中国碳中和路径中的电气化(英)-能源基金会VIP专享VIP免费

ELECTRIFICATION IN CHINA’S
CARBON NEUTRALITY
PATHWAYS
Synthesis Report 2022
on China’s Carbon Neutrality
Acknowledgments
This report is the result of a collaborative effort between Energy Foundation China and a multi-team research consortium, coordinated by the Energy
Foundation China and the University of Maryland Center for Global Sustainability and consolidated by a pool of specialists from both Chinese and
international research institutions. The authors also acknowledge the high performance computing resources at the University of Maryland (http://hpcc.
umd.edu) made available for conducting the research reported in this paper.
Energy Foundation China and the project team would like to thank the reviewers that provide suggestions for improving the framing and analyses of this
report.
Reviewers (Listed by alphabetical order of last name)
Richard Baron Director of the Trade Programme, European Climate Foundation; Executive Director, 2050 Pathways Platform
Jae Edmonds Chief Scientist and Battelle Fellow, Pacific Northwest National Laboratory's (PNNL) Joint Global Change Research Institute; College
Park Professor of Public Policy, University of Maryland
Michael Greenstone Milton Friedman Distinguished Service Professor in Economics; Director of the Becker Friedman Institute and the Interdisciplinary
Energy Policy Institute, University of Chicago
Amory Lovins Cofounder and Chairman Emeritus, Rocky Mountain Institute
Robert Stowe Executive Director, Harvard Environmental Economics Program and Co-Director of the Harvard Project on Climate Agreements
Massimo Tavoni Professor of Climate Change Economics, Politecnico di Milano; Director, RFF-CMCC European Institute on Economics and the
Environment
Lord Adair Turner Chairman, Energy Transitions Commission; Senior Fellow and Former Chairman, Institute for New Economic Thinking
Shaoda Wang Assistant Professor, Harris School of Public Policy, University of Chicago; Faculty Research Fellow, National Bureau of
Economic Research (NBER)
John Ward Managing Director, Pengwern Associates
Matthias Weitzel Project Officer, European Commission, Joint Research Centre
Harald Winkler Professor, Energy Research Center of University of Cape Town, Coordinating Lead Author of IPCC Sixth Assessment Report WGIII
Chunping Xie Policy Fellow, Grantham Research Institute on Climate Change and the Environment
Changwen Zhao Director, Senior Fellow, Center for International Knowledge on Development, Development Research Center (DRC) of the State
Council
Disclaimer
-Unless otherwise specified, the views expressed in this report are those of the authors and do not necessarily represent the views of Energy Foundation
China. Energy Foundation China does not guarantee the accuracy of the information and data included in this report and will not be responsible for any
liabilities resulted from or related to using this report by any third party.
-The mention of specific companies, products and services does not imply that they are endorsed or recommended by Energy Foundation China in
preference to others of a similar nature that are not mentioned.
Cover Photo: @ Energy Foundation
RESEARCH CONSORTIUM AND AUTHOR TEAM
Coordinating lead authors
Energy Foundation China: Sha Fu
University of Maryland: Sha Yu
Lead authors (Listed by alphabetical order of institutions and authors)
China Renewable Energy Engineering Institute: Xiao Qin
Energy Foundation China: Lingyan Chen, Xuan Du, Manqi Li, Chengcheng Mei, Zhuoxiang Yang
International Institute for Applied Systems Analysis: Fei Guo, Volker Krey
Harbin Institute of Technology, Shenzhen : Junling Liu
Lawrence Berkeley National Laboratory: Nina Khanna, Hongyou Lu, Nan Zhou
Peking University: Yazhen Wu
Renmin University of China: Ke Wang
Tsinghua University: Qimin Chai, Wenying Chen, Shu Zhang
University of Maryland: Jenna Behrendt, Xinzhao Cheng, Leon Clarke, Nathan Hultman, Jiehong Lou
Suggested Citation
Yu, S., S., Fu, J. Behrendt, Q. Chai, L. Chen, W. Chen, X. Cheng, L. Clarke, X. Du, F. Guo, N. Hultman, N. Khanna, V. Krey, M. Li, J. Liu, H. Lu, J. Lou, C. Mei,
X. Qin, K. Wang, Y. Wu, Z. Yang, S. Zhang, and N. Zhou (2022). “Synthesis Report 2022 on China's Carbon Neutrality: Electrification in China’s Carbon
Neutrality Pathways.” Energy Foundation China, Beijing, China. Available at: https://www.efchina.org/Attachments/Report/report-lceg-20221104/
Synthesis-Report-2022-on-Chinas-Carbon-Neutrality-Electrification-in-Chinas-Carbon-Neutrality-Pathways.pdf
ELECTRIFICATION IN CHINA’S
CARBON NEUTRALITY
PATHWAYS
November 2022
ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYSSynthesisReport2022onChina’sCarbonNeutralityAcknowledgmentsThisreportistheresultofacollaborativeeffortbetweenEnergyFoundationChinaandamulti-teamresearchconsortium,coordinatedbytheEnergyFoundationChinaandtheUniversityofMarylandCenterforGlobalSustainabilityandconsolidatedbyapoolofspecialistsfrombothChineseandinternationalresearchinstitutions.TheauthorsalsoacknowledgethehighperformancecomputingresourcesattheUniversityofMaryland(http://hpcc.umd.edu)madeavailableforconductingtheresearchreportedinthispaper.EnergyFoundationChinaandtheprojectteamwouldliketothankthereviewersthatprovidesuggestionsforimprovingtheframingandanalysesofthisreport.Reviewers(Listedbyalphabeticalorderoflastname)RichardBaronDirectoroftheTradeProgramme,EuropeanClimateFoundation;ExecutiveDirector,2050PathwaysPlatformJaeEdmondsChiefScientistandBattelleFellow,PacificNorthwestNationalLaboratory's(PNNL)JointGlobalChangeResearchInstitute;CollegeParkProfessorofPublicPolicy,UniversityofMarylandMichaelGreenstoneMiltonFriedmanDistinguishedServiceProfessorinEconomics;DirectoroftheBeckerFriedmanInstituteandtheInterdisciplinaryEnergyPolicyInstitute,UniversityofChicagoAmoryLovinsCofounderandChairmanEmeritus,RockyMountainInstituteRobertStoweExecutiveDirector,HarvardEnvironmentalEconomicsProgramandCo-DirectoroftheHarvardProjectonClimateAgreementsMassimoTavoniProfessorofClimateChangeEconomics,PolitecnicodiMilano;Director,RFF-CMCCEuropeanInstituteonEconomicsandtheEnvironmentLordAdairTurnerChairman,EnergyTransitionsCommission;SeniorFellowandFormerChairman,InstituteforNewEconomicThinkingShaodaWangAssistantProfessor,HarrisSchoolofPublicPolicy,UniversityofChicago;FacultyResearchFellow,NationalBureauofEconomicResearch(NBER)JohnWardManagingDirector,PengwernAssociatesMatthiasWeitzelProjectOfficer,EuropeanCommission,JointResearchCentreHaraldWinklerProfessor,EnergyResearchCenterofUniversityofCapeTown,CoordinatingLeadAuthorofIPCCSixthAssessmentReportWGIIIChunpingXiePolicyFellow,GranthamResearchInstituteonClimateChangeandtheEnvironmentChangwenZhaoDirector,SeniorFellow,CenterforInternationalKnowledgeonDevelopment,DevelopmentResearchCenter(DRC)oftheStateCouncilDisclaimer-Unlessotherwisespecified,theviewsexpressedinthisreportarethoseoftheauthorsanddonotnecessarilyrepresenttheviewsofEnergyFoundationChina.EnergyFoundationChinadoesnotguaranteetheaccuracyoftheinformationanddataincludedinthisreportandwillnotberesponsibleforanyliabilitiesresultedfromorrelatedtousingthisreportbyanythirdparty.-Thementionofspecificcompanies,productsandservicesdoesnotimplythattheyareendorsedorrecommendedbyEnergyFoundationChinainpreferencetoothersofasimilarnaturethatarenotmentioned.CoverPhoto:@EnergyFoundationRESEARCHCONSORTIUMANDAUTHORTEAMCoordinatingleadauthors→EnergyFoundationChina:ShaFu→UniversityofMaryland:ShaYuLeadauthors(Listedbyalphabeticalorderofinstitutionsandauthors)→ChinaRenewableEnergyEngineeringInstitute:XiaoQin→EnergyFoundationChina:LingyanChen,XuanDu,ManqiLi,ChengchengMei,ZhuoxiangYang→InternationalInstituteforAppliedSystemsAnalysis:FeiGuo,VolkerKrey→HarbinInstituteofTechnology,Shenzhen:JunlingLiu→LawrenceBerkeleyNationalLaboratory:NinaKhanna,HongyouLu,NanZhou→PekingUniversity:YazhenWu→RenminUniversityofChina:KeWang→TsinghuaUniversity:QiminChai,WenyingChen,ShuZhang→UniversityofMaryland:JennaBehrendt,XinzhaoCheng,LeonClarke,NathanHultman,JiehongLouSuggestedCitationYu,S.,S.,Fu,J.Behrendt,Q.Chai,L.Chen,W.Chen,X.Cheng,L.Clarke,X.Du,F.Guo,N.Hultman,N.Khanna,V.Krey,M.Li,J.Liu,H.Lu,J.Lou,C.Mei,X.Qin,K.Wang,Y.Wu,Z.Yang,S.Zhang,andN.Zhou(2022).“SynthesisReport2022onChina'sCarbonNeutrality:ElectrificationinChina’sCarbonNeutralityPathways.”EnergyFoundationChina,Beijing,China.Availableat:https://www.efchina.org/Attachments/Report/report-lceg-20221104/Synthesis-Report-2022-on-Chinas-Carbon-Neutrality-Electrification-in-Chinas-Carbon-Neutrality-Pathways.pdfELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYSNovember2022FOREWORDSincePresidentXiJinpingannouncedthecarbonneutralitygoalinSeptember2020,theworldhasexperiencedpersistentupsanddowns.Underthenewdynamics,Chinareiteratesitsunwaveringgoalofachievingcarbonneutralitybefore2060.In2021,Chinahassubmittedanupdatedversionofnationallydeterminedcontributionswithstrengthenedtargets,setouttheMid-CenturyLong-TermLowGreenhouseGasEmissionDevelopmentStrategy,andshapedthe"1+N''policyframeworkguidingthenationwidecarbonpeakingandneutralityactions.Asanon-profitcharitableorganization,EnergyFoundationChina(EFChina)hasbeendedicatedtopromotingprosperitythroughsafeandsustainableenergysinceitsestablishmentin1999.Ithasbeenconsistentlyandstrategicallysupportingresearchandpolicymakingthattargetacarbon-neutralfuture.TobetterinformtheformulationandimplementationofChina’sMid-CenturyStrategy,EFChinaestablisheditsflagshipLong-TermStrategyforDecarbonizationTaskForce(LTS)in2018,committedtoexploringamulti-winlowGHGemissiondevelopmentpathforChina.WehopethiseffortwillhelpputChinaontoatrajectoryofsustainableprosperityandcarbonneutrality.Uptotoday,theLTShasinitiatedthreeflagshipprojects(LTSI,II,andIII),engagedmorethan30topChinesethink-tanksinover50high-levelresearchprojects,andformedacomprehensiveresearchlandscapecoveringallimportantsectorsandthematicareasinChina’sdecarbonizationaction.EncouragedbythesuccessoftheLTSIwhichpresentedanoverallframeworkofChina’scarbonneutralitypathwaysin2020,wecontinueddeepeningitbyshiftingitsfocustoChina’slow-carbontransformationimplementationroadmapfor2035inLTSII,andtothetechnologyandinnovationsupportingcarbonneutralityinLTSIII.Inparallel,tointroduceinternationalperspectives,EFChinahascontinuedtocollaboratewithleadinginternationalthink-tanks,includingInternationalEnergyAgency(IEA),theInternationalInstituteforAppliedSystemsAnalysis,UniversityofMaryland,JointResearchCentre(EuropeanUnion),PotsdamInstituteforClimateImpactResearch(PIK),NetherlandsEnvironmentalAssessmentAgency(PBL),2050PathwayPlatform,andLawrenceBerkeleyNationalLaboratory,inLTSmodelingandtechnicaldiscussions.Thesefrequentexchangeshaveempoweredandservedthefieldofclimateandenergyresearchandcreatedamultilateralopenintellectualplatformforwidercooperation.Meanwhile,EFChinahasorganizedinternationaladvisoryroundtablesandEconomistsDialoguestounderpinthestrategicpositionofcarbonneutralityinChina’spolicymakingandtofacilitatethedevelopmentandmainstreamingofCarbonNeutralityEconomics.Lastbutnotleast,theLTSTaskForcehasextendeditsworkingscopetosupportsubnationaldecarbonizationresearchandpilotsinmorethan15citiesandprovinces,withthepurposetoexploreanddemonstratehigh-qualityeconomicgrowthmodelsthatarecompatiblewiththecarbonneutralityvision.In2020,weproudlylaunchedourfirstsynthesisreportfeaturingcomprehensiveviewsofChina’snewgrowthpathwaystowardasuccessinmeetingthe2060pledgeanditslong-termdevelopmentgoals.ThereportmapsoutthebroadoutlinesofdecarbonizationandidentifieskeyelementsofstrategyacrosstheeconomyandwithinindividualFOREWORDeconomicsectors.Regardedasoneofthefivepillars(electrification,energyefficiency,powerdecarbonization,lowcarbonfuelsubstitution,andcarbondioxideremoval)toachievecarbonneutrality,electrification,coupledwithpowersystemdecarbonization,presentsnotonlyafeasibleoptiontoreachsubstantialemissionsreductioninelectricitymorequicklythaninothersectorsbutalsoanopportunitytocurb,andeventuallyreducefinalenergyconsumption.Therefore,EFChinahasdecidedtoproceedaheadwiththedeep-diveresearchintotheroleofelectrificationinChina’sgrandcarbonneutralitylandscape,andthedynamicsofthedoubletransitionsoftheend-usesectorandpowersector.Today,weareevenmoreexcitedtoreleaseoursecondsynthesisreportoftheseries.Itisacollaborativeachievementof9leadinginternationalresearchandmodelingteamsinclimatechangeandhasgatheredapoolofexpertstoreviewandconsolidatetheoutcome.ThisreportdivesintotheroleofelectrificationandtheassociatedelectricitysystemtransformationinachievingChina’scarbonneutralitygoals,andidentifiessectoralnear-termactionsandlong-termstrategiesthatreflecttechnologyavailability,regionaldisparity,andeconomiccosts.Theproposedimmediateaction,long-termstrategy,andpolicyframeworkswillacceleratetheelectrificationandpowersectordecarbonizationandputChinaonasuccessful,low-emissionsgrowthpathway.Westandinatimemixedwithopportunitiesandchallenges,competitionandcooperation.SustainedresearchisneededtofacilitateChina’sdecarbonizationandeconomictransitionandEFChinawillcontinuesupportingsuchendeavor.Wewillgenuinelyandunremittinglypursuemulti-winsolutionswithallpartnerstocreate,develop,andshareasustainablefutureandtohelpnarrateChina’s“NewGrowthStory”.Here,IsincerelycongratulatetheauthorteamonthismarveloustriumphandthankalltheexpertfriendsfortheircontinuedandwholeheartedsupportofEFChina’sdevelopment.IwouldalsoliketothankEFChina’sdreamteam,withoutwhoseeffortsthisgiftcannotcomesoalive.Thankyou!ZouJiCEO&PresidentofEnergyFoundationChinaFOREWORDTABLEOFCONTENTS01INTRODUCTION0102RECENTDEVELOPMENTINCHINA’SCLIMATEPOLICIES052.1RecentSocioeconomic,Energy,andEmissionsTrends06ChangingEconomic,Energy,andEmissionsTrendsSince202006RegionalDisparityinEnergyDeploymentandEmissions082.2RecentPolicyDevelopment09PoliticalCommitmenttoClimateAction09The“1+N”PolicyFramework09SectoralandThematicPolicyDevelopment12PolicyHighlights15PolicyandImplementationGaps1503THEPATHWAYTONETZEROBEFORE2060173.1Scenarios183.2EmissionsPathways193.3EnergyTransitions22PrimaryEnergy22FinalEnergy2504THEROLEOFELECTRIFICATIONINEND-USESECTORS294.1CurrentStatus304.2FutureElectrificationPathways324.3PolicyImplications3505ELECTRIFICATIONROADMAPFORBUILDINGS375.1CurrentStatus385.2RoleofBuildingElectrificationinCarbonNeutrality395.3ChallengesandOpportunities40Challenges40Opportunities415.4KeyAreasforElectrification42ResidentialSpaceHeating42Cooking47WaterHeating47PVOnsiteUseinBuildings475.5KeyPolicyApproaches48TABLEOFCONTENTS06ELECTRIFICATIONROADMAPFORINDUSTRY516.1CurrentStatus526.2RoleofIndustryElectrificationinCarbonNeutrality536.3ChallengesandOpportunities57Challenges57Opportunities586.4KeyAreasforIndustrialElectrification59IndustrialRestructureandUpgrade59ProductionProcessAdjustmentandElectricSubstitutionTechnology59AdvancedIndustrialElectrificationTechnology606.5KeyPolicyApproaches6607ELECTRIFICATIONROADMAPFORTRANSPORTATION687.1CurrentStatus697.2RoleofTransportationElectrificationinCarbonNeutrality707.3ChallengesandOpportunities73Challenges73Opportunities747.4KeyAreasforTransportationElectrification75ElectricVehicleManufacturingandSales75ChargingStationDeployment767.5KeyPolicyApproaches7608THEPOWERSYSTEMANDELECTRIFICATION788.1CurrentStatus798.2TransitionsintheElectricitySystem798.3ChallengesandOpportunities83Challenges83Opportunities838.4KeyareasandPotentialofElectrification85SupplySideFlexibility85LoadSideFlexibility86GridSideFlexibility868.5KeyPolicyApproaches8709CONCLUSIONS909.1ElectrificationinMeetingChina’sCarbonNeutralityTarget919.2AreasofFutureResearch92REFERENCES94TABLEOFCONTENTSLISTOFFIGURES02Figure2.1Timelineof“1+N”PoliciesReleasedbyJuly2022.11Figure2.2TimelineofKeyClimatePoliciesReleasedin2021and2022.1403Figure3.1EmissionsPathwaystoNet-ZeroGHGEmissionsby2060.19FigureB3.1CarbonIntensityReductioninAlignmentwithChinesePolicyTargets.20Figure3.2GHGEmissionsbySectorintheUpdatedNDCtoCarbonNeu-tralityScenario.21Figure3.3PrimaryEnergyTransitionsintheUpdatedNDCtoCarbonNeutralityScenario:(A)TotalPrimaryEnergy,(B)PrimaryEn-ergybyTechnology.23FigureB3.2NationalPrimaryEnergyTargetsandComparisonwithMod-elingAnalysis:(A)ShareofFossilandNon-FossilEnergyinPrimaryEnergy,(B)PrimaryEnergyperUnitofGDP.24Figure3.4PrimaryEnergyShareintheUpdatedNDCtoCarbonNeutrali-tyScenario.25Figure3.5FinalEnergyTransitionsintheUpdatedNDCtoCarbonNeu-tralityScenario:(A)TotalFinalEnergy,(B)FinalEnergybyFuel.27FigureB3.4HydrogenProductionAcrossModelsintheUpdatedNDCtoCarbonNeutralityScenario.2804Figure4.1FinalEnergyElectrificationRateintheUpdatedNDCtoCar-bonNeutralityScenario.33Figure4.2ElectrificationinNet-ZeroPathwaysintheUpdatedNDCtoCarbonNeutralityScenario:(A)PerCapitaElectricityCon-sumptionRelativetoGDPinChinaandOrganizationforEconomicCo-operationandDevelopment(OECD)Countries,(B)FinalEnergyElectricityDemandAcrossModels.33Figure4.3ElectrificationRoadmap.36LISTOFFIGURES05Figure5.1HistoricalTrendofElectrificationintheBuildingsSectorofChina,JapanandtheU.S.38Figure5.2BuildingFinalEnergyConsumptionintheUpdatedNDCtoCarbonNeutralityScenario:(A)TotalFinalEnergy,(B)FinalEnergybyFuel.39Figure5.3ElectrificationintheBuildingssectorintheUpdatedNDCtoCarbonNeutralityScenario.(A)ElectricityDemand.(B)Elec-trificationRate.40FigureB5.1Ground-SourceHeatPumpsPumpsforSpaceHeating.4506Figure6.1CarbonEmissionsfromChina’sManufacturingSubsectorsin2014-201853Figure6.2IndustryFinalEnergyConsumptionintheUpdatedNDCtoCarbonNeutralityScenario:(A)TotalFinalEnergy,(B)FinalEnergybyFuel.54Figure6.3ElectrificationinIndustrySectorintheUpdatedNDCtoCar-bonNeutralityScenario.(A)ElectricityDemand.(B)Electrifi-cationRate.54Figure6.4HydrogenSharesinIndustrySectorintheUpdatedNDCtoCarbonNeutralityScenario.55Figure6.5EnergyConsumptionbyIndustrialSubsectorinthePECE_LIU2021model.56Figure6.6ShareofEnergyConsumptionbyIndustrialSubsectorinthePECE_LIU2021model.56FigureB6.2CrudeSteelProductioninTop5Provinces.6407Figure7.1HistoricalTrendofShareofElectrificationintheTransporta-tionSectorofChina,JapanandtheU.S.70Figure7.2PassengerTransportationFinalEnergyConsumptionintheUpdatedNDCtoCarbonNeutralityScenario:(A)TotalFinalEnergy,(B)FinalEnergybyFuel.71Figure7.3FreightTransportationFinalEnergyConsumptionintheUp-datedNDCtoCarbonNeutralityScenario:(A)TotalFinalEner-gy,(B)FinalEnergybyFuel.72Figure7.4ElectrificationintheTransportationSectorintheUpdatedNDCtoCarbonNeutralityScenario.72Figure7.5FuelSharesinTransportationSectorintheUpdatedNDCtoCarbonNeutralityScenario.73LISTOFFIGURES08Figure8.1ElectricitySystemTransitionintheUpdatedNDCtoCarbonNeutralityScenario.80Figure8.2TotalElectricityCapacitybyTechnologyintheUpdatedNDCtoCarbonNeutralityScenario.80Figure8.3ElectricityGenerationSharesintheUpdatedNDCtoCarbonNeutralityScenario.81Figure8.4SolarandWindCapacityintheUpdatedNDCtoCarbonNeu-tralityScenario.82Figure8.5RenewableEnergyShare(%)ofTotalElectricityGenerationin(A)2030and(B)2060inMainlandProvinces.84LISTOFFIGURES01INTRODUCTIONSYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYS01@EnergyFoundation01INTRODUCTIONINTRODUCTION0102SYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYSInSeptember2020,PresidentXipledgedthatChinawouldpeakitscarbondioxide(CO2)emissionsbefore2030andachievecarbonneutralitybefore2060.InApril2021,heannouncedChina’splantostrictlylimittheincreaseincoalconsumptionoverthe14thFiveYearPlan(FYP)andphaseitdowninthe15thFYP.InSeptember2021,PresidentXimadefurtherpledgesthatChinawouldstopbuildingnewcoal-firedpowerplantsoverseas.Throughout2021,PresidentXiandotherhigh-levelChineseofficialsreiteratedandreinforcedChina’scommitmenttothe“30/60”goalsonmultipleoccasions,signalingthecountry’sintentiontoacceleratelow-carbontransition.Thesepledgescommunicateaseriouscommitmenttoclimatechangemitigation.But,likeothercountriesmovingforwardonclimate,thepathwaytoreachthesegoalsisnotfreeofobstaclesorchoicesaboutwhichofmanydifferentpossibleroadsChinashouldtake.Manyoftheseobstaclesarepresenttoday,asChinaimplementsits14thFYPandperceivesits15thandsubsequentFYPsonthehorizon.EnergysecurityisoneofthetopprioritiesofChina’sdevelopmentstrategy.CurrentworldeventsposenewchallengestoChina’senergyandeconomicdevelopment.InthewakeoftheRussia-Ukraineconflict,globalenergymarketsareinturmoilwithrisingoilandgasprices.China,asanenergyimporter,hasbeenexperiencinghigherenergycostsandcommodityprices.Domestically,Chinahasstruggledwithseveralpowershortagesin2021and2022,makingstableandreliableenergysupplythecountry’sprimeconcern.MeetingChina’sclimatepledgeswillrequiresignificantenergysystemtransition.Ensuringenergysecurityinthistransitionisakeypriority.ElectrificationisacorepartofChina’spathwaytocarbonneutrality.Electrificationofend-usesectors,coupledwithdemand-sidemeasuresandpowersystemdecarbonization,canhelpachievealow-emissionsfuturewhilepromotingenergysecurity.AstheChineseelectricitymixiscurrentlyquitecarbonintensive,transitionsinend-usesectorsandtheelectricitysystemneedtogohandinhand.Byreplacingfossilfuelsinbuildings,industry,andtransportationwithelectricitygeneratedfromlow-orzero-emissionsfuels,significantCO2emissionsreductioncanbeachieved.Meanwhile,modernizingthegridsystemandusingmoreindigenousrenewableresourcesinelectricitygenerationcanfosteraflexibleandreliablepowersystemandimproveenergysecurity.Thisreportisthesecondinaseriesofmulti-institutionreportsthatassessChina’scarbonneutralitytransition.Thefirstreport,publishedin2020,highlightsChina’spathwaystowardscarbonneutralityandtransitionsthroughouttheeconomy.ThisreportprovidesanoverviewofChina’snewpoliciesandenergyandemissionstrendssince2020.Italsoconductsdeepdivesintotheroleofelectricityandfocusesonthedoubletransitionsofelectrifyingend-usesectorsanddecarbonizingtheelectricitysectortoachieveChina’scarbonneutralitytarget.Itisdevelopedbasedonnew,multi-model,multi-institutionanalyses,deep-diveworkingpapersonspecificsectors,andanassessmentofexistingresearch(Box1.1).Itaimsto:exploreintegratedstrategiesforChina’scarbonneutralitytransition,provideanupdatedunderstandingofpathwaystocarbonneutrality;presentandsynthesizebothexistingandnewtransitionscenariosfrommultiplemodelingandresearchteams;assessrecentpolicydevelopmentinChina;andanalyzethealignmentbetweenChina’snear-termpolicytargetsanditslong-termgoals.ThisreportparticularlyhighlightstheroleofelectrificationandassociatedelectricitysystemtransformationinachievingChina’s“30/60”goalsandidentifiesasetofnear-termsectoralactionsandlong-termsectoralstrategiesthatcanbetakentoaccelerateelectrificationandpowersectordecarbonizationtoputChinaonasuccessful,low-emissionsgrowthpathway.01INTRODUCTIONSYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYS03BOX1.1:ANALYSESUSEDINTHISREPORT1CO2FFIreferstoFossil-FuelCombustionandIndustrialProcessemissions,CO2AFOLUreferstoAgriculture,ForestryandOtherLandUse.Thisreportsynthesizesanumberofquantitativeanalysesfromnationalandglobalmodels,includingChinaDREAM,ChinaTIMES,GCAM-China,MESSAGEix-China,AIM-China,PECE_LIU_2021,andPECEV2.0(seeTableB1.1fordetail).Participatingmodelsconductanalysesbasedontwocoordinatedscenarios:UpdatedNationallyDeterminedContribution(NDC)toCarbonNeutralityandOriginalNDCtoCarbonNeutrality.Thesescenariosachievenet-zerogreenhousegasemissionsby2060,buthavedifferentpeakingtimes(seeSection3.1fordetailedscenariodescription).Wedonotattempttoharmonizeassumptionsacrossmodels,andtheresultsshowninthisreportreflectmodel-specificinterpretationofsocioeconomicandtechnologicaldevelopmentinChina.Buildingonthesemodelinganalyses,teamsalsodevelopeddeep-diveanalysestoaddresskeyissuesandtechnologyoptionsforelectrificationindifferentsectors.Thesedeep-divepapersincludeprovincial-specificrenewableenergyinvestmentneeds,strandedassetsandcreditrisksinChina’scoalpowertransition,andelectrificationandtransitionstrategiesinindustry,transportation,andbuildings.Insightsfromthesedeep-divepapersaresynthesizedinthisreporttoprovideadditionalsectoral,spatial,andtechnologicalgranularitytotheanalyses.Thesedeep-divepapersarepublishedwiththisreporttoprovideadditionalcontextandinformation.TABLEB1.1:SUMMARYOFPARTICIPATINGMODELINGTEAMSModelNameOrganizationSpatialResolutionModelingMethodsScenariosModeledGasesModeled1Documentation/SourceGCAM-ChinaPacificNorthwestNationalLaboratory(PNNL)/UniversityofMaryland(UMD)Global(ChinaisanindependentregioninGCAM)Adynamicrecursivemodelthatrepresentsthebehaviorof,andinteractionsbetween,fivesystems:theenergysystem,water,agricultureandlanduse,theeconomy,andtheclimate.UpdatedNDCtoCarbonNeutrality;OriginalNDCtoCarbonNeutralityCO2FFI,CO2AFOLU,CH4,F-Gases,N2O(GCAM,2022);(Calvinetal.,2019)AIM-ChinaBeijingUniversityofTechnologyNationalThecurrentlyusedmodelsandmethodsinclude:computablegeneralequilibriummodel;thedynamiceconomicmodel;thepartialequilibriummodel;theminimumcostoptimizationmodel,basedonlinearprogrammingtechniquesdescribedindetailandindustrysimulationmodels.UpdatedNDCtoCarbonNeutrality;OriginalNDCtoCarbonNeutralityCO2FFI,CO2AFOLU,CH4,F-Gases,N2O(IPAC,2020)INTRODUCTION0104SYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYSModelNameOrganizationSpatialResolutionModelingMethodsScenariosModeledGasesModeled1Documentation/SourceMESSAGEix-ChinaInternationalInstituteforAppliedSystemsAnalysis(IIASA)Global(Chinaisanindependentregion)Globalsystemsengineeringoptimizationmodelusedformedium-tolong-termenergysystemplanning,energypolicyanalysis,andscenariodevelopment.UpdatedNDCtoCarbonNeutrality;OriginalNDCtoCarbonNeutralityCO2FFI,CO2AFOLU,CH4,F-Gases,N2O(IIASA,2021);(Huppmannetal.,2019)ChinaDREAMLawrenceBerkeleyNationalLaboratory(LBNL)NationalAbottom-upnationalenergysystemmodelwhoseprimarydriversincludephysicalandsocioeconomicactivity,energyintensity,andtechnologytrends,builtusingtheLowEmissionsAnalysisPlatform(LEAP).UpdatedNDCtoCarbonNeutralityCO2FFI(LBNL,2022)ChinaTIMESTsinghuaUniversityNationalAdynamiclinearprogrammingenergysystemoptimizationmodelusedfornear-andlong-termenergysystemanalysisandclimatechangemitigationpathwaydevelopment.UpdatedNDCtoCarbonNeutrality;OriginalNDCtoCarbonNeutralityCO2FFI(S.Zhang&Chen,2022)PECE_LIU_2021HarbinInstituteofTechnology,Shenzhen;RenminUniversityofChinaNationalAnationalenergysystemmodelwhichfocusesonChina’slong-termlow-carbontransitionroadmapforclimatetargets,builtinLowEmissionsAnalysisPlatform(LEAP)UpdatedNDCtoCarbonNeutrality;OriginalNDCtoCarbonNeutralityCO2FFI,CO2AFOLU(J.Liuetal.,2021)PECEV2.0EnergyFoundationChina;RenminUniversityofChinaNationalAnintegratedenergysystemmodel,whichisbasedonpartialequilibriumframeworkandquantifiesthefutureenergydemand,supply,andemissions.UpdatedNDCtoCarbonNeutrality;OriginalNDCtoCarbonNeutralityCO2FFI,CO2AFOLU,CH4,F-Gases,N2O(Fragkosetal.,2021)02RECENTDEVELOPMENTINCHINA’SCLIMATEPOLICIESSYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYS0502RECENTDEVELOPMENTINCHINA’SCLIMATEPOLICIES@EnergyFoundationRECENTDEVELOPMENTINCHINA’SCLIMATEPOLICIES0206SYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYS2.1RECENTSOCIOECONOMIC,ENERGY,ANDEMISSIONSTRENDSChangingEconomic,Energy,andEmissionsTrendsSince2020Startingin2020,theChineseeconomyhasenteredaneweramarkedbythe“DualCirculation”strategy(Xinhuanet,2020).Thisstrategyemphasizesbothexpandeddomesticmarkets(domesticcirculation)andgrowingexports(internationalcirculation).Thecarbonneutralitygoalalignswiththe“dualcirculation”strategyofgreaterself-reliancethroughmorecleanenergyresourcesandadvancedcleantechnologiesandfacilitatesChina’scompletetransformationinboththeeconomyandtheenergysystem.Inthepastyears,newtrendsinChina’senergysectorhavebeenobserved,includingfastrenewableexpansion,anuptickincoalconsumption,andarelativelysteepincreaseincarbonemissions.Withgrowingadditionsofrenewables,China’sdependenceoncoalhasdeclinedinrecentyears.Chinaistheworld’sbiggestenergyproducerandconsumersince2009andreliesheavilyoncoal.In2021,coalstillsupplied56.0%ofChina’stotalenergyconsumptionof5.24billiontonnesofstandardcoalequivalent(SCE),comparedto72.4%of2.61billiontonnesin2005(NBS,2022c).Meanwhile,China’srenewableenergycapacityhasexpandedrapidlyinrecentyears.Chinahadarecordexpansionofrenewablesin2020,arapidexpansionthatcontinuedduring2021,whenthegrid-connectedwindpowergenerationwentupby40.5%andsolarpowergenerationroseby25.2%,comparedto8.4%increaseofthermalpower(CEC,2022a).Moreover,Chinainstalledslightlybelow17GWofoffshorewindcapacityin2021,comparedto3GWin2020,anextraordinaryexpansionbeforetheexpirationoffeed-intariffs,makingitoperatealmosthalfoftheworld’sinstalledoffshorewind(CPNN,2022).AttheendofJune2022,Chinahad2,446GWofinstalledpowercapacity,ofwhich,hydropower,windpower,andphotovoltaic(PV)reached400GW,342GWand336GW,respectively,rankingthehighestacrosstheworld(CEC,2022c).Theamountofrenewablepowergeneration(includinghydropowerandbiomass)inChinareached2,480TWh,accountingfor29.7%oftheannualpowergenerationin2021(TheStateCouncil,2022b).China’simpressivegrowthinrenewablesisexpectedtowellexceedthegovernment’sNationallyDeterminedContribution(NDC)targetofover1,200GWinstalledsolarandwindpowercapacityby2030.SinceAugust2021,thegovernmenthasendedthecentralsubsidiesfornewphotovoltaicpowerprojectsandonshorewindprojects.Steppingintothepost-subsidyeraforrenewables,theNationalDevelopmentandReformCommission(NDRC)announceditsfirstbatchofcleanenergybases(large-scalesolarandwindenergyprojects)for97GWinNovember2021andrevealedthesecondbatchof455GWinFebruary2022,concentratedintheresource-richdesertareainnorthernChina.Intotal,Chinanearlyadded54.8GWnewrenewableelectricitygenerationcapacity,accountingfor80%ofthetotalnewly-installedpowergenerationcapacityinthefirsthalfof2022(NEA,2022a).Alongwiththenational-levelprojects,provincial-leveltargetsandprojectpipelineinstallationreflectafarmoreaggressivedeploymentpacethantheNDCtarget.Basedonprogresstodate,China’s1,200GWtargetwillbemetyearsearlierthan2030.Therapidexpansionofrenewableenergyandrelatedup-anddown-streamindustries(manufacturing,installation,etc.)havebecomeChina’snewgrowthdriversandcreatednumerousjobopportunities(CCICED,2022).Asthelargestproducerofwindandsolarenergy,Chinaclaimsthebulkofworldwiderenewableenergyrelatedemployment.With5.37millionjobsin2021,Chinaaccountsfor42.3%oftotalrenewableenergyemploymentworldwide(IRENA&ILO,2021).Furthermore,Chinaisthedominantproducerofcomponentsforbatteriesandthe02RECENTDEVELOPMENTINCHINA’SCLIMATEPOLICIESSYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYS07largestmarketforelectricvehicles(EVs)aswell.In2021,newenergyvehicles(NEVs)salestotaled3.52million,includingelectricvehicles(BEVs)(82.8%),plug-inhybrids(17.1%),andfuelcellvehicles(0.1%),anincreaseof160%comparedto2020(MIIT,2022).China’sEVmarketcurrentlyaccountsformorethan50%ofnewEVsalesglobally.Withanaverage13.4%penetrationrateofEVsin2021,Chinahassetnationaltargetstoreach20%by2025and40%by2030.Inthefirsthalfof2022,thepenetrationrateofNEVshasalreadyexceededthetargetandreached21.6%(CAICT,2022).China'sEVindustryhasbeenandisexpectedtocontinuetotriggerindustry-widechangesandsparkeconomicgrowthandjobcreation.AlthoughChina’shydrogenindustryisinanearlystageofdevelopment,therisingawarenessoftheimportanceofhydrogenatboththenationalandlocallevelshascreatedafavorableenvironmentforthehydrogenindustrytoboominthenearfuture.By2050,hydrogenisexpectedtomakeup10%ofChina’senergymix,withanoutputvalueof$1,772billion(CHA,2020).TheoutbreakofCovid-19ledtomorefluctuationsinChina’senergyconsumptionandemissions.Withastrictlockdownandplummetingoutputinearly2020,bothenergyuseandemissionstemporarilyfell,andChina’seconomyhitahistoricallowgrowthrate(2.2%in2020)inmorethanfourdecades.Thegovernmentimplementedanewinfrastructureinvestmentandbusiness-orientedstimuluspackagetoboosttheeconomy,andChina'seconomysawastrongrebound,achieving8.1%growthfor2021,thefastestinnearlyadecade(TheStateCouncil,2022a).Asaresult,emissionsrosein2021,and,accordingtoIEA’sestimate,China’senergysectorCO2emissionsincreasedby750Mtoverthetwo-yearperiodbetween2019and2021(IEA,2022a).AnotherCOVID-19outbreakinearly2022(especiallyinShanghaiandBeijing)exacerbatedweakhouseholdconsumptionandworsenedthetroubledrealestatemarket.China’seconomygrewbyjust0.4%inthesecondquarterandonly2.5%inthefirsthalf,farbelowtheofficialyearlygoalof5.5%in2022(NBS,2022b).Energyconsumptionandemissionsappearhighlylikelytoremainhighin2022asaresultofstrongcoalconsumption,eveninthecontextofthecontinuedrealestateslowdownandfastexpansionofrenewables.Entering2022,theRussia-Ukrainecrisishasexertedbothshort-andlong-termimpactsonChina’senergyindustry.China’scrudeoilimportsfromRussiahitarecordlevelin2022,asrefinersboughtupdiscountedRussiansupplies.HighglobalenergypricescausedbythecrisisandslowerenergydemandgrowthhaveresultedinChina’slowerenergyimports.China'snaturalgasimportsweredownby10%inthefirstsixmonthsof2022,comparedtothesameperiodin2021;crudeoildownby3.1%,andcoaldownby17.5%inthesameperiod(ChinaEconomicNet,2022).Thegovernmenthasboosteddomesticcoalproductiontoensuresuppliesandenergysecurityinatightglobalmarket.Rawcoaloutputreached2.19billiontonnes,up11.0%overthefirsthalfof2022(ChinaEconomicNet,2022).Alsoasaresultofdemandforelectricvehiclesboominggloballyandthecrisis’simpactoncommoditymarkets,themarketpriceofbattery-gradelithiumcarbonatehasrisenoutrageously(thepriceasofJune2022wasalmostsixtimeshigherthaninJune2021),placingafinancialstrainonbatterymanufacturersandhinderingChina’sadoptionofEVs.Asimilarsituationwithsilicon,amajormaterialusedinPVequipment,threwanotherpriceshocktoChina’sPVmarket.Sincethebeginningof2021,siliconhasseenpricestripled,duetotherisingdemandfromdownstreamPVmanufacturersdrivenbytherapidPVexpansion,supply-sidedisruptionofChina's“Dual-control”policy(controlthehighenergyuseandhighemissionsprojects),andthecrisis’simpact.ThesiliconpriceincreaseslowedtheexpansionofproductioncapacityinthePVindustryandfurthercausedthetotalinstalledcapacityofnewPVprojectsin2021tobelessthantheexpected.Owingtothereboundincoaluse,China’scarbonemissionshavereachedarecordhighin2021andmayenteracarbonemissionsplateauinthenextfewyears.Drivenbyeconomicgrowth,China’scarbonemissionshadbeenonanupwardtracksincethe1990suntil2013,whenitreachedaplateau.However,since2017,coalconsumptionRECENTDEVELOPMENTINCHINA’SCLIMATEPOLICIES0208SYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYShaswitnessedanuptick,astheChineseeconomyfacedheadwindsandthegovernmentsoughttostimulateindustrialgrowth.Asof