中国的碳中和之路:可再生能源的前景和作用China'sroutetocarbonneutrality:Perspectivesandtheroleofrenewables翻译:报告厅翻译组更多相关内容请参考:www.baogaoting.com©国际可再生能源署(IRENA)2022除非另有说明,本刊物中的材料可以自由使用、共享、复制、打印和/或存储,前提是适当确认IRENA作为资料来源和版权所有者。本出版物中归属于第三方的材料可能受到单独的使用条款和限制,并且在使用此类材料之前可能需要获得这些第三方的适当许可。国际标准书号:978-92-9260-449-3IRENA(2022),中国的碳中和之路:可再生能源的前景和作用,国际可再生能源署,阿布扎比。关于IRENA国际可再生能源署(IRENA)是国际合作的主要平台、卓越的中心、是政策、技术、资源和金融知识的宝库,以及推动全球能源系统转型的实地行动的驱动力。IRENA是一个成立于2011年的政府间组织,旨在促进各种形式的可再生能源的广泛采用和可持续利用,包括生物能源、地热、水电、海洋、太阳能和风能,以实现可持续发展、能源获取、能源安全和低碳经济增长和繁荣。www.irena.org致谢IRENA衷心感谢审阅该报告的专家。中国宏观经济研究院能源研究所提出了深刻的意见和建设性的建议。特别感谢PaulKomor,他提供了有用的反馈和建议。IRENA的同事HeribBlanco、SeungwooKang、MartinaLyons、DanielRusso、FranciscoBoshell、CarlosFernandez、FaranRana和JinleiFeng提供了宝贵的评论和意见。特约作者本报告是在DolfGielen(IRENA创新与技术中心主任)的指导下,由PaulDurrant(前IRENA员工)、NicholasWagner、YongChen(IRENA)和YufengYang(顾问)编写。免责声明本出版物和此处的材料均按“原样”提供。IRENA已采取所有合理的预防措施来验证本出版物中材料的可靠性。但是,IRENA及其任何官员、代理、数据或其他第三方内容提供商均不提供任何形式的明示或暗示保证,并且他们对使用此出版物或材料的任何后果不承担任何责任或义务。此处包含的信息不一定代表IRENA所有成员的观点。提及特定公司或某些项目或产品并不意味着它们得到IRENA的认可或推荐,也不代表它们优先于未提及的其他类似性质的公司。此处使用的名称和材料的呈现方式并不意味着IRENA对任何地区、国家、领土、城市或地区或其当局的法律地位或边界划定表示任何意见。©IRENA2022Unlessotherwisestated,materialinthispublicationmaybefreelyused,shared,copied,reproduced,printedand/orstored,providedthatappropriateacknowledgementisgivenofIRENAasthesourceandcopyrightholder.Materialinthispublicationthatisattributedtothirdpartiesmaybesubjecttoseparatetermsofuseandrestrictions,andappropriatepermissionsfromthesethirdpartiesmayneedtobesecuredbeforeanyuseofsuchmaterial.ISBN:978-92-9260-449-3IRENA(2022),China'sroutetocarbonneutrality:Perspectivesandtheroleofrenewables,InternationalRenewableEnergyAgency,AbuDhabi.AboutIRENATheInternationalRenewableEnergyAgency(IRENA)servesastheprincipalplatformforinternationalco-operation,acentreofexcellence,arepositoryofpolicy,technology,resourceandfinancialknowledge,andadriverofactiononthegroundtoadvancethetransformationoftheglobalenergysystem.Anintergovernmentalorganisationestablishedin2011,IRENApromotesthewidespreadadoptionandsustainableuseofallformsofrenewableenergy,includingbioenergy,geothermal,hydropower,ocean,solarandwindenergy,inthepursuitofsustainabledevelopment,energyaccess,energysecurityandlow-carboneconomicgrowthandprosperity.www.irena.orgAcknowledgementsIRENAwouldliketoexpresssincereappreciationtotheexpertswhoreviewedthereport.InsightfulcommentsandconstructivesuggestionswereprovidedbytheEnergyResearchInstituteoftheAcademyofMacroeconomicResearch,China.SpecialthanksgotoPaulKomor,whoprovidedhelpfulfeedbackandadvice.IRENAcolleaguesHeribBlanco,SeungwooKang,MartinaLyons,DanielRusso,FranciscoBoshell,CarlosFernandez,FaranRanaandJinleiFengprovidedvaluablereviewsandinput.ContributingauthorsThisreportwasprepared,undertheguidanceofDolfGielen(Director,IRENAInnovationandTechnologyCentre)byPaulDurrant(formerIRENAstaff),NicholasWagner,YongChen(IRENA)andYufengYang(consultant).DisclaimerThispublicationandthematerialhereinareprovided“asis”.AllreasonableprecautionshavebeentakenbyIRENAtoverifythereliabilityofthematerialinthispublication.However,neitherIRENAnoranyofitsofficials,agents,dataorotherthird-partycontentprovidersprovidesawarrantyofanykind,eitherexpressedorimplied,andtheyacceptnoresponsibilityorliabilityforanyconsequenceofuseofthepublicationormaterialherein.TheinformationcontainedhereindoesnotnecessarilyrepresenttheviewsofallMembersofIRENA.ThementionofspecificcompaniesorcertainprojectsorproductsdoesnotimplythattheyareendorsedorrecommendedbyIRENAinpreferencetoothersofasimilarnaturethatarenotmentioned.Thedesignationsemployed,andthepresentationofmaterialherein,donotimplytheexpressionofanyopiniononthepartofIRENAconcerningthelegalstatusofanyregion,country,territory,cityorareaorofitsauthorities,orconcerningthedelimitationoffrontiersorboundaries.3CHINA'SROUTETOCARBONNEUTRALITY目录缩略语5执行摘要6IRENA以技术为中心的分析7行动领域和初步建议71’.中国在全球背景下的二氧化碳排放目标171.1全球背景171.2中国特色182.制定2020年代及以后的战略202.1制定并提供一个综合的长期能源计划212.2坚持将提高能源效率作为优先事项222.3加快逐步减少煤炭消耗232.4加快向可再生能源转型252.5改革电力网络272.6提高终端使用部门的电气化水平312.7扩大可再生能源的直接使用,特别是生物质能342.8扩大氢和合成燃料的生产和使用362.9支持城市成为低碳生活的倡导者392.10轻型运输持续进步,并向重型运输和长途运输模式扩展402.11为工业部门实现净零排放奠定基础442.12继续支持技术研发和部署和更广泛的系统性创新482.13深化全球参与49结论和进一步工作的领域51参考文献52CHINA'SROUTETOCARBONNEUTRALITY3CONTENTSABBREVIATIONS5EXECUTIVESUMMARY6IRENA’stechnology-focusedanalysis7Areasforactionandinitialrecommendations71.CHINA’SCARBONDIOXIDEEMISSIONGOALSINTHEGLOBALCONTEXT171.1Globalcontext171.2China’suniquecharacteristics182.SHAPINGASTRATEGYFORTHE2020sANDBEYOND202.1Developinganddeliveringanintegratedlong-termenergyplan212.2Maintainingenergyefficiencyimprovementsasapriority222.3Acceleratingthephase-downofcoalconsumption232.4Acceleratingthetransitiontowardsrenewablepower252.5Reformingpowernetworks272.6Increasingtheelectrificationofend-usesectors312.7Expandingthedirectuseofrenewables,particularlybiomassforenergypurposes342.8Scalinguptheproductionanduseofhydrogenandsyntheticfuels362.9Supportingcitiesaschampionsoflow-carbonliving392.10Continuingprogressinlight-dutytransportandbroadeningtoheavy-dutyandlong-haulmodes402.11Layingthegroundworkforindustrialsectorstoachievenetzeroemissions442.12ContinuingtosupporttechnologyRD&Dandbroadersystemicinnovation482.13Deepeningglobalengagement493.CONCLUSIONSANDAREASFORFURTHERWORK51REFERENCES524图图1整合可变可再生能源电力的新兴创新——扶持技术、市场设计、商业模式、系统运行28图21980-2017年各国最终能源消耗(a)、交通(b)和住宅建筑(c)的电气化率,31图32020-2050年制氢成本37图42020-2050年中国各行业二氧化碳排放量(参考案例)45框方框1电力和工业过程的二氧化碳脱除措施与碳捕获、利用和封存29方框2中国城市案例研究:张家口的城市能源转型404FiguresFIGURE1Emerginginnovationsfortheintegrationofvariablerenewableelectricity–enablingtechnologies,marketdesign,businessmodels,systemoperation28FIGURE2Electrificationrateinfinalenergyconsumption(a),transport(b)andresidentialbuildings(c)bycountry,1980-201731FIGURE3Hydrogenproductioncosts,2020-205037FIGURE4ChineseindustrialCO2emissionsbysector,2020-2050(Referencecase)45BoxesBOX1CDRmeasuresandCCUSforpowerandindustrialprocesses29BOX2Chinesecitycasestudy:UrbanenergytransformationinZhangjiakou405CHINA'SROUTETOCARBONNEUTRALITY缩略语°C摄氏度BECCU/S生物质能二氧化碳捕获与封存CCS碳捕获与封存CCU碳捕获和利用CCUS碳捕获、利用和封存CDR二氧化碳脱除CO2二氧化碳DACCS直接空气碳捕获和封存EJ艾焦EU欧洲联盟GDP国内生产总值Gt十亿公吨GW千兆瓦(吉瓦)IRENA国际可再生能源署kWh千瓦时LNG液化天然气LTES长期能源情景Mt百万吨MWh兆瓦时PV光伏RD&D研究、开发和部署SEGSN国家电网智能电动车并网服务网络SGERI中国国家电网能源研究院TWh太瓦时WETO世界能源转型展望CHINA'SROUTETOCARBONNEUTRALITY5ABBREVIATIONS°CdegreesCelsiusBECCU/Sbioenergywithcarboncaptureandutilisation/storageCCScarboncaptureandstorageCCUcarboncaptureandutilisationCCUScarboncapture,utilisationandstorageCDRcarbondioxideremovalCO2carbondioxideDACCSdirectaircarboncaptureandstorageEJexajouleEUEuropeanUnionGDPgrossdomesticproductGtgigatonneGWgigawattIRENAInternationalRenewableEnergyAgencykWhkilowatthourLNGliquefiednaturalgasLTESLong-TermEnergyScenarioMtmilliontonnesMWhmegawatthourPVphotovoltaicRD&Dresearch,developmentanddeploymentSEGSNStateGrid’sSmartEV-to-GridServiceNetworkSGERIChinaStateGridEnergyInstituteTWhterawatthourWETOWorldEnergyTransitionsOutlook6执行摘要2020年9月,中国国家领导人在第75届联合国大会上宣布,中国的目标是在2030年前达到二氧化碳(CO2)排放峰值,在2060年之前实现碳中和。这些声明的影响将是深远的,并且需要该国在能源消费和商品生产的几乎方方面面做出改变。要完成如此重大的转变,四十年只是很短的时间,尽管存在许多构建模块,但如何实现这一转变的许多细节仍不清楚。未来几年将需要实质性分析、仔细规划和协调努力,以塑造通往2060年碳中和的道路。中国的规模和以及在经济发展与减排之间取得平衡的需要,为其向净零排放的转型提出了挑战。过去十年中,中国在全球能源生产和消费方面一直位居前列。根据国际能源署的排放数据,中国与能源相关的二氧化碳排放量呈上升趋势,2019年达到全球总量的28%。与此同时,中国一直是可再生能源发电装机容量增长的关键驱动力,在2013年至2021年期间占全球年增长的34-53%(IRENA,2022a)。尽管在2012年至2019年期间,煤炭在中国能源结构中的份额下降了约10%,但煤炭仍然是中国主要的一次能源来源(国务院新闻办公室,2020年)。因此,中国必须在加快扩大可再生能源使用规模的同时缩减煤炭使用量。此外,减少钢铁制造、水泥和石化等难以减排的行业(通常是能源和碳密集型行业)的排放是一项特殊挑战,因为这些行业对整体经济活动至关重要。为实现碳排放峰值和碳中和目标,中国将必须最大限度地部署和使用可再生能源发电。这需要与最终用途部门(建筑、工业和运输)的直接和间接电气化相结合,这需要辅以可持续使用的生物能源、氢和合成燃料。这样做需要从根本上重新思考能源供应和安全的传统概念,并应加快产生和传播推动能源转型过程所需的系统性创新的步伐(IRENA,2019a)。在这个过程中,中国并不孤单。其他国家也在经历这一转变,并努力推进和部署实现这一转变所需的技术。中国既可以为国际合作做出贡献,也可以从中受益。在国内和国际层面交流所获得的经验和教训可以促进制定可行的过渡战略。6EXECUTIVESUMMARYInSeptember2020,ChinesePresidentXiJinpingannouncedatthe75thSessionoftheUnitedNationsGeneralAssemblythatChinawouldaimforapeakinitscarbondioxide(CO2)emissionsbefore2030andtoachievecarbonneutralityby2060.Theimplicationsoftheseannouncementswillbeprofoundandwillrequirechangesinalmosteveryaspectofhowthecountryconsumesenergyandproducesgoods.Fortyyearsisashortperiodtocompletesuchamajortransformation,andalthoughmanybuildingblocksexist,manyofthedetailsofhowtodeliversuchachangeremainunclear.Substantialanalysis,carefulplanningandco-ordinatedeffortwillbeneededinthenextfewyearstoshapethepathto2060.China’sscaleandtheneedtobalanceeconomicdevelopmentwithemissionreductionspresentachallengeinitstransitiontonetzero.Overthepastdecade,thecountryhasbeentoprankedinglobalenergyproductionandconsumption.China’senergy-relatedCO2emissionshavebeentrendingupwardtoreach28%oftheglobaltotalin2019,accordingtoemissiondatafromtheInternationalEnergyAgency.Atthesametime,Chinahasbeenakeydriverofthegrowthinrenewableenergygenerationcapacity,accountingfor34-53%oftheglobalannualgrowthovertheperiod2013to2021(IRENA,2022a).AlthoughtheshareofcoalinChina’senergymixdeclinedaround10%between2012and2019,coalremainsthedominantsourceofprimaryenergyinthecountry(StateCouncilInformationOffice,2020).Therefore,Chinamustscalebackitscoalusewhileacceleratingthescale-upofrenewables.Additionally,reducingemissionsfromhard-to-abatesectorssuchasironandsteelmaking,cementandpetrochemicals–whichareoftenenergyandcarbonintensive–isaparticularchallengebecauseoftheimportanceofthesesectorstototaleconomicactivity.Tomeetitscarbonpeakingandcarbonneutralitygoals,Chinawillhavetomaximisethedeploymentanduseofrenewables-basedpowergeneration.Thisneedstobecombinedwithdirectandindirectelectrificationofend-usesectors(building,industryandtransport),whichneedstobesupplementedwithsustainableuseofbioenergy,hydrogenandsyntheticfuels.Doingsowillrequireafundamentalrethinkingoftraditionalconceptsofenergysupplyandsecurityandshouldacceleratethepaceofgeneratinganddisseminatingthesystemicinnovationsneededtodrivetheenergytransitionprocess(IRENA,2019a).Chinaisnotaloneinthisjourney.Othercountriesarealsoundergoingthistransitionandmakingeffortstoadvanceanddeploythetechnologiesthatwillbeneededtorealiseit.Chinacouldbothcontributetoandbenefitfrominternationalco-operation.Exchangesofexperiencegainedandlessonslearntatthedomesticandinternationallevelscanfacilitatethedevelopmentofviabletransitionstrategies.7CHINA'SROUTETOCARBONNEUTRALITY供中国探讨的建议包括:•共同制定到2060年实现碳中和的基于情景的长期战略和计划,包括在国家和次区域/省级和部门层面。•利用全球最佳做法进行长期情景开发,通过IRENA的长期能源情景网络借鉴世界各地的经验和最佳做法。IRENA以技术为中心的分析本文基于国际可再生能源署(IRENA)与世界各国开展的以技术为重点的工作,以及IRENA对全球和区域能源转型的分析,提供了一些初步见解。该论文借鉴了IRENA关于电力部门灵活性、氢和生物质可持续利用的多份报告。它还特别借鉴了IRENA的“可再生能源驱动的未来创新格局”报告(IRENA,2019a)和支持简报以及利用可再生能源实现零排放报告(IRENA,2020a)和IRENA的全球路线图——世界能源转型展望(WETO)(IRENA,2021a;IRENA,2022b)——重点关注从现在到2050年通过消除全球二氧化碳排放,将全球气温上升限制在1.5摄氏度(°C)以下的情景。本文总结了这些分析报告和其他分析报告中的主要见解,并探讨了它们与中国具体情况的相关性。该文件旨在支持借鉴全球经验,促进讨论,并为中国到2060年实现碳中和的进一步工作提供信息。行动领域和初步建议作为讨论的起点和确定更深入分析的优先事项,本文确定了采取强有力行动的13项优先事项,并提出了建议:1.制定和提供一个综合的长期能源计划有效的综合能源规划是能源转型成功的基础,可以提供能源转型所需的有利条件。能源转型不是一个单一的政府机构可以完成的事情。必须是多个机构共同努力。在实现净零排放目标的背景下,以中国迄今为止的良好实践为基础,需要进一步协调以建立一个强大的治理结构,不仅在能源规划机构之间,而且在能源和气候界之间。中国在有效制定和实施五年计划方面有着良好的记录。近年来,高层决策者提供的长期展望和指导方针提供了背景和战略政策目标。这些需要进一步实施。CHINA'SROUTETOCARBONNEUTRALITY7IRENA’stechnology-focusedanalysisThispaperprovidessomeinitialinsightsbasedonthetechnology-focusedworkoftheInternationalRenewableEnergyAgency(IRENA)withcountriesaroundtheworld,aswellasonIRENAanalysisofglobalandregionalenergytransitions.ThepaperdrawsonmultipleIRENAreportsonpowersectorflexibility,hydrogenandthesustainableuseofbiomass.ItalsodrawsspecificallyonIRENA’sInnovationLandscapeforaRenewable-PoweredFuturereport(IRENA,2019a)andsupportingbriefs,ontheReachingZerowithRenewablesreport(IRENA,2020a)andonIRENA’sglobalroadmap–theWorldEnergyTransitionsOutlook(WETO)(IRENA,2021a;IRENA,2022b)–whichisfocusedonascenarioconsistentwithlimitingglobaltemperaturerisetobelow1.5degreesCelsius(°C),byeliminatingglobalCO2emissionsbetweennowand2050.ThispapersummariseskeyinsightsfromtheseandotheranalyticalreportsandexplorestheirrelevancetoChina’sspecificcontext.Thepaperaimstosupportlearningfromglobalexperiences,promptdiscussionsandinformthefurtherworkneededtochartthepathtocarbonneutralityinChinaby2060.AreasforactionandrecommendationsAsastartingpointfordiscussionsandtoidentifyprioritiesfordeeperanalysis,thispaperidentifies13prioritiesforstrongeraction,togetherwithrecommendations:1.Developinganddeliveringanintegratedlong-termenergyplanEffectiveandintegratedenergyplanningisfundamentalforasuccessfulenergytransitionandcandelivertheenablingconditionsthattheenergytransitionwouldrequire.Theenergytransitionisnotsomethingthatcanbeaccomplishedbyasinglegovernmentalbody.Multipleinstitutionsmustworktogether.InthecontextofthenetzerogoalandbuildingongoodpracticeinChinatodate,furtherco-ordinationisneededtoestablishastronggovernancestructure,notonlybetweenenergyplanningagenciesandinstitutionsbutalsobetweentheenergyandclimatecommunities.ChinahasastrongtrackrecordofeffectivedevelopmentandimplementationofFive-YearPlans.Inrecentyears,long-termperspectivesandguidelinesprovidedbytoppolicymakersgivecontextandprovidestrategicpolicyobjectives.Theseneedtobeoperationalisedfurther.RECOMMENDATIONSFORCHINATOEXPLOREINCLUDE:•Co-developscenario-basedlong-termstrategiesandplansforcarbonneutralityby2060,includingatthenationalandthesub-regional/provinciallevelsandbysector.•Utiliseglobalbestpracticeforlong-termscenariodevelopment,drawingonexperienceandbestpracticesfromaroundtheworldthroughIRENA’sLong-TermEnergyScenariosNetwork.8供中国探讨的建议包括:•将战略重点放在最大限度地提高能源和资源效率以及最大限度地降低经济活动的能源和资源强度上。•充分利用其他改进机会,包括加速服务业的增长、促进循环经济和利用数字技术。供中国探讨的建议包括:•逐步加强中国的国家碳排放权交易机制,以提高排放量最大的工厂的,特别是燃煤电厂的碳减排水平。•在“十五”能源计划期间进一步降低煤炭消费,这将是长期摆脱煤炭依赖的重要信号。•通过合作与对话,利用国际上越来越多的证据和经验,使中国能够就如何为依赖煤炭地区制定经济转型战略做出明智的决定,同时尽可能减少对当地经济的不利影响。2.坚持将提高能源效率作为优先事项最大限度地提高能源和资源效率并最大限度地降低经济活动的能源和资源强度,通常是减少能源消耗和排放的最具成本效益的策略。中国在许多领域都存在着提高效率的巨大潜力,终端使用部门电气化程度的提高与能源服务供应效率的提高之间的协同效应仍有待开发。3.加快逐步减少煤炭消耗要在2030年之前达到排放峰值,到2060年实现净零排放,必须对化石燃料的总消耗量设定上限并随之减少,而逐步减少发电用煤是当务之急。主要障碍主要不是技术性的(可再生能源技术是当今已证实的替代能源)也不是经济性的(在大多数情况下可再生能源比替代能源更便宜)。今天的障碍主要与政策和立法的变化有关。在某些情况下,当地的社会经济因素会发挥作用,一些区域就业和当地经济严重依赖化石燃料(在中国,主要是煤炭)。解决这些障碍需要明确的政治方向以及谨慎的过渡规划,以减轻因当前能源系统转型而可能产生的社会经济影响。82.MaintainingenergyefficiencyimprovementsasapriorityMaximisingenergyandresourceefficiencyandminimisingtheenergyandresourceintensityofeconomicactivitiesisusuallythemostcost-effectivestrategytoreduceenergyconsumptionaswellasemissions.SignificantpotentialexistsforefficiencyimprovementsinChinainmanyareas,andsynergiesremaintobeexploitedbetweenincreasedelectrificationofend-usesectorsandimprovedefficiencyofenergyservicesupply.RECOMMENDATIONSFORCHINATOEXPLOREINCLUDE:•Maintainastrategicfocusonmaximisingenergyandresourceefficiencyandminimisingtheenergyandresourceintensityofeconomicactivities.•Exploitadditionalopportunitiesforimprovements,includingacceleratingthegrowthoftheservicesector,promotingacirculareconomyandutilisingdigitaltechnology.3.Acceleratingthephase-downofcoalconsumptionToachieveemissionpeakingbefore2030andnetzeroby2060,thetotalconsumptionoffossilfuelsmustbecappedandsubsequentlyreduced,whilethephase-downofcoalforpowergenerationisapriority.Theprincipalbarriersareprimarilynottechnological(renewablepowertechnologiesconstituteaprovenalternativetoday)oreconomic(renewablepowerischeaperthanalternativesinmostcircumstances).Today’sbarriersaremostlyrelatedtochangesinpoliciesandlegislation.Insomecases,localsocio-economicconsiderationsplayarole,withsomeregionaljobsandlocaleconomiesbeingheavilydependentonfossilfuels(intheChinesecase,predominantlyoncoal).Addressingthesebarrierswillrequireclearpoliticaldirectioncoupledwithcarefultransitionplanningtomitigatesocio-economicimpactsthatmayariseduetotransformationofthecurrentenergysystems.RECOMMENDATIONSFORCHINATOEXPLOREINCLUDE:•ProgressivelystrengthenChina’snationalemissionstradingschemetorampupcarbonemissionreductionsfromthemostemittingplants,notablycoal-firedpowerplants.•Reducecoalconsumptionfurtherduringtheperiodofthe15thFive-YearEnergyPlan,whichwouldbeanimportantsignalforthelong-termtransitionawayfromcoal.•Drawonagrowingbodyofevidenceandexperienceinternationally,throughco-operationanddialogue,toenableChinatomakewell-informeddecisionsonhowtodevelopeconomictransitionstrategiesforcoal-reliantregionswithasfewadverseimpactsaspossibleonlocaleconomies.9CHINA'SROUTETOCARBONNEUTRALITY供中国探讨的建议包括:•利用中国在可再生能源方面的优势和经验,加快部署。中国现在有能力和经验加快部署速度。•促进海上风能等新兴可再生能源技术的开发和采用,这可能会发挥重要作用。靠近中国东部沿海负荷中心的海上风电场减少了从偏远西部地区进行长途输电的需求。4.加快向可再生能源转型随着电气化的作用和电燃料(e-fuels)使用的增加,到2050年,全球需要将电力供应量从目前的水平基础上增加两倍。成本降低意味着可再生能源现在是明智的经济供应选择。目前,全球75%的陆上风能和40%的公用事业规模太阳能光伏发电比基于化石燃料的替代品更便宜。因此,可再生能源应成为首选的发电路线,太阳能、风能和水电应成为未来中国电力供应的支柱。到2050年,可再生能源有可能满足中国90%以上的电力需求,其中太阳能和风能的份额超过60%(IRENA,2020b)。5.改革电力网络风能和太阳能的可变性对电力系统的安全稳定运行构成挑战,但越来越多的解决方案通过提高能源系统的灵活性来应对这一挑战。到2050年,全球可再生能源在总发电量中的份额应达到90%,近四分之三的总装机容量和超过63%的发电量应来自可变的可再生能源,高于当今全球约20%的装机容量和近10%的发电量(IRENA,2021a)。中国需要考虑如何将其电力系统转变为结合集中式和分布式发电系统的混合配置。中国还需要一个更灵活的跨地区电力市场来维持这一转型。这种变化可以通过采用系统性创新来实现——一种通过改善诸如商业模式、市场结构、新法规和整体系统运作等有利环境来促进创新技术传播的方法。因此,可以提高能源系统的灵活性,并将更多可变的可再生能源整合到电力结构中。CHINA'SROUTETOCARBONNEUTRALITY94.AcceleratingthetransitiontowardsrenewablepowerGloballythereisaneedtotriplethepowersupplyby2050fromthecurrentlevel,astheroleofelectrificationandtheuseofelectrofuels(e-fuels)rises.Costreductionsmeanthatrenewablesarenowthesensibleeconomicsupplychoice.Globally75%ofonshorewindand40%ofutility-scalesolarPVproducedelectricityisatpresentcheaperthanfossilfuel-basedalternatives.Renewablesshouldthereforebethepreferredrouteforpowergeneration,andsolarpower,windpowerandhydropowershouldbecomethebackboneofChina’spowersupplyinthefuture.Renewablescanpotentiallymeetmorethan90%ofChinesepowerdemandby2050,withasolarandwindenergyshareofover60%(IRENA,2020b).RECOMMENDATIONSFORCHINATOEXPLOREINCLUDE:•ExploitChina’sstrengthsandexperiencewithrenewablestoacceleratedeployment.Chinanowhasthecapacityandexperiencetostepupthedeploymentrateatanevenfasterpace.•Stimulatethedevelopmentanduptakeofemergingrenewableenergytechnologiessuchasoffshorewind,whichcouldplayasignificantrole.OffshorewindfarmslocatedclosetoloadcentresalongChina’seasterncoastreducetheneedforlong-haultransmissionfromremotewesternregions.5.ReformingpowernetworksThevariabilityofwindandsolarpowercanposechallengesforsafeandstableoperationofthepowersystem,butagrowingrangeofsolutionsexisttocounterthatbyenhancingtheflexibilityofenergysystems.Globallytherenewableenergyshareintotalpowergenerationshouldreach90%by2050,andnearlythree-quartersofthetotalinstalledcapacityandmorethan63%ofallpowergenerationshouldcomefromvariablerenewableenergyresources,upfromaround20%oftheinstalledcapacityandnearly10%ofpowergenerationgloballytoday(IRENA,2021a).Chinaneedstoconsiderhowtotransitionitspowersystemstoahybridconfigurationthatcombinesbothcentralisedanddistributedpowergenerationsystems.Chinaalsoneedsamoreflexibleinter-regionalelectricitymarkettosustainthetransition.Suchchangescanbeenabledbytheadoptionofsystemicinnovations–anapproachtofacilitatethediffusionofinnovativetechnologieswithimprovedenablingenvironmentssuchasbusinessmodels,marketstructure,newregulationsandoverallsystemoperations.Thus,theflexibilityinenergysystemscouldbeimprovedandmorevariablerenewableenergycanbeintegratedinthepowermix.10供中国探讨的建议包括:•制定电力在该国能源系统中作用的长期愿景,包括让多个利益相关者参与并扩大智能电气化基础设施,例如输配电网、分布系统、电动汽车智能充电网络以及区域供热和制冷系统以及集成绿色氢气生产和分配设施。6.提高终端使用部门的电气化水平越来越清楚的是,鉴于可再生能源发电能力的快速部署,交通、工业和建筑部门的电气化应该被认真考虑,作为减少最终用途排放的一个有前途的选择。如果采用直接电气化,可再生电力成本的大幅降低开辟了新的具有成本效益的选择,以大幅减少最终能源需求(IRENA,2022c)。在中国,电气化和可再生能源的结合已经开始改变轻型道路运输和建筑等行业。电气化也将在工业和长途运输中发挥作用。虽然加快电气化步伐至关重要,但要避免不协调的电气化也很重要,这可能会增加系统峰值并导致输配电网络出现问题。通过良好的规划和数字化实现的智能电气化将是降低峰值负载的必要条件,从而减少对加强电网运营或增加新发电能力的投资需求。供中国探讨的建议包括:•继续推进电力市场改革,激发灵活的能源电力市场。这将反过来加速电力基础设施的升级——包括智能电网、储能、分布式系统和其他数字技术的集成——并促进区域间的电力交换。•刺激区域电力市场之间的超高压输电投资。鉴于中国大量的可再生能源资源位于西部和北部地区,尽管东部和中部地区扩大了本地可再生能源的使用,但此类投资仍然很重要。10RECOMMENDATIONSFORCHINATOEXPLOREINCLUDE:•Continuetopromotepowermarketreformtoincentiviseaflexibleenergyandelectricitymarket.Thiswillinturnacceleratetheupgradingofelectricityinfrastructure–includingtheintegrationofsmartgrids,energystorage,distributedsystemsandotherdigitaltechnologies–andalsofacilitateinter-regionalpowerexchange.