中国碳中和目标的挑战与前景(英)VIP专享VIP免费

The Chinese Carbon-Neutral Goal: Challenges and Prospects
Ning ZENG*1,2, Kejun JIANG3, Pengfei HAN4,2, Zeke HAUSFATHER5, Junji CAO*6,
Daniel KIRK-DAVIDOFF1, Shaukat ALI7, and Sheng ZHOU8
1Department of Atmospheric and Oceanic Science, and Earth System Science Interdisciplinary Center,
University of Maryland, College Park 20742, Maryland, USA
2State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics,
Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
3Energy Research Institute, National Development and Reform Commission, Beijing 100045, China
4Carbon Neutrality Research Center, Institute of Atmospheric Physics, Chinese Academy of Sciences,
Beijing 100029, China
5Breakthrough Institute, Oakland 94612, California, USA
6Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
7Global Change Impact Study Centre, Ministry of Climate Change, Islamabad 45250, Pakistan
8Institute of Energy, Environment and Economy, Tsinghua University, Beijing 100084, China
(Received 10 August 2021; revised 13 December 2021; accepted 21 December 2021)
ABSTRACT
On 22 September 2020, within the backdrop of the COVID-19 global pandemic, China announced its climate goal for
peak carbon emissions before 2030 and to reach carbon neutrality before 2060. This carbon-neutral goal is generally
considered to cover all anthropogenic greenhouse gases. The planning effort is now in full swing in China, but the pathway
to decarbonization is unclear. The needed transition towards non-fossil fuel energy and its impact on China and the world
may be more profound than its reform and development over the past 40 years, but the challenges are enormous. Analysis
of four representative scenarios shows significant differences in achieving the carbon-neutral goal, particularly the
contribution of non-fossil fuel energy sources. The high target values for nuclear, wind, and bioenergy have approached
their corresponding resource limitations, with solar energy being the exception, suggesting solar's critical role. We also
found that the near-term policies that allow for a gradual transition, followed by more drastic changes after 2030, can
eventually reach the carbon-neutral goal and lead to less of a reduction in cumulative emissions, thus inconsistent with the
IPCC 1.5°C scenario. The challenges and prospects are discussed in the historical context of China's socio-economic
reform, globalization, international collaboration, and development.
Key words:carbon neutral,carbon dioxide reductions,energy system transformation,distributed energy system,model
projections
Citation: Zeng, N., K. J. Jiang, P. F. Han, Z. Hausfather, J. J. Cao, D. Kirk-Davidoff, S. Ali, and S. Zhou, 2022: The
Chinese carbon-neutral goal: Challenges and prospects. Adv. Atmos. Sci., https://doi.org/10.1007/s00376-021-1313-6.
Article Highlights:
• The Chinese carbon neutral goal will have profound impact but the challenges are enormous.
• Four representative scenarios show significant differences in how to achieve the carbon-neutral goal, but all agree the
importance of solar energy.
• We recommend more aggressive actions on distributed solar, wind, small and modular nuclear, smart grid, and energy
storage.
1.Introduction
On 22 September 2020, within the backdrop of the
COVID-19 global pandemic, China announced its climate
goal for peak carbon dioxide (CO2) emissions before 2030
and reach carbon neutrality by 2060, often referred to as
“Shuang Tan or “the two carbon goals in China (Xi,
2020). After this announcement, President XI has spoken
more than 30 times on important occasions and emphasized
the importance of the double carbon goal. The planning
efforts to reach the two goals are now in full swing in
China. This announcement came as a pleasant surprise for
This paper is a contribution to the special issue on Carbon
Neutrality: Important Roles of Renewable Energies, Carbon
Sinks, NETs and non-CO2 GHGs.
* Corresponding authors: Ning ZENG, Junji CAO
Email: zeng@umd.edu, jjcao@mail.iap.ac.cn
ADVANCES IN ATMOSPHERIC SCIENCES, 2022
• Perspectives •
©Institute of Atmospheric Physics/Chinese Academy of Sciences, and Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022
the fight against climate change, but the pathway to decarbon-
ization is unclear; the Climate Envoy, Zhenhua XIE, said
that the carbon-neutral goal covers all greenhouse gases.
The needed transition towards non-fossil fuel energy and its
impact on China and the world may be more profound than
its reform and development over the past 40 years, but the
challenges are enormous.
2.Roadmap to carbon neutrality
Currently, China's fossil fuel CO2 emissions are 10.2
Gt CO2 (gigatonnes of CO2) in 2019, which compromises
27.9% of total global emissions (Friedlingstein et al., 2020).
In 2020, fossil fuels accounted for 83% of the total primary
energy supply (TPES) with coal representing 57%, oil 17%,
and gas 9%, while non-fossil fuel accounted for only 17%
(hydro 7%, nuclear 3%, wind 3%, solar 2%, bio 2%).
To achieve the carbon-neutral goal, which ambitiously
corresponds to not exceeding the 2°C target of the Paris
Agreement on climate change (IPCC, 2018; Jiang et al.,
2018; Project Comprehensive Report Preparation Team,
2020), the ratio of fossil fuel to non-fossil energy sources
need to be completely reversed. The low carbon energy sys-
tem would need to decrease to 80%–90% of the present
CO2 emissions [Fig. S1 in the Electronic Supplementary
Material (ESM)]. The remainder (including the non-CO2 emis-
sions) would need to be offset by the terrestrial and ocean
sinks and carbon capture, usage and storage (CCUS), result-
ing in net-zero emissions. We illustrate this with a representat-
ive scenario by running the IPAC integrated assessment
model (Jiang et al., 2018). We started using the latest
Chinese energy and economic statistics of 2020 and then pro-
jected them into the future at five-year intervals. The projec-
tion shows that, by 2050, the contribution of non-fossil
energy would increase to 77%, while the fossil fuel portion
would drop to 23% (Fig. 1 and Table 1). In particular, the con-
tribution of coal would drop below 10%. Additionally, signi-
ficant carbon sinks and negative emissions will be needed to
counter the remaining fossil fuel emissions to achieve net-
zero CO2 emissions.
While the overall scenario involves detailed modeling
of socio-economic and technological development, fossil
fuel CO2 emissions can be broadly understood as driven by
the following key factors using the Kaya identity (Kaya and
Yokoburi, 1997):
CO2=
CO2
Energy ×Energy
GDP ×GDP
Population ×Population,(1)
where CO2 is CO2 emissions from human sources, Energy
is energy consumption, and GDP is gross domestic product
(GDP).
The past increases in CO2 emissions have been mostly
driven by economic development and population increases
(Raupach et al., 2007). China's GDP has increased at an aver-
age rate of 9% from 1980–2019 (the 3rd factor in the Kaya
Identity above). Going forward, with the annual rate of
GDP expected to grow at 4%–5% and the population stabiliz-
ing, a complete decoupling of CO2 emissions from GDP
growth will be required for the carbon-neutral goal. First,
CO2 emission intensity per unit energy generation (the 1st
factor) will need to be reduced drastically in a near-com-
plete switch from fossil to non-fossil fuel energy. This can
be accomplished by reducing coal and gas on the power gener-
ation side and heavy electrification and energy efficiency on
the end-user side. Second, decreasing the energy intensity
per GDP (the 2nd factor in the Kaya Identity) requires
Fig. 1. The Yin and Yang of fossil vs. non-fossil fuel energy source mix. A scenario to achieve China's
carbon-neutral goal before 2060 would require a complete reversal of their relative contribution to total
energy supply and an unprecedented rapid increase in renewable energy plus nuclear and decrease in fossil
fuel use on the timescale of 20–30 years after peak carbon.
2CHINESE CARBON NEUTRAL GOAL: CHALLENGES & PROSPECTS
growth to come mostly from the service sector and non-
energy intensive industries such as electronics, which is
expected to occur naturally as China's rapid infrastructure
build-up over the last 40 years (Zeng et al., 2008) is level-
ing off.
