专利和能源转型:清洁能源技术创新的全球趋势(英)-IEAVIP专享VIP免费

Patents and the
energy transition
Global trends in clean energy technology innovation
April 2021
2
Foreword
The energy transition needed to mitigate climate change presents challenges of unparalleled
scale and complexity. Many of the technologies needed to cut greenhouse gas emissions are
not yet fully mature, whilst the time window available for bringing them to market is closing
rapidly. In this context, reliable intelligence on trends in low-carbon energy (LCE) innovation
is crucial for supporting sound business and policy decisions.
As the patent oce for Europe, the EPO is ideally positioned to first detect and analyse such
trends. Because patent applications are typically filed long before products appear on the
market, they provide early information on forthcoming technologies. Thanks to our unique
access to the world's largest collection of patent and non-patent literature, the EPO is able to
exploit that information to produce cutting-edge business intelligence.
Our patent classification scheme for climate change mitigation and adaptation technologies is
testament to our commitment to fulfil that role. With millions of patent documents classified
across a wide variety of climate change mitigation technologies, it has become a widely-used
standard for monitoring progress in green technologies across the world.
Our partnership with the International Energy Agency (IEA) makes it possible to further
exploit these resources. By combining the EPO’s advanced patent knowledge with the IEAs
unparalleled technical and economic expertise in energy, we aim to support decision-making
in the public and private sectors with the best possible information on technology trends in
this field.
Our new joint study embraces the broad landscape of low-carbon energy technologies.
It relies for that purpose on the EPO’s dedicated patent classification scheme for such
technologies, along with new patent data on fossil fuel technologies that have been
developed as a benchmark for this study.
The results reveal encouraging trends and interesting energy transition patterns across
countries and industry sectors. However, our report also highlights the need to further
accelerate innovation for the technologies – some still emerging – that are poised to play an
instrumental role in the energy transition of the next 2-3 decades. By giving decision-makers
unparalleled data and analyses about innovative solutions in low-carbon energy, I am
confident that this report will help to guide them in driving the vital energy transition.
António Campinos
President, European Patent Oce
3
Foreword
In March of this year top international energy and climate leaders took part in the IEA-COP26
Net Zero Summit, a key milestone in accelerating international collaboration toward clean
energy transitions.
Many of the governments present, who represented more than 80% of global GDP and
the majority of global energy use and greenhouse gas emissions, highlighted the urgent
need to increase the pace and scale of adopting low-carbon technologies, and emphasised
that significantly greater private and public investment is needed to quickly harness
commercially-available technologies, and to identify and develop breakthrough technologies.
This report examines the landscape of low-carbon energy technologies and covers the past,
present and future of clean energy innovation. Recent developments provide welcome
grounds for optimism. After a slump in patenting activity during the last decade, we have
now seen three years of growth in low-carbon energy (LCE) patenting in many key emerging
and cross-cutting technologies.
To provide context to the trends and patterns in low-carbon energy innovation, the report
uses new approaches to identify patents related to fossil fuel technologies. The results show
fossil fuel patents declining as LCE patents grow. It is clear that to reach our shared objective
of net zero emissions, further eorts are urgently required to take this resurgence of clean
energy innovation to a new and transformational level. Policy-makers can draw on this
report to identify actions that will help bring new technologies to markets and consumers
all over the world.
The reports findings are the result of a growing partnership between the IEA and the
European Patent Oce (EPO) that will help us track progress going forward. It is the second
output following our first collaboration which focused on the important area of energy
storage.