•Stimulateinvestmentinultra-high-voltagetransmissionbetweentheregionalpowermarkets.GiventhatalargeamountofChina’srenewableenergyresourcesareinthewesternandnorthernregions,suchinvestmentremainsimportantdespitescalinguptheuseoflocalrenewablesintheeasternandcentralregions.6.Increasingtheelectrificationofend-usesectorsItisincreasinglyclearthatelectrificationofthetransport,industryandbuildingssectorsshouldbegivenseriousconsiderationasapromisingoptionforreducingend-useemissions,giventherapiddeploymentofrenewablepowergenerationcapacity.Dramaticreductionsinthecostofrenewableelectricityopenupnewcost-effectiveoptionstosubstantiallyreduceend-useenergydemand,shoulddirectelectrificationbeadopted(IRENA,2022c).InChina,thecombinationofelectrificationandrenewablesisalreadystartingtotransformsectorssuchaslight-dutyroadtransportandbuildings.Electrificationwillalsohavearoleinindustryandlong-haultransport.Whileincreasingthepaceofelectrificationwillbecritical,itwillbeimportanttoavoidun-co-ordinatedelectrification,whichcouldthreatentoincreasesystempeaksandcauseissuesfortransmissionanddistributionnetworks.Smartelectrificationenabledbygoodplanninganddigitalisationwillbeanecessitytoreducepeakloads,thusreducingtheneedforinvestmentsinenhancingthegridoperationoraddingnewgenerationcapacities.RECOMMENDATIONSFORCHINATOEXPLOREINCLUDE:•Developalong-termvisionoftheroleofelectricityinthecountry’senergysystem,includingengagingmultiplestakeholdersandexpandingsmartelectrificationinfrastructure,suchastransmissionanddistributiongrids,decentralisedsystems,smartchargingnetworksforelectricvehicles,anddistrictheatingandcoolingsystemsaswellasintegratingfacilitiesforgreenhydrogenproductionanddistribution.11CHINA'SROUTETOCARBONNEUTRALITY7.扩大可再生能源的直接使用,特别是生物质能将进一步需要更大规模的太阳能热能、生物能和地热能,通过直接利用这些资源,为空间供暖和制冷(吸收式制冷机)和建筑热水以及工业流程提供零碳热能。除了直接使用外,生物质能还可用作化石燃料替代材料的原料,既可作为工业过程的投入,也可用于运输燃料(如生物燃料)的生产。鉴于应用范围广泛,生物能源占全球可再生能源使用的大部分,占全球最终能源消耗总量的10%。然而,现代生物能源的贡献仍然很小——只有1.5%。尽管如此,预计到2050年,它将增长到全球最终能源需求的17%(IRENA,2021a)。IRENA的分析表明,如果采取有效的监管、认证和监测措施,可以在不影响林业和其他土地利用目的的情况下满足作为能源使用原料的生物质能需求,从而在2050年实现净零排放。在过去十年中,在中国,与太阳能光伏和风能相比,生物能源的开发和部署速度要慢得多。挑战在于有限的资源,而不是许多相互竞争的使用利益,以及生物能源原料供应的可持续性。需要有效的方法和战略来确保原料得到可持续开发并且生态友好,并且要使用的资源是那些能够增加最大价值的资源——例如使航空部门脱碳的生物喷气燃料,这是一个中国需要在技术和生产能力方面迎头赶上的领域。•实现电网现代化,特别是通过加速部署数字电网技术和解决方案、加强各终端使用部门的整合以及增加大规模储能能力。这对于实施电气化战略至关重要。•将一些能源密集型产业的生产设施转移到中国西部和北部地区,以利用那里丰富的可再生电力,前提是这种重新分配的其他关键因素(如土地、劳动力和工业生产其他资源的可用性)将允许这样做。•调整法规以更好地反映行业之间的相互关系,尤其是在城市中,例如通过进一步推动价格改革,消除采用创新技术的障碍,以及鼓励广泛采用热泵、智能电表和其他智能电器。CHINA'SROUTETOCARBONNEUTRALITY11•Moderniseelectricitygrids,particularlythroughaccelerateddeploymentofdigitalgridtechnologiesandsolutions,enhancedintegrationofvariousend-usesectorsandincreasedlarge-scaleenergystoragecapacity.Thiswillbecriticalforimplementingtheelectrificationstrategy.•Relocatetheproductionfacilitiesofsomeenergy-intensiveindustriestothewesternandnorthernregionsofChinatotakeadvantageofabundantrenewableelectricitythere,providedthatothercriticalfactorsforsuchre-allocation(suchasland,labourforcesandavailabilityofotherresourcesforindustrialproduction)wouldallowthis.•Adaptregulationstobetterreflectinter-relationsamongsectors,especiallyincities,forexamplebyfurtherpromotingpricereforms,removingbarrierstoadoptinginnovativetechnologies,andincentivisingwidespreadadoptionofheatpumps,smartmetersandothersmartelectricappliances.7.Expandingthedirectuseofrenewables,particularlybiomassforenergypurposesSolarthermal,bioenergyandgeothermalwillbefurtherneededatgreaterscaletoprovidezero-carbonthermalenergyforspaceheatingandcooling(absorptionchillers)andhotwaterinbuildings,aswellasforindustrialprocesses,throughdirectuseoftheresources.Inadditiontodirectuse,biomasscanbeusedasafeedstockforalternativematerialstofossilfuels,bothasinputsinindustrialprocessesaswellasintheproductionoftransportfuelssuchasbiofuels.Giventhewiderangeofapplications,bioenergyaccountsforthebulkofglobalrenewableenergyuseandfor10%ofglobaltotalfinalenergyconsumption.However,thecontributionofmodernbioenergyremainssmall–only1.5%.Nevertheless,itisexpectedtogrowto17%ofglobalfinalenergydemandby2050(IRENA,2021a).IRENA’sanalysissuggeststhatthedemandforbiomassasafeedstockforenergyusetodelivernetzeroby2050canbemetwithoutadverseimpactsonforestryandotherland-usepurposes,ifeffectivemeasuresinregulation,certificationandmonitoringaretaken.InChina,bioenergyhasbeendevelopedanddeployedatamuchslowerratecomparedtosolarPVandwindpoweroverthepastdecade.Thechallengeslieinthelimitedresourcesratherthaninthemanycompetinginterestsforuse,aswellasinthesustainabilityofbioenergyfeedstockprovision.Effectiveapproachesandstrategieswouldberequiredtoensurethatthefeedstocksareexploitedsustainablyandareecologicallyfriendly,andthattheresourcestobeusedarethosethatcanaddthemostvalue–suchasforbiojetfuelstodecarbonisetheaviationsector,anareawhereChinawouldneedtocatchupintechnologiesandproductioncapacities.128.扩大氢和合成燃料的生产和使用氢在能源转型方面具有几个吸引人的特点。它可以为难以直接通电的能源需求类型提供解决方案。在全球范围内,氢和可再生能源的直接使用可以满足大约50%不适合直接电气化的最终能源使用。与通过电网网络进行的每单位能源电力传输相比,通过管道运输氢的成本效益要高得多。此外,通过电解过程从可再生电力中生产的氢气可以通过提供额外的灵活性,有助于电力部门整合更多可变的可再生能源,并且还可以提供季节性储存来补充短期储存(例如电池)。根据IRENA的分析(IRENA,2022b),在未来三十年左右,全球氢及其衍生物可以满足12%的最终能源使用,其中三分之二是绿色氢。为实现这一目标,绿色氢的生产需要迅速扩大规模,以实现规模经济,使其在2020年代末在许多国家和地区与蓝色氢具有成本竞争力。中国在扩大绿色氢生产方面仍有很大的空间,但重要的是要确保任何用于氢气的可再生产能都是计划活动的补充,并且氢气不会取代更有效的电力使用(即直接使用)。中国在氢气方面有两个关键优势。首先,与其他国家相比,相对较低的劳动力成本和工业发展将有助于电解槽生产成本的持续下降。其次,中国对绿色氢的需求可以为扩大全球产能部署提供机会,促进从化石燃料制氢向可再生能源制氢的转变,并可能带来学习效应和成本下降。供中国探讨的建议包括:•充分整合能源部门和其他终端使用部门对生物质能的利用,特别是通过在能源、农业和林业政策制定者之间建立跨部门协调机制。•通过生物精炼厂为各种生物质能最终用户创造更大的价值。•探索采用与生物质能利用相关的创新技术的可能性,例如生物质能二氧化碳捕获与封存(BECCU/S),这是一种很有前景的技术,可以在吸收已经存在于大气中的碳的同时脱碳。我们需要更多的试点项目,以及分享经验的机制。12RECOMMENDATIONSFORCHINATOEXPLOREINCLUDE:•Fullyintegratetheuseofbiomassinboththeenergysectorandotherend-usesectors,inparticularbyestablishingcross-sectoralco-ordinationmechanismsamongenergy,agricultureandforestrypolicymakers.•Achievegreatervalueforvariousendusersofbiomassthroughbiorefineries.•Explorethepotentialadoptionofinnovativetechnologiesassociatedwiththeuseofbiomass,suchasbioenergywithCO2captureandutilisation/storage(BECCU/S),apromisingtechnologyfordecarbonisationwhileabsorbingcarbonthatisalreadyintheatmosphere.Manymorepilotprojectsareneeded,alongsidemechanismstosharelearning.8.ScalinguptheproductionanduseofhydrogenandsyntheticfuelsHydrogenhasseveralattractivefeaturesfortheenergytransition.Itcanofferasolutionfortypesofenergydemandthatarehardtoelectrifydirectly.Atthegloballevel,hydrogenandthedirectuseofrenewablescanmeetaround50%ofthefinalenergyusesthatmaynotbesuitablefordirectelectrification.Transportofhydrogenthroughpipelineswouldbemuchmorecostefficientincomparisonwithelectricitytransmissionoverpowergridnetworksperunitofenergy.Inaddition,hydrogenproducedfromrenewableelectricityviatheelectrolysisprocesscancontributetotheintegrationofmorevariablerenewableenergyinthepowersectorbyprovidinganadditionalsourceofflexibility,andcanalsoprovideseasonalstoragecomplementingshort-termstorage(e.g.batteries).Globallyhydrogenanditsderivativescouldmeet12%offinalenergyuseinthecomingthreedecadesorso,withtwo-thirdsofthisbeinggreenhydrogen,accordingtoIRENA’sanalysis(IRENA,2022b).Tomakethishappen,productionofgreenhydrogenwouldneedtoscaleuprapidlytoachieveeconomiesofscalethatwouldallowittobecomecostcompetitivewithbluehydrogenbytheendofthe2020sinmanycountriesandregions.ThereissubstantialscopetoscaleupgreenhydrogenproductioninChina,althoughitwillbeimportanttoensurethatanyrenewablecapacityusedforhydrogenisadditionaltotheplannedactivitiesandthathydrogenisnotdisplacingmoreefficientusesofelectricity(i.e.directuse).Chinahastwokeyadvantageswithhydrogen.First,relativelylowerlabourcostsandindustrialdevelopmentcomparedtoothercountrieswouldcontributetocontinueddeclinesintheproductioncostsofelectrolysers.Second,thedemandforgreenhydrogeninChinacanprovidetheopportunitytoscaleupglobaldeploymentoftheproductioncapacity,facilitatingtheshiftfromfossil-basedtorenewables-basedhydrogenproduction,andcanleadtolearningeffectsandcostdeclines.13CHINA'SROUTETOCARBONNEUTRALITY供中国探讨的建议包括:•鼓励地方当局制定长期综合城市规划,以实现碳中和和提高宜居性的双重目标。•优先考虑分布式能源发电,以最大限度地利用当地可再生能源资源,结合终端使用部门和城市基础设施,使用数字化智能能源管理系统并提高能源效率。9.支持城市成为低碳生活的倡导者在过去的几十年里,鉴于其人口规模,中国以令人印象深刻的方式实现了城市化。城市居民现在占总人口的60%,这给能源供应和使用带来了挑战(CNBS,2021)。2018年,工业占该国城市最终能源消耗的71%左右,而建筑占19%左右,交通占10%(SGCERI,2019年)。城市是多种多样的,没有一种放之四海而皆准的解决方案。未来的城市能源基础设施将受到当今投资决策和城市规划的影响。必须从长期、全系统的角度确定可持续的解决方案,以避免产生搁浅资产。为城市确定解决方案的有效分析框架应包括与长期、低碳城市和区域能源战略相协调的自下而上的规划要素。供中国探讨的建议包括:•制定支持性政策框架,鼓励工业中燃料转换,并将符合条件的燃料范围扩大到氢及其衍生物。•展示和积累氢最终用途应用的经验,包括使用氢燃料电池的公路运输、钢铁行业中的焦煤的替代还原剂、航运用氨和航空合成燃料。如果能够做出更大的努力来支持克服当前中国电解槽性能不佳所需的技术创新问题,中国就可以在这些技术方面取得全球领先地位(Heyward,2022年)。•支持国内电解槽行业实现增长、学习和竞争,从而引领中国的技术领先地位。CHINA'SROUTETOCARBONNEUTRALITY13RECOMMENDATIONSFORCHINATOEXPLOREINCLUDE:•Developasupportivepolicyframeworkthatencouragesfuelshiftsinindustry,andexpandthescopeofeligiblefuelstohydrogenanditsderivatives.•Demonstrateandbuildexperienceonhydrogenend-useapplications,includingroadtransportwithhydrogenfuelcells,alternativereductionagentstocokecoalintheironandsteelindustry,ammoniaforshippingandsyntheticfuelsforaviation.Chinacouldattaingloballeadershipinthesetechnologies,ifgreatereffortscanbemadetosupportthetechnologicalinnovationsneededtoovercomethecurrentunder-performanceofChineseelectrolysers(Heyward,2022).•Supportthedomesticelectrolyserindustrytoenablegrowth,learningandcompetitionleadingtotechnologicalleadershipforChina.9.Supportingcitiesaschampionsoflow-carbonlivingOverthepastfewdecades,Chinahasurbaniseddramaticallyandinanimpressivemannergiventhesizeofitspopulation.Citydwellersnowmakeup60%ofthepopulation,whichcreateschallengesforenergysupplyanduse(CNBS,2021).Industryaccountedforaround71%ofthecountry’surbanfinalenergyconsumptionin2018,whilebuildingsaccountedforaround19%andtransportfor10%(SGCERI,2019).Citiesarediverse,andtherearenoone-size-fits-allsolutions.Theurbanenergyinfrastructureofthefuturewillbeshapedbytoday’sinvestmentdecisionsandurbanplanning.Sustainablesolutionsmustbeidentifiedfromalong-term,system-wideperspectivetoavoidthecreationofstrandedassets.Aneffectiveanalysisframeworktoidentifysolutionsforcitiesshouldincludebottom-upplanningelementsthatreconcilewiththelong-term,low-carbonurbanandregionalenergystrategies.RECOMMENDATIONSFORCHINATOEXPLOREINCLUDE:•Encouragelocalauthoritiestodeveloplong-termintegratedurbanplanning,withthetwinaimsofachievingcarbonneutralityandbetterliveability.•Prioritisedistributedenergygenerationtomaximisetheuseoflocalrenewableenergyresources,couplingend-usesectorsandurbaninfrastructure,usingdigitalisedintelligentenergymanagementsystemsandimprovingenergyefficiency.1410.轻型运输持续进步,并向重型运输和长途运输模式拓展中国电力结构中成本的下降和可再生能源份额的上升为交通运输行业的转型打开了大门,因此交通行业主要集中在直接和间接电气化上。可以加速这种转变的技术选择包括直接使用清洁的、最好是可再生的电力(用于铁路和公路运输,包括重型公路货运);使用绿色或蓝色电子燃料,例如氢、氨和其他电子燃料(特别是用于航运和一些重型公路货运);和生物燃料的使用(特别是用于航空)。在这些选项中,交通运输的电气化通常被认为是最有前途的,尤其是轻型车辆,这要归功于可再生能源发电成本的持续下降。供中国探讨的建议包括:国内运输:•继续推广电动汽车和充电基础设施。这包括确保充电基础设施是“智能的”,为低碳公路货运提供激励措施,以及为运输部门制定综合路线图。•利用其他部门可能的共同推动力,例如:降低电池成本的激励措施,这将不仅使运输部门受益;对具有成本竞争力的绿色氢的需求增加和已建立的绿色氢使用供应链;以及为生物燃料提供可持续的原料来源。对于国际航空和航运:•在中国减少碳排放的整体努力的基础上,制定航空部门的碳中和战略,并鼓励采用低碳飞行方案。•对主要替代航空燃料(即生物喷气燃料和合成燃料)的现实潜力进行更详细的研究。•通过使城市能源需求对来自国家电网的可变可再生电力的发电更加敏感,为能源系统的灵活性做出贡献。•改革城市废物的使用,鼓励回收和适当处置,包括通过适当设计的废物管理系统。14•Contributetoenergysystemflexibilitybymakingurbanenergydemandmoreresponsivetothegenerationfromvariablerenewableelectricityfromthenationalgrid.•Reformurbanwasteusetoincentiviserecyclingandappropriatedisposal,includingthroughaproperlydesignedwastemanagementsystem.10.Continuingprogressinlight-dutytransportandbroadeningtoheavy-dutyandlong-haulmodesFallingcostsandrisingsharesofrenewableenergyinChina’spowermixopenthedoorfortransformingthetransportsectorsoitismostlycentredarounddirectandindirectelectrification.Thetechnologicaloptionsthatcanacceleratesuchatransformationincludethedirectuseofclean,preferablyrenewable,electricity(forrailandroadtransport,includingheavy-dutyroadfreighttransport);theuseofgreenorbluee-fuels,suchashydrogen,ammoniaandothere-fuels(particularlyforshippingandsomeheavy-dutyroadfreighttransport);andtheuseofbiofuels(particularlyforaviation).Amongtheseoptions,electrificationoftransportisgenerallyviewedasthemostpromising,particularlyforlightvehicles,thankstothecontinueddeclineinthegenerationcostofelectricityfromrenewableenergysources.RECOMMENDATIONSFORCHINATOEXPLOREINCLUDE:Fordomestictransport:•Continuetheroll-outofelectricvehiclesandcharginginfrastructure.Thisincludesensuringthatcharginginfrastructureis“smart”,creatingincentivesforlow-carbonroadfreightdeliveriesanddevelopingintegratedroadmapsfortransportsectors.•Exploitpossiblesharedimpetusfromothersectors,suchas:incentivesforloweringthecostofbatteriesthatwouldbenefitmorethanjustthetransportsector;theincreaseddemandforcost-competitivegreenhydrogenandtheestablishedsupplychainforgreenhydrogenuse;andthesupplyofsustainablesourcesoffeedstocksforbiofuels.Forinternationalaviationandshipping:•BuildontheoverallefforttoreducecarbonemissionsinChinatodevelopacarbonneutralitystrategyfortheaviationsector,andincentivisetheadoptionoflow-carbonflightoptions.•Conductmoredetailedstudiesontherealisticpotentialsofkeyalternativeaviationfuels(i.e.biojetandsyntheticfuels).15CHINA'SROUTETOCARBONNEUTRALITY供中国探讨的建议包括:•通过与行业和其他利益相关者共同制定每个行业的低碳战略和路线图,确定明确的方向。•通过能源和资源效率提高以及减少需求来减少能源使用。•在工业中逐步摆脱煤炭的使用,并建立关于使用可再生能源的知识。•探索工业生产的最佳地点,包括迁移到可再生能源资源丰富但现有电力需求低的地区,前提是其他关键生产因素也能得到满足。11.为工业部门实现净零排放奠定基础如何在工业部门实现净零排放是一个刚刚开始应对的全球性挑战。这是因为该过程需要对产品的生产、消费、回收和处置进行根本性的改变,并且工业部门是多样化的。中国是世界上几种主要能源密集型商品的最大生产国,因此中国的行动和领导力将至关重要。对于工业部门而言,2020年代是一个需要准备的十年,为随后几十年生产过程的重大转变和大幅减排奠定基础。2020年代的行动需要专注于创造和证明所需的解决方案并创造有利条件。行动的优先事项包括:政府提供明确的信号;通过建立更多的示范工厂来了解什么是有效的;并开始促成必要的有利条件,包括融资、燃料和原料供应基础设施、标准和认证以及贸易条件。12.继续支持技术研发和部署和更广泛的系统创新自2013年以来,中国加大了对清洁能源研究、开发和部署(RD&D)的投资,并已成为仅次于美国的第二大公共部门投资国(尽管欧盟及其成员国的集体投资更多)。然而,中国近一半的能源研发预算都用于与该国碳达峰和中和目标不一致的技术上。相比之下,2019年欧盟97%的能源研发预算都集中在清洁能源上。如果中国希望实现其目标并在清洁能源技术方面发挥主导作用,就需要解决这种不平衡问题。对技术研发的支持还需要与更广泛的系统创新联系起来——即将赋能技术的创新与创新的商业模式以及市场设计和能源系统运营的创新结合起来。CHINA'SROUTETOCARBONNEUTRALITY1511.LayingthegroundworkforindustrialsectorstoachievenetzeroemissionsHowtoachievenetzeroemissionsintheindustrialsectorsisaglobalchallengethathasbarelybeguntobetackled.Thisisbecauseitwillrequirefundamentalchangesintheproduction,consumption,andrecyclinganddisposalofproducts,andindustrialsectorsarediverse.Chinaistheworld’slargestproducerofseveralkeyenergy-intensivecommodities,soitsactionsandleadershipwillbecritical.Forindustrialsectors,the2020sneedtobeadecadeofpreparation,layingthegroundworkformajorshiftsinproductionprocessesandverydeepemissioncutsinthesubsequentdecades.Actionsinthe2020sneedtofocusoncreatingandprovingthesolutionsneededandestablishingtheenablingconditions.Prioritiesforactioninclude:providingclearsignalsfromgovernment;learningwhatworksbyestablishingmanymoredemonstrationplants;andbeginningtoaddressessentialenablingconditionsincludingfinancing,fuelandfeedstocksupplyinfrastructure,standardsandcertification,andtradeconditions.RECOMMENDATIONSFORCHINATOEXPLOREINCLUDE:•Setacleardirectionbyco-developingwithindustryandotherstakeholderslow-carbonstrategiesandroadmapsforeachsector.•Reduceenergyusethroughenergyandresourceefficiencyanddemandreduction.•Transitionawayfromcoaluseinindustryandbuildknowledgeontheuseofrenewables.•Exploretheoptimallocationsforindustrialproduction,includingrelocatingtoregionsthathaveabundantrenewableenergyresourcesbutlowexistingdemandforelectricity,providedthatothercriticalfactorsforproductioncanalsobemet.12.ContinuingtosupporttechnologyRD&DandbroadersystemicinnovationSince2013,Chinahasincreaseditsinvestmentincleanenergyresearch,developmentanddeployment(RD&D)andhasbecomethesecondlargestpublicsectorinvestorbehindtheUnitedStates(althoughtheEuropeanUnion[EU]anditsmemberscollectivelyinvestmore).However,nearlyhalfoftheChineseenergyRD&Dbudgetwasspentontechnologiesthatarenotconsistentwiththecountry’scarbonpeakingandneutralitygoals.Bycontrast,97%oftheenergyRD&DbudgetintheEUwasfocusedoncleanenergyRD&Din2019.ThisimbalanceneedstobeaddressedifChinawishestodeliveritsobjectivesandplayaleadingroleincleanenergytechnologies.SupportfortechnologyRD&Dalsoneedstobelinkedtobroadersystemicinnovation–thatis,combininginnovationinenablingtechnologieswithinnovativebusinessmodelsandwithinnovationsinmarketdesignandenergysystemoperations.16供中国探讨的建议包括:•成为全球能源和气候治理的领导者,加强对全球和区域合作机制和国际机构的参与。•展示中国作为碳中和全方位系统解决方案主要供应者的成功之处。13.深化全球参与能源转型是一项全球性的努力,需要更多的国际合作。学习其他国家或地区的最佳实践可以使中国受益,而中国的专业知识可以帮助塑造全球市场。国际组织可以支持这种相互合作和学习。供中国探讨的建议包括:•增加公共部门对清洁能源研发和部署的投资。•采用系统的方法进行创新。•扩大中国在国际研发和部署合作中的领导作用。16RECOMMENDATIONSFORCHINATOEXPLOREINCLUDE:•IncreasepublicsectorinvestmentincleanenergyRD&D.•Adoptasystemicapproachtoinnovation.•ExpandChina’sleadershiproleininternationalRD&Dcollaboration.13.DeepeningglobalengagementTheenergytransitionisaglobaleffortrequiringgreaterinternationalco-operation.LearningbestpracticesfromothercountriesorregionscanbenefitChina,andChineseexpertisecanhelpshapeglobalmarkets.Internationalorganisationscansupportthatmutualco-operationandlearning.RECOMMENDATIONSFORCHINATOEXPLOREINCLUDE:•Beavisibleleaderinglobalenergyandclimategovernanceandstrengthenparticipationinglobalandregionalco-operationmechanismsandinternationalbodies.•ShowcaseChina’ssuccessesasamajorproviderofafullrangeofsystemsolutionsforcarbonneutrality.17CHINA'SROUTETOCARBONNEUTRALITY第1章中国在全球背景下的二氧化碳排放目标在2020年第75届联合国大会上,中国宣布其目标是在2030年前实现二氧化碳(CO2)排放达峰,到2060年实现碳中和。2020年12月,作为《巴黎协定》国家自主贡献的一部分,中国将目标进一步具体化为到2030年将其国内生产总值(GDP)的碳强度降低65%以上,同时从2005年的水平上分别将非化石燃料在一次能源消费中的份额提高到约25%,森林蓄积量增加60亿立方米。此外,中国将把太阳能和风能的总装机容量扩大到1200吉瓦(GW)以上。这些声明的影响将是深远的,将要求改变该国消费能源和生产商品的几乎所有方面。要完成如此重大的转变,四十年只是很短的时间,虽然存在许多构建模块,但如何实现这一转变的许多细节仍不清楚。未来几年将需要大量分析和协调努力来塑造通往2060年碳中和的道路。除了能源发展规划外,中国还首次制定并发布了应对气候变化的专项五年规划。通过省级行动有效实施这些计划对于中国实现2060年碳中和目标至关重要。1.1全球背景许多主要经济体——包括七国集团(G7)和欧盟(EU)的所有成员国——已做出了到本世纪中叶实现二氧化碳2净零排放的政治或政策承诺。欧盟已立法制定到2050年实现净零排放的目标,八个欧洲国家(丹麦、法国、德国、匈牙利、卢森堡、西班牙、瑞典和英国)已经通过了国家立法,CHINA'SROUTETOCARBONNEUTRALITY17CHAPTER1CHINA’SCARBONDIOXIDEEMISSIONGOALSINTHEGLOBALCONTEXTAtthe75thSessionoftheUnitedNationsGeneralAssemblyin2020,Chinaannouncedthatitaimedtoachieveapeakinitscarbondioxide(CO2)emissionsbefore2030,andtoachievecarbonneutralityby2060.InDecember2020,Chinafurtherdetailedthat,aspartofitsNationallyDeterminedContributionundertheParisAgreement,itaimedtoreducethecarbonintensityofitsgrossdomesticproduct(GDP)morethan65%by2030,whileincreasingtheshareofnon-fossilfuelsinprimaryenergyconsumptiontoaround25%andtheforeststockvolumeby6billioncubicmetres,from2005levelsrespectively.Inaddition,Chinawillscaleupitstotalinstalledpowergenerationcapacityfromsolarandwindtomorethan1200gigawatts(GW).Theimplicationsoftheseannouncementswillbeprofoundandwillrequirechangesinalmosteveryaspectofhowthecountryconsumesenergyandproducesgoods.Fortyyearsisashortperiodtocompletesuchamajortransformation,andwhilemanybuildingblocksexist,manyofthedetailsofhowtodeliversuchachangeremainunclear.Substantialanalysisandco-ordinatedeffortwillbeneededinthenextfewyearstoshapethepathto2060.Forthefirsttime,Chinahasdevelopedandissuedadedicatedfive-yearplanonaddressingclimatechange,inadditiontoanenergydevelopmentplan.Effectivelyimplementingtheseplanswithprovince-levelactionswillbecrucialforChinatobeontracktowardsachievingits2060carbonneutralitygoal.1.1GlobalcontextManymajoreconomies–includingallmembersoftheGroupofSeven(G7)plustheEuropeanUnion(EU)–havemadepoliticalorpolicycommitmentstoachievingnetzeroCO2emissionsbymid-century.TheEUhaslegislatedforagoalofnetzeroby2050,andfiveEuropeancountries(Denmark,France,Germany,Hungary,Luxembourg,Spain,SwedenandtheUnitedKingdom)18同时更多的国家宣布了净零政策目标。值得注意的是,作为其净零计划的一部分,欧盟采用了新的碳边界调整机制,这对全球市场具有重大影响。在北美,加拿大正处于制定到2050年实现净零排放目标立法的最后阶段,美国的拜登政府也宣布了类似的目标。在中美洲和南美洲,智利正在立法,而阿根廷、巴西和哥斯达黎加已宣布净零政策目标。在亚太地区,与中国一样,日本和韩国都宣布了净零目标,而新西兰已立法制定目标,斐济和所罗门群岛正在这样做。在非洲和中东,当务之急是确保安全和负担得起的能源获取。目前,只有尼日利亚和南非宣布了净零目标,但在该地区及其他地区,正在出现符合净零目标的长期计划的例子。拥有净零目标的国家越来越多,这清楚地表明,净零目标现在得到了广泛的支持,实现这些目标的努力可以在世界范围内共享。1.2中国特色中国的许多独特之处使其向净零排放转型的过程独一无二。这些包括:•中国是全球最大的能源生产国和消费国,也是全球最大的二氧化碳排放国2,占全球温室气体排放量的28%。中国的人均排放量(人均每年约7吨)超过美国(世界银行,2021a)。•中国经济需要继续大幅增长才能实现其发展目标。在大多数发达国家,随着这些国家向后工业化、以服务为基础的经济模式转型,能源消耗量已趋于稳定。到2035年,中国需要将经济规模和人均GDP翻一番才能实现其中期发展目标。随着经济的发展,预计中国的能源消耗将在未来多年继续上升(世界银行,2021b)。•中国的主要能源是煤炭,其在2021年占一次能源使用量的56%,而石油和天然气在其中的份额分别为18.5%和9%(CNBS,2022)。到2021年,中国的煤电装机容量为1297吉瓦,占全国总发电量的一半以上(NEA,2022)。•近十年来,中国一直在部署可再生能源方面处于全球领导地位。2021年,中国贡献了近一半的全球可再生能源新增装机容量,达到134吉瓦。2021年中国可再生能源总装机容量为1063吉瓦,占全国总发电装机容量的44.8%。中国当年生产了2480太瓦时(TWh)的可再生能源电力,占该国总发电量的29.8%(中国政府,2022年)。