2020,China’sgreenhousegas(GHG)emissionsreachedaround13GtCO2-equivalent(CO2-eq),equatingto9tCO2-eqpercapita.Thisaccountsforaboutaquarterofglobalemissions,upfrom10.2%in1990.Nevertheless,thecarbonintensityofGDPdroppedfromapeakofnearly810gCO2in2005to450gCO2overtheyear2020(IEA,2021a,2021b).WithrapidGDPgrowthandstrongexportperformance,electricitydemandinChinagrewby10.3%in2021,fasterthaneconomicgrowthof8.1%(CEC,2022a).Halfofthe790TWhincreaseinelectricitydemandwasmetbycoal,andChina’sCO2emissions(fossilfuelandindustry,FFI)hadreachedarecordhighof11.9billiontonnes,accountingfor33%oftheglobaltotalin2021(IEA,2022a).Overthenextfewyears,significantlygrowingrenewablepowerwillprobablyoutstripcoalandbecomethedominantsourcetomeettheriseinelectricitydemand.RegionalDisparityinEnergyDeploymentandEmissionsChinaisavastcountrycharacterizedbyhugeregionaldisparity.WhileBeijingandotherplaceshavealreadyenteredthecarbonemissionsplateauperiod,northwesternprovincessuchasNingxia,Xinjiang,andInnerMongoliahavewitnessedafastemissionsgrowthinthepastdecade.Inaddition,in2021,China’s19provincialgovernmentsapprovednewcoalpowerplants(EFC,2022).TheprovinceswiththemostplannedcoalprojectsareHunan,Shanxi,Shaanxi,andGuangdong(EFC,2022).Asof2021,Jiangsu,Guangdong,andHenanaretheleadersinwindcapacityaddition;whilethetopthreeprovincesofChina’snewinstalledsolarcapacityareShandong,Hebei,andHenan(NNECM,2022).Goingbackto2021,althoughthedecision-makersemphasizecarbonpeakingandcarbonneutralityplanstobehierarchicalandorderly,planningandimplementationvaryacrosslocalgovernments.Underthecurrent“Dual-control”mechanism,aimedatreducingenergyintensityandlimitingtotalenergyconsumption,someprovincescurbdual-highprojectsandresorttopowerrationingtomeetDual-controltargets.Thispartiallyresultsinashortfallincoalandpowersupply.Atthesametime,thereopeningoftheglobaleconomyafterthepandemicbroughtaboutasurgingdemandforChina’sexportindustriesandthecorrespondingincreasedelectricitydemand,whichcoincidedwiththeshortfallincoalsupplyandpushedupcoalpricesandcostsofgeneratingelectricity.Asthegovernmentstrictlycontrolselectricityprices,coal-firedpowerplantsarereluctanttooperateataloss,hencemanyhavereducedtheiroutput.Chinaencounteredasevereshortageofelectricitythatstartedinthesummerin2021andrippledacrossmostofeasternChina.Energy-intensiveindustries,suchascement,steel,andaluminumsmeltingareamongtheindustriesmosthitbythepoweroutages.Siliconpriceswerealsoaffectedbythelackofpowersupply.Toguaranteewinterheatandpowersupplies,theNDRChadadoptedaseriesofmeasurestolowerdowntherecord-highcoalprices.Coalproducingcompaniesarerampingupproduction,andcoal-firedpowerplantsareexpandingcoalprocurementchannels.Theboostincoalproductionputstheproductionofrawcoalatarecordhighof4.07billiontonnesforpastyears.Coalconsumptionasof2021hasnearlyreachedthepreviouscoalconsumptionpeakin2013of4.24billiontonnes(NBS,2022a).ThereexistsalargespatialmismatchbetweensupplyanddemandofrenewableenergyinChina.Mostrenewableenergysourcesarelocatedinthenorthwest,whilethehighestpowerdemandisinthesoutheast.Thisgeographicalmismatch,combinedwiththelimitedgridconnectionsfromrenewableenergypowerplantstotheelectricitygrid,underdevelopedcross-regionalpowertransmissiongrids,lackofpowertradingsystemsacrossprovinces,andrestrictedenergy-storagefacilities,hasresultedinthecontinuedcurtailment(deliberatereductioninoutput)ofrenewablesandfurtherhinderedrenewablesdevelopment.Asoftheendof2021,thewindcurtailmentrate–theratioofcurtailedelectricitytototalwind02RECENTDEVELOPMENTINCHINA’SCLIMATEPOLICIESSYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYS09generation–exceeded10%inQinghai.ThePVcurtailmentratereachedalmost20%inTibetandnearly14%inQinghai(NNECM,2022).Inaddition,asthegovernmentspeedsuptheconstructionofcleanenergybasesconcentratedmainlyinnorthernChina,fastexpansionofthetransmissioncapabilitiesconnectingenergysourcesinthenorthwestwithpower-hungryneedsintheeastisbecomingincreasinglychallenging.2.2RECENTPOLICYDEVELOPMENT2021isthefirstyearofChina’s14thFive-YearPlan(2021–2025).ItalsomarksthefirstyearofthenationwideendeavortopeakcarbonemissionssincePresidentXi’sannouncementofthedualcarbon,“30/60”,goalsatthe75thsessionoftheUnitedNationsGeneralAssemblyinSeptember2020.Throughout2021,thepoliticalwillinadvancingthedual-carbonagendahasremainedhigh.Importantpolicysignalshavebeenannouncedatnationalandinternationalmeetings,andthe“1+N''seriesofpoliciesdirectingcarbonneutralityandcarbonemissionspeakingeffortswerereleased.PoliticalCommitmenttoClimateActionThroughout2021,thepoliticalwilltomarshaltheentirenationtopeakcarbonemissionsandreachcarbonneutralityhasstayedstrong.PresidentXiandotherhigh-levelnationalofficialsreiteratedandreinforcedChina’sfirmdedicationto“30/60”goalsinmultipleimportantinternationaleventsandvenues.ThesegoalsarealsoreflectedinChina’supdatedNDCandLong-termStrategy.Domestically,theintegralroleofcarbonpeakingandcarbonneutralityinachievingoverallprosperityforChinahavealsobeenemphasizedonseveralhigh-levelpoliticaloccasions.Forexample,atop-level“LeadersGroupontheWorksofCarbonPeakingandCarbonNeutrality”headedbyVicePremierHanZhengandconsistingofheadsofministriesinvolvedintheworkofpeakingcarbonemissionsandreachingcarbonneutrality,hasbeenformed(You,2021).Servingasthehigh-levelcoordinatorinclimateneutrality,theLeadersGroupholdsregularplenarymeetingstoreviewprogressandemphasizesprioritiesinachievingtheclimategoals(Boer,2022;Xinhuanet,2021a).Entering2022theRussia-Ukraineconflictanditsramificationsfortheglobalenergysupplyhaveshapedthepoliticalagendaforco-prioritizingsecuringenergysupplyandachievingcarbonneutrality.Itwasemphasizedduringthe13thNationalPeople’sCongressthat,whiletakingproactiveandprudentstepstoadvancedualcarbongoals,Chinamustalsoensurethesecurityofenergy,food,andindustrialandsupplychains,echoingpreviouspolicysignalssentataPolitburosessionearlierthisyear(BloombergNews,2022;GlobalTimes,2022).Inaddition,underthebleakmacroeconomicclimate,thegreeneconomythatiscloselyassociatedwithcarbonneutralityisbelievedtobethenewgrowthengine,which,inturn,enhancesthepoliticalwillatthehighestlevelstocommittoclimateactions.The“1+N”PolicyFrameworkInOctober2021,Chinaannounceda“1+N”policyframeworkforcarbonpeakingandcarbonneutrality,whichconsistsofaseriesofimplementationplansforCO2emissionsinkeysectorsandareaswithavarietyofsupportingpolicies(MEE,2021c).Ontheeveofthe2021UnitedNationsClimateChangeConference,thehighest-levelguidingdocumentforChina’sclimateaction,WorkingGuidanceforCarbonDioxidePeakingandCarbonNeutralityinFullandFaithfulImplementationoftheNewDevelopmentPhilosophy(referredtoasWorkingGuidance)waspublishedbyCentralCommitteeoftheChineseCommunistPartyandStateCouncil,settingoutthefundamentalprincipleofthecountry’sfuturedevelopment.Thisdocumentisknownasthe“1”RECENTDEVELOPMENTINCHINA’SCLIMATEPOLICIES0210SYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYSin“1+N”policyframework(Xinhuanet,2021b).TheWorkingGuidancesetshigh-levelgoalsforcrucialenergyandcarbonindicatorsby2025,2030,and2060(Table2.1).CloselyfollowingtheWorkingGuidance,ChinasubmitteditsupdatedNDCandChina’sMid-CenturyLong-TermLowGreenhouseGasEmissionDevelopmentStrategy,outliningthenewgoalsandmeasuresforclimatechangemitigationandadaptationandreaffirmingtheaforementionedclimatetargets.TABLE2.1:GOALSSETINTHEWORKINGGUIDANCEFORCARBONDIOXIDEPEAKINGANDCARBONNEUTRALITY.Goals2025►Toestablishaninitialframeworkforagreen,low-carbon,andcirculareconomy.►Togreatlyimproveenergyefficiencyofkeyindustries.►ToreduceenergyconsumptionperunitofGDPby13.5%comparedto2020level.►TodecreasecarbondioxideemissionsperunitofGDPby18%comparedto2020level.►Toincreasetheshareofnon-fossilenergyconsumptiontoaround20%.►Toincreaseforestcoverageto24.1%andtoincreaseforeststockvolumesto18billionm3.2030►Toalignenergyefficiencyinkeyenergy-consumingindustrieswithinternationallevels.►TosignificantlyreduceenergyconsumptionperunitofGDP.►TodecreasecarbondioxideemissionsperunitofGDPbyover65%comparedto2005level.►Toincreasenon-fossilenergyconsumptiontoaround25%.►Toincreasetotalinstalledcapacityofwindandsolarpowertoover1,200GW.►Toincreaseforestcoverageto19billionm3.►Topeakandtoreachtheplateauofcarbonemissions,andcarbonemissionsstarttodecline.2060►Toincreasetheshareofnon-fossilenergyconsumptiontoover80%.►Toachievecarbonneutrality.Soonlater,anation-widecarbonpeakingactionplandescribinghowChinaintendstopeakitscarbonemissionsby2030,knownastheActionPlanforCarbonDioxidePeakingBefore2030(referredtoastheActionPlanbelow),wasannounced(Xinhuanet,2021c).Itisregardedasthefirstinthe“N”seriesofpolicy,includingthemajoractionableareasintheendeavorforpeakingcarbonemissions.The“1+N''policyframeworkemphasizesthatChina’scarbonmitigationactionshouldtakeawhole-of-nationapproachthatfeaturesabalancebetweendevelopmentandemissionsreduction,betweenoverallandlocalimperatives,andbetweenshort-termandlong-termconsiderations.GuardingagainstrisksisalsohighlightedintheWorkingGuidance,inlinewiththerecentchangeoftoneoncoal-relatedpoliciesduringthefirsthalfof2022.Into2022,sectoralandthematicplanshavebeensubsequentlyreleasedtosupportcarbonpeakingactionundertheguidanceoftheLeadershipGroup,puttingthe“N”frameworkintoshape.AsoutlinedinFigure2.1below,sectoralplanshavebeensequentiallyreleasedforindustry,urban-ruralconstruction,andagricultureandruralregions,whilethemitigationeffortsofthetransportationsectorareguidedbyahigh-levelimplementationopiniononachievingthedualcarbongoals.Also,guidelinestomobilizefiscalinstrumentsandpoliciestoachievedualcarbongoalsandtosynergizecarbonreductionwithpollutionabatementhavebeenreleased.Researchintoanddraftingofactionplansforironandsteel,petrochemicals,non-ferrousmetal,electricity,oil,andgasareinfullswingandmightbeunveiledinthecomingmonths(NDRC,2021a).Additionalenablingpoliciesareonthewayforinstance,theactionplanforusingscienceandtechnologytosupportcarbonemissionpeakingandcarbonneutralitywillbepublishedbyNDRCinthenearfuture(NDRC,2021b).02RECENTDEVELOPMENTINCHINA’SCLIMATEPOLICIESSYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYS11FIGURE2.1:TIMELINEOF“1+N”POLICIESRELEASEDBYJULY2022.TIMELINEOF“1+N”POLICIES(RELEASEDBYJULY2022)ByannouncementtimeOct2021Nov2021Dec2021Jan2022Feb2022Mar2022Apr2022May2022June2022July20222022“WorkingGuidanceforCarbonPeakingandNeutrality”“CarbonPeakingActionPlan”Jinagsu:ImplementationOpinionsQingshai:ImplementationOpinionsImplementationPlanforEmissionsReductionandCarbonSequestrationinAgricultureandRuralAreasNingxia:CarbonPeakingActionPlanJiangxi:CarbonPeakingActionPlanImplementationOpinionsofTransportationSectorGuangxi:ImplementationOpinionsOpinionsonFiscalSupportforCarbonPeakandCarbonNeutralityImplementationPlansforSynergizingtheReductionofPollutionandCarbonEmissionInnerMongolia:ImplementationOpinionsIndustryCarbonPeakingActionPlanUrban-RuralConstructionCarbonPeakingActionPlanImplementationOpinionsofState-OwnedEnterprisesShanghai:ImplementationOpinions&CarbonPeakingActionPlansGuangdong:ImplementationOpinionsZhejiang:ImplementationOpinionsJiangxi:ImplementationOpinionsJilin:CarbonPeakingActionPlanChongqing:ImplementationOpinionsIMPLEMENTATIONOPINIONS:ImplementationOpinionsforCarbonDioxidePeakingandCarbonNeutralityRECENTDEVELOPMENTINCHINA’SCLIMATEPOLICIES0212SYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYSSimilarly,subnationalroadmapstocarbonemissionpeakingarebeingdevelopedacrossthenation.BytheendofJuly2022,elevenprovincesandcitieshavereleasedtheirownguidingdocumentsand/orcarbonpeakingactionplans,asdisplayedonFigure2.1.Thenationalcarbonpeakinggoalisfurtherbrokendownandmanifestedasquantitativetargetsinthesubnationalroadmaps,reflectingtheoverallphilosophyofpeakingCO2emissionshierarchicallyandinanorderlyprogressionacrossallregionsbypromotinggreenandlow-carbondevelopmentcompatibletolocalconditions.Forexample,tounlockthetremendouspotentialofgreenfinancesintheGreaterBayArea,Guangdongprovincehasestablishedasoundandprudentgreenfinanceservicesystemtosupportclimateactionsandinvestmentsthatleadtocarbonpeakingintheprovince(People’sGovernmentofGuangdongProvince,2022).Withasmanyas37sectoral,industrial,andthematicpoliciesincorporatedintothe“1+N”framework,thenextstepwillfocusonsynergisticeffortstoadvancetowardsthedualcarbongoalsandtodesignandimplementdetailedrulebooks(L.Zhang,2022).SectoralandThematicPolicyDevelopmentInadditiontotheaforementioned“1+N”policies,importantpoliciesconcerningthelow-carbontransitionatcentralandlocallevelsthatcoverawiderangeofsectorsandcross-cuttingtopicshavebeenreleased(seeFigure2.2).Sincerelevantworkwaslaunchedyearsago,theformulationandreleaseofsupportingpoliciesareleadingtheentirepolicymakingprocess,includingcompulsoryGHGemissioninformationdisclosurebycarbon-intensiveenterprises,theyearlyupdatesofgreenbondendorsedprojectscatalog,andthedevelopmentofecologicalcompensationmechanism(MEE,2021a,2021b;PBCetal.,2021).Newarrangementsofsupportingmeasureshavebeenputintoeffecttofacilitatetheentireeconomyandsocietytoengageactivelywithlow-carbontransition.Forexample,lastNovember,People’sBankofChinarolledoutacarbonemissionreductionfacilitytomobilizesocialcapitalinthedevelopmentofcleanenergy,energyconservation,carbonreductiontechnologies,andotherrelevantkeyactionareas(PBC,2021).Moreover,itisworthnotingthatChinahasputthedevelopmentofamodernandnewpowersystemfeaturingahighproportionofstablerenewableenergyandsecuregridconnectionhighonitsnationaltasklist,especiallyduringthe14thFYPperiod.AsshowninFigure2.2,beginninginMay2021,aseriesofplanningdocumentshavebeenreleasedtomapoutthefuturedevelopmentofkeytechnologiesandcomponentsofthenewpowersystem,suchasexpansionofpumpedstoragehydropowerforenergysecurity;hydrogendevelopmentasanalternativeenergysourceandenergystorage;othernewenergystoragetechnologiesandprojects;andenergypricingreformandinterprovincialpowertradingschemes.AnothermilestonewasthefirstanniversaryofChina’snationalemissiontradingscheme(ETS)inJuly,2022.Untilnow,China'snationalETScovers2,162keyemittersinthepowersector,whichtogethercontributeto4.5billiontonnesofCO2emissionsperyear(MEE,2022b).Overthepastyear,thecumulativetransactionvolumeofCEA(CarbonEmissionAllowance)intheworld’slargestcarbonmarketreached194milliontonnes.ThecumulativetransactionvalueisaroundRMB8.45billion,withacarbonpricefluctuatingbetween40to60yuanpertonne(MEE,2022b;K.Wangetal.,2022).Thecurrentallowanceallocationmechanismisbasedonemissionintensityofemittersratherthananabsolutecapontheiremissionamounts,andonlythepowersectorisincluded.ParalleltothenationalmarketarethesubnationalETSpilots,whereemittingenterprisesincement,ironandsteel,petrochemicals,papermaking,andaviationindustriesconducttransactionstocomplywiththeiremissionreductiongoals(Zengetal.,2021).Duringthefirstandcurrentcompliancecycles,ChinaCertifiedEmissionReductions(CCER)creditswereallowedtobeusedtooffsetnomore02RECENTDEVELOPMENTINCHINA’SCLIMATEPOLICIESSYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYS13than5%ofemissionsbyeachemittingentity,andacumulativeamountof169milliontonnesweretransactedbytheendof2021(Tan,2022).Asregulationsandstandardsonecologicalcompensationandenvironmentalequityfinancinginstrumentstakeshape,thenationalCCERmarketislikelytoberebootedlatein2022orin2023(Xu,2022).@EnergyFoundationRECENTDEVELOPMENTINCHINA’SCLIMATEPOLICIES0214SYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYSFIGURE2.2:TIMELINEOFKEYCLIMATEPOLICIESRELEASEDIN2021AND2022.TIMELINEOFCLIMATEPOLICIESRELEASEDIN2021AND2022Byannouncementtime2020Jan2021Feb2021March2021April2021May2021June2021July2021Aug2021Sept2021Oct2021Nov2021Dec20212022EnhancedEnergyConservationandREUtilizationStandards3060GoalClimateFinancingGuidelinesEnterpriseGHGMRVValueRealizationEcologicalProductsGreenBondCatalogue14thNationalFYPControlofDual-HighProjectsEnergyPricingReformLaunchofNationalETSUpdatedNDC&LTSCOP26inGlasgowGuidingOpinionsonEnhancedAQActionHigh-QualityDevelopmentofResource-IntensiveRegions“WorkingGuidanceforCarbonPeakingandNeutrality”“CarbonPeakingActionPlan”DualControlofEnergyConsumptionUrban-RuralGreenDevelopmentSynergeticReductionofPollutionandCarbonEmissionsCoordinatedWorkofClimateChangeandEnvironmentalProtectionEcologicalProtectionCompensationCarbonEmissioninEIA-IndustrialParksPilots14thFYPonCEEVSectorPlanningGreenDevelopmentofHigh-TechParksGuidingOpinionsonCE14thFYPOnCleanProductionCarbonEmissionsinEIA-IndustryPilotsStandardizationNewEnergyStorageProjectsCoalPowerRetrofitMRVforETSPBCCERFPSHLong-TermPlanningHydrogenDevelopmentModernEnergySystemsREMRVETSEIAGHGPBCRenewableEnergyMeasurement,Reporting,andVerificationEmissionTradingSchemeEnvironmentalImpactAssessmentGreenhouseGasThePeople’sBankofChinaCERFCEPSHFYPNDCCarbonEmissionReductionFacilityCircularEconomyPumpedStorageHydropowerFiveYearPlanNationallyDeterminedCommitmentCCEPLTSClimateChangeEnvironmentalProtectionLong-TermLowGreenhouseGasEmissionDevelopmentStrategies02RECENTDEVELOPMENTINCHINA’SCLIMATEPOLICIESSYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYS15PolicyHighlightsTheWorkingGuidanceandActionPlanaretwoofthemosthigh-leveldocumentsconcerningChina’sdeliveryofitsclimatecommitmentundertheParisAgreement.Thesedocumentshighlightanarrayofpolicyareasasprioritizedworkingfieldsinthecomingyears.Severalnewone-of-a-kindpoliciesinChina’sclimateendeavorareproposed.First,anewlong-termclimategoal:theshareofnon-fossilenergyconsumptionwouldbeover80%by2060,togetherwithaccompanyinggoalstocontroltheconsumptionofothertypesoffossilfuels,includingthepubliccommitmenttopeakoilconsumptionduringthe15thFYP(2026–2030).Second,thismarksthebeginningofmainstreamingclimatechangeandthelow-carbonmindsetinoverallsocioeconomicdevelopment,atbothnationalandsubnationallevels.Allmedium-andlong-termplansshouldandwouldincorporatecarbonemissionpeakingandneutralitygoals.Specificactionplansareformulatedindifferentsectorsandsubnationalterritoriestopromoteandguaranteetheachievementofthe30/60goals.Third,ithighlightsthecriticalroleplayedbysubnationalgovernmentsintheultimateachievementof30/60goals.Thesubnationalgovernanceperformanceevaluationsystemwillincorporateindicatorsrelatedtopeakingcarbonemissionsandcarbonneutralitywithgreatweightsassigned.Accordingly,theoversightandassessmentofcarbontargetswillbestrengthenedandbesubjectedtotheCentralInspectionsonEnvironmentalProtection.Localauthoritieshaveoftenprioritizedeconomicdevelopmentoverclimateandenergygoals,andtheWorkingGuidanceisbelievedtogivethemenoughpoliticalmotivationtooverturntheeconomic-focusedmindset(Hsu,2021).Fourth,theWorkingGuidanceunderscoresthestrengthofmarketmechanismsandsocioeconomicinstruments,particularlystressingtheimperativeroleofinvestmentpolicies,greenfinance,andtax,fiscal,andpricingpolicies.Italso,identifiestheneedtoupgradeexistinglawsandregulationsandformulateanauxiliaryorsupportingpolicyframeworktocoverseveralkeyareas,suchas:deepeningenergyandpowermarketreform;improvingthemeasurement,reporting,andverificationsystem;containingirrationalexpansionofdual-highprojects;upgradingthestandardizationsystem;andpromotingalow-carbonlifestyleandworkingphilosophyamongthepublicandbusinesses.Finally,theActionPlanrollsouttenmajoractionareasthatcoveralmostallkeysectorsofChina’seconomy,includingenergy,industry,transportation,residentialsector,urban-ruraldevelopment,andcirculareconomy.Foreachsector,theActionPlanlaysoutabriefroadmap,withkeyenablersandleveragepoints,toreduceenergyconsumptionandshifttowardssustainablemethods.Theholistically-designedActionPlanemphasizesthatpeakingcarbondioxideemissionsandachievingcarbonneutralityaretwosociety-wideundertakingsandshouldprogressintandemwithChina’stransitiontoahigh-qualitygrowthmode.PolicyandImplementationGapsThougharangeofrestrictiveandquantitativetargetsissettoguidethelow-carbontransition,therearenotasetofquantitativetargetsordwindlingcapontotalcarbondioxideemissionsateithernationalorsubnational/sectorallevels.Thecurrentcarbonmarketisnotofacap-and-tradedesigneither.Thisindicatestheabsenceofanationwideandpoliticalrecognitionofcarbonasaproductionfactor,withoutwhichitwillbehardforChinatoplanandimplementanorderlypeakingofcarbondioxideemissionsatsubnationalandsectorallevels(Caijing,2021;Gao,2020;T.Ma,2020).Theabsenceofthesetargetsisalsoobservedinthepreviouslyreleased14thFYPandupdatedNDC.However,releasingquantitativecarbonemissionscapsinthenearRECENTDEVELOPMENTINCHINA’SCLIMATEPOLICIES0216SYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYSfuturemaybeonthehorizon.InDecember,theCentralEconomicWorkConferencediscussedthatChinashouldexpeditetheshiftfromanenergy-baseddualcontrolsystemtoacarbon-baseddualcontrolsystem(Sino-GermanCooperationonClimateChange,2021).Legislationstilllagsbehindthefast-pacedpolicymakingprocessinclimateaction.Forexample,theRenewableEnergyLawandtheEnergyConservationLawshouldbeupdatedtoaccommodatethenewrestrictivetargetsandstrictcontroloverdualhighprojects.Moreimportant,aClimateChangeLaworClimateActisneededtograntlegalstatustotherestrictiveenergyandcarbontargetsandtostrengthenimplementationfromalawenforcementlevel.Inaddition,aClimateActwillalsoprovidealegalbasisfortheestablishmentofthenationalcarbonemissioncapandfacilitatethetransitionofcarbonallowanceallocationmechanismfromperformance-basedtoacaponabsoluteamountbydeterminingtheinitialallocationofcarbonownership(T.Ma,2020).EmissionsinventoryandasoundMRV(Measurement,Reporting,andVerification)systemlaytheveryfoundationofscientificandequitablecarbonmitigationactionandpolicies.ThemostupdatedofficialGHGinventoryisavailableonlyforyear2014.Manysectors(e.g.,transportation,industries,andagriculture)arestillwaitingforastandardMRVmanualandinventorymethodologytodirectreal-worldMRVpracticesatalllevels,beitsectoraloremittingunitlevel.Lackingreliablebasedatahasalreadypostponedtheexpandingofthenationalcarbonmarkettoincludeotherindustries,makingitanurgentgaptobefulfilledassoonaspossible(Tao,2022).Furthermore,tofosteranhonestandtransparenttransactionenvironmentforfuturescaledupanddevelopment,governmentalcapacitytooverseeMRVprocessesshouldbeenhancedtoeradicatedatafraudevents.Intermsofgoal-setting,the“1+N”policyserieshasputforwardclear-cuttargetsforthe14thFYP(fortheyear2025)andthe15thFYP(fortheyear2030).Thenextmilestoneinthepoliciesjumpsto2060,missingtheimportantyearof2035.Accordingtothe14thFYPandVision2035,ChinashouldhavebasicallyachievedthesocialistmodernizationandtheBeautifulChinaInitiativebythen.2035marksanimportantyearpointforthetransitionperiodfrompeaking.By2035China’scarbondioxideemissionswouldsteadilydeclineafterpeaking;however,noquantitativeanddetailedtargetsfortotalcarbonemission,carbonintensity,totalenergyconsumption,orenergyintensityhavebeenspecified.Thecurrentlandscapealsolacksquantitativegoal-settingfornon-CO2GHGemissions,suchasmethane,HFCs,N2O,PFCs,andSF6.Finally,severalthematicareasarenotgivensufficientconsiderationinthecurrentpolicyframework.Theyincludecross-sectoralcoordinationatsubnationallevel,anoverallplanfororderlysubnationalactionroadmaps,andenablingpoliciestotakecareofstrandedassetsforretiredcapacityandvulnerablecommunities.Forexample,transitionrisksbecameamajorconcernforsubnationalgovernmentsandsectorsthathavehighdependenceonfossilfuels.YetnospecificActionAreaisdedicatedtoexploringandproposingafairandjusttransitionmechanismtohelpeasethepainexerteduponcertainpopulationsandenterprises,andtoguaranteethatnooneisleftbehindinChina’slow-carbontransition.03THEPATHWAYTONETZEROBEFORE2060SYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYS1703THEPATHWAYTONETZEROBEFORE2060@EnergyFoundationTHEPATHWAYTONETZEROBEFORE20600318SYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYSTobetterunderstandthedifferentpathwaysformeetingambitiousclimatetargets,andtodeterminehownear-termpoliciesalignwithlong-termgoals,thisreportevaluatedresultsfromsevenmodelingteams(seeBox1.1)acrosstwo2InChina’sMid-CenturyLong-TermLowGreenhouseGasEmissionDevelopmentStrategy,Chinareiteratedthegoalofachievingcarbonneutralitybefore2060.Inaspeechdeliveredin2021,MinisterXiementionedthatChinaisworkingtowardsnet-zeroGHGemissionsby2060.Thetargetofnet-zeroGHGemissionsby2060reflectsourunderstandingofChina’slong-termclimategoalsandisconsistentwiththetargetofachievingcarbonneutralitybefore2060.differentscenariosthataredefinedbydifferentnear-termpolicychoices.Thisanalysiscanhelptoidentifyprioritiesforclimatechangemitigationpolicyandoutlineareasofuncertaintiesacrossmodelingteams.3.1SCENARIOSThisyear’sreportexplorestwomainscenariosdesignedtoassesstheimplicationsofreachingnet-zeroGHGsbefore20602(Table3.1).ThescenariosareidenticalinthattheyrequireGHGemissionstoreachnet-zeroin2060,buttheydifferinhowquicklyChina’semissionspeakbeforedecliningtomeet2060goals.IntheUpdatedNDCtoCarbonNeutralityscenario,inlinewiththeupdatedNDCsubmittedbyChinatotheUnitedNationsFrameworkConventiononClimateChangeinOctober2021,China’semissionspeakbefore2030(whichmeans,between2025and2030),allowingittorapidlyturntowardthelong-termgoal.Toachievetheearlierpeaking,thispathwaywouldcallforpoliciesoverthecomingdecadethataremoreambitiousthanthosearecurrentlyonthebooks.TheOriginalNDCtoCarbonNeutralityscenarioexplorestheconsistencyofcurrentpoliciesthatarealignedwithChina’soriginalNDCsubmissionfrom2015andthelong-termgoal.Inthisscenario,currentpoliciesarekeptinplace,andChina’sCO2emissionsdonotpeakearlierthan2030.ThemajorityofthisreportfocusesontheUpdatedNDCtoCarbonNeutralityscenario.ModelresultsshowninChapters4–9,ifnotspecificallyexplained,arefromtheUpdatedNDCtoCarbonNeutralityscenario.TABLE3.1:SCENARIODEFINITIONS.ScenarioNet-ZeroGHGYearNetCO2EmissionsPeakYearAlignmentwithNear-TermPoliciesUpdatedNDCtoCarbonNeutrality2060Before2030AlignswithupdatedNDCupto2030OriginalNDCtoCarbonNeutrality20602030AlignswithfirstNDCsubmissionupto2030NotallmodelsinthisstudyincludeallGHGs.FormodelsthatonlyincludeCO2emissions,netCO2emissionswereassumedtoreachzeroin2050inbothscenarios.ThisassumptionisbasedontheresultsfromthescenariosinthisreportandintheSynthesisReport2020,whichshowthatCO2emissionswillreachzeroabouttenyearsbeforetotalGHGemissionsreachzero.Inthissense,03THEPATHWAYTONETZEROBEFORE2060SYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYS19a2060net-zeroGHGgoalisroughlyequivalenttoa2050net-zeroCO2goal.Inaddition,ChinaDREAMandChinaTIMESdonotincludeland-usesectoremissions.Instead,theyuseanestimatedamountof-500MtCO2-eqannuallyfromothersourcesintheirreporting(Forselletal.,2016).Land-useemissionsfromothermodelsareeitherendogenouslycalculatedorcalculatedbasedonemissionsinventoryordomesticexpertestimates.3.2EMISSIONSPATHWAYSToachievecarbonneutralitybefore2060,asshownbythemulti-modelresults(seeFigure3.1),ChinaneedstopeakitsCO2emissionsbefore2030anddramaticallyreduceemissionsafterwards.ThepeakamountofnetCO2emissionsbetween2025and2030iswithintherangeof10.3–11.7and10.5–12.1GtCO2.China’sCO2emissionsfromenergyandindustrialprocessespeakaroundthesametime,withtherangeof11.0–11.9and11.3–12.2GtCO2intheUpdatedNDCtoCarbonNeutralityandOriginalNDCtoCarbonNeutralityscenarios,respectively.China’snetCO2emissionsreachzeroaround2050/2055andgettoaboutnegative0.6–1.8GtCO2by2060tooffsetremainingnon-CO2emissions.IntermsofnetGHGemissions,China’sGHGemissionspeakaround2025/2030atthelevelof12.3–14.3and12.9–14.7GtCO2-eqintheUpdatedNDCtoCarbonNeutralityandOriginalNDCtoCarbonNeutralityscenarios,respectively,andgettoaroundzeroby2060.FIGURE3.1:EMISSIONSPATHWAYSTONET-ZEROGHGEMISSIONSBY2060.TheleftpanelshowsChina’snetCO2emissionsacrossmodelsinUpdatedNDCtoCarbonNeutralitypathways(green)andOriginalNDCtoCarbonNeutralitypathways(blue).Thesetwoscenariosindicatelargervariationsinsystemtransitionandemissionsreductionintheneartermacrossmodelsandbetweenscenarios.Therightpanelsshownormalizedtrajectories(2015=1)ofemissionsreductionsfornon-CO2GHGs.Absoluteemissionlevelsofnon-CO2GHGsarenotusedhereduetolargeinventoryuncertainties:CH4±30%;N2O±60%;F-gases±30%(Shuklaetal.,2022).NetCO22020203020402050206003,0006,0009,00012,00015,000Emissions(MtCO2)F−GasesN2OCH42020204020600.00.51.01.50.00.51.01.50.00.51.01.5Index(2015=1)UpdatedNDCtoCarbonNeutralityOriginalNDCtoCarbonNeutrality-3,000THEPATHWAYTONETZEROBEFORE20600320SYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYSNon-CO2emissionsinChinawereabout2GtCO2-eqin2015.Amongthem,CH4,N2OandF-gases(HFCs,PFCs,andSF6)accountforabout56%,31%,and12%,respectively(ICCSD,2020).Themulti-modelresultsshowthatnon-CO2emissionspeakaround2025-2030.N2OandCH4declinerelativelyquickly,between2025/2030and2040.Thenear-termF-gasesemissionstrendvariesacrossmodelsbefore2030,butafter2030,emissionsdeclinerapidly(seeFigure3.2).CH4emissionsaremainlyfromcoalextractionandfromlivestockandricecultivationoftheagriculturalsector(about0.54and0.47GtCO2-eqin2015,respectively)(ICCSD,2020).IntheUpdatedNDCtoCarbonNeutralityscenario,drivenbythephase-outofcoaluseintheenergysectorandreductionincoalproduction,CH4emissionsdecreasesignificantlyovertime,with60–80%reductionbetween2020and2060.Mostoftheremainingemissionsarefromtheagriculturalsector.N2Oisemittedmainlyfromfertilizeruse,manuremanagement,andcertainindustrialprocesses,about0.6billionGtCO2-eqin2014(ICCSD,2020).Withmoreeffectiveuseoffertilizer,bettermanuremanagement,andimprovedpipelinecontrollinginrelatedindustrialprocessing,modelsindicatearangeof45–95%reductionofN2Oemissionsbetween2015and2060.F-gasesemissionsprimarilycomefromtheproductionprocessesofrefrigerants,blowingagentsforfoams,etc.TherearelargervariationsacrossmodelsonF-gasesemissionsreduction,asmodelsindicatedifferentratesofreductioninHFCs,PFCs,andSF6.NotallmodelscouldsubmitallthreeF-gases,soonlyfourmodelsareincludedinthepanel.F-gasemissionsarereducedby40–71%by2060,ascomparedto2020emissions.BOX3.1:HOWDOCHINA’SCARBONINTENSITYTARGETSALIGNWITHNET-ZEROPATHWAYS?China’s14thFYPtargetsreducingthecarbonintensity(i.e.,energyCO2perunitGDP)ofthecountryby18%in2025comparedto2020.Inaddition,China’supdatedNDCrequirescarbonintensityreductionbyover65%in2030comparedtothe2005level.Themulti-modelresultsshowthatChina’s14thFYPandupdatedNDCtargetsoncarbonintensityreductionareroughlyalignedwiththenet-zerotransitionpathwaysbutcanbefurtherenhanced.AlltheparticipatingmodelsachievethesetargetsintheUpdatedNDCtoCarbonNeutralityscenario(seeFigureB3.1).FIGUREB3.1:CARBONINTENSITYREDUCTIONINALIGNMENTWITHCHINESEPOLICYTARGETS.Carbonintensityismeasuredasenergy-relatedCO2emissionsperunitofGDP.ToassessthealignmentwithChina’s14thFYPtarget(18%reductioninenergyCO2perunitofGDPbetween2020and2025),weusemodelingresultsfor2020andbeyond.ToassessthealignmentwithChina’supdatedNDCtarget(over65%reductionin2030comparedtothe2005level),weusemodeldataformodelsthatreport2005dataandusehistorical2005CO2emissionsandGDPdataformodelsthatdonothave2005data.HistoricaldataisfromtheChineseEnergyStatisticalYearbook(CESY).GDPassumptionsarenotharmonizedacrossmodelsinthisstudy,and,therefore,changesincarbonintensityreflectdifferencesinboththerateofeconomicgrowthandmitigationpathwaysacrossmodels.120%100%80%60%40%20%0%-20%PercentChangeComparedto2020PercentChangeComparedto200518%20402020200520052060FIGURE3.2.2:ENERGYRELATEDC02PERGDPREDUCTIONSINALIGNMENTWITHPOLICYTARGETS14thfiveyearplancommits18%reductioninenergyCO2perunitofGDPby2025,andNDCcommitstoa65%reductionby2030120%100%80%60%40%20%0%-20%20202040206065%UpdatedNDCtoCarbonNeutralityOriginalNDCtoCarbonNeutralityCESY03THEPATHWAYTONETZEROBEFORE2060SYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYS21Asshownbythemulti-modelresultsinFigure3.2andTable3.2,intheUpdatedNDCtoCarbonNeutralityscenarioCO2emissionsfromtheindustrialsectorpeakaround2020–2025withtheamountofemissionsabout4.2–4.8GtCO2,thendecreasetoabout0.4–1.4GtCO2in2050andto0.09–0.5GtCO2in2060.Althoughtheindustrialsectorwouldnotbefullydecarbonizedbythemid-century,modelsindicate69–92%reductionsby2050and87–98%reductionsby2060,comparedto2020levels.CO2emissionsfromthetransportationsectorpeakbetween2025–2035acrossmodels,atthelevelof1.04–1.3GtCO2.Inordertoachievenet-zeroGHGemissionsby2060,2020emissionsneedtobereducedbyabout54–100%in2050andby84–100%in2060.Asforthebuildingssector,thepeaktimeofitsCO2emissionsisquiteuncertainwithdifferentmodels.Fortheinvolvedsevenmodels,threemodelsin2015,twomodelsin2020,andtwomodelsin2025,theamountofpeakemissionsofthebuildingssectorrangesfrom0.65–0.81GtCO2,andsuchpeakemissionsneedtodecreasesignificantly,byabout70–100%,in2060.ThemodelinganalysisindicatesthatCO2emissionsfromtheelectricitysectorpeakaround2020–2025,withanamountof3.8–4.9GtCO2,andreachzeroornegativeemissionsbetween2040and2050acrossmodels.Fourofthemodelsindicatethattheelectricitysectorwouldbeasourceofnegativeemissionstooffsettheremainingemissionsfromtheenergysystem.However,estimatesfornegativeemissionsfromAFOLUandtheelectricitysectorvary,highlightinguncertaintyinpotentialoffsetfromthesesectors.Forlandsinks,therangeacrossmodelswasaboutnegative100–650MtCO2in2050acrossscenarios,withonemodelestimatingAFOLUoffset(includingotherCDR)ofaboutnegative1,300MtCO2.Severalmodelsforeseebiomasswithcarboncapture,utilizationandstorageintheelectricitysectorbeingasignificantsourceofnegativeemissions,withestimatesrangingfromnegative500–900MtCO2,whilethreemodelsprojectlimitednegativeevenpositiveemissionsfromthepowersectorby2050.FIGURE3.2:GHGEMISSIONSBYSECTORINTHEUPDATEDNDCTOCARBONNEUTRALITYSCENARIO.“Other”includes“Heat","Solids","Gases",and"Liquids"(whichincludesfeedstockuse,upstreamoilrefining,heating,coaltogas/oil).ChinaDREAMandChinaTIMESdonotincludelandusesectoremissions,insteadtheyuseanestimatedamountof-500MtCO2-eqannually.Landuseemissionsfromothermodelsareeitherendogenouslycalculatedorcalculatedbasedonemissionsinventoryordomesticexpertestimates.Somemodelsrunthrough2050,thereforearenotincludedinthe2060chart.MESSAGEix-Chinaestimatesfor2030arelowerthanothermodels,becauseitassumesrapidretirementofcoalplantsunderlow-carbonscenarios.HistoricaldataisfromtheChineseEnergyStatisticalYearbook(CESY).AndtheAFOLUresultforPECE2.0includesotherCDR.2019203020502060CESYPECEV2.0PECE_LIU_202102,5005,0007,50010,000Emissions(MtCO2e)AFOLUBuildingsElectricityIndustryNO2OtherTransportationGCAM−ChinaAIM-ChinaMESSAGEix−ChinaPECEV2.0PECE_LIU_2021ChinaTIMESChinaDREAMGCAM−ChinaAIM-ChinaMESSAGEix−ChinaPECEV2.0PECE_LIU_2021ChinaDREAMChinaDREAMChinaTIMESGCAM−ChinaAIM-ChinaMESSAGEix−ChinaTHEPATHWAYTONETZEROBEFORE20600322SYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYSTABLE3.2:RANGESACROSSMODELSOFDIRECTEMISSIONSCHANGECOMPAREDTO2020LEVELSINUPDATEDNDCTOCARBONNEUTRALITYSCENARIO.Emissionpercentchangeswerecalculatedinrelationtomodeled2020values,andsectorsthatexceed100%indicateemissionshavenegativeemissions.Sector203020502060MinimumMaximumMinimumMaximumMinimumMaximumIndustry-10%-40%-70%-90%-85%-100%Buildings5%-50%-40%-95%-70%-100%Transportation25%-10%-55%-100%-85%-100%Electricity5%-65%-100%-120%-100%-120%33.3ENERGYTRANSITIONS3Meanpowersectoremissionsreductionisthesamein2060and2050,becauseofrounding.Thissuggeststhatemissionsreductioninthepowersectorwilllargelyoccurinthenear-term,andmayleveloutbetween2050and2060.4RangeacrossmodelswithoutMESSAGEix-Chinais64–71%by2030.5RangeacrossmodelswithoutMESSAGEix-Chinais38–45%coalshareofprimaryenergyby2030.PrimaryEnergyMeetingChina’snet-zerocommitmentrequiresarapidtransitionoftheenergysystem,fromfossilfuelstoanewsystemdominatedbylow-carbonfuels.Ourresultssuggestslowbutcontinuedgrowthinprimaryenergydemandinthenear-termfollowedbyadeclineaftermid-century(Figure3.3).Thereissignificantagreementamongbase-yearprimaryenergyacrossmodels,anddifferencesafter2025arelargelyduetodifferentassumptionsaboutcoalphase-outandenergysupplymake-up.IntheUpdatedNDCtoCarbonNeutralityscenario,fossilprimaryenergy,includingfossilfuelswithcarboncapture,utilizationandsequestration(CCUS),declinesfrom79–85%in2020to46–714%in2030,andlessthan16%in2060.Thefossilfuelwiththelargestandmostrapiddeclineacrossmodelsiscoal,whichcomprisesthemajorityofChina’sprimaryenergysupplytoday.Coaldeclinesfrom51–62%oftotalprimaryenergysupplytodayto18–45%5by2030andlessthan6%by2060.Gasmayincreaseuntilabout2040,thendecline(Figure3.4),suggestingthatitmaybereliedonduringthetransitiontorenewableenergyandotherlow-carbonsources.03THEPATHWAYTONETZEROBEFORE2060SYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYS23FIGURE3.3:PRIMARYENERGYTRANSITIONSINTHEUPDATEDNDCTOCARBONNEUTRALITYSCENARIO:(A)TOTALPRIMARYENER-GY,(B)PRIMARYENERGYBYTECHNOLOGY.Allresultswerecalculatedusingtheaverageefficiencymethod.HistoricaldataisfromtheChineseEnergyStatisticalYearbook(CESY).TherapidreductionandincreaseinMESSAGEix-Chinaprimaryenergyisdueinparttorapidretirementofcoalplantsunderlow-carbonscenarios,thefastgrowthofrenewables,andconversionbetweendirectequivalentandaverageefficiencysubstitutionmethods.02,0004,0006,0002000202020402060Mtce/yrCESYChinaTIMESGCAM−ChinaAIM−ChinaMESSAGEix−ChinaPECEV2.0PECE_LIU_2021ChinaDREAM(A)20302050206002,0004,0006,000OtherGeothermalSolarWindBiomassw/ccusBiomassw/occusHydroNuclearGasw/ccusGasw/occusOilw/ccusOilw/occusCoalw/ccusCoalw/occus(B)ChinaTIMESGCAM−ChinaAIM−ChinaAIM−ChinaAIM−ChinaMESSAGEix−ChinaPECEV2.0PECE_LIU_2021ChinaDREAMChinaTIMESGCAM−ChinaMESSAGEix−ChinaPECEV2.0PECE_LIU_2021ChinaDREAMChinaTIMESGCAM−ChinaMESSAGEix−ChinaPECEV2.0PECE_LIU_2021ChinaDREAM@EnergyFoundationTHEPATHWAYTONETZEROBEFORE20600324SYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYSBOX3.2:HOWARENATIONALPRIMARYTARGETSALIGNEDWITHMODELINGANALYSIS?6RangeacrossmodelswithoutMESSAGEix-Chinais29–36%non-fossilprimaryenergyofthetotalprimaryenergyin2030.7RangeacrossmodelswithoutMESSAGEix-Chinais84–88%non-fossilprimaryenergyofthetotalprimaryenergyin2060.8RangeacrossmodelswithoutMESSAGEix-Chinais6%–12%solarshareofprimaryenergyby2030.9Thewindpowermaximumdeclinesfrom2050to2060,becausethemodelwiththehighestpercentageofwindpowerinprimaryenergyreportsonlythrough2050.Nomodelssuggestwindpowerwoulddeclinebetween2050and2060.Inresponsetodeclininguseoffossilfuelresources,thereisasignificantgrowthincleanerenergy.Energysupplymake-upvariesacrossmodels,particularlyfortwokeyresources–solarandwind,whichdependonarangeofeconomicandpolicychoicesinthenear-andlong-term.IntheUpdatedNDCtoCarbonNeutralityscenario,solarandwindcontribute6–20%8and7–15%,respectively,by2030,andby2060,26–33%and18–30%9(Figure3.4).By2060,solarandwindcombinedbecomethedominantfuelsource,providingover50%oftotalenergysupply.Theremainingsupplywillcomefrombiomass(withorwithoutCCUS),hydropower,nuclear,andToacceleratethelong-termtransitionfromfossilfuels,severalshort-termtargetshavebeenadopted.Mostmodelsshowgreatersavingsthanthe13.5%below2020primaryenergyperunitofGDPtarget,witha14–31%reductionby2025,comparedto2020.Modelinganalysisalsoshowsnon-fossilshareofprimaryenergymeetsorexceedsChinesepolicytargetsin2025.Non-fossilenergyusein2030isaffectedbypeakingtimes.IntheUpdatedNDCtoCarbonNeutralityscenario,modelsshows29–546%ofnon-fossilprimaryenergy,exceedingthenationaltargetof25%non-fossilprimaryenergyin2030.Non-fossilsharecontinuestoincreaseto84–977%by2060,exceedingthe80%targetoutlinedinChina’slong-termstrategy.Highernon-fossiltargetsindicatedbymodelinganalysissuggestthatthereisroomforhigherambitionandmorerapidsystemtransition.Near-termpolicytargetscanbereassessedinthelightofincreasinglong-termambitionastowhethertheyarealignedwithlong-termcarbonneutralitygoalsandsufficienttofacilitateexpedientcoalphase-outandrenewabletransition.FIGUREB3.2:NATIONALPRIMARYENERGYTARGETSANDCOMPARISONWITHMODELINGANALYSIS:(A)SHAREOFFOSSILANDNON-FOSSILENERGYINPRIMARYENERGY,(B)PRIMARYENERGYPERUNITOFGDP.Non-fossilsourcesincludesolar,wind,geothermal,hydro,biomasswithandwithoutCCUS,andnuclear.Fossilsourcesincludecoal,oilandgaswithandwithoutCCUS.Thesefiguresexcludeonemodel,MESSAGEix-China,whichhadrapidfossilreductioninprimaryenergy.202020402060100%80%60%40%20%0%100%80%60%40%20%0%ShareofTotalPrimaryEnergyPercentChangeComparedto2020202020402060FIGURE3.3.2:NATIONALPRIMARYENERGYTARGETS:NON-FOSSILSHARESINPRIMARYENERGY;PRIMARYENERGYPERGDPMER.Non-Fossilsourcesincludesolar,wind,geothermal,hydro,biomasswithCCSandnuclear.Fossilsourcesincludecoal,oilandgas.14thFiveYearPlancommitsto15%,20%and25%ofnon-fossilshareofPrimaryEnergyin2020,2025and2030,and13.5%reductioninPrimaryEnergyperunitofGDPby2025.(A)100%80%60%40%20%0%20202040206080%15%20%25%(B)13.50%202020402060UpdatedNDCtoCarbonNeutralityOriginalNDCtoCarbonNeutralityCESY03THEPATHWAYTONETZEROBEFORE2060SYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYS25fossilwithCCUS.BiomasswithCCUSprojectionsvaryacrossmodelsinthemid-century,withGCAM-ChinaanticipatinglowerAFOLUnegativeemissionsandhigherindustryemissions,thereforeadoptingmorebiomasswithCCUStomeetmitigationtargets.FIGURE3.4:PRIMARYENERGYSHAREINTHEUPDATEDNDCTOCARBONNEUTRALITYSCENARIO.FossilsourcesincludefossilfuelswithandwithoutCCUS.HistoricaldataisfromtheChineseEnergyStatisticalYearbook(CESY).OilSolarWindCoalGasNuclear2000202020402060200020202040206020002020204020602000202020402060200020202040206020002020204020600.0%5.0%10.0%15.0%20.0%0%10%20%30%0.0%5.0%10.0%15.0%0%10%20%30%0%20%40%60%0.0%5.0%10.0%15.0%20.0%ShareofPrimaryEnergyCESYChinaTIMESGCAM−ChinaAIM−ChinaMESSAGEix−ChinaPECEV2.0PECE_LIU_2021ChinaDREAMThegrowthofnuclearenergyisuncertain,drivenbyuncertaintiesincosts,policies,andothernon-technicalfactors.Mostmodelshaveasimilarbase-yearshareofnuclearinprimaryenergy,oflessthan2%.Projectionsofnuclearenergyacrossmodelsfallwithintwogroups.Onegrouphasrelativelyconservativeassessmentofnuclearenergy,withnuclearmakinguproughly10%oftotalprimaryenergyby2060.Theothergroupshowsmoreoptimisticassessmentofnuclearenergy,withmorethan20%ofnuclearby2060;asaresult,thisgroupofmodelsshowseitherlesssharesoffossilfuelswithCCUSorlessrenewables.Thedifferencesinnucleardeploymentreflectmodeldifferencesincosts,deplorability,andpolicychoices.CCUSbecomesincreasinglyprominentafter2030,fromlessthan500MtCO2/yr,toupto850–3,172MtCO2/yrby2050,intheUpdatedNDCtoCarbonNeutralityscenario.CCUScouldpotentiallyplayaroleinrefining,hydrogenproduction,power,andend-usesectorstooffsetemissions.OurresultssuggestthatCCUSwouldbedeployedmostextensivelyinthepowersector,giventhehighlevelofemissionsfromthepowersector,matchingbetweenemissionsourcesandstoragereservoirs,andnegativeemissionopportunities,suchasbiomasswithCCUS(S.Yuetal.,2019).AdditionalfactorsforCCUSdeploymentincludegeologicalpotentialforonshoreCCUSstorage,whichvariesbyprovince(S.Yuetal.,2019).FinalEnergyThetransformationpathwaysofend-usesectorsshowconsistencyacrossmodels.Allmodelsindicatethatthefinalenergydemandwouldpeakaround2025–2030,thendroprapidly(Figure3.5).THEPATHWAYTONETZEROBEFORE20600326SYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYSHowever,theamountofthefinalenergydemandvariessignificantly,witharangeof3,250–4,000Mtce/yrand2,400–3,700Mtce/yratthepeakandthecarbon-neutraltimepoint(2050),respectively.Thisiscausedmainlybydifferentenergyservice10ModelrangewithoutAIM-China,whichassumesahighlevelofelectrificationintransportation,is29–46%in2050.11Modelsmayusedifferentreportingmethodsforsolarinend-usesectors.SomemodelsincludeBIPVintheelectricitysector,whileothersincludeitinthebuildingssector.demandprojections,variousscaleofenergyefficiencytechnologiesdeployment,anddiverseportfoliosoffuelalternatives.BOX3.3:DIFFERENCESINHISTORICALENERGYCONSUMPTIONACROSSMODELS.End-useelectricityconsumptionshowsasubstantialincreasebefore2030,whilehydrogendoesnotincreaserapidlyuntil2030.Theoverallelectrificationratein2050variesfromabout49–70%,withindustry,transportation,andbuildingsectorelectrificationratesof42–65%,29–61%10and60–88%,respectively.Theshareofhydrogenintotalfinalenergydemand,whichincludeshydrogenconsumedinthebuilding,industry,andtransportationsectors,in2050variesfromabout2–7%.Despitethedifferentassumptionsaboutthesolarwaterheaters,buildingintegratedphotovoltaics(BIPV)11,etc.,anincreaseofsolarenergyisobservedinmodels,witharangeof18–218Mtce/yrin2050.Therefore,theabovefactorscollectivelycontributetoasignificantdeclineintraditionalfossilfuelconsumption(Gases,Liquids,andSolids)inend-usesectors.Differencesinbase-year(2015)energydataacrossmodelsarecausedmainlybydifferentdatasourcesusedformodelcalibration.Modelscalibratehistoricalenergyconsumptiontodifferentenergystatistics.GlobalmodelsMESSAGEix-ChinaandGCAM-ChinamodeluseIEAenergybalances,whilenationalmodelsChinaDREAM,ChinaTIMES,AIM-China,PECE_Liu_2021,andPECEV2.0calibratehistoricalenergyconsumptionbasedonChinaStatisticalYearbookandChinaEnergyStatisticalYearbook.DifferencesinsectoralscopeandmethodologiesbetweenIEAenergybalancesandChinesestatisticsresultinbase-yeardiscrepanciesacrossmodels.Additionaleffortsweretakentoadjustbase-yearenergyuseandensurethatsectoralscopeisthesameacrossmodelsinthisreport.Remainingdifferencesin2015energyuseinbuildings,industry,andtransportationacrossmodelsareprimarilycausedbytwofactors.First,modelcalibrationcanbeaffectedbychangesinenergystatisticsacrossyears.Forexample,althoughbothmodelsuseIEAenergybalances,MESSAGEix-Chinausesthe2017IEAenergybalances,andGCAM-Chinausesthe2019IEAenergybalances.China’stotalandsectoralenergyusein2015inthesetwoversionsofIEAenergybalancesaredifferent,resultinginbase-yeardifferencesbetweenMESSAGEix-ChinaandGCAM-China.Second,modelssometimesmakespecificadjustmentstoenergybalancesinthecalibrationprocess,leadingtodifferentbase-yearenergyuseacrossmodels.Forexample,thestatisticalmethodsadoptedbytheChinaStatisticalYearbookincludeonlyfuelconsumptionbytransportationcompaniesinthetransportationsector.Transportationenergyusebymanufacturingfacilitiesandhouseholdsareaccountedforinothersectors.Asaresult,modelsthatadoptChinesestatisticsmademodel-specificassumptionsonreallocatingfuelconsumptionsfromindustry,buildings,andagriculturetothetransportationsector,whichleadstoslightdifferencesinsectoralenergyconsumptionacrossmodels.03THEPATHWAYTONETZEROBEFORE2060SYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYS27FIGURE3.5:FINALENERGYTRANSITIONSINTHEUPDATEDNDCTOCARBONNEUTRALITYSCENARIO:(A)TOTALFINALENERGY,(B)FINALENERGYBYFUEL.HistoricaldataisfromtheChineseEnergyStatisticalYearbook(CESY)andtheInternationalEnergyAgency(IEA).01,0002,0003,0004,0002000202020402060Mtce/yrIEACESYChinaTIMES(A)203020502060ChinaTIMESGCAM−ChinaAIM−ChinaAIM−ChinaAIM−ChinaMESSAGEix−ChinaPECEV2.0PECE_LIU_2021ChinaDREAM01,0002,0003,0004,000ElectricitySolarGasesSolids(B)GCAM−ChinaAIM−ChinaMESSAGEix−ChinaPECEV2.0PECE_LIU_2021ChinaDREAMChinaTIMESGCAM−ChinaMESSAGEix−ChinaPECEV2.0PECE_LIU_2021ChinaDREAMChinaTIMESGCAM−ChinaMESSAGEix−ChinaPECEV2.0PECE_LIU_2021ChinaDREAM@EnergyFoundationTHEPATHWAYTONETZEROBEFORE20600328SYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYSBOX3.4:ROLEOFHYDROGENINACHIEVINGCARBONNEUTRALITYINCHINAAsacleanandsustainablesecondaryenergy,hydrogenenergyisanimportantenergycarrierforChina'senergysystemtransition.Hydrogenenergyhasthepotentialforstorageapplicationsacrosstimeandspaceandisanimportantwaytoachievedeepdecarbonizationintheend-usesector.Currently,about85%ofhydrogenisusedasindustrialfeedstocksinmethanolproduction,ammoniaproduction,andpetroleumrefiningindustries.Althoughonlyalimitedamountofhydrogeniscurrentlyusedasenergyinput,hydrogenenergywillbecomemorecommonlyusedinthenext15years.IntheUpdatedNDCtoCarbonNeutralityscenario,5–45Mtceofhydrogenwouldbeusedasanenergysourceintheindustrialandtransportationsectorsby2035.Afterthat,hydrogenenergywillenteraperiodofrapiddiffusion.Hydrogenenergyconsumptionincreasesto43–175Mtcein2050andfurtherexpandsto57–250Mtcein2060,withtheshareofthefreighttransportationsectorrisingto36–58%oftotalhydrogenenergyconsumption.Roadfreight,hydrogenironmaking,andoilrefiningarethemainsourcesofthepopularizationofhydrogenenergy,whilehydrogenuseinthebuildingsector(naturalgasblendedhydrogencombustion)andthepowersystem(hydrogenstorage)alsocontributestohydrogenexpansion.Atthisstage,hydrogeninChinaismainlyproducedfromfossilenergy,suchascoalgasificationtohydrogen,steammethanereforming,andnaphthareformingtohydrogen.Thesetechnologies,althoughtechnicallymatureandsuitableforlarge-scaleproduction,donotmeetthefuturerequirementsofclean,low-carbon,andgreenhydrogenenergy.Newhydrogenproductiontechnologies,suchaswaterelectrolysis,nuclearenergyhydrogenproduction,andbiomasshydrogenproduction,havetheadvantagesofflexibleproductionandlowpollution.Greenhydrogenaccountsfor70%ofthetotalhydrogenproductionafter2040intheUpdatedNDCtoCarbonNeutralityscenario.Thevastmajorityofmodelsfavortheuseofwaterelectrolysisforhydrogenproduction,duetothedecreasingpriceofelectrolyzersandpromotionofrenewableenergysources.Withitsabilitytocontributetonegativeemissions,biomasstohydrogenwithCCUStechnologyalsohasabrightfuture.Hydrogenenergycanenablelarge-scaledecarbonizationproductioninhard-to-electrifyindustries,suchassteelandchemicalproduction,andreduceoilconsumptioninthetransportationsector,makingitanimportanttechnologicaloptionfortheindustrialandtransportationsectors.Thehydrogenenergyindustrychainisdividedintoseverallinks,includinghydrogenproduction,storageandtransportation,refueling,andend-use.Theindustrychainislongandrequiresmuchnewinfrastructure.Asaresult,thereisalargedemandforresearchanddevelopment(R&D)ineachofthesesegments.Althoughthecostofhydrogenproductionandend-usehasdeclinedinrecentyears,therearestillproblemsoflowconversionefficiencyandharshproductionconditions.Toacceleratehydrogenproductionanddeployment,itiscriticaltomobilizesignificantinvestmenttoimprovethedistributionsystemandcultivatethewholeindustrychaintosupportthesustainabledevelopmentofhydrogenenergy.ItisalsoimportanttoprioritizeR&Dintosectorsthatcannotdirectlyelectrifyoradoptenergyefficiencymeasures,asitisunclearwhatthefuturecost,availability,applications,andefficiencyofhydrogentechnologieswillbe(Ueckerdtetal.,2021).FIGUREB3.4:HYDROGENPRODUCTIONACROSSMODELSINTHEUPDATEDNDCTOCARBONNEUTRALITYSCENARIO.0100200300202020402060Mtce/yrChinaTIMESGCAM−ChinaAIM−ChinaMESSAGEix−ChinaPECEV2.0PECE_LIU_2021ChinaDREAM04THEROLEOFELECTRIFICATIONINEND-USESECTORSSYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYS2904THEROLEOFELECTRIFICATIONINEND-USESECTORS@PhotobyAmericanPublicPowerAssociationonUnsplashTHEROLEOFELECTRIFICATIONINEND-USESECTORS0430SYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYSTheelectrificationofawiderangeofenergyendusesacrossindustry,transportation,andbuildingsectors,coupledwiththerapiddecarbonizationofpowersupply,isanimportantpillarofChina’sstrategyforachievingcarbonneutrality.Electrification,energyefficiency,powerdecarbonization,low-carbonfuelsubstitution,andcarbondioxideremovalareregardedasthefivepillarsneededtoachievecarbonneutrality(Edenhoferetal.,2014;IEA,2020a;IRENA,2019;Keramidasetal.,2020;S.Yuetal.,2020).ToachieveChina’s2060carbonneutralitygoal,electrificationcombinedwithpowerdecarbonizationcouldcontributeto61%oftotalcarbonreduction,andelectrificationalonewouldreach27%(K.Wangetal.,2021).Electrificationissuchanimportantlow-carbontransitionoption,notonlybecauseitwillbefeasibletoachievesubstantialemissionsreductionsinelectricitymorequicklythaninothersectors,butitalsoofferstheopportunitytocurb,andeventuallyreduce,finalenergyconsumptionduetosignificantlyhigherefficienciesinmanyapplications.Promotingelectrificationinthecontextofcarbonneutralityrequirescomprehensiveandcross-sectoralintegration.Enhancedcoordinationbetweenend-usesectorsandthepowersectorwillhelpdevelopcost-effectiveandefficientpolicies.However,currently,eachend-usesectorinChinahasproposedsomeelectrificationgoalswhicharedisaggregated,unsystematicandlackinginter-sectorallinkages.4.1CURRENTSTATUSChinahasbeenpursuingincreasingelectrificationinend-usesectorsforyears.Theeconomy-wideelectricityshareoffinalenergyusewasabout27%in2019(IEA,2021d).Electricityusepercapitawasapproaching5,600KWh,alreadyexceedingtheUKandItaly,andclosetoGermanyandFrance.Severalpolicieshavebeenimplementedwithatargetofexpandingelectrificationinthebuildings,transportation,andindustrysectors(Table4.1).However,China’selectrificationratesintheresidentialandcommercialbuildingsectorarestillbelowtheaverageoftheOrganizationforEconomicCo-operationandDevelopment(OECD)andtheUnitedStates(Table4.2).Thebuildingssectorhasthehighestelectrificationrateinallend-usesectors,withtheelectrificationratereaching26%inresidential,and45%incommercialbuildingsin2019(IEA,2021d).Industryalreadymeetsclosetoathirdofitstotalenergyneedsfromelectricity,and,despiteleadingtheworldinelectrificationofroadtransport,only4%ofalltransportiselectrifiedinChina(Table4.2).@EnergyFoundation04THEROLEOFELECTRIFICATIONINEND-USESECTORSSYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYS31TABLE4.1:KEYELECTRIFICATIONPOLICIESINCHINA.SectorPolicyNameOutcomeBuildingsImplementationPlanforCarbonEmissionPeakinginUrban-RuralConstructionSetsa65%buildingelectrificationrateby2030,pushesforfullelectrificationofnewbuildings(20%newpublicbuildingsin2030).BuildingsGuidingOpinionsonAdvancingtheReplacementbyElectricity(2016)andEnergySupplyandConsumptionRevolutionStrategy(2016-2030)Urbanandruralelectrificationasakeyareainreshapingenergyconsumption(NDRC&NEA,2016a)couldbetreatedasthekeypoliciestodrivethatprocess.TotalFinalenergy13thFYPonEnergyDevelopmentChinasettargetstoincreasetheshareofelectricityinfinalenergyconsumptionto27%in2020(from25.8%in2015)andforfuel-switchingtoelectricity(acrossallend-usesectors),toleadtoatotalof450TWhofdemand(NDRC&NEA,2016a).Power,Buildings,Transport14thFYP(2021-2025)andGuidingOpinionsonFurtherAdvancingtheReplacementbyElectricity(2022)Promotescoal-to-electricityswitching,theexpansionofrecharginginfrastructureandcleanheatingandindustrialfurnacemanagementinNorthernareas(TheStateCouncil,2021),andthe14thFYPonmodernenergysystemandGuidingOpinionsonFurtherAdvancingtheReplacementbyElectricityfurthersetuptargetstoincreasetheshareofelectricityinfinalenergyconsumptionto30%in2025(NDRC&NEA,2022a,2022b).TransportChina’sNEVIndustryDevelopmentPlanStrategyforinnovationinautomotivetechnologies,includingEVs.TargetsfortheshareofNEVs(battery,plug-inandfuel-cellelectricvehicles)inlight-dutyvehiclesales:20%by2025(GeneralOfficeoftheStateCouncil,2020).TransportActionPlanforCarbonDioxidepeakingbefore2030By2030,theshareofincrementalvehiclesfueledbynewandcleanenergywillreacharound40%,carbonemissionintensityofcommercialvehiclesmeasuredonthebasisofconvertedturnoverwillbecutbyabout9.5%comparedwith2020(TheStateCouncil,2021).BuildingsCleanHeating12PlanforNorthernChinainWinter(2017–21)Targets70%ofcleanheatingcoverageinnorthernregionsby2021(upfrom34%in2016).TotackleairpollutionintheprovincesofBeijing,Tianjin,Hebei,Henan,ShanxiandShandong,itsetsaspecifictargetfor28Chinesecitiestouse100%cleanenergysourcesforheatingby2021.Theplanalsosettargetsforexpandingsolar,biomass,andgeothermalheatinginbuildings(NDRC&NEA,2017).Industry2016GuidingOpinionsonAdvancingtheReplacementbyElectricityand2022GuidingOpinionsonFurtherAdvancingtheReplacementbyElectricityIdentifiedkeysectorsandregionsforelectrification,aswellasmeasurestopromoteindustrialelectricboilersforsteamdemand,particularlytextilesandwoodprocessingonthesoutheasterncoast,andelectricfurnacesinvarioussectors,includingmetalprocessing,ceramics,mineralwool,andglass(NDRC&NEA,2016a,2022b).12AccordingtotheCleanHeatingPlan,cleanheatingreferstotheuseofnaturalgas,electricity,geothermalheat,biomass,solarenergy,industrialwasteheat,cleancoal-fired(ultra-lowemission),nuclearenergyandothercleanenergysourcestoachievelow-emissionandlow-energyheatingmethodsthroughhigh-efficiencyenergyconsumptionsystems.Itincludesthewholeheatingprocesswiththegoalofreducingpollutantemissionsandenergyconsumption.THEROLEOFELECTRIFICATIONINEND-USESECTORS0432SYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYSTABLE4.2:COMPARISONOFSECTORALELECTRIFICATIONRATEBETWEENCHINAANDTHEOECDAVERAGEIN2019.Electrificationrateisdefinedastheshareofelectricityconsumptioninend-usefinalenergyconsumption(IEA,2021d).SectorsChinaOECDAverageUnitedStatesOECDEuropeIndustry28%32%24%35%Transportation4%1%0.2%2%ResidentialBuildings26%37%46%26%CommercialBuildings45%54%54%50%13Allthemodelresultsfromthissectionandforward,ifnotspecificallyexplained,arefromtheUpdatedNDCtoCarbonNeutralityscenario.ExistingelectrificationratesinChinasuggestthereisroomforgrowthacrossallend-usesectors,eveninsectorswhereelectrificationishigherorcomparabletotheOECDaverage.TheStateGridestimatesthatelectrificationduringthe14thFYPcouldresultin600TWhofadditionalconsumption(nearly8%ofannualelectricityconsumptionin2020),whiletheChinaElectricityCouncilestimatesthattheshareofelectricityinfinalenergyconsumptioncouldreach38%by2035(CEC,2020;StateCouncilInformationOfficeofthePeople’sRepublicofChina,2020).4.2FUTUREELECTRIFICATIONPATHWAYSAccordingtoourresults,theshareofelectricityinfinalenergyinChinaisprojectedtogrowto61–73%in2060intheUpdatedNDCtoCarbonNeutralityscenario13(Figure4.1).Thisdoesn’tincludeindirectuseofelectricityformakingotherfinalformsofenergy,suchastheuseofelectrolysistoproducehydrogen,andsyntheticfuelsaccountingformostofthedifference.Electricitybecomesthemainenergycarrierinallend-usesectors,thoughtrendsvarysignificantly.Whileend-useelectricitydemandwilllikelyincreasethroughmid-century,percapitaelectricitywilllikelynotexceedconsumptioninotherOECDcountries(Figure4.2).Challengesofpervasiveelectrificationremainhighintheindustrysectorandfreighttransportationsector,withalternativefuels,suchashydrogenandbioenergy,potentiallyservingasoptionsinthelonger-term,whenemissionswillneedtobedrivenoutofthehard-to-decarbonizesectors.04THEROLEOFELECTRIFICATIONINEND-USESECTORSSYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYS33FIGURE4.1:FINALENERGYELECTRIFICATIONRATEINTHEUPDATEDNDCTOCARBONNEUTRALITYSCENARIO.HistoricaldataisfromtheChineseEnergyStatisticalYearbook(CESY)andtheInternationalEnergyAgency(IEA).TheelectrificationrateofPECEV2.0doesnotincludetheelectricityfromdistributedPVinbuildingandindustry.AIM−ChinaFIGURE4.2:ELECTRIFICATIONINNET-ZEROPATHWAYSINTHEUPDATEDNDCTOCARBONNEUTRALITYSCENARIO:(A)PERCAPITAELECTRICITYCONSUMPTIONRELATIVETOGDPINCHINAANDORGANIZATIONFORECONOMICCO-OPERATIONANDDEVELOPMENT(OECD)COUNTRIES,(B)FINALENERGYELECTRICITYDEMANDACROSSMODELS.HistoricalfinalenergydataintherightpanelisfromtheChineseEnergyStatisticalYearbook(CESY)andtheInternationalEnergyAgency(IEA).PercapitaelectricityconsumptionandGDP2015datafortheOECDcountriesintheleftpanelisfromtheOECD.TWh203020002060(B)FinalEnergyElectricityDemandChinaDREAMChinaTIMESGCAM-ChinaAIM-ChinaMESSAGEix-ChinaPECEV2.0PECE_LIU_2021IEACESYFIGURE4.1:ELECTRIFICATIONINNET-ZEROPATHWAYS:FINALENERGYELECTRICITYDEMAND;PERCAPITAELECTRICITYCONSUMPTIONANDGDP.End-useelectricitydemandwilllikelyincreasethrough2050,butmodelsprojectpercapitaelectricitywillnotexceedconsumptioninotherOECDcountries.(A)PerCapitaElectricityConsusmptionandGDP18,00012,0006,0000TWh/MillionsofPopulationBillions2015Yuan/MillionsofPopulation20025050100150300350ChinaDREAMChinaTIMESGCAM-ChinaAIM-ChinaMESSAGEix-ChinaPECEV2.0PECE_LIU_2021IEACESYCanadaJapanOECDKoreaUSA18,00012,0006,0000THEROLEOFELECTRIFICATIONINEND-USESECTORS0434SYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYSRapidelectrificationrequiressystematictransitioninChina,withtransformationinallend-usesectorsandaccelerateddecarbonizationinthepowersector(seeFigure4.3onelectrificationroadmap).ThelargestshareofCO2reductions(101–117%acrossmodelsintheUpdatedNDCtoCarbonNeutralityscenario)by2060comparedto2020occurinthepowersector,fromrapidphasedownoffossilfuels,adoptionofcarboncaptureandstoragetechnologies,andexpansionofrenewableenergysources.Indirectelectrificationoffuelssupply,mainlyviatheproductionofelectrolytichydrogenfordirectuseandhydrogen-basedfuelsproduction,isprojectedtoincreaseacrossmodels,to75–272Mtceofhydrogenproducedannuallyby2050intheUpdatedNDCtoCarbonNeutralityscenario.Significantemissionsreductions(85–100%between2020and2060intheUpdatedNDCtoCarbonNeutralityscenario)areprojectedtostemfromthetransportsector,mainlythroughthedirectelectrificationoflight-dutyvehiclesinitiallyandheavy-dutyvehiclesinthelongertermusingbatteries.Acrosstheentiretransportationsector,theelectrificationratereachesanaverageof50%(37–57%)by2060.Theuseofhydrogenandhydrogen-derivedfuelsproducedbyelectrolysisalsocontributesindirectlytotransportemissionsreductions,particularlyafter2035.By2060,electricitywillovertakeoilasthemaintransportfuel.Electricityaccountsfornearly37–57%ofenergyuseforalltransportationwithimprovementsinbatterytechnology.EVswilldominatethepassengercarfleetbythen,withmanytrucksalsoconvertingtoelectricpowertrains.Thoughtheiradoptionisslowerthanpassengervehicles,theshareofelectricityinfreightvehiclesreachesnearly22–39%in2060intheUpdatedNDCtoCarbonNeutralityscenario.Electrificationrateinindustrywillincreaseto64%(58–69%acrossmodelsintheUpdatedNDCtoCarbonNeutralityscenario)by2060,drivenbyashiftawayfromfossilfuel-firedheatingtowardsindustrialheatpumpsandelectricboilersforlowandmedium-temperatureheatingneedsinlightindustries,andincreasingproductionofsteelfromscrapinelectricarcfurnaces.Industrialelectricitydemandincreasesfromaround456–541Mtcein2020,to672–1,100Mtcein2060intheUpdatedNDCtoCarbonNeutralityscenario.Directuseofelectricitygrowstosatisfythedemandforlow-andmedium-temperatureheat,particularlyinlightindustriesformanufacturing,heatpumps,andotherelectricheatingtechnologies.Intheenergy-intensivesteelandaluminumindustries,secondaryproduction(usingscrapmetal)isanimportantcontributortoelectricitydemandgrowth,despitefallingproductionofthesemetals.Theotherkeyareaofgrowthisindirectelectrificationofprimarymaterialsproduction,mainlyinthesteelandchemicalssectors,throughtheuseofhydrogenasareductionagentinthesteelindustryandasafeedstockforammoniaandmethanolproductioninthechemicalindustry.Electricitydemandinthebuildingssector,thelargestuserofelectricitytoday,surgesbymorethan129–171%between2020and2060intheUpdatedNDCtoCarbonNeutralityscenariotonearly531–684Mtce,reachingan81%(66–93%acrossmodels)electrificationrateby2060,drivenmostlybyincreaseduseofelectricalappliancesandswitchingfromtraditionalbiomassandfossilfuelsforcookingandwaterheating.Progressiveimprovementsinbuildingsperformanceandequipmentefficiencywillreducedemandforelectrifiedspaceheating,cooling,andlighting.04THEROLEOFELECTRIFICATIONINEND-USESECTORSSYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYS354.3POLICYIMPLICATIONSMajorbarrierstoreachingthehighelectrificationratenotedabovestillexist.Achievingthesegoalswillrequiremajortechnologicalbreakthroughs,tremendousinfrastructureinvestment,powergridchanges,andpoliciesandregulationstopromotescalingupoftechnologiesandtoaccommodatethetransitionrisksacrossChina.Furthertechnologyinnovationtoimproveperformanceandreducecostsiscritical.TechnologiessuchasEVsandheatpumpsarecommerciallyavailabletoday,butarenotalwayscompetitiveyetwithalternativenon-electrictechnologies.Otherend-usetechnologiesarefurtherbehind,particularlyinheavyindustryandlong-haultransportation.Directelectrificationofheavyindustryposesanimportanttechnicalchallenge,particularlyforprocesseswithhigh-temperaturethermalneeds.Mosttechnologiesinthisareaareattheprototypestagetoday.Inprimarysteelmaking,forinstance,theuseofelectricitytoconvertironoreintosteelthroughelectrolysisisstillatpilotstage.Inaviation,prototypesofelectricplanesfortheshort-haulmarketandpartofthemedium-haulmarketarecurrentlybeingdevelopedandtestedbyseveralcompanies,buttheyarefarfromcommercialviabilitybecauseofthetechnicallimitationsofthelowenergydensityofbatteries.Electrificationbringshugechallengesonbothsupplyanddemandsides.Forthesupplyside,ifnotmanagedwell,theunprecedentedincreaseinpeakelectricitydemandrelativetoaveragedemandinend-usesectorswillresultinpossiblyenlargedpeak-to-valleydifferenceofpowerload,posinghugechallengestogridsecurity.Forexample,EVchargingmayraisedailypeakssubstantially,whileheatpumpscouldincreasetheseasonalpeak(suchaswinterinnorthernChina).However,demandsideresponses,suchassmartcharging,necessarytosupportacceleratedelectrification,couldsignificantlyreducepeakelectricitydemand.Moreover,drawingpowerfromplugged-invehicles(V2G)couldevenprovideextraflexibility.Onthedemandside,electrificationwillrequireadjustmentofkeyproductionprocessesandsupportinginfrastructureinvestmentinkeyend-usesectors,whichwillresultintransitionrisks,suchasstrandedassetsofexistinginfrastructure,costsharingissues,andjusttransitionproblems.Inaddition,sectoralelectrificationgoalsandactionsarestilldisaggregatedandunsystematic,requiringbettercoordinationtounlocksynergiesamongsectors.Forinstance,thedecisiononroll-outofEVchargingstationswillneedtheinvolvementoflocalstakeholders,urbanplanners,distributionoperators,andcentralregulators.Currentpolicyisnotadequateforachievingdeepelectrification,policyreformandmarketredesignareneeded.Forinstance,storageanddemandresponseprovidersneedtobeensuredthattheycanberewardedforthevaluetheydeliver,andthatbarrierstotheirparticipationintheelectricitysystemareremoved.Inparallel,ashiftinconsumerbehaviorwillbeneededtosupportdemandresponse.Consumersandutilitieswillneedtomovefromfixedtoreal-timepricing,andtoengagewithnewtechnologiesandbusinessmodelstovarytheirelectricitydemandinlinewiththevaluetheyplaceonit.Moreover,furtherincentivesorfundsneedtobeprovidedfortechnologyinnovationandwidespreadadoptionanduseoftechnologiessuchasheatpumps,electricboilers,motors,andotherappliances.Vertical(national,provincial,andlocal)andhorizontal(cross-ministerial)policycoordinationalsoneedtobeimproved,toaddressandovercomeregulatorsilos.THEROLEOFELECTRIFICATIONINEND-USESECTORS0436SYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYSFIGURE4.3:ELECTRIFICATIONROADMAP.Powersupplymake-upandelectrificationrateacrosssectorsarethemeanvalueacrossmodelsintheUpdatedNDCtoCarbonNeutralityscenario.Near-termandlong-termpolicyoptionsaresummarizedfromactionsoutlinedinthefollowingchapters.Adjustelectricitymarketdesign,deploydemandresponseprograms,time-varyingpricingandotherdigitaltoolsSolar+Wind-Upto35%CoalwithoutCCUS.-Downto35%Building-50%Industry-30%FreightTransportation-5%PassengerTransportation-15%Total2030-35%Furtherincreasetheadjustablecapacityofexistingsourcesandexpandthelong-termandseasonalenergystorageSolar+Wind-Upto60%CoalwithoutCCUS.-Downto0%Total2050-55%Building-75%Industry-50%FreightTransportation-25%PassengerTransportation-55%Developanewgridsystemforhighshareofrenewablepowerandincreaseinter-connectivitybetweengridregionsSolar+Wind-Upto65%CoalwithoutCCUS.-Downto0%Total2060-65%Building-80%Industry-65%FreightTransportation-35%PassengerTransportation-60%FIGUREX:SYSTEMATICTRANSITIONACROSSALLSECTORSTOACCELERATEELECTRIFICATIONINCHINAPOWERSECTORRATESANDPOLICIES:NEAR-TERMCHANGESRATESANDPOLICIES:LONG-TERMCHANGESEND-USESECTORSConverttoelectricspaceheatinginpublicbuildingsOfferfinancialincentivesforswitchingtoelectricheating,stovesandwaterheatersTransitiontoindustrialheatpumpsandelectricboilersforlowandmediumtemperatureheatinginlightindustriesDevelopanindustryelectrificationtechnologystandardImplementlowcarbonfuelstandardsfortrucksAdoptpublicormunicipalfleetelectrificationtargetsOffersubsidiesfordirectpurchaseofEVsandcharginginfrastructurePromotingtheapplicationofPEDF(Photovoltaic,Energystorage,Directcurrent,andFlexibility)solutioninbuildingstoutilizemorerenewablepowerfromdistributedPVbybetterdemandsidemanagementDeploypubliceducationprogramstochangeresidentialenergyusebehaviorResearchanddevelopadvancedindustrialelectrificationtechnologyformediumandheavyindustryDevelophydrogenfuelcelltechnologiesandadvancedelectrificationtechnologiesthatcanprovidelongerrangesforheavy-dutyutilitytrucksResearchanddevelopfuelalternativesforairandwatertransportPromotethecoordinatedandeffectiveexpansionofcharginginfrastructureELECTRIFICATIONRATESECTORKEYIndustryPassengerTransportationFreightTransportationBuilding05ELECTRIFICATIONROADMAPFORBUILDINGSSYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYS3705ELECTRIFICATIONROADMAPFORBUILDINGS@EnergyFoundationELECTRIFICATIONROADMAPFORBUILDINGS0538SYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYS5.1CURRENTSTATUSChina’sbuildingssectorcurrentlyutilizesmostlyfossilfuelsandbiomass,whichcombinedaccountforover60%offinalenergyusein2019(IEA,2021d).ElectrificationintheChinesebuildingssectorhasincreasedsignificantlyduringthepasttwodecades,fromonly4.4%in1995to28%in2018(IEA,2021d),duetochangesinChina’senergysupplystructureandeconomicgrowth.WhileelectrificationhasincreasedinChina,buildingelectrificationratesstillareabouthalfofsomeotherdevelopedcountries.Forexample,thecommercialelectrificationrateinChinaisabout40%,comparedto55%and65%inJapanandtheU.S.,respectively.Thegapwidensevenmorewhenlookingattheshareofelectricityuseinresidentialbuildings,whereChinaonlyhasa26%electrificationrate,comparedto45%inJapanandtheU.S.