)NGNaturalgraphiteNMCLithium-nickel-manganese-cobalt-oxide(layered)NMCALithium-nickel-manganese-cobalt-aluminum-oxide(layered)NMCxyzNMCwithx:y:zgivingtheratioofNi:Mn:CoNMPN-methyl-2-pyrrolidoneNMXLithium-nickel-manganese-oxide(layered)containingothermetalsOEMOriginalequipmentmanufacturerPCMPhasechangematerialPFASPer-andpolyfluorinatedsubstancesPHEVPlug-inhybridelectricvehiclePVDFPolyvinylidenefluorideSG,AGSyntheticgraphite,artificialgraphiteSHEStandardhydrogenelectrodeSIBSodium-ionbatterySoCState-of-chargeSoHState-of-healthSSBSolid-statebatteryTRLTechnologyreadinesslevelV2GVehicle-to-gridconceptWIPOWorldIntellectualPropertyOrganizationWLTPWorldwideHarmonizedLightVehiclesTestProcedure81ReferencesReferences[1]T.Schmaltz,T.Wicke,L.Weymann,P.Voß,C.Neef,A.Thiel-[8]IEA,GlobalEVOutlook2023,Paris,2023,https://www.iea.mann,Solid-StateBatteryRoadmap2035+,FraunhoferInstituteorg/reports/global-ev-outlook-2023forSystemsandInnovationResearchISI,2022,https://www.isi.fraunhofer.de/content/dam/isi/dokumente/cct/2022/SSB_Road-[9]S.Link;C.Neef;T.Wicke;TrendsinAutomotiveBatteryCellmap.pdfDesign:AStatisticalAnalysisofEmpiricalData;Batteries;9(5),261;2023,https://doi.org/10.3390/batteries9050261[2]A.Stephan,T.Hettesheimer,C.Neef,T.Schmaltz,S.Link,M.Stephan,J.L.Heizmann,A.Thielmann,AlternativeBattery[10]A.MahmoudzadehAndwari,A.Pesiridis,S.Rajoo,R.TechnologiesRoadmap2030+;FraunhoferInstituteforSystemsMartinez-Botas,V.Esfahanian;AreviewofBatteryElectricandInnovationResearchISI,2023,https://www.isi.fraunhofer.Vehicletechnologyandreadinesslevels;RenewableandSustai-de/content/dam/isi/dokumente/cct/2023/abt-roadmap.pdfnableEnergyReviews,Volume78,414-430;2017,https://doi.org/10.1016/j.rser.2017.03.138[3]S.Link,C.Neef,T.Wicke,T.Hettesheimer,M.Diehl,O.Krätzig,F.Degen,F.Klein,P.Fanz,M.Burgard,R.Kleinert,[11]M.Herberz,U.J.J.Hahnel,T.Brosch;Counteractingelec-Developmentperspectivesforlithium-ionbatterycellformats,tricvehiclerangeconcernwithascalablebehaviouralinterven-FraunhoferInstituteforSystemsandInnovationResearchISI,tion;NatureEnergy,7,503–510,2022,https://doi.org/10.1038/2022,https://www.isi.fraunhofer.de/content/dam/isi/s41560-022-01028-3dokumente/cct/2022/Development_perspectives_for_lithium-ion_battery_cell_formats_Fraunhofer_2022.pdf[12]T.Yuksei,J.J.Michalek;EffectsofRegionalTemperatureonElectricVehicleEfficiency,Range,andEmissionsintheUnited[4]F.M.Bass,Commentson“ANewProductGrowthforStates;EnvironmentalScience&Technology,49,6,3974–3980,ModelConsumerDurablesTheBassModel”,Manage-2015,https://doi.org/10.1021/es505621smentScience50,1763-1893,2004,https://doi.org/10.1287/mnsc.1040.0300[13]B.O.Varga,A.Sagoian,F.Mariasiu;PredictionofElectricVehicleRange:AComprehensiveReviewofCurrentIssuesand[5]F.Marscheider-Weidemann;S.Langkau;E.Eberling;L.Erd-Challenges;Energies,12(5),946,2019,https://doi.org/10.3390/mann;M.Haendel;M.Krail;A.Loibl;C.Neef;M.Neuwirth;en12050946L.Rostek;S.Shirinzadeh;D.Stijepic;L.TerceroEspinoza;S.-J.Baur;M.Billaud;O.Deubzer;F.Maisel;M.Marwede;J.Rück-[14]C.Argue/Geotab;Towhatdegreedoestemperatu-schloss;M.Tippner;DeutscheRohstoffagenturDERA;RohstoffereimpactEVrange?;2023,https://www.geotab.com/blog/fürZukunftstechnologien2021,DERARohstoffinformationenev-range/50,2021[15]ElonMusk/X,2022,https://x.com/elonmusk/[6]InternationalOrganizationofMotorVehicleManufactu-status/1498981268398161922?s=20rersOICA,Productionstatistics,2022,https://www.oica.net/category/production-statistics/2022-statistics/[16]M.Neißendorfer/Elektroauto-News,BMWkönnte,willaberkeineE-Autosmitmehrals1000kmReichwei-[7]C.Neef,T.Schmaltz,A.Thielmann,RecyclingvonLithium-tebauen,2022,https://www.elektroauto-news.net/news/IonenBatterien:ChancenundHerausforderungenfürdenbmw-will-keine-e-autos-mit-1000-km-reichweiteMaschinen-undAnlagenbau;Fraunhofer-InstitutfürSystem-undInnovationsforschungISI:Karlsruhe,Germany,202182References[17]T.Langenbucher/ecomento,Volvo:NeueElektroauto-[29]T.Liu,X.-G.Yang,S.Ge,Y.Leng,C.-Y.Wang,UltrafastTechnikfürbis1000KilometerReichweiteundschnellereschargingofenergy-denselithium-ionbatteriesforurbanairLaden,2021,https://ecomento.de/2021/07/01/volvo-neue-mobility,eTransportation,Volume7,100103,2021,elektroauto-technik-mehr-reichweite-schnelleres-laden/https://doi.org/10.1016/j.etran.2021.100103[18]M.Shiraki,D.Leussink,D.Dolan,D.Holmes/Reuters,[30]M.Hackmann/P3GroupGmbH,P3ChargingIndexToyotaaimstoput1,000km-rangeLexusEVontheroadReport07/22–VergleichderSchnellladefähigkeitverschiedenerby2026,2023,https://www.reuters.com/business/autos-Elektrofahrzeuge,2022,https://www.p3-group.com/p3-transportation/toyota-aims-put-1000-km-range-lexus-ev-charging-index-vergleich-der-schnellladefaehigkeit-road-by-2026-2023-10-25/verschiedener-elektrofahrzeuge-aus-nutzerperspektive_07-22/[19]J.Shen/technode,Volkswagen-backedGotionunveils[31]S.Buderath/P3GroupGmbH,P3ChargingIndexnewEVbatterywith1,000kmrange,2023,https://technode.USReport06/23,2023,https://www.p3-group.com/com/2023/05/19/volkswagen-backed-gotion-unveils-new-ev-p3-charging-index-us-report-06-23/battery-allowing-1000-km-range/[32]J.Neuhausen,P.Rose,J.-H.Bomke,O.Stump-Blesinger,[20]EuropeanCouncilforAutomotiveR&DEUCAR,BatteryP.Jehnichen,P.Treichel/Strategy&,Technology-differentiatingrequirementsforfutureautomotiveapplications,2019,Battery-ElectricPlatforms-Powertrainstudy2023,https://eucar.be/wp-content/uploads/2019/08/20190710-EG-https://www.strategyand.pwc.com/de/en/industries/automotive/BEV-FCEV-Battery-requirements-FINAL.pdfpowertrain-study-2023/strategyand-powertrain-study-2023.pdf[21]G.H.Ruffo/autoevolution,ToyotaPromisesBEVsWith[33]S.Hanley/CleanTechnice,ToyotaClaimsSolid-StateBatteryGigaCastingsand932-Mile(1,500-Km)Rangeby2028,2023,Has745MileRange,10MinuteChargingTime,2023,https://www.autoevolution.com/news/toyota-https://cleantechnica.com/2023/07/04/toyota-claims-solid-promises-bevs-with-giga-castings-and-932-mile-1500-km-state-battery-has-745-mile-range-10-minute-charging-time/range-by-2028-216472.html[34]H.Schrieber/AutoBild,SiebtePowerSwapStation:Nio[22]B.Turkus/InsideEVs,MercedesVisionEQXXimTest:wechseltE-Auto-AkkuinfünfMinuten,2023,DerRestderWeltistkurzsichtig,2022,https://insideevs.de/https://www.autobild.de/artikel/akku-wechseln-bei-e-autos-reviews/600151/mercedes-vision-eqxx-test-elektrolimousine/nio-kosten-laden-china-europa-enbw-21367859.html[23]T.Geiger,W.Rudschies/ADAC,LucidAir:EinNew-[35]C.Liu/thejapantimes,One-minutebatteryswapsarecomerwirdzumTesla-Jäger,2023,https://www.adac.de/spurringEVadoptioninAsia,2023,rund-ums-fahrzeug/autokatalog/marken-modelle/lucid/lucid-air/https://www.japantimes.co.jp/news/2023/04/10/business/tech/ev-battery-swap-asia-adoption/[24]E.Lancelle-Beltran,Conference,AABC,2020[36]NITIAayog&icct,BATTERYSWAPPINGFORELECTRIC[25]H.Manz,Conference,AABC,2020TWO-WHEELERSININDIA-STRATEGYHINTERLANDS,2022,https://www.niti.gov.in/sites/default/files/2022-05/Battery_[26]TakeshitaH./B3Corporation,B3Report21–22:LIBMate-swapping_report_09052022.pdfrialsMarketBulletin(22Q1),2022[37]A.Prasad,H.Uchida,W.Feng/ArthurD.Little,THE[27]RenaultGroup,RenaulteWaysElectropop,2021,RELEVANCEOFEVBATTERYSWAPPINGINEMERGINGMAR-https://events.renaultgroup.com/app/uploads/sites/7/2022/01/KETS,2023,https://www.adlittle.com/en/insights/viewpoints/Renault_eWAYS_C1_LOW.pdfrelevance-ev-battery-swapping-emerging-markets[28]X.-G.Yang,T.Liu,S.Ge,E.Rountree,C.-Y.Wang,Challen-[38]N.G.Panwar,S.Singh,A.Garg,A.K.Gupta,L.Gao,gesandkeyrequirementsofbatteriesforelectricverticaltake-RecentAdvancementsinBatteryManagementSystemforoffandlandingaircraft;Joule,Volume5,Issue7,P1644-1659,Li-IonBatteriesofElectricVehicles:FutureRoleofDigitalTwin,2021,https://doi.org/10.1016/j.joule.2021.05.001Cyber-PhysicalSystems,BatterySwappingTechnology,andNondestructiveTesting,EnergyTechnology,Volume9,Issue8,2000984,2021,https://doi.org/10.1002/ente.20200098483References[39]SMBC,SMBC’sremarkableprogress:fromprototypingto[48]A.Kampker,H.H.Heimes,C.Offermanns,M.Frieges,standardization,2023,https://www.sb-mc.net/news/sbmcs-J.Callard,N.Ghandily,J.Gorsch,M.Graaf,A.Herrmann,remarkable-progress-from-prototyping-to-standardizationN.Kisseler,B.Späth,S.Quinker/RWTHAachen,CHALLENGESANDSOLUTIONSINBATTERYSAFETY,2023,https://www.pem.[40]Teslalogger,https://teslalogger.de/degradation.phprwth-aachen.de/global/show_document.asp?id=aaaaaaaacclpluf[41]N.Wassiliadis,M.Steinsträter,M.Schreiber,P.Rosner,L.[49]A.Schmidt,J.KrugvonNidda,C.Menale,M.Kusne-Nicoletti,F.Schmid,M.Ank,O.Teichert,L.Wildfeuer,J.Schnei-zoff,P.Mustarelli,M.Halama,C.Chanson,G.Cherouvier,der,A.Koch,A.König,A.Glatz,J.Gandlgruber,T.Kröger,X.A.Boisard,A.Igartua,J.Gilabert,BATTERIESEUROPETASKLin,M.Lienkamp,QuantifyingthestateoftheartofelectricFORCE“SAFETY”-DefinitionofSafetyKeyPerformancepowertrainsinbatteryelectricvehicles:Range,efficiency,andIndicators(KPIs),2023,https://batterieseurope.eu/wp-content/lifetimefromcomponenttosystemleveloftheVolkswagenuploads/2023/03/Definition-of-Safety-Key-Performance-ID.3,eTransportation,Volume12,100167,2022,Indicators-KPIs.pdfhttps://doi.org/10.1016/j.etran.2022.100167[50]J.Neuhause,P.Rose,J.-H.Bomke,F.Ferk,A.Kampker,C.[42]M.Muratori,B.Borlaug,C.Ledna,P.Jadun,A.Kailas,RoadOffermanns,M.Frank,T.Elliger/strategy&,EUrecyclingmarkettozero:Researchandindustryperspectivesonzero-emissionTheEUrecyclingmarket–aviableandsustainablebusiness,commercialvehicles.iScience26,106751,2023,2023,https://www.strategyand.pwc.com/de/en/industries/auto-https://doi.org/10.1016/j.isci.2023.106751motive/european-battery-recycling-market-analysis/strategyand-eu-battery-recycling-market-study.pdf[43]H.Becker,C.Begon,V.Bichucher,J.Conzade,B.Heid,P.Hertzke,F.Nägele,E.