October2023InternationalEnergyOutlook2023IEO2023TheU.S.EnergyInformationAdministration(EIA),thestatisticalandanalyticalagencywithintheU.S.DepartmentofEnergy(DOE),preparedthisreport.Bylaw,ourdata,analyses,andforecastsareindependentofapprovalbyanyotherofficeroremployeeoftheU.S.Government.TheviewsinthisreportdonotrepresentthoseofDOEoranyotherfederalagencies.U.S.EnergyInformationAdministrationInternationalEnergyOutlook2023iOctober2023TableofContentsAdministrator’sForward...............................................................................................................................1ExecutiveSummary.......................................................................................................................................2Introduction..................................................................................................................................................5Sourcesofuncertainty...........................................................................................................................5Increasingpopulationandincomeoffsettheeffectsofdecliningenergyandcarbonintensityonemissions.......................................................................................................................................................8GDPgrowthandpopulationtrendsaremajordriversofenergymarketprojections........................10Renewableenergygrowsthefastestasashareofprimaryenergyconsumptionacrossallcasesduetocurrentpolicyandcostdrivers........................................................................................................12Globaldemandgrowsfastestintheindustrialandresidentialsectors..............................................13Globalenergy‐relatedCO2emissionsincreasethrough2050inmostcases,butcarbonintensitydeclinesinallcases..............................................................................................................................14Carbonemissionsincreaseinthetransportationsectorduetogrowingtraveldemand,regionalvariationinelectrification,andslowturnoveroftheexistingfleet...................................................16Electricvehiclesalesgrowduetocurrentpolicyincentives,efficiencystandards,favorableelectricityprices,anddecreasingbatterycosts..................................................................................18EnergysecurityanddecarbonizationpoliciesinthebuildingsandindustrialsectorsofWesternEuropeslownaturalgasconsumptiongrowth,acceleratingtheuseofelectricity............................21AsIndia’seconomyexpands,buildingelectrificationsupportsarapidlyexpandingservicesector;homeenergyusetriples......................................................................................................................23Decliningenergyintensityintheindustrialsectorresultsfromincreasingefficiencyinthemanufacturingsubsector,increasedrecyclingintheprimarymetalsindustries,andcontinuedadvancesinenergy‐efficienttechnologies..........................................................................................25Theshifttorenewablestomeetgrowingelectricitydemandisdrivenbyregionalresources,technologycosts,andpolicy..........................................................................................................................................31Newglobalelectricitydemandisprimarilymetbynon‐fossilfuelsources........................................32Currentpolicies,demandgrowth,andenergysecurityconsiderationsineachregiondeterminewhenzero‐carbontechnologiesgrow.................................................................................................33Regionally,batterystorageinstallationcorrelateswithhighvariablerenewablecapacity—particularlysolar..................................................................................................................................34Fossilfuel‐firedgenerationintheAfricaandMiddleEastsuperregionandEuropeandEurasiasuperregionremainsstablethroughouttheprojectionperiod.........................................................37Variationsincostsofzero‐carbontechnologiesaffecttheenergymixandemissionsmostinChinaandtheOtherAsia‐Pacificregion,wherecoal‐firedgenerationismostprevalent............................38U.S.EnergyInformationAdministrationInternationalEnergyOutlook2023iiOctober2023Energysecurityconcernshastenatransitionfromfossilfuelsinsomecountries,althoughtheydriveincreasedfossilfuelconsumptioninothers...............................................................................................41TheMiddleEastandNorthAmericaaretheprimaryregionstoincreasenaturalgasproductionandexportstomeetgrowinginternationaldemand,assumingRussia’sexportsstayflat........................41AsiaandEuropecontinuetoimportmorenaturalgas.......................................................................44OPEC,particularlyintheMiddleEast,actsasaglobalswingproducer..............................................45Thechangingfueldemandmixforpetroleumproductswilldriveashifttowardjetfuelproduction.............................................................................................................................................................47AppendixA.Casedescriptions...................................................................................................................49Referencecase.....................................................................................................................................49HighandLowEconomicGrowthcases................................................................................................50HighandLowOilPricecases...............................................................................................................51HighandLowZero‐CarbonTechnologyCostcases.............................................................................52AppendixB.ModelingassumptionsrelatedtoRussia’sfull‐scaleinvasionofUkraine.............................53Macroeconomicactivity......................................................................................................................53Buildings...............................................................................................................................................54Industrial..............................................................................................................................................54Districtheat.........................................................................................................................................55Transportation.....................................................................................................................................55Electricity.............................................................................................................................................55Crudeoilandnaturalgasproductionandtrade.................................................................................55Coalproductionandtrade...................................................................................................................56AppendixC.NewRegionsinIEO2023........................................................................................................57RegionshavechangedinIEO2023.......................................................................................................57Thepreviousregionswerepartiallybasedonorganizationalmembership.......................................57Dividingtheworldeconomicallyiscomplicated.................................................................................57Thenewregionsarelargelybasedonproximity.................................................................................58Nextsteps............................................................................................................................................58U.S.EnergyInformationAdministrationInternationalEnergyOutlook2023iiiOctober2023TableofFiguresFigure1.MapofInternationalEnergyOutlook2023regions......................................................................7Figure2.Worldpopulation,GDPpercapita,energyintensity,andcarbonintensity..................................9Figure3.WorldGDP,primaryenergyuse,andenergy‐relatedCO2emissions..........................................10Figure4.GDPaverageannualgrowthratebyregion.................................................................................11Figure5.Populationbysuperregionandpopulation‐weightedworkingpopulationsharebyregion......12Figure6.Worldprimaryenergyusebyfuel...............................................................................................13Figure7.Worldtotalenergyconsumptionbysector.................................................................................14Figure8.Worldenergy‐relatedCO2emissionsbyfuel...............................................................................15Figure9.CO2emissionsfromcoalusebyregion........................................................................................15Figure10.Passengertraveldemand,selectregions..................................................................................16Figure11.Passengertraveldemandbymode............................................................................................17Figure12.ElectricshareofnewLDVglobalsalesandsizeofglobalICELDVfleet....................................18Figure13.IndustrialenergyintensityinWesternEurope,selectfuels......................................................21Figure14.CommercialandresidentialenergyintensityinWesternEurope,selectfuels.........................22Figure15.Residentialandcommercialdeliveredenergyusepercapita,India.........................................23Figure16.Changeinindustrialgrossoutputandservicesectorgrossoutput,India.................................24Figure17.Changeinenergyintensityoftheeconomy,India....................................................................25Figure18.Industrialsectordeliveredenergyandmanufacturingsubsectorgrossoutput.......................26Figure19Industrialsectordeliveredenergyandindustrialsectorenergyintensitycomponents,India..27Figure20.Industrialsectordeliveredenergyandindustrialsectorenergyintensitycomponents,China28Figure21.Ironandsteelindustrygrossoutputandcoaldemand,China..................................................29Figure22.Ironandsteelindustrygrossoutputandcoaldemand,India...................................................29Figure23.Worldnonferrousindustrygrossoutputandenergydemand..................................................30Figure24.Worldelectricitygenerationbyfuel..........................................................................................31Figure25.Changeinworldelectricitygenerationbytype,2022to2050..................................................32Figure26.Worldinstalledelectricity‐generatingcapacity.........................................................................33Figure27.Zero‐carbonandfossilfueltechnologycapacityinselectregions............................................34Figure28.Hourlyseasonaltotalelectricitygenerationandloadbyfuel,2050.........................................36Figure29.Netelectricitygenerationintwosuperregions.........................................................................37Figure30.Totalinstalledelectricity‐generatingcapacityandnetelectricitygenerationbysourceinChinaandOtherAsia‐Pacific.................................................................................................................................39Figure31.CO2emissionsfromelectricitygeneration,Asia‐Pacificsuperregionandworld.......................40Figure32.MiddleEastnetnaturalgastrade..............................................................................................42Figure33.Netnaturalgastradeinselectregions......................................................................................43Figure34.Worldtransportationsectorconsumption,byfuel...................................................................47Figure35.MapofInternationalEnergyOutlook2023regions..................................................................58U.S.EnergyInformationAdministrationInternationalEnergyOutlook2023ivOctober2023TableofTablesTable1.IEO2023ReferencecaseGDPgrowthratesbyregion..................................................................49Table2.MacroeconomicgrowthratesintheIEO2023LowEconomicGrowth,Reference,andHighEconomicGrowthcases,averageannualGDP(measuredinPPP)percentagechange,2022–2050.........50Table3.IEO2023BrentoilpricesinselectedyearsintheHighOilPrice,Reference,andLowOilPricecases(2022dollarsperbarrel)....................................................................................................................52Table4.IEO2023country‐regionassignments...........................................................................................59U.S.EnergyInformationAdministrationInternationalEnergyOutlook2023vAdministrator’sForwardTheglobalenergysystemisgovernedbycomplexdynamicsthatplayoutovertimeacrossregionsandsectorsoftheeconomy.Projectedincreasesinpopulationandincomesdriveourexpectationofrisingenergydemandthrough2050.However,weexpecttheincreasedenergydemandtobemoderatedbyreducedenergyintensity:lessenergywillberequiredforeachunitofeconomicactivity.Inaddition,weexpectreducedcarbonintensity—largelydrivenbythewide‐scaledeploymentofrenewablesforelectricitygeneration—whichwillhelplimitglobalCO2emissionsassociatedwithwhatwillberecord‐highenergydemand.OurInternationalEnergyOutlook2023(IEO2023)explainsourfindingsandshowcaseskeyregionalandsectoralvariations.WeuseEIA'sdetailedWorldEnergyProjectionSystemtoproduceIEO2023,givingourreadersauniqueviewintofutureglobalenergysystems.Thechallengewefaceasmodelersistodeliveractionableinsightsaboutthefutureinaworldfilledwithuncertainty.Toaddressthatuncertainty,IEO2023includesseveralprojections—whichwerefertoascases—eachwithdifferentinputassumptions.Thecaseswemodeledfocusonwell‐understoodvariablesthatcanproducesignificantchangesinglobalsupplyanddemandpatterns:macroeconomicgrowth,costsforzero‐carbongeneratingtechnologies,andcrudeoilprices.Althoughwemodelanumberofcases,wedonottrytocomprehensivelyaddressallissuesthatcoulddrivesignificantchange,likeinaforecast.InIEO2023,wedonotincorporatedeeplyuncertainfactorssuchasmajornewpolicydevelopments,technologicalbreakthroughs,andgeopoliticalevents,allofwhichcandramaticallyshiftthecourseofenergysystemdevelopment.Instead,thecasesincludedinIEO2023buildonrecenttrendsandhighlightthecurrenttrajectoryoftheglobalenergysystem.Unmodeledsurprisesorbreakthroughsthatshiftthetrajectoryoftheglobalenergysystemwillalmostcertainlyhappen.AsYogiBerraquipped,“Thefutureain’twhatitusedtobe.”So,ourmodeledcasesshouldnotbeinterpretedasforecasts.Rather,IEO2023providesausefulbenchmarkfordecisionmakersaroundtheworldastheycontinuetoshapeourcollectiveenergyfuture.InproducingtheIEO,weaimtobeastransparentaspossible.Inadditiontothiswrittenreport,detailedmodelresultsareavailableonourwebsite.DetaileddocumentationoftheWorldEnergyProjectionSystemisalsoavailableonourwebsite.Inaddition,themodelsourcecodeisavailableforreview,andweareactivelyworkingtomakethemodel’ssourcecodepubliclyavailableunderanopensourcelicense.Wearealsoworkingonexpandingthecapabilitiesofourmodelsothatwecanexamineawiderrangeofcasesinthefuture.Inclosing,I’dliketothankourstafffortheirtremendousefforttoproducethisyear’sIEO.Ifeelprivilegedtohelpleadsuchatalentedteamofexperts.U.S.EnergyInformationAdministrationInternationalEnergyOutlook20231October2023ExecutiveSummaryTheInternationalEnergyOutlook2023(IEO2023)exploreslong‐termenergytrendsacrosstheworldthrough2050.SinceourlastIEOtwoyearsago,IEO2021,theglobalenergysystemhasevolvedagainstabackdropofnewenergypolicies,thetransitiontozero‐carbontechnologies,energysecurityconcerns,andeconomicandpopulationgrowth.WhileIEO2023includesseveralcasestocaptureimportantdriversofchange,themodeledcasesrepresentasetofpolicyneutralbaselinesthatplaceemphasisonthecurrenttrajectoryoftheglobalenergysystem.Increasingpopulationandincomeoffsettheeffectsofdecliningenergyandcarbonintensityonemissions.Ourprojectionshighlightakeyglobalinsight—globalenergy‐relatedCO2emissionswillincreasethrough2050inallIEO2023casesexceptourLowEconomicGrowthcase.Ourprojectionsindicatethatresources,demand,andtechnologycostswilldrivetheshiftfromfossiltonon‐fossilenergysources,butcurrentpoliciesarenotenoughtodecreaseglobalenergy‐sectoremissions.ThisoutcomeislargelyduetoIncreasingpopulationandpopulationgrowth,regionaleconomicshiftstowardmoremanufacturing,andincreasedenergyconsumptionasincomeoffsettheeffectslivingstandardsimprove.Globally,weprojectincreasesinofdecliningenergyandenergyconsumptiontooutpaceefficiencyimprovements.carbonintensityonChinaremainstheprimarysourceofenergy‐relatedCO2emissions.emissionsthrough2050acrossallcases,althoughitsshareoftotalglobalCO2emissionsdeclines.Further,acrossallcasesweprojectIndiatodisplacetheUnitedStatesandourOtherAsia‐Pacificmodelingregion1todisplaceWesternEuropeasthesecond‐andthird‐highestemittersofenergy‐relatedCO2emissionsby2050,respectively.Threedifferentratesofmacroeconomicgrowthunderlieourenergyprojectionsacrossallmodeledcases(AppendixA).Economicandpopulationgrowthdrivetheincreaseinemissions,andweexpectglobalgrossdomesticproduct(GDP)tomorethandoubleby2050inallofourIEO2023cases,excepttheLowEconomicGrowthcase.WeprojecttheAsia‐Pacificregion’sGDPwillgrowfasterthantheglobalaverage,andadecliningpopulationwillslowGDPgrowthinChinarelativetorecenthistory.PopulationgrowthacrossourcasesisconcentratedinAfrica,India,andOtherAsia‐Pacific,whichcombined,contribute94%oftheexpected1.7billionpeopleaddedtotheglobalpopulationby2050acrossallcasesinourprojections.Weprojectglobalindustrial‐sectorenergyconsumptiontogrowbetween9%and62%andtransportation‐sectorenergyconsumptiontogrowbetween8%and41%from2022to2050,dependingonthecase.Increasingincomeandrapidpopulationgrowth,particularlyinIndia,Africa,andOtherAsia‐1TheOtherAsia‐Pacificregionisanaggregationof41countries,includingIndonesia,Thailand,Vietnam,andMalaysia.FullregionaldefinitionsusedintheInternationalEnergyOutlook2023appearinAppendixC.U.S.EnergyInformationAdministrationInternationalEnergyOutlook20232October2023Pacific,leadstocontinuedgrowthinbuildings’energyconsumptioninourprojection.Forexample,inIndia,weprojectenergyconsumptionincommercialandresidentialbuildingstoasmuchastripleinsomecasesbetween2022and2050.Theintensityofenergy‐relatedCO2emissions(CO2emissionsperunitofprimaryenergy)decreasesthrough2050,despiteoverallemissionsincreasesinourprojections.Thedecreasingemissionsintensityreflectsatransitiontowardlower‐carbonenergysources.Thesetrendsofdecreasingemissionsintensitycouldbeoffsetbyshiftstowardincreasedmanufacturingincertainregions.Forexample,weprojectthatdeclinesinenergyintensitywillbeoffsetbysectoralshiftstowardmanufacturingandthatindustrialenergyconsumptiongrowsthefastestinIndia,OtherAsia‐Pacific,Africa,andOtherAmericas.Acrossmostofourcases,Chinaistheregionwiththelargestlevelofindustrialenergyconsumptiondecline,reflectingthecommercialservicesector’sgrowingshareofChina’seconomyandmanufacturing’sshrinkingshareoftotalindustrialactivity.Theshifttorenewablestomeetgrowingelectricitydemandisdrivenbyregionalresources,technologycosts,andpolicy.Weprojectglobalelectricitygenerationwillincreaseby30%toTheshifttorenewables76%in2050from2022(dependingonthecase)andwilltomeetgrowingprimarilybemetbyzero‐carbontechnologiesacrossallcases.electricitydemandisForallcases,weprojectthat81%to95%ofthenewelectric‐drivenbyregionalgeneratingcapacityinstalledfrom2022to2050tomeetnewresources,technologydemandwillbezero‐carbontechnologies.Asaresult,by2050,costs,andpolicy.thecombinedshareofcoal,naturalgas,andpetroleumliquidsdecreasetobetween27%and38%oftheinstalledglobalgeneratingcapacityacrossourcases.InWesternEuropeandChina,zero‐carbontechnologycapacityincreasesfasterearlyintheprojectionperiodbecauseofpolicy,rapiddemandgrowth,andenergysecurityconsiderationsthatfavorlocallyavailableresourcessuchaswind,solar,andbatterystoragepromptmoreofthesetypesofinstallationsandplannedbuilds.IndiaandAfricashowrapidgrowthinzero‐carbontechnologylaterintheprojectionperiod.Costvariationsforzero‐carbontechnologiesinourprojectionshavethemostsignificantimpactontheenergymixandemissionsinChinaandOtherAsia‐Pacific,wherecoalgenerationismostprevalent.Weprojectelectricvehicles(EVs)toaccountforbetween29%and54%ofglobalnewvehiclesalesby2050;ChinaandWesternEuropeaccountforbetween58%and77%ofthoseEVsalesacrossallcases.ContinuedincreasesinEVadoptionleadstoaprojectedpeakintheglobalfleetofinternalcombustionenginelight‐dutyvehicles(LDVs)between2027and2033.U.S.EnergyInformationAdministrationInternationalEnergyOutlook20233October2023Energysecurityconcernshastenatransitionfromfossilfuelsinsomecountries,althoughtheydriveincreasedfossilfuelconsumptioninothers.Naturalgasandcrudeoilsupply,consumption,andtradepatternsevolveinourprojectionstomeetgrowingdemandEnergysecurityagainstthebackdropofRussia’sfull‐scaleinvasionofUkraine,concernshastenawhichweassumewillcontinuetolimitRussia’sexportstotransitionfromfossilWesternmarkets.TheMiddleEastandNorthAmericaarethefuelsinsomecountries,primaryregionstoincreasenaturalgasproductionandexportstoalthoughtheydrivemeetgrowinginternationaldemand,mainlyinAsiaandincreasedfossilfuelEurope.Near‐tomid‐term(2023–2035)growthincrudeoilproductionismetbynon‐OPECregions,particularlyinNorthandconsumptioninothers.SouthAmerica.OPECregainsmarketshareasotherregionsreachpeakproduction,generallybetween2030and2040inourprojection.WeprojectreducedgasolinedemandduetorisingEVsalesandrisingdemandforjetfuelduetoglobaleconomicgrowth,whichwilldrivechangesinrefineries.Refineriesarecurrentlyconfiguredtomeetgasolineanddistillatedemandandcannoteasilychangethepetroleumratioofproductstheyproduce.Toaddresstheshiftinglobalproductsdemand,refineriesneedtoadjustcrudeoilinputs,resultinginatransitionfromlightcrudeoiltomediumcrudeoilinourprojections.Baselineprojections,notforecastsManyaspectsoftheglobalenergysystemoverthenextthreedecadesaredeeplyuncertain.AlthoughtheIEO2023cases—whichvaryassumptionsrelatedtomacroeconomicgrowth,technologycosts,andfuelprices—helptocapturetherangeinpossibleoutcomes,manyunmodeledissuesremainthatcoulddrivesignificantchangeacrosstheglobalenergysystem.Keyamongtheunmodeledissues:ourmodeldoesnotassumefuturepolicy.Weassumecurrentpolicies,asofMarch2023,remaininplace.Specifically,inIEO2023,policieswithoutenforcementmechanismsarediscounted,andthosewithexpirationdatesexpireasindicated.FortheUnitedStates,weonlyconsiderpoliciesimplementedbyNovember2022becauseIEO2023usesourAnnualEnergyOutlook2023tomodeltheU.S.energysystem.SinceNovember2022,U.S.governmentagencieshaveimplementedprovisionsassociatedwiththeInflationReductionAct,althoughnotallarefinalized.Therefore,ourprojectionsshouldnotbeinterpretedasforecasts.Ourprojectionsrepresentasetofpolicy‐neutralbaselinesagainstwhichfuturepolicyactioncanbeevaluated.Wheninterpretingourresults,keepinmindthecaveatsassociatedwithouranalysis.U.S.EnergyInformationAdministrationInternationalEnergyOutlook20234October2023IntroductionTheInternationalEnergyOutlook2023(IEO2023)exploreslong‐termenergytrendsacrosstheworld.IEO2023analyzeslong‐termworldenergymarketsin16regionsthrough2050.WedevelopedIEO2023usingtheWorldEnergyProjectionSystem(WEPS),2anintegratedeconomicmodelthatcaptureslong‐termrelationshipsbetweenenergysupply,demand,andpricesacrossregionalmarkets.IEO2023identifiesthreekeyfindings:Increasingpopulationandincomeoffsettheeffectsofdecliningenergyandcarbonintensityonemissions.Theshifttorenewablestomeetgrowingelectricitydemandisdrivenbyregionalresources,technologycosts,andpolicy.Energysecurityconcernshastenatransitionfromfossilfuelsinsomecountries,althoughtheydriveincreasedfossilfuelconsumptioninothers.Weexplorethethreekeyfindingsinseparatesectionsofthisreport,eachcontainingaseriesofin‐depthexplanationsthatincluderegion‐andsector‐specificinsightsacrossmodeledcases.IEO2023includesaseriesofcasesthatreflectdifferentassumptionsrelatedtomacroeconomicgrowth,technologycosts,andfuelprices,althoughthefutureremainssignificantlyuncertain.Therefore,ourcasesshouldnotbeinterpretedaspredictions.Oneimportantsourceofuncertaintyisfuturepolicyimplementationaroundtheworld.OurIEO2023casesarebasedoncurrentlawsandregulationsasofMarch2023.Inparticular,U.S.projectionsinIEO2023arethepublishedprojectionsintheAnnualEnergyOutlook2023(AEO2023),whichassumesU.S.lawsandregulationsasofNovember2022remainunchanged.Ourprojectionsprovidearangeofoutcomesinaworldoffrozenpolicythatareintendedtohelpinformdecisionmakersastheyplanforthefuture.IEO2023casesdoincludesomeanticipatedchangesovertime:ExpectedregionaleconomicanddemographictrendsbasedontheviewsofleadingforecastersPlannedorknownchangestoinfrastructurefornewconstructionandannouncedretirementsAssumedcostandperformanceimprovementsinestablishedtechnologiesbasedonhistoricaltrendsSourcesofuncertaintyEnergymarketprojectionsareinherentlyuncertainbecausemanyoftheeventsthatwillshapefutureenergymarkets—includingdevelopmentsinpolicy,technology,demographics,andresources—are2U.S.EnergyInformationAdministration.WorldEnergyProjectionSystem(WEPS):Overview.PartoftheHandbookofEnergyModelingMethods.2021.U.S.EnergyInformationAdministrationInternationalEnergyOutlook20235October2023unknown.Manysourcesofuncertaintyexistbeyondtheoneswetestexplicitly,includingnewpolicies,unforeseengeopoliticalevents,andrapidtechnologicalinnovation.Innovationisparticularlyrelevantfortechnologiesintheearlieststagesofdevelopment.Anyfuturelegislationwouldfurtheraffecttechnologytrajectoriesandemissionspathways.WereflectlegislatedandenactedenergysectorpoliciesthatcanbereasonablyquantifiedinWEPS.Policieswithexpirationdatesexpireratherthanbeingreplacedorextended.Policieswithoutenforcementmechanismsareevaluatedand,insomecases,assumedtobeonlypartiallymet.Moreinformationonhowwemodelclimatepoliciesisavailableinourcompanionarticle,ClimateConsiderationsintheInternationalEnergyOutlook2023.SincewereleasedthemostrecentIEOinlate2021,theworldhaschanged.Wehavehadsignificantnationalandinternationalshort‐termmarketvolatilityassociatedwitheconomicgrowthastheworldreemergesfromtheCOVID‐19pandemicandwiththepoliticalinstabilityassociatedwithRussia’sfull‐scaleinvasionofUkraine.AppendixBdiscussestheassumptionswemadearoundtheinvasionandhowwerepresenteditinouranalysis,including:Aneconomicrecoverystartingaround2030.TwonuclearpowerplantsthatarelocatedinmilitaryconflictzonesinUkraineresumefulloperationby2034.WesternEuropeandtheUnitedStatessuspendimportsofcrudeoilandpetroleumliquidsfromRussia,beginningin2023andlastingthrough2050.TheoutageofNordstreamnaturalgaspipelinescontinuesthrough2050.Wecontinuouslymonitorsuchdevelopmentsandconsiderhowtheymayaffectourlong‐termprojections.IEO2023exploreskeyareasofuncertaintyabouthowenergymarketswilldevelopthroughaReferencecaseandthefollowingsixsidecases,includingtwonewsidecasesinthisIEOthatfocusonhigherandlowerzero‐carbontechnologycosts:HighandLowEconomicGrowthcasesHighandLowOilPricecasesHighandLowZero‐CarbonTechnologyCostcasesAsinAEO2023,ourgraphsemphasizetherangeofresults,denotedbyshadedareas,acrossallmodeledcases.Wederiveourkeyanalyticalinsightsbyassessingtheresultsacrosscasesandexamininghowoveralltrendsmayvaryunderthedifferentassumptions.InIEO2023,weusedanewregionalrepresentationtogroupcountriesintheWorldEnergyProjectionSystem(WEPS).Thenewregionalgroupingsarebasedsolelyongeography.Figure1showsamapofournew16regionsand4superregions(thatis,Americas,EuropeandEurasia,AfricaandMiddleEast,andAsia‐Pacific).AtableofthecountriesassignedtoeachregionisavailableinAppendixC.U.S.EnergyInformationAdministrationInternationalEnergyOutlook20236October2023Figure1SomecomponentsofuncertaintyintheIEOaremagnifiedbytheglobalfocus.Forexample,bothshort‐termandlong‐termprojectionsofGDParemoreuncertainineconomieswithlowerGDPpercapitathanineconomieswithahigherGDPpercapita(AppendixA).Similarly,althoughweassumeimplementedlawsandregulationsintheUnitedStateswillbeenforced,policynormsvaryaroundtheworld.Thebalancebetweenenergysecurity,climatepolicies,andeconomicgrowthalsovaryindifferentregionsoftheworldandcanbeinfluencedbyas‐yet‐unknowngeopoliticalevents.OurIEOcasesexploresomecomponentsofthisuncertainty.U.S.EnergyInformationAdministrationInternationalEnergyOutlook20237October20231Increasingpopulationandincomeoffsettheeffectsofdecliningenergyandcarbonintensityonemissions.Thefuturetrajectoryofglobalenergyconsumptionandemissionswillbedeterminedbycomplexandinterrelateddynamicsthatplayoutacrossregions,sectors,andtime.Globalenergyconsumptionincreases34%from638quadrillionBritishthermalunits(quads)in2022to855quadsin2050intheReferencecaseandvariesbetween739quadsand999quadsby2050acrosstheothercases.3Correspondingenergy‐relatedCO2emissionsrise15%from35.7billionmetrictonsin2022to41.0billionmetrictonsintheReferencecase,andtheyvarybetween35.1billionmetrictons(adecreasefrom2022levels)and47.9billionmetrictonsby2050intheothercases.4Tobetterillustratethebasicdynamicsthatdriveglobalprimaryenergyconsumptionandenergy‐relatedCO2emissions,Figure2representsourmodelprojectionsasaseriesoffourdrivingfactors:population,averageincome(percapitaGDP),energyintensity(energyper3In2023,webeganchangingouraccountingforrenewableenergy—thewayweconvertkilowatthoursgeneratedfromrenewableenergytoBritishthermalunits—tochangethebasisforourconversionfromfossilfuelequivalencytocapturedenergy.InIEO2023,electricitygenerationfromrenewablesources(suchashydroelectric,wind,orsolar)isconvertedusingouroriginalfossilfuelequivalencyapproach.TherenewablegenerationisconvertedtoBritishthermalunitsatarateof8,124Britishthermalunitsperkilowatthour,whichreflectstheaverageprojectedconversionefficiencyoftheU.S.fossil‐fuelfiredelectric‐generatingfleetintheAnnualEnergyOutlook2021overtheprojectionperiod(2022–2050).WewillbereportingelectricitygenerationfromrenewablesourcesusingthecapturedenergyapproachinfutureeditionsoftheIEO.4Whenquantifyingenergy‐relatedCO2emissions,weonlytallythosegeneratedwhentheenergyisused.Thismeasuredoesnotincludeemissionsassociatedwithproducingtheenergy—suchasmethaneleaksforflaring.U.S.EnergyInformationAdministrationInternationalEnergyOutlook20238October2023dollarGDP),andcarbonintensity(CO2emissionsperunitofprimaryenergy).Figure2Atagivenpointintime,theproductofthefirstthreefactorsyieldstotalprimaryenergyconsumption,andtheproductofallfourfactorsyieldstotalenergy‐relatedCO2emissions.QuantifyingemissionsthiswayisknownastheKayaIdentity,5whichprovidesausefulconceptualframeworkforthinkingaboutthehigh‐levelfactorsthatdrivechangesinemissions.Growthinthefirsttwocomponents—populationandGDPpercapita—placeupwardpressureonenergy‐relatedCO2emissions,andprojecteddecreasesinthethirdandfourthcomponents—energyandcarbonintensity—placedownwardpressure(Figure2).Thefirstfoursectionsinthischapterprovideadditionalinsightatthegloballevel.WebeginbyanalyzingthetwofactorsoftheKayaidentitythatcontinuetodriveglobalemissionsthough2050:populationandGDPpercapita.Weroundoutourglobaloverviewbydiscussingglobalenergyconsumptionbyfueltype,sector,andemissionsworldwide.Becauseregionsandsectorsvarysignificantly,thelastfivesectionsexaminethedynamicsdrivingenergyconsumption.Thesesectionsfocusonfuelandtechnologypathways,whichinformtheenergy‐andcarbon‐intensityfactorsoftheKayaidentityandhowtheongoingdeclinesofthesefactorsmoderateemissionsgrowth.ThesesectionshighlightthevalueofourdetailedWorldEnergyProjectionSystem(WEPS)model,whichexploresthecomplexinterconnectionsofmacroeconomicdriversandtechnologyevolutionovertime,producingglobaltotalenergyconsumptionandemissions(Figure3).5Kaya,Y.,1990:ImpactofCarbonDioxideEmissionControlonGNPGrowth:InterpretationofProposedScenarios.PaperpresentedtotheIPCCEnergyandIndustrySubgroup,ResponseStrategiesWorkingGroup,Paris.U.S.EnergyInformationAdministrationInternationalEnergyOutlook20239October2023Figure3GDPgrowthandpopulationtrendsaremajordriversofenergymarketprojectionsIEO2023assumesthat,asincomesandpopulationriseovertime,energyconsumptionincreasesasmorepeoplecanaffordtodrive,usecommercialservices,demandgoods,andcontrolbuildingtemperatures.Macroeconomicprojections,specificallypopulationandGDPtrends,arekeydriversoftheenergyconsumptionandproductionresultsinWEPS.Globalpopulationincreasesfrom7.9billionin2022to9.6billionin2050,anaveragegrowthrateof0.7%,anddoesnotvaryacrosscases.Theregionswiththelargestpopulationincreasesby2050areAfrica(1billion),theOtherAsia‐Pacificregion(306million),andIndia(249million)acrossallcases.FallingpopulationsinChina,Japan,Russia,andSouthKoreawillweighonGDPgrowthasthelaborforceshrinks.GlobalGDPgrowsannuallyatanaveragerateof2.6%intheReferencecase,fromapproximately$136trillionto$275trillioninreal2015purchasingpowerparity(PPP)adjustedU.S.dollars(USD),from2022to2050.GlobalGDPin2050risestoarangeof$221trillion(2015PPPUSD)intheLowEconomicGrowthcaseto$345trillion(2015PPPUSD)intheHighEconomicGrowthcase.DevelopingAsia,specificallyIndiaandourOtherAsia‐Pacificregion,contributesthemosttoglobaleconomicgrowth(Figure4).WeprojectChinatoretainthehighestGDPin2050despiteslowergrowthrelativetohistoricalrates.U.S.EnergyInformationAdministrationInternationalEnergyOutlook202310October2023Figure4GDPandpopulationgrowthaffectenergyconsumptioninseveralways.First,economicactivityisreallocatedacrosssectorsasGDPpercapitaincreases.Ashouseholdincomesrise,wealthierconsumersshifttheirconsumptiontowardenergy‐intensivegoodsandservices.Becauseenergyintensitiesvaryfromonesectortoanother,thisreallocationtendstoraisetotalenergyconsumption.Second,technologyandenergyefficiencyimprovementsoftenaccompanyeconomicgrowth.Improvementsinenergyefficiencyreduceenergyconsumptionperunitofoutput;wediscusstheseenergyandeconomicmechanismsacrosssectorsingreaterdetailnext.U.S.EnergyInformationAdministrationInternationalEnergyOutlook202311October2023Thetensionbetweenchangesinsectorcompositionduetorisingincomesandpopulationaswellasenergyefficiencydeterminestheoverallimpactontotalenergyconsumption.Globally,weprojectthatincreasesinenergyconsumptionperpersonwilloutweighthepaceofefficiencyimprovements.Third,demographictrendsaffecteconomicactivityandareimportantdriversoftotalenergyconsumption.Weprojectthelaborforceasashareofthepopulationwilldecreaseinmanyregions,whichtendstoloweraverageproductivityandGDPpercapita(Figure5).ThesedemographicfactorsvarybyregionandarereflectedinourmacroeconomicprojectionsforpopulationandGDPgrowth.Ourglobalpopulationassumptionsdonotvaryacrosssidecases.Figure5RenewableenergygrowsthefastestasashareofprimaryenergyconsumptionacrossallcasesduetocurrentpolicyandcostdriversAcrossallIEO2023cases,energyconsumptionincreasesglobally,drivenbydemographicandmacroeconomictrends.Theincreasedconsumptioncoupledwithcurrentpolicyandenergysecurityconcernsdrivenon‐fossilfuelsourcestogainalargershareoftheincreasingprimaryenergyconsumptionworldwide(Figure6).Renewableenergyconsumption,particularlysolarandwind,growsfasterthananyotherenergysource,andthenon‐fossilfuelshareofprimaryenergygrowsfrom21%in2022toarangeof29%to34%in2050acrossthecases.Theprojectedriseinrenewableenergyconsumptionislargelydrivenbyitsincreaseduseforelectricpowergeneration.U.S.EnergyInformationAdministrationInternationalEnergyOutlook202312October2023Figure6Naturalgasisthefastest‐growingfossilfuelglobally;consumptiongrowsfrom153quadsin2022toarangeof170quadsto241quadsby2050acrosscases,an11%to57%increase.Growthinnaturalgasconsumptioniswidelydistributedregionally,butitismostnotableinIndia,theOtherAsia‐Pacificregion,China,Africa,Russia,theMiddleEast,andtheOtherAmericasregion.Theprojectedriseinnaturalgasconsumptionismostpronouncedintheelectricpowersector,whereitreplacesretiringcoal‐firedgeneration,andtheindustrialsector,whereitprimarilyfuelsexpandingindustrialproduction.Startingfrom166quadsin2020,globalcoalconsumptiongrowsinsomecaseswhileitdecreasesinothers.From2022to2050,thelargestgrowth(19%)isintheHighEconomicGrowthcase,andthelargestdecrease(13%)incoalconsumptionisintheLowEconomicGrowthcase.Coalconsumptionvariesbyregion,increasinginAfrica,India,andtheOtherAsia‐PacificregionanddecreasinginChinaandtheUnitedStates.GlobaldemandgrowsfastestintheindustrialandresidentialsectorsAcrossallcases,end‐useconsumption,notincludingelectricity‐relatedlosses,growsthrough2050acrossallsectors(Figure7).Theindustrialsectorgrowsbythegreatestamountacrossmostcases—rangingfromarelativelyflatincreaseof24quadsintheLowEconomicGrowthcasetoasmuchasa159‐quadincreaseintheHighEconomicGrowthcaseover2022to2050.Theindustrialsectorhasthewidestrangeofconsumptionacrosscasesduetoabroadrangeofindustrialgrossoutputassumptionsacrossourcasesandasensitivitytomacroeconomicdrivers.Consumptiongrowsatthefastestpaceintheresidentialsector,averaging1.0%to1.6%peryearoverthesameperiodacrossallcases.U.S.EnergyInformationAdministrationInternationalEnergyOutlook202313October2023Figure7Globalenergy‐relatedCO2emissionsincreasethrough2050inmostcases,butcarbonintensitydeclinesinallcasesGlobalenergy‐relatedCO2emissionsin2050arehigherthanin2022inallcasesexcepttheLowEconomicGrowthcase.IntheHighEconomicGrowthcase,emissionsrisefrom35.7billionmetrictonsin2022toupto47.9billionmetrictonsin2050(Figure3).IntheLowEconomicGrowthcase,globalenergy‐relatedCO2emissionsfallto35.1billionmetrictonsby2050.Economicactivity(theproductofpopulationandGDPpercapita),thefuelchoicessupportingthatactivity,Ourprojectionsindicateandtheenergyandcarbonintensityofthatactivitydrivethatresources,demand,therangeofprojections.ThelargestdifferencesinandtechnologycostswilleconomicactivityarebetweentheHighandLowEconomicdrivetheshiftfromfossilGrowthcases,andthelargestdifferencesincarbonfueltonon‐fossilfuelintensityarebetweentheHighandLowZero‐Carbonenergysources,butTechnologyCost(ZTC)cases.currentpoliciesalonewillnotdecreaseglobalChangestothefossilfuelconsumptionmix—whichisenergy‐sectoremissions.heavilydeterminedbyrelativefuelprices—decreaseglobalemissionsintensityacrossallcases.Rapidgrowthofrenewablepowersourcesintheelectricpowersectorfurtherdecreasesemissionsintensity,andthelargesteffectsoccurintheLowZTCcase.Withinfossilfuels,liquidfuelsandnaturalgasgainalargershareoffossilfuelconsumption,loweringglobalemissionsintensitybecausetheyemitlessCO2thancoalwhencombusted.Contrarytotheglobaltrend,regionswithaccesstoaffordablecoal,suchastheOtherAsia‐Pacificregion,consumemorecoalasashareoftotalfossilfuelconsumption.Coalremainsthenumberonesourceofenergy‐relatedCO2emissions,followedbyliquidfuelsandnaturalgas(Figure8).U.S.EnergyInformationAdministrationInternationalEnergyOutlook202314October2023Figure8.Onaregionallevel,Chinaremainsthetopsourceofenergy‐relatedCO2emissions,althoughitsshareoftheglobaltotaldeclines.Meanwhile,thesharesofglobalemissionsincreasefromIndiaandtheOtherAsia‐Pacificregion,andthesetworegionsdisplacetheUnitedStatesandWesternEuropetobecomethesecond‐andthird‐highestemittersofenergy‐relatedCO2emissions,respectively.CO2emissionsfromcoalcombustionfallasashareoftotalenergy‐relatedCO2emissionsfrom47%in2022toarangeof37%to41%in2050acrossallcases.DecliningcoalemissionsinChinaandtheUnitedStatesprimarilydrivetheglobaldecline,withadditional,smallerdeclinesinWesternEurope,Canada,andJapan.AlthoughChinahasthelargestdeclineinemissionsfromcoal,itremainsthenumberonesourceofemissionsfromcoal,rangingfrom44%to46%oftheglobaltotalin2050acrosscases(Figure9).Figure9.U.S.EnergyInformationAdministrationInternationalEnergyOutlook202315October2023Carbonemissionsincreaseinthetransportationsectorduetogrowingtraveldemand,regionalvariationinelectrification,andslowturnoveroftheexistingfleetIncreasingdemandforpassengerandfreighttraveldrivesglobaltransportationenergyconsumption,whichgrowsby8%to41%acrosscasesbetween2022and2050.Steadypopulationincreasescoupledwithrisingincomes,employment,andindustrialoutputincreasetraveldemand.Demandforpassengertravel,asmeasuredinpassengermilestraveled,increasesby64%–108%acrosscasesfrom2022to2050primarilyduetogrowthinbothpopulationandincome.Thisincreasecorrespondstoanincreaseinboththenumberofpeopletravelingandthemilestraveledbyeachperson.Globalpopulationgrowthisresponsibleforaboutone‐thirdoftheprojectedincreaseinpassengertraveldemandbetween2022and2050;inAfrica,populationgrowthisresponsibleformorethanone‐halfoftheprojectedincreaseinpassengertraveldemandintheregionbetween2022and2050.Globalpercapitatraveldemandishighlysensitivetochangesindisposableincomepercapitaandemployment.Weprojectthattheglobalaveragepassengermilestraveledperpersonwillincrease51%between2022and2050intheReferencecase,varyingbetween35%intheLowEconomicGrowthcaseand71%intheHighEconomicGrowthcase.MuchofthisgrowthisconcentratedinIndiaandtheOtherAsia‐Pacificregion,wheredisposableincomeandemploymentgrowsignificantlyacrossallcases.Regionswithslowerincomegrowth—andwithlowerabsoluteincomepercapita,suchasAfricaandtheOtherAmericasregion—continuetohavegrowingtraveldemand,duetoincreasesinemployment,buttoalesserdegree.Inregionswherebothincomeandemploymentgrowmoreslowly,suchasCanada,SouthKorea,theUnitedStates,WesternEurope,andJapan,per‐capitatraveldemandgrowthislower(Figure10).Figure10.U.S.EnergyInformationAdministrationInternationalEnergyOutlook202316October2023Traveldemandforlessefficientmodesoftransportationgrowsinregionsasincomesincrease.RisingincomesinseveralregionsContinuedincreasesinenabletravelerstoshiftfrominexpensivebutmoreefficientelectricvehiclemodes(suchastwo‐andthree‐wheelers,buses,andrail)toadoptionleadtoamoreconvenientbutlessefficientmodes(suchaslight‐dutyprojectedpeakvehicles[LDVs]),especiallyinChina,India,andtheOtherAsia‐between2027andPacificregion.Aircrafttravel,whichishighlysensitivetochanges2033intheglobalfleetinincome,isnoticeablyincreasingacrossallregions.Inregionsofinternalcombustionwithslowerincomegrowth,suchasAfricaandtheOtherenginelight‐dutyAmericasregion,useoftwo‐andthree‐wheelerspersistsandvehicles.growsmorethanaircraftandLDVtravel.Thistrendoccursacrossourfoursuperregionsasgrowthfroma2025baseline—whichiswhenweprojecttraveltoreturntopre‐pandemiclevels(Figure11).Forexample,weprojectLDVtraveldemandintheAsia‐Pacificsuperregion—whichincludesChinaandIndia—todouble,andweprojecttwo‐andthree‐wheelerandrailtraveldemandtoincreasebylessthan50%acrossallcases.WeseetheoppositeintheAfricaandMiddleEastsuperregion,whereweprojecttwo‐andthree‐wheelertraveldemandtogrowoverthreetimesthe2025level,andLDVtraveldemandtoincreasebylessthan70%acrossallcases.Wealsoprojecttraveldemandtoincreaseacrossallsuperregions,modes,years,andcases,exceptforbustravel,whichplateausorstartstodeclineinallsuperregionsbutAfricaandtheMiddleEast.Figure11TheaggregateincreaseinLDVtravelleadstheglobalon‐roadLDVfleettogrowfromabout1.4billionvehiclesin2022tomorethan2.0billionvehiclesby2048intheReferencecase,withallbuttheLowEconomicGrowthcaseexceeding2.0billionvehiclesby2050.Efficiencyimprovementswithineachpowertraintechnologyoffsetasignificantportionoftheenergyconsumptionfromtraveldemandgrowthandthewidershiftintoless‐efficientmodesoftravel.U.S.EnergyInformationAdministrationInternationalEnergyOutlook202317October2023EfficiencyoftheglobalLDVfleetincreasesbyover40%between2022and2050inallcases,reachingaglobalaverageofbetween42milespergallonand52milespergallonacrosscases.Averageefficiencycontinuestoincreaseduetoimprovementswithineachindividualpowertraintype(forexample,gasolineinternalcombustionengine,gasolinehybrid,batteryelectric)aswellasasalesshiftfromlessefficienttomoreefficientpowertrains,primarilyelectricvehicles(EVs).Weapplyimplementedandenforceablefueleconomystandardsthatvaryregionally,butwedonotincludegovernmentandindustryaspirationsandintentionsinourprojections.Stricterstandards—suchasthoseinCanada,China,SouthKorea,Japan,AustraliaandNewZealand,andpartsoftheEuropeanUnion—driveefficiencyimprovementsinconventionalinternalcombustionengine(ICE)vehiclesthroughthemid‐2030s.TheadvancedtechnologyrequiredtoachievethisefficiencyalsoincreasesICEvehiclepurchaseprices.Electricvehiclesalesgrowduetocurrentpolicyincentives,efficiencystandards,favorableelectricityprices,anddecreasingbatterycostsPurchaseincentivesforEVs—suchasthoseinCanada,China,severalcountriesintheEuropeanUnion,Japan,SouthKorea,andtheUnitedStates—increaseEVsalesinthenearterm.Inthelongerterm,decliningbatterypricesleadtoadditionalgrowthinEVadoptionevenascurrentfueleconomystandardsleveloff.EVs(whichincludebatteryelectricandplug‐inhybridelectricvehicles)accountfor29%to54%ofglobalnewvehiclesalesby2050,reachingcumulativesalesbetween465millionand832millionbatteryelectricvehiclesaswellasbetween218millionand241millionplug‐inhybridelectricvehiclesovertheprojectionperiod(2022to2050)(Figure12).ChinaandWesternEuropeaccountfor58%to77%ofthoseEVsalesbecauseofsupportivepolicyandthesizeoftheirLDVmarket;thetworegionsaccountforbetween37%and40%ofallglobalLDVsalesbetween2022and2050.Figure12.U.S.EnergyInformationAdministrationInternationalEnergyOutlook202318October2023ContinuedincreasesinEVadoptionleadtoapeakintheglobalfleetofICELDVsbetween2027and2033inallcases(Figure12);intheHighEconomicGrowthandLowOilPricecasestheICEfleetreversesthedeclinein2043andstartsgrowingagain.SlowturnoverofLDVsmeansmorethan1.1billionICEsarestillontheroadby2050inallcases.U.S.EnergyInformationAdministrationInternationalEnergyOutlook202319October2023TechnicalNote1:EVpenetrationWedeterminethenon‐U.S.shareofelectricvehicle(EV)salesinourprojectionusingamultinomiallogitfunctionthatincludescomparativevehiclepurchaseprice,costtodrive,modelavailability,andfuelavailability.GrowingEVsalesdrivegrowthinthenumberofEVmodelsavailableandaccesstoEVcharginginfrastructure,whichbothsupportfurtherincreasesinEVsales.Inourprojection,thepurchasepriceandcosttodrivefactorsareaffectedbyenactedandenforceableregionalpurchaseincentivesandfueleconomystandards,decliningbatterycosts,andelectricityandgasolineprices.WedonotincludestatedaspirationsandambitionsforEVmarketpenetrationratesthatarenotsupportedbyenforceablelawsorregulationsinourprojections.U.S.projectionsinIEO2023arefromourAEO2023.TheNationalEnergyModelingSystem(NEMS),whichproducestheprojectionsintheAEO,hasadetailedrepresentationoftheU.S.light‐dutyvehiclemarket,policies,andtechnologicaldevelopment.AEO2023resultsincludetheInflationReductionAct,specificallytheCleanVehicleCredit,aswellasthelatestfinalizedCorporateAverageFuelEconomy(CAFE)standardsformodelyears2024–2026.SpecificassumptionsarediscussedinAEO2023.WeincludepoliciesinmanyregionsthatprovideincentivesandrebatesforconsumersthatpurchaseorleaseEVs.Theseincentivesvarybycountryandregionallywithincountries.Forexample,theiZEVprograminCanadaprovidesEVpurchaserswithpoint‐of‐saleincentivesrangingfromCA$2,500toCA$5,000,dependingonthepowertraintype(batteryelectricorplug‐inhybrid)anddrivingrangeofthevehicle(moreorlessthan50kilometers).SomeCanadianprovincesprovideseparateincentiveprogramsthatofferadditionalrebatestoEVpurchasers.China,SouthKorea,Japan,AustraliaandNewZealand,andpartsoftheEuropeanUnionhavesimilarprogramsbutwiththeirownrequirementsandincentives.Enforceablefueleconomystandardsarealsomodeledregionallyinourprojections.Manyoftheregionslistedabovehaveenforcedstricterfueleconomystandards.StricterstandardsresultinincreasedICEvehicleefficiencybutalsoresultinhigherICEvehiclepurchaseprice,reducingtheICEvehiclesalesshareinfavorofEVs.Overtime,thesestandardsplateau,buttheirimpactonadoptingefficiency‐improvingtechnologiesislongterm.ThecombinationofincentivepoliciesandstricterfueleconomystandardsincreasesEVsales,whichproducesafeedbackloopthroughourlearningalgorithmthatdrivesdownbatterycostsandresultsingreaterEVadoptioninthelongterm.Webaseprojectedbatterycostdeclinesonthehistoricalrelationshipbetweenproductioncostsandcumulativeproduction,modeledusingalearningrate.WecanestimatewhetherEVsreachcostparitywithICEvehicleswithinourprojectionwindowusingseveralfactors,including:•Enactedandenforceableregionalpurchaseincentives•Enactedandenforceablefueleconomystandards•Decliningbatterycosts•FavorableelectricityandgasolinepricesmodeledinourprojectionYoucanfindmoredetailsinourmodeldocumentation.U.S.EnergyInformationAdministrationInternationalEnergyOutlook202320October2023EnergysecurityanddecarbonizationpoliciesinthebuildingsandindustrialsectorsofWesternEuropeslownaturalgasconsumptiongrowth,acceleratingtheuseofelectricityCurrentEuropeanUnionpoliciesaimtodecreasecarbonintensityandtolimitimportsoffossilfuelsfromRussia,drivingelectrificationanddecarbonizationintheindustrial,buildings,anddistrictheatsectors.Intheindustrialsector,stricterefficiencypoliciesleadtodecliningenergyintensity.TotalindustrialenergyintensityacrossallfuelsinWesternEuropedecreasesby18%to20%from2022to2050acrossallcases(Figure13).Figure13.InWesternEurope,industrial,residential,andcommercialenergyconsumptiongrowsmoreslowlythaneconomicindicatorsofsectorgrowth.Forexample,energyconsumptioninhomesinWesternEuropegrowsmoreslowlythandisposableincomes.AcrosstheIEO2023ReferencecaseandEconomicGrowthcases,whichareourboundingcasesforbotheconomicoutputandenergyuse,theamountofenergyconsumedperdollarofoutputinthecommercialandindustrialsectorsdeclinesfasterfornaturalgasthanforelectricity.Althoughthiseffectismostpronouncedfortheindustrialsector,theintensityofnaturalgasuseinbuildings(particularlyresidentialbuildings)declinesmorerapidlythantheintensityofelectricityuseinbuildings(Figure14).Thisdifferenceis,inpart,duetopoliciesprioritizingtheuseofelectricityoverotherenergysourcesintheregion.U.S.EnergyInformationAdministrationInternationalEnergyOutlook202321October2023Figure14.Buildingsaccountedfor47%ofnaturalgasconsumptioninWesternEuropeand61%oftheregion’selectricityconsumptionin2022,ashareweprojecttodeclineslightlyovertimeaselectricityusefortransportationincreasesthrough2050.Buildings’shareofelectricityuseinWesternEuropedeclinesfastestintheIEO2023HighEconomicGrowthcase—downto56%by2050—asincreasingincomessupportfasteradoptionofelectricvehicles(EVs).WithagreaternumberofEVsontheroad,weprojectthatthetransportationsectorwillhavealargershareoftheelectricityusedinend‐usesectors.Despitefastergrowthinelectricityuseinthetransportationsector,buildingscontinuetomakeupoverone‐halfofWesternEurope’selectricityconsumptionInWesternEurope,electricityacrossallcases,inpartbecauseEuropeancountrieshaveuseinbuildingsgrowsasenactedlawsandincentivestoslowgrowthinnaturalgasmuchasfivetimesasquicklyconsumption.However,stablenaturalgaspricesasnaturalgasconsumptioncontributetotheslightdeclinetomodestgrowthinthrough2050becauseofnaturalgasconsumptioninallend‐usesectorscombinednear‐termpoliciesenactedtoovertheprojectionperiod,rangingfromadeclineof3%reducethenaturalgastoanincreaseof19%from2022to2050acrossallcases.importedfromRussia.InWesternEurope,electricityuseinbuildingsgrowsthreetofivetimesasquicklyasnaturalgasconsumptionthrough2050acrossallcasesbecauseofnear‐termpoliciesenactedtoreducenaturalgasimportedfromRussia.Inthewinterof2022,manyWesternEuropeancountriesimplementedlawsandincentivestoreducenaturalgasconsumptioninhomes,incommercialbuildings,andintheindustrialsector.Inaddition,countriesdevelopedenhancedbuildingenergycodesandthemadefundsavailabletocompleteenergyretrofits,intendedtosupporttheEU’sabilitytomeetenergyefficiencytargetsthrough2030.Policymakersdesignthesemeasurestoshapelong‐termbehavioralchange,toensurethatefficiencytempersexpandingenergydemand,andtoprioritizecarbon‐neutralenergysources.Oneexampleisgovernment‐sponsoredsubsidiesforinstallingenergyefficientandnon‐fossilfuelequipment,suchasanincentiveinFrancetooffsetthecostofheatU.S.EnergyInformationAdministrationInternationalEnergyOutlook202322October2023pumps.Suchprogramsprovideincentivestopurchaseelectrictechnologiesovernaturalgasequipmentasconsumersreplaceorpurchasenewheatingandcoolingsystems.Forcentralizeddistrictheatplants—whichprovidespaceandwaterheatinginresidentialandcommercialbuildingsandprocessheatandsteamfortheindustrialsector—weprojectthatgenerationresourceswillincreasinglyshifttorenewablesourcesthrough2030.Acrossallcases,biomass‐firedheatdisplacesnaturalgasandcoalconsumptionfordistrictheatingasEUmembercountriesconformwiththedistrictheatingprovisionsoftheRenewableEnergyDirective.Acrossallcases,in2050,biomassaccountsfor29%to38%ofheatgenerationthatmeetsindustrialsectordemandforheatandsteaminWesternEurope,excludingtheshareofheatgeneratedfromcombined‐heat‐and‐power(CHP)orcogenerationsources,whichgeneratebothelectricityanduseableheat.AccountingforfuelusebyCHPsources,weprojectrenewablesources,includingbiomass,toaccountfor23%to25%ofheatgeneratedforallsectorsindistrictenergynetworksin2050acrosscases.AsIndia’seconomyexpands,buildingelectrificationsupportsarapidlyexpandingservicesector;homeenergyusetriplesOurprojectionforenergyconsumptioninIndiaexemplifiestherelationshipamongenergyconsumption,income,andservicesectorgrowth.Increasesindisposableincomeandrapidpopulationgrowthleadtosignificantincreasesinresidentialenergyuse,whichtriplesovertheprojectionperiod.Commercialenergyconsumptionincreasesasthesectorexpandstomeetgrowingdemandforservices.Thiscontributestoincreasesinbuildings’energyconsumptionoverall,whichalmosttriplesby2050relativeto2022acrossallIEO2023cases(Figure15).Electrificationofthebuildingstocksupportsbroaderelectricityuse,whichincreasesmorethananyotherenergysourceintheresidentialandcommercialsectors.Figure15.U.S.EnergyInformationAdministrationInternationalEnergyOutlook202323October2023InIndia,intheHighEconomicGrowthcase,electricityuseinbuildingsgrowsnearlyfivetimes2022levelsby2050astotalbuildingenergyconsumptiontriplesoverthesameperiod.EvenintheLowEconomicGrowthcase,commercialenergyconsumptionmorethandoublesby2050,ledbybusinessexpansionsandincreasesinwarehousingandretailsales,education,andotherservices.Acrossallcases,after2035,commercialandresidentialelectricityusegrowsevenfasterasaverageelectricitypricesforallconsumersdeclinethrough2050.PopulationgrowthincreasesbuildingenergyconsumptioninIndia.Onapercapitabasis,totaldeliveredenergyconsumptionmorethandoublesfrom2022to2050inthecommercialsectorandincreasesbytwotothreetimesinIndianhomesacrossourrangeofcases.InIndia,electricityuseinbuildingsintheresidentialsectorgrowsfasterthaninothersectorsbecauseofincreaseddemandforairconditioning,electricappliances,andotherdevices.DisposableincomegrowsfasterinIndiathananywhereelseintheworld,increasing,onaverage,3%to5%annually.Comparedwith2022,weprojectthatevenintheLowEconomicGrowthcase,withincomesgrowingmoreslowlythaninourReferencecase,eachpersoninIndiawillusenearlythreetimesasmuchresidentialelectricity,onaverageby2050.IntheHighEconomicGrowthcase,by2050,India’senergyconsumptionacrossallend‐usesectorsmorethantriplesrelativeto2022.Growthinthecommercialsectoroutpacesoverallindustrialgrowthfrom2022to2050(Figure16).Figure16.Indiatransitionstoaservice‐orientedeconomyslightlyfasterintheHighEconomicGrowthcase,reducingtheoverallenergyintensityoftheeconomyrelativetotheReferencecase.ThisoutcomeoccursnotonlybecausetheeconomygrowsfasterthanenergyconsumptionintheHighEconomicGrowthcase,butalsobecausethecommercialsectorislessenergyintensivethantheindustrialsector.Economywide,theenergyintensityofconsumptioninIndiadeclinesto2.61thousandBritishthermalU.S.EnergyInformationAdministrationInternationalEnergyOutlook202324October2023units(Btu)perdollarofGDP(2015PPPUSD)intheHighEconomicGrowthcase,reachingthelowestenergyintensityinIndiainanyIEO2023case(Figure17).Figure17.Decliningenergyintensityintheindustrialsectorresultsfromincreasingefficiencyinthemanufacturingsubsector,increasedrecyclingintheprimarymetalsindustries,andcontinuedadvancesinenergy‐efficienttechnologiesGlobalenergyconsumptionintheindustrialsector—whichincludesbothmanufacturingandnon‐manufacturing(construction,agriculture,andmining)industries—varieswidelyacrosscases.Asindustrialgrossoutputgrows,energyconsumptionincreasesbetween9%and63%by2050,from257quadrillionBritishthermalunits(quads)in2022.Growthinindustrialenergyconsumptionvariesacrossregions,withthefastestgrowthinIndiaandthreeofourmulti‐countryregions—Africa,OtherAsia‐Pacific,andOtherAmericas(Figure18).Muchofthegrowthintheseregions’industrialsectorsoccursinthemanufacturingsubsector,especiallyinenergy‐intensiveindustriessuchasprimarymetals,chemicals,andnon‐metallicminerals.Chinaistheregionwiththelargestdeclineinindustrialsectorenergyconsumption,despiteitsoverallincreasingindustrialgrossoutput,partiallybecauseofashiftingrowthtolessenergy‐intensiveindustriesandrealizedenergyefficiencyimprovementsinitsprimarymetalsindustry.AlthoughgrowthinindustrialOvertime,asGDPpercapitaincreases,economicactivityenergyconsumptionvariesisreallocatedacrosssectorsinasystematicway.acrossregions,industrialGenerally,agriculture’sshareofgrossoutput,valueenergyintensitydeclinesadded,andemploymentdeclines,andtheservicesector’sgloballythrough2050,inshareincreases.Initially,manufacturing’sshareofgrosspart,becauseofincreasesinoutput,valueadded,andemploymentgrowsbutefficiency.eventuallypeaksatintermediatestagesofeconomicdevelopment.Thisprocessproduceschangesinsectorcompositionthatarereflectedintheenergyintensityofeachregion.U.S.EnergyInformationAdministrationInternationalEnergyOutlook202325October2023Industrialenergyintensity—measuredastheratioofindustrialenergyconsumptiontooutput(dollarvalueofshipments)—declinesgloballyfrom2022to2050,inpart,becauseofincreasesinefficiency.Industrialenergyintensityalsovariesbyregionbecauseofdifferencesinthepaceofenergyefficiencyadvancements,specificactivitieswithineachsubsector,andtheevolutionofthesectorcomposition.Changestoindustrialtechnologiesandthecompositionacrossregionsreflectourcurrentunderstandingofnationalandregionalpolicies,supplychains,andcommerciallyviabletechnology.Wedon’tincluderevolutionarytechnologicalbreakthroughsorpoliciesthatarenotcodifiedandenforceable.Figure18.Indiaisthefastest‐growingregionintermsofGDPandGDPpercapitaacrossallcases.Thecountry’smanufacturingsubsectorgrowsfrom$6.7trillion(2015PPPUSD)in2022toarangeof$20.9trillion(2015PPPUSD)intheLowEconomicGrowthCaseto$34.7trillion(2015PPPUSD)intheHighEconomicGrowthCase.Asaresult,industrialenergyconsumptioninIndiaincreasesfrom18.6quadsin2022toarangefrom40.2quadsintheLowEconomicGrowthcaseto64.1quadsintheHighEconomicGrowthcasein2050(Figure19).Growthinthemanufacturingsectoroutpacesothersectorsand,asaresult,growsasashareoftotalindustrialgrossoutputinalltheIEOcases.WeprojectIndia’smanufacturingactivity,arelativelyenergy‐intensivesubsector,togrowfrom60%ofthecountry’stotalindustrialgrossoutput(asmeasuredin2015PPPUSD)in2022to71%oftotalindustrialgrossoutputin2050acrossallsidecases.U.S.EnergyInformationAdministrationInternationalEnergyOutlook202326October2023Figure19Figure19showsIndia’sindustrialenergyintensityandhowchangesinsectorcompositionandenergyefficiencyaffectit.Technologyandefficiencydevelopmentsreduceenergyuse,whilechangesinIndia’sindustrialsectoralcompositiondriveadditionalenergyconsumption.TheneteffectisadeclineinindustrialenergyintensityinIndia.IncontrasttoIndia,China’sindustrialenergyconsumptiondeclinesinallcasesexcepttheHighEconomicGrowthcase(Figure20).EnergyconsumptiondecreasespartlybecausemanyoftheindustriesinChinaincreaseenergyefficiencybyimplementingmorerecyclingandtechnologyadvancements.Althoughweprojectenergy‐intensivemanufacturingdeclinesasashareofChina’sindustrialactivity,thissectoralshiftonlymildlycontributestotheoveralldeclineinindustrialenergyconsumption.Overall,manufacturinggrossoutput—whenmeasuredin2015PPPUSD—madeup49%ofallgrossoutputinChinain2022,butitdecreasesinourprojectionto41%in2050inallIEO2023sidecases.U.S.EnergyInformationAdministrationInternationalEnergyOutlook202327October2023Figure20.ThedifferenttrajectoriesofindustrialenergyconsumptioninChinaandIndiaarealsomotivatedbytheirprimarymetalsindustry,whichismadeupofsteel—thetopenergyconsumeroftheprimarymetalsindustry—andnon‐ferrousmetals,suchasaluminum.Inaggregate,thetwocountries’primarymetalsindustriescontributedabout6%oftotalglobalemissionsin2022.InChina,unlikeIndia,weprojectthatthegrossoutputoftheironandsteelindustrywilldeclineoverthelongterm,andthecountrycouldsignificantlyincreaseproductionofrecycledsteel,whichissignificantlylessenergyintensive.6Weassumesteelproducedbythemoreenergy‐intensivecoal‐basedbasicoxygenfurnaceprocessdeclinesto40%forallcasesby2050,downfrom88%in2022.FortheReferencecase,thischangewillreducesteelindustrycoaldemandin2050by71%relativeto2022.China’ssteelindustrygrossoutputfallsby25%overthesameperiodintheReferencecase,with2050steelindustrygrossoutputrangingfrom$0.9trillion(2015PPPUSD)intheLowEconomicGrowthcaseto$1.7trillion(2015PPPUSD)intheHighEconomicGrowthcase(Figure21).DuetothischangeinsteelproductionprocessesinChina,coalconsumptionbyitssteelindustryrangesfrom4.0quadsintheLowEconomicGrowthcaseto7.8quadsintheHighEconomicGrowthcasein2050.Thisdeclineinmetallurgicalcoalconsumptiondecreasesdomesticcoalproductionbyarangeof38%to94%acrosscases.Thisdecreaseaffectscoalimports,whichvaryfroma65%decreasetoa4%increaseacrosscasescomparedwith2022.CoalproductioninChinadeclinesfasterthancoalimportsbecauseofhighercostsforminingandtransportingdomesticallysourcedcoal,continuingthecountry’sneedforimportsfromregionssuchasAustraliaandRussia.6Formoredetailsonsteelmakingprocesses,seeIEO2021IssuesinFocus:EnergyImplicationsofPotentialIron‐andSteel‐SectorDecarbonizationPathways..U.S.EnergyInformationAdministrationInternationalEnergyOutlook202328October2023Figure21.AlthoughIndiafacessimilarcoalproductionchallengesasChina,thegrowingcoaldemandinIndiaincreasesdomesticcoalproductionthrough2050(Figure22).Theincreasingcoaldemandisdrivenbytheincreasinggrossoutputandtheindustry’suniqueandheavyrelianceoncoaltomakeironoreusingdirectreducediron(DRI).From2022to2050,India’smetallurgicalcoalproductionincreasesby10%to28%,andcoalimportsincreaseby120%–202%acrosscases.IndiareceivesimportsfromregionssuchasAustraliaandAfrica,andpotentiallyCanadaandtheUnitedStates,asdemandformetallurgicalcoalrises.Figure22.U.S.EnergyInformationAdministrationInternationalEnergyOutlook202329October2023Inadditiontotheironandsteelindustry,energyefficiencyincreasesinthealuminumindustry(thelargestcomponentofthenonferrousmetalsindustry)mostlyasaresultoftheswitchfromprimarytosecondaryaluminumproduction.Secondaryaluminumismadebyremeltingrecycledaluminumorscrapfromproduction.Globally,weprojectthealuminumindustrywillgrowbyapproximately76%from2022to2050intheReferencecase,whilethealuminumindustry’senergydemandwillrisebyonly9%(Figure23).TheHighandLowEconomicGrowthcasesprojectdifferentfuturesforthealuminumindustry.Grossoutputreaches$7.3trillion(2015PPPUSD),andenergydemandreaches10quadsin2050intheHighEconomicGrowthcase.Grossoutputreaches$4.5trillion(2015PPPUSD),andenergydemandreaches6.5quadsin2050intheLowEconomicGrowthcase.Productionofsecondaryaluminum,whichrequiresabout90%to95%lessenergythanprimaryaluminum,contributestothedeclineofenergydemandgrowthrelativetotheindustry’sgrossoutput.Figure23.U.S.EnergyInformationAdministrationInternationalEnergyOutlook202330October20232Theshifttorenewablestomeetgrowingelectricitydemandisdrivenbyregionalresources,technologycosts,andpolicy.Weprojectelectricitygenerationworldwidewillincrease30%to76%in2050relativeto2022acrossallcases(Figure24).By2050,zero‐carbongeneratingtechnologies—renewablesandnuclear—supplyelectricityfor54%to67%ofthetotaldemandacrosscases.Acrossmostyears,theLowZero‐CarbonTechnologyCost(ZTC)caseprojectsthemostwindandsolargenerationacrosstheglobe.ThiscaseassumesamorerapidcapitalcostdeclinethanintheReferencecaseforasubsetofzero‐carbontechnologies,includingstorage(AppendixA).Othercases,suchastheHighEconomicGrowthcase,alsoshowsignificantgrowthinrenewablegeneration,suggestingthatthecostcompetitivenessofrenewablesismoreprominentwhenservinghigherincrementaldemand.Therestofthedemandismainlymetbycoalandnaturalgas.Figure24.U.S.EnergyInformationAdministrationInternationalEnergyOutlook202331October2023Coal‐firedgenerationvariesacrosscasesin2050,fromdeclining24%toincreasing10%from2022levels.TheupperboundforcoaloccurredintheHighEconomicGrowthcase,wheretheeconomyisassumedtogrowmorerapidlycomparedwiththeReferencecaseandmoregenerationisneededfromallgeneratingresources.ThelowerboundforcoalgenerationoccurredintheLowEconomicGrowthcaseuntilthemid‐2040sandintheLowZTCcasethereafter.IntheLowEconomicGrowthcase,whereelectricitydemandislower,lesscoalgenerationisneededtomeetdemand.IntheLowZTCcase,highergenerationfromzero‐carbontechnologydisplacescoalgeneration.By2050,growthinglobalnaturalgas‐firedgenerationrangesfrom1%to66%relativeto2022.Theupperboundinnaturalgas‐firedgenerationoccurredintheHighOilPricecaseintheearlypartoftheprojectionperiod,butintheHighEconomicGrowthcaseoverthelaterportionoftheprojectionperiod.Thisrangeindicatesthepotentialeffectofhigheconomicgrowthandtheregions’continualuseofexistingfacilities.Multiplecasesdeterminethelowerboundofnaturalgas,dependingontheprojectionperiod.Naturalgas‐firedgenerationislowestintheLowZTCcasearound2050;inmostofthe2030sand2040showever,natural‐gasfiredgenerationislowestintheLowEconomicGrowthcase.Newglobalelectricitydemandisprimarilymetbynon‐fossilfuelsourcesBy2050,globalcoal‐firedgenerationandliquidfuel‐firedgenerationdecreaseinmostofthecaseswemodeled.Generationfromzero‐carbontechnologies—primarilysolar,wind,hydroelectric,andnuclear—growsfasterthanelectricitydemandinsomecases,andaccountsfor78%to120%oftheincrementalglobalelectricitydemandfrom2022acrosscases,displacingexistingfossilgenerationinsomecases(Figure25).Additionalnaturalgaslargelymeetstherestofthenewelectricitydemandacrosscases.Figure25.U.S.EnergyInformationAdministrationInternationalEnergyOutlook202332October2023Tomeetincreasedglobalelectricitydemand,installedpowercapacityincreasesand,by2050,reachesatotalofaboutone‐and‐a‐halftotwotimeswhatitwasin2022(Figure26).In2022,coal,naturalgas,andliquidfuelscombinedmadeupAmongthezero‐morethanone‐halfoftheworldelectricitygenerationcapacity.Zero‐carbontechnologies,carbontechnologies(includingstorage)makeup81%to95%ofthenewglobalgeneratingcapacityinstalledacrosscasesfrom2022tosolarphotovoltaic2050.Ineachregion,zero‐carbontechnologiesmakeupmostnewcapacityisprojectedelectricgeneratingcapacityinstalledexceptRussiaandour“EasterntogrowthemostEuropeandEurasia”region.So,by2050,thecombinedshareofcoal,through2050.naturalgas,andliquidfuelsdecreasesto27%to38%oftheworld’sgeneratingcapacityacrosscases.Acrosscases,the4,600gigawatts(GW)to9,200GWofgeneratingcapacityinstalledby2050ispredominantlysolar,wind,andstorage.NuclearcapacityisstableinmostcasesexcepttheLowZTCcase,whereweeasednoneconomicconstraints(thatis,geopoliticalconsiderations)toexploretheeconomiceffectsonnuclearbuilds(AppendixA).Inthiscase,nuclearcapacityincreasesby194GWin2050relativetothe2022capacityof400GW.Figure26.Currentpolicies,demandgrowth,andenergysecurityconsiderationsineachregiondeterminewhenzero‐carbontechnologiesgrowInChina,zero‐carbontechnologycapacityincreasesfasterearlyintheprojectionperiodbutslowscloserto2050(Figure27).WesternEuropefollowsasimilartrendofarapidcapacityincreaseearlyoninallcasesandthenslowergrowthratesacrossmostcasestowardtheendoftheprojectionperiod.Policy,energysecurityconcerns,andrapiddemandgrowthearlyintheprojectionperioddrivenear‐termdeploymentofzero‐carbontechnologycapacityinthesetworegions.ForChina,weinclude5%annualgrowthincarbonpricebecausemostthermalpowerplantsintheregionarecurrentlyincludedinU.S.EnergyInformationAdministrationInternationalEnergyOutlook202333October2023China’semissionstradingscheme(ETS).Europe’sCO2emissionslimitisincludedintheelectricpowersectorprojection.Energysecurityconsiderationsfavoringlocallyavailableresources—suchaswindandsolar—furtherincreaseinstallationsandplannedbuildsforthesetechnologiesaswellasbatteriesinChinaandWesternEuropeearlyintheprojectionperiod.WeprojectChinawillinstallbetween54%and87%ofits2050zero‐carbontechnologycapacityacrossallcasesbefore2030,andWesternEuropewillinstallbetween63%and95%ofits2050zero‐carbontechnologycapacityoverthesameperiod.Severalotherregions,includingIndiaandAfrica,showrapidgrowthinzero‐carbontechnologyafter2030.InIndia,thislatergrowthisheavilyinfluencedbyassumptionsofeconomicgrowth,withthegrowthinthesetechnologiesinIndiaacrossIEO2023casesboundedbytheHighandLowEconomicgrowthcasesinmostyears.InAfrica,theupperrangeofzero‐carbontechnologycapacityoccursintheHighEconomicGrowthorLowZTCcase,dependingontheprojectionperiod,whilethelowerrangeoccursintheLowEconomicGrowthorHighZTCcases.Acrossallcases,weprojectIndiawillinstallbetween79%and84%ofitszero‐carbontechnologycapacityafter2030,andAfricawillinstallbetween42%and65%ofitszero‐carbontechnologycapacityafter2030.Ingeneral,weexpectasmallerrangeofzero‐carbontechnologycapacitygrowthinmoredevelopedcountriesandregions(forexample,inWesternEurope)becauseofthesmallervariationsingrowthratesassumedinourHighandLowEconomicGrowthcasesfordevelopedversusdevelopingregions(AppendixA).IEO2023casesmodelpoliciesthatareenactedlegislationandcanbereasonablymodeled.Otherunmodeledorfuturepoliciesmightaffectthetimingofzero‐carbontechnologyadoption.Figure27.Regionally,batterystorageinstallationcorrelateswithhighvariablerenewablecapacity—particularlysolarElectricitystorage,particularlybatteries,isusedtostoreexcesspowerproducedbyvariablegeneratingsources—suchaswindandsolar—duringoff‐peakhoursandtodispatchthestoredenergyduringtimeswhendemandishigher.Batterystoragegrowssignificantlyinallcases.In2022,batterystoragecapacitywas52GW,lessthan1%ofglobalpowercapacity.By2050,weprojectthatbatterystoragecapacitywillincreasetobetween625GWand1,507GWacrosscases,makingup4%to9%ofglobalpowercapacity.U.S.EnergyInformationAdministrationInternationalEnergyOutlook202334October2023Useofbatterystoragediffersregionally.InIndia,thehighshareofbatterystoragecapacitycoupledwithlowdispatchablecapacityresultsinbatterystoragedispatchmeeting24%ofelectricitydemandby2050intheReferencecase.TechnicalNote2:StoragetechnologyrepresentationIREStoreisacomplementarymoduletotheInternationalElectricityMarketModule(IEMM).IREStoreenhancescapacityexpansionandutilizationdecisionsforvariablerenewableandelectricitystoragetechnologiesusinghighertemporalresolution.IREStoredividestheyearinto288representativetimeslicesinsteadofthe12timeslicesperyearusedintheIEMM.WemodeltwotypesofstoragetechnologiesinIEMMandIREStore:•Four‐hourdiurnalbatteriesconnectedtothegrid•Six‐hourpumped‐storagehydropowerAlthoughelectricitystoragecanplayseveraldifferentrolesonthegrid,theprimaryuserepresentedinIREStoreandIEMMisforenergyarbitrage.Thatis,themodelwillstoreenergywhenitischeap,suchaswhensolarenergywouldotherwisebecurtailed,anddispatchfromstoragetechnologieswhenenergyismoreexpensive,suchasduringperiodsofpeakdemand.Ingeneral,ourmodelresultsindicatethatsolar,morethanwindorotherresources,tendstopairwellwithstorage.Solararbitrageopportunitiesareveryregularandpredictable,makingitrelativelyeasytosizeboththepowerandenergycapacityofastoragesystemforefficientuse,comparedwithwindenergy,whichhasmoreirregulargenerationpatterns.InsideIREStoreandIEMM,batterystoragehas85%efficiency,meaningthat15%oftheenergyislostduringthecharginganddischargingprocess.Atmaximumdischargingrates,ittakesfourhoursforabatterytofullydischargeitself.Pumped‐storagehydropowerhas80%storageefficiency,meaningthat20%oftheenergyislostduringcharging(pumpingwaterintoitsreservoir)anddischarging(hydropowergenerationusingreleasedwaterfromitsreservoir).Whenthewaterreservoiriscompletelyfull,itcanrunforsixhoursbeforeemptying.Eitherenergy‐storagetypemayrunlongeratareducedoutputlevel.Forexample,afour‐hourbatterycouldoperateforeighthoursathalfofthemaximumratedoutput,ortwosuchbatteriescouldoperateatfulloutputforeighthours.Usingthesimplified12time‐slicerepresentationinIEMM,themodeltendstounderestimatetheopportunitiesforenergyarbitragewhensolarcapacityisjuststartingtogrowandoverestimatetheseopportunitiesatveryhighlevelsofsolarpenetration.IREStoreaddressesthisshortcomingbyallowingenergyarbitragewithamuchhighertemporalresolution.Figure28showshowIREStoremodelselectricitygenerationandstorageinIndiain2050acrossfourseasons.India’shourlyload(demand)ineachofthefourseasonsissimilar,althoughtheamountofcurtailedenergyvarieswiththeseasonalvariationinsolaroutput.CurtailedenergyisthelowestduringthesummerduetolowersolarenergypotentialduringIndia’ssummermonsoonseason.Themodelarbitragestheotherwise‐curtailedenergyduringmiddayhoursU.S.EnergyInformationAdministrationInternationalEnergyOutlook202335October2023toprovideenergyduringhourswhenmoreexpensivefuelsarethemarginaldispatchresource.Mostofthestorage(>99%)intheIREStoremodelforIndiaisbatterystorage.Figure28.U.S.EnergyInformationAdministrationInternationalEnergyOutlook202336October2023Fossilfuel‐firedgenerationintheAfricaandMiddleEastsuperregionandEuropeandEurasiasuperregionremainsstablethroughouttheprojectionperiodNaturalgasisanimportantpartoftheelectricitygenerationmixinseveralregionsoftheworldinourprojectionthrough2050.In2022,naturalgasconstitutes61%oftheelectricitygenerationshareintheAfricaandMiddleEastsuperregion.By2050,thenaturalgasshareinthissuperregionisstillcloseto60%inalmostallcases;itdropsto50%intheLowZTCcase(Figure29).Thisresultdemonstratestheeffectofabundantlow‐costnaturalgasinthissuperregioncombinedwithcontinuedrelianceontheexistingnaturalgasgenerationinfrastructure.Otherregions,suchasRussiaandMexico,alsocontinuetouseasignificantamountofnaturalgasforelectricitygeneration.IntheEuropeandEurasiasuperregion,zero‐carbontechnologyincreasesby1,200billionkilowatthours(BkWh)to2,300BkWhacrossallcasesby2050tomeetnewdemand.Acrossallcases,theshareofzero‐carbontechnologyinthegenerationmixincreasesfrom55%in2022tobetween63%and65%by2050.However,thecombinedgenerationfromnaturalgas,coal,andliquidfuelsof2,200BkWhto2,600BkWhin2050remainsstableinallcases(exceptintheHighEconomicGrowthcase,whichgrowsto3,100BkWhin2050)comparedwith2,400BkWhin2022.Althoughnotasnaturalgas‐dominantastheAfricaandMiddleEastsuperregion,theEuropeandEurasiasuperregioncontinuestohavearelativelystableamountoffossilfuel‐firedgeneration,whichreflectsthecontinuedrelianceontheexistingcapacitymix,therelativelystabledemand,andtheabundanceofnaturalgas,particularlyinEurasia.Figure