中国更新了中期碳减排目标,到2030年非化石能源在一次能源中的比重由原来的20%提高到25%,18havealreadypassednationallegislation,whilemorecountrieshavedeclarednetzeropolicygoals.Notably,aspartofitsnetzeroplans,theEUhasadoptedanewCarbonBorderAdjustmentMechanism,whichhasbigimplicationsforglobalmarkets.InNorthAmerica,Canadaisinthefinalstagesofenactinglegislationtargetingnetzeroby2050,andtheBidenadministrationintheUnitedStateshasdeclaredasimilargoal.InCentralandSouthAmerica,Chileisintheprocessoflegislating,whileArgentina,BrazilandCostaRicahavedeclarednetzeropolicygoals.IntheAsiaPacificregion,alongsideChina,bothJapanandtheRepublicofKoreahavedeclarednetzerotargets,whileNewZealandhaslegislatedtargetsandFijiandtheSolomonIslandsareintheprocessofdoingso.InAfricaandtheMiddleEast,thereisapressingfocusonensuringsecureandaffordableaccesstoenergy.Atpresent,onlyNigeriaandSouthAfricahavedeclarednetzerogoals,butintheregionandbeyondexamplesareemergingoflong-termplansconsistentwithnetzerogoals.Thegrowingcontingentofcountrieswithnetzerogoalsmakesitclearthatnetzeroambitionsnowhavebroadsupportandthattheefforttodeliverthemcanbesharedaroundtheworld.1.2China’suniquecharacteristicsChinahasanumberofcharacteristicsthatmakeitstransitiontonetzeroemissionsunique.Theseinclude:•Chinaistheworld’slargestproducerandconsumerofenergyandisalsotheworld’slargestemitterofCO2,accountingfor28%ofglobalgreenhousegasemissions.China’spercapitaemissions(around7tonnespercapitaperyear)exceedthoseoftheUnitedStates(WorldBank,2021a).•China’seconomywillneedtocontinuetogrowsignificantlytomeetitsdevelopmentobjectives.Inmostdevelopedcountries,energyconsumptionhasstabilisedasthesecountriestransitiontoapost-industrial,service-basedeconomy.ChinawouldneedtodoublethesizeofitseconomyanditsGDPpercapitaby2035toachieveitsmid-termdevelopmentobjectives.EnergyconsumptioninChinaisexpectedtocontinuetoriseformanyyearstocomeastheeconomydevelops(WorldBank,2021b).•China’smainenergysourceiscoal,accountingfor56%ofprimaryenergyusein2021,whilesharesofoilandnaturalgasinthemixwere18.5%and9%,respectively(CNBS,2022).Chinahad1297GWofcoal-poweredgenerationcapacityin2021,representingmorethanhalfofthenationaltotalpowergenerationcapacity(NEA,2022).•Chinahasbeenagloballeaderindeployingrenewablesfornearlyadecade.In2021,itcontributednearlyhalfoftheglobalrenewableenergycapacityadditions,with134GW.China’stotalinstalledrenewablepowergenerationcapacitywas1063GWin2021,representing44.8%ofthecountry’stotalpowergenerationcapacity.Chinagenerated2480terawatthours(TWh)ofrenewableelectricitythatyear,or29.8%ofthecountry’stotalelectricitygeneration(GovernmentofChina,2022).Chinahasupdateditsmid-termcarbonreductiontargetbyincreasingtheshareofnon-fossilfuelsinprimaryenergy19CHINA'SROUTETOCARBONNEUTRALITY——这比2020年的水平提高了近10个百分点。到2030年,太阳能光伏(PV)和风力涡轮机的总装机容量将超过1200吉瓦,比2020年的水平增长44%。•中国的能源资源和能源需求存在巨大的区域差异。中国政府一直在采取措施解决这个问题,例如建设长距离输电线路,以满足东部和中部工业省份不断增长的电力需求。自2019年以来,中国建设了一条超高压(±1100千伏)直流输电线路,每年从西部省份向东部省份输送660亿千瓦时(kWh)的电力,以充分利用巨大的风能和太阳能发电(彭博社,2019)。然而,能源供需的地区差异问题仍然具有挑战性。•中国的城市化水平已达到60%左右。据预计,未来几十年城镇化将继续增长(国务院,2020年),在“十四五”规划下达到65%的程度。中国未来的城市将越来越向大都市圈和城市群的方向发展。•中国目前是一个出口导向型经济体,能源密集型商品的产量远远超过国民消费水平。在国内改革、发展和稳定目标以及全球经济挑战,特别是COVID-19疫情的背景下,中国提议通过采用“双循环”概念来改变这种平衡,从而使该国对内需(内循环)推动增长更加依赖,同时得到国际贸易和外国投资(外循环)的支持(Olsson,2021年)。然而,尽管中国正在向这种新模式过渡,但在可预见的未来,出口仍将是经济的重要组成部分。因此,中国出口伙伴的减排目标以及他们可能实施的与碳强度相关的进口限制也与中国息息相关。•中国在钢铁、铝、水泥、塑料、甲醇和氨等几大关键能源密集型商品的产能上居全球首位;中国占其中许多商品的全球总产量的一半以上。这些行业的能源消耗约占该国最终能源消耗总量的60%。煤炭已广泛用于工业领域,近年来其消耗量一直在上升。中国快速发展的化工和石化行业尤其如此:2019年,中国冶金行业的煤炭消耗量增长了7%,化工行业的煤炭消耗量增长了11%(Hove,2020年)。CHINA'SROUTETOCARBONNEUTRALITY19consumptionto25%by2030(fromtheoriginal20%)–thisrepresentsanincreaseofnearly10percentagepointsfrom2020levels.Thecombinedinstalledpowergenerationcapacityofsolarphotovoltaics(PV)andwindturbineswillexceed1200GWby2030,up44%fromthe2020level.•Chinahashugeregionalvariationinbothitsenergyresourcesandenergydemand.Ithasbeentakingstepstotacklethis,forexamplebuildinglong-distanceelectricitytransmissionlinestomeetincreasingpowerdemandintheeasternandcentralindustrialprovinces.Since2019,Chinahasbuiltanultra-highvoltage(±1100kilovolt)directcurrenttransmissionlinetotransmit66billionkilowatthours(kWh)ofelectricityayearfromthewesterntoeasternprovincestoutiliseenormouswindandsolargeneration(Bloomberg,2019).However,regionaldifferencesinenergysupplyanddemandremainchallenging.•China'surbanisationlevelhasreachedaround60%.Urbanisationgrowthisexpectedtocontinueinthecomingdecades(StateCouncil,2020),reachinga65%shareunderthe14thFive-YearPlan.China’sfuturecitieswillincreasinglydevelopinthedirectionofmetropolitancirclesandurbanagglomerations.•Chinaiscurrentlyanexport-orientedeconomy,wheretheproductionofenergy-intensivecommoditiesfarexceedsnationalconsumption.Inthecontextofdomesticreform,development,andstabilitygoalsaswellasglobaleconomicchallenges,especiallytheCOVID-19experience,Chinaisproposingtoshiftthatbalancebyadoptingtheconceptof“dualcirculation”,wherebythecountrywouldrelymoreheavilyondomesticdemand(internalcirculation)todrivegrowthbutsupportedbyinternationaltradeandforeigninvestment(externalcirculation)(Olsson,2021).However,whileChinaistransitioningtothatnewmodel,exportswillremainanimportantcomponentoftheeconomyfortheforeseeablefuture.TheemissionreductiongoalsofChina’sexportpartners,andthecarbonintensity-relatedimportrestrictionsthattheymayimpose,arethereforealsorelevanttoChina.•Chinaholdsthelargestnationalproductioncapacityforseveralkeyenergy-intensivecommodities,suchassteel,aluminium,cement,plastics,methanolandammonia;formanyofthesecommodities,Chinaaccountsformorethanhalfoftotalglobalproduction.Theenergyconsumptionoftheseindustriesaccountsforaround60%ofthecountry’sgrossfinalenergyuse.Coalhasbeenwidelyusedintheindustrialsector,anditsconsumptionhasbeenrisinginrecentyears.ThisisparticularlythecaseforChina’srapidlydevelopingchemicalandpetrochemicalindustry:in2019,coalconsumptioninChina’smetallurgicalsectorgrew7%andinthechemicalssectorgrew11%(Hove,2020).1CHINA'SROUTETOCARBONNEUTRALITY第2章制定2020年代及以后的战略中国已经设定了碳排放在2030年之前达到峰值的明确目标。然而,将时间表提前到2025年将极大地帮助该国随后实现净零排放,从而使以后的实施计划更易于管理。将2020年代用作规划、准备和学习的十年,以收集证据、做出选择并解决必要的使成条件,以使中国走上新的现代能源体系,这一点至关重要。这样做需要从根本上重新思考传统的能源供应和安全概念,并应吸取迄今为止国内能源系统发展的经验教训以及国际能源转型的经验。国际可再生能源署(IRENA)正与多个政府密切合作,因为他们开始制定碳中和计划。虽然所有国家都还处于早期学习阶段,但随着对当地情况的一些适应,一些与中国相关的共同因素正在出现。特别是,IRENA正在与许多国家和地区合作,为其能源转型制定路线图,并发布年度全球路线图。IRENA2021年版全球路线图《世界能源转型展望》(WETO)侧重于将全球气温上升保持在1.5摄氏度(°C)以下的情景。这个“1.5°C情景”提供了一个雄心勃勃的能源转型路径,主要由可再生能源、电气化措施和能源效率的持续改进驱动。这将使世界能源系统到2050年向净零碳排放过渡。第二版WETO于2022年3月在柏林能源转型对话上启动,概述了可以而且必须通过采用和扩大现有技术来实施的优先领域和行动,以使世界在21世纪中期实现净零排放。20CHAPTER2SHAPINGASTRATEGYFORTHE2020sANDBEYONDChinahassetacleargoalforitscarbonemissionstopeakbefore2030.However,bringingforwardthetimelineto2025wouldgreatlyassistwiththecountry’ssubsequenttrajectorytonetzero,makinglaterimplementationplansmoremanageable.Itiscriticaltousethe2020sasadecadeofplanning,preparationandlearningtogatherevidence,makechoicesandaddresstheenablingconditionsnecessarytoputChinaonthepathtoanewmodernenergysystem.Doingsowillrequireafundamentalrethinkingoftraditionalconceptsofenergysupplyandsecurityandshoulddrawonthelessonsfromdomesticenergysystemdevelopmenttodateaswellasoninternationalexperienceswithenergytransition.TheInternationalRenewableEnergyAgency(IRENA)isworkingcloselywithmultiplegovernmentsastheybegintodevelopcarbonneutralityplans.Whileallcountriesarestillintheearlylearningstages,somecommonelementsareemergingthat,withsomeadaptationtolocalcircumstances,areofrelevancetoChina.Inparticular,IRENA,inpartnershipwithmanycountriesandregions,isdevelopingroadmapsfortheirenergytransitionsandpublishesanannualglobalroadmap.The2021editionofIRENA’sglobalroadmap,theWorldEnergyTransitionsOutlook(WETO),isfocusedonascenarioconsistentwithkeepingglobaltemperaturerisetobelow1.5degreesCelsius(°C).This“1.5°CScenario”providesanambitiousenergytransitionpathwaydrivenmostlybyrenewableenergysources,electrificationmeasuresandcontinuedimprovementsinenergyefficiency.Thiswouldenabletheworld’senergysystemtotransitiontowardsnetzerocarbonemissionsby2050.ThesecondeditionoftheWETO,launchedinMarch2022attheBerlinEnergyTransitionDialogue,outlinespriorityareasandactionsthatcanandmustbeimplementedbyadoptingandscalinguptheexistingtechnologiesinorderfortheworldtoachievenetzeroemissionsbymid-century.2根据这些出版物中的关键见解,以及与中国密切相关的全球能源转型技术驱动方面的相关正在进行的工作,提出了以下13个中国应采取一致行动的优先领域。2.1制定并提供一个综合的长期能源计划有效的综合能源规划是能源转型成功的基础。长期能源情景是规划和政策制定的有力工具,可以为中国能源五年规划和长期战略的发展提供一个战略框架。短期、中期和长期的能源规划和政策问题各不相同,但近期计划必须与长期战略保持一致。例如,到2030年的10年时间范围(到中国计划排放量达到峰值的时间)需要捕捉结构变化和新兴技术的部署,以及现有资本存量导致的系统惯性。然而,2050年或2060年的时间范围(到中国计划实现净零排放的时间)需要探索创新和规范的长期政策目标,例如深度脱碳。在能源转型规划方面,中国既可以为不断增长的全球专业知识做出贡献,也可以从中学习。在此背景下,IRENA的长期能源情景(LTES)网络为国家和地区从业者提供了一个平台,可以分享他们在使用和开发长期能源情景以指导能源转型方面的经验和良好实践。LTES网络目前聚集了超过22个国家和7个技术机构,包括中国国家电网能源研究院(SGERI)。LTES网络内的讨论表明,各种可能情景的开发通常需要在不同阶段涉及一系列国家机构。在中国,SGERI采用情景开发的方式规划中国的大型能源基地,以及跨区域输电线路的扩容。此外,LTES被用作有关如何实现中国在五年规划中制定的目标的政策措施的建议。在中国新的净零目标的背景下,并在该国迄今为止的良好实践基础上,需要进一步协调以建立强大的治理结构,不仅在能源规划当局和机构之间,而且与气候界之间。在“十四五”能源规划和15年中期愿景的基础上,制定从现在到2060年过渡的长期路线图,可以指导多方利益相关者的活动,协调短期和长期中国的目标。交付商定的计划将需要超越传统界限的合作,以汇集包括中国政府、能源公司和领先机构(内部和外部)在内的各种参与者的专业知识和努力,以及强大的国际合作。为能源转型创造使成条件需要相关机构共同努力,其目标必须得到很好的协调。国家部委需要密切合作,并获得省级政府的积极支持。找到经济上可行的替代解决方案尤为重要,特别是对于经济上依赖煤炭的省份。1欲了解更多信息,请访问www.irena.org/energytransition/Energy-Transition-Scenarios-Network/ETS-Net-Events.CHINA'SROUTETOCARBONNEUTRALITY21Drawingonthekeyinsightsfromthesepublicationsandonrelevantongoingworkonthetechnology-drivenaspectsofenergytransitionsaroundtheworld,whichareofstrongrelevancetoChina,thefollowing13priorityareasforconcertedChineseactionareputforth.2.1Developinganddeliveringanintegratedlong-termenergyplanEffectiveandintegratedenergyplanningisfundamentalforasuccessfulenergytransition.Long-termenergyscenariosareapowerfultoolforplanningandpolicymaking,whichcanprovideastrategicframeworkguidingthedevelopmentofbothChina’sFive-YearEnergyPlansandlonger-termstrategies.Energyplanningandpolicyissuesaredifferentfortheshort,medium,andlongterms,butnear-termplansmustbealignedwiththelong-termstrategy.A10-yeartimehorizonto2030(bywhenChinaaimstopeakitsemissions),forexample,needstocapturestructuralchangeandthedeploymentofemergingtechnologies,aswellassysteminertiathatresultsfromexistingcapitalstock.However,a2050or2060timehorizon(bywhenChinaaimstoreachnetzeroemissions)needstoexploreinnovationsandnormativelong-termpolicyobjectives,suchasdeepdecarbonisation.Chinacouldbothcontributetoandlearnfromthegrowingbodyofglobalexpertiseonenergytransitionplanning.Inthiscontext,IRENA’sLong-TermEnergyScenarios(LTES)Network1providesaplatformfornationalandregionalpractitionerstosharetheirexperiencesandgoodpracticesintheuseanddevelopmentoflong-termenergyscenariostoguidetheenergytransition.TheLTESNetworkcurrentlygathersmorethan22countriesand7technicalinstitutions,includingChina’sStateGridEnergyResearchInstitute(SGERI).DiscussionswithintheLTESNetworkshowthat,often,thedevelopmentofvariousplausiblescenariosneedstoinvolvearangeofnationalinstitutionsduringdifferentstages.InChina,SGERItakesthescenariodevelopmentapproachtoplanChina´slarge-scaleenergybase,aswellascapacityexpansionsofcross-regionaltransmissionlines.Additionally,LTESareusedasrecommendationsforpolicymeasuresonhowtoreachChina’stargetsaslaidoutintheFive-YearPlans.InthecontextofChina’snewnetzerogoalandbuildingongoodpracticeinthecountrytodate,furtherco-ordinationisneededtoestablishastronggovernancestructure,notonlybetweenenergyplanningauthoritiesandinstitutionsbutalsowiththeclimatecommunity.Complementingandbuildingonthe14thFive-YearEnergyPlan,andonthe15-yearmid-termvision,along-termroadmapforthetransitionbetweennowand2060canguidetheactivitiesofmultiplestakeholdersandreconciletheshort-andlong-termobjectivesofChina.Deliveringanagreedplanwillrequirecollaborationbeyondtraditionalboundariestomarshaltheexpertiseandeffortsofadiverserangeofactors–includingtheChinesegovernment,energycompaniesandleadinginstitutions(bothinternalandexternal)–aswellasstronginternationalcollaboration.Deliveringtheenablingconditionsfortheenergytransitionwouldrequiretherelevantinstitutionstoworktogether,andtheirgoalsmustbewellco-ordinated.Nationalministrieswillneedtoworkcloselywitheachotherandsecuretheactivesupportofprovincialadministrations.Itisparticularlycriticaltofindeconomicallyviablealternativesolutions,particularlyforprovincesthatareeconomicallydependentoncoal.1Formoreinformation,pleasevisitwww.irena.org/energytransition/Energy-Transition-Scenarios-Network/ETS-Net-Events.3CHINA'SROUTETOCARBONNEUTRALITY2.2坚持将提高能源效率作为优先事项最大限度地提高能源和资源效率并最大限度地降低经济活动的能源和资源强度通常是减少碳排放和污染的最具成本效益的初始策略;它还提高了能源安全。能源和材料效率以及能源强度的持续降低在中国之前的能源规划中占有突出地位,并应继续成为2020年代及以后的主要重点。在IRENA的1.5°C情景中,能源效率和需求减少约占实现零排放所需的全球减排量的25%。在这种情况下,能源强度的改进速度需要从2019年和前几年的1.2%提高到每年3%(IRENA,2021a)。过去30年,中国在这方面取得了长足进步,在1990年至2018年期间将能源强度降低了70%,这一进步超过了全球平均水平(IEA,2020a)。然而,将需要进一步降低。在中国,在工业电机系统、建筑和城市服务基础设施(如供水和污水处理、燃气和电力供应系统以及公共照明)等许多领域仍有很大的效率提升潜力。近年来,中国越来越接受循环经济的概念,这将提高资源管理的整体效率,减少能源和物质需求,并提高公众的节约意识。现代数字和通信技术将提高作业效率,例如,可以更好地优化重型货物的运输,从而降低整体能源消耗。终端使用部门日益电气化之间也可以发挥协同作用,这可以大大提高能源服务供应的效率。需要更详细地分析每个部门的改进潜力,特别是在工业部门持续转型的背景下。可供中国探讨的建议包括:1.通过共同制定基于情景的长期战略和计划,补充五年规划和15年中期愿景中国应补充五年规划和15年中期愿景,制定基于情景的长期战略和计划,在次区域/省级和部门层面实现到2060年的碳中和。此类计划将有助于协调参与中国能源转型的众多行为体的工作。开发工作应涉及中央政府、各省、市、镇等广泛的关键利益相关方,并应将能源和气候政策更紧密地结合在一起。2.利用全球良好实践进行长期情景开发中国应继续完善其长期能源情景,借鉴世界各地的经验和最佳实践。IRENA的长期能源情景网络提供了一个全球平台,可以分享中国在长期情景中的经验及其在指导清洁能源转型方面的应用。22RECOMMENDATIONSFORCHINATOEXPLOREINCLUDE:1.ComplementtheFive-YearPlansandthe15-yearmid-termvision,byco-developingscenario-basedlong-termstrategiesandplansChinashouldcomplementtheFive-YearPlansandthe15-yearmid-termvision,withscenario-basedlong-termstrategiesandplansforachievingcarbonneutralityby2060atthesub-regional/provinciallevelandbysector.SuchplanswillhelpaligntheworkofmanyactorsinvolvedinChina’senergytransition.Thedevelopmentshouldinvolveabroadrangeofkeystakeholdersacrosscentralgovernment,theprovinces,citiesandtowns,andothersandshouldbringtogetherenergyandclimatepolicymoreclosely.2.Utiliseglobalgoodpracticeforlong-termscenariodevelopmentChinashouldcontinuetorefineitslong-termenergyscenarios,drawingonexperienceandbestpracticefromaroundtheworld.IRENA’sLong-TermEnergyScenariosNetworkoffersaglobalplatformtosharetheChineseexperienceinlong-termscenariosandtheiruseforguidingthecleanenergytransition.2.2MaintainingenergyefficiencyimprovementsasapriorityMaximisingenergyandresourceefficiencyandminimisingtheenergyandresourceintensityofeconomicactivitiesisusuallythemostcost-effectiveinitialstrategytoreducecarbonemissionsandpollution;italsoimprovesenergysecurity.EnergyandmaterialsefficiencyandacontinuedreductioninenergyintensityhasfeaturedprominentlyinpreviousChineseenergyplansandshouldcontinuetobeamajorfocusinthe2020sandbeyond.InIRENA’s1.5°CScenario,energyefficiencyanddemandreductionaccountforaround25%oftheglobalemissionreductionsneededtoreachzero.Inthisscenario,therateofimprovementsinenergyintensityneedstoincreaseto3%peryear(IRENA,2021a),upfrom1.2%in2019andpreviousyears.Chinahasmadegreatprogressinthisregardoverthelastthreedecades,havingreduceditsenergyintensity70%between1990and2018,animprovementthatexceedstheglobalaverage(IEA,2020a).Furtherreductionswillbeneeded,however.InChina,thereisstillsignificantpotentialforefficiencyimprovementsinmanyareas,suchasindustrialmotorsystems,buildingsandurbanserviceinfrastructure(e.g.watersupplyandwastewatertreatment,gasandelectricitysupplysystems,andpubliclighting).Inrecentyears,Chinahasbeenincreasinglyreceptivetothenotionofthecirculareconomy,whichwouldimprovetheoverallefficiencyofresourcemanagement,reduceenergyandmaterialdemands,andraisepublicawarenessofconservation.Moderndigitalandcommunicationtechnologieswillunlockefficiencyinoperations,forexample,makingitpossibletobetteroptimisethetransportofheavygoodsandthusreduceoverallenergyconsumption.Therearealsosynergiestobeexploitedbetweentheincreasingelectrificationofend-usesectors,whichcangreatlyimprovetheefficiencyofenergyservicesupply.Thepotentialforimprovementsineachsectorneedstobeanalysedinmoredetail,particularlyinthecontextofthecontinuedindustrialsectortransformation.42.3加快逐步减少煤炭消费中国在采用可再生能源方面有着非常出色的记录。然而,向净零排放电力系统的过渡需要在技术和市场制度方面进行新的思考和更根本的改革。减少煤炭的使用为了在2030年之前达到排放峰值并到2060年实现净零排放,中国需要加快逐步减少用于发电的煤炭,尽管到2030年代煤炭仍将是重要的能源载体。确保在2030年之前达到排放峰值需要制定和有效实施详细规划。这些规划将需要包括一些过渡性措施,这些措施可以暂时改善煤炭的清洁使用,但这些措施不得抑制或以牺牲本文重点介绍的其他清洁能源技术的发展为代价。到2050年,在IRENA的1.5°C情景中,全球煤炭产量将从今天的约57.5亿吨下降至每年约2.4亿吨,减少24倍。剩余的煤炭将主要用于工业,主要用于钢铁生产(加上碳捕获和储存,CCS,占钢铁总产量的5%),在化工生产中也有一些作用。中国的转型将需要在煤炭使用量出现类似急剧下降的情况下进行,剩余的使用量集中在工业领域(IRENA,2021a)。除了对CO2排放的直接影响外,煤炭需求的减少还会产生更广泛的影响。煤炭开采和燃烧煤炭排放的颗粒物对健康的影响是有据可查的。尽管中国已采取重大措施减少燃煤电厂的排放,例如2015年要求所有燃煤电厂在2020年之前遵守“超低排放标准”,但挑战依然存在(Wu等,2019)。可供中国探讨的建议包括:1.保持降低能源强度的战略重点中国2020年代及以后的能源战略应继续将重点放在最大限度地提高能源和资源效率,以及最大限度地降低经济活动的能源和资源强度,特别是能源密集型工业部门。2.利用剩余的改进机会重点领域应包括:加快服务部门增长和促进循环经济;识别新系统和技术发展带来的节能潜力;实施以提高能源效率为重点的灵活机制和商业模式;并利用数字技术整合各种现有技术,形成综合节能解决方案。CHINA'SROUTETOCARBONNEUTRALITY23RECOMMENDATIONSFORCHINATOEXPLOREINCLUDE:1.MaintainastrategicfocusonreducingenergyintensityChina’senergystrategyforthe2020sandbeyondshouldcontinuetoincludeamajorfocusonmaximisingenergyandresourceefficiencyandminimisingtheenergyandresourceintensityofeconomicactivities,particularlyforenergy-intensiveindustrialsectors.2.ExploitremainingopportunitiesforimprovementsAreasoffocusshouldinclude:acceleratingthegrowthoftheservicesectorandpromotingacirculareconomy;identifyingenergy-savingpotentialsarisingfromnewsystemandtechnologicaldevelopments;implementingflexiblemechanismsandbusinessmodelswiththepriorityofimprovingenergyefficiency;andutilisingdigitaltechnologytointegratevariousexistingtechnologiestoformcomprehensiveenergy-savingsolutions.2.3Acceleratingthephase-downofcoalconsumptionChinahasaverystrongtrackrecordintheadoptionofrenewableenergy.However,atransitiontonetzeroemissionpowersystemswillrequirenewthinkingandmorefundamentalreformsinboththetechnologicalandthemarketsystems.ReducingtheuseofcoalToachieveapeakingofemissionsbefore2030andnetzeroby2060,Chinaneedstoaccelerateitsphase-downofcoaluseforpowergeneration,althoughcoalwouldremainanimportantenergycarrierintothe2030s.Ensuringthatemissionspeakbefore2030willrequirethedevelopmentandeffectiveimplementationofdetailedplans.Thoseplanswillneedtoincludesometransitionalmeasuresthatcandeliverinterimimprovementsinthecleanuseofcoal,butsuchmeasuresmustnotinhibitorbeattheexpenseofthedevelopmentofothercleanenergytechnologieshighlightedinthispaper.By2050,inIRENA’s1.5°CScenario,coalproductiongloballywilldeclinetoaround240milliontonnesperyear,fromaround5750milliontonnestoday,atwentyfourfoldreduction.Theremainingcoalwillbemostlyusedonlyinindustry,primarilyforironandsteelproduction(coupledwithcarboncaptureandstorage,CCS,andaccountingfor5%oftotalsteelproduction),withsomerolealsoinchemicalsproduction.China’stransitionwillneedtofollowasimilarsteepdeclineincoaluse,withtheremaininguseconcentratedinindustry(IRENA,2021a).BeyondthedirectimpactonCO2emissions,reductionincoaldemandcanhavewiderimpacts.Thehealthimplicationsofcoalminingandparticulateemissionfromburningcoalarewelldocumented.WhileChinahastakenmajorstepstoreduceemissionsfromcoalplants,suchasits2015requirementforallcoalplantstocomplywith“ultra-low-emissionstandards”before2020,challengesremain(Wuetal.,2019).5CHINA'SROUTETOCARBONNEUTRALITY减少煤炭需求将对货运要求产生深远影响。在中国,一半以上的煤炭是通过铁路从采煤区或港口运输到最终用户的,包括使用为在地区之间运输煤炭而专门修建的铁路线。其余的煤炭通过陆路或水路运输。天然气的作用天然气的大规模使用已经增长。中国石油天然气集团有限公司是世界上最大的天然气生产商之一,年产量为1500亿立方米(CNPC,2021)。一些国家计划使用天然气作为过渡燃料,以摆脱煤炭和石油的使用,即使到2050年,全球天然气仍将继续在能源供应中占很大份额。然而,鉴于其高度依赖进口,这对中国来说可能不是一个可取的策略。中国进口其总天然气供应的40%,主要是液化天然气(LNG),但也有一些管道供应。随着时间的推移,中国有望成为全球最大的液化天然气进口国。中国现有的天然气基础设施仍然有限。这包括传输管道容量和存储容量(地质限制了该国的地下储气容量)(IRENA,2021a)。中国的天然气基础设施主要由三大国有企业(中国石油天然气股份有限公司、中国石油化工集团有限公司和中国石油天然气集团有限公司)主导。正在进行改革以吸引投资;然而,鉴于最终需要减少使用,此类投资和改革有可能造成资产搁浅和对外依存度增加。可供中国探讨的建议包括:1.通过国家碳排放交易体系控制排放,同时减少并最终停止对煤炭生产和使用的补贴•逐步加强中国的国家碳排放交易体系,以提高排放量最大的工厂的碳减排,特别是燃煤电厂。中国应该在“十五五”能源规划期间以减少煤炭消费为目标,这将是摆脱煤炭长期转型的一个重要信号。•尽管中国近年来已采取措施减少化石燃料补贴,但它仍然是煤炭勘探、生产、加工和运输补贴的最大提供者,2017-2019年平均每年约为40亿美元;它也是最大的化石燃料发电支持提供者,在此期间平均每年提供约380亿美元(IISD,2020年)。作为GDP的一部分,中国的化石燃料补贴处于二十国集团(G20)国家的中间位置。所有主要经济体都需要消除这些扭曲,包括中国。2.制定煤炭依赖地区的经济转型战略增加生产和使用清洁能源技术带来的工作和收入可以完全取代因煤炭使用量减少而失去的工作。这样做需要仔细规划,但国际上关于如何公正地这样做的证据和经验越来越多。通过知识和经验交流,中国可以就如何为依赖煤炭的地区制定经济转型战略做出明智的决定,同时尽可能减少对当地经济的不利影响。