Regarding power generation specifically, this scenario
calls for a 2485 Gigawatts (billion watts or GW) of installed
solar capacity in 2050, a 9-fold increase from 281 GW in
2020. In the proposed mix, wind power will increase from
244 GW in 2020 to 1508 GW capacity (a 6-fold increase),
while nuclear power will increase from 55 GW to 563 GW
(a 10-fold increase). Such changes would require an aver-
age annual addition of 73 GW of solar-generated power,
and 17 GW of nuclear power over the next 30 years, while
at the same time reducing coal-fired power by 33 GW per
year. In 2050, non-fossil fuel energy sources consisting of
nuclear and renewables (solar, wind, hydro, bio) will
provide 90% of the total power generation. After consider-
ing the differences in capacity factors, this mix of installed
capacities contributes to a total TPES mix of 24% nuclear
and 53% renewables (Table 1).
2.1.Different pathways
To further understand the assumptions and uncertain-
ties, we compared the projections from four 1.5°C model-
ing synthesis scenarios: the IPAC model discussed above,
GCAM-TU (Zhou et al., 2021), and ICCSD (Davidson et
al., 2016; Huang et al., 2020; Project Comprehensive
Report Preparation Team, 2020), and an ICCSD “transition
pathway” (Project Comprehensive Report Preparation
Team, 2020) (see ESM). The four scenarios all show a
reversal between fossil and non-fossil fuels and similar car-
bon emissions. However, the energy mix differs signific-
antly.
China submitted the updated Nationally Determined Con-
tributions (NDC) on 28 October 2021 with several new com-
mitments (https://www4.unfccc.int/sites/NDCStaging/pages/
Party.aspx?party=CHN, accessed on 6 December 2021).
China will lower its CO2 emissions per unit of GDP by over
65 percent from 2005 levels. In the Project Comprehensive
Report Preparation Team (2020) study, the projected num-
ber is 68.2%, a bit higher than the committed lower bound
of 65%. For China’s goal of non-fossil energy proportion
(about 25% by 2030), the GCAM-TU and IPAC models pre-
dicted 36% and 30% at 2030, respectively, in the 1.5°C car-
bon-neutral scenarios (Fig. S2 in the ESM) (Jiang et al.,
2018; Zhou et al., 2021). As for the goal of total installed
wind and solar power capacity reaching over 1.2 billion kilo-
watts, the GCAM-TU and IPAC models predicted 1.6 and
1.4 billion kilowatts by 2030, respectively (Jiang et al.,
2018; Zhou et al., 2021).
Primary energy projected by the IPAC model increases
gradually and plateaus to a level that is 30% higher in 2050
than in 2020, while the other scenarios only show minor
increases (Fig. 2). In 2050, fossil fuel contribution in the
ICCSD scenario is 610 GWy, only half of the other two,
mostly due to a much smaller coal contribution. Non-fossil
energy supply ranges from 3630 to 5040 GWy, with the
ICCSD coming in low for all fossil fuels, particularly coal,
and the GCAM-TU assumes higher and longer-lasting oil
use (Fig. S2 in the ESM).
Large differences exist in non-fossil energy sources
Table 1.  Energy sources in the total primary energy supply (TPES) mix. Future years are projected by the carbon-neutral scenario using
the IPAC model. Unit is in GWy (Gigawatts year) and percentage of total in parentheses.
Year Total Coal Oil N. Gas Nuclear Hydro Wind Solar Bio
2005 1956 1427 (72.9%) 404 (20.7%) 56 (2.9%) 18 (0.9%) 45 (2.3%) 0.8 (0.0%) 0.0 (0.0%) 4.6 (0.2%)
2020 4573 2622 (57.3%) 774 (16.9%) 390 (8.5%) 142 (3.1%) 319 (7.0%) 145 (3.2%) 103 (2.3%) 78 (1.7%)
2035 5625 1641 (29.2%) 512 (9.1%) 590 (0.5%) 818 (14.5%) 496 (8.8%) 645 (11.5%) 501 (8.9%) 423 (7.5%)
2050 6044 592 (9.8%) 211 (3.5%) 563 (9.3%) 1460 (24.2%) 535 (8.8%) 1001 (16.6%) 982 (16.2%) 702 (11.6%)
Fig. 2. Energy supply from (a) total, (b) fossil fuel, (c) non-fossil fuel sources from three 1.5°C scenarios, and a “transition
pathway”.
ZENG ET AL. 3
TheChineseCarbon-NeutralGoal:ChallengesandProspects※NingZENG1,2,KejunJIANG3,PengfeiHAN4,2,ZekeHAUSFATHER5,JunjiCAO6,DanielKIRK-DAVIDOFF1,ShaukatALI7,andShengZHOU81DepartmentofAtmosphericandOceanicScience,andEarthSystemScienceInterdisciplinaryCenter,UniversityofMaryland,CollegePark20742,Maryland,USA2StateKeyLaboratoryofNumericalModelingforAtmosphericSciencesandGeophysicalFluidDynamics,InstituteofAtmosphericPhysics,ChineseAcademyofSciences,Beijing100029,China3EnergyResearchInstitute,NationalDevelopmentandReformCommission,Beijing100045,China4CarbonNeutralityResearchCenter,InstituteofAtmosphericPhysics,ChineseAcademyofSciences,Beijing100029,China5BreakthroughInstitute,Oakland94612,California,USA6InstituteofAtmosphericPhysics,ChineseAcademyofSciences,Beijing100029,China7GlobalChangeImpactStudyCentre,MinistryofClimateChange,Islamabad45250,Pakistan8InstituteofEnergy,EnvironmentandEconomy,TsinghuaUniversity,Beijing100084,China(Received10August2021;revised13December2021;accepted21December2021)ABSTRACTOn22September2020,withinthebackdropoftheCOVID-19globalpandemic,Chinaannounceditsclimategoalforpeakcarbonemissionsbefore2030andtoreachcarbonneutralitybefore2060.Thiscarbon-neutralgoalisgenerallyconsideredtocoverallanthropogenicgreenhousegases.TheplanningeffortisnowinfullswinginChina,butthepathwaytodecarbonizationisunclear.Theneededtransitiontowardsnon-fossilfuelenergyanditsimpactonChinaandtheworldmaybemoreprofoundthanitsreformanddevelopmentoverthepast40years,butthechallengesareenormous.Analysisoffourrepresentativescenariosshowssignificantdifferencesinachievingthecarbon-neutralgoal,particularlythecontributionofnon-fossilfuelenergysources.Thehightargetvaluesfornuclear,wind,andbioenergyhaveapproachedtheircorrespondingresourcelimitations,withsolarenergybeingtheexception,suggestingsolar'scriticalrole.Wealsofoundthatthenear-termpoliciesthatallowforagradualtransition,followedbymoredrasticchangesafter2030,caneventuallyreachthecarbon-neutralgoalandleadtolessofareductionincumulativeemissions,thusinconsistentwiththeIPCC1.5°Cscenario.ThechallengesandprospectsarediscussedinthehistoricalcontextofChina'ssocio-economicreform,globalization,internationalcollaboration,anddevelopment.Keywords:carbonneutral,carbondioxidereductions,energysystemtransformation,distributedenergysystem,modelprojectionsCitation:Zeng,N.,K.J.Jiang,P.F.Han,Z.Hausfather,J.J.Cao,D.Kirk-Davidoff,S.Ali,andS.Zhou,2022:TheChinesecarbon-neutralgoal:Challengesandprospects.Adv.Atmos.Sci.,https://doi.org/10.1007/s00376-021-1313-6.ArticleHighlights:•TheChinesecarbonneutralgoalwillhaveprofoundimpactbutthechallengesareenormous.