OffshorewindenergyPatentinsightreportNovember2023epo.orgOFFSHOREWINDENERGYPATENTINSIGHTREPORTContentsExecutivesummary031.Introduction061.1Theroleofoffshorewindenergyinenergytransition......................................................................................................................................................................................061.2Aboutthestudy........................................................................................................................................................................................................................................................................................................082.Methodology092.1Usingpatentinformation.............................................................................................................................................................................................................................................................................092.2Patentsearch..................................................................................................................................................................................................................................................................................................................093.Results143.1Patenttrendsinoffshorewindenergytechnologies..............................................................................................................................................................................................143.1.1Patentfilings....................................................................................................................................................................................................................................................................................................................143.1.2Topapplicantcountries.....................................................................................................................................................................................................................................................................................173.1.3Toppatentoffices......................................................................................................................................................................................................................................................................................................193.1.4Topapplicants................................................................................................................................................................................................................................................................................................................203.1.5Maturitymap..................................................................................................................................................................................................................................................................................................................253.1.6Citations................................................................................................................................................................................................................................................................................................................................273.2Technologyconceptgrouping.................................................................................................................................................................................................................................................................303.2.1Fixedandfloatingfoundations(QA&QB)............................................................................................................................................................................................................................313.2.2Towers(QH).......................................................................................................................................................................................................................................................................................................................353.2.3Mechanicalpowertransmission(QC)...........................................................................................................................................................................................................................................383.2.4Bladesandrotors(QI)..........................................................................................................................................................................................................................................................................................423.2.5Hybridsystems:solarandoceanenergy(QE)..................................................................................................................................................................................................................463.2.6EnergyStorage(QD)..............................................................................................................................................................................................................................................................................................503.2.7Grid,submarinecablesandprotections(QJ&QL).....................................................................................................................................................................................................524.Conclusion54Glossaryandnotes56<TableofcontentsExecutivesummary1.Introduction2.Methodology3.Results4.Conclusionepo.org02OFFSHOREWINDENERGYPATENTINSIGHTREPORTExecutivesummaryPolicyinsightsOffshorewindenergyisacleanandrenewablesourceofPatentdatashowamassivesurgeinglobalpatentelectricitygeneration.Ithelpstocombatclimatechangefilingsfrom2006to2012,followedbyastagnation(UNSustainableDevelopmentGoal13)byreducinguntil2017whenpatentactivitywitnessedaresurgence.greenhousegasemissions,airpollutionandtherelianceFloatingfoundations,transportation,andmechanicalonfossilfuelsforelectricityproduction,thuscontributingtransmissionaccountedforthelargestnumberofpatentstoamoresustainableenergymix.withintheoffshorewindarea.Somekeypolicyinsightsfromthepatentdataaresummarisedbelow:OffshorewindenergyplaysasignificantroleinsupportingUNSustainableDevelopmentGoal7(SDG7),1.Increasedinventioninoffshorewindwithwhichaimstoensureaccesstoaffordable,reliableanddominanceinEuropa,AsiaandUSAemergingassustainableenergyforallby2030.futuremarket.IntherankingofthetoptencountriesinfiledInternationalPatentFamilies(IPFs),sevenInacollaborativeeffortbytheEuropeanPatentOfficecountriesareEuropean,withGermanyandDenmark(EPO)andtheInternationalRenewableEnergyAgencyinthelead.TheUSAisthirdwhileChinaandJapan(IRENA),thispatentinsightreportexaminestheglobalrankfourthandfifthrespectively(theRepublicofevolutionofpatentfilingspublishedbetween2002andKorearanks11th).Asfornon-IPFpatentsmainlyfor2022inthedomainofoffshorewindenergy.domesticmarkets(i.e.notprotectedinternationally),Chinaleads,whichreflectsitsrelianceonalargelocalPatentfilingstatisticsprovideinsightfulindicatorsformarketforoffshorewind.measuringandexamininginnovation,commercialisationandknowledgetransfertrendsacrossinternational2.Floatingfoundation,logisticsandgreenhydrogenmarkets.Theyalsoprovidemeaningfulinformationattractinventionactivity.Mostinventionsforoffshoreonchangesintechnologytrendsandmakeiteasiertowindfocusonthreeareas:floatingfoundations,identifynewplayersorconsolidationefforts.Allinall,transportationequipment,andtheinstallationandthisreportaimstoshedlightonhowkeytechnologicalerectionofturbines.Itisworthnotingthatafourthchallengesarebeingaddressedviainnovation.areaisrapidlyscalingupininnovationactivity,i.e.combiningoffshorewindandelectrolysers,indicatingUsingaprovenEPOdataanalysismethodology,thisgreatexpectationsofalargegreen-hydrogeneconomyreport’sfindingsconsiderinformationfromroughlyasavaluecreationopportunity.17000patents(fromtheEPO’spatentdatabase).Thesepatentscoverinventionsrelatedtooffshorewindenergy,3.Floatingfoundationsposetoexpandoffshorewindincludingkeytechnologyconceptgroupingssuchas:markets.Markettrendsindicateagrowinginterestinfixedandfloatingfoundations,towers,mechanicalpowerdevelopingfloatingfoundationsgiventheirpotentialtransmission,bladesandrotors,hybridsystems,energyforsitingturbinesindeeperwaterswithabundantstorage,andgridsandsubmarinecables.windpotential.Thisisconfirmedbypatentdata,whichshowsthatindustryplayersareinnovatinginthistechnologyarea.4.Towerandbladedesignstoreducesteeldemandandenhancesustainability.Playersintheoffshorewindsectorarealsolookingintoalternativedesignsfortowers(i.e.concreteandlatticestructures),whichmayreducedemandforsteel.Theyarealsoexploringmodularbladeassemblyoptions,aswellassustainableandrecyclableblades,topromotecircularityandaddressmanufacturingandtransportationchallenges.<TableofcontentsExecutivesummary1.Introduction2.Methodology3.Results4.Conclusionepo.org03OFFSHOREWINDENERGYPATENTINSIGHTREPORT5.Increaseduseofrareearthmaterialsindrivetrains.SummaryofpatentdatatrendsHerethetrendshowscontinuedinterestindirect-drivesystemsduetotheireffectivecost-weight-Filingstatistics:powerdensityratio;howeverthattrendwouldmeananincreaseintheutilisationofpermanent—From2002to2022,about17000patentfamiliessynchronousmagnetgenerators.Theincreaseintherelatedtooffshorewindenergywerepublished,useofpermanentmagnetswould,inturn,resultinreflectinganaverageannualincreaseof18%.Betweenhigherdemandforrareearthmaterialsneededto2014and2017filingsstagnated,butthiswasfollowedmanufacturethem.byasteepincrease.6.On-siteenergystorageandhydrogenproductionto—ThetopapplicantcountryisChina(52%ofthebalancepowersystemsandcreateadditionalvalue.totalpatentfamilies),followedbytheRepublicofThereisagrowingfocusonflexibleenergysystemsKorea(6%),Germany(5%),Japan(5%),USA(4%),andtocounterthevariabilityofrenewabletechnologies.Denmark(4%).Patentdatainoffshorewindenergytechnologiesalsoshowagrowinginterestinenergystorageoptions,—Twenty-sevenpercentofalloffshorewindenergyespeciallyinthecombinationofoffshorewindparkspatentfamiliesareinternationalpatentfamilies(IPFs)andhydrogenproduction,whichoffertheaddedi.e.excludingsingledomesticfilings.Morespecificallybenefitofhelpingtodecarbonizeactivities.79%ofthetotalpatentfamiliesdevelopedbyEuropeancountriesareIPFs,as-are64%bytheUnited7.Uptakeofsubmarineelectricalinfrastructure.StatesofAmerica.FourpercentofChinesepatentTheneedfortransmissioninfrastructureisalsofamiliesareinternational.drivinginnovationactivitiesandpatentdatarevealsthattherearemanycorrespondinginnovationsin—Sixty-sevenpercentofalloffshorewindenergyIPFssubmarinecablingtoconnectsupplyanddemandincludeatleastonegrantedpatentapplication.cost-effectively.—ForallgrantedEPapplications,68%arestillinforce8.Moderateinterestinhybridisingoffshorewindinatleast1memberstate.(10%morethanthewithotherenergygenerationsources.Toexpandaverage).thepotentialofoffshorewindsolutionsthereareincreasingeffortstocombineoffshoreenergyMainactors:generationwithothertechnologiessuchasPVoroceanenergy.Insightsfrompatentsrevealthat—Vestas,Siemens,GeneralElectric,MitsubishiHeavyinnovationactivitiesremainsteadysince2013.ThisIndustriesandHitachiarethetopIPFapplicants.canpotentiallybeascribedtothedecliningcostofInthelast5years,RWERenewablesandItrechaveoffshorewindthatactsasdisincentivisegiventheenteredthetopfive,replacingMitsubishiHeavycomplexityassociatedwiththehybridisationofIndustriesandHitachi.offshorewindwithadditionaloceantechnologiesintermsofoperationandmaintenance.—Francehasthehighestnumberofpatentfamilieswithinternationalcooperation.TheUnitedStatesofAmericahasthemostdiverseco-operationpicture,pairingwith24countriesonatotalof81patentfamilies.Germanyco-operateswith15countriesonatotalof79patentfamilies.—From2017onwards,Chineseapplicationsareincreasinglymorecited.MostcitationscomefromotherChineseapplications(andapplicants),butalsobyapplicationsfromGermany,DenmarkandUSA,whichindicatesadvancesinpatentquality.<TableofcontentsExecutivesummary1.Introduction2.Methodology3.Results4.Conclusionepo.org04OFFSHOREWINDENERGYPATENTINSIGHTREPORT—Until2012,patentapplicantswhoarenaturalpersonsusedtofile50%ofallpatentapplications,onaparwithcompanies.Sincethen,thatsharehassuccessivelydecreasedtoitscurrentlevelof6%.—From2013onwardsaconsolidationacrosspatentapplicantscanbeseen,withmergersandacquisitionsleadingtofewerapplicants,farfewernaturalpersonapplicants,butsimilartotalnumbersofpatentapplicationsarefiledwiththesamegrantrates,whichsuggestsnoreductioninthequalityofapplications.Maintechnologies:—FloatingfoundationsleadinIPFs(49%),followedbytransportation,installationanderection(26%).—Combiningoffshorewindturbinesandelectrolysersisanemergingtrend:thenumberofIPFsdoubledbetween2020and2021,withsignsofthistrendcontinuingin2022.<TableofcontentsExecutivesummary1.Introduction2.Methodology3.Results4.Conclusionepo.org05OFFSHOREWINDENERGYPATENTINSIGHTREPORT1.IntroductionYetthedeploymentofoffshorewindcomeswithitsownchallenges.Eventhoughthetechnologyitselfhas1.1Theroleofoffshorewindenergyinenergyexperiencedsharpcostreductions—afallof59%inthetransitionlevelisedcostofelectricity(LCOE)4between2010-2022,currentcommoditypriceinflationandhigherinterestClimatechangeisalreadyimpactingtheworld’sratesareprovingachallengingenvironment.Inaddition,largesteconomiesaswellasemergingeconomiesand,aspectssuchasintegratingthistechnologyintotheurgesthedecisionmakersandstakeholderstoadoptenergysystemvianewinterconnections,supplychaincorrectiveactionsurgentlytotackletheglobalclimatebottlenecksandlogisticalchallenges,thedemandforemergency.IRENA’sWorldEnergyTransitionsOutlookcriticalmaterialsandrecyclingortheneedforlarger2023editionhasonceagainshownthattherenewablesturbinesandmorerobustfoundations,amongotherbasedenergytransitionisthesolutiontothefightfactors,requirefurtherefforts,ifwearetoaccelerateagainstclimatechangeandthepaceofthetransitionisthesectorstotheenergytransition.Today,theoffshorecurrentlyoff-track1.windmarketremainssmallerthantheonshorewindmarket,withtotalinstalledcapacitiesreaching63GWLimitingglobalwarmingto1.5°Cwillrequirecuttingby2022.Consideringthecurrentplansandtargetssetcarbondioxide(CO2)emissionsbyaround37gigatonnesbycountriesasperIRENA’sPlannedEnergyScenario(Gt)from2022levelstoachieveanetzeroscenarioin(PES),theglobalcumulativeoffshorewindcapacityistheenergysectorby2050.Thiswillrequireaprofoundexpectedtoreach275GWby2030andcloseto1200GWtransformationofenergysystems,includingamassiveby2050respectively.Thisstillfallsbehindofthe494GWdeploymentofrenewablegenerationcapacity.In2022,and2465GWtargetsby2030and2050respectivelyinIRENA’sstatisticsshowthatrenewablesaccountedforIRENA’s1.5°CScenario.583%ofnewannualgenerationcapacityadditions,withanadditional295gigawatts(GW),reaching40%ofthetotalglobalinstalledcapacity2.UnderIRENA’s1.5°Cscenario,renewablegeneratingcapacitywillneedtoreachabove33000GWby2050.3By2050,wind(onshoreandoffshore)wouldsignificantlyincreasefromthecurrent900GWuptomorethan10000GW,representingalmostone-thirdofthetotalinstalledcapacityfromrenewablesources.Intermsofoffshorewind,theglobalinstalledcapacitywouldreachalmost2500GWby2050.Thisentailsa40timesincreasefromtoday’slevel(63GWby2022)andmakesoffshorewindoneoftheleadingtechnologiesinthebidtoachieveglobalclimatetargetswithinthenextthreedecades.1IRENA(2023),WorldEnergyTransitionsOutlook2023:4IRENA(2023),RenewablePowerGenerationCostsin2022,1.5°CPathway,Volume1,InternationalRenewableInternationalRenewableEnergyAgency,AbuDhabi.https://www.irena.EnergyAgency,AbuDhabi.https://www.irena.org/org/Publications/2023/Aug/Renewable-Power-Generation-Costs-in-2022Publications/2023/Jun/World-Energy-Transitions-Outlook-20235IRENA(2023),WorldEnergyTransitionsOutlook:1.5°CPathway,2https://www.irena.org/Publications/2023/InternationalRenewableEnergyAgency,AbuDhabi.https://www.irena.Jul/Renewable-energy-statistics-2023org/Publications/2023/Jun/World-Energy-Transitions-Outlook-20233IRENA(2023),WorldEnergyTransitionsOutlook2023:1.5°CPathway,Volume1,InternationalRenewableEnergyAgency,AbuDhabi.https://www.irena.org/Publications/2023/Jun/World-Energy-Transitions-Outlook-2023<TableofcontentsExecutivesummary1.Introduction2.Methodology3.Results4.Conclusionepo.org06OFFSHOREWINDENERGYPATENTINSIGHTREPORTBox1:Thecost-competitivenessofoffshorewindThesetrendsunderscorethepotentialforsignificantadvancementsthroughtheprocessoflearningviaDuetoitsoffshorelocation,itshighenergyoutputperresearchanddevelopment,leadingtotechnologicalsquaremetreanditsabilitytobebuiltupquicklyatenhancements.Initially,offshorewindfarmsweregigawatt-scale,offshorewindisavaluableoptiontosituatedclosertoshoreandatshallowdepths(seetheprovideelectricitytodenselypopulatedcoastalareasinbubblechart8below).However,thankstostrongerandacost-effectivemanner.6Givenitspotential,offshoremoreconsistentwindresources,research,developmentwindisexpectedtoplayakeyroleintheenergytransitionanddemonstration(RD&D)initiativeshavepromptedatowards2050.shiftofwindfarmstogreaterdistancesfromthecoastandintodeeperwaters.Theperiodfrom2010to2022witnessedamassivedeploymentofoffshorewindinstalledcapacity,fromThetechnicalpotentialthatcanberealisedinwatersof3.1GWin2010upto63.2GWin2022—atwentyfolddepthsbeyond50metres,mainlyviatheutilisationofincrease.Duringthesameperiod,globalweighted-averagefloatingoffshoreplatforms,representsanopportunityfortotalinstalledcostsfell34%,fromUSD5217/kilowatt(kW)countriesandregionswithsubstantialseabeddrops,suchtoUSD3461/kW.Atitspeakin2011,theglobalweighted-asJapan,China,theUnitedStatesandEurope,topositionaveragetotalinstalledcostwasUSD5975/kW–1.7timeswindfarmssignificantlyfartherfromthecoastline.Yet,higherthanits2022value7.thegeographicaldistributionofoffshorewindprojectsremainedconsistent,ledbyEurope(includingtheUnitedInaddition,technologyimprovementsrelatedtolargerKingdom,Denmark,andGermany)andAsia(representedturbineswithlongerblades,higherhubheights,andbyChinaandJapan).newlocationsfurtherawayfromshorelineswherewindresourceincreasesareresultinginhigherestimatedlifetimecapacityfactors(fornewlycommissionedprojects)thatincreasedfrom38%in2010to45%in2017andthendroppedto42%in2022.OffshorewindturbinedevelopmenttrendLevelisedcostofelectricityWaterdepth1605217(m)5288>40140405884513430Avg.distancefromshore(km)1200.1970.1820.175204647≤101000.123Turbinesize8034833461(MW)9600.1066400.0880.08132000202001200212003020042005200620072008200920102011201220132014201520162017201820192010201120122013201420152016201720182019202020212022LevelisedcostTotalintalledofelectricitycost[2021USD/kWh][2021USD/kW]Alltheabovetechnologyimprovementsandthegrowingmaturityoftheindustryhaveresultedina59%declineoftheweighted-averagelevelisedcostfortheperiod2010-2022,fromUSD0.197/kilowatthour(kWh)toUSD0.081/kWh.2021alonesawadeclineof13%year-on-year(seetrendlines9).Yet,in2022,a2%increasewasobserved.66IRENA(2021),Offshorerenewables.AnactionagendafordeploymentAcontributiontotheG20presidencyhttps://www.irena.org/publications/2021/Jul/Offshore-Renewables-An-Action-Agenda-for-Deployment7IRENA(2023),RenewablePowerGenerationCostsin2022,InternationalRenewableEnergyAgency,AbuDhabi.8Source:IRENA(2022),RenewableTechnologyInnovationIndicators:Mappingprogressincosts,patentsandstandards,InternationalRenewableEnergyAgency,AbuDhabi.https://www.irena.org/publications/2022/Mar/Renewable-Technology-Innovation-Indicators9IRENARenewableCostDatabase<TableofcontentsExecutivesummary1.Introduction2.Methodology3.Results4.Conclusionepo.org07OFFSHOREWINDENERGYPATENTINSIGHTREPORT1.2AboutthestudyOffshorewindenergy,whichcanbeconsideredakeytechnologyfortheenergytransition,requirescontinuousTheobjectiveofthisstudyistoexaminetheglobalimprovementtoharnessitsfullpotentialandbenefitevolutionofpatentfilingstoidentifymajortrendsinthenotonlytheenergydomain,butalsoeconomiesandfieldofoffshorewindenergyandpinpointmarketandsocieties.Inthissense,thegrowthofoffshorewindtechnologygapsaswellasopportunitiesrelevanttotheenergyhasbroughtnewbusinessopportunitiesforthecontributionofoffshorewindtotheenergytransition.energyindustryandchangedthedynamicsoftheenergymarket.Amongotherbenefits,itstechnologicalprogressThereportaimstoprovideusefulinsightsforinterestedhasledtothedevelopmentofnewsolutionssuchasplayersinthefieldandpolicymakerstoleverageactionslargerturbines,bettertransmissionsystemsandspecialandinitiativesforfurtherdevelopinganddeployingshipstoinstalltheturbines,whilealsocreatingjobsintheoffshorewind-relatedtechnologies,therebyenablingrenewableenergysector.Overall,offshorewindenergyoffshorewindenergyintheenergysystem.Thestudyisdisruptingtheenergyindustrybyprovidinganewandusesvariousresourcesforthispurpose,includingEPOsustainablesourceofenergythathasthepotentialtopatentdatabasesandregistersandotherpublicreportsmeettheworld’sgrowingenergyneeds.available.ItalsobenefitsfromthetechnicalexpertiseinthefieldofbothIRENAandtheEPO.Eventhoughpatentfilingsshowasteepincreaseinthelast10years,majorinnovationsinoffshorewindenergyAccordingtotheirrespectivemissionsandactivities,thetechnologyarestillneededtorealiseitsfullpotential.EPOandIRENAshareacommoninterestinthestudyofpatentfilingstatisticstoimproveunderstandingoftrendsaffectingthetransitiontoasustainableenergyfutureusingrenewableenergysources.In2023,IRENAandtheEPOextendedtheirmemorandumofunderstandingonbilateralcooperationtopromoteinnovationinthefieldofrenewableenergytechnologies10,andcommittedtopublishregularpatentlandscapereportsfocusingonspecifictechnologicalareas.11Buildingonthislong-standingEPO-IRENAcollaboration,thepresentinsightreportassessespatentfilingstatisticsintheoffshorewindenergydomain.Thegrowingpoliticalinterestaroundtheglobeinclimate-neutralenergyproduction,energystoragetechnologiesandthepromisethatoffshorewindenergyoffersisthedrivingforcebehindagreatmomentumforinnovationandspin-offactivities.10EPOandIRENAenhanceco-operationonpatentepo.org08informationaboutrenewableenergytechnologies.11In2022,EPOandIRENApublishedapatentinsightreportoninnovationtrendsinelectrolysersforhydrogenproduction,whichyoucandownloadat:https://www.epo.org/news-events/news/2022/20220512.html<TableofcontentsExecutivesummary1.Introduction2.Methodology3.Results4.ConclusionOFFSHOREWINDENERGYPATENTINSIGHTREPORT2.Methodologyconceptssothattherewouldbeaspecific“offshoreaspect”mentionedinthepatenttextorcoveredbytheThissectionintroducesthemainsourcesofinformationpatentclassificationcodes.aswellastheapproachadoptedtoextractrelevantinformationfromthevariousdatasets.Keypatent-relatedAsforpreviousEPOpatentinsightreports,theapproachconceptsareexplainedaswellastherationalefollowedtothisworkbeginswithastate-of-the-artsearchfortoselecttheseventechnologyconceptgroupingstherelevanttechnologyinselectedpatentdatabases.Arelatedtooffshorewindenergytechnologies.Hence,searchstrategyisdevelopedwithanexpertexaminerintheaimofthesectionistoprovidetheframeworkforthefield,andsearchresultsarethenanalysedtoanswerunderstandingtheresultspresentedinthisreport.specificquestionsaboutpatternsofpatentingactivityorinnovation.Theresultsarepresentedvisuallytoassist2.1UsingpatentinformationunderstandingandallowconclusionstobereachedandrecommendationstobemadebasedontheempiricalPatentsareexclusiverightsthatcanonlybegrantedforevidence.inventionsthatarenovelandinventive.12High-qualitypatentsareassetswhichcanhelpattractinvestment,Theinformation,dataandanalysisprovidedinthissecurelicensingdealsandprovidemarketexclusivity.reportareprimarilybasedonatargetedutilisationofPatentownerspayannualfeestomaintainpatentsinEPOpatentdatabases(PATSTAT,Espacenet,EPregisterthosecountriesthatareofcommercialvaluetothemandandotherdedicatedpatentexaminersources).Onlyprotecttheirinventionsfrombeingusedbycompetitors,relevantpatentpublicationsintheperiodfrom2002toforexample.Inexchangefortheseexclusiverights,all2022(earliestpublicationyearwithinthepatentfamily)patentapplicationsarepublished,revealingthetechnicalwereconsidered.Theidentificationoftherelevantdetailsoftheprotectedinventions.Thisallowsotherareasoftechnologyandthecreationofthetechnology-researcherstobuildonthepublishedinventionsofspecificsearchstrategieswereundertakenbyanEPOotherinventorsandavoidthemistakeofinvestinginexaminerexpertintheoffshorewindenergyfieldanddevelopingasolutionforaproblemthathasalreadybeenbyIRENAexperts.Allsearchqueries(summarisedinsolvedbyothers.Figure2.2)wereadaptedaswell14aspossibletothefreeEspacenettool.DetailedsearchqueriesbasedonthePatentdatabasescontainawealthoftechnicalEPO’sfreeEspacenettoolareprovidedinaseparateinformation,muchofwhichcannotbefoundinanyexceldocument.Thisallowsthereadertomonitorfutureothersource.TheEPO’sfreeEspacenet13databasechangesinthecoveredtechnologies.15Anautomaticcontainsmorethan140milliondocumentsfromoverandmanualdataharmonisationprocesshasbeen100countries.Patentfilingstatisticsprovideinterestingimplementedtoenhancetheaccuracyandcompletenessindicatorstomeasureandexamineinnovation,ofthefinaldataset.16commercialisationandknowledgetransfertrends.TheyalsoprovideameansofobservingchangesintechnologyEachqueryisidentifiableviaadifferentlabel(QA,QB,trendsaswellasidentifyingnewplayersorconsolidationetc.)andthesecorrespondtoconceptsandsub-conceptsefforts.Thiscanrevealnewinsightsintotrendsintherelatedtooffshorewindenergytechnologies.Notalloffshorewindenergysectorandhelpsupportinformeddocumentedquerieshavebeenusedforthestudyindecision-makingprocesses.thisreport.Althoughthereportstronglycentresonthetechnologyusedforoffshorewindenergy(Q0),2.2PatentsearchotherconceptsordetailviewshavenotbeenlimitedtoThispatentinsightreportprovidesasnapshotofthe14InternalEPOsystemsallowmorecomplexpatentsituationofoffshorewindenergytechnologies.searchesthantheESPACENETtool.Althoughsometechnologiesareequallyapplicableto15IPCandCPCpatentclassificationcodesaswellastheonshoreandoffshore,thisreportdefinesthepatentkeywordsusedmaychangewhenatechnologymatures.searchstrategiesformostoftheconceptsandsub-16Pasimeni,F.(2019).SQLquerytoincreasedataaccuracyandcompletenessinPATSTAT.WorldPatentInformation,12epo.org/learning/materials/inventors-handbook/novelty.html.57,1-7.https://doi.org/10.1016/j.wpi.2019.02.00113https://worldwide.espacenet.com/.<TableofcontentsExecutivesummary1.Introduction2.Methodology3.Results4.Conclusionepo.org09OFFSHOREWINDENERGYPATENTINSIGHTREPORToffshoreorwindenergy.Forinstance,(QL)submarine—Bladesandrotorscables(conductors),(QL1)protectionand(QM)recycling◦Rationale:Uniqueharshoperatingconditionsandhavenotbeenlimitedtooffshoreorwindenergybecausetheneedforlargerbladestocapturemoreenergythetechnologyusedinsubmarinecablesisthesameasrequireadaptationsindesignusingadvancedwhatisusedtotransportelectricitybetweencountriescompositesandspecialmonitoringtechniques.dividedbywater.Equally,thetechnologyusedforrecyclingturbinebladesisnotlimitedtoturbineblades—Hybridsystemsforoffshoreuse.◦Rationale:HybridsystemscombineoffshorewindenergywithothersourcesofenergytoproduceThetotalnumberofpatentfamiliesusedinthisreportelectricity;typicallywaveorsolarenergy.(extractedviaconceptsQAtoQLandpublishedbetween2002and2022)isabout17000(covering33000unique—Energystorageapplications).17◦Rationale:Renewableenergy,beitproducedbywind,solaroroceanenergy,isoftendictatedAsillustratedinFigure2.2,thisreportdefinessevenbyweatherconditions.Innovativesolutionsaretechnologyconceptgroupingsrelevanttooffshoreneededtocaptureandstoretheproducedenergyenergy,followingthisrationale:whenthereisanoversupplyandreleaseitwhendemandpeaks.—Fixedandfloatingfoundations◦Rationale:Withthearrivalofeverbiggerturbinesto—Grid,submarinecablesandprotectionsimproveefficiency,floatingplatformshavemadeit◦Rationale:Submarinecablesareneededtopossibletoharnesswindenergyindeeperwaters.transporttheelectricitytotheconsumersonThishowevercomeswithitsownchallengessuchshore.Harshconditionsshortentheirlifespanandasanchoring,stabilisationandmaintenance.theyrequirecomplexrepairswhenneeded.Extrameasuresneedtobetakentoprotectsubmarine—Towerscablesagainstdamage.◦Rationale:Towerstructureshavetofulfilmultiplerequirementsregardingcost-effectiveness,weight,Throughoutthereport,detailedviewsarealsoprovideddurability,strength,andeaseofinstallation.inthe“blueboxes”thatfocusonotherrelevantareasDependingontheenvironmentalconditions,touchinguponoffshorewindenergytechnology.Thesedifferentconceptsorcombinationsofconceptscanrelatetotransportation,installationanderectionofwindbeconsidered.turbines,aquaculture,desalination,corrosionprotection,generators,recycling,andpatentsformonitoringwaves.—Mechanicalpowertransmission◦Rationale:Twocompetingtypesofdrivesystemssharethefocusofcurrentlinesofdevelopmentandinnovation.Thegearboxapproachtransformsslowspeedandhightorquetohigherspeedsrequiredbythegenerator.Indirect-driveapproach,thewindturbinesdirectlypowerasynchronousgenerator.17Thetotalnumberofpatentfamiliesinthedatasetisaroundepo.org1026000,meaningthatabout9000patentfamiliesarenotbeingconsideredforthisreport.Thosepatentfamiliesleftoutcovertechnicalareassuchas:monitoring,testing,controlling,diagnostics,AC/DCcircuitarrangements,andhydraulicengineering.<TableofcontentsExecutivesummary1.Introduction2.Methodology3.Results4.ConclusionOFFSHOREWINDENERGYPATENTINSIGHTREPORTFigure2.2:Thisfigureshowsasummaryofthetechnologyconceptsanalysedinthisreport.TheQ-codeswithinthesquarebracketsindicatethecorrespondingqueryortheEPOpatentdatabasesfromwhichdataaresourced.OffshorewindenergyConceptFixedandTowersMechanicalBladesandHybridsystemEnergyGrid,groupingfloatingpowerrotorsstoragesubmarinefoundationstransmissionHybridcablesandsystem[QE]EnergyprotectionConceptFixedTowersMechanicalBlades/storageSub-concept[QA][QH]powerrotorsSolar[QD]Gridstransmission[QI][QE1][QJ]SuctionWeldedor[QC]OceanCompressedcaissontubularBlades/energyair[QD1]Submarine[QA1]steelDirectdriverotors[QE2]cables[QL][QH1][QC1]→modularKineticGravity[QI1][QD2]Protection[QA2]LatticeGearbox[QL1][QH2][QC2]BatteryMonopile[QD3][QA3]Concrete[QH3]HydrogenFloating[QD4][QB]ThermalStabilisation[QD5][QB1]DetailviewTransporta-CorrosionGeneratorsRecyclingMonitoringtion/protection[Espacenet][Espacenet]wavesinstallation/[QF][QG]erection[QK]Desalination[Espacenet]Aquaculture[Espacenet]WhenusingIPCandCPCclassificationcodestoextractDatamining(optimisingsearchqueries)andcurationpatentsforstatisticalanalysis,readersmustbearinwereconductedbytheEPOinlinewithexistingbestmindthatitisinthepatentapplicant’sinteresttopracticesofEPOexpertsandpatentexaminers.Agetthebroadestpossiblescopeofprotectionforthechallengeinthisreportwasdefiningtheboundariesforinvention.Therefore,apatentwillnotberestrictedtothevariousdatasetsofpatents.Thisleadstoquitelargethecombinationofelementsinwhichtheapplicantisoverlapsbetweenthedifferenttechnologyconceptsanddevelopingitstechnology.Asaresult,someaspectsmaytherelevantpatentfamilies.Keywordswereoftenusedbeinaccuratelyattributedtoapatentapplicationinthetocreateabetterseparationofthevariousconcepts.sensethataparticulartechnicalaspectmaybedevelopedforaspecifictechnologywithoutbeingexplicitlyThroughoutthereport,patentfilingstatisticsareindicatedinthepatentapplicationorreflectedintheaddressedatdifferentlevelsofaggregationwheneverpatentclassification.Thepatentsextractedandgroupedappropriate.Patentnumbersarequantifiedbytheunder(QL)submarinecables(conductors)provideandistinctcountofpatentfamilies.18Inaddressingtheexampleofthisaspect.Justover2%ofsubmarinecablespatentfilingdatathroughthelensoforiginofinnovation,patentfamiliesarealsoclassifiedspecificallyforoffshoreitisimportanttonotethatdifferentfilingstrategieswindenergy.bystakeholdersfromdifferentcountriescanhavean18epo.org/searching-for-patents/helpful-resources/first-time-here/patent-families.html.<TableofcontentsExecutivesummary1.Introduction2.Methodology3.Results4.Conclusionepo.org11OFFSHOREWINDENERGYPATENTINSIGHTREPORTimpactontheoverallstatisticsandontheconclusions.Forinstance,Chineseapplicantschoosepredominantlydomesticfilingsanddonotfileforpatentsonacomparablescaleinternationally.19Inaddition,Chineseapplicantsoftenfileutilitymodelsaswellaspatentsonthesameorsimilarinventions,whichincreasesChinesefilingnumberswhensimplycountingpatentfilingsorevenfamilies.Thisreportusesastricterconceptofpatentfamiliescalledinternationalpatentfamilies(IPFs).Thisconceptexcludesallsinglenationalpatentfamiliesthathaveonlybeenfiledinthecountryoftheapplicant20.Patentfamilieswithapplicationshavingapplicantsorinventorsfromdifferentcountrieswerealsoconsideredtobeinternationalpatentfamilies.EPandWOfilings21aswellasanyotherregionalofficefilingsarebydefaultIPFs.Oftheabout17000patentfamiliesusedinthisreport(extractedwithinconceptsfromQAtoQLandpublishedbetween2002and2022),4657areIPFs(about27%),groupingatotalof20165uniquepatentapplications.Thefactthatpatentfamiliescanbelongtodifferentconceptswillleadtoastatisticaldoublecountinginsomeofthegraphsbecausethepatentfamilywillbeconsideredrelevantforeachoftheconcepts.Asimilardoublecountingoccursatthecountry(applicant,patentoffice)levelanalysiswhenanapplicationhasapplicantsfromdifferentcountries,orwhenpatentfamilymembersarefiledatmultiplepatentauthorities.19Pasimeni,F.,Fiorini,A.,&Georgakaki,A.