24Reducingcoaldemandwillhaveaprofoundeffectonfreighttransportrequirements.InChina,morethanhalfofallcoalistransportedbyrailwayfromcoalminingregionsorharbourstoendusers,includingusingraillinesbuiltspecificallytotransportcoalamongregions.Therestofthecoalistransportedbyeitherroadorwater.TheroleofnaturalgasTheuseofnaturalgasatscalehasgrown.ChinaNationalPetroleumCorporationisoneoftheworld’slargestproducersofnaturalgas,producing150billioncubicmetresperyear(CNPC,2021).Somecountriesplantousenaturalgasasatransitionfueltomoveawayfromcoalandoiluse,andgloballynaturalgaswillcontinuetocontributealargeshareoftheenergysupplyevenin2050.However,thismaynotbeapreferablestrategyforChinagivenitshighdependencyonimports.Chinaimports40%ofitstotalgassupply,mostlyasliquefiednaturalgas(LNG)butalsosomepipelinesupply.Overtime,Chinaisexpectedtobecometheworld’slargestLNGimporter.China’sexistingnaturalgasinfrastructureisstilllimited.Thisincludestransmissionpipelinecapacityaswellasstoragecapacity(geologylimitsthecountry’sundergroundgasstoragecapacity)(IRENA,2021a).GasinfrastructureinChinaismostlydominatedbythreestate-ownedcompanies(PetroChina,SinopecandCNPC).Reformisunderwaytoattractinvestment;however,giventheeventualneedtoreduceuse,suchinvestmentsandreformsriskcreatingstrandedassetsandincreasedforeigndependency.RECOMMENDATIONSFORCHINATOEXPLOREINCLUDE:1.Curbemissionsthroughthenationalemissionstradingscheme,whilereducingandeventuallyhaltingsubsidiesforcoalproductionanduse•ProgressivelystrengthenChina’snationalemissionstradingschemetorampupcarbonemissionreductionfromthemostemittingplants,notablycoal-firedpowerplants.Chinashouldaimtoreducecoalconsumptionduringtheperiodofthe15thFive-YearEnergyPlan,whichwouldbeanimportantsignalforthelong-termtransitionawayfromcoal.•WhileChinahastakenstepsinrecentyearstoreducefossilfuelsubsidies,itremainsthelargestproviderofsubsidiesforcoalexploration,production,processing,andtransport,averagingaroundUSD4billionannuallyduring2017-2019;itisalsothelargestproviderofsupporttofossilfuel-basedpower,averagingaroundUSD38billionannuallyduringtheperiod(IISD,2020).AsashareofGDP,China’sfossilfuelsubsidiesputitinthemiddleoftheGroupofTwenty(G20)countries.Allmajoreconomiesneedtoremovethesedistortions,Chinaincluded.2.Developeconomictransitionstrategiesforcoal-reliantregionsJobsandincomefromtheincreasedproductionanduseofcleanenergytechnologiescanfullyreplacethejobslostfromreducedcoaluse.Doingsorequirescarefulplanning,butthereisagrowingbodyofevidenceandexperienceinternationallyonhowtodosofairly.Throughknowledgeandexperienceexchange,Chinacouldmakewell-informeddecisionsonhowtodevelopeconomictransitionstrategiesforcoal-reliantregionswithasfewadverseimpactsaspossibleonlocaleconomies.62.4加快向可再生能源转型在煤炭消费量下降的同时,中国的总发电量需要增加,在使用符合净零目标的技术的情况下。根据“1.5°C情景”的设想,到2050年,随着电气化和使用电燃料(e-fuel)的作用的提高,全球电力供应将比今天的水平增加两倍。在中国,预计会出现类似的趋势,电力需求将显着增长,尽管略低于全球平均水平,因为中国近几十年的电力供应增长已经很明显。中国可再生能源发展自2006年中国实施《可再生能源法》以来,可再生能源的快速发展在减少大气污染和温室气体排放方面发挥了重要作用。2021年,中国可再生能源总装机容量达到1063吉瓦,占全球可再生能源总发电量的三分之一以上,占中国总发电量的44.8%(中国政府,2021)。这种势头将继续下去。中国的目标是,到2030年,非化石燃料在一次能源消费中的比重达到25%,在10年内(从2020年起)提高近10个百分点。到2030年,太阳能光伏和风力涡轮机的总装机容量目标是超过1200吉瓦。在过去十年中,中国可再生能源的成本急剧下降。IRENA的成本数据显示,中国陆上风电项目的加权平均总装机成本从2010年的每千瓦1500美元下降到2020年的每千瓦1264美元,下降了16%,而陆上风力发电厂的加权平均平准化电力成本从每千瓦时0.071美元降至每千瓦时0.037美元,下降了47%。太阳能光伏的下降更为明显,同期中国公用事业规模太阳能光伏项目的加权平均总安装成本下降了84%至0.04美元/千瓦时(IRENA,2021b)。可再生能源作为未来的主要能源可再生能源应该是首选的发电路线,在中国,可再生能源应该成为电力供应的骨干,使太阳能、风能和水电成为主要的发电来源。到2050年,可再生能源有可能供应全球总电力的90%,高于2018年的25%。在IRENA的1.5°C情景中,到2050年,可再生能源装机容量需要从目前的2500吉瓦增加到接近27800吉瓦。这需要大幅加速,以使可再生能源发电容量每年增加约850吉瓦——比当前水平增加四倍(IRENA,2021a)。风能和太阳能光伏发电的贡献最大,到2050年将共同满足全球总电力需求的63%,到2050年太阳能光伏发电装机容量将超过14000吉瓦,风电装机容量将超过8100吉瓦。其他成熟的可再生技术(例如水力发电、生物能源)与其他技术(例如聚光太阳能发电、海洋和地热)也将发挥重要作用。太阳能和风能在中国电力系统中的作用一直在上升,近年来在许多情况下处于世界领先地位。这一趋势在未来只会加速,到2050年,中国的大部分电力容量和发电量将来自这两个主要来源。CHINA'SROUTETOCARBONNEUTRALITY252.4AcceleratingthetransitiontowardsrenewablepowerAtthesametimeascoalconsumptionisbeingscaleddown,China’stotalpowergenerationcapacityneedstoincrease,usingtechnologiesconsistentwiththenetzerogoal.The1.5°CScenarioenvisagesatriplinginelectricitysupplygloballyby2050comparedtotoday’slevel,astheroleofelectrificationanduseofelectrofuels(e-fuels)rises.InChina,asimilartrendisexpectedwithpowerdemandincreasingsignificantlyalthoughslightlylessthantheglobalaverage,sinceChina’selectricitysupplygrowthinrecentdecadeshasalreadybeenpronounced.China’sdevelopmentofrenewablepowerSinceChina’simplementationofitsRenewableEnergyLawin2006,therapiddevelopmentofrenewableshasplayedanimportantroleinreducingbothatmosphericpollutionandgreenhousegasemissions.In2021,China’stotalinstalledrenewablepowergenerationcapacityreached1063GW,accountingformorethanone-thirdoftheglobaltotalrenewablepowergenerationcapacityand44.8%oftheChinesetotalpowergenerationcapacity(GovernmentofChina,2021).Thismomentumissettocontinue.Chinaaimstoincreasetheshareofnon-fossilfuelsinitsprimaryenergyconsumptionto25%by2030–anincreaseofnearly10percentagepointsinadecade(from2020).ThecombinedinstalledpowergenerationcapacityofsolarPVandwindturbinesistargetedtoexceed1200GWby2030.ThecostofrenewablepowerinChinahasdroppedsharplyoverthepastdecade.IRENA’scostdatashowthattheweighted-averagetotalinstalledcostforonshorewindprojectsinChinadropped16%fromUSD1500perkWin2010toUSD1264perkWin2020,whiletheweighted-averagelevelisedcostofelectricityfromonshorewindfarmsfell47%fromUSD0.071perkWhtoUSD0.037perkWh.SolarPVhasexperiencedmorepronounceddeclines,withtheweighted-averagetotalinstalledcostforutility-scalesolarPVprojectsinChinafalling84%toUSD0.04perkWhduringthesameperiod(IRENA,2021b).RenewablesastheprimaryfuturesourceofenergyRenewablesshouldbethepreferredrouteforpowergeneration,andinChinarenewablepowershouldbecomethebackboneofthepowersupply,makingsolarpower,windpowerandhydropowerthedominantgenerationsources.Renewableshavethepotentialtosupply90%oftotalelectricitygloballyby2050,upfrom25%in2018.InIRENA’s1.5°CScenario,renewablepowerinstalledgenerationcapacitywillneedtoincreasefromthecurrentlevelof2500GWtocloseto27800GWin2050.Thisrequiresadrasticaccelerationtoreacharound850GWofannualadditionsinrenewableelectricitygenerationcapacity–afour-foldincreasefromthecurrentlevel(IRENA,2021a).WindandsolarPVwillmakethelargestcontributions,togethersupplying63%oftotalglobalelectricityneedsby2050,withsolarPVinstalledcapacityreachingmorethan14000GWandwindmorethan8100GWby2050.Othermaturerenewabletechnologies(e.g.hydropower,bioenergy)withothertechnologies(e.g.concentratingsolarpower,marineandgeothermal)willalsoplayimportantroles.TheroleofsolarandwindinChina’spowersystemhasbeenontheriseandinmanycaseshasbeenworld-leadinginrecentyears.Thistrendwillonlyaccelerateinthefuture,withthemajorityofelectricitycapacityandgenerationinChinacomingfromthesetwokeysourcesby2050.7CHINA'SROUTETOCARBONNEUTRALITY可再生能源作为全球主要能源的潜力受到近年来成本大幅降低的推动。成本降低使得2019年投入使用的75%的陆上风能和40%的公用事业规模太阳能光伏发电的发电成本比任何基于化石燃料的替代方案都更便宜,而在2020年通过拍卖或招标委托的公用事业规模的太阳能光伏发电和陆上风电中,超过75%的价格比最便宜的基于化石燃料的新选项还要低(IRENA,2020c)。这些成本降低意味着采用可再生能源不会导致中国能源成本上升。到2030年,中国各地的平准化电力成本应低于每千瓦时2美分,而不仅仅是在西部省份。可再生能源在全球一次能源供应中的份额也将大幅增加,从14%左右增加到73%。可再生能源将成为气候兼容世界的主要能源。为了实现中国的碳中和目标,需要遵循类似的趋势。虽然成熟的可再生能源技术需要加速扩大规模,但在中国,一些新兴的可再生能源技术也具有巨大潜力。离岸风力发电(底部固定或浮动地基)可以在该国发挥重要作用,靠近沿海城市地区的离岸风电场减少了从偏远地区传输的需求。根据中国国家能源局的数据(NEA,2022),中国已成为离岸风电的全球领导者,2021年装机容量接近17吉瓦。可供中国探讨的建议包括:1.发挥中国在可再生能源方面的优势和经验,加快部署中国在可再生能源部署方面处于世界领先地位,现在有能力和经验引领世界加快部署速度。最大限度地利用太阳能、风能和水电应该是增加新容量的主要策略。初步目标应该是维持2020年实现的年部署率,到2030年实现显着更高的部署率。到2050年,可再生能源有可能满足中国90%以上的电力需求,其中60%以上即将来自太阳能和风能。然而,过渡还需要一种系统性方法,特别是储能容量和智能能源管理系统,以提供未来能源系统维持安全可靠运行所需的灵活性。2.刺激新兴可再生能源技术的开发和采用除了采取行动扩大成熟的可再生能源技术之外,中国还应继续培育新兴技术,尤其是离岸可再生能源。离岸风电(底部固定或浮动地基)可以发挥重要作用,靠近沿海城市地区的离岸风电场减少了从偏远地区传输的需求。26Thepotentialofrenewablesasthedominantglobalenergysourceisdrivenbythedramaticcostreductionsofrecentyears.Thecostreductionissuchthat75%oftheonshorewindand40%oftheutility-scalesolarPVcommissionedin2019producedelectricitymorecheaplythananyfossilfuel-basedalternative,whilemorethan75%oftheutility-scalesolarPVandonshorewindcommissionedin2020fromauctionsortendershadlowerpricesthanthecheapestnewfossilfuel-basedoption(IRENA,2020c).ThesecostreductionsmeanthattheadoptionofrenewableswillnotresultinhigherenergycostsinChina.By2030,thelevelisedcostofelectricityshouldbebelow2UScentsperkWhacrossChina,andnotjustinthewesternprovinces.Theshareofrenewablesinprimaryenergysupplygloballywillalsoseealargeincrease,fromaround14%to73%.Renewableswillthenbecometheprimarysourceofenergyinaclimate-compatibleworld.TomeetChina’scarbonneutralityaim,asimilartrendwillneedtobefollowed.Whilematurerenewabletechnologiesrequireacceleratedscale-up,thereisalsosignificantpotentialinChinaforsomeemergingrenewabletechnologies.Offshorewind(witheitherbottom-fixedorfloatingfoundations)couldplayasignificantroleinthecountry,withoffshorewindfarmslocatedclosetocoastalurbanareasreducingtheneedfortransmissionfromremoteregions.Chinahasbecomethegloballeaderinoffshorewind,withnearly17GWofcapacityinstalledin2021,accordingtotheChineseNationalEnergyAdministration(NEA,2022).RECOMMENDATIONSFORCHINATOEXPLOREINCLUDE:1.ExploitChina’sstrengthsandexperiencewithrenewablestoacceleratedeploymentChinaisleadingtheworldinrenewableenergydeploymentandnowhasthecapacityandexperiencetoleadtheworldinsteppingupthedeploymentrate.Maximisingsolar,windandhydropowershouldbetheprimarystrategyfornewcapacityadditions.Theinitialgoalshouldbetosustaintheannualdeploymentrateachievedin2020,andtoachieveasignificantlyhigherrateby2030.Renewableshavethepotentialtosupplymorethan90%ofChina’selectricityneedsby2050,withmorethan60%ofthiscomingfromsolarandwind.However,thetransitionwouldalsorequireasystemicapproach,particularlyenergystoragecapacityandintelligentenergymanagementsystemstoprovidetheflexibilitythatthefutureenergysystemswouldneedtomaintainsafeandreliableoperations.2.StimulatethedevelopmentanduptakeofemergingrenewabletechnologiesInadditiontoactionstoscaleupmaturerenewablepowertechnologies,Chinashouldcontinuetofosteremergingtechnologies–inparticularoffshorerenewables.Offshorewind(witheitherbottom-fixedorfloatingfoundations)couldplayasignificantrole,withoffshorewindfarmslocatedclosetocoastalurbanareasreducingtheneedfortransmissionfromremoteregions.82.5改革电力网络尽管风能和太阳能光伏等可再生能源正在迅速发展成为未来的主导能源,但其可变性会给电力系统的安全稳定运行带来挑战。为了解决这个问题,电力系统需要变得更加灵活,以允许整合高份额的可变可再生电力。在1.5°C情景下,到2030年,可变可再生能源在全球总发电量中的份额应达到42%,到2050年,90%的装机容量和63%以上的发电量应来自可变资源(高于目前全球平均约20%的装机容量和近10%的发电量)(IRENA,2021a)。鉴于中国的可再生资源潜力,中国可变可再生电力的份额应该相似或可能略高。去中心化、数字化和电气化实现这一目标需要一个能源系统,该系统应该越来越去中心化、数字化和电气化。中国需要考虑如何改变和重新优化其电力系统,从目前占主导地位的传统集中式系统转变为集集中式和分布式发电系统相结合的混合配置。中国还需要一个更灵活的跨区域能源和电力市场来维持转型。中国存在明显的区域差异:目前水力发电70%在西南,风力发电80%在北方,太阳能发电60%在西部,东部和中部地区用电最多(70%)。加强区域间贸易将有助于充分利用这些互补性并平衡供需。然后可以通过当地可再生能源的发电和大量使用存储技术来补充这一点。在国家电网和中国南方电网的网络中部署更多的可再生能源将需要重新优化区域/国家电网系统,包括在配电网络层面,以实现基于可再生能源的分布式发电系统的更多应用。总体而言,设计良好、鼓励灵活性并以低成本保持可靠性的电力市场必须支撑这一未来。电力市场应实施稀缺定价以表明灵活性的需求,建立一体化的多省现货市场,为所有资源在现货市场创造公平竞争环境,让所有火力发电企业暴露于现货市场价格信号下,并注重现货市场监管。这也将涉及到更充分地利用数字技术和改革电力市场体系,对于那些在分布式/去中心化技术和提供电网服务方面具有优势的私营公司,尤其需要进一步灵活的市场化政策。还需要将清洁能源供应与最终用途部门联系起来。需求端管理和发展一个有新参与者作为聚合者的竞争市场是很重要的。例如,电动汽车充电公司需要聚集起来,使这些车辆具备大规模需求响应能力,以支持高份额的可变可再生电力。智能充电可以推迟高峰负荷,降低成本。CHINA'SROUTETOCARBONNEUTRALITY272.5ReformingpowernetworksAlthoughrenewableenergysourcessuchaswindandsolarPVarerapidlydevelopingintotheleadingpowersourcesofthefuture,theirvariabilitycanbringchallengestothesafeandstableoperationofthepowersystem.Tocounterthis,powersystemswillneedtobecomemuchmoreflexibletoallowfortheintegrationofhighsharesofvariablerenewableelectricity.Inthe1.5°CScenarioby2030,thevariablerenewableenergyshareintotalpowergenerationshouldreach42%globally,andby2050,90%oftheinstalledcapacityandmorethan63%ofallpowergenerationshouldcomefromvariableresources(upfromanaverageofaround20%oftheinstalledcapacityandnearly10%ofpowergenerationgloballytoday)(IRENA,2021a).SharesofvariablerenewableelectricityinChinashouldbesimilarorpotentiallyslightlyhigher,givenChina’srenewableresourcepotential.Decentralised,digitalisedandelectrifiedAchievingthiswillrequireanenergysystemthatshouldbeincreasinglydecentralised,digitalisedandelectrified.Chinaneedstoconsiderhowtochangeandre-optimiseitspowersystemfromthetraditionalcentralisedsystemthatcurrentlydominatesintoahybridconfigurationthatcombinesbothcentralisedanddistributedpowergenerationsystems.Chinaalsoneedsamoreflexibleinter-regionalenergyandelectricitymarkettosustainthetransition.MarkedregionaldifferencesexistinChina:70%ofcurrenthydropowergenerationisinthesouthwest,80%ofwindpowergenerationisinthenorth,60%ofsolargenerationisinthewest,andmostpowerconsumptionisintheeastandcentralregions(70%).Enhancedinter-regionaltradewillhelpmakethemostofthesecomplementaritiesandbalancesupplyanddemand.Thiscanthenbesupplementedwithgenerationfromlocalrenewableenergyresourcesandhighuseofstoragetechnologies.ThedeploymentofmorerenewableenergyinthenetworksoftheStateGridandtheChinaSouthernPowerGridwillrequirere-optimisingtheregional/nationalpowergridsystem,includingatthedistributionnetworkleveltoenablegreaterapplicationofrenewable-baseddistributedgenerationsystems.Overall,well-designedpowermarketsthatencourageflexibilityandmaintainreliabilityatalowcostmustunderpinthisfuture.Powermarketsshouldimplementscarcitypricingtosignaltheneedforflexibility,establishintegratedmulti-provincialspotmarkets,createalevelplayingfieldinspotmarketsforallresources,exposeallthermalgeneratorstospotmarketpricesignalsandfocusonspotmarketregulation.Thiswillalsoinvolvethefulleruseofdigitaltechnologiesandareformofthepowermarketsystem,whichwillespeciallyneedfurtherflexiblemarket-basedpoliciesforthoseprivatecompanieswithadvantagesindistributed/decentralisedtechnologiesandprovisionofgridservices.Thereisalsoaneedtolinkcleanenergysupplywiththeend-usesectors.Demand-sidemanagementanddevelopingacompetitivemarketwithnewplayersasaggregatorsareimportant.Forexample,electricvehiclechargingcompaniesneedtobeaggregatedtogivethesevehiclesamassdemandresponsecapabilitytosupporthighsharesofvariablerenewableelectricity.Smartchargingcoulddeferpeakloadsandreducecosts.1CHINA'SROUTETOCARBONNEUTRALITY不断变化的能源需求特征——如电动汽车、分布式能源存储、需求响应等——是电力系统设计中日益重要的一个因素。对这一新负荷的管理既可以使系统运行复杂化,也可以减轻系统的运行(后者通过增加灵活性来帮助集成可变可再生电力)。可变可再生电力集成的新兴创新这些变化可以通过采用系统创新来实现——这是一种促进创新技术传播的方法,具有改进的有利环境,例如商业模式、市场结构、新法规和整体系统运营(图1)。因此,可以提高能源系统的灵活性,同时可以将更多可变的可再生电力整合到电力组合中。国际可再生能源机构的报告《可再生能源驱动未来的创新前景》(国际可再生能源机构,2019a)及其随附的简报,确定了30种可组合成综合解决方案的灵活性选项,同时考虑到国家和地区电力系统的具体情况。图1可变可再生电力集成的新兴创新–赋能技术、市场设计、商业模式、系统运作使能技术、市场设计、商业模式、系统运营氢分散系统的运行数字化终端行业电气化贮存区块链可再生能源的价值互补电动汽车太阳能和风能整合的新兴创新鼓励灵活性能源即服务赋能消费者价值空间互补点对点电力交易聚合器改编自国际可再生能源机构,2019a。E28Thecharacteristicofchangingenergydemandprofiles–suchaselectricvehicles,distributedenergystorage,demandresponse,etc.–isafactorofgrowingimportanceinthedesignofpowersystems.Themanagementofthisnewloadcouldeithercomplicateoralleviatesystemoperation(thelatterbyprovidingasourceofincreasedflexibilitytoaidintheintegrationofvariablerenewableelectricity).EmerginginnovationsfortheintegrationofvariablerenewableelectricityThesechangescanbeenabledbytheadoptionofsystemicinnovations–anapproachtofacilitatethediffusionofinnovativetechnologieswithimprovedenablingenvironmentssuchasbusinessmodels,marketstructures,newregulationsandoverallsystemoperations(Figure1).Thus,theflexibilityintheenergysystemcouldbeimproved,whilemorevariablerenewableelectricitycanbeintegratedinthepowermix.IRENA’sreportInnovationLandscapeforaRenewable-PoweredFuture(IRENA,2019a),anditsaccompanyingbriefs,identified30flexibilityoptionsthatcanbecombinedintocomprehensivesolutions,takingintoaccountnationalandregionalpowersystemspecifics.Figure1Emerginginnovationsfortheintegrationofvariablerenewableelectricity–enablingtechnologies,marketdesign,businessmodels,systemoperationAdaptedfromIRENA,2019a.SYSTEMOPERATIONENABLINGTECHNOLOGIESBUSINESSMODELSMARKETDESIGNEmerginginnovationsfortheintegrationofsolarandwindpowerDigitalisationHydrogenBlockchainStorageElectricvehiclesPeer-to-peerelectricitytradingAggregatorsValuespatialcomplementariesEncourageflexibilityEmpoweringconsumersEnergyasaserviceOperationofadecentralisedsystemElectrificationofend-usesectorsValuecomplementariesinrenewablegeneration2框1用于电力和工业过程的二氧化碳去除措施和碳捕获和储存技术在国际可再生能源机构的1.5℃情景中,到2050年,剩余的化石燃料使用和一些工业过程仍会产生一些排放。因此,可以减少排放到大气中的二氧化碳,而二氧化碳去除(CDR)措施和技术结合长期储存,可以从大气或海洋中去除二氧化碳,从而产生负排放。二氧化碳去除措施和技术包括造林和再造林等自然方法和碳捕获和储存生物能源(BECCS)等技术/工程方法。直接空气碳捕获和储存(DACCS)和其他一些方法目前处于试验阶段。虽然到2050年,碳捕获和储存生物能源的全球潜力为每年101亿吨二氧化碳,但1.5°C情景假设将捕获其中44%的二氧化碳,相当于每年捕获45亿吨二氧化碳(高于目前每年可忽略不计的不到0.002亿吨)。碳捕获和储存生物能源最重要的机会是在电力和热电联产工厂以及化工、水泥和钢铁行业。每年还有0.6亿吨的二氧化碳通过化学产品中的碳储量、回收和废物焚烧中的碳捕获被捕获(国际可再生能源机构,2021a)。对中国探索的建议包括:1.继续推进电力市场化改革•中国需要一个更加灵活的能源和电力市场来维持转型。继续推进电力市场改革。•区域间电力市场需要特别关注。中国存在明显的区域差异,加强区域间贸易将有助于充分利用这些互补性,平衡供需。这需要与当地可再生能源的能源生产和存储技术的大量使用相平衡。2.加快电力基础设施升级•满足新型电力系统优化和先进电力及其支撑技术和设备的需求,包括智能电网、储能、分布式系统等数字化技术。•建立并实施支持机制,以激励储能需求。这种机制需要确保储能投资的成本由受益的利益相关者合理分担。在这方面,电力市场改革需要考虑这一点,并为储能提供的电网服务建立一个适当的市场。•刺激区域电力市场间超高压直流输电投资。CHINA'SROUTETOCARBONNEUTRALITY29RECOMMENDATIONSFORCHINATOEXPLOREINCLUDE:1.Continuetopromotepowermarketreform•Chinaneedsamoreflexibleenergyandelectricitymarkettosustainthetransition.Effortsunderwaytopromotepowermarketreformshouldbecontinued.•Theinter-regionalpowermarketrequiresparticularattention.TherearemarkedregionaldifferencesinChina,andenhancedinter-regionaltradewillhelpmakethemostofthesecomplementaritiesandbalancesupplyanddemand.Thisneedstobebalancedwithenergygenerationfromlocalrenewableenergyresourcesandhighuseofstoragetechnologies.2.Acceleratetheupgradeofelectricityinfrastructure•Addresstherequirementsofnewelectricitysystemoptimisationandadvancedelectricityanditssupportedtechnologiesandequipment,includingsmartgrids,energystorage,distributedsystemsandotherdigitaltechnologies.•Establishandimplementasupportmechanismtoincentivisethedemandforenergystorage.Suchmechanismsneedtoensurethatthecostofenergystorageinvestmentisreasonablysharedbythosestakeholderswhobenefit.Inthisregard,powermarketreformwouldneedtotakethisintoaccountandestablishapropermarketforthegridservicesthatenergystoragecouldprovide.•Stimulateinvestmentinultra-high-voltagedirectcurrenttransmissionbetweentheregionalpowermarkets.Box1CDRmeasuresandCCUSforpowerandindustrialprocessesInIRENA’s1.5oCScenario,someemissionswillremainby2050fromtheremainingfossilfueluseandfromsomeindustrialprocesses.Thereisarolethereforebothforcarboncaptureandstorage(CCS)technologiesthatreduceemissionsreleasedtotheatmosphereandforcarbondioxideremoval(CDR)measuresandtechnologies,which,combinedwithlong-termstorage,canremoveCO2fromtheatmosphereoroceans,resultinginnegativeemissions.CDRmeasuresandtechnologiesincludenaturalapproachessuchasafforestationandreforestationandtechnological/engineeredapproachessuchasbioenergywithCCS(BECCS).Directaircarboncaptureandstorage(DACCS)andsomeotherapproachesarecurrentlyexperimental.WhiletheglobalpotentialforBECCSis10.1gigatonnes(Gt)ofCO2peryearby2050,the1.5°CScenarioassumesthatBECCSwillcapture44%ofthis,amountingto4.5GtofCO2peryear(upfromcurrentnegligibleamountsoflessthan0.002Gtperyear).ThemostsignificantopportunitiesforBECCSareinpowerandco-generationplantsandinthechemicals,cement,andironandsteelsectors.Anadditional0.6GtofCO2peryeariscapturedthroughcarbonstocksinchemicalproducts,recyclingandcarboncaptureinwasteincineration(IRENA,2021a).3CHINA'SROUTETOCARBONNEUTRALITY方框1(续)直接空气碳捕获和储存技术将发挥作用,但目前仍处于发展的初级阶段。直接空气碳捕获和储存可能需要很多年才能达到产生重大影响的规模。根据现有实践的经验,尽管项目的选址具有灵活性,但它们对能源、水和土地的需求将很高。在正确评估这种潜力之前,还需要进一步的开发和验证。碳捕获、利用和封存(碳捕获、利用和封存)在中国能源转型中的作用更有争议,尽管它不是本报告的重点,但它的吸收对其他技术有重要影响,因此需要在这里进行讨论。对于碳捕获、利用和封存是否会在中国的长期碳中和战略中发挥重要作用,全球和中国的分析界存在分歧。一些中国专家认为碳捕获、利用和封存在脱碳方面的作用有限,而另一些专家则认为它将发挥重要作用。在国际可再生能源机构的分析中,碳捕获、利用和封存(即从点源捕获二氧化碳并进行长期储存)将在净零策略中发挥作用,但(BE碳捕获、利用和封存除外,下文将讨论)应有针对性地使用碳捕获、利用和封存,并主要限制在不适合可再生能源选择或最初成本较高的应用和情况下。在国际可再生能源机构的1.5°C情景中(国际可再生能源机构,2021a),碳捕获、利用和封存的作用仅限于捕获水泥、钢铁、蓝氢和化工生产过程中的排放,以及有限地用于工业/垃圾焚烧炉等。碳捕获和利用(CCU)应用于化石燃料或过程排放,在短期内可能发挥有限的作用,改善早期项目的经济效益。它也可能弥补缺乏容易获得和可利用的二氧化碳储存地点的问题,但它在中期不应发挥重大作用,因为在许多情况下它仍可能导致向大气的净排放。到2050年,使用碳捕获和利用和碳捕获、利用和封存处理工艺排放的二氧化碳将从目前的0.04亿吨增加到每年3.4亿吨(国际可再生能源机构,2021a)。目前,全球运行中的碳捕获、利用和封存商业电厂数量非常少,但中国在这方面走在了前列,在电力、煤化工和水泥行业拥有多家商业电厂。中国还在钢铁、煤化工等处于不同发展阶段的领域开展了多个试点示范项目。例如,有四个项目是全链碳捕获、利用和封存综合项目,旨在提高石油采收率,并在深层盐水含水层中储存二氧化碳。在考虑工厂选址以实现具有成本效益的碳捕获、利用和封存部署时,运输和储存是两个关键因素。原则上,中国主要沉积盆地具有显着的CO2储存能力。然而,相对于电力和工业流程以及人口中心而言,储存地点的位置以及公众接受程度可能会带来挑战。中国应继续在试点和发展碳捕获、利用和封存能力方面发挥领导作用,但重点是在可再生能源解决方案不足的少数领域有针对性地使用碳捕获、利用和封存和BE碳捕获、利用和封存。