GEOPOLITICSOFTHEENERGYTRANSITIONCRITICALMATERIALSlabourdemandtransparentresourcesupplychainnickelclimateriskresilientsupplydemandMNCminingfutureinnovationco-operationmetalsinclusionmineralshumansecuritychangelithiumvaluecreationcobaltresponsibleefficiencyeconomystockpilingrightslabourstandardscoppertradeglobalmarketscorporationschangeriskinnovationrights©IRENA2023Unlessotherwisestated,materialinthispublicationmaybefreelyused,shared,copied,reproduced,printedand/orstored,providedthatappropriateacknowledgementisgivenofIRENAasthesourceandcopyrightholder.Materialinthispublicationthatisattributedtothirdpartiesmaybesubjecttoseparatetermsofuseandrestrictions,andappropriatepermissionsfromthesethirdpartiesmayneedtobesecuredbeforeanyuseofsuchmaterial.ISBN:978-92-9260-539-1CITATION:IRENA(2023),Geopoliticsoftheenergytransition:Criticalmaterials,InternationalRenewableEnergyAgency,AbuDhabi.Forfurtherinformationortoprovidefeedback:publications@irena.orgThisreportisavailablefordownload:www.irena.org/publicationsABOUTIRENATheInternationalRenewableEnergyAgency(IRENA)isanintergovernmentalorganisationthatsupportscountriesintheirtransitiontoasustainableenergyfuture.Itservesastheprincipalplatformforinternationalco-operation,acentreofexcellence,andarepositoryofpolicy,technology,resourceandfinancialknowledgeonrenewableenergy.IRENApromotesthewidespreadadoptionandsustainableuseofallformsofrenewableenergy,includingbioenergy,geothermal,hydropower,ocean,solarandwindenergy,inthepursuitofsustainabledevelopment,energyaccess,energysecurityandlow-carboneconomicgrowthandprosperity.www.irena.orgThispublicationwassupportedbyvoluntarycontributionsfromtheGovernmentsoftheNetherlandsandNorway.DISCLAIMERThispublicationandthematerialhereinareprovided“asis”.AllreasonableprecautionshavebeentakenbyIRENAtoverifythereliabilityofthematerialinthispublication.However,neitherIRENAnoranyofitsofficials,agents,dataorotherthird-partycontentprovidersprovidesawarrantyofanykind,eitherexpressedorimplied,andtheyacceptnoresponsibilityorliabilityforanyconsequenceofuseofthepublicationormaterialherein.TheinformationcontainedhereindoesnotnecessarilyrepresenttheviewsofallMembersofIRENA.ThementionofspecificcompaniesorcertainprojectsorproductsdoesnotimplythattheyareendorsedorrecommendedbyIRENAinpreferencetoothersofasimilarnaturethatarenotmentioned.ThedesignationsemployedandthepresentationofmaterialhereindonotimplytheexpressionofanyopiniononthepartofIRENAconcerningthelegalstatusofanyregion,country,territory,cityorareaorofitsauthorities,orconcerningthedelimitationoffrontiersorboundaries.AllphotosofmineralsandmetalswithoutowncreditareusedunderlicencefromShutterstock.GeopoliticsoftheEnergyTransformationCRITICALMATERIALSACKNOWLEDGEMENTSThisreportwasauthoredunderthesupervisionandguidanceofElizabethPress(Director,IRENAPlanningandProgrammeSupport)byThijsVandeGraaf(IRENAconsultantandleadauthor),MartinaLyons,IsaacElizondoGarcia,EllipseRath(IRENA)andBenjaminGibson(ex-IRENA).Theauthorsaregratefulforthereviews,inputsandsupportprovidedbyIRENAcolleaguesRolandRoesch,RabiaFerroukhi,AnastasiaKefalidou,ClaireKiss(ex-IRENA),DeeptiSiddhanti,DivyamNagpal,FrancisField,FranciscoBoshell,GriffinThompson(IRENAconsultant),KathleenDaniel,KellyRigg(IRENAconsultant),MichaelRenner,MirjamReiner,PaulKomor,SophieSauerteig(ex-IRENA),StephanieClarke,UteCollierandZhaoyu‘Lewis’Wu.OthervaluableinputswereprovidedbySaraGeeraerts(IMEP);AndréMånberger,DastanBekmuratov,GavkharkhonMamadzhanova,IdaDokkSmith,IndraOverland,JuliaLoginova,MariTønnessen,PhilipSwanson,RomanVakulchukandTatjanaStankovic(NUPI).PeerreviewwasprovidedbyHenrySanderson(BenchmarkMineralIntelligence);JanMorrill,PaulinaPersonius,PayalSampatandVuyisileNcube(Earthworks);SebastianSahla(EITI);YanaPopkostova(EuropeanCentreforEnergyandGeopoliticalAnalysis);IrinaPatrahau(HCSS);KarstenSach(IRENAconsultant);PatríciaAlvesDiasandVangelisTzimas(JRC);HansOlavIbrekkandJonasVoldenWeltan(MFA,Norway);Jean-PhilippeBernierandJeffreyAkomah(NaturalResourcesCanada);DavidManley(NRGI);ClarisseLegendre,LouisMarechal,LucaMaiottiandPrzemyslawKowalski(OECD);JimKrane(RiceUniversity'sBakerInstitute);KathrynSturman(SustainableMineralsInstitute);LeonardoBuizza(SYSTEMIQLtd,ETC);LigiaNoronhaandMariaJoseBaptista(UNEP);MatthewDavidWittenstein(UNESCAP);VirginieNachbaur(UniversityofRouenNormandy);AaronNG,AnnaWendt,DennisMesinaand,SalimBhabhrawala(USDepartmentofEnergy);andDolfGielen(WorldBank).IRENAisgratefultothefollowingnationalrepresentativesfortheirresponsestothesurvey:NirodChandraMondal(Bangladesh);RobbieFrank(Canada);MoussaOusman(CentralAfricanRepublic);JarkkoVesa(Finland);NicolasLeconte(France);StefanoRaimondi(Italy);BrianRichardson(Jamaica);PaulMbuthi(Kenya);HaroldMadriz(Nicaragua);RosilenaLindo(Panama);MarcoAntonioSantiváñezPimentel(Peru);JosephineBahrLjungdell(Sweden);BrianIsabirye(Uganda);MahekMehta(UnitedKingdom);AaronNg(UnitedStates);andSostenZiuku(Zimbabwe).IRENAalsothanksthefollowingexpertsurveyrespondentsfortheirvaluableinputs:PhungQuocHuy(AsiaPacificEnergyResearchCentre);PaulHuggins(CarbonTrust);CobyvanderLinde(ClingendaelInternationalEnergyProgramme);SebastianSahla(EITI);LeonardoBuizza(EnergyTransitionsCommission/SystemiqLtd.);YanaPopkostova(EuropeanCentreforEnergyandGeopoliticalAnalysis);ReedBlakemore(GlobalEnergyCenter;AtlanticCouncil);ElrikaHamdi(IEEFA);VeronicaNavasOspina(IFC);ChristianBreyer(LUTUniversity);Sohbetkarbuz(OME);MostefaOuki(OxfordInstituteforEnergyStudies);JamesBowen(PerthUSAsiaCentre);RamonaLiberoff(PlatformforAcceleratingtheCircularEconomy);MichaelReckordt(PowerShifte.V.);JimKrane(RiceUniversity'sBakerInstitute);KingsmillBond(RMI);DirkUweSauer(RWTHAachenUniversity);RainerQuitzow(SWP);IrinaPatrahau(TheHagueCentreforStrategicStudies);MatthewWittenstein(UNESCAP);RudigerTscherning(UniversityofCalgary);KarlaCervantesBarron(UniversityofCambridge);DolfGielen(WorldBank);andMirzaSadaqatHuda(YusofIshakInstitute).EditingwasprovidedbyStevenKennedy,anddesignbyweeks.deWerbeagenturGmbH.3GeopoliticsoftheEnergyTransformationABBREVIATIONSAPEFAssociationofIronOreExportingITSCIInternationalTinSupplyChainInitiativeCountriesIUCNInternationalUnionforConservationofASIAluminiumStewardshipInitiativeNatureASMartisanalandsmall-scaleminingJPYJapaneseyenATPCAssociationofTin-ProducingCountriesLMELondonMetalExchangeBRICSBrazil,Russia,India,ChinaandSouthAfricaLNGliquefiednaturalgasCCScarboncaptureandstorageLPFlithiumironphosphateCIPECIntergovernmentalCouncilofCopper-LPGliquefiedpetroleumgasExportingCountriesLMELondonMetalExchangeCMMICriticalMineralsMappingInitiativeMACMiningAssociationofCanadaDOEUSDepartmentofEnergyMSPMineralsSecurityPartnershipEITEuropeanInstituteofTechnologyMWmegawattsEITIExtractiveIndustriesTransparencyNCAnickelcobaltaluminiumInitiativeNMCnickelmanganesecobaltERGIEnergyResourceGovernanceInitiativeNUPINorwegianInstituteofInternationalAffairsERMAEuropeanRawMaterialsAllianceOECDOrganisationforEconomicCo-operationEUEuropeanUnionandDevelopmentEVelectricvehicleOPECOrganizationofthePetroleumExportingFARCRevolutionaryArmedForcesofColombiaCountriesFDIforeigndirectinvestmentPGMplatinumgroupmetalsGBAGlobalBatteryAlliancePTAPrimaryTungstenAssociationGDPgrossdomesticproductRMIResponsibleMineralsInitiativeGISgeographicalinformationsystemSACStandardsAdministrationofChinaGRIGlobalReportingInitiativeSRBStateReserveBureauGWgigawattSQMSociedadQuimicaYMineradeChileHPALhigh-pressureacidleachingSOEsstate-owned/controlledenterprisesIBAInternationalBauxiteAssociationTSMTowardsSustainableMiningICMMInternationalCouncilonMiningandMetalsUKUnitedKingdomIEAInternationalEnergyAgencyUNUnitedNationsIFCInternationalFinanceCorporationUNDPUnitedNationsDevelopmentProgrammeIMFInternationalMonetaryFundUNEPUnitedNationsEnvironmentProgrammeIPCCIntergovernmentalPanelonClimateChangeUSUnitedStatesIRAInflationReductionActUSDUSdollarIRENAInternationalRenewableEnergyAgencyUSGSUSGeologicalSurveyIRMAInitiativeforResponsibleMiningAssuranceWETOWorldEnergyTransitionsOutlookISAInternationalSeabedAuthorityWTOWorldTradeOrganizationISOInternationalStandardsOrganisation4CRITICALMATERIALSFOREWORDMoresothananyothersectororindustry,energyisacoredriverofsocio-economicoutcomesandgeopoliticallandscapes.Astheworldtransitionstowardmoreresilient,inclusiveandcleanenergysystems,theessentialroleofrenewableenergyisclearerthaneverbefore.Thistransitionissettoinducefar-reachingandtransformativechanges,andrecentyearshavedemonstratedyetagainhowtheglobalenergysystemisintricatelyintertwinedwithgeopolitics.IRENA’sanalyticalworkongeopoliticsbeganin2018withtheformationoftheGlobalCommissionontheGeopoliticsofEnergyTransformation,whichculminatedinasweepingoverviewofthegeopoliticalimplicationsofaglobalshifttorenewablesinthe2019report,ANewWorld:TheGeopoliticsoftheEnergyTransformation.In2020,IRENAcreatedtheCollaborativeFrameworkontheGeopoliticsofEnergyTransformationasaforumfordialogueonthegeopoliticalimplicationsofthisshift.InresponsetoprioritiesvoicedbyIRENA’smembersduringthosediscussions,IRENAundertookadetailedstudyonthefutureofhydrogeninthe2022report,GeopoliticsoftheEnergyTransformation:TheHydrogenFactor.InGeopoliticsoftheEnergyTransition:CriticalMaterials,thefocuspivotstoathemethatembodiesboththefutureandthepast.Today,itisabundantlyclearthattheenergytransitionwillrequireadramaticincreaseinthesupplyofcriticalmaterials.Projectionsforrapidlygrowingmaterialsdemandcreatebothopportunitiesandthespectreofgeopoliticalrisks.Yettherushforrawmineralsandmetalsisnotanewphenomenon;beitcoal,goldoranyotherextractivecommodityinhumanhistory,thisis,inmanyways,afamiliarparadigm.Mininghasalltoooftenplayedoutasataleofextremes–simultaneouslycharacterisedbythenewfoundcomfortsandprosperities,andalegacyofpoorlabourrecords,displacements,pollutedwaterwaysanddegradedlandinthecommunitieswhereminesoperate.Arenewables-basedenergytransitionprovidesachancetorewritethescriptforextractivecommoditiesandensuretheirvaluechainsaremoreinclusive,ethicalandsustainable.Thereportdrawsonawiderangeofsourcestoprovideabalancedandnuancedperspectiveonthemanycomplexissuesatplay.Itisintendedasaresourceforpolicymakers,industryleaders,researchersandcivilsocietyactorswhoseektounderstandandaddressthegeopoliticalchallengesofarenewables-basedenergytransition.IwouldliketoexpressmythankstoIRENA’smembershipforsupportingthisworkandtothemanyexpertreviewerswhoprovidedvaluableinputandfeedbackthroughoutitsproduction.Ihopethatthisreportwillcontributetoamoreinformedandconstructivedialogueoncriticalmaterialsandhelptheworldadvancetowardsamoresustainableandequitablefuture.FrancescoLaCameraDirector-General,IRENA5GeopoliticsoftheEnergyTransformationTABLEOFAcknowledgements................................03CONTENTSAbbreviations.....................................04Foreword.........................................05SUMMARYFORPOLICYMAKERS...................12POLICYCONSIDERATIONSANDTHEWAYFORWARD........................125References......................................128Annex............................................1476CRITICALMATERIALSCHAPTER112INTRODUCTION.......................................22341.1Criticalmaterialsandenergytransition..............................231.2Physicalconstraints................................................271.3Disruptiveinnovation...............................................291.4Reportscope......................................................33CHAPTER2TRADE,SECURITYANDINTERDEPENDENCE................................342.1Keyplayersinmineralandmetaltrading.............................372.2Supplyrisksandvulnerabilities......................................512.3Theraceforcriticalmaterialsandthepotentialforconflict............67CHAPTER3HUMANSECURITYANDGEOPOLITICALINSTABILITY.................723.1Economicandsocialtensions.......................................763.2Climate,landandwatersecurity.....................................833.3Anewdevelopmentpath...........................................89CHAPTER4RISKREDUCTIONANDOPPORTUNITYEXPANSIONSTRATEGIES.......................944.1Mitigatingsupplychainvulnerability.................................974.2Increasingdomesticbenefitsindevelopingcountries.................1124.3Promotingresponsible,sustainableandtransparentsupplychains......1177GeopoliticsoftheEnergyTransformationLISTOFFIGURESFIGURES1Criticalmaterialsarefundamentallydifferenttofossilfuels...........................13FIGURES2Keyminingcountriesforselectminerals,2022.......................................14FIGURES3Valueofexportsforselectedcommodities(2021)....................................15FIGURES4Keygeopoliticalriskstothesupplyofmaterials......................................16FIGURES5Miningandrefiningsupplyforselectedcriticalmaterials,2022and2030..............18FIGURES6Shareofglobalexplorationbudgetformaterialsbycountry,2012and2022...........20FIGURE1.1Energytransitionmaterialsdefinedascriticalbycountriesandregions(35lists,51materials).............................................................24FIGURE1.2Valueofexportsforselectedcommodities(2021)....................................25FIGURE1.3Criticalmaterialsarefundamentallydifferentfromfossilfuels........................26FIGURE1.4Threedynamicsofcriticalmaterialsdevelopmentforenergytransition................27FIGURE1.5Assessingdisparitybetweencurrentsupplyandanticipateddemandin2030forselectedmaterials.............................................................28FIGURE1.6RapidlychangingglobalEVbatterychemistrymixbetween2015to2022............29FIGURE2.1Schematicrepresentationofamineral-ormetal-dependentvaluechain...............37FIGURE2.2Keyminingcountriesforselectminerals............................................39FIGURE2.3Keyprocessingcountriesforselectedminerals......................................40FIGURE2.4Miningandrefiningsupplyforselectedcriticalmaterials,2022.......................42FIGURE2.5Miningandrefiningsupplyforecastsforselectedcriticalmaterials,2030.............42FIGURE2.6Shareofglobalexplorationbudgetforselectmaterialsbycountry,2012and2022......43FIGURE2.7Shareofglobalexplorationbudgetforselectmaterialsbytypeofinvestment,2012to2022......................................................................44FIGURE2.8Marketshareofmajorminingcompaniesinselectmaterials,2021....................45FIGURE2.9Bilateraltradeflowsbyvalueforselectmaterialsin2022............................50FIGURE2.10Keygeopoliticalriskstothesupplyofmaterials......................................52FIGURE2.11Globalincidenceofexportrestrictionsonrawmaterials,2009-2020.................56FIGURE2.12Shareofglobalexportssubjecttoanexportrestriction,2020.........................57FIGURE2.13Internationalrareearthmetaloxideprices,2007-2016...............................60FIGURE2.14Politicalstabilityofmineralproducingcountries,2020..............................65FIGURE2.15Geographicaldistributionofthethreetypesofmineraldepositstargetedbydeep-seamining...............................................................688CRITICALMATERIALSFIGURE3.1Co-occurrenceofwaterrisk,conflictandfoodinsecurityforcriticalmineralminingprojectslocatedonornearindigenousorruralland...................77FIGURE3.2NumberofpeopleengagedinASM(inmillions)....................................80FIGURE3.3Top10countriesbynumberofpeopleengagedinASM(inmillions)..................81FIGURE3.4Estimatedvolumeoftailings,wasterockandoreproducedin2016...................85FIGURE3.5Themajorityofminingsitesfacehighwaterrisks....................................87FIGURE3.6Shareofglobalmineralproductionandreservesheldbydevelopingcountries(ExcludingChina),2017...........................................................89FIGURE3.7Exportdependenceonmining,2018-2019..........................................90FIGURE3.8Estimatedvalueofthebatterymineralandelectricvehiclevaluechainby2025........93FIGURE4.1Countriesthathaveadoptednationalmineralstrategies,2010to2023...............98FIGURE4.2ThekeyroleofmineralsandmetalsinChina’sgrowingtraderelationswithAfrica.......107FIGURE4.3Foreigninvestment(USDbillion)inIndonesia’snickelproductionfacilities,2022......113FIGURE4.4Indonesia’sexportofrawnickelandnickelproducts(inUSDbillion,2021)............114FIGURE4.5MiningandtheSustainableDevelopmentGoals....................................118FIGUREA1RiskstosuppliesofcriticalmaterialsinthenextdecadeascitedbyIRENAsurveyrespondents......................................................................147©ElenaBionysheva-Abramovagettyimages.com9GeopoliticsoftheEnergyTransformation©MarkAgnorshutterstock.comLISTOFTABLESTABLE1.1Selectedenergy-relatedtechnologyapplications,2023.................................32TABLE2.1KeymaterialsandyearofintroductionontheLondonMetalsExchange.................47TABLE2.2Topcommoditytradinghousesbyrevenue...........................................48TABLE2.3Illustrativeexamplesofincreasedforeigninvestmentscrutinyinthemineralssector.......55TABLE2.4RecentWorldTradeOrganization(WTO)tradedisputesoverexportrestrictionsoncriticalmaterials.................................................................58TABLE2.5Metalproducerclubsinthe1970sto1980s............................................62TABLE3.1Selectedsocial,environmentalandgovernancerisksassociatedwithcriticalmaterials......74TABLE4.1Strategiestoensureareliableandequitablecriticalmaterialsupply....................96TABLE4.2AcomparisonofthecriticalminerallistingsinChina,EUandUS,2023..................102TABLE4.3Internationalcriticalmaterialalliances................................................105TABLE4.4Selectedmulti-stakeholdermineralgovernanceinitiatives..............................122TABLEA1Currentandprojecteddemandandsupplyforcriticalmaterials........................14810CRITICALMATERIALSLISTOFBOXESBOX1.1Uncertaintiesinprojectingthedemandandsupplygapforcriticalmaterials:Theexampleofelectricvehiclebatteries..............................................30BOX2.1Mineralexplorationbudgets.........................................................43BOX2.2Chile’sstrategyforlithium...........................................................54BOX2.3Therareearthcrisisof2010-2011.....................................................59BOX2.4Prospectsforcartelisationintheplatinum,nickelandlithiummarkets...................63BOX2.5Governingdeep-seamining..........................................................68BOX3.1IndigenousrightsandresistanceagainsttheFénixnickelmineinGuatemala.............78BOX3.2Artisanalandsmall-scalemining.....................................................80BOX3.3Thecontroversialpracticeofmarinedisposalofminetailings...........................86BOX3.4Watersecurity,lithiumextractionandindigenouspeoplesinChile’sAtacamadesert.......88BOX4.1Criticalmaterialstrategiesrecentlyupdatedoradopted...............................99BOX4.2TheInflationReductionActandcriticalminerals......................................103BOX4.3TheG7’sfive-pointplanforcriticalmineralsecurity,2023..............................106BOX4.4LessonsfromIndonesia’snickelexportban...........................................113©Terelyukshutterstock.com11GeopoliticsoftheEnergyTransformationSUMMARYFORPOLICYMAKERSTheenergytransitionwillbeamaindriverofdemandforseveralcriticalminerals.Thetransitionwillbemineral-andmetal-intensive.Atpresent,thebulkofthedemandforsuchmaterialsisforusesunrelatedtotheenergytransition;butasthetransitionprogresses,demandformanymaterialsisprojectedtogrow.IRENA’s1.5°Cscenariodocumentsthevastscaleoftheenergytransitioninfrastructure-andcriticalmaterials-neededtoachieveclimatestabilisation.Thiswillinclude33000GWofrenewablepowerandtheelectrificationof90%ofroadtransportin2050.Already,amismatchbetweensupplyanddemandforseveralmineralsisevident,withparticularlyhighlevelsobservedforlithium.Assessmentofthecriticalityofmaterialsisdynamicandcontinuouslychangingowingtoeconomic,geopoliticalandtechnologicalfactors.Presentlythereisnouniversallyaccepteddefinitionofcriticalmaterials.Manycountriesandregionsmaintainlistsofcriticalmaterials,whichtypicallymirrorcurrenttechnologies,theprevailingglobaldynamicsofsupplyanddemand,andthecontextinwhichtheassessmentsareconducted.Thefactorsfordeterminingcriticalitythereforeremainsubjectiveandlocation-specific.IRENA’sreviewof35listsofcriticalmaterialsrevealsthat51materialsusedfortherenewables-basedenergytransitionappearedonatleastonelist.Criticalmaterialsupplydisruptionshaveminimalimpactsonenergysecurity,butoutsizedimpactsontheenergytransition.Thecurrentnotionofenergysecurityrevolvesaroundthecontinuousaccessibilityofenergysources,primarilyrootedinconcernsoverfossilfuelsupply.Bycontrast,renewableenergytechnologiesthatarealreadybuiltcouldcontinuetooperatefordecades,evenifsuppliesofcriticalmaterialinputsweredisrupted.Therefore,theriskassociatedwithdisruptionsinthesupplyofcriticalmaterialsislessaboutenergysecurityandmoreaboutthepotentialslowdownofenergytransitions.Dependencyrisksandsupplydynamicsofcriticalmaterialsfundamentallydifferfromthoseoffossilfuels,givenvastlydifferentcharacteristicsandpatterns.Aprominentconcernisthatenergytransitionswillentailtradingdependencyonfossilfuelsfordependencyoncriticalmaterials.However,significantdifferencesintheirproduction,tradeandusedonotwarrantsuchanassumption(FigureS1).Moreover,projectionsofcriticalmaterialdemandandusearefraughtwithuncertaintiesacrossdistanttimehorizons,soacarefulassessmentofassociatedrisksisrequiredtounderstandandproactivelymanagethem.Thereisnoscarcityofreservesforenergytransitionminerals,butcapabilitiesforminingandrefiningthemarelimited.Intheshorttomediumterm,marketconstraintsarelikelytoemerge,partlyduetounder-investmentinupstreamactivities.ItisunlikelythataworldwideshortfallofanyonemineralwillhindertheCRITICALMATERIALSFIGURES1CriticalmaterialsarefundamentallydifferenttofossilfuelsFOSSILFUELSCRITICALMATERIALSLargeminingquantitiesLowminingquantitiesIn2021,15billiontonnesoffossilSome10milliontonnesenergyfuelswereextracted.1transitionmineralswereproducedin2022forlow-carbontechnologies.2GeneratehugerentsGeneratesmallerprofitsOilandgasexportsaloneExportsofcopper,nickel,lithium,representedavalueofcobaltandrareearthsgeneratedUSD2trillionin2021.396billionin2021.4CombustedasfuelInputtomanufacturingFossilfuelsareprimarilyburnedasCriticalmaterialsarehousedfuel,accountingforapproximatelywithinenergyassetsthattypically94%oftheirusage.5havea10–30yearlifespan.EnergysecurityriskEnergytransitionriskAdisruptioninthesupplyoffossilDisruptionsinthesupplyofcriticalfuelscanleadtoimmediateenergymineralscandelaytheconstructionofshortagesandpricespikes.newcleanenergyassets,butdonotaectcurrentenergypricesorsupply.NotrecyclableFossilfuelsareprimarilyconsumedReusableandrecyclablethroughcombustionandcannotHighpotentialforreducinguse,berecoveredorrepurposed.reusingandrecycling.Notes:[1]Figureisfor2021andtakenfromBP’sStatisticalReviewofWorldEnergy.Oilandcoalfigureswereavailableintonnes;gasdatawereconvertedfrombillioncubicmetres(bcm)tobilliontonnesusingtheformula(1m3=0.712kg),basedonBP’smethodology,whichisalsousedbyHannahRitchie:https://hannahritchie.substack.com/p/mining-low-carbon-vs-fossil[2]BasedonIRENAcalculations,productionofmaterials(copper,lithiumgraphite,nickel,cobalt,manganese,rareearthelementsandplatinumgroupmetals)forrenewableenergy–relatedtechnologiesin2022amountedtosome10milliontonnes(megatonnes)(seeChapter2formoredetails).[3]in2021,exportsofcrudepetroleum(HS2709)generatedUSD951billion;refinedpetroleum(HS2710)generatedUSD746billion;liquefiednaturalgas(HS27111100)generatedUSD162billion;andnaturalgasingaseousstate(HS271121)generatedUSD173billion.[4]In2021,exportsofcopperoresandconcentrates(HS2603)generatedUSD91.1billion;nickeloresandconcentrates(HS2604)generatedUSD4.24billion;cobaltoresandconcentrates(HS2605)generatedUSD118million.Withrespecttorare-earthmetals,scandiumandyttrium(HS280530)generatedUSD586million.[5]CalculatedfromIEA’sWorldEnergyBalance(2020),availablefrom:www.iea.org/Sankey.energytransition.Productionhassurgedformanyenergytransitionminerals,andreservesminedfromeconomicallyviablesourceshavegrown.Moreover,disruptiveinnovation-suchasefficiencyimprovementsandmaterialsubstitutions-arealreadyreshapingdemand.Theminingandprocessinglandscapeofcriticalmaterialsisgeographicallyconcentrated,withaselectgroupofcountriesplayingadominantrole.Intheminingofcriticalmaterials,dominantpositionsareheldbyAustralia(lithium),Chile(copperandlithium),China(graphite,rareearths),theDemocraticRepublicofCongo(cobalt),Indonesia(nickel)andSouthAfrica(platinum,iridium).Thisconcentrationbecomesevenmorepronouncedintheprocessingstage,withChinacurrentlyaccountingfor100%oftherefinedsupplyofnaturalgraphiteanddysprosium(arareearthelement),70%ofcobalt,andalmost60%oflithiumandmanganese(FigureS2).13GeopoliticsoftheEnergyTransformationFIGURES2KeyminingcountriesforselectmineralsCobalt%Dysprosium%Manganese%Nickel%70.0%DemocraticChina48.7%SouthAfrica35.8%Indonesia48.8%Republicof5.4%theCongo4.8%Myanmar23.1%Gabon22.9%Philippines10.1%Indonesia3.2%Australia7.6%Australia16.4%Russian6.7%2.1%FederationRussian2.0%Federation2.0%UnitedStates2.9%China4.9%10.5%AustraliaFrance(New5.8%Caledonia)CanadaCanada2.7%Ghana4.7%CubaOthers15.0%India2.4%Australia4.9%PhilippinesBrazil2.0%Canada4.0%OthersGraphite%Ukraine2.0%China3.3%China64.6%Côted’Ivoire1.8%Brazil2.5%Mozambique12.9%Malaysia1.8%Others13.9%Madagascar8.4%Others5.3%Copper%Brazil6.6%Chile23.6%Others7.5%Neodymium%Peru10.0%Platinum%China45.8%Democratic10.0%SouthAfrica73.6%RepublicoftheCongoAustralia23.1%Iridium%Russian10.5%FederationGreenland8.2%China8.6%SouthAfrica88.9%Zimbabwe7.8%Myanmar7.4%UnitedStates5.9%Zimbabwe8.1%Brazil4.4%Canada3.1%Russian4.5%Russian2.9%UnitedStates1.7%FederationFederationIndia2.1%Indonesia4.1%Others0.1%Others9.0%Others3.3%Australia3.7%KingdomofDenmarkZambia3.5%Lithium%Australia46.9%Mexico3.3%Chile30.0%China14.6%Kazakhstan2.6%ArgentinaBrazil4.7%Canada2.4%Others1.6%2.2%Poland1.7%Others16.1%latestdataavailableasof2023Source:(USGeologicalSurveyandUSDepartmentoftheInterior,2023;JRC,2020;USGS,2023b).14CRITICALMATERIALSTheminingindustryisdominatedbyafewmajorcompanies,yieldingsmallandoftenoligopolisticmarkets.Theselargemultinationalcorporationsandstate-ownedor-controlledenterprisesoperateacrossmultiplecountriesandpossesstheresourcesandskillsneededtodevelopcomplexmines.Asaresult,theindustryishighlyconcentrated,withafewcompaniescontrollingasignificantportionofglobalproductionandtrade.Thetopfiveminingcompaniescontrol61%oflithiumoutputand56%ofcobaltoutput.Tradeincriticalmaterialsismanyordersofmagnitudesmallerbyvaluethantradeinfossilfuels.Unlikeoil,mostcriticalmaterialsarenotwidelytradedonexchanges.Whilethislimitsopportunitiestohedgeagainstpricevolatility,itallowscommoditytraderstoplayakeyroleinmatchingproducersandconsumers.FIGURES3Valueofexportsforselectedcommodities(2021)NaturalgasUSD335bnCopperUSD91bnPetroleumUSD951bnLithiumNickelUSD1.5bnUSD4.2bnCobaltREERareearthelementsUSD0.12bnUSD0.59bnSource:(UNCOMTRADEdatabase).Note:Numbersrepresenttradeinraw,unprocessedfuelsandoresonly.15GeopoliticsoftheEnergyTransformationThefullextentofrelianceandexposuretodisruptionsisnotalwaysobvious.Mineralcommoditiessourcedfromdifferentcountriescanbeembeddedinimportedfinishedandsemi-finishedproducts,thusobscuringpotentiallinksandvulnerabilities.Moreover,importtransactionsaresometimesattributedonlytothecountryofthelastshipment,nottothecountryinwhichthematerialwasoriginallyminedormanufactured.Eachcriticalmaterialhasauniquegeographyoftradewhich,onanaggregatelevel,entanglescountriesinabroaderwebofinterdependence.Allcountriesrelyonafunctioningglobalmarketforcriticalmaterialsandrelatedtechnologies,giventhattheyeitherimportthesecommoditiesorrelyonasteadydemandfortheirmaterials,componentsorfinishedproducts.Tradepatternsvaryenormouslyacrosscountries,sectorsandtechnologies,andrevealthetrueinterdependenceofcountriesintermsofmineralsupplyanddemand.Supplychainsarecurrentlyvulnerabletodiversegeopoliticalrisks(FigureS4).Interruptionsinthesupplyofmineralscanaffectmultipleindustriesandreverberatethroughouttheeconomy.Supplyshortagesandrelatedriskscouldarise,particularlyintheshorttomediumterm,asdemandforselectedmaterialsincreases,andminingandprocessesremainconcentrated.Inthemediumtolongterm,tradeflowsforcriticalmaterialsareunlikelytolendthemselvesaseasilytogeopoliticalinfluenceasoilandgas.Thisisbecausereservesofsuchmaterialsareabundant,geographicallywidespreadandcanbeprocessedinmanylocations.FIGURES4Keygeopoliticalriskstothesupplyofmaterials1ExternalshocksNaturaldisasters,pandemics,wars,mineaccidents,etc.2ResourceTaxdisputes,expropriation,foreigninvestmentscreening,etc.nationalismExportquotas,exporttaxes,obligatoryminimumexportprices,licensing,etc.3ExportCo-ordinationofproduction,pricing,marketallocation,etc.restrictionsLabourstrikes,violence,corruption,etc.4MineralcartelsShortsqueezing,marketcornering,spoofing,insidertrading,etc.5Politicalinstabilityandsocialunrest6Marketmanipulation16CRITICALMATERIALS©NataliNekrasovashutterstock.com©kaskipshutterstock.comCriticalmaterialstradeflowsarenotlikelytobecartelised.Mineralsupplyisconcentratedgeographically,andcorporationswithlargemarketsharesinkeysegmentsofmineralvaluechainsdominatetheirminingandrefinement.Thisconcentrationofproductioncouldpotentiallyleadtotheformationofcommoditycartels.However,previousattemptstoestablishsuchcartelshavemostlyfailed,servingasasignificantdeterrentformanyproducercountries.Geopoliticalconsiderationsshouldconsiderstructuraltrendsthatcouldhavelong-termimplicationsfortheavailabilityof,anddemandfor,mineralcommodities.Thesetrendsincludenotonlythegeographicalconcentrationofminingandprocessingbutalsothedeclineinmineraloregrades,thesubstitutionpossibilitiesforcertainmaterials,andend-of-lifemanagement,amongothers.Thesefactorshavethepotentialtomagnifytheimpact-andinsomeinstancestheprobability-ofgeopoliticalrisks.Thecentralisedsupplychainsformanymaterialsarelikelytoremainastheyarefortheforeseeablefuture.Manycountriesaretryingtorestructuresupplychains,butnewminingandprocessingfacilitieshavelongleadtimes,makingitdifficulttorebalancesupplyanddemanddynamics(FigureS5).Moreover,adjustingthesesupplychainsnecessitatescarefulbalancingofeconomicfactors,environmentalimpactsandthewell-beingoflocalpopulations.17GeopoliticsoftheEnergyTransformationFIGURES5Miningandrefiningsupplyforselectedcriticalmaterials,2022and20302022LithiumCobaltNickelMiningRefining2030LithiumCobaltNickelMiningRefiningSource:(BloombergNEF,2023).Disclaimer:Thesemapsareprovidedforillustrationpurposes18only.BoundariesandnamesshownonthemapsdonotimplyanyendorsementoracceptancebyIRENA.CRITICALMATERIALSInnovationsintechnologycaninfluencedemandbyintroducingsubstitutes,enhancingefficiency,optimisingdesignsandincorporatingnewmaterials.Disruptiveinnovationisaddingtotheuncertaintyoffuturedemand.Forexample,changesinelectricvehiclebatterychemistryoverthepasteightyearshavesignificantlyreshapedthedemandforspecificmaterials.Asnewtechnologiescontinuetoemerge,themarketislikelytoexperiencefurthershiftsbeforeeventuallyconsolidatingaroundalimitednumberofdominantmaterialsandtechnologies.Consequently,predictingfuturedemandforcertainmaterialscanbequitedifficult,particularlyinthelongterm.Stockpilingofcriticalmaterialsisnotarobustsolutionformitigatingsupplyrisks.Criticalmaterialsareindispensableformanufacturingandconstructingenergyassets.Thisbringsintoquestiontheefficacyofstockpilingtransitionmineralsfortheenergysectorcomparedtoothersectors,suchasdefence.Ifnothandledjudiciously,stockpilingcanexacerbatemarketlimitations,driveupprices,andleadtoanunevenenergytransitionthatexcludespoorercountriesanddelaysclimateaction.Criticalmaterialreservesarewidelydistributed,openingopportunitiestodiversifytheminingandprocessingofmaterials.Developingcountriescurrentlyaccountformuchoftheglobalproductionofthematerialsneededfortheenergytransition,andtheirshareinreservesisevengreater,butnotfullyexplored(FigureS6).Forexample,Boliviahas21milliontonnesoflithiumreserves-morethananyothercountry-butitproducedlessthan1%ofworldsupplyin2021.Countriescanutilisetheirmineralresourcestodrawinindustriesinvolvedinthemiddlestagesofproduction(processing)orevenintheendstages(batteryandelectricvehiclemanufacturing).©RHJPhtotosshutterstock.com©chuyussshutterstock.com19GeopoliticsoftheEnergyTransformationFIGURES6Shareofglobalexplorationbudgetformaterialsbycountry,2012and2022NickelCobaltCopperLithium100%Australia80%CanadaChile60%UnitedStatesRestof40%theworld20%0%20122022201220222012202220122022KeynewGabonBosniaandAfghanistanCôted'IvoireplayersPeruHerzegovinaCubaIndiain2022PolandChileCyprusMoroccoSolomonGreenlandEritreaSwedenIslandsSpainTanzaniaUnitedKingdomTanzaniaTanzaniaKingdomofDenmarkBasedon:(S&P,2023).20CRITICALMATERIALSAnestimated54%ofenergytransitionmineralsarelocatedonornearindigenouspeoples’land,underscoringtheneedforrobustandearlycommunityengagement.Over80%oflithiumprojectsandmorethanhalfofnickel,copperandzincprojectsarelocatedintheterritoriesofindigenouspeoples.Morethanathirdofmineralprojectsrelevanttotheenergytransitionareon,ornear,indigenousterritoryorfarmers’landthatfacesacombinationofwaterrisk,conflictandfoodinsecurity.Over90%ofplatinumreservesandresources,forexample,areon,ornear,indigenouspeoples’orrurallandfacingthesethreerisks,followedbymolybdenum(76%)andgraphite(74%).Thepursuitofcriticalmaterialscouldsparkgeopoliticalcompetitioninareasknowntocontainsignificantdeposits,suchastheArctic,outerspaceandthedeepsea.TheArcticisknowntohavevastreservesofcriticalmaterialssuchasnickel,zincandrareearths,andtheregion’smineralabundancecontributestoitsstrategicimportance.Giventhepresenceofampleterrestrialreserves,acautiousapproachiswarrantedinthecaseofouterspaceandthedeepsea,duetouncertaintiessurroundingpotentialenvironmentalimpactsandregulatoryframeworks.Helpingdevelopingcountriestorealisenewopportunitiesinsupplychainscouldimproveresiliencewhilenarrowingtheglobaldecarbonisationdivide.Akeyquestioniswhethertheenergytransitionsupportsdevelopingcountriestonotjustincreasetheirexportsofprimaryoresbuttoalsomoveupthevaluechainandattracthigher-marginactivitiessuchasmineralprocessing.Processedmaterialslikesteelandaluminadonotjustcommandsignificantpricepremiaoverunrefinedores;theyalsoreducetheinputcostofinfrastructuralandindustrialprojects,spurringlocaleconomicdevelopment.Regionalco-operationcouldhelpcountriescaptureagreatershareofthevalueofproducingminerals.Ratherthanpursuingone-on-onedealswith-often-foreigncompanies,co-ordinatedregionalapproachescouldbemoreeffectiveinensuringthatconditionsattachedtoforeigninvestmentarefavourableformineral-richcountries.Co-ordinationacrossregionsisalsoimportant,asmostcountrieswouldbenefitfrompoolingrespectivemineralsuppliesiftheyintendtobuilddownstreamindustries.Thepatchworkofinternationalandtransnationalinitiativesrequiresgreatercoherencetobringaboutmoreresponsible,sustainableandtransparentsupplychains.Thegrowingrecognitionofchallengesassociatedwiththecriticalmaterialssupplychainhasspurredthedevelopmentofanarrayofinitiativesandregulatoryframeworksbygovernments,businessesandcivilsocietygroups.Mostofthesearevoluntary.Theresultisapatchworkofstandardsthatriskssowingconfusionforstakeholdersandhighlightstheneedforgreatervisibilityandcoherence.Arenewables-basedenergytransition,ifwell-plannedandexecuted,canrewritethelegacyofextractiveindustries.Ashasbeenthecasewithextractiveindustriesforcenturies-andevenwithtoday’sawarenessandstandards-miningactivitiesandprocessescarryrisksforlocalcommunitiessuchaslabourandotherhumanrightsabuses,landdegradation,waterresourcedepletionandcontamination,andairpollution.Strongerinternationalco-operationtoraiseandenforcestandardsandlonger-termcorporateviewswillbeessentialforsustainabledevelopmentandsociallicense.21GeopoliticsoftheEnergyTransformationCHAPTER1INTRODUCTIONlabourtradeflowsrareearthelementsmetalsprocessingnickelrefiningsupplyriskstradeoverviewlabourdependencyminingregulationsmineralsresponsiblevaluecreationcollaborationlabourCRITICALMATERIALS1.1CRITICALMATERIALSANDTHEENERGYTRANSITIONDemandforcriticalmaterialsisprojectedtogrowrapidlywiththerenewables-basedenergytransition.IRENA’s1.5°CScenariopositsthatrenewableswillconstitute91%oftheenergymixby2050,ashiftthatwouldincreaserenewables-basedinstalledcapacityfrom3300gigawatts(GW)in2022to33000GWin2050.Underthisscenario,90%ofallroadvehicleswillbeelectricby2050andhydrogenwillaccountfor14%oftotalfinalenergyconsumption.Theseshiftswouldrequireannualtriplingofnewrenewables,toanaveragedeploymentof1000GW(IRENA,2022a,2023a).Suchabuildoutofcleanenergytechnologyandinfrastructurewillgreatlyincreasedemandforcertainmineralsandmetals,groupedinthisreportundertheterm“criticalmaterials”.Criticalmaterialsaretodaythefocusofmuchinternationaldialogueanddiplomacy.Theirproductionandprocessingarehighlyconcentratedgeographically,posingchallengesrelatedtoresourcesecurityandgeopoliticaldynamics.Strategiestodiversifythesupplyandproductionchainsforthesematerialsarestartingtoemerge,reflectingmultipleeconomic,politicalandsocialconsiderations.Presentlythereisnouniversallyaccepteddefinitionofcriticalmaterials(Figure1.1).Thefactorsfordeterminingcriticalityremainsubjectiveandlocation-specific.Corecriteriatypicallyincludeeconomicimportance(foraspecificeconomyofinterest)andlevelofsupplyrisk,asinfluencedbyfactorssuchasscarcityandproximityofsupply,complexityofextractionandrefiningprocesses,concentrationofsupplyacrossdifferentpartsofthevaluechain,andlackofviablesubstitutes(IRENA,2022a).Forthepurposesofthisreport,“criticalmaterials”referstomineralsandmetalsgenerallyviewedashighlyimportantasinputsforarenewables-basedenergytransition,includingbutnotlimitedtocobalt,copper,graphite,iridium,lithium,manganese,nickel,platinum,andselectedrareearthelements.Variousothermaterialsarementionedinthisreportinreferencetoreal-worldenergytechnologyaswellaspolicyexamplesandcasestudieswithgeopoliticalrelevance.23GeopoliticsoftheEnergyTransformationFIGURE1.1Energytransitionmaterialsdefinedascriticalbycountriesandregions(35lists,51materials),2023Cobalt29Lithium26Neodymium23Nickel23Indium23Dysprosium22Gallium21Copper19Tellurium18Praseodymium17Manganese16Graphite16Silver14Aluminum12Chromium12Molybdenum12Germanium11Platinum10Silicon10Cadmium10Selenium10Tin9REE9Zinc8Lanthanum8Cerium7Vanadium7Terbium6Titanium6Samarium6Yttrium5Iron4Palladium4Lead3PGM3Phosphorus2Rhodium2Magnesium2Tungsten2Steel2Iridium2Strontium2Borate2Tantalum2Niobium1Zirconium1Gadolinium1Ruthenium1Beryllium1Europium1Potassium1Boron1Rhenium1051015202530Source:(IRENAandNUPI,forthcoming).DistinctCountofPublicationIDNotes:REE=rareearthelements;PGM=platinumgroupmetals.24CRITICALMATERIALSCriticalmaterialsarevaluablecommodities,buttheireconomicvalueisnotassignificantasthatoffossilfuels,whichtodayaccountfor2%ofglobalGDP(IRENA,2022b).Withtheexceptionofcopper,themostvaluablebasemetalintermsofmarketsize,thevalueoftradeflowsforothermineralsandmetalsismanyordersofmagnitudesmallerthanoilandgasmarkets(seeFigure1.2).Thesectorwillgrowincomingyears,butvolumesandvalueswillnotbecomparabletofossilfuelstoday.Withsupplybottleneckrisksandlongdevelopmentcyclesforminingprojects,aprominentconcernisthattherenewables-basedenergytransitionwillentailtradingthedependencyonimportedfossilfuelsfordependencyonimportedcriticalmaterials.However,thedependencyrisksandsupplydynamicsofcriticalmaterialsdifferfundamentallyfromthosepertainingtofossilfuels.Fossilfuelsareconsumablesprimarilyusedforenergyproduction,whereascriticalmaterialsareessentialinputsforenergytransitioncomponents,equipmentanddevices.FIGURE1.2Valueofexportsforselectedcommodities(2021)NaturalgasUSD335bnCopperUSD91bnPetroleumUSD951bnLithiumNickelUSD1.5bnUSD4.2bnCobaltREERareearthelementsUSD0.12bnUSD0.59bnSource:(UNCOMTRADEdatabase).Note:Numbersrepresenttradeinraw,unprocessedfuelsandoresonly.25GeopoliticsoftheEnergyTransformationIncaseofasupplydisruption,theoperationofenergyinfrastructureandmachinerythatrunoncoal,gasoroilwouldcometoahalt.Suchdisruptionswouldhaveanimmediateimpactonconsumersandhouseholds,triggeringagamutofsocial,politicalandfinancialchallenges.Incontrast,disruptionsincriticalmaterialswouldnothaveanimpactontheexistingenergyinfrastructureandequipment,thoughtheywouldpotentiallyslowthespeedandincreasethecostofdecarbonisation.Theriskofdisruptionsinthesupplyofcriticalmaterialsisthereforelessanenergysecurityriskthanarisktothespeedoftheenergytransition(seeFigure1.3).FIGURE1.3CriticalmaterialsarefundamentallydifferentfromfossilfuelsFOSSILFUELSCRITICALMATERIALSLargeminingquantitiesLowminingquantitiesIn2021,15billiontonnesoffossilSome10milliontonnesenergyfuelswereextracted.1transitionmineralswereproducedin2022forlow-carbontechnologies.2GeneratehugerentsGeneratesmallerprofitsOilandgasexportsaloneExportsofcopper,nickel,lithium,representedavalueofcobaltandrareearthsgeneratedUSD2trillionin2021.396billionin2021.4CombustedasfuelInputtomanufacturingFossilfuelsareprimarilyburnedasCriticalmaterialsarehousedfuel,accountingforapproximatelywithinenergyassetsthattypically94%oftheirusage.5havea10–30yearlifespan.EnergysecurityriskEnergytransitionriskAdisruptioninthesupplyoffossilDisruptionsinthesupplyofcriticalfuelscanleadtoimmediateenergymineralscandelaytheconstructionofshortagesandpricespikes.newcleanenergyassets,butdonotaectcurrentenergypricesorsupply.NotrecyclableFossilfuelsareprimarilyconsumedReusableandrecyclablethroughcombustionandcannotHighpotentialforreducinguse,berecoveredorrepurposed.reusingandrecycling.Notes:R[1]Figureisfor2021andtakenfromBP’sStatisticalReviewofWorldEnergy.Oilandcoalfigureswereavailableintonnes;gasdatawereconvertedfrombillioncubicmetres(bcm)tobilliontonnesusingtheformula(1m3=0.712kg),basedonBP’smethodology,whichisalsousedbyHannahRitchie:https://hannahritchie.substack.com/p/mining-low-carbon-vs-fossil[2]BasedonIRENAcalculations,productionofmaterials(copper,lithiumgraphite,nickel,cobalt,manganese,rareearthelementsandplatinumgroupmetals)forrenewableenergy–relatedtechnologiesin2022amountedtosome10milliontonnes(megatonnes)(seeChapter2formoredetails).