China'sroutetocarbonneutrality:Perspectivesandtheroleofrenewables©IRENA2022Unlessotherwisestated,materialinthispublicationmaybefreelyused,shared,copied,reproduced,printedand/orstored,providedthatappropriateacknowledgementisgivenofIRENAasthesourceandcopyrightholder.Materialinthispublicationthatisattributedtothirdpartiesmaybesubjecttoseparatetermsofuseandrestrictions,andappropriatepermissionsfromthesethirdpartiesmayneedtobesecuredbeforeanyuseofsuchmaterial.ISBN:978-92-9260-449-3IRENA(2022),China'sroutetocarbonneutrality:Perspectivesandtheroleofrenewables,InternationalRenewableEnergyAgency,AbuDhabi.AboutIRENATheInternationalRenewableEnergyAgency(IRENA)servesastheprincipalplatformforinternationalco-operation,acentreofexcellence,arepositoryofpolicy,technology,resourceandfinancialknowledge,andadriverofactiononthegroundtoadvancethetransformationoftheglobalenergysystem.Anintergovernmentalorganisationestablishedin2011,IRENApromotesthewidespreadadoptionandsustainableuseofallformsofrenewableenergy,includingbioenergy,geothermal,hydropower,ocean,solarandwindenergy,inthepursuitofsustainabledevelopment,energyaccess,energysecurityandlow-carboneconomicgrowthandprosperity.www.irena.orgAcknowledgementsIRENAwouldliketoexpresssincereappreciationtotheexpertswhoreviewedthereport.InsightfulcommentsandconstructivesuggestionswereprovidedbytheEnergyResearchInstituteoftheAcademyofMacroeconomicResearch,China.SpecialthanksgotoPaulKomor,whoprovidedhelpfulfeedbackandadvice.IRENAcolleaguesHeribBlanco,SeungwooKang,MartinaLyons,DanielRusso,FranciscoBoshell,CarlosFernandez,FaranRanaandJinleiFengprovidedvaluablereviewsandinput.ContributingauthorsThisreportwasprepared,undertheguidanceofDolfGielen(Director,IRENAInnovationandTechnologyCentre)byPaulDurrant(formerIRENAstaff),NicholasWagner,YongChen(IRENA)andYufengYang(consultant).DisclaimerThispublicationandthematerialhereinareprovided“asis”.AllreasonableprecautionshavebeentakenbyIRENAtoverifythereliabilityofthematerialinthispublication.However,neitherIRENAnoranyofitsofficials,agents,dataorotherthird-partycontentprovidersprovidesawarrantyofanykind,eitherexpressedorimplied,andtheyacceptnoresponsibilityorliabilityforanyconsequenceofuseofthepublicationormaterialherein.TheinformationcontainedhereindoesnotnecessarilyrepresenttheviewsofallMembersofIRENA.ThementionofspecificcompaniesorcertainprojectsorproductsdoesnotimplythattheyareendorsedorrecommendedbyIRENAinpreferencetoothersofasimilarnaturethatarenotmentioned.Thedesignationsemployed,andthepresentationofmaterialherein,donotimplytheexpressionofanyopiniononthepartofIRENAconcerningthelegalstatusofanyregion,country,territory,cityorareaorofitsauthorities,orconcerningthedelimitationoffrontiersorboundaries.CHINA'SROUTETOCARBONNEUTRALITY3CONTENTSABBREVIATIONS5EXECUTIVESUMMARY6IRENA’stechnology-focusedanalysis7Areasforactionandinitialrecommendations71.CHINA’SCARBONDIOXIDEEMISSIONGOALSINTHEGLOBALCONTEXT171.1Globalcontext171.2China’suniquecharacteristics182.SHAPINGASTRATEGYFORTHE2020sANDBEYOND202.1Developinganddeliveringanintegratedlong-termenergyplan212.2Maintainingenergyefficiencyimprovementsasapriority222.3Acceleratingthephase-downofcoalconsumption232.4Acceleratingthetransitiontowardsrenewablepower252.5Reformingpowernetworks272.6Increasingtheelectrificationofend-usesectors312.7Expandingthedirectuseofrenewables,particularlybiomassforenergypurposes342.8Scalinguptheproductionanduseofhydrogenandsyntheticfuels362.9Supportingcitiesaschampionsoflow-carbonliving392.10Continuingprogressinlight-dutytransportandbroadeningtoheavy-dutyandlong-haulmodes402.11Layingthegroundworkforindustrialsectorstoachievenetzeroemissions442.12ContinuingtosupporttechnologyRD&Dandbroadersystemicinnovation482.13Deepeningglobalengagement493.CONCLUSIONSANDAREASFORFURTHERWORK51REFERENCES524FiguresFIGURE1Emerginginnovationsfortheintegrationofvariablerenewableelectricity–enablingtechnologies,marketdesign,businessmodels,systemoperation28FIGURE2Electrificationrateinfinalenergyconsumption(a),transport(b)andresidentialbuildings(c)bycountry,1980-201731FIGURE3Hydrogenproductioncosts,2020-205037FIGURE4ChineseindustrialCO2emissionsbysector,2020-2050(Referencecase)45BoxesBOX1CDRmeasuresandCCUSforpowerandindustrialprocesses29BOX2Chinesecitycasestudy:UrbanenergytransformationinZhangjiakou40CHINA'SROUTETOCARBONNEUTRALITY5ABBREVIATIONS°CdegreesCelsiusBECCU/Sbioenergywithcarboncaptureandutilisation/storageCCScarboncaptureandstorageCCUcarboncaptureandutilisationCCUScarboncapture,utilisationandstorageCDRcarbondioxideremovalCO2carbondioxideDACCSdirectaircarboncaptureandstorageEJexajouleEUEuropeanUnionGDPgrossdomesticproductGtgigatonneGWgigawattIRENAInternationalRenewableEnergyAgencykWhkilowatthourLNGliquefiednaturalgasLTESLong-TermEnergyScenarioMtmilliontonnesMWhmegawatthourPVphotovoltaicRD&Dresearch,developmentanddeploymentSEGSNStateGrid’sSmartEV-to-GridServiceNetworkSGERIChinaStateGridEnergyInstituteTWhterawatthourWETOWorldEnergyTransitionsOutlook6EXECUTIVESUMMARYInSeptember2020,ChinesePresidentXiJinpingannouncedatthe75thSessionoftheUnitedNationsGeneralAssemblythatChinawouldaimforapeakinitscarbondioxide(CO2)emissionsbefore2030andtoachievecarbonneutralityby2060.Theimplicationsoftheseannouncementswillbeprofoundandwillrequirechangesinalmosteveryaspectofhowthecountryconsumesenergyandproducesgoods.Fortyyearsisashortperiodtocompletesuchamajortransformation,andalthoughmanybuildingblocksexist,manyofthedetailsofhowtodeliversuchachangeremainunclear.Substantialanalysis,carefulplanningandco-ordinatedeffortwillbeneededinthenextfewyearstoshapethepathto2060.China’sscaleandtheneedtobalanceeconomicdevelopmentwithemissionreductionspresentachallengeinitstransitiontonetzero.Overthepastdecade,thecountryhasbeentoprankedinglobalenergyproductionandconsumption.China’senergy-relatedCO2emissionshavebeentrendingupwardtoreach28%oftheglobaltotalin2019,accordingtoemissiondatafromtheInternationalEnergyAgency.Atthesametime,Chinahasbeenakeydriverofthegrowthinrenewableenergygenerationcapacity,accountingfor34-53%oftheglobalannualgrowthovertheperiod2013to2021(IRENA,2022a).AlthoughtheshareofcoalinChina’senergymixdeclinedaround10%between2012and2019,coalremainsthedominantsourceofprimaryenergyinthecountry(StateCouncilInformationOffice,2020).Therefore,Chinamustscalebackitscoalusewhileacceleratingthescale-upofrenewables.Additionally,reducingemissionsfromhard-to-abatesectorssuchasironandsteelmaking,cementandpetrochemicals–whichareoftenenergyandcarbonintensive–isaparticularchallengebecauseoftheimportanceofthesesectorstototaleconomicactivity.Tomeetitscarbonpeakingandcarbonneutralitygoals,Chinawillhavetomaximisethedeploymentanduseofrenewables-basedpowergeneration.Thisneedstobecombinedwithdirectandindirectelectrificationofend-usesectors(building,industryandtransport),whichneedstobesupplementedwithsustainableuseofbioenergy,hydrogenandsyntheticfuels.Doingsowillrequireafundamentalrethinkingoftraditionalconceptsofenergysupplyandsecurityandshouldacceleratethepaceofgeneratinganddisseminatingthesystemicinnovationsneededtodrivetheenergytransitionprocess(IRENA,2019a).Chinaisnotaloneinthisjourney.Othercountriesarealsoundergoingthistransitionandmakingeffortstoadvanceanddeploythetechnologiesthatwillbeneededtorealiseit.Chinacouldbothcontributetoandbenefitfrominternationalco-operation.Exchangesofexperiencegainedandlessonslearntatthedomesticandinternationallevelscanfacilitatethedevelopmentofviabletransitionstrategies.CHINA'SROUTETOCARBONNEUTRALITY7IRENA’stechnology-focusedanalysisThispaperprovidessomeinitialinsightsbasedonthetechnology-focusedworkoftheInternationalRenewableEnergyAgency(IRENA)withcountriesaroundtheworld,aswellasonIRENAanalysisofglobalandregionalenergytransitions.ThepaperdrawsonmultipleIRENAreportsonpowersectorflexibility,hydrogenandthesustainableuseofbiomass.ItalsodrawsspecificallyonIRENA’sInnovationLandscapeforaRenewable-PoweredFuturereport(IRENA,2019a)andsupportingbriefs,ontheReachingZerowithRenewablesreport(IRENA,2020a)andonIRENA’sglobalroadmap–theWorldEnergyTransitionsOutlook(WETO)(IRENA,2021a;IRENA,2022b)–whichisfocusedonascenarioconsistentwithlimitingglobaltemperaturerisetobelow1.5degreesCelsius(°C),byeliminatingglobalCO2emissionsbetweennowand2050.ThispapersummariseskeyinsightsfromtheseandotheranalyticalreportsandexplorestheirrelevancetoChina’sspecificcontext.Thepaperaimstosupportlearningfromglobalexperiences,promptdiscussionsandinformthefurtherworkneededtochartthepathtocarbonneutralityinChinaby2060.AreasforactionandrecommendationsAsastartingpointfordiscussionsandtoidentifyprioritiesfordeeperanalysis,thispaperidentifies13prioritiesforstrongeraction,togetherwithrecommendations:1.Developinganddeliveringanintegratedlong-termenergyplanEffectiveandintegratedenergyplanningisfundamentalforasuccessfulenergytransitionandcandelivertheenablingconditionsthattheenergytransitionwouldrequire.Theenergytransitionisnotsomethingthatcanbeaccomplishedbyasinglegovernmentalbody.Multipleinstitutionsmustworktogether.InthecontextofthenetzerogoalandbuildingongoodpracticeinChinatodate,furtherco-ordinationisneededtoestablishastronggovernancestructure,notonlybetweenenergyplanningagenciesandinstitutionsbutalsobetweentheenergyandclimatecommunities.ChinahasastrongtrackrecordofeffectivedevelopmentandimplementationofFive-YearPlans.Inrecentyears,long-termperspectivesandguidelinesprovidedbytoppolicymakersgivecontextandprovidestrategicpolicyobjectives.Theseneedtobeoperationalisedfurther.RECOMMENDATIONSFORCHINATOEXPLOREINCLUDE:•Co-developscenario-basedlong-termstrategiesandplansforcarbonneutralityby2060,includingatthenationalandthesub-regional/provinciallevelsandbysector.•Utiliseglobalbestpracticeforlong-termscenariodevelopment,drawingonexperienceandbestpracticesfromaroundtheworldthroughIRENA’sLong-TermEnergyScenariosNetwork.82.MaintainingenergyefficiencyimprovementsasapriorityMaximisingenergyandresourceefficiencyandminimisingtheenergyandresourceintensityofeconomicactivitiesisusuallythemostcost-effectivestrategytoreduceenergyconsumptionaswellasemissions.SignificantpotentialexistsforefficiencyimprovementsinChinainmanyareas,andsynergiesremaintobeexploitedbetweenincreasedelectrificationofend-usesectorsandimprovedefficiencyofenergyservicesupply.RECOMMENDATIONSFORCHINATOEXPLOREINCLUDE:•Maintainastrategicfocusonmaximisingenergyandresourceefficiencyandminimisingtheenergyandresourceintensityofeconomicactivities.•Exploitadditionalopportunitiesforimprovements,includingacceleratingthegrowthoftheservicesector,promotingacirculareconomyandutilisingdigitaltechnology.3.Acceleratingthephase-downofcoalconsumptionToachieveemissionpeakingbefore2030andnetzeroby2060,thetotalconsumptionoffossilfuelsmustbecappedandsubsequentlyreduced,whilethephase-downofcoalforpowergenerationisapriority.Theprincipalbarriersareprimarilynottechnological(renewablepowertechnologiesconstituteaprovenalternativetoday)oreconomic(renewablepowerischeaperthanalternativesinmostcircumstances).Today’sbarriersaremostlyrelatedtochangesinpoliciesandlegislation.Insomecases,localsocio-economicconsiderationsplayarole,withsomeregionaljobsandlocaleconomiesbeingheavilydependentonfossilfuels(intheChinesecase,predominantlyoncoal).Addressingthesebarrierswillrequireclearpoliticaldirectioncoupledwithcarefultransitionplanningtomitigatesocio-economicimpactsthatmayariseduetotransformationofthecurrentenergysystems.RECOMMENDATIONSFORCHINATOEXPLOREINCLUDE:•ProgressivelystrengthenChina’snationalemissionstradingschemetorampupcarbonemissionreductionsfromthemostemittingplants,notablycoal-firedpowerplants.•Reducecoalconsumptionfurtherduringtheperiodofthe15thFive-YearEnergyPlan,whichwouldbeanimportantsignalforthelong-termtransitionawayfromcoal.•Drawonagrowingbodyofevidenceandexperienceinternationally,throughco-operationanddialogue,toenableChinatomakewell-informeddecisionsonhowtodevelopeconomictransitionstrategiesforcoal-reliantregionswithasfewadverseimpactsaspossibleonlocaleconomies.CHINA'SROUTETOCARBONNEUTRALITY94.AcceleratingthetransitiontowardsrenewablepowerGloballythereisaneedtotriplethepowersupplyby2050fromthecurrentlevel,astheroleofelectrificationandtheuseofelectrofuels(e-fuels)rises.Costreductionsmeanthatrenewablesarenowthesensibleeconomicsupplychoice.Globally75%ofonshorewindand40%ofutility-scalesolarPVproducedelectricityisatpresentcheaperthanfossilfuel-basedalternatives.Renewablesshouldthereforebethepreferredrouteforpowergeneration,andsolarpower,windpowerandhydropowershouldbecomethebackboneofChina’spowersupplyinthefuture.Renewablescanpotentiallymeetmorethan90%ofChinesepowerdemandby2050,withasolarandwindenergyshareofover60%(IRENA,2020b).RECOMMENDATIONSFORCHINATOEXPLOREINCLUDE:•ExploitChina’sstrengthsandexperiencewithrenewablestoacceleratedeployment.Chinanowhasthecapacityandexperiencetostepupthedeploymentrateatanevenfasterpace.•Stimulatethedevelopmentanduptakeofemergingrenewableenergytechnologiessuchasoffshorewind,whichcouldplayasignificantrole.OffshorewindfarmslocatedclosetoloadcentresalongChina’seasterncoastreducetheneedforlong-haultransmissionfromremotewesternregions.5.ReformingpowernetworksThevariabilityofwindandsolarpowercanposechallengesforsafeandstableoperationofthepowersystem,butagrowingrangeofsolutionsexisttocounterthatbyenhancingtheflexibilityofenergysystems.Globallytherenewableenergyshareintotalpowergenerationshouldreach90%by2050,andnearlythree-quartersofthetotalinstalledcapacityandmorethan63%ofallpowergenerationshouldcomefromvariablerenewableenergyresources,upfromaround20%oftheinstalledcapacityandnearly10%ofpowergenerationgloballytoday(IRENA,2021a).Chinaneedstoconsiderhowtotransitionitspowersystemstoahybridconfigurationthatcombinesbothcentralisedanddistributedpowergenerationsystems.Chinaalsoneedsamoreflexibleinter-regionalelectricitymarkettosustainthetransition.Suchchangescanbeenabledbytheadoptionofsystemicinnovations–anapproachtofacilitatethediffusionofinnovativetechnologieswithimprovedenablingenvironmentssuchasbusinessmodels,marketstructure,newregulationsandoverallsystemoperations.Thus,theflexibilityinenergysystemscouldbeimprovedandmorevariablerenewableenergycanbeintegratedinthepowermix.10RECOMMENDATIONSFORCHINATOEXPLOREINCLUDE:•Continuetopromotepowermarketreformtoincentiviseaflexibleenergyandelectricitymarket.Thiswillinturnacceleratetheupgradingofelectricityinfrastructure–includingtheintegrationofsmartgrids,energystorage,distributedsystemsandotherdigitaltechnologies–andalsofacilitateinter-regionalpowerexchange.•Stimulateinvestmentinultra-high-voltagetransmissionbetweentheregionalpowermarkets.GiventhatalargeamountofChina’srenewableenergyresourcesareinthewesternandnorthernregions,suchinvestmentremainsimportantdespitescalinguptheuseoflocalrenewablesintheeasternandcentralregions.6.Increasingtheelectrificationofend-usesectorsItisincreasinglyclearthatelectrificationofthetransport,industryandbuildingssectorsshouldbegivenseriousconsiderationasapromisingoptionforreducingend-useemissions,giventherapiddeploymentofrenewablepowergenerationcapacity.Dramaticreductionsinthecostofrenewableelectricityopenupnewcost-effectiveoptionstosubstantiallyreduceend-useenergydemand,shoulddirectelectrificationbeadopted(IRENA,2022c).InChina,thecombinationofelectrificationandrenewablesisalreadystartingtotransformsectorssuchaslight-dutyroadtransportandbuildings.Electrificationwillalsohavearoleinindustryandlong-haultransport.Whileincreasingthepaceofelectrificationwillbecritical,itwillbeimportanttoavoidun-co-ordinatedelectrification,whichcouldthreatentoincreasesystempeaksandcauseissuesfortransmissionanddistributionnetworks.Smartelectrificationenabledbygoodplanninganddigitalisationwillbeanecessitytoreducepeakloads,thusreducingtheneedforinvestmentsinenhancingthegridoperationoraddingnewgenerationcapacities.RECOMMENDATIONSFORCHINATOEXPLOREINCLUDE:•Developalong-termvisionoftheroleofelectricityinthecountry’senergysystem,includingengagingmultiplestakeholdersandexpandingsmartelectrificationinfrastructure,suchastransmissionanddistributiongrids,decentralisedsystems,smartchargingnetworksforelectricvehicles,anddistrictheatingandcoolingsystemsaswellasintegratingfacilitiesforgreenhydrogenproductionanddistribution.CHINA'SROUTETOCARBONNEUTRALITY11•Moderniseelectricitygrids,particularlythroughaccelerateddeploymentofdigitalgridtechnologiesandsolutions,enhancedintegrationofvariousend-usesectorsandincreasedlarge-scaleenergystoragecapacity.Thiswillbecriticalforimplementingtheelectrificationstrategy.