Dr. Fatih Birol
Executive Director, International Energy Agency
PatentsandtheenergytransitionGlobaltrendsincleanenergytechnologyinnovationApril20212ForewordTheenergytransitionneededtomitigateclimatechangepresentschallengesofunparalleledscaleandcomplexity.Manyofthetechnologiesneededtocutgreenhousegasemissionsarenotyetfullymature,whilstthetimewindowavailableforbringingthemtomarketisclosingrapidly.Inthiscontext,reliableintelligenceontrendsinlow-carbonenergy(LCE)innovationiscrucialforsupportingsoundbusinessandpolicydecisions.AsthepatentofficeforEurope,theEPOisideallypositionedtofirstdetectandanalysesuchtrends.Becausepatentapplicationsaretypicallyfiledlongbeforeproductsappearonthemarket,theyprovideearlyinformationonforthcomingtechnologies.Thankstoouruniqueaccesstotheworld'slargestcollectionofpatentandnon-patentliterature,theEPOisabletoexploitthatinformationtoproducecutting-edgebusinessintelligence.Ourpatentclassificationschemeforclimatechangemitigationandadaptationtechnologiesistestamenttoourcommitmenttofulfilthatrole.Withmillionsofpatentdocumentsclassifiedacrossawidevarietyofclimatechangemitigationtechnologies,ithasbecomeawidely-usedstandardformonitoringprogressingreentechnologiesacrosstheworld.OurpartnershipwiththeInternationalEnergyAgency(IEA)makesitpossibletofurtherexploittheseresources.BycombiningtheEPO’sadvancedpatentknowledgewiththeIEA’sunparalleledtechnicalandeconomicexpertiseinenergy,weaimtosupportdecision-makinginthepublicandprivatesectorswiththebestpossibleinformationontechnologytrendsinthisfield.Ournewjointstudyembracesthebroadlandscapeoflow-carbonenergytechnologies.ItreliesforthatpurposeontheEPO’sdedicatedpatentclassificationschemeforsuchtechnologies,alongwithnewpatentdataonfossilfueltechnologiesthathavebeendevelopedasabenchmarkforthisstudy.Theresultsrevealencouragingtrendsandinterestingenergytransitionpatternsacrosscountriesandindustrysectors.However,ourreportalsohighlightstheneedtofurtheraccelerateinnovationforthetechnologies–somestillemerging–thatarepoisedtoplayaninstrumentalroleintheenergytransitionofthenext2-3decades.Bygivingdecision-makersunparalleleddataandanalysesaboutinnovativesolutionsinlow-carbonenergy,Iamconfidentthatthisreportwillhelptoguidethemindrivingthevitalenergytransition.AntónioCampinosPresident,EuropeanPatentOffice3ForewordInMarchofthisyeartopinternationalenergyandclimateleaderstookpartintheIEA-COP26NetZeroSummit,akeymilestoneinacceleratinginternationalcollaborationtowardcleanenergytransitions.Manyofthegovernmentspresent,whorepresentedmorethan80%ofglobalGDPandthemajorityofglobalenergyuseandgreenhousegasemissions,highlightedtheurgentneedtoincreasethepaceandscaleofadoptinglow-carbontechnologies,andemphasisedthatsignificantlygreaterprivateandpublicinvestmentisneededtoquicklyharnesscommercially-availabletechnologies,andtoidentifyanddevelopbreakthroughtechnologies.Thisreportexaminesthelandscapeoflow-carbonenergytechnologiesandcoversthepast,presentandfutureofcleanenergyinnovation.Recentdevelopmentsprovidewelcomegroundsforoptimism.Afteraslumpinpatentingactivityduringthelastdecade,wehavenowseenthreeyearsofgrowthinlow-carbonenergy(LCE)patentinginmanykeyemergingandcross-cuttingtechnologies.Toprovidecontexttothetrendsandpatternsinlow-carbonenergyinnovation,thereportusesnewapproachestoidentifypatentsrelatedtofossilfueltechnologies.TheresultsshowfossilfuelpatentsdecliningasLCEpatentsgrow.Itisclearthattoreachoursharedobjectiveofnetzeroemissions,furthereffortsareurgentlyrequiredtotakethisresurgenceofcleanenergyinnovationtoanewandtransformationallevel.Policy-makerscandrawonthisreporttoidentifyactionsthatwillhelpbringnewtechnologiestomarketsandconsumersallovertheworld.Thereport’sfindingsaretheresultofagrowingpartnershipbetweentheIEAandtheEuropeanPatentOffice(EPO)thatwillhelpustrackprogressgoingforward.Itisthesecondoutputfollowingourfirstcollaborationwhichfocusedontheimportantareaofenergystorage.Dr.FatihBirolExecutiveDirector,InternationalEnergyAgency4ContentsForewords2Listoftablesandfigures6Listofabbreviations8Executivesummary91.Introduction211.1Aimofthestudy231.2Structureofthereport242.Technologyroadmaptoadecarbonisedeconomy252.1Beyondtheheadlinetrend:capturingthediversedynamicsofenergyinnovationinthedata262.2Therisingimportanceofend-useandenablingtechnologiesforcleanenergy292.3End-useandenablingtechnologiesareacceleratingnewtypesofinnovation303.Maintechnologytrends343.1Trendsinenergysupplytechnologies353.2Trendsinend-usetechnologies363.3Trendsinenablingtechnologies374.ProfileofapplicantsinLCEtechnologies434.1Universitiesandpublicresearchorganisations444.2TopapplicantsinLCEtechnologies495.Geographicaldistributionoflow-carbonenergyinnovation545.1.Globalinnovationcentres555.1.1FocusonEurope605Annex64Annex1CartographyofLCEtechnologies65Annex2Cartographyoffossilfueltechnologies66Annex3Patentmetrics67Annex4Clusteranalysis68References696BacktocontentsListoftablesandfiguresTablesTable2.1Overviewofthecartographyandhowitmapstokeytechnologygaps27Table3.1DistributionofglobalIPFsinPVtechnologybetweentheworldmainregions,2010-201937Table3.2ShareofIPFsinenablingtechnologiesoverlappingwithotherfields,2010-201940Table3.3DistributionofglobalIPFsinhydrogenbetweentheworldmainregions,2010-201942Table4.1Top15universitiesandPROsinLCEtechnologies,2000-201946Table4.2Topglobalclustersinenablingtechnologies,2000-201848Table4.3LCEtechnologyprofilesoftop15applicants,2000-201950Table5.1Specialisation(RTA)ofglobalinnovationcentresbyLCEtechnologyfields,2010-201957Table5.2Specialisation(RTA)oftop10EPCcountriesbyLCEtechnologyfields,2010-201961FiguresFigureE1GlobalgrowthofIPFsinlow-carbonenergytechnologiesversusalltechnologies,2000-2019(base100in2000)10FigureE2GlobalgrowthofIPFsincleanenergysupply,enablingandend-usetechnologies,2000-201911FigureE3OverlapsofpatentingactivityinLCEenablingtechnologieswithenergysupplyandend-usetechnologiesinvarioussectors,2000-201912FigureE4GlobalgrowthofIPFsinelectricvehiclesversusotherLCEtechnologiesforroadtransportation,2000-201913FigureE5Top15applicantsinLCEtechnologies,2000-201914FigureE6EmergingtechnologiesinPVcellsandmountings,2015-201915FigureE7ShareofIPFsinfuelcellsandlow-carbonhydrogenproduction,2010-201916FigureE8ShareofIPFsoriginatingfromuniversitiesandPROsinLCEtechnologyfields,2000-201917FigureE9Mainrevealedtechnologyadvantagesofglobalinnovationcentres18FigureE10Top10fieldsforshareofIPFsstemmingfrominternationalcollaboration(withtop5pairsofcollaboratingcountrieshighlightedineachfield),2000-201919Figure1.1GlobalenergysectorCO2emissionsreductionsbycurrenttechnologyreadinesscategoryintheIEASustainableDevelopmentScenariorelativetotheStatedPoliciesScenario22Figure2.1GlobalgrowthofIPFsinlow-carbonenergytechnologiesversusalltechnologies,2000-201926Figure2.2HistoricalandprojectedCO2emissionsfromexistingenergyinfrastructureandemissionspathwaysinIEAclimatechangemitigationscenarios28Figure2.3GlobalgrowthofIPFsinLCEsupply,enablingandend-usetechnologies,2000-201929Figure2.4Low-carbontechnologiesbyunitsizeandaverageannualinstallationsintheSustainableDevelopmentScenario31Figure2.5Capitalcostsforselectedenergytechnologiesin2040relativeto201932Figure3.1GrowthofIPFsinenergysupplytechnologies