汽车动力电池全生命周期管理(英文版)--美国国家可再生能源办公室VIP专享VIP免费

NREL is a national laboratory of the U.S. Department of Energy
Office of Energy Efficiency & Renewable Energy
Operated by the Alliance for Sustainable Energy, LLC
This report is available at no cost from the National Renewable Energy
Laboratory (NREL) at www.nrel.gov/publications.
Contract No. DE-AC36-08GO28308
Technical Report
NREL/TP-5700-84520
February 2023
Electric Vehicle Lithium-Ion Battery Life
Cycle Management
Ahmad Pesaran
,1 Lauren Roman,2 and John Kincaide3
1
National Renewable Energy Laboratory
2
Everledger
3
2ndLifeBatteries.com
NREL is a national laboratory of the U.S. Department of Energy
Office of Energy Efficiency & Renewable Energy
Operated by the Alliance for Sustainable Energy, LLC
This report is available at no cost from the National Renewable Energy
Laboratory (NREL) at www.nrel.gov/publications.
Contract No. DE-AC36-08GO28308
National Renewable Energy Laboratory
15013 Denver West Parkway
Golden, CO 80401
303-275-3000 • www.nrel.gov
NREL/TP-5700-84520
February 2023
Electric Vehicle Lithium-Ion Battery Life
Cycle Management
Ahmad Pesaran
,1 Lauren Roman,2 and John Kincaide3
1 National Renewable Energy Laboratory
2 Everledger
3
2ndLifeBatteries.com
Suggested Citation
Pesaran
, Ahmad, Lauren Roman, and John Kincaide. 2023. Electric Vehicle Lithium-Ion
Battery Life Cycle Management
. Golden, CO: National Renewable Energy Laboratory.
NREL/
TP-5700-84520. https://www.nrel.gov/docs/fy23osti/84520.pdf.
NOTICE
This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable
Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding
provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Vehicle
Technologies Office. The views expressed herein do not necessarily represent the views of the DOE or the U.S.
Government.
This report is available at no cost from the National Renewable
Energy Laboratory (NREL) at www.nrel.gov/publications.
U.S. Department of Energy (DOE) reports produced after 1991
and a growing number of pre-1991 documents are available
free via www.OSTI.gov.
Cover Photos by Dennis Schroeder: (clockwise, left to right) NREL 51934, NREL 45897, NREL 42160, NREL 45891, NREL 48097,
NREL 46526.
NREL prints on paper that contains recycled content.
ElectricVehicleLithium-IonBatteryLifeCycleManagementAhmadPesaran,1LaurenRoman,2andJohnKincaide31NationalRenewableEnergyLaboratory2Everledger32ndLifeBatteries.comNRELisanationallaboratoryoftheU.S.DepartmentofEnergyTechnicalReportOfficeofEnergyEfficiency&RenewableEnergyNREL/TP-5700-84520OperatedbytheAllianceforSustainableEnergy,LLCFebruary2023ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratory(NREL)atwww.nrel.gov/publications.ContractNo.DE-AC36-08GO28308ElectricVehicleLithium-IonBatteryLifeCycleManagementAhmadPesaran,1LaurenRoman,2andJohnKincaide31NationalRenewableEnergyLaboratory2Everledger32ndLifeBatteries.comSuggestedCitationPesaran,Ahmad,LaurenRoman,andJohnKincaide.2023.ElectricVehicleLithium-IonBatteryLifeCycleManagement.Golden,CO:NationalRenewableEnergyLaboratory.NREL/TP-5700-84520.https://www.nrel.gov/docs/fy23osti/84520.pdf.NRELisanationallaboratoryoftheU.S.DepartmentofEnergyTechnicalReportOfficeofEnergyEfficiency&RenewableEnergyNREL/TP-5700-84520OperatedbytheAllianceforSustainableEnergy,LLCFebruary2023ThisreportisavailableatnocostfromtheNationalRenewableEnergyNationalRenewableEnergyLaboratoryLaboratory(NREL)atwww.nrel.gov/publications.15013DenverWestParkwayGolden,CO80401ContractNo.DE-AC36-08GO28308303-275-3000•www.nrel.govNOTICEThisworkwasauthoredinpartbytheNationalRenewableEnergyLaboratory,operatedbyAllianceforSustainableEnergy,LLC,fortheU.S.DepartmentofEnergy(DOE)underContractNo.DE-AC36-08GO28308.FundingprovidedbytheU.S.DepartmentofEnergyOfficeofEnergyEfficiencyandRenewableEnergyVehicleTechnologiesOffice.TheviewsexpressedhereindonotnecessarilyrepresenttheviewsoftheDOEortheU.S.Government.ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratory(NREL)atwww.nrel.gov/publications.U.S.DepartmentofEnergy(DOE)reportsproducedafter1991andagrowingnumberofpre-1991documentsareavailablefreeviawww.OSTI.gov.CoverPhotosbyDennisSchroeder:(clockwise,lefttoright)NREL51934,NREL45897,NREL42160,NREL45891,NREL48097,NREL46526.NRELprintsonpaperthatcontainsrecycledcontent.PrefaceThereisnoquestionthatelectricvehicles(EVs),whicharekeyforaddressingclimatechangeimpactsfromthetransportationsector,arequicklygainingpopularityandavailability.Withlimitsandotherchallengesrelatedtothesupplyofcriticalbatteryminerals,maximizingtheuseofEVbatteries,andensuringrecoveryofbatterymineralsisimperative.Therefore,properend-of-life-cyclemanagement(reuseandrecycling)ofthesebatteriesmustbepartoftheEVecosystemfromtheperspectiveofboththesupplychainandenvironmentalfootprint.Thisreportisstructuredintotwosections.Thefirstsectiongivesatechnicaloverviewofthereuseandrecyclingtechnologiesforelectricvehiclebatteries,aswellastheopportunitiesandobstaclesinachievingtheircirculareconomy.Thesecondsectionsurveysworldwideinitiatives,includingthoseintheU.S.,bygovernmentsandindustrytopromoteandregulatetheresponsiblemanagementofbatteriesthroughouttheirlifecycle.Seconduseofbatteriesforenergystoragesystemsextendstheinitiallifeoftheseresourcesandprovidesabufferuntileconomicalmaterialrecoveryfacilitiesareinplace.Althoughtherearemultiplepathwaystorecyclingandrecoveryofmaterials,newrecoverytechnologiesaremovingtowardcommerciallyavailablehydrometallurgyandpromisingdirectrecycling,whichanalysishasshownhasthelowestoverallcarbonfootprint.Strategicallylocatingtheseplantsclosetobatterycollectionfurtherreducestransportationandthusrecyclingandrecoveringcosts.Properlifecyclemanagementcouldalleviatefuturelithium-ionbatterymaterialssupplychainsforEVs.GovernmentsandotherstakeholdersaroundtheworldhavestartedinitiativesandproposedregulationstoaddressthechallengesassociatedwithlifecyclemanagementofEVlithiumbatteries.Finally,asmanufacturersareincreasinglyfacedwiththelikelihoodofsuchextensiveregulatoryrequirements,attentionshouldbegiventonewdesigns,sales,andservicemodelsthatcanreducelifecyclemanagementcosts.iiiThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryatwww.nrel.gov/publications.AcknowledgmentsWeappreciatetheinsightsandinputprovidedbythefollowingindustryexpertsandseveralorganizationsduringearlystagesofthisworktomakethisreportmorerelevant.Thecontentofthisworkistheauthors’understandingoftheirinputanddoesnotreflecttheviewsoftheseexpertsandorganizations.Althoughwehavepermissiontousefiguresfromvarioussources,itdoesnotimplyanyendorsementofthecontentfromthesesources.•InstituteofScrapRecyclingIndustries•InternationalFederationofAutomotiveEngineeringSocieties•EnergyStorageAssociation•RenataArsenault,FordMotorCompany•NataliaArtal,ApplusIDIADA•ScottAustin,Everledger.io:AIMIoTWorkingGroupChair•RajaBadrinarayanan,Ansys•JoeBrittan,ZeroEmissionsTransportationAssociation•SteveChristensen,ResponsibleBatteryCoalition•ToddCoy,CirbaSolutions•JenniferDiggins,Albemarle•BobGalyen,GalyenEnergyLLC:SAEBatteryStandardsSteeringCommitteeChairman•CarolineGodkin,CalEPA•KrisHunter,GlobalBatterySolutions•DarnellJones,Stellantis•CameronKinsey,Everledger•AjayKochar,Li-Cycle.com•KellenMahoney,SuppliersPartnershipfortheEnvironment•LeaMalloy,CoxAutomotive•HansEricMelin,CircularEnergyStorage.com•TonyMola,AutomotiveServiceAssociation•SeanO’Day,TitanAdvancedEnergySolutions•ChandanSawhney,TataMotors•PrasannaSrinivasan,Parker.com•MichaelStapelbroek,Ing.,FEV•LauraWagner,FordMotorCompany•BrittanyWestlake,ElectricPowerResearchInstitute•GinnyWhelan,AutomotiveRecyclersAssociation•MichaelWorry,NuvationEnergyLtd•RossZambanini,Parker.comivThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryatwww.nrel.gov/publications.ListofAcronymsBESSbatteryenergystoragesystem(s)BMSbatterymanagementsystemEUEuropeanUnionEVelectricvehicleEVBelectricvehiclebatteryFTLfulltruckloadIoTInternetofThingsLIBlithium-ionbatteryLTLlessthantruckloadNFCnear-fieldcommunicationNiMHnickelmetalhydrideOEMoriginalequipmentmanufacturer(canrefertoautomotiveandbatterybrandsorpartsapproved/certifiedbythebrand)PEVplug-inelectricvehicle(eitherbattery-electricvehicleorplug-inhybridelectricvehicle)RAINultrahighfrequencyradiofrequencyidentificationRFIDradiofrequencyidentificationSOCstateofchargeSOHstateofhealthSPSuppliersPartnershipfortheEnvironmentvThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryatwww.nrel.gov/publications.ExecutiveSummaryTherehasbeensignificantgrowthinannualsalesofplug-inelectricvehicles(EVs)inthelast12years,fromthousandsannuallytomillions(Kane2021).ThishasbeendrivenlargelyduetoEVs’attractivefeaturesofbetterdrivingperformance,improvedbatteryenergydensity,lowerfuelcost,reducedenvironmentalfootprint,and,ofcourse,incentivesofferedbygovernmentsaroundtheworld.Proposedbansonsalesoflight-dutygasolineanddieselvehiclesby2030–2035arealreadyinplaceinIndia,Ireland,theNetherlands,Denmark,Norway,andtheUnitedKingdom.ManyothercountriesandnowsomeU.S.stateshavealsosetEV-onlysalestargets.IntheUnitedStates,China,EuropeanUnion(EU),UnitedKingdom,andCanada,EVsalesjumped41%toaround3millionvehiclesin2020,despitethesalesofinternalcombustionenginevehiclesdroppingby15%duetotheCOVID-19pandemic.Globalelectricvehiclesalesreached10percentofallnewcarssoldin2022,anincreasefrom8.3percentin2021.(Klender2023)AsthekeycomponentpoweringEVs,electricvehiclebatteries(EVBs)arepoisedtoplayamajorroleinmakingtransportationcleanerwhileaddressingclimatechangeandimprovingenvironmentalquality(Muratorietal.2021;Lietal.2015).Lithium-ionbatteries(LIBs)arecurrentlytheonlychoiceforEVBs,atrendthatispredictedtoremainwellintothefuture(Xuetal.2020).Properlifecyclemanagement(repair,reuse,recycle,anddisposal)ofLIBsmustbeamajorconsiderationfortheirdevelopmentandimplementation(VTO2021).OptimallymanagingEVBsduringuseandpotentialsecondlifeandensuringresponsiblerecyclingatendoflifeareessentialforsupportingthesegoalswhilesecuringasustainablesupplyofcriticalbatterymetalsandmineralsforEVBsandstationarystoragesystemswellintothefuture.TheobjectiveofthisreportistoinformallstakeholdersinthelifecyclemanagementofEVBsofglobalinitiatives,challenges,andopportunitiesforoptimumEVBlifecyclemanagementandtoencouragecollaborationtosupportasustainableEVBindustrywellintothefuture.Thisreportisdividedintotwomajorsections:(1)technicalaspectsofrecyclingandreuseand(2)regulations,initiatives,andstakeholderperspectives.Thefirstsectionpresentsatechnicaloverviewofthereuseandrecyclingtechnologiesforelectricvehicle(EV)batteriesandtheopportunitiesandchallengestheyfaceincreatingacirculareconomy.Wehighlightthecrucialroleoflithium-ionbatteries(LIBs)intransitioningtocleanenergyandexaminethecurrentmethodsforextractingcriticalbatteryminerals.Weexplorehowbatterydesignaffectsrecyclingandreuseanddiscussinnovativealternativestoconventionalbatterylifecyclemanagementthatcouldenhancerecyclingandreuseefforts.Thesecondsectionreviewsglobalinitiatives,includingthoseintheU.S.,aimedatpromotingandregulatingtheresponsiblemanagementofbatteriesthroughouttheirlifecycle.Weexaminetheincreasingnumberofinitiativesandregulationsdesignedtoensureasustainableenergyfutureandprovideperspectivesfromvariousindustrystakeholders.Additionally,weintroducenewdatamanagementandotherstrategiesthatcouldsimplifycomplianceandfosteracirculareconomyforEVbatteries.CreatingacirculareconomytomanageEVBswillhelpnationsmeetcriticalglobalgreenhousegas/carbondioxidereductiontargetsandsecurealong-termsupplyofbatterymineralsrequiredtosupportthis.Wehopethisreportwillstimulatebroaddiscussionandactionacrossindustrysectorstoensureasustainablenewenergyfuture,makingacirculareconomyforEVBsareality.viThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryatwww.nrel.gov/publications.TableofContentsExecutiveSummary...................................................................................................................................vi1Reuse,Recycle,andReimage.............................................................................................................11.1WhyElectricVehicles?.................................................................................................................11.1.1ElectricVehicleBatteries.................................................................................................21.1.2CurrentLithium-IonBatteryTechnologiesandMaterials...............................................21.1.3KeyLithium-IonBatteryMaterials:CurrentandFuture.................................................31.1.4EVBRecoveryTechnologies...........................................................................................31.2SecondLife...................................................................................................................................41.2.1Second-LifeBatteryMarket.............................................................................................51.2.2ValueofSecond-LifeBatteries........................................................................................51.2.3Second-LifeBatteryMarketEvolutionandChallenges...................................................61.2.4Second-Life“BigLift”.....................................................................................................61.3End-of-LifeLithium-IonBatteryRecyclingTechnologies...........................................................71.3.1Pyrometallurgy.................................................................................................................71.3.2Hydrometallurgy..............................................................................................................71.3.3DirectRecycling...............................................................................................................81.4EVBRecyclingChallenges...........................................................................................................91.4.1ValueorCost?..................................................................................................................91.4.2TransportationCosts......................................................................................................101.4.3BatteryReverseLogistics:MeetingRegulatoryRequirements.....................................101.4.4ReducingTransportationCostsandImpacts..................................................................111.5StateofEVBDesign:RecyclingChallenges&Opportunities...................................................121.5.1DisassemblyConstraints................................................................................................121.5.2ThermalMaterials..........................................................................................................121.5.3Plastics&Composites....................................................................................................141.5.4NewDismantlingSolvents&Solutions.........................................................................141.6OtherBatteryLifeCycleManagementModels..........................................................................151.6.1BatteryasaService........................................................................................................151.6.2BatteryLeasing..............................................................................................................151.6.3EnvironmentalHandlingFee.........................................................................................161.6.4Free-MarketModel........................................................................................................161.6.5DualModel:BatteryasaService/Leasing&EnvironmentalHandlingFee..................161.7Conclusions.................................................................................................................................162Regulations,Initiatives,andStakeholders’Perspectives..............................................................172.1StakeholderChallengesandOpportunities.................................................................................172.1.1LifeCycleStakeholdersSurveyResults........................................................................182.2TechnologiesToProvideEVBDataforStakeholders................................................................212.2.1BarriersandOpportunitiesforAccessingBatteryData.................................................212.2.2AccessingBatterySOHandSOCWhentheBMSIsIntact..........................................212.2.3BMSDataviaTelematics..............................................................................................222.2.4BatteryStateofHealthCaptureOutsidetheVehicle:UltrasonicTesting.....................222.2.5IdentificationofSecond-LifeSOHCaptureMethods....................................................222.3InformationTechnologiesSupportingBatteryDataSharing......................................................232.3.1IoTEnablingBatteriesandCriticalPartsforTrackandTrace......................................232.3.2DataSharingThroughoutBatteryLifeCycles...............................................................242.3.3Lithium-IonBatteriesandAdvancedInformationTechnology:TheBatteryPassport..242.4GlobalInitiativesandRegulations..............................................................................................262.4.1GlobalInitiativesToIncreaseEVAdoption..................................................................262.4.2ChineseInitiatives..........................................................................................................27viiThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryatwww.nrel.gov/publications.2.4.3GlobalBatteryAlliance..................................................................................................272.4.4EUGreenDeal:StrategicActionPlanonBatteries.......................................................272.4.5UnitedStatesGovernment.............................................................................................272.4.6USStateGovernments...................................................................................................292.4.7EuropeanBatteryAlliance.............................................................................................292.5Regulations..................................................................................................................................302.5.1ChinaProducerResponsibility.......................................................................................302.5.2EuropeanCommissionProposedBatteriesRegulation..................................................302.5.3GermanBatteryAct.......................................................................................................312.5.4Japan’sLawonPromotionofEffectiveUtilizationofResources,2001.......................322.5.5CaliforniaEnvironmentalProtectionAgency................................................................322.5.6MassachusettsRighttoRepair.......................................................................................332.6StakeholderInsightsandPerspectives........................................................................................332.6.1AutomotiveRecyclersAssociation................................................................................332.6.2AutomotiveServiceAssociation....................................................................................332.6.3EnergyStorageAssociation...........................................................................................342.6.4EVBRecyclers...............................................................................................................342.6.5ElectricVehicleOEMs...................................................................................................352.6.6ZeroEmissionTransportationAssociation....................................................................352.7Conclusions.................................................................................................................................36Glossary.....................................................................................................................................................37References.................................................................................................................................................38viiiThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryatwww.nrel.gov/publications.ListofFiguresFigure1.AnnualsalesofpassengerEVs—past5yearsandfutureprojections...........................................2Figure2.Projectedavailablelithium-iontonnageforreuseandrecyclingbyapplicationintheUnitedStates........................................................................................................................................4Figure3.BatterydisassemblychallengesforrecyclingEVBs...................................................................13Figure4.Packdisassembly—thermoplasticmaterialschallenges..............................................................14Figure5.EVBindustrystakeholders(notincludingregulatoryagenciesorinterestedassociations)........18Figure6.KeyresultsofthesurveybySP’sResponsibleBatteryWorkingGroup....................................20Figure7.Blockchain,autoID,anddatacapture.........................................................................................25Figure8.Datasharingonablockchainplatform........................................................................................26Figure9.ProposedEuropeanCommissionBatteriesRegulation...............................................................31ListofTablesTable1.AdvantagesandDisadvantagesofVariousLIBRecyclingTechnologies......................................9Table2.RecyclingValueofCurrentMajorLithium-IonBatteryChemistries..........................................10Table3.DataPointsIdentifiedbySPSurveyRespondents.......................................................................19Table4.SampleSurveyResultsFromInstituteofScrapRecyclingIndustriesMembersontheValueofInformationAboutEVBAttributesWithRespecttoHandling.............................................21ixThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryatwww.nrel.gov/publications.1Reuse,Recycle,andReimageInthisfirstsection,weexplainwhylithium-ionbatteries(LIBs)arekeytoourtransitiontocleanenergyanddescribethecurrenttechnologiesforrecoveringcriticalbatteryminerals.Weexplorehowbatterypackdesignscanhamperorsupportrecyclingandreuseefforts,andhowsomealternateapproachestotraditionalbatterylifecyclemanagementcanhelpincreaserecyclingandreuse.Thissectionfocusesonlithium-ionlifecyclemanagement,sowewillnotcovernickelmetalhydride(NiMH)batteriesthathavesuccessfullybeenusedinhybridelectricvehiclesinthelast20years.Currently,morethan50%ofnewhybridelectricvehiclesuseLIBs.Thesebatterysizesrangefrom0.6–1.4kWh,whereasanelectricvehicle(EV)LIBsizerangesfrom40–100kWh.Therefore,withlargeEVmarketpenetration,theamountofend-of-lifeLIBwouldbemuchlargerthanthoseofNiMHbatteries.Currently,manyofthecollectedNiMHbatteriesfromvariousstakeholders(e.g.,dealers,autorecyclers)havebeenrefurbishedandsoldasaftermarketreplacementforhybridelectricvehiclebatteries(BestHybridBatteries2022).SomeNiMHmodulesarepackagedintopowersystemstoprovidebackuppower(Hiraietal.2000)fordevelopingcountries.WhenNiMHbatteriesnolongerhaveenergyorpower,theycanberecycledtorecovernickelandothervaluablemetals(ERI2022;Call2Recycle2022).1.1WhyElectricVehicles?Therehasbeensignificantgrowthinannualsalesofplug-inelectricvehicles(PEVs)inthelast10years—fromthousandsannuallytomillions(Dobson2021).ThishasbeendrivenlargelybyEVs’attractivefeaturesofbetterdrivingperformance,improvedbatteryenergydensity,lowercost,reducedenvironmentalfootprint,and,ofcourse,incentivesanddeadlinesimposedbygovernmentsaroundtheworld.Bansonsalesofgasolineanddieselvehiclesby2030arealreadyonthebooksinIndia,Ireland,theNetherlands,Denmark,Norway,andtheUnitedKingdom(WhatCar?2021).ManyothercountriesandnowsomeU.S.stateshavealsosettargetsforEV-onlysalesby2035.IntheUnitedStates,China,EuropeanUnion(EU),UnitedKingdom,andCanada,EVsalesjumped41%toaround3millionvehiclesin2020,despitethesalesofinternalcombustionenginesdroppingby15%duetotheCOVID-19pandemic(EV-Volumes2021).BySeptember2021,PEVsaccountedfor10%oftheglobalpassengermarketforthefirsttime(Kane2021).Firstquarter2021globalEVsalessoared140%to1.1millionvehicles,andBloombergNEF(2019)forecaststhatby2030,annualsalesofPEVswillreachmorethan20millionglobally.Figure1providesaforecastoffutureannualEVsalesaroundtheworld.Ascanbeseen,asignificantamountofEVsispredictedtocometomarket,requiringasignificantmassofmaterialsformakingbatteriesfortheseEVs.1ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryatwww.nrel.gov/publications.Figure1.AnnualsalesofpassengerEVs—past5yearsandfutureprojections.Source:VTO(2021)1.1.1ElectricVehicleBatteriesTheseprojectionstranslatetotheneedforasignificantamountofbatteries.LIBtechnologyhasbecometheenergystorageofchoiceforPEVsbecauseofitshighperformanceanddecreasingcosts.AnnualdemandforLIBsisprojectedtoexceed2TWhby2030(BloombergNEF2019).In2020,400,000tonsofcathodematerialswereusedinLIBs,anumberthatisprojectedtorisetoabout1.2milliontonsby2030(Zhouetal.2021).1.1.2CurrentLithium-IonBatteryTechnologiesandMaterialsCurrently,LIBsarethemainchoiceforconsumerelectronics,electric-drivevehicles,andgridenergystorageduetotheirhighenergyandpower,longevity,modularity,andrelativelylowcost.InrechargeableLIBs,lithiumionsmovefromtheanodethroughanelectrolytetothecathodeduringdischarge,andviceversaduringcharge.Electricvehiclebattery(EVB)technologyiscontinuouslyimproving,withaimstoreducecost,size,andweight;improvesafety;extenddrivingrange;enablefastercharging;andmuchmore.Unlikemanyotherbatterytypes(likeleadacid),LIBscanbemadefromdifferentchemistriesforanodes,cathodes,andeventheelectrolyte.Thecurrentchoicesforcathodesareolivine(typicallylithiumironphosphate),spinel(typicallylithiummanganeseoxide),andtransitionmetaloxides(cobaltoxide,nickelcobaltaluminum,andvariousformulationsofnickelmanganesecobalt)(BatteryUniversity2021).Currentanodechoicesincludegraphite,hardcarbon,lithiumtitanate,2ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryatwww.nrel.gov/publications.andsilicon-carboncomposites,butgraphiteisthemostusedincommercialLIBs.Pairingtheseanodesandcathodesprovidesbatterycellswithdifferentvoltages,energyandpowerdensities,cyclelife,calendarlife,cost,andsafetythresholds.Currently,nickelcobaltaluminumandhigh-nickelnickelmanganesecobaltcathodesmatchedwithgraphiteareusedinEVsbecauseoftheirhighspecificenergy,relativelylongcycleandcalendarlife,andreasonablecost.1.1.3KeyLithium-IonBatteryMaterials:CurrentandFutureKeymaterialsusedincurrentandadvancedLIBsarelithium,cobalt,nickel,manganese,copper,aluminum,graphite,organicelectrolyte,polyolefin,plastics,salts,andsmallamountsofotherelements.Cellcomponentsalsoincludecopperandaluminumcurrentcollectors,polypropyleneseparators,carbonateelectrolytes,LiPF6salts,andorganicbinders.Accesstocobaltcouldbechallengingandleadtopricespikes(Azevedoetal.2018).ThereisenoughlithiumandnickeltosupplymillionsofEVs,butproductioncapacityislimited.CobaltisthehighestmaterialsupplyriskforEVBsduetoavarietyoffactors,includingresourceavailability,miningpractices,andenvironmentalimpact.ThereareconcertedeffortstoreduceoreliminatetheamountofcobaltinEVBs(usinghigh-nickelcathodes)whileincreasingspecificenergy(VTO2018).Withpriceincreases,environmentalminingissues,andlimitedreserves,cobaltcanbeariskychoice.Supplychainriskisasignificantconcern,particularlyfromgeographiclocationsthathaveunsustainableenvironmental,political,andfinancialimpacts.Toalleviatesupplychainissues,optionsinclude(EERE2019):1.Replacingchemistrieswithlowcobalt(lessthan50mg/Wh)ornocobaltand/orotherearth-abundantmaterials.2.Findingasecondaryuseforbatteries.3.RecyclingLIBsattheendoflifetorecovermaterialstobereintroducedintofuturebatteries.1.1.4EVBRecoveryTechnologiesDatainFigure2predictadramaticincreaseintheUnitedStatesinthenumberofend-of-lifeEVBsby2030.Thesespentbatterieswillneedtobereusedinsecond-lifeapplicationsorrecycledforrecoveryofvaluablematerials.Thisgraphexcludesbatteriesfromconsumerelectronicsandpowertools,andinsteadfocusesonmoredemandingandhigher-capacityautomotive,stationarystorage,uninterruptedpowersupply/backup,andmarineapplications.InaccordancewiththeU.S.EnvironmentalProtectionAgency’swastemanagementhierarchy(U.S.EnvironmentalProtectionAgency2022),thebestapproachtolifecyclemanagementistoeliminatethepossibilityofwasteinthefirstplace(reduceandreuse),followedbyrecyclingtopreventwasteandrecovervaluablematerials,usingtheenergyinwastetocreatepower,and,asalastresort,disposal.Forthepurposesofthisdiscussion,wewillbypassrepairandrefurbishment,whichenableEVBstocontinuepoweringanautomobile,andfocusonsecondlifeandrecycling.3ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryatwww.nrel.gov/publications.Figure2.Projectedavailablelithium-iontonnageforreuseandrecyclingbyapplicationintheUnitedStates.CourtesyofHansEricMelinofCircularEnergyStorage1.2SecondLifeExpectedrapiduptakeinEVsalesdemandsrequiresadvanceplanningforwhenbatteriesreachendofuseinacar.Currently,EVmanufacturersprovidebatterywarrantiesfor8–10years(Najman2021),takingresponsibilityforanyrepairsorreplacements.Ifthewarrantyisvoidedforanyvarietyofreasons,orifithasreacheditsendofusefullifefortheEVorendofthevehiclelife,thesebatteriescouldgothroughdifferentpathsofremanufacturing,refurbishing,swapping,andrepurposing(secondlife)andeventuallybecomeavailableforrecycling.Afterthewarrantyperiod,thebatteriesusuallylastlongerduetoimplementationofdesignmarginsbyoriginalequipmentmanufacturers(OEMs).SomeexpertsbelieveEVBscanperformwellforanother2–6yearsbeyondwarranty,givingabatterylifeof12–16yearsinavehicle(Melin2021).Thiscalendarlifecouldbeimpactedbychargingbehavior(e.g.,repeatedfastchargingordischargingdegradesbatterylife)orenvironmentalconditions,suchasexposuretoextremeheatorcold.AccordingtotheUnitedStatesAdvancedBatteryConsortium,abatterycouldlose20%ofitscapacityandpowerbytheendofavehicle’slife.Therefore,theyrecommenda20%extramarginforthebatterycapacityandpoweratthebeginningoflife.Inotherwords,abatteryreachesitsendoflifewhenithaslostmorethan20%ofcapacityorpower(UnitedStates4ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryatwww.nrel.gov/publications.AdvancedBatteryConsortium2020).Consideringindividualdrivinghabitsanddistances,batteriesatmuchlowercapacitycancontinuetoperformwellbelowthislevel.WhenEVBsarenolongersuitableforpoweringacar,thereisoftenenoughremainingcapacitytoprovideastationaryenergysourceforrenewableenergystorageforgridand/orhomepowerbackup(Neubauer,Wood,andPesaran2015).1.2.1Second-LifeBatteryMarketSecond-lifebatteriesareend-of-first-useEVBsthathaveusebeyondthatinacar(Motavalli2022).Theremainingcapacitycanbemorethansufficientformostenergystorageapplications;thesecond-lifebatterycancontinuetoworkforanother10yearsormore(Neubaueretal.2015).1.2.2ValueofSecond-LifeBatteriesBatterysecondlifehasbeenstudiedbyseveralresearchers(Neubaueretal.2015;Martinez-Lasernaetal.2018;Hossainetal.2019).Thevalueofbatteriesforsecondlifeextendsfarbeyondthecostsavingsofusingexistingbatteriestomakenewones.Besidesvaluemeasuredindollarsperkilowatt-hour,second-lifebatteryvaluationalsopresentsthefollowingopportunities:•Providingpowertothosewithoutaccess.Populationsthatliveinareaswithlittleornoenergyinfrastructureordependablegridsupport(e.g.,SouthAfrica’srollingblackoutsorPuertoRico’sunstablegridafterHurricaneMaria)haveenergyrequirementsforbasichumanneedsincludingheat,water,medicalservices,education,andmuchmore.Second-lifebatteriescanprovideeconomicalenergystorageforrenewableenergyintheseareas.