Östgren,P.Radtke,P.Schaufuss/McKin-[51]AutomotiveIndustryPortalMarklines,https://www.markli-sey&Company,Preparingtheworldforzero-emissiontrucks.nes.com/Themainstaysofcommercialroadtransportwillsoonbenefitfromcost-effective,zero-emissionhorsepower,2022,[52]Q.Jin/CarNewsChina,BYD’sBEVsalesinQ3havereachedhttps://www.mckinsey.de/~/media/mckinsey/locations/99%ofTesla’s,2023,https://carnewschina.com/2023/10/02/europe%20and%20middle%20east/deutschland/news/byds-bev-sales-in-q3-have-reached-99-of-teslas/presse/2022/2022-09-19%20iaa%20trucks/mck%20perspective%20on%20zero%20emission%20trucks%202022.pdf[53]P.Lienert,J.White/Reuters,Musk'sboldgoalofselling20millionEVscouldcostTeslabillions,2022,https://www.reuters.[44]H.Basma,A.Saboori,F.Rodriguez/icct,TOTALCOSTOFcom/technology/musks-bold-goal-selling-20-mln-evs-could-OWNERSHIPFORTRACTOR-TRAILERSINEUROPE:BATTERYcost-tesla-billions-2022-08-30/ELECTRICVERSUSDIESEL,2021,https://theicct.org/wp-content/uploads/2021/11/tco-bets-europe-1-nov21.pdf[54]Jato,Teslaplacestwomodelsintheworldtop10best-sel-lingvehiclesin2022,2022,https://www.jato.com/tesla-places-[45]TÜVSüd,TRACTIONBATTERYAPPROVALACCORDINGtwo-models-in-the-world-top-10-best-selling-vehicles-in-2022/TOINTERNATIONALSTANDARDS,accessedon11/21/2023,https://www.tuvsud.com/en/industries/mobility-and-[55]C.Werwitzke/electrive,Q3:TeslazahltMarktführerschaftautomotive/automotive-and-oem/automotive-testing-mitMargen-Einbruch,2023,solutions/battery-testing/traction-battery-approval-https://www.electrive.net/2023/10/18/tesla-q3-zahlen/according-to-international-standards[56]futurezone,DiesesE-AutoistjetztdasmeistverkaufteAuto[46]ATIC,AutomotiveTractionBatteryGlobalHomoloha-derWelt,2023,https://futurezone.at/produkte/tesla-model-y-tionSolution,accessed11/21/2023,https://www.atic-ts.com/meistverkauftes-auto-der-welt-toyota-corolla/402464123automotive-traction-batteries-global-homologation-solution/[57]VolkswagenAG,Konzernlagebericht–Auslieferungendes[47]UnitedNationsPublication,ManualofTestsandCriteria–VolkswagenKonzerns,2022,https://geschaeftsbericht2022.Seventhrevisededition,ST/SG/AC.10/11/Rev.7,2019,volkswagenag.com/konzernlagebericht/geschaeftsverlauf/https://unece.org/fileadmin/DAM/trans/danger/publi/manual/auslieferungen.htmlRev7/Manual_Rev7_E.pdf[58]TheFraunhoferISILIBDBcontainscomprehensivedataonEVregistrationsandtheLIBsinstalledinthem,e.g.celldimen-sions,capacity,voltage,energydensity,specificenergy,cellchemistryandothers.84References[59]C.Neef/FraunhoferISI,Batterie-Update-Potenziale[69]B.Bustos-Gallardo,G.Bridge,M.Prieto,HarvestingLithi-von46-mm-Rundzellen–AufdemWegzumneuenStandard-um:water,brineandtheindustrialdynamicsofproductioninformat,2023,https://www.isi.fraunhofer.de/de/blog/theSalardeAtacama,Geoforum,Volume119,Pages177-189,themen/batterie-update/46-mm-rundzellen-potenziale-2021,https://doi.org/10.1016/j.geoforum.2021.01.001standardformat-batteriezellen.html[70]Regulation(EU)2023/1542oftheEuropeanParliamentand[60]Marklines,AnalysisReport:Lithium-IonBattery(Japan,oftheCouncilof12July2023concerningbatteriesandwasteEurope,NorthAmericaandKorea),2023,batteries,amendingDirective2008/98/ECandRegulation(EU)https://www.marklines.com/en/analysis_report2019/1020andrepealingDirective2006/66/EC,https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32023R1542[61]S.Doll/electrek,VolkswagenGroupexpects8in10passengercarstobeEVsby2030afterboos-[71]Stellantis,ANewEraofSustainableMobility,accessedtingsalestarget,2023,https://electrek.co/2023/03/07/11/21/2023,https://www.stellantis.com/en/responsibility/volkswagen-group-passenger-cars-evs-2030-sales-target/csr-vision[62]A.Colthorpe/EnergyStorageNEWS,Tesladeployed[72]BMWGroup,OURGOALS.,accessed11/21/2023,6.5GWhenergystoragein2022,‘thinkingcarefully’aboutnexthttps://www.bmwgroup.com/en/sustainability/our-goals.htmlMegapackfactorysite,2023,https://www.energy-storage.news/tesla-deployed-6-5gwh-energy-storage-in-2022-thinking-[73]RenaultGroup,Environment–Decarbonisation,carefully-about-next-megapack-factory-site/accessed11/21/2023,https://www.renaultgroup.com/en/our-commitments/environment-carbon-neutrality/[63]BloombergNEF,Lithium-ionBatteryPackPricesRiseforFirstTimetoanAverageof$151/kWh,2022,[74]Mercedes-BenzGroupAG,Ambition2039.-Kernelementhttps://about.bnef.com/blog/lithium-ion-battery-pack-prices-unserernachhaltigenGeschäftsstrategie,accessed11/21/2023,rise-for-first-time-to-an-average-of-151-kwh/https://group.mercedes-benz.com/nachhaltigkeit/klima/ambition-2039-unser-weg-zur-co2-neutralitaet.html[64]BatteriesEuropeanPartnership,StrategicResearch&InnovationAgenda,2021,[75]VolkswagenAG,WaytoZero:Bis2050willVolkswagenhttps://bepassociation.eu/wp-content/uploads/2021/09/bilanziellCO2-neutralsein,accessed11/21/2023,BATT4EU_reportA4_SRIA_V15_September.pdfhttps://www.volkswagen.de/de/elektrofahrzeuge/nachhaltig-keit/waytozero.html[65]G.Bhutada/VisualCapitalist,ElectricVehiclePricesFallasBatteryTechnologyImproves,2021,[76]BMWGroup,CIRCULARECONOMY.,accessed11/21/2023,https://www.visualcapitalist.com/electric-vehicle-battery-prices-https://www.bmwgroup.com/en/sustainability/our-focus/fall/circular-economy.html[66]F.Degen,Lithium-ionbatterycellproductioninEurope:[77]E.Aydin/VolkswagenGroup,VolkswagenGrouppublis-ScenariosforreducingenergyconsumptionandgreenhousegashesthirdResponsibleRawMaterialsReport,2023,emissionsuntil2030,JournalofIndustrialEcology,Volume27,https://www.volkswagen-group.com/en/press-releases/issue3,Pages964-976,2023,https://doi.org/10.1111/jiec.13386volkswagen-group-publishes-third-responsible-raw-materials-report-17465[67]T.Hettesheimer,M.Wietschel,C.Neef,D.Stijepic,C.Moll,A.Thielmann,L.TerceroEspinoza,C.Joachimst-[78]T.Gross/npr,How'modern-dayslavery'intheCongohaler,BatteriestandortaufKlimakurs:Perspektiveneinerpowerstherechargeablebatteryeconomy,2023,klimaneutralenBatterieproduktionfürElektromobilitätinhttps://www.npr.org/sections/goatsandsoda/2023/02/Deutschland,2021,https://publica.fraunhofer.de/entities/01/1152893248/red-cobalt-congo-drc-mining-siddharth-karapublication/60bec83b-ff70-49ac-8134-68ac8af380a4/details[79]P.Blum,C.Felke,V.vonOndarza,S.Pittelkow,B.Strunz,[68]J.-L.Popien,J.Husmann,A.Barke,C.Thies,F.Cerdas,C.Izoard,SchwereVorwürfegegenBMW-Zulieferer,2023,C.Herrmann,T.S.Sprengler,Comparisonoflithium-ionhttps://www.tagesschau.de/investigativ/ndr-wdr/batterysupplychains–alifecyclesustainabilityassessment,umweltstandards-bmw-zulieferer-kobalt-marokko-100.htmlProcediaCIRP,Volume116,page131-136,2023,https://doi.org/10.1016/j.procir.2023.02.02385References[80]N.Greenfield/NRDC,LithiumMiningIsLeavingChile’s[90]J.Tian,R.Xiong,W.Shen,J.Lu,State-of-chargeestimationIndigenousCommunitiesHighandDry(Literally),2022,ofLiFePO4batteriesinelectricvehicles:Adeep-learningena-https://www.nrdc.org/stories/lithium-mining-leaving-chiles-bledapproach,AppliedEnergy,Volume291,2021,116812,ISSNindigenous-communities-high-and-dry-literally0306-2619,https://doi.org/10.1016/j.apenergy.2021.116812.[81]J.Edler,K.Blind,R.Frietsch,S.Kimpeler,H.Kroll,C.Lerch,[91]A.Manthiram,Areflectiononlithium-ionbatterycathodeT.Reiss,F.Roth,T.Schubert,J.Schuler,R.Walz/Fraunhoferchemistry.NatCommun11,1550,2020.ISI,Technologiesouveränität-VonderForderungzumKonzept,https://doi.org/10.1038/s41467-020-15355-02020,https://www.isi.fraunhofer.de/content/dam/isi/dokumente/policy-briefs/policy_brief_[92]B.Ramasubramanian,S.Sundarrajan,V.Chellappan,technologiesouveraenitaet.pdfMV.Reddy,S.Ramakrishna,K.Zaghib,RecentDevelopmentinCarbon-LiFePO4CathodesforLithium-IonBatteries:[82]T.Geers,AltmaierwillSubventionenfürBatteriezellenpro-AMiniReview.Batteries.2022;8(10):133.duktioninEuropa,2018,https://doi.org/10.3390/batteries8100133https://www.deutschlandfunk.de/batterien-fuer-elektroautos-altmaier-will-subventionen-fuer-100.html[93]A.Holland,X.He,AdvancedLi-ionandBeyondLithiumBatteries2022-2032:Technologies,Players,Trends,Markets,[83]TheWhiteHouse,BUILDINGACLEANENERGYECONO-2022,https://www.idtechex.com/en/research-report/advanced-MY:AGUIDEBOOKTOTHEINFLATIONREDUCTIONACT’Sli-ion-and-beyond-lithium-batteries-2022-2032-technologies-INVESTMENTSINCLEANENERGYANDCLIMATEACTION,players-trends-markets/852Version2,2023,https://www.whitehouse.gov/wp-content/uploads/2022/12/Inflation-Reduction-Act-Guidebook.pdf[94]N.Tolganbek,Y.Yerkinbekova,S.Kalybekkyzy,Z.Bakenov,A.Mentbayeva,Currentstateofhighvoltageolivinestructured[84]InternationalEnergyAgency,ProhibitionoftheLiMPO4cathodematerialsforenergystorageapplications:Aexportofnickelore,2022,https://www.iea.org/review,JournalofAlloysandCompounds,Volume882,2021,policies/16084-prohibition-of-the-export-of-nickel-ore160774,ISSN0925-8388,https://doi.org/10.1016/j.jallcom.2021.160774.