,2000-201935Figure3.2IPFsinorganicPVcellsversusothertypesofPVcells,2010-2019367BacktocontentsFigure3.3Innovationtrendsinmountingandtracking37Figure3.4GrowthofIPFsinend-usetechnologies,2000-201938Figure3.5GrowthofIPFsinenablingtechnologies,2000-201939Figure3.6IPFsinhydrogen-relatedtechnologies,2000-201941Figure4.1EstimatedtotalpublicenergyR&D,includingdemonstrationbudgetforIEAmembergovernments,1974-201944Figure4.2ShareofIPFsoriginatingfromuniversitiesandPROsinLCEtechnologyfields,2000-201945Figure4.3GeographicaloriginsofIPFsrelatedtoLCEtechnologies,2000-201847Figure4.4Top15applicantsinLCEtechnologies,2000-201949Figure4.5GlobalgrowthofIPFsinelectricvehiclesversusotherLCEtechnologiesforroadtransportation,2000-201952Figure4.6Top10applicantsinLCEroadtransporttechnologies,2000-201953Figure5.1GrowthofIPFsinLCEtechnologiesbyglobalinnovationcentres,2000-201955Figure5.2Long-termtrendofpatentinginfossilfuelstechnologies,1945-201958Figure5.3GrowthofIPFsinfossilfuelversusLCEsupplytechnologiesbyglobalinnovationcentres,2000-201959Figure5.4GrowthofIPFsinLCEtechnologiesinEuropeancountries,2000-201960Figure5.5ShareofIPFsinleadinginnovationcentresthatareco-inventedwithothercountries,2000-201962Figure5.6Top10fieldsforshareofIPFsstemmingfrominternationalcollaboration(withtop5pairsofcollaboratingcountrieshighlightedineachfield),2000-2019638BacktocontentsCountrycodesATAustriaBEBelgiumCACanadaCHSwitzerlandCNPeople'sRepublicofChinaDEGermanyDKDenmarkESSpainFRFranceILIsraelINIndiaITItalyJPJapanKRRepublicofKoreaNLNetherlandsRURussiaSESwedenUKUnitedKingdomUSUnitedStatesofAmericaListofabbreviationsBOSBalance-of-systemCCUSCarboncapture,utilisationandstorageCO2CarbondioxideCSPConcentratingsolarpowerEPCEuropeanPatentConventionEPOEuropeanPatentOfficeEVElectricvehiclesGHGGreenhousegasICTInformationandcommunicationstechnologyIEAInternationalEnergyAgencyIPFInternationalpatentfamiliesLCELow-carbonenergyLEDLight-emittingdiodeLi-ionLithium-ionOCGTOpen-cyclegasturbinePATSTATEPO'sworldwidepatentstatisticaldatabasePEMPolymerelectrolytemembranePROPublicresearchorganisationsPVPhotovoltaicsR&DResearchanddevelopmentRTARevealedtechnologicaladvantageSDSSustainabledevelopmentscenarioSMRSmallmodularreactorTRLTechnologyreadinesslevelY02EPO'sclassificationschemeforclimatemitigationtechnologies(seeBox1)ThestatisticaldataforIsraelaresuppliedbyandundertheresponsibilityoftherelevantIsraeliauthorities.TheuseofsuchdatabytheOECDiswithoutprejudicetothestatusoftheGolanHeights,EastJerusalemandIsraelisettlementsintheWestBankunderthetermsofinternationallaw.9BacktocontentsExecutivesummaryEnergyinnovationisaninescapableconditionofclimatechangemitigation,occurringagainstabackdropofrisingpolicyambitionandachangingtechnologylandscapeOverthelastyear,manyoftheplanet'slargesteconomiesandcompanieshavecommittedtoeliminatingtheircontributiontogreenhousegasemissionsbythemiddleofthiscentury,orsoonthereafter.Thishasfocusedattentiononaplannednear-totaltransformationoftheenergysysteminaslittleasthreedecades.However,theenergysectorwillonlyreachnet-zeroemissionsifthereisasignificantandconcertedglobalpushtoaccelerateinnovation(IEA,2020a).Technologiesstillcurrentlyattheprototypeordemonstrationphaserepresentaround35%ofthecumulativeCO2emissionsreductionsneededtoshifttoasustainablepathconsistentwithnet-zeroemissionsby2070.ThesuccessfulexamplesofLEDsorlithium-ionbatteries,whichtookbetweentenand30yearstogofromthefirstprototypetothemassmarket,mustsetthebenchmarkforthearrayofenergytechnologiesneededtoachievenet-zeroemissions.Trendsinlow-carbonenergy(LCE)innovationhaveneverbeenmoreimportanