2023年排放差距报告(英文版)--联合国环境规划署UNEPVIP专享VIP免费

Emissions Gap Report 2023
Broken Record
Temperatures hit new highs, yet world
fails to cut emissions (again)
Emissions Gap Report 2023: Broken Record
© 2023 United Nations Environment Programme
ISBN: 978-92-807-4098-1
Job number: DEW/2589/NA
DOI: https://doi.org/10.59117/20.500.11822/43922
This publication may be reproduced in whole or in part and in any form for educational or non-prot services without
special permission from the copyright holder, provided acknowledgement of the source is made. The United Nations
Environment Programme would appreciate receiving a copy of any publication that uses this publication as a source. No
use of this publication may be made for resale or any other commercial purpose whatsoever without prior permission
in writing from the United Nations Environment Programme. Applications for such permission, with a statement of the
purpose and extent of the reproduction, should be addressed to unep-communication-director@un.org.
Disclaimers
The designations employed and the presentation of the material in this publication do not imply the expression of any
opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country,
territory or city or area or its authorities, or concerning the delimitation of its frontiers or boundaries.
Mention of a commercial company or product in this document does not imply endorsement by the United Nations
Environment Programme or the authors. The use of information from this document for publicity or advertising is not
permitted. Trademark names and symbols are used in an editorial fashion with no intention on infringement of trademark
or copyright laws.
The views expressed in this publication are those of the authors and do not necessarily reect the views of the United
Nations Environment Programme. We regret any errors or omissions that may have been unwittingly made.
© Maps, photos, and illustrations as specied
Suggested citation
United Nations Environment Programme (2023). Emissions Gap Report 2023: Broken Record – Temperatures hit new
highs, yet world fails to cut emissions (again). Nairobi. https://doi.org/10.59117/20.500.11822/43922.
Production: Nairobi
URL: https://www.unep.org/emissions-gap-report-2023
Supported by:
Co-produced with:
Broken Record
Temperatures hit new highs,
yet world fails to cut emissions (again)
Emissions Gap Report 2023
BrokenRecordTemperatureshitnewhighs,yetworldfailstocutemissions(again)EmissionsGapReport2023EmissionsGapReport2023:BrokenRecord©2023UnitedNationsEnvironmentProgrammeISBN:978-92-807-4098-1Jobnumber:DEW/2589/NADOI:https://doi.org/10.59117/20.500.11822/43922Thispublicationmaybereproducedinwholeorinpartandinanyformforeducationalornon-profitserviceswithoutspecialpermissionfromthecopyrightholder,providedacknowledgementofthesourceismade.TheUnitedNationsEnvironmentProgrammewouldappreciatereceivingacopyofanypublicationthatusesthispublicationasasource.NouseofthispublicationmaybemadeforresaleoranyothercommercialpurposewhatsoeverwithoutpriorpermissioninwritingfromtheUnitedNationsEnvironmentProgramme.Applicationsforsuchpermission,withastatementofthepurposeandextentofthereproduction,shouldbeaddressedtounep-communication-director@un.org.DisclaimersThedesignationsemployedandthepresentationofthematerialinthispublicationdonotimplytheexpressionofanyopinionwhatsoeveronthepartoftheSecretariatoftheUnitedNationsconcerningthelegalstatusofanycountry,territoryorcityorareaoritsauthorities,orconcerningthedelimitationofitsfrontiersorboundaries.MentionofacommercialcompanyorproductinthisdocumentdoesnotimplyendorsementbytheUnitedNationsEnvironmentProgrammeortheauthors.Theuseofinformationfromthisdocumentforpublicityoradvertisingisnotpermitted.Trademarknamesandsymbolsareusedinaneditorialfashionwithnointentiononinfringementoftrademarkorcopyrightlaws.TheviewsexpressedinthispublicationarethoseoftheauthorsanddonotnecessarilyreflecttheviewsoftheUnitedNationsEnvironmentProgramme.Weregretanyerrorsoromissionsthatmayhavebeenunwittinglymade.©Maps,photos,andillustrationsasspecifiedSuggestedcitationUnitedNationsEnvironmentProgramme(2023).EmissionsGapReport2023:BrokenRecord–Temperatureshitnewhighs,yetworldfailstocutemissions(again).Nairobi.https://doi.org/10.59117/20.500.11822/43922.Production:NairobiURL:https://www.unep.org/emissions-gap-report-2023Co-producedwith:Supportedby:BrokenRecordTemperatureshitnewhighs,yetworldfailstocutemissions(again)EmissionsGapReport2023EmissionsGapReport2023:BrokenRecordAcknowledgementsTheUnitedNationsEnvironmentProgramme(UNEP)wouldContributingauthors:JesseBurton(UniversityofCapeTownliketothankthemembersofthesteeringcommittee,theleadandE3G,SouthAfrica),IoannisDafnomilis(PBLNetherlandsandcontributingauthors,thereviewersandtheSecretariatEnvironmentalAssessmentAgency,theNetherlands),IpekfortheircontributiontothepreparationofthisassessmentGençsü(ODI,UnitedKingdom),ArchieGilmour(ODI,Unitedreport.AuthorsandreviewershavecontributedtothereportKingdom),MarianaGutiérrezGrados(ClimateTransparency,intheirindividualcapacities.TheiraffiliationsareonlyGermany),FredericHans(NewClimateInstitute,Germany),mentionedforidentificationpurposes.SarahHeck(ClimateAnalytics,Germany),NiklasHöhne(NewClimateInstitute,Germany),CamillaHyslop(OxfordSteeringcommitteeUniversity,UnitedKingdom),AnnaKanduth(CanadianClimateInstitute,Canada),BenKing(RhodiumGroup,UnitedStatesMunaAlamoodi(MinistryofClimateChangeandEnvironment,ofAmerica),HannahKolus(RhodiumGroup,UnitedStatesUnitedArabEmirates),JulianeBerger(GermanEnvironmentofAmerica),Ho-MiLee(KoreaEnergyEconomicsInstitute,Agency),RutaBubniene(SecretariatoftheUnitedNationsRepublicofKorea),JaredLewis(ClimateResource,Australia),FrameworkConventiononClimateChange[UNFCCC]);JohnSwithinLui(NewClimateInstitute,Germany),NatashaLutzChristensen(UNEPCopenhagenClimateCentre[UNEP-(OxfordUniversity,UnitedKingdom),AndrewMarquardCCC]),MaríaPazCigaran(Libélula);NavrozK.Dubash(Centre(UniversityofCapeTown,SouthAfrica),SilkeMooldijkforPolicyResearch),SimonEvans(CarbonBrief)(steering(NewClimateInstitute,Germany),LeonardoNascimentocommitteeobserver),JianLiu(UNEP),GerdLeipold(Climate(NewClimateInstitute,Germany),AnaluzPresbítero(IniciativaTransparency)(steeringcommitteeobserver),SimonClimáticadeMéxico[ICM],Mexico),JazmínRoccoPredassiMaxwell(independent),ShonaliPachauri(International(Farn,Argentina),JoeriRogelj(ImperialCollegeLondon,InstituteforAppliedSystemsAnalysis[IIASA]);DanPlechatyUnitedKingdom;InternationalInstituteforAppliedSystems(ClimateWorksFoundation),KatiaSimeonova(independent),Analysis[IIASA],Austria),CleaSchumer(WorldResourcesYoubaSokona(IntergovernmentalPanelonClimateChangeInstitute,UnitedStatesofAmerica),AlisterSelf(Climate[IPCC]),OksanaTarasova(WorldMeteorologicalOrganization)Resource,Australia),KentaroTamura(InstituteforGlobalandImanUstadi(OfficeoftheUAESpecialEnvoyforClimateEnvironmentalStrategies[IGES],Japan)andJorgeVillarrealChange,UnitedArabEmirates)(ICM,Mexico)AuthorsDatacontributors:JohannesGütschow(PotsdamInstituteforClimateImpactResearch,Germany),ChristopherHendersonChapter1(WorldResourcesInstitute,UnitedStatesofAmerica),ElenaHooijschuur(PBLNetherlandsEnvironmentalAssessmentAuthors:AnneOlhoff(CONCITO–Denmark’sgreenthinkAgency,theNetherlands),KimonKeramidas(Europeantank,Denmark)andJohnChristensen(UNEP-CCC,Denmark)Commission,JRC,Spain),MiaMoisio(NewClimateInstitute,Germany),MikaPflüger(ClimateResource,Germany)andChapter2ClaireStockwell(ClimateAnalytics,Germany)Leadauthors:WilliamF.Lamb(MercatorResearchInstituteChapter4onGlobalCommonsandClimateChange,Germany;UniversityofLeeds,UnitedKingdomofGreatBritainandNorthernLeadauthors:JoeriRogelj(ImperialCollegeLondon,UnitedIreland)andMinalPathak(AhmedabadUniversity,India)Kingdom;IIASA,Austria),MicheldenElzen(PBLNetherlandsEnvironmentalAssessmentAgency,theNetherlands)andContributingauthors:LucasChancel(WorldInequalityLab,JoanaPortugal-Pereira(GraduateSchoolofEngineeringParisSchoolofEconomics,France),MonicaCrippa(European[COPPE],UniversidadeFederaldoRiodeJaneiro,Brazil)Commission,JointResearchCentre[JRC],Italy),GiacomoGrassi(EuropeanCommission,JRC,Italy),DiegoGuizzardiContributingauthors:TarynFransen(WorldResources(EuropeanCommission,JRC,Italy),JingMeng(UniversityInstitute,UnitedStatesofAmerica),JarmoKikstra(ImperialCollegeLondon,UnitedKingdom),GlenP.Peters(CICEROCollegeLondon,UnitedKingdom),RobinLamboll(ImperialCenterforInternationalClimateResearch,Norway)andJuliaCollegeLondon,UnitedKingdom),MalteMeinshausenPongratz(Ludwig-MaximiliansUniversityMunich,Germany)(UniversityofMelbourne,Australia)andIsabelaSchmidtTagomori(PBLNetherlandsEnvironmentalAssessmentChapter3Agency,theNetherlands)Leadauthors:TakeshiKuramochi(NewClimateInstitute,Datacontributors:IoannisDafnomilis(PBLNetherlandsGermany),MicheldenElzen(PBLNetherlandsEnvironmentalEnvironmentalAssessmentAgency,theNetherlands)andAssessmentAgency,theNetherlands)andTarynFransenKimonKeramidas(EuropeanCommission,JRC,Spain)(WorldResourcesInstitute,UnitedStatesofAmerica)VEmissionsGapReport2023:BrokenRecordChapter5ReviewersLeadauthors:JesseBurton(UniversityofCapeTownandMunaAlamoodi(MinistryofClimateChangeandE3G,SouthAfrica)andGregMuttitt(InternationalInstituteforEnvironment,UnitedArabEmirates),JesicaLelynnAndrewsSustainableDevelopment[IISD],UnitedKingdom)(UNEPFinanceInitiative),OlulekeBabayomi(ShandongUniversity),JulianeBerger(GermanEnvironmentAgency),Contributingauthors:FatimaDenton(UnitedNationsMarieBlancheTing(UNEP-CCC),PierreBoileau(UNEP),UniversityInstituteforNaturalResourcesinAfrica,Ghana),OlivierBoisvonKursk(IISD),RaymondBrandes(UNEP),RutaSivanKartha(StockholmEnvironmentInstitute,UnitedBubniene(SecretariatoftheUNFCCC),DavidCarlin(UNEPStatesofAmerica),NarasimhaRao(YaleSchooloftheFinanceInitiative),RobDellink(OrganisationforEconomicEnvironment,YaleUniversity,UnitedStatesofAmerica),Co-operationandDevelopment[OECD]),SubashDhar(UNEP-JoeriRogelj(ImperialCollegeLondon,UnitedKingdom;CCC),PaulDowling(EuropeanCommission),SwatiDsouzaIIASA,Austria),SarithaSudharmmaVishwanathan(Indian(InternationalEnergyAgency[IEA]),SimonEvans(CarbonInstituteofManagementAhmedabad,India;NationalBrief),IvettaGerasimchuk(IISD),NiklasHagelberg(UNEP),InstituteforEnvironmentalStudies,Japan),DanTongYasukoKameyama(UniversityofTokyo),MaartenKappelle(TsinghuaUniversity,China),MartaTorresGunfaus(IDDRI,(UNEP),AlaaAlKhourdajie(ImperialCollegeLondon),France)andWilliamWills(CentroBrasilnoClima,Brazil;EosThaddeusIdiKiplimo(UNEP),AndreaKlaric(EuropeanConsulting,Brazil)Commission),GabrielLabbate(UNEP),KateLarsen(RhodiumGroup),GerdLeipold(ClimateTransparency),JianLiu(UNEP),Chapter6BertMetz(independent),BavelyneMibei(UNEP),ShonaliPachauri(IIASA),MaríaPazCigaran(Libélula),BalakrishnaLeadauthors:NarasimhaRao(YaleSchoolofthePisupati(UNEP),DanPlechaty(ClimateWorksFoundation),Environment,YaleUniversity,UnitedStatesofAmerica)andRulaQalyoubi(UNEP),MarkRadka(independent),ZoltánYacobMulugetta(UniversityCollegeLondon,UnitedKingdom)Rakonczay(EuropeanCommission),AndyReisinger(Independent),JadeRobertsMaron(UNEP),YannRobiouContributingauthors:JesseBurton(UniversityCapeTownduPont(ClimateEnergyCollege,UtrechtUniversity),GregorandE3G,SouthAfrica),JoisaDutraSaraiva(GetulioVargasSemieniuk(UniversityofMassachusettsAmherst),YuliShanFoundation[FGV],Brazil),AshwinGambhir(PrayasEnergy(UniversityofBirmingham),KatiaSimeonova(independent),Group,India),JessicaOmukuti(UniversityofOxford,UnitedJimSkea(ImperialCollegeLondon/IPCC),YoubaSokonaKingdom),NadiaS.Ouedraogo(UnitedNationsEconomic(IPCC),MasahiroSugiyama(UniversityofTokyo),OksanaCommissionforAfrica[UNECA],Ethiopia),SetuPelz(IIASA,Tarasova(WMO),ImanUstadi(OfficeoftheUAESpecialAustria),FeiTeng(TsinghuaUniversity,China)andMeronEnvoyforClimateChange,UnitedArabEmirates),JoséMariaTesfamichael(UniversityCollegeLondon,UnitedKingdom)Valenzuela(UniversityofOxford),ChrisVivian(JointGroupofExpertsontheScientificAspectsofMarineEnvironmentalChapter7Protection[GESAMP]),AdrienVogt-Schilb(Inter-AmericanDevelopmentBank[IDB]),DanielWetzel(IEA),ZhaoXiushengLeadauthors:OliverGeden(GermanInstituteofInternational(TshinguaUniversity),MayaZenkoUlezic(EuropeanandSecurityAffairs,Germany),MaiBui(ImperialCollegeCommission)andJinhuaZhang(UNEP)London,UnitedKingdom),MatthewGidden(IIASA,Austria)andMercedesBustamante(UniversidadedeBrasília,Brazil)ChiefscientificeditorsContributingauthors:HollyBuck(StateUniversityofNewYorkAnneOlhoff(CONCITO–Denmark’sgreenthinktank),JohnatBuffalo,UnitedStatesofAmerica),SabineFuss(MercatorChristensen(UNEP-CCC),SimonMaxwell(independent)andResearchInstituteonGlobalCommonsandClimateChange,NavrozDubash(CentreforPolicyResearch)Germany),JanMinx(MercatorResearchInstituteonGlobalCommonsandClimateChange,Germany),GregoryNemetSecretariat,productionandcoordination(UniversityofWisconsin-Madison,UnitedStatesofAmerica),JoanaPortugal-Pereira(COPPE,UniversidadeFederaldoRioAnneOlhoff(CONCITO-Denmark’sgreenthinktank),JuliadeJaneiro,Brazil),GauravGanti(ClimateAnalytics,Germany),RochaRomero(UNEP-CCC),KaisaUusimaa(UNEP)andStephanieRoe(WorldWideFundforNature[WWF],UnitedMaartenKappelle(UNEP)StatesofAmerica),SteveSmith(UniversityofOxford,UnitedKingdom),andJuliaPongratz(UniversityofMunichandMaxMediaandlaunchsupportPlanckInstituteforMeteorology,Germany)UNEPCommunicationDivisionandUNEP-CCCcommunicationteamVIEmissionsGapReport2023:BrokenRecordDesignandlayoutWeeks.deWerbeagenturGmbH(figures),StrategicAgenda(layout)andBeverleyMcDonald,UNEP(coverdesign)TranslationoftheexecutivesummaryandlanguageeditingStrategicAgendaThanksalsoto:SiskaAdrianiRingbo(UNEP-CCC),AngelineDjampou(UNEP),DanyGhafari(UNEP),SelmaHedges(UNEP),AndreaHinwood(UNEP),ChristianIbsen(CONCITO–Denmark’sgreenthinktank),JasonJabbour(UNEP),JarlKrausing(CONCITO–Denmark’sgreenthinktank),ThomasLaursen(UNEP-CCC),AnitaMujumdar(UNEP),PiaRiisKofoed-Hansen(UNEP-CCC),IgnacioSánchezDíaz(UNEP),PinyaSarasas(UNEP),YingWang(UNEP)andEdoardoZandri(UNEP)The2023editionoftheEmissionsGapReportissupportedbytheEnvironmentFund,UNEP’scorefinancialfund.UNEPwouldliketothanktheClimateWorksFoundation,theDanishMinistryofForeignAffairs,theDutchMinistryofEconomicAffairsandClimatePolicy,andtheGermanGovernmentanditsInternationalClimateInitiative(IKI),fortheirsupportfortheproductionoftheEmissionsGapReport2023.VIIEmissionsGapReport2023:BrokenRecordVIIIEmissionsGapReport2023:BrokenRecordGlossaryThisglossaryiscompileddrawingonglossariesandCarbondioxideemissionbudget(orcarbonbudget):Forotherresourcesavailableonthewebsitesofthefollowingagiventemperatureriselimit,forexamplea1.5°Cor2°Corganizations,networksandprojects:theIntergovernmentallong-termlimit,thecorrespondingcarbonbudgetreflectsPanelonClimateChange,UnitedNationsEnvironmentthetotalamountofcarbonemissionsthatcanbeemittedProgramme,UnitedNationsFrameworkConventiononfortemperaturestostaybelowthatlimit.Stateddifferently,ClimateChange(UNFCCC),andWorldResourcesInstitute.acarbonbudgetisanareaunderacarbondioxide(CO2)emissiontrajectorythatsatisfiesassumptionsaboutlimitsAnnexIParties:ConsistsofthegroupofcountrieslistedinoncumulativeemissionsestimatedtoavoidacertainlevelAnnexItotheUNFCCC.UnderArticles4.2(a)and4.2(b)ofofglobalmeansurfacetemperaturerise.theUNFCCC,AnnexIPartieswerecommittedtoadoptingnationalpoliciesandmeasureswiththenon-legallybindingCarbondioxideequivalent(CO2e):Awaytoplaceemissionsaimtoreturntheirgreenhousegas(GHG)emissionsto1990ofvariousradiativeforcingagentsonacommonfootingbylevelsby2000.ThegroupislargelysimilartotheAnnexBaccountingfortheireffectontheclimate.Itdescribes,forPartiestotheKyotoProtocolthatalsoadoptedemissionsagivenmixtureandamountofGHGs,theamountofCO2reductiontargetsfor2008–2012.Bydefault,theotherthatwouldhavethesameglobalwarmingability,whencountriesarereferredtoasNon-AnnexIParties(seebelow).measuredoveraspecifiedtimeperiod.Forthepurposeofthisreport,unlessotherwisespecified,GHGemissionsareAnnexIIParties:ThegroupofcountrieslistedinAnnexIItothesumofthebasketofGHGslistedinAnnexAtotheKyototheUNFCCC.UnderArticle4oftheUNFCCC,thesecountriesProtocol,expressedasCO2e,assuminga100-yearglobalhaveaspecialobligationtoprovidefinancialresourcestowarmingpotential.meettheagreedfullincrementalcostsofimplementingmeasuresmentionedunderArticle12,paragraph1.TheyCarbondioxideremoval(CDR):Referstoanthropogenicarealsoobligedtoprovidefinancialresources,includingforactivitiesremovingCO2fromtheatmosphereanddurablythetransferoftechnology,tomeettheagreedincrementalstoringitingeological,terrestrialoroceanreservoirs,orincostsofimplementingmeasurescoveredbyArticle12,products.Itincludesexistingandpotentialanthropogenicparagraph1andagreedbetweendevelopingcountryPartiesenhancementofbiologicalorgeochemicalsinksanddirectandinternationalentitiesreferredtoinArticle11oftheaircaptureandstorage,butexcludesnaturalCO2uptakenotUNFCCC.Thisgroupofcountriesshallalsoassistcountriesdirectlycausedbyhumanactivities.thatareparticularlyvulnerabletotheadverseeffectsofclimatechange.Carbonmarkets:Atermforacarbontradingsystemthroughwhichcountriesand/orcompaniesmaybuyorsellunitsofAnthropogenicemissions:EmissionsderivedfromhumanGHGemissionstooffsettheirGHGemissionsbyacquiringactivities.carboncreditsfromentitiesthateitherminimizeoreliminatetheirownemissions.ThetermcomesfromthefactthatCO2Baseline/reference:ThestateagainstwhichchangeisisthepredominantGHG,andothergasesaremeasuredinmeasured.InthecontextofclimatechangetransformationunitscalledCO2equivalents.pathways,theterm“baselinescenarios”referstoscenariosbasedontheassumptionthatnomitigationpoliciesorCarbonneutrality:Isachievedwhenanactor’snetmeasureswillbeimplementedbeyondthosealreadyincontributiontoglobalCO2emissionsiszero.AnyCO2forceand/orlegislatedorplannedtobeadopted.Baselineemissionsattributabletoanactor’sactivitiesarefullyscenariosarenotintendedtobepredictionsofthefuture,compensatedbyCO2reductionsorremovalsexclusivelybutrathercounterfactualconstructionsthatcanservetoclaimedbytheactor,irrespectiveofthetimeperiodorthehighlightthelevelofemissionsthatwouldoccurwithoutrelativemagnitudeofemissionsandremovalsinvolved.furtherpolicyefforts.Typically,baselinescenariosarecomparedtomitigationscenariosthatareconstructedCarbonprice:ThepriceforavoidedorreleasedCO2orCO2etomeetdifferentgoalsforGHGemissions,atmosphericemissions.Thismayrefertotherateofacarbontaxortheconcentrationsortemperaturechange.Theterm“baselinepriceofemissionpermits.Inmanymodelsusedtoassessscenario”isusedinterchangeablywith“referencescenario”theeconomiccostsofmitigation,carbonpricesareusedasand“no-policyscenario”.aproxytorepresentthelevelofeffortinmitigationpolicies.IXEmissionsGapReport2023:BrokenRecordConditionalnationallydeterminedcontribution:AIntegratedassessmentmodels:Modelsthatseektonationallydeterminedcontribution(NDC–seebelow)combineknowledgefrommultipledisciplinesintheformproposedbysomecountriesthatiscontingentonarangeofequationsand/oralgorithms,inordertoexplorecomplexofpossibleconditions,suchastheabilityofnationalenvironmentalproblems.Assuch,theydescribethefulllegislaturestoenactthenecessarylaws,ambitiousactionchainofclimatechange,fromtheproductionofGHGstofromothercountries,realizationoffinanceandtechnicalatmosphericresponses.Thisnecessarilyincludesrelevantsupport,orotherfactors.linksandfeedbackbetweensocioeconomicandbiophysicalprocesses.ConferenceofthePartiestotheUnitedNationsFrameworkConventiononClimateChange(COP):ThesupremebodyIntendednationallydeterminedcontribution(NDC):oftheUNFCCC.ItcurrentlymeetsonceayeartoreviewtheIntendedNDCsaresubmissionsfromcountriesdescribingUNFCCC’sprogress.thenationalactionsthattheyintendtotaketoreachtheParisAgreement’slong-termtemperaturegoaloflimitingEmissionspathway:ThetrajectoryofannualGHGemissionswarmingtowellbelow2°C.Onceacountryhasratifiedovertime.theParisAgreement,itsintendedNDCisautomaticallyconvertedtoitsNDC,unlessitchoosestofurtherupdateit.Emissionstrading:Amarket-basedinstrumentusedtolimitemissions.TheenvironmentalobjectiveorsumofKyotoProtocol:Aninternationalagreementsignedin1997totalallowedemissionsisexpressedasanemissionscap.andwhichcameintoforcein2005,standingonitsown,andThecapisdividedintradableemissionpermitsthatarerequiringseparateratificationbyGovernments,butlinkedallocated–eitherbyauctioningorhandingoutforfree–tototheUNFCCC.TheKyotoProtocol,amongotherthings,entitieswithinthejurisdictionofthetradingscheme.EntitiessetsbindingtargetsforthereductionofGHGemissionsbyneedtosurrenderemissionpermitsequaltotheamountofindustrializedcountries.theiremissions(e.g.tonsofCO2).Anentitymaysellexcesspermits.Tradingschemesoccurattheintracompany,Landuse,land-usechangeandforestry(LULUCF):AGHGdomesticandinternationallevels,andmayapplytoCO2,inventorysectorthatcoversemissionsandremovalsofotherGHGsorothersubstances.EmissionstradingisalsoGHGsresultingfromdirecthuman-inducedlanduse,land-oneofthemechanismsspecifiedundertheKyotoProtocol.usechangeandforestryactivities.Grossnationalincome:Grossnationalincome,abbreviatedLeast-costpathway:Least-costpathwayscenariosidentifyasGNI,isthesumoftheincomesofresidentsofantheleastexpensivecombinationofmitigationoptionstoeconomyinagivenperiod.ItisequaltoGDPminusprimaryfulfilaspecificclimatetarget.Aleast-costscenarioisbasedincomepayablebyresidentunitstonon-residentunits,plusonthepremisethat,ifanoverarchingclimateobjectiveisprimaryincomereceivablefromtherestoftheworld(fromset,societywantstoachievethisatthelowestpossiblenon-residentunitstoresidentunits).costovertime.Italsoassumesthatglobalactionsstartatthebaseyearofmodelsimulations(usuallyclosetotheGlobalstocktake:Theglobalstocktakewasestablishedcurrentyear)andareimplementedfollowingacost-optimalunderArticle14oftheParisAgreement.Itisaprocessfor(cost-efficient)sharingofthemitigationburdenbetweenMemberStatesandstakeholderstoassesswhethertheyarecurrentandfuturegenerations,dependingonthesocialcollectivelymakingprogresstowardsmeetingthegoalsofdiscountrate.theParisClimateChangeAgreement.TheglobalstocktakeassesseseverythingrelatedtowheretheworldstandsLikelychance:Alikelihoodgreaterthan66percentchance.onclimateactionandsupport,identifyingthegaps,andUsedinthisassessmenttoconveytheprobabilitiesofworkingtogethertoagreeonsolutionspathways,to2030meetingtemperaturelimits.andbeyond.ThefirstglobalstocktaketakesplaceatCOP28in2023.Mitigation:Inthecontextofclimatechange,mitigationrelatestoahumaninterventiontoreducethesourcesorGlobalwarmingpotential:AnindexrepresentingtheenhancethesinksofGHGs.ExamplesincludeusingfossilcombinedeffectofthedifferingtimesGHGsremaininthefuelsmoreefficientlyforindustrialprocessesorelectricityatmosphereandtheirrelativeeffectivenessinabsorbinggeneration,switchingtosolarenergyorwindpower,outgoinginfraredradiation.improvingtheinsulationofbuildings,andexpandingforestsandother“sinks”toremovegreateramountsofCO2fromGreenhousegases(GHGs):Theatmosphericgasestheatmosphere.responsibleforcausingglobalwarmingandclimaticchange.ThemajorGHGsareCO2,methane(CH4)andnitrousoxide(N2O).Lessprevalent,butverypowerful,GHGsincludehydrofluorocarbons(HFCs),perfluorocarbons(PFCs)andsulphurhexafluoride(SF6).XEmissionsGapReport2023:BrokenRecordNationallydeterminedcontribution(NDC):SubmissionsOffset:Inclimatepolicy,aunitofCO2eemissionsthatbycountriesthathaveratifiedtheParisAgreementwhichisreduced,avoidedorsequesteredtocompensateforpresenttheirnationaleffortstoreachtheParisAgreement’semissionsoccurringelsewhere.long-termtemperaturegoaloflimitingwarmingtowellbelow2°C.NeworupdatedNDCsaretobesubmittedinScenario:Adescriptionofhowthefuturemayunfold,based2020andeveryfiveyearsthereafter.NDCsthusrepresentaon“if-then”propositions.Scenariostypicallyincludeaninitialcountry’scurrentambitionortargetforreducingemissionssocioeconomicsituationandadescriptionofthekeydrivingnationally.forcesandfuturechangesinemissions,temperaturesorotherclimatechange-relatedvariables.Non-AnnexIParties:Theseconsistmostlyofdevelopingcountries.CertaingroupsofdevelopingcountriesareSource:Anyprocess,activityormechanismthatreleasesrecognizedbytheUNFCCCasbeingespeciallyvulnerableaGHG,anaerosoloraprecursorofaGHGoraerosolintototheadverseimpactsofclimatechange,includingtheatmosphere.countrieswithlow-lyingcoastalareasandthosepronetodesertificationanddrought.Others,suchascountriesthatrelyheavilyonincomefromfossilfuelproductionandcommerce,feelmorevulnerabletothepotentialeconomicimpactsofclimatechangeresponsemeasures.TheUNFCCCemphasizesactivitiesthatpromisetoanswerthespecialneedsandconcernsofthesevulnerablecountries,suchasinvestment,insuranceandtechnologytransfer.XIEmissionsGapReport2023:BrokenRecordXIIEmissionsGapReport2023:BrokenRecordContentsAcknowledgementsVGlossaryIXForewordXVExecutivesummaryXVIChapter1Introduction11.1ContextandframingoftheEmissionsGapReport202311.2Approachandstructureofthereport2Chapter2Globalemissionstrends32.1Introduction32.2Globalemissionstrends42.3Emissionstrendsofmajoremitters62.4Somecountrieshavepeakedinemissions,meanwhileglobalpercapitalevelsremainhighlyunequal72.5Contributionstoclimatechangeareunequal8Chapter3Nationallydeterminedcontributionsandlong-termpledges:ThegloballandscapeandG20memberprogress113.1Introduction113.2GlobalprogressofNDCsisnegligiblesinceCOP27,butthereissomeprogresssincetheadoptionoftheParisAgreement123.3ImplementationprogressofG20memberscontinues,butmustbeaccelerated133.4Developmentsinlong-termandnet-zeropledges:Thenumbercontinuestoincrease,butconfidenceintheirimplementationremainslow20Chapter4Theemissionsgapin2030andbeyond234.1Introduction234.2Asetofscenariosisneededtoassesstheemissionsgapandglobaltemperatureoutcomes234.3Pathwaysmatterforthecarbonbudget,theinterpretationofemissionsgapsandthechanceofachievingtheParisAgreement’stemperaturegoal274.4Theemissionsgapin2030and2035mustbebridgedthroughactioninthisdecade284.5Theemissionsgaphassevereimplicationsforglobalwarmingprojections30Chapter5GlobalenergytransformationinthecontextoftheParisAgreement345.1Introduction345.2AvoidingnewfossilfuelcapacitywilllimittheexistinginfrastructurethatmustberetiredearlytoachieveParisAgreementgoals345.3MeetingthebasicenergyneedsofpeoplelivinginpovertywouldhavealimitedimpactonglobalGHGemissions365.4DeliveringchangerequiresglobalcooperationthatreflectstheequityandfairnessprinciplesoftheParisAgreement36Chapter6Energytransitionsforlow-carbondevelopmentfuturesinlow-andmiddle-incomecountries:6.1Challengesandopportunities386.26.3Introduction386.46.5Developmentandenergyareinterlinked386.6Thepoliticaleconomyofcleanenergytransitionsischallenging41Cleanenergytransitionsalsobringopportunities42Adequateinternationalfinanceisanessentialenablerofcleanenergytransitions44Low-andmiddle-incomecountriescantakeconcretestepstowardscleanenergytransitions45Chapter7TheroleofcarbondioxideremovalinachievingtheParisAgreement’slong-termtemperaturegoal487.1Introduction487.2ThelandsectordominatescurrentCDRlevels517.3Therisksofdependingonlarge-scaleCDRtomeetclimategoals537.4EquityanddifferentiatedresponsibilitiesassociatedwithdeployingCDR547.5ScalingupCDRwillrequirededicatedpoliciesandinnovation567.6Politicalprioritiesforactionareneeded56References60XIIIEmissionsGapReport2023:BrokenRecordForewordHumanityisbreakingallthewrongrecordswhenitcomestoclimatechange.Greenhousegasemissionsreachedanewhighin2022.InSeptember2023,globalaveragetemperatureswere1.8°Cabovepre-industriallevels.Whenthisyearisover,accordingtotheEuropeanUnion’sCopernicusClimateChangeService,itisalmostcertaintobethewarmestyearonrecord.The2023editionoftheEmissionsGapReporttellsusthattheworldmustchangetrack,orwewillbesayingthesamethingnextyear–andtheyearafter,andtheyearafter,likeabrokenrecord.Thereportfindsthatfullyimplementingandcontinuingmitigationeffortsofunconditionalnationallydeterminedcontributions(NDCs)madeundertheParisAgreementfor2030wouldputtheworldoncourseforlimitingtemperatureriseto2.9°Cthiscentury.FullyimplementingconditionalNDCswouldlowerthisto2.5°C.Giventheintenseclimateimpactswearealreadyseeing,neitheroutcomeisdesirable.ProgresssincetheParisAgreementwassignedin2015hasshownthattheworldiscapableofchange.Greenhousegasemissionsin2030,basedonpoliciesinplace,wereprojectedtoincreaseby16percentatthetimeoftheagreement’sadoption.Today,theprojectedincreaseis3percent.However,predicted2030greenhousegasemissionsmustfallby28percentfortheParisAgreement2°Cpathwayand42percentforthe1.5°Cpathway.Changemustcomefasterintheformofeconomy-wide,possible.Theworldneedstolifttheneedleoutofthegroovelow-carbondevelopmenttransformations,withafocusofinsufficientambitionandaction,andstartsettingnewontheenergytransition.Countrieswithgreatercapacityrecordsoncuttingemissions,greenandjusttransitions,andandresponsibilityforemissionswillneedtotakemoreclimatefinance–startingnow.ambitiousactionandprovidefinancialandtechnicalsupporttodevelopingnations.Low-andmiddle-incomecountries,whichalreadyaccountformorethantwothirdsofglobalemissions,shouldmeettheirdevelopmentneedswithlow-emissionsgrowth,whichwouldprovideuniversalaccesstoenergy,liftmillionsoutofpoverty,andexpandstrategicindustries.Thefirstglobalstocktake,concludingatCOP28inDubaiIngerAndersenthisyear,willinformthenextroundofNDCs,whichwillsetnewnationalemissionstargetsfor2035.AmbitionintheseExecutiveDirectorNDCsmustbringgreenhousegasemissionsin2035toUnitedNationsEnvironmentProgrammelevelsconsistentwiththe2°Cand1.5°Cpathways.StrongerimplementationinthisdecadewillhelptomakethisXVEmissionsGapReport2023:BrokenRecordExecutivesummaryStocktakeduringayearofbrokenrecordsnowcoveraround80percentofglobalemissions.FailuretobringglobalGHGemissionsin2030belowthelevelsimpliedTheworldiswitnessingadisturbingaccelerationinthebycurrentNDCswillmakeitimpossibletolimitwarmingtonumber,speedandscaleofbrokenclimaterecords.At1.5°Cwithnoorlimitedovershootandstronglyincreasethethetimeofwriting,86dayshavebeenrecordedwithchallengeoflimitingwarmingto2°C.temperaturesexceeding1.5°Cabovepre-industriallevelsthisyear.NotonlywasSeptemberthehottestmonthever,Asthisreportshows,notonlytemperaturerecordscontinueitalsoexceededthepreviousrecordbyanunprecedentedtobebroken–globalGHGemissionsandatmospheric0.5°C,withglobalaveragetemperaturesat1.8°Caboveconcentrationsofcarbondioxide(CO2)alsosetnewrecordspre-industriallevels.Theserecordswereaccompaniedbyin2022.Duetothefailuretostringentlyreduceemissionsdevastatingextremeevents,whichtheIntergovernmentalinhigh-incomeandhigh-emittingcountries(whichbearPanelonClimateChange(IPCC)haswarnedusaremerelythegreatestresponsibilityforpastemissions)andtolimitameekbeginning.Whiletherecordsdonotimplythattheemissionsgrowthinlow-andmiddle-incomecountriesworldhasexceededthe1.5°Ctemperaturelimitspecifiedin(whichaccountforthemajorityofcurrentemissions),theParisAgreement,whichreferstoglobalwarminglevelsunprecedentedactionisnowneededbyallcountries.Forbasedonmulti-decadalaverages,theysignalthatwearehigh-incomecountries,thisimpliesfurtheracceleratinggettingcloser.domesticemissionsreductions,committingtoreachingnetzeroassoonaspossible–andsoonerthantheglobalThisfourteenthEmissionsGapReportispublishedaheadofaveragesfromthelatestIPCCreportimplies–andatthethetwenty-eighthsessionoftheConferenceofthePartiessametimeprovidingfinancialandtechnicalsupporttolow-totheUnitedNationsFrameworkConventiononClimateandmiddle-incomecountries.Forlow-andmiddle-incomeChange(COP28).Itprovidesanannual,independentcountries,itmeansthatpressingdevelopmentneedsscience-basedassessmentofthegapbetweenthepledgedmustbemetalongsideatransitionawayfromfossilfuels.greenhousegas(GHG)emissionsreductionsandtheFurthermore,thedelayinstringentmitigationactionwillreductionsrequiredtoalignwiththelong-termtemperaturelikelyincreasefuturedependenceoncarbondioxideremovalgoaloftheParisAgreement,aswellasopportunitiesto(CDR)fromtheatmosphere,butavailabilityoflarge-scalebridgethisgap.COP28markstheconclusionofthefirstCDRoptionsinthefuturecannotbetakenforgranted.ThisglobalstocktakeundertheParisAgreement,heldeveryfiveyear,thereportthusexploresopportunitiesandchallengesyearstoassesstheglobalresponsetotheclimatecrisisandassociatedwithenergytransitionsaswellasdevelopmentchartabetterwayforward.ThiscloselymirrorstheobjectiveanddeploymentofCDR.oftheEmissionsGapReport,andthereportaimstoprovidefindingsrelevanttotheconcludingdiscussionsunderthe1.GlobalGHGemissionssetnewrecordofglobalstocktake.57.4GtCO2ein2022ToinformCOP28–includingontheoutcomesneeded▶GlobalGHGemissionsincreasedby1.2percentfromfromtheglobalstocktake–andsetthesceneforthenextroundofnationallydeterminedcontributions(NDCs)that2021to2022toreachanewrecordof57.4gigatonsofcountriesarerequestedtosubmitin2025,whichwillincludeemissionsreductiontargetsfor2035,thisreportlooksatCO2equivalent(GtCO2e)(figureES.1).Allsectorsapartwhatisrequiredthisdecadeandbeyond2030tomaintainthepossibilityofachievingthelong-termtemperaturegoalfromtransporthavefullyreboundedfromthedropinoftheParisAgreement.ItunderscoresthatmaintainingthispossibilityhingesonrelentlesslystrengtheningmitigationemissionsinducedbytheCOVID-19pandemicandactionthisdecadetonarrowtheemissionsgap.Thiswillfacilitatesignificantlymoreambitioustargetsfor2035innowexceed2019levels.CO2emissionsfromfossilthenextroundofNDCs,andpavethewayforenhancingthecredibilityandfeasibilityofthenet-zeropledgesthatbyfuelcombustionandindustrialprocesseswerethemaincontributorstotheoverallincrease,accountingforabouttwothirdsofcurrentGHGemissions.Emissionsofmethane(CH4),nitrousoxide(N2O)andfluorinatedgases(F-gases),whichhavehigherglobalwarmingpotentialsandaccountforaboutonequarterofcurrentGHGemissions,areincreasingrapidly:inXVIEmissionsGapReport2023:BrokenRecord2022,F-gasemissionsgrewby5.5percent,followed▶GHGemissionsacrosstheG20alsoincreasedbybyCH4at1.8percentandN2Oat0.9percent.Based1.2percentin2022.However,membersvarywidelyonearlyprojections,globalnetlanduse,land-useintheirtrendswithincreasesinChina,India,Indonesiachangeandforestry(LULUCF)CO2emissionsandtheUnitedStatesofAmerica,butdecreasesinremainedsteadyin2022.LULUCFCO2emissionsandBrazil,theEuropeanUnionandtheRussianFederation.removalscontinuetohavethelargestuncertaintiesofCollectively,theG20currentlyaccountfor76percentallgasesconsidered,bothintermsoftheirabsoluteofglobalemissions.amountsandtrends.FigureES.1TotalnetanthropogenicGHGemissions,1990–2022TotalGHGemissions1990–2022(GtCO2e/yr)51.657.4GtCO2e60GtCO2ein202254.5GtCO2e5041.8GtCO2e37.940GtCO2e3020102000F-gases2010LULUCFCO220200CH4N2O1990FossilCO2▶Globalprimaryenergyconsumptionexpandedworldaverageof6.5tonsofCO2equivalent(tCO2e)intheRussianFederationandtheUnitedStatesofin2022–anexpansionmainlymetbyagrowthinAmerica,whilethoseinIndiaremainunderhalfofit.PercapitaemissionsarefairlysimilarinBrazil,thecoal,oilandrenewableelectricitysupply–whereasEuropeanUnionandIndonesia,andatlevelsslightlybelowtheG20average.TheG20asagroupaveragedgasconsumptiondeclinedby3percentfollowing7.9tCO2e,whereasleastdevelopedcountriesaveraged2.2tCO2eandsmallislanddevelopingtheenergycrisisandthewarinUkraine.Overall,netStatesaveraged4.2tCO2e.electricitydemandgrowthin2022wasprimarilymetInequalityinconsumption-basedemissionsisalsofoundamongandwithincountries.Globally,byrenewablesources(excludinghydropower),driventhe10percentofthepopulationwiththehighestincomeaccountedfornearlyhalf(48percent)ofbyarecordincreaseinsolarcapacityadditions.emissionswithtwothirdsofthisgrouplivingindevelopedcountries.Thebottom50percentoftheNonetheless,investmentsinfossilfuelextractionworldpopulationcontributedonly12percentoftotalemissions.andusehavecontinuedinmostregionsworldwide.Globally,Governmentsstillplantoproducemorethan▶doubletheamountoffossilfuelsin2030thanwouldbeconsistentwiththelong-termtemperaturegoaloftheParisAgreement.2.Currentandhistoricalemissionsarehighlyunequallydistributedwithinandamongcountries,reflectingglobalpatternsofinequality▶PercapitaterritorialGHGemissionsvarysignificantlyacrosscountries.TheyaremorethandoubletheXVIIEmissionsGapReport2023:BrokenRecord▶HistoricemissionsandcontributiontoglobalwarmingUnitedStatesofAmericaaccountfor4percentofcurrentworldpopulation,butcontributed17percentsimilarlyvarysignificantlyacrosscountriesandofglobalwarmingfrom1850to2021,includingtheimpactofmethaneandnitrousoxideemissions.India,groupsofcountries(figureES.2).Nearly80percentbycontrast,accountsfor18percentoftheworldpopulation,buttodateonlycontributed5percentofhistoricalcumulativefossilandLULUCFCO2ofwarming.emissionscamefromG20countries,withthelargestcontributionsfromChina,theUnitedStatesofAmericaandtheEuropeanUnion,whileleastdevelopedcountriescontributed4percent.TheFigureES.2CurrentandhistoriccontributionstoclimatechangeCurrentandhistoriccontributionstoclimatechange(%sharebycountriesorregions)13%12%18%China4%UnitedStates19%17%30%6%ofAmerica18%11%2%G20EU277%14%10%7%India13%5%24%Russian18%Federation5%14%18%RestofG204%6%3%CurrentCurrentGHGpopulationRestofworld5%emissionsLeastdeveloped(2021)(2021)countries22%25%16%21%Restofworld4%6%HistoricalContributionCO2emissionstowarming(1850–2021)(1850–2021)3.TherehasbeennegligiblemovementonglobalGHGemissionsbyabout5.0GtCO2e(range:NDCssinceCOP27,butsomeprogress1.8–8.2GtCO2e)annuallyby2030,comparedwiththeinNDCsandpoliciessincetheParisinitialNDCs.ThecombinedeffectofthenineNDCsAgreementwasadoptedsubmittedsinceCOP27amountstoaround0.1GtCO2eofthistotal.Thus,whileNDCprogress▶NinecountrieshavesubmittedneworupdatedsinceCOP27hasbeennegligible,progresssincetheadoptionoftheParisAgreementatCOP21ismoreNDCssinceCOP27,bringingthetotalnumberofpronounced,althoughstillinsufficienttonarrowtheemissionsgap.NDCsthathavebeenupdatedsincetheinitialNDCsProgresssincetheParisAgreementisclearerontheweresubmittedinadvanceoforfollowingtheParispolicyside.Globally,GHGemissionsin2030basedonpoliciesinplacewereprojectedtoincreasebyAgreementto149(countingtheEuropeanUnion16percentatthetimeoftheadoptionoftheParisAgreement.Nowtheprojectedincreaseis3percent.andits27MemberStatesasasingleParty)asat▶Policyprogresshascontributedtoreducingthe25September2023.MoreNDCsnowcontainGHGimplementationgap,definedasthedifferencereductiontargets,andmoreofthesetargetsareeconomy-wide,coveringacountry’sentireeconomyasopposedtocertainsectorsonly.▶IfallnewandupdatedunconditionalNDCsare▶fullyimplemented,theyareestimatedtoreduceXVIIIEmissionsGapReport2023:BrokenRecordbetweenprojectedemissionsundercurrentpoliciesAsagroup,theG20membersareprojectedtofallandprojectedemissionsunderfullimplementationshortoftheirnewandupdatedNDCsby1.2GtCO2eoftheNDCs.Theglobalimplementationgapforannuallyby2030,whichis0.6GtCO2elowerthan2030isestimatedtobearound1.5GtCO2eforthelastyear’sassessment(figureES.3).TheimpactofunconditionalNDCs(downfrom3GtCO2einlastyear’snewlyimplementedpoliciesisamaindriverofbothassessment)and5GtCO2efortheconditionalNDCslowerglobalandG20emissionprojectionsfor2030.(downfrom6GtCO2elastyear).TheimplementationOtherfactorsincludechangesinemissiontrendsandgapfortheG20membershasalsobeenreduced.socioeconomiccircumstances.FigureES.3ImplementationgapsbetweencurrentpoliciesandNDCpledgesfortheG20memberscollectivelyandindividuallyby2030,relativeto2015emissionsGHGemissions(relativeto2015=100%)CurrentUnconditionalConditionalUncertainty200%policiesNDCscenarioNDCscenariorangescenario150%Emission11100%level201550%0%Argentina11%Australia14%Brazil9%Canada27%China2%EU279%India8%IndonesiaJapan15%MexicoRepublicofKorea18%RussianFederationSaudiArabia6%SouthAfrica11%TürkiyeUnitedKingdom11%UniotfedASmtearitceas19%G204%Implementationgapin%Noimplementationgap4.Thenumberofnet-zeropledgescontinueshigh-levelgovernmentofficial(16Parties).Thisistoincrease,butconfidenceintheirupfrom88Partieslastyear.Atotalof37percentimplementationremainslowofglobalGHGemissionsarecoveredbynet-zerotargetsfor2050orearlier,while44percentofglobal▶Asat25September2023,97Partiescoveringemissionsarecoveredbynet-zeropledgesforyearslaterthan2050.approximately81percentofglobalGHGemissionsResponsiblefor76percentofglobalemissions,hadadoptednet-zeropledgeseitherinlaw(27Parties),G20memberswilldominatewhenglobalemissionsinapolicydocumentsuchasanNDCoralong-term▶XIXstrategy(54Parties),orinanannouncementbyaEmissionsGapReport2023:BrokenRecordreachnetzero.Encouragingly,allG20members▶Theseleast-costpathwaysassumestringentexceptMexicohavesetnet-zerotargets,andoveremissionsreductionsstartingin2020,whichcurrentthepastyear,somemembershavetakenimportanttrendscontradict.Sinceemissionstodayarehigherstepstowardsstrengtheningandimplementingtheirthanin2020,thisimpliesthattheworldhasalreadytargets.Overall,however,limitedprogresshasbeenfurtherdepletedthelimitedremainingcarbonbudgetmadeonkeyindicatorsofconfidenceinnet-zeroandcommittedtoslightlyhigherglobalwarmingimplementationamongG20members,includinglegalthanindicatedbytheleast-costpathways,unlessstatus,theexistenceandqualityofimplementationthereisfurtheraccelerationofemissionsreductionsplans,andalignmentofnear-termemissionsafteremissionslevelsconsistentwiththeleast-costtrajectorieswithnet-zerotargets.Mostconcerningly,pathwaysaremet.TheemissionsgapestimatesarenoneoftheG20membersarecurrentlyreducingthuslikelytobelower-bound,astheydonotaccountemissionsatapaceconsistentwithmeetingtheirfortheexcessemissionssince2020comparedwithnet-zerotargets.theleast-costpathways,andshouldbereadwiththiscaveatinmind.5.Theemissionsgapin2030remainshigh:currentunconditionalNDCsimplya14GtCO2e▶Theemissionsgapfor2030remainslargelygapfora2°Cgoalanda22GtCO2egapforunchangedcomparedwithlastyear’sassessment.the1.5°Cgoal.TheadditionalimplementationFullimplementationofunconditionalNDCsisoftheconditionalNDCsreducestheseestimatedtoresultinagapwithbelow2°Cpathwaysestimatesby3GtCO2eofabout14GtCO2e(range:13–16)withatleast66percentchance.IftheconditionalNDCsarealso▶Theemissionsgapisdefinedasthedifferencefullyimplemented,thebelow2°Cemissionsgapisreducedto11GtCO2e(range:9–15)(tableES.1andbetweentheestimatedglobalGHGemissionsresultingfigureES.4).fromfullimplementationofthelatestNDCsandthoseunderleast-costpathwaysalignedwiththelong-termtemperaturegoaloftheParisAgreement.TableES.1GlobaltotalGHGemissionsin2030,2035and2050,andestimatedgapsunderdifferentscenariosScenarioGHGemissionsEstimatedgaptoleast-costpathwaysconsistentwith(GtCO2e)limitingglobalwarmingtospecificlevels(GtCO2e)2030CurrentpoliciesMedianandrangeBelow2°CBelow1.8°CBelow1.5°CUnconditionalNDCsConditionalNDCs56(52–60)16(11–19)22(17–25)24(19–27)203555(54–57)14(13–16)20(19–22)22(21–24)Currentpoliciescontinued52(50–55)11(9–15)17(15–20)19(17–23)UnconditionalNDCscontinuedConditionalNDCscontinued56(45–64)20(9–28)29(18–37)31(20–39)205054(47–60)18(11–25)27(20–34)29(22–36)Currentpoliciescontinued51(43–58)15(8–22)24(17–31)26(19–33)UnconditionalNDCsandnet-zeropledgesusingstrictcriteria55(24–72)35(4–52)43(12–60)46(16–63)ConditionalNDCsandallnet-zeropledges44(26–58)24(6–38)32(14–46)36(18–49)21(6–33)1(-14–13)9(-6–21)12(-2–25)XXEmissionsGapReport2023:BrokenRecordFigureES.4GlobalGHGemissionsunderdifferentscenariosandtheemissionsgapin2030and2035(medianestimateandtenthtoninetiethpercentilerange)GtCO2e60CurrentpoliciesscenarioUnconditionalNDCscenario5014ConditionalBlueareashowspathwaysNDCscenarioGtCO2elimitingglobaltemperatureincreasetobelow2°Cwith11GtCO2eConditionalNDCcase19GtCO2e22GtCO2eabout66%chanceUnconditionalNDCcase2°CRemainingConditionalNDCcase40rangegaptostayUnconditionalNDCcasewithin2°ClimitMedianestimateoflevelconsistentwith2°C:41GtCO2e(range:37–46)Greenareashowspathwayslimitingglobaltemperatureincreasetobelow1.5°Cwitha50%chanceby2100andMedianestimateoflevelconsistentwith1.5°C:33GtCO2e(range:26–34)30minimum33%likelihoodoverthecourseofthecentury1.5°Crange2020202025203020352015Theemissionsgapin2030betweenunconditionalActioninthisdecadewilldeterminethe6.▶ambitionrequiredinthenextroundofNDCsNDCsand1.5°Cpathwaysisabout22GtCO2efor2035,andthefeasibilityofachieving(range:21–24)withatleast50percentchance.IftheconditionalNDCsarealsofullyimplemented,the1.5°Cthelong-termtemperaturegoaloftheemissionsgapisreducedto19GtCO2e(range:17–23).ParisAgreement▶UnconditionalandconditionalNDCsfor2030are▶ThefirstglobalstocktakeundertheParisAgreementestimatedtoreduceglobalemissionsby2percentandisenvisagedtoinformthenextroundofNDCsthat9percentrespectively,comparedwithcurrentpolicycountriesarerequestedtosubmitin2025,whichwillprojectionsandassumingtheyarefullyimplemented.includetargetsfor2035.Overall,globalambitionintheTogettolevelsconsistentwithleast-costpathwaysnextroundofNDCsmustbesufficienttobringgloballimitingglobalwarmingtobelow2°Cand1.5°C,globalGHGemissionsin2035tothelevelsconsistentwithGHGemissionsmustbereducedby28percentandbelow2°Cand1.5°Cpathwaysof36GtCO2e(range:42percentrespectively.Thisis2percentagepoints31–39)and25GtCO2e(range:20–27)respectivelylowerthanlastyear’sassessment,illustratingthe(tableES.2),whilealsocompensatingforexcessprogressinnarrowingtheimplementationgapbetweenemissionsuntillevelsconsistentwiththesepathwayscurrentpoliciesandNDCs.areachieved.