[85]IRS,Creditsfornewcleanvehiclespurchasedin2023orafter,2023,https://www.irs.gov/credits-deductions/[95]YanoResearchInstitute,2021/2022CURRENTSTATUSANDcredits-for-new-clean-vehicles-purchased-in-2023-or-afterFUTUREPROSPECTSOFLIBMATERIALMARKET,2022[86]D.W.O’Donnel/FederalRegister–TheDaily[96]VW-VortragbeiDeutsch-ChinesischeFachkonferenzzuJournaloftheUnitedStatesGovernment,Section30DBatterierohstoffen10/2023NewCleanVehicleCredit,2023,https://www.federalregister.gov/documents/2023/[97]Tesla,Q12022Update,2022,https://tesla-cdn.thron.04/17/2023-06822/section-30d-new-clean-vehicle-creditcom/static/IOSHZZ_TSLA_Q1_2022_Update_G9MOZE.pdf?xseo=&response-content-disposition=inline%3Bfilename[87]EuropeanCommissionPressRelease,CriticalRawMaterials:%3D%22TSLA-Q1-2022-Update.pdf%22ensuringsecureandsustainablesupplychainsforEU'sgreenanddigitalfuture,2023,https://ec.europa.eu/commission/[98]S.Schaal,VWbeziehtLFP-ZellenvonGotionauchpresscorner/detail/en/ip_23_1661außerhalbChinas,2023,https://www.electrive.net/2023/05/11/vw-bezieht-lfp-zellen-von-gotion-auch-ausserhalb-chinas/[88]Directorate-GeneralforInternalMarket,Industry,Entre-peneurshipandSMEs,EuropeanCriticalRawMaterialsAct,[99]S.Schaal,FordbringtLFP-ZellenimMustangMach-E2023,https://single-market-economy.ec.europa.eu/publications/noch2023,2023,https://www.electrive.net/2023/02/17/european-critical-raw-materials-act_enford-bringt-lfp-zellen-im-mustang-mach-e-noch-2023/[89]EuropeanCommission,TheEU-UKTradeandCooperation[100]S.Schaal,RenaulterwägtLFP-BatterienfürdenAgreement,2021,https://commission.europa.eu/strategy-and-Renault5,2021,https://www.electrive.net/2021/02/17/policy/relations-non-eu-countries/relations-united-kingdom/renault-erwaegt-lfp-batterien-fuer-den-renault-5/eu-uk-trade-and-cooperation-agreement_en[101]CATL,CATLLaunchesSuperfastChargingBatteryShenxing,OpensUpEraofEVSuperfastCharging,2023,https://www.catl.com/en/news/6091.html86References[102]GreenCarCongress,CATLlaunchessuperfastcharging[112]P.Zhang,CATLsaidtomassproduceLMFPbatteriesLFPbatteryShenxing;massproductionbyendofyear,2023,withinthisyear,2022,https://cnevpost.com/2022/07/12/catl-https://www.greencarcongress.com/2023/08/20230817-said-to-mass-produce-lithium-manganese-iron-phosphate-catl.htmlbatteries-within-this-year/[103]P.Zhang,CATLsaysit'sdevelopingM3Pbattery,different[113]P.Zhang,CATL'sM3Pbatterytobeputintousenextyear,fromLMFPbattery,2022,https://cnevpost.com/2022/07/13/sayschiefscientist,2022,https://cnevpost.com/2022/07/22/catl-says-its-developing-m3p-battery-different-from-lmfp-catls-m3p-battery-to-be-put-into-use-next-year-says-chief-battery/scientist/[104]I.Nwachukwu,A.Nwanya,A.B.C.Ekwealor,F.Ezema,[114]J.Cen,B.Zhu,S.Kavanagh,A.Squires,D.ScanlonRecentprogressinMnandFe-richcathodematerialsusedCationdisorderdominatesthedefectchemistryofhigh-inLi-ionbatteries,JournalofEnergyStorage,Volume54,voltageLiMn1.5Ni0.5O4(LMNO)spinelcathodes,Journal2022,105248,ISSN2352-152X,https://doi.org/10.1016/j.ofMaterialsChemistryA,Issue25,2023,est.2022.105248.https://doi.org/10.1039/D3TA00532A[105]L.Yang,W.Deng,W.Xu,Y.Tian,A.Wang,B.Wang,G.[115]R.Amin,N.Muralidharan,R.Petla,H.Yahia,S.Al-Hail,Zou,H.Hou,W.Deng,X.Ji,OlivineLiMnxFe1−xPO4cathodeR.Essehli,C.Daniel,M.Khaleel,I.Belharouak,Researchmaterialsforlithiumionbatteries:restrictedfactorsofrateadvancesoncobalt-freecathodesforLi-ionbatteries-performances,JournalofMaterialsChemistryA,Issue25,ThehighvoltageLiMn1.5Ni0.5O4asanexample,Journalof2021,https://doi.org/10.1039/D1TA01526EPowerSources,Volume467,2020,228318,ISSN0378-7753,https://doi.org/10.1016/j.jpowsour.2020.228318.[106]Mitsui&Co.GlobalStrategicStudiesInstitute,Lithiummanganeseironphosphate(LMFP)batteriesreceivingrenewed[116]H.Zhao,W.-Y.A.Lam,L.Sheng,L.Wang,P.Bai,Y.Yang,attentioninchina―Expectedtobeinstalledmainlyinmiddle-D.Ren,H.Xu,X.He,Cobalt-FreeCathodeMaterials:Familiesclassevs―,2023,https://www.mitsui.com/mgssi/en/report/andtheirProspects.Adv.EnergyMater.2022,12,2103894.detail/__icsFiles/afieldfile/2023/09/19/2308t_zhao_e.pdfhttps://doi.org/10.1002/aenm.202103894[107]GreenCarCongress,GotionHigh-Techlaunches[117]G.Liang,V.Peterson,K.See,Z.Guo,W.Pang,Develo-newL600LMFPAstroinnobattery;single-cellenergypinghigh-voltagespinelLiNi0.5Mn1.5O4cathodesforhigh-densityof240Wh/kg,2023,https://www.greencarcongress.energy-densitylithium-ionbatteries:currentachievementsandcom/2023/05/20230524-astroinno.htmlfutureprospects,JournalofMaterialsChemistryA,Issue31,2020,https://doi.org/10.1039/D0TA02812F[108]Gotion,Multi-nationalacademiciansdiscussedthedevelopmentofnewenergyinHefei,GotionAstroinno[118]X.Xu,S.Deng,H.Wang,etal.ResearchProgressinbatterieswillbeinmassproductionnextyear,2023,ImprovingtheCyclingStabilityofHigh-VoltageLiNi0.5Mn1.5O4https://en.gotion.com.cn/news/company-news-260.htmlCathodeinLithium-IonBattery.Nano-MicroLett.9,22,2017.https://doi.org/10.1007/s40820-016-0123-3[109]C.Werwitzke,GotionHigh-TechbereitetFertigungvonLMFP-Zellenvor,2023,https://www.electrive.net/2023/05/22/[119]NewsMorrow,MorrowBatteriesaimtorealisethefirstgotion-high-tech-bereitet-fertigung-von-lmfp-zellen-vor/prismaticLNMObatterycellintheworldearly2024,2023,https://news.morrowbatteries.com/pressreleases/morrow-[110]N.Caballero,SVOLTIntroducesDragonArmorBattery:batteries-aim-to-realise-the-first-prismatic-lnmo-battery-cell-in-LFP&NCMWith800km&1,000kmRangeRespectively,2022,the-world-early-2024-3267493?utm_campaign=send_listhttps://www.torquenews.com/15475/svolt-introduces-dragon-armor-battery-lfp-ncm-800-km-1000-km-range-respectively[120]BenchmarkSource,Batterydemandforman-ganesesettoincrease8-foldthisdecade,2023,[111]P.Zhang,NIOdevelopingmultiplebatteries,inclu-https://source.benchmarkminerals.com/article/ding4680-type,reportsays,2022,https://cnevpost.benchmark-launches-manganese-sulphate-market-outlookcom/2022/08/24/nio-developing-multiple-batteries-including-4680-type-report-says/[121]D.Luo,H.Zhu,Y.Xia,etal.ALi-richlayeredoxidecat-hodewithnegligiblevoltagedecay.NatEnergy8,1078–10872023.https://doi.org/10.1038/s41560-023-01289-687References[122]Y.Li,Z.Li,C.Chen,K.Yang,B.Cao,S.Xu,N.Yang,[132]J.Marie,S.Gifford,DevelopmentsinLithium-IonBatteryW.Zhao,H.Chen,M.Zhang,F.Pan,RecentprogressinLiandCathodes,FaradayInsights-Issue18,2023,MnrichlayeredoxidecathodesforLi-ionbatteries,Journalofhttps://www.faraday.ac.uk/wp-content/uploads/2023/09/EnergyChemistry,Volume61,2021,Pages368-385,ISSN2095-Faraday_Insights_18_FINAL.pdf4956,https://doi.org/10.1016/j.jechem.2021.01.034.[133]C.M.Julien,A.Mauger,NCA,NCM811,andtheRoute[123]T.Liu,J.Liu,L.Li,etal.OriginofstructuraldegradationtoNi-RicherLithium-IonBatteries.Energies2020,13,6363.inLi-richlayeredoxidecathode.Nature606,305–312,2022.https://doi.org/10.3390/en13236363https://doi.org/10.1038/s41586-022-04689-y[134]X.Tang,Q.Jia,L.Yang,M.Bai,W.Wu,Z.Wang,[124]Umicore,Umicorestartsindustrializationofmanganese-M.Gong,S.Sa,S.Tao,M.Sun,Y.Ma,Towardsthehigh-richbatterymaterialstechnologyforelectricvehicles,2023,energy-densitybatterywithbroadertemperatureadaptability:https://www.umicore.de/en/media/press-releases/umicore-Self-dischargemitigationofquaternarynickel-richcathode,starts-industrialization-of-manganese-rich-battery-materials-EnergyStorageMaterials,Volume33,2020,Pages239-249,technology-for-electric-vehicles/ISSN2405-8297,https://doi.org/10.1016/j.ensm.2020.08.020.[125]M.Akhilash,P.S.Salini,BibinJohn,T.D.Mercy,Ajourney[135]M.Bianchini,M.Roca-Ayats,P.Hartmann,T.Brezesins-throughlayeredcathodematerialsforlithiumioncells–Fromki,J.Janek,ThereandBackAgain—TheJourneyofLiNiO2aslithiumcobaltoxidetolithium-richtransitionmetaloxides,Jour-aCathodeActiveMaterial,Angew.Chem.Int.Ed.2019,58,nalofAlloysandCompounds,Volume869,2021,159239,ISSN10434,https://doi.org/10.1002/anie.2018124720925-8388,https://doi.org/10.1016/j.jallcom.2021.159239[136]U.Kim,L.Kuo,P.Kaghazchi,C.Yoon,andY.Sun,Quater-[126]W.He,F.Ye,J.Lin,etal.BoostingtheElectrochemicalnaryLayeredNi-RichNCMACathodeforLithium-IonBatteries,PerformanceofLi-andMn-RichCathodesbyaThree-in-ACSEnergyLetters20194(2),576-582,https://doi.org/10.1021/OneStrategy.Nano-MicroLett.13,205,2021.acsenergylett.8b02499https://doi.org/10.1007/s40820-021-00725-0[137]S.Schaal,SKInnovationkündigtneueschnellladefähige[127]NEICorporation,HighPerformanceBatteryMaterials-Zellenfür2021an,https://www.electrive.net/2020/10/26/LFP,https://www.neicorporation.com/products/batteries/sk-innovation-kuendigt-neue-schnellladefaehigen-zellen-fuer-cathode-anode-tapes/lithium-iron-phosphate/2021-an/[128]H.Hu,H.Li,Y.Lei,J.Liu,X.Liu,R.Wang,J.Peng,X.[138]P.Zhang,CATLreportedlydeveloping150-kWhpackWang,Mg-dopedLiMn0.8Fe0.2PO4/Cnano-plateasahigh-forNIOwithultra-highnickeltechnology,2021,https://cnevpost.performancecathodematerialforlithium-ionbatteries,Journalcom/2021/12/23/catl-reportedly-developing-150-kwh-pack-ofEnergyStorage,Volume73,PartB,2023,109006,ISSNfor-nio-with-ultra-high-nickel-technology/2352-152X,https://doi.org/10.1016/j.est.2023.109006[139]Leclanché,LeclanchéAchievesBreakthroughinEnviron-[129]NEICorporation,HighPerformanceBatteryMaterials-mentallyFriendlyProductionofHigh-PerformanceLithium-IonLMNO,https://www.neicorporation.com/products/batteries/Batteries,2023,https://www.leclanche.com/12322/cathode-anode-powders/lithium-manganese-nickel-oxide/[140]GreenCarCongress,LGChemtoinvest$3.2Btobuild[130]A.Sakti,J.Michalek,E.Fuchs,J.Whitacre,Atechno-eco-NCMAcathodeplantinTennessee;120,000tpa,2022,nomicanalysisandoptimizationofLi-ionbatteriesforlight-dutyhttps://www.greencarcongress.com/2022/11/20221122-lg.htmlpassengervehicleelectrification,JournalofPowerSources,Volume273,2015,Pages966-980,ISSN0378-7753,https://doi.