(2021).Internationalepo.org12landscapeoftheinventiveactivityonclimatechangemitigationtechnologies.Apatentanalysis.EnergyStrategyReviews,36,100677.https://doi.org/10.1016/j.esr.2021.10067720ApplicantcountriesandfilingauthoritiesareabbreviatedthroughoutthereportaccordingtoWIPOSTANDARDST.3:https://www.wipo.int/standards/en/pdf/03-03-01.pdf21EPdenotesfilingsattheEuropeanPatentOfficeandWOthoseattheWorldIntellectualPropertyOrganization<TableofcontentsExecutivesummary1.Introduction2.Methodology3.Results4.ConclusionOFFSHOREWINDENERGYPATENTINSIGHTREPORTBox2:Internationaltechnicalstandardizationofoffshorewind22Theinternationalstandardisationofoffshorewindinternationaltechnicalstandardsforwindenergycoveringtechnologyencompassesvariousaspects,includingbothonshoreandoffshoredomainsgrewsteadilyfrom16design,production,safety,testingandanalysis,aimedto33between2004and2020.Takingobservercountriesatoptimisingoperations.From2004to2020,atotalofintoaccount,thetotalcountreached41in2020.33internationalstandardswereestablishedforwindenergytechnologies.Withinthisperiod,26standardsAnobservationemergesthatwealthiereconomieswereapplicabletobothonshoreandoffshorewindaremoreactivelyengagedinthistechnologicalfieldenergy,withanadditional5focusingsolelyonoffshorecomparedtoothereconomies,asmostobservercountriesorfloatingwind.Manyofthesestandardsemergedafterinthewindtechnicalcommitteecountamongthelatter2012,indicatingtechnologymaturityandprogressiontocategory.Toensurethewidespreaddisseminationofcommercialisation.offshorewindtechnologies,itiscrucialforlessdevelopedeconomiestoplayaroleinthestandardisationprocess.Offshorewindtechnologyhasgainedglobalinterest,withInternationalstandardisationbodiesshouldfacilitateparticipationbyvariouscountriesoftentiedtotheirintentincreasedparticipationfromdevelopingnationsortocommercialisewind-relatedinnovations.Thenumberofprofessionalsfromcountrieswithlimitedtechnicalparticipatingmembercountriesinvolvedindevelopingexpertise.Countriesintechnicalcommitteeonwindenergy250RepublicofKoreaChinaNumberofinventions(2007-2019)200Participatingcounty150Observercounty100Poland500Japan10.5GermanyDenmarkNetherlandsFranceUnitedStatesofAmericaRomaniaUkraineNorwayPolandSpainBrazilUnitedKingdom1111.51212.51313.5Log_GDP(2020)Standarddeveloped262226132467101215152019202020112012201320142015201620172018012222222004200520062007200820092010•Annualaddition•Cumulativeuptopreviousyear22Source:IRENA(2022),RenewableTechnologyInnovationIndicators:Mappingprogressincosts,patentsandstandards,InternationalRenewableEnergyAgency,AbuDhabi.https://www.irena.org/publications/2022/Mar/Renewable-Technology-Innovation-Indicators<TableofcontentsExecutivesummary1.Introduction2.Methodology3.Results4.Conclusionepo.org13OFFSHOREWINDENERGYPATENTINSIGHTREPORT3.Results3.1.1PatentfilingsThissectionpresentsthekeyresults,includingFollowinganinitialphasemarkedbylimitedpatenttechnologyinsightsandinterpretations.First,insectionfilings,thepatentingactivityinoffshorewindenergy3.1,resultsarepresentedbylookingatallthequeriestechnologiesexperiencedanotablesurgestartingruntoidentifyrelevantareasrelatedtooffshorewindin2006.Subsequently,aperiodofconsistentannualenergytechnologies.Then,insection3.2.,thefocusofexpansionpersisteduntil2012.AsshowninFigure3.1.1,theanalysismovestotheseventechnologyconcepttheevolutionofpatentingactivitypresentsaslightdipingroupings,eachofwhichareanalysedinadedicatedsub-thefollowingyears.Nevertheless,anewincreasingtrendsection.Allresultsarepresentedbasedonthefollowingemergesfrom2017onward,maintainingmomentumstructure:globalpatentingtrendsareshownfirst,thenuptothepresentmoment.Thistrendissimilareithertheanalysismovestocountriesoftheapplicants,andwhenallpatentfamiliesoronlyIPFsareplotted(intheconcludesbyfocusingonthetoppatentapplicants.topandbottombarchartinFigure3.1.1,respectively).FurtherdetailedviewsandobservationsareprovidedinTheseinnovationsledtocostreductionsoverthepastthe“blueboxes”.decade,enablingtheexplorationofalternativeoffshoreinstallationmethods,includinggreaterdistances3.1Patenttrendsinoffshorewindenergyfromthecoastanddeeperwaters.Asaresult,thesetechnologiesadvancementshavecontributedtoachievingthenotablyhighinstalledoffshorewindcapacity.23Thefollowingsub-sectionspresenttheinsightsonoffshorewindenergytechnologiesbyfocusingonsixOnannualaverage,IPFsaccountforabout40%ofthespecificpatentmetrics.Thefirstofthesesub-sections,3.1.1,totalpatentfamilies(moreonthislater),andFigureillustratesthemainpatentingtrends,followedbyinsights3.1.1alsoindicatesthatthelargestnumberofpatentrelatedtobothtoppatentingcountries(section3.1.2)andfamiliesconcernQBfloating,withtheseaccountingfortoppatentoffices(section3.1.3),eachfocusingoncountriesabout27%ofthetotalnumberofIPFs,followedbyQKwhereIPFsaredevelopedandoncountrieswhereIPFsaretransportation,installationanderection(14%)andQClegallyprotectedbynationalpatentauthorities.Toppatentmechanicalpowertransmission(12%).applicantsarepresentedinsection3.1.4,whilesection3.1.5focusesonpatentcitations.Section3.1.6introducesthematuritymap,whichsummarisesthemainphasesofpatentdevelopmentrelatedtooffshorewindenergytechnologies.→InteractivedatainpublicTableauworkbook23IRENA(2022),RenewableTechnologyInnovationIndicators:Mappingprogressincosts,patentsandstandards,InternationalRenewableEnergyAgency,AbuDhabi.https://www.irena.org/publications/2022/Mar/Renewable-Technology-Innovation-Indicators<TableofcontentsExecutivesummary1.Introduction2.Methodology3.Results4.Conclusionepo.org14OFFSHOREWINDENERGYPATENTINSIGHTREPORTFigure3.1.1:Trendinallpatentfamilies(2002-2022)Allpatentfamilies3500300025002000150010005000200220032004200520062007200820092010201120122013201420152016201720182019202020212022•QA:fixedfoundations•QB:floatingfoundations•QC:mechanicalpowertransmission•QD:energystorage•QE:hybridsystem•QF:corrosionprotection•QG:monitoringwaves•QH:tower•QI:blades,rotors•QJ:grid•QK:transportation,installation,erection•QL:submarinecablesconductorsInternationalpatentfamilies(IPF)7006005004003002001000200220032004200520062007200820092010201120122013201420152016201720182019202020212022•QA:fixedfoundations•QB:floatingfoundations•QC:mechanicalpowertransmission•QD:energystorage•QE:hybridsystem•QF:corrosionprotection•QG:monitoringwaves•QH:tower•QI:blades,rotors•QJ:grid•QK:transportation,installation,erection•QL:submarinecablesconductorsTrendinallpatentfamilies(top)andinternationalpatentfamilies(bottom)between2002and2022forthe12queries(QAtoQL)runforthisreport.<TableofcontentsExecutivesummary1.Introduction2.Methodology3.Results4.Conclusionepo.org15OFFSHOREWINDENERGYPATENTINSIGHTREPORTBox3:GrantedpatentapplicationsinIPFforoffshorewindenergyThenumberofgrantedpatentsisagoodmeasureofInfact,anIPFiscomposedbyoneormorepatentinnovativequalityandeconomicimportance.Grantedapplications,andthesemightbe(ormightbenot)patentapplicationsareusuallyconsideredtobeabettergranted.Inthechart,thehorizontalaxisindicatestheindicatorofthequalityofthepatentsbecauseonlyearliestpublicationyearofthefamily.patentsfulfillingalltherequirementsofpatentability24willeffectivelybegranted.Asustainedincreaseinthenumberofgrantedpatentsisseenupto2013(about60%onannualaverage),whichAgrowingnumberofgrantedpatentapplicationsindicatesageneralincreaseinthecapacitiesacquiredindicatesthewillingnessofpatentownerstoinvestforthedevelopmentofnewoffshorewindtechnology.resourcestoprotectthemarketsharewheretheInsubsequentyears,theshareofgrantedapplicationsinventionmightbeusedtogenerateincome.Thebardecreases,alsoduetothetimeneededforapatenttobechartbelowshowsthetrendofthenetnumberofgrantedafteritsapplicationhasbeenfiled(whichisaboutgrantedpatentapplications(darkblue)incomparisonto38monthsforEPOapplications).Pleasealsonotethatpatentapplicationsthatwerenotgranted(lightblue)indatafor2022areincompletebecausetherearedelaysoninternationalpatentfamilies(IPF).datadeliveries,whichisthereasonforthelowertotalinthatyear.Grantedpatentapplications(2002-2022)160080%Grantedpatentapplications120060%80040%40020%00200220032004200520062007200820092010201120122013201420152016201720182019202020212022Earliestpublicationyear•Granted•Notgranted—%granted24AttheEPOthismeansthattheinventionsarenew,involveaninventivestepandaresusceptibleofindustrialapplication(seeArticle52EPC).<TableofcontentsExecutivesummary1.Introduction2.Methodology3.Results4.Conclusionepo.org16OFFSHOREWINDENERGYPATENTINSIGHTREPORT3.1.2Topapplicantcountriesareoftenutilitymodels25thatdonothaveanyfurtherpatentfilingsinotherpatentjurisdictions.Moreover,LookingatthepatentfilingdatabyoriginofinnovationChineseapplicantsoftenfilepatentsaswellasutility(basedonthecountryofbusinessoftheapplicant),itismodelsforthesameorsimilarinventions,whichimportanttonotethatdifferentfilingstrategiesfollowedincreasesoverallfilingnumbers.bystakeholdersfromdifferentcountrieshaveanimpactontheoverallstatistics.ThemainsourceofthegeneralDespiteitsheavilydomesticfocus,ChineseapplicantsupswingtrendandhighernumbersontheleftinFigurearestillinfourthplaceintermsofinternationalpatent3.1.1isthenumberofpatentsfiledinChina,mostlybyfamilies.Inaddition,theEPC26countriesaswellastheChineseapplicants.ChineseapplicantshaveahighfocusUnitedStatesofAmericafollowafilingstrategythatresultsonthedomesticmarket,asonly4%ofpatentsfiledbyin79%and64%oftheapplications,respectively,beingChineseapplicantsareinternational(400IPFsoutofaflaggedasinternationalpatentfilings.Europe’spositionistotalof9193applications;seethechartatleftinFigureanimportantfindinginviewofthestrategicimportance3.1.2).AdetailedanalysisshowsthatpatentsfiledinChinaattributedtothe“EuropeanGreenDeal”(Figure3.1.2).Figure3.1.2:Topapplicantcountriesrelatedtooffshorewindenergyin2002-2022,includingall12queriesfromQAtoQL.(1210)835•DE450(813)778•DK(930)596•US(9193)•CN400(1097)358•JP300(467)344•GB(369)314•NL(381)282•FR(317)265•NO150(305)238•ES(1548)178•KR(1155)832•Others(4481)3557•EPC01000080006000400020000200220032004200520062007200820092010201120122013201420152016201720182019202020212022•IPF•NotIPFThechartontheleftshowsthetopcountriesandthedifferencebetweenIPFs25Autilitymodelhasalowerstandardforinventivestepthanthatforandnon-IPFs(numberinbracketsrepresentsthetotal;numbernotinbracketsaninventionpatent.Theyareoftenissuedwithoutexamination,andreferstoIPFsonly).EPCcountriesaregroupedtogetheratthebottomofthetherightgrantedtendstobeshorterthanapatent.(10yearsinChina)charttofacilitateacomparisonbetweenEuropeandmajorworldplayerslikeChinaandUSA.ThefigureontherightshowsthetrendinIPFfortopapplicant26ThegroupEPCrepresentsapplicantsfromthe39Membercountries.StatesoftheEuropeanPatentOrganisation.Fulllisthere:epo.org/about-us/foundation/member-states.html<TableofcontentsExecutivesummary1.Introduction2.Methodology3.Results4.Conclusionepo.org17OFFSHOREWINDENERGYPATENTINSIGHTREPORTBox4:Internationalpatentingco-operationinoffshorewindenergyThechorddiagraminthisboxshowsinternationalFrancehasthehighestnumberofpatentfamilieswithcollaborationofapplicantcountrieswithatleast5sharedinternationalco-operation.TheUnitedStatesofAmericapatentfamilies.Theanalysisofinternationalcollaborationhasthemostdiverseco-operationpicture,pairingwithisbasedonthelocationoftheapplicants.Itshowsthat24countriesonatotalof81patentfamilies.GermanythereisconsiderableinvolvementoftheMemberStatescooperateswith15countriesonatotalof79patentoftheEuropeanPatentOrganisation27incross-countryfamilies.Co-operationwithChinaismarkedbyco-developmentsandsubsequentpatentapplications.MostapplicantfilingswithmainlyDenmark,HongKong(SAR),prominently,thisappliestoFrance,theKingdomoftheandChineseTaipei.Overall,about1.6%ofallpatentNetherlands,Germany,DenmarkandSpain.Wecanalsofamiliesshowindicatorsofinternationalco-operationobserverelevantcollaborationsbetween:Canadawithbetweenthepatentapplicants,whichislessthanthe3%theUnitedStatesofAmerica,ChinawithDenmark,thefortheentirepopulationofallpatentfamiliesavailableinKingdomoftheNetherlandswiththeUnitedStatesofthePATSTATdatabase.America,andCanadawithFrance.Internationalpatentingco-operationTW5FR102NL90NO13CN21GB25SE26others76CH26VG27DE68CA37DK68ES56US65Notethatasubstantialpartoftheinternationalco-Examplesofco-operationamongentitieswithoutoperationisduetosubsidiariesofthesameparentorganisationaltiesare:ReinholdCohnandPartners[IL]company,hencefilingpatentvialocalentities.28ForandUniversityofMalta[MT],NKTHVCables[SE]andexample:ABBResearch[CH]andABB(AseaBrownBoveri)ABBTechnology[CH](withalateracquisitionbyNKTof[SE],Siemens[DE]andSiemensGamesaRenewableEnergyABBHVactivities),UniversidadPolitecnicadeCataluna[DK],EnvisionEnergy(DK)andEnvisionEnergy(Jiangsu)[ES]andUniversityofStuttgartPublic-LawInstitutionCompany[CN].[DE],LMWindPower[DK]andBladeDynamics[GB],RWERenewables[DE]andStiesdalOffshoreTechnologies[DK],andFronticaEngineering[NO]withMHWirth[DE].27MemberStatesoftheEuropeanPatentOrganisation:epo.org/about-us/foundation/member-states.html.epo.org1828Pasimeni,F.,Fiorini,A.,andGeorgakaki,A.(2019).AssessingprivateR&DspendinginEuropeforclimatechangemitigationtechnologiesviapatentdata.WorldPatentInformation,59,101927.https://doi.org/10.1016/j.wpi.2019.101927<TableofcontentsExecutivesummary1.Introduction2.Methodology3.Results4.ConclusionOFFSHOREWINDENERGYPATENTINSIGHTREPORT3.1.3Toppatentofficestheworkofsearchesandpossiblyexaminingandgrantingthepatents.WecanviewthisasaproxyforthepatentThefirstreasonforpatentapplicantstofileapatentatoffice“workload”.WOandEParespecialcasesbecauseaacertainpatentofficeistoobtaintherighttopreventpatentfilingattheEPOandWIPOcanprovideprotectioncompetitorsfromsellingorusingatechnologythatinmultiplecountries.Wecanobservethatthetop10encompassestheinvention.However,veryoftenancountriescover75%ofallpatentfilings.Lookingatthisapplicantwillfirstfileapriorityfilingwhichisaneasyandranking,oneshouldalsokeepinmindthatonceanEPOsometimesaneconomicalfilingstrategytobuytimetopatentbecomesgranted,itcancomeintoforceinEPOdecidewhethermorepatentsneedtobefiledinotherMemberStateswithoutthisbeingreflectedinthisranking.patentjurisdictions.ThefactthatEPOMembersStatesDenmark,SpainandGermanyareinthislistisaclearindicationthatEuropeanThefiguresbelowrepresentthosecountrieswheretheinnovationhappensinthosecountries.UnitedStatesofinventionoriginatesaswellaswheretheinventionscanAmericaandChinataketheabsoluteleadinthenumberofobtainprotectionandwhatpatentofficeswillhavetodofilings,accountingfornearly25%ofallpatentfilings.Figure3.1.3a:Top10patentoffices,IPF(2002-2022)Patentofficerankingbasedonnumberofdistinctpatentsfiledretrievedbythequeriesforoffshorewindenergy(QAtoQL)between2002and2022.WO3412EP3011USCN2510DKKR1867ESCA890DE729AU708697Others5965883833Figure3.1.3b:Patentofficesoffirstfiling(IPF)Timelinerepresentingthechangingsharesofcountrieswhereapplicantsfiletheearliestfilingofasimplepatentfamily,consideringthequeriesforoffshorewindenergy(QAtoQL)100%•EP190%25665064•US981680%•DE70%48613232•CN4123113846•GB60%15250%2619113174•WO91221533282822103222•DK40%330%46152130•JP21330201720%11516261631•NO91751510131410%1•KR930524063730%•Others200520082011201420172020<TableofcontentsExecutivesummary1.Introduction2.Methodology3.Results4.Conclusionepo.org19OFFSHOREWINDENERGYPATENTINSIGHTREPORTWecanobservemajorchangesinthewayapplicantsAspreviouslymentioned,Vestas[DK]istheleadingfiletheirfirstpatents.China,nearlyabsentuntil2008,playerwhenthefocusisonIPFsalone:intheperiodhassubsequentlyreceivedincreasinglymorefirstfilingsfrom2002to2022,Vestas[DK]developed309distincteveryyear.Forfilingsin2020,CNtogetherwithEP,US,NOIPFsincludedinoneormoreconceptgroupingsandGBrepresent50%ofallfirstfilings(thoughNOand(meaninginoneofthe12conceptsfromQAtoQL).DKarenearlyonparwithGBandUS).ThefactthatEPInterestingly,78%ofthoseIPFswerefiledintheperiodobtainsasuccessivelyincreasingshareoftheapplicationsfrom2013to2022,whileonly69IPFsweredevelopedcanbeattributedtosomeofthetopEuropeanapplicantsintheinitialperiodfrom2002to2012.TheGermanwhosystematicallyfiletheirfirstapplicationsatthecompanySiemensisthesecondleadingpatentingentityEPO.Theseare:Siemens[DE,DK],AlstomRenewableinoffshorewind,with206IPFsintheperiod2002-2022.Technologies[FR,ES],GERenewableEnergies[ES,NL],However,thepatentingactivityofSiemens[DE]isNexans[FR],OrstedWindPower[DK],Vestas[DK],Philipsconcentratedalmostentirelywithinthe10yearsfromElectronics[NL]andothers.2008to2017(87%ofthetotalIPFswerefiledinthatperiod).ThethirdleadingpatentingcompanyisSiemens3.1.4TopapplicantsGamesaRenewableEnergy[DK],establishedin2016afterthemergerofthewindbusinessareaofSiemensTheDanishfirmVestasstandsoutasthemainplayerinandthewindcompanyGamesa.Thisexplainsthelowtherealmofoffshorewindenergytechnologies,showingpatentingactivityforSiemensinthelaterperiod,asremarkableactivity.ItspatentportfolioconsistsofitsownwindbusinessmovedtothenewlyestablishedIPFs,reflectingitsglobalreachandinfluence.Veryfewcompany.Figure3.1.4aalsoshowsthattheAmericanofitspatents(17outof326)arenotinternational.ItiscompanyGeneralElectricisalsoactiveinoffshorewindimportanttohighlightthisdistinctionbetweenIPFandenergytechnologies,followedbyJapan’sMitsubishinon-IPF,especiallywhenweconsiderthelistoftop10HeavyIndustry.AlltheothercompanieslistedinFigurepatentapplicants.Here,wefindChineseandKorean3.1.4ahave54orlessIPFs,wellbelowthetotalnumbercompaniesthatprimarilydirecttheirinventiveeffortsofIPFsoftheleadingcompanies.towardtheirrespectivedomesticmarkets.Thisstrategicapproachisreflectedintheirpatentportfolios,whichmostlyfalloutsidethecategoryofIPFs.Instead,EuropeancompaniesarethemostactiveactorsintermsofnetnumberofIPFs.