•Relocatetheproductionfacilitiesofsomeenergy-intensiveindustriestothewesternandnorthernregionsofChinatotakeadvantageofabundantrenewableelectricitythere,providedthatothercriticalfactorsforsuchre-allocation(suchasland,labourforcesandavailabilityofotherresourcesforindustrialproduction)wouldallowthis.•Adaptregulationstobetterreflectinter-relationsamongsectors,especiallyincities,forexamplebyfurtherpromotingpricereforms,removingbarrierstoadoptinginnovativetechnologies,andincentivisingwidespreadadoptionofheatpumps,smartmetersandothersmartelectricappliances.7.Expandingthedirectuseofrenewables,particularlybiomassforenergypurposesSolarthermal,bioenergyandgeothermalwillbefurtherneededatgreaterscaletoprovidezero-carbonthermalenergyforspaceheatingandcooling(absorptionchillers)andhotwaterinbuildings,aswellasforindustrialprocesses,throughdirectuseoftheresources.Inadditiontodirectuse,biomasscanbeusedasafeedstockforalternativematerialstofossilfuels,bothasinputsinindustrialprocessesaswellasintheproductionoftransportfuelssuchasbiofuels.Giventhewiderangeofapplications,bioenergyaccountsforthebulkofglobalrenewableenergyuseandfor10%ofglobaltotalfinalenergyconsumption.However,thecontributionofmodernbioenergyremainssmall–only1.5%.Nevertheless,itisexpectedtogrowto17%ofglobalfinalenergydemandby2050(IRENA,2021a).IRENA’sanalysissuggeststhatthedemandforbiomassasafeedstockforenergyusetodelivernetzeroby2050canbemetwithoutadverseimpactsonforestryandotherland-usepurposes,ifeffectivemeasuresinregulation,certificationandmonitoringaretaken.InChina,bioenergyhasbeendevelopedanddeployedatamuchslowerratecomparedtosolarPVandwindpoweroverthepastdecade.Thechallengeslieinthelimitedresourcesratherthaninthemanycompetinginterestsforuse,aswellasinthesustainabilityofbioenergyfeedstockprovision.Effectiveapproachesandstrategieswouldberequiredtoensurethatthefeedstocksareexploitedsustainablyandareecologicallyfriendly,andthattheresourcestobeusedarethosethatcanaddthemostvalue–suchasforbiojetfuelstodecarbonisetheaviationsector,anareawhereChinawouldneedtocatchupintechnologiesandproductioncapacities.12RECOMMENDATIONSFORCHINATOEXPLOREINCLUDE:•Fullyintegratetheuseofbiomassinboththeenergysectorandotherend-usesectors,inparticularbyestablishingcross-sectoralco-ordinationmechanismsamongenergy,agricultureandforestrypolicymakers.•Achievegreatervalueforvariousendusersofbiomassthroughbiorefineries.•Explorethepotentialadoptionofinnovativetechnologiesassociatedwiththeuseofbiomass,suchasbioenergywithCO2captureandutilisation/storage(BECCU/S),apromisingtechnologyfordecarbonisationwhileabsorbingcarbonthatisalreadyintheatmosphere.Manymorepilotprojectsareneeded,alongsidemechanismstosharelearning.8.ScalinguptheproductionanduseofhydrogenandsyntheticfuelsHydrogenhasseveralattractivefeaturesfortheenergytransition.Itcanofferasolutionfortypesofenergydemandthatarehardtoelectrifydirectly.Atthegloballevel,hydrogenandthedirectuseofrenewablescanmeetaround50%ofthefinalenergyusesthatmaynotbesuitablefordirectelectrification.Transportofhydrogenthroughpipelineswouldbemuchmorecostefficientincomparisonwithelectricitytransmissionoverpowergridnetworksperunitofenergy.Inaddition,hydrogenproducedfromrenewableelectricityviatheelectrolysisprocesscancontributetotheintegrationofmorevariablerenewableenergyinthepowersectorbyprovidinganadditionalsourceofflexibility,andcanalsoprovideseasonalstoragecomplementingshort-termstorage(e.g.batteries).Globallyhydrogenanditsderivativescouldmeet12%offinalenergyuseinthecomingthreedecadesorso,withtwo-thirdsofthisbeinggreenhydrogen,accordingtoIRENA’sanalysis(IRENA,2022b).Tomakethishappen,productionofgreenhydrogenwouldneedtoscaleuprapidlytoachieveeconomiesofscalethatwouldallowittobecomecostcompetitivewithbluehydrogenbytheendofthe2020sinmanycountriesandregions.ThereissubstantialscopetoscaleupgreenhydrogenproductioninChina,althoughitwillbeimportanttoensurethatanyrenewablecapacityusedforhydrogenisadditionaltotheplannedactivitiesandthathydrogenisnotdisplacingmoreefficientusesofelectricity(i.e.directuse).Chinahastwokeyadvantageswithhydrogen.First,relativelylowerlabourcostsandindustrialdevelopmentcomparedtoothercountrieswouldcontributetocontinueddeclinesintheproductioncostsofelectrolysers.Second,thedemandforgreenhydrogeninChinacanprovidetheopportunitytoscaleupglobaldeploymentoftheproductioncapacity,facilitatingtheshiftfromfossil-basedtorenewables-basedhydrogenproduction,andcanleadtolearningeffectsandcostdeclines.CHINA'SROUTETOCARBONNEUTRALITY13RECOMMENDATIONSFORCHINATOEXPLOREINCLUDE:•Developasupportivepolicyframeworkthatencouragesfuelshiftsinindustry,andexpandthescopeofeligiblefuelstohydrogenanditsderivatives.•Demonstrateandbuildexperienceonhydrogenend-useapplications,includingroadtransportwithhydrogenfuelcells,alternativereductionagentstocokecoalintheironandsteelindustry,ammoniaforshippingandsyntheticfuelsforaviation.Chinacouldattaingloballeadershipinthesetechnologies,ifgreatereffortscanbemadetosupportthetechnologicalinnovationsneededtoovercomethecurrentunder-performanceofChineseelectrolysers(Heyward,2022).•Supportthedomesticelectrolyserindustrytoenablegrowth,learningandcompetitionleadingtotechnologicalleadershipforChina.9.Supportingcitiesaschampionsoflow-carbonlivingOverthepastfewdecades,Chinahasurbaniseddramaticallyandinanimpressivemannergiventhesizeofitspopulation.Citydwellersnowmakeup60%ofthepopulation,whichcreateschallengesforenergysupplyanduse(CNBS,2021).Industryaccountedforaround71%ofthecountry’surbanfinalenergyconsumptionin2018,whilebuildingsaccountedforaround19%andtransportfor10%(SGCERI,2019).Citiesarediverse,andtherearenoone-size-fits-allsolutions.Theurbanenergyinfrastructureofthefuturewillbeshapedbytoday’sinvestmentdecisionsandurbanplanning.Sustainablesolutionsmustbeidentifiedfromalong-term,system-wideperspectivetoavoidthecreationofstrandedassets.Aneffectiveanalysisframeworktoidentifysolutionsforcitiesshouldincludebottom-upplanningelementsthatreconcilewiththelong-term,low-carbonurbanandregionalenergystrategies.RECOMMENDATIONSFORCHINATOEXPLOREINCLUDE:•Encouragelocalauthoritiestodeveloplong-termintegratedurbanplanning,withthetwinaimsofachievingcarbonneutralityandbetterliveability.•Prioritisedistributedenergygenerationtomaximisetheuseoflocalrenewableenergyresources,couplingend-usesectorsandurbaninfrastructure,usingdigitalisedintelligentenergymanagementsystemsandimprovingenergyefficiency.14•Contributetoenergysystemflexibilitybymakingurbanenergydemandmoreresponsivetothegenerationfromvariablerenewableelectricityfromthenationalgrid.•Reformurbanwasteusetoincentiviserecyclingandappropriatedisposal,includingthroughaproperlydesignedwastemanagementsystem.10.Continuingprogressinlight-dutytransportandbroadeningtoheavy-dutyandlong-haulmodesFallingcostsandrisingsharesofrenewableenergyinChina’spowermixopenthedoorfortransformingthetransportsectorsoitismostlycentredarounddirectandindirectelectrification.Thetechnologicaloptionsthatcanacceleratesuchatransformationincludethedirectuseofclean,preferablyrenewable,electricity(forrailandroadtransport,includingheavy-dutyroadfreighttransport);theuseofgreenorbluee-fuels,suchashydrogen,ammoniaandothere-fuels(particularlyforshippingandsomeheavy-dutyroadfreighttransport);andtheuseofbiofuels(particularlyforaviation).Amongtheseoptions,electrificationoftransportisgenerallyviewedasthemostpromising,particularlyforlightvehicles,thankstothecontinueddeclineinthegenerationcostofelectricityfromrenewableenergysources.RECOMMENDATIONSFORCHINATOEXPLOREINCLUDE:Fordomestictransport:•Continuetheroll-outofelectricvehiclesandcharginginfrastructure.Thisincludesensuringthatcharginginfrastructureis“smart”,creatingincentivesforlow-carbonroadfreightdeliveriesanddevelopingintegratedroadmapsfortransportsectors.•Exploitpossiblesharedimpetusfromothersectors,suchas:incentivesforloweringthecostofbatteriesthatwouldbenefitmorethanjustthetransportsector;theincreaseddemandforcost-competitivegreenhydrogenandtheestablishedsupplychainforgreenhydrogenuse;andthesupplyofsustainablesourcesoffeedstocksforbiofuels.Forinternationalaviationandshipping:•BuildontheoverallefforttoreducecarbonemissionsinChinatodevelopacarbonneutralitystrategyfortheaviationsector,andincentivisetheadoptionoflow-carbonflightoptions.•Conductmoredetailedstudiesontherealisticpotentialsofkeyalternativeaviationfuels(i.e.biojetandsyntheticfuels).CHINA'SROUTETOCARBONNEUTRALITY1511.LayingthegroundworkforindustrialsectorstoachievenetzeroemissionsHowtoachievenetzeroemissionsintheindustrialsectorsisaglobalchallengethathasbarelybeguntobetackled.Thisisbecauseitwillrequirefundamentalchangesintheproduction,consumption,andrecyclinganddisposalofproducts,andindustrialsectorsarediverse.Chinaistheworld’slargestproducerofseveralkeyenergy-intensivecommodities,soitsactionsandleadershipwillbecritical.Forindustrialsectors,the2020sneedtobeadecadeofpreparation,layingthegroundworkformajorshiftsinproductionprocessesandverydeepemissioncutsinthesubsequentdecades.Actionsinthe2020sneedtofocusoncreatingandprovingthesolutionsneededandestablishingtheenablingconditions.Prioritiesforactioninclude:providingclearsignalsfromgovernment;learningwhatworksbyestablishingmanymoredemonstrationplants;andbeginningtoaddressessentialenablingconditionsincludingfinancing,fuelandfeedstocksupplyinfrastructure,standardsandcertification,andtradeconditions.RECOMMENDATIONSFORCHINATOEXPLOREINCLUDE:•Setacleardirectionbyco-developingwithindustryandotherstakeholderslow-carbonstrategiesandroadmapsforeachsector.•Reduceenergyusethroughenergyandresourceefficiencyanddemandreduction.•Transitionawayfromcoaluseinindustryandbuildknowledgeontheuseofrenewables.•Exploretheoptimallocationsforindustrialproduction,includingrelocatingtoregionsthathaveabundantrenewableenergyresourcesbutlowexistingdemandforelectricity,providedthatothercriticalfactorsforproductioncanalsobemet.12.ContinuingtosupporttechnologyRD&DandbroadersystemicinnovationSince2013,Chinahasincreaseditsinvestmentincleanenergyresearch,developmentanddeployment(RD&D)andhasbecomethesecondlargestpublicsectorinvestorbehindtheUnitedStates(althoughtheEuropeanUnion[EU]anditsmemberscollectivelyinvestmore).However,nearlyhalfoftheChineseenergyRD&Dbudgetwasspentontechnologiesthatarenotconsistentwiththecountry’scarbonpeakingandneutralitygoals.Bycontrast,97%oftheenergyRD&DbudgetintheEUwasfocusedoncleanenergyRD&Din2019.ThisimbalanceneedstobeaddressedifChinawishestodeliveritsobjectivesandplayaleadingroleincleanenergytechnologies.SupportfortechnologyRD&Dalsoneedstobelinkedtobroadersystemicinnovation–thatis,combininginnovationinenablingtechnologieswithinnovativebusinessmodelsandwithinnovationsinmarketdesignandenergysystemoperations.16RECOMMENDATIONSFORCHINATOEXPLOREINCLUDE:•IncreasepublicsectorinvestmentincleanenergyRD&D.•Adoptasystemicapproachtoinnovation.•ExpandChina’sleadershiproleininternationalRD&Dcollaboration.13.DeepeningglobalengagementTheenergytransitionisaglobaleffortrequiringgreaterinternationalco-operation.LearningbestpracticesfromothercountriesorregionscanbenefitChina,andChineseexpertisecanhelpshapeglobalmarkets.Internationalorganisationscansupportthatmutualco-operationandlearning.RECOMMENDATIONSFORCHINATOEXPLOREINCLUDE:•Beavisibleleaderinglobalenergyandclimategovernanceandstrengthenparticipationinglobalandregionalco-operationmechanismsandinternationalbodies.•ShowcaseChina’ssuccessesasamajorproviderofafullrangeofsystemsolutionsforcarbonneutrality.CHINA'SROUTETOCARBONNEUTRALITY17CHAPTER1CHINA’SCARBONDIOXIDEEMISSIONGOALSINTHEGLOBALCONTEXTAtthe75thSessionoftheUnitedNationsGeneralAssemblyin2020,Chinaannouncedthatitaimedtoachieveapeakinitscarbondioxide(CO2)emissionsbefore2030,andtoachievecarbonneutralityby2060.InDecember2020,Chinafurtherdetailedthat,aspartofitsNationallyDeterminedContributionundertheParisAgreement,itaimedtoreducethecarbonintensityofitsgrossdomesticproduct(GDP)morethan65%by2030,whileincreasingtheshareofnon-fossilfuelsinprimaryenergyconsumptiontoaround25%andtheforeststockvolumeby6billioncubicmetres,from2005levelsrespectively.Inaddition,Chinawillscaleupitstotalinstalledpowergenerationcapacityfromsolarandwindtomorethan1200gigawatts(GW).Theimplicationsoftheseannouncementswillbeprofoundandwillrequirechangesinalmosteveryaspectofhowthecountryconsumesenergyandproducesgoods.Fortyyearsisashortperiodtocompletesuchamajortransformation,andwhilemanybuildingblocksexist,manyofthedetailsofhowtodeliversuchachangeremainunclear.Substantialanalysisandco-ordinatedeffortwillbeneededinthenextfewyearstoshapethepathto2060.Forthefirsttime,Chinahasdevelopedandissuedadedicatedfive-yearplanonaddressingclimatechange,inadditiontoanenergydevelopmentplan.Effectivelyimplementingtheseplanswithprovince-levelactionswillbecrucialforChinatobeontracktowardsachievingits2060carbonneutralitygoal.1.1GlobalcontextManymajoreconomies–includingallmembersoftheGroupofSeven(G7)plustheEuropeanUnion(EU)–havemadepoliticalorpolicycommitmentstoachievingnetzeroCO2emissionsbymid-century.TheEUhaslegislatedforagoalofnetzeroby2050,andfiveEuropeancountries(Denmark,France,Germany,Hungary,Luxembourg,Spain,SwedenandtheUnitedKingdom)18havealreadypassednationallegislation,whilemorecountrieshavedeclarednetzeropolicygoals.Notably,aspartofitsnetzeroplans,theEUhasadoptedanewCarbonBorderAdjustmentMechanism,whichhasbigimplicationsforglobalmarkets.InNorthAmerica,Canadaisinthefinalstagesofenactinglegislationtargetingnetzeroby2050,andtheBidenadministrationintheUnitedStateshasdeclaredasimilargoal.InCentralandSouthAmerica,Chileisintheprocessoflegislating,whileArgentina,BrazilandCostaRicahavedeclarednetzeropolicygoals.IntheAsiaPacificregion,alongsideChina,bothJapanandtheRepublicofKoreahavedeclarednetzerotargets,whileNewZealandhaslegislatedtargetsandFijiandtheSolomonIslandsareintheprocessofdoingso.InAfricaandtheMiddleEast,thereisapressingfocusonensuringsecureandaffordableaccesstoenergy.Atpresent,onlyNigeriaandSouthAfricahavedeclarednetzerogoals,butintheregionandbeyondexamplesareemergingoflong-termplansconsistentwithnetzerogoals.Thegrowingcontingentofcountrieswithnetzerogoalsmakesitclearthatnetzeroambitionsnowhavebroadsupportandthattheefforttodeliverthemcanbesharedaroundtheworld.1.2China’suniquecharacteristicsChinahasanumberofcharacteristicsthatmakeitstransitiontonetzeroemissionsunique.Theseinclude:•Chinaistheworld’slargestproducerandconsumerofenergyandisalsotheworld’slargestemitterofCO2,accountingfor28%ofglobalgreenhousegasemissions.China’spercapitaemissions(around7tonnespercapitaperyear)exceedthoseoftheUnitedStates(WorldBank,2021a).