•Fourrepresentativescenariosshowsignificantdifferencesinhowtoachievethecarbon-neutralgoal,butallagreetheimportanceofsolarenergy.•Werecommendmoreaggressiveactionsondistributedsolar,wind,smallandmodularnuclear,smartgrid,andenergystorage.1.IntroductionOn22September2020,withinthebackdropoftheCOVID-19globalpandemic,Chinaannounceditsclimategoalforpeakcarbondioxide(CO2)emissionsbefore2030andreachcarbonneutralityby2060,oftenreferredtoas“ShuangTan”or“thetwocarbongoals”inChina(Xi,2020).Afterthisannouncement,PresidentXIhasspokenmorethan30timesonimportantoccasionsandemphasizedtheimportanceofthedoublecarbongoal.TheplanningeffortstoreachthetwogoalsarenowinfullswinginChina.Thisannouncementcameasapleasantsurprisefor※ThispaperisacontributiontothespecialissueonCarbonNeutrality:ImportantRolesofRenewableEnergies,CarbonSinks,NETsandnon-CO2GHGs.Correspondingauthors:NingZENG,JunjiCAOEmail:zeng@umd.edu,jjcao@mail.iap.ac.cnADVANCESINATMOSPHERICSCIENCES,2022•Perspectives•©InstituteofAtmosphericPhysics/ChineseAcademyofSciences,andSciencePressandSpringer-VerlagGmbHGermany,partofSpringerNature2022thefightagainstclimatechange,butthepathwaytodecarbon-izationisunclear;theClimateEnvoy,ZhenhuaXIE,saidthatthecarbon-neutralgoalcoversallgreenhousegases.Theneededtransitiontowardsnon-fossilfuelenergyanditsimpactonChinaandtheworldmaybemoreprofoundthanitsreformanddevelopmentoverthepast40years,butthechallengesareenormous.2.RoadmaptocarbonneutralityCurrently,China'sfossilfuelCO2emissionsare10.2GtCO2(gigatonnesofCO2)in2019,whichcompromises27.9%oftotalglobalemissions(Friedlingsteinetal.,2020).In2020,fossilfuelsaccountedfor83%ofthetotalprimaryenergysupply(TPES)withcoalrepresenting57%,oil17%,andgas9%,whilenon-fossilfuelaccountedforonly17%(hydro7%,nuclear3%,wind3%,solar2%,bio2%).Toachievethecarbon-neutralgoal,whichambitiouslycorrespondstonotexceedingthe2°CtargetoftheParisAgreementonclimatechange(IPCC,2018;Jiangetal.,2018;ProjectComprehensiveReportPreparationTeam,2020),theratiooffossilfueltonon-fossilenergysourcesneedtobecompletelyreversed.Thelowcarbonenergysys-temwouldneedtodecreaseto80%–90%ofthepresentCO2emissions[Fig.S1intheElectronicSupplementaryMaterial(ESM)].Theremainder(includingthenon-CO2emis-sions)wouldneedtobeoffsetbytheterrestrialandoceansinksandcarboncapture,usageandstorage(CCUS),result-inginnet-zeroemissions.Weillustratethiswitharepresentat-ivescenariobyrunningtheIPACintegratedassessmentmodel(Jiangetal.,2018).WestartedusingthelatestChineseenergyandeconomicstatisticsof2020andthenpro-jectedthemintothefutureatfive-yearintervals.Theprojec-tionshowsthat,by2050,thecontributionofnon-fossilenergywouldincreaseto77%,whilethefossilfuelportionwoulddropto23%(Fig.1andTable1).Inparticular,thecon-tributionofcoalwoulddropbelow10%.Additionally,signi-ficantcarbonsinksandnegativeemissionswillbeneededtocountertheremainingfossilfuelemissionstoachievenet-zeroCO2emissions.Whiletheoverallscenarioinvolvesdetailedmodelingofsocio-economicandtechnologicaldevelopment,fossilfuelCO2emissionscanbebroadlyunderstoodasdrivenbythefollowingkeyfactorsusingtheKayaidentity(KayaandYokoburi,1997):CO2=CO2Energy×EnergyGDP×GDPPopulation×Population,(1)whereCO2isCO2emissionsfromhumansources,Energyisenergyconsumption,andGDPisgrossdomesticproduct(GDP).ThepastincreasesinCO2emissionshavebeenmostlydrivenbyeconomicdevelopmentandpopulationincreases(Raupachetal.,2007).China'sGDPhasincreasedatanaver-agerateof9%from1980–2019(the3rdfactorintheKayaIdentityabove).Goingforward,withtheannualrateofGDPexpectedtogrowat4%–5%andthepopulationstabiliz-ing,acompletedecouplingofCO2emissionsfromGDPgrowthwillberequiredforthecarbon-neutralgoal.First,CO2emissionintensityperunitenergygeneration(the1stfactor)willneedtobereduceddrasticallyinanear-com-pleteswitchfromfossiltonon-fossilfuelenergy.Thiscanbeaccomplishedbyreducingcoalandgasonthepowergener-ationsideandheavyelectrificationandenergyefficiencyontheend-userside.Second,decreasingtheenergyintensityperGDP(the2ndfactorintheKayaIdentity)requiresFig.1.TheYinandYangoffossilvs.non-fossilfuelenergysourcemix.AscenariotoachieveChina'scarbon-neutralgoalbefore2060wouldrequireacompletereversaloftheirrelativecontributiontototalenergysupplyandanunprecedentedrapidincreaseinrenewableenergyplusnuclearanddecreaseinfossilfueluseonthetimescaleof20–30yearsafterpeakcarbon.2CHINESECARBONNEUTRALGOAL:CHALLENGES&PROSPECTSgrowthtocomemostlyfromtheservicesectorandnon-energyintensiveindustriessuchaselectronics,whichisexpectedtooccurnaturallyasChina'srapidinfrastructurebuild-upoverthelast40years(Zengetal.,2008)islevel-ingoff.Regardingpowergenerationspecifically,thisscenariocallsfora2485Gigawatts(billionwattsorGW)ofinstalledsolarcapacityin2050,a9-foldincreasefrom281GWin2020.Intheproposedmix,windpowerwillincreasefrom244GWin2020to1508GWcapacity(a6-foldincrease),whilenuclearpowerwillincreasefrom55GWto563GW(a10-foldincrease).Suchchangeswouldrequireanaver-ageannualadditionof73GWofsolar-generatedpower,and17GWofnuclearpoweroverthenext30years,whileatthesametimereducingcoal-firedpowerby33GWperyear.In2050,non-fossilfuelenergysourcesconsistingofnuclearandrenewables(solar,wind,hydro,bio)willprovide90%ofthetotalpowergeneration.Afterconsider-ingthedifferencesincapacityfactors,thismixofinstalledcapacitiescontributestoatotalTPESmixof24%nuclearand53%renewables(Table1).2.1.DifferentpathwaysTofurtherunderstandtheassumptionsanduncertain-ties,wecomparedtheprojectionsfromfour1.5°Cmodel-ingsynthesisscenarios:theIPACmodeldiscussedabove,GCAM-TU(Zhouetal.,2021),andICCSD(Davidsonetal.,2016;Huangetal.,2020;ProjectComprehensiveReportPreparationTeam,2020),andanICCSD“transitionpathway”(ProjectComprehensiveReportPreparationTeam,2020)(seeESM).Thefourscenariosallshowareversalbetweenfossilandnon-fossilfuelsandsimilarcar-bonemissions.However,theenergymixdifferssignific-antly.ChinasubmittedtheupdatedNationallyDeterminedCon-tributions(NDC)on28October2021withseveralnewcom-mitments(https://www4.unfccc.int/sites/NDCStaging/pages/Party.aspx?party=CHN,accessedon6December2021).ChinawillloweritsCO2emissionsperunitofGDPbyover65percentfrom2005levels.IntheProjectComprehensiveReportPreparationTeam(2020)study,theprojectednum-beris68.2%,abithigherthanthecommittedlowerboundof65%.ForChina’sgoalofnon-fossilenergyproportion(about25%by2030),theGCAM-TUandIPACmodelspre-dicted36%and30%at2030,respectively,inthe1.5°Ccar-bon-neutralscenarios(Fig.S2intheESM)(Jiangetal.,2018;Zhouetal.,2021).Asforthegoaloftotalinstalledwindandsolarpowercapacityreachingover1.2billionkilo-watts,theGCAM-TUandIPACmodelspredicted1.6and1.4billionkilowattsby2030,respectively(Jiangetal.,2018;Zhouetal.,2021).PrimaryenergyprojectedbytheIPACmodelincreasesgraduallyandplateaustoalevelthatis30%higherin2050thanin2020,whiletheotherscenariosonlyshowminorincreases(Fig.2).In2050,fossilfuelcontributionintheICCSDscenariois610GWy,onlyhalfoftheothertwo,mostlyduetoamuchsmallercoalcontribution.Non-fossilenergysupplyrangesfrom3630to5040GWy,withtheICCSDcominginlowforallfossilfuels,particularlycoal,andtheGCAM-TUassumeshigherandlonger-lastingoiluse(Fig.S2intheESM).Largedifferencesexistinnon-fossilenergysourcesTable1.Energysourcesinthetotalprimaryenergysupply(TPES)mix.Futureyearsareprojectedbythecarbon-neutralscenariousingtheIPACmodel.UnitisinGWy(Gigawattsyear)andpercentageoftotalinparentheses.YearTotalCoalOilN.GasNuclearHydroWindSolarBio200519561427(72.9%)404(20.7%)56(2.9%)18(0.9%)45(2.3%)0.8(0.0%)0.0(0.0%)4.6(0.2%)202045732622(57.3%)774(16.9%)390(8.5%)142(3.1%)319(7.0%)145(3.2%)103(2.3%)78(1.7%)203556251641(29.2%)512(9.1%)590(0.5%)818(14.5%)496(8.8%)645(11.5%)501(8.9%)423(7.5%)20506044592(9.8%)211(3.5%)563(9.3%)1460(24.2%)535(8.8%)1001(16.6%)982(16.2%)702(11.6%)Fig.2.Energysupplyfrom(a)total,(b)fossilfuel,(c)non-fossilfuelsourcesfromthree1.5°Cscenarios,anda“transitionpathway”.ZENGETAL.3(Fig.S2).Forexample,theIPACmodelprojects1570GWy(orGigawattsyear)nuclearenergy,generatedby563GWofinstalledcapacity,comparedto780–850GWyintheothertwomodels.TheICCSDscenarioprojectsamuchhighercontributionfromwindenergy,1920GWy,com-paredto1010–1080GWy,fortheothertwomodels.TheIPACandICCSDcallfor1040–1060GWyofsolarenergy,comparedto430GWyfortheGCAM-TU.Hydropoweristheonlyenergysourcewithgoodagreementamongthemod-elsbecausethedevelopmentofmostoftheavailableresourceshasalreadytakenplaceinthelast30years.Thenearlyfactor-of-twodifferencesinnuclear,wind,solar,andbioenergyinthe2050scenariosreflectmajoruncer-taintiesintheassumptions.Forinstance,thehighervaluefornuclearenergyintheIPACmodel,servingascrucialbase-loadorfirmgenerationwhencoalusebecomesminimal,requirestheuseofnearlyallofthesuitablesitesforlarge-scalenuclearpowerplants(Jiangetal.,2018;XiaoandJiang,2018;Yuetal.,2020).Similarly,thehighercontribu-tionfrombioenergyimpliesmajorcompetitionwithfoodpro-ductionandotherenvironmentalgoals(Zhaoetal.,2015;Huangetal.,2020),andthehigherwindenergyscenariointheICCSDwouldusemuchofthetechnicallyexploitableresources(Zhangetal.,2011;Yangetal.,2017).Ingeneral,thehighertargetvaluesofmostnon-fossilfuelenergysourcesappeartoapproachresourcelimitation,withsolarenergybeingtheloneexception.TheIPCC1.5°Cscenarionotonlyrequireslong-termcommitmentbutalsofast,near-termemissionsreductions.However,becauseoftheinertiaintheenergysystem,apath-wayisproposedto“transition”fromareinforced-policyscen-ariototheICCSD1.5°Cscenario(ProjectComprehensiveReportPreparationTeam,2020).Thisscenarioallowsforagradualtransitioninthenearterm,whichismoreconsist-entwithChina's14thFiveYearPlan(FYP)thatiscur-rentlytakingshape(TheStateCouncil,2021)butrequiresafasterdrawdownafter2030andsomewhatdifferentcumulat-ivecarbonemissions(Fig.S3intheESM).Althoughitcaneventuallyreachthecarbon-neutralgoal,thisscenarioleadstolesscumulativeemissionsreduction,thusinconsistentwiththeIPCC1.5°Cscenario.Thisaddsadditionaluncer-taintytotheenvisionedpathways,illuminatingthescaleoftheproblemandthechallengesfacingthecarbon-neutralgoal.2.2.ChallengesofincreasingrenewableenergyPracticalsolartechnologywasdevelopedintheUSinthe1970s.The2009EuropeanrenewableenergydirectivespurreditsgrowthasChinesemanufacturersmadesolarpan-elsthatweresoldtoGermanyandothercountries.Overthelastdecade,asthetechnologyfurtheradvancedandthescaleoftheeconomyexpanded,thepriceofwindandsolarpowerhasachievedthestunningfeatofprice-paritywiththeLevelizedCostofElectricity(LCOE),whichisnowcheaperthancoalandnuclear(IRENA,2020;Lazard,2020).China'sinstalledsolarcapacityincreasedfrom2.6GWin2010to43GWin2015and281GWin2020,withanannualadditionrateofmorethan20%inthelastfewyears.Evenduringthe2020COVID-19pandemic,49GWofsolarand71GWofwindpowerwereadded.Thefactthatrenewableenergyisnoweconomicallycompetitiveagainstfossilfuelsarguablyprovidesthemostimportantfoundationforoptimismonthecarbon-neutralgoal.However,increasingthecontributiontotheenergymixofnon-fossilfuelfrom17%to77%–85%,amorethan6-foldincrease,in30yearswillbeadauntingtask.Asthemodelscenariosshow,thehighertargetsfornuclear,wind,andbioenergyapproachtheirrespectiveresourcelimitswiththenotableexceptionofsolarenergy.Whiletheavailablesun-lightisnotalimitation,itdoesrequirevastland,mineral,andotherresources.Theinherentintermittencyofsolarandwindpowerduetodiurnal,synopticweather,andseasonalcli-matevariationsgivesrisetoloadbalancingandgridsecur-ityproblems,especiallywhentheproportionofthisintermit-tentsourceexceeds20%ofthetotalelectricityproduction.Thesolutionwillrequiretechnologicalbreakthroughsinenergystorageandgridtechnology.Suchascaling-upinvest-mentwouldneedtobeatacomparablescaleasrenewablepowergenerationitself.Suchuncertaintiesandunforeseencostsarenotnecessarilyfullyaccountedforinthemodelscen-ariosorthelong-termindustryoutlook(GlobalEnergyInter-connectionDevelopmentandCooperationOrganization,2021).2.3.Challengesoffossilfuelandcoalphase-outToreducefossilfuelconsumptionbelow15%–23%ofthetotalenergyby2050willbeequallychallenging.Thekeytothistransitionistoimposeend-useelectrificationsup-pliedbyrenewableenergy.Chinahasbeenaggressivelydevel-opingelectricvehicles,andthismarketaccountsfor50%oftheworld'stotal.Reducingoilusewouldrequireelectrifica-tionofthetransportationsectortoatleast85%.Electrifica-tionofenergy-intensiveindustriessuchassteelmakingandchemicalsisinitsinfancy.Reducingnaturalgasuserequiresthetransitionofcookingandheatingmechanismsfromgastoelectricityinresidentialandofficebuildings,adauntingtaskinretrofittinganurbaninfrastructurethatismostlycomplete.Whileenergyefficiencycanimprove,otherfactorsmayincreasedemand.Forexample,tradition-ally,theChinesecitiessouthoftheHuaiRiverdonotuseindoorheating,whichmayeventuallychange.Intheotherdir-ection,thedemandforcoolingwillbehigherinawarmerworld.Thesefactorswouldrequireaneardoublingofelec-tricpowergeneration,eventhoughthetotalenergyconsump-tionisprojectedtoincreaseonlymodestlyinthecarbon-neut-ralscenarios.Nearly70%ofChina'selectricitycurrentlycomesfromcoal.Reducingittolessthan10%in2050requiresafastphase-outofexistingcoal-firedpowerplants.Isthisfeas-ible?Asamajorbaseload,thestabilityprovidedbycoalwillstillbecriticalintheneartomediumfuture.Moreover,Chinacurrentlyhasasignificantnumberofcoal-firedpowerplantsunderconstructionorapproved,althoughmanyofthesearecleanerIntegratedGasificationCom-4CHINESECARBONNEUTRALGOAL:CHALLENGES&PROSPECTSbinedCycle(IGCC)plants.Giventhe30–40yearslifetimeofsuchplants,neareliminationofthemin20–30yearsimpliesstrandedassets,reducedoperationhoursandprofit,lossofjobs,andotherchallenges.Recentgovernmentpolicyhasbeenuncertainincoaldevelopment,whichisnotconsistentwithdecisiveactionsneededforthecarbon-neut-ralgoal.ApartialremedyduringthetransitionperiodwouldbetograduallyreduceoperationhoursastheChinesecoal-firedpowerplantsgenerallyoperateathighloads.Arapidcoalphase-outwillalsoneedtodealwithsocialissuesasthecoalindustrycurrentlyemploysmorethan4millionworkerslocatedinafewprovinces.Moreover,thephase-outoffossilfuels,especiallycoal,alsobringstheco-benefitofreducingmethane(CH4)emis-sions,animportantnon-CO2GHG,sinceenergyactivitycon-tributed~50%ofChina'santhropogenicCH4emissions(Linetal.,2021).ReducingCH4emissionsisassumedtobeacost-effectivemethodofachievingcarbonneutrality,espe-ciallyintheenergysectorsincemethanecanberecoveredandreusedwithlowercoststhanintheagricultureandwastetreatmentsectors.InthecaseofN2O,thereductionswouldbemoredifficultthanwithCH4sinceabout60%ofN2Oemissionsarefromagriculture(Hanetal.,2021).Com-prehensiveevaluationsonpromisingemissionreductionmeasuresarehighlyneededforbothtechnology,maturity,andcostaspects.2.4.Challengesfromfutureuncertainties:nuclear,technologicalbottlenecks,andgeopoliticsThecarbon-neutralgoalrequiresallvariablestogointherightdirectioninashortamountoftime:technical,socio-political,andeconomical.Yet,unexpectedeventsortrendscertainlycandisrupttheprocess.Shouldacoalphase-outshiftthelion'sshareoffirmgenerationtonuclearpower,amajornuclearaccidentbecomesaworrisomepossib-ility,despitetheexcellentsafetyrecordofChina'snuclearfleet.Inthepast,societyhastendedtoatleasttemporarilyshiftawayfromnuclearpowerafteramajornuclearacci-dent.Forexample,theaccidentattheFukushimaDaiichinuc-learpowerplanton11March2011causedseriousenviron-mentalpollution(Povinecetal.,2013)andpublicalarm(Huangetal.,2013).ForChina,itmaybeprudenttoensurethatrigoroussafetystandardsarefollowedinconventionalnucleardeploymentwhiletestingsafertechnologywithSmallModularReactors(SMRs)andadvancingbetternuc-learwastemanagement.Currentcarbon-neutralpathwaysrelyheavilyonconventionalnuclear;theextenttowhichothercleanenergysourcesmayplayalargerroledependsonfuturetechnologycostsandtheextenttowhichchal-lengesofintermittencyandseasonalvariationsingenera-tioncanbesolvedbybreakthroughsincomplementarytech-nologiessuchasgridstorage,transmission,andhydrogenpro-duction.Withrenewablesandnucleardominatingthefutureenergymix,theremaining15%–23%ofenergyfromfossilfuelsstillneedstobeoffsetbynegativeemissionstechno-logy.However,itisnotcleariftheleadingcandidates,Car-bonCaptureandStorage(CCS)ingeologicalformations,Dir-ectAirCapture(DAC),andBioenergywithCCS(BECCS),willbetechnologicallyandcommerciallysuccessfulenoughattheneededscale(Fussetal.,2014;McLarenandMarkus-son,2020).GeopoliticalinstabilityremainsamajorthreattotheParisclimategoal.SimilartothelargeimpactofMiddleEastoil,demandforrawmaterialscanleadtoinstabilityandvolatility.Ahostilerelationshipamongand'decoupling'ofthemajorworldeconomieswillleadtomoreemphasisoninvestmentindefense,leavingfewerresourcesforsustain-abledevelopmentanddifferenttechnologicalstandardsthatultimatelyhinderthespreadofrenewabletechnology.3.AnewenergymapIn1935,geographerHuan-YongHUdrewasouthwest-northeastorienteddiagonallineonthemapofChina,laterknownasthe'Hu-line'(Fig.3).Hepointedoutthat36%ofthelandsoutheastofthislineaccommodates96%ofChina'spopulation,whiletothenorthwest,4%ofthepopula-tionlivesontheremaining64%oftheland.Acentralgeo-economicrealityofChinaistheseparationofChinaintotworegionswithdistinctlydifferentclimates,geography,pop-ulation,andstagesofeconomicdevelopment.Thislinealsoseparatesafundamentalenergy“inequality”.Thesemi-aridregionsofnorthwesternChinahavemuchoftherenewableenergyresourcesaswellasfossilfuelreservesthatneedtobetransferredtotheindustriallydevelopedcentralandeast-ernregionsofChina,exceptfordevelopmentalongtheancientSilkRoadcorridor,whichisalsothemaincontin-entalconnectiontocentralAsiaandEurope.Chinaisdevelopingultra-highvoltagedirectcurrent(UHVDC)linesthatcanrunthousandsofkilometers,suchasthe800kilovolt,2193km-longBaihetan-Zhejianglinecur-rentlyunderconstruction.However,thecurrentgridsystemisfarfromadequateinaccommodatingapervasivedistrib-utedsystematthescaleenvisionedforcarbonneutrality.Forinstance,assuming75%ofthe2485GWsolarand1508GWwindpowerprojectedbytheIPACmodelfortheyear2050,or3000GWcombined,needstobetransmittedfromthewesttotheeast;suchaprojectwouldrequiretheequival-entof300suchUHVDCtransmissionlinesat10GWeach,witheachlineoccupyinglargeamountsofcontiguousland,oftenoverdifficultterrain.Yet,thisstilldoesnotsolvetheintermittencyissuesinherenttowindandsolarpower.Energystoragesuchasgreenhydrogen,lithium-ion,solid-state,andotheradvancedbatterytechnologiesatverylargescaleswillbecrucial.Still,itisnotyetcleartheywillbeavail-ableinatimelyfashionatareasonablecostandneededscale.Torealizetherenewable-dominatedenergymap,Chinawillneedtodevelopeverypossiblemethodinacarefullybal-ancedapproach.Tominimizetheshortcomingsofsecurityandreliabilityoflong-distancetransmission,distributedenergysystemsshouldbewidelydeployed.Whilerooftopsolaristheposterchildofdistributedsolar,itspotentialonZENGETAL.5apercapitabasisislimitedinChinesecitieswherehigh-risebuildingsdominate.Incontrast,thepotentialismuchhigherinruralregions.Installingsolarpanelsonfarmlandandgraz-ingland,roadside,hillslopes,andothersuitableplacesintheopencountryside(Fig.4)hastheco-benefitsofgenerat-ingpowerandenhancingplantgrowthunderthepanels(Bar-ron-Gaffordetal.,2019),providinggreenjobsandimprov-ingtheincomeoffarmers.Currently,Chinaismakingparticu-lareffortsbyprovidinggovernment-subsidizedsolarinstalla-tionsforpovertyreliefatlocalscales,butthereisgreatpoten-tialforanationwideexpansion.Thepowerfromindividualsolarpanelsandsmallwindturbinescanbeaggregatedusingmicropowerstationsatthevillagelevel.Aftersatisfyinglocalpowerneeds,alargequant-ityofelectricitycanbesentfromthemicro-gridtonearbytowns,thentolargercitiesviatheregionalandnationalgrids.Suchadistributedsystemgoeshand-in-handwithmod-ularizedstoragesystems.Togetherwithelectricandhydro-genfuelcellvehiclesinthecities,anetworkofdistributedsystemswithpervasivepenetrationacrossthecountrycancatalyzearapidpricedropofenergystoragetechnology,providingasuperblyflexibleandresilientenergyinfrastruc-ture.Thecurrentgridsystemisfarfromadequateinaccom-modatingapervasivedistributedsystematthescaleenvi-sionedhere.Suchasystemwillrequirepolicyandfinancialincentives.Becausethecurrentfossilfuel-basedpowersys-temalreadyprovidesabackbonegrid,themicro-mediumscalesystemsgenerallycovertheintermediaterangeoflink-inghousesandfarmstothegrid.Solar,wind,andsmallmodu-larnuclearenergyandbiomasscanbesimilarlyintegratedintothegrid.Suchadistributedsystemandinterconnectedsmartgridswillalsoofferahugemarketfortheinternetofthings(IoT)andrelateddigitaltechnology.Inadditiontoonshorewindenergy,offshorewindenergyisanothermaturetechnologythatcansignificantlyrampup.Thisfullyrenewableenergysourcehasthedis-tinctadvantageofbeingclosetothemajorcoastalmetropol-itancitiessuchasTianjin,Shanghai,Shenzhen,HongKong,andGuangzhou.Besidesbuildingwindfarms,care-fulplanningforsuchanationalbackboneofcoastaltransmis-sioncablesonlandorunderwaterwillfacilitateandstimu-lateoffshorewinddevelopment(Fig.3).Incontrasttosolar,thewindcanblowatnightandisoftenstrongerinwinterthaninsummer;thus,windenergyhascanpotentiallyprovideanimportantbufferforthedistributedsolarsystem.ReforestationandforestprotectioninChinaoverthelast30yearshascontributedtoasignificantcarbonsink,estimatedat0.2GtCyr–1orlarger(Fangetal.,2018;Hanetal.,2021).MostofthisoccurredinsouthernChina,wheretheclimateiswetandwarm.However,astheseforestsmature,theirabilitytoabsorbCO2willdecline.BecauseChinaisalreadyheavilydependentonagriculturalimports,competitionforlandusewillbeamajorlimitationforbioen-ergycontribution(Zhaoetal.,2015;Huangetal.,2020).Novelwaysofmanagingforeststomaintainorenhancethissinkasnegativeemissions(Zeng,2008)maybeneededtooff-sethard-to-replacefossilfueluse.Toachievethenewenergymap,itwillbecriticaltostrikeabalancebetweenadheringtogovernmentguidanceandstimulatingthemarketeconomy.Inthecontextofrenew-ableenergydevelopment,infrastructurebuild-up,andtheCOVID-19response,theChineseexperiencehasdemon-stratedtheimportanceofunifiedvision,concertedeffort,Fig.3.ThenewenergymapofChinawithabalancedportfolio.China'scarbon-neutralgoalwouldrequireastunninglylargequantityofinterconnected,utility-scale,anddistributednon-fossilpowergeneration,aswellascarbonsinksthatoffsetremainingfossilfuelemissions.6CHINESECARBONNEUTRALGOAL:CHALLENGES&PROSPECTSandthewillingnesstosacrificesomeindividualinterestsforthecommunitywhenneeded.Ontheotherhand,toensurecontinuedbenefitsfrominnovationandthedynamismofthemarketeconomy,greatereffortsandmorecarefulapproacheswillbeneededbothinternationallyanddomestic-ally.Forexample,themassproductionofadistributedsolarenergysystemwouldrequiregovernmentsupportsandevenmandatesforbuildingasuitablenationaldistributedgridthatallowselectricitygeneratedbythemicrosolarsystemstoflowin,whilestillallowingformarketmechanismsforcon-structionandpriceadjustment.4.Research,innovation,andcollaborationChina'sGDPhasgrownatanaveragerateof9%annu-allyoverthelast40years,drivenbyanationalresolvetorisefromthe“hundred-yearturmoil”andafocusoneco-nomicdevelopment,enabledbythevigoranddedicationof2−3generationscomingfromapoverty-strickenback-ground.However,thewealthgaphasgrownalarminglylargeaslivingstandardsimprove.AsChinaentersamiddle-wealthstage,continueddevelopmentwillrequireadeepersocio-economictransformation.Thecarbon-neutralgoalandsustainabledevelopment,ingeneral,provideabigopportunityforthistransformation.China'seconomic'miracle'wouldnothavebeenpos-siblewithoutthescientificknowledge,technology,andman-agementexperienceinagenerousinternationalbusinessandculturalenvironment.ChinajoinedtheWorldTradeOrganiza-tion(WTO)in2001,whichmadetheworldmarketaccess-ible,acrucialstepleadingtosubstantialimprovementinliv-ingstandardswhilebenefitingtherestoftheworld.Thebasictechnologyofphotovoltaics,concentratedsolarpower,andwindturbineswasdevelopedintheUSatacom-mercialscaleinthe1970sinresponsetotheMiddleEastoilcrisis.Advancementsinhigh-speedrailhaveoccurredinFrance,Germany,andJapanandwithintechnologyrelatedtolithium-ionbatteriesinJapaninthe1990s.Chinahascon-tributedadditionaldevelopmentstothesetechnologiesandachievedcostreductionsandscale-up.Inthefuture,China'sambitiouscarbon-neutralgoalwillnotbepossiblewithoutcontinuedinternationalcollabora-tionandaconduciveinternationaleconomicandpoliticalenvironment.Akeyissueisintellectualproperty(IP)rights.Chinastarteditspatentandtrademarksystemin1985,andpatentapplicationsaccountedfor46%oftheglobaltotalin2018.However,thisnumberdoesnotnecessarilyreflectthequalityoftheprojects.Technicalknowledgehasbeentradi-tionallyregardedwithlittlevalue,andIPprotectionsareweak.WorkingcloselywithothercountriestoimproveIPpro-tections,fairtechnologytransfer,andmarketaccesswillhavethedualbenefitofnurturingaproductiveinternationalrelationshipandallowingdomesticinnovationtoflourish.Similarly,whileChina'sscientificresearchoutputhasbecomenumberoneintermsofthenumberofpaperspub-lished,Chineseindustryhasbenefitedonlymodestlyfromsuchresearch.Thisisnottosuggestdiminishingresearcheffortsbutrathertoemphasizeestablishingandapplyingmul-tiplecriteriaforjudgingscientificoutputandmerit.Researchwithrealandattainableimpactshouldbeemphas-ized,whetherbasicorapplied