ADBIWorkingPaperSeriesHOWCANJAPANHELPCREATEASUSTAINABLEHYDROGENSOCIETYINASIA?NandakumarJanardhanan,MustafaMoinuddin,EricZusman,HajimeTakizawa,andKentaroTamuraNo.1401July2023AsianDevelopmentBankInstituteTheWorkingPaperseriesisacontinuationoftheformerlynamedDiscussionPaperseries;thenumberingofthepaperscontinuedwithoutinterruptionorchange.ADBI’sworkingpapersreflectinitialideasonatopicandarepostedonlinefordiscussion.Someworkingpapersmaydevelopintootherformsofpublication.TheAsianDevelopmentBankrefersto“China”asthePeople’sRepublicofChina.Suggestedcitation:Janardhanan,N.,M.Moinuddin,E.Zusman,H.Takizawa,andK.Tamura.2023.HowCanJapanHelpCreateaSustainableHydrogenSocietyinAsia?ADBIWorkingPaper1401.Tokyo:AsianDevelopmentBankInstitute.Available:https://doi.org/10.56506/TLQC2977Pleasecontacttheauthorsforinformationaboutthispaper.Email:janardhanan@iges.or.jpNandakumarJanardhananisaResearchManager,ClimateandEnergy,andSouthAsiaRegionalCoordinator,InstituteforGlobalEnvironmentalStrategies(IGES),Japan.MustafaMoinuddinisResearchManagerandDeputyDirector,IntegratedSustainabilityCentre,IGES,Japan.EricZusman,isResearchDirector,IntegratedSustainabilityCentre,IGES,andSeniorResearcher,NationalInstituteforEnvironmentalStudies,Japan.HajimeTakizawaisaPolicyResearcher,ClimateandEnergy,IGES,Japan.KentaroTamuraisDirector,ClimateandEnergyArea,IGES,Japan.TheviewsexpressedinthispaperaretheviewsoftheauthoranddonotnecessarilyreflecttheviewsorpoliciesofADBI,ADB,itsBoardofDirectors,orthegovernmentstheyrepresent.ADBIdoesnotguaranteetheaccuracyofthedataincludedinthispaperandacceptsnoresponsibilityforanyconsequencesoftheiruse.TerminologyusedmaynotnecessarilybeconsistentwithADBofficialterms.Discussionpapersaresubjecttoformalrevisionandcorrectionbeforetheyarefinalizedandconsideredpublished.Note:ThisispartofongoingresearchatIGES.Thepaperreflectssomeofthediscussionsinearlierresearchbytheauthors,focusingonexaminingthe“feasibilityofmakingthehydrogensocietyarealityinAsia.”TheauthorsarethankfultoIGESforthestrategicresearchfund(SRF)providedforconductinghydrogenresearch.TheauthorsalsoacknowledgethecontributionofZhenJin(ResearchManager,IGES),whoprovidedinsightsintohydrogendevelopmentinAsia.AsianDevelopmentBankInstituteKasumigasekiBuilding,8thFloor3-2-5Kasumigaseki,Chiyoda-kuTokyo100-6008,JapanTel:+81-3-3593-5500Fax:+81-3-3593-5571URL:www.adbi.orgE-mail:info@adbi.org©2023AsianDevelopmentBankInstituteADBIWorkingPaper1401N.Janardhananetal.AbstractJapanhasadoptedseveralpoliciesthatsignalitsintenttorelyonhydrogentoachievenet-zeroclimategoals.However,manyofthosesamepoliciesareunclearaboutitssupportforatransitiontogreenhydrogen.Relyingongrayandbluehydrogenwithoutatransitiontogreenhydrogenwillharmtheclimate.Itwillalsoresultinseveralotherlostinternationalcooperationandlocalsocioeconomicbenefits.ThispaperarguesthatgreaterclarityaboutthetransitiontogreenhydrogenwillhelpstrengthenthealignmentwithJapan’sinternationalclimatestrategyandlocalrevitalizationpolicies.Itthenproposesasetofrecommendationsthatcanclarifyitssupportfortransitioningtogreenhydrogeninnationalpoliciesaswellasinternationalclimateandlocalrevitalizationstrategies.Keywords:hydrogen,co-innovation,netzero,greenhydrogen,Japan,AsiaJELClassification:Q42,Q48,Q49ADBIWorkingPaper1401N.Janardhananetal.Contents1.INTRODUCTION.......................................................................................................12.HYDROGEN’SPOTENTIALIN,ANDBARRIERSTO,TRANSITIONINGTOANET-ZEROECONOMY...................................................................................2Hydrogen’sPotentialtoTransitiontoNetZero...........................................................2BarrierstotheDevelopmentofHydrogen..................................................................33.JAPAN’SHYDROGENPOLICIESANDSTRATEGIES.............................................44.THEBENEFITSOFTRANSITIONINGTOGREENHYDROGEN..............................8StrengtheningEnergySecurity..................................................................................8AlignmentwithJapan’sInternationalClimateStrategy...............................................8CoherencewithJapan’sLocalRevitalizationStrategy.............................................105.JAPAN’SROLEINLEADINGAHYDROGENECONOMYINASIA.........................11HydrogenTechnologyandInnovation:Japan’sLeadingRoleinAsia......................11CanCo-innovationHelpBoostJapan’sCollaborationwithAsianEconomiesinDevelopingHydrogen?.........................................................................................136.RECOMMENDATIONS............................................................................................147.CONCLUSION.........................................................................................................15REFERENCES...................................................................................................................16ADBIWorkingPaper1401N.Janardhananetal.11.INTRODUCTIONManycountriesinAsiahavedemonstratedaninterestinrelyingonhydrogentoachievenet-zerogoals.ThisinterestiswarrantedsinceAsia’sconcentrationofheavyindustriesandfast-risingtransportemissionsrequirealternativefuels.Japanhasbeenattheforefrontoftheseefforts.However,whetherJapan’shydrogenstrategycontributestoambitiousclimategoalsremainsanopenquestion.ThereasonthatquestionremainsopenisthatJapan’spoliciesareunclearaboutintentionstotransitionfromblueandgraytogreenhydrogen.ThispaperarguesthatgreaterclarityaboutthetransitiontogreenhydrogenwillhelpJapanachieveinternationalcooperationandlocalsocioeconomicbenefits.Itthenoutlinesrecommendationsthatcanclarifyitssupportfortransitioningtogreenhydrogen.Thoserecommendationsincludemorepreciselanguageandtangiblemilestonesfortransitionsinnationalpolicies.Theyalsoentailmakingclearerstatementsabouttheintenttosupportgreenhydrogenandrelatedactionsininternationalclimateandlocalrevitalizationstrategiesthatmakethatcommitmentcredible.Thisaboveargumentisnotonlyimportantforpolicymakersbutforseverallinesofresearchonhydrogen.Onebranchofrelevantresearchunderlinesthathydrogenisnotuniversallygoodfortheenvironment.Forinstance,studieshaveusedanalysistodemonstratethathydrogenstrategiesneedtoavoidnegativeimpactsonlocalecosystemsandfreshwateravailability(Panchenkoetal.2023).Othershavenotedthatwhilehydrogenintheenergymixcouldreplacefossilfuels,gapsexistregardingthesupplychainandhydrogenproductionin,forinstance,theshippingindustryandhydrogenfuelcellvehicles(Atilhanetal.2021;Khanetal.2021).Thoughinformative,muchofthisworkhasastrongertechnicalthanpolicyfocusAsecondlineofworkismorestronglylinkedtopolicy.ThisincludesearlierstudiesthatadvocatedthatJapanintroducelong-termplansforincreasingtheshareofhydrogeninitsenergymix(OhtaandAbe1985).Asimilar,morerecentargumentcanbefoundinworkonopportunitiesforcollaboratingwithcountriesinAsiatoovercomesomeoftheaforementionedtechnicalhurdles(AditiyaandAziz2021).Whilethesestudiesshedimportantlightonpolicy,theydonotunderlinethemultiplelocalandinternationalcooperationbenefitsfromcommittingtotransitionpathwayssupportinggreenhydrogeninJapan(andothercountriesinAsia).Thereisthusasignificantgapintheliterature.ThispaperfillsthisgapbynotonlyexaminingJapan'shydrogenpoliciesbutalsohighlightingthebenefitsoftransitioningtogreenhydrogen.Itfurtherexaminestheroleoftechnologyco-innovationinsupportingmutuallybeneficialcollaborationongreenhydrogenbetweenJapanandothercountriesinAsia.Thepaperisdividedintosevensections.Thefollowingsectiongivesabriefoverviewofthepotentialofhydrogenandtheobstaclestoachievingit,andthethirdsectionlooksatJapan'snationalhydrogenstrategies,whilethefourthoutlinestheadvantagesofswitchingtogreenhydrogen.ThefifthsectionexaminesJapan’sroleinleadinghydrogeneconomyinAsia.Thesixthsectionofferspolicyrecommendationsandemphasizeshowregionalcooperationcouldsupportthoserecommendations.Thefinalsectionconcludeswithasuggestionforfurtherresearch.ADBIWorkingPaper1401N.Janardhananetal.22.HYDROGEN’SPOTENTIALIN,ANDBARRIERSTO,TRANSITIONINGTOANET-ZEROECONOMYHydrogenhasthepotentialtoplayavitalroleinthetransitiontoanet-zeroeconomy,asitcanbeusedasacleanenergycarriertostoreandtransportenergyfromrenewablesourcessuchassolarandwind.Itcanalsobeusedtodecarbonizeavarietyofsectors,includingtransportation,industry,andheating,thataredifficulttoelectrifyusingelectricityalone.However,therearealsosignificantbarrierstothewidespreadadoptionofhydrogeninthetransitiontonetzero.Thesehurdlesinclude:thehighcostofproducing“green”hydrogenusingelectrolysisandrenewableenergy;thelackofinfrastructurefortheproduction,storage,anddistributionofhydrogen;andlimitedpublicawarenessandunderstandingofhydrogenasacleanenergysource.Despitethesechallenges,thepotentialbenefitsofhydrogenmakeitapotentiallyimportantdriverinthetransitiontoanet-zeroeconomy.Hydrogen’sPotentialtoTransitiontoNetZeroThetransitiontohydrogencanhelpreduceemissionsandachievenet-zerogoals(IPCC2018),particularlyinsectorsthataredifficulttoelectrify.Thesesectorsincludeindustriessuchassteelmaking,high-temperatureheating,andlong-distancetransport.Intheseareas,hydrogencanbeusedasacleaneralternativetofossilfuels,reducingemissionsfromproductionprocesses.Hydrogencanalsoplayacomplementaryroleinthetransitiontorenewableenergy.Theintermittentnatureofrenewableenergysources,suchaswindandsolar,canbeachallengetogridstability.Hydrogencanprovideloadbalancingtosmoothoutfluctuationsindemandandsupply.Electrolysis,theprocessofsplittingwatermoleculesintohydrogenandoxygen,canbeusedtostoreexcesselectricitygeneratedbyrenewableenergysources.Whenthereislittlewindorsun,storedhydrogencanthenbeburnedingasturbinestogenerateelectricity.Power-to-gas(P2G)isanotherwaythathydrogencanbeusedasaformofrenewableenergystorage.Thissurpluselectricitycanbeusedforgreenhydrogenproductionandthenconsumedwhenneeded(Thorpe2016).Thishydrogencanthenbedeployedtogenerateelectricityorasafuelfortransportandindustrialpurposes.Importantly,theuseofhydrogenasenergystoragedoesnotincuranyenergylossoverlongperiods,thusreducingemissions.Hydrogenispotentiallyakeycontributortonet-zeroemissionpathwaysglobally(IEA2019;HydrogenCouncil2021),butitsimpactsarearguablymostpromisinginAsia.Theregionishometomanyrapidlydevelopingeconomiesthatwillrequirealternativefuelsinmanyofthesectorsmentionedpreviously.ItisthereforenotsurprisingthatgovernmentsandprivatecompaniesinAsiaareinvesting(HydrogenCouncil2021a;BBC2021;GovernmentofUK2021)inhydrogendomesticallyandsupplychainsregionally.ADBIWorkingPaper1401N.Janardhananetal.3BarrierstotheDevelopmentofHydrogenWhilethereisconsiderablepotentialforhydrogeninAsia,itswidespreaddeploymentisfarfromaforegoneconclusion.Oneofthechiefbarrierstoitsspreadistheissueofeconomics.Thecostofhydrogenneedstobereducedacrossthehydrogensupplychain,i.e.,production,transport,storage,andusage(IEA2019).Tocontributetodecarbonization,hydrogenshouldbeproducedusinggreentechnologies.However,thesemethodsaddcostsanduncertaintytotheuseofhydrogenasanenergysource.Toachieveahydrogen-basedenergysystem,significantinvestmentsinhydrogenproductionandinfrastructurearerequired.Also,itiscrucialtorecognizethathydrogencanbeproducedfromavarietyofsourcesthatwouldnotreduceemissions,includingfossilfuelsandbiomass.Toachievenet-zeroemissions,hydrogenhastobeproducedfromcleansourceslikewaterandwindenergy.Therearealsoissuesrelatedtohydrogentransportationandstorage—suchasthelackofacomprehensivehydrogeninfrastructure,thehighcostofdevelopingandmaintaininghydrogenstoragesystems,andthelackofsuitablematerialsforstoringhydrogeninlargequantities—thoughresearchanddevelopmentareidentifyingwaystomakehydrogenincreasinglycost-effectiveandeasiertoimplementinlarge-scalesystems.Anotherchallenge—andtheonemostcentraltothispaper—involvestheimpactsofhydrogenonclimatechange.Greenhydrogenthatisproducedfromrenewablesusingelectrolysiscanhelpmitigateclimatechange.Ontheotherhand,producinghydrogenfromcoal,oil,orgasisacarbon-intensiveprocessanddoesnotdeliverclimatebenefits.Meanwhile,accordingtolifecycleassessments,“blue”hydrogenproducedfrommethanereformulationwithcarboncaptureandstorage(CCS)andblueammoniaproducedfromlignitereformulationwithCCSarenotconsideredenvironmentallyfriendly(HowarthandJacobson2021).Iftherearenoclearlydefinedtransitionpathways,investinginonly“gray”and“blue”hydrogencouldstallashifttocleanerformsofenergy.Inaddition,someofthecostandsustainabilitybarriersoverlap.Figure1showsthattheprocessofgeneratinggreenhydrogenisexpensivecomparedtothealternatives.TheproductioncostofgreenhydrogenisestimatedtobebetweenUSD2.5/kgH2andUSD6/kgH2intheshortrun(KPMG2020).Improvingthecost-efficiencyofgreenhydrogen-producingtechnologiesisaprerequisiteforgreenhydrogenrollout(Otsukietal.2019).Thegoodnewsisthatsomestudiesshowprogressonthisfront,withthelowerrangeofgreenhydrogenbecomingincreasinglycost-competitivewithbluehydrogen.Astechnologiesimproveandrenewablepowergenerationgetscheaper,greenhydrogenisexpectedtobecomemoreaffordable(IRENA2022).Evenwhencostparityisachieved,theexpansionofgreenhydrogenmaystillnotbeapreferredpolicychoice.Formanycountries,theprioritymaybesatisfyingtheelectricitydemandfromrenewableresources.InJapan,forinstance,thegreenhydrogenproductioncostisestimatedtocomedowntoUSD2.4/kgh2in2050,butJapanisexpectedtouseitsrenewablepotentialforpowergeneration(IRENA2022),andimporthydrogenfromoutsidethecountry.Developingahydrogeneconomythusnecessitatesthedevelopmentofahydrogenmarketandsupplychain.ADBIWorkingPaper1401N.Janardhananetal.4Figure1:LevelizedCostofHydrogenProductionbyTechnologyin2021forNet-ZeroEmissionsby2050Scenario,2030and2050Source:(IEA2022).Anotherbarrierisrelatedtothecurrentregulationsandpolicies.Whilemanycountrieshavesetambitioustargetsforthedeploymentofgreenhydrogen,policiesandregulationsarestillnotfullysupportiveofitsdevelopment.Thelackofclearandconsistentregulationsandpoliciescanmakeitdifficultforcompaniestoinvestingreenhydrogenprojects.Additionally,insomecases,regulationsandpoliciesmaynotbeconducivetothedevelopmentofgreenhydrogen,makingitlessattractiveforprivateinvestment.Similarly,alackofpublicawarenessandunderstandingofgreenhydrogencanalsoactasabarriertoitsdevelopment.Thereisaneedtoeducateandinformthepublicaboutthebenefitsofgreenhydrogenanditspotentialtoplayacrucialroleinthetransitiontoalow-carbonenergysystem.Additionally,addressinganymisconceptionsorconcernsaboutgreenhydrogencanhelptobuildsupportforitsadoption.Overall,whiletherearechallengestobeovercome,hydrogenhasthepotentialtoplayasignificantroleinachievingglobalnet-zeroemissiongoals.Itsuseinvarioussectors,anditsabilitytostoreandtransportenergy,makeitanessentialpieceofthenet-zeropuzzle.Withongoinginvestmentandresearch,thepotentialforhydrogentocontributetoalow-carbonfutureisbecomingincreasinglyclear.3.JAPAN’SHYDROGENPOLICIESANDSTRATEGIESThissectionexploreshowJapan’shydrogenstrategyhasmanagedtheabovebarriersbutalsoremainedunclearonhowitwilltransitiontogreenhydrogen.WhilethefocusisonJapan,itisworthpointingoutthatothercountriesinAsiaarealsopromotinghydrogen.Thismayopenopportunitiesforlearningacrosscountries(seeBox1).ADBIWorkingPaper1401N.Janardhananetal.5Box1:HydrogenStrategiesinAsiaTodate,afewcountriesintheAsiaandthePacificregionhavedevelopednationalhydrogenstrategiesorroadmaps:TheseincludetheRepublicofKoreain2019andIndiain2021,andin2021,thePeople’sRepublicofChina(PRC)promulgatedhydrogenstrategies.•TheRepublicofKorea’sHydrogenStrategyhighlightsseveralachievements.Thecountryhasgainedareputationformass-producinghydrogenfuelcellelectricvehiclessince2013andhasalsohadsuccesswithfuelcellsdevelopment.In2018,thereleaseofcommercialcarswiththelongestdrivingrangewasseenasasymboloftheRepublicofKorea’ssuccessinthisfield.•In2021,IndiaannouncedtheNationalHydrogenMission,astrategyaimedatmakingthecountryagloballeaderingreenhydrogenproductionanduse.Themissioniscurrentlybeingdevelopedandwillhavebothshort-term(4–10years)andlong-termgoals.Itsobjectivesincludeprioritizinganddevelopinggreenhydrogen,usinghydrogenasastorageoptionforrenewableenergy,meetingtheenergyneedsoftheindustrywithhydrogensupplies,reducingrelianceonfossilfuels,andprovidingfuelforthetransportationsector.ThemissionalsoaimstoturnIndiaintoaglobalmanufacturinghubforhydrogenandfuelcelltechnologies(MNRE2021).ThemissionwasapprovedbytheIndianCabinetinJanuary2023.Thelikelyoutcomesofthemissionby2030include:thedevelopmentofagreenhydrogenproductioncapacityofatleast5MMT(millionmetrictonnes)perannumwithanassociatedrenewableenergycapacityadditionofabout125GWinthecountry;overeightlakhcrore($105.9billion)intotalinvestments;thecreationofover600,000jobs;acumulativereductioninfossilfuelimportsoveronelakhcroreINR($13.7billion);theabatementofnearly50MMTofannualgreenhousegasemissions(PIB2023).•InJune2021,theChinaHydrogenAlliancereleasedawhitepapertitled“HydrogenEnergyandFuelCellIndustryinChina2020,”whichestimatesthatthedemandforhydrogeninthePRCwillincreasefrom33.42to130Mtby2060.ThisincreaseindemandcouldassistthePRCinachievingitscarbonneutralitygoals.WhilethePRChasmadesignificantprogressinthedevelopmentofrenewableandcleantechnologies,ithasnotyetmatchedtheprogressmadebyJapanortheRepublicofKoreainthehydrogensector.TheHydrogenBasicStrategyalsoaimstoestablishinternationalsupplychainsforhydrogenproduction,storage,transportation,andusetosupporttheproductionofhydrogenabroad.Aspartofthisstrategy,severaldemonstrationprojectsfortheproductionandimportationofcarbon-freehydrogenhavebeenlaunched.Sincethedevelopmentofthe2017HydrogenBasicStrategy,shiftsinJapan’sbroaderclimatepolicyhavetriggeredamarkedincreaseininterestinhydrogen.ThisinterestbegantoriseinOctober2020whenformerPrimeMinisterSugaYoshihideannouncedthatJapanwouldachievecarbonneutralityby2050.Sincethatannouncement,renewableenergy(RE)andhydrogen,aswellasammonia,havebeguntofeaturemorecentrallyinJapan’senergyplans.ThegrowingroleofthesesourcesisillustratedinJapan’sStrategicEnergyPlan,whichprojectsthatrenewableswouldcomprise50%–60%,whilehydrogenandammoniawouldmakeup10%by2050(Figure2).ADBIWorkingPaper1401N.Janardhananetal.6Figure2:JapaneseGovernment’sAssumptionofPowerGenerationMixtoAchieveCarbonNeutralityby2050Source:Byauthor,basedoninformationinGreenGrowthStrategyThroughAchievingCarbonNeutralityin2050(MinistryofEconomy,TradeandIndustry2021,p.5)Itfurthermeritsemphasizingthattheestimatesintheabovegraphcouldbeadjustedbasedonothersourcesofenergy.Forinstance,thefutureofnuclear/thermal+CCUS/carbonrecyclinghasremaineduncertainsincetheFukushimanuclearaccidentin2011.Moreover,thestatusofCCUSisuncertain,withatestplantinHokkaidoabletostoreonly0.3milliontonsofCO2whereasJapan’sCO2emissionfromthepowersectorwas450milliontonsofCO2in2018.Carbonrecyclingandpowergenerationusinghydrogenandammoniaarestillunderdevelopment,suggestingmoreuncertainty.Otherstrategieshavesuggestedtheimportanceofhydrogen—evengiventhisuncertainty.AccordingtoJapan’sCleanEnergyStrategy,thegovernmentestimatesthattheannualdomestichydrogendemandwillbe3milliontonsin2030andreach20milliontonnesin2050.Currently,2milliontonnesofhydrogenareproducedasby-productsfromoilrefineryplants.Thestrategy,therefore,aimstomultiplythecurrentamountofhydrogentenfoldby2050(seeFigure3).HydrogenAmmoniaRenewable50-60%10%NegativeEmissionsPlantationDACCSetc.Nuclear/Thermal+CCUS/CarbonRecycle30-40%ADBIWorkingPaper1401N.Janardhananetal.7Figure3:Japan’sEstimatedDomesticHydrogenDemandSource:CleanEnergyStrategyInterimReview(MinistryofEconomy,TradeandIndustry2022,p.62).ItisalsoclearfromJapan’sCleanEnergyStrategythatdomestichydrogenproductionwillnotbeatthelevelsneededtomeetdemandsin2050(Figure4).Thisispartlybecausetheproductionofhydrogenasaby-productatoilrefineriesislimited.Itisfurthercompoundedbythefactthatgreenhydrogenproducedfromwaterelectrolysisisalsoinsufficientduetotheshortageofrenewableenergyandthehighcostofelectrolyzers.ThisshortfallonceagainunderscorestheneedforJapantoimporthydrogenfromothercountries.Fortunately,someworkinthisareaisalreadyunderway.Amajorhydrogen-relatedagendaforJapanistodeveloparobusthydrogensupplychain(Nakano2021),withaplantoinvestupto300billionJapaneseyentowardthatend(Reuters2021).Figure4:ProspectiveHydrogenDemandandSupplyImagein2050Source:Discussiontowardtherealizationof2050carbonneutral(MinistryofTrade,IndustryandEnergy2020).ADBIWorkingPaper1401N.Janardhananetal.8ThoughJapan’srelevantpoliciesandstrategiesincreasinglysuggesttheimportanceofhydrogen,thesupportforgray,blue,andgreenhydrogenisstillunclear.Forinstance,METI’sIdealEnergyPolicytowards2030states:“[I]tisanimportantapproachtoexpandthehydrogenmarketbyspreadinggrayhydrogenforthetimebeing,thenintroduceblueandgreenhydrogenwithtechnologydevelopmentandcostreduction”(MinistryofEconomy,TradeandIndustry2021).ThereportdoesnotstatewhenJapanwillswitchfromgraytoblueandgreenhydrogenorhowtoprocurehydrogenoverseas.Inotherinstances,METIappearstobackhydrogenandammoniaco-firingbyquotingIAEAWorldEnergyOutlook2019datashowingthatin2040AsiaandthePacificwillstilldependoncoalinthepowersectorcomprising40%of1,820GW(MinistryofEconomy,TradeandIndustry2022).OthermoregeneralsignsofuncertaintyincludealackofclarityonhowJapanseesthephasingoutofcoal.Onthispoint,severalothercountries(CoPUK20212021)havecommittedtotheGlobalCoaltoCleanPowerTransitionStatementatCOP26in2021andtoendingcoalwithinthe2040s.Instead,Japanhassupportedthepolicytoco-firecoalwithammoniaandhydrogenwithnaturalgasforpowergenerationaswellasusinghydrogeninhard-to-abateindustrialsectors.4.THEBENEFITSOFTRANSITIONINGTOGREENHYDROGENThissectionarguesthattherearesignificantbenefitstobegainedfromgreaterclarityaboutthetransitiontogreenhydrogen.SomeofthesebenefitsinvolvestrongeralignmentwithJapan’sinternationaldecarbonizationstrategy,whileothersinvolveenhancedcoherencewithlocalrevitalizationstrategies.StrengtheningEnergySecurityJapanisheavilyreliantonimportedfossilfuels,suchasoilandnaturalgas,tomeetitsenergyneeds.Thisreliancemakesitvulnerabletopricefluctuationsandsupplydisruptions,whichcanhavenegativeimpactsontheeconomyandthewelfareofitscitizens.Byproducingitsgreenhydrogenusingrenewableenergysources,suchassolarandwind,Japancanreduceitsrelianceonimportedfossilfuelsandincreaseitsenergysecurity.AstudybyOtsukiandcolleagues(Otsukietal.2019)foundthatgreenhydrogenproductionusingrenewableenergysourcescouldprovideastableandreliablesourceofenergyforJapan,particularlyinareaswithhighlevelsofrenewableenergygeneration.TheauthorsalsonotedthatgreenhydrogenproductioncouldbeintegratedintoJapan'sexistingenergyinfrastructure,includingthepowergridandnaturalgasnetwork,whichcouldhelptoincreasetheflexibilityandresilienceoftheenergysystem.AlignmentwithJapan’sInternationalClimateStrategyAtCOP26,PrimeMinisterKishidapledgedupto$10billioninfundsoverfiveyearstosupportAsia’sdecarbonization(seeFigure5foranillustrationofhowtechnologyassistanceisbeingallocatedtohelpachievenet-zerogoalsinAsia’spowersector).Forgeopoliticalreasons,asignificantproportionofthisassistancewilllikelyflowtoSoutheastAsia.ThoughSoutheastAsiareliedonrenewablesfornearlyaquarterofitstotalgeneration—mostlyfromhydropower—thereisconsiderablepotentialtointroduceotherformsofrenewablesthatwouldsupportgreenhydrogen(InternationalEnergyADBIWorkingPaper1401N.Janardhananetal.9Agency2022).Figure5comparestheelectricitycapacitybetweenthestatedpoliciesscenario(left)andthesustainabledevelopmentscenario(right).IntheSTEPS,theshareofrenewablesincreasesuntilitreachesnearly40%by2050.IntheSDS(Figure5),renewableswouldincreaseto85%.Toachievealevelof85%by2050,countriesneedtoadd1,100GWofrenewablecapacityinthenext30years—equivalenttothetotalrenewablecapacityofthePRCandIndiacombined(InternationalEnergyAgency,2022).Figure5:ChangeinElectricityCapacityintheStatedPoliciesScenarioandSustainableDevelopmentScenario,2020to2050Note:“Otherlowemissions”includesnuclear,CCUS,andotherformsofrenewables.Source:SoutheastAsianEnergyOutlook2022(InternationalEnergyAgency2022).Thereisalsoevidencetosuggestthattransitionstohydrogenandhydrogen-basedfuelssuchasammoniacouldhelpreorganizetheenergystructureinSoutheastAsia.Figure6showsthetotaldemandforlow-emissionfuelsinSoutheastAsiaintheSDSfortheperiod2000–2050.BruneihasbegunexportingsmallamountsofhydrogentoJapan,whileIndonesia,Malaysia,thePhilippines,andThailandaretestingtheuseofgreenhydrogen.MalaysiaandIndonesiaarestudyingthepossibilityofusingammoniaasafuelincoalpowerplantswithJapan,andbothcountriesareworkingwithJapantodevelophydrogenandammoniasupplychains.ThailandandSingaporearealsopursuingsimilarinitiatives.Somemajoroilandgascompanies,includingPetronas,Pertamina,andPTT,areplanninginvestmentsinhydrogensupplychains(InternationalEnergyAgency2022).Intheaboveinstances,itwouldbebeneficialforJapanandpartnercountriestounderlinethesynergiesbetweenprojectedinvestmentsinrenewablesandtransitionstogreenhydrogen.ADBIWorkingPaper1401N.Janardhananetal.10Figure6:TotalDemandforLow-EmissionFuelsinSoutheastAsiaintheSDS,2000–2050Source:SoutheastAsianEnergyOutlook2022(InternationalEnergyAgency2022).CoherencewithJapan’sLocalRevitalizationStrategyThoughhydrogenhasbeenviewedasapotentialalternativefortheenergydemandinheavyindustriesandfreighttransport,italsohasaroleinlocalrevitalization.Thisisparticularlytrueasgreenhydrogendevelopmentcanhelpachievemanysocioeconomicandenvironmentalgoalsatthelocallevel.Forexample,thedevelopmentofnewtechnologiesandthecreationofnewjobsinthehydrogenindustrycouldhelptostimulateeconomicgrowthandinnovation.Inaddition,Japanhasthepotentialtobealeaderingreenhydrogenproductionandcanusethispositiontocooperatewithothercountriesintheregionandbeyondtoacceleratetheglobaltransitiontocleanenergy.ThiscouldhelptocreatenewbusinessandtradeopportunitiesforJapanesecompaniesandboostthecountry'seconomy.ThepotentialtodelivermultiplebenefitsisalreadyondisplayinsomepartsofJapan.Toillustratethis,alocalhydrogensocietyisgraduallybeingdevelopedinShikaoi,Hokkaido.Shikaoiisasmalltownthatreliesheavilyondairyanduplandfarmingactivities.Thetownproduceslargeamountsoflivestockmanure,usingtheexcessmanuretogeneratebiogasandhigh-qualityorganicfertilizer.In2015,Shikaoibegantodevelopabiogas-basedhydrogensupplychainthatproduces,stores,transports,supplies,anduseshydrogen.Greenhydrogenfromthisprojectisusedforhydrogenforfuelingvehicles.Theprojectisnowattemptingtoreduceemissionsintheagriculturesectorbypoweringagriculturevehicleswithhydrogenenergy.Theprojectisstillatthedemonstrationstagebutintendstoexpandthedemandanduseofhydrogeninotheractivitiessuchasdairyfarmingandvegetablewarehousingwithintheregionevenafteritscompletion(MinistryoftheEnvironmentofJapan2019;MinistryoftheEnvironmentofJapan2021).OtherexamplesfromJapanalsosuggestthepotentialforgreatercoherencewithlocaldevelopmentplans.Forinstance,ademonstrationprojectusingP2GtechnologyisalreadyunderwayinFukushimaPrefecture.Theprojectwillhelpaddressseasonalfluctuationsrelatedtogridandadjustmentcapacityproblems(METI2017).ADBIWorkingPaper1401N.Janardhananetal.11BeyondthespecificcaseofShikaoiandFukushima,thereissignificantscopetosupportthepromotionofgreenhydrogenwithlocalrevitalizationeffortsmoregenerally.Japan’smostrecentBasicEnvironmentalPlanemphasizestheconceptoftheCirculatingandEcologicalSphere(CES).TheCESispremisedonthenotionofintegratingclimateandbiodiversitygoalsbyrelyingmoreonlocalresourcesandoptimizingresourceflowsbetweenurbanandruralareas.TheemergenceandspreadoflocallybasedhydrogensocietiescouldmutuallyreinforceeffortstogiveshapeandsubstancetotheCESinJapan(Ortiz-Moyaetal.2021).TheseeffortscouldalsohelptopopularizetheconceptsandtheirunderlyingprinciplesinotherpartsofAsia,strengtheningthealignmentwithJapan’sinternationalclimatestrategy.5.JAPAN’SROLEINLEADINGAHYDROGENECONOMYINASIAJapanhasthepotentialtoleadapathwaytowardsahydrogeneconomyinAsiaduetoacombinationofitsadvancedtechnologyandcompetitivemanufacturingenvironment.First,Japanhasastrongtrackrecordofinvestinginresearchanddevelopment(R&D)inhydrogen-relatedtechnologies,includingelectrolysis,fuelcelltechnology,andhydrogenstorage.Thishasenabledthecountrytodeveloparangeofkeytechnologiesthatarecriticalfortheproduction,storage,anduseofhydrogen.Forexample,Japanhasdevelopedadvancedelectrolysissystemsthatarehighlyefficientandcanproducehydrogenusingrenewableenergysourcessuchassolarandwind.Ithasalsodevelopedfuelcelltechnologiesthatcanconverthydrogenintoelectricitywithhighefficiencyandlowemissions.Second,Japanhasacompetitivemanufacturingenvironmentthatcouldacceleratetheadoptionofhydrogentechnologiesintheregion.Japanhasawell-developedindustrialbaseandastrongtraditionofinnovationandtechnologicalleadership,whichcouldmakeitanattractivepartnerforothercountriesintheregionlookingtoadopthydrogentechnologies.Inaddition,Japan'srelativelylowlaborcostsandaccesstoalargemarketcouldmakeitanattractivelocationfortheproductionofhydrogentechnologies,whichcouldhelptodrivedowncostsandincreasethecompetitivenessofthesetechnologiesglobally.Overall,Japan'sadvancedtechnologyandcompetitivemanufacturingenvironmentpositionitwelltoleadthewayinthetransitiontoahydrogeneconomyinAsia.However,itisimportanttonotethatthistransitionwillrequirethecooperationandcollaborationofawiderangeofstakeholders,includinggovernments,companies,researchinstitutions,andcivilsocietyorganizations.Byworkingtogether,Japanandothercountriesintheregioncanacceleratetheadoptionofhydrogentechnologiesandcontributetotheglobalefforttocombatclimatechange.HydrogenTechnologyandInnovation:Japan’sLeadingRoleinAsiaInnovationinhydrogenenergyisdrivingthedevelopmentofnewtechnologiesandmethodsforproducing,storing,andusinghydrogenasafuel.Thisincludesadvancementsinelectrolysis,fuelcells,andhydrogenstoragesystems,aswellasthedevelopmentofnewhydrogen-poweredvehicles.InAsia,Japanhasbeenplayinganimportantroleintheresearchanddevelopmentaimedatmakinghydrogenmorecost-effectiveandwidelyavailableasacleanenergysource.ADBIWorkingPaper1401N.Janardhananetal.12ArecentstudyconductedbytheInternationalEnergyAgency(IEA2023)usesthepublishedInternationalPatentFamilies(IPFs)asametrictomeasurepatentingactivitiesindifferentcategoriesofhydrogen-relatedtechnologies.TheanalysisfocusesontheglobalgeographyofhydrogeninnovationbylookingatthelocationsofapplicantsandinventorsofIPFsforhydrogen-relatedtechnologies.JapanhasthelargestnumberofIPFs(seeTable1)inthehydrogensectorintheworld.IntheAsianregion,thoughseveralcountrieshavebeenshapingambitioushydrogendevelopmentplans,theydonothaveanotablenumberoforiginalinventions.Nonetheless,countriesliketheRepublicofKoreaandthePRChavebeeninvestingstronglyinhydrogentechnologies.Table1:RevealedTechnologyAdvantagesinHydrogenTechnologiesbyValueChainSegments,2011–2020ShareofAllHydrogen-RelatedIPFsProductionStorage,Distribution,andTransformationIndustrialApplicationsJapan24%20%22%28%US20%19%23%19%Germany11%10%14%12%Rep.ofKorea7%6%5%9%France6%7%9%4%PRC4%5%3%3%Netherlands3%4%2%3%UK3%3%2%2%Switzerland2%2%1%2%Canada2%2%2%1%Source:(IEA2023).Japaneseinnovationscanhelptoimprovetheefficiencyandcost-effectivenessofhydrogenproduction,storage,anddistribution,makingitmorecompetitive.CollaboratingwithAsiancountriescanhelpacceleratethetransformationofJapan'shydrogeninnovationintotheproduction,storage,andapplicationoftechnologyintheregioninseveralways.Byworkingtogether,JapanandotherAsiancountriescansharetheirknowledgeandexpertiseinhydrogentechnology,leadingtofasterprogressinareassuchashydrogenproductionandfuelcelldevelopment.Suchcollaborationscanallowformoreefficientuseofresources,suchasfundingandinfrastructure,andhelptocreateeconomiesofscaleintheproductionanddistributionofhydrogen.WorkingwithcountrieslikeIndia,whichhaveambitioushydrogendevelopmentplans,canhelptostandardizeandharmonizestandardsandregulations,whichwouldincreasetheaccessibilityforcountriestotradehydrogenandhydrogen-relatedproductsandservices,boostthecooperationandinterconnectionofhydrogeninfrastructure,andacceleratethedeploymentofhydrogenacrossAsia.ADBIWorkingPaper1401N.Janardhananetal.13CanCo-innovationHelpBoostJapan’sCollaborationwithAsianEconomiesinDevelopingHydrogen?Co-innovationisacollaborativeprocessinwhichdifferentorganizations,suchascompanies,researchinstitutions,andgovernmentagencies,worktogethertojointlyinnovatetechnology,anddevelopandproducenewproductsandservices.Thisapproachcanbeparticularlyeffectiveinthefieldofhydrogenproduction,asitallowsdifferentstakeholderstoshareknowledge,resources,andexpertiseinordertoacceleratethedevelopmentandcommercializationofhydrogentechnologies.Figure7:Co-innovationFrameworkSource:(Janardhananetal.2020;Janardhananetal.2021).Thereareseveralwaysinwhichco-innovationcanhelpJapanandotherAsiancountriestojointlyinnovatetechnology,anddevelopandproducehydrogen.First,co-innovationcanfacilitatethesharingofknowledgeandexpertiseamongdifferentorganizations,whichcanleadtomoreefficientandeffectiveinnovation.Forexample,companiescancollaboratewithresearchinstitutionstoaccessspecializedknowledgeandexpertiseinareassuchaselectrolysis,fuelcelltechnology,andhydrogenstorage.Thiscanhelptospeedupthedevelopmentandcommercializationofhydrogentechnologies,aswellasreducingthecostsandrisksassociatedwithinnovation.Second,co-innovationcanallowdifferentorganizationstoshareresourcesandinfrastructure.Third,co-innovationcanenableJapaneseandotherAsiancompaniestoworktogethertosharerisksandrewards.Overall,co-innovationcanbeapowerfultoolforJapanandotherAsiancountriestojointlyinnovatetechnology,anddevelopandproducehydrogen.Byfosteringcollaborationandaligningincentivesamongdifferentstakeholders,co-innovationcanhelptoacceleratethetransitiontoahydrogeneconomyandcontributetotheglobalefforttocombatclimatechange.ADBIWorkingPaper1401N.Janardhananetal.146.RECOMMENDATIONSTheprevioussectionssuggestedthattherearebothconsiderablebarriersandbenefitstopromotingatransitiontogreenhydrogenforJapan.Theseincludeastrongeralignmentwithinternationalclimatestrategiesandlocalrevitalizationplans.Atthesametime,relevantnationalhydrogenpoliciesandstrategieshaveremainedambiguousonJapan’scommitmenttotransitioningtogreenhydrogen.ThiscouldresultinalostopportunityforJapan.SeveralrecommendationsfollowthatcanhelpJapancapitalizeonthisopportunity.Thefirstrecommendationistoprovidegreaterclarityinnationalpoliciesontheintentiontosupportthetransitiontogreenhydrogen.Thisclaritycanbedemonstratedthroughtheuseofmorepreciselanguageinrelevantpolicystatements,aswellastheinclusionofvisiblemilestonesthatareconsistentwithtimetablesfornationallydeterminedcontributions(NDCs).Inaddition,policystatementsshouldplaceagreateremphasisontransitionpathways,ratherthanjustone-offdemonstrationprojects,inordertoprovideaclearerroadmapfortheshifttogreenhydrogen.Itisalsoimportanttohighlighttheclimatebenefitsofgreenhydrogeninthesepolicystatementsandcontrastthemwiththedelaysthatcanoccurwhentransitioningtogreenhydrogen.Thereisevidencetosupporttheeffectivenessofsuchapproaches:Forinstance,astudybytheInternationalRenewableEnergyAgency(IRENA)foundthatclear,long-termpolicyframeworksandtargetsarekeytoincreasingthedeploymentofrenewableenergytechnologies,includinghydrogen.Asecondrecommendationistostrengthentheconnectionsbetweenhydrogenpoliciesandstrategiesandlocalrevitalizationplans.Forexample,supportingandshowcasingsuccessfuldemonstrationsofhydrogenuse,likethoseinShikaoitowninJapan,canbehelpful.Additionally,providingfundingtosupportmoredemonstrationsinareasthatarefocusedonaddressingclimatechangeorclimate-energysystems(CESs)canbeuseful.Anothersuggestionistoofferlocalitiesstrongerincentivestodevelopandimplementtheirplansforlocallyrelevanthydrogensocieties,toscaleuplocalexperiments.Lastly,thenationalgovernmentshouldstrengthenthenecessaryinfrastructuretosupportthetransportationofhydrogenfuelsfromruraltourbanareas.Athirdrecommendationistobringthesamelevelofclarityandcommitmenttogreenhydrogenininternationalclimatestrategies.Byexpressingtheintentiontobuildasustainablehydrogensupplychain,ratherthanjustanyhydrogensupplychain,countriescanbetteralignwithregionaldecarbonizationplansandencouragepartnercountriestoseethevalueofstrengtheningconnectionsbetweentheirrenewableenergyandgreenhydrogenplans.Thiscanalsobeachievedbyplacingagreateremphasisonamutuallybeneficialprocessofco-innovation,ratherthanone-waytechnologytransfer.EstablishingahydrogeneconomyinAsiawillrequireafunctioninghydrogenmarketthatenablescooperationandtradewithintheregionandbeyond.Tocapturethebenefitsofleadershipinthismarket,itisessentialtoadoptaco-innovationprocessthatfacilitatesandsharesthebenefitsofthetransitiontogreenhydrogen.AfourthrecommendationistoallocateasignificantportionofthefundspledgedbytheJapanesePrimeMinister,Kishida,duringCoP21(Okutsu2021),towardssupportingthedevelopmentanddeploymentofgreenhydrogentechnologiesinAsia.Thiscanbeachievedthroughcollaborationwithlocalgovernmentsandprivatesectorsintheregion,includingjointresearchanddevelopmentprojects,technologytransfer,anddemonstrationprojects.Tomaximizetheimpactofthesefunds,itisimportanttoprioritizeprojectsthathavethepotentialtoscaleupandachievesignificantemissionsreductionsintheregion.Thisfundingcanalsobeusedtosupportcapacitybuildingintheregion,suchastrainingprogramsforpolicymakers,localengineers,andADBIWorkingPaper1401N.Janardhananetal.15techniciansingreenhydrogentechnologies,andtosupportthedevelopmentofnecessaryinfrastructureforgreenhydrogenproductionandtransportation.AfifthrecommendationpertainstocountriesoutsideJapan.SeveralcountriesindevelopingAsiahavebeenshapingstrategiestoincludehydrogenintheirenergymix.DevelopingcountriesinAsiawouldbewelladvisedtoreinforcethesedomesticeffortsbyestablishingagreementsforjointresearchanddevelopment,technologytransfer,andinvestmentinthehydrogensector.Theseagreementscouldincludetheexchangeoftechnicalknowledge,fundingsupport,andsharingbestpractices.Additionally,developingcountriesinAsiacanworktogetherwithJapantopromoteregionalcooperationinthehydrogensector.Thiscouldincludeestablishingaregionalhydrogenmarket,sharinginfrastructureforhydrogenproductionanddistribution,andcoordinatingpolicyapproachestosupportthedeploymentofhydrogentechnologies.Moreover,developingcountriesinAsiacancollaboratewithJapantodevelopajointroadmapforthedevelopmentofthehydrogensectorintheregion.Thisroadmapcouldincludespecifictargets,timelines,andactionstopromotethedeploymentofhydrogentechnologiesandinfrastructure.TheseeffortscanhelpdevelopingcountriesinAsiatonotonlybenefitfromJapan'sadvancedtechnologyandexpertiseingreenhydrogenbutalsotobuildstrongercollaborationintheregionforthedeploymentofhydrogentechnologies.Thepolicytakeawayforthesecountriesistheimportanceofhavingaclearroadmapforthedeploymentofhydrogentechnologiesandinfrastructure,establishingstrongpolicyframeworks,andpromotingregionalcooperationtobuildasustainablehydrogeneconomy.Further,collaboratingwithadvancedcountrieslikeJapancanhelpthemleapfroginthedevelopmentofgreenhydrogentechnologiesandprovideaccesstofundingandtechnicalexpertise.7.CONCLUSIONTheideaofahydrogensocietyinAsiaisgainingtractionininternationalpolicycirclesandparticularlyinJapan.ThegrowinginterestmakessenseforJapan:Itisanindustriallyadvancedeconomywithastrongtrackrecordofinvestinginhydrogen-relatedresearchanddevelopment,andithasthepotentialtoleadthewayinthelarge-scalecommercializationof,andcollaborationon,hydrogenintheregion.Asanindustriallyadvancedeconomy,ithasalreadyinvestedinhydrogen-relatedR&Danddevelopedkeyhydrogen-relatedtechnologies(Otsukietal.2019;Janardhananetal.2021).Japan'sadvancedtechnology,combinedwiththecompetitivemanufacturingenvironmentindevelopingcountriesinAsia,couldacceleratethetransitiontoahydrogensocietyintheregion.However,alackofclarityaboutthetransitiontogreenhydrogencouldhindereffortstousehydrogentomeetambitiousclimatetargets.ThispaperrecommendsasetofpoliciesforJapantoconsiderinitsnationalandregionaleffortstopromotetheuseofhydrogeninAsia.WhilethefocusofthispaperisonJapan,manyoftheserecommendationsapplytoothercountriesinandoutsideofAsia.Byembracinggreaterclarityaboutthetransitiontogreenhydrogen,countrieshavetheopportunitytobenefitboththeplanetanditsinhabitants.ADBIWorkingPaper1401N.Janardhananetal.16REFERENCESAditiya,H.andAziz,M.,2021.ProspectofhydrogenenergyinAsia-Pacific:Aperspectivereviewontechno-socio-economynexus.InternationalJournalofHydrogenEnergy,46(71),pp.35027–35056.Atilhan,S.etal.,2021.Greenhydrogenasanalternativefuelfortheshippingindustry.CurrentOpinioninChemicalEngineering,31(100668).BBC,2021.Hydrogenpoweroffersjobsboost,saysgovernment.