•China’seconomywillneedtocontinuetogrowsignificantlytomeetitsdevelopmentobjectives.Inmostdevelopedcountries,energyconsumptionhasstabilisedasthesecountriestransitiontoapost-industrial,service-basedeconomy.ChinawouldneedtodoublethesizeofitseconomyanditsGDPpercapitaby2035toachieveitsmid-termdevelopmentobjectives.EnergyconsumptioninChinaisexpectedtocontinuetoriseformanyyearstocomeastheeconomydevelops(WorldBank,2021b).•China’smainenergysourceiscoal,accountingfor56%ofprimaryenergyusein2021,whilesharesofoilandnaturalgasinthemixwere18.5%and9%,respectively(CNBS,2022).Chinahad1297GWofcoal-poweredgenerationcapacityin2021,representingmorethanhalfofthenationaltotalpowergenerationcapacity(NEA,2022).•Chinahasbeenagloballeaderindeployingrenewablesfornearlyadecade.In2021,itcontributednearlyhalfoftheglobalrenewableenergycapacityadditions,with134GW.China’stotalinstalledrenewablepowergenerationcapacitywas1063GWin2021,representing44.8%ofthecountry’stotalpowergenerationcapacity.Chinagenerated2480terawatthours(TWh)ofrenewableelectricitythatyear,or29.8%ofthecountry’stotalelectricitygeneration(GovernmentofChina,2022).Chinahasupdateditsmid-termcarbonreductiontargetbyincreasingtheshareofnon-fossilfuelsinprimaryenergyCHINA'SROUTETOCARBONNEUTRALITY19consumptionto25%by2030(fromtheoriginal20%)–thisrepresentsanincreaseofnearly10percentagepointsfrom2020levels.Thecombinedinstalledpowergenerationcapacityofsolarphotovoltaics(PV)andwindturbineswillexceed1200GWby2030,up44%fromthe2020level.•Chinahashugeregionalvariationinbothitsenergyresourcesandenergydemand.Ithasbeentakingstepstotacklethis,forexamplebuildinglong-distanceelectricitytransmissionlinestomeetincreasingpowerdemandintheeasternandcentralindustrialprovinces.Since2019,Chinahasbuiltanultra-highvoltage(±1100kilovolt)directcurrenttransmissionlinetotransmit66billionkilowatthours(kWh)ofelectricityayearfromthewesterntoeasternprovincestoutiliseenormouswindandsolargeneration(Bloomberg,2019).However,regionaldifferencesinenergysupplyanddemandremainchallenging.•China'surbanisationlevelhasreachedaround60%.Urbanisationgrowthisexpectedtocontinueinthecomingdecades(StateCouncil,2020),reachinga65%shareunderthe14thFive-YearPlan.China’sfuturecitieswillincreasinglydevelopinthedirectionofmetropolitancirclesandurbanagglomerations.•Chinaiscurrentlyanexport-orientedeconomy,wheretheproductionofenergy-intensivecommoditiesfarexceedsnationalconsumption.Inthecontextofdomesticreform,development,andstabilitygoalsaswellasglobaleconomicchallenges,especiallytheCOVID-19experience,Chinaisproposingtoshiftthatbalancebyadoptingtheconceptof“dualcirculation”,wherebythecountrywouldrelymoreheavilyondomesticdemand(internalcirculation)todrivegrowthbutsupportedbyinternationaltradeandforeigninvestment(externalcirculation)(Olsson,2021).However,whileChinaistransitioningtothatnewmodel,exportswillremainanimportantcomponentoftheeconomyfortheforeseeablefuture.TheemissionreductiongoalsofChina’sexportpartners,andthecarbonintensity-relatedimportrestrictionsthattheymayimpose,arethereforealsorelevanttoChina.•Chinaholdsthelargestnationalproductioncapacityforseveralkeyenergy-intensivecommodities,suchassteel,aluminium,cement,plastics,methanolandammonia;formanyofthesecommodities,Chinaaccountsformorethanhalfoftotalglobalproduction.Theenergyconsumptionoftheseindustriesaccountsforaround60%ofthecountry’sgrossfinalenergyuse.Coalhasbeenwidelyusedintheindustrialsector,anditsconsumptionhasbeenrisinginrecentyears.ThisisparticularlythecaseforChina’srapidlydevelopingchemicalandpetrochemicalindustry:in2019,coalconsumptioninChina’smetallurgicalsectorgrew7%andinthechemicalssectorgrew11%(Hove,2020).20CHAPTER2SHAPINGASTRATEGYFORTHE2020sANDBEYONDChinahassetacleargoalforitscarbonemissionstopeakbefore2030.However,bringingforwardthetimelineto2025wouldgreatlyassistwiththecountry’ssubsequenttrajectorytonetzero,makinglaterimplementationplansmoremanageable.Itiscriticaltousethe2020sasadecadeofplanning,preparationandlearningtogatherevidence,makechoicesandaddresstheenablingconditionsnecessarytoputChinaonthepathtoanewmodernenergysystem.Doingsowillrequireafundamentalrethinkingoftraditionalconceptsofenergysupplyandsecurityandshoulddrawonthelessonsfromdomesticenergysystemdevelopmenttodateaswellasoninternationalexperienceswithenergytransition.TheInternationalRenewableEnergyAgency(IRENA)isworkingcloselywithmultiplegovernmentsastheybegintodevelopcarbonneutralityplans.Whileallcountriesarestillintheearlylearningstages,somecommonelementsareemergingthat,withsomeadaptationtolocalcircumstances,areofrelevancetoChina.Inparticular,IRENA,inpartnershipwithmanycountriesandregions,isdevelopingroadmapsfortheirenergytransitionsandpublishesanannualglobalroadmap.The2021editionofIRENA’sglobalroadmap,theWorldEnergyTransitionsOutlook(WETO),isfocusedonascenarioconsistentwithkeepingglobaltemperaturerisetobelow1.5degreesCelsius(°C).This“1.5°CScenario”providesanambitiousenergytransitionpathwaydrivenmostlybyrenewableenergysources,electrificationmeasuresandcontinuedimprovementsinenergyefficiency.Thiswouldenabletheworld’senergysystemtotransitiontowardsnetzerocarbonemissionsby2050.ThesecondeditionoftheWETO,launchedinMarch2022attheBerlinEnergyTransitionDialogue,outlinespriorityareasandactionsthatcanandmustbeimplementedbyadoptingandscalinguptheexistingtechnologiesinorderfortheworldtoachievenetzeroemissionsbymid-century.CHINA'SROUTETOCARBONNEUTRALITY21Drawingonthekeyinsightsfromthesepublicationsandonrelevantongoingworkonthetechnology-drivenaspectsofenergytransitionsaroundtheworld,whichareofstrongrelevancetoChina,thefollowing13priorityareasforconcertedChineseactionareputforth.2.1Developinganddeliveringanintegratedlong-termenergyplanEffectiveandintegratedenergyplanningisfundamentalforasuccessfulenergytransition.Long-termenergyscenariosareapowerfultoolforplanningandpolicymaking,whichcanprovideastrategicframeworkguidingthedevelopmentofbothChina’sFive-YearEnergyPlansandlonger-termstrategies.Energyplanningandpolicyissuesaredifferentfortheshort,medium,andlongterms,butnear-termplansmustbealignedwiththelong-termstrategy.A10-yeartimehorizonto2030(bywhenChinaaimstopeakitsemissions),forexample,needstocapturestructuralchangeandthedeploymentofemergingtechnologies,aswellassysteminertiathatresultsfromexistingcapitalstock.However,a2050or2060timehorizon(bywhenChinaaimstoreachnetzeroemissions)needstoexploreinnovationsandnormativelong-termpolicyobjectives,suchasdeepdecarbonisation.Chinacouldbothcontributetoandlearnfromthegrowingbodyofglobalexpertiseonenergytransitionplanning.Inthiscontext,IRENA’sLong-TermEnergyScenarios(LTES)Network1providesaplatformfornationalandregionalpractitionerstosharetheirexperiencesandgoodpracticesintheuseanddevelopmentoflong-termenergyscenariostoguidetheenergytransition.TheLTESNetworkcurrentlygathersmorethan22countriesand7technicalinstitutions,includingChina’sStateGridEnergyResearchInstitute(SGERI).DiscussionswithintheLTESNetworkshowthat,often,thedevelopmentofvariousplausiblescenariosneedstoinvolvearangeofnationalinstitutionsduringdifferentstages.InChina,SGERItakesthescenariodevelopmentapproachtoplanChina´slarge-scaleenergybase,aswellascapacityexpansionsofcross-regionaltransmissionlines.Additionally,LTESareusedasrecommendationsforpolicymeasuresonhowtoreachChina’stargetsaslaidoutintheFive-YearPlans.InthecontextofChina’snewnetzerogoalandbuildingongoodpracticeinthecountrytodate,furtherco-ordinationisneededtoestablishastronggovernancestructure,notonlybetweenenergyplanningauthoritiesandinstitutionsbutalsowiththeclimatecommunity.Complementingandbuildingonthe14thFive-YearEnergyPlan,andonthe15-yearmid-termvision,along-termroadmapforthetransitionbetweennowand2060canguidetheactivitiesofmultiplestakeholdersandreconciletheshort-andlong-termobjectivesofChina.Deliveringanagreedplanwillrequirecollaborationbeyondtraditionalboundariestomarshaltheexpertiseandeffortsofadiverserangeofactors–includingtheChinesegovernment,energycompaniesandleadinginstitutions(bothinternalandexternal)–aswellasstronginternationalcollaboration.Deliveringtheenablingconditionsfortheenergytransitionwouldrequiretherelevantinstitutionstoworktogether,andtheirgoalsmustbewellco-ordinated.Nationalministrieswillneedtoworkcloselywitheachotherandsecuretheactivesupportofprovincialadministrations.Itisparticularlycriticaltofindeconomicallyviablealternativesolutions,particularlyforprovincesthatareeconomicallydependentoncoal.1Formoreinformation,pleasevisitwww.irena.org/energytransition/Energy-Transition-Scenarios-Network/ETS-Net-Events.22RECOMMENDATIONSFORCHINATOEXPLOREINCLUDE:1.ComplementtheFive-YearPlansandthe15-yearmid-termvision,byco-developingscenario-basedlong-termstrategiesandplansChinashouldcomplementtheFive-YearPlansandthe15-yearmid-termvision,withscenario-basedlong-termstrategiesandplansforachievingcarbonneutralityby2060atthesub-regional/provinciallevelandbysector.SuchplanswillhelpaligntheworkofmanyactorsinvolvedinChina’senergytransition.Thedevelopmentshouldinvolveabroadrangeofkeystakeholdersacrosscentralgovernment,theprovinces,citiesandtowns,andothersandshouldbringtogetherenergyandclimatepolicymoreclosely.2.Utiliseglobalgoodpracticeforlong-termscenariodevelopmentChinashouldcontinuetorefineitslong-termenergyscenarios,drawingonexperienceandbestpracticefromaroundtheworld.IRENA’sLong-TermEnergyScenariosNetworkoffersaglobalplatformtosharetheChineseexperienceinlong-termscenariosandtheiruseforguidingthecleanenergytransition.2.2MaintainingenergyefficiencyimprovementsasapriorityMaximisingenergyandresourceefficiencyandminimisingtheenergyandresourceintensityofeconomicactivitiesisusuallythemostcost-effectiveinitialstrategytoreducecarbonemissionsandpollution;italsoimprovesenergysecurity.EnergyandmaterialsefficiencyandacontinuedreductioninenergyintensityhasfeaturedprominentlyinpreviousChineseenergyplansandshouldcontinuetobeamajorfocusinthe2020sandbeyond.InIRENA’s1.5°CScenario,energyefficiencyanddemandreductionaccountforaround25%oftheglobalemissionreductionsneededtoreachzero.Inthisscenario,therateofimprovementsinenergyintensityneedstoincreaseto3%peryear(IRENA,2021a),upfrom1.2%in2019andpreviousyears.Chinahasmadegreatprogressinthisregardoverthelastthreedecades,havingreduceditsenergyintensity70%between1990and2018,animprovementthatexceedstheglobalaverage(IEA,2020a).Furtherreductionswillbeneeded,however.InChina,thereisstillsignificantpotentialforefficiencyimprovementsinmanyareas,suchasindustrialmotorsystems,buildingsandurbanserviceinfrastructure(e.g.watersupplyandwastewatertreatment,gasandelectricitysupplysystems,andpubliclighting).Inrecentyears,Chinahasbeenincreasinglyreceptivetothenotionofthecirculareconomy,whichwouldimprovetheoverallefficiencyofresourcemanagement,reduceenergyandmaterialdemands,andraisepublicawarenessofconservation.Moderndigitalandcommunicationtechnologieswillunlockefficiencyinoperations,forexample,makingitpossibletobetteroptimisethetransportofheavygoodsandthusreduceoverallenergyconsumption.Therearealsosynergiestobeexploitedbetweentheincreasingelectrificationofend-usesectors,whichcangreatlyimprovetheefficiencyofenergyservicesupply.Thepotentialforimprovementsineachsectorneedstobeanalysedinmoredetail,particularlyinthecontextofthecontinuedindustrialsectortransformation.CHINA'SROUTETOCARBONNEUTRALITY23RECOMMENDATIONSFORCHINATOEXPLOREINCLUDE:1.MaintainastrategicfocusonreducingenergyintensityChina’senergystrategyforthe2020sandbeyondshouldcontinuetoincludeamajorfocusonmaximisingenergyandresourceefficiencyandminimisingtheenergyandresourceintensityofeconomicactivities,particularlyforenergy-intensiveindustrialsectors.2.ExploitremainingopportunitiesforimprovementsAreasoffocusshouldinclude:acceleratingthegrowthoftheservicesectorandpromotingacirculareconomy;identifyingenergy-savingpotentialsarisingfromnewsystemandtechnologicaldevelopments;implementingflexiblemechanismsandbusinessmodelswiththepriorityofimprovingenergyefficiency;andutilisingdigitaltechnologytointegratevariousexistingtechnologiestoformcomprehensiveenergy-savingsolutions.2.3Acceleratingthephase-downofcoalconsumptionChinahasaverystrongtrackrecordintheadoptionofrenewableenergy.However,atransitiontonetzeroemissionpowersystemswillrequirenewthinkingandmorefundamentalreformsinboththetechnologicalandthemarketsystems.ReducingtheuseofcoalToachieveapeakingofemissionsbefore2030andnetzeroby2060,Chinaneedstoaccelerateitsphase-downofcoaluseforpowergeneration,althoughcoalwouldremainanimportantenergycarrierintothe2030s.Ensuringthatemissionspeakbefore2030willrequirethedevelopmentandeffectiveimplementationofdetailedplans.Thoseplanswillneedtoincludesometransitionalmeasuresthatcandeliverinterimimprovementsinthecleanuseofcoal,butsuchmeasuresmustnotinhibitorbeattheexpenseofthedevelopmentofothercleanenergytechnologieshighlightedinthispaper.By2050,inIRENA’s1.5°CScenario,coalproductiongloballywilldeclinetoaround240milliontonnesperyear,fromaround5750milliontonnestoday,atwentyfourfoldreduction.Theremainingcoalwillbemostlyusedonlyinindustry,primarilyforironandsteelproduction(coupledwithcarboncaptureandstorage,CCS,andaccountingfor5%oftotalsteelproduction),withsomerolealsoinchemicalsproduction.China’stransitionwillneedtofollowasimilarsteepdeclineincoaluse,withtheremaininguseconcentratedinindustry(IRENA,2021a).BeyondthedirectimpactonCO2emissions,reductionincoaldemandcanhavewiderimpacts.Thehealthimplicationsofcoalminingandparticulateemissionfromburningcoalarewelldocumented.WhileChinahastakenmajorstepstoreduceemissionsfromcoalplants,suchasits2015requirementforallcoalplantstocomplywith“ultra-low-emissionstandards”before2020,challengesremain(Wuetal.,2019).24Reducingcoaldemandwillhaveaprofoundeffectonfreighttransportrequirements.InChina,morethanhalfofallcoalistransportedbyrailwayfromcoalminingregionsorharbourstoendusers,includingusingraillinesbuiltspecificallytotransportcoalamongregions.Therestofthecoalistransportedbyeitherroadorwater.TheroleofnaturalgasTheuseofnaturalgasatscalehasgrown.ChinaNationalPetroleumCorporationisoneoftheworld’slargestproducersofnaturalgas,producing150billioncubicmetresperyear(CNPC,2021).Somecountriesplantousenaturalgasasatransitionfueltomoveawayfromcoalandoiluse,andgloballynaturalgaswillcontinuetocontributealargeshareoftheenergysupplyevenin2050.However,thismaynotbeapreferablestrategyforChinagivenitshighdependencyonimports.Chinaimports40%ofitstotalgassupply,mostlyasliquefiednaturalgas(LNG)butalsosomepipelinesupply.Overtime,Chinaisexpectedtobecometheworld’slargestLNGimporter.China’sexistingnaturalgasinfrastructureisstilllimited.Thisincludestransmissionpipelinecapacityaswellasstoragecapacity(geologylimitsthecountry’sundergroundgasstoragecapacity)(IRENA,2021a).GasinfrastructureinChinaismostlydominatedbythreestate-ownedcompanies(PetroChina,SinopecandCNPC).Reformisunderwaytoattractinvestment;however,giventheeventualneedtoreduceuse,suchinvestmentsandreformsriskcreatingstrandedassetsandincreasedforeigndependency.RECOMMENDATIONSFORCHINATOEXPLOREINCLUDE:1.Curbemissionsthroughthenationalemissionstradingscheme,whilereducingandeventuallyhaltingsubsidiesforcoalproductionanduse•ProgressivelystrengthenChina’snationalemissionstradingschemetorampupcarbonemissionreductionfromthemostemittingplants,notablycoal-firedpowerplants.Chinashouldaimtoreducecoalconsumptionduringtheperiodofthe15thFive-YearEnergyPlan,whichwouldbeanimportantsignalforthelong-termtransitionawayfromcoal.