(IEA,2021d)(seeFigure5.1).NotonlydoChina’selectrificationratesvaryacrosssectors,theyalsovarybylocation.Ruralandurban,andcommercialandresidentialbuildingsrelyondifferenttypesofenergy.TheelectrificationrateinChineseruralhouseholdsisonlyabout9.7%,comparedto47%inurbanresidentialhomes(BERC,2019).SpaceheatinginnorthernurbanChinaprimarilycomesfromcentralizedcoal-firedcombinedheatandpower(CHP)plantsandheatplantsandconsumesaboutonequarterofthetotalfinalenergyuseinthebuildingssector(BERC,2019).Butinruralresidentialbuildings,biomasscontributestoaroundone-thirdoffinalenergyuse(BERC,2021).Reducingconsumptionandfossilfuelsinurbandistrictspaceheatingandtraditionalbiomassinruralhouseholdsandadoptinglocationandsector-specificapproachesshouldbetargetedtoimproveelectrificationacrossthebuildingssector.FIGURE5.1:HISTORICALTRENDOFELECTRIFICATIONINTHEBUILDINGSSECTOROFCHINA,JAPANANDTHEU.S.(Source:IEA,2021d).CommercialResidential2000201020202000201020200%20%40%60%80%ElectrificationRateChinaJapanU.S.05ELECTRIFICATIONROADMAPFORBUILDINGSSYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYS395.2ROLEOFBUILDINGELECTRIFICATIONINCARBONNEUTRALITYInordertomeettheambitious2060carbonneutralitytarget,ourmodelingresultsshowthatincreasingelectrificationinbuildingswillbecritical.Finalenergyusewilllikelyincrease,peakingbetween2025–2045,beforedeclining.By2060,finalenergyconsumptionmaybesimilartotoday’slevels,orevenincrease,fromabout530–766Mtce/yrin2020toabout588–980Mtce/yr(Figure5.2).Theelectricitydemandofthebuildingssectormayreach531to684Mtce/yrin2060fromthecurrent231–284Mtce/yrin2020,whichimpliesthattheelectrificationinbuildingssectorneedstoincreaseto41–65%in2030and66–93%in2060fromthecurrentleveloflessthan30%(Figure5.3).FIGURE5.2:BUILDINGFINALENERGYCONSUMPTIONINTHEUPDATEDNDCTOCARBONNEUTRALITYSCENARIO:(A)TOTALFINALENERGY,(B)FINALENERGYBYFUEL.HistoricaldataisfromtheChineseEnergyStatisticalYearbook(CESY)andtheInternationalEnergyAgency(IEA).03006009002000202020402060Mtce/yrIEACESYChinaTIMESGCAM−ChinaAIM−ChinaMESSAGEix−ChinaPECEV2.0PECE_LIU_2021ChinaDREAM(A)20302050206002505007501,000(B)ChinaTIMESGCAM−ChinaAIM−ChinaMESSAGEix−ChinaPECEV2.0PECE_LIU_2021ChinaDREAMChinaTIMESGCAM−ChinaAIM−ChinaMESSAGEix−ChinaPECEV2.0PECE_LIU_2021ChinaDREAMChinaTIMESGCAM−ChinaAIM−ChinaMESSAGEix−ChinaPECEV2.0PECE_LIU_2021ChinaDREAMElectricityHeatSolarHydrogenGasesLiquidsSolidsOtherELECTRIFICATIONROADMAPFORBUILDINGS0540SYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYSFIGURE5.3:ELECTRIFICATIONINTHEBUILDINGSSECTORINTHEUPDATEDNDCTOCARBONNEUTRALITYSCENARIO.(A)ELECTRIC-ITYDEMAND.(B)ELECTRIFICATIONRATE.HistoricaldataisfromtheChineseEnergyStatisticalYearbook(CESY)andtheInternationalEnergyAgency(IEA).TheelectrificationrateofPECEV2.0doesnotincludetheelectricityfromdistributedPVinbuilding.01,0002,0003,0004,0005,0002000202020402060TWh(A)0%25%50%75%2000202020402060ElectrificationrateIEACESYChinaTIMESGCAM−ChinaAIM−ChinaMESSAGEix−ChinaPECEV2.0PECE_LIU_2021ChinaDREAM(B)5.3CHALLENGESANDOPPORTUNITIESChallengesThereexistseveraltypesofchallengesforpromotingelectrificationinthebuildingssector,includingtechnological,financial,andculturalobstacles.Toaddressthesechallenges,well-designedandcomprehensiveincentivesandpoliciesfromgovernmentsatdifferentlevelsareneeded.Theyincluderesearchinvestmentinelectrificationtechnologies,marketpenetrationpromotionandcostreductionofthesetechnologies,eitherbyeconomiesofscaleorsubsidies,andshiftsofpeople’senergyusepreferences.Asakeyprerequisiteforpromotingelectrificationinspaceheating,improvingtheenergyperformanceofbuildingenvelopesisessential.AlthoughtheinsulationinChinesenorthernurbanresidentialbuildingshassignificantlyimprovedinthepastfewyears,buildingsarestillnotaswellinsulatedassomedevelopedcountries.Forexample,thethermalperformancerequirementsinthecurrentChinesebuildingcode(GB55015-2021)forexteriorwallsandwindowsinnorthernChinaareabout0.25–0.45W/m2Kand1.4–2.2W/m2K,respectively(dependingonlocation),whilesuchrequirementsare0.28W/m2Kforexteriorwallsand1.3W/m2KforwindowsinGermany(BERC,2017;CABP,2021).Improvinginsulationfornewandretrofittedbuildingscallsforadvancedbuildingmaterialsandconstructiontechniquesthatarecommerciallyavailable.Besidesthebuildinginsulation,someelectrificationmeasuresforspaceheatingneedtobefurtherdevelopedtoimprovetheirreliability,suchaslowtemperatureairsourceheatpumps(ASHP),andpowersupplyinfrastructure.ConventionalASHPsarenotveryefficientincolderclimates,soresolvingtechnical05ELECTRIFICATIONROADMAPFORBUILDINGSSYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYS41challengesandincreasingthereliabilityoflowtemperatureASHPsduringthewinterarecriticalfortheseregions.ThelowtemperatureASHPsusedincolderregionsshouldbeabletoretainamajorityoftheircapacitywhenlowtemperaturesarereached(e.g.,-20°C),andavoidtheuseofresistanceheatingforbuildings.Inaddition,powersupplyinfrastructureneedstobeupgradedtomeettheincreasingadoptionofelectrificationinbuildings.Adoptingresidentialelectrificationmeasuresusuallyrequiresahighinitialfinancialinvestment.Forinstance,theinvestmentcostoflowtemperatureASHP(intermsofperunitsquaremeters)isusually2–3timesthatofcoal-fireddistrictspaceheating(Q.Zhangetal.,2017).Thehighinitialinvestmentofelectrificationmeasureshavehinderedthediffusionofthesetechnologies.Energyusepreferencesalsopresentanobstacletobuildingelectrification.Coal-fired,biomass-firedandgas-firedstovesarewidelyusedinChinesehouseholdsbecausehightemperaturecookingandtheuseofround-bottompansisanintegralpartofChinesedietandculture.Electricstovesthatuseflat-bottompansandprovidearelativelylowertemperatureforcooking,wouldrequireaconsumerbehavioralshiftforwide-spreadadoptionofelectricstoves.Additionally,promotingelectrifiedspaceheatinginnorthernChinamayrequiretheuseofmoredecentralizedspaceheatingsystems,likeASHPandgroundsourceheatpump(GSHP),toreplacetheexistingcentralized,districtheating.Forresidentsaccustomedtohavingdistrictheating,maintainingtheirownbuildings'heatingsystemsbythemselvesmaybeadeterrenttoelectrification.OpportunitiesOpportunitiesforpromptingelectrificationincludeexpansionofnewbuildingstock,co-benefitsforruralhouseholds,andincreasingPVadoptionacrossChina.Chinaiscurrentlyexperiencingaconstructionboom,creatingakeywindowtoadoptnewelectrificationmeasuresinnewbuildings.NewbuildingsinChinamakeup2.5billionm2annually(BERC,2019).AsbuildingsandrelatedHVAC(heating,ventilation,andairconditioning)systemshavealifetimeofusuallymorethanafewdecades,replacingexistingbuildinginfrastructurebeforetheendofitsusefullifeincreasestheoftenalreadyhigherinitialcostforelectrificationmeasures.Integratingnewelectrificationmeasuresintothedevelopmentofnewbuildingsiscriticalforavoidingtheso-calledlock-ineffectsofobsoleteorhigh-carbontechnologiesinbuildings.Additionally,promotingelectrificationinruralresidentialbuildingscangreatlyimprovethestandardsoflivinginruralhouseholds,improveindoorairquality,andachievebetterhealthoutcomes(J.Lietal.,2019).Replacingfossilfuelsandtraditionalbiomasswithelectricitycouldnotonlyhelptoreducecarbonemissionsfromthebuildingssector,butitwouldimproveindoorairqualitybyavoidingemittingindoorairpollutantsfromcookingandspaceheating.AstudyhasshownthatusingcoalforspaceheatinginruralnorthernChinamighthaveresultedina5-yearreductioninlifeexpectancyforresidentswhousecoalforheating(Y.Chenetal.,2013).ElectrifyingthebuildingssectorcouldalsopromotethewidedeploymentofdistributedPVsystemsinbothurbanandruralbuildings,decreasingconsumerelectricitycostswhileallowingforincreasedutilizationofmorerenewableenergy.Whencombinedwithothermeasures,suchasimprovedenergyefficiency,direct-current(DC)typemicrogridsandEVchargingstations,buildingscanactasflexibleabsorbersforthegrid,evenprovidingelectricitytothegridwhenneeded(EFC,2020).ELECTRIFICATIONROADMAPFORBUILDINGS0542SYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYS5.4KEYAREASFORELECTRIFICATIONResidentialSpaceHeatingTherearemorethantenChineseprovinces(ormunicipalities,autonomousregions)lyingnorthoftheQinMountainandHuaiRiverlineofChina,locatedintheso-called“severecold”and“cold”climatezonesofChina,whichhavesignificantneedsforspaceheatinginwinter.Intheurbanareasoftheseregions,districtspaceheatingisthedominantformofheating,accountingforabout85%ofhouseholds'spaceheatingintermsoffloorspace(BERC,2019).Over40%ofChina’surbanpopulation,whichisaround322millionpeople,liveinregionsthatrequireheating(IEA&TsinghuaUniversity,2018).Currently,spaceheatinginnorthernurbanChinaaccountsforabout25%ofthetotalfinalenergyuseintheentirebuildingssector,about214Mtceperyear,andtheenergyintensityofspaceheatingonaverageisabout0.4GJ/m2·year(BERC,2022).Duetorapidurbanization,totalfloorareainnorthernurbanChinawithdistrictspaceheatingisincreasingquickly,atanaveragerateofabout13%peryearfrom2006to2017,comprisingabout12billionsquaremetersin2017(BERC,2019).Coal-firedcombinedheatandpower(CHP)andheatplantsaccountforabout77%ofdistrictheatedfloorspace.Gas-firedCHPandheatplantsaccountfor14%ofdistrictheatedfloorspace,whileelectricspaceheatingonlymakesuplessthan5%(BERC,2019).Inruralresidentialbuildings,spaceheatingaccountsforabout44%ofthetotalfinalenergyuseandheavilydependsoncoalandbiomass(X.Zhengetal.,2016).Biomasscurrentlyaccountsforabout62%;coalforabout28%;andelectricityforonlyabout2%ofspaceheatinginruralresidentialbuildings(X.Zhengetal.,2016).ThereareseveralelectricspaceheatingtechnologiesthatcanbeusedforspaceheatinginnorthernurbanChinatoreplacefossilfuelbaseddistrictspaceheating.TheyincludelowtemperatureASHP,groundsourceheatpump(GSHP),electricboilers,andradiantheatingfilm.Promotingelectricspaceheatingrequiresupgradingtheelectricitysupplyinfrastructureinbuildings.Inaddition,theapplicationofheatpumpsystemsinurbancommunitiesneedsenoughspaceforequipmentinstallationandmayalsocausenoisepollution.Directelectricheatingmeasures,includingelectricboilersandradiantheatingfilms,havemuchlowerenergyefficiencythanheatpumptechnologies,sotheyshouldbeusedonlyinbuildingsorlocationsnotsuitableforheatpumps.Giventherelianceofdirectheatingmeasuresonpowersectorsupplymake-up,thesetechnologiesshouldn’tbeprioritizedinthenear-term,asChinaremainslargelydependentoncoal-firedpowerforelectricitysupply.Withmorerenewablesinthefuture,thesedirectelectricheatingmeasureswillbeaviablesolutionforthecommunitiesthathavedifficultyadoptingheatpumps.Inaddition,solardistrictheating(SDH),alongwithheatpumps,couldbealsoapromisingwayforreplacingtheexistingcoal-andgas-basedspaceheatinginChina.SDHhasbeenusedinDenmarkandGermany,andisestimatedtobesuitableforChina’sregionsthathaverichsolarresources,alongheatingseasonandcheapland,suchasXinjiang,Qinghai,InnerMongoliaandGansu(ADB,2019).ThereisalsosignificantpotentialtoelectrifyspaceheatinginruralresidentialbuildingsbyadoptingASHPsorGSHPsasacomplementtousingsolarandcompactedbiomassforspaceheating.Usingelectricspaceheatingmeasurestoreplacecurrentlywidelyusedcoal-firedandtraditionalbiomassspaceheatingsystemsinruralhouseholdscouldsignificantlyimproveindoorairquality,therebyreducingrelatednegativehealtheffectsfromburningcoalandtraditionalbiomassinpoorandlow-efficientstoves.Promotingtheuseofcleanbiomassforspaceheatinginruralhouseholdsisimportantinthenear-term,consideringitsloweroperationcostandco-benefitsforresidents.Thethermalperformanceofruralresidentialbuildingsisusuallypoor.Improvingthebuildingenvelopeperformance05ELECTRIFICATIONROADMAPFORBUILDINGSSYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYS43beforehandiscriticalforusingelectricspaceheatingsystemsintheruralarea,toimproveefficiencyandlimitoperatingcosts.Also,giventhehighinitialcostofASHPsandGSHPs,subsidyprogramsareimportantforpromptingtheirapplicationinruralhouseholds.AirSourceHeatPumpConventionalASHPareusuallyusedinChina’sYangtzeriverareaforspaceheatinginwinter,butinnorthernChina,theuseofconventionalASHPscanresultinpoorperformanceormalfunctionoftheheatpumps..InordertouseASHPforspaceheatinginnorthernChina,lowtemperatureASHPshavebeendeveloped.Someadjustmentsincludeusingnewrefrigerants,combinedwithphasechangematerial,alongwithanewcirculationsystem(e.g.,two-stagecompression,cascadedcompression)anddefrosttechnologyandoptimaldefrostingstrategies(Yangetal.,2020;Y.Zhangetal.,2017).TofurtherimprovetheCoefficientofPerformance(COP)oflowtemperatureASHPinnorthernChinainwinters,floorradiantheatingindoorsystemsarerecommendedasitcouldlowertherunningtemperatureatthecondensationsideofASHPs.SomestudieshaveshownthatthelowtemperatureASHPcouldmaintainacceptableCOPincoldweather.Forexample,inHarbin,thecapitalofthenorthernmostprovinceinChina,theCOPofASHPcouldbeover2.2,whichmeansthat1unitenergyofelectricitycouldprovideabout2.2unitsenergyofheat,whentheindoorandoutdoortemperaturedifferenceisabout35°C,namelywithanoutdoortemperatureofaround-15°C(Q.Zhangetal.,2017).LowtemperatureASHPscanhaveoperatingcostscomparabletotraditionalcoal-fireddistrictspaceheatingsystemsandhouseholdgas-firedboilers.Inonestudy(M.Yuetal.,2021),theoperatingcostoftwotypesoflowtemperatureASHP(quasi-two-stageASHPandASHPwithlatentthermalenergystorage)isanalyzedandcomparedwiththatofseveralotherspaceheatingmeasuresinthreecitiesinNorthernChina–Beijing,ShenyangandHarbin(seeTable5.5).TheoperatingcostofASHPisrathercompetitivewiththatofcoal-fireddistrictheatingsysteminthe“cold”climatezone(likeBeijing)andabithigherthanconventionaldistrictheat(about15%)insomeregionsofthe“severecold”climatezone(i.e.,ZoneC&Bof“severecold”,likeHarbin)(M.Yuetal.,2021).AcaseinBeijingshowedthattheaverageCOPofanASHPsystemduringthewholeheatingseasoncouldbe3.0(2.6inthecoldestdayinthatwinter),andtheexpensecouldbeonlyabout22.8yuan/m2($3.37/m2),withpeak-valleyelectricitypricing(BERC,2015).ThecurrenttechnologicaldevelopmentoflowtemperatureASHPisapplicabletospaceheatinginmostregionsofnorthernurbanChinaandcanbeadoptedtoreplacedistrictspaceheatingintheseregions–withhavingbothreasonableCOPandeconomicaloperatingcost(Table5.1).ThelowtemperatureASHPisparticularlyappropriateforuseinlow-riseresidentialbuildings,attachedordetachedhouses,andsmall-scalecommercialbuildingsinthe“cold”climatezoneofChina.ELECTRIFICATIONROADMAPFORBUILDINGS0544SYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYSTABLE5.1:OPERATINGCOSTSACROSSSPACEHEATINGMEASURES.(Source:M.Yuetal.,2021)SpaceheatingmeasuresOperatingcost(Yuan/m2)BeijingShenyangHarbinCoal-firedboilers33.8440.8342.09Householdgasboilers31.9338.7740.01Directelectricityheating105.3128.31132.47ASHP(quasi-two-stage)29.4541.6148.91ASHP(withlatentthermalenergystorage)30.6740.9747.39GroundSourceHeatPump(GSHP)Groundsourceheatpumps(GSHP)utilizegeothermalenergyforspaceheatinginbuildings.GSHPshaveahigherCOPthanASHPs(usuallyaround3.5–4),becausethegroundtemperatureisusuallyhigherthantheambientairtemperatureinheatingseasons.TheGSHPsystemconsistsoftheheatpump,thedistributionsystem,andthegroundheatexchanger(usuallyintheformofclosed-loop)(seeBox5.1).OneofthelargestchallengesforapplyingGSHPforspaceheatinginabuildingisbalancingtheheatingandcoolingloadofthebuilding.Ifthecoolingloadofabuildinginsummerismuchlessthanitsheatingloadinwinter,thegroundtemperaturedecreaseswithoperationoveryearsandcouldresultinpoorCOPormalfunctionsofGSHPforspaceheatinginwinter.ByexploringthefeasibilityofusingGSHPinthreecitiesinnorthernChina–Qiqihar,ShenyangandBeijing–onestudy(Z.Liuetal.,2015)foundthatitmightbedifficulttousetheGSHPsysteminthecityofQiqiharbecause,afterseveralyears’operation,thetemperatureinburiedpipelinesinwintermightbelowerthan0°C.ThisisbecausetheGSHPsystemcouldnotstorebalancedheatinthegroundinsummerforuseinwinter.Thischallengecouldbeaddressedbybuildingmorepipelinesingroundsorbyusingthesystemonlyinwinter.Itcouldalsobesolvedbydevelopingtheso-calleddeepboreholeheatexchanger(DBHE)-basedGSHP,whichutilizesgeothermalenergyfrommediumordeeplayer,insteadofshallowlayer.Aprojectofshallow-layerGSHPsysteminthecityofJinanshowedaheatpumpCOPofabout3.42andelectricityuseof15.5kWh/m2(EFC,2016).Anothermedium-deeplayerGSHPsysteminthecityofTianjinshowedthattheCOPofthewholesysteminheatingseasonscouldbe5.72,withonly11kWh/m2electricityconsumption(BERC,2019).05ELECTRIFICATIONROADMAPFORBUILDINGSSYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYS45BOX5.1:GROUND-SOURCEHEATPUMPSFORSPACEHEATINGFIGUREB5.1:GROUND-SOURCEHEATPUMPSPUMPSFORSPACEHEATING.(Source:Cazorla-Marín,2019)Šƒ’–‡”ͳǤ–”‘†—–‹‘͵šŠƒ‰‡”•ሺ•ሻƒ”‡—•‡†Ǥ—•—ƒŽŽ›‘•‹•–•‘ˆ‘‡‘”‘”‡Ž‘‰’Žƒ•–‹’‹’‡•„—”‹‡†‹–Š‡‰”‘—†–Š”‘—‰Š™Š‹Š–Š‡Š‡ƒ–ƒ””‹‡”ˆŽ—‹†ˆŽ‘™•ǤŠ‡ˆŽ—‹†–Šƒ–‘‡•ˆ”‘–Š‡‹•Š‡ƒ–‡†—’ሺŠ‡ƒ–‹‰‘†‡ሻ‘”‘‘Ž‡††‘™ሺ‘‘Ž‹‰‘†‡ሻ™Š‡ˆŽ‘™‹‰–Š”‘—‰Š–Š‡–Šƒ•–‘–Š‡–‡’‡”ƒ–—”‡†‹ˆˆ‡”‡‡™‹–Š–Š‡•—””‘—†‹‰‰”‘—†ǡ–Š‡‡š–”ƒ–‹‰‘”‹Œ‡–‹‰Š‡ƒ–‹–Š‡‰”‘—†ǡ”‡•’‡–‹˜‡Ž›Ǥ‹‰—”‡ͳǤͳǤ”‘—†‘—”‡‡ƒ–—’•›•–‡‹‘‘Ž‹‰ƒ†Š‡ƒ–‹‰‘†‡ሾͳ͸ሿŠ‡‘’‘‡–‹•‘‡‘ˆ–Š‡‘”‡‡š’‡•‹˜‡’ƒ”–•‘ˆ–Š‡•›•–‡ǡ†—‡–‘–Š‡Š‹‰Š‘•–‹˜‘Ž˜‡†‹ƒ—ˆƒ–—”‹‰•‘Ž‘‰’‹’‡•ƒ†„—”›‹‰–Š‡„‡Ž‘™–Š‡‰”‘—†Ž‡˜‡Žሺ•‘‡–‹‡•‘”‡–ŠƒʹͲͲ†‡‡’ሻǤ‘”–Š‹•”‡ƒ•‘ǡ‹–Š‡†‡•‹‰‘ˆ–Š‡•‡•ǡ–Š‡‡‡••ƒ”›Ž‡‰–Š•Š‘—Ž†„‡‘’–‹‹œ‡†‹‘”†‡”–‘‘„–ƒ‹ƒ‰‘‘†‡ˆˆ‹‹‡›‹–Š‡Š‡ƒ––”ƒ•ˆ‡”™‹–Š–Š‡‰”‘—†ǡƒ–ƒ”‡ƒ•‘ƒ„Ž‡‘•–ǤŠ‹•‡ƒ•–Šƒ––Š‡Š‡ƒ–‡šŠƒ‰‡”•Š‘—Ž†‘–„‡—†‡”Ǧ•‹œ‡†ሺŽ‘™‡ˆˆ‹‹‡›ሻ‘”‘˜‡”Ǧ•‹œ‡†ሺŠ‹‰Š‘•–ሻǤ‹ˆˆ‡”‡–•‘Ž—–‹‘•ƒ”‡—•‡†‹‘”†‡”–‘‘„–ƒ‹ƒ‰‘‘†‡ˆˆ‹‹‡›ƒ†”‡†—‹‰–Š‡Ž‡‰–Š‘ˆƒ•—Šƒ•’‘••‹„Ž‡ǣ–—†›‹‰†‹ˆˆ‡”‡–‘ˆ‹‰—”ƒ–‹‘•™‹–ŠŠ‹‰Š‡”‡ˆˆ‹‹‡›Ǥ‘„‹‹‰†‹ˆˆ‡”‡–•‘—”‡•‹–‘Š›„”‹†‡‡”‰›•›•–‡•ǡ•‘–Š‡Š‡ƒ––”ƒ•ˆ‡”™‹–Š–Š‡‰”‘—†™‘—Ž††‡”‡ƒ•‡ǤAGSHPsystem(sometimescalledgeothermalheatpump,orGHP)extractsheatfromthesoilorgroundwaterforspaceheatingorcoolinginbuildings(FigureB5.1),becausegroundtemperaturekeepsquitestableyear-roundandiswarmerthantheairinwinterandcoolerthantheairinsummer.Thesystemincludesheatpumpunits,groundheatexchangerandindoordistributionsystem.TheheatpumpunitstransferheatfromalowertemperatureresourcetoahighertemperatureresourceviaathermalsettingbasedonareverseCarnotthermodynamiccycle(FigureB5.1).Thegroundheatexchangers(GHE)areusuallyplastic-typepipes,whichcirculateanantifreezesolutionthroughaclosedloop.TheGHEsareburiedintothegroundeitherhorizontally(shallowtrenches,2–4mdeep)orvertically(boreholes,30–200mdeep).Thehorizontalsystemislessexpensive,butneedssufficientlandfordiggingtrenches,soitismoreappropriatefornewbuildingsorruralareas.Incontrast,theverticalsystemcanbeusedforexistingbuildingswithlimitedland,asbuildingboreholesrequiresrelativelysmallspace.Theindoorfloorheatingsystem(usingheatingpipesunderthefloor)ispreferredoveraradiatorsystem(usingradiatorstoheatbuildings)foraGSHPsystem,becauseoftherelativelylowercondensingtemperature.ToinstallaGSHPsystem,threeimportantaspectsneedtobeassessed:soilconditions,heatingandcoolingneedsofbuildings,andlandavailability.GSHPcontractorsoftendrillanexploratorywelltoinvestigatelocalhydrologicalandgeologicalconditionsandestimatetheconstructioncost.TheenergyefficiencyofaGSHPsystemismeasuredbyitsCoefficientofPerformance(COP),typicallyaround3.5–4,whichmeansthat1unitenergyofelectricitycouldprovideabout3.5–4unitsenergyofheat.Accordingly,comparedtoothertypesofspaceheatingsystems,theGSHPsystemhaslowerCO2emissions(seeTableB5.1).ELECTRIFICATIONROADMAPFORBUILDINGS0546SYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYSTABLEB5.1:CO2EMISSIONSOFDIFFERENTHEATINGSYSTEMS(Source:Ahmadietal.,2017).SystemPrimaryEnergyEfficiency(%)CO2emissions(kgCO2/kWhheat)Oil-firedboiler60–650.45–0.48Gas-firedboiler70–800.26–0.31CondensingGasBoiler+lowtemperaturesystem1000.21Directelectricheatingundercurrentgridconditions360.9Conventionalelectricity+GSHP120–1600.27–0.20Greenelectricity+GSHP300–4000.00@EnergyFoundation05ELECTRIFICATIONROADMAPFORBUILDINGSSYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYS47CookingCookingaccountsforabout20.7%ofenergyuseinChineseurbanhouseholdsand44.1%inruralhouseholds(X.Zhengetal.,2015,2016).Applianceelectricityuse,likethatforricecookers,microwaves,etc.,isonlyasmallshareofcookingenergyuseinurbanhouseholds(15.7%)andruralhouseholds(6.2%)(X.Zhengetal.,2015,2016).Afterexcludingelectricityuseincookingappliances,itisestimatedthatcookingbyusingcoal,gas,andbiomassconsumesabout19%oftotalfinalenergyuseintheentirebuildingssector(BERC,2019;X.Zhengetal.,2015,2016).Thethermalefficiencyofstovesinruralandurbanareasvaries.Gas-firedcookingstoveshavearound55–63%thermalefficiencyforbuilt-intypeand58–66%fordesktoptype.Incontrast,theenergyefficiencyoftraditionalbiomassandcoal-firedcookingstoveswidelyusedinruralareasisonlyaround15%and30–40%,respectively(BERC,2016).Improvingthepenetrationofelectricstovesandinductionstovestoreplacegas-fired,coal-firedandtraditionalbiomass-firedstovesisneeded.Comparedtogas-firedcookingstoves,thethermalefficiencyofelectricresistancestovesandinductionstovesishigher,aboutover70%and90%,respectively,whilethecapitalcostofelectricinductionandresistancestovesiscomparabletothatofgas-firedstoves(W.Fengetal.,2021).SinceChinesecookingculturepreferstheuseofcookingstoveswithopen-flameoverinductiontechnology,changingdiethabitsandcookingpreferencesbyimplementingextensivepubliceducationprogramsmightbenecessary.WaterHeatingDomesticwaterheatinginChinaissuppliedmostlybydecentralizedgas,solar,andelectricwaterheaters.Waterheatingaccountsforabout14.4%oftotalfinalenergyuseinChineseurbanhouseholdsand5.7%inruralhouseholds(X.Zhengetal.,2015,2016).Theshareofelectricwaterheatingisabout13.2%and16.1%inChineseurbanandruralhouseholdsintermsoffinalenergyusefordomesticwaterheating,respectively,(abithigherinruralareasbecauseofrelativelyloweraccesstogas)(X.Zhengetal.,2015,2016).Incomparison,gaswaterheatingaccountsforabout68.3%offinalenergyusefordomesticwaterheatinginurbanhouseholdsand55.6%inruralhouseholds,whiletherestismostlysolarwaterheating.Oneofthesignificantbarrierstoreplacinggaswaterheaterswithelectricwaterheatersistherelativelylargersizeoftheaccompanyingwatertanks,possiblyakeyconcernforconsumers,especiallyinurbanareas,orhomeswithlimitedspace.Inaddition,someconsumersmaynotpurchaseelectricwaterheatersbecausetheyneedmoretimetoheatthewaterinwatertanksthangaswaterheaters,whichisnotalwaysconvenientforcertainconsumers.PVOnsiteUseinBuildingsOnsiteuseofPVinbuildingsisimportantforpromotingelectrificationinthebuildingssectorandreducingCO2emissions.AlongwithChina’snewNationallyDeterminedContributions(NDCs)onpromotingthecapacityofsolarandwindpowergeneration,distributedPVsystems,includingrooftopPV,areexpectedtoexperienceafastincreaseinthenextfewyears,owingmainlytothegovernment'sincentivesonhigherfeed-intariffs(ChinaDaily,2022).About27GWofrooftopPVinChinawasinstalledin2021,andhalfofthenewcommercialbuildingsthatreceivegovernmentfundswillbecoveredwithrooftopPVin2025(ChinaDaily,2022).RooftopPVpotentialmaybelimitedinlarge-scaleChinesecities,becauselow-riseandhigh-risebuildingsdominateintheseareas.Usingremotesensingimages,onestudyestimatedthattheavailablerooftopareaintheChaoyangdistrictofBeijingcityisonlyabout679,000m2,whiletheannualPVelectricitypotentialisaround63.8GWh/yr(Songetal.,2018).GiventhepopulationsizeandhouseholdelectricityconsumptionpercapitaoftheChaoyangdistrict,itisestimatedthatdeployingthefullpotentialELECTRIFICATIONROADMAPFORBUILDINGS0548SYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYSrooftopPVcouldonlyprovidelessthan2%ofthehouseholdelectricityuseinthisarea(ChaoyangDistrictGovernment,2022;Songetal.,2018).Forsuchdenselypopulatedurbanareas,BIPVisanotheroptionforonsiteutilizationofPVinbuildings,althoughitsdeploymentiscurrentlylimitedandstillinearlystageofdevelopment.Obstaclesthatneedtobeaddressedtopromoteitswidedeploymentinclude:itsadverseimpactoninternalspaces(e.g.,thesurfacetemperaturesofanunventilatedverticalBIPVcanbe40°Chigherthantheair)andhighermaintenancecoststhanrooftopsystems.TheonsiteuseofPVinbuildingscouldbemorepromisingforelectrifyingbuildingsinChineseruralareas.Launchedin2014,arooftopPVdemonstrationprojectinaruralvillagewith129households(about12PVpanelsonaverageperhousehold)inJiangsuprovinceshowsthatannualelectricitygenerationfromtherooftopPVsystemisabout393MWh,whichcouldprovidetheentireelectricityconsumptioninthisvillageandalsosendabout20%ofthegeneratedelectricitybacktogrids(NEA,2014).ThecurrentlydevelopedPEDF(Photovoltaic,Energystorage,DirectcurrentandFlexibility)technologyoffersapromisingandintegratedsolutionforpromotingelectrificationinthebuildingssector.Withthissolution,thebuildingswithdirect-current-typemicro-gridareintegratedwithdistributedPV(e.g.,rooftopPV)andenergystorageequipment(e.g.,electricbattery,icethermal)couldserveasflexibleelectricityuserstobetterconsumeintermittentelectricity.Facilitatedbydigitaltechnologies,thePEDFsolutioncouldrealizeexcellentdemandsidemanagement(Y.Jiang,2021).ItisestimatedthatthedeploymentofPEDFsolutioninChina’sruralhouseholdscouldnotonlymeettheirfullenergydemandsbutalsofeedasignificantshareofthegeneratedpowerintogrids(Y.Jiang,2021).ApilotPEDFprojectwith27ruralhouseholdslaunchedin2019inavillagenamedZhangshanginRuichengcountyofShanxiprovinceshowsthatwiththePEDFsolution,about40%oftheelectricitygeneratedbyonsite-PVpanelscouldfedintolocalgrids(Yunchengcitygovernment,2021).ThePEDFsolutionhasbeenincludedintotheActionPlan(TheStateCouncil,2021).Itisworthnotingthat,comparedtotheonsiteuseofPV,measuresthathavedirectimpactsonbuildingsectorelectrification,namelyadoptingelectricspaceheating,cooking,andwaterheating,aremostessentialforincreasingelectrification.5.5KEYPOLICYAPPROACHESConsideringtheelectrificationpotential,availabilityoftechnicalmeasuresinthemarket,cost-effectiveness,anddifficultiesofimplementation,electrifyingspaceheatingessentialnear-termactions,electrifyingcooking,anddomesticwaterheatingarealsohighpriorities.KeypoliciesinthebuildingsectortoreachtheseendgoalsareoutlinedinTable5.2.ToimproveelectrificationinspaceheatinginnorthernChina,itisessentialtopromotewideadoptionofelectricspaceheatingsystems,particularlytheASHPandGSHPsystems,toreplacethecurrentdominantcoal-firedbaseddistrictspaceheatingsystemintheregion’surbanareas,andcoal-andtraditionalbiomass-basedspaceheatingintheruralareas.Thissignificantenergytransitionrequirescomprehensiveincentivesandpoliciesfromthegovernmentsatvariouslevels.ThedevelopmentofASHPandGSHPforspaceheatinginnorthernChinaisstillattheinitialstage;poor-qualityprojectscouldsignificantlyimpedeitsacceptancebythepublic.Subnationalgovernmentsneedtodesignspecificdevelopmentplansofelectricspaceheatingintheirjurisdictions,forbothshort-termandlong-term.05ELECTRIFICATIONROADMAPFORBUILDINGSSYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYS49EspeciallyforthepromotionofGSHPsystems,localhydrologicalandgeologicalconditionsneedtobewellinvestigatedbeforehand,then,basedontheresults,thelocalgovernmentsneedtodesignasolidandcomprehensiveGSHPdevelopmentplantoidentifyitsapplicableregionsandrelatedpotentials.Regulationsforcontrollingthecommerciallicenseofrelatedequipmentmanufacturers,partssuppliers,andprojectcontractorstoensurethequalityofimplementedprojectsandmeetrelevantnationalstandardsandcriterianeedtobedeveloped.Additionally,financialincentivesshouldbeadoptedtopromotethemarketshareoftheseelectrificationtechnologiesbythegovernments,particularlyintheareaswithfavorableclimateandgeographicconditionsfortechnologydevelopmentanddeployment.Forexample,offeringafavorableelectricitypricetoelectricspaceheatingproviders(e.g.,usingtheresidentialelectricitypriceinsteadofthecommercialelectricityprice,ordiscountedresidentialelectricityprice);exemptingthegroundwaterchargeoftheGSHPsystems;providingsubsidiestotheoperatorsoftheelectricspaceheatingsystems;andencouraginglocalbankstoprovideloanswithprimeratestoprojectdeveloperscouldhelppromotedeployment.Finally,electricspaceheatingshouldbeincludedinpublicprocurementprocesses.Governmentofficebuildingsandthebuildingsthatreceivegovernmentfunds,suchasschoolsandhospitals,needtotaketheleadinadoptingelectricspaceheatingsystemswhenitistechnicallyfeasible.Toimprovethecompetitivenessofelectricspaceheatingsystems,thegovernmentmayconsiderincludingcoal-firedandgas-fireddistrictspaceheatingplantsinthealready-establishedemissiontradingsystem(ETS)inChina.TheCHPplantsarealreadycoveredbyChina’sETS.Asthecoal-firedandgas-firedheatplantsaccountforaroundhalfoftheheatedfloorspaceofdistrictspaceheatinginnorthernChina,includingcoal-firedandgas-fireddistrictspaceheatingplantsinChina’sETScouldbeanimportantnextstepforpromotingelectrificationintheChinesebuildingssector.ThereareotheroptionsthanelectrificationfordecarbonizingspaceheatingintheChinesebuildingssector,includingusingthewasteheatfromindustrialandpowerfacilitiesastheheatsourcesofdistrictspaceheatingandadoptingthecleanuseofbiomassforspaceheatinginruralhouseholds.Allfeasiblespaceheatingdecarbonizationmeasures,includingelectricandnon-electric,shouldbeconsideredandimplemented,basedonlocalconditionsforbettercost-effectiveness.ToimprovetheelectrificationofcookingandwaterheatinginChinesehouseholds,extensivepublicityprogramsandeffectivefinancialincentivesarethekey.Owingtotraditionaldiethabits,Chinesepeopleprefertousebiomass,coalandgasstoves,ratherthanelectricstoves,forhightemperaturecooking.Therefore,topromotecookingelectrificationinChinesehouseholds,itiscritical,asafirststep,toimplementextensivepublicityprogramstoencouragechangingthediethabitsofChinesepeoplebypresentingthepotentialhealthandindoorairqualitybenefitsfromlowertemperaturecookingwithelectricstoves.Inaddition,thegovernmentsatdifferentlevelscouldrequirethedevelopersofnewbuildingstopre-installtheseelectricmeasures(e.g.,electricstovesandwaterheaters).ThisisparticularlyimportantgiventheyearlyincreaseinthenumberofnewbuildingsinChina.ELECTRIFICATIONROADMAPFORBUILDINGS0550SYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYSTABLE5.2:SUMMARYOFACTIONSFORELECTRIFICATIONINTHEBUILDINGSSECTOR.Near-termActionsLong-termStrategies►Incorporateelectricspaceheatingintopublicprocurementandfacilitateadoptionofelectricspaceheatingingovernmentofficebuildingsandthepublicbuildingsthatreceivegovernmentfunds.►Developnationalcommerciallicensingsystemforregulatingrelatedbuildingequipmentmanufacturers,partssuppliers,andprojectcontractors,toensurethequalityofimplementedelectricspaceheatingprojectstomeetrelevantnationalstandardsandcriteria.►Adoptfinancialincentivestopromotethemarketshareofelectrificationtechnologies,includingtaxincentivesandsubsidiestocontractors,relatedappliancemanufacturers,andconsumers.►Pre-installelectricmeasuresforcookinganddomesticwaterheatinginsuitablenewbuildings.►Adoptelectricspaceheatinginruralresidentialbuildings,ascomplementmeasuresafterusingcleanbiomass.►Regularlytightenrelevantbuildingenergycodestopromoteelectrificationmeasuresinbuildings.►Promotetheuseofdigitaltechnologiesinbuildingstofacilitatethecourseofelectrificationinbuildings.►Designspecificlong-termdevelopmentplansofelectricspaceheatinginadministrativejurisdictions.►Covercurrentcoal-firedorgas-fireddistrictspaceheatingplantsbythecurrentemissionstradingsystem(ETS)inChina.►Deploypubliceducationprogramstochangeresidentialenergyusebehaviorinbuildings.►PromotingtheapplicationofPEDFinbuildingstoutilizemorerenewablepowerfromdistributedPVbybetterdemandsidemanagement.06ELECTRIFICATIONROADMAPFORINDUSTRYSYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYS5106ELECTRIFICATIONROADMAPFORINDUSTRY@EnergyFoundationELECTRIFICATIONROADMAPFORINDUSTRY0652SYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYS6.1CURRENTSTATUS14Smeltingandpressingferrousmetalmainlyincludeironmaking,steelmaking,steelandferroalloyprocessingandmanufacturing.Nonmetalmineralproductsmainlyincludethemanufactureofcement,lime,gypsum,ceramics,etc.Rawchemicalmaterialsandchemicalproductsmainlyincludetheproductionofcausticsodaandsodaash,themanufactureoffertilizersandpesticides,aswellasthemanufactureofsyntheticrubberandindustrialpigments.Petroleumprocessingandcokingmainlyreferstorefiningpetroleumproductsfromcrudeoilandconvertingcoalintocokeandchemicalrawmaterials(likemethanolandolefins).IndustryissecondonlytothepowersectorintermsofCO2emissionsinChina,accountingforaround35%ofthecountry’stotalcombustion-relatedemissionsin2020(IEA,2021a).China'sgoalofcomprehensivemodernizationhasbroughtsustaineddemandforinfrastructuredevelopmentdomestically,and,withit,demandforindustrialproductssuchascrudesteelandcement.NewindustrializationisoneoftheprincipaldrivingforcesfortheconstructionofChina'smoderneconomicsystemin2035(NPC,2021),thatis,anindustrialdevelopmentstrategywithhighertechnicallevel,greatereconomicbenefits,lowerresourceconsumption,lessenvironmentalpollutionandbetterallocationofhumanresources.Theoverallvalue-addedofChina'smanufacturingindustryhascomprehensivelysurpassedthatoftheUnitedStates.In2018,China’soutputsurpassedthatoftheUnitedStatesin18amongthe19majorcategoriesofmanufacturingindustries(UNIDO,2021).Chinaproducednearly60%oftheworld’scementandcrudesteel,55-65%ofprimarysteelandaluminum,and30%oftheprimarychemicalsusedtomakeplasticsandfertilizers(IEA,2021a).Theindustrialsectorishighlydependentonenergyconsumptiontoprovideequipmentpowerandheat.Smeltingandpressingofferrousmetals,nonmetalmineralproducts,rawchemicalmaterialsandchemicalproducts,petroleumprocessing,andcokingarethemostenergy-intensiveandhigh-emissionindustriesinChina14.Theircombinedenergyconsumptionaccountedfor61.71%ofallindustryin2019(NBS,2021).Energyconsumptionismostconcentratedinafewproducts,includingironandsteel,cement,andsyntheticammonia.Asignificantportionoffossilfuelsareconsumedintheseindustrialsubsectors,resultinginahighcarbonemissions(Figure6.1).Forsomeheavyindustries,electrificationrateinChinacurrentlyislowerthanotheradvancedeconomies’industries.In2020,theportionofsteelproducedinChinausinganelectricfurnacewasonlyabout9.2%,comparedto70.6%and42.4%intheUnitedStatesandtheEuropeanUnion,respectively(WSA,2021a).Rapidurbanization,infrastructuredevelopment,andincreasedconsumption,domesticallyandglobally,willlikelycontinuegrowthoftheindustrialsector.ReducingCO2emissionsinindustry,whilemaintaininginfrastructuregrowth,willbecrucialtoachievingcarbonneutralityinChina.06ELECTRIFICATIONROADMAPFORINDUSTRYSYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYS53FIGURE6.1:CARBONEMISSIONSFROMCHINA’SMANUFACTURINGSUBSECTORSIN2014-2018(Source:CEADs,2021).Inadditiontocombustionemissions,NonmetalMineralProductsincludeprocess-relatedemissions,whicharenotfoundinotherindustries.05001,0001,50020142015201620172018Emissions(MtCO2)NonmetalMineralProductsPetroleumProcessingandCokingRawChemicalMaterialsandChemicalProductsSmeltingandPressingofFerrousMetals6.2ROLEOFINDUSTRYELECTRIFICATIONINCARBONNEUTRALITYToachievenet-zeroemissiongoals,industrialelectrificationwillbecomeoneoftheimportantandfeasiblesolutionsinChina.Deepelectrification,combinedwithpowerdecarbonization,isakeyelementinachievingChina’sclimatetarget.Reducingemissionsinthenear-term,whileaccountingforsectorgrowthisessential.Totalindustrydemandisexpectedtoincreasethrough2030/2035,andthendeclinefromabout1,890-2,121Mtcein2020,to1,750-1,832Mtcein2060(Figure6.2).Basedonourresults,theelectrificationrateoftheindustrysectorshouldreachabout42-65%in2050and58-69%in2060.Ourresultssuggestitistechnologicallyfeasibletoelectrifymorethanhalfoftheindustrialenergyconsumption,withelectricitydemandrangingfrom672-1,100Mtcein2060(Figure6.3).Hydrogensharevariesacrossmodels,withananticipatedsharerangingfrom1.7-12%,andamedianshareof4.7%,by2060(Figure6.4).Electricitysharebefore2040variesacrossmodels,inpartduetovariationsinforecastsofoverallindustrydemand.Somemodelsshowdecliningtotalindustrialfinalenergyuseafter2025,whileothersshowcontinuedgrowththrough2030.Modelswithcontinuedgrowthassumeasignificantportionofincreasingdemandwillbemetwithelectricityproduction.Rapidfossilphase-down,startingin2040,increaseselectricityshareformodelsthatprojectlowernear-termelectricitygrowth.ELECTRIFICATIONROADMAPFORINDUSTRY0654SYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYSFIGURE6.2:INDUSTRYFINALENERGYCONSUMPTIONINTHEUPDATEDNDCTOCARBONNEUTRALITYSCENARIO:(A)TOTALFINALENERGY,(B)FINALENERGYBYFUEL.HistoricaldataisfromtheChineseEnergyStatisticalYearbook(CESY)andtheInternationalEnergyAgency(IEA).05001,0001,5002,0002000202020402060Mtce/yrIEACESYChinaTIMESGCAM−ChinaAIM−ChinaMESSAGEix−ChinaPECEV2.0PECE_LIU_2021ChinaDREAM(A)20302050206005001,0001,5002,000(B)ChinaTIMESGCAM−ChinaAIM−ChinaMESSAGEix−ChinaPECEV2.0PECE_LIU_2021ChinaDREAMChinaTIMESGCAM−ChinaAIM−ChinaMESSAGEix−ChinaPECEV2.0PECE_LIU_2021ChinaDREAMChinaTIMESGCAM−ChinaAIM−ChinaMESSAGEix−ChinaPECEV2.0PECE_LIU_2021ChinaDREAMElectricityHeatSolarHydrogenGasesLiquidsSolidsOtherFIGURE6.3:ELECTRIFICATIONININDUSTRYSECTORINTHEUPDATEDNDCTOCARBONNEUTRALITYSCENARIO.(A)ELECTRICITYDEMAND.(B)ELECTRIFICATIONRATE.HistoricaldataisfromtheChineseEnergyStatisticalYearbook(CESY)andtheInternationalEnergyAgency(IEA).TheelectrificationrateofPECEV2.0doesnotincludetheelectricityfromdistributedPVinindustry.0300600900200020302060TWh(A)0%20%40%60%2000202020402060ElectrificationrateIEACESYChinaTIMESGCAM−ChinaAIM−ChinaMESSAGEix−ChinaPECEV2.0PECE_LIU_2021ChinaDREAM(B)06ELECTRIFICATIONROADMAPFORINDUSTRYSYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYS55FIGURE6.4:HYDROGENSHARESININDUSTRYSECTORINTHEUPDATEDNDCTOCARBONNEUTRALITYSCENARIO.Hydrogen2020204020600%3%6%9%ShareofIndustryFinalEnergyChinaTIMESGCAM−ChinaAIM−ChinaMESSAGEix−ChinaPECEV2.0PECE_LIU_2021ChinaDREAMTheindustrialsectorcomprisesmanysub-sectorswhoseenergyneedsandmanufacturingprocessesvarygreatly.Lightindustryprovidesproductsdirectlyforresidents'consumption,whileheavyindustryoftenprovidesmaterialsforotherindustrialsectors,withlargerequipmentandmoreenergyconsumption.Electrificationhasbeenlowinseveralheavyindustries,includingironandsteel,cement,petrochemicalandchemical.However,somemachineryandequipmentmanufacturingsectorscurrentlyhavemorethan40%electrificationadoption(Deasonetal.,2018).Givenitslimitedrelianceonhigh-heat,orotherenergyintensiveinfrastructure,lightindustry,includingtextileandpulpandpaper,istheeasiestsub-sectorofindustrytoelectrify.Ironandsteelproductionhashigherelectricitysubstitutioncomparedtocement,petrochemicalandchemicalproducts(Figure6.6).Accordingtopaststeelcapacityandconsumption,therewillbeasignificantincreaseinscrapresourcesinChina.Enterprisesintheironandsteelindustryarelargerandhaveabundantfundstoreplaceequipmentwithelectrifiedupdates.Moreover,asameansofindirectelectrification,greenhydrogencouldbeappliedinsteelandchemicalindustriesinthefuture.Whilefuturedemandforindustrialproductsisuncertainanddependentonarangeoffactors,itisexpectedthatthedemandforsteel,cement,electrolyticaluminum,andmostpetrochemicalandchemicalproductswillcontinuetogrowintheshortterm.Onemodelpredictsthattotalindustrialenergyconsumptionwillcontinuetogrowuntil2030,followedbyagradualdeclineduetothereduceddemandforindustrialproductsfromdecreasedpopulationandaslowdowninurbanization.Reductionsindemandforsteelandcementarethemaindriversforthedeclineofenergyconsumptionafter2030(Figure6.5).ELECTRIFICATIONROADMAPFORINDUSTRY0656SYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYSFIGURE6.5:ENERGYCONSUMPTIONBYINDUSTRIALSUBSECTORINTHEPECE_LIU2021MODEL15.15PECE_LIU_2021isanationalenergysystemmodelwhichfocusesonChina’slong-termlowcarbontransitionroadmapforclimatetargets(J.Liuetal.,2021).ThescenarioresultshavebeenupdatedtoreflectChina’scarbonneutralitypathwayinthisreport.05001,0001,5002,00020202030204020502060MtceAluminumCementIronandSteelOtherIndustriesPetrochemicalandChemicalFIGURE6.6:SHAREOFENERGYCONSUMPTIONBYINDUSTRIALSUBSECTORINTHEPECE_LIU2021MODEL.Onlygreenhydrogenproducedviaelectrolysisispresentedashydrogenfuelinthefigure.Otherhydrogenproducedfromcoalandnaturalgasareshownintheformoftheoriginalenergysource.AluminumCementIronandSteelOtherIndustriesPetrochemicalandChemical20202050202020502020205020202050202020500%25%50%75%100%ShareofIndustryFinalEnergyElectricityHeatHydrogenGasesLiquidsSolids06ELECTRIFICATIONROADMAPFORINDUSTRYSYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYS576.3CHALLENGESANDOPPORTUNITIESIndustrialelectrificationisofgreatsignificancetoindustrialdevelopment,economicgrowth,energyconservation,andemissionreduction.Increasingindustrialelectrificationwillrequireplanning,outliningtechnicalpotential,andgarneringsupportfrompolicymakersandutilities.Industrialelectrificationoffersseveralco-benefits,includingimprovementstohealthandsafety,aswellastoeconomicgrowth,butupdatingstructuresandprocessesbuiltaroundfossilfuelconsumptionwillbechallenging.ChallengesItisdifficulttoadjusttheproductionprocessadaptingelectricitysubstitutionduetothehighintegrationofindustrialequipment.Convertingindustrialequipmentisnotalwaysassimpleasswappingacoal-poweredboilerforanelectricone.Aplant’scircuitsandelectricityserviceneedtobeupgradedtopoweranenhancedelectricityload.Theeaseofelectricequipmentintegrationvariesacrosssubsectorsandmanufacturingprocesses.Additionally,becauseupgradingtoelectricalequipmentmayrequireredesigningspecificsystemsandmanufacturinglines,theinvestmentinrelatedequipmentupgradingismuchmoreexpensivethantheone-timeinvestmentinpurchasingequipment,asadditionalexpenseswillbeincurred.Comparedwiththedirectuseofcombustionfuel,theeconomicsofelectricityconsumptionisalsoakeyfactorforelectrifiedequipment.China’slargetraditionalindustrycapacityandhighcostforreplacementmakeelectrificationchallenging.InChina,existingproductioncapacityisrelativelynew,withanaverageageofaround15yearsinthesteelsectorcomparedwitharound35yearsintheUnitedStatesandover40yearsinmuchofEurope(Tongetal.,2019;Q.Zhangetal.,2021).Formostequipment,therearelimitedoperationandmaintenancecoststhroughoutthelifecycle,leavinglittleincentivetoupgradeequipmentbeforetheendofusefullife.Electricityequipmentreplacementbeforetheendoftheusefullifeleadstostrandedassets.BlastfurnacesarethemainsourceofenergydemandandcarbonemissionsinChina’ssteelsector,comprisingmorethan0.8billiontonsofcapacity,andreplacementwithelectricblastfurnacesposesalargestrandedassetrisk(WSA,2021a;Zhouetal.,2020).Electricitycostsrelativetodirectuseofcombustionfuelsareacriticalfactorforuptakeofelectrictechnologies.Electrification,ifelectricitypricesarehigh,couldhaveanadverseeffectonindustrialproductioncostsandproductpricecompetitiveness.Thiscanhaveawideimpactacrossindustrialproduction,withoutconsideringcarbonprices.Forexample,highscrappriceforshort-processelectricfurnacesteelmakingcanlowercostcompetitivenessforground-sourceheatpumpscomparedtotraditionalheatingbycoal/naturalgasboilers.Whilecostsareakeyconsiderationforelectrificationofsomeindustries,otherindustrieshavelimitedelectrificationequipmentoptions.Someindustrialprocessesarenotcurrentlydesignedtouseelectricity,becauseofthehightemperatureandhighheatdemandofenergyintensiveindustries.Electrifiedalternativesarenotcurrentlyavailableformanyapplications,includinghightemperatureprocessessuchascementmanufacturing(Deasonetal.,2018).Heatingequipmentusedfordrying,curing,calcinationandmeltingisdifficulttoachievethetransformationfromfueltoelectricity.Sometechnologiesarenotmatureenoughtobewidelyusedandarestillinthestageofcommercialdemonstration.Manyindustrialprocessesrequirehightemperatureelectrificationtechnology.Sometechnologies,suchaselectricboilers,hybridboilersandlowtemperatureindustrialheatpumps,havebeencommercialized,butthecostsarestillprohibitivelyhigh.ELECTRIFICATIONROADMAPFORINDUSTRY0658SYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYSTABLE6.1:SELECTEDINDUSTRIALELECTRIFICATIONTECHNOLOGIES(Source:IEA,2021a).TechnologyMaturityTimeframeSteelElectrictunnelkilnforsteelDemonstrationStarted2018DirectreducedironsteelmakingwithhighsharesofhydrogenblendingDemonstrationStartedin2020;commitmentsfrommajorsteelmanufacturerstoinvestinandscaleupdirectreducedironsteelmakingwithhydrogenbetween2020and2030SmeltingreductionwithhydrogenblendingDemonstrationExpected2021BlastfurnacesteelmakingwithhydrogenblendingConceptStarted2021Otherhydrogen-relatedConceptStarted2019ChemicalsMethanolsynthesisDemonstrationCompleteBTXaromaticsfrommethanolPrototypeStarted2013OpportunitiesIndustrialelectrificationwillrequireupdatingsectortransformationandupgradingofproductionprocessesand,potentially,evenproductstructure.Somepotentialco-benefitsfromelectrificationincludeimprovedtechnicalsafety,manufacturingstability,andprocessoptimization.Accordingtothesecondnationalsurveyonpollutionsources(MEE,2020),industrycontributedmorethan75%ofsulfurdioxideandparticulatematteremissionsin2017,whicharemainlycausedbyfossilfuelcombustion.Reducingcoalconsumptioninindustrywilllikelyincreasetheconsumptionofelectricboilers.Electricallypoweredindustryprocessesdonotrelyoncombustionoffuelsonsite,eliminatingemissionsfromtheend-usesector(Deasonetal.,2018).Withadecarbonizedpowersector,industrialelectrificationwillgreatlyreducepollutantemissionsinthewholeproductionprocessandupstreammanufacturing.ElectrificationcouldindirectlyreduceSO2,NOx,PMandCO2emissionscomparedtocurrentlevelin2014by19–25%,4–28%,20–29%and11–12%,respectively,iftheproportionofcleanelectricityinthepowersectorreaches70%(Qianetal.,2021).AlthoughChinaisthelargestmanufacturingregion,it’snottheleaderinhighvalue-addedindustries,suchashigh-techindustries.WiththeadvancementofelectrificationandexpansionofChina'sdomesticmarket,developmentofhighvalue-addedindustrieswillcontinuetoincrease,asnotedasanimportantpolicyin“MadeinChina2025”.Electrification,alongwithdemandfornewtechnologiesandnewproducts,willcreateindustrialopportunitiesandnewmodelsforindustrialprocesses.Overhaulingexistingprocessesandreplacinginfrastructurewithelectricalternativesalsomayoffertheopportunityforincreasedefficiencythroughoutprocesses.06ELECTRIFICATIONROADMAPFORINDUSTRYSYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYS596.4KEYAREASFORINDUSTRIALELECTRIFICATIONIndustrialRestructureandUpgradeElectrificationistheconversionprocessofterminalenergydemandfromfossilfuelstoelectricity,withasignificantimpactonthechangeofindustrialstructure.Rawmaterialsandaccessoriesrequiredforelectrificationequipmentarenolongerobtainedfromtraditionalupstreamindustries.Industriesrelatedtofossilenergyandgasturbinesarefacingrecessioncrisis,whilebattery,motorandotherrelatedindustriesarefacingrapiddevelopmentopportunities.Unliketheindustrialchainoffossilfuelprocessing,suchindustriesasbatteryandmotorarehorizontallydistributedintheindustrialchain.Updatingindustrialprocessesforelectrificationisanessentialstep.Asprocessesareadjustedandelectrictechnologysubstitutedforfossil-dependentinfrastructure,developingstrategicfocuseswithinindustry,particularlyinhigh-valueareas,aswellasdigitalnetworks,willbekeyforcreatingefficientupgrades.Updatingprocessingandmanufacturingofdifferentindustrieswillfacedevelopmentopportunitiesandchallenges.Theseupdatesneedscientificandtechnologicalsupporttohelpengendernewtechnologies,modelsfordevelopment,andmorestrategicemergingindustries.Electrifiedapplicationscanbeequippedwithsmartcontrols,offeringanadvantageovertraditionalautomationtechnologythathasbeenunabletomeetthedevelopmentneedsofmodernindustry.Electrificationcanreducelaborcosts,operatepowerequipmentmoreefficiently,andgreatlyimprovetheproductionqualityofindustrialenterprises.Electricitysubstitutionusuallyoffersdigitalcontrolandimprovedmanufacturingflexibility.Electrificationanddigitalizationlinkmoreenterprisesandtechnologies,whichcanprovideanimpetusfortheindustrialecologyandcircularsupplychain.Increasingmaterialandenergyefficiencycanhelptoreduceemissionsthroughretrofitsandprocessredesign.Optimizingcementmake-upcanreduceemissionsby50%(Lovins,2021).ProductionProcessAdjustmentandElectricSubstitutionTechnologyAccordingtothestatisticsofWorldSteelAssociation,theproportionofshort-processsteelmakinginelectricfurnacesinChinaisonly10%(WSA,2021b).Theglobalproportionofelectricfurnacesteelisabout28%;theaverageproportionofelectricfurnacesteelinothercountriesoutsideChinaiscloseto50%–65%intheUnitedStates,40%intheEuropeanUnion,30%inSouthKoreaandabout25%inJapan(WSA,2021a).In2050,theproportionofelectricfurnacesteelinChinawillincreaseto45%,andtheproportionofscrapinthetotalmaterialswillrisefrom25%in2019tomorethan50%(IEA,2020b).Theelectrificationofthesteelindustrywillbringabouttheadjustmentoftheoverallproductionline.Low,medium,andhightemperatureheat(<1000degrees°C)electrificationtechnologiesareavailabletoday(Roelofsenetal.,2020).Theseprocessesincludefoodpreparation,evaporation,distillingandpetrochemicalreforming.Veryhighheattechnologies,usedforcalcinationoflimestoneincementproduction,arestillintheresearchorpilotphase(Roelofsenetal.,2020).Lowertemperatureheatcouldbesubstitutedwithelectrictechnologiesinfoodandbeverage,plasticandrubberindustriesandsometypesofglassproduction(Weietal.,2019).Lightindustryhasshiftedfromfossilfuelheatingtoindustrialheatpumpsandelectricboilersrequiredformediumandlowtemperatureheating.ElectrificationpotentialoflightindustryiscloseELECTRIFICATIONROADMAPFORINDUSTRY0660SYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYSto100%,forproductionofproductssuchasfood,lime,pulpandpaper(NBS,2021).Lightindustryalreadymeetsitssteamdemandortemperatureneedsbyelectricboilers,electricfurnaces,heatpumps,andelectriccoldstorage.Identifyingandconvertingasmanylightindustriesaspossibletobecomenearly100%electrifiedintheneartermiscriticalformeetingindustry-wideelectrificationtargets.AdvancedIndustrialElectrificationTechnologyTheemergingtechnologyofelectricheatinghashighcostandneedstobeimprovedintechnicalmaturity.Butitmayhaveapplicationpotentialinhighertemperaturefieldsorsterilizationandcuringneeds,suchaspulsedelectrictechnology,ultrasound,ultravioletelectroslag,andplasmatechnology.Thetemperaturerequiredfortheprocessingandmanufacturingofbuildingmaterials(suchascement,glassandceramic.)isoftenabout1500°C.Itisdifficultbutfeasibletoelectrifyhightemperaturefurnaces,likeflatglassfurnaces(1600°C);cementdrykilns(1500°C);andbrickkilns(1200°C)(Deasonetal.,2018;Roelofsenetal.,2020).Electrictunnelkilnisanindustrialkilnwithelectricityasenergy,whichcouldbewidelyusedintheroastingproductionofbuildingproducts.Purretal.(Purretal.,2014)describesthetransitionawayfromfossilfueltoacombinationofelectricfurnacesandelectrolysisproductionofhydrogen.Inthefieldofbuildingmaterials,developingelectricheatingfurnacesforbuildingmaterialssuchascementelectrickilns,glasselectricmeltingfurnaces,andceramicelectrickilnsisneededforindustrialprocesselectrification.Microwaveheattechnologyforindustrialproductioncannotonlyeffectivelyimprovethereactionconversionandselectivity,butalsoreflectmanyadvantages,suchasenergysavingandenvironmentalprotection.Theprocessingofaluminatecementbymicrowavetechnologynotonlymeetstheprocessingtemperature(1000°C~1300°C),butalsogreatlyspeedsupthesinteringreactionoftheclinker.RD&Dprojectsonmicrowaveheattechnologycouldbehighlyvaluabletoexpandtheapplicationofmicrowaveheatingintheindustrieswithdrying,evaporation,melting,reacting,processing,andsterilizationneeds.Indirectelectrificationpathwaysenableelectricitytoreplacefossilfueldemandinindustry,throughhydrogenelectrolysisproduction.Takingtheironandsteelindustryasanexample,hydrogenenergycanbeappliedtohydrogen-basedDRI.Thistechnologyistheoreticallyzero-carbonwiththerealizationofzero-carbonelectricityinthefuture.Sincethetechnologyisnotmatureenoughbefore2030,hydrogenandcokecanbemixedandaddedtothetraditionalDRI-EAFandBF-BOFasatransitionchoice(IEA,2020b).06ELECTRIFICATIONROADMAPFORINDUSTRYSYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYS61Whatareprocessheatingsystems?Processheatingsystemssupplyheattomaterialsformanufacturingpurposesinfurnaces,melters,heaters,kilns,ovens,lehrs,calciners,andotherheatingsystems.Thesesystemsincludeavarietyofheatingprocesses,suchassteamgeneration,fluidheating,calcining,drying,heattreating,metaltreating,metalandnon-metalmelting,smelting,agglomeration,curing,andforming.Processheatingtemperaturescanrangefromaslowas100°Ctoashighas1,600°C.Processheatingsystemsusemanydifferenttypesofenergysourcestogenerateheat,suchasfuels(e.g.,coal,naturalgas,biomass),electricity,steam,hotwater,liquids(e.g.,fueloils),andothers.Globally,processheatingenergyuseaccountsforaboutonethirdofallindustrialenergyuse,about80%ofwhichisgeneratedbyfossilfuels(BloombergNEF&WBCSD,2021).ElectrificationofprocessheatingsystemsAsthecostofrenewabletechnologiescontinuestodecline,andthepowersectordecarbonizes,electrificationisanincreasinglypromisinglow-carbonoptionforindustry.Whiledecarbonizinghigh-temperaturemanufacturingprocesseswillbechallenging,increasingtherateofelectrificationusingzero-carbonelectricityisanimportantnear-termstrategytodecarbonizelowertemperatureindustrialprocesses.Inadditiontoreducingemissionsofgreenhousegases(GHGs)andkeyairpollutants,theuseofzero-carbonelectricityhasothernon-energybenefits,suchasincreasedproductivity,improvedproductquality,enhancedoperationalandworkersafety,increasedmanufacturingflexibility,reducedwasteproduction,andreducedcostofenvironmentalcompliance(Rightoretal.,2020).KeytechnologiestoelectrifyprocessheatingsystemsAnumberofcommerciallyavailableoremergingelectrotechnologiesarepresentedinTable1.Electricboilers,hybridboilers,andlowtemperatureindustrialheatpumpsarealreadycommerciallyavailableandcanbeadoptedinmanyindustriesthathavesteamdemand.Higher-temperatureindustrialheatpumpsarealsoemergingtofurtherelectrifyprocessheat.Othercommerciallyavailableelectrotechnologies,suchasinfraredheating,inductionheating,andresistanceheating,canbeusedinindustrieswithmetalorchemicalprocessingneedsorprocesseswithlowertemperaturedemand(e.g.,dryingandevaporation).Therearealsomanyotheremergingelectrotechnologieswithpotentialapplicationsinindustriessuchasprimarymetals,food,textiles,automotivemanufacturing,andmachinery.TABLEB6.1:SELECTEDELECTROTECHNOLOGIESFORPROCESSHEATINGSYSTEMS(Source:Deasonetal.,2018;EECA,2019;Jadunetal.,2017;Rightoretal.,2020).TechnologyMaturityCostIndustryapplicationsElectricboilerCommercialLow-MediumManyindustries,withsteamdemandHybridboilerCommercialMediumManyindustries,withsteamdemandHeatpump<100°C:commercial100-150°C:emerging>150°C:R&DLowMediumHighManyindustrieswithcorrespondingtemperatureneedsInfrareddryingCommercialLow-MediumIndustrieswithdrying,evaporation,melting,reacting,processing,moldformingneedsResistanceheatingCommercialLow-MediumIndustrieswithmetal,plastics,chemicalprocessingneedsExtrusionporosificationCommercialLow-MediumIndustrieswithmelting,reacting,andprocessingneedsBOX6.1ELECTRIFYINGPROCESSHEATINGSYSTEMSINCHINESEINDUSTRIESELECTRIFICATIONROADMAPFORINDUSTRY0662SYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYSTechnologyMaturityCostIndustryapplicationsInductionheatingCommercialHighIndustrieswithmelting,reacting,andprocessingneedsFrictionheatingCommercialHighIndustrieswithmelting,reacting,andprocessingneedsOhmicdryingEmergingMediumIndustrieswithdrying,evaporation,melting,reacting,processing,heattreatingneedsMicrowave,radiofrequencyEmergingHighIndustrieswithdrying,evaporation,melting,reacting,processing,andsterilizationneedsPulsedelectricfieldEmergingHighIndustrieswithsterilization,melting,reacting,andprocessingneedsUltrasoundEmergingHighIndustrieswithenhanceddrying,sterilizationneedsPulsedlightEmergingHighIndustrieswithsterilizationneedsUltravioletEmergingHighIndustrieswithsterilizationandcuringneedsElectroslag,vacuum,plasmaEmergingHighIndustrieswithhighertemperatureneedsCurrentelectrificationpotentialinprocessheatingsys-temsinChinaThetopfiveenergy-intensivesub-sectorsinChina’sindustrysector–ironandsteel,chemicals,non-metallicminerals,petroleumrefiningandcoking,andnon-ferrousmetals,whichrepresent83%oftotalmanufacturingfinalenergyuseinChina-arethelargestusersofprocessheatingsystems.Luetal.(Luetal.,2022)analyzedthesetop-fiveenergy-intensivesubsectorsandfoundthatprocessheatingsystemsaccountedfor24%to84%offinalenergydemandintheseindustries.Specifically,processheatingsystemsaccountedfor84%,79%,78%,54%,and24%ofthefinalenergydemandinChina’scement,ironandsteel,petroleumrefining,chemicals,andaluminumindustries,respectively.TheelectrificationrateinChina’sheavyindustryhasbeenverylowandwasflatfrom2000to2017(NBS,variousyears).Whenincludingelectricityusedforbothprocessheatingsystemsandnon-processheatingsystems(e.g.,machinedrivesystems,processcoolingandrefrigeration,electro-chemicalsystems,facilityHVAC,andfacilitylighting),electricityrepresentedonly7%oftotalfinalenergyuseinthepetroleumrefiningandcokingindustry;10%inferrousmetals;15%innon-metallicmineralssubsector;and16%inchemicals.Electricitypenetrationishigherinthenon-ferrousmetalssubsector,reaching66%(Luetal.,2022).Byadoptingtoday’scommerciallyavailableelectrotechnologies,suchaselectricboilers,hybridboilers,industrialheatpumps,resistanceheating,andinductionheating,aportionofthecurrentprocessheatingenergydemandcanbeelectrified.Thiscouldbedoneeitherthroughelectrifyingsteamproductionorreplacingdirectfossilfuelcombustionwithelectrotechnologies.Bycombiningelectrificationofsteamandlowtemperatureheatelectrification,theaverageelectrificationpenetrationrateinprocessheatingsystemscanbeincreasedfrom3.5%to24%inthesefiveenergy-intensiveindustries(Luetal.,2022).BarrierstoelectrificationandpolicysupportIncreasingelectrificationfacesanumberofbarriers.Theseincludecurrentlowpenetrationofelectricityinmanyofthekeyindustries;higherelectricitycoststhanfossilfuels;requirementforextremelyreliableandconstantenergysupply;industry’saversiontoanyprocessdisruption;longlifetimeofindustrialequipment;lackofcredibleinformationonelectrotechnologies;complicationsanddifficultiesforintegrationofelectrotechnologiesintheexisting06ELECTRIFICATIONROADMAPFORINDUSTRYSYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYS63productionprocesses;lackofaccesstocommercializedelectrotechnologies;industry’spreferencefortechnologiesormeasuresthathaveveryshortpaybacktimes;perceivedand/orrealhighupfrontcosts;andfinancingchallenges.Topursuethedecarbonizationpotentialandnon-energybenefitsofusinglow-carbonelectricityinindustry,anumberofpolicytoolsandinstrumentscouldbeconsidered(Shenetal.,2017),suchas:►Developtechnologycatalogsandguidebooksonelectrotechnologies;►Strengthenstandardizationandassociatedtestingprotocolsonelectrotechnologies;►Provideincentivestoencourageincreaseduseofrenewableelectricity;►Promoteelectrotechnologiesinindustryclustersthathaveaccesstolow-carbon,low-costelectricity;►Offerattractivegreenfinancingmechanismstoindustriesforlow-carbonelectrification,suchastransitionfromsupplyingequipmenttosupplyingsteamorheatservices;►AccelerateR&Donemergingelectrotechnologies;►Developpublic-privatepartnershipstopilotdeploymentprogramstoshowcaseinnovativeelectrotechnologies;►Strengthenregulatoryenforcementandexpandultra-lowemissionsstandardstoprocessheatingsystems;Enhancetechnicalsupportandcapacity-buildinginprocessheatingsystemsandelectrificationtechnologiesforindustry.@EnergyFoundationELECTRIFICATIONROADMAPFORINDUSTRY0664SYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYSChinahasthelargeststeelproductionintheworld–1053milliontonsin2020,accountingfor56.49%oftheglobalproduction(WSA,2021a).ThelayoutofChina'ssteelindustryshowsmoreproductioninnorthernandeasternChina.In2020,thecrudesteelproductionofHebei,Jiangsu,Liaoning,ShandongandShanxiprovincestotaled593milliontons,accountingfor56%ofthecountry'stotal(NBS,2021)(FigureB6.2).In2019,Guangdong'ssteeloutputwasonly33.82milliontons.Thisimbalanceinproductionlocationmeansalargeamountofsteelneedstobetransportedoveralongdistance,fromthenorthtothesouth,and/orimportedfromabroad.Steelisaresource-basedindustry,andChina'sironandsteelindustryhasbeenlocatednearironore,resultinginscatteredsteelproductionthatisalsofarawayfromthemarket.In2020,theindustryconcentrationofthetop10steelenterprises(CR10)wasonly39%(WSA,2021b).Comparedwithothercountrieswithhighsteelproduction,industryconcentrationofsteelofthetopthreesteelenterprises(CR3)intheUnitedStates,IndiaandJapanreached59%,58%and86%in2020(WSA,2021b).Withthefurtherpromotionofjointrestructuring,China’ssteelindustryconcentration(CR10)willbecomemorethan60%bytheendofthe14thFYP(MIIT,2020),meaningsteelmayneedtobetransportedoveranevenlongerdistancethantoday.FIGUREB6.2:CRUDESTEELPRODUCTIONINTOP5PROVINCES.(Source:NBS,2021).02505007501,0002010201120122013201420152016201720182019MilliontonsOtherProvincesShanxiShandongLiaoningJiangsuHebeiTheMinistryofIndustryandInformationTechnologyclearlyputsforwardthatby2025,theproportionofshortprocesssteelproductioninthetotalproductionofcrudesteelwillbeincreasedtomorethan15%,withapossibilityofreaching20%(MIIT,2020).ThisisachallengeforChina’ssteelindustry,becauseofthehighcostofrecyclingandtransportingscrapsteel.Developingelectricarcfurnaces(EAFs)shortprocesssteelmakingbasedonscrapisnotonlyanimportantwaytoachievelowemissionsinChina’sironandsteelindustry,butalsoanimportantpartoftheelectrificationprocess.ThereisalargeamountofscrapandgreatpotentialforitsuseAccordingtotheChinaAssociationofMetalscrapUtilization,thetotalscrapsteelwas240milliontonsin2019,anincreaseofmorethan20milliontonscomparedwith2018(Ren,2020).Switchingtotheelectrifiedsteel-makingfurnaceisalsoamajorindustrytrend.RelocatingBOX6.2:INDUSTRIALELECTRIFICATIONIMPACTONREGIONALDISTRIBUTIONOFSTEELCAPACITY:THEUNBALANCEDPRODUCTIVITYOFIRONANDSTEELINDUSTRYINCHINA06ELECTRIFICATIONROADMAPFORINDUSTRYSYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYS65steelenterprisesandre-designingwithallmaterialsandprocessesinthesupply-chaininconsideration,includingscraprecycling,transportation,productionandsupply,canhelptoreduceemissions.ManyshortprocesssteelenterpriseshaveemergedinGuangdong,GuangxiandSichuan.Guangdongisanareawithadevelopedurbanizationprocess.Urbanconstructionandrenewalleadtorichlocalscrapresources.SouthwestChinahastheadvantagesofregionalelectricitypriceandrelativelyconvenienttransportation.Developingshortprocesssteelmakingcouldproduceconstructionsteeltomeetregionalconsumptioncharacteristics.ChinaBaowuhasaproductioncapacityofmorethan100milliontons,rankingamongtheworld’slargeststeelproducers.BaowuhascarriedoutindustriallayoutinGuangdongsince2020,developingshortprocesssteelmakingtohandlescrapresourcesandmeetregionalsteeldemand.AsthelargestshortprocesssteelmakinggroupinChina,SichuanMetallurgicalControlGroupwillreach10.49milliontonsofelectricfurnacesteelandanannualoutputvalueofmorethan100billionyuan($14.8billion)bytheendof2021(SichuanMetallurgicalGroup,2021).Redesigningthesteelproductionsupplychaincannotonlyhelptoreducedirectemissionsandincreaseelectrificationinthesteel-makingprocess,butalsoreduceindirectemissionsfromtransportationandhelpdevelopacirculareconomyforlocal,scrapresourcesinurbanareas.@EnergyFoundationELECTRIFICATIONROADMAPFORINDUSTRY0666SYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYS6.5KEYPOLICYAPPROACHESChallengesandopportunitiescoexistinindustrialelectrification.Toachieveanambitiouscarbontarget,China'sindustrialelectrificationnotonlyneedstoachievetechnologicalbreakthroughsandincentivesintechnology,butalsoneedseffortsfromproductinnovation,industrialmodels,andplatformsfordemonstratingandtrainingonnewtechnologies.Electrificationistechnologicallyfeasibleinmanysubsectors,butitfacesimplementationchallenges.Comprehensivepoliciesandincentivesthatwillhelpovercomethesebarriersmayberequired.Inmovingforwardtodeeperelectrification,atop-levelframeworkdesignaboutcross-sectoralintegrationisnecessarytostrengthenpolicycoordinationandcooperation.Thispolicyframeworkneedstoinvolveindustrialpolicy,energypolicy,environmentalpolicy,carbonmarketpolicy,andfinancialsupport.CurrentpolicysupportforindustrialelectrificationinChinaisquitelimited.Existingindustrialpoliciesdon’tofferelectrificationsupportsystems,mechanisms,policies,andtechnicalstandards.Electrificationneedsmoreadvancedservices,advancedmanufacturing,andhighvalue-addedproducts.Newdemandsbroughtbyelectrificationaredrivenbyrelatedtechnologicalinnovationandindustrialupgradingpolicies.Updatingmanufacturingupgradepolicieswillhelpindustrieswithexistingelectricreplacementsswaptheirinfrastructuretoelectricalternatives.Significantprogressonelectrictechnologieswillberequired,includingdirectelectrificationprocessesandindirectindustryelectrificationthroughelectrolyticproductionofhydrogen.Processdevelopmentandredesignwillbenecessaryinawidevarietyofapplicationsandindustries.Researchanddevelopmentarenecessaryforbothdirectandindirectelectrificationtodeterminethebestpathforwardinvariousindustriesandinfrastructureneeds.Equipmentefficiencystandardsaresetseparatelyforelectricandfueleddevices.Adoptionofonefuelefficiencystandardmayreducethegapbetweenelectricandfossil-fueleddevicesdeployment.Additionally,thelatestdoublecontrolpolicies,whicharepoliciesthattargetbothenergyconsumptionandintensity,mentionthatnewrenewableenergyuseisnotincludedinthetotalenergyconsumptionthreshold.Thismeansthatindustriescanconsumerenewableenergybeyondtheirtraditionalenergyconsumptionlimitsthroughtheadoptionofelectrificationtechnologies.Additionally,developinggreenpublicand/orcorporateprocurementprogramstoincreasedemandon"low-carbonproducts”couldhelpincreasepublicdemandforgoodsmanufacturedusingelectricityinsteadoffossil-fuelcombustion,throughpublicinfrastructureprojects,anddevelopmentofcertificationstandardstoenhancetransparency.Electricitypriceisakeyfactorinstimulatingindustrialenterprisestocarryoutelectrificationsubstitution.Demand-responseprogramsandelectricitymarketdesignareessential.Forexample,time-varyingpricingmayencourageenterprisestoavoidthepeakperiodofpowerconsumption,savingelectricitychargestoreduceproductioncosts.Industrialsubsectorsthatcanbeelectrifiedwithhighercarbonreductionbenefitsdonothavelowertariffs.Differentialtariffsshouldbesetbasedonconsiderationofcomprehensivebenefits.Atpresent,high-energyandhigh-emissionprojects,suchaselectrolyticaluminum,nolongerenjoypreferentialtariffs.Industryelectrificationmayworkincombinationwithotherpoliciesandtechnologies,suchaselectricityprice;productredesignandproductrecycling;innovationinbasicmaterialformulations,biomass-fuelutilizationorbioenergy;andgreaterutilizationofrenewableenergyforprocessheating.Financialinstitutionsareencouragedtoexpandgreencreditforelectrificationprojectsandreasonablyreducethecostofrenovation.Electrificationprojectsneedtobegivenfinancialsupport,forexample,encouragingeligibleenterprisestoissuemedium-andlong-term06ELECTRIFICATIONROADMAPFORINDUSTRYSYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYS67greenbonds,andsupportingenterprisestogopublicforfinancingandrefinancing.Meanwhile,itisnecessaryforfinancialinstitutionstodevelopfinancialproductsforelectrificationtransformationandtechnologypromotionofkeyindustries,suchasironandsteel,petrochemical,andbuildingmaterials.Financialproductinnovationcouldprovidemoretransformationfundsfortheseindustries.Includingallindustrialsectorsinthecarbonmarketisveryimportantforpromotingindustrialelectrificationandlow-carbontransition.Chinaofficiallylaunchedanationalcarbontradingmarketin2021,butitonlycoversthethermalpowerindustry.Severalindustrialsubsectors,suchaspetrochemical,chemical,steel,andnon-ferrousmetalsareactivelypromotingtherelevantpreparationsforinclusioninthenationalcarbonmarket.Thediversityandcomplexityofindustrialsubsectorsmakeitmoredifficultforthemtoparticipateinthecarbonmarket,sotheavailabilityandreliabilitystandardsofindustrialcarbonemissiondatawillbecomethefirststandardstobeformulated.Carbonpriceandtradingpoliciesneedtobefurtherdesignedtoaccommodateindustryparticipation.TABLE6.2:SUMMARYOFACTIONSFORELECTRIFICATIONINTHEINDUSTRIALSECTOR.Near-termActionsLong-termStrategies►Transitiontoindustrialheatpumpsandelectricboilersforlowandmediumtemperatureheatingneedsinlightindustries.►Deploydemandresponseprogramsandelectricitymarketdesign,time-varyingpricing,andotherdigitaltools.►Developanindustryelectrificationtechnologystandard.►Offertargetedtransitionfinanceproducts.►IncludeallenergyintensiveindustrialsectorsinthecarbonmarketASAP.►Expandhydrogenuseasareductionagentinthesteelindustryandasafeedstockforammoniaandmethanolproductioninthechemicalindustryforindirectelectrification.►Increaseproductionofsteelfromscrapinelectricarcfurnaces.►Developindustrialelectricboilers,electricheatingfurnaces,electricmetallurgicalfurnaces,andindustrialheatpumps.►Promoteandresearchadvancedindustrialelectrificationtechnology,including:►Inductionormicrowaveheattechnologyforcementclinkerproduction.►Directreducedirontechnologybasedongreenhydrogen.►Infraredandultravioletheatingtechnologyforprocessheating:electronicheatingtechnology,inductionmelting.