30Box1(Continued)DACCStechnologieswillplayarolebutarecurrentlyintheinfancystagesofdevelopment.DACCSwouldlikelytakemanyyearstoreachthescalethatwouldmakeameaningfuldifference.Basedonlessonsfromexistingpractices,projectswouldrequirehighdemandforenergy,waterandland,despitetheirlocationalflexibility.Furtherdevelopmentandvalidationareneededbeforethispotentialcanbeproperlyevaluated.Theroleofcarboncapture,utilisationandstorage(CCUS)inChina’senergytransitionismorecontroversial,andalthoughitisnotthefocusofthisreportitsuptakehasimportantimplicationsforothertechnologiesandhencerequiressomediscussionhere.OpinionsintheglobalandChineseanalyticalcommunitiesaredividedastowhetherCCSwillplayamajorroleinChina’slong-termcarbonneutralitystrategies,withsomeChineseexpertsseeingonlyalimitedroleforCCSindecarbonisationandothersarguingthatitwillplayamajorrole.InIRENA’sanalysis,CCS–i.e.thecaptureofCO2frompointsourcesforitslong-termstorage–willhavearoletoplayinanetzerostrategy,but(withtheexceptionofBECCS,discussedbelow)itsuseshouldbetargetedandmainlylimitedtoapplicationsandcircumstanceswhererenewableoptionsarenotsuitableorareinitiallymorecostly.InIRENA’s1.5°CScenario(IRENA,2021a),theroleofCCSislimitedtocapturingprocessemissionsincement,ironandsteel,bluehydrogenandchemicalproduction,aswellaslimiteddeploymentforindustry/wasteincinerators,etc.Carboncaptureandutilisation(CCU)appliestofossilfuelorprocessemissionsandmayhavealimitedroleintheshortterm,improvingtheeconomicsofearlyprojects.ItmayalsocompensateforalackofreadilyavailableandaccessibleCO2storagesites,butitshouldnothaveasignificantroleinthemediumtermsinceinmanycircumstancesitcanstillleadtonetemissionstotheatmosphere.TheuseofCCUandCCSforprocessemissionswouldincreaseto3.4GtofCO2capturedannuallyinindustryby2050,upfrom0.04Gttoday(IRENA,2021a).ThenumberofCCSoperationalcommercialplantsgloballyiscurrentlyverysmall,butChinaisattheforefrontofthatexplorationwithseveralcommercialplantsinthepower,coal-chemicalandcementsectors.Chinahasalsocarriedoutseveralpilotanddemonstrationprojectsintheironandsteelandcoal-chemicalsectorsthatareatvariousstagesofdevelopment.Fourprojects,forexample,areintegratedfull-chainCCSprojectsforenhancedoilrecoveryandstorageofCO2indeepsalineaquifers.Transportandstoragearetwokeyfactorswhenconsideringthesitingofplantsforcost-effectiveCCSdeployment.Thereis,inprincipal,significantCO2storagecapacityinChina'smainsedimentarybasins.Thelocationofstoragesites,however,relativetothepowerandindustrialprocessesandpopulationcentres,alongwithpublicacceptanceconcerns,maycreatechallenges.ChinashouldcontinueitsleadingroleinpilotinganddevelopingCCScapabilitybutwithafocusonthetargeteduseofCCSandBECCSinthosefewareaswhererenewablesolutionswillnotbesufficient.42.6提高终端使用部门的电气化水平中国的碳达到峰值和中和目标需要从根本上改变国家生产和消费能源的方式,这不会比最终需求更明显。迫切需要确定如何以最佳方式将快速扩大的清洁能源供应与需求联系起来,而且越来越清楚的是,最终用途部门的电气化应该是实现这一目标的首选。电气化是最终用途部门脱碳的主要途径可再生电力(特别是风能和太阳能光伏)成本的大幅降低为运输、工业和建筑开辟了新的具有成本效益的选择。对于高比例的最终能源需求(大于50%),直接电气化将是最有效的解决方案。其余问题需要通过使用清洁燃料和一些有限的传统化石燃料使用(主要是天然气)来解决。国际可再生能源机构正在与中国国家电网公司合作,评估可再生能源电气化的潜力。该研究表明,鉴于技术的快速发展和可再生电力发电成本的降低,电气化将在世界能源转型中发挥越来越重要的作用。各种最终用途部门更好地利用电力的技术-包括电动汽车,电加热,电解氢气和合成燃料生产-尽管处于不同的发展阶段,但进展迅速。中国电气化在中国,电气化和可再生能源的结合已经开始改变轻型道路运输和建筑等行业,并有望为大幅减少使用化石燃料能源的碳排放做出贡献。在过去的几十年里,这两个行业的电气化意味着中国的整体电气化速度超过了其他主要地区(图2),运输是这个领域的一个特别亮点:图2最终能源消耗(a)、交通(b)和住宅建筑(c)商业和公共建筑的电气化率,1980-2017年9%90%8%80%7%70%6%60%5%50%4%40%3%30%2%20%1%10%0%0%100%90%80%70%60%50%40%30%20%10%0%世界经合组织总计欧盟28日本挪威南非美国非经合组织合计巴西俄罗斯联邦印度中国198019851990199520002005201020152016201720181980198519901995200020052010201520162017201819801985199019952000200520102015201620172018资料来源:国际可再生能源机构2022c。CHINA'SROUTETOCARBONNEUTRALITY312.6Increasingtheelectrificationofend-usesectorsChina’sgoalofcarbonpeakingandneutralityrequiresfundamentalchangesinhowthecountrybothproducesandconsumesenergy,andthiswillbenomoreevidentthaninfinaldemand.Thereisapressingneedtodeterminehowtobestlinkrapidlyexpandingcleanenergysupplieswithdemand,anditisincreasinglyclearthattheelectrificationofend-usesectorsshouldbethefirstchoicetomakethispossible.Electrificationasaprimaryroutefordecarbonisingend-usesectorsDramaticreductionsinthecostofrenewableelectricity(notablywindandsolarPV)openupnewcost-effectiveoptionsfortransport,industryandbuildings.Forahighproportionofend-useenergydemand(greaterthan50%),directelectrificationwillbethemostefficientsolution.Theremainderwillneedtobeaddressedthroughtheuseofcleanfuelsandsomelimitedlegacyfossilfueluse(mostlynaturalgas).IRENAisworkingwiththeStateGridCorporationofChinatoassessthepotentialofelectrificationwithrenewables.Theworkshowsthatelectrificationwillhaveanincreasinglyimportantroleintheworld’senergytransition,giventherapidtechnologydevelopmentandthereductioningenerationcostsofrenewableelectricity.Thetechnologiesforavarietyofend-usesectorstobetteruseelectricity–includingelectromobility,electricheating,hydrogenviaelectrolysis,andproductionofsyntheticfuels–havebeen,albeitatvariousstagesofdevelopment,progressingfast.ElectrificationinChinaInChina,thecombinationofelectrificationandrenewablesisalreadystartingtotransformsectorssuchaslight-dutyroadtransportandbuildingsandisexpectedtocontributetosubstantialreductionofcarbonemissionsfromtheuseoffossilfuelenergysources.Inthelastdecades,electrificationinthosetwosectorsmeansthattheoverallrateofelectrificationinChinaisoutpacingthatofothermajorregions(Figure2).TransportisanespeciallybrightspotFigure2Electrificationrateinfinalenergyconsumption(a),transport(b)andresidentialbuildings(c)commercialandpublicbuildings,1980-2017Source:IRENA,2022c.OECDtotalEU28JapanNorwayUnitedStatesNon-OECDtotalBrazilRussianFederationIndiaChinaSouthAfricaWorld0%10%30%20%60%50%40%70%80%90%100%198019851990199520002005201020152016201720180%1%2%3%4%5%6%7%8%9%198019851990199520002005201020152016201720180%10%30%20%60%50%40%70%80%90%198019851990199520002005201020152016201720185CHINA'SROUTETOCARBONNEUTRALITY虽然挪威是电动汽车市场增长的世界冠军,但中国在加速采用方面进展迅速,约占全球乘用电动汽车销量的一半,占全球电动巴士销量的近100%。中国可以继续将其在城市交通电气化方面的世界领先经验在深圳和北京等城市——整个公交车队都在转向电力——扩展到其他快速发展的城市地区。尽管加快电气化的步伐至关重要,但国际可再生能源机构和国家电网的工作传递出的一个关键信息是,需要避免不协调的电气化,这可能会增加系统峰值,并给输配电网络造成问题。通过良好的规划和数字化实现的智能电气化将是减少高峰负荷的必要条件,从而将增加电网选项或增加更多发电能力的投资需求降至最低。增加负荷的灵活性,以更好地匹配可变可再生能源的输出,将有助于在电力结构中增加可变可再生电力的使用,并允许其他部门使用可再生电力。这可以通过负荷转移、智能技术以及绿色氢的生产和储存等方式实现。中国已经有了这种智能电气化战略的经验,以充分利用低成本的可变可再生电力。国家可以在电转热的基础上继续努力,比如在内蒙古自治区,在集中供热系统中安装电锅炉将利用该地区的主要风力发电能力,否则,由于输电限制,该地区的风力发电能力将会减少。可变可再生电力的低成本产能也与新型创新的需求侧管理措施(如电动汽车的智能充电,或为电动汽车提供大规模需求响应能力的聚合器)非常匹配。到2017年底,中国已拥有超过45万个充电站(GSEP,n.d.),以及国家电网的智能电动汽车到电网服务网络(SEGSN),建设广泛的智能电动汽车充电网络的努力可以继续下去,以确保交通电气化不会淹没电网。深化电气化的机会尽管中国已经在电动汽车、区域供热系统、电锅炉和热泵等领域的交通和建筑电气化方面取得了重大进展,但未来几年将出现更多利用可再生能源实现低成本电气化的机会:•在建筑物中,加热和冷却可以由热泵提供,从而提高效率。更重要的是,当热泵可以由智能电表/恒温器控制时,它们基本上可以作为一个灵活的负载来响应需求管理方案(如果有的话)。•对于建筑环境,特别是在人口密度高的地区,与单独的热泵相比,中国采用热泵技术的区域供热和供冷方案将具有更好的技术和经济意义。与仅以电力为来源的系统相比,该网络还可以为更多样化的加热和冷却来源(包括储能)提供机会来满足这种热能需求。32inthisregard:whileNorwayistheworldchampioninelectricvehiclemarketgrowth,Chinahasmovedfastinacceleratingadoption,representingaroundhalfofglobalpassengerelectriccarsalesandnearly100%ofglobalelectricbussales.Chinacancontinuetoexpanditsworld-leadingexperienceinurbanmobilityelectrificationincitieslikeShenzhenandBeijing–whereentirebusfleetsareshiftingtoelectricity–tootherrapidlygrowingurbanareas.Whileincreasingthepaceofelectrificationwillbecritical,akeymessagefromtheworkofIRENAandStateGridistheneedtoavoidun-co-ordinatedelectrification,whichcouldthreatentoincreasesystempeaksandcauseissuesfortransmissionanddistributionnetworks.Smartelectrificationenabledbygoodplanninganddigitalisationwillbeanecessitytoreducepeakloads,thusminimisingtheneedforinvestmentsinenhancinggridoptionsoraddingmoregenerationcapacity.Increasingtheflexibilityoftheloadstobettermatchtheoutputsofvariablerenewableswouldhelptoincreasetheuseofvariablerenewableelectricityinthepowermixandallowothersectorstouserenewableelectricity.Thiscanbeachievedthrough,forexample,loadshifting,smarttechnologies,andtheproductionandstorageofgreenhydrogen.Chinaalreadyhasexperiencewithsuchsmartelectrificationstrategiestotakefulladvantageoflow-costvariablerenewableelectricity.Thecountrycouldbuildonpower-to-heateffortssuchasthoseintheInnerMongoliaAutonomousRegion,forexample,wheretheinstallationofelectricboilersindistrictheatingsystemswouldmakeuseoftheregion’smajorwindpowercapacitythatotherwisewouldbecurtailedduetotransmissionconstraints.Low-costcapacityofvariablerenewableelectricityalsopairsextremelywellwithnewandinnovativedemand-sidemanagementinitiativeslikesmartchargingofelectricvehicles,oraggregatorsthatgiveelectricvehiclesamassdemandresponsecapability.ThepushtobuildextensivesmartelectricvehiclechargingnetworksinChina–whichhadmorethan450000chargingstationsbytheendof2017(GSEP,n.d.),aswellasStateGrid’sSmartEV-to-GridServiceNetwork(SEGSN)–canbecontinuedtoensurethattransportelectrificationdoesnotoverwhelmthegrid.OpportunitiesfordeeperelectrificationWhileChinaisalreadymakingsignificantprogressinareassuchastheelectrificationoftransportandbuildingswithelectricvehicles,districtheatingsystems,electricboilers,andheatpumps,evenmoreopportunitiesforlow-costelectrificationwithrenewableswillpresentthemselvesinthecomingyears:•Inbuildings,heatingandcoolingcanbeprovidedbyheatpumps,whichdelivergreaterefficiencies.Moreimportantly,whenheatpumpscanbecontrolledbysmartelectricitymeters/thermostats,theyessentiallyserveasaflexibleloadrespondingtodemandmanagementschemes,ifany.•Forthebuiltenvironment,especiallyinareaswithhighpopulationdensity,districtheatingandcoolingoptionswithheatpumptechnologiesinChinawouldmakebettertechnicalandeconomicsensecomparedtoindividualheatpumps.Thenetworkcanalsoofferanopportunityformorediversifiedsourcesofheatingandcooling,includingenergystorage,thanasystemwithonlyelectricityasasourcetomeetsuchthermaldemand.6•在中国的电气化进程中,区域气候的巨大季节性差异将是重要的考虑因素。如果中国需要的规模能够以具有成本竞争力的方式发展,那么一个越来越有希望的解决方案似乎是季节性热能储存。•对于工业,尤其是能源密集型行业,将业务转移到可再生能源丰富的地区将使工业从具有成本竞争力的可再生电力中受益,同时减少其碳足迹。沿着这些路线的一个有希望的做法是使用绿色氢来替代焦煤作为炼铁过程中的还原剂。这可能适用于中国,因为该国的主要铁矿石储量位于西部,那里有极好的可再生能源资源。创新已经在推动此类战略,而国际可再生能源机构即将发布的《最终用途部门电气化创新前景》报告将对新兴的系统创新进行全面评估,这些创新可以进一步释放电力在运输、建筑和工业中的潜力。对中国探索的建议包括:1.制定电力在国家能源系统中作用的长期愿景,确保电气化的具体愿景反映在建设或扩展智能电气化基础设施(包括输配电网、充电网络、设施)的长期路线图和计划中以及用于氢气生产和分配的管道,以及区域供热和冷却系统。2.加快落实继续扩大智能充电基础设施规模,支持国家电网智能电动车并网服务网络等数字电网技术和解决方案,以管理新的负荷模式,优化可变可再生电力的使用,并探索可提供部门间协同效应的技术。扩大在中国利用大规模集中式解决方案的努力,例如区域供热和供冷,以及城市交通的车队电气化。在满足其他关键生产要素的前提下,探索将能源密集型产业转移到可再生能源成本较低的地区,如西部和北部地区。3.适应法规进一步推动价格改革(包括电力、天然气、供暖和水),并使用价格信号。消除创新技术或所有权模式的障碍。为广泛采用和使用热泵、电锅炉、智能电表和电器提供奖励或资金。加强建筑规范,要求提高建筑物的效率,并支持现有建筑物的耐候性。CHINA'SROUTETOCARBONNEUTRALITY33•LargeseasonaldifferencesinregionalclimatewillbeimportanttoconsiderinChina’selectrificationprocess.Anincreasinglypromisingsolutionappearstobeseasonalthermalenergystorage,ifthescalethatChinawouldneedcanbedevelopedinacost-competitivemanner.•Forindustry,especiallyforenergy-intensivesectors,therelocationofoperationstoregionswithabundantrenewableenergysourceswouldallowindustriestobenefitfromcost-competitiverenewableelectricitywhilereducingtheircarbonfootprints.Apromisingpracticealongtheselinesisusinggreenhydrogentosubstitutecokecoalasareductionagentintheiron-makingprocess.ThiscouldbeapplicableforChina,asthecountry’smajorironorereservesarelocatedinthewestwhereexcellentrenewableenergyresourcesarepresent.Innovationisalreadyenablingsuchstrategies,andIRENA’supcomingInnovationLandscapefortheElectrificationofEnd-UseSectorsreportwillprovideacomprehensiveassessmentoftheemergingsystemicinnovationsthatcanunlockfurtherpotentialofelectricityintransport,buildingsandindustry.RECOMMENDATIONSFORCHINATOEXPLOREINCLUDE:1.Developalong-termvisionoftheroleofelectricityinthecountry’senergysystemEnsurethatthespecificvisionforelectrificationisreflectedinlong-termroadmapsandplansforbuildingorexpandingsmartelectrificationinfrastructure,includingtransmissionanddistributiongrids,chargingnetworks,facilitiesandpipelinesforhydrogenproductionanddistribution,anddistrictheatingandcoolingsystems.2.Accelerateimplementation•ContinuetoscaleupsmartcharginginfrastructureandsupportdigitalgridtechnologiesandsolutionssuchasSEGSNtomanagenewpatternsofload,tooptimisetheuseofvariablerenewableelectricity,andtoexploretechnologiesthatoffersynergiesamongsectors.•ExpandoneffortsinChinathattakeadvantageoflarge-scalecentralisedsolutionssuchasdistrictheatingandcooling,andfleetelectrificationforurbanmobility.•Exploretherelocationofenergy-intensiveindustriestositeswithlow-costrenewablepower,suchasthewesternandnorthernregionsofChina,providedthattheothercriticalfactorsforproductioncanalsobesatisfied.3.Adaptregulations•Furtherpromotepricereforms(includingforelectricity,naturalgas,heatingandwater),andusepricesignals.•Removebarrierstoinnovativetechnologiesorownershipmodels.•Provideincentivesorfundsforthewidespreadadoptionanduseofheatpumps,electricboilers,andsmartmetersandappliances.•Strengthenbuildingcodestorequiregreaterefficiencyinbuildings,andsupportweatherisationofexistingbuildings.7CHINA'SROUTETOCARBONNEUTRALITY2.7扩大可再生能源的直接利用,特别是生物质能将进一步需要更大规模的太阳能热能、生物能和地热能,通过直接利用这些资源,为空间供暖和制冷(吸收式制冷机)和热水以及工业流程提供零碳热能。在1.5°C情景中,到2050年,可再生能源(即太阳能、地热和生物能源)的直接使用将需要增长到最终能源使用总量的近22%,到2050年提供78艾焦耳(EJ),而2018年为44艾焦耳(国际可再生能源机构,2021a)。生物能源是实现碳中和的重要支柱生物能源(包括传统的生物质能)构成当今全球可再生能源使用的大部分,约占全球最终能源使用总量的十分之一。生物能源在某些工业终端使用部门中作为能源和可替代化石燃料的原料具有关键作用,它有助于平衡具有高比例可变可再生能源(如太阳能光伏和风能)的电网。生物能源技术发展迅速,到2050年具有扩大规模的巨大潜力。在1.5°C情景中,现代形式的生物能源可以满足的最终能源需求份额将从目前的1.5%增加到2050年的17%。同时,生物能源的传统用途(占当今生物质使用量的很大一部分)必须被现代生物能源技术取代(国际可再生能源机构,2021a)。在中国,现代生物质以及废物转化为能源的原料是未被充分利用的资源,需要新的战略来确保它们得到可持续利用。在那些被称为难以消减的行业,包括钢铁、水泥、铝和化工等能源密集型工业部门,以及交通运输行业的某些领域,生物能源可以发挥重要作用:•在交通运输领域,尽管最近电动汽车更适合轻型和短途运输,但生物燃料可以提供更好的性能来满足长途或重型货运的运输需求。国际可再生能源机构的研究表明,在旨在将全球温升控制在2°C以下的情景下,到2050年,我们将需要6520亿升液体生物燃料,比2017年的水平增加五倍(国际可再生能源机构,2020b);这也表明净零目标将需要更高的产量。•在建筑领域,生物质已被用于通过区域供热网络提供供热,在某些情况下,这些网络与基于生物质的热电联产(CHP)工厂或单个熔炉相连。这样的应用程序可以在未来扩大规模。•对于化工等一些工业部门,生物质能提供一种可行的选择,以替代用于生产的化石原料和提供中低温热量的化石燃料。此外(如插文1中所讨论的),全球某些电力生产和工业过程(例如水泥生产)将需要具有碳捕获、利用和封存的生物质。然而,除了将生物质用于不同应用的竞争性用途之外,工业部门生产生物燃料和生物质原料的成本还必须进一步降低。原料供应的可持续性将继续成为使生物质能在这些最终用途部门得到更多应用的关键因素。因此,在需要的地方,342.7Expandingthedirectuseofrenewables,particularlybiomassforenergypurposesSolarthermal,bioenergyandgeothermalwillbefurtherneededatgreaterscaletoprovidezero-carbonthermalenergyforspaceheatingandcooling(absorptionchillers)andhotwaterinbuildings,aswellasforindustrialprocesses,throughdirectuseoftheresources.Inthe1.5°CScenariothedirectuseofrenewables(i.e.solarthermal,geothermalandbioenergy)wouldneedtogrowtoalmost22%oftotalfinalenergyuseby2050,providing78exajoules(EJ)in2050comparedto44EJin2018(IRENA,2021a).BioenergyasanessentialpillarindeliveringcarbonneutralityBioenergy(includingthetraditionaluseofbiomass)constitutesthebulkoftoday’sglobalrenewableenergyuseandaccountsforaroundone-tenthoftheglobaltotalfinalenergyuse.Bioenergyhaskeyrolesasasourceofenergyandasafeedstockthatcanreplacefossilfuelsinsomeindustrialend-usesectors,anditcancontributetobalancinganelectricitygridthathashighsharesofvariablerenewablessuchassolarPVandwind.Bioenergytechnologiesaredevelopingrapidlyandhavesignificantpotentialtoscaleupby2050.Inthe1.5°CScenario,theshareoffinalenergydemandthatcanbemetwithmodernformsofbioenergyincreasesto17%in2050,from1.5%today.Meanwhile,traditionalusesofbioenergy,whichaccountforalargeshareoftoday’sbiomassuse,mustbereplacedwithmodernbioenergytechnologies(IRENA,2021a).InChina,modernbiomass,aswellaswaste-to-energyfeedstocks,areunderutilisedresourcesthatwillrequirenewstrategiestoensurethattheyareexploitedsustainably.Inthosesectorsknownashard-to-abate,includingenergy-intensiveindustrialsectorssuchasironandsteel,cement,aluminium,andchemicals,aswellascertainsegmentsofthetransportindustry,bioenergycanhaveanimportantroletoplay:•Inthetransportsector,despitetherecentuptakeofelectricvehicles,whicharemoresuitableforlight-dutyandshort-distancetransport,biofuelscanprovidebetterperformancetomeetlong-haulorheavy-freighttransportneeds.IRENA’sstudyshowsthatinascenariothataimstokeepglobaltemperaturerisetobelow2°C,wewillneed652billionlitresofliquidbiofuelsby2050,representingafive-foldincreasefromthe2017level(IRENA,2020b);thisalsosuggeststhatanetzerogoalwillrequireevenhighervolumes.•Inthebuildingssector,biomasshasbeenusedtoprovideheatingsupplythroughdistrictheatingnetworksthatinsomecasesareconnectedtobiomass-basedcombinedheatandpower(CHP)plantsorindividualfurnaces.Suchapplicationscanbescaledupinthefuture.•Forsomeindustrysectorssuchaschemicals,biomassoffersaviableoptionasasubstituteforfossil-basedfeedstocksforproductionandforfossilfuelsinprovidinglow-tomedium-temperatureheat.Inaddition(asdiscussedinBox1)biomasswithCCSwillbeneededgloballyforsomepowerproductionandindustrialprocesses,forinstanceincementproduction.However,inadditiontocompetingusesofbiomassfordifferentapplications,thecostsofproducingbiofuelsandbiomass-basedfeedstocksforindustrialsectorswouldhavetobefurtherreduced.Thesustainabilityoffeedstocksupplywillcontinuetobeacriticalfactorforenablinggreaterapplicationofbiomassintheseend-usesectors.Therefore,whereverneeded,8应该对生物能源的使用进行适当的风险评估,包括环境和社会影响。国际可再生能源机构的分析表明,如果在监管、认证和监测方面采取有效措施,则可以满足实现1.5°C情景所需的生物质水平,而不会对林业和其他土地利用目的产生不利影响。对中国探索的建议包括:1.更充分地将生物质的利用纳入能源系统和农村发展计划生物质已广泛应用于食品、饲料、化肥和能源等诸多领域。它的能源应用仅占新兴生物经济的一小部分,但可能会大幅扩大规模。可以创造生物能源应用与农业和林业等其他部门的协同作用。因此,中国应在能源、农业和林业政策制定者之间建立跨部门协调机制,以确保在规划将生物质用作能源和其他用途的原料时采取全面综合的方法。2.应对农村生物质能源使用方面的挑战目前,中国有近10亿吨农林废弃物可用于能源,每年有18亿吨畜禽粪便可转化为沼气和有机肥(NFA,2021)。除了太阳能光伏和风能,这些资源还可以形成“能源农业”产业。农村地区既可以是能源消费者,也可以是能源供应商。中国应优先考虑农村各类有机废弃物(农林废弃物、生活垃圾、畜禽粪便、果蔬废弃物、生活污水等)的可持续利用,综合考虑促进新型农村能源和废弃物战略。生产形式和农村就业。3.促进生物精炼厂在各种基于生物质的最终用户中创造更大的价值生物精炼厂可以以更可持续和更有效的方式使用生物质,其产品可以满足不同应用的需求,从而为生物质作为原料以及最终用户创造更大的价值。生物精炼厂还将有助于更好地协调将生物质用于生物能源目的和生产生物基工业材料。因此,中国应建立一个多方利益相关者交流和知识交流的平台,以促进将生物精炼厂作为建设未来生物质应用综合基础设施的关键组成部分。4.将碳捕获、利用和封存新技术与生物能源相结合生物质能二氧化碳捕获与封存可能提供减少某些工业部门碳排放的潜力;如果管理得当,该技术还可以吸收大气中已经存在的碳,从而实现负排放。虽然随着时间的推移已经建立了更多的试点项目,但仍然缺乏大规模应用,这表明技术成本前景存在不确定性。中国可以更好地评估生物质能二氧化碳捕获与封存的潜力,并制定一项战略,以促进其技术发展,并通过初期示范项目支持其部署。CHINA'SROUTETOCARBONNEUTRALITY35aproperriskassessmentforbioenergyuse,includingenvironmentalandsocialimpacts,shouldbeperformed.IRENA’sanalysissuggeststhatthelevelsofbiomassneededtodeliverthe1.5°Cscenariocanbemetwithoutadverseimpactsonforestryandotherland-usepurposes,ifeffectivemeasuresinregulation,certificationandmonitoringaretaken.RECOMMENDATIONSFORCHINATOEXPLOREINCLUDE:1.MorefullyintegratetheuseofbiomassinbothenergysystemandruraldevelopmentplansBiomasshasbeenbroadlyusedinmanysectorssuchasfood,feed,fertiliserandenergy.Itsenergyapplicationsaccountforonlyasmallportionoftheemergingbio-economybutcouldpotentiallyscaleupdramatically.Thesynergiesofbioenergyapplicationswithothersectorssuchasagricultureandforestrycanbecreated.Therefore,Chinashouldestablishcross-sectoralco-ordinationmechanismsamongenergy,agricultureandforestrypolicymakerstoensureafullyintegratedapproachinplanningtheuseofbiomassasafeedstockforenergyandotherpurposes.2.AddresschallengesinruralbiomassenergyuseAtpresent,nearly1billiontonnesofagriculturalandforestryresiduesinChinacouldbeusedforenergypurposes,and1.8billiontonnesoflivestockandpoultrymanureisavailableannuallyforconversionintobiogasandorganicfertiliser(NFA,2021).AlongsidesolarPVandwindenergy,theseresourcescouldforman“energyagriculture”industry.Ruralareascanbebothenergyconsumersandenergysuppliers.Chinashouldprioritisethesustainableuseofvariousorganicwastes(agriculturalandforestryresidues,domesticwaste,livestockandpoultrymanure,fruitandvegetablewaste,domesticsewage,etc.)inruralareas,andcomprehensivelyconsiderruralenergyandwastestrategiesthatpromotenewformsofproductionandruralemployment.3.Promotingbiorefineriestocreategreatervalueamongvariousbiomass-basedendusersBiorefineriescanusebiomassinamoresustainableandefficientway,andtheirproductscanmeettheneedsofdifferentapplications,thuscreatinggreatervalueforbiomassasafeedstockaswellasforendusers.Biorefinerieswillalsohelpbetterreconciletheuseofbiomassforbioenergypurposesandtoproducebio-basedindustrialmaterials.Chinathereforeshouldestablishaplatformformulti-stakeholdercommunicationandexchangeofknowledgeinpromotingtheadoptionofbiorefineriesasakeycomponentofbuildingtheintegratedinfrastructureforfuturebiomassapplications.4.IntegratenoveltechnologiesforCCUSwithbioenergyBECCU/Smightofferthepotentialtoreducecarbonemissionsinsomeindustrialsectors;ifwellmanaged,thetechnologycanalsoabsorbcarbonthatisalreadyintheatmosphere,thusrealisingnegativeemissions.Althoughmorepilotprojectshavebeenestablishedovertime,thereisstillalackoflarge-scaleapplication,indicatingtheuncertaintyoftechnologycostoutlooks.ChinacouldbetterevaluatethepotentialofBECCU/Sanddevelopastrategythatwouldnurtureitstechnologicaldevelopmentandsupportitsdeploymentthroughdemonstrationprojectsattheinitialstage.9CHINA'SROUTETOCARBONNEUTRALITY2.8扩大氢和合成燃料的生产和使用氢气可以为难以直接通电的能源需求类型提供解决方案。除了上面讨论的直接使用可再生能源外,它还可以解决由于技术、物流或经济因素可能不适合直接电气化的大约50%的最终能源使用(国际可再生能源机构,2020d)。目前全球氢气产量约为每年1.2亿吨(Mt)(14EJ),其中33Mt在中国生产,并且几乎完全以化石为基础。展望未来,如国际可再生能源机构的1.5°C情景所示,到2050年,氢及其衍生物将能够提供全球12%的最终能源使用量。估计其中三分之二将使用可再生电力生产,即绿色氢。生产这将需要2050年将27%的发电容量用于绿色氢生产,或到2050年满足21,000TWh的电力需求(国际可再生能源机构,2021a)。到2050年,中国的氢气使用量可增长四倍,其中大部分增长由工业部门推动。要实现这一点,需要大幅扩大电解槽的制造和部署。到本世纪中叶,全球将需要约5000吉瓦的氢电解槽容量,高于目前的0.3吉瓦,这将需要在2050年期间平均每年安装约160吉瓦的电解槽(国际可再生能源机构,2021a)。目前,全球氢气产量中只有不到1%是绿色氢气。然而,随着绿色氢气生产成本的持续降低,预计中国将在氢气行业发挥关键作用,不仅作为需求来源和电解槽供应商,而且作为绿色氢气生产国,鉴于可再生能源发电能力的快速增长(国际可再生能源机构,2020e)。中国将在氢能产业中至少扮演两个关键角色。首先,能源需求的规模和经济可以代表氢的驱动力。到2020年,中国拥有540吉瓦的可再生能源产能,占全球钢铁产量的60%,以及氨、甲醇和高价值化学品产量的30%。鉴于中国的规模,这些行业中的一小部分可能代表着大量的氢气需求和电解槽部署。