29.U.S.EnergyInformationAdministrationInternationalEnergyOutlook202337October2023Variationsincostsofzero‐carbontechnologiesaffecttheenergymixandemissionsmostinChinaandtheOtherAsia‐Pacificregion,wherecoal‐firedgenerationismostprevalentBy2050,weprojectworldwideelectric‐generatingcapacityforzero‐carbontechnologiestoincreasetwotothreetimesrelativeto2022.Theconditionsthatfosterzero‐carbontechnologycapacityinstallation,however,arenotuniformthroughouttheregionsortheprojectionperiod.TheassumptionsunderlyingtheZTCcasesandtheEconomicGrowthcasesparticularlyaffectzero‐carbontechnologyandcoal‐firedgenerationwithintheAsia‐Pacificsuperregion,whereelectricitydemandgrowsmostrapidlyandcoalischeapandabundant.ChinaandOtherAsia‐Pacific,tworegionswithintheAsia‐Pacificsuperregion,showlargevariationsingenerationmixandemissions,particularlyasitrelatestorelianceoncoal.InChina,coal‐firedgenerationmadeup62%oftheelectricitygenerationmixin2022anddecreasesbylessthan10%throughouttheprojectionperiod—from5,200BkWhin2022tobetween4,800BkWhand5,100BkWhin2050—inallcasesexceptintheLowZTCandLowEconomicGrowthcases(Figure30).IntheLowEconomicGrowthcase,coal‐firedgenerationdecreasesalmost25%to4,000BkWhby2050,butbecauseoftheoveralldecreaseinelectricitygenerationduetoadecreaseinoveralldemand,coal‐firedgenerationstillmakesup41%ofthegenerationmix.IntheLowZTCcase,coal‐firedgenerationdecreases27%to3,800BkWh,resultinginthelowestshareofcoal‐firedgeneration(31%)in2050amongallcases.Atthesametime,zero‐carbontechnologygenerationinChinaincreasesfrom3,000BkWh(35%generationshare)to7,700BkWh(63%generationshare)by2050intheLowZTCcase.Amongthecasesmodeled,thepowergenerationinChinaisverysensitivetothecostofzero‐carbontechnologies,asseenintheLowZTCcase.Impactsofotherfactors,suchasadditionalpoliciesorpotentialmarketdisruptions,arenotmodeledinthesecases.Coal‐firedgenerationintheOtherAsia‐Pacificregionmadeup39%ofthegenerationmixin2022,andweprojectittoincreasefromabout700BkWhin2022tobetween1,000BkWhand2,100BkWhin2050acrossallcases.InourReferencecase,coal‐firedgenerationaccountsfor47%oftheOtherAsia‐Pacificregion’stotalgenerationin2050andrangesbetween30%and52%acrossallcases.By2050,zero‐carbontechnologygenerationintheregionaccountsfor37%ofthegenerationmixintheReferencecaseandbetween31%to54%ofthegenerationmixacrosstheothercases.TheparametersoftheLowZTCcaseparticularlyaffecttheOtherAsia‐Pacificregionbecauseitistheonlycasethatincreaseszero‐carbontechnologygeneratingcapacitytoover820GW(73%ofallcapacity)andzero‐carbontechnologygenerationtoover1,800BkWh(54%ofnetgeneration).Inallothercases,in2050,zero‐carbontechnologygeneratingcapacitydoesnotexceed570GWandgenerationdoesnotexceed1,400BkWh.TheLowZTCcaseistheonlyIEOcasewherecoal’sshareofthegenerationmixdecreasestoaslowas30%bytheendoftheprojectionperiod.Highcoal‐firedgenerationacrosscasesreflectsthelowcostofcoalasacommodityinbothChinaandtheOtherAsia‐Pacificregion.Withlowerzero‐carbontechnologycosts,renewablesandnucleargenerationbecomemorecostcompetitiveinChinaandtheOtherAsia‐Pacificregion.ThesensitivityofChina'sandtheOtherAsia‐Pacificregion’scapacityandgenerationmixtovariationinzero‐carbonU.S.EnergyInformationAdministrationInternationalEnergyOutlook202338October2023technologycostandeconomicgrowthillustratestheimpactofcost,existinginfrastructure,anddemandgrowth.PolicyproposalsinChinaandtheOtherAsia‐Pacificregion(wherecoalisprevalent)couldsignificantlyaffecttheroleofcoalinthegenerationmix.TheprojectedvariationintheelectricitygenerationmixhasalargeeffectonelectricpowersectorCO2emissionsintheseregionsandglobally.Figure30.TotalCO2emissionsfromfossilfuel‐firedgenerationinChinaandtheOtherAsia‐Pacificregiontotaled6.2billionmetrictonsin2022,accountingfor50%oftheworld’stotalCO2emissionsfromfossilfuel‐firedgenerationof12.5billionmetrictonsthatyear(Figure31).In2050,projectedCO2emissionsfromfossilfuel‐firedgenerationinChinaandtheOtherAsia‐Pacificregionvaryconsiderablyacrosscasesandrangebetweendecreasingto5.5billionmetrictonsintheLowZTCcasetoincreasingto8.4billionmetrictonsintheHighEconomicGrowthcase.ThisrangeofoutcomesstillresultsinthecombinedelectricpowersectorCO2emissionsfromChinaandtheOtherAsia‐Pacificregionincreasingtobetweena51%to57%shareoftheworld’selectricpowersectoremissions,whichweprojectwilldecreaseto10.4billionmetrictonsintheLowZTCcaseorincreaseto14.8billionmetrictonsintheHighEconomicGrowthcase.OftheregionsincludedintheAsia‐Pacificsuperregion,ChinaandtheOtherAsia‐Pacificregioncombinedhavethelargestcoal‐firedgenerationshare.Collectively,thetworegionscontributedto77%oftheAsia‐Pacificsuperregion’scoal‐firedgenerationand61%oftheworld’scoal‐firedgenerationin2022.Thehighshareofcoal‐firedgenerationinChinaandtheOtherAsia‐PacificregionandthesensitivityofthatgenerationinthosetworegionstotheassumptionsmadeintheLowZTCandHighEconomicGrowthcasescontributetothelargedifferenceintheAsia‐PacificsuperregionandworldwideelectricpowersectorCO2emissionsbetweenthetwocases.U.S.EnergyInformationAdministrationInternationalEnergyOutlook202339October2023Figure31.U.S.EnergyInformationAdministrationInternationalEnergyOutlook202340October20233Energysecurityconcernshastenatransitionfromfossilfuelsinsomecountries,althoughtheydriveincreasedfossilfuelconsumptioninothers.EnergytradeisadaptingtonewrealitiesasWesternEuropecontinuestofacechallengesinmaintainingfossilfuelproductionascurrentgeopoliticaleventsdisrupttraditionaltradepatternsandasemergingeconomiescontinuetogrow.Althoughzero‐carbontechnologiescontinuetodevelopanddeployatscale,ourmodeledcasessuggestmajorcrudeoilandnaturalgasproducerswillcontinueproducingtokeepupwithgrowingdemandfromconsumerssuchasChina,India,SoutheastAsia,andAfricaunderprevailingpolicy.TheMiddleEastandNorthAmericaaretheprimaryregionstoincreasenaturalgasproductionandexportstomeetgrowinginternationaldemand,assumingRussia’sexportsstayflatAlthoughRussiahas23%ofworldnaturalgasreserves,historicalnetexportspeakedatover8trillioncubicfeet(Tcf)in2019.Russia’snetexportsfelltoabout6Tcfin2022,andinourprojection,remaintherethrough2050.ThisresultassumesthatRussia’sfull‐scaleinvasionofUkrainewillcontinuetodriveWesternmarketsawayfromimportingRussiannaturalgas.ThemodelassumesthatRussiawillgrownaturalgasproductiontomeetfuturedomesticconsumptionbutwillnotincreaseitsnetexports.ThemodelalsoassumesNordStream1and2willnotreturntooperationduringtheprojectionperiod.Inaddition,lowGDPgrowthandanoutflowofforeigninvestorsinRussiathroughouttheprojectionperiodreduceinvestmentinthecountry’sexport‐relatedinfrastructure(Figure4).RussiawillrequiremassiveinfrastructureinvestmenttoreroutecurrentnaturalgasproductionfromWesterntoEasternmarkets.Further,RussiahashistoricallyreliedonWesterncompaniesforliquefiednaturalgas(LNG)technology.Withthedepartureofthesecompanies,Russiamustdevelopthistechnologydomestically,whichwillU.S.EnergyInformationAdministrationInternationalEnergyOutlook202341October2023taketimeandinvestmenttobringittocommercialscale.7BecauseshiftingexportsfromEuropetoAsiaislimitedbytechnology,tradeagreements,andsanctions,Russia’snetexportsfallacrossallcases.Acrossallcases,theMiddleEast’snaturalgasexportsgrowthroughouttheprojectionperiodasotherregions’naturalgasconsumption—drivenbyeconomicgrowth—outpacestheirdomesticproduction(Figure32).ExportgrowthtakeslongertooccurintheHighOilPricecase,remainingrelativelyflatuntil2040,duetohighpricespromotingmoreaggressiveproductiongrowthinotherregionsoftheworld.Figure32.TheMiddleEastholdsalmost40%oftheworld’snaturalgasreserves8.Startingat6Tcfin2022,netexportsreachbetween15Tcfand26Tcfby2050inmostcases,buttheyincreaseto37Tcfby2050intheHighEconomicGrowthcase.Mostofthegrowthoccursinthelatterhalfoftheprojectionperiod,especiallyintheHighEconomicGrowthcase.(Figure33).Inthenearterm,growthofMiddleEastnaturalgasexportsisconsistentwiththeplannedexpansionsincapacityexpectedinQatar.Inthelatterpartoftheprojectionperiod,thestronggrowthinglobaldemandfornaturalgaswillrequirenewinvestmentanddevelopmentofnewresourcesfromthesignificantremainingMiddleEastreserves.Naturalgasproductionwillgrowinallregionsifdomesticresourcesareavailableandproductionispricecompetitivecomparedwithimports.Asaregionrunsoutofcost‐efficientresources,itwillimportnaturalgasfromregionsthathaveaccesstocheaperresources.Asaresult,weexpecttheMiddleEastwillincreaseexportsovertheprojectionperiodbecauseotherregionsreachtheirdomesticproductionlimitalthoughtheirdemandcontinuestogrow.7Althoughwemodelcurrentlyoperationalcapacitybyspecificline,newnaturalgaslinecapacityisn'ttiedtoaspecificplannedorunderconstructionproject.8BP.StatisticalReviewofWorldEnergy.2021.U.S.EnergyInformationAdministrationInternationalEnergyOutlook202342October2023Figure33.MiddleEastLNGexportvolumesdependonassumedU.S.LNGcapacity.IEO2023reliesontheReferencecasefromtheAnnualEnergyOutlook2023(AEO2023),inwhichalmost10TcfofU.S.LNGisexportedin2050.InasupplementalstudytoAEO2023,wefoundthatU.S.LNGexportsreachednearly18TcfifweassumedhigherpricesandfasterLNGexportcapacityadditions.SuchascenariowouldaffecttheoutlookforMiddleEastLNGexportvolumes.TotalglobaldemandfornaturalgasdifferssignificantlybetweentheReferencecaseandtheHighEconomicGrowthcase.By2050,globalnaturalgasdemandreaches197TcfintheReferencecaseandgrowstoabout240TcfintheHighEconomicGrowthcase,almosta22%differencebetweencases.U.S.supplyofnaturalgasincreases4%fromtheReferencecasetotheHighEconomicGrowthcasein2050.GiventhelackofsignificantgrowthinnaturalgasproductionfromtheUnitedStatesandthelimitedgrowthfromRussia,theMiddleEast’sroleasanaturalgassupplierincreasessignificantlyintheHighEconomicGrowthcase.AsaresultoftheanticipatedLNGexportgrowthintheUnitedStates(asprojectedinAEO2023),NorthAmericabecomesthesecond‐highestglobalnaturalgasexporterby2050.BecauseU.S.LNGexportsarefixedtoAEO2023projections,U.S.growthislimitedtotheearly2030s,andfurtherglobalLNGdemandacrosstheprojectionperiodissuppliedbyotherregions.AlthoughCanadaincreasesnaturalgasproductionacrossallcasesexcepttheLowEconomicGrowthcase,itstrugglestomaintainabalanceofnetexportsduetorisingdomesticnaturalgasconsumptioninitselectricpowersector.By2050,U.S.naturalgasnetexportsfallfromalmost12TcfintheReferencecaseto7TcfintheLowOilPricecase.AlthoughglobalnaturalgasdemandintheLowOilPricecaseisonlymarginallyhigherthanintheReferencecase,theMiddleEastincreasesnetexportsfrom21Tcfin2050intheReferencecasetoU.S.EnergyInformationAdministrationInternationalEnergyOutlook202343October202326TcfintheLowOilPricecase,whichoffsetsthedeclineinU.S.naturalgasexports.BecausetheMiddleEastisalower‐costsupplierthantheUnitedStates,theregioncansupplyalargershareofglobalnaturalgasdemandinalow‐priceenvironment.AsiaandEuropecontinuetoimportmorenaturalgasAcrosscases,theAsia‐Pacificsuperregion—whichincludesChina,India,Japan,SouthKorea,andtheOtherAsia‐Pacificregion—willnotbeabletomeetdomesticdemandthoughdomesticnaturalgasproduction.Duetothelackofnaturalgasreservesandtechnicallyrecoverableresourcesinthissuperregion,weprojectitismoreeconomicalforthesecountriesandregionstoimportnaturalgas,primarilyasLNGimports.MostofthisdemandgrowthoccursinChina,wherenaturalgasconsumptionrisesacrossallsectors,particularlytheelectricpowersectorinlateryears.China’snetnaturalgasimportsgrowbyalmost8Tcffrom2022toalmost14Tcfin2050acrossmostcases,butitsnetnaturalgasimportsreach9TcfintheLowEconomicGrowthcaseand29TcfintheHighEconomicGrowthcaseby2050.AlthoughChinahasconsiderableshalegasresources,ithasbeenabletoproduceonlyasmallfractionoftheseresourcesduetodifficultgeography.9Weassumethatnotechnologicalbreakthroughoccurstomakethesedifficult‐to‐accessresourcesmorecosteffective,resultinginChina’sgrowingrelianceonnaturalgasimportsthroughouttheprojectionperiod.TheOtherAsia‐PacificregionalsodrivesthegrowthofnaturalgasimportmarketsinAsia.Duetogrowingdomesticdemandanddecliningproduction,theOtherAsia‐Pacificregiontransitionsfrombeinganetexporterin2022toanetimporter,withnetimportsrisingtoover3Tcfofnaturalgasby2050acrossallcasesexceptfortheHighOilPricecase.IndiaisalsoasignificantsourceofnaturalgasimportgrowthintheAsia‐Pacificsuperregion,increasingfrom1.3Tcfofnetimportsin2022tomorethan4.0Tcfin2050acrossallcases.India’snaturalgasdemandgrowssignificantlythroughouttheprojectionperiodbecauseofgrowthintheindustrialsector.IntheReferencecase,industrialnaturalgasconsumptioninIndiaincreasesfrom1.9Tcfin2022tobetween5.0TcfintheHighEconomicGrowthcaseandalmost8.5TcfintheLowEconomicGrowthcasein2050.AlthoughIndiahassignificantnaturalgasreserves,mostareoffshoreandexpensivetodevelop.WeprojectIndiawillcontinuetorelyonimportstomeetitseconomicgrowth.BothJapanandSouthKorearemainnetnaturalgasimporters,andtotalnetimportvolumesremainatorjustbelow2022levelsacrossallcases.Bothcountrieshavestrong,establisheddemandmarkets,particularlyintheindustrialandelectricpowersectors.Theyalsohavelittledomesticresourcestodrawfrom,resultinginlimitedtononaturalgasproductionthroughouttheprojectionperiod.OutsideofAsia,weprojectWesternEuropewillgrowasanimportmarket.Althoughslowedbyenergysecurityconsiderationsanddecarbonizationpolicies,WesternEuropeannaturalgasdemandacrossallsectors(includingtheelectricpowersector)increasesabout12%between2022and2050acrossallcasesexceptfortheLowandHighEconomicGrowthcases.IntheHighEconomicGrowthcase,natural9Reuters.Analysis:Chinesemajorstostruggletoextendshalegasboombeyond2025.2021.U.S.EnergyInformationAdministrationInternationalEnergyOutlook202344October2023gasdemandgrowsby22%,andintheLowEconomicGrowthcase,itgrowsbylessthan4%.WealsoexpectsteadynaturalgasproductiondeclinesduetodepletedNorthSeareservesandtheclosureoftheGroningennaturalgasfieldintheNetherlands.Theslowbutincreasingnaturalgasdemandgrowth,coupledwiththeregion’sdecreasingnaturalgasproduction,increasesWesternEurope’snetnaturalgasimportsbybetween2.3Tcfand6.2Tcfby2050acrossallcases.Policyactionisongoing,andanyupdatesornewpoliciesinthefuturemaysignificantlyaffectWesternEurope’sLNGimportprojections.OPEC,particularlyintheMiddleEast,actsasaglobalswingproducerGlobalcrudeoilproductionexpandstomeettheincreaseinglobaldemandacrossallcases.TheHighandLowOilPricecasesexploretheprojectedrangeofcrudeoilproductionduetotheuncertaintyaroundworldcrudeoilprices,akeymodelassumption.Near‐tomid‐termproductiongrowth(2023–2035)ismetbynon‐OPECregions,particularlyinNorthandSouthAmerica,acrossallcasesexcepttheLowOilPricecase.Between2022and2035,non‐OPECproductionrisesfrom49millionbarrelsperday(MMb/d)toalmost55MMb/d—BrazilandtheOtherAmericasregionproducedover6MMb/dintheReferencecase.Canadaoilsandsproductioncontinuestogrowthroughmostofthe2020s.IntheHighOilPricecase,increasedoilpricessustaintheproductionoflesscost‐efficientresourcesglobally,andtheNear‐termoildemandshareofglobalproductionfromOPECdeclinesintheshortgrowthismetbyterm.Totalnon‐OPECproductionreachesalmost62MMb/dbynon‐OPECregions,2030,ledbyincreasesinU.S.production.Meanwhile,OPECparticularlyNorthandproductioncontinuestodecreasethrough2030becauseOPECSouthAmericainmostusesitsmarketpowertomaintainrelativelyhighoilpricesbycases;OPECregainsitsdecreasingglobalsupply.Asotherregionsreachpeakrelativemarketsharelaterproduction,generallybetween2030and2040,OPECregainsitsintheprojectionperiod.shareofthemarketintheHighOilPricecase.BecauseOPEChasrelativelyaccessibleresourcesandtheabilitytoshiftlargevolumesofproductiontomeetpolicytargets,ourmodelassumesthatOPECplaystheroleofaglobalswingproducer.OPECMiddleEastisgiventhemostflexibilityofallregionstosignificantlyraiseandlowercrudeoilproductionfromyeartoyear.Non‐OPECregionswillproduceasmuchdomesticcrudeoilaseconomicallypossibleandleaveOPECregionstocontractorexpandproductiontomeetglobaldemand.IntheLowOilPricecase,theOPECregionsmaintainstableproductionintheneartermbecausemanyOPECmembercountrieshavecheaperaccesstoresourcesthatremainprofitableatalowerprice.U.S.EnergyInformationAdministrationInternationalEnergyOutlook202345October2023TechnicalNote3:RefineryrepresentationTheWorldHydrocarbonActivityModule(WHAM)includesthreemajorcomponents:•Upstreamnaturalgasandcrudeoilproduction•Oilrefining•AlogisticssystemtohandleinternationaltradeofthesecommoditiesandproductsWHAMisalinearprogramthatminimizesthecostofsupplyingeveryregionintheWorldEnergyProjectionSystem(WEPS)withthenaturalgasandliquidfuelsdemandedbytheotherWEPSmodules.Structurally,WHAMhasthreetypesofregions—supply,refining,anddemand—thatarebasedongeographyandeconomicactivity.Eachcountryisassignedtoasupplyregion,arefiningregion,andademandregion.WHAMreceivespetroleumproductdemandforeveryWHAMdemandregionandyear,whichWHAMmustmeetwithsupplyfromitsrefineries.Theserefineryregionsimportcrudeoilandnaturalgasfromupstreamsupplyregions.Oilrefiningisacomplexprocessthatisboundbyamolecularbalance,andWHAM’srepresentationincludesmanyintermediateandfinishedproducts.PetroleumproductsupplywithinWEPSmustmeetdemandeachyearbecauseWHAMdoesnotmodelrefinedproductstorage.Modelingrefineriescomeswithsometrade‐offs,giventheircomplexity.AmoregeneralizedapproachthatsimplifiesrefineriestoafewkeycomponentsandoperationswouldreduceWHAM’srun‐timeattheexpenseofflexibilitytoperfectlybalancesupplyanddemand.Alternatively,acomplexrepresentationthatstrictlymodelseveryrefinerymicro‐decisionwouldprovidegreaterflexibilitytomeetWEPSdemandpreciselyandefficientlybutaddsignificantrun‐time.Tobalancethesetrade‐offs,WHAMrepresentsoilrefiningregionally.Countriesareaggregatedintorefiningregionsbasedongeography.Countrieswithlargerefiningsectors—suchastheUnitedStates—arerepresentedassingle‐countryregions.Withinadefinedrefiningregion,country‐levelrefinerycapacitydataareaggregatedintoasinglerepresentativeregionalrefinery—representingthatregion’stotalthroughput.EachrefiningregionmakesitsownrefiningdecisionsbyusingWHAM’sgloballogisticsrepresentationtoexportproductsitmakesthatexceeddomesticdemandandtoimportproductsrequiredfortheregion.BecauseWHAMisformulatedasacostminimizationproblem,productionfromthemodel’srefiningregionstendstoconsistofproductsthatareinhighdemandincloselogisticalproximity,representingthemostcost‐efficientoutcome.WHAMallocatescapacityutilizationacrossavarietyofrefineryoperationtemplates.Thesetemplatesaregeneratedwiththethird‐partyGeneralizedRefiningTransportationMarketingPlanningSystem(GRTMPS),whichmodelsasamplerefinerywithvaryingcrudeoilslatesandrefineryconfigurations.ThesetemplatesarecondensedintorefineryyieldoptionsandpassedintoWHAM.Eachrefineryyieldcontainsinformationaboutaparticularmodeofrefineryoperations,including:•Crudeoilconsumptionforallcrudeoiltypes•Naturalgasandelectricpowerconsumptionatrefineries•Processunitcapacityallocation•Eachfinishedproduct’sproductionU.S.EnergyInformationAdministrationInternationalEnergyOutlook202346October2023Byallocatingregionalcapacityacrossavarietyofyields,refineriesmodeledinWHAMshiftglobalproductproductionovertimetomeetachangingenergylandscape.YoucanfindmoreinformationonWHAManditsrefiningmodelinourComponentDesignReportandtheWHAMfactsheet.ThechangingfueldemandmixforpetroleumproductswilldriveashifttowardjetfuelproductionRefineriesarecurrentlyconfiguredprimarilytomeetgasolineanddistillatedemandandcannoteasilychangethepetroleumratioofproductstheyproduce.In2050,weprojectthatthetransportationsectorwillaccountforatleast54%oftotalgloballiquidfuelsconsumptionacrossallcases,despiteincreasedpenetrationofelectricvehicles(EVs)throughtheprojectionperiod.Therefore,thissectorremainsthemaindriverbehindrefineryoperationsandthecrudeoilfeedstocksneededtoproducethevolumesandproductsharesofliquidfuelsdemanded.TheHighEconomicGrowthandLowOilPricecasesaretheonlycaseswheremotorgasolinedemandrisessignificantly,startingat47quadsin2022andincreasingmorethan12%by2050.IntheHighOilPricecase,motorgasolinedemandislowest,fallingmorethan17%by2050(Figure34).Motorgasolinedemandrisesabout2%by2050intheReferencecase.Comparedwithgasolinedemand,jetfueldemand,risesconsistentlyacrossallcasesthrough2050.IntheHighEconomicGrowthcase,jetfueldemandincreasesfrom11quadrillionBritishthermalunits(quads)in2022to26quadsin2050.Becausewebaseprojectionsoncurrentpolicies,andclimatepolicyisrapidlychanging,long‐termrefineryprojectionsfacesignificantuncertainty.Figure34.Subjecttocurrentpoliciesandtechnology,wedonotassumesignificantpenetrationofsustainableaviationfuelintheprojectionperiod;therefore,refineriesmustadjustproductionovertimetomeetachangingproductslatewheregasolinedemandfallsandjetfuelcontinuestorisewithglobaleconomicgrowth.Thisshiftinfocusresultsinatransitionfromlightcrudeoiltomediumcrudeoil.MediumcrudeU.S.EnergyInformationAdministrationInternationalEnergyOutlook202347October2023oilhasahigherconcentrationofdistillatescomparedwithlightervarieties(whichhaveahigherconcentrationofgasoline),allowingforrefineriestoadjusttheirjetfueloutputviaashiftincrudeoilconsumptionpatterns.Technologicalbreakthroughsforalternativeaviationfuelproductioncouldsignificantlyaffectthelong‐termpreferenceofrefineriesforeachcrudeoiltype.U.S.EnergyInformationAdministrationInternationalEnergyOutlook202348AppendixA.CasedescriptionsReferencecaseTheReferencecasemodelsprojectionsunderassumptionsthatreflectcurrentenergytrendsandrelationships,existinglawsandregulations,andselecteconomicandtechnologicalchanges.TheReferencecaseincludesexistingnon‐U.S.lawsandregulationsasofspring2023,anditreflectslegislatedenergysectorpoliciesthatcanbereasonablyquantifiedintheWorldEnergyProjectionSystem(WEPS).Moreinformationonourgeneralapproachtomodelingclimatepoliciesisavailableinourcompanionarticle,ClimateConsiderationsintheInternationalEnergyOutlook(IEO2023).U.S.projectionsinIEO2023reflectthepublishedprojectionsintheAnnualEnergyOutlook2023(AEO2023),whichassumesthatU.S.lawsandregulations,currentasofNovember2022,remainunchanged.IntheReferencecase,weassumetheworldoilpricein2050is$102perbarrel(2022USD).MacroeconomicgrowthrateassumptionsinourReferencecasearelistedbyregioninTable1.Table1.IEO2023ReferencecaseGDPgrowthratesbyregionReferencecaseAverageannualGDP(purchasingpowerparity)percentageRegionchange,2022–2050AmericasUnitedStates1.9%Canada1.8%Mexico1.7%Brazil1.1%OtherAmericas2.6%EuropeandEurasiaWesternEurope1.3%Russia1.0%EasternEuropeandEurasia4.2%AsiaPacificJapan0.3%SouthKorea1.0%AustraliaandNewZealand2.1%China3.0%India5.0%OtherAsia-Pacific3.7%U.S.EnergyInformationAdministrationInternationalEnergyOutlook202349October2023AfricaandMiddleEastAfrica2.7%MiddleEast1.7%World2.6%Datasource:U.S.EnergyInformationAdministration,InternationalEnergyOutlook2023(IEO2023)HighandLowEconomicGrowthcasesTheHighEconomicGrowthandLowEconomicGrowthcasesreflecttheuncertaintyinprojectionsofglobaleconomicgrowth.ThesecasesshowtheeffectsofalternativeassumptionsabouteconomicgrowththatresultinhigherorlowergrowthrelativetotheReferencecaseprojectionfordifferentregions.Intheeconomicgrowthcases,wealterGDPgrowthratesofeachregionbasedonitsGDPpercapita—measuredinreal2015purchasingpowerparity(PPP)adjustedU.S.dollars(USD)perperson.InIEO2023,wedividecountriesintotwocategories:LowGDPpercapita:lessthanorequalto$30,000(2015PPPUSD)perpersonHighGDPpercapita:greaterthanUS$30,000(2015PPPUSD)perpersonIngeneral,countrieswithlowerGDPpercapitaexhibitmorevolatilebusinesscyclesandvarymoreinlong‐term‐trendgrowthrates.10Asaresult,moreuncertaintysurroundstheeconomicprojectionsoflow‐incomeeconomiescomparedwithhigh‐incomeeconomies.Toreflectthisuncertainty,thegrowthrateofcountriesclassifiedaslowGDPpercapitavariesbetweenapproximately‐1.0%intheLowEconomicGrowthcaseand+1.0%intheHighEconomicGrowthcase,relativetotheReferencecase.TheannualGDPgrowthrateofcountriesclassifiedashighGDPpercapitavariesless—betweenapproximately‐0.5%intheLowEconomicGrowthcaseand+0.5%intheHighEconomicGrowthcase,relativetotheReferencecase(Table2).Table2.MacroeconomicgrowthratesintheIEO2023LowEconomicGrowth,Reference,andHighEconomicGrowthcases,averageannualGDP(measuredin2015PPPUSD)percentagechange,2022–2050RegionLowEconomicReferencecaseHighEconomicGrowthGrowthcasecaseAmericasUnitedStates1.4%1.9%2.3%Canada1.3%1.8%2.3%Mexico0.8%1.7%2.7%Brazil0.5%1.1%2.1%OtherAmericas1.9%2.6%3.4%10Aguiar,Mark,andGitaGopinath.“EmergingMarketBusinessCycles:TheCycleIstheTrend.”JournalofPoliticalEconomy,vol.115,no.1,2007,pp.69–102.JSTOR,https://doi.org/10.1086/511283.Accessed17Aug.2023.U.S.EnergyInformationAdministrationInternationalEnergyOutlook202350October2023RegionLowEconomicReferencecaseHighEconomicGrowthEuropeandEurasiaGrowthcasecaseWesternEurope0.6%1.3%1.9%Russia-0.1%1.0%2.1%EasternEuropeandEurasia3.1%4.2%5.2%AsiaPacificJapan-0.2%0.3%0.8%SouthKorea0.5%1.0%1.4%AustraliaandNewZealand1.7%2.1%2.6%China2.0%3.0%4.1%India4.0%5.0%6.0%OtherAsia-Pacific2.9%3.7%4.6%AfricaandMiddleEastAfrica2.0%2.7%3.6%MiddleEast1.4%1.7%2.3%World1.8%2.6%3.4%Datasource:U.S.EnergyInformationAdministration,InternationalEnergyOutlook2023(IEO2023).PPP=purchasingpowerparity.HighandLowOilPricecasesDifferentexpectationsaboutlong‐termfutureoilpricescansignificantlyaffectourenergysystemprojections.IEO2023considersthreecases(Reference,LowOilPrice,andHighOilPrice)toassesstheimpactsofalternativefuturepathsofoilprices.WedrawtheinitialassumptionsfortheworldcrudeoilpriceinIEO2023fromAEO2023,whichprojectsspotpricesforNorthSeaBrentcrudeoil,aninternationalstandardforlight,sweetcrudeoilprices.IntheLowOilPriceandHighOilPricecases,thehighandlowpricesofawiderangeofpotentialpricepathsoccur,illustratinguncertainandpotentiallyvariedglobaldemandforandsupplyofpetroleumandotherliquidfuels.TheLowOilPricecaseassumesthatallcrudeoilresourcesareextractedwithmorecost‐efficientmethodsduetotechnologyorpolicydrivers,therebyloweringtheprice.TheHighOilPricecaseassumestheopposite,inwhichhigherextractioncostsandpolicyresultinhigherpricesforallcrudeoilresources.U.S.crudeoilconsumptionandproductionmatchtherespectiveLowandHighOilPriceandReferencecasesinAEO2023,whereU.S.liquidfuelsproductionandconsumptionrespondonlytochangesinprices.InputpricestoWEPSarelistedinTable3,andthefullinputpricepathsareinourdatatables.U.S.EnergyInformationAdministrationInternationalEnergyOutlook202351October2023Table3.IEO2023BrentoilpricesinselectedyearsintheHighOilPrice,Reference,andLowOilPricecases(2022USDperbarrel)Case20222050HighOilPricecase$102$187Referencecase$102$102LowOilPricecase$102$48Datasource:U.S.EnergyInformationAdministration,InternationalEnergyOutlook2023(IEO2023)HighandLowZero‐CarbonTechnologyCostcasesTheshareofelectricitygenerationfromrenewablesourceshasbeenincreasingsignificantlyinmanypartsoftheworldinrecentyears,dueinparttorapidcostdeclines.Capitalcostsofrenewablesoverthepast20yearssuggestsignificantuncertaintyandvariabilityintherateofdecline.Forexample,between2000and2010,windtechnologycostsintheUnitedStatesincreased;inthefollowingdecade,theydecreasedbyasimilaramountbeforeincreasingagaininrecentyears.Althoughthedeclineinsolartechnologycosthasbeenmoredirectionallyconsistent,therateofdeclinehasvariedsignificantlyduringthisperiod.Uncertaintyinnucleartechnologycostsalsoplaysaroleinthefuturedevelopmentofnuclearasazero‐carbontechnology.TheInternationalElectricityMarketModule(IEMM)intheWEPSassumescapitalcostsforeachtechnologyintheReferencecasedeclineannuallythroughtheprojectionperiod.Thisdeclineistheresultofexperience‐basedcostreductionsfromfactorssuchaslearning‐by‐doingandmanufacturingscale,government‐fundedresearchanddevelopment(R&D),andchangesinthecostofcommodities.Toaddressthisuncertainty,weexaminetheimpactofthecapitalcostassumptionsthat,inturn,determinerelativeeconomiccompetitivenessamonggeneratingtechnologies.TheHighZero‐CarbonTechnologyCostcaseassumesnocostreductionfromlearning‐by‐doingandholdscapitalcostsconstantatthe2022levelthroughouttheprojectionperiodforzero‐carbonelectric‐powergeneratingtechnologies,whichincludesolar,wind,batterystorage,andnuclear.TheLowZero‐CarbonTechnologyCostcaseassumesamorerapidcapitalcostdeclinecomparedwiththeReferencecase,achievingcapitalcoststhatare40%lowerby2050forthesezero‐carbontechnologies.IntheReferencecase,potentialnuclearadditionsandretirementsarelargelyconstrainedbasedonnoneconomicfactors—geopoliticalconsiderationssuchasnonproliferationagreements,energysecurity,andgovernmentregulations,amongothers.FortheLowZero‐CarbonTechnologyCostcase,inadditiontothelowercostsdescribedabove,weeasedthesenoneconomicconstraintstoexploretheeconomiceffectsonnuclearbuilds.U.S.EnergyInformationAdministrationInternationalEnergyOutlook202352AppendixB.ModelingassumptionsrelatedtoRussia’sfull‐scaleinvasionofUkraineInFebruary2022,Russia’sfull‐scaleinvasionofUkraineintroducedsignificantgeopoliticalupheavalthathadimmediateandfutureimpacts.Althoughsomeimpactshavealreadyoccurred,significantuncertaintysurroundinglong‐termeffectsremains.Inourdetailedenergysystemmodel(theWorldEnergyProjectionSystem[WEPS]),wemakeassumptionsabouttheseevents.Inthesectionbelow,wediscusstheassumptionsthatwemadeforIEO2023,whichareheldconstantacrossallcases.Bymakingfixedparameterassumptionsratherthanexaminingarange,ourmodelingassumptionsunderstatetheuncertaintyintherangeofpotentialoutcomes.Russia’sfull‐scaleinvasionofUkrainehasaffectedenergymarketsworldwide.Forexample,Russiawasasignificantnaturalgassuppliertomarketsthroughouttheworld,particularlytoEurope.Inresponsetotheinvasion,someofRussia’stradepartnersplacedsanctionsonRussia’sexports,andothermarketparticipantshavechangedtheirtradepreferences.Thesechangeswillcontinuetohaveimpacts,buttheirdurationandextentareuncertain.ForIEO2023,wemakeconsistentassumptionsonthelengthandextentoftheseimpactsonenergymarkets.Regardlessofwhentheconflictends,weassumethegeopoliticalramifications,tothedegreedescribedbelow,willpersistthrough2050,theIEO2023projectionperiod.Implicitly,thisassumestheendoftheinvasionwillnotresetrelationshipswithinenergymarkets.ThisappendixisacomprehensivelistofallrelevantmodelingassumptionsspecifictoeachWEPSmodule,butitmaynotincludeallglobalresponsestotheinvasion.Althoughwedidnotvarytheseassumptionsacrosscases,changingtheseassumptionswouldyielddifferentprojections.Forexample,assumingamorerestrictednaturalgassupplymightleadtohighernaturalgaspricesand,consequently,lowernaturalgasconsumption(orviceversa)—underscoringtheimportanceofourmodelingassumptions.WewillcontinuetomonitortheongoingeventsinUkraineandincorporatenewinformationinfutureIEOs.YoucanalsoreviewourShort‐TermEnergyOutlook,countryanalysisbriefs,TodayinEnergyarticles,andtheInternationalEnergyStatisticsdatabaseforourlatestassumptions.MacroeconomicactivityThemacroeconomicprojectionsweusedcamefromtheOxfordEconomicsGlobalEconomicModelandGlobalIndustryModelasofFebruary1,2023.Theseprojectionsincludeapost‐invasionrecovery(around2030)thatcapturesimpactsinRussia,Ukraine,andEurope,aswellasrelatedeffectsontherestoftheworld,including:ChangesindemandforgoodsandservicesinEuropeandelsewhereU.S.EnergyInformationAdministrationInternationalEnergyOutlook202353October2023Changesinnon‐energytradeflowstoreflectOxfordEconomicseconomicdataandanalysisLegislatedsubsidiesinvariouscountries,includingassumptionsonavailabilityofsubsidiesintothefutureasreflectedinOxfordEconomics’economicdataandanalysisLegislatedsanctionstargetingRussiaimplementedin2022thatremaininplaceasofFebruary1,2023,assumingsanctionsremaininplacewithoutenddatesandnonewsanctionsareimplementedRussia’seffortstolessentheeconomicimpactofsanctionsandpolicies,includingconcealingcrudeoiltradeflows,usingmultipletradepartnerstoavoidsanctions,andidentifyingnewpurchasersforitsexportsWealsoassumeNordStreamwillremainofflinethrough2050,asfurtherdiscussedintheoilandnaturalgassection,andtheZaporizhzhyanuclearplantwillresumeoperationsbeginningin2030,asfurtherdiscussedintheelectricitysection.ThesebulletsarebroadcategorizationsoftheanalysisincludedinsidetheOxfordEconomicsmodelsanddatabases.Additionaldetailisavailabletosubscribersoftheirservicesorbyrequestingmoreinformationfromus.BuildingsWemadeassumptionsbasedonREPowerEU,whichisaEuropeanCommissionproposaltoendrelianceonRussia’sfossilfuelsbefore2030.Russia’sfull‐scaleinvasionofUkrainehaspromptedtheEUtomoveforwardwithmoreurgencyontheexistingenergyandclimatepolicygoalsinplace.InMay2022,undertheREPowerEUplan,theEuropeanCommissionproposedanincreasetothebindingEUenergyefficiencytargetfrom9%to13%by2023(relativeto2020).InJuly2022,EUmemberstatesagreedtoreducetheirnaturalgasconsumptionby15%throughMarch2023.Weaccountfordemand‐sidemeasuresthatEUcountriesimplementedtocurbnaturalgasconsumptionandreducenaturalgasimportsfromRussia.WemodeledWesternEurope’sattemptstocurbdemandfornaturalgasinhomesandcommercialbuildingsthroughoutthewinterof2022byapplyinghighersensitivitytopriceincreasesthaninpreviousyears.Weconsideredpoliciesandpubliccallstoreducenaturalgasconsumptioninbuildings—suchasnewrulesinGermanyaffectingenergyconsumptioninpublicbuildingsandsimilarmeasuresinFrance.Weassumethatnon‐priceconsiderationswillreduceconsumers’willingnesstopayfornaturalgas.Wealsoexpecthomeownersandcommercialbuildingoperatorswillgenerallybemoresensitivetoincreasesinthenaturalgaspricethantheyhavebeenhistorically.Asaresult,growthinnaturalgasdemandslowsinbuildings,andweprojectelectricityconsumptiontogrowfasterthanhistoricalrates.WEPSmodulesdonotexplicitlyaccountfornational‐orsub‐nationalsubsidiesforpurchasingenergyorheatacrosstheend‐usesectors.IndustrialAswiththebuildingssector,wemadeassumptionsbasedonREPowerEUintheindustrialsector.Energy‐efficiencygoalswerepartofEurope’spre‐invasionclimategoals,andweassumetheinvasionofU.S.EnergyInformationAdministrationInternationalEnergyOutlook202354October2023UkrainewillspurstructuralshiftsthatwilllowerEurope’slong‐termnaturalgasdemand.Tomodelthis,weincreasedindustrialnaturalgasdemandelasticitiesforseveralEuropeanindustriesthathavethetechnicalpotentialtoincreaseenergyefficiencywithrespecttonaturalgasconsumption.Weadjustedfood,paper,non‐metallicminerals,andmanynon‐energyintensiveindustriesthatuseboilersandlow‐temperatureprocessheat,suchasothermetal‐baseddurables,motorvehicles,andindustrialother,thecatch‐allforsmallmanufacturing.DistrictheatTheRePowerEUplanrevisesthetargetfortheshareofrenewablesusedtogenerateheatincentralizeddistrictenergyplantsto45%ofheatgenerationby2030.Centralizeddistrictenergyplantsdistributeheatandsteamtomeetdemandforspaceheating,waterheating,andprocessheatinthebuildingsandindustrialsectors.IncreasingtheuseofrenewablesforheatgenerationinWesternEuropedisplacessomenaturalgasandcoalasaheatgenerationsource.TransportationWemadenoadditionalassumptionsinthetransportationsector.ElectricityWemadeassumptionsintheEasternEuropeandEurasiamodelingregion(includingUkraineand10othercountries)11regardingwhenandhowquicklythetwoUkrainiannuclearpowerplantslocatedinmilitaryconflictzones—ZaporizhzhyaNuclearPowerPlantandSouthUkraine—resumeoperations.ZaporizhzhyaNuclearPowerPlant:rampupfromcoldshutdown,beginningin2030to100%by2034SouthUkraine:generationremainsat70%oftotalplantcapacityover2022–2029andincreasesto100%by2030CrudeoilandnaturalgasproductionandtradeWemadeassumptionsspecifictooilandnaturalgasproductionandtradeforIEO2023,whichinclude:Russia’scrudeoilandpetroleumliquidsexportsdirectlytotheUnitedStatesandWesternEuropearesuspended,beginningin2023andlastingthrough2050TheNordStreamnaturalgaspipelinesremainofflinethrough2050WeassumezeronetexportgrowthofRussia’snaturalgas.EUsanctionsprohibitsupplyingRussiawiththegoodsandtechnologysuitedforliquefyingnaturalgas.WithoutaccesstoWesterncompanytechnologyandreplacementequipment,Russia’scurrentliquefiednaturalgas(LNG)projectsmaystruggletobecompletedontime,andfutureprojectswillfacesignificantbarriers.OurmodeldoesnotcurrentlymodelLNGattheprojectlevelanddoesdeterminetheexpectedcompletionofprojectsunderdevelopment.11WEPSregionalityisoutlinedinAppendixC.U.S.EnergyInformationAdministrationInternationalEnergyOutlook202355October2023CoalproductionandtradeWemadetwosetsoftimeperiod‐specificassumptionsforcoalproductionandtrade.Acrossbothperiods,UkrainenolongerimportscoalfromRussia.From2023to2028:WedecreasedtradebetweenJapanandRussia.Duringthisperiod,totaltradeofsteamandmetallurgicalcoalwilldecreasetonearlyzero,butJapanwillcontinuepurchasingasmallamountunderpreviouscontracts.WedecreasedtradebetweenWesternEuropeandRussia,notincludingTürkiye.Duringthisperiod,weassumethatcoaltradewilloccurbetweenonlyRussiaandTürkiye.For2029andlater:JapanandTürkiyereturntopre‐invasioncoaltradeactivitywithRussia.WesternEurope,excludingTürkiye,seekstoreducecoalimportsfromRussiarelativetoimportsbeforetheinvasion.Withinthemodel,weallowWesternEurope,excludingTürkiye,toimportuptoabouttwo‐thirdsofpre‐2022imports.U.S.EnergyInformationAdministrationInternationalEnergyOutlook202356AppendixC.NewRegionsinIEO2023RegionshavechangedinIEO2023FortheInternationalEnergyOutlook2023(IEO2023),weareintroducingnewregionalgroupingsforcountriesintheWorldEnergyProjectionSystem(WEPS).Previously,ourpublicationregionsweredefinedprimarilybyOrganisationforEconomicCooperationandDevelopment(OECD)designationandsecondarilybygeography.Webasedthenewregionalgroupingssolelyongeography.Amapofournew16regionsandatableofthecountriesassignedtoeachregionareinthisappendix.ThepreviousregionswerepartiallybasedonorganizationalmembershipWehaveusedOECDmembershipasapartialbasisforWEPSpublicationregionssince2006,whenwedeterminedthatOECDmembershipwasareasonableproxyforeconomicdevelopment,andeconomicdevelopmentwasareasonablegroupingformodelingregions.InIEO2021weused16regionsbasedongeographyandOECDmembership,andwecombinedtheseregionsintotwolargergroupings:OECDandnon‐OECD.ManyWEPSmodulesusehighergeographicresolutioninternallybutaggregateto16regionsforcommunicationwiththegreaterWEPSsystemandfortheIEOpublication.Youcanfindmoredetailsonmoduleregionalityinthemodeldocumentation.DividingtheworldeconomicallyiscomplicatedInrecentyears,OECDandnon‐OECDarenolongersimpleproxiesforeconomicdevelopment.Forexample,ChinadoesnotbelongtotheOECDbuthadthesecond‐largesteconomyintheworldin2022.Severalcountries—withsmallereconomiesthanChina—havejoinedtheOECDinthepastdecade,suchasLatvia(in2016);Colombia(in2020);andmostrecently,CostaRica(in2021).UsingtheOECDdesignationledtogeographicallynoncontiguousregions,suchastheWEPSregionthatcombinedMexicoandChile.Inpeerpublications,manyorganizationsuseregionslargelybasedongeographiesintheirmodels,althoughtheymayuseeconomicindicatorsforreporting.U.S.EnergyInformationAdministrationInternationalEnergyOutlook202357October2023ThenewregionsarelargelybasedonproximityIEO2023usesfoursuperregions—largerregionalgroupings:AmericasEuropeandEurasiaAfricaandtheMiddleEastAsia‐PacificWithinthosesuperregions,thenewIEOpublicationregionalitybreaksoutcertaincountriesintoindependentregions.TheUnitedStates,Canada,Brazil,Mexico,Russia,China,India,Japan,andSouthKoreamakeup9ofthe16WEPSregions.Theremainingsevenregionsareaggregateregionswithtwoormorecomponentcountriesineach(Figure35andTable4).NextstepsWeplantocontinuetoevaluateandtakecommentsonadditionalpublicationregions,particularlyinAfricaandtheAsia‐Pacific.Figure35.U.S.EnergyInformationAdministrationInternationalEnergyOutlook202358Table4.IEO2023country‐regionassignmentsOctober2023IEO2023WEPSregionCountry59AfricaAlgeriaAfricaAngolaAfricaBeninAfricaBotswanaAfricaBurkinaFasoAfricaBurundiAfricaCameroonAfricaCapeVerdeAfricaCentralAfricanRepublicAfricaChadAfricaComorosAfricaCongo‐BrazzavilleAfricaCongo‐KinshasaAfricaCôted’IvoireAfricaDjiboutiAfricaEgyptAfricaEquatorialGuineaAfricaEritreaAfricaEthiopiaAfricaGabonAfricaGambia,TheAfricaGhanaAfricaGuineaAfricaGuinea‐BissauAfricaKenyaAfricaLesothoAfricaLiberiaAfricaLibyaAfricaMadagascarAfricaMalawiAfricaMaliAfricaMauritaniaAfricaMauritiusAfricaMoroccoAfricaMozambiqueAfricaNamibiaAfricaNigerAfricaNigeriaU.S.EnergyInformationAdministrationInternationalEnergyOutlook2023IEO2023WEPSregionCountryOctober2023AfricaRéunionAfricaRwanda60AfricaSaintHelena,AscensionandTristandaCunhaAfricaSaoTomeandPrincipeAfricaSenegalAfricaSeychellesAfricaSierraLeoneAfricaSomaliaAfricaSouthAfricaAfricaSouthSudanAfricaSudanAfricaSwazilandAfricaTanzania,UnitedRepublicofAfricaTogoAfricaTunisiaAfricaUgandaAfricaWesternSaharaAfricaZambiaAfricaZimbabweAustraliaandNewZealandAustraliaAustraliaandNewZealandNewZealandBrazilBrazilCanadaCanadaChinaChinaEasternEuropeandEurasiaArmeniaEasternEuropeandEurasiaAzerbaijanEasternEuropeandEurasiaBelarusEasternEuropeandEurasiaGeorgiaEasternEuropeandEurasiaKazakhstanEasternEuropeandEurasiaKyrgyzstanEasternEuropeandEurasiaMoldova,RepublicofEasternEuropeandEurasiaTajikistanEasternEuropeandEurasiaTurkmenistanEasternEuropeandEurasiaUkraineEasternEuropeandEurasiaUzbekistanIndiaIndiaJapanJapanMexicoMexicoMiddleEastBahrainU.S.EnergyInformationAdministrationInternationalEnergyOutlook2023IEO2023WEPSregionCountryOctober2023MiddleEastIranMiddleEastIraq61MiddleEastIsraelMiddleEastJordanMiddleEastKuwaitMiddleEastLebanonMiddleEastOmanMiddleEastPalestine,StateofMiddleEastQatarMiddleEastSaudiArabiaMiddleEastSyrianArabRepublicMiddleEastUnitedArabEmiratesMiddleEastYemenOtherAmericasAntarcticaOtherAmericasAntiguaandBarbudaOtherAmericasArgentinaOtherAmericasArubaOtherAmericasBahamasOtherAmericasBarbadosOtherAmericasBelizeOtherAmericasBermudaOtherAmericasBoliviaOtherAmericasCaymanIslandsOtherAmericasChileOtherAmericasColombiaOtherAmericasCostaRicaOtherAmericasCubaOtherAmericasDominicaOtherAmericasDominicanRepublicOtherAmericasEcuadorOtherAmericasElSalvadorOtherAmericasFalklandIslandsOtherAmericasFrenchGuianaOtherAmericasGreenlandOtherAmericasGrenadaOtherAmericasGuadeloupeOtherAmericasGuatemalaOtherAmericasGuyanaOtherAmericasHaitiU.S.EnergyInformationAdministrationInternationalEnergyOutlook2023IEO2023WEPSregionCountryOctober2023OtherAmericasHondurasOtherAmericasJamaica62OtherAmericasMartiniqueOtherAmericasMontserratOtherAmericasNetherlandsAntillesOtherAmericasNicaraguaOtherAmericasPanamaOtherAmericasParaguayOtherAmericasPeruOtherAmericasPuertoRicoOtherAmericasSaintKittsandNevisOtherAmericasSaintLuciaOtherAmericasSaintPierreandMiquelonOtherAmericasSaintVincentandtheGrenadinesOtherAmericasSt.KittsandNevisOtherAmericasSt.LuciaOtherAmericasSt.VincentandtheGrenadinesOtherAmericasSurinameOtherAmericasTrinidadandTobagoOtherAmericasTurksandCaicosIslandsOtherAmericasUruguayOtherAmericasVenezuela,BolivarianRepublicofOtherAmericasVirginIslands,BritishOtherAmericasVirginIslands,U.S.OtherAsia‐PacificAfghanistanOtherAsia‐PacificAmericanSamoaOtherAsia‐PacificBangladeshOtherAsia‐PacificBhutanOtherAsia‐PacificBruneiOtherAsia‐PacificCambodiaOtherAsia‐PacificCookIslandsOtherAsia‐PacificFijiOtherAsia‐PacificFrenchPolynesiaOtherAsia‐PacificGuamOtherAsia‐PacificHongKongOtherAsia‐PacificIndonesiaOtherAsia‐PacificKiribatiOtherAsia‐PacificKorea,DemocraticPeople'sRepublicofOtherAsia‐PacificLaosU.S.EnergyInformationAdministrationInternationalEnergyOutlook2023IEO2023WEPSregionCountryOctober2023OtherAsia‐PacificMacaoOtherAsia‐PacificMalaysia63OtherAsia‐PacificMaldivesOtherAsia‐PacificMicronesia,FederatedStatesofOtherAsia‐PacificMongoliaOtherAsia‐PacificMyanmarOtherAsia‐PacificNauruOtherAsia‐PacificNepalOtherAsia‐PacificNewCaledoniaOtherAsia‐PacificNiueOtherAsia‐PacificNorthernMarianaIslandsOtherAsia‐PacificPakistanOtherAsia‐PacificPapuaNewGuineaOtherAsia‐PacificPhilippinesOtherAsia‐PacificSamoaOtherAsia‐PacificSingaporeOtherAsia‐PacificSolomonIslandsOtherAsia‐PacificSriLankaOtherAsia‐PacificTaiwan,ProvinceofChinaOtherAsia‐PacificThailandOtherAsia‐PacificTimor‐LesteOtherAsia‐PacificTongaOtherAsia‐PacificTuvaluOtherAsia‐PacificVanuatuOtherAsia‐PacificVietNamOtherAsia‐PacificWakeIslandRussiaRussianFederationSouthKoreaKorea,RepublicofUnitedStatesUnitedStatesofAmericaWesternEuropeAlbaniaWesternEuropeAustriaWesternEuropeBelgiumWesternEuropeBosniaandHerzegovinaWesternEuropeBulgariaWesternEuropeCroatiaWesternEuropeCyprusWesternEuropeCzechRepublicWesternEuropeDenmarkWesternEuropeEstoniaU.S.EnergyInformationAdministrationInternationalEnergyOutlook2023October2023IEO2023WEPSregionCountryWesternEuropeFaroeIslandsWesternEuropeFinlandWesternEuropeFranceWesternEuropeGermanyWesternEuropeGibraltarWesternEuropeGreeceWesternEuropeHungaryWesternEuropeIcelandWesternEuropeIrelandWesternEuropeItalyWesternEuropeKosovoWesternEuropeLatviaWesternEuropeLithuaniaWesternEuropeLuxembourgWesternEuropeMacedonia,theformerYugoslavRepublicofWesternEuropeMaltaWesternEuropeMontenegroWesternEuropeNetherlandsWesternEuropeNorwayWesternEuropePolandWesternEuropePortugalWesternEuropeRomaniaWesternEuropeSerbiaWesternEuropeSlovakiaWesternEuropeSloveniaWesternEuropeSpainWesternEuropeSwedenWesternEuropeSwitzerlandWesternEuropeTürkiyeWesternEuropeUnitedKingdomSource:U.S.EnergyInformationAdministration,InternationalEnergyOutlook2023(IEO2023)Note:WEPS=WorldEnergyProjectionSystem.U.S.EnergyInformationAdministrationInternationalEnergyOutlook202364