[3]In2021,exportsofcrudepetroleum(HS2709)generatedUSD951billion;refinedpetroleum(HS2710)generatedUSD746billion;liquefiednaturalgas(HS27111100)generatedUSD162billion;andnaturalgasingaseousstate(HS271121)generatedUSD173billion.[4]In2021,exportsofcopperoresandconcentrates(HS2603)generatedUSD91.1billion;nickeloresandconcentrates(HS2604)generatedUSD4.24billion;cobaltoresandconcentrates(HS2605)generatedUSD118million.Withrespecttorare-earthmetals,scandiumandyttrium(HS280530)generatedUSD586million.[5]CalculatedfromIEA’sWorldEnergyBalance(2020),availablefrom:www.iea.org/Sankey.26CRITICALMATERIALSIRENAexpectsthetechnicalevolutionofcriticalmaterialstobeshapedbythreeshiftingandoverlappingdynamics.Thefirstdynamic,mostdominantintheshorttomediumterm,willbemarkedbyphysicalconstraintsandchallengesinkeepingupwithrisingdemandforcertaincriticalmaterials.Thesecond–whichisalreadyoccurringatscale–willbringdisruptiveinnovation,withnewideasandexperimentstoreducematerialsconsumption.Thethirddynamic–stillnascent–willusherinalargerroleforcirculareconomy,includingmoreadvancedandwidelyadoptedmethodsofreducing,reusingandrecyclingcriticalmaterials.FIGURE1.4ThreedynamicsofcriticalmaterialsdevelopmentforenergytransitionPhysicalDisruptiveCircularconstraintsinnovationeconomy1.2PHYSICALCONSTRAINTSPotentialundersupplyintheshorttomediumtermisaresultofthelackofinvestmentinupstreamactivities.Thisisduetonumerousfactorsincludinglongleadtimesinopeningnewminesandprocessingofmanufacturingplants,uncertaintyregardingfuturedemand,pricevolatility,alackofdownstreamtransparency,andlocalopposition,amongothers(IRENA,forthcoming).Moreover,theminingandprocessingofcriticalmaterialsareheavilyconcentratedinahandfulofcountries(seeChapter2).Marketdemandforcriticalmaterialsin2022predominantlyoriginatedfromnon-energytransitionuses,exceptforlithium.Forexample,over90%ofnickelwasusedinironandsteelproduction;over80%ofgraphitewasusedforsteel,aluminiumandceramics;andover80%ofmanganesewasusedinsteelandchemicalproduction,andfoundryandwelding(IRENA,forthcoming).However,energytransitiontechnologiesareincreasinglyrequiringcriticalmaterials,andmayexceedthedemandfromnon-energyusesinsomecases(IRENA,forthcoming).Thistrendisespeciallynotableforlithium,cobalt,graphiteanddysprosium.IRENA’sshort-termscarcityratio(seeFigure1.5)comparesthesupplyofmaterialsin2022withthedemandexpectedin2030.11Supplyin2022includeseitherprimarysupplyonly(mining)orbothprimaryandsecondarysupply(recycling),thelatterbeingapplicableonlyforcopper,cobaltandplatinum,whererecycling/refiningratesareknown.SeeAnnexfordetails.27GeopoliticsoftheEnergyTransformationFIGURE1.5Assessingdisparitybetweencurrentsupplyandanticipateddemandin2030forselectedmaterialsCobalt25%63%Copper17%Dysprosium43%72%80%Graphite818%40%Iridium68%Lithiumi66%84%Manganese2%15%42%49%23%Neodymium53%NickelPlatinum24%020406080100Short-termscarcityratio(%)8Sources:(USGS,2023a;Eurometaux,2022;IRENA,forthcoming;McKinsey,2023;WSJ,2023;Mining.com,2021;MitchellandDeady,2021;NVM,2021;QYResearch,2023;Garvey,2021;MineralsCouncilofAustralia,2022;NickelAsia,2022;Systemiq,2023;CobaltBlueHoldings,2022;Darbar,2022;Fu,2020;Albemarle,2023;Lazzaro,2022;McKinsey,2022;S&PGlobalIQ,2022).Note:Ashort-termscarcityratiocomparesthemineproductionofselectedmaterialin2022withthedemandexpectedin2030;seeAnnexforcalculationmethodology.Toavoidademand-supplygapformaterialswithahighscarcityratio,increasingtheminingandprocessingcapacitiesisessential.Thereisnoscarcityofgeologicalreservesandtheyaregeographicallywidespread.Asthefocusoncriticalmaterialsincreases,soarenewdiscoveries.Forinstance,NorgeMiningrecentlyannouncedthatthephosphate,titaniumandvanadiumdepositsfoundinNorwaycouldsupplythecurrentglobaldemandforatleast50years(TheEconomist,8June2023).Apartfromboostingminingandprocessing,bridgingthegaprequiresimprovingmaterialrecoveryfromtailingsandrecyclingtechnologies.Suchadvancementsrequiregovernmentinvestmentininfrastructure,thedesignofenablinglegalframeworks,includingmandatesthroughpublicpolicy,andresearchandinnovationinrecyclingtechnologies.28CRITICALMATERIALS1.3DISRUPTIVEINNOVATIONTechnologicalinnovationaffectsthedemandformaterialsthroughfactorssuchassubstitution,efficiencyimprovement,designoptimisationandtheintroductionofnewmaterials.Therearemultipleuncertaintiesinprojectingandassessingthedemand-supplygapforcriticalmaterialsinenergytransitiontechnologies.Aprimeexampleiselectricvehicle(EV)batteries.SignificantshiftsintheEVbatterychemistrymixoccurredsince2015(Figure1.6).Marketshare(%)FIGURE1.6RapidlychangingglobalEVbatterychemistrymixbetween2015to2022Others100LFP80LMO60NCA9240NCA9020NMC(811)NMC(622)NMC(532)NMC(111)020152016201720182019202020212022Source:(BNEF,2022b).Note:ThenumbersfollowingNCAindicatenickel'sproportionintheNCAbatterychemistry,whereasthenumbersfollowingNMCindicatenickel'sproportionintheNMCbatterychemistry;forexample,NMC(622)means6partsofnickel,2partsofmanganeseand2partsofcobalt.LFP=lithiumironphosphate;LMO=lithiummanganeseoxide;NCA=nickelcobaltandaluminium;NMC=nickelmanganeseandcobalt.29GeopoliticsoftheEnergyTransformationToday,theEVbatteryindustryisdominatedbylithium-ionbatteries,atechnologythathasundergonemultipleadvancementsinkeycomponentsthatsignificantlyinfluencematerialdemand.Graphite-basedanodechemistryholdsa70%marketshareduetoitshighperformance.However,emerginganodechemistries,suchas100%silicon-basedanodes,lithiummetalanodesandaluminiumoraluminiumalloyanodes,havethepotentialtoreduceoreliminatethedemandforgraphite,dependingonthespeedofresearchanddevelopment(IRENA,forthcoming).Forcathodes,themostcommonlyusedchemistriesincludenickelmanganesecobaltoxides(NMC),nickelcobaltaluminiumoxides(NCA)andlithiumironphosphate(LFP).NMCandLFPareexpectedtoremainthemostprevalentbatteriesinthisdecade,althoughwhichtechnologywillultimatelyprevailremainsaquestion(seeBox1.1).Emergingbatterytechnologies,suchassodium-ionbatteries,havethepotentialtodisrupttheEVbatterymarketbyreplacingcriticalmaterialssuchaslithiumandcobaltwithlessexpensiveormoreabundantoptions,suchassodium(IRENA,forthcoming).BOX1.1Uncertaintiesinprojectingthedemandandsupplygapforcriticalmaterials:TheexampleofelectricvehiclebatteriesLithiumironphosphate(LFP)batteriesemergedinthe1990sfromthelaboratoryofJohnGoodenough,whohadwontheNobelPrizeforlithium-ionbatteries,attheUniversityofTexas–Austin.Severalstart-ups(e.g.A123Systems)sawanopportunitytoshiftawayfromcobaltandnickel,butLFP’slowerenergydensitydidnotdrawtheinterestofautomakerssuchasTeslaandGeneralMotorscausingstart-upslikeA123Systemstogobankrupt.(McFarland,2022).However,later,ascobaltandnickelbecamesignificantlymoreexpensive,automakersbeganexploringbatterychemistrieswithfewercriticalmaterials.LFPbatteriesstartedtoreplacenickelmanganesecobalt(NMC)batteriesinentry-level,inexpensivevehicles,whileNMCremainedthechemistryofchoiceforhigh-performancevehicles.Asanindicationofthischange,themarketshareofLFPbatteriesgrewsignificantlyfromasingledigitin2015to40%in2022(BNEF,2022a).RapidexpansionofLFP,however,cannotbelinkedsolelytoinnovation.ChinaisthekeymarketforLFPbatteries,wheretheyareusedinover40%ofEVs,comparedto6%inEuropeand3%intheUnitedStatesandCanada(BMI,2022).China’spreferenceforLFPresultsfromuncertaintiesregardingtheavailabilityofcobaltandnickelataffordableprices.Chinathusconcludedalong-termagreementbetweenthepatentowners–aconsortiumofuniversitiesintheUnitedStates(UniversityofTexas–AustinandMIT)andCanada(UniversityofMontrealandCNRS)–andChinesebatterymanufacturers,BYDandCATL.TheagreementliftedlicensefeesifLFPbatterieswereusedexclusivelyinChina(IRENA,forthcoming).Thesepatentsexpiredin2022.©asharkyushutterstock.com30CRITICALMATERIALS©1stfootageshutterstock.comRareearthelements,namely,neodymiumanddysprosium,areubiquitouslyusedforpermanentmagnetsinelectricgenerators(i.e.windenergy)andelectricmotors(i.e.EVs).Rareearthpermanentmagnetsareusedforonshoreaswellasoffshorewindapplications,andarelikelytobecomemorecommoninturbines.However,significanteffortsarebeingmadetoreplaceneodymiumwithotherrareearthelements,includingpraseodymium,dysprosiumandterbium,ortodeveloprareearthfreepermanentmagnets(electromagnets).Thiscouldpotentiallychangethedemandoutlookforneodymiumanddysprosium(Gielenetal.,2022a).Similarly,innovationinsolarphotovoltaictechnologymayalterthedemandforrawmaterials,promptingashiftawayfromsiliconinconventionalcrystallinesiliconandless-efficientthin-filmsolarpowertechnologies.Forinstance,perovskitesolarcellshavegarneredincreasedresearchanddevelopmentfocus,resultinginrapidefficiencyimprovementsovertheircrystallinesiliconcounterparts(upto25%)(Wuetal.,2021).Otherpromisingtechnologiesincludeorganicsolarcells,copperindiumgalliumselenidecells,dye-sensitisedsolarcellsandquantumdotsolarcells.Eventhoughthesetechnologiesholdsignificantpotential,theyarestillintheprocessofbeingdevelopedandcommercialised,andtheirperformance,durabilityandcost-effectivenessarestillbeingstudiedandimprovedupon.31GeopoliticsoftheEnergyTransformationTABLE1.1Selectedenergy-relatedtechnologyapplications,2023OtherEnergy-relatedtechnologyapplicationsMainCobalt•EVbatteries•Batterystorage•Bioenergy•ElectrolysersCopper•Electricitygrid•Batterystorage•Electrolyser•EVbatteries•Bioenergy•Geothermal•SolarPV•CSP•HydroDysprosium•EVmotors•WindGraphite•EVbatteries•BatterystorageIridium•PEMElectrolysers•BatterystorageLithium•EVbatteriesManganese•EVbatteries•Batterystorage•Geothermal•CSP•Hydro•Electrolysers•WindNeodymium•EVmotors•WindNickel•Electrolyser•Batterystorage•Geothermal•EVbatteries•Bioenergy•Hydro•CSP•SolarPVPlatinum•PEMElectrolysersNotes:CSP=Concentratedsolarpower;EV=electricvehicles;PV=photovoltaic32CRITICALMATERIALS1.4REPORTSCOPEThisreportexpandsontheaboveprovidingaforward-lookingexaminationofgeopoliticalandgeoeconomicconsiderationsandimplicationsoftheanticipatedscale-upofdemandandsupplyofcriticalmaterials.ItbuildsonIRENA’sworktodateandanalysestheevolvinglandscapeofsupplychainsandtradepatterns,thesocioeconomicandsustainabilityconsiderationssurroundingextractionandprocessingaroundtheglobe,andthestrategicimportanceofcriticalmaterialsforeconomiccompetitivenessandthespeedofarenewables-basedenergytransition.Chapter2examinesthegeopoliticalthemesoftrade,security,andinterdependence.Thesehavealwaysbeencloselyconnectedwithextractiveindustriesinabroadsense,andwillremainsowiththescale-upofmaterialscriticaltotheenergytransition.Considerationsaroundsustainability,communitiesandlivelihoodsarethefocusofChapter3,reviewedunderthebroadertermofhumansecurity.Thechaptersharpenslinesofconnectionbetweenextractiveindustriesandimplicationsforthesocialeconomy,environment,andclimateinexportingcountries,theirneighboursand,ultimately,theworld.Chapter4shiftsthefocusfromdiagnosistostrategicresponsesandpolicyconsiderations.Thisclosingchapterdoesnotprovideauniversalsetofrecommendations,butratherreviewsthemainstrainsofpolicyapproachestothechallengesandopportunitiespresentedbythescale-upofcriticalmaterialsfortheenergytransition.©TRADIUMGmbHshutterstock.com33GeopoliticsoftheEnergyTransformationCHAPTER2TRADE,SECURITYANDINTERDEPENDENCElabourspecificgeographicallocationshighlyconcentratedminingprocessingnickelreservessupplyriskstradeavailabilityexternalshocksinstabilitymineralsresourcenationalismmineralcartelsresponsiblevaluecreationcollaborationpriceshocklabourCRITICALMATERIALSHIGHLIGHTSnTheminingofcriticalmaterialsishighlyconcentratedinspecificgeographicallocations.Australia(lithium),Chile(copperandlithium),China(graphite,rareearths),theDemocraticRepublicofCongo(cobalt),Indonesia(nickel)andSouthAfrica(platinum,iridium)arethedominantplayers.Processingisevenmoregeographicallyconcentrated,withChinaaccountingformorethan50%oftheworld’srefinedsupplyof(natural)graphite,dysprosium(arareearth),cobalt,lithiumandmanganese.nReservesaredistributedrelativelyevenly,presentingopportunitiestodiversifysupplychainsinthelongrun.Onesolutionwouldbeincreasedinvestmentinexploration,especiallyinunderexploredregionssuchasAfrica.Internationalcollaborationinconductinggeologicalsurveyscouldhelptheseregionsattractexplorationinvestments.nTradeincriticalmaterialsismanyordersofmagnitudesmallerbyvaluethantradeinfossilfuels.Unlikeoil,mostcriticalmaterialsarenotwidelytradedonexchanges.Whilethislimitsopportunitiestohedgeagainstpricevolatility,itallowscommoditytraderstoplayakeyroleinmatchingproducersandconsumers.nEachmaterialhasauniquetradegeography,which,whenviewedcollectively,interconnectsmultiplecountriesinawidernetworkofinterdependence.Nocountrycaninsulateitselffullyfromtherisksofpriceshocksorsupplydisruptionsrelatedtocriticalmaterials,sincethesefactorsmayadverselyaffectthecostandpaceoftheenergytransition.nTheavailabilityofmaterialsisinfluencedbyseveralstructuralconditions,includingthegeographicalconcentrationofminingandprocessing,declineinmineraloregrades,thelimitedextentofend-of-liferecycling,thedependenceonby-productproductionformanycriticalmaterialsandthelimitedshort-termsubstitutionpossibilitiesforcertainmaterials.nSixgeopoliticalriskstothesupplyofmaterialsintheshorttomediumtermareidentifiedandassessed:externalshocks(e.g.war),resourcenationalism(e.g.expropriation),exportrestrictions(e.g.exportbans),mineralcartels(e.g.co-ordinationofproduction),politicalinstability(e.g.socialunrest)andmarketmanipulation(e.g.shortsqueezing).nThepursuitforcriticalmaterialscouldsparkgeopoliticalcompetitioninareasknowntocontainsignificantdeposits,suchastheArctic,outerspaceandthedeepsea.However,acautiousapproachiswarrantedinthecaseofouterspaceandthedeepsea,duetouncertaintiessurroundingtheenvironmentalimpactandregulatoryframeworks,alongwiththepresenceofampleterrestrialreserves.35GeopoliticsoftheEnergyTransformationThischapterprovidesacomprehensiveoverviewofthekeyplayersinvolvedinthevaluechainsofcriticalmaterials.Indoingso,ithighlightsthehighgeographicalconcentrationofsupplybutalsothecrucialroleoftheprivatesectorandcommoditytraders.Moreover,itscrutinisesprevailingtradetrendsandthecorrespondingsupplyrisksandvulnerabilities,whichencompassthepotentialperilsassociatedwiththeweaponisationorcartelisationofsupplies,aswellasnon-politicaldisruptions,suchasclimate-relatedhazardsandpandemics.Further,ithighlightstheintensifyinggeopoliticalcontestationforcriticalmaterials,especiallywithintheglobalcommons,includingtheexplorationandextractionactivitiesunfoldinginthedeepsea.36CRITICALMATERIALS2.1KEYPLAYERSINMINERALANDMETALTRADINGThecriticalmaterialsupplychainThepathwayofmineralsfromminestofinishedproductsinvolvesacomplex,andoftenopaque,networkofactorsandprocesses.2Figure2.1showssomeofthekeystagesinthevaluechainsofthemineralandmetalindustries.FIGURE2.1Schematicrepresentationofamineral-ormetal-dependentvaluechainGeologicalExplorationDevelopmentMiningresourcesSmeltingPurificationMetallurgy/OreprocessingandrefiningrefiningManufacturingProductionPreparation–dismantling,Source:(Ayuketal.,2020).wastecollectioncrushing,separationPrimaryrecyclingSecondaryrecyclingProductionwasteProductionwasteEnd-of-lifecollectioncollectionproducts,wasteSemi-finishedComponentsEnd-productproducts2ThissectiondrawsfromtheInternationalResourcePanel(2020).37GeopoliticsoftheEnergyTransformationThegeologicalpresenceofresourcesaloneisnotsufficientforundertakingminingprojectsandtheactualminingofmineraloresisprecededbymultiplestages.Theserequiremeetingseveralenablingconditions,includingcompliancewithminingandenvironmentalregulations,andtheacquisitionofnecessarypermitsandlicenses.Afterfulfillinglegalrequirements,miningcompaniesundertakeseveralstepsbeforeextractingresourcesfromtheground.Thisincludesassessingtheresourcebase,conductingfeasibilitystudiesand,insomeinstances,constructingdemonstrationplants.Theseprocessescantakeseveralyearsandinvolvesignificantcosts.Subsequently,theminingstagebegins,wheremineraloresareextractedfromeitheropen-pitorundergroundminesusingdrillingand/orblastingtechniques.Theextractedoresarethentransported(typicallyonconveyorsortrucks)toanearbyprocessingplant,wheretheyareconvertedintoshippableproductsthroughmultiplesteps,whichvarydependingontherawmaterialandmayinvolveprocessessuchasgrinding,crushingandchemicalprocessing.Itisworthnotingthatwhiletheseprocessesaretypicalforlarger-scaleminingoperations,artisanalandsmall-scaleminingmayemploymorerudimentarymethods,suchasmanuallabourandsimpletools.Theinvolvementoftradersinthepurchaseandtransportoftherefinedmineralsfurtherunderscoresthecomplexityofthemineralsupplychain.Thenextstageismetallurgyorrefining,whichiscrucialtoremoveresidualimpuritiesfrommetaltomeetthepurityrequirementsofdifferentmarkets.Thisprocessinvolvesvarioustechniques,suchassmelting,roastingandelectrolysis,andcangeneratesubstantialwasteandemissions.Thefinalproductfromrefiningissoldtomanufacturers,whousethemetalinawiderangeofareas,includingelectronics,batteriesandconstructionmaterial.Increasingly,thereisagrowingtrendofrecyclingproducts,includingcertainwasteproductsthataregeneratedduringtheirlifecycles.GeographyofmineralminingandprocessingTheminingofmaterialsishighlyconcentratedinspecificgeographicallocations(Figure2.2).Forexample,morethan70%ofplatinumisminedinSouthAfrica;70%ofcobaltisminedintheDemocraticRepublicofCongo;morethan60%ofnaturalgraphiteinChina;almost50%ofnickelinIndonesia;almost50%oflithiuminAustraliaandalmost50%ofdysprosiuminChina.Mineralprocessingisevenmoreconcentrated(Figure2.3).Chinaisthedominantplayer,witha100%shareofglobalrefinedsupplyfornaturalgraphiteanddysprosium(arareearthelement)over90%formanganese,70%forcobalt,almost60%forlithiumandapproximately40%forcopper.38CRITICALMATERIALSFIGURE2.2KeyminingcountriesforselectmineralsCobalt%Dysprosium%Manganese%Nickel%70.0%DemocraticChina48.7%SouthAfrica35.8%Indonesia48.8%Republicof5.4%theCongo4.8%Myanmar23.1%Gabon22.9%Philippines10.1%Indonesia3.2%Australia7.6%Australia16.4%Russian6.7%2.1%FederationRussian2.0%Federation2.0%UnitedStates2.9%China4.9%10.5%AustraliaFrance(New5.8%Caledonia)CanadaCanada2.7%Ghana4.7%CubaOthers15.0%India2.4%Australia4.9%PhilippinesBrazil2.0%Canada4.0%OthersGraphite%Ukraine2.0%China3.3%China64.6%Côted’Ivoire1.8%Brazil2.5%Mozambique12.9%Malaysia1.8%Others13.9%Madagascar8.4%Others5.3%Copper%Brazil6.6%Platinum%Chile23.6%Neodymium%Others7.5%SouthAfrica73.6%Peru10.0%China45.8%Russian10.5%FederationDemocratic10.0%RepublicoftheCongoIridium%Australia23.1%88.9%SouthAfricaZimbabwe7.8%Zimbabwe8.1%Russian2.9%Greenland8.2%FederationChina8.6%Others0.1%Canada3.1%Myanmar7.4%UnitedStates5.9%UnitedStates1.7%Brazil4.4%Russian4.5%Others3.3%FederationIndia2.1%Indonesia4.1%Others9.0%Australia3.7%KingdomofDenmarkZambia3.5%Lithium%Australia46.9%Mexico3.3%Chile30.0%China14.6%Kazakhstan2.6%ArgentinaBrazil4.7%Canada2.4%Others1.6%2.2%Poland1.7%Others16.1%latestdataavailableasof2023Source:(USGeologicalSurveyandUSDepartmentoftheInterior,2023;JRC,2020).39GeopoliticsoftheEnergyTransformationFIGURE2.3KeyprocessingcountriesforselectedmineralsCobalt%Dysprosium%Lithium%Nickel%China70.0%China100%China58.0%Indonesia39.8%Indonesia18.0%Chile29.0%China23.9%Finland11.0%Graphite%Argentina10.0%JapanOthersChina100%OthersRussian5.0%1.0%3.0%Federation4.4%CanadaCopper%Manganese%Australia3.7%Others3.6%China42.3%Iridium%China93%19.6%Chile8.1%SouthAfrica90.0%Others7%Democratic6.5%Zimbabwe8.0%RepublicoftheCongoRussian2.0%Platinum%Federation71.2%Neodymium%SouthAfrica8.6%Zimbabwe4.6%Japan6.2%NorthAmerica11.8%UnitedStates3.9%China88.0%RussianFederation3.8%Russian4.2%Malaysia11.0%OthersFederationEstonia1.0%Korea2.5%Germany2.4%Poland2.3%Others21.6%Sources:(USGeologicalSurveyetal.,2023;WPIC,2022;AngloAmerican,2022,Implats,2022;Erickson,2022;LeadLeo,2022;OEC,2023;Mining.com,2021;MitchellandDeady,2021;NVM,2021;QYResearch,2023;IRENA,2022a;S&P,2023).latestdataavailableasof2023;America=Canada,MexicoandtheUnitedStates;2021.40CRITICALMATERIALSAnycountry’sdominanceinmetallurgyposessignificantchallengesforresourcesecurityandgeopoliticaldynamics.Theenvisagedincreaseindemandpresentsanopportunitytomaketheexistingvaluechainsmoreresilient,positivelyimpactnationalbalancesheetandsupporttheglobaltransitiontoalow-carboneconomy(Figures2.4and2.5).Mineral-richcountriesstandtogainfromthegrowingdemandforcriticalmaterials.Forexample,theAustraliangovernmentexpectslithiumandbasemetalexportstoequalthevalueofitscoalexportsby2027-2028(TheHonMadeleineKingMPMediaReleases,2023).Diversifyingprocessingtowardscountrieswithabundantrenewableenergysourcescanreducetheemissionfootprint.CountriessuchasChile,whichhaveabundantsolarenergyresources,areexploringtheuseofsolarpowertodecarbonisecopperrefining(Lyng,2022).WesternAustralia,arenewableenergyhotspot,isattractingnewinvestmentsinmidstreamcriticalmineralprojects,includingthreerareearthandthreelithiumprocessingfacilities(seeFigure2.4)(GovernmentofWesternAustralia,2022).Globalcriticalmineralreservesarerelativelymoreevenlydistributedthancurrentmineralproduction.Thisopensopportunitiesfordiversifyingsupply.LargepartsoftheEarth’scrust,predominantlyindevelopingcountries,remainunexplored.Forinstance,Africa,whichhasabout20%ofthegloballandmassarea,hasattractedonlyabout14%ofglobalmineralexplorationinvestment(EricssonandOlöf,2019).Addressingthissituationrequiresnotjustincreasingglobalexplorationspending(Box2.1),butalsocontinuouscollectionandsharingofmineralresourcedataacrosscontinents.Atpresent,mostoftheworkisundertakenbycountriesthataremembersoftheOrganisationforEconomicCo-operationandDevelopment(OECD).Forexample,theAustralian,CanadianandUSgeologicalsurveysjointlylaunchedtheCriticalMineralsMappingInitiative,whichcoversover60countries(Calam,2020).GeologicalworkincountriesthatarenotmembersoftheOECDcouldbenefitfromincreasedregionalaswellasglobalcollaboration.AnexampleistheAfricanUnion’sAfricaMiningVision,whichwaslaunchedin2009andisbeinghinderedfromrealisingitsfullpotentialduetoalackofresources(Ushie,2017).41GeopoliticsoftheEnergyTransformationFIGURE2.4Miningandrefiningsupplyforselectedcriticalmaterials,20222022LithiumCobaltNickelMiningRefiningFIGURE2.5Miningandrefiningsupplyforecastsforselectedcriticalmaterials,20302030LithiumCobaltNickelMiningRefiningSource:(BloombergNEF,2023).Disclaimer:Thesemapsareprovidedforillustrationpurposes42only.BoundariesandnamesshownonthemapsdonotimplyanyendorsementoracceptancebyIRENA.CRITICALMATERIALSBOX2.1MineralexplorationbudgetAnexplorationbudgetreferstothefundsallocatedtoidentifyingpotentialmineraldepositsinanarea.Notallexplorationprojectsresultinanewmine,andeveniftheydo,ittakesseveralyearsfromdiscoverytoopeningthemine.AlargemajorityoftheexplorationbudgetforselectedmineralscomesfromcountriesoftheOECD,dominatedbyAustralia,Canada,ChileandtheUnitedStateswhoincreasedtheirexplorationbudgetsfornickel,cobalt,lithiumandcopperinthepasttenyears(Figure2.6).ChinaandVietNamincreasedtheirbudgetsfornickel;DRCongo,MoroccoandZambiaincreasedtheirbudgetsforcobalt;Peru,GermanyandZimbabweincreasedtheirbudgetsforlithium;DRCongoandEcuadorincreasedtheirbudgetsforcopper.SouthAfricadominatesexplorationbudgetsforplatinum,withZimbabweincreasingitsbudgetinrecentyears.FIGURE2.6Shareofglobalexplorationbudgetforselectmaterialsbycountry,2012and2022NickelCobaltCopperLithium100%Australia80%CanadaChile60%UnitedStatesRestof40%theworld20%0%20122022201220222012202220122022KeynewGabonBosniaandAfghanistanCôted'IvoireplayersPeruHerzegovinaCubaIndiain2022PolandChileCyprusMoroccoSolomonGreenlandEritreaSwedenIslandsSpainTanzaniaUnitedKingdomTanzaniaTanzaniaKingdomofDenmarkcontinuednextpageBasedon:(S&P,2023).43GeopoliticsoftheEnergyTransformationBOX2.1Mineralexplorationbudget(continued)Theminingsectordoesnotsufficientlyinvestinexploration.Between2012and2022,juniorminingcompanies’shareofglobalexplorationbudgetsgrewfrom31%to56%forbatterycathodematerials(lithium,cobaltandnickel),whilemajors’shareshrunkfrom52%to34%inthesameperiod.Governments’shareinexplorationbudgetswasconstant,atabout6%(Figure2.7).FIGURE2.7Shareofglobalexplorationbudgetforselectmaterialsbytypeofinvestment,2012-2022Shareofexplorationbudget(%)100OtherGovernment80JuniorIntermediate60Major4020020122013201420152016201720182019202020212022Basedon:(S&Pdata,2012-2022).IndustryplayersTheminingindustryisdominatedbyafewlargemultinationalcorporationsandstate-owned/controlledenterprises(SOEs),whichoperateacrossmultiplecountriesandpossessthenecessaryresourcesandskillstodevelopcomplexmines.Theindustryishighlyconcentrated,withthesecorporationsandSOEscontrollingasignificantportionofglobalproductionandtrade.Forexample,thetopfiveminingcompaniescontrol61%oflithiumoutputand56%ofcobaltoutput(seeFigure2.8).44CRITICALMATERIALSFIGURE2.8Marketshareofmajorminingcompaniesinselectmaterials,2021CobaltPlatinum47%22%21%33%OtherGlencoreOtherSibanye(CH)Stillwater(SA)0.1311%201tMtCMOC(CN)6%11%Northam18%PlatinumEurasian(SA)AngloGroup(KZ)American10%Platinum(SA)9%12%NorilskGécamines(CD)(RU)ImpalaPlatinum(SA)Nickel14%LithiumNorilsk(RU)21%13%Albemarle(US)Glencore55%(CH)37%Other1.45Mt7%Other0.56MtVale7%19%(BR)TianqiSociedad5%6%Lithium(CN)QuímicayMineradeChilePTValeJinChuan7%Indonesia(ID)GroupCo(CL)Allkem(AR)(CN)9%PilbaraMinerals(AU)Basedon:(S&P,2023).Note:a)Totalglobalproductioninmegatonnes(Mt)andtonnes(t)providedforeachmineral.b)AR=Argentina;AU=Australia;BR=Brazil;CD=DemocraticRepublicoftheCongo;CH=Switzerland;CL=Chile;CN=China;ID=Indonesia;KZ=Kazakhstan;RU=RussianFederation;SA=SouthAfrica;US=UnitedStatesofAmerica.45GeopoliticsoftheEnergyTransformationTheownershipstructureofaminingcompanycanimpactitsrisktoleranceandtheenvironmentsinwhichitoperates.SOEsmaybemorewillingtoinvestinriskierenvironmentsthatpubliclylistedcompaniesmayavoid.AnotableexampleofthisareChineseSOEs,whichhaveasignificantpresenceinAfrica’sminingindustry,includingincountrieswhererisks,realorperceived,maydeterotherinvestors(Ayuketal.,2020).Someofthelargestcompaniesinthemineralandmetalindustryvaluechainareverticallyintegrated,meaningtheyoperateacrossmultiplestagesofthevaluechain(e.g.BHP,RioTintoandFreeport-McMoRan).Othercompaniesspecialiseinspecificstages.Forinstance,somespecialiseinmineralextractionbutdonothavethefacilitiestoprocessorrefinethem.Othercompaniesspecialiseinrefiningrawmaterialsintometalsbutdonothavethefacilitiestomineorprocessminerals.Manyrecyclingcompaniesspecialiseincollectingandprocessingspecifictypesofwastematerialsratherthanoperatingacrosstheotherpartsofvaluechains.Theenergytransitionischangingcorporatestrategiesandvaluechainsintheminingindustry.Forinstance,BHP,theworld’slargestminingcompanybymarketcapitalisation,isdivestingitsoilandgasbusinessandpositioningitselfasaminingcompanyfocusedontheenergytransition(Quiggin,2021).Thegrowingdemandforcriticalmaterialsisalsoattractingcompaniesfromoutsideofthetraditionalminingindustry.Tesla,anEVmanufacturer,isbuildingalithiumrefineryinTexasandislookingtoexpanditsfootprintinthemineralsminingandprocessingbusiness(Agatie,2023).Someminingcompaniesarekeentoinvestinnewbusinesseslinkedtotheenergytransition.Forexample,theFortescueMetalsGrouphascreatedanewunittoinvestinrenewables,greenhydrogenandgreenammonia.MetalexchangesUnlikecommoditiessuchasoil,manytransitionmetalsandmineralsarenotwidelytradedonexchanges.Copperisanexceptionandiswidelytradedinspotandfuturesmarkets.Otherspecialtycommodities,suchascobalt,lithiumandrareearths,areprimarilysoldthroughnegotiatedbilateralcontractsbetweenproducersandconsumers(WorldBank,2022).Thelowliquidityandproductheterogeneityofcertainmetalsposechallengestothedevelopmentofeffectivehedgingtools(Azevedoetal.,2018).Selectedexchangesformineralsandmetalshavebeencreated.AnexampleofthisistheLondonMetalsExchange(LME),whichwassetupin1877bymerchantsandfinancierstofacilitateinternationalmetaltrading.GiventhatmetalstookthreemonthstoarrivefromChile(copper)andMalaysia(tin),thethree-monthcontractbecametheprimarytradedfuturescontractontheLME(BuchanandErrington,2018).Today,theLMEremainstheworld’sforemostmetaltradingplatform,settingglobalreferencepricesforcriticalmaterialssuchascopper,nickelandcobalt.3TheLMEplatformfacilitatesthedailytradingofmorethanUSD60billioninfutures(Burton,2022),andtherangeofmetalsandmineralstradedontheexchangecontinuestobeexpanded(Table2.1).Forexample,theLMEbegantradingcopperin1877,followedbynickelin1979,cobaltin2010andlithiumin2021(Table2.2)(LME,2023).3Manyotherexchangesexist,includingtheNewYorkMercantileExchange,theShanghaiMetalExchangeandtheTokyoCommodityExchange.46CRITICALMATERIALSTABLE2.1KeymaterialsandyearofintroductionontheLondonMetalsExchangeCommodityYear©MattBigginshutterstock.comCopper1877Nickel1979Tin1989Cobalt2010Molybdenum2010Lithium2021Commodityfuturesandderivativesarealsotradedonother,smallerexchanges,includingtheShanghaiFuturesExchangeandtheDubaiGoldandCommoditiesExchange.Cobaltandlithiumcontractswereintroducedrecentlyonmetalexchangesbuthavenotyetreceivedwideacceptanceashedgingtoolsbyindustryparticipants.Thissituationpresentsachallengeforcompaniesseekingtohedgetheirexposuretothesecriticalmetals,forinstance,carmanufacturersthatwanttolockinlithiumprices(Sanderson,2021).Metalexchangesplayacrucialroleinpricesignalling.Itiseasytoaccessunambiguouspriceinformationformetalstradedwidelyonexchanges.Bycontrast,itisdifficulttoascertaintheactualagreed-uponpriceformetalsthatareoftentradeddirectlybetweenpartiesandnottradedwidelyonexchanges.Whilesomecompaniesspecialiseinpostingpricelistings,theyrelyonbuyersandsellersvoluntarilydisclosingtheirprices,whichmaynotalwaysbetimelyorreliable.Thissituationgivestradingcompaniesasignificantadvantageastheyhaveaccesstometals’truemarketpricesaswellastransaction-relatedinformation.CommoditytradersIndependenttradershaveakeyroletoplaygiventhefragmentednatureofsomemineralmarketsandtheremotenessofsomeproducers(Table2.2).Apartfromcompaniesthattradephysicalcommodities,metalsmarketshaveoftenattractedsignificantattentionfrominvestors,includinghedgefunds,investmentbanksandcommodityindexfunds(Humphreys,2011).Thesetradersandspeculatorsoftendonotproduceorusecommoditiesassuchbutplayaroleinmatchingproducersandconsumersindifferentpartsofthemarket.Inrecentyears,commoditytradershavefacedcallsforgreateroversightandregulation(Blas,2022).47GeopoliticsoftheEnergyTransformationTABLE2.2TopcommoditytradinghousesbyrevenueCompanyFoundingHeadquartersRevenueCommoditiestradedCorporateVitolstatusTrafiguradate(2022USDbillion)Glencore1966Geneva,505Crudeoil,fueloil,gasoline,PrivateGunvormiddledistillates,naphtha,MecuriaSwitzerlandmethanol,ethanol,chemicals,liquefiedpetroleumgas(LPG),naturalgas,liquefiednaturalgas(LNG),carbonemissions,coal,ironore,power,alumina,baseoils,bitumen1993Singapore318.5Crudeoil,fueloil,middlePrivatedistillates,gasoline,naphtha,LPG,LNG,biodiesel,condensates,chemicals,coal,ironore,concentratesandores(copper,lead,zinc,alumina,nickel,tin,cobalt),refinedmetals(copper,aluminium,zinc,blister,nickel,tin,cobalt)1974Baar,255.9Copper,zinc,lead,nickel,Publicferroalloys,alumina,aluminium,limitedSwitzerlandironore,cobalt,coal,oil,oilproducts,wheat,corn,canola,barley,rice,oilseeds,meals,edibleoils,biofuels,cotton,sugar2000Geneva,150Crudeoil,heavyfuelandPrivatefeedstocks,middledistillates,Switzerlandgasoline,naphtha,LPG,biofuels,naturalgas,LNG,carbonemissions,copper,aluminium,zinc,lead,tin,nickel,manganese,steel,coal,cokingcoal,ironore,timber2004Geneva,174Crudeoil,fueloil,middledistillates,Privategasoline,naphtha,biofuels,Switzerlandpetrochemicals,naturalgas,LNG,power,coal,ironore,manganese,chrome,carbonemissions,basemetals,foodandfeedgrains,oilseeds,vegetableoilsSources:(Companies’respectivewebsitesandTrafigura,2018;Buchanetal.,2018).Note:GlencorewasfoundedasMarcRichandCo.AG.48CRITICALMATERIALSTradedependenciesThissectionpresentsananalysisofthebilateraltradeflowsrelatedtocriticalmaterials.Figure2.9showsthetopbilateraltradeflowsbyvalueforfivecriticalmaterialsin2022:copper,lithium,manganese,nickelandplatinum.Itshowshowcopperisthemostvaluablematerialbytradevalue.Thegraphalsodemonstratesthegeographicdiversityofminingcountries,butalsohowimportantminingistoseveral,relativelysmalleconomiessuchasChileandPeru.Finally,thedataindicatesthatChinaisamongthetopimporters,eventhoughitiscommonlyperceivedasdominatingcriticalmaterialsupplychains.Itistheworld’slargestimporterofraworunprocessednickel,copper,lithium,cobaltandrareearths.Assuch,thecountryreliesonimportsforinputsbutdominateslargeportionsofthemidstreamanddownstreamcapacityformanycriticalmaterials.Threecaveatsmustbeconsideredwhenexaminingtradedependencies(Nassaretal.,2015).First,intradestatistics,importtransactionsareattimesattributedonlytothecountryoflastshipmentratherthanthecountrywherethematerialwasoriginallyminedorproduced.Second,mineralcommoditiessourcedfromadifferentcountrycanbeembeddedinimportedfinishedandsemi-finishedproducts,thusobscuringthetrueimportrelianceandexposuretoforeignsupplydisruptions.Forexample,neodymiumandotherraremetalsareembeddedinpermanentmagnets;anycountryimportingthesemagnetswouldstillbevulnerabletodisruptionsinrareearthsupply.Third,foreignfirmscanownandcontrolmineralassetsandoperationspartiallyorcompletely.Chinesefirms,forinstance,haveequitystakesinlithiumprojectsinAustraliaandChile,arareearthdepositinGreenland4andcobaltoperationsintheDemocraticRepublicofCongo,PapuaNewGuineaandZambia.Researchfounda2%to14%increaseintheshareofglobalcobaltproductionandan11%to33%increaseforcobaltintermediatematerials(Gulley,2022)whenaccountingfortheequitystakesofChinesefirms.ForeignmineralassetsarealsoownedbyAmerican,British,Canadian,Japanese,Koreanandothercompanies.4KingdomofDenmark©gettyimagesunsplash.com49GeopoliticsoftheEnergyTransformationImporterFIGURE2.9Bilateraltradeflowsbyvalueforselectmaterialsin2022ExporterChileChinaPeruKazakhstanJapanMongoliaIndiaChinaCanadaUnitedStatesArgentinaUnitedKingdomSouthAfricaGermanyGabonCopperAustraliaLithiumManganeseGhanaNickelPlatinumPhilippinesRussianFederationNewCaledoniaUnitedStatesSource:(UNComtrade,2023).Notes:Alldatarefertounprocessedoresandconcentrates,exceptforlithium,wherewerelyondataforlithiumcarbonatesandlithiumoxideandhydroxide.ImportdatawasusedandonlyindividualEUcountrieswereincluded.50CRITICALMATERIALS2.2SUPPLYRISKSANDVULNERABILITIESNearlyallcountriesaresusceptibletounforeseensupplyinterruptionssincenoneareself-sufficientinallmaterials.Evencountrieswithasmallermanufacturingbasearepronetotradedisruptions.Althoughtheymaynotrelyheavilyondirectrawmaterialimport,theynonethelessrelyonafunctioningglobalmarketforcriticalmaterialsandtechnologiessincetheyimportpartsorfinishedgoods(e.g.solarpanelmodules)forrenewableenergyinstallations(Patterson,2018).Theriskofsupplychaindisruptiondirectlyaffectscompaniesusingimportedmineralsorfinishedgoodstomanufacturesolarpanels,windturbinesandbatteries.However,multipleindustriescanbeaffectedbysupplyinterruptions,whichcouldreverberatethroughouttheeconomy.Theimpactcouldbewidespreadgivenmultiplesectors–fromindustryanddigitalinfrastructuretoagriculture–relyonmineralsandmetalcommoditiesformanufacturinggoods.Theprobabilityof,andvulnerabilityto,supplydisruptionsismeasuredusingvariousindicators.Onereviewidentifiednolessthan30indicatorsofsupplyrisk(Schrijversetal.,2020).Riskassessmentscanalsobeconductedatdifferentlevels,includingforasingleoragroupofcountries,companies,productsandeconomicsectors.Figure2.10presentssixsourcesofsupplyriskforcriticalmaterials.Whilenotexhaustive,thelistcoverssomeofthemostwidelydiscussedgeopoliticalriskstothesupplyofcriticalmaterialsintheshorttomediumterm(i.e.fivetotenyears),especiallyforcountriesthatrelyheavilyonimports(Nassaretal.,2020).Othertypesofrisks,suchasenvironmentalandsocialrisks,arediscussedinChapter3.Geopoliticalrisksshouldbeassessedconsideringcertainstructuraltrendsthatcouldhavelong-termimplicationsontheavailabilityofmineralcommodities.Thesetrendsincludethegeographicalconcentrationofminingandprocessing,thedeclineinmineraloregrades,thelimitedextentofend-of-liferecycling,thedependenceonby-productsformanycriticalmineralsandthelimitedshort-termsubstitutionpossibilitiesforcertainmaterials(Nassaretal.,2020).Thesestructuralfactorshavethepotentialtomagnifytheimpactand,insomeinstances,theprobabilityofthegeopoliticalsupplyrisksdiscussedabove.51GeopoliticsoftheEnergyTransformationFIGURE2.10Keygeopoliticalriskstothesupplyofmaterials1ExternalshocksNaturaldisasters,pandemics,wars,mineaccidents,etc.2ResourceTaxdisputes,expropriation,foreigninvestmentscreening,etc.nationalismExportquotas,exporttaxes,obligatoryminimumexportprices,licensing,etc.3ExportCo-ordinationofproduction,pricing,marketallocation,etc.restrictionsLabourstrikes,violence,corruption,etc.4MineralcartelsShortsqueezing,marketcornering,spoofing,insidertrading,etc.5Politicalinstabilityandsocialunrest6Marketmanipulation123456ExternalshocksGlobalcriticalmaterialsupplychains,whichareinterconnected,aresusceptibletodisruptionsthatmaybecausedbynaturalevents,suchasearthquakes,orcouldresultfromhumanaction,eitherintentional(e.g.tradedisputes)orunintentional(e.g.poweroutages).Inrecentyears,forexample,globalrawmaterialsupplychainshavebeendisturbedbyshockssuchastheCOVID-19pandemic,thewarinUkraineandtheglobalenergycrisis.In2020,theCOVID-19pandemicledentireeconomiestogointolockdown,resultinginasharpdeclineintheglobaldemandformetals.Atthesametime,supplywasdisruptedbytheclosureofhundredsofmines,smeltersandrefineries.Forexample,Peru,whichaccountsfor12%oftheglobalcoppersupply,closedallitsminesbetweenMarchandearlyJuneof2020–thelongestgovernment-mandatedmineclosure(Yuetal.,2021).SouthAfrica’s21-daymineclosuredisrupted75%oftheglobalplatinumsupply(NjiniandBiesheuvel,2020).AlthoughmetalmarketsswiftlyrecoveredfromtheinitialpriceanddemandcollapseinMarch2020,theyfacedseveralmajordisruptionseversince.Onemajorshockcameintheformofthe2021-2022globalenergycrisis.Inthesecondhalfof2021,forexample,Chinesemagnesiumplantswerepartiallyclosedduetonationwideenergyshortages,asaresponsetothecountry’spowercrisis.SinceChinaaccountsforabout85%oftheworld’smagnesiumproduction,theeffectsreverberatedgloballyandpricesskyrocketed(Hume,2021).ThiswasfeltespeciallystronglyinEurope,whichdependsonChinafor95%ofitsmagnesiumsupply.Europeanindustrygroupswarnedofanimminentsupplydepletion,threateningthousandsofbusinessesandtheirworkers(Burton,2021).Similarly,inSouthAfrica,frequentpowercutssince2022havecurbedtheoutputofplatinumgroupmetals(Njini,2023).52CRITICALMATERIALSThewarinUkrainewasanotherexternalshock.Itdisruptedcertaincommodities,suchasnickelandaluminium,andledtopricesurges,eventhoughmetalmarketsmayhavebeenlessaffectedbyitthanothercommoditymarkets,especiallyfoodandenergy.Before2022,Ukrainewasakeyexporterofpigiron.TheRussianFederationwastheworld’slargestexporterofpigiron,enricheduranium,palladiumandnickel.Italsoaccountedforasignificantshareofplatinumandrefinedaluminiumexports.Thesanctionshavesofaravoidedblanketrestrictionsontheimportofkeymetals,insteadintroducingselectedimportdutiesandtariffs.5Forinstance,RussianmetalsgiantNorilskNickel,akeysupplierofnickelandpalladium,haslargelybeenexemptedfromthesanctions(MacDonald,2022).Lookingfurtherintothefuture,sanctionslimitingaccesstohigh-techimportscouldhinderminingandprocessingcompaniessincetheyrelyonequipmentandsoftwarelicensesfromforeignfirms(BloombergNews,2022).Partsofthecriticalmaterialvaluechainarealsoexposedtothephysicaleffectsofclimatechange–fromsealevelrisetomorefrequentandsevereweatherevents.Somematerials,forexample,nickel,cobaltandrareearths,areminedandprocessedinareasthatarelikelytobeatagreaterriskofheavyrainfallandfloods.Anexampleofthiscouldbefoundin2020,whena“once-in-a-century”floodinChina’ssouthwestprovinceofSichuanshutdownrareearthprocessingplantsanddamagedinventory(DalyandZhang,2020).Otherminingactivitiesarelikelytobehitbydroughtandwaterscarcity.Forexample,approximately50%oflithiumminingisinhighwaterstressareas.Giventhatlithiummininghasasubstantialwaterrequirement,thiscouldcreateconflictssurroundingtheuseofwater(IEA,2022).123456ResourcenationalismInrecentyears,numerousgovernmentshaveincreasedstatecontrolovertheirmineralresourcestoenhancethebenefitsfromextractionoraddressitsadverseimpacts.Thishasbeenaccomplishedthrough,forexample,taxregimestrengthening,royaltyrenegotiation,creationofstate-ownedmineralcompanies,nationalisationofcriticalmaterialindustriesandrestrictionsonforeigninvestments.Thistrendcanbeobservedinmanycountries,includingAustralia,Canada,Chile,Mongolia,Namibia,Peru,SouthAfricaandZambia,amongothers.Policiesaimedatrevisingownershipandaccessrightsovernaturalresourcescanimpactglobalsupply.Forexample,aroyaltypaymentdisputebroughtsupplyfromtheDemocraticRepublicofCongo’sTenkeFungurumecopperandcobaltminetoastandstillforseveralmonthsaftermid-2022.Thisdisrupted15%oftheglobalcobaltsupply(WhiteandHook,2023).Chile’sannouncementinApril2023ofitsdecisiontonationalisethelithiumindustryraisedconcernamongsomeanalystsandindustrygroups,eventhoughlong-termimpactonglobalsupplyisnotvisible(seeBox2.2)(DempseyandWhite,2023).Thebroadbannerof“resourcenationalism”iswidelyusedtodescribethistrend.However,itisworthnotingthatthetermputstogetheradiversesetofpoliciesandobscuresthecomplexsetofmotivationsthatcandrivethem(Ward,2009).Therecenttrendofstrictermineralsectorregulationsisreminiscentofthe1970s,whenmanymineral-richcountries,includingnewlyindependentones,adoptedstate-interventionistpoliciesandsetupstate-ownednaturalresourcecompaniesinthemineralssector.Ascommoditypricesdeclinedin5TheUnitedKingdomhasimposed35%additionaldutiesonimportsofRussiancopper,lead,nickel,primaryaluminiumandaluminiumalloy(seewww.lme.com/en/news/russian-sanctions).TheUnitedStatesintroduceda200%importtariffonRussianaluminium(seewww.whitehouse.gov/briefing-room/presidential-actions/2023/02/24/a-proclamation-on-adjusting-imports-of-aluminum-into-the-united-states-4/).53GeopoliticsoftheEnergyTransformationthe1980sand1990s,andtheglobalpoliticalconsensusshiftedinfavourofunfetteredmarkets,themineralssectorwassweptbyawaveofliberalisation,deregulationandprivatisationofstateassets(Dietsche,2014).Bytheearly2000s,therewereonlyafewstate-ownedmetalminingcompaniesleft.In2005,forexample,thestatehadamajorityownershipstakeinjustthreeoftheworld’stop25metalminingcompanies(CodelcoinChile,AlrosaintheRussianFederationandDebswanainBotswana).Eighteenofthetop25metalminingcompanieswerefullyprivate(UNCTAD,2007).BOX2.2Chile’sstrategyforlithiumInApril2023,ChileanPresidentGabrielBoricannouncedthecountry’sdecisiontonationaliseitslithiumindustry.Chileholdstheworld’slargestlithiumreservesandrankssecondinlithiumproduction.PresidentBoricstatedthatthecountry’slithiumreservesrepresent“anopportunityforeconomicdevelopmentthatwilllikelynotberepeatedintheshortterm”andthatnationalisingtheindustrywillenablethecountrytobuild“aChilethatismorejust,moresustainable,andmoredemocratic”(Sharp,2023).Thegovernmentwouldlooktoprotectbiodiversityandshareminingbenefitswithindigenousandsurroundingcommunities.Atpresent,twocompaniesaremininginChile:SociedadQuimicaYMineradeChile(SQM)andAlbemarle.Undertheplan,aseparatestate-ownedcompanywouldbecreatedtoproducelithium–amovethatwouldneedtobeapprovedbyCongress.Theplanenvisagestheissueoffuturelithiumcontractsthroughpublic-privatepartnerships,inwhichthestatewouldholdamajorityshare(StottandBryan,2023).Thegovernmentwouldalsonotterminatecurrentcontracts(GovernmentofChile,2023),buthasexpressedhopethatcompanieswouldbeopentostateparticipationbeforetheyexpire.SQM’scontractiscurrentlysettoexpirein2030andAlbemarle’sin2043.Someanalystsareconcernedthatnationalisationofthelithiumindustrymaydeterpotentialpartners,shiftforeigndirectinvestmentstoothercountriesandadverselyaffecttheChileanlithiumindustryaswellasglobalsupply(InnovationNewsnetwork,2023;Sharp,2023).However,thegovernmenthasindicatedagradualandpragmaticapproachtobringingthesectorunderstatecontrolthroughpartnerships.ChilehasapositivetrackrecordwithCodelco,thestatecoppercompany,whichwasestablishedafterthenationalisationofChileancopperminingin1971duringtheAllendeadministration(MaloneandBazilian,2023).Codelcoistheworld’slargestcopperminingcompanyand,accordingtotheChileanthinktankCenda,generatesoverthreetimesthetaxrevenueperunitofproductioncomparedwithprivatecompanies(Mining.com,2022).54CRITICALMATERIALSManycountrieshavealsoincreasedscrutinyofforeigninvestments,notjustintheminingindustrybutacrossvarioussectors(UNCTAD,2023).AustraliaandCanada,forinstance,haverecentlyimplementedstricterforeigninvestmentregulationsintheirmineralsectors.InAustralia,foreigninvestmentintheminingsectorissubjecttoscreeningbytheForeignInvestmentReviewBoard,whiletheCanadiangovernmenthasintroducedanewnationalsecurityreviewprocessforforeigninvestment.Thistrendofincreasedgovernmentscrutinyofforeigninvestmentsreflectsconcernsaboutnationalsecurity,environmentalsustainability,andlocalownershipandcontrolovernaturalresources.Table2.3showsafewillustrativeexamplesofhowforeigninvestmentintheminingsectorisfacingincreasedscrutinyacrossdifferentjurisdictions.TABLE2.3IllustrativeexamplesofincreasedforeigninvestmentscrutinyinthemineralssectorCountryDescriptionAustraliaIn2020,Australiaadoptedanewregulationtogovernforeigninvestment,whichCanadagrantsextraordinarypowerstotheForeignInvestmentReviewBoardtorejectinvestmentsongroundsofnationalsecurity(FederalRegisterofLegislation,2021).IndonesiaInOctober2022,Canadasetanewpolicylimitinginvestmentinthecountry’sMexicocriticalmineralssectorfromforeignstate-ownedcompaniesandforeignprivateMongoliainvestorscloselytiedtoforeigngovernments(GovernmentofCanada,2022).UnitedRepublicofTanzaniaIn2009,IndonesiapassedalawthatrequiresforeignminingcompaniestodivestUnitedStatesmajoritystakesinprojectstolocalentitiesaftertenyearsofproduction(RepublicofIndonesia,2009).InApril2022,Mexicoofficiallynationaliseditslithiumindustry,givingthestateexclusiverightsovertheexploration,extractionanduse(UnitedMexicanStates,2022).In2019,Mongoliapassedalawthatallowsthegovernmenttoacquireupto50%ofmineraldepositsdeemedbyparliamenttobeof“strategic”valuetothestate.In2017,Tanzaniapassedlawsrequiringminingcompaniestogivethegovernmentatleasta16%stakeintheiroperationsandprocesstheirorelocally(GovernmentofTanzania,2017).InSeptember2022,USPresidentBidensignedanExecutiveOrderthatcallsontheCommitteeonForeignInvestmentintheUnitedStatestoreviewallcriticalmineralinvestmentapplicationsthataffectnationalsecurity(WhiteHouse,2022).55GeopoliticsoftheEnergyTransformationNumberofexportrestrictions23456ExportrestrictionsoncriticalmaterialsExportrestrictionsonrawmaterialsareagrowingconcernininternationaltrade.Incidencesofsuchrestrictionshavegrownmorethanfivefoldoverthepastdecade(Figure2.11)(OECD,2023).AccordingtotheOECD,about10%oftheglobalvalueofcriticalrawmaterialexportshasfacedatleastoneexportrestrictionmeasureinrecentyears(OECD,2023).6Exportrestrictionstakemultipleforms,includingexportquotas,exporttaxes,obligatoryminimumexportprices,orlicensing.FIGURE2.11Globalincidenceofexportrestrictionsonrawmaterials,2009-2020200001600012000800040000200920102011201220132014201520162017201820192020Sources:(KowalskiandLegendre,2023;OECDInventoryofExportRestrictionsonIndustrialRawMaterials,2022).Notes:They-axisshowsthenumberofexportrestrictionsinforce.Thedatabasecoversinformationon65industrialrawmaterialsand80exportingcountries,whichaccountedfor97%oftheworld’smineralandmetalproductionin2018.Themethodologicalnoteavailableatwww.oecd.org/trade/topics/trade-in-raw-materials/documents/methodological-note-inventory-export-restrictions-industrial-raw-materials.pdf.6Exportrestrictionsareoftencategorisedunder“resourcenationalism”,whichisdiscussedintheprevioussection.However,exportrestrictionsarediscussedseparatelyinthisreportbecausetheyoftenserveadifferentpurpose.Whilehostgovernmentshaveassertedstatecontrolovermineralresourcestooptimiserevenuecapture(resourcerevenueoptimisation),exportrestrictionstypicallyservethebroadergoalofdevelopingdownstreamindustries(resource-basedindustrialisation).56CRITICALMATERIALSExportrestrictionsespeciallyforcriticalmaterialsappeartobeontherise,withseveralcountriesimplementingmajorexportbans.ZimbabwebannedtheexportofrawlithiuminDecember2022(MarawanyikaandNdlovu,2022).Similarly,IndonesiabannedbauxiteexportinJune2023(Shofa,2023).Aroundthesametime,Namibiaprohibitedtheexportofrawlithiumandothercriticalmaterials(NyashaNyaungwaetal.,2023).Theserecentmeasuresreflectagrowingtrendofcountriestakingstepstoencouragedomesticprocessingandattractdownstreamindustries.Exportrestrictionsonrawmaterialsarenotanewphenomenon.In1937,theLeagueofNationsconstitutedaCommitteefortheStudyoftheProblemofRawMaterialstoassesstheincidenceofexportrestrictionsandexportduties(LeagueofNations,1937).Suchrestrictionsvarysignificantlybasedontherawmaterial(Figure2.12).Theyarenotsolelyimplementedbymineral-richcountries.Countriesseekingtoreducerelianceonrawmaterialimportsoftenimposeexportrestrictionstoretainsecondarysources,suchaswasteandscrap(OECD,2023).FIGURE2.12Shareofglobalexportssubjecttoanexportrestriction,2020Platinum92%Germanium91%84%Cobalt82%Bismuth82%Palladium68%Nickel65%PhosphatesPO43−59%RareearthREE8%elements7%6%Magnesium3%BoratesBO33−LithiumGraphite0%20%40%60%80%100%Sources:(Kowalskietal.,2023;OECDInventoryofExportRestrictionsonIndustrialRawMaterials,2022).Notes:Foreaseofreading,thelabel“Germanium”hasbeenusedtodenotethefollowinggroupofmaterials:germanium,niobium,vanadium,gallium,indiumandhafnium.57GeopoliticsoftheEnergyTransformationQuantitativeimportandexportrestrictionsarelargelyprohibitedunderArticleXIoftheWTO’sGeneralAgreementonTariffsandTrade,exceptundercertainlimitedexceptions,suchasenvironmentalconservation,nationalsecurityorassuringrawmaterialsupply.Theseexceptionsmustmeetspecificconditions,forexample,notprotectingdomesticindustriesordiscriminatingagainstothercountries.Themeasuresshouldalsonotunfairlyrestrictinternationaltrade.Thegrowingtrendofexportrestrictionsoncriticalmaterialshastriggeredaseriesoftradeconflicts,someofwhicharebeingaddressedattheWorldTradeOrganization(WTO)(Table2.4).Thesedisputescannotbelinkedsolelytotheenergytransitiongiventhatthematerialsinvolvedhaveamuchwiderapplicationbeyondtheenergysector,suchassteelmaking(molybdenum)orthechemicalindustry(fluorspar).Themineraltradedisputethatreceivedthemostattentionwastherareearthcrisisof2010-2011(seeBox2.3).TABLE2.4RecentWorldTradeOrganization(WTO)tradedisputesoverexportrestrictionsoncriticalmaterialsCase(shorttitleandWTOconsultationsComplainantsMeasure(s)atissuecasenumber)requestedChina2009EU,Mexico,USExportrestrictionsonbauxite,coke,Rawmaterialsfluorspar,magnesium,manganese,(DS394,395,398)siliconcarbide,siliconmetal,yellowphosphorus,andzinc.China2012EU,Japan,USExportrestrictionsonseveralrareearths,tungsten,andmolybdenum.RareearthsTheexportrestrictionscomprisedexportduties,exportquotas,and(DS431,432,433)certainlimitationsontheenterprisespermittedtoexporttheproducts.China2016US,EUDutiesandotherallegedrestrictionsRawMaterialsIIontheexportofvariousformsof(DS508,509)antimony,chromium,cobalt,copper,graphite,indium,lead,magnesia,talc,tantalum,andtin.Indonesia2019EUThecomplaintcoversthefollowingRawmaterialsallegedmeasures:(a)restrictionson(DS592)exportsofnickel,includinganactualprohibitiontoexport;(b)domesticprocessingrequirementsfornickel,ironore,chromiumandcoal;(c)domesticmarketingobligationsfornickelandcoalproducts;(d)exportlicensingrequirementsfornickel;and(e)aprohibitedsubsidyscheme.Source:(WTO’sIndexofDisputeIssues,availablefromWTO,2023a).58CRITICALMATERIALSTheexistinginternationaltradeframeworkhastraditionallyfocusedonreducingimportrestrictions.Whileimporttariffshavedecreasedovertimethroughmultilateraltradenegotiations,exporttaxesarenotsubjecttoanyWTOregulations,exceptforsomerecentlyaccededmembers,whichhaveagreedtoreduceoreliminatethemundertheirWTOaccessionagreements.BOX2.3Therareearthcrisisof2010-2011Rareearthsareagroupof17chemicalelementswhosepropertiesmakethemvaluableforuseinmodern,high-techapplications.Today,theyareusedmostlyinpermanentmagnetselectricmotors(forelectricvehicles)andgenerators(e.g.inwindturbines)(Garcia,2020).TheUnitedStatesdominatedglobalrareearthproductionuntilthe1990s,afterwhichChinabecamethebiggestproducer.Bytheearly2000s,Chinahadanearmonopoly,miningapproximately95%oftheworld’srareearthelements(USGeologicalSurveyandUSDepartmentoftheInterior,2010).However,increasingconcernsoverenvironmentalpollution,illegalminingandresourcedepletionledthegovernmenttodecideondevelopingadownstreamindustry(Wübbeke,2013).Startingin2006,thecountryintroducedseveralregulations,includingexportquotas,productionquotas,exporttaxesandrestrictionsonforeigninvestment(Shenetal.,2020).Exportquotaswereintroducedgradually,butin2010,Chinadecreaseditsexportquotaforrareearthsby37%,resultinginasurgeinrareearthoxidepricessincealternativesupplieswerelacking(seeFigure2.13).Apartfromexportquotas,ChineseshipmentstoJapanwerereportedlyinterruptedforafewweeksbetweenSeptemberandNovember2010afterthedetentionofaChinesefishingtrawler’scaptainamidamaritimedispute(Wilson,2018).Reportsonthenumberofdelayedrareearthexports,thelengthofdelaysandthepartiesresponsibleforthemcontinuetobeconflicting.AnalysisofcustomsdatafromtheJapaneseMinistryofFinanceshowsthatJapaneseimportsofChineserareearthsdidnotdeclineuniformlyfollowingthetrawlerincident(Johnston,2013).The2010-2011pricespikecausedmajorshiftsinrareearths’supplyanddemand,leadingtopriceattenuationby2012.Recyclingandsubstitutionreduceddemandsubstantially,whiletradedeflection,inventorymanagement,theopeningofnewminesandsmugglingensuredresidualsupply(GholzandHughes,2021).InMarch2012,Japan,theEuropeanUnionandtheUnitedStatesrequestedaWorldTradeOrganizationconsultationoverChineserareearthexportrestrictions.Chinadefendedtherestrictionsasnecessaryforconservation,whereasthecomplainantscounteredthattheywere,“designedtoachieveindustrialpolicygoalsratherthanconservation”.In2014,theWorldTradeOrganizationAppellateBodydecidedinfavourofthecomplainants,andChinawasrequiredtoliftitsrareearthexportrestrictions.continuednextpage59GeopoliticsoftheEnergyTransformationBOX2.3Therareearthcrisisof2010-2011(continued)FIGURE2.13Internationalrareearthmetaloxideprices,2007-2016REEIndexedprices(baseyear2007=100)1000CeriumDysprosium800EuropiumLanthanum600NeodymiumTerbium40020002007200820092010201120122013201420152016Basedon:(Wilson,2018;DataretrievedfromtheUSGSNationalMineralsInformationCentre,USGeologicalSurvey).Note:REE=rareearthelements.60CRITICALMATERIALS3456MineralcartelsThehighconcentrationofmineralproductionraisesconcernsofmarketcartelisationandcollusion.Mineralsupplyisconcentratedgeographically,andcorporationswithlargemarketsharesinkeysegmentsofmineralvaluechainsdominatetheirminingandrefinement.Thisconcentrationofproductioncouldpotentiallyleadtotheformationofcommoditycartels,groupsofmajorproducersthatmaximisetheirprofitsbyco-operatingontheproduction,pricingand/ordistributionofcommodities.Historically,producergroupsandgovernmentshavemadevariousattemptstoinfluencemineralmarketsthroughcollusion(WorldBank,2022).Intheearly20thcentury,therewereactiveproducercartelsinthealuminium,copper,nickel,steel,zincandleadindustries(Barbezat,1989;Bray,1997;Storli,2014;Tsokhas,2000;Walters,1944).Anumberofthesecartelswerecreatedinthe1930sinresponsetotheextremelylowpricesthatprevailedduringtheGreatDepression.The1960sto1970ssawanotherwaveofcartelisation,intheaftermathofdecolonisationandaboomingworldeconomy,withthecreationofseveralcartelsandproducerclubstogovernmetalmarketssuchasforbauxite,copper,ironore,tin,tungstenanduranium(seeTable2.5).Manyoftheseattemptswere,however,short-lived,7astheywereplaguedbyissuessuchasinternaldiscord,non-participationofmajorproducers,andmineralsubstitutionorinnovationinsupplyanddemandtechnologies.Inadditiontoproducerclubs,therehavebeenseveralinternationalcommodityagreementsinvolvingbothproducersandconsumers.Forinstance,aseriesofinternationalcommodityagreementsgovernedthetinmarketfrom1956till1985,whenthelastinternationaltinagreementcollapsed(Hillman,2010).Theseagreementsaimedtostabilisethetinmarketbyestablishingabufferstocksystemthatwouldallowproducerstostoreexcesssuppliesduringperiodsofoversupplyandreleasethemduringperiodsofshortages.Whilethissystemkepttinpriceselevatedforseveralyears,italsoencouragedthesubstitutionoftinwithaluminium,especiallyinthebeveragecanindustry(WorldBank,2022).Inrecentyears,severalmineralproducingcountrieshaveagainconsideredtheideaofcartelisation,althoughplansandproposalsfornewmineralcartelsdonotmeetthecriteriaforestablishingcommoditycartels(Box2.4).7Manynon-fuelmineralexporterswerehithardbythefirstoilshock.Theythussawaneedtoincreasetheirexportrevenuesbyformingsuchproducerclubs.©mykhailopavlenkoshutterstock.com61GeopoliticsoftheEnergyTransformationTABLE2.5Metalproducerclubsinthe1970sto1980sMetal/associationDateMembershipDescriptionBauxite1974-1994Jamaica,Guyana,JamaicaandSurinameraisedtaxesonInternationalBauxiteSuriname,Guinea,bauxite,expectingotherstofollow.Initially,Association(IBA)SierraLeone,theCaribbeanproducerswereabletoraiseYugoslaviaandprices,buttheygraduallylostmarketshareBAUAustraliaweretheasotherproducers,especiallyAustralia,foundingmembers.refusedtojointheeffort.TheformalwithdrawalofJamaicain1994markedtheAlgeria,Cameroon,formaldissolutionoftheInternationalBauxiteGhanaandMaliwereAssociation.observers.Copper1967-1988Chile,Peru,ZaireandTherelativelyhighelasticityofcopper’sZambiawerethedemand,mistrustamongtheCIPECmembersIntergovernmentalCouncilfoundingmembers.andthecouncils’limitedmarketshare(inofCopper-Exporting1975,theCIPECcontrolledjust37%oftheCountries(CIPEC)Yugoslaviaandglobalcoppersupplies)preventedthecouncilIndonesiajoinedlater,fromraisingpricesbycuttingproduction.TheandAustraliaandCIPECwaseventuallydissolvedin1988.PapuaNewGuineabecameassociates.Ironore1975-1989Australia,Algeria,APEFattemptedtosetexportpricesbutwasAssociationofIronOreIndia,Liberia,unsuccessful,becauseAustraliaandSwedenExportingCountries(APEF)Mauritania,Peru,wereunwillingtoparticipate,whileBrazilSwedenandandCanada,bothsizableexporters,stayedVenezuela.outsideoftheclub.Theassociationthenreduceditsroletocollectingmarkettrendstatistics,untilitsclosurein1989.Tin1983-2001Australia,DespiteagroupoftinproducersinterveningAssociationofTin-PlurinationalStateandimplementinganexportquotafollowingProducingCountries(ATPC)ofBolivia,Indonesia,theeventualcollapseoftheinternationaltinMalaysia,Nigeria,agreementinthemid-1980s,theearly1990sThailandandZaire.sawasteadydeclineintinprices,withtheAssociationofTin-ProducingCountriesbeingofficiallydisbandedin2001.Tungsten1975-1987Fourteenmembers–OneofthekeyaimsofthePTAwastopreventPrimaryTungstenbothgovernmentandtheUnitedStatesfromsellingexcessvolumesAssociation(PTA)privateenterprisesoftungstenat“uncompetitiveprices”fromits–fromAustralia,strategicstockpile.ItalsowantedtointroducePlurinationalStatepriceindicestomaketungstenpricesmoreofBolivia,Brazil,stableandtransparent.However,in1987,theFrance,Peru,associationceasedtoexistamidawaveofPortugal,Rwanda,tungstenmineclosures.Spain,Sweden,ThailandandZaire.Sources:(Kooroshyetal.,2014;Radetzkietal.,2020;Gochtetal.,1988;Stewart,1981).62CRITICALMATERIALSBOX2.4Prospectsforcartelisationintheplatinum,nickelandlithiummarketsMostnewproposalswillstruggletomeetalltheconditionsforasuccessfulcommoditycartel.Foracommoditycarteltobesuccessful,itmustbringtogetherdominantproducerswithsubstantialmarketsharesthathavefirmownershipofmineralproductionwithintheirrespectivestates.Theremustexisthighentrybarriers,preventingnewproducersfromenteringthemarketandcompetingwithexistingproducers.Producthomogeneityisanotherimportantfactor,wherecommoditiesstandardisedtothepointwheretheyarevirtuallyidenticalacrossproducers.Thisattributeisessentialforthemembersofasuccessfulcommoditycarteltoco-ordinateproductionandpricingstrategieseffectively.Demandelasticityisanothercrucialfactorthataffectsthefeasibilityofacommoditycartel.Itreferstohowquicklyandtowhatextentaproduct’sdemandmightshiftinresponsetohighprices.Acommoditycartelhaslimitedcontroloverpriceifaproductishighlyelastic,meaningconsumersarewillingtoreduceitsconsumptionathigherpricesorcouldswiftlyshifttosubstitutes.Conversely,acommoditycartelmayhavegreatercontroloverpriceifaproductisrelativelyinelastic,meaningconsumershavefewornosubstitutes.PlatinumTheRussianFederationandSouthAfricasignedamemorandumofunderstandingonplatinumgroupmetals(PGMs)attheMarch2013BRICS(Brazil,Russia,India,ChinaandSouthAfrica)summit.Together,theyholdasubstantialshareofthePGMmarket–over80%ofglobalplatinumsupplyandover96%ofglobalPGMreserves–hinderingtheentryofpotentialcompetitors(USGeologicalSurveyandUSDepartmentoftheInterior,2022).Inpractice,however,therearemajorobstaclestothecreationofaPGMcartelsincenoneofthecountrieshasastate-ownedcompanymonopolisingPGMmining.Anyproductioncutswouldrequirethebuy-inofseveralprivatecompanies,includingNorilskNickel,Anglo-AmericanPlatinumandImpalaPlatinum.Further,productioncutsdesignedtoincreasepricescouldleadtojoblossesinthelabour-intensivePGMindustry,whichisthelargestminingemployerinSouthAfrica.8Thealternativeofpurchasingplatinumfromproducersandstoringittosupportpricescouldstraingovernmentfinances(Stoddard,2013).Finally,sustainedhighpriceswouldlikelyadverselyimpactdemandasindustrialuserswouldintensifyeffortstoreduce,reuseorrecyclePGMsincatalystsandotherapplications(Kooroshyetal.,2014).AlthoughtheRussianFederationandSouthAfricareaffirmedtheircommitmenttothe2013memorandumofunderstandingin2018,fewdetailshavesinceemerged.NickelIndonesia,theworld’slargestnickelminer,isconsideringthepotentialestablishmentofanOrganizationofthePetroleumExportingCountries(OPEC)-styleorganisationforcertainbatterymetals,includingnickel,cobaltandmanganese(DempseyandRuehl,2022).Whilethecountryaccountsforalmosthalfoftheglobalnickelproduction,asharelargerthanthatofOPECcountriesinoilproduction,replicatingtheOPECmodelwouldnotbewithoutchallenges.8AccordingtotheMineralsCouncilofSouthAfrica,172159peopleweredirectlyemployedinPGMminingin2022–higherthanthejobsincoal,goldoranyotherminingsector(www.mineralscouncil.org.za/downloads/send/18-facts-and-figures/1996-facts-and-figures-2022-pocketbook).continuednextpage63GeopoliticsoftheEnergyTransformationBOX2.4Prospectsforcartelisationintheplatinum,nickelandlithiummarkets(continued)Forinstance,majornickelproducerssuchasAustralia,CanadaandthePhilippinesarenotsupportiveoftheideaoftheOPEC-styleorganisation(ListiyoriniandHarsono,2022;SerapioJrandLopez,2023).Inaddition,theexistenceofuntappedreservesoutsideofIndonesiapresentsopportunitiesforsupplydiversification.Further,multipleprivatecompanies,notasinglestate-ownedentity,controlIndonesia’snickelmining.9Nationalisationofthecountry’snickelindustrywouldthereforehavefinancialandpoliticalchallengesespeciallyconsideringthatChinesefirmshaveastrongpositioninit.Productheterogeneitycouldbeanotherobstacletocreatinganickelsupplycartel.Nickeloresexistintwotypesofdeposits:sulphideandlaterite.SulphidedepositsaremainlyfoundinAustralia,CanadaandtheRussianFederation,andcontainhigher-gradenickel,whichcanbeprocessedmoreeasilyintoClass1battery-gradenickel.ThelateritedepositsofIndonesiaandthePhilippinescontainlower-gradenickel,whichrequiresadditionalenergy-intensiveprocessingforconversionintobattery-gradenickel(Paraskova,2022).Low-andhigher-gradenickeloresactasimperfectsubstitutesandcompeteindistinctbutrelatedmarkets(Kooroshyetal.,2014).Unlikepetroleum,whichhaslongbeenanunrivalledtransportationfuel,thereareampleopportunitiestoshiftdemandawayfromnickel.Althoughnickel-richcathodeshelda60%shareoftheEVbatterymarketin2022,theshareoflithium-iron-phosphatebatteries,whichdonotrequirenickel,increasedfrom7%in2019to40%inthesameyear(BloombergNEF,2022).Innovationinbatterychemistry,forexample,manganese-richcathodes,andrecyclingcouldfurtherreducethedemandfornickel.LithiumArgentina,BoliviaandChileareintalkstoestablisha“lithiumOPEC”.Collectivelyknownasthelithiumtriangle,thesethreecountriesholdaround65%oftheworld’sknownlithiumresourcesandaccountedforalmost30%oftheglobalproductionin2020(GielenandLyons,2022b).However,therearechallengestotheformationofalithiumcartel.Australia,theworld’slargestlithiumproducerandsecondintermsoflithiumreserves,isunlikelytoparticipateinsuchanendeavour(Mares,2022).Additionally,manycountrieshaveidentifiedsignificantuntappedlithiumreservesandresourcesthroughongoingexploration.Further,likeplatinumandnickel,mostlithiumminingisunderprivatecontrol,oftenbyforeigncompanies.Lithiumisprimarilyminedfrombrines(mainlyinSouthAmericaandChina)andhardrockore,especiallyspodumene,whichisspreadmorewidely(inAustralia,Canadaandelsewhere).EVbatteriesuseeitherlithiumcarbonate(lithium-iron-phosphatebatteries)producedfrombrines,orlithiumhydroxide(nickel-manganese-cobaltbatteries)producedfromhardrockoreorfromlithiumcarbonatethroughchemicalprocessing.Australianproducershaveanadvantagesincetheirspodumeneoreischeaperandeasiertoconvertintolithiumhydroxide,whichbatterymakersincreasinglyprefer(Gielenetal.,2022b;Mares,2022).Finally,lithiumcompoundscanbesubstitutedinbatteries,theprimaryuseoflithium.Sodium,andairmetals,includingzinc,canreplacelithiumwhollyorpartiallyasbatterymaterialsforsomeEVs,althougheverychangecomeswithtrade-offsintermsofcost,performanceandsecurityofsupply(Blakemoreetal.,2022;IRENA,forthcoming).9Forinstance,fourofthefivelargestnickelminesinIndonesiaareownedbytheprivate,foreigncompaniesVale(Brazil),theTsingshanHoldingGroup(China)andtheSolwayInvestmentGroup(Switzerland)(www.mining-technology.com/marketdata/five-largest-nickel-mines-indonesia-2021/).64CRITICALMATERIALS456PoliticalinstabilityandsocialunrestPoliticalorsocialunrestinproducingcountries,includingcoups,labourstrikesandcivilwars,coulddisruptmineralsupply.ThemajorityofmineralsareextractedincountriescategorisedaseitherextremelyunstableorunstableintheWorldwideGovernanceIndicators,whichmeasurethequalityofgovernanceacrosssixmajordimensions,includingabsenceofviolence,controlofcorruptionandruleoflaw(seeFigure2.14).Examplesofsuchsupply-disruptinginstabilityarenumerous.Forinstance,in1978,theAngolancivilwarspilledovertoZaire’sShabaprovince(nowKatangaintheDemocraticRepublicofCongo),triggeringasevenfoldcobaltpricesurgeinatwo-yearperiodduetofearsofglobalcobaltshortages(Gulley,2022).This“cobaltcrisis”promptedashiftfromcobalttorareearthsformanufacturingpermanentmagnets,inawayforeshadowingthe“rareearthcrisis”of2010.AnotherexampleisMyanmar,wheretheminingsectorsawprotestsandstrikeseruptfollowingacoupinFebruary2021.Theseinstabilitiescausedan80%declineinexportearningsfrommineralsforthecountry,whichisamajorrareearthproducer(Frontier,2022).AfurtherexampleisGuinea,whichwitnessedpoliticalcrisisin2021,causingsupplydisruptionsanduncertaintyintheglobalaluminiummarketgiventhatitistheworld’slargestbauxiteproducer.Criticalmaterialsupplycanalsobedisruptedduetolabourstrikes.LabourstrikesintheSouthAfricanplatinumsectorsignificantlydisruptedglobalsupplychains,withonemajorstrikein2014lastingfivemonthsandcausinga40%dropinglobalplatinumproduction(Stoddard,2014).Chile,theworld’slargestcopperproducer,hasalsowitnessedproductiondisruptionsandsupplyshortagesduetolabourstrikes,ofwhichamajoronein2017lasted44days,causingasignificantdropinglobalcopperproduction(Iturrieta,2017).InPeru,strikesbycoppermineworkershaverecentlyledtoproductionshutdownsanddelays,causingsupplyshortagesandpricevolatilityintheglobalcoppermarket(Attwood,2023).Theselabourstrikesoftenhighlighttheworkers’legitimateconcernsaboutpoorworkingconditions(seeChapter3).FIGURE2.14Politicalstabilityofmineralproducingcountries,2020Productionofmineralrawmaterials(t)18000Stable1500012000Fair9000UnstableExtremelyunstable600030000200020201996Source:(WorldMiningData,2022).65GeopoliticsoftheEnergyTransformation56MarketvolatilityandmanipulationCriticalmaterialmarkets,likeothercommoditymarkets,demonstrateacyclicalnature,exhibitingaclassicboom-bustpattern.Thisispartlyduetotheextendedleadtimesrequiredtoestablishnewmines,causingasupply-demandgap,especiallyduringperiodsofrapiddemandgrowth.Formajornewgreenfieldmines,advancingfromresourcediscoverytoactualproductiontypicallytakesseventotenyears.Thismeansthattechnologicaladvancementscantriggerresourcedemandsmuchfasterthanproducerscanraisesupplies,resultinginperiodicpricesurges.Thisdynamiciscompoundedbythefactthatcriticalmineralsareoftenby-productsofotherminedbasemetals.Forexample,cobaltistypicallyaby-productofnickelandcoppermining,nearlyallindiumisaby-productofzincminingandmostrareearthelementsareby-productsofironoremining.Theproductionoftheseminormetalsisthereforestronglyinfluencedbytheproductionofthebasemetals,whichoftengeneratemorerevenues.Forexample,investmentsinnewcobaltprojectsareoftenlinkedmoretomarketdynamicsforcopperthancobalt.Inotherwords,ahighercobaltpricedoesnotnecessarilyincentivisecopperminersenoughtoproducemoreofit.Supplyresponsesformetalssuchascobalt,indiumandtelluriumareindirectlyinfluencedbypriceincreasesduetothepeculiarnatureofby-productproduction(Nassaretal.,2015).Inadditiontosupplyanddemanddynamics,mineralandmetalmarketsarealsopronetomarketmanipulation,whichcanexacerbatepricevolatilityandsupplychaindisruptions.Between2000and2010,therewereatleast15caseswhereantitrustauthoritiesuncoveredandpenalisedattemptstoforminternationalprivatecartelsinminingandprimarymetals(Connor,2012).Consideringmineralmarketsaresmallwithrelativelylittleliquidity,thereareampleopportunitiesfortraderstodevelopmarket-corneringpositionsthatcanconstrictsupplyandcausepricespikes(HendrixandBazilian,2022).Inthepast,therewerenumerousattemptstomanagethemarketandinfluenceprices,creatingconcernsovercorporatemarketmanipulation.Forinstance,inthe1985tincrisis,thetinmarketcollapsedwhenagroupoftraders,whotriedtocornerthemarket,couldnotfindbuyersfortheirlargetinholdingsduetotheunprecedentedpricesurges(AndersonandGilbert,1988).Similarly,inthe1996Sumitomocopperaffair,copperpricesrosesharplyafterasingletraderatSumitomoCorporationaccumulatedasignificantamountofcopperfuturescontracts.Sumitomoandothermarketparticipantssufferedheavylosseswhenthetrader’spositionswererevealed,causingamarketcrash(Kozinn,2000).Morerecently,theLMEsuspendednickeltradinginMarch2022afterpricessurgedbyover250%injusttwodays.Thepricesurgewasattributedtoashortsqueeze,wheretraderswhohadbetagainstthepriceofnickelwereforcedtobuybacktheirpositionsathigherprices,drivingthepriceevenhigher(Farchyetal.,2022;OliverWyman,2023).Overayearlater,thenickelmarketremainsunstable,withtradingvolumesfallingsharplyandpricesexperiencingfrequentuncontrolledswings(CangandFarchy,2023).Theseincidentshavepromptedfinancialregulatorsandexchangestolaunchprobestoincreasemarketoversight,transparencyandriskmanagement.Forexample,theLMEhasintroducednewrulestopreventshortsqueezeandotherformsofmarketmanipulation.Theseinclude,forexample,limitsontheamountofnickelthatcanbedeliveredonfuturescontracts.However,theeffectivenessoftheseeffortsinpreventingmarketmanipulationremainstobeseen.66CRITICALMATERIALS2.3THERACEFORCRITICALMATERIALSANDTHEPOTENTIALFORCONFLICTMiningandinternationalconflictAccesstonaturalresourcesisakeyaspectofstrategicinterestformanycountriesandisreflectedintheirforeignpolicydoctrinesandactions.Thepursuitofcriticalmaterialshasbeenamajormotiveforstatesseekingterritorialexpansion.Now,theglobaldemandforcriticalmaterialscouldleadtoincreasedcompetitionespeciallyindeposit-richareas,potentiallysparkinggeopoliticaltensionsintheArctic,outerspaceandthedeepsea,ascountriesscrambletosecureaccesstotheseresources(Fox,2022).TheArcticisknowntohavevastreservesofcriticalmaterialssuchasnickel,zincandrareearths(Boydetal.,2016).Miningisnotanewactivityintheregion,whichishometoseveralwell-establishedmines,suchastheRedDogzincmineinAlaskaandthePolarDivisionnickelminesinArcticRussia(Loginovaetal.,2023).Newdepositsarebeingdiscovered.InJanuary2023,theSwedishminingcompanyLKABannouncedthediscoveryofthelargestknownrareearthelementsdepositinEurope.TherapidmeltingoftheArcticseaice,duetotheregionwarmingattwicetheglobalaveragerate,hasexposedpreviouslyinaccessibleresources,triggeringheightenedcompetitionamongcountries(IPCC,2021;PaulTaylor,2020).10Whiletheregionhasseenincreasedmilitarypresence,mostscholarsseealowlikelihoodofconflictoverresources(Tunsjø,2020).Nonetheless,theregion’smineralbountiescontributetoitsstrategicimportance.Outerspaceisalsobecominganewfrontierintheraceforcriticalmaterials.Asteroidsandothercelestialbodiesarebelievedtobeextremelyrichinraremetals,includingplatinumandgold.Thishasspurredincreasedinvestmentinspaceexplorationandmining,withcountriessuchasChina,theRussianFederationandtheUnitedStatesvyingforafootholdinthisemergingindustry.NASA’sOSIRIS-RExmission,forinstance,gatheredasmallsamplefromasteroidBennuandwillreturntoEarthon24September2023(NASA,2023).Arapidtake-offofcommercialspaceminingis,however,unlikelyduetounresolvedquestionsaboutitscost-effectiveness,technicalfeasibility,legalgovernance,andenvironmentalandsafetyimplications.Theraceformineralscouldalsotriggergeopoliticalconflictsoveroceanseabeds,whichholdsomeofthelargestestimatedmineraldepositsontheplanet.Somecountrieshavealreadyinitiateddeep-seaexplorationwithintheirexclusiveeconomiczonesorextendedcontinentalshelves.Norway,forinstance,isplanningtoopenanareaofoceannearlythesizeofGermanytodeep-seamining(BryanandMilne,2023).However,theseareasoftenoverlapbetweenneighbouringcountries,triggeringdisputesoverresourceownershipandextractionrights.Deep-seamininginwatersbeyondnationaljurisdictionisregulatedbytheInternationalSeabedAuthority,createdbytheUnitedNationsConventionontheLawoftheSea.However,aregulatoryframeworkremainsincomplete,andmembercountrieshaveopposingviewsonhowtoproceed(seeBox2.5).10Allland,internalwaters,territorialseasandexclusiveeconomiczonesintheArcticareunderthejurisdictionofoneoftheeightArcticcoastalstates:Canada,Denmark,Finland,Iceland,Norway,theRussianFederation,SwedenandtheUnitedStates.67GeopoliticsoftheEnergyTransformationBOX2.5Governingdeep-seaminingAgrowingnumberofcountriesandcorporationsareshowinginterestindeep-seaminingforcriticalmaterials,thatis,extractingmineralresourcesfromtheoceanfloor.Todate,22stateandprivatecontractorshold31miningexplorationcontractstosearchforpolymetallicnodules,polymetallicsulphidesandcobalt-richferromanganesecrusts(Figure2.15)(InternationalSeabedAuthority,2023),whichareextremelyrichinvaluablemetalswithhigh-gradeore,suchascobalt,copperandmanganese.Deep-seaminingraisesconcernsregardingenvironmentalimpacts,includingmarinehabitatdestructionandthereleaseoftoxicchemicals.Deep-seaecosystemsarecrucialforglobalclimateregulationandformanimportantpartofoceanicfoodwebs(EnvironmentJusticeFoundation,2023).Whilesomeproponentsofdeep-seaminingarguethatitismoreeco-friendlythanland-basedmining,othersarguethatitisnotsustainableandcouldcauseirreversibleenvironmentaldamage(Levinetal.,2020).ThishaspromptedFIGURE2.15Geographicaldistributionofthethreetypesofmineraldepositstargetedbydeep-seaminingPolymetallicnodulesCobalt-richcrustsPolymetallicsulphides/ventsExclusiveeconomiczonesClarionClippertonZoneAtlanticOceanSolwara1PacificOceanDISCOLIndianOceanSource:(Milleretal.,2018).Disclaimer:Thismapisprovidedforillustrationpurposesonly.BoundariesandnamesshownonthismapdonotimplyanyendorsementoracceptancebyIRENA.68©RobertSzymanskishutterstock.comCRITICALMATERIALSBOX2.5Governingdeep-seamining(continued)severalcallsforamoratoriumondeep-seamining.InSeptember2021,theInternationalUnionforConservationofNature’sWorldConservationCongressadoptedamotioncallingforamoratoriumondeep-seamining(Resolution122,IUCN,2021).Severalcountriesalsohavecalledforamoratoriumorprecautionarypauseondeep-seaminingininternationalwaters(DeepSeaConservationCoalition,2022).TheEuropeanCommissionwantsdeep-seaminingtobeprohibiteduntil“scientificgapsareproperlyfilled,noharmfuleffectsarisefromminingandthemarineenvironmentiseffectivelyprotected”(Directorate-GeneralforMaritimeAffairsandFisheries,2022).Deep-seaminingisregulatedbytheInternationalSeabedAuthority(ISA),anintergovernmentalbodyof167memberstatesandtheEuropeanUnionestablishedunderthe1982UnitedNationsConventionontheLawoftheSea.TheISAhastheexclusiverighttoissueexplorationandexploitationcontractsformineralsintheinternationalseabed,althoughitisalsorequiredtoensureprotectionofthemarineenvironmentfromthepotentialharmfulimpactsofdeep-seabed-relatedactivities.WhiletheISAhasdevelopedregulationsgoverningprospectingandexplorationactivitiesforminerals,itisstillworkingonamorecomprehensiveminingcodethatwouldcovercommercial-scaleexploitationoftheseresources.InJuly2021,thePacificIslandnationofNaurutriggeredthe“two-yearrule”,whichgavetheISAtwoyearstofinaliserulesandregulationsfordeep-seamining.ThisexpeditedISA’seffortstocompleteitsminingcodebeforethedeadlinestipulatedinNauru’ssubmission,9July2023,potentiallyenablingtheapprovalofcommercialminingapplicationsasearlyasmid-2023.69GeopoliticsoftheEnergyTransformation©mehmetalipoyrazshutterstock.comMiningandlocalconflictTheraceformineralscanexacerbateorcontributetolocalarmedconflictinmultipleways.Incountrieswithweakgovernanceandpoliticalinstability,mineralextractioncanbelinkedtolocalgrievances,conflictandhumanrightsabuse(ChurchandCrawford,2018).Thishasbeenobservedwithcertainotherhigh-valueresources,suchasdiamonds,goldandtimber.Infact,theUnitedNationsEnvironmentProgrammeestimatesthatatleast40%ofallintrastateconflictsinthepast60yearscanbelinkedtonaturalresources(UNEP,2009).Mineralrichescancontributetoconflictinseveralways(UNEP,2009).Forexample,mineralexploitationcanstirconflictoverthefairdistributionofbenefitsandcostsamongthelocalpopulation.Miningwealthcanalsobeexploitedtosustainlocalconflicts,andinareaswithweakstateauthority,itcanhelparmedgroupsfundtheiractivitiesbyexploitinggreenmineraldeposits,leadingtoincreasedviolenceandinstability.Thisisespeciallytrueinregionswithahistoryofconflictorwhereethnicorreligioustensionsexist.70©MatthieuCattinshutterstock.comCRITICALMATERIALSInColombia,forexample,RevolutionaryArmedForcesofColombia(FARC)rebels,whohavebeenfightinganinsurgencysince1987,longfinancedpartoftheiroperationsbyproducingtungstenfromthedepthsoftheAmazonianjungle.Similarly,intheDemocraticRepublicofCongo,rebelgangsareestimatedtomakemillionsfromillegallyproducingtungsten,tin,tantalumandgold(alsoreferredtoas“3TG”).Itisestimatedthatapproximately21%oftheworld’stantalumsupplyin2011camefromconflictedregions(Abraham,2017).Certainmineralresourcesarelesslikelytobeinvolvedinlocalconflictsthanothers.Forexample,mineralssuchasbauxite,lithiumandgraphiteareprofitableonlywhenextractedonalargeindustrialscale.Also,bauxiteandgraphitehavelowvalue-to-weightratios,makingthemlessattractivetonon-statearmedgroups,suchasrebelarmiesandmilitias,whichexploitvaluableresources.Further,althoughartisanalminersmineasubstantialportionofcobalt,theartisanalcobaltminesintheDemocraticRepublicofCongohavenotyetbeentargetsforarmedactors,despitetheprevalenceofconflictaroundtheartisanalgoldandotherconflictmineralsinEasternCongo(Hendrix,2022).71GeopoliticsoftheEnergyTransformationCHAPTER3HUMANSECURITYANDGEOPOLITICALSTABILITYlabourenvironmenthumansecuritymineralsdevelopingcountrieswaterstressnickellandscapecobaltlithiumminingriskgreenhousegasemissionslandlosslabourindigenouscommunitiesreliablevaluecreationconflictsstockpilinegxtrarigcthiotsnsCRITICALMATERIALSHIGHLIGHTSnTheminingindustryhas,attimes,causedharmtoworkers,indigenouscommunitiesandtheenvironment,raisingconcernsthattheenergytransitionwillexacerbatetheseimpacts.nTheminingofcriticalmaterialshasbeenassociatedwithlandloss,displacementandhumanrightsabusesagainstindigenouscommunities.Goingforward,miningprojectsmustincluderobustandproactivecommunityengagement,considering80%oflithiumprojectsandmorethanhalfofnickel,copperandzincprojectsarelocatedinterritoriesbelongingtoindigenouspeoples.nPoorlabourconditionshavebeenpersistentintheglobalminingindustry,whichlacksadequatesocialprotectionandlabourlaws.Thesechallengesarefurtheramplifiedbyartisanalandsmall-scalemining,whichischaracterisedbyhazardousworkingconditions,lowwagesandalackofsocialprotection.Afairandsustainablegreeneconomytransitionthusrequiresaddressingthesechallenges.nThemetalsandminingsectorisresponsiblefor10%ofglobalgreenhousegasemissions,withaluminiumandsteelindustriesbeinglargecontributors.Despitetheirmineralintensity,renewableenergytechnologiesemitonlyafractionofthegreenhousegasesreleasedbyfossilfueltechnologies.Increasinginvestmentsinenergyefficiencyandshiftingtorenewableelectricitycanreduceemissionsfromminingandprocessing.nMiningactivitiescanhavedetrimentaleffectsonlandscapes,forexample,deforestation,soilerosionandpollution.Mitigatingtheseimpactsrequiresimplementingrobustenvironmentalmanagementpracticesandadoptingsustainableminingapproaches.nCriticalmaterialextractioncanexacerbatewaterstress.Abouthalfofglobalcopperandlithiumproduction,forexample,isinhighlyaridareas.Encouragingwatersavingsatminesitesby,forexample,increasingwaterreuseandrecycling,theuseofdesalinatedwatersupplyandresponsiblewaterdischargeofappropriatequalityareessentialtominimiseimpactsonlocalpopulationsandecosystems.nIfmanagedresponsibly,theenergytransitioncanpromoteinclusivityandstabilitybyincreasingaccesstoaffordableandreliableenergy,catalysingeconomicgrowthandimprovingsocialandenvironmentaloutcomes.Internationalco-operationisessentialtoensureasustainable,rights-basedapproachtotheenergytransitionthatbenefitsallstakeholders.nFordevelopingcountries,thegrowingdemandforcriticalmaterialsbringsrisksbutpotentiallyevengreaterrewards.Combatingcorruptionandmultinationaltaxavoidanceintheextractivesectorisessentialtoensureitsmaximalcontributiontoasuccessfulenergytransition,whichcanhelpdevelopingnationsmoveupthevaluechain,attractinghigher-marginactivitiessuchasmineralprocessingandavoidingrelianceonprimaryoreexports.73GeopoliticsoftheEnergyTransformationTheconceptof“humansecurity”canhelpbroadenthetraditionalsecurityagendatoincludenon-traditionalthreatssuchasclimatechange,energyinsecurity,poverty,migrationandpollution,whichcanindirectlyordirectlyaffectpeaceandstabilitybothwithinandbetweencountries.Understandingthegeopoliticalrisksrelatedtothedevelopmentofcriticalmaterialsfortheenergytransitionthereforerequiresacomprehensiveunderstandingoftheassociatedthreatsandvulnerabilities(Table3.1).TABLE3.1Selectedsocial,environmentalandgovernancerisksassociatedwithcriticalmaterialsRiskAreasDescriptionSolutionsSocialIndigenousMininghasbeenassociatedwithlandFacilitaterobustandproactivecommunitiesloss,displacementandhumanrightscommunityengagementthroughoutabusesagainstindigenouscommunities.theentireprojectcycleLabourPoorlabourconditionshavebeenImplementstringentsafetyconditionspersistentintheglobalminingregulationsandensurefairwagesandindustry,whichlacksadequatesocialsocialprotectionforworkersprotectionandlabourlaws.EnvironmentalArtisanalASMhasbeenlinkedtohazardousImproveASMoversight,engageinandsmall-conditions,childlabour,lowwagesdialoguewithASMcommunitiesscaleminingandalackofsocialprotection.andofferalternativelivelihood(ASM)opportunitiesThemetalsandminingsectorisClimateresponsiblefor10%oftheglobalIncreaseenergyefficiencyinvestments,changegreenhousegasemissions.shifttocleanerfuelsandrenewables,andfostercircularityandrecyclingBiodiversityMiningactivitiescanharmbiodiversityIntegratebiodiversityconsiderationsthroughdeforestation,habitatlossandintominingpracticesthroughsoilerosion.sustainableplanningandresourcemanagementWasteandMiningwastecanposehazardsforAdoptstringentwastereduction,pollutionlocalenvironmentsandcommunitiesifmanagement,andreclamationandnotmanagedproperly.rehabilitationprogrammesWaterstressMiningandprocessinghavesignificantEncouragewatersaving,reuseandwaterrequirementsandposedesalination,andresponsiblewatercontaminationrisks.dischargeGovernanceCorruptionCorruptionriskscanariseinmanyImprovetransparency,accountability,stagesofminingprojects,includingpublicparticipationandgovernancelicensingandrevenuecollection.frameworksInadequateTaxavoidanceandinadequatetaxStrengthenfiscalframeworks,taxframeworkscanleadtosubstantialadministrativecapacitiesandcollectionrevenuelossesforhostgovernments.internationaltaxco-operationRevenueMineralrevenuesarenotalwaysDirectmineralrentstowardsindustrialmanagementallocatedinthemosteffectivewaytransformationandeconomictosupporteconomicgrowthanddiversificationindustrialisation.74CRITICALMATERIALS©istanbulphotosshutterstock.comTheextractiveindustryhascontributedtohumaninsecurityinthepast(UnitedNationsDevelopmentProgramme(UNDP)etal.,2016),raisingconcernsthattheextractionofenergytransitionmineralsmayexacerbatethistrend.Incertaincases,miningofcriticalmaterials,suchascopper,lithium,nickelandcobalt,hascausedseriousharmtoworkers,indigenouscommunitiesandtheenvironment.Therefore,itisessentialthatthesematerialsareextractedandprocessedresponsibly,givingdueconsiderationtotheirimpactonlocalcommunitiesandtheenvironment.Ifmanagedwell,theenergytransitioncouldbeagamechangerforinclusivityandstability.Byexpandingaccesstoreliableandaffordableenergy,thetransitioncancatalyseeconomicgrowth,alleviatepoverty,andenhancesocialandenvironmentaloutcomes(IRENA,2023a).Theneedtoexpandanddiversifycriticalmaterialsupplychainsalsooffersanopportunitytorewritethelegacyoftheextractiveindustries,whileopeningopportunitiesforlocalvaluecreationinmineral-richdevelopingcountries.Internationalco-operationcanensureanenergytransitionguidedbytheprinciplesofsustainability,humanrightsandsocialjusticesothatthebenefitscanbesharedbyall.Thischapterdiscussessomeofthemostsalienthumansecurityrisksassociatedwithmineraldevelopment,includingtheirimpactonindigenouscommunities,humanrights,labourconditions,climatechange,landuseandwatersecurity.Theserisksvaryacrosscriticalmaterials,withpronouncedenvironmentalandsocialimplicationslinkedtospecificminerals.CobaltsourcedfromtheDemocraticRepublicofCongo,forinstance,hasbeenlinkedtogravehumanrightsviolations.Nickelproduction,especiallyfromlateritedepositsprevalentinIndonesiaandthePhilippines,posessignificantchallengesconcerningemissionsanddeforestation.Further,lithiumextractionfrombrinesinLatinAmericaraisessubstantialconcernsoverwaterstress.75GeopoliticsoftheEnergyTransformation©NickFoxshutterstock.com3.1ECONOMICANDSOCIALTENSIONSIndigenouscommunitiesandhumanrightsMiningdisplacesindigenouscommunitiesandcanleadtolossoflandandnaturalresourcesthatareessentialtotheirlivelihoodsandculturalpractices.Displacementofthesecommunitiescausesthemtoloseaccesstotheirtraditionalterritories,potentiallydisruptingtheirculturalpracticesandsocialstructures,and,insomecases,hasinvolvedtheforcedrelocationofentirecommunities(Ali,2009).Accordingtoarecentsurvey,54%ofenergytransitionmineralsarelocatedonornearindigenouspeoples’land(Owenetal.,2022).11Theproportionvariesbymineral,withover80%oflithiumprojectsandmorethanhalfofnickel,copperandzincprojectslocatedinindigenouspeoples’territories.Moreover,miningprojectsintheseareasareoftenlocatedinhighlyvulnerablesettings.Overathirdoftheenergytransitionmineralprojectsarelocatedonornearindigenousorpeasantlandfacingacombinationofthreecontextualrisks–waterrisk,conflictandfoodinsecurity(Figure3.1)–whoseco-occurrenceisbyfarthehighestforplatinum,followedbymolybdenum(76%)andgraphite(74%).Ninety-onepercentofplatinumreservesandresourcesarelocatedonornearindigenousorpeasantlandfacingthesethreecontextualrisks.11Note:Thearticleconsideredagroupof30energytransitionmetalsandminerals.76CRITICALMATERIALSFIGURE3.1Co-occurrenceofwaterrisk,conflictandfoodinsecurityforcriticalmineralmi-ningprojectslocatedonornearindigenousorrurallandBauxiteBAURareearthelementsREEGraphiteTungstenLithiumCobaltMolybdenumSilver0PlatinumTinManganeseNickel10LeadZincVanadium2030405060708090100IronOreCopper(%)PercentageofreservesandresourcesWaterRiskConflictFoodinsecuritySource:(Owenetal.,2022).©PhilippEdlershutterstock.com77GeopoliticsoftheEnergyTransformationTheUnitedNationsDeclarationontheRightsofIndigenousPeoples,adoptedbytheGeneralAssemblyin2007,setsoutaninternationalframeworkfortheprotectionandpromotionofindigenouspeoples’rights,includingtheirrighttofree,priorandinformedconsent(UnitedNations,2007).However,despitethisframework,theminingofmineralscriticaltotheenergytransitioncontinuestofaceallegationsofhumanrightsabuse.AccordingtotheBusinessandHumanRightsResearchCentre–anon-governmentalorganisationmonitoring103firmsengagedinminingsixmineralsimportanttothetransition–495allegationsofhumanrightsviolationswerereportedin2010-2021.Theallegationsincludedevelopmentonindigenouspeoples’landwithouttheirconsent,desecrationofsacredsites,increasedriskofviolenceagainstindigenouswomenandenvironmentalthreatstothesubsistenceresourcesofcommunitiesalreadyfacingclimatechangeimpacts(Business&HumanRightsCentre,2022).TheindigenousstruggleagainsttheFénixnickelmineinGuatemalaillustratesseveraloftheseissues(seeBox3.1).BOX3.1IndigenousrightsandresistanceagainsttheFénixnickelmineinGuatemalaGuatemala’sFénixnickelmine(ownedbyasubsidiaryoftheSwisscompanySolwayInvestmentGroup)hasbeenatthecentreofasocialstruggleformanyyears.Indigenouscampaignersaccusedthemineofcausingsevereenvironmentalandsocialimpactsonnearbycommunities,andthecompanyhasbeencriticisedforitslackofconsultationwithlocalindigenouscommunitiesandtheMayaQ’eqchi’fishermen,andfornotrespectingtheirrightstolandandresources(UnitedNations,2011).Theminefacedprotestsfirstin2014,whenlocalcommunitiesaccusedthecompanyofcontaminatingnearbyriversaswellasLakeIzabal,thecountry’slargestlake.Althoughthecompanydeniedtheallegations,tensionscontinuedtorise,andthesituationescalatedin2017,whenpoliceandsecurityforcesweredeployedtosuppressprotests.Manywereinjuredintheseclashesandoneprotesterlosthislife.Theincidentdrewinternationalattentionandledtocallstoholdthecompanyaccountableforitsactions(Cuffe,2022).In2019,theGuatemalangovernmentsuspendedoperationsattheFénixmine,citingconcernsaboutthecompany’sfailuretocomplywithenvironmentalregulations.Thecompanychallengedthedecision,allowingmineoperationstocontinueamidthelegalbattle.In2021,theGuatemalanSupremeCourtruledthattheminecouldresumeoperations,althoughlocalcommunitiesandhumanrightsorganisations,whichfearfurtherharmtotheenvironmentandhumanrights,haveopposedthedecision(Daniels,2022).TheFénixmineremainsacontentiousissue,highlightingtheneedforgreateraccountabilityandrespectforindigenouspeoples’rightsintheminingindustry.78©Dendenalshutterstock.com©NanangSugishutterstock.comCRITICALMATERIALS©GillesPaireshutterstock.comMineralandmetalextractionhasbeencreatingsimilarsituationsinindigenousterritorieselsewhere.Forexample,inOntario,Canada,criticalmineralextractionhasraisedconcernsaboutitspotentialimpactonthetraditionalterritoriesoftheFirstNations(Dufour,2023).Anotherexamplecanbefoundin2020,whenRioTintoattractedsignificantpubliccriticismforlegallydemolishingtwoancientandsacredcavesintheJuukanGorgeinWesternAustralia’sPilbararegionforexpandinganironoremine(BurtonandBarrett,2020).Thesechallengesunderscoretheutmostimportanceofensuringeffectivecommunityengagementwithintheminingsector,whichrequirestheequitablerepresentationandinvolvementoflocalcommunitiesfromtheinitialprojectplanningstages,andensuringtheirvoicesareheardandthattheirconcernsaddressedthroughouttheprojectlifecycle.Also,miningcompaniesshouldensurethatlocalcommunitiesandindigenouspeoplesbenefitfromminingrevenues,forexample,throughinvestmentinlocalinfrastructureandcommunitydevelopment.Byactivelybuildingtrustandcultivatingstrongrelationshipswithlocalcommunities,miningcorporationsnotonlypromotemutualprosperitybutalsoestablishasolidfoundationoftrustwithinvestorsandpolicymakers(EnergyTransitionsCommission,2023;ETC,2023).LabourconditionsandemploymentTheminingindustryisplaguedbypoorlabourandworkingconditions.Manycountriesrichinmineralreserveslackrobustsocialprotectionandlabourlaws.Thisleadstoinadequatewagesandcreatessubstandardworkingconditions,indicatingthattheextractionofenergytransitionmineralscouldpotentiallycontributetolabourexploitationandhumanrightsviolations.Threatstolabourconditionsareamplifiedthroughthewidespreadpracticeofartisanalandsmall-scalemining(ASM),whichisofteninformalandunregulated,withworkersfrequentlyworkingunderhazardousconditionsonlowwages,withnobasicsocialprotection.ASMiscommonintheminingofmineralssuchascobalt,butalsoassociatedwithexploitativelabourpractices,childlabour,pollution(anditsassociatedhealthimpacts)andenvironmentaldegradation.AjustandsustainableenergytransitionrequiresaddressingthechallengesassociatedwithASM(seeBox3.2).79GeopoliticsoftheEnergyTransformationBOX3.2Artisanalandsmall-scaleminingWorldwide,almost45millionpeopleacross80countriesareengageddirectlyinartisanalandsmall-scalemining(ASM),12withanother134millionindirectlyinvolvedinindustriessupportingthesector(WorldBank,2020a).ThenumberofpeopleengagedinASMhasincreasedmorethansevenfoldsincetheearly1990s(Figure3.2andFigure3.3).ASM’sgrowthoverthepasttwodecadeshasbeendueto,amongothers,feweralternativelivelihoodsandthegrowingmineraldemandfromlow-carbonandcleanenergytechnologies(FlorenceBascomGeoscienceCenter,2019;WorldBank,2020a).Forexample,thesectorproduces18–30%oftheworld’scobalt,akeybatterymetalpoweringtheglobalcleanenergytransition(OECD,2019).Otherenergy-transition-relevantmineralsminedthroughASMincluderareearthelementsminedinMyanmarandcopperminedinPeruandtheDemocraticRepublicofCongo(Awng,2022;BangkokPost,2021).EventhoughASMoftenreducespoverty,increasesnationalincomeandcontributestoexportearningsfordevelopingcountries(Hilson,2002),itfacesseveralchallenges(givenbelow),whichmustbeaddressed.nHealthandsafetyconcerns:ASMischaracterisedbyalackofregardtominers’occupationalhealthandsafety.ASMminersareexposedtophysicalandtoxichazardsandareatagreaterriskofinfectiousdiseasesandcancer,makingitoneofthemostdangerousprofessions(Landriganetal.,2022).nLabourandhumanrightsabuse,includingchildlabour:TheASMsectorisnotformalisedandisinadequatelyregulated,causingseveralchallengesforitsminers,fromlackofappropriatesafetyequipmentandfaultymachinery(Casey,2019)tolowdailywages(Pattinson,2021).Childlabourisamajorchallengeofthislow-cost,low-techandlabour-intensiveindustry.CobaltminingemployschildrenasyoungastenyearsondailywagesrangingbetweenUSD3.50andUSD10fortheriskyandarduoustasksofdiggingunderground,carryingheavysacksandwashingtheextractedcobaltintheriver(Fleming,2018).FIGURE3.2NumberofpeopleengagedinASM(inmillions)NumberofpeopleworkinginASM(inmillions)50(2020WorldBank)44.75(2018IGF)40.540(IIED2013)30.0302015.0(ILO1999)13.0(EuropeanCommission2012)106.0(UnitedNations1993)01990199520002005201020152020continuednextpageSource:(DELVE,2023).Note:ASM=artisanalandsmall-scalemining.12TheOrganisationforEconomicCo-operationandDevelopmentdefinesASMas“formalorinformalminingoperationswithpredominantlysimplifiedformsofexploration,extraction,processing,andtransportation”.ASMtypicallyrequireslesscapitalandusestechnologythatneedssubstantiallabour.80CRITICALMATERIALSBOX3.2Artisanalandsmall-scalemining(continued)nEnvironmentaldegradation:ASMminingisfrequentlyassociatedwithsubstantialenvironmentaldegradation.Ingeneral,itadverselyimpactswaterandsoilresourceswhenminingeffluentsaredischargedintotheenvironmentwithoutpropertreatment(Gyamfietal.,2019).Besidesexacerbatingpollution,ASMactivitiesalsocausedeforestation,threateninglocalecosystemsandecosystemservices(ServirGlobal,2020).nEconomiclosses:LossoftaxrevenuesduetoillegalminingandtradingremainsachallengefortheASMsector(Noetstaller,1995).Furthermore,reducedfiscalrevenueshavetheconsequenceofrestrictinggovernments'capacitiestocarryoutregulatorydutiesandsustainingunregulatedminingpractices.(Tarras-Wahlberg,2002).nArmedconflict:ThelackofaformalstructureandthewidegeographicalreachofASMcanresultintheextraction,tradeandsaleofcommoditiesviaunofficialchannels.Thiscouldpotentiallyleadtocriminalorterroristorganisationsbeingfundedthroughtheseactivities,increasingtheriskofconflict,violenceandterrorismescalationwithincountries,whichcouldalsoimpacttheirinteractions(ScienceforaChangingWorld,2022).Inrecentyears,severalgovernmentsattemptedtointroduceASMreforms,ofwhichsomehaveresultedintheunintendedeffectofminersoperatingillegally.Forexample,inSub-SaharanAfrica,minersresortedtoillegalartisanalminingafterregularisationoftheregion’sinformalsmall-scaleminingsectorresultedinlongbureaucraticprocedurestoobtaintherequiredlicenses(MohammedBanchirigah,2006).Further,theformalisationofartisanalminingisnotwithoutchallengesasitrequireslegislativechanges,hands-ontrainingofartisanalandsmall-scaleminers,andcapitalinvestmentinthesector(VeigaandMarshall,2019).Thesectorwillthereforeneedabottom-upapproachtopolicymakingthatfostersaconduciveclimateforASMactivities(MaconachieandHilson,2011).FIGURE3.3Top10countriesbynumberofpeopleengagedinASM(inmillions)India159ChinaIndonesia3.6DemocraticRepublicofCongo21.26Ethiopia1.11Ghana11BurkinaFaso1ZimbabweSudanTanzania03691215NumberofpeopleworkinginASM(inmillions)Source:(DELVE,2023).Note:ASM=artisanalandsmall-scalemining.81GeopoliticsoftheEnergyTransformation©NadaBshutterstock.com©MarkAgnorshutterstock.comNotallminingofenergytransitionmineralsisassociatedwithpoorlabourconditions.Insomecases,miningoperationsmaybenefiteconomicallymarginalisedregionsbyprovidingmuch-neededemploymentopportunities.Forexample,theconstructionofnewminesandprocessingfacilitiesmaycreatejobsincommunitiesaffectedbydeindustrialisationoreconomicdownturns.In2021,theUSDepartmentofEnergyawardedUSD19millionforinitiativestoproducerareearthelementsandothercriticalmaterialsinfossil-fuel-dependentcommunities,includingtheAppalachianregion,whichhadbeenhithardbythecoalindustrydownturn(USDOE,2021).Themovetonet-zeroemissionspresentsasignificantchallengetotheminingindustryanddependentcommunities.Whilecoaldominatestheindustryintermsofvolumeandvalue,itsdeclineisinevitable.Bycontrast,thedemandforenergytransitionmineralssuchascobalt,lithiumandnickelcouldgrow.Whilethesemineralsmaynotfullyreplacecoalearnings,theycanhelpoffsetlossesforminingcompanies,allowingthemtoadjusttheirportfoliosandallocatecapitalaccordingly.However,forcoalworkersandcommunities,thetransitionwillbeviableonlyifmineraldepositsarenearby.82CRITICALMATERIALS3.2CLIMATE,LANDANDWATERSECURITYClimatechangeTheenergytransitionisacrucialresponsetothethreatofclimatechange,whichcouldpotentiallymultiplythreatstogeopoliticalstability.Atthesametime,themetalsandminingsectorisresponsiblefor10%oftheglobalgreenhousegasemissions,ofwhich7%isduetosteelproduction,2%isduetoaluminiumproductionandtheremainderisduetotheproductionoftheothermetals(KULeuven,2022)–whichincludesemissionsfromtheminingandprocessingofcriticalmaterials.13Formostmetals,smeltingandrefiningareresponsibleforthebulkofgreenhousegasemissions.Forcountrieswheresmeltersandrefineriesarelocated,theelectricitymixisthereforeamajordeterminantoftheiroverallemissions.Today,asignificantshareofmineralsandmetalsisrefinedinChinaandothercountrieswithacoal-basedgrid.Thescaleofemissionsvariessignificantlyamongminerals.Energyconsumptionandgreenhousegasemissionspertonneareespeciallysubstantialforaluminium,cobalt,nickel,siliconandrareearthelements.Annualenergyconsumptionandemissionsarethehighestforaluminium,duetothelargeannualproductionvolumes.Aluminiumdemandintheenergysectorisdrivenbysolarphotovoltaic(87%)andwind(10%)deployments,whilethedemandforcobalt,graphite,lithiumandnickelproductionprimarilycomesfromenergystoragetechnologies,notably,batteries.Renewableenergytechnologiesemitonlyafractionofthegreenhousegasesemittedbyfossilfueltechnologies,eventhoughtheirmineralintensityishigh.Mineralproductionandoperationofcleanenergytechnologiesgeneratea6%oftheemissionsfromcoal-andgas-basedgeneration(WorldBank,2020b).Forinstance,batteryelectricvehiclesemitsignificantlylessintotalthantraditionalinternalcombustionenginevehiclesovertheirlifecycles,eventhoughtheyrequiremoremineralsthanthelatter(IEA,2021).Itispossibletofurtherreduceemissionsfrommineralminingandprocessingthroughincreasedenergyefficiencyinvestmentsandashifttocleanerfuelsandlow-carbonelectricity.In2022,theCanadianminingcompanyFirstQuantumMineralsannouncedplanstoconstruct430megawatts(MW)ofsolarandwindpowerforitscopperminingoperationsinZambia,whichincludesAfrica’stwolargestcoppermines(HillandMitimingi,2022).Meanwhile,AngloAmerican,amininggiant,hassecuredrenewableenergydealstomeetallitspowerrequirementsforChile-basedcopperoperationsfrom2021,Brazil-basedironoreandnickeloperationsfrom2022andPeru-basedcopperoperationsfrom2022(AngloAmerican,2021).Thesamecompanyhasalsolaunchedaprototypeofitsfirsthybridhydrogen-andbattery-poweredminehaultruck,aretrofitteddiesel-poweredtruck,atitsMogalakwenaplatinummineinnorth-easternSouthAfrica(AngloAmerican,2023).13Thissubsectionfocusesonlyonemissionsimpactsofmining.83GeopoliticsoftheEnergyTransformationEnd-of-lifemanagement(reuse,repurpose,recycle)alsoplaysaroleinemissionsreduction.Itcansignificantlyreduceemissionsrelatedtomineralmining,evenifitmaynoteliminatethemcompletely.Forinstance,recycledsecondaryaluminiumcanhaveacarbonfootprintthatisonly5%ofthecarbonfootprintofprimaryaluminiumproduction(EuropeanAluminium,2020).14Increasingrecyclingcanaidintheshifttowardsamoresustainableenergysystem,althoughthereremainobstacles,suchasensuringmineralscrapavailabilityandmaintainingmaterialpurityforcertainapplications.Itisalsoimportanttoreducetheemissionsintensityofrecyclingprocesses(IRENA,forthcoming).Astheenergytransitionprogressesandtechnologiesreachendoflife,materialrecoveryandreusewillalsocontributetoreducingemissionsalongthevaluechain.Landuse,biodiversityandwasteMiningisawidespreadactivitywithextensiveimpactsontheEarth’ssurface.Besidesminesthemselves,miningareasalsoincludewastedumps,waterpondsandindustrialprocessingfacilities(Mausetal.,2020).Miningactivitiescanhaveawiderangeofadverseeffectsonlandscapesandgivewaytolanduseconflicts.Overthepasttwodecades,metalmininghasexpandedintobiodiverseecosystems(Luckenederetal.,2021).Thishascontributeddirectlyandindirectlytodeforestation,withcoalandgoldresponsiblefor71%ofallglobaldirectmining-relateddeforestation(WWF,2023).Thedevelopmentofmining-relatedinfrastructure,settlements,agriculturethroughsettlements,andwaterandsoilcontaminationcaused7%oftheglobalindirectdeforestation(HundandReed,2019).Whileminingactivitiesextensivelyimpactforests,theycanalsoimpactotherbiodiverseecosystems,suchasgrasslands,wetlandsandaquatichabitats,causingsoilerosion,soilandwaterpollution,andlossofhabitatforendangeredspecies.Suchenvironmentalimpactsofmininghaveoftenledtolanduseconflictsbetweenminingcompaniesandlocalcommunitiesandconservationgroups,resultinginlegalbattlesorviolenceinsomecases.Miningcanalsocompromiselandaccesssecuritythroughthewasteandpollutionitgenerates.Miningproducesthelargestvolumesofwasteglobally,invariousforms,forexample,overburden(thesoilorrockcoveringamineraldeposit),wasterock(thematerialextractedalongwiththeore)andtailings(wastegeneratedfromprocessing).A2016estimateshowedthatmetalandmineralextractiongeneratedover70billionmetrictonnesofwasterockandover8billiontonnesoftailingsinthatyear(Figure3.4).Decliningoregradeshavealreadyincreasedthevolumeofwastegeneratedperunitofmineralproduced(Mudd,2010).Theincreaseinmineralandmetalextractionwillleadtoafurtherincreaseinminingwaste.Producing1metrictonneofcoppergeneratesapproximately540tonnesofwasterockand200tonnesoftailings(Bakeretal.,2020).15Copper,nickel,manganeseandlithiumminingcouldgeneratenearlyatrilliontonnesofwastecombinedfrom2020to2050(Valentaetal.,2023).14ThiscomparesprimaryaluminiumimportstoEurope(10.6tonnesofCO2equivalentpertonneofproduction)andrecycling(0.5tonnesofCO2equivalentpertonneofproduction).15Calculatedfromfigure5inBakeretal.