<TableofcontentsExecutivesummary1.Introduction2.Methodology3.Results4.Conclusionepo.org20OFFSHOREWINDENERGYPATENTINSIGHTREPORTFigure3.1.4a:Toppatentapplicants(2002-2022)AllpatentfamiliesVestas[DK]30917279TianjinUniversity[CN]62814SamsungHeavyIndustries[KR]Siemens[DE]20613PowerchinaHuadongEngineeringCorporation[CN]8201HuanengCleanEnergyResearchInstitute[CN]10197SiemensGamesaRenewableEnergyA/S[DK]1197DalianUniversityofTechnology[CN]19162MitsubishiHeavyIndustries[JP]12441GE(GeneralElectricCompany)[US]13714050100150200250300350•IPFs•NotIPFsIPFonlyVestas[DK]Siemens[DE]SiemensGamesaRenewableEnergyA/S[DK]GE(GeneralElectricCompany)[US]MitsubishiHeavyIndustries[JP]Hitachi[JP]Nexans[FR]RWERenewablesGmbH[DE]MHIVestasOffshoreWind[DK]InnogySE[DE]050100150200250300350•2002-2007•2008-2012•2013-2017•2018-2022Top10patentassigneesbasedonthetotalnumberofpatentfamilies(topchart)andIPFsonly(bottomchart)inoffshorewindenergy(QAtoQL)between2002and2022.<TableofcontentsExecutivesummary1.Introduction2.Methodology3.Results4.Conclusionepo.org21OFFSHOREWINDENERGYPATENTINSIGHTREPORTAsillustratedinFigure3.1.4b,thedevelopmentofIPFsmembers(chartatrightinFigure3.1.4b),EPCcountriesovertimeshowsagreatcontributionfromcompaniesshowthelargestcontributionofcompaniesindevelopingratherthanfromothersectors(namelyuniversities,IPFsrelatedtooffshorewindenergytechnologies,astheygovernmentalnon-profitorganisationsorindividualaccountfor69%ofthetotalIPFs.Individualinventorsininventors).Intheperiodfrom2002to2022,IPFstheUSAhavethelargestshareamongthemajorplayersdevelopedbycompaniesaccountfor64%ofthetotal,with43%ofIPFs(partlybecauseinventorsareregisteredwithastrongincreasebetween2017and2021fromasapplicantswhenthepatentisfiled),whileChinaisthe209toalmost366.Interestingly,patentpublicationcountrywhereuniversitiesdevelopalargeshareofIPFs,originatingfromindividualspeakedin2011with269with18%ofthetotal.internationalpatents.Afterthat,asignificantdeclineisobserved.Thisisalsoreflectedinthematurityanalysisthatshowsadecreaseinthenumberofapplicants,whilethenumberofpatentsfiledstillincreases.AmongtheIP5Figure3.1.4b:Trend(left)andshareamongmajorworldplayers(right)ofpatentapplicantsectorsbasedonthetotalnumberofIPFsinoffshorewindenergy(QAtoQL)between2002and2022.TrendinIPFbyapplicantsectorIPFbyapplicantsectorandcountry(2002-2022)360100%90%80%27070%60%18050%40%30%9020%10%00%2002EPCUSCNJPKR20032004200520062007200820092010201120122013201420152016201720182019202020212022•Company•GovNon-profit•Individual•University<TableofcontentsExecutivesummary1.Introduction2.Methodology3.Results4.Conclusionepo.org22OFFSHOREWINDENERGYPATENTINSIGHTREPORTBox5:NewcomersintheoffshorewinddomainSomeofthedataalsoconfirmstrategicpolicydecisions.WeknowthatChinahasbeenincreasingWhilecertainapplicantsdisplayalong-termcontinuinginvestmentsinallgreenenergyareasinitsdrivetowardsinterestinthetechnologiesinquestion,atemporaldecarbonisation,butasmostofthefilingsarenon-IPF,perspectivelookingatnewapplicantsthatonlyrecentlyonlyafewcompaniesappearinthelistofnewcomers,startedfilingpatentsallowsustoidentifygeographicalsuchasChinaThreeGorgesCorporation[CN].specialisationsaswellaslevelsofintensity.TechnolgyconceptNewapplicantsPatentfamiliesQB:floatingfoundation278428QF:corrosionprotection112119QH:towers109132QD:energystorage9482QA:fixedfoundation94144QJ:grid8499QK:transportation,installation,erection6573QC:mechanicalpowertransmission6051QE:hybridsystem5854QL:submarinecables2842QG:monitoringwaves2521QI:blades,rotors128Note:Totalnumberofnewapplicants(firstfiling>=2018)andtheirpatentfilingsintherespectivetechnologicalconceptsAgrowingchallengeinoffshorewindaretherisingWhileitcanbesaidthatseveralestablishedinternationalproductioncostsforfloatingoffshorewindturbines,companiessuchasPhilipsElectronics,SiemensWindinsightsintohowharshoceanenvironmentsaroundwindPower(andSiemensGamesa),MaerskSupplyServicefarmsaffectlifespanandmaintenancecosts,andelevatedandGERenovablesEspañaarenotexactlynewcomersconcernaboutsecuringthepowergrid.Therefore,theascompaniesassuch,theyareneverthelessnewcomersneedforbetterexploitationthrougheconomiesofscaleiswithintherespectivetechnologicalareas.Philipsindispensableforthecost-efficientproductionofoffshoreElectronics,thelargestnewcomerin“Corrosionwindenergy.protection”,has13patentfamilies(148applications-->largepatentfamilies),coveringtechnologiessuchas:cathodicprotectionandelectricalanti-biofoulingmethodstopreventcorrosion.<TableofcontentsExecutivesummary1.Introduction2.Methodology3.Results4.Conclusionepo.org23OFFSHOREWINDENERGYPATENTINSIGHTREPORTTop6newapplicantsperconceptQA:FoundationPatentfamilies123456789101112131415Itrec[NL]QB:FloatingChinaThreeGorgesCorporation[CN]SiemensGamesaRenewableEnergyA/S[DK]QD:EnergystorageHuanengCleanEnergyResearchInstitute[CN]HuanengOffshoreWindPowerSci.&Tech.Res.[CN]QF:CorrosionprotectionTokyoElectricPowerServicesCompany[JP]QH:TowerPhilipsElectronics[NL]ChinaThreeGorgesCorporation[CN]SiemensZoomeMeanRenew.EnergyCorp.[DE]LoneGullHoldings[US]MaerskSupplyService[DK]DCNSEnergies[FR]RWERenewablesGmbH[DE]Vattenfall[SE]AdvancedInnergyLtd[GB]AdvancedInsulation[GB]LoneGullHoldings[US]GERenovablesEspañaSl[ES]PhilipsElectronics[NL]OrstedWindPower[DK]AdvancedInnergyLtd[GB]AdvancedInsulation[GB]SiemensWindPower[DK]ThreeGorgesNewEnergyYangjiangPowerGen.[CN]GERenovablesEspañaSl[ES]MaerskSupplyService[DK]AnkerWerkIPortMukranGmbH[DE]DemeOffshoreHolding[BE]SiemensWindPower[DK]TokyoElectricPowerServicesCompany[JP]0LargepatentfamiliesareaclearsignalofwillingnesstoWecanalsoobservetheentryofMaerskSupplyServiceprotecttheinventionsinmanycountries.Philips’filingsinandDemeOffshoreHolding,activeinthefieldofmarine“Floating”showasimilarpattern,with11familiesand96engineeringwithspecificexpertiseinoperatingvesselspatentsmainlyinthefieldofUV-Clight-basedanti-foulingandforoffshoreinstallations.Itrec,themainnewcomerapplications.for“Foundation”,provideshighlyspecialisedengineeringservices.Itspatentscovertechnologyforpiledriving,holdingandliftingduringoffshoreinstallation.<TableofcontentsExecutivesummary1.Introduction2.Methodology3.Results4.Conclusionepo.org24OFFSHOREWINDENERGYPATENTINSIGHTREPORTNewcomersacrossconceptsPatentfamiliesGERenovablesEspañaSL[ES]LoneGullHoldings[US]OrstedWindPower[DK]PhilipsElectronics[NL]RWERenewablesGmbH[DE]SiemensWindPower[DK]ChinaThreeGorgesCorporation[CN]MaerskSupplyService[DK]Itrec[NL]Vattenfall[SE]SiemensZoomeMeanRen.En.Corp.[DE]AdvancedInsulation[GB]AdvancedInnergyLtd[GB]SiemensGamesaRenewableEnergyA/S[DK]MarinePowerSystems[GB]05101520253035•QA:fixedfoundations•QB:floatingfoundations•QC:mechanicalpowertransmission•QD:energystorage•QE:hybridsystem•QF:corrosionprotection•QG:monitoringwaves•QH:tower•QI:blades,rotors•QJ:grid•QK:transportation,installation,erection•QL:submarinecablesconductorsNote:Graphsinthisboxshowpatentapplicantsnotactive(nopatentfiled)before2018specificforthoseconcepts.3.1.5MaturitymapTheinceptionphaseconsiderstheinitialyears(2002-2007)analysedinthisreport30,andshowsalimitednumberThetechnologymaturitymap29ofIPFsshowninofgrantedpatentsandfewdistinctapplicantsactiveinFigure3.1.5usesthenumberofpublishedpatentthisarea.Thegrowthphase(2008-2012)showsarapidfamilies(verticalaxis),thenumberofpatentapplicantsincreaseinallthethreedimensionsofthematuritymap:(horizontalaxis)andthenumberofgrantedpatents(sizeIPFs,applicantsandgrantedpatents.Interestingly,theofbubbles)toillustratetheoverallpatentevolutioninconsolidationphase(2013-2017)startswithasignificantoffshorewindenergytechnologies.Thematuritymapdecreaseinthenumberofapplicants,andadecreaseclearlyshowsfourmainphasesofthisdevelopmentinIPFsfollowswithacertaintimedelay.Likewisecategorisedasfollows:i)Inceptionphase(2002-2007),interestingly,theconsolidationofapplicantsdidnothaveii)Growthphase(2008-2012),iii)Consolidationphaseasignificantimpactonthegrantratewhencomparinge.g.(2013-2017),andiv)Re-growthphase(2018-2022)thenumbersfor2011and2015.Thismaybeanindicationthatthequalityoftheinventionswasmaintained.The29Suzuki,Shin-Ichiro(2011)IntroductiontoPatentMapAnalysis.timefrom2018to2022sawanaveragerenewedgrowthhttps://www.jpo.go.jp/e/news/kokusai/developing/training/textbook/intermsofIPFsandapplicants,whilelessforgranteddocument/index/Introduction_to_Patent_Map_Analysis2011.pdfpatents.However,thegrantrateinthisperiodmaystillimprovesincethepercentageofpendingproceduresis30Pleasenotethattheinceptionofoffshorewindtechnologymayhaveoccurredalreadypriorto2002.Nevertheless,datafortheanalysisofthisreportareextractedconsidering2002tobetheinitialyear.<TableofcontentsExecutivesummary1.Introduction2.Methodology3.Results4.Conclusionepo.org25OFFSHOREWINDENERGYPATENTINSIGHTREPORTstillhigh,andmorepatentscanexpecttobegrantedinVeryoftenotherindicatorssuchasco-applicationandthecomingyears.In2022,thenumberofapplicantsisonlyreciprocalcitationsareindicatorsfortheconsolidationabout30%ofthetopvaluesin2012,whichismainlyduetophase.Byanalysingthedataindepth,weseefortheshiftawayfromindividualinventors.exampleco-applicationsinvolvingLMWindPowerandBladeDynamics31.Wecanalsoseestrongreciprocalcitationfigures,andwenowknowthatbothcompanieswereacquiredbyGE.AsimilarprocesstookplacebyNKTCables’acquisitionoftheABBhigh-voltagecablesbusiness.32Figure3.1.5:Maturitymapofoffshorewindenergytechnologiespatentapplicationsbetween2002and2022.NB:ThematuritymapcombinesthenumberofIPFs(verticalaxis),thenumberofpatentapplicants(horizontalaxis)andthenumberofgrantedpatents(sizeofbubbles).20214002020201320123502010201120222019201830020142015Numberofpatentfamilies2502016201720015020092008•i)Inception(2002-2007)100•ii)Growth(2008-2012)•iii)Consolidation(2013-2017)2003•iv)Re-growth(2018-2022)20062007502005200420020100200300400500600700Numberofapplicantsepo.org2631Espacenetlink32Espacenetlink.<TableofcontentsExecutivesummary1.Introduction2.Methodology3.Results4.ConclusionOFFSHOREWINDENERGYPATENTINSIGHTREPORT3.1.6CitationsWecanobservethatupto2007hardlyanypatentapplicationswerebeingcited(Figure3.1.6a).From2017Forwardcitationcountsaretypicallyusedtounderstandonwards,wecanseearapidincreaseinpatentsfiledbytheimpactofinventions,theideabeingthatimportantCNapplicantsbeingcited.Thesecondgraph(Figure3.1.6b)patentsareoftencitedbysubsequentfilingsthatbuildalsoshowsthatwhilethelargestshareofthosecitationsonaspecifictechnology.TheyareoftenusedasapatentcanbeattributedtootherCNapplicants,DE,DKandUSvalueindicatorwhenlookingatindividualpatentsoraapplicantsarealsocitingpatentsfiledbyCNapplicants.33patentfamily.ForwardcitationscanalsobeanindicatorSimilarfortheUSandKR,mostofthecitationsoriginatefortechnologyflowswheretechnologyisconsideredfromUSandKRapplicants.Ingeneral,US,DEandDKasaresourcethatcanbeusedbycompaniesinotherapplicantsintensivelynotonlyciteeachother’spatentcountriesorevendifferenttechnicaldomains.Withnewlyapplications,butalsoallothercountriesinthetop10emergingtechnologieswecanobserve,forexample,ranking.Formanycountries,morethan50%ofallcitationsthatinitialpatentsarefiledbyuniversitiesandresearchcanbeattributedtoUS,DEandDK.JPisstronglycitingKRinstitutesandthengraduallyfindtheirwaytocompaniesapplications,butnottheotherwayaround.andtheindustriesthatfilepatentswhichbuildonthetechnologypublishedinthepatentsfiledearlier.Thisalsoallowsforcompetitormonitoring,wheretheapplicantfromtheearlierfiledpatentcanmonitorwhattechnologyothercompaniesare“buildingon”.Figure3.1.6a:Topapplicantcountriesbyforwardcitations(>1)Numberofforwardcitationsbasedonthecountryoftheapplicant.Thecolourindicatescitationintensity.Applicant2002-2008-2012Earliestpublicationyears(family)2018-2022GrandTotalcountry20072013-2017CNKRDEJPDKUSGBFRNLNO1K2K3K4K2502505002505007501K1.25K1.5K2505007501K1.25K1.5K1.75K2KPatentfamiliesForwardcitations:•1•2•3•4•5-10•11-50•>5033Self-citationswereexcludedfromthedataasmuchaspossible<TableofcontentsExecutivesummary1.Introduction2.Methodology3.Results4.Conclusionepo.org27OFFSHOREWINDENERGYPATENTINSIGHTREPORTFigure3.1.6b:Applicantcountrycited/citingoverviewTopapplicantcountrieswhosepatentshavebeenforwardcited.Itincludesalsodomestic-onlyfilingsthatalsoseemtohaveasignificantimpact.6250•US6000•DE5750•DK5500•KR5250•JP5000•CN4750•GB4500•FR4250•ES4000•NL3750•NO3500•CH3250•SE3000•IT2750•Others25002250200017501500125010007505002500USDEDKJPKRGBNLNOCNFRESCHBESECA<TableofcontentsExecutivesummary1.Introduction2.Methodology3.Results4.Conclusionepo.org28OFFSHOREWINDENERGYPATENTINSIGHTREPORTTable3.1.6liststhetop12inventionsinoffshorewindwaspublishedin2018,anditconcernsnon-magneticenergytechnologieswiththehighestnumberofforwardstainless-steelwirewithanadherentcorrosionresistantcitations.Itisnotsurprisingthatolderinventionshavecoating.Mostofthecitationsforthisapplicationhighernumbersofforwardcitations,astimeisanoriginatefromapplicationsfiledbyAT&T,butthosecitingimportantfactorinthecitationprocess.Forthisreason,itpatentsarenotspecificallyrelatedtoelectricalcablesforisinterestingtonotethatthefourthmostcitedinventionwindenergy.Table3.1.6:Tablelisting12inventionswiththemostforwardcitationsamongthoseincludedindatasetsgeneratedforthisreport,usingthe12queriesinoffshorewindenergy(QAtoQL)andcontainingpatentinformationbetween2002and2022PatentTop–inventions-forwardcitationsApplicantPub.yearCitationsEP1483502OffshorewindturbineOceanWindEnergySystems2003269EP2271547[US]252EP1415379Column-stabilizedoffshoreplatformwithwater-PrinciplePowerInc[US]2009193EP2812457entrapmentplatesandasymmetricmooring168EP1996814systemforsupportofoffshorewindturbines160EP1359321154EP1474579CoordinatingrenewablepowerproductionwithaABBAB[SE]2003140EP1429025standardpowergrid133EP1507975129Non-magneticstainlesssteelwireasanBekaert[BE]2018EP1623111125EP1460266armouringwireforpowercables122EP1548419122HighvoltagedirectcurrentlinktransmissionIngeteam[ES]2007systemforvariablespeedwindturbinesSensingofloadsonwindturbinebladesGE(GeneralElectricCompany)2003[US]WindturbineMecalAppliedMechanicsBV2002[NL]Up-windtypewindmillandoperatingmethodMitsubishiHeavyIndLtd[JP]2003thereforMethodsofhandlingwindturbinebladesandVestasWindSysAS[DK]2003mountingsaidbladesonawindturbine,systemandgrippingunitforhandlingawindturbinebladeWindturbinebladewithlift-regulatingmeansLMGlasfiberAS[DK]2004WindturbinewithlaserapparatusformeasuringMitsubishiElectricCorp[JP]2004thewindvelocityMethodanddeviceformonitoringstatusNSKLtd[JP]2004ofmechanicalequipmentandabnormalitydiagnosingdevice<TableofcontentsExecutivesummary1.Introduction2.Methodology3.Results4.Conclusionepo.org29OFFSHOREWINDENERGYPATENTINSIGHTREPORT3.2TechnologyconceptgroupingAmongthesevenconceptgroupings,EPCcountriescontributetoover60%oftheoverallcountofIPFsinfiveThissectionprovidesasummaryofthesignificantcategories,exceptforEnergystorageandHybridsystems,findingsobtainedfromthepatentanalysisconcerningwheretheircombinedshareis53%and46%,respectively.theseventechnologyconceptgroupingsassociatedwithTheUnitedStatesofAmericaconsistentlymaintainsoffshorewindenergytechnologies.Thesegroupingsanaverageof14%acrossallsevenconceptgroupings,include:1)Fixedandfloatingfoundations,2)Towers,3)positioningitasthesecondleadingcountryinIPFsMechanicalpowertransmission,4)Bladesandrotors,withineachoftheidentifiedoffshorewindtechnology5)Hybridsystems,6)Energystorage,and7)Grid,domains.China,JapanandtheRepublicofKoreafollow,submarinecablesandprotectingthem.Acomprehensivewithcross-conceptgroupingaveragesof7%,6%and3%,country-leveloverviewofinternationalpatentfamiliesrespectively,intermsofthetotalnumberofIPFs.(IPFs)developedwithintheperiodfrom2002to2022ispresentedinFigure3.2.Figure3.2:Countrypatentshareonoffshorewindconceptgroupings,IPF(2002-2022)Shareofinternationalpatentsbetween2002and2022andinrelationtothesevenconceptgroupingsidentified.