[Online]Availableat:https://www.bbc.com/news/science-environment-58238367[Accessed10July2022].CoPUK2021,2021.GlobalCoaltoCleanPowerTransitionStatement.[Online]Availableat:https://ukcop26.org/global-coal-to-clean-power-transition-statement/[Accessed15April2023].GovernmentofUK,2021.UKgovernmentlaunchesplanforaworld-leadinghydrogeneconomy.[Online]Availableat:https://www.gov.uk/government/news/uk-government-launches-plan-for-a-world-leading-hydrogen-economy[Accessed20August2022].Howarth,R.W.andJacobson,M.Z.,2021.Howgreenisbluehydrogen?.EnergyScienceandEngineering,p.https://doi.org/10.1002/ese3.956.HydrogenCouncil,2021.HydrogenInsights:Aperspectiveonhydrogeninvestment,marketdevelopmentandcostcompetitiveness,Brussels:HydrogenCouncil&McKinsey&Company.HydrogenCouncil,2021a.HydrogenInvestmentPipelineGrowsTo$500BillionInResponseToGovernmentCommitmentsToDeepDecarbonisation.[Online]Availableat:https://hydrogencouncil.com/en/hydrogen-insights-updates-july2021/[Accessed15July2022].IEA,2019.TheFutureofHydrogen,Paris:InternationalEnergyAgency.———,2022.GlobalHydrogenReview,Paris:IEA.———,2023.Hydrogenpatentsforacleanenergyfuture,Paris:InternationalEnergyAgency.InternationalEnergyAgency,2022.SoutheastAsiaEnergyOutlook2022,s.l.:InternationalEnergyAgency.———,2022.SoutheastAsiaEnergyOutlook2022,s.l.:InternationalEnergyAgency.———,2022.SoutheastAsiaEnergyOutlook2022,Paris:InternationalEnergyAgency.IPCC,2018.Theevidenceisclear:thetimeforactionisnow.Wecanhalveemissionsby2030.[Online]Availableat:https://www.ipcc.ch/2022/04/04/ipcc-ar6-wgiii-pressrelease/[Accessed11012023].IRENA,2022.Globalhydrogentradetomeetthe1.5°Cclimategoal:PartIII–Greenhydrogencostandpotential,AbuDhabi:InternationalRenewableEnergyAgency(IRENA).Janardhanan,N.etal.,2021.PotentialforJapan-IndiaCo-InnovationforHydrogenDevelopment:PartnershipsforNationalandGlobalWins,Hayama:InstituteforGlobalEnvironmentalStrategies.ADBIWorkingPaper1401N.Janardhananetal.17Janardhanan,N.,Ikeda,E.,Zusman,E.andTamura,K.,2020.Co-innovationforLowCarbonTechnologies:TheCaseofJapan-IndiaCollaboration,Hayama:InstituteforGlobalEnvironmentalStrategies.Janardhanan,N.,Pham,N.-B.,Hibino,K.andAkagi,J.,2021.Japan’slow-carbontechnologycollaborationwithSoutheastAsia:Co-innovationandCo-benefits.In:H.Farzaneh,E.ZusmanandY.Chae,eds.AligningClimateChangeandSustainableDevelopmentPoliciesinAsia.Singapore:Springer,pp.10–25.Khan,U.,Yamamoto,T.andSato,H.,2021.Aninsightintopotentialearlyadoptersofhydrogenfuel-cellvehiclesinJapan.InternationalJournalofHydrogenEnergy,46(2021),pp.10589–10607.KPMG,2020.Thehydrogentrajectory:Whatdoesresearchtellusaboutthepaceofdevelopmentofhydrogentechnologies?.KPMGInsights.METI,2017.BasicHydrogenStrategy.[Online]Availableat:https://www.meti.go.jp/english/press/2017/pdf/1226_003a.pdf[Accessed17May2020].MinistryofEconomy,TradeandIndustry,2021.IdealEnergyPolicytowards2030,Tokyo:MinistryofEconomy,TradeandIndustry,Japan.———,2022.TransitionRoadmapinthePowerSector,Tokyo:MinistryofEconomy,TradeandIndustry,Japan.MinistryoftheEnvironmentofJapan,2019.事例6北海道鹿追町~家畜ふん尿由来の水素を活用した水素サプライチェーンモデルの構築~(Case6ShikaoiTown,Hokkaido-Constructionofahydrogensupplychainmodelutilizinghydrogenderivedfromlivestockmanure).In:地域循環共生圏事例集:脱炭素化・SDGsの実現に向けた日本のビジョン(RegionalCirculationSymbioticAreaCasebook:TowardtherealizationofdecarbonizationandSDGsJapan'svision).Tokyo:MinistryoftheEnvironmentofJapan.———,2021.Thehydrogenenergysupplychaindemonstrationprojectfromlivestockmanure(ShikaoiTownandObihiroCity,Hokkaido,Primarypartner:AirWaterInc.).[Online]Availableat:https://www.env.go.jp/seisaku/list/ondanka_saisei/lowcarbon-h2-sc/en/demonstration-business/PDF/pj02_211124.pdf[Accessed0752023].MinistryofTrade,IndustryandEnergy,2020.HydrogenEconomyRoadmapofKorea,Seoul:MinistryofTrade,IndustryandEnergy.MNRE,2021.ProvisionsforRESectorintheAnnualBudget2021-22.[Online]Availableat:https://mnre.gov.in/img/documents/uploads/file_f-1612941710983.pdf[Accessed12November2021].Nakano,J.,2021.Japan’sHydrogenIndustrialStrategy.[Online]Availableat:https://www.csis.org/analysis/japans-hydrogen-industrial-strategy[Accessed12November2021].Ohta,T.andAbe,I.,1985.HydrogenenergyresearchanddevelopmentsinJapan.InternationalJournalofHydrogenEnergy,10(5),pp.275-279.Okutsu,A.,2021.Japanpledgesextra$10bnofoverseasclimatefinancing.[Online]Availableat:https://asia.nikkei.com/Spotlight/Environment/Climate-Change/COP26/Japan-pledges-extra-10bn-of-overseas-climate-financing[Accessed15April2023].ADBIWorkingPaper1401N.Janardhananetal.18Ortiz-Moya,F.etal.,2021.Sustainabletransitionstowardsaresilientanddecentralisedfuture:Japan’sCirculatingandEcologicalSphere(CES).SustainabilityScience,313.Volume1.Otsuki,T.,Komiyama,R.andFujii,Y.,2019.Possibilityofintroducinghydrogenasfuelforpowergenerationandautomobiles:Analysisusingaregionalsubdividedworldenergysystemmodel.JournaloftheJapanEnergySociety,98(4),pp.62–72.Panchenko,V.etal.,2023.Prospectsfortheproductionofgreenhydrogen:Reviewofcountrieswithhighpotential.InternationalJournalofHydrogenEnergy,48(12),pp.4551-4571.PIB,2023.CabinetapprovesNationalGreenHydrogenMission.[Online]Availableat:https://pib.gov.in/PressReleseDetailm.aspx?PRID=1888545[Accessed05January2023].Reuters,2021.Japanallocatesupto$3.4blnfromgreenfundtoaccelerateR&DinhydrogenReuters.s.l.:s.n.Thorpe,D.,2016.Thehydrogeneconomyismuchnearerthanwethink.[Online]Availableat:https://energypost.eu/hydrogen-economy-much-nearer-think/