REACHINGZEROWITHRENEWABLESCAPTURINGCARBONTechnicalPaper4/2021byMartinaLyons,PaulDurrantandKaranKochharREACHINGZEROWITHRENEWABLES:CAPTURINGCARBON©IRENA2021Unlessotherwisestated,materialinthispublicationmaybefreelyused,shared,copied,reproduced,printedand/orstored,providedthatappropriateacknowledgementisgivenoftheauthor(s)asthesourceandIRENAasthecopyrightholder.Materialinthispublicationattributedtothirdpartiesmaybesubjecttoseparatetermsofuseandrestrictions,andappropriatepermissionsfromthesethirdpartiesmayneedtobesecuredbeforeanyuseofsuchmaterial.ISBN:978-92-9260-362-5Citation:Lyons,M.,P.DurrantandK.Kochhar(2021),ReachingZerowithRenewables:CapturingCarbon,InternationalRenewableEnergyAgency,AbuDhabi.AboutIRENATheInternationalRenewableEnergyAgency(IRENA)servesastheprincipalplatformforinternationalco-operation,acentreofexcellence,arepositoryofpolicy,technology,resourceandfinancialknowledge,andadriverofactiononthegroundtoadvancethetransformationoftheglobalenergysystem.Anintergovernmentalorganisationestablishedin2011,IRENApromotesthewidespreadadoptionandsustainableuseofallformsofrenewableenergy,includingbioenergy,geothermal,hydropower,ocean,solarandwindenergy,inthepursuitofsustainabledevelopment,energyaccess,energysecurityandlow-carboneconomicgrowthandprosperity.www.irena.orgAcknowledgementsThisworkingpaperwasauthoredbyMartinaLyons,PaulDurrantandKaranKochharundertheguidanceofDolfGielen.ThepaperbenefitedfromvaluableinputsprovidedbyIRENAcolleaguesMichaelTayloroncosts,SimonBenmarraze,PaulaNardoneandJosefineAxelssononNDCs,andSeungwooKangandAravindGanesanonBECCS.TheworkingpaperbenefitedfromthetechnicalreviewprovidedbyEveTamme(ClimatePrinciples),AlexJoss(UNFCCCClimateChampionsteam),MaiBui(ImperialCollegeLondon),SannaO’Connor-MorbergandKashBurchett(EnergyTransitionCommission)andWolfgangSchneider(EuropeanCommission).ValuablefeedbackandreviewwerealsoreceivedfromIRENAcolleaguesHeribBlanco,FranciscoBoshell,PabloCarvajal,RemiCerdan,PaulKomorandCarlosRuiz.ThereportwaseditedbyFrancisField.Forfurtherinformationortoprovidefeedback:publications@irena.orgDisclaimerTheviewsexpressedinthispublicationarethoseoftheauthor(s)anddonotnecessarilyreflecttheviewsorpoliciesofIRENA.ThispublicationdoesnotrepresentIRENA’sofficialpositionorviewsonanytopic.TheTechnicalPapersseriesareproducedasacontributiontotechnicaldiscussionsandtodisseminatenewfindingsonrelevanttopics.Suchpublicationsmaybesubjecttocomparativelylimitedpeerreview.Theyarewrittenbyindividualauthorsandshouldbecitedanddescribedaccordingly.Thefindings,interpretationsandconclusionsexpressedhereinarethoseoftheauthor(s)anddonotnecessarilyreflecttheopinionsofIRENAorallitsMembers.IRENAdoesnotassumeresponsibilityforthecontentofthisworkorguaranteetheaccuracyofthedataincludedherein.NeitherIRENAnoranyofitsofficials,agents,dataorotherthird-partycontentprovidersprovidesawarrantyofanykind,eitherexpressedorimplied,andtheyacceptnoresponsibilityorliabilityforanyconsequenceofuseofthepublicationormaterialherein.Thementionofspecificcompanies,projectsorproductsdoesnotimplythattheyareendorsedorrecommended,eitherbyIRENAortheauthor(s).ThedesignationsemployedandthepresentationofmaterialhereindonotimplytheexpressionofanyopiniononthepartofIRENAortheauthor(s)concerningthelegalstatusofanyregion,country,territory,cityorareaorofitsauthorities,orconcerningthedelimitationoffrontiersorboundaries.2CHAPTERREACHINGZEROWITHRENEWABLESCAPTURINGCARBONThestatusandpotentialofcarboncaptureandstorage(CCS),carboncaptureandutilisation(CCU)andcarbondioxideremoval(CDR)technologies,andtheirsynergieswithrenewablesinthecontextofglobalpathwaystonet-zeroemissions.3REACHINGZEROWITHRENEWABLES:CAPTURINGCARBONCONTENTSFigures5Tables6Boxes6Abbreviations7Executivesummary81.Theroleofcarboncapture132.Thecurrentstatusofcarboncapture,transportation,utilisationandstorage193.ThefutureroleofCCS,CCUandCDR264.Actionsrequiredinthenext10years34References40Annexes43AnnexA:CCS,CCUandCDR,andtheirrolesinemissionsreduction44AnnexB:CO2Capture–statusandpotential54AnnexC:StatusandpotentialforthetransportationofCO280AnnexD:StatusandpotentialforCO2storage83AnnexE:StatusandpotentialforCO2utilisation92AnnexF:StatusandpotentialsforCDRtechnologies(BECCS&DACCS)95References1014CHAPTERFIGURESFIGURE1:TotalinvestmentsbytechnologyinIRENA’sPlannedEnergyScenario(PES)and1.5°CScenario(2021–2050)...10FIGURE2:Carboncycle...........................................................................................................................................................................................14FIGURE3:Thescaleofglobalcarboncaptureinstalledcapacityrequired............................................................................................15FIGURE4:Carbonchain.........................................................................................................................................................................................17FIGURE5:Shareofcommercial,pilotanddemonstrationprojectsforCCS,DACCSandBECCS...................................................20FIGURE6:TechnologyreadinesslevelsofCO2capturetechnologies......................................................................................................21FIGURE7:CommercialavailabilityofCO2capturetechnologies..............................................................................................................22FIGURE8:AvoidancecostsofCO2captureforselectedcapturetechnologiesasreportedbyavarietyofscientificpublications...................................................................................................................................................................23FIGURE9:Costestimatesforonshoreandoffshorestorage.....................................................................................................................25FIGURE10:TheroleofCCS,CCUandBECCSacrosssectors........................................................................................................................27FIGURE11:Costsofproductionviacarbonroute,asapercentageofrenewablepathway..............................................................28FIGURE12:ShareofCO2capture,utilisationand/orstoragebysectorby2050..................................................................................29FIGURE13:ShareofBECCSbysectorin2050................................................................................................................................................32FIGURE14:Actionsrequiredinthenext10years............................................................................................................................................35FIGURE15:CCSplants,2010–2020.....................................................................................................................................................................46FIGURE16:Thedecliningimportanceoffossilfuels(fossilfuelprimarysupply,2018–2050inthe1.5°CScenario)..................50FIGURE17:Costsofproductionviacarbonrouteasapercentageofrenewablepathway...............................................................53FIGURE18:CO2concentrationpersource.........................................................................................................................................................54FIGURE19:Post-combustion.................................................................................................................................................................................55FIGURE20:Pre-combustion...................................................................................................................................................................................56FIGURE21:Oxy-combustion..................................................................................................................................................................................56FIGURE22:Directaircapturewithchemicalsolvent.......................................................................................................................................57FIGURE23:Non-exhaustivelistofCCS/CCUprojectsinfossilfuelpowergenerationatdifferentstagesofoperation............58FIGURE24:LCOEofCCGTandsupercriticalcoal-firedpowerplantsforcommissioningin2025inAustraliaandtheUnitedStates.........................................................................................................................................................................60FIGURE25:Non-exhaustivelistofCCS/CCUprojectsfromnaturalgasprocessingindifferentstagesofoperation.................64FIGURE26:Cementproductionandcomponents...........................................................................................................................................66FIGURE27:Non-exhaustivelistofCCS/CCUprojectsincementsectoratdifferentstagesofoperation......................................67FIGURE28:ListofCCSandCCUprojectsintheironandsteelsectoratdifferentstagesofdevelopment..................................70FIGURE29:Non-exhaustivelistofCCUandCCSplantsinthepetrochemicalsandchemicalsindustry........................................72FIGURE30:Hydrogenusetrends,1980–2018....................................................................................................................................................77FIGURE31:BluehydrogenCCSprojects............................................................................................................................................................78FIGURE32:CO2storageresources(millionsoftonnes)inmajoroilandgasfields(excludingsalineformations).....................84FIGURE33:Storageresourceassessmentinmajorcountries.....................................................................................................................85FIGURE34:OverviewofsomeofCO2-EORcommercialanddemonstrationprojects(ongoing,completedandplanned)....865REACHINGZEROWITHRENEWABLES:CAPTURINGCARBONFIGURE35:OverviewofsomedemonstrationprojectsforCO2storageindepletedoilandgasfields..........................................87FIGURE36:SomeprojectsstoringCO2insalineformations........................................................................................................................88FIGURE37:Overviewofcostsofstorage(salineformationsanddepletedordisusedoil/gasfields)............................................89FIGURE38:OverviewofstoragecostsinEurope............................................................................................................................................90FIGURE39:CO2hubs,clustersandtransportationnetworksinoperationordevelopment................................................................91FIGURE40:CO2utilisationapplications..............................................................................................................................................................93FIGURE41:Re-emissionofutilisedCO2..............................................................................................................................................................94FIGURE42:Non-exhaustivelistofongoingandplannedBECCS/BECCUprojects...............................................................................97FIGURE43:Non-exhaustivelistofdirectaircaptureprojects...................................................................................................................100TABLESTABLE1:Potentialforbiogeniccarboncapturein2050inIRENA’s1.5°CScenario...........................................................................32TABLE2:TheinclusionofCCSinlong-termstrategiesbyG20countriessubmittedtotheUNFCCC...........................................51TABLE3:Overviewofeconomicsandemissionsofcoal-firedpowergenerationviadifferentmethods.....................................61TABLE4:Selectionofpost-andoxy-combustiontechnologiestocaptureCO2incementplants.................................................68TABLE5:Selectionofpost-andoxy-combustiontechnologiestocaptureCO2inironandsteelplants......................................71TABLE6:Overviewofperformance,costandreadinesslevelsforcapturingcarbonfromammoniaandmethanolproduction....................................................................................................................................................................73TABLE7:Overviewofperformance,costandreadinesslevelsforcapturingcarbonfromethyleneproduction.......................73TABLE8:Carbonandenergyefficiencyfordifferentmethodsofbiomassintegration......................................................................74TABLE9:ComparisonofcostsofavoidedCO2forfossilfuel-basedCCSandBECCS.........................................................................75TABLE10:Comparisonofbiomass-basedandCCSroutesfortheproductionofammoniaandmethanol..................................76TABLE11:Overviewofperformance,costandreadinesslevelsforcapturingcarbonfromstandalonehydrogenproduction............................................................................................................................................................................79TABLE12:CapitalandCO2avoidancecostsforDACfromliterature........................................................................................................100BOXESBOX1:BECCSandDACCS........................................................................................................................................................................................16BOX2:Emissionsremovalandreduction............................................................................................................................................................17BOX3:Technologyreadinesslevel.......................................................................................................................................................................45BOX4:ThreemainapproachestocaptureCO2................................................................................................................................................55BOX5:CO2hubs,clustersandtransportationnetworks................................................................................................................................906CHAPTERABBREVIATIONSAMPamino-methyl-propanolLULUCFlanduse,land-usechange,andforestryATRautothermalreformingBECCSbioenergywithcarboncaptureandstorageMEAmonoethanolamineBF-BOFblastfurnace–basicoxygenfurnace°CdegreesCelsiusMDEAmethyldiethanolaminCaOcalciumoxideCAPEXcapitalexpendituresMJmegajouleCCGTcombinedcyclegasturbinesCCScarboncaptureandstorageMSWmunicipalsolidwasteCCUcarboncaptureandutilisationCDRcarbondioxideremovalMtpamegatonnesperyearCO2carbondioxideCO2eqcarbondioxideequivalentMWmegawattCScrudesteelDACdirectair(carbon)captureMWhmegawatthourDACCSdirectair(carbon)captureandstorageDACCUdirectair(carbon)captureandutilisationNnitrogenDRIdirectreducedironEAFelectricarcfurnaceNm3normalcubicmetreECRAEuropeanCementResearchAcademyEIBEuropeanInvestmentBankNDCNationallyDeterminedContributionsEJexajouleEORenhancedoilrecoveryNGCCnaturalgascombinedcycleEUEuropeanUnionFOAKfirst-of-a-kindNOxnitrogenoxidesGtgigatonnesGtpagigatonnesperyearNO2nitrogendioxideGWgigawattH2hydrogenO&MoperationandmaintenanceHRChotrolledcoilIEAInternationalEnergyAgencyOPEXoperatingexpendituresIPCCIntergovernmentalPanelonClimateChangePCCpost-combustioncapturektpakilotonnesperyearkWhkilowatthourPCIProjectofCommonInterestkWhekilowatthourselectricLCOElevelisedcostsofelectricityPPApowerpurchaseagreementLEDSlow-greenhouse-gasemissiondevelopmentstrategiesppmpartspermillionPzpiperazineRD&DResearch,developmentanddemonstrationSO2sulphurdioxideSMRsteammethanereformingT&StransportandstoragetCO2tonneofCO₂TGR-BFtopgasrecycledblastfurnacetoetonneofoilequivalentTpatonnesperyearTRLtechnologyreadinesslevelTWhterawatthourUKUnitedKingdomofGreatBritainandNorthernIrelandUNFCCCUnitedNationsFrameworkConventionsonClimateChangeUSCultra-supercritical7REACHINGZEROWITHRENEWABLES:CAPTURINGCARBONEXECUTIVESUMMARYThistechnicalpaperexploresthestatusandpotentialofcarboncaptureandstorage(CCS),carboncaptureandutilisation(CCU)andcarbondioxideremoval(CDR)technologiesandtheirrolesalongsiderenewablesinthedeepdecarbonisationofenergysystems.ItcomplementsandbuildsuponthebroaderdiscussionsontheenergytransitioninotherrecentIRENAreports,includingtheWorldEnergyTransitionsOutlook(IRENA,2021a)andReachingZerowithRenewables(IRENA,2020).Thepapersummarisesthestatusofthesetechnologiesintermsofcurrentdeploymentandcosts,potentialfutureroles,andthechallengesandprospectsforscaling-uptheiruseinthecontextofthe1.5°Cclimatechangegoalandachievingnet-zeroemissionsby2050.Themainreportprovidesanoverviewofthesetopicswhilsttheannexesprovideadditionalresourcesandmoredetailedbackgroundinformation,includingadiscussionofkeycomponents,andtablespresentinginformationonexistingandplannedprojects.ThecaptureandstorageofCO2hasamoderatebutindispensableroletoplayinglobaldeepdecarbonisationstrategies;butthepaceofrecentprogressinvalidatinganddeployingCCS,CCUandCDRtechnologiesinmultiplesectorsfallsfarshortofpathwaysconsistentwiththe1.5oCgoal.TheroleofdifferentCO2capturetechnologiesisasometimescontentiousandoftenpoorlyunderstoodcomponentoftheenergytransition.Technologiesforcapturingcarbonshouldnotbeatoolforproppinguptheweakbusinesscaseforcontinuedfossilfuelusebuttheydohavearoleinaddressingaspectsofemissionsreductionthatothertechnologiescannot.Inmanyapplicationstherearebetterchoices–suchastheuseofrenewablesinthepowersector–butinsomeindustrialsectors,andforbalancingemissionsatthesystemlevel,thecaptureandstorageofCO2isimportant.ThepaceofprogressinCO2capturehasbeenslowtodate,andwhilsttherearesomesignsthatthismaychange,thesectorisstartingfromalowbaseand,giventhelongprojectleadstimesforcapture,transportandstorageinfrastructure,itwilltakemanyyearsforCO2capturetobegintohaveanotableimpactonemissions.Thelackofmomentuminscalingdeployment,buildingconfidenceandreducingcostsposesamajorrisktoglobalemissionsreductions.Inthecontextof1.5°Cpathways,enhancingthecollectiveunderstandingoftheissues,andbuildingconsensusaroundrealisticCO2capturepathwaysandtheactionsneededtoaddresstheslowpaceofscale-upisnowcritical.8EXECUTIVESUMMARYKeymessagesinthebriefinginclude:Capturingcarbonfortheenergytransition•Reachingnet-zeroby2050willrequireeverytoolinthedecarbonisationtoolbox.CO2capturesolutionsareanecessarycomponent,particularlyforthecement,steelandchemicalindustries,andtodelivernegativeemissions,butprogressiswelloffthepaceneeded.•ThetermsCCS,CCUandCDRareoftenconflatedwithCCUSorCCU/S(carboncapture,useandstorage),whichareoftenunhelpfullyusedasshorthandforCCSandCCU,andsometimesforallthree.Inthecontextoftheneedfordeepdecarbonisationandinparticularthenet-zerogoal,however,itisveryimportanttodistinguishbetweenthem.TheysharesomecommonelementsbuttheirrolesandtheirimpactsonnetemissionsofCO2varyintermsoftheirabilitytoreduceorremoveCO2.•CCSreferstoprocessesthatdirectlycaptureCO2emissionsfrom“pointsources”,i.e.fromfossilfueluseorindustrialprocesses,withtheCO2subsequentlybeingstoredforalongperiod.•CCUreferstoprocessesthataftercapture,utilisetheCO2insecondaryprocessessuchassyntheticfuels,chemicalsandmaterials.•CDR,bycontrast,referstoprocessesthatremoveCO2fromtheatmosphereinsteadofsimplyreducingwhatisadded/emitted,andifcombinedwithlong-termstoragecanresultinnegativeemissions.•DistinctionsneedtobemadebetweentherolesandsystemvaluesofCCS,CCUandCDR.ThetotalimpactonatmosphericCO2concentrationinthenextfewdecadesisthekeycriterion;whileCCSandCCUtechnologiescan“reduce”addingadditionalCO2totheatmosphere,CDRtechnologiesactually“remove”CO2emissionsfromtheatmosphere.FossilfuelCCSvs.renewables•Theuseofrenewablescoupledwithreductionsinenergyintensitywillbetheprincipalpillarsofanet-zeropathway,buttheywillneedtobesupplementedinsomecontextsbyCO2captureandstorage.•Inthepowersector,renewablesoutcompetefossilfuelswithCCSintermsoflevelisedcostsofelectricity(LCOE)and,incontrasttorenewables,nosignificantcapacityhasbeenbuiltto-date.CCSforfossilfuel-basedpowerproductionisnoteconomicallyjustifiablefornewprojectsandthefinancialcaseforretrofitappearsmarginal.•Inindustrialsectors,CCSandrenewablesaremorecomplementary.Hydrogen,ammoniaandmethanolproductionfromfossilfuelswithCCS,andironandsteelproductionfromfossilfuelswithCCS,arecurrentlymarginallycheaperperunitofCO2removedthanrenewableoptions,althoughthecostgapislikelytoclosethisdecade.CCS-basedprojects,however,arecurrentlymorecomplextofinanceandbuildthanrenewables,typicallyhaveleadtimesof5–10years,andstillresultinGHGemissions.TheclearestcaseforCCSisincementproduction,whererenewablefuelscannotaddressprocessemissions.•IRENA’s1.5°CScenarioassessesthatglobalCO2captureandstorageratesshouldreachround6gigatonnesperannum(Gtpa)ofCO2by2040andover8Gtpaby2050,fromacurrentrateof0.04Gtpa(IRENA,2021a).Thescaleofthatambitionisvast:°TheamountofCO2thatwouldneedtobepermanentlystoredperannumin2050isapproximatelyequivalenttothenetamountofCO2currentlycapturedperannumbytheworld’sforests.°ThevolumeofCO2thatwouldneedtobesequesteredundergroundin2050isabout2.5timesthevolumeofoilbeingextractedperannumtoday.9REACHINGZEROWITHRENEWABLES:CAPTURINGCARBONFIGURE1:Totalinvestmentsby2021-20502021-2050technologyinIRENA’sPlannedEnergyScenario(PES)and1.5°CWherecurrentWhereweneedScenario(2021–2050)planswilltakeus(PES)tobe(1.5-S)Energyeciency131trillionUSD4.4trillionUSDRenewables(poweranddirectuse)34%peryearElectrificationof26%heatandtransport3.3trillionUSD98trillionUSDTotaladditionalandinfrastructureInnovationperyear33trillionUSDFossilfuelandnuclearOthers(carbonremovals33%+1.1andcirculareconomy)trillionUSDSource:(IRENA,2021a).Annualadditional10%13%44%22%2.5%3.5%12%Reducingemissions:CCSandCCUstatusandpotential•Capturingcarbonisnotanexperimentaltechnologybutnorisityetwidelydeployed.The24commercial-scalefossilfuel-basedCCSandCCUfacilitiesinoperationgloballycancaptureonly0.04GtpaofCO2emissionsandmanyhavenotperformedasexpected.•TransportationoptionsforCO2aretechnologicallyproven,buttheirscaleremainslimited.GeologicalstorageofCO2inenhancedoilrecovery(EOR)hasbeencarriedoutformanyyearswithoutmajorissues,allbeitatcomparativelysmallscales,andthereismorethan12000GtofpotentialCO2storageresourcesinsalineformations,aswellasotheroptions(OGCI,2020).Butonlyc.15.6milliontonnesperyear(Mtpa)ofCO2additionalstoragecapacitywasaddedinthelastnineyearsandlong-termliabilityissuesremainunaddressed.•Utilisationhasarolebut,inthemediumandlongterms,itshouldbelimitedtoapplicationsthatdonotleadtothelaterreleaseoftheCO2.Inthenearterm,duringthescale-upofcarboncapturedeployment,usesthatreleaseCO2maybejustifiedasinterimmeasures.Potentialusesincludesyntheticfuels,mineralisationforbuildingmaterials,andtheproductionofurea,methanolandotherchemicals.•Carboncapturefromfossilfueluseandindustrialprocessesmustbeaggressivelyscaleduptoreacharound3.4GtpaofCO2by2050fromthecurrent0.04Gtpa.30projectsareindevelopment,adding0.06GtpaofCO2capturepotential,buta1.5°C-consistentpathwaycouldrequirebetween1Gtpaand2GtpaofCO2captured10EXECUTIVESUMMARYby2030.Deliveringc.2GtpaofCO2captureandstorageby2030wouldrequirecumulativeinvestmentsoftheorderofUSD0.4trillionby2030,whilecapturing8.5GtpaofCO2by2050wouldrequireclosetoUSD2trillionby2050(Figure1)(IRENA,2021a).•TheviewsonthefutureroleandscaleofCCSandtechnological1CDRvaryinthenet-zerostrategiesandpathwaysofrespectedorganisationsandnationalgovernments.TheSR1.5report(2018)oftheIntergovernmentalPanelonClimateChange(IPCC)suggestedCCSandtechnologicalCDRofover20GtpaofCO2by2050,whiletheInternationalEnergyAgency’s(IEA)NetZeroEmissionscenario(2021)andIRENA’s1.5°CScenarios(2021)envisagetotalCO2capturethroughCCSandtechnologicalCDRatroughlyathirdofthatlevel–intherangeof7–8GtpaofCO2(Gielenetal.,2021).TheIPCCSR1.5report,however,isbasedonolderliteraturethatunderestimatedtherapidprogressachievedinrenewableenergyandelectrification,andthereforeoverestimatedCCSandtechnologicalCDR.TheIPCC’s6thAssessmentWorkingGroupSSP1-1.9scenario(highlikelihoodofatempriseof1–1.8°Cthiscentury),publishedinAugust2021(IPCC,2021),includes5Gtpaofbio-energywithCCS(BECCS)andover3GtpaofdirectairCCS(DACCS)by2050.•Incontrast,variousrecentnationalstrategiesincludeproportionallymuchlowerlevelsofCO2captureandstorageby2050,insteadrelyingonnon-technologicalCDRsolutions–particularlylanduse,landusechangeandforestry(LULUCF),whicharealreadyfactoredintoglobalscenarios.Thesedifferencesinoutlookneedtobeexploredanddebatedtoinformcoherentglobalandnationalstrategies.Removingemissions:BECCSandDACCSstatusandpotential•CDRprocessescombinedwithlong-termstorageareacriticalcomponentofnet-zeropathways.Optionsincludenature-basedprocessessuchasreforestation,ortechnologyorengineeredapproachessuchastheuseofBECCS,DACCSandsomeothermoreexperimentalapproaches.•BECCScan,inprinciple,beutilisedinarangeofprocessesbuttheoptimumapplicationofBECCSrequiresmoredetailedinvestigationofcosts,logisticsandsustainablebiomasssupplychains,andwillbehighlycountryandcontextspecific.•InIRENA’s1.5°CScenario,thepotentialforCO2captureperannumfromprocessesthatusebiomasstowhichCCScouldinprinciplebeappliedisc.10Gtpaby2050acrossmultiplesectors(Table1).The1.5°CScenarioassumesBECCScapturesandstoresaround4.5GtpaofCO2in2050–lessthanhalfthepotential.Thelargestopportunitiesareinpower,heat,chemicalsandbiorefineriesbutBECCScouldalsobesignificantincement,pulpandpaper,andsugarproduction,andpossiblyalsoironandsteelproduction.ButBECCSiscurrentlynotvalidatedintheseapplicationsandtherearesignificantcomplexitiestobeaddressedinbothdeployments,aswellasinensuringsustainablebiomasssupply.•DACCSwillplayarolebutisonlyintheearlystagesofdevelopment,withtwocurrentcommercialplantscapturingonlyanegligibleamountofCO2.Furtherdevelopmentandvalidationareneededbeforeitspotentialcanbeproperlyevaluated.•TheuseofCDRtechnologieswillhaveasignificantimpactonrenewableenergysupply.4.5GtpaofBECCSrequiresaround40–50exajoules(EJ)ofbiomass–representingaroundathirdoftotalbiomasssupplyintheenergysystemby2050.CapturingsimilarlevelsofCO2usingcurrentDACCStechnologieswouldrequireafurtherc.10%increaseinthetotalglobalelectricitysupplyby2050inIRENA’s1.5°CScenario(IRENA,2021a).1Globalstudiesalreadyassumenet-zeroemissionsfromnaturalCDRapproachessuchasLULUCF.11REACHINGZEROWITHRENEWABLES:CAPTURINGCARBONCCS,CCUandBECCScosts•Carboncapture,transportandstoragecostsareuncertainandvarybyapplication,withestimatedcostsofUSD22–225/tCO2.WithCCSappliedtotheproductionofammoniaandmethanolatthelowerend,hydrogenandcementproductionthemiddle,andironandsteel,andthenethylene,atthehigherend.BECCScostsareestimatedatUSD69–105/tCO2,withpowerplantsco-firingbiomassatthelowerend,ethanolfromsugarcaneinthemiddleandcementplantstowardsthehigherend.Challengesandactions•DeliveringasignificantlyincreaseduptakeofCO2capturefacestheinterlinkedchallengesof:limitedcurrentdeployment;limitedinfrastructureforCO2transportandstorage;limitedoperationalexperience;uncertaintiesconcerningoptimaluse;limitedexistingpoliciesandregulations;highanduncertaincosts;lessthan100%capturerates;lackofcommercialincentives;lackofbusinesscases;andsomesocietalreservations.Allthesefactorsneedtobeurgentlyaddressed.•Forthetechnologiestobescaled-up,actionsonmultiplefrontsareneeded,including:manymoredemonstrationandfirst-of-a-kindprojectsinmultipleregionsoftheworldwithexperiencesharedwidely;increasedandsustainedresearch,developmentanddemonstration(RD&D)funding;robustlife-cycleanalysis;anenablingregulatoryframework,governmentmandatesandstandards;technology-promotinginstitutionsandorganisations;financialincentivessuchasgrantsandtax-creditmechanisms;theactivepromotionofCCStechnologiestothepublic;globallydistributedCCShubs,clustersandtransportationnetworks;and,incaseofBECCS,sufficientsustainablysourcedbiomassfeedstock.•Ambitiousactionthisdecadeiscriticaltokeepingthe2050goalsinsight.TheUN’sRace-to-ZeroEmissionsBreakthroughsinitiativecallsforpubliccommitmentstobemadetocapture100Mtpaby2030usingengineeredsolutionsforcarbonremoval(e.g.BECCSandDACCS)withatleast75MtpaCO2permanentlystoredinmaterialsorgeologicalformations(excludingEOR),andforpublicandprivateactorstoestablishover50newCCS/CCUnetworksreachingfinalinvestmentdecisions(FID)by2026,totalling400Mtpainnewcapacityincludinginoneormoreoftheheavyindustries(Climatechampions,2021).•Achievingthesegoalswillrequirediversecoalitionsofactorsdevelopingandimplementingsharedplans.Internationalco-operationwillbeanessentialenablerofrapidprogressandvitalinensuringallnationsaccessordeveloptheknowledgeandcapacitytoallowtherapidglobaladoptionoftheseemergingtechnologies.12CHAPTER1THEROLEOFCARBONCAPTURECO2capturesolutionsareacomponentoftheglobalenergytransition.•Inthe2015ParisClimateChangeAgreement,countriescommittedtostrivingtolimitglobaltemperaturerisestowellbelow2°Candtoreachnet-zeroemissionsbythesecondhalfofthiscentury.Intheyearssince,agrowingrangeofcountriesandorganisationsaroundtheworldhavecommittedthemselvestotryingtolimittemperaturerisestonomorethan1.5°C,andtoreachingnet-zeroemissionsbymid-century.•Insupportofitsmembercountries,IRENAworkswithgovernmentsandotherstakeholderstoanalyseandexplorethestrategiesneededtoachievethatgoal.InMarch2021,IRENApublishedapreviewofitsannualroadmapfortheglobalenergytransitionandinJune2021thefullreportwaspublished.The2021edition–theWorldEnergyTransitionOutlook–(IRENA,2021a)forthefirsttimefocusedona1.5°Ccompatiblescenariothatseesemissionsdecliningrapidlyandreachingnet-zeroby2050.Thatanalysisshowsthatacrediblebutnarrowpathwayexists,butitalsomakesclearthescaleofthechallengesfacedindeliveringthatpathwayandtheneedformassivelyacceleratedpaceinmanyareas.Todeliveronthatgoalwillrequiremajoreffortsonallfrontsandtheuseofalldecarbonisationtoolsinthetoolbox.13REACHINGZEROWITHRENEWABLES:CAPTURINGCARBONFIGURE2:CarboncycleAtmosphericCO2AtmosphericCO2BiomassCO2IndustryBuildingmaterialsCO2DACCUChemicalsFuelsDirectaircaptureBECCUCCUCO2FossilfuelsCO2BuildingsAgricultureCarboncaptureplantTransportBECCSCO2DACCSUndergroundstorageCCSCO2CO2CO2CO2•IRENA’sanalysisshowsthattheuseofrenewablesalongsideefficiencyimprovementscandelivermostofwhatisneeded,providing80%oftherequiredCO2emissionsreductions.Renewablesources,includingrenewablepowergenerationsourcesandthedirectuseofrenewableheatandbiomass,wouldcontributeto25%ofCO2emissionsreductions,anadditional25%ofCO2reductionswouldcomefromthereduceddemandcomparedtothebaselinescenario,efficiencyimprovementsandcirculareconomy.Theelectrificationoftransportandheatapplicationswouldaccountfor20%ofCO2emissionsreductions,whiletheuseofhydrogenandsyntheticfuelsandfeedstockswouldenable10%ofCO2emissionsreductions(IRENA,2021a).