▶Nonetheless,immediate,acceleratedandrelentless▶Incontrast,acontinuationofcurrentpoliciesandmitigationactionisneededtobringaboutthedeepNDCscenarioswouldresultinwidenedandlikelyannualemissioncutsthatarerequiredfromnowtounbridgeablegapsin2035(tableES.1).Acontinuation2030tonarrowtheemissionsgap,withunparalleledofcurrentpoliciesisprojectedtoresultinglobalannualcutsrequiredtobridgethegap,evenwithoutGHGemissionsof56GtCO2ein2035(tableES.1),accountingforexcessemissionssince2020.whichis36percentand55percenthigherthantheXXIEmissionsGapReport2023:BrokenRecordlevelsconsistentwithbelow2°Cand1.5°Cpathways▶Lookingbeyond2035atmid-centuryscenariosrespectively(tableES.2),withoutcompensatingfor(tableES.1)reinforcesthesefindingsandpointsexcessemissions.tothenecessityofenhancingthecredibilityandfeasibilityofnet-zeropledges.TotalglobalGHG▶Again,thesefindingsunderlinethatimmediateandemissionsin2050areonlybroughtcloserto1.5°Cunprecedentedmitigationactioninthisdecadeand2°CpathwaysiftheconditionalNDCsarefullyisessential.Over-complyingwithcurrentNDCimplementedincombinationwiththeachievementoftargetsfor2030willenablecountriestoputforwardallnet-zeropledges.moreambitiousmitigationtargetsfor2035intheirnextNDCs,anditwillmaketherealizationofsuchambitioustargetsfor2035morefeasible.TableES.2GlobalGHGemissionsin2030,2035and2050,andglobalwarmingcharacteristicsofleast-costpathwaysstartingin2020consistentwithlimitingglobalwarmingtospecifictemperaturelimitsLeast-costGlobaltotalGHGemissionsEstimatedtemperatureoutcomespathways(GtCO2e)consistentwithNumberof50%chance66%chance90%chanceClosestIPCClimitingglobalscenariosIn2030In2035In2050WorkingGroupIIIwarmingtoPeak:Peak:Peak:SixthAssessmentspecificlevels1.7–1.8°C1.8–1.9°C2.2–2.4°CReportscenarioIn2100:In2100:In2100:Below2°C4136201.4–1.7°C1.6–1.9°C2–2.4°Cclass(66%chance195throughoutthe(37–46)(31–39)(16–24)Peak:Peak:Peak:C3acentury)1.5–1.7°C1.6–1.8°C1.9°C–2.2°CIn2100:In2100:N/ABelow1.8°C3527121.3–1.6°C1.4–1.7°CIn2100:(66%chance139(8–16)1.8–2.2°Cthroughoutthe(28–41)(21–31)century)Below1.5°C(50%chancePeak:Peak:Peak:in2100and332581.5–1.6°C1.6–1.7°C1.9–2.1°C(5–13)minimum50(26–34)(20–27)In2100:In2100:In2100:C1a33%chance1.1–1-3°C1.2–1.5°C1.6–1.9°Cthroughoutthecentury)7.Ifcurrentpoliciesarecontinued,globalofconditionalNDCslowersthisbyaround0.4°Ctowarmingisestimatedtobelimitedto3°C.2.5°C(range:1.9–3.6°C).Deliveringonallunconditionalandconditionalpledgesby2030lowersthisestimateto2.5°C,▶Inthemostoptimisticscenariowhereallconditionalwiththeadditionalfulfilmentofallnet-zeroNDCsandnet-zeropledges,includingthosemadepledgesbringingitto2°Caspartoflong-termlow-emissionsdevelopmentstrategies,areassumedtobefullyachieved,global▶Acontinuationofthelevelofclimatechangewarmingisprojectedtobelimitedto2°C(range:1.8–2.5°C)with66percentchanceoverthecoursemitigationeffortsimpliedbycurrentpoliciesisofthecentury.However,asnotedpreviously,net-zeropledgesremainhighlyuncertain.estimatedtolimitglobalwarmingto3°C(range:Eveninthemostoptimisticscenarioconsideredinthis1.9–3.8°C)throughoutthecenturywitha66percentreport,thechanceoflimitingglobalwarmingto1.5°Cisonly14percent,andthevariousscenariosleavechance.Warmingisexpectedtoincreasefurtherafteropenalargepossibilitythatglobalwarmingexceeds2°Coreven3°C.Thisfurtherillustratestheneed2100asCO2emissionsarenotyetprojectedtoreach▶tobringglobalemissionsin2030lowerthanlevelsassociatedwithfullimplementationofthecurrentnet-zerolevels.▶AcontinuationoftheunconditionalNDCscenariolowersthisestimateto2.9°C(range:2–3.7°C),whereastheadditionalachievementandcontinuationXXIIEmissionsGapReport2023:BrokenRecordNDCs,toexpandthecoverageofnet-zeropledgestocountrieswithgreatercapacityandgreaterhistoricallGHGemissionsandtoachievethesepledges.responsibilityforemissions–particularlyhigh-incomeandhigh-emittingcountriesamongtheG20▶Centraltemperatureprojectionsareslightlyhigher–willneedtotakemoreambitiousandrapidaction,settingthecourseanddemonstratingtheviabilitythaninthe2022editionoftheEmissionsGapReport,offossil-freedevelopment.However,thiswillnotbesufficientaslow-andmiddle-incomecountriesasalargernumberofmodelshavebeenincludedalreadyaccountformorethantwothirdsofglobalGHGemissions.Accordingly,theClimateSolidarityintheestimationoffutureemissions.However,thePactproposedbytheUnitedNationsSecretary-Generalcallsonallbigemitterstomakeextraeffortsprojectionsareconsistentwiththosefromothertocutemissionsandwealthiercountriestoprovidefinancialandtechnicalresourcestosupportlow-andmajorassessments,suchastheInternationalEnergymiddle-incomecountriesintheirtransformation,reflectingdifferentiatedtimelines.Agency’s2023AnnouncedPledgesScenario,theClimateActionTrackerandtheUnitedNationsFrameworkConventiononClimateChange2023NDCSynthesisReport,notingthatthesereporttemperatureprojectionswitha50percentratherthana66percentchance.8.Thefailuretostringentlyreduceemissions▶EnergyisthedominantsourceofGHGemissions,currentlyaccountingfor86percentofglobalCO2inhigh-incomecountriesandtopreventemissions.Thecoal,oilandgasextractedoverthelifetimeofproducingandunder-constructionminesfurtheremissionsgrowthinlow-andandfieldsasat2018wouldemitmorethan3.5timesthecarbonbudgetavailabletolimitwarmingtomiddle-incomecountriesimpliesthat1.5°Cwith50percentprobability,andalmostthesizeofthebudgetavailablefor2°Cwith67percentallcountriesmusturgentlyaccelerateprobability.Globaltransformationofenergysystemsisthusessential,includinginlow-andmiddle-incomeeconomy-wide,low-carbontransformationstocountries,wherepressingdevelopmentobjectivesmustbemetalongsideatransitionawayfromachievethelong-termtemperaturegoalofthefossilfuels.ParisAgreement▶DeliveringtransformationalchangerequiresunprecedentedglobalcooperationreflectingtheParisAgreementprincipleofcommonbutdifferentiatedresponsibilitiesandrespectivecapabilitiesinlightofnationalcircumstances.ThisprincipleimpliesthatFigureES.5CommittedCO2emissionsfromexistingfossilfuelinfrastructure,comparedwithcarbonbudgetsreflectingthelong-termtemperaturegoaloftheParisAgreementEmissions(GtCO2)Carbonbudget1,0002°C950(67%chance)800Coal600OtherBuildings400GasTransportIndustry250CarbonbudgetElectricity1.5°C200Oil(50%chance)0ExistingconsuminginfrastructureExistingextractioninfrastructureCommittedemissionsXXIIIEmissionsGapReport2023:BrokenRecord9.Low-andmiddle-incomecountriesfaceeconomicchallengesfromhigh-incomecountries,substantialeconomicandinstitutionalespeciallyinviewoftherequiredspeedoftransition.challengesinlow-carbonenergytransitions,Low-andlower-middle-incomecountriesareinthebutcanalsoexploitopportunities▶greatestneedofaffordablefinanceastheyarealreadysaddledwithdebt,receivedisproportionatelylowclean▶Energytransitionsinlow-andmiddle-incomecountriesenergyinvestments,aremorevulnerabletovolatilefossilfuelmarketseitherasexportersorimporters,areshapedbytheoverarchingobjectiveofpursuingandmayfacefuturestrandedfossilfuelassets.Upper-middle-incomecountriesaretypicallyfurtherdevelopment.Low-andmiddle-incomecountriesalonginbuildingcleanenergyeconomies,butstillfacerisksofstrandedassetsandrelatedemploymentfaceseveralcommonchallengesinhavingtobringimplicationsandmacroeconomicshocks.millionsoutofpoverty,expandstrategicindustries,Accesstoaffordablefinanceisthereforeaprerequisiteforincreasingmitigationambitioninlow-andmiddle-urbanizeanddealwiththepoliticalchallengesofaincomecountries.Yet,costsofcapitalareuptoseventimeshigherinthesecountriescomparedwiththetransitionawayfromfossilfueluse.MeetingbasicUnitedStatesofAmericaandEurope(figureES.6).Internationalfinancialassistancewillthereforeenergyneedsofpeoplelivinginpovertywouldhavehavetobesignificantlyscaledupfromexistinglevels,andnewpublicandprivatesourcesofcapitalalimitedimpactonglobalGHGemissions.Yettoday,betterdistributedtowardslow-incomecountries,restructuredthroughfinancingmechanismsthat2.4billionpeoplelackaccesstocleancookingand▶lowercostsofcapital.Theseincludedebtfinancing,increasinglong-termconcessionalfinance,775milliontoelectricity,withwomenandchildrenguaranteesandcatalyticfinance.disproportionatelyaffected.Meetingenergyneedsforbroaderhumandevelopmentwillleadtosignificantenergydemandgrowth,butthereisscopetomeetthisgrowthmoreefficientlyandequitably,andwithlow-carbonenergyasrenewablesgetcheaper.▶Nationalcircumstancesvarywithnaturalresourceendowmentsandeconomicconditions,andwillshapeenergytransitionpathways.Capacityandinstitutionsareoftenweakinlow-andmiddle-incomecountries,andtheymayfacedifferentandadditionalpoliticalFigureES.6Weightedaveragecostofcapitalforsolarphotovoltaicprojectsagainstpercapitagrossnationalincomeforselectcountriesin2021Grossnationalincomepercapita(US$)Weightedaveragecostofcapital(%)50,00070,9001540,0001230,000920,000610,000300BurkinaFasoRwandaUgandaEthiopiaSenegalKenyaGhanaEgyptTunisiaMoroccoAlgeriaNamibiaSouthAfricaMauritiusPakistanIndiaIslamicRep.ofIranSriLankaIndonesiaThailandChinaNicaraguaBoliviaEcuadorBrazilMexicoArgentinaChileUruguayUSAEuropeAfricaAsiaAmericasEuropeCountrycategoryLow-incomeLower-middle-incomeUpper-middle-incomeHigh-incomeExcludinglower-middle-incomecountriesXXIVEmissionsGapReport2023:BrokenRecordLow-andmiddle-incomecountriescantakeFurtherdelayofstringentglobalGHG10.▶emissionsreductionswillincreasefutureownershipoftheirlow-carbondevelopmentagendarelianceonCDRtomeetthelong-termbylayingoutnationallow-carbondevelopmentstrategiessuitedtotheirnationalcontext,includingbytemperaturegoaloftheParisAgreementadoptingmeasuresinkeyenergy-intensivedemandsectors,suchashousing,transportandfood,which▶Immediateandstringentemissionsreductionsarehaveknownsynergiesbetweenclimatemitigationandrequiredtobridgetheemissionsgapandmaintainhumandevelopment.Thiswillrequirestrengtheningthefeasibilityofachievingthelong-termtemperaturedomesticenergyandclimateinstitutionstoundertakegoaloftheParisAgreement.Allleast-costpathwaysstrategicplanningandenhancedcoordinationstartingin2020consistentwithmeetingthisgoalacrosssectors.Furthermore,strongstakeholderrequireimmediateanddeepemissioncutsaswellasengagementisneededtoensurejustoutcomesandagrowingquantumofCDRovertime(figureES.7).economicdiversification.Withthedelayinstringentmitigationaction,theneedforCDRinthelongertermwilllikelyincrease▶ThepreparationofthenextroundofNDCsoffersanevenfurther.opportunityforlow-andmiddle-incomecountriestodevelopnationallydrivenroadmapswithbroad▶CDRisnecessarytoachievethelong-termgoalofthedomesticvisionsforambitiousdevelopmentandParisAgreementasreachingnet-zeroCO2emissionsclimatepoliciesandtargets,forwhichimplementationisrequiredtostabilizeglobalwarming,whereasprogresscanbemeasured,financeandtechnologynet-zeroGHGemissionswillresultinapeakandneedsareclearlyspecified,anddetailedinvestment-declineinglobalwarming.Sinceitisimpossibletoreadyimplementationplansareprepared.WithlessfullyeliminateallCO2orotherGHGemissionsthroughthantwoyearsleftuntilthenextroundofNDCsarestringentemissionsreductions,residualemissionsdue,COP28wouldbeatimelyoccasiontocallformustbebalancedbyremovalsfromtheatmosphere,internationalsupporttopreparesuchrobustandi.e.throughCDR,toreachnet-zeroemissions.ambitiousNDCsthatintegratedevelopmentandclimateobjectives.FigureES.7TheroleofemissionsreductionsandCDRinleast-costpathwaysconsistentwiththelong-termtemperaturegoaloftheParisAgreementEmissionsreductionsstartingfrom2020levels(GtCO2e/yr)20201.5°Cscenario2°Cscenario202060-2.06060grossemissions55GtCO2e5050Emissionlevel202040-27-1855GtCO2e5040-1.1Totalemissions40reductions-0.3Grossemissionsreduction-39Land-basedCDR3030-2.8-1.0-3830NovelCDR2020-3.635Transparentarea20GtCO2e-1.6indicatesuncertainty24-5.6rangeGtCO2e-7.1NetGHGemissions101010Uncertaintyrange6.87.7GtCO2eGtCO2e000Netemissionsare20202035Net-zeroCO22035Net-zeroCO2above0duetoresidualemissions(around2050)(around2070)ofotherGHGsXXVEmissionsGapReport2023:BrokenRecord▶CDRisalreadydeployedtoday–mainlyintheprotectionofIndigenousandtraditionalcommunities’landtenureandrights,andsustainability,biodiversityformofconventionalland-basedmethods,suchandpermanencerisksofforest-basedCDR,includingfromforestfiresandotherdisturbances.NovelCDRasafforestation,reforestationandmanagementmethodsaregenerallyatanearlystageofdevelopmentandareassociatedwithdifferenttypesofrisks,ofexistingforests,withalargesharelocatedinincludingthatthetechnical,economicandpoliticalrequirementsforlarge-scaledeploymentmaynotdevelopingcountries.Present-daydirectremovalsmaterializeintime.Furthermore,publicacceptanceisstilluncertain,particularlyforapproachesinvolvingthroughconventionalland-basedmethodsarecarboncaptureandstorage,ortheopenocean.Theseriskscannegativelyaffecttheprospectsforscale-up,estimatedtobe2.0(±0.9)GtCO2annually,almostdespitetechnicalpotentials.entirelythroughconventionalland-basedmethods.DirectremovalsthroughnovelCDRmethods,suchasbioenergywithcarboncaptureandstorage,biochar,directaircarboncaptureandstorage,andenhancedweathering,arecurrentlyminisculeat0.002GtCO2annually.▶Nonetheless,1.5°Cand2°Cleast-costpathways▶TospurinnovationandenablescalingupofnovelCDRassumesignificantincreasesinbothconventionalandtechnologies,thesetechnologieswillfirstneedtogonovelCDRovertime(figureES.7).ConventionalCDRthroughaformativephase,whichwillrequirestronggrowstoupto6GtCO2annuallyby2050underthesepolicyandfinancialsupport.GiventhetimeittakestopathwaysandnovelCDRupto4GtCO2annuallybymaturetechnologies,thenextdecadewillbecrucial2050.Conventionalland-basedCDRplaysastrongerfornovelCDRmethods.Failuretocreatemomentumroleinthenear-andmid-term,whilenovelCDRplaysainthisformativephasewillresultinawideningstrongerrolelaterinthecenturytoreachnet-negativediscrepancybetweenthelevelsofnovelCDRneededemissions,notingthatlevelsdependontheunderlyingandavailableby2050andbeyond.economicandtechnologicalassumptionsaswellasthemagnitudeoftemperaturedrawdownafter▶Thispointstofourimportantareasforpoliticalaction:achievingnet-zeroCO2emissions.1)SettingandsignallingCDRpriorities▶AchievementofthegigatonlevelsofCDRimpliedlater2)Developingrobustmeasurement,reportingandinthiscenturybypathwaysconsistentwiththeParisverificationsystemstoenhancecredibilityAgreementisuncertainandassociatedwithseveral3)Harnessingsynergiesandco-benefitswithrisks.Increasedrelianceonconventionalland-basedothereffortsCDRisriskyduetoissuesoflandcompetition,4)Acceleratinginnovation.XXVIEmissionsGapReport2023:BrokenRecord1IntroductionAuthors:AnneOlhoff(CONCITO–Denmark’sgreenthinktank,Denmark)andJohnChristensen((UNEPCopenhagenClimateCentre[UNEP-CCC],Denmark)1.1ContextandframingoftheEmissionsin2025,whichwillincludeemissionsreductiontargetsforGapReport20232035,thisreportlooksatwhatisrequiredthisdecadeandbeyond2030tomaintainthepossibilityofachievingtheTheworldiswitnessingadisturbingaccelerationinthelong-termtemperaturegoaloftheParisAgreement.number,speedandscaleofbrokenclimaterecords:2023isontracktobecomethewarmestyearonrecord.AtthetimeTheIPCCconcludedthatglobalemissionslevelsby2030ofwriting,86dayshavebeenrecordedwithtemperaturesresultingfromtheimplementationofthecurrentNDCswillexceeding1.5°Cabovepre-industriallevels.Notonlymakeitimpossibletolimitwarmingto1.5°CwithnoorlimitedwasSeptemberthehottestmonthever,itexceededtheovershoot,andstronglyincreasethechallengeoflimitingpreviousrecordbyanunprecedented0.5°C,withglobalwarmingto2°C(Pathaketal.2022).Thisfindingisreiteratedaveragetemperaturesat1.8°Cabovepre-industriallevelsinthisreport.Ithighlightsthatmaintainingthepossibilityof(CopernicusClimateChangeServices2023a;Copernicusachievingthelong-termgoaloftheParisAgreementhingesClimateChangeServices2023b).Thisdoesnotimplyonrelentlesslystrengtheningambitionandimplementationthattheworldhasexceededthe1.5°Ctemperaturelimitthisdecade,therebyfacilitatingsignificantlymoreambitiousspecifiedintheParisAgreement,whichreferstoglobaltargetsfor2035inthenextroundofNDCsandpavingthewarminglevelsbasedonmulti-decadalaverages.However,wayforoperationalizingandimplementingthenet-zeroitdoessignalthatwearegettingclosertothatpoint.Thesepledgesbycountriesthatcurrentlycoveraround80percenttemperaturerecordswereaccompaniedbydevastatingofglobalemissions.extremeevents,whichtheIntergovernmentalPanelonClimateChange(IPCC)haswarnedusaremerelyameekThereportshowsthatmovementontheNDCshasbeenbeginning.EveryincrementofwarmingresultsinrapidlynegligiblesinceCOP27,andalthoughtheambitionoftheescalatinghazardswithextensiveimplicationsforhumanNDCshasbeenstrengthenedsincetheadoptionoftheParislivelihoodsandecosystems(IPCC2023).AgreementatCOP21in2015,ithasbeeninsufficienttonarrowthe2030emissionsgap.ThisisthefourteenthEmissionsGapReportbyUNEP,publishedaheadofthetwenty-eighthsessionoftheProgresssincetheadoptionoftheParisAgreementismoreConferenceofthePartiestotheUnitedNationsFrameworkvisibleonthepolicyimplementationside.Globally,GHGConventiononClimateChange(COP28).COP28isspecial,emissionsin2030basedonpoliciesinplacewereprojectedasitmarkstheconclusionofthefirstglobalstocktaketoincreaseby16percentatthetimeoftheadoptionoftheundertheParisAgreement.TheglobalstocktakesareheldParisAgreement.Nowtheprojectedincreaseis3percent.everyfiveyearstoassesstheglobalresponsetotheclimatecrisisandchartabetterwayforward.ThisobjectivecloselyHowever,thechallengeremainsimmense.InjustsevenmirrorsthatoftheEmissionsGapReport,whichistoprovideyears,globalGHGemissionsmustbereducedby28–42anannual,independentscience-basedassessmentofthepercentcomparedtowheretheyareheadedunderpoliciesgapbetweenpledgedgreenhousegas(GHG)emissionscurrentlyinplace,togettolevelsconsistentwithpathwaysreductionsandthereductionsrequiredtoalignwiththethatlimitglobalwarmingtowellbelow2.0°Cand1.5°Clong-termtemperaturegoaloftheParisAgreement,andrespectively.opportunitiestobridgethisgap.Duetothefailuretostringentlyreduceemissionsinhigh-ToinformthediscussionsatCOP28–includingontheincomecountries–whichbearthegreatestresponsibilityoutcomesneededfromtheglobalstocktake–andsetforpastemissions–andtolimitemissionsgrowthinthesceneforthenextroundofnationallydeterminedlow-andmiddle-incomecountries,whichaccountforthecontributions(NDCs)thatcountriesarerequestedtosubmitmajorityofcurrentemissions,unprecedentedactionisnow1EmissionsGapReport2023:BrokenRecordneededbyallcountries.Forhigh-incomecountries,this1.2Approachandstructureofthereportimpliesfurtheracceleratingdomesticemissionsreductions,committingtoreachingnet-zeroassoonaspossible–andTheEmissionsGapReportisanassessmentreport.ItsoonerthantheglobalaveragesfromthelatestIPCCreportprovidesanevaluationofscientificallyandtechnicallyimplies–andatthesametimeprovidingfinancialandcredibleknowledgeonemissionstrends,progress,gapsandtechnicalsupporttolow-andmiddle-incomecountries.Foropportunities,basedonasynthesisofthelatestscientificlow-andmiddle-incomecountries,thismeansthatpressingliterature,models,anddataanalysisandinterpretation,developmentneedsmustbemetalongsideatransitionincludingthatpublishedbytheIPCC.awayfromfossilfuels.Asinpreviousyears,thisEmissionsGapReporthasbeenFurthermore,thedelayinstringentmitigationactionpreparedbyaninternationalteamofleadingexperts.Thiswilllikelyincreasefuturedependenceoncarbondioxideyear,79leadingscientistsfrom47expertinstitutionsremoval(CDR)fromtheatmosphere.However,availabilityacross22countrieshavebeenengagedinproducingtheoflarge-scaleCDRopportunitiesinthefuturecannotbereport.Theassessmentprocesshasbeenoverseenbyantakenforgranted.Thesecondpartofthereportexploresinternationalsteeringcommitteeandhasbeentransparenttheopportunitiesandchallengesassociatedwithenergyandparticipatory.Geographicaldiversityandgenderbalancetransformation,anddevelopmentanddeploymentofCDR.hasbeenconsideredtotheextentpossible.Allchaptershaveundergoneexternalreview,andtheassessmentThefeasibilityofthenecessarytransformationhingesmethodologyandpreliminaryfindingsweremadeavailableonreconcilingdevelopmentandclimateobjectivesinalltotheGovernmentsofthecountriesspecificallymentionedcountries.AshasbeenamplyillustratedduringtheCOVID-19inthereport,toprovidethemwiththeopportunitytopandemicandtheenergycrisis,developmentchoicesandcommentonthefindings.responsestoeconomicshocksareinseparablefrom–andoftendetermine–climateoutcomes.PreviouseditionsofThereportisorganizedintosevenchapters,includingthistheEmissionsGapReporthaveillustratedthatwellplannedintroduction.Chapter2assessesthetrendsinglobalGHGandsociallyjusttransformationscanbringeconomicemissions.Chapter3providesaglobalupdateofNDCsandbenefits,createnewjobs,advancegenderequality,andlong-termnet-zeroemissionspledges,andassessestheempowerpeople,communitiesandsocieties.AllavailableprogressofG20memberstowardsachievingtheirNDCsevidenceconfirmstheavailabilityofawiderangeofmature,andnet-zeroemissionspledges.Chapter4updatestheefficientandeconomicallyattractiveoptionstoreduceGHGassessmentoftheemissionsgapby2030basedontheemissions.Theyjustneedtobedeployed,immediatelyandlatestNDCs,andlooksatpotentialgapsbeyond2030.Itatunprecedentedrates(Pathaketal.2022;InternationalalsoconsiderstheimplicationsoftheemissionsgaponEnergyAgency2023;Leeetal.2023).thefeasibilityofachievingthelong-termtemperaturegoaloftheParisAgreement.Chapter5framesthesecondpartDoingsocouldsimultaneouslyhelpreversetheconcerningofthereport,layingoutglobalissuesrelatedtoenergygeneralinternationalsetbackontheachievementoftransformationandCDR.Chapter6assesseschallengestheglobalSustainableDevelopmentGoalsfor2030.Aandopportunitiesforacceleratingenergytransitionsinpreliminaryassessmentshowsthatofthearound140low-andmiddle-incomecountries,whilemeetingcriticaltargetsforwhichdataisavailable,only12percentareondevelopmentneedsandpriorities.Finally,chapter7track,whereasmorethanhalfaremoderatelyorseverelyconsiderstherole,statusandscopeforCDRinachievingofftrack,andaround30percenthaveeitherseennothelong-termtemperaturegoaloftheParisAgreement.movementorhaveregressedbelowthe2015baseline(UnitedNations2023).2EmissionsGapReport2023:BrokenRecord2GlobalemissionstrendsLeadauthors:WilliamF.Lamb(MercatorResearchInstituteonGlobalCommonsandClimateChange,Germany;UniversityofLeeds,UnitedKingdomofGreatBritainandNorthernIreland)andMinalPathak(AhmedabadUniversity,India)Contributingauthors:LucasChancel(WorldInequalityLab,ParisSchoolofEconomics,France),MonicaCrippa(EuropeanCommission,JointResearchCentre[JRC],Italy),GiacomoGrassi(EuropeanCommission,JRC,Italy),DiegoGuizzardi(EuropeanCommission,JRC,Italy),JingMeng(UniversityCollegeLondon,UnitedKingdom),GlenP.Peters(CICEROCenterforInternationalClimateResearch,Norway)andJuliaPongratz(Ludwig-MaximiliansUniversityMunich,Germany)2.1IntroductionofCO2equivalent(GtCO2e)in2021(Forsteretal.2023).Non-CO2LULUCFemissionsarealsoexcludedduetodataThischapterassessesgreenhousegas(GHG)emissionslimitations.trendsuptoandincluding2022.StartingfromglobalemissionstrendsbyGHGandsector(section2.2),itdescribesFollowingthechangeinmethodologyoutlinedinthetheemissionsoftheG20andtopemitters(section2.3)EmissionsGapReport2022(UnitedNationsEnvironmentbeforecoveringhouseholdandconsumption-basedProgramme[UNEP]2022),theglobalbookkeepingapproachemissions(sections2.4and2.5).Indoingso,itsetstheisusedtoreportglobalestimatesofnetLULUCFCO2stageforsubsequentchaptersonG20policiesandtheemissionsandthenationalinventoryapproachtoreportemissionsgap.1Importantly,thischapterprovidesmultiplenationalestimatesofnetLULUCFCO2emissions.Thisperspectivesonnationalemissions,includingabsolute,perensuresthatglobalestimatesareconsistentwiththecapitaandhistoricalcumulativeemissions.Eachofthesemitigationscenariospresentedinchapter4,aswellastheperspectivesofferinsightintoinequalitiesincontributionscarboncycleandclimatescienceliterature;whilenationaltoclimatechange,whilehighlightingthatturningaroundestimatesareconsistentwiththosereportedbycountriesglobalemissionsgrowthnowrequiresambitiousandtotheUNFCCC.Asthischapterreports,totalnetLULUCFurgenteffortsfromallcountriestoreducefossilfueluseCO2emissionsdiffersubstantiallybetweenthesetwoanddeforestation.approaches,duetoknowndifferencesinsystemboundariesandotherassumptions.Asinpreviousyears,theEmissionsGapReportfocusesontotalnetGHGemissionsacrossallmajorgroupsofWhereGHGemissionsareaggregatedtoCO2equivalentsanthropogenicsourcesandsinksreportedundertheinthisreport,100-yearglobalwarmingpotentialsfromtheUnitedNationsFrameworkConventiononClimateChangelatestIntergovernmentalPanelonClimateChange(IPCC)(UNFCCC).Thisincludescarbondioxide(CO2)emissionsWorkingGroup(WG)ISixthAssessmentReport(AR6)fromfossilfuelandindustry(fossilCO2),CO2emissions(Forsteretal.2021)areused.Alternativemetricscanbeandremovalsfromlanduse,land-usechangeandforestryused–forinstance,globalwarmingpotentialswitha(LULUCFCO2),methane(CH4)andnitrousoxide(N2O)20-yeartimehorizonwouldhighlighttherelativeimportanceemissions.Itincludesfluorinatedgas(F-gas)emissionsofCH4onnear-termwarming–butarenotexploredhere.reportedundertheUNFCCC,butexcludesF-gasemissionsUncertaintiesinemissionsestimatesarereportedfollowingregulatedundertheMontrealProtocolonozonedepletingtheIPCCWGIIIAR6of±8percentforfossilCO2,±70percentsubstances,whichaccountedforapproximately1.6gigatonsforLULUCFCO2,±30percentforCH4andF-gases,and1TheAfricanUnionbecameapermanentmemberoftheG20inSeptember2023,whichwasaftertheassessmentsforthisreporthadbeencompleted.Consequently,theAfricanUnionisnotincludedintheG20assessmentthisyear.3EmissionsGapReport2023:BrokenRecord±60percentforN2O(Dhakaletal.2022).ThischapterfollowsFossilCO2emissionsaccountforapproximatelytwoaterritorial-basedaccountingofemissions(i.e.emissionsthirdsofcurrentGHGemissionsusing100-yearglobalareallocatedtothesectorsandnationswheretheyoccur)warmingpotentials.Accordingtomultipledatasets,fossilunlessotherwisenoted.Indirectandconsumption-basedCO2emissionsgrewbetween0.8–1.5percentin2022andperspectivesareconsideredinsection2.5,inparticularinwerethemaincontributortotheoverallincreaseinGHGthecontextofhouseholdemissions.emissions(Friedlingsteinetal.2022;EnergyInstitute2023;InternationalEnergyAgency2023;Liuetal.2023).CH4,N2OTheprincipalsourcesinthischapterincludetheEmissionsandF-gasemissionsaccountforaboutonequarterofcurrentDatabaseforGlobalAtmosphericResearchdatasetforGHGemissions.AlthoughtheirabsolutecontributiontothefossilCO2,CH4,N2OandF-gasemissions(Crippaetal.overallincreasein2022waslowersincetheyrepresenta2023);theGlobalCarbonBudgetforglobalLULUCFCO2muchsmallershareofthetotal,emissionsofthesegasesestimates,takingtheaverageofthreebookkeepingmodelsareincreasingrapidly:in2022,F-gasemissionsgrewby(Friedlingsteinetal.2022);andGrassietal.(2022;2023)5.5percent,followedbyCH4at1.8percentandN2Oatfornationalinventory-basedLULUCFCO2(withupdatesto0.9percent.thelatestinventoriesforthetopemitters).Thelatestyearsofdatainthesesourcesshouldbetreatedaspreliminary–GlobalnetLULUCFCO2emissions–usingtheglobalparticularlyinthecaseofLULUCFCO2andnon-CO2GHGbookkeepingapproach–remainedsteadyin2022,butemissions–duetotheuseofprovisionalmethodologiesarebasedonanearlyprojectionofland-useactivitywithbasedonavailableactivitydata.Emissionsaregenerallyrelativelyhighuncertainties(Friedlingsteinetal.2022).reportedupto2022.However,duetodatalimitations,thisUpdatedestimatesindicatethatnetLULUCFCO2emissionsisnotpossibleforinventory-basedLULUCFCO2.Completeslowlydeclinedinthepasttwodecades,withaveragenationaltotalsincludingLULUCFCO2arethereforeonlyemissionsof4.5gigatonsofCO2(GtCO2)peryearduringgivenupto2021.Lamb(2023)containsthecodeanddata2012–2021,comparedwith4.9GtCO2peryearduringusedtoproduceallemissionsestimatesinthischapter.2002–2011.Theprimarydriverbehindthedeclineisanincreaseinremovalsonforestland(from3.0to3.5GtCO2per2.2Globalemissionstrendsyear),includingafforestation/reforestation,whileemissionsfromdeforestationremainedhigh(6.8and6.7GtCO2per2.2.1Globalemissionsincreasedtorecordlevelsinyearfor2002–2011and2012–2021,respectively).LULUCF2022CO2emissionsandremovalscontinuetohavethelargestuncertaintiesofallgasesconsideredhere,bothintermsofGlobalGHGemissionsreachedarecordhighof57.4GtCO2etheirabsoluteamountsandtrends.in2022,growingby1.2percent(0.6GtCO2e)fromthepreviousyear(figure2.1andtable2.1).ThisrateisslightlyGlobalbookkeepingandnationalinventory-basedaccountsabovetheaveragerateinthedecadeprecedingtheofLULUCFCO2emissionsdivergedbyapproximatelyCOVID-19pandemic(2010–2019),whenGHGemissions6.4GtCO2in2021(table2.1).Thisisduetoknowndifferencesgrowthaveraged0.9percentperyear,butwasslowerinsystemboundariesbetweeneachapproach,inparticularthantheemissionsgrowthofthe1990s(1.2percentperthefactthatbookkeepingmodelsconsideronly“direct”year)and2000s(2.2percentperyear).AtmosphericCO2human-inducedfluxesasanthropogenic(e.g.deforestation,concentrationsgrewto417.9±0.2partspermillionin2022afforestationandotherlanduse-relatedvegetation(WorldMeteorologicalOrganization2023),andwillcontinuechanges),whereasnationalinventoriestypicallyalsoincludetogrowuntilannualemissionsarereducedsufficientlytomostofthe“indirect”human-inducedfluxes(e.g.enhancedbebalancedbyremovals.Incontrast,asshowninchapter4vegetationgrowthduetoincreasedatmosphericCO2)thatofthisreport,globalGHGemissionsmustdeclinetolevelsoccuronmanagedland(Grassietal.2021;UNEP2022,p.4).between33and41GtCO2eby2030(chapter4andtable4.2)togetonaleast-costpathwaytomeetingthetemperaturegoaloftheParisAgreement.4EmissionsGapReport2023:BrokenRecordFigure2.1TotalnetanthropogenicGHGemissions,1990–2022TotalGHGemissions1990–2022(GtCO2e/yr)51.657.4GtCO2e60GtCO2ein20225041.8F-gases2010LULUCFCO254.5GtCO2eGtCO2e37.940GtCO2e202030201020000CH4N2O1990FossilCO2Sources:Crippaetal.(2023)forGHGemissions;Friedlingsteinetal.(2022)forbookkeepingLULUCFCO2;Grassietal.(2023)forinventory-basedLULUCFCO2.Note:GHGemissionsincludefossilCO2,LULUCFCO2,CH4,N2OandF-gasemissions.Bookkeeping-basednetLULUCFCO2emissionsaredepicted.Non-CO2gasesareconvertedtoCO2equivalentsusingglobalwarmingpotentialswitha100-yeartimehorizonfromtheIPCCAR6(Forsteretal.2021).Globalprimaryenergyconsumptionexpandedin2022,productioninsomeemergingeconomies.Netelectricityandwasmainlymetbyagrowthincoal,oilandrenewabledemandgrowthin2022wasprimarilymetbyrenewableelectricitysupply(EnergyInstitute2023;InternationalEnergysources(excludinghydropower),inparticulardrivenbyaAgency2023).Gasconsumptiondeclinedby3percentinrecordincreaseinsolarcapacityadditions(EnergyInstitute2022followingthewarinUkraine(EnergyInstitute2023).2023).Overall,whileinvestmentsinrenewablesincreasedCoalconsumptionincreased,inpartdrivenbyswitchingfromglobally,investmentsincoal,oilandgashavecontinuedandgastocoal,aswellasthesteadygrowthofcoal-firedpowerevenincreasedinsomecountries.Table2.1TotalglobalemissionsbysourceGtCO2e2010–2019(average)202020212022GHG54.6±5.5554.5±5.3656.8±5.4557.4±5.48FossilCO236.1±2.8935.9±2.8838.1±3.0538.5±3.08LULUCFCO2(globalbookkeeping)4.72±3.34.06±2.843.94±2.763.87±2.71LULUCFCO2(nationalinventory)-2.64±-1.85-2.49±-1.74-2.4±-1.68N/ACH4N2O10.1±3.0310.4±3.1310.6±3.1810.8±3.23F-gases2.47±1.482.57±1.542.63±1.582.65±1.591.17±0.3511.46±0.4391.54±0.4611.62±0.486Note:Inventory-basedLULUCFCO2isexcludedfromtotalGHGemissions.Non-CO2greenhousegasesareconvertedtoCO2equivalentsusingglobalwarmingpotentialswitha100-yeartimehorizonfromtheIPCCWGIAR6(Forsteretal.2021).5EmissionsGapReport2023:BrokenRecord2.2.2EmissionsreboundedacrossmostglobalThetopsevenglobalemittersremainthesameassectorsfollowingtheCOVID-19pandemicin2021:Brazil,China,India,Indonesia,theEuropeanUnion,theRussianFederationandtheUnitedStatesofEmissionscanbesplitintofivemajoreconomicsectors:America(figure2.2).Collectively,andwiththeadditionofenergysupply,industry,agricultureandLULUCF,transportinternationaltransport,theseemittersaccountedforatotalandbuildings.In2022,energysupplywasthelargestof33GtCO2ein2021,or65percentofglobalemissionssourceofemissionsat20.9GtCO2e(36percentoftheonaterritorialbasis,includingnationalinventory-basedtotal),whichismainlyduetocombustionemissionsinLULUCFCO2.Combined,theG20accountedfor76percentthepowersector(14.8GtCO2e)andemissionsfromfossilofglobalemissions.Bycontrast,leastdevelopedcountriesfuelproductionincludingfugitivemethane(6.1GtCO2e).accountedfor3.8percentofglobalemissions,whilesmallTheenergysupplysectoristhelargestcontributortotheislanddevelopingStatescontributedlessthan1percent.increaseinemissionsoverthepastdecades,largelydueGenerally,globalemissionshaveshiftedfromhigh-incometototheworldwideexpansionofcoal-andgas-firedpowerlow-andmiddle-incomecountriesinthepasttwodecades.generation(InternationalEnergyAgency2023).However,itHigh-incomecountries,whichincludeeightmembersofisalsooneoftheonlysectorswheresomecountrieshavetheG20(Australia,Canada,theEuropeanUnion,Japan,madeprogressinreducingemissionsbyswitchingtolowerSaudiArabia,theRepublicofKorea,theUnitedKingdomemissionfuelsandbyscalinguprenewablesources.ofGreatBritainandNorthernIrelandandtheUnitedStatesofAmerica)contributed43percentofGHGemissionsinIndustryisthesecondlargestsectorwhenaccountingby2000,but28percentin2021.Conversely,low-andmiddle-directemissions(14.4GtCO2e,25percentofthetotal),incomecountries,whichincludeninemembersofthefollowedbyagricultureandLULUCFCO2(globalbookkeepingG20(Argentina,Brazil,China,India,Indonesia,Mexico,theapproach)(10.3GtCO2e,18percent),transport(8.1GtCO2e,RussianFederation,SouthAfricaandTürkiye)contributed14percent)andbuildings(3.8GtCO2e,6.7percent).53percentin2000and69percentin2021.However,ifpowersectoremissionsarereallocatedtofinalsectorsbasedontheiruseofelectricityandheat(i.e.indirectThereissomeevidencethattheglobalenergycrisisandemissions,whichhighlightademandperspective),thenthetheinternationalsanctionsfollowingthewarinUkrainecontributionoftheindustryandbuildingssectorsincreasehaveimpactedregionaleconomicactivityandemissions,significantly(to34percentand16percent,respectively)withhighlyuncertainlong-termimplications(International(Lambetal.2021b).EnergyAgency2022).Directemissionsfrommilitaryoperations,vehiclesandinstallationsarelikelynon-Thelatestdataupto2022indicatethatmostglobalsectorstrivial,butremaininsufficientlyaccountedunderUNFCCChavefullyreboundedfromthedropin2020emissions,whichreportingconventions,andthereislimitedevidenceinwasinducedbyCOVID-19,andnowexceed2019levelswiththeliteratureonthescope,scale,compositionortrendoflittlechangeintheoverallcompositionofsectoremissionstheseemissions(Rajaeifaretal.2022).Theenergycrisis(Liuetal.2023).Anexceptionisaviationemissions,whichhasdriveneffortstowardsacleanenergytransition,withremainat74percentoftheir2019peakof1.0GtCO2e,butincreasedinvestmentsinrenewablesandsupportforarelikelytocontinuetoreboundin2023asairpassengercleanenergypoliciesandphasingoutfossilfuelsinsomenumbersstarttoreachpre-pandemiclevels(Internationalcountries(SteffenandPatt2022;Tollefson2022).AttheAirTransportAssociation2023).sametime,somecountrieshaveexpandeddomesticfossilfuelextraction,citingenergysecurityconcerns(United2.3EmissionstrendsofmajoremittersKingdom2022).Thereisevidenceofanincreaseinenergypricesandashiftinregionalenergysupplies,particularlyinEurope,whichtookactivemeasurestodecreasefossil2.3.1EmissionsoftheG20membersincreasedinimportsfromtheRussianFederation(SteffenandPatt2022andaccountedforthreequartersofthe2022).Risingcostsofenergyandproductsdependenttotalonfossilfuelscouldpushmillionsofpeoplegloballyintopoverty,inadditiontothehundredsofmillionsalreadylivingPreliminaryestimatesfor2022(whichexcludeLULUCFCO2underhardship(Guanetal.2023).forwhichdataisonlyavailableupto2021)showanincreaseinGHGemissionscomparedwith2021inIndonesiaNetLULUCFCO2emissions,especiallyfromdeforestation(+10percent),India(+5.1percent),theUnitedStatesofandland-usechange,continuetobeconcentratedinAmerica(+1.6percent)andChina(+0.3percent),andatropicalregions,withBrazil,IndonesiaandtheDemocraticdecreaseintheEuropeanUnion(-0.8percent),theRussianRepublicoftheCongocontributing58percentoftheglobalFederation(-1percent)andBrazil(-2.5percent).Internationaltotalin2021–albeitwithextremelyhighuncertaintiestransportemissionsrapidlyincreased(+11.4percent),but(Friedlingsteinetal.2022).Countriessuchasthesethatremainbelowpre-pandemiclevels.TotalemissionsofthehaveahighercontributionfromLULUCFCO2alsotendtoG20alsoincreased(+1.2percent).experiencelargerannualfluctuationsinGHGemissionsduetopolicy-inducedland-usechanges,deforestation,wildfiresonmanagedlandorshiftstowardsforestprotection(figure2.2).6EmissionsGapReport2023:BrokenRecordFigure2.2EmissionstrendsofmajoremittersGHGemissionsin2021andtrendsince2000,includinginventory-basedLULUCFCO2(GtCO2e)15ChinaUSA12India9EU276RussianFederationLULUCFCO23BrazilFossilCO2,CH4,N2O,F−gasesIndonesiaInternational0-202468101214162000transport20052010201520212021PercapitaGHGemissionsin2021andtrendsince2000,includinginventory-basedLULUCFCO2(tCO2e/capita)25USARussian20FederationChina15BrazilEU2710IndonesiaWorld5India004812162000200520102015Sources:WorldBank(2023)forpopulation;Crippaetal.(2023)forGHGemissions;Grassietal.(2023)forinventory-basedLULUCFCO2.Note:ThetoppaneldepictstotalGHGemissionsin2021andtheirtrendssince2000forthetopsevenemittersandinternationaltransport.InsufficientLULUCFCO2datapreventsanupdateofthesetrendsto2022andbefore2000.ThelowerpaneldepictspercapitaGHGemissionsin2021forthesecountriesandtheirtrendssince2000.Bothincludeinventory-basednetLULUCFCO2emissions.Non-CO2gasesareconvertedtoCO2equivalentsusingglobalwarmingpotentialswitha100-yeartimehorizonfromtheIPCCWGIAR6(Forsteretal.2021).2.4Somecountrieshavepeakedinemissionsarehighlyunequallydistributedacrosscountries,emissions,meanwhileglobalperwithemissionsaslowas1.3tCO2einNepalandashighascapitalevelsremainhighlyunequal73tCO2einQatar.Bycomparison,globalmedianestimatesofpercapitaemissionsby2050consistentwith2°CandPercapitaterritorial-basedGHGemissionsintheUnited1.5°Cscenariosare2.2tCO2eand1.0tCO2erespectivelyStatesofAmericaandtheRussianFederationareoverdouble(seechapter3).theworldaverageof6.5tonsofCO2equivalent(tCO2e),whilethoseinIndiaremainunderhalfofit(figure2.2).TheAnincreasingnumberofcountrieshavepeakedandreducedG20asawholeaveraged7.9tCO2e,whereasleastdevelopedabsoluteemissionsformorethan10years(LeQuéréetal.countriesaveraged2.2tCO2eandsmallislanddeveloping2019;Hubaceketal.2021;Lambetal.2021a).Asof2022,Statesaveraged4.2tCO2e.Ingeneral,percapitaGHG36countrieshavenowsustainedemissionsreductionsfor7EmissionsGapReport2023:BrokenRecordlongerthan10years,intermsofbothfossilCO2andtotalCumulativeemissionsbetween1850and2021varyGHGemissions,excludingLULUCFCO2.Ofthese,22areacrossregions(IPCC2022).TheUnitedStatesofAmericacountriesintheEuropeanUnion,whileafurthereightareisresponsibleforthelargestshareoftheseemissions,high-incomecountries:Australia,Israel,Japan,Norway,followedbytheEuropeanUnionandChina(figure2.3).Switzerland,Ukraine,theUnitedKingdom,theUnitedStatesCollectively,theUnitedStatesofAmericaandtheEuropeanofAmerica.Sixmiddle-incomecountrieshavealsoreducedUnioncontributednearlyathirdofthetotalcumulativeemissionsoverthistimeperiod:Albania,Cuba,Jamaica,emissionsfrom1850to2021.Consequently,emissionsMexico,NorthMacedoniaandSouthAfrica.Generally,whilefromthesecountrieshavealsocontributedsignificantlythesecountrieshavesucceededinreducingpowersectortowarming,includingtheimpactofmethaneandnitrousandindustryemissions,successinreducingtransport,oxideemissions,sinceindustrialization(Jonesetal.2023).buildingsandagricultureemissionshassofarbeenlimitedIncomparison,leastdevelopedcountriescontributed(Lambetal.2021a).4percentofhistoricalcumulativefossilandLULUCFCO2emissions(figure2.3).2.5ContributionstoclimatechangeareTheG20asawholeisresponsibleforapproximatelythreeunequalquartersofwarmingtodate,andanevengreaterproportionofhistoricalcumulativefossilCO2emissions(figure2.3).2.5.1AminorityofcountrieshavecontributedtheHowever,theG20isitselfdiverseintermsofeconomicandmajorityofhistoricalemissionsandwarmingsocialdevelopmentstages,includingpopulation,levelofurbanization,industrializationandresourceendowments.Figure2.3CurrentandhistoricalcontributionstoclimatechangeCurrentandhistoriccontributionstoclimatechange(%sharebycountriesorregions)13%12%18%China4%UnitedStates19%17%30%6%ofAmerica18%11%2%G20EU277%14%10%7%India13%5%24%Russian18%Federation5%14%18%RestofG204%6%3%CurrentCurrentGHGpopulationRestofworld5%emissionsLeastdeveloped(2021)(2021)countries22%25%16%21%Restofworld4%6%HistoricalContributionCO2emissionstowarming(1850–2021)(1850–2021)Sources:WorldBank(2023)forpopulation;Crippaetal.(2023)forcurrentGHGemissions;Friedlingsteinetal.(2022)forhistoricCO2emissions;Jonesetal.(2023)forhistoriccontributionstowarming.Note:Thisfigurecontraststhedistributionofglobalpopulationin2021(total=7.86billion),GHGemissionsin2021(total=51.6GtCO2e),cumulativeCO2emissions(total=2,200GtCO2)andhistoriccontributionstowarming(total=1.61°C).HistoriccontributionstowarmingresultfromcumulativeCO2emissions,butalsoestimatedCH4,N2OandF-gasemissions(coolingfromaerosolsisexcluded,leadingtoahigherestimateofwarmingthancurrentlyobserved).Notethatduetomissingdata,thesetotalsarenotcompleteforallcategoriesandexclude,forexample,internationaltransport.CurrentGHGandcumulativeCO2emissionsincludenetLULUCFCO2emissions(globalbookkeepingapproach)toalignwithhistoricalemissionsestimates(notethatthisleadstodifferenceswithsection2.3.1wherenationalinventoriesareused).Non-CO2gasesareconvertedtoCO2equivalentsusingglobalwarmingpotentialswitha100-yeartimehorizonfromtheIPCCAR6(Forsteretal.2021).8EmissionsGapReport2023:BrokenRecord2.5.2WealthyhouseholdscontributenearlyhalfofTheseinequalitiesinconsumption-basedemissionsreflectconsumption-basedemissionsworldwideincomeandwealthinequality,andunequalconsumptionandsavingspatternsbothwithinandbetweencountriesGlobally,emissionsinequalityexistsamonghouseholds(Chengetal.2021;Duarte,Miranda-BuetasandSarasaacrossandwithincountries,reflectingunderlying2021).Driversofhighenergyconsumptioninwealthierinequalitiesinwealthandincome(Bruckneretal.2022).Acountriesincludelivingspace(verylargehomesorconsistentfindingintheliteratureisthathouseholdswithsecondaryhomes),theuseoflargevehiclessuchassport-thehighestincomeorwealthcontributeadisproportionateutilityvehicles,leisureandworkthatinvolvedrivingandairamountofemissionsworldwide.Emissionsoftheglobaltravel,andthehighconsumptionofmeat,dairyandfasttop10percentofindividuals(rankedaccordingtoincome,fashion(Wiedmannetal.2020;HickelandSlamersak2022).wealthoremissions)contributed45percentto49percentEmissionsfrominvestmentscanalsoleadtosignificantoftotalglobalemissions,whiletheglobalbottom50percentinequalitiesbetweenhigh-andlow-incomehouseholdsemitted7percentto13percentofthetotal(Chanceland(Starretal.2023).EvidencefromChinashowsapositivePiketty2015;Karthaetal.2020;Chancel2022;Brucknerrelationshipbetweenincomeandwealthinequality,andetal.2022;).high-consumptionlifestylesandemissions(Liuetal.2019;Mietal.2020;Qinetal.2022).IntheUnitedStatesEstimatesofhousehold-levelemissionscanincludethoseofAmerica,emissionsfromhigh-incomehouseholdsareassociatedwiththedirectconsumptionofenergyforduetohigherenergyneedsresultingfromlifestylechoicesheating,coolingandtransportation,aswellastheindirectsuchaspreferenceforlargerhomesandhigherdependenceemissionsassociatedwiththeconsumptionofgoodsandonprivatetransport(Feng,HubacekandSong2021).services,orwithfinancialinvestments(Starretal.2023).Evidenceofemissionsinequalitiesbetweenhigh-andlow-incomehouseholdshasbeenreportedforIndia,MexicoTherearehighemittersinallregionsandcountries.andthePhilippines(SantillánVeraanddelaVegaNavarroHowever,emissionsofthehigh-incomehouseholdsinSouth2020;Seriño2020;SriandBanerjee2023).ClimatepolicyandSoutheastAsiaandsub-SaharanAfricaappeartobeinstrumentshavenotalwaysbeensuccessfulinreducingsignificantlylowercomparedtootherregions(figure2.4).emissions-intensiveconsumptionorinvestments,andinTheemissionsofthetop1percenthouseholdsintheUnitedmanycaseshaveincreasedtheburdenonlow-andmiddle-StatesofAmerica,theRussianFederationandChinafarincomehouseholds(Chancel2022).exceedtheircounterpartsfromdevelopingcountriessuchasBrazil,IndiaandIndonesia.Materialsandenergyarealsorequiredtosustaindecentlivingstandards,suchasshelter,mobility,nutritionandEmissionstrendsalsovaryacrossincomegroups.Forthehealthcare–however,theestimatedimpactofsatisfyingUnitedStatesofAmerica,Starretal.(2023)foundthatthetheseneedsisrelativelysmall(Pachauri2014;Rao,Mintop1percentconsumption-basedpercapitaemissionsandMastrucci2019;Vélez-HenaoandPauliuk2023;seeincreasedovertherecentperiod,whiletheydecreasedforalsochapter5).AchievingtargetsoftheSustainableothergroupsofthepopulation.Zhengetal.(2023)foundDevelopmentGoalsincludingeradicatingextremepoverty,thatemissionsofthetop20percentdeclinedlessrapidlyprovidingcleanenergyaccessandprovidingdecentlivingthanthatofothergroupsinmosthigh-incomecountries.Atstandardstotheseregionsareconsequentlyglobalprioritiesthegloballevel,thetop1percentcontributedtoaquarteralongsidedeepemissionsreductions(chapters5and6).ofthegrowthinpercapitaemissionsover1990–2019(Chancel2022).9EmissionsGapReport2023:BrokenRecordFigure2.4GHGemissionsacrossdifferentgroupsofhouseholds(2019)HouseholdGHGemissionsin2019,excludingLULUCF(tCO2e/capita)050100150200USARussianFederationChinaWorldEuropeBrazilIndonesiaIndia01020LowerMiddleNextTopUSA50%40%9%1%RussianFederationChinaWorldEuropeBrazilIndonesiaIndiaSource:WorldInequalityDatabase(2023).Note:Emissionsincludethosefromdomesticdirectandindirectconsumption,andpublicandprivateinvestments,importsandexportsofcarbonembeddedingoodsandservicestraded.Intheseestimates,emissionsassociatedwiththeformationofcapital(i.e.investments)areattributedtotheownersofcapital.ThisexcludesLULUCFCO2emissions.Emissionsaresplitequallywithinhouseholds.Inthistable,Europerefersto,andiscalculatedastheweightedaverage,ofFrance,Germany,Italy,Poland,Spain,SwedenandtheUnitedKingdom.10EmissionsGapReport2023:BrokenRecord3Nationallydeterminedcontributionsandlong-termpledges:ThegloballandscapeandG20memberprogressLeadauthors:TakeshiKuramochi(NewClimateInstitute,Germany),MicheldenElzen(PBLNetherlandsEnvironmentalAssessmentAgency,theNetherlands)andTarynFransen(WorldResourcesInstitute,UnitedStatesofAmerica)Contributingauthors:JesseBurton(UniversityofCapeTownandE3G,SouthAfrica),IoannisDafnomilis(PBLNetherlandsEnvironmentalAssessmentAgency,theNetherlands),IpekGençsü(OverseasDevelopmentInstitute[ODI],UnitedKingdom),ArchieGilmour(ODI,UnitedKingdom),MarianaGutiérrezGrados(ClimateTransparency,Germany),FredericHans(NewClimateInstitute,Germany),SarahHeck(ClimateAnalytics,Germany),NiklasHöhne(NewClimateInstitute,Germany),CamillaHyslop(OxfordUniversity,UnitedKingdom),AnnaKanduth(CanadianClimateInstitute,Canada),BenKing(RhodiumGroup,UnitedStatesofAmerica),HannahKolus(RhodiumGroup,UnitedStatesofAmerica),Ho-MiLee(KoreaEnergyEconomicsInstitute,RepublicofKorea),JaredLewis(ClimateResource,Australia),SwithinLui(NewClimateInstitute,Germany),NatashaLutz(OxfordUniversity,UnitedKingdom),AndrewMarquard(UniversityofCapeTown,SouthAfrica),SilkeMooldijk(NewClimateInstitute,Germany),LeonardoNascimento(NewClimateInstitute,Germany),AnaluzPresbítero(IniciativaClimáticadeMéxico[ICM],Mexico),JazmínRoccoPredassi(Farn,Argentina),JoeriRogelj(ImperialCollegeLondon,UnitedKingdom;InternationalInstituteforAppliedSystemsAnalysis[IIASA],Austria),CleaSchumer(WorldResourcesInstitute,UnitedStatesofAmerica),AlisterSelf(ClimateResource,Australia),KentaroTamura(InstituteforGlobalEnvironmentalStrategies,Japan)andJorgeVillarreal(ICM,Mexico)Datacontributors:JohannesGütschow(PotsdamInstituteforClimateImpactResearch,Germany),ChristopherHenderson(WorldResourcesInstitute,UnitedStatesofAmerica),ElenaHooijschuur(PBLNetherlandsEnvironmentalAssessmentAgency,theNetherlands),KimonKeramidas(EuropeanCommission,JointResearchCentre,Spain),MiaMoisio(NewClimateInstitute,Germany),MikaPflüger(ClimateResource,Germany)andClaireStockwell(ClimateAnalytics,Germany)3.1Introduction3Towhatextenthavenet-zerotargetsbeenstrengthenedandmovedtowardsimplementationThischapterprovidesaglobalupdateofgreenhousegassinceCOP27?