[141]S.Lee,LGChemtoproduceNCMAhigh-nickelcathodeorg/10.1016/j.jpowsour.2014.09.078withHuayouCobalt,2022,https://thelec.net/news/articleView.html?idxno=3752[131]L.Noerochim,S.Suwarno,N.H.Idris,H.K.Dipojono,RecentDevelopmentofNickel-RichandCobalt-FreeCathode[142]F.Lambert,TeslaisexpectedtobefirsttouseLG’sMaterialsforLithium-IonBatteries.Batteries2021,7,84.newNCMAnickel-basedbatterycells,2021,https://doi.org/10.3390/batteries7040084https://electrek.co/2021/06/02/tesla-first-lg-new-ncma-nickel-based-battery-cells/88References[143]RabbitPublishingGmbH,DebunkingToyota:TheBEV[154]TheHinduBusinessLine,India’spushforself-reliance:strategyoftheworld’slargestcarmanufacturer,2023,ARCIcollaborateswithAltmintoproducekeycathodeactivehttps://www.electrive.com/2023/08/02/debunking-toyota-the-material,2023,https://www.thehindubusinessline.com/eco-bev-strategy-of-the-worlds-largest-car-manufacturer/nomy/india-forays-into-cathode-active-material-production-through-ppp/article67205957.ece[144]S.Schaal,BMW:VerzichtaufVerbrennerbei„NeuerKlasse“wirdwahrscheinlicher,2022,https://www.electrive.[155]EETimesAsia,IndonesiaExportRestrictionsonNickelnet/2022/07/15/bmw-verzicht-auf-verbrenner-bei-neuer-klasse-toIntensifyGlobalRawMaterialShortageforNEVBatteries,wird-wahrscheinlicher/2021,https://www.eetasia.com/indonesia-export-restrictions-on-nickel-to-intensify-global-raw-material-shortage-for-[145]Marklines,AnalysisReport:Lithium-IonBattery(Japanese,nev-batteries/European,NorthAmericanandKoreanMarkets),2022,https://www.marklines.com/en/report/wsw0129_202210[156]B.Christina,G.Suroyo,Korea'sLGEnergySolutionlaun-chesnickelprocessingplantsinIndonesia,2022,https://www.[146]SVOLT,MaterialInnovation:FirstCobalt-freeCathodereuters.com/breakingviews/skoreas-lg-energy-solution-laun-MaterialintheIndustry,ches-nickel-processing-plants-indonesia-2022-06-08/https://www.svolt.cn/en/hexin_cailiao.php[157]BenchmarkMineralIntelligenceLimited,ESGofgraphi-[147]NEICorporation,HighPerformanceBatteryMate-te:howdosyntheticgraphiteandnaturalgraphitecompare?,rials-LithiumNickelManganeseCobaltOxide(NMC)Tapes,2022,https://www.neicorporation.com/products/batteries/https://source.benchmarkminerals.com/article/esg-of-graphite-cathode-anode-tapes/lithium-nickel-manganese-cobalt-oxide/how-do-synthetic-graphite-and-natural-graphite-compare[148]NEICorporation,HighPerformanceBatteryMaterials-[158]M.Falcone,N.F.Quattromini,C.Rossi,B.Pulvirenti,LithiumNickelCobaltAluminumOxide(NCA),https://www.nei-LifeCycleAssessmentofaLithium-IonBatteryPackUnitMadecorporation.com/products/batteries/cathode-anode-powders/ofCylindricalCells,Batteries8(8),76,2022,lithium-nickel-cobalt-aluminum-oxide/https://doi.org/10.3390/batteries8080076[149]N.M.Jobst,A.Hoffmann,A.Klein,S.Zink,M.Wohl-[159]S.W.Gao,X.Z.Gong,Y.Liu,Q.Q.Zhang,Energyfahrt,TernaryCathodeBlendElectrodesforEnvironmentallyConsumptionandCarbonEmissionAnalysisofNaturalGraphiteFriendlyLithium-IonBatteries,Mehrens,ChemSusChem2020,AnodeMaterialforLithiumBatteries,MaterialScienceForum,13,3928,https://doi.org/10.1002/cssc.202000251Volume913,985-990,2018,https://doi.org/10.4028/www.scientific.net/MSF.913.985[150]I.RosellónInclán,Analysisofglobalbatteryproduction:productionlocationsandquantitiesofcellswithLFPandNMC/[160]P.Engels,F.Cerdas,T.Dettmer,C.Frev,J.Hentschel,NCAcathodematerial,2023,https://www.isi.fraunhofer.de/en/C.Herrmann,T.Mirfabrikikar,M.Schueler,Lifecycleassess-blog/themen/batterie-update/globale-batterieproduktion-ana-mentofnaturalgraphiteproductionforlithium-ionbatterylyse-standorte-mengen-zellen-lfp-nmc-nca-kathoden.htmlanodesbasedonindustrialprimarydata,JournalofCleanerProduction,Volume336,130474,2022,[151]Freyr,FREYRBatteryBeginsPreparatoryWorkinVaasa,https://doi.org/10.1016/j.jclepro.2022.130474Finland,2022,https://ir.freyrbattery.com/ir-news/press-releases/news-details/2022/FREYR-Battery-Begins-Preparatory-Work-in-[161]S.Huang,W.Wang,Q.Cui,W.-L.Song,S.Jiao,Assess-Vaasa-Finland/default.aspxmentofSphericalGraphiteforLithium-IonBatteries:Techni-ques,China'sStatus,ProductionMarket,andRecommended[152]Northvolt,Northvoltin2022:wherewestand(part1),PoliciesforSustainableDevelopment,AdvancedSustainable2022,https://northvolt.com/articles/northvolt-2022-Systems,Volume6,Issue11,2200243,2022,where-we-stand/https://doi.org/10.1002/adsu.202200243[153]R.Bellan,RedwoodMaterialsraises$1BtoexpandUS[162]InvestEstonia,EstonianUPCatalystlandsnewfundingbatterysupplychain,2023,https://techcrunch.com/2023/08/29/tocraftcleancarbonforbatteries,2023,https://investinestonia.redwood-materials-raises-1b-to-expand-us-battery-supply-com/estonian-up-catalyst-lands-new-funding-to-craft-clean-chain/?guccounter=1#:~:text=Redwood%20has%20said%20carbon-for-batteries/it%20expects,could%20power%205%20million%20EVs.89References[163]CarbonScape,Rapidlygrowingbatterygraphitemarket,[174]S.Loveday,Over15BrandsTestingStoreDot'sFast-accessed11/23/2023,ChargingHigh-EnergyEVBatteries,2023,https://www.carbonscape.com/biographitetechnologyhttps://insideevs.com/news/632130/15-brands-testing-storedot-ev-battery-breakthrough/[164]M.Shaw,KibaranResourcesTouts"Eco-friendly"Graphi-tePurificationProcess,2017,https://investingnews.com/daily/[175]K.Kitada,O.Pecher,P.Magusin,M.Groh,R.Weathe-resource-investing/battery-metals-investing/graphite-investing/rup,andC.Grey,UnravelingtheReactionMechanismsofSiOkibaran-resources-eco-friendly-graphite-purification/AnodesforLi-IonBatteriesbyCombininginSitu7LiandexSitu7Li/29SiSolid-StateNMRSpectroscopy,JournaloftheAmerican[165]L.Zhao,B.DIng,X.-Y.Qin,Z.Wang,W.Lv,Y.-B.He,ChemicalSociety141(17),7014-7027,2019,Q.-H.Yang,F.Kang,RevisitingtheRolesofNaturalGraphiteinhttps://doi.org/10.1021/jacs.9b01589OngoingLithium-IonBatteries,AdvancedMaterials,Volume34,Issue18,2106704,2022,[176]F.Wang,G.Chen,N.Zhang,X.Liu,R.Ma,Engineeringofhttps://doi.org/10.1002/adma.202106704carbonandotherprotectivecoatinglayersforstabilizingsiliconanodematerials.CarbonEnergy,1:219–2452019,[166]S.Li,K.Wang,G.Zhang,S.Li,Y.Xu,X.Zhang,X.Zhang,https://doi.org/10.1002/cey2.24S.Zheng,X.Sun,Y.Ma,FastChargingAnodeMaterialsforLithium-IonBatteries:CurrentStatusandPerspectives,Advan-[177]H.Chen,Z.Wu,Z.Su,S.Chen,C.Yan,M.Al-Mamun,cedFunctionalMaterials,Volume32,Issue23,2200796,2022,Y.Tang,S.Zhang,Amechanicallyrobustself-healingbinderforhttps://doi.org/10.1002/adfm.202200796siliconanodeinlithiumionbatteries,NanoEnergy,Volume81,105654,ISSN2211-2855,2021,[167]GWLGroup,ELERIXLithiumTitanateOxideCellLTOPris-https://doi.org/10.1016/j.nanoen.2020.105654matic2.3V30Ah–6C,accessed11/24/2023,https://shop.gwl.eu/LTO-Single-Cells/ELERIX-Lithium-Titanate-Oxide-Cell-LTO-[178]L.Jin,C.Shen,Q.Wu,A.Shellikeri,J.Zheng,C.Zhang,Prismatic-2-3V-30Ah-6C.htmlJ.P.Zheng,Pre-LithiationStrategiesforNext-GenerationPracticalLithium-IonBatteries.Adv.Sci.,8,2005031,2021[168]Evlitihium,2.4V20AhTOSHIBASCIBLTO(LithiumTita-https://doi.org/10.1002/advs.202005031nateOxide)BatteryCell,accessed11/24/2023,https://www.evlithium.com/Lithium-Titanate-Battery-LTO/scib-20ah-lto-[179]F.Holtstiege,P.Bärmann,R.Nölle,M.Winter,T.Placke,battery-cell.htmlPre-LithiationStrategiesforRechargeableEnergyStorageTechnologies:Concepts,PromisesandChallenges.Batteries,[169]QuantumScape,Deliveringonthepromiseofsolid-state2018,4,4.https://doi.org/10.3390/batteries4010004technology,accessed11/24/2023,https://www.quantumscape.com/technology/[180]Group14,Group14BeginsBuildingWorld’sLargestFactoryforAdvancedSiliconBatteryMaterials,2023,[170]SolidPower,SolidPower'sHighEnergy,Automotive-Scalehttps://group14.technology/en/news/group14-technologies-AllSolid-StateBatteriesSurpassCommercialLithium-IonEnergybegins-construction-of-the-worlds-largest-commercial-factory-Densities,2020,https://www.prnewswire.com/news-releases/for-advanced-silicon-battery-materials-solid-powers-high-energy-automotive-scale-all-solid-state-batteries-surpass-commercial-lithium-ion-energy-[181]M.Kane,Mercedes-BenzAndSilaAnnouncedensities-301190450.htmlBreakthroughInSiliconAnodeChemistry,2022,https://insideevs.com/news/586438/[171]Amprius,TheAll-NewAmprius500Wh/kgmercedes-sila-breakthrough-silicon-anode-chemistry/BatteryPlatformisHere,2023,https://amprius.com/the-all-new-amprius-500-wh-kg-battery-platform-is-here/[182]M.Lewis,Thislight,energy-densebatteryjustgotindependentlyverified,2023,https://electrek.co/2023/03/23/[172]Enovix,TestingConsiderationsforEnovix100%amprius-light-energy-dense-battery-independently-verified/ActiveSiliconAnodeCellsvsLi-ionGraphiteAnodeCells,2023,https://www.enovix.com/wp-content/uploads/2023/07/[183]Amprius,AmpriusTechnologiesSelectsColoradoforTesting-Considerations-of-Enovix-Cells-July-2023.pdfGigawatt-HourScaleFactorySite,2023,https://amprius.com/amprius-technologies-selects-colorado-for-gigawatt-hour-scale-[173]Enevate,XFC-EnergyTechnology,https://www.enevate.factory-site/com/technology/hd-energy-technology-overview/90References[184]J.Choi,SKCTargetsGlobalTop3inSiliconAnodeMate-[195]BusinessWire,IonbloxRaises$24MillionSeriesBInvest-rialMarketby2032,2023,https://www.businesskorea.co.kr/menttoSupporttheCommercializationofUniqueHighEnergynews/articleView.html?idxno=119075PlusHighPowerBatteryCells,2022,https://www.businesswire.com/news/home/20221026005100/en/Ionblox-Raises-24-[185]PanasonicEnergy,PanasonicEnergytoPurchaseSiliconMillion-Series-B-Investment-to-Support-the-Commercialization-AnodeMaterialsfromNexeon,EnablingProductionofHigher-of-Unique-High-Energy-Plus-High-Power-Battery-Cellsenergy-densityEVBatteriesintheU.S.,2023,https://news.panasonic.com/uploads/tmg_block_page_image/file/17703/[196]C.Werwitzke,IonicMTbereitetFertigungseinesSili-en230725-3-1.pdfziumpulversvor,2023,https://www.electrive.net/2023/11/03/ionic-mt-bereitet-fertigung-seines-siliziumpulvers-vor/[186]NeoBatteryMaterialsLtd,NEOSiliconAnodeNanocoa-tingTechnology,https://neobatterymaterials.com/technology/[197]L.Sun,C.Xu,K.Xiao,Y.Zhu,L.Yan,Geologicalcharacte-ristics,metallogenicregularitiesandtheexplorationofgraphite[187]J.Bridel,DevelopmentofSiliconAnodeMaterialsfordepositsinChina,ChinaGeology1(3),2018,425-434,ISSNbatteries,2023,https://www.thebatteryshow.eu/content/dam/2096-5192,https://doi.org/10.31035/cg2018044.Informa/amg/stuttgart/2023/conference/1520-1540-Jean-Sebastian-Bridel.pdf[198]Argus,TightsupplytounderpinChinagraphitemarketin2023,2022,https://www.argusmedia.com/en/news/2403887-[188]C.P.Sandhya,B.John,C.Gouri,Lithiumtitanateastight-supply-to-underpin-china-graphite-market-in-2023anodematerialforlithium-ioncells:areview.Ionics20,601–620,2014https://doi.org/10.1007/s11581-014-1113-4[199]TrendForce,BTRtoExpandProductionCapacityforAnodeMaterialsinNortheastChina,2022,[189]EchionTechnologies,Echionscales-upproductionofhttps://www.energytrend.com/news/20221005-30004.htmlMixedNiobiumOxide(XNO)batterymaterialstomeetincrea-singcommercialdemand,2023,https://www.echiontech.com/[200]Argus,China'sShanshantobuildLi-ionbatteryanodenews/echion-scales-up-production-of-mixed-niobium-oxide-plant,2021,https://www.argusmedia.com/en/news/2240906-xno-battery-materialschinas-shanshan-to-build-liion-battery-anode-plant[190]C.Randall,EchiontodeliveranodematerialstoMorrow[201]T.Shihua,ChineseBatteryMaterialsSupplierPutailaiSinksBatteries,2022,https://www.electrive.com/2022/05/25/onPlantoRaiseUSD1.26Billion,2022,https://www.yicaiglobal.echion-to-deliver-anode-materials-to-morrow-batteries/com/news/chinese-battery-materials-supplier-putailai-sinks-on-plan-to-raise-usd126-billion[191]Nyobolt,EV‘HolyGrail’unlockedwithlaunchofsix-minutechargecahttps://nyobolt.com/resources/blog/ev-holy-[202]PoscoNewsroom,POSCOChemicalexpandsthepro-grail-unlocked-with-launch-of-six-minute-charge-car/r,2023,ductioncapacityofsyntheticgraphiteanodematerials,2023,https://newsroom.posco.com/en/posco-chemical-expands-the-[192]Toshiba,Next-generationSCiB™supportingsmartproduction-capacity-of-synthetic-graphite-anode-materials/mobilityintheageofMaaS,https://www.global.toshiba/ww/products-solutions/battery/scib/next/nto.html[203]L.Chang-won,POSCOChemicalexpandsproductionofsyntheticgraphiteanodematerialsforlithium-ionbatteries,[193]Enovix,EnovixAnnouncesItsFirstHigh-Volume2022,https://www.ajudaily.com/view/20221202111706019ProductionFacilityWillBeLocatedinMalaysia,2023,https://ir.enovix.com/news-releases/news-release-details/[204]Z.Yushuo,China’sPutailaiPlanstoBuildEurope’sBiggestenovix-announces-its-first-high-volume-production-facility-willAnodePlantinSwedenforUptoUSD1.5Billion,2023,https://www.yicaiglobal.com/news/20230405-03-ptl-slips-on-[194]C.Morris,EnevateteamswithKorea’sJRtobuildaplan-to-invest-up-to-usd15-billion-to-build-lithium-ion-anode-batteryelectrodemanufacturingfacilityintheUS,2023,material-base-in-swedenhttps://chargedevs.com/newswire/enevate-teams-with-koreas-jr-to-build-a-battery-electrode-manufacturing-facility-in-the-us/[205]Hydro,VianodeinvestsNOK2billioninbatterymaterialsplantinNorway,2022,https://www.hydro.com/de-DE/medien/news/2022/vianode-invests-nok-2-billion-in-battery-materials-plant-in-norway/91References[206]P.Crompton,India-FinlandJVplanstobuildEurope’s[218]M.Li,C.Wang,K.Davey,etal.Recentprogressinelec-firstlithium-ionanodematerialsproductionfacility,2022,trolytedesignforadvancedlithiummetalbatteries.SmartMat.https://www.bestmag.co.uk/india-finland-jv-plans-build-2023;4:e1185.doi:10.1002/smm2.1185europes-first-lithium-ion-anode-materials-production-facility/[219]J.Wang,S.Li,J.Zhang,L.Song,H.Dong,N.Zhang,[207]Argus,GraphitefirmsintegrateEuropeanbatterysupplyP.Wang,D.Zhao,L.Zhang,andX.Cui,ImprovingTolerationchain,2020,https://www.argusmedia.com/en/news/2144154-ofVolumeExpansionofSilicon-BasedAnodebyConstructinggraphite-firms-integrate-european-battery-supply-chainaFlexibleSolid-ElectrolyteInterfaceFilmviaLithiumDifluoro(bisoxalato)PhosphateElectrolyteAdditive,ACSSustainable[208]MiningTechnology,Talgasecures€150mfromEIBforChemistry&Engineering,10(46),2022,Swedishbatteryanodeproject,2023,https://www.mining-tech-https://doi.org/10.1021/acssuschemeng.2c04795nology.com/news/talga-eib-swedish-battery-anode/?cf-view[220]F.Aupperle,N.vonAspern,D.Berghus,F.Weber,G.[209]M.Lewis,NorthAmerica’slargestgraphitefactoryisGebresilassieEshetu,M.Winter,andE.Figgemeier,TheRoleoflaunchinginGeorgia,2023,https://electrek.co/2023/05/15/ElectrolyteAdditivesontheInterfacialChemistryandThermalnorth-america-graphite-factory-georgia/ReactivityofSi-Anode-BasedLi-IonBattery,ACSAppliedEnergyMaterials2(9),2019,https://doi.org/10.1021/acsaem.9b01094[210]Novonix,NOVONIXProvidesUpdateonScalingU.S.ProductionofSyntheticGraphiteAnodeMaterials,2022,[221]C.Randall,Lanxesstosupplybatteryelectrolyteshttps://www.novonixgroup.com/novonix-provides-update-on-inEurope,2021,https://www.electrive.com/2021/03/30/scaling-u-s-production-of-synthetic-graphite-anode-materials/lanxess-to-supply-battery-electrolytes-in-europe/[211]T.Greene,NOVONIXandLGESUniteforArtificialGra-[222]KoreaITNews,EnchemtoBuildItsSecondEuropeanphiteAnodeandUS$30MNInvestmentAgreement,2023,ElectrolyteProductionPlantinHungary,2021,https://www.chemanalyst.com/NewsAndDeals/NewsDetails/https://english.etnews.com/20210507200002novonix-and-lges-unite-for-artificial-graphite-anode-and-us30-mn-investment-17598[223]K.Hyun-bin,DongwhaElectrolytecompletesconstructionofHungaryplant,2022,https://www.koreatimes.co.kr/www/[212]ResourceWorldMagazine,TheRacetoBuildaU.S.tech/2023/10/129_326934.htmlDomesticGraphiteSupplyChain,2023,https://resourceworld.com/the-race-to-build-a-u-s-domestic-graphite-supply-chain/[224]H.Kim,EnchemtomorethandoubleelectrolyteproductioninUS,2022,https://www.kedglobal.com/batteries/[213]N.Banya,SyrahResourceshitsrecordgraphiteoutput,newsView/ked202211280020USplantontrack,2023,https://www.mining.com/web/syrah-resources-hits-record-graphite-output-u-s-plant-on-track/[225]M.Blois,BatteryelectrolytemakersexpandintheUS,2023,https://cen.acs.org/energy/energy-storage-/[214]TanzaniaMining,NachuGraphiteProjectWillSupplyBattery-electrolyte-makers-expand-US/101/i20AnodeActiveMaterialstoTesla,2023,https://www.tanzaniainvest.com/mining/[226]X.Dai,X.Zhang,J.Wen,C.Wang,X.Ma,Y.Yang,G.magnis-nachu-graphite-will-supply-aam-to-teslaHuang,H.Ye,S.Xu,Researchprogressonhigh-temperatureresistantpolymerseparatorsforlithium-ionbatteries,Energy[215]Bloomberg,MagnisPlansAnAnodeActiveMaterialStorageMaterials51,638-659,2022,ManufacturingPlant,2022,https://doi.org/10.1016/j.ensm.2022.07.011.https://www.bloomberg.com/press-releases/2022-10-19/magnis-plans-an-anode-active-material-manufacturing-plant[227]J.Xing,S.Bliznakov,L.Bonville,etal.AReviewofNonaqueousElectrolytes,Binders,andSeparatorsforLithium-[216]U.Gupta,EpsilonAdvancedMaterialsplans$650millionIonBatteries.Electrochem.EnergyRev.5,14,2022.EVbatteryanodefacilityinUSA,2023,https://www.pv-maga-https://doi.org/10.1007/s41918-022-00131-zzine-india.com/2023/06/27/epsilon-advanced-materials-plans-650-million-ev-battery-anode-facility-in-usa/[228]C.Schewe,SEMCORPbeginntmitBauvonProduktions-stätteinDebrecen,2021,https://evertiq.de/news/27617[217]SKinnoNews,SKOntoworkwithU.S.graphiteprocessortodevelopanodematerials,2023,https://skinnonews.com/global/archives/1295092References[229]C.Werwitzke,SKIETechnologyeröffneterstesSepara-[240]V.Nguyen,C.Kuss,Review–ConductingPolymer-Basedtor-WerkinPolen,2021,https://www.electrive.net/2021/10/08/BindersforLithium-IonBatteriesandBeyond,JournalofThesk-ie-technology-eroeffnet-erstes-separator-werk-in-polen/ElectrochemicalSociety,Volume167,Number6,2020,DOI10.1149/1945-7111/ab856b[230]S.Lee,AsahiKaseitobuildbatteryseparatorfactoryout-sideofJapan,2022,https://www.thelec.net/news/articleView.[241]H.Hahn,J.Kaiser,M.Singh,ThickElectrodesforHighhtml?idxno=4065EnergyLithiumIonBatteries,JournalofTheElectrochemicalSociety,Volume162,Number7,2015,[231]Targray,HIGH-PERFORMANCEALUMINUMFOILFORhttps://iopscience.iop.org/article/10.1149/2.0401507jesLIBMANUFACTURING,https://www.targray.com/li-ion-battery/foils/aluminum[242]R.Schmuch,R.Wagner,G.Hörpel,etal.Performanceandcostofmaterialsforlithium-basedrechargeableautomotive[232]EVSpecifications,LGChemwillbeginmassproductionofbatteries.NatEnergy3,267–278,2018.EVbatterieswitha6µmcopperfoilforincreasedenergydensi-https://doi.org/10.1038/s41560-018-0107-2ty,2020,https://www.evspecifications.com/en/news/c89224f[243]H.Heiner,A.Kampker,C.Lienemann,M.Locke,[233]Targray,HIGH-PERFORMANCECUFOILROLLSFORLIBC.Offermanns,Lithium-ionBatteryCellProductionProcess,MANUFACTURING,2019,https://www.pem.rwth-aachen.de/global/show_https://www.targray.com/li-ion-battery/foils/copperdocument.asp?id=aaaaaaaaabdqbtk[234]C.Pan,S.Chen,Y.Huang,L.Wang,J.Luo,X.Fu,Afacile[244]G.Patry,A.Romagny,S.Martinet,D.Froehlich,Costmethodtofabricatelightweightcoppercoatedpolyimidefilmmodelingoflithium-ionbatterycellsforautomotiveapplicati-currentcollectorsforlithium-ionbatteries,JournalofPowerons,EnergyScienceandEngineering,3(1):71–82,2015,Sources,528,231207,ISSN0378-7753,2022,https://doi.org/10.1002/ese3.47https://doi.org/10.1016/j.jpowsour.2022.231207.