•However,thescaleofthechallenge,therelativelylimitedtimeavailable,thelegacyofsystemsbuiltaroundfossilfueluse,andthecomplexitiesofsomeindustrialprocessesmeanthatevenaveryaggressiverampingupofrenewableswillnotbesufficienttoaddressallemissions.Somefossilfuelusewillremainin2050andsomeindustrialprocesseswillproduceCO2emissionsirrespectiveoftheenergysource.•Thereisatargetedrole,therefore,foracombinationofcarboncaptureandstorage(CCS)processesthatreduceemissionsreleasedintotheatmosphere,forcarboncaptureandutilisation(CCU)processesthatmightreduceemissions,andforcarbondioxideremoval(CDR)processeswhich,combinedwithlong-termstorage,canremoveCO2fromtheatmosphere,resultinginnegativeemissions.14THEROLEOFCARBONCAPTUREProgressincapturingcarboniswelloffthepaceneeded,whilstotherlow-carbontechnologiesareaccelerating.•Theuseofrenewables,coupledwithreductionsinenergyintensity,willbetheprincipalpillarsofanet-zeropathway,accountingfor80%ofemissionreductionsina1.5°Cscenario.To-date,CO2captureandstoragehasmadenomeaningfulcontributiontomitigatingGHGemissions;however,renewablesandenergyefficiencywillneedtobesupplementedinsomecontextsbyCO2captureandstorage.IRENA’s1.5°CScenarioassessesthatCO2captureratesshouldreachc.6.1GtpaofCO2by2040and8.5Gtpaby2050.•Thescaleofthatlevelofcapturebytechnologiesiscomparabletotheamountscurrentlycapturedbythewholeoftheworld’sforests(whichareestimatedtocurrentlyabsorbanet7.6GtpaofCO2,althoughthereisahighdegreeofuncertaintywiththisestimate)andthevolumeofCO2storedwillbetwoandhalftimesthevolumeofoilcurrentlyextractedperannumglobally(Harrisetal.,2021;MacDowelletal.,2017).•ProgressinscalinguptheuseofCO2captureprocessesinthepasttwodecadeshasbeencharacterisedbyoverpromisingandunderdelivering.CO2capturecapacitieshavedoubledfromadecadeagobutstillonlyreached0.04GtpaofCO2beingcapturedgloballybyonly24plants,whichislessthan0.1%ofglobalenergy-andprocess-relatedemissions.AnnexAsection1.2expandsonthesepoints.•Thelackofprogressisinlargepartduetothehighcostsandlackofregulatorycertainty,long-termsignalsandeconomicincentives,ratherthantechnologychallenges.However,thepotentialofsometechnologiesandprocessesisnowbetterunderstood.•Crucially,thegrowingglobalconsensusontheimportanceofnet-zeroemissionsbymid-centuryischangingthebusinesscaseforCO2captureandstorageandgreatlyincreasestheurgencyofitsdeployment.•Therearesomesignsofmomentumbuildingandthepaceisincreasing,butitstillfallsfarshortofwhatisneeded.Globally,around30projectsareindevelopment,whichifdeployedwouldresultinacombined0.1GtpaofCO2captured;however,a1.5°Cconsistentpathwaycouldrequirebetween1Gtpaand2GtpaofCO2captureby2030.Deliveringc.2Gtpaofcaptureandstorageby2030wouldrequirecumulativeinvestmentsoftheorderofUSD0.4trillionby2030(EC,2021;GlobalCCSInstitute,2020a;MIT,2016).Toputthisamountincontent,USD0.4trillionrepresentsapproximately2%oftheannualgrossdomesticproduct(GDP)oftheUnitedStatesand2.5%ofannualGDPoftheEuropeanUnion.AnnexAsection1.2andAnnexBexpandontheCO2captureapproachesandprojectsacrossindustries.•Keepinga1.5°Cpathwaywithinreachwillrequireasrapidandasmassiveascale-upofdeploymentthisdecadeaspossible.By2025,theincreasewillbemostlyseeninhydrogenplants,butby2030significantprogressisalsoneededinthecement,chemicalsandpowersectors.FIGURE3:Thescale20212050ofglobalcarboncaptureinstalledcapacityrequired0.04GtpaofCO28.5GtpaofCO2USD2trillioncumulativeinvestmentsneeded15REACHINGZEROWITHRENEWABLES:CAPTURINGCARBONCCS,CCUandCDRhavedifferentimpactsofemissionsanddistinctrolestoplay.•DistinctionsneedtobemadebetweentherolesandsystemvaluesofCCS,CCUandCDR.ThetotalimpactonatmosphericCO2concentrationinthenextfewdecadesisthekeycriterion,andthespecificsofdifferenttechnologiesandtheirapplicationwillhavevaryingimpacts.•ThetermsCCS,CCUandCDRareoftenconflatedwithCCUSorCCU/S,whichareoftenusedasshorthandforCCSandCCU,andsometimesforallthree.Butinthecontextoftheneedfordeepdecarbonisation–andinparticularthenet-zerogoal–itisimportanttodistinguishbetweenthem.TheysharesomecommonelementsbuttheirrolesandimpactsonnetemissionsofCO2vary.•CarbonCaptureandStorage(CCS)referstoprocessesthatdirectlycaptureCO2emissionsfrom“pointsources”–i.e.fromfossil-fueluseorindustrialprocesseswiththeCO2subsequentlystoredinwaysthatlockitawayforlongperiods.2Ifeffectivelyimplemented,theprocessreducesmostoftheCO2emissionsbeingreleasedintotheatmosphere,althoughusuallynotall.•CarbonCaptureandUtilisation(CCU)referstoprocessesthatdirectlycaptureCO2emissionsfrom“pointsources”–i.e.fromfossil-fueluseorindustrialprocesses–butthenutilisethatCO2insecondaryprocessessuchasproducingsyntheticfuels,chemicalsandmaterials.3AswithCCS,ifeffectivelyimplemented,CCUreducessomeCO2emissionsbeingimmediatelyreleasedintotheatmospherebut,dependingonthelife-cycleoftheproductsproduced,someoralloftheutilisedCO2maybesubsequentlyreleasedintotheatmosphere.TheimpactofCCUonemissionsiscomplexthereforeandmustbecarefullymanaged.•CarbonDioxideRemoval(CDR)4referstoprocessesthatactually“remove”CO2fromtheatmosphereratherthansimplyreducewhatisadded.Ifcombinedwithlong-termstorage,thesecanresultinnegativeemissions.Thesetechnologiesandpracticesaresometimesthereforecallednegativeemissionstechnologies(NETs)andincludenaturalapproachessuchasafforestationorreforestationandtechnologicalorengineeredapproachessuchastheuseofbioenergycoupledwithCCS(BECCS)ordirectaircaptureandstorage(DACCS)(Box1).AnnexB,sections2.2and2.3,providemoredetailsonthecaptureofCO2throughBECCSandDACCS,whileAnnexFsection6.1expandsonBECCSandAnnexFsection6.2expandsonDACCS.BOX1:BECCSandDACCSCDRTechnologiesRemoveCO2fromtheatmosphereratherthansimplyreducewhatisadded.BECCSDACCS(bioenergywithcarboncaptureandstorage)(directaircarboncaptureandstorage)Whengrowing,biomasscapturesCO2fromtheInsteadofcapturingCO2frompointsourcessuchasatmosphere.Inpowerorindustrialprocesses,therelativelyhighconcentrationfluegasstreams,theCO2biomass(orfuelsderivedfromthebiomass)isisseparatedfromambientair.Thelowconcentrationcombusted,releasingCO2.InBECCSthemajorityofofCO2inambientairrequiresahighersurfaceareathatCO2iscapturedandthenstored.BECCSappliestheofsolventsorsorbentsintheirliquidorsolidforminsametechnologyasCCSwiththedifferencethatitusescontactwiththeinputairstream,aswellasalargebiogenicfeedstock/fuels.amountofenergy.2ThereisnoagreeddefinitionofhowlongbutasaguidethestorageneedstobesufficientlylongtermsuchthatatasaminimumanylaterreleasedoesnotimpactatmosphericCO2levelsthiscentury.3AcommoncurrentuseofcapturedCO2isinenhancedoilrecovery,wheretheCO2ispumpedintooilfields.InprincipletheCO2remainsstoredunderground,andthereforethis‘use’couldbecharacterisedasCCS.4CDRtechniques–particularlyBECCSandDACCS–aredistinctfromgeoengineeringtechniquessuchassolarradiationmanagement(SRM).Geoengineeringreferstoabroadsetofmethodsandtechnologiesthataimtodeliberatelyaltertheclimatesysteminordertoalleviatetheimpactsofclimatechange(IPCC,2011).16THEROLEOFCARBONCAPTURE•CCS,CCUandCDRsharesomemajorcomponents,asshowninFigure4.FIGURE4:CarbonchainSalineformationsDepletedoilSourceofCO2CaptureTransport1.StorageandgasfieldsFossilfuelsPre-combustionPipelines2.UtilisationEORIndustrialprocessesPost-combustion(incl.compression)andstoragePlasticsBiomassOxy-combustionShips3.UtilisationMaterialsAtmosphereDirectaircapture(incl.liquefaction)OceansTrucksFuelsRailFertilisersBOX2:Emissionsremovalvs.reductionWhenaddressingCO2emissions,thereisoftenconflationbetweentheconceptsofCO2emissionsremovalandCO2emissionsreduction.Bothconceptsinvolvecapturingcarbondioxide,buttheircategorisationdependsonthesourceofCO2,whichiscriticalfordecisionmakinginthecontextofveryconstrainedcarbonbudgets.CO2emissionsreductionreferstosituationsinwhichtheCO2isawastegasfromburningfossilfuel,andiscapturedandthenstoredforthelong-term.ThisCO2wouldhaveotherwisebeendestinedfortheatmosphere,addingtonetCO2levels.ThesourceofCO2isfossilfuels.5Emissionsreductiontechnologiesarerelevanttofossil-fueluseinindustrialprocesses,forhydrogenproductionandforpowergeneration.CCSandCCUprocessesare,inmostcontexts,examplesofcarbonemissionsreduction.CO2emissionsreductionprocessescanreducenewemissionsbutdonotleadtoanetreductioninCO2intheatmosphereoroceans.CO2emissionsremovalreferstotheremovalofCO2fromtheatmospherethatisthenstoredlongterm–i.e.itleadstoanetreductionofCO2inthenaturalenvironment.ThesourceofCO2istheatmosphere.Thesecarbondioxideremoval(CDR)measuresinvolveextractingCO2directlyfromtheatmosphereoroceans,orindirectlyviathesustainablegrowthanduseofbiomass.Intheenergysystemcontext,theprincipalwaysofdoingthisaretheuseofbiomass(bioenergy)withCCS(BECCS),anddirectaircapturewithstorage(DACCS),butotherpotentialCDRmethodsincludereforestation,afforestation,oceanfertilisation,biocharandenhancedweathering.CO2removalprocessescanleadtoanetreductionofCO2intheatmosphere;butcontextmatterstoo,ifthebiomassisnotsustainablysourced,thedirectaircaptureispoweredbyfossilfuels;andifcapturedCO2isusedtoproduceproductsthateventuallyreleasetheirCO2(e.g.syntheticfuels),itmaynotresultinanetreductioninemissions5Inthecaseofcementproduction,thesourceofCO2islimestone.17REACHINGZEROWITHRENEWABLES:CAPTURINGCARBONThepotentialroleofCO2capture,utilisationandstorageiscontentiousandattimesconfusing;amorenuancedandsharedunderstandingmustbedeveloped.•CCS,CCUandCDRarecontentioustopics,withopinionsontheirroleoftenstarklydivided.•ForCCSandCCU,thedebatepivotsaroundfourpoints:thecontinueduseoffossilfuels;investmentsandfuturecostsofCCSrelativetoalternatives;perceptionofCO2transportandstoragesafety;andoveralleffectivenessinreducingCO2emissions.•ManyofthesameargumentsforCCSapplytoCCU,althoughutilisationlikelyhasahighersocietalacceptabilitysinceitreducessafetyconcernsaboutCO2onshoretransportandstorage.Itsrolewillbemostlyintheshortterm,butinthelongterm,CCUiscompatiblewithanet-zeroemissionsfutureonlyiftheCO2sourceissustainable(biogenicorair)ortheutilisationresultsinthelong-termstorageofCO2(e.g.inbuildingmaterials).BygeneratingsomeprofitfromthesaleoftheCO2captured,intheshorttermCCUmaytriggerascale-upinthedeploymentofCO2captureplants.AnnexA,sections1.5and1.6providemoredetailsontheroleofCCS,CCUandCDR.•TheroleofCDRisslightlylesscontentious,butconcernsremainaboutthemoralhazardofthepotentialforthelateruseofCDRbeingusedasanexcuseforlessurgencyinemissionsreductionsnow.CDRtechnologies,particularlyBECCS,havebeenassignedacomplementaryrolebytheIPCC’s6thAssessmentWorkingGroupIreportpublishedinAugust2021(IPCC,2021),giventherapidpaceneededfora1.5°Cpathwayandthecriticalimportanceofemissionsreductions.AnnexFsection6.1expandsonBECCS,whilesection6.2expandsonDACCS.•TheCO2producedfrombiomasscanonlybeconsideredneutraltotheatmosphereifthesourceofbiomassiscontinuallyrenewedasthebiomassisharvested,andifitsusedoesnotcauseothernegativeland-usechanges.Thetimescaleforregrowthofbiomassalsomattersfora1.5°Cscenario–utilisingbiomassthattakesdecadestobereplacedmaynotbeconsistentwiththe1.5°Cgoal.TakingtheuseofBECCSinpowerasanexample,a660megawatt(MW)unit(similarinsizetooneoftheformercoalunitsnowconvertedtobiomassattheDraxplantintheUnitedKingdom)requiresaround2.3milliontonnesofbiomass(mostlywoodpelletsproducedfromforestresidues)perannum(Drax,2020).Thatisequivalentto370000hectaresofforest,whichrepresentsapproximately12%oftheUKforestarea.•DACCSisstillinthedevelopmentphaseandtoscaleitupwillbechallenging,particularlyintermsofenergy,water,materialandlandrequirements,mostlyduetolowCO2concentrationintheambientair.Toputtheserequirementsintoperspective,tocapture1GtofCO2usingsolar-poweredDACrequirescirca2000terawatthours(TWh)ofelectricityperyear,whichrepresentsalmost10%ofcurrentglobalelectricityconsumption.AnnexFsection6.2expandsonvariousDACCSapproachesandexistingprojects.18CHAPTER2THECURRENTSTATUSOFCARBONCAPTURE,TRANSPORTATION,UTILISATIONANDSTORAGE•Asofearly2021,24commercialfossilfuel-basedCCSandCCUfacilitieswereinoperationgloballywithaninstalledcapacitytocapturearound0.04Gtpaofenergy-andprocess-relatedCO2emissions(EC,2021;GlobalCCSInstitute,2020a;MIT,2016).•OftheseCCSandCCUfacilities,11arenaturalgasprocessingplants(whereCO2needstoberemovedanywaytoproducenaturalgasthatmeetsspecificstandards)andoneisacoal-firedpowerplant.Chemicalplants(mostlyforethanolproduction),hydrogenproductioninrefineries,andironandsteelplantsaccountfortheremainder.Threeplantswereoperationalbutarenowclosedorsuspended.Anadditional30plantsareatvariousstagesofdevelopment.Afurther16smallscalepilotanddemonstrationplantsareoperating,19areatvariousstagesofdevelopment,and24havebeencompletedandclosed(EC,2021;GlobalCCSInstitute,2020a;MIT,2016).•Ifall30commercialplantsunderdevelopmentarecompleted,thecapturecapacitywouldrisetoapproximately0.1Gtpa.AnnexAsection1.2andAnnexBsections2.1–2.3expandontheprojectsacrossindustries.19REACHINGZEROWITHRENEWABLES:CAPTURINGCARBON•TherearecurrentlythreeoperationalcommercialfacilitiesthatusebioenergywithCCS(BECCS)andsevencommercialplantsareindevelopment.ThecurrentcapturecapacityofoperationalcommercialBECCSplantsisverysmallat1.13Mtpa,whichwouldriseto9.7Mtpaifallplantsunderdevelopmentreachoperation.AfurtherninesmallerscaleBECCSpilotanddemonstrationplantsareoperational–sixcompletedandfourindifferentstagesofdevelopment.•TherearecurrentlytwofacilitiesthatuseDACCS,withoneindevelopment,plus15pilotanddemonstrationplantsinoperationordevelopment;however,collectivelytheircapturecapacitiesarequitesmall.AnnexF6.1providesmoredetailsonBECCS,whilesection6.2expandsonDACCS.FIGURE5:Shareofcommercial,pilotanddemonstrationprojectsforCCS,DACCSandBECCS4%1%CCSpilotsanddemoDACCSpilotsanddemo8%CCScommercialBECCScommercial11%BECCSpilotsanddemoDACCScommercial38%38%Source:BasedonEC(2021);GlobalCCSInstitute,(2020a);MIT(2016).•Capturetechnologiesareatdifferenttechnologyreadinesslevels(TRLs6)withsomeaslowasTRL1,butmanyatorreachingTRL9andsocouldbesufficientlyproventobeusedcommerciallyby2025.TRLisdiscussedinmoredetailinAnnexA,section1.2Costsareuncertainandvarybyapplication.•ThecostsofCCS,CCUandCDRwillbeacrucialfactorindecisionsontheirfutureroles;however,costestimatesvarywidely,withfutureprojectionshavingahighdegreeofuncertainty.•CCSiscapitalintensiveand,insomecases,hassignificantoperatingcosts.Ingeneral,capturecostsdominatebutinsomecasesCO2transportationcostscanbesignificant.Actualcostsaresitespecificanddiffersignificantlydependingonthetechnologyused.CapturecostsaremainlydependentonCO2concentrationandpressure,andtransportcostonvolumeanddistance.AnnexBsections2.1and2.3–2.5expandonvariousCO2capturetechnologiesandcostsassociatedwiththepowerandindustrysectors,andprovideanoverviewofprojects.•WhilethecostsofcaptureinCCUarefairlywellunderstood,thecostsofconvertingCO2intoproductssuchasfuel,fertilisers,buildingmaterials,etc.arelessclearandrequirefurtherresearchandanalysis.ThecostsofCDR,andparticularlyBECCS,dependonbiomassfeedstock,whilethecostsofDACCSasanoveltechnologyarecurrentlyveryhighwithanuncertaincostreductiontrajectory.6Technologyreadinesslevel(TRL)isawidelyusedmeasureofthematurityofatechnology.TRLvaluesrangefrom1to9,withTRL1beingthelowest–referringtothebeginningofthescientificresearch–andTRL9thehighest,referringtoaproventechnologythatiscommercialised.MoreinformationcanbefoundinAnnexA.20THECURRENTSTATUSOFCARBONCAPTURE,TRANSPORTATION,UTILISATIONANDSTORAGEFIGURE6:TechnologyreadinesslevelsofCO2capturetechnologiesLowervalueHighervalueNaturalGasUSCcoalfiredStandaloneNGCCIronandsteelCementEthyleneBECCSprocessingpowerplanthydrogenproductionPre-combustionPressureswingadsorbtionUsingcoal/NGwithCCSMEAPz/AmpFromshiftedsyngasusingMDEAFromfluegasusingMEAMEAPz/AmpMEAorMDEAOxyfuelTGR-BFMEACalciumloopingFull-oxidationPartialoxidationEthylenefurnace+CCSUSCcoalfiredpowerplantwithPCC(MEA)Post-combustion(CementwithMEA+30%biomassco-firing)Bioethanolviagasseparation9TechnologyReadinessLevel87654321Source:BasedonEC(2021);GlobalCCSInstitute(2020a);MIT(2016).•Manycostestimatesfocusonlyoncapturecostsandeitherdonotincludecostsforcompression/liquefaction,transportationandstorage(includingassessmentandmonitoringcosts)ortreattransportandstorageaslumpsums.•Costestimatestendtofocusonlarge-scaleCCSfacilitieswithlargeCO2volumes(suchasgasplants)thatcanjustifydedicatedtransportandstorageinfrastructure,ratherthansmallerindustrialplantsthatemitlowerCO2volumesperyear(suchascementplants)andwillthereforehavetorelyonclusters,hubsandtransportationnetworkstobenefitfromeconomiesofscale.ThesameappliestoCDRfacilities.Thecalculatedcostsinfeasibilitystudiesalsotendtobemuchlowerthanthecostsofactualprojectsthathavebeenimplemented.•Whendiscussingandcomparingcosts,therefore,theprojectspecificsandthefullend-to-endprojectcostsneedtobeconsidered.•AsCCSappliedtofossilfuelprocessesresultsinadditionalenergyuse,itcaninturnleadtoadditionalCO2emissionsandthedifferencecanrangefrom10to25%.Toaccountforthat,costpertonneofCO2avoided(andnotcostpertonneofCO2captured)isthebestmeasuretocompareCCSwithrenewableoptions.AnnexesAsection1.8,Bsections2.1and2.3–2.5,Csection3.2,Dsection4.2,andFdiscussinmoredetail,includingaspectsofcostsincapture,transport,storageandutilisation.21REACHINGZEROWITHRENEWABLES:CAPTURINGCARBONFIGURE7:CommercialavailabilityofCO2capturetechnologiesNaturalGasAmmoniaUSCcoalfiredStandaloneHydrogenNGCCIronandSteelCementEthyleneBECCSProcessing&MethanolpowerplantproductionPre-combustionPressureswingadsorbtionUsingcoal/NGwithCCSMEAPz/AmpFromshiftedsyngasusingMDEAFromfluegasusingMEAMEAPz/AmpMEAorMDEAOxyfuelTGR-BFMEACalciumloopingFull-oxidationPartialoxidationEthylenefurnace+CCSUSCcoalfiredpowerplantwithPCC(MEA)Post-combustion(cementwithMEA+30%biomassco-firing)Bioethanolviagasseperation2045Commercialavailability20402035203020252020Source:BasedonBuietal.(2018);EC(2021);GlobalCCSInstitute(2020a);Hills,SceatsandFennell(2019);IAEGHG(2019a);Leanetal.(2019);MIT(2016).CostsforCO2capturevarysignificantlybasedonthesectorandthetechnology.•Figure8summarisestherangesofavoidedcostsofCO2fordifferentpotentialcapturetechnologiesandinvariousapplications,asreportedbyavarietyofpublications.Thefigureillustratesahighdegreeofuncertainty,exacerbatedbythelimitedavailabilityofdata.Withthoselimitationsinmind,itisnotablethatthelowestrangesarefornaturalgasprocessingwithpre-combustion,whichareintherangeofUSD20–25/tCO2,whilethehighestcostsarefortheproductionofethylenewithCO2captureatoverUSD200/tCO2(Buietal.,2018;Hills,SceatsandFennell,2019,2016,2019;IEAGHG,2013a,2013b,2017,2019b;Khorshidietal.,2016;Lenaetal.,2019;Mandovaetal.,2019;Szczeniak,BauerandKober,2020;Toktarovaetal.,2020;SanmugasekarandArvind(2019);Volsundetal.,2018).Transportationoptionsareprovenbutscaleiscurrentlylimited,whilecostestimatesareuncertainandverycontextdependent.•TransportingrelativelysmallquantitiesofCO2isanestablishedprocessandthereareafewlargerprojects,mostlylocatedintheUS,whichinvolvethepipelinetransportationofCO2forenhancedoilrecovery(CO2-EOR)orEUregionaltransportbyships.•Withexperienceoftransportingothermorevolatilegasses,thesafetransportationofCO2isnotlikelytobebarriertoCCSuptake,althoughpublicacceptancemayremainaconcern,particularlyforonshoretransportationoptions.22THECURRENTSTATUSOFCARBONCAPTURE,TRANSPORTATION,UTILISATIONANDSTORAGEFIGURE8:AvoidancecostsofCO2captureforselectedcapturetechnologiesasreportedbyavarietyofscientificpublicationsLowervalueH¡ghervalueNaturalGasAmmoniaUSCcoalfiredStandaloneHydrogenNGCCIronandSteelCementEthyleneBECCSProcessing&MethanolpowerplantproductionPre-combustionPressureswingadsorbtionUsingcoal/NGwithCCSMEAPz/AmpFromshiftedsyngasusingMDEAFromfluegasusingMEAMEAPz/AmpMEAorMDEAOxyfuelTGR-BFMEACalciumloopingFull-oxidationPartialoxidationEthylenefurnace+CCSUSCcoalfiredpowerplantwithPCC(MEA)Post-combustion(cementwithMEA+30%biomassco-firing)Bioethanolviagasseperation200Avoidancecost($/tCO2)-1180160140120100806040200Source:BasedonBuietal.(2018);Hillsetal.(2016);IEAGHG(2013a,2013b,2017,2019a);Khorshidietal.(2016);Lenaetal.(2019);Mandovaetal.(2019);Szczeniak,BauerandKober(2020);Toktarovaetal.(2020);SanmugasekarandArvind(2019);Volsundetal.(2018).•CostsofCO2transportcanrepresentasignificantshareoftotalCCScostsandareinfluencedbythemodeoftransportation(onshoreandoffshorepipelines,ships,trucksandrail)andotherfactorssuchastheneedforcompressionorliquefaction,orthedistanceoftransport.•Thereisalackofdetaileddataoncosts.TransportandstoragecostsareoftenmodelledintheintegratedassessmentmodelsaslumpsumsatUSD10/tCO2anddisregardtheflowrate,distancetostorageandutilisationsites,transportmodeandstoragetype,aswellasthevariabilityingeographical,geologicalandinstitutionalsettings.Themodelsalsofocusmostlyonlarge-scaleplantswithhighvolumesofCO2.Thereareafewmoredetailedstudiesthatfocusonahandfulofcountrieswithestablishedinfrastructures.•Basedoncurrentestimates,forpipelinesthecapitalexpenditure(CAPEX)isthemajorcomponentamountingupto90%oftotaltransportcosts.FortransportingCO2byship,thesituationreversesandthemajorcomponentisoperatingcosts(OPEX)forliquefaction,fuels,loading/unloadingandtemporarystorage.•Basedoncurrentestimatedcostsforcapacitiesof2.5to20MtpaCO2fordistancesbetween180kmand500km,onshorepipelinehasthelowestcostsatUSD1.7–6.1/tCO2,followedbyoffshorepipelinesatUSD3.5‑32.4/tCO2.Transportviaoffshorepipelinesupto1500kmentailscostsofuptoUSD58.4/tCO2.ShippingrangesfromUSD12.5-22.4/tCO2fordistancesbetween180kmto1500km(Freitas,2015;Gaoetal.,2011;ZEP,2011a).AnnexC,section3.2expandsonthecostsinvolvedintransport.23REACHINGZEROWITHRENEWABLES:CAPTURINGCARBONGeologicalstorageofCO2hasbeencarriedoutformanyyearswithoutmajorissues,butthescaleissmall,withregionalmismatchesandtruecostsuncertain.•Permanentgeologicalstorageoptionsincludesalineformationsanddepletedoilandgasfields.Otherstorageoptionsrelatetoenhancedhydrocarbons–particularlyenhancedoilrecovery(EOR).GeologicalstorageinsalineformationsandinEORhasbeencarriedoutatMtpascaleinpastdecades,butthereisnotyetexperienceinstoringCO2atGtpascale,astheCO2capturedhasnotyetreachedGtpascale.AnnexCdetailsthetypesofCO2storageandtheirassociatedcosts.•ThelargestexperienceinstoringCO2isinEOR,whichhasaverylowriskofCO2leakage.ForCO2pumpedundergroundintogeologicalformations,researchersexpectlessthan0.0008%ofstoredCO2tobeleakedover10000years(Alcaldeetal.,2018).Whiletherisksofleakagearesmall,publicperceptionstowardsthisapproachmaystillbecomeanissue.Monitoringandverificationprocesseswillbeimportant,andmustbeamandatedand–ideally–aregulatedpartofanystorageproject.•Thereismorethan12000Gtofpotential,albeitmostlyunverified,ofCO2storageresourcesinsalineformationsglobally,outofwhich400Gtofstorageiscurrentlywelldocumented;butthereareonlyasmallnumberoflarge-scalecommercialprojects(OGCI,2020).Therearecurrentlysixprojectsstoringalmost0.009GtpaofCO2intheUnitedStates,Canada,AlgeriaandNorway(EC,2021;GlobalCCSInstitute,2020a;MIT,2016).Fifteensitesatvariousstagesofdevelopmentwillbeabletostoreanadditional0.025GtpaofCO2,broadeninggeographicalcoveragetoincludeGermany,theNetherlands,theRepublicofKorea,SwedenandtheUnitedKingdom.•EnhancedoilrecoveryisauseofCO2thatcanalsoconstitutelongtermstorage.Itisnowawell-establishedtechnology,with20projectsinoperationstoring0.031GtpaofCO2.70%ofEORstoragesitesarelocatedintheUnitedStates,Canada,ChinaandtheUnitedArabEmirates.Anadditionalnineenhancedoilrecoverysites,basedintheUnitedStates,China,theUnitedArabEmiratesandIndia,areatvariousstagesofdevelopmentandwillbeabletostoreover0.014GtpaofCO2(EC,2021;GlobalCCSInstitute,2020a;MIT,2016).•Otherrelatedtechniquesthatarestillintheirinfancyinclude:depletedoilandgasfields,enhancedgasrecovery,enhancedcoalbedmethaneandenhancedgeothermalsystems.•UnlikeEORandsalineformations,therearesignificantuncertaintiesconcerningcosts,inpartthisisduetolimitedoperationalexperience.Withmanyprojectsintheirpilotordemonstrationstages,andothersonlylaboratorysimulations,reliabledataonactualcostsisscarce.•Costswillalsobehighlysite-specificandinfluencedbymanyfactorssuchaslocation(country,onshoreoroffshore),typeofstorage,storagecapacity,andannualstoragerateandquality.Costsestimatesarecurrentlyavailableforonshoreandoffshoresalineformationsanddepletedoilandgasfieldsonthreecontinents:theUnitedStates,theEuropeanUnion(EU)andAustralia(Figure9).Commonoutcomesfromcostestimatesindicatethatonshorestorageischeaperthanoffshorestorage,andthatdepletedoilandgasfieldsarecheaperthansalineformations.Onshorestorage,however,mayfacesocialandpoliticalresistance,andlegalbarriers.Thewidestcostrangesareforoffshoresalineformations.•Dependingonthecontinent,onshoresalineformationcostestimatesrangefromUSD0.2–6.2/tCO2,withthecheapeststorageinAustraliaandthemostexpensiveintheEU.OffshoresalineformationcostsrangefromUSD0.5‑30.2/tCO2,withalowerrangeinEurope.CostsestimatesfordepletedoilonshorefieldsintheUSrangefromUSD0.5‑4.0/tCO2,andgasonshorefieldsintheUnitedStatesrangefromUSD0.5‑12.2/tCO2.CostestimatesfordepletedonshoreoilandgasfieldsintheEUrangefromUSD1.2‑3.8/tCO2,withoffshoreatUSD3.8–8.1/tCO2.Thesecostrangescomewithmanycaveats;inparticular,lowerrangeslookoptimisticanditisunclearhowmuchtheyincludethecostsofmonitoring,verificationorpressurisation(IPCC,2005a;ZEP,2011a).AnnexDsection4.2expandsonthecostsofCO2storage.24THECURRENTSTATUSOFCARBONCAPTURE,TRANSPORTATION,UTILISATIONANDSTORAGEFIGURE9:CostestimatesforonshoreandoffshorestorageLowervalueHighervalueLocationStoragetypeAUSalineformationSalineformationOnshoreDisusedoilorgasfieldDisusedoilorgasfieldEUOnshoreSalineformationEU(NorthSea)SalineformationDepletedgasfieldUSOnshoreDepletedoilfieldSalineformation5101520253035USD/tCOstoredSource:BasedonIPCC(2005).Totalend-to-endprocesscostsareuncertainbutaregenerallyhighand,inmanycontexts,commercialincentivestoinvestarelow.•CostestimatesofavoidedCO2forcarboncapture,transportandstoragerangefromUSD22‑225/tCO2dependingonthesector,capturetechnologies,distancefromstorageandstoragelocation.•Thelowestrangeisfortheproductionofammoniaandmethanol(USD22–62/tCO2),followedbynaturalgasprocessingplants(USD31–49/tCO2)andproductionofhydrogen(USD73–88/tCO2).Thehighestrangeisintheironandsteelindustry,withcostsofUSD75–131/tCO2,followedbythecementindustry(USD62–102/tCO2),withthemostexpensivepriceputontheproductionofethylene(USD212–225/tCO2)7(IPCC,2005;ZEP,2011b).•Costestimatesforbioenergywithcarboncapture,transportandstoragealsovarysignificantlydependinguponthesectorofapplication(USD69–105/tCO2).•Therangecanbeevenbroaderwhenincludingthesourcingofbiomass;forexample,forpowerplantsco-firingbiomass(USD69–85/tCO2)andforcementplants(USD76–105/tCO2)(IEAGHG,2019a;Khorshidietal.,2016;Mandovaetal.,2019;SanmugasekarandArvind,2019).•CCSproponentsclaimsignificantpotentialforlearningeffectsthroughlearning-by-doingandlearning-by-innovating,andprojectsignificantcostreductionsgoingforward.Itisnotpossibletovalidatesuchclaimsbut,giventhelimiteddeploymenttodateandmanycostreductiondrivers,costreductionthroughlearningandeconomiesofscaleislikely–however,towhatextentremainshighlyuncertain.AnnexAsection1.8expandsontheseaspects.•AsCCS,CCUandCDRplantsdonotdirectlybringcommercialbenefittoinvestorsandrequirehighCAPEXandOPEX,afinancialincentiveiscrucialtotheirdeployment.Thiscouldbeachievedbydirectfinancialsupportand/orindirectlythroughemissionsstandardsorcarbontaxesthatcreatethebusinesscase.Accesstofundingischallengingandhasnotalwaysbeenstable.Countriesthereforeneedtocreatestable,balancedbutdynamicfinancialsupporttoimproveconfidencewithintheprivatesector.Existingformsoffinancialsupportfromaroundtheworldincludetaxcredits,grantsandloanguarantees.7TheseestimatesincludethecostsoftransportandstorageofCO2.Transportcostsincludeonshoreoroffshorepipelinetransportfordistancesof180kmto500km.Storageincludecostsforbothoffshoreandonshoregeologicalstorage.25REACHINGZEROWITHRENEWABLES:CAPTURINGCARBON3THEFUTUREROLEOFCCS,CCUANDCDRLow-costrenewablesmakecarboncapturecombinedwithfossilfueluseunnecessaryinmanysectorsandcontexts,butitwillbeneededinsomeapplications.•RenewablesandCCS(appliedtofossilfueluseand/orprocessemissions)areoftenperceivedascompetitorsintheenergytransitionbutinsomeapplicationstheycanbepartnersand,inafewcases,CCSistheonlyoption.•TherespectiverolesofrenewablesversusCCSvarybycountry,sectorandthespecificcontextsofeachdeployment.Factorsofimportanceinclude:relativecosts;practicalityofdeployment;availabilityofsupportingtransportandstorageinfrastructure;actualemissionabatementpotential;deploymenttimescales;skillsandknowledge;socialimpacts;andsocietalattitudes.•Inmostcontextsinthepowersector,renewablesoutcompeteCCSoncostpertonneofCO2andsustainabilitygrounds.•IRENA’sannualassessmentofrenewablepowergenerationcostsfor2020(IRENA,2021b)showedthat,increasingly,newlyinstalledrenewablepowercapacitycostslessperkWhthanthecheapestunabatedfossilfuel-basedgenerationoptions.Electricitycostsfromutility-scalesolarPVfell7%year-on-year,reachingnearly26THEFUTUREROLEOFCCS,CCUANDCDRFIGURE10:TheroleofCCS,CCUandBECCSacrosssectorsInthe1.5°Cscenario,Carbonemissionsabatementsunder2050CO2captureandstoragethe1.5°CScenario(%)isacomponentofthe-36.9globalenergytransitionAbatementsGtCO2/yrRenewables25%(poweranddirectuses)CementChemicalandAbating20%CO2Energyconservationand25%petrochemicalemissionswithCCS,eciencyHeatplants20%PowerCCUandBECCSElectrificationinenduse10%sectors(direct)6%14%HydrogenanditsderivativesCCSandCCUindustryBECCSandothercarbonremovalmeasuresRoleofCCS,CCUandBECCSacrosssectorsTotalcumulativeCO2removalsfrom2021to205014%36GtCO228%BECCSandothercarbon11%removalmeasuresandtechnologies66%4.5Gtpapower/heatplantsofCO2by20509%BECCSandothercarbon31GtCO224%removalmeasuresandtechnologiesindustry17%HydrogenplantsCCU/CCS-cement,iron31%CementandsteelandchemicalsChemicaland45GtCO236%forprocessemissions3.4GtpapetrochemicalCCS-bluehydrogenIronandsteel26%ofCO2by2050-12615GtCO212%26%GtCO2/yrNote:BECCS=bioenergywithCCS;GtCO2=gigatonnesofcarbondioxide.sixcents(USD0.057)perkilowatthour(kWh)in2020.Onshoreandoffshorewindbothfellbyabout9%and13%year-on-year,reaching0.039USD/kWhand0.084USD/kWh,respectively,fornewlycommissionedprojects.Morethanhalfoftherenewablecapacityaddedin2020achievedlowerelectricitycoststhannewcoal.LevelisedcostsperkWhofelectricityforcoal-basedpowerproductionwithCCSarecurrently44%morethantheaveragecostofsolarand85%morethanaveragecostsofonshorewindinthemarketsexamined.27REACHINGZEROWITHRENEWABLES:CAPTURINGCARBON•Inthepowersector,therefore,CCSperkWhuseisnoteconomicallyjustifiablefornewfossilfuelprojects.Theonlyeconomiccasethatcanbemadeforitsuseistoutiliseexistinginstalledinfrastructure,buteveninthiscontextnewrenewableinstallationscandeliverlower-costpowerthancoalplantswithCCSretrofits,andprovidebothstableandwell-paidjobs.Fromacurrentcostperspective,theuseofCCSiseconomicallyjustifiablepertonneofCO2fortheproductionofhydrogen,ammonia,methanol,cement,andironandsteel(Figure11).AnnexAsection1.8andAnnexBsections2.3–2.5expandonthecostsofCCSversusrenewablesandotheroptions.FIGURE11:Costs8ofproductionviacarbonroute,asapercentageofrenewablepathwayLowervalueH¡ghervalue(CoalfiredvsPower(GasfiredvsIronandSteelCementHydrogenAmmoniaMethanolsolarPV)onshorewind)(Coalfiredvs(Gasfiredvsonshorewind)solarPV)Productioncostsusingcarboncapture(relativetorenewableenergy)400%350%300%250%200%150%100%50%0%-50%-100%ProcessestocaptureCO2donotremoveallCO2andstillresultinsomeemissionsthatmustbeaccountedfor.