(NB:Thecountryreferstothecountryofthepatentapplicants.ThegroupEPCrepresentsapplicantsfromthe39MemberStatesoftheEuropeanPatentOrganisation.34)274878112002666167199628%5%7%3%17%11%4%4%3%2%1%6%4%3%9%6%7%7%5%7%4%8%6%7%11%8%8%5%11%12%14%16%18%13%11%74%67%53%68%63%60%46%FixedandfloatingTowersMechanicalpowerBladesandrotorsHybridsystems:solarEnergystorageGrid,submarinefoundationstransmissionandoceanenergycablesandprotectingthem•EPC•US•CN•JP•KR•Others34MemberstatesoftheEuropeanPatentOrganisation:epo.org/about-us/foundation/member-states.html.epo.org30<TableofcontentsExecutivesummary1.Introduction2.Methodology3.Results4.ConclusionOFFSHOREWINDENERGYPATENTINSIGHTREPORT3.2.1FixedandfloatingfoundationslocatedinEurope,USA,andSouthKorea39.Asoffshore(QA&QB)windenergytechnologyadvances,thereisanincreasingneedtoaccommodatelargerturbinesforhigherefficiencyObservationsforwhichthechoiceoffoundationwillbehighlycrucial.FloatingfoundationscanbeagamechangerfortheThechoiceofafloatingfoundationdependsmainlyonoffshorewindmarket,bringingtheturbinestodeeperthecombinationoftechnicalfactors,siteconditions,andwaterswithabundantwindpotential.operationalfactors.—Drivenbyitspotentialindeeperwaters,patentsLookingatthepatentdatabetween2002and2022,filedforfloatingfoundationshavegrownalmostthetrendofIPFsinbothfoundationandfloatingtenfoldsince2002andrepresent80%ofthetechnologiesshowsaninitialincreaseuntiltheperiodoffoundationpatentsin2022.2011-2013,followedbyasubsequentdecline.However,anothersurgeinthetotalcountofIPFsinbothcategories—Fixedfoundationsarestillanestablishedstartedaround2017,showinganear-constanttrendoftechnologyandplayaroleinthedeploymentofgrowthsincethen.Onannualaverage,78%ofIPFsareoffshorewindtechnology.Asaresult,thenumberdedicatedtothedevelopmentoffloatingsolutions,whileoffiledpatentsshowsamoderateincreaseinthetheremaining22%aredirectedtowardsfixedfoundationpastyears—50%increasefortheperiod2018-2022.inventions.ThisshowsthehigherfocusonadvancingGravityandmonopilesolutionsaccountfor90%offloatingtechnologies,asthesecanbeconsideredcrucialpatentsfiledforfixedfoundations.totheadvancementofoffshorewindenergy.—ThechoiceofafloatingorfixedfoundationLeadingtheeffort(intermsofpatentfillings)infoundationdependsmainlyonthecombinationoftechnicaltechnologiesareEuropeancountries,asindicatedintheandsiteconditions,andoperationalfactors.chartatleftinFigure3.2.1b.Specifically,Germanytakestheleadwith152IPFs,followedbytheNetherlandswith—EuropeancountriessuchastheGermany,77IPFs,andDenmarkwith75IPFs.Incontrast,theUnitedNetherlands,andDenmarkleadinfixedfoundationStates,infourthplaceinfoundationpatenting,emergesintechpatents,whiletheUSAdominatesinfloatingthe2002-2022periodasfirstinIPFcountsinoffshorewindtechnologies.floatingsolutionswith308IPFs(chartatrightinFigure3.2.1b).GermanyandDenmarkfollowasthesecondandInoffshorewindsystems,thefoundationisacriticalthirdcontributors,whileJapantakesfourthplace,withacomponentthatfallsundertwocategories:fixed35andtotalof244IPFs.Examiningthetoppatentingcountriesfloating36.Atpresent,fixedfoundationsarecommonlyinFigure3.2.1b,anintriguingtrendemerges:acrossusedbuthavelimitationsandcanonlyfunctioninshallowfoundationsolutions,anaverageofalmost90%ofIPFswater37.However,floatingfoundationscanbeusedconcerngravityormonopilefoundations.However,withininwaterdepthsexceeding60metersandaregainingtheareaoffloatingsolutionsandonaverageacrossthepopularity.Theyallowfortheopeningofnewmarketsinleadingpatentingcountries,only9%ofIPFsaredirectedregionswithdeepwaterwherefixedfoundationsbecometowardsfloatingstabilisation.expensiveandcanprovideadditionalbenefits,suchashavingalowerimpactontheseabed.ThesuccessfulInthefoundationcategory,theleadingfivecompaniesoperationoffirstcommercialprojectshasledtoagradualareallfromEurope.GermanytakestheleadwithSiemensincreaseinthenumberofglobalfloatingoffshorewind[DE],InnogySe[DE],andRWERenewablesGmbH[DE],projectsinrecentyears.ThecumulativeglobalcapacityforfollowedbytheDanishVestasandtheDutchcompanyfloatingwindisexpectedtoreach0.285GWin2023fromItrec.Specificallywithinthemonopilefoundationarea,0.205GWin2022,(a40%increase)38anditisexpectedthatInnogySe[DE]andRweRenewablesGmbH[DE]aretheglobalpipelineoffloatingoffshorewindprojectswilltheleaderswith18IPFseach.Inthegravityfoundationcontinuetogrowinthecomingyears,withmostofthemcategory,Siemens[DE]isfirstwith14IPFs,followedbyVestas[DK]with10IPFs.35Thisincludesgravity-basedfoundations,monopilefoundations,tripodfoundationsandjacketfoundations39Source:https://www.enerdata.net/publications/36Mainstructuretypesincludesparbuoy,tensionlegexecutive-briefing/floating-offshore-wind-evolution.htmlplatform,semi-submersibleplatform,andbarge.37Thisincludesgravity-basedfoundations,monopilefoundations,tripodfoundationsandjacketfoundations38Source:WoodMackenzieOffshorewindlong-termoutlookdatabase<TableofcontentsExecutivesummary1.Introduction2.Methodology3.Results4.Conclusionepo.org31OFFSHOREWINDENERGYPATENTINSIGHTREPORTLeadingcompaniesonfloatingtechnologiesareshowingsubstantialattentiontofloatingtechnologyMitsubishiHeavyIndustries[JP],Vestas[DK],Siemensduringthoseyears.Conversely,SiemensGamesaGamesaRenewableEnergyA/S[DK],andHitachi[JP].RenewableEnergyA/S[DK]hasitsinventivefocusonMitsubishiHeavyIndustries[JP]andHitachi[JP]havefloatingsolutions,with94%ofitsIPFstothiscategorydirected67%and63%oftheirrespectiveIPFstofloatingdevelopedinmorerecentyearsfrom2018to2022.solutionsduringtheperiodspanningfrom2013to2017,Box6:AquacultureFloatingstructuresthataretetheredtotheseaflooraswellasfixedfoundationscanbedirectlyintegratedBecauseofthereductioninthenumberoffishavailableintotheaquaculturesystem.Thisleadstoincreasingforcommercialfishing,offshoreaquacultureallowsforaproject’sprofitabilitythroughsectorcouplingwhilegreatereconomiesofscales.Whereasaquacultureissupportingfoodsecurity.traditionallyconductednearshore,itisincreasinglybeingmovedfartheroffshore.BecauseaquacultureismovingThelinechartshowstheevolutionofpatentsbeingfiledincreasinglyfartherfromtheshoreline,theinstallationsthatcombineoffshorewindturbines(orenergy)withrequireon-sitepowerandcommunicationmeanstoaquaculture.Theblacklinerepresentsthecumulativecontrolandmonitortheplant.Powerisalsoneededforevolutionwhichshowsasharpincrease.thefishfeeders,wastedisposal,sensors,camerasandaerationtomaintaintheoptimumdissolvedoxygenThetableinthisboxshowsthetopapplicants.Theconcentrationinthewater.ConceptsthatintegratemajorityareChineseuniversitiesandresearchinstitutes.thedevelopmentofoffshorefoundationsandartificialThisisalsoconfirmedbythefactthatallcurrentprojectsislandsaimtoexploitthesynergiesofhavingpowerandareproofofconcepts,notatindustrialscalebyanyanchoringavailable.standards.40ApplicantsPatentfamiliesSource:ESPACENETusingQ0andIPC,CPC=“A01K61”/LOWUnivDaliantech26UnivShanghaijiaotong20EastChinaseafisheriesresinstcafs16JiangsuDaodawindpowerequipmenttech16coLtdPowerchinaHuadongengineeringcorpLtd16UnivZhejiang10MingyangsmartenergygroupcoLtd9UnivJiangsuscience&tech8UnivTianjin6GraduateschoolShenzhenTsinghuauniv5OceanunivChina5UnivShanghaiocean5CGNpowercoLtd4EnertecAG4Guangzhouinstenergyconversioncas440Yu(2021)“Chinaplans‘worldfirst’floatingfishandwindfarmlinkup”Onlineat:epo.org32https://www.intrafish.com/aquaculture/china-plans-world-first-floating-fish-and-wind-farm-linkup/2-1-985255<TableofcontentsExecutivesummary1.Introduction2.Methodology3.Results4.ConclusionOFFSHOREWINDENERGYPATENTINSIGHTREPORTFigure3.2.1.Fixedandfloatingfoundations•QA1:fixed→suctioncaisson•QA2:fixed→gravity•QA3:fixed→monopile•QB1:floating→stabilisation•QBL:floating→otherFigure3.2.1a:TrendofIPF225150750200220032004200520062007200820092010201120122013201420152016201720182019202020212022•QA1•QA2•QA3•QB1•QBLFigure3.2.1b:Toppatentingcountries(2002-2022)QAQBDE165482US29279NL73436DE9277DK83532DK17229US133416JP12232ES31156CN11196NO25150CN92318NL7143GB12132GB20195FR22122ES17105NO1992FR1882BE10122080160240320080160240320•QA1•QA2•QA3•QB1•QBLFigure3.2.1c:Topapplicants(2002-2022)01020304050607080QB01020304050607080QASiemens[DE]MitsubishiHeavyIndustries[JP]InnogySE[DE]Vestas[DK]RWERenewablesGmbH[DE]SiemensGamesaRenewableEnergyA/S[DK]Vestas[DK]Hitachi[JP]Itrec[NL]Siemens[DE]ChinaThreeGorgesCorporation[CN]RWERenewablesGmbH[DE]Geosea[BE]MHIVestasOffshoreWind[DK]GE(GeneralElectricCompany)[US]GE(GeneralElectricCompany)[US]OrstedWindPower[DK]Itrec[NL]DemeOffshore[BE]DemeOffshore[BE]•QA1•QA2•QA3•2002-2007•2008-2012•2013-2017•2018-2022<TableofcontentsExecutivesummary1.Introduction2.Methodology3.Results4.Conclusionepo.org33OFFSHOREWINDENERGYPATENTINSIGHTREPORTBox7:Transportation,installationanderection(QK)Withthisnewfoundvisibility,turbinemanufacturersannouncedlargerturbineplatformsand,throughoutThereareseveralchallengesassociatedwiththetheindustry,productionfacilitieswereputinplaceforatransportation,installationanderectionofoffshorewindnewgenerationofblades,towers,nacelles,substations,turbines.Keychallengesincludelogistics,transportationandthefoundationsneededtosupportthem.Offshoreandharshweatherconditions.Portstructureshavetoprojectsbecamemorecomplex,andthisequallyspurredbeadapted,specialisedandoftentailor-madeserviceongoingactivityformoreefficientoffshoreinstallationvesselsneedtobebuiltandcrewsneedtobetrainedandtodrivedowncosts.Therenewedspurringofpatentacquaintedwithoffshoreenvironmentalconditionsandfilingsstartingin2017isprobablyduetogovernmentsdangers.Transportingandinstalling100-metre-long(orimplementingazero-subsidyoffshorewindpolicy,leadinglonger)windturbinebladesontowersmeasuringover150tonewinnovativesolutionstostreamlinethevaluechain.metreshighhasbecomeroutineusingspecialisedvessels.Lookingbackinthepast,majorscaling-upactivitytookThegraphbelowshowsthepatenttrendsapplicabletoplacebetween2000and2011.Thiswasmainlyduetothethevessels,installationcranesandliftingdevices,etc.,UK’sfirstseabedleasingroundswhichmotivatedseveralneededtoinstallormoveoffshorewindturbines.Theturbinemanufacturerstoenterthemarketfordedicatedgraphillustratesthenumberofyearlypatentfilings,offshorewindturbines.TheKyotoProtocolenteredintowiththegreenbarsrepresentingthepatentsthathaveforcein2005,andin2008theEuropeanParliamentbeengranted.Thegreytrendlineshowsthegrantrateadoptedthe2020targets.percentage,whichdecreasesinmorerecentyearsbecausemostofthosepatentsarestillintheexaminationandgrantingprocess.Grantedpatentapplications(2002-2022)44080%Grantedpatentapplications33060%22040%11020%00200220032004200520062007200820092010201120122013201420152016201720182019202020212022Earliestpublicationyear•Granted•Notgranted—%granted<TableofcontentsExecutivesummary1.Introduction2.Methodology3.Results4.Conclusionepo.org34OFFSHOREWINDENERGYPATENTINSIGHTREPORT3.2.2Towers(QH)metal42,andincorporatingmodularitywithalternativetowertypeslikeconcreteandlattice,thewindindustryObservationshasthepotentialtoreducetheintensityofrawmaterialModulartowerdesignconceptsarecrucialforutilisationandassociatedemissionsduringtowerenhancingwindturbineperformance,reducingconstruction.Theseaspectsshouldsettheinnovationtheuseofenergyintensiverawmaterials,easingagendaforthisspecificdomain.transportationandmaintainingeconomics,especiallywiththeincreasingsizeofmodernwindturbines.Between2002and2022,latticetowerstooktheleadintermsofIPFs,accountingforapproximately55%of—Aftera40%-growingratedecadesince2010,thetotalinventionswithinthisspecifictechnologicaltheaveragenumberofIPFfilingshasremainedsub-concept.Inventionsconcerningconcretetowersrelativelysteadyataround50peryear.However,contributedto37%oftheoverallIPFs.Whileweldedwhenconsideringnon-IPFs,concretetowersfiledortubularsteeltowersheldamodestshareataboutinChinainstigateanupgoingtrendduesolelytoa8%,itisimportanttonotethatthissectorhasbeenmassivequantityof754domesticfilings.experiencingreinvigoratedattentionmarkedbyadiscretenumberofIPFsdevelopedintheyears2021and—Regardingdesignsandmaterials,tubularsteel2022.Thisinterestinweldedortubularsteeltowersremainsthepreferredoptionduetotheoptimummaypotentiallygiveearlyforecastingofupcomingbalancebetweencostofenergyandmaterialsinnovationsandadvancementsinthisdomain.withpotentiallyhighercapacityfactorsachievedathigherheights.BothconcreteduetolowercostsIntermsoftopapplicantcountriesrelatedtothethreeandlatticetowerdesignsduetotallerhubheightstowersub-concepts(Figure3.2.2b),USAshowsthelargestandsteelsavingpotentialshavebeengainingshareofIPFsinweldedortubularsteel(29%oftotalIPFs),attentionoverthepastdecade.followedbyGermanyandDenmarkwhich,inturn,arethetwoleadingcountriesforlatticeandconcretetowers.In—USAshowsthelargestshareofIPFinweldedallthreesub-concepts,GermanyandDenmarktogetherortubularsteel(29%oftotalIPF),followedbyaccountformorethan30%oftheshareofIPFs.WhileGermany(10%)andDenmark(10%)which,inJapanandChinaappearamongthetopcountriesinbothturn,arethetwoleadingcountriesforlatticeandweldedortubularsteelandconcrete(intotalabout20%concretetowers.MeanwhileChina,thoughactiveinofIPFsinbothsub-concepts),theyarenotpresentintermsofIPFs,appearstobefocusingitseffortsonthetoplistforlatticetowers–asub-conceptinwhichtheinternalmarket.EuropeancountriestakesthelargestshareofIPFs(GreatBritain,SpainandTheNetherlandshave28%ofIPFs).Towerstructuresareessentialinthedevelopmentofoffshorewindenergytechnology,astheycontributeIntheyearsfrom2002to2022andsummingupallIPFstocost-effectiveness,durability,weightoptimisation,addressingweldedortubularsteeltowers(QH1),latticerobustness,andstreamlinedinstallation.Toachievetowers(QH2)andconcretetowers(QH3),theDanishthesegoals,varioustowerdesignconceptshavecompanyVestaswasthebiggestinventorwithatotalbeenexplored.Thethreemaindesignsareweldedorof59inventions.Vestas[DK]significantlyoutpacedthetubularsteeltowers(QH1),latticetowers(QH2),andsecond-rankingpatentapplicant,AmericanGE(Generalconcretetowers(QH3).WhileallthreedesignshaveElectricCompany)[US],whichhad29IPFsintotal.However,theiradvantagesanddisadvantages,thetubularsteelaninterestingdistinctionshouldbemadeconcerningthedesignhasbecometheindustrystandard.However,focusofinventiveeffortsbetweenthesetwoentities:theextensiveuseofenergy-intensivesteelinthisVestas[DK]directed77%ofitsIPFstolatticetowers,designisamajordrawback.Incontrast,concreteandpeakingat17IPFsin2017.Incontrast,GE(GeneralElectriclatticetowersuselesssteel,buttheirhighernumberofCompany)[US]developed66%ofitsIPFsrelatedtoweldedcomponentsresultinhigherlabourcosts41.Byadoptingortubularsteeltowers,withapeakof8IPFsin2011.recyclingpractices,suchasincreaseduseofscrap42IRENA(2023),Towardsacircularsteelindustry,International41Lantz,Eric,OwenRoberts,JakeNunemaker,EdgarDeMeo,RenewableEnergyAgency,AbuDhabi.https://www.irena.org/KatherineDykes,andGeorgeScott(2019).IncreasingWindPublications/2023/Jul/Towards-a-Circular-Steel-IndustryTurbineTowerHeights:OpportunitiesandChallenges.NationalRenewableEnergyLaboratory;Golden,Colorado.