其次,中国具有工业活动大、劳动力成本相对较低的优势,可以为成为其他国家的电解槽供应商提供条件。中国已经拥有大型电解槽制造商(如中国船舶工业集团公司(PERIC)研究院、科克瑞尔-晶力氢能和天津大陆),并且生产电解槽的资金成本较低。然而,根据中国氢能与燃料电池产业创新战略联盟发布的《2021年中国氢能与燃料电池产业发展报告》,由于所使用的技术和材料,与西方同行相比,中国电解槽的效率较低,寿命较短(海沃德,2022)。这意味着中国需要更高水平的技术创新来提高其电解槽的性能.绿色氢的潜力中国在扩大绿色氢生产方面具有巨大潜力,但重要的是要确保用于氢的任何可再生产能都是计划活动的补充,并且氢不会取代更有效的电力使用(即直接使用)。这与中国尤其相关,因为电力部门占可再生362.8ScalinguptheproductionanduseofhydrogenandsyntheticfuelsHydrogencanofferasolutionfortypesofenergydemandthatarehardtodirectlyelectrify.Alongsidethedirectuseofrenewablesdiscussedabove,itcanaddresssomeoftheroughly50%offinalenergyusethatmaynotbesuitablefordirectelectrificationduetotechnological,logisticaloreconomicfactors(IRENA,2020d).Currentglobalhydrogenproductionisaround120milliontonnes(Mt)(14EJ)annually,ofwhich33MtisproducedinChina,anditisalmostentirelyfossil-based.Lookingforward,hydrogenanditsderivativeswillbeabletoprovide12%ofglobalfinalenergyuseby2050,asshowninIRENA’s1.5°CScenario.Anestimatedtwo-thirdsofthiswouldbeproducedusingrenewableelectricity,i.e.greenhydrogen.Producingthiswillrequirededicating27%ofthegenerationcapacityin2050togreenhydrogenproduction,or21000TWhofelectricitydemandby2050(IRENA,2021a).China’suseofhydrogencangrowuptofourtimesby2050,withthebulkofthegrowthdrivenbytheindustrialsector.Deliveringthiswillrequireasignificantscale-upinelectrolysermanufacturinganddeployment.Globallyaround5000GWofhydrogenelectrolysercapacitywillbeneededbymid-century,upfromjust0.3GWtoday,whichwillrequirearound160GWofelectrolyserstobeinstalledannuallyonaverageduringtheperiodto2050(IRENA,2021a).Currentlylessthan1%ofglobalhydrogenproductionisgreenhydrogen.Yet,alongwithcontinuedreductioninthecostofgreenhydrogenproduction,Chinaisexpectedtoplayakeyroleinthehydrogenindustry,notonlyasasourceofdemandandasasupplierofelectrolysersbutalsoasaproducerofgreenhydrogen,giventherapidgrowthinrenewableelectricitygenerationcapacity(IRENA,2020e).Chinawillplayatleasttwokeyrolesinthehydrogenindustry.First,thesizeofenergydemandandtheeconomycanrepresentadriverforhydrogen.Chinahad540GWofrenewablecapacityin2020,andaccountsfor60%ofglobalsteelproduction,andfor30%ofammonia,methanolandhigh-valuechemicalproduction.Asmallshareoftheseindustriescouldrepresentalargehydrogendemandandelectrolyserdeployment,givenChina’sscale.Second,Chinahastheadvantagesoflargeindustrialactivityandrelativelylowlabourcosts,whichcanprovidetheconditionstobecomeasupplierofelectrolyserstoothercountries.Chinaalreadyhaslargeelectrolysermanufacturers(suchastheresearchinstituteofChinaStateShipbuildingCorporation(PERIC),Cockerill-JingliHydrogenandTianJinMainland)aswellasalowercapitalcostforelectrolysersproduced.However,accordingtotheChinaHydrogenEnergy&FuelCellIndustryDevelopmentReport2021fromChina’sHydrogenEnergy&FuelCellsIndustryInnovationStrategicAlliance,Chineseelectrolysershavelowerefficienciesandshorterlifespanscomparedtotheirwesternpeersduetothetechnologiesandmaterialsused(Heyward,2022).ThisimpliesthatChinawouldneedagreaterleveloftechnologicalinnovationtoimprovetheperformanceofitselectrolysersGreenhydrogen’spotentialThereissubstantialpotentialtoscaleupgreenhydrogenproductioninChina,althoughitwillbeimportanttoensurethatanyrenewablecapacityusedforhydrogenisadditionaltotheplannedactivitiesandthathydrogenisnotdisplacingmoreefficientusesofelectricity(i.e.directuse).ThisisespeciallyrelevantforChina,sincethepowersectorhasa28%10能源的28%,但煤炭占发电的近三分之二(Gielen,Chen和Durrant,2021年)。如果不能确保这种可再生能源能力的额外部署,可再生能源最终可能会大量用于氢气生产,从而推迟淘汰为消费者提供电力的燃煤电厂。我国北方省份风能资源优良,容量系数可达50%以上,西部省份青藏高原太阳能资源优良。这可能导致这些地点近期内的电价约为每兆瓦时(MWh)30美元,到2030年更普遍的成本为每兆瓦时20美元。这些低成本将使绿色氢成为最具竞争力的途径用于制氢。使用低成本的可再生电力,即每兆瓦时约20美元,绿色氢已经可以以与蓝色氢竞争的成本生产。如果在未来十年内迅速扩大规模,预计到2030年,绿氢将在许多国家开始与蓝氢竞争(图3)。绿色氢应用氢气的运输成本可能比电力便宜十倍,因此绿色氢气还可以提供一种方式,将中国北部和西部省份的可再生资源与位于该国东部和东南部的工业和城市地区连接起来。此外,通过提供额外的灵活性,绿色氢能有助于将更多的可再生能源整合到电力部门,并且可以提供季节性存储来补充短期存储(例如电池)。近期在中国使用绿色氢气需要考虑的领域包括:•工业用途:工业占最终能源需求的60%左右,同时工业是当今主要的氢用途,每年几乎达到2500万吨氢图32020-2050年制氢成本今天20504.03.53.02.52.01.51.00.5考虑到燃料成本为1.9至5.7美元/吉焦,采用CCS的化石燃料技术生产氢气的成本3.532.511.380.0电解槽成本840美元/千瓦电解槽成本200美元/千瓦LCOE(美元/兆瓦时):40LCOE(美元/兆瓦时):20注:假设负载系数为4200小时,转换效率在2020年为65%,在2050年为75%。来源:国际可再生能源机构,2019b。LCOH(美元/公斤H2)CHINA'SROUTETOCARBONNEUTRALITY37renewablesharebutcoalrepresentsnearlytwo-thirdsofthegeneration(Gielen,ChenandDurrant,2021).Ifsuchadditionalityindeployingrenewablepowergenerationcapacityisnotensured,renewablescouldendupbeingusedsubstantiallyforhydrogenproduction,thusdelayingthephase-outofcoalplantsinprovidingelectricityforconsumers.Chinahasexcellentwindresourcesinthenorthernprovincesthatcanreachcapacityfactorsofabove50%,aswellasexcellentsolarresourcesintheTibet-Qinghaiplateauinthewesternprovinces.ThiscanpotentiallyleadtoelectricitypricesofaroundUSD30permegawatthour(MWh)intheneartermattheselocationsandamorewidespreadcostofUSD20perMWhby2030.Theselowcostswouldallowgreenhydrogentobecomethemostcompetitivepathwayforhydrogenproduction.Greenhydrogencanalreadybeproducedatcostscompetitivewithbluehydrogentoday,usinglow-costrenewableelectricity,i.e.aroundUSD20perMWh.Ifrapidscale-uptakesplaceinthenextdecade,greenhydrogenisexpectedtostartbecomingcompetitivewithbluehydrogenby2030inawiderangeofcountries(Figure3).GreenhydrogenapplicationsHydrogencanbetentimescheapertotransportthanelectricity,sogreenhydrogencouldalsoprovideawaytoconnecttherenewableresourcesinChina’snorthernandwesternprovinceswiththeindustrialandurbanareaslocatedinthecountry’seastandsouth-east.Inaddition,greenhydrogencancontributetointegratingmorerenewablesinthepowersectorbyprovidingadditionalflexibilityandcanprovideseasonalstoragecomplementingshort-termstorage(e.g.batteries).AreastoconsiderforgreenhydrogenuseinChinainthenearterminclude:•Industrialuse:Industryrepresentsaround60%offinalenergydemand,whileatthesametimeindustryisthedominanthydrogenusetoday,reachingalmost25MtperyearofFigure3Hydrogenproductioncosts,2020-2050Note:Assumesaloadfactorof4200hoursandconversionefficienciesof65%in2020and75%in2050.Source:IRENA,2019b.Today2050ElectrolysercostUSDkWElectrolysercostUSDkWLCOE(USD/MWh):40LCOE(USD/MWh):20LCOH(USDkgH)CostofproducinghydrogenwithfossilfuelstechnologieswithCCSconsideringafuelcostfromtoUSDGJ11CHINA'SROUTETOCARBONNEUTRALITY对中国探索的建议包括:1.制定支持性政策框架出台鼓励工业燃料转变的政策,并将合格燃料的范围扩大到氢及其衍生物。同时,探索解决碳泄漏风险的监管措施,以在保持工业竞争力的同时实现氢气的使用。2.展示和积累氢气最终用途应用的经验其中包括钢铁、船舶氨和航空合成燃料的定向还原。这些路径处于早期部署阶段,但对于实现净零能源系统至关重要,中国可以在这些技术方面获得全球领先地位。3.支持国内电解槽行业今天已经有多家中国制造商提供低成本的电解槽。政府支持可以促进增长、学习和竞争,从而为中国带来技术领先地位。如今,几乎所有这些氢气都是由煤气化产生的。开始用绿色氢来满足部分需求将允许扩大电解槽并有助于降低成本。此外,化工行业仍在增长,这意味着绿色氨和甲醇不需要取代现有生产,而是可以满足新的需求(国际可再生能源机构和氨能源协会,2022)。为此,行业需要激励措施来促进燃料转移(例如扩大排放交易体系,同时减少免费配额),同时采取边境碳调整或机制,以确保维持全球竞争力。•创新:许多关键的氢利用途径仍需要示范和经验。用于炼钢的直接还原、用于船舶的氨和用于航空的合成燃料仍处于开发的早期阶段,同时也代表了净零排放系统的关键途径。这三个部门面临的主要挑战仍然是国际协调和全球竞争力的需要。然而,短期内的早期技术示范工作可能对整个行业的影响有限。•电解:中国已有多家电解槽制造商积累了经验,可以用国内技术满足国内市场。有迹象表明,今天中国的电解槽成本已经低于欧洲的一些项目。利用低劳动力成本和工业制造规模扩大的供应链,中国可以在电解槽制造领域取得领先地位。为这一步骤开发的知识也可能导致技术溢出,并对燃料电池有用,这为最终用途开辟了更广泛的可能性,从固定发电(跨越所有规模)到移动应用(例如运输)。这也符合中国工业计划(中国制造2025),该计划旨在获得绿色能源的技术领先地位。38hydrogen.Almostallthishydrogenisproducedtodayfromcoalgasification.Startingtosatisfypartofthisdemandwithgreenhydrogenwouldallowforscalingupelectrolysersandcontributetocostreduction.Furthermore,thechemicalsectorisstillgrowing,whichmeansthatgreenammoniaandmethanoldonotneedtodisplaceexistingproductionbutcaninsteadsatisfynewdemand(IRENAandAEA,2022).Forthis,industrywouldrequireincentivestopromotefuelshifting(e.g.expansionoftheemissiontradingsystemcoupledwithareductioninfreeallowances)intandemwithbordercarbonadjustmentsormechanismstoensuremaintenanceofglobalcompetitiveness.•Innovation:Manyofthecriticalhydrogenusepathwaysstillrequiredemonstrationandexperience.Directreductionforsteelmaking,ammoniaforshipsandsyntheticfuelsforaviationarestillintheearlystagesofdevelopment,whilealsorepresentingcriticalpathwaysforanetzeroemissionsystem.Themainchallengeforthesethreesectorsremainstheneedforinternationalco-ordinationandglobalcompetitiveness.However,earlyeffortsontechnologydemonstrationintheshorttermmighthavelimitedimpactsintheoverallsectors.•Electrolysis:Chinaalreadyhasmultipleelectrolysermanufacturersthathavebuiltupexperienceandcouldsatisfythedomesticmarketwithdomestictechnology.TherearesomeindicationsthatalreadytodaytheelectrolysercostinChinaislowerthaninsomeprojectsinEurope.Takingadvantageoflowlabourcostsandsupplychainsthathavebeenscaledupforindustrialmanufacturing,Chinacouldattainleadershipinelectrolysermanufacturing.Knowledgedevelopedforthisstepcouldalsoleadtotechnologyspilloverandbeusefulforfuelcells,whichopenupabroaderrangeofpossibilitiesforenduses,fromstationarypowergeneration(acrossallscales)tomobileapplications(e.g.transport).ThiswouldalsobeinlinewiththeindustrialplanforChina(MadeinChina2025),whichaimstoacquiretechnologyleadershipingreenenergy.RECOMMENDATIONSFORCHINATOEXPLOREINCLUDE:1.DevelopasupportivepolicyframeworkIntroducepoliciesthatencouragefuelshiftsinindustryandexpandthescopeofeligiblefuelstohydrogenanditsderivatives.Inparallel,exploreregulatorymeasurestoaddresstheriskofcarbonleakagetoenablehydrogenusewhilemaintainingindustrialcompetitiveness.2.Demonstrateandbuildexperienceinhydrogenend-useapplicationsTheseincludethedirectionreductionofsteel,ammoniaforshipsandsyntheticfuelsforaviation.Thesepathwaysareatearlystagesofdeploymentbutwillbecriticalforachievinganetzeroenergysystem,andChinacouldattaingloballeadershipinthesetechnologies.3.SupportthedomesticelectrolyserindustryAlreadytodaymultipleChinesemanufacturersareprovidinglow-costelectrolysers.Governmentsupportcouldenablegrowth,learningandcompetitionleadingtotechnologicalleadershipforChina.12对中国探索的建议包括:1.鼓励地方当局制定长期的综合城市规划此类计划应具有双重目标,以实现碳中和和更好的宜居性。2.优先考虑分布式能源发电城市能源供应应以最大限度利用当地可再生能源为基础,结合终端使用部门和城市基础设施、数字化智能能源管理系统和提高能源效率。3.有助于能源系统的灵活性城市可以通过使城市能源需求对来自国家电网的可变可再生电力的发电更加敏感,从而有助于提高能源系统的整体灵活性。2.9支持城市成为低碳生活的倡导者过去半个世纪以来,中国的城市化进程非常迅速,而且在规模上几乎是独一无二的。城市居民现在占中国14亿人口的60%(国务院,2020年),中国的“十四五”规划预计到2025年,城市常住人口的比例将达到65%。然而,帮助数百万人摆脱贫困的人口流动,也大幅增加了城市能源消耗。它还使城市内外的环境恶化。由此带来的挑战将中国带到了能源和环境安全的十字路口。城市及其周边地区约占中国能源需求的85%,中国正在考虑如何在未来30年继续保持城市化,因为未来将增加2.55亿城市居民(联合国,2018年)。这就需要在城市层面进行长期的能源转型。城市是多样化的,要找到一个“一刀切”的解决方案极具挑战性。国家电网城市与能源研究院(SGCERI,2019)的数据显示,2016年,工业占中国城市最终能源消耗的70%左右(尽管这一比例自2012年以来一直在下降),建筑占19%左右,交通占11%。全球经验表明,如果城市制定具体的、可实现的能源转型目标,它们更有可能采取行动。要做到这一点,就需要制定一个有明确方向的长期能源战略/计划。未来的城市能源基础设施将受到今天的投资决策和城市规划的影响。必须从长期的、全系统的角度来确定可持续的解决方案,以避免产生搁浅资产。确定城市解决方案的有效分析框架应包括自下而上的规划元素,与长期低碳城市和区域能源战略相协调(IRENA,2020f)。例如,省级和市级的规划应该有效地协调如何以符合国家战略目标的方式降低能源结构的碳含量。CHINA'SROUTETOCARBONNEUTRALITY392.9Supportingcitiesaschampionsoflow-carbonlivingChina’surbanisationoverthepasthalfcenturyhasbeenremarkablyrapidandpracticallyuniqueinscale.Citydwellersnowmakeup60%ofChina’spopulationof1.4billion(StateCouncil,2020),andthecountry’s14thFive-YearPlanprojectedthattheshareofpermanenturbanresidentswouldreach65%by2025.Yetthemigrationthathelpedbringmillionsoutofpovertyhassharplyincreasedurbanenergyconsumption.Ithasalsodegradedtheenvironmentinandaroundcities.TheresultingchallengeshavebroughtChinatoacrossroadsinenergyandenvironmentalsecurity.Cities,andtheirsurroundingareas,representaround85%ofChina’senergydemand,andthecountryiscontemplatinghowitcansustaincontinuedurbanisationforanotherthreedecades,withafurther255millioncitydwellerssettobeadded(UN,2018).Thiscallsforalong-termenergytransformationatthecitylevel.Citiesarediverse,makingitextremelychallengingtofindaone-size-fits-allsolution.Industryaccountedforaround70%oftheurbanfinalenergyconsumptioninChinain2016(althoughthissharehasbeendecliningsince2012),whilebuildingsaccountedforaround19%andtransportfor11%,accordingtotheStateGridCityandEnergyResearchInstitute(SGCERI,2019).Globalexperiencessuggestthatcitiesaremorelikelytotakeactioniftheysetconcreteandattainabletargetsforenergytransformation.Tomakethishappen,thereisaneedtodevelopalong-termenergystrategy/planwithclearlydefineddirections.Thefutureurbanenergyinfrastructurewillbeshapedbytoday’sinvestmentdecisionsandurbanplanning.Sustainablesolutionsmustbeidentifiedfromalong-term,system-wideperspectivetoavoidthecreationofstrandedassets.Aneffectiveanalysisframeworktoidentifysolutionsforcitiesshouldincludebottom-upplanningelementsthatreconcilewiththelong-termlow-carbonurbanandregionalenergystrategies(IRENA,2020f).Forexample,provincialandmunicipal-levelplanningshouldbeco-ordinatedeffectivelyonhowtodecarbonisetheenergymix,inwaysconsistentwithnationalstrategicobjectives.RECOMMENDATIONSFORCHINATOEXPLOREINCLUDE:1.Encouragelocalauthoritiestodeveloplong-termintegratedurbanplanningSuchplansshouldhavetwinaimstoachievecarbonneutralityandbetterliveability.2.PrioritisedistributedenergygenerationUrbanenergysupplyshouldbebasedonmaximiseduseoflocalrenewableenergyresourceswiththesupportofcouplingend-usesectorsandurbaninfrastructure,digitalisedintelligentenergymanagementsystemsandimprovedenergyefficiency.3.ContributetoenergysystemflexibilityCitiescancontributetoenhancingtheoverallflexibilityoftheenergysystemthroughmakingtheurbanenergydemandmoreresponsivetogenerationfromvariablerenewableelectricityfromthenationalgrid.13CHINA'SROUTETOCARBONNEUTRALITY方框2城市案例研究:张家口的城市能源转型国际可再生能源机构和张家口市政府一直在探索张家口市到2050年的城市能源转型。张家口的案例研究表明,在市级层面存在需要考虑的重要实际障碍,例如跨能源和工业部门、可再生能源应用的终端用途多样化、氢在未来经济中的作用、政策创新和机构能力增强(包括通过先进的城市能源规划获得授权)。作为中国首创,张家口2050年能源转型战略为中国其他许多渴望摆脱煤炭能源系统并利用可再生能源技术和其他使能技术的城市树立了新的典范,如电动汽车、氢气生产和应用、电池存储系统和智能电网。有关城市的更多见解,请参阅《张家口2050年能源转型战略》报告(国际可再生能源机构,2019c)以及国际可再生能源机构在该领域即将开展的工作。2.10继续推进轻型运输,向重型和长途运输方式拓展中国电力供应系统中可再生能源成本的下降和份额的上升为交通运输行业的转型打开了大门,主要集中在直接和间接电气化。铁路运输已经在很大程度上由电力驱动,虽然对于轻型公路运输来说降低CO2排放的优选途径相对明确,但对于重型公路货运、航运和航空来说,最佳途径则不太确定。减少交通排放可以通过行为改变、城市规划和提高燃料效率来实现。然而,这些工具很难产生该行业完全脱碳的结果。为了将该行业转变为碳中和,可以加速这种转变的技术选择包括直接使用清洁的、最好是可再生的电力(用于铁路和公路运输,包括重型公路货运);使用绿色或蓝色电子燃料,例如氢、氨和其他电子燃料(特别是用于航运和一些重型公路货运);和生物燃料的使用(特别是用于航空)。就在几年前,由于当时可再生电力和电池的成本以及制造成本都较高,因此在交通运输中更广泛地使用电力还被视为一种奢侈的解决方案。然而,近年来,发电成本的持续下降使得可再生能源发电在全球许多地4.改革城市垃圾利用中国巨大的城市垃圾是一个非常大的间接碳减排市场。应改革废物的收集和处理,以鼓励回收和适当处置,包括通过收费系统。404.ReformurbanwasteuseChina’shugemunicipalwasteisaverylargemarketforindirectcarbonemissionreduction.Thecollectionandtreatmentofwasteshouldbereformedtoincentiviserecyclingandappropriatedisposal,includingthroughachargingsystem.Box2Citycasestudy:UrbanenergytransformationinZhangjiakouIRENAandZhangjiakouMunicipalGovernmenthavebeenexploringurbanenergytransformationforZhangjiakoucitytowards2050.TheZhangjiakoucasestudyshowsthatimportantpracticalbarriersexistatthemunicipallevelthatneedtobeconsidered,suchasco-ordinatedlong-termplanningacrosstheenergyandindustrialsectors,diversificationofendusesforrenewableenergyapplications,theroleofhydrogeninthefutureeconomy,policyinnovation,andinstitutionalcapacityenhancement(includingbeingempoweredthroughadvancedurbanenergyplanning).AsthefirstofitskindinChina,theZhangjiakouEnergyTransformationStrategy2050hassetanewparadigmformanyotherChinesecitiesthatareeagertoweantheirenergysystemsoffcoalandtotakeadvantageoftheuptakeofrenewableenergytechnologiesandotherenablingtechnologiessuchaselectricvehicles,hydrogenproductionandapplications,batterystoragesystemsandsmartgrids.MoreinsightsrelatedtocitiescanbefoundinthereportZhangjiakouEnergyTransformationStrategy2050(IRENA,2019c)andforthcomingIRENAworkinthisarea.2.10Continuingprogressinlight-dutytransportandbroadeningtoheavy-dutyandlong-haulmodesFallingcostsandrisingsharesofrenewableenergyinChina’selectricitysupplysystemopenthedoorfortransformingthetransportsector,mostlycentredarounddirectandindirectelectrification.Railtransportisalreadylargelypoweredwithelectricity,andwhilethepreferablepathtoloweringCO2emissionsisrelativelyclearforlight-dutyroadtransport,theoptimalapproachislesscertainforheavy-dutyroadfreighttransport,shippingandaviation.Reducingemissionsfromtransportcanbeachievedthroughbehaviouralchanges,urbanplanningandimprovedfuelefficiencies.Yettheseinstrumentscanhardlyyieldtheresultsofafulldecarbonisationofthesector.Totransformthesectortocarbonneutrality,thetechnologicaloptionsthatcanacceleratesuchtransformationincludethedirectuseofclean,preferablyrenewable,electricity(forrailandroadtransport,includingheavy-dutyroadfreighttransport);theuseofgreenorbluee-fuels,suchashydrogen,ammoniaandothere-fuels(particularlyforshippingandsomeheavy-dutyroadfreighttransport);andtheuseofbiofuels(particularlyforaviation).Thewideruseofelectricityintransportwouldhavebeenviewedasaluxurysolutionjustafewyearsago,duetothethen-highercostsofbothrenewableelectricityandbatteriesinadditiontothemanufacturingcost.However,inrecentyearsthecontinueddecreasein14区具有成本竞争力;此外,电池尺寸的扩大、电动汽车制造能力的提高以及技术成熟度的提高——这是导致成本下降的两个重要因素。在这种背景下,电气化成为交通部门脱碳的一个非常有前景的方案。氢基技术将在所有运输方式的脱碳中发挥重要作用,尤其是在航运和航空领域,在国际可再生能源机构的1.5°C情景中,预计到2050年氢和合成燃料将分别占年度最终能源消耗的60%左右和四分之一。(国际可再生能源机构,2021c)。生物燃料还可以提供技术成熟的选择,用作石油基运输燃料的可行替代品,因为当混合比在一定水平内时,它们不需要或只需最少的车辆发动机改造。此外,生物燃料生产可以为农村发展带来共同利益,刺激农业和木材工业的发展,并为城市废物管理创造额外的收入来源,从而推动循环经济,因为部分废物可以用作原料用于生产生物柴油和沼气等生物燃料。要充分发挥这些选项的潜力,促进交通部门的转型,仍有一些障碍有待消除。国际可再生能源机构的可再生能源实现零排放报告(国际可再生能源机构,2020a)详细探讨了这些选项,并辅以包括航运(国际可再生能源机构,2019d,2021c)和航空生物喷气机(国际可再生能源机构,2021d)在内的深入报告。公路运输客运和轻型公路货运对于乘用车和轻型公路货运而言,纯电动汽车近年来在技术、成本竞争力和市场份额方面都表现出了很大的优势。在许多国家,电动汽车在新轻型汽车销售中所占的份额越来越大,其中全球领先的是挪威,2020年电动汽车占所有汽车销售的54%(路透社,2021年)。如图2所示,中国在电动交通领域已经处于领先地位;然而,仍需要更好地理解几个问题,包括电网在多大程度上能够支持汽车充电电力需求的大幅增长;充电与可再生能源生产的耦合以及管理充电过程所需的措施,包括智能充电基础设施,可以为多辆汽车同步提供充电服务。这些方面将是至关重要的,因为电动汽车预计将在2050年达到中国道路客运活动的80-90%左右,这一增长将导致道路客运车辆的电力消耗增加约25倍。扩大电动汽车规模的关键问题是:提高电池性能、降低电池成本、部署智能和快速充电技术、了解停车和充电行为,以及确保电动汽车制造所需的关键材料供应充足。有关电动汽车的更多见解,请参阅国际可再生能源机构报告“可再生能源驱动未来的创新景观”(国际可再生能源机构,2019a)、创新展望:电动汽车智能充电(国际可再生能源机构,2019e)和能源转型的关键材料:锂(吉伦和里昂,2022)。CHINA'SROUTETOCARBONNEUTRALITY41generationcostshasmadeelectricityfromrenewableenergysourcescostcompetitiveinmanyregionsacrosstheglobe;thisiscoupledwithscaled-upbatterysizesandelectricvehiclemanufacturingcapacitiesandimprovedtechnologicalmaturity–twoimportantfactorsleadingtothecostdecline.Againstthisbackdrop,electrificationbecomesaverypromisingscenariofordecarbonisingthetransportsector.Hydrogen-basedtechnologieswillplayanimportantroleinthisdecarbonisationforalltransportmodes,butparticularlyinshippingandaviationwherehydrogenandsyntheticfuelsareexpectedtoaccountforaround60%andone-quarter,respectively,ofyearlyfinalenergyconsumptionby2050inIRENA’s1.5°CScenario(IRENA,2021c).Biofuelscanalsooffertechnologicallymatureoptionstouseasviablesubstitutesforpetroleum-basedtransportfuelsbecausetheyrequirenoorminimumretrofittingofvehicleengineswhentheblendingratiosarewithincertainlevels.Inaddition,biofuelproductioncouldbringco-benefitstoruraldevelopment,spurthedevelopmentofagro-andwoodindustries,andcreateextrarevenuestreamsformunicipalwastemanagement,thusadvancingthecirculareconomyassomeportionofthewastescanbeusedasfeedstockforproducingbiofuelssuchasbiodieselandbiogas.Therearestillsomebarrierstoberemovedforsuchoptionstoreachtheirfullpotentialscontributingtothetransportsectortransformation.IRENA’sReachingZerowithRenewablesreport(IRENA,2020a)explorestheoptionsindetail,supplementedbydeep-divereportsincludingonshipping(IRENA,2019d,2021c)andonaviationbiojet(IRENA,2021d).RoadtransportPassengerandlight-dutyroadfreighttransportForpassengervehiclesandlight-dutyfreightroadtransport,batteryelectricvehicleshavedemonstratedgreatadvantagesinrecentyearsintechnology,costcompetitivenessandmarketshare.Inmanycountries,electricvehiclesaccountforagrowingshareofnewlight-dutyvehiclesales,withthegloballeaderbeingNorwaywhereelectricvehiclescomprised54%ofallcarssoldin2020(Reuters,2021).Chinaisalreadyaleaderinelectromobility,asshowninFigure2;however,betterunderstandingisstillneededonseveralissues,includingtheextenttowhichtheelectricgridcansupportthesubstantialincreaseinelectricitydemandforvehiclecharging;howtocouplechargingwithvariablerenewableenergyproduction;andthemeasuresneededtomanagethechargingprocesses,includingsmartercharginginfrastructurethatcanprovidechargingservicesforseveralcarssynchronously.Theseaspectswillbecritical,aselectricvehiclesareexpectedtoreacharound80-90%ofroadpassengeractivityinChina2050,anincreasethatwillleadelectricityconsumptionfromroadpassengervehiclestoincreasearoundtwentyfivefold.Criticalissuesforanincreasedscale-upofelectricvehiclesare:improvingbatteryperformance,loweringbatterycosts,deployingsmartandrapidchargingtechnologies,understandingparkingandchargingbehaviours,andensuringadequatesupplyofcriticalmaterialsneededforelectricvehiclemanufacturing.AdditionalinsightsonelectricmobilitycanbefoundintheIRENAreportsInnovationLandscapeforaRenewable-PoweredFuture(IRENA,2019a),InnovationOutlook:SmartChargingforElectricVehicles(IRENA,2019e)andCriticalMaterialsforEnergyTransition:Lithium(GielenandLyons,2022).42重型和长途货运公路运输随着车辆越来越重,行驶距离越来越远,其直接电气化的挑战也越来越大。