•CO2captureprocessesacrossthepowerandend-usesectorsarenot100%effective.CurrentdeploymentsofCCSoftenhavecaptureratesof60–80%orless.Around90%captureratesareoftenreferencedindiscussionsofCCSbutareneitheratechnicaloreconomiclimit–inprinciple,highercaptureratesarepossibleinmanyapplications,insomecaseapproaching99%butsuchdeploymentsarenotyetdemonstratedatscaleandwillimpactcosts.CCSdeploymentsshouldbeincentivisedtopushcaptureratesashighaspossible(e.g.>95%)butsomeemissionswillremainthatmustbeaccountedandcompensatedforinanysystemaimingfornet-zeroemissions.8Thecalculationofrelativecostsdoesnotlookatunabatedcostsbutratherconsidersproductioncostsviarenewablesasthebasecostsfordifferentcommodities.Thisshowshowexpensiveorcheapthecommodityproducedwithcapturetechnologyis,comparedtothatproducedusingtherenewablesroute.Forseveralsectors,thisisexpressedasarangedenotingthevariationofcostsindifferentgeographieswiththesameproductionroute.28THEFUTUREROLEOFCCS,CCUANDCDR•AswithanytechnologyseekingtoreduceCO2emissions,conductingfulllifecycleassessmentsincludingbothupstreamanddownstreamemissionsisimportant.ForCO2captureprocesses,upstreamemissionsassociatedwiththecontinuedextractionandtransportationoffossilfuels,orwithsourcingofbiomass,mustbeaccountedfor,withmethaneemissionsandleaksbeingparticularlysignificant.Iffossilfuelscontinuetobeused,stepsmustbetakentosignificantlyreduceleakages,withanyremainingemissionsincludedinassessmentsofthevalueandcostofCCS.Downstreamemissions–forexample,fromtheutilisationofcapturedCO2–arealsoimportantandmustbeincludedinassessments.Carboncaptureforfossilfuelandprocessemissionsinindustrymustbeaggressivelyscaledtoreachc.3.4Gtpaby2050.FIGURE12:ShareofCO2capture,utilisationand/orstoragebysectorby205017%31%Cement26%HydrogenplantsIronandsteelChemicalandpetrochemical26%•InIRENA’s1.5°CScenario,theuseofCCSandCCUforfossilfuelorprocessemissionsislimitedtothemostessentialapplications–inparticulartocapturingprocessemissionsinhydrogen,cement,ironandsteelandchemicalproductionwithalimiteddeploymentforindustry/wasteincinerators,etc.CCSisnotdeployedforfossil-fuelbasedpowerproduction.•Inthe1.5°CScenario,CCSandCCUforfossilfuelorprocessemissionsfrompower,fuelproductionandindustrialprocessrisesfrom0.04Gtpatodayto2.8GtpaofCO2in2040and3.4GtpaofCO2in2050,cumulativelycapturing58Gtgloballyoverthatperiod.•Thesefiguresinclude2.4Gtpain2050fromCCSappliedinthecement,chemicalandsteelsectors,and1.1Gtpain2050capturedintheproductionofbluehydrogenfromnaturalgaswithCCS,whichaccountsforc.30%oftotalhydrogensupply(Figure12).29REACHINGZEROWITHRENEWABLES:CAPTURINGCARBONUtilisationhasarolebutshouldbemainlylimitedtoapplicationsthatdonotleadtothelaterreleaseoftheCO2.•CO2utilisationisapotentialwaytoimprovetheeconomicfeasibilityofcarboncapturebycreatingarevenuestreamfromcapturedCO2.Insomecontexts,itcanalsocompensateforalackofreadilyavailableandaccessibleCO2storagesites;utilisationmayalsoservetoavoidsocialacceptanceissuesconcerningCO2storage.•Thereare,however,twoveryimportantcaveatsinthisregard.Firstly,thescaleofCO2useapplicationsisrelativelysmallcomparedtothelevelsofCO2capturerequiredthisdecade.Secondly,manyutilisationroutesarenotconsistentwithreachingnetzeroemissions,becausethecapturedemissionsarereleasedbackintotheatmosphereintheshortormediumterm.•Thereareseveralpotentialutilisationpathways.CO2canbeusedinenhancedhydrocarbonrecovery(suchasoil,gasorcoalbedmethane)andtoproducefuels(methanol,hydrogen,syngas,biofuelsviaalgae),commodities(urea,methanol)andchemicals(polymers),orthroughCO2mineralisationtoproducebuildingmaterials.•CapturedCO2iscurrentlyusedtoaverylimiteddegreeinsomegoodsinthebeverageindustry,andinethanol,methanolorfertiliserproduction,accountingforapproximately230MtpaofCO2(MacDowelletal.,2017).•Challengesassociatedwithutilisationincludeimmaturetechnologiesthatarealsocapitalandenergyintensive,theyneedtobelocatedinvicinityofcaptureplantstoreducetransportationcosts,andhaveacommercialmarket.DemandforCO2willlikelydependmostlyonthelarge-scaleimplementationofCO2-basedfuels.•Intheshortterm,CCUcanplayaroleinreducingemissionsbyreplacingcarbonintensiveproductswithlessintensivealternatives.Inthelong-term,CCUisonlycompatiblewithanetzeroemissionsfutureiftheCO2sourceissustainable(biogenicorair)ortheuseresultsinthelong-termstorageoftheCO2(materials).•Inthe1.5°CScenario,CCUappliedtofossilfuelorprocessemissionshasasmallroleintheshorttermassourceofcarbon;inthemediumterm,however,itsroleislimitedtothosecircumstancesthatdonotleadtoanetincreaseinemissionstotheatmosphere–mainlyinthechemicalsector–accountingforcirca14%oftheCO2capturedthroughto2050inthe1.5°CScenario(IRENA,2021a).AnnexEexpandsonthetopicofCO2utilisation.BioenergywithCCS(BECCS)isessentialforthenet-zerogoalbutneedstoreach4.5Gtpaby2050andfacesmultiplechallenges.•CDRprocesses,combinedwithlong-termstorage,caninprincipleremoveCO2fromtheatmosphere,resultinginnegativeemissions.CDRtechnologiesarethereforeacriticalcomponentofnet-zeropathways.•CDRmeasuresandtechnologiescanincludenature-basedprocessessuchasreforestation,aswellastechnologyorengineeredapproachessuchasBECCS,DACCSandsomeotherexperimentalapproaches.•ThemostdevelopedexampleofCDRtechnologyisBECCS.BiomassabsorbsCO2fromtheatmosphereasitgrows,andtheuseofCCSpreventsmostofthatCO2fromgoingbacktotheatmosphereduringbiomassfinaluse.TheoverallresultisthatCO2iseffectivelyremovedfromtheatmospherethroughbiomassgrowthandstorageelsewhere.•Net-zeropathwaysrelyonBECCSbutitiscurrentlyunproveninmostcontextsandtherearecomplexitiestobeaddressed.TheextensiveuseofBECCSrequiresbothascalingupofCCSdeploymentandstrategiestoensuresufficientsuitableandsustainablebiomassfeedstocksupplies.IRENA’s1.5°CScenarioforeseesaneedforc.40–50EJofbiomassutilisedwithBECCS–aroundathirdoftotalbiomassusedintheenergysystem(IRENA,2021a).30THEFUTUREROLEOFCCS,CCUANDCDR•TherearearangeofpotentialapplicationsofBECCS,including:powerandheatgenerationwithbiomassprovidingsomeorallofthefuel(e.g.woodpellets,sugarcanebagasseormunicipalsolidwaste);cementkilnswithbiomassprovidingthefuel;blastfurnacesforironproduction,wherecharcoalcanbeusedasafuelandreducingagent;chemicalplantswherethechemicalfeedstockisbiomass(e.g.bio-methanolorinbioethanolproduction);andbiogasupgradingwheretheCO2fractionofbiogasisseparatedfortheproductionofbiomethane.•Dependingontheplantdesign,biomasscanbetheonlyfuel,oritcanbeco-firedwithcoalornaturalgas.Inthepastdecade,asmallnumberofcoalpowerplantshavebeenconvertedinto100%biomasspowerplantsorareintheprocessofdoingso.However,thenumberofsuchconversionstodateissmallandonlyonefullyconvertedpowerplanthasaclearpubliclyannouncedplantoaddCCS;asyet,noco-firingcoalornaturalgaspowerplantshaveannouncedplanstoaddCCS(Drax,2021;Voegele,2021).AnnexBsections2.3–2.4andAnnexFsection6.1expandontheroleofBECCS.•TheIPCC’s6thAssessmentWorkingGroup1Report(IPCC,2021)includesfiveillustrativescenarios,themostambitiousofwhich(SSP1-1.9)willstillverylikelyresultinaverageglobalsurfacetemperatureover2081–2100beinghigherby1–1.8°Ccomparedto1850–1900.ThisscenarioutilisesBECCStoremove5Gtpaby2050.•InIRENA’s1.5°CScenario,BECCSuseresultsin2.7GtpaofCO2capturedandstoredin2040,and4.5GtpaofCO2in2050(Figure13).Thisincludesthecarbonbalanceinthechemicalandpetrochemicalindustrythroughcarbonstocksinchemicalproducts,recyclingandcarboncaptureinwasteincineration.Asaresult,towards2050thepowerandindustrysectorsbecomenetnegative;i.e.theCO2capturedmorethancompensatesforremainingCO2emissionsinthosesectors.Tocapture4.5GtpaofCO2by2050wouldrequireinvestmentsofmorethanUSD1.1trillionbetween2021and2050(IRENA,2021a).•BECCScan,inprinciple,beutilisedinarangeofprocessesbuttheoptimumapplicationofBECCSrequiresmoredetailedinvestigationofcosts,logisticsandsustainablebiomasssupplychains,andwillbehighlycountryandcontextspecific.IRENA’s1.5°CScenarioincludesbiomass-basedprocessesfromwhich10.12Gtpacouldbecapturedandstoredby2050(seeTable1).Ofthatpotential,thescenarioassumes44%(4.5Gtpa)isactuallycapturedandstoredbutisnotspecificaboutwhereBECCSwouldbeapplied.Themostsignificantopportunitiesareinpower,heat,chemicalsandbiorefineriesbutBECCScouldalsobesignificantincement,pulpandpaper,andfoodproduction.Thepotentialinironandsteelproductionislowinthe1.5°CScenarioby2050,sincethescenarioassumesanearlycompletetransitionawayfromblastfurnacesbythen,buttheBECCSpotentialcouldbelargerthereduringthetransitionorifmoreblastfurnacesutilisingbiomassandCCSareretained.•ToillustratethescaleofBECCSrequired,theDraxpowerplantintheUKhasconvertedfourcoal-firedunits(eachratedatc.660MW)tobiomassandisplanningtoretrofitCCStoatleasttwounits(Drax,2020).Eachindividualunitwouldcapturecirca4Mtpa.Capturing4.5Gtpawouldrequireover1100suchunitsaroundtheworld,oranequivalent,andmostBECCSapplicationswillbemuchsmallerthanthis.AnnexBsection2.3andAnnexFsection6.1discusstheroleofBECCSinmoredetail.31REACHINGZEROWITHRENEWABLES:CAPTURINGCARBONTABLE1:Potentialforbiogeniccarboncapturein2050inIRENA’s1.5°CScenarioProcessgroupBiogeniccarboncapturepotentialin2050PowerGtCO2Heat4.43Cement1.29Ironandsteel0.37Chemicals0.03Pulpandpaper1.18Foodsector0.35Biorefinery0.30Total2.1510.12FIGURE13:ShareofBECCSbysectorin205013%11%4.5GtpaCementHeatplantsChemicalandpetrochemicalPowerofCO2by20509%64%•BECCScapturecapacityin2021isc.0.001Gtpa(1Mtpa)ofCO2.Therearecurrentlythreeoperatingcommercialplantsandanadditionalsevencommercialplantsareatdifferentstagesofdevelopmentthatwouldaddcirca0.007Gtpa(7Mtpa)ofCO2capturecapacitywhenoperational.Inaddition,19pilotanddemonstrationprojectsareeitherindifferentstagesofdevelopment,completedorinoperation(GeoengineeringMonitor,2019,2021;NASEM,2019;Viebahn,ScholzandZelt(2019).•Basedoncurrentapplications,costestimatesforCO2capturehaveaverywiderange,including:USD12–22/tCO2forbioethanolproduction;c.USD64/tCO2forcoal-firedpowerplantswith10%biomassco-firing;USD157–188/tCO2for100%biomasspowerplantsusingwhitewoodpellets;andUSD87–104/tCO2forcementproductionwith30%biomassco-firing(Consoli,2019;IEAGHG,2019a;IRENAandMethanolInstitute,2021;Khorshidietal.,2016;Mandovaetal.,2019;Szczeniaketal.,2020;SanmugasekarandArvind,2019).32THEFUTUREROLEOFCCS,CCUANDCDROtherCDRtechnologiessuchasDACCSrequirefurtherdevelopmentandvalidationbeforetheirrolecanbeevaluated.•OtherCDRtechnologiesincludeDACCSandsomeotherapproachesthataremostlyatanearlyexperimentalstage,whichmakestheirfuturepotentialhardtoquantify.Accordingtothisearlyexperience,projectsfacehighenergyandlandrequirements,butofferflexibilityintermsoftheirlocation.•DACCSisanotherCDRtechnologythatisintheearlystagesofdevelopmentandalongwayfromreachingthegigatonne-scalesneededtobeimpactful.TherearetwocommercialplantscurrentlyoperatingandcapturinganegligibleamountofCO2(0.0009Mtpa,0.9ktpa),andoneotherplantisunderdevelopmentandwouldaddanadditional0.021Mtpa(21ktpa)ofCO2capture.Inaddition,thereare15pilotanddemonstrationplants–threecompleted,seveninoperationandfiveatvariousstagesofdevelopment(GeoengineeringMonitor,2019,2021;NASEM,2019;Viebahn,ScholzandZelt,2019).•ThesetechnologiesdonotcurrentlyplayamajorroleintheIRENA1.5°CScenario.However,countriesandinvestorsarebeginningtomakefinancialcommitmentstolarge-scaleDACCSprojects,which–ifsuccessfulindrivingscale–wouldallowDACCStooffsetsomeoftheneedforBECCSorcouldallowformoreemissionselsewhere.•TheenergyrequirementsforDACCSdifferbasedontechnologybutforallcurrentdesignstheyaresignificant.Basedoncurrentdesigns,around200TWhisrequiredper100MtofCO2captured.Capturing4Gtpaby2050wouldconsume8000TWhofelectricityperyear–aboutathirdoftheelectricityusetoday(SekeraandLichtenberger,2020).However,ina1.5°CScenario,electricityuseincreasesapproximatelythree-foldtoreach70000TWh,sotheadditionaluseforDACCSwouldbeafurther11%.Thatisanadditionaldemandandcomesontopofanalreadyherculeanscale-upinelectricitysupply.Theimplicationsofthelarge-scaleuseofDACCSfortheglobalpowersystemwillbesignificant,therefore,butnotinsurmountable.AnnexBsection2.2andAnnexFsection6.2expandonDACCS.33REACHINGZEROWITHRENEWABLES:CAPTURINGCARBON4ACTIONSREQUIREDINTHENEXT10YEARSAcceleratedactiononmultiplefrontsisneeded,includingmanymoreprojectsinthe2020s,ifCO2captureistoplayasufficientroleby2050.•CCS,CCUandCDRtechnologiesareestablishedbutnotwidelydeployed,andthepaceofprogressintheirdevelopmentanddeploymentinthepastdecadehasbeenveryslow–muchslowerthanmanyanalystspredicted–withmanyplansfallingbythewayside.•Therearesomesignsthatthepacemaypickup,drivenbythestrongerpolicysignalsprovidedbytheincreasingambitionfordeepdecarbonisation;butthelessonsoftheslowprogresstodateneedtobelearned.Thesetechnologiesarecomplextodeploy,capitalintensiveandincreaseoperationalcosts.Theyincreasetherisksandcostsofprojects,mostlywithoutdirectbenefitstotheirinvestors.Privatesectoractorsalonearethereforeunlikelytodrivetheacceleratedpaceofprogressneededwithoutmuchstrongerincentives.•Toadequatelyscalethetechnologieswillentailnumerousconditions,including:astableandwell-functioningRD&Dfundingprogramme,includingsupportfordemonstration,first-of-a-kindandcommercialprojects;robustlife-cycleanalysis;anenablingregulatoryframeworkandstandards;technology-promotinginstitutions34ACTIONSREQUIREDINTHENEXT1C0HYAEPATERRSFIGURE14:Actionsrequiredinthenext10years10keyactionsObjectivesforthenext10yearsScale-upRD&D1.Encouragepublic-privateinternationalRD&Dactivitiesactivities2.Builddemonstration,first-of-a-kindandlighthouseprojectsoncapture,Establishenablingtransportandstorageaspectseverywhereconditionstospeedup3.Focusonresearchingandunderstandingthepublicperceptionofcarbondemonstrationcapture,butparticularlytransportandstorage&deployment4.Developpredictablebutflexiblenationalandcross-borderpolicies,regulationsandstandardsforpublic-privatecooperation5.Establishandempowertechnology-promotinginstitutionsandorganisations6.Introduceandensureaccesstovarioustypesofstable,balancedbutdynamicfinancialsupport7.Implementenablingandcost-eectivehub-and-clustermodels8.Developandensureopenaccesstoinformation9.SpeedupdeploymentofalargenumberofCCS/CCU/BECCS/DACCSnetworkswithoneormoreheavyindustryEnsuresustainability10.EnsuresucientandsustainablesourcedbiomassforBECCSandtheoftheprocessassessmentofthefulllife-cycleemissionsinBECCS,DACCSandCCSprojectsandorganisations;financialincentivessuchasgrantsandtax-creditmechanisms;theactivepromotionofCCStechnologiestothepublic(RomanshevaandIlinova,2019);and,inthecaseofBECCS,sufficientsustainably-sourcedbiomassfeedstock.•SomecountriesandregionssuchasAustralia,Canada,China,Norway,theUnitedStates,theUnitedKingdomandtheEuropeanUnionhaveinvestedinCCSoverthepasttwodecades,includingbothRD&DfundingandsomeincentivesforCCSdeployment,andhavestartedcharacterisingcommerciallyviablestoragesites.Othercountriesarebeginningtotakeaninterestandputsupportmechanismsinplacebuttherearestilllargegapsintheinfrastructure,regulatoryandfinanciallandscapes.35REACHINGZEROWITHRENEWABLES:CAPTURINGCARBON•Internationalco-operationwillbeanimportantenablerinleveragingnationalefforts,sendingconsistentsignalstoinvestorsandpromotingwidespreadsharingofexperiencesandlessonslearnedfromearlydeployments.Suchco-operationmustreachbeyondthefront-runningcountriestoensureallnationshavetheknowledgeandcapacitytoplanfortheadoptionofemergingtechnologies.•Settingclear,feasiblebutambitiousnationalandinternationalgoalscanbeapowerfultoolforbuildingconsensusandinformingsharedactionplans.AveryimportantrecentexampleofthisapproachthatisgainingwidescalebackingfromdiverseglobalstakeholdersistheUNRace-to-ZeroEmissionsBreakthroughsinitiative.9Theinitiativesetsoutnear-termgoalsformorethan20sectorsandaimstoinformamasterplanaroundwhichbusiness,governmentandcivilsocietycanunite;itsdiversegoalscallfor(Climatechampions,2021):°Theestablishmentofover50newCCSandCCUnetworksbypublicandprivateactors,reachingfinalinvestmentdecisions(FID)by2026andtotalling400Mtpainnewcapacity.Eachnetworkshouldincludeoneormoreheavyindustryparticipants.Theendgoalisforheavyindustriestoachievenet-zeroemissionsby2050andafullydecarbonisedglobalelectricitysystemby2040.°Publiccommitmentstocapture100Mtpaby2030usingengineeredsolutionsforcarbonremoval(e.g.BECCSandDACCS).Theendgoalisforover5GtpaofCO2removalandstoragecapacityoperationalby2050.•Sharedgoalssuchastheseareavaluablestartingpointbutthenextstepistocreatecoalitionsofactorsdevelopingandimplementingsharedplanstodeliverthesegoals.Somenationalandcross-borderinitiativestoachieveaspectsoftheaboveareemerging,particularlyaroundbuildinghub-and-clustermodelsandsharedtransportationnetworks,buttheirscalefallsfarshortofwhatisneeded.RD&Dsupportneedstobeexpanded,includingthroughcross-bordercollaboration.•RD&Dsupportmechanismshelptoexaminetechnical,environmentalandeconomicfeasibilityandfacilitatetechnologyadvancements,addressbarriersandincreaseconfidenceinthetechnology.Pioneeringcountriesandregions(Australia,Canada,Norway,theUnitedStatesandtheEuropeanUnionasaregion)haveestablishedfundingprogrammestosupportRD&DinCCSinthelasttwodecades,andthesupporthasincreasedmoderatelyinthepastyearortwo.ParticularRD&Dactivitiesthatmustbeexpandedtoexaminefeasibilitiesandbarriersinclude:°refinedCO2capturetechnologies–particularlyforindustrialapplications;°alternativeoptionsforlongtermstorageorlong-termusesofCO2;°transport–refurbishingoilandgaspipelinesandships;and°alternativeCDRoptions,includingDACCS.•SomepastCCSprojectshavebeenhaltedorimpactedduetoalackofpublicacceptance;thereisarole,therefore,forresearchintopublicperceptionsofCCS,particularlyforonshoretransportandstorage.Publicperceptionandacceptancearebecominganimportantpreconditionforlarge-scaledeploymentofCCS,whileCCUgenerallyenjoysbroaderpublicacceptance.HowthepublicperceivesCCSdependsonthesourcesandformsofinformation,andontheframingofpoliciesthatsupportCCS(UKCCS,n.d.).Therefore,anearlyunderstandingofstakeholders’perceptionsofCCSneedstobeestablishedandfollowedbywithinclusiveandopenstakeholderengagement.9https://racetozero.unfccc.int/join-the-race/36ACTIONSREQUIREDINTHENEXT1C0HYAEPATERRSManymorelarge-scaledemonstrations,first-of-a-kind(FOAK)andlighthouseprojectsneedtobeestablishedinmultipleregionsoftheworld.•WhilstthetechnologicalprinciplesofCCS,CCUandCDRareproven,thereremainssubstantialscopefortechnologyrefinementandmuchtolearnaboutboththeirpracticalapplicationsindifferentcontexts,andtheeconomicandwidersocietalimplicationsoftheiruse.•Thepriorityinthe2020smustbetoestablishmanymorelarge-scaledemonstrations,FOAKandlighthousedeploymentswithextensiveanalyses,andthewidesharingoftheexperienceacquiredinordertobuildupboththeknowledgebaseandconfidenceofpolicymakersandinvestors.•Prioritiesforsuchprojectsinclude:°BECCSforpowerproduction,cementandchemicalsproduction;°CCSforsteelproduction;°CCSandCCUinthechemicalsector;°CCSforbluehydrogenproduction;°long-termgeologicalstorageofCO2,withappropriatemonitoringandverification;and°hubsandclustersofCCS,CCUandCDRprojectswithsharedtransportationandstorageinfrastructures.AssessmentsoftheroleandvalueofCCSprojectsmustconsiderfulllifecycleemissions.•AnalysesofCCS,CCUandCDRprojectsneedtoconsiderlifecycleemissions–particularlyupstreamemissions.Thesearefromfuelsandmaterials,aswellasthepreparationofthechemicalsusedinthecaptureandmanufactureofCCSequipment/technologies,andthedifferencescanbesubstantial.BasedontheIPCCAssessmentReportAR5,directemissionsfromacoalpowerplantwithpost-combustioncaptureaccountsfor120kgCO2eq/MWh,whilelifecycleemissionsaccountfor220kgCO2eq/MWh;inthecaseofanaturalgascombinedcyclepowerplantwithCCS,thedirectemissionsarearound57kgCO2eq/MWhbutlifecycleemissionsaccountfor170kgCO2eq/MWh(IEAGHG,2019a).InthecaseofBECCS,thelifecycleemissionscalculationisevenmorecomplex,withpotentialuncertaintiesaroundtheCO2implicationsofthebiomasssupplychain.•AkeymetricforassessingCCSprojectsshouldbe“avoidanceefficiency”,whichincludesfactorssuchasupstreamemissions,theenergyandefficiencypenaltyforCCSuse,andundergroundCO2retention,andwhichrequiresfurtherresearch,refinementandcommunication.ForBECCS,biomassfeedstocksneedtobesourcedinaprovenenvironmentallyandsociallyjustway.•Tosourcebiomasssustainablyrequiresadetailedassessmentanddevelopmentofsupplychainsforthesustainablesupplyofbiomassinspecificnationalandsectorialcontexts.•TheCO2producedfrombiomasscanonlybeconsideredneutraltotheatmosphereifthesourceofbiomassiscontinuallyrenewedasthebiomassisharvested,andifitsusedoesnotcauseothernegativeland-usechanges.Thetimescaleforregrowthofbiomassalsomattersfora1.5°CScenario;utilisingbiomassthattakesdecadestobereplacedmaynotbeconsistentwiththe1.5°Cdegreegoal.37REACHINGZEROWITHRENEWABLES:CAPTURINGCARBON•Thesourcingofbiomassmustalsoaddresswidersustainabilityrisks–i.e.itshouldnotcauseotherenvironmental,economicorsocialharmssuchasland-usechangeorcompetitionwithfoodsupply.Theuseofbiomassintheenergytransitionisviewedascontentiousbysome,withtheriskofnet-deforestationbeinghighlighted.Suchconcernsneedtobeaddressedandthesourcingofbiomassrequirescarefulmanagementtomitigatethoserisks.Uncertaintiesalsoremainaroundtheoptimumuseoffinitebiomassresourcesandfurtherworkisneeded.Currentestimatessuggestthat,withcare,sufficientbiomasscanbesourcedsustainablytoallowforasignificantglobaluseofBECCS.Predictablebutflexiblenationalandcross-bordersectorialpolicies,legalframeworksandstandardsarecriticaltobuildingsharedpublic-andprivate-sectorefforts.•GovernmentpoliciesareanessentialdriverforCCS,CCUandCDRdeployment,andcanprovidesupportthroughemissionreductiontargets,carbonpricingandfinancingcommitments.•Bothnationalandcross-bordersectorialplansareneededtobuildasharedpublic-andprivate-sectorunderstandingoftheroadmapforCCS,CCU&CDRuptakeinagivensector.Suchroadmapsneedtoclearlydistinguishbetweendifferenttechnologiesandgivecarefulconsiderationtotheappropriateroleofeachtechnologyinthatsector.•ThedevelopmentofsuitablelegalframeworksforCCSiscritical,particularlyforstorage.Itneedstobeclearandpredictablebutalsoflexible,owingtotheuniquecharacteristicsofeachproject/plant.Regulationsshouldfocusonadministrationandpermits(intermsofstorage,fortheoperationofstorageandaccesstothesubsurface)acrosstheprojectlifecycleandaddressnecessarystandardstoprotecttheenvironmentandhumanhealththroughenvironmentalimpactassessments,publicconsultations,mandatorymonitoringschemes,environmentalemergencyplansandlong-termliabilitystudies.•Countriesuseaccountingrulestotracktheiremissions.WhiletheserulescurrentlyincludeCCSandBECCS,theyneedtobeexpandedtoincludeDACCS.Inthiscontext,theEuropeanCommissionisdesigningamechanismtocertifynature-basedandtechnologicalcarbonremovalsolutionstoprovideincentivesformarketuptake(Tamme,2020).•Riskandliabilityparticularlyassociatedwithtransportation,injectionandstoragehavebeenidentifiedascriticalbarrierstoscaleupCCSdeployment.Someofthetraditionalrisksandliabilityprovisionsandmodelshavebeenadoptedfromoilandgasoperations,butthestorageaspectsarebecominganovelrisk,exposingastilllimitedknowledgeandexperienceoftheindustry.•Someregulatoryframeworkshavebeguntoaddressthesepointsbyintroducingearlyliabilitymodelstodecreaserisk,andincreaseinsurabilityandconfidenceinCO2projects(Havercroft,2019).However,furtherconsiderationoftheroleofpublicandprivateactors(operatorsandinvestors)inallocatingandmanagingrisksiscritical,asistheengagementoftheinsurancesector.Accesstovarioustypesofstable,balancedbutdynamicfinancialsupportiskeyforrapiddeployment.•AsmostCCS,CCUandCDRplantsdonotbringdirectcommercialbenefitstoinvestorsandtypicallyincreaseCAPEXandOPEX,someformoffinancialincentiveiscrucialfortheirdeployment.Pastsupportschemeshavebeencomplexandoftennotbeensustained.Countriesthereforeneedtocreatestable,balancedbutdynamicfinancialsupporttoimproveconfidenceoftheprivatesector;forexample,intheformoftaxcredits,grantsorloanguarantees.38ACTIONSREQUIREDINTHENEXT1C0HYAEPATRERS•Learningfromtheexperiencesofotherscanhelp.AnotableexamplerelevanttoCCSistheUSSection45QthatofferstaxcreditstofederaltaxpayerswhocaptureCO2emissionsofatleast25000–500000tpaCO2forutilisation,100000tpainindustrialCCSandDACCSor500000tpaCO2fromelectricitygeneration,andeitherutilise(includingviaEOR)orstoreCO2ingeologicalformations.Projectsmustcommenceconstructionby1January2026,andtaxcreditswillbeavailablefor12yearstoprovidemorecertaintyforinvestors.ThecreditvalueisUSD50/tCO2forCO2destinedforgeologicalstorageandUSD35/tCO2forEORorutilisation(USIRS,2021).•In2019,CaliforniaalsorecognisedCCSandDACCSasmethodsofreducingthecarbonintensityoffuels(measuredingramsofCO2equivalent)andincludedtransportationfuelswhosewholelifecycleemissionshavebeenreducedthroughCCS/DACCSwithgeologicalstorageintotheLowCarbonFuelStandard(LCFS)scheme(GlobalCCSInstitute,2019).•IntheEuropeanUnion,theEuropeanCommission’sInnovationFund(previouslyNER300programme)providesgrantstohighlyinnovativetechnologiesandbigflagshipprojectsatcommercialscale,regardlessoftheirsize.Inaddition,theEuropeanInvestmentBank(EIB)ProjectDevelopmentAssistanceincreasestheinvestmentreadinessofCCSprojectsinordertoreceivefundingfromtheInnovationFund.TheEUalsoofferspublicgrantsundertheEuropeanResearchFrameworkprogrammes(e.g.Horizon2020orHorizonEurope),suchasCEMCAPorLEILACCCSprojectsinthecementindustry.Inaddition,ProjectofCommonInterest(PCIs)forcross-borderCCStransportnetworks,suchastheAthosorNorthernLightsprojects,havereceivedPCIstatusandareeligibletoapplyfortheConnectingEuropeFacility(EC,2019).•TheUnitedStates’DepartmentofEnergyofferssuchloanguaranteesforFOAKcommercialscaledeploymentsforCCS,CCUandCDR(incl.DACCS)forupto80%oftotalprojectcosts(HollandandKnight,2020).IntheEuropeanUnion,theEIBoffersInnoFinAdvisoryservicestocompaniesonprojectstructuretoimprovetheiraccesstofinance,andoffersnumerousoptionsforfunding,includingcorporateloans,projectfinanceandventuredebt.•ExamplessuchasthesewilllikelydrivesomeCCS,CCUandCDRdeploymentbutsuchmechanismsneedtobebroadenedtoothercountriesandexpandedtoaddressemergingdemand.39REACHINGZEROWITHRENEWABLES:CAPTURINGCARBONREFERENCESAlcalde,J.,etal.(2018),“EstimatinggeologicalCO2storagesecuritytodeliveronclimatemitigation,”NatureCommunications,Vol.9,https://doi.org/10.1038/s41467-018-04423-1.Bui,M.,etal.(2018),“Carboncaptureandstorage(CCS):thewayforward”,Energy&EnvironmentalScience,Vol.11,pp.1062–1176,https://doi.org/10.1039/C7EE02342A.Climatechampions(2021),“Upgradingoursystemstogether.AglobalchallengetoacceleratesectorbreakthroughsforCOP26-andbeyond”,https://racetozero.unfccc.int/wp-content/uploads/2021/08/2020-Breakthroughs-Upgrading-our-sytems-together.pdf.Drax(2021),“DraxandMitsubishiHeavyIndustriessignpioneeringdealtodelivertheworld’slargestcarboncapturepowerproject”,www.drax.com/press_release/drax-and-mitsubishi-heavy-industries-sign-pioneering-deal-to-deliver-the-worlds-largest-carbon-capture-power-project.Drax(2020),Annualreport2019,UK:Drax,www.drax.com/wp-content/uploads/2020/03/Drax_AR2019_Web.pdf.EC(2021),“CordisEUresearchresultsdatabase”,EuropeanCommission,https://cordis.europa.eu/project.EC(2019),“Commissionpublishes4thlistofProjectsofCommonInterest-makingenergyinfrastructurefitfortheenergyunion”,https://ec.europa.eu/info/news/commission-publishes-4th-list-projects-common-interest-making-energy-infrastructure-fit-energy-union-2019-oct-31_en.Freitas,R.A.(2015),TheNanofactorySolutiontoGlobalClimateChange:AtmosphericCarbonCapture,IMMReport45,PaloAlto,CA,USA:InstituteforMolecularManufacturing,http://www.imm.org/Reports/rep045.pdf.Gao,L.,etal.(2011),“CostanalysisofCO2transportation:CasestudyinChina”,EnergyProcedia,Vol.4,pp.5974–5981,https://doi.org/10.1016/j.egypro.2011.02.600.Gielen,D.,etal.(2021),“18energytransitionscenariostowatch:Wheretheyagreeanddisagree”,EnergyPostWeekly,https://energypost.eu/18-energy-transition-scenarios-to-watch-where-they-agree-and-disagree/.GlobalCCSInstitute(2020a),GlobalStatusofCCS:2020,www.globalccsinstitute.com/resources/global-status-report/.GlobalCCSInstitute(2019),TheLCFSandCCSProtocol:Anoverviewforpolicymakersandprojectdevelopers,Melbourne,Australia:GlobalCCSInstitute,www.globalccsinstitute.com/wp-content/uploads/2019/05/LCFS-and-CCS-Protocol_digital_version.pdf.Harris,N.L.,etal.(2021),“Globalmapsoftwenty-firstcenturyforestcarbonfluxes”,NatureClimateChange,Vol.11,pp.234–240,https://doi.org/10.1038/s41558-020-00976-6.Havercroft,I.(2019),LessonsandPerceptions:AdoptingacommercialapproachtoCCSliability,GlobalCCSInstitute,www.globalccsinstitute.com/wp-content/uploads/2019/08/Adopting-a-Commercial-Appraoch-to-CCS-Liability_Thought-Leadership_August-2019.pdf.Hills,T.P.,M.G.SceatsandP.S.Fennell(2019),“ApplicationsofCCSintheCementIndustry”,InM.BuiandN.MacDowell(Eds.)CarbonCaptureandStorage,Chapter10,https://doi.org/10.1039/9781788012744-00315.40REFERENCESHills,T.,etal.(2016),“CarbonCaptureintheCementIndustry:Technologies,Progress,andRetrofitting”,EnvironmentalScience&Technology,Vol.50,No.1,pp.368–377,https://doi.org/10.1021/acs.est.5b03508.IEA(2021),NetZeroby2050:ARoadmapfortheGlobalEnergySector,InternationalEnergyAgency,www.iea.org/reports/net-zero-by-2050.IEAGHG(2019a),TowardsZeroEmissionsCCSinPowerPlantsUsingHigherCaptureRatesofBiomass,https://ieaghg.org/publications/technical-reports/reports-list/9-technical-reports/951-2019-02-towards-zero-emissions.IEAGHG(2019b),FurtherAssessmentofEmergingCO2CaptureTechnologiesforthePowerSectorandtheirPotentialtoReduceCosts,https://ieaghg.org/ccs-resources/blog/new-ieaghg-technical-report-2019-09-further-assessment-of-emerging-co2-capture-technologies-for-the-power-sector-and-their-potential-to-reduce-costs.IEAGHG(2017),Techno-EconomicEvaluationofHYCOPlantIntegratedtoAmmonia/UreaorMethanolProductionwithCCS,https://ieaghg.org/publications/technical-reports/reports-list/9-technical-reports/785-2017-02-hyco-plant-with-nh3-or-meoh.IEAGHG(2013a),IronandSteelCCSStudy(Techno-economicsofIntegratedSteelMills),https://ieaghg.org/publications/technical-reports/reports-list/9-technical-reports/1001-2013-04-iron-and-steel-ccs-study-techno-economics-integrated-steel-mill.IEAGHG(2013b),DeploymentofCCSincementindustry,https://ieaghg.org/docs/General_Docs/Reports/2013-19.pdf.IPCC(2021),IPCC,2021:ClimateChange2021:ThePhysicalScienceBasis.ContributionofWorkingGroupItotheSixthAssessmentReportoftheIntergovernmentalPanelonClimateChange,IntergovernmentalPanelonClimateChange,CambridgeUniversityPress,www.ipcc.ch/report/ar6/wg1.IPCC(2011),IPCCExpertMeetingonGeoengineering,meetingreport,Lima,Peru,https://archive.ipcc.ch/pdf/supporting-material/EM_GeoE_Meeting_Report_final.pdf.IPCC(2005),“Undergroundgeologicalstorage”,InCarbondioxidecaptureandstorage,Chapter5,IPCCSwitzerland,www.ipcc.ch/report/carbon-dioxide-capture-and-storage/.IRENA(2021a),WorldEnergyTransitionsOutlook:1.5°CPathway,InternationalRenewableEnergyAgency,AbuDhabi.IRENA(2021b),RenewablePowerGenerationCostsin2020,InternationalRenewableEnergyAgency,AbuDhabi.IRENA(2020),Reachingzerowithrenewables:EliminatingCO2emissionsfromindustryandtransportinlinewiththe1.5°Cclimategoal,InternationalRenewableEnergyAgency,AbuDhabi.Khorshidi,Z.,etal.