[245]F.Wu,J.Maier,Y.Yu,ChemicalSocietyReviews,49,[235]M.Jiang,PowerBatteryIndustry:PETCopperandAlumi-1569-1614,2020,https://doi.org/10.1039/C7CS00863Enumfoilindustrializationbegins,2021,https://news.metal.com/newscontent/101662245/%5bagency-Review%5d-Power-Bat-[246]H.Zheng,J.Li,X.Song,G.Liu,V.Battaglia,Acompre-tery-Industry:-PET-Copper-and-Aluminum-foil-industrialization-hensiveunderstandingofelectrodethicknesseffectsonbeginstheelectrochemicalperformancesofLi-ionbatterycathodes,ElectrochimicaActa71,258-265,ISSN0013-4686,2012,[236]Tycorun,ANEWGENERATIONOFLIBTECHNOLOGYhttps://doi.org/10.1016/j.electacta.2012.03.161.ABOUTCOMPOSITECURRENTCOLLECTOR,2022,https://www.tycorun.com/blogs/news/composite-current-[247]P.Zhu,P.Slater,E.Kendrick,Insightsintoarchitecture,collector-a-new-generation-of-lib-current-collector-technologydesignandmanufactureofelectrodesforlithium-ionbatteries,Materials&Design,Volume223,111208,ISSN0264-1275,[237]SH.Park,P.J.King,R.Tian,etal.Higharealcapacity2022,https://doi.org/10.1016/j.matdes.2022.111208.batteryelectrodesenabledbysegregatednanotubenetworks.NatEnergy4,560–567,2019,[248]TakeshitaH./B3Corporation,LIBMaterialsMarkethttps://doi.org/10.1038/s41560-019-0398-yBulletin(19Q1),2019[238]L.Deng,Y.Zheng,X.Zheng,T.Or,Q.Ma,L.Qian,[249]M.Zacher,DieBedeutungderGigafactoriesfürdenY.Deng,A.Yu,J.Li,Z.Chen,DesignCriteriaforSilicon-BasedVW-Konzern(Teil2/2),2022,https://www.elektroautomobil.AnodeBindersinHalfandFullCells.Adv.EnergyMater.,12,com/newsbeitrag/vw-gigafactories-teil-2/2022,2200850.https://doi.org/10.1002/aenm.202200850[250]S.Hanley,Nissan&RenaultMakeBatteryDealWith[239]T.Kwon,J.Choi,A.Coskun,Theemergingeraofsupra-CATL,World’sLargestBatteryManufacturer,2018,molecularpolymericbindersinsiliconanodes,ChemicalSocietyhttps://cleantechnica.com/2018/05/12/nissan-renault-make-Reviews,Issue6,2018,https://doi.org/10.1039/C7CS00858Abattery-deal-with-catl-worlds-largest-battery-manufacturer/93References[251]S.Schaal/electrive,NissanundEnvisionAESC[263]Nigel,PowerCoUnifiedCell,2023,planenBatteriefabrikinJapan,2023,https://www.batterydesign.net/powerco-unified-cell/https://www.electrive.net/2021/08/03/nissan-und-envision-aesc-planen-batteriefabrik-in-japan/[264]A.Padeanu,BMWConfirmsRoundBatteryCellsForNeueKlasseWith30%MoreRange,2022,[252]H.Kim,SamsungSDI,StellantispickIndianaforUSEVhttps://www.bmwblog.com/2022/09/09/batteryplant,2022,https://www.kedglobal.com/batteries/bmw-confirms-round-battery-cells-neue-klasse/newsView/ked202205240017[265]M.Kane,Official:BMWToUseRoundBatteryCells,[253]C.Werwitzke,Bestätigt:BMWsetztaufRundzellen6GigafactoriesConfirmed,2022,https://insideevs.com/vonCATLundEveEnergy,2022,news/609420/bmw-round-battery-cells-6-gigafactories/https://www.electrive.net/2022/09/09/bestaetigt-bmw-setzt-auf-rundzellen-von-catl-und-eve-energy/[266]C.Randall,NioandSVOLTtojointlydevelopcylindricalcells,2023,https://www.electrive.com/2023/09/14/[254]C.Werwitzke,GMsollWechselvonPouch-aufRund-nio-and-svolt-to-jointly-develop-cylindrical-cells/zellenanstreben,2023,https://www.electrive.net/2023/01/26/gm-soll-wechsel-von-pouch-auf-rundzellen-anstreben/[267]S.Hanley,GMSwitchingToCylindricalBatte-ryCells,2023,https://cleantechnica.com/2023/01/28/[255]W.Ragland,R.Koronowski,UltiumCellsEVgm-switching-to-cylindrical-battery-cells/BatteryPlant,2023,https://www.americanprogress.org/article/ultium-cells-ev-battery-plant/[268]MazdaNewsroom,PanasonicEnergyandMazdatoEnterintoDiscussionstoEstablishMedium-toLong-term[256]C.Werwitzke,Mercedes‘Elektro-CLAsollLFP-ZellenPartnershipforSupplyofAutomotiveCylindricalLithium-ionvonBYDerhalten,2023,https://www.electrive.net/2023/09/14/Batteries,2023,https://newsroom.mazda.com/en/publicity/mercedes-elektro-cla-soll-lfp-zellen-von-byd-erhalten/release/2023/202306/230621a.html[257]M.Kane,MazdaAndPanasonicStartTalksAboutCylin-[269]M.Kane,SubaruIsInterestedInPanasonic'sNext-dricalEVBatteries,2023,https://insideevs.com/news/673282/GenCylindricalEVBatteries,2023,https://insideevs.com/mazda-panasonic-cylindrical-ev-batteries/news/679567/subaru-panasonic-cylindrical-ev-batteries/[258]E.Gerlitz,D.Botzem,H.Weinmann,J.Ruhland,J.Flei-[270]S.Hanley,SamsungSDIWillProduce4640&4660scher,"Cell-to-Pack-TechnologiefürLi-Ionen-Batterien:Aktuel-BatteryCells,2022,https://cleantechnica.com/2022/06/23/lerEntwicklungsstand,MarktakteureinderAutomobilindustriesamsung-sdi-will-produce-4640-4660-battery-cells/undAuswirkungenaufeinenachhaltigeProduktionstechnikunterdemAspektderKreislaufwirtschaft"Zeitschriftfürwirt-[271]GreenCarCongress,RenaultGroupandVerkorenterschaftlichenFabrikbetrieb,vol.116,no.10,pp.689-694,2021,long-termpartnershipfor12GWh/yearofEVbatteries,2023,https://doi.org/10.1515/zwf-2021-0146https://www.greencarcongress.com/2023/04/20230414-renault.html[259]T.Moloughney,FordToBuild$3.5BillionLFPBatteryPlantInMichigan,2023,https://insideevs.com/news/652304/[272]H.Kim,H.Park,I.Kim,Hyundai,SKtobuild$1.9bnford-lfp-battery-plant-michigan/EVbatteryplantinUS,2022,https://www.kedglobal.com/batteries/newsView/ked202211250018[260]M.Kane,Toyota-Panasonic'sBatteryJVToHalveCostsBy2022,2021,https://insideevs.com/news/520611/[273]P.Zhang,CATLhasbegunmassproductionofQilintoyota-panasonic-battery-jv-costs/Battery,reportsays,2023,https://cnevpost.com/2023/03/21/catl-has-begun-mass-production-of-qilin-battery-report/[261]G.Bockey,BMWbestelltangeblichBatteriezellenbeiSVOLT,2023,https://battery-news.de/2023/10/13/[274]M.Wyche,NIOReceivesAdvancedHigh-EnergyDensitybmw-soll-batteriezellen-bei-svolt-beziehen/BatteryCellsfromWeLionforItsEVs,2023,https://cleanearth.io/news/nio-receives-advanced-high-energy-density-battery-[262]TheMercedes-BenzGroupAG,Mercedes-Benzexpandscells-from-welion-for-its-evs/batterysupplypartnershipwithCATL.,2022,https://group.mercedes-benz.com/innovation/digitalisation/industry-4-0/article-2.html94References[275]P.Lima,ThisiswhyBYDBladebatteryisahead[287]MariusHelleretal.,Energieeffizienteundqualitätsorien-ofcompetition,2022,https://pushevs.com/2021/08/10/tierteAnlagenkonzeptefürdieBatteriezellfertigung,2023this-is-why-byd-blade-battery-is-ahead-of-competition/[288]C.Werwitzke,VolkswagenwillTrockenbeschichtung[276]J.Shen,Volkswagen-backedGotionunveilsnewEVinGroßserieanwenden,2023,batterywith1,000kmrange,2023,https://www.electrive.net/2023/06/12/volkswagen-will-https://technode.com/2023/05/19/volkswagen-backed-gotion-trockenbeschichtung-in-grossserie-anwenden/unveils-new-ev-battery-allowing-1000-km-range/[289]M.Patzwald,T.Scheuer,L.Schenk,O.Krätzig,Technolo-[277]S.Schaal,BMW-RundzellenmithöhererEnergiedich-giestudieTrockenbeschichten,FraunhoferForschungsfertigungtealsTeslas4680-Batterie?,2023,https://www.electrive.BatteriezelleFFB,2020net/2023/03/24/bmw-rundzellen-mit-hoeherer-energiedichte-als-teslas-4680-batterie/[290]Targray,TARGRAYCATHODEMATERIALSFORLI-IONBATTERYMANUFACTURERS,https://www.targray.com/[278]S.Schaal,SVOLTstelltneueLFP-Batterievor,2022,li-ion-battery/equipment/roll-to-roll-coaterhttps://www.electrive.net/2022/01/05/svolt-stellt-neue-lfp-batterie-vor/[291]W.Pfleging,Areviewoflaserelectrodeprocessingfordevelopmentandmanufacturingoflithium-ionbatteries"[279]S.SchaalCATLbringtimAprildritteCell-to-Pack-Nanophotonics,vol.7,no.3,pp.549-573,2018,Generation,2022,https://www.electrive.net/2022/03/28/https://doi.org/10.1515/nanoph-2017-0044catl-bringt-im-april-dritte-cell-to-pack-generation/[292]M.Podbrenznik,Anwendungsstudie:Laseranwendungen[280]S.Edelstein,Next-genLFPbatterytechforEVsadds250inderBatterieproduktion,Vortrag,2023milesin10minutes,2023,https://www.greencarreports.com/https://www.vdma.org/viewer/-/v2article/render/81501336news/1140517_next-gen-lfp-battery-tech-for-evs-adds-250-miles-in-10-minutes[293]T.Jansen,M.W.Kandula,S:Hartwig,L.Hoffmann,W.Haselrieder,K.Dilger,InfluenceofLaser-GeneratedCutting[281]G.Eshetu,H.Zhang,X.,Judez,etal.Productionofhigh-EdgesontheElectricalPerformanceofLargeLithium-IonPouchenergyLi-ionbatteriescomprisingsilicon-containinganodesandCells.Batteries2019,5,73.insertion-typecathodes.NatCommun12,5459,2021.https://doi.org/10.3390/batteries5040073https://doi.org/10.1038/s41467-021-25334-8[294]Trumpf,BatteryShow:TRUMPFshowslasersolutions[282]FraunhoferISIMeta-Market-Monitoring,2023,forthecompletebatteryproductionprocesschain,2022,https://metamarketmonitoring.de/https://www.trumpf.com/en_SG/newsroom/global-press-releases/press-release-detail-page/release/battery-show-trumpf-[283]H.H.Heimes,B.Dorn,M.Locke,S.Wennemar,shows-laser-solutions-for-the-complete-battery-production-R.Ludwigs,L.Plocher,S.Voß,ProduktionsverfahrenvonBat-process-chain/teriezellenund-systemen.In:Kampker,A.,Heimes,H.H.(eds)Elektromobilität.SpringerVieweg,Berlin,Heidelberg,2024,[295]ManzAG,Batteryproductionofthefuture:Withlasershttps://doi.org/10.1007/978-3-662-65812-3_intonewdimensions,2021,https://www.manz.com/en/compa-ny/news/batteryproduction-of-the-future-with-laser-into-new-[284]K.Knehr,J.Kubal,P.Nelson,S.Ahmed,BatteryPerfor-dimensions/manceandCostModelingforElectric-DriveVehicles:AManualforBatPaCv5.0”ANL/CSE-22/1,2022,doi:10.2172/1877590[296]LaserPhotonics,ElectrificationandLaserCleaning:ImprovingthePerformanceofElectricVehicleBatteries,[285]G.Bhutada/Visualcapitalist,BreakingDowntheCosthttps://www.laserphotonics.com/electrificationofanEVBatteryCell,2022,https://www.visualcapitalist.com/breaking-down-the-cost-of-an-ev-battery-cell/[297]K.Fidan,Efficientlaserweldingprocessesinbatte-ryproduction,2023,https://www.vitronic.com/en-us/blog/[286]F.Degen,M.Winter,D.Bendig,J.Tübke,Energycon-smart-production/laser-welding-processes-in-battery-productionsumptionofcurrentandfutureproductionoflithium-ionandpostlithium-ionbatterycells.NatEnergy8,1284–1295,2023),[298]S.Schaal,SVOLTnimmtBatteriefabrikSuininghttps://doi.org/10.1038/s41560-023-01355-zinBetrieb,2022,https://www.electrive.net/2022/11/04/svolt-nimmt-batteriefabrik-suining-in-betrieb/95References[299]O.Krätzigetal.,ExpertenworkshopimKontextdesBMBF[309]C.Randall/RabbitPublishingGmbH,CATLgefördertenFoFeBatProjektmitdemTitel"Pipelineprozesstobeginmanufacturingthird-genbatteriesin2023,Innovationsmodule-ScreeningvonForschungsthemenfürdie2022,https://www.electrive.com/2022/06/23/InnovationsmodulederFFB",2022catl-to-begin-manufacturing-third-gen-batteries-in-2023/[300]AMETEKSurfaceVision,Surfaceinspectionofbattery[310]C.Randall/RabbitPublishingGmbH,SVOLTseparatorsandelectrodematerial,2022,presentsnewbatterypacktitled‘DragonArmor’,https://www.ameteksurfacevision.com/-/media/2022,https://www.electrive.com/2022/12/19/ameteksurfacevisionv2/documentation/application-notes/svolt-presents-new-battery-pack-titled-dragon-armor/ametek_surface_vision_batteries_application_note_rev1_en.pdf?la=en&revision=2ddd5426-4ec2-4055-a3a[311]C.Randall/RabbitPublishingGmbH,DaimlertouseLFP834be30a9722&hash=1DC24EE4E2C1B31C218F276C-cellsfrom2024,2021,https://www.electrive.com/2021/10/28/824B9ADDdaimler-to-use-lfp-cells-from-2024/[301]IsraVision,InspectionsolutionsforEVbatteryproduc-[312]S.Lee,Volkswagentodevelop‘CATL’scelltopacktion,https://www.isravision.com/en-en/industries/battery/tech’,2022,https://www.thelec.net/news/articleView.ev-battery-productionhtml?idxno=4330[302]Xiris,SolutionsforWeldInspectionandMonitoring,[313]L.Ulrich,BMWPlansMovetoStructuralBatteryPackshttps://www.xiris.com/and‘46120’Cells,2023,https://www.mobilityenginee-ringtech.com/component/content/article/ae/pub/regulars/[303]KohYoungTechnology,True3DAOIbeyondtechnology-reports/47422Measurement,https://kohyoung.com/en/automated-optical-inspection-technology/[314]M.Andrews,ANewApproachtoCarBatteriesIsAbouttoTransformEVs,2022,https://www.wired.co.uk/article/[304]WaygateTechnologies(formerGEInspectionTechno-cell-to-chassis-batteries-electric-vehicleslogies),WaygateTechnologiespresentsadvancedinspectionsolutionsforefficientandsafebatteryproductionatBattery[315]L.Yupeng,Doesthe160,000TeslaplusShowinStuttgart.e-JournalofNondestructiveTesting.bladebatteryleavenoroomforothercarcompa-Vol.27(6),2022https://www.ndt.net/?id=27016niestosurvive?,2022,https://www.usmart.hk/zh-cn/news-detail/6830402716687253872[305]NikonMetrologyNV,X-rayCTInspectionSolutionsforLithium-IonBatteryProduction,2023,https://industry.nikon.[316]C.Köllner,WasistdieCell-to-Pack-Tech-com/en-us/events/x-ray-ct-inspection-solutions-for-lithium-ion-nologie?,2022,https://www.springerpro-battery-production/fessional.de/batterie/automobilproduktion/was-ist-die-cell-to-pack-technologie-/23684340[306]DürrNDT,NEUERFLACHDETEKTORFÜRDIERÖNTGEN-PRÜFUNGLÄNGLICHERSTRUKTUREN,2021,https://www.[317]Businesswire,24MTechnologiestoUnveilElectrode-duerr-ndt.de/aktuelles/pressemitteilung/neuer-flachdetektor-to-PackTechnology—24METOP™—at2023JapanMobilityfuer-die-roentgenpruefung-laenglicher-strukturen.htmlShow,2023,https://24-m.com//pressrelease/[307]E.Adhitama,M.Bela,F.Demelash,M.C.Stan,M.Winter,[318]ChinaDailyInformationCo(CDIC),Geely'sEVarmA.Gomez-Martin,T.Placke,OnthePracticalApplicabilityoftheZeekrstartstoexploreEuropeanmarket,2023,LiMetal-BasedThermalEvaporationPrelithiationTechniqueonhttps://www.chinadaily.com.cn/a/202307/03/WS64a2682a-SiAnodesforLithiumIonBatteries.Adv.EnergyMater.2023,a310bf8a75d6cef6.html13,2203256.https://doi.org/10.1002/aenm.202203256[319]S.Schaal/RabbitPublishingGmbH,Zeekrlieferterste[308]C.Wessner,S.Khemka,U.S.IRA:whatcanEuropedoto001mitQilin-Batterieaus,2023,https://www.electrive.stopitsfirmsrelocatingtoAmerica?,2023,https://energypost.net/2023/05/17/zeekr-liefert-erste-001-mit-qilin-batterie-aus/eu/u-s-ira-what-can-europe-do-to-stop-its-firms-relocating-to-america/[320]C.Randall/RabbitPublishingGmbH,BYDintroducesfourBEVsfittedwiththeBladeBatte-ry,2023,https://www.electrive.com/2021/04/09/byd-introduces-four-bevs-fitted-with-the-blade-battery/96References[321]J.Opletal,Mercedes-BenztouseBYDBladebatteries[332]S.Schaal/RabbitPublishingGmbH,IAA:XingMobilityintheirEVs,accordingtoreport,2023,https://carnewschina.stelltimmersionsgekühlteCell-to-Pack-Batterievor,2023,com/2023/09/08/mercedes-benz-to-use-byd-blade-batteries-in-https://www.electrive.net/2023/08/31/iaa-xing-mobility-stellt-their-evs-according-to-report/immersionsgekuehlte-cell-to-pack-batterie-vor/[322]D.Bobylev,FirstTeslaModelYwithBYDBladebattery[333]BYD,BYDSEAL:DynamicandIntelligent,2023,rolledofftheproductionlineinGermany.Itsperformancehttps://www.byd.com/eu/news-list/BYD_SEAL_Dynamic_and_issurprising,2023,https://carnewschina.com/2023/05/22/Intelligent.htmlfirst-tesla-model-y-with-byd-blade-battery-rolled-off-the-production-line-in-germany-its-performance-is-surprising/[334]C.Hampel,KreiselandShellrevealnewbatterysolution,2020,https://www.electrive.com/2020/11/18/[323]C.Westerheide/RabbitPublishingGmbH,Fordkreisel-and-shell-reveal-new-battery-solution/touseLFPcellsinMustangMach-Ethisyearalready,2023,https://www.electrive.com/2023/02/17/ford-to-use-lfp-[335]S.Schaal,MahlezeigtneueBatterie-Immersions-cells-in-mustang-mach-e-this-year-already/kühlung,2021,https://www.electrive.net/2021/09/08/mahle-zeigt-neue-batterie-immersionskuehlung/[324]M.Kane,StellantisPresentsComprehensiveElectrifi-cationStrategy,2021,https://insideevs.com/news/518975/[336]A.Wazeer,A.Das,C.Abeykoon,A.Sinha,A.Karmakar,stellantis-comprehensive-electrification-strategy/Phasechangematerialsforbatterythermalmanagementofelectricandhybridvehicles:Areview,EnergyNexus,Volume[325]C.Crownhart/MITTechonologyReview,How5-minute7,100131,ISSN2772-4271,2022batteryswapscouldgetmoreEVsontheroad,2023,https://doi.org/10.1016/j.nexus.2022.100131.https://www.technologyreview.com/2023/05/17/1073265/how-5-minute-battery-swaps-could-get-more-evs-on-the-road/[337]L.Ianniciello,P.HenryBiwolé,P.Achard,Electricvehic-lesbatteriesthermalmanagementsystemsemployingphase[326]K.Bullis,WhyTeslaThinksItCanMakeBatterySwappingchangematerials,JournalofPowerSources,Volume378,Work,2013,Pages383-403,ISSN0378-7753,2018https://www.technologyreview.com/2013/06/19/177621/https://doi.org/10.1016/j.jpowsour.2017.12.071.why-tesla-thinks-it-can-make-battery-swapping-work/[338]Anisha,KumarA.IdentificationandMitigationof[327]J.Opletal,Niobuilt2,000batteryswapstationsglobally,ShortcomingsinDirectandIndirectLiquidCooling-BasedBat-leavingGeely,CATL,andGACfarbehind,2023,teryThermalManagementSystem.Energies.2023;16(9):3857.https://carnewschina.com/2023/10/20/nio-built-2000-battery-https://doi.org/10.3390/en16093857swap-stations-globally-leaving-geely-catl-and-gac-far-behind/[339]D.Gulde,Wasbringtdie800Volt-TechnikbeimE-Auto?,[328]S.Ibold,Y.Xia,OverviewonBatterySwappingand2022,https://www.auto-motor-und-sport.de/tech-zukunft/Battery-as-a-Service(BaaS)inChina,DeutscheGesellschaftfürantriebstechnik-400-volt-800-volt-unterschied/InternationaleZusammenarbeit(GIZ)GmbH,2022,https://transition-china.org/wp-content/uploads/2022/08/[340]R.Wildberg,DieseElektroautosladenbereitssuperschnellBattery_Swapping_20220809.pdfmit800Volt,2023,https://www.autobild.de/artikel/elektro-autos-ladetechnik-800-volt-22628751.html[329]P.Daxenbichler,ThermomanagementvonE-Autos,2022,https://futurefuels.blog/im-labor/thermomanagement-von-[341]R.Schesswendter,NeueKlasse:BMWsetztwieTeslae-autos/auf46XX-Akkus–und800Volt,2022,https://t3n.de/news/neue-klasse-bmw-46xx-4680-akku-batterie-feststoff-tesla-[330]Dober,COOLINGLITHIUM-IONBATTERYPACKS,2023,800-volt-1485209/https://www.dober.com/electric-vehicle-cooling-systems[342]D.Mihalascu,VolkswagenMEB+ToOffer435MilesOf[331]HaowenWu,StudyondirectrefrigerantcoolingRange,200kWFastCharging,2022,https://insideevs.com/forlithium-ionbatteriesofelectricvehicles,J.Phys.:news/625478/volkswagen-mebplus-offer-435-miles-range-Conf.Ser.2310012028,2022,https://iopscience.iop.org/200-kw-fast-charging/article/10.1088/1742-6596/2310/1/012028/pdf97References[343]B.Halvorson,TheseEVshave800Vcharging:Whyit’s[355]F.Naseri,C.Barbu,T.Sarikurt,OptimalsizingofhybridbetterwithorwithoutTesla’sNACS,2023,https://www.green-high-energy/high-powerbatteryenergystoragesystemstocarreports.com/news/1140166_these-evs-have-800v-charging-improvebatterycyclelifeandchargingpowerinelectricvehiclewhy-its-better-with-or-without-teslas-nacsapplications,JournalofEnergyStorage,Volume55,PartD,105768,ISSN2352-152X,2022,[344]GMCMedia,GMCContinuestheElectricTruckhttps://doi.org/10.1016/j.est.2022.105768.Revolution:IntroducingtheFirst-Ever2024SierraEV,2022,https://media.gmc.com/media/us/en/gmc/home.detail.html/[356]Nio,NIOLaunchestheStandard-RangeHybrid-content/Pages/news/us/en/2022/oct/1020-sierra-ev.htmlCellBattery,2021,https://www.nio.com/news/nio-launches-standard-range-hybrid-cell-battery[345]J.Gitlin,Chevroletshowsoffthe2024SilveradoEV,itsfirstelectricpickup,2022,https://arstechnica.com/cars/[357]B.Wang,CATLwillMixCheaperSodiumIonBatteries2022/01/chevrolet-shows-off-the-2024-silverado-ev-its-first-WithLithiumforAcceptableRangeEVs,2022,electric-pickup/https://