这不仅适用于重型公路运输,也适用于航空和长途运输。车辆越重,需要的电池电量就越多(例如,一辆重型长途卡车需要的电池按千瓦时计算是特斯拉ModelX电池的15倍)(国际可再生能源署,2020年a)。尽管如此,假设电池性能得到改善,电池的直接电气化是重型公路货运脱碳的一个可靠的可能途径。直接电气化是最有效的途径,预计到2050年,它将在中国公路货运的脱碳过程中发挥重要作用。沿着高速公路部署电缆线可以缓解这种过渡。然而,如果电池的改进没有达到在商业卡车上广泛部署的必要水平,使用由清洁氢气驱动的氢电池也是一种零排放的选择。最后,液体生物燃料可用于所有运输部门,包括公路运输,目前公路运输每年消耗212拍焦耳的液体生物燃料,是迄今为止最大的消耗者,并可能继续如此(尽管航空和航运在市场增长方面具有更大的潜力,因为其他替代选择基本上处于起步阶段)。尽管通过铁路或航运运输货物比公路运输更清洁,但中国大部分商品(包括煤炭)都是通过公路运输。从能源消耗和排放的角度来看,从公路到铁路或水路的模式转变将是有益的。铁路运输使用的能源约为公路运输相同货物所使用能源的七分之一,产生的污染为十三分之一,而水路运输使用的能源为十四分之一,产生的污染为十五分之一(白豫,2020年)。航空航空业也是一个重要的能源使用者和二氧化碳排放者,到2060年使其排放达到净零将是一个挑战,因为这种脱碳不能完全依赖直接电气化。中国是世界上第二大航空市场,仅次于美国;也是增长最快的市场(大流行前),2019年增长7.8%(国际航空运输协会,2020年)。中国作为制造业的大国,在全球经济中发挥着关键作用,向全世界出口商品。在2038年之前,中国的航空市场预计将每年增长5.3%-超过预计的全球年均增长3.8%-预计最快将在2022年成为最大的市场(国际航空运输协会,2020年)。这意味着,中国将是实现全球航空碳中和的关键。主要由于飞机和飞行的物理特性,航空业在脱碳方面的替代燃料选择有限。因此,在全球和中国,航空业的脱碳将依赖于一系列的解决方案,包括通过模式的转变和加强通信技术来减少需求,以及用合成喷气燃料或生物喷气燃料来取代喷气燃料。使用合成燃料和生物喷气在成本和产量方面面临着类似的障碍。电气化预计也将在航空领域发挥重要作用,尽管是次要作用(占能源消耗的五分之一左右),主要用于小型飞机和短途飞行。42Heavy-dutyandlong-haulfreightroadtransportAsvehiclesbecomeheavierandtravellongerdistances,thechallengesfortheirdirectelectrificationincrease.Thisistruenotonlyforheavy-dutyroadtransport,butalsoforaviationandlong-distanceshipping.Theheavieravehicleis,themorebatterypoweritneeds(e.g.aheavy-dutylong-haultruckwillneedabatterythatis15timeslargeronakWh-basisthanaTeslaModelXbattery)(IRENA,2020a).Despitethis,directelectrificationwithbatteries,assuminganimprovementinbatteryperformance,isonecrediblepossiblepathwayforthedecarbonisationofheavy-dutyroadfreighttransport.Directelectrificationisthemostefficientpathway,andby2050itisexpectedtoplayaprominentroleinthedecarbonisationofChineseroadfreighttransport.Thedeploymentofcatenarylinesalonghighwayscouldeasethistransition.However,ifbatteryimprovementsdonotreachthenecessarylevelfortheirwidespreaddeploymentincommercialtrucks,theuseofhydrogencellspoweredwithcleanhydrogenisalsoazero-emissionalternative.Finally,liquidbiofuelsmaybeusedacrossalltransportsectors,includingroadtransport,whichpresentlyconsumes212petajoulesofliquidbiofuelsyearlyandisbyfartheirlargestconsumerandlikelytoremainso(althoughaviationandshippingholdgreaterpotentialintermsofmarketgrowthgiventhattheotheralternativeoptionsarelargelyintheinfancystage).Eventhoughtransportinggoodsviarailorshippingiscleanerthanroadtransport,themajorityofChinesecommodities(includingcoal)aretransportedbyroad.Modalshiftsfromroadtorailorwaterwouldbebeneficialfromanenergyconsumptionandemissionperspective.Railtransportusesaroundone-sevenththeenergyneededtomovethesamegoodsbyroadandproducesone-thirteenththepollution,whiletransportbywaterusesone-fourteenththeenergyandproducesone-fifteenththepollution(Baiyu,2020).AviationAviationisalsoasignificantenergyuserandCO2emitter,andbringingitsemissionstonetzeroby2060willbeachallengesincethisdecarbonisationcannotfullyrelyondirectelectrification.Chinaisthesecondlargestaviationmarketintheworld,trailingbehindonlytheUnitedStates;itisalsothefastestgrowingmarket(pre-pandemic),with7.8%growthin2019(IATA,2020.Chinaplaysakeyroleintheglobaleconomyasapowerhouseofmanufacturing,exportinggoodsallovertheworld.TheaviationmarketinChinaisexpectedtogrow5.3%annuallyuntil2038–exceedingprojectedglobalaveragegrowthof3.8%annually–andisexpectedtobecomethelargestmarketassoonas2022(IATA,2020).ThismeansthatChinawillbekeytorealisingthecarbonneutralityofglobalaviation.Aviationhaslimitedalternativefueloptionsfordecarbonisation,duemainlytothephysicsofaircraftandflight.Therefore,decarbonisingthesector,bothgloballyandinChina,willrelyonamixofsolutionsthatincludereducingdemandthroughmodalshiftsandenhancedcommunicationstechnologies,andreplacingjetfuelwithsyntheticjetfuelorbiojet.Theuseofsyntheticfuelsandbiojetfacesimilarbarriersincostsandproductionvolumes.Electrificationisalsoexpectedtoplayanimportant,albeitsecondary,roleinaviation(accountingforaroundafifthofenergyconsumption),mostlyforsmallaircraftandshort-distanceflights.CHINA'SROUTETOCARBONNEUTRALITY43航运中国是世界上最大的出口国和造船国,在领导向零排放航运过渡方面处于独特的地位。航运脱碳的势头达到了前所未有的高度,一些最大的航运公司已经承诺在2050年前消除其碳排放。中国是国际海事组织的成员,也是其可持续发展努力的支持者,必须准备向零排放航运过渡,否则就有可能失去其作为全球航运业领导者的地位(莫雷,2019年)。在技术方面,国际航运预计将主要依靠合成燃料来取代传统的船舶燃料。绿色氨是一个特别有趣的选择,并且越来越多地被多方列为最佳选择。氨气比氢气更容易处理,也更便宜,而且没有碳排放,与甲醇不同,尽管它确实会释放氧化亚氮,需要进行净化处理。直接电气化也可以在航运中发挥重要作用,特别是在国内和短途航运中。可供中国探讨的建议包括:1.对于国内运输:•继续推广电动汽车和客运充电基础设施,并确保充电基础设施的"智能化"。•为运输部门制定综合路线图,包括氢气在运输中的作用和重型车辆的脱碳计划。•利用其他部门可能提供的共同动力,如降低电池成本的激励措施,其受益者不仅仅是交通部门;对具有成本竞争力的绿色氢气和已建立的绿色氢气使用供应链的需求增加;以及生物燃料的可持续原料来源的供应。2.对于国际航空和航运:•在中国减少碳排放的整体努力的基础上,为航空业制定碳中和战略。•通过提高燃料标准,鼓励企业对低碳行为的承诺,促进对创新技术的投资和扩大成熟技术的部署,来激励采用低碳飞行方式。•对适用于各种使用情况的主要替代燃料(如生物喷气和合成燃料)的现实潜力进行更详细的研究,让政策制定者和行业参与者了解航空部门内部和外部的潜在权衡以及原料和产品的竞争使用。CHINA'SROUTETOCARBONNEUTRALITY43ShippingChinaistheworld’slargestexporterandshipbuilderandisinauniquepositiontoleadthetransitiontozero-emissionshipping.Themomentumtodecarboniseshippingisatanall-timehigh,withsomeofthelargestshippingcompanieshavingmadecommitmentstoeliminatetheircarbonemissionsby2050.China,amemberoftheInternationalMaritimeOrganizationandasupporterofitseffortsonsustainability,mustbepreparedtotransitiontowardszero-emissionshipping,orrisklosingitspositionasaworldwideleaderinshipping(Molloy,2019).Intermsoftechnology,internationalshippingisexpectedtorelylargelyonsyntheticfuelstoreplaceconventionalmarinefuels.Greenammoniaisaparticularlyinterestingoptionandisbeingincreasinglycitedasthebestoptionbymanyparties.Ammoniaiseasierandcheapertohandlethanhydrogenandhasnocarbonemissions,unlikemethanol,althoughitdoesreleasenitrousoxideemissionsthatneedtobescrubbed.Directelectrificationcanalsoplayanimportantroleinshipping,especiallyindomesticandshort-distanceshipping.RECOMMENDATIONSFORCHINATOEXPLOREINCLUDE:1.Fordomestictransport:•Continuetheroll-outofelectricvehiclesandcharginginfrastructureforpassengertransport,andensurethatcharginginfrastructureis“smart”.•Developintegratedroadmapsfortransportsectorsincludingfortheroleofhydrogenintransportandadecarbonisationplanforheavyvehicles.•Exploitpossiblesharedimpetusfromothersectors,suchasincentivesforloweringthecostofbatteriesthatwouldbenefitmorethanjustthetransportsector;increaseddemandforcost-competitivegreenhydrogenandtheestablishedsupplychainforgreenhydrogenuse;andthesupplyofsustainablesourcesoffeedstocksforbiofuels.2.Forinternationalaviationandshipping:•BuildingontheoverallefforttoreducecarbonemissionsinChina,developacarbonneutralitystrategyfortheaviationsector.•Incentivisetheadoptionoflow-carbonflightoptionsbyraisingfuelstandards,encouragingcorporatecommitmentstolow-carbonpractices,andfacilitatinginvestmentininnovativetechnologiesandscale-upofthedeploymentofmaturetechnologies.•Conductmoredetailedstudiesontherealisticpotentialsofkeyalternativefuelssuchasbiojetandsyntheticfuelsthatareapplicableforvarioususecases,toinformpolicymakersandindustryplayersofthepotentialtrade-offsandcompetinguseoffeedstocksandproductswithinandbeyondtheaviationsector.442.11为工业部门实现净零排放奠定基础工业部门一直是推动全球经济的一个关键因素。它们占全球碳排放的28%左右,也是一个主要的排放者。使用化石燃料作为工业的主要能源,只是这一排放贡献的一部分。排放还来自于工业生产过程和产品的生命周期。这使得工业部门实现净零排放的目标既具有挑战性又很重要。四个能源密集度最高的工业分部门-钢铁、化工和石化、水泥和石灰以及铝,其排放量约占整个工业部门总排放量的75%(国际可再生能源署,2020年a)。能源密集型产业的挑战减少能源密集型工业部门的碳排放在技术上是一项艰巨的任务,特别是对四个主导部门而言。此外,需要更多的政策关注,以产生必要的资源来应对这一挑战。这可归因于两个关键因素:1)缺乏经过验证的最佳减排方法,在技术上和经济上都是可行的;2)许多工业产品是全球贸易的商品,如果只有一些国家选择采取工业减排,就会产生对碳泄漏和工业竞争力的合理担忧。工业部门一直在追求提高能源效率,但它们有其局限性,不能单独用于实现净零排放目标。需要在提高能源效率之外进行创新,以减少能源密集度最高的工业部门的大量排放。所有这四个部门都在加紧努力制定减排战略,并正在测试新技术和替代工业生产流程。但要在本世纪中叶达到净零排放,这些努力还有很长的路要走。鉴于剩下的资源和时间有限,需要一个更具战略性和明确的重点,以确定采取何种脱碳途径。中国在一些能源密集型工业产品的生产中占主导地位与其他大型经济体相比,中国工业制造业的主导地位使得中国在该领域实现净零排放具有独特的挑战性。中国的工业部门占最终能源使用总量的60%(包括能源和非能源使用),三分之二的工业能源需求由煤炭满足(另外四分之一由电力满足)。这导致了大约4吉吨的能源相关二氧化碳排放和2吉吨的工艺相关二氧化碳排放,总共占中国二氧化碳排放量的三分之二以下(格兰特和拉森,2020年;刘等人,2019年)。根据国际可再生能源署的分析,在工业部门中,钢铁、铝、化工和石化、水泥和石灰等能源密集型行业的排放量占了绝大部分,如果不采取更有力的政策,预计2020-2050年期间不会有明显下降(图4)。442.11LayingthegroundworkforindustrialsectorstoachievenetzeroemissionsTheindustrialsectorshavebeenacriticalelementinpoweringtheglobaleconomy.Contributingaround28%ofglobalcarbonemissions,theyarealsoamajoremitter.Theuseoffossilfuelsasthekeyenergysourceinindustryisonlypartofthisemissioncontribution.Emissionsalsocomefromindustrialproductionprocessesandfromthelifecycleofproducts.Thismakesachievingthenetzerogoalforindustrialsectorsbothchallengingandimportant.Thefourmostenergy-intensiveindustrysub-sectors–ironandsteel,chemicalsandpetrochemicals,cementandlime,andaluminium–emitaround75%ofthetotalemissionsfromtheentireindustrialsector(IRENA,2020a).Thechallengeofenergy-intensiveindustriesToreducecarbonemissionsfromenergy-intensiveindustrialsectorsistechnicallyadauntingtask,particularlyforthefourdominantsectors.Furthermore,muchgreaterpolicyattentionisneededtogeneratethenecessaryresourcestoaddressthechallenge.Thisisattributabletotwokeyfactors:1)lackofprovenbestpracticesforreducingemissionsinatechnicallyandeconomicallyviablemanner;and2)manyindustrialproductsaregloballytradedcommodities,generatingvalidconcernsaboutcarbonleakageandindustrialcompetitivenessifonlysomecountriesopttopursueindustrialemissionreduction.Energyefficiencyimprovementshavebeenpursuedinindustrialsectors,buttheyhavetheirlimitationsandcannotbeusedalonetoachievethenetzeroemissiongoal.Innovationsbeyondenhancingenergyefficiencyareneededtoreducethelargequantitiesofemissionsfromthemostenergy-intensiveindustrialsectors.Allfourofthesesectorsaresteppinguptheireffortstodevelopemissionreductionstrategiesandaretestingnewtechnologiesandalternativeindustrialproductionprocesses.Buttheseeffortshavealongwaytogotoreachnetzerobymid-century.Giventhelimitedresourcesandtimeleft,amorestrategicandclearfocusisrequiredtoestablishwhichdecarbonisationpathwaytotake.Chinadominatestheproductionofsomeenergy-intensiveindustrialproductsThedominanceofindustrialmanufacturinginChinamakesachievingnetzeroemissionsinthesectoruniquelychallengingforthecountry,comparedtootherlargeeconomies.China’sindustrialsectoraccountsfor60%ofgrossfinalenergyuse(forbothenergyandnon-energyuses),andtwo-thirdsofindustryenergydemandismetbycoal(withanotherquartermetbyelectricity).Thisresultsinaround4Gtofenergy-relatedCO2emissionsand2Gtofprocess-relatedCO2emissions,togetheraccountingforjustundertwo-thirdsofChina’sCO2emissions(GrantandLarsen,2020;Liuetal.,2019).Withintheindustrialsector,emissionsfromenergy-intensiveindustriessuchasironandsteel,aluminium,chemicalsandpetrochemicals,andcementandlimeaccountforthelion’sshareandarenotexpectedtodeclinesignificantlyduring2020-2050withoutstrongerpoliciesinplace,accordingtoIRENA’sanalysis(Figure4).CHINA'SROUTETOCARBONNEUTRALITY45这使得工业方面的行动对于中国的碳中和目标至关重要。鉴于中国在全球工业领域的作用,中国在工业领域实现净零排放的行动对于全球工业能源转型的成功也至关重要。此外,中国所做的(或不做的)将对世界各地的工业竞争对手产生影响。关键能源密集型工业部门的行动包括以下内容:•水泥:2019年,世界上一半的水泥是在中国生产的,中国有2.33吉吨的产能。更重要的是,中国的熟料与水泥比率已达到0.65,2019年的熟料产量为1.52吉吨,处于世界最低范围内。鉴于水泥行业的排放主要来自于熟料生产过程,这一低比率具有重大意义(CemNet,2020年)。•铁和钢:2019年,中国占全球粗钢产量的一半以上,产量为9.96亿吨(世界钢铁协会,2020年)。然而,中国近90%的钢是通过基本氧炉(BOF)途径生产的,而通过电弧炉(EAF)工艺利用回收的废钢生产的钢只占10%左右。这远远低于世界平均水平。•铝:2019年,中国的电解铝产量为3580万吨(国际铝业协会,2021年),占全球产量的56%。主要由于中国电力的高碳强度,铝业对中国的碳排放总量的贡献约为5%。在效率方面,中国已经取得了显著的进展,将每吨电解铝的耗电量(交流电)降低到13543千瓦时,与全球最佳实践持平。这种进步也归功于生产设施的相对年轻化。图42020-2050年中国各部门的工业二氧化碳排放量(参考案例)5000400030002000铁和钢铝业化工和石化水泥和石灰10000202020352050二氧化碳排放量(百万吨二氧化碳/年)CHINA'SROUTETOCARBONNEUTRALITY45ThismakesactiononindustrycriticaltoChina’scarbonneutralitygoals.Giventhecountry’sroleintheglobalindustriallandscape,Chineseactiontoachievenetzeroinindustryisalsocriticalforthesuccessoftheglobalindustrialenergytransformation.Moreover,whatChinadoes(anddoesnot)dowillhaveimplicationsforindustrialcompetitorsaroundtheworld.Actionsinkeyenergy-intensiveindustrialsectorsincludethefollowing:•Cement:In2019,halfoftheworld’scementwasproducedinChina,whichhas2.33Gtofproductioncapacity.Moreimportantly,theChineseclinker-to-cementratiohasreached0.65,with1.52Gtofclinkeroutputin2019,withinthelowestrangeintheworld.Giventhatemissionsfromthecementsectorarisechieflyfromtheclinkerproductionprocess,thislowratioisofgreatsignificance(CemNet,2020).•Ironandsteel:Chinarepresentedmorethanhalfoftheglobaloutputofcrudesteelin2019,with996Mtofproduction(WSA,2020).However,nearly90%ofChinesesteelwasproducedthroughthebasicoxygenfurnace(BOF)route,whereassteelproducedusingrecycledsteelscrapthroughtheelectricarcfurnace(EAF)processaccountedforonly10%orso.Thisiswellbelowtheworldaverage.•Aluminium:Chinaproduced35.8Mtofelectrolyticaluminiumin2019(IAI,2021),representing56%oftheglobaloutput.DueprimarilytothehighcarbonintensityofelectricityinChina,thealuminiumindustrycontributesaround5%ofthecountry’stotalcarbonemissions.Ontheefficiencyfront,Chinahasmaderemarkableprogresstolowertheelectricityconsumption(alternatecurrent)pertonneofelectrolyticaluminiumto13543kWh–onparwiththeglobalbestpractice.Suchprogressisalsoattributabletotherelativelyyoungageofproductionfacilities.Figure4ChineseindustrialCO2emissionsbysector,2020-2050(Referencecase)CO2emissions(MtCO2/yr)202020352050010002000300040005000Iron&steelAluminiumChemical&petrochemicalCement&lime46可供中国探讨的建议包括:1.设定一个明确的方向,并确保可以衡量进展•与工业界和其他利益相关者共同制定每个部门的低碳战略和路线图,特别是在钢铁、化工和水泥行业。这种战略应设定部门的脱碳目标,并概述绿色电力、氢气、生物质和碳捕获与封存的发展路径,以及如何通过部门耦合战略和技术将这些脱碳方案用于不同的工业部门。有效的路线图需要与行业利益相关者进行公开和持续的对话,以确保使用最新的信息,并确保人们对实施调查结果的认同。•合成氨和甲醇:中国的合成氨行业多年来一直经历着产能过剩的挑战。2019年,中国成功地将合成氨产量控制在仅占总产能7000万吨的三分之二(CCR,2020年),占全球产量的26%左右。虽然化肥市场在吸收闲置产能方面看起来并不乐观,但由于有关于减少过度使用氨肥造成的氮污染的政策(柴等人,2019年),其他应用,如氨用作航运燃料(如果它能以净零碳排放生产),可能会增加未来的需求。这意味着在中国生产合成氨的碳足迹应该大大减少,因为中国的大部分合成氨是由化石燃料生产的。在甲醇方面,中国在全球生产和消费方面也处于领先地位(Statista,2019年)。鉴于甲醇在生产其他重要化学品方面有许多应用,如作为烯烃生产的重要中间体和道路燃料添加剂,预计其作用在未来将变得更加重要。煤炭在工业中的使用中国工业所采用的技术与全球工业相似,但化工和石化产品除外,在中国,以煤为基础的工业已经发展起来,与其他地方以天然气和石油为主导形成鲜明对比。中国的资本存量相对较新,最新的工厂一般都很大,而且能源效率普遍很高。过时的资本存量仍然存在,但政策的目的是关闭它们。煤炭在中国工业能源和非能源使用中的主导地位(即其作为原料的使用)是目前最大和最紧迫的问题。2018年,煤炭占中国整体一次能源消费的59%,而工业消费的煤炭约占全国煤炭总消费量的28%。值得注意的是,用于生产合成燃料和合成有机材料的煤炭正在迅速增长,这导致了二氧化碳排放量的高增长。为这些目的使用煤炭的替代品是可能的,特别是可能使用生物能源和可再生的氢气和电子燃料。在工业领域扩大煤炭替代品的使用将是使该行业脱碳,改善当地的空气污染,并使中国在制造业的发展中处于领先地位的关键。46•Ammoniaandmethanol:China’sammoniaindustryhasexperiencedanovercapacitychallengeforyears.In2019,thecountrymanagedtocurbitsammoniaproductiontoonlytwo-thirdsofthetotal70Mtcapacity(CCR,2020),accountingforaround26%ofglobalproduction.Althoughthefertilisermarketdoesnotlookpromisingforabsorbingtheidlecapacity,duetopoliciesonreducingnitrogenpollutioncausedbyoveruseofammoniafertiliser(Chaietal.,2019),otherapplicationssuchasammonia’suseasashippingfuel(ifitcanbeproducedwithnetzerocarbonemissions)couldincreasefuturedemand.ThisimpliesthatthecarbonfootprintofproducingammoniainChinashouldbegreatlyreduced,asmostChineseammoniaisproducedfromfossilfuels.Onmethanol,Chinahasalsotakentheleadinbothglobalproductionandconsumption(Statista,2019).Giventhatmethanolhasmanyapplicationsinproducingotherimportantchemicals,suchasbeinganimportantintermediaryforolefinsproductionandaroadfueladditive,itsroleisexpectedtobecomeevenmoreimportantinthefuture.UseofcoalinindustryThetechnologiesdeployedinChineseindustryaresimilartoglobalindustry,withtheexceptionofchemicalsandpetrochemicals,whereacoal-basedindustryhasdevelopedinChinaincontrasttogasandoildominationelsewhere.Chinesecapitalstockisrelativelynew,thelatestplantsaregenerallylarge,andenergyefficiencyisgenerallyhigh.Pocketsofoutdatedcapitalstockremain,butpoliciesareaimedattheirclosure.ThedominanceofcoalinChineseindustrialenergyandnon-energyuse(i.e.itsuseasafeedstock)isthelargestandmostpressingissuetoday.Coalaccountedfor59%ofChina’soverallprimaryenergyconsumptionin2018,whileindustryconsumedaround28%ofthecountry’stotalcoalconsumption.Notably,coaluseforproductionofsyntheticfuelsandsyntheticorganicmaterialsisgrowingrapidly,whichhasresultedinhighgrowthinCO2emissions.Alternativestotheuseofcoalforthesepurposesarepossible,especiallythepotentialuseofbioenergyandrenewablyproducedhydrogenande-fuels.Scalinguptheuseofalternativestocoalinindustrywillbekeytodecarbonisingthesector,improvinglocalairpollutionandmovingChinatotheforefrontofadvancesinmanufacturing.RECOMMENDATIONSFORCHINATOEXPLOREINCLUDE:1.Setacleardirectionandensurethatprogresscanbemeasured•Co-developwithindustryandotherstakeholderslow-carbonstrategiesandroadmapsforeachsector,particularlyinthesteel,chemicalandcementindustries.Suchstrategiesshouldsetsectoraldecarbonisationtargets,andoutlinethedevelopmentpathwaysforgreenelectricity,hydrogen,biomassandCCSandhowthesedecarbonisationoptionscouldbeusedindifferentindustrialsectorsthroughsectorcouplingstrategiesandtechnologies.Effectiveroadmapsrequireanopenandongoingdialoguewithindustrystakeholderstoensurethatthelatestinformationisusedandthatthereisbuy-intoimplementthefindings.CHINA'SROUTETOCARBONNEUTRALITY47•通过采用生命周期分析方法,为主要的能源密集型工业产品建立碳核算体系,特别是关注嵌入式碳。中国工业界可以考虑加入国际能源和二氧化碳基准倡议,以开发互补系统。2.通过提高能源和资源效率以及减少需求来减少能源使用量•提高工业部门的能源回收和使用,继续提高工业能源效率,以减少能源消耗,并制定强制性的性能和效率要求,以涵盖所有的工业能源消耗,并更新《工业绿色发展规划(2016-2020年)》。•探索如何降低对工业产品(钢铁、水泥、塑料、化学品等)的需求,如改进工业产品的使用,延长产品的使用寿命,回收相关产品和材料,以及开发工业产品的替代品。3.从工业中的煤炭使用过渡,并建立关于使用可再生能源的知识•通过建立示范项目,展示创新技术的性能,交流学习和经验,建立对新兴低碳解决方案的认识和信心(如以氢气为基础的直接还原铁和使用可再生原料进行化学生产)。•培育"绿色"产品的市场增长,并继续为工业部门的能源效率改进提供激励;然而,可能需要对绿色供应链进行认证。4.考虑工业生产和进口绿色商品的最佳地点•探索工业生产的最佳地点,包括搬迁到可再生能源资源丰富但现有电力需求较低的地区。•考虑进口绿色商品,如生物塑料和直接还原铁(DRI)颗粒,作为化石产品的可行替代品(吉耶朗等人,2020年)。在后一种情况下,从具有低成本可再生能源潜力的铁矿石出口国进口直接还原铁,而不是进口铁矿石,可以减少中国的铁加工排放,同时保持中国的高价值钢铁生产。CHINA'SROUTETOCARBONNEUTRALITY47•Establishcarbonaccountingsystemsforkeyenergy-intensiveindustrialproductsbyapplyingalife-cycleanalysisapproach,focusingparticularlyonembeddedcarbon.ChineseindustrymayconsiderjoininginternationalenergyandCO2benchmarkinginitiativestodevelopcomplementarysystems.2.Reduceenergyusethroughenergyandresourceefficiencyanddemandreduction•Improveenergyrecoveryanduseintheindustrialsectorandcontinuetoimproveindustrialenergyefficiencytoreduceenergyconsumption,anddevelopmandatoryperformanceandefficiencyrequirementstocoverallofindustrialenergyconsumptionandupdatetheIndustrialGreenDevelopmentPlan(2016-2020).•Explorewaystolowerthedemandforindustrialproducts(steel,cement,plastics,chemicals,etc.)suchasimprovingtheuseofindustrialproducts,extendingtheservicelifeofproducts,recyclingrelatedproductsandmaterials,anddevelopingalternativesforindustrialproducts.3.Transitionawayfromcoaluseinindustryandbuildknowledgeontheuseofrenewables•Buildknowledgeofandconfidenceinemerginglow-carbonsolutions(suchashydrogen-baseddirectironreductionandtheuseofrenewablefeedstocksforchemicalproduction)byestablishingdemonstrationprojectstoshowcasetheperformanceoftheinnovativetechnologiesandexchangeoflearningandexperiences.•Nurturethemarketgrowthfor“green”productsandcontinuedtoprovideincentivesforenergyefficiencyimprovementsintheindustrialsectors;however,certificationofgreensupplychainsmayberequired.4.Considertheoptimallocationsforindustrialproductionandimportationofgreencommodities•Exploretheoptimallocationsforindustrialproduction,includingrelocatingtoregionswithabundantrenewableenergyresourcesbutlowexistingdemandforelectricity.•Considerimportedgreencommoditiessuchasbioplasticsanddirectreducediron(DRI)pelletstobeviablesubstitutesforfossil-basedproducts(Gielenetal.,2020).InthelattercaseimportingDRIfromironoreexportingcountrieswithlow-costrenewablespotential,ratherthanimportingironore,couldreduceChina’sironprocessingemissionswhilemaintainingthehigher-valuesteelproductioninChina.482.12继续支持技术研究、开发和部署和更广泛的系统性创新自2013年以来,中国增加了对清洁能源研究、开发和部署(RD&D)的投资,并成为该领域仅次于美国的第二大公共部门投资者(尽管欧盟及其成员的投资总额更大)。中国是"创新使命"倡议的积极成员,共同领导了许多关于研究、开发和部署的国际合作;在2015年的巴黎联合国气候会谈上,中国与其他"创新使命"成员一起,承诺在五年内将其研究、开发和部署投资翻一番。中国公共部门的研究、开发和部署支出从2016年的36亿美元增加到2018年的61亿美元,尽管2019年投资回落到55亿美元("创新使命",2020年)。国际能源署的数字(国际能源署,2020年b)采用了略微不同的分类方法,表明2019年中国在能源研究、开发和部署上花费了79亿美元,但其中只有53%(42亿美元)用于清洁能源,这表明中国能源研究、开发和部署预算的近一半用于不符合该国碳中和目标的技术。相比之下,欧盟在2019年的能源研究、开发和部署预算为88亿美元,其中97%集中在清洁能源上(85亿美元)。如果中国希望实现其目标并在清洁能源技术方面发挥主导作用,就需要解决这种不平衡。就整个研究、开发和部署和创新支持而言,第14个五年规划包括在未来五年内将政府投资至少增加7%的目标。这意味着,到2025年,总支出可能预计达到GDP的2.8%,而2020年估计为2.3%至2.4%。相比之下,美国在2018年的研发支出占其GDP的2.83%,欧盟的研发支出占2.18%。增加的研究、开发和部署预算中的更大份额应集中在清洁能源解决方案上。对技术研究、开发和部署的支持需要与更广泛的系统性创新联系起来,即把使技术成为可能的创新与商业模式、市场设计和系统运作的创新结合起来。此外,需要支持技术研究、开发和部署和系统性创新,以确保深度脱碳。虽然许多所需的解决方案已经存在,但许多还没有被充分证明,或者更昂贵。进一步的创新可以提高性能,降低成本,增强信心,弥补差距。在电力部门,中国的创新支持机制应侧重于:大规模风力涡轮机的关键技术和高效太阳能电池的产业化,高效集热,以及电网连接和传输。可变可再生能源的系统集成创新应集中在使大量的分布式可再生能源并网系统、调度控制技术、以及可再生能源占比高的电力系统的规划和运行成为可能。最后,需要重点关注大容量储能技术和能源互联网技术,以及互动式智能用电和需求响应技术。国际可再生能源署的可再生能源驱动的未来创新格局报告(国际可再生能源署,2019年a)及相关简报文件全面概述了能够实现这一转变的系统性解决方案。