(2016),“Techno-economicevaluationofco-firingbiomassgaswithnaturalgasinexistingNGCCplantswithandwithoutCO2capture”,InternationalJournalofGreenhouseGasControl,Vol.49,pp.343–363,https://doi.org/10.1016/j.ijggc.2016.03.007.Lena,E.D.,etal.(2019),“Techno-economicanalysisofcalciumloopingprocessesforlowCO2emissioncementplants”,TheInternationalJournalofGreenhouseGasControl,Vol.82,pp244-260,https://doi.org/10.1016/j.ijggc.2019.01.005.MacDowell,N.,etal.(2017),“TheroleofCO2captureandutilizationinmitigatingclimatechange”,NatureClimateChange,Vol.7,pp.243–249,https://doi.org/10.1038/nclimate3231.Mandova,H.,etal.(2019),“Achievingcarbon-neutralironandsteelmakinginEuropethroughthedeploymentofbioenergywithcarboncaptureandstorage”,JournalofCleanerProduction,Vol.218,pp.118–129.41REACHINGZEROWITHRENEWABLES:CAPTURINGCARBONMIT(MassachusettsInstituteofTechnology)(2016),“CarbonCaptureandSequestrationProjectDatabase”,https://sequestration.mit.edu/tools/projects/,(accessedMarch17,2021).NASEM(NationalAcademiesofSciences,EngineeringandMedicine)(2019),NegativeEmissionsTechnologiesandReliableSequestration:AResearchAgenda,WashingtonD.C:TheNationalAcademiesPress,www.nap.edu/catalog/25259/negative-emissions-technologies-and-reliable-sequestration-a-research-agenda.OGCI(OilandGasClimateInitiative)(2020),“CO2StorageResourceCatalogue”,www.ogci.com/co2-storage-resource-catalogue/.Romansheva,N.,andA.Ilinova(2019),“CCSProjects:HowRegulatoryFrameworkInfluencesTheirDeployment”,Resources,Vol.8,No.4,p.181,https://doi.org/10.3390/resources8040181.Sanmugasekar,K.,andV.Arvind(2019),TowardsNegativeEmissionsinCementIndustry,DelftUniversityofTechnology,https://repository.tudelft.nl/islandora/object/uuid%3A4ad209d2-7d84-4f6b-ad2c-015a81637014.Sekera,J.,andA.Lichtenberger(2020),“AssessingCarbonCapture:PublicPolicy,Science,andSocietalNeed”,BiophysicalEconomicsandSustainability,Vol.5/14,https://doi.org/10.1007/s41247-020-00080-5.Szczeniak,J.,C.BauerandT.Kober(2020),DEEDSIndustryDatabase-DialogueonEuropeanDecarbonisationStrategies,PaulScherrerInstitute,https://deeds.eu/results/industry-database/.Tamme,E.(2020),WheredoesCCSfeatureintheEuropeanGreenDeal?,GlobalCCSInstitute,www.globalccsinstitute.com/news-media/insights/where-does-ccs-feature-in-the-european-green-deal.Toktarova,A.,etal.(2020),“PathwaysforLow-CarbonTransitionoftheSteelIndustry-ASwedishCaseStudy”,Energies,Vol.13/15,p.3840,https://doi.org/10.3390/en13153840.UKCCS(n.d.),“CCSexplained:Systemsandpolicy”,https://ukccsrc.ac.uk/ccs-explained/systems-and-policy.USIRS(InternalRevenueService)(2021),26U.S.Code§45Q-Creditforcarbonoxidesequestration,26U.S.CodeTitle26-INTERNALREVENUECODE,www.federalregister.gov/documents/2021/01/15/2021-00302/credit-for-carbon-oxide-sequestration.ViebahnP.,A.ScholzandO.Zelt(2019),“ThePotentialRoleofDirectAirCaptureintheGermanEnergyResearchProgram-ResultsofaMulti-DimensionalAnalysis”,Energies,Vol.12(18)/3443,https://doi.org/10.3390/en12183443.Voegele,E.(2021),“Drax,MitsubishipartneronBECCSproject”,BiomassMagazine,http://biomassmagazine.com/articles/18066/drax-mitsubishi-partner-on-beccs-project.Volsund,M.etal.(2018),“RetrofitabilityofCO2CaptureTechnologiestoCementPlants”,http://dx.doi.org/10.2139/ssrn.3366119.ZEP(2011a),TheCostsofCO2Transport-Post-demonstrationCCSintheEU,EuropeanTechnologyPlatformforZeroEmissionFuelPowerPlants,www.globalccsinstitute.com/archive/hub/publications/119811/costs-co2-transport-post-demonstration-ccs-eu.pdf.ZEP(2011b),TheCostsofCO2Storage-Post-demonstrationCCSintheEU,https://zeroemissionsplatform.eu/wp-content/uploads/CO2-Storage-Report.pdf.42CHAPTERANNEXESThefollowingAnnexessupplementthesummariseddiscussioninthemainreportbyprovidingmoredetailedbackgroundinformation,discussionofkeycomponentsandtablesofexistingandplannedprojects.43REACHINGZEROWITHRENEWABLES:CAPTURINGCARBONAANNEXCCS,CCUANDCDR,ANDTHEIRROLESINEMISSIONSREDUCTION1.1CarboncaptureintheenergytransitionInthe2015ParisClimateChangeAgreement,countriescommittedtostrivingtolimitglobaltemperaturerisestowellbelow2°Candtoreachnet-zeroemissionsbythesecondhalfofthiscentury.Intheyearssince,agrowingrangeofcountriesandorganisationsaroundtheworldhavecommittedthemselvestotryingtokeeptemperaturerisestonomorethan1.5°Candtoreachingnet-zeroemissionsbymid-century.IRENA’s1.5°Ccompatiblescenarioby2050,asoutlinedinthe2021WorldEnergyTransitionOutlook(IRENA,2021a),showsthatacrediblebutnarrowpathwayexists,butwillrequiremajoreffortsonallfrontsandtheuseofallthedecarbonisationtoolsinthetoolbox.Theuseofrenewablescoupledwithreductionsinenergyintensitywillbetheprincipalpillarsofanet-zeropathway,accountingfor80%ofemissionsreductionsina1.5°CScenario;buttheywillneedtobesupplementedinsomecontextsbyCO2captureandstorage.The1.5°CScenariosuggeststhat:52%ofcapturedCO2emissionsby2050wouldbecapturedwithbioenergywithCCS(BECCS)inthepowersector,cogenerationplants,aswellasinindustry(cementandchemicalssector);36%ofCO2emissionreductionwouldbethroughdeployedfossil-basedCCSandCCUinthecement,ironandsteel,andchemicalssectors;while12%ofCO2emissionswouldbecapturedthroughtheproductionofbluehydrogen.Thesemeasureswouldcumulativelyremove126GtpaCO2between2021and2050(IRENA,2021a).44CCS,CCUANDCDR,ANDTHEIRROLESINEMISSIONSREDUCTION1.2ThestatusofCCS,CCUandCDRThesuiteofavailabletechnologiestocapture,transport,storeandutiliseCO2areatvaryingtechnologyreadinesslevels(TRLs)(Box3).Sometechnologiesareatthemid-TRLrequiringfurtherRD&Dsupport,whilemanytechnologiesareatahigherTRLandrequirefinancialinvestmentandcommercialinteresttoscaleuptheirdeployment(Buietal.,2018).AsofMarch2021,24commercialfossilfuel-basedCCSandCCUfacilitiesareinoperationglobally,withaninstalledcapacitytocapturearound0.04Gtpaofenergyandprocess-relatedCO2emissions,representingabout0.1%ofglobalCO2emissions(Consoli,2019;EC,2021;GlobalCCSInstitute,2020a;IRENA,2020;MIT,2016).Actualcaptureislowerthaninstalledcapacityandhasrisentoabout90%ofitspotentialovertheyears(GarciaFreitesandJones,2020).OftheseCCSandCCUfacilities,11arenaturalgasprocessingplants(whereCO2needstoberemovedanywaytoproducenaturalgasthatmeetsspecificstandards)andoneisacoal-firedpowerplant.Chemicalplants–mostlyforethanolproduction,hydrogenproductioninrefineriesandinironandsteelplantsaccountfortheremainder(Figure15).Threeplantswereoperationalbutarenowclosedorsuspendedandanadditional30commercialplantsareatvariousstagesofdevelopment.Afurther24smaller-scalepilotanddemonstrationplantshavebeencompleted,16areoperatingand19areatvariousstagesofdevelopment.Ifallcommercialplantsunderdevelopmentarecompleted,capturecapacitywouldrisetoapproximately0.1Gtpa.TherearecurrentlythreeoperationalcommercialfacilitiesthatusebioenergywithCCS(BECCS)andsixcommercialplantsindevelopment.CurrentcapturecapacityofoperationalcommercialBECCSplantsisverysmall,at1.13Mtpa,whichwouldriseto7.86Mtpaifallplantsunderdevelopmentreachoperation.Afurtherninesmall-scalepilotanddemonstrationBECCSplantsareoperation;fivearecompletedandthreeareatdifferentstagesofdevelopment.Therearetwofacilitiesthatusedirectaircapturewithstorage(DACCS),withoneindevelopment,plus15pilotanddemonstrationplantsareinoperationordevelopment;however,collectively,theircapturecapacitiesarenegligiblysmall.BOX3:TechnologyreadinesslevelTechnologyreadinesslevel(TRL)isawidelyusedmeasureofthematuritylevelofatechnology.TRLsrangefrom1to9,withTRL1referringtothebeginningofscientificresearch,andTRL9referringtoaproventechnologythatiscommercialised.TheoverviewbelowistheEPRIadaptionforpost-combustiontechnologies.ResearchDevelopmentDemonstrationTRL1BasicprinciplesTRL4SystemvalidationinTRL7Sub-scaleobserved,initialconceptalaboratoryenvironmentdemonstration,fullyfunctionalprototypeTRL2TechnologiesTRL5Sub-systemvalidationTRL8Commercialconceptformulatedinaequivalentenvironmentdemonstration,fullscaledeploymentinfinalformTRL3ExperimentalTRL6Fullyintegratedproof-of-conceptpilottestedinarelevantTRL9NormalcommercialenvironmentserviceSource:AdaptedfromEPRI(FreemanandBhown,2011).45REACHINGZEROWITHRENEWABLES:CAPTURINGCARBONDespitetheIPCCreports(2005,2014and2018)assigningsignificantemissionsreductionpotentialtoCCS,CCUandCDR,progressinthedeploymentofCCS,CCU,BECCSandDACCSprojectshasbeenveryslow.TheexceptionhasbeencapturingCO2fromnaturalgasprocessinganditsuseforenhancedoilrecovery.Theinstalledcapacityonlydoubledbetween2010and2020from0.02Gtto0.04GtofannualcapturedCO2.Figure15:CCSplants,2010–2020EarlydevelopmentAdvanceddevelopmentInconstructionOperational160COCaptureandstorageannualcapacity(Mtpa)14012010080604020020102011201220132014201520162017201820192020Thecapacityoffacilitieswhereoperationiscurrentlysuspendedisnotincludedinthe2020data.Source:(GlobalCCSInstitute,2020a).1.3UnderstandingthecurrentcostsofCCS,CCUandCDRThecostsofCCS,CCUandCDRwillbeacrucialfactorindecisionsonitsfuturerole.Costcomponentsofcapture,transportandstoragearediscussedintherespectivechapters.Thischapterhighlightssomegeneralunderlyinguncertaintiesassociatedwiththecostsofthesecomponentsandexploresrelevantterminology.Costestimatesvarywidely,withfutureprojectionshavingahighdegreeofuncertainty.CCSfacilitiesarecapitalintensiveand,ingeneral,capturecostsdominate,butinsomecasesCO2transportationcostscanbesignificant.Actualcostsaresite-specificanddiffersignificantlydependingonthetechnologyused,thedistancefromthestoragesite,aswellbetweensectors(CO2volume,CO2concentrationandpressure).Costestimatesinliteraturearebroad,withmanyinconsistenciesinapproach.Whendiscussingandcomparingcosts,theprojectspecificsandthefullend-to-endprojectcostsneedtobeexamined.Factorsthatneedtobeconsideredinclude:46CCS,CCUANDCDR,ANDTHEIRROLESINEMISSIONSRECDHUACPTTIOENR•WhetherthequotedcostisthecostpertonneofCO2avoidedorcostpertonneofCO2capturedor–incaseofCDR–costpertonneofCO2removed.AsCCSentailsadditionalenergyuse,itresultsinadditionalCO2emissions.Thedifferencecanbe10–25%.CostpertonneofCO2avoidedisthebestmeasuretocomparewithrenewableoptions.Itcanalsobeusedtocomparedifferentcapturetechnologiesacrossdifferentsectorsandinlearningcurves.•Thecalculatedcostsoffeasibilitystudiestendtobemuchlowerthanthecostofactualprojectsthathavebeenimplemented.Manyoftheactualprojectshavewitnessedsignificantcostsoverruns.•CCSproponentsclaimsignificantpotentialforlearningeffectsandforeseesignificantcostreductionsgoingforward.Itisdifficulttovalidatesuchclaimsbut,giventhelimiteddeploymenttodateandexperiencewithothertechnologies,costreductionthroughlearningandeconomiesofscaleislikely.•Manycostestimatesintheliteraturefocusonlyoncapturecostsandeitherignorecostsforcompression/liquefaction,transportationandstorage(includingassessmentandmonitoringcost)ortreattransportandstorageaslumpsums,disregardingcostsfortheflowrate,distancetostorageorutilisationsite,orstoragetype.•Manyestimatesaretheoreticalandhaveassumptionsthatarepronetochangeduringliveprojects.Therefore,severalestimates,ashelpfulastheyare,canonlygiveasenseofcostsassociatedandnottheactualcostsfordeliveringreducedornegativeemissions.•Costestimatestendtoconsiderlarge-scaleCCSfacilitieswithlargeCO2volumes(suchasgasplants),thatcanjustifydedicatedtransportandstorageinfrastructure,butdisregardsmaller,mostlyindustrialplantsthatemitlowerCO2volumesperyear(suchascementplants),andwillthereforehavetorelyonclusters,hubsandtransportationnetworkstobenefitfromeconomiesofscale.Thedifferenceincostcouldbeafactorortwo.•CostsforBECCStendtoincludethoseofsourcingandtransportingbiomass,andincludelife-cycleemissionsrelatedtobothdirectandindirectland-usethatresultsina10–30%energypenalty,evenifbiomassisderivedfromlanddedicatedtobiomasscropsorcellulosicsources(Fussetal.,2018).ThismakescomparingCCSandBECCSmorecomplex.1.4DebatesaboutthefutureroleofCCS,CCUandCDRDebatesaboutCCSCCSisacontentioustopicindiscussionsaboutenergytransitionsandclimatechangemitigation,withopinionsonitsroleoftenstarklydivided.Thedebatepivotsaroundthreekeypoints:thecontinueduseoffossilsfuels,futurecostsofCCSrelativetoalternatives,andoveralleffectiveness.OpponentsarguethatCCSperpetuatesthecontinueduseoffossilfuelsandisexpensive,unprovenatscale,unnecessaryandnotsufficientlyeffective.ProponentsarguethatCCSallowsthecontinueduseofexisting(fossilfuel-based)processesandinfrastructure,and/orisessentialinsomecircumstances,andwillbecomemoreeffectiveandeconomicgiventimeandsupporttoscale.1.Theuseoffossilfuels:bothproponentsandopponentsseeCCSasperpetuatingtheuseoffossilfuelsbutdifferastowhetherthatisapositiveornegative.Opponentsargueitisbettertoweantheworldoffapollutingenergysourceandadoptcleaneralternatives.TheyseetheuseofCCSasallowingforcontinuingexistingpollutingpracticesandthattheprospectoflaterCCSretrofitsallowspollutingplantstocontinuetooperateandnewsuchplantstobebuilt,thusincreasingemissionsnowwithoutguaranteeingtheeventualdecommissioningorretrofit.ProponentsarguethatusingCCSwithfossilfuelswillbelessdisruptivetoestablishedsystemsthanswitchingcompletelytoalternatives,andallowscurrentjobsandthevalueofpastinvestmentstoberetained.47REACHINGZEROWITHRENEWABLES:CAPTURINGCARBON2.Investmentsandfuturecosts:opponentshighlightcurrenthighcostsandthelowdeploymentratesofCCStodate,anduncertaintiesaroundcostsinthefuture.Theyalsonotethatthelargescaleofinvestmentandpublicsubsidyneededrisksdetractingfromothercleanenergyinvestments.CCSiscapitalintensive,requiringlargeup-frontinvestmentsinbothcaptureplants,andCO2transportationandstorageinfrastructure,and–duetothelackofcommercialincentives–islikelytorequiresomepublicsubsidyorincentives.Proponents,however,arguethattherehavebeenlimitedincentivestoinvestinCCStodate,butthatthenet-zerogoalchangesthat,andcostswillfallasdeploymentscales,ashasbeenthecasewithothertechnologies–notablysolarandwind.3.Effectivenessinreducingemissions:opponentspointoutthatcapturetechnologiesarenot100%effective.Captureefficienciesvarysignificantlybysectorandprojectbutareusuallyquotedtobeintheregionof80–95%.However,higherlevels,insomecasesapproaching99%,aretechnicallypossible,albeitathighercosts.Inaddition,otherstagesintheprocessescarryrisksofemissions,includingfrom:theenergy-useinvolvedinextractingandtransportingfossilfuels;methaneemissionsfromoilandgasextraction;processingandtransportation;andtheuncertainriskofleakagesfromCO2transportandstorage.Ifnet-zeroemissionsarethegoal,thenanyremainingemissionsneedtobeoffsetbyincreasedcarbondioxideremovalmeasureselsewhere.ProponentsacknowledgethatCCSisnot100%effectivebutarguethathighcaptureratesarepossible,theremainingemissionsaremanageablewithcare,andtherisksofleakagearenegligible.Thosedebatesarenotlikelytoberesolvedsoon.Inpractice,theeventualroleofCCSwilldependonacomplexmixofgeopolitics,theattitudesofsocietiesanddecisionsmakers,economics,andtechnologyprogress(bothinCCSandalternatives).ThebalanceofopinioncurrentlyisthatthereissomeroleforCCS;thedebate,therefore,isaboutthescaleandspecificrolesofCCS.ItislikelythatCCSwillplayaroleintheworld’sdecarbonisationpathwayforavarietyofreasons.Theprincipalreasonisthatreachingnet-zeroby2050isgoingtorequireeverytoolinthedecarbonisationtoolbox.Theacceleratedadoptionofrenewables,alongsideaggressivereductionsinenergyintensity,candelivermostofwhatisneededbutisunlikelytobescaledquicklyenoughtoaddressallemissions.Somefossilfuelusewillremainby2050.Secondly,forsomeprocesses(particularlycement),sufficientlyeffectiveandscalablealternativedecarbonisationoptionsdonotexistandarenotcurrentlyonthehorizon.Thirdly,CCSisintegraltosomeCDRmethodssuchasBECCSandDACCSthatareneededtodeliverthenegativeemissionsthatallowabalancednet-zeroenergysystem.Finally,somegovernmentswillopttouseCCS,inpartbecauseitallowsthemtocontinueusingfossilfuelresourcesorbecauseitprovidesacost-effectiveoptiontoutiliseexistingassets–outof19long-termlow-GHGemissiondevelopmentstrategies(LEDS)undertheUnitedNationsFrameworkforConventiononClimateChange(UNFCCC)submittedinNovember2020,15includedtheuseofcarboncapturewithmentionsofBECCSandDACCS.DebatesaboutCCUManyofthesameargumentsdiscussedaboveforCCSapplytoCCU,butwiththeaddeddimensionthatsomeusesofCO2leadtotheeventualreleaseofthatCO2totheatmosphere.IfthatCO2hasbeencapturedfromfossilfuelprocesses,itseventualre-releaseaddstothenet-levelsofCO2intheatmosphere.Intheshortterm,ifCO2utilisationavoidssomeotherCO2emittingprocess,ithassomevalue;butinthelongterm,withanet-zeroemissionsgoal,suchusagesmustbeeliminated.SomeformsofutilisationlockawaytheCO2foranextendedperiodoftime.Suchusesareeffectivelyaformofstorageandsoaresubjecttothesameargumentsandtrade-offsasCCS.However,mitigatingtheriskoftheeventualreleaseoftheCO2stillrequirescarefulmanagement.TheotheraspectofCCU,asisthecaseforCCS,islimitedcommercialbenefitsforinvestors.Asthereissomeprofitfromutilisation,itisofinterestofinvestorsandindustry.SupportingCCUinshorttermmaydrivethescale-upofCO2capturetechnologiesandinturnpushcostsdown.Butthatrequirespolicies,regulationsandaccesstofinanceintheformoftaxcreditsorloanguarantees.48CCS,CCUANDCDR,ANDTHEIRROLESINEMISSIONSRECDHUACPTTIOENRDebatesaboutCDRDebatesontheroleofCDRareslightlylesscontentious,withthemainconcernbeingthemoralhazardofthepotentialforthelateruseofCDRbeingusedasanexcuseforlessurgencyinemissionreductionsnow.Therearealsodebatesabouttheextenttowhichnet-zerostrategiescan,andshould,relyonCDRasacorecomponentorholditbackasaninsurancepolicyagainstunderperformanceinotherareas.ThemainchallengeswithBECCSaresimilartoCCS:BECCSisnotyetfullyproveninend-to-endprocesses;thereareoperationalimplicationsfortheinstallationofCCS;costsarecurrentlyhigh;andthecostreductionpotentialisuncertain.Inaddition,BECCSalsointroducesthechallengeofensuringsufficient,sustainably-sourcedbiomass.Thedegreetowhichbiomassuseimpactsemissionsdependsonthebiomasssupplychain,thesourceofbiomassmustbecontinuallyrenewedasthebiomassisharvested,anditsuseshouldnotcauseothernegativeland-usechanges.Thetimescaleforregrowthofbiomassalsomattersfora1.5°CScenario,asutilisingbiomassthattakesdecadestobereplacedmaynotbeconsistentwiththisgoal.Thesourcingofbiomassmustalsoaddresswidersustainabilityrisks,i.e.itshouldnotcauseotherenvironmental,economicorsocialharmssuchasland-usechangeorcompetitionwithfoodsupply.Theuseofbiomassintheenergytransitionisthereforeviewedascontentiousbysome,withtheriskofnet-deforestationbeingparticularlyhighlighted.Suchconcernsmustbeaddressed,andthesourcingofbiomassrequirescarefulmanagementtomitigatethoserisks.Uncertaintiesalsoremainaroundtheoptimumuseoffinitebiomassresourcesandfurtherworkisneededinthisregard.However,currentestimatessuggestthat,withcare,sufficientbiomasscanbesourcedsustainablytoallowforasignificantglobaluseofBECCS(IRENA,2021a).DACCSisanotherCDRtechnologythatisintheearlystagesofdevelopmentandalongwayfromreachingthegigatonne-scalesneededtobeimpactful.CurrentcommercialplantsarecapturinganegligibleamountofCO2(0.0009Mtpa).DeploymenttoscaleupDACCSfacesbarriers,particularlyintermsofenergy,materialorwaterrequirements(NASEM,2019).1.5CCS,CCUandCDRin1.5°CScenariosInIRENA’s1.5°CScenario,fossilfuelproductiondeclinesbymorethan75%by2050,withtotalfossilfuelconsumptioncontinuouslydecliningfrom2021onwards(Figure16).Theremainingfossilfueluseismainlyinpowerandindustry,providing19%ofprimaryenergysupplyin2050.Oilandcoaldeclinefastest,whilenaturalgaspeaksinaround2025anddeclinesthereafter.Naturalgasisthelargestremainingsourceoffossilfuelin2050(70%oftotalfossilfuelsupply)ataround52%oftoday’slevel.Around70%ofthenaturalgasisconsumedinpowerandheatplants,andbluehydrogenproduction,withmostoftheremainderconsumedinindustry.Coalproductiondeclinesmostdrastically,fromaround5750milliontonnesin2018(160EJ)tojustbelow240milliontonnesperyear(7EJ)in2050.Inthepowersector,coalgenerationdeclinessignificantlyto55%by2030,75%by2040comparedtocurrentlevelsandby2050hasbeenphasedout.Theremainingcoalislargelyusedinindustry–mostlyforsteel(by2050coalusewithCCSaccountsforabout5%oftotalsteelproduction)andtoalimitedextentinchemicalsproduction.BECCSwouldplayaroleincapturingCO2from:•powerandheatgenerationwithbiomass(e.g.woodpellets,sugarcanebagasseormunicipalsolidwaste[MSW]);•cementkilnsandironblastfurnaceswherecharcoalmightbeusedasfuel;•chemicalplantswherethefeedstockisbiomass(e.g.inbioethanolproductionandotherbioplastics);and•biogasupgradingwheretheCO2isseparatedfortheproductionofbiomethane.49REACHINGZEROWITHRENEWABLES:CAPTURINGCARBONFIGURE16:Thedecliningimportanceoffossilfuels(fossilfuelprimarysupply,2018–2050[EJ]inthe1.5°CScenario)Fossilfuelsprimarysupply(EJ)NaturalGasOilCoal60032321011248720302040205050040030020010002018Source:(IRENA,2021a).TheroleofCCSandCCUinthe1.5°CScenarioislimitedtoprocess-andfossilfuel-relatedemissionsincement,ironandsteelproduction,andby2050wouldreduceCO2emissionsby36%,reachinganaverageannualcapturerateof1.5GtCO2.Productionofbluehydrogen(hydrogenwithCCS)wouldreduce12%ofremainingCO2emissions,reachinganaveragecapturerateof0.5GtCO2by2050.Together,theseapplicationswouldcaptureonaverage3GtpaofCO2by2050,upfrom0.04GtpaCO2capturedtoday.Thatfigureincludesthecarbonbalanceinthechemicalandpetrochemicalsectorssuchascarbonstocksinchemicalproducts,recyclingorcaptureinwasteincinerators.The1.5°CScenariodoesnotincludetheuseofDACCS,givenuncertaintiesarounditspaceofcommercialisation.Ifrapidlydeployed,itmayoffsettheneedforBECCS,CCSorotheremissionreductionmeasures.1.6CCS,CCUandCDRinclimatepledgesClimatepledges,alsoknownasNationallyDeterminedContributions(NDCs),arecriticaltoachievingtheParisAgreement’slong-termgoals.TheNDCsrepresenteachcountry’seffortstoreducenationalemissionsandadapttotheeffectsofclimatechange.CountriesarerequiredtoplanandcommunicatesuccessiveNDCsthattheyintendtomakeeveryfiveyears.Domesticmitigationmeasuresmustbepursuedinordertomeetthegoalsofsuchcontributions.However,inordertomeettheParisAgreementgoals,asignificantincreaseinambitionisrequiredtoday,asthecurrentpledgesoutlinedintheNDCsfallfarshortofwhatisrequired.AccordingtotheIPCC,emissionreductionrangesmustbearound45%lowerinordertomeetthe1.5°Ctemperaturegoal.AsCCSisprojectedtoplayanoteworthyroleinthetransitiontoanet-zeroeconomy,itsroleisalsoreflectedinNDCsandlong-termstrategies,suchasthenationalclimateactionplanssubmittedbypartiestotheUNFCCCoutlininghowtheywilladheretotheParisAgreement’stemperaturetargets.Todate,192partieshavesubmittedtheirNDCstotheUNFCCCsince2015andCCSismentionedinfifteenofthese(UNFCCC,2021).WhileNDCsareshorter-termplans,revisedeveryfiveyears,long-termstrategiestypicallyincludeparties’planstoreachnet-zeroemissionsby2050.Todate,32countrieshavesubmittedlong-termstrategiestoUNFCCC;ofthese,25mentionCCStechnologiesintheirsubmissions(Table2).TheEuropeanUnion’slong-termstrategymakesnomentionofCCS,butitismentionedinitsEuropeanGreenDeal.50CCS,CCUANDCDR,ANDTHEIRROLESINEMISSIONSRECDHUACPTTIOENRCoverageofCCSvariessignificantlyacrosstheselong-termstrategies,rangingfromminimalinsometosubstantialinothers.Japan,NorwayandtheUnitedKingdomhavebeendeemedcountrieswithhighambitions,astheycommunicateambitionsto“demonstrateinternationalleadershipincarboncaptureusageandstorage”(UnitedKingdom),“establishitsfirstcommercialscaleCCUtechnologyby2023asatriggerforwiderusageinviewoffullsocialadoptionin2030andthereafter”(Japan)and“playapartinmakingCCSacost-effectiveoptiontocombatingglobalclimatechange”(Norway).TABLE2:TheinclusionofCCSinlong-termstrategies(LTS)submittedtotheUNFCCCCountryMentionofMentionMentionInvestmentQuantitativeAimstobepotentialroleofofR&DofspecificfigurestargetsonaleadingAustriaCCSintheenergyneedsprojectorprovidedcountryforBelgiumprogrammeCCSCanadatransition×10CCSCzechia×x××Denmark×x××Finland×x×France×xxGermany×xx×Indonesia××Japan×x×××Latvia×xxMexico××Netherlands××Norway××xxPortugal×RepublicofKorea××xSingapore×xSlovakia×xSlovenia×SouthAfrica×xSpain×xSwedenxSwitzerland××Ukraine××TheUnitedKingdom×TheUnitedStates××x××x×1.7ChallengesandopportunitiesforscalingupCCS,CCUandCDRdeploymentRecentdevelopmentsinthecaptureprojectpipelineandcountries’net-zerocommitmentsindicateagrowinginterestbythepublicandprivatesectors.Thereare,however,stillseveralconsiderationstoscaleupdeployment.Thesearecausedbydifferencesinmethodologicalframeworks,thequalityofinputdataoncosts,metricdefinition,energyprices,wasteheatavailability,retrofitvs.new-builtfacilities,andplantlocation,amongothers.Amajorityofestimatesofavoidedcostslookonlyatcapturecosts,whileothersincludetransportandstorage,givinganuneven10ThesectionisincludedasanAppendix.51REACHINGZEROWITHRENEWABLES:CAPTURINGCARBONrangeofestimates.Inaddition,costestimatestreattransportandstorageaslumpsums,disregardingflowrate,distancetothestorageorutilisationsiteorastoragetype,andassumeafixedcostofUSD10/tCO2,distortingestimates(Roussanalyetal.,2021).Therelativelyfewcommercialimplementationsoftechnology,especiallyinindustry,createsuncertaintiesaboutperformance,operationandscale-up.Evenwithseveralfacilitiesatdifferentstagesofdevelopment,thereisuncertaintyovertheenergyconsumptionandcostimplicationsofadditionalinfrastructure.Thecompetitiveenvironmentimpedesknowledgecross-sharingoflearningamongstcompaniesandsectors.RegulationsconcerningthestorageofCO2areabsent,creatingcompliancerisks.Theissueoflong-termliabilityforstoredCO2lyingwiththeoperatorslowsdowninvestments(GlobalCCSInstitute,2020b).Thishinderstheprojectpipelineandsometimesmayleadtothecancellationofprojectsaltogether.Onlyhalfoftheprojectsannouncedin2010areinthepipelinetoday(TownsendandGillespie,2020).Thecancellationofprojectsmaychangepublicperceptionandgovernmentsupportforthistechnologytomitigateclimatechange,confiningittotheoryratherthanpractice.However,achievingcarboncaptureatscaleinsomeindustriesisimperativeforclimatetargets.Thisscaleofcapture,therefore,mustgrowrapidly,overcomingincumbentsofthesechallenges.Severalopportunitiesandenablersmustbetappedsimultaneouslytoallowprojectdevelopmentandcommercialisation.Technologyforcarboncapturehasmaturedovertheyears,however,itstillsuffersfromfewercommercialprojectionsowingtotherisksandchallengesmentionedearlierinthissection.Thesecanbeminimisediftheriskofdevelopingcapturetechnologyandthepost-CO2capturechainisinheritedbyagroupofemitters,ratherthanbyasingleemitter.Thehub-and-clustermodel(AnnexD,Box5)representsacrucialopportunity,whereinrisksaresharedbydifferententities.Public–privatepartnershipscanalsohelpachievethisandhavealreadyledtothedevelopmentofimportantmilestonesforscalingup.Theseincludelarge-scalecommercialhub-clusternetworkprojectsliketheNorthernlightsinNorwayandtheAlbertaCarbonTrunkLineinCanada.Near-terminvestmentopportunitiesinhighCO2concentrationcanbeatestinggroundforscalingupthetechnology,includinginsectorssuchasnaturalgasprocessing,fertilisers,andethanolproduction,whichrepresentthebulkoftheprojectpipeline.TheinterestinthesesectorsisduetothelowcostsofcaptureandthevalueofCO2throughitsutilisation.Whileinvestmentsinthesesectorswillplayasignificantroleinloweringcosts,cross-fertilisationofknowledgewiththe‘hard-to-abate’sectorisalsoessential.Thiswillbeimportanttoestablishthenecessarypracticalestimatesofcosts,performanceandoperationalimpactsforscalingupcaptureinallsectors.Thegrowingmomentumofcarboncapturehasnotnecessarilytranslatedintorobustlegalandregulatorystructures.Strongregulations,especiallyintransportandstorage,arenecessarypre-requisitesforcommercialisation.Countriesthathaveseenpilotsanddemonstrationscannotreachthecriticalmassforcommercialisationintheabsenceofsupportingpolicyframeworks.Theseframeworksshouldaddressthecompleteprojectchain,fromclarityofadministrativeprocesses,publicconsultationandenvironmentalassessment,tolong-termliabilityoftransportedandstoredCO2(Havercroft,2018).Withouturgentactions,CCS,CCUandCDRtechnologieswillfailtodeliveronclimateobjectives.Theapproachneedstofocusonsecuringpolitical,socialandfinancialsupport,withnewpilot,demonstrationandcommercialprojectstotesttechnologiesinreal-worldsettings.Thiswillhelptobringthediscussiontolocalpeopleandgaugetheirperceptions.1.8ComparisonofCCSwithrenewablesandotheroptions/solutionsCarboncaptureandrenewablesaretwoverydifferentapproachestoreducingemissions.Bothhavetheirownsetsofadvantagestoofferanddrawbackstoconsider,andareoftenplacedatoppositeendsofavailablemitigationstrategies.Thedebatebetweenthemiseitherseenthroughthethemeofprolongingtheuseoffossilfuelsversusshiftingtonon-emittingfuture,orthroughtheconvenienceofusing‘non-polluting’fossilfuelsbycapturingcarbon.52CCS,CCUANDCDR,ANDTHEIRROLESINEMISSIONSRECDHUACPTTIOERNThechoicehasthereforeeitherbecomeanideologicalquestionoranemotionalconversation,makingithardertoevaluatethemeritsanddrawbacksofbothoptionsinthecontextoftheglobalenergytransition.Thatbeingsaid,carboncaptureandrenewableshavedifferentoperationalprocessesthatrequirechangesofvaryingsignificanceintheworkflowprocessesofindustriesandpowersystems.Notonlydoesthisinvolvesomecoststoaccommodatethesechanges,buttheprocessesarealsolikelytodeliverdifferentrangesofemissionreductions.Therefore,thewidelyused‘leastcostmitigationtool’criterionistoonarrowforcomparisonsbetweenthetwoapproaches.Figure17looksattheproductioncostsandemissionreductionpotentialsofcarboncapturetechnologiesrelativetorenewablestogiveafullerpictureofthetrade-offsofeitheroption.Itisimportanttoreiteratethatalthoughnosingletechnologyoptionissufficienttofullydecarbonisemostsectors,thisapproachcanhelpidentify‘low-hangingfruit’andmustnotberegardedasthe“only”solution.Also,itrepresentseitherthecurrentcommercialorthemostmaturetechnologyoptionsavailableandcanthereforechangeinthefutureascostsreductionandtechnologiesevolve.Inthepowersector,CCSuseisnoteconomicallyjustifiablefornewfossilfuelprojects.Theonlycasethatcanbemadeforitsuseistoutiliseexistinginstalledinfrastructure;buteventhere,newrenewableinstallationscandeliverlower-costpowerthancoalplantswithCCSretrofitsandprovidestableandoftenhigher-wagejobs.Fromacurrentcostsperspective,theuseofCCSiseconomicallyjustifiablefortheproductionofhydrogen,ammonia,methanol,cementandiron,andsteel(Figure17).FIGURE17:Costsofproductionviacarbonrouteasapercentageofrenewablepathway11LowervalueH¡ghervalue(CoalfiredvsPower(GasfiredvsIronandSteelCementHydrogenAmmoniaMethanolsolarPV)onshorewind)(Coalfiredvs(Gasfiredvsonshorewind)solarPV)Productioncostsusingcarboncapture(relativetorenewableenergy)400%350%300%250%200%150%100%50%0%-50%-100%Sources:IRENAanalysesbasedoninputsfromLenaetal.,(2019);FanandFriedmann(2021);IEAGHG(2019a,2019b,2019c);IEAGHG(2017a,2017b,2017c);IRENA(2021b).11Costsarecurrentestimates.53REACHINGZEROWITHRENEWABLES:CAPTURINGCARBONBANNEXCO2CAPTURE–STATUSANDPOTENTIAL2.1CO2capturetechnologiesforpointsourcesIncaptureprocesses,CO2isseparatedfromfluegasorsyngasinpowerplantsorindustrialprocesses,suchascalcinationincementkilnsorblastfurnacesforironproduction,tobelatereitherutilisedorstoredunderground.FIGURE18:CO2concentrationpersourceLowervalueH¡ghervalueCO2sourceCO2processingunitNaturalgasprocessingAcidgasremoval/CO2absorptionunitNaturalgaspowerplantGasturbineCoalpowerplantSteamboilerfurnaceIronandsteelproductionBlastfurnace-BlastOxygenfurnaceCementproductionPrecalcinerAmmoniaprocessingHydrogenpurificationHydrogenproduction-LInshiftedsyngasHydrogenproduction-HInfluegastoprovideheatforSMREthyleneproductionSteamcrackingEthanolproductionFermentation0102030405060708090100Source:BasedonBains,PsarrasandWilcox(2017).CO2content54CO2CAPTURE–STATUSANDPOCTHEANPTTIAERLCO2capturehasasignificantimpactonbothcostsandenergyconsumption.ThecostofcapturingCO2fromfluegasorsyngasdependsonitsconcentration(Figure18),butalsoongasquantity,pressure,contaminantsandtheextenttowhichthefluegasneedstobecleaned.LowerCO2contentfluegasrequiresmoreenergytocaptureCO2,whichincreasescosts.Themajorityofoperationalexperiencetodateisinnaturalgasprocessing,wheretheCO2concentrationisgreaterthan99%,whileCO2concentrationismuchlowerinotherindustriesandthereforeposesadditionalchallenges.BOX4:ThreemainapproachestocaptureCO2TherearethreemainapproachestocaptureCO2,witheachapproachposingdistinctchallengesintermsofintegrationintoexistingoperations,scale-up,energyandefficiencypenalty,etc.1.Post-combustionInpost-combustion(Figure19),CO2isseparatedandcapturedfromthefluegasesthatresultfromfossilfuelcombustionorindustrialprocesses(e.g.calcination)usingsolvents,sorbents(physicalandchemical)andmembranes.ThefluegasisamixtureofCO2,nitrogenandoxygenatedcompounds(SO2,NO2,O2).OnceCO2isabsorbed/adsorbed12bythemedium,themediumisheatedandproducesahighpurityCO2stream.Thesolvent/sorbentisthencooledandreused.Theseparationprocessesfaceseveralchallenges,includingasaresultofimpuritiesinfluegas,whichdegradesolventsorsorbents,andparticularlyinthecaseoflessadvancedsolvents.LowlevelsofCO2inthefluegasalsoposechallenges.Theprincipaladvantageoftheapproachisthatitcanbeappliedtoexistingoperationalunits,asitcanbeimplementedatthelaststageofindustrialprocessesandthereforedoesnotrequiremajorreengineeringofexistingprocesses.Itissuitableforuseinbothpowerplantsandindustrialprocessessuchascement,ironandsteelorchemicalproduction.PosFt-IcGoUmRbuEst1i9on:Post-combustionSteamturbinesPowerNitrogenFuelBoiler2000C15palCO2captureCO2AirFluegasSource:(Vaseghi,AmiriandPesaran,2012).N270%CO23-15%2.Pre-combustionInpre-combustionprocesses(Figure20),removalofCO2fromfossilfuelsoccurspriortocombustion.ThefuelisconvertedintosyngascontainingH2,CO2(ataround40%),COandsmalleramountsofothergasessuchasmethane.Hydrogenisseparatedandusedasfuel.Comparedtopost-combustion,itisamorecomplexprocessandhardertoapplytoexistingoperationalunits.Itiscurrentlyusedpredominantlyinpowerplantsandfor12Absorptionistheprocessofonematerialbeingretainedbyanother.Themediumcanbeinaformofagas,liquidorsolidinaliquid,vapour,adissolvedsubstancetoasolidsurfacebyphysicalforces,etc.butinthecontextofCCS,liquid-basedsolventsareused.Adsorptionistheadhesionofatoms,ionsandmoleculesfromagas,liquidordissolvedsolidtothesurface.Thedifferenceisthatadsorptionisasurfacephenomenon,whileabsorptioninvolvesthewholevolumeofthematerial.Adsorptiontendstoprecedeabsorption.55REACHINGZEROWITHRENEWABLES:CAPTURINGCARBONhydrogenproduction,anditsuseinindustrialprocessessuchascementplantsislimited.ItmaybepossibleonlyifintegratedwithgasificationtechnologiestoproducesyngasorH2fuel,butthiscomeswithadditionalcomplications,suchasthelowemissivepowerofH2flames,whichmakesthemill-suitedtoconventionalkilns.Therefore,moreefficientH2burnersandkilnsarerequired.Ontheotherhand,thegaseousstreamcontainsmoreconcentratedCO2,whichmakesitmoreefficientbutrequireshigherCAPEX(USDOE,n.d.).PFrIeG-cUoRmEbu2s0tio:nPre-combustionNitrogenAirAirOxygenCO2separationGasifier/4000C450psiCO2captureH2AirunitshiftSyngasCombustionPowerH2turbineFuelCO240%HeatSteamcycleSource:(Vaseghi,AmiriandPesaran,2012).3.Oxy-combustionInoxy-combustion(Figure21),thefuelisburnedinnearlypureoxygeninsteadofair.TheresultingfluegascontainswaterandCO2,makingiteasytoseparatebyfilteringO2fromtheairbeforeburningthefuelbylow-temperaturedehydrationanddesulphurisation.Oxy-combustionrecyclesthefluegastoachievelowerflametemperaturestodecreaseenergypenaltyandincludeslowerlevelNOXemissions,highCO2purityandlowergasvolumesduetoincreaseddensity(Wall,2005).Itcanberelativelyeasilyappliedtobothnewandexistingoperationalunits,butCAPEXishigherthanforotherprocesses.FIGURE21:Oxy-combustionOxy-combustionNitrogenAirAirOxygenSteamturbinesPowerSource:(Vaseghi,AmiriandPesaran,2012).separationBoilerCO2unitRecyclefluegasFuel2.2CO2capturetechnologiesforcapturefromtheatmosphereInsteadofcapturingCO2fromfluegasorsyngas,DirectAirCapture(DAC)technologycapturestheCO2emissionsdirectlyfromtheatmosphere.DACcanusevariousprocessestoscrubCO2fromtheatmosphere–chemicalorcryogenic–andthenseparatetheCO2forstorageorutilisation.Theprocessesresemblethepost-orpre-combustiontechnologies,buttheCO2sourceisdifferent,andtheCO2concentrationlevelsare100–300timesmoredilutethanthelevelsincoalorgas-firedpowerplants.Thecurrentlyoperatingpilot,demonstrationandcommercialplantsusechemicalseparationbyabsorption,wheretheCO2dissolvesintothesorbentsoradsorptionasCO2moleculesadheretothesolventsurface(Figure22).Theabsorptionmodelrequireshigh-temperatureheat56CO2CAPTURE–STATUSANDPOCTHEANPTTIAERLtoregeneratethesolvent.Thisheatiscurrentlymostlysuppliedbyfossilfuels,whichresultonlyinapartialoffsetofemissionsandaddtocostspertonneofemissionsavoided(Fasihi,EfimovaandBreyer,2019).Theadsorptionmodeluseslow-temperatureaqueoussolvents,whichcanbesuppliedbyheatpumpspoweredbyrenewableenergy,resultinginlowercosts.FIGURE22:STEP1STEP2DirectaircapturewithchemicalsolventAirwithsomeCapturedCO2removedCO2AdsorberAdsorbercontainingaminecontainingregeneratedaminesorbentssorbentsAmbientairHeatforme.g.steamHCO2NNH2AminewithadsorbedCO2moleculeSource:(GambhirandTavoni,2019).ThemaindifferencebetweenacapturefacilityinapowerplantoranindustryandDACistheconcentrationofCO2intheinputstream.Theconcentrationintheformervariesdependingontheprocess,ranginganywherefrom20%to30%inironandsteelfacilitiesto98–99%inammoniaplants(Bainsetal.,2017).TheconcentrationofCO2intheairisroughly400partspermillion(ppm)byvolume(circa0.04%),whichis100–300timesmoredilutethanfluegasesfromgas-andcoal-firedplants.Forthisreason,theprocessrequiresahighersurfaceareaofthesolventtobeincontactwiththeinputstream,whichinturnrequiresadifferentphysicaldesignandtheuseoffans.TheenergyrequirementforpoweringthefansinDACisconsiderablyhigher(~7–22%)comparedtoindustrialCCS(3%).However,thatpowercanbesuppliedfromrenewables(Buietal.,2018);thus,locatingDACatsiteswithlow-costrenewablesupplieswouldhelploweroverallcosts.OtherfactorscontributingtotheloweroverallcostsareuniquecontractdesignsthatarespecifictoDACandcheapermaterials(Kiani,JiangandFeron,2020)2.3CO2captureinthepowersector(fossilfuelandbiomass)Despitethesignificantandgrowingdeploymentofrenewables,fossilfuel-basedpowerplantsstilldominateelectricitygenerationandnewplantsarestillbeingcommissioned.In2021,electricitygenerationfromfossilfuelsisprojectedtoberesponsiblefor13GtCO2ofemissions(IRENA,2021a).Capturingcarbonfrompowerplantstoreduceemissionsistechnicallyfeasible,buteconomicallychallenging.ThereiscurrentlyonlyonepowerplantwithCCSoperatingglobally,itusesthepost-combustionapproach,butsomepowerplantsatdifferentstagesofdevelopmentindicatingtheuseofpre-combustionoroxy-combustion.Inaddition,severalfront-endengineeringdesign(FEED)studieshaveexploredtheuseofpre-combustionandoxy-fueltechnology(IEAGHG,2019b).57REACHINGZEROWITHRENEWABLES:CAPTURINGCARBONFIGURE23:Non-exhaustivelistofCCS/CCUprojectsinfossilfuelpowergenerationatdifferentstagesofoperationPilotanddemonstrationCommercialFacilityLocationCapacityInevaluationdeveElaorplymentdeAvdevloapncmeedntStatusCancelledOnholdSuspendedAberthawUKMtpa/CO2CompletedOperating0.02AEPMountaineerUSA0.1BelchatowCCSProjectPL0.1-1.8BoundaryDamCCSCA1BrindisiIT0.008CalCaptureUSA1.4CPraolejedcotniaCleanEnergyUK3.8C(HhainifaenRge)soInutrecgersaPteodwCeCrSCN1CitronelleUSA0.25CompostillaES1CoolimbaOxy-fuelProjectAU2.9DonValleyPowerProjectUK1.5DongguanTaiyangzhouPlantCN1GreatRiverEnergyUSA-HCaElCifAor:nHiaydPrroogjeecntEnergyUSA2.7HPruoajnecetng(PGhraeseen3G)enIGCCCN2KFaecmilpiteyrCountyEnergyUSA3KoreaCCS-1KR1KoreaCCS-2KR1MedicineBowUSA2.5MongstadNO1-2.5NortheasternStationUSA1.5OGCICleanGasProjectUK5OsakiCoolGen-PhaseIIJP-OsakiCoolGen-PhaseIIIJP-PeterheadCCSProjectUK1PetraNovaUSA1.4PlantBarryUSA0.185PolkStationUSA0.3PuertollanoES0.04RAOfvAanDg:RDoetmteordnastmraOtieppsrlaogjeecntNL1.1RWEGoldenbergwerkDE2.3SchwarzePumpeDE0.08ShandCCSCA2ShanxiCN2ShidongkouCN0.1SCiCnSopecShengliPowerplantCN1TexasCleanEnergyProjectUSA2.4WhiteRoseCCSProjectUK2AU-Australia,CA-Canada,CN-China,DE-Germany,ES-Spain,IT-Italy,JP-Japan,KR-RepublicofKorea,NL-Netherlands,NO-Norway,PL-Poland,UK-UnitedKingdom,USA-UnitedStates.Source:BasedonEC(2021);GlobalCCSInstitute(2020a);MIT(2016).58CO2CAPTURE–STATUSANDPOCTHEANPTTIAERLThefirstpilotprojectwascarriedoutbetween2008and2013onacoalpowerplantinGermanyandcaptured0.08MtpaCO2.Sincethen,anadditional24small-scalepilotanddemonstrationprojectshavebeenplanned,ofwhichninehavebeencompleted,sixareatdifferentstagesofadvancement,threeareinoperationandsevenhavebeenputonholdorcancelled.Onlyonelarge-scaleprojectiscurrentlyinoperation(120MW)inaglobalfleetofcoalplantsthattotalsaround2125GW.TheBoundaryDamplantinCanadaisa120MWcoal-poweredunitthat,since2014,hasbeenoperatingwithapost-combustionprocessusingthemostcommonsolvent,monoethanolamine(MEA),tocapture90%ofCO2emissions(around1MtpaCO2).In2019,aftertwoyearsofoperation,the1.4MtpaCO2PetraNovaprojectcapturingCO2emissionsfromacoal-poweredplantinTexas,intheUnitedStates,wassuspended.Thesuspensionwasduetoamixofeconomicsandunderperformance.Sevenothercommercialplantshavebeenplannedbutcancelledorputonholdbeforebecomingoperational.Afurthersevencommercialplantsareatvariousstagesofdevelopment.Figure23providesanoverviewofidentifiedcommercial,pilotanddemonstrationprojectsincoalorgaspowergeneration.Plansforsuchplantsareconstantlyevolvingandoftenthestatusiscommerciallysensitiveandnotpubliclyavailable.Thislistisnotdefinitive,therefore,butisindicativeofthecurrentstatusandnear-termpotential.LeadingtechnologiesThetwopredominantapproachestocaptureCO2emissionsinthepowersectorthathavebeenexploredinpilotprojectsanddemonstrationsare:Aminescrubbingpost-combustioncapture:post-combustionwiththemostcommonsolvent,MEA,isthemostmaturetechnologyforcapturingcarbonfrompowergeneration.WhiletheMEAsolventprocessisamatureandfairlywidelyusedmethod,severalothersolventsareemergingthatperformbetterbyreducingthetemperaturesneededforregeneration.UsingaPiperazine/amino-methyl-propanol(Pz/AMP)blend,CO2avoidancecostscanbereducedby22%forcoaland15%forgas-firedpowerplantscomparedtoMEA.ThisdifferencearisesduetomarginallyhigherCAPEX,OPEXandfuelcostsforMEAsolvents(IEAGHG,2019b).Calciumloopingwithoxy-fuelcombustion:Calciumloopingusescalciumoxide(CaO)asaregenerativesolvent.Calciumloopingisusedinconjunctionwithoxy-fuelcombustionbecausehightemperaturesarerequiredtoregeneratethesorbent.Thehighertemperaturesreducetheenergypenaltyby3%comparedtoMEAcaptureandincreasethepowergeneration,asmoresteamisproduced.However,itcomesatahigherlevelisedcostofelectricity(LCOE),atUSD140/MWh,andavoidedcostofCO2capture(USD105/tCO2)comparedtoMEAorPz/AMPsolvents(MantripragadaandRubin,2014).EnergypenaltyOneimpactofcarboncaptureistheadditionalenergyrequirementofthecaptureprocess,whichreducestheplant’snetenergyoutput.Theenergypenaltyvariesfordifferentplantsandcaptureprocesses,reducingthenetefficiencyoftheplantby6–13%(Cebrucean,CebruceanandIonel,2014).MorerecentanalysissuggeststhatCCSreducestheefficiencyofacombinedcyclegasturbine(CCGT)plantbybetween7and11percentagepoints(implyinganincreasedfuelburnof17–22%relativetotheplantwithoutCCS)andbetween9and10percentagepointsforsuper-criticalcoalplants(anincreasedfuelburnof27–33%[IEA/NEA,2020]).CostsAtcurrentcosts,naturalgas-orcoal-firedpowerplantswithCCScannotcompetewithrenewablepower.TheLCOEfromgasandcoal-firedplantswitha90%capturerateishigherthantheequivalentplantwithoutCCS,given59REACHINGZEROWITHRENEWABLES:CAPTURINGCARBONthehighercapitalcosts,theenergypenaltyofCCSandotheroperatingcosts(personnel,partsandconsumables).ForaCCGT,theLCOEofaplantwithCCS(includingCO2transportandstorage)ispotentially70–140%higherthanthatwithout,withoutaccountingforresidualCO2emissionsandupstreammethaneemissionsfromfuelproductionandtransport(Figure24).13IntheUnitedStates,powerpurchaseagreements(PPAs)andauctionresultsforutility-scalesolarPVandonshorewindthatwillcomeonlinein2021suggestaveragecostsofUSD31/MWhandUSD37/MWh,respectively.CoalwithCCSwouldbearound5–6timesmoreexpensivein2025(assuming,unrealistically,nofurthercostreductionsforsolarandwindbythen),whileaCCGTwithCCSwouldbe3.1–3.7timesmoreexpensive.ForaCCGTin2025,thisrepresentsapremiumofUSD82–88/MWhovernewsolarandwindtobecommissionedintheUnitedStatesin2021.FuturecostreductionsinCCSforpowerproductionarelikelybutthelackofmomentumtodatemakesthenear-andmedium-termCCScostreductionpotentialuncertain.Giventhatrenewablepowerproductioncontinuestobeaddedatrecordcapacityandcostscontinuetorapidlyfall,thegapbetweenCCSandrenewablepowerisunlikelytonarrowquickly.AfurtherchallengeforfossilfuelpowerproductionwithCCSisthatitisunlikelytobedeployedbeforesignificantsharesofrenewablesaredeployedaspartofanet-zeropathway.Thiswillmeanveryfewplantswillachievehighloadfactors,astheywillhavetoflextoaccommodatesolarandwindgeneration,furtherimpactingtheireconomics.ApotentialbenefitofCCSinpowerisitsdispatchability;utility-scalesolarPVandstorageiscurrentlybeingcontractedintheUnitedStatesforatotalcostofUSD29–44/MWh,forastoragedurationofuptofourhours(IRENA,2021b).Forcomparison,theestimatedcapitalcostofaCCGTplantwithCCSatacapacityfactorof50%isUSD53/MWh,exceedingthetotalLCOEofsolarplusstoragebyatleast20%.Thatcostgapimpliesthatevenasalow-carbondispatchabletechnology,CCSpowerplantswillstruggletocompetewithutility-scalesolarPVwithstorage.FIGURE24:LCOEofCCGTandsupercriticalcoal-firedpowerplantsforcommissioningin2025inAustraliaandtheUnitedStatesCapitalFuelcostFixedO&MVariableO&MCO2T&SCarboncostCostofmethaneAUSTRALIACoal8841271592SCCCSNaturalgas5867156412CCGTCCSUNITEDSTATESCoal1073628141583SCCCSNaturalgas33156631053CCGTCCS2020USD/MWhSources:IRENAanalysisbasedonAustralianGovernment(2021);IEA/NEA(2020);NETL(2019);US.EPA(n.d.).13Ifnet-zeroisthegoal,theseremainingemissionscannotbeignoredandmustbefactoredintotheeconomicsofCCSinthepowersector.60CO2CAPTURE–STATUSANDPOCTHEANPTTIAERLIntegrationofbiomasswithCO₂captureinthepowersectorBECCScapturesandstoresthereleasedCO2,resultingin‘negative’emissions.Itisacombinationofbiomassconversionintoheat,electricityorfuel,coupledwiththeCCStechnology.Whilemanycountrieshavecommittedtophaseouttheuseoffossilfuels,theprocessislengthyanddependsonmanyfactors.TheadvantageofBECCSisitspotentialtoberetrofittedintoexistingfossilfuelpowerplantsviabiomassco-firing.Assuch,itcouldofferatransitionpathwaytothefulluseofbiomasscoupledwithCCS.However,theintegrationofbiomassinpowerplantsrepresentsachallengeitself,withlimitedlearningexperience.AmajorityofplantsaddresseithertheuseofbiomassinprocessesorfocusonCCS,butrarelyfocusonboth.UnderstandingtheroutesandchallengesassociatedwiththeintegrationofbiomasstobelatercoupledwithCCScanrepresentaviablestart.Theco-firingofbiomassincoal-firedpowergenerationwithCCSTheco-firingofbiomassincoal-firedpowerplantsisacost-effectiveoptionforpartiallyreducingemissionsandcanberetrofittedquickly,particularlyintheshortterm.Directco-firingisthemostcommonandtheleastcostlyoption.Itisstraightforwardbutdependsonthebiomassusedanditsfuelproperties.Theuseofbiomasstendstobelimitedtojust10–20%oftotalenergyuseduetothepresenceofflyashfromcoalandhighlyalkalineashfrombiomassthatmayformagglomeratesintheboiler(IEAGHG,2019a).Analternativeapproachisindirectco-firing,whereinbiomassfeedstockisfirstgasifiedtoproducesyngas,andonlythenco-fired.Itoffersfuelflexibilitybutitiscurrentlylessusedandresearched.Biomassdirectco-firingwithcoalreducesemissions,asitreducesfossilfuelconsumption.Forexample,intheUnitedStatesandtheEuropeanUnion,roughly76%oftotalemissionsarereducedcomparedtocoal-firedpowerplantswith20%biomassco-firing(BeagleandBelmont,2019).Moreover,co-firingwithbiomassrequireslittleornoadditionalinvestmentandmaintenanceactivities.Onestudysuggeststhat10%biomassco-firinginanultra-supercritical(USC)coal-firedplantwitha90%capturerateisthemosteconomicaloptiontoachievezeroemissions(IEAGHG,2019a).Biomassgasificationcanincreaseefficiencybutcomeswithtechnologicalbarrierssuchastarreduction.TABLE3:Overviewofeconomicsandemissionsofcoal-firedpowergenerationviadifferentmethodsCapturerateUltra-supercriticalPCwith10%biomassco-firingwithCCSCostofCO2avoided(USD/tC02)14(post-combustionusingMEA)Emissionsintensity(tCO2/MWh)90%EnergyConsumption(MWh/CO2)62.4LCOE(USD/MWh)0CAPEXUSD/kW)0.337Source:BasedonIEAGHG(2019a).983028Thereisapossibilitytosubstitutecoalwith100%biomassinpulverisedcoalboilers.Thisapproachrequiresahigh-qualitypre-treatedbiomasssource.High-gradebiomassallowsthefurnacetoretainthesameheatabsorptionpropertiesaswouldhavebeeninthecaseofcoal.Inaddition,lowersulphurandchlorinelevelsinthebiomassreducetheneedforacidgasclean-upandtheriskofhigh-temperaturecorrosionofboilers.Theprocessinvolvesmillingbiomassintoparticularsizesforsuspensionfiring,followedbydirectinjectionintothe14Consistsofcostsforcapturingthecarbonanddoesnotincludetransportorstoragecosts.61REACHINGZEROWITHRENEWABLES:CAPTURINGCARBONboilersystem.Thereare,however,severalconcernsabouttheformationofslagonheaters,burnersandotherrefractorysurfaces,aswellasattheboilerconvectivepass.Thiswouldreducetheperformanceandaccessibilityofcombustionapplications.Therefore,itisimperativetoknowtheashpropertiesofthebiomassbyconductingafull-ashanalysistoselecttherightsource(IEAGHG,2019a).Tooptimiseoperation,sitetestingandregularmonitoringofslagformationinthefirstmonths/yearofoperationarealsorequired.Butexperienceislimited,asthepowerplantsareeithernotcoupledwiththeCCSorhaveundergonelimitedscreeningsandtechno-economicassessments(Emenikeetal.,2020;Bhaveetal.,2017).Therearetwoexamplesoftheconversionofcoal-firedpowerboilersto100%biomasscoupledwithCCS:theDraxpowerplant(UK),withtheCCSunitexpectedtobeoperationalby2027(Drax,2021);andthedemonstrationprojectattheMikawapowerplantinJapan,launchedin2021(Toshiba-energy,2021).Theremainingexamplesofconversionofcoal-firedpowerboilersinto100%biomassare:Avedorepowerplant,Denmark;Atikokanpowerplant,Canada;andthecombinedpowerandheatplantinHässelby,Sweden;butallwithoutCCS.IntegrationofbiomassinnaturalgaspowergenerationwithCCSAnotheropportunitytomitigateCO2emissionsinthepowersectorisbyintegratinggasifiedbiomass(indirectco-firing)intoanaturalgascombinedcyclepowerplant(NGCC).Theuseofbiomassislimitedto40%(Agboretal.,2016).Severaltechnologies(atmosphericair-blown,pressurisedoxygen-blown,andatmosphericindirectlyheatedgasification)canbeusedforbiomassgasificationandtheirselectionpredominantlydependsonthelevelofbiomassco-firing.Butintermsofemissionsreductionandplantefficiency,theselectionoftechnologydoesnotplayasignificantrole.Co-firingmayrequiresomemodificationtothegasturbines,suchasreplacingthecombustionchamberiflowerheatingbiogasisused.Duetoindirectco-firing,thepost-combustioncaptureisthemostappropriate.Anincreaseinco-firinglevelsincreasestheconcentrationofCO2influegasandthecapturerateincreasesfrom80%withoutbiomassto90%withbiomass(Khorshidietal.,2016).This,inturn,reducestheenergypenaltyforpost-combustioncapture,despitetheclean-upofsyngasproduced.Anincreaseinco-firinglevelsalsorequireslargercaptureunitstocaptureahigheramountofCO2,whichcomeswithhigherCAPEXandOPEX,butduetothehigherconcentrationofCO2inthefluegas,theavoidedcosts15forcapturingcarbonreducefromUSD69/tonneCO2(at5%co-firinglevel)toUSD46/tonneCO2(at40%co-firinglevel)(Khorshidiaetal.,2016).Co-firinginNGCCplantsiscurrentlyrarelyusedandisstillinadevelopmentstage.Anexampleofacommercialnaturalgas/biomassco-firingplantisinFinland.Thisplantusessawdust,straws,woodwastesandotherwaste-derivedfuels,butdoesnothaveacapturetechnology.Still,moreresearchisneededintotheoverallimpactonavoidancecostsofbiomassgasificationwithNGCCplantsanditsintegrationwithCO2capturetechnology.Currently,thesearemostlytechno-economicassessmentsandfeasibilitystudies,butdemonstrationandfirst-of-a-kindprojectsaremissing.15Interpretedasavoidedcosts(withzeroRenewableEnergyCertificate)fromtheBreakevenCarbonPricemetricinKhorshidiaetal.,2016(whichisamixofavoidedcostofcaptureandREC).Khorshidiaetal.,defineavoidedcostsofCO2asbreakevencarbonpriceappliedtomaketechnologycost-competitivewithnocaptureplant.62CO2CAPTURE–STATUSANDPOCTHEANPTTIAERL2.4CO2captureinindustrialprocessesAsignificantproportionofCO2emissionscomefromindustrialprocesses.In2017,7.8GtofCO2,representing20%ofallemissions,wasattributedtocement,ironandsteel,andchemicalandpetrochemicalproduction.Undercurrentpolicies,thisproportionwillincreaseto22%by2050,notablywithincreasesfromthechemicalandpetrochemicalsectors.Giventhatover60%ofprocess-relatedemissionsfromcementproductionandover5%ofprocess-relatedemissionsfromtheblastfurnace–basicoxygenfurnace(BF-BOF)methodofsteelproductioncomefromcalcinationprocesses,thesesectorshavebeenafocusofCCSstudiesanddemonstrationprojectsoverthelastdecade,predominantlyinEurope.Asphysicalproperties,compositionandgasvolumeflowsallvaryineachindustrialprocess,thesuitabilityofdifferentcapturetechnologies,includingtheirimpactsontheproductionprocessandfinalproductquality,associatedenergypenalties,“retrofit-ability”andcosts,arestillbeinginvestigated.NaturalgasprocessingDrilling,extractionandtransportationofnaturalgasthroughpipelinesgloballyemits150MtpaofhighpurityCO2(GlobalCCSInstitute,2020a).ThisCO2requiresonlydehydrationbeforeitcanbestored.Capturingcarbonfromprocessingnaturalgasisoneoftheoldestapplicationsofcarboncapturetechnologies.Thefirstcommercialplantwasinstalledin1972,capturing1.3MtpaofCO2andsincethen,18othercommercialprojectshavebeeninstalled,withthelargestcapacitiesintheUnitedStates(withthelargestcapturing7MtpaofCO2).Elevencurrentlyoperatingplantshaveacombinedcapturecapacityof26.3MtpaCO2and,whenfinalised,fiveplantscurrentlyunderconstructionwillincreasecapturecapacityto34.2MtpaCO2.Therehavealsobeen10pilotordemonstrationprojects–sixcompleted,threeongoingandoneindevelopment.Plansforsuchplantsareconstantlyevolvingandoftentheirstatusiscommerciallysensitiveandthereforenotpubliclyavailable.Thislist(Figure25)isnotdefinitive,therefore,butisindicativeofthecurrentstatusandnear-termpotential.Typically,pre-combustioncaptureisusedwithcostsofUSD20–25/tCO2avoided.However,futurenaturalgasdemandmayrequireextractionfromwellswithhighpartialpressures.Forthis,pressureswingabsorptionmightbesuitable,whichwillincreasecoststoUSD31/tCO2avoided(IEAGHG,2017b).CementproductionCementisacriticalbuildingmaterial.Itsproductiongrewgloballyfrom3.3Gtin2010to4.1Gtin2019,withChinarepresenting54%ofglobalcementproduction.In2017,cementandlimeproductionaccountedfor2.5Gtofenergy-andprocess-relatedCO2emissions,representing7%oftotalglobalemissions(IRENA,2020).ThemostcommoncementproducedgloballyisPortlandcement,whichreleases,onaverage,866kgofCO2pertonneofcement(IRENA,2020).Calcinationoflimestonetoproduceclinkerrepresents60–65%ofdirectCO2emissions;theremaining35–40%ofCO2emissionscomefromfuelcombustionusedtoheatthekiln(Hills,SceatsandFennell,2019).Theseemissionsaredifficulttofullyeliminate,asthereareyetnoclinkerorlimestonesubstitutes,andthusCCSorCDRtechnologies(BECCSorDACCS)willhaveacrucialrole.Fromthetechnologyperspective,thepre-combustionapproachistheleasteffective.Itwouldeliminateonlyone-thirdoffuelemissions,astwo-thirdsofCO2emissionsoriginatefromthecalcinationoflimestoneandarenotcapturedinthepre-combustionprocess.Ascementplantshavealifetimerangingfrom30to50years,theeaseofretrofitisalsorelevant.Pre-combustioncanbeappliedonlytonewplantsinacost-effectiveway,whilepost-andoxy-combustionaresuitablefortheretrofittingofexistingcementplants.Post-combustionandoxy-combustionarethereforemoreeffective.63REACHINGZEROWITHRENEWABLES:CAPTURINGCARBONFIGURE25:Non-exhaustivelistofCCS/CCUprojectsfromnaturalgasprocessingindifferentstagesofoperationPilotanddemonstrationCommercialFacilityLocationCapacityInevaluationdeveElaorplymentCompletedStatusCancelledOnholdSuspendedMtpa/CO2OperatingAbuDhabiCCS(Phase2)UAE1.9-2.3AcornCCSUK0.2BellCreekUSA1CenturyPlantUS5–8.4FortNelsonCA2.2GProorjdeocntCarbonDioxideInjectionUSA3.4-4.0H21NorthofEnglandUK3InSalahDZ0Ivanic/ZuticaHR5.4K12-BNL0.08KetzinDE0.1LaBargeUSA1LostCabinGasPlantUSA0.9NETPowerUSA-NorthernReefUSA0.365Otway-stage1AU0.065PetrobrasLulaBR0.7PPerotrjeocCth(iPnahaJsilein2O)ilFieldEORCN0.6RileyRidgeGasPlantUSA2.5SFahcuitleityCreekGasProcessingUSA7SleipnerNO0.9SnohvitNO0.7SPproejcetcrtaEnergy'sFortNelsonCCSCA2.2UthmaniyahSA0.8ValVerdeUSA1.3ZamaCA0.026AU-Australia,BR-Brazil,CA-Canada,CN-China,DE-Germany,HR-Croatia,NL-Netherlands,NO-Norway,SA-SaudiArabia,UAE-UnitedArabEmirates,UK-UnitedKingdom,USA-UnitedStates.Sources:BasedonGlobalCCSInstitute(2020a);MIT(2016).64CO2CAPTURE–STATUSANDPOCTHEANPTTIAERLPost-combustiontechnologiesareadaptedfromthepowersectorandofferthemostdevelopedapproaches.CapturetechnologiesdifferfromeachotherintheirTRLs,capturerate,avoidedCO2,energypenalty,complexitytoretrofit,requiredmajorchangestothecementprocess,impactoncementquality,andCAPEXandOPEX.Post-combustionAminescrubbingWhileaminescrubbingisthemostmaturepost-combustiontechnologyadaptedfromthepowersector,itsscale-upinthecementsectorremainsanissue.Inaminescrubbing,theamineliquidsolventisusedtoscrubCO2fromafluegas,whichinthecaseofcementcontainsimpurities.Aminesolventsaresensitivetodustandcontaminationwithothergases.Toavoidsolventdegradation,thefluegasrequirespre-treatment,whichimpactsitsenergyfootprint,CAPEXandOPEX.Afterclean-up,theaminesolutionispumpedintoanotherreactor–adesorber–bysteam.Thisprocessrequiresthermalenergyof3–4GJ/tCO2(Buietal.,2018),andanadditionalcombinedheatandpowersystemmaybenecessary,asthelow-gradeheatavailableatthecementplantisinsufficient.Theprocessalsorequiresasignificantpowersupplyforfansandpumpsintheabsorptionprocess.Theaminescrubbingoffersseveralbenefits,includingnosignificantchangestotheoriginalplantandprocesses,onlyminimalimpactsontheenergymanagementandstart-upandshut-downprocedures,andnoobservedchangestocementquality.Retrofittingoftheexistingplantispossibleduringannualshutdownperiodsbutrequiresconsiderablespace,whichmaybeaconstraint.Thereislimitedoperationalexperienceinthecementsector;however,thereareseveralpilotanddemonstrationprojectsaswellasseveralannouncementstobuildlarge-scalecommercialCCSfacilities.TheEuropeanCEMCAP16projectgatheredmajorcementproducersandassessedseveralcapturetechnologiesforretrofittingexistingcementplantsfromatechnicalandeconomicalperspective.FollowingasuccessfuldemonstrationprojectatNorceminNorway(capturing370tonnesofCO2over2700hourswithacapturerateof90%),in2020Norway’sLongshipprojectannouncedalarge-scalecommercialCCSfacilityatNorcemtobeoperationalin2023,withtheaimtocapture0.4MtpaofCO2(AkerSolutions,2019).CapturedCO2willbeliquefiedandfirstshippedandthentransportedbypipelineundertheNorthSeaviatheNorthernLightstransportandstorageproject(GovernmentofNorway,2020).Since2018,AnhuiConch’sCCUfacilityatitscementplantinChinahasbeencapturing0.05MtpaofCO2andsellingthecapturedCO2toindustrialconsumerstocoverexpenses(CemNet,2019).In2019,India’sDalmiaCementandUK-basedCarbonCleanSolutionscommittedtobuildingalarge-scaleCCUplantatoneofDalmia’scementplantsinIndia.Theplantwillhavethecapacitytocapture0.5MtpaofCO2andDalmiaaimstosellcapturedCO2forchemicalproductionandothernon-specifieduses.Thereisnofurtherinformationonthedataorbudget,however(GonzálezPlaza,MartínezandRubiera,2020).CalciumloopingInacarbonator(Figure26),CO2reactswithcalciumoxideinthefluegastoformsolidcalciumcarbonate.CO2‑leanfluegasisemitted,whilesolidcalciumcarbonateispassedtothecalciner,whereitdecomposesbacktoCO2andcalciumoxide.TheresultispureCO2.WhilethereactionofCO2withcalciumoxideisexothermicandallowstheheatfromthecarbonatortobeusedinasteamcycleorproduceenoughelectricitytopowerotherunitsinthecementplants,thecalcinationprocessishighlyendothermicanddrivestheenergypenaltyup.Calciumloopingcomeswithbenefits:therearenomajorchangestotheoriginalplantandprocessesbutretrofittingwiththereplacementoftheprecalcinerwithdual-fluidisedbedsystemsmaycauseaprolongedshutdown.Spacemaybeaconstraintaswell.Therearenoobservedchangestothecementqualityatthelaboratoryscalebut,inarealsetting,minimalchangesarepossible.16www.sintef.no/cemcap/65REACHINGZEROWITHRENEWABLES:CAPTURINGCARBONFIGURE26:CementproductionandcomponentsFluegaswithoutCO2limestoneCaOpurgeCaCO2CO2N2CaOpurgeCementCarbonatorCalcinerASU+freshplantlimestoneAirFluegasCoal,CaOO2airCoalSource:(IEAGHG,2013b)Thereisasynergybetweencementproductionandcalciumloopingcapture,astheprocessusescement’smainfeedstock–calciumoxide(CaO)–asitsmainsorbent,whichisavailableinindustrialquantitiesandisenvironmentallybenign.TheEU-fundedCEMCAPproject(attheNorcemplant,Norway)assessedthecalciumloopingfromatechnicalandeconomicperspective,andthefollow-upCLEANKERprojectaimstodemonstratethetechnologyinItaly.OxyfuelcombustionOxygenismixedwithrecycledCO2andthenfedintothekilnandprecalciner.Inoxy-combustion,thefuelisburnedusingnearlypureoxygen.Theproducedfluegasaftertheclean-upcontainswaterandCO2,whichmakesiteasytobeseparatedbyfilteringO2fromtheairbeforeburningthefuelbylow-temperaturedehydrationanddesulphurisation.Fulloxy-combustionhassignificantimpactsoncementproduction,withretrofittingentailinganestimatedsix-monthshut-down.Itrequiresnewadditionalequipmentandrelatedpermits,includingnewpreheatersandprecalciners,specificoxyfuelclinkercoolers,anexhaustgasrecirculationsystemairseparationunit,andaCO2purificationunitorrotarykilnburner.Themajorityofnewequipmentneedstobeinstalledinthevicinityofthekiln,whichcreatesspaceissues(butlowerconstraintsthanaminescrubbing).Itincursamajorenergypenalty,withadditionalpowerdemandupto120kWhtorunanairseparationunit.Operationalexperienceislimitedtothepowersector.Since2007,theEuropeanCementResearchAcademy(ECRA)hascarriedoutresearchonoxy-combustionandin2018launchedtwodemonstrationprojectsatanindustrialscaleintwoEuropeancementplantsatHeidelbergCementItalyandLafargeHolciminAustria.TheaimistoreachTRL7–8.66CO2CAPTURE–STATUSANDPOCTHEANPTTIEARLDirectseparationAnovelapproachtodirectlyseparateCO2isbeingexploredbytheEU-fundedprojectLEILAC(LowEmissionsIntensityLimeandCement).Inthedirectseparationprocess,CO2isremovedfromlimestoneduringtheheatingprocessinaseparatesteelreactor,whichenablespureCO2tobecapturedasthefurnacegasesarekeptseparate(Calix,2020).LEILACsuccessfullydemonstratedthatdirectseparationcouldcapture95%ofprocessemissionsandisnowenteringitssecondphasewithLEILAC2buildingaplantinHeidelbergCementtodemonstrateitsefficiency.Thisprocess,however,wouldnotreducefuelemissions,asonlyprocessemissionscanbecaptured(Hills,SceatsandFennell,2019).Figure27providesanoverviewofCCSandCCUpost-andoxy-combustionprojectsinthecementsector.OnlyoneprojectinChinaiscurrentlyoperational.Itisasmall-scaleprojectcapturing0.05MtpaofCO2,whichisthendestinedforutilisation.Thelarge-scaleDalmiaCCUPlantisinearlydevelopmentandaimstocapture0.5MtpaCO2.Thereareseveralpilotanddemonstrationprojects–threecompletedandsixatdifferentstagesofdevelopment.Plansforsuchplantsareconstantlyevolvingandoftenthestatusiscommerciallysensitive,soinformationisnotpubliclyavailable.Thislistisnotdefinitive,therefore,butisindicativeofthecurrentstatusandnear-termpotential.FIGURE27:Non-exhaustivelistofCCS/CCUprojectsincementsectoratdifferentstagesofoperationPilotanddemonstrationFeasibilityStudyCommercialLaboratoryStatusFacilityLocationCapacityInevaluationPlanningEarlyAdvancedOperatingCompletedMtpa/CO2developmentdevelopment0.05AnhuiConch’sCCUfacilityCN01CEMCAPEU--CCoI4rCpo-rOatxioynfuelResearchDE0.0004CLEANKERIT0.7-2CO2capturepilot,BrevikNO0.5-Co2MENTCA--USA0.60.088DalmiaCementIN0.10.8ECRA-ColleferroplantIT0.72ECRA-RetzneiplantATITRIPilotCTLehighCCSFeasibilityStudyCALEILACBELEILAC2DENLoonrwgsahyipFullChainCCS-Brevik,NOWestKuste100DEAT-Austria,BE-Belgium,CA-Canada,CN-China,CT-ChineseTaipei,DE-Germany,EU-EuropeanUnion,IN-India,IT-Italy,NO-Norway,USA-UnitedStates.Sources:BasedonEC(2021);GlobalCCSInstitute(2020a);MIT(2016).67REACHINGZEROWITHRENEWABLES:CAPTURINGCARBONCostsTheavoidedcostsofcapturedependonfactorsincludingtheconcentrationofCO2fromfluegas,typeofcapture,propertiesofcapturingsolvent,sorbentsandmembrane,amongothers.TheavoidedCO2costsforaplantwithpost-combustioncapture(90%capturerate)usingMEAsolventisintherangeofUSD63–94/tCO2;usingcalciumloopingischeaperandcostsofavoidedCO2areUSD20–70(Table4).Fulloxy-combustioncapturesover90%ofCO2withavoidedcostsofUSD44–46/tCO2,whilepartialoxy-combustioncapturesaround65%ofCO2withavoidedcostsofUSD55–60/tCO2.TABLE4:Selectionofpost-andoxy-combustiontechnologiestocaptureCO2incementplantsPost-combustionOxy-combustionAminescrubbing,CapturerateusingMEACalciumloopingFullCostofCO2avoided>90%>90%>90%(USD/t)1763–9458–8444–46EnergypenaltyHigh18HighbutlowerthanaminescrubbingHighComplexityforretrofitLowLow–mediumHigh(low,medium,high)Minimalchanges,butPrecalcinerreplacedwithdual-Increaseddesignandmaintenanceextensivefluegascleaningfluidisedbed;captureplantcanbecomplexity;plant’soperationchangesplacedanywhere.withnewpreheatersandprecalciners.CementqualityNochangeNotolimitedchangesNochangesCAPEX(USD)Retrofit24–34/tcement;Newplant43–51/tcement48–52/tclinkerRetrofit10/tcement;Newplant28/tcementCostofclinker(USD/t)119–124119–124105TRL6–83–64Commercial2025–20352025–20302040–2045availabilitySources:BasedonDeLenaetal.