(2020).84CRITICALMATERIALSFIGURE3.4Estimatedvolumeoftailings,wasterockandoreproducedin2016CommoditiesWasterockOremilledBauxiteChromium72000Mt18800MtCoalCopperOreproducedGoldIronOre10180MtLead-ZincLithiumTailingsManganeseMolybdenum8850MtNickelNiobiumPhosphatePlatinumGroupElementsRareEarthsTinUraniumVanadiumSource:(Bakeretal.,2020).Overburdenandwasterockareeitherdepositedonsiteor©ChristyamdeLimashutterstock.comtransportedtodesignatedoff-siteareasfordisposal.Bycontrast,tailingsaretypicallystoredinpondscontainedbydams,whichcouldrupture,causingextensiveecologicaldamageandthreateningnearbycommunities(Rocheetal.,2017).Also,thetoxicsubstanceswithinthetailingscanendangertheenvironmentandlocalwildlife.The2019BrumadinhodamdisasteratanironoreminingcomplexinMinasGerais,Brazil,isanexampleofhowcatastrophicsucheventscanbe.Thedamfailurespilledsome10millioncubicmetresofminewaste,killing270peopleandcausingenormousdamagetotheenvironmentandlocalcommunities(Piciulloetal.,2022).Assolutionstomanagingtailingsonsite,someminespumpthemdirectlyintonearbywaterbodies,suchasriversystemsoroceans,causingextensivepollution(seeBox3.3).85GeopoliticsoftheEnergyTransformationBOX3.3ThecontroversialpracticeofmarinedisposalofminetailingsMarinedisposaltechniquesareprohibitedinmanycountriesbutcontinuetobeusedatseveralcoastalminingsitesincludinginIndonesia,Norway,PapuaNewGuineaandthePhilippines.16AttheRamunickelandcobaltmineinPapuaNewGuinea,locatedintheSouthPacific,miningwasteisdumpeddirectlyintotheocean.Concernswereraisedaboutthepotentialcontaminationoffishandotherseafoodafterseveralpipelineleaksattherefinerycausedtheoceanwatertoturncrimsonred.Inresponse,theMadangprovincialgovernmentinstitutedafishingbaninOctober©THPCreativeshutterstock.com2019,deprivinglocalpopulationsofoneoftheirmainsourcesoflivelihood.In2020,over5000villagersandthelocalgovernmentfiledalawsuitagainsttheoperatorsoftheChinese-ownedRamunickelmine,demandinganendtothepracticeofdumpingwasteintotheocean(Sanderson,2022).Thelawsuitisjustoneexampleofthegrowingoppositiontotheuseofmarinedisposalofminetailings.Environmentalandcommunitygroupshavelongraisedconcernsabouttheimpactsofthesepracticesonmarineecosystemsandhumanhealth.Thepotentialharmincludesthereleaseoftoxicmetalsandchemicalsintooceans,whichcanaccumulateinmarinelifeandseafoodconsumedbyhumans.Thisledseveralcountriestobanorrestrictthemarinedisposalofminetailings,andinternationalstandardsfortailingsmanagementwereestablishedtoprotectpeopleandenvironmentbodiesfromharm(e.g.thestandardssetbytheInternationalCouncilonMiningandMetals).Miningcompaniesareencouragedtoexplorealternativemethodstomanagetailings,suchasdrystacking,whichinvolvesfilteringanddryingthewastetoproduceamorestablematerialthatcanbestoredonland.Stringentwastemanagementpoliciescanreducelocalpollutionfromtheexcavation,transportandprocessingofcriticalmaterials.Effortsshouldpromotetheadoptionofadvancedtechnologiesandbestpracticesthatprioritisethereduction,reuseandrecyclingofwastematerials,whileensuringthatpotentiallyharmfulby-productsaretreatedanddisposedofproperly(GlobalTailingsReview.org,2020;ICMM,2021,2022a).Comprehensivereclamationandrehabilitationprogrammescanbeimplementedalongsidewastemanagementprogrammestorestoredisturbedminingsitestoastatethatalignswithecologicalandcommunitywell-being.Miningcompaniescancontributeactivelytothepreservationandrestorationofbiodiversityandecosystemservicesbyinvestinginpost-mininglandrestoration,includingreforestationeffortsandthere-establishmentofnaturalhabitats(PrachandTolvanen,2016).16WhileIndonesiahasnotinstitutedabanonsubmarinetailingsdisposal,inFebruary2021,itannouncedthatnewminingprojectsusingthistechniquewouldnotgetapermit.86CRITICALMATERIALSWaterstressCriticalmaterialminingprojectscanexacerbatewaterstress.Abouthalfoftheglobalcopperandlithiumproduction,forexample,isconcentratedinhigh-water-stressareas(Gielenetal.,2022b;IRENA,forthcoming).Thisincludesthe“lithiumtriangle”,alithium-rich(65%oftheworld’slithiumreserves)regioninAndesencompassedbythebordersofArgentina,BoliviaandChile.Globally,sevenwater-stressedmininghotspotsstandout:CentralAsia,theAndesregion,Australia,theMiddleEast,southernAfricaandalargezoneinwesternNorthAmerica(Figure3.5).Mineraloreminingandprocessinghavesubstantialwaterrequirementsforpumping,treating,heatingandcoolingoperations.Whiletheoveralluseoffreshwaterforminingactivitiesisonlyasmallportionoftheglobalandnationalwateruse,theycansignificantlyimpactlocalfreshwaterresourcesbydegradingtheirqualityandreducingthequantityofwateravailable(Meißner,2021).Miningactivitiessuchastailingsdisposalintowaterways,acidrockdrainageandwasterockdumpscanalsocontaminatesurfaceandgroundwaterbodies(AYetal.,2018).Asoregradescontinuetodecline,morewaterisrequiredtoproduceatonneofmetal.Thiscanfurtherstrainlocalwatersuppliesandbringareasalreadyfacingsignificantwaterstressundergreaterwaterrisks.Climatechangeisexpectedtocompoundwaterscarcity,posingasignificantchallengetotheminingindustry(Northeyetal.,2017).FIGURE3.5ThemajorityofminingsitesfacehighwaterrisksOverallTotalminingsitesatriskWaterRisk1–10sites11–50sites51–100sites101–500sites>500sites1.0–1.41.4–1.81.8–2.22.2–2.62.6–3.03.0–3.43.4–3.83.8–4.24.2–4.64.6–5.0Source:(Laporte-BisquitandMorgan,2019).Note:TheWorldWideFundforNature’swaterriskassessmentframeworkconsidersthreetypesofbasinandoperationalwaterrisks:physical,regulatoryandreputational.Moreinformationonthemethodologycanbefoundathttps://riskfilter.org/water/explore/data-and-methods.Disclaimer:Thismapisprovidedforillustrationpurposesonly.BoundariesandnamesshownonthismapdonotimplyanyendorsementoracceptancebyIRENA.87GeopoliticsoftheEnergyTransformationBOX3.4Watersecurity,lithiumextractionandindigenouspeoplesinChile’sAtacamadesertLithiumcanbeextractedfromhard-rockoresorfromcontinentalbrinesthroughevaporation,whichisespeciallywaterintensive.Thesocio-environmentalimpactsofthebrineevaporationtechniquearemostvisibleinChile’sSalardeAtacama,wheretheworld’slargestbrine-basedlithiumproductionisbased.Intheevaporationtechnique,brine,whichissalty,lithium-containingwater,ispumpedfromundergroundreservoirsintolarge,open-airpondsforlithiumtoseparateviasolarevaporation,whichcantakemonths.Ninetypercentofthebrine’soriginalwatercontentislostthroughtheevaporationprocess(Veraetal.,2023).Hydrologistsareraisingagrowingconcernthatminingactivitiescouldsignificantlyimpactvitalecosystemsanddepriveindigenouscommunitiesoftheiressentialwatersources,exacerbatingthedesert’saridconditions(Pearce,2022).Theseandotherconcernshaveresultedinincreasedcallsforwaterjustice,andprotestsagainsttheminingoperations(Jerezetal.,2021).Localresidents,includingindigenouscommunitiessuchasKolla,Atacameño,LickanantayandAymara,haveusedavarietyoftactics,includinglegalaction,roadblocksanddemonstrations,toprotestthethreattotheirlivelihoodsandwatersecurity(LundeSeefeldt,2022).Minimisingmining’simpactsintermsofwaterforlocalpopulationsandecosystemsrequireseffortstoencouragewatersavingatminesites,increasewaterreuseandrecycling,stimulatetheuseofdesalinatedwatersuppliesandensureresponsiblewaterdischargesofappropriatequality(EnergyTransitionsCommission,2023;ICMM,2014).88©MarcvanKessel.comshutterstock.com©JoseLuisStephensshutterstock.comCRITICALMATERIALS3.3ANEWDEVELOPMENTPATHMiningandthedevelopingworldGlobalproductionofkeyenergytransitionmetalsispredominantlyoccurringindevelopingcountries(WorldMiningData,2022),althoughsomeofthemhavemuchsmallersharesofglobalproductionthanreserves(Figure3.6).Forexample,Guinea’sshareintheglobalextractionofbauxite,akeymetalforaluminiumproduction,isjust6.5%,whereasitrepresents63%ofglobalreserves.ThePlurinationalStateofBoliviahas21milliontonnesoflithiumresources–morethananyothercountry–butitproducedlessthan1%oftheglobalsupplyin2021.Onekeyissueisthatmanydevelopingregionsremainunderexploredandlackbasicgeologicalmapping.Thiscreatesacommercialriskforminingcompanies(AfricanMineralsDevelopmentCentre,2018).FIGURE3.6Shareofglobalmineralproductionandreservesheldbydevelopingcountries(excl.China),2017Cobalt70%95%Copper67%Lithium100%Manganese47%Production46%NickelPGM45%68%63%47%25%34%7%57%RareearthREE2%19%elements3%0%20%40%60%80%ReservesSource:(WorldBank,2017).Note:Developingcountriescompriselow-andmiddle-incomecountries,excludingChina.PGM=platinumgroupmetals.89©mehmetalipoyrazshutterstock.comGeopoliticsoftheEnergyTransformationWhilebasemetalsmaynotbeassignificantasoilinglobaleconomicactivity,theyareimportantintheeconomicactivityofaboutone-thirdofemergingmarketsanddevelopingeconomies(WorldBank,2021),ofwhichsomerelyheavilyonexportrevenuesfromtheirmining.Morethan80%oftheexportrevenuesofBotswana,theDemocraticRepublicofCongoandGuinea,forinstance,isderivedfromtheminingsector(seeFigure3.7).FIGURE3.7Exportdependenceonmining,2018-2019Dependencyonmining0-20%20-40%40-60%60-80%80-100%Source:(UNCTAD,2019).Disclaimer:Thismapisprovidedforillustrationpurposesonly.BoundariesandnamesshownonthismapdonotimplyanyendorsementoracceptancebyIRENA.90CRITICALMATERIALSBuckingtheresourcecurseDevelopingcountriesoftenstruggletofullybenefitfromtheirvaluablemineralresources,aphenomenonknownasthe“resourcecurse”.Thistermreferstotheparadoxicalsituationwherenatural-resource-richcountriestendtohaveslowereconomicgrowth,higherpovertylevelsandweakergovernancethanresource-limitedcountries.Thisisoftenduetofactorssuchasoverdependenceonasinglesectoroftheeconomy,rent-seekingapproachesandcorruption.Withagrowingmineraldemand,urgentlyaddressingtheserisksbecomescrucialforstableandsustainablesupply.Corruptioninmineralsupplychainsisonesuchrisk(NationalResourceGovernanceInstitute,2022).Theextractivesvaluechaincanhavecorruptionatanypoint,includingintheissueofexplorationandexploitationlicenses,aswellasthecollectionofroyalties,feesandtaxes(OECD,2016).Corruptionrisksareespeciallyhighintheawardofminingrightsascompaniesrushtosecurelicenses,andofficialsmayfacepressuretocompromiseonenvironmentalandsocialimpactassessments,andduediligenceingeneral,tospeedupapprovals(Clark,2023).Anotherchallengeliesintheopaquetaxstructureswithintransitionmineralvaluechains,whichincurssignificantrevenuelossesforgovernments(Sturmanetal.,2022).Baseerosionandprofitshiftingposegovernancechallengesasmultinationalenterprisesshifttheirprofitstojurisdictionswithlowertaxrates.Thisissueisespeciallyprevalentintheenergytransitionmineralssector,whereintegratedbusinessstructuresandglobalpartnershipscontrolvaluechains.Unfairpricingarrangementsmadebeforeproductioncanincursubstantialrevenuelossesforhostgovernments.ResearchindicatesthatmultinationalenterprisetaxavoidanceleadstoannuallossesofapproximatelyUSD600millionincorporateincometaxfromminingsectorsforSub-SaharanAfricancountriesalone(Albertin,Giorgia.etal.,2021).Addressingcorruptionandtaxevasionrequiresemphasisingthesignificanceofwell-designedpoliciesandinstitutionsforeffectivelyinvestingmineralrevenuesinsocio-economicdevelopment.Historicalinsightsprovidevaluablelessonsonhowcountriescanavoidtheresourcecurseandmaximisethebenefitsoftheirmineralresources.Examplesfromthepastdemonstratethatthenegativeimpactsofmineraldependencycanbemitigatedthrougheconomicdiversification,promotionoflocalcontentdevelopment,investmentininfrastructureandhumancapital,andfosteringinclusivegovernancestructures(TheAfricanClimateFoundation,2022).Successfulcasescanprovidecountrieswithlessonstolearninfosteringindustrialdevelopmentandeconomicdiversification.91©Insight-Photographyshutterstock.com©SunshineSeedsshutterstock.comGeopoliticsoftheEnergyTransformation©JoseLuisStephensshutterstock.comAgeo-economicopportunityTheexpectedsurgeinmineralresourcedemandduetotheenergytransitionanddigitalisationpresentsanopportunityforattractingnewinvestmentflows.Ifmanagedproperly,thesenewresourcerevenuescouldkick-startlong-termeconomicprosperity,newgreenjobsandsustainablelocaldevelopment.Akeyquestioniswhethertheenergytransitionallowsdevelopingandemergingcountriestomoveupthevaluechainandattracthigher-marginactivitiesinadditiontoincreasingtheirprimaryoreexports.Processedmaterialscommandsignificantpricepremiaoverunrefinedores,potentiallyimprovingthetradebalanceandloweringtheinputcostofinfrastructuralandindustrialprojects,spurringlocaleconomicdevelopment(Hendrix,2022).WhilemanybatterymineralsareminedindevelopingcountriesinAfrica,AsiaandLatinAmerica,theactualvalue-additionwork,suchassmelting,refining,cellassemblyandultimatelyEVproductionoftentakesplaceelsewhere.AsFigure3.8illustrates,theminingofnickel,lithiumandcobalthasonlya0.6%shareinthetotalEVvaluechain(1.1%ifmetalsmeltingandrefiningareincluded).Climbingupthevaluechainispoliticallyandeconomicallyappealingbutchallengingformanydevelopingcountries,whichoftenlackthenecessaryinfrastructure,technicalexpertiseandaccesstootherproductionfactors,suchasaskilledworkforceandaffordablepower.InadequatelyregulatedexpansionofdomesticprocessingandrefiningcapacityinthesecountriesmayamplifytheenvironmentalandsocialimpactsofsourcingtherawmaterialsusedinEVsandothervitalenergytransitiontechnologies(Jonesetal.,2023).92CRITICALMATERIALSFIGURE3.8Estimatedvalueofthebatterymineralandelectricvehiclevaluechainby2025Mining11bnNickel,lithiumandcobaltareextractedfromminesandcrushedinto‘mineralconcentrate’attheminesiteMetals44bnMineralconcentratesareprocessedbysmelting,refiningandothertechniquestocreateindustry-grademetalsPrecursor271ProcessedmetalsareturnedintoachemicalmaterialproductionthatisaprecursortomakingabatterycathodebnCell387Cathodesareputtogetherwithananode,separatorandproductionelectrolyteintoanaluminiumcasetomakeabatterycellbnCell1200DozensofcellsareassembledintoabatterypackassemblybnElectric7000Abatterypackiscombinedwithmanyothervehiclescomponents,eachwiththeirownvaluechains,bntocreateanelectricvehicle.Adaptedfrom:(UNECAandDieneetal.,2022;UNECA,2021).93GeopoliticsoftheEnergyTransformationCHAPTER4STRATEGIESTOREDUCERISKSANDOPENUPNEWOPPORTUNITIESlabourdevelopingvulnerabilitymineralsdevelopingcountriesregulationsnickeltrade-offcobaltrisklithiummininggreenhousegasemissionsdevelopingsustainabilitysecurityallianceslabourrisksvaluecrereacytcilinognstockpillingstockpilinbgenreigfithstsCRITICALMATERIALSHIGHLIGHTSnManycountriesaredevelopingstrategiestomitigatethevulnerabilityofcriticalmaterialsupplychains.Thesestrategiesaimtosecureaccesstomaterials,promotedomesticproduction,andreducedependenceonanysinglesupplierorregion.nSomeeffortsoftenhaveno-regretoutcomes,includingtheformulationofnationalcriticalmaterialstrategies,periodicassessmentofmineralcriticality,andthepromotionofdiplomaticalliancesandpartnerships.nOthereffortsmayinvolvetrade-offsorrisks.Forinstance,manycountriesaimtolocalisecriticalmaterialsupplychains.TheEuropeanUniontargets10%domesticmineralextractionand40%localprocessingby2030,whereastheUnitedStates’InflationReductionActincentivisesdomesticsourcingandtheformationoffriendlyrelationshipswithsuppliersofmineralsusedinelectricvehicles.Achievingthesegoalsrequiresbalancingeconomic,environmentalandsocialconsiderations.nStrategicstockpilingofmaterialsrequirescarefulconsiderationtopreventmarkettightnessandpriceincreases,whichcouldslowdowntheglobaltransitiontocleanenergy.Stockpilingcouldalsohindersupplychaindiversificationandlocalvaluecreationsincenotallcountriescanmaintainlargereserves.nEffortstoreduce,reuseandrecyclematerialshaveacceleratedalongsideattemptstoenhancetherobustnessofsupplychains,whichcanberelievedfrompressurethroughenergyefficiency,energyconservationandconsumerbehaviouralchanges.However,recyclingonlyshowspromiseinthemediumtolongtermsincesignificantstockturnoverisrequiredbeforesecondarysupplybecomessubstantial.nDevelopingcountriesaretakingstepstomaximisethebenefitsfromtheirmineralresources.Exportrestrictions,inparticular,aregainingattentionasameanstoattractprocessingandotherdownstreamindustries,althoughtheydonotguaranteesuccess.Countriescouldcapturegreatermineralwealthsharesthroughregionalco-operation.nAlthoughseveralinitiativesandregulatoryframeworkshavebeencreatedtourgentlypromoteresponsible,sustainableandtransparentmineralsupplychains,compliancewillbedifficulttoenforceevenwherestandardsforsupplychainduediligence,auditingandcertificationarealreadyestablished.Mostrelatedinitiativesarevoluntary,andstandardsneedtobealignedwithvalidationmechanismsandprocesses.95GeopoliticsoftheEnergyTransformationThischapterprovidesacomprehensiveoverviewoftheinitiativesundertakenbyglobalpublicandprivateentitiestoensureareliable,equitablecriticalmaterialsupply(Table4.1).Itseekstoofferinsightstopolicymakers,industrystakeholdersandotherkeyactorsbyexaminingthestrengthsandlimitationsofeachstrategy.TABLE4.1StrategiestoensureareliableandequitablecriticalmaterialsupplyRiskAreasDomesticMeasuresExternalMeasuresSecuringaccesstocriticalmaterialsnNationalcriticalmaterialnInternationaltradeandinvestmentassessmentsandstrategiesagreementsIncreasingdomesticbenefitstomineral-nPoliciestosupportreshoring,nRegulatoryco-operationrichcountriesnearshoringandfriendshoring(e.g.onstandards)nPoliciestoreduce,reuseandrecyclenExportcreditsforoverseasminingnStrategicstockpilinginvestmentsnJointpurchasing(buyers’club)nTaxandroyaltyrenegotiationsnExportrestrictionsandtaxesnCreatingstate-ownedresourcenDomesticprocessingrequirementsnForeigninvestmentscreeningcompaniesnRegionalcollaborationonmineralnExpropriation/nationalisationvaluechains©Evgeny_Vshutterstock.com©NataliNekrasovashutterstock.com96CRITICALMATERIALS©Regzishutterstock.com4.1MITIGATINGSUPPLYCHAINVULNERABILITYTheconcentrationofcriticalmaterialminingandprocessinginahandfulofcountrieshasraisedconcernsaboutthereliabilityofglobalsupplychains,promptinggovernmentsandstakeholderstodevelopstrategiestomitigatetheirvulnerability.Thesestrategiesaimtosecureaccesstocriticalmineralsandmaterials,promotedomesticproduction,andreducedependenceonanysinglesupplierorregion.Thissectionwillexplorefivekeyapproaches:nDevelopingcriticalmineralstrategiesnLocalisationandredesignofsupplychainsnCriticalmaterialdiplomacynStrategicstockpilingnReducing,reusingandrecycling.CriticalmineralstrategiesAgrowingnumberofcountriesrecognisethestrategicimportanceofmineralsupplychainsandarecompilingorupdatingnationalcriticalmaterialstrategies(Box4.1andFigure4.1).Forcountriesdependentonsuchmaterials’imports,theprimaryobjectiveistoanticipateandoffsetpotentialsupplyrisks,whereasmineral-richcountriesseektoboostthecompetitivenessoftheirminingsectorsandattractinvestments.97GeopoliticsoftheEnergyTransformationFIGURE4.1Countriesthathaveadoptednationalmineralstrategies,2010-2023Nationalmineralstrategies202320222021202020192010-18Note:Themapshowsnationalcriticalmaterialstrategies,visionsandpolicydocuments.Miningcodesorspecificregulationswerenotretained.Disclaimer:Thismapisprovidedforillustrationpurposesonly.BoundariesandnamesshownonthismapdonotimplyanyendorsementoracceptancebyIRENA.©SunshineSeedsshutterstock.com98CRITICALMATERIALSBOX4.1CriticalmaterialstrategiesrecentlyupdatedoradoptedAustralia:ItfirstadoptedaCriticalMineralsStrategyin2019,updatingitin2022.ThestrategyhasacentralobjectivetoturnAustraliaintoa“globalcriticalmineralspowerhouse”by2030andexpandsthecriticalmineralslisttoincludehigh-purityaluminaandsilicon,recognisingtheirimportanceintechnologiessuchaslithium-ionbatteriesandsemiconductors.Itaimstoboostregionaljobsandgrowththroughathrivingmineralsector,andhelpAustraliamoveintodownstreamprocessingandcapturehigher-value-addedproducts.17Brazil:In2021,itlaunchedtheNationalStrategicPro-MineralsPolicy(MinistryofMinesandEnergy,2021),whichaimstoprioritisetheenvironmentallicensingprocessandtheimplementationofmineral-miningprojectsdeemedstrategicforthecountry’sdevelopment.ItalsocreatedanInterministerialCommitteefortheAnalysisofStrategicMineralProjects,whichidentifiedalistof14strategicminerals(CTAPMEResolutionNo.2/2021),includinglithium,cobalt,nickel,graphiteandrareearthelements.In2022,theBrazilianpresidentsignedadecreetoestablishanationalmineralpolicyandcreatetheMineralPolicyNationalCouncil(Decreton.11.108).EuropeanUnion:In2023,theEuropeanCommissionproposedtheCriticalRawMaterialsAct,whichwasbuiltonthe2008RawMaterialsInitiativeandthe2020ActionPlanonCriticalRawMaterials.Theregulationsetsoutfourobjectives:(1)strengtheningtheEuropeanUnion’scapacitiesalongallstagesofthestrategicrawmaterialsvaluechain,includingextraction,processingandrecycling;(2)diversifyingexternalsupply;(3)strengtheningtheUnion’scapacitytomonitorandmitigatesupplyrisks;and(4)increasingthecircularityandsustainabilityofcriticalrawmaterialsconsumedintheUnion.Regardingthefirstobjective,theregulationsetkeytargetsforstrategicrawmaterialsin2030:nAtleast10%extractedintheEuropeanUnionnAtleast40%processedintheEuropeanUnionnAtleast15%recycledintheEuropeanUnionnNotmorethan65%oftheEuropeanUnion’sannualconsumptionofeachstrategicrawmaterialatanyrelevantstageofprocessingfromasinglethirdcountry.Theregulationalsosetsoutaframeworktoselectandimplementstrategicprojects–bothwithinandoutsidetheEuropeanUnion–thatwouldbenefitfromfasterpermittingandadditionalfunding.ItalsocreatesaEuropeanCriticalRawMaterialsBoardtoadvisetheEuropeanCommissionandmembercountries,aswellasaframeworktodiscussstrategicpartnershipswiththirdcountries.TheCommissionwillgatherinformationonthestrategicstocksheldinEUMemberStates,bypublicorprivateentities.Itwillalsosetupasystemforthejointpurchaseofcriticalrawmaterialsfromthirdcountries.continuednextpage17www.industry.gov.au/data-and-publications/2022-critical-minerals-strategy.99GeopoliticsoftheEnergyTransformation©SunshineSeedsshutterstock.comBOX4.1Criticalmaterialstrategiesrecentlyupdatedoradopted(continued)India:In2019,thecountryadopteditsNationalMineralPolicy,whichaimstopromotedomesticindustry,reduceimportdependencyandfeedintotheMakeinIndiainitiative.Itemphasisestheneedforenvironmentallysustainableminingpractices,stakeholderparticipationandtheequitabledistributionofmineralwealth.Thepolicyprioritisessupporttodomesticexplorationformineralscriticalorstrategicfortheenergysector(MinistryofMines,2019).However,thereisnoofficiallistofcritical/strategicmaterialsfortheenergytransition.Japan:InMarch2020,JapanadoptedanewInternationalResourceStrategy,whichcoversenergyresourcessuchasoilandliquefiednaturalgasandemphasisestheimportanceofstockpilingraremetals.Thestate-ownedJapanOil,GasandMetalsNationalCorporationistaskedwithprovidingloansandothersupporttooverseasmineralsdevelopment,includingexploration,miningandsmelting,andthroughit,thegovernmentseekstostrengthenco-operationwithcountriesinvolvedinvariousstagesofthesupplychain(AgencyforNaturalResourcesandEnergy,2020).SouthAfrica:InApril2022,theSouthAfricangovernmentreleaseditsExplorationStrategyandImplementationPlanfortheMiningIndustry,18whichaimstoattractforeigninvestmentinexploration,acceleratenewmineraldiscoveriesandpromotetheresponsibleuseofthecountry’smineralresources,inaccordancewithenvironmental,socialandcorporategovernanceprinciples.Itaimstospendmorethan5%oftheglobalexpenditureonexplorationinthenextthreetofiveyears,andstreamlinesregulatoryrequirementsacrosslicensingdepartmentstoimproveturnaroundtimeforprocessingprospectingrights.Italsoprovidesalistoftargetedcriticalmineralsandmetalsdeemedessentialfortheshifttowardsagreeneconomy.continuednextpage18ExplorationStrategyfortheMiningIndustryofSouthAfrica(14April2022),availablefrom:https://cer.org.za/wp-content/uploads/2022/04/DMRE-Exploration-Strategy-for-the-Mining-Industry-of-South-Africa-14-April-2022.pdf.ExplorationStrategyofSouthAfrica:ImplementationPlan2022(14April2022),availablefrom:https://cer.org.za/wp-content/uploads/2022/04/Exploration-Strategy-of-South-Africa-Exploration-Implementation-Plan-2022.pdf.100CRITICALMATERIALS©PaulNashshutterstock.comBOX4.1Criticalmaterialstrategiesrecentlyupdatedoradopted(continued)UnitedKingdom:InJuly2022,theUKgovernmentadopteditsCriticalMineralStrategy,whosecentralaimistomitigaterisksandmakecriticalmineralsupplychainsmoreresilientthroughwhatitdubsan“A-C-Eapproach”tocriticalminerals:Acceleratedomesticcapabilities(inmining,trainingrecycling),Collaborateinternationally(mainlytofostersupplydiversification)andEnhanceinternationalmarkets(includingincreasingmarkettransparencyandresponsiblesupplychains).InMarch2023,adeliveryupdatewaspublished,whichreviewedprogressandsetoutupcomingmilestones.OneoftheseisthelaunchoftheindependentTask&FinishGrouponCriticalMineralsResilienceforUKIndustry,whichwillpresentareportby2023end.19UnitedStates:Thecountryhaslongapproachedcriticalmaterialsstrategically,20andhasbeenguidedinrecentyearsbymultipleexecutiveorders.In2017,PresidentTrumpissuedsuchanorder,whichtaskedtheDepartmentofCommercetodevelopafederalstrategyoncriticalmaterials(ExecutiveOfficeofthePresident,2017),releasedinJune2019.Thestrategy’ssixcallstoactionincludeacceleratingdomesticcriticalmineralresourcedevelopmentandbuildingrobustdownstreammanufacturingcapabilities(USDepartmentofCommerce,2019).Inanotherexecutiveorderin2020,Trumpdeterminedthatthecountry’srelianceoncriticalmineralsfromforeignadversariesconstitutedan“unusualandextraordinarythreat”,anddeclaredanationalemergencytodealwiththethreat(WhiteHouse,2020).TheUSDepartmentofEnergywastodeviseastrategytoensureasecureandreliablesupplyofcriticalminerals,whichitissuedin2021(USDepartmentofEnergy,2021).Thestrategyreliesonthreekeypillars:diversifyingsupply,developingsubstitutes,andimprovingreuseandrecycling.In2021,theBidenadministrationissuedExecutiveOrder14017,whichoutlinedtheimportanceofsecuresupplychainsandmandated100-dayinteragencyreviews(WhiteHouse,2021).Paralleltotheseexecutiveorders,thelegislativebranchadoptedrelevantlegislation,suchastheAmericanMineralSecurityAct(2020)andtheInfrastructureInvestmentandJobsAct(2021),which,amongotherthings,allocatedfederalfundingforcriticalmineralextractionprocessingandresearchactivities.TheInflationReductionActof2022isdiscussedinBox4.2.19www.gov.uk/government/publications/uk-critical-mineral-strategy/critical-minerals-refresh-delivering-resilience-in-a-changing-global-environment-published-13-march-2023.20Forexample,theUSDepartmentofEnergy(DOE)publishedacriticalmineralsstrategyin2010(alongwitha2011update).101GeopoliticsoftheEnergyTransformationAspartoftheirnationalcriticalmineralstrategies,countriesarecompilinglistsofcriticalmineralsbasedontheirindustrialneedsandastrategicassessmentofsupplyrisks.Evaluationsofmineralcriticalitydifferbycountry(seeTable4.2).Forexample,onlyninematerialsfeatureonthecriticalmateriallistsoftheUnitedStates,theEuropeanUnionandChina,includingcobalt,lithium,graphiteandrareearths.Copperandplatinumgroupfeatureonjusttwolists.TABLE4.2AcomparisonofthecriticalminerallistingsinChina,theEUandUnitedStates,2023OverlappingExclusiveUSEUChinaUSEUChinaAluminium/bauxiteCesiumAntimonyChromiumCobaltIndiumFluorsparRubidiumGraphite/naturalSamariumgraphiteTelluriumLithiumZincNickelBoron/borateRareearthmetalsCokingcoalTungstenFeldsparArsenicGalliumBaryteHeliumBerylliumPhosphaterockBismuthScandiumGermaniumSiliconHafniumStrontiumMagnesiumGoldManganeseIronoreNiobiumMolybdenumPlatinumgroupmetalsPotashTantalumUraniumTitaniumVanadiumTinZirconiumCopperPhosphorus102CRITICALMATERIALSCriticalmaterialslistsaredynamicandrequireupdatingascircumstanceschange.Forinstance,thefirstlisttheEUpublishedin2011featuredonly14rawmaterials.Thelisthasbeenupdatedfourtimessince,withthe2023versionidentifying34rawmaterialsascritical.LocalisationandredesignofsupplychainsRecentsupplychaindisruptionshavedrivenmanycountriesandregionstopursuesupplychainlocalisationforgreaterstrategicautonomyandforreducingdependenceonpotentialadversaries.Morespecifically,governmentsareformulatingpoliciestoencouragestrategicindustriestoeitherrelocateorestablishnewoperationsintheirhomecountries(reshoring),innearbyregions(nearshoring)orintrustedallynations(friendshoring).Criticalandstrategicmineralsupplychainsarealsocoveredbytheseefforts.TheUnitedStatesandtheEUrecentlyoutlinedminimumthresholdsforthedomesticsourcingofminerals.TheEUproposedatleast10%localmineralextractionand40%localprocessingby2030.TheUSInflationReductionAct,signedintolawinAugust2022,providestaxcreditsforcriticalmineralproductionandmandatesthedomesticsourcingorfriendshoringofthecriticalmineralsusedinEVbatteriesasaconditionforsubsidies(seeBox4.2).BOX4.2TheInflationReductionActandcriticalmineralsFollowingarethekeyprovisionsonmineralsoftheInflationReductionAct(IRA):nMiningcompaniesextractingcriticalmetalswillbeabletoseekaproductioncreditequalto10%ofproductioncostsiftheextractedmineralsmeetspecifiedpuritythresholds.nTheIRAalsosetsatargetforthecriticalmineralcontentofEVbatteries.ForanEVtobeeligibleforataxcreditin2023(thefirstyearoftheprogramme),40%ofthecriticalmaterialsinitsbatterymustbesourceddomesticallyintheUnitedStates,fromlocalfree-tradepartners,21orfromrecyclinginNorthAmerica.22Thepercentageincreasesgraduallyto80%by2027andbeyond(USGovernmentPublishingOffice,2022).nTheIRAfurtherstipulatesthatanEVisnoteligibleforataxcreditifitsbatterycontains“any”criticalmineralsourcedfromso-called“foreignentitiesofconcern”.21TheUScurrentlyhasfreetradeagreementsinforcewith20countries.Theyare:Australia,Bahrain,Canada,Chile,Colombia,CostaRica,DominicanRepublic,ElSalvador,Guatemala,Honduras,Israel,Jordan,RepublicofKorea,Mexico,Morocco,Nicaragua,Oman,Panama,Peru,SingaporeandUSMCA(US-Mexico-CanadaAgreement)(www.ustr.gov/trade-agreements/free-trade-agreements).22TheUnitedStatesisindiscussionwiththeEuropeanUniontomakeEuropeanmineralseligibleforUStaxcredits(www.reuters.com/markets/eu-us-working-free-trade-agreement-like-status-2023-03-03/).103GeopoliticsoftheEnergyTransformationCountriescanencouragedomesticmining,refiningandrecyclingusingpolicytoolstostreamlineadministrativeprocesses,expediteplanningandpermittingprocedures,andincreasepublicfundingtobolsterdomesticinvestmentsincriticalmaterialvaluechains.Thesetoolscouldalsobeappliedtotrustedinternationalalliesthroughinternationalpartnerships(seenextsubsection).Suchpoliciescanmakesupplychainsrobust,reducegeopoliticalrisks,andincreasenationalandregionalstrategicautonomy.However,theyalsoentailsignificantrisks,suchasincreasedcosts,reducedeconomiesofscaleandpotentialretaliatorymeasuresfromaffectedcountries.Reshoringandnearshoringmayimplyhighercoststhansourcingfromdistant,low-costsuppliers.AnillustrationofthisriskistheUSminingcompanyMolycorp,whichreopeneditsCaliforniarareearthminein2012butfiledforbankruptcyin2015whenitcouldnotsupportitshighcostsduetogloballowprices.23Policiestoencouragedomesticminingmayalsorequiretradebarriers,whichcouldaffecttraderelationsandraiseconcernsaboutprotectionism.Adoptingreshoring,nearshoring,friendshoringandassociatedpoliciesrequirescarefulassessmentofthetrade-offsandcoststobalanceeconomicconsiderations,tradeobjectivesandenergytransitionpriorities.Further,effortstorewirethesesupplychainswillrequireadelicatebalancebetweeneconomicconsiderations,environmentalconcernsandlocalcommunities’welfare.Fordecades,theenvironmentalandhumancostsofminingandprocessingmineralslikelithiumandrareearthshavelargelybeenhiddenfromtheviewofthecitizensofmanycountries,includingindustrialisedeconomies.Countrieswillhavetoconfrontthesetrade-offsastheylooktodiversifytheirsupplychains.Forinstance,oneofthekeyissuesincurrentdiscussionsontheEuropeanUnion’sCriticalRawMaterialsActiswhetherstrategicmining,refiningandrecyclingprojectsshouldbedesignatedasprojectsofoverridingpublicinterest–meaningtheycouldoverrideenvironmentallaws(Zimmermann,2023a).Despiteongoingeffortstorestructureandbroadencriticalmineralsupplychains,theyfacenotablechallenges,suchasNIMBY(NotinMyBackyard)protests,environmentalissues,andlongleadtimestobringnewmining,refiningandprocessingcapacitiesonline.InSerbia,forinstance,thedevelopmentoftheJadarlithiummine(consideredoneoftheworld’slargestlithiumdeposits)hasbeenfacinggrowingopposition,withlocalcommunitiesraisingconcernsaboutthemine’spotentialenvironmentalimpacts,especiallyintermsofwaterpollutionandthedisplacementoflocalcommunities.Early2022sawthemininggiantRioTinto’slicenserevokedamidpublicprotests(Sekularac,2022).ProtestssuchasthoseinSerbiahavealsohitotherlithiumprojectsinEurope,includinginPortugal,SpainandGermany(Caceres,2023;Zimmermann,2023b).ThediscoveryofalargerareearthdepositinArcticSwedeninJanuary2023raisedconcernsamonglocalSámicommunitiesaboutthepotentialimpactonreindeergrazingareas(Frost,2023).Itisnotjustminingprojectsthatfacelocalopposition.In2012,AustraliancompanyLynasfacedheavylocaloppositioninMalaysiaoverthehealthandenvironmentalrisksposedbypotentialleaksofradioactivewastefromitsproposedrareearthprocessingfacilityinthecountry.Activiststooktothestreets,initiatedlegalactionandsomeevenwentonhungerstriketostoptheproject(Feffer,2023).Thisdelayedtheprojectsignificantly,eventhoughthefacilitybeganoperatingin2013.Protestshaveneverthelesscontinued,andtheMalaysiangovernmentwantsLynastostopthecrackingandleachingpartsofitsoperationsbymid-2023.Theseexamplesunderscoretheimportanceoftheearlyandmeaningfulinvolvementoflocalcommunities,toensuresupportandsecurelong-termbenefits.23TheMountainPassrareearthminewaspurchasedoutofbankruptcybyaconsortiumthatincludedaChinese-ownedfirm(mining.com/mountain-pass-sells-20-5-million/).104CRITICALMATERIALSCriticalmaterialdiplomacyCriticalrawmaterialshavegainedsignificanceininternationaldiplomacy,leadingcountriestoestablishnewalliancesandpartnershipstoensureaccesstothesevitalresources(seeTable4.3).TABLE4.3InternationalcriticalmaterialalliancesAlliancesYearCountriesAimCanada-USJoint2019Canada,Promotejointinitiatives,includingresearchUnitedStatesanddevelopmentco-operation,supplychainActionPlanonCriticalmodellingandincreasedsupportforindustry(NaturalResourcesCanada,2020)MineralsCollaborationEnergyResource2019Australia,Botswana,ShareandstrengthenmineraldevelopmentbestGovernanceInitiativeCanada,Peru,practices,frommappingmineralresourcesto(ERGI)UnitedStatesmineclosureandreclamation(ERGI,2019)CriticalMinerals2019Australia,Canada,ResearchcollaborationamongtheGeologicalMappingInitiativeUnitedStatesSurveyofCanada,GeoscienceAustraliaandtheUS(CMMI)GeologicalSurveytoharnesstheseorganisations’combinedgeologicalexpertisetoaddressglobalnaturalresourcevulnerabilities(Emsboetal.,2021)EuropeanRaw2020EuropeanUnionAddressthechallengeofsecuringaccesstoMaterialsAlliancesustainablerawmaterials,advancedmaterialsand(ERMA)industrialprocessingknow-how(ERMA,2020)SupplyChain2021Australia,India,SharingofbestpracticesonsupplychainresilienceResilienceInitiativeJapan,andorganisinginvestmentpromotioneventsandbuyer-sellermatchingeventstogivestakeholdersopportunitiestoexplorepossibilitiesofdiversifyingtheirsupplychains(MinistryofCommerceandIndustry,GovernmentofIndia,2021)MineralsSecurity2022Australia,Canada,Toensurethatcriticalmineralsareproduced,Partnership(MSP)EuropeanprocessedandrecycledinamannerthatenablestheCommission,Finland,countries’torealisethefulleconomicdevelopmentFrance,Germany,benefitoftheirgeologicalendowments.TheMSPItaly,Japan,Norway,willhelpcatalysegovernmentandprivatesectorRepublicofKorea,investmentforstrategicopportunities–acrosstheSweden,Unitedcompletevaluechain–thatadheretothehighestKingdom,Unitedenvironmental,socialandgovernancestandardsStates(USDepartmentofState,2022).SustainableCritical2022Australia,Canada,DrivetheglobaladoptionofenvironmentallyMaterialsAllianceFrance,Germany,sustainableandsociallyinclusiveandresponsibleJapan,Unitedmining,processingandrecyclingpractices,Kingdom,UnitedandresponsiblecriticalmineralsupplychainsStates(GovernmentofCanada,2022)105©Andy.LIUshutterstock.comGeopoliticsoftheEnergyTransformationApartfromtheallianceslistedinthistable,theG7membersarealsopursuingtheideaofcreatingabuyers’clubforcriticalminerals.24Suchanarrangementwouldfocusonensuringaccesstocriticalminerals,whilepreventingabiddingwarbetweentheG7economiesoverthem(Duehren,2023).TheideawasreaffirmedduringameetingoftheG7climate,energyandenvironmentministersinJapan,whichalsoresultedina“Five-PointPlanforCriticalMineralSecurity”,summarisedinBox4.3(G7HiroshimaSummit,2023).Somecountrieshavebegunsupportingoverseasminingprojectstomitigatetheriskofrawmaterialshortages.TheUnitedStates,forinstance,fundsroughlyadozenmineralprojectsabroad,potentiallyinvolvingmining,mineralprocessingandrecycling,includingthroughtheMineralSecurityPartnership(Holzman,2022).Likewise,theJapanesegovernmentisseekingtodiversifyitscriticalmineralsupplychainsbyencouragingcompaniestoacquiremininginterestsoverseas,havingallocatedJPY1.03trillion(USD7.8billion)towardsthecostsofprovidingassistanceunderitsEconomicSecurityProtectionAct,adoptedinMay2022(Asamina,2022).China,thedominantplayerincriticalmineralsupplychains,hasalsobeenseekingtosecureitsresourcesupplylinesbybuildingstrategicallianceswithmultipleAfricancountries.ThisbolsteredbilateraltradebetweenSub-SaharanAfricaandChina,withthelatterreceivingmineralsandmetalsaskeyimportsfromAfrica(seeFigure4.2).China’s“goout”strategy,formulatedin1999,hasencouragedChinesecompaniestobecomegloballycompetitive,anditcouldsuccessfullyexpanditsinfluenceincriticalmineralsupplychains.BOX4.3TheG7’sfive-pointplanforcriticalmineralsecurity,20231.Forecastlong-termsupplyanddemand2.Developresourcesandsupplychainsresponsibly3.Recyclemoreandsharecapabilities4.Promoteinnovationinresourcesavingandsubstitutetechnologies5.Prepareforshort-termsupplydisruptions.24TheEuropeanUnion’sproposedCriticalRawMaterialsActalsoincludesplansforjointpurchasingofcriticalmaterials.106CRITICALMATERIALSFIGURE4.2ThekeyroleofmineralsandmetalsinChina’straderelationswithAfricaChina's112.4ChemicalsexportsFuelstoAfricaMachineryandChina'selectricalgoodsimportsfromAfricaMinerals&metals075.0PlasticorrubberStone&glassTextilesandclothingTransportation20406080100120WoodOtherUSDbillionSource:(WorldBank,2020c).Note:Thedataarefor2020.TheEUhasalsobeenpursuingarawmaterialdiplomacysinceadoptingitsRawMaterialsStrategyin2011.Ithascommittedtoformingstrategicpartnershipsandholdingpolicydialogueonbroadertopics,suchashumanrightspromotion,goodgovernance,conflictresolutionandregionalstability,withnon-EUcountries(EuropeanCommission,2011).IthasalreadyforgedpoliticalagreementsonrawmaterialswithcountriessuchasArgentina,Brazil,Canada,Chile,China,Colombia,Egypt,Greenland(KingdomofDenmark),Japan,Mexico,Morocco,Peru,Tunisia,theUnitedStates,UruguayandtheAfricanUnion(DirectorateGeneralforInternalMarket,Industry,EntrepreneurshipandSMEs,EuropeanCommission,n.d.).Abalancedandco-operativeapproachinforeignpolicyengagementrequiresaddressingtheobligationsofimportingstatestosupportsustainabledevelopmentandmovingbeyondextractivespatternsincriticalmaterialsupplychains.Thisentailsfosteringpartnerships,advocatingresponsiblesourcingpractices,supportingcapacitybuildinginproducingcountries,promotingtransparencyandaccountability,andinvestinginsustainableinitiatives.Theseconcretestepscanhelpimportingstatescontributetoequitableandsustainabledevelopment,ensuringamoreinclusiveandmutuallybeneficialapproachtoprocuringcriticalmaterials.107GeopoliticsoftheEnergyTransformation©JoseLuisStephensshutterstock.comStrategicstockpilingStrategicstockpilingisanemergencytoolforgovernmentstocopewithpotentialshortagesofkeyfuelsandcommodities.IndustrialisedcountriessuchasChina,Japan,theRepublicofKoreaandtheUnitedStateshaveestablishedstockpilesofstrategicallyimportantimportedcommodities.25Stocksarealsoheldbyprivatecompanies,tradersandmetalexchangesforpricehedgingandsupplychainmanagement.However,reliabledataonthesizeandlocationofthesestocks,andtheirutilisationarecurrentlyunavailable(Wilburnetal.,2016).Strategicstocksofpetroleumareoftenusedasananalogyinpublicdebates,althoughitisworthnotingthatstockpilingrawmaterialsforcleanenergymanufacturingdiffersfromstockpilingcombustiblefuels,whichismorecomparabletohoardingsteelforbuildingoildrillingrigs.Forinstance,acountryfacingrestrictionsongalliumwouldmeanitsthin-filmsolarpanelmanufacturerswouldbeimpacted,justassteelrestrictionswouldimpactdrillingrigbuilders.However,gallium’sunavailabilitywouldnotpreventexistingsolarpanelsfromfunctioning,eventhoughafewcompanieswouldfacesignificantimpacts(KraneandIdel,2022).Stockpilingcouldalsolimitthespeedandscaleoftheenergytransition.Althoughmanufacturingandconstructionofenergyassetsrequirecriticalmaterialstobeavailable,notallcountriespossessthefinancialorotherresourcestomaintainstrategicreserves.Stockpilingcanthereforehaveanunintendedimpactofimpedingsupplychaindiversificationandhinderingcountriesfromreachingtheirpotentialinlocalvaluecreation.Thisraisesthequestionoftheeffectivenessofstockpilingenergytransitionmineralscomparedtostockpilinginsomeothersectors.25Russiaisalsoreportedtohoststrategicstockpilesofvariousmetals,butdataontypesandquantitieshavenotbeenreleased.108CRITICALMATERIALSSofar,theUSgovernment,whichpossessesthelargestpublicstockpiles,hasrefrainedfromstockpilingthesecommoditiesforpurposesotherthandefence.TheUnitedStatesbeganstockpilingcriticalmineralsin1939,undertheprovisionoftheStrategicMineralsAct.Itbuiltinventoriesof42commoditiescriticaltoitsdefenceeffortsandexpandedthemfurtherintheearly1950sinresponsetofearsofshortageduetotheKoreanWar(NationalResearchCouncil,2008).Someinventoriesreachedextremelevels.Forinstance,bytheearly1970s,itsstrategictinstockcorrespondedtoafullyearofglobalconsumption(Radetzkietal.,2020).Materialsfromthestockpilehavebeenreleasedononlytenoccasionsbetween1945and2008(NationalResearchCouncil,2008).Inrecentyears,andespeciallysincethe1990s,theUSNationalDefenceStockpilehasmainlysoldexcessmaterial.InChina,strategicstockpilingofmetalsfallsundertheremitoftheStateReserveBureau(SRB),agovernmentagencycreatedin1993.TheworkingsoftheSRBarenotpubliclydisclosed,althoughitisknownthatitbuysandstoresmineralsinvastquantitieswhenpricesarelowandreleasesthemintothemarketwhenpricesincrease.Assuch,ithasbecomeaninfluentialforceininternationalmarkets.Forexample,in2020,theSRBboughtrefinedcopperinsubstantialquantities,helpingtoboostitspriceamidtheCOVID-19-inducedeconomicslowdown(Home,2021).Consideringminerals’strategicimportance,manycountriesrecentlystrengthenedtheirstockpilingpolicies.Anexamplecanbefoundin2020,whenJapan’snewInternationalResourceStrategyraisedthetargetnumberforstockpilesto60days,andupto180daysformineralswithhighergeopoliticalrisks(AgencyforNaturalResourcesandEnergy,2020).Also,in2021,theRepublicofKoreaannouncedthatitwouldincreaseitsstockpilesof35criticalmetals,forexample,cobalt,nickelandrareearths,tocover100daysofconsumption,upfrom56.8dayspreviously(Byung-wook,2021).Itisworthnotingthatnotallmajorindustrialregionshaveimplementedstrategicstockpilingpolicies.Forinstance,therecentlyproposedCriticalRawMaterialsActintheEUdoesnotenforcemandatorystockpiling.Instead,itencouragesvoluntarymeasures,whilealsorequiringmembercountriestosubmitreportsontheirrespectivepolicies.Theideaofmandatorystockpilingfacedresistancefromsomecompaniesconsideringitcouldbringalreadystrainedsupplychainsundermorepressure(Burton,2023).