•Supplychainchallengesfornewbatteries.Criticalmineralreservesforkeybatterychemistriesareeitherinshortsupplyorconcentratedinareasoftheworldwherehumanrightsandchildlaborviolationsatthemine(andinthesupplychain)arerampant.Supplychainscanalsobedisrupted(e.g.,COVID-19),causingdelaysforweeksormonthsfornewbatteriestobecomeavailable.Inaddition,mineralprocessingcapacityfornewbatteriesiscurrentlynotsufficienttomeettheworldwidecommitmentsanddeadlinesfortransitioningtozero-emissionvehicles(Ballingeretal.2019).•Offsettinglithium-ionbatteryrecyclingcosts.Currently,LIBswithhighcobaltornickelcontentshavepositivevalue(evenaccountingforcostoftransportation)whenrecycled.However,LIBssuchaslithiumironphosphatebatteriesthathavelowornonickelorcobaltcontentinthecathodesareusuallyofnegativevaluewhenrecycled;thatis,thecostofrecyclingexceedsthevalueofmaterialsrecovered,suchasiron(ZhuandChen2020).Ontheotherhand,batteriesthataresuitableforsecondlifecurrentlygeneraterevenueandhavealowerenvironmentalfootprint.Forexample,whenminingtruckbatterypackspoweredbylithiumironphosphatecannolongerbeusedtopowerthevehiclebuthaveampleresidualenergy,theycanbecomeoff-gridsecond-liferenewableenergystationarystoragesystems.Thiscanoffsetdieselgeneratorfuelcostsatthemineandresultingemissions.•Affordability.Onecritiqueofsecond-lifebatteriesisthatwiththepriceofnewbatteriescontinuingtodecline,spendingtimeandmoneyonusedbatterieswillnolongerbepractical.However,forlower-demandapplicationssuchasbackupinruralareaswheretheuseofnewLIBswouldnotbefeasible,thereducedcostofthebatteriescouldopennewdoors.TheNationalRenewableEnergyLaboratoryhasdevelopedatechno-5ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryatwww.nrel.gov/publications.economicanalysistoolthatprovidesinsightontheeconomicviabilityofsecond-lifeapplicationsdependingonvarioustechnicalandeconomicfactors(Neubaueretal.2012).•Scalabilityofsupplyofsecond-lifebatteries.Currently,manyhybridsandEVBsareworkingwellbeyondthewarrantyperiodbecausetheyarenotcycledasoftenasdesignedfor.Ifthistrendcontinues,agrowingnumberofbatterieswillbesuitableforsecondlife.Alarger,morestablesupplycanreduceproductioncostsperkilowatt-hour.1.2.3Second-LifeBatteryMarketEvolutionandChallengesThesecond-lifebatteryindustryhasevolvedfromrecovering18650cellsfromlaptopsandotherconsumerdevices(1kWh)todeveloping10-kWhorlargerenergystoragesystems.YouTubehasmanyexamplesofthese“Powerwall”-type(Tesla2021)developmentsusingoff-the-shelforself-developedbatterymanagementsystemsoftwareandhardware.Somearenotreadyforcommercialization,whileothershavebeen“productized”tobeusedasresidentialsolarenergystoragesystems.Mostnotably,andparticularlyfordo-it-yourselfandsmallproducers,manyarenotbeingULorCSAcertifiedtoensuretheyhavebeenindependentlytestedtomeetrecognizedstandardsforsafetyandperformance.UL1973(energystorage),UL1974(second-lifeEVconversiontostationaryenergystorage),UL9450EnergyStorage,andUL9450a(fireprevention)protocolsareveryexpensiveandcanbeeasilyignoredbysmallerproducers(ULSolutions2021).Assuch,someoftheseproductsaresolddomesticallytounawareconsumersorshippedoverseastocountriesthatmaynotrequiresuchfireandelectricalsafetystandards.Suchproductscouldposeaseriousfireriskiftheengineeringandlackoftestinghideunrealizedhardwareorsoftwarefaults.Inaddition,theopportunityforrecyclingthesebatteriesmaybesmallornonexistentinmanyofthesecountries.1.2.4Second-Life“BigLift”Theseproblemsaside,thevaluethatcanbeachievedfromsecondlifehasignitedbusinessinterestfromautoOEMsandentrepreneursalike.OEMswithbattery-as-a-serviceorbatteryleasingmodelscantakeadvantageofowningthebatteriesattheendoffirstlifebyprofitingfromsecondlife.Thiscanalsobeonerousforthesecond-lifedevelopersinceitrequiresseveralimportantsteps.Second-lifecompaniesfacea“biglift”inmarketidentification;systemdesign,building,testing,andUL/CSAcertification;andmarketingthenewsecond-lifebatterysystem.Thesetasksalsoinclude:1.Identifyingcustomersthatneedasolutionforwhichasecond-lifesystemmayoffermorevalue.2.Findingmarkets,designingasolution,andprovidingcustomerserviceandsupport,whichinvolves:A.Findingmarketing,sales,andengineeringtalent.B.Sourcingenoughofthesamemodelsandtypesofsecond-lifebatteries.C.Harmonizingthedifferentpowercapacitiesofthemodulessocellormodulebalancingissafe.D.Buildingorusingabatterymanagementsystemandhardware.E.ULorCSAcertifyingthebatteries.6ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryatwww.nrel.gov/publications.F.Sellinganddeliveringlong-termcustomerservicesupport.G.CombiningandintegratingdifferentbatterychemistriesfromdifferentEVs.H.Thereareagrowingnumberofcompaniesspecializinginvariouspartsofthesecond-lifeecosystem(e.g.,testingequipment,reverselogistics,repurposing).Partneringcanreducethe“biglift”thatwouldberequiredforanindividualcompanytodeliverfullvaluetothecustomer.1.3End-of-LifeLithium-IonBatteryRecyclingTechnologiesTheprimarygoalofLIBrecyclingistorecovercriticalmineralssuchasnickel,cobalt,andlithiumfromthecathode,alongwithothercompoundssuchashigh-gradegraphitefromtheanode(Gaines2018).EVBsarealsocomposedofotherpotentiallyrecyclablematerialssuchassteel,aluminum,copper,andplastics,butforthepurposeofthisreportwefocusoncriticalbatterymineralsusedinthecathodeandanode.TorecoverthesematerialsfromLIBs,therearethreemajortechnologiescurrentlyinvariousstagesofcommercialization:pyrometallurgy,hydrometallurgy,anddirectrecycling(Harperetal.2019).Inadditiontothesemethods,mechanicaltreatment(throughdisassembly,crushing,shredding,andseparation)isamajorelementofanyrecyclingtechnology.Therearealsonewmethodsbeingdeveloped,includingtheuseofroboticsformoreefficientdisassembly,ultrasoundforimprovedmetalsseparation,chemicalremovalofimpuritiesfromblackmass,separationthroughelectroplatingorelectrochemistry,andmuchmore.Wefocushereoncurrentlyavailablerecyclingtechnologies,notingthatdirectrecyclingisnotyetwidelyavailable(seeTable1foracomparison).1.3.1PyrometallurgyPyrometallurgyistheprocessofhigh-temperaturethermaltreatmentofbatteriesinafurnacetoextractmetalsandintermediatecompoundsthatcanbefurtherprocessedtocreatebattery-gradeprecursors(Assefietal.2020).Thefeedstocktoapyrometallurgyplantcouldbethewholebatteryortheblackmass.Theoutputcouldbemetalalloysandotherbyproductssuchasslag.Thesealloysarethenfurtherrefinedtomaketheinputlithium-ioncathodebatterychemicals.Pyrometallurgyisenergy-intensive,andtheplantsrequirelargecapitalinvestment.Aswithanysmeltingprocess,impuritiesinthemeltedalloyinthefurnaceneedtoberemoved.Thisisdonebyaddingmineralsthatfloattothetopofthemeltedalloy.Thislayerisknownasslagordross.Unfortunately,thedrossalsocapturesthemuchlighter(intermsofdensity)lithiumcompounds.Thedrossisthenpouredoffandseparatedfromthetargetmeltedalloys.Thenetresultisthatthecapturedlithiumisoftenlostintheslagheapunlessrecoveredinanadditionalhydrometallurgicalprocess.Slagcanbeaddedtoconcretetomakeitstrongerforcommercialapplications.Althoughitistechnicallypossibletorefinethedrossfurthertorecoverthelithiumcompounds,itisnoteconomicallyfeasibletodoso.Umicore,amajorproducerofcathodematerialsfromoresandrecycledbatteries,hasindicatedthattheycanrecoverlithiumintheirnewprocessthatincorporateshydrometallurgy(Umicore2022).Low-valuesodiumsulfateisabyproductofhydrometallurgicalprocessing.1.3.2HydrometallurgyHydrometallurgicalprocessinguseschemicaltreatmenttoextractthekeycompoundsintheblackmass,includingthelithiumcompounds(Viecelietal.2021).Theprocessusesleaching7ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryatwww.nrel.gov/publications.fluidssuchasinorganicacid,organicacid,alkali,orevenbacteriasolutionsthatdissolvemetalsincathodetosaltsthatcanbeusedasprecursorstomakenewcathodes.Theprocessinvolvesaseriesofchemicalmethodssuchasprecipitation,solventextraction,andelectrolyticdepositiontomakedesiredcompounds.Thisprocesshasamuchhigherrateofmetalcompoundrecovery,includinglithiumcompounds.Hydrometallurgicalplantsusemuchlessenergythanpyrometallurgyplants.Inaddition,theplantsizecanbemuchsmallerthanthoserequiredforpyrometallurgy,thusneedinglesscapitalinvestmentandpossiblylessenvironmentalpermittingandpermitacquisitiondelay.HydrometallurgicalprocessesarecurrentlyconsideredthemostsuitablemethodforrecyclingLIBs.Commercialplantsalreadyexist,andseveralstartupsarebuildingplantsintheUnitedStatesandCanadabasedonthehydrometallurgicalapproach.1.3.3DirectRecyclingDirectrecyclinginvolvesrecoveryofcathodewhilemaintainingitsmolecularstructure,ratherthanbreakingitdownintoconstituentmetalsforreprocessingintobattery-gradecathode.Eliminatingthesestepsmakestheprospectofdirectrecyclingmosteconomicallyviable(Gainesetal.2021).Indirectrecycling,theblackmassfeedstock(fromshreddingandseparationoperations)needstobefurtherrefined.Someimpuritiesaretakenoutwithintheshreddingprocess,suchasbindersandplasticswithinblackmass.Theseareofnovalue,andshippingitonlymovesthewastefurtherupstreamandaddsunnecessaryshippingcostsintermsofweightandvolumewithinatruckorcontainer.Thedirectrecyclinginvolves:•Binderremoval.•Separationofcathodefromanodeandothercomponents.•Separationofdifferentcathodesfromeachothertotheiroriginalformula.•Rejuvenationofthecathodebyrelithiation(theagedcathodemayloselithium).•Removalofimpurities.•Upcyclingtoproducenewcathodematerialscompetitivewithfuturecathodes.Forexample,ifanEVBpackwasmostlymadefromnickelcobaltmanganeseoxidewithequalstoichiometry(NMC111)cathode,directrecyclingprocesseswillresultinthesameformulationofNMC111thatneedstoberelithiated,impuritiesremovedandthenupcycledtoafuturecathodesuchaswithhighernickelandlowercobaltcontents.DirectrecyclingisstillintheR&Dstage,butanalyseshaveshownthatitcouldbeeconomicallyandenvironmentallysuperiortohydrometallurgy.Pilotplantsneedtodemonstratethatthetechnologycanbebuilteconomicallyatcommercialscale.Aspreviouslyindicated,LIBsaremadeofmanychemistrieswithfrequentlyupdatedreformulationsandwillcontinuetobeinthefuture,sothesechemicalvariationscouldpresenttechnicalandeconomicchallengesindirectrecyclingprocesses.8ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryatwww.nrel.gov/publications.Table1.AdvantagesandDisadvantagesofVariousLIBRecyclingTechnologies.Sources:Gaines(2018);Harperetal.(2019);Assefietal.(2020).Note:mechanicaldisassemblyispartofthethreetechnologies.RecyclingtypePyrometallurgyHydrometallurgyDirectRecyclingTemperatureSmeltingChemicalleachingPhysical/chemicalDischarge/shreddingHighLowLowrequirementsWastewaterNotmuchYes,neededYes,neededMaterialsrecoveredLeastMoreSomeCo,Ni,Cualloys;(Li+Metalsorsalts,Cathode,anode,Sortingrequired?Alslag)orLicarbonateLi2CO3orLiOHelectrolyte,metalsEnergyrequirementsNoYes,lessdegreeYesCapitalcostsHighMediumLowHighMediumMedium(notknownyet)Yes(UnitedStates,NoCommerciallydeployed?Yes(EuropeandAsia)Europe,Asia)1.4EVBRecyclingChallenges1.4.1ValueorCost?Outofthefiveleadingtypesoflithium-ionEVBsonthemarket(notincludingNiMH,whichismainlyusedinhybridelectricvehicles),onlytwoarecurrentlyproducingnetrevenueafterlogisticsandrecyclingcosts.Table2liststhefivemajorcathodecompoundblendsandindicatespositiveornegativevaluebaseduponmostoftoday’srecyclingmarkets.AsbatteryrecyclinginfrastructureincreasesgloballyanddemandforEVBmineralscontinuestosoar,itisexpectedthatformostchemistries,therecoveredmineralvaluewillsoonexceedlogisticsandprocessingcosts,enablingrecyclerstopayforusedbatteries.Thispositivevaluecanhavefar-reachingimplicationsonencouragingrecyclinganddiscouragingdangeroussituationssuchasstoragestockpiling.9ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryatwww.nrel.gov/publications.Table2.RecyclingValueofCurrentMajorLithium-IonBatteryChemistries.Source:Harperetal.(2019)CathodeAcronymPossiblePositiveValuePricingLCOCathodeNameandGeneralFormulationNMC(NxMyCz)Lithiumcobaltoxide(LiCO2orLCO)NCALithiumnickelmanganesecobaltoxide(LiNxMnyCozO2)Lithiumnickelcobaltaluminumoxide(LiNiCoAlO2)AcronymNegativeValuePricingLFP(cathode)NameandGeneralFormulationLTO(anode)Lithiumironphosphate(LiFePO4)Lithiumtitanate(Li4Ti5O12)1.4.2TransportationCostsAbout50%ormoreofthecostofrecyclinganytypeofLIBistransportation(Daietal.2019),foravarietyofreasons:•SizeandweightofEVBs•EVBscanbebulkyanddifficulttopackinawaytotakeadvantageofthetruck’sfullcapacity,increasingthecostperpoundtoship•Lowvolumes•Highertransportationratesfromless-than-truckload(LTL)shipments•Specialpackingandhandlingrequirementsfordamaged,defective,orrecalledbatteries.oU.S.DepartmentofTransportationpackagingregulationsfordamaged,defective,orrecalledbatteriesincreasethedimensionalvolumeofeachofthesebatteriesinthetruck,furtherreducingthenumberofbatteriesthetruckcanaccommodate.