►Establishtransitionfinancemechanism,takingintoaccountthedemandforelectrificationfundsandthefunctionofriskmanagement.ELECTRIFICATIONROADMAPFORTRANSPORTATION0768SYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYS07ELECTRIFICATIONROADMAPFORTRANSPORTATION@EnergyFoundation07ELECTRIFICATIONROADMAPFORTRANSPORTATIONSYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYS697.1CURRENTSTATUS16NEVsincludebatteryelectric,plug-inelectricandhydrogenfuelcellvehicles.17InApril2020,theChinesegovernmentannouncedthatsubsidiesforpurchasingNEVswillbeextendedthroughtheendof2022.Between2020and2022,NEVsubsidieswillbegraduallyreducedby10%,20%,and30%fromthepreviousyear.OverallNEVsubsidiesin2022willbereducedby30%fromthe2021level.Subsidiesforspecialtyvehicles(e.g.,citybuses,citylogisticsdeliveryvehicles,postdeliveryvehicles,citysanitationvehicles)in2022willbereducedby20%fromthe2021level(MOF,2021).SubsidieswillendDecember31,2022.Ofthedifferentmodesoftransportationthatincluderoad,rail,aviation,andshipping,mostofChina'seffortstoelectrifyhavefocusedontheroadsector,drivenbyexpectedgrowthinvehicles.China’spassengerandfreightvehiclestockincreasedsignificantlyoverthepasttwodecades,growingfrom20millionunitsin2002tomorethan395millionunitsby2021(Xinhuanet,2022).Passengervehiclesgrewthemost,increasing18%peryearonaverage,whilefreightvehiclesgrew8%annually.Inaddition,theaveragevehiclelifetimeisabout13yearsforpassengervehicles(J.Zhengetal.,2019)and10yearsforfreightvehicles(Moultaketal.,2017).TheexponentialincreaseinvehiclestockandthelonglifetimeofvehiclesputsignificantenvironmentalandenergysecuritypressureonChina.Itiscriticaltoidentifypathwaystomitigatetheseissues.ChinatakestheleadingpositioninbothconsumptionandmanufacturingofNewEnergyVehicle16(NEV),throughbroadpolicysupportthatincludesfinancialincentives,municipalfleetelectrificationtargets,non-financialincentivessuchaspreferentiallicensing,andpublicandprivateinvestmentintechnologyandinfrastructuredevelopment.From2011to2021,China’ssalesofNEVsincreasedmorethan560times,from6,189unitssoldin2011toabout3.52millionunitsin2021(MIIT,2022).ThemarketshareofChina’sNEVsreached13.4%in2021,exceedingtheglobalaverageof8.57%(Paoli&Gül,2022).Ofthe3.52millionNEVssoldinChina,morethan2.9millionNEVswerebatteryelectricvehicles(BEVs),representing83%oftheNEVssalesinChina.OthertypesofNEVvehiclesincludeplug-inhybridandfuelcellvehicles,selling605,000unitsinChinain2021(MIIT,2022).Globally,ChinaaloneaccountedformorethanhalfofglobalNEVsales(Paoli&Gül,2022).Duetoanumberoffactors,suchasCOVID-19impacts,weakereconomicgrowth,highercostsandexpecteddeclineinsubsidies17,themarketshareofNEVsintotaltrucksalesdecreasedinrecentyears,droppingfrom2.3%in2018to0.9%in2020.TotalNEVtruckssolddecreasedfrommorethan85,000in2018toalittlemorethan42,000unitsin2020,butincreasedto47,534unitsin2021(CAAM,2021;OFweek,2021).By2021,China’stotalNEVstockreached7.84millionunits(Xinhuanet,2022).TheshareofNEVsintotalvehiclestockhasincreasedfrom0.7%in2017to2.6%in2020.ThevastmajorityoftheNEVstockareBEVs,accountingforabout82%ofallNEVsby2021(Xinhuanet,2022).IntermsofNEVinfrastructuredevelopment,Chinarepresented60%ofinstalledpublicchargingstationsglobally(McKerracher,2021)whiletheUnitedStatesonlyrepresented6%.Asof2021,Chinahadatotalof2.617millionchargingstations,including1.147millionpublicchargingstationsand1.47millionprivatechargingstations.Comparedtothe2015level,China’spublicandprivatechargingstationshavegrownalmost20and184times,respectively.TransportationelectrificationinChinahasincreasedquiterapidlysince2000,andtodayisdouble,andalmostquadruple,theelectrificationratesinJapanandtheU.S.,respectively(Figure2).Chinahaspositioneditselfasaleaderintheelectrificationoftransportationspace,outpacingothercountries,butcontinuingelectrificationexpansionandtargetinghardtoabatesectorswillbecriticalforclimatechangemitigation.ELECTRIFICATIONROADMAPFORTRANSPORTATION0770SYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYSFIGURE7.1:HISTORICALTRENDOFSHAREOFELECTRIFICATIONINTHETRANSPORTATIONSECTOROFCHINA,JAPANANDTHEU.S.(Source:IEA,2021d).Transportationincludesallmodesofmobiletransportexceptformilitaryfueluse.Electrificationisdefinedastheshareoftotalfinalenergysuppliedbyelectricity.18Thisrangeexcludesonemodel,AIM-China,thatforecastsrapidoilphaseoutofvehicles,andhasonly0.3%oftotalfinalenergyfromtransportationcomingfromoilin2050.Transportation19902000201020200.0%1.0%2.0%3.0%4.0%5.0%ElectrificationRateChinaJapanU.S.7.2ROLEOFTRANSPORTATIONELECTRIFICATIONINCARBONNEUTRALITYInadditiontoimprovementsinenergyefficiency,electricityandotherlow-carbonfuelscanhelpsignificantlydecarbonizetransportinthecomingyears.But,accordingtoourmodelingresults,hard-to-decarbonizesegmentsofaviation,shippingandheavy-dutyfreightcontinuetolargelyrelyondifferentformsofoilproductsandnaturalgas,whichstillaccountsfor14%-31%18oftransportenergyconsumptionby2050inalmostallmodels.Modelingassumptionsaboutdecarbonizationacrossmodesoftransitvary.Onemodel,AIM-China,foundcompletedecarbonizationoftransportpossibleby2050,asthehard-to-decarbonizesegmentsareassumedtorelyfullyonacombinationofelectricity,hydrogen,biofuels,andmethanol,andammoniaforshipping.Limitedlow-carbonoptions,combinedwithgrowingdemandformobilityandtransportenergyservices,presentachallengeforemissionreductionsinfreighttransportacrossothermodels.Mostsegmentsofpassengerroadtransportcanberapidlyandnearlyfullyelectrified,as07ELECTRIFICATIONROADMAPFORTRANSPORTATIONSYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYS71demonstratedbytherelativelyhighsharesof42%-70%ofelectricityand0-23%ofhydrogenforoverallpassengertransportby2050(seeFigure7.2,7.4,7.5),butthereisstillaviationtransportthatismoredifficulttoelectrify.TherapidriseintotalsalesandNEVmarketshareinrecentyearsandgrowingnumberofNEVmodelsonthemarketfordifferentvehicleclasses,suggestlight-dutyandmedium-dutypassengervehicles,includingcarsandbuses,canbefullyelectrifiedrelativelyquickly.Heavy-dutypassengervehicles,suchaslarger,long-distancebuses,maytakelongertofullyelectrify,butChinaisalreadyemergingasaleaderanddominantplayeringlobalfuelcellbusproduction.However,thewiderangeinfutureelectrificationratesbetweendifferentmodelsandscenariosshowninFigure7.4highlightremaininguncertaintiesintheoutlookforscalingupelectricvehicletechnologiesacrossmultipleclassesofpassengervehicles,aswellasuncertaintyonalternativefuelssuchasbiofuels.Light-andmedium-dutytrucksareexpectedto19Thisrangeexcludesonemodel,AIM-China,thatforecastsrapidoilphaseoutofvehicles,andhas94%oftotalfinalenergyfromtransportationcomingfromelectricityandhydrogenin2050.beelectrifiedrapidlywithexistingtechnologiesandgrowingdemandfromintracityandlogisticsuses,whiletheelectrificationofheavy-dutytrucks(HDTs)willdependonamixoffactors.TheseincludethepaceofNEVtechnologicaldevelopment,especiallyforhydrogenfuelcelltechnologiesthatcanprovidelongerranges;technologiesforspecificheavy-dutyutilitytrucks;anddecliningbatterycosts.Theslowerandmoreuncertainexpectationsforelectrifyingfreightisreflectedintheoveralllowerratesandalsointhewiderrange,of19-30%inelectricityshareand17-66%inhydrogenshareforfreightenergyconsumption,comparedtopassengertransport,by2050(seeFigures7.3,7.4,7.5).Thewiderangeexpectedsharesofbothelectricityandhydrogenreflectsuncertaintyinfuturetechnologicaldevelopmentanddeployment.However,theproportionoffinalenergyintransportationthatcanbemetbyeitherhydrogenorelectricityisfairlysimilaracrossmostmodels(38-55%in205019).FIGURE7.2:PASSENGERTRANSPORTATIONFINALENERGYCONSUMPTIONINTHEUPDATEDNDCTOCARBONNEUTRALITYSCENAR-IO:(A)TOTALFINALENERGY,(B)FINALENERGYBYFUEL.Note:Resultsshownincludeallmodesofpassengertransportation:road,railandaviation.“Liquids”includesoilandbiomasstoliquidfuels.Onemodelincludescoalfuels.0100200300400202020402060Mtce/yrChinaTIMESGCAM−ChinaAIM−ChinaPECE_LIU_2021ChinaDREAM(A)2030205020600100200300400Mtce/yrElectricityHydrogenGasesLiquidsOther(B)ChinaTIMESGCAM−ChinaAIM−ChinaPECE_LIU_2021ChinaDREAMChinaTIMESGCAM−ChinaAIM−ChinaPECE_LIU_2021ChinaDREAMChinaTIMESGCAM−ChinaAIM−ChinaPECE_LIU_2021ChinaDREAMELECTRIFICATIONROADMAPFORTRANSPORTATION0772SYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYSFIGURE7.3:FREIGHTTRANSPORTATIONFINALENERGYCONSUMPTIONINTHEUPDATEDNDCTOCARBONNEUTRALITYSCENARIO:(A)TOTALFINALENERGY,(B)FINALENERGYBYFUEL.Note:Resultsshownincludeallmodesoffreighttransportation:road,railandaviation.“Liquids”includesoilandbiomasstoliquidfuels.Onemodelincludescoalfuels.010020030020202060Mtce/yr(A)203020502060ChinaTIMESGCAM−ChinaAIM−ChinaAIM−ChinaPECE_LIU_2021ChinaDREAM0100200300Mtce/yrElectricityGasesOther(B)ChinaTIMESGCAM−ChinaAIM−ChinaPECE_LIU_2021ChinaDREAMChinaTIMESGCAM−ChinaPECE_LIU_2021ChinaDREAMChinaTIMESGCAM−ChinaAIM−ChinaPECE_LIU_2021ChinaDREAMFIGURE7.4:ELECTRIFICATIONINTHETRANSPORTATIONSECTORINTHEUPDATEDNDCTOCARBONNEUTRALITYSCENARIO.(A)ElectricityDemand.(B)ElectrificationRate.Note:Resultsshownincludeallmodesoftransportation:road,railandaviation.PassengerFreight2020205020202050020406080050100150200250TWh(A)PassengerFreight20202050202020500%10%20%30%0%20%40%60%ElectrificationrateChinaTIMESGCAM−ChinaAIM−ChinaPECE_LIU_2021ChinaDREAM(B)07ELECTRIFICATIONROADMAPFORTRANSPORTATIONSYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYS73FIGURE7.5:FUELSHARESINTRANSPORTATIONSECTORINTHEUPDATEDNDCTOCARBONNEUTRALITYSCENARIO.Note:Resultsshownincludeallmodesoftransportation:road,railandaviation.“Liquids”includesoilandbiomasstoliquidfuels.LiquidsHydrogenFreightPassenger2020204020602020204020600%25%50%75%0%25%50%75%ShareofTransportationFinalEnergyChinaTIMESGCAM−ChinaAIM−ChinaPECE_LIU_2021ChinaChinaDREAM7.3CHALLENGESANDOPPORTUNITIESChallengesThesuccessfulgrowthofNEVpassengervehiclesandpubliccharginginfrastructureunderexistingpolicysupportindicatesthatelectrificationwillbelesschallengingforthepassengerroadsector.Inparticular,commercialandmunicipalfleetvehicles,suchastaxisandbuses,haveelectrifiedquicklyinsomecitieswithpolicysupport.However,continueddevelopmentofprivatecharginginfrastructurebeyondjustpublicchargerswillbeneededtosupportthequicklyrisingnumberofNEVs,particularlyforprivatecars.Themarket’sabilitytosustaincontinuedandrapidgrowthinprivateNEVvehiclessalesaftersubsidiesendwillalsodeterminethepaceofpassengerroadtransportelectrification.Forfreight,therearemultipletechnical,economic,andinstitutionalchallengestofullyelectrifyingroadtransport,particularlyfortheheavy-dutytruckingsegment.AlthoughmultiplebatteryelectricHDTmodelsareslatedforcommercialdeploymentwithpilotproductionoffuel-cellHDTsexpectedin2022,thereisstillnowide-scaleproductionordeployment.ThephysicalrequirementsforHDTsaremuchmorechallengingtoelectrify,includingheavierweight,longertraveldistancesandoperatingtimesthatrequirelongerrangeandbatterieswithgreaterdensitiesabletowithstandmoredischargecycles.BatteryelectricHDTswillalsoneedfastchargersorfacelongerchargingtimesforsufficientrange.Forhydrogenfuel-cellHDTsthatcouldprovidelongerranges,thereareadditionalsafetychallengesforhydrogentransmissionanddistributionnetworksandneedforlarge-scale“greenhydrogen”productiontosupportfulldecarbonization.Fromaneconomicperspective,whilerapidlydecliningbatterycostssuggestelectricHDTscouldachievecostparitywithconventionaldieselHDTsbetween2025and2030throughfuelsavings,hydrogenfuel-ELECTRIFICATIONROADMAPFORTRANSPORTATION0774SYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYScellHDTsfacemuchhighercapital,fuel,andinfrastructurecosts,andasteeperlearningcurvethatwilldelaycostparityuntilafter2030(Maoetal.,2021).Thecurrentdecentralizedownershipandbusinessmodelforheavy-dutyfreightandrelianceonfinancingfornewvehiclepurchasesalsoposeinstitutionalchallengestoelectrification.Inaddition,competingdemandforbatteriesforgridstorageandlimitedrawmaterialsupplychainsforbatteriesmayincreasefuturecostuncertaintiesandposebottleneckstofullroadtransportelectrification.Infrastructuredevelopmentforbothbatteryelectricvehiclechargingandhydrogentransmission,distribution,andrefuelingisanotherareaofchallenge.Todate,mostoftheelectriccharginginfrastructurearepublicslowchargersintendedforpassengervehicles,withaboutone-thirdasfastchargersandevenfewer“megachargers”ofgreaterthan1megawattcapableofmeetingHDTchargingneeds(IEA,2021c).Thecurrentcharginginfrastructurealsofacesproblemswith:suboptimaldistributionofchargingstations,mismatchbetweendemandandsupplyofelectricityforcharging,lowutilizationrates,compatibilityissuesamongchargingstations,parkingdifficulties,andlongchargingtimes(McLane&Liu,2020).Thissuggeststhatoperationandmaintenanceofexistingchargingpileswillremainachallenge,aswellaslesscertainbusinessmodelsforprivatecharginginfrastructure.Rapidroadtransportelectrificationwillrequireanextensivenetworkdevelopedthroughcoordinationbetweenpublicandprivatesectors,passengerandfreightchargingnetworks,andfastversusslowchargers.Developmentofnext-generationcharginginfrastructurethatcaneffectivelyintegratewiththepowergridandotherland-useconsiderations(e.g.parkingmanagement)isalsoachallenge.Forairtransport,whererapiddemandgrowthisexpected,electrificationistechnologicallychallenging,asthereareverylimitedprototypesforelectricaircrafts.Electrifyinganaircraftwith600milesrangeiscurrentlyverychallenging,asitwouldrequire4-5timesthespecificenergyofthecurrentstate-of-artbatterytechnology(Grayetal.,2021).Forhard-to-decarbonizemodesoftransport,bio-blendjetfuels,suchasintheformofbiojet,isapossiblenear-term“drop-in”alternativethatdoesnotrequireredesignandcanreplaceexistingtechnologywithoutsignificantchangestoplaneengineorstructure.ButChinafaceslimitedoverallbioenergyresources.Transitiontosyntheticfuels,suchascombininghydrogenwithcapturedCO2,willbemoredifficultintheneartermduetothelongapprovaltimeneededfortestingandcertificationofinternationaljetstandards(e.g.ASTMD7566)andhighcostofsyntheticfuels(Scheelhaaseetal.,2019).Similarly,forshipping,blendwallslimittheamountofbiodieselthatcanbeusedtosubstitutefueloil.Alternativefuels,suchashydrogenfuelcells,canreducecargo-carryingcapacityandfacerefuelingchallenges,ashydrogeninfrastructureatportscanbelimited.Ammoniafuelcellsareanotheroption,buttheyhavelowerproductionefficiencythanhydrogen(Grayetal.,2021).OpportunitiesRapidsubnationalelectrificationofmunicipalfleets,asshownbyShenzhen’ssuccessinfullyelectrifyingitstaxiandbusfleetswithinfouryears,demonstratesignificantopportunityforelectrifyingpassengerroadtransport.AlongwiththelargestnumberofEVmodelsofferedfordifferentlight-dutyvehicleclassesintheworld,ChinahasalsoseentheaverageBEVcarpricedropby3%in2020,withpriceparitywithinternalcombustionvehiclesexpectedby2025(IEA,2021c).Chinaisalsothegloballeaderinfuelcellbusesproduction,withover100modelsofelectricbusesavailable(IEA,2021c).Electrificationcanalsooffertheopportunityforimprovedairquality.Localpoliciesfocusedonreducingairpollutionhavehelpedincreasetheadoptionofelectricbuses.Forexample,thetendesignatedcitiesandprovincesforkeyairpollutioncontrolsinChinaaccountedforhalfofthecountry’sNEVbuses.Inthesecitiesandprovinces,NEVbusesaccountedformorethan70%ofthemarketshareofbuses,versusmuchlowersharesinotherregions.Thefastergrowthin07ELECTRIFICATIONROADMAPFORTRANSPORTATIONSYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYS75electrifyingthemunicipalbusfleetwassupportedthroughlocalpolicies,suchasadditionalfinancialincentives,charginginfrastructuredevelopment,andlocaltargetsforNEVsharesforbuses(CATARC,2020).Similarly,nationalpoliciesarealsohelpingincreasethemarketadoptionofNEVtrucksandsettingNEVcartargetsof50%by2030inkeyareasofairpollutioncontrol,suchastheBeijing-Tianjin-Hebeiarea(MEE,2022a).Continuedelectrificationoflight-dutytruckingisexpected,withexistingcommercializedtechnologiesforlight-dutytrucksandfavorableeconomicsexpectedforbatteryelectricmodels.Chinahassomemodelsofmedium-dutytrucksonthemarket,butfewermodelsofHDTs,whencomparedtotheU.S.andEurope(IEA,2021c).However,keyChinesemanufacturers,suchasBYDandGeely,areintroducingbatteryelectricmodelsofmedium-dutyandheavy-dutytrucks,includingdrayageandregionalhaultrucks,andasemi-truck,totargetboththeChineseandinternationalmarkets(Kharpal,2021).Growingpolicysupport,includingtheintroductionofnewlocalsubsidiesforfuelcellvehicles,isalsoincreasingtheproductioncapacityofChina’shydrogenfuelcellvehiclemanufacturers,includingforSky-well,FoshanFeichi,andDayuntruckmanufacturers(FuelCellsWorks,2022).Chinaisthegloballeaderintheinstallationofpubliclyaccessiblechargers,withslowandfastchargeinstallationsincreasingby65%and44%in2020relativeto2019(IEA,2021c).Thesuccessfulgrowthinpublicchargershasreducedcosts,withaveragechargingpricesdroppingto1–1.8yuan/kWh($0.15-$0.27/kWh)in2020(McLane&Liu,2021),providingaffordabilitytourbanNEVowners.7.4KEYAREASFORTRANSPORTATIONELECTRIFICATIONElectricVehicleManufacturingandSalesThereisgrowingsupportforpassengerroadelectrificationfromboththevehiclemanufacturingindustryandsubnationalgovernments.LeadingChinesemanufacturersarerecognizingandtappingintothepotentialfordomesticgrowthintheelectriclight-dutypassengervehiclemarketaswellasopportunitiestoexporttoforeignmarkets.Majormanufacturers,includingChanganAutomobileGroup,DongfengMotorCo.,andVolvo(GeelyGroup),haveannouncedgoalstoincreasethenumberofmodelssoldorelectricmarketshareoftotalsales,whileBYDhasfoundsuccessinexportmarkets(IEA,2021c).Withe-commerceasakeybusinessdriver,theprivatesectorisalsohelpingtodrivelight-dutyroadfreightelectrificationwithrecentannouncementsbymajorChineseretailersincludingJD,SFExpress,andSuning,touseNEVsfortheirdeliveryandlogisticsfleets(IEA,2021c).Atthesametime,citiesaredrivingpublicbusfleetelectrificationefforts,withover15citiesannouncingelectrificationtargetsforurbanbusfleetfrom2019–2025(IEA,2021c),andmajorcities,suchasShanghaiandShenzhen,outpacingtheirinitialmunicipalelectrificationgoals.Inelectrifyingheavy-dutyroadfreight,NEVHDTsalesaregrowingrelativelyslowlyinChina,butthereisgrowinginterestandactivityamongstdomesticmanufacturers.China’sNEVHDTsalesaredominatedbyafewleadingdomesticmanufacturers,suchasDongfengMotor,SINOMACHandGeely,butrangesandcommercializationarestilllimitedforspecificsubtypes(Mao&Rodríguez,2021).ForstraightHDTs,YoungmanAutohasemergedasakeyplayerforhydrogenfuelcells,sothereismarketdevelopment.Forbatteryelectricandfuelcellheavy-dutyutilityvehicles,thereisalsostrongELECTRIFICATIONROADMAPFORTRANSPORTATION0776SYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYScompetitionamongmultiplemanufacturers(Mao&Rodríguez,2021),suggestingopportunityforgrowth.ChargingStationDeploymentForcharginginfrastructure,Chinahasstartedanticipatingtheneedforprovidingfast,high-poweredchargersforHDTelectrification,withtheChinaElectricityCouncilworkingjointlywiththeCHAdeMOAssociationforfast,DCchargingtodevelopultra-highpowerchargingstandardsforupto900kWand1.8MWmegachargers(IEA,2021c).Optimizingchargingsitinganduser-focusedcharginginfrastructuredevelopmentcanalsohelpaddressverydifferentchargingdemandpatterns,suchasbetweenfastversusslowcharging,chargingproximitytohomebase,andtimeofcharging,forindividualsegmentswithinthebroaderEVmarket(McLane&Liu,2020).Chinesemanufacturers,suchasNioandGeely,havealsodevelopedbusinessmodelsforbatteryswapping.Anationalstandardforbatteryswappinghasbeenapproved,whichcouldalsohelpaddressrangeconstraintsforheavy-dutyvehicles.TheexistingelectricvehiclechargingstationsarerelativelyconcentratedinBeijing,Tianjin,Hebei,Shandong,YangtzeRiverDelta,andPearlRiverDelta(ChinaAutomotiveResearchCenter,2021).7.5KEYPOLICYAPPROACHESBasedoninternationalandChina’sownexperiences,therearemultiplepolicyoptionsforacceleratingpassengerandfreightroadelectrification(Table1).Forpassengerroadvehicles,wherenationalNEVpolicieshavealreadybeenintroduced,subnationalpoliciescanhelpcomplementandfurtheraccelerateprogressinelectrification.Thesecouldincludeadministrativepoliciessuchaslicensingortrafficrestrictionsforconventionalvehicles;target-settingformunicipalfleetstodrivethepublicpassengertransportsegments;andpreferentialpoliciesandsubsidiesforzero-emissionvehicles.Forfreightelectrification,whereexistingpolicyactionshavebeenlimited,amixofnationalpolicyoptionscanhelpfostermarketgrowththroughsalesrequirementsortargets,low-carbonfuelstandards,directincentivesorindirectincentives,suchasweightexemptionsforZEVs,andinvestmentsinfreightEVchargingnetworks.Inaddition,subnationalactions,suchaspilotdemonstrationsforzero-emissionsfreightlanesorareasformediumandheavy-dutytrucks,andzero-emissionorultra-lowemissionzonescanacceleratelocalfreightelectrification.Tosupportthecoordinatedandeffectivedevelopmentofcharginginfrastructure,targetinghigh-value,high-usechargingsegments,suchaspublicandlogisticsfleetsinpubliccharginginfrastructureroll-out,canhelpmaximizechargerutilization,whichcanhelpincreasetheprofitabilityofcharginginvestments(McLane&Liu,2020).Prioritypermittingandguaranteesofland,energy,andlabortohelpreduceregulatoryandbureaucraticchallengestochargingstationsitinganddevelopmentcanalsohelpaccelerateprivatecharginginfrastructurebuild-out.Tofurtherdecarbonizeaviationandwatertransport,increasedinvestmentsinresearchinganddevelopingtheprocessesneededforlarge-scaledevelopmentandcommercializationofsyntheticfuelscanhelpincreasetheirtechnologicalfeasibility.Additionalpolicies,suchassubsidiesorgovernmentpilots,canhelpreducethehighcostsofsyntheticfuelproduction.Policiessuchaspricingcarbon,increasingtaxonconventionalfuels,andcompulsoryblendingquotacanincreasemarketadoption.07ELECTRIFICATIONROADMAPFORTRANSPORTATIONSYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYS77TABLE7.1:SUMMARYOFACTIONSFORELECTRIFICATIONINTHETRANSPORTATIONSECTOR.Near-termActionsLong-termStrategies►Electrifypassengerlight-dutyandmedium-dutyvehiclesincludingcarsandbuses,alongwithlightandmediumdutytrucksfaster,possiblythrough:►NEVfleet-widetargetsorsalesbansoninternalcombustionengine(ICE)vehicles►IncentivesforearlyretirementofICEvehicles►Implementfreightincentivesandpolicies:►Lowcarbonfuelstandardsfortrucks►Zeroemissionvehicle(ZEV)freightsalesrequirements/targets►Pilotsforzero-emissionfreightlanes/areasandzeroemissionzones►WeightexemptionsforZEVs(heavy-dutyvehicles)►DirectincentivesforZEVpurchases►DirectandutilityinvestmentsinEVcharging►Implementpassengerincentivesandpolicies:►Carlicenseplaterestrictions,trafficrestrictions►Publicormunicipalfleetelectrificationtargets►DirectZEVpurchasesubsidiesandsubsidizedcharginginfrastructureuse►ZEVdirectaccess,right-of-wayandwaiversforzero-emissionzones►PreferentialparkingpoliciesforZEVs►Develophydrogenfuelcelltechnologiesandadvancedelectrificationtechnologiesthatcanprovidelongerrangesforspecificallyheavy-dutyutilitytrucks.►Expandeduseofhydrogenandhydrogen-derivedfuelsproducedbyelectrolysis.►Advancebiojet/syntheticfueldevelopmentforairandwatertransport,potentiallythrough:►Subsidies.►Governmentpilots.►Carbonpricing/taxes.►Compulsoryblendingquotafornewfuels.►Promotethecoordinatedandeffectiveexpansionofcharginginfrastructure:►Publicinvestment.►Prioritypermittingandguaranteesofland.@EnergyFoundationTHEPOWERSYSTEMANDELECTRIFICATION0878SYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYS08THEPOWERSYSTEMANDELECTRIFICATION@PhotobyPeaceItimionUnsplash08THEPOWERSYSTEMANDELECTRIFICATIONSYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYS798.1CURRENTSTATUSWithoutsignificantpowersystemchangestomeetincreasingdemandanddecarbonizepowersupply,end-usesectorelectrificationwillhavealimitedimpactonachievingChina’sclimatechangemitigationgoals.Today,combinedheatandpowerplantsandheatplantsaccountforover50%ofcombustionemissions(IEA,2022b)andabout60%ofpowersupplyisfromcoalpoweredplants(CEC,2021).Additionalenergysectorcurrenttrendsandpolicieswerediscussedinchapters2and4.Withouttakinganyaction,coalpowercapacitymaygrowby158GWthrough2030andmayexceed1230GWduringthe15thFYP(Cuietal.,2022).Researchsuggeststhatdecarbonizationofthepowersystemwillbetechnologicallyfeasibleandeconomicallybeneficial(G.Heetal.,2020),buthowquicklythepowersystemtransitionsawayfromfossilfuelsdependsonavarietyofeconomicandpolicyfactors,includingtechnologycostsandmarketconditions.Policiesthatincreasepowersectorcapacity,deployadditionaldistributioninfrastructure,andpromotethetransitiontorenewableenergyarecriticalforadaptingtoelectrificationandaligningwithnationalclimatetargets.8.2TRANSITIONSINTHEELECTRICITYSYSTEMAssectorselectrify,electricitydemandwillincrease,withtotalelectricitydemandpotentiallyreaching12000-17000TWhsin2060(Figure8.1),comparedto8310TWh(CEC,2022b)currently.Tomeetthisdemand,ourresultssuggestthatby2060electricitygenerationisprojectedtodouble(Figure8.1)and5346-7445GWofcapacitywillbeinstalled(Figure8.2).Emissionsintheelectricitysectorlikelyneedtobereduced99-122%by2050,requiringatransitionfromfossilfuelsinthepowersectortoprimarilynon-fossilandrenewableenergysourcesandincreasedadoptionofnegativeemissionsources,likebiomasswithCCUS.Allmodelsestimatearapiddeclineofcoalinelectricitygeneration,fromashareof57-69%in2020tolessthan6%ofcoalwithoutCCUSby2045(Figure8.3).By2050,allmodelsagreethatcoalwithandwithoutCCUSwillcontributetoonly<7%and<1.5%oftotalgeneration,respectively.THEPOWERSYSTEMANDELECTRIFICATION0880SYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYSFIGURE8.1:ELECTRICITYSYSTEMTRANSITIONINTHEUPDATEDNDCTOCARBONNEUTRALITYSCENARIO.(A)TotalElectricityGeneration,(B)ElectrificationGenerationbyTechnology.HistoricaldataisfromtheChineseEnergyStatisticalYearbook(CESY)andtheInternationalEnergyAgency(IEA).05,00010,00015,00020,0002000201020202030204020502060TWhIEACESYChinaTIMESGCAM−ChinaAIM−ChinaMESSAGEix−ChinaPECEV2.0PECE_LIU_2021ChinaDREAM(A)203020502060GCAM−ChinaAIM−ChinaAIM−ChinaAIM−ChinaMESSAGEix−ChinaPECEV2.0PECE_LIU_202105,00010,00015,00020,000TWhOtherGeothermalSolarWindBiomassw/ccusBiomassw/occusHydroNuclearGasw/ccusGasw/occusOilw/ccusOilw/occusCoalw/ccusCoalw/occus(B)ChinaTIMESChinaDREAMGCAM−ChinaMESSAGEix−ChinaPECEV2.0PECE_LIU_2021ChinaTIMESChinaDREAMGCAM−ChinaMESSAGEix−ChinaPECEV2.0PECE_LIU_2021ChinaTIMESChinaDREAMFIGURE8.2:TOTALELECTRICITYCAPACITYBYTECHNOLOGYINTHEUPDATEDNDCTOCARBONNEUTRALITYSCENARIO.203020502060GCAM−ChinaAIM−ChinaAIM−ChinaAIM−ChinaMESSAGEix−ChinaPECEV2.0PECE_LIU_202102,5005,0007,500GWOtherGeothermalSolarWindBiomassw/ccusBiomassw/occusHydroNuclearGasw/ccusGasw/occusOilw/ccusOilw/occusCoalw/ccusCoalw/occusChinaDREAMChinaTIMESGCAM−ChinaMESSAGEix−ChinaPECEV2.0PECE_LIU_2021ChinaDREAMChinaTIMESGCAM−ChinaMESSAGEix−ChinaPECEV2.0PECE_LIU_2021ChinaDREAMChinaTIMES08THEPOWERSYSTEMANDELECTRIFICATIONSYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYS81FIGURE8.3:ELECTRICITYGENERATIONSHARESINTHEUPDATEDNDCTOCARBONNEUTRALITYSCENARIO.HistoricaldataisfromtheChineseEnergyStatisticalYearbook(CESY).NuclearSolarWindBiomassw/CCUSCoalw/CCUSCoalw/oCCUS2000202020402060200020202040206020002020204020602000202020402060200020202040206020002020204020600%20%40%60%80%0%20%40%0.0%3.0%6.0%9.0%0%10%20%30%0.0%2.0%4.0%6.0%0%10%20%30%ShareofElectricityGenerationCESYChinaTIMESAIM−ChinaMESSAGEix−ChinaPECEV2.0PECE_LIU_2021ChinaDREAMGCAM−ChinaAsrenewableenergygenerationandtotalelectricitydemandcontinuetogrowandcoal-firedpowergenerationisbeingphased-out,investmentswillbeneededinnon-fossilgenerationtechnologies,includingwind,solar,nuclear,fossilwithCCUS,andbioenergywithCCUS.Ourresultssuggestthatthebulkofgenerationwilllikelycomefromsolarandwind,eachmakingup23-35%and21-55%ofelectricitygeneration,respectively,by2050(Figure8.3,Figure8.4).CoalwithCCUS,biomasswithCCUS,andnuclearmayplayasignificantroleinensuringgridreliability,inapowersupplymixmadeupprimarilyofrenewableenergy.Thesethreealternativetechnologiesareprojectedtohaveacombinedshareof19-31%oftotalgenerationin2060(Figure8.3).Inorderforthesetechnologiestoplayasignificantroleinthepowermarket,policiestoenhanceCCUSinnewpowerplants,addretrofitstoexistingfacilitieswithCCUS,andexpandnuclearprojectswherefeasible,iscritical.China’sNDCtargetincludesacommitmenttoinstallingover1,200GWofcombinedsolarandwindcapacityby2030.AllmodelsexceedthistargetundertheUpdatedNDCtoCarbonNeutralityscenario,reaching1,557-3,088GWinstalled,suggestingroomforhigherambitioninthisnear-termtarget(Figure8.4).Chinaisalreadyonapathwaytoachievethisgoal,asinstalledcapacityofwindandsolarreached690GWattheendofAugust2022,witha16.6%and27.2%year-over-yeargrowthinwindandsolarcapacity,respectively(NEA,2022b).THEPOWERSYSTEMANDELECTRIFICATION0882SYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYSFIGURE8.4:SOLARANDWINDCAPACITYINTHEUPDATEDNDCTOCARBONNEUTRALITYSCENARIO.7,5005,0002,5000GW20202030ChinaDREAMChinaTIMESGCAM-ChinaAIM-ChinaMESSAGEix-ChinaPECEV2.0PECE_LIU_202120402050FIGURE8.4:INSTALLEDSOLARANDWINDCAPACITY.NDCcommitstoover1200GWofcombinedsolarandwindcapacityby2030.Allmodelsexceedthistarget,suggestingroomforhigherambition.1,200GWBOX8.1EXPANSIONOFNUCLEARGENERATIONINCHINAUnlikesolarandwind,nuclearpowerisnotweatherintermittent,makingitapotentiallyimportanttoolforenhancinggridreliability.China’s14thFive-YearPlansetatargetofreaching70GWofnuclearcapacityby2025.OurresultssuggestChinawilllikelymeetthatgoal,withcapacityrangingfrom20-90GW,andameanacrossmodelsof71GW.Ourresultsforeseenuclearpowercomprisingabout10-13%ofelectricitygenerationby2050,thoughtwomodelsprojectitcouldprovideupto25-29%ofgeneration(Figure8.3).Installedcapacityrangesfrom178to595GWin2050(Figure8.2).Thelargevariationin2050projectionsofnuclearenergyacrossmodelsreflectsdifferentassumptionsforthekeyfactorsmentionedabove.Additionally,nucleardeploymentispartiallydependentontherateofcoalphaseoutandrenewabledeployment.Giventhesignificantpoliticalandeconomicfactorsinfluencingnuclearpowerdevelopment,theroleitwillplayindecarbonizingChina’spowersystemisunclear(S.Yuetal.,2020).Newtechnologicaldevelopmentsmayenhancetheflexibilityofnuclearpowergeneration.Nuclearcapacityislimitedtocoastalprovinces,becausewateraccessisrequiredforoperation,puttingthesefacilitiesatriskduringextremeweathereventsand/orsea-levelrise.However,newtechnologieswithlowwaterusearebeingdeveloped,includingthirdgenerationaircooling.Somefourthgenerationtechnologiesmaynotneedanywateruse,reducingfutureneedsforcoastalaccess(C.He,2021).ThirdgenerationandfourthgenerationnucleartechnologiesaredevelopingrapidlyinChina,with14unitsofthirdgenerationnuclearunderconstruction.Newnuclearenergyutilizationtechnologiesforheat-supplypilotprojectsarebeingdevelopedinseveralcitiesinChina,forbothspaceheatingandheatsupplyforindustry.SpaceheatingbynuclearenergywaspromotedbytheStateCouncil(TheStateCouncil,2021).Itisexpectedthatthecostofpowergenerationwillbelowerthan0.3yuan/kWh($0.044/kWh)inthenearfuture(Jiang,2021),comparedtoanationalaverageof0.263yuan/kWh($0.039/kWh)forelectricityproducedbycoaltoday(RenminUniversityofChinaandEFC,2022).Spaceheatingbynuclearenergymayhavealowercostforheatsupplythancoalfiredboilersandnaturalgasboilers(Jiang,2022).Politicalsupportfornucleargenerationalsomaybechanging.Thegovernmenthasexpressedrecentinterestinpromotingfurtherdevelopmentofnuclearenergy(TheStateCouncil,2020),whichisregardedasasignificantchangefrompreviousgovernmentpoliciesonnuclearexpansion.ThedevelopmentofnuclearenergywasclearlymentionedinthenewpoliciesintheActionPlanonCarbonEmissionPeakingBefore2030(TheStateCouncil,2021).However,researchsuggeststhatthereareanumberoffactorsthatcancontributetonucleardeployment,andthatfutureexpansionisdependentonelectricitydemandgrowth,technologycosts,energyandclimatepolicies,andincreasesininlandprovinceswithnuclearplants(S.Yuetal.,2020).08THEPOWERSYSTEMANDELECTRIFICATIONSYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYS838.3CHALLENGESANDOPPORTUNITIESChallengesInahighlyelectrifiedpowersystem,thegrid’sproportionofrenewableenergymustbeincreasedtomeetclimatechangemitigationgoals.However,windandsolarpower,thetwomostimportantrenewableenergyresources,arehighlyintermittentandraiseconcernsaboutpowersystemsecurityandreliability.Enhancinggridflexibility,ortheabilityofthepowersystemtobalancesupplyanddemandandmaintaincontinuity(Imprametal.,2020),iscriticalforensuringreliable,cleanelectricityaccess.Increasingnon-fossilenergysourcesinthepowersystemwillrequireadaptingtoexistinggeospatialdiscrepanciesbetweenpowersupplyanddemandacrossChina.Thethreenortherngridregionshavehighrenewableenergypotentialandcoalresources,whilethereisheavyelectricityloadintheSouthandEastregions(W.Chenetal.,2010).Northernregionshaveahighwindpotential,witharound80%ofonshorewindcapacityintheNorth,NortheastandNorthwestregions(IRENA,2014),butsmalldemand(W.Liuetal.,2011).Researchsuggeststhatcurrentgeospatialdifferencesinrenewablegenerationwillcontinue,asYunnan,Hainan,InnerMongolia,Xinjiang,andQinghaiarerankedasthetopprovincesforrenewableshare(withouthydro)inboth2030and2050(Louetal.,2022)(Figure8.5).LargeinvestmentsinrenewableenergysourcesinNorthernandWesternregionswithoutmatchinglocaldemandorbuildingsufficienttransmissioninfrastructuretohighpopulationareashasledtocurtailment,ashighas17%ofallwindgenerationin2012(Dongetal.,2018).Expandinginter-provincialtransmissioncanhelptoincreasegridflexibilityanddistributeintermittentrenewableenergyacrossgridregions(Y.Lietal.,2016).Butwhileinter-provincialtransmissionmayplayaroleinmeetingdemandandmitigatingloadcurveissues,therearepotentialbarriersandrisks.Longdistancesbetweenrenewablepowerplantsanddemandcentersrequireefficientbulkenergytransmissionoverlongdistances,fromwindpowerplantsinNorthwesternChinatoEasternregions(Alassietal.,2019).Additionalbarriersincludepublicoppositiontooverheadlinesduetovisualandenvironmentalimpacts;short-termfaultsinoverheadwires;anddifferencesingridcodesandgridvoltagelevelsacrossgridregions,whichcanrequireadditionaltransformers(Alassietal.,2019).Constructionofhighvoltagetransmissionlineshelpedtoreducewindcurtailmentto7%by2014inChina,butevenafterlong-distancetransmissiondevelopment,windcurtailmentincreasedto17%againin2016,duetochanginglocaldemand,decreaseduseofhighvoltagetransmissionlines(Dongetal.,2018),decentralizationofcoalpowerplantconstructionandcoalovercapacity(Y.Fengetal.,2018),andincreasedlocaluseofcoaloverimportsofrenewablesfromotherprovinces(Alassietal.,2019).Consistencyinstandardsandregulationsacrossgridbordersisneededforlongdistancehighvoltagetransmission(Alassietal.,2019).Developmentofadditionalinfrastructureshouldreducecurtailment,butonlyifthereiscoordinationbetweenendusersandenergyexporterstopreventanenergyimporterfromswitchingtoalocalenergygeneratoraftertransmissionlinesarebuilt.Ifregionschangefromanenergyimportertoexporter,itcanleadtounder-utilizationofexpensivetransmissionresources,congestion,andcurtailment(Alassietal.,2019).OpportunitiesInvestingingridimprovementsseemstobeapriorityforChina.InvestmentsinthepowergridandotherrelatedindustriesbyStateGridareexpectedtoexceed6trillionYuan($896billionUSD)in2021-2025(Reuters,2020).Attemptstoimprovegridreliabilityincludethedevelopmentofultra-highvoltagepowerlinestoimprovelong-distancetransmissionandefficiency.Severalinter-provincialandinter-regionaltransmissionlinesTHEPOWERSYSTEMANDELECTRIFICATION0884SYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYShavealreadybeenconstructedinChina(ChinaElectricPowerPlanningandEngineeringInstitute,2021a),andwilllikelyneedtobeexpandedtomeetincreasingdemandinregionswithlimitedrenewableenergysupply.Theseregionaldifferencesinrenewableenergypotentialandelectricitydemandhighlighttheimportanceofexpandedtransmissionconnectionsacrossgridregionsandpowertrading(IEA,2019),especiallywhenlookingtothefuture.Theadoptionofonenationalelectricitymarketcouldhelppromoteinter-provincialelectricitytransmission,increaseaccesstoawidervarietyofgenerationresources,andbalancerenewablegenerationanddemand(Cuietal.,2022).Inadditiontoexpandedinter-regionalinfrastructure,geospatialvariationsinsupplyanddemandcanbemitigatedthroughlarge-scalewindandsolarpowerbaseswithdistributedpowersourcesadaptedtolocalconditions.ElectrificationmayalsohelptointegrateresourcesbetweenregionsinChina,increasingtheeconomicgrowthofpowersupplyprovincesinCentralandWesternChinathroughtheconstructionofmanypowerstorageandpowertransmissiongrids.Renewableenergytransitionscanresultinmanybroaderbenefits.Targetingthephaseoutofplantsstrategically–consideringexistingpoliciesonplantage,locationandcapacity–isnotonlycriticalformeetingclimategoals,butcanalsohaveadditionalhealthandsocialbenefits,includingimprovinglocalairpollutionemissions,waterconservation,andpotentiallyenergysecurity(Cuietal.,2022).Althoughrenewablesourcesofenergyhaveintermittencyandflexibilityconcerns,transitioningawayfromcoalmayimproveenergysecurityinthelong-term,giventhevolatilityofcoalprices(Cuietal.,2022).FIGURE8.5:RENEWABLEENERGYSHARE(%)OFTOTALELECTRICITYGENERATIONIN(A)2030AND(B)2060INMAINLANDPROV-INCES.ResultsbasedontheGCAM-Chinamodel.Thedarkerthecolor,thehigherthepercentageofrenewableenergyshareofthetotalelectricitygeneration(Louetal.,2022).XJXZGSQHSCNXCQYNSNHBGZGXSXHAHNGDHINMBJHEAHJXFJLNTJSDJSZJHLJLSH(A)XJXZGSQHSCNXCQYNSNHBGZGXSXHAHNGDHINMBJHEAHJXFJLNTJSDJSZJHLJLSH0255075100percent(B)08THEPOWERSYSTEMANDELECTRIFICATIONSYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYS85BOX8.2EXPANSIONOFELECTRICITYGENERATIONCAPACITYANDIMPLICATIONSFORUPSTREAMSECTORS8.4KEYAREASANDPOTENTIALOFELECTRIFICATIONInapowergridcomposedofmoresolarandwindpower,itisnecessarytoconsidermultiplemechanismsforimprovingpowersystemflexibility,resilience,andreliability,whichcancomefromthepowersupplyside,gridside,andloadside.SupplySideFlexibilityEnhancedAdjustablePower.Conventionalgenerationunitsmaystruggletoaccommodatenewrenewablesourcesofenergyduetothevariablenatureofrenewables,whichischallengingforbase-loadpowerplantswithlongrampupanddowntimes(Imprametal.,2020).Developingflexible,baseloadpowertosupportrenewabledeploymentiscriticalformaintainingareliablegrid.Atpresent,existingadjustablepowerinChinaincludesthermalpower,hydropowerandpumpedstoragehydropower,ConcentratedSolarPower(CSP),andothers,ofwhichthermalpoweraccountsforthehighestproportion.Theroleofthermalpowerismainlytoprovidebase-loadpowergenerationandtransmissionandsomeheating.Inthefuture,thermalpowermayofferregulationcapacityforthepowersystemandprovidebase-loadsupporttothepowergrid(NDRC&NEA,2016b).Pumpedstoragehydropowerandadjustablecoal-firedpowermaybecomeprofitableafter2021policyenactments(NDRC,2021a).Chinahastargetsforpumpedhydrostorage,reaching62and120GWby2025and2030,respectively(NEA,2021).WindandPVOptimization.Advancementsinwindandsolartechnologiesareneededtoimproveintegrationintothepowersystem.MorerefinedChina’spowersystemtransformationwillalmostcertainlyincludetheexpansionofrenewableresources,especiallysolarandwindpower.Someofthechallengespresentedbythistransitionincludechangesinlandareaneededforpowergenerationandnewmaterialsandmanufacturingprocessesrequiredforrenewableenergyproduction.Comparedtofossilfuels,renewableenergymayrequiremorelandareaforenergyproduction,includingadditionaltransmissioninfrastructuretoaccommodateahigherproportionofenergysupplystemmingfromrenewables(Saunders,2020).Land-usechangesfromexpandedsolardevelopmentmayindirectlyresultinalossofnaturalland,dependingontheregionandlandusepriortotheconversiontosolar(vandeVenetal.,2021).Theseimpactscanbemitigatedthroughincreasedtechnologyefficiencytoreducetheareaoflandneededforrenewabledevelopments(Zalk&Behrens,2018)andbyfocusingontechnologieswithhigherpowerdensity(suchasConcentratedSolarPowerorPV)(Zalk&Behrens,2018).Additionally,land-useimpactcanbemitigatedbyinstallingrenewablesonlandwithmultiplepurposes,includingresidentialsolar(Zalk&Behrens,2018)orpastureswithgrazinglivestock(Zalk&Behrens,2018).Adoptionofpermittingpoliciesthatlimitcompetitionbetweenrenewabledevelopmentandagricultureandthatincentivizedevelopmentinnon-arablelandcanalsoreducelandusechanges(Zalk&Behrens,2018).Additionally,alteringconservationsitingrequirementstoincreaseadoptionofrenewablesonconservedlandcanincreaselandareaavailableforrenewabledevelopment(Saunders,2020).Thoughefficiencyandmaterialupgradesareimprovingovertime,renewablesalsomayhaveadditionalmaterialrequirementscomparedtofossil-fuelenergyproduction,includingincreasedrelianceonconcrete,cement,glassandsteel(DOE,2015).WhiletheglobalwarmingpotentialofPVproductionhasdeclinedfrom2005to2015,largelythroughimprovementsinthesiliconmanufacturingprocess,theenergymake-upofthemanufacturingregionandindustrialsectorplaysasignificantroleinenvironmentalimpactsfromrenewables(Stamford&Azapagic,2018).Giventheincreasingrelianceofmanufacturingonelectricityandhydrogenmovingforward,cleaningupstreamproductioniscriticalforreducingemissionsduringtherenewablemanufacturingprocess(S.Yuetal.,2021).THEPOWERSYSTEMANDELECTRIFICATION0886SYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYSdesignandoptimizedoperationofwindpowerandPVtechnologyareneededtoenhanceitsintegrationintothepowersystem.Forexample,windturbineshaveasmallamountofpowerstorage,whichcanprovidesomesupporttothepowergrid,especiallywhencombinedwithotherturbinesinalargerwindfarmorwindbase(WindMachineryBranchofChinaAgriculturalMachineryIndustryAssociation,2021).PVgenerationcanbettermatchloadcurvesthoughthechangeofbracketinclinationoradjustmentmode(ChinaPhotovoltaicIndustryAssociation,2020).ConsiderLocalConditions.Inremoteareaswithweakpowergrids,amicro-gridcanstrengthenthemaingrid,anditscostmaybecomparabletoamaingridextension(OFweek,2018).ForwindandPV,whichdon’thavethecapabilityofindependentregulation,powerstoragefacilitiesareneededtoformanintegratedpowersupplypointofcomprehensivedispatching,potentiallyasvirtualpowerplants(DevelopmentResearchCenteroftheStateCouncil,2021).Combinedwithpumpedstorage,batterystorage,andgriddispatching,renewablegenerationcanbesmoothedandgridstabilityimproved(S.Ma&Zhou,2021).Additionally,imposingmorerestrictionsonlocalcoalconsumption,improvedcoordinationbetweenprovincesexportingrenewableenergyanddemandcenters,andcombiningmultiplerenewableenergysources(RES)inhighvoltagetransmissionlinescanreduceintermittency(Alassietal.,2019).LoadSideFlexibilityDeploymentofElectricVehicles.Electricvehiclescanactascontrollableloadsorenergystoragedevices,providingflexibilitytothegrid,buttheycanalsoincreasepeakloadifchargingdoesn’ttakeintoaccountotherenergydemands.TomaximizetheimpactofEVsusedtoregulatetheloadcurve,orderlychargingisimportantforimprovingefficiencywhilemeetingconsumerneeds(Houetal.,2020).Operationalcostsformicrogridsdeclinewhenmodeledusersonlychargetheirvehicleswhensolaroutputexceedstheload(Houetal.,2020).TimeofusepricingandotherdemandresponsestrategiescanhelpencourageEVchargingatoff-peaktimes,increasingthebeneficialimpactofEVsonloadregulation(Gohetal.,2022).NotonlycanEVsoperateasatransferableload,butwithvehicle-to-grid(V2G)technology,therecanbeabidirectionalflowofenergybetweentheEVandthegrid,whichcanreducesystemfluctuation(H.Liuetal.,2013).Byadjustingthedemand-sideload,throughimplementinganelectricvehiclechargingtimecontrol,thedemand-sideloadcurvecanbeeffectivelysmoothed(J.Sunetal.,2014).Grid-integratedandmanagedsmartchargingcapabilitiescanalsoallowNEVstohelpimprovegridflexibilitybymoreeffectivelyutilizingvariablerenewablegenerationandhelpingtoshavepeakelectricitydemand(NREL,2022).Demand-sideAdjustments.Demandresponseprogramscanhelpshiftloadtodifferenttimesofday,reducepeakload,orincreasedemandduringoff-hours(Lundetal.,2015).Adoptionofmarket-basedpricingwouldhelpshiftloadfrompeaktimes,byincentivizingend-userstoconsumeatoff-peaktimes(Cuietal.,2022).Largepoweruserscanreducetheirloadinaspecificperiodoftime,oroperatebeyondtheratedpowerwithinthebearablerangeoftheequipment,tooptimizethebenefitfromdemand-sideincentives.Inaddition,thedifficultyoftechnologyrealizationandtheuncertaintyofinvestmentincomeincrease.Increasingenergyefficiencyacrossend-usesectorscanhelptolimitgrowingelectricitydemandandmaximizeemissionsreductionimpactsfromelectrificationanddecarbonizationoftheenergysector.Adjustmentscanalsoincludealteringenergyconsumptionintensityortimeperiodforallenergyusers.Increasingpowerstoragefacilitiesontheloadsideandactivelyadjustingtheenergyconsumptioncurveincombinationwithspot-marketorguidancemechanismscouldreducetheregulationpressureandsupplysidecosts(ChinaElectricPowerPlanningandEngineeringInstitute,2021b;SunY.etal.,2022).08THEPOWERSYSTEMANDELECTRIFICATIONSYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYS87GridSideFlexibilityEnhanceInter-networkInteraction.Atpresent,thecountryhasformedsixregionalpowergridsinNortheast,North,Northwest,East,CentralandSouthernChina,andhasbuiltanumberofinter-provincialandinter-regionaltransmissionlines.Inthefuture,withfurtherelectrification,itisexpectedthatthepowergridwillextendfurthertoremoteareas,andthestructureinthemainnetworkwillbestronger,increasingpowersystemstabilityandreliabilityindifferentregions(ChinaElectricPowerPlanningandEngineeringInstitute,2021a).ExpansionofEnergyStorageandOptimizingGridManagement.Atrelativelyweaknodesofgridstructure,energystoragecanbeaddedtofittheutilizationneedsofdistributedenergy.Whilecorrespondinglyacceleratingtheconstructionofdistributioninfrastructure,itcanenhancethesafeandstableoperationofthenewpowersystemwithhighrenewablepenetrationandincreasingend-useelectrification(Rongetal.,2021).Asthelocationofhydropowerandpumpedstoragemainlydependsongeologicalresourceconditions,itisnecessarytoconsiderlocalpowergridconditionstoprovidesupportforthepowersystembyoptimizingdispatchingoperationmodeasfaraspossible.Whilevolatilityofrenewablesisaconcern,currentwindpowercurtailmentissuesaremorelikelytheresultsofinadequategridmanagementpoliciesthataccountforrenewablesintermittency(Luoetal.,2016),includingconcentratedwindsourcesfarfromloadcenters,alargeproportionofcoalpowerplants,limitedfeed-in-tariffs,lackofwind-specificgridcodes,andpoorforecastaccuracyhaveallcontributedtohighwindcurtailmentinChina(Imprametal.,2020;C.Lietal.,2015).AdditionalOperationDispatchingTechnology.Atpresent,China'spowergridisbecomingmoredigitalandintelligent.Forexample,ChinaSouthernPowerGridhasissuedtheWhitePaperonDigitalPowerGrid,whichpointsoutthatdigitalizationcouldhelpthepowergridbecomemoreintelligent,safe,reliable,andgreenwithaseriesoftechnologiesincludingcloudcomputing,bigdata,InternetofThings,mobileInternet,artificialintelligence,blockchain,andothernewdigitalgenerationtechnologies(CSG,2020).Withtheincreasingproportionofelectrificationinthefuture,italsoinvolvesthesupportofbasicandcomprehensivetechnologies,suchasIOTand5Gtechnology,fortheprocessingneedsofalargenumberofdataandinformationflowsinthenewpowersystem.8.5KEYPOLICYAPPROACHESAtpresent,theChinesegovernmenthasformedarelativelycompletepolicysystemtosupportenergytransformation,includingguidanceandsupportforlow-carbontechnology,restrictionandoptimizationguidanceforhighenergyconsumingindustriesorhighcarbonemissionindustries,powergeneration,transmissionanddistributionpricemechanism,andmarket-orientedconstructionmechanism,allprovidingagoodfoundationformovingtowardshigh-scaleelectrification.Inordertoachievetheneutralitytarget,somepolicysolutionstofurtheracceleratethepaceofenergytransformationinclude:(1)Reducingthecostofrenewableenergysources.Improvingtheflexibilityofthepowersystemrequirescapitalinvestment,likelyleadingtoanincreaseinthecostofelectricity.InorderforChinatomaintainastableaveragepriceofelectricity,windpowerandPVwillneedtoplayakeyroleinreducingthecostofTHEPOWERSYSTEMANDELECTRIFICATION0888SYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYSelectricity.Toprovideendogenouspowerandacontinuousdeclineofcost,ChinaneedstocontinuetosupportwindpowerandPVessentialtechnologycapabilityimprovement.Otherrenewableenergyapplications,suchasCSP,canacceleratetechnologyiterationandprovidelow-costrenewablepowerwithregulationcapabilitytechnologyreserves(DevelopmentResearchCenteroftheStateCouncil,2021).(2)Usingpricemechanismstoreduceenergycosts.Atpresent,Chinaisgraduallytransformingfromgovernmentalpricingtomarket-orientedpricing.Duringthisprocess,itisfirstnecessarytocoordinatethecostcompositionofboththepowergenerationsideandpowerconsumptionside.Second,itisnecessarytoconsiderthedifferencesinthepricesettlementmethodsofmultipletypesofusers(suchaspowerspotmarketandmedium-andlong-termtransactions,peakvalleytime-sharing/stepprice,etc.).Third,itisnecessarytocomprehensivelyconsiderthecost,price,andpricemechanism(ancillaryservicemarket)ofpower,energy,andsystemstabilityaspects.Andfourth,thecarbonemissionlevelperkWhofthepowersystemneedstobeconsidered(Lin,2021).Inthisprocess,multiplegovernmentdepartmentsneedtoworktogetheronaseriesofpolicies.Forexample,greenpowerhydrogenproductionisbeneficialinreducingcarbonemissionsfromhydrogenproduction,providingloadsideregulationcapacityforpowersystemsandincreasingelectricitydemand(NDRC&NEA,2022b).Indevelopinghydrogenenergy,itisnecessaryto:cooperatewithindustrialdepartmentsinhydrogendemand;cooperatewithpowerdepartmentsandpricedepartmentstoconsidergreenpowersupplyscale,supplystabilityandeconomy;andcooperatewithhydrogenproductionenterprisesandpricedepartmentstoconsiderthebenefitsofhydrogenproductionsystemsupportforpowersystemstability(Jiang&Xiang,2021).Powermarketreforms,likephasingoutfossil-fuelsubsidiesandadoptingtime-of-userates,canincreaseadoptionofrenewableenergyandothertechnology,suchasEVsandbatterystorage.Implementingtheleast-marginalcostdispatchacrossinterprovincialmarketscanreducepower-sectoremissionsandoperatingcosts(IEA,2021a).Expandingexistingpilotprovincialelectricitymarketstoaninter-regionalmarket,orevenanationalpowermarket,canhelptoincreaseresiliencyandreliabilityofthegridandreducerenewablecurtailment.Expandingthenationalemissionstradingscheme(ETS)toincludetheindustrysectoraswellastheelectricitysectorwillhelptoreduceemissionsandstandardizemechanismsforreductionsacrosssectors(Buschetal.,2022).Increasingthecarbonprice,reducingcarbonpermitsissuance(Wu&Zhu,2021),andincreasingtransparencyoftradinginformationdisclosure(X.Wangetal.,2022)canalsohelptoimprovetheETSabilitytoreduceemissionsinpowerandend-usesectors.(3)Increasingpolicyandtechnologycoordinationbetweentheenergysectorandotherindustries.Thecarbonneutralitygoalisconnectedtothewholeofsociety.Itneedstobecloselyconnectedwiththedevelopmentneedsandspeedofindustry,construction,transportation,andotherfields.Atechnicalcoordinationsystemfortheintegrateddevelopmentofvariousindustriesandenergy,includingtechnicalstandardsandspecifications,isneeded(EnergyandEnvironmentalPolicyResearchCenterofBeijingInstituteofTechnology,2021).Intheoverallarrangementofmajornationalstrategiesandmajorprojects,suchastheintegrationofenergyandnationalinfrastructure,cooperationacrossmultiplefieldsiscriticalformeetingemissiontargetscost-effectively.(4)Increasingcoordinationamongnationalandsubnationalgovernments.Coordinationamongprovinces,gridregions,andthenationalgovernmentiscriticalforensuringasmoothtransition.Regionalpowertradition,gridintegration,andthedevelopmentofasinglenationalmarketcanhelpprovincesreducerelianceoncoal,improveREScurtailmentrates,andfacilitaterenewableenergyconsumptionacrossregions.Coalretirementsshouldbecoordinatedwithabroaderstrategythatconsidersrenewable08THEPOWERSYSTEMANDELECTRIFICATIONSYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYS89energydevelopment,loadbalancingandpowertransmission,toensuresupplycontinuestomeetdemand(Cuietal.,2022).Increasingtransmissioninfrastructurealoneisnotenoughtopreventcurtailmentofrenewableresources.Ensuringthatenergyrecipientsarewillingandabletoacceptlong-distancerenewablegenerationoverlocalgenerationisneededtoreducecurtailment(Dongetal.,2018).TABLE8.1:SUMMARYOFACTIONSFORPOWERSECTOR.Near-termActionsLong-termStrategies►Encourageincreaseinrenewablegeneration,alongwithotherflexiblelow-carbonpowersources(nuclear,carboncapture,utilizationandstorage)►Adjustenergyconsumptionintensityandtimeperiodsthroughmarketmechanisms►Increasedigitalizationofthegridanddemandresponseprogramstoreduceconsumption►Policyandtechnologycoordinationbetweenenergysectorandothersectorstointegrateenergyinfrastructure,includingremovingsomeobstaclesforconstructionofrenewableenergyprojects,suchaslandsupplyconstraints►Furtherincreasetheadjustablepowersources(thermal,hydropower,gas,andConcentratedSolarPower).►Increaseuseofmicro-gridsinareaswithweakerpowergrids.►Promotesmartdemandsideresponsemanagement,suchassmartcharging,vehicle-to-grid,andvirtualpowerplants,toreducepeak-loadgridcostsandavoidexcessivenewinvestmentinpowerdistribution.►Increaseinter-networkinteractionbetweengridregions.►Expandtheenergystoragecapacity(especiallylong-termandseasonalstorage)andimproveancillaryservicesmarketdesigntosupportenergystoragedevelopment.►Strengthenelectricitymarketreformtosupportrenewabledevelopmentandsignificantlyincreasetheintegrationofrenewablesintothegrid.@PhotobyEcrinnBurgazlıonUnsplashCONCLUSIONS0990SYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYS09CONCLUSIONS@EnergyFoundation01INTRODUCTIONSYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYS919.1ELECTRIFICATIONINMEETINGCHINA’SCARBONNEUTRALITYTARGETOurresultssuggestthatelectrificationofend-usesectors,combinedwithdecarbonizationofthepowersector,isakeystrategyformeetingChina’scarbonneutralitytarget.Allsevenmulti-modelsprojectrapidincreasesinelectricitydemand,generation,andcapacitybymid-century.Resultssuggestcoalwithoutcarboncapture,utilizationandstorage(CCUS)isessentiallyphasedoutofelectricitygenerationafter2045,andsolarandwindrampupbetween2025-2050.Ifemissionspeakbetween2025-2030,modelsexceednear-termpolicytargetsforsolarandwindcapacity,emissionsintensityreduction,andnon-fossilshareinprimaryenergy.Whenemissionsaremodeledtopeakin2030,notallmodelsmeetthenear-termtargets,suggestingpeakingbefore2030isimportantforaligningwithnear-termpolicygoalsandmeetinglong-termtargets.Ouranalysesindicateanaverageof80%electrificationrateinbuildings,andabout65%and60%directelectrificationinindustryandpassengertransportation,respectively,by2060,suggestingthatelectricitybecomesthedominantfuelsourceinthesethreesectors.Thefreighttransportationsectorreachesanaverageofonly35%electrification.Thissector,alongwithpassengeraviationandhightemperatureheatinheavyindustries,needsfurtherresearchanddevelopmenttounderstandhowalternativefuels,suchashydrogenandsyntheticfuels,canhelpthesesectorsindirectlyelectrifyandreduceemissions.Tomeetincreasingelectricitydemand,whichincreasesbyanaverageof125%acrossmodels,almost5,000GWofcapacityneedstobeinstalledbetween2020and2060.Ouranalysessuggestelectricitycapacityandgenerationwillneedtoatleastdoublecomparedto2020.Rapidcapacityexpansionisaccompaniedbyacceleratedfuelswitching,i.e.,phasingoutunabatedcoaluseby2050orearlierwhileincreasingthedeploymentofsolar,wind,nuclear,andCCUStechnologies.Asaresult,thepowersectorwillseesignificantemissionsreductionandreachzeroorevennegativeemissionsby2050.Whileallmodelsareinagreementonsignificantemissionsreductionandcoalphaseout,thepathwaysgettingtherearedifferent.Allmodelsagreeontheexpansionofsolarandwindgeneration,butcontributionsfromotherenergysources,suchasbiomasswithCCUS,fossilfuelgenerationwithCCUS,naturalgas,andnuclear,varyacrossmodels.Futurepowersectorportfolioswillbethereflectionofpolicychoices,technologyavailability,andeconomiccosts.Ensuringthatsupplyequalsdemand,andviceversa,isaconstantchallengeforthepowergrid.Thelow-carbontransitionwillplaceadditionalconstraintsandopportunitiesforthepowersectorinthisbalancingact.Meetingincreasingdemandwithintermittentrenewableresources,adjustingmanufacturingsupplychains,andreplacingexistinginfrastructureposegridinstabilityrisks.However,EVs,batterystorage,andconsumerbehaviorprogramscanhelpreducepeakload;micro-gridsandsmall-scalerenewableenergysystemscanhelpprovideelectricityaccessinremotelocations;andexpandinggridinfrastructurecanhelpincreasepowersupplydiversityandimproveoverallreliability.Simultaneouslybuildingoutcapacityforlow-carbonfuels,phasingdownunabatedcoaluse,andincreasingelectrificationacrossallthreeend-usesectorswillrequirehighlevelsofinter-sectoralcoordination.Often,policiesinonesectorareconnectedtoanothersector,sosectoralcoordinationisneeded.Forexample,thebenefitsofdistributedPVsystemsaremaximizedwhencombinedwithsmartvehiclechargingstations.Emissionsreductionintheindustrialmanufacturingsectorthatproducessolarandwindtechnologyisdependentondecarbonizationinthepowersector.Cross-sectoralpolicycouldlinkelectrificationtargetsacrossend-usesectorstocarbonneutralitygoals,alongwithotherkeyinitiatives,suchassocialandeconomicdevelopment.ThiswillhelptoensureanapproachINTRODUCTION0192SYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYSthatenablesmultipletransitionstooccursimultaneously.Includingpowersystemplanningintheelectrificationpolicy-makingprocessatboththeprovincialandsectorallevelscouldpotentiallyhelptoreducecurtailment,improvedemandforecasting,andinformenergydispatching.Thisreportoutlinesseveralnear-andlong-termsectoraloptionstodecarbonizeChinathroughacceleratedelectrificationandpowersystemtransition.Furtheractionsthatcanpromoteelectrification,suchasofferingfinancialincentivesforreplacingend-useinfrastructurewithmarket-availableelectricoptions;expandingresearchanddevelopmentinend-usesthatdon’thaveanexisting,feasibleelectricalternative;updatingpowergridmarketmechanisms;improvingtransmissionanddistributioncapabilitiesacrossprovinces;anddevelopingcross-sectoralelectrificationpolicy.9.2AREASOFFUTURERESEARCHWhileconductingthisresearch,severalkeyissueswereidentified,butwerebeyondthescopeofthisreport.TheseissuescanbefurtherexploredinfuturereportstoprovideamorecomprehensiveunderstandingofChina’scarbonneutralitytransition.Mostmodelsutilizetechnologycostsasakeydriverofdeterminingfuturepathways.Futureenergycostsaredifficulttodetermine,giventhattheywillbereflectiveofavarietyofeconomic,policyandsocialfactors,includingtherateofenergytransition(Wayetal.,2021).Differentmodelingassumptionsfortechnologycostsacrossmodelswerenotfullyevaluatedorstandardizedacrossmodelsinthisreport,butfutureresearchcouldanalyzesomeoftheseunderlyingmodelingdifferences,tobetterunderstandmodelbehavior.Futureresearchalsoneedstoprovidemoregranulartechnologyorsectoralinformationandevaluatetechnologyoptions.Forexample,futureresearchcanfurtherdisaggregatewindtechnologiesintoonshoreandoffshorewindandevaluatethetrendsofthesetechnologiesseparatelytobetterunderstandrenewabledeploymentinChina.Moreover,notallmodelscouldreportdetailedsectororsubsectorinformation,suchasindustrysubsectorsormodesoftransportation.Policyrecommendationsandfutureprojectedfuelusewilllikelyvarysignificantlyacrossindustryandmodeoftransport.Thiscanbeimprovedasmodelcapabilitiesadvance.Additionally,moreresearchshouldfurtherevaluatetheroleofenergystorageinChina’senergytransition,andwhattechnologieswillbeusedinadditiontobatteries,suchasseasonalstorage,andpumpedhydrostorage,flowbatteries,orcompressedairandliquidair.Thisresearchdidnotevaluateinvestmentneedsoftechnologiesreferencedinthereport,ormodeltheenergydemandassociatedwithmanufacturingtechnologies,suchassolarpanelsorheatpumps.Otheralternativesfordecarbonizationforroadtransitwerenotincludedinthisreport.Facilitatingtheuseofalternativeformsoftransit,suchasbicycles,canavoidlight-dutyvehicleuse.Ensuringajust,low-carbontransitioniscriticaltoachievingcarbonneutralityandneedstobefurtherstudied.Increasingenergyaffordabilityiscriticalforajust,low-carbontransition.Thisstudydidnotevaluateelectricitypricingchangesovertime,whichisanimportantcomponentofenergyplanningandaccessibility.AnotherfactorinelectricityaffordabilityisGDPgrowth,whichwasnotcomparedingreatdetailacrossmodels.MostmodelsshowedasimilartrendoflinearincreaseinGDPpercapitathrough2040,withonemodelshowingaslightdeclineinGDPgrowth.Asthisisasignificantdriverofdecision-makingacrossmostmodels,furtherevaluationcouldilluminateinsightsaboutmeetingnear-termtargetsorprojectingelectrificationdemand.Otherfiscalimplicationsfromthetransition,includinginvestmentneeds,employmentchanges,01INTRODUCTIONSYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYS93ordistributionalvariationacrosshouseholds,werenotincludedinthisreport.Futureresearchshouldevaluatedistributionalvariationineffectsfromthelow-carbontransitionacrosssocioeconomicvariables,includinggeographies,income,andrace.Evaluatingeconomictransitions,suchaselectricitypricingstructure,andcarbonmarketdevelopmentisneededtoevaluateenergytransitionpathways.Futureresearchshouldevaluatetheeconomicinvestmentsneeded,aswellasotherimportantpotentialareasofinterconnectionacrosssectors,suchasthecirculareconomyandmaterialefficiency.Criticalforevaluatingbotheconomicandenergyimplicationsareprojectionsofdemandforgoodsandservicesinthefuture.Thisisespeciallyimportantfortheindustrialsector,asfuturedemandisunclear,givenpotentialchangesinconsumerbehavior,urbanization,populationgrowthandtechnology.Hydrogenisakeytechnologyinachievingdeepdecarbonization.Thisreportfocusedondirectelectrification,nothydrogenproductionthroughindirectelectrolysis.Hydrogenproductionandconsumptioninend-usesectorswasincludedasamodeledtechnologyinthisreport,butdiscussionwaslimited,asitisasignificantareafortheenergytransition.Futureresearchshouldevaluatehydrogenproduction,end-useopportunities,andkeypolicyandeconomicbarrierstofull-scaleimplementation,asbothelectrificationofend-usesectorsanddevelopmentofhydrogentechnologiesandscalingupofhydrogenproductionisneededforalow-carbontransition.Additionally,futureresearchshouldevaluatetheimplicationsofincreasingelectricitydemandfrombothend-usesectorsandhydrogenproductionthroughelectrolysis.ThisanalysisfocusedprimarilyonCO2emissions,giventhesignificantshareoftotalgreenhousegases(GHG)thatcomefromCO2inChina.Weaskedmodelstohavenet-zeroGHGsin2060toalignwiththecarbonneutralitygoal,butdidnotevaluateabatementassumptionsacrossmodels,orcomparenon-CO2mitigationacrosssectors.Giventhesignificantwarmingeffectofnon-CO2s,futureresearchshouldevaluateemissionpathways,technologies,andpolicyoptionsformitigation.Futureresearchshouldalsoevaluatethebarriersto,opportunitiesfor,andkeygovernmententitiesneededforanintersectoralelectrificationpolicy.Integratingsectoralpoliciesandensuringadequatecommunicationandalignmentacrosssectorscouldhelptobalanceenergysupplyanddemandefficientlyandcosteffectively.REFERENCES94SYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYSREFERENCES1.Ahmadi,M.H.,Ahmadi,M.A.,Sadaghiani,M.S.,Ghazvini,M.,Shahriar,S.,&AlhuyiNazari,M.(2017).GroundSourceHeatPumpCarbonEmissionsandGround-SourceHeatPumpSystemsforHeatingandCoolingofBuildings:Areview.EnvironmentalProgress&SustainableEnergy,37(4),1241–1265.https://doi.org/10.1002/ep.128022.Alassi,A.,Bañales,S.,Ellabban,O.,Adam,G.,&MacIver,C.(2019).HVDCTransmission:TechnologyReview,MarketTrendsandFutureOutlook.RenewableandSustainableEnergyReviews,112,530–554.https://doi.org/10.1016/j.rser.2019.04.0623.AsianDevelopmentBank(ADB).(2019).SolarDistrictHeatinginthePeople’sRepublicofChinaStatusandDevelopmentPotential(China,People’sRepublicof).AsianDevelopmentBank.http://dx.doi.org/10.22617/TCS190028-24.BloombergNews.(2022,January26).XiJinpingSaysChinaGreenGoalsCan’tCompromiseEnergySe-curity.Bloomberg.Com.https://www.bloomberg.com/news/articles/2022-01-26/xi-jinping-says-cli-mate-targets-can-t-compromise-energy-security5.BloombergNEF,&WorldBusinessCouncilonSustainableDevelopment(WBCSD).(2021).HotSpotsforRenewableHeat:DecarbonizingLow-toMedium-TemperatureIndustrialHeatAcrosstheG-20.BloombergNEF&WBCSD.https://www.wbcsd.org/contentwbc/download/12957/190622/16.Boer,D.de.(2022,March4).LeadersGrouponClimateChangeMeetsBeforeTwoSessions.CCICED.https://cciced.eco/ecological-progress/leaders-group-on-climate-change-meets-before-two-ses-sions/7.BuildingEnergyResearchCenter(BERC)ofTsinghuaUniversity.(2015).2015AnnualReportonChinaBuildingEnergyEfficiency.8.BERC.(2016).2016AnnualReportonChinaBuildingEnergyEfficiency.9.BERC.(2017).2017AnnualReportonChinaBuildingEnergyEfficiency.10.BERC.(2019).2019AnnualReportonChinaBuildingEnergyEfficiency.11.BERC.(2021).2021AnnualReportonChinaBuildingEnergyEfficiency.12.BERC.(2022).2022AnnualReportonChinaBuildingEnergyEfficiency.13.Busch,C.,Hu,M.,&Chen,M.(2022).NextStepsforChina’sCarbonEmissionsTradingSystemtoIm-proveEfficiency,AchieveClimateGoals.https://energyinnovation.org/wp-content/uploads/2022/04/Next-Steps-For-Chinas-Emissions-Trading-System.pdf14.CarbonEmissionAccounts&Datasets(CEADs).(2021).ChinaCO2Inventory1997-2019(IPCCSec-toralEmissions).https://www.ceads.net.cn/data/nation/15.Caijing.(2021,October26).ItIsNecessarytoEstablishCarbonasaProductionElementandtoDevel-opCarbonMarketasaMajorProductionFactorMarket.http://m.caijing.com.cn/article/235180?tar-get=blank16.Calvin,K.,Patel,P.,Clarke,L.,Asrar,G.,Bond-Lamberty,B.,Cui,R.Y.,DiVittorio,A.,Dorheim,K.,Edmonds,J.,Hartin,C.,Hejazi,M.,Horowitz,R.,Iyer,G.,Kyle,P.,Kim,S.,Link,R.,McJeon,H.,Smith,S.J.,Snyder,A.,…Wise,M.(2019).GCAMv5.1:RepresentingtheLinkagesBetweenEnergy,Water,Land,Climate,andEconomicSystems.GeoscientificModelDevelopment,12(2),677–698.https://doi.org/10.5194/gmd-12-677-2019REFERENCESSYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYS9517.Cazorla-Marín,A.(2019).ModellingandExperimentalValidationofanInnovativeCoaxialHelicalBore-holeHeatExchangerforaDualSourceHeatPumpSystem.https://www.researchgate.net/publica-tion/334736444_Modelling_and_experimental_validation_of_an_innovative_coaxial_helical_borehole_heat_exchanger_for_a_dual_source_heat_pump_system18.ChaoyangDistrictGovernment.(2022,April14).PopulationinChaoyangDistrict.http://www.bjchy.gov.cn/chaoyang/cygk/rkqk/19.Chen,W.,Li,H.,&Wu,Z.(2010).WesternChinaEnergyDevelopmentandWesttoEastEnergyTransfer:ApplicationoftheWesternChinaSustainableEnergyDevelopmentModel.EnergyPolicy,38(11),7106–7120.https://doi.org/10.1016/j.enpol.2010.07.02920.Chen,Y.,Ebenstein,A.,Greenstone,M.,&Li,H.(2013).EvidenceontheImpactofSustainedEx-posuretoAirPollutiononLifeExpectancyfromChina’sHuaiRiverPolicy.ProceedingsoftheNationalAcademyofSciences,110(32),12936–12941.https://doi.org/10.1073/pnas.130001811021.ChinaAcademyofInformationandCommunicationsTechnology(CAICT).(2022).NewEnergyVehicleIndustryOperationReportintheFirstHalfof2022.http://www.caict.ac.cn/kxyj/qwfb/qwsj/202207/P020220727606061522187.pdf22.ChinaArchitecture&BuildingPress(CABP).(2021).GeneralCodeforEnergyEfficiencyandRenewableEnergyApplicationinBuildings(GB55015-2021).https://library.gbpn.org/library/bc-detail-pages/china-severe-cold23.ChinaAssociationofAutomobileManufacturers(CAAM).(2021).2020ChinaAutomobileIndustryEco-nomicandOperationReport.ChinaAssociationofAutomobileManufacturers.http://lwzb.stats.gov.cn/pub/lwzb/zxgg/202107/W020210723348607396983.pdf24.ChinaAutomotiveResearchCenter.(2021).ChinaAutomotiveIndustryYearbook2021.https://china-bookshop.net/shop/ols/products/china-automotive-industry-yearbook-202025.ChinaAutomotiveTechnologyandResearchCenterLtd.Co.(CATARC).(2020).NewEnergyBusesinChina:OverviewonPoliciesandImpact.https://www.changing-transport.org/wp-content/up-loads/2020_GIZ_New-Energy-Buses-in-China.pdf26.ChinaDaily.(2022).RooftopSolarEnergytoPowerNation’sGreenDevelopment.https://global.china-daily.com.cn/a/202203/30/WS6243b41aa310fd2b29e5416d.html27.ChinaEconomicNet.(2022).TendirectorsoftheNationalBureauofStatisticsInterpretedthe2022“Half-yearlyreport.”http://www.ce.cn/xwzx/gnsz/gdxw/202207/15/t20220715_37873930.shtml28.ChinaElectricPowerPlanningandEngineeringInstitute.(2021a).ChinaElectricPowerDevelopmentReport.29.ChinaElectricPowerPlanningandEngineeringInstitute.(2021b).ReportonChinaElectricPowerDe-velopment2021.30.ChinaElectricityCouncil(CEC).(2020).ChinaElectrificationReport2019.https://www.cec.org.cn/upload/zt/2019report/31.CEC.(2021).AnalysisandForecastofChinaPowerDemand-SupplySituation2020-2021.https://en-glish.cec.org.cn/detail/index.html?3-112832.CEC.(2022a).AnalysisandForecastofNationalPowerSupplyandDemandfrom2021to2022.https://cec.org.cn/detail/index.html?3-30624133.CEC.(2022b,January27).ChinaElectricityCouncilReleasedthe“2021-2022NationalElectricitySup-plyandDemandSituationAnalysisandForecastReport.”ChinaElectricityCouncil.https://cec.org.cn/detail/index.html?3-30617134.CEC.(2022c,July20).BriefIntroductiononTheOperationofthePowerIndustryfromJanuarytoJune2022.https://cec.org.cn/detail/index.html?3-311529REFERENCES96SYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYS35.ChinaHydrogenAlliance(CHA).(2020).WhitePaperonChina’sHydrogenandFuelCell(2019).http://www.zg-kg.com/files/%E3%80%8A%E4%B8%AD%E5%9B%BD%E6%B0%A2%E8%83%BD%E6%BA%90%E5%8F%8A%E7%87%83%E6%96%99%E7%94%B5%E6%B1%A0%E4%BA%A7%E4%B8%9A%E7%99%BD%E7%9A%AE%E4%B9%A6%E3%80%8B.pdf36.ChinaPhotovoltaicIndustryAssociation.(2020).ChinaPhotovoltaicIndustryDevelopmentResearchReport.http://www.chinapv.org.cn/annual_report/821.html37.ChinaPowerNewsNet(CPNN).(2022).China’sNewlyInstalledGenerationCapacityofWindandPVExceeded100millionKilowattsin2021.http://www.cpnn.com.cn/news/xwtopb/202201/t20220126_1478906.html38.ChinaSouthernPowerGrid(CSG).