©JoseLuisStephensshutterstock.com109GeopoliticsoftheEnergyTransformationBuildingstrategicstockscanindeedbewithchallenges.Itcouldexacerbatemarkettightnessandratchetuppricesifdonewithoutadequateconsideration.Anexampleofthiscanbefoundin2010,whenmanyJapanesecompaniesheldrareearthstockpilesamidacrisis,andexpandedthemintheimmediateaftermathoftheembargo.Thishelpeddrivethepricebubble,whichlasteduntiltheendof2011(Sprecheretal.,2015).Unnecessaryprecautionsbycompaniescouldleadthemtofacemarketconsequences.AnexampleofthisistheUScarcompanyFord,whoseconcernsaboutrisingpalladiumpricesdroveittostockpileitinlargequantitiesin2000.Thepricesfellsoonafter,causingthecompanyaUSD1billionloss(White,2002).Stockpilingcanalsorunintomorepracticalproblems.Highlyreactivemetalssuchasmagnesiumarepronetocorrosionanddegradation,whilealkalimetalssuchaslithiumcanigniteorexplodewhenexposedtoairorwater.Therefore,anystockpilingstrategyshouldbepursuedwithcarefulassessmentofpossibleimpactsandregularreviewofcircumstancesanddevelopments.©IAMCONTRIBUTORshutterstock.comReducing,reusingandrecyclingEffortstoreduce,reuseandrecyclecriticalmaterialsaregainingmomentumassolutionstomakesupplychainsmorerobust,supportthetransitiontoacirculareconomyandreducethesematerials’environmentalimpacts(Gielen,2021b).Energyefficiency,conservationandbehaviouralchangecouldeffectivelyrelievepressureoncriticalmaterialsupplychains.Forexample,batterychemistryoptimisationforEVscouldbeaccompaniedbyanotherstrategy,whichisfocusedonEVdemandreduction(e.g.throughbetterpublictransport,encouragingcyclingandwalking,orincentivisingtelework)andoptimisationoftheexistingfleet(e.g.throughcarorridesharingschemes,orreducingthevehicles’massandaerodynamicdrag)(Lovins,2022).Further,governmentscanimplementregulationstoreducetheproductionandconsumptionofsingle-useproducts,whichcouldreducethedemandforcriticalmaterials.Thesebehaviouralchangescanbesignificantinensuringthesustainableproductionanduseofcriticalrawmaterials,whilealsomitigatingtheenvironmentalimpactsoftheirextractionandprocessing.110CRITICALMATERIALSThedemandforcriticalmaterialscanalsobereducedbyimprovingproductdesign,developingnewmaterialswithlowercriticality,andimplementingcircularbusinessmodelsthatprioritisedurabilityandreuse(Babbittetal.,2021).Forexample,transitioningtolow-cobaltbatterydesignscanreducethegeopolitical,socialandenvironmentalrisksandcostsassociatedwiththecobaltsupplychain.However,suchsubstitutionstypicallycomewithtrade-offsintermsofnewresourcedependencies(e.g.shiftingtonickel)orlossofbatteryperformance.Recyclingandreuseofcriticalmaterialscanalsorelievepressureonprimarysupplysourcesandpreventtheassociatedenvironmentaldamages,consideringtheyconsumelessenergyandgenerateloweremissionsthanprimaryextraction(GregoirandvanAcker,2022).Contrarytofossilfuelsandothersingle-usematerials,metalshavepermanentphysicalproperties,makingthemindefinitelyrecyclableintheory.Forsomematerials,recycledsourcesalreadyconstituteamajorproportionoftheglobalsupply.Approximately40%ofcopperandsteelareproducedfromrecycledmaterials.Forothercommonmaterials,suchasaluminium,leadandzinc,over30%ofproductionpresentlyusesrecoveredinputs(BureauofInternationalRecycling(BIR),2021).However,recyclingratesaremuchlowerforothermetals.Forexample,intheEU,onlyabout20%ofplatinumandcobaltisobtainedfromsecondary(recycled)sources;thisrateis5%orlessformostothercriticalmaterials,andclosetozeroforgallium,indiumandrareearths(EuropeanEconomicandSocialCommittee,EuropeanCommission,2020).Increasingtheend-of-liferecoveryofcriticalmaterialsfromlow-carbontechnologiesoftenencounterstechnicalchallenges,collectionissuesandeconomicbarriers(IRENA,forthcoming;KaraliandShah,2022).Whenconsideringrecyclingasapotentialsolutiontosupplyrisks,itisimportanttoexaminethetimescaleofstockturnover.Asubstantialsecondarysupplyispossibleonlywhenthereisasubstantialstockofmaterialsinactiveusethatarenearingtheirendoflife.However,suchconditionsareunlikelytobemetuntilaboutthemid-2030s,especiallyinthecaseofbatteryEVsandtheirassociatedminerals(Zengetal.,2022).Recyclingshouldthusberegardedasamedium-to-long-termstrategytobolstersupplysecurity.©VladyslavHoroshevychshutterstock.com111GeopoliticsoftheEnergyTransformation4.2INCREASINGDOMESTICBENEFITSTOMINERAL-RICHDEVELOPINGCOUNTRIESStrategiesforoptimisingvalueretentioninhostcountriesDevelopingcountriesaretakingstepstooptimisethebenefitsfromtheirmineralresources,oftenutilisingtheirbargainingpowertosecurebettertermsformineralextraction.Anexampleofthiscanbefoundin2018,whentheDemocraticRepublicofCongorenegotiatedforeignaccesstocobaltreservestosecureamorefavourableagreement.Also,Perureformeditscopperroyaltyregimein2021toincreasegovernmentrevenuefromtheminingsector.Further,theChileangovernmentplanstocreateastate-ownedcompanyforlithium,“LithiumforChile”,toensuregreaterstatecontroloverthecountry’slithiumreservesandensurethatChilereceivesafairshareofthevaluegeneratedbyitsresources.Severaldevelopingcountriesalsoaspiretocapturegreatervaluefromtheirmineralresources.Indonesia,forinstance,hasbannedtheexportofunprocessednickeltoencouragevalueaddedactivitieswithinitsborders(seeBox4.4),whileZimbabwehasbannedrawlithiumexporttocurbartisanalminingandattractdownstreamindustries(Banya,2022).Manymoredevelopingcountrieshaveimplementedexporttaxesandnon-automatedlicensingprocedures.However,exportrestrictionscannotguaranteesupporttodownstreamprocessingforanycountry.AstudyexaminingtheuseofvariousmineralandmetalexportrestrictionsbyfourAfricancountriesfoundtheserestrictionstocreatenobenefitfordownstreamindustries(Fliessietal.,2017).Oneexplanationisthatmineralprocessingtypicallyconsumeslargeamountsofenergy,whichisoftensuppliedinadequatelyorunreliablyindevelopingcountries,especiallythosethathaveunderdevelopedgridsandalargepartofthepopulationwithoutelectricityaccess.Thesehighervalueaddedactivitiesalsoemployalabourforcewithhigherskillsthanintheextractivesector,andtheyrequiremorecapital.Attractingsufficientinvestmentsandcapitaltobuildmoreelaboratelocalsupplychainsisoftenachallengefordevelopingcountries.Mineral-richdevelopingcountrieshaveanaturaladvantageinextractionbutnotnecessarilyprocessing.Miningactivitiesareconcentratedinspecificlocations,whicharedeterminedbygeology.However,downstreamindustrieshavegreaterflexibilityintermsoflocation.Bulkshippingmakesitpossibletolocaterefiningandprocessingoperationsthousandsofmilesawayfromminingsites,inareaswithmorefavourableenergysupply,betterenvironmentalconditions,greaterpoliticalstabilityandmoreaffordablecapitalaccess(Hendrix,2022).Sincesomeoftheseadvantagesstemfromhistoricaldisparities,anapproachgearedtowardsinclusivedevelopmentwouldneverthelessseektoexpandprocessingcapacitiesinthedevelopingworld.112CRITICALMATERIALSBOX4.4LessonsfromIndonesia’snickelexportbanIndonesiaholdstheworld’slargestnickelreserves,whichitleveragestoattractinvestmentalongthebatteryandEVsupplychain.InJanuary2014,itbannedtheexportofunprocessednickelandbauxiteores,mandatingtheirprocessingdomestically.Underthelaw,onlycompaniescommittedtobuildingasmelterweregrantedanexportlicense.Themineralexportbandidnotrestrictwhichcompanies,foreignordomestic,couldqualifybybuildingsmeltersinthecountry(Terauds,2017).Thebancontributedtoabrief,sharpincreaseininternationalnickelpricesinthefirsthalfof2014,althoughpricesquicklyrecededamidageneralcommodityslump.Followingabudgetdeficitin2016,thebanwasputonhold,andreintroducedinJanuary2020.Whilethebanmeantshort-termlossofexportearnings,miningjobsandgovernmentrevenues,ithasbeenrathersuccessfulinitslong-termobjectiveofattractingnewinvestmentinnickelprocessingandnurturingadownstreamindustry.Priortotheexportban,Indonesiahadonlytwooperatingnickelsmelters.By2020,thenumberhadrisento13,andmanymorearebeingplanned(Huber,2021).ThecountryhasattractedmorethanUSD15billionofforeigninvestmentinnickelprocessing(seeFigures4.3and4.4).FIGURE4.3Foreigninvestment(USDbillion)inIndonesia’snickelproductionfacilities,2022USDbillion3.5Australia3.02.5Canada2.01.5China1.00.5RepublicofKorea0United20122013201420152016201720182019202020212022StatesSource:(HoandListiyorini,2022).continuednextpage113GeopoliticsoftheEnergyTransformationBOX4.4LessonsfromIndonesia’snickelexportban(continued)FIGURE4.4Indonesia’sexportofrawnickelandnickelproducts(inUSDbillion),2021USDbillion12000Stainlesssteelandrelatedproducts10000Nickelandrelatedproducts,andferro-nickel8000Nickeloresandconcentrates600040002000020012003200520072009201120132015201720192021Source:(UNStatisticsDivision,2022;Kim,2023).MetalsectorinvestmentsinIndonesiahavefocusedonturningthecountry’snickeloreintonickelpigiron,whichisthenfedintostainlesssteelproduction.Thegovernmenthoweverseekstoclimbthenickelvaluechainfurther,havingalong-termgoaltodevelopafullEVsupplychain,includingtheproductionofcathodes,batterycellsandEVs(Kim,2023).Therehavebeensomeinitialsuccesses.Forexample,theRepublicofKorea’sLGEnergySolutionisbuildingaUSD1.1billionbatterycellplant,whilecarmakerHyundaiopenedaplanttoassembleelectriccars.China’sCATL,theworld’slargestbatterymanufacturer,hasinvestedinthecountry,whileTeslaandBYDhaveeithersignedorarefinalisinginvestmentdeals(MauliaandDamayanti,2023;Ruehl,2023).continuednextpage114©rdpcollectionshutterstock.comCRITICALMATERIALS©KAISARMUDAshutterstock.comBOX4.4LessonsfromIndonesia’snickelexportban(continued)Whileothercommodity-dependentdevelopingcountriesmighttakeinspirationfromIndonesia’snickelexportban,theyshouldtreadwithcautionforatleastfourreasons:nTheban’srelativesuccesswaslargelyduetothenon-substitutabilityofIndonesianlateritenickeloreinthenickelpigironprocess.Bycontrast,thebanonbauxiteoreexportsfailedtoattractnewsmeltingactivity,merelyshiftingtheore’sextractiontoothercountries,suchasMalaysia.Fromthisperspective,theIndonesianexamplesuggestedthatitispreferabletoavoidacomprehensiveexportbanoncommoditiesforwhichtherearereadysubstitutes(Terauds,2017).nNickelalsorepresentedarelativelysmallshareoftheIndonesianeconomy;itwasthuslessriskytoinstituteanexportbanonnickelthanonamorestrategicresource,suchascopper.Forcountrieswhosemaincommodityexportsrepresentamoresizeableshareoftheireconomy,anexportbanwouldbeconsiderablyriskier(Terauds,2017).nThenickelexportbanhascomeatcertaincosts.Inthefirstthreeyearsafteritwasimposed,itwasestimatedtohaveincurredlossesofUSD4.5billioninexportearnings,30000miningjobsandUSD270millioningovernmentrevenues(Terauds,2017).Whiletheselossesneedtobeoffsetagainstsubsequentgains,suchasnewinvestmentinnickelrefiningcapacity,suchcostsmustbeaccountedforwhenconsideringpolicyoptions.nIndonesia’ssuccessinattractingnickelrefiningactivitieshascomewithenvironmentalandsocialcosts.Agrowingnumberofprojectsrelyontheso-calledhigh-pressureacidleaching(HPAL)technique,whichproducessubstantialwastecomparedwithtraditionalsmeltingtechniques(Tan,SijabatandIrwandi,2023).nTherearealsolegalrisks.AWorldTradeOrganizationpanelrecentlyruledinfavouroftheEuropeanUnion’sprotestagainstIndonesia’snickeloreexportban(WTO,2022),butIndonesiawillnowappealtheruling(Strangio,2022).115GeopoliticsoftheEnergyTransformation©NamLongNguyenshutterstock.comMineral-richdevelopingcountriesseekingtoclimbupthemineralvaluechainmayfacetradebarriers.Developedcountriesoftenplacehighertariffsonmanufacturedgoodsthanrawmaterials(aprocessknownas“tariffescalation”).Futureimporttariffsmaybetiedtoemissions,asundertheEuropeanUnion’sCarbonBorderAdjustmentMechanism,which,intermsofmetals,willinitiallycoveronlysteelandaluminium,eventhoughitsproductscopemaybeextendedtocovercopper,zinc,nickelandsilicon,amongothers.TheproductionofthesemineralsisnowsubjecttoacarbonpriceundertheEuropeanUnion’sEmissionsTradingScheme,whiletheyareexposedtoasignificantriskofcarbonleakage,justlikealuminiumorsteel(EuropeanCommission,2020).BuildingregionalvaluechainsforEVbatterymineralsRegionalco-operationcouldhelpcountriescaptureagreatershareofthevaluefromproducingminerals.Mineral-richcountriescouldbenefitfromco-ordinatedregionalagreementstoensurefulfilmentoftheconditionsforforeigninvestments,ratherthanpursuingone-on-onedealswithoftenforeigncompanies.Regionalco-ordinationisalsoimportantintermsofattractingdownstreamindustries.OnlyahandfulofcountrieshaveallthemineralstoproduceEVbatteries.Thismeansthatpoolingmineralsupplieswouldbenefitthemajorityofcountriesiftheyweretobuilddownstreamindustries.Moreover,developingcountriescouldalsocreatebiggermarkets.Proximitytodownstreamconsumermarketsisanimportantsuccessfactorinattractinghigher-marginactivitiesinthebattery-EVvaluechain–probablymoreimportantthanproximitytomineralresources.Theproductionof“batteryprecursormaterial”–chemicalsthatareprecursorstomakingbatterycathodes–ismoreviableiflocatednearaclusterofotherchemicalplants.Thenextstepinthevaluechain,batterycathodeproduction,isbestlocatednearbatterycellmanufacturers,becausecathodesaredifficulttotransport(Dieneetal.,2022).TheUnitedNationsEconomicCommissionforAfricahasidentifiedseveralopportunitiesfordevelopingregionalbatterymineralandEVvaluechainsthatspanacrossCentralAfricaandintoEastandSouthernAfrica(Pedro,2021).AconcreteexampleofregionalvaluechaindevelopmentistheSouthernAfricanDevelopmentCommunity’sIndustrializationStrategyandRoadmap2015-2063.Also,theDemocraticRepublicofCongoandZambiahavesignedanagreementtofacilitatevaluechaindevelopmentintheEVbatteryandcleanenergysectors(UNECA,2022).AsiaandLatinAmericaarealsoseeingregionalco-operationonmineralvaluechains.116CRITICALMATERIALS©ATIKANPORNCHAIPRASITshutterstock.com4.3PROMOTINGRESPONSIBLE,SUSTAINABLEANDTRANSPARENTMINERALSUPPLYCHAINSThegrowingrecognitionofsustainabilitychallengesassociatedwiththemineralsupplychain,especiallypertainingtoEVbatterymaterialproduction,haspromptedglobalgovernments,businessesandcivilsocietygroupstodevelopavastarrayofinitiativesandregulatoryframeworks,whichseektoaddresspressingsustainabilityrisks,includingthoserelatedtohumanrights,labourpractices,corruptionandenvironmentalimpacts,amongothers.Whiletheseinitiativesshowsignificantoverlaps,theyvaryintermsoftheactorsandorganisationstowhichtheyapply,theinitiatives’scope(e.g.applicableonlytospecificminesitesorentirevaluechains),themineralscoveredandthecompliancemechanismsinvolved.Theyaremostlylimitedtovoluntaryadherence,resultinginapatchworkofsupplychainmanagementstandards,whichriskssowingconfusionforstakeholders(Elkindetal.,2020).Whileafulloverviewofalleffortstopromoteresponsible,sustainableandtransparentmineralsupplychainsisbeyondthescopeofthisreport,someofthepublic,multi-stakeholderandprivateinitiativesthataremostrelevanttotransitionmineralsarediscussedbelow.PublicsectorstandardsandlegislationTheUnitedNations’UNGuidingPrinciplesonBusinessandHumanRights(UnitedNationsHumanRightsOfficeoftheHighCommissioner,2011)isparticularlynotable.Theyguidebusinessesonhowtorespecthumanrightsthroughouttheiroperationsandsupplychains,withafocusonduediligence,riskassessmentandremediesforhumanrightsabuses.VariousUNagencies,forexample,theInternationalLaborOrganization,havedevelopedsustainableminingstandards.Finally,theSustainableDevelopmentGoalsarealsorelevanttotheminingsectorinmultipleways,asshowninFigure4.5.117GeopoliticsoftheEnergyTransformationFIGURE4.5MiningandtheSustainableDevelopmentGoalsCountry-by-countryFinancingEconomicactivityLandcompetitionPreventativereporting•Displacement•Agromineralshealthcare•Opendata•Fiscalissues•Soilsurveys•Illicitfinancial•Jobs•Micro-nutritients•Mentalhealthflows•Public-privatepartnerships•HIV/AIDS•Conflict•Domestic•TB,emerging•Free,priorandcapacityinfectiousdiseasesinformedconsent•OSHEcosystemIntegrationwithservicesnationalcurricula•Riskmitigation•Scholarships•Net-positive•Baselinesimpact•Technical,voca-•Osetstional,andedu-cationaltrainingTailingsdisposalEqualpayandopportunity•Impactassessments•Asymmetricimpacts•Deep-seamining•Gender-inclusivepoliciesEmissionsWaterrecyclingreductions•Community•Materialsforinvolvementlow-Csociety•Waterreporting•Adaptation•Shareduse•CarboncaptureRenewablesandstorage•Eciencyaudits•ShareduseMaterials•Reliabilitystewardship•Circulareconomy•MinimisingwasteNetpositivePoliticalinclusionResourcecorridorsDiversificationreclamation•Valueadded•Participatory•Shareduse•Localcontent•Appropriateplanning•Innovation•Businesstechnology•Socialunrestincubators•Urbanmining•Multipliers•JobsSource:(ColumbiaCentreonSustainableDevelopmentetal.,2016).Notes:AIDS=acquiredimmunodeficiencysyndrome;C=carbon;HIV=humanimmunodeficiencyvirus;OSH=occupationalsafetyandhealth;TB=tuberculosis.118CRITICALMATERIALS©sunsingershutterstock.comLikelythemostwidelyreferencedinternationalstandardistheOrganisationforEconomicCo-operationandDevelopment’s(OECD,2016b)DueDiligenceGuidanceforResponsibleSupplyChainsofMineralsfromConflict-AffectedandHigh-RiskAreas(hereafter“OECDMineralsGuidance”),whichprovidescompanieswithasupplychainduediligenceframeworkforsourcingmineralsfromconflict-affectedandhigh-riskareas.Theguidelines,whicharevoluntary,coverseveralissues,includingsupplychaintraceability,riskassessmentandstakeholderengagement,andthe46signatorystates–representing85%offoreigninvestment–aremandatedtooperateagovernmentcomplaintmechanism(Whitmore,2021).TheOECDMineralsGuidancehasbeenintegratedintoseveralregulatoryframeworks(notablyintheUnitedStatesandtheEU,aswellasinproducingandtradingcountriessuchastheDemocraticRepublicofCongo,RwandaandtheUnitedArabEmirates),industryguidelinesandmarketrequirements.Forexample,theChinaChamberofCommerceofMetals,Minerals&ChemicalsImporters&Exporters(closelyassociatedwiththeMinistryofCommerceandwithover6000members,whoseannualimportandexportvaluerepresentsabout30%ofChina’stotalimportandexportvalue)hasintegratedOECDstandardsintoChinesestandards.Also,in2022,allmetalstradedontheLondonMetalExchange,includingaluminium,cobalt,copper,tin,nickel,zincandlead(mostofthemessentialforthegreenanddigitaltransitions)werebroughtundermandatoryduediligencefollowingtheOECDMineralsGuidance.26Consideringinternationalstandardsprovideaglobalreferencepointforthetrade,itisworthmentioningtheInternationalStandardsOrganization(ISO),anindependent,non-governmentalinternationalorganisationwith167nationalstandardisationbodiesasmembers.Since1955,ithasatechnicalcommitteeformining,whichdevelopsstandardsforminingactivities.Since2015,twonewISOcommitteesonmetalsandmaterialshavebeencreatedattherequestofSAC(StandardsAdministrationofChina;theChinesestandardisationbodyonrareearthsandonlithium).Thesetechnicalcommittees,whicharenowledbytheSAC,developstandardsfortheclassification,traceability(fromminetofinalproducts),packagingandchemicalanalysismethodsforthosematerials.Sevenstandardshavebeenpublishedonrareearths,andninestandardsonrareearthsand14standardsonlithiumareunderdevelopment(ISO,2023a,2023b).Also,AssociationFrançaisedeNormalisation,theFrenchstandardsbody,recentlyproposedtocreateatechnicalcommitteefor14additionalcriticalmaterials,includingcobalt,graphiteandpalladium(ANSI,2023).26Giventhesignificanceofmultinationalcorporationsinmineralindustries,theOECDGuidelinesforMultinationalEnterprises,undergoingrevision,arealsorelevanttomentionhere(OECD,2011).Theseguidelinessetoutprinciplesforenvironmentalandsocialduediligenceandreporting,amongothers.119GeopoliticsoftheEnergyTransformation©savaskeskinergettyimages.comCountries’activeparticipationininternationalstandarddevelopmentisessentialfortheirinvolvementintradeandreapingitsbenefits.WhiletheISOtechnicalcommitteeonlithiumhasallmajorlithiumminingandrefiningcountriesasmembers,severalcountriesengagedinrareearthminingandrefiningarenotyetitspart–theseinclude,notably,Estonia,amajorrefiningcountry,andtheUnitedRepublicofTanzaniaandMyanmar(notafullISOmember),amajorminingcountry.Apartfromtheseinternationalinitiatives,themineralsupplychainisalsoregulatedbymanynationalandregionalregimes.TheseincludetheEUConflictMineralsRegulation,whichcameintoeffectin2021andrequirescompaniestoconductduediligenceontheirsupplychainsandeffectivelyidentifyandmitigateriskswhensourcingmineralsfromconflictedandhigh-riskareas(Directorate-GeneralforTrade,EuropeanCommission,2017).Theregulationonlyappliesto3TG(tin,tantalum,tungstenandgold)minerals,nottootherenergytransitionminerals,suchascobalt,graphite,nickelandlithium.OtherexamplesincludeSection1502oftheUSDodd-FrankAct(whichrequirescompanieslistedonUSstockexchangestodisclosewhethertheirproductscontainconflictminerals[3TGminerals]),theUKModernSlaveryActof2015andtheDutchChildLabourDueDiligenceAct,adoptedin2019.TheEuropeanUnion’supcomingBatteriesRegulationaimstobringbatteryrawmaterialsunderstringentsustainabilitystandardstoensuretheirsustainabilitythroughouttheirlifecycle,fromtheirsourcingtotheircollection,recyclingandrepurposing.Theregulationincludescarbonintensityandrecyclingquotasandduediligence,andwillensurethatbatteriescanberepurposed,remanufacturedorrecycledattheendoftheirlife(EuropeanCommission,2022).120CRITICALMATERIALSMulti-stakeholderinitiativesThereisaglobalincreaseinmulti-stakeholderinitiativestopromoteresponsiblesourcing,sustainableproductionandtransparencyinthecriticalrawmaterialsupplychain.AnexampleinthisregardarethewidelyusedGlobalReportingInitiative(GRI)sustainabilityreportingstandardsforlargecorporations(UNEP,2020).Inadditiontothegeneralstandards,theGRIhasaspecialguidancedocument,whichsetsperformanceindicatorsfordisclosuresintheminingandmetalssectors(GRI,2023).AnothernotableexampleistheResponsibleMineralsInitiative(RMI),whichaimstoadvanceresponsiblemineralsourcingbydevelopingandimplementingstandards,toolsandprogrammesforcompaniesandsuppliers.WhiletheRMIinitiallyfocusedonthe3TGminerals,whichareoftenassociatedwithhumanrightsabusesandconflict,itnowcoversallmineralsupplychains(RMI,2021).TheRMIincludesauditingandcertificationprogrammes,supplychainduediligencetoolsandcapacity-buildingprogrammesforsuppliers.TheGlobalBatteryAlliance(GBA),amulti-stakeholderinitiativelaunchedin2017bytheWorldEconomicForum,providesanotherframework,whichensuresresponsiblemineralsourcingandproduction,coveringareassuchashumanrights,labourpractices,environmentalmanagementandcommunityengagement.TheGBAseekstocreateasustainableandresponsiblebatteryvaluechainbyprioritisingthemitigationofsocialandenvironmentalimpactsrelatedtotheextraction,processinganddisposalofbatterymaterials.Ithasdevelopedasetofguidingprinciplestoreachthisgoal.Italsoworkstopromotetransparencyandtraceabilityinthesupplychain,andencouragesstakeholdercollaborationtodrivesystemicchange(GBA,2017).TheExtractiveIndustriesTransparencyInitiative(EITI)establishesaglobalstandardforthetransparentandaccountablemanagementofnaturalresources.TheEITIaimsforgreatertransparencyandseekstoreducecorruption,encouraginggovernments,companiesandcivilsocietyorganisationstoworktogethertodiscloseinformationontherevenuesgeneratedfromtheextractionofmineralsandotherresources.TheEITIgraduallyincludedenvironmentalissuesinitswork,revisingitsstandardin2019toalsoencourageimplementingcountriestodiscloseinformationonthemanagementandmonitoringofextraction’senvironmentalimpacts.EITI’sstandardiscurrentlyimplementedbyover50countries.121©MagnificalProductionsshutterstock.com©KriminskayaEkaterinagettyimages.comGeopoliticsoftheEnergyTransformationTheaboveinitiativesarefarfromtheonlyones.Table4.4showsotherselectedmulti-stakeholdergovernanceinitiativestogoverntransitionminerals.TABLE4.4Selectedmulti-stakeholdermineralgovernanceinitiativesCoverageFoundingorganisationsStandards/guidanceAllmineralInternationalCouncilonMiningandMetalsMiningprinciples/performanceexpectations/resources(ICMM)sustainabledevelopmentframework(ICMM,2022b)InitiativeforResponsibleMiningAssuranceStandardforresponsiblemining(IRMA)(IRMA,2006)MiningAssociationofCanada(MAC)TowardsSustainableMining(TSM)protocolsandframeworks(MAC,2004)DMTandEITRawMaterialsCERA4in1PerformanceStandard(CERA4in1,2017)InternationalFinanceCorporation(IFC)/PerformancestandardsonenvironmentalandWorldBankGroupsocialsustainability(IFC,2012)ResponsibleMineralsInitiative(RMI)ResponsibleMineralsAssuranceProcess(RMI,2018)LondonMetalExchange(LME)LME’sresponsiblesourcingrequirements(LME,2019)Copper(+lead,InternationalCopperAssociationTheCopperMark(TheCopperMark,2019)nickel,zinc,molybdenum)AluminiumFourteenfoundingcompaniesAluminiumStewardshipInitiative(ASI)(+bauxite,(ASI,2023)alumina)Steel(+iron)VariousstakeholdersResponsibleSteel(ResponsibleSteel,2018)TinInternationalTinAssociationandtheInternationalTinSupplyChainInitiative(ITSCI)Tantalum-NiobiumInternationalStudyCenter(ITSCI,2010)CobaltTheImpactFacility(aBritishnon-governmentalFairCobaltAlliance(FairCobaltAlliance,2020)organisation)andvariouscompaniesChinaChamberofCommerceofMetals,ResponsibleCobaltInitiative(RESPECTMinerals&ChemicalsImporters&Exporters,International,2016)andOrganisationforEconomicCo-operationandDevelopmentCobaltIndustryResponsibleAssessmentFramework(CobaltInstitute,2021)CobaltInstitute122CRITICALMATERIALS©cornfieldshutterstock.comPrivate,corporateactionsApartfrommultilateralandmulti-stakeholderinitiatives,manycompanieshavetheirownprogrammestosourcecriticalmaterialsresponsibly.Givenbelowaresomeexamples:nTeslawillsourceitscobaltandothercriticalmineralsonlyfromsuppliersmeetingitsenvironmentalandsocialstandards.Itisalsodevelopingnewbatterychemistriestoreduceitsrelianceoncobaltforitsbatteries.nApplehasdevelopedaresponsiblesourcingprogramme,whichrequiresitssupplierstofollowstringentenvironmentalandsocialstandards,andcoversseveralcriticalminerals,includingcobalt,tantalum,tin,tungstenandgold.AppleworkstopromoteresponsibleminingpracticesthroughitsparticipationintheRMI.nFordhasdevelopedasustainablematerialsstrategy,whichfocusesoncriticalmineralssuchascobalt,lithiumandrareearths.Itisworkingtoidentifyandaddressenvironmentalandsocialrisksinitssupplychainsandiscollaboratingwithsupplierstopromoteresponsiblesourcingpractices.nRioTintohasdevelopedaresponsiblesourcingprogramme,whichcoversseveralminerals,includingcopper,aluminiumanddiamonds,andfocusesonhumanrights,environmentalsustainabilityandcommunityengagement.Theprogrammeinvolvesworkingwithsupplierstoaddressrisksandimprovepractices.nBMWhasestablishedasustainabilityprogramme,whichfocusesontheresponsiblesourcingofcriticalmineralssuchascobaltandlithium.BMWworkswithsupplierstopromotesustainablepracticesandhascommittedtousingonlycertifiedsustainablerawmaterialsinitsproductsby2030.nVolkswagenhascreatedacomprehensivesustainabilityprogramme,whichfocusesontheresponsiblesourcingofcriticalmineralssuchaslithiumandcobalt.Volkswagenworkswithsupplierstoensuretheycomplywithitsenvironmentalandsocialstandards,anditalsoinvestsinnewtechnologiestoreduceitsrelianceoncriticalmineralsinitsproducts.nUmicoreensuressustainableprocurementofbatterymaterials(cobalt,lithium,nickel)throughaframework,whichincludestransactionandlogisticalsystems,qualitychecks,chemicalfingerprintingandstakeholderengagement.123GeopoliticsoftheEnergyTransformationHolisticapproachesExistingapproachestotheresponsiblesourcingofcriticalmaterials,especiallytraceabilityschemes,havelimitations.Tobeeffective,theseschemesmustestablishtrust,ensureauthenticityandminimisepotentialsystemloopholes(Sovacooletal.,2020).Presently,theseschemesareoftenvoluntary,andlackcohesionandrobustenforcementmechanisms.Traceabilityschemescouldbemademoreeffectivebypotentiallyincludingappropriatesanctions,penalties,compensationandremediationmechanismsinresponsetoviolations.Thiswouldlikelyrequiregreaterinvolvementfrompublicinstitutionsandgovernments.However,evenwithstrongergovernmentparticipationandenforcement,traceabilitysystemsalonehaveinherentlimitations.Theytendtoprioritisereputationalriskmitigationforcorporationsincriticalmaterialvaluechainsratherthantransformativesocialchange(Kügerletal.,2023;Sovacooletal.,2020)andare,thus,notcomprehensivesolutionstotheunderlyingissuesathand.Forinstance,onecriticalconsiderationinresponsiblesourcinginitiativesistheunintendedimpactonvulnerableparticipantswithinthesupplychain,suchasartisanalandsmall-scaleminers,whooftenfaceeconomicuncertainty,jobinsecurity,andbearadisproportionateburdenofhumanrightsviolationsandenvironmentalharm.Merelysafeguardingtheirlivelihoodsfallsshortofaddressingthesystemicproblem,whichrequiresengagingininclusivedialogueencompassingthefairdistributionofrisks,inputs,creativecontributionsandtheresultingvalue.Whilethereisaproliferationofregional,national,andindustry-ledinitiativesonhowtoaddressvarioussupplychainchallengesthereisstillnooverarchingintergovernmentalframeworktoaddressglobalsourcing,productionandtradeofcriticalmaterials.Withthegrowingimportanceofthesematerialsfortheenergytransitionandbeyond,co-ordinatedpolicyactionisbecomingincreasinglyimportant.AglobaleffortundertheauspicesoftheUnitedNationscouldplayakeyroleinensuringthatthecriticalmaterialvaluechainsarefair,equitableandtransparent.©xshotshutterstock.com124CRITICALMATERIALSPOLICYCONSIDERATIONSANDTHEWAYFORWARDIRENA’sGlobalCommissionontheGeopoliticsofEnergyTransformationnotedinits2019reportthatbottlenecksincriticalmaterialswereontheradarofpolicymakers(GCGET,2019).Criticalmaterialswerealreadyperceivedtobescarce-inpartbecause,likeallcommoditymarkets,thesemarketsarecyclical.Whendemandrises,supplytakestimetorespond,particularlyasnewminingprojectshavelongleadtimes.TheCommissionnotedthegeologicalabundanceandwidedistributionofmaterialreserves,recognisingthattheyareoftenexpensiveandpollutingtomineandproduce.ThisreportechoestheinitialobservationsfromtheCommission.Withthepressuretoacceleratetheenergytransitioninlinewiththe1.5°Cpathway,avastdeploymentofenergytransitiontechnologiesisrequiredby2030.IRENA’sWorldEnergyTransitionsOutlook(WETO)estimatesthatanaverageof1000GWofrenewableswillneedtobedeployedannually.WETOalsoemphasisesthatenablinginfrastructurewillbeessentialtoaccommodatehighsharesofsolarandwind,crossborderelectricitytrade,electrificationofendusessuchastransport,andgreenhydrogenproductionandtrade.Combined,thesetechnologiesaredramaticallyincreasingdemandforcriticalmaterials.Itiswidelyrecognisedthatthesupplychainsformanycriticalmaterialsareconcentratedinafewcountriesandinthehandsofalimitednumberofcompanies.Thisconcentrationcreatesvulnerabilitiesanduncertaintiesforbothconsumingandproducingcountriesthatcouldaffectthedeployment,costandsustainabilityofenergytransitiontechnologies.However,securityofsupplyisonlypartofthestory.IRENAhasconsistentlyurgedaholisticapproachtoallaspectsoftheenergytransitiontoproactivelyshapeoutcomesandmanagerisks.Thisisparticularlyimportantinthepursuitofcriticalmaterials,givenalegacyofpoorlabourstandards,displacements,pollutedwaterwaysanddegradedlandinthecommunitiesinwhichminesoperate.Moreover,thegrowingdemandforcriticalmaterialsopensnewopportunitiesfordevelopingcountriesrichinresources-especiallytocapturegreatereconomicvalue.Additionaleconomic,social,environmentalandgeopoliticalimplicationsmayalsoemergeascriticalmaterialmarketsexpand.Itisthereforeessentialthatthediversificationofcriticalmaterialssupplychainsisachievedbothquicklyandprudently.Someofthekeyconsiderationsforpolicymakersareoutlinedbelow.©SunshineSeedsshutterstock.com125GeopoliticsoftheEnergyTransformationComprehensive,economy-wideevaluationsofcriticalmaterialdemandareessentialtoidentifypotentialrisksandhelpavoidcompetitionbetweensectors.Countriesshouldcarefullyassesstheeffectsofsurgingdemandforcriticalmaterialsacrossalleconomicsectors,inlinewiththeirnet-zerostrategies.Currently,mostdemandforthesematerialscomesfromsectorsunrelatedtotheenergytransition,includingelectronics,aviation,defence,healthcare,andsteelandaluminiumproduction.However,thedemandlandscapeisquicklyevolvingwiththerolloutofrenewableenergytechnologies,batteriesandelectricvehicles.Furthermore,themodernisationandexpansionofgridsarecontributingtotheincreaseinmaterialuse.Intheshorttomediumterm,itwillbeimportanttomaintainvisibilityonhowthegrowingdemandformaterialsinenergywillimpactoveralldemandinordertoassesspossibletrade-offsandstrategies,andavoidcompetitionbetweensectorsandindustries.Nocountryalonecanfulfilitsdemandforallcriticalmaterials,socollaborativestrategiesthatbenefitallinvolvedneedtobedevelopedandimplemented.Giventheextensiveleadtimesforestablishingnewminesandprocessingplants,concentratedsupplychainsareexpectedtopersistinthenearfuture.Countriesshouldaimtodevelopdualstrategiestoensureco-operationtokeepmarketsfunctioningwhilealsoworkingtodiversifysupplychainsinthelongterm.Manybilateral,regionalandindustry-ledinitiativesfocusonsupplychainchallenges,whichcouldbeleveragedforco-ordinatedpolicyaction.Atthegloballevel,IRENA’sCollaborativeFrameworkforCriticalMaterialsisanestablishedplatformtoexchangeknowledgeandbestpractices,andco-ordinateactionstoensurethatmineralsandmaterialscontinuetosustainanacceleratedenergytransition.Comprehensiveassessmentsofcriticalmaterialsshouldbeconductedforeachmineraltofullygraspthedependencies,risksandinnovationsthatmayaffectsupplyanddemand.Despitethelonglistofidentifiedcriticalmaterials,notallareequallyimportantfortheenergytransition,noraretheircriticalityassessmentsconsistent.Forinstance,innovationhasresultedinanincreaseduseofsubstitutematerialsforthoseconsideredcritical,suchasneodymium,copper,andlithium.Policymakersshouldcontinuetofosterinnovationtodecreasedependencyonparticularmaterialsandtacklespecificchallengesassociatedwitheachone.alongtheentiresupplyanddemandchains.Regularrevisionsandevaluationsofcriticalmateriallistsarealsonecessaryduetotherapidinnovationsoccurringinproduction.©Phawatshutterstock.com126CRITICALMATERIALSGeopoliticalriskscanbemitigatedthroughenhancedinvestmentinresearchanddevelopment,whichwouldexpeditethecreationofalternativesolutions,boostefficiency,andexpandrecyclingandrepurposingoptions.Severalstrategiescanbeemployedtopreventmajorsupplychallengesleadingupto2050,withafocusonthisdecade.Keyamongtheseareproductdesignstrategiestominimisetheuseofcriticalmaterials,andtherecyclingandreuseofproductstoreclaimscarcematerials.Recenttrendsarepromising,suchasbatterymanufacturersminimisingtheirrelianceoncriticalmaterialsupplies.Policymakersshouldsupportinnovationsthatlowerdemandandfosteracirculareconomytoensurelong-termmaterialsecurity.Greaterdatatransparencyandoversightofcertaincriticalmaterialsarerequiredtomitigateuncertaintyinsupplyanddemandprojections.Thestartingpointshouldbethecollectionofmoredetailedinformationanddataonreserves,production,investment,andpricing,amongotherfactors,totrackcurrentsupplyandincreasemarkettransparency.Theadoptionofinternationalqualitystandardsandcertificationforkeyproductsinvolvingcriticalmaterialscouldalsofacilitatemarketformation.Thiseffortshouldbeaccompaniedbythedevelopmentandregularupdatingofdemandscenarios,providinggreatervisibilityintopotentialgapsandtheimpactsofinnovation.Anyshort-termpolicyactions,suchasstockpiling,shouldbecarefullyassessedtoavoidunintendedimpactsonclimateaction.Developingcountriescantapintotheirmineralresourcesandretainmoreeconomicvalue,formingthecornerstoneofadiversificationstrategythatalsocontributestoglobalequityandstability.Inadditiontopolicythatcanensuredomesticvalueaddedandpromotegreenindustrialisation,diversificationofsupplychainsmustincludeastrategyfortradeandcooperationbetweendevelopedanddevelopingcountries.Abalancedandco-operativeapproachinforeignpolicyengagementrequirestheimportingstatestosupportindustrialdevelopmentindevelopingcountriesbeyondextractivepatternsincriticalmaterialsupplychains.Thisentailsfosteringpartnerships,includingwiththeprivatesector,advocatingresponsiblesourcingpractices,supportingcapacitybuildinginproducingcountries,promotingtransparencyandaccountability,andinvestinginsustainableinitiatives.Theseconcretestepscanhelpimportingstatescontributetoequitableandsustainabledevelopment,ensuringamoreinclusiveandmutuallybeneficialapproachtoprocuringcriticalmaterials,whilesecuringthelong-termresilienceofmaterialsupplychains.Internationalco-operationiscrucialincreatingtransparentmarketswithcoherentstandardsandnorms,groundedinhumanrights,environmentalstewardshipandcommunityengagement.Theenergy-drivenmineralboomoffersachancetorewritethelegacyoftheextractiveindustry.Knownissuessurroundingminingpracticesneedaproactiveresponsefrombothnationsandcorporations.Importerandexportercountriesmustcollaboratetodevelopsupplychainsthatupholdclearstandardsregardinghumanrights,environmentalconcernsandcommunityengagement.Thesestandardsareessentialtohumansecurityandtheirabsenceisoneoftherootcausesofgeopoliticalinstability.Inthisregard,miningcorporationsshouldbeheldaccountablefortheresponsiblemanagementofextractionprocesses.Thisrequiresengagingininclusivedialogueencompassingthefairdistributionofrisks,inputs,creativecontributionsandresultingvalue.AglobaleffortundertheauspicesoftheUnitedNationscouldplayakeyroleinensuringcriticalmaterialvaluechainsarefair,equitableandtransparent.127GeopoliticsoftheEnergyTransformationREFERENCESAbraham,D.S.