•FewavailablerecyclingfacilitiesoftenmeansshippingbatterieslongdistancesforrecyclingSinceOctober2019,shippingcostsperpoundhavesteadilyincreased,followedbyahugejumpin2021becauseoftheCOVID-19pandemic’simpactonsupplychainsworldwide.Shortagesofbothprofessionaltruckdriversandintermodalcontainers,alongwithotherdisruptions,haveputstrainsontransportationnetworks.Asaresult,batteryrecyclingtransportationcostshaveappreciablyrisen,squeezingpotentialnetprofitmargins.1.4.3BatteryReverseLogistics:MeetingRegulatoryRequirementsAsrequiredbydomesticandinternationallaw,transportationofhazardousmaterial(“hazmat”)requirestheshipper,transporter,andreceivertobetrainedandcertifiedtolegallyoffer,transport,andreceiveandsignthebilloflading(shippingdocument)whenshippingEVBsandotherLIBs.WhenanEVBismovedatendofcarlifevialessthantruckload(LTL)orfulltruckload(FTL),thecostcanbequitevariable.Toavoidmultiplemoves,itisbeneficialtodiagnosebatteriesin-fieldandshipthemtothenearestqualifiedrefurbisher,second-lifedeveloper,orprocessor,and10ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryatwww.nrel.gov/publications.ifpossible,shipinFTLs.ConsolidatingLTLshipmentstoawarehouseandthenshippingthemagaintoaprocessoraddsunnecessarycostandcarbonfootprint.Usingthesamecarrier,a“merge-in-transit”methodcanaggregategeographicallydispersedLTLpickupsdestinedtothesameaddressandtimethemsotheyareconsolidatedbythecarrier’snearestlocalterminalanddeliveredasasingleLTLvolumeorFTLshipment.Merge-in-transitcanworkwithFTLorcontainersdestinedandcoordinatedforrailoroceanshipping.FederalregulationsallowNiMHbatteries(49CFR172.102;IMDG117&963)andlithium(49CFR173.185(a)(b)(d))batterieswithsolidoutercontainmentwallstobehazmatshippedwhensecurelystrappedontopallets.If,however,theoutershellofanLIBisnotsolidorisbroken,ashippingcontainermustbeused.Thewatt-hourcapacityandthestateofhealth(i.e.,whetherdamaged,defective,orrecalled)willdeterminethetypeofhazmatpackagingandshippingrequirements.FTLtransportationcostscanvaryfromafewhundreddollarsforone-timeuseinanon-UN-ratedcontainer(i.e.,onapallet)tothousandsofdollarsforUN-ratedhazmatpackagingmaterialsrequiredforshippingdamaged,defective,orrecalledLIBs.Reusingundamagedhazmatpackagingmultipletimesprovidesvaluablepackagingsavings,evenwhenfiguringinthecostofreturntransportation.1.4.4ReducingTransportationCostsandImpactsRailvs.HighwayUsingrailforlong-distanceshippingcanreducecosts.Althoughrailtakesabitlongerfordelivery,pricesonsimilartranscontinentalintermodalrailshipmentsintheUnitedStatesin2021werearound30%lessthantruckcosts.InanexampleoftrucktravelfromLosAngeles,California,toSyracuse,NewYork,railwouldpreventgenerationofabout4,410poundsofgreenhousegasemissionscomparedtotrucktransitoverthe2,768-miletrip,or1.6poundsofcarbondioxidepermile.HubandSpokeThecathodematerialinEVBsthatrecyclersareprimarilyinterestedinisacomponentofthecellsthatmakeupthemodulesthataccountformostEVBpackvolume.Assuch,disaggregatingthebattery“closetohome”wheremarketsformanynon-cathodematerialsareplentifulandthenonlyshippingthemodulesorcellsforcathoderecoverymakesgoodeconomicsense.Onewaythemarketisaddressingthisistheemergenceandgrowthofprimaryrecyclingbusinessesthatdisassemblepacksandshipmaterialsdownstreamforfinalrecovery.Dependingonbatterydesign,thesebusinessesgenerallyshipwholemodulescontainingthecellsor,ifpossible,removeandpackthecellsforshipmenttofurtherprocessing.Inaddition,somelargerbatteryrecyclingcompanieshaveadopted“hub-and-spoke”modelswhereinitialprocessingfacilitiesarestrategicallylocatedtoreducetransportationcosts.Thesefacilitiessometimesinvolveshreddingoperationsthatgrindandseparatemoduleandcellmaterialstoproduce“blackmass,”whichcontainsthecathodematerials.Thecathodematerialsarethenshippedtofinalcathoderecoveryoperationswherebattery-grademineralsareproduced.11ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryatwww.nrel.gov/publications.1.5StateofEVBDesign:RecyclingChallenges&OpportunitiesConsideringwearestillintheearlystagesoftransitiontowardelectrification,EVengineeringhasfocusedprimarilyonthebestbatteryperformancewiththelowestcost.Onecost-cuttingmeasureistheuseofnon-serviceablecomponentsinanEVBpack,leadingtocostlydisassemblyattheendoffirstlife.Increasingly,however,OEMsaredesigningEVpackswithserviceabilityinmind.Thesamedesignprovisionsthatfacilitateserviceabilityarealsofavorableinreducingcostsofreuseandrecycling.Figure3providesanoverviewofbatterydisassemblychallengesinvehicles.1.5.1DisassemblyConstraintsTherapiduptakeinEVsandimpendingregulationsarelikelytoquicklyimploreEVengineerstotakeabroaderviewondesignforcircularity.Theargumentforserviceable/reusableEVBsalsostrengthensascellsbecomesafer,cheaper,andmoreefficient.Automakersandsuppliersarealreadyusingordevelopingwaystotackletheseproblems.Oneexampleistheuseofserviceableadhesivesandseals,whichinsomecasescanalsobereused.Exploringthecostassociatedwithdesignandpackagingdecisionsateverylevelwillhelpacceleratethistransition.1.5.2ThermalMaterialsThesafetyandstabilityofbatterycellsdependsonmaintaininginternaltemperatureswithinspecificlimits.Ifthetemperatureexceedsthecriticalleveloneitherend,thermalrunawaycanoccur,destroyingthebatteryor,evenworse,startingafire.Thermalrunawayisachainreactionwithinabatterycellthatcanbeverydifficulttostoponceithasstarted.Itoccurswhenthetemperatureinsideabatteryreachesthepointthatcausesachemicalreactiontooccurinsidethebattery.Thischemicalreactionproducesevenmoreheat,whichdrivesthetemperaturehigher,causingfurtherchemicalreactionsthatcreatemoreheat.Inthermalrunaway,thebatterycelltemperaturerisesincrediblyfast(milliseconds)andtheenergystoredinthatbatteryisreleasedverysuddenly.Thischainreactioncreatesextremelyhightemperatures(around752°F,or400°C).Thesetemperaturescancausegassingofthebatteryandafirethatissohotitcanbenearlyimpossibletoextinguish(DragonflyEnergy2022).Severalfactorscanleadtothermalrunaway,includinginternaldefectsthatcancauseshorts,externalimpactsorpunctures,andevenovercharging.Althoughbatteriesaredesignedtominimizetheseoccurrences,thereisstillaheavyrelianceoninsulatingmaterialstopreventthermalrunaways(i.e.,fromoverheating)andtohelpcontainthemiftheydooccur.12ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryatwww.nrel.gov/publications.Figure3.BatterydisassemblychallengesforrecyclingEVBs.ImagefromKapilBaidya,TataMotorsDuringtheengineeringprocess,protectinghigh-voltagepartsisparamount(e.g.,cellsseparatedintomodules).Untilrecently,cellmanufacturers,packintegrators,andEVmakershavefocusedonreducingbatterycost,increasingenergy,andextendingbatterylifewhilemeetingsafetyrequirements.Assuch,designforrecyclingandsecondaryusehasnotbeenatoppriority.Nowthatbatterycostshavedecreasedandperformancehasimproved,thereismoreattentiontorecyclingandreuse.Thisinteresthasbeenacceleratedoverthelastyear,particularlybecauseofrecentsupplychainissuesandgovernmentpoliciestoproducebatteriesandbatterymaterialsdomestically.Withsafetybeingthehighestpriority,movingfromtraditionalthermalmaterialstomoreeasilyremovableandrecyclablealternativescouldbeadifficulttransition.However,therateofdevelopmentandadoptionofsafercellchemistriesthatarelesspronetofirescouldhelpacceleratethistransition.Regulationsonminimumserviceabilityorreusewillalsohelpprioritizethisasoneofthekeyattributesthatengineersmustconsider.Advancedsimulationtechnologiesalsoofferacost-effectivewayforbatteryengineerstoexperimentwithdifferentmaterialsanddesignsthatcanhaveapositiveimpactonrecyclability.13ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryatwww.nrel.gov/publications.Figure4.Packdisassembly—thermoplasticmaterialschallenges.PhotofromKerryManning,ExperimentalVehicleEngineering1.5.3Plastics&CompositesAnotherbatteryrecyclingchallengeinvolvesplasticsandcompositematerials.Polycarbonateblendsarewellsuitedformanufacturingmodules,housingparts,cellholders,andcrashabsorbersforelectriccarbatteries.Theyarelightweightyetrobustanddimensionallystableand,dependingonrequirements,theyalsocomeequippedwithflameretardants.Althoughthesethermoplasticscanhelpreducebatteryweightandprovidesomethermalprotection,unlesscarefullyselected,thesematerialsareoftendifficultornotpracticaltorecycletooriginalmaterials(seeFigure4).Again,simulationexercisescanhelpacceleratethetransitiontomoreenvironmentallyfriendlymaterials(Moore2019).Thermoplasticsmaypresentobstaclesforpackrepairandreuseofcellsinsecondaryapplications,aswellashindertheabilitytorecyclethembacktotheoriginalformulation.Nevertheless,thelowerdensityofthesematerialsisexpectedtonotaffecttherecyclingandrecoveryofmetalsusedinlithium-ionbatteries,andactuallybeusefulforseparationfromothercomponentsaftermechanicalshreddingprocesses.1.5.4NewDismantlingSolvents&SolutionsOfcourse,problemsalsodriveinnovation.Oneexampleisabathchemistrythatallowsforpassive,non-manualremovalofbatterycellsfrommodulesandpacksthataregluedtogetherwithadhesives.Theseinnovativematerialsswelltheengineeredadhesives(urethanes,acrylics,silicone,andepoxies)untiltheinternalstresseswithinthebasepolymerexceeditsbondingforcetothecell,causingadhesives,coatings,andtapestode-bondfromcellwallsandcoolingplates14ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryatwww.nrel.gov/publications.suchthatthecellscanberecoveredpassively.Thesolidresidualmaterialcanthenbefilteredandremoved.Thefilteredrecyclingsolutioncanbereusedmultipletimestocontinuerecyclingcells.Processeslikethesenotonlyoptimizedisassembly,butalsoreducehazardouswastedisposalcostswithcircularprocesses.TheEuropeanCommissionandlegislativebodiesacrosstheglobeareproposingandenactinglegislationtopromotethereuseandrecyclingofEVBstoprotecttheenvironmentandensurealong-termsupplyofbatterymineralsandmaterials(discussedinSection2).Manyoftheseregulationsplaceresponsibilityforthecostofrecyclingonthevehiclemanufacturers.Toreducethesecosts,electricvehicleOEMswillbeworkingmorecloselywithbatterysuppliersondesignsthatreducedisassemblyandrecyclingcostsandrecovermorematerial.TheEuropeanCommission’sproposedBatteriesRegulationalsoincludesrequirementstodeclarelevelsofrecycledcontentinbatteriesby2025andincreasethelevelsrequiredin2030andagainin2035.Thesetypesofincentiveswillreducethecostofrecyclingwhileincreasingmaterialrecoverylevels.1.6OtherBatteryLifeCycleManagementModels1.6.1BatteryasaService“Batteryasaservice”isabusinessmodelwheretheconsumercanpurchasebatteryservicesfromthevehicleOEMorbatteryassetcompanymonthlyratherthanpurchasingthebatterywiththecar.Anadvantageofthisbusinessmodelisthatbyremovingthecostofthebatteryfromthetotalpriceoftheelectricvehicle,theupfrontcostofthevehicleisreduced,whichlowersthefinancialburdenontheconsumerandcangeneratemoreEVsales.Thisalsofreestheconsumerfromthefearofrapidbatterydepreciation.TheOEMorbatteryassetcompanywouldtakecareofvaluemanagementissuessuchasmaintenance,salvage,andriskofobsolescence.Bymaintainingownership,theelectricvehicleOEMhasboththeopportunitytorepurposethebatteriesforsecondlifeandtheassuranceofresponsiblerecycling,reducingrisk.Currently,RenaultandNioaretwoofveryfewvehicleOEMsofferingthisoptionforcertainmodels.1.6.2BatteryLeasingInanEVBleasingmodel,consumerswouldnothaveownershipofthebattery,norwouldtheyhavetopaythepurchasepriceupfront.Theywouldhaveexclusiveaccesstothebatteryforacertainperiodandwouldmakeafixedmonthlypayment,whilethecaritselfcouldbepurchasedorleased,reducingupfrontpurchasecosts.ThisbusinessmodelshiftspartoftheriskfromconsumerstotheOEMandreducesuncertaintiesregardingtheresidualvalueofthecar.TheOEMwillprovideareplacementbatterywhenrequired.Asbatterytechnologyadvances,customerswillbeabletoreplaceanoldbatterywithanewerandimprovedone.Underthisbusinessmodel,OEMswillhavetheopportunitytoresellolderbatteriestothestationarystoragemarketforsecondaryuse.AccordingtotheMcKinseyInstitute,OEMscouldaddmorethan$1,000inrevenuepervehiclethroughasuccessfulbatteryleasingprogramduringanassumedleasetermof5years.OnechallengeposedbythismodelariseswhenaconsumerdecidestoselltheirusedEV.Sincetheydonotownthebattery,theymustsettletheissuewiththeOEM.Becauseofthis,someOEMsthatusedthismodeltoreducethepurchasepriceofthecarhaveceaseddoingso.That,however,surfacednewproblemsfortheOEM:Notretainingownershipofthebatteryhampers15ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryatwww.nrel.gov/publications.theirabilitytofullymanagetherestofthebattery’slife,lesseningsecond-lifeopportunitiesandtheabilitytovalidateend-of-battery-liferecycling.1.6.3EnvironmentalHandlingFeeThismodelputstheresponsibilityforrecyclingthebatteryontheuserofthevehiclebychargingthemafeeattimeofpurchase(whenthevehicleisnew).Themoneypaidforrecyclingisheldbyathird-partyorganizationandusedtopayforthebattery’srecyclingwhenandwhereitcomesoutofthemarket.Themodelconsidersrevenueearnedfromend-of-car-lifebatteriesthatareeitherresoldintothesecond-lifemarketorrecycledtorecovervaluablemetals.ThismodelremovescomplexityfortheOEM,whileatsametimeincreasingthepriceofthenewvehicleattimeofpurchase(whichmayreducemarketpenetration).1.6.4Free-MarketModelInafree-marketmodel,naturalsupply-and-demandeconomicsguidetheoutcome,namelywherebatterieswillbeatendoflifeandwhowillultimatelypayfortheirrecycling.Thismodelwillputavalueonend-of-car-lifebatteriesthatcanberefurbishedorusedforsecondlife,whileatsametimedevaluinganoldercarwithbatteriesthatwillneedtobereplaced,requiringthenewbuyertobudgetforanewbattery.Companiesthatoperateattheendofthevaluechain—notablyautorecyclers—willbepenalizedinthismodel,astheywillbeholdingoldEVBsandfacingrecyclingcosts.Thiswillreducethevaluetheycanbidonavehicleatauction,whilealsocausingasafetyissuewithusedEVBsstoredinyards.Thismodelhasclearwinnersandnon-winners.1.6.5DualModel:BatteryasaService/Leasing&EnvironmentalHandlingFeeAtwo-modelapproachwillworkbasedonabuyvs.service/leasedecisiontobemadebytheconsumer.Iftheconsumeroptsforserviceorleasingwhentheyacquirethevehicle(bothoptionsareequivalentforthisexample),theOEMassumesresponsibilityforpayingforend-of-car-lifemanagementofthebattery,andthiscostisbuiltintotheservice/leasingpricing.Ifthecarbuyeroptstopurchasethevehicle(withcashortraditionalfinancing/leasing),theywillbechargedanenvironmentalhandlingfeethatcoversthecostofmanagingthebatteryatendofcarlife.Thismodelputsthedecisioninthehandsofthebuyerwithoutthemfeelinglegislatedbythegovernmentasthesoleoption.1.7ConclusionsEVsandthebatteriesthatpowerthemarekeytoelectrificationoftransportationandreducingtheimpactsofclimatechange.Manufacturersandotherstakeholdersareawareofthesupplychainchallengesforbatterymineralsandtheimportanceofinnovatingbatterydesignsandrecoverytechnologiesthatcaneaseandreducethecostsofrecyclingprocesses.Timeisoftheessence,however,asregulatorsaroundtheglobeareproposingandimplementingregulationsthathavefar-reachingimpactsonEVmanufacturers.TheseareexploredinSection2.Engagingwithstakeholdersnowandcreatingprofitablecirculareconomysolutionswillhelpeasetheseimpactsandpossiblystaveoffsomeofthemostdifficultprovisionsbeingproposed.16ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryatwww.nrel.gov/publications.2Regulations,Initiatives,andStakeholders’PerspectivesInthissection,weidentifysomeoftherelatedglobalinitiativesandregulations,includingtheproposedEuropeanBatteriesRegulation,whichwillimpacteverystakeholderinthesupplyandvaluechains.Surveysofautorecyclers,batteryrecyclers,repurposers,andothersrevealtheneedforcriticalbatterydatatoreducecostsandimprovesafety.Informationtechnologiessuchasblockchainholdgreatpromiseforsharingthesedata,andnewtechnologiessuchasthosecapturingbatterystateofhealth(SOH)andstateofcharge(SOC)areimprovingthelikelihoodofextendedbatteryuseandtrackingbatteriesforrecycling.Properengagementfromstakeholders,policymakers,andregulatorsinlifecyclemanagementcouldalsoalleviatefuturelithium-ionbatterymaterialssupplychainsforEVs.2.1StakeholderChallengesandOpportunitiesFigure5identifiesthekeystakeholdersinthelifecycleofEVBsfromproductionthroughthewarrantyperiodandontopossibleend-of-lifereuseandrecycling.PleasenotethattheflowofEVBsduringtheirlifecyclesisfarfromlinearandthattheimageinFigure5ismostlyintendedtoidentifyallthepartiesthatmayengagewithhandlingofbatteries,notnecessarilyinorder.Thelifecyclebeginswiththebatterybeingdeployedintoavehicleandmovesontothedealership,repairs,secondlife,andrecycling.AsdiscussedinSection1,recyclingisoftenconductedintwophases,withaprimaryrecyclerremovingmodules,cells,orcathodesandthenmovingthosematerialstoasecondaryrecycler,whoemployseitherpyrometallurgical,hydrometallurgical,orperhapsdirectrecyclingforcathoderecovery.AlthoughFigure5doesnotexplicitlyincludelogisticsproviders,theyarekeystakeholdersandsharesimilarchallengesinensuringthatbatterieshavebeenproperlyidentifiedandthestateofhealthisknowntoensureaspectssuchaspackingandplacardingfollowtransportregulations.17ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryatwww.nrel.gov/publications.Figure5.EVBindustrystakeholders(notincludingregulatoryagenciesorinterestedassociations).Thisimagedepictsmostofthestakeholders,butflowofbatteriesnotalwayslinearfromonetoanother.2.1.1LifeCycleStakeholdersSurveyResultsInMarch2020,theSuppliersPartnershipfortheEnvironment’s(SP’s)ResponsibleBatteryWorkingGroupconductedasurveyofitsmemberstoidentifychallengesandopportunitiesinEVBmanagement.1SPisaforumforglobalautomotivemanufacturersandtheirtieredsupplierstoworktogethertowardasharedvisionforanautomotiveindustrywithapositiveenvironmentalimpact.Theworkinggroup,consistinglargelyofrepresentativesofautomotiveOEMsandEVBrecyclersandrepurposers,identifiedinformationanddatapointsaboutEVBsthatmembersindicatedtheywouldliketohaveaccessto.Table3identifiestheresultsofthosedatapointsandinformationneeded.Pleasenotethattherewasatotalof20surveyresponders,5ofwhichwere1ProvidedbyKellenMahoney,SuppliersPartnershipfortheEnvironment(https://www.supplierspartnership.org/).18ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryatwww.nrel.gov/publications.vehicleOEMs.Assuch,theresultsdonotrepresentthebroadviewoftheentireindustry.Werecommendconductingalargersurveywithparticipationfrommanystakeholders.Table3.DataPointsIdentifiedbySPSurveyRespondents.DatafromKellenMahoney,SuppliersPartnershipfortheEnvironment,2021.•IdentificationofanyOEMdesignatedbatteryrepurposersand/orrecyclers•Transportationrequirements(regulatory,suchaspacking,permits,andplacarding)•IdentificationofpartstoreturntovehicleOEMordesignatedparties•Keydisassemblyandsafetyinstructionsandtoolsrequired•Stateofcharge•Stateofhealth•Newbatteryvoltage•Chemistry•Manufacturingdates(pack,modules,cells)•Batteryconfigurationdiagram•Batterybillofmaterials•Vehicleidentificationnumber(VIN)orotheridentifiers•Weightanddimensions.TheAutomotiveRecyclersAssociation2andtheInstituteofScrapRecyclingIndustries3werealsoengagedtolearnwhatautorecyclersandotherscrapprocessorsencounteringEVBsneedtoknowaboutthebatteries.AllthreeorganizationsofferedthelistofdatapointsinTable4frommembersurveystolearnwhatinformationwasmostcriticaltomembers,withsomeoverlappingresults.2DatafromVirginiaWhelan,AutomotiveRecyclersAssociation(http://a-r-a.org).3FromDavidWagger,InstituteofScrapRecyclingIndustries(https://www.isri.org/).19ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryatwww.nrel.gov/publications.Figure6.KeyresultsofthesurveybySP’sResponsibleBatteryWorkingGroupThetopdatapointsidentifiedbyrespondersintheSPsurveywere:1.Chemistry2.Keydisassemblyandsafetyinstructionsandtoolsrequired3.Stateofhealth.Inaddition,theAutomotiveRecyclersAssociationaskeditsmemberanoverarchingquestion:WouldhavingaccesstoinformationaboutEVbatteriessuchvehiclemakeandmodel,condition,history,stateofcharge,etc.priortoacceptingoracquiringanEVbebeneficial?Outof30responders,83%saidyesandonly17%saidno.TheInstituteofScrapRecyclingIndustriesalsoaskeditsautorecyclermemberswhatbatteryinformationwouldhavethemostvalue.Figure6showstheresults,withthefollowinginpriorityorder:1.Workersafety2.Marketinformation3.Condition/stateofcharge/SOH.20ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryatwww.nrel.gov/publications.Table4.SampleSurveyResultsFromInstituteofScrapRecyclingIndustriesMembersontheValueofInformationAboutEVBAttributesWithRespecttoHandlingSafeMarketCondition/AgeVehicleDetailedDetailedHandling/ValueLevelInfoStateofMake/ModelLifeCycleActivityRemovalInfoChargeHistoryRecordsNone/little051126474758Reasonable16263232163221Extremelyhigh84685842372121Rank1234567ArespondenttotheAutomotiveRecyclersAssociationsurveyprovidedaparticularlypoignantcommentinresponsetothefollowingstimulus:Shareanyexperiences,goodorbad,withEVbatteriesthatmightinformthiseffort:“Currently,otherthanreusemarkets,thevalue(forrecycling)ofLi-ionbatteries(EVorhybrid)isnegative,andthatisanexpensethatwillnotbeacceptedbytheautoorscraprecycler.ThereshouldbeanimmediatedialoguewithALLstakeholderstofindareasonablesolutiontothisloomingproblem—hopefullywithoutburdensomegovernmentalregulation/intervention—whichwillotherwisebetheresult.”Tothisend,thispaperidentifiesoptionsforimplementationofEVBlifecyclemanagementandtheperspectivesofindustrystakeholderswhocanprovideleadershiptocarryoutsolutionstheyseeasbestfortheindustrytodayandwellintothefuture.AsuiteofnewtechnologieshasemergedandcontinuestodevelopthatcanhelpEVBecosystemstakeholdersaccessandshareinformationforoptimalbatterymanagement.Theseareidentifiedanddiscussedlaterinthisreport.2.2TechnologiesToProvideEVBDataforStakeholders2.2.1BarriersandOpportunitiesforAccessingBatteryDataDuetothecomplexitiesandrisksarounddata,electricvehicleOEMs’positionsonsharingbatterydatavarywidely.Somebatterymanagementsystem(BMS)dataareconsideredintellectualpropertyandarethusproprietary.Therearealsoconcernsthatcertaindatamightcompromiseconsumerprivacy.Somemightconsidersharingcertaindataforafeeoraspartofusingoftheirbatterypackinsecond-lifeapplications.SomeOEMsalreadyparticipateinprovidingbatteriesandassociateddatatothird-partyintegratorsandinstallers.Asthenumberofsecond-lifebatteriesincreasesincomingyears,andpotentialbusinesscaseforsecond-lifeapplicationsimproves,otherOEMsmightconsiderengagementinsecond-lifeapplications.2.2.2AccessingBatterySOHandSOCWhentheBMSIsIntactABMSistheinformationcenterofabattery.ItcontrolsandmonitorsthechargeanddischargeofrechargeablebatteriesinEVs,alongwithcellphones,laptops,andmyriadconsumerdevices.ThejoboftheBMSistokeepthebatterysafeandingoodcondition.Duringitslifeinthecar,theBMScommunicatescriticalbatterydatatotheonboarddiagnosticssystem,whichtracksandregulatesthevehicleperformance.Withthepropertools,dealerships21ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryatwww.nrel.gov/publications.andindependentautoserviceproviderscanaccessthisinformationtoprovidewarrantyorrepairservices.2.2.3BMSDataviaTelematicsBatterydata(temperature,current,voltage,andstateofchargeasafunctionoftime)canalsobesharedviatelematics,whichisessentiallyatrackingdeviceinstalledinavehiclethatenablesthetransmissionandstoringoftelemetrydata,whichcanincludelocation,speed,acceleration,brakinginformation,andmore.China’sGB/Tstandardrequiresvehicletelematicssystemstotransmitbatterydatatoanationalcloud-basedanalyticssystemthatpublishestheoutputonadashboardthatisavailableinthepublicdomain.Thisprovidesbatterymanufacturerswithcriticalinformationforwarrantyclaimsandcanalsobevaluabletootherstakeholderswhocanenhancesafetyandefficiencyintheirprocessesbyknowingchemistry,stateofhealth,andothercriticalinformationaboutthebattery.Itshouldbenotedthatdatacanalsobepartitionedsothatonlycertaindataareaccessiblebycertainpermissionedparties.2.2.4BatteryStateofHealthCaptureOutsidetheVehicle:UltrasonicTestingAchallengetothesecond-lifelithium-ionmarketisgradingcellsormodulestoclearlyunderstandtheSOH.Thisisrequiredfortwopurposes:1.GroupingbatterieswithasimilarSOHinastringsothatthebatteriescanchargeanddischargeatsimilarratesorprofiles.2.Knowingtheremainingusablelifeofthebatterytounderstandthecommercialvalueandappropriateapplications(suchasreuseorrecycling).Thistypeofevaluation(measuringvoltage,current,andtemperature)hastypicallybeenaccomplishedwithtraditionalbatterycyclersusingaprocessknownascoulombcounting,whichessentiallycompletesonetotwocompletecharge/dischargecyclesandmeasurestheelectronsinandelectronsouttodeterminetheusablecapacityofthecellormodule.Thisprocessisaccuratebutalsoverytime-consumingandrequirestrainedindividualsusingexpensivelab-gradeequipment.Recently,arapidbatterytestingtechnologyhasbeendevelopedusingultrasonictechniquesthatcanperformSOHevaluationwithasimilarresulttolab-gradecyclingequipmentwithinafewseconds(TitanAES2022;LiminalInsights2022).Theequipmentcanbeusedbynontechnicaloperatorsanddramaticallyreducesthecostofpreparingbatteriesforsecond-lifeapplications.Ultrasonictestingequipment,afterfurthervalidationandcostreduction,couldsolveamajorchallengeforsecond-lifebatterycompaniesbutmaynotbewidelyavailabletostakeholderssuchasgaragesandautorecyclers.2.2.5IdentificationofSecond-LifeSOHCaptureMethodsTheEuropeanAutomobileManufacturers’AssociationisaskingtheEuropeanCommissiontoconsidercertificationofthestateofpost-first-lifeEVBsbaseduponstandardizedtestmethodstomeasureperformancelevelsinsteadofrelyingonopenaccesstoBMSdatatoinformdecisionsaboutrepair,reuse,andsecondlife.However,standardizingSOHtestingcouldimpedeinnovationaroundnewwaysofproducingandcalculatingSOHdata.Assuch,themarketmayneedmoretimetomatureinthisarea.22ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryatwww.nrel.gov/publications.2.3InformationTechnologiesSupportingBatteryDataSharing2.3.1IoTEnablingBatteriesandCriticalPartsforTrackandTraceToeffectivelymanageanasset,product,ormaterialfromacircularityperspective,itisimportanttoknowitsprovenance—wherethematerialsrequiredtocreateitcamefrom,whohasit,itschemistry,andwhatconditionitisinbothfromphysicalandperformanceSOHperspectives.Thisrequirestracingbatterymaterialsbacktothesource,trackingbatteriesduringtheirusefullife,andsharingimportantdatawithallthoseinvolved.Thecurrentstateoftheartforaccomplishingthisistofirstenableanassetforthe“InternetofThings”(IoT)(i.e.,connecttheEVBandkeycomponentstotheinternet),orgiveita“digitalidentity”enablingconnectiontoacloud-basedinformationmanagementsystemcapableofreportingkeymeasuresagainstcompliancetosustainabilityclaimsandperformance.Ifconnectivityisnotinherenttoanobject(e.g.,mobilephonesareinherentlyconnected),asecuredigitalidentifierand/orsensorcanbeincorporatedintotheobjectsupportingautomaticdatacaptureandconnectivity.Thereisaplethoraofadvancedautomaticidentificationanddatacapture(AIDC)technologiesthatcanbesecurelyappliedtoorembeddedwithinanobject,enablingittoconnecttothecloudthrougheitherpassivemeans.Theseincludearadiofrequencyidentification(RFID)orultrahighfrequencyRFID(RAIN)tagusingvariousstandards(eitherbattery-assistedorpassive),orothercommonauto-IDsolutionssuchasnear-fieldcommunication(NFC)tags,beacontechnology,orBluetoothtags.(Some12-V,100-AhconsumerLIBsareBluetoothenabledandhaveAndroidoriOSappstointerrogatetheBMS.)Theconnectorsmayormaynothavesensorycapabilityandmaybeabletosendorreceivedatafromthedevice,suchassensor-capturedtemperatureinformationortransactiondata.RFIDorNFCtechnologiesarewellestablished,withassociatedgoverningstandardsforconnectivityanddeployedinfrastructuresupportingconnectivity.RFIDisalreadyextensivelyusedwithintheautomotiveindustryfromthedeploymentoflow-frequencytranspondersusedforautomatedkeyaccessorpartsidentificationandmanagementusingRAINRFID.Thelatterisalsobeingusedextensivelyintireidentificationandmanagement.UnlesssuchtagsorsensorsareconnectingdirectlytotheBMSoronboardvehiclemanagementsystems,theywillneedtohaveconnectivitytothecloud.Thisisfacilitatedonlywhenthesetagsareconnectedviatheirinfrastructurecomponent,suchasanRFIDreader,readingfromasmartphoneortablet(inthecaseofNFC),orinapeer-to-peermannerwithasimilarNFCdevice,suchasonesmartphonepresentedtoanotherandswappingcredentialsorpaymentortriggeringconnectivity.Traditionalandcommonautomaticidentificationanddatacapturetechnologiessuchasbarcodes,datamatrix,orQRcodescanbeusedtotriggercloud-connectedsensorstooperate.SomeOEMs,particularlybatterymanufacturers,alreadyincludeabatteryIDrelatingtotheirownproductsorstandardssuchasGS1andElectronicProductCodeInformationServices(EPCIS)enablingopenreadingandadoptionacrossthesupplychainthroughcommondevicessuchas2Dbarcodescannersormobilephones/computers.However,thesebatteryIDsareusedbyaspecificcompany,anditscollaboratorsandarenotavailableuniversallytootherentities.23ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryatwww.nrel.gov/publications.TheemergenceofnewIoTtechnologiescanbeincorporatedintoaproductratherthanattachedtoitssurface.Theseincludedigitalwatermarks,passiveandactive(battery-powered)Bluetoothorbeacontags,andsecureQRcodes(displayingbothopenreadabledataandblindedencrypteddataonlyaccessiblewithaproprietaryapplicationandkeymanagementsystem).Othersensor-capturingaspectssuchastemperature,location,humidity,orientation,pressure,andvibrationconnectedtothecloudthroughconduitssuchasGeneralPacketRadioService,4G/5G,RFID,low-powerBluetooth,orotherbeacontechnologyfurthersupporttheconnectedworldofobjectsandmyriadvaluepropositionsthatcomewithIoTconnectivity.2.3.2DataSharingThroughoutBatteryLifeCyclesIoT-enablingbatteriesandcriticalpartsisoneapproachtowardsharingbatteryinformationwithactorsthroughoutthelifecyclewhoengagewiththebatteryforthepurposesofservicing,secondlife,andrecycling.Severaloftheglobalinitiativesandregulationsoutlinedhereinhaveidentifiedblockchainasstateoftheartinsupportingsecure,immutabledatasharingwithinpermissionedecosystemswherethoseupdatinginformationaboutthebatteryareknownandtrustedsourcesandthattheinformationtheyareuploadingisvalid.Blockchain,asaplatformtoanIoT-connectedsupplychain,assistsinconnectingeitherallorpermissionedstakeholdersinthenetwork.Blockchainenablesindependentanddistributeddatacapture(Sedlmeiretal.2020)supportedbycodedsmartcontractstructures(Arora2022)triggeredbypredeterminedtransactionalevents.Networkparticipantsoperateinaccordancewithanagreeddatagovernancepolicy.Itisimportanttodistinguishenterpriseblockchainsolutionsfromthoseusedincryptocurrency.Cryptocurrencies,likeBitcoin,runonpublicblockchainplatformsthatareaccessibletoanyonewithaninternetconnection.Theyalsorequiremassivecomputingpowertoperformcomplicatedmathematicalalgorithms,alsocalled“mining.”Privateblockchains,ontheotherhand,requireaminusculefractionoftheenergyrequiredincryptocurrency.Forexample,HyperledgerFabricRaft,atypeofblockchainframeworksupportingprivatesolutions,uses10billiontimeslessenergypertransactionthanBitcoin(Hyperledger2018).Inessence,IoTtechnologiesareenablingchainofcustodyacrossanecosystem,supportinggreatertrustandtransparency,and,insomecases,enablingdetectionoftamperingorflagstobreachesinsupplychainsecurity.2.3.3Lithium-IonBatteriesandAdvancedInformationTechnology:TheBatteryPassportAgooddemonstrationofhowblockchainandIoTcanworkiswithahigh-risk/high-opportunityassetsuchaslithium-ionbatteries.Thesebatteriesarenotonlydangeroustohandle,butalsohaveasupplychainatriskduetoextensiverelianceonsmallandartisanalminesthatcaninvolvechildandconflictlaborandsevereenvironmentalissues.Brandownerswanttoensureasustainablesupplyofcriticalmetalsandminerals(e.g.,cobaltandlithium)bykeepingtrackofbatteriestoensuremaximumrecoveryofresourcesforreuseinnewbatteries.TheGlobalBatteryAlliancehasplacedgreatfocusontraceabilityandcircularinitiativesforthisstill-youngeconomy,includinglifecyclegreenhousegasemissionscalculationsandoffsets.TheGlobal24ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryatwww.nrel.gov/publications.BatteryAllianceandotherleadingglobalbatteryorganizationsrefertotechnology-supportedbatterymanagementastheBatteryPassport(GlobalBatteryAlliance2022a).Figure7.Blockchain,autoID,anddatacapture.FigurefromLaurenRoman,Everledger(https://everledger.io/)TheBatteryPassportsupportstransparencybyallowinguserstouse,store,andsearchassetinformationondemandandmakeitavailabletootherbatterylifecyclestakeholders.Bymakingassetinformationeasilyaccessibleandverifiable,blockchainallowstrusttotakerootandspreadthroughoutindustries.Bycreatingauniqueidentity(i.e.,digitaltwin)ofanasset,userscantraceitsjourneyonasecure,unalterable,andprivateplatform.Sustainabilityandcomplianceclaimsaresupportedwithactualsharedevidenceofauditsandcertifications.25ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryatwww.nrel.gov/publications.Figure8.Datasharingonablockchainplatform.FigurefromLaurenRoman,Everledger(https://everledger.io/)2.4GlobalInitiativesandRegulationsThefollowingaresomeoftheglobalinitiativesunderwayandregulationsbothinplaceandproposedthatcanimpactEVBlifecyclemanagement.Theselectionisnotcomprehensive,andtheirinclusionisnotanindicationofanyendorsementbytheauthorsofthisreport.2.4.1GlobalInitiativesToIncreaseEVAdoptionAgrowinglistofcountrieshavecommittedtobanningthesalesofinternalcombustionenginevehiclesandestablishingofficialtargetsforelectriccarsales,signalinganeedtomovetozero-emissionvehiclestomeetclimateandairqualitygoals.IntheUnitedStates,Californiaisrequiringautomakerswithannualsalesbetween4,501and60,000vehiclestoproduceelectriccarsequalto8%–9%oftheiroverallsalesby2025(AlternativeFuelsDataCenter2020).Additionally,legislationalreadypassedinIndia,Ireland,theNetherlands,Denmark,Norway,andtheUnitedKingdomwillbansalesofgasolineanddieselvehiclesby2030(Stafford2019).ThefollowingsubsectionssamplesomeoftheinitiativestakingplacearoundtheglobetoaccelerateEVadoption.26ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryatwww.nrel.gov/publications.2.4.2ChineseInitiativesOverthepastdecade,theChinesegovernmenthasspentsomewherebetween$60billionand$100billionincreasingthedomesticmarketforlithiumbatteries,subsidizingtheproductionofcheap(i.e.,~$4,500)EVs,andhelpingcompaniesbuildoutthelithiumminingandrefininginfrastructuretosupportthem(OneCharge2022).Asaresult,Chinahascometodominatethelithiumbatterymarketfromendtoend.AlthoughtheChinesegovernment’sinvestmentandincentiveshavetaperedoffinthelastcoupleyears,Chinesecompanieshavepickeduptheirowninvestments,particularlyintheirdomesticsupplychain.2.4.3GlobalBatteryAllianceTheGlobalBatteryAllianceisacollaborationoforganizationsworkingtoestablishasustainablebatteryvaluechain(GlobalBatteryAlliance2022b).TheyworkedwithindustrystakeholderstodeveloptheconceptoftheBatteryPassport,whichwouldprovideforsecurelysharinginformationanddatatoidentify,validateandtrackEVBresponsiblesourcingofminerals,batterylifecycles,responsiblerecycling,andcarbondioxidefootprintthroughout.Theirtargetedimpactprogramsincludeestablishingrulebooksforresponsibleandsustainablebatterymineralssupplychains,alow-carboneconomyprogram,andacirculareconomyforlithium-ionbatteries.2.4.4EUGreenDeal:StrategicActionPlanonBatteriesThegoaloftheStrategicActionPlanonBatteriesistomakeEuropeagloballeaderinsustainablebatteryproductionanduseinthecontextofthecirculareconomyandtoproposelegislationtoensureasafe,circular,andsustainablebatteryvaluechainforallbatteries.Morethan120industrialandinnovationactorshaveparticipatedinandcollectivelyendorsedrecommendationsforthefollowingpriorityactions(EuropeanCommission2020b):•Secureaccesstorawmaterials.•SupportEuropeanbatterycellmanufacturingatscaleandafullcompetitivevaluechaininEurope.•StrengthenindustrialleadershipthroughEUresearchandinnovation.•Developandstrengthenahighlyskilledworkforceinallpartsofthebatteryvaluechain.•SupportthesustainabilityoftheEUbatterymanufacturingindustrywithalowenvironmentalfootprint.•Ensureconsistencywiththebroaderenablingandregulatoryframeworkinsupportofbatteries.2.4.5UnitedStatesGovernmentRealizingtheimportanceoftheroleofkeybatterymaterialsandchallengeswithavailabilityofresourcesintheUnitedStates,ExecutiveOrder13817identifiedtheneedfor“developingcriticalmineralsrecyclingandreprocessingtechnologies”aspartofabroaderstrategyto“ensuresecureandreliablesuppliesofcriticalminerals.”TheU.S.DepartmentofEnergyledtheU.S.government’seffortindecreasingdependenceonthesematerialsbyreducingtheamountneededforbatteryproductionbyrecyclingmaterialsalreadyinuse.Thedepartmentissueda“ResearchPlantoReduce,Recycle,andRecoverCriticalMaterialsinLithium-IonBatteries”inJune2019(EERE2019).Themajorelementsofthisinitiativeinclude:27ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryatwww.nrel.gov/publications.•Developingthenextgenerationofcathodesforlithium-ionbatterieswithlowornocobalt.•EstablishingalithiumbatteryrecyclingR&Dcenterfocusedoncost-effectiverecyclingprocessestorecoverlithiumbatterycriticalmaterials.•LaunchingtheLithium-IonBatteryRecyclingPrizetodevelopinnovativesolutionstoenablesafeandaffordablecollection,sorting,storage,andtransportofspentlithium-ionbatteries.Sincethen,majoraccomplishmentshavebeenachievedundervariousfundingcommitments.•$40millionfundingtoindustry,universities,andnationallabsfordevelopinglow-orno-cobaltcathodes(U.S.DepartmentofEnergy2018).•$15-million/3-yearfundingforestablishingtheReCellRecyclingR&DcenteratArgonneNationalLaboratorywithsupportfromtheNationalRenewableEnergyLaboratoryandOakRidgeNationalLaboratory(U.S.DepartmentofEnergy2022b).•$5.5-millionfundingforthefirstLithium-IonBatteryRecyclingPrizeseries(U.S.DepartmentofEnergy2022a).•TheBidenadministrationhaspaidsignificantattentiontothelithium-ionsupplychainandmanufacturing,asthesebatteriesareasignificantcomponentinEVsfordecarbonizationoftransportation.ThisincludedExecutiveOrder14017,whichresultedinareportcallingforseveralinitiativestostrengthentheU.S.supplychainandmanufacturingwithstrategiesidentifiedintheNationalBlueprintforLithiumBatteries(VTO2021)developedbytheFederalConsortiumonAdvancedBatteries.OneofitsmajorrecommendationsisenablingU.S.end-of-lifereuseandcriticalmaterialsrecyclingatscaleandafullcompetitivevaluechainintheUnitedStates.TheseinitiativesbecamearealityinBipartisanInfrastructureLawonNovember5,2021,providingsignificantfundingforthedemonstrationofsecondlifeofEVBsingridservices,batteryrecyclingandreuseR&D,andextendingtheBatteryRecyclingPrizecompetitionseries(U.S.Congress2021).TheevokingoftheDefenseProductionAct(April2022)hasplacedmorefocusonsourcingbatterymineralsandsecuringnationalU.S.batteryenergysupplychaindevelopment.•OnOctober19.2022,DOEannounced(DOEOctober2022)that$2.8BofBipartisanInfrastructureLawfundinggoingto20projectsacross12statesforBatteryMaterialsProcessingandBatteryManufacturingRecyclingdeveloping•Battery-gradelithium,graphite,nickel,ironphosphatecathodes•Lithiumelectrolytesalt,separators,andPDVFbinder•Batterygradesiliconanodes,prelitigation,andlithiumanode•Cathodesfrommineralsorrecycledbatteries•OnNovember16,2022,DOEannounced(DOENovember2022)thatnearly$74MofBipartisanInfrastructureLawfundinggoingto10projectstoadvancedomesticbatteryrecyclingandreuse,strengthennation’sbatterysupplychain.28ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryatwww.nrel.gov/publications.•TheCleanVehicleCreditwasamendedbytheInflationReductionActinAugust2022andnowhasnewrequirementsforbatterysourcing/assembly,whichwilltakeeffectonJanuary1,2023(DOEBatteryPolicyandIncentiveSearch2022).Tobeeligibleforthecredit,vehiclesmustmeetcertaincriteriarelatedtotheextractionandminingofcriticalminerals,processing,recycling,andmanufacturingofbatterycomponents.TheActremovedthecapof200,000vehiclesperautomakerforEVtaxcredit.Ifavehiclemeetsthenewsourcing/assemblyrequirements,itmaybeeligibleforataxcreditof$3,750forcriticalminerals,$3,750forbatterycomponentsassembly,oratotalofupto$7,500formeetingbothrequirements.ThenewsourcingrequirementsforEVsintendtogrowbatterymineralandcomponentsupplychainswithinNorthAmericaandamongstcountrieswithwhichtheUnitedStateshasfreetradeagreements.Thepercentageofsourcingrequirementsincreaseseachyearuntil2029.FurtherinformationcouldbefoundinIRAEVTaxCredits(ElectrificationCoalitionAugust2022)2.4.6USStateGovernmentsOnSeptember23,2020,CaliforniaGovernorGavinNewsomsignedExecutiveOrderN-79-20,settingthefollowingzero-emissionvehicletargetsforCalifornia(Newsom2020):•100%ofin-statesalesofnewpassengercarsandlight-dutytruckswillbezero-emissionby2035(GO-Biz2021).•100%zero-emissionmedium-andheavy-dutyvehiclesinthestateby2045,wherefeasible,andby2035fordrayagetrucks.•100%zero-emissionoff-roadvehiclesandequipmentoperationsby2035,wherefeasible.Inadditiontothesetargets,Californiahasintermediategoalsincluding5millionzero-emissionvehiclesonCaliforniaroadsby2030and250,000publicandsharedchargingstationsand200hydrogenfuelingstationsby2025(CaliforniaEnergyCommission2022).Throughthefirstquarterof2021,over860,000zero-emissionlight-dutyvehicleshadbeensold,withzero-emissionvehiclesalesrepresentingover9%marketshareinthefirstquarterof2021.AfterCaliforniaannounceditsban,NewJerseyandNewYorkfollowedcloselywithsimilargoals.OnApril15th,2021,theWashingtonStatelegislaturepassed“CleanCars2030”,abillsettingagoaltorequirealllight-dutyvehiclesofmodelyear2030orlatertobeelectric.ThisbillmadeWashingtonthefirstUSstatetopassagascarbanlegislatively(asopposedtoexecutiveorder),andnowhastheearliestgascarbanintheUS.2.4.7EuropeanBatteryAllianceTheEuropeanBatteryAlliance,acollaborationbetweentheEuropeanCommission,EUcountries,industry,andthescientificcommunity,waslaunchedin2017(EuropeanCommission2022).BecausebatteriesareastrategicpartofEurope’scleananddigitaltransitionandakeyenablingtechnology,theyareessentialtotheautomotivesector’scompetitiveness.ThisallianceaimstomakeEuropeagloballeaderinsustainablebatteryproductionanduse.Theaimistoinvestinproductionoflithium-ionmaterials,cells,andbatteriesinEurope.Morethan$3billionwasallocatedin2021.29ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryatwww.nrel.gov/publications.2.5Regulations2.5.1ChinaProducerResponsibilityUnderChina’sproducerresponsibilityscheme,orGB/Tstandard(GB/T3404-2017),electricvehicleOEMsarelegallyresponsibleforbothbatteryrecyclingandassessmentofsecond-lifepotential.GuidelinespublishedbyChina’sMinistryofIndustryandInformationTechnologypushOEMstostandardizebatteriesanddesignproductsthatcanbeeasilydisassembled(Xuetal.2017).TheGB/TstandardwasenactedonFebruary1,2018.Itdefinescodingstructuresandrepresentationsandwhatbatterypartstheyapplyto(i.e.,pack,modules,cells).Theregulationenablestraceabilityfornewandsecond-lifebatteriesandspecifieslabelingrequirementsandtheassociatedtrackingsystem.2.5.2EuropeanCommissionProposedBatteriesRegulationEUlegislationonwastebatterieshasbeenembodiedinthe2006BatteryDirective,whichintendstomitigatethenegativeimpactsofbatteriesontheenvironment,minimizewaste,increasecollection,andensureproperend-of-lifemanagementofbatteries.Thedirectiveaddressedthisbydefiningmeasurestoestablishrecyclingandcollectionschemesandmandatesthatproducersofbatteriesandproductsincorporatingbatteriesareresponsibleforprovidingbatterytakebackprogramsandrecyclingarrangements(EuropeanCommission2020a).TheEuropeanCommissionproposedanewBatteriesRegulation(EuropeanParliament2022)—withannexes(EuropeanCommission2020b)—onDecember10,2020.ThisregulationaimstoensurethatbatteriesplacedintheEUmarketaresustainableandsafethroughouttheirentirelifecycle.Figure9showstheEU’sproposedregulationcoveringthebatteryandstakeholderthroughitsentirelifecycle.30ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryatwww.nrel.gov/publications.EndofLifeFigure9.ProposedEuropeanCommissionBatteriesRegulation.Source:Deurwaarder(2021)AnessentialpartoftheBatteriesRegulationisthebatterypassport,whichwillprovideusers/ownersaccesstoEVBinformationregardingkeymaterialsinthebattery,tracingthembacktotheirorigin.Recyclingwillalsobeakeypart.TheEuropeanCommissionislookingatintroducingspecificrecoveryratesforkeymaterialsusedinbatteries,suchaslithium,cobalt,andnickel.Anincreaseinthecollectionrateofusedbatteriesisexpectedtolaythegroundworkformandatorylevelsofrecycledcontentinnewbatteriesasof2030.TheBatteriesRegulationwasscheduledtocomeintoforceinJanuary2022,butitisdelayedasvariousstakeholderaredebatingvarioussectionsofit.2.5.3GermanBatteryActThefirstactamendingtheBatteriesActwaspublishedonNovember9,2020andenteredintoforceonJanuary1,2021.TheGermanBatteryActstipulatesthatmanufacturersofelectriccarstakebatteriesbackfromtheirvehiclesatnochargeorappointadisposalpartner(FederalMinistryfortheEnvironment,NatureConservation,NuclearSafetyandConsumerProtection2021).Thelegallyrequiredtakebackofbatterypacksappliestocaseswhenadrivebatterymustbereplacedduetofallingbelowitsguaranteedminimumcapacity.Italsoallowsthatthosebatteriesdonothavetobedisposedof,butcaninsteadbeusedinasecond-lifeapplicationfor31ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryatwww.nrel.gov/publications.yearstocome.Additionally,itaddressestheissueofwhathappenstothebatteryintheeventofdamage,suchasinavehicleaccident,andwhomustdisposeofthebattery.2.5.4Japan’sLawonPromotionofEffectiveUtilizationofResources,2001UnderthisJapaneselaw,lithium-ionbatteriesareconsideredspecifiedresource-recycledproducts,andproducersarerequiredtopromoteself-collectionandrecycling(SabinCenterforClimateChangeLaw2022).Additionally,batterymanufacturersandmanufacturersofproductscontainingbatteries,suchasautomotiveOEMs,havearesponsibilitytodiscloseinformationannuallyregardingmetricsforself-collectionandrecyclingofwastesealedbatteriesthattheyconductedindividuallyorcollectively.2.5.5CaliforniaEnvironmentalProtectionAgencyTheLithium-IonCarBatteryRecyclingAdvisoryGroupwascreatedtoadvisetheCaliforniaLegislatureonpoliciespertainingtotherecoveryandrecyclingoflithium-ionvehiclebatteriessoldwithmotorvehiclesinthestate,withthegoalofensuringthatascloseto100%aspossibleoflithium-ionvehiclebatteriesinthestatearereusedorrecycledatendoflifeinasafeandcost-effectivemanner.ItisbeingledbytheCaliforniaEnvironmentalProtectionAgency,theDepartmentofToxicSubstancesControl,andtheDepartmentforResourcesRecyclingandRecovery.Additionalmemberscomefromtheenvironmentalcommunity;autodismantlers;publicandprivaterepresentativesinvolvedinthemanufacturing,collection,processing,andrecyclingofEVBs;andotherinterestedparties.Theadvisorygroupwasformedin2019inresponsetoAssemblyBill2832.ThefinaldraftoftherecommendationstotheCaliforniaLegislaturewasreleasedonMarch16,2022(CaliforniaEnvironmentalProtectionAgency2022).Twopolicyproposalsthatdesignateend-of-lifemanagementresponsibilitygainedmostofthesupport:•Coreexchangewithavehiclebackstop.•Producertakeback.Thecoreexchangeandvehiclebackstoppolicydefineresponsibilityforout-of-warrantybatteriesandassignsresponsibilityforEVBsasfollows(Kendall,Slattery,andDunn2022):1.EVsstillinservice:Theentityremovingthebatteryisresponsibleforreuse,secondlife,orrecycling,andacoreexchangeprogramshallbeusedtotrackandvalidatepropermanagement.Thisisessentiallyadepositprogramforcertainautomotiveparts.Thecustomerpaysadepositonanewpart,andthedepositisthenrefundedwhenthepartisreturned.2.EVsatendoflifeacquiredbyanautorecyclerordismantler:Theautodismantlerorrecyclerisresponsibleforreusing,refurbishing,secondlife,orrecyclingend-of-lifebatteries.3.EVsatendoflifeandnotacquiredbyanautodismantlerorrecycler:Thevehiclemanufacturerisresponsibleforensuringthevehicleisproperlydismantledandthebatteryisproperlyreused,refurbished,repurposed,orrecycled.Undertheproducertakebackproposal,theautomanufacturerisresponsibleforthemanagementofbatteriesatendoftheirfirstlife,includingtransportationandrecyclingcostsanddocumentingproperdisposition.32ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryatwww.nrel.gov/publications.2.5.6MassachusettsRighttoRepairOnNovember4,2020,Massachusettsvotersoverwhelminglyapproveda“RighttoRepair”lawbyamarginof75%toopencardatatovehicleownersandgarages(Techdirt2020).Themeasureexpandsanearlierlawtoincludetelematicsdatathatcanassistownersandrepairshopstoaccessthevehicle’sdatatousefordiagnosticsandrepair.Thelawaffectsmodelyearsbeginningin2022.Right-to-repairbillsaregainingtractionacrosstheUnitedStatesandabroad.AccordingtoTheRepairAssociation,34U.S.statesaredraftingorhaveimplementedright-to-repairlegislation.Mostoftheselawsrelateto“digitalelectronicproducts”ratherthanautomobilesinparticular,buttheydirectlyimpactallnewcarsthatnowcontainextensiveelectronicsystems.ThefirsttestofthesedatasharinglawsimpactingEVBsisChina’sGB/Tstandard,asdescribedinSection2.5.1.Thelawrequirestelematicsdatatobetransmittedtoacloudforpublicsharing.Beyondrepair,sharingofthesedatacansupportsafety,moreeconomicalbatterysecondlife,andmuchmore.2.6StakeholderInsightsandPerspectives2.6.1AutomotiveRecyclersAssociationAutomotiverecyclersplayavaluableroleintheefficient,environmentallyfriendlyrecyclingofinoperablemotorvehicles(AutomotiveRecyclersAssociation2022).Automotiverecyclingpreservesnaturalresources,reducesthedemandforscarcelandfillspace,andplaysanimportantroleinreducingairandwaterpollution.AutomotiveRecyclersAssociationmembersarekeenlyawareofthechallengesthatvehicleelectrificationcanpresentandarealreadydevelopingefficientmeansofEVBremoval,reuse,andrecycling.Thefocusisondetermininghowanautomotiverecyclercansafelymanageend-of-lifeEVBswithoutliability.TheindustryiskeenlyfocusedonaddressingthecostsofhandlingandrecyclingEVBsinamannerthatbestservescustomerswhilepreservingbusinessrevenueandprotectingtheenvironment.2.6.2AutomotiveServiceAssociationThemechanicalandcollisionrepairsegmentsoftheindependentautomotiveserviceindustryhavebeendealingwithadvancingvehicletechnologysincethebeginningoftheautomotivemanufacturingindustry(AutomotiveServiceAssociation2022).Vehicleadvancementsinpowertrains,electronics,safety,andmaterialshavetothispointbeentakeninstrideandgenerallyincorporatedintotherepairshoppopulationseamlesslyoncethetoolsandtrainingbecameavailable.Themovetowardvehicleelectrificationisnodifferent,andanotherseamlessadaptationtochangingvehicletechnologyisanticipatedgiventhetools,training,andserviceinformationavailabilityasinyearspast.Themajorconcernsofautomotiveserviceproviderscenteraroundseveralareas:1.Thecostoftraining,tooling,andsafetyequipmentassociatedwithEVservice.Wedon’tknowyetwhatEVswillneedinthewayofregularmaintenance,butitcanbeassumedthingsliketires,brakes,suspensioncomponents,andtheneedforcollisionrepairwillbesimilar.Whileit’sclearthatthingslikevehicleliftswillneedtobeableto33ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryatwww.nrel.gov/publications.accommodatetheaccessnecessaryforEVBreplacement,thetotalcostforarepairshoptobeproperlyequippedintools,diagnosticequipment,safetyequipment,training,andinformationforgeneralEVserviceisunknownatthistime.2.WithoutknowingthespecificmaintenancerequirementsoffutureEVs,particularlyiftheyareLevel5autonomousvehicles,theeconomicimpactofEVsthatwilllikelyrequirefewerrepairpartsintheshopisanotherunknown.AlsounclearishowservicerequirementsuniquetoEVsandautonomousvehicleswilloffsetsomeofthepartsrevenuelosses,suchasperiodicsysteminspectionstoensureproperfunctioninginautonomousvehicles.3.Liabilityisamajorconcern,particularlyasitrelatestobatteryrecyclinganddisposal.Thehigh-voltagesystemstypicalofEVsposedangerstotechniciansandfirstrespondersworkingonandaroundthesevehicles.Whilepropertrainingandsafetyequipmentcanmitigatesomeoftheserisks,aclearunderstandingoftheliabilityexposureandestablishedbatteryrecyclinginfrastructureforshopsworkingonthesevehiclesmustbeachieved.2.6.3EnergyStorageAssociationTheEnergyStorageAssociation(2022),nowpartofAmericanCleanPower(2022),supportstheenergystorageindustryandrecommendpoliciesforcleanenergy.WhilecurrentlysmallincomparisontotheflowofEVBsintoreuse/recyclepathways,stationarybatteryenergystoragesystems(BESS)alsoreachtheendoftheirusefullifeandfacevariousdispositionpathways.LargeutilityBESSfacilitiestypicallycontainlargenumbersofstandardizedbatterycells/modules,withcleardocumentationregardingtheircompositionandwell-establishedproceduresfordecommissioning.FirmsthatofferturnkeydisposalservicesforlargeBESSupondecommissioningareemergingtoensurecompliancewithapplicablerulesandconformitytotheBESSowners’environmental,social,andcorporategovernancecommitments,andsomeOEMsforlargeBESSfacilitiesagreetotakeresponsibilityfordecommissioning.Smaller,butstillsizablecommercialandindustrialBESSfacilitiesalsoaregoodcandidatesfordispositionviaemergingserviceproviders.Homeownerswhoinstallsmall(typicallysingle-orseveral-modulesystems)maynotbeasawareofdisposaloptions.Nevertheless,removalbyalicensedserviceprovidercompliantwithutilitydisconnectionrulesshouldincreasinglyofferanopportunityforproperdisposition.2.6.4EVBRecyclersThissectioncompilesinputfromEVBrecyclerslistedintheAcknowledgments.Duetothemyriadofdifferinglithium-ioncathodeformulationsandtheinabilitytodistinguishtheseformulationswithoutchemicalanalysis,companiesthatmanagebatteryend-of-liferecyclingoperationsforEVBsseeabenefitofhavingthesecathodeformulationsidentified,inadvanceofthephysicalbatteryprocessing,tominimizethetimeandexpenseofchemicalanalysis.ThisisimportantwhenweighedagainsttheexpectedgrowthinEVsalesvis-à-visbatteriesthatwillneedtoberecycledattheendoflifeinthefuture.Inadditiontothecathodeformulations,anodeformulationidentificationwouldbehelpful.Moreover,perhapsaccompanyingthetracking(inwhicheverform;somehowaccompanying34ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryatwww.nrel.gov/publications.acrossanEVB’slife),dismantlinginstructionswouldbehelpful,atleasttoamodulelevel.Somerecyclersthathaverecentlyenteredthemarketaremovingtowardminimaltonomanualdismantlingbyusingshreddingoperations.However,forsafetyacrossthesupplychainanddependingonwhereend-of-lifepacksaredirected,accompanyingdismantlinginstructionswouldbehelpful.2.6.5ElectricVehicleOEMsElectricvehicleOEMshavenothadaunifiedperspectiveontheissueofbatteryreuseandrecycling.SomeOEMswantend-of-auto-lifebatteriesusedinapplicationsthatcanprovideeconomic,energy,orenvironmentalbenefitswithoutcreatingliabilities.Amongotherbenefits,thissecondaryuseservestodelayorevenpossiblyavoidthecostsofrecyclingaltogether.Althoughcurrentrecyclingcostsusuallyexceedrecoveryvalues,someanticipatethatthefast-growingdemandforcriticalbatterymineralswillsoonmakeEVBrecyclingprofitable.Thus,extendingbatterylifenowviaotherusescouldresultinavoidingthecostofrecyclingatendofbatterylife.Whetherabatteryisreusedorrecycled,makingsomeofthebatterydataavailabletostakeholdersiskeytoimprovingsafetyandreducingcostsbyaddingefficiencies.OEMshavedifferingviewsandconcernsonsharingbatterydata.Whilesomeareactivelyexploringhowcertainbatterydatacanbesharedtoimproveefficienciesandreducerisks,othersconsideritproprietary.ItisanticipatedthatastheEVindustrycontinuestoquicklyevolve,theOEMcommunitywillfindmorecommongroundinsolvingtheseandmanyotherissues.2.6.6ZeroEmissionTransportationAssociationTheZeroEmissionTransportationAssociationisanindustry-backedcoalitionadvocatingforthefulladoptionofEVsintheUnitedStatesby2030,creatingthousandsofnewjobs,enablingleadershipofAmericanmanufacturing,dramaticallyimprovingpublichealth,andsignificantlyreducingcarbonpollution(ZeroEmissionTransportationAssociation2022).TofullyrealizetheeconomicbenefitsoftheexpandingEVandadvancedbatterymarket,however,theUnitedStatesneedstoimplementpoliciestospuradoption,cultivateadvancedbatteryprocessing,andgrowtheU.S.manufacturingbasetoensurethosejobsarecreatedrighthereathome.Luckily,theraceforEVsupplychaincontrolisn’tover.Americaninnovatorsaredevelopingsustainablecriticalmineralandadvancedbatteryrecyclingsystemsthatwillminimizedependenceonforeign-sourcedmaterials,reducevulnerabilitytosupplychaindisruptions,andmitigatenegativeenvironmentalimpacts.TheU.S.governmentisdoingitspart,too,byimplementingthebatterymanufacturing,seconduse,andrecyclinginitiativesidentifiedinthe2021BipartisanInfrastructureLaw.ThisemergingdomesticmarketcouldbeacceleratedbycreatingpositiveincentivestodriveEVadoption,promotedomesticmanufacturing,andsecureU.S.supplychainsfordecadestocome.35ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryatwww.nrel.gov/publications.2.7ConclusionsThroughouthistory,humankindhascreatedmaterialsandproductstoimprovelives.Mostoften,nothoughtwasgiventohowcreatingandusingthoseproductsmightnegativelyimpactvulnerablepopulationsortheenvironment—especiallyinthelongterm—suchastheadverseimpactofplasticbottlesinoceans.Itisnowabundantlyclearthatourtake,make,anddisposehabitshaveputtheplanetonaperiloustrajectory.Wealsoknowthatwehavethetoolstochangethosehabitsforgoodandtobecomeresponsiblestewardsofourplanet.EVswillplayakeyroleinreducingcarbonemissionsandstavingoffcontinuouslyworseningeffectsofclimatechange.TheprospectsforacirculareconomyforEVBsarepromising.EVBtechnologyisalreadyevolvingtoreducetheneedfortheriskiestbatterymineralsandtosupportmoreefficientrepairanddisassembly.Reuseandrecoverytechnologieswithsmallercarbonfootprintsarealsounderdevelopmentandwillbedeployedinincreasingnumbers,furtherreducingcarbonemissionsbyshorteningdistancesbetweenfacilities.Materialidentificationandtrackingtechnologiescanhelpmanufacturersensuresustainablesourcing,accountforgreenhousegasemissionsinthesupplyandvaluechains,andhelpstreamlinepotentiallyburdensomeregulations.ThisreportoutlinesthechallengesforlifecyclemanagementofEBVsalongwitheffortsandsolutionsunderwaytoaddressthem.Atnoothertimehavewehadtheskills,tools,andresourcestosupportcirculareconomysystemslikewehavetoday.Ifthereisanyindustrywiththeexpertiseandhistoryofinnovationtocreateablueprintforsustainableproducts,itistheautomotiveindustry.Itisexciting,itisdaunting,anditwillrequirebeingbold.36ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryatwww.nrel.gov/publications.GlossaryDefinitionTermAmixtureofgroundedconstituentsofalithium-ionbatterycellafterblackmassshredding,sieving,andseparation.digitaltwinfirstlifeIntermsofelectricvehiclebatteries,adigitalrepresentationofthebatteryandcomponents.GS1refurbishOriginalequipmentmanufacturerbattery,batterypack,ormodulerepurposedeployedinitsfirstuseinadevice,automotive,orstationarystoragerepurposersystem(also“1st-life,”“1stuse,”or“firstuse”).secondlifeAneutral,not-for-profit,internationalorganizationdevelopingandsmartcontractsmaintainingstandards,includingbarcodes.Toserviceabatterysoitcancontinueitslifeinavehicle.See“secondlife.”Acompanythatrecoversusedelectricvehicleorstationarybatteriesormodulesintonewstationarystoragesystems,includingintegratingbatterymanagementsystemandpowerelectronicsandexternalcommunications.Useofanend-of-first-lifeelectricvehiclebatteryorstationarystoragebatteryforenergystorageuseinadifferentapplication.Programsonablockchainthatrunwhenpredeterminedconditionsaremet.Theycanautomateexecutionofanagreement(orcontract)soallparticipantscanimmediatelyseetheresultwithoutanyintermediary’sinvolvement.37ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryatwww.nrel.gov/publications.ReferencesAlternativeFuelsDataCenter.2020.“ZeroEmissionVehicle(ZEV)ProductionRequirements.”AccessedNov.16,2020.https://afdc.energy.gov/laws/4249AmericanCleanPower.2022.“TheAmericanCleanPowerAssociation.”AccessedOct.26,2022.https://cleanpower.org/Arora,Shivam.2022.“WhatisaSmartContractinBlockchainandHowDoesitWork?”Simplilearn,lastupdatedJuly5,2022.https://www.simplilearn.com/tutorials/blockchain-tutorial/what-is-smart-contractAssefi,M.,S.Maroufi,Y.Yamauchi,andV.Sahajwalla.2020.“PyrometallurgicalrecyclingofLi-ion,Ni–CdandNi–MHbatteries:Aminireview.”CurrentOpinioninGreenandSustainableChemistry24:26–31.https://doi.org/10.1016/j.cogsc.2020.01.005AutomotiveRecyclersAssociation.2022.“AutomotiveRecyclersAssociation.”AccessedOct.26,2022.http://www.chooserecycledparts.com/AutomotiveServiceAssociation.2022.“Home–AutomotiveServiceAssociation.”AccessedOct.26,2022.https://www.asashop.org/Azevedo,Marcelo,NicolòCampagnol,ToralfHagenbruch,KenHoffman,AjayLala,andOliverRamsbottom.2018.“Lithiumandcobalt:Ataleoftwocommodities.”McKinsey&Companyreport,June22,2018.https://www.mckinsey.com/industries/metals-and-mining/our-insights/lithium-and-cobalt-a-tale-of-two-commoditiesBallinger,Benjamin,MartinStringer,DiegoR.Schmeda-Lopez,BenjaminKefford,BrettParkinson,ChrisGreig,andSimonSmart.2019.“Thevulnerabilityofelectricvehicledeploymenttocriticalmineralsupply.”AppliedEnergy255.https://doi.org/10.1016/j.apenergy.2019.113844BatteryUniversity.2021.“BU-203:TypesofLithium-ion.”LastupdatedOct.22,2021.https://batteryuniversity.com/article/bu-205-types-of-lithium-ionBestHybridBatteries.2022.“HybridBatteryReplacementandRepair.”AccessedFeb.12,2022.https://www.besthybridbatteries.com/BloombergNEF.2019.ElectricVehicleOutlook2019.London,U.K.:BloombergNEF.https://legacy-assets.eenews.net/open_files/assets/2019/05/15/document_ew_02.pdfCaliforniaEnergyCommission.2022.“ZeroEmissionVehicleandInfrastructureStatistics.”AccessedOct.27,2022.https://www.energy.ca.gov/data-reports/energy-almanac/zero-emission-vehicle-and-infrastructure-statistics38ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryatwww.nrel.gov/publications.CaliforniaEnvironmentalProtectionAgency.2022.Lithium-ionCarBatteryRecyclingAdvisoryGroupFinalReport.Sacramento,CA:CaliforniaEnvironmentalProtectionAgency.https://calepa.ca.gov/wp-content/uploads/sites/6/2022/05/2022_AB-2832_Lithium-Ion-Car-Battery-Recycling-Advisory-Goup-Final-Report.pdfCaliforniaGovernor’sOfficeofBusinessandEconomicDevelopment(GO-Biz).2021.CaliforniaZero-EmissionVehicleMarketDevelopmentStrategy.Sacramento,CA:GO-Biz.https://static.business.ca.gov/wp-content/uploads/2021/02/ZEV_Strategy_Feb2021.pdfCaliforniaStateLegislature.2018.“Recycling:lithium-ionvehiclebatteries:advisorygroup.”AssemblyBillNo.2832.https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180AB2832Call2Recycle.2022.“ExploretheSecretLifeofBatteries.”AccessedFeb.13,2022.https://www.call2recycle.org/explore-the-secret-life-of-batteries/Dai,Qiang,JeffreySpangenberger,ShabbirAhmed,LindaGaines,JarodC.Kelly,andMichaelWang.2019.EverBatt:AClosed-loopBatteryRecyclingCostandEnvironmentalImpactsModel.Lemont,IL:ArgonneNationalLaboratory.ANL-19/16.https://publications.anl.gov/anlpubs/2019/07/153050.pdfDeurwaarder,E.2021.“EuropeanCommissionproposalforanEURegulationonbatteriesandwastebatteries‘COM/2020/789.’”PresentedatNavigatingEVBRegulatoryCompliancewiththeBatteryPassport,Everledger,June23,2021.https://www.youtube.com/watch?app=desktop&v=lHc_kfZ4sFQ&ab_channel=EverledgerDOE,October19,2022,“Biden-HarrisAdministrationAwards$2.8BilliontoSuperchargeU.S.ManufacturingofBatteriesforElectricVehiclesandElectricGrid,”accessedOctober20,2022,https://www.energy.gov/articles/biden-harris-administration-awards-28-billion-supercharge-us-manufacturing-batteriesDOE,November16,2022,“Biden-HarrisAdministrationAnnouncesNearly$74MillionToAdvanceDomesticBatteryRecyclingAndReuse,StrengthenNation’sBatterySupplyChain,”accessedNovember17,2022https://www.energy.gov/articles/biden-harris-administration-announces-nearly-74-million-advance-domestic-battery-recycling.DOEBatteryPolicyandIncentiveSearch,2022,“BatteryRequirementsforElectricVehicle(EV)andFuelCellElectricVehicle(FCEV)TaxCredit,”AccessedSeptember1,2022,https://www.energy.gov/eere/vehicles/battery-policies-and-incentives-search#/?show=result&id=204Dobson,Geoff.2021.“GlobalEVsalesbackontrack.”EVs&Beyond,Aug.19,2021.https://evsandbeyond.co.nz/global-ev-sales-back-on-track/DragonflyEnergy.2021.“WhatIsThermalRunawayInBatteries?”AccessedOct.26,2022.https://dragonflyenergy.com/thermal-runaway/39ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryatwww.nrel.gov/publications.ElectrificationCoalition,August2022,“FactSheetIRAEVTaxCredits,”AccessedNovember12,2022,https://electrificationcoalition.org/wp-content/uploads/2022/08/SAFE_1-sheet_Webinar.pdfEnergyStorageAssociation.2022.“EnergyStorageAssociationHomepage.”AccessedOct.26,2022.https://energystorage.org/ERI.2022.“HowtoRecycleNiMHBatteries.”RecycleNation,AccessedFeb.13,2022.https://recyclenation.com/2015/06/how-to-recycle-nimh-batteries/EuropeanCommission.2020a.“Batteriesandaccumulators.”AccessedNov.13,2020.https://ec.europa.eu/environment/waste/batteries/EuropeanCommission.2020b.ProposalforaRegulationoftheEuropeanParliamentandoftheCouncilConcerningBatteriesandWasteBatteries,RepealingDirective2006/66/ECandAmendingRegulation(EU)No2019/1020.EuropeanCommission.2022.“EuropeanBatteryAlliance.”AccessedOct.26,2022.https://single-market-economy.ec.europa.eu/industry/strategy/industrial-alliances/european-battery-alliance_enEuropeanParliament.2022.“NewEUregulatoryframeworkforbatteries:Settingsustainabilityrequirements.”Briefing,March2022.https://www.europarl.europa.eu/RegData/etudes/BRIE/2021/689337/EPRS_BRI(2021)689337_EN.pdfEV-Volumes.2021.“EV-Volumes–TheElectricVehicleWorldSalesDatabase.”AccessedOct.8,2021.https://www.ev-volumes.com/FederalMinistryfortheEnvironment,NatureConservation,NuclearSafetyandConsumerProtection.2021.“BatteriesAct.”LastupdatedJan.1,2021.https://www.bmuv.de/en/law/batteries-act/Gaines,Linda.2018.“Lithium-ionbatteryrecyclingprocesses:Researchtowardsasustainablecourse.”SustainableMaterialsandTechnologies17.https://doi.org/10.1016/j.susmat.2018.e00068Gaines,Linda,QiangDai,JohnT.Vaughey,andSamuelGillard.2021.“DirectRecyclingR&DattheReCellCenter.”Recycling6(2):31.https://doi.org/10.3390/recycling6020031GlobalBatteryAlliance.2021,accessedSeptember22,2022https://www.globalbattery.org/about/,GlobalBatteryAlliance.2022a.“BatteryPassport.”AccessedOct.26,2022.https://www.globalbattery.org/battery-passport/GlobalBatteryAlliance.2022b.“Establishingasustainableandresponsiblebatteryvaluechain.”AccessedOct.26,2022.https://www.globalbattery.org/40ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryatwww.nrel.gov/publications.Harper,Gavin,RobertoSommerville,EmmaKendrick,LauraDriscoll,PeterSlater,RustamStolkin,etal.2019.“Recyclinglithium-ionbatteriesfromelectricvehicles.”Nature575:75–86.https://doi.org/10.1038/s41586-019-1682-5Hirai,T.,Y.Shikano,K.Asakura,M.Shimomura,H.Hasui,andI.Yamada.2000.“Long-lifenickel-metalhydridebatteriesasabackuppowersupplyforopticalfibernetworks.”Twenty-SecondInternationalTelecommunicationsEnergyConference(INTELEC),Phoenix,AZ,6Aug.2000.https://doi.org/10.1109/INTLEC.2000.884242Hossain,E.,D.Murtaugh,J.Mody,H.M.ResalatFaruque,S.H.Sunny,andN.Mohammad.2019.“AComprehensiveReviewonSecond-LifeBatteries:CurrentState,ManufacturingConsiderations,Applications,Impacts,Barriers&PotentialSolutions,BusinessStrategies,andPolicies.”IEEEAccess7:73215–73252.https://doi.org/10.1109/ACCESS.2019.2917859Hyperledger.2018.HyperledgerBlockchainPerformanceMetrics.V1.01.https://www.hyperledger.org/wp-content/uploads/2018/10/HL_Whitepaper_Metrics_PDF_V1.01.pdfKendall,Alissa,MargaretSlattery,andJessicaDunn.2022.Lithium-ionCarBatteryRecyclingAdvisoryGroup:DraftReport.AB2832AdvisoryGroup.https://calepa.ca.gov/wp-content/uploads/sites/6/2022/03/AB-2832-Final-Draft-Policy-Recommendations-Lithium-ion-Car-Battery-Recycling-Advisory-Group-As-of-3-11-22.a.hp_.pdfKlender,Joey.GlobalEVsalesreach10percentofnewcarssoldin2022,https://www.teslarati.com/electric-vehicle-sales-2022/January16,2023Li,Canbing,YijiaCao,MiZhang,JianhuiWang,JianguoLiu,HaiqingShi,andYinghuiGeng.2015.“HiddenBenefitsofElectricVehiclesforAddressingClimateChange.”ScientificReports5:9213.https://doi.org/10.1038/srep09213LiminalInsights.2022.“Home.”AccessedOct.26,2022.https://www.liminalinsights.com/Martinez-Laserna,E.,I.Gandiaga,E.Sarasketa-Zabala,J.Badeda,D.-I.Stroe,M.Swierczynski,andA.Goikoetxea.2018.“Batterysecondlife:Hype,hopeorreality?Acriticalreviewofthestateoftheart.”RenewableandSustainableEnergyReviews93:701–718.https://doi.org/10.1016/j.rser.2018.04.035Melin,HansEric.2021.“CircularEnergyStorage.”Presentationatthe2021NAATBattAnnualMeeting.Moore,Stephen.2019.“Tailor-madeplasticsprotecttheheartofelectriccars.”PlasticsToday,May8,2019.https://www.plasticstoday.com/automotive-and-mobility/tailor-made-plastics-protect-heart-electric-carsMotavalli,Jim.2022.“PredictingHowMuchRangeEVBatteriesLoseoverTime.”Autoweek,April13,2022.https://www.autoweek.com/news/a39713122/predicting-how-much-range-ev-batteries-lose-over-time/41ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryatwww.nrel.gov/publications.Muratori,Matteo,MarcusAlexander,DougArent,MorganBazilian,PierpaoloCazzola,ErcanM.Dede,etal.2021.“Theriseofelectricvehicles—2020statusandfutureexpectations.”ProgressinEnergy3(2):022002.https://doi.org/10.1088/2516-1083/abe0adNajman,Liz.2021.“HowLongDoTesla&EVBatteriesLast?”Recurrent,July8,2021.https://www.recurrentauto.com/research/how-long-do-ev-batteries-lastNeubauer,Jeremy,AhmadPesaran,BrettWilliams,MikeFerry,andJimEyer.2012.“ATechno-EconomicAnalysisofPEVBatterySecondUse:Repurposed-BatterySellingPriceandCommercialandIndustrialEnd-UserValue.”Presentedatthe2012SAEWorldCongressandExhibition,Detroit,MI,24–26April2012.https://doi.org/10.4271/2012-01-0349Neubauer,Jeremy,AhmadPesaran,EricWood,andKandlerSmith.2015.“SecondUseofPEVBatteries:AMassiveStorageResourceforRevolutionizingtheGrid.”PresentedattheEnergyStorageAssociationAnnualConference&Expo,Dallas,TX,27–29May2015.https://www.nrel.gov/docs/fy15osti/64149.pdfNeubauer,JeremyS.,EricWood,andAhmadPesaran.2015.“ASecondLifeforElectricVehicleBatteries:AnsweringQuestionsonBatteryDegradationandValue.”SAEInternationalJournalofMaterialsandManufacturing8(2):544–553.https://doi.org/10.4271/2015-01-1306Newsom,Gavin.2020.“ExecutiveOrderN-79-20,Zero-Emissionby2035.”Sept.23,2020.https://www.gov.ca.gov/wp-content/uploads/2020/09/9.23.20-EO-N-79-20-Climate.pdfOneCharge.2022.“HowChinacametodominatethemarketforlithiumbatteriesandwhytheU.S.cannotcopytheirmodel.”Jan.27,2022.https://www.onecharge.biz/blog/how-china-came-to-dominate-the-market-for-lithium-batteries-and-why-the-u-s-cannot-copy-their-model/SabinCenterforClimateChangeLaw.2022.“LawforPromotionofEffectiveUtilizationofResources.”AccessedOct.27,2022.https://lpdd.org/resources/law-for-promotion-of-effective-utilization-of-resources/Sedlmeir,Johannes,HansUlrichBuhl,GilbertFridgen,andRobertKeller.2020.“TheEnergyConsumptionofBlockchainTechnology:BeyondMyth.”Business&InformationSystemsEngineering62:599–608.https://doi.org/10.1007/s12599-020-00656-xStafford,Michael.2019.“TheFutureofElectricVehiclesinFleet.”AutomotiveFleet,Oct.15,2019.https://www.automotive-fleet.com/342585/the-future-of-electric-vehicles-in-fleetTechdirt.2020.“MassachusettsVotersOverwhelminglySupportExpanded‘RightToRepair’Law.”AbovetheLaw,Nov.6,2020.https://abovethelaw.com/2020/11/massachusetts-voters-overwhelmingly-support-expanded-right-to-repair-law/Tesla.2021.“Powerwall.”AccessedSept.15,2021.https://www.tesla.com/powerwallTitanAES.2022.“UltrasoundBatteryManagement.”AccessedOct.26,2022.https://www.titanaes.com/42ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryatwww.nrel.gov/publications.ULSolutions.2021.“BatteriesandEnergyStorage.”AccessedMay20,2021.https://www.ul.com/industries/energy-and-utilities/batteries-and-energy-storageUmicore.2022.“Lithium.”AccessedOct.26,2022.https://www.umicore.com/en/about/our-metals/lithium/UnitedStatesAdvancedBatteryConsortium.2020.“GoalsforAdvancedHigh-PerformanceBatteriesforElectricVehicle(EV)Applications.”https://uscar.org/download/246/energy-storage-system-goals/12837/goals-for-advanced-high-performance-batteries-for-electric-vehicle-ev-applications.pdfU.S.Congress.House.2021.InfrastructureInvestmentandJobsAct.HR3684.117thCong.IntroducedinHouseJune4,2021.https://www.congress.gov/bill/117th-congress/house-bill/3684U.S.DepartmentofEnergy.2018.“DepartmentofEnergyAnnounces$80MillionInvestmentinAdvancedVehicleTechnologiesResearch.”Sept.5,2018.https://www.energy.gov/articles/department-energy-announces-80-million-investment-advanced-vehicle-technologies-researchU.S.DepartmentofEnergy.2022a.“American-MadeLithium-IonBatteryRecyclingPrize.”AccessedOct.26,2022.https://americanmadechallenges.org/challenges/batteryrecycling/index.htmlU.S.DepartmentofEnergy.2022b.“ReCellCenter.”AccessedOct.26,2022.https://recellcenter.org/U.S.DepartmentofEnergyOfficeofEnergyEfficiencyandRenewableEnergy(EERE).2019.“VehicleTechnologiesOffice’sResearchPlantoReduce,Recycle,andRecoverCriticalMaterialsinLithium-IonBatteries.”https://www.energy.gov/sites/prod/files/2019/07/f64/112306-battery-recycling-brochure-June-2019%202-web150.pdfU.S.DepartmentofEnergyOfficeofEnergyEfficiencyandRenewableEnergyVehicleTechnologiesOffice(VTO).2021.“NationalBlueprintforLithiumBatteries.”June7,2021.https://www.energy.gov/eere/vehicles/articles/national-blueprint-lithium-batteriesU.S.DepartmentofEnergyOfficeofEnergyEfficiencyandRenewableEnergyVehicleTechnologiesOffice(VTO).2022.“Batteries.”AccessedOct.26,2022.https://www.energy.gov/eere/vehicles/batteriesU.S.EnvironmentalProtectionAgency.2022.“SustainableMaterialsManagement:Non-HazardousMaterialsandWasteManagementHierarchy.”LastupdatedJuly5,2022.https://www.epa.gov/smm/sustainable-materials-management-non-hazardous-materials-and-waste-management-hierarchy43ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryatwww.nrel.gov/publications.Vieceli,N.,R.Casasola,G.Lombardo,B.Ebin,andM.Petranikova.2021.“HydrometallurgicalrecyclingofEVlithium-ionbatteries:Effectsofincinerationontheleachingefficiencyofmetalsusingsulfuricacid.”WasteManagement125:192–203.https://doi.org/10.1016/j.wasman.2021.02.039WhatCar?2021.“Government’s2030banonthesaleofnewpetrolanddieselcarsunderfirefromMPs.”May24,2021.https://www.whatcar.com/news/governments-2030-ban-on-the-sale-of-new-petrol-and-diesel-cars-under-fire-from-mps/n23064WorldEconomicForum.2022.“TheWorldEconomicForum.”AccessedOct.26,2022.https://www.weforum.org/Xu,Chengjian,QiangDai,LindaGaines,MingmingHu,ArnoldTukker,andBernhardSteubing.2020.“Futurematerialdemandforautomotivelithium-basedbatteries.”CommunicationsMaterials1:99.https://doi.org/10.1038/s43246-020-00095-xXu,ChengJian,WenxuanZhang,WenzhiHe,GuangmingLi,JuwenHuang,andHaochenZhu.2017.“GenerationandmanagementofwasteelectricvehiclebatteriesinChina.”EnvironmentalScienceandPollutionResearch24:20825–20830.https://doi.org/10.1007/s11356-017-9890-8ZeroEmissionTransportationAssociation.2022.“ZETA.”AccessedOct.26,2022.https://www.zeta2030.org/Zhou,Yan,DavidGohlke,LukeRush,JarodKelly,andQiangDai.2021.Lithium-IonBatterySupplyChainforE-DriveVehiclesintheUnitedStates:2010–2020.Lemont,IL:ArgonneNationalLaboratory.ANL/ESD-21/3.https://publications.anl.gov/anlpubs/2021/04/167369.pdfZhu,Lingyun,andMingChen.2020.“ResearchonSpentLiFePO4ElectricVehicleBatteryDisposalandItsLifeCycleInventoryCollectioninChina.”InternationalJournalofEnvironmentalResearchandPublicHealth17(23):8828.https://doi.org/10.3390/ijerph1723882844ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryatwww.nrel.gov/publications.

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

碳中和
已认证
内容提供者

碳中和

确认删除?
回到顶部
微信客服
  • 管理员微信
QQ客服
  • QQ客服点击这里给我发消息
客服邮箱