<TableofcontentsExecutivesummary1.Introduction2.Methodology3.Results4.Conclusionepo.org35OFFSHOREWINDENERGYPATENTINSIGHTREPORTBox8:CorrosionprotectionIntermsoftotalnumberofIPFs,intheperiod2002-2022,EPCcountriesshowedanelevatedlevelofactivitiesinCorrosionisacriticalaspectforoffshorewindfoundationsthefieldofcorrosionprotection:328IPCsweredevelopedsinceitmaynegativelyimpacttheviabilityandsafetyofinEPCcountries,accountingfor69%ofthetotalIPFs.thesestructures.CorrosionismostlycausedbytheharshChinaandUSAfollowedwith53and46IPFs,respectively.marineenvironment,characterisedbyconstantwaveAmongtheEPCcountries,DenmarkandGermanyactionandhighexposuretosaltwaterandfluctuatingtogetheraccountedforabouthalfofthetotalIPFs.temperatures.Solutionsforpreventingcorrosionandprotectingoffshorewindstructuresareneededtoensuretheintegrityofwindturbinefoundations,therebyincreasinglifespanandreducingmaintenancecostsandpotentialenvironmentalhazards.Asinstallationsofnewoffshorewindfarmsgrow,organisationsareworkinghardtofindnewtechnicalsolutionsforcorrosionprotection(i.e.innovationsincoatings,materialsandcathodicprotection).IPF(2002-2022)DE82/17%Others21/4%DK85/18%KR7/1%JP23/5%CN46/10%EPCUS53/11%32869%GB49/10%NL28/6%EPC_others84/18%<TableofcontentsExecutivesummary1.Introduction2.Methodology3.Results4.Conclusionepo.org36OFFSHOREWINDENERGYPATENTINSIGHTREPORTFigure3.2.2.Towers(QH)•QH1:tower→weldedortubularsteel•QH2:tower→lattice•QH3:tower→concreteFigure3.2.2a:TrendofIPF7060502640251416181330171317132115102028307328323226151019192226252245843112153057112629226355134333200220032004200520062007200820092010201120122013201420152016201720182019202020212022•QH1•QH2•QH3Figure3.2.2b:Toppatentingcountries(2002-2022)QH1QH2QH3Others31%Others32%Others12%DK16%DE19%NL7%US29%CN9%DE15%DK13%JP11%NL8%US8%JP8%ES9%CN11%DE18%US12%GB10%DK14%ES8%Figure3.2.2c:Topapplicants200220032004200520062007200820092010201120122013201420152016201720182019202020212022Vestas[DK]QH1QH2QH3GE(GeneralElectricCompany)[US]QH1QH2QH3DemeOffshore[BE]QH1QH2QH3Siemens[DE]QH1QH2QH3SiemensGamesaRenewableEnergyA/S[DK]QH1QH2QH3Geosea[BE]QH1QH2QH3MitsubishiHeavyIndustries[JP]QH1QH2QH3Esteyco[ES]QH1QH2QH3Enercon(AloysWobben)[DE]QH1QH2QH3GERenovablesEspañaSL[ES]QH1QH2QH3<TableofcontentsExecutivesummary1.Introduction2.Methodology3.Results4.Conclusionepo.org37OFFSHOREWINDENERGYPATENTINSIGHTREPORT3.2.3Mechanicalpowertransmission(QC)However,therisksrelatedtorareearthelements(neodymiumandsmallerquantitiesofdysprosium)forObservationsPMgeneratorsinwindturbinesisamajorconcernfortheindustryduetoincreasingglobaldemand44,despiteWindturbinedrivetrainsystemsaredominatedbypricesfallingtopre-2011levels.Whilesomealternativestwotypes:gearboxanddirect-drivesystems.Cost,topermanentmagnetgeneratorsexist,theytypicallypowerdensity,size,weightand–especiallyforoffshorelacktheefficiencyandperformanceneededforoffshorewindapplications–reliabilityseemtobethemostapplications.Assuch,it’scrucialtoexpandinnovationinimportantfactorsinchoosingoneofthesetwotypes.thisareaandexploreglobalpartnershipstodiversifyrareTheneedforrareearthmaterialsforpermanentearthsupplyandmeetrisingdemandinfuture.magnetgeneratorscouldalsodeterminefuturemarkettrends,eventhoughtheyaregrowingatafastpaceinThedevelopmentofIPFsintheperiodfrom2002tothemarketforreplacingrotorwindings.2022(Figure3.2.2a)showsthetrajectoriesofthesetwotechnicaloptions—gearboxanddirect-drive—Overtheperiodfrom2002to2022,twooutofevery—indicatingthesector’seffortstooptimisepowerthreeIPFshavebeendirectedtowarddirect-drivetransmissioninoffshorewindsystems.Thetrajectoryofsystems,althoughthisproportionhaschangedoverIPFsshowsaconsistentgrowthbetween2004and2013,time.Inmorerecentyears,from2018to2022,thispeakingat113filingsinthatyear.Despiteasubsequentsharehasincreasedupto80%.downturninthefollowingyears,IPFswithinbothgearboxanddirect-drivetransmissionsystemsexhibited—Permanentmagnetsynchronousgenerators(PMSG)aresurgencefrom2018onwards.Overtheentirespanhavebecomethepreferredgeneratortechnologyforfrom2002to2022,68%ofIPFshavebeendirectedoffshoreapplicationsandarefoundinoverthree-towarddirect-drivesystems,althoughthisproportionhasfourthsofalloffshorewindturbinesworldwide.changedovertime.Theperiodbetween2002and2016maintainedanannualaverageshareof63%,whereasin—Overall,threemajorphasesareobserved:afirstthesubsequentsixyearsspanning2017to2022thisfiguregrowingphaseupto2013(+22%averageYoY),aincreasedto75%.Thisobservedtrendmaypotentiallydecliningphasebetween2013and2018(-20%implyashiftreflectingchangingtechnologyprioritiesaverageYoY),andanewgrowingphaseupto2021betweengearboxanddirect-drivesystemsinthecontext(+42%averageYoY).ofoffshorewindenergytechnology.—Thetop3applicantcountriesforpatentsrelatedtoIntheyearsfrom2002to2022,threearethetopmechanicalpowertransmissionareDenmark,USApatentingcountriesintermsofIPFsrelatedtomechanicalandGermany,eachhaving15%.Thetopapplicantspowertransmission:Denmarkleadswith214IPFs,areVestas[DK],Siemens[DE]andGE[US].followedbytheUSAwith195IPFsandGermanywith185.Inthesethreecountries,thefocusseemstobeonInnovationdevelopmentsinoffshorewindenergyIPFsrelatedtodirect-drivesystems,astheseoutweightechnologyinvolvetwomajormechanicalpowerthoserelatedtogearboxtechnology,withsharesrangingtransmissionsystems:thegearbox,whichincludesbetween70%and76%.Incontrast,Japan–thefourth-doublyfedinductiongenerators(DFIG),anddirect-drivelargestcountryfortotalnumberofIPFsinmechanicalsystems,whichincludepermanentmagnetsynchronouspowertransmission–showsnearlyequaleffort(ingenerators(PMSG)andelectricallyexcitedsynchronoustermsofthenumberofIPFs)indirect-driveandgearboxgenerators(EESG).Thedirect-drivesystemsofferhighersystems.ThistrendshowstheJapanesepursuingefficiencies,butentaillargerandheaviergeneratorsforbalancedexpertiseacrossbothtechnologicalsub-largecapacities.Betweenthetwodirect-driveoptions,concepts,differentlyfromotherleadingcountrieswithaPMSGsallowhigherpowerdensityandreducedsizecleardominanttrendinoneareaonly.andweight.PMSGshavebeendominatingsincethebeginningoftheoffshorewindmarket.Asof2018,44IRENA(2023).GeopoliticsoftheEnergyTransition:generatorscontainingpermanentmagnetswereusedCriticalMaterials.InternationalRenewableEnergyAgency,innearlyalloffshorewindturbinesinEuropeandinAbuDhabihttps://www.irena.org/Publications/2023/Jul/approximately76%ofoffshorewindturbinesworldwide.43Geopolitics-of-the-Energy-Transition-Critical-Materials43Source:AlvesDias,P.,Bobba,S.,Carrara,S.andPlazzotta,B.,Theroleofrareearthelementsinwindenergyandelectricmobility,EUR30488EN,PublicationsOfficeoftheEuropeanUnion,Luxembourg,2020,ISBN978-92-76-27016-4,doi:10.2760/303258,JRC122671https://publications.jrc.ec.europa.eu/repository/handle/JRC122671<TableofcontentsExecutivesummary1.Introduction2.Methodology3.Results4.Conclusionepo.org38OFFSHOREWINDENERGYPATENTINSIGHTREPORTThepresenceofaDanishandaGermancompanyasandMitsubishiHeavyIndustries[JP],haveanalmosttheleadingpatentapplicantsofmechanicalpowersimilarnumberofIPFs.ThetopfourcompaniesdisplaytransmissionIPFsfrom2002to2022alignswithpreviousatendencytowarddirect-drivesystems,with65%,88%,insights.Vestas[DK]isfirstwith97IPFs,closelyfollowed98%,and85%oftheirrespectiveIPFsdirectedtowardsbySiemens[DE]with83IPFs.Thenextthreerankingthistechnologydomain.However,theJapanesecompanycompanies,namelySiemensGamesaRenewableMitsubishiHeavyIndustrieshasonly54%oftheirIPFsEnergyA/S[DK],GE(GeneralElectricCompany)[US],concentratingonthisspecifictechnologicalsub-concept.Box9:Generators:Permanentmagnetsynchronousgenerators(PMSG)anddoublyfedinductiongenerators(DFIG)TheselectionofthegeneratortechnologythatbetterBetween2002and2022,thenumberofpatentfilingssuitsmodernwindturbinedrivetrainsdependsoncoveringthesetwotechnologiesincreasedbyafactorofwhetherthegeneratorisappliedinonshoreoroffshorefourteen.Thedrivingforcebehindthistrendistheneedturbines.Currently,bothPMSGsandDFIGsareusedforacost-effectiveoptionovertheturbine’stotallifecycle.extensivelyinthelatter.Thisisespeciallytrueforoffshorewindturbines,wherethelogisticsforcarryingoutregularmaintenancerequireWhenlookingintopatentdata,onecanseethatthereismoreresources.BecausePMSGsdonotrequiregearboxanupgoingtrendofpatentsbeingfiledforbothPMSGtechnology,ithasbecomethepreferredgeneratorandDFIGtechnologies.However,itisworthnotingthattechnologyforoffshorewindturbineapplications.patentfilingsspecificallyclassifiedas“offshore”aretoofewtoconductmeaningfulanalysis,soweexpandedthesearchtoincludeallwindenergypatents.Generatortechnologyusedinwindpower(totpatentfamilies)5004003002001000200220032004200520062007200820092010201120122013201420152016201720182019202020212022—PMSG—DFIG—SCIGSource:ESPACENET.<TableofcontentsExecutivesummary1.Introduction2.Methodology3.Results4.Conclusionepo.org39OFFSHOREWINDENERGYPATENTINSIGHTREPORTPMSGshavebeenthedominantchoicesincetheturbinesisamajorconcernfortheindustryduetoincreasingbeginningoftheoffshorewindmarket.Asof2018,globaldemand,despitepricesfallingtopre-2011levels.45generatorscontainingpermanentmagnetswereusedinnearlyalloffshorewindturbinesinEuropeandinthree-Fromageographicalapproach,itisimportanttoobservequartersofoffshorewindturbinesworldwide.thattheupwardtrendissolelyduetonon-internationalpatentapplicationsfiledattheCNpatentofficebyDFIGsaregainingpopularityinwindfarmsduetotheirChineseapplicantsstartingfrom2007onwards.Thisabilitytocontrolactiveandreactivepowerseparately.isalsoclearlyobservedwhencomparingtheapplicantThenumberofpatentsfiledhasincreasedsixfoldsincerankings.CNapplicationsservetoprotectthedomestic2010.However,theriskofinsufficientsupplyofraremarketandareseldomfiledinotherpatentjurisdictions.earthelements(neodymiumandsmallerquantitiesofdysprosium)forpermanentmagnetgeneratorsinwindNote:Forthisanalysis,thescopeofthedatawasnotlimitedtointernationalpatentfilingsandincludesallwindenergyclassifiedpatentsTopapplicantsgeneratorforwindenergy(totpatentfamilies)StategridcorpChina50100150200250300350400SiemensGamesaGE-GeneralElectricChinaelectricpowerresinstUnivNorthChinaelectricpowerUnivSoutheastUnivZhejiangUnivChongqingMingYangsmartenergygroupcoLtdQufuNormalUniversityGuodianunitedpowertechcoHitachiLtdUnivSanghaiJiaotongZhejiangwindeycoLtdUnivHohaiAlstomrenewabletechnologiesHuanengcleanenergyresinstBeijinggoldwindscience&creationwindpowerequipmentcoLtdUnivShanghaielectricpowerUnivHuazhongsciencetech0•PMSG•DFIG•SCIGSource:ESPACENET.45Source:AlvesDias,P.,Bobba,S.,Carrara,S.andPlazzotta,epo.org40B.,(2020),Theroleofrareearthelementsinwindenergyandelectricmobility,Luxembourg,doi:10.2760/303258<TableofcontentsExecutivesummary1.Introduction2.Methodology3.Results4.ConclusionOFFSHOREWINDENERGYPATENTINSIGHTREPORTFigure3.2.3.Mechanicalpowertransmission(QC)•QC1:mechanicalpowertransmission→directdrive•QC2:mechanicalpowertransmission→gearboxFigure3.2.2a:TrendofIPF120100804138602529181924134016251615117262101450575520394946508403439354286255182006102510200220032004200520062007200820092010201120122013201420152016201720182019202020212022•QC1•QC2Figure3.2.3b:Toppatentingcountries(2002-2022)DK16450•QC1145US13150•QC254DEJP4845CN5727ES6815GB4930NL6510FR4220NO2812020406080100120140160180200220Figure3.2.3c:Topapplicants20022040608010012020032004200520062007200820092010201120122013201420152016201720182019202020212022Vestas[DK]QC1QC2633497Siemens[DE]QC1QC2731083SiemensGamesaQC116364RenewableEnergyA/S[DK]QC2GE(GeneralElectricQC1Company)[US]QC2551065MitsubishiHeavyQC1Industries[JP]QC2372865AlstomRenewableQC123133Technologies[FR]QC2GERenovablesEspañaQC142630SL[ES]QC2AlstomRenovablesEspañaQC13SL[ES]QC22427GERenewableQC112425TechnologiesWind[NL]QC2AlstomWind,S.L.U.[ES]QC121517QC2•QC1•QC2<TableofcontentsExecutivesummary1.Introduction2.Methodology3.Results4.Conclusionepo.org41OFFSHOREWINDENERGYPATENTINSIGHTREPORT3.2.4Bladesandrotors(QI)Asoffshorewindfarmsexpandfurtherintodeeperwatersandmoreremotelocations,thecontinuousObservationsrefinementofbladeandrotordesignsbecomescrucial.ThisneedisfurthermirroredintheIPFtrendshowninThedevelopmentofbladesandrotorsisevolvingintoFigure3.2.4a.Asoffshorewindenergytechnologymovedlargerdesignsthatincreasethepowercapacityofwindtowardmaturation,therewasacorrespondingincreaseturbines.Betteraerodynamicprofilesandmaterials,inthecountofIPFs.Thetrajectoryrevealsaninitialperiodincludingrecycling,andnewlogisticapproachesareatofgradualinnovationwithinthistechnologicaldomain,thecoreofinnovationactivitiesinthewindmarket.succeededbyaswiftsurge.Notably,thecumulativeIPFcountbetween2017and2022standsat122,surpassing—IPFtrendsforbladesandrotorsfollowedthethecollectiveIPFsgeneratedoverthepreceding15-yearsamepatternasthoseformechanicalpowerspanfrom2002to2016,whichamountedto105IPFs.transmissionupto2016:afirstgrowingphaseuntil2013wasfollowedbyaphaseofdeclineuntil2016,From2002to2022,Denmarkhastakentheleadamongwhichsuggeststhattheyevolvedunderacertaincountriesinthedevelopingrotorandbladeinventions,coordination,asfromatechnologicalstandpointwith108IPFs,followedbyGermany(45)andtheUSAtheyarecorrelated.After2016,bladesandrotors(30).Remarkably,thesethreecountriesjointlycontributerecovered,reachingthepeakpatentfilingbyaround76%oftheoverallIPFcountassociatedwith2018,afterwhichadecliningtrendhasremainedmodularbladesandrotors,incontrasttothe63%prevalent.representedintheothercategory.Inthissecondcategory,Denmarkranksfirstwith26IPFs,afigure—ThecumulativeIPFcountforbladetechnologiesexceedingdoublethequantityofGermanIPFs,whichbetween2017and2022standsat122,surpassingstandsat12.thecollectiveIPFsgeneratedoverthepreceding15-yearspanfrom2002to2016.Consistentwiththeearlierranking,fourDanishcompaniesareamongthetoppatentapplicantsduring—Denmark,GermanyandUSAaretheleadersintheperiodfrom2002to2022.Vestas[DK]leadswith52bladetechnologydevelopment–withthesethreeIPFsfollowedbySiemensGamesaRenewableEnergycountriesjointlyaccountingforapproximately76%A/S[DK]with20.ThetoplistalsoincludestheJapaneseoftheoverallIPFcountassociatedwithmodularMitsubishiHeavyIndustries[JP]inthirdplace,followedbladesandrotors.byAmericanGE(GeneralElectricCompany)[US].Nevertheless,animportantdistinctionemerges:VestasInoffshorewindenergytechnology,thedevelopment[DK]andSiemensGamesaRenewableEnergyA/S[DK]ofbladesandrotorsisatacriticalstageasapivotalhaveprimarilydevelopedtheirinventionswithintheresponsetochallengeslikeharshoperatingconditionsmostrecentsixyears,specificallybetween2017and2022,andtheneedforlargerbladestocapturemoreenergy.accountingfor87%and85%oftheirrespectivetotalWiththeincreaseinbladelength,criticalaspectssuchIPFs.Incontrast,MitsubishiHeavyIndustries[JP]andGEasmanufacturingunderrigorousdesignstandardsand(GeneralElectricCompany)[US]directedmanyoftheircertifications46,easingtransportationandlogistics,inventiveeffortsintheinitialphasespanningfrom2002incorporatingcirculareconomypracticesthatreduceto2016,contributing60%and79%oftheirrespectiveusageofrawmaterialsandrecyclethemattheendoftotalIPFsduringthisperiod.Thistrendhighlightstheturbineservicelife47needtobepaidspecialattention.innovativedynamismexhibitedbytheDanishcompanies,supportingtheirwidelyrecognisedstatusaskeyinnovatorsintheoffshorewindenergyarena.46M.Hagenbeek,S.J.vandenBoom,N.P.M.Werter,F.Talagani,epo.org42M.vanRoermund,B.H.Bulder,andH.J.vanderMijleMeijer(2022);Thebladeofthefuture:windturbinebladesin2040;Delft47MishnaevskyJr.Leon(2022);Recyclingofwindturbineblades:Recentdevelopments;CurrentOpinioninGreenandSustainableChemistry;Vol39;https://doi.org/10.1016/j.cogsc.2022.100746<TableofcontentsExecutivesummary1.Introduction2.Methodology3.Results4.ConclusionOFFSHOREWINDENERGYPATENTINSIGHTREPORTBox10:RecyclingofrotorbladesGenericcross-sectionofrotorbladeWiththegrowthofwindenergybeingdeployedtoLEPshellsparcap/girdershearsurfaceshellincreasetheshareofemission-free,renewableandpanelwebcoatingpanelaffordablecleanenergy(UN,SDG7)48,theareasweptbytherotorobtainedthroughincreasedlengthsofwindwebslightningturbinebladeshasbeenandwillcontinuetobeoneofbondingprotectionthemainkeystobringingdowntheper-kwhcostsandcableincreaseefficiency.Withadesignedlifetimeof20-25years,thequestionarisesastohowtodismantleandleadingedgetrailingedgerecyclethoserotorblades.Afterreachingend-of-lifeandbondingbondinginthecontextofcirculareconomy,materialsmustbeseparatedandrecycledinnewapplications.WindturbineҦSparcap/girder:unidirectionalglassorcarbonfibre,supportedbybladesconsistoffurthermaterialsuchasbalsawood,epoxy,polyester,polyurethaneorvinylestermatrixresinsfoams,coatingsandmetalparts.Asthebladeindustryistechnologicallyadvancingatquickpace,itisnotexpectedҦShearwebandshellpanel:multiaxialglassgiberreinforcedthatmaterialsusedforbladesandresultingwastepolymerinsandwichlaminateusingforexamplebalsaormaterialrecyclingaregoingtobecomestandardisednorinterpenetratedpolymernetworkfoam(IPN)homogeneousanytimesoon.Thismakesitveryhardtodevelopanefficientpre-processingandrecyclingindustry.ҦLeadingandtrailingedge:epoxyorpolyurethanebasedstructuralHowever,producersofwindturbinebladesannouncedadhesiveajointcommitmenttoprovidesocalled“bladematerialpassports”49tosupportrecyclingactivities.ThepatentҦLightingprotectingcable:aluminiumorcopperdatawereextractedfromESPACENETandcanbeseparatedin4differentareas:ҦSurfacecoating:gelcoatorapaintmadeofunsaturatedpolyester,epoxy,polyurethaneoracrylicA.(94families)Themajorgroupofpatentsisrelatedtorecoveryoftheplasticsviadestructivedistillation,ҦLEP(LeadingEdgeProtection):Ultra-highmolecularweightmelting,hydropyrolysisandevaporation,combinedpolyethylenefilm,polyurethanecoatingorgelwithtechnologiespreventingreleaseoffumesandotherhazardousmaterials.(IPC/CPCcodesC10B,Theuseofdifferentmaterials,especiallythecombinationofB29B17,C10J,B08B15,B09B3/29andB09B3/40;link)glassfibreandepoxies,makeitdifficulttodevelopefficientandsustainablerecyclingprocesses.B.(87families)Thesecondgroupinvolvesmechanicalprocessesthatincludecrushing,cutting,granulationWecanobserveanearexponentialgrowthinpatentapplications.andthesiftingandscreeningofthedebris.Related2023dataarenotcomplete,butevenherewecanseeacontinuous,processesarewashingandmagneticseparation.(IPC/strongincreaseespeciallyindestructivedistillation.CPCcodesB02C,B07B,B09B3/30andB29B9;link)C.(25families)Athirdgroupinvolvesrecoveryofwastematerialsviachemicalbreakingdownprocessesusingforexampleselectivesolventsandacids(solvolysis).(IPC/CPCcodesC08J11,C08HandC08G;link)D.(23families)Afourthgroupspecifiestheapplicationanduseofthewastematerials,mainlyasfillersformortar,concrete,artificialstoneoreveninnewcomposites.(IPC/CPCcodeC04B;link)48UnitedNations,SustainableDevelopmentGoal7:“Ensureaccesstoaffordable,reliable,sustainableandmodernenergyforall”.epo.org4349https://decomblades.dk/index.php/2023/04/25/638/(formerlyknownasproductdisposalspecification)<TableofcontentsExecutivesummary1.Introduction2.Methodology3.Results4.ConclusionOFFSHOREWINDENERGYPATENTINSIGHTREPORTNumberofpatentfamilies1118032706012504032137302201117101127121711141425611111440111221112002200320042005200620072008200920102011201220132014201520162017201820192020202120222023•A)destructivedistillation•B)crushing,cutting,granulation•C)chemicalbreakingdown•D)usedasfillers<TableofcontentsExecutivesummary1.Introduction2.Methodology3.Results4.Conclusionepo.org44OFFSHOREWINDENERGYPATENTINSIGHTREPORTFigure3.2.4.Bladesandrotors(QI)•QI1:blades,rotors→modular•QIL:blades,rotors→othersFigure3.2.4a:TrendofIPF3025201526161017171691510561268269801555353411122222200220032004200520062007200820092010201120122013201420152016201720182019202020212022•QI1•QILFigure3.2.4b:Toppatentingcountries(2002-2022)DK2682•QI1DE1233•QILUS1020JP118CN49GB210NL18ES18Others625020406080100120Figure3.2.3c:Topapplicants20041020304050602005200652200720200815200914201012201111201272013720145201542016201720182019202020212022Vestas[DK]SiemensGamesaRenewableEnergyA/S[DK]MitsubishiHeavyIndustries[JP]GE(GeneralElectricCompany)[US]Siemens[DE]LMWindPower[DK]BladeDynamics[GB]Senvion[DE]LMGlasfiber[DK]EnvisionEnergy(Denmark)[DK]<TableofcontentsExecutivesummary1.Introduction2.Methodology3.Results4.Conclusionepo.org45OFFSHOREWINDENERGYPATENTINSIGHTREPORT3.2.5Hybridsystems:solarandoceanenergyWhenconsideringIPFs,thefocushasbeenonhybrid(QE)systemsthatintegrateoffshorewindenergywithoceanenergysources(QE2).ThiscategoryconstitutesObservationsapproximately83%ofallinventionsbetween2002and2022.Interestingly,themajorityoftheseIPFsClusteringoffshorerenewablessuchasoffshorewindweredevelopedfrom2008to2013,withsubsequentenergywithsolarandocean-basedtechnologiesisanyearsshowingagradualyetconsistentdecreaseinalternativeforincreasingon-sitepowerproductionthatIPFnumbers.ThereasonbehindthisdeclinemightbemakesthemostoftheoffshoreinfrastructureandcantheoffshoreLCOEhistoricaltrend.Theperiodfromalsocontributetocreatingablueeconomy.2013to2018showsthehighestLCOEvalues,whichdrovetheneedformoreefficientsolutionstobringAmongthehybridsystems,combiningoffshorewindtheseLCOEvaluesdown.Oncethecostsofoffshoreandoceanenergy—tidalandwave—leadsintermswindalonestartedasteadilydeclinetrendin2013,theofIPFs.commercialbenefitofhybridsystemswasreducedbecause,ultimately,theybringmorecomplexityfromanTheperiod2008-2013wasthemostactive,followedbyoperationalandmaintenanceperspective.adecliningperioduptotoday.ThiscorrelateswiththemaximumLCOEvaluesofoffshorewind50,whichsetsChinaandtheUnitedStatesofAmericaaretheleadingtheneedsformoreefficientsolutions.After2013,LCOEpatentapplicantcountriesinhybridsystemscombiningdeclinessteadily,disincentivisingthedeploymentofoffshorewindandsolartechnologies,with18and17hybridsystems,whichaddmorecomplexity.IPFs,respectively,from2002to2022.Furthermore,theUnitedStatesofAmericaholdsthetoppositioninUSAandChinaarethemostactiveplayersinthisgroup.hybridsystemsinvolvingoffshorewindcoupledwithEuropeancompaniesshowlittleactivityafter2013oceanenergysources,summingatotalof89IPFs.GreatlikelyduetothelessattractiveeconomicsoftheseBritainfollowswith69IPFs,andChinaisthirdwith59systems.IPFsinthiscategory.Amongleadingpatentapplicants(intermsoftotalIPFsintheperiod2002-2022)wefindHybridsystems,whichareacombinationofoffshorefourcompanies(VoithPatent[DE],TidalGeneration[GB],windwithotherrenewablesourcessuchassolarMarineCurrentTurbines[GB]andLoneGullHoldingsphotovoltaicsoroceanenergy,includingwaveand[US]),oneuniversity(DalianUniversityoftechnologytidalenergy,presentoptionsformaximisingtheuseof[CN])andfiveindependentapplicants.Thisunusualtopoffshoreinfrastructure.Oneobviouschoiceistocombinelistindicatesthedistinctivenatureofthistechnologyoffshorewindenergyandwaveenergy.However,wavedomainwithinoffshorewindenergy,whichcanbeseenenergyiscurrentlyatamuchearlierdevelopmentasaniche.Here,theinterplaybetweenfoundationalstagethanoffshorewindenergy.Combiningoffshoreresearchfromacademicinstitutionsandtheinventivewindenergywithsolarenergyisalsoinanearlystageattitudeofindividualsremainscrucial,asitcontinuestoofdevelopmentandcurrentinstallationsmostlyserveguidetheevolutionofthistechnologytowarditsultimatethepurposeofproof-of-conceptsandtestingstations.commercialisationphase.Co-locatingfloatingsolarpanelsinoffshorehybridparkscansharenetworkinfrastructureandgridconnections,butitmayincreasecostsandrisksforwindfarms.PVtechnologycanbeusedsolelyforturbineoperationorasaproductionsource.Bothfallunderthesamepatentcategory.Bydeployinghybridsystems,theoverallefficiencyoftheplantcanbeenhancedandthesourcescanprovideimprovedflexibilityservicestothepowergrid.Forinstance,offshorewindpowercanprovideaconsistentbaseload,whilethecomplementarywaveandsolarenergysourcescontributeduringpeakdemandperiods.50IRENA(2021),RenewablePowerGenerationCostsin2021,epo.org46InternationalRenewableEnergyAgency,AbuDhabi.https://www.irena.org/publications/2022/Jul/Renewable-Power-Generation-Costs-in-2021<TableofcontentsExecutivesummary1.Introduction2.Methodology3.Results4.ConclusionOFFSHOREWINDENERGYPATENTINSIGHTREPORTBox11:MonitoringwavesNumberofIPFs1514Monitoringwavesandwaveloadsiscrucialforfatigue4assessment.Itallowsustobetterunderstanda31010substantialpartofthedynamicsoftheforcesinherentlyactingonoffshorewindturbines.Ithelpstominimise9operationandmaintenancecostsandtoassessthelifetimeofoffshorewindturbinesstructuresduringtheir888operation.State-of-the-artmonitoringtechniquesarecompletelyautomatedsothatnohuman-interactionis7required,andtoday’ssystemscantrackeventhesmallestofchangesinthedynamicbehaviourofoffshorewind6turbines.Thedatageneratedbythemonitoringsystemscanalsobeusedtosteerdampingcontrollerstorespond55toseawavemotionandreducevibration.Technologyformonitoringthewavesisalsoneededandoftencombinedwithwaveenergyconverters.4411000200220032004200520062007200820092010201120122013201420152016201720182019202020212022Espacenet:Flowregulatingdevice(9)toEspacenet:Combinedtechnology:generatingelectricityordampingcounteractaccelerationoroscillationduetoplatformmovements.therollingmotionofplatforms<TableofcontentsExecutivesummary1.Introduction2.Methodology3.Results4.Conclusionepo.org47OFFSHOREWINDENERGYPATENTINSIGHTREPORTFigure3.2.5.Hybridsystems(QE)•QE1:hybridsystem→solar•QE2:hybridsystem→oceanenergyFigure3.2.5a:TrendofIPF5040303639362033343530302729222515211022111371580567511887887562232233200220032004200520062007200820092010201120122013201420152016201720182019202020212022•QE1•QE2Figure3.2.5b:Toppatentingcountries(2002-2022)QE1QE2CN18US8969US17GB59DE12CNKR10DE34FR6NO32GB6KR28JP6JP24CH5CA20DK4FR18TW4AU1603060900306090Figure3.2.5c:Topapplicants2002369121520032004200520062007200820092010201120122013201420152016201720182019202020212022VoithPatent[DE]14DalianUniversityofTechnology9[CN]Perner,Norman[DE]8LoneGullHoldings[US]7MarineCurrentTurbines[GB]7TidalGeneration[GB]7Holstein,Benjamin[DE]6Fraenkel,Peter,Leonard[GB]5Moffat,Brian,Lee[US]5Sheldon-Coulson,Garth5Alexander[US]<TableofcontentsExecutivesummary1.Introduction2.Methodology3.Results4.Conclusionepo.org48OFFSHOREWINDENERGYPATENTINSIGHTREPORTBox12:DesalinationandoffshorewindenergyReverseosmosisisthemostdominantprocessforwaterdesalination.Itisaveryenergy-intensiveprocess.Around36%oftheoperatingexpensesofseawaterdesalinationplantsarerelatedtoenergyconsumption.51Whileinitialhybridtestprojectsputthedesalinationplantonshoreandonlymadeuseoftheelectricityproducedoffshore,newsystemsarebeingdevelopedtointegratethedesalinationplantontofloatingsemisubmersiblestructures,ensuringminimisedimpactofseawaterdesalinationonthemaritimeandterrestrialenvironment.Thefactthatthecompletestructureisfloatingalsoallowsforsomeformofrelocationbyseaifnecessary.Whiledesalinatedseawatercanthenbeusedformunicipal/potableoragriculturalirrigation,itisalsoalogicalfirststepintheprocessofproducinggreenhydrogen,usingsurpluselectricitytopowerelectrolysers.Hydrogencanthenbepumpedtoshoreorusedasalternativefuelsfordecarbonisingtheshippingindustry.ApatentsearchusingtheCPCcodeY02A20/141,whichisusedtoclassifydesalinationincombinationwithwindenergy,retrieves1060patentfamilies.Restrictingthistooffshorewindenergy(Q0)resultsin148patentfamilies.About30%ofthosepatentfamilieshaveaclassificationcodeorrelevantkeywordsrelatedtohydrogenproductionorelectrolysers.US2011169269A1Systemsandmethodsforproducing,shipping,distributingandstoringhydrogen51https://www.energy.gov/sites/default/files/2019/09/f66/73355-7.pdf(page86)epo.org49<TableofcontentsExecutivesummary1.Introduction2.Methodology3.Results4.ConclusionOFFSHOREWINDENERGYPATENTINSIGHTREPORT3.2.6EnergyStorage(QD)Thedevelopmentofnationalhydrogenstrategiesbyover30countrieshascreatedasupportiveenvironmentObservationsforinnovationinthisarea53.TherisinginstalledgeneratingcapacityofrenewablesInrecentyears,severalinventionshavebeendevelopedandtheneedforflexibleenergysystemshasledinthecontextofenergystoragesolutionsincombinationtogreaterinnovationinenergystoragesolutions.withoffshorewindinstallations.AsdepictedinFigureOneemergingbusinessmodelisthecombinationof3.2.6a,thepeakofIPFsisobservedin2022,characterisedoffshorewindfarmswithgreenhydrogenproductionbytheemergenceofapproximately90newinventions.unitsthatcanhelpdecarbonisehard-to-abateend-useAmongthese,asignificant63%pertaintostorageusingapplications.hydrogenproducedbyon-siteoffshoreelectrolysers(QD4),whileanadditional16%arelinkedtocompressed—InthelastfouryearsthenumberofIPFsdedicatedairtechnologies(QD1).Thesetwosub-conceptsaretoenergystoragesolutionswithoffshorewindpredominant,accountingtogetherfor77%ofthetotalplantshasroughlygrownfourfold,drivenmainlyIPFsdevelopedwithintheperiodspanning2002to2022.bytheuptakeofthepipelineofgreenhydrogenprojects.FirstplaceinrankingsofthetotalnumberofIPFsbetween2002and2022isheldbytheUS,with66—TheIPFactivitytrendsshowaplateaufortheIPFsidentifiedasbelonginginthehydrogendomainperiod2010-2018commontoalltechnologygroups,(QD4)and67IPFsincompressedairtechnologies(QD1).whichcouldbeexplainedbythemacro-economicGermanyandGreatBritainfollow,rankingsecondenvironment(post-financialcrisis),astherelativelyandthirdplace,respectively.Chinaisthefourth-placehightechnologycoststhatremainedhighuntilpatentingcountry,withasubstantialnumberofIPFsin2015.batteries(QD3)aswell.—BigEuropeanandUScompaniesarefrontrunners,Amongthetopapplicantsduringtheperiodof2002whiletheChinesesectorseemstobemoreto2022(asillustratedinFigure3.2.6c),onlyfouroffragmented.Yet,ChinaisthelargesthydrogenthesewereactivelyengagedinthedevelopmentIPFsconsumerandanearlyadopterfromamarketassociatedwithenergystorageduringtheinitialyearsperspective.Thefactthatthisreportfocusesonspanning2002to2016.ThesefourentitiesareSiemensIPFsmaymisstheinternalmarket,focusofChinese[DE],GE(GeneralElectricCompany)[US],Vestas[DK],andplayers.MitsubishiHeavyIndustries[JP].ExceptforVestas[DK],theremainingthreeentitiesdirectedapproximately90%Offshorewindpowerischaracterisedasa“variableoftheircumulativeIPFstowardsenergystoragesolutionsrenewablesource”duetoitshighvariableelectricitywithinthisinitialperiod.AllmajorpatentapplicantsoutputandposeschallengesintermsofmaintainingexclusivelygeneratedtheirIPFswithinthemostrecentsystemadequacyandflexibility.Toaddressthisfiveyearsunderstudy(2017to2022),showinganconcern,thereisincreasingdemandfornewenergyintensifiedfocusonnewenergystoragesolutionsduringstoragesolutionsthatcaneffectivelycaptureandthisrecentperiod.Theleadingapplicantinthisrankingstoresurplusenergyduringperiodsofoverproduction.istheDanishcorporationSiemensGamesaRenewableThestoredenergycanthenbestrategicallyreleasedEnergyA/S,withatotalof28IPFs,mostlyconcentratedduringpeakdemandperiods,ensuringaconsistentandinthehydrogendomain(QD4),whichisalsothemostreliableenergysupplythatalignswithconsumptiontargeteddomainbyotherkeyplayersintermsoftotalIPFpatternsandgridrequirements.Inrecentyears,energycounts.storagesolutionsincombinationwithoffshorewindinstallationshaveexperiencedsignificantgrowth,mostlydrivenbyinnovationinelectrolysersforgreenhydrogenproductionandtheforeseeableeconomicattractivenessofproducinghydrogenoffshore52.52EPOandIRENA(2022),Patentinsightreport.Innovationtrends53IRENA(2022),GeopoliticsoftheEnergyTransformation:inelectrolysersforhydrogenproduction,EPO,Viennahttps://TheHydrogenFactor,InternationalRenewableEnergyAgency,www.epo.org/news-events/news/2022/20220512.htmlAbuDhabi.https://www.irena.org/publications/2022/Jan/Geopolitics-of-the-Energy-Transformation-Hydrogen<TableofcontentsExecutivesummary1.Introduction2.Methodology3.Results4.Conclusionepo.org50OFFSHOREWINDENERGYPATENTINSIGHTREPORTFigure3.2.6.Energystorage(QD)•QD1:compressedair•QD2:kinetic•QD3:battery•QD4:hydrogen•QD5:thermal-LiquidairFigure3.2.6a:TrendofIPF9080706050403020100200220032004200520062007200820092010201120122013201420152016201720182019202020212022•QD1•QD2•QD3•QD4•QD5Figure3.2.6b:Toppatentingcountries(2002-2022)QD1QD2QD3QD4QD5CN66CN0CN31CN67CN7US33US0US22US41US4DE27DE1DE9DE28DE1KR15KR0KR18KR28KR1FR16FR2FR8FR31FR53GB13GBGB13GB28GB02JP12JP3JP2JP15JP4CH12CHCH7CH10CH0DK15DK0DK2DK11DK3TW12TW1TW4TW10TW1Figure3.2.6c:Topapplicants2002-20162017-2022051015051015202530SiemensGamesaRenewableEnergyA/S[DK]Siemens[DE]LoneGullHoldings[US]GE(GeneralElectricCompany)[US]Vattenfall[SE]Vestas[DK]MitsubishiHeavyIndustries[JP]RWERenewablesGmbH[DE]AdvancedInnergyLtd[GB]ExxonMobilUpstreamResearchCompany[US]AdvancedInsulation[GB]•QD1•QD2•QD3•QD4•QD5<TableofcontentsExecutivesummary1.Introduction2.Methodology3.Results4.Conclusionepo.org51OFFSHOREWINDENERGYPATENTINSIGHTREPORT3.2.7Grid,submarinecablesandprotectionsperspectivetoidentifypatentsthatonlyrelateto(QJ&QL)offshorewindturbines,assuchtypesoftechnicalsolutionsmayalsoberelevantforothertechnologyObservationsareas.Nevertheless,theanalysisinthissectionisagoodForsuccessfulexpansionofoffshorewindprojects,itapproximationofwhatishappeningintheoffshorewindisessentialtodevelopenablinggridinfrastructureandtechnologysector.associatedprotectionequipment.FromFigure3.2.7aitcanbeobservedthatIPFsrelatedto—Innovationsrelatedtosubmarinecableshavepowergridsgrewearlierthanthoserelatedtosubmarineshownincreasedpatentingactivityinrecentyears.cables,whichonlyinthelateryearsbecameasimportantThistrendmatcheswiththeoneshownforfixedasgrid-relatedinnovationsintermsofnetnumberperandfloatingfoundations,withacertaintimelag.year.Asforprevioussub-concepts,Figure3.2.7ashowsupwardanddownwardtrends,indicatingthatthose—Focusingonsubmarinecable,leadingcountriestwooffshorewindareasaswellfollowmacrodynamicsdifferfromthoseidentifiedforthefixedandoccurringintheoveralloffshorewindsector.However,floatingfoundations.Thissuggeststhenichenaturethisgroupofinnovations,unlikeotherspresentedofthisareaofexpertise.Franceisthemajorplayerbefore,showadownwardtrendinrecentyearswhichthankstoaspecificcompanywithalongtraditionmaysuggestcertainmaturitylevelsatleastfortoday´singridtransmissionsolutions.requirements.—Innovationinthegrid-relateddomain,whichisaEuropeancountriesaretheleadingplayersindevelopingbroadareabeyondoffshorewind,isdominatedbyIPFsrelatedtobothgridsandsubmarinecables(Figuretraditionalbigplayersintheglobalwindenergy3.2.7b).GermanIPFsaccountfor21%ofthetotalIPFsinfield,namelyGermany,DenmarkandUSA.theperiod2002-2022,followedbyDenmarkwith18%ofthetotal.Incontrast,FranceistheleadingcountryforThedeploymentofoffshorerenewableprojectsfarfromsubmarinecables,withanimportantoverallcontributionshoreusuallyrequirestheinstallationofanewcablealsofromnon-EuropeancountriesliketheUSAandChina.connection,asgridconnectionsarenotalreadyreadilyavailable.TransmissionlinesforoffshorewindprojectsTheseinsightsatcountrylevelarealsofoundintheareessentialtorealisingdevelopers’plans.TheUSmarketanalysisofthetoppatentapplicants(Figure3.2.7c).offersestimatedtotalsavingsofUSD20billionifrobustAccordingly,Vestas[DK]andSiemens[DE]arethetwoandeffectiveunderseacablesaredeployed54.WhenitcompaniesdevelopingthehighestnumberofIPFsincomestooffshoreprojects,high-voltagedirectcurrenttheperiodfrom2002to2022(60and54,respectively).