•WhileChinahastakenstepsinrecentyearstoreducefossilfuelsubsidies,itremainsthelargestproviderofsubsidiesforcoalexploration,production,processing,andtransport,averagingaroundUSD4billionannuallyduring2017-2019;itisalsothelargestproviderofsupporttofossilfuel-basedpower,averagingaroundUSD38billionannuallyduringtheperiod(IISD,2020).AsashareofGDP,China’sfossilfuelsubsidiesputitinthemiddleoftheGroupofTwenty(G20)countries.Allmajoreconomiesneedtoremovethesedistortions,Chinaincluded.2.Developeconomictransitionstrategiesforcoal-reliantregionsJobsandincomefromtheincreasedproductionanduseofcleanenergytechnologiescanfullyreplacethejobslostfromreducedcoaluse.Doingsorequirescarefulplanning,butthereisagrowingbodyofevidenceandexperienceinternationallyonhowtodosofairly.Throughknowledgeandexperienceexchange,Chinacouldmakewell-informeddecisionsonhowtodevelopeconomictransitionstrategiesforcoal-reliantregionswithasfewadverseimpactsaspossibleonlocaleconomies.CHINA'SROUTETOCARBONNEUTRALITY252.4AcceleratingthetransitiontowardsrenewablepowerAtthesametimeascoalconsumptionisbeingscaleddown,China’stotalpowergenerationcapacityneedstoincrease,usingtechnologiesconsistentwiththenetzerogoal.The1.5°CScenarioenvisagesatriplinginelectricitysupplygloballyby2050comparedtotoday’slevel,astheroleofelectrificationanduseofelectrofuels(e-fuels)rises.InChina,asimilartrendisexpectedwithpowerdemandincreasingsignificantlyalthoughslightlylessthantheglobalaverage,sinceChina’selectricitysupplygrowthinrecentdecadeshasalreadybeenpronounced.China’sdevelopmentofrenewablepowerSinceChina’simplementationofitsRenewableEnergyLawin2006,therapiddevelopmentofrenewableshasplayedanimportantroleinreducingbothatmosphericpollutionandgreenhousegasemissions.In2021,China’stotalinstalledrenewablepowergenerationcapacityreached1063GW,accountingformorethanone-thirdoftheglobaltotalrenewablepowergenerationcapacityand44.8%oftheChinesetotalpowergenerationcapacity(GovernmentofChina,2021).Thismomentumissettocontinue.Chinaaimstoincreasetheshareofnon-fossilfuelsinitsprimaryenergyconsumptionto25%by2030–anincreaseofnearly10percentagepointsinadecade(from2020).ThecombinedinstalledpowergenerationcapacityofsolarPVandwindturbinesistargetedtoexceed1200GWby2030.ThecostofrenewablepowerinChinahasdroppedsharplyoverthepastdecade.IRENA’scostdatashowthattheweighted-averagetotalinstalledcostforonshorewindprojectsinChinadropped16%fromUSD1500perkWin2010toUSD1264perkWin2020,whiletheweighted-averagelevelisedcostofelectricityfromonshorewindfarmsfell47%fromUSD0.071perkWhtoUSD0.037perkWh.SolarPVhasexperiencedmorepronounceddeclines,withtheweighted-averagetotalinstalledcostforutility-scalesolarPVprojectsinChinafalling84%toUSD0.04perkWhduringthesameperiod(IRENA,2021b).RenewablesastheprimaryfuturesourceofenergyRenewablesshouldbethepreferredrouteforpowergeneration,andinChinarenewablepowershouldbecomethebackboneofthepowersupply,makingsolarpower,windpowerandhydropowerthedominantgenerationsources.Renewableshavethepotentialtosupply90%oftotalelectricitygloballyby2050,upfrom25%in2018.InIRENA’s1.5°CScenario,renewablepowerinstalledgenerationcapacitywillneedtoincreasefromthecurrentlevelof2500GWtocloseto27800GWin2050.Thisrequiresadrasticaccelerationtoreacharound850GWofannualadditionsinrenewableelectricitygenerationcapacity–afour-foldincreasefromthecurrentlevel(IRENA,2021a).WindandsolarPVwillmakethelargestcontributions,togethersupplying63%oftotalglobalelectricityneedsby2050,withsolarPVinstalledcapacityreachingmorethan14000GWandwindmorethan8100GWby2050.Othermaturerenewabletechnologies(e.g.hydropower,bioenergy)withothertechnologies(e.g.concentratingsolarpower,marineandgeothermal)willalsoplayimportantroles.TheroleofsolarandwindinChina’spowersystemhasbeenontheriseandinmanycaseshasbeenworld-leadinginrecentyears.Thistrendwillonlyaccelerateinthefuture,withthemajorityofelectricitycapacityandgenerationinChinacomingfromthesetwokeysourcesby2050.26Thepotentialofrenewablesasthedominantglobalenergysourceisdrivenbythedramaticcostreductionsofrecentyears.Thecostreductionissuchthat75%oftheonshorewindand40%oftheutility-scalesolarPVcommissionedin2019producedelectricitymorecheaplythananyfossilfuel-basedalternative,whilemorethan75%oftheutility-scalesolarPVandonshorewindcommissionedin2020fromauctionsortendershadlowerpricesthanthecheapestnewfossilfuel-basedoption(IRENA,2020c).ThesecostreductionsmeanthattheadoptionofrenewableswillnotresultinhigherenergycostsinChina.By2030,thelevelisedcostofelectricityshouldbebelow2UScentsperkWhacrossChina,andnotjustinthewesternprovinces.Theshareofrenewablesinprimaryenergysupplygloballywillalsoseealargeincrease,fromaround14%to73%.Renewableswillthenbecometheprimarysourceofenergyinaclimate-compatibleworld.TomeetChina’scarbonneutralityaim,asimilartrendwillneedtobefollowed.Whilematurerenewabletechnologiesrequireacceleratedscale-up,thereisalsosignificantpotentialinChinaforsomeemergingrenewabletechnologies.Offshorewind(witheitherbottom-fixedorfloatingfoundations)couldplayasignificantroleinthecountry,withoffshorewindfarmslocatedclosetocoastalurbanareasreducingtheneedfortransmissionfromremoteregions.Chinahasbecomethegloballeaderinoffshorewind,withnearly17GWofcapacityinstalledin2021,accordingtotheChineseNationalEnergyAdministration(NEA,2022).RECOMMENDATIONSFORCHINATOEXPLOREINCLUDE:1.ExploitChina’sstrengthsandexperiencewithrenewablestoacceleratedeploymentChinaisleadingtheworldinrenewableenergydeploymentandnowhasthecapacityandexperiencetoleadtheworldinsteppingupthedeploymentrate.Maximisingsolar,windandhydropowershouldbetheprimarystrategyfornewcapacityadditions.Theinitialgoalshouldbetosustaintheannualdeploymentrateachievedin2020,andtoachieveasignificantlyhigherrateby2030.Renewableshavethepotentialtosupplymorethan90%ofChina’selectricityneedsby2050,withmorethan60%ofthiscomingfromsolarandwind.However,thetransitionwouldalsorequireasystemicapproach,particularlyenergystoragecapacityandintelligentenergymanagementsystemstoprovidetheflexibilitythatthefutureenergysystemswouldneedtomaintainsafeandreliableoperations.2.StimulatethedevelopmentanduptakeofemergingrenewabletechnologiesInadditiontoactionstoscaleupmaturerenewablepowertechnologies,Chinashouldcontinuetofosteremergingtechnologies–inparticularoffshorerenewables.Offshorewind(witheitherbottom-fixedorfloatingfoundations)couldplayasignificantrole,withoffshorewindfarmslocatedclosetocoastalurbanareasreducingtheneedfortransmissionfromremoteregions.CHINA'SROUTETOCARBONNEUTRALITY272.5ReformingpowernetworksAlthoughrenewableenergysourcessuchaswindandsolarPVarerapidlydevelopingintotheleadingpowersourcesofthefuture,theirvariabilitycanbringchallengestothesafeandstableoperationofthepowersystem.Tocounterthis,powersystemswillneedtobecomemuchmoreflexibletoallowfortheintegrationofhighsharesofvariablerenewableelectricity.Inthe1.5°CScenarioby2030,thevariablerenewableenergyshareintotalpowergenerationshouldreach42%globally,andby2050,90%oftheinstalledcapacityandmorethan63%ofallpowergenerationshouldcomefromvariableresources(upfromanaverageofaround20%oftheinstalledcapacityandnearly10%ofpowergenerationgloballytoday)(IRENA,2021a).SharesofvariablerenewableelectricityinChinashouldbesimilarorpotentiallyslightlyhigher,givenChina’srenewableresourcepotential.Decentralised,digitalisedandelectrifiedAchievingthiswillrequireanenergysystemthatshouldbeincreasinglydecentralised,digitalisedandelectrified.Chinaneedstoconsiderhowtochangeandre-optimiseitspowersystemfromthetraditionalcentralisedsystemthatcurrentlydominatesintoahybridconfigurationthatcombinesbothcentralisedanddistributedpowergenerationsystems.Chinaalsoneedsamoreflexibleinter-regionalenergyandelectricitymarkettosustainthetransition.MarkedregionaldifferencesexistinChina:70%ofcurrenthydropowergenerationisinthesouthwest,80%ofwindpowergenerationisinthenorth,60%ofsolargenerationisinthewest,andmostpowerconsumptionisintheeastandcentralregions(70%).Enhancedinter-regionaltradewillhelpmakethemostofthesecomplementaritiesandbalancesupplyanddemand.Thiscanthenbesupplementedwithgenerationfromlocalrenewableenergyresourcesandhighuseofstoragetechnologies.ThedeploymentofmorerenewableenergyinthenetworksoftheStateGridandtheChinaSouthernPowerGridwillrequirere-optimisingtheregional/nationalpowergridsystem,includingatthedistributionnetworkleveltoenablegreaterapplicationofrenewable-baseddistributedgenerationsystems.Overall,well-designedpowermarketsthatencourageflexibilityandmaintainreliabilityatalowcostmustunderpinthisfuture.Powermarketsshouldimplementscarcitypricingtosignaltheneedforflexibility,establishintegratedmulti-provincialspotmarkets,createalevelplayingfieldinspotmarketsforallresources,exposeallthermalgeneratorstospotmarketpricesignalsandfocusonspotmarketregulation.Thiswillalsoinvolvethefulleruseofdigitaltechnologiesandareformofthepowermarketsystem,whichwillespeciallyneedfurtherflexiblemarket-basedpoliciesforthoseprivatecompanieswithadvantagesindistributed/decentralisedtechnologiesandprovisionofgridservices.Thereisalsoaneedtolinkcleanenergysupplywiththeend-usesectors.Demand-sidemanagementanddevelopingacompetitivemarketwithnewplayersasaggregatorsareimportant.Forexample,electricvehiclechargingcompaniesneedtobeaggregatedtogivethesevehiclesamassdemandresponsecapabilitytosupporthighsharesofvariablerenewableelectricity.Smartchargingcoulddeferpeakloadsandreducecosts.28Thecharacteristicofchangingenergydemandprofiles–suchaselectricvehicles,distributedenergystorage,demandresponse,etc.–isafactorofgrowingimportanceinthedesignofpowersystems.Themanagementofthisnewloadcouldeithercomplicateoralleviatesystemoperation(thelatterbyprovidingasourceofincreasedflexibilitytoaidintheintegrationofvariablerenewableelectricity).EmerginginnovationsfortheintegrationofvariablerenewableelectricityThesechangescanbeenabledbytheadoptionofsystemicinnovations–anapproachtofacilitatethediffusionofinnovativetechnologieswithimprovedenablingenvironmentssuchasbusinessmodels,marketstructures,newregulationsandoverallsystemoperations(Figure1).Thus,theflexibilityintheenergysystemcouldbeimproved,whilemorevariablerenewableelectricitycanbeintegratedinthepowermix.IRENA’sreportInnovationLandscapeforaRenewable-PoweredFuture(IRENA,2019a),anditsaccompanyingbriefs,identified30flexibilityoptionsthatcanbecombinedintocomprehensivesolutions,takingintoaccountnationalandregionalpowersystemspecifics.Figure1Emerginginnovationsfortheintegrationofvariablerenewableelectricity–enablingtechnologies,marketdesign,businessmodels,systemoperationAdaptedfromIRENA,2019a.SYSTEMOPERATIONENABLINGTECHNOLOGIESBUSINESSMODELSMARKETDESIGNEmerginginnovationsfortheintegrationofsolarandwindpowerDigitalisationHydrogenBlockchainStorageElectricvehiclesPeer-to-peerelectricitytradingAggregatorsValuespatialcomplementariesEncourageflexibilityEmpoweringconsumersEnergyasaserviceOperationofadecentralisedsystemElectrificationofend-usesectorsValuecomplementariesinrenewablegenerationCHINA'SROUTETOCARBONNEUTRALITY29RECOMMENDATIONSFORCHINATOEXPLOREINCLUDE:1.Continuetopromotepowermarketreform•Chinaneedsamoreflexibleenergyandelectricitymarkettosustainthetransition.Effortsunderwaytopromotepowermarketreformshouldbecontinued.•Theinter-regionalpowermarketrequiresparticularattention.TherearemarkedregionaldifferencesinChina,andenhancedinter-regionaltradewillhelpmakethemostofthesecomplementaritiesandbalancesupplyanddemand.Thisneedstobebalancedwithenergygenerationfromlocalrenewableenergyresourcesandhighuseofstoragetechnologies.2.Acceleratetheupgradeofelectricityinfrastructure•Addresstherequirementsofnewelectricitysystemoptimisationandadvancedelectricityanditssupportedtechnologiesandequipment,includingsmartgrids,energystorage,distributedsystemsandotherdigitaltechnologies.•Establishandimplementasupportmechanismtoincentivisethedemandforenergystorage.Suchmechanismsneedtoensurethatthecostofenergystorageinvestmentisreasonablysharedbythosestakeholderswhobenefit.Inthisregard,powermarketreformwouldneedtotakethisintoaccountandestablishapropermarketforthegridservicesthatenergystoragecouldprovide.•Stimulateinvestmentinultra-high-voltagedirectcurrenttransmissionbetweentheregionalpowermarkets.Box1CDRmeasuresandCCUSforpowerandindustrialprocessesInIRENA’s1.5oCScenario,someemissionswillremainby2050fromtheremainingfossilfueluseandfromsomeindustrialprocesses.Thereisarolethereforebothforcarboncaptureandstorage(CCS)technologiesthatreduceemissionsreleasedtotheatmosphereandforcarbondioxideremoval(CDR)measuresandtechnologies,which,combinedwithlong-termstorage,canremoveCO2fromtheatmosphereoroceans,resultinginnegativeemissions.CDRmeasuresandtechnologiesincludenaturalapproachessuchasafforestationandreforestationandtechnological/engineeredapproachessuchasbioenergywithCCS(BECCS).Directaircarboncaptureandstorage(DACCS)andsomeotherapproachesarecurrentlyexperimental.WhiletheglobalpotentialforBECCSis10.1gigatonnes(Gt)ofCO2peryearby2050,the1.5°CScenarioassumesthatBECCSwillcapture44%ofthis,amountingto4.5GtofCO2peryear(upfromcurrentnegligibleamountsoflessthan0.002Gtperyear).ThemostsignificantopportunitiesforBECCSareinpowerandco-generationplantsandinthechemicals,cement,andironandsteelsectors.Anadditional0.6GtofCO2peryeariscapturedthroughcarbonstocksinchemicalproducts,recyclingandcarboncaptureinwasteincineration(IRENA,2021a).30Box1(Continued)DACCStechnologieswillplayarolebutarecurrentlyintheinfancystagesofdevelopment.DACCSwouldlikelytakemanyyearstoreachthescalethatwouldmakeameaningfuldifference.Basedonlessonsfromexistingpractices,projectswouldrequirehighdemandforenergy,waterandland,despitetheirlocationalflexibility.Furtherdevelopmentandvalidationareneededbeforethispotentialcanbeproperlyevaluated.Theroleofcarboncapture,utilisationandstorage(CCUS)inChina’senergytransitionismorecontroversial,andalthoughitisnotthefocusofthisreportitsuptakehasimportantimplicationsforothertechnologiesandhencerequiressomediscussionhere.OpinionsintheglobalandChineseanalyticalcommunitiesaredividedastowhetherCCSwillplayamajorroleinChina’slong-termcarbonneutralitystrategies,withsomeChineseexpertsseeingonlyalimitedroleforCCSindecarbonisationandothersarguingthatitwillplayamajorrole.InIRENA’sanalysis,CCS–i.e.thecaptureofCO2frompointsourcesforitslong-termstorage–willhavearoletoplayinanetzerostrategy,but(withtheexceptionofBECCS,discussedbelow)itsuseshouldbetargetedandmainlylimitedtoapplicationsandcircumstanceswhererenewableoptionsarenotsuitableorareinitiallymorecostly.InIRENA’s1.5°CScenario(IRENA,2021a),theroleofCCSislimitedtocapturingprocessemissionsincement,ironandsteel,bluehydrogenandchemicalproduction,aswellaslimiteddeploymentforindustry/wasteincinerators,etc.Carboncaptureandutilisation(CCU)appliestofossilfuelorprocessemissionsandmayhavealimitedroleintheshortterm,improvingtheeconomicsofearlyprojects.ItmayalsocompensateforalackofreadilyavailableandaccessibleCO2storagesites,butitshouldnothaveasignificantroleinthemediumtermsinceinmanycircumstancesitcanstillleadtonetemissionstotheatmosphere.TheuseofCCUandCCSforprocessemissionswouldincreaseto3.4GtofCO2capturedannuallyinindustryby2050,upfrom0.04Gttoday(IRENA,2021a).ThenumberofCCSoperationalcommercialplantsgloballyiscurrentlyverysmall,butChinaisattheforefrontofthatexplorationwithseveralcommercialplantsinthepower,coal-chemicalandcementsectors.Chinahasalsocarriedoutseveralpilotanddemonstrationprojectsintheironandsteelandcoal-chemicalsectorsthatareatvariousstagesofdevelopment.Fourprojects,forexample,areintegratedfull-chainCCSprojectsforenhancedoilrecoveryandstorageofCO2indeepsalineaquifers.Transportandstoragearetwokeyfactorswhenconsideringthesitingofplantsforcost-effectiveCCSdeployment.Thereis,inprincipal,significantCO2storagecapacityinChina'smainsedimentarybasins.Thelocationofstoragesites,however,relativetothepowerandindustrialprocessesandpopulationcentres,alongwithpublicacceptanceconcerns,maycreatechallenges.ChinashouldcontinueitsleadingroleinpilotinganddevelopingCCScapabilitybutwithafocusonthetargeteduseofCCSandBECCSinthosefewareaswhererenewablesolutionswillnotbesufficient.CHINA'SROUTETOCARBONNEUTRALITY312.6Increasingtheelectrificationofend-usesectorsChina’sgoalofcarbonpeakingandneutralityrequiresfundamentalchangesinhowthecountrybothproducesandconsumesenergy,andthiswillbenomoreevidentthaninfinaldemand.Thereisapressingneedtodeterminehowtobestlinkrapidlyexpandingcleanenergysupplieswithdemand,anditisincreasinglyclearthattheelectrificationofend-usesectorsshouldbethefirstchoicetomakethispossible.Electrificationasaprimaryroutefordecarbonisingend-usesectorsDramaticreductionsinthecostofrenewableelectricity(notablywindandsolarPV)openupnewcost-effectiveoptionsfortransport,industryandbuildings.Forahighproportionofend-useenergydemand(greaterthan50%),directelectrificationwillbethemostefficientsolution.Theremainderwillneedtobeaddressedthroughtheuseofcleanfuelsandsomelimitedlegacyfossilfueluse(mostlynaturalgas).IRENAisworkingwiththeStateGridCorporationofChinatoassessthepotentialofelectrificationwithrenewables.Theworkshowsthatelectrificationwillhaveanincreasinglyimportantroleintheworld’senergytransition,giventherapidtechnologydevelopmentandthereductioningenerationcostsofrenewableelectricity.Thetechnologiesforavarietyofend-usesectorstobetteruseelectricity–includingelectromobility,electricheating,hydrogenviaelectrolysis,andproductionofsyntheticfuels–havebeen,albeitatvariousstagesofdevelopment,progressingfast.ElectrificationinChinaInChina,thecombinationofelectrificationandrenewablesisalreadystartingtotransformsectorssuchaslight-dutyroadtransportandbuildingsandisexpectedtocontributetosubstantialreductionofcarbonemissionsfromtheuseoffossilfuelenergysources.Inthelastdecades,electrificationinthosetwosectorsmeansthattheoverallrateofelectrificationinChinaisoutpacingthatofothermajorregions(Figure2).TransportisanespeciallybrightspotFigure2Electrificationrateinfinalenergyconsumption(a),transport(b)andresidentialbuildings(c)commercialandpublicbuildings,1980-2017Source:IRENA,2022c.OECDtotalEU28JapanNorwayUnitedStatesNon-OECDtotalBrazilRussianFederationIndiaChinaSouthAfricaWorld0%10%30%20%60%50%40%70%80%90%100%198019851990199520002005201020152016201720180%1%2%3%4%5%6%7%8%9%198019851990199520002005201020152016201720180%10%30%20%60%50%40%70%80%90%1980198519901995200020052010201520162017201832inthisregard:whileNorwayistheworldchampioninelectricvehiclemarketgrowth,Chinahasmovedfastinacceleratingadoption,representingaroundhalfofglobalpassengerelectriccarsalesandnearly100%ofglobalelectricbussales.Chinacancontinuetoexpanditsworld-leadingexperienceinurbanmobilityelectrificationincitieslikeShenzhenandBeijing–whereentirebusfleetsareshiftingtoelectricity–tootherrapidlygrowingurbanareas.Whileincreasingthepaceofelectrificationwillbecritical,akeymessagefromtheworkofIRENAandStateGridistheneedtoavoidun-co-ordinatedelectrification,whichcouldthreatentoincreasesystempeaksandcauseissuesfortransmissionanddistributionnetworks.Smartelectrificationenabledbygoodplanninganddigitalisationwillbeanecessitytoreducepeakloads,thusminimisingtheneedforinvestmentsinenhancinggridoptionsoraddingmoregenerationcapacity.Increasingtheflexibilityoftheloadstobettermatchtheoutputsofvariablerenewableswouldhelptoincreasetheuseofvariablerenewableelectricityinthepowermixandallowothersectorstouserenewableelectricity.Thiscanbeachievedthrough,forexample,loadshifting,smarttechnologies,andtheproductionandstorageofgreenhydrogen.Chinaalreadyhasexperiencewithsuchsmartelectrificationstrategiestotakefulladvantageoflow-costvariablerenewableelectricity.Thecountrycouldbuildonpower-to-heateffortssuchasthoseintheInnerMongoliaAutonomousRegion,forexample,wheretheinstallationofelectricboilersindistrictheatingsystemswouldmakeuseoftheregion’smajorwindpowercapacitythatotherwisewouldbecurtailedduetotransmissionconstraints.Low-costcapacityofvariablerenewableelectricityalsopairsextremelywellwithnewandinnovativedemand-sidemanagementinitiativeslikesmartchargingofelectricvehicles,oraggregatorsthatgiveelectricvehiclesamassdemandresponsecapability.ThepushtobuildextensivesmartelectricvehiclechargingnetworksinChina–whichhadmorethan450000chargingstationsbytheendof2017(GSEP,n.d.),aswellasStateGrid’sSmartEV-to-GridServiceNetwork(SEGSN)–canbecontinuedtoensurethattransportelectrificationdoesnotoverwhelmthegrid.OpportunitiesfordeeperelectrificationWhileChinaisalreadymakingsignificantprogressinareassuchastheelectrificationoftransportandbuildingswithelectricvehicles,districtheatingsystems,electricboilers,andheatpumps,evenmoreopportunitiesforlow-costelectrificationwithrenewableswillpresentthemselvesinthecomingyears:•Inbuildings,heatingandcoolingcanbeprovidedbyheatpumps,whichdelivergreaterefficiencies.Moreimportantly,whenheatpumpscanbecontrolledbysmartelectricitymeters/thermostats,theyessentiallyserveasaflexibleloadrespondingtodemandmanagementschemes,ifany.•Forthebuiltenvironment,especiallyinareaswithhighpopulationdensity,districtheatingandcoolingoptionswithheatpumptechnologiesinChinawouldmakebettertechnicalandeconomicsensecomparedtoindividualheatpumps.Thenetworkcanalsoofferanopportunityformorediversifiedsourcesofheatingandcooling,includingenergystorage,thanasystemwithonlyelectricityasasourcetomeetsuchthermaldemand.CHINA'SROUTETOCARBONNEUTRALITY33•LargeseasonaldifferencesinregionalclimatewillbeimportanttoconsiderinChina’selectrificationprocess.Anincreasinglypromisingsolutionappearstobeseasonalthermalenergystorage,ifthescalethatChinawouldneedcanbedevelopedinacost-competitivemanner.•Forindustry,especiallyforenergy-intensivesectors,therelocationofoperationstoregionswithabundantrenewableenergysourceswouldallowindustriestobenefitfromcost-competitiverenewableelectricitywhilereducingtheircarbonfootprints.Apromisingpracticealongtheselinesisusinggreenhydrogentosubstitutecokecoalasareductionagentintheiron-makingprocess.ThiscouldbeapplicableforChina,asthecountry’smajorironorereservesarelocatedinthewestwhereexcellentrenewableenergyresourcesarepresent.Innovationisalreadyenablingsuchstrategies,andIRENA’supcomingInnovationLandscapefortheElectrificationofEnd-UseSectorsreportwillprovideacomprehensiveassessmentoftheemergingsystemicinnovationsthatcanunlockfurtherpotentialofelectricityintransport,buildingsandindustry.RECOMMENDATIONSFORCHINATOEXPLOREINCLUDE:1.Developalong-termvisionoftheroleofelectricityinthecountry’senergysystemEnsurethatthespecificvisionforelectrificationisreflectedinlong-termroadmapsandplansforbuildingorexpandingsmartelectrificationinfrastructure,includingtransmissionanddistributiongrids,chargingnetworks,facilitiesandpipelinesforhydrogenproductionanddistribution,anddistrictheatingandcoolingsystems.2.Accelerateimplementation•ContinuetoscaleupsmartcharginginfrastructureandsupportdigitalgridtechnologiesandsolutionssuchasSEGSNtomanagenewpatternsofload,tooptimisetheuseofvariablerenewableelectricity,andtoexploretechnologiesthatoffersynergiesamongsectors.•ExpandoneffortsinChinathattakeadvantageoflarge-scalecentralisedsolutionssuchasdistrictheatingandcooling,andfleetelectrificationforurbanmobility.•Exploretherelocationofenergy-intensiveindustriestositeswithlow-costrenewablepower,suchasthewesternandnorthernregionsofChina,providedthattheothercriticalfactorsforproductioncanalsobesatisfied.3.Adaptregulations•Furtherpromotepricereforms(includingforelectricity,naturalgas,heatingandwater),andusepricesignals.•Removebarrierstoinnovativetechnologiesorownershipmodels.•Provideincentivesorfundsforthewidespreadadoptionanduseofheatpumps,electricboilers,andsmartmetersandappliances.•Strengthenbuildingcodestorequiregreaterefficiencyinbuildings,andsupportweatherisationofexistingbuildings.342.7Expandingthedirectuseofrenewables,particularlybiomassforenergypurposesSolarthermal,bioenergyandgeothermalwillbefurtherneededatgreaterscaletoprovidezero-carbonthermalenergyforspaceheatingandcooling(absorptionchillers)andhotwaterinbuildings,aswellasforindustrialprocesses,throughdirectuseoftheresources.Inthe1.5°CScenariothedirectuseofrenewables(i.e.solarthermal,geothermalandbioenergy)wouldneedtogrowtoalmost22%oftotalfinalenergyuseby2050,providing78exajoules(EJ)in2050comparedto44EJin2018(IRENA,2021a).BioenergyasanessentialpillarindeliveringcarbonneutralityBioenergy(includingthetraditionaluseofbiomass)constitutesthebulkoftoday’sglobalrenewableenergyuseandaccountsforaroundone-tenthoftheglobaltotalfinalenergyuse.Bioenergyhaskeyrolesasasourceofenergyandasafeedstockthatcanreplacefossilfuelsinsomeindustrialend-usesectors,anditcancontributetobalancinganelectricitygridthathashighsharesofvariablerenewablessuchassolarPVandwind.Bioenergytechnologiesaredevelopingrapidlyandhavesignificantpotentialtoscaleupby2050.Inthe1.5°CScenario,theshareoffinalenergydemandthatcanbemetwithmodernformsofbioenergyincreasesto17%in2050,from1.5%today.Meanwhile,traditionalusesofbioenergy,whichaccountforalargeshareoftoday’sbiomassuse,mustbereplacedwithmodernbioenergytechnologies(IRENA,2021a).InChina,modernbiomass,aswellaswaste-to-energyfeedstocks,areunderutilisedresourcesthatwillrequirenewstrategiestoensurethattheyareexploitedsustainably.Inthosesectorsknownashard-to-abate,includingenergy-intensiveindustrialsectorssuchasironandsteel,cement,aluminium,andchemicals,aswellascertainsegmentsofthetransportindustry,bioenergycanhaveanimportantroletoplay:•Inthetransportsector,despitetherecentuptakeofelectricvehicles,whicharemoresuitableforlight-dutyandshort-distancetransport,biofuelscanprovidebetterperformancetomeetlong-haulorheavy-freighttransportneeds.IRENA’sstudyshowsthatinascenariothataimstokeepglobaltemperaturerisetobelow2°C,wewillneed652billionlitresofliquidbiofuelsby2050,representingafive-foldincreasefromthe2017level(IRENA,2020b);thisalsosuggeststhatanetzerogoalwillrequireevenhighervolumes.•Inthebuildingssector,biomasshasbeenusedtoprovideheatingsupplythroughdistrictheatingnetworksthatinsomecasesareconnectedtobiomass-basedcombinedheatandpower(CHP)plantsorindividualfurnaces.Suchapplicationscanbescaledupinthefuture.•Forsomeindustrysectorssuchaschemicals,biomassoffersaviableoptionasasubstituteforfossil-basedfeedstocksforproductionandforfossilfuelsinprovidinglow-tomedium-temperatureheat.Inaddition(asdiscussedinBox1)biomasswithCCSwillbeneededgloballyforsomepowerproductionandindustrialprocesses,forinstanceincementproduction.However,inadditiontocompetingusesofbiomassfordifferentapplications,thecostsofproducingbiofuelsandbiomass-basedfeedstocksforindustrialsectorswouldhavetobefurtherreduced.Thesustainabilityoffeedstocksupplywillcontinuetobeacriticalfactorforenablinggreaterapplicationofbiomassintheseend-usesectors.Therefore,whereverneeded,CHINA'SROUTETOCARBONNEUTRALITY35aproperriskassessmentforbioenergyuse,includingenvironmentalandsocialimpacts,shouldbeperformed.IRENA’sanalysissuggeststhatthelevelsofbiomassneededtodeliverthe1.5°Cscenariocanbemetwithoutadverseimpactsonforestryandotherland-usepurposes,ifeffectivemeasuresinregulation,certificationandmonitoringaretaken.RECOMMENDATIONSFORCHINATOEXPLOREINCLUDE:1.MorefullyintegratetheuseofbiomassinbothenergysystemandruraldevelopmentplansBiomasshasbeenbroadlyusedinmanysectorssuchasfood,feed,fertiliserandenergy.Itsenergyapplicationsaccountforonlyasmallportionoftheemergingbio-economybutcouldpotentiallyscaleupdramatically.Thesynergiesofbioenergyapplicationswithothersectorssuchasagricultureandforestrycanbecreated.Therefore,Chinashouldestablishcross-sectoralco-ordinationmechanismsamongenergy,agricultureandforestrypolicymakerstoensureafullyintegratedapproachinplanningtheuseofbiomassasafeedstockforenergyandotherpurposes.2.AddresschallengesinruralbiomassenergyuseAtpresent,nearly1billiontonnesofagriculturalandforestryresiduesinChinacouldbeusedforenergypurposes,and1.8billiontonnesoflivestockandpoultrymanureisavailableannuallyforconversionintobiogasandorganicfertiliser(NFA,2021).AlongsidesolarPVandwindenergy,theseresourcescouldforman“energyagriculture”industry.Ruralareascanbebothenergyconsumersandenergysuppliers.Chinashouldprioritisethesustainableuseofvariousorganicwastes(agriculturalandforestryresidues,domesticwaste,livestockandpoultrymanure,fruitandvegetablewaste,domesticsewage,etc.)inruralareas,andcomprehensivelyconsiderruralenergyandwastestrategiesthatpromotenewformsofproductionandruralemployment.3.Promotingbiorefineriestocreategreatervalueamongvariousbiomass-basedendusersBiorefineriescanusebiomassinamoresustainableandefficientway,andtheirproductscanmeettheneedsofdifferentapplications,thuscreatinggreatervalueforbiomassasafeedstockaswellasforendusers.Biorefinerieswillalsohelpbetterreconciletheuseofbiomassforbioenergypurposesandtoproducebio-basedindustrialmaterials.Chinathereforeshouldestablishaplatformformulti-stakeholdercommunicationandexchangeofknowledgeinpromotingtheadoptionofbiorefineriesasakeycomponentofbuildingtheintegratedinfrastructureforfuturebiomassapplications.4.IntegratenoveltechnologiesforCCUSwithbioenergyBECCU/Smightofferthepotentialtoreducecarbonemissionsinsomeindustrialsectors;ifwellmanaged,thetechnologycanalsoabsorbcarbonthatisalreadyintheatmosphere,thusrealisingnegativeemissions.Althoughmorepilotprojectshavebeenestablishedovertime,thereisstillalackoflarge-scaleapplication,indicatingtheuncertaintyoftechnologycostoutlooks.ChinacouldbetterevaluatethepotentialofBECCU/Sanddevelopastrategythatwouldnurtureitstechnologicaldevelopmentandsupportitsdeploymentthroughdemonstrationprojectsattheinitialstage.362.8ScalinguptheproductionanduseofhydrogenandsyntheticfuelsHydrogencanofferasolutionfortypesofenergydemandthatarehardtodirectlyelectrify.Alongsidethedirectuseofrenewablesdiscussedabove,itcanaddresssomeoftheroughly50%offinalenergyusethatmaynotbesuitablefordirectelectrificationduetotechnological,logisticaloreconomicfactors(IRENA,2020d).Currentglobalhydrogenproductionisaround120milliontonnes(Mt)(14EJ)annually,ofwhich33MtisproducedinChina,anditisalmostentirelyfossil-based.Lookingforward,hydrogenanditsderivativeswillbeabletoprovide12%ofglobalfinalenergyuseby2050,asshowninIRENA’s1.5°CScenario.Anestimatedtwo-thirdsofthiswouldbeproducedusingrenewableelectricity,i.e.greenhydrogen.Producingthiswillrequirededicating27%ofthegenerationcapacityin2050togreenhydrogenproduction,or21000TWhofelectricitydemandby2050(IRENA,2021a).China’suseofhydrogencangrowuptofourtimesby2050,withthebulkofthegrowthdrivenbytheindustrialsector.Deliveringthiswillrequireasignificantscale-upinelectrolysermanufacturinganddeployment.Globallyaround5000GWofhydrogenelectrolysercapacitywillbeneededbymid-century,upfromjust0.3GWtoday,whichwillrequirearound160GWofelectrolyserstobeinstalledannuallyonaverageduringtheperiodto2050(IRENA,2021a).Currentlylessthan1%ofglobalhydrogenproductionisgreenhydrogen.Yet,alongwithcontinuedreductioninthecostofgreenhydrogenproduction,Chinaisexpectedtoplayakeyroleinthehydrogenindustry,notonlyasasourceofdemandandasasupplierofelectrolysersbutalsoasaproducerofgreenhydrogen,giventherapidgrowthinrenewableelectricitygenerationcapacity(IRENA,2020e).Chinawillplayatleasttwokeyrolesinthehydrogenindustry.First,thesizeofenergydemandandtheeconomycanrepresentadriverforhydrogen.Chinahad540GWofrenewablecapacityin2020,andaccountsfor60%ofglobalsteelproduction,andfor30%ofammonia,methanolandhigh-valuechemicalproduction.Asmallshareoftheseindustriescouldrepresentalargehydrogendemandandelectrolyserdeployment,givenChina’sscale.Second,Chinahastheadvantagesoflargeindustrialactivityandrelativelylowlabourcosts,whichcanprovidetheconditionstobecomeasupplierofelectrolyserstoothercountries.Chinaalreadyhaslargeelectrolysermanufacturers(suchastheresearchinstituteofChinaStateShipbuildingCorporation(PERIC),Cockerill-JingliHydrogenandTianJinMainland)aswellasalowercapitalcostforelectrolysersproduced.However,accordingtotheChinaHydrogenEnergy&FuelCellIndustryDevelopmentReport2021fromChina’sHydrogenEnergy&FuelCellsIndustryInnovationStrategicAlliance,Chineseelectrolysershavelowerefficienciesandshorterlifespanscomparedtotheirwesternpeersduetothetechnologiesandmaterialsused(Heyward,2022).ThisimpliesthatChinawouldneedagreaterleveloftechnologicalinnovationtoimprovetheperformanceofitselectrolysersGreenhydrogen’spotentialThereissubstantialpotentialtoscaleupgreenhydrogenproductioninChina,althoughitwillbeimportanttoensurethatanyrenewablecapacityusedforhydrogenisadditionaltotheplannedactivitiesandthathydrogenisnotdisplacingmoreefficientusesofelectricity(i.e.directuse).ThisisespeciallyrelevantforChina,sincethepowersectorhasa28%CHINA'SROUTETOCARBONNEUTRALITY37renewablesharebutcoalrepresentsnearlytwo-thirdsofthegeneration(Gielen,ChenandDurrant,2021).Ifsuchadditionalityindeployingrenewablepowergenerationcapacityisnotensured,renewablescouldendupbeingusedsubstantiallyforhydrogenproduction,thusdelayingthephase-outofcoalplantsinprovidingelectricityforconsumers.Chinahasexcellentwindresourcesinthenorthernprovincesthatcanreachcapacityfactorsofabove50%,aswellasexcellentsolarresourcesintheTibet-Qinghaiplateauinthewesternprovinces.ThiscanpotentiallyleadtoelectricitypricesofaroundUSD30permegawatthour(MWh)intheneartermattheselocationsandamorewidespreadcostofUSD20perMWhby2030.Theselowcostswouldallowgreenhydrogentobecomethemostcompetitivepathwayforhydrogenproduction.Greenhydrogencanalreadybeproducedatcostscompetitivewithbluehydrogentoday,usinglow-costrenewableelectricity,i.e.aroundUSD20perMWh.Ifrapidscale-uptakesplaceinthenextdecade,greenhydrogenisexpectedtostartbecomingcompetitivewithbluehydrogenby2030inawiderangeofcountries(Figure3).GreenhydrogenapplicationsHydrogencanbetentimescheapertotransportthanelectricity,sogreenhydrogencouldalsoprovideawaytoconnecttherenewableresourcesinChina’snorthernandwesternprovinceswiththeindustrialandurbanareaslocatedinthecountry’seastandsouth-east.Inaddition,greenhydrogencancontributetointegratingmorerenewablesinthepowersectorbyprovidingadditionalflexibilityandcanprovideseasonalstoragecomplementingshort-termstorage(e.g.batteries).AreastoconsiderforgreenhydrogenuseinChinainthenearterminclude:•Industrialuse:Industryrepresentsaround60%offinalenergydemand,whileatthesametimeindustryisthedominanthydrogenusetoday,reachingalmost25MtperyearofFigure3Hydrogenproductioncosts,2020-2050Note:Assumesaloadfactorof4200hoursandconversionefficienciesof65%in2020and75%in2050.Source:IRENA,2019b.Today2050ElectrolysercostUSDkWElectrolysercostUSDkWLCOE(USD/MWh):40LCOE(USD/MWh):20LCOH(USDkgH)CostofproducinghydrogenwithfossilfuelstechnologieswithCCSconsideringafuelcostfromtoUSDGJ38hydrogen.Almostallthishydrogenisproducedtodayfromcoalgasification.Startingtosatisfypartofthisdemandwithgreenhydrogenwouldallowforscalingupelectrolysersandcontributetocostreduction.Furthermore,thechemicalsectorisstillgrowing,whichmeansthatgreenammoniaandmethanoldonotneedtodisplaceexistingproductionbutcaninsteadsatisfynewdemand(IRENAandAEA,2022).Forthis,industrywouldrequireincentivestopromotefuelshifting(e.g.expansionoftheemissiontradingsystemcoupledwithareductioninfreeallowances)intandemwithbordercarbonadjustmentsormechanismstoensuremaintenanceofglobalcompetitiveness.•Innovation:Manyofthecriticalhydrogenusepathwaysstillrequiredemonstrationandexperience.Directreductionforsteelmaking,ammoniaforshipsandsyntheticfuelsforaviationarestillintheearlystagesofdevelopment,whilealsorepresentingcriticalpathwaysforanetzeroemissionsystem.Themainchallengeforthesethreesectorsremainstheneedforinternationalco-ordinationandglobalcompetitiveness.However,earlyeffortsontechnologydemonstrationintheshorttermmighthavelimitedimpactsintheoverallsectors.•Electrolysis:Chinaalreadyhasmultipleelectrolysermanufacturersthathavebuiltupexperienceandcouldsatisfythedomesticmarketwithdomestictechnology.TherearesomeindicationsthatalreadytodaytheelectrolysercostinChinaislowerthaninsomeprojectsinEurope.Takingadvantageoflowlabourcostsandsupplychainsthathavebeenscaledupforindustrialmanufacturing,Chinacouldattainleadershipinelectrolysermanufacturing.Knowledgedevelopedforthisstepcouldalsoleadtotechnologyspilloverandbeusefulforfuelcells,whichopenupabroaderrangeofpossibilitiesforenduses,fromstationarypowergeneration(acrossallscales)tomobileapplications(e.g.transport).ThiswouldalsobeinlinewiththeindustrialplanforChina(MadeinChina2025),whichaimstoacquiretechnologyleadershipingreenenergy.RECOMMENDATIONSFORCHINATOEXPLOREINCLUDE:1.DevelopasupportivepolicyframeworkIntroducepoliciesthatencouragefuelshiftsinindustryandexpandthescopeofeligiblefuelstohydrogenanditsderivatives.Inparallel,exploreregulatorymeasurestoaddresstheriskofcarbonleakagetoenablehydrogenusewhilemaintainingindustrialcompetitiveness.2.Demonstrateandbuildexperienceinhydrogenend-useapplicationsTheseincludethedirectionreductionofsteel,ammoniaforshipsandsyntheticfuelsforaviation.Thesepathwaysareatearlystagesofdeploymentbutwillbecriticalforachievinganetzeroenergysystem,andChinacouldattaingloballeadershipinthesetechnologies.3.SupportthedomesticelectrolyserindustryAlreadytodaymultipleChinesemanufacturersareprovidinglow-costelectrolysers.Governmentsupportcouldenablegrowth,learningandcompetitionleadingtotechnologicalleadershipforChina.CHINA'SROUTETOCARBONNEUTRALITY392.9Supportingcitiesaschampionsoflow-carbonlivingChina’surbanisationoverthepasthalfcenturyhasbeenremarkablyrapidandpracticallyuniqueinscale.Citydwellersnowmakeup60%ofChina’spopulationof1.4billion(StateCouncil,2020),andthecountry’s14thFive-YearPlanprojectedthattheshareofpermanenturbanresidentswouldreach65%by2025.Yetthemigrationthathelpedbringmillionsoutofpovertyhassharplyincreasedurbanenergyconsumption.Ithasalsodegradedtheenvironmentinandaroundcities.TheresultingchallengeshavebroughtChinatoacrossroadsinenergyandenvironmentalsecurity.Cities,andtheirsurroundingareas,representaround85%ofChina’senergydemand,andthecountryiscontemplatinghowitcansustaincontinuedurbanisationforanotherthreedecades,withafurther255millioncitydwellerssettobeadded(UN,2018).Thiscallsforalong-termenergytransformationatthecitylevel.Citiesarediverse,makingitextremelychallengingtofindaone-size-fits-allsolution.Industryaccountedforaround70%oftheurbanfinalenergyconsumptioninChinain2016(althoughthissharehasbeendecliningsince2012),whilebuildingsaccountedforaround19%andtransportfor11%,accordingtotheStateGridCityandEnergyResearchInstitute(SGCERI,2019).Globalexperiencessuggestthatcitiesaremorelikelytotakeactioniftheysetconcreteandattainabletargetsforenergytransformation.Tomakethishappen,thereisaneedtodevelopalong-termenergystrategy/planwithclearlydefineddirections.Thefutureurbanenergyinfrastructurewillbeshapedbytoday’sinvestmentdecisionsandurbanplanning.Sustainablesolutionsmustbeidentifiedfromalong-term,system-wideperspectivetoavoidthecreationofstrandedassets.Aneffectiveanalysisframeworktoidentifysolutionsforcitiesshouldincludebottom-upplanningelementsthatreconcilewiththelong-termlow-carbonurbanandregionalenergystrategies(IRENA,2020f).Forexample,provincialandmunicipal-levelplanningshouldbeco-ordinatedeffectivelyonhowtodecarbonisetheenergymix,inwaysconsistentwithnationalstrategicobjectives.RECOMMENDATIONSFORCHINATOEXPLOREINCLUDE:1.Encouragelocalauthoritiestodeveloplong-termintegratedurbanplanningSuchplansshouldhavetwinaimstoachievecarbonneutralityandbetterliveability.2.PrioritisedistributedenergygenerationUrbanenergysupplyshouldbebasedonmaximiseduseoflocalrenewableenergyresourceswiththesupportofcouplingend-usesectorsandurbaninfrastructure,digitalisedintelligentenergymanagementsystemsandimprovedenergyefficiency.3.ContributetoenergysystemflexibilityCitiescancontributetoenhancingtheoverallflexibilityoftheenergysystemthroughmakingtheurbanenergydemandmoreresponsivetogenerationfromvariablerenewableelectricityfromthenationalgrid.404.ReformurbanwasteuseChina’shugemunicipalwasteisaverylargemarketforindirectcarbonemissionreduction.Thecollectionandtreatmentofwasteshouldbereformedtoincentiviserecyclingandappropriatedisposal,includingthroughachargingsystem.Box2Citycasestudy:UrbanenergytransformationinZhangjiakouIRENAandZhangjiakouMunicipalGovernmenthavebeenexploringurbanenergytransformationforZhangjiakoucitytowards2050.TheZhangjiakoucasestudyshowsthatimportantpracticalbarriersexistatthemunicipallevelthatneedtobeconsidered,suchasco-ordinatedlong-termplanningacrosstheenergyandindustrialsectors,diversificationofendusesforrenewableenergyapplications,theroleofhydrogeninthefutureeconomy,policyinnovation,andinstitutionalcapacityenhancement(includingbeingempoweredthroughadvancedurbanenergyplanning).AsthefirstofitskindinChina,theZhangjiakouEnergyTransformationStrategy2050hassetanewparadigmformanyotherChinesecitiesthatareeagertoweantheirenergysystemsoffcoalandtotakeadvantageoftheuptakeofrenewableenergytechnologiesandotherenablingtechnologiessuchaselectricvehicles,hydrogenproductionandapplications,batterystoragesystemsandsmartgrids.MoreinsightsrelatedtocitiescanbefoundinthereportZhangjiakouEnergyTransformationStrategy2050(IRENA,2019c)andforthcomingIRENAworkinthisarea.2.10Continuingprogressinlight-dutytransportandbroadeningtoheavy-dutyandlong-haulmodesFallingcostsandrisingsharesofrenewableenergyinChina’selectricitysupplysystemopenthedoorfortransformingthetransportsector,mostlycentredarounddirectandindirectelectrification.Railtransportisalreadylargelypoweredwithelectricity,andwhilethepreferablepathtoloweringCO2emissionsisrelativelyclearforlight-dutyroadtransport,theoptimalapproachislesscertainforheavy-dutyroadfreighttransport,shippingandaviation.Reducingemissionsfromtransportcanbeachievedthroughbehaviouralchanges,urbanplanningandimprovedfuelefficiencies.Yettheseinstrumentscanhardlyyieldtheresultsofafulldecarbonisationofthesector.Totransformthesectortocarbonneutrality,thetechnologicaloptionsthatcanacceleratesuchtransformationincludethedirectuseofclean,preferablyrenewable,electricity(forrailandroadtransport,includingheavy-dutyroadfreighttransport);theuseofgreenorbluee-fuels,suchashydrogen,ammoniaandothere-fuels(particularlyforshippingandsomeheavy-dutyroadfreighttransport);andtheuseofbiofuels(particularlyforaviation).Thewideruseofelectricityintransportwouldhavebeenviewedasaluxurysolutionjustafewyearsago,duetothethen-highercostsofbothrenewableelectricityandbatteriesinadditiontothemanufacturingcost.However,inrecentyearsthecontinueddecreaseinCHINA'SROUTETOCARBONNEUTRALITY41generationcostshasmadeelectricityfromrenewableenergysourcescostcompetitiveinmanyregionsacrosstheglobe;thisiscoupledwithscaled-upbatterysizesandelectricvehiclemanufacturingcapacitiesandimprovedtechnologicalmaturity–twoimportantfactorsleadingtothecostdecline.Againstthisbackdrop,electrificationbecomesaverypromisingscenariofordecarbonisingthetransportsector.Hydrogen-basedtechnologieswillplayanimportantroleinthisdecarbonisationforalltransportmodes,butparticularlyinshippingandaviationwherehydrogenandsyntheticfuelsareexpectedtoaccountforaround60%andone-quarter,respectively,ofyearlyfinalenergyconsumptionby2050inIRENA’s1.5°CScenario(IRENA,2021c).Biofuelscanalsooffertechnologicallymatureoptionstouseasviablesubstitutesforpetroleum-basedtransportfuelsbecausetheyrequirenoorminimumretrofittingofvehicleengineswhentheblendingratiosarewithincertainlevels.Inaddition,biofuelproductioncouldbringco-benefitstoruraldevelopment,spurthedevelopmentofagro-andwoodindustries,andcreateextrarevenuestreamsformunicipalwastemanagement,thusadvancingthecirculareconomyassomeportionofthewastescanbeusedasfeedstockforproducingbiofuelssuchasbiodieselandbiogas.Therearestillsomebarrierstoberemovedforsuchoptionstoreachtheirfullpotentialscontributingtothetransportsectortransformation.IRENA’sReachingZerowithRenewablesreport(IRENA,2020a)explorestheoptionsindetail,supplementedbydeep-divereportsincludingonshipping(IRENA,2019d,2021c)andonaviationbiojet(IRENA,2021d).RoadtransportPassengerandlight-dutyroadfreighttransportForpassengervehiclesandlight-dutyfreightroadtransport,batteryelectricvehicleshavedemonstratedgreatadvantagesinrecentyearsintechnology,costcompetitivenessandmarketshare.Inmanycountries,electricvehiclesaccountforagrowingshareofnewlight-dutyvehiclesales,withthegloballeaderbeingNorwaywhereelectricvehiclescomprised54%ofallcarssoldin2020(Reuters,2021).Chinaisalreadyaleaderinelectromobility,asshowninFigure2;however,betterunderstandingisstillneededonseveralissues,includingtheextenttowhichtheelectricgridcansupportthesubstantialincreaseinelectricitydemandforvehiclecharging;howtocouplechargingwithvariablerenewableenergyproduction;andthemeasuresneededtomanagethechargingprocesses,includingsmartercharginginfrastructurethatcanprovidechargingservicesforseveralcarssynchronously.Theseaspectswillbecritical,aselectricvehiclesareexpectedtoreacharound80-90%ofroadpassengeractivityinChina2050,anincreasethatwillleadelectricityconsumptionfromroadpassengervehiclestoincreasearoundtwentyfivefold.Criticalissuesforanincreasedscale-upofelectricvehiclesare:improvingbatteryperformance,loweringbatterycosts,deployingsmartandrapidchargingtechnologies,understandingparkingandchargingbehaviours,andensuringadequatesupplyofcriticalmaterialsneededforelectricvehiclemanufacturing.AdditionalinsightsonelectricmobilitycanbefoundintheIRENAreportsInnovationLandscapeforaRenewable-PoweredFuture(IRENA,2019a),InnovationOutlook:SmartChargingforElectricVehicles(IRENA,2019e)andCriticalMaterialsforEnergyTransition:Lithium(GielenandLyons,2022).42Heavy-dutyandlong-haulfreightroadtransportAsvehiclesbecomeheavierandtravellongerdistances,thechallengesfortheirdirectelectrificationincrease.Thisistruenotonlyforheavy-dutyroadtransport,butalsoforaviationandlong-distanceshipping.Theheavieravehicleis,themorebatterypoweritneeds(e.g.aheavy-dutylong-haultruckwillneedabatterythatis15timeslargeronakWh-basisthanaTeslaModelXbattery)(IRENA,2020a).Despitethis,directelectrificationwithbatteries,assuminganimprovementinbatteryperformance,isonecrediblepossiblepathwayforthedecarbonisationofheavy-dutyroadfreighttransport.Directelectrificationisthemostefficientpathway,andby2050itisexpectedtoplayaprominentroleinthedecarbonisationofChineseroadfreighttransport.Thedeploymentofcatenarylinesalonghighwayscouldeasethistransition.However,ifbatteryimprovementsdonotreachthenecessarylevelfortheirwidespreaddeploymentincommercialtrucks,theuseofhydrogencellspoweredwithcleanhydrogenisalsoazero-emissionalternative.Finally,liquidbiofuelsmaybeusedacrossalltransportsectors,includingroadtransport,whichpresentlyconsumes212petajoulesofliquidbiofuelsyearlyandisbyfartheirlargestconsumerandlikelytoremainso(althoughaviationandshippingholdgreaterpotentialintermsofmarketgrowthgiventhattheotheralternativeoptionsarelargelyintheinfancystage).Eventhoughtransportinggoodsviarailorshippingiscleanerthanroadtransport,themajorityofChinesecommodities(includingcoal)aretransportedbyroad.Modalshiftsfromroadtorailorwaterwouldbebeneficialfromanenergyconsumptionandemissionperspective.Railtransportusesaroundone-sevenththeenergyneededtomovethesamegoodsbyroadandproducesone-thirteenththepollution,whiletransportbywaterusesone-fourteenththeenergyandproducesone-fifteenththepollution(Baiyu,2020).AviationAviationisalsoasignificantenergyuserandCO2emitter,andbringingitsemissionstonetzeroby2060willbeachallengesincethisdecarbonisationcannotfullyrelyondirectelectrification.Chinaisthesecondlargestaviationmarketintheworld,trailingbehindonlytheUnitedStates;itisalsothefastestgrowingmarket(pre-pandemic),with7.8%growthin2019(IATA,2020.Chinaplaysakeyroleintheglobaleconomyasapowerhouseofmanufacturing,exportinggoodsallovertheworld.TheaviationmarketinChinaisexpectedtogrow5.3%annuallyuntil2038–exceedingprojectedglobalaveragegrowthof3.8%annually–andisexpectedtobecomethelargestmarketassoonas2022(IATA,2020).ThismeansthatChinawillbekeytorealisingthecarbonneutralityofglobalaviation.Aviationhaslimitedalternativefueloptionsfordecarbonisation,duemainlytothephysicsofaircraftandflight.Therefore,decarbonisingthesector,bothgloballyandinChina,willrelyonamixofsolutionsthatincludereducingdemandthroughmodalshiftsandenhancedcommunicationstechnologies,andreplacingjetfuelwithsyntheticjetfuelorbiojet.Theuseofsyntheticfuelsandbiojetfacesimilarbarriersincostsandproductionvolumes.Electrificationisalsoexpectedtoplayanimportant,albeitsecondary,roleinaviation(accountingforaroundafifthofenergyconsumption),mostlyforsmallaircraftandshort-distanceflights.CHINA'SROUTETOCARBONNEUTRALITY43ShippingChinaistheworld’slargestexporterandshipbuilderandisinauniquepositiontoleadthetransitiontozero-emissionshipping.Themomentumtodecarboniseshippingisatanall-timehigh,withsomeofthelargestshippingcompanieshavingmadecommitmentstoeliminatetheircarbonemissionsby2050.China,amemberoftheInternationalMaritimeOrganizationandasupporterofitseffortsonsustainability,mustbepreparedtotransitiontowardszero-emissionshipping,orrisklosingitspositionasaworldwideleaderinshipping(Molloy,2019).Intermsoftechnology,internationalshippingisexpectedtorelylargelyonsyntheticfuelstoreplaceconventionalmarinefuels.Greenammoniaisaparticularlyinterestingoptionandisbeingincreasinglycitedasthebestoptionbymanyparties.Ammoniaiseasierandcheapertohandlethanhydrogenandhasnocarbonemissions,unlikemethanol,althoughitdoesreleasenitrousoxideemissionsthatneedtobescrubbed.Directelectrificationcanalsoplayanimportantroleinshipping,especiallyindomesticandshort-distanceshipping.RECOMMENDATIONSFORCHINATOEXPLOREINCLUDE:1.Fordomestictransport:•Continuetheroll-outofelectricvehiclesandcharginginfrastructureforpassengertransport,andensurethatcharginginfrastructureis“smart”.