(section3.4)(GHG)emissionsreductionpledgesfor2030andbeyond,aswellasanassessmentofG20members’implementationThecut-offdatefortheliteratureanddataassessedinprogress.Thechapteraddressesthefollowingthreethischapteris25September2023.Inlinewiththeotherquestions:chaptersofthisreport,allGHGemissionsnumbersareexpressedusingthe100-yearglobalwarmingpotentials1HowhavethenationallydeterminedcontributionsfromtheIntergovernmentalPanelonClimateChangeSixthAssessmentReport(IPCCAR6).Forhistoricalemissions,(NDCs)evolvedsincethetwenty-seventhsessionofthischapterreferstothenationalinventoryreportssubmittedtotheUnitedNationsFrameworkConventionontheConferenceofthePartiestotheUnitedNationsClimateChange(UNFCCC),unlessotherwisenoted.ThemethodologyandpreliminaryfindingsofthischapterwereFrameworkConventiononClimateChange(COP27)madeavailabletotheGovernmentsoftheG20memberstoprovidethemwiththeopportunitytocommentonandsincetheParisAgreementwasadopted,andthefindings.whatdoesthisimplyforglobalGHGemissionsin2030?(section3.2)2WhatprogresshaveG20membersmadetowardsachievingtheirNDCtargetssinceCOP27,andwhatnewpoliciesaretheyimplementing?(section3.3)11EmissionsGapReport2023:BrokenRecordAccordingtotheParisAgreement,itsimplementationmitigationcontentoftheseNDCshasevolvedovertime,inshould“reflectequityandtheprincipleofcommonbutseveralways(table3.1).differentiatedresponsibilitiesandrespectivecapabilities,inthelightofdifferingnationalcircumstances”(UNFCCCFirst,moreNDCsnowcontainGHGreductiontargets,and2015).Anassessmentoftheextenttowhichcountries’moreofthesetargetsareeconomy-wide–thatis,theycover2030andlong-termpledgesareambitiousinlightofequity,acountry’sentireeconomyasopposedtocertainsectors.responsibility,capabilityandotherburden-sharingprinciplesTheParisAgreementstipulatesthatdevelopedcountriesisbeyondthischapter.Thesearehighlycontestedandshouldadopt“economy-wideabsoluteemissionsreductionnormativeissues.However,thechaptershowcasesthetargets”andencouragesdevelopingcountriesto“movewidevariationinpercapitaemissionsimpliedbycurrentovertime”toeconomy-wideemissionstargets.Now,148NDCsandpolicies.Moreover,itnotesthattheambitionofNDCscontainGHGreductiontargets,upfrom122atCOP21anNDCisoneofthefactorslikelytoinfluencewhetherawheretheParisAgreementwasadopted.Ofthesetargets,countryisontracktoachievingit,asalessambitioustarget97areeconomy-wide,versus55intheinitialNDCs.Thefor2030willbeeasiertoimplementthanamoreambitiousshareofNDCswithtargetscoveringallsevenGHGslistedtarget.Similarly,acountrynotcurrentlyontracktoachieveintheKyotoProtocol,incontrast,hasremainedmodestatitsNDCsmightneverthelessbetakingsubstantiallymoreonly23,upfrom20atCOP21.1mitigationactionthanacountrythatisontrack.Thechaptershouldbereadwiththiscontextinmind.Second,thenumberofNDCsnotingthattheymayuseinternationalmarketmechanismstoachievetheirtargets3.2GlobalprogressofNDCsisnegligiblehasincreasedto121,upfrom92atCOP21.Article6ofsinceCOP27,butthereissometheParisAgreementprovidesthatpartiesmaycooperateprogresssincetheadoptionofthewithotherpartiestoachievetheirtargetsbytradingParisAgreementemissionscreditsoroffsets.Theincreaseintargetsthatmayincorporatethesemechanismsmightreflectgreater3.2.1AgrowingnumberofNDCscontainGHGcertaintyregardingthemodalitiesofthesemechanismsreductiontargets,andmoreofthesearesincetheywereclarifiedatCOP26.economy-wideFinally,developingcountrypartiesoftenspecifythatallorTheConferenceoftheParties(COP)decisionthatpartoftheirNDCsareconditionaloninternationalfinance,accompaniedtheParisAgreementinvitedcountriestotechnologytransferorotherprovisions.ThenumberofcommunicatenewNDCsortoupdatetheircurrentNDCsbyNDCscontainingelementsthatarenotconditionalon2020,whilesubsequentCOPdecisionshaveaskedcountriessuchmeasureshasincreasedto135,comparedwith108torevisitandstrengthentheirtargets“asnecessarytoalignatCOP21.withtheParisAgreementtemperaturegoal”.TheEmissionsGapReporttracksthenumberofcountriescommunicating3.2.2TheeffectonglobalemissionsofnewandneworupdatedNDCs,aswellaskeycharacteristicsrelatedupdatedNDCssubmittedsinceCOP27istotheemissionsreductiontargetsincludedintheseNDCs.negligible,whiletheaggregateeffectofnewandupdatedNDCssincetheParisAgreementSinceCOP27,ninecountrieshavesubmittedneworupdatedismorepronouncedNDCs.Ofthese,fourproposetoreduce2030emissionsfurtherthanthecountry’spriorNDCs(Egypt,Türkiye,theIfallthelatestunconditionalNDCs2arefullyimplemented,UnitedArabEmiratesandUruguay),twoareunclearornottheyareestimatedtoreduceglobalGHGemissionsin2030comparabletothepriorNDCs(KiribatiandTurkmenistan),byabout5.0gigatonsofCO2equivalent(GtCO2e)(range:onedoesnotfurtherreduceemissions(Kazakhstan)and1.6–8.1)annuallycomparedwiththeinitialNDCs(seeoneisthecountry’sfirstNDC(theHolySee)(ClimateWatchappendixB.2fordetailsontheimpactsofvariouscountry2023).ThesesubmissionsbringthetotalnumberofPariscontributions).ThecombinedeffectofthenineNDCsAgreementpartiesthathavereplacedorupdatedtheirNDCssubmittedsinceCOP27amountstoabout0.1GtCO2eofasat25September2023to149(countingtheEuropeanthistotal.3Thus,whileprogresssinceCOP27isnegligible,Unionandits27MemberStatesasasingleparty).TheprogresssincetheadoptionoftheParisAgreementismorepronounced.1Thereare136NDCsthatcontaintargetscoveringmethane.2Through25September2023.3ThedatacomesfromthreemodelgroupswithupdatedNDCs,withcut-offdatesrangingfromNovember2022toSeptember2023acrossstudies(Keramidasetal.2022;denElzenetal.2023;Meinshausenetal.2022;Meinshausenetal.2023)andtwoopen-sourcetools(ClimateActionTracker2023a;Fransenetal.2022,asupdatedusingClimateWatch2023).12EmissionsGapReport2023:BrokenRecordTable3.1TrendsinglobalNDCcharacteristicssincetheParisAgreementNDCcharacteristicsCOP28COP27COP26COP21(2023)(2022)(2021)(2015)NumberofNDCsThatreduce2030emissionsrelativetoinitialNDCsNumber(percentageofglobalemissions)ThatcontainaGHGreductiontargetThatcontainaGHGtargetcoveringallsectors(energy,81(79%)79(79%)65(63%)N/Aindustry,waste;agriculture,forestryandotherland-usechange;oragricultureandlanduse,land-usechangeand148(90%)147(90%)143(89%)122(85%)forestry[LULUCF])ThatcontainaGHGtargetcoveringallGHGslistedinthe97(54%)96(53%)91(52%)55(44%)KyotoProtocol(carbondioxide[CO2],methane,nitrousoxide,hydrofluorocarbons,perfluorocarbons,sulfurhexafluorideand23(30%)23(30%)23(30%)20(29%)nitrogentrifluoride)Thatmaybeachievedusinginternationalmarketmechanisms121(39%)120(39%)120(37%)92(24%)Thatcontainelementsnotconditionaloninternationalsupport135(82%)134(82%)131(81%)108(77%)Note:NumbersinparenthesesrefertotheshareofglobalGHGemissionsfromcountriescommunicatingNDCswiththecharacteristicshowninthefirstcolumn.ThelastdayofeachCOPisusedasthecut-offdateforeachcolumn,exceptforCOP28,forwhichthecut-offdateis25September2023.3.3ImplementationprogressofG20projectedemissionsunderfullimplementationoftheNDCsmemberscontinues,butmustbe(section3.3.1).Thisisaccompaniedbyconsiderationofacceleratedrecentmajorpolicydevelopmentsthatarenotyetfullyreflectedinemissionsprojectionstudies(section3.3.2).ThissectionprovidesanupdateontheprogressofG20Totakestock,box3.1concludesonthepredecessorofmemberstowardstheirlatestNDCtargets.ItassessestheNDCs(theCancunPledgesfor2020)againstwhichthecollectiveandindividualprogressofG20membersinEmissionsGapReports(until2015)assessedtheemissionsbridgingtheimplementationgap,definedasthedifferencegapfor2020.betweenprojectedemissionsundercurrentpoliciesandBox3.1DidtheG20achievetheCancunPledgesfor2020?Aspartofthe2010CancunAgreements,developedAfrica,theRussianFederationandtheUnitedStatescountrypartiescommunicatedemissionsreductionofAmerica)achievedtheirCancunPledges,whiletwotargetsfor2020anddevelopingcountrypartiesmembers(CanadaandtheRepublicofKorea)didnotcommunicatednationallyappropriatemitigationachievethem.Somecountries,suchasIndonesia,actions,manyofwhichalsocontained2020emissionsneedtoupdatetheirnationaldataandinformationtotargets(UNFCCC2011).ThirteenoftheG20membersenabletrackingprogresstowardstheirpledges.madesuchpledges(countingtheEuropeanUnionMembers–France,Germany,ItalyandtheUnitedHowever,theachievementoftheCancunPledgesstillKingdom–asasingleentity),whilethreecountriesresultedinalargeemissionsgapin2020.Thefailure(Argentina,SaudiArabiaandTürkiye)didnot.GHGtobridgethe2020emissionsgaphasaddedfurthertoinventorydatafor2020arenowavailableforallthepresentmitigationchallengeandthefeasibilityofAnnexIcountriesandsomenon-AnnexIcountries,bridgingthe2030emissionsgap.makingitpossibletoassesswhetherthesepledgeswereachieved.Theassessmentisbasedonacomparisonof2020GHGemissionswiththetrajectoriesassociatedCollectively,G20membersachievedtheCancunwiththeachievementoftheseparties’pledges(seePledges(seeappendixB.1).TenG20membersappendixB.1forfurtherdetail).Emissionsdatais(Australia,Brazil,China,theEuropeanUnion[includingsourcedfromofficialGHGinventories(whereavailable)theUnitedKingdom],India,Japan,Mexico,Southorfromindependentdatasources(chapter2).13EmissionsGapReport2023:BrokenRecord3.3.1ProgressofG20memberstowardsthe2030expected.IfNDCprojectionsforthesetwomembersareNDCtargetsvariessubstitutedbycurrentpoliciesscenarioprojections,theG20memberswouldcollectivelyfallshortofachievingtheirCollectively,theG20membersareprojectedtofallshortNDCsin2030byanannual1.8GtCO2ein2030,whichisoftheirlatestNDCsby1.2GtCO2e(centralestimate)0.8GtCO2elowerthaninlastyear’sassessment.Theimpactannuallyby2030.Thisis0.6GtCO2elowerthanlastyear’sofnewlyimplementedpoliciesisthedriverofthelowerassessment.FortwoG20members,theprojectedemissionsprojections.OtherfactorsincludethatthescenariodatasetundertheNDChave,fromthetimetheyweresubmitted,hasbeenupdatedtoreflectthelatestemissionstrendsandsignificantlyexceededcurrentpoliciesprojections(thesocioeconomicdevelopmentsandcircumstances,andthatRussianFederationandTürkiye),therebyloweringthetherehavebeenmethodologicalupdatestoscenariomodelsimplementationgapcomparedwithwhatcanbereasonably(seebox3.2andchapter4).Box3.2MethodologyunderlyingtheassessmentofG20memberprogressTheupdatedassessmentofprogresstowards2030Additionally,afewstudiespublishedin2022and2023targetsisbasedonasynthesisofemissionsprojectionpartiallyreflecttheimpactoftheenergycrisisandthestudiesbyindependentresearchgroups.ThestudieswarinUkraine.consideredintheassessmentaremostlypublishedbetween2021and2023.AlistofthestudiesasToevaluatetheconditionalityofNDCs,thecategorizationwellasthecriteriafortheirinclusionisavailableinoftheWorldResourcesInstitute(ClimateWatch2023)appendixB.3.InlinewithpreviousEmissionsGapisadopted.Accordingtothiscategorization,IndonesiaReports,theassessmentfollowsthemethodologyandMexicohavebothunconditionalandconditionalofdenElzenetal.(2019).NDCtargetsarecomparedNDCs,whileIndiaandSouthAfricahaveonlytoemissionsprojectionsunderacurrentpoliciesconditionalNDCs(seeappendixB.2).Theassessmentscenario,whichreflectsallpoliciesadoptedandbasedonindependentstudiesiscomparedwithofficialimplementeduptospecificcut-offdates,andwhich,projectionspublishedbynationalGovernments.Manyforthepurposesofthisreport,aredefinedaslegislativeofthe“withexistingmeasures”scenarioprojectionsdecisions,executiveordersortheirequivalent.ThisinthelatestUNFCCCsubmissionsareconsideredasimpliesthatofficiallyannouncedplansorstrategiescurrentpoliciesscenarioprojections.Methodologicalalonewouldnotqualify,whileindividualexecutivelimitationsoftheassessmentaresimilartothoseorderstoimplementsuchplansorstrategieswoulddescribedinpreviousEmissionsGapReports(seequalify.ItisimportanttonotethatsomeofthemostappendixB.4).Theassessmentisbasedon“pointinrecentlyadoptedpolicies,someofwhicharepresentedtime”emissionsprojectionsfortheNDCtargetyear.5insection3.3.3,maynotbeconsideredinthescenarioEuropeanUnionMemberStatesarenotassessedstudiesreviewedastheywerepreparedbeforetheindividually.Theassessmentisbasedonemissionsadoptionofthesepolicies.ManystudiesreviewedthisincludingLULUCF.yearreflecttheimpactoftheCOVID-19pandemiconbothhistoricalandprojectedemissions.44Earlierstudiessuggestthattheeconomicrescueandrecoverymeasureswouldnotleadtosubstantiveadditionalfutureemissionreductions(Hansetal.2022;Nahm,MillerandUrpelainen2022).5Somecountriesalsosetanemissionsbudgetforamulti-yearperiod;anassessmentofthesetargetsmayleadtodifferentconclusions.14EmissionsGapReport2023:BrokenRecordProgressofindividualG20memberstowardstheirlatestItshouldbenotedthatmanyofthesecountrieshaveNDCtargetsisshowninmoredetailintable3.2,organizedbysubmittedstrongerNDCtargetsin2020orlater,andareinthelikelihoodofachievingthetargetswithexistingpolicies.themidstoftheirimplementationeffortstomeettheirnewTherearenomajorchangestotheoverallassessmentoftargets.G20membersthatareprojectedtomeettheirlatestwhetherindividualG20membersareontracktomeettheirNDCtargetsbasedonpoliciescurrentlyinplacearethose12030targetswithexistingpolicies,comparedwithlastyear’sthatdidnotstrengthen,oronlymoderatelystrengthened,assessment.Overall,tenG20membersareassessedtofalltheirtargetlevelsintheirneworupdatedNDCs.shortofachievingtheirNDCtargetswithexistingpolicies.TabTleab3l.e23A.2ssessmentofprogresstowardsachievingthecurrentNDCtargetsAssessmentofprogresstowardsthelatestNDCtargetBrazilChIinAnrdaigaentiInnadonesiUanSitoIetutadlhyJAafpriacnaFranceGermanyItalyBraGzielrmanyJapanJSapoautnSThauruAAkfIdrrieingycdAeraonatnibeinsaiRaussiaGnerMemxiacnJByoFarrIpaanaznilndciCeanCahidnaaUnitedItalyUnitedStatesKingdomSouKtihnUgAnfdirtioAecumdastrIaFlniedadMiRSeCeauraxhsiautscniiGdEioaaoeurnnAormapaebinayanUIKnitiAanrolSUUCgtgynnnaidaeitttnonIeeetainsdmddndaaoBnreasziiRolfaepKuorbleiacJapanFranceLIKELYFrIaEnnudcrAireoagpSeIeanautidndinoUanAnerisaoibnaiaMeIxtiaclyoJaRpeFaprnuaBCbnrlihcaiceznRilaUunsitsieadnTurkeyUniteCdanadaArCgaenntaidnaaFCeEhdiRuernuroasMatpseiiexaoianncnoJUanpiaoKinnUgndiItConeTadumdSnoSrUtaknniaudettRoydaseefiedsapKAruoarbleibiAacaustraliaFranceBrazilCanaGderaUnmiatenydBraRzielpIutballiycUnitedTJuarpkaenyRepubAliucUstnritaleidaLESSLIKELYTurkGeeFryramnacnyeAustraliCaanItaadlayJBarpaazinlUnitedUNCERTAINUnitedRepublicTurkeyAustraliaKingdomtomeetthetargetofKorFeeadeSrtatieosnKingdomStatesofKoreaStatesofKorKienagdomtomeetthetargetKinSgtdatoemsStatesofKoreawithexistingpolicieswithexistingpoliciesReFrpaunblciecofKoreaCTaunrakdeyaAustBralizialSouthAfricaMexicoGermanySUonIiutntedAhrdogAnfeerinsticianaChinaRusGsieFrarnamJnacnpeyanUnIitnedidaCanadaChinaArgentinaIndonesiaAustralia1FederationKingdomSAroauCKtbiiahnanIUgtAanfdiadrltAioaryecgFmdareantnicneaIndiaBCrhaiIGEznnieulSrardaomupnadeinasyiAnraaUbniiKiaonnUgnditoemdFraFAneuRocdsfReteBeSrurprKoasaualoituszrbiiitlaleiaohacTnnMuAerfrxkiecyaoSaudiArabAiragentinaMBerxaizciloIJnadpiaanIndoSUtnniaettFseeeisdadReuIrtsaatsliiyaoMnnexicoFranceCSaanuEadudiSUrtaTnoiAautprtreeaekAasdbeiunyastIUrnnaildiioaanBrRaeAzpiuluMstebrlxiAailrcicgaoentinaBrazilBraEziulroUpnietaeTndurUkneiyonChinaTurIknedyCoannesAairdagaentiAEnuuarMstoerxpaileicaFornaUnncieoJnapanUniteRdepuAbulistcSroaIluintadhoAnfreisciaRuIsnsidaianBrazilFranceTurkeAyustraliaSauAdrigeArnatibniaMCehxicnaoMexicoEuropeanUnionofKoreaStatesStateosfKoreaFederationEuropIenadnoUnneisioan1MexicoCanada1Russian2Russian1EU27AustraliRausBsriEaauzrniloCpheiannaUnioCnanadaUnitReedpublicTurkeyFederationJapanSaudiArabia1FederationRepublicofKorea1SouthAfricaItaRleypubliRcusIsnCiIdhaininadnoaSnaeusidiaFederationSaudiArabiaCEhiunraopeanSUtUnianttiAereoKisdgnneSUgnotndiiuttonehamdAfFrieRocdfReaeuprKSsuaoEatsrbiilueiraodacinnoJpaAerpaaaGnbneirUanmiaonnCyanadaUnitedKingdomKingdoofmKoreaUnitedCanaAduastraliaofKFoerdeearationUnitedStatesStatesTürkiyeofAmericaItalyEuropeanSTUaunriukodienyArabiaRofepKuorbleiacBrazilTurkeyUnitedEuropeanUnionAustraliRaepublicTurkeyAustraliaStatesofKoreaStatesNumberofstudiesindicating:RepublicFCrhainncaeSIanudiaTAurrakbeiyaUMnietxeidcoKingdomTargetwillbeachievedEGureroIpmneadaninyaUnionTargetwithinreachFedReursatsiiaonnIndiaSaudiCaSArnoautbdihaaAfrIitcalaySaudiAUranIibtniedadonesiaRMeepxuibcliRocussianAustraliaMexicoTargetwillbemissedStatesofKFoeredearationConditionalNDCSaudiArabiaIndonSeosuitahAfricaRFursasnicaGenermanyFederationArgeInttialnyaJCahpiannaIndUonnietseidaFederationofKoreaKingdomIndicatedbyboldfont,ifoverachievedbymorethan15%.SouthAfricaIndiaArgentinaChinaMexicoEuropeanUniIonndonesiaRussianSaudiArabiaMexicoEuropeanUnionNote:AllNDCsconsideredinthisassessmentareunconditionalNDCs,unlessotherwisementioned.TheassessmentisbasedonFederationindependentstudiesmainlypublishedin2021orlater.SeeappendixB.3forthelistofstudiesreviewed.ThenumberofindependentstudiesthatprojectacountrytomeetitscurrentNDCtargetsarecomparedwiththetotalnumberofstudies.Theassessmentisbasedonthemiddleoftheprojectionrangeforeachindependentstudy.“Withinreach”isappliedwhenthelowerboundestimateofacurrentpoliciesscenarioprojectioniswithintheNDCtargetrange,eventhoughtheassessmentbasedonthemiddleoftheprojectionrangesuggeststhatthecountrywillnotachieveitstarget.InthecaseofIndonesia,“uncertain”ismainlyduetothevariationsinLULUCFemissionsanduncertaintyofLULUCFemissionsprojectionsasaresultofpeatfires.1Currentpoliciesscenarioprojectionsfromofficialpublicationswerealsoexamined.TheofficialpublicationsforfiveG20members(Australia,Canada,theEuropeanUnion,theUnitedKingdomandtheUnitedStatesofAmerica)showthattheydonotyetprojecttomeettheir“pointintime”NDCtargetundertheircurrentpoliciesscenarios(EuropeanEnvironmentAgency2023;EuropeanCommission,Directorate-GeneralforEnergy,Directorate-GeneralforClimateAction,Directorate-GenerateforMobilityandTransport2021;UNFCCC2023a).FortheRussianFederation,officialprojectionsofthefourthbiennialreportindicatethatthecountrywouldachieveitsNDCwithexistingpolicies.2Bothindependentstudiesandofficialprojectionsdonotaccountfortheimpactofsomerecentlyadoptedpolicies,mostnotablytheREPowerEUplan.However,formostG20members,centralestimatesofmodelling,thelargestreductions(8–14percent)areprojectedemissionsin2030undercurrentpoliciesareobservedforAustralia,theEuropeanUnion,Japan,Mexico,lowerthaninlastyear’sassessment.BasedonthescenariotheRepublicofKoreaandtheUnitedKingdom.Figure3.115EmissionsGapReport2023:BrokenRecordillustratesthecollectiveandindividualimplementationgapsestimate),whichisslightlyabove2015levels.TheimpactoftheG20membersandshowsthemrelativetoemissionsofnewlyimplementedpoliciesisamaindriverofthelowerlevelsin2015,theyeartheParisAgreementwasadopted.emissionsprojectionsfor2030forG20members.OtherThefigureillustratesawidevariationinimplementationfactorsincludeanupdatedscenariodatasetreflectingthegapsaswellasprojectedemissionsin2030relativeto2015latestemissiontrends,andsocioeconomicdevelopmentslevels.TheaggregateemissionsoftheG20membersin2030andcircumstances.undercurrentpoliciesareprojectedat36.1GtCO2e(centralFigure3.1ImplementationgapsbetweencurrentpoliciesandNDCpledgesfortheG20memberscollectivelyandindividuallyby2030,relativeto2015emissionsGHGemissions(relativeto2015=100%)CurrentUnconditionalConditionalUncertainty200%policiesNDCscenarioNDCscenariorangescenario150%Emission11100%level201550%0%Argentina11%Australia14%Brazil9%Canada27%China2%EU279%India8%IndonesiaJapan15%MexicoRepublicofKorea18%RussianFederationSaudiArabia6%SouthAfrica11%TürkiyeUnitedKingdom11%UniotfedASmtearitceas19%G204%Implementationgapin%NoimplementationgapNote:The2015emissionsarebasedonnationalinventorydataandprovidedintableB.2ofappendixB.2.FortheG20total,thebarforunconditionalNDCsalsoincludestheconditionalNDCsofIndiaandSouthAfrica.Theerrorbarsshowtheuncertaintyrangeacrossstudies,whichreflectsmodelvariationsaswellasinterpretationofpoliciesandtargets.PercapitaemissionsarehighlyunequalacrossG20Tosupplementthefindingspresentedaboveandmembers,andfarfromlevelsconsistentwiththePariscomplementchapter2,table3.3presentspercapitaGHGAgreementemissionsin2015andprojectionsfor2030undercurrent16EmissionsGapReport2023:BrokenRecordNDCtargetsandcurrentpoliciesscenario.6ThereareonlyAustralia,theEuropeanUnion,theUnitedKingdomandthesmallchangescomparedwithlastyear.TheaverageperUnitedStatesofAmericaareprojectedtoreducetheirpercapitaemissionsin2030ofG20membersunderthelatestcapitaemissionsbymorethanone-thirdbetween2015andNDCsareprojectedtobeonlymarginallylower(6.8tons2030undercurrentpolicies,andbybetween40percentofCO2equivalent[tCO2e])thanunderthecurrentpoliciesand50percentunderunconditionalNDCs.ForfiveG20scenario(7.1tCO2e).Theyarestillveryfarfromthemedianmembers(China,India,Mexico,theRussianFederationandestimatesimpliedby2°Cand1.5°Cscenariosby2050,Türkiye),percapitaemissionsareprojectedtoincreasewhichare2.2tCO2e(fifthandninety-fifthpercentilerange:between2015and2030underbothcurrentunconditional1.4–2.8)and1.0tCO2e(0.1–1.6),respectively.7NDCtargetsandcurrentpolicies.Furthermore,percapitaemissionsareprojectedtostayabove10tCO2ein2030forEchoingthefindingsofchapter2,table3.3showsthatseveralG20members,bothundercurrentpoliciesandunderpercapitaemissionsrangewidelyacrossG20members.fullimplementationoftheunconditionalNDCs.Table3.3G20memberpercapitaemissionsimpliedbycurrentpoliciesandunconditionalNDCsCountryUnconditionalNDC:PercapitaGHGemissions1Cemurirsesniotnpsol1iciesscenario:PercapitaGHGtCO2e/capin20302,3vs.2015levelstCO2e/capin20302,3vs.2015levelsG2046.8-10%7.1-6%-5%Argentina7.5-16%8.4-35%-15%Australia12.7-44%14.7-30%+21%Brazil6.1-23%6.7-37%+52%Canada10.5-49%14.5-32%-23%China10.0+19%10.2+3%-18%EU274.6-42%5.0+21%-11%India42.8+40%3.1-27%+31%Indonesia6.9-28%6.5-43%Japan6.5-35%7.6-38%Mexico5.8+25%4.8RepublicofKorea8.7-32%10.6RussianFederation15.8+54%12.4SaudiArabia16.1-16%17.2SouthAfrica46.0-35%6.8Türkiye7.9+55%6.7UnitedKingdom4.0-49%4.5UnitedStatesof9.4-50%11.7AmericaNotes:Thefigurespresentedheremaynotexactlymatchthosepresentedinotherchaptersofthisreport(includingfigure2.2)andofficialestimatesbythenationalGovernments,duetothedifferencesindatasources.1EmissionsestimatesincludeLULUCF.2Centralestimatesarethemedianvaluewhenfiveormorestudieswereavailable,otherwisetheyareaveragevalues.3Dataonhistoricalandprojected(mediumfertilityvariant)populationpercountryaretakenfromtheUnitedNationsWorldPopulationProspects2022(UnitedNations2022).4ToestimateG20totalemissionsfortheNDCpledgesscenario,emissionsprojectionsunderthecurrentpoliciesscenariowereusedforIndia,theRussianFederationandTürkiye.6Notethatthe2015estimatesarenotidenticaltothoseofchapter2,duetothedifferencesindatasourcesandtheconsiderationofLULUCFemissions.7EstimatedbasedontheIPCCAR6scenariodatabase(Byersetal.2022;Riahietal.2022)andUnitedNationspopulationprojections,mediumfertilityvariant(UnitedNations2022).17EmissionsGapReport2023:BrokenRecord3.3.3RecentlyadoptedpoliciesinG20economies2030emissionsrangepresentedinsection3.3.2isthereforeshowsmixedprogresssimilartothatofthe2022assessment.Theprojectionsinsection3.3.2donotincludealltheFitfor55andREPowerEU–EuropeanUnion:Inthelast12mostrecentpolicyupdates,assomeofthesearenotyetmonths,theEuropeanUnionsignificantlyadvancedseveralreflectedintheunderlyingmodels.Therefore,thissectionpolicypackagestoachieveits2030emissionsreductionprovidesrecentpolicyupdates(mid-2022tomid-2023)oftargetandacceleratetheEuropeanUniontransitionawaytheG20members.fromfossilfuels(EuropeanCommission2021;EuropeanCommission2022).TheseincludetheexpansionoftheRespondingtotheclimateemergencyrequiresrapidcurrentEuropeanUnionEmissionsTradingSystem,updatespolicyimplementationinallcountrieswithdiscernibletoregulationonemissionsfromtransportandbuildings,progresseachyear.However,thischapterfindsthatrecentimprovementsintherenewablesandenergyefficiencydevelopmentsinnationalpolicieshasbeenmixedwithtargetsandacarbonborderadjustmentmechanism,whichsomestepsforward,whilesomeimplyastandstillorevenwillensurethatcarbon-intensiveimportsaresubjecttodeterioration.acarbonpriceequivalenttothatofproductsfromwithintheEuropeanUnion,andatthesametimeagradual3.3.3.1SomerecentpoliciesofG20memberscouldhavephase-outoffreeallocationstothoseindustrieswithinthesubstantialeffectsonGHGemissionsin2030EuropeanUnionEmissionsTradingSystem.Still,increasedinvestmentsinfossilgasinfrastructureandatemporaryThissectionprovidesexamplesofrecentlyadoptedpoliciesshiftfromgastocoalposeathreattotheEuropeanUnion’sintheG20memberstatesthatarequantifiedoranalysedclimateambition.ManyelementsoftheFitfor55packagetohavepositiveornegativeeffectsinreducingglobalandREPowerEUplanhavenowbeenadopted.Theemissionornationalimplementationgapsinrecentstudies.Itisscenariostudiesreviewedinsection3.3.1showarangeacknowledgedthatthesepoliciescoveronlyafractionofofinterpretation(orlackthereof)ontheimplementationG20policydevelopments,andthatotherpoliciesmaystillstatusofthesepolicies.Theelementsadoptedinthelastresultinsubstantialemissionsreductionsorsupportthe12monthsresultinroughly0.5GtCO2eloweremissionsinimplementationofmorestringentpolicies.2030.Ifallpackagesareadopted,theEuropeanUnioncouldoverachieveits2030target(ClimateActionTracker2023c).InflationReductionAct(IRA)–UnitedStatesofAmerica:TheUnitedStatesofAmerica’sfederalGovernmenthasJustEnergyTransitionPartnership(JETP)–Indonesia:advancedseveralimportantregulationsimplementingtheInNovember2022,aJETPtosupportlimitingIndonesia’sIRA,whichwaspassedinAugust2022.TheseregulationspowersectoremissionswasagreedbetweentheIndonesianproposeorfinalizerequirementsforclaimingelectricpowerGovernmentandaninternationalpartnergroup.Itsecuresgeneration,cleanvehiclesandhomeenergytaxcreditsapproximatelyUS$20billiontosupportinvestmentsingrid(UnitedStatesofAmerica,InternalRevenueService2023);andtransmission,earlycoalpowerretirement,acceleratedprovidefundingtoreducemethaneemissions(UnitedStatesuptakeofdispatchableandvariablerenewables,aswellasofAmerica,EnvironmentalProtectionAgency2023);andsupplychainbuild-outforrenewableenergytechnologies.implementnewleasesalesandroyaltyratesforoilandgasItalsohelpstomitigateadverseeffectsoncommunities.leasingonpubliclandsandinpublicwaters(UnitedStatesItreinforcesthecommitmentestablishedinapresidentialofAmerica,DepartmentoftheInterior,BureauofLandregulationtostoptheadditionofnewcoal-firedpowerManagement2023;UnitedStatesofAmerica,Departmentplantstotheelectricitygrid(Indonesia2022).However,theoftheInterior,BureauofOceanEnergyManagement2023),presidentialregulationstillallowsforoff-gridpowerplantsamongothers.Moreandmoreanalysesconfirmthatthewheretheelectricityisdirectlyusedbyindustrytobebuilt,actwillbringtheUnitedStatesofAmericaroughlytwowhichresultsinincreasingemissionsupto2030.ThedealthirdsofthewaytomeetitsNDCtargetsfor2030,withstipulatesthatIndonesiacapsitspowersectoremissionstoreductionsofupto1GtCO2eoverascenariowithoutthat290megatonsofCO2equivalent(MtCO2e)in2030(Ediantopolicy(Bistlineetal.2023).Whileabigstepforward,theIRA2023).Estimatesindicatethattheemissionscapconstitutesalsoreceivedcriticismasit,forexample,allowsformoreoilareductionofemissionsintheorderofupto100MtCO2eandgasexploration,potentiallyincreasingemissions,butin2030overcurrentpolicies(InternationalEnergyAgencynotovercompensatingreductionselsewhere.Thenameof2022;Edianto2023).ThisalonemaybesmallonaglobaltheIRAsuggeststhatitismoreaneconomicpolicythanascale,butiftheconceptofJETPprovessuccessful,itcanclimatepolicy.Ithassignificantknock-oneffectsonotherleadtosimilaragreementsinothercountries.countries,asmanyindustriesareconsideringwhethertoplacetheirproductionlinesintheUnitedStatesofAmericaEmissionsReductionPlan–Canada:Manyrecentorabroad.ThepotentialimpactoftheIRAon2030emissionsdevelopmentsinCanadaadvancetheimplementationofitshasbeenconsideredinallnational-levelscenariosreviewedEmissionsReductionPlan,whichisthefederalGovernment’sintheUnitedNationsEnvironmentProgramme(UNEP)firstcomprehensiveroadmapforhowtoachievethe2030EmissionsGapReportsincethe2022edition;theprojectedtarget(Canada,EnvironmentandClimateChangeCanada18EmissionsGapReport2023:BrokenRecord2022).ThefederalGovernment’sCleanFuelRegulationsArgentina:InDecember2022,ArgentinapublisheditswerefinalizedinJune2022andcameintoeffectinJuly2023newNationalClimateChangeAdaptationandMitigation(Canada2022).TheregulationsrequireallfuelimportersPlan(Argentina,MinistryofEnvironmentandSustainableorproducerstograduallyreducethelife-cycleemissionsDevelopment2022).Thisstrategyincludestargetsforintensityoftheirfuels.Beginningin2023,thefederalthedecarbonizationofthetransportsector,incentivestocarbonpricerosefromCA$50/tCO2etoCA$65/tCO2e,andincreaseenergyefficiencyinbuildings,andmeasurestoisscheduledtoincreaselinearlytoCA$170/tCO2ein2030.reducefoodlossandwaste.ItalsoincludesagroecologicalAdditionally,the2023budgetmadesignificantinvestmentspracticesmeasures,whichaffectoneofArgentina’sbiggesttoexpandcleanelectricityandacceleratelow-carbonproductivesectors.Theplan,however,doesnotincludeanygrowth.ThefederalbudgetcontainedoverCA$40billionnewrenewableenergytargets,nordoesitincludeaplantoinneworreallocatedfundsforemissions-reducingactionsreduceabsoluteemissionsfromlivestock,oneofArgentina’sby2034/2035,includinganumberofnewinvestmenttaxmajoremissionssources.Additionally,theplanproposescreditsforcarboncapture,utilizationandstorage,cleanmeasuresrelatedtooilandgasexpansion(focusingelectricity,cleanhydrogen,cleantechnologyandcleanontheVacaMuertashalefields),aswellashydrogentechnologymanufacturing.Whilesomeofthetaxcreditsproductionwithoutclarifyingifthehydrogenisproducedarenotyetinforce,oncelegislated,manyofthecreditswillfromelectricity(Argentina,MinistryofEnvironmentandberetroactivelyavailabletobusinesses.TheimplementationSustainableDevelopment2022).oflegislatedanddevelopingpoliciesinCanadaresultsinemissionsatapproximately520MtCO2ein2030,bringingChina:PolicydevelopmentsinChinagobothways.OnCanadamorethanhalfwaythroughmeetingits2030targetonehand,theGovernmentisrapidlyimplementingits(Sawyeretal.2022)androughly100MtCO2elowerthanlastdoublestrategyofoverarchingcarbonpeakingbeforeyearwithoutthepolicies(ClimateActionTracker2022a).2030andcarbonneutralitybefore2060goals,andhasissuedsupportingsectoralpeakingplans.TheCentralFossilfuelexpansionintheG20:AlthoughmanypoliciesComprehensivelyDeepeningReformsCommissionofconstituteprogressinthepastyear,anoppositetrendofChinaannouncedin2023thetransitionoftheeconomyfossilfuelinfrastructureexpansionisatoddswithglobalfromtargetingenergyconsumptionandintensityreductionclimategoals.Overthepastyear,manycountriesincreasedtolimitingcarbon(intensityandreduction)–aclearsignoftheirplansforfossilfuelextractionandproduction.Severalsupportforcleanenergy(Xinhua2023).Non-fossilenergymajorG20economies,suchasAustralia,Canada,thecapacityhassurpassed50percentofallinstalledcapacity,UnitedKingdomandtheUnitedStatesofAmericaissuedreachinga2025milestonetargetearly,andwasforecastednewlicencesforoilandgasexplorations,andArgentinatogrowin2023byanother180gigawatts(GW)offthepursuedexpansion(NewClimateInstituteandClimatebackofastrongyearforsolarandwind(ChinaElectricityAnalytics2023;InternationalEnergyAgency2023).InCouncil2023;Xinhuanet2023).Ontheotherhand,energyaddition,ratherthandeclining,fossilfuelsubsidieshavesecurityconcernsareleadingtothecontinuedexpansionincreasedsignificantly.TheInternationalMonetaryFundandovercapacityofthecoal-firedpowerfleet:243GWofreportsthatexplicitsubsidiesmorethandoubledgloballycoal-firedpowerplantsarecurrentlyeitherpermittedorinfrom2020to2022(Blacketal.2023).TheUnitedStatesconstruction(GlobalEnergyMonitoretal.2023).EnergyofAmericaisnowthelargestfossilfuelproducerinthedemandhasincreasedin2023,withdomesticproductionworld,withoilproductiondoublingandgasproductionandconsumptionofcoal,gasandoilupcomparedtolastincreasingbyaround60percentsince2010(UnitedStatesyear(China,NationalEnergyAdministration2023).ofAmerica,EnergyInformationAdministration2023).TherecentincreaseinfossilfuelproductionandexportsoftheJapan:Anewlawthatproposesacarbonlevy,anemissionsG20membersresultindomesticemissionsandunderminetradingschemeandissuanceofnewgovernmentbondsglobalGHGemissionreductions.Thisyear’seditionofthewasadoptedinJune2023(Japan2021).However,itsProductionGapReport(StockholmEnvironmentInstituteimpactonemissionsremainsunclearduetolackofetal.2023)showsthatglobally,Governmentsstillplantoclarityonthelevelofcarbonpricing.TheGovernmentwillproducemorethandoubletheamountoffossilfuelsinmobilizeJP¥20trillionthroughtheissuanceoftheGreen2030thanwouldbeconsistentwiththecollectivegoalsTransformation(GX)EconomyTransitionBonds(Japan,oftheParisAgreement.G20GovernmentsaccountfortheMinistryofEconomy,TradeandIndustry2023).TheBasicmajorityofcurrentfossilfuelproduction(73percentonanHydrogenStrategywasalsorevisedandnowsetsnewenergybasis[InternationalEnergyAgency2023]).hydrogensupplytargetsfor2030,2040and2050,andaninvestmentplanofUS$107.5billionoverthenext15years3.3.3.2Theeffectofotherselectedpolicydevelopments(Japan,CabinetSecretariat2023).cannotyetbequantifiedMexico:InFebruary2023,MexicoannouncedarenewablesSeveralotherpolicieshavebeenadoptedbyG20members,energiesplan–theSonoraPlan–aimingatdeployingbutinmanycasestheirimpactsremainunclear.Someoftherenewableenergyaswellaslow-carboninvestmentsinthekeypolicydevelopmentssincethelasteditionoftheUNEPnorthofthecountry(Conan2023).TheSonoraPlanisaEmissionsGapReportaredescribedbelow.stepintherightdirectiontoacceleratetheenergytransition,19EmissionsGapReport2023:BrokenRecordbutistheonlynewrenewableenergyprojectannouncedbySouthAfrica’stransitionawayfromcoalandtowardsthisadministration.InMay2023,theEnergyRegulatorycleanenergywithUS$8.5billion,isthefirstofitskindandCommissionrevisedthecriteriatocalculatecleanenergy.ifsuccessful,canleadthewaytosimilarpartnerships.ButTheCommissionstatesthataportion(30percent)oftheitssuccessdependsonthepartnersspellingouttheexactelectricitygenerationfromcombinedcyclepowerplantsdetailofwhattheyareofferingandhowthelocalpoliticalusingfossilgascouldbelegallyconsideredas“clean”dynamicscanbeovercome.energy.CleanEnergyCertificatescouldalsobegrantedtofossilfuel-basedpowerplants(Mexico,SecretariatoftheUnitedKingdom:TheUnitedKingdomGovernmentmadeGovernment2023).ThisregulationhasbeenprovisionallyaU-turnonclimatepoliciesinSeptember2023andsuspended,andfurtherlegalprocessesareexpectedtoannouncedthecountryistodelayinphasingoutnewpetroladdressenvironmentalconcerns.TheGovernmenthasanddieselcars,todelayinphasingoutgasboilersandalsoupdatedthenewlightvehiclefleet’sfuelefficiencytoeliminatetherequirementforlandlordstoimprovethestandard(NOM-163),butcapturedonlyhalfofthepotential.energyefficiencyoftheirhomes,amongothermeasures.Theadoptedstandardlowersemissionsby9MtCO2byThisunderminesprogressmade,forexample,onemissions2030(JiménezandPineda2022),whileamoreambitiousstandardsforcarsandinheavyindustry.Asaresponse,thestandardcouldhaveachievedupto19.5MtCO2by2030UnitedKingdom’sClimateChangeCommittee(thenational(IniciativaClimáticadeMéxico2022).scientificoversightbody)remains“concernedaboutthelikelihoodofachievingtheUnitedKingdom’sfuturetargets,RepublicofKorea:InApril2023,theGovernmentoftheespeciallythesubstantialpolicygaptotheUnitedKingdom’sRepublicofKoreareleaseditsNationalBasicPlanforCarbon2030goal”(Dooks2023).NeutralityandGreenGrowth(theBasicPlan)(RepublicofKorea,ClimateChangeStrategyDivision2023).Thenew3.4Developmentsinlong-termandplanreaffirmedtheRepublicofKorea’scommitmenttonet-zeropledges:Thenumbercarbonneutralityby2050anda40percentreductionofGHGcontinuestoincrease,butconfidenceemissionsbelow2018levelsby2030.Theplanintroducesintheirimplementationremainslow12measurestorealizecarbonneutrality,includingmakingthemostofdomesticallyavailablelow-carbonenergy3.4.1Thenumberofnet-zerotargetshasinchedsourcesandtransitioningtolow-carbonindustrystructureupwardsandcirculareconomy.InlinewiththetenoroftheBasicPlan,severalsectoraltargetsinthenational2030scenarioAsat25September2023,97partiesrepresenting101wererevised(forpowergenerationandindustry,amongcountriesandcoveringapproximately82percentofglobalothers).AmongthemajorchangesareanincreasedroleofGHGemissionshadadoptednet-zeropledgeseitherinlawnuclearenergyinpowergenerationmixandexpandeduse(27parties),inapolicydocumentsuchasanNDCoralong-ofoverseascarbonoffsetprogrammes.termstrategy(54parties),orinanannouncementbyahigh-levelgovernmentofficial(16parties).8Thisisupfrom88SouthAfrica:Inresponsetothesupplypressurefacingthepartiesasatlastyear’sreport.Anadditionalninepartiesstate-ownedutilityEskom,SouthAfricaopenedtheelectricitycoveringanadditional2percentofglobalGHGemissionsmarketin2022,enablinggenerationatlarge-scaleforown-haveanother(non-netzero)GHGmitigationtargetaspartuseorsaletoothers.Thepipelineofnewprivatelydevelopedoftheirlong-termstrategy.Atotalof37percentofglobalgenerationissignificant,especiallyconsideringnewwindGHGemissionsarecoveredbynet-zerotargetsfor2050orandsolar.Atotalof33GWofvariablerenewableenergyandearlier,while44percentofglobalemissionsarecoveredbybatterieseitherhasapprovalorisintheprocessofapplyingnet-zeropledgesforyearslaterthan2050.forenvironmentallicencing(i.e.isrelativelyadvanced).Overall,thereare66GWofnewwind,solar,batteryandNet-zerotargetsvaryintheirscope,withsomeapplyingtogasprojectsunderdevelopment,albeitatvaryingstagesallGHGsandsectorsoftheeconomyandothersapplyingtoofprojectdevelopmentandcertainty,upto2028(Eskom,asubsetofsectorsandgases.Atotalof69net-zerotargetsSouthAfricanPhotovoltaicIndustryAssociationandSouthcoverallsectors,whiletheremainderdonotspecifysectoralAfricanWindEnergyAssociation2023).Thisconstitutescoverage.Atotalof48coverallgases,11coverfewerthanallamajorprojectedincreasecomparedtothe6GWofgasesand38donotspecify.Thevastmajorityofcountriesrenewableinstalledcapacityoperationalin2022.Theuptakewithnet-zerotargetsfailtospecifywhethertheirtargetsisdrivenlargelybysupplyinsecurityanddecliningcosts–coverinternationalshippingandaviation,andwhethertheyexemplifiedinrecentauctionswheretheaveragecostofthepermittheuseofinternationaloffsets.portfolio,acrosstechnologies,wasapproximatelyUS$0.026perkilowatt-hour,similartoEskom’scoalplantfuelcostsLikewise,fewnet-zerostrategiesyetclarifytheroleof(IndependentPowerProducersOffice2023).SouthAfrica’sCO2removalinachievingtheirnet-zerotargets,withonlyJustEnergyTransitionInvestmentPlan,whichsupports208Thesefiguresdonotcountpartieswherenet-zeropledgesareunderdiscussionbutdonotyettakeoneoftheformslistedabove.EmissionsGapReport2023:BrokenRecordsixcountrieshavingsetseparategoalsforemissionsand▶Source:Referstowhetherthenet-zerotargetisremovals.ThesecountriesareAustralia,Colombia,Slovakia,Slovenia,SpainandSweden,andtogetheraccountforlessestablishedinlaw,inapolicydocument(includingthan3percentofglobalemissions.Long-termstrategies,likewise,containlimiteddetailontheroleofCO2removalanNDCoralong-termstrategy),orviaapoliticalincounterbalancingresidualemissions(Bucketal.2023;Lebling,SchumerandRiedl2023).announcementorpledge,suchasthosemadeatthe3.4.2Overall,confidenceintheimplementationof2020ClimateAmbitionSummit.G20members’net-zeropledgesremainslow▶Targetyear:ReferstotheyearbywhichthesourceResponsibleforthreequartersofcurrentglobalemissions,G20memberswillhaveanoutsizedimpactonwhenglobalindicatesnet-zeroemissionswillbeachieved.emissionsreachnetzero.Encouragingly,allG20membersexceptMexicohavesetnet-zerotargets,andsincethe2022▶Coversallsectorsandgases:ReceivesgreenEmissionsGapReport,somemembershavetakenimportantstepstowardsstrengtheningandimplementingtheirtargets.checkmarkifthesourcespecifiesthatthetargetArgentinaandIndia,forexample,communicatedlong-termlow-emissionsdevelopmentstrategies,formalizingtheirappliestoalleconomicsectors(asopposedto,forpreviouslyannouncedtargets.example,theenergysectoronly)aswellasallKyotoOverall,however,limitedprogresshasbeenmadeonkeyindicatorsofconfidenceinnet-zeroimplementation,greenhousegases.includinglegalstatus,theexistenceandqualityofimplementationplans,andalignmentofnear-termemission▶Transparentinformationoncarbonremoval:trajectorieswithnet-zerotargets(Rogeljetal.2023).NineG20membershavelegallybindingnet-zerotargets–theReceivesgreencheckmarkifthesourcecontainssameaslastyear.Implementationplanninghasseenfurtherprogress,with10G20membersnowhavingpublishedantransparentassumptionsforbothdomesticLULUCFimplementationplan,countingnewormoredetailedplansfromtheRepublicofKoreaandTürkiye.Amajorityoftheseanddomesticremovalsandstorage;receivesplans,however,stilllackconcretedetailsandmilestonestoguideimplementationatagranularlevel.Mostconcerningly,yellowcheckmarkifsourcecontainsinformationnoG20membersarecurrentlyreducingemissionsatapaceconsistentwithnet-zeroscenariosinthepublishedliterature.ondomesticLULUCF,removalsandstorage,butReflectingtheprincipleofcommonbutdifferentiatedresponsibilitiesandrespectivecapabilities,somecountriesassumptionsarenottransparent.willneedmoretimethanotherstoaligntheiremissionstrajectorieswiththeirnet-zerotargets.Mostcountries’▶Publishedplan:Receivesgreencheckmarkifsourcelong-termstrategiesandothernet-zeroplansdonotrobustlyjustifytheirtargetsinlightoffairnessandequity.meetsallClimateActionTrackerandNetZeroTrackerTheParisAgreementrecognizesthatpeakingemissions–aprerequisitetoaligningemissionstrajectorieswithnetcriteriaforinformationonanticipatedpathwayorzero–willtakelongerfordevelopingcountries.Forthosecountriesthathavepeakedemissions,itwillbenecessarymeasuresforachievingnet-zerotarget,andayellowtoacceleratereductionstomatchnet-zerotrajectories.Forthosecountriesthathavenotyetpeakedemissions,itwillcheckmarkifsourcemeetssome,butnotall,criteria.9beespeciallyimportanttodevelopclearplanstopeakandthenalignemissionswithnet-zerotrajectories.▶Reviewprocess:ReceivesagreencheckmarkifTable3.4presentsameta-analysisofkeycharacteristicsofsourceestablishesalegallybindingprocesstoG20members’net-zerotargets,basedonthreeindependenttrackers(ClimateActionTracker2022b;ClimateWatchreviewprogressagainstthetargetatregularintervals;2023;NetZeroTracker2023).Theindicatorsandcriteriabywhichtheyareassessedareasfollows:receivesayellowcheckmarkiftheprocessisnotlegallybinding,isstillbeingestablished,orlacksdetailortrackingofprogress.▶Annualreporting:Receivesagreencheckmarkifsourceestablishesaprocesstoreportatleastannuallyonprogresstowardsthetarget.Allindicatorsreceivean“X”ifthecriteriaforeitheragreenoryellowcheckmarkarenotmet,aquestionmarkwherenoinformationisavailable,an“inconclusive”ifthedatasourcesreachdifferingconclusionsregardingtheindicatoranda“nodata”ifnoneofthedatasourcestracktheindicatorfortheG20member.TheEuropeanUnionisevaluatedaccordingtoitslong-termstrategy,whileindividualEuropeanUnionMemberStatesareevaluatedaccordingtothelaws,policiesandplansspecifictotherespectiveStates.FurtherdetailonthemethodsunderlyingeachindicatorcanbefoundatClimateActionTracker,ClimateWatchandNetZeroTracker.Anumberofoverallconclusionscanbedrawnfromthischapter.WhileG20membersaremakingcollectiveprogresstowardsachievingtheNDCtargetswithpolicy9Theyellowcategoryisnewforthisyear’sreport.Accordingtothe2022codingcriteria,theyellowcheckmarkswouldhavebeengreen.21rabiaBrazilArgenItnindaonesiaChInindaiaSJoauptahnFArfarKnicIcinnaUedgnoSdinIootteeuamdstlyhiaAfGriecramFaendyeFrraatniGocneermanyChinCaanadaIndiKainUAgndrgioteemndtinMaexFIietcadRoleyursastiioannJapanUStnaitteedsCanadaexicoUnion22UnitedCFheindRaeursaIsntAiidoargonnennetsiKinaianUgndiotemCdaInnaFddeiaSFdaRroJeuaaursnaptschtaiieoanAnnfriIcnadiaSaItuadlyiCSAaorGnauaebthdriamaAafrnIIitncyaadlyonesiaBArraGgzeeirlnmtiannayFEruarnocCpeehainnaSUJanauipodaninAraKbiinaUgndiotRoemefdpKuobreliacBrazilStatesRepublicIndSoanuedsiaAFraebdRieuaSrsaCosthuiioaitnnnhaFArfaArnirccgaeeSBnatriauKnCzdaiinailUgnAndariadoGtAebamerdigraImnednaitnainyJaapanMeBxraiczoSilIJoItnauFdplteyhiadaRnAeurfsarsitciioaannUStnaitteedsChIitnGaaelyCrmaInnadanodynaesKiainUgndiotemMdexicoFranceTurkeyUStnaitteedsofKoreaSTouurktheyAFfreicdRaeursastiioaSMnnaeuxIdniGcidoAeorrnmaebasinaiCayaInnaddiaaUSCtnhaiittneeadsFMBrrAaeanrxzgciicelontCIitnKhEaaiiulnnyUrgaondpioteemadnUSUtnnAaiittKroeeJgindsnaeSUpgnanadtuiinontdeamSidoAInuradthRboiaiefAapKfIurnoibcdrelaoiacnJeaspiaanFeBItdGRraaeuelzyrrsaimlstEiiaoaunnnroFyrpaenacneUnioCnanaAduastralRoiaefpKuobreliacLower-andupper-middle-incomeG20membersHigh-incomeG20membersCountriesSources:ClimateActionTracker2022b,ClimateWatch2023;NetZeroTracker2023.TaTabblele33.4.4KeycharacteristicsofG20members’net-zerotargetsprocess(UNFCCC2023b)toputforwardmoreambitiousrespondedtothecallsoftheCOP27decision,theCOPofprogressneedstobeaccelerated.Fewcountrieshavealargeemissionsgapin2030.Relentlesslystrengtheningimplementation,thereiswidevariationandthespeedNDCsfor2030.Asthenextchaptershows,thisresultsinEmissionsGapReport2023:BrokenRecord28presidencyandtherecentlypublishedsynthesisAustraliSaaInuEduiraoApraebainaUFneiodMRneuersaxsAItitciiaoaroglnnyeBnIrtnaiERnodzuaefoilrpKnoueopbsreeliaiCaUcSnatnanUittaneeIdnidsoadCJnohanipneaasnFiarancReoefpKKuoibrnUelgiacnFdCirothaAemindrngcaMenetxinicaoTFIunerddkKRieeaiunryUsagsntdiiioaotennSmdaJUSuadtnpaiattAeenrdsaIbtaiaClyanadaUnitedKingdomRepublicofKoreaBrazilEuropeanUnionTurkey2reportfromthetechnicaldialogueoftheglobalstocktakeIndonesiaUnitedStatesSaudiArabiaofAmericaMexicoRussianFederationSouthAfricaArgentinMaeExuicroSpaeuadniUAJnraaipobanianUSCFtnhaeiittdnReeeadusTrsaustriikRooaeefnnypKBuoInbrrFaKedleizacoidnRiUnleguenrdsasiotsiteaCmiioadannnadaTuIrnEkFdueCroryaoannpneceaseaidanaCUhAnirnAigSoauenasnuttrdianilaAiaFrraabnKicaiRoneUefgnpKdiuotMebrmedlieJacxaipcaonBrazilUStnaitteedsAustraliaTürkiyeArgentinaGermanyCanadaAustraliaIndiaChinaBrazilJapanFranceEuroCpheiannaUnionKiMnUgendxIiniotRcoedmoSefdopaKnuueobdsrAeliiuaacAsrtarabliiaTaUSuFStnreaakidtuRteeedyudsFrisarAsatiirnoaacnnbeiaBrazAilusFtreCadRlaieuanrsaaBsItdnriiaoadznnoilnesiaChinMaCeaExnuiacrdooaFprTeauanKrnckineUUgynndiiootenmdUStnaitteedsItalyRepublicofKoreaIndonesiaEuropeanFUrFanenidoRceneuTrsuasrtikioaeMnnyexAicRouSoefsapKturuoadbrlielaCiAacaMranebaxidaicaUSotnaitteedsSaudiBAUSrFrataneazbidtitRlieeeaudsrsaEsItnuiioadrnnopneasniaUBnriaoznACiulasntardalaFiaranRocefepKuobreliacTurkeypolicypolicypolicypolicypolicypolicypolicylawannounce-lawlawpolicylawlawlawlawlawSourcenonet-zeromentRussianRUMSenaepituxuedibdciloiAcrabRiaussianUnitedBrazCilanadaTurkeyAustraliaFederationtargetoSftaKtoesreaFederationStateslawpolicyCSaanuEaduAdiruoaAsprtaerablniiaaUnioEnuTrouprkeMeayneBxUriacnRozieoilpnublicofKoreaSaudiArabiaBrazMilexicoEuAroupsetraanliaUUnniiotendTurkEeuyropReaenpuTUbunlrikcoMeSnyaeuxdicioArabRiaepublicUnitedBraAzuisltraliaTargetyearStatesofKoreaofKoreaStates20532060207020602050205020502050206020502050205020452050205020502050RepubAluicstraliaEuATrouprsketeraaynliaUnioMnexicoTurkReeypublicUnited20602050MexicoEuroUpneiatendUnionStatesofKoreaofKoreaStatesEuropeanUnionRepublicTurkeyAustraEluiaropeanUnioAnustraliaTurkReeypublicCoversofKoreaofKoreaallsectorsFulfilledandgases??????TurkeyAustraliaAustraliaTurkeyAustraliaAustraliaTransparentimplementationiskeytogobeyondtheexisting2030targets,informationopenthewayformoreambitioustargetsforboth2030andPartiallyfulfilledoncarbon2035,andultimatelyachievelong-termnet-zerogoals.removalinconclusiveinconclusivePublishedplaninconclusiveNotfulfilled????notevaluatedReview??processinconclusiveinconclusive??NoinformationAnnualreportingEmissionsGapReport2023:BrokenRecord4Theemissionsgapin2030andbeyondLeadauthors:JoeriRogelj(ImperialCollegeLondon,UnitedKingdom;InternationalInstituteforAppliedSystemsAnalysis[IIASA],Austria),MicheldenElzen(PBLNetherlandsEnvironmentalAssessmentAgency,theNetherlands)andJoanaPortugal-Pereira(GraduateSchoolofEngineering,UniversidadeFederaldoRiodeJaneiro,Brazil)Contributingauthors:TarynFransen(WorldResourcesInstitute,UnitedStatesofAmerica),JarmoKikstra(ImperialCollegeLondon,UnitedKingdom),RobinLamboll(ImperialCollegeLondon,UnitedKingdom),MalteMeinshausen(UniversityofMelbourne,Australia)andIsabelaTagomori(PBLNetherlandsEnvironmentalAssessmentAgency,theNetherlands)Datacontributors:IoannisDafnomilis(PBLNetherlandsEnvironmentalAssessmentAgency,theNetherlands)andKimonKeramidas(EuropeanCommission,JointResearchCentre,Spain)4.1Introduction▶WhataretheimplicationsofdelayedstringentmitigationactionfortheemissionsgapandglobalThischapterprovidesanupdatedassessmentofthewarmingoverthecentury?emissionsgap,whichisthedifferencebetweentheestimatedglobalgreenhousegas(GHG)emissionsresultingThescenariosthatformthebasisforassessingthefromthefullimplementationofthelatestcountrypledges,emissionsgaparedescribedinsection4.2,withasummaryandthoseunderleast-costpathwaysalignedwiththeoftheimplicationsofdelayedmitigationactionprovidedParisAgreement’slong-termtemperaturegoaltolimitinsection4.3.Theassessmentoftheemissionsgapintheglobalaveragetemperatureincreasetowellbelow2030andbeyondispresentedinsection4.4,whilesection2°C,whilepursuingeffortstolimititto1.5°Ccompared4.5assessestheimplicationsforglobaltemperaturewithpre-industriallevels.Putsimply,theemissionsgapprojections.representsthediscrepancybetweenpledgedGHGemissionreductionsandthereductionsrequiredtoalignwiththeParis4.2AsetofscenariosisneededtoAgreement.ThischapteralsoassessesthediscrepancyassesstheemissionsgapandglobalbetweenpledgedGHGemissionreductionsandthosetemperatureoutcomesassociatedwithcurrentpoliciesoracontinuationthereof.Thisisreferredtoastheimplementationgap.Theemissionsgapassessmentdrawsonasetofscenarios(table4.1)thatareupdatedinthissection.ThesescenariosThisyear’sassessmentisparticularlyrelevantas2023areorganizedintofourcategories:acurrentpoliciesmarkstheconclusionofthefirstglobalstocktake.Toinformreferencescenario,NDCscenarios,mid-centuryscenariosthestocktakeandthenextroundofnationallydeterminedandleast-costmitigationscenariosstartingin2020andcontributions(NDCs)tobeputforwardby2025(whichalignedwithspecifictemperaturelimits.Thesescenariosshouldincludeemissionreductiontargetsfor2035),thisformthebasisforestimatingtheemissionsgapin2030andupdateaddressesthefollowingquestions:theglobaltemperatureoutcomesinsection4.5.▶Whatistheemissionsgapin2030underthelatestItisworthnotingthatemissionsprojections,especiallybeyond2030,relyontheassumptionsandchoicesofNDCsandvariouspolicyassumptions?modellingteamsinhowtointerpretscenariosinthelongerterm.▶Whataretheimplicationsfortheemissionsgapin2035andforthegloballevelofambitionrequiredinthenextroundofNDCs?23EmissionsGapReport2023:BrokenRecordTable4.1SummaryofscenariosselectedfortheemissionsgapassessmentCategoryScenariocasesCut-offyearScenariodescriptionReferenceCurrent2022ThisscenarioprojectstheGHGimplicationsofclimatemitigationscenariopoliciespoliciesthathavebeenadoptedandimplementedasatNovember2022,includingtheshort-termandmidtermsocioeconomicUnconditional2023impactsofCOVID-19.Wherenecessary,theseimplicationshaveNDCsbeenadjustedtoaccountfortheimpactofrecentpolicies,suchastheInflationReductionActoftheUnitedStatesofAmerica.NDCscenarios2023ThisscenarioprojectstheGHGimplicationsofthefullConditionalimplementationofthemostrecentNDCsthatdonotdependonNDCsexplicitexternalsupport(cut-offdate:25September2023).Whenextendedbeyond2030,thescenarioassumesacontinuationofMid-centuryCurrent2022effortsatasimilarlevelofambition.scenariospolicies2022continuing2022AdditionaltotheunconditionalNDCs,thisscenarioencompassesthemostrecentNDCtargetsforwhichimplementationisUnconditionalcontingentonreceivinginternationalsupport,suchasfinance,NDCsplustechnologytransferand/orcapacity-building(cut-offdate:net-zeroNovember2022).Whenextendedbeyond2030,itassumesapledgesusingcontinuationofeffortsatasimilarlevelofambition.strictcriteriaThisscenarioprojectsGHGimplicationsperthecurrentpoliciesConditionalscenarioandassumesmitigationpoliciescontinuesimilarNDCsplusreductioneffortswhenextendedbeyond2030(seeappendixC.1).allnet-zeropledgesThisscenarioassumesanextensionoftheunconditionalNDCscenarioplusnet-zeropledges(includingthosemadeinlong-termBelow2°CN/Alowemissionsdevelopmentstrategies)after2030thatliveuptostrictcriteriaregardingthecomprehensivenessofimplementationMitigationplansandcurrentemissiontrajectories(seealsoappendixC.1).scenariosThisisthemostoptimisticscenarioincluded.ItassumestheachievementoftheconditionalNDCscenariountil2030andallconsistentBelow1.8°CN/Anet-zeroorotherlong-termlowemissionsdevelopmentstrategypledgesthereafter.withlimitingAleast-costpathwaystartingfrom2020andconsistentwithglobalkeepingglobalwarmingbelow2°Cthroughoutthetwenty-firstcenturywithatleasta66percentchance.warmingtoAleast-costpathwaystartingfrom2020andconsistentwithspecificlevelsBelow1.5°CN/Akeepingglobalwarmingbelow1.8°Cthroughoutthetwenty-firstcenturywithatleasta66percentchance.Aleast-costpathwaystartingfrom2020andensuringthatglobalwarmingiskeptbelow1.5°Cwithatleasta33percentchancethroughouttheentirecenturyandisbroughtbelow1.5°Cwithatleasta50percentchanceby2100.Thispathwayreachesnet-zeroGHGemissionsinthesecondhalfofthecentury.Note:DetailsareavailableinthesubsequentsectionsandintableC.1inappendixC.4.2.1Thecurrentpoliciesscenarioisareferencenofurthermeasuresundertakensince2022.Typically,scenarioselectedpoliciesarebasedonliteratureresearch,inputfromtheClimatePolicyDatabase(NewClimateInstituteThecurrentpoliciesscenarioprojectsglobalGHGemissions2023)andcountryexpertreviewsofthepoliciesidentified,basedontheassumptionthatcurrentlyadoptedandandarethenimplementedinglobalmodelsfollowingaimplementedpolicies(definedaslegislativedecisions,detailedprotocol,whichiscontinuouslyupdatedandbuildsexecutiveordersorequivalent)areachievedbutwithontheworkofRoelfsemaetal.(2020;2022).Thedatafor24EmissionsGapReport2023:BrokenRecordthisscenarioarebasedonthefourmodellingestimates4.2.3Mid-centuryscenariosaresubjecttomuchthatunderpinthecurrentpoliciesassessmentofthelargeruncertaintyIntergovernmentalPanelonClimateChangeWorkingGroupIIISixthAssessmentReport(IPCCWGIIIAR6)(Lecocqetal.Themid-centuryscenariosdescribehowGHGemission2022),andhavebeenupdatedbytherespectiveresearchtrajectoriesmightevolveinthelongerterm.SinceGHGteams.Thesedataupdatesuseapolicycut-offdateofprojectionstomid-centuryaresubjecttomuchlargerpolicyNovember2022andapplythemostrecentAR6globaluncertaintythanprojectionsto2030,threescenariosarewarmingpotentialsover100years(Riahietal.2021;Climatepresentedtoreflecttherangeofpossibleoutcomes.TheActionTracker2022;denElzenetal.2022;Keramidasleastambitiousmid-centuryscenarioinvolvesasimpleetal.2022;Nascimentoetal.2022;denElzenetal.2023;extensionofcurrentpoliciescontinuingatthecurrentlevelSchmidtTagomori,HooijschuurandMuyasyaroh2023;vanofclimatepolicyeffortafter2030.ThemostoptimisticRuijvenetal.2023).ThescenarioconsiderstheeffectsofscenarioassumesthefullachievementofallconditionaltheCOVID-19pandemicandtheimpactofrecentpolicies,NDCsandallnet-zeropledges,includingthosemadeassuchastheexpectedemissionreductionsfromtheInflationpartoflong-termlowemissionsdevelopmentstrategiesReductionActintroducedintheUnitedStatesofAmerica.andannouncedby25September2023.Finally,ascenarioThescenariosdonotincludetheimpactoftheenergythatusestheunconditionalNDCscenarioasabaseandcrisisandthewarinUkraineonenergyflowsandrelatedalsoincludesnet-zeropledgesthatfulfilstrictcriteriaemissionlevels.TheresultingmedianestimateofglobalonoperationalizationandimplementationprogressisGHGemissionsin2030and2035undercurrentpoliciesisconsidered.56gigatonsofcarbondioxideequivalent(GtCO2e)(range:52–60GtCO2e)and57GtCO2e(range:46–61GtCO2e),Theassessmentofprogresstowardsnet-zeropledgesisrespectively(seetableC.4inappendixC).Themedian2030basedonasetofcriteriaasdefinedinRogeljetal.(2023):estimateisabout1.5GtCO2elowerthanthemedianestimate(i)whetherthelong-termtargetislegallybinding;(ii)whetheroftheEmissionsGapReport2022,whichisduetomultipleacrediblepolicyplanhasbeenpublishedsupportingitsfactors,includingupdatedpolicesfirstandforemost,butimplementation;and(iii)whethershort-termemissionsalsolatestemissiontrends,socioeconomicprojectionsundercurrentpoliciesareonadownwardpathoverthenextandmethodologicalupdates.Inlinewiththefindingsondecade(atleast10percentbelow2019levels)(forfurthertheemissiontrendsofG20members(seechapter3),theinformation,seeappendixC).Onlynet-zeropledgesthatcurrentpoliciesprojectionshaveshownaflatteningtrendliveuptothesecondandthirdcriteriaoncrediblepolicysince2019,andarenowsignificantlylowerthanthoseatplansanddownwardemissiontrajectoriesareconsideredthetimeoftheParisAgreement’sadoption(UnitedNationsinthescenariobasedonunconditionalNDCsplusnet-zeroEnvironmentProgramme[UNEP]2015),whichindicatedthatpledgesthatcomplywithstrictcriteria.Relativelyfew2030emissionswouldincreaseby16percent.net-zeropledgesfulfilthesetwocriteria,withthosemadebyNewZealand,theUnitedStatesofAmericaandthe4.2.2NDCscenariosprojectemissionsbasedonEuropeanUnionamongthefewthatdo(seetable3.4thefullachievementofNDCsinchapter3).Currently,morethan80percentofglobalemissionsarenotcoveredbylong-termpledgesthatfulfilTheNDCscenariosprojectglobalGHGemissionsbasedthesecriteria(seetableC.4inappendixC).ItisimportantonthefullachievementofthelatestunconditionalandtonotethatcompliancewiththestrictoperationalizationconditionalNDCSsubmittedbyPartiestotheUnitedNationsandimplementationcriteriadoesnotnecessarilymeanFrameworkConventiononClimateChange(UNFCCC).Thethatthenet-zeropledgeswillbeachieved.Aschapter3estimatesarederivedusinganapproachsimilartothat(section3.4)illustrates,allcountriesneedtoenhancetheusedinLecocqetal.(2022)andreflectthelatestupdatesoperationalizationandimplementationoftheirnet-zeroavailableasatNovember2022.Thescenariosarebasedpledgestoincreasetheircredibilityandfeasibility.Similarly,onfindingsfromfourmodellingexercises:ClimateActionitshouldbenotedthatnon-compliancewiththesecriteriaTracker(2022),Keramidasetal.(2022),denElzenetal.doesnotimplythatnet-zeropledgescannotbeachieved(2023)andMeinshausenetal.(2023).Theunconditionalorthatprogressisnotbeingmade.Rather,itreflectsthatandconditionalNDCscenarioestimatesresultinmediansomecountriesarefurtheralongwithoperationalizingandglobalGHGemissionsin2030of55GtCO2e(range:implementingtheirnet-zeropledgesthanothers.54–57GtCO2e)and52GtCO2e(range:50–55GtCO2e),respectively(seetable4.3;furtherinformationisprovidedEmissionsprojectionsforallmid-centuryscenariosareinappendixC).TherangesmainlystemfromuncertaintyinprovidedinappendixC(tableC.5),includingacomparisonsocioeconomicbaselinesandcurrentpoliciesprojections,withtherangesfromthecorrespondingfourindividualaswellasuncertaintyfromtheconditionalityorrangeofmodellingstudiesusedforthecurrentpoliciesandNDCNDCtargets(denElzenetal.2023).Theprojectedemissionsscenarios(ClimateActionTracker2022;Keramidasin2030assumingthefullachievementofNDCsaresimilaretal.2022;DafnomilisdenElzenandvanVuuren2023;vantothemedianestimatesoftheEmissionsGapReport2022Ruijvenetal.2023).(UNEP2022).25EmissionsGapReport2023:BrokenRecord4.2.4MitigationscenariosthatkeepwarmingbelowcorrespondingtemperatureprojectionsarebasedonIPCCspecifiedtemperaturelimitsWGIAR6(Nichollsetal.2021;Kikstraetal.2022;Smith2023)andareconsistentwithrecentupdatestotheremainingThiscategoryofscenariosreflectsleast-costmitigationcarbonbudget(Forsteretal.2023).Table4.2providespathwaysstartingin2020fordifferentglobalwarminganoverviewofthescenarios’emissionsandtemperatureoutcomesrelativetopre-industriallevelsoverthecoursecharacteristics.Thenoorlimitedovershootpathwaysintheofthiscentury.ConsistentwithpreviousEmissionsGap1.5°Ccategoryhaveatleasta33percentchanceofkeepingReports,threescenarioshavebeenchosentorepresentwarmingbelow1.5°Coverthecourseoftheentirecentury,warminglimitsrelevantinthecontextoftheParisandatleasta50percentchanceofdoingsoby2100.1InAgreement’slong-termtemperaturegoal,2°C,1.8°Candmanycases,medianwarmingunderthesescenarioswill1.5°C,notingthattheselimitsarenotintendedtoofferatemporarilyreachandexceed1.5°Cofglobalwarmingasspecificinterpretationofthegoal.TheGHGemissionsofpartofprojectedtemperaturedevelopments(figure4.1).AsthescenariosweredrawnfromtheIPCCWGIIIAR6scenariofigure4.2shows,pathwaysinthe1.5°Ccategoryachievenet-database(Byersetal.2022;Riahietal.2022)andgroupednegativeGHGemissionsinthesecondhalfofthecenturyaccordingtocharacteristicsasdescribedintable4.1.Theirthroughtheuseofcarbondioxideremoval(seechapter7).Figure4.1GlobalGHGemissionsandcorrespondingmediantemperatureprojectionsof1.5°Cand2°CscenariosGHGemissions(GtCO2e/yr)2.0°Cmedian60502.0°C20th-80th40percentilerange30201.5°Cmedian101.5°C20th-80th0percentilerange202020302040205020602070208020902100Globalmeantemperatureincreaseabovepre-industriallevels(°C)+2.0°C2.001.752.0°Cmedian1.502.0°C,20th-80th1.25percentile1.00range+1.5°C1.5°Cmedian1.5°C,20th-80thpercentilerange0.752020203020402050206020702080209021002010Notes:Therangesshowthetwentiethtoeightiethpercentilerangeacrosseachcategory’sscenarios.GHGemissionsareaggregatedusingAR6globalwarmingpotentialsover100years.Thethicklinesineachrangerepresentthecategorymedian.1Theglobalwarmingcharacteristicsforthe1.5°CpathwaysarechosentobeconsistentwithcategoryC1afromtheIPCCAR6WorkingGroup3assessment.The2022editionoftheEmissionsGapReportalsoapplieda33percentoflimitingwarmingto1.5°Covertheentirecentury,buta66percentchanceoflimitingwarmingbelow1.5°Cin2100.Untilmid-century,thischangeresultsinnoorlittledifferenceinprojectedemissionlevels,astheseareconstrainedbytheminimum33percentchancelimit.Achievingahigherchancein2100reliesonrealizingnet-negativeemissionsinthesecondhalfofthecenturythroughtheuseofcarbondioxideremoval(seechapter7).26EmissionsGapReport2023:BrokenRecordTable4.2GlobalGHGemissionsin2030,2035and2050,andglobalwarmingcharacteristicsofleast-costpathwaysstartingin2020consistentwithspecifictemperaturelimitsLeast-costGlobaltotalGHGemissionsEstimatedtemperatureoutcomespathways(GtCO2e)consistentNumber50%chance66%chance90%chanceClosestIPCCwithlimitingofIn2030In2035In2050WGIIIAR6globalwarmingscenariosscenarioclasstospecificlevelsBelow2°CPeak:Peak:Peak:(66%chance1954136201.7–1.8°C1.8–1.9°C2.2–2.4°CC3athroughout(37–46)(31–39)(16–24)In2100:In2100:In2100:thecentury)1.4–1.7°C1.6–1.9°C2–2.4°CBelow1.8°CPeak:Peak:Peak:(66%chance1393527121.5–1.7°C1.6–1.8°C1.9°C–2.2°CN/Athroughout(28–41)(21–31)(8–16)In2100:In2100:In2100:thecentury)1.3–1.6°C1.4–1.7°C1.8–2.2°CBelow1.5°C(50%chancePeak:Peak:Peak:in2100and332581.5–1.6°C1.6–1.7°C1.9–2.1°Cminimum50(26–34)(20–27)(5–13)In2100:In2100:In2100:C1a33%chance1.1–1-3°C1.2–1.5°C1.6–1.9°Cthroughoutthecentury)Valuesrepresentthemedianandtwentiethtoeightiethpercentilerangeacrossscenarios.Thelikelihoodlevelsrefertopeakwarmingatanytimeduringthetwenty-firstcenturyforthebelow1.8°Candbelow2°Cscenarios.Whenachievingnet-negativecarbondioxide(CO2)emissionsinthesecondhalfofthecentury,globalwarmingcanbefurtherreducedfromthesepeakwarmingcharacteristics,asillustratedbythe‘Estimatedtemperatureoutcomes’columns.Forthebelow1.5°Cscenario,thelikelihoodappliestotheglobalwarminglevelin2100,whilethe‘noorlimitedovershoot’characteristiciscapturedbyensuringthatthelowestlikelihoodofwarmingbeinglimitedto1.5°Cthroughoutthetwenty-firstcenturyisneverlessthan33percent.ThisdefinitionissimilartotheC1acategorydefinitionofIPCCWGIIIAR6.TheEmissionsGapReportanalysisusesscenariosthatassumeimmediateactionfrom2020onward.Note:GHGemissionsinthistablehavebeenaggregatedusingIPCCAR6globalwarmingpotentialsover100years.Source:BasedonunderlyingdatafromByersetal.(2022)andRiahietal.(2022).4.3Pathwaysmatterforthecarbon950GtCO2fora67percentchanceoflimitingwarmingtobudget,theinterpretationofemissionsbelow2°C.gapsandthechanceofachievingtheParisAgreement’stemperaturegoalThesevaluescanbecomparedwiththecumulativeCO2emissionsimpliedbythecurrentpoliciesandNDCscenarios.GlobalwarmingisalmostlinearlyproportionaltotheUndercurrentpolicies,thecarbonbudgetfora50percenttotalnetamountofCO2thathaseverbeenemittedintochanceoflimitingwarmingto1.5°Cisexpectedtoclearlybetheatmospherefromhumanactivities.Limitingglobalexceededby2030.Eventhebudgetfora66percentchancewarmingtoaspecifiedlevelthereforerequiresthetotaloflimitingwarmingto2°CisexpectedtobereducedbymoreamountofCO2emissionseveremittedtobekeptwithinthanathirdby2030,leavingverylittleroomforwarmingtoafinitecarbonbudget(Canadelletal.2021).Untilglobalbekeptwellbelow2°Cifemissionscontinueatcurrentrates.CO2emissionsreachnet-zerolevels,thecarbonbudgetwillcontinuetobedepletedwitheachpassingyear.IPCCThishighlightstheimportanceofthepathwaysfollowedtoAR6reportedremainingcarbonbudgetsof500GtCO2forreachnet-zeroCO2emissions.Asfigure4.1andtable4.1a50percentchanceoflimitingglobalwarmingto1.5°Cshow,the1.5°Cand2°Cpathwaysassumestringentemissionfrom2020onward,and1,150GtCO2fora67percentchancereductionsfrom2020,whichcurrenttrendscontradict,oflimitingwarmingto2°C(Canadelletal.2021).Arecentresultinginimplicationsfortheachievabilityofsignificantupdatethatconsidersfurtherwarminguntil2022showsareductionsby2030.Emissionsarenowhigherthaninreductionofthesebudgetsto250GtCO2from2023onward2020,whichimpliesacommitmenttoslightlyhigherglobalfora50percentchanceoflimitingwarmingto1.5°Candwarmingthantheleast-costpathwaysindicate,unless27EmissionsGapReport2023:BrokenRecordthereisfurtheraccelerationofemissionreductionsafterlikelihood.Asnotedinsection4.3,thisisanunderestimateemissionslevelsconsistentwiththeleast-costpathwaysareasitdoesnotaccountforexcessemissionssince2020met.Theemissionsgapestimatesarethereforelikelytobeacomparedwiththeleast-costpathways.lowerboundastheydonotaccountfortheexcessemissionssince2020comparedwiththeleast-costpathways.Figure4.2showstheemissionsgapin2030,withtable4.3providingfurtherinformation.CurrentNDCsremainhighlyTheemissionsgapestimatesinsection4.4shouldbeinsufficienttobridgetheemissionsgapin2030.Fullreadwiththiscaveatinmind,whilesection4.5showsthatimplementationofunconditionalandconditionalNDCsforfollowingadelayedpathcomparedwith1.5°Cand2°C2030reducesexpectedemissionsin2030undercurrentpathwaysisassociatedwithhigherwarmingandalowerpoliciesbyonly2percentand9percent,respectively,likelihoodofachievingtheParisAgreement’slong-termwhereas28percentand42percentisneededfor2°Cortemperaturegoal.1.5°C,respectively(table4.2andtable4.3).Theseestimatesaretwopercentagepointslowerthanthe2022assessment,4.4Theemissionsgapin2030and2035illustratingtheprogressinnarrowingtheimplementationmustbebridgedthroughactioninthisgap(definedasthedifferencebetweenprojectedemissionsdecadeundercurrentpoliciesandprojectedemissionsunderthefullimplementationofNDCs)(chapter3).ThisdifferenceThissectionprovidesanupdatedassessmentoftheisnowaround1.5GtCO2eforunconditionalNDCs(downemissionsgapin2030basedonthescenariosdescribedinfrom3GtCO2einthe2022assessment)and5GtCO2esection4.2,findingsonthegloballevelofambitionneededforconditionalNDCs(downfrom6GtCO2einthe2022inthenextroundofNDCs(whichwillcontaintargetsforassessment)in2030.2Nonetheless,unprecedentedannual2035)andimplicationsforemissionsby2050.emissioncutsarerequiredfromnowto2030toachievethereductionsrequired.ActioninthisdecadewillnotonlydeterminetheambitionFullimplementationofthelatestunconditionalNDCsisrequiredinthenextroundofNDCs,butalsothefeasibilityofestimatedtoresultinan1.5°Cemissionsgapof22GtCO2eachievingtheParisAgreement’slong-termtemperaturegoal.(range:21–24GtCO2e)withatleasta66percentchanceUnlesscurrentNDCtargetsareover-compliedwithglobally,(table4.3andfigure4.2).IfconditionalNDCsarealsofullyitwillbecomeimpossibletolimitwarmingto1.5°Cwithnoimplemented,the1.5°Cemissionsgapreducesto19GtCO2eorlimitedovershoot,andstronglyincreasethechallenge(range:17–23GtCO2e).Theemissionsgapforthebelowoflimitingwarmingtowellbelow2°C.Furthermore,the2°Cpathwaysisabout14GtCO2e(range:13–16GtCO2e),feasibilityandcredibilityofnet-zeroemissionpledgesmustassumingthefullimplementationofunconditionalNDCs.Ifbeenhanced.conditionalNDCsarealsofullyimplemented,thebelow2°Cemissionsgapreducesto11GtCO2e(range:9–15GtCO2e).4.4.1Theemissionsgapin2030remainsThesefiguresremainlargelyunchangedcomparedwithsignificantthe2022assessment,withsomesmalldifferencesduetorounding.Theemissionsgapfor2030isdefinedasthedifferencebetweentheestimatedtotalglobalGHGemissionsresultingInconclusion,immediateandunprecedentedmitigationfromthefullimplementationofNDCsandthetotalglobalactionisneededinthisdecadetoreducetotalglobalGHGGHGemissionsfromleast-costscenariosthatkeepglobalemissionscomparedwithlevelsimpliedbythecurrentNDCs,warmingto2°C,1.8°Cor1.5°C,withvaryinglevelsofandtoultimatelynarrowtheemissionsgap.2Theseestimatesarebasedonoriginal,unroundedscenariofiguresandthereforedifferfromthosethatcanbederivedfromtable4.3.28EmissionsGapReport2023:BrokenRecordFigure4.2GHGemissionsunderdifferentscenariosandtheemissionsgapin2030and2035(medianestimateandtenthtoninetiethpercentilerange)GtCO2e60CurrentpoliciesscenarioUnconditionalNDCscenario14ConditionalNDCscenarioGtCO2e5011GtCO2eConditionalNDCcase19GtCO2e22GtCO2eUnconditionalNDCcaseBlueareashowspathways2°CRemainingConditionalNDCcaselimitingglobaltemperaturerangegaptostayUnconditionalNDCcaseincreasetobelow2°Cwithwithin2°Cabout66%chance1.8°Climitrange40Medianestimateoflevelconsistent1.5°Cwith2°C:41GtCO2e(range:37–46)rangeGreenareashowspathwayslimitingglobaltemperatureincreasetobelow1.5°Cwitha50%chanceby2100andMedianestimateoflevelconsistentwith1.5°C:33GtCO2e(range:26–34)30minimum33%chanceoverthecourseofthecentury2020202025203020352015Table4.3GlobaltotalGHGemissionsin2030,2035and2050,andestimatedgapsunderdifferentscenariosScenarioGHGemissionsEstimatedgaptoleast-costpathwaysconsistentwith(GtCO2e)limitingglobalwarmingtospecificlevels(GtCO2e)2030CurrentpoliciesMedianandrangeBelow2°CBelow1.8°CBelow1.5°CUnconditionalNDCsConditionalNDCs56(52–60)16(11–19)22(17–25)24(19–27)203555(54–57)14(13–16)20(19–22)22(21–24)Currentpoliciescontinued52(50–55)11(9–15)17(15–20)19(17–23)UnconditionalNDCscontinuedConditionalNDCscontinued56(45–64)20(9–28)29(18–37)31(20–39)205054(47–60)18(11–25)27(20–34)29(22–36)Currentpoliciescontinued51(43–58)15(8–22)24(17–31)26(19–33)UnconditionalNDCsandnet-zeropledgesusingstrictcriteria55(24–72)35(4–52)43(12–60)46(16–63)ConditionalNDCsandallnet-zeropledges44(26–58)24(6–38)32(14–46)36(18–49)21(6–33)1(-14–13)9(-6–21)12(-2–25)Notes:TheGHGemissionrangesfor2035and2050showtheminimum–maximumrangeacrossdifferentprojection-modelassumptions,including2030currentpolicy/NDCassessmentuncertainty(seeappendixC).Thegapfiguresandrangesarecalculatedbasedontheoriginalfigures(withoutrounding),whichmaydifferfromtheroundedfiguresinthetable.FiguresareroundedtofullGtCO2e.GHGemissionshavebeenaggregatedusingIPCCAR6globalwarmingpotentialsover100years.29EmissionsGapReport2023:BrokenRecord4.4.2Actioninthisdecadewilldeterminethe2°Cpathways.Furthermore,andastable4.3illustrates,theambitionrequiredinthenextroundofNDCsuncertaintiesaroundGHGemissionsandgapestimatesareandtheemissionsgapfor2035vastthefurtherintothefutureprojectionsaremade.ThefirstglobalstocktakeundertheParisAgreement,which4.5Theemissionsgaphasseverewillconcludeatthetwenty-eighthsessionoftheConferenceimplicationsforglobalwarmingofthePartiestotheUNFCCC(COP28),isenvisagedtoprojectionsinformthenextroundofNDCs(withtargetsfor2035)thatcountriesarerequestedtosubmitby2025.AlthoughthereTheglobalfailuretobridgetheemissionsgaptodatearenopledgesfor2035yettoenableanestimationofthehasvariousconsequences.Thissectionprovidestheemissionsgapfor2035,itispossibletoprovideinformationconsequencesforannualaverageglobalGHGemissionaboutthegloballevelofambitionthatwillberequiredinthereductionratesuntil2030consistentwithlimitingwarmingnextroundofNDCs.to1.5°Cor2°C,andtheglobalwarmingimplicationsunderthescenariosconsideredinthischapter.Overall,globalambitioninthenextroundofNDCsmustbesufficienttobringglobalGHGemissionsin2035tolevels4.5.1Unprecedentedannualemissioncutsareconsistentwiththebelow2°Cand1.5°Cpathways.Theserequiredfromnowto2030are36GtCO2e(range:31–39GtCO2e)and25GtCO2e(range:20–27GtCO2e),respectively(table4.2).TheconsequencesofthecontinueddelayinstringentemissionreductionsareevidentwhenexaminingthepastIncontrast,acontinuationofcurrentpoliciesandcurrentNDCdecadeofEmissionsGapReports.AshighlightedinthescenarioswouldresultinwidenedandlikelyunbridgeableEmissionsGapReport2019(UNEP2019)theunderlyingdatagapsin2035(table4.3).AcontinuationofcurrentpoliciesfromthereportsrevealthathadseriousclimateactionbeenisprojectedtoresultinglobalGHGemissionsof56GtCO2einitiatedin2010,theannualemissionreductionsnecessaryin2035,whichis36percentand55percenthigherthantoachieveemissionlevelsconsistentwiththebelow2°Candthelevelsconsistentwithbelow2°Cand1.5°Cpathways,1.5°Cscenariosby2030wouldhavebeenonly0.7percentrespectively,evenwithoutcompensatingforexcessand3.3percentonaverage,respectively(Höhneetal.2020).emissions.Thelackofstringentemissionreductionsmeansthattherequiredemissioncutsfromnowto2030haveincreasedAgain,thesefindingsimplythatimmediateandsignificantly.Toreachemissionlevelsconsistentwithaunprecedentedmitigationactioninthisdecadeisessential.below2°Cpathwayin2030,thecutsrequiredperyearareOvercomplianceofNDCtargetsfor2030isnotonlynow5.3percentfrom2024,reaching8.7percentperyearnecessarytomaintainthepossibilityoflimitingglobalonaverageforthe1.5°Cpathway.Tocompare,thefallinwarmingto1.5°Cwithnoorlimitedovershoot,itwillalsototalglobalGHGemissionsfrom2019to2020duetotheenablecountriestoputforwardmoreambitiousmitigationCOVID-19pandemicwas4.7percent(UNEP2022).targetsfor2035intheirnextNDCsandwillmaketheachievementofsuchambitioustargetsmorefeasible.4.5.2Temperatureimplicationsdependstronglyonscenarios4.4.3Lookingbeyond2035reinforcesthesefindingsandpointstotheessentialneedTemperatureimplicationsoftheemissionsgaparetoenhancethecredibilityandfeasibilityofestimatedbyprojectingemissionsoverthetwenty-firstnet-zeropledgescenturyandassessingtheirglobalwarmingimplicationswiththeFiniteAmplitudeImpulseResponse(FaIR)reduced-Themid-centuryscenariosallowforanexplorationofcomplexityclimatemodel,whichiscalibratedtotheIPCCdevelopmentslaterinthiscentury(table4.1andtable4.3).AR6assessment(Nichollsetal.2021;Kikstraetal.2022;ConsideringthesescenariosstrengthensthefindingsofSmith2023;seealsosectionC.1inappendixC).Projectionstheprevioussectionsthatactioninthisdecadeiscritical,untiltheendofthecenturyareinherentlyuncertainandandalsohighlightsthecrucialimportanceofincreasingthesubjecttoscenarioassumptions,suchasthelevelatstepsandpoliciesthatmaketheachievementofnet-zerowhichclimateactioncontinuesortechnologycosts.Thesepledgesmorelikely.uncertaintiesarereflectedinthelargerangesaroundthecentralwarmingprojectionsindicatedintable4.4.TotalglobalGHGemissionsin2050willonlybebroughtcloserto1.5°Cand2°CpathwaysifconditionalNDCsareAcontinuationofthelevelofmitigationeffortimpliedbyfullyimplementedandcombinedwiththeachievementofglobalwarmingunderthecurrentpoliciesscenarioisallnet-zeropledges.Again,thisdoesnotaccountforexcessprojectedtolimitglobalwarmingto3°C(range:1.9–3.8°C)3emissionsunderthisscenariocomparedwiththe1.5°Cand303Therangecapturesuncertaintyinthenear-term(2030)assessmentofcurrentpolicies,aswellastheuncertaintyinthecontinuationofpoliciesoverthecourseofthetwenty-firstcentury.EmissionsGapReport2023:BrokenRecordwitha66percentchance(table4.4).AcontinuationoftheandcontinuationofconditionalNDCslowersthisbyaroundunconditionalNDCscenariolowersthisestimateto2.9°C0.4°Cto2.5°C(range:1.9–3.6°C).(range:2.0–3.7°C),whereastheadditionalachievementTable4.4GlobalwarmingprojectionsunderthescenariosassessedPeakwarmingthroughoutthetwenty-firstcentury(°C)Scenario50%chance66%chance90%chance3.0°C(range:1.9–3.8)3.5°C(range:2.3–4.5)Currentpoliciescontinuing2.7°C(range:1.8–3.5)2.9°C(range:2.0–3.7)3.4°C(range:2.3–4.4)2.5°C(range:1.9–3.6)3.0°C(range:2.2–4.2)UnconditionalNDCscontinuing2.6°C(range:1.8–3.4)2.7°C(range:1.9–3.5)3.2°C(range:2.3–4.1)ConditionalNDCscontinuing2.3°C(range:1.7–3.3)2.0°C(range:1.8–2.5)2.4°C(range:2.0–3.0)UnconditionalNDCsandnet-zeropledges2.5°C(range:1.8–3.2)2°C3°Cusingstrictcriteria4%(range:0–73)68%(range:16–99)6%(range:0–69)75%(range:24–99)ConditionalNDCsandallnet-zeropledges1.8°C(range:1.6–2.3)19%(range:0–78)90%(range:30–100)(mostoptimisticcase)11%(range:0–74)83%(range:42–99)Likelihoodoflimitingwarmingtobelowaspecificwarminglimit(%)69%(range:22–85)99%(range:89–100)Scenario1.5°CCurrentpoliciescontinuing0%(range:0–16)UnconditionalNDCscontinuing0%(range:0–12)ConditionalNDCscontinuing0%(range:0–20)UnconditionalNDCsandnet-zeropledges0%(range:0–16)usingstrictcriteriaConditionalNDCsandallnet-zeropledges14%(range:1–27)(mostoptimisticcase)Notes:Therangebetweenbracketsreflectsthescenariouncertainty,takingintoaccounttherangeofemissionestimatesfor2030andthevariationsintheirextensions(seesectionC.1inappendixC).TheEmissionsGapReporttypicallypresentstemperatureprojectionswitha66percentchance.Otherlikelihoodsareincludedforcompleteness.Valuesfor2100aregivenintableC.6inappendixC.UnderthescenariowhereunconditionalNDCsarecombinedValuesforotherlikelihoodsandfor2100areprovidedinwiththenet-zeropledgesthatcurrentlycomplywithstricttable4.4andtableC.6inappendixC.Centraltemperaturecriteriaonimplementationprogress,globalwarmingisprojectionsareslightlyhigherthanintheEmissionsGapestimatedtobelimitedto2.7°C(range:1.9–3.5°C)withaReport2022,butuncertaintyrangesstronglyoverlap.4This66percentchanceoverthecourseofthiscentury.isbecausealargernumberofmodelshasbeenincludedintheestimationoffutureemissionsforthe2023assessmentInthemostoptimisticscenario,whereconditionalNDCs(seesectionC.1inappendixC).TheEmissionsGapReport’sandallnet-zeropledges(includingthosespecifiedinlong-bestestimatedtemperatureprojectionsareconsistentwithtermlowemissionsdevelopmentstrategies)areassumedthosefromothermajorassessments,suchasthe2023tobeachieved,globalwarmingisprojectedtobelimitedtoAnnouncedPledgesScenariooftheInternationalEnergy2°C(range:1.8–2.5°C)witha66percentchanceovertheAgency,ClimateActionTrackerandthe2023UNFCCCNDCcourseofthiscentury.However,aschapter3shows,thesynthesisreport(allofwhichreporttemperatureprojectionsachievementofnet-zeropledgesremainshighlyuncertain.witha50percentchance).54CurrentpoliciesandunconditionalandconditionalNDCscenariosintheEmissionsGapReport2022wereestimatedtokeepwarmingwitha66percentchanceto2.8°C(range:1.9–3.3°C),2.6°C(range:1.9–3.1°C)and2.4°C(range:1.8–3.0°C),respectively.Themostoptimisticcase,combiningunconditionalandconditionalNDCswithalllong-termnet-zerotargets,resultedinanestimateof1.8°C(range:1.7–1.9°C).5SeeappendixCandthejointtechnicalnotebyUNFCCCandUNEP,bothavailableonline,formoredetailedcomparisons.31EmissionsGapReport2023:BrokenRecordFigure4.3TemperatureimplicationsofkeyscenariosassessedinthischapterandtheassociatedrisksofextremeeventsProjectedmaximumglobalwarmingover21stcentury(°C)CurrentpoliciescontinuingUnconditionalNDCsandnet-zeropledgesusingstrictcriteriaConditionalNDCsandallnet-zeropledges66%chancebestestimateBestestimatedistributionMin-maxvariationsduetoemissionsprojectionassumptions0°1.0°1.5°2.0°3.0°4.0°5.0°10-yeareventHottemperatureextremesoverlandOncenowlikelywilllikelywilllikelywilllikelytooccuroccuroccuroccurFrequencyofextremetemperature2.8timeseventthatoccurredoncein4.1times5.6times9.4times10yearsonaverageina(1.8–3.2)climatewithouthuman(2.8–4.7)(3.8–6.0)(8.3–9.6)influence50-yeareventHottemperatureextremesoverlandOncenowlikelywilllikelywilllikelywilllikelyFrequencyofextremetemperatureOncetooccuroccuroccuroccureventthatoccurredoncein4.8times50yearsonaverageina8.6times13.9times39.2timesclimatewithouthuman(2.3–6.4)influence(4.3–10.7)(6.9–16.6)(27.0–41.4)10-yeareventHeavyprecipitationoverlandnowlikelywilllikelywilllikelywilllikelyFrequencyofheavy1-daytooccuroccuroccuroccurprecipitationeventthat1.3timesoccurredoncein101.5times1.7times2.7timesyearsonaverageina(1.2–1.4)climatewithout(1.4–1.7)(1.6–2.0)(2.3–3.6)humaninfluence10-yeareventAgriculturalandecologicalOncenowlikelywilllikelywilllikelywilllikelydroughtsindryingregionstooccuroccuroccuroccur1.7timesFrequencyofanagriculturaland2.0times2.4times4.1timesecologicaldroughteventthat(0.7–4.1)occurredoncein10years(1.0–5.1)(1.3–5.8)(1.7–7.2)onaverageinaclimatewithouthumaninfluence1850–1900Present,1.1°C1.5°C2.0°C4.0°CFutureglobalwarminglevelsNotes:Peakglobalwarmingoutcomesforemissionsprojectionsfollowingthebestestimate(solidhistograms)andvariationsacrossdifferentmodelsandprojectionassumptionsandincluding2030currentpolicy/NDCassessmentuncertainty(linehistograms).Thethinhorizontallinesindicatethemedianestimate.ProjectionsofextremesaretakenfromfigureSPM.6ofIPCCWGIAR6(IPCC2021).32EmissionsGapReport2023:BrokenRecordEveninthismostoptimisticscenario,thelikelihoodassociatedwiththefullimplementationofcurrentNDCs,asoflimitingglobalwarmingto1.5°Cisonly14percentwellastheneedtoexpandthecoverageofnet-zeropledges(table4.4),andthevariousscenariosleaveopenalargetoallGHGemissionsandtoachievethesepledges.Climatepossibilitythatglobalwarmingwillexceed2°Coreven3°Cimpactsandextremesincreasewitheveryincrementof(table4.4andfigure4.3).Thisfurtherillustratestheneedglobalwarming,emphasizingthesignificantrisksthatresulttoreduceglobalemissionsby2030tolessthanthelevelsfrominsufficientnear-termmitigationaction(figure4.3).33EmissionsGapReport2023:BrokenRecord5GlobalenergytransformationinthecontextoftheParisAgreementLeadauthors:JesseBurton(UniversityofCapeTownandE3G,SouthAfrica)andGregMuttitt(InternationalInstituteforSustainableDevelopment[IISD],UnitedKingdom)Contributingauthors:FatimaDenton(UnitedNationsUniversityInstituteforNaturalResourcesinAfrica,Ghana),SivanKartha(StockholmEnvironmentInstitute,UnitedStatesofAmerica),NarasimhaRao(YaleSchooloftheEnvironment,YaleUniversity,UnitedStatesofAmerica),JoeriRogelj(ImperialCollegeLondon,UnitedKingdom;InternationalInstituteforAppliedSystemsAnalysis[IIASA],Austria),SarithaSudharmmaVishwanathan(IndianInstituteofManagementAhmedabad,India;NationalInstituteforEnvironmentalStudies,Japan),DanTong(TsinghuaUniversity,China),MartaTorresGunfaus(IDDRI,France)andWilliamWills(CentroBrasilnoClimaandEosConsulting,Brazil)5.1IntroductionEnergytransformationanddevelopmentofapproachestocarbondioxideremovalwillneedtobepursuedinparallel,Previouschaptersdocumentthecontinueddelayinstrongratherthanmoreofonejustifyinglessoftheother.ActionmitigationactionandtheimplicationsforthecarbonbudgetonbothmustbeconsistentwiththeUNFCCCprincipleofandprojectedglobalwarming.Thesecondpartofthereportcommonbutdifferentiatedresponsibilityandrespectivefocusesontwoissueswhichresultfromthesefindingsandcapabilities,andrequiresglobalcollaboration.thatarecentralforthepossibilityofachievingthelong-termtemperaturegoaloftheParisAgreement(UnitedThischapteroutlinessomeofthemajorissuesrelatedtoNations2015).globalenergytransformation,settingthesceneforthesubsequentchapteronenergytransitioninlow-andmiddle-First,allcountriesmustaccelerateeconomy-wide,low-incomecountries(chapter6).carbontransformations.Energysectortransformationisessential,asenergyisthedominantsourceofgreenhouse5.2Avoidingnewfossilfuelcapacitywillgas(GHG)emissions.Acceleratedmitigationbyhigh-limittheexistinginfrastructurethatincomecountriesisurgentandaprioritytoreflectthemustberetiredearlytoachieveParisUnitedNationsFrameworkConventiononClimateAgreementgoalsChange(UNFCCC)principleofcommonbutdifferentiatedresponsibilitiesandrespectivecapabilities.However,thisEnergyconsumptionandproductionaccountfor86percentwillnotbesufficient,giventhatlow-andmiddle-incomeofglobalcarbondioxide(CO2)emissions,comprising37percountriesalreadyaccountformorethantwothirdsofglobalcentfromcoal,29percentfromoiland20percentfromgreenhousegasemissionstoday(seeappendixA).Thus,gas(Friedlingsteinetal.2022;seealsochapter2).Achievingenergysectortransformationisalsonecessaryinlow-andtheParisAgreementgoalsthusrequiresapolicy-drivenmiddle-incomecountries,butmustbealignedwithmeetingtransformationoftheglobalenergysystem.pressingdevelopmentneeds(chapter6).Second,allpathwaysconsistentwithmeetingtheParisThecoal,oilandgasextractedoverthelifetimeofproducingAgreementlong-termtemperaturegoalrequireagrowingandunder-constructionminesandfields,asat2018,wouldquantumofcarbondioxideremovalinthelongerterm,emit936gigatonsofCO2iffullyused(Troutetal.2022)alongsiderapidandimmediateGHGemissionreductions.–around3.5timesthecarbonbudgetavailabletolimitChapter7explorestheimplicationsofthis.warmingto1.5°Cwith50percentprobability,andalmostthesizeofthebudgetavailablefor2°Cwith67percentprobability(figure5.1).Yetasdescribedinchapter3,newfieldsandminescontinuetobeopened.34EmissionsGapReport2023:BrokenRecordSimilarly,attheotherendofthesupplychain,theCO2factorof2.5,andamounttoaroundtwothirdsofthebudgetemissionsfromfull-lifetimeoperationofpowerstations,for2°C(Tongetal.2021;figure5.1).Again,newenergy-industrialplants,transportationandbuildingsalreadyinconsuminginfrastructurecontinuestoexpand(chapter3).existenceexceedthebudgetavailablefor1.5°CwarmingbyaFigure5.1.CommittedCO2emissionsfromexistingfossilfuelinfrastructure,comparedtocarbonbudgetsreflectingthelong-termtemperaturegoaloftheParisAgreementEmissions(GtCO2)Carbonbudget1,0002°C950(67%chance)800Coal600OtherBuildings400GasTransportIndustry250CarbonbudgetElectricity1.5°C200Oil(50%chance)0ExistingconsuminginfrastructureExistingextractioninfrastructureCommittedemissionsSource:AdaptedfromBustamenteetal.(2023).Note:Barsshowfutureemissionsimpliedbyfull-lifetimeoperationoffossilfuel-extractinginfrastructure(Troutetal.2022)andoffossilfuel-consuminginfrastructure(Tongetal.2019).Thesearecomparedwithcarbonbudgetsremainingatthestartof2023(chapter4).“Existing”generallymeansthatinfrastructurehasbeeninvestedorcommitted,asatthestartof2018(seepreviouslycitedsourcesforfurtherdetailsonmethods).Sincethattime,whilefulldataarenotavailable,moreinfrastructurehasbeenaddedthanretired;hencethisfigureisanunderestimateofthecommittedemissionsproblem.Incontrast,carbonbudgetsalignedwiththelong-termAslow-carbontechnologycostshavefallen,windandtemperaturegoaloftheParisAgreementrequirethatmuchsolarnowofferthelowest-costmeansofgeneratingoftheexistingcapitalstockwillneedtoberetiredearly,electricityinmostoftheworld(UNEP2019).Thefallintheretrofittedwithcarboncaptureandstorage,and/oroperatedcostofrenewablesgenerallymeansthatthe“transitionbelowcapacity(Troutetal.2022;IntergovernmentalPanelfuel”argumentforhigher-emissionsandhigher-costgasonClimateChange[IPCC]2022;IEA2023),whileensuringisbecomingincreasinglyinvalid.However,therecanbeajusttransitionforworkersandaffectedcommunitiesbarrierstoimmediatetransitions,includingwherefinance(InternationalLabourOrganization2015;Smith2017;forrenewableremainsprohibitivelyexpensiveinpoorerMcCauleyandHeffron2018).Globally,thisleavesnoroomcountries(seechapter6).fornewfossilfuelinfrastructure,unlessanevengreaterquantityofexistingstockisstranded.Instead,newenergyAllthiscreatesadilemmaforpoorercountrieswithfossilfuelinvestmentsshouldfocusoncleanenergysupplyandend-resources,betweentryingtousethoseresourcestomeetuseelectrificationtoavoidfurtherincreasingcommittedtheirdevelopmentneeds,versusavoidingtheeconomicemissions(InternationalEnergyAgency[IEA]2021;IISDriskofstrandedassetsastheworlddecarbonizes(United2022;IEA2023;StockholmEnvironmentInstituteetal.2023).NationsUniversityInstituteforNaturalResourcesinAfrica2019;seealsochapter6).35EmissionsGapReport2023:BrokenRecordWhileallcountriesfacestrandedassetrisk,strandedassets5.4Deliveringchangerequiresglobalarelikelytointensifyexistingsystemicinequitiesandrelatedcooperationthatreflectstheequityvulnerabilities,includingfiscaldeficits,indebtedness,highandfairnessprinciplesoftheParisborrowingcostsandcurrencydevaluation,especiallyinAgreementpoorercountries(Sokonaetal.2023).Limitingglobalwarmingtowellbelow2°C,while5.3Meetingthebasicenergyneedsofpursuingeffortstolimittheincreaseto1.5°C,requiresanpeoplelivinginpovertywouldhaveunprecedenteddegreeofglobalcooperation.FairnessofalimitedimpactonglobalGHGeffort-sharingiscentraltotheintergovernmentaltrust-emissionsbuildingthatisessentialtothebottom-upprocessoftheParisAgreement(Holzetal.2023).Reflectingthis,theAccesstoaffordable,reliableandmodernenergyservicesParisAgreementbuildsontheprincipleofcommonbutiscriticaltohumanwelfareandlivelihoods,linkingtogetherdifferentiatedresponsibilitiesandrespectivecapabilitiesinsocialequity,economicdevelopmentandenvironmentallightofnationalcircumstances.sustainability(UnitedNationsDepartmentofEconomicandSocialAffairs2022;seealsochapter6).EnergyaccessThisprincipleimpliesthatcountrieswithgreatercapacityandenablesfoodsecurityandimprovednutrition;reducesgreaterhistoricresponsibilityforemissions–particularlydrudgeryforwomenandgirlsfromthecollectionofhigh-incomecountries–willneedtotakemoreambitioustraditionalfuels;provideslightandfreestimeforeducationandrapidaction,settingthecourseanddemonstratingtheandstudying;improveshealthandwell-being,boththroughviabilityoffossil-freedevelopment.Forexample,theClimateaccesstomedicinesandbyreducingtheburdenofairSolidarityPact,proposedbytheUnitedNationsSecretary-pollution;andisacriticalinputforsmallbusinessandforGeneral,callsonallbigemitterstomakeextraeffortstoeconomicdevelopment.cutemissions,andwealthiercountriestoprovidefinancialandtechnicalresourcestosupportlow-andmiddle-incomeYetenergypovertypersists,withwomenandchildrencountries.Specifically,thePactcallsondevelopedcountriesdisproportionatelyaffected.In2022,thenumberofpeopletoreachnetzeroascloseaspossibleto2040,andemergingwithoutelectricityaccessincreasedforthefirsttimeinaeconomiestocommittoreachingnetzeroascloseasdecade(Cozzietal.2022),whileannualinvestmentswouldpossibleto2050(UnitedNationsSecretary-General2023).needtotripletoachieveuniversalaccessby2030(IEAetal.2023;seealsochapter6).Differentiatedtimelinesareimportantforthefeasibilityofpathwaysalignedwiththelong-termtemperaturegoaloftheIncreasingconsumptionamongthepooresttoachieveParisAgreement,whichisanaspectthatglobalmodellingdevelopmentaloutcomeswouldhavelimitedimpactontendstooverlook.Toillustrate,themedianof1.5°CpathwaysGHGemissions(IPCC2022;Wollburgetal.2023).ThisisreviewedbytheIPCCseesunabatedcoalpowerdeclinebybecauseatverylowlevelsofdevelopment,measuredby88percentfrom2020to2030(Muttittetal.2023),whichtheHumanDevelopmentIndex,gainscanquicklybemadeincoal-dependentcountriessuchasChina,IndiaandSouththroughsmallincreasesinenergyaccessanduse(GargAfricawouldrequiretransitionatahistoricallyimplausible2020;Clarkeetal.2022).rate,effectivelyreplacingalmosttheentirefleetofpowerstationswithinadecade,likelymakingajusttransitionTheenergythatisrequiredtodeliverthebasicelementsofimpossible(Vinichenkoetal.2021).Thisiscomparedtolivingstandardsthatenablewell-being–includingthermala14percentreductioningaspowerand10percentforcomfort,nutritiousfood,healthandeducation,mobility,allusesofoil(primaryenergy),implyingslowertransitionandcivicengagement(IPCC2022)–rangesfrom12toratesformosthigh-incomecountries,whichgenerally40gigajoulesperperson(takingintoaccountdifferencesdependmoreonoilandgasthanoncoal.Adjustingtoainclimate,geography,economicstructureandculture),morefeasiblecoalphase-outpaceinallcountrieswouldwellbelowtheaverageglobalenergyconsumptionof47requirecorrespondinglyfasterdeclinesinoilandgasuse,gigajoulesperperson(Kikstraetal.2021).Consideringtheandgreatereffortsbyhigh-incomecountries(Muttittetunequaldistributionofemissionsacrossincomegroupsal.2023).Thus,whileglobalmodellingisimportanttowithinandbetweencountriesdocumentedinchapter2,alignoverallambition,itneedstobecomplementedbytheenergyneededtoachievethebasicelementsoflivingnationalmodels,whicharebetterpositionedtounderstandstandardsthatenablewell-beingworldwidecouldevensocietalfeasibilityconstraints,nationalrealities,enablingbesuppliedwhiledecreasingaggregateglobalenergyuseconditions,andintegrationwithnationaldevelopment(Millward-Hopkinsetal.2020),ifincreasesforsomepeoplestrategies(LaRovereetal.2018;Waismanetal.2019;DeepandcountrieswerecounterbalancedbydecreasesintheDecarbonizationPathways2021;GunfausandWaismanhighpercapitaenergyconsumptionoftheworld’swealthiest2021;Svensson2023).people(Raoetal.2019;UNEP2020;Kikstraetal.2021).36EmissionsGapReport2023:BrokenRecordTheParisAgreementfurthermorerecognizesthatPressingdevelopmentneeds,existingresourceprofiles,internationalsupportofatleastthreetypesiscrucialforpoliticaleconomyconstraints,andlimitedpoliticalandclimateaction:finance,technologytransferandcapacity-institutionalcapacityallconstrainandchallengecountriesbuilding(UNFCCC2015).Thisincludesaccesstosufficient,toachievetransformationsinpower,transportanddemandaffordableandqualityfinancethataddressessectoralsectorsatpace,andavoidnewemissionsastheydevelop.transformationsindifferentcontexts(Amelietal.2021;Thus,asdiscussedinchapter6,acountry’scapacitytoPachaurietal.2022;Svensson2023),accesstocleaninitiatethetransformationofitsenergysystemandthetechnologythathasbeenproventhroughdeploymentbythepaceoftransitionthatcanbeachievedwilldependstronglyNorth;andtechnicalassistancetodrivenationally-definedonnationalcircumstances,inthecontextofnationalandinvestment-readylow-carbondevelopmentpathwaysdevelopmentalpriorities(Mulugettaetal.2022).