.Internationalcollaborationsometimesstartsunpleas-Fig.4.Topandbottomleft:Distributedsmallsolarpowersystemssuchasagrivoltaicsonamicro-gridwithstorageembeddedinasmartinterconnectedregional/nationalgridmaybeakeytodeepdecarbonizationneededforChina'scarbon-neutralgoal.Topright:end-useefficiencyusingsmartsharedbikestoconnectthe“lastkilometer”fromhometometro.Bottomright:Aworkerinstallsasolarphotovoltaicpanelontherooftopofaresidentialbuilding.ZENGETAL.7antlyandunexpectedly.In2008,ascientificattachéattheUSembassyinBeijingsetupanairqualitymonitorontherooftopandstartedtopostthePM2.5measurementontheEmbassy'swebsite(Kintisch,2018).TheinitialreactionfromthepeopleofBeijingwasto'mind-your-own-business'asthe'foggy'weatherispaintedasnaturalbeautyintradi-tionalChineseliteratureandarts.Butitdidnottakelongforpeopletorecognizethehealththreatofairpollution.NowChinahasanetworkofthousandsofmonitoringstationsreportingdatainrealtime.Since2013,thePM2.5hasdroppedby53%(from89.5μgm–3in2013to42μgm–3in2019)inBeijing(BeijingMunicipalEcologyandEnviron-mentalBureau,2020).Thisdecreasehasbeenachievedbyacombinationoffactors,includingmovingheavypollutingindustriesoutsidemajorcities,establishinghigheremis-sionsstandards,andmandatingtemporaryclose-downsoffactoriesduring'bad'weatherconditions.Whilesuchmeas-ureshavehadsignificantimpactinimprovinghealthinhighlypopulatedcitiesduringheavy-pollutionepisodes,thesourcesofpollutionlargelyremainunmitigated.Thecar-bon-neutralgoalprovidesagreatopportunitytodealwithairpollutionandclimatechangefromtheircommonsource—fossilfuelemissions.Theglobalclimatechangeemergencyisanareawithhighpotentialforinternationalcollaboration.Historically,exchangeonclimatesciencethroughavenuessuchastheIntergovernmentalPanelonClimateChange(IPCC)wasinstrumentalintransformingChinafromconsideringcli-matechangeanissueinventedbytheWesttoplayingalead-ingroletodayinpreventingitsfurtherdevelopment.Scient-istsandpolicymakersshouldcontinuetocollaborateonthescienceofclimatechangeandclimatemitigationandadapta-tionstrategies.Forinstance,despiteamajorinvestment,muchofChina'senvironmentaldataontheatmosphereandoceanandlandecosystemsremainhighlyfragmentedandoftennotpubliclyavailable.Aconcertedeffortfromthehighestgovernmentleveltoindividualresearchgroupswillbeneededtobreakbureaucraticobstacles,improvedataqual-ityandavailability,andcreateacarbonmonitoringandgreen-housegasinformationsystemtorealizetheirvalueforglobalclimateeffortsfully.China'sdevelopmentstartedwithlittlemoderninfrastruc-turesothatithashadroomforexperimentationandcompeti-tionofdifferenttechnologiesina'cross-the-river-by-touch-ing-stones'fashion,asphrasedbythelateChineseleaderXiaopingDENG.Amajordrawbackofsuchatrial-and-errorapproachistheinefficientuseofmaterialandhumanresourcesandenvironmentaldegradationonair,land,andwater.Forthecarbon-neutralgoal,Chinamaybeabletosim-ilarlyscaleupkeytechnologiessuchasenergystorage,butonlywithinternationalcollaboration,monitoring,andsci-entificexchange.5.InternationaldevelopmentThescalerequiredtodeploysolar,wind,andend-useelectrificationwillhavemajorspill-overeffectstoothercoun-tries,thankstoChina'sabilitytoscaleupandrefineatechno-logytomakeitaffordable.ThepotentialglobalimpactofarapidChineserenewabledevelopmentmaywellrivaltheimpactonChinaitself,notonlyforitsmanufacturingcapabil-ity,butalsoforthepotentialfortechnologydevelopment,andspreadtodevelopingcountriesorthosesoontobedevelopedwherefutureenergydemandsarenotforeseen.Forinstance,intheBeltandRoadInitiative(BRI),Chinaplanstospendtrillionsofdollarsinthebuild-upofinfrastructurefordevelopingcountriesinAsia,Africa,andSouthAmerica(WorldBank,2018)Theconstructionofcoal-firedpowerplantsshouldbeswitchedtosolarandwindfarms,specificallyfosteringthedistributionofmicrosolarpowerstationsforvillagesandtownsandrooftopandfarmsolarpanelsforruralhouseholds(Fig.4).Effortsshouldnotbeplacedsolelyinconstructingsolarinstalla-tionsbutalsodirectedtowardsexpandingthecapacityofhumanresources.SolardeploymentinChinawillprovidegreenjobsandinfrastructureindevelopingcountries,alsohelpingpovertyrelief.ChinaandIndiashouldcollaboratebecauseIndianenergydemandisrapidlyincreasingwithitslargepopulationandfasteconomicgrowth.Indiacouldbecomethe'nextChina'inCO2emissionsifitmissestheopportunityofrenewabledeploymentinplaceofcoal.Novelapproachessuchas"debt-for-climate"swapswithdevelopingcountries(Simmonsetal.,2021)cancomple-mentChina'scarbongoalsbymoreefficientuseofresources.Effortsinhelpingdevelopingcountriestosidestepfossilfuelanddirectlymovetorenewableenergy,especiallydistributedsystems,willmaketheworldbettercon-nectedandbalanced.6.ConclusionsandexpectationsAchievingcarbonneutralityisabroadandprofoundeco-nomicandsocialsystemicchangeinChina.Thesignific-anceofChina'scarbon-neutralgoaltotheParisclimateaccordtargetsandtheworld'ssustainabledevelopmentandpeacecannotbeover-emphasized,butthechallengesareenormous.JustlikeChina'sreformandopeningup40yearsago,China'seconomicdevelopmenthasbroughtnewsur-prisestotheworld.Inthesameway,withthecarbon-neut-ralvisionthatstartedtoday,Chinawillalsomeetitscarbon-neutralgoal40yearslater,bringingconfidenceandprovid-ingamodelforothercountriesintheworld.Therecentlyachievedprice-parityofsolarandwindwithfossilfuelenergysourceslaysthefoundationforthisambition;however,deploymentatthescalesneededissubjecttotechno-logicalandcommercialbottlenecks.Theenvisionedpath-wayspushresourcelimitationsfornuclear,wind,andbio-energy.Itisimportanttoresearchandexperimentwithallpos-sibletechnologies.Onthedeploymentside,werecommendacautiousapproachwithconventionalnuclearandafasterphase-outofcoal.Still,moreaggressiveactionisneededtodistributesolar,wind,smallandmodularnuclear,smartgrid,andenergystorage.Internationalcollaborationonsci-entificandtechnicalinnovationanddeploymentwillbeessen-8CHINESECARBONNEUTRALGOAL:CHALLENGES&PROSPECTStialtobuildasafe,fair,andmoreresilientcommonfutureglobally.Acknowledgements.ThisworkwassupportedbytheNationalKeyR&DProgramofChina(GrantNo.2017YFB0504000).Electronicsupplementarymaterial:Supplementarymaterialisavailableintheonlineversionofthisarticleathttps://doi.org/10.1007/s00376-021-1313-6.REFERENCESBarron-Gafford,G.A.,andCoauthors,2019:Agrivoltaicsprovidemutualbenefitsacrossthefood–energy–waternexusindrylands.NatureSustainability,2(9),848−855,https://doi.org/10.1038/s41893-019-0364-5.BeijingMunicipalEcologyandEnvironmentalBureau,2020.2019BeijingEcologyandEnvironmentStatement.Avail-ablefromhttp://sthjj.beijing.gov.cn/bjhrb/resource/cms/art-icle/1718882/10837172/2020073117581274300.pdf.Davidson,M.R.,D.Zhang,W.M.Xiong,X.L.Zhang,andV.J.Karplus,2016:Modellingthepotentialforwindenergyinteg-rationonChina'scoal-heavyelectricitygrid.NatureEnergy,1(7),16086,https://doi.org/10.1038/nenergy.2016.86.Fang,J.Y.,G.R.Yu,L.L.Liu,S.J.Hu,andF.S.ChapinIII,2018:Climatechange,humanimpacts,andcarbonsequestra-tioninChina.ProceedingsoftheNationalAcademyofSci-encesoftheUnitedStatesofAmerica,115(16),4015−4020,https://doi.org/10.1073/pnas.1700304115.Friedlingstein,P.,andCoauthors,2020.Globalcarbonbudget2020.EarthSystemScienceData,12(4),3269−3340,https://doi.org/10.5194/essd-12-3269-2020.Fuss,S.,andCoauthors,2014:Bettingonnegativeemissions.NatureClimateChange,4(10),850−853,https://doi.org/10.1038/nclimate2392.GlobalEnergyInterconnectionDevelopmentandCooperationOrganization,2021.ResearchReportsonChinaAchievingCarbonNeutralityBefore2060.Availablefromhttps://www.geidco.org.cn/html/qqnyhlw/zt20210120_1/index.html.(inChinese)Han,P.,andCoauthors,2021.DecreasingEmissionsandIncreas-ingSinkCapacitytosupportChinainachievingcarbonneut-ralitybefore2060.Availablefromhttps://arxiv.org/abs/2102.10871.Huang,L.,Y.Zhou,Y.T.Han,J.K.Hammitt,J.Bi,andY.Liu,2013:EffectoftheFukushimanuclearaccidentontheriskper-ceptionofresidentsnearanuclearpowerplantinChina.Pro-ceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica,110(49),19742−19747,https://doi.org/10.1073/pnas.1313825110.Huang,X.D.,S.Y.Chang,D.Q.Zheng,andX.L.Zhang,2020:TheroleofBECCSindeepdecarbonizationofChina'seco-nomy:Acomputablegeneralequilibriumanalysis.EnergyEconomics,92,104968,https://doi.org/10.1016/j.eneco.2020.104968.IPCC,2018.SpecialReportGlobalWarmingof1.5degree.Avail-ablefromhttps://www.ipcc.ch/sr15/.IRENA,2020.RenewablePowerGenerationCostsin2019.Avail-ablefromhttps://www.irena.org/publications/2020/Jun/Renewable-Power-Costs-in-2019.Jiang,K.J.,C.M.He,X.Y.Xu,W.Y.Jiang,P.P.Xiang,H.Li,andJ.Liu,2018:TransitionscenariosofpowergenerationinChinaunderglobal2°Cand1.5°Ctargets.GlobalEnergyInterconnection,1(4),477−486,https://doi.org/10.14171/j.2096-5117.gei.2018.04.008.Kaya,Y.,andK.Yokoburi,1997.Environment,Energy,andEco-nomy:StrategiesforSustainability.UnitedNationsUni-versityPress.Kintisch,E.,2018.RooftopsensorsonU.S.embassiesarewarn-ingtheworldabout'crazybad'airpollution.Science,https://doi.org/10.1126/science.aat9260.Lazard,2020.LevelizedCostofEnergy,LevelizedCostofStor-age,andLevelizedCostofHydrogen–2020.Availablefromhttps://www.lazard.com/perspective/levelized-cost-of-energy-and-levelized-cost-of-storage-2020/.Lin,X.H.,W.Zhang,M.Crippa,S.S.Peng,P.F.Han,N.Zeng,L.J.Yu,andG.C.Wang,2021:AcomparativestudyofanthropogenicCH4emissionsoverChinabasedontheensemblesofbottom-upinventories.EarthSystemScienceData,13(3),1073−1088,https://doi.org/10.5194/essd-13-1073-2021.McLaren,D.,andN.Markusson,2020:Theco-evolutionoftechno-logicalpromises,modelling,policiesandclimatechangetar-gets.NatureClimateChange,10(5),392−397,https://doi.org/10.1038/s41558-020-0740-1.ProjectComprehensiveReportPreparationTeam,2020.Acompre-hensivereportontheresearchofChina'slong-termlow-car-bondevelopmentstrategiesandpathways.ChinaPopula-tion,ResourcesandEnvironment,30(11),1−25.(inChinese)Povinec,P.P.andcoauthors,2013.Cesium,iodineandtritiuminNWPacificwaters–acomparisonoftheFukushimaimpactwithglobalfallout,Biogeosciences,10(8):5481-5496.https://doi.org/10.5194/bg-10-5481-2013.Raupach,M.R.,G.Marland,P.Ciais,C.L.Quéré,J.G.Canadell,G.Klepper,andC.B.Field,2007.GlobalandregionaldriversofacceleratingCO2emissions.ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica,104(24),10288−10293,https://doi.org/10.1073/pnas.0700609104.Simmons,B.A.,R.Ray,H.B.Yang,andK.P.Gallagher,2021:Chinacanhelpsolvethedebtandenvironmentalcrises.Sci-ence,371(6528),468−470,https://doi.org/10.1126/science.abf4049.TheStateCouncil,2021.TheOutlineof14thFive-yearPlan(2021-2025)forNationalEconomicandSocialDevelop-mentandtheLong-RangeObjectivesThroughtheYear2035.Availablefromhttp://www.gov.cn/xinwen/2021-03/13/content_5592681.htm.(inChinese)WorldBank,2018.BeltandRoadInitiative.Availablefromhttps://www.worldbank.org/en/topic/regional-integration/brief/belt-and-road-initiative.Xi,J.P.,2020.XiDeliveredanImportantSpeechDuringtheGen-eralDebateofthe75thSessionoftheUnitedNationsGen-eralAssembly.Availablefromhttp://www.gov.cn/xinwen/2020-09/22/content_5546168.htm.(inChinese)Xiao,X.-J.,andK.-J.Jiang,2018:China'snuclearpowerundertheglobal1.5°Ctarget:Preliminaryfeasibilitystudyandpro-spects.AdvancesinClimateChangeResearch,9(2),138−143,https://doi.org/10.1016/j.accre.2018.05.002.Yang,J.B.,Q.Y.Liu,X.Li,andX.D.Cui,2017:OverviewofwindpowerinChina:Statusandfuture.Sustainability,9(8),ZENGETAL.91454,https://doi.org/10.3390/su9081454.Yu,S.,B.Yarlagadda,J.E.Siegel,S.Zhou,andS.Kim,2020:TheroleofnuclearinChina'senergyfuture:Insightsfromintegratedassessment.EnergyPolicy,139,111344,https://doi.org/10.1016/j.enpol.2020.111344.Zeng,N.,2008:Carbonsequestrationviawoodburial.CarbonBal-anceandManagement,3(1),1,https://doi.org/10.1186/1750-0680-3-1.Zeng,N.,Y.H.Ding,J.H.Pan,H.J.Wang,andJ.Gregg,2008:Climatechange-theChinesechallenge.Science,319,730−731,https://doi.org/10.1126/science.1153368.Zhang,D.,X.L.Zhang,J.K.He,andQ.M.Chai,2011:Off-shorewindenergydevelopmentinChina:Currentstatusandfutureperspective.RenewableandSustainableEnergyReviews,15(9),4673−4684,https://doi.org/10.1016/j.rser.2011.07.084.Zhao,L.L.,S.Y.Chang,H.L.Wang,X.L.Zhang,X.M.Ou,B.Y.Wang,andM.R.Wu,2015:Long-termprojectionsofliquidbiofuelsinChina:Uncertaintiesandpotentialbene-fits.Energy,83,37−54,https://doi.org/10.1016/j.energy.2015.01.060.Zhou,S.,Q.Tong,X.Z.Pan,M.Cao,H.L.Wang,J.Gao,andX.M.Ou,2021:Researchonlow-carbonenergytransforma-tionofChinanecessarytoachievetheParisagreementgoals:Aglobalperspective.EnergyEconomics,95,105137,https://doi.org/10.1016/j.eneco.2021.105137.10CHINESECARBONNEUTRALGOAL:CHALLENGES&PROSPECTS

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

碳中和
已认证
内容提供者

碳中和

确认删除?
回到顶部
微信客服
  • 管理员微信
QQ客服
  • QQ客服点击这里给我发消息
客服邮箱