(2017),Theelementsofpower:gadgets,guns,andthestruggleforasustainablefutureintheraremetalage,YaleUniversityPress,NewHaven.AfricanClimateFoundation(2022),GeopoliticsofCriticalMineralsinRenewableEnergySupplyChains,TheAfricanClimateFoundation,CapeTown,https://africanclimatefoundation.org/wp-content/uploads/2022/09/800644-ACF-03_Geopolitics-of-critical-minerals-R_WEB.pdf(accessed17May2023).AfricanMineralsDevelopmentCentre(2018),DesktopReviewofAfricanGeologicalSurveyOrganisationCapacitiesandGaps,EconomicCommissionforAfrica,AddisAbaba,Ethiopia,https://archive.uneca.org/sites/default/files/PublicationFiles/desktop_review_of_african_geological_survey_organisation_capacities_and_gaps_2018.pdf(accessed15May2023).Agatie,C.(2023),"TeslaMightEnterMiningBusinessAfterAll,AsItMullsSigmaLithiumBuyout",https://www.autoevolution.com/news/tesla-might-enter-the-mining-business-after-all-as-it-mulls-sigma-lithium-buyout-210540.html(accessed6April2023).AgencyforNaturalResourcesandEnergy(2020),Japan’snewinternationalresourcestrategytosecureraremetals,AgencyforNaturalResourcesandEnergy,Tokyo,https://www.enecho.meti.go.jp/en/category/special/article/detail_158.html(accessed31March2023).Albemarle(2023),2023StrategicUpdate,https://s201.q4cdn.com/960975307/files/doc_events/2023/Jan/24/2023_01_ALB_Strategic_Update_PPT_Web.pdfAlbertin,Giorgia.,etal.(2021),TaxAvoidanceinSub-SaharanAfrica’sMiningSector,IMF,Washington,D.C.,https://www.imf.org/en/Publications/%20Departmental-Papers-Policy-Papers/Issues/2021/09/27/Tax-Avoidance-in-Sub-Saharan-Africas-Mining-Sector-464850.(accessed15May2023).Ali,S.H.(2009),Mining,theenvironment,andtheindigenousdevelopmentconflicts,UniversityofArizonaPress,Tucson.Anderson,R.W.,andGilbert,C.L.(1988),"CommodityAgreementsandCommodityMarkets:LessonsFromTin",TheEconomicJournal,vol.98/389,pp.1,https://doi.org/10.2307/2233509AngloAmerican(2021),AngloAmericansecures100%renewablesacrossSouthAmericanoperations,AngloAmerican,London,https://www.angloamerican.com/media/press-releases/2021/15-04-2021(accessed12May2023).AngloAmerican(2023),"nuGenTM",https://southafrica.angloamerican.com/our-difference/futuresmart-mining/nugenAngloAmerican(2022),Integratedreport2022,https://www.angloamericanplatinum.com/~/media/Files/A/Anglo-American-Group/Platinum/report-archive/2022/integrated-annual-report-2022.pdfAsamina,H.(2022),"Japanseekstoreleaserareearths,10othercriticalitemsfromChina’sgrip",NikkeiAsia,https://asia.nikkei.com/Spotlight/Supply-Chain/Japan-seeks-to-release-rare-earths-10-other-critical-items-from-China-s-grip(accessed3April2023).ASI(2023),"AluminiumStewardshipInitiative",https://aluminium-stewardship.org/(accessed5April2023).Attwood,J.(2023),"Peru’sViolentProtestsImperil30%ofItsCopperOutput",Bloomberg,https://www.bloomberg.com/news/articles/2023-01-27/protest-surge-imperils-30-of-copper-supply-in-no-2-miner-peru#xj4y7vzkg(accessed29March2023).Awng,M.H.A.(2022),"Myanmar’senvironmenthitbyrareearthminingboom",EarthJournalismNetwork,https://earthjournalism.net/stories/myanmars-environment-hit-by-rare-earth-mining-boom(accessed11May2023).128CRITICALMATERIALSAY,U.,etal.(2018),"WaterPollutionResultingFromMiningActivity:AnOverview",Conference:Proceedingsofthe2018AnnualConferenceoftheSchoolofEngineering&EngineeringTechnology(SEET),TheFederalUniversityofTechnology,Akure,Nigeria,vol.3,https://www.researchgate.net/publication/326925600_Water_Pollution_Resulting_From_Mining_Activity_An_Overview(accessed12May2023).Ayuk,E.T.,etal.(2020),MineralResourceGovernanceinthe21stCentury:GearingExtractiveIndustriestoSustainableDevelopment,UNEP,Nairobi,Kenya,https://www.resourcepanel.org/reports/mineral-resource-governance-21st-century(accessed13April2023).Azevedo,M.,etal.(2018),Lithiumandcobalt–ataleoftwocommodities,McKinsey&Company,https://www.mckinsey.com/~/media/mckinsey/industries/metals%20and%20mining/our%20insights/lithium%20and%20cobalt%20a%20tale%20of%20two%20commodities/lithium-and-cobalt-a-tale-of-two-commodities.pdf(accessed6April2023).Babbitt,C.W.,etal.(2021),"Theroleofdesignincirculareconomysolutionsforcriticalmaterials",OneEarth,vol.4/3,pp.353–62,https://doi.org/10.1016/j.oneear.2021.02.014Baker,E.,etal.(2020),"ChapterII:MineTailingsFacilities:OverviewandIndustryTrends",TowardsZeroHarm:ACompendiumofPapersPreparedfortheGlobalTailingsReview,GlobalTailingsReview,London,https://globaltailingsreview.org/wp-content/uploads/2020/08/towards-zero-harm.pdf(accessed12May2023).BangkokPost(2021),"Illegalrare-earthminingsurgesinMyanmar",BangkokPost,https://www.bangkokpost.com/world/2112407/illegal-rare-earth-mining-surges-in-myanmar(accessed11May2023).Banya,N.(2022),"Zimbabwebansrawlithiumexportstocurbartisanalmining",Reuters,https://www.reuters.com/world/africa/zimbabwe-bans-raw-lithium-exports-curb-artisanal-mining-2022-12-21/(accessed4April2023).Barbezat,D.(1989),"CooperationandRivalryintheInternationalSteelCartel,1926–1933",TheJournalofEconomicHistory,vol.49/2,pp.435–47,https://doi.org/10.1017/S0022050700008044Basquill,J.(2020),SouthAfricanportsreopenbutlockdownconfusionhitsminingsector,GlobalTradeReview,London,https://www.gtreview.com/news/africa/south-african-ports-reopen-but-lockdown-confusion-hits-mining-sector/(accessed27March2023).Blakemore,R.,etal.(2022),AlternativeBatteryChemistriesandDiversifyingCleanEnergySupplyChains,AtlanticCouncilGlobalEnergyCentre,Washington,DC,https://www.atlanticcouncil.org/wp-content/uploads/2022/09/Alternative-Battery-Chemistries-and-Diversifying-Clean-Energy-Supply-Chains.pdf(accessed31March2023).Blas,J.(2022),"CommodityTradersCan’tGo‘Unregulated’Anymore",Bloomberg,https://www.bloomberg.com/opinion/articles/2022-04-25/russia-s-ukraine-war-puts-spotlight-on-unregulated-opaque-commodity-trading?leadSource=uverify+wall(accessed6April2023).BloombergNews(2022),"RussianMetalExportsSlideasSanctionsHitCommodityFinancing",Bloomberg,https://www.bloomberg.com/news/articles/2022-02-28/russian-metal-exports-slide-as-sanctions-hit-commodity-financing#xj4y7vzkg(accessed27March2023).BMI(2019),"Manganese:TheBlackArt",BenchmarkMinerals,https://www.element25.com.au/site/PDF/1771_0/BenchmarkMineralIntelligenceManganeseTheBlackArtBMI(2022b),"Lithiumhastoscaletwentytimesby2050asautomakersfacegenerationalchallenge",BenchmarkMinerals,https://source.benchmarkminerals.com/article/lithium-has-to-scale-twenty-times-by-2050-as-automakers-face-generational-challenge/BNamericas(2022),"Brazil’sValelookingtorampupcopper,nickeloutput",https://www.bnamericas.com/en/analysis/brazils-vale-looking-to-ramp-up-copper-nickel-outputBNEF(2022a),"2H2022BatteryMetalsOutlook:Short-TermRisksToGrowth",BloombergNEF,https://www.bnef.com/login?r=%2Finsights%2F30441(accessed28March2023).129GeopoliticsoftheEnergyTransformationBNEF(2022b),"InteractiveDatasets",BloombergNewEnergyFinance,www.bnef.com/interactive-datasets/2d5d59acd9000014BNEF(2023),Metals:Minesupplyforecastandrefinerysupplyforecast,BloombergNEF,London,https://www.bnef.com/interactive-datasets/2d5d7ea4a2000001?data-hub=61(accessed16June2023).Boyd,R.etal.(eds.)(2016),"MineralresourcesintheArctic",GeologicalSurveyofNorway,Trondheim,Norway,https://www.ngu.no/upload/Aktuelt/CircumArtic/Mineral_Resources_Arctic_Mainbook.pdf(accessed24May2023).Bray,M.(1997),"MeddelandenfrånEkonomisk-historiskainstitutionenvidGöteborgsuniversitet(EliminatingtheCompetition:Price-fixingandMarket-sharingintheNickelIndustry1895–1929)",inEuropeanBusinessHistoryAssociationandGöteborgsuniversitet(eds.),BusinessandEuropeanintegrationsince1800:regional,national,andinternationalperspectives,GraphicSystems,Göteborg.Bryan,K.,andMilne,R.(2023),"Norwayseekstoopenvastoceanareatodeep-seamining",FinancialTimes,https://www.ft.com/content/44855d32-82c2-4f4c-b77c-1c21d3c1279f(accessed15June2023).Buchan,D.,andErrington,C.(2018),CommoditiesDemystified:Aguidetotradingandtheglobalsupplychain–secondedition,TrafiguraGroup,Singapore,https://www.trafigura.com/brochure/commodities-demystified-a-guide-to-trading-and-the-global-supply-chain-second-edition(accessed6April2023).BureauofInternationalRecycling(BIR)(2021),"Non-Ferrousmetals"(extractfromAnnualReport2021),BIR,Brussels,https://www.bir.org/the-industry/non-ferrous-metals(accessed4April2023).Burton,M.(2021),"MagnesiumBuyersWarnCrunchThreatensMillionsofEuropeanJobs",Bloomberg,https://www.bloomberg.com/news/articles/2021-10-22/magnesium-buyers-warn-crunch-threatens-millions-of-european-jobs#xj4y7vzkg(accessed27March2023).Burton,M.(2022),"LondonMetalExchangeTradingResumesAfterFive-HourOutage",Bloomberg,https://www.bloomberg.com/news/articles/2022-01-11/world-s-top-metals-trading-bourse-says-power-issues-cause-outage?leadSource=uverify+wall(accessed6April2023).Burton,M.(2023),"EuropeBalksatStrategicStockpileforCriticalGreenMetals",Bloomberg,https://www.bloomberg.com/news/articles/2023-03-13/europe-balks-at-strategic-stockpile-for-critical-green-metals#xj4y7vzkg(accessed4April2023).Burton,M.,andBarrett,J.(2020),"MiningAustralia’ssacredsites",Reuters,https://www.reuters.com/graphics/AUSTRALIA-MINING/INDIGENOUS/oakpearaepr/(accessed10May2023).Business&HumanRightsCentre(2022),"TransitionMineralsTracker",https://www.business-humanrights.org/en/from-us/transition-minerals-tracker/(accessed10May2023).Byung-wook,K.(2021),"S.Koreatobeefupcriticalmetalsstockpile",TheKoreaHerald,http://www.koreaherald.com/view.php?ud=20210805000737(accessed4April2023).Caceres,E.J.(2023),"EUgreen-techhomeshoringplansfaceresistanceinSpain",DW,https://www.dw.com/en/spanish-lithium-eus-green-tech-homeshoring-plans-face-resistance-on-the-ground/a-64996771(accessed31March2023).Calam,C.(2020),"USGSFormsAlliancewithAustraliaandCanadatoMineCriticalMinerals",https://www.thermofisher.com/blog/mining/usgs-forms-alliance-with-australia-and-canada-to-mine-critical-minerals/Cang,A.,andFarchy,J.(2023),"ChineseGroupHeadstoLMEWithPlantoDrawaLineUnderNickelCrisis",Bloomberg,https://www.bloomberg.com/news/articles/2023-02-24/nickel-crisis-chinese-group-heads-to-lme-one-year-after-squeeze#xj4y7vzkg(accessed30March2023).Casey,J.(2019),"Artisanalmining:thedangersthatcomewiththejob",MiningTechnology,https://www.mining-technology.com/features/artisanal-mining-the-dangers-that-come-with-the-job/(accessed11May2023).CERA4in1(2017),"TheCertificationofRawMaterials",https://www.cera4in1.org/(accessed5April2023).130CRITICALMATERIALSChurch,C.,andCrawford,A.(2018),GreenConflictMinerals:Thefuelsofconflictinthetransitiontoalow-carboneconomy,IISD,Canada,https://www.iisd.org/system/files/publications/green-conflict-minerals.pdf(accessed30March2023).Clark,H.(2023),Doesthepotentialforcorruptionintheminingsectorthreatenajustenergytransition?,WorldEconomicForum,https://www.weforum.org/agenda/2023/04/corruption-in-the-mining-sector-threatens-a-just-energy-transition/(accessed15May2023).CNBC(2021),"ThenewU.S.plantorivalChinaandendcorneringofmarketinrareearthmetals",https://www.cnbc.com/2021/04/17/the-new-us-plan-to-rival-chinas-dominance-in-rare-earth-metals.htmlCobaltBlueHoldings(2022),TheCobaltMarket,https://cobaltblueholdings.com/assets/resources/The-Cobalt-Market_Apr-22.pdfCobaltinstitute(2021),"CobaltIndustryResponsibleAssessmentFramework(CIRAF)",https://www.cobaltinstitute.org/responsible-sourcing/industry-responsible-assessment-framework-ciraf/(accessed5April2023).ColumbiaCentreonSustainableDevelopment,etal.(2016),MappingMiningtotheSustainableEmpoweredlives.Resilientnations.DevelopmentGoals:AnAtlas,ColumbiaCentreonSustainableDevelopment,UNDP;UNSustainableDevelopmentSolutionsNetwork;WorldEconomicForum,Geneva,https://www.undp.org/sites/g/files/zskgke326/files/publications/Mapping_Mining_SDGs_An_Atlas_Executive_Summary_FINAL.pdf(accessed5April2023).Connor,J.(2012),PriceEffectsofInternationalCartelsinMarketsforPrimaryProducts,CentreforEconomicPolicyResearch(CEPR)andConsumerUnity&TrustSociety(CUTSInternational),London,https://www.cuts-ccier.org/pdf/Trade_Competition_and_the_Pricing_of_Commodities.pdf#page=73(accessed29March2023).Cuffe,S.(2022),"TheHiddenStoryofaNotoriousGuatemalanNickelMine",TheIntercept,https://theintercept.com/2022/03/27/solway-guatemala-nickel-mine/(accessed10May2023).Daly,T.,andZhang,M.(2020),"ChinarareearthsfirmShenghehitby‘once-in-a-century’flooding",Reuters,https://www.nasdaq.com/articles/china-rare-earths-firm-shenghe-hit-by-once-in-a-century-flooding-2020-08-19(accessed29March2023).Daniels,J.P.(2022),"Consentwasnevergiven’:indigenousgroupsopposerestartingGuatemalanickelmine",TheGuardian,https://www.theguardian.com/global-development/2022/mar/06/indigenous-groups-oppose-restarting-guatemala-nickel-mine(accessed10May2023).Darbar,D.(2022),Anoverviewofcobalt-free,nickel-containingcathodesforLi-ionbatteries,https://www.sciencedirect.com/science/article/abs/pii/S2468606922002313DeepSeaConservationCoalition(2022),"ResistancetoDeep-SeaMinig:GovernmentsandParliamentarians",https://savethehighseas.org/voices-calling-for-a-moratorium-governments-and-parliamentarians/(accessed17May2023).DELVE(2023),"AGlobalPlatformforArtisanal&SmallScaleMiningData",https://delvedatabase.org/(accessed11May2023).Dempsey,H.,andRuehl,M.(2022),"IndonesiaconsidersOpec-stylecartelforbatterymetals",FinancialTimes,https://www.ft.com/content/0990f663-19ae-4744-828f-1bd659697468(accessed28March2023).Dempsey,H.,andWhite,E.(2023),"Chile’smovetocontrolLithiumalarmsindustry",FinancialTimes,https://www.ft.com/content/6cbc4d6f-fc7f-4039-93fc-bf64421984bc(accessed15June2023).Diene,P.D.,etal.(2022),TripleWin:HowMiningCanBenefitAfrica’sCitizens,TheirEnvironmentandtheEnergyTransition,NaturalResourceGovernanceInstitute,NewYork,https://resourcegovernance.org/analysis-tools/publications/triple-win-how-mining-can-benefit-africa-citizens-their-environment-energy-transition(accessed5April2023).131GeopoliticsoftheEnergyTransformationDietsche,E.(2014),"Diversifyingmineraleconomies:conceptualizingthedebateonbuildinglinkages",MineralEconomics,vol.27/2–3,pp.89–102,https://doi.org/10.1007/s13563-014-0058-4DirectorateGeneralforInternalMarket,Industry,EntrepreneurshipandSMEs,EuropeanCommission(n.d.),"RawMaterialsDiplomacy",InternalMarket,Industry,EntrepreneurshipandSMEs,EuropeanCommission,https://single-market-economy.ec.europa.eu/sectors/raw-materials/areas-specific-interest/raw-materials-diplomacy_en(accessed3April2023).Directorate-GeneralforMaritimeAffairsandFisheries(2022),Settingthecourseforasustainableblueplanet–JointCommunicationontheEU’sInternationalOceanGovernanceagenda,EuropeanCommission,Brussels,https://oceans-and-fisheries.ec.europa.eu/publications/setting-course-sustainable-blue-planet-joint-communication-eus-international-ocean-governance-agenda_en(accessed5April2023).Directorate-GeneralforTrade,EuropeanCommission(2017),"ConflictMineralsRegulation",https://policy.trade.ec.europa.eu/development-and-sustainability/conflict-minerals-regulation_en(accessed5April2023).Dufour,A.(2023),"ChangestoMiningActexposecracksinOntario’sdutytoconsultwithFirstNations",CBC,https://www.cbc.ca/news/canada/sudbury/bill-71-build-more-mines-faster-industry-consent-1.6823647(accessed10May2023).Elkind,E.N.,etal.(2020),SustainableDriveSustainableSupply:PrioritiestoImprovetheElectricVehicleBatterySupplyChain,CentreforLaw,Energy,&theEnvironmentandNaturalResourceGovernanceInstitute,https://resourcegovernance.org/sites/default/files/documents/sustainable-drive-sustainable-supply-priorities-to-improve-the-electric-vehicle-battery-supply-chain.pdf(accessed5April2023).Els,F.(2022),"Graphitepoisedtodoalithium",https://www.mining.com/graphite-poised-to-do-a-lithium/Emsbo,P.,etal.(2021),"GeologicalSurveysUnitetoImproveCriticalMineralSecurity",EoS,https://eos.org/science-updates/geological-surveys-unite-to-improve-critical-mineral-security(accessed4March2023).EnergyTransitionsCommission(2023),Materialandresourcerequirementsfortheenergytransition,EnergyTransitionsCommissionEnvironmentJusticeFoundation(2023),Towardstheabyss:howtherushtodeep-seaminingthreatenspeopleandourplanet,EnvironmentJusticeFoundation,London,https://ejfoundation.org/resources/downloads/towards-the-abyss-ejf-deep-sea-mining-report.pdf(accessed5April2023).ERGI(2019),"EnergyResourceGovernanceInitiativeToolkit",https://ergi.tools,https://ergi.tools/(accessed2April2023).Erickson,C.(2022),"GraphiteemissionsfuelsearchforsolutionsalongEVsupplychain",https://www.spglobal.com/marketintelligence/en/news-insights/latest-news-headlines/graphite-emissions-fuel-search-for-solutions-along-ev-supply-chain-69599516Ericsson,M.,andOlöf,O.(2019),"Mining’scontributiontonationaleconomiesbetween1996and2016",MineralEconomics,vol.32/2,pp.223–50,https://doi.org/10.1007/s13563-019-00191-6ERMA(2020),"EuropeanRawMaterialsAlliance",https://erma.eu,https://erma.eu/(accessed3April2023).EuroManganese(2022),"EMNAnnouncesPositiveFeasibilityStudyBaseCaseResultsfortheChvaleticeManganeseProject",https://www.mn25.ca/post/emn-announces-positive-feasibility-study-base-case-results-for-the-chvaletice-manganese-project#:~:text=The%20total%20Mn%20market%20in,of%20the%2-0global%20manganese%20marketEurometaux(2022),MetalsforCleanEnergy:PathwaystosolvingEurope’srawmaterialschallenge,https://eurometaux.eu/media/jmxf2qm0/metals-for-clean-energy.pdfEuropeanAluminium(2020),CircularAluminiumActionPlan:AStrategyforAchievingAluminium’sFullPotentialforCircularEconomyby2030,EuropeanAluminium,Brussels,https://european-aluminium.eu/wp-content/uploads/2022/08/2020-05-13_european-aluminium_circular-aluminium-action-plan_executive-summary.pdf(accessed12May2023).132CRITICALMATERIALSEuropeanCommission(2011),CommunicationfromthecommissiontotheEuropeanParliament,theCouncil,theEuropeanEconomicandSocialCommitteeandtheCommitteeoftheRegions:TacklingtheChallengesinCommodityMarketsandonRawMaterials,EuropeanCommission,Brussels,https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52011DC0025&from=EN(accessed3April2023).EuropeanCommission(2020),"CommunicationfromtheCommissionGuidelinesoncertainStateaidmeasuresinthecontextofthesystemforgreenhousegasemissionallowancetradingpost-20212020/C317/04",OfficialJournaloftheEuropeanUnion,vol.C317/5,https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52020XC0925%2801%29(accessed6February2023).EuropeanCommission(2022),GreenDeal:EUagreesnewlawonmoresustainableandcircularbatteriestosupportEU’senergytransitionandcompetitiveindustry,EuropeanCommission,Brussels,https://ec.europa.eu/commission/presscorner/detail/en/ip_22_7588(accessed17May2023).EuropeanEconomicandSocialCommittee,EuropeanCommission(2020),"CriticalRawMaterialsResilience:ChartingaPathtowardsgreaterSecurityandSustainability",https://www.eesc.europa.eu/en/our-work/opinions-information-reports/opinions/critical-raw-materials-resilience-charting-path-towards-greater-security-and-sustainability(accessed4April2023).ExecutiveOfficeofthePresident(2017),"ExecutiveOrder13817ofDecember20,2017:AFederalStrategyToEnsureSecureandReliableSuppliesofCriticalMinerals",FederalRegister,https://www.federalregister.gov/documents/2017/12/26/2017-27899/a-federal-strategy-to-ensure-secure-and-reliable-supplies-of-critical-minerals(accessed31March2023).FairCobaltAlliance(2020),"FairCobaltAllianceWebsite",https://www.faircobaltalliance.org/(accessed5April2023).Farchy,J.,etal.(2022),"The18MinutesofTradingChaosThatBroketheNickelMarket",Bloomberg,https://www.bloomberg.com/news/articles/2022-03-14/inside-nickel-s-short-squeeze-how-price-surges-halted-lme-trading#xj4y7vzkg(accessed30March2023).Fastmarkets(2023),Syntheticversusnaturalgraphitedebaterageson:2023preview,https://www.fastmarkets.com/insights/synthetic-versus-natural-graphite-debate#:~:text=Total%20apparent%20demand%20for%20natural,1.25%20million%20tonnes%20in%202022FederalRegisterofLegislation(2021),"ForeignInvestmentReform(ProtectingAustralia’sNationalSecurity)Act2020",https://www.legislation.gov.au/Details/C2021C00358(accessed29March2023).Feffer,J.(2023),"BattlingaMiningGoliathonTwoContinents",ForeignPolicyinFocus(FPIF),https://fpif.org/battling-a-mining-goliath-on-two-continents/(accessed2April2023).Fleming,S.(2018),"Thehiddencostoftheelectriccarboom–childlabour",https://www.weforum.org/agenda/2018/09/the-hidden-cost-of-the-electric-car-boom-child-labour/(accessed11May2023).Fliessi,B.,etal.(2017),ExportcontrolsandcompetitivenessinAfricanminingandmineralsprocessingindustries,OECDTradePolicyPapers,No.204(Volume204),https://doi.org/10.1787/1fddd828-enFlorenceBascomGeoscienceCenter(2019),SpecialGeologicStudies:Artisanalandsmall-scaleminingofconflictminerals,UnitedStates,https://www.usgs.gov/centers/florence-bascom-geoscience-center/science/special-geologic-studies-artisanal-and-small#overview(accessed10May2023).Fox,S.J.(2022),"‘Exploiting–land,seaandspace:Mineralsuperpower’Inthenameofpeace:Acriticalracetoprotectthedepthsandheights",ResourcesPolicy,vol.79,pp.103066,https://doi.org/10.1016/j.resourpol.2022.103066Frontier(2022),"Collapseinmineralsexportsrobsjuntaofkeyrevenue",FrontierMyanmar,https://www.frontiermyanmar.net/en/collapse-in-minerals-exports-robs-junta-of-key-revenue/(accessed29March2023).133GeopoliticsoftheEnergyTransformationFrost,R.(2023),"MiningEurope’sbiggestrareearthdepositcouldmakelife‘impossible’forSámicommunities",Euronews,https://www.euronews.com/green/2023/02/11/mining-europes-biggest-rare-earth-deposit-could-make-life-impossible-for-sami-communities(accessed2April2023).Fu,X.(2020),PerspectivesonCobaltSupplythrough2030intheFaceofChangingDemand,https://ceder.berkeley.edu/publications/2020_cobalt_resource_review.pdfG7HiroshimaSummit(2023),"AnnextotheClimate,EnergyandEnvironmentMinisters’CommuniquéFive-PointPlanforCriticalMineralsSecuri",G7HiroshimaSummit2023,https://www.meti.go.jp/information/g7hirosima/energy/pdf/Annex005.pdf(accessed25May2023).Garcia,D.M.(2020),Rare-EarthDemandinCleanEnergy,BloombergNEF,London,https://www.bnef.com/insights/24159(accessed27March2023).Garvey,M.(2021),"CommoditiesOutlook",Macquarie,https://content.macquarie.com/macquarie-capital/asia/2021/events/indo-mining-mar/Global%20metal%20outlook.pdfGBA(2017),"EstablishingaSustainableandResponsibleBatteryValueChain",https://www.globalbattery.org/about/(accessed5April2023).GCGET(2019),Anewworld:Thegeopoliticsoftheenergytransformation,GlobalCommissionontheGeopoliticsofEnergyTransformationandInternationalRenewableEnergyAgency,AbuDhabi,https://www.irena.org/Publications/2019/Jan/A-New-World-The-Geopolitics-of-the-Energy-TransformationGholz,E.,andHughes,L.(2021),"Marketstructureandeconomicsanctions:the2010rareearthelementsepisodeasapathwaycaseofmarketadjustment",ReviewofInternationalPoliticalEconomy,vol.28/3,pp.611–34,https://doi.org/10.1080/09692290.2019.1693411Gielen,D.(2021a),CriticalMaterialsForTheEnergyTransition,InternationalRenewableEnergyAgency(IRENA),AbuDhabi,https://irena.org/Technical-Papers/Critical-Materials-For-The-Energy-TransitionGielen,D.,andLyons,M.(2022a),CriticalMaterialsfortheEnergyTransition:RareEarthElements,InternationalRenewableEnergyAgency(IRENA),AbuDhabi,UnitedArabEmirates,www.irena.org/Technical-Papers/Critical-Materials-For-The-Energy-Transition-Rare-Earth-elementsGielen,D.,andLyons,M.(2022b),CriticalMaterialsfortheEnergyTransition:Lithium,InternationalRenewableEnergyAgency(IRENA),AbuDhabi,www.irena.org/Technical-Papers/Critical-Materials-For-The-Energy-Transition-LithiumGiese,E.C.(2022),"Strategicminerals:Globalchallengespost-COVID-19",TheExtractiveIndustriesandSociety,vol.12,pp.101113,https://doi.org/10.1016/j.exis.2022.101113GlobalTailingsReview.org(2020),GlobalIndustryStandardonTailingsManagement,GlobalTailingsReview.org,https://globaltailingsreview.org/wp-content/uploads/2020/08/global-industry-standard_EN.pdf(accessed16June2023).GlobalXResearchTeam(2016),"WhattoKnow:5FactsaboutLithium",GlobalXInsights,https://www.globalxetfs.com/what-to-know-5-facts-about-lithium/(accessed14April2023).Gocht,W.R.etal.(1988),InternationalMineralEconomics:MineralExploration,MineValuation,MineralMarkets,InternationalMineralPolicies,SpringerBerlinHeidelberg,Berlin,Heidelberg.GovermentofCanada(2022),"Graphitefacts",https://natural-resources.canada.ca/our-natural-resources/minerals-mining/minerals-metals-facts/graphite-facts/24027GovernmentofCanada(2022),"SustainableCriticalMineralsAllianceStatement",https://www.canada.ca/en/campaign/critical-minerals-in-canada/our-critical-minerals-strategic-partnerships.html(accessed3April2023).GovernmentofChile(2023),"NationalLithiumStrategy",https://www.gob.cl/litioporchile/en/(accessed16May2023).134CRITICALMATERIALSGovernmentofWesternAustralia(2022),WesternAustraliaAGlobalBatteryandCriticalMineralsHub,DepartmentofJobs,Tourism,ScienceandInnovation,Perth,https://www.wa.gov.au/system/files/2022-07/220630_Battery%20and%20Critical%20Minerals_Prospectus-Web.pdf(accessed6April2023).Gregoir,L.,andvanAcker,K.(2022),MetalsforCleanEnergy:PathwaystosolvingEurope’srawmaterialschallenge,KULeuven,Belgium,https://euagenda.eu/publications/metals-for-clean-energy-pathways-to-solving-europe-s-raw-materials-challenge(accessed4April2023).GregoryL.White(2002),"AMismanagedPalladiumStockpileWasCatalystforFord’sWrite-Off",WallStreetJournal,https://www.wsj.com/articles/SB1012944717336886240(accessed4April2023).GRI(GlobalReportingInitiative)(2023),"Thegloballeaderforimpactreporting:Servicesandsupport",https://www.globalreporting.org/about-gri/(accessed5April2023).Gulley,A.L.(2022),"OnehundredyearsofcobaltproductionintheDemocraticRepublicoftheCongo",ResourcesPolicy,vol.79,pp.103007,https://doi.org/10.1016/j.resourpol.2022.103007Gyamfi,E.,etal.(2019),"PotentialheavymetalpollutionofsoilandwaterresourcesfromartisanalmininginKokoteasua,Ghana",GroundwaterforSustainableDevelopment,vol.8,pp.450–6,https://doi.org/10.1016/j.gsd.2019.01.007Hendrix,C.S.(2022),22-16BuildingDownstreamCapacityforCriticalMineralsinAfrica:ChallengesandOpportunities,PetersonInstituteforInternationalEconomics,Washington,DC,https://www.piie.com/sites/default/files/2022-12/pb22-16.pdf(accessed30March2023).Hendrix,C.,andBazilian,M.(2022),"MarketsforCriticalMineralsAreTooPronetoFailure",Barron’s,https://www.barrons.com/articles/markets-critical-minerals-lithium-cobalt-copper-51671227168(accessed29March2023).Hill,M.,andMitimingi,T.C.(2022),"ZambiaPlansMine-TaxConcessionsWhileTrimmingBudgetDeficit",Bloomberg,https://www.bloomberg.com/news/articles/2022-09-30/zambia-plans-mine-tax-concessions-while-trimming-budget-deficit?leadSource=uverify%20wall(accessed12May2023).Hillman,J.(2010),TheInternationalTinCartel(1stedition.),Routledge,London,https://www.routledge.com/The-International-Tin-Cartel/Hillman/p/book/9781138989474#(accessed28March2023).Hilson,G.(2002),"Small-scalemininganditssocio-economicimpactindevelopingcountries",NaturalResourcesForum,vol.26/1,pp.3–13,https://doi.org/10.1111/1477-8947.00002Ho,Y.,andListiyorini,E.(2022),"ChineseCompaniesAreFlockingtoIndonesiaforItsNickel",Bloomberg,https://www.bloomberg.com/news/articles/2022-12-15/chinese-companies-are-flocking-to-indonesia-for-its-nickel?leadSource=uverify+wall(accessed4April2023).Holzman,J.(2022),"Exclusive:BehindBiden’soverseasminingfunding",AXIOS,https://www.axios.com/2022/12/12/biden-overseas-mining-funding(accessed3April2023).Home,A.(2021),"Column:China’ssuper-chargedbuyingreshapesthecoppermarket",Reuters,https://www.reuters.com/article/us-metals-copper-ahome-column-idUSKBN2CM1G5(accessed3April2023).Huber,I.(2021),Indonesia’sNickelIndustrialStrategy,CSIS,Washington,DC,https://www.csis.org/analysis/indonesias-nickel-industrial-strategy(accessed4April2023).Hume,N.(2021),"China’smagnesiumshortagethreatensglobalcarindustry",FinancialTimes,https://www.ft.com/content/1611e936-08a5-4654-987e-664f50133a4b(accessed27March2023).Humphreys,D.(2011),"Pricingandtradinginmetalsandminerals",SMEMiningEngineeringHandbook(Third.),US,https://www.smenet.org/productdetail?ProductID=2824786(accessed6April2023).Hund,K.,andReed,E.(2019),"Alow-carbonfuturemustprotecttheworld’sforests",WorldBankBlogs,https://blogs.worldbank.org/voices/low-carbon-future-must-protect-worlds-forests(accessed12May2023).135GeopoliticsoftheEnergyTransformationICMM(2014),WaterStewardshipFramework,ICMM,London,https://www.icmm.com/en-gb/guidance/environmental-stewardship/2014/water-stewardship(accessed16June2023).ICMM(2021),TailingsManagement:GoodPracticeGuide,ICMM,London,https://www.icmm.com/en-gb/guidance/innovation/2021/tailings-management-good-practice(accessed16June2023).ICMM(2022a),TailingsReductionRoadmap,ICMM,London,https://www.icmm.com/website/publications/pdfs/innovation/2022/roadmap_tailings-reduction.pdf?cb=20771(accessed16June2023).ICMM(2022b),"Miningprinciples",https://www.icmm.com/en-gb/our-principles/mining-principles/principle-1(accessed5April2023).IEA(2021),TheRoleofCriticalMineralsinCleanEnergyTransitions,IEA,Paris,https://www.iea.org/reports/the-role-of-critical-minerals-in-clean-energy-transitions(accessed6April2023).IEA(2022),ClimateResilienceforEnergySecurity,IEA,Paris,https://iea.blob.core.windows.net/assets/10229b31-fd82-4371-b92c-a554f95369ea/ClimateResilienceforEnergySecurity.pdf(accessed29March2023).IFC(2012),IFCPerformanceStandardsonEnvironmentalandSocialSustainability–EffectiveJanuary1,2012,(p.72),IFC,Washington,D.C.,https://www.ifc.org/wps/wcm/connect/topics_ext_content/ifc_external_corporate_site/sustainability-at-ifc/publications/publications_handbook_pps(accessed5April2023).IHSMarkit(2022),"TheFutureofCopper:Willtheloomingsupplygapshort-circuittheenergytransition?",S&P,https://cdn.ihsmarkit.com/www/pdf/0722/The-Future-of-Copper_Full-Report_14July2022.pdfImplats(2022),"MineralResourceandMineralReserveStatementasat30June2022",https://www.implats.co.za/pdf/mrr-2022/Implats-Mineral-Resources-and-Mineral-Reserves-Report-2022.pdfInnovationNewsnetwork(2023),"HowwillChilenationaliseitshugelithiumindustry?",InnovationNewsnetwork,https://www.innovationnewsnetwork.com/how-will-chile-nationalise-huge-lithium-industry/32088/(accessed16May2023).InternationalSeabedAuthority(2023),"ExplorationContracts",https://www.isa.org.jm/exploration-contracts/(accessed5April2023).IPCC(2021),ClimateChange2021:ThePhysicalScienceBasis.WorkingGroupIContributiontotheSixthAssessmentReportoftheIntergovernmentalPanelonClimateChange,CambridgeUniversityPress,Cambridge,andNewYork,https://www.ipcc.ch/report/ar6/wg1/(accessed24May2023).IRENA(2022a),WorldEnergyTransitionsOutlook2022:1.5°CPathway,InternationalRenewableEnergyAgency,AbuDhabi,https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2022/Mar/IRENA_World_Energy_Transitions_Outlook_2022.pdf?rev=6ff451981b0948c6894546661c6658a1IRENA(2022b),GeopoliticsoftheEnergyTransformation:TheHydrogenFactor,InternationalRenewableEnergyAgency,AbuDhabi,https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2022/Jan/IRENA_Geopolitics_Hydrogen_2022.pdf?rev=1cfe49eee979409686f101ce24ffd71aIRENA(2023),WorldEnergyTransitionsOutlook2023:1.5°CPathway-Preview,InternationalRenewableEnergyAgency,AbuDhabi,https://www.irena.org/Publications/2023/Mar/World-Energy-Transitions-Outlook-2023(accessed16May2023).IRENA(forthcoming),CriticalMaterialsfortheEnergyTransition:EVbatteries,InternationalRenewableEnergyAgency,AbuDhabiIRENAandNUPI(forthcoming),ConstructingaGlobalListofCriticalMaterialsfortheEnergyTransition,InternationalRenewableEnergyAgency,AbuDhabi,andNorwegianInstituteofInternationalAffairs.IRMA(2006),"InitiativeforResponsibleMiningassurance",https://responsiblemining.net/(accessed5April2023).ISO(2023a),"ISO/TC298–Rareearth",https://www.iso.org/committee/5902483.html136CRITICALMATERIALSISO(2023b),"ISO/TC333–Lithium",https://www.iso.org/committee/8031128.htmlITSCI(2010),"ITSCIwebsite",https://www.itsci.org/(accessed5April2023).Iturrieta,F.(2017),"Tiredbutsatisfied,Escondidaminerspackupafterhistoricstrike",Reuters,https://www.reuters.com/article/uk-chile-copper-escondida-idUKKBN16V2TA(accessed29March2023).Jerez,B.,etal.(2021),"LithiumextractivismandwaterinjusticesintheSalardeAtacama,Chile:Thecolonialshadowofgreenelectromobility",PoliticalGeography,vol.87,pp.102382,https://doi.org/10.1016/j.polgeo.2021.102382JohnsonMatthey(2022),"PGMmarketreport",https://matthey.com/documents/161599/509428/PGM-market-report-May-2022.pdf/542bcada-f4ac-a673-5f95-ad1bbfca5106?t=1655877358676Jones,B.,etal.(2023),"Theelectricvehiclerevolution:Criticalmaterialsupplychains,tradeanddevelopment",TheWorldEconomy,vol.46/1,pp.2–26,https://doi.org/10.1111/twec.13345JRC(2020),"Forecastofrareearthssupplyanddemand-windenergyande-mobility",https://data.jrc.ec.europa.eu/dataset/aa1fc9e1-360d-478e-a6da-51b092f30d32Junneetal.(2020),"Criticalmaterialsingloballow-carbonenergyscenarios:Thecaseforneodymium,dysprosium,lithium,andcobalt",https://www.sciencedirect.com/science/article/abs/pii/S0360544220316406JupiterMines(2023),CompanyStrategyUpdate,https://www.jupitermines.com/cproot/1144/3/20230331%20Company%20Strategy%20Update.pdfKarali,N.,andShah,N.(2022),"Bolsteringsuppliesofcriticalrawmaterialsforlow-carbontechnologiesthroughcirculareconomystrategies",EnergyResearch&SocialScience,vol.88,pp.102534,https://doi.org/10.1016/j.erss.2022.102534Kim,K.(2023),"Indonesia’suncertainclimbupthenickelvaluechain",TheInterpreterpublisheddailybyTheLowyInstitute,https://www.lowyinstitute.org/the-interpreter/indonesia-s-uncertain-climb-nickel-value-chain(accessed15May2023).King,TheHon.Madeleine,MP(2023),"Strongdemandformineralsforlow-emissionstechnology",MinistryfortheDepartmentofIndustry,ScienceandResources,GovernmentofAustralia,https://www.minister.industry.gov.au/ministers/king/media-releases/strong-demand-minerals-low-emissions-technology(accessed6April2023).Kooroshy,J.,etal.(2014),CartelsandCompetitioninMineralsMarkets:ChallengesforGlobalGovernance,ChathamHouse,London,https://www.chathamhouse.org/sites/default/files/field/field_document/20141219CartelsCompetitionMineralsMarketsKooroshyPrestonBradleyFinal.pdf(accessed28March2023).Kowalski,P.,andLegendre,C.(2023),Rawmaterialscriticalforthegreentransition:Production,internationaltradeandexportrestrictions,OECDTradePolicyPapers(Volume273),OECD,Paris,https://doi.org/10.1787/11889f2a-enKozinn,B.E.(2000),"Thegreatcoppercaper:Ismarketmanipulationreallyaprobleminthewakeofthesumitomodebacle",FordhamL.Review,vol.69,https://fordhamlawreview.org/wp-content/uploads/assets/pdfs/Vol_69/Kozinn_October.pdf(accessed30March2023).Krane,J.,andIdel,R.(2021),"Moretransitions,lessrisk:Howrenewableenergyreducesrisksfrommining,tradeandpoliticaldependence",EnergyResearch&SocialScience,Vol.82,102311.KULeuven(2022),MetalsforCleanEnergy:PathwaystosolvingEurope’srawmaterialschallenge,KULeuven,Leuven,Belgium,https://eurometaux.eu/media/jmxf2qm0/metals-for-clean-energy.pdf(accessed12May2023).Kügerl,M.-T.,etal.(2023),"Responsiblesourcingforenergytransitions:Discussingacademicnarrativesofresponsiblesourcingthroughthelensofnaturalresourcesjustice",JournalofEnvironmentalManagement,vol.326,pp.116711,https://doi.org/10.1016/j.jenvman.2022.116711137GeopoliticsoftheEnergyTransformationLandrigan,P.,etal.(2022),"ReducingdiseaseanddeathfromArtisanalandSmall-ScaleMining(ASM)–theurgentneedforresponsiblemininginthecontextofgrowingglobaldemandformineralsandmetalsforclimatechangemitigation",EnvironmentalHealth,vol.21/1,pp.78,https://doi.org/10.1186/s12940-022-00877-5Laporte-Bisquit,A.,andMorgan,A.(2019),"DiggingDeeper:HowWWF’sWaterRiskFilterisunearthingnewinsightsintheminingsector",WWF,https://wwf.medium.com/digging-deeper-how-wwfs-water-risk-filter-is-unearthing-new-insights-in-the-mining-sector-9494760746a(accessed12May2023).Lazzaro,N.(2022),"UBSraisesLFPglobalbatterymarketshareoutlookto40%by2030",spglobal,https://www.spglobal.com/commodityinsights/en/market-insights/latest-news/energy-transition/081622-ubs-raises-lfp-global-battery-market-share-outlook-to-40-by-2030LeadLeo(2022),"2022ChinaGraphiteIndustryAnalysis",https://pdf.dfcfw.com/pdf/H3_AP202209211578571379_1.pdf?1663789973000.pdfLeagueofNations(1937),ReportoftheCommitteefortheStudyoftheproblemofRawMaterials,LeagueofNations,Geneva,https://archives.ungeneva.org/report-of-the-committee-for-the-study-of-the-problem-of-raw-materials(accessed27March2023).Listiyorini,E.,andHarsono,N.(2022),"IndonesiaWantsan‘OPEC-like’OrganizationforNickel",Bloomberg,https://www.bloomberg.com/news/articles/2022-11-16/indonesia-wants-an-opec-like-organization-for-nickel#xj4y7vzkg(accessed28March2023).LME(2019),"ResponsibleSourcing",https://www.lme.com/en/About/Responsibility/Responsible-sourcing(accessed5April2023).LME(2023),"Non-ferrousmetals",https://www.lme.com/en/metals/(accessed6April2023).Loginova,J.,etal.(2023),TheChangingArcticandJustEnergyTransitions:ExploringPatternsofCommunityConsultationandConsent,CentreforSocialResponsibilityinMining(CSRM),StLucia,Queensland,https://storymaps.arcgis.com/collections/2b89511600db49dd90a96c3cdaf7be35?item=1(accessed24May2023).Lovins,A.(2022),SixSolutionstoBatteryMineralChallenges,RMI,Boulder,CO,https://rmi.org/insight/six-solutions-to-battery-mineral-challenges/(accessed4April2023).Luckeneder,S.,etal.(2021),"Surgeinglobalmetalminingthreatensvulnerableecosystems",GlobalEnvironmentalChange,vol.69,pp.102303,https://doi.org/10.1016/j.gloenvcha.2021.102303LundeSeefeldt,J.(2022),"Waterasproperty:ContentionbetweenindigenouscommunitiesandthelithiumindustryforwaterrightsinChile",LatinAmericanPolicy,vol.13/2,pp.328–53,https://doi.org/10.1111/lamp.12265Lyng,G.(2022),"AZOMining",IntegratingSolarEnergyintoCopperMining,https://www.azomining.com/Article.aspx?ArticleID=1640(accessed6April2023).MacDonald,A.(2022),"ThisRussianMetalsGiantMightBeTooBigtoSanction",WallStreetJournal,https://www.wsj.com/articles/this-russian-metals-giant-might-be-too-big-to-sanction-11646559751(accessed27March2023).Maconachie,R.,andHilson,G.(2011),"Safeguardinglivelihoodsorexacerbatingpoverty?ArtisanalminingandformalizationinWestAfrica",NaturalResourcesForum,vol.35/4,pp.293–303,http://dx.doi.org/10.1111/j.1477-8947.2011.01407.xMalone,A.,andBazilian,M.(2023),"ChileIsNationalizingLithium.ItMayNotGoHowNervousInvestorsExpect",Barrons,https://www.barrons.com/articles/chile-is-nationalizing-lithium-investors-batteries-markets-95f2ca69(accessed16May2023).Marawanyika,G.,andNdlovu,R.(2022),"RawLithiumExportsBannedinZimbabweasDemandandPricesSoar",Bloomberg,https://www.bloomberg.com/news/articles/2022-12-20/zimbabwe-bans-raw-lithium-exports-with-immediate-effect?leadSource=uverify%20wall(accessed15June2023).138CRITICALMATERIALSMares,D.R.(2022),"UnderstandingCartelViability:ImplicationsforaLatinAmericanLithiumSuppliersAgreement",Energies,vol.15/15,pp.5569,https://doi.org/10.3390/en15155569Maulia,E.,andDamayanti,I.(2023),"Indonesia’snickelrichesspurlocalcompanyEV,batteryambition",FinancialTimes,https://www.ft.com/content/004fdfa6-dbd1-4af8-9777-8c2df4d51d79(accessed4April2023).Maus,V.,etal.(2020),"Aglobal-scaledatasetofminingareas",ScientificData,vol.7/1,pp.289,https://doi.org/10.1038/s41597-020-00624-wMcFarland,M.(2022),ThenextholygrailforEVs:Batteriesfreeofnickelandcobalt,CNN,https://edition.cnn.com/2022/06/01/cars/tesla-lfp-battery/index.htmlMcKinsey(2022),Battery2030:Resilient,sustainable,andcircular,https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/battery-2030-resilient-sustainable-and-circularMcKinsey(2023),Battery2030:Resilient,sustainable,andcircular,https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/battery-2030-resilient-sustainable-and-circularMcVeigh,K.(2021),"Conservationistscallforurgentbanondeep-seamining",TheGuardian,https://www.theguardian.com/environment/2021/sep/09/marseille-biodiversity-summit-adopts-motion-to-ban-deep-sea-mining(accessed5April2023).Meißner,S.(2021),"TheImpactofMetalMiningonGlobalWaterStressandRegionalCarryingCapacities–AGIS-BasedWaterImpactAssessment",Resources,vol.10/12,pp.120,https://doi.org/10.3390/resources10120120Miller,K.A.,etal.(2018),"AnOverviewofSeabedMiningIncludingtheCurrentStateofDevelopment,EnvironmentalImpacts,andKnowledgeGaps",FrontiersinMarineScience,vol.4,https://doi.org/10.3389/fmars.2017.00418MineralsCouncilofAustralia(2022),"CommodityDemandOutlook2030",https://minerals.org.au/wp-content/uploads/2022/12/Commodity-Outlook-2030.pdfMining.com(2021),"Top14UBSbatterymetalsforecastsafterVWteardown",https://www.mining.com/top-14-ubs-battery-metals-forecasts-after-vw-teardown/Mining.com(2022),"Chileanthink-tanksaysCodelcopaysmoretaxesbutextractslesscopperthanprivatecompanies",Mining.com,https://www.mining.com/chilean-think-tank-says-codelco-pays-more-taxes-but-extracts-less-copper-than-private-companies/(accessed16May2023).MinistryofCommerce&Industry,GovernmentofIndia(2021),Australia-India-JapanTradeMinisters’JointStatementonLaunchofSupplyChainResilienceinitiative,PIB,Delhi,https://pib.gov.in/PressReleaseIframePage.aspx?PRID=1714362(accessed3April2023).Mitchell,C.,andDeady,E.(2021),"Graphiteresources,andtheirpotentialtosupportbatterysupplychains,inAfrica",BritishGeologicalSurvey,https://nora.nerc.ac.uk/id/eprint/531119/1/Graphite%20supply%20chains%20in%20Africa_Report.pdfMohammedBanchirigah,S.(2006),"Howhavereformsfuelledtheexpansionofartisanalmining?Evidencefromsub-SaharanAfrica",ResourcesPolicy,vol.31/3,pp.165–71,https://doi.org/10.1016/j.resourpol.2006.12.001MooreFinance(2022),"CITICSecurities:Itisestimatedthatthedemandformanganesewillreachmorethan1.4milliontonsin2030,anincreaseof11times",https://www.jiemian.com/article/7918288.htmlMudd,G.M.(2010),"TheEnvironmentalsustainabilityofmininginAustralia:keymega-trendsandloomingconstraints",ResourcesPolicy,vol.35/2,pp.98–115,https://doi.org/10.1016/j.resourpol.2009.12.001NASA(2023),"NASAOSIRIS-REx",https://www.nasa.gov/osiris-rex(accessed17May2023).Nassar,N.T.,etal.(2015),"By-productmetalsaretechnologicallyessentialbuthaveproblematicsupply",ScienceAdvances,vol.1/3,pp.e1400180,https://doi.org/10.1126/sciadv.1400180139GeopoliticsoftheEnergyTransformationNassar,N.T.,etal.(2020),"EvaluatingthemineralcommoditysupplyriskoftheU.S.manufacturingsector",ScienceAdvances,vol.6/8,pp.eaay8647,https://doi.org/10.1126/sciadv.aay8647NationalMineralsInformationCentre,U.S.GeologicalSurvey(n.d.),"RareEarthsStatisticsandInformation",https://www.usgs.gov/centers/national-minerals-information-center/rare-earths-statistics-and-information(accessed27March2023).NationalResearchCouncil(2008),"ManagingMaterialsforaTwenty-firstCenturyMilitary"(p.12028),NationalAcademiesPress,Washington,D.C.,https://doi.org/10.17226/12028NationalResourceGovernanceInstitute(2022),PreventingCorruptioninEnergyTransitionMineralSupplyChains,NationalResourceGovernanceInstitute,NewYork,https://resourcegovernance.org/analysis-tools/publications/preventing-corruption-energy-transition-mineral-supply-chains(accessed15May2023).NaturalResourcesCanada(2020),CanadaandU.S.FinalizeJointActionPlanonCriticalMineralsCollaboration,NaturalResourcesCanada,https://www.canada.ca/en/natural-resources-canada/news/2020/01/canada-and-us-finalize-joint-action-plan-on-critical-minerals-collaboration.html(accessed2April2023).NickelAsia(2022),NIKLandEPI9M2022Highlights,https://nickelasia.com/assets/documents/NAC-9M2022-Briefing-NOV-2022.pdfNjini,F.(2023),"SouthAfrica’sBlackoutsThreatenPlatinumSupplyinTopMiner",Bloomberg,https://www.bloomberg.com/news/articles/2023-01-26/south-africa-s-blackouts-threaten-platinum-mine-supplies#xj4y7vzkg(accessed27March2023).Njini,F.,andBiesheuvel,T.(2020),"SouthAfrica’sMiningIndustryIsAbouttoCometoaStandstill",Bloomberg,https://www.bloomberg.com/news/articles/2020-03-23/south-africa-orders-mines-to-close-in-21-day-virus-lockdown#xj4y7vzkg(accessed27March2023).Noetstaller,R.(1995),HistoricalPerspectivesandKeyIssuesofArtisanalMining,WorldBank,Washington,D.C.,https://delvedatabase.org/uploads/resources/Noetstaller-WB-1995-Historical-perspectives.pdf(accessed11May2023).Northey,S.A.,etal.(2017),"Theexposureofglobalbasemetalresourcestowatercriticality,scarcityandclimatechange",GlobalEnvironmentalChange,vol.44,pp.109–24,https://doi.org/10.1016/j.gloenvcha.2017.04.004NVM(2021),"Graphite101:PoweringtheEnergyTransition",https://nmg.com/wp-content/uploads/2021/06/NMG-Graphite-101.pdfNyashaNyaungwa,etal.(2023),"Namibiabansexportofunprocessedcriticalminerals",Reuters,https://www.reuters.com/markets/commodities/namibia-bans-export-unprocessed-critical-minerals-2023-06-08/(accessed15June2023).OEC(2023),"Manganese",https://oec.world/en/profile/sitc/manganese-512877OECD(2016),CorruptionintheExtractiveValueChain:Typologyofrisks,mitigationmeasuresandincentives,OECD,Paris,https://www.oecd.org/dev/Corruption-in-the-extractive-value-chain.pdf(accessed15May2023).OECD(2019),Interconnectedsupplychains:acomprehensivelookatduediligencechallengesandopportunitiessourcingcobaltandcopperfromtheDemocraticRepublicoftheCongo,OECD,Paris,https://mneguidelines.oecd.org/Interconnected-supply-chains-a-comprehensive-look-at-due-diligence-challenges-and-opportunities-sourcing-cobalt-and-copper-from-the-DRC.pdf(accessed10May2023).OECD(2023),Rawmaterialscriticalforthegreentransition:Production,internationaltradeandexportrestrictions,OrganisationforEconomicCo-operationandDevelopmentTADWorkingPartyoftheTradeCommittee,OECD,Paris,https://one.oecd.org/document/TAD/TC/WP(2022)12/FINAL/en/pdf(accessed27March2023).OECDInventoryofExportRestrictionsonIndustrialRawMaterials(2022),"OECDInventoryofExportRestrictionsonIndustrialRawMaterials",https://qdd.oecd.org/subject.aspx?Subject=ExportRestrictions_IndustrialRawMaterials(accessed12May2023).140CRITICALMATERIALSOliverWyman(2023),Independentnickelmarketreview,LondonMetalexchange,London,https://www.lme.com/en/Trading/Initiatives/Nickel-market-independent-review(accessed30March2023).Owen,J.R.,etal.(2022),"Energytransitionmineralsandtheirintersectionwithland-connectedpeoples",NatureSustainability,vol.6/2,pp.203–11,https://doi.org/10.1038/s41893-022-00994-6Paraskova,T.(2022),"TheNextOPEC-LikeCartelCouldBeInBatteryMetals",Oilprice.com,https://oilprice.com/Energy/Energy-General/The-Next-OPEC-Like-Cartel-Could-Be-In-Battery-Metals.html(accessed28March2023).Patterson,W.(2018),Non-tradableresourcesandtheglobalelectricitytransition,ChathamHouse,London,https://resourcetrade.earth/publications/non-tradable-resources-and-the-global-electricity-transition(accessed27March2023).Pattinson,P.(2021),"Likeslaveandmaster’:DRCminerstoilfor30panhourtofuelelectriccars",TheGuardian,https://www.theguardian.com/global-development/2021/nov/08/cobalt-drc-miners-toil-for-30p-an-hour-to-fuel-electric-cars(accessed11May2023).PaulTaylor(2020),Aftertheice:TheArcticandEuropeansecurity,FriendsofEurope,Brussels,https://www.friendsofeurope.org/wp/wp-content/uploads/2020/08/Arctic-study-Executive-Summary.pdf(accessed24May2023).Pearce,F.(2022),"WhytheRushtoMineLithiumCouldDryUptheHighAndes",YaleEnvironment360,https://e360.yale.edu/features/lithium-mining-water-andes-argentina(accessed15May2023).Pedro,A.M.A.(2021),"CriticalmaterialsandsustainabledevelopmentinAfrica:AntonioM.A.Pedro",OneEarth,vol.4/3,pp.346–9,https://doi.org/10.1016/j.oneear.2021.02.018Piciullo,L.,etal.(2022),"Anewlookatthestatisticsoftailingsdamfailures",EngineeringGeology,vol.303,pp.106657,https://doi.org/10.1016/j.enggeo.2022.106657Prach,K.,andTolvanen,A.(2016),"Howcanwerestorebiodiversityandecosystemservicesinminingandindustrialsites?",EnvironmentalScienceandPollutionResearch,vol.23/14,pp.13587–90,https://doi.org/10.1007/s11356-016-7113-3Quiggin,J.(2021),"BHP’soffloadingofoilandgasassetsshowstheglobalmarkethasturnedonfossilfuels",TheConversation,https://theconversation.com/bhps-offloading-of-oil-and-gas-assets-shows-the-global-market-has-turned-on-fossil-fuels-166336(accessed6April2023).QYResearch(2023),"Globalsyntheticgraphitemarketresearchreport2023".Radetzki,M.andWårell,L.(2020),AHandbookofPrimaryCommoditiesintheGlobalEconomy(3rdedition),CambridgeUniversityPress,Cambridge,https://doi.org/10.1017/9781108886529RepublicofIndonesia(2009),"LawoftheRepublicofIndonesiaNumber4of2009onMineralandCoalMining,Article112",http://www.apbi-icma.org/uploads/files/old/2013/11/uu_no_4_2009_en.pdf(accessed29March2023).RESPECTInternational(2016),"ResponsibleCobaltInitiative(RCI)",https://respect.international/responsible-cobalt-initiative-rci/(accessed5April2023).ResponsibleSteel(2018),"ArcelormittalVEGAEarnsResponsibleSteelCertification",https://www.responsiblesteel.org/(accessed5April2023).RMI(2018),"RMAPAssessmentIntroduction",ResponsibleMineralsInstitute,https://www.responsiblemineralsinitiative.org/responsible-minerals-assurance-process/(accessed5April2023).RMI(2021),"ResponsibleMineralsInitiativeReleasesNewGlobalStandardforAll-MineralsDueDiligence",ResponsibleMineralsInstitute,https://www.responsiblemineralsinitiative.org/news/responsible-minerals-initiative-releases-new-global-standard-for-all-minerals-due-diligence/(accessed25May2023).141GeopoliticsoftheEnergyTransformationRoche,C.,etal.(2017),MineTailingsStorage:SafetyIsnoAccident,UNEnvironmentProgramme,GRID-Arendal,NairobiandArendal,https://www.grida.no/publications/383(accessed12May2023).Ruehl,M.(2023),"NickelIPOstestIndonesia’svisionofglobalroleinelectricvehicles",FinancialTimes,https://www.ft.com/content/4e13eb91-1db9-4b27-a58b-dc7109337349(accessed4April2023).S&PGlobalIQ(2022),S&PCapitalIQProdatabase,https://www.capitaliq.spglobal.com/web/client?auth=inherit#dashboard/metalsAndMiningSanderson,H.(2021),"GoldmanSachsrampsupcobalttrading",FinancialTimes,https://www.ft.com/content/12ea44c7-d940-4b75-bd94-4fd2116c1c76(accessed6April2023).Sanderson,H.(2022),"Voltrush:thewinnersandlosersintheracetogogreen",Oneworld,London.Schrijvers,D.,etal.(2020),"Areviewofmethodsanddatatodeterminerawmaterialcriticality",Resources,ConservationandRecycling,vol.155,pp.104617,https://doi.org/10.1016/j.resconrec.2019.104617ScienceforaChangingWorld(2022),"USGSscientistsHelpAddressConflictMining",U.S.GeologicalSurvey,https://www.usgs.gov/news/featured-story/usgs-scientists-help-address-conflict-mining(accessed24May2023).Sekularac,I.(2022),"SerbiarevokesRioTintolithiumminepermitsfollowingprotests",BBC,https://www.bbc.com/news/world-europe-60081853(accessed31March2023).SerapioJr.,M.,andLopez,D.B.(2023),"PhilippineMinersNotKeenonIndonesiaNickelAlliancePlan",Bloomberg,https://www.bloomberg.com/news/articles/2023-03-14/philippine-miners-aren-t-keen-on-indonesian-nickel-alliance-plan#xj4y7vzkg(accessed28March2023).ServirGlobal(2020),"ReducingillegalgoldmininginthetropicalforestsofGhanaandPeru:AforthcomingcollaborationacrosstheAtlantic",ServirGlobal,https://servirglobal.net/Global/Articles/Article/2725/reducing-illegal-gold-mining-in-the-tropical-forests-of-ghana-and-peru-a-forthc(accessed11May2023).Sharp,A.(2023),"Chile’sWhiteGoldRush",ForeignPolicy,https://foreignpolicy.com/2023/04/21/chile-lithium-reserves-albemarle-sqm-nationalize-boric-santiago/(accessed16May2023).Shen,Y.,etal.(2020),"China’spublicpoliciestowardrareearths,1975–2018",MineralEconomics,vol.33/1–2,pp.127–51,https://doi.org/10.1007/s13563-019-00214-2Shofa,J.N.(2023),"MinersWereGivenWindowof3YearsbeforeBauxiteExportBan:Gov’t",JakartaGlobe,https://jakartaglobe.id/business/miners-were-given-window-of-3-years-before-bauxite-export-ban-govt#:~:text=The%20government%20on%20Monday%20said%20that%20the%20recent,came%20into%20effect%20three%20years%20after%20its%20issuance.(accessed15June2023).Sovacool,B.K.,etal.(2020),"Sustainablemineralsandmetalsforalow-carbonfuture",Science,vol.367/6473,pp.30–3,https://doi.org/10.1126/science.aaz6003Sprecher,B.,etal.(2015),"FrameworkforResilienceinMaterialSupplyChains,WithaCaseStudyfromthe2010RareEarthCrisis",EnvironmentalScience&Technology,vol.49/11,pp.6740–50,https://doi.org/10.1021/acs.est.5b00206Stewart,L.R.(1981),"Canada’sroleintheinternationaluraniumcartel",InternationalOrganization,vol.35/4,pp.657–89,https://doi.org/10.1017/S0020818300034275Stoddard,E.(2013),"OPEC-styleplatinumcartelapipe-dream",Reuters,https://www.reuters.com/article/africa-investment-idUKL6N0DX1PS20130516(accessed28March2023).Stoddard,E.(2014),"SouthAfricaminersreturntoworkafterlongestplatinumstrike",Reuters,https://www.reuters.com/article/us-safrica-mining-idUSKBN0F00DC20140625(accessed29March2023).Storli,E.(2014),"CartelTheoryandCartelPractice:TheCaseoftheInternationalAluminumCartels,1901–1940",BusinessHistoryReview,vol.88/3,pp.445–67,https://doi.org/10.1017/S0007680514000385142CRITICALMATERIALSStott,M.,andBryan,K.(2023),"Chile’spresidentmovestobringlithiumunderstatecontrol",FinancialTimes,https://www.ft.com/content/ebd48bbc-1390-4679-99fe-682975bbdba8(accessed16May2023).Strangio,S.(2022),"IndonesiatoAppealWTORulingonNickelExportBan",TheDiplomat,https://thediplomat.com/2022/12/indonesia-to-appeal-wto-ruling-on-nickel-export-ban/(accessed4April2023).Sturman,K.,etal.(2022),MissioncriticalStrengtheninggovernanceofmineralvaluechainsfortheenergytransition,ExtractiveIndustriesTransparencyInitiative(EITI),Oslo,Norway,https://eiti.org/sites/default/files/2022-10/EITI%20Mission%20Critical%20Report%202022.pdf(accessed13April2023).Systemiq(2023),"Materialandresourcerequirementsfortheenergytransition",https://www.systemiq.earth/Tan,R.,Sijabat,D.M.,andIrwandi,J.(2023),"TomeetEVdemand,industryturnstotechnologylongdeemedhazardous",WashingtonPost,10May(accessed30June2023).Tarras-Wahlberg,N.H.(2002),"Environmentalmanagementofsmall-scaleandartisanalmining:thePortovelo-Zarumagoldminingarea,southernEcuador",JournalofEnvironmentalManagement,vol.65/2,pp.165–79,https://doi.org/10.1006/jema.2002.0542Terauds,K.(2017),Usingtradepolicytodrivevalueaddition:LessonsfromIndonesia’sbanonnickelexports.BackgrounddocumenttotheCommoditiesandDevelopmentReport2017,UNCTAD,Geneva,https://static1.squarespace.com/static/60a5714c0fd0954ac36a6129/t/61476743b06d7e297ff60000/1632069444412/Using+trade+policy+to+drive+value+addition.pdf(accessed4April2023).TheCopperMark(2019),"TheCopperMark:AboutUs",https://coppermark.org/(accessed5April2023).TheEconomist(2023),“AhugeNorwegianphosphaterockfindisaboonforEurope”,8June,https://www.economist.com/europe/2023/06/08/a-huge-norwegian-phosphate-rock-find-is-a-boon-for-europeTsokhas,K.(2000),"TheRiseandDeclineofanInternationalZincandLeadCartel,1945–75",AustralianEconomicHistoryReview,vol.40/3,pp.263–86,https://doi.org/10.1111/1467-8446.00068Tunsjø,Ø.(2020),"TheGreatHype:FalseVisionsofConflictandOpportunityintheArctic",Survival,vol.62/5,pp.139–56,https://doi.org/10.1080/00396338.2020.1819649UNStatisticsDivision(2022),"UNComtradeDatabase",https://comtradeplus.un.org/TradeFlow?Frequency=A&Flows=X&CommodityCodes=TOTAL&Partners=0&Reporters=all&period=2022&AggregateBy=none&BreakdownMode=plus(accessed19April2023).UNCTAD(2007),WorldInvestmentReport:Transnationalcorporations,extractiveindustries,anddevelopment,(p.109),UNCTAD,NewYorkandGeneva,https://unctad.org/publication/world-investment-report-2007(accessed29March2023).UNCTAD(2019),Thestateofcommoditydependence,UNCTAD,Geneva,https://unctad.org/topic/commodities/state-of-commodity-dependence(accessed4April2023).UNCTAD(2023),TheEvolutionofFDIScreeningMechanisms-keytrendsandfeatures,UNCTAD,Geneva,https://unctad.org/system/files/official-document/diaepcbinf2023d2_en.pdf(accessed29March2023).UNDP,etal.(2016),MappingMiningtotheSustainableDevelopmentGoals:AnAtlas,UnitedNationsDevelopmentProgramme,WorldEconomicForum,ColumbiaCenteronSustainableInvestmentsandSustainableDevelopmentSolutionsNetwork,Geneva,https://www.undp.org/sites/g/files/zskgke326/files/publications/Mapping_Mining_SDGs_An_Atlas_Executive_Summary_FINAL.pdf(accessed10May2023).UNECA(2021),Facts&Figures:oncobalt,batterymineralsandelectriccarsvaluechains,UNECA,AddisAbaba,https://www.uneca.org/sites/default/files/Africa-Business-Forum/4/Cobalt.pdf(accessed4April2023).UNECA(2022),"Tradeties:ZambiaandDRCsigncooperationAgreementtomanufactureelectricbatteries,createjobs",AfricaRenewal,https://www.un.org/africarenewal/magazine/may-2022/trade-ties-zambia-and-drc-sign-cooperation-agreement-manufacture-electric(accessed7February2023).143GeopoliticsoftheEnergyTransformationUNEP(2020),SustainabilityReportingintheMiningSector:CurrentStatusandFutureTrends,UNEP,Nairobi,Kenya,https://stg-wedocs.unep.org/bitstream/handle/20.500.11822/33924/SRMS.pdf(accessed5April2023).UNEP(ed.)(2009),"Fromconflicttopeacebuilding:theroleofnaturalresourcesandtheenvironment"(Policypaper),UnitedNationsEnvironmentProgramme,Nairobi,https://digitallibrary.un.org/record/649896(accessed30March2023).UnitedMexicanStates(2022),"AmendmentoftheMiningLaw",https://dof.gob.mx/nota_detalle.php?codigo=5649533&fecha=20/04/2022#gsc.tab=0(accessed29March2023).UnitedNations(2007),UnitedNationsDeclarationontheRightsofIndigenousPeoples,GeneralAssembly,NewYork,https://www.un.org/development/desa/indigenouspeoples/wp-content/uploads/sites/19/2018/11/UNDRIP_E_web.pdf(accessed10May2023).UnitedNations(2011),ReportoftheSpecialRapporteuronthesituationofhumanrightsandfundamentalfreedomsofindigenouspeople,JamesAnaya,GeneralAssembly,NewYork,https://www2.ohchr.org/english/bodies/hrcouncil/docs/18session/A-HRC-18-35-Add3_en.pdf(accessed10May2023).UnitedNationsHumanRightsOfficeoftheHighCommissioner(2011),GuidingPrinciplesonBusinessandHumanRights,UnitedNationsHumanRightsOfficeoftheHighCommissioner,NewYorkandGeneva,https://www.ohchr.org/sites/default/files/documents/publications/guidingprinciplesbusinesshr_en.pdf(accessed5April2023).USDepartmentofCommerce(2019),AFederalStrategytoEnsureSecureandReliableSuppliesofCriticalMinerals,U.S.DepartmentofCommerce,US,https://www.commerce.gov/data-and-reports/reports/2019/06/federal-strategy-ensure-secure-and-reliable-supplies-critical-minerals(accessed31March2023).USDepartmentofEnergy(2021),"ProductionofCriticalMaterialsEssentialforCleanEnergyProjectsCanCreateJobsinCoalandPowerPlantCommunities",energy.gov,https://www.energy.gov/articles/doe-awards-19-million-initiatives-produce-rare-earth-elements-and-critical-minerals(accessed15June2023).USDepartmentofEnergy(2021),CriticalMineralsandMaterials:U.S.DepartmentofEnergy’sStrategytoSupportDomesticCriticalMineralandMaterialSupplyChains(FY2021-FY2031),U.S.DepartmentofEnergy,US,https://www.energy.gov/sites/prod/files/2021/01/f82/DOE%20Critical%20Minerals%20and%20Materials%20Strategy_0.pdf(accessed31March2023).USDepartmentofState(2022),MineralsSecurityPartnership,U.S.DepartmentofState,US,https://www.state.gov/minerals-security-partnership/(accessed3April2023).USGovernmentPublishingOffice(2022),"H.R.5376-InflationReductionActof2022.17thCongress(2021-2022)",https://www.congress.gov/bill/117th-congress/house-bill/5376/text(accessed31March2023).USGS(2018),"CriticalMineralResourcesoftheUnitedStates—EconomicandEnvironmentalGeologyandProspectsforFutureSupply",UnitedStatesGeologicalSurvey,https://pubs.usgs.gov/pp/1802/l/pp1802l.pdfUSGS(2023a),"MineralCommoditySummary2023",UnitedStatesGeologicalSurvey,https://pubs.usgs.gov/periodicals/mcs2023/mcs2023.pdfUSGS(2023b),"Platinum-GroupMetalsStatisticsandInformation",UnitedStatesGeologicalSurvey,https://www.usgs.gov/centers/national-minerals-information-center/platinum-group-metals-statistics-and-informationUSGSandUSDepartmentoftheInterior(2010),MineralCommoditySummaries2010,UnitedStatesDepartmentoftheInterior,UnitedStatesGeologicalSurvey,Washington,https://d9-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/mineral-pubs/mcs/mcs2010.pdf(accessed27March2023).USGSandUSDepartmentoftheInterior(2022),MineralCommoditySummaries2022,UnitedStatesDepartmentoftheInterior,UnitedStatesGeologicalSurvey,Reston,Virgina,https://pubs.usgs.gov/periodicals/mcs2022/mcs2022.pdf(accessed28March2023).144CRITICALMATERIALSUshie,V.(2017),Fromaspirationtoreality.UnpackingtheAfricaMiningVision,OxfamBriefingPaper,Oxfam,https://www-cdn.oxfam.org/s3fs-public/bp-africa-mining-vision-090317-en.pdfValenta,R.K.,etal.(2023),"Decarbonisationtodrivedramaticincreaseinminingwaste–Optionsforreduction",Resources,ConservationandRecycling,vol.190,pp.106859,https://doi.org/10.1016/j.resconrec.2022.106859Veiga,M.M.,andMarshall,B.G.(2019),"TheColombianartisanalminingsector:Formalizationisaheavyburden",TheExtractiveIndustriesandSociety,vol.6/1,pp.223–8,https://doi.org/10.1016/j.exis.2018.11.001Vera,M.L.,etal.(2023),"Environmentalimpactofdirectlithiumextractionfrombrines",NatureReviewsEarth&Environment,vol.4/3,pp.149–65,https://doi.org/10.1038/s43017-022-00387-5Walters,A.(1944),"TheInternationalCopperCartel",SouthernEconomicJournal,vol.11/2,pp.133,https://doi.org/10.2307/1052847Ward,H.(2009),Resourcenationalismandsustainabledevelopment:aprimerandkeyissues,InternationalInstituteforEnvironmentandDevelopment,London,https://www.iied.org/g02507(accessed29March2023).WhiteHouse(2020),"ExecutiveOrderonAddressingtheThreattotheDomesticSupplyChainfromRelianceonCriticalMineralsfromForeignAdversaries",https://trumpwhitehouse.archives.gov/presidential-actions/executive-order-addressing-threat-domestic-supply-chain-reliance-critical-minerals-foreign-adversaries/(accessed29March2023).WhiteHouse(2021),"ExecutiveOrderonAmerica’sSupplyChains",WhiteHouse,https://www.whitehouse.gov/briefing-room/presidential-actions/2021/02/24/executive-order-on-americas-supply-chains/(accessed31March2023).WhiteHouse(2022),"ExecutiveOrderonEnsuringRobustConsiderationofEvolvingNationalSecurityRisksbytheCommitteeonForeignInvestmentintheUnitedStates",https://www.whitehouse.gov/briefing-room/presidential-actions/2022/09/15/executive-order-on-ensuring-robust-consideration-of-evolving-national-security-risks-by-the-committee-on-foreign-investment-in-the-united-states/(accessed29March2023).White,E.,andHook,L.(2023),"SharesinChinametalsminerCMOCsurgeasCongoimpasseclears",FinancialTimes,https://www.ft.com/content/3d33eed1-4358-40ed-a399-58480bbb7601(accessed15June2023).Whitmore,A.(2021),AMaterialTransition:Exploringsupplyanddemandsolutionsforrenewableenergyminerals,WaronWant,London,https://waronwant.org/sites/default/files/2021-03/A%20Material%20Transition_report_War%20on%20Want.pdf(accessed5April2023).Wilburn,D.R.,etal.(2016),ScientificInvestigationsReport:Globalstocksofselectedmineral-basedcommodities,ScientificInvestigationsReport,UnitedStatesGeologicalSurvey,Reston,VA,https://pubs.er.usgs.gov/publication/sir20165152(accessed3April2023).Wilson,J.D.(2018),"Whateverhappenedtotherareearthsweapon?CriticalmaterialsandinternationalsecurityinAsia",AsianSecurity,vol.14/3,pp.358–73,https://doi.org/10.1080/14799855.2017.1397977WorldBank(2017),TheGrowingRoleofMineralsandMetalsforaLowCarbonFuture,WorldBank,Washington,D.C.,https://documents.worldbank.org/en/publication/documents-reports/documentdetail/207371500386458722/the-growing-role-of-minerals-and-metals-for-a-low-carbon-future(accessed15May2023).WorldBank(2020a),2020StateoftheArtisanalandSmall-ScaleMiningSector,WorldBank,Washington,D.C.,https://delvedatabase.org/uploads/resources/Delve-2020-State-of-the-Sector-Report-0504.pdf(accessed11May2023).WorldBank(2020b),"WITSDatabase",https://wits.worldbank.org/(accessed16May2023).WorldBank(2021),SpecialFocus:Causesandconsequencesofmetalpriceshocks,WorldBank,Washington,DC,https://thedocs.worldbank.org/en/doc/c5de1ea3b3276cf54e7a1dff4e95362b-0350012021/related/CMO-April-2021-special-focus.pdf(accessed4April2023).145GeopoliticsoftheEnergyTransformationWorldBank(2022),CommodityMarkets:Evolution,ChallengesandPolicies,WorldBank,Washington,DC,https://openknowledge.worldbank.org/entities/publication/4304a058-a917-5ef6-b24a-88d0458d4bed(accessed28March2023).WorldMiningData(2022),WorldMiningData2022,FederalMinistryofAgriculture,RegionsandTourism,Vienna,https://www.world-mining-data.info/wmd/downloads/PDF/WMD2022.pdf(accessed29March2023).WPIC(2022),"MetalsFocus2019to2022",https://platinuminvestment.com/supply-and-demand/historic-dataWSJ(2023),"ShifttoMinedvs.Man-MadeGraphiteRaisesShortageRiskforEVs",WallStreetJournal,https://www.wsj.com/articles/shift-to-mined-vs-man-made-graphite-raises-shortage-risk-for-evs-11674603067WTO(2022),Indonesia-MeasuresRelatingtoRawMaterials,WorldTradeOrganization,Geneva,https://docs.wto.org/dol2fe/Pages/SS/directdoc.aspx?filename=q:/WT/DS/592R.pdf&Open=True(accessed4April2023).WTO(2023),"IndexofDisputeIssues",WorldTradeOrganization,Geneva,https://www.wto.org/english/tratop_e/dispu_e/dispu_subjects_index_e.htm(accessed17May2023).Wu,T.,etal.(2021),"TheMainProgressofPerovskiteSolarCellsin2020–2021",Nano-MicroLetters,vol.13/152,https://doi.org/10.1007/s40820-021-00672-wWübbeke,J.(2013),"RareearthelementsinChina:Policiesandnarrativesofreinventinganindustry",ResourcesPolicy,vol.38/3,pp.384–94,https://doi.org/10.1016/j.resourpol.2013.05.005WWF(2023),ExtractedForests:Unearthingtheroleofmining-relateddeforestationasadriverofglobaldeforestation,WWF,Berlin,https://www.wwf.de/fileadmin/fm-wwf/Publikationen-PDF/Wald/WWF-Studie-Extracted-Forests.pdf(accessed15June2023).Yao,T.,etal.(2021),DynamicneodymiumstocksandflowsanalysisinChina,https://www.sciencedirect.com/science/article/abs/pii/S092134492100361XYu,A.,etal.(2021),ImpactofCOVID-19pandemiconindustrialmetalsmarkets–oneyearon,S&PGlobalMarketIntelligence,NewYorkCity,https://www.spglobal.com/marketintelligence/en/news-insights/research/impact-of-covid-19-pandemic-on-industrial-metals-markets-one-year-on(accessed27March2023).Zeng,A.,etal.(2022),"Batterytechnologyandrecyclingalonewillnotsavetheelectricmobilitytransitionfromfuturecobaltshortages",NatureCommunications,vol.13/1,pp.1341,https://doi.org/10.1038/s41467-022-29022-zZimmermann,A.(2023a),"Europe’sgreendilemma:Miningkeymineralswithoutdestroyingnature",Politico,https://www.politico.eu/article/europes-green-dilemma-mining-key-minerals-without-destroying-nature/(accessed16June2023).Zimmermann,A.(2023b),"TremorfearslaydownhurdlesforGermany’slithiumminingplans",Politico,https://www.politico.eu/article/germanys-lithium-extraction-earthquake-mining/(accessed2April2023).146CRITICALMATERIALSANNEXResultsofthesurveyontheriskstocriticalmaterialssupplyIRENAMembersandselectedexpertsweresurveyedonarangeofissuesrelatedtocriticalmaterialsfortheenergytransitionforthepurposeofthisreport.Atotalof41responseswerereceived,reflectinga16%responserate.Belowistheaggregatedoverviewoftheresults(FigureA1).TheviewsofIRENAMembersandexpertslargelyconverged.Forexample,thesecurityofsupplyofcriticalmaterialswascitedasatopconcernbyIRENAmembersandexpertsalike.Aggregatedresponsesfrombothgroupsindicatedthatpricerisks,politicalinstability,cartelisationofexportsandbilateraldependenceareseenassignificantriskstothesecurityofsuppliesofcriticalmaterialsoverthenextdecade.Nearlyallrespondentshighlightedtheimportanceofinternationalco-operation,withbilateralco-operationfavouredslightlyoverregionalorglobalco-operation.FIGUREA1RiskstosuppliesofcriticalmaterialsinthenextdecadeascitedbyIRENAsurveyrespondentsGeologicalscarcityPricerisksBilateraldependenceCartelisationofexportsLimitedstockpilesExcessivestockpilingNationalexportrestrictionsClimateorextremeweathereventsWaterscarcityHealthinsecurity(pandemic)PoliticalinstabilityStrictESGregulations40302010010203040NumberofsurveyrespondentsStronglyDisagreeNeutralAgreeStronglydisagreeagree147GeopoliticsoftheEnergyTransformationIRENAscarcityratioforcriticalmaterials:CalculationmethodologyFigure1.5showcasesscarcityratioscalculatedbyIRENAforaselectionofcriticalmaterials,namelycopper,graphite,nickel,cobalt,lithium,manganese,neodymium,dysprosium,iridiumandplatinum.Theseratioseffectivelydemonstratethedisparitybetweencurrentsupplyandfuturedemandforthesematerials.Thecalculationsarebasedondataobtainedfromcredibleexternalsources,encompassing2022supplyandprojectedenergyandnon-energydemandin2030forthesematerials.Furthermore,IRENAisintheprocessofdevelopingacomprehensiveanalysisofthedemand-supplygapspecificallytailoredforitsupcomingEVbatteriesreport.TableA1providesacomprehensiveoverviewofthecurrentandprojecteddemandandsupplyfigures,complementedbydetailspertainingtotheexistingreservesandresourcesforcriticalmaterials.TABLEA1CurrentandprojecteddemandandsupplyforcriticalmaterialsRawmaterialsDemand/DemandDemandDemandSupplyCurrentCurrentsupplyin2022in2030in2030in2030ReservesResourcesCobaltin2022inenergy[Mt/y]1inenergy[Mt/y]in2022in2022Copper[Mt/y]sector(%)sector(%)[Mt][Mt]DysprosiumGraphite0.18c[5]33%g[5]0.24–48%–56%0.24–8.30[1]25x[1]IridiumLithiuma0.48o[21][7]0.46t[8]ManganeseNeodymium25.70b[6]32%d[10]31–45i36%[10]30.34–2100v[1]Nickel39.50r[9]890[1]Platinum0.001436%k0.005–46%–57%0.0040–0.32–3[4][17](2018)[14]0.007[7][7]0.0041[7]1.30[4]800[1]NANatural1.25[5]21%e[12]4.3–5.9m79%[23]22.94[15]330[1]1000Synthetic2.28[19][19]3.48[19]NAtonnes7.9tonnes4.3%[8]24.95q[8]46.3%[8]13.7tonnes700[16][8]tonnes0.69[5]66%h[5]2.0–4.4p95%–99%1.30–2.90u138[1]522[1][22][7][8]22.00[13]0.60%i[11]22.50–6%[24]21.00–241700[1]>17200v26.0[9][9][25][2]0.038[17]18.9%i[18]0.065–28%–40%0.055–11.60–17–74[4]0.075[7]13.60[3][7]0.071[7]2.91[5]8.6%f[5]3.8–6.2n26%–38%3.00–100[1]300w[1][20][7]4.90s[8]161tonnes9%[27]213.156%[8]232.43220046000[16]tonnestonnes[8]tonnes[8]tonnes148CRITICALMATERIALS1Projectionsofdemandforcriticalmaterialsin2030comefromprojectionsdevelopedbyexternalsources.2Whilemajorityofgraphiteusedforthebatteryproductionisnaturalgraphite,ashareofnaturalandsyntheticgraphiteinbatteriesdiffersasaresultofvariousfactors,includingprice,availabilityandinherentbenefitsofeachtype.Sources:[1]USGS,2023;[2]USGS,2018;[3]Yaoetal.,2021;[4]Junneetal.,2020;[5]Fastmarkets,2023;[6]S&PGlobalIQ,2022;[7]Eurometaux,2022;[8]IRENAanalysis;[9]McKinsey,2023;[10]BNamericas,2022;Eurometaux,2022;IHSMarkit,2022;MineralsCouncilofAustralia,2022;S&PGlobalIQ,2022;Systemiq,2023;[11]BenchmarkMinerals,2019;[12]GovernmentofCanada,2022;[13]EuroManganese,2022;[14]JRC,2020;[15]WSJ,2023;[16]JohnsonMatthey,2022;[17]TheInstituteofEnergyEconomics,Japan,2022;[18]OEC,2023;[19]Mining.com,2021;MitchellandDeady,2021;NVM,2021;QYResearch,2023;[20]Eurometaux,2022;Garvey,2021;McKinsey,2023;MineralsCouncilofAustralia,2022;Mining.com,2021;NickelAsia,2022;Systemiq,2023;Vale,2022;[21]CobaltBlueHoldings,2022;Darbar,2022;Eurometaux,2022;Fu,2020;McKinsey,2022;Mining.com,2021;NVM,2021;Systemiq,2023;[22]Albemarle,2023;Eurometaux,2022;Lazzaro,2022;McKinsey,2022;NVM,2021;S&PGlobalIQ,2022;Systemiq,2023;[23]Els,2022;[24]MooreFinance,2022;[25]:JupiterMines,2023.Notes:CSP=concentratedsolarpower;EV=electricvehicle;PV=photovoltaic;Mt=megatonne.aReferstolithiumcarbonateequivalent(LCE).bReferstoinrefinedcopperdemand.cReferstorefinedcobaltdemand.dIn2021,32%ofrefinedglobalcopperconsumptionpertainedtoenergytransitionend-usessuchasT&D,wind,solarPV,EVandcharging,andenergystorage.Copperdemandfromenergytransitionend-usesisexpectedtopeakin2035withashareof42%.eReferstoallbatterytypes,notonlyEVandenergystoragebatteries.fReferstoenergytransitionrelatedend-usessuchasEV’s(8.11%)andenergystoragebatteries(0.40%).gReferstoenergytransitionrelatedend-usessuchasEV’s(33.00%).hReferstoenergytransitionrelatedend-usessuchasEV’s(60.40%)andenergystoragebatteries(5.30%).iReferstoElectrolyticManganeseDioxide(EMD)usedforLithium-ionbatteriesandAlkalinebatteries.Thisdataisfrom2019.jDemandfrombatteriesaccountsfor4%,demandfromNdFeBpermanentmagnetsaccountsfor80%ofdemand,fromwhich~6%comesfromwindenergyapplicationsand~12%fromEVmotors.kDysprosiumusedforwindenergyandmotorapplicationsaretakenintoaccountinthiscategory.lBasedon6differentforecasts.Theaverageforecastshowsacopperdemandof38.7Mtby2030.mBasedon3differentforecasts.Theaverageforecastshowsanaturalgraphitedemandof4.6Mtby2030.nBasedon9differentforecasts.Theaverageforecastshowsanickeldemandof4.8Mtby2030.oBasedon10differentforecasts.Theaverageforecastshowsacobaltdemandof0.35Mtby2030.pBasedon10differentforecasts.TheaverageforecastshowsaLithiumLCEdemandof3.19Mtby2030.qIRENAestimatesanannualelectrolysercapacityadditionof100GWby2030.Assuming40%ofelectrolysersarePEMand400kgper1GWofPEMelectrolysers,electrolyserswouldrepresentaniridiumannualdemandof16tonnesinadditionfromdemandfromothersectors.rBasedon5differentforecasts.Theaverageforecastshowsacoppersupplyof34.54Mtby2030.sBasedon7differentforecasts.Theaverageforecastshowsanickelsupply4.14Mtby2030.tBasedon11differentforecasts.Theaverageforecastshowsacobaltsupplyof0.31Mtby2030.uBasedon8differentforecasts.Theaverageforecastshowsalithium(LCE)supplyof3.14Mtby2030.v2,100.00(identifiedresources)3,500.00(undiscoveredresources)wIdentifiedland-basedresourcesaveragingapproximately0.5%nickelorgreatercontainatleast300milliontonnesofnickel,withabout60%inlateritesand40%insulphidedeposits.Extensivenickelresourcesalsoarefoundinmanganesecrustsandnodulesontheoceanfloor.xMorethan120milliontonnesofcobaltresourceshavebeenidentifiedinpolymetallicnodulesandcrustsontheseabed.yTotalglobalidentifiedresourcesaremorethan17billionmetrictonnesofmanganiferousmaterial.Anadditionalvastresourceofmanganeseliesontheseabed,mostlyininternationalwatersandatgreatdepths.149www.irena.org