www.nextbigfuture.com/2022/12/catl-will-mix-cheaper-sodium-ion-batteries-with-lithium-for-acceptable-range-[346]N.Yang,800-VoltEVQuickChargeRaceBeginsinevs.htmlChina,2022,https://equalocean.com/analysis/2022031817135[358]S.Doose,J.Mayer,P.Michalowski,A.Kwade.Challenges[347]D.Chen,LiMEGAMPVisLiAuto’sfirstpureelectricinEcofriendlyBatteryRecyclingandClosedMaterialCycles:vehicle,withlatestCATLbatteryand800Vplatform,2023,APerspectiveonFutureLithiumBatteryGenerations.Metals.https://carnewschina.com/2023/06/17/li-mega-mpv-is-li-2021;11(2):291.https://doi.org/10.3390/met11020291autos-first-pure-electric-vehicle-with-latest-catl-battery-and-800v-platform/[359]S.Wu,N.Kaden,K.Dröder.ASystematicReviewonLithium-IonBatteryDisassemblyProcessesforEfficient[348]ResearchinChina,800VHighVoltagePlatformResearchRecycling.Batteries.2023;9(6):297.Report,2022,http://www.researchinchina.com/Htmls/https://doi.org/10.3390/batteries9060297Report/2022/71739.html[360]D.Klohs,C.Offermanns,H.Heimes,A.Kampker.Auto-[349]B.Anderson,GACAionHyperHTLaunchedWithmatedBatteryDisassembly–ExaminationoftheProduct-and400-VoltAnd800-VoltOptions,UpTo335HP,2023,Process-RelatedChallengesforAutomotiveTractionBatteries.https://www.carscoops.com/2023/10/gac-aion-hyper-ht-Recycling.2023;8(6):89.launched-with-400-volt-and-800-volt-options/https://doi.org/10.3390/recycling8060089[350]Zeekr,ZEEKR001FR–RedefiningPerformance,Delivering[361]Umicore,Ourrecyclingprocess,onPromises,2023,https://zeekrglobal.com/article/12/https://brs.umicore.com/en/recycling/[351]W.Liu,T.Placke,K.T.Chau.Overviewofbatteriesand[362]NickelhütteAue,RecyclingvonBatterien,batterymanagementforelectricvehicles.EnergyReports.Vol.https://nickelhuette-aue.de/de/services/batterierecycling8,November2022,pp.4058-4084.https://www.sciencedirect.com/science/article/pii/S2352484722005716#sec4[363]NipponRecycleCenterCorp.,RecyclingofRechargableBatteries,https://www.recycle21.co.jp/recycle-e/service/pro.html[352]W.Li,M.Rentemeister,J.Badeda,D.Jöst,D.Schulte,D.U.Sauer.JournalofEnergyStorage.Vol.30,August2020,[364]Glencore,Recycling,101557https://doi.org/10.1016/j.est.2020.101557https://www.glencore.com/what-we-do/recycling[353]ST,AutomotiveBatteryManagementSystem(BMS),[365]BASFMedien,BASFundTenovaAdvancedTechnologieshttps://www.st.com/en/applications/electro-mobility/schließenVereinbarungzurgemeinsamenEntwicklungautomotive-battery-management-system-bms.htmleineseffizientenRecyclingverfahrensfürLithium-Ionen-Batterien,2023,https://www.basf.com/global/de/media/news-[354]NXPSemiconductors,AI-PoweredCloud-Connectedreleases/2023/02/p-23-139.htmlBatteryManagementSystemforElectricVehicles,2022,https://www.nxp.com/company/about-nxp/ai-powered-cloud-[366]SungEelHiTech,Recycling,2022,connected-battery-management-system-for-electric-vehic-https://www.sungeelht.com/en/html/12?ckattempt=1les:NW-NXP-AI-POWERED-CLOUD-CONNECTED-BATTERY98References[367]ACEGreenRecycling,AdvancingSustainableGlobal[379]S.Liu,D.Patton,China,world'stopgraphiteproducer,Electrification,https://www.acegreenrecycling.com/tightensexportsofkeybatterymaterial,2023,https://www.reuters.com/world/china/china-require-export-[368]Neometals,LITHIUM-IONBATTERYRECYCLING,permits-some-graphite-products-dec-1-2023-10-20/https://www.neometals.com.au/business-units/core-divisions/lib/[380]Y.Qiao,H.Zhao,Y.Shen,etal.Recyclingofgraphiteanode[369]Northvolt,Europe’slargestelectricvehiclebatteryfromspentlithium-ionbatteries:Advancesandperspectives.recyclingplantbeginsoperations,2022,EcoMat.2023;5(4):e12321.doi:10.1002/eom2.12321https://northvolt.com/articles/hydrovolt/[381]PrincetonNuenergy,INNOVATIVELI-IONBATTERY[370]Duesenfeld,UmweltfreundlichesRecyclingvonLithium-RECYCLINGANDBATTERYMATERIALSPRODUCTION,Ionen-Batterien,https://www.duesenfeld.com/recycling.htmlhttps://pnecycle.com[371]TES,CommercialBatteryRecycling,2023,[382]H.Lefherz,N.Dilger,S.Melzig,F.Cerdas,S.Zellmer,https://www.tes-amm.com/it-services/commercial-Tightentheloop–Potentialforreductionofenvironmentalbattery-recyclingimpactsbydirectrecyclingofbatteryproductionwaste,Pro-cediaCIRP,Volume116,Pages65-70,ISSN2212-8271,2023,[372]MercedesBenzNews,Mercedes-Benzcelebratesitshttps://doi.org/10.1016/j.procir.2023.02.012.groundbreakingceremonyforanewbatteryrecyclingfactoryinKuppenheim,Germany,cuttingresourceconsumptionand[383]J.Zhu,I.Mathews,D.Ren,W.Li,D.Cogswell,B.Xing,establishingclosed-looprecyclingofbatteryrawmaterials,T.Sedlatschek,S.Kantareddy,M.Yi,T.Gao,Y.Xia,Q.Zhou,2023,https://group.mercedes-benz.com/company/news/T.Wierzbicki,M.Bazant,End-of-lifeorsecond-lifeoptionsforrecycling-factory-kuppenheim.htmlretiredelectricvehiclebatteries,CellReportsPhysicalScience,Volume2,Issue8,100537,ISSN2666-3864,2021,[373]VolkswagenNewsroom,Fromoldtonewhttps://doi.org/10.1016/j.xcrp.2021.100537.–BatteryrecyclinginSalzgitter,2021,https://www.volkswagen-newsroom.com/en/stories/[384]M.Börner,M.Frieges,B.Späth,K.Spütz,H.Heimes,from-old-to-new-battery-recycling-in-salzgitter-6782D.Sauer,W.Li,Challengesofsecond-lifeconceptsforretiredelectricvehiclebatteries,CellReportsPhysicalScience,[374]O.Dolotko,N.Gehrke,T.Malliaridouetal.UniversalandVolume3,Issue10,101095,ISSN2666-3864,2022,efficientextractionoflithiumforlithium-ionbatteryrecyclinghttps://doi.org/10.1016/j.xcrp.2022.101095.usingmechanochemistry.CommunChem6,49,2023.https://doi.org/10.1038/s42004-023-00844-2[385]C.Murray,Mercedes-BenzEnergyexpandssecondlifeactivityintoIndiathrough50MWhannualsupplydeal,2023,[375]A.Vanderbruggen,N.Hayagan,K.Bachmann,https://www.energy-storage.news/mercedes-benz-energy-A.Ferreira,D.Werner,D.Horn,U.Peuker,R.Serna-Guerrero,expands-second-life-activity-into-india-through-50mwh-andM.Rudolph,Lithium-IonBatteryRecycling─Influenceofannual-supply-deal/RecyclingProcessesonComponentLiberationandFlotationSeparationEfficiency,ACSES&TEngineering20222(11),[386]C.Murray,VolkswagenandEllideploysecondlifeBESS2130-2141,DOI:10.1021/acsestengg.2c00177andtargetV2Genergymarketactivity,2023,https://www.energy-storage.news/[376]M.Abdollaifar,S.Doose,H-Cavers,A.Kwade,Graphitevolkswagen-elli-eyes-second-life-and-vpp-trading-opportunities/RecyclingfromEnd-of-LifeLithium-IonBatteries:ProcessesandApplications,AdvancedMaterialsTechnologies8,2200368,[387]C.Murray,Toyotasecondlifebatterystoragesystem2022,https://doi.org/10.1002/admt.202200368usingmultiplechemistriesgoesonlineinJapan,2022,https://www.energy-storage.news/toyota-second-life-[377]C.Werwitzke,CATLplantAkku-Recyclingundbattery-storage-system-using-multiple-chemistries-goes-online-MaterialaufbereitunginFoshan,2023,in-japan/https://www.electrive.net/2023/01/31/catl-plant-akku-recycling-und-materialaufbereitung-in-foshan/[378]C.Werwitzke,China:CATLbautWerkfürKathodenmate-rialieninYichang,2021,https://www.electrive.net/2021/12/06/china-catl-baut-werk-fuer-kathodenmaterialien-in-yichang/99References[388]L.Wei,C.Wang,Y.Li,Governancestrategiesforend-of-lifeelectricvehiclebatteryrecyclinginChina:Atripartiteevolutionarygameanalysis,FrontiersinEnvi-ronmentalScience10,2022,https://www.frontiersin.org/articles/10.3389/fenvs.2022.1071688[389]N.Saldan,G.Bockey,H.Heimes,Batterie-Recycling,2023,https://battery-news.de/batterierecyling/[390]S.Schaal,SchweizerBundesratbeschließtEndederSteuerbefreiungfürE-Autos,2023,https://www.electrive.net/2023/11/08/schweizer-bundesrat-beschliesst-ende-der-steuerbefreiung-fuer-e-autos/[391]S.Schaal,FordsBatterie-PartnerschraubenInvestitionenebenfallszurück,2023,https://www.electrive.net/2023/11/08/fords-batterie-partner-schrauben-investitionen-ebenfalls-zurueck/[392]S.Schaal,VWdrosseltE-Auto-ProduktioninSachsen,2023,https://www.electrive.net/2023/09/27/vw-drosselt-e-auto-produktion-in-sachsen/[393]H.Engel,P.Hetzke.G.Siccardo,Second-lifeEVbatteries:Thenewestvaluepoolinenergystorage,2019,https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/second-life-ev-batteries-the-newest-value-pool-in-energy-storage100AcknowledgementsAcknowledgementsTheauthorsgratefullyacknowledgethefundingbytheFederalMinistryofEducationandResearch–BundesministeriumfürBildungundForschung(BMBF),Germany,aswellasthecoordinationoftheprojectbytheProjektträgerJülich.WewouldliketothankourcolleaguesfromtheFraunhoferISI:KarinHerrmannforassistanceandsupport;LouiseBlumandGillianBowman-KöhlerforEnglishlanguagecorrections;andProf.UlrichSchmochforthepatentanalysis.101ImprintImprintPublisherFraunhoferInstituteforSystemsandInnovationResearchISIBreslauerStraße4876139Karlsruhe,GermanyFundingFederalMinistryofEducationandResearch–BundesministeriumfürBildungundForschung(BMBF)Referat525–BatterieKITHeinemannstraße253175BonnPostanschrift:53170Bonnwww.bmbf.deFörderkennzeichen:03XP0272BDOIAuthors(alphabetical)doi:10.24406/publica-2153Dr.TimHettesheimerDr.ChristophNeef(Scientificcoordination)ProjectExecutingOrganizationInésRosellónInclánProjektträgerJülich(PtJ)SteffenLinkNeueMaterialienundChemieDr.ThomasSchmaltzWerkstofftechnologiefürEnergieundMobilität(NMT1)FelixSchuckert52425JülichDr.AnnegretStephanMaximilianStephanLayoutDr.AxelThielmann(Projectlead)EARLZGmbHDr.LukasWeymannTimWickeCoverdesignHeykoStöber,HohensteinLicence©FraunhoferInstituteforSystemsandInnovationResearchISI,Karlsruhe,December2023102ContactDr.ChristophNeef(Scientificcoordination)christoph.neef@isi.fraunhofer.deDr.AxelThielmann(Projectlead)axel.thielmann@isi.fraunhofer.deFraunhoferInstituteforSystemsandInnovationResearchISIwww.isi.fraunhofer.de