(HVDC)transmissionisoneoptionandcanbecomecost-Nexans[FR]isthecompanydevelopingthelargesteffectiveforgridconnectionlengthsbetween80and150numberofIPFsrelatedtosubmarinecables(51inkilometres.55Ontheoperationalside,arangeofdigitaltotal).Overall,itisinterestingtonotethatalmostallsolutionsarebeingexploredtoeffectivelycoordinatecompanieslistedinFigure3.2.7.c.arespecialisedandoptimiseassets.Predictivemodellingtechniqueseitheringridorinsubmarinecables,indicatinghighcanfactorinwakeeffectsandworkcollaborativelywithtechnologicalspecialisationwithhighR&Dintensityandoptimisationtechniquestoregulatepowerelectroniclimitedtechnologicaltransferability.Thismeansthatdevicesandstorage,ensuringlongevityandstablecompaniesfocustheirR&Deffortsoneithergrid-relatedperformance.56technologiesorsubmarinecabletechnologies,resultinginspecialisedexpertisewithineachdomain.TransferofThissectionanalysesinventionsrelatedtogrid,technologicalcapabilitiesfromonedomaintotheothersubmarinecablesandothersolutionstoprotectthem.becomeschallenging,indicatingdifficultiesinleveragingAsnotedabove,itisdifficultfromapatentsearchexpertiseacrossbothsectorsduetotheiruniquetechnicaldemands.54BloomberNEF(2023),WindFarmsUrgedtoLengthenUnderseaCables,Saving$20Billion55IRENA(2016),InnovationOutlook:OffshoreWind,InternationalRenewableEnergyAgency,AbuDhabi.https://www.irena.org/publications/2016/oct/innovation-outlook-offshore-wind56IRENA(2019),Futureofwind:Deployment,investment,technology,gridintegrationandsocio-economicaspects(AGlobalEnergyTransformationpaper),InternationalRenewableEnergyAgency,AbuDhabi.https://www.irena.org/publications/2019/Oct/Future-of-wind<TableofcontentsExecutivesummary1.Introduction2.Methodology3.Results4.Conclusionepo.org52OFFSHOREWINDENERGYPATENTINSIGHTREPORTFigure3.2.7.Grid,submarinecablesandprotectingthem(QJ&QL)•QJ:grid•QL1:submarinecablesconductors→protection•QLL:submarinecablesconductors→othersFigure3.2.7a:TrendofIPF4530150200220032004200520062007200820092010201120122013201420152016201720182019202020212022•QJ•QL1•QLLFigure3.2.7b:Toppatentingcountries(2002-2022)QJQL1QLLOthers35%DE21%FR18%FR19%US16%Others34%Others43%CN13%DK18%CN6%US14%IT7%US11%CN7%NO11%DE12%CH7%NO8%Figure3.2.7c:Topapplicants(2002-2022)2040600epo.org53Vestas[DK]Siemens[DE]Nexans[FR]SiemensGamesaRenewableEnergyA/S[DK]ABBTechnology(AseaBrownBoveriTechnology)[CH]GE(GeneralElectricCompany)[US]ZhongtianTechnologySubmarineCableCompany[CN]ABBSchweiz[CH]Prysmian[IT]InnogySE[DE]NKTHvCablesAB[SE]LSCable&System[KR]ABB(AseaBrownBoveri)[SE]RWERenewablesGmbH[DE]MitsubishiHeavyIndustries[JP]ABBResearch[CH]AkerSolutions[NO]Senvion[DE]JiangsuZhongtianTechnologiesCompany[CN]•QJ•QL1•QLL<TableofcontentsExecutivesummary1.Introduction2.Methodology3.Results4.ConclusionOFFSHOREWINDENERGYPATENTINSIGHTREPORT4.ConclusionAnanalysisacrosstheconceptgroupingsrevealsseveralinsights.Offshorewindenergyisemergingasacrucialrenewablesourceforaddressingclimatechangechallenges(UNSDGForfoundations,itisevidentthatfloatingfoundations13)andmitigatingglobalwarming,andsupportingUNaregainingincreasingtractionintheindustryduetoSDG7byprovidingacleanandsustainableenergysourceaccesstodeeperwaters.Almost80%ofpatentsinthisbyharvestingoffshoreenergyresources.Toenhancethisareain2022relatedtofloatingfoundations,withtheUSApotential,itiscrucialtounderstandthecurrentstateofemergingastheleadinginnovator.Fixedfoundationstechnologicaladvancements,soattentioncanbefocusedneverthelessremainthemostdominanttechnology.onareasrequiringadditionalresearchanddevelopmentefforts.Towerdesignsforoffshorewindturbinesremaintubularsteelaccordingtothepatentdata.However,theneedWithinthiscontext,thisreportprovidesanoverviewtoreduceraw-materialintensitiesandcosts,hasdrivenofthelandscapeofoffshorewindenergytechnologiesinterestinalternativedesigns(concreteandlattice)andbyanalysingpatentingtrendswithinvariousconceptmodularapproaches.Between2002and2022,55%ofgroupingsinthistechnologyfield.TheconceptgroupingIPFswereascribedtolatticedesigns,withDenmarkandoffersadeeperlevelofgranularity,aswellasspotlightingGermanybeingtheleadinnovators.areaswhereinnovationishighandpotentialreasonsforit,includingmarket-drivenfactors.Patentdatafordrivetrainsrevealthepopularityofdirect-drivesystemsduetotheireffectivecost-weight-Thisstudyidentifiesapproximately17000patentfamiliespowerdensityratio,aswellasapreferenceforutilisingrelatedtooffshorewindenergytechnologiespublishedpermanentsynchronousmagnetgenerators.Betweenbetween2002and2022,aswellasrevealingasignificant2002and2022,twooutofeverythreeIPFsfiledfordrivesurgefrom2015onwards.Europeancountries,particularlytrainsweredirectedatdirect-drivesystems,withthisDenmarkandGermany,havetakentheleadingeneratingsharereaching80%between2018and2022).Denmark,inventions.WhileChinahasalsomadeconsiderableGermanyandUSAaredrivinginnovationinthisspace.contributions,itsfocushaspredominantlybeenonitsdomesticmarket,withonly4%ofitspatentfamiliesalsoBladescontinuetogrowlargeraswindturbinefiledoutsideChina.Thislowfigurecontrastswiththefactmanufacturersaimtoincreasethewindcapacityfactor.thatChinaaloneaccountsforalmosthalfoftheworld’sPatentdatarevealthatDenmarkistheleaderinthisarea,totalinstalledoffshorewind-powergeneratingcapacity.accountingforapproximately85%ofinventionsbetweenThismaybeexplainedbyasectoralmaturitylevel,which2017and2022.Thenumberofpatentsassociatedwithimplieseffectiveknowledgetransferacrossmarketsandbladerecyclabilityhasalsoseensignificantgrowthincompetitivetechnologycosts.recentyears.Intermsofinternationalpatentfamilies,Vestas[DK]EnergystorageisoneoftheareasshowingstrongistheleadingcompanyfollowedbySiemens[DE].Overgrowthinpatenting.Theneedforflexibilityoptionstime,thisindustryhasbeenshapedbyaseriesofmergersthatmaximisetheuseofoffshorewindenergyistheandacquisitions,afactorthatexplainsthethird-placedrivingforcebehindthisdevelopment.ThegrowthinrankingforSiemensGamesaRenewableEnergy[DK].hydrogen-relatedinnovationsasasourceofflexibilityisGeneralElectric[US],MitsubishiHeavyIndustries[JP],andparticularlyrelevant,withtheUSAtakingtheleadinthisHitachi[JP]alsoemergeaskeyplayersinthelistoftopIPFfield.In2022IPFdatapeakedat90inventionsrelatedtoapplicants.energystorage,ofwhich63%pertainedtostorageusinghydrogenproducedbyon-siteoffshoreelectrolysers.<TableofcontentsExecutivesummary1.Introduction2.Methodology3.Results4.Conclusionepo.org54OFFSHOREWINDENERGYPATENTINSIGHTREPORTIntermsofthehybridisationofoffshorewindwithPolicymakersusingpatentdatatoinformareasofcomplementarytechnologiessuchasoceanorsolarfocustopromoteoffshorewinddevelopmentandenergy,trendsinpatentingactivityarediametricallydeployment.Thisanalysisshowcaseshowusefulopposedtothoseseenintheenergystoragegroup,withpatentdatacanbeintermsofidentifyingareasatthefilingsdecliningsteadilysince2015.Thismaybeduetoforefrontofinventionactivity,aswellasinventionthesharpcostreductioninoffshorewindtechnologies,gaps.Inthecaseofoffshorewind,floatingfoundations,whichmakescombiningitwithothertechnologiesduetologisticsfortransportingandinstallingequipmentastheinherentcomplexityandhighcostsofthisapproach.wellastheproductionofgreenhydrogenareattractinginventionactivity.However,despitesomeactivityatGrid,cablesandassociatedprotectionsarenecessarypresent,greatereffortsarestillneededinareassuchastoensurethatoffshorewindprojectshaveaneffectiveelectricalinfrastructure,reduceddemandformaterials,channeltoconnectwithonshoreactivities.High-voltagehybridizationofenergygenerationsystemsanddirectcurrent(HVDC)transmissionisanoptionandsustainability.Governmentsmayconsiderstrengtheningbecomescost-effectiveforgridconnectionlengthstheirdialoguewithindustry,academiaandscientificbetween80and150kilometres.Therearealsoongoingcommunitytoaddressthoseaspects,aswellascontinueeffortstointroducedigitaltechnologiestomonitorandusingpatentdata,amongotherinformationsources,tooptimisetheseassets.Patentdatarevealagrowingfocusinformtheirdecision-makingintheenergyfield.onsubmarinecablesduetotheirtremendouscost-savingpotentialforthetransmissioninfrastructure.Francehasbeenidentifiedastheleadinginnovatorinthisspace,havingcreatedanicheforitself.Overall,growingpatentingactivityintheoffshorewinddomainpointstocontinuousgrowthintechnologicaldeploymentinthecomingyears.Theneedforarapidroll-outofoffshorewindpowerproductioncallsfortheongoingdevelopmentofinnovativesolutionsthatmakethetechnologymorecost-competitive.<TableofcontentsExecutivesummary1.Introduction2.Methodology3.Results4.Conclusionepo.org55OFFSHOREWINDENERGYPATENTINSIGHTREPORTGlossaryandnotesApplicantAperson(naturalperson)oranorganisation(i.e.legalentity,company)thathasfiledapatentapplication.Apatentapplicationmaybefiledbymorethanoneapplicant(jointapplicants).AssigneeAnapplicantwhodidnotoriginallyfiletheapplicationbutwhoacquireditfromthepreviousapplicant(assignor).BlueeconomyEconomicsystemthatseekstoconservemarineandfreshwaterenvironmentswhileusingtheminasustainablewaytodevelopeconomicgrowthandproduceresourcessuchasenergyandfood.CapacityfactorThecapacityfactorofapowerplantistheratioofitsactualoutputoveraperiodoftimetoitspotentialnominaloutputifoperatingconstantlyatfullnameplatecapacityoverthesameperiodoftime.Link:https://www.sciencedirect.com/topics/engineering/capacity-factorCitations(inaBackwardcitations(backintime):mainlyusedtodescribeareferencewithinapatentsearchpatent)reportthatdocumentsthepriorartrelevanttotheclaims.Forwardcitations:forwardintimeseenfromtheperspectiveoftheciteddocument;generallyacceptedasaproxyforpatentvalue.Co-applicantOneofthejointapplicants(see“Applicant”).DecarbonisationIncreasingtheshareoflow-carbonenergysources,particularlyrenewableenergysourcessuchaswindandsun.DFIG(doublyfedGeneratorthatallowstheamplitudeandfrequencyoftheoutputvoltagestobemaintainedatinductiongenerator)aconstantvalue,nomatterthespeedofthewindturbinerotors.Direct-drivewindturbineWherethegeneratorspeedisequivalenttotherotorspeedbecausetherotorisconnecteddirectlytothegeneratorwithoutgearboxDirect-drivewindWherethegeneratorspeedisequivalenttotherotorspeedbecausetherotorisconnectedturbinedirectlytothegeneratorwithoutgearboxEESG(ElectricallyGeneratorusingcoilsontherotor.excitedsynchronousgenerator)Electrolyser-Apparatusandtheprocessthatuseselectricitytoseparatethehydrogenandoxygeninwaterelectrolysismolecules.EPC(EuropeanPatentMultilateralinternationaltreatyinstitutingtheEuropeanPatentOrganisationandsettingConvention)outtherulesforgrantingEuropeanpatents.EPCcontractingstatesarethosecountriesthataremembersoftheEuropeanPatentOrganisation.ThemissionoftheEuropeanPatentOrganisationistograntEuropeanpatentsinaccordancewiththeEPC.EPO,EuropeanEuropeanPatentOfficeOrganoftheEuropeanPatentOrganisationthatexaminespatentPatentOfficeapplicationsandgrantsEuropeanpatentsinaccordancewiththeEPC.EuropeanpatentsmaybegrantedforallEPCcontractingstatesandmaybeeffectedinseveralnon-contractingstates(validationandextensionstates).EspacenetFreeservicefromtheEPOforsearchingpatentsandpatentapplications.Includesmorethan130milliondocuments.InternationalpatentPatentsthathavemorethanonecountryinthelistofpublications,assignees,inventorsorfirstfamily(IPF)prioritycountries.Usingthisconceptallowsidentification(andexclusion)ofsinglenationalfilingsthathavenofamilymembersinotherpatentjurisdictions.PatentsfiledattheEPO,WIPOandotherregionalpatentorganisationsarebydefaultIPF.<TableofcontentsExecutivesummary1.Introduction2.Methodology3.Results4.Conclusionepo.org56OFFSHOREWINDENERGYPATENTINSIGHTREPORTInventionTechnicaldevice,methodorusewhichisnew,non-obviousandmaybeappliedinindustry,includingagriculture.InventorApersondesignatedasaninventorinapatentapplication.Aninventorcanalsobeanapplicant.Aninventorisalwaysanaturalperson.Theremaybemorethanoneinventorperapplication.IRENA(InternationalIntergovernmentalorganisationrepresenting168MemberStatesandtheEuropeanUnion,RenewableEnergymandatedtofacilitateco-operationandpromotetheadoptionandsustainableuseofAgency)renewableenergyJurisdictionAcountryorcountries(territory)forwhichapatentmaybegrantedbytheresponsibleintellectualpropertyoffice.LatticetowerAtypeofsupportstructurethatisself-supportingwithmultiplelegsandcrossbracingofstructuralsteel.LCOE(LevelisedcostAveragecostoftheunit(kWh)generatedbyasystem.Itiscalculatedbytheratioofthetotalofenergy)annualisedcostofthesystemtothetotalelectricalloadserved.OceanenergyAllformsofrenewableenergyderivedfromthesea.Therearethreemaintypesofoceanenergy:wave,tidal,andoceanthermal.PatentapplicationDocumentdescribingtheinventionforwhichpatentprotectionissought.Itconsistsofclaimswhichdefinethescopeoftheinvention,descriptionwhichexplainstheinventionand(optionally)drawingswhichillustratetheinvention.PatentauthorityThepatentofficewhereapatentwasfiled.NormallyrepresentedusingaWIPOSTANDARDST.3code:wipo.int/export/sites/www/standards/en/pdf/03-03-01.pdf.PatentclassificationCPCorIPCclassifications:classificationschemeorsystemofcodesthatgroupsinventionsaccordingtotechnicalarea.Oftenusedinpatentanalyticstocreateuniformpatentsamples.PatentfamilyAsetofpatentdocumentscoveringthesameorsimilartechnicalcontent,dependingonthepatentfamilydefinition.Thesizeofthepatentfamilyreferstothenumberofpatentapplicationsinthefamily.PATSTATTheEPO’sPATSTATdatabasehasbecomeapointofreferenceinthefieldofpatentintelligenceandstatistics.Ithelpsusersperformsophisticatedstatisticalanalysesofbibliographicalandlegaleventpatentdata.PMSG(PermanentGeneratorwheretheexcitationfieldisprovidedbypermanentmagnetsinsteadofacoil.magnetsynchronousgenerator)PriorityfilingTheearliestpatentapplicationofafamilyfromwhichsubsequentapplicationsofthatfamilyclaimpriority.Theprioritydateisthedateonwhichtheearliestapplication(priorityapplication)wasfiled.SCIG(SquirrelcageConstantspeedgeneratorneedingagearbox.inductiongenerator)UtilitymodelAregisteredrightthatgivesitsholderanexclusiverighttoaninvention.Itisgrantedforalimitedperiodoftimeinreturnfordisclosureofthatinvention.Itusuallyrequiresalowerstandardforinventivestepthanapatent.Utilitymodelsareoftenissuedwithoutexamination,andthetermofprotectiontendstobeshorterthanthatofapatent.<TableofcontentsExecutivesummary1.Introduction2.Methodology3.Results4.Conclusionepo.org57OFFSHOREWINDENERGYPATENTINSIGHTREPORTDISCLAIMERRIGHTSANDPERMISSIONThedataandinformationpresentedinthisreporthaveUnlessotherwisestated,materialinthispublicationmaybeenproduced,prepared,compiledandpresentedwithbefreelyused,shared,copied,reproduced,printedand/theutmostcarebythetwocollaboratingorganisations,orstored,providedthatappropriateacknowledgementisnamelytheEuropeanPatentOrganisationandthegivenoftheEuropeanPatentOfficeandtheInternationalInternationalRenewableEnergyAgency.Nevertheless,RenewableEnergyAgency.Materialinthispublicationnoguaranteecanbegiventotheiraccuracyorthatisattributedtothirdpartiesmaybesubjecttocompleteness.separatetermsofuseandrestrictions,andappropriatepermissionsfromthesethirdpartiesmayneedtobeThefindings,conclusionsandinterpretationspresentedsecuredbeforeanyuseofsuchmaterial.inthereportcannotserveasabasisforanyexpectationsregardingfutureactionsormeasuresfromtheYoumaynotusethisworkforcommercialpurposes.collaboratingorganisations,theirgoverningbodies,ormembers.TheinformationcontainedhereindoesnotCITATIONnecessarilyrepresenttheviewsofallmembersoftheEPOandIRENA(2023),Patentinsightreport:Offshorecollaboratingorganisations.Thementionofspecificwindenergy,EPO,ViennacompaniesorcertainprojectsorproductsdoesnotimplythattheyareendorsedorrecommendedbytheAbouttheEPOcollaboratingorganisationsinpreferencetoothersofaTheEuropeanPatentOffice(EPO)examinesEuropeansimilarnaturethatarenotmentioned.Thedesignationspatentapplications,enablinginventors,researchersandemployedandthepresentationofmaterialhereindonotcompaniesfromaroundtheworldtoobtainprotectionimplytheexpressionofanyopiniononthepartofthefortheirinventionsinupto44countriesthroughacollaboratingorganisationsconcerningthelegalstatuscentralisedanduniformprocedurethatrequiresjustofanyregion,country,territory,cityorareaorofitsoneapplication.TheEPOiseffectiveandtransparent,authorities,orconcerningthedelimitationoffrontiersorrespondingtotheneedsofusersandagileinmanagingboundaries.thechangingdemandsandconditionsofadynamicglobalpatentsystem.TheEPO’sworkcontributestoaTheEuropeanPatentOrganisationandInternationalsafer,smarterandmoresustainableworld.RenewableEnergyAgencyshallnotbeliableforanydamages,cost,lossesorthird-partyclaimsresultingAboutIRENAfromtherelianceonthedata,information,findings,TheInternationalRenewableEnergyAgency(IRENA)conclusionsandinterpretationspresentedinthisreport.servesastheprincipalplatformforinternationalco-operation,acentreofexcellence,arepositoryofpolicy,technology,resourceandfinancialknowledgeandadriverofactiononthegroundtoadvancethetransformationoftheglobalenergysystem.Aglobalintergovernmentalorganisationestablishedin2011,IRENApromotesthewidespreadadoptionandsustainableuseofallformsofrenewableenergy,includingbioenergy,geothermal,hydropower,ocean,solarandwindenergy,inthepursuitofsustainabledevelopment,energyaccess,energysecurityandlow-carboneconomicgrowthandprosperity.<TableofcontentsExecutivesummary1.Introduction2.Methodology3.Results4.Conclusionepo.org58Followus►Visitepo.org►Subscribetoournewsletteratepo.org/newsletter►Listentoourpodcastatepo.org/podcastThisreportispublishedandeditedbytheEuropeanPatentOffice(EPO)andInternationalRenewableEnergyAgency(IRENA)©EPO,IRENA2023www.epo.orgwww.irena.orgAuthorsGeertBoedt(EPO)JohannesSchaaf(EPO)FranciscoBoshell(IRENA)JaidevDhavle(IRENA)GayathriPrakash(IRENA)JuanPabloJimenezNavarro(IRENA)FrancescoPasimeni(TechnologyUniversityofEindhoven–TU/e)AcknowledgementsChristophSinnPaulKomor(IRENA)MichaelTaylor(IRENA)DialaHawila(IRENA)GerardoEscamilla(IRENA)NazikElhassan(IRENA)LaurentLibeaut(EPO)DesignEuropeanPatentOffice