在运输领域,公路货运的优先事项包括:电动和燃料电池汽车的设计、高性能和低成本的电池研究、氢气、482.12ContinuingtosupporttechnologyRD&DandbroadersystemicinnovationSince2013,Chinahasincreaseditsinvestmentincleanenergyresearch,developmentanddeployment(RD&D)andhasbecomethesecondlargestpublicsectorinvestorinthisareabehindtheUnitedStates(althoughtheEUanditsmemberscollectivelyinvestmore).ChinaisanactivememberoftheMissionInnovationinitiative,co-leadinganumberofinternationalcollaborationsonRD&D;attheUnitedNationsclimatetalksinParisin2015,alongsideotherMissionInnovationmembers,itcommittedtodoublingitsRD&Dinvestmentswithinfiveyears.ChinesepublicsectorRD&DexpenditureincreasedfromUSD3.6billionin2016toUSD6.1billionin2018,althoughinvestmentsdroppedbacktoUSD5.5billionin2019(MI,2020).InternationalEnergyAgencyfigures(IEA,2020b),whichuseaslightlydifferentclassification,suggestthatin2019ChinaspentUSD7.9billiononenergyRD&D,butonly53%ofthat(USD4.2billion)wasspentoncleanenergy,suggestingthatalmosthalfoftheChineseenergyRD&Dbudgetwasspentontechnologiesthatarenotconsistentwiththecountry’scarbonneutralitygoals.Bycontrast,theenergyRD&DbudgetoftheEUasUSD8.8billionin2019,ofwhich97%wasfocusedoncleanenergy(USD8.5billion).ThisimbalanceneedstobeaddressedifChinawishestodeliveritsobjectivesandplayaleadingroleincleanenergytechnologies.ForRD&Dandinnovationsupportasawhole,the14thFive-YearPlanincludedthegoalofincreasinggovernmentinvestmentatleast7%overthenextfiveyears.Thismeansthattotalspendingcouldreachanestimated2.8%ofGDPby2025,upfromanestimated2.3%to2.4%in2020.Bycomparison,theUnitedStatesspent2.83%ofitsGDPonR&Din2018andtheEUspent2.18%.AlargershareofthatincreasedRD&Dbudgetshouldbefocusedoncleanenergysolutions.SupportfortechnologyRD&Dneedstobelinkedtobroadersystemicinnovation–thatis,combininginnovationinenablingtechnologieswithinnovationsinbusinessmodels,marketdesignandsystemoperations.Further,supportfortechnologyRD&Dandsystemicinnovationisneededtoensuredeepdecarbonisation.Whilemanyofthesolutionsthatareneededexist,manyarenotyetfullyprovenoraremoreexpensive.Furtherinnovationcanincreaseperformance,reducecost,increaseconfidenceandpluggaps.Inthepowersector,China’sinnovationsupportmechanismsshouldfocuson:keytechnologiesforlarge-scalewindturbinesandfortheindustrialisationofhigh-efficiencysolarcells,high-efficiencyheatcollection,andgridconnectionsandtransmission.Innovationforthesystemintegrationofvariablerenewablesshouldfocusonenablingalargenumberofdistributedrenewableenergygrid-connectedsystems,dispatchcontroltechnology,andplanningandoperationofpowersystemswithhighsharesofrenewables.Finally,afocusisneededonlarge-capacityenergystoragetechnologyandenergyInternettechnology,withinteractiveintelligentpowerconsumptionanddemandresponsetechnologies.IRENA’sInnovationLandscapeforaRenewable-PoweredFuturereport(IRENA,2019a)andaccompanyingbriefingdocumentsprovideacomprehensiveoverviewofthesystemicsolutionsthatcanenablethattransformation.Inthetransportsector,roadfreightprioritiesinclude:designsofelectricandfuelcellvehicles,researchonbatterieswithhighperformanceandlowcost,hydrogen,syntheticfuels,andCHINA'SROUTETOCARBONNEUTRALITY49可供中国探讨的建议包括:1.增加公共部门对清洁能源研究、开发和部署的投资停止目前集中在非低碳的能源技术和解决方案上的近50%的公共部门能源研究、开发和部署支出,并将这些支出转移到清洁能源研究、开发和部署上。2.继续并扩大中国在国际研究、开发和部署合作中的领导作用所面临的挑战的规模需要一定程度的责任分担。中国在某些技术发展领域的领导力可以影响全球转型,并可以从其他地方的经验中得到启发。中国应继续在国际研究、开发和部署合作中发挥积极作用,如"创新使命"倡议。可供中国探讨的建议包括:1.在国际进程中成为一个明显的领导者•继续积极参与全球能源治理和全球气候治理,加强中国在全球和区域合作机制和国际机构的参与。合成燃料以及生物燃料的生产和供应。对于航空和航运,中国的优先事项应包括:生物燃料的可持续生产、合成燃料的生产和应用、能源储存和创新推进设计。在工业部门,中国的创新支持机制应侧重于:可用于替代化石化学品的生物基或合成化学品;绿色炼钢技术,包括氢基直接还原铁技术和基于高炉-基础氧气炉(BF-BOF)方法的碳捕获、利用与封存技术;熟料替代品;以及碳去除技术。2.13深化全球参与能源转型是一项全球努力,需要国际合作。学习其他国家或地区的最佳实践可以使中国受益,而中国的专业知识可以帮助形成全球能源转型的前景。国际组织在召集不同的行为者和帮助各国了解转型对它们的意义方面发挥着至关重要的作用,它们提供外部观点,分享知识和召集关键国家和行为者。作为一个有影响力的大国,中国可以根据联合国的相关规定和其他国际规则促进现有国际框架的进一步改善。CHINA'SROUTETOCARBONNEUTRALITY49biofuelsproductionandsupply.Foraviationandshipping,prioritiesforChinashouldinclude:sustainableproductionofbiofuels,syntheticfuelproductionandapplications,energystorageandinnovativepropulsiondesigns.Intheindustrialsectors,China’sinnovationsupportmechanismsshouldfocuson:bio-basedorsyntheticchemicalsthatcanbeusedassubstitutesforfossil-basedchemicals;greensteel-makingtechnologiesincludinghydrogen-basedDRItechnologiesandtechnologiesbasedontheblastfurnace-basicoxygenfurnace(BF-BOF)approachwithCCUS;clinkeralternatives;andcarbonremovaltechnologies.RECOMMENDATIONSFORCHINATOEXPLOREINCLUDE:1.IncreasepublicsectorinvestmentincleanenergyRD&DStopthenearly50%ofpublicsectorenergyRD&Dspendingthatiscurrentlyfocusedonenergytechnologiesandsolutionsthatarenotlowcarbon,anddivertthisspendingtocleanenergyRD&D.2.ContinueandexpandChina’sleadershiproleininternationalRD&DcollaborationThescaleofthechallengesfacedrequiresadegreeofburdensharing.Chineseleadershipinsomeareasoftechnologydevelopmentcaninfluencetheglobaltransitionandcanbeinformedbyexperienceelsewhere.ChinashouldcontinuetoplayanactiveroleininternationalRD&DcollaborationssuchasMissionInnovation.2.13DeepeningglobalengagementTheenergytransitionisaglobaleffortandwillrequireinternationalco-operation.LearningbestpracticesfromothercountriesorregionscanbenefitChina,andChineseexpertisecanhelpshapeglobalenergytransitionoutlooks.Internationalorganisationsplayacrucialroleinconveningthediverseactorsandhelpingcountriesunderstandwhatthetransitionmeansforthembyprovidinganoutsideview,sharingknowledgeandconveningkeycountriesandactors.Asalargeandinfluentialcountry,ChinacanpromotefurtherimprovementsinexistinginternationalframeworksunderrelatedUNprovisionsandotherinternationalrules.RECOMMENDATIONSFORCHINATOEXPLOREINCLUDE:1.Beavisibleleaderininternationalprocesses•Continuetoactivelyparticipateinbothglobalenergygovernanceandglobalclimategovernance,andstrengthenChina’sparticipationinglobalandregionalco-operationmechanismsandinternationalbodies.50•与其他主要经济体建立战略伙伴关系,塑造关键领域的全球转型。少数主要经济体的合作可以使钢铁和航运等关键部门走上实现碳中和的新道路。深化合作的优先事项应包括:国际贸易规则及其对产品碳强度的影响、绿色融资和创新。2.展示中国的成功•成为其他发展中经济体实现碳中和的全套系统解决方案的主要提供者,利用中国的设备制造能力和中国在新兴数字技术方面的领先地位,提供全方位的低碳选择。•进一步将苏州市的能源转型国际论坛发展成为一个国际脱碳论坛,召集全球参与者加快进展,并展示中国在这些努力中的主导作用。50•Establishstrategicpartnershipswithothermajoreconomiestoshapetheglobaltransitionofkeysectors.Asmallnumberofmajoreconomiesworkinginalignmentcouldputkeysectorssuchassteelandshippingonnewpathwaystowardscarbonneutrality.Prioritiesfordeeperco-operationshouldinclude:internationaltraderulesandtheirimpactoncarbonintensityofproducts,greenfinancingandinnovation.2.ShowcaseChina’ssuccesses•Becomeamajorproviderofafullrangeofsystemsolutionsforcarbonneutralityforotherdevelopingeconomies,usingChineseequipmentmanufacturingcapabilitiescoupledwithChina’sleadingroleinemergingdigitaltechnologiestoprovideafullrangeoflow-carbonoptions.•FurtherdeveloptheInternationalForumonEnergyTransitioninSuzhoucityintoaninternationaldecarbonisationforumthatconvenesglobalactorstoaccelerateprogressandthatshowcasesChina’sleadingroleinthoseefforts.CHINA'SROUTETOCARBONNEUTRALITY51第3章结论和进一步工作的领域中国宣布其目标是在2030年前达到二氧化碳排放峰值,并在2060年前实现碳中和,这对中国的能源消费和商品生产方式有深远影响。在短短40年内实现这些目标是一项艰巨的任务,虽然有许多基石存在,但最佳路径仍有许多不确定性。在未来几年,需要大量的分析和协调努力,以形成一条通往2060年的强大道路。因此,将本世纪20年代作为规划、准备和学习的十年,以收集证据、做出选择并解决为中国建立一个新的现代能源系统所需的有利条件,这一点至关重要。中国有很多优势,也有一些独特的挑战,这些都会影响到它的发展道路。然而,中国也不是唯一在努力实现净零目标的国家,因为大多数主要经济体现在都开始了类似的路途。虽然中国的能源转型是独特的,但它将与其他国家有许多共同特点,因此相互学习的机会很大。在多条战线上进行更紧密的合作,对大家的成功至关重要。国际可再生能源署作为全球能源转型的政府间机构,可以支持中国向其他国家学习并与世界分享中国经验。本报告基于国际可再生能源署与世界各国的合作以及对全球和区域能源转型的分析,提出了一些关键的见解。本报告对许多复杂的议题进行了高层次的思考。它可以作为一个起点,以确定进一步深入分析的优先事项。本报告强调了13个需要加强行动的优先事项,并提出了一些初步建议。然而,每一项都需要进一步深入分析中国能源转型的具体情况,并考虑与其他地区转型的差异,以便得出更有力的结论和制定更有针对性的建议。仍然存在重大不确定性的议题,以及中国特别能够从全球行动中受益并做出贡献的议题包括:加强电力系统以整合高份额的可变可再生能源,扩大电气化,以及终端使用部门的脱碳,特别是建筑、运输(特别是长途航空和航运)和工业流程(特别是钢铁、水泥和石化)。国际可再生能源署与中国相关机构之间更紧密的合作,以及与中国政策制定者的讨论,将有助于使这项工作对中国和世界的价值最大化。CHINA'SROUTETOCARBONNEUTRALITY51CHAPTER3CONCLUSIONSANDAREASFORFURTHERWORKChina’sannouncementthatitisaimingforapeakinCO2emissionsbefore2030andtoachievecarbonneutralityby2060hasprofoundimplicationsforhowthecountrywillconsumeenergyandproducegoods.Deliveringonthoseobjectivesinjust40yearsisahugeundertaking,andwhilemanyofthebuildingblocksexist,manyuncertaintiesontheoptimalpathremain.Substantialanalysisandco-ordinatedeffortwillbeneededinthenextfewyearstoshapearobustpathto2060.Itwillbecriticalthereforetousethe2020sasadecadeofplanning,preparationandlearningtogatherevidence,makechoicesandaddresstheenablingconditionsnecessarytobuildanewmodernenergysystemforChina.Chinahasmanystrengths,andsomeuniquechallenges,thatwillimpactthepathwayittakes.However,Chinaisalsonotaloneinstrivingtoreachanetzerogoal,asmostmajoreconomiesarenowembarkingonasimilarjourney.WhileChina’senergytransitionisunique,itwillsharemanycommonfeatureswithothers,sotheopportunitiesformutuallearningarelarge.Closercollaborationonmultiplefrontswillbeessentialforthesuccessofall.IRENA,initsroleastheinter-governmentalbodyforglobalenergytransition,cansupportChinainbothlearningfromothersandsharingChineseexperiencewiththeworld.ThispaperprovidessomekeyinsightsbasedonIRENA’sworkwithcountriesaroundtheworldandonitsanalysisofglobalandregionalenergytransitions.Thepaperprovideshigh-levelthinkingonmanycomplextopics.Itcanserveasastartingpointtoidentifyprioritiesforfurtherdeeperanalysis.Thirteenprioritiesforstrongeractionhavebeenhighlighted,togetherwithsomeinitialrecommendations.Eachofthese,however,warrantsfurtherdeeperanalysisonthespecificsofChina’senergytransition,andconsiderationofthedifferenceswithtransitionselsewheretoallowstrongerconclusionstobedrawnandmoretailoredrecommendationstobedeveloped.Topicswheresignificantuncertaintiesremain,andwhereChinacanparticularlybothbenefitfromandcontributetoglobalaction,include:thestrengtheningofpowersystemstointegratehighsharesofvariablerenewables,theexpansionofelectrification,andthedecarbonisationofend-usesectors,specificallybuildings,transport(particularlylong-haulaviationandshipping)andindustrialprocesses(particularlysteel,cementandpetrochemicals).ClosercollaborationbetweenIRENAandrelevantChineseinstitutions,anddiscussionswithChinesepolicymakers,wouldhelpmaximisethevalueofthatworkforChinaandfortheworld.52REFERENCESBaiyu,G.(11March2020),“China’sroadfreightproblemanditssolutions”,ChinaDialogue,https://chinadialogue.net/en/pollution/11908-china-s-road-freight-problem-and-its-solutions.Bloomberg(2January2019),“World'sbiggestultra-highvoltagelinepowersupacrossChina”,www.bloomberg.com/news/articles/2019-01-02/world-s-biggest-ultra-high-voltage-line-powers-up-across-china.CCR(24March2020),“China’ssyntheticammoniaindustrywillusherinanewroundofreshuffle”,ChinaChemicalReporter,www.ccr.com.cn/c/2020-03-24/623994.shtml.CemNet(4March2020),“China’scautiousconfidence”,www.cemnet.com/Articles/story/168391/china-s-cautious-confidence.html.Chai,R.etal.(2019),“GreenhousegasemissionsfromsyntheticnitrogenmanufactureandfertilizationformainuplandcropsinChina”,CarbonBalanceManagement,Vol.14/20,SpringerLink,NewYork,https://doi.org/10.1186/s13021-019-0133-9.CNBS(2022),StatisticsofChineseeconomicandsocialdevelopmentfor2021,ChineseNationalBureauofStatistics,www.stats.gov.cn/tjsj/zxfb/202202/t20220227_1827960.html(InChinese).CNBS(2021),China2020statisticsreportforsocialandeconomicdevelopment,ChineseNationalBureauofStatistics,www.stats.gov.cn/tjsj/zxfb/202102/t20210227_1814154.html(inChinese).CNPC(2021),“AboutCNPC”,ChinaNationalPetroleumCorporation,www.cnpc.com.cn/en/aboutcnpc/aboutcnpc_index.shtml(accessed2March2021).GielenD.andM.Lyons(2022),Criticalmaterialsforenergytransition:Lithium,InternationalRenewableEnergyAgency,AbuDhabi,www.irena.org/Technical-Papers/Critical-Materials-For-The-Energy-Transition-Lithium.Gielen,D.,Chen,Y.andDurrant,P.(20January2021),“DecarbonisingindustryiskeytoChina’snet-zerostrategy”,EnergyPost,https://energypost.eu/decarbonising-industry-is-key-to-chinas-net-zero-strategy.Gielen,D.etal.(2020),“Renewables-baseddecarbonizationandrelocationofironandsteelmaking:Acasestudy”,JournalofIndustrialEcology,Vol.25/5,pp.1113-1125,JohnWileyandSonsInc.,Hoboken,https://doi.org/10.1111/jiec.12997.GovernmentofChina(29January2022),“Statusonrenewableelectricityfor2021:Gridconnectionandoperation”,NationalEnergyAdministrationofChina,www.gov.cn/xinwen/2022-01/29/content_5671076.htm(inChinese).GovernmentofChina(31March2021),“The‘14thFive-YearPlan’isacriticalperiodandawindowperiodforcarbonpeaking–thedevelopmentofgreenenergyhas‘unlimitedscenery’”,www.gov.cn/xinwen/2021-03/31/content_5596909.htm.CHINA'SROUTETOCARBONNEUTRALITY53Grant,M.andLarsen,K.(18March2020),“PreliminaryChinaemissionsestimatesfor2019”,RhodiumGroup,https://rhg.com/research/preliminary-china-emissions-2019.GSEP(n.d.),“ChargingnetworksarerecognizedasthekeyinfrastructuretopromotethespreadofEVsinChina”,GlobalSustainableElectricityPartnership,www.globalelectricity.org/case-studies/charging-networks-are-recognized-as-the-key-infrastructure-to-promote-the-spread-of-ev(accessed25March2022).Heyward,H.(19April2022),“BeijinghydrogenbodyadmitsthatChineseelectrolyserscannotcompetewithWesternmachines–yet”,Recharge,www.rechargenews.com/energy-transition/exclusive-beijing-hydrogen-body-admits-that-chinese-electrolysers-cannot-compete-with-western-machines-yet/2-1-1202835.Hove,A.(2020),Chinaenergytransitionstatusreport2020,Sino-GermanEnergyTransitionProject,DeutscheGesellschaftfürInternationaleZusammenarbeit,Beijing,www.energypartnership.cn/fileadmin/user_upload/china/media_elements/publications/China_Energy_Transition_Status_Report.pdf.IAI(13August2021),“Metallurgicalaluminarefiningfuelconsumption”,WorldAluminium,InternationalAluminiumAssociation,www.world-aluminium.org/statistics/metallurgical-alumina-refining-fuel-consumption.IATA(27March2020),“China’sdomesticaviationindustryshowingupwardtrend”,Airlines,InternationalAirTransportAssociation,www.airlines.iata.org/news/china%E2%80%99s-domestic-aviation-industry-showing-upward-trend.IEA(2020a),Energyefficiencyindicatorshighlights(2020edition),InternationalEnergyAgency,Paris,https://webstore.iea.org/download/direct/4266?fileName=Energy_Efficiency_Indicators_Highlights_2020_PDF.pdf.IEA(2020b),EnergytechnologyRD&Dbudgets2020,InternationalEnergyAgency,Paris,www.iea.org/reports/energy-technology-rdd-budgets-2020.IISD(2020),Doublingbackanddoublingdown:G20scorecardonfossilfuelfunding,InternationalInstituteforSustainableDevelopment,Winnipeg,www.iisd.org/system/files/2020-11/g20-scorecard-report.pdf.IRENA(2022a),Renewablecapacitystatistics2022,InternationalRenewableEnergyAgency,AbuDhabi,www.irena.org/publications/2022/Apr/Renewable-Capacity-Statistics-2022.IRENA(2022b),Worldenergytransitionsoutlook2022:1.5°Cpathway,InternationalRenewableEnergyAgency,AbuDhabi,www.irena.org/publications/2022/Mar/World-Energy-Transitions-Outlook-2022.IRENA(2022c),Smartelectrificationwithrenewables,InternationalRenewableEnergyAgency,AbuDhabi,www.irena.org/publications/2022/Feb/Smart-Electrification-with-Renewables.IRENA(2021a),Worldenergytransitionsoutlook:1.5°Cpathway,InternationalRenewableEnergyAgency,AbuDhabi,www.irena.org/publications/2021/Jun/World-Energy-Transitions-Outlook.IRENA(2021b),Renewablepowergenerationcostsin2020,InternationalRenewableEnergyAgency,AbuDhabi,www.irena.org/publications/2021/Jun/Renewable-Power-Costs-in-2020.54IRENA(2021c),Apathwaytodecarbonisetheshippingsectorby2050,InternationalRenewableEnergyAgency,AbuDhabi,www.irena.org/publications/2021/Oct/A-Pathway-to-Decarbonise-the-Shipping-Sector-by-2050.IRENA(2021d),Reachingzerowithrenewables:Biojetfuels,InternationalRenewableEnergyAgency,AbuDhabi,www.irena.org/publications/2021/Jul/Reaching-Zero-with-Renewables-Biojet-Fuels.IRENA(2020a),Reachingzerowithrenewables:EliminatingCO2emissionsfromindustryandtransportinlinewiththe1.5°Cclimategoal,InternationalRenewableEnergyAgency,AbuDhabi,www.irena.org/publications/2020/Sep/Reaching-Zero-with-Renewables.IRENA(2020b),Globalrenewablesoutlook:Energytransformation2050,InternationalRenewableEnergyAgency,AbuDhabi,www.irena.org/publications/2020/Apr/Global-Renewables-Outlook-2020.IRENA(2020c),Renewablepowergenerationcostsin2019,InternationalRenewableEnergyAgency,AbuDhabi,www.irena.org/publications/2020/Jun/Renewable-Power-Costs-in-2019.IRENA(2020d),Greenhydrogen:Aguidetopolicymaking,InternationalRenewableEnergyAgency,AbuDhabi,www.irena.org/publications/2020/Nov/Green-hydrogen.IRENA(2020e),Greenhydrogencostreduction,InternationalRenewableEnergyAgency,AbuDhabi,www.irena.org/publications/2020/Dec/Green-hydrogen-cost-reduction.IRENA(2020f),Riseofrenewablesincities,InternationalRenewableEnergyAgency,AbuDhabi,www.irena.org/publications/2020/Oct/Rise-of-renewables-in-cities.IRENA(2019a),Innovationlandscapeforarenewable-poweredfuture:Solutionstointegratevariablerenewables,InternationalRenewableEnergyAgency,AbuDhabi,www.irena.org/publications/2019/Feb/Innovation-landscape-for-a-renewable-powered-future.IRENA(2019b),Hydrogen:Arenewableenergyperspective,InternationalRenewableEnergyAgency,AbuDhabi,www.irena.org/publications/2019/Sep/Hydrogen-A-renewable-energy-perspective.IRENA(2019c),Zhangjiakouenergytransformationstrategy2050,InternationalRenewableEnergyAgency,AbuDhabi,www.irena.org/publications/2019/Nov/Zhangjiakou-Energy-Transformation-Strategy-2050.IRENA(2019d),Navigatingthewaytoarenewablefuture:Solutionstodecarboniseshipping,InternationalRenewableEnergyAgency,AbuDhabi,www.irena.org/publications/2019/Sep/Navigating-the-way-to-a-renewable-future.IRENA(2019e),Innovationoutlook:Smartchargingforelectricvehicles,InternationalRenewableEnergyAgency,AbuDhabi,www.irena.org/publications/2019/May/Innovation-Outlook-Smart-Charging.IRENAandAEA(2022),Innovationoutlook:Renewableammonia,InternationalRenewableEnergyAgency,AbuDhabi,AmmoniaEnergyAssociation,Brooklyn,www.irena.org/publications/2022/May/Innovation-Outlook-Renewable-Ammonia.Liu,J.etal.(2019),“AnalysisofCO2emissionsinChina’smanufacturingindustrybasedonextendedlogarithmicmeandivisionindexdecomposition”,Sustainability,Vol.11/1,p.226,MDPI,Basel,https://doi.org/10.3390/su11010226.CHINA'SROUTETOCARBONNEUTRALITY55MI(2020),MissionInnovationCountryHighlights:5thMIMinisterial2020,MissionInnovation,http://mission-innovation.net/wp-content/uploads/2020/09/3.-MI-Country-Highlights-2020.pdf.Molloy,N.(21May2019),“Chinauniquelyplacedto‘green’shipping”,ChinaDialogue,https://chinadialogueocean.net/8170-china-green-shipping(accessed3March2021).NEA(2022),“Launchofpowersectorstatisticsfor2021”,NationalEnergyAdministrationofChina,www.nea.gov.cn/2022-01/26/c_1310441589.htm(inChinese).NFA(2021),“Acceleratingdevelopmentofbiomassmarketduringthe14thFive-YearPeriod”,NationalForestryAdministrationofChina,www.forestry.gov.cn/zlszz/4264/20210408/163439329547769.html(inChinese).Olsson,D.(9February2021),“China’s14thFive-YearPlan:Ablueprintforgrowthincomplextimes”,King&WoodMallesons,www.kwm.com/en/au/knowledge/insights/chinas-14th-five-year-plan-a-blueprint-for-growth-in-complex-times-20210209.Reuters(5January2021),“Electriccarsrisetorecord54%marketshareinNorway”,TheGuardian,www.theguardian.com/environment/2021/jan/05/electric-cars-record-market-share-norway.SGCERI(2019),Chinaurbanenergy2018,StateGridCityandEnergyResearchInstitute,ChinaElectricPowerPress,Beijing.StateCouncil(22May2020),“China’surbanizationrateexceeds60%forfirsttimein2019”,StateCouncilofthePeople’sRepublicofChina,http://english.www.gov.cn/premier/news/202005/22/content_WS5ec7313ec6d0b3f0e9498347.html.StateCouncilInformationOffice(21December2020),“EnergyinChina'snewera”,StateCouncilInformationOfficeofthePeople’sRepublicofChina,www.scio.gov.cn/m/zfbps/32832/Document/1695135/1695135.htm.Statista(7December2019),“ForecastedapparentconsumptionvolumeofmethanolinChinafrom2019to2025”,www.statista.com/statistics/1117468/china-forecasted-apparent-consumption-volume-of-methanol.UN(2018),Worldurbanizationprospects2018,UnitedNations,NewYork,https://population.un.org/wup.WorldBank(2021a),“CO2emissions(metrictonspercapita)–China,EuropeanUnion”,https://data.worldbank.org/indicator/EN.ATM.CO2E.PC?locations=CN-EU(accessed2March2021).WorldBank(2021b),“Energyuse(kgofoilequivalentpercapita)–China”,https://data.worldbank.org/indicator/EG.USE.PCAP.KG.OE?locations=CN(accessed2March2021).WSA(27January2020),“Globalcrudesteeloutputincreasesby3.4%in2019”,WorldSteelAssociation,www.worldsteel.org/media-centre/press-releases/2020/Global-crude-steel-output-increases-by-3.4--in-2019.html.Wu,R.etal.(2019),“AirqualityandhealthbenefitsofChina’semissioncontrolpoliciesoncoal-firedpowerplantsduring2005-2020”,EnvironmentalResearchLetters,Vol.14,IOPScience,Bristol,p.094016,https://iopscience.iop.org/article/10.1088/1748-9326/ab3bae.国际可再生能源署国际可再生能源署www.irena.org©国际可再生能源署2022版权所有"'-www.irena.org©IRENA2022