(Dubash2023).Decarbonizationwillrequireaffordablefinance,considerablyabovecurrentlevels:limitingwarmingto1.5°CwhileachievingtheSustainableDevelopmentGoalswillrequireseveraltrillionUS$peryear(OrganisationforEconomicCo-operationandDevelopment2020;UNFCCCStandingCommitteeonFinance2022;UNEP2022;IEAandInternationalFinanceCorporation2023).37EmissionsGapReport2023:BrokenRecord6Energytransitionsforlow-carbondevelopmentfuturesinlow-andmiddle-incomecountries:ChallengesandopportunitiesLeadauthors:NarasimhaRao(YaleSchooloftheEnvironment,YaleUniversity,UnitedStatesofAmerica)andYacobMulugetta(UniversityCollegeLondon,UnitedKingdom)Contributingauthors:JesseBurton(UniversityCapeTownandE3G,SouthAfrica),JoisaDutraSaraiva(GetulioVargasFoundation,Brazil),AshwinGambhir(PrayasEnergyGroup,India),JessicaOmukuti(UniversityofOxford,UnitedKingdom),NadiaS.Ouedraogo(UnitedNationsEconomicCommissionforAfrica,Ethiopia),SetuPelz(InternationalInstituteforAppliedSystemsAnalysis[IIASA],Austria),FeiTeng(TsinghuaUniversity,China)andMeronTesfamichael(UniversityCollegeLondon,UnitedKingdom)6.1Introduction6.2DevelopmentandenergyareinterlinkedThischapterfocusesontherelationshipbetweenenergytransitions1andlow-carbondevelopmentfuturesinlow-Energytransitionsinlow-andmiddle-incomecountriesandmiddle-incomecountries,2whoseemissionsaccountareshapedbytheoverarchingobjectiveofpursuingformorethantwothirdsofglobalgreenhousegases(seedevelopment.Thehistoricalexpansionoftheenergysectorchapter5).Globally,theroleforlow-andmiddle-incomehasenableddevelopmentbyprovidingenergyservicestocountriesinclimateactionisframedbyhistoricalpatternshouseholdsandindustry,andinsomecasesgeneratingofdevelopment,asrecognizedbytheParisAgreementexportrevenues.Low-andmiddle-incomecountries’futureprincipleofcommonbutdifferentiatedresponsibilityandenergytransitions,andtheirlow-carbonimplications,willinrespectivecapabilitiesinlightofnationalcircumstances.turnbeshapedbytheirdevelopmentcontext.ThissectionLow-andmiddle-incomecountriessharethechallengeofexaminespastandlikelyfuturelinksbetweendevelopmentbringingmillionsoutofpoverty,includingthroughenergyandenergytrends,andtheimportanceoflocalcontextindemandgrowth,whileshiftingtoacleanenergysystem.Evenshapingtheselinks.astheyfacesomecommonchallenges,theirpathwayswillvary,drivenbydifferentstartingpoints,economicstructures6.2.1Developmentdrivesenergytransitionsandnaturalresourceendowments.Theobjectiveofthischapteristoplacethesecountries’futureopportunitiesEnergytransitionshavehistoricallybeendrivenbytheforenergytransitioninthecontextoftheirheterogeneousrequirementsofprovidingcleancookingandelectricitystartingpointsanddevelopmentpriorities,whileexploringservicestohomes,andinfrastructureneededtoimprovethescopeforaninternationallysupportedenergytransition.livingstandards.Inlow-andmiddle-incomecountries,climatemitigationmeasureshavefrequentlybeenadoptedaspartofdevelopmentpoliciesthatoffermultipleenvironmentalandsocialbenefits(Ürge-Vorsatzetal.2014).Forexample,thepoliciesdatabaseoftheInternationalEnergyAgency(IEA)illustratesthatpoliciesoftentargetachievingamixofenergyefficiency,greengrowth,airpollutionreductionandaffordabilityobjectives(IEAundated).1ConsistentwithIPCCusage,theterm“transition”isusedheretodenotetheprocessofchangingfromonestateorconditiontoanotherinagivenperiodoftime.Transitionsarerelatedtoachievinga“transformation”,orachangeinthefundamentalattributesofnaturalandhumansystems,butemphasizetheprocessofthischange(IPCC2023).2Low-and-middle-incomecountriesaredefinedascountrieswithanannualpercapitagrossnationalincomeoflessthanUS$13,205in2022(Hamadehetal.2022).Thisincludeslow-,lower-middle-andupper-middle-incomecountries.Inthischapter,“middle-incomecountries”referstobothlower-andupper-middle-incomecountriestogether.38EmissionsGapReport2023:BrokenRecordThecookingtransitionisagoodexampleofhowenergyfallintopatternsbasedoncountries’stageofdevelopment,transitionsaredevelopment-driven.Drivenbyhealtheconomicstructures,andfuelresourceendowments,asobjectivesandnationalcontext,electricorbiogasstovesmappedoutinfigure6.1.Low-incomecountriesnotonlyofferthemostattractivelong-termpathwaysforthesector,contributetheleasttoglobalgreenhousegasemissionsbuteffectivelyleadingtodecarbonizingcookingandheatingalsofaceacutedevelopmentchallengesthatlimittheirability(Pachaurietal.2021).Drivenbythislogic,about600milliontoinvestincleanenergyopportunitieswithoutaffordablepeoplehavetransitionedfromsolidfueltoliquidpetroleumfinance.Middle-incomecountrieswithamanufacturingandgasandelectricstovessince2012,resultingnotonlyinservicesbasemayrequireagreaterfocusondecarbonizingmitigationbutinfewerprematuredeathsanddiseasesindustry,whilethosewithaservicesandagricultureamongwomenandchildren(WorldHealthOrganizationandsilviculturebasemaygiveprecedencetoreducing[WHO]2014;WHO2022)andeasingtheburdenonwomendeforestation.Fuelendowmentsalsomatter:countriesincarryingouttheirproductiveactivities(Majietal.2021).withrenewable(e.g.hydro)capacity,thosewithabundantHowever,thetransitionisyetincomplete;closeto2.4billionfossilreservesfordomesticuseand/orexports,andthosepeoplecontinuetousesolidfuels.dependentonenergyimports,willallfacedifferentsetsofchallengesandopportunities.Electricityaccessthroughoff-gridsystemshasbeenenabledbysteeplydecreasingcostsofsolarphotovoltaicsTheoverarchingeconomiccontextinlow-incomecountries(PV),albeitoffsetinlow-incomecountriestoanextentbyandsomelowermiddle-incomecountries,islowhumanhighborrowingcosts(section6.5).Over100millionpeople,developmentandhighlevelsofdebt.Withunderdevelopedhalfofwhomresideinsub-SaharanAfrica,and29percentinpowersectorsandindustry,cleanenergyaccessforcookingSouthAsia,hadsolar-basedaccessthroughoff-gridsystemsandelectricitytoreducetraditionalbiomassdependenceby2019(IEAetal.2021).However,about775millionpeopleisapriority(Chenetal.2022).However,financingenergystilllackelectricityaccess(Cozzietal.2022);over3.5billionaccessexpansionhasbeenachallenge.Manylow-incomesufferunreliablesupplyandelectricityconsumptionremainscountrieshavedepletedpublicsavingseithertocounterlow(Ayaburietal.2020);andtheshareofrenewablesintheeconomicfalloutoftheCOVID-19pandemic,tocopetotalenergyconsumptionisonly17percent,andscarcelywithvolatilecommoditypricesortoserviceexternaldebt.keepingupwithenergydemandgrowth.Moreover,servicesIn2021,Governmentsinsub-SaharanAfricaspent16.5fromoff-gridsystemsaretypicallylimitedtobasiclightingpercentoftheirrevenuesservicingexternaldebt,upfromandphonecharging,neglectinglonger-termenergyserviceslessthan5percentin2010(WorldBank,OfficeoftheChiefandproductiveusesthatwouldhavetransformativelocalEconomistfortheAfricaRegion2023).Today,60percentofdevelopmentbenefits(GroenewoudtandRomjin2022).low-incomecountriesareinorathighriskofdebtdistress,Notwithstandingtheseconcerns,thescale-upofaffordableupfrom49percentin2019(WorldBank2022).renewable-basedaccesssolutionsoffersanopportunityforstimulatingdevelopmentandraisinglivingstandards,whileTherisksfromundertakingacleanenergytransition,andavoidingemissionsgrowthfromthepowersector.itsimplicationsforbroadereconomicoutcomes,variesbyresourcebase.Forinstance,innetfuelimportinglow-Nationalenergyneedsforbroaderhumandevelopment,incomecountries,suchasMali,threatstofossilfuelincludingforpovertyeradicationandfurtherqualityofsupplymayexacerbatetradedeficitsanddebtburdens.lifeimprovements,willrequiresignificantenergydemandConsequently,theyarelikelytoprioritizeenergysecurity,growth(Kikstraetal.2021).In2021,averagepercapitaandvaluecleanenergyinvestmentstoreplaceimports(deenergydemandinsub-SaharanAfricaandSouthAsiawasHoog,BodnarandSmid2023).19and16gigajoulesrespectively,incontrastto51gigajoulesinChina,83gigajoulesinWesternEuropeand181gigajoulesLow-incomecountrieswithcheapenergyduetoabundantinNorthAmerica.However,asdiscussedinsection6.4.1,hydroresources,suchasEthiopiaorNepal(recentlythereisscopeformeetingenergydemandmoreefficientclassifiedaslower-middle-income),maychoosetoexportandequitable,andmeetenergyneedswithlow-carbonlow-carbonelectricitytoearnrevenueswhileeasingtheirenergyasrenewablesgetcheaper(seechapter5).foreignexchangebottlenecks.Theyalsohavemoreflexibilitytoaccelerateemissionreductionsbecausetheydonotface6.2.2Countrieshavedifferentstartingpointsandstrandedfossilfuelassetcosts.Bhutan,forexample,isprioritiesforfuturecleanenergytransitionsamongthefewcountriesthathavepledgedtoachievecarbonneutralityinitssecondnationallydeterminedcontributionThechallengesfacedbycountriesinbringingabout(NDC)targets,basedonitssignificanthydropowerpotentialcleanenergytransitionsareshapedbydifferingnationalandover70percentforestcover(Yangkaetal.2019).circumstances(Mulugettaetal.2022).Yet,thesechallenges39EmissionsGapReport2023:BrokenRecordFigure6.1Countrygroupsbasedondevelopmentstageandfuelendowmentssharethesechallengesintheenergytransition,amongothercountry-specificcircumstancesLow-incomeLower-andupper-middlecountriesincomecountriesEnergysourcesRisksAgricultureandManufacturingforestryandservicesFossilfuelDemocraticCameroonAlgeriaproducerRepublicEquatorialGuineaEcuadorNigeria(export-dependent)oftheCongoFossilfuelStrandedproducersectorrisks(domesticuse)BurkinaFasoBrazilChinaIndonesiaIndiaVietNamRenewableClimaterisksAfghanistanCostaRicaKenyaproducerforenergyBhutansupply(mainlyhydro)EnergyEnergySenegalMoroccoimportersecurityMaliMyanmarJamaica(lowresources)risksCôted’IvoireMauritiusCommonbarriersDebtandlackofaffordablefinanceLand-useconflictSomelow-incomecountriesandafewmiddle-incomethreattocountriessuchasAngolaandSouthSudan,wherecountriesalreadydoorplantorelyonfossilfuelexports,energyaccountsforupto90percentshareoftheirexportandcouldbenefitfromeconomicdiversification.Theseearnings(InternationalMonetaryFund[IMF]2022;IMFcountriesfacecommonrisks,suchasfuelpricevolatility2023).InadditiontoincumbentproducersinNorthandWestandlockingintofuturestrandedassets.Forexample,Africa,severalAfricancountriesincluding,Mozambique,a50percentdeclineinoilpricesduringthepandemicNamibia,SenegalandUganda,havemadenewdiscoveriescontractedrevenuesanddepletedforeigncurrencyreservesofsignificantoilandgasreserves.Countriessuchasinoilexportingcountries(Akinolaetal.2022;GervalandtheseseekingnewsourcesofgrowthwillavoidfossilfuelHansen2022).Thesecircumstancesposeaconsiderableexpansiononlyiftheyhavecrediblealternativechoices.40EmissionsGapReport2023:BrokenRecordAtthesametime,oilandgasprojectsarecapital-intensive,support,thecountryrisksshort-termnegativeimpactsondifficulttoexecute,andoftenfacecostandtimeoverrunsgrowth,exacerbatingpovertyandinequality,andfailingto(MihalyiandScurfield2020).Becauseoflongleadtimestocapturefuturelow-carbonindustrialopportunities(Worlddeveloptheirindustries,countrieswillbeinaraceagainstBankGroup2022).timetoreaptheeconomicbenefitsoftheoilandgastrade.Asrenewablesandotherlow-carbontechnologiesbecomeIndiafacesthechallengeofmobilizinginvestmenttocompetitive,theprospectsofdecliningfuturedemandcouldachieveitsambitiouscleanenergytransitionplans.Theserisklock-inandassetstrandingoverthelongterm(Anwar,plansincludeincreasingnon-fossilfuelcapacityintheNearyandHuixham2022).Thesefossilfuel-dependentlow-powersectorto65percentby2030(India,Ministryofincomecountriesmaybenefitfromeconomicdiversification.Power,CentralElectricalAuthority2023),exceedingitsAngolaisanexampleofacountrythathassoughttoNDCcommitmentof50percent,implementingbuildingdiversifyexports,asreflectedinthecountry’s2025Strategyandindustrialenergyefficiencystandardsandmarkets,andand2018–2022SectorDevelopmentPlan.undertakingelectricvehicle,biofuelsandgreenhydrogenpromotionprogrammes(India,MoEFCC2022;India,Mostmiddle-incomecountries,incontrast,typicallyhaveMinistryofNewandRenewableEnergy2023).Tofullylargerurbancentres,moredevelopedenergyinfrastructure,achievethistransitionwillrequirecomplementarymeasuresandbetteraccesstocapital.Thosethataremajorcoalsuchasasmoothtransitionawayfromcoal,strengtheningproducers,suchasChina,IndiaandSouthAfrica,faceanalreadystretchedelectricgrid,anddecarbonizingthetheriskofstrandedassets,large-scaleunemploymentfertilizer,cementandsteelindustries.Thereisalsoscopetoandenergyinsecurityifcoalisrapidlyphaseddown.Theexploitpotentiallinkagesbetweensocialdevelopmentandspeedoftransitionrequiredposesaparticularchallenge.climatemitigation(Bhatia2023),suchasthroughelectricEnergytransitionconsistentwithIntergovernmentalPanelpublictransitandtwo-orthree-wheelervehicles,passiveonClimateChange(IPCC)-modelledpathwaysto1.5°designsforaffordablehousing(thePradhanMantriAwaswouldrequiredeclinesincoalgenerationathistoricallyYojanaprogramme)andefficientcoolingsolutions.unprecedentedrates(Muttitetal.2023).However,thecleanenergytransitionalsooffersopportunities,Inindustrializingmiddle-incomecountrieswithstrongcontingentoninternationalsupport.Notably,allthreeofagricultureandforestrysectors,likeBrazilandIndonesia,thecountriesmentionedhavedevelopedambitiousplanscurbingdeforestationthroughforestmanagementreformformainstreamingclimateintolong-termdevelopmentmaybeacriticallever,thoughalsowithpoliticalchallenges.strategies(SouthAfrica2019;India,MinistryofEnvironment,Forexample,BrazilhadsuccessinreducingdeforestationForestandClimateChange[MoEFCC]2022).from2004to2012throughstrongermonitoringandenforcementandincentiveprogrammes,suchasconditionalInChina,forexample,tomeettheprojectedrateofemissionsaccesstocreditinruralareaswithillegalpracticesdecline,thecountry’senergyinfrastructureinvestmentcould(Assunção,GandourandRocha2015),butsomeregressiontriplecomparedtotheNDCscenario.Inone1.5°scenario,hasoccurredwithchangesinpoliticalcycles.Suchreformstheseinvestmentsaccountformorethan2.6percentofitshavehadtocontendwiththeconflictbetweenconservationgrossdomesticproduct(GDP)(Heetal.2022).Sincemuchandtheprotectionofindigenousrights,andland-grabbingofChina’senergyinfrastructure,includingcoalplants,hasforagriculture(Britoetal.2019).beenconstructedinthepasttwodecades,arapidphase-outofcoalcouldresultintrillion-dollarstrandedassets(Cui6.3Thepoliticaleconomyofcleanenergy2019).Conversiontopeakingplants(Cui2021),andretrofitstransitionsischallengingwithCCSorbiomassco-generation(Xingetal.2021),arepartialsolutionstothischallenge.Ensuringrapid,smoothandjustnationalcleanenergytransitionswillrequireaddressingmanypoliticalandSouthAfrica,acoal-producingand-exportingeconomy,hasinstitutionalchallengesatthenationalandgloballevels.rapidlyexpandedrenewableenergydevelopment,yetfacesCentraltothesechallengesistherealitythatgreenhousealongroadtoreplaceitscoaldependence.In2019,SouthgasemissionscontributionsandthecapacitytomitigateAfricahadplannedfor30GWofvariablerenewableenergythemhavebeen,andwilllikelycontinuetobe,highlyinitsIntegratedResourcePlan(SouthAfrica,Departmentunequal(seechapters2and5).GlobalinequalitiescarryofMineralResourcesandEnergy2019),andby2022hadimplicationsforfinancingandothermeansofinternational18GWinthegridconnectionqueueand33GWofvariablesupportforenergytransitions,asdiscussedinsection6.5.renewableenergyandbatteriesatanadvancedstageofNationalinequalitiesreflectunequalaccesstoinstitutionsapproval(SouthAfricanPhotovoltaicIndustryAssociationandresources,concentrationofpoweramongelitesand2023).YettomeetSouthAfrica’sambitiousNDCtargetscontestationamongrivalpoliticalinterests.Thissectionwouldrequireaddingover6GWofvariablerenewablefocusesontheimplicationsforenergytransitionsofnationalenergyeveryyearto2030,anamountequivalenttothedevelopmentchallenges,inparticularcapacityconstraints,currentinstalledcapacityofvariablerenewableenergy,weakinstitutionsandcomplexpoliticaleconomies.aswellasinvestmentsingridbackbone(SouthAfrica,Presidency2022).Withoutenhancedinternationalfinancial41EmissionsGapReport2023:BrokenRecord6.3.1Cleanenergytransitionsarelimitedby6.3.3PoliticaleconomychallengesincludecapacityconstraintsentrenchedfossilfuelinterestsEnsuringthatcleanenergytransitionprocessesaccountUndertakingcleanenergytransitionsrequiresstructuralfornationalcircumstancesrequiresdeepcapacity,changesinpoliticaleconomy,withimpactsonexistingincludingautonomytotakedecisionsinthenationaleconomicstructuresandinterestsaswellasnewpoliticalinterest,inclusiveprocesses,andthebuildingandsharingconstituencies.Forexample,inSouthAfrica,thehistoricallyofrequiredknowledge(KlinskyandSagar2022).YetpowerfulallianceofcoalminingandthemainelectricitydifferencesinwealthmirrordifferencesincapacitiestoutilityEskomhavemaintainedtheirdefenceofincumbentundertakeacleanenergytransition.Low-incomecountriesfossilfuel,whilenewalliancescomposedofpartsofthetypicallyhavelimitedresourcesandareoftensaddledwithStateandcivilsocietyhavelinedupinfavourofexpandingweakinstitutionsandgovernancemechanismstoplanandrenewables(Hochstetler2020).Thechasmbetweenthesemanagetheirtransitions(Sokona2021).coalitionshasmadeitdifficultforpolicymakerstocommitfullytoeitherclimateactionorrenewableenergy.InLatinYet,capacity-buildingprocessesareoftenshapedmorebyAmericancountrieswherelivestockcultivationcontributestheinterestsofinternationalactorsthanbylocalneeds(Nagotodeforestation,mitigationmaythreatenthepoliticalandKrott2020).Forexample,mitigationactionsfocusedinfluenceofthecattleindustryandincreasetheimportanceonclimateoutcomesmayprivilegetrainingandknowledgeoffoodpoliciestoreducebeefdemand(Dumasetal.2022).acquisitiononclimatetransparency,suchasemissionsreporting,overknowledgeonsocialbenefitsorassessingThepoliticalacceptabilityofsustainingtransitionsdependsneedsforinternationalsupport(KlinskyandSagar2022).onhowtheireconomicimpactsaredistributedthroughSuch“knowledgepolitics”alsorequireattentionincapacity-labourshifts,energypriceandmacroeconomicimpacts.buildingprocesses.Labourretrenchmentisaconcernincoal-dependenteconomiessuchasChina,India,Indonesia,andSouth6.3.2InstitutionalrequirementsaresubstantialAfrica.Becausethecoalsectorsupportsmillionsofpeopledirectlyandindirectly,aphase-downfromcoalwouldalsoCleanenergytransitionprocessesarecharacterizedbycausespillovereffectsinlocaleconomiesandcommunitylock-insandpathdependence(Sovacool2016),andrequirewell-being(RuppertBulmeretal.2021).Similarly,Algeriastructuralchangesincludingbuildingnewindustries,employs350,000workersdirectlyand1.7millionpeopleinfrastructureandhumancapital(MuttittandKartha2020).indirectlyinitsoilandgassector.Notleast,thetransitionClimateinstitutions,notwithstandingpoliticalchallengesoutoffossilfuelscouldbringmacroeconomicshockswithinestablishingthem,canhelpshapepolicyandservepoliticaleconomyimplications.Forexample,countriesgovernancefunctionsneededforlow-carbontransitionsthatseektoexploitfossilfuelreservesforfutureeconomic(Dubashetal.2021).growthfacetheriskofdwindlingrevenuesastherestoftheworldtransitionstorenewables-basedeconomies(Solano-InstitutionsthatenablecoordinationacrosssectorareasRodriquezetal.2021).arenecessarybecausemultipleandcompetinginstitutionsoperatinginsilosareofteninchargeofenergy-and6.4Cleanenergytransitionsalsobringdevelopment-relatedsectors,withimplicationsforcarbonopportunitiesoutcomes(Newell2019).EnhancingpolicycoherencethroughcoordinationbetweenenergyandtherestoftheInadditiontochallenges,lowemissionenergytransitionseconomyiscriticaltocapitalizeonthesystemicbenefitsbringpotentialopportunitiesforlow-andmiddle-incomefromtheenergytransition(Shawooetal.2021).Forcountries,includingmultiplesocialandenvironmentalco-example,financeministriesarewellplacedtointroducebenefits.Manymitigationoptionsbringbothsynergiesanddevelopment-andclimate-relatedconditionalitiestotheusetrade-offswiththeSustainableDevelopmentGoals,butofpublicfunds.theprevalenceofsynergiesisgreaterthanoftrade-offs(Allanetal.2021p.22).Forexample,sustainabletransportThecarefuldesignofdecarbonizationprocessescanhelpstrategiescouldyieldco-benefitssuchasairqualityandbuildconsensusforcomplextransitionsandbroadenthehealthimprovements,equitableaccesstotransportationknowledgebaseonwhichtheyarebuilt.Forexample,Costaservicesincludingenhancedgenderequality,andimprovedRicaputinplaceadata-driven,stakeholder-co-designedaccesstoeducation(Doblas-Reyesetal.2021,p.1389).NationalDecarbonizationPlan,whichhasalsobeenanWideningaccesstocleancookingoptionscouldimproveimportantfoundationonwhichsignificantinternationalhealthoutcomesconsiderably,especiallyforwomen,whileconcessionalfinancewasmobilized(Jaramilloetal.2023).reducingforestdegradationanddeforestation.RealizingElementsofthisapproachincludeadeliberativeprocess,theseco-benefitsalsodependsonpolicychoicesthatandcarefullycraftedlong-termscenariosbasedonopen-intentionallymaximizeco-benefitsandminimizetrade-offs.sourcemodelswithscopeforinputfrombroadresearch,practiceandpolicycommunities.42EmissionsGapReport2023:BrokenRecordThescopeforthesesectoralco-benefitsiswellrecognized.inthepowersector(Winkleretal.2022).ShiftsininvestmentsThissectionfocusesonthecomplementaryquestionofhowtowardssharedinfrastructurethatservebasicneeds,suchbroaderstructuraleconomicchangescouldhelpgenerateashealthoreducationfacilities,andwaterandsanitation,opportunities,acrossawidespectrumoflow-andmiddle-wouldreduceinequalityinhumandevelopmentandlimitincomecountries,whilekeepingtheirspecificnationalemissionsgrowth(Kikstraetal.2021;Millward-Hopkinsandcontextsinmind.Itdiscussestwosuchsetsofopportunities:Oswald2023).demand-sidechangesthatresultinmoreefficientgrowth;andmovingupthecleanenergysupplychain.6.4.2Participatingincleanenergysupplychainscanbringjobsandrevenue6.4.1Demand-sidechangesbringefficiencyandsocialbenefitsMovingfrommineralextractiontothefinalproductendofthecleanenergysupplychainprovidesconsiderableDemand-sidechangescouldbringsocialbenefitsand,opportunitiestolow-andmiddle-incomecountries.Doingthroughenhancedefficiency,reducetheneedforsupplysocancreatenewrevenueopportunitiesfortheindustryexpansion(Creutzigetal.2018).Themostenergy-intensiveandnewjobsforthepublic,and,insomecases,helpfossildemandsectorsincludehousing,transportandfood(Raofuel-dependenteconomiestodiversify.etal.2019).Avoidinglock-ininthesesectorsrequireshiftinghowlow-andmiddle-incomecountriesdevelopurbanTheriseintheelectricvehicleindustrywillrequireamaterialareaswherethemostenergydemandgrowthandlock-inshiftfromaliquid-basedtoaminerals-intensiveenergyisexpected.Giventhatfuturedemandgrowthisdominatedsystem,estimatedtoresultinasix-foldincreaseinmineralbyurbanareas,thepotentialforavoidedemissionsisinputsin2040relativetotoday(IEA2021a).By2025,thegreatestthere.sixsegmentsoftheUS$8.8trillionglobalelectricvehiclebatteriesvaluechainwillincludemineralexploitation(US$11Becauseurbanandindustrialinfrastructureisstillbeingbillion),minerals-to-metalstransformation(US$44billion),builtinlow-andmiddle-incomecountries,thesecountriesproductionofprecursors(US$217billion),batterycellcanavoidlockingintoenergy-andcarbon-intensivemanufacture(US$387billion),cellassembly(US$1.8trillion)infrastructure,therebyavoidingfutureemissions(Lwasaandelectricvehiclemanufacture(atleastUS$7trillion).etal.2022).UrbanplanningandhousingpoliciesthatMovingfromthefirstsegmenttothethirdwouldallowencouragemoredenseandaffordablemultifamilyhousingcountriesinCentralAfricatocapturegainsbeyondtheverycanreducecommutingneedsandbuildingenergydemand.firstandleastprofitablestageofthechain(BloombergNEFBuildingenergyefficiencymeasures,coupledwithfinancial2021;OuedraogoandGasser2022).supporttomaintainaffordability,suchasforappliancesandhousingconstructionpractices,cansavehouseholdsLow-andmiddle-incomecountriestodayarecompetitiveinmoneyandreduceemissions.Inthetransportsector,shiftsexplorationandminingofcriticalminerals,butlackcapacityfrominvestmentsinroadinfrastructuretofacilitatesharedforprocessingorrefiningoperations,cellassembly,andtransit,suchasbuses,masstransitrailorevencar-sharing,manufacturingofcomponentsnecessaryforelectricvehiclecansignificantlyreducetransport-relatedemissions,withproduction.Forexample,almostallthecobaltminedinthenumeroussocialandenvironmentalbenefits(McCollumDemocraticRepublicoftheCongoisexportedtoBelgiumetal.2018).orChinaforrefining,withinsignificanteconomicbenefitsaccruingtothecountry(Bridleetal.2021).AchievingtheInthefoodsector,energyinvestmentsatscalearetransformativepotentialoflower-andmiddle-incomeessentialtosupportexpectedgrowthinfoodproductioncountries’resourcesrequiresanewwayofthinkingof70percentby2050tomeettheneedsofagrowingaboutmineralsandtheirplaceintheindustrializationandpopulation,increasedurbanization,anddietarychangesdiversificationofeconomies.(InternationalRenewableEnergyAgency[IRENA]andFoodandAgricultureOrganizationoftheUnitedNationsLow-andmiddle-incomecountriesthathavebeensuccessful[FAO]2021).Forexample,improvedaccesstomodernintakingadvantageofdownstreamopportunitiesintheenergyforcoolingandmechanicalpowerintheagrifoodrenewablesvaluechainhavedonesothroughthesupportsupplychaincanreducewasteinstorageandincreaseofrobustinstitutions,cross-sectoralcoordination,industrialproductivityinagroprocessing.Policiesthatsupportdietspoliciestostrengthenlocalmanufacturingcapabilities,andwithhealthycoarsegrains(Davisetal.2019)andlessmeatdevelopmentofexportpartnerships.China’sPVprogramme,(Willetetal.2019)canhavenutritional,environmentalandforexample,hasestablishedanindustrialecosystemwitheconomicbenefits.strongsynergybetweenupstreamanddownstreamsectors.China’sPVindustrypromotedsustainedcooperationShiftsindevelopmentstrategiesthatprioritizethepoororbetweenlocalfirms,universitiesandindustryassociationsbroadpublicinterestsoverprivateconsumptioncanreduceacrossthePVvaluechain.Startingfromportablelightingemissionsgrowth.InSouthAfrica,modelsshowthatdevices,thenmovingtosolarPVpanels,andultimatelymacroeconomicpoliciesthatprioritizeenergysecurityandcreatingdomesticcellandwaferindustryforexport,theemploymentcanfavourrenewablesoverfossilinvestmentsChinesePVindustryhasgraduallybecomeoneofthepillars43EmissionsGapReport2023:BrokenRecordoftheChinesemanufacturingsector(Huangetal.2016;implementation,asumclosetooneyearofAfrica’sGDPinZhangandGallagher2016).Conversely,India’sNationalSolarcurrentterms(UNECA2020).Missionprioritizedlow-costdeploymentofPVoverbuildingdomesticmanufacturingcapability,payinginsufficientEnablinganenergytransitioninlow-andmiddle-incomeattentiontotrainingandresearchanddevelopment(R&D)countrieswillrequirescalingupfinancialflowsinstrained(Behuria2020).India’srelativelylimitedsuccessincreatingfinancialsystems.Inmanycases,challengesoffoodopportunitiesforlocalizingmanufacturinghasthereforesovereignty,energysovereignty,andthelowvalue-addedresultedinhighdependenceonsolarPVimports.contentofexportsrelativetoimports(Sokonaetal.2023)contributetostructuraltradedeficits,weakenedcurrenciesPriorexpertiseinrelatedindustriesmatters.Forinstance,andpersistentindebtedness.Inlow-andmiddle-incomeVietNamhashadsubstantialexperienceproducingcountrieswithfossilfuelindustries,affordablefinanceinternalcombustionenginebasedtwo-wheelersforseveralisimportantnotonlyforscalingcleanenergy,butalsotodecades,andhasbecomethesecond-largestelectricaltwo-managetheeconomicshocksfromretiringfossilfuelassets.wheelersmarketworldwide,secondonlytoChina(HiepetForexample,coal-firedpowerplantssupporttheviabilityofal.2023).Aspartoftheeffortforupscalingelectricvehicles,India’srailsystemthroughcoalfreightchargesandfinancetheGovernmentofVietNamagreedtoreducetheexcisestatebudgets(Tongia,SehgalandKamboj[eds.]2020).taxondomesticallymanufactured,assembledandimportedMoreover,reductioninfossilfuelexportscouldthreatenelectriccars.ApreferentialimporttaxonrawmaterialsfiscalsolvencyincountriessuchasAlgeria,whereoilandandcomponentsiscurrentlyunderreview(Le,Posadagasrevenuesaccountedfor38percentofgovernmentandYang2022).However,VietNamstilllacksaclearandrevenuebetween2016and2021,increasingtomorethancomprehensivee-mobilitypolicyandregulatoryframework50percentin2022and2023(OxfordAnalytica2023).toplanforsignificantfutureinvestment.Againstthischallengingbackdrop,energytransitionsinStartingdownthepathwaytoharnessgainsfromthelow-andmiddle-incomecountriesareimpededbynominalenergysupplychainmayrequiretakingearlyboldsteps.Forfinancingcoststhatareuptoseventimeshigherthanthoseinstance,Perureformeditscopperroyaltyregimein2021intheUnitedStatesofAmericaandEurope(IEA2021c).Thetoincreasegovernmentrevenuefromtheminingsector.weightedaveragecostofcapitalvariedbetween5and21Indonesiahasbannedtheexportofunprocessednickeltopercentforsolarandwindprojectsinlower-andmiddle-encouragevalue-addedactivitieswithinitsborders.Namibiaincomecountries(seefigure6.2).TheregionalweightedhasalsobeenactivelyexploringthedevelopmentofgreenaveragecostofcapitalforsolarPVin2021was7percentinhydrogen,mainlyforexport.AlthoughitlackstheindustrialAfricaandAsiaand4percentinEurope(IRENA2022).Somecapacityandsectoralsystemcapabilitiesofcountrieslow-andmiddle-incomecountriesfaceaclimateinvestmentfurtherahead,Namibiahasestablishedstronginternationaltrap,wherethehighcostsofcapitalthatlimitfinancialflowsR&Dinteractionsandcollaborationstoensurethesocialaredueinparttolimitedexperiencewiththesemarkets.benefitsofemploymentandlocallearningtakeplace(UnitedPerceivedrisksofinvestmentareexacerbatedbysovereignNationsConferenceonTradeandDevelopment2023).Thecreditscoresandratings,andthelackofconcessionalinitiativeisexpectedtocreateanadditional600,000jobsfinance,catalyticfinanceandguarantees(Mithatcanetby2040inNamibia,butthesocial,politicalandresource-al.2022).relatedriskswouldneedtobecarefullyassessed.Reducingcostsofcapitalcansignificantlyincreasethe6.5Adequateinternationalfinanceisanscopeforlow-carbonenergyinvestmentstoprovideessentialenablerofcleanenergyaffordableenergyservicestowiderpopulations(Amelitransitionsetal.2021).Todoso,reformsareneededininternationalfinanceaswellasindomesticmarketswherecleanenergyDecarbonizingenergysystemsinlow-andmiddle-incomeissold.Internationalclimatefinanceneedstobere-orientedcountriesrequiresmobilizingcapitalatanunprecedentedtowardslong-tenorandlow-interestconcessionalfinance,scale.Withoutaffordableexternalclimatefinanceguaranteesandcatalyticfinanceneedtobeprovided,assistance,themajorityoflow-andmiddle-incomecountriesandnewpublicandprivatesourcesoffinanceshouldbewillstruggletoachievetheirdevelopmentobjectivesandencouraged.Newinnovativemodelsforfinanceareneededreduceemissions.GlobalcleanenergyinvestmentstandsatthatrestoredebtsustainabilityandrestructuretherulesofUS$1.3trilliontoday,andisprojectedtorisetoUS$2trillioninternationalfinancialinstitutions(UnitedNations2023).by2030(thoughUS$4trillionisneededtostayontrackIndomesticmarkets,risksofenergyoff-takeneedtobewiththenet-zeroscenario)(IEA2021b).Low-andmiddle-reducedbyimprovingthefinancialviabilityofpurchasingincomecountriesaccountfortwo-thirdsoftheglobalutilities,developingreliablemarketdesignandrules,andpopulation,yetreceivedonlyafifthofallenergytransitionsstrengtheningelectricgridstoensurereliabledelivery.investments(IEA2021c).TheimplementationoftheNDCsalone,forinstanceinAfrica,areprojectedtorequirecloseFurther,climatefinanceislessforthcomingforcountriestoUS$3trillionofconditionalandunconditionalfinanceforthatneeditthemost.The46leastdevelopedcountriesreceived2.8billioninenergytransitioninvestmentsin44EmissionsGapReport2023:BrokenRecord2018,anamountlowerthaninpreviousyears.DespitethebutrequireconsiderableadditionalinvestmentmobilizationenormousrenewablepotentialandneedtomeetenergyandfurtherassessmentoftheirabilitytoaddressaccessneedsinAfrica,only2percentofglobalinvestmentdevelopmentobjectives.TheamountoffundinginaJETPflowedintoAfricabetween2000and2020,ofwhich75perissmallcomparedtothescalerequiredforcleanenergycentwasconcentratedinEgypt,Kenya,MoroccoandSouthtransition.However,theyofferaprocesstohelpdevelopAfrica(IEA,IRENA,UnitedNationsStatisticsDivision,Worldcapacityandgovernance.Forexample,inSouthAfricaBankandWHO2021).theJETPcatalysedthedevelopmentofacomprehensivecountryinvestmentplanthatismuchbigger(US$98billion)TheemergingJustEnergyTransitionPartnerships(JETPs)thanwhatwasonoffer(SouthAfrica,Presidency2022).betweeninternationalfinanceprovidersandlow-andIndonesiaandVietNamhaveagreementstoincreasetheirmiddle-incomecountriesarefinancepackagesintendedtocommitmenttorenewableenergyandreducetheirpipelinesupportcountry-leddecarbonizationstrategiesconsistentofcoalgenerationexpansionwithinternationalassistancewithnationaldevelopmentpriorities.Theyshowpromise,(SoutheastAsiaEnergyTransitionPartnership2022).Figure6.2WeightedaveragecostofcapitalforsolarPVprojectsagainstpercapitagrossnationalincomeforselectcountriesin2021.Grossnationalincomepercapita(US$)Weightedaveragecostofcapital(%)50,00070,9001540,0001230,000920,000610,000300BurkinaFasoRwandaUgandaEthiopiaSenegalKenyaGhanaEgyptTunisiaMoroccoAlgeriaNamibiaSouthAfricaMauritiusPakistanIndiaIslamicRep.ofIranSriLankaIndonesiaThailandChinaNicaraguaBoliviaEcuadorBrazilMexicoArgentinaChileUruguayUSAEuropeAfricaAsiaAmericasEuropeCountrycategoryLow-incomeLower-middle-incomeUpper-middle-incomeHigh-incomeExcludinglower-middle-incomecountriesSource:AdaptedfromIRENA(2022).Grossnationalincome(currentUS$,WorldBankAtlasmethod).6.6Low-andmiddle-incomecountriespointistodevelopnationallyownedandcontext-specificcantakeconcretestepstowardscleanvisionsandstrategiesforenergyfuturesthatbringtogetherenergytransitionsdevelopmentandcleanenergyimperatives.Todosorequireslow-andmiddle-incomecountriestoundertakeinstitutionalThechallengesonthepathtocleanenergytransitioninlow-strengthening.Andtorealizetheseambitiousvisionswillandmiddle-incomecountriesareconsiderable.However,requiremobilizinginternationalsupport.Thissectionlaysthereareconcretestepsthatthislargegroupofcountriesoutconcretemeasurestowardseachofthesesteps.Takencantaketowardsacceleratedenergytransition.Thestartingtogether,thesestepscanassistlower-andmiddle-income45EmissionsGapReport2023:BrokenRecordcountries’Governmentsinpreparinginvestment-readytechnologies.Thisrequiresidentifyingvaluechainactivitiesclimateanddevelopmentplansthatscaleupmitigationthatcanfeasiblybepickedupbylocalfirmsandintroducingambitionthrougharticulatedpoliciesandstrategies,andenablingmeasuressuchaslocalcontentincentives,theirinvestmentneeds.businessincubationinitiatives,domesticR&Dandhumancapitalinvestments,andpromotionoflow-carbonindustrial6.6.1Developdomesticstrategiestowardsclusters(Lemaetal.2021).Regionalcoordinationmayenableequitable,efficientandcleangrowthlow-andmiddle-incomecountriestobuildoncomparativestrengthsinrawmaterials,manufacturing,andtraderoutes.ShiftingdevelopmentpathwaystowardssustainabilityForexample,entitiessuchastheAfricanContinentalFree-allowsmitigationconsiderationstobeincorporatedTradeAreacanhelpdevelopanefficientregionallow-carbonalongsideabroadsetofdevelopmentalobjectives(WinklerindustrialecosystembyprovidinganimpetusforAfricanetal.2022).ButtodosorequiresdevelopingenergyGovernmentstoaddressinfrastructuregaps,improveandtransitionstrategiesthataccountforbothsynergiesandstreamlinesupplychains,improvemanufacturingcapacity,trade-offsacrossdevelopmentandemissionsoutcomesandfostercross-bordercooperation.inspecificnationalcontexts.Atleastthreeareasmaybeparticularlysalienttolower-andmiddle-incomecountries’6.6.3Developinstitutionstosupportenergystrategies:encouragingenergy-efficientandwell-being-transitionsenhancingdemandgrowth;developingeconomicandsocialtransitionplansforfossildependence;andexploitingcleanToenablelow-andmiddle-incomecountries’Governmentsenergysupplychains.totakeownershipoftheirmitigationstrategies,developingappropriatedomesticinstitutionsatnationalandsubnational6.6.2Avoidemissionsthroughdemand-sidelevelsisnecessary(Dubashetal.2021).Institutionsmeasurescanenablestrategicthinking,ensurecoordinationforimplementation,andstrengthengender-responsiveinclusiveBecausemanylow-andmiddle-incomecountrieshavenotprocessesfordesigning,assessing,andimplementingfullylockedintoinfrastructureorconsumptionpatterns,policiesthatsafeguardpeople’sinterestsduringtransition.focusedattentiontothefollowingaspectsofenergyAppropriateinstitutionaldevelopmentisapreconditiondemandcouldavoidfutureemissions:inemergingurbanforcountriestoexploitnewgreeneconomyopportunities,areas,preemptiveurbanplanningwithelectricpublictransit,asdiscussedabove.Identifyingstrategicopportunities,affordable,efficienthousingandcompactdesign;socialcoordinatingandharnessingdomesticcapabilitiestomoveserviceexpansionthroughsharedinfrastructuresuchasdownthesupplychain,workinginpartnershipwithdomestichealth,education,waterandsanitation;andsupportingindustry,andestablishingpartnershipsandmarketsefficientfoodsystemswithdiversegrains,whichlikelyglobally,allrequireconsiderableStatecapacity.Becauseentailslessemissions-intensivegrowth,andpotentiallyoftheircross-sectoralnature,managingenergytransitionscontributestogenderequalityandyouthemploymentwillrequirecoordinatingacrossgovernmentdepartments(IRENAandFAO2021).andjurisdictions.Andbecausetheyriskcreatingwinnersandlosers,theyrequireopenprocessesthatensuretheDevelopastrategicplanaroundfossilfueluse:Becauseofinterestsofthepoorarerepresented.Thiscallsforlower-theneedforrapidglobalphase-downofallfossilfuels,low-andmiddle-incomecountries’Governmentstotakegreaterandmiddle-incomecountriesshoulddevelopstrategicplansresponsibilityforsettinguptransparentandaccountableforexistingorplannedfossilfueluse–domesticorexports.governancesystemswithimprovedpublicadministration.Theseplansshouldexaminethescopeforeconomicdiversificationandalternativestofossilfuelexpansion,the6.6.4Createimprovedconditionsforinternationaleconomicrisksassociatedwithstrandingexistingassets,financialassistanceandtheneedforsocialprotectionmechanismstomanagetransitionshockssuchasunemploymentandhigherenergyAcleanenergytransitionrequiresinternationalsupport,prices.Theprocessofformulatingthesestrategicplansconsistentwithoperationalizingtheprincipleofcommonshouldbeinclusiveandgender-responsive,toidentifyandbutdifferentiatedresponsibilitiesandrespectivecapabilitiesinvolveaffectedcommunities.(Klinskyetal.2017).Inpracticalterms,globalclimatemitigationfinancialflowsfromNorthAmericaandEuropeFostergreenindustrialopportunities:Capturingeconomictootherregionswouldhavetoincreasetohundredsofandsocialgainsfromthelarge-scaledeploymentofbillionstoreconciledevelopmentneedsandfaireffortrenewableenergyandstoragetechnologiesisakeysharing(Pachaurietal.2022).Tofacilitatesuchanincreasedevelopmentobjective(UnitedNationsEnvironmentininternationalflows,thestructureofinternationalfinanceProgramme2019).Todoso,extraction-dependentlow-andneedsreform,domesticmarketconditionsneedtobemiddle-incomecountriescouldbroadentheirinvolvementimproved,andcountryplatformsforfacilitatingdialogueincleanenergysupplychainsfromoreexportstohigher-needtobedeveloped,aslaidoutbelow.marginactivitiessuchasprocessingandmanufacturing46EmissionsGapReport2023:BrokenRecordFundamentaltothegoalofrestructuringinternationalNDCsfor2030areunconditional.However,somelow-financeistoreducecostsofcapital.Thiswillrequireandmiddle-incomecountrieshavesubmittedconditionalde-riskingearly-stageinvestment,enablinglong-tenorandNDCs–i.e.commitmentswithmoreambitiousemissionlow-costconcessionalfinance,introducingcatalyticfinancereductiontargetsfor2030thanthoseofunconditionalandguarantees,andcreatingmarketconditionsthatprovideNDCs,butwhicharecontingentontheprovisionofsupport.long-termcertainty(Mithatcanetal.2022).MobilizingcapitalCurrentNDCsoftenlackspecificityonpoliciesandonatthescalerequiredmayrequireattractingprivatecapitalinvestmentneeds(Pauwetal.2018).Afewcountrieslistthroughblendedcapitalwithinternationalordomesticpoliciesassociatedwithhigherambition,whilesomeothersfinancialinstitutions(IEA2021c).havemerelylistedsectoralpoliciesintheirNDC.ThenextroundofNDCsofferstheopportunityforlow-andmiddle-Domesticmarketconditionsneedtoprovideinvestorincomecountriestodeveloproadmapsformoreambitiousconfidence.Insomelow-andmiddle-incomecountries,low-carbondevelopmentfuturesthatincludepolicieswithmarketdesignrulesandregulationsthatenabletheaccompanyingtargetsandinvestmentneeds,againstprivatesectortoinvestincleanenergyneedtobeputinwhichfinanceandtechnologysupportcanbenegotiatedplace(Fazekasetal.2022).Stableandrobustlegalandandimplementationprogresscanbemeasured.Theregulatoryinstitutionsareimportanttoinvestors.Domestictwenty-eighthsessionoftheConferenceofthePartiesfinancialinstitutionscanprovidesupporttoenhancethetotheUnitedNationsFrameworkConventiononClimatefinancialviabilityofprojects.TheIndiaInfrastructureProjectChange(COP28)isatimelyopportunitytocallonlow-andDevelopmentFundisanexampleofsuchaninstitutionmiddle-incomecountriestoleadthepreparationofsuchthatboreearly-stageriskinlargeinfrastructureprojects.3plans,andforindustrializedcountriestocommitfinancialAsdiscussedinsection6.5,theviabilityofcleanenergyandtechnicalsupporttowardsthem.investmentsinelectricityproductionalsodependsonreliableelectricitypolicies,gridreliabilityandonthefinancialInaddition,JETPsofferasemi-structuredapproachtolinkviabilityofutilities.supporttolow-carbondevelopmentoutcomes.However,theyarelikelytobemoreusefuliftheyembraceabroadMatchingreformedandscaledupinternationalfinancedomesticvisionfornationaleconomictransformationandwithdomesticmitigationstrategiesrequiresappropriatefundbroaderprogrammesratherthanindividualprojectsmechanismstofacilitateinternationalcooperation.forcoalorotherfossil-fuelphase-down.Moreover,theycanofferaprocesstohelpdevelopcapacityandgovernanceThepreparationofthenextroundofNDCsdueinlessinkeyareas,suchasprojecttracking,datamanagementthantwoyears,whichwillincludemitigationtargetsforandoutcomemeasurement,andidentifyneedsinlinewith2035,providesanopportunityinthiscontext.Mostofthenationalgoalsandavisionofajusttransition.3Seehttps://ppp.worldbank.org/public-private-partnership/library/india-project-development-fund-ipdf.47EmissionsGapReport2023:BrokenRecord7TheroleofcarbondioxideremovalinachievingtheParisAgreement’slong-termtemperaturegoalLeadauthors:OliverGeden(GermanInstituteforInternationalandSecurityAffairs,Germany),MaiBui(ImperialCollegeLondon,UnitedKingdom),MatthewGidden(InternationalInstituteforAppliedSystemsAnalysis[IIASA],Austria)andMercedesBustamante(UniversidadedeBrasília,Brazil)Contributingauthors:HollyBuck(StateUniversityofNewYorkatBuffalo,UnitedStatesofAmerica),SabineFuss(MercatorResearchInstituteonGlobalCommonsandClimateChange,Germany),JanMinx(MercatorResearchInstituteonGlobalCommonsandClimateChange,Germany),GregoryNemet(UniversityofWisconsin-Madison,UnitedStatesofAmerica),JoanaPortugal-Pereira(GraduateSchoolofEngineering[COPPE],UniversidadeFederaldoRiodeJaneiro,Brazil),GauravGanti(ClimateAnalytics,Germany),StephanieRoe(WorldWideFundforNature[WWF],UnitedStatesofAmerica),SteveSmith(UniversityofOxford,UnitedKingdom)andJuliaPongratz(UniversityofMunichandMaxPlanckInstituteforMeteorology,Germany)7.1Introduction(GHG)emissions.Thegigaton-levelapplicationofCDRinthesescenariosimplyaneedforsubstantialgrowthinUndercurrentorplannedemissionreductionefforts,asnascenttechnologies.Forthistohappen,bothnationalpresentedinchapter4,theexpandeduseofcarbondioxideandinternationalpolicyandgovernanceregimeswillneedremoval(CDR)isunavoidableiftheParisAgreementlong-tobedevelopedtobetterincorporateCDRconstraintstermtemperaturegoalistoremainwithinreach.andopportunities.BeyondacommitmenttoformallyintegratingCDRinexistingclimatepolicyframeworks,fourCDRisalreadybeingdeployed,mainlyintheformofimportantareasforpoliticalactioncanbeidentified:settingconventionalland-basedmethodsandmostlyintheandsignallingpriorities;developingrobustmeasurement,developingcountries.Asdescribedinsection7.1.1,therereportingandverificationsystems;harnessingsynergiesarevariouscurrentandemergingapproachesforCDR.andco-benefits;andacceleratingneededinnovation.Theseapproachesareatvaryinglevelsofmaturityandhavedifferenttypesofrisksthatareeithermethod-or7.1.1CDRmethodsandcharacteristicsdifferimplementation-specific(e.g.relatingtolandcompetition,sustainability,biodiversity,durabilityorhighenergyAsaresultofthecontinuedincreaseinGHGemissionsrequirements)orofamoresystemicnature,suchastheworldwide,CDRhasgraduallybecomeanincreasinglypotentialtounderminethepriorityofemissionreductionsessentialelementofscenariosconsistentwithlimitingoroverestimatingthefutureefficacyofCDR.globalwarmingto1.5°Corwellbelow2°C(Pathaketal.2022;Riahietal.2022).AchievingthesetargetswillstillItisimportanttonotethatallmitigationscenariosassessedrequiretherapiddecarbonizationofindustry,transport,heatbytheIntergovernmentalPanelonClimateChange(IPCC)andpowersystems,butwillneedtobecombinedwiththe(Riahietal.2022)thatarealignedwiththeParisAgreementscale-upofCDRtechnologiestoaddressresidualemissionstemperaturegoalmakeuseofCDRtosomeextent,fromso-calledhard-to-abatesectors,suchasaviation,especiallytoachieveandevengobeyondnet-zerocarbonshipping,heavyindustryandsomeagriculturalactivities.dioxide(CO2)emissionsandeventuallyallgreenhousegas48EmissionsGapReport2023:BrokenRecordWhendiscussingCDR,itisvitaltoclearlydifferentiateandwillthereforeneedtobebackedbyimprovedinventorybetweenasetofrelatedbutdifferentoptionsformanagingmethodsforcredibility.Otherso-callednovelCDRmethodscarbonemissions:areintheearlystagesofdevelopment,orhavereachedpilot,demonstrationandevencommercializationstages,▶CDRisonlythedirectremovalofCO2fromtheforexamplebioenergywithcarboncaptureandstorage,directaircarboncaptureandstorage,biocharorenhancedatmosphereanditsdurablestorageingeological,weathering(Smithetal.2023).terrestrialoroceanreservoirs,orinproducts.