(2019);Hillsetal.(2016);Hills,SceatsandFennell(2019);IEAGHG(2013b);Volsundetal.(2018).IronandsteelproductionTheironandsteelsectorisalargeenergyuserandCO2emitter.In2017,thesectoraccountedfor32EJoftotalglobalfinalenergyuseandemitted3.1Gtofenergy-andprocess-relatedCO2emissions,whichaccountedfor8%ofglobalCO2emissions(IRENA,2020).In2018,thesectorproduced1810Mtofsteel.Steelisproducedintwoways:eitherinintegratedsteelmillsusingtheblastfurnace–basicoxygenfurnaceroute(BF-BOF)orinfoundrieswithanelectricarcfurnace(EAF)usingdirectlyreducediron(DRI),scrapmetalandcastiron.Integratedsteelmillsrepresentover70%ofglobalsteelproduction(Mousaetal.,2016)andarethelargestsourcesofemissions,emitting3.5MtpaofCO2,comparedtolessthan200ktpaofCO2emittedbymini-mills.Anaveragesteelplantemits1.8tCO2perkgofcrudesteelproduced,outofwhich1.7tonnescomesfrom17Consistsofcostsforcapturingthecarbonanddoesnotincludetransportorstoragecosts.18Thereisalackofnumericaldatatoquantifyenergypenaltiesfordifferentcaptureroutesincementproduction.68CO2CAPTURE–STATUSANDPOCTHEANPTTIAERLcokeorcoalwhile0.1tonnesisfromlimestone(Buietal.,2018).Therearetwooptionstodecarboniseironandsteelproduction:toadaptDRItouserenewablehydrogenasthereducingagentandenergysource;ortoapplycapturetechnologytoBF–BOF.Thecurrentresearchoncaptureinironandsteelfocusesheavilyonapplyingcapturetotheblastfurnace,primarilybecauseitemitsalmost70%ofthedirectCO2emissionsfromtheentiresteelproductionprocess,makingithighlysuitableforcapturingCO2.DifferenttechnologiescancaptureCO2fromasteelproductionprocess.CO2resultsfromusingcoketodrawoxygenoutoftheironore.However,thesuitabilityofanytechnologydependsonwhetheritisretrofittedtoanexistingplantoraddedtoanewplant.Forinstance,forretrofitting,apost-combustionmethodissuitable,asitdoesnotinvolveanysignificantchangestotheproductionprocess.However,foranewplant,atopgasoxyfuelvariantofpost-combustionismoresuitablebecauseofitslowcostandhighercapturerates.Inbothcases,severalmethodscanbeusedfortheCO2capture:absorption(physicalorchemical),adsorption,ormembraneseparation.Aminescrubbingpost-combustioncaptureAsinthepowerandcementindustry,capturingcarbonusingaminesolventsisthemostmaturetechnologyandisusedalsointheironandsteelindustry.Thesolventcapturescarbonfromthefluegasandisregeneratedatahightemperatureandlowpressure.Themostcommonsolventsaremonoethanolamine(MEA)ormethyldiethanolamine(MDEA)duetohighercaptureratesandselectivity.However,traditionalaminesolventscorrodeequipment,degradesolventsandrequirehighenergyforregeneration.Newerpilotsanddemonstrationprojectsaretestingadvancedamino-alcoholwithfewerlimitations,suchaslowerenergyforregeneration.Japan’sNipponsteelplanttestedanewsolventundertheCOURSE50programandreportedanenergyreductionof2–3GJ/CO2forregeneratingthesolvent(McQueenetal.,2019).Oxy-fueltopgasrecycledblastfurnace(TGR-BF)TheTGR-BFdevelopedbytheULCOS(Ultra-LowCarbonDioxideSteelmaking)projectinSwedenusesapurestreamofoxygeninsteadofair,resultingintheefficientcombustionofthecoal.ThisincreasestheconcentrationofCO2inthefluegasresultinginaloweravoidedcostofCO2.ThentheCOandH2-richstreamisreinjectedintotheblastfurnace.Thesegasesactasreducingagents,thusloweringtheneedforcokeandcoal.Thepilot,oncapturingcarbonontheTGR-BFusingadsorptioncapturetechnologiessuchasPressureSwingAbsorptionandVacuumSwingAdsorption,reportscapturing65%ofemissions.TheapplicationofcapturingCO2iscurrentlylimitedtoonlyonecommercialplant.Since2016,theAbuDhabiCCSPhase1hascaptured0.8MtpaofCO2.Fivepilotanddemonstrationprojectsapplycarboncaptureinsteelmakingprocessessuchasblastfurnaceroute,DRI-EAFandsmeltingreduction.Afewprominentexamplesofthesepilot-scaleinitiativesareULCOS’sTGR-BFwithCCS,POSCO’sCCSwithvacuumswingadsorption,andCOURSE50’sCCSfromBFusingamineabsorption.Thescaleoftheproductionandcapturevariesfromprojecttoproject.Forinstance,ULCOS’sTGR-BFprojecthasacapacitytocapture1.4ktpa,whileitsGermancounterpartcanproduce700ktpa.InSouthKorea,POSCO’sCCShasacapturecapacityof0.18ktpaCO2(Buietal.,2018).Figure28providesanoverviewofCCSandCCUprojectsintheironandsteelsector,showingthat,inadditiontoonecommercialprojectinoperation,thereareeightpilotanddemonstrationprojects–fiveareoperatinginJapan,Sweden,FranceandGermany,whiletwootherEuropeanprojectsareindifferentstagesofdevelopmentandonehasbeencancelled.Plansforsuchplantsareconstantlyevolvingandoftenthestatusiscommerciallysensitivesoinformationisnotpubliclyavailable.Thislistisnotdefinitive,therefore,butisindicativeofthecurrentstatusandnear-termpotential.69REACHINGZEROWITHRENEWABLES:CAPTURINGCARBONFIGURE28:ListofCCSandCCUprojectsintheironandsteelsectoratdifferentstagesofdevelopmentPilotanddemonstrationCommercialFeasibilityStudyStatusFacilityLocationCapacityEarlyAdvancedUnderOperatingCompletedCancelledAbuDhabiCCS(Phase1)UAEMtpa/CO2developmentdevelopmentconstructionArcelorMittalSteelanolBHPIronandSteelSectorCCSProject0.8C6ResourcesCCSProjectUnitedStatesCOURSE50BE1DMXdemonstrationinDunkirkSEWGS-STEPWISECN-ULCOSFlorangeULCOSHlsarnaCCSUSA-WhiteBiotechCCSJP0.01FR0.5SE0.005FR0.5DE0.8CT-BE-Belgium,CN-China,CT-ChineseTaipei,DE-Germany,FR-France,JP-Japan,SE-Sweden,UAE-UnitedArabEmirates,USA-UnitedStates.Sources:BasedonEC(2021);GlobalCCSInstitute(2020a);MIT(2016).CostsTheavoidedcostsofcapturedependontheconcentrationofCO2fromfluegas,typeofcapture,propertiesofcapturingsolvent,sorbentandmembrane,amongothers.Forinstance,theavoidedcostsofCO2captureforaplantwitharetrofittedpost-combustioncapture(90%capturerate)usingMEAsolventisintherangeofUSD80‑160/tCO2(Table5).Thepost-combustioncaptureusingDMXTMsolventcaptures99%carbonwithanavoidedcostofUSD32–48/tCO2.ThepilotDMXTMprocesswillbeinstalledattheArcelorMittalsteelworkssiteinDunkerque,Francetocapture0.004MtpaCO2.Thefacilitywillstartoperationin2021.70CO2CAPTURE–STATUSANDPOCTHEANPTTIAERLTABLE5:Selectionofpost-andoxy-combustiontechnologiestocaptureCO2inironandsteelplantsCaptureratePost-combustionwithabsorptionOxyfueltopgasrecycledBFCostofCO2avoidedusingMEAorMDEASolventswithPz/MDEAsolvent19(USD/tCO2)2147%20Energypenalty>90%FromBFitcaptures>90%Complexityforretrofit80–16057ChangestoironmakingHighbecauseofhightemperatureprocessusedforregenerationofsolventLowbecauserecycledfluegasisusedProductqualityLowMatureendofpipetechnologyasaninputCAPEXforanewplant(USD)butexpensivefluegasclean-upTRLHighTheplantneedstobeequippedwithrequiredbeforecapture.anairseparationunitthatcanproducetheoxygentofueltheBF.NochangesChangestocokeandsinterproductiontoNochangesaccommodateforreduceddemand494–634/tcsNochanges6–8630/tHRC6Commercialavailability2025–20352025–2035Sources:BasedonBuietal.(2018);IEAGHG(2013a);Szczeniaketal.(2020);Toktarovaetal.(2020).(cs)crudesteel;(HRC)hotrolledcoil.ChemicalsIn2017,1.3Gtofpetrochemicalsandchemicalswereproduced,whichemitted1.1GtofCO2(IRENA,2020).Theseemissionsareexpectedtogrowasthepopulationincreases,pushingupdemandforcommoditiessuchasplastics.28%ofthetotalemissionsfromthissectorcanbeabatedthroughtheuseofCCS,CCUandBECCS(IRENA,2021a).Furthermore,thissectorrepresentslow-costopportunitiesforinstallingcaptureinfrastructure,astheconcentrationofCO2influegasfromthesesourcesishigh,especiallyforammonia.ThecaptureandutilisationofCO2toproducethesecommoditiesdonotnecessarilyimplythattheemissionsarereduced.Thisisduetolifecycleemissionsfrommultipleend-uses.Forinstance,whilecapturedCO2canbeusedforsyngasproductiontoproduceammonia,mostammoniaisusedtoproduceureathroughwhichCO2iseventuallyreleasedbackintotheatmosphere(IEAGHG,2019c).Life-cycleemissionsinthecaseofmethanolalsodependonitsend-useandtheircurrentlevelsfrommethanolproductionare0.3Gtpa(IRENAandMethanolInstitute,2021).Theseconsiderationsareparticularlyimportantinthecaseofplastics,asolefinproductionviathemethanol-to-olefin(MTO)routeisgainingtraction,especiallyinChina.Lifecycleemissionsconsiderationsformethanolareimportant,asplasticproductionthrougholefinproduction(intermediary)viamethanolisincreasing.Severallarge-scalecommercial,pilotanddemonstrationprojectscapturingCO2fromtheproductionofchemicalsandpetrochemicalshavebeeninoperationorareatdifferentstagesofdevelopment.CapturingCO2fromtheammoniaproductionprocesstoproduceureaisacommonpracticeatintegratedfertiliserplants.Inadditiontothese,severallargeprojectsforethanolandmethanolproductionplantsequippedwithcarboncaptureareatdifferentstagesofdevelopment.19TheBFconsideredinthiscaseisdifferentfromULCOS’sTGRBF20Considerscapturefromtheplantandnotjustfromtheblastfurnace21Consistsofcostsforcapturingthecarbonanddoesnotincludetransportorstoragecosts.71REACHINGZEROWITHRENEWABLES:CAPTURINGCARBONFivecommercialplantsarecurrentlyinoperationandafurtherfiveareatdifferentstagesofdevelopment.Inaddition,twopilotanddemonstrationprojectsarecompleted,fiveareoperatingandtwoareatdifferentstagesofdevelopment.Plansforsuchplantsareconstantlyevolvingandoftenthestatusiscommerciallysensitive,soinformationisnotpubliclyavailable.Thislist(Figure29)isnotdefinitive,therefore,butisindicativeofthecurrentstatusandnear-termpotential.FIGURE29:Non-exhaustivelistofCCUandCCSplantsinthepetrochemicalsandchemicalsindustryPilotanddemonstrationCommercialFacilityLocationCapacityInevaluationEarlyAdvancedStatusOperatingCompletedCancelledACTLwithNutrienCO2StreamMtpa/CO2developmentdevelopmentUnderconstructionCA0.3(Max14.6)CoffeyvilleGasificationUSA1DecaturUSA0.33EnidfertiliserUSA0.7FarnsworthUSA0.2G(GuPlfICP)etCraopcthuermeiPcraoljIencdtustriesCompanyBH0.16425JingbianCN0.05KaramayDunhuaProjectCN0.1KurosakiChemicalPlantCaptureProjectJP0.1-0.12LakeCharlesMethanolUSA4PetronasFertilisersMalaysiaCCSPilotMY0.07ProjectInterseqt(2projects)USA0.63ShenhuaOrdosCTLPilotProjectCN0.1ShenhuaOrdosCTLProject(Phase2)CN0.1SinopecQiluPetrochemicalCCSprojectCN0.4SolvayVishnuCaptureProjectIN0.077SouthWestHubAU2.5WabashCO2SequestrationUSA1.5-1.75YanchangCO2-EORprojectCN0.4YparonjcehcatngIntegratedCCSDemonstrationCN0.05YulinCoaltoChemicalsCCSCN1-2AU-Australia,BH-Bahrain,CA-Canada,CN-China,IN-India,JP-Japan,MY-Malaysia,USA-UnitedStates.Sources:BasedonEC(2021);GlobalCCSInstitute(2020a);MIT(2016).72CO2CAPTURE–STATUSANDPOCTHEANPTTIAERLCostsThecostsofcapturingcarbonfromammoniaandmethanolproductionarelowerthanotherindustrialprocessesbecauseofthehighlyconcentratednatureoffluegasesproducedduringproduction(Table6).WhilethemajorityofCO2capturedinammoniaproductionisusedtoproduceurea,capturingcarbonfrommethanolpresentsanopportunityforbothCO2utilisationandcarbonstorage.Emissionsfrommethanolproductionusingfossilfuelslieintherangeof91–262gCO2eq/MJ(IRENAandMethanolInstitute,2021).Ethyleneisoneofthemostimportantolefins,usedintheproductionofcommerciallyusefulchemicals(e.g.polymerslikePVCandpolyester)andcommoditiessuchasplastics.Ethylenecanbeproducedinseveralways,butsteamcrackingisthemostwidelyusedproductionmethod.Thecostsofcapturingcarbonfromasteamfurnacearehigherthanotherindustries(aroundUSD203/tCO2avoided)duetoalowconcentrationofCO2inthefluegas(7–12%)(Table7).Themarketentryofcommercialethylene-integratedCCSfacilitiesisexpectedafter2030(Szczeniak,BauerandKober,2020).Consideringthehighcostsanddelayeddeployment,methanol-to-olefins(MTO)isamuchmoreviableproductionroute.TABLE6:Overviewofperformance,costandreadinesslevelsforcapturingcarbonfromammoniaandmethanolproductionAmmoniaMethanolNaturalgasFeedstockCoalNaturalgasCoalCapturerate95%CO2avoidancecost(USD/95%tCO2avoided)22CAPEX(USD/t)15–40Costofproduct(USD/t)283613281525531TRL350–650250–650350–550200–500109CommercialavailabilityAlreadyincommercialoperation2025Sources:BasedonSzczeniaketal.(n.d.);IEA(2019).EthyleneTABLE7:Overviewofperformance,costandreadinesslevelsforcapturingcarbonfromethyleneproductionFeedstockCoalCO2avoidancecost(USD/tCO2avoided)23203565–1130CAPEX(USD/t)TRL52030–2035CommercialavailabilitySource:BasedonSzczeniaketal.(n.d.).22Consistsofcostsforcapturingthecarbonanddoesnotincludetransportorstoragecosts.23Consistsofcostsforcapturingthecarbonanddoesnotincludetransportorstoragecosts.73REACHINGZEROWITHRENEWABLES:CAPTURINGCARBONIntegrationofbiomasswithcaptureinindustriesTheBECCSprocesscapturesandstoresthereleasedCO2resultingin‘negative’emissions.Itisacombinationofbiomassconversionintoheat,electricityorfuel,coupledwithCCStechnology.TheadvantageofBECCSisitspotentialtoberetrofittedintoexistingindustrialprocessesviabiomassco-firing.Assuch,itcouldofferatransitionpathwaytothefulluseofbiomasscoupledwithCCS.However,theintegrationofbiomassintotheindustrialprocessesrepresentsachallengeinitself.Currently,plantsaddresseithertheuseofbiomassintheirprocessesorfocusontheintegrationofCCS,butbarelyfocusonboth.UnderstandingtheroutesandchallengesassociatedwiththeintegrationofbiomassintoindustrialprocessestobelatercoupledwithCCSwouldrepresentaviablestart.SeveralroutesaresuitablefortheconversionofbiomassintofuelsandfeedstocktobeusedinindustriesincombinationwithCCS.Theseincludetheproductionofbio-feedstocks,biochemicalandthermo-chemicalproductionofbiochemicals,andbiomasscombustionfortheproductionofelectricityand/orheat(ZEPandEBTP,2012).However,carbonefficiencyandenergyefficiency24aredifferentwhenbiomassisusedforfuelsforpower(Table8).Thepowerrouteismoreenergyefficientthanthebiofuelroute,whilethebiofuelrouteismorecarbonefficientthanthepowerroute(Fajardyetal.,2019).TABLE8:CarbonandenergyefficiencyfordifferentmethodsofbiomassintegrationBiomasstopowerEnergyefficiencyCarbonefficiencyBiomasstofuel11%50%6%25%Source:BasedonFajardyetal.(2019).Rawbiomasscannotbeuseddirectlyintheseprocessesforseveralreasons–suchaslowcalorificvalue,lowdensityandhighmoisturecontent–andneedstoundergopre-treatmentbeforeitcanbeintegratedintoindustries.Therearealsodifferenttypesofbiomass,withvaryingthermalpropertiesthataffecttheirperformancetogenerateenergyaftercombustion.CementproductionBiomasscanbeuseddirectlyincementplantsasanenergysourceinpreheatersand/orprecalcinersineithersolidformorafterbeingconvertedintogas.Asbiomasshasalowercalorificvalue,largerquantitiesarerequiredtoreplacefossilfuels.Forinstance,toreplaceonelitreoffossilfuelrequiresfourkilogramsofbiomass(Seboka,GetahunandHaile-Meskel,2015).Besides,cementplantsrequirepre-treatmentinfrastructureforbiomass,whichimposesadditionalcosts.Biomasscanbealsointegratedwithcoaltosupplyheattothepre-calcinerandthekiln,reducingtheconsumptionofcoalandthereforeemissions,iftheplantisnotequippedwithcapturetechnology.Theflyashfromtheco-firingplantcanalsobeusedtoproduceclinker,andasanadditivewhengrindingcement.With30%biomassintegratedwithcoal(Table9),theestimatedavoidedcostsofCO2varydependingonthetechnologyused:forpost-combustionusingMEAsolventtheestimatedavoidedcostsareintherangeofUSD87–104/tCO2;forpost-combustionusingcalciumloopingtheestimatedavoidedareUSD64–74/tCO2;foroxy-fuelcombustiontheestimatedavoidedcostsareintherangeofUSD50–72/tCO2(Sanmugasekarand24Carbonefficiencyisdefinedasthefractionofcarbonfixedinbiomassthatbecomesnet-negative.Energyefficiencyisfractionofprimarybiomassenergythatisconvertedintousefulenergy,consideringlifecycleenergyinputsandoutputs.74CO2CAPTURE–STATUSANDPOCTHEANPTTIAERLArvind,2019).Whencomparedwith100%fossilfueluse,post-combustionusingMEAsolventischeaperwith30%biomass;usingcalciumloopingseemssimilarand,insomecases,cheaper;whileoxy-combustionismoreexpensivewithbiomass.TABLE9:ComparisonofcostsofavoidedCO2forfossilfuel-basedCCSandBECCSUSD/tCO225MEACalciumloopingOxy-combustion100%fossilfuel10720–7544–4664–7450–7230%biomass+70%coal87–104Source:BasedonSanmugasekarandArvind(2019).IronandsteelproductionTheuseofbiomassasasourceofenergyorreducingagentscanprovideanalternativeforblastfurnacesbutposestechnicalandeconomicchallengesthatrequirefurtherinvestigation.CokeisanunavoidablerawmaterialfortheBF-BOFroute,andduetoitspropertiescannotbefullyreplaced.Itspartialsubstitutionwithbiomasscanbeintroducedatthreestages:coke-making,sinteringandinblastfurnaces.Theproductionofbio-cokerequiresbiomasspre-treatmenttoreachthedesiredphysicalandchemicalproperties(fixedcarbon,volatilematter,etc.).Biomasscanthenbeaddedtocoalwithtypicallevelsintherangeof2–10%.Anyhigherlevelswouldimpaircokequality(Mousaetal.,2016).Furtherpossibilitiestoincreasebiomasswouldrequireadditionalresearchforlarge-scaleproduction.Inthesinteringprocess,partialsubstitutionofcokebreezewithbiocharispossible,ata60%maximum,toachievesimilarsinteryieldandproductivityascokebreeze.InadditiontoreducingfossilfuelCO2emissions,itwouldeffectivelymitigateSOxandNOx(Mousaetal.,2016).Rawbiomassisnotsuitableduetoitshighmoisture,lowcarboncontentandlowcalorificvalue,andrequirespre-treatmentbeforeutilisation.Biomasspotentialislargestinblastfurnaces,whereitcanbeintroducedinseveralways,eitherthroughtop-charging(bio-sinter,bio-composite,torrefiedmaterials,charcoal)orinjectionthroughtuyeres(pulverisedbiochar,groundtorrefiedmaterials,bio-oil,bio-PCI)(Mousaetal.,2016).Charcoalcanfullyreplaceonlypulverisedcoalintheblastfurnace,inallothercasesthesubstitutionofcokewithcharcoalislimitedtoamaximumof20%.Whenintegratingwithcapture,astudyassessedcostsofavoidedCO2whenintegratingbiomassinironandsteelproductionintherangeofUSD66–110/tCO2forplantslocatedintheEuropeanUnion(Mandovaetal.,2019).ThemaximumCO2emissionsreductionpotentialwithbiomassblendingisaround42%,butitwillalsoincurhighcosts,witharoughly50%increaseofthesteelprice(Mandovaetal.,2018).ThesecostsarewithoutfactoringinthecostsofCCSfortheremainingCO2emissions.CurrentprojectseitherfocusontheuseofbiomassinironandsteelortheuseofCCS;thereis,however,astudythatdiscussestheuseofbiomassinironandsteelproductionwithCCSinfivesteelproductionroutes.ThestudyfocusesonthemitigationpotentialofBECCSthroughouttheproductionchain,includingsustainablebiomasssourcing,butdoesnotaddresstheavoidedcosts(Tanzer,BlokandRamirez,2020).Braziliscurrentlytheonlycountryusing100%charcoalinsmall-sizeblastfurnaces,butwithoutCCS.TheuseofbiomassinironandsteelproductionhasbeenexploredbySrivastava,KawatraandEisele(2013),whoproducedaself-reducingironoxideandbiomasscompositepelletasareducingagent;bytheULCOSprojectinEurope;andbyaCanadianprogrammerunbyCanadianSteelProducersAssociation(CSPA)andArcelorBrazil,butwithoutCCS.25Consistsofcostsforcapturingthecarbonanddoesnotincludetransportorstoragecosts.75REACHINGZEROWITHRENEWABLES:CAPTURINGCARBONChemicalsproductionBiomasscanbeintegratedasfeedstockinthechemicalvaluechain.Forthis,thefeedstockisdried,ground,andgasifiedwithoxygenand/orsteam(ZEPandEBTP,2012).Thegasiscleanedandprocessedtoformsyngas,whichcanbeusedincommercialconversionprocessessuchasFischer–Tropschtoproducechemicals.Integratingbiomassinthiswayleadstodirectnet-zeroemissions,astheCO2emittedduringsynthesisisrecycledasfeedstock(Gabrielli,GazzaniandMazzoti,2020).ThecostsofproducingchemicalsviathisroutearemuchhigherthanstandardCCS.ThecomparisonofcoststoproduceammoniaandmethanolwithCCSorbiomass(withoutCCS)isdepictedinTable10.TheadvantageliesinthereducedCO2emissions,whicharepresentinthecaseofthestandardcapture.Thereislimitedresearchontheprocessandeconomicsofcapturingemissionswhenbiomassisusedasfeedstocktoproducechemicals.Intheory,thiskindofarrangementhasthepotentialtodelivernet-negativeemissionsfromproduction.TABLE10:Comparisonofbiomass-basedandCCSroutesfortheproductionofammoniaandmethanolFeedstockCoalwithAmmoniaBiomassCoalwithMethanolBiomassCCSCCS900–1500CostofproductNaturalgasNaturalgas(USD/t)withCCSwithCCS0Emissionsintensity350–650250–6501000–1600350–550200–500(tCO2/t)21.200.30.1Source:BasedonIEA(2019).Productionofbiofuelsfromchemicalscanprovideattractiveopportunitiesforexpandingtheintegrationofbiomassinthisindustry.ProductionofbioethanolandCCSisamaturetechnologyandoperatesatlargescaleattheIllinoisIndustrialCCSfacility,capturing1MtpaCO2.Thereareseveralothersmall-scaleanddemonstrationprojectsthatcapture0.1–0.6MtpaofCO2.Itisusuallyproducedbyfermentationofbiomass,duringwhichmicro‑organismsmetaboliseplantsugarstoproduceethanol.Roughlytwo-thirdsofCO2inthesugarremainsinethanolwhiletheremainingformsapurestreamofCO2(~98–99%),whichiscapturedusinggasprocessing,andthencompressedandstored(ZEPandEBTP,2012).OnestudyassessedcostsofavoidedCO2capturingcarbonfromethanolproductiontobeUSD22–28/tCO2(Irlam,2017).However,life-cycleemissionshavetobelowfortheliquidbiofueltobecarbonnegative.ThisisbecauselessCO2iscapturedupontheconversionofbiomasstoliquidbio-fuels.Forinstance,inthecaseofethanol,thecapturedprocessemissionsaccountforjust15%ofbiomasscarboncontent(Fajardyetal.,2019).76CO2CAPTURE–STATUSANDPOCTHEANPTTIAERL2.5BluehydrogenproductionBluehydrogenreferstogreyhydrogenproducedfromfossilfuel,whichiscombinedwithCCS.Itisproducedbysteammethanereforming(SMR)orautothermalreforming(ATR),andinthecaseofcoal,throughcoalgasification.Bluehydrogenhasalreadybeenalreadyusedasafuelorfeedstock.Figure30showsthatthedemandforhydrogenhasbeengrowingsincethe1980sfrombelow40Mtofhydrogenin1980toalmost120Mtin2018.Sincetherearenoadditionalcapturecosts,theammoniaproductionprocessisamongthelowest-costoptionsforCCSdeployment.Theeconomicoutlook,however,changesifdedicatedadditionalhydrogenproductionfromfossilfuelsisconsidered.FIGURE30:Hydrogenusetrends,1980–2018RefiningAmmoniaOtherpureMethanolDRIOthermixedGlobalannualdemandforhydrogensince1980MilliontonnesofhydrogenSource:IRENA,2019.Figure31illustratesthattherearethreecommercialplantscurrentlyoperatingintheUnitedStatesandCanada,capturing5MtpaofCO2.Theremainingprojectsareduetobefinalisedbetween2021and2030,potentiallycapturinganadditional23.6MtpaofCO2.TheseprojectsarelocatedinEuropeandIndia.Therehavebeenthreepilotanddemonstrationprojects:theTomakomaiprojectinJapanwascompletedin2020withoutanycommitmentstocontinueasacommercialsite.TheUKandNorway’spilotanddemonstrationprojectsareintheearlystagesofdevelopment.77REACHINGZEROWITHRENEWABLES:CAPTURINGCARBONFIGURE31:BluehydrogenCCSprojectsPilotanddemonstrationCommercialStatusFacilityLocationCapacitydeveElaorplymentdeAvdevloapncmeedntconUstnrduecrtionCompletedOperatingAcornCCSUKMtpa/CO20.2AirProductsSMRUSA1CoffeyvilleGasificationUSA1GPrroejaetcPtlainsSynfuelsPlantandWeyburn-MidaleUSA3H-visionNL2H2Gateway-PortDenHelderNL2H2HSaltendUK1.4H2MMagnumNL2H2tomorrowDE1.9HyDemoNO-HyNetNorthWestUK1.5HyPERprojectUK-KoyalirefineryCCSIN0.25-0.5(max1.5)PouakaiNZ1PreemH2Plant,Lysekilrefinery-NorthernLightSE0.5QuestCA1SagaPureNO-Southamptonhydrogensuper-hubUK-TabangaoRefineryHydrogenPlantPH-TomakomaiJP0.1YanchangIntegratedCCSDemoprojectCN0.4YanchangIntegratedCCSDemonstrationprojectCN0.05BR-Brazil,CA-Canada,CN-China,DE-Germany,IN-India,JP-Japan,NL-Netherlands,NO-Norway,NZ-NewZealand,SE-Sweden,PH-Philippines,UK-UnitedKingdom,USA-UnitedStates.Source:BasedonBurnard(2019);MIT(2016).CostsWhenproducinghydrogen,theCO2needstobeseparatedfromtheH2gas.Therefore,noadditionalcapturecostsariseforCCSexceptforthepressurisationofCO2.Asperthecurrentindustrystandard(Table11),CO2iscapturedfromtheshiftedsyngasusingMDEAsolventwithacapturerateof56%.CO2canalsobecapturedfromthegasusingMEAsolvent,resultinginacapturerateof90%(IEAGHG,2017c).Thistechnologyiscommerciallyviableandcanbeappliedtolarge-scalehydrogenproduction,althoughathigherproductioncoststhanthecurrentstandard.Standalonebluehydrogencomesathighercostsandseemsuneconomicalintheabsenceofindustrialhubsandinfrastructurefortransportationandstorage(GaffneyCline,2020).78CO2CAPTURE–STATUSANDPOCTHEANPTTIAERLTABLE11:Overviewofperformance,costandreadinesslevelsforcapturingcarbonfromstandalonehydrogenproductionCapturerateMDEAMEACO2avoidancecost(USD/tCO2)2655.7%90%79CAPEX(USD/[Nm3/H2])533560Costofproduct(USD/kg)26552.051.766–9TRL2025Commercialavailability9Source:BasedonIEAGHG(2017c).Currentindustrystandard26Consistsofcostsforcapturingthecarbonanddoesnotincludetransportorstoragecosts.79REACHINGZEROWITHRENEWABLES:CAPTURINGCARBONCANNEXSTATUSANDPOTENTIALFORTHETRANSPORTATIONOFCO2CO2transportappliestoboththeCO2capturedfromfossilfuel-basedprocessesaswellasfromCDRmeasures–biomasswithcarboncaptureanddirectaircapture.CapturedCO2requirescompression,liquefaction,solidificationorhydrationbeforebeingtransportedtoastorageorautilisationsite.Thechoiceislinkedtothetransportmodeanddependsonseveralfactors:thequantityofCO2transported,thedistancetothestorageorutilisationsite,technologymaturityandassociatedcosts,andsocialacceptanceoftheparticulartransportmodeinthearea.SincetransportisalinkbetweenCO2captureandstoragesites,synergiesneedtoberespectedbyallthreestages(capture,transportandstorage),intermsofdesignandmaterialselectionaswellasoperation,howtoreduceover-designandcosts,whiletakingintoconsiderationhubs,clustersandnetworks(AnnexD-Box5)toavoidunder-orover-capacityaswellassafetystandards.Compressionandliquefactionareestablishedtechnologieswithaccumulatedknowledgeandexperiencefromtheoilandgassectors.Therearemorethantencompressiontechnologies,whichvaryintermsoftheirenergysavingsandassociatedcosts.Compressiontechnologymayrequire80–120kWhe/tCO2(JacksonandBrodal,2019).80STATUSANDPOTENTIALFORTHETRANSPORTATIONOFCO2Solidificationisalsoacommerciallyviableoption,butitismoreenergy-andcost-intensivethanpreviousoptions.Researchersareexploringactivitiesthatarebothmorecost-andenergy-efficientandscalable,includingconvertingthegaseousCO2intoasolidcarbonbyusingliquidmetalsasacatalystatroomtemperature(Esrafilzadehetal.,2019).Hydrationistheleastdevelopedtechnology.CurrentresearchanddevelopmentactivitiesfocusonnaturalgashydrationtoreplaceLNGanditsuseforCO2maybeconsideredinthefuture(IPCC,2005b).3.1TransportmodesThereareseveralpossibletransportmodes,suchaspipelines(offshoreandonshore),shippingandlandways(railwayandtrucks).Theirsuitabilitydependsoncosts,whicharedependentonflowratesanddistances,butalsoonsocialandenvironmentalconsiderations.Reachingthemostcost-effectivesolutionmayrequireacombinationofpipelinesandships,aswellasthedevelopmentofclusters,networksandhubs(AnnexD-Box5),toreacheconomiesofscaletodevelopalarge-scaleinfrastructuretosupportthescaled-updeploymentofcarboncapture.PipelinetransportOnshoreandoffshorepipelinesareconstructedinthesamewayashydrocarbonpipelines,butinspection,venting,etc.candifferconsiderably.Thereareover6500kmoflong-distanceCO2pipelinesworldwide,mostlyassociatedwithenhancedoilrecovery(EOR)activities.PipelinesareconcentratedmainlyintheUnitedStates,whichhastransportedcirca0.05GtpaofCO2since1980(IEAGHG,2013c;IPCC,2005b).TherestoftheworldhasverylimitedexperiencewithCO2pipelines.Whilethepipelinenetworksalreadyexistbothonlandandunderwater,tosupportlonger-termCCSdeploymentglobally,pipelineinfrastructuremustgrowsignificantlyinthenext30–40years.TheEUfocusesonextendingtheusefullivesofkeyinfrastructurebyrepurposingexistingandno-longerrequiredgasandpetroleumpipelinesforcapturedCO2,whichcouldsignificantlyreduceCAPEXandscale-updeploymentofCCSprojects(EC,2019b).TotransportCO2throughthepipeline,theCO2isinasupercriticalstate,withpressuregreaterthan74barsandtemperaturegreaterthan31°C.Dependingonthedistance,itmayrequireintermediaterecompressions.TherearealsostudiesontransportingCO2inaliquidstateat10barsand-40°C,butthisrequiresadditionalpipeinsulation.ThecostsofconstructionofpipelineinfrastructuretotransportCO2overlongdistancesarehigh(circa90%ofoverallcosts)andproportionaltothedistance.Thiscanbemitigatedbybuildingsharedinfrastructuretobenefitfromeconomiesofscale.ShipsShipsareanalternativeoptionsuitableforlongerdistances(beyond1000km),offshorestorageandsmalldistributedsources.ShippingofCO2hasbeendrivenbythefoodandbeverageindustryforthepast30years,butvolumesaremuchsmallerthanwhatisneededforCCSprojects–theyhaveatypicaltransportcapacityof1000m3andatradeflowofaround3Mtpa.Tocarrylargervolumes,thereisalimitednumberofshipsavailable.Forexample,LarvikShippinghasfourliquidtankerswith1200–1800tCO2capacity,whileIMSkaugenhassixcarrierswiththecapacitytocarry10000and40000m3ofcapturedCO2.Fordemonstrationprojects,theuseofshipstotransportCO2maybemoresuitable,asitreducesthelock-ineffectforprojects,whichmaynotcontinuepastthedemonstrationphaseandcouldthereforeresultinstrandedassets(pipeline).TheCO2istransportedbyshipsinaliquidstateatapproximately7–9baraand-50°Cto-55°C.Shipsarelesscapitalintensivecomparedtopipelinesastheyarelessdependentondistanceandscaleoftransport,butOPEX(fuels,temporarystorage,liquefaction,loading/unloading)makeupalargeportionoftheir81REACHINGZEROWITHRENEWABLES:CAPTURINGCARBONtotalcost.Reducingthesecosts,aswellasthedesignandoperationoftheinjectionsystem,andsafetyposemajortechnicalchallenges.StandardsforsafetyarecoveredbytheinternationalgascodeoftheInternationalMaritimeOrganisation.Alongsidetechnicalandcostchallenges,therearepotentiallegislativedifficultiesinusingshipsforCO2transportinEurope.WhileCCShasbeenincludedintheEUEmissionsTradingScheme(EUETS)since2013,CO2transportedbyshipwouldbecountedasreleasedandnotstoredCO2.Thisisbecausewhilepipelinetransportandstorageingeologicalformationsrequireemissionspermitandmonitoringrequirements,thisrequirementexcludesliquefactionprocesses,CO2shippingvesselsandloading/offloading.Anyopt-insolutionistheoreticallypossiblebutposesfurtherlegislativeandfinancialcomplications(GlobalCCSInstitute,2015).TrucksandrailwayTheuseoftrucksandrailwaysispossibleforsmallquantities.TrucksarecurrentlyusedatprojectsitestomoveCO2fromthecapturesitetonearbytemporarystoragelocations.3.2CostsWhilecostsofcapturedominatethetotalCCSprojectcosts,CO2transportcostscanbesignificant.Theytendtobemodelledaslumpsumsthatignoretheflowrate,distancetostorageandutilisationsites,storagetypeandtransportmode.Theyarealsooftenmodelledforlarge-scaleplantswithahighvolumeofCO2anddisregardthesmallerplantswhichmayneedacombinationoftransportmodesandbenefitfromeconomiesofscalethroughclusters,hubsandtransportnetworks(AnnexD,Box5).Veryfewstudies(Freitas,2015;Gaoetal.,2011;ZEP,2011a)havecalculatedcostsbyreflectingoncapacityanddistancetoassesswhichtransportmodes,orcombinationthereof,arethemostsuitable.Gaoetal.,basetheirstudyontheChinacase,Freitaslooksattrucks,andZEPbasetheirestimatesonCCSdemonstrationprojectsandcommercialnaturalgas-firedplantswithCCSinEurope.Forpipelines,CAPEXisamajorcomponentamountingtoupto90%oftotaltransportcosts.Forships,thesituationisreversed,andamajorcomponentisOPEXforliquefaction,fuels,loading/unloadingandtemporarystorage.Costsvarydependinguponthetypeoftransportation,distanceandcapacityofCO2transported.Foronshorepipelines,costsareintherangeofUSD1.7–6.1/tCO2fordistancesbetween180kmto750kmwithcapacitiesrangingfrom2.5MtpaCO2to20MtpaCO2.Foroffshorepipelines,costsareintherangeofUSD3.8–32.4/tCO2fordistancesbetween180kmto750kmwithcapacitiesrangingfrom2.5MtpaCO2to20MtpaCO2.Costsincreaseupto58.4/tCO2fordistancesupto1500km.Forshipping,costsareintherangeofUSD12.5–22.4/tCO2fordistancesbetween180kmto1500kmwithcapacitiesrangingfrom2.5MtpaCO2to20MtpaCO2.Theseestimatesincludeliquefactioncosts.Forland-basedmodes,CO2canbetransportedusingtrucksandrailways.TransportationofCO2usingtruckscostsUSD14.7/tCO2fordistancesgreaterthan100kilometreswithcapacitiesrangingfrom15tpaCO2to20tpaCO2.Forrailways,1.46Mtpacanbetransporteduptoadistanceof600kilometresatacostofUSD8.2/tCO2(Freitas,2015;Gaoetal.,2011;ZEP,2011a).82CHAPTERDANNEXSTATUSANDPOTENTIALFORCO2STORAGECO2storageappliestoboththeCO2capturedfromfossil-fuel-basedprocessesandCDRmeasures–biomasswithcarboncaptureanddirectaircapture.InjectingandstoringCO2isnotaneworemergingtechnologyandisalreadyviableatindustrialratesfor1MtpaCO2ormore.KnowledgeandexperiencehavealsoimprovedinthepastdecadesonthebehaviourofCO2indifferentgeologicalformations,andonthetypesofchemicalandphysicalinteractionsbetweenCO2andwater,minerals,etc.MissingelementsarethepolicyandregulatoryframeworkstostoreCO2atGtpalevels,andanunderstandingofthecostsandtheircategorisationacrossprojectphasesfromsitescreening,siteselection,permittingandconstruction,tooperation,post-injection(monitoring,evaluation,etc.)andclosure.Oneofthewaystoshareandincreaseconfidencewouldbethroughpubliclyavailablesourcestoallowfordirectcomparison,whicharecurrentlyabsent.AccordingtotheCO2StorageResourceCataloguelaunchedin2020,therearemorethan12000GtofpotentialunverifiedCO2storageresourcesglobally(OGCI,2020).Ofthese,around400Gtofstoragesitesareverifiedthroughdataandanalysis.Overthenextfiveyears,amajoreffortwillbeneededtotechnicallyassesseverymajorCO2storagebasinintheworld.Yet,evenwiththeseefforts,certainkeycountries(e.g.India,Japan)arealreadyknowntolackthenecessaryrockformationstosupportlarge-scaleCCS.Figure32providesanoverviewofCO283REACHINGZEROWITHRENEWABLES:CAPTURINGCARBONstorageresourcesinoilandgasfields.AccordingtotheGlobalCCSInstitute(2020),geologicalstorageforCO2insalineformationsishundredsoftimeslargerthanoilandgasfields,withcurrentdatasupportingtheviewthat98%ofglobalstorageresourcesareinsalineformations.Whiletheseareallpotentialresources,truestoragecapacitywilldependontechnical,economic,environmentalandsocialconsiderationsandwillbesignificantlylower.Figure33providesanoverviewoftheresultsofstorageresourceassessmentsinmajoreconomies.TherehavebeensomediscussionsabouttheleakageofCO2fromreservoirswhereitisstored.However,leakageofCO2representsthelowestriskidentifiedasapartofriskassessmentforstorageprojects(Dengetal.,2017).CO2isstoredunderacaprockatadepthbeyond800meters,whichmakesitdense,ashighpressurerestrictsitsmovement.CatastrophicdamageduetoCO2leakageshavenotmaterialised.FIGURE32:CO2storageresources(millionsoftonnes)inmajoroilandgasfields(excludingsalineformations)Russia10000Norway16000CanadaUK24002800UnitedStatesEurope2050009700SaudiChina8000ArabiaMalyasia500013300BrazilUnitedArabAustralia4000Emirates166005000Indonesia13000Source:(GlobalCCSInstitute,2020a).Disclaimer:Thismapisprovidedforillustrationpurposesonly.BoundariesandnamesshownonthismapdonotimplyanyofficialendorsementoracceptancebyIRENA.GeologicalstoragerequiresinjectingcapturedCO2intorockformationsdeepundergroundthathavesuitablegeologicalcharacteristics.Theseareformationsthattrapoilandgas,coaldeposits,sandstonesanddolomites.Thereareseveraltypesofstorageprojects.AmajorityofexistingCCSprojectsareassociatedwithenhancedoilrecovery(EOR)andtherearesomeinsalineformations.Afuturescale-upofdeploymentisforeseeninsalineformationsduetoitswidergeographicaldistributionandcapacitycomparedtooilandgasreservoirs.However,notallcountriesallowgeologicalstorage;some(suchasIrelandorEstonia)haveintroducedapermanentban,exceptforresearchpurposes;others(suchasPoland,Sweden,AustriaortheCzechRepublic)haveprohibitedCO2storagetemporarilyuntilthefinalisationofdemonstrationanddeploymentprojects,inordertoestablishabetterunderstandingofrisks.Accordingtothe2019reportfromtheEuropeanCommissionontheimplementationoftheCCSDirective,80%ofthesalineformationsintheEUaresituatedincountrieswithCO2storagebans(EC,2019c).84STATUSANDPOTENTIALFORCO2SCTHOARPATGEREFIGURE33:Storageresourceassessmentinmajorcountries(GtCO2)UndiscoveredSub-commercialCapacityStoredUnited7804States258United0.004Kingdom0.003Norway60.6Pakistan170India0Bangladesh37.556China0.0440.019Canada30Brazil1.7Oshore0Germany/0DenmarkAustralia63.30.8400201.1300306710500.0003360.343.60.0570.00402.4700.0011.6430.093004141700.002010020030040030008000Source:(GlobalCCSInstitute,2020a).EORandsalineformationsarematuretechnologiesoperatingatcommercialscale,whileenhancedgasrecovery,enhancedcoalbedmethane,enhancedgeothermalrecoveryanddepletedoilandgasfieldshavenotyetreachedmaturityandareratedataroundTRL7.4.1TypesofstorageEnhancedrecoveryofhydrocarbonsTheinjectingofCO2canbefurtherutilisedtoextractoilandgas,withpartoftheCO2trappedandlaterextractedwithoilandgas,whiletheunextractedCO2isstoredindepletedoilandgasfields.Theprocessofferstooffsetinvestmentcoststhroughrevenuesfromproducingoilandgas.TheCO2extractedwithoilandgasisalsoaddressedinAnnexEonCO2utilisation.TheissueisthatthetechnologyisnotpredominantlyconcernedwithCO2storage,butratherwithminimisingnetCO2injectionandmaximisingoilrecovery.ThisisparticularlythecaseduringperiodsoflowoilpricesandhighCO2prices.ForaprocesstobeviableforhighvolumesofCO2,aparadigmshiftisrequired.CO2-enhancedoilrecovery(EOR)CO2hasbeeninjectedintooilfieldssincethe1970s,withthefirstengineeredinjectionofCO2forEORcarriedoutinTexas.EORisasetoftechniquesforreservoirswithdecliningoilproductiontoeithermaintainorimproveoil85REACHINGZEROWITHRENEWABLES:CAPTURINGCARBONproductionandthusextendtheirproductivelivesbydecades.CO2-EORisonlyoneoftheEORpathways,othersarechemical,thermaloruseothergases.InCO2-EOR,theCO2istrappedandlaterextractedasoil,andthelargeportionoftheCO2thatdoesnotmixwithoilisstoredpermanently.AsCCSiscapitalintensive,usingCO2-EORcreatesrevenues.AnadditionalincentivefortheuseofCO2-EORcancomeintheformoftaxcredits(e.g.intheUnitedStatesunderQ45).Therearecurrently23projectsstoringCO2inEORwithatotalcapacityof0.03Gtpa(Figure34).FIGURE34:OverviewofsomeofCO2-EORcommercialanddemonstrationprojects(ongoing,completedandplanned)LocationProjectMutiplesourcesAUSouthWestHubCoalCABoundaryDamGasprocessingNaturalgasprocessingCNZamaLiquefactionJilinCoalHROrdosChemicalsITShengliJingbianGasprocessingIvanic/ZuticaCoalBrindisiSAUthmaniyahGasprocessingRumaitha/ShanavelIron-makingUAEIron-making,gasprocessingRumaithaDenverUnitPermianCO2pipelineLaBargeGasprocessingGasprocessingEnidFertiliserproductionValVerdeGasprocessingCenturyPlantUSACoffeyvilleFertiliserproductionLostCabinGasprocessingUSA/CALulaGasprocessingNETPowerNaturalgasMedicineBowlWeyburn-MidaleCoalCoalgasification0123456789Size(Mtpa)AU-Australia,CA-Canada,CN-China,HR-Croatia,IT-Italy,SA-SaudiArabia,UAE-UnitedArabEmirates,USA-UnitedStates.Source:BasedonEC(2021);GlobalCCSInstitute(2020a);MIT(2016).Enhancedgasrecovery(EGR)WhileEORhasbeenstudiedandthetechnologydeployedforover40years,EGRisanovelapproachandhasneverbeentested.Alargeproportionofnaturalgasisleftinreservoirsafterdepletionandreferredtoastrappedgas–includingbothresidualandunsweptgases.Wheninjected,CO2pushesnaturalgastotheproductionwells.86STATUSANDPOTENTIALFORCO2SCTHOARPATGEREThedepletionofgasfieldsmakesthemmorepermeable,whichmayresultinpotentialmixingofCO2withtheremaininggas,possiblyreducingthequalityofproducedgassignificantly,eventhoughthismixingisnotveryextensive.Enhancedcoalbedmethane(ECBM)EnhancedcoalbedmethaneisanotheroptionforstoringCO2.Themethodproducesadditionalcoalbedmethanefromsourcerock.CO2isinjectedintothecoalbed,spreadsintoporesandisadsorbedontothecarboninthecoal.Itisanimmaturetechnologyandfacesmajortechnicalhurdlesforitscommercialdeployment–particularlylowinitialinjectivityandpermeabilitylossduringtheinjection.ETHZurichisconductingresearchtostudytheprocess.ThereisonlyasingledemonstrationprojectinChinaattheShanxicoal-poweredplant,whichisintheearlystagesofdevelopment.Enhancedgeothermalsystems(EGS)Duetoitsthermodynamicandhydrodynamicproperties,capturedCO2isbeingconsideredasaheattransmissionfluidforgeothermalextractioninsteadofwater.Thiscanreducethelargeamountofwaterusedforgeothermaloperation,aswellaspowerrequirements,andwouldbothofferenvironmentalandcommercialvalue,andcontributetooffsettingtheCCScosts.LostCO2duringtheheatextractionisstoredascarbonate,whichpreventsitfromescapingandmovingtoshallowaquifersorenteringtheatmosphere.Thetechnologyiscurrentlyatalab-testingstage.Thereisaconsensusthatitisapromisingalternative,buttherearestillnumerousissuesbeinginvestigatedconcerningitssuitabilityandsafety.DepletedordisusedoilandgasfieldsCO2canbestoredindepletedordisusedoilandgasfields.Thelocation,overallcapacityandpropertiesofthesefields–suchasporosity,permeability,pressureandtemperature–areknown,andequipmentinstalledonthesurfaceorundergroundmaybere-usedforCO2storage.DepletedgasfieldsareanimportanttargetforRD&Dastheymayrepresentagloballysignificantstorageresource,buttherehavebeenfewdirectmeasurementstodatetosupportthisconclusion.Thisstorageoptionisnotamaturetechnology.Thereareseveraldemonstrationprojects(Figure35)inthepipelineaimingtobuildpublicconfidence,deepenscientificunderstandingandbuildtechnicalknowledge.FIGURE35:OverviewofsomedemonstrationprojectsforCO2storageindepletedoilandgasfieldsLocationProjectAUOtwayGasprocessingDESchwarzePumpeFRLacqCoalOilGasprocessingNLK12-B(demo)NOSnohvitLNGprocessingNOSleipnerGasprocessing05101520253035Scale(Mt/CO2)AU-Australia,DE-Germany,FR-France,NL-Netherlands,NO-Norway.Source:BasedonEC(2021);GlobalCCSInstitute(2020a);MIT(2016).87REACHINGZEROWITHRENEWABLES:CAPTURINGCARBONSalineformationsSalineformationshavethelargestidentifiedstoragepotential,withestimatedstoragecapacitysufficienttostoreemissionsfromlargestationarysourcesforatleastacentury.Theyaresimilartooilorgasfields,butinsteadofhydrocarbons,theycontainpoorqualitywater,whichismuchmorewidelyspread.Sincesalineformationshavelittleornoeconomicvalue,therehasbeenverylimitedinvestmentinresearchingandassessingtheirstoragepotential.TherearesomelimitationstosalineCO2storagecapacitythatrelatetothepressurebuildupinaquifersthatmayadverselyimpactitseffectivestoragecapacity.Somestudies(ThibeauandMucha,2011)suggestbasingstorageefficiencyonapressureapproachratherthanonavolumetricapproach,andtoextractformedwaterfromtheaquiferandeitherinjectitelsewhereortreatitatthesurface.FIGURE36:SomeprojectsstoringCO2insalineformationsLocationProjectCallide-AOxyFuelCoalAUCoalCoalOtwayNaturaldeposit30CAQuestOilsandsCNOrdosLiquefactionDEKetzinH2productionESCompostillaJPTomakomaiH2productionNOMongstadGasAEPMountaineerPolkCoalUSAPlantBarryCoalIBDPCorn-to-ethanol0510152025Scale(Mt/CO2)AU-Australia,CA-Canada,CN-China,DE-Denmark,ES-Spain,JP-Japan,NO-Norway,USA-UnitedStates.Source:BasedonEC(2021);GlobalCCSInstitute(2020a);MIT(2016).CO2mineralisationinbasaltAverydifferentwaytostoreCO2permanentlyisthroughmineralcarbonation.Thisisanengineeredenhancementofcarbonateprecipitation,whereCO2dissolvesinwaterandistheninjectedintonaturalbasalticaquiferstoformsolidcarbonateminerals.Theseactaspermanentstorage.ThecompanyCarbFixcarriedoutitsfirstpilotprojectin2014andsincethenthetechnologyhasreachedcommercialscaleandhasstored70kttodate(vonStrandmannetal.,2019).88STATUSANDPOTENTIALFORCO2SCTHOARPATGERE4.2CostsDataonstoragecostsarescarce.Thereisalackofcommercialdeployment,andcostsareverysite-specificandareinfluencedbymanyfactorssuchaslocation(country,onshoreandoffshore),typeofstorage,itsquality,capacityandannualstoragerate.ThereisalimitedenergypenaltyforCO2storage.Forstoragetobeeconomical,somestudies(ZEP,2011b)suggesttheannualstoragerateshouldbearound5Mtpafor40yearsofstorageresultingincirca200MtofCO2ofstoragecapacity.TheIPCC(2005a)SpecialReportonCCSanalysedonshoreandoffshoredepletedanddisusedoilandgasfieldsandsalineformationsintheUnitedStates,theEuropeanUnionandAustralia.Figure37providesanoverviewofthesecostestimates,whichincludeCAPEX,OPEXandsitecharacterisationcosts,butexcludemonitoring,remediationandanyothercostslinkedtolong-termliabilities.Economiesofscalehavenotbeenconsidered.BasedontheIPCCreport,onshorestorageinsalineformationsischeaperthanoffshorestorage.FIGURE37:Overviewofcostsofstorage(salineformationsanddepletedordisusedoil/gasfields)LowervalueH¡ghervalueLocationOnshorevsoffshoreStoragetypeOffshoreSalineformationAUOnshoreSalineformationOffshoreDisusedoilorgasfieldEUDisusedoilorgasfieldOnshoreSalineformationEU(NorthSea)OffshoreSalineformationDepletedgasfieldUSAOnshoreDepletedoilfieldSalineformation05101520253035USD/tCO2storedAU-Australia,EU-EuropeanUnion,USA-UnitedStates.Source:BasedonIPCC(2005a).TheZEPstudy(2011a)assessedthecostsofstorageinEuropebasedonthestoragecapacityfor40,66and200MtpaofCO2(Figure38).Thecostsalsoconsiderlegacywells(wellsreusedforinjectionormonitoring),whichareamajorcomponentinbothCAPEXandOPEX.Forsalineformations,totalcostsofbuildingnewstructuresareassumed,whileinoffshoredepletedoilandgasfieldsexistingstructureisassumed.OPEXincludeslearningrateandCAPEXincludeseconomiesofscale.Accordingtothisstudy,theonshorestorageischeaperthanoffshoreanddepletedoilandgasfields,andcheaperthansalineformations.89REACHINGZEROWITHRENEWABLES:CAPTURINGCARBONFIGURE38:OverviewofstoragecostsinEurope200MtCO2/Year66MtCO2/Year40MtCO2/YearOshoreOnshoreDepletedoilSalineDepletedoilSalineandgasfieldsformationsandgasfieldsformationsLegacyNolegacy55,4Nolegacy6050$/tCO2stored(200MtpaCO2)4037,53026,423,620,420100Source:(ZEP,2011b).BOX5:CO2hubs,clustersandtransportationnetworksTolowerbarriersofentryforbothsmall-andlarge-scaleCCSprojects,andbenefitfromeconomiesofscale,CO2sourcescanbelinkedintohubs,clustersandtransportationnetworks.Anexampleofasmall-scaleCCSprojectisacementplantthatcaptureslessCO2comparedtosteelorpowerplantsandwouldbenefitfromsharingthelastmileoftransporttothestoragesitebyjoininghubs,clustersortransportationnetworks.Hubs,clustersandtransportationnetworksaddressseveralunderlyingissues,includingmethodstooptimisetheentireCCSclusterandengineerwasteheatutilisation,butparticularlytoestablishthesameCO2standardsbetweenthecaptureplantsofthehubs,andclusterandstoragesites.Hubs,clustersandtransportationnetworks(Figure39)differ:CO2hubscollectCO2frommanysourcesanddistributeittosingleormultiplestoragelocations.AnexampleistheSouthWestHubprojectinWesternAustralia.TheHubcollectsCO2fromvarioussourcesintotwoindustrialareas(KwinanaandCollie)inordertostoretheCO2intheLesueurformationintheSouthernPerthBasin.CO2clustersgroupindividualCO2sourcesorstoragesiteswithinaregion.SuchanexampleisthePermianBasinintheUnitedStates.IthasseveralclustersofoilfieldsundergoingCO2-EORthatreceiveCO2fromanetworkofpipelines.InDenmark,thenewlyestablishedCarbonCaptureClusterCopenhagen(C4)aimstojointlycapture3MtpaCO2andsharetheinfrastructurefortransporttothestoragesite(FalkengaardandValeur,2021).90STATUSANDPOTENTIALFORCO2SCTHOARPATGERECO2transportationnetworksarelargecollectionandtransportationinfrastructuresthatprovideaccesstomultipleCO2sources.TheEuropeanUnionhasbuiltalargetransportationnetworkinitsNorthSeaBasin,includingtheNorthernLightsproject.FIGURE39:CO2hubs,clustersandtransportationnetworksinoperationordevelopmentStoragetypeIndustrysectorChemicalandpetrochemicalDeliveryDeepsalineformationsCoalfiredpowerproductionPipelineNaturalgaspowerCementproductionShipEnhancedoilrecoveryNaturalgasprocessingRoadFertiliserproductionWasteincinerationDirectinjectionDepletedoilandHydrogenproductionEthanolproductiongasreservoirsIron&steelproductionBiomasspowerVariousoptionsconsidered4Integratedmid-3Carbonsafe9NetzerocontinentstackedIllinoisMaconTeessidecarbonstoragehubcounty0.8-6Mtpa1.9-19.4Mtpa2-15Mtpa14XBiansJiinanCgCSJuhnugbgar1ACTL5Wabash8Northern0.2-3Mtpa1.7-14.6MtpacarbonsafeLights1.5-18Mtpa0.8-5Mtpa18923141013451121672NorthDakota7PetrobrasSantos11Porthos15carbonsafeBasinCCScluster2-5Mtpa13AbuDhabicluster3-17Mtpa9fpsos-3Mtpa2.7-5Mtpa6GulfofMexicoCCUShub10Zerocarbonhumber12Athos15Carbonnet6.6-35MtpaUpto18.3Mtpa1-6Mtpa2-5MtpaSource:(GlobalCCSInstitute,2020a).Disclaimer:Thismapisprovidedforillustrationpurposesonly.BoundariesandnamesshownonthismapdonotimplyanyofficialendorsementoracceptancebyIRENA.91REACHINGZEROWITHRENEWABLES:CAPTURINGCARBONEANNEXSTATUSANDPOTENTIALFORCO2UTILISATIONToimprovetheeconomicfeasibilityofcarboncapturebycreatingarevenuestreamfromcapturedCO2andtoovercomealackofreadilyavailableCO2storagesites,carboncaptureandutilisation(CCU)isbeingconsideredbymanysectors.CO2canbeutilisedtoproducechemicals,fuelsandmaterials.CO2hasbeenutilisedonasmallscalebythefoodandbeverageindustry.Theutilisationrouteis,however,notapreferredsolutionwhenaimingfornet-zeroemissionsbymid-century,asthecapturedemissionswillbereleasedbackintotheatmosphereintheshortormediumterm.However,intheshortterm,itcanbecarbon-reducingbyreplacingcarbon-intensiveproductswithlessintensivealternatives.Carboncaptureandutilisationentailasuiteoftechnologies.CO2canbeusedaspartoftheconversionprocesstoproducenewproducts,asasolventoraworkingfluidforvariousprocesses(Figure40).5.1CategoriesofutilisationHendriksetal.(2013)furthercategoriseutilisationbyend-useapplications:•CO2tofuelsincludesproductionofenergyvectors–syngas,hydrogen,renewablemethanol,algae(tobiofuels),photocatalyticprocesses,nanomaterialcatalysts,etc.Itcanbereachedthroughchemicalorbiologicalconversion.Exceptinghydrogen,allthesetechnologiesareintheearlystagesofdevelopment(withlowTRLs).92STATUSANDPOTENTIALFORCO2UTILISATIONFIGURE40:CO2utilisationapplicationsCO2ConversionNon-conversionFeedstockEnergySolventsWorkingfluidUreayieldboostingBiofuelsEnhancedoilrecoveryEn.geothermalPolymersSyngas/methane(EOR)systems(EGS)CarbamatesFormicacidEn.gasrecovery(EGR)CarbonatesRenewablemethanolSupercriticalCO2Enhancedcoalbedpowercyclesmethane(ECBM)Source:(Hendriksetal.,2013).•EnhancedcommodityproductioncoverscommerciallyavailabletechnologiesandmethodswhereCO2isusedtoproducecertaingoodsforwhichCO2isalreadyusedbutcouldbemodified(urea,methanol)oractasasubstituteforexistingtechnologies(steaminpowercycles).Theproductionofureaandmethanol27isamatureapplication;powercyclesusingCO2steamareatlowTRLs.•EnhancedhydrocarbonrecoveryincludestechnologiesthatuseCO2asaworkingfluidtoincreaserecoveryofhydrocarbonssuchasenhancedoilrecovery(EOR),enhancedgasrecovery(EGR),enhancedcoalbedmethane(ECBM)orenhancedgeothermalsystems(EGS).CO2-EORisamaturetechnology,whiletheremainingtechnologies(EGR,ECBMandEGS)areintheearlydemonstrationstages(theyarediscussedinmoredetailinAnnexDonstorage,asthemajorityofCO2staysstoredundergroundpermanently).•CO2mineralisationentailschemicalweatheringofcertainmineralsusingCO2andisusedincementproductionforbuildingaggregatesandcementitiousproducts,inCO2concretecuring,aswellasforbauxitetreatmentandcarbonatemineralisation.NoneoftheseapplicationsarematureandallrequireadditionalRD&Defforts.•Chemicalsproductionincludesphotocatalysisorelectrochemicalreductionandisusedinthesynthesisofarangeofintermediatesforchemicalorpharmaceuticalproductions.Someapplicationsarematurebutmanyareemerging,particularlytouseCO2asasubstituteinsomeproductionmethods.Examplesaresodiumcarbonate,polymers,algae(forchemicals)andotherchemicals(acrylicacidfromethylene,acetone,etc.).Noneoftheseapplicationsareclosetomaturity.Severalconsiderationswillshapethescale-upofCCU:-Maturationoftechnologies:amajorityofthesetechnologiesareintheearlyRD&Dstagesandarebothcapital-andenergy-intensive.Thisnecessitatesfinancialandpolicysupport,includingRD&Dfundingandincentivestoinvolvetheprivatesector.-Proximatelocationofcaptureandutilisationplants:thelocationofplantscapturingCO2needstobeinthevicinityoftheutilisationplantstodecreasehightransportationcosts.ThiscanbemitigatedbyCO2hubsandclusters.27MoreonmethanolcanbefoundinIRENA’s2021report,InnovationOutlook:RenewableMethanol.93REACHINGZEROWITHRENEWABLES:CAPTURINGCARBON-Potentialcommercialmarket:severalstudies(IPCC,2005c;ParsonsBrinckerhoffandGlobalCCSInstitute,2011)estimatepotentialdemandforCO2indifferentapplications:fortheCO2asfuel,thepotentialdemandisover1.2GtpaofCO2andtheCO2mineralisationamountsto335–630MtpaofCO2;forenhancedcommodityproductionthepotentialismuchlowerandamountsto12–65MtpaofCO2,andtheproductionofthechemicalsis7–37MtpaofCO2.Basedontheseestimates,theuptakeofCCUwillmostlydependonthelarge-scaleimplementationofCO2-basedfuels,giventhefactthattheuseofCO2infuelsismuchlargerthanforchemicalsorenhancedcommodityproduction.-Socialacceptance:comparedtotransportandstorage–particularlyonshore–utilisationenjoysthebroadestpublicacceptance.5.2Re-emissionofutilisedCO2anditstime-scaleTheutilisationofcapturedCO2offersfinancialreturnsandisseenasamajorincentivetoscale-upthecaptureofCO2emissions.TheCCUoptionisalsopursuedduetouncertaintiessurroundingtheavailabilityandaccessibilityofundergroundgeologicalstorageintheshortterm.TheutilisationofCO2posesquestionsaboutthelong-termconsequencesofthatutilisation,asitisdifficulttotraceCO2acrossmultipleend-uses.FortheCCUtobeaviablestrategyintheshortterm,numerousconditionsneedtobeputinplace:CO2shouldbeutilisedinproductsthatlock-inCO2emissionsforanextendedperiodoftime,andconsiderthetimescaleoflock-inandlikelihoodofCO2release(Figure41).Theexamplesarecementitiousandotherbuildingmaterials,theuseofCO2forenhancedfuelrecovery(oilandgasbutalsocoalorgeothermal),wherepartoftheCO2isusedtoextractoilorgas,whiletherestoftheCO2isstoredlongterm.WhileplasticslockintheCO2forextendedperiod,theywilldetrimentallyaffecttheenvironmentifplasticpollutionisnotmanagedwell.Furtherscepticismaboutlock-ineffectsisprevalentinchemicals,fertilisers,foodandbeverages,andfuelslikeammoniaormethanolwhereitisknownthatCO2emissionsareemittedbacktotheatmospherewithindaysorweeks.CapturingCO2toproducethesechemicalsmightnotresultinlong-termenvironmentalbenefits.Inthelong-run,therefore,theutilisationcannotbeconsideredasustainablesolution.FIGURE41:Re-emissionofutilisedCO2TimescaleofreleaseofCO2LowervalueHighervalueWeeksMonthsDecadesCenturiesPathwayDaysMilleniaLowBuildingCO2-EORUtilsationpotentialin2050materials(MtCO2utilisedperyear)LikelihoodofreleaseSecondarychemicals4k(urea,methanol)plastics3kFuelsfromCO2CO2derivedfuelsProducstfrom(Fischer–Tropschderivedmicroalgaefuels,methane,etc)Buildingmaterials2kCO2-EORHighUrea,Plasticsmethanol1kMicroalgaeforbiofuels,biomassorbioproducts0kSource:BasedonHepburnetal.(2019).94CHAPTERFANNEXSTATUSANDPOTENTIALSFORCDRTECHNOLOGIES(BECCS&DACCS)6.1BECCSandBECCUBioenergywithcarboncaptureandstorage(BECCS)isacombinationofbiomassconversionintoheat,electricityorfuelcoupledwithCCStechnology.InconventionalCCS,fossilfuelssuchascoal,petroleumornaturalgasareburnttoproduceheatandpowerwhichreleaselargeamountsofCO2thatissubsequentlycapturedandsequestered.BECCS,ontheotherhand,usesbiomassasafuelsource.BiomassfixesatmosphericCO2forcellularphotosynthesisduringthegrowthperiod.Atareasonablestage,theyareharvestedandtransportedtoprocessingfacilitieswherethefeedstockisconvertedtousefulformsofbioenergysuchasliquidbiofuels,heatandpower.TheCO2resultingfromthoseprocessesisusuallyreleasedbackintotheatmosphere.However,theBECCSprocesscapturesandstoresthereleasedCO2resultingin‘negativeemission’(BioenergyEurope,2019).BECCShasdrawninterestasaversatiletechnologythathasbeenconsideredasa‘safetynet’duetoitsimmensepotentialtocaptureCO2fromvariouspointsourcessuchaspulpandpaperplants,combinedheatandpowergenerationfacilities,ethanolproductionunits,waste-to-energyconversionsites,etc.andstoreiteitherinaquaticorterrestrialecosystemsthatmaybeconsideredasvitalcarbonstoragesinks(Fussetal.,2018).95REACHINGZEROWITHRENEWABLES:CAPTURINGCARBONAdvantagesofBECCSAsmentionedabove,sinceBECCSutilisesanalreadycarbonneutralbiomassfeedstock,capturingandstoringtheCO2releaseduponburningthisbiomasswillfurtherresultinnegativeemissions.Moreover,employingBECCSinsteadofconventionalCCS,apartfromreducingGHGs,alsopromotestheproductionoflow-carbonfuelsandfeedstocks,andrenewableheatandpowerthatcanreplacefossilfuelsusedinhard-to-decarbonisesectors.However,inthecaseofcementplants,theuseofbiomasstocaptureprocess-relatedCO2mayresultinalowerproductionrate(SanmugasekarandArvind,2019).AnotheradvantageofBECCSisthatitcanberetrofittedtoenergy-intensivemanufacturingprocessesviabiomassco-firingthatwouldotherwiseuse100%fossilfuels.BECCSalsoaddstotheeconomyofacountryintermsofincreasingemploymentopportunities,encouragingbiomassproductionandnurturingenergysecurity(NASEM,2019;Vaughanetal.,n.d.).Bioenergywithcarboncaptureandutilisation(BECCU)usesthecapturedCO2asarawmaterialforvalue-addedproductssuchase-fuels,building/constructioncompositesandchemicaladditives,insteadofstoringitingeologicalsites.Novelmarketopportunitiesarealwaysonthetable,consideringsuchsynergisticcombinationsofcarbon-abatingtechnologies(BECCSTaskForce,2018).However,givenalimitedsupplyofsustainablebiomass,theuseofbiomassmaybethepriorityforBECCSinsteadofBECCU.OperatingandplannedBECCS/BECCUprojectsOverthelastdecade,severalprojectshavebeensanctionedthatareeitheroperatingatafullscaleorareexpectedtotakeoffinthenextfewyears.Currently,thereare28BECCS/BECCUplants–comprisingeithercommercialorpilotanddemonstrationprojects.Thethreeoperatingcommercialplantscapture1.13MtpaofCO2,andwithsixmoreprojectsduebetween2023and2030,anadditional6.73MtpaofCO2isexpectedtobecaptured.Outof19pilotanddemonstrationprojects,sixarecompleted,nineareoperatingandanadditionalfourareunderconstruction.SomeplantsalsopotentiallyuseCO2capturedforvariousmanufacturingapplicationssuchasfood,softdrinks,fireextinguishersandindustrialsolvents(moreinAnnexE).Plansforsuchplantsareconstantlyevolvingandoftenthestatusiscommerciallysensitive,soinformationisnotpubliclyavailable.Thislist(Figure42)isnotdefinitive,therefore,butisindicativeofthecurrentstatusandnear-termpotential.BECCSfromaneconomicstandpointAcoupleofchallengesassociatedwithscalingupbioenergywithcarboncaptureinvolvethecostsofthetechnologiesadoptedandtheircorrespondingenergyefficiency(FridahlandLehtveer,2018).Nevertheless,scientistsareconstantlyponderinghowBECCSmayberenderedeconomicallyfeasible.IthasbeenascertainedthatthecostsvarydependinguponthesectorofapplicationandaroughestimateisintherangeofUSD12–288/tCO2.Asanexample,forcombustionunits,thecostsareUSD88–288/tCO2;forbiomassgasificationplantscostsareUSD30–76/tCO2.Likewise,avoidedcostsforCO2fromethanolplantsandgasificationofblackliquorfrompulp/papermillsareaboutUSD12–22pertonneofCO2andUSD20–70pertonneofCO2,respectively(Consoli,2019;IRENAandMethanolInstitute,2021).Somestudiesshowhigherestimatesforbioenergywithcarboncapture,astheyassumethetransportcostsforbiomass.Inaddition,thelifecycleemissionsrelatedtodirectorindirectland-useadda10–30%energypenaltytothecosts,evenifbiomassisderivedfromlanddedicatedtobiomasscropsorcellulosicsources(Fusset.al.2019).96STATUSANDPOTENTIALSFORCDRTECHNOLOGIES(BECCS&CHDAAPCTCESR)FIGURE42:Non-exhaustivelistofongoingandplannedBECCS/BECCUprojectsPilotanddemonstrationCommercialFacilityLocationCapacityInevaluationPlanningEarlyStatusUnderOperatingCompletedAlcoBioFuel(ABF)biorefineryCO2BEMtpa/CO2developmentconstructionrecoveryplantUSAAdvancedArkalonCO2compressionfacility0.1development0.03Biorecro/EERCprojectUSA0.005BioZEGPlantNO-0.1BonanzaBioEnergyCCUSUSA0.150.1pClaalngtrenRenewableFuelsCO2recoveryUSA0.9pClaarngtillwheatprocessingCO2purificationUK0.264CLEANKERIT0.11DomsjöFabrikerSE0.30.3DraxBECCSprojectUK0.330.0013HuskyEnergyLashburnandTangleflagsCA0.40.2ISlltionroaigseIndustrialCarbonCaptureandUSA0.2ISlltionroaigseIndustrialCarbonCaptureandUSA0.0040.146Interseqtproject-HerefortUSA0.0030.01Interseqtproject–PlainviewUSA0.020.005KlemetsrudpilotNO0.81.5Klemetsrud-LongshipNO0.21LfaacniltimtyännenAgroetanolpurificationSEMikawaPostBECCSPlantJPMDeikmawonasPtroasttioCnoPmlabnutstionCaptureJPOCAPNLSagaCityWasteIncinerationPlantJPSCaairnbto-FneCliacpietnurPeuPlproMjeilcltandGreenhouseCASaoPauloBRSkåneSESödraSETheZEROSProjectUSAYara-LongshipNOBE-Belgium,BR-Brazil,CA-Canada,IT-Italy,JP-Japan,NL-Netherlands,NO-Norway,SE-Sweden,UK-UnitedKingdom,USA-UnitedStates.Source:BasedonCLEANKER(2018);Consoli(2019);EC(2021);MIT(2016).97REACHINGZEROWITHRENEWABLES:CAPTURINGCARBONThe1.5°CScenarioandnecessaryactionsforthedeploymentofBECCSInthe1.5°CScenario,BECCSwillplayarolemainlyinpowerplants,heatplantsandthecementandchemicalsectors,with2.9GtpaofCO2capturedandstoredin2040and4.7Gtpain2050.Thisincludesthecarbonbalanceinthechemicalandpetrochemicalindustriesthroughcarbonstocksinchemicalproducts,recyclingandcarboncaptureinwasteincineration.Asaresult,toward2050,thepowerandindustrysectorsbecomenetnegative;i.e.theCO2capturedmorethancompensatesforremainingCO2emissionsinthosesectors.DespitethecommencementofnotableBECCSfacilitiesaroundtheworld,itisstillnotafullycommercialisedtechnologyandrequiresthoroughimprovementswithregardtofeedstockprocurement,processeconomicsandlegislativesupporttoreachtherequiredcapturepotentialby2050(Stavrakas,SpyridakiandFlamos,2018).Firstly,scalingupBECCSincreasesthedemandforbiomassfeedstock.Inmanyinstances,thismayleadtoproblemsassociatedwithforestdegradationandconversionofarablelandthatsupportsfoodproductionintoareasforbiomasscultivation,representingafewamongseveralcontributingfactorstoland-usechange.Itisessentialtonotdisruptcarbonstockscontainedintheseregionsthroughsuchdemotingpractices(Fajardyetal.,2019).Thus,biomasshastobesourcedinanenvironmentallyandsociallyjustway.Sustainableforestmanagement,landrestorationwithbioenergycropsandanauxiliaryfocusonotherpotentialresidualfeedstocks–suchasagriculturalandforestryresidues,industrialwastestreams,MSWandalgaethatcouldcatertothesurgingdemandforrawmaterial–canbeadoptedasviablesustainablesourcestocounteractanycomplexitythatmayoccurduetointensificationofbiomassharvesting.Moreover,BECCSgenerallytakesintoaccountonlythedirectemissionsthatariseasaresultofburningbiomass,andlessornomentionismadeofanyindirectemissionsassociatedwithbiomasscultivation,harvesting,transportation,refiningandcapturingtheresultingCO2.Athoroughlifecycleassessmentofemissionsrelatedtotheentiresupplychainmustbeconsideredtoevaluatetheoverallsustainabilitycriteriaofthistechnology(Babin,VaneeckhauteandIliuta,2021).Secondly,waystoachievecostreductionsforBECCSviaapossibleintegrationwithexistingCCSfacilitiesshouldbeconsidered.Biomassco-generationcanbepromotedamidstmanyexistingcoal-firedplantssinceitwouldbebeneficialforemissionsreductionandpreservingenergyefficiency,aswellastooffsetanyenergypenaltiesduetoexcessiveuseoffossilfuels(Kemper,2017).SettingupBECCSplantsveryclosetoareasfromwherebiomassissuppliedisanotherwaytoreducetransportationcostsandassociatedemissions.Finally,adequatepolicysupportisnecessaryforthesuccessfulimplementationofBECCS.Notableinitiativesintheformofcarbonpricing,taxincentivesfornegativeemissionsandrenewableenergycertificatesareprerequisitesforittorapidlydevelopinthecomingyears(Venton,2016).ThereisnodoubtthatBECCScanstabiliseclimateconcerns.However,itcannotbeconsideredastheonlysolutionandthereforeneedstobecomplementedwiththewidespreaddeploymentofseveralotherCDRtechnologiesincludingdirectaircapture(DAC),aswellasothernature-basedoptionslikeafforestationandreforestation,oceanicfertilisation,sustainablebuildingmaterials,enhancedweatheringandsoilsequestration,toachieveambitiouscarbonreductiontargets.98STATUSANDPOTENTIALSFORCDRTECHNOLOGIES(BECCS&CHDAAPCTCESR)6.2DACCSandDACCUThedevelopmentofdirectaircapture(DAC)technologydatesbacktothe1990s,whenthetechnologywasusedtocaptureexhaledCO2onboardspacestationsandsubmarinestoextendmissionsunderwaterorinspace.SincethenithasfoundnewusesinremovingCO2directlyfromtheatmosphere(GeoengineeringMonitor,2019).Directair(carbon)captureandutilisation(DACCU)anddirectair(carbon)captureandstorage(DACCS)arevariantsofcarboncapturetechnologyusedfortheseparationofCO2fromambientair,insteadoffromthefluegasesoftheindustrialprocess.ThreepathwaysareusedforcapturingCO2fromambientair:chemicals(usingeitherliquidorsolidsorbents),cryogenicandmembranes.Currentcommercial,pilotanddemonstrationprojectsusechemicalseparationforremovingCO2.Chemicalsorbentsworkeitherbyabsorption,whereCO2dissolvesintothesorbent,oradsorption,whereCO2moleculessticktothesolventsurface.However,theabsorptionmodelrequireshigh-gradeheatthatisusuallysuppliedbyfossilfuelsfortheregenerationofthesolvent,whichservestoonlypartiallyoffsetemissions,increasingthecostpertonneofemissionsavoided(Fasihietal.,2019).Ontheotherhand,theadsorptionmodeluseslow-temperatureaqueoussolvents,whichcanbesuppliedbyheatpumpspoweredbyrenewableenergy,reducingcosts.ThemaindifferencebetweenacapturefacilityinapowerplantoranindustryandDACistheconcentrationofCO2intheinputstream.Theconcentrationintheformervariesdependingontheprocess,ranginganywherefrom20–30%inironandsteelfacilitiesto98–99%inammoniaplants(Bainsetal.,2017).TheconcentrationofCO2intheairisroughly400partspermillionbyvolume,whichis100–300timesmoredilutethanfluegasesfromgasandcoal-firedplants.Forthis,ahighersurfaceareaofsolventincontactwithinputstreamisneeded.Additionally,morefanpowerisrequired,makingitadominantcostcomparedtojust3%inindustrialCCS;butthiscanbesuppliedfromrenewables(Buietal.,2018).SignificantenergyrequirementsareimposedbyDACCS/DACCU.Currentspecificenergyrequiredforcapturing1tCO2standsat0.14–0.23tonneofoilequivalent(toe)(IEA,2020).Thistranslatesinto1628–2258kWh/tCO2captured.Therefore,tocapture1GtofCO2,wewouldneedapproximately1–1.6%of2018globaltotalenergysupply.Inadditiontoenergyrequirements,waterandmaterialsrequirementstoremoveCO2poseasignificantchallenge(NASEM,2019).DACcomeswithadvantagestoo.Itbenefitsfromtheflexibilityofitslocation,asCO2isequallyconcentratedintheairaroundtheworld.Thiscaneliminatelandrequirementswhencompetingwithotherlanduses.SeveralcompaniesoperateinthefieldofDACCUandDACCS,mostlyusinglow-temperatureabsorptionsolventforcapture.Therearetwocurrentlyoperatingplantscapturingover9.3ktpaCO2andoneplantunderdevelopment.Inaddition,therehavebeen15pilotanddemonstrationprojects–threecompleted,sevenoperatingandfiveatdifferentstagesofdevelopment.Outofthese,ClimeworkshasoperatedplantsinEuropeandtheUnitedStatesandsellsCO2basedonasubscriptionmodel(Friedmann,2021);andOXYandCarbonEngineering’sDACprojectsaimtotemporarilystorecapturedCO2inEOR.TheCO2captured,thoughdiluteforgeologicalstorage(50%vol),ishoweverusuallyusedforconcrete,algaefarms,packagedfoodsandbeverageproduction(Bainsetal.,2017).Plansforsuchplantsareconstantlyevolvingandoftenthestatusiscommerciallysensitiveandnotpubliclyavailable.Thislist(Figure43)isnotdefinitive,therefore,butisindicativeofthecurrentstatusandnear-termpotential.CostsThecosts(Table12)ofDACvaryintheliterature,asthetechnologyhasnotyetbeendemonstratedonalargescale.ThemostfrequentlyquotedestimateisUSD600–800/tCO2avoidedbytheAmericanPhysicalSociety(Socolowetal.,2011).Newerstudieshaveestimatedlowercosts.CarbonEngineeringhasestimatedcostsintherangeofUSD94–232/tCO2avoidedbutthesenumbersareonlytheoreticalandwillneedtobedemonstrated(Keithetal.,2018).Thetechnologyisstillcomparablymoreexpensivebutusingitmayreduceothercostssuchastransportation.99REACHINGZEROWITHRENEWABLES:CAPTURINGCARBONFIGURE43:Non-exhaustivelistofdirectaircaptureprojectsPilotanddemonstrationCommercialLaboratoryStatusFacilityLocationCapacityEarlyUnderOperatingCompletedNAMtpa/CO2developmentconstructionClimeworksCELBICONIT0ClimeworksDAC-3IT0.00015ClimeworksHinwilCH0.0009ClimeworksORCAIS0.004CORALDE0HerøyaNO0.021HuntsvilleUSA0.004InfinitreeUSA-KopernikusProjectP2XDE-MóstolesES-OXYandCarbonEngineeringUSA1PalmSpringDemoUSA-RapperswilCA-SkytreeNL-SoletairFI-SquamishdemonstrationCA0.000365SRIInternational,MenloParkUSA0SynhelionCH-Wallumbila-APARenewableMethaneDemonstrationProjectAU-ZenidNL-AU-Australia,CA-Canada,CH-Switzerland,DE-Germany,ES-Spain,FI-Finland,IT-Italy,IS-Iceland,NL-Netherlands,NO-Norway,USA-UnitedStates.Source:BasedonGeoengineeringMonitor(2019,2021);NASEM(2019);Viebahn,ScholzandZelt(2019).TABLE12:CapitalandCO2avoidancecostsforDACfromliteratureTechnologyCapacity(tpaCO2)Capex(USD/t)Avoidedcostofcapture(USD/tCO2)28HTaqueoussolution10000001788–2357349–439LTsolidsolution1166226NA807178360706157360000620133.43600009201040NA8701301378825230–231825152–2001423135–175215Source:BasedonFasihietal.(2019);Socolowetal.(2011);Keithetal.(2018);Roestenberg(2015).28Consistsofcostsforcapturingthecarbonanddoesnotincludetransportorstoragecosts.100CHAPTERREFERENCESAgbor,E.etal.(2016),“IntegratedTechno-economicandEnvironmentalAssessmentsofSixtyScenariosforCo-firingBiomasswithCoalandNaturalGas”,AppliedEnergy,Vol.169,pp.433–449.AkerSolutions(2019),“AkerSolutions’CarbonCaptureandStorageTechnologyGetsDNVGLApproval”,www.akersolutions.com/globalassets/investors/presentations/aker-solutions-carbon-capture-nov-2019.pdf,(accessedFebruary1,2021).AustralianGovernment(2021),“NationalInventoryReport2019,TheAustralianGovernmentSubmissiontotheUnitedNationsFrameworkConventiononClimateChange”,AustralianNationalGreenhouseAccounts,Volume1,DepartmentofIndustry,Science,EnergyandResources,Canberra,www.industry.gov.au/sites/default/files/April%202021/document/national-inventory-report-2019-volume-1.pdf.Babin,A.,C.VaneeckhauteandM.C.Iliuta(2021),“Potentialandchallengesofbioenergywithcarboncaptureandstorageasacarbon-negativeenergysource:Areview”,BiomassandBioenergy,Vol.146,105968,https://doi.org/10.1016/j.biombioe.2021.105968.Bains,P.,P.PsarrasandJ.Wilcox(2017),“CO2capturefromtheindustrysector”,ProgressinEnergyandCombustionScience,Vol.63,pp.146–172,https://doi.org/10.1016/j.pecs.2017.07.001.Beagle,E.,andE.Belmont(2019),“ComparativelifecycleassessmentofbiomassutilizationforelectricitygenerationintheEuropeanUnionandtheUnitedStates”,EnergyPolicy,Vol.128,pp.267–275,https://doi.org/10.1016/j.enpol.2019.01.006.BECCSTaskForce(2018),TechnicalSummaryofBioenergyCarbonCaptureandStorage(BECCS),CarbonSequestrationLeadershipForum(CSLF),TechnicalGroup.Bhave,A.etal.(2017),“Screeningandtechno-economicassessmentofbiomass-basedpowergenerationwithCCStechnologiestomeet2050CO2targets”,AppliedEnergy,Vol.190,pp.481–489,https://doi.org/10.1016/j.apenergy.2016.12.120.BioenergyEurope(2019),BioenergyCarbonCaptureandStorage,https://bioenergyeurope.org/article/206-bioenergy-explained-bioenergy-carbon-capture-and-storage-beccs.html.Bui,M.etal.(2018),“Carboncaptureandstorage(CCS):thewayforward”,Energy&EnvironmentalScience,Vol.11,pp.1062–1176,https://doi.org/10.1039/C7EE02342A.Burnard,K.(2019),“CCSinEnergyandClimateScenarios”,IEAGHGTechnicalReport,https://ieaghg.org/ccs-resources/blog/new-ieaghg-technical-report-2019-05-ccs-in-energy-and-climate-scenarios,(accessed24January2020).Calix(2020),“FinalprojectagreementsexecutedforLEILAC-2CO2capturefacility”,www.calix.global/reduce-co2-emission/final-project-agreements-executed-for-leilac-2-co2-capture-facility/#:~:text=The%20LEILAC%2D2%20key%20objectives%20are%3A&text=Construction%20of%20a%20demonstration%20plant,other%20than%20compressing%20the%20CO2.Cebrucean,D.,V.CebruceanandI.Ionel.(2014),“CO2CaptureandStoragefromFossilFuelPowerPlants”,EnergyProcedia,Vol.63,pp.18–26,https://doi.org/10.1016/j.egypro.2014.11.003.101REACHINGZEROWITHRENEWABLES:CAPTURINGCARBONCemNet(2019),“Carboncaptureisaloss-makerforAnhuiConch”,www.cemnet.com/News/story/167315/carbon-capture-is-a-loss-maker-for-anhui-conch.html,(accessed1February2021).CLEANKER(2018),“EUresearchprojectCLEANKERTechnology,progressandprojectperspectives”,presentedattheECRA/CEMCAP/CLEANKERWorkshop“CarbonCaptureTechnologiesintheCementIndustry”,Belgium,www.sintef.no/globalassets/project/cemcap/presentasjoner/17-oct-2018/4_eu_research_project_cleanker_technology_progressproject-perspectives_m.fantini.pdf.Consoli,C.(2019),BioenergyandCarbonCapureandStorage,GlobalCCSInstitute,Melbourne,www.globalccsinstitute.com/resources/publications-reports-research/bioenergy-and-carbon-capture-and-storage/.DeLena,E.etal.(2019),“Techno-economicanalysisofcalciumloopingprocessesforlowCO2emissioncementplants”,InternationalJournalofGreenhouseGasControl,Vol.82,pp.244–260,https://doi.org/10.1016/j.ijggc.2019.01.005.Deng,H.,etal.(2017),“LeakagerisksofgeologicCO2storageandtheimpactsontheglobalenergysystemandclimatechangemitigation”,ClimaticChange,Vol.144,pp.151–163,https://doi.org/10.1007/s10584-017-2035-8.Drax(2021),“DraxandMitsubishiHeavyIndustriessignpioneeringdealtodelivertheworld’slargestcarboncapturepowerproject”,www.drax.com/press_release/drax-and-mitsubishi-heavy-industries-sign-pioneering-deal-to-deliver-the-worlds-largest-carbon-capture-power-project.EC(2021),“CordisEUresearchresultsdatabase”,EuropeanCommission,Brussels,https://cordis.europa.eu/project.EC(2019a),“Commissionpublishes4thlistofProjectsofCommonInterest-makingenergyinfrastructurefitfortheenergyunion”,https://ec.europa.eu/info/news/commission-publishes-4th-list-projects-common-interest-making-energy-infrastructure-fit-energy-union-2019-oct-31_en.EC(2019b),“CandidatePCIprojectsincross-borderCO2transportnetworksinviewofpreparingthe4thPCIlist”,https://ec.europa.eu/info/sites/info/files/detailed_information_regarding_the_candidate_projects_in_co2_network_0.pdf.EC(2019c),ReportfromtheCommissiontotheEuropeanParliamentandtheCouncilonImplementationofDirective2009/31/EContheGeologicalStorageofCarbonDioxide,EuropeanCommission,Brussels,https://ec.europa.eu/clima/sites/default/files/strategies/progress/docs/com_2019_566_en.pdf.Hendriks,C.etal.(2013),“ImplicationsoftheReuseofCapturedCO2forEuropeanClimateActionPolicies”,EcofysandCarbonCounts,preparedfortheEuropeanCommission,(accessed22February2021).Emenike,O.etal.(2020),“Initialtechno-economicscreeningofBECCStechnologiesinpowergenerationforarangeofbiomassfeedstock”,SustainableEnergyTechnologiesandAssessments,Vol.40/100743,https://doi.org/10.1016/j.seta.2020.100743.Esrafilzadeh,D.etal.(2019),“RoomtemperatureCO2reductiontosolidcarbonspeciesonliquidmetalsfeaturingatomicallythinceriainterfaces”,NatureCommunications,Vol.10/865,https://doi.org/10.1038/s41467-019-08824-8.Fajardy,M.etal.(2019),BECCSdeployment:arealitycheck.,ImperialCollegeLondon,www.imperial.ac.uk/media/imperial-college/grantham-institute/public/publications/briefing-papers/BECCS-deployment---a-reality-check.pdf,(accessed12March2021).Falkengaard,M.J.andS.Valeur(2021),“CopenhagenenergygroupsformCCSalliance”,EnergyWatch,https://energywatch.eu/EnergyNews/Cleantech/article12784193.ece.102REFCEHREANPCTERSFan,Z.andS.J.Friedmann(2021),“Low-carbonproductionofironandsteel:Technologyoptions,economicassessment,andpolicy”,Joule,Vol.5(No.4),pp.829–862,https://doi.org/10.1016/j.joule.2021.02.018.Fasihi,M.,O.EfimovaandC.Breyer.(2019),“Techno-economicassessmentofCO2directaircaptureplants”,JournalofCleanerProduction,Vol.224,pp957-980.Freeman,B.C.andA.S.Bhown(2011),“Assessmentofthetechnologyreadinessofpost-combustionCO2capturetechnologies”,EnergyProcedia,Vol.4,pp.1791–1796,https://doi.org/10.1016/j.egypro.2011.02.055.Freitas,R.A.(2015),TheNanofactorySolutiontoGlobalClimateChange:AtmosphericCarbonCapture,IMMReport45,PaloAlto,CA,USA:InstituteforMolecularManufacturing,www.imm.org/Reports/rep045.pdf.Fridahl,M.andM.Lehtveer(2018),“Bioenergywithcarboncaptureandstorage(BECCS):Globalpotential,investmentpreferences,anddeploymentbarriers”,EnergyResearch&SocialScience,Vol.42,155-165,https://doi.org/10.1016/j.erss.2018.03.019.Friedmann,J.(2021),“DirectAirCaptureisReadyforitsClose-up”,OurDailyPlanet,www.ourdailyplanet.com/story/direct-air-capture-is-ready-for-its-close-up/,(accessed7March2021).Fuss,S.etal.(2018),“Negativeemissions—Part2:Costs,potentialsandsideeffects”,EnvironmentResearchLetters,Vol.13/063002.Gabrielli,P.,M.GazzaniandM.Mazzoti(2020),“TheRoleofCarbonCaptureandUtilization,CarbonCaptureandStorage,andBiomasstoEnableaNet-Zero-CO2EmissionsChemicalIndustry”,IndustrialandEngineeringChemistryResearch,AmericanChemicalSociety,Vol.59/15,pp.7033–7045,https://doi.org/10.1021/acs.iecr.9b06579.GaffneyCline(2020),“FocusonBlueHydrogen”,www.gaffneycline.com/sites/g/files/cozyhq681/files/2020-08/Focus%20on%20Blue%20Hydrogen.pdf.Gambhir,A.andM.Tavoni(2019),“DirectAirCarbonCaptureandSequestration:HowItWorksandHowItCouldContributetoClimate-ChangeMitigation”,OneEarth,Vol.1,No.4,pp.405–409,https://doi.org/10.1016/j.oneear.2019.11.006.Gao,L.etal.(2011),“CostanalysisofCO2transportation:CasestudyinChina”,EnergyProcedia,Vol.4,pp.5974–5981,https://doi.org/10.1016/j.egypro.2011.02.600.GarciaFreites,S.andC.Jones(2020),AReviewoftheRoleofFossilFuel-BasedCarbonCaptureandStorageintheEnergySystem,FriendsoftheEarthScotland,https://foe.scot/wp-content/uploads/2021/01/CCS_REPORT_FINAL.pdf,(accessed2March,2021).GeoengineeringMonitor(2021),“DirectAirCapture(TechnologyBriefing)”,GeoengineeringMonitor,www.geoengineeringmonitor.org/2021/02/direct-air-capture-technology-briefing.GeoengineeringMonitor(2019),“DirectAirCapture:RecentDevelopmentsandFuturePlans”,GeoengineeringMonitor,www.geoengineeringmonitor.org/2019/07/direct-air-capture-recent-developments-and-future-plans/.GlobalCCSInstitute(2020a),GlobalStatusofCCS:2020,www.globalccsinstitute.com/resources/global-status-report/.GlobalCCSInstitute(2020b),“Carboncaptureandstorage:Challenges,enablersandopportunitiesfordeployment”,InsightsandCommunications,(accessed7October2021).GlobalCCSInstitute(2015),SubmissiontotheEuropeanCommission’sconsultationonrevisionoftheEUEmissionsTradingSystem(EUETS)Directive,GlobalCCSInstitute,Melbourne,www.globalccsinstitute.com/archive/hub/publications/189628/global-ccs-institute-submission-european%20commission-consultation-revision-eu-emissions-trading%20system-directive.pdf.103REACHINGZEROWITHRENEWABLES:CAPTURINGCARBONGonzálezPlaza,M.,S.MartínezandF.Rubiera(2020),“CO2Capture,Use,andStorageintheCementIndustry:StateoftheAretandExpectations”,Energies,Vol.13/21,p.5692,https://doi.org/10.3390/en13215692.GovernmentofNorway(2020),“TheGovernmentLaunches‘Longship’forCarbonCaptureandStorageinNorway”,www.regjeringen.no/en/aktuelt/the-government-launcheslongship-for-carbon-capture-and-storage-in-norway/id2765288/,(accessedFebruary1,2021).Havercroft,I.(2018),CCSLegalandRegulatoryIndicator,GlobalCCSInstitute,www.globalccsinstitute.com/resources/publications-reports-research/legal-regulatory-indicator-ccs-lri/,(accessedApril2,2021).Hepburn,C.etal.(2019),“ThetechnologicalandeconomicprospectsforCO2utilizationandremoval”,Nature,Vol.575,https://doi.org/10.1038/s41586-019-1681-6.Hills,T.P.,M.G.SceatsandP.S.Fennell(2019),“ApplicationsofCCSintheCementIndustry”,InM.Bui,N.MacDowell(Eds.),CarbonCaptureandStorage,Chapter10,https://doi.org/10.1039/9781788012744-00315.Hills,T.etal.(2016),“CarbonCaptureintheCementIndustry:Technologies,Progress,andRetrofitting”,EnvironmentalScience&Technology,Vol.50/1,pp.368–377,https://doi.org/10.1021/acs.est.5b03508.IEA(2020),EnergyTechnologyPerspectives2020:SpecialReportonCarbonCaptureUtilisationandStorage,InternationalEnergyAgency,Paris.IEA(2019),TheFutureofHydrogen,InternationalEnergyAgency,Paris.IEAGHG(2019a),TowardsZeroEmissionsCCSinPowerPlantsUsingHigherCaptureRatesofBiomass,https://ieaghg.org/publications/technical-reports/reports-list/9-technical-reports/951-2019-02-towards-zero-emissions.IEAGHG(2019b),FurtherAssessmentofEmergingCO2CaptureTechnologiesforthePowerSectorandtheirPotentialtoReduceCosts,https://ieaghg.org/ccs-resources/blog/new-ieaghg-technical-report-2019-09-further-assessment-of-emerging-co2-capture-technologies-for-the-power-sector-and-their-potential-to-reduce-costs.IEAGHG(2019c),SustainabilityinPetrochemicals,https://ieaghg.org/publications/technical-reports/reports-list/9-technical-reports/952-2019-01-sustainability-in-petrochemicals.IEAGHG(2017a),Techno-EconomicEvaluationofHYCOPlantIntegratedtoAmmonia/UreaorMethanolProductionwithCCS,https://ieaghg.org/publications/technical-reports/reports-list/9-technical-reports/785-2017-02-hyco-plant-with-nh3-or-meoh.IEAGHG(2017b),CO2captureinnaturalgasproductionbyadsorptionprocessesforCO2storage,EORandEGR,https://ieaghg.org/exco_docs/2017-04.pdf.IEAGHG(2017c),Techno-EconomicEvaluationofSMRBasedStandalone(Merchant)PlantwithCCS,https://ieaghg.org/exco_docs/2017-02.pdf.IEAGHG(2013a),IronandSteelCCSStudy(Techno-economicsofIntegratedSteelMills),https://ieaghg.org/publications/technical-reports/reports-list/9-technical-reports/1001-2013-04-iron-and-steel-ccs-study-techno-economics-integrated-steel-mill.IEAGHG(2013b),DeploymentofCCSincementindustry,https://ieaghg.org/docs/General_Docs/Reports/2013-19.pdf.IEAGHG(2013c),CO2PipelineInfrastructure,https://ieaghg.org/docs/General_Docs/Reports/2013-18.pdf.IEA/NEA(2020),ProjectedCostsofGeneratingElectricity2020,InternationalEnergyAgency;NuclearEnergyAgency,https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf.104REFCEHRAEPNTCEERSIPCC(2005a),“Undergroundgeologicalstorage”,InB.Metzetal.(Eds.),Carbondioxidecaptureandstorage,Chapter5,IntergovernmentalPanelonClimateChange,Switzerland,www.ipcc.ch/report/carbon-dioxide-capture-and-storage/.IPCC(2005b),“TransportofCO2”,InB.Metzetal.(Eds.),Carbondioxidecaptureandstorage,Chapter4,IntergovernmentalPanelonClimateChange,Switzerland,www.ipcc.ch/report/carbon-dioxide-capture-and-storage/.IPCC(2005c),“Mineralcarbonationandindustrialusesofcarbondioxide”,InB.Metzetal.(Eds.),Carbondioxidecaptureandstorage,Chapter8,IntergovernmentalPanelonClimateChange,Switzerland,www.ipcc.ch/report/carbon-dioxide-capture-and-storage/.IRENA(2021a),WorldEnergyTransitionsOutlook:1.5°CPathway,InternationalRenewableEnergyAgency,AbuDhabiIRENA(2021b),RenewablePowerGenerationCostsin2020,InternationalRenewableEnergyAgency,AbuDhabiIRENA(2020),Reachingzerowithrenewables:EliminatingCO2emissionsfromindustryandtransportinlinewiththe1.5°Cclimategoal,InternationalRenewableEnergyAgency,AbuDhabi.IRENAandMethanolInstitute(2021),InnovationOutlook:RenewableMethanol,InternationalRenewableEnergyAgency,AbuDhabi.Irlam,L.(2017),Globalcostsforcarboncaptureandstorage,GlobalCCSInstitute.Jackson,S.andE.Brodal(2019),“OptimizationoftheEnergyConsumptionofaCarbonCaptureandSequestrationRelatedCarbonDioxideCompressionProcess”,Energies,Vol.12/9,p.1603,https://doi.org/10.3390/en12091603.Keith,D.W.etal.(2018),“AprocessforcapturingCO2fromtheatmosphere”,Joule,Vol.2,No.8,pp.1573–1594,https://doi.org/10.1016/j.joule.2018.05.006.Kemper,J.(2017),Biomasswithcarboncaptureandstorage(BECCS/Bio-CCS),IEAGHG,Presentation10March,ImperialCollege,London.Khorshidi,Z.etal.(2016),“Techno-economicevaluationofco-firingbiomassgaswithnaturalgasinexistingNGCCplantswithandwithoutCO2capture”,InternationalJournalofGreenhouseGasControl,Vol.49,pp.343–363,https://doi.org/10.1016/j.ijggc.2016.03.007.Kiani,A.,K.JiangandP.Feron(2020),“Techno-EconomicAssessmentforCO2CaptureFromAirUsingaConventionalLiquid-BasedAbsorptionProcess”,https://doi.org/10.3389/fenrg.2020.00092.Mandova,H.etal.(2019),“Achievingcarbon-neutralironandsteelmakinginEuropethroughthedeploymentofbioenergywithcarboncaptureandstorage”,JournalofCleanerProduction,Vol.218,pp.118–129.Mandova,H.etal.(2018),“PossibilitiesforCO2emissionreductionusingbiomassinEuropeanintegratedsteelplants”,BiomassandBioenergy,Vol.115,pp.231–243,https://doi.org/10.1016/j.biombioe.2018.04.021.Mantripragada,H.C.andE.S.Rubin(2014),“CalciumLoopingCycleforCO2Capture:Performance,CostandFeasibilityAnalysis”,EnergyProcedia,Vol.63,pp.2199–2206,https://doi.org/10.1016/j.egypro.2014.11.239.McQueen,N.etal.(2019),“CCSintheIronandSteelIndustry”,InB.Metzetal.(Eds.),Carbondioxidecaptureandstorage,Chapter11,pp.353–391,IntergovernmentalPanelonClimateChange,Switzerland,https://pubs.rsc.org/en/content/chapter/bk9781788011457-00353/978-1-78801-145-7.MIT(2016),“CarbonCaptureandSequestrationProjectDatabase”,MassachusettsInstituteofTechnologyhttps://sequestration.mit.edu/tools/projects/,(accessedMarch17,2021).105REACHINGZEROWITHRENEWABLES:CAPTURINGCARBONMousa,E.etal.(2016),“Biomassapplicationsinironandsteelindustry:Anoverviewofchallengesandopportunities”,RenewableandSustainableEnergyReviews,Vol.65,pp.1247–1266,https://doi.org/10.1016/j.rser.2016.07.061.NASEM(2019),NegativeEmissionsTechnologiesandReliableSequestration:AResearchAgenda,NationalAcademiesofSciences,EngineeringandMedicine,TheNationalAcademiesPress,WashingtonD.C.,www.nap.edu/catalog/25259/negative-emissions-technologies-and-reliable-sequestration-a-research-agenda.NETL(2019),CostandPerformanceBaselineforFossilEnergyPlants.Volume1:BituminousCoalandNaturalGastoElectricity,NationalEnergyTechnologyLaboratory,USDepartmentofEnergy,www.netl.doe.gov/projects/files/CostAndPerformanceBaselineForFossilEnergyPlantsVol1BitumCoalAndNGtoElectBBRRev4-1_092419.pdf.OGCI(2020),“CO2StorageResourceCatalogue”,OilandGasClimateInitiative,London,www.ogci.com/co2-storage-resource-catalogue/.ParsonsBrinckerhoffandGlobalCCSInstitute(2011),AcceleratingtheUptakeofCCS:IndustrialuseofCapturedCarbonDioxide,GlobalCCSInstitute,Melbourne,www.globalccsinstitute.com/archive/hub/publications/14026/accelerating-uptake-ccs-industrial-use-captured-carbon-dioxide.pdf.Vaseghi,M.R.,A.AmiriandA.Pesaran(2012),AreviewofenergyefficiencyandCO2emissionsintheUScementindustry,IEEE-IAS/PCA54thCementIndustryTechnicalConference,https://doi.org/10.1109/CITCON.2012.6215686.Roestenberg,T.(2015),DesignStudyReport:ANTECYSolarFuelsDevelopment,ANTECY,www.antecy.com/wpcontent/uploads/2016/05/Design-study-report.pdf.Roussanaly,S.,etal.(2021),“TowardsimprovedcostevaluationofCarbonCaptureandStoragefromindustry”,InternationalJournalofGreenhouseGasControl,Vol.106,103263,https://doi.org/doi.org/10.1016/j.ijggc.2021.103263.Sanmugasekar,K.,andV.Arvind(2019),TowardsNegativeEmissionsinCementIndustry,DelftUniversityofTechnology,https://repository.tudelft.nl/islandora/object/uuid%3A4ad209d2-7d84-4f6b-ad2c-015a81637014.Seboka,Y.,M.A.GetahunandY.Haile-Meskel(2015),Biomassopportunitiesforcementproduction:OpportunitiesinEthiopia,UnitedNationsDevelopmentProgramme.Socolow,R.etal.(2011),DirectAirCaptureofCO2withChemicals-ATechnologyAssessmentfortheAPSPanelonPublicAffairs,AmericanPhysicalSociety(APS).Srivastava,U.,S.K.KawatraandT.C.Eisele(2013),“Productionofpigironbyutilizingbiomassasareducingagent”,InternationalJournalofMineralProcessing,Vol.119,pp.51–57,https://doi.org/10.1016/j.minpro.2012.12.008.Stavrakas,V.,N.-A.SpyridakiandA.Flamos(2018),“StrivingtowardstheDeploymentofBio-EnergywithCarbonCaptureandStorage(BECCS):AReviewofResearchPrioritiesandAssessmentNeeds”,Sustainability,Vol.10,No.7,2206;https://doi.org/10.3390/su10072206.Szczeniak,J.,C.BauerandT.Kober(2020),DEEDSIndustryDatabase-DialogueonEuropeanDecarbonisationStrategies,PaulScherrerInstitute,https://deeds.eu/results/industry-database/.Tamme,E.(2020),WheredoesCCSfeatureintheEuropeanGreenDeal?,GlobalCCSInstitute,www.globalccsinstitute.com/news-media/insights/where-does-ccs-feature-in-the-european-green-deal.Tanzer,S.E.,K.BlokandA.Ramirez(2020),“Canbioenergywithcarboncaptureandstorageresultincarbonnegativesteel?”,InternationalJournalofGreenhouseGasControl,Vol.100/103104,https://doi.org/10.1016/j.ijggc.2020.103104.106REFCEHREANPCTERSThibeau,S.andV.Mucha(2011),“HaveWeOverestimatedSalineAquiferCO2StorageCapacity?”Oil&GasScienceandTechnology-Revued’IFPEnegiesnouvelles,InstitutFrancaisduPetrole,Vol.66,No.1,pp.81–92,https://doi.org/10.2516/ogst/2011004.Toktarova,A.etal.(2020),“PathwaysforLow-CarbonTransitionoftheSteelIndustry-ASwedishCaseStudy”,Energies,Vol.13,No.15,p.3840,https://doi.org/10.3390/en13153840.Toshiba-energy(2021),“ToshibaStartsOperationofLarge-ScaleCarbonCaptureFacility”,www.toshiba-energy.com/en/info/info2020_1031.htm.Townsend,A.,andA.Gillespie(2020),ScalinguptheCCSMarkettodelivernet-zeroemissions,GlobalCCSInstitute.UNFCCC(2021),NationallydeterminedcontributionsundertheParisAgreement,UnitedNationsFrameworkConventiononClimateChangem,Bonn,https://unfccc.int/sites/default/files/resource/cma2021_02a02.pdf.USDOE(n.d.),“Pre-CombustionCarbonCaptureResearch”,DepartmentofEnergy,Washington,D.C.www.energy.gov/fe/science-innovation/carbon-capture-and-storage-research/carbon-capture-rd/pre-combustion-carbon.USEPA(n.d.),InventoryofU.S.GreenhouseGasEmissionsandSinks,1990-2019,EnvironmentalProtectionAgency,Washington,D.C.,www.epa.gov/sites/default/files/2021-04/documents/us-ghg-inventory-2021-main-text.pdf?VersionId=wEy8wQuGrWS8Ef_hSLXHy1kYwKs4.ZaU.Vaughan,N.E.etal.(n.d.),“Evaluatingtheuseofbiomassenergywithcarboncaptureandstorageinlowemissionscenarios”,EnvironmentResearchLetters,Vol.13,No.4,044014.Venton,D.(2016),“CoreConcept:Canbioenergywithcarboncaptureandstoragemakeanimpact?”ProceedingsoftheNationalAcademyofSciences,Vol.113,No.47,p.13260,https://doi.org/10.1073/pnas.1617583113.Viebahn,P.A.ScholzandO.Zelt(2019),“ThePotentialRoleofDirectAirCaptureintheGermanEnergyResearchProgram-ResultsofaMulti-DimensionalAnalysis”,Energies,Vol.12,No.18,3443,https://doi.org/10.3390/en12183443.Volsund,M.etal.(2018),“RetrofitabilityofCO2CaptureTechnologiestoCementPlants”,http://dx.doi.org/10.2139/ssrn.3366119.vonStrandmann,P.etal.(2019),“RapidCO2mineralisationintocalciteattheCarbFixstoragesitequantifiedusingcalciumisotopes”,NatureCommunications,Vol.10/1983,https://doi.org/10.1038/s41467-019-10003-8.Wall,T.(2005),“Fundamentalsofoxy-fuelcombustion”,presentedattheInauguralWorkshopoftheOxy-fuelCombustionNetwork,Cottbus,Germany,https://ieaghg.org/docs/oxyfuel/w1/04W1Wall.pdf,(accessed2March2021).ZEP(2011a),TheCostsofCO2Transport-Post-demonstrationCCSintheEU,EuropeanTechnologyPlatformforZeroEmissionFuelPowerPlants,www.globalccsinstitute.com/archive/hub/publications/119811/costs-co2-transport-post-demonstration-ccs-eu.pdf.ZEP(2011b),TheCostsofCO2Storage-Post-demonstrationCCSintheEU,https://zeroemissionsplatform.eu/wp-content/uploads/CO2-Storage-Report.pdf.ZEPandEBTP(2012),BiomasswithCO2CaptureandStorage(Bio-CCS),(EuropeanTechnologyPlatformforZeroEmissionFossilFuelPowerPlants;EuropeanBiofuelsTechnologyPlatform.107www.irena.org©IRENA2021