(2020).DigitalPowerGridWhitePaper.http://eng.csg.cn/Press_release/News_2020/202011/t20201126_315793.html39.Cui,R.,Cui,X.,Cui,D.,Song,J.,Zhang,X.,Dai,F.,Gordon,J.,Chen,Z.,Hultman,N.,&Kammen,D.(2022).ADecadeofAction:AStrategicApproachtoCoalPhase-DownforChinaEnvironmentalandSocio-economicBenefitsofTargetedCoalRetirementsinChina’s14thand15thFive-YearPlans.https://cgs.umd.edu/sites/default/files/2022-03/A%20Decade%20to%20Act-Main%20Report-March%202022.pdf40.Deason,J.,Wei,M.,Leventis,G.,Smith,S.,&Schwartz,L.C.(2018).ElectrificationofBuildingsandIndustryintheUnitedStates:Drivers,Barriers,Prospects,andPolicyApproaches.LawrenceBerkeleyNationalLab.(LBNL),Berkeley,CA(UnitedStates).https://doi.org/10.2172/143068841.DepartmentofEnergy(DOE).(2015).QuadrennialTechnologyReviewanAssessmentofEnergyTech-nologiesandResearchOpportunity.DepartmentofEnergy.https://www.energy.gov/sites/prod/files/2017/03/f34/quadrennial-technology-review-2015_1.pdf42.DevelopmentResearchCenteroftheStateCouncil.(2021).DevelopmentTrendandProspectofNewPowerSystem.https://guangfu.bjx.com.cn/news/20210923/1178275.shtml43.Dong,C.,Qi,Y.,Dong,W.,Lu,X.,Liu,T.,&Qian,S.(2018).DecomposingDrivingFactorsforWindCurtailmentUnderEconomicNewNormalinChina.AppliedEnergy,217,178–188.https://doi.org/10.1016/j.apenergy.2018.01.04044.Edenhofer,O.,Pichs-Madruga,R.,Sokona,Y.,Minx,J.C.,Farahani,E.,Kadner,S.,Seyboth,K.,Adler,A.,Baum,I.,Brunner,S.,Eickemeier,P.,Kriemann,B.,Savolainen,J.,Schlömer,S.,Stechow,C.von,&Zwickel,T.(2014).ClimateChange2014:MitigationofClimateChange.ContributionofWorkingGroupIIItotheFifthAssessmentReportoftheIntergovernmentalPanelonClimateChange.IntergovernmentalPanelonClimateChange(IPCC).https://www.ipcc.ch/site/assets/uploads/2018/02/ipcc_wg3_ar5_frontmatter.pdf45.EnergyandEnvironmentalPolicyResearchCenterofBeijingInstituteofTechnology.(2021).Glob-alClimateGovernanceStrategyandChina’sCarbonNeutralPathOutlook.https://ceep.bit.edu.cn/docs/2021-01/d714a0f1049d4ed79c881150abfbdc83.pdf46.EnergyEfficiency&ConservationAuthority(EECA).(2019).InternationalTechnologyScan—Alter-nativeTechnologiesforProcessHeat.https://www.eeca.govt.nz/insights/eeca-insights/internation-al-tech-scan/47.EnergyFoundationChina(EFC).(2016).BestPracticesofEnergyEfficiencyProjectsintheBuildingsSec-tor.48.EFC.(2020).China’sNewGrowthPathway:Fromthe14thFive-YearPlantoCarbonNeutrality.https://www.efchina.org/Reports-en/report-lceg-20201210-en49.EFC.(2022).CoalInformationUpdates-Issue4.Upcoming.50.Feng,W.,Zhou,N.,Wang,W.,Khanna,N.,Liu,X.,&Hou,J.(2021).PathwaysforAcceleratingMaxi-mumElectrificationofDirectFuelUseinChina’sBuildingSector.https://eta-publications.lbl.gov/sites/default/files/electrification_of_buildings_in_china_v2_clean_edited92821.pdfREFERENCESSYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYS9751.Feng,Y.,Wang,S.,Sha,Y.,Ding,Q.,Yuan,J.,&Guo,X.(2018).CoalPowerOvercapacityinChina:Province-LevelEstimatesandPolicyImplications.Resources,ConservationandRecycling,137,89–100.https://doi.org/10.1016/j.resconrec.2018.05.01952.Forsell,N.,Turkovska,O.,Gusti,M.,Obersteiner,M.,Elzen,M.den,&Havlik,P.(2016).AssessingtheINDCs’LandUse,LandUseChange,andForestEmissionProjections.CarbonBalanceandMan-agement,11(1),26.https://doi.org/10.1186/s13021-016-0068-353.Fragkos,P.,LauravanSoest,H.,Schaeffer,R.,Reedman,L.,Köberle,A.C.,Macaluso,N.,Evange-lopoulou,S.,DeVita,A.,Sha,F.,Qimin,C.,Kejun,J.,Mathur,R.,Shekhar,S.,Dewi,R.G.,Diego,S.H.,Oshiro,K.,Fujimori,S.,Park,C.,Safonov,G.,&Iyer,G.(2021).EnergySystemTransitionsandLow-CarbonPathwaysinAustralia,Brazil,Canada,China,EU-28,India,Indonesia,Japan,Repub-licofKorea,RussiaandtheUnitedStates.Energy,216(C).https://ideas.repec.org/a/eee/energy/v216y2021ics0360544220324920.html54.FuelCellsWorks.(2022).BusesAndTrucksAccelerateasChineseFCEVVehiclesHitOverdrive.https://fuelcellsworks.com/news/buses-and-trucks-accelerate-as-chinese-fcev-vehicles-hit-overdrive/55.Gao,B.(2020,July2).‘ChinaShouldSetUpaCarbonCap’–ZouJionChina’sEnergyTargets.ChinaDialogue.https://chinadialogue.net/en/energy/china-should-set-up-a-carbon-cap-zou-ji-on-the-next-national-energy-targets/56.GCAM.(2022).GCAMv6Documentation:GCAMModelOverview.https://jgcri.github.io/gcam-doc/overview.html57.GeneralOfficeoftheStateCouncil.(2020).NewEnergyVehicleIndustryDevelopmentPlan(2021-2035).http://www.gov.cn/zhengce/content/2020-11/02/content_5556716.htm58.GlobalTimes.(2022).XiStressesEnergySecurityWhenCarryingOutCarbonReductions.https://www.globaltimes.cn/page/202203/1254108.shtml59.Goh,H.H.,Zong,L.,Zhang,D.,Dai,W.,Lim,C.S.,Kurniawan,T.A.,&Goh,K.C.(2022).OrderlyChargingStrategyBasedonOptimalTimeofUsePriceDemandResponseofElectricVehiclesinDistributionNetwork.Energies,15(5),Article5.https://doi.org/10.3390/en1505186960.Gray,N.,McDonagh,S.,O’Shea,R.,Smyth,B.,&Murphy,J.D.(2021).DecarbonisingShips,PlanesandTrucks:AnAnalysisofSuitableLow-CarbonFuelsfortheMaritime,AviationandHaulageSec-tors.AdvancesinAppliedEnergy,1,100008.https://doi.org/10.1016/j.adapen.2021.10000861.He,C.(2021).ResearchontheAncillaryEffectsofClimateChangeMitigation:ACaseStudyofChina’sEnergyTransitionandWaterDemand[Doctorthesis].PekingUniversity.62.He,G.,Lin,J.,Sifuentes,F.,Liu,X.,Abhyankar,N.,&Phadke,A.(2020).RapidCostDecreaseofRenewablesandStorageAcceleratestheDecarbonizationofChina’sPowerSystem.NatureCommuni-cations,11(1),2486.https://doi.org/10.1038/s41467-020-16184-x63.Hou,H.,Xue,M.,Xu,Y.,Xiao,Z.,Deng,X.,Xu,T.,Liu,P.,&Cui,R.(2020).Multi-objectiveEconomicDispatchofaMicrogridConsideringElectricVehicleandTransferableLoad.AppliedEnergy,262,114489.https://doi.org/10.1016/j.apenergy.2020.11448964.Hsu,A.(2021,November7).OpinionDon’tBeSoQuicktoDoubtChina’sClimateChangeDedica-tion.TheNewYorkTimes.https://www.nytimes.com/2021/11/07/opinion/cop26-china-climate.html65.Huppmann,D.,Gidden,M.,Fricko,O.,Kolp,P.,Orthofer,C.,Pimmer,M.,Kushin,N.,Vinca,A.,Ma-strucci,A.,Riahi,K.,&Krey,V.(2019).TheMESSAGEixIntegratedAssessmentModelandtheixModelingPlatform(ixmp):AnOpenFrameworkforIntegratedandCross-CuttingAnalysisofEnergy,Climate,theEnvironment,andSustainableDevelopment.EnvironmentalModelling&Software,112,143–156.https://doi.org/10.1016/j.envsoft.2018.11.01266.Impram,S.,VarbakNese,S.,&Oral,B.(2020).ChallengesofRenewableEnergyPenetrationonPowerSystemFlexibility:Asurvey.EnergyStrategyReviews,31,100539.https://doi.org/10.1016/j.esr.2020.100539REFERENCES98SYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYS67.IntegratedEnergyandEnvironmentPolicyAssessmentModelforChina(IPAC).(2020).IPAC-AIM/Technology.http://www.ipac-model.org.cn/68.InternationalEnergyAgency(IEA).(2019).ChinaPowerSystemTransformation—AssessingtheBenefitsofOptimisedOperationsandAdvancedFlexibilityOptions.https://iea.blob.core.windows.net/assets/fd886bb9-27d8-4d5d-a03f-38cb34b77ed7/China_Power_System_Transformation.pdf69.IEA.(2020a).EnergyTechnologyPerspectives2020–Analysis.https://www.iea.org/reports/ener-gy-technology-perspectives-202070.IEA.(2020b).IronandSteelTechnologyRoadmap.https://www.iea.org/reports/iron-and-steel-tech-nology-roadmap71.IEA.(2021a).AnEnergySectorRoadmaptoCarbonNeutralityinChina–Analysis.https://www.iea.org/reports/an-energy-sector-roadmap-to-carbon-neutrality-in-china72.IEA.(2021b).CO2EmissionsfromFuelCombustion.https://www.iea.org/data-and-statistics/da-ta-browser73.IEA.(2021c).GlobalEVOutlook2021.https://www.iea.org/reports/global-ev-outlook-202174.IEA.(2021d).IEAOnlineDatabase.https://www.iea.org/data-and-statistics75.IEA.(2022a).GlobalEnergyReview:CO2Emissionsin2021.https://www.iea.org/reports/global-ener-gy-review-co2-emissions-in-2021-276.IEA.(2022b).GreenhouseGasEmissionsfromEnergy—Dataproduct.IEA.https://www.iea.org/da-ta-and-statistics/data-product/greenhouse-gas-emissions-from-energy77.IEA,&TsinghuaUniversity.(2018).DistrictEnergySystemsinChinaOptionsforOptimisationandDiver-sification.https://iea.blob.core.windows.net/assets/590cc681-349a-4a55-9d3f-609eff6cde0b/Dis-trict_Energy_Systems_in_China_Chinese_version.pdf78.InternationalInstituteforAppliedSystemsAnalysis(IIASA).(2021).TheMESSAGEixframework.https://docs.messageix.org/en/stable/79.InternationalRenewableEnergyAgency(IRENA).(2014).RenewableEnergyProspects:China.https://www.irena.org/publications/2014/Nov/Renewable-Energy-Prospects-China80.IRENA.(2019).GlobalEnergyTransformation:ARoadmapto2050(2019edition).https://www.irena.org/publications/2019/Apr/Global-energy-transformation-A-roadmap-to-2050-2019Edition81.IRENA,&InternationalLaborOrganization(ILO).(2022).RenewableEnergyandJobs:AnnualReview2022.https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2022/Sep/IRENA_Renew-able_energy_and_jobs_2022.pdf82.Jadun,P.,McMillan,C.,Steinberg,D.,Muratori,M.,Vimmerstedt,L.,&Mai,T.(2017).ElectrificationFuturesStudy:End-UseElectricTechnologyCostandPerformanceProjectionsthrough2050(NREL/TP-6A20-70485).NationalRenewableEnergyLab.(NREL),Golden,CO(UnitedStates).https://doi.org/10.2172/141611383.Jiang,K.(2021).HighSecurityEnergySupplySystemintheCarbonNeutralityTarget.ChinaPowerEnterpriseManagement,7,2–4.https://mall.cnki.net/magazine/article/ZGDQ202107008.htm84.Jiang,K.(2022).EnergyandEconomicTransitionwithMultipleTargets.YuejiangAcademicJournal,14(1),34-43+172.http://www.yjxk.cbpt.cnki.net/wkg/WebPublication/paperDigest.aspx?paperID=-05c4a5aa-f0bc-43b6-ba45-2ab53d23546f85.Jiang,K.,&Xiang,P.(2021).ImpactAnalysisofZeroCarbonEmissionPowerGenerationonChina’sIndustrialSectorDistribution.https://www.gei-journal.com/cn/upload/files/2021/1/issn2096-5125202101002.pdfREFERENCESSYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYS9986.Keramidas,K.,DiazVazquez,A.,Weitzel,M.,Vandyck,T.,Tamba,M.,Tchung-Ming,S.,SoriaRamirez,A.,Krause,J.,vanDingenen,R.,SoChai,Q.,Fu,S.,&Wen,X.(2020).GlobalEnergyandClimateOutlook2019:ElectrificationfortheLow-CarbonTransition(JRCResearchReportsNo.JRC119619).JointResearchCentre(Sevillesite).https://econpapers.repec.org/paper/iptiptwpa/jrc119619.htm87.Kharpal,A.(2021,November8).ChineseAutoGiantGeelyLaunchesElectricTruck,ItsRivaltoTesla’sSemi.CNBC.https://www.cnbc.com/2021/11/08/chinas-geely-launches-electric-truck-its-rival-to-teslas-semi.html88.LawrenceBerkeleyNationalLaboratory(LBNL).(2022).EnergyModelingandPathways-ChinaDREAM.https://international.lbl.gov/energy-modeling-pathways89.Li,C.,Shi,H.,Cao,Y.,Wang,J.,Kuang,Y.,Tan,Y.,&Wei,J.(2015).ComprehensiveReviewofRe-newableEnergyCurtailmentandAvoidance:ASpecificExampleinChina.RenewableandSustainableEnergyReviews,41,1067–1079.https://doi.org/10.1016/j.rser.2014.09.00990.Li,J.,Chen,C.,&Liu,H.(2019).TransitionfromNon-CommercialtoCommercialEnergyinRuralChina:InsightsfromtheAccessibilityandAffordability.EnergyPolicy,127,392–403.https://doi.org/10.1016/j.enpol.2018.12.02291.Li,Y.,Lukszo,Z.,&Weijnen,M.(2016).TheImpactofInter-RegionalTransmissionGridExpansiononChina’sPowerSectorDecarbonization.AppliedEnergy,183,853–873.https://doi.org/10.1016/j.apenergy.2016.09.00692.Lin,B.(2021).ReportonChinaEnergyDevelopment2021.SciencePress.https://item.jd.com/10046299544738.html93.Liu,H.,Hu,Z.,Song,Y.,&Lin,J.(2013).DecentralizedVehicle-to-GridControlforPrimaryFrequencyRegulationConsideringChargingDemands.IEEETransactionsonPowerSystems,28(3),3480–3489.https://doi.org/10.1109/TPWRS.2013.225202994.Liu,J.,Yin,M.,Xia-Hou,Q.,Wang,K.,&Zou,J.(2021).ComparisonofSectoralLow-CarbonTransi-tionPathwaysinChinaUndertheNationallyDeterminedContributionand2°CTargets.RenewableandSustainableEnergyReviews,149,111336.https://doi.org/10.1016/j.rser.2021.11133695.Liu,W.,Lund,H.,Mathiesen,B.V.,&Zhang,X.(2011).PotentialofRenewableEnergySystemsinChina.AppliedEnergy,88(2),518–525.https://doi.org/10.1016/j.apenergy.2010.07.01496.Liu,Z.,Xu,W.,Qian,C.,Chen,X.,&Jin,G.(2015).InvestigationontheFeasibilityandPerformanceofGroundSourceHeatPump(GSHP)inThreeCitiesinColdClimateZoneChina.RenewableEnergy,84,89–96.https://doi.org/10.1016/j.renene.2015.06.01997.Lou,J.,Yu,S.,&Adofoli,V.(2022).OntheRoadtoCarbonNeutrality:GreenInvestmentNeedsinChi-na.CenterforGlobalSustainability,UniversityofMaryland,CollegePark.https://cgs.umd.edu/sites/default/files/2022-05/%E6%8E%92%E7%89%888%E7%A8%BF05062022_Green%20Invest-ment%20Needs%20in%20China.pdf98.Lovins,A.B.(2021).ProfitablyDecarbonizingHeavyTransportandIndustrialHeat:TransformingThese“Harder-to-Abate”SectorsIsNotUniquelyHardandCanBeLucrative.https://rmi.org/wp-content/up-loads/2021/07/rmi_profitable_decarb.pdf99.Lu,H.,Price,L.,Fridley,D.,&Zhou,N.(2022).QuantifyingElectrificationPotentialinProcessHeatingSystemsinChina.100.Lund,P.D.,Lindgren,J.,Mikkola,J.,&Salpakari,J.(2015).ReviewofEnergySystemFlexibilityMeasurestoEnableHighLevelsofVariableRenewableElectricity.RenewableandSustainableEnergyReviews,45,785–807.https://doi.org/10.1016/j.rser.2015.01.057101.Luo,G.,Li,Y.,Tang,W.,&Wei,X.(2016).WindCurtailmentofChina’sWindPowerOperation:Evolu-tion,CausesandSolutions.RenewableandSustainableEnergyReviews,53,1190–1201.https://doi.org/10.1016/j.rser.2015.09.075REFERENCES100SYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYS102.Ma,S.,&Zhou,B.(2021,October26).SynergisticConfigurationofPumpedStorageandBatteryStor-agetoFacilitatetheConstructionofNewPowerSystems.StateGridNews.https://news.solarbe.com/202110/26/345504.html103.Ma,T.(2020,October13).ResearchersUnveilRoadmapforaCarbonNeutralChinaby2060.ChinaDialogue.https://chinadialogue.net/en/climate/researchers-unveil-roadmap-for-a-carbon-neutral-chi-na-by-2060/104.Mao,S.,Basma,H.,Ragon,P.-L.,Zhou,Y.,&Rodríguez,F.(2021,November16).TotalCostofOwn-ershipforHeavyTrucksinChina:BatteryElectric,FuelCell,andDieselTrucks.InternationalCouncilonCleanTransportation.https://theicct.org/publication/total-cost-of-ownership-for-heavy-trucks-in-china-battery-electric-fuel-cell-and-diesel-trucks/105.Mao,S.,&Rodríguez,F.(2021).RacetoZero:HowManufacturersarePositionedforZero-EmissionCom-mercialTrucksandBusesinChina.https://theicct.org/publications/china-race-to-zero-aug2021106.McKerracher,C.(2021).EVChargingDataShowsaWidelyDivergentGlobalPath.https://www.bloomberg.com/news/articles/2021-03-23/ev-charging-data-shows-a-widely-divergent-global-path107.McLane,R.,&Liu,Q.(2020).China’sTimelyChargingInfrastructurePlan.https://rmi.org/chinas-time-ly-charging-infrastructure-plan/108.McLane,R.,&Liu,Q.(2021).WhatChinaCanTeachtheU.S.aboutEVFast-ChargingRollouts.https://www.greenbiz.com/article/what-china-can-teach-us-about-ev-fast-charging-rollouts109.MinistryofEcologyandEnvironment(MEE).(2020,June9).BulletinontheSecondNationalGeneralSurveyofPollutionSources.https://www.mee.gov.cn/xxgk2018/xxgk/xxgk01/202006/t20200610_783547.html110.MEE.(2021a,January5).MeasuresfortheAdministrationofCarbonEmissionsTrading.https://www.mee.gov.cn/xxgk2018/xxgk/xxgk02/202101/t20210105_816131.html111.MEE.(2021b,March29).GreenhouseGasEmissionMRVGuidelinesforEnterprises.https://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202103/t20210329_826480.html112.MEE.(2021c,October12).ChinatoReleaseImplementationPlanstoAchieveCarbonGoals:Xi.https://english.mee.gov.cn/News_service/media_news/202110/t20211012_956262.shtml113.MEE.(2022a,June13).ImplementationPlanforSynergisticEfficiencyofPollutionReductionandCarbonReduction.https://www.mee.gov.cn/xxgk2018/xxgk/xxgk03/202206/t20220617_985879.html114.MEE.(2022b,July21).JulyPressConferenceoftheMinistryofEcologyandEnvironment.https://www.mee.gov.cn/ywdt/zbft/202207/t20220721_989385.shtml115.MinistryofFinance(MOF).(2021).NoticeonthePromotionandApplicationofFinancialSubsidyPoliciesforNewEnergyVehiclesin2022.http://jjs.mof.gov.cn/zhengcefagui/202112/t20211231_3780322.htm116.MinistryofIndustryandInformationTechnology(MIIT).(2020,December31).GuidanceonPromot-ingHigh-QualityDevelopmentofIronandSteelIndustry(DraftforComments).https://wap.miit.gov.cn/jgsj/ycls/gzdt/art/2020/art_8fc2875eb24744f591bfd946c126561f.html117.MIIT.(2022).PressConferenceontheDevelopmentoftheAutomobileIndustry.http://mp.weixin.qq.com/s?__biz=MjM5OTUwMTc2OA==&mid=2650854434&idx=1&sn=400fde0bad77237af752fa0a25ec4e81&chksm=bccefe858bb97793d1b5208f95182044eddbe7855d1947a8276ca94f39c91-d489b7948453c45#rd118.Moultak,M.,Lutsey,N.,&Hall,D.(2017).TransitioningtoZero-EmissionHeavy-DutyFreightVehicles.https://theicct.org/sites/default/files/publications/Zero-emission-freight-trucks_ICCT-white-pa-per_26092017_vF.pdf119.NationalBureauofStatistics(NBS).(2017).ChinaEnergyStatisticalYearbook2017.https://data.cnki.net/trade/Yearbook/Single/N2018070147?zcode=Z023REFERENCESSYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYS101120.NBS.(2021).ChinaEnergyStatisticalYearbook2020.https://data.cnki.net/Trade/yearbook/single/N2021050066?zcode=Z023121.NBS.(2022a).EnergyProductioninDecember2021.http://www.stats.gov.cn/tjsj/zxfb/202201/t20220117_1826406.html122.NBS.(2022b).PreliminaryGDPResultsfortheSecondQuarterandtheFirstHalfof2022.http://www.stats.gov.cn/tjsj/zxfb/202207/t20220715_1886607.html123.NBS.(2022c).StatisticalCommuniqueofthePeople’sRepublicofChinaonthe2021NationalEconomicandSocialDevelopment.http://www.stats.gov.cn/tjsj/zxfb/202202/t20220227_1827960.html124.NationalDevelopmentandReformCommission(NDRC).(2021a,July26).TheNationalDevelopmentandReformCommission’sNoticeonFurtherImprovementoftheTime-Of-Use(TOU)PowerPricingMecha-nism.https://www.ndrc.gov.cn/xxgk/zcfb/tz/202107/t20210729_1292067.html?code=&state=123125.NDRC.(2021b,November16).NovemberPressConferenceofNationalDevelopmentandReformCom-mission.https://www.ndrc.gov.cn/xwdt/wszb/novfbh/wap_index.html126.NDRC,&NationalEnergyAdministration(NEA).(2016a).GuidingOpinionsonAdvancingtheReplace-mentbyElectricity.NationalDevelopmentandReformCommission.https://www.ndrc.gov.cn/xxgk/zcfb/tz/201605/t20160524_963071.html?code=&state=123127.NDRC,&NEA.(2016b).The13thFive-YearPlanforElectrificationDevelopment.https://www.ndrc.gov.cn/xxgk/zcfb/ghwb/201612/P020190905497888172833.pdf128.NDRC,&NEA.(2017).CleanHeatingPlanforNorthernChinainWinter(2017-21).http://www.nea.gov.cn/2017-12/27/c_136854721.htm129.NDRC,&NEA.(2022a).GuidingOpinionsonFurtherAdvancingtheReplacementbyElectricity.https://www.eqxun.com/news/16846.html130.NDRC,&NEA.(2022b).Medium-andLong-TermPlanforTheDevelopmentofHydrogenEner-gyIndustry(2021-2035).NDRC&NationalEnergyAdministration.http://zfxxgk.nea.gov.cn/1310525630_16479984022991n.pdf131.NationalEnergyAdministration(NEA).(2014).PVVillageinJiangsuProvinceConnectedtoGrids.http://www.nea.gov.cn/2014-01/09/c_133031324.htm132.NEA.(2021).Medium-andLong-TermDevelopmentPlanforPumpedStorage(2021-2035).http://zfxx-gk.nea.gov.cn/1310193456_16318589869941n.pdf133.NEA.(2022a,August2).TranscriptofNEA’sThirdQuarterOnlinePressConferencein2022.http://www.nea.gov.cn/2022-08/02/c_1310648934.htm134.NEA.(2022b,September21).TheNationalEnergyAdministrationReleasedtheNationalPowerIndustryStatisticsfromJanuarytoAugust.http://www.nea.gov.cn/2022-09/21/c_1310664624.htm135.NationalNewEnergyConsumptionMonitoringandEarlyWarningCenter(NNECM).(2022).EvaluationAndAnalysisofNationalNewEnergyPowerConsumptionintheFourthQuarterof2021.NationalNewEnergyConsumptionMonitoringandEarlyWarningCenter(NNECM).http://mp.weixin.qq.com/s?__biz=MzU5NDg1OTc5MQ==&mid=2247484277&idx=1&sn=-408fa1722d13fbd644a28bc3fa5e83d5&chksm=fe7b8115c90c0803b8c039c203a78ab4f-57f3696a1098be1920fd1969d6efd6fedd5a916ab53#rd136.NationalRenewableEnergyLaboratory(NREL).(2022).ElectricVehicleSmartChargingatScale.https://www.nrel.gov/transportation/managed-electric-vehicle-charging.html137.OFweek.(2018,January18).ApplicationScenariosofMicrogridsandDistributedEnergyResources.https://solar.ofweek.com/2018-01/ART-260006-8420-30190430.html138.OFweek.(2021,January15).2020NewEnergyCommercialVehiclesDataDeclined.https://nev.of-week.com/2021-01/ART-71011-8500-30481068.htmlREFERENCES102SYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYS139.Paoli,L.,&Gül,T.(2022,January30).ElectricCarsFendoffSupplyChallengestoMoreThanDoubleGlobalSales.IEA.https://www.iea.org/commentaries/electric-cars-fend-off-supply-challenges-to-more-than-double-global-sales140.People’sGovernmentofGuangdongProvince.(2022,July13).ImplementationPlansfortheDevelop-mentofGreenFinancetoSupportCarbonPeaking.http://www.gd.gov.cn/zwgk/wjk/qbwj/ybh/content/post_3972447.html141.Purr,K.,Strenge,U.,Werner,K.,Nissler,D.,Will,M.,Knoche,G.,&Volkens,A.(2014).Germanyin2050—AGreenhouse—NeutralCountry.http://www.yjxk.cbpt.cnki.net/wkg/WebPublication/paperDi-gest.aspx?paperID=05c4a5aa-f0bc-43b6-ba45-2ab53d23546f142.Qian,H.,Xu,S.,Cao,J.,Ren,F.,Wei,W.,Meng,J.,&Wu,L.(2021).AirPollutionReductionandClimateCo-BenefitsinChina’sIndustries.NatureSustainability,4(5),417–425.https://doi.org/10.1038/s41893-020-00669-0143.Ren,J.(2020).AnalysisontheCurrentSituationandDevelopmentTrendofWasteIronandSteelIndustryinChina.https://www.sohu.com/a/www.sohu.com/a/371392978_313737144.RenminUniversityofChina,&EFC.(2022).CostAnalysisandRiskAssessmentofCoal-FiredPlantsinChina.https://www.efchina.org/Attachments/Report/report-lceg-20211020/%E4%B8%AD%E5%9B%BD%E7%85%A4%E7%94%B5%E6%88%90%E6%9C%AC%E4%B8%8E%E9%A3%8E%E9%99%A9%E5%88%86%E6%9E%90.pdf145.Reuters,S.(2020).ChinatoInvestNearly$900BillioninPowerGrids:StateMedia.https://www.re-uters.com/article/china-electricity/china-to-invest-nearly-900-billion-in-power-grids-state-media-idUSKBN26V0MO146.Rightor,E.,Whitlock,A.,&Elliott,R.N.(2020).BeneficialElectrificationIndustry.ResearchReport.AmericanCouncilforanEnergy-EfficientEconomy(ACEEE).https://www.aceee.org/sites/default/files/pdfs/ie2002.pdf147.Roelofsen,O.,Somers,K.,Speelman,E.,&Witteveen,M.(2020).Pluggingin:WhatElectrificationCanDoforIndustry.https://www.mckinsey.com/~/media/McKinsey/Industries/Electric%20Power%20and%20Natural%20Gas/Our%20Insights/Plugging%20in%20What%20electrification%20can%20do%20for%20industry/Plugging-in-What-electrification-can-do-for-industry-vF.pdf148.Rong,S.,Lu,W.,Li,S.,Chen,M.,&Bu,Z.(2021).StudyonEconomyofPowerGridSideEnergyStorage.EnergyandConservation,3,35-38+72.149.Saunders,P.J.(2020).LandUseRequirementsofSolarandWindPowerGeneration:https://www.innovationreform.org/wp-content/uploads/2020/10/1909-Energy-Reform-Land-Use-Requirements_digital.pdf150.Scheelhaase,J.,Maertens,S.,&Grimme,W.(2019).SyntheticFuelsinAviation–CurrentBar-riersandPotentialPoliticalMeasures.TransportationResearchProcedia,43,21–30.https://doi.org/10.1016/j.trpro.2019.12.015151.Shen,B.,Han,Y.,Price,L.,Lu,H.,&Liu,M.(2017).Techno-economicEvaluationofStrategiesforAddressingEnergyandEnvironmentalChallengesofIndustrialBoilersinChina.Energy,118,526–533.https://doi.org/10.1016/j.energy.2016.10.083152.Shukla,P.R.,Skea,J.,Reisinger,A.,Slade,R.,Fradera,R.,Pathak,M.,Khourdajie,A.A.,Belkace-mi,M.,vanDiemen,R.,Hasija,A.,Lisboa,G.,Luz,S.,Malley,J.,McCollum,D.,Some,S.,&Vyas,P.(2022).ClimateChange2022MitigationofClimateChange—SummaryforPolicymakers.https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_SPM.pdf153.SichuanMetallurgicalGroup.(2021).MetallurgicalGroup.http://www.scykjt.cn/?Info189.htm154.Sino-GermanCooperationonClimateChange.(2021,December13).China2021CentralEconomicWorkConference(CEWC)SetstheTonetoEncourageRenewableEnergy.https://climatecooperation.cn/climate/china-2021-central-economic-work-conference-cewc-sets-the-tone-to-encourage-renew-able-energy/REFERENCESSYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYS103155.Song,X.,Huang,Y.,Zhao,C.,Liu,Y.,Lu,Y.,Chang,Y.,&Yang,J.(2018).AnApproachforEstimat-ingSolarPhotovoltaicPotentialBasedonRooftopRetrievalfromRemoteSensingImages.Energies,11(11),Article11.https://doi.org/10.3390/en11113172156.Stamford,L.,&Azapagic,A.(2018).EnvironmentalImpactsofPhotovoltaics:TheEffectsofTech-nologicalImprovementsandTransferofManufacturingfromEuropetoChina.EnergyTechnology,6(6),1148–1160.https://www.semanticscholar.org/paper/Environmental-Impacts-of-Photovolta-ics%3A-The-Effects-Stamford-Azapagic/82da494d620b5b7495ae04cffaa5365e3df676aa157.StateCouncilInformationOfficeofthePeople’sRepublicofChina.(2020).ThePotentialofElectricEnergySubstitutioninthe“14thFive-YearPlan”PeriodIsExpectedtoExceed600billionkWh.http://www.scio.gov.cn/ztk/dtzt/42313/44537/44544/Document/1695090/1695090.htm158.Sun,J.,Wan,Y.,Zheng,P.,&Lin,X.(2014).CoordinatedChargingandDischargingStrategyforElectricVehiclesBasedonDemandSideManagement.TransactionsofChinaElectrotechnicalSociety,29(8),64–69.http://dgjsxb.ces-transaction.com/CN/abstract/abstract2584.shtml159.SunY.,GuoH.,HouZ.,DengX.,&SunJ.(2022).ForeignMeasurestoEnhancetheFlexibilityofPowerSystemandItsEnlightenmenttoChina’sExperience.ModernManagement,12(01),37–44.https://doi.org/10.12677/MM.2022.121006160.Tan,L.(2022,February17).TheFirstYearofChina’sNationalCarbonMarket,Reviewed.ChinaDialogue.https://chinadialogue.net/en/climate/the-first-year-of-chinas-national-carbon-market-re-viewed/161.Tao,Q.(2022,May31).ChallengesExistforIncludingIndustriesintotheNationalCarbonMarket.http://www.cnenergynews.cn/huanbao/2022/05/31/detail_20220531124246.html162.TheChinaCouncilforInternationalCooperationonEnvironmentandDevelopment(CCICED).(2022).China’sLowCarbonTransition-Reviewofthe2022AnnualMeeting.http://www.cciced.net/dxhd/nh/2018_8823/nhxw/202206/t20220621_131254.html163.TheInstituteofClimateChangetheInstituteofClimateChangeandSustainableDevelopment(ICCSD).(2020).ComprehensiveReporton“China’sLong-TermLow-CarbonDevelopmentStrategyandTransformationPathResearch.”ChinaPopulation,ResourcesandEnvironment.30(11),1–25.https://image.oversea.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDTEMP&file-name=ZGRZ202011001164.TheNationalPeople'sCongressofthePeople'sRepublicofChina(NPC).(2021).Outlineofthe14thFive-YearPlan(2021-2025)forNationalEconomicandSocialDevelopmentandVision2035ofthePeo-ple’sRepublicofChina.http://www.npc.gov.cn/npc/kgfb/202103/bf13037b5d2d4a398652ed253ce-a8eb1.shtml165.ThePeople’sBankofChina(PBC).(2021,November9).ThePeople’sBankofChinaLaunchestheCar-bonEmissionReductionFacility.http://www.pbc.gov.cn/en/3688110/3688172/4157443/4385345/index.html166.PBC,NDRC,&ChinaSecuritiesRegulatoryCommission.(2021,April2).CatalogueofProjectsSup-portedbyGreenBonds.http://www.gov.cn/zhengce/zhengceku/2021-04/22/content_5601284.htm167.TheStateCouncil.(2020).AnnouncementofStateCouncilBoardMemberMeetinginSep.02.https://baijiahao.baidu.com/s?id=1676728457964485666&wfr=spider&for=pc168.TheStateCouncil.(2021,October27).FullText:ActionPlanforCarbonDioxidePeakingBefore2030.http://english.www.gov.cn/policies/latestreleases/202110/27/content_WS6178a47e-c6d0df57f98e3dfb.html169.TheStateCouncil.(2022a).China’sGDPExpands8.1%in2021.TheStateCouncil.http://english.www.gov.cn/archive/statistics/202201/17/content_WS61e4d14ec6d09c94e48a3b8c.html170.TheStateCouncil.(2022b).China’sTotalRenewableEnergyUseReached750milliontonsofStandardCoalin2021.http://www.gov.cn/xinwen/2022-06/24/content_5697606.htmREFERENCES104SYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYS171.Tong,D.,Zhang,Q.,Zheng,Y.,Caldeira,K.,Shearer,C.,Hong,C.,Qin,Y.,&Davis,S.J.(2019).CommittedEmissionsfromExistingEnergyInfrastructureJeopardize1.5°CClimateTarget.Nature,572(7769),Article7769.https://doi.org/10.1038/s41586-019-1364-3172.Ueckerdt,F.,Bauer,C.,Dirnaichner,A.,Everall,J.,Sacchi,R.,&Luderer,G.(2021).PotentialandRisksofHydrogen-basedE-fuelsinClimateChangeMitigation.NatureClimateChange,11(5),Article5.https://doi.org/10.1038/s41558-021-01032-7173.UnitedNationsDepartmentofEconomicandSocialAffairs(UNIDO).(2021).UNIDOStatisticsDataPortal.https://stat.unido.org/database/INDSTAT%202%202021,%20ISIC%20Revision%203174.vandeVen,D.-J.,Capellan-Peréz,I.,Arto,I.,Cazcarro,I.,deCastro,C.,Patel,P.,&Gonzalez-Eguino,M.(2021).ThePotentialLandRequirementsandRelatedLandUseChangeEmissionsofSolarEner-gy.ScientificReports,11(1),2907.https://doi.org/10.1038/s41598-021-82042-5175.Wang,K.,Li,S.,Lu,M.,Wang,J.,&Wei,Y.(2022).ChinaCarbonMarketReviewandProspect(2022)(CEEP-BIT-2022-006).https://ceep.bit.edu.cn/docs//2022-01/eb3a1bf65b6e499281122c-9d55ef2f7d.pdf176.Wang,K.,Liu,F.,Yin,M.,&Liu,J.(2021).ResearchonChina’sCarbonEmissionsPath-wayUnderthe1.5°CTarget.ClimateChangeResearch,17(7–17).https://doi.org/10.12006/j.issn.1673-1719.2020.228177.Wang,X.,Su,C.,Lobonţ,O.-R.,Li,H.,&Nicoleta-Claudia,M.(2022).IsChina’sCarbonTradingMarketEfficient?EvidencefromEissionsTradingSchemePilots.Energy,245,123240.https://doi.org/10.1016/j.energy.2022.123240178.Way,R.,Ives,M.C.,Mealy,P.,&Farmer,J.D.(2021).EmpiricallyGroundedTechnologyForecastsandtheEnergyTransition.InstituteforNewEconomicThinkingattheOxfordMartinSchool.https://www.inet.ox.ac.uk/files/energy_transition_paper-INET-working-paper.pdf179.Wei,M.,McMillan,C.A.,&delaRueduCan,S.(2019).ElectrificationofIndustry:Potential,Chal-lengesandOutlook.CurrentSustainable/RenewableEnergyReports,6(4),140–148.https://doi.org/10.1007/s40518-019-00136-1180.WindMachineryBranchofChinaAgriculturalMachineryIndustryAssociation.(2021).ChinaWindPowerIndustryDevelopmentReport.181.WorldSteelAssociation(WSA).(2021a).SteelStatisticalYearbook2021.https://worldsteel.org/publi-cations/bookshop/ssy_subscription-2021/182.WSA.(2021b).TopSteelmakersin2020.https://worldsteel.org/steel-by-topic/statistics/top-produc-ers/183.Wu,L.,&Zhu,Q.(2021).ImpactsoftheCarbonEmissionTradingSystemonChina’sCarbonEmissionPeak:ANewData-DrivenApproach.NaturalHazards,107(3),2487–2515.https://doi.org/10.1007/s11069-020-04469-9184.Xinhuanet.(2020,September5).ChinaFocus:Understanding“DualCirculation”andWhatItMeansforWorld.http://www.xinhuanet.com/english/2020-09/05/c_139345700.htm185.Xinhuanet.(2021a,May27).FirstPlenaryofLeadersGroupontheWorksofCarbonPeakingandCarbonNeutrality.http://www.gov.cn/guowuyuan/2021-05/27/content_5613268.htm186.Xinhuanet.(2021b,October24).FullText:WorkingGuidanceforCarbonDioxidePeakingandCarbonNeutralityinFullandFaithfulImplementationoftheNewDevelopmentPhilosophy.http://www.news.cn/english/2021-10/24/c_1310265726.htm187.Xinhuanet.(2021c,October26).FullText:ActionPlanforCarbonDioxidePeakingBefore2030.http://www.news.cn/english/2021-10/27/c_1310270985.htm188.Xinhuanet.(2022,January12).TheMinistryofPublicSecurityreleases2021nationalmotorvehicledata.http://www.xinhuanet.com/auto/20220112/96eb38da7fbe4340aab55ad1ec182669/c.htmlREFERENCESSYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYS105189.Xu,N.(2022,June9).RebootingChina’sCarbonCredits:Whatwill2022bring?ChinaDialogue.https://chinadialogue.net/en/climate/rebooting-chinas-carbon-credits-what-will-2022-bring/190.Yang,Y.,Li,R.,Zhu,Y.,Sun,Z.,&Zhang,Z.(2020).ExperimentalandSimulationStudyofAirSourceHeatPumpforResidentialApplicationsinNorthernChina.EnergyandBuildings,224,110278.https://doi.org/10.1016/j.enbuild.2020.110278191.You,X.(2021,June3).Explainer:ChinaCreatesNew‘LeadersGroup’toHelpDeliverItsClimateGoals.CarbonBrief.https://www.carbonbrief.org/explainer-china-creates-new-leaders-group-to-help-deliver-its-climate-goals192.Yu,M.,Li,S.,Zhang,X.,&Zhao,Y.(2021).Techno-economicAnalysisofAirSourceHeatPumpCombinedwithLatentThermalEnergyStorageAppliedforSpaceHeatinginChina.AppliedThermalEngineering,185,116434.https://doi.org/10.1016/j.applthermaleng.2020.116434193.Yu,S.,Horing,J.,Liu,Q.,Dahowski,R.,Davidson,C.,Edmonds,J.,Liu,B.,Mcjeon,H.,McLeod,J.,Patel,P.,&Clarke,L.(2019).CCUSinChina’sMitigationStrategy:InsightsfromIntegratedAssessmentModeling.InternationalJournalofGreenhouseGasControl,84,204–218.https://doi.org/10.1016/j.ijggc.2019.03.004194.Yu,S.,Lehne,J.,Blahut,N.,&Charles,M.(2021).1.5°CSteelDecarbonizingtheSteelSectorInPar-is-compatiblePathways.https://9tj4025ol53byww26jdkao0x-wpengine.netdna-ssl.com/wp-content/uploads/1.5C-Steel-Report_E3G-PNNL-1.pdf195.Yu,S.,Yarlagadda,B.,Siegel,J.E.,Zhou,S.,&Kim,S.(2020).TheRoleofNuclearinChina’sEnergyFuture:InsightsfromIntegratedAssessment.EnergyPolicy,139,111344.https://doi.org/10.1016/j.enpol.2020.111344196.Zalk,J.,&Behrens,P.(2018).TheSpatialExtentofRenewableandNon-RenewablePowerGenera-tion:AReviewandMeta-AnalysisofPowerDensitiesandTheirApplicationinTheU.S.EnergyPolicy,123,83–91.https://doi.org/10.1016/j.enpol.2018.08.023197.Zeng,X.,Li,W.,&Xingyue,G.(2021).TheGuangdongCarbonEmissionsTradingScheme:Progress,ChallengesandTrends(HarvardProjectonClimateAgreement).https://www.belfercenter.org/sites/de-fault/files/files/publication/zeng-et-al-guangdong-ets-english-v2.pdf198.Zhang,L.(2022,June15).SpecialEnvoyXieZhenhua:ChinaWillWorkonPollutionAbatement,CarbonReduction,andOtherAreastoAchieveDualCarbonGoals.https://www.bjnews.com.cn/de-tail/165528143614587.html199.Zhang,Q.,Tong,D.,Davis,S.J.,Guan,D.,Xu,R.,Tan,X.,Yan,L.,&Chen,C.(2021).CarbonEmis-sionsandLock-InEffectofGlobalEnergyInfrastructure2021[Folder].https://www.efchina.org/Attach-ments/Report/report-lceg-20220303200.Zhang,Q.,Zhang,L.,Nie,J.,&Li,Y.(2017).Techno-economicAnalysisofAirSourceHeatPumpAp-pliedforSpaceHeatinginNorthernChina.AppliedEnergy,207,533–542.https://doi.org/10.1016/j.apenergy.2017.06.083201.Zhang,S.,&Chen,W.(2022).AssessingtheEnergyTransitioninChinatowardsCarbonNeutralitywithaProbabilisticFramework.NatureCommunications,13(1),Article1.https://doi.org/10.1038/s41467-021-27671-0202.Zhang,Y.,Ma,Q.,Li,B.,Fan,X.,&Fu,Z.(2017).ApplicationofanAirSourceHeatPump(ASHP)forHeatinginHarbin,theColdestProvincialCapitalofChina.EnergyandBuildings,138,96–103.https://doi.org/10.1016/j.enbuild.2016.12.044203.Zheng,J.,Zhou,Y.,Yu,R.,Zhao,D.,Lu,Z.,&Zhang,P.(2019).SurvivalRateofChinaPassengerVehicles:AData-DrivenApproach.EnergyPolicy,129,587–597.https://doi.org/10.1016/j.en-pol.2019.02.037204.Zheng,X.,Wei,C.,&Qin,P.(2015).ChineseHouseholdEnergyConsumptionReport2014.ChinaSci-encePublishing&Media.REFERENCES106SYNTHESISREPORT2022ONCHINA’SCARBONNEUTRALITY:ELECTRIFICATIONINCHINA’SCARBONNEUTRALITYPATHWAYS205.Zheng,X.,Wei,C.,Song,F.,&Xie,L.(2016).ChineseHouseholdEnergyConsumptionReport2015.ChinaSciencePublishing&Media,Beijing.206.Zhou,D.D.,Xu,K.,Zhou,P.,&Jiang,X.(2020).TheProductionofLargeBlastFurnacesofChinaIn2018andThoughtsofIntelligentManufacturingintheIronmakingProcess.Ironmaking&Steelmak-ing,47(6),650–654.https://doi.org/10.1080/03019233.2020.1807289排版印制/13671117637printedoneco-friendlypaperprintedoneco-friendlypaperTel:+86-10-5821-7100Email:china@efchina.orgWebsite:https://www.efchina.orgAddress:2403,CITICBuilding,19JianguomenwaiStreet,ChaoyangDistrict,Beijing100004,P.R.China

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

碳中和
已认证
内容提供者

碳中和

确认删除?
回到顶部
微信客服
  • 管理员微信
QQ客服
  • QQ客服点击这里给我发消息
客服邮箱