▶WhilecarboncaptureandstorageandcarboncaptureCDRefficiencyisthefractionofCO2capturedthatispermanentlyremovedfromtheatmosphere,havingandutilizationsharecomponentswithsomeCDRalsoaccountedforanyGHGemissionsarisingalongthesupplychain.CDRpotentialandscalabilityofeachCDRmethods,theirapplicationonCO2emissionsfromimplementationpathwaywilldependonthemethodused.SpecificCDRapproacheswillhavedifferentco-benefits(e.g.fossilfuelscanneverresultinCO2removalfromthesoilimprovements),risksandadverseconsequences(e.g.landcompetitionforfoodproduction).atmosphere.ThetimescaleofCDRfromdifferentCDRapproachesisan▶Carboncaptureandstorageinvolvesthecaptureofimportantfactortoconsiderintermsofthepossiblespeedatwhichglobalwarmingisreduced.Forinstance,forestCO2frompoint-sourceemissions,industrialprocesscarbonsinkscantakedecadestocenturiestoestablishandsaturate,whilethemineralcarbonationprocessofenhancedstreamsortheatmosphere,whichisthentransferredrockweatheringcantakemonthstoyears,orevendecadestoproceedtocompletion.Incontrast,directaircaptureintopermanentCO2storage(e.g.long-termgeologicalremovesCO2onmuchmoreimmediatetimescales(Chiquieretal.2022).storage).SomeCDRprocessesrequirecarbonCDRpermanenceisthedurationoftimeforwhichthecaptureandstoragetechnologiestobeconsideredforcapturedcarbonisstoredandisalsoreferredtoascarbonstoragedurability.DependingontheCDRmethod,thiscanCDR(e.g.bioenergywithcarboncaptureandstoragevaryfromdecadestothousandsofyears,orevenlonger(figure7.1).Eachcarbonstorageoptionwillhavesomelevelordirectaircarboncaptureandstorage).ofriskofreversal,whichreferstotheriskassociatedwiththere-releaseofthestoredcarbonthroughanunintended▶Carboncaptureandutilizationinvolvesthecaptureofeventoractivity.CO2fromapointsourceortheatmosphere,whichisToaccuratelymeasurenetCDR,measurement,reportingandverificationmethodologiesarebeingdevelopedfordifferentthenusedtoproduceotherproducts,suchasfuelsCDRoptions,whichwillprovidestandardizedguidanceonprojecteligibilitycriteria,requiredfieldmeasurements,bestandchemicals.Thekeydifferenceofthisapproachpracticeprinciples(e.g.toavoidthereversalofCDR)andlifecycleassessmentboundariestoquantifythecarbonfromCDRandcarboncaptureandstorageisthatstoredandemitted.Theeaseofmeasurement,reportingandverificationwillhaveanimpactonthecost,feasibilitymostcarboncaptureandutilizationproductswillandeventheperceptionofCDRimplementationoptions(MercerandBurke2023).eventuallybecombusted,resultinginthere-releaseoftheCO2backintoatmosphere.MethodsthatcanprovidedirectremovalofCO2fromtheatmosphereanddurablystoreitincludeafforestation,reforestation,coastalbluecarbonmanagement,enhancedweathering,biochar,soilcarbonsequestration,directaircarboncaptureandstorage,bioenergywithcarboncaptureandstorage,oceanalkalinityenhancementandoceanfertilization(Fussetal.2018;NationalAcademiesofSciences,Engineering,andMedicine2019;Babikeretal.2022;BuiandMacDowell[eds.]2022).1Figure7.1summarizesthemaincharacteristicsofCDRmethods.Conventionalapproachessuchasafforestationandreforestationhavebeenpractisedforcenturies,butnotatthescaleassumedinIPCC-assessedmitigationscenarios,1Thereisconceptualoverlapbetweenbiologicalremovalmethods(suchasreforestation,soilcarbonsequestrationorbluecarbonmanagement)andnature-basedsolutions,definedbytheInternationalUnionforConservationofNatureasactionstoprotect,sustainablymanageandrestorenaturalormodifiedecosystemsthataddresssocietalchallenges(e.g.climatechangemitigation)effectivelyandadaptively,whilesimultaneouslyprovidinghumanwell-beingandbiodiversitybenefits(Cohen-Shachametal.2016).Consideringthatnature-basedsolutionsencompassbothemissionreductions/avoidanceandremovals,thetermisnotusedinthischapterduetothefocusonCDR.49EmissionsGapReport2023:BrokenRecordFigure7.1OverviewofCDRmethodsandtheirmaincharacteristicsTechnologyAfforest-SoilBiocharBioenergyDirectairEnhancedPeatlandBlueOceanOceanationandre-carbonwithcarbonweatheringandcarbonalkalinityfertilizationCaptureforestationseques-Land-basedcapturemanage-enhance-mechanismtrationbiologicalcarboncoastalmentcapture&andwetlandmentstoragestoragerestorationLand-basedLand-basedLand-basedChemicalGeochemicalLand-basedOcean-basedGeochemicalOcean-basedbiologicalbiologicalbiologicalbiologicalbiologicalbiologicalFeasibility/readinessScalabilityEaseofMRV<100<100100–500100–500>800100–500<100<100TooearlytoquantifyPotentialconsequencesPublicperceptionCost(US$/tCO2)StorageBuildings,vegetation,soilsGeologicalreservoirsMineralsVegetation,soilsandMineralsMarinemediumandsediments10,000orlongersedimentssedimentsPermanenceDecadestocenturiesDecadestocenturies10,000CenturiesyearsortolongermillenniaMetricperformanceSignificantModerateSomeNo/verylimitedprogressprogressprogressprogressMonitoring,reportingandverification.Forexample,easeofMRVindicatesthelevelofdevelopmentinpracticesforMRVofCO₂foragivenCDRoption.GreensuggestsMRViswelldeveloped,wherethemethodologyandtechniquesarewell-establishedandstandardizedduetocomprehensiveanddemonstrationtrialsprovidingvaluablelearnings.Redcorrespondstoeitheralackofpracticalexperience,ortechnicaldifficultieswiththeMRVdevelopmentforaCDRapproach.Note:Thecolouredcirclesindicatethelevelofprogressfordifferentmetricsbasedoncurrentdevelopmentofthetechnology.Greencorrespondstoprogressbeingclosetothetargetlevelsrequiredforwideradoption,whereasredindicatesnoprogressorlimitedprogresstowardsthetarget.Sources:AdaptedfromGedenetal.(2022)andPisciotta,DavidsandWilcox(2022).7.1.2CDRplaysdifferentrolesincurrentandfutureemissionsinthenearterm,primarilythroughsustainablemitigationland-usepracticesandtheexpansionofforestedland.Secondly,inthemediumtermitcancompensateforRobuststrategiesforlimitingaglobaltemperatureincreaseremainingemissionsfromchallengingsectors,suchasCO2includebothimmediateandstringentemissionreductionsfromindustrialactivities(e.g.theproductionofchemicals,andtheactiveremovalofCO2fromtheatmosphere.Globaliron,steelandcement)andlong-distancetransport(e.g.mitigationscenariosassessedbytheIPCCWorkingGroupaviationandshipping),aswellasmethaneandnitrousoxideIISixthAssessmentReport(WGIIAR6)showthatthemainfromagriculturalactivity(e.g.animalhusbandryandfertilizermitigationfocusuntilnet-zeroCO2emissionsarereachedisproduction),therebysupportingtheachievementofnet-onreducingemissions,mainlybysubstantiallyreducingthezeroCO2emissionsandeventuallynet-zeroGHGemissionsuseofallfossilfuels,electrifyingenergyend-usesectorslaterinthecentury.Lastly,inthelongterm,deployingCDR(includingmobility),reducingenergydemandthroughatlevelssurpassingannualresidualgrossGHGemissionsenergyefficiencymeasuresandreducingdeforestationandwouldresultinnet-negativeemissionsthatwouldthenecosystemdegradation(Riahietal.2022).facilitateadeclineintheglobalmeantemperature,andamovetowardstheParisAgreementlong-termtemperatureCDRcansupportambitiousmitigationstrategiesinthreegoalafteratemporaryovershoot(Fussetal.2014;Minxways.Firstly,itcancontributetothereductionofnetetal.2018;Rogeljetal.2018).50EmissionsGapReport2023:BrokenRecord7.2Thelandsectordominatescurrentproduction(Powisetal.2023).SmallercontributionscomeCDRlevelsfromarangeofotherprojectsthatusemethodssuchasdirectaircarboncaptureandstorageandenhancedrockCDRisalreadyinuse,withremovalsmostlytakingplaceweathering.ItisimportanttonotethatCO2capturedbyinthelandsector.ThesecarbonremovalsarelargelythesemethodsisonlyconsideredCDRifthecapturedCO2carriedoutviaconventionalmethodsthathavebeenusedisdurablyandpermanentlystored.Thus,capturedCO2thatfordecades(orevencenturies),oftenforreasonsotherisusedinshort-livedproducts(e.g.forsustainableaviationthanclimatechangemitigation.Conventionalmethodsfuels)isnotconsideredCDR.Similarly,capturedCO2thatincludeafforestation,reforestation,enhancedsoilcarbonisusedforenhancedoilrecoveryraisesseriouscarbonsequestration,peatlandandwetlandrestoration,agroforestryaccountingconcerns(Schenuitetal.2023).andforestmanagement,includingthetransferofbiomasstodurableharvestedwoodproducts,inwhichCO2istakenup7.2.1CDRcontributestoglobalmitigationpathwaysbyphotosynthesisandisstoredinterrestrialvegetation,soiloraswoodproducts.CountriesalreadyreportthesecarbonInleast-costmitigationpathwaysassessedinIPCCWIIremovalsasstandardpracticeundertheirlanduse,land-AR6andconsideredinchapter4,theamountofmitigationusechangeandforestry(LULUCF)activities.Bookkeepingachievedbyreducinggrossemissions(e.g.switchingfrommethodsestimatepresent-daydirectremovalsthroughfossilfuelstorenewableenergy,increasingenergyefficiencytheseconventionalmethodstobe2.0±0.9gigatons(Gt)oforreducingthedemandforemission-intensivegoodsandCO2peryear,primarilyfromafforestationandreforestationservices)comparedwithactivelyremovingCO2fromtheandthemanagementofexistingforests(Smithetal.2023).atmospheredependsonvariousfactors,mostnotablytheThemajority(abouttwothirds)oftheseremovalsoccuronmagnitudeandtimingofthepeaktemperatureachievedinalandinnon-AnnexIcountries(Friedlingsteinetal.2022).scenarioaswellasthedegreeoftemperaturereducedafterthepeak.Acrossallpathwaysassessedhere,theprimaryTotalCO2uptakeintheLULUCFsectorissubstantiallymitigationactivitybothinthenearandlongtermisreducinglargerthanthatestimatedforCDRalone:grossremovalsgrossemissions(figure7.2).intheLULUCFsectoramountto9.6±1.4GtCO2peryearaveragedover2012–2021,withanet(removal)fluxonInthenearterm,1.5°Cand1.8°Cpathwaysbothseeforestedlandof3.5±1.0GtCO2peryear(Friedlingsteinetal.rapidgrossemissionreductions,furtherhighlightingthe2022).However,theseadditionalremovalsthroughforestimportanceofreducingemissionsthisdecade.However,regrowtharelinkedtoland-useactivitiesthatalsocausethesepathwaysdiffer,asthe1.5°Cpathwaystendtoscaleemissions,particularlyfromslashandburnpractices,soilupland-basedcarbonremovalsmoreambitiously,resultingcarbonandproductdecompositioninforestryandtheingreaternetemissionreductionsby2035comparedclearingofforestsbyshiftingcultivation.Onlyatransferwiththe1.8°Cpathways.Inbothcases,novelCDRplaystodurablestorage,suchaslong-livedharvestedwoodarelativelyminorroleuntilatleast2035,asthevariousproducts,iscountedtowardsCDR(estimatedtoabout0.2technologiesbegintoscaleuptoprovideremovalslaterinGtCO2in2022)(Powisetal.2023).Indirectanthropogenicthesescenarios.Lessambitiousclimatetargetssuchas2°Ceffects,suchascarbonfertilization,enhancetheabilityofseeslowergrossemissionreductionsandlowerlevelsoftheLULUCFsectortoremovecarbonfromtheatmospherebothland-basedandnovelCDRincomparison(figure7.2).evenfurtherbutarecountedtowardsthenaturalterrestriallandsinkandarenotdirectlyattributabletoCDRactivitiesinNet-zeroCO2emissionsareachievedatdifferenttimesscientificassessments(Friedlingsteinetal.2022),althoughdependingonthetemperaturetarget,with1.5°CpathwaystheyarepartlyincludedinnationalGHGinventories(Grassibymid-centuryandotherpathwaysoneortwodecadesetal.2023).AdditionaleffortstoremoveCO2throughthereafter.Bythetimenet-zeroCO2emissionsarereached,enhancingnaturalsinksincludecoastalwetland(bluemostmitigationeffortsacrossallscenarioscontinuetobecarbon)management(Smithetal.2023).intheformofgrossemissionreductions,throughwhichroughly80percentoftotaleffortsoccur(figure7.2,panelOtherremovalmethods,includingbioenergywithcarbonc).Thepathwaysmostlydifferintherelativecontributioncaptureandstorage,biochar,directaircarboncaptureofland-basedCDRandnovelCDRfortheremaining20perandstorageandenhancedweathering(collectivelycentofefforts.In1.5°Cpathways,land-basedremovalsreferredtohereasnovelCDR)arecurrentlyatlowerfromafforestationandreforestationincreaseto6.2(4.5–levelsoftechnologicalreadinessandareatsmallerpilot6.8)GtCO2peryear(medianandinterquartilerange)bymid-orexperimentalscalesofimplementation(Babikeretal.century,whilenovelformsofCDRincreasetoaround4.22022).Estimatesindicatethatpresent-dayremovalsfrom(3.7–6.2)GtCO2peryear,whichisapproximately1,500timestheseapproachesaresmallcomparedwithremovalsfrommorethanpresentlevels.Becausenet-zeroCO2emissionsconventionalmethods,amountingtoapproximately2.3arereachedlaterin1.8°Cand2.0°Cpathways,largerrelativemegatons(Mt)ofCO2peryear,primarilyfromasmallnumbercontributionstototalCDRcomefromnovelmethods.Inallofbioenergywithcarboncaptureandstoragefacilities,cases,novelCDRbeginstoovertakeland-basedCDR,onwhichremove1.8MtCO2peryear,withapproximatelyaverage,byaround2060,andisthemaincontributortototal0.5MtCO2ofremovalsperyearoccurringfrombiocharCDRbytheendofthecentury.51EmissionsGapReport2023:BrokenRecordFigure7.2TheroleofemissionreductionsandCDRinleast-costpathwaysconsistentwiththeParisAgreementEmissionsreductionsstartingfrom2020levels(GtCO2e/yr)20201.5°Cscenario2°Cscenario202060-2.06060grossEmissionlevel202055GtCO2eemissionsTotalemissions505050reductions55GtCO2e-18Grossemissions4040-2740reduction-1.1Land-basedCDR-0.3-39NovelCDRTransparentarea3030-2.8-1.0-3830indicatesuncertaintyrange20202035GtCO2eNetGHGemissions1024-3.6-1.6Uncertaintyrange-7.10GtCO2e-5.6Netemissionsare2020above0dueto1010residualemissionsofotherGHGs6.87.7GtCO2eGtCO2e00Net-zeroCO22035Net-zeroCO22035(around2070)(around2050)Notes:TheleftpanelshowsglobalGHGemissionsandlevelsofCDRin2020.Thecentrepanelshowssnapshotsofgrossemissionreductions,CDRandremainingGHGemissionsin2035andatthetimeofnet-zeroCO2undera1.5°Cpathway.Therightpanelshowsthesamefora2°Cpathway.Sources:Byersetal.(2022);Riahietal.(2022);Smithetal.(2023).Certainsectorsarecrucialinfacilitatingtheselevelsofareasandcompetitionforwaterresourcesandfood,amongremovals.Theuseofbioenergywithcarboncaptureandothers(seesection7.3).storageinscenariosprovidesasourceofpowerandheatwithnet-negativeemissionsbutuseslessenergy-efficientThelevelofCDRneededin1.5°Cand2°Cscenariosheavilyprocessestoproduceelectricityandsyntheticfuelswhilereliesonpolicydecisionsandtechnologicaladvancements.drawingdownCO2emissions(Baueretal.2018;DaioglouetFurtherdelaysinnear-termemissionreductionsaresetal.2020).DirectaircarboncaptureandstorageisparticularlytoincreasefuturerelianceonCDRtoachieveambitiousdependentontheelectricitysector,bothfromanoperationaltemperaturegoalsorwillotherwisemakethemunattainableperspectiveandforitsnetcaptureefficiency.Whenpairedthiscentury(Babikeretal.2022).LimitingrelianceonCDRwithzero-carbonornet-negativeelectricitysystems,directthusrequiresambitiousactiontolimitthetotalemissionsaircarboncaptureandstoragecanremoveCO2withoutleftintheenergy–economysystem.Thesectorsthatwillresultinginasubstantiveadditionalcarbonfootprintfromitsendupcontributingsubstantialresidualemissionsinanet-operation(BistlineandBlanford2021;Fuhrmanetal.2021;zeroornet-negativefuturewilldependonbothsectorandStrefleretal.2021).OtherCDRmethods,suchasbiochar,country-levelmitigationstrategies.Hard-to-abatesectorssoilcarbonsequestrationandenhancedweathering,assuchasheavyindustry(whichincludesiron,steel,cement,wellasbioenergywithcarboncaptureandstorage,dependchemicalandfertilizerproduction)havebeenidentifiedasonagriculturalandotherenvironmentalmanagementsectorswithrelativelymoreexpensivemitigationoptions.practicesanddecarbonizedsupplychainstosupporttheirForexample,theagriculturesectorcontributessubstantialdeployment(Strefleretal.2018;Beerlingetal.2020).Asamountsofshort-livednon-CO2emissionsmainlyduetohighlightedinpreviousEmissionsGapReports,themodels’livestockhusbandryandcurrentagriculturalpractices,useofCDRoptionssuchasbioenergywithcarboncapturesuchasricecultivation,andglobaltransportsectors,andstoragedependonseveralassumptionsthatmaynotincludinglong-haulaviationandshipping,currentlyusebefullyrealisticintermsoftheavailabilityofrequiredlandhigh-emissionfuels.52EmissionsGapReport2023:BrokenRecord7.2.2Nationalclimatestrategiesfocuson7.3Therisksofdependingonlarge-scaleland-basedCDRCDRtomeetclimategoalsManycountriescurrentlyreportnet-negativeLULUCFRelyingonlarge-scaleCDRhasvariousrisks.ThemainemissionsintheirnationalGHGinventories,andthusclimate-relatedrisksincludethedurabilityofconventionalalreadyincludeland-basedCDR,whichispartoftheland-basedCDRapproachesandaninabilitytodelivernovelnegativecomponentofgrossLULUCFfluxes(seesectionCDRapproachesattheenvisagedscale,whilethemain7.2).Atpresent,manynationallydeterminedcontributionssustainability-relatedrisksincludeimpactsonbiodiversity,(NDCs)for2030andnet-zeropledgesmadebycountriesdowaterresources,nutrientloading,foodsecurityandnotspecifyhowmuchtheywilldependonCDR,northelevellivelihoods.ofresidualemissionstheyplantomaintainwhenachievingnet-zeroCO2andGHGemissiontargets(Bucketal.2023b).7.3.1ClimaterisksincludeissueswithdurabilityRemovalsfromthelandsectorformthebulkofcurrentandacceptanceCDRestimatesimpliedbyexistingNDCs,with2030levelsestimatedtobebetween2.1and2.6GtCO2ofremovalsperCurrently,terrestrialecosystemsareresponsibleforyear,dependingontheconditionalityoftheNDC.Currentabsorbingaquarterofanthropogeniccarbonemissions,withliteratureestimatesoftheimpliedlevelsofland-basedecosystemrestoration(includingtheexpansionofforestremovalsinlong-termstrategiesandnet-zeropledgesarecoverthroughreforestation)themostcost-effectiveand2.1–2.9GtCO2ofremovalsperyearby2050,thoughthisisscalableCDRoption.Themaintenanceoftheexistinglandbasedonanincompletesampleof53countries(updatedcarbonsinkanditsenhancementrepresentasubstantialfromSmithetal.2023).Itisalsoimportanttonotethatthecontributiontomitigationpledgesandscenarios.However,literatureestimatesvarybasedonwhethertheyexcludethepermanenceofcarbonstoredinforests,peatlands,indirectanthropogeniceffects(seechapter2).Ingeneral,coastalwetlandsandsoilsunderbothclimatechangeandverylittleinformationisavailablefromcountrysubmissionsdirecthumaninterventionisuncertain(Windisch,DavinandtotheUnitedNationsFrameworkConventiononClimateSeneviratne2021).StoringcarboninplantbiomassandChange(UNFCCC)intermsoftheexpecteduseofnovelsoilsislimitedtotimescalesofseveraldecadestocenturies,CDRtoachievenet-zerotargets,withaggregateestimateswiththecarbonstoringabilitysaturatingovertime.Naturalaround600–1,000MtCO2peryearby2050(Smithetal.andmanagedecosystemsarealsosubjecttonaturaland2023).Asfigure7.2illustrates,theselevelsimpliedbyanthropogenicdisturbances,suchasfires,degradationandcountrypledgesaresubstantiallybelowthelevelsinleast-deforestation,whichreleasethestoredcarbonbackintothecostpathwaysconsistentwiththeParisAgreement’slong-atmosphere.termtemperaturegoal.Thedurabilityofcarbonsequesteredinthebiosphere,Atpresent,countriesdonotseparatetheirplannedgrossincludingconventionalCDRmethods,islessthanthatofemissionreductionsfromtheirplanneduseofCDRinnovelCDRmeasuresthatrelyongeologicalstorage(seenationaltargetsetting,andthuscaninprincipleachievefigure7.1)(Fussetal.2018;NationalAcademiesofSciences,theirnationalclimatetargetsbypursuingdifferentmitigationEngineering,andMedicine2019;BuiandMacDowell[eds.]strategies.Countrieschoosetheirmitigationstrategies2022;IPCC2022a).However,thevalueoftheseoptionsforbasedontheircapabilities,whichinturnhassignificantclimatepolicy(Fuss,GolubandLubowski2021;KalkuhletimpactsontheamountofCDRrequiredtomeettheiral.2022)shouldnotbeunderestimatedastheyareoftenclimatetargets.Countrieswithsignificantdependenceonassociatedwithsubstantialecosystemservicesandland-basedremovalsmayfindtheirtargetsmoredifficultlivelihoodco-benefits(Smithetal.2019;Rusevaetal.2020).toachievesincetheseremovalsweakenwithincreasingclimateaction(Gidden,Gasseretal.2023).Forclimatepolicytobeeffective,itiscrucialtounderstandtheeffectsofCDRandemissions,potentialinterlinkagesLarge-scaleCDRdeploymentmayfacesignificantandthetimingofeffects.Duetotheimpactofnaturalecological,environmentalandsocialconstraints(Fujimoridisturbancesonforests,theriskofsuchdisturbanceshasetal.2022).Inmanyregionsoftheworld,significantbeenintegratedintoforestmanagementwithafocusonexpansionofland-basedCDRwillrequiremuchstrongertimberproductionratherthancarbonbenefits.Afewrisk-governancestructuresandwillcompetewithagriculturalaccountingmethodshavebeenintroduced,specificallyforproduction.CDRthatinvolvesenergyuse,suchasdirectairhurricanesandwildfiresatsite,regionorcountry-specificcarboncaptureandstorageandenhancedweathering,willscales(Chiquier,FajardyandMacDowell2022).requirenet-zeroenergysupplytobetrulycarbonnegative(Realmonteetal.2019;Grantetal.2021).Furthermore,WhilenovelCDRapproachesthatstorecarboninthetheseoptionsmayfaceoppositionfromcitizensconcernedgeospherehavegreaterstoragedurability,thereisariskthatwiththeimpactsofnewinfrastructure,thecostofCDR,thethetechnical,economicandpoliticalrequirementsforlarge-abilityofGovernmentstosafelyregulategeologicalCO2scaledeploymentmaynotmaterializeintime.Controversiesstorageandunintendedconsequences,amongothers(Cox,inthedebateinmanycountriesshowthatpublicacceptanceSpenceandPidgeon2020).isstilluncertainforvariousCDRmethods,particularly53EmissionsGapReport2023:BrokenRecordapproachesinvolvingcarboncaptureandstorageorthewithnovelbiologicalCDRmethods(e.g.bioenergywithopenocean(Cox,SpenceandPidgeon2020;Merketal.2022;carboncaptureandstorage)duetoenvironmentalconcernsNawaz,PetersonSt-LaurentandSatterfield2023;Satterfield,includingland-usechange,fertilizeruseorirrigation.Co-NawazandSt-Laurent2023),whichcannegativelyaffectbenefitsforbiodiversity,ecosystemservicesandlivelihoods,theprospectsforscale-up,despitethetechnicalpotentialaswellasco-deliveryonotherinternationalandnationaloftheapproach.Furthermore,transparentandrobustcommitmentsonbiodiversity,landdegradationandpeople,measurement,reportingandverificationisneededtobuildhavealsopropelledtheuseofconventionalCDRapproaches.trustandsupportCDRscale-up(deConincketal.2022).However,therisksandbenefitsofCDRdependonthemethodusedanditsimplementationandmanagementAtboththenationalandinternationallevels,overly-optimistic(e.g.reforestationwithnativespeciesversusafforestationdependenceonfutureCDRcouldbeusedtodesignpoliciesofnon-forestbiomeswithnon-nativemonocultures).thatdivertthefocusfromstringentnear-termemissionreductionefforts(Lenzietal.2018;Markusson,McLarenCompetitionforlandisapressingissueduetonumerousandTyfield2018)ormaskinsufficientmitigationpoliciesglobaldemands,includingforfoodproduction,resource(Geden2016;Carton2019).extraction,infrastructuredevelopment,biodiversityandecosystemservicesconservationandclimatechangeAbroadCDRportfoliothatbalancesthesetrade-offsandmitigation.Environmentalchanges,suchasclimatechange,potentialbenefitswillbeimportantformitigatingtheoutlinedmayexacerbateland-usecompetition,duetocomplexrisks.Furthermore,energy-intensivemethodssuchasdirectfeedbackprocessesbetweenhumanandbiophysicalaircarboncaptureandstorageorenhancedweatheringincomponentsinthelandsystem(Haberletal.2014).Croplandtheneartomediumtermwillonlybeanoptioninpathwaysandurbanexpansionthereforealsocompetewithland-withaquickandcomprehensivephase-outofallfossilfuelsbasedCDRoptions.Modellingeffortsshowthatcropland(i.e.thatinvolvealargelydecarbonizedenergymixand/orexpansiontofulfilfuturefooddemandistheprimarycauselowerenergydemand).2Carboncaptureandstoragewillstillofsuchcompetition,withmoresevereimpactsseeninthebeneededinthistransitiontocaptureandstoreindustrialtropicsduetotheirgreaterland-basedmitigationpotentialemissions(Bashmakovetal.2022)thatcannoteasilybe(Zhengetal.2022).Suchfindingshighlightthatcarefulreducedtozerooratleastnotquicklyenough(Lecocqspatialplanningisessentialforsustainableclimatepolicies.etal.2022).CarboncaptureandstoragethushasadualroleofaddressingresidualemissionsfromfossilfuelandVariousland-basedCDRoptionshavethepotentialtoindustryinthemediumterm,andofremovingCO2fromtheenhancebiodiversity.Anassessmentofthebiodiversityatmosphereinthelongertermaspartofdirectaircarbonimpactsof20land-basedmitigationoptionsshowedthatcaptureandstorageandbioenergywithcarboncapturemostoptionsbenefitbiodiversity.However,aquarteroftheandstorage.assessedoptions,includingbioenergywithcarboncaptureandstorage,decreasedmeanspeciesabundance,whileEveniftherisksdescribedinthissectioncouldbemitigated,afforestationandforestmanagementeitherpositivelyorkeyuncertaintiesexistwithrespecttohowmuchCDRwillnegativelyaffectedbiodiversitydependingonthelocalbeneeded,asscenario-basedassessmentsdonotcurrentlyimplementationmethodandforestconservationschemesaccountforthefullrangeofuncertaintiesinEarthsystemadopted(Nunez,VerboomandAlkemade2020).Recentresponses.Asymmetriesintheclimateresponsetonet-studiesexplorehowambitiousobjectivesandmultiplepositiveandnet-negativeemissions(Zickfeldetal.2021),astargetsofbiodiversityandclimateconventionscanbewellastheexpectedwarmingwhenCO2emissionsceaseoperationalizedspatiallyandpursuedconcurrently(e.g.(MacDougalletal.2020;Koven,SandersonandSwannSoto-Navarroetal.2020;Jungetal.2021;Duncansonet2023)canaffectthelevelsofCDRneededtoachieveagivenal.2023).Givenpotentiallandcompetition,itiscrucialclimateoutcome.toidentifylandareaswherethegreatestsynergiescanbeachieved.7.3.2Addressingsustainabilityriskswillbeessential7.4EquityanddifferentiatedresponsibilitiesassociatedwithStrategiesunderlyingnationalnet-zeropledgesanddeployingCDRNDCsgenerallytendtofeatureonlyconventionalland-basedCDR,mostofwhichiscentredaroundforestryandEquityandtheprincipleof“commonbutdifferentiatedagriculture(Smithetal.2023).Sustainability-relatedrisksresponsibilitiesandrespectivecapabilities”arekeyofconventionalCDR(e.g.afforestation,reforestation,normativepillarsoftheParisAgreement.Scientists,analystsagroforestry,ecosystemrestorationandsoilcarbonandpolicymakershavelongdebatedhowtooperationalizesequestration)areperceivedtobelessthanthoseassociated2SeeFasihi,EfimovaandBreyer(2019)foranin-depthassessmentofdirectaircarboncaptureandstorageenergyrequirements.54EmissionsGapReport2023:BrokenRecordthisprinciple,withafocusonhowtosetequitableemissionpatternsassociatedwithcost-effectiveCDRdeployment.reductiontargets(RobiouduPontetal.2017;Holzetal.2018;Whenaccountingforcumulativeremovalsbetween2020Karthaetal.2018),regionalcarbonbudgets(Raupachetal.and2050,thehighestsharesofremovalsareinAsiaand2014)andfairmitigationfinancialobligations(PachaurietLatinAmericaconsistentlyacrossscenarios(table7.1).al.2022;Semieniuk,GhoshandFolbre2023).RelativelylittleBothregionstendtohavehigherremovallevelsthantheattentionhasbeenpaidsofartoextendingthisprincipletoOrganisationforEconomicCo-operationandDevelopmentequitableCDRtargets,withsomenotableexceptions(Fyson(OECD)regionwhenconsideringbothland-basedandnoveletal.2020;Mohanetal.2021;Yuwonoetal.2023).removals,whileotherregionshaveconsistentlylowerlevels.Importantly,theseresultscomefromintegratedassessmentTheglobalachievementofnet-zeroGHGemissionsdoesmodellingapproachestoachieveclimatetargetsinaglobalnotimplythatallregionsachievenetzeroatthesamecost-effectivemannerandarenotnecessarilyorientedtimeorcontributethesameamountofcarbonremoval.towardsidentifyinganequitabledistributionofeffortsTheintegratedassessmentmodellingpathwaysassessed(Baueretal.2020).insection7.2.1andinchapter4,showspecificregionalTable7.1Sharesofcumulativeremovalsindifferentscenariosbetween2020and2050byIPCCWGIIImodellingregionIPCCmodellingregionsAsiaLatinOECDReformedMiddleEastScenariosconsistentwithlimitingglobalAmericaeconomiesandAfricawarmingtospecifictemperaturelimits34(29–36)%20(16–24)%(R5MAF)1.5°C37(34–43)%22(20–26)%18(17–25)%(R5REF)1.8°C38(36–43)%20(16–23)%19(18–23)%16(11–17)%2.0°C23(19–25)%5(5–6)%13(9–17)%7(5–8)%12(9–15)%8(6–9)%Note:Themedianvalueisshownwiththeinterquartilerangeinbrackets.Equitabledistributionscandifferquitesignificantlyfromandinternationallytoensureaportfolioofapproachesiscost-effectivedeploymentofmitigationoptions.Fysonetal.available.ThelatterissignificantasmanynovelCDRoptions(2020)suggestonepossibleapproachtoallocatingglobalarestillintheearlystagesofinnovation.WhethertheywillCDRdeploymentfairly:allocatingregionalCDRinproportionbeusedtohelpreducetemperaturesandinturnlong-termtoregionalemissionsthatexceedacounterfactualequalperimpactswillbedecidedbyfuturegenerations.capitaemissionpathway.Aslightlyadaptedversionofthisapproach3isappliedtothepathwaysassessedinsectionCDRdeploymentdecisionswillalsoneedtotakeinto7.2.1toillustratethedifferenceofequitabledistributionsaccountdomesticequityconsiderations.Countrieswillhavefromcost-effectivedeployment.Underthisapproach,toweighthepotentialregressivityofpaymentschemesasdevelopedcountries(takenastheOECDregionfromchapterwellasconcernsaroundlandcompetitionandfoodprices3ofIPCCWGIIIAR6)haveequitableallocationsofaround80(forafforestation,reforestationandbioenergywithcarbonpercentofthecumulativeremovalsdeployedbetween2020captureandstorage),waterscarcityandnitrogenpollutionand2050acrossthethreepathwaycategories(1.5°C,1.8°C(bioenergywithcarboncaptureandstorage),additionaland2°C)assessedinsection7.2.Thisillustrativecalculationenergydemand(directaircarboncaptureandstorage)demonstratestheimportanceofextendingconsiderationsandhealthissuesduetofinedust(enhancedweathering),ofequityundertheParisAgreementwhiledeployingCDR.amongothers(Strefleretal.2021;Babikeretal.2022).Land-basedCDRdeploymentraisesmanyofthesameequityAchievingmoreequitableoutcomesinthe2020–2035timeconcernsasotherland-basedmitigationactivities,includingframewillrequiretwobroadstrategies,evenwhennovellandtenureconflictsanddispossession,andmainlyimpactsformsofCDRsuchasdirectaircarboncaptureandstoragepoorerandmoremarginalizedruralfarmersandworkersareavailable(Gidden,Brutschinetal.2023),modelsare(McElwee2023)andIndigenousPeoples,whomanageaincreasingthetechnicalrepresentationofnovelCDR:(1)significantportionoftheworld’slandarea(Garnettetal.deployingfinancialtransfersatscaletofacilitateemission2018).Unequalpowerrelationsandpoorgovernancemightreductions(Pachaurietal.2022;Gantietal.2023);(2)furtherreduceconfidenceinandpublicacceptanceofland-investinginabroadrangeofCDRoptionsbothdomesticallybasedCDRoptions(DeFriesetal.2022).3Theapproachisadaptedfromtheoriginalpaperinthefollowingways:(1)thestartingyearforthecalculationofexcessemissionsis2005asopposedto1990,becausethedatasetdevelopedbyGidden,Brutschinetal.(2023)modelsareincreasingthetechnicalrepresentationofnovelCDRsince2005;and(2)theapproachisappliedtonetCO2emissions(consideringonlythedirectlandcomponent)asopposedtotheaggregatedsixGHGslistedinAnnexAoftheKyotoProtocol(theKyoto“basket”).55EmissionsGapReport2023:BrokenRecordFrameworkstoguidenationalprioritiesinbalancingBergek2004;GrublerandWilsoneds.2013).Giventhedomesticequityconsiderations,intergenerationalequityscaleofremovalsatthetimeofnet-zeroCO2orGHGconcernsandthepossiblecontributionofCDRtomeetNDCsemissionsdescribedinscenarios,thisplatformforscalingthroughemergingcarbonmarketsforremovalsarecurrentlyuptechnologiesisessential.TheempiricalliteratureonmissingandwillbeimportanttoadvancepolicydiscussionsformativephasesshowsthatthelengthofthisperiodisasafoundationforequitablefutureCDRdeployment.highlyvariable,withanaverageestimateofaround20years(BentoandWilson2016).7.5ScalingupCDRwillrequirededicatedThehighlysuccessfultechnologyofsolarphotovoltaicspoliciesandinnovation(PV)isaspecificexampleofatechnologyinaformativephaseandoffersinsightforthedevelopmentofCDRDeliberateCDRpolicymakingisstillscarce,apartfromintheapproaches,suchassmall-scaledirectaircarboncaptureEuropeanUnion,theUnitedKingdomandtheUnitedStatesandstorage.Inthiscase,thefirstcommercialapplicationofAmerica.CDRhasonlyjustenteredtheclimatepolicyofsolarPVoccurredin1957,took60yearstobecomedebateinrecentyears,mainlyasanunavoidablecomponentcost-competitiveandisnowstillacoupleofdecadesawayofmeetingnet-zeroCO2andGHGtargets(IPCC2022a).Onlyfromwidespreadadoption.Ifsmall-scaledirectaircarbonafewGovernmentshavebeguntospecifytheroleofCDRcaptureandstorageweretofollowthepathofsolarPV,indomesticclimatepolicyexplicitlythroughCDRstrategiesitwouldrequireamuchfasterprogressionthroughitsandpolicies.Overall,robustplansforCDRimplementationformativephasetoreachgigatonscalebymid-century.Thearestillscarceandpolicymakingremainslargelyincrementaldevelopmentofexpectationsoflarge,reliableandgrowing(Smithetal.2023).Whilemorethan100countrieshavemarketsisarepeatedfindingininnovationstudies,assetnet-zeroemissiontargets,onlyafewcountriesincludealreadyemphasizedintheEmissionsGapReport2018,andclearinformationonCDRintheirNDCsandlong-termlow-willbecrucialforCDRtoo.Theresearchliteraturehighlightsemissiondevelopmentstrategies.MostGovernmentshavetheimportanceoflocalcontextanddistinctfactors,andnotyetexpressedhowlargethecontributionofCDRshouldthecrucialbutgradualprogressionintheperiodjustbeforebeinreachingnet-zeroemissionsandwhichCDRmethodsscale-upthattakesdecadesratherthanyears.Tworobustthismightentail.Wherethishasbeenspecified,removalviacommonimplicationsarefirst,theneedforstrongpolicyforestsandsoilsisthemostcommonapproach,eveninsupportandsecond,urgencyindeliveringthatsupportgivenmid-centurystrategies(Smith,VaughanandForster2022;theinherentlagsintheinnovationsystem.Smithetal.2023).ExamplesofdedicatedCDRpolicyandgovernanceexistmainlyatthenationallevelandprimarilyTherearealreadysignsthatCDRinnovationsareinmotion.indevelopedcountries(Schenuitetal.2021).InmultilateralAsSmithetal.(2023)show,thenumberofCDR-relatedinitiatives,CDRonlyhasalimitedroleatpresent(e.g.thepatentshaveincreasedandarespreadacrossabroaderMissionInnovationCDR).InthecontextoftheUNFCCC,setofCDRtechnologies,indicatinganaccelerationintheArticle6.4SupervisoryBodyhasbeenmandatedbytheinventiveactivityandahealthyinnovationsystem.FundingPartiestoprovidemethodologicalguidanceonCDRbeforeandentrepreneurialactivityinCDRarealsoincreasing.thetwenty-eighthsessionoftheConferenceofthePartiesFurthermore,nichemarkets,suchasvoluntarypurchasetotheUNFCCC(COP28).forremovals,areprovidingtheearlysupportfornovelCDRdemand,withthepossibilityofinitiatingapositiveThislackofconcreteincentiveframeworksisoneofthefeedbackprocessoflearninginwhichadoptionbegetscostreasonswhythereiscurrentlyalmostnoCDRdeploymentreductionsandperformanceimprovements.Still,thisisbeyondtheLULUCFsector.ComparingthecurrentCDRleveljustthebeginning.Strongersupportisbecominganurgentof2GtCO2tomid-centuryannualremovalsinscenariospriorityifnovelCDRistoplayagigaton-scaleroleinthecompatiblewithreachingtheParisAgreementlong-termlongerterm.temperaturegoalrevealsalargediscrepancyofseveralgigatonsperyear.Intheabsenceofamoresupportivepolicy7.6PoliticalprioritiesforactionareenvironmentthanthatindicatedinexistingNDCsandlong-neededtermlow-emissiondevelopmentstrategies,orthelackofCDRinnationalclimatepolicy(Schenuitetal.2021;SmithWiththeenhancementofcarbonsinksformingpartofetal.2023),thisdiscrepancyislikelytopersistandevenclimatechangemitigation(Honegger,BurnsandMorrowgrow,consideringthatthetransitionfromfirstcommercial2021),CDRgovernancechallengesareinmanyrespectsdeploymentofanewtechnologytowidespreadadoptionsimilartothoserelatedtoemissionreductions,andsimilartakesdecadesandnotjustafewyears.policyinstruments,suchasresearch,developmentanddemonstrationfunding,carbonpricing,taxorinvestmentAlargebodyofinnovationresearchshowsthatnewcredits,certificationschemesandpublicprocurement,willtechnologiesmustpassthroughaformativephase:berelevant(Babikeretal.2022).EffectivelyintegratingCDRtheperiodbetweenfirstcommercialdeploymenttointoGovernments’climatepolicyportfoliosshouldthereforethebeginningofwidespreadadoption(Jacobssonand56EmissionsGapReport2023:BrokenRecordbuildonpre-existingrules,proceduresandinstruments.forvoluntarycarbonmarkets,leadstoaninconsistentFurthermore,thereisaneedtoincludelearningsfrompatchworkofmeasurement,reportingandverificationshortcomingsinthegovernanceofland-basedmitigationapproaches(ArcusaandSprenkle-Hyppolite2022;Mercerandtohaveaspecialfocusonlocalconditions(FridahletandBurke2023).Incontrast,accountingfornationalal.2020;Maceetal.2021;Rickelsetal.2021;IPCC2022b).inventoriesundertheUNFCCChasbeenestablishedforBeyondapoliticalcommitmenttoformallyintegrateCDRconventionalland-basedCDRmethodsandsomenovelintoexistingclimatepolicyframeworks,fourprioritypolicymethodssuchasbiocharandbioenergywithcarboncaptureactionareascanbeidentifiedfortheshorttomediumterm.andstorage,butsimilarmethodshaveyettobedevelopedandagreeduponfordirectaircarboncaptureandstorage7.6.1Politicalprioritiesneedtobeestablishedandorenhancedrockweathering,forexample.SuchagreedsignalledmethodologiesarecrucialtomakedeploymenteligibleforconsiderationundernationalorsupranationalcomplianceForcountrieswithnet-zeroornet-negativeemissiontargets,regimes(Lebling,SchumerandRiedl2023).thecoregovernancequestionisnotwhetherCDRshouldbemobilized,butwhichCDRapproachesGovernmentsInthecontextoftheUNFCCC,theprioritymustbetowanttoseedeployedbywhom,bywhen,atwhichvolumesdevelopaccountingrulesforCDRandestablishtrustedandinwhichways(Babikeretal.2022).ThechoiceofCDRmeasurement,reportingandverificationframeworks,mainlyapproachesandthescaleandtimingoftheirdeploymentbasedonmethodologicalworkcarriedoutbytheIPCC’sTaskwilldependontherespectiveambitionsforgrossemissionForceonNationalGreenhouseGasInventories.Thiscanbereductions,feasibilityandviabilitylimitations,howtheirdone,ontheonehand,bystrengtheningrulesforland-basedunintendedimpactscanbemanagedandhowpoliticalbiologicalremovals(mostimportantlyaddressingpre-preferencesandsocialacceptabilityevolve(Bellamy2018;existingpermanenceandsaturationchallenges–seeMaceForsteretal.2020;Walleretal.2020;Smithetal.2023).etal.2021),andontheotherhand,bycreatingadditionalguidancefornovelCDRmethods,forwhichthereisaToavoidCDRbeingmisperceivedasasubstitutefordeepneed.Forsomemethods,themeasurement,reportingandemissionreductions,theprioritizationofemissioncutscanverificationofcarbonflowswillberelativelystraightforwardbesignalledandachievedwithdifferentiatedtargetsetting(e.g.directaircarboncaptureandstorage),whereasotherforreductionsandremovals(Geden,PetersandScott2019;methodsstilllackfoundationalscience,particularlythoseMcLarenetal.2019).operatinginopen-loopsystems(e.g.enhancedweathering)(MercerandBurke2023).ThisneedstoincludetheLULUCFsector,forwhichonlynetfluxestendtobehighlightedinNDCs,long-termlow-Currently,measurement,reportingandverificationandemissiondevelopmentstrategies(FysonandJefferycertificationmethodologiesfornovelCDRmethodsbeyond2019)andnationalstrategies,whereasnationalinventoryLULUCFarebeingdevelopedmainlyintheEuropeanUnion,reportsdifferentiatebetweenland-basedemissionsandtheUnitedKingdomandtheUnitedStatesofAmerica,withremovals.Similarly,subtargetsareconceivablefordifferentthelatteralreadyinvestigatingmeasurement,reportingandtypesofCDR,toprioritizepreferredmethodsaccordingverificationforawiderangeofmarinemethods(Crossettocharacteristicssuchasremovalprocessesorstorageal.2023).Inthemediumterm,suchmethodologieswillbetimescales(Smith2021).TransparentinformationaboutrelevantnotonlyfornationalinventoryreportingbutalsoexpectedlevelsandtypesofCDR(e.g.throughmandatoryinthecontextofestablishinginternationalcarbontradinginclusioninthe‘informationtofacilitateclarity,transparencyundertheParisAgreement’sarticle6.4mechanism.andunderstanding’tablesinNDCs)willalsoenablepolicyHowever,thesemethodologiesneedtobegloballyvetteddebatesaboutassumptionsaroundthelevelofresidualandacceptedaspartofUNFCCCreportingstandardsasemissionsinandbeyondthefirstyearofnet-zeroemissionswellasnationalinventoryrules.Thelatterarecurrently(Bucketal.2023a).basedonIPCCguidelinesfrom2006and2019,whichareunlikelytobeexpandedwithouttheexplicitrequestof7.6.2Robustmeasurement,reportingandnationalGovernments.verificationsystemsareneeded7.6.3TheneedtoenhancesynergiesandTomaintaincredibilityintheCDRsectorwhiledrivingco-benefitsinnovationandgrowth,measurement,reportingandverificationframeworksforCDRmethodswillneedtobeCDRapproachescanhavemultiplebenefitsforadaptation,developedandadaptedtonewCDRapproaches(e.g.newmitigationandothersocialandenvironmentalgoals.Insomemeasurementtechniquesormodellingtools).cases,thesebenefitsmaybeacoremotivatorforadoption.Forexample,improvedsoilwaterretentionisakeymotivatorSomemeasurement,reportingandverificationforfarmerstoadoptpracticesthatsequestersoilcarbonmethodologiesalreadyexistforproject-basedaccounting(Flemingetal.2019;Gosnell,GillandVoyer2019;BuckofbothLULUCF-relatedandnovelCDRmethods,butaandPalumbo-Compton2022),andfarmresilience,incomelackofcoordinationandminimumstandards,especiallydiversificationandfoodsecuritycanbeimportantdriversof57EmissionsGapReport2023:BrokenRecordagroforestryadoption(Mutheeetal.2022).Co-benefitsare7.6.4Innovationandlearningneedstobenotlimitedtoland-basedCDR.Infact,scientistsarestudyingacceleratedhowforestbiomasswithcarboncaptureandstoragecanreducetheriskofwildfireswhenpairedwithforestthinningProceedingthroughtheearlyyearsofCDR’sformativeprojects(Sanchezetal.2021;Eliasetal.2023).Socialco-phasewillrequirevariousdemonstrationprojects,forwhichbenefitsforindustrialCDRwithcarboncaptureandstorageacost-reducinglearning-by-doingprocesscanbeputincouldincludejobsoreconomicrevenueinareasandfieldsplace(LacknerandAzarabadi2021).Forexample,OECDaffectedbytheenergytransition(Romig2021).DevelopmentAssistanceCommittee(DAC)projectsfundedthroughtheDepartmentofEnergyoftheUnitedStatesofDedicatedpolicydesigncanenhancesuchsynergies.AmericawillprovideUS$3.5billioninfederalsupportforForexample,throughgovernmentactiontosupportfourregionalDAChubs,withtheUnitedStatesGovernmentimprovementsinCDRmeasurement,reportingandalsofundingthefeasibilityanddesignstudiesof19otherverificationsothatadaptationprojectscanhaveanDACprojectsatvaryingstagesoftechnologicalreadiness.additionalrevenuestream(Bucketal.2020),orthroughSimilarly,emergingprogrammesforbioenergywithcarbonplannedactionsthatconsiderdecarbonizationandCDRcaptureandstorageinSwedenandtheUnitedKingdomtogether,andnotjustintermsofdevelopingbioenergywillprovidevaluableprogressduringthe“middle”oftheviacarboncaptureandsequestrationforhydrogenandformativephaseforCDRtechnologies.electricitygeneration,butalsoconsideringhowhydrogenorsyntheticfuelsmaybeco-productsofdirectocean-basedFurthermore,thecomingyearsofCDRdevelopmentprovidecaptureandsequestration(Digdayaetal.2020).ConsideringanopportunityforsocietallearningaboutthesustainabilityCDRinmitigationandadaptationinfrastructureplanningimpactsofnovelCDR(Honegger,MichaelowaandRoy2021;canhelpensurethatpotentialco-benefitsfromCDRcomeMadhuetal.2021;Fuhrmanetal.2023).Insightonalargesettofruition.ofissuescanbegleanedfromexperiments,demonstrationsandsmall-scaledeployment.Theseissuesincludepublicacceptance,distributionaleffects,affordability,lifecycleanalysis,biodiversity,resourceconsumption,competitionforlandandinteractionsamongCDRapproaches(Buck2016;Eransetal.2022;Owen,BurkeandSerin2022),aswellasfuturecosts(Shayegh,BosettiandTavoni2021).58EmissionsGapReport2023:BrokenRecord59EmissionsGapReport2023:BrokenRecordReferencesCChapter1ILCopernicusClimateChangeServices(2023a).Trackingbreachesofthe1.5°Cglobalwarmingthreshold,15PJune.https://climate.copernicus.eu/tracking-breaches-150c-global-warming-threshold.Accessed25UOctober2023.BC__________(2023b).Copernicus:September2023–unprecedentedtemperatureanomalies;2023ontracktobethewarmestyearonrecord,5October.https://climate.copernicus.eu/copernicus-september-2023-Dunprecedented-temperature-anomalies.Accessed25October2023.60InternationalEnergyAgency(2023).WorldEnergyOutlook.Paris.https://iea.blob.core.windows.net/assets/26ca51d0-4a42-4649-a7c0-552d75ddf9b2/WorldEnergyOutlook2023.pdf.Lee,H.,Calvin,K.,Dasgupta,D.,Krinner,G.,Mukherji,A.,Thorne,P.etal.(2023).ClimateChange2023:SynthesisReport.ContributionofWorkingGroupsI,IIandIIItotheSixthAssessmentReportoftheIntergovernmentalPanelonClimateChange.Geneva:IntergovernmentalPanelonClimateChange.https://www.ipcc.ch/report/ar6/syr/downloads/report/IPCC_AR6_SYR_FullVolume.pdf.Pathak,M.,Slade,R.,Shukla,P.R.,Skea,J.,Pichs-Madruga,R.,Ürge-Vorsatz,D.etal.(2022).Technicalsummary.InClimateChange2022:MitigationofClimateChange.ContributionofWorkingGroupIIItotheSixthAssessmentReportoftheIntergovernmentalPanelonClimateChange.CambridgeandNewYork:CambridgeUniversityPress.https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_TS.pdf.UnitedNations(2023).TheSustainableDevelopmentGoalsReport2023:SpecialEdition.NewYork:UnitedNationsDepartmentOfEconomicandSocialAffairs.https://unstats.un.org/sdgs/report/2023/.Chapter2Bruckner,B.,Hubacek,K.,Shan,Y.,Zhong,H.andFeng,K.(2022).Impactsofpovertyalleviationonnationalandglobalcarbonemissions.NatureSustainability5,311-320.https://doi.org/10.1038/s41893-021-00842-z.Cerutti,N.,Lamb,W.F.,Crippa,M.,Leip,A.,Solazzo,E.,Tubiello,F.N.etal.(2023).Foodsystememissions:Areviewoftrends,drivers,andpolicyapproaches,1990–2018.EnvironmentalResearchLetters18,074030.https://doi.org/10.1088/1748-9326/acddfd.Chancel,L.(2022).Globalcarboninequalityover1990–2019.NatureSustainability5,931-938.https://doi.org/10.1038/s41893-022-00955-z.Chancel,L.andPiketty,T.(2015).CarbonandInequality:FromKyototoParis.TrendsintheGlobalInequalityofCarbonEmissions(1998–2013)&ProspectsforanEquitableAdaptationFund.Paris:WorldInequalityLab.https://shs.hal.science/halshs-02655266.Cheng,Y.,Wang,Y.,Chen,W.,Wang,Q.andZhao,G.(2021).DoesincomeinequalityaffectdirectandindirecthouseholdCO2emissions?Aquantileregressionapproach.CleanTechnologiesandEnvironmentalPolicy23,1199-1213.https://doi.org/10.1007/s10098-020-01980-2.Crippa,M.,Guizzardi,D.,Pagani,F.,Banja,M.,Muntean,M.,Schaaf,E.etal.(2023).GHGEmissionsofAllWorldCountries.Luxembourg:PublicationsOfficeoftheEuropeanUnion.https://doi.org/10.2760/953322.Crippa,M.,Solazzo,E.,Guizzardi,D.,Monforti-Ferrario,F.andLeip,A.(2021).FoodsystemsareresponsibleforathirdofglobalanthropogenicGHGemissions.NatureFood2,198-209.https://doi.org/10.1038/s43016-021-00225-9.Dhakal,S.,Minx,J.C.,Toth,F.L.,Abdel-Aziz,A.,Meza,M.J.F.,Hubacek,K.etal.(2022).Emissionstrendsanddrivers.InClimateChange2022:MitigationofClimateChange.ContributionofWorkingGroupIIItotheSixthAssessmentReportoftheIntergovernmentalPanelonClimateChange.CambridgeandNewYork:CambridgeUniversityPress.Chapter2.214-294.https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_Chapter02.pdf.Duarte,R.,Miranda-Buetas,S.andSarasa,C.(2021).HouseholdconsumptionpatternsandincomeinequalityinEUcountries:Scenarioanalysisforafairtransitiontowardslow-carboneconomies.EnergyEconomics104,105614.https://doi.org/10.1016/j.eneco.2021.105614.EmissionsGapReport2023:BrokenRecordEEnergyInstitute(2023).StatisticalReviewofWorldEnergy(72ndedition).London.https://www.energyinst.org/statistical-review.FFeng,K.,Hubacek,K.andSong,K.(2021).HouseholdcarboninequalityintheU.S.JournalofCleanerProduction278,123994.https://doi.org/10.1016/j.jclepro.2020.123994.Forster,P.M.,Smith,C.J.,Walsh,T.,Lamb,W.F.,Lamboll,R.,Hauser,M.etal.(2023).IndicatorsofGlobalClimateChange2022:Annualupdateoflarge-scaleindicatorsofthestateoftheclimatesystemandhumaninfluence.EarthSystemScienceData15,2295-2327.https://doi.org/10.5194/essd-15-2295-2023.Forster,P.,Storelvmo,T.,Armour,K.,Collins,W.,Dufresne,J.-L.,Frame,D.etal.(2021).TheEarth’senergybudget,climatefeedbacksandclimatesensitivity.InClimateChange2021:ThePhysicalScienceBasis.ContributionofWorkingGroupItotheSixthAssessmentReportoftheIntergovernmentalPanelonClimateChange.Masson-Delmotte,V.,Zhai,P.,Pirani,A.,Connors,S.L.,Péan,C.,Berger,S.etal.(eds.).CambridgeandNewYork:CambridgeUniversityPress.Chapter7.923-1054.https://doi.org/10.1017/9781009157896.009.Friedlingstein,P.,Jones,M.W.,O’Sullivan,M.,Andrew,R.M.,Bakker,D.C.E.,Hauck,J.etal.(2022).GlobalCarbonBudget2021.EarthSystemScienceData14(4),1917-2005.https://doi.org/10.5194/essd-14-1917-2022.GGidden,M.,Gasser,T.,Grassi,G.,Forsell,N.,Janssens,I.,Lamb,W.F.etal.(2022).PolicyguidanceandpitfallsaligningIPCCscenariostonationallandemissionsinventories.24October.https://essopenarchive.org/doi/full/10.1002/essoar.10512676.2.Grassi,G.,Conchedda,G.,Federici,S.,AbadViñas,R.,Korosuo,A.,Melo,J.etal.(2022).Carbonfluxesfromland2000–2020:Bringingclaritytocountries’reporting.EarthSystemScienceData14(10),4643-4666.https://doi.org/10.5194/essd-14-4643-2022.Grassi,G.,Schwingshackl,C.,Gasser,T.,Houghton,R.A.,Sitch,S.,Canadell,J.G.etal.(2023).Harmonisingtheland-usefluxestimatesofglobalmodelsandnationalinventoriesfor2000–2020.EarthSystemScienceData15(3),1093-1114.https://doi.org/10.5194/essd-15-1093-2023.Grassi,G.,Stehfest,E.,Rogelj,J.,vanVuuren,D.,Cescatti,A.,House,J.etal.(2021).Criticaladjustmentoflandmitigationpathwaysforassessingcountries’climateprogress.NatureClimateChange11,425-434.https://doi.org/10.1038/s41558-021-01033-6.Guan,Y.,Yan,J.,Shan,Y.,Zhou,Y.,Hang,Y.,Li,R.etal.(2023).Burdenoftheglobalenergypricecrisisonhouseholds.NatureEnergy8,304-316.https://doi.org/10.1038/s41560-023-01209-8.HHickel,J.andSlamersak,A.(2022).Existingclimatemitigationscenariosperpetuatecolonialinequalities.TheLancetPlanetaryHealth6(7),E628-E631.https://doi.org/10.1016/S2542-5196(22)00092-4.Hubacek,K.,Baiocchi,G.,Feng,K.,Castillo,R.-M.,Sun,L.andXue,J.(2017).Globalcarboninequality.Energy,EcologyandEnvironment2,361-369.https://link.springer.com/article/10.1007/s40974-017-0072-9.Hubacek,K.,Chen,X.,Feng,K.,Wiedmann,T.andShan,Y.(2021).Evidenceofdecouplingconsumption-basedCO2emissionsfromeconomicgrowth.AdvancesinAppliedEnergy4,100074.https://doi.org/10.1007/s40974-017-0072-9.IIndonesia,MinistryofEnergyandMineralResources(2023).HandbookofEnergy&EconomicStatisticsofIndonesia2022.Jakarta.InternationalAirTransportAssociation(2023).AirPassengerMarketAnalysis.Montreal.https://www.iata.org/en/iata-repository/publications/economic-reports/air-passenger-market-analysis2/.InternationalEnergyAgency(2022).WorldEnergyOutlook2022.Paris.https://iea.blob.core.windows.net/assets/830fe099-5530-48f2-a7c1-11f35d510983/WorldEnergyOutlook2022.pdf.__________(2023).CO2Emissionsin2022.Paris.https://iea.blob.core.windows.net/assets/3c8fa115-35c4-4474-b237-1b00424c8844/CO2Emissionsin2022.pdf.IntergovernmentalPanelonClimateChange(2022).ClimateChange2022:MitigationofClimateChange.ContributionofWorkingGroupIIItotheSixthAssessmentReportoftheIntergovernmentalPanelonClimateChange.Shukla,P.R.,Skea,J.,Reisinger,A.,Slade,R.,Fradera,R.,Pathak,M.etal.(eds.).CambridgeandNewYork:CambridgeUniversityPress.https://www.ipcc.ch/report/ar6/wg3.JJones,M.W.,Peters,G.P.,Gasser,T.,Andrew,R.M.,Schwingshackl,C.,Gütschow,J.etal.(2023).Nationalcontributionstoclimatechangeduetohistoricalemissionsofcarbondioxide,methane,andnitrousoxidesince1850.ScientificData10,155.https://doi.org/10.1038/s41597-023-02041-1.KKartha,S.,Kemp-Benedict,E.,Ghosh,E.,Nazareth,A.andGore,T.(2020).TheCarbonInequalityEra:AnAssessmentoftheGlobalDistributionofConsumptionEmissionsAmongIndividualsfrom1990to2015andBeyond.Oxford:OxfamandStockholmEnvironmentInstitute.https://oxfamilibrary.openrepository.com/handle/10546/621049.LLamb,W.F.(2023).UNEPGapReport2023Chapter2.https://github.com/lambwf/UNEP-Gap-Report-2023-Chapter-2.Accessed25October2023.Lamb,W.F.,Grubb,M.,Diluiso,F.andMinx,J.C.(2021a).Countrieswithsustainedgreenhousegasemissionsreductions:Ananalysisoftrendsandprogressbysector.ClimatePolicy22(1),1-17.https://doi.org/10.1080/14693062.2021.1990831.61EmissionsGapReport2023:BrokenRecordMLamb,W.F.,Wiedmann,T.,Pongratz,J.,Andrew,R.,Crippa,M.,Olivier,J.G.J.etal.(2021b).AreviewoftrendsandOdriversofgreenhousegasemissionsbysectorfrom1990to2018.EnvironmentalResearchLetters16(7),P073005.https://doi.org/10.1088/1748-9326/abee4e/meta.QRLeQuéré,C.,Korsbakken,J.I.,Wilson,C.,Tosun,J.,Andrew,R.,Andres,R.J.etal.(2019).DriversofdecliningCO2Semissionsin18developedeconomies.NatureClimateChange9,213–217.https://doi.org/10.1038/s41558-019-0419-7.TULiu,X.,Wang,X.,Song,J.,Wang,H.andWang,S.(2019).IndirectcarbonemissionsofurbanhouseholdsinChina:Patterns,determinantsandinequality.JournalofCleanerProduction241,118335.https://doi.org/10.1016/j.Vjclepro.2019.118335.WLiu,Z.,Deng,Z.,Davis,S.andCiais,P.(2023).Monitoringglobalcarbonemissionsin2022.NatureReviewsEarth62&Environment4,205-206.https://doi.org/10.1038/s43017-023-00406-z.Mi,Z.,Zheng,J.,Meng,J.,Ou,J.,Hubacek,K.,Liu,Z.etal.(2020).EconomicdevelopmentandconverginghouseholdcarbonfootprintsinChina.NatureSustainability3,529-537.https://doi.org/10.1038/s41893-020-0504-y.Oswald,Y.,Owen,A.andSteinberger,J.K.(2020).Largeinequalityininternationalandintranationalenergyfootprintsbetweenincomegroupsandacrossconsumptioncategories.NatureEnergy5,231-239.https://doi.org/10.1038/s41560-020-0579-8.Pachauri,S.(2014).HouseholdelectricityaccessatrivialcontributortoCO2emissionsgrowthinIndia.NatureClimateChange4,1073-1076.https://doi.org/10.1038/nclimate2414.Pan,X.,Wang,H.,Lu,X.,Zheng,X.,Wang,L.andChen,W.(2022).Implicationsoftheconsumption-basedaccountingforfuturenationalemissionsbudgets.ClimatePolicy22(9/10),1306-1318.https://doi.org/10.1080/14693062.2022.2067113.Qin,X.,Wu,H.,Zhang,X.andWang,W.(2022).Thewideningwealthinequalityasacontributortoincreasinghouseholdcarbonemissions.FrontiersEarthScience10,872806.https://www.doi.org/10.3389/feart.2022.872806/full.Rajaeifar,M.A.,Belcher,O.,Parkinson,S.,Neimark,B.,Weir,D.,Ashworth,K.etal.(2022).Decarbonizethemilitary—mandateemissionsreporting.Nature611,29-32.https://doi.org/10.1038/d41586-022-03444-7.Rao,N.D.,Min,J.andMastrucci,A.(2019).EnergyrequirementsfordecentlivinginIndia,BrazilandSouthAfrica.NatureEnergy4,1025-1032.https://doi.org/10.1038/s41560-019-0497-9.SantillánVera,M.anddelaVegaNavarro,A.(2020).Dotherichpollutemore?MexicanhouseholdconsumptionbyincomelevelandCOemissions.InternationalJournalofEnergySectorManagement13(3),694-712.https://doi.org/10.1108/IJESM-07-2018-0016.Seriño,M.N.V.(2020).RisingcarbonfootprintinequalityinthePhilippines.EnvironmentalEconomicsandPolicyStudies22,173-195.https://doi.org/10.1007/s10018-019-00253-7.Sri,P.andBanerjee,R.(2023).Characteristics,temporaltrends,anddrivingfactorsofhouseholdcarboninequalityinIndia.SustainableProductionandConsumption35,668-683.https://doi.org/10.1016/j.spc.2022.11.017.Starr,J.,Nicolson,C.,Ash,M.,Markowitz,E.M.andMoran,D.(2023)Income-basedU.S.householdcarbonfootprints(1990–2019)offernewinsightsonemissionsinequalityandclimatefinance.PLOSClimate2(8),e0000190.https://doi.org/10.1371/journal.pclm.0000190.Steffen,B.andPatt,A.(2022).Ahistoricalturningpoint?EarlyevidenceonhowtheRussia-Ukrainewarchangespublicsupportforcleanenergypolicies.EnergyResearch&SocialScience91,102758.https://doi.org/10.1016/j.erss.2022.102758.Tollefson,J.(2022).WhatthewarinUkrainemeansforenergy,climateandfood.Nature604,232-233.https://doi.org/10.1038/d41586-022-00969-9.UnitedKingdom(2022).UKGovernmenttakesnextstepstoboostdomesticenergyproduction.22September.https://www.gov.uk/government/news/uk-government-takes-next-steps-to-boost-domestic-energy-production.UnitedNationsEnvironmentProgramme(2021).EmissionsGapReport2021:TheHeatIsOn–Aworldofclimatepromisesnotyetdelivered.Nairobi.https://www.unep.org/resources/emissions-gap-report-2021.__________(2022).EmissionsGapReport2022:TheClosingWindow–Climatecrisiscallsforrapidtransformationofsocieties.Nairobi.https://www.unep.org/emissions-gap-report-2022.Vélez-Henao,J.A.andPauliuk,S.(2023).Materialrequirementsofdecentlivingstandards.EnvironmentalScience&Technology57,14206-14217.https://doi.org/10.1021/acs.est.3c03957.Vogel,J.andHickel,J.(2023).Isgreengrowthhappening?AnempiricalanalysisofachievedversusParis-compliantCO2–GDPdecouplinginhigh-incomecountries.TheLancetPlanetaryHealth7(9),E759-E769.https://doi.org/10.1016/S2542-5196(23)00174-2.Wiedmann,T.,Lenzen,M.,Keyßer,L.T.andSteinberger,J.K.(2020).Scientists’warningonaffluence.NatureCommunications11,3107,1-10.https://doi.org/10.1038/s41467-020-16941-y.EmissionsGapReport2023:BrokenRecordWWorldBank(2023).WorldDevelopmentIndicators.https://datacatalog.worldbank.org/search/dataset/0037712/World-Development-Indicators.Accessed25October2023.WorldInequalityDatabase(2023).WorldInequalityDatabase.https://wid.world/.Accessed25October2023.WorldMeteorologicalOrganization(2023).WMOGreenhouseGasBulletin.Geneva.https://public.wmo.int/en/greenhouse-gas-bulletin.ZZheng,H.,Wood,R.,Moran,D.,Feng,K.,Tisserant,A.,Jiang,M.etal.(2023).Risingcarboninequalityanditsdrivingfactorsfrom2005to2015.GlobalEnvironmentalChange82,102704.https://doi.org/10.1016/j.gloenvcha.2023.102704.Chapter3AArgentina,MinistryofEnvironmentandSustainableDevelopment(2022).PlanNacionaldeAdaptaciónyMitigaciónalCambioClimático.https://www.argentina.gob.ar/ambiente/cambio-climatico/plan-nacional.Bistline,J.,Blanford,G.,Brown,M.,Burtraw,D.,Domeshek,M.,Farbes,J.etal.(2023).EmissionsandenergyimpactsoftheInflationReductionAct.Science380(6652),1324-1327.https://doi.org/10.1126/science.adg3781.BBlack,S.,Liu,A.A.,Parry,I.andVernon,N.(2023).IMFfossilfuelsubsidiesdata:2023update.IMFWorkingPaperNo.2023/169.Washington,August.https://www.imf.org/en/Publications/WP/Issues/2023/08/22/IMF-Fossil-Fuel-Subsidies-Data-2023-Update-537281.Buck,H.J.,Carton,W.,Lund,J.F.andMarkusson,N.(2023).Whyresidualemissionsmatterrightnow.NatureClimateChange13,351-358.https://doi.org/10.1038/s41558-022-01592-2.Byers,E.,Krey,V.,Kriegler,E.,Riahi,K.,Schaeffer,R.,Kikstra,J.etal.(2022).AR6ScenariosDatabase.https://pure.iiasa.ac.at/id/eprint/18399/.Accessed6November2023.CCanada(2022).CleanFuelRegulations:SOR/2022-140.CanadaGazettepartII,156(14).https://www.canadagazette.gc.ca/rp-pr/p2/2022/2022-07-06/html/sor-dors140-eng.html.Accessed6November.Canada,EnvironmentandClimateChangeCanada(2022).2030EmissionsReductionPlan:Canada’sNextStepsforCleanAirandaStrongEconomy.Gatineau:MinisterofEnvironmentandClimateChangeCanada.https://publications.gc.ca/collections/collection_2022/eccc/En4-460-2022-eng.pdf.ChinaElectricityCouncil(2023).AnalysisandforecastofChinapowerdemand-supplysituationinthefirstquarterof2023,28April.https://english.cec.org.cn/#/newsdetails?id=1658663989908951042.Accessed6November2023.China,NationalEnergyAdministration(2023).TranscriptoftheNationalEnergyAdministration’sonlinepressconferenceforthethirdquarterof2023,31July.https://www.nea.gov.cn/2023-07/31/c_1310734825.htm.Accessed6November2023.ClimateActionTracker(2022a).Canada(Updateof20December2022).https://climateactiontracker.org/countries/canada/.Accessed6November2023.ClimateActionTracker(2022b).CATnetzerotargetevaluations,10November.https://climateactiontracker.org/global/cat-net-zero-target-evaluations/.ClimateActionTracker(2023a).CATClimateTargetUpdateTracker.https://climateactiontracker.org/climate-target-update-tracker-2022/.Accessed6November2023.ClimateActionTracker(2023b).Countries,30August.https://climateactiontracker.org/countries/.Accessed27October2023.ClimateActionTracker(2023c).EuropeanUnion(UpdateofJune2023).https://climateactiontracker.org/countries/eu/.Accessed6November2023.ClimateAnalyticsandNewClimateInstitute(2022).ClimateActionTracker:WarmingProjectionsGlobalUpdate–November2022.Berlin.https://climateactiontracker.org/documents/1094/CAT_2022-11-10_GlobalUpdate_COP27.pdf.ClimateChangeCommittee(2023).ProgressinReducingEmissions:2023ReporttoParliament.London.https://www.theccc.org.uk/wp-content/uploads/2023/06/Progress-in-reducing-UK-emissions-2023-Report-to-Parliament.pdf.ClimateResource(2022).NDCfactsheets.https://www.climate-resource.com/tools/ndcs.Accessed27October2023.ClimateWatch(2023).NDCEnhancementTracker.https://www.climatewatchdata.org/2020-ndc-tracker.Accessed27October2023.Conan,R.(2023).SonoraPlantoboostMexiconearshoring:Fitch,12April.https://www.argusmedia.com/en/news/2438614-sonora-plan-to-boost-mexico-nearshoring-fitch.Accessed27October2023.DDafnomilis,I.,denElzen,M.andvanVuuren,D.P.(2023).Achievingnet-zeroemissionstargets:Ananalysisoflong-termscenariosusinganintegratedassessmentmodel.AnnalsoftheNewYorkAcademyofSciences1522(1),98-108.https://doi.org/10.1111/nyas.14970.63EmissionsGapReport2023:BrokenRecordEdenElzen,M.,Kuramochi,T.,Höhne,N.,Cantzler,J.,Esmeijer,K.,Fekete,H.etal.(2019).AretheG20economiesmakingenoughprogresstomeettheirNDCtargets?EnergyPolicy126,238-250.https://doi.org/10.1016/j.Fenpol.2018.11.027.GHdenElzen,M.G.J.,Dafnomilis,I.,Hof,A.F.,Olsson,M.,Beusen,A.,Botzen,W.J.W.etal.(2023).TheimpactofpolicyIandmodeluncertaintiesonemissionsprojectionsoftheParisAgreementpledges.EnvironmentalResearchLetters18(5),054026.https://dx.doi.org/10.1088/1748-9326/acceb7.JDooks,T.(2023).CCCassessmentofrecentannouncementsanddevelopmentsonNetZero,12October.https://64www.theccc.org.uk/2023/10/12/ccc-assessment-of-recent-announcements-and-developments-on-net-zero/.Accessed27October2023.Edianto,A.S.(2023).JETP:AreflectionofIndonesia’scommitmenttotransformitspowersector,26January.https://ember-climate.org/insights/commentary/jetp-indonesia/.Accessed27October2023.Eskom,SouthAfricanPhotovoltaicIndustryAssociationandSouthAfricanWindEnergyAssociation(2023).2023SouthAfricanRenewableEnergyGridSurvey.https://www.eskom.co.za/wp-content/uploads/2023/06/RE_Survey_202304rev0_Pub.pdf.EuropeanCommission(2021).‘Fitfor55’:DeliveringtheEU’s2030ClimateTargetontheWaytoClimateNeutrality.CommunicationfromtheCommissiontotheEuropeanParliament,theCouncil,theEuropeanEconomicandSocialCommitteeandtheCommitteeofTheRegionsEmpty.Brussels,July.https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX%3A52021DC0550.EuropeanCommission(2022).REPowerEU:AplantorapidlyreducedependenceonRussianfossilfuelsandfastforwardthegreentransition.18May.https://ec.europa.eu/commission/presscorner/detail/en/ip_22_3131.EuropeanCommission,Directorate-GeneralforEnergy,Directorate-GeneralforClimateAction,Directorate-GenerateforMobilityandTransport(2021).EUReferenceScenario2020:Energy,transportandGHGemissions–Trendsto2050.Luxembourg:PublicationsOfficeoftheEuropeanUnion.https://op.europa.eu/en/publication-detail/-/publication/96c2ca82-e85e-11eb-93a8-01aa75ed71a1/language-en.EuropeanEnvironmentAgency(2023).MemberStates’greenhousegas(GHG)emissionprojections,24October.https://www.eea.europa.eu/en/datahub/datahubitem-view/4b8d94a4-aed7-4e67-a54c-0623a50f48e8.Accessed27October2023.Fransen,T.,Henderson,C.,O’Connor,R.,Alayza,N.,Caldwell,M.,Chakrabarty,S.etal.(2022).TheStateofNationallyDeterminedContributions:2022.Washington:WorldResourcesInstitute.https://files.wri.org/d8/s3fs-public/2022-10/state-of-ndcs-2022.pdf?VersionId=VqrCpyQHmf5utPcHCScbqeTgU2p2SOam.Garaffa,R.,Weitzel,M.,Vandyck,T.,Keramidas,K.,Dowling,P.,Fosse,F.etal.(2022).Globalandregionalenergyandemploymenttransitionimpliedbyclimatepolicypledges.21June.https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4141955.GlobalEnergyMonitor,CentreforResearchonEnergyandCleanAir,E3G,ReclaimFinance,SierraClub,SolutionsforOurClimateetal.(2023).BoomandBustCoal:Trackingtheglobalcoalplantpipeline.https://globalenergymonitor.org/wp-content/uploads/2023/03/Boom-Bust-Coal-2023.pdf.Gütschow,J.andPflüger,M.(2023).ThePRIMAP-HistNationalHistoricalEmissionsTimeSeries(1750–2021).Zenodo.https://zenodo.org/records/7727475.Accessed27October2023.Hans,F.,Woollands,S.,Nascimento,L.,Höhne,N.andKuramochi,T.(2022).UnpackingtheCOVID-19rescueandrecoveryspending:Anassessmentofimplicationsongreenhousegasemissionstowards2030forkeyemitters.ClimateAction1,3.https://doi.org/10.1007/s44168-022-00002-9.IndependentPowerProducersOffice(2023).Publications,2May.IPPProjects.https://www.ipp-projects.co.za/Publications.Accessed6November2023.Indonesia,PresidentialRegulationNo.112of2022concerningtheAccelerationofDevelopmentofRenewableEnergyforElectricPowerSupply.IniciativaClimáticadeMéxico(2022).UnaPropuestaDesdeLaSociedadCivilParaAumentarLaAmbiciónMedianteUnEnfoqueDeJusticiaClimática.MexicoCity.https://iniciativaclimatica.org/ndc/wp-content/uploads/2022/11/Una-propuesta-desde-la-sociedad-civil-091122.pdf.InternationalEnergyAgency(IEA)(2023).WorldEnergyInvestment2023.Paris.https://iea.blob.core.windows.net/assets/8834d3af-af60-4df0-9643-72e2684f7221/WorldEnergyInvestment2023.pdf.__________(2022).AnEnergySectorRoadmaptoNetZeroEmissionsinIndonesia.Paris.https://iea.blob.core.windows.net/assets/b496b141-8c3b-47fc-adb2-90740eb0b3b8/AnEnergySectorRoadmaptoNetZeroEmissionsinIndonesia.pdf.__________(2023).WorldEnergyStatisticsandBalances(2022edition).https://doi.org/10.1787/enestats-data-en.Accessed27October2023.Japan(2021).ActonPromotionofSmoothTransitiontoaDecarbonizedGrowthEconomicStructure.LawNo.32of2021.https://elaws.e-gov.go.jp/document?lawid=505AC0000000032_20230630_000000000000000.Accessed6November2023.EmissionsGapReport2023:BrokenRecordJapan,CabinetSecretariat(2023).HydrogenBasicStrategy.Tokyo.https://www.cas.go.jp/jp/seisaku/saisei_energy/pdf/hydrogen_basic_strategy_kaitei.pdf.Japan,MinistryofEconomy,TradeandIndustry(2023).TheBasicPolicyfortheRealizationofGX:ARoadmapfortheNext10Years.Tokyo.https://www.meti.go.jp/english/press/2023/pdf/0210_003a.pdf.Jiménez,C.andPineda,L.(2022).Proyectodemodificacióndelanormamexicanaderendimientodecombustibleparavehículosligeros–NOM-163-SEMARNAT-ENER-SCFI-2013,7November.https://theicct.org/publication/mexico-lvs-nom163-update-nov22/.Accessed27October2023.KKeramidas,K.,Fosse,F.,DiazRincon,A.,Dowling,P.,Garaffa,R.,Ordonez,J.etal.(2022).GlobalEnergyandClimateOutlook2022:EnergyTradeinaDecarbonisedWorld.Luxembourg:PublicationsOfficeoftheEuropeanUnion.https://publications.jrc.ec.europa.eu/repository/handle/JRC131864.LLebling,K.,Schumer,C.andRiedl,D.(2023).Internationalgovernanceoftechnologicalcarbonremoval:Surfacingquestions,exploringsolutions.Washington,D.C.:WorldResourcesInstitute.https://doi.org/10.46830/wriwp.23.00013.MMeinshausen,M.,Lewis,J.,McGlade,C.,Gütschow,J.,Nicholls,Z.,Burdon,R.etal.(2022).RealizationofParisAgreementpledgesmaylimitwarmingjustbelow2°C.Nature604,304-309.https://doi.org/10.1038/s41586-022-04553-z.Meinshausen,M.,Lewis,J.,Nicholls,Z.R.J.andGuetschow,J.(2023).NDCfactsheets.Zenodo.https://doi.org/10.5281/zenodo.8010081.Accessed6November2023.Mexico,SecretariatoftheGovernment(2023).AgreementNo.A/018/2023oftheEnergyRegulatoryCommissionwhichupdatesthereferencevaluesofthemethodologiesforcalculatingtheefficiencyofelectricalenergycogenerationsystemsandthecriteriafordeterminingefficientcogeneration,aswellastheefficiencycriteriaandcalculationmethodologytodeterminethepercentageoffuel-freeenergyestablishedinresolutionsRES/003/2011,RES/2016/2014,RES291/2012andRES/1838/2016,respectively.https://www.dof.gob.mx/nota_detalle.php?codigo=5690142&fecha=26/05/2023#gsc.tab=0.NNahm,J.M.,Miller,S.M.andUrpelainen,J.(2022).G20’sUS$14-trillioneconomicstimulusrenegesonemissionspledges.Nature603,28-31.https://doi.org/10.1038/d41586-022-00540-6.Nascimento,L.,Kuramochi,T.,Woollands,S.,Moiso,M.,deVillafrancaCasas,M.J.,Hans,F.etal.(2022).GreenhouseGasMitigationScenariosForMajorEmittingCountries:AnalysisofCurrentClimatePoliciesandMitigationCommitments–2022Update.CologneandBerlin:NewClimateInstituteforClimatePolicyandGlobalSustainability.https://newclimate.org/sites/default/files/2022-10/EC-PBL2022_CurrentPolicies_Oct22.pdf.NetZeroTracker(2023).DataExplorer.https://zerotracker.net/.Accessed27October2023.NewClimateInstituteandClimateAnalytics(2023).CountdowntoCOP28:TimeforWorldtoFocusonOilandGasPhase-out,RenewablesTarget–NotDistractionsLikeCCS–June2023.https://climateactiontracker.org/documents/1144/CAT_2023-06-08_Briefing_PhaseOutOilGas.pdf.RRepublicofKorea,ClimateChangeStrategyDivision(2023).TheYoonadministration’sblueprintforachievingcarbonneutralityandgreengrowthrevealed.30March.https://m.me.go.kr/eng/file/readDownloadFile.do?fileId=255266&fileSeq=1.Riahi,K.,Schaeffer,R.,Arango,J.,Calvin,K.,Jiang,K.,Kriegler,E.etal.(2022).Mitigationpathwayscompatiblewithlong-termgoals.InClimateChange2022:MitigationofClimateChange.ContributionofWorkingGroupIIItotheSixthAssessmentReportoftheIntergovernmentalPanelonClimateChange.Shukla,P.R.,Skea,J.,Reisinger,A.,Slade,R.,Fradera,R.,Pathak,M.etal.(eds.).CambridgeandNewYork:CambridgeUniversityPress.Chapter3.295-408.https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_Chapter03.pdf.Roelfsema,M.,vanSoest,H.L.,Harmsen,M.,vanVuuren,D.P.,Bertram,C.,denElzen,M.etal.(2020).TakingstockofnationalclimatepoliciestoevaluateimplementationoftheParisAgreement.NatureCommunications11,2096.https://doi.org/10.1038/s41467-020-15414-6.Rogelj,J.,Fransen,T.,denElzen,M.G.J.,Lamboll,R.D.,Schumer,C.,Kuramochi,T.etal.(2023).Credibilitygapinnet-zeroclimatetargetsleavesworldathighrisk.Science380(6649),1014-1016.https://www.science.org/doi/10.1126/science.adg6248.SSawyer,D.,Griffin,B.,Beugin,D.,Förg,F.andSmith,R.(2022).IndependentAssessment:2030EmissionsReductionPlan.CanadianClimateInstitute.https://climateinstitute.ca/wp-content/uploads/2022/04/ERP-Volume-2-FINAL.pdf.SouthAfrica,Presidency(2022).SouthAfrica’sJustEnergyTransitionInvestmentPlan(JETIP):FortheInitialPeriod2023–2027.Pretoria:Presidency,RepublicofSouthAfrica.https://pccommissionflo.imgix.net/uploads/images/South-Africas-Just-Energy-Transition-Investment-Plan-JET-IP-2023-2027-FINAL.pdf.StockholmEnvironmentInstitute,ClimateAnalytics,E3G,InternationalInstituteforSustainableDevelopmentandUnitedNationsEnvironmentProgramme(2023).TheProductionGap:PhasingDownorPhasingUp?65EmissionsGapReport2023:BrokenRecordUTopFossilFuelProducersPlanEvenMoreExtractionDespiteClimatePromises.Stockholm:StockholmEnvironmentInstitute.https://doi.org/10.51414/sei2023.050.XUnitedKingdom(2023).CarbonBudgetDeliveryPlan.Policypaper.March.https://assets.publishing.service.gov.Buk/government/uploads/system/uploads/attachment_data/file/1147369/carbon-budget-delivery-plan.pdf.CUnitedNations(2022).WorldPopulationProspects2022.https://population.un.org/wpp/.AccessedD27October2023.FUnitedNationsEnvironmentProgramme(UNEP)(2015).TheEmissionsGapReport2015.Nairobi:UNEP.https://www.un-ilibrary.org/content/books/9789210479677.66UnitedNations,FrameworkConventiononClimateChange(2011).ReportoftheConferenceofthePartiesonitssixteenthsession,heldinCancunfrom29Novemberto10December2010,Addendum,PartTwo:ActiontakenbytheConferenceofthePartiesatitssixteenthsession.15March.FCCC/CP/2010/7/Add.1.http://unfccc.int/resource/docs/2010/cop16/eng/07a01.pdf.__________(2015).ParisAgreement.https://unfccc.int/sites/default/files/english_paris_agreement.pdf.__________(2023).FifthBiennialReports–AnnexI.https://unfccc.int/BR5.Accessed27October2023.__________(2023).Technicaldialogueofthefirstglobalstocktake.Synthesisreportbytheco-facilitatorsonthetechnicaldialogue,8September.https://unfccc.int/documents/631600.Accessed27October2023.UnitedStatesofAmerica,DepartmentoftheInterior,BureauofLandManagement(2023).FinaldraftoftheproposedOnshoreOilandGasLeasingRule.https://www.blm.gov/sites/default/files/docs/2023-07/Final-Draft-Proposed-Onshore-Oil-and-Gas-Leasing-Rule-07-18-2023.pdf.UnitedStatesofAmerica,DepartmentoftheInterior,BureauofOceanEnergyManagement(2023).LeaseSale259.https://www.boem.gov/oil-gas-energy/leasing/lease-sale-259.UnitedStatesofAmerica,EnergyInformationAdministration(2023).International.https://www.eia.gov/international/data/world.Accessed27October2023.UnitedStatesofAmerica,EnvironmentalProtectionAgency(2023).MethaneEmissionsReductionProgram,23October.https://www.epa.gov/inflation-reduction-act/methane-emissions-reduction-program.Accessed27October2023.UnitedStatesofAmerica,InternalRevenueService(2023).InflationReductionActof2022,20October.https://www.irs.gov/inflation-reduction-act-of-2022.Accessed27October2023.Xinhua(2023).Xistresseshigher-standardopeneconomy,energytransition,12July.TheStateCouncilInformationOfficeofthePeople’sRepublicofChina.http://english.scio.gov.cn/m/topnews/2023-07/12/content_91999967.htm.Accessed6November2023.Xinhuanet(2023).Non-fossilenergypowergenerationinstalledcapacityaccountsformorethan50%,11June.http://www.news.cn/2023-06/11/c_1129686294.htm.Accessed6November2023.Chapter4Byers,E.,Krey,V.,Kriegler,E.,Riahi,K.,Schaeffer,R.,Kikstra,J.etal.(2022).AR6ScenariosDatabase.https://pure.iiasa.ac.at/id/eprint/18399/.Accessed1November2023.Canadell,J.G.,Monteiro,P.M.S.,Costa,M.H.,daCunha,L.C.,Cox,P.M.,Eliseev,A.V.etal.(2021).Globalcarbonandotherbiogeochemicalcyclesandfeedbacks.InClimateChange2021:ThePhysicalScienceBasis.ContributionofWorkingGroupItotheSixthAssessmentReportoftheIntergovernmentalPanelonClimateChange.Masson-Delmotte,V.,Zhai,P.,Pirani,A.,Connors,S.L.,Péan,C.,Berger,S.etal.(eds.).CambridgeandNewYork:CambridgeUniversityPress.Chapter5.673-816.https://doi.org/10.1017/9781009157896.007.ClimateActionTracker(2022).WarmingProjectionsGlobalUpdate–November2022.https://climateactiontracker.org/documents/1094/CAT_2022-11-10_GlobalUpdate_COP27.pdf.Dafnomilis,I.,denElzen,M.andvanVuuren,D.P.(2023).Achievingnet‐zeroemissionstargets:Ananalysisoflong‐termscenariosusinganintegratedassessmentmodel.AnnalsoftheNewYorkAcademyofSciences1522(1),98-108.https://doi.org/10.1111/nyas.14970.denElzen,M.G.J.,Dafnomilis,I.,Forsell,N.,Fragkos,P.,Fragkiadakis,K.,Höhne,N.etal.(2022).UpdatednationallydeterminedcontributionscollectivelyraiseambitionlevelsbutneedstrengtheningfurthertokeepParisgoalswithinreach.MitigationandAdaptationStrategiesforGlobalChange27,33.https://doi.org/10.1007/s11027-022-10008-7.denElzen,M.G.J.,Dafnomilis,I.,Hof,A.F.,Olsson,M.,Beusen,A.,Botzen,W.J.W.etal.(2023).TheimpactofpolicyandmodeluncertaintiesonemissionsprojectionsoftheParisAgreementpledges.EnvironmentalResearchLetters18(5),054026.https://doi.org/10.1088/1748-9326/acceb7.Forster,P.M.,Smith,C.J.,Walsh,T.,Lamb,W.F.,Lamboll,R.,Hauser,M.etal.(2023).IndicatorsofGlobalClimateChange2022:Annualupdateoflarge-scaleindicatorsofthestateoftheclimatesystemandhumaninfluence.EarthSystemScienceData15(6),2295-2327.https://doi.org/10.5194/essd-15-2295-2023.EmissionsGapReport2023:BrokenRecordHHöhne,N.,denElzen,M.,Rogelj,J.,Metz,B.,Fransen,T.,Kuramochi,T.etal.(2020).Emissions:Worldhasfourtimestheworkorone-thirdofthetime.Nature579(7797),25-28.https://doi.org/10.1038/d41586-020-00571-x.IIntergovernmentalPanelonClimateChange(2021).ClimateChange2021:ThePhysicalScienceBasis.ContributionofWorkingGroupItotheSixthAssessmentReportoftheIntergovernmentalPanelonClimateChange.Masson-Delmotte,V.,Zhai,P.,Pirani,A.,Connors,S.L.,Péan,C.,Berger,S.etal.(eds.).CambridgeandNewYork:CambridgeUniversityPress.https://doi.org/10.1017/9781009157896.KKeramidas,K.,Fosse,F.,DiazRincon,A.,Dowling,P.,Garaffa,R.,Ordonez,J.etal.(2022).GlobalEnergyandClimateOutlook2022:EnergyTradeinaDecarbonisedWorld.Luxembourg:PublicationsOfficeoftheEuropeanUnion.https://doi.org/10.2760/863694.Kikstra,J.S.,Nicholls,Z.R.J.,Smith,C.J.,Lewis,J.,Lamboll,R.D.,Byers,E.etal.(2022).TheIPCCSixthAssessmentReportWGIIIclimateassessmentofmitigationpathways:Fromemissionstoglobaltemperatures.GeoscientificModelDevelopment15(24),9075-9109.https://doi.org/10.5194/gmd-15-9075-2022.LLecocq,F.,Winkler,H.,Daka,J.P.,Fu,S.,Gerber,J.,Kartha,S.etal.(2022).Mitigationanddevelopmentpathwaysinthenear-tomid-term.InClimateChange2022:MitigationofClimateChange.ContributionofWorkingGroupIIItotheSixthAssessmentReportoftheIntergovernmentalPanelonClimateChange.Shukla,P.R.,Skea,J.,Reisinger,A.,Slade,R.,Fradera,R.,Pathak,M.etal.(eds.).CambridgeandNewYork:CambridgeUniversityPress.Chapter4.409-502.https://doi.org/10.1017/9781009157926.006.MMeinshausen,M.,Lewis,J.,Nicholls,Z.R.J.andGuetschow,J.(2023).NDCfactsheets.Zenodo.https://doi.org/10.5281/zenodo.8010081.Accessed6November2023.NNascimento,L.,Kuramochi,T.,Woollands,S.,Moiso,M.,deVillafrancaCasas,M.J.,Hans,F.etal.(2022).GreenhouseGasMitigationScenariosforMajorEmittingCountries:AnalysisofCurrentClimatePoliciesandMitigationCommitments–2022Update.CologneandBerlin:NewClimateInstituteforClimatePolicyandGlobalSustainability.https://newclimate.org/sites/default/files/2022-10/EC-PBL2022_CurrentPolicies_Oct22.pdf.NewClimateInstitute(2023).ClimatePolicyDatabase.https://climatepolicydatabase.org/.Accessed1November2023.Nicholls,Z.R.J.,Meinshausen,M.,Forster,P.,Armour,K.,Berntsen,T.,Collins,W.etal.(2021).Cross-chapterbox7.1:PhysicalemulationofEarthSystemModelsforscenarioclassificationandknowledgeintegrationinAR6.InClimateChange2021:ThePhysicalScienceBasis.ContributionofWorkingGroupItotheSixthAssessmentReportoftheIntergovernmentalPanelonClimateChange.Masson-Delmotte,V.,Zhai,P.,Pirani,A.,Connors,S.L.,Péan,C.,Berger,S.etal.(eds.).CambridgeandNewYork:CambridgeUniversityPress.962-967.https://doi.org/10.1017/9781009157896.009.RRiahi,K.,Bertram,C.,Huppmann,D.,Rogelj,J.,Bosetti,V.,Cabardos,A.-M.etal.(2021).Costandattainabilityofmeetingstringentclimatetargetswithoutovershoot.NatureClimateChange11,1063-1069.https://doi.org/10.21203/rs.3.rs-127847/v1.Riahi,K.,Schaeffer,R.,Arango,J.,Calvin,K.,Guivarch,C.,Hasegawa,T.etal.(2022).Mitigationpathwayscompatiblewithlong-termgoals.InClimateChange2022:MitigationofClimateChange.ContributionofWorkingGroupIIItotheSixthAssessmentReportoftheIntergovernmentalPanelonClimateChange.Shukla,P.R.,Skea,J.,Reisinger,A.,Slade,R.,Fradera,R.,Pathak,M.etal.(eds.).CambridgeandNewYork:CambridgeUniversityPress.Chapter3.295-408.https://doi.org/10.1017/9781009157926.005.Roelfsema,M.,vanSoest,H.L.,Harmsen,M.,vanVuuren,D.P.,Bertram,C.,denElzen,M.etal.(2020).TakingstockofnationalclimatepoliciestoevaluateimplementationoftheParisAgreement.NatureCommunications11(1),2096.https://doi.org/10.1038/s41467-020-15414-6.Roelfsema,M.,vanSoest,H.L.,denElzen,M.,deConinck,H.,Kuramochi,T.,Harmsen,M.etal.(2022).DevelopingscenariosinthecontextoftheParisAgreementandapplicationintheintegratedassessmentmodelIMAGE:Aframeworkforbridgingthepolicy-modellingdivide.EnvironmentalScience&Policy135,104-116.https://doi.org/10.1016/j.envsci.2022.05.001.Rogelj,J.,Fransen,T.,denElzen,M.,Lamboll,R.D.,Schumer,C.,Kuramochi,T.etal.(2023).Credibilitygapinnet-zeroclimatetargetsleavesworldathighrisk.Science380(6649),1014-1016.https://doi.org/10.1126/science.adg6248.SSmith,C.(2023).FaIRcalibrationdata(FaIRv2.1.0).https://doi.org/10.5281/zenodo.7740606.Accessed1November2023.SchmidtTagomori,I.,Hooijschuur,E.andMuyasyaroh,A.(2023).Promisingclimateprogress.IIASAPolicyBriefNo.34.Laxenburg:InternationalInstituteforAppliedSystemsAnalysis.http://www.engage-climate.org/wp-content/uploads/2023/10/PB34_Engage-policy-briefweb_0.pdf.UUnitedNationsEnvironmentProgramme(2015).TheEmissionsGapReport2015.Nairobi.https://www.unep.org/resources/emissions-gap-report-2015.67EmissionsGapReport2023:BrokenRecordV__________(2019).EmissionsGapReport2019.Nairobi.https://www.unep.org/resources/emissions-gap-report-2019.AB__________(2022).TheClosingWindow:ClimateCrisisCallsforRapidTransformationofSocieties.EmissionsCGapReport2022.Nairobi.https://www.unep.org/resources/emissions-gap-report-2022.DvanRuijven,B.,Jäger,J.,Riahi,K.,Battersby,S.,Bertram,C.,Bosetti,V.etal.(2023).PlausiblepathwaysthatmeetFtheParisandGlasgowtargets.InENGAGESummaryforPolicymakers.Laxenburg,Austria:InternationalGInstituteforAppliedSystemsAnalysis.23-26.https://pure.iiasa.ac.at/id/eprint/19116/.HIChapter5KAmeli,N.,Dessens,O.,Winning,M.,Cronin,J.,Chenet,H.,Drummond,P.etal.(2021).Highercostoffinanceexacerbatesaclimateinvestmenttrapindevelopingeconomies.NatureCommunications12,4046.https://68doi.org/10.1038/s41467-021-24305-3.Bustamente,M.etal.Tennewinsightsinclimatescience2023.GlobalSustainability.Inreview.Clarke,L.,Wei,Y.M.,delaVegaNavarro,A.,Garg,A.,Hahmann,A.N.,Khennas,S.etal.(2022).Energysystems.InClimateChange2022:MitigationofClimateChange.ContributionofWorkingGroupIIItotheSixthAssessmentReportoftheIntergovernmentalPanelonClimateChange.Shukla,P.R.,Skea,J.,Reisinger,A.,Slade,R.,Fradera,R.,Pathak,M.etal.(eds.).CambridgeandNewYork:CambridgeUniversityPress.Chapter6.613-746.https://doi.org/10.1017/9781009157926.008.Cozzi,L.,Wetzel,D.,Tonolo,G.andHyppoliteII,J.(2022).Forthefirsttimeindecades,thenumberofpeoplewithoutaccesstoelectricityissettoincreasein2022,3November.https://www.iea.org/commentaries/for-the-first-time-in-decades-the-number-of-people-without-access-to-electricity-is-set-to-increase-in-2022.Accessed26October2023.DeepDecarbonizationPathways(2021).PolicyLessonsonDeepDecarbonizationinLargeEmergingEconomies:Brazil,India,IndonesiaandSouthAfrica.Paris:IDDRI.https://www.ddpinitiative.org/wp-content/pdf/DDP_BIICS_CountryReport.pdf.Dubash,N.K.(2023).TheG20shouldforgeapacttosupportnations’shiftstoalow-carbonfuture.Nature619(9).https://doi.org/10.1038/d41586-023-02208-1.Friedlingstein,P.,O’Sullivan,M.,Jones,M.W.,Andrew,R.M.,Gregor,L.,Hauck,J.etal.(2022).Globalcarbonbudget2022.EarthSystemScienceData14(11),4811-4900.https://doi.org/10.5194/essd-14-4811-2022.Garg,A.(2020)SynchronizingcarbonmitigationandtheSustainableDevelopmentGoals.CarbonManagement11(3),203-204.https://doi.org/10.1080/17583004.2020.1757338.Gunfaus,M.T.andWaisman,H.(2021).AssessingtheadequacyoftheglobalresponsetotheParisAgreement:Towardafullappraisalofclimateambitionandaction.EarthSystemGovernance8,100102.https://doi.org/10.1016/j.esg.2021.100102.Holz,C.,Cunliffe,G.,Mbeva,K.,Pauw,P.W.andWinkler,H.(2023).Temperingandenablingambition:HowequityisconsideredindomesticprocessespreparingNDCs.InternationalEnvironmentalAgreements:Politics,LawandEconomics23,271-292.https://doi.org/10.1007/s10784-023-09599-6.IntergovernmentalPanelonClimateChange(2022).ClimateChange2022:MitigationofClimateChange.ContributionofWorkingGroupIIItotheSixthAssessmentReportoftheIntergovernmentalPanelonClimateChange.Shukla,P.R.,Skea,J.,Reisinger,A.,Slade,R.,Fradera,R.,Pathak,M.etal.(eds.).CambridgeandNewYork:CambridgeUniversityPress.https://www.ipcc.ch/report/ar6/wg3/.InternationalEnergyAgency(2021).NetZeroby2050:ARoadmapfortheGlobalEnergySector.Paris:InternationalEnergyAgency.Paris.https://www.iea.org/reports/net-zero-by-2050.__________(2023).NetZeroRoadmap:AGlobalPathwaytoKeepthe1.5°CGoalinReach.2023Update.Paris.https://www.iea.org/reports/net-zero-roadmap-a-global-pathway-to-keep-the-15-0c-goal-in-reach.InternationalEnergyAgencyandInternationalFinanceCorporation(2023).ScalingupPrivateFinanceforCleanEnergyinEmergingandDevelopingEconomies.Paris.https://www.iea.org/reports/scaling-up-private-finance-for-clean-energy-in-emerging-and-developing-economies.InternationalEnergyAgency,InternationalRenewableEnergyAgency,UnitedNationsStatisticsDivision,WorldBankandWorldHealthOrganization(2023).TrackingSDG7:TheEnergyProgressReport2023.Washington,D.C.:WorldBank.https://trackingsdg7.esmap.org/data/files/download-documents/sdg7-report2023-full_report.pdf.InternationalLabourOrganization(2015).GuidelinesforaJustTransitionTowardsEnvironmentallySustainableEconomiesandSocietiesforAll.Geneva.https://www.ilo.org/wcmsp5/groups/public/@ed_emp/@emp_ent/documents/publication/wcms_432859.pdf.Kikstra,J.,Mastrucci,A.,Min,J.,Riahi,K.andRao,N.(2021).Decentlivinggapsandenergyneedsaroundtheworld.EnvironmentalResearchLetters16,095006.https://doi.org/10.1088/1748-9326/ac1c27.EmissionsGapReport2023:BrokenRecordLLaRovere,E.L.,Grottera,C.andWills,W.(2018)OvercomingthefinancialbarriertoalowemissiondevelopmentstrategyinBrazil.InternationalEconomics155,61-68.https://doi.org/10.1016/j.inteco.2017.12.004.MMcCauley,D.andHeffron,R.(2018).Justtransition:Integratingclimate,energyandenvironmentaljustice.EnergyPolicy119,1-7.https://doi.org/10.1016/j.enpol.2018.04.014.Millward-Hopkins,J.,Steinberger,J.K.,Rao,N.D.andOswald,Y.(2020).Providingdecentlivingwithminimumenergy:Aglobalscenario.GlobalEnvironmentalChange65,102168.https://doi.org/10.1016/j.gloenvcha.2020.102168.Mulugetta,Y.,Sokona,Y.,Trotter,P.A.,Fankhauser,S.,Omukuti,J.,Croxatto,L.S.etal.(2022).Africaneedscontext-relevantevidencetoshapeitscleanenergyfuture.NatureEnergy7,1015-1022.https://doi.org/10.1038/s41560-022-01152-0.Muttitt,G.andKartha,S.(2020).Equity,climatejusticeandfossilfuelextraction:Principlesforamanagedphaseout.ClimatePolicy20(8),1024-1042.https://doi.org/10.1080/14693062.2020.1763900.Muttitt,G.,Price,J.,Pye,S.andWelsby,D.(2023).Socio-politicalfeasibilityofcoalpowerphase-outanditsroleinmitigationpathways.NatureClimateChange13,140-147.https://doi.org/10.1038/s41558-022-01576-2.OOrganisationforEconomicCo-operationandDevelopment(2020).GlobalOutlookonFinancingforSustainableDevelopment2021:ANewWaytoInvestforPeopleandPlanet.Paris.https://doi.org/10.1787/e3c30a9a-en.PPachauri,S.,Pelz,S.,Bertram,C.,Kriebiehl,S.,Rao,N.D.,Sokona,Y.etal.(2022).Fairnessconsiderationsinglobalmitigationinvestments.Science378(6624),1057-1059.https://doi.org/10.1126/science.adf0067.RRao,N.D.,Min,J.andMastrucci,A.(2019).EnergyrequirementsfordecentlivinginIndia,BrazilandSouthAfrica.NatureEnergy4,1025-1032.https://doi.org/10.1038/s41560-019-0497-9.SSmith,S.(2017).JustTransition:AReportfortheOECD.Brussels:InternationalTradeUnionConfederation.https://www.oecd.org/environment/cc/g20-climate/collapsecontents/Just-Transition-Centre-report-just-transition.pdf.Sokona,Y.,Mulugetta,Y.,Tesfamichael,M.,Kaboub,F.,Hällström,N.,Stilwell,M.etal.(2023).JustTransition:AClimate,EnergyandDevelopmentVisionforAfrica.PowerShiftAfrica.https://www.powershiftafrica.org/publications/just-transition-a-climate-energy-and-development-vision-for-africa.StockholmEnvironmentInstitute,ClimateAnalytics,E3G,InternationalInstituteforSustainableDevelopmentandUnitedNationsEnvironmentProgramme(2023).TheProductionGapReport2023.Stockholm:StockholmEnvironmentInstitute.http://productiongap.org/2023report.Svensson,J.(2023).IDDRIsubmissiontotheGSTonbehalfoftheIMAGINEproject:UsingtheGlobalStocktaketoidentifyanddesignopportunitiesforenhancedglobalcollaborationthatacceleratesnationalclimateanddevelopmentaction:Thecaseofinternationalfinance.March.https://unfccc.int/sites/default/files/resource/202303101031---GST_submission_finance_final.pdf.TTong,D.,Zhang,Q.,Zheng,Y.,Caldeira,K.,Shearer,C.,Hong,C.etal.(2019).Committedemissionsfromexistingenergyinfrastructurejeopardize1.5°Cclimatetarget.Nature572,373-377.https://doi.org/10.1038/s41586-019-1364-3.Trout,K.,Muttitt,G.,Lafleur,D.,VandeGraaf,T.,Mendelevitch,R.Mei,L.etal.(2022).Existingfossilfuelextractionwouldwarmtheworldbeyond1.5°C.EnvironmentalResearchLetters17(6),064010.https://doi.org/10.1088/1748-9326/ac6228.UUnitedNations(2015).ParisAgreement.https://unfccc.int/files/essential_background/convention/application/pdf/english_paris_agreement.pdf.UnitedNationsDepartmentofEconomicandSocialAffairs(2022).AddressingEnergy’sInterlinkageswithOtherSDGs:PolicyBriefsinSupportoftheHigh-levelPoliticalForum2022.NewYork:UnitedNations.https://sdgs.un.org/sites/default/files/2022-06/Policy%20Briefs%20-2022%20Energy%27s%20Interlinkages%20With%20Other%20SDGs.pdf.UnitedNationsEnvironmentProgramme(2019).EmissionsGapReport2019.Nairobi.https://www.unep.org/resources/emissions-gap-report-2019.__________(2020).EmissionsGapReport2020.Nairobi.https://www.unep.org/emissions-gap-report-2020.__________(2022).TheClosingWindow:ClimateCrisisCallsforRapidTransformationofSocieties.EmissionsGapReport2022.Nairobi.https://www.unep.org/resources/emissions-gap-report-2022.UnitedNationsFrameworkConventiononClimateChangeStandingCommitteeonFinance(2022).FirstReportontheDeterminationoftheNeedsofDevelopingCountryPartiesRelatedtoImplementingtheConventionandtheParisAgreement.Bonn:UnitedNationsFrameworkConventiononClimateChange.https://unfccc.int/topics/climate-finance/workstreams/determination-of-the-needs-of-developing-country-parties/first-report-on-the-determination-of-the-needs-of-developing-country-parties-related-to-implementing.UnitedNationsSecretary-General(2023).Secretary-GeneralcallsonStatestotackleclimatechange‘timebomb’throughnewsolidaritypact,accelerationagenda,atlaunchofIntergovernmentalPanelreport,20March.https://press.un.org/en/2023/sgsm21730.doc.htm.Accessed26October2023.69EmissionsGapReport2023:BrokenRecordUnitedNationsUniversityInstituteforNaturalResourcesinAfrica(2019).Africa’sDevelopmentintheAgeofStrandedAssets:DiscussionPaper2019.Accra.https://i.unu.edu/media/inra.unu.edu/publication/5247/DIscussion-paper-Africas-Development-in-the-age-of-stranded-Assets_INRAReport2019-.pdf.VVinichenko,V.,Cherp,A.andJewell,J.(2021).Historicalprecedentsandfeasibilityofrapidcoalandgasdeclinerequiredforthe1.5°Ctarget.OneEarth4(10),1477-1490.https://doi.org/10.1016/j.oneear.2021.09.012.WWaisman,H.,Bataille,C.,Winkler,H.,Jotzo,F.,Shukla,P.,Colombier,M.etal.(2019).Apathwaydesignframeworkfornationallowgreenhousegasemissiondevelopmentstrategies.NatureClimateChange9(4),261-268.https://doi.org/10.1038/s41558-019-0442-8.Wollburg,P.,Hallegatte,S.andMahler,D.(2023).TheClimateImplicationsofEndingGlobalPoverty.PolicyResearchWorkingPaper10318.Washington,D.C.:WorldBankGroup.https://documents1.worldbank.org/curated/en/099557002242323911/pdf/IDU0bbf17510061a9045530b57a0ccaba7a1dc79.pdf.Chapter6AAkinola,O.,Olawade,D.B.andDavid-Olawade,A.C.(2022)WhatlessonscanAfricannationslearnfromtheCOVID-19pandemic?TropicalMedicineandHealth50,89.https://doi.org/10.1186/s41182-022-00480-x.Allan,R.P.,Arias,P.A.,Berger,S.Canadell,J.G.,Cassou,C.,Chen,D.etal.(2021).Summaryforpolicymakers.InClimateChange2021:ThePhysicalScienceBasis.ContributionofWorkingGroupItotheSixthAssessmentReportoftheIntergovernmentalPanelonClimateChange.Masson-Delmotte,V.,Zhai,P.,Pirani,A.,Connors,S.L.,Péan,C.,Berger,S.etal.(eds.).CambridgeandNewYork:CambridgeUniversityPress.https://doi.org/10.1017/9781009157896.001.Ameli,N.,Dessens,O.,Winning,M.,Cronin,J.,Chenet,H.,Drummond,P.etal.(2021).Highercostoffinanceexacerbatesaclimateinvestmenttrapindevelopingeconomies.NatureCommunications,12(1),4046.https://doi.org/10.1038/s41467-021-24305-3.Anwar,M.,Neary,P.andHuixham,M.(2022).NaturalGasinAfricaAmidaGlobalLowCarbonEnergyTransition.CapeTown:AfricanClimateFoundation.https://africanclimatefoundation.org/wp-content/uploads/2022/10/ACF-GAS-REPORT-2.0-African-Landscape-Final-Web.pdf.Assunção,J.,Gandour,C.andRocha,R.(2015).DeforestationslowdownintheBrazilianAmazon:Pricesorpolicies?EnvironmentandDevelopmentEconomics20(6),697-722.https://doi.org/10.1017/S1355770X15000078.Ayaburi,J.,Bazilian,M.,Kincer,J.andMoss,T.(2020).Measuring“reasonablyreliable”accesstoelectricityservices.TheElectricityJournal33(7),106828.https://doi.org/10.1016/j.tej.2020.106828.BBehuria,P.(2020).Thepoliticsoflatelatedevelopmentinrenewableenergysectors:DependencyandcontradictorytensionsinIndia’sNationalSolarMission.WorldDevelopment126,104726.https://doi.org/10.1016/j.worlddev.2019.104726.Bhatia,P.,Chandra,M.,Dubash,N.K.andSrivastava,A.(2023).KeepingdevelopmentattheforefrontofIndia’slong-termclimatestrategy,5June.https://www.ideasforindia.in/topics/environment/keeping-development-at-the-forefront-of-india-s-long-term-climate-strategy.html.Accessed31October2023.BloombergNEF(2021).TheCostofProducingBatteryPrecursorsintheDRC.NewYork:Bloomberg.https://assets.bbhub.io/professional/sites/24/BNEF-The-Cost-of-Producing-Battery-Precursors-in-the-DRC_FINAL.pdf.Bridle,R.,Bellmann,C.,Loyola,V.,Mostafa,M.,Moerenhout,T.etal.(2021).DrivingDemand:AssessingtheImpactsandOpportunitiesoftheElectricVehicleRevolutiononCobaltandLithiumRawMaterialProductionandTrade.Manitoba:InternationalInstituteforSustainableDevelopment.https://www.iisd.org/system/files/2021-07/electric-vehicle-cobalt-lithium-production-trade.pdf.Brito,B.,Barreto,P.,BrandãoJr.,A.,Baimaa,S.andGomes,P.H.(2019).StimulusforlandgrabbinganddeforestationintheBrazilianAmazon.EnvironmentalResearchLetters14(6),064018.https://doi.org/10.1088/1748-9326/ab1e24.CChen,P.,Wu,Y.,Meng,J.,He,P.,Li,D.,Coffman,D.etal.(2022).TheheterogeneousroleofenergypoliciesintheenergytransitionofAsia-Pacificemergingeconomies.NatureEnergy7,588-596.https://doi.org/10.1038/s41560-022-01029-2.Cozzi,L.,Wetzel,D.,Tonolo,G.andHyppoliteII,J.(2022).Forthefirsttimeindecades,thenumberofpeoplewithoutaccesstoelectricityissettoincreasein2022,3November.https://www.iea.org/commentaries/for-the-first-time-in-decades-the-number-of-people-without-access-to-electricity-is-set-to-increase-in-2022.Accessed26October2023.Creutzig,F.,Roy,J.,Lamb,W.F.,Azevedo,I.M.,BruinedeBruin,W.,Dalkmann,H.2018.Towardsdemand-sidesolutionsformitigatingclimatechange.NatureClimateChange8(4),260-263.https://doi.org/10.1038/s41558-018-0121-1.70EmissionsGapReport2023:BrokenRecordCui,R.Y.,Hultman,N.,Cui,D.,McJeon,H.,Yu,S.,Edwards,M.R.etal.(2021).Aplant-by-plantstrategyforhigh-ambitioncoalpowerphaseoutinChina.NatureCommunications12(1),1468.https://doi.org/10.1038/s41467-021-21786-0.Cui,R.Y.,Hultman,N.,Edwards,M.R.,He,L.,Sen,A.,Surana,K.etal.(2019).QuantifyingoperationallifetimesforcoalpowerplantsundertheParisgoals.NatureCommunications10,4759.https://doi.org/10.1038/s41467-019-12618-3.Davis,K.F.,Chhatre,A.,Rao,N.D.,Singh,D.,Ghosh-Jerath,S.,Mridul,A.etal.(2019).Assessingthesustainabilityofpost-GreenRevolutioncerealsinIndia.ProceedingsoftheNationalAcademyofSciences116(50),25034-25041.https://doi.org/10.1073/pnas.1910935116.DdeHoog,N.,Bodnar,D.andSmid,T.(2023).Energytransitionnotapanaceaforfuelimporters,4April.https://group.atradius.com/publications/economic-research/energy-transition-not-a-panacea-for-fuel-importers.html.Accessed31October2023.Doblas-Reyes,F.J.,Sörensson,A.A.,Almazroui,M.,Dosio,A.Gutowski,W.J.,Haarsma,R.etal.(2021).Linkingglobaltoregionalclimatechange.InClimateChange2021:ThePhysicalScienceBasis.ContributionofWorkingGroupItotheSixthAssessmentReportoftheIntergovernmentalPanelonClimateChange.Masson-Delmotte,V.,Zhai,P.,Pirani,A.,Connors,S.L.,Péan,C.,Berger,S.etal.(eds.).CambridgeandNewYork:CambridgeUniversityPress.Chapter10.1363-1512.https://doi.org/10.1017/9781009157896.012.Dubash,N.K.,Pillai,A.V.,Flachsland,C.,Harrison,K.,Hochstetler,K.,Lockwood,M.etal.(2021).Nationalclimateinstitutionscomplementtargetsandpolicies.Science374(6568),690-693.https://doi.org/10.1126/science.abm1157.Dumas,P.,Wirsenius,S.,Searchinger,T.,Andrieu,N.andVogt-Schilb,A.(2022).OptionstoAchieveNet-zeroEmissionsfromAgricultureandLandUseChangesinLatinAmericaandtheCaribbean.IDBWorkingPaperSeriesNo.IDB-WP-01377.Washington,D.C.:Inter-AmericanDevelopmentBank.https://doi.org/10.18235/0004427.FFazekas,A.,Bataille,C.andVogt-Schilb,A.(2022).AchievingNet-ZeroProsperity:HowGovernmentsCanUnlock15EssentialTransformations.Washington,D.C.:Inter-AmericanDevelopmentBank.http://dx.doi.org/10.18235/0004364.GGerval,A.andHansen,J.(2022).COVID-19WorkingPaper:SingleCommodityExportDependenceandtheImpactsofCOVID-19inSub-SaharanAfrica.Washington,D.C.:UnitedStatesDepartmentofAgricultureEconomicResearchService.https://ageconsearch.umn.edu/record/323866.Groenewoudt,A.C.andRomijn,H.A.(2022).Limitsofthecorporate-ledmarketapproachtooff-gridenergyaccess:Areview.EnvironmentalInnovationandSocietalTransitions,42:27-43.https://doi.org/10.1016/j.eist.2021.10.027.HHamadeh,N.,vanRompaey,C.,Metreau,E.andEapen,S.G.(2022).NewWorldBankcountryclassificationsbyincomelevel:2022–2023,1July.https://blogs.worldbank.org/opendata/new-world-bank-country-classifications-income-level-2022-2023.Accessed30October2023.He,J.,Li,Z.,Zhang,X.,Wang,H.Dong,W.,Du,E.etal.(2022).Towardscarbonneutrality:AstudyonChina’slong-termlow-carbontransitionpathwaysandstrategies.EnvironmentalScienceandEcotechnology9,100134.https://doi.org/10.1016/j.ese.2021.100134.Hiep,D.V.,Tran,N.H.,Tuan,N.A.,Hung,T.M.,Duc,N.V.andTung,H.(2023).Assessmentofelectrictwo-wheelersdevelopmentinestablishinganationale-mobilityroadmaptopromotesustainabletransportinVietnam.Sustainability15(9),7411.https://doi.org/10.3390/su15097411.Hochstetler,K.(2020).PoliticalEconomiesofEnergyTransitioninBrazilandSouthAfrica.Cambridge:CambridgeUniversityPress.Huang,P.,Negro,S.O.,Hekkert,M.P.andBi,K.(2016).HowChinabecamealeaderinsolarPV:Aninnovationsystemanalysis.RenewableandSustainableEnergyReviews64,777-789.https://doi.org/10.1016/j.rser.2016.06.061.IIndia,MinistryofEnvironment,ForestandClimateChange(2022).India’sLong-termLow-carbonDevelopmentStrategy:SubmissiontotheUnitedNationsFrameworkConventiononClimateChange.NewDelhi.https://unfccc.int/documents/623511.India,MinistryofNewandRenewableEnergy(2023).NationalGreenHydrogenMission.NewDelhi.https://mnre.gov.in/img/documents/uploads/file_f-1673581748609.pdf.India,MinistryofPower,CentralElectricalAuthority(2023).ReportonOptimalGenerationCapacityMixfor2029–30,Version2.0.NewDelhi.https://cea.nic.in/wp-content/uploads/irp/2023/05/Optimal_mix_report__2029_30_Version_2.0__For_Uploading.pdf.InternationalEnergyAgency(2021a).MineralRequirementsforCleanEnergyTransitions.Paris.https://www.iea.org/reports/the-role-of-critical-minerals-in-clean-energy-transitions/mineral-requirements-for-clean-energy-transitions.71EmissionsGapReport2023:BrokenRecordJ__________(2021b).NetZeroby2050:ARoadmapfortheGlobalEnergySector.Paris.https://www.iea.org/Kreports/net-zero-by-2050.L__________(2021c).FinancingCleanEnergyTransitionsinEmergingandDevelopingCountries.Paris.https://www.Miea.org/reports/financing-clean-energy-transitions-in-emerging-and-developing-economies.72__________(undated).PoliciesDatabase.https://www.iea.org/policies.Accessed30October2023.InternationalEnergyAgency,InternationalRenewableEnergyAgency,UnitedNationsStatisticsDivision,WorldBankandWorldHealthOrganization(2021).TrackingSDG7:TheEnergyProgressReport.Washington,D.C.:WorldBank.https://www.iea.org/reports/tracking-sdg7-the-energy-progress-report-2021.__________(2023).TrackingSDG7:TheEnergyProgressReport2023.Washington,D.C.:WorldBank.https://trackingsdg7.esmap.org/data/files/download-documents/sdg7-report2023-full_report.pdf.InternationalMonetaryFund(2022).Angola:SelectedIssues.IMFCountryReportNo.22/12.Washington,D.C.https://www.elibrary.imf.org/view/journals/002/2022/012/article-A001-en.xml.__________(2023).RepublicofSouthSudan.IMFCountryReportNo.23/108.Washington,D.C.https://www.imf.org/-/media/Files/Publications/CR/2023/English/1SSDEA2023001.ashx.InternationalRenewableEnergyAgency(2022).RenewablePowerGenerationCostsin2021.AbuDhabi.https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2022/Jul/IRENA_Power_Generation_Costs_2021.pdf.InternationalRenewableEnergyAgencyandFoodandAgricultureOrganizationoftheUnitedNations(2021).RenewableEnergyforAgri-foodSystems:TowardstheSustainableDevelopmentGoalsandtheParisAgreement.AbuDhabiandRome:InternationalRenewableEnergyAgencyandFoodandAgricultureOrganizationoftheUnitedNations.https://doi.org/10.4060/cb7433en.Jaramillo,M.,Quirs-Torts,J.,Vogt-Schilb,A.,Money,A.andHowells,M.(2023).Data-to-deal(D2D):Opendataandmodellingoflongtermstrategiestofinancialresourcemobilization–thecaseofCostaRica,19March.https://doi.org/10.33774/coe-2023-sqbfm-v5.Accessed31October2023.Kikstra,J.S.,Mastrucci,A.,Min,J.,Riahi,K.andRao,N.D.(2021).Decentlivinggapsandenergyneedsaroundtheworld.EnvironmentalResearchLetters,16(9),095006.https://doi.org/10.1088/1748-9326/ac1c27.Klinsky,S.andSagar,A.D.(2022).Thewhy,whatandhowofcapacitybuilding:Someexploration.ClimatePolicy22(5),549-556.https://doi.org/10.1080/14693062.2022.2065059.Klinsky,S.,Waskow,D.,Northrop,E.andBevins,W.(2017).Operationalizingequityandsupportingambition:Identifyingamorerobustapproachto‘respectivecapabilities’.ClimateandDevelopment9(4),287-297.https://www.tandfonline.com/doi/abs/10.1080/17565529.2016.1146121.Le,H.,Posada,F.andYang,Z.(2022).ElectricTwo-WheelerMarketGrowthinVietnam:AnOverview.SanFrancisco:InternationalCouncilonCleanTransportation.https://theicct.org/wp-content/uploads/2022/10/asia-pacific-lvs-NDC-TIA-E2W-mkt-growth-Vietnam-nov22.pdf.Lema,R.,Andersen,M.H.,Hanlin,R.andNzila,C.(2021).Renewableelectrificationpathwaysandsustainableindustrialisation:Lessonslearnedandtheirimplications.InBuildingInnovationCapabilitiesforSustainableIndustrialisation.Lema,R.,Andersen,M.H.,Hanlin,R.andNzila,C.(eds.).London:Routledge.249-269.https://www.taylorfrancis.com/chapters/oa-edit/10.4324/9781003054665-12/renewable-electrification-pathways-sustainable-industrialisation-rasmus-lema-margrethe-holm-andersen-rebecca-hanlin-charles-nzila.Lwasa,S.,Seto,K.C.,Bai,X.,Blanco,H.,Gurney,K.R.,Kılkış,Ş.Etal.(2022).Urbansystemsandothersettlements.InClimateChange2022:MitigationofClimateChange.ContributionofWorkingGroupIIItotheSixthAssessmentReportoftheIntergovernmentalPanelonClimateChange.Shukla,P.R.,Skea,J.,Reisinger,A.,Slade,R.,Fradera,R.,Pathak,M.etal.(eds.).CambridgeandNewYork:CambridgeUniversityPress.Chapter8.861-952.https://doi.org/10.1017/9781009157926.010.Maji,P.,Mehrabi,Z.andKandlikar,M.(2021).Incompletetransitionstocleanhouseholdenergyreinforcegenderinequalitybyloweringwomen’srespiratoryhealthandhouseholdlabourproductivity.WorldDevelopment139:105309.https://doi.org/10.1016/j.worlddev.2020.105309.McCollum,D.L.,Echeverri,L.G.,Busch,S.,Pachauri,S.,Parkinson,S.,Rogelj,J.etal.(2018).Connectingthesustainabledevelopmentgoalsbytheirenergyinter-linkages.EnvironmentalResearchLetters,13(3),033006.https://doi.org/10.1088/1748-9326/aaafe3.Mihalyi,D.andScurfield,T.(2020).HowDidAfrica’sProspectivePetroleumProducersFallVictimtothePresourceCurse?PolicyResearchWorkingPaper9384.Washington,D.C.:WorldBankGroup.https://openknowledge.worldbank.org/server/api/core/bitstreams/5856f832-cb86-5417-bd72-39c2471c51a2/content.Millward-Hopkins,J.andOswald,Y.(2023).Reducingglobalinequalitytosecurehumanwellbeingandclimatesafety:Amodellingstudy.TheLancetPlanetaryHealth7(2),e147-e154.https://doi.org/10.1016/S2542-5196(23)00004-9.MithatcanA.,Toledano,P.,Brauch,M.D.,Mehranvar,L.,Iliopoulos,T.AndSasmal,S.(2022).ScalingInvestmentinRenewableEnergyGenerationtoAchieveSustainableDevelopmentGoals7(AffordableandCleanEnergy)EmissionsGapReport2023:BrokenRecordand13(ClimateAction)andtheParisAgreement:RoadblocksandDrivers.NewYork:ColumbiaCenteronSustainableInvestment.https://ccsi.columbia.edu/sites/default/files/content/docs/publications/ccsi-renewable-energy-investment-roadblocks-drivers.pdf.Mulugetta,Y.,Sokona,Y.,Trotter,P.A.,Fankhauser,S.,Omukuti,J.,Croxatto,L.S.etal.(2022).Africaneedscontext-relevantevidencetoshapeitscleanenergyfuture.NatureEnergy7,1015-1022.https://doi.org/10.1038/s41560-022-01152-0.Muttitt,G.andKartha,S.(2020).Equity,climatejusticeandfossilfuelextraction:Principlesforamanagedphaseout.ClimatePolicy20(8),1024-1042.https://doi.org/10.1080/14693062.2020.1763900.Muttitt,G.,Price,J.,Pye,S.andWelsby,D.(2023).Socio-politicalfeasibilityofcoalpowerphase-outanditsroleinmitigationpathways.NatureClimateChange13,140-147.https://doi.org/10.1038/s41558-022-01576-2.NNago,M.andKrott,M.(2022).Systemicfailuresinnorth–southclimatechangeknowledgetransfer:AcasestudyoftheCongobasin.ClimatePolicy22(5),623-636.https://doi.org/10.1080/14693062.2020.1820850.Ouedraogo,S.N.D.andGasser,T.S.(2022).RenewableEnergyDevelopmentforIndustrializationandEconomicDiversificationinCentralAfrica.ECAPolicyBrief.AddisAbaba:UnitedNationsEconomicCommissionforAfrica.https://repository.uneca.org/bitstream/handle/10855/49371/b12024235.pdf.OOxfordAnalytica(2023).AlgerianEffortstoDiversifytheEconomyWillBeSlow.ExpertBriefing.Oxford:OxfordAnalytica.https://doi.org/10.1108/OXAN-DB280723.PPachauri,S.,Pelz,S.,Bertram,C.,Kreibiehl,S.,Rao,N.D.,Sokona,Y.etal.(2022).Fairnessconsiderationsinglobalmitigationinvestments.Science378(6624),1057-1059.https://doi.org/10.1126/science.adf0067.Pachauri,S.,Poblete-Cazenave,M.,Aktas,A.andGidden,M.J.(2021).AccesstocleancookingservicesinenergyandemissionscenariosafterCOVID-19.NatureEnergy6(11),1067-1076.https://doi.org/10.1038/s41560-021-00911-9.Pauw,W.P.,Klein,R.J.T.,Mbeva,K.,Dzebo,A.,Cassanmagnago,D.andRudloff,A.(2018).Beyondheadlinemitigationnumbers:WeneedmoretransparentandcomparableNDCstoachievetheParisAgreementonclimatechange.ClimaticChange147,23-29.https://doi.org/10.1007/s10584-017-2122-x.Rao,N.D.,Min,J.andMastrucci,A.(2019).EnergyrequirementsfordecentlivinginIndia,BrazilandSouthAfrica.NatureEnergy4,1025-1032.https://doi.org/10.1038/s41560-019-0497-9.RRuppertBulmer,E.,Pela,K.,Eberhard-Ruiz,A.andMontoya,J.(2021).GlobalPerspectiveonCoalJobsandManagingLaborTransitionoutofCoal:KeyIssuesandPolicyResponses.Washington,D.C.:WorldBank.http://hdl.handle.net/10986/37118.SShawoo,Z.,Maltais,A.,Dzebo,A.andPickering,J.(2022).Politicaldriversofpolicycoherenceforsustainabledevelopment:Ananalyticalframework.EnvironmentalPolicyandGovernance33(4),339-350.https://doi.org/10.1002/eet.2039.SokonaY.(2021):Buildingcapacityfor‘energyfordevelopment’inAfrica:Fourdecadesandcounting.ClimatePolicy22(5),671-679.https://doi.org/10.1080/14693062.2020.1870915.SokonaY.,Mulugetta,Y.,Tesfamichael,M.,Kaboub,F.,Hällström,N.,Stilwell,M.etal.(2023).JustTransition:AClimate,EnergyandDevelopmentVisionforAfrica.IndependentExpertGrouponJustTransitionandDevelopment.https://justtransitionafrica.org/wp-content/uploads/2023/05/Just-Transition-Africa-report-ENG_single-pages.pdf.Solano-Rodríguez,B.,Pye,S.,Li,P.,Ekins,P.,Manzano,O.andVogt-Schilb,A.(2021).ImplicationsofclimatetargetsonoilproductionandfiscalrevenuesinLatinAmericaandtheCaribbean.EnergyandClimateChange2,100037.https://doi.org/10.1016/j.egycc.2021.100037.SouthAfrica,DepartmentofMineralResourcesandEnergy(2019).IntegratedResourcePlan2019.Pretoria.https://www.energy.gov.za/irp/2019/IRP-2019.pdf.SouthAfrica,Presidency(2022).SouthAfrica’sJustEnergyTransitionInvestmentPlan(JETIP)fortheInitialPeriod2023–2027.Pretoria.https://pccommissionflo.imgix.net/uploads/images/South-Africas-Just-Energy-Transition-Investment-Plan-JET-IP-2023-2027-FINAL.pdf.SouthAfricanPhotovoltaicIndustryAssociation(2023).SARenewableEnergyGridSurveyresultspresentation–PVonly,7June.https://sapvia.co.za/sa-renewable-energy-grid-survey-results-presentation-pv-only/.Accessed31October2023.SoutheastAsiaEnergyTransitionPartnership(2022).2022AnnualReport.Bangkok:UnitedNationsOfficeforProjectServices.https://www.energytransitionpartnership.org/uploads/2023/03/2022-ETP-Annual-Report-Final-1.pdf.Sovacool,B.K.(2016).Howlongwillittake?Conceptualizingthetemporaldynamicsofenergytransitions.EnergyResearch&SocialScience13:202-215.https://doi.org/10.1016/j.erss.2015.12.020.TTongia,R.,Sehgal,A.andKamboj,P.(eds.)(2020).FutureofCoalinIndia:SmoothTransitionorBumpyRoadAhead?ChennaiandNewDelhi:NotionPressandBrookingsIndia.UUnitedNations(2023).WithclocktickingfortheSDGs,UNChiefandBarbadosPrimeMinistercallforurgentactiontotransformbrokenglobalfinancialsystem.26April.https://www.un.org/sustainabledevelopment/73EmissionsGapReport2023:BrokenRecordWblog/2023/04/press-release-with-clock-ticking-for-the-sdgs-un-chief-and-barbados-prime-minister-call-for-urgent-action-to-transform-broken-global-financial-system/.XUnitedNationsConferenceonTradeandDevelopment(2023).FormulatingStrategicPolicyResponsestoOpenZGreenWindowsofOpportunity.PolicyBriefNo.108.Geneva:UnitedNationsConferenceonTradeandADevelopment.https://unctad.org/system/files/official-document/presspb2023d2_en.pdf.BUnitedNationsEconomicCommissionforAfrica(2020).EconomicReportonAfrica2020:InnovativeFinanceforPrivateSectorDevelopmentinAfrica.AddisAbaba.https://uneca.org/era2020.74UnitedNationsEnvironmentProgramme(2019).EmissionsGapReport2019.Nairobi.https://www.unep.org/resources/emissions-gap-report-2019.Ürge-Vorsatz,D.,Herrero,S.T.,Dubash,N.K.andLecocq,F.(2014).Measuringtheco-benefitsofclimatechangemitigation.AnnualReviewofEnvironmentandResources39,549-582.https://doi.org/10.1146/annurev-environ-031312-125456.Willett,W.,Rockström,J.,Loken,B.,Springmann,M.,Lang,T.,Vermeulen,S.etal.(2019).FoodintheAnthropocene:TheEAT-LancetCommissiononhealthydietsfromsustainablefoodsystems.TheLancet393(10170),447-492.https://doi.org/10.1016/S0140-6736(18)31788-4.WorldBank(2022).InternationalDebtReport2022:UpdatedInternationalDebtStatistics.Washington,D.C.http://hdl.handle.net/10986/38045.WorldBankGroup(2022).SouthAfrica:CountryClimateandDevelopmentReport.Washington,D.C.http://hdl.handle.net/10986/38216.WorldBank,OfficeoftheChiefEconomistfortheAfricaRegion(2023).Africa’sPulse.April2023,Volume27:LeveragingResourceWealthDuringtheLowCarbonTransition.Washington,D.C.:WorldBank.http://hdl.handle.net/10986/39615.WorldHealthOrganization(2014).WHOGuidelinesforIndoorAirQuality:HouseholdFuelCombustion.Geneva.https://iris.who.int/bitstream/handle/10665/141496/9789241548885_eng.pdf.__________(2022).Householdairpollution,28November.https://www.who.int/news-room/fact-sheets/detail/household-air-pollution-and-health.Accessed31October2023.Winkler,H.,Lecocq,F.,Lofgren,H.,Vilariño,M.V.,Kartha,S.andPortugal-Pereira,J.(2022).Examplesofshiftingdevelopmentpathways:lessonsonhowtoenablebroader,deeper,andfasterclimateaction.ClimateAction1,27(2022).https://doi.org/10.1007/s44168-022-00026-1.Xing,X.,Wang,R.,Bauer,N.,Ciais,P.,Cao,J.,Chen,J.etal.(2021).SpatiallyexplicitanalysisidentifiessignificantpotentialforbioenergywithcarboncaptureandstorageinChina.NatureCommunications12(1),3159.https://doi.org/10.1038/s41467-021-23282-x.Yangka,D.,Rauland,V.andNewman,P.(2019)Carbonneutralpolicyinaction:ThecaseofBhutan.ClimatePolicy19(6),672-687.https://doi.org/10.1080/14693062.2018.1551187.Zhang,F.andGallagher,K.(2016).Innovationandtechnologytransferthroughglobalvaluechains:EvidencefromChina’sPVindustry.EnergyPolicy94,191-203.https://doi.org/10.1016/j.enpol.2016.04.014.Chapter7Arcusa,S.andSprenkle-Hyppolite,S.(2022).Snapshotofthecarbondioxideremovalcertificationandstandardsecosystem(2021–2022).ClimatePolicy22(9-10),1319-1332.https://doi.org/10.1080/14693062.2022.2094308.Babiker,M.,Berndes,G.,Blok,K.,Cohen,B.,Cowie,A.,Geden,O.etal.(2022).Cross-sectoralperspectives.InClimateChange2022:MitigationofClimateChange.ContributionofWorkingGroupIIItotheSixthAssessmentReportoftheIntergovernmentalPanelonClimateChange.Shukla,P.R.,Skea,J.,Reisinger,A.,Slade,R.,Fradera,R.,Pathak,M.etal.(eds.).CambridgeandNewYork:CambridgeUniversityPress.Chapter12.1245-1354.https://doi.org/10.1017/9781009157926.014.Bashmakov,I.A.,Nilsson,L.J.,Acquaye,A.,Bataille,C.,Cullen,J.M.,delaRueduCan,S.etal.(2022).Industry.InClimateChange2022:MitigationofClimateChange.ContributionofWorkingGroupIIItotheSixthAssessmentReportoftheIntergovernmentalPanelonClimateChange.Shukla,P.R.,Skea,J.,Reisinger,A.,Slade,R.,Fradera,R.,Pathak,M.etal.(eds.).CambridgeandNewYork:CambridgeUniversityPress.Chapter11.1161-1243.https://doi.org/10.1017/9781009157926.013.Bauer,N.,Rose,S.K.,Fujimori,S.,vanVuuren,D.P.,Weyant,J.,Wise,M.etal.(2018).Globalenergysectoremissionreductionsandbioenergyuse:OverviewofthebioenergydemandphaseoftheEMF-33modelcomparison.ClimaticChange163,1553-1568.https://doi.org/10.1007/s10584-018-2226-y.Bauer,N.,Bertram,C.,Schultes,A.,Klein,D.,Luderer,G.,Kriegler,E.etal.(2020).Quantificationofanefficiency–sovereigntytrade-offinclimatepolicy.Nature588(7837),261-266.https://doi.org/10.1038/s41586-020-2982-5.EmissionsGapReport2023:BrokenRecordBeerling,D.J.,Kantzas,E.P.,Lomas,M.R.,Wade,P.,Eufrasio,R.M.,Renforth,P.etal.(2020).Potentialforlarge-scaleCO2removalviaenhancedrockweatheringwithcroplands.Nature583(7815),242-248.https://doi.org/10.1038/s41586-020-2448-9.Bellamy,R.(2018).Incentivizenegativeemissionsresponsibly.NatureEnergy3(7),532-534.https://doi.org/10.1038/s41560-018-0156-6.Bento,N.andWilson,C.(2016).Measuringthedurationofformativephasesforenergytechnologies.EnvironmentalInnovationandSocietalTransitions21,95-112.https://doi.org/10.1016/j.eist.2016.04.004.Bistline,J.E.T.andBlanford,G.J.(2021).Impactofcarbondioxideremovaltechnologiesondeepdecarbonizationoftheelectricpowersector.NatureCommunications12(1),3732.https://doi.org/10.1038/s41467-021-23554-6.Buck,H.J.(2016).Rapidscale-upofnegativeemissionstechnologies:Socialbarriersandsocialimplications.ClimaticChange139(2),155-167.https://doi.org/10.1007/s10584-016-1770-6.Buck,H.J.,Furhman,J.,Morrow,D.R.,Sanchez,D.L.andWang,F.M.(2020).Adaptationandcarbonremoval.OneEarth3(4),425-435.https://doi.org/10.1016/j.oneear.2020.09.008.Buck,H.J.andPalumbo-Compton,A.(2022).Soilcarbonsequestrationasaclimatestrategy:Whatdofarmersthink?Biogeochemistry161(1),59-70.https://doi.org/10.1007/s10533-022-00948-2.Buck,H.J.,Carton,W.,Lund,J.F.andMarkusson,N.(2023a).Whyresidualemissionsmatterrightnow.NatureClimateChange13(4),351-358.https://doi.org/10.1038/s41558-022-01592-2.__________(2023b).Countries’long-termclimatestrategiesfailtodefineresidualemissions.NatureClimateChange13(4),317-319.https://doi.org/10.1038/s41558-023-01614-7.Bui,M.andMacDowell,N.(eds.)(2022).GreenhouseGasRemovalTechnologies.London:RoyalSocietyofChemistry.https://doi.org/10.1039/9781839165245.Byers,E.,Krey,V.,Kriegler,E.,Riahi,K.,Schaeffer,R.,Kikstra,J.etal.(2022).AR6ScenariosDatabase.https://pure.iiasa.ac.at/id/eprint/18399/.Accessed27October2023.CCarton,W.(2019).‘Fixing’climatechangebymortgagingthefuture:Negativeemissions,spatiotemporalfixes,andthepoliticaleconomyofdelay.Antipode51(3),750-769.https://doi.org/10.1111/anti.12532.Chiquier,S.,Fajardy,M.andMacDowell,N.(2022).CO2removaland1.5°C:What,when,where,andhow?EnergyAdvances1(8),524-561.https://doi.org/10.1039/D2YA00108J.Chiquier,S.,Patrizio,P.,Bui,M.,Sunny,N.andMacDowell,N.(2022).Acomparativeanalysisoftheefficiency,timing,andpermanenceofCO2removalpathways.Energy&EnvironmentalScience15(10),4389-4403.https://doi.org/10.1039/D2EE01021F.Cohen-Shacham,E.,Walters,G.,Janzen,C.andMaginnis,S.(2016).Nature-basedsolutions:Fromtheorytopractice.InNature-basedSolutionstoAddressGlobalSocietalChallenges.PartA.Gland:InternationalUnionforConservationofNature.Chapter1.2-32.https://portals.iucn.org/library/node/46191.Cox,E.,Spence,E.andPidgeon,N.(2020).PublicperceptionsofcarbondioxideremovalintheUnitedStatesandtheUnitedKingdom.NatureClimateChange10(8),744-749.https://doi.org/10.1038/s41558-020-0823-z.Cross,J.N.,Sweeney,C.,Jewett,E.B.,Feely,R.A.,McElhany,P.,Carter,B.etal.(2023).StrategyforNOAACarbonDioxideRemoval(CDR)Research:AWhitePaperDocumentingaPotentialNOAACDRScienceStrategyasanElementofNOAA’sClimateInterventionPortfolio.Washington,D.C.:NOAA.https://doi.org/10.25923/GZKE-8730.DDaioglou,V.,Rose,S.K.,Bauer,N.,Kitous,A.,Muratori,M.,Sano,F.etal.(2020).Bioenergytechnologiesinlong-runclimatechangemitigation:ResultsfromtheEMF-33study.ClimaticChange163(3),1603-1620.https://doi.org/10.1007/s10584-020-02799-y.deConinck,H.,Revi,A.,Babiker,M.,Bakker,S.,Bazaz,A.,Belfer,E.etal.(2022).Strengtheningandimplementingtheglobalresponse.InGlobalWarmingof1.5°C:IPCCSpecialReportonImpactsofGlobalWarmingof1.5°CabovePre-IndustrialLevelsinContextofStrengtheningResponsetoClimateChange,SustainableDevelopment,andEffortstoEradicatePoverty.Masson-Delmotte,V.,Pörtner,H.-O.,Skea,J.,Zhai,P.,Roberts,D.,Shukla,P.R.etal.(eds.).CambridgeandNewYork:CambridgeUniversityPress.Chapter4.313-444.https://doi.org/10.1017/9781009157940.006.DeFries,R.,Ahuja,R.,Friedman,J.,Gordon,D.R.,Hamburg,S.P.,Kerr,S.etal.(2022).Landmanagementcancontributetonetzero.Science376(6598),1163-1165.https://doi.org/10.1126/science.abo0613.Digdaya,I.A.,Sullivan,I.,Lin,M.,Han,L.,Cheng,W.-H.,Atwater,H.A.etal.(2020).AdirectcoupledelectrochemicalsystemforcaptureandconversionofCO2fromoceanwater.NatureCommunications11(1),4412.https://doi.org/10.1038/s41467-020-18232-y.Duncanson,L.,Liang,M.,Leitold,V.,Armston,J.,KrishnaMoorthyS.M.,Dubayah,R.etal.(2023).Theeffectivenessofglobalprotectedareasforclimatechangemitigation.NatureCommunications14(1),2908.https://doi.org/10.1038/s41467-023-38073-9.75EmissionsGapReport2023:BrokenRecordEElias,M.,Dees,J.,Cabiyo,B.,Saksa,P.andSanchez,D.L.(2023).FinancialanalysisofinnovativewoodproductsandcarbonfinancetosupportforestrestorationinCalifornia.ForestProductsJournal73(1),31-42.https://doi.org/10.13073/FPJ-D-22-00049.Erans,M.,Sanz-Pérez,E.S.,Hanak,D.P.,Clulow,Z.,Reiner,D.M.andMutch,G.A.(2022).Directaircapture:Processtechnology,techno-economicandsocio-politicalchallenges.Energy&EnvironmentalScience15(4),1360-1405.https://doi.org/10.1039/D1EE03523A.FFasihi,M.,Efimova,O.andBreyer,C.(2019).Techno-economicassessmentofCO2directaircaptureplants.JournalofCleanerProduction224,957-980.https://doi.org/10.1016/j.jclepro.2019.03.086.Fleming,A.,Stitzlein,C.,Jakku,E.andFielke,S.(2019).Missedopportunity?Framingactionsaroundco-benefitsforcarbonmitigationinAustralianagriculture.LandUsePolicy85,230-238.https://doi.org/10.1016/j.landusepol.2019.03.050.Forster,J.,Vaughan,N.E.,Gough,C.,Lorenzoni,I.andChilvers,J.(2020).Mappingfeasibilitiesofgreenhousegasremoval:Keyissues,gapsandopeningupassessments.GlobalEnvironmentalChange63,102073.https://doi.org/10.1016/j.gloenvcha.2020.102073.Fridahl,M.,Bellamy,R.,Hansson,A.andHaikola,S.(2020).Mappingmulti-levelpolicyincentivesforbioenergywithcarboncaptureandstorageinSweden.FrontiersinClimate2,604787.https://doi.org/10.3389/fclim.2020.604787.Friedlingstein,P.,O’Sullivan,M.,Jones,M.W.,Andrew,R.M.,Gregor,L.,Hauck,J.etal.(2022).Globalcarbonbudget2022.EarthSystemScienceData14(11),4811-4900.https://doi.org/10.5194/essd-14-4811-2022.Fuhrman,J.,Clarens,A.,Calvin,K.,Doney,S.C.,Edmonds,J.A.,O’Rourke,P.etal.(2021).Theroleofdirectaircaptureandnegativeemissionstechnologiesinthesharedsocioeconomicpathwaystowards+1.5°Cand+2°Cfutures.EnvironmentalResearchLetters16(11),114012.https://doi.org/10.1088/1748-9326/ac2db0.Fuhrman,J.,Bergero,C.,Weber,M.,Monteith,S.,Wang,F.M.,Clarens,A.F.etal.(2023).Diversecarbondioxideremovalapproachescouldreduceimpactsontheenergy–water–landsystem.NatureClimateChange13,341-350.https://doi.org/10.1038/s41558-023-01604-9.Fujimori,S.,Wu,W.,Doelman,J.,Frank,S.,Hristov,J.,Kyle,P.,Sands,R.etal.(2022).Land-basedclimatechangemitigationmeasurescanaffectagriculturalmarketsandfoodsecurity.NatureFood3(2),110-121.https://doi.org/10.1038/s43016-022-00464-4.Fuss,S.,Canadell,J.G.,Peters,G.P.,Tavoni,M.,Andrew,R.M.,Ciais,P.etal.(2014).Bettingonnegativeemissions.NatureClimateChange4,850-853.https://doi.org/10.1038/nclimate2392.Fuss,S.,Lamb,W.F.,Callaghan,M.W.,Hilaire,J.,Creutzig,F.,Amann,T.etal.(2018).Negativeemissions—Part2:Costs,potentialsandsideeffects.EnvironmentalResearchLetters13(6),063002.https://doi.org/10.1088/1748-9326/aabf9f.Fuss,S.,Golub,A.andLubowski,R.(2021).Theeconomicvalueoftropicalforestsinmeetingglobalclimatestabilizationgoals.GlobalSustainability4,e1.https://doi.org/10.1017/sus.2020.34.Fyson,C.L.andJeffery,M.L.(2019).AmbiguityinthelandusecomponentofmitigationcontributionstowardtheParisAgreementgoals.Earth’sFuture7(8),873-891.https://doi.org/10.1029/2019EF001190.Fyson,C.L.,Baur,S.Gidden,M.andSchleussner,C.-F.(2020).Fair-sharecarbondioxideremovalincreasesmajoremitterresponsibility.NatureClimateChange10(9),836-841.https://doi.org/10.1038/s41558-020-0857-2.GGanti,G.,Gidden,M.J.,Smith,C.J.,Fyson,C.,Nauels,A.,Riahi,K.etal.(2023).UncompensatedclaimstofairemissionspaceriskputtingParisAgreementgoalsoutofreach.EnvironmentalResearchLetters18(2),024040.https://doi.org/10.1088/1748-9326/acb502.Garnett,S.T.,Burgess,N.D.,Fa,J.E.,Fernández-Llamazares,Á.,Molnár,Z.,Robinson,C.J.etal.(2018).AspatialoverviewoftheglobalimportanceofIndigenouslandsforconservation.NatureSustainability1(7),369-374.https://doi.org/10.1038/s41893-018-0100-6.Geden,O.(2016).TheParisAgreementandtheinherentinconsistencyofclimatepolicymaking.WIREsClimateChange7(6),790-797.https://doi.org/10.1002/wcc.427.Geden,O.,Peters,G.P.andScott,V.(2019).TargetingcarbondioxideremovalintheEuropeanUnion.ClimatePolicy19(4),487-494.https://doi.org/10.1080/14693062.2018.1536600.Geden,O.,Khourdajie,A.A.,Bataille,C.,Berndes,G.,Buck,H.J.,Calvin,K.etal.Cross-chapterbox8:Carbondioxideremoval–keycharacteristicsandmultiplerolesinmitigationstrategies.InClimateChange2022:MitigationofClimateChange.ContributionofWorkingGroupIIItotheSixthAssessmentReportoftheIntergovernmentalPanelonClimateChange.Shukla,P.R.,Skea,J.,Reisinger,A.,Slade,R.,Fradera,R.,Pathak,M.etal.(eds.).CambridgeandNewYork:CambridgeUniversityPress.1261-1263.https://www.ipcc.ch/report/ar6/wg3/.Gidden,M.J.,Brutschin,E.,Ganti,G.,Unlu,G.,Zakeri,B.,Fricko,O.etal.(2023).Fairnessandfeasibilityindeepmitigationpathwayswithnovelcarbondioxideremovalconsideringinstitutionalcapacitytomitigate.EnvironmentalResearchLetters18(7),074006.https://doi.org/10.1088/1748-9326/acd8d5.76EmissionsGapReport2023:BrokenRecordGidden,M.J.,Gasser,T.,Grassi,G.,Forsell,N.,Janssens,I.,Lamb,W.F.etal.(2023).AligningIPCCscenariostonationallandemissionsinventoriesshiftsglobalmitigationbenchmarks.https://d197for5662m48.cloudfront.net/documents/publicationstatus/125532/preprint_pdf/86adfe1dcbe096720eb2f2156377e00a.pdf.Gosnell,H.,Gill,N.andVoyer,M.(2019).Transformationaladaptationonthefarm:Processesofchangeandpersistenceintransitionsto‘climate-smart’regenerativeagriculture.GlobalEnvironmentalChange59,101965.https://doi.org/10.1016/j.gloenvcha.2019.101965.Grant,N.,Hawkes,A.,Mittal,S.andGambhir,A.(2021).Thepolicyimplicationsofanuncertaincarbondioxideremovalpotential.Joule5(10),2593-2605.https://doi.org/10.1016/j.joule.2021.09.004.Grassi,G.,Schwingshackl,C.,Gasser,T.,Houghton,R.A.,Sitch,S.,Canadell,J.G.etal.(2023).Harmonisingtheland-usefluxestimatesofglobalmodelsandnationalinventoriesfor2000–2020.EarthSystemScienceData15(3),1093-1114.https://doi.org/10.5194/essd-15-1093-2023.Grubler,A.andWilson,C.(eds.)(2013).EnergyTechnologyInnovation:LearningfromHistoricalSuccessesandFailures.Cambridge:CambridgeUniversityPress.https://doi.org/10.1017/CBO9781139150880.HHaberl,H.,Mbow,C.,Deng,X.,Irwin,E.G.,Kerr,S.,Kuemmerle,T.etal.(2014).Finitelandresourcesandcompetition.InRethinkingGlobalLandUseinanUrbanEra.Seto,K.C.andReenberg,A.(eds.).Cambridge,MA:MITPress.Chapter4.35-69.https://doi.org/10.7551/mitpress/9780262026901.003.0004.Holz,C.,Siegel,L.S.,Johnston,E.,Jones,A.P.andSterman,J.(2018).Ratchetingambitiontolimitwarmingto1.5°C–trade-offsbetweenemissionreductionsandcarbondioxideremoval.EnvironmentalResearchLetters13(6),064028.https://doi.org/10.1088/1748-9326/aac0c1.Honegger,M.,Burns,W.andMorrow,D.R.(2021).Iscarbondioxideremoval‘mitigationofclimatechange’?ReviewofEuropean,Comparative&InternationalEnvironmentalLaw30(3),327-335.https://doi.org/10.1111/reel.12401.Honegger,M.,Michaelowa,A.andRoy,J.(2021).PotentialimplicationsofcarbondioxideremovalfortheSustainableDevelopmentGoals.ClimatePolicy21(5),678-698.https://doi.org/10.1080/14693062.2020.1843388.IIntergovernmentalPanelonClimateChange(2022a).ClimateChange2022:MitigationofClimateChange.ContributionofWorkingGroupIIItotheSixthAssessmentReportoftheIntergovernmentalPanelonClimateChange.Shukla,P.R.,Skea,J.,Reisinger,A.,Slade,R.,Fradera,R.,Pathak,M.etal.(eds.).CambridgeandNewYork:CambridgeUniversityPress.https://www.ipcc.ch/report/ar6/wg3/.__________(2022b).ClimateChangeandLand:IPCCSpecialReportonClimateChange,Desertification,LandDegradation,SustainableLandManagement,FoodSecurity,andGreenhouseGasFluxesinTerrestrialEcosystems.Masson-Delmotte,V.,Zhai,P.,Pörtner,H.-O.,Roberts,D.,Skea,J.,Shukla,P.R.etal.(eds.).Cambridge:CambridgeUniversityPress.https://doi.org/10.1017/9781009157988.JJacobsson,S.andBergek,A.(2004).Transformingtheenergysector:Theevolutionoftechnologicalsystemsinrenewableenergytechnology.IndustrialandCorporateChange13(5),815-849.https://doi.org/10.1093/icc/dth032.Jung,M.,Arnell,A.,DeLamo,X.,García-Rangel,S.,Lewis,M.,Mark,J.etal.(2021).Areasofglobalimportanceforconservingterrestrialbiodiversity,carbonandwater.NatureEcology&Evolution5(11),1499-1509.https://doi.org/10.1038/s41559-021-01528-7.KKalkuhl,M.,Franks,M.,Gruner,F.,Lessmann,K.andEdenhofer,O.(2022).Pigou’sadviceandSisyphus’warning:Carbonpricingwithnon-permanentcarbon-dioxideremoval.CESifoWorkingPaperNo.10169.Munich:CESifo.https://doi.org/10.2139/ssrn.4315996.Kartha,S.,Caney,S.,Dubash,N.K.andMuttitt,G.(2018).Whosecarbonisburnable?Equityconsiderationsintheallocationofa‘righttoextract’.ClimaticChange150(1),117-129.https://doi.org.10.1007/s10584-018-2209-z.Koven,C.D.,Sanderson,B.M.andSwann,A.L.S.(2023).Muchofzeroemissionscommitmentoccursbeforereachingnetzeroemissions.EnvironmentalResearchLetters18(1),014017.https://doi.org/10.1088/1748-9326/acab1a.LLebling,K.,Schumer,C.andRiedl,D.(2023).Internationalgovernanceoftechnologicalcarbonremoval:Surfacingquestions,exploringsolutions.Washington,D.C.:WorldResourcesInstitute.https://doi.org/10.46830/wriwp.23.00013.Lackner,K.S.andAzarabadi,H.(2021).Buyingdownthecostofdirectaircapture.Industrial&EngineeringChemistryResearch60(22),8196-8208.https://doi.org/10.1021/acs.iecr.0c04839.Lecocq,F.,Winkler,H.,Daka,J.P.,Fu,S.,Gerber,J.S.,Kartha,S.etal.(2022).Mitigationanddevelopmentpathwaysinthenear-tomid-term.InClimateChange2022:MitigationofClimateChange.ContributionofWorkingGroupIIItotheSixthAssessmentReportoftheIntergovernmentalPanelonClimateChange.Shukla,P.R.,Skea,J.,Reisinger,A.,Slade,R.,Fradera,R.,Pathak,M.etal.(eds.).CambridgeandNewYork:CambridgeUniversityPress.Chapter4.409-502.https://doi.org/10.1017/9781009157926.006.Lenzi,D.,Lamb,W.F.,Hilaire,J.,Kowarsch,M.andMinx,J.C.(2018).Don’tdeploynegativeemissionstechnologieswithoutethicalanalysis.Nature561,303-305.https://doi.org/10.1038/d41586-018-06695-5.77EmissionsGapReport2023:BrokenRecordMMacDougall,A.H.,Frölicher,T.L.,Jones,C.D.,Rogelj,J.,Matthews,H.D.,Zickfeld,K.,Arora,V.K.etal.(2020).Istherewarminginthepipeline?Amulti-modelanalysisofthezeroemissionscommitmentfromCO2.NBiogeosciences17(11),2987-3016.https://doi.org/10.5194/bg-17-2987-2020.OPMace,M.J.,Fyson,C.L.,Schaeffer,M.andHare,W.L.(2021).Large-scalecarbondioxideremovaltomeettheR1.5°Climit:Keygovernancegaps,challengesandpriorityresponses.GlobalPolicy12(S1),67-81.https://doi.org/10.1111/1758-5899.12921.78Madhu,K.,Pauliuk,S.,Dhathri,S.andCreutzig,F.(2021).Understandingenvironmentaltrade-offsandresourcedemandofdirectaircapturetechnologiesthroughcomparativelife-cycleassessment.NatureEnergy6(11),1035-1044.https://doi.org/10.1038/s41560-021-00922-6.Markusson,N.,McLaren,D.andTyfield,D.(2018).Towardsaculturalpoliticaleconomyofmitigationdeterrencebynegativeemissionstechnologies(NETs).GlobalSustainability1,e10.https://doi.org/10.1017/sus.2018.10.McElwee,P.(2023).Advocatingafforestation,bettingonBECCS:Land-basednegativeemissionstechnologies(NETs)andagrarianlivelihoodsintheGlobalSouth.TheJournalofPeasantStudies50(1),185-214.https://doi.org/10.1080/03066150.2022.2117032.McLaren,D.P.,Tyfield,D.P.,Willis,R.,Szerszynski,B.andMarkusson,N.O.(2019).Beyond‘net-zero’:Acaseforseparatetargetsforemissionsreductionandnegativeemissions.FrontiersinClimate1,4.https://doi.org/10.3389/fclim.2019.00004.Mercer,L.andBurke,J.(2023).StrengtheningMRVStandardsforGreenhouseGasRemovalstoImproveClimateGovernance.London:GranthamResearchInstituteonClimateChangeandtheEnvironmentandCentreforClimateChangeEconomicsandPolicy,LondonSchoolofEconomicsandPoliticalScience.https://www.cccep.ac.uk/wp-content/uploads/2023/05/Strengthening-MRV-standards-for-greenhouse-gas-removals.pdf.Merk,C.,DyrnesNordø,Å.,Andersen,G.,Lægreid,O.M.andTvinnereim,E.(2022).Don’tsendusyourwastegases:PublicattitudestowardinternationalcarbondioxidetransportationandstorageinEurope.EnergyResearch&SocialScience87,102450.https://doi.org/10.1016/j.erss.2021.102450.Minx,J.C.,Lamb,W.F.,Callaghan,M.W.,Fuss,S.,Hilaire,J.,Creutzig,F.etal.(2018).Negativeemissions—Part1:Researchlandscapeandsynthesis.EnvironmentalResearchLetters13(6),063001.https://doi.org/10.1088/1748-9326/aabf9b.Mohan,A.,Geden,O.,Fridahl,M.,Buck,H.J.andPeters,G.P.(2021).UNFCCCmustconfrontthepoliticaleconomyofnet-negativeemissions.OneEarth4(10),1348-1051.https://doi.org/10.1016/j.oneear.2021.10.001.Muthee,K.,Duguma,L.,Majale,C.,Mucheru-Muna,M.,Wainaina,P.andMinang,P.(2022).Aquantitativeappraisalofselectedagroforestrystudiesinthesub-SaharanAfrica.Heliyon8(9),e10670.https://doi.org/10.1016/j.heliyon.2022.e10670.NationalAcademiesofSciences,Engineering,andMedicine(2019).NegativeEmissionsTechnologiesandReliableSequestration:AResearchAgenda.Washington,D.C.:TheNationalAcademiesPress.https://doi.org/10.17226/25259.Nawaz,S.,PetersonSt-Laurent,G.andSatterfield,T.(2023).Publicevaluationsoffourapproachestoocean-basedcarbondioxideremoval.ClimatePolicy23(3),379-394.https://doi.org/10.1080/14693062.2023.2179589.Nunez,S.,Verboom,J.andAlkemade,R.(2020).Assessingland-basedmitigationimplicationsforbiodiversity.EnvironmentalScience&Policy106,68-76.https://doi.org/10.1016/j.envsci.2020.01.006.Owen,A.,Burke,J.andSerin,E.(2022).WhopaysforBECCSandDACCSintheUK:Designingequitableclimatepolicy.ClimatePolicy22(8),1050-1068.https://doi.org/10.1080/14693062.2022.2104793.Pachauri,S.,Pelz,S.,Bertram,C.,Kreibiehl,S.,Rao,N.D.,Sokona,Y.etal.(2022).Fairnessconsiderationsinglobalmitigationinvestments.Science378(6624),1057-1059.https://doi.org/10.1126/science.adf0067.Pathak,M.,Slade,R.,Shukla,P.R.,Skea,J.,Pichs-Madruga,R.andÜrge-Vorsatz,D.(2022).Technicalsummary.InClimateChange2022:MitigationofClimateChange.ContributionofWorkingGroupIIItotheSixthAssessmentReportoftheIntergovernmentalPanelonClimateChange.Shukla,P.R.,Skea,J.,Reisinger,A.,Slade,R.,Fradera,R.,Pathak,M.etal.(eds.).CambridgeandNewYork:CambridgeUniversityPress.51-147.https://doi.org/10.1017/9781009157926.Pisciotta,M.,Davids,J.andWilcox,J.(2022).Greenhousegasremoval:Overviewandcurrentstatusofdeployment.InGreenhouseGasRemovalTechnologies.Bui,M.andMacDowell,N.(eds.)London:RoyalSocietyofChemistry.https://doi.org/10.1039/9781839165245-00006.Powis,C.M.,Smith,S.M.,Minx,J.C.andGasser,T.(2023).Quantifyingglobalcarbondioxideremovaldeployment.EnvironmentalResearchLetters18(2),024022.https://doi.org/10.1088/1748-9326/acb450.Raupach,M.R.,Davis,S.J.,Peters,G.P.,Andrew,R.M.,Canadell,J.G.,Ciais,P.etal.(2014).Sharingaquotaoncumulativecarbonemissions.NatureClimateChange4(10),873-879.https://doi.org/10.1038/nclimate2384.Realmonte,G.,Drouet,L.,Gambhir,A.,Glynn,J.,Hawkes,A.,Köberle,A.C.etal.(2019).Aninter-modelassessmentoftheroleofdirectaircaptureindeepmitigationpathways.NatureCommunications10(1),3277.https://doi.org/10.1038/s41467-019-10842-5.EmissionsGapReport2023:BrokenRecordRiahi,K.,Schaeffer,R.,Arango,J.,Calvin,K.,Guivarch,C.,Hasegawa,T.etal.(2022).Mitigationpathwayscompatiblewithlong-termgoals.InClimateChange2022:MitigationofClimateChange.ContributionofWorkingGroupIIItotheSixthAssessmentReportoftheIntergovernmentalPanelonClimateChange.Shukla,P.R.,Skea,J.,Reisinger,A.,Slade,R.,Fradera,R.,Pathak,M.etal.(eds.).CambridgeandNewYork:CambridgeUniversityPress.Chapter3.295-408.https://doi.org/10.1017/9781009157926.005.Rickels,W.,Proelß,A.,Geden,O.,Burhenne,J.andFridahl,M.(2021).IntegratingcarbondioxideremovalintoEuropeanemissionstrading.FrontiersinClimate3,690023.https://doi.org/10.3389/fclim.2021.690023.RobiouduPont,Y.,Jeffery,M.L.,Gütschow,J.,Rogelj,J.,Christoff,P.andMeinshausen,M.(2017).EquitablemitigationtoachievetheParisAgreementgoals.NatureClimateChange7(1),38-43.https://doi.org/10.1038/nclimate3186.Rogelj,J.,Popp,A.,Calvin,K.V.,Luderer,G.,Emmerling,J.,Gernaat,D.etal.(2018).Scenariostowardslimitingglobalmeantemperatureincreasebelow1.5°C.NatureClimateChange8,325-332.https://doi.org/10.1038/s41558-018-0091-3.Romig,K.D.(2021).WorkershaveastakeinCCUS.TheElectricityJournal34(7),107001.https://doi.org/10.1016/j.tej.2021.107001.Ruseva,T.,Hedrick,J.,Marland,G.,Tovar,H.,Sabou,C.andBesombes,E.(2020).Rethinkingstandardsofpermanenceforterrestrialandcoastalcarbon:Implicationsforgovernanceandsustainability.CurrentOpinioninEnvironmentalSustainability45,69-77.https://doi.org/10.1016/j.cosust.2020.09.009.SSanchez,D.L.,Fingerman,K.,Herbert,C.andUden,S.(2021).PolicyoptionsfordeepdecarbonizationandwoodutilizationinCalifornia’sLowCarbonFuelStandard.FrontiersinClimate3,665778.https://doi.org/10.3389/fclim.2021.665778.Satterfield,T.,Nawaz,S.andPetersonSt-Laurent,G.(2023).Exploringpublicacceptabilityofdirectaircarboncapturewithstorage:Climateurgency,moralhazardsandperceptionsofthe‘wholeversustheparts’.ClimaticChange176,14.https://doi.org/10.1007/s10584-023-03483-7.Schenuit,F.,Colvin,R.,Fridahl,M.,McMullin,B.,Reisinger,A.,Sanchez,D.L.etal.(2021).Carbondioxideremovalpolicyinthemaking:Assessingdevelopmentsin9OECDcases.FrontiersinClimate3,638805.https://doi.org/10.3389/fclim.2021.638805.Schenuit,F.,Gidden,M.J.,Boettcher,M.,Brutschin,E.,Fyson,C.,Gasser,T.etal.(2023).Securerobustcarbondioxideremovalpolicythroughcrediblecertification.CommunicationsEarth&Environment4,349.https://doi.org/10.1038/s43247-023-01014-x.Semieniuk,G.,Ghosh,J.andFolbre,N.(2023).Technicalcommenton‘Fairnessconsiderationsinglobalmitigationinvestments.’Science380(6646),eadg5893.https://doi.org/10.1126/science.adg5893.Shayegh,S.,Bosetti,V.andTavoni,M.(2021).Futureprospectsofdirectaircapturetechnologies:Insightsfromanexpertelicitationsurvey.FrontiersinClimate3,630893.https://doi.org/10.3389/fclim.2021.630893.Smith,P.,Adams,J.,Beerling,D.J.,Beringer,T.,Calvin,K.V.,Fuss,S.etal.(2019).Land-managementoptionsforgreenhousegasremovalandtheirimpactsonecosystemservicesandtheSustainableDevelopmentGoals.AnnualReviewofEnvironmentandResources44(1),255-286.https://doi.org/10.1146/annurev-environ-101718-033129.Smith,S.M.(2021).Acasefortransparentnet-zerocarbontargets.CommunicationsEarth&Environment2(1),24.https://doi.org/10.1038/s43247-021-00095-w.Smith,H.B.,Vaughan,N.E.andForster,J.(2022).Long-termnationalclimatestrategiesbetonforestsandsoilstoreachnet-zero.CommunicationsEarth&Environment3(1),305.https://doi.org/10.1038/s43247-022-00636-x.Smith,S.M.,Geden,O.,Nemet,G.F.,Gidden,M.J.,Lamb,W.F.,Powis,C.etal.(2023).TheStateofCarbonDioxideRemoval-FirstEdition.TheStateofCarbonDioxideRemoval.https://www.stateofcdr.org.Soto-Navarro,C.,Ravilious,C.,Arnell,A.,DeLamo,X.,Harfoot,M.,Hill,S.L.L.etal.(2020).MappingCo-Benefitsforcarbonstorageandbiodiversitytoinformconservationpolicyandaction.PhilosophicalTransactionsoftheRoyalSocietyB375(1794),20190128.https://doi.org/10.1098/rstb.2019.0128.Strefler,J.,Amann,T.,Bauer,N.,Kriegler,E.andHartmann,J.(2018).Potentialandcostsofcarbondioxideremovalbyenhancedweatheringofrocks.EnvironmentalResearchLetters13(3),034010.https://doi.org/10.1088/1748-9326/aaa9c4.Strefler,J.,Bauer,N.,Humpenöder,F.,Klein,D.,Popp,A.andKriegler,E.(2021).Carbondioxideremovaltechnologiesarenotbornequal.EnvironmentalResearchLetters16(7),074021.https://doi.org/10.1088/1748-9326/ac0a11.WWaller,L.,Rayner,T.,Chilvers,J.,Gough,C.A.,Lorenzoni,I.,Jordan,A.etal.(2020).Contestedframingsofgreenhousegasremovalanditsfeasibility:Socialandpoliticaldimensions.WIREsClimateChange11(4),e649.https://doi.org/10.1002/wcc.649.79EmissionsGapReport2023:BrokenRecordWindisch,M.G.,Davin,E.L.andSeneviratne,S.I.(2021).Prioritizingforestationbasedonbiogeochemicalandlocalbiogeophysicalimpacts.NatureClimateChange11(10),867-871.https://doi.org/10.1038/s41558-021-01161-z.YYuwono,B.,Yowargana,P.,Fuss,S.,Griscom,B.W.,Smith,P.andKraxner,F.(2023).Doingburden-sharingrighttodelivernaturalclimatesolutionsforcarbondioxideremoval.Nature-BasedSolutions3,100048.https://doi.org/10.1016/j.nbsj.2022.100048.ZZheng,Q.,Siman,K.,Zeng,Y.,Teo,H.C.,Sarira,T.V.,Sreekar,R.andKoh,L.P.(2022).Futureland-usecompetitionconstrainsnaturalclimatesolutions.ScienceofTheTotalEnvironment838,156409.https://doi.org/10.1016/j.scitotenv.2022.156409.Zickfeld,K.,Azevedo,D.,Mathesius,S.andMatthews,H.D.(2021).Asymmetryintheclimate–carboncycleresponsetopositiveandnegativeCO2emissions.NatureClimateChange11(7),613-617.https://doi.org/10.1038/s41558-021-01061-2.80ThispublicationissupportedbytheEnvironmentFund–UNEP’scorefinancialfund.TheFundisusedtoprovidescientificevidenceonthestateoftheglobalenvironment,identifyemergingenvironmentalissuesandinnovativesolutions,raiseawarenessandadvocacy,bringtogetherstakeholderstoagreeonaction,andforbuildingcapacityofpartners.CorefundinggivesUNEPthestrengthandflexibilitytoimplementtheprogrammeofwork(insupportofthe2030Agenda)asapprovedbyitsMemberStates,andtostrategicallyrespondtoemergingchallenges.UNEPisgratefultoalltheMemberStatesthatcontributetotheEnvironmentFund.Formoreinformation:unep.org/environment-fundFormoreinformation:UnitedNationsAvenue,GigiriPOBox30552,00100Nairobi,Kenyaunep-communication-director@un.orgunep.org

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

碳中和
已认证
内容提供者

碳中和

确认删除?
回到顶部
微信客服
  • 管理员微信
QQ客服
  • QQ客服点击这里给我发消息
客服邮箱