•Developintegratedroadmapsfortransportsectorsincludingfortheroleofhydrogenintransportandadecarbonisationplanforheavyvehicles.•Exploitpossiblesharedimpetusfromothersectors,suchasincentivesforloweringthecostofbatteriesthatwouldbenefitmorethanjustthetransportsector;increaseddemandforcost-competitivegreenhydrogenandtheestablishedsupplychainforgreenhydrogenuse;andthesupplyofsustainablesourcesoffeedstocksforbiofuels.2.Forinternationalaviationandshipping:•BuildingontheoverallefforttoreducecarbonemissionsinChina,developacarbonneutralitystrategyfortheaviationsector.•Incentivisetheadoptionoflow-carbonflightoptionsbyraisingfuelstandards,encouragingcorporatecommitmentstolow-carbonpractices,andfacilitatinginvestmentininnovativetechnologiesandscale-upofthedeploymentofmaturetechnologies.•Conductmoredetailedstudiesontherealisticpotentialsofkeyalternativefuelssuchasbiojetandsyntheticfuelsthatareapplicableforvarioususecases,toinformpolicymakersandindustryplayersofthepotentialtrade-offsandcompetinguseoffeedstocksandproductswithinandbeyondtheaviationsector.442.11LayingthegroundworkforindustrialsectorstoachievenetzeroemissionsTheindustrialsectorshavebeenacriticalelementinpoweringtheglobaleconomy.Contributingaround28%ofglobalcarbonemissions,theyarealsoamajoremitter.Theuseoffossilfuelsasthekeyenergysourceinindustryisonlypartofthisemissioncontribution.Emissionsalsocomefromindustrialproductionprocessesandfromthelifecycleofproducts.Thismakesachievingthenetzerogoalforindustrialsectorsbothchallengingandimportant.Thefourmostenergy-intensiveindustrysub-sectors–ironandsteel,chemicalsandpetrochemicals,cementandlime,andaluminium–emitaround75%ofthetotalemissionsfromtheentireindustrialsector(IRENA,2020a).Thechallengeofenergy-intensiveindustriesToreducecarbonemissionsfromenergy-intensiveindustrialsectorsistechnicallyadauntingtask,particularlyforthefourdominantsectors.Furthermore,muchgreaterpolicyattentionisneededtogeneratethenecessaryresourcestoaddressthechallenge.Thisisattributabletotwokeyfactors:1)lackofprovenbestpracticesforreducingemissionsinatechnicallyandeconomicallyviablemanner;and2)manyindustrialproductsaregloballytradedcommodities,generatingvalidconcernsaboutcarbonleakageandindustrialcompetitivenessifonlysomecountriesopttopursueindustrialemissionreduction.Energyefficiencyimprovementshavebeenpursuedinindustrialsectors,buttheyhavetheirlimitationsandcannotbeusedalonetoachievethenetzeroemissiongoal.Innovationsbeyondenhancingenergyefficiencyareneededtoreducethelargequantitiesofemissionsfromthemostenergy-intensiveindustrialsectors.Allfourofthesesectorsaresteppinguptheireffortstodevelopemissionreductionstrategiesandaretestingnewtechnologiesandalternativeindustrialproductionprocesses.Buttheseeffortshavealongwaytogotoreachnetzerobymid-century.Giventhelimitedresourcesandtimeleft,amorestrategicandclearfocusisrequiredtoestablishwhichdecarbonisationpathwaytotake.Chinadominatestheproductionofsomeenergy-intensiveindustrialproductsThedominanceofindustrialmanufacturinginChinamakesachievingnetzeroemissionsinthesectoruniquelychallengingforthecountry,comparedtootherlargeeconomies.China’sindustrialsectoraccountsfor60%ofgrossfinalenergyuse(forbothenergyandnon-energyuses),andtwo-thirdsofindustryenergydemandismetbycoal(withanotherquartermetbyelectricity).Thisresultsinaround4Gtofenergy-relatedCO2emissionsand2Gtofprocess-relatedCO2emissions,togetheraccountingforjustundertwo-thirdsofChina’sCO2emissions(GrantandLarsen,2020;Liuetal.,2019).Withintheindustrialsector,emissionsfromenergy-intensiveindustriessuchasironandsteel,aluminium,chemicalsandpetrochemicals,andcementandlimeaccountforthelion’sshareandarenotexpectedtodeclinesignificantlyduring2020-2050withoutstrongerpoliciesinplace,accordingtoIRENA’sanalysis(Figure4).CHINA'SROUTETOCARBONNEUTRALITY45ThismakesactiononindustrycriticaltoChina’scarbonneutralitygoals.Giventhecountry’sroleintheglobalindustriallandscape,Chineseactiontoachievenetzeroinindustryisalsocriticalforthesuccessoftheglobalindustrialenergytransformation.Moreover,whatChinadoes(anddoesnot)dowillhaveimplicationsforindustrialcompetitorsaroundtheworld.Actionsinkeyenergy-intensiveindustrialsectorsincludethefollowing:•Cement:In2019,halfoftheworld’scementwasproducedinChina,whichhas2.33Gtofproductioncapacity.Moreimportantly,theChineseclinker-to-cementratiohasreached0.65,with1.52Gtofclinkeroutputin2019,withinthelowestrangeintheworld.Giventhatemissionsfromthecementsectorarisechieflyfromtheclinkerproductionprocess,thislowratioisofgreatsignificance(CemNet,2020).•Ironandsteel:Chinarepresentedmorethanhalfoftheglobaloutputofcrudesteelin2019,with996Mtofproduction(WSA,2020).However,nearly90%ofChinesesteelwasproducedthroughthebasicoxygenfurnace(BOF)route,whereassteelproducedusingrecycledsteelscrapthroughtheelectricarcfurnace(EAF)processaccountedforonly10%orso.Thisiswellbelowtheworldaverage.•Aluminium:Chinaproduced35.8Mtofelectrolyticaluminiumin2019(IAI,2021),representing56%oftheglobaloutput.DueprimarilytothehighcarbonintensityofelectricityinChina,thealuminiumindustrycontributesaround5%ofthecountry’stotalcarbonemissions.Ontheefficiencyfront,Chinahasmaderemarkableprogresstolowertheelectricityconsumption(alternatecurrent)pertonneofelectrolyticaluminiumto13543kWh–onparwiththeglobalbestpractice.Suchprogressisalsoattributabletotherelativelyyoungageofproductionfacilities.Figure4ChineseindustrialCO2emissionsbysector,2020-2050(Referencecase)CO2emissions(MtCO2/yr)202020352050010002000300040005000Iron&steelAluminiumChemical&petrochemicalCement&lime46•Ammoniaandmethanol:China’sammoniaindustryhasexperiencedanovercapacitychallengeforyears.In2019,thecountrymanagedtocurbitsammoniaproductiontoonlytwo-thirdsofthetotal70Mtcapacity(CCR,2020),accountingforaround26%ofglobalproduction.Althoughthefertilisermarketdoesnotlookpromisingforabsorbingtheidlecapacity,duetopoliciesonreducingnitrogenpollutioncausedbyoveruseofammoniafertiliser(Chaietal.,2019),otherapplicationssuchasammonia’suseasashippingfuel(ifitcanbeproducedwithnetzerocarbonemissions)couldincreasefuturedemand.ThisimpliesthatthecarbonfootprintofproducingammoniainChinashouldbegreatlyreduced,asmostChineseammoniaisproducedfromfossilfuels.Onmethanol,Chinahasalsotakentheleadinbothglobalproductionandconsumption(Statista,2019).Giventhatmethanolhasmanyapplicationsinproducingotherimportantchemicals,suchasbeinganimportantintermediaryforolefinsproductionandaroadfueladditive,itsroleisexpectedtobecomeevenmoreimportantinthefuture.UseofcoalinindustryThetechnologiesdeployedinChineseindustryaresimilartoglobalindustry,withtheexceptionofchemicalsandpetrochemicals,whereacoal-basedindustryhasdevelopedinChinaincontrasttogasandoildominationelsewhere.Chinesecapitalstockisrelativelynew,thelatestplantsaregenerallylarge,andenergyefficiencyisgenerallyhigh.Pocketsofoutdatedcapitalstockremain,butpoliciesareaimedattheirclosure.ThedominanceofcoalinChineseindustrialenergyandnon-energyuse(i.e.itsuseasafeedstock)isthelargestandmostpressingissuetoday.Coalaccountedfor59%ofChina’soverallprimaryenergyconsumptionin2018,whileindustryconsumedaround28%ofthecountry’stotalcoalconsumption.Notably,coaluseforproductionofsyntheticfuelsandsyntheticorganicmaterialsisgrowingrapidly,whichhasresultedinhighgrowthinCO2emissions.Alternativestotheuseofcoalforthesepurposesarepossible,especiallythepotentialuseofbioenergyandrenewablyproducedhydrogenande-fuels.Scalinguptheuseofalternativestocoalinindustrywillbekeytodecarbonisingthesector,improvinglocalairpollutionandmovingChinatotheforefrontofadvancesinmanufacturing.RECOMMENDATIONSFORCHINATOEXPLOREINCLUDE:1.Setacleardirectionandensurethatprogresscanbemeasured•Co-developwithindustryandotherstakeholderslow-carbonstrategiesandroadmapsforeachsector,particularlyinthesteel,chemicalandcementindustries.Suchstrategiesshouldsetsectoraldecarbonisationtargets,andoutlinethedevelopmentpathwaysforgreenelectricity,hydrogen,biomassandCCSandhowthesedecarbonisationoptionscouldbeusedindifferentindustrialsectorsthroughsectorcouplingstrategiesandtechnologies.Effectiveroadmapsrequireanopenandongoingdialoguewithindustrystakeholderstoensurethatthelatestinformationisusedandthatthereisbuy-intoimplementthefindings.CHINA'SROUTETOCARBONNEUTRALITY47•Establishcarbonaccountingsystemsforkeyenergy-intensiveindustrialproductsbyapplyingalife-cycleanalysisapproach,focusingparticularlyonembeddedcarbon.ChineseindustrymayconsiderjoininginternationalenergyandCO2benchmarkinginitiativestodevelopcomplementarysystems.2.Reduceenergyusethroughenergyandresourceefficiencyanddemandreduction•Improveenergyrecoveryanduseintheindustrialsectorandcontinuetoimproveindustrialenergyefficiencytoreduceenergyconsumption,anddevelopmandatoryperformanceandefficiencyrequirementstocoverallofindustrialenergyconsumptionandupdatetheIndustrialGreenDevelopmentPlan(2016-2020).•Explorewaystolowerthedemandforindustrialproducts(steel,cement,plastics,chemicals,etc.)suchasimprovingtheuseofindustrialproducts,extendingtheservicelifeofproducts,recyclingrelatedproductsandmaterials,anddevelopingalternativesforindustrialproducts.3.Transitionawayfromcoaluseinindustryandbuildknowledgeontheuseofrenewables•Buildknowledgeofandconfidenceinemerginglow-carbonsolutions(suchashydrogen-baseddirectironreductionandtheuseofrenewablefeedstocksforchemicalproduction)byestablishingdemonstrationprojectstoshowcasetheperformanceoftheinnovativetechnologiesandexchangeoflearningandexperiences.•Nurturethemarketgrowthfor“green”productsandcontinuedtoprovideincentivesforenergyefficiencyimprovementsintheindustrialsectors;however,certificationofgreensupplychainsmayberequired.4.Considertheoptimallocationsforindustrialproductionandimportationofgreencommodities•Exploretheoptimallocationsforindustrialproduction,includingrelocatingtoregionswithabundantrenewableenergyresourcesbutlowexistingdemandforelectricity.•Considerimportedgreencommoditiessuchasbioplasticsanddirectreducediron(DRI)pelletstobeviablesubstitutesforfossil-basedproducts(Gielenetal.,2020).InthelattercaseimportingDRIfromironoreexportingcountrieswithlow-costrenewablespotential,ratherthanimportingironore,couldreduceChina’sironprocessingemissionswhilemaintainingthehigher-valuesteelproductioninChina.482.12ContinuingtosupporttechnologyRD&DandbroadersystemicinnovationSince2013,Chinahasincreaseditsinvestmentincleanenergyresearch,developmentanddeployment(RD&D)andhasbecomethesecondlargestpublicsectorinvestorinthisareabehindtheUnitedStates(althoughtheEUanditsmemberscollectivelyinvestmore).ChinaisanactivememberoftheMissionInnovationinitiative,co-leadinganumberofinternationalcollaborationsonRD&D;attheUnitedNationsclimatetalksinParisin2015,alongsideotherMissionInnovationmembers,itcommittedtodoublingitsRD&Dinvestmentswithinfiveyears.ChinesepublicsectorRD&DexpenditureincreasedfromUSD3.6billionin2016toUSD6.1billionin2018,althoughinvestmentsdroppedbacktoUSD5.5billionin2019(MI,2020).InternationalEnergyAgencyfigures(IEA,2020b),whichuseaslightlydifferentclassification,suggestthatin2019ChinaspentUSD7.9billiononenergyRD&D,butonly53%ofthat(USD4.2billion)wasspentoncleanenergy,suggestingthatalmosthalfoftheChineseenergyRD&Dbudgetwasspentontechnologiesthatarenotconsistentwiththecountry’scarbonneutralitygoals.Bycontrast,theenergyRD&DbudgetoftheEUasUSD8.8billionin2019,ofwhich97%wasfocusedoncleanenergy(USD8.5billion).ThisimbalanceneedstobeaddressedifChinawishestodeliveritsobjectivesandplayaleadingroleincleanenergytechnologies.ForRD&Dandinnovationsupportasawhole,the14thFive-YearPlanincludedthegoalofincreasinggovernmentinvestmentatleast7%overthenextfiveyears.Thismeansthattotalspendingcouldreachanestimated2.8%ofGDPby2025,upfromanestimated2.3%to2.4%in2020.Bycomparison,theUnitedStatesspent2.83%ofitsGDPonR&Din2018andtheEUspent2.18%.AlargershareofthatincreasedRD&Dbudgetshouldbefocusedoncleanenergysolutions.SupportfortechnologyRD&Dneedstobelinkedtobroadersystemicinnovation–thatis,combininginnovationinenablingtechnologieswithinnovationsinbusinessmodels,marketdesignandsystemoperations.Further,supportfortechnologyRD&Dandsystemicinnovationisneededtoensuredeepdecarbonisation.Whilemanyofthesolutionsthatareneededexist,manyarenotyetfullyprovenoraremoreexpensive.Furtherinnovationcanincreaseperformance,reducecost,increaseconfidenceandpluggaps.Inthepowersector,China’sinnovationsupportmechanismsshouldfocuson:keytechnologiesforlarge-scalewindturbinesandfortheindustrialisationofhigh-efficiencysolarcells,high-efficiencyheatcollection,andgridconnectionsandtransmission.Innovationforthesystemintegrationofvariablerenewablesshouldfocusonenablingalargenumberofdistributedrenewableenergygrid-connectedsystems,dispatchcontroltechnology,andplanningandoperationofpowersystemswithhighsharesofrenewables.Finally,afocusisneededonlarge-capacityenergystoragetechnologyandenergyInternettechnology,withinteractiveintelligentpowerconsumptionanddemandresponsetechnologies.IRENA’sInnovationLandscapeforaRenewable-PoweredFuturereport(IRENA,2019a)andaccompanyingbriefingdocumentsprovideacomprehensiveoverviewofthesystemicsolutionsthatcanenablethattransformation.Inthetransportsector,roadfreightprioritiesinclude:designsofelectricandfuelcellvehicles,researchonbatterieswithhighperformanceandlowcost,hydrogen,syntheticfuels,andCHINA'SROUTETOCARBONNEUTRALITY49biofuelsproductionandsupply.Foraviationandshipping,prioritiesforChinashouldinclude:sustainableproductionofbiofuels,syntheticfuelproductionandapplications,energystorageandinnovativepropulsiondesigns.Intheindustrialsectors,China’sinnovationsupportmechanismsshouldfocuson:bio-basedorsyntheticchemicalsthatcanbeusedassubstitutesforfossil-basedchemicals;greensteel-makingtechnologiesincludinghydrogen-basedDRItechnologiesandtechnologiesbasedontheblastfurnace-basicoxygenfurnace(BF-BOF)approachwithCCUS;clinkeralternatives;andcarbonremovaltechnologies.RECOMMENDATIONSFORCHINATOEXPLOREINCLUDE:1.IncreasepublicsectorinvestmentincleanenergyRD&DStopthenearly50%ofpublicsectorenergyRD&Dspendingthatiscurrentlyfocusedonenergytechnologiesandsolutionsthatarenotlowcarbon,anddivertthisspendingtocleanenergyRD&D.2.ContinueandexpandChina’sleadershiproleininternationalRD&DcollaborationThescaleofthechallengesfacedrequiresadegreeofburdensharing.Chineseleadershipinsomeareasoftechnologydevelopmentcaninfluencetheglobaltransitionandcanbeinformedbyexperienceelsewhere.ChinashouldcontinuetoplayanactiveroleininternationalRD&DcollaborationssuchasMissionInnovation.2.13DeepeningglobalengagementTheenergytransitionisaglobaleffortandwillrequireinternationalco-operation.LearningbestpracticesfromothercountriesorregionscanbenefitChina,andChineseexpertisecanhelpshapeglobalenergytransitionoutlooks.Internationalorganisationsplayacrucialroleinconveningthediverseactorsandhelpingcountriesunderstandwhatthetransitionmeansforthembyprovidinganoutsideview,sharingknowledgeandconveningkeycountriesandactors.Asalargeandinfluentialcountry,ChinacanpromotefurtherimprovementsinexistinginternationalframeworksunderrelatedUNprovisionsandotherinternationalrules.RECOMMENDATIONSFORCHINATOEXPLOREINCLUDE:1.Beavisibleleaderininternationalprocesses•Continuetoactivelyparticipateinbothglobalenergygovernanceandglobalclimategovernance,andstrengthenChina’sparticipationinglobalandregionalco-operationmechanismsandinternationalbodies.50•Establishstrategicpartnershipswithothermajoreconomiestoshapetheglobaltransitionofkeysectors.Asmallnumberofmajoreconomiesworkinginalignmentcouldputkeysectorssuchassteelandshippingonnewpathwaystowardscarbonneutrality.Prioritiesfordeeperco-operationshouldinclude:internationaltraderulesandtheirimpactoncarbonintensityofproducts,greenfinancingandinnovation.2.ShowcaseChina’ssuccesses•Becomeamajorproviderofafullrangeofsystemsolutionsforcarbonneutralityforotherdevelopingeconomies,usingChineseequipmentmanufacturingcapabilitiescoupledwithChina’sleadingroleinemergingdigitaltechnologiestoprovideafullrangeoflow-carbonoptions.•FurtherdeveloptheInternationalForumonEnergyTransitioninSuzhoucityintoaninternationaldecarbonisationforumthatconvenesglobalactorstoaccelerateprogressandthatshowcasesChina’sleadingroleinthoseefforts.CHINA'SROUTETOCARBONNEUTRALITY51CHAPTER3CONCLUSIONSANDAREASFORFURTHERWORKChina’sannouncementthatitisaimingforapeakinCO2emissionsbefore2030andtoachievecarbonneutralityby2060hasprofoundimplicationsforhowthecountrywillconsumeenergyandproducegoods.Deliveringonthoseobjectivesinjust40yearsisahugeundertaking,andwhilemanyofthebuildingblocksexist,manyuncertaintiesontheoptimalpathremain.Substantialanalysisandco-ordinatedeffortwillbeneededinthenextfewyearstoshapearobustpathto2060.Itwillbecriticalthereforetousethe2020sasadecadeofplanning,preparationandlearningtogatherevidence,makechoicesandaddresstheenablingconditionsnecessarytobuildanewmodernenergysystemforChina.Chinahasmanystrengths,andsomeuniquechallenges,thatwillimpactthepathwayittakes.However,Chinaisalsonotaloneinstrivingtoreachanetzerogoal,asmostmajoreconomiesarenowembarkingonasimilarjourney.WhileChina’senergytransitionisunique,itwillsharemanycommonfeatureswithothers,sotheopportunitiesformutuallearningarelarge.Closercollaborationonmultiplefrontswillbeessentialforthesuccessofall.IRENA,initsroleastheinter-governmentalbodyforglobalenergytransition,cansupportChinainbothlearningfromothersandsharingChineseexperiencewiththeworld.ThispaperprovidessomekeyinsightsbasedonIRENA’sworkwithcountriesaroundtheworldandonitsanalysisofglobalandregionalenergytransitions.Thepaperprovideshigh-levelthinkingonmanycomplextopics.Itcanserveasastartingpointtoidentifyprioritiesforfurtherdeeperanalysis.Thirteenprioritiesforstrongeractionhavebeenhighlighted,togetherwithsomeinitialrecommendations.Eachofthese,however,warrantsfurtherdeeperanalysisonthespecificsofChina’senergytransition,andconsiderationofthedifferenceswithtransitionselsewheretoallowstrongerconclusionstobedrawnandmoretailoredrecommendationstobedeveloped.Topicswheresignificantuncertaintiesremain,andwhereChinacanparticularlybothbenefitfromandcontributetoglobalaction,include:thestrengtheningofpowersystemstointegratehighsharesofvariablerenewables,theexpansionofelectrification,andthedecarbonisationofend-usesectors,specificallybuildings,transport(particularlylong-haulaviationandshipping)andindustrialprocesses(particularlysteel,cementandpetrochemicals).ClosercollaborationbetweenIRENAandrelevantChineseinstitutions,anddiscussionswithChinesepolicymakers,wouldhelpmaximisethevalueofthatworkforChinaandfortheworld.52REFERENCESBaiyu,G.(11March2020),“China’sroadfreightproblemanditssolutions”,ChinaDialogue,https://chinadialogue.net/en/pollution/11908-china-s-road-freight-problem-and-its-solutions.Bloomberg(2January2019),“World'sbiggestultra-highvoltagelinepowersupacrossChina”,www.bloomberg.com/news/articles/2019-01-02/world-s-biggest-ultra-high-voltage-line-powers-up-across-china.CCR(24March2020),“China’ssyntheticammoniaindustrywillusherinanewroundofreshuffle”,ChinaChemicalReporter,www.ccr.com.cn/c/2020-03-24/623994.shtml.CemNet(4March2020),“China’scautiousconfidence”,www.cemnet.com/Articles/story/168391/china-s-cautious-confidence.html.Chai,R.etal.(2019),“GreenhousegasemissionsfromsyntheticnitrogenmanufactureandfertilizationformainuplandcropsinChina”,CarbonBalanceManagement,Vol.14/20,SpringerLink,NewYork,https://doi.org/10.1186/s13021-019-0133-9.CNBS(2022),StatisticsofChineseeconomicandsocialdevelopmentfor2021,ChineseNationalBureauofStatistics,www.stats.gov.cn/tjsj/zxfb/202202/t20220227_1827960.html(InChinese).CNBS(2021),China2020statisticsreportforsocialandeconomicdevelopment,ChineseNationalBureauofStatistics,www.stats.gov.cn/tjsj/zxfb/202102/t20210227_1814154.html(inChinese).CNPC(2021),“AboutCNPC”,ChinaNationalPetroleumCorporation,www.cnpc.com.cn/en/aboutcnpc/aboutcnpc_index.shtml(accessed2March2021).GielenD.andM.Lyons(2022),Criticalmaterialsforenergytransition:Lithium,InternationalRenewableEnergyAgency,AbuDhabi,www.irena.org/Technical-Papers/Critical-Materials-For-The-Energy-Transition-Lithium.Gielen,D.,Chen,Y.andDurrant,P.(20January2021),“DecarbonisingindustryiskeytoChina’snet-zerostrategy”,EnergyPost,https://energypost.eu/decarbonising-industry-is-key-to-chinas-net-zero-strategy.Gielen,D.etal.(2020),“Renewables-baseddecarbonizationandrelocationofironandsteelmaking:Acasestudy”,JournalofIndustrialEcology,Vol.25/5,pp.1113-1125,JohnWileyandSonsInc.,Hoboken,https://doi.org/10.1111/jiec.12997.GovernmentofChina(29January2022),“Statusonrenewableelectricityfor2021:Gridconnectionandoperation”,NationalEnergyAdministrationofChina,www.gov.cn/xinwen/2022-01/29/content_5671076.htm(inChinese).GovernmentofChina(31March2021),“The‘14thFive-YearPlan’isacriticalperiodandawindowperiodforcarbonpeaking–thedevelopmentofgreenenergyhas‘unlimitedscenery’”,www.gov.cn/xinwen/2021-03/31/content_5596909.htm.CHINA'SROUTETOCARBONNEUTRALITY53Grant,M.andLarsen,K.(18March2020),“PreliminaryChinaemissionsestimatesfor2019”,RhodiumGroup,https://rhg.com/research/preliminary-china-emissions-2019.GSEP(n.d.),“ChargingnetworksarerecognizedasthekeyinfrastructuretopromotethespreadofEVsinChina”,GlobalSustainableElectricityPartnership,www.globalelectricity.org/case-studies/charging-networks-are-recognized-as-the-key-infrastructure-to-promote-the-spread-of-ev(accessed25March2022).Heyward,H.(19April2022),“BeijinghydrogenbodyadmitsthatChineseelectrolyserscannotcompetewithWesternmachines–yet”,Recharge,www.rechargenews.com/energy-transition/exclusive-beijing-hydrogen-body-admits-that-chinese-electrolysers-cannot-compete-with-western-machines-yet/2-1-1202835.Hove,A.(2020),Chinaenergytransitionstatusreport2020,Sino-GermanEnergyTransitionProject,DeutscheGesellschaftfürInternationaleZusammenarbeit,Beijing,www.energypartnership.cn/fileadmin/user_upload/china/media_elements/publications/China_Energy_Transition_Status_Report.pdf.IAI(13August2021),“Metallurgicalaluminarefiningfuelconsumption”,WorldAluminium,InternationalAluminiumAssociation,www.world-aluminium.org/statistics/metallurgical-alumina-refining-fuel-consumption.IATA(27March2020),“China’sdomesticaviationindustryshowingupwardtrend”,Airlines,InternationalAirTransportAssociation,www.airlines.iata.org/news/china%E2%80%99s-domestic-aviation-industry-showing-upward-trend.IEA(2020a),Energyefficiencyindicatorshighlights(2020edition),InternationalEnergyAgency,Paris,https://webstore.iea.org/download/direct/4266?fileName=Energy_Efficiency_Indicators_Highlights_2020_PDF.pdf.IEA(2020b),EnergytechnologyRD&Dbudgets2020,InternationalEnergyAgency,Paris,www.iea.org/reports/energy-technology-rdd-budgets-2020.IISD(2020),Doublingbackanddoublingdown:G20scorecardonfossilfuelfunding,InternationalInstituteforSustainableDevelopment,Winnipeg,www.iisd.org/system/files/2020-11/g20-scorecard-report.pdf.IRENA(2022a),Renewablecapacitystatistics2022,InternationalRenewableEnergyAgency,AbuDhabi,www.irena.org/publications/2022/Apr/Renewable-Capacity-Statistics-2022.IRENA(2022b),Worldenergytransitionsoutlook2022:1.5°Cpathway,InternationalRenewableEnergyAgency,AbuDhabi,www.irena.org/publications/2022/Mar/World-Energy-Transitions-Outlook-2022.IRENA(2022c),Smartelectrificationwithrenewables,InternationalRenewableEnergyAgency,AbuDhabi,www.irena.org/publications/2022/Feb/Smart-Electrification-with-Renewables.IRENA(2021a),Worldenergytransitionsoutlook:1.5°Cpathway,InternationalRenewableEnergyAgency,AbuDhabi,www.irena.org/publications/2021/Jun/World-Energy-Transitions-Outlook.IRENA(2021b),Renewablepowergenerationcostsin2020,InternationalRenewableEnergyAgency,AbuDhabi,www.irena.org/publications/2021/Jun/Renewable-Power-Costs-in-2020.54IRENA(2021c),Apathwaytodecarbonisetheshippingsectorby2050,InternationalRenewableEnergyAgency,AbuDhabi,www.irena.org/publications/2021/Oct/A-Pathway-to-Decarbonise-the-Shipping-Sector-by-2050.IRENA(2021d),Reachingzerowithrenewables:Biojetfuels,InternationalRenewableEnergyAgency,AbuDhabi,www.irena.org/publications/2021/Jul/Reaching-Zero-with-Renewables-Biojet-Fuels.IRENA(2020a),Reachingzerowithrenewables:EliminatingCO2emissionsfromindustryandtransportinlinewiththe1.5°Cclimategoal,InternationalRenewableEnergyAgency,AbuDhabi,www.irena.org/publications/2020/Sep/Reaching-Zero-with-Renewables.IRENA(2020b),Globalrenewablesoutlook:Energytransformation2050,InternationalRenewableEnergyAgency,AbuDhabi,www.irena.org/publications/2020/Apr/Global-Renewables-Outlook-2020.IRENA(2020c),Renewablepowergenerationcostsin2019,InternationalRenewableEnergyAgency,AbuDhabi,www.irena.org/publications/2020/Jun/Renewable-Power-Costs-in-2019.IRENA(2020d),Greenhydrogen:Aguidetopolicymaking,InternationalRenewableEnergyAgency,AbuDhabi,www.irena.org/publications/2020/Nov/Green-hydrogen.IRENA(2020e),Greenhydrogencostreduction,InternationalRenewableEnergyAgency,AbuDhabi,www.irena.org/publications/2020/Dec/Green-hydrogen-cost-reduction.IRENA(2020f),Riseofrenewablesincities,InternationalRenewableEnergyAgency,AbuDhabi,www.irena.org/publications/2020/Oct/Rise-of-renewables-in-cities.IRENA(2019a),Innovationlandscapeforarenewable-poweredfuture:Solutionstointegratevariablerenewables,InternationalRenewableEnergyAgency,AbuDhabi,www.irena.org/publications/2019/Feb/Innovation-landscape-for-a-renewable-powered-future.IRENA(2019b),Hydrogen:Arenewableenergyperspective,InternationalRenewableEnergyAgency,AbuDhabi,www.irena.org/publications/2019/Sep/Hydrogen-A-renewable-energy-perspective.IRENA(2019c),Zhangjiakouenergytransformationstrategy2050,InternationalRenewableEnergyAgency,AbuDhabi,www.irena.org/publications/2019/Nov/Zhangjiakou-Energy-Transformation-Strategy-2050.IRENA(2019d),Navigatingthewaytoarenewablefuture:Solutionstodecarboniseshipping,InternationalRenewableEnergyAgency,AbuDhabi,www.irena.org/publications/2019/Sep/Navigating-the-way-to-a-renewable-future.IRENA(2019e),Innovationoutlook:Smartchargingforelectricvehicles,InternationalRenewableEnergyAgency,AbuDhabi,www.irena.org/publications/2019/May/Innovation-Outlook-Smart-Charging.IRENAandAEA(2022),Innovationoutlook:Renewableammonia,InternationalRenewableEnergyAgency,AbuDhabi,AmmoniaEnergyAssociation,Brooklyn,www.irena.org/publications/2022/May/Innovation-Outlook-Renewable-Ammonia.Liu,J.etal.(2019),“AnalysisofCO2emissionsinChina’smanufacturingindustrybasedonextendedlogarithmicmeandivisionindexdecomposition”,Sustainability,Vol.11/1,p.226,MDPI,Basel,https://doi.org/10.3390/su11010226.CHINA'SROUTETOCARBONNEUTRALITY55MI(2020),MissionInnovationCountryHighlights:5thMIMinisterial2020,MissionInnovation,http://mission-innovation.net/wp-content/uploads/2020/09/3.-MI-Country-Highlights-2020.pdf.Molloy,N.(21May2019),“Chinauniquelyplacedto‘green’shipping”,ChinaDialogue,https://chinadialogueocean.net/8170-china-green-shipping(accessed3March2021).NEA(2022),“Launchofpowersectorstatisticsfor2021”,NationalEnergyAdministrationofChina,www.nea.gov.cn/2022-01/26/c_1310441589.htm(inChinese).NFA(2021),“Acceleratingdevelopmentofbiomassmarketduringthe14thFive-YearPeriod”,NationalForestryAdministrationofChina,www.forestry.gov.cn/zlszz/4264/20210408/163439329547769.html(inChinese).Olsson,D.(9February2021),“China’s14thFive-YearPlan:Ablueprintforgrowthincomplextimes”,King&WoodMallesons,www.kwm.com/en/au/knowledge/insights/chinas-14th-five-year-plan-a-blueprint-for-growth-in-complex-times-20210209.Reuters(5January2021),“Electriccarsrisetorecord54%marketshareinNorway”,TheGuardian,www.theguardian.com/environment/2021/jan/05/electric-cars-record-market-share-norway.SGCERI(2019),Chinaurbanenergy2018,StateGridCityandEnergyResearchInstitute,ChinaElectricPowerPress,Beijing.StateCouncil(22May2020),“China’surbanizationrateexceeds60%forfirsttimein2019”,StateCouncilofthePeople’sRepublicofChina,http://english.www.gov.cn/premier/news/202005/22/content_WS5ec7313ec6d0b3f0e9498347.html.StateCouncilInformationOffice(21December2020),“EnergyinChina'snewera”,StateCouncilInformationOfficeofthePeople’sRepublicofChina,www.scio.gov.cn/m/zfbps/32832/Document/1695135/1695135.htm.Statista(7December2019),“ForecastedapparentconsumptionvolumeofmethanolinChinafrom2019to2025”,www.statista.com/statistics/1117468/china-forecasted-apparent-consumption-volume-of-methanol.UN(2018),Worldurbanizationprospects2018,UnitedNations,NewYork,https://population.un.org/wup.WorldBank(2021a),“CO2emissions(metrictonspercapita)–China,EuropeanUnion”,https://data.worldbank.org/indicator/EN.ATM.CO2E.PC?locations=CN-EU(accessed2March2021).WorldBank(2021b),“Energyuse(kgofoilequivalentpercapita)–China”,https://data.worldbank.org/indicator/EG.USE.PCAP.KG.OE?locations=CN(accessed2March2021).WSA(27January2020),“Globalcrudesteeloutputincreasesby3.4%in2019”,WorldSteelAssociation,www.worldsteel.org/media-centre/press-releases/2020/Global-crude-steel-output-increases-by-3.4--in-2019.html.Wu,R.etal.(2019),“AirqualityandhealthbenefitsofChina’semissioncontrolpoliciesoncoal-firedpowerplantsduring2005-2020”,EnvironmentalResearchLetters,Vol.14,IOPScience,Bristol,p.094016,https://iopscience.iop.org/article/10.1088/1748-9326/ab3bae.www.irena.org©IRENA2022