TheChineseCarbon-NeutralGoal:ChallengesandProspects※NingZENG1,2,KejunJIANG3,PengfeiHAN4,2,ZekeHAUSFATHER5,JunjiCAO6,DanielKIRK-DAVIDOFF1,ShaukatALI7,andShengZHOU81DepartmentofAtmosphericandOceanicScience,andEarthSystemScienceInterdisciplinaryCenter,UniversityofMaryland,CollegePark20742,Maryland,USA2StateKeyLaboratoryofNumericalModelingforAtmosphericSciencesandGeophysicalFluidDynamics,InstituteofAtmosphericPhysics,ChineseAcademyofSciences,Beijing100029,China3EnergyResearchInstitute,NationalDevelopmentandReformCommission,Beijing100045,China4CarbonNeutralityResearchCenter,InstituteofAtmosphericPhysics,ChineseAcademyofSciences,Beijing100029,China5BreakthroughInstitute,Oakland94612,California,USA6InstituteofAtmosphericPhysics,ChineseAcademyofSciences,Beijing100029,China7GlobalChangeImpactStudyCentre,MinistryofClimateChange,Islamabad45250,Pakistan8InstituteofEnergy,EnvironmentandEconomy,TsinghuaUniversity,Beijing100084,China(Received10August2021;revised13December2021;accepted21December2021)ABSTRACTOn22September2020,withinthebackdropoftheCOVID-19globalpandemic,Chinaannounceditsclimategoalforpeakcarbonemissionsbefore2030andtoreachcarbonneutralitybefore2060.Thiscarbon-neutralgoalisgenerallyconsideredtocoverallanthropogenicgreenhousegases.TheplanningeffortisnowinfullswinginChina,butthepathwaytodecarbonizationisunclear.Theneededtransitiontowardsnon-fossilfuelenergyanditsimpactonChinaandtheworldmaybemoreprofoundthanitsreformanddevelopmentoverthepast40years,butthechallengesareenormous.Analysisoffourrepresentativescenariosshowssignificantdifferencesinachievingthecarbon-neutralgoal,particularlythecontributionofnon-fossilfuelenergysources.Thehightargetvaluesfornuclear,wind,andbioenergyhaveapproachedtheircorrespondingresourcelimitations,withsolarenergybeingtheexception,suggestingsolar'scriticalrole.Wealsofoundthatthenear-termpoliciesthatallowforagradualtransition,followedbymoredrasticchangesafter2030,caneventuallyreachthecarbon-neutralgoalandleadtolessofareductionincumulativeemissions,thusinconsistentwiththeIPCC1.5°Cscenario.ThechallengesandprospectsarediscussedinthehistoricalcontextofChina'ssocio-economicreform,globalization,internationalcollaboration,anddevelopment.Keywords:carbonneutral,carbondioxidereductions,energysystemtransformation,distributedenergysystem,modelprojectionsCitation:Zeng,N.,K.J.Jiang,P.F.Han,Z.Hausfather,J.J.Cao,D.Kirk-Davidoff,S.Ali,andS.Zhou,2022:TheChinesecarbon-neutralgoal:Challengesandprospects.Adv.Atmos.Sci.,https://doi.org/10.1007/s00376-021-1313-6.ArticleHighlights:•TheChinesecarbonneutralgoalwillhaveprofoundimpactbutthechallengesareenormous.•Fourrepresentativescenariosshowsignificantdifferencesinhowtoachievethecarbon-neutralgoal,butallagreetheimportanceofsolarenergy.•Werecommendmoreaggressiveactionsondistributedsolar,wind,smallandmodularnuclear,smartgrid,andenergystorage.1.IntroductionOn22September2020,withinthebackdropoftheCOVID-19globalpandemic,Chinaannounceditsclimategoalforpeakcarbondioxide(CO2)emissionsbefore2030andreachcarbonneutralityby2060,oftenreferredtoas“ShuangTan”or“thetwocarbongoals”inChina(Xi,2020).Afterthisannouncement,PresidentXIhasspokenmorethan30timesonimportantoccasionsandemphasizedtheimportanceofthedoublecarbongoal.TheplanningeffortstoreachthetwogoalsarenowinfullswinginChina.Thisannouncementcameasapleasantsurprisefor※ThispaperisacontributiontothespecialissueonCarbonNeutrality:ImportantRolesofRenewableEnergies,CarbonSinks,NETsandnon-CO2GHGs.Correspondingauthors:NingZENG,JunjiCAOEmail:zeng@umd.edu,jjcao@mail.iap.ac.cnADVANCESINATMOSPHERICSCIENCES,2022•Perspectives•©InstituteofAtmosphericPhysics/ChineseAcademyofSciences,andSciencePressandSpringer-VerlagGmbHGermany,partofSpringerNature2022thefightagainstclimatechange,butthepathwaytodecarbon-izationisunclear;theClimateEnvoy,ZhenhuaXIE,saidthatthecarbon-neutralgoalcoversallgreenhousegases.Theneededtransitiontowardsnon-fossilfuelenergyanditsimpactonChinaandtheworldmaybemoreprofoundthanitsreformanddevelopmentoverthepast40years,butthechallengesareenormous.2.RoadmaptocarbonneutralityCurrently,China'sfossilfuelCO2emissionsare10.2GtCO2(gigatonnesofCO2)in2019,whichcompromises27.9%oftotalglobalemissions(Friedlingsteinetal.,2020).In2020,fossilfuelsaccountedfor83%ofthetotalprimaryenergysupply(TPES)withcoalrepresenting57%,oil17%,andgas9%,whilenon-fossilfuelaccountedforonly17%(hydro7%,nuclear3%,wind3%,solar2%,bio2%).Toachievethecarbon-neutralgoal,whichambitiouslycorrespondstonotexceedingthe2°CtargetoftheParisAgreementonclimatechange(IPCC,2018;Jiangetal.,2018;ProjectComprehensiveReportPreparationTeam,2020),theratiooffossilfueltonon-fossilenergysourcesneedtobecompletelyreversed.Thelowcarbonenergysys-temwouldneedtodecreaseto80%–90%ofthepresentCO2emissions[Fig.S1intheElectronicSupplementaryMaterial(ESM)].Theremainder(includingthenon-CO2emis-sions)wouldneedtobeoffsetbytheterrestrialandoceansinksandcarboncapture,usageandstorage(CCUS),result-inginnet-zeroemissions.Weillustratethiswitharepresentat-ivescenariobyrunningtheIPACintegratedassessmentmodel(Jiangetal.,2018).WestartedusingthelatestChineseenergyandeconomicstatisticsof2020andthenpro-jectedthemintothefutureatfive-yearintervals.Theprojec-tionshowsthat,by2050,thecontributionofnon-fossilenergywouldincreaseto77%,whilethefossilfuelportionwoulddropto23%(Fig.1andTable1).Inparticular,thecon-tributionofcoalwoulddropbelow10%.Additionally,signi-ficantcarbonsinksandnegativeemissionswillbeneededtocountertheremainingfossilfuelemissionstoachievenet-zeroCO2emissions.Whiletheoverallscenarioinvolvesdetailedmodelingofsocio-economicandtechnologicaldevelopment,fossilfuelCO2emissionscanbebroadlyunderstoodasdrivenbythefollowingkeyfactorsusingtheKayaidentity(KayaandYokoburi,1997):CO2=CO2Energy×EnergyGDP×GDPPopulation×Population,(1)whereCO2isCO2emissionsfromhumansources,Energyisenergyconsumption,andGDPisgrossdomesticproduct(GDP).ThepastincreasesinCO2emissionshavebeenmostlydrivenbyeconomicdevelopmentandpopulationincreases(Raupachetal.,2007).China'sGDPhasincreasedatanaver-agerateof9%from1980–2019(the3rdfactorintheKayaIdentityabove).Goingforward,withtheannualrateofGDPexpectedtogrowat4%–5%andthepopulationstabiliz-ing,acompletedecouplingofCO2emissionsfromGDPgrowthwillberequiredforthecarbon-neutralgoal.First,CO2emissionintensityperunitenergygeneration(the1stfactor)willneedtobereduceddrasticallyinanear-com-pleteswitchfromfossiltonon-fossilfuelenergy.Thiscanbeaccomplishedbyreducingcoalandgasonthepowergener-ationsideandheavyelectrificationandenergyefficiencyontheend-userside.Second,decreasingtheenergyintensityperGDP(the2ndfactorintheKayaIdentity)requiresFig.1.TheYinandYangoffossilvs.non-fossilfuelenergysourcemix.AscenariotoachieveChina'scarbon-neutralgoalbefore2060wouldrequireacompletereversaloftheirrelativecontributiontototalenergysupplyandanunprecedentedrapidincreaseinrenewableenergyplusnuclearanddecreaseinfossilfueluseonthetimescaleof20–30yearsafterpeakcarbon.2CHINESECARBONNEUTRALGOAL:CHALLENGES&PROSPECTSgrowthtocomemostlyfromtheservicesectorandnon-energyintensiveindustriessuchaselectronics,whichisexpectedtooccurnaturallyasChina'srapidinfrastructurebuild-upoverthelast40years(Zengetal.,2008)islevel-ingoff.Regardingpowergenerationspecifically,thisscenariocallsfora2485Gigawatts(billionwattsorGW)ofinstalledsolarcapacityin2050,a9-foldincreasefrom281GWin2020.Intheproposedmix,windpowerwillincreasefrom244GWin2020to1508GWcapacity(a6-foldincrease),whilenuclearpowerwillincreasefrom55GWto563GW(a10-foldincrease).Suchchangeswouldrequireanaver-ageannualadditionof73GWofsolar-generatedpower,and17GWofnuclearpoweroverthenext30years,whileatthesametimereducingcoal-firedpowerby33GWperyear.In2050,non-fossilfuelenergysourcesconsistingofnuclearandrenewables(solar,wind,hydro,bio)willprovide90%ofthetotalpowergeneration.Afterconsider-ingthedifferencesincapacityfactors,thismixofinstalledcapacitiescontributestoatotalTPESmixof24%nuclearand53%renewables(Table1).2.1.DifferentpathwaysTofurtherunderstandtheassumptionsanduncertain-ties,wecomparedtheprojectionsfromfour1.5°Cmodel-ingsynthesisscenarios:theIPACmodeldiscussedabove,GCAM-TU(Zhouetal.,2021),andICCSD(Davidsonetal.,2016;Huangetal.,2020;ProjectComprehensiveReportPreparationTeam,2020),andanICCSD“transitionpathway”(ProjectComprehensiveReportPreparationTeam,2020)(seeESM).Thefourscenariosallshowareversalbetweenfossilandnon-fossilfuelsandsimilarcar-bonemissions.However,theenergymixdifferssignific-antly.ChinasubmittedtheupdatedNationallyDeterminedCon-tributions(NDC)on28October2021withseveralnewcom-mitments(https://www4.unfccc.int/sites/NDCStaging/pages/Party.aspx?party=CHN,accessedon6December2021).ChinawillloweritsCO2emissionsperunitofGDPbyover65percentfrom2005levels.IntheProjectComprehensiveReportPreparationTeam(2020)study,theprojectednum-beris68.2%,abithigherthanthecommittedlowerboundof65%.ForChina’sgoalofnon-fossilenergyproportion(about25%by2030),theGCAM-TUandIPACmodelspre-dicted36%and30%at2030,respectively,inthe1.5°Ccar-bon-neutralscenarios(Fig.S2intheESM)(Jiangetal.,2018;Zhouetal.,2021).Asforthegoaloftotalinstalledwindandsolarpowercapacityreachingover1.2billionkilo-watts,theGCAM-TUandIPACmodelspredicted1.6and1.4billionkilowattsby2030,respectively(Jiangetal.,2018;Zhouetal.,2021).PrimaryenergyprojectedbytheIPACmodelincreasesgraduallyandplateaustoalevelthatis30%higherin2050thanin2020,whiletheotherscenariosonlyshowminorincreases(Fig.2).In2050,fossilfuelcontributionintheICCSDscenariois610GWy,onlyhalfoftheothertwo,mostlyduetoamuchsmallercoalcontribution.Non-fossilenergysupplyrangesfrom3630to5040GWy,withtheICCSDcominginlowforallfossilfuels,particularlycoal,andtheGCAM-TUassumeshigherandlonger-lastingoiluse(Fig.S2intheESM).Largedifferencesexistinnon-fossilenergysourcesTable1.Energysourcesinthetotalprimaryenergysupply(TPES)mix.Futureyearsareprojectedbythecarbon-neutralscenariousingtheIPACmodel.UnitisinGWy(Gigawattsyear)andpercentageoftotalinparentheses.YearTotalCoalOilN.GasNuclearHydroWindSolarBio200519561427(72.9%)404(20.7%)56(2.9%)18(0.9%)45(2.3%)0.8(0.0%)0.0(0.0%)4.6(0.2%)202045732622(57.3%)774(16.9%)390(8.5%)142(3.1%)319(7.0%)145(3.2%)103(2.3%)78(1.7%)203556251641(29.2%)512(9.1%)590(0.5%)818(14.5%)496(8.8%)645(11.5%)501(8.9%)423(7.5%)20506044592(9.8%)211(3.5%)563(9.3%)1460(24.2%)535(8.8%)1001(16.6%)982(16.2%)702(11.6%)Fig.2.Energysupplyfrom(a)total,(b)fossilfuel,(c)non-fossilfuelsourcesfromthree1.5°Cscenarios,anda“transitionpathway”.ZENGETAL.3(Fig.S2).Forexample,theIPACmodelprojects1570GWy(orGigawattsyear)nuclearenergy,generatedby563GWofinstalledcapacity,comparedto780–850GWyintheothertwomodels.TheICCSDscenarioprojectsamuchhighercontributionfromwindenergy,1920GWy,com-paredto1010–1080GWy,fortheothertwomodels.TheIPACandICCSDcallfor1040–1060GWyofsolarenergy,comparedto430GWyfortheGCAM-TU.Hydropoweristheonlyenergysourcewithgoodagreementamongthemod-elsbecausethedevelopmentofmostoftheavailableresourceshasalreadytakenplaceinthelast30years.Thenearlyfactor-of-twodifferencesinnuclear,wind,solar,andbioenergyinthe2050scenariosreflectmajoruncer-taintiesintheassumptions.Forinstance,thehighervaluefornuclearenergyintheIPACmodel,servingascrucialbase-loadorfirmgenerationwhencoalusebecomesminimal,requirestheuseofnearlyallofthesuitablesitesforlarge-scalenuclearpowerplants(Jiangetal.,2018;XiaoandJiang,2018;Yuetal.,2020).Similarly,thehighercontribu-tionfrombioenergyimpliesmajorcompetitionwithfoodpro-ductionandotherenvironmentalgoals(Zhaoetal.,2015;Huangetal.,2020),andthehigherwindenergyscenariointheICCSDwouldusemuchofthetechnicallyexploitableresources(Zhangetal.,2011;Yangetal.,2017).Ingeneral,thehighertargetvaluesofmostnon-fossilfuelenergysourcesappeartoapproachresourcelimitation,withsolarenergybeingtheloneexception.TheIPCC1.5°Cscenarionotonlyrequireslong-termcommitmentbutalsofast,near-termemissionsreductions.However,becauseoftheinertiaintheenergysystem,apath-wayisproposedto“transition”fromareinforced-policyscen-ariototheICCSD1.5°Cscenario(ProjectComprehensiveReportPreparationTeam,2020).Thisscenarioallowsforagradualtransitioninthenearterm,whichismoreconsist-entwithChina's14thFiveYearPlan(FYP)thatiscur-rentlytakingshape(TheStateCouncil,2021)butrequiresafasterdrawdownafter2030andsomewhatdifferentcumulat-ivecarbonemissions(Fig.S3intheESM).Althoughitcaneventuallyreachthecarbon-neutralgoal,thisscenarioleadstolesscumulativeemissionsreduction,thusinconsistentwiththeIPCC1.5°Cscenario.Thisaddsadditionaluncer-taintytotheenvisionedpathways,illuminatingthescaleoftheproblemandthechallengesfacingthecarbon-neutralgoal.2.2.ChallengesofincreasingrenewableenergyPracticalsolartechnologywasdevelopedintheUSinthe1970s.The2009EuropeanrenewableenergydirectivespurreditsgrowthasChinesemanufacturersmadesolarpan-elsthatweresoldtoGermanyandothercountries.Overthelastdecade,asthetechnologyfurtheradvancedandthescaleoftheeconomyexpanded,thepriceofwindandsolarpowerhasachievedthestunningfeatofprice-paritywiththeLevelizedCostofElectricity(LCOE),whichisnowcheaperthancoalandnuclear(IRENA,2020;Lazard,2020).China'sinstalledsolarcapacityincreasedfrom2.6GWin2010to43GWin2015and281GWin2020,withanannualadditionrateofmorethan20%inthelastfewyears.Evenduringthe2020COVID-19pandemic,49GWofsolarand71GWofwindpowerwereadded.Thefactthatrenewableenergyisnoweconomicallycompetitiveagainstfossilfuelsarguablyprovidesthemostimportantfoundationforoptimismonthecarbon-neutralgoal.However,increasingthecontributiontotheenergymixofnon-fossilfuelfrom17%to77%–85%,amorethan6-foldincrease,in30yearswillbeadauntingtask.Asthemodelscenariosshow,thehighertargetsfornuclear,wind,andbioenergyapproachtheirrespectiveresourcelimitswiththenotableexceptionofsolarenergy.Whiletheavailablesun-lightisnotalimitation,itdoesrequirevastland,mineral,andotherresources.Theinherentintermittencyofsolarandwindpowerduetodiurnal,synopticweather,andseasonalcli-matevariationsgivesrisetoloadbalancingandgridsecur-ityproblems,especiallywhentheproportionofthisintermit-tentsourceexceeds20%ofthetotalelectricityproduction.Thesolutionwillrequiretechnologicalbreakthroughsinenergystorageandgridtechnology.Suchascaling-upinvest-mentwouldneedtobeatacomparablescaleasrenewablepowergenerationitself.Suchuncertaintiesandunforeseencostsarenotnecessarilyfullyaccountedforinthemodelscen-ariosorthelong-termindustryoutlook(GlobalEnergyInter-connectionDevelopmentandCooperationOrganization,2021).2.3.Challengesoffossilfuelandcoalphase-outToreducefossilfuelconsumptionbelow15%–23%ofthetotalenergyby2050willbeequallychallenging.Thekeytothistransitionistoimposeend-useelectrificationsup-pliedbyrenewableenergy.Chinahasbeenaggressivelydevel-opingelectricvehicles,andthismarketaccountsfor50%oftheworld'stotal.Reducingoilusewouldrequireelectrifica-tionofthetransportationsectortoatleast85%.Electrifica-tionofenergy-intensiveindustriessuchassteelmakingandchemicalsisinitsinfancy.Reducingnaturalgasuserequiresthetransitionofcookingandheatingmechanismsfromgastoelectricityinresidentialandofficebuildings,adauntingtaskinretrofittinganurbaninfrastructurethatismostlycomplete.Whileenergyefficiencycanimprove,otherfactorsmayincreasedemand.Forexample,tradition-ally,theChinesecitiessouthoftheHuaiRiverdonotuseindoorheating,whichmayeventuallychange.Intheotherdir-ection,thedemandforcoolingwillbehigherinawarmerworld.Thesefactorswouldrequireaneardoublingofelec-tricpowergeneration,eventhoughthetotalenergyconsump-tionisprojectedtoincreaseonlymodestlyinthecarbon-neut-ralscenarios.Nearly70%ofChina'selectricitycurrentlycomesfromcoal.Reducingittolessthan10%in2050requiresafastphase-outofexistingcoal-firedpowerplants.Isthisfeas-ible?Asamajorbaseload,thestabilityprovidedbycoalwillstillbecriticalintheneartomediumfuture.Moreover,Chinacurrentlyhasasignificantnumberofcoal-firedpowerplantsunderconstructionorapproved,althoughmanyofthesearecleanerIntegratedGasificationCom-4CHINESECARBONNEUTRALGOAL:CHALLENGES&PROSPECTSbinedCycle(IGCC)plants.Giventhe30–40yearslifetimeofsuchplants,neareliminationofthemin20–30yearsimpliesstrandedassets,reducedoperationhoursandprofit,lossofjobs,andotherchallenges.Recentgovernmentpolicyhasbeenuncertainincoaldevelopment,whichisnotconsistentwithdecisiveactionsneededforthecarbon-neut-ralgoal.ApartialremedyduringthetransitionperiodwouldbetograduallyreduceoperationhoursastheChinesecoal-firedpowerplantsgenerallyoperateathighloads.Arapidcoalphase-outwillalsoneedtodealwithsocialissuesasthecoalindustrycurrentlyemploysmorethan4millionworkerslocatedinafewprovinces.Moreover,thephase-outoffossilfuels,especiallycoal,alsobringstheco-benefitofreducingmethane(CH4)emis-sions,animportantnon-CO2GHG,sinceenergyactivitycon-tributed~50%ofChina'santhropogenicCH4emissions(Linetal.,2021).ReducingCH4emissionsisassumedtobeacost-effectivemethodofachievingcarbonneutrality,espe-ciallyintheenergysectorsincemethanecanberecoveredandreusedwithlowercoststhanintheagricultureandwastetreatmentsectors.InthecaseofN2O,thereductionswouldbemoredifficultthanwithCH4sinceabout60%ofN2Oemissionsarefromagriculture(Hanetal.,2021).Com-prehensiveevaluationsonpromisingemissionreductionmeasuresarehighlyneededforbothtechnology,maturity,andcostaspects.2.4.Challengesfromfutureuncertainties:nuclear,technologicalbottlenecks,andgeopoliticsThecarbon-neutralgoalrequiresallvariablestogointherightdirectioninashortamountoftime:technical,socio-political,andeconomical.Yet,unexpectedeventsortrendscertainlycandisrupttheprocess.Shouldacoalphase-outshiftthelion'sshareoffirmgenerationtonuclearpower,amajornuclearaccidentbecomesaworrisomepossib-ility,despitetheexcellentsafetyrecordofChina'snuclearfleet.Inthepast,societyhastendedtoatleasttemporarilyshiftawayfromnuclearpowerafteramajornuclearacci-dent.Forexample,theaccidentattheFukushimaDaiichinuc-learpowerplanton11March2011causedseriousenviron-mentalpollution(Povinecetal.,2013)andpublicalarm(Huangetal.,2013).ForChina,itmaybeprudenttoensurethatrigoroussafetystandardsarefollowedinconventionalnucleardeploymentwhiletestingsafertechnologywithSmallModularReactors(SMRs)andadvancingbetternuc-learwastemanagement.Currentcarbon-neutralpathwaysrelyheavilyonconventionalnuclear;theextenttowhichothercleanenergysourcesmayplayalargerroledependsonfuturetechnologycostsandtheextenttowhichchal-lengesofintermittencyandseasonalvariationsingenera-tioncanbesolvedbybreakthroughsincomplementarytech-nologiessuchasgridstorage,transmission,andhydrogenpro-duction.Withrenewablesandnucleardominatingthefutureenergymix,theremaining15%–23%ofenergyfromfossilfuelsstillneedstobeoffsetbynegativeemissionstechno-logy.However,itisnotcleariftheleadingcandidates,Car-bonCaptureandStorage(CCS)ingeologicalformations,Dir-ectAirCapture(DAC),andBioenergywithCCS(BECCS),willbetechnologicallyandcommerciallysuccessfulenoughattheneededscale(Fussetal.,2014;McLarenandMarkus-son,2020).GeopoliticalinstabilityremainsamajorthreattotheParisclimategoal.SimilartothelargeimpactofMiddleEastoil,demandforrawmaterialscanleadtoinstabilityandvolatility.Ahostilerelationshipamongand'decoupling'ofthemajorworldeconomieswillleadtomoreemphasisoninvestmentindefense,leavingfewerresourcesforsustain-abledevelopmentanddifferenttechnologicalstandardsthatultimatelyhinderthespreadofrenewabletechnology.3.AnewenergymapIn1935,geographerHuan-YongHUdrewasouthwest-northeastorienteddiagonallineonthemapofChina,laterknownasthe'Hu-line'(Fig.3).Hepointedoutthat36%ofthelandsoutheastofthislineaccommodates96%ofChina'spopulation,whiletothenorthwest,4%ofthepopula-tionlivesontheremaining64%oftheland.Acentralgeo-economicrealityofChinaistheseparationofChinaintotworegionswithdistinctlydifferentclimates,geography,pop-ulation,andstagesofeconomicdevelopment.Thislinealsoseparatesafundamentalenergy“inequality”.Thesemi-aridregionsofnorthwesternChinahavemuchoftherenewableenergyresourcesaswellasfossilfuelreservesthatneedtobetransferredtotheindustriallydevelopedcentralandeast-ernregionsofChina,exceptfordevelopmentalongtheancientSilkRoadcorridor,whichisalsothemaincontin-entalconnectiontocentralAsiaandEurope.Chinaisdevelopingultra-highvoltagedirectcurrent(UHVDC)linesthatcanrunthousandsofkilometers,suchasthe800kilovolt,2193km-longBaihetan-Zhejianglinecur-rentlyunderconstruction.However,thecurrentgridsystemisfarfromadequateinaccommodatingapervasivedistrib-utedsystematthescaleenvisionedforcarbonneutrality.Forinstance,assuming75%ofthe2485GWsolarand1508GWwindpowerprojectedbytheIPACmodelfortheyear2050,or3000GWcombined,needstobetransmittedfromthewesttotheeast;suchaprojectwouldrequiretheequival-entof300suchUHVDCtransmissionlinesat10GWeach,witheachlineoccupyinglargeamountsofcontiguousland,oftenoverdifficultterrain.Yet,thisstilldoesnotsolvetheintermittencyissuesinherenttowindandsolarpower.Energystoragesuchasgreenhydrogen,lithium-ion,solid-state,andotheradvancedbatterytechnologiesatverylargescaleswillbecrucial.Still,itisnotyetcleartheywillbeavail-ableinatimelyfashionatareasonablecostandneededscale.Torealizetherenewable-dominatedenergymap,Chinawillneedtodevelopeverypossiblemethodinacarefullybal-ancedapproach.Tominimizetheshortcomingsofsecurityandreliabilityoflong-distancetransmission,distributedenergysystemsshouldbewidelydeployed.Whilerooftopsolaristheposterchildofdistributedsolar,itspotentialonZENGETAL.5apercapitabasisislimitedinChinesecitieswherehigh-risebuildingsdominate.Incontrast,thepotentialismuchhigherinruralregions.Installingsolarpanelsonfarmlandandgraz-ingland,roadside,hillslopes,andothersuitableplacesintheopencountryside(Fig.4)hastheco-benefitsofgenerat-ingpowerandenhancingplantgrowthunderthepanels(Bar-ron-Gaffordetal.,2019),providinggreenjobsandimprov-ingtheincomeoffarmers.Currently,Chinaismakingparticu-lareffortsbyprovidinggovernment-subsidizedsolarinstalla-tionsforpovertyreliefatlocalscales,butthereisgreatpoten-tialforanationwideexpansion.Thepowerfromindividualsolarpanelsandsmallwindturbinescanbeaggregatedusingmicropowerstationsatthevillagelevel.Aftersatisfyinglocalpowerneeds,alargequant-ityofelectricitycanbesentfromthemicro-gridtonearbytowns,thentolargercitiesviatheregionalandnationalgrids.Suchadistributedsystemgoeshand-in-handwithmod-ularizedstoragesystems.Togetherwithelectricandhydro-genfuelcellvehiclesinthecities,anetworkofdistributedsystemswithpervasivepenetrationacrossthecountrycancatalyzearapidpricedropofenergystoragetechnology,providingasuperblyflexibleandresilientenergyinfrastruc-ture.Thecurrentgridsystemisfarfromadequateinaccom-modatingapervasivedistributedsystematthescaleenvi-sionedhere.Suchasystemwillrequirepolicyandfinancialincentives.Becausethecurrentfossilfuel-basedpowersys-temalreadyprovidesabackbonegrid,themicro-mediumscalesystemsgenerallycovertheintermediaterangeoflink-inghousesandfarmstothegrid.Solar,wind,andsmallmodu-larnuclearenergyandbiomasscanbesimilarlyintegratedintothegrid.Suchadistributedsystemandinterconnectedsmartgridswillalsoofferahugemarketfortheinternetofthings(IoT)andrelateddigitaltechnology.Inadditiontoonshorewindenergy,offshorewindenergyisanothermaturetechnologythatcansignificantlyrampup.Thisfullyrenewableenergysourcehasthedis-tinctadvantageofbeingclosetothemajorcoastalmetropol-itancitiessuchasTianjin,Shanghai,Shenzhen,HongKong,andGuangzhou.Besidesbuildingwindfarms,care-fulplanningforsuchanationalbackboneofcoastaltransmis-sioncablesonlandorunderwaterwillfacilitateandstimu-lateoffshorewinddevelopment(Fig.3).Incontrasttosolar,thewindcanblowatnightandisoftenstrongerinwinterthaninsummer;thus,windenergyhascanpotentiallyprovideanimportantbufferforthedistributedsolarsystem.ReforestationandforestprotectioninChinaoverthelast30yearshascontributedtoasignificantcarbonsink,estimatedat0.2GtCyr–1orlarger(Fangetal.,2018;Hanetal.,2021).MostofthisoccurredinsouthernChina,wheretheclimateiswetandwarm.However,astheseforestsmature,theirabilitytoabsorbCO2willdecline.BecauseChinaisalreadyheavilydependentonagriculturalimports,competitionforlandusewillbeamajorlimitationforbioen-ergycontribution(Zhaoetal.,2015;Huangetal.,2020).Novelwaysofmanagingforeststomaintainorenhancethissinkasnegativeemissions(Zeng,2008)maybeneededtooff-sethard-to-replacefossilfueluse.Toachievethenewenergymap,itwillbecriticaltostrikeabalancebetweenadheringtogovernmentguidanceandstimulatingthemarketeconomy.Inthecontextofrenew-ableenergydevelopment,infrastructurebuild-up,andtheCOVID-19response,theChineseexperiencehasdemon-stratedtheimportanceofunifiedvision,concertedeffort,Fig.3.ThenewenergymapofChinawithabalancedportfolio.China'scarbon-neutralgoalwouldrequireastunninglylargequantityofinterconnected,utility-scale,anddistributednon-fossilpowergeneration,aswellascarbonsinksthatoffsetremainingfossilfuelemissions.6CHINESECARBONNEUTRALGOAL:CHALLENGES&PROSPECTSandthewillingnesstosacrificesomeindividualinterestsforthecommunitywhenneeded.Ontheotherhand,toensurecontinuedbenefitsfrominnovationandthedynamismofthemarketeconomy,greatereffortsandmorecarefulapproacheswillbeneededbothinternationallyanddomestic-ally.Forexample,themassproductionofadistributedsolarenergysystemwouldrequiregovernmentsupportsandevenmandatesforbuildingasuitablenationaldistributedgridthatallowselectricitygeneratedbythemicrosolarsystemstoflowin,whilestillallowingformarketmechanismsforcon-structionandpriceadjustment.4.Research,innovation,andcollaborationChina'sGDPhasgrownatanaveragerateof9%annu-allyoverthelast40years,drivenbyanationalresolvetorisefromthe“hundred-yearturmoil”andafocusoneco-nomicdevelopment,enabledbythevigoranddedicationof2−3generationscomingfromapoverty-strickenback-ground.However,thewealthgaphasgrownalarminglylargeaslivingstandardsimprove.AsChinaentersamiddle-wealthstage,continueddevelopmentwillrequireadeepersocio-economictransformation.Thecarbon-neutralgoalandsustainabledevelopment,ingeneral,provideabigopportunityforthistransformation.China'seconomic'miracle'wouldnothavebeenpos-siblewithoutthescientificknowledge,technology,andman-agementexperienceinagenerousinternationalbusinessandculturalenvironment.ChinajoinedtheWorldTradeOrganiza-tion(WTO)in2001,whichmadetheworldmarketaccess-ible,acrucialstepleadingtosubstantialimprovementinliv-ingstandardswhilebenefitingtherestoftheworld.Thebasictechnologyofphotovoltaics,concentratedsolarpower,andwindturbineswasdevelopedintheUSatacom-mercialscaleinthe1970sinresponsetotheMiddleEastoilcrisis.Advancementsinhigh-speedrailhaveoccurredinFrance,Germany,andJapanandwithintechnologyrelatedtolithium-ionbatteriesinJapaninthe1990s.Chinahascon-tributedadditionaldevelopmentstothesetechnologiesandachievedcostreductionsandscale-up.Inthefuture,China'sambitiouscarbon-neutralgoalwillnotbepossiblewithoutcontinuedinternationalcollabora-tionandaconduciveinternationaleconomicandpoliticalenvironment.Akeyissueisintellectualproperty(IP)rights.Chinastarteditspatentandtrademarksystemin1985,andpatentapplicationsaccountedfor46%oftheglobaltotalin2018.However,thisnumberdoesnotnecessarilyreflectthequalityoftheprojects.Technicalknowledgehasbeentradi-tionallyregardedwithlittlevalue,andIPprotectionsareweak.WorkingcloselywithothercountriestoimproveIPpro-tections,fairtechnologytransfer,andmarketaccesswillhavethedualbenefitofnurturingaproductiveinternationalrelationshipandallowingdomesticinnovationtoflourish.Similarly,whileChina'sscientificresearchoutputhasbecomenumberoneintermsofthenumberofpaperspub-lished,Chineseindustryhasbenefitedonlymodestlyfromsuchresearch.Thisisnottosuggestdiminishingresearcheffortsbutrathertoemphasizeestablishingandapplyingmul-tiplecriteriaforjudgingscientificoutputandmerit.Researchwithrealandattainableimpactshouldbeemphas-ized,whetherbasicorapplied.Internationalcollaborationsometimesstartsunpleas-Fig.4.Topandbottomleft:Distributedsmallsolarpowersystemssuchasagrivoltaicsonamicro-gridwithstorageembeddedinasmartinterconnectedregional/nationalgridmaybeakeytodeepdecarbonizationneededforChina'scarbon-neutralgoal.Topright:end-useefficiencyusingsmartsharedbikestoconnectthe“lastkilometer”fromhometometro.Bottomright:Aworkerinstallsasolarphotovoltaicpanelontherooftopofaresidentialbuilding.ZENGETAL.7antlyandunexpectedly.In2008,ascientificattachéattheUSembassyinBeijingsetupanairqualitymonitorontherooftopandstartedtopostthePM2.5measurementontheEmbassy'swebsite(Kintisch,2018).TheinitialreactionfromthepeopleofBeijingwasto'mind-your-own-business'asthe'foggy'weatherispaintedasnaturalbeautyintradi-tionalChineseliteratureandarts.Butitdidnottakelongforpeopletorecognizethehealththreatofairpollution.NowChinahasanetworkofthousandsofmonitoringstationsreportingdatainrealtime.Since2013,thePM2.5hasdroppedby53%(from89.5μgm–3in2013to42μgm–3in2019)inBeijing(BeijingMunicipalEcologyandEnviron-mentalBureau,2020).Thisdecreasehasbeenachievedbyacombinationoffactors,includingmovingheavypollutingindustriesoutsidemajorcities,establishinghigheremis-sionsstandards,andmandatingtemporaryclose-downsoffactoriesduring'bad'weatherconditions.Whilesuchmeas-ureshavehadsignificantimpactinimprovinghealthinhighlypopulatedcitiesduringheavy-pollutionepisodes,thesourcesofpollutionlargelyremainunmitigated.Thecar-bon-neutralgoalprovidesagreatopportunitytodealwithairpollutionandclimatechangefromtheircommonsource—fossilfuelemissions.Theglobalclimatechangeemergencyisanareawithhighpotentialforinternationalcollaboration.Historically,exchangeonclimatesciencethroughavenuessuchastheIntergovernmentalPanelonClimateChange(IPCC)wasinstrumentalintransformingChinafromconsideringcli-matechangeanissueinventedbytheWesttoplayingalead-ingroletodayinpreventingitsfurtherdevelopment.Scient-istsandpolicymakersshouldcontinuetocollaborateonthescienceofclimatechangeandclimatemitigationandadapta-tionstrategies.Forinstance,despiteamajorinvestment,muchofChina'senvironmentaldataontheatmosphereandoceanandlandecosystemsremainhighlyfragmentedandoftennotpubliclyavailable.Aconcertedeffortfromthehighestgovernmentleveltoindividualresearchgroupswillbeneededtobreakbureaucraticobstacles,improvedataqual-ityandavailability,andcreateacarbonmonitoringandgreen-housegasinformationsystemtorealizetheirvalueforglobalclimateeffortsfully.China'sdevelopmentstartedwithlittlemoderninfrastruc-turesothatithashadroomforexperimentationandcompeti-tionofdifferenttechnologiesina'cross-the-river-by-touch-ing-stones'fashion,asphrasedbythelateChineseleaderXiaopingDENG.Amajordrawbackofsuchatrial-and-errorapproachistheinefficientuseofmaterialandhumanresourcesandenvironmentaldegradationonair,land,andwater.Forthecarbon-neutralgoal,Chinamaybeabletosim-ilarlyscaleupkeytechnologiessuchasenergystorage,butonlywithinternationalcollaboration,monitoring,andsci-entificexchange.5.InternationaldevelopmentThescalerequiredtodeploysolar,wind,andend-useelectrificationwillhavemajorspill-overeffectstoothercoun-tries,thankstoChina'sabilitytoscaleupandrefineatechno-logytomakeitaffordable.ThepotentialglobalimpactofarapidChineserenewabledevelopmentmaywellrivaltheimpactonChinaitself,notonlyforitsmanufacturingcapabil-ity,butalsoforthepotentialfortechnologydevelopment,andspreadtodevelopingcountriesorthosesoontobedevelopedwherefutureenergydemandsarenotforeseen.Forinstance,intheBeltandRoadInitiative(BRI),Chinaplanstospendtrillionsofdollarsinthebuild-upofinfrastructurefordevelopingcountriesinAsia,Africa,andSouthAmerica(WorldBank,2018)Theconstructionofcoal-firedpowerplantsshouldbeswitchedtosolarandwindfarms,specificallyfosteringthedistributionofmicrosolarpowerstationsforvillagesandtownsandrooftopandfarmsolarpanelsforruralhouseholds(Fig.4).Effortsshouldnotbeplacedsolelyinconstructingsolarinstalla-tionsbutalsodirectedtowardsexpandingthecapacityofhumanresources.SolardeploymentinChinawillprovidegreenjobsandinfrastructureindevelopingcountries,alsohelpingpovertyrelief.ChinaandIndiashouldcollaboratebecauseIndianenergydemandisrapidlyincreasingwithitslargepopulationandfasteconomicgrowth.Indiacouldbecomethe'nextChina'inCO2emissionsifitmissestheopportunityofrenewabledeploymentinplaceofcoal.Novelapproachessuchas"debt-for-climate"swapswithdevelopingcountries(Simmonsetal.,2021)cancomple-mentChina'scarbongoalsbymoreefficientuseofresources.Effortsinhelpingdevelopingcountriestosidestepfossilfuelanddirectlymovetorenewableenergy,especiallydistributedsystems,willmaketheworldbettercon-nectedandbalanced.6.ConclusionsandexpectationsAchievingcarbonneutralityisabroadandprofoundeco-nomicandsocialsystemicchangeinChina.Thesignific-anceofChina'scarbon-neutralgoaltotheParisclimateaccordtargetsandtheworld'ssustainabledevelopmentandpeacecannotbeover-emphasized,butthechallengesareenormous.JustlikeChina'sreformandopeningup40yearsago,China'seconomicdevelopmenthasbroughtnewsur-prisestotheworld.Inthesameway,withthecarbon-neut-ralvisionthatstartedtoday,Chinawillalsomeetitscarbon-neutralgoal40yearslater,bringingconfidenceandprovid-ingamodelforothercountriesintheworld.Therecentlyachievedprice-parityofsolarandwindwithfossilfuelenergysourceslaysthefoundationforthisambition;however,deploymentatthescalesneededissubjecttotechno-logicalandcommercialbottlenecks.Theenvisionedpath-wayspushresourcelimitationsfornuclear,wind,andbio-energy.Itisimportanttoresearchandexperimentwithallpos-sibletechnologies.Onthedeploymentside,werecommendacautiousapproachwithconventionalnuclearandafasterphase-outofcoal.Still,moreaggressiveactionisneededtodistributesolar,wind,smallandmodularnuclear,smartgrid,andenergystorage.Internationalcollaborationonsci-entificandtechnicalinnovationanddeploymentwillbeessen-8CHINESECARBONNEUTRALGOAL:CHALLENGES&PROSPECTStialtobuildasafe,fair,andmoreresilientcommonfutureglobally.Acknowledgements.ThisworkwassupportedbytheNationalKeyR&DProgramofChina(GrantNo.2017YFB0504000).Electronicsupplementarymaterial:Supplementarymaterialisavailableintheonlineversionofthisarticleathttps://doi.org/10.1007/s00376-021-1313-6.REFERENCESBarron-Gafford,G.A.,andCoauthors,2019:Agrivoltaicsprovidemutualbenefitsacrossthefood–energy–waternexusindrylands.NatureSustainability,2(9),848−855,https://doi.org/10.1038/s41893-019-0364-5.BeijingMunicipalEcologyandEnvironmentalBureau,2020.2019BeijingEcologyandEnvironmentStatement.Avail-ablefromhttp://sthjj.beijing.gov.cn/bjhrb/resource/cms/art-icle/1718882/10837172/2020073117581274300.pdf.Davidson,M.R.,D.Zhang,W.M.Xiong,X.L.Zhang,andV.J.Karplus,2016:Modellingthepotentialforwindenergyinteg-rationonChina'scoal-heavyelectricitygrid.NatureEnergy,1(7),16086,https://doi.org/10.1038/nenergy.2016.86.Fang,J.Y.,G.R.Yu,L.L.Liu,S.J.Hu,andF.S.ChapinIII,2018:Climatechange,humanimpacts,andcarbonsequestra-tioninChina.ProceedingsoftheNationalAcademyofSci-encesoftheUnitedStatesofAmerica,115(16),4015−4020,https://doi.org/10.1073/pnas.1700304115.Friedlingstein,P.,andCoauthors,2020.Globalcarbonbudget2020.EarthSystemScienceData,12(4),3269−3340,https://doi.org/10.5194/essd-12-3269-2020.Fuss,S.,andCoauthors,2014:Bettingonnegativeemissions.NatureClimateChange,4(10),850−853,https://doi.org/10.1038/nclimate2392.GlobalEnergyInterconnectionDevelopmentandCooperationOrganization,2021.ResearchReportsonChinaAchievingCarbonNeutralityBefore2060.Availablefromhttps://www.geidco.org.cn/html/qqnyhlw/zt20210120_1/index.html.(inChinese)Han,P.,andCoauthors,2021.DecreasingEmissionsandIncreas-ingSinkCapacitytosupportChinainachievingcarbonneut-ralitybefore2060.Availablefromhttps://arxiv.org/abs/2102.10871.Huang,L.,Y.Zhou,Y.T.Han,J.K.Hammitt,J.Bi,andY.Liu,2013:EffectoftheFukushimanuclearaccidentontheriskper-ceptionofresidentsnearanuclearpowerplantinChina.Pro-ceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica,110(49),19742−19747,https://doi.org/10.1073/pnas.1313825110.Huang,X.D.,S.Y.Chang,D.Q.Zheng,andX.L.Zhang,2020:TheroleofBECCSindeepdecarbonizationofChina'seco-nomy:Acomputablegeneralequilibriumanalysis.EnergyEconomics,92,104968,https://doi.org/10.1016/j.eneco.2020.104968.IPCC,2018.SpecialReportGlobalWarmingof1.5degree.Avail-ablefromhttps://www.ipcc.ch/sr15/.IRENA,2020.RenewablePowerGenerationCostsin2019.Avail-ablefromhttps://www.irena.org/publications/2020/Jun/Renewable-Power-Costs-in-2019.Jiang,K.J.,C.M.He,X.Y.Xu,W.Y.Jiang,P.P.Xiang,H.Li,andJ.Liu,2018:TransitionscenariosofpowergenerationinChinaunderglobal2°Cand1.5°Ctargets.GlobalEnergyInterconnection,1(4),477−486,https://doi.org/10.14171/j.2096-5117.gei.2018.04.008.Kaya,Y.,andK.Yokoburi,1997.Environment,Energy,andEco-nomy:StrategiesforSustainability.UnitedNationsUni-versityPress.Kintisch,E.,2018.RooftopsensorsonU.S.embassiesarewarn-ingtheworldabout'crazybad'airpollution.Science,https://doi.org/10.1126/science.aat9260.Lazard,2020.LevelizedCostofEnergy,LevelizedCostofStor-age,andLevelizedCostofHydrogen–2020.Availablefromhttps://www.lazard.com/perspective/levelized-cost-of-energy-and-levelized-cost-of-storage-2020/.Lin,X.H.,W.Zhang,M.Crippa,S.S.Peng,P.F.Han,N.Zeng,L.J.Yu,andG.C.Wang,2021:AcomparativestudyofanthropogenicCH4emissionsoverChinabasedontheensemblesofbottom-upinventories.EarthSystemScienceData,13(3),1073−1088,https://doi.org/10.5194/essd-13-1073-2021.McLaren,D.,andN.Markusson,2020:Theco-evolutionoftechno-logicalpromises,modelling,policiesandclimatechangetar-gets.NatureClimateChange,10(5),392−397,https://doi.org/10.1038/s41558-020-0740-1.ProjectComprehensiveReportPreparationTeam,2020.Acompre-hensivereportontheresearchofChina'slong-termlow-car-bondevelopmentstrategiesandpathways.ChinaPopula-tion,ResourcesandEnvironment,30(11),1−25.(inChinese)Povinec,P.P.andcoauthors,2013.Cesium,iodineandtritiuminNWPacificwaters–acomparisonoftheFukushimaimpactwithglobalfallout,Biogeosciences,10(8):5481-5496.https://doi.org/10.5194/bg-10-5481-2013.Raupach,M.R.,G.Marland,P.Ciais,C.L.Quéré,J.G.Canadell,G.Klepper,andC.B.Field,2007.GlobalandregionaldriversofacceleratingCO2emissions.ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica,104(24),10288−10293,https://doi.org/10.1073/pnas.0700609104.Simmons,B.A.,R.Ray,H.B.Yang,andK.P.Gallagher,2021:Chinacanhelpsolvethedebtandenvironmentalcrises.Sci-ence,371(6528),468−470,https://doi.org/10.1126/science.abf4049.TheStateCouncil,2021.TheOutlineof14thFive-yearPlan(2021-2025)forNationalEconomicandSocialDevelop-mentandtheLong-RangeObjectivesThroughtheYear2035.Availablefromhttp://www.gov.cn/xinwen/2021-03/13/content_5592681.htm.(inChinese)WorldBank,2018.BeltandRoadInitiative.Availablefromhttps://www.worldbank.org/en/topic/regional-integration/brief/belt-and-road-initiative.Xi,J.P.,2020.XiDeliveredanImportantSpeechDuringtheGen-eralDebateofthe75thSessionoftheUnitedNationsGen-eralAssembly.Availablefromhttp://www.gov.cn/xinwen/2020-09/22/content_5546168.htm.(inChinese)Xiao,X.-J.,andK.-J.Jiang,2018:China'snuclearpowerundertheglobal1.5°Ctarget:Preliminaryfeasibilitystudyandpro-spects.AdvancesinClimateChangeResearch,9(2),138−143,https://doi.org/10.1016/j.accre.2018.05.002.Yang,J.B.,Q.Y.Liu,X.Li,andX.D.Cui,2017:OverviewofwindpowerinChina:Statusandfuture.Sustainability,9(8),ZENGETAL.91454,https://doi.org/10.3390/su9081454.Yu,S.,B.Yarlagadda,J.E.Siegel,S.Zhou,andS.Kim,2020:TheroleofnuclearinChina'senergyfuture:Insightsfromintegratedassessment.EnergyPolicy,139,111344,https://doi.org/10.1016/j.enpol.2020.111344.Zeng,N.,2008:Carbonsequestrationviawoodburial.CarbonBal-anceandManagement,3(1),1,https://doi.org/10.1186/1750-0680-3-1.Zeng,N.,Y.H.Ding,J.H.Pan,H.J.Wang,andJ.Gregg,2008:Climatechange-theChinesechallenge.Science,319,730−731,https://doi.org/10.1126/science.1153368.Zhang,D.,X.L.Zhang,J.K.He,andQ.M.Chai,2011:Off-shorewindenergydevelopmentinChina:Currentstatusandfutureperspective.RenewableandSustainableEnergyReviews,15(9),4673−4684,https://doi.org/10.1016/j.rser.2011.07.084.Zhao,L.L.,S.Y.Chang,H.L.Wang,X.L.Zhang,X.M.Ou,B.Y.Wang,andM.R.Wu,2015:Long-termprojectionsofliquidbiofuelsinChina:Uncertaintiesandpotentialbene-fits.Energy,83,37−54,https://doi.org/10.1016/j.energy.2015.01.060.Zhou,S.,Q.Tong,X.Z.Pan,M.Cao,H.L.Wang,J.Gao,andX.M.Ou,2021:Researchonlow-carbonenergytransforma-tionofChinanecessarytoachievetheParisagreementgoals:Aglobalperspective.EnergyEconomics,95,105137,https://doi.org/10.1016/j.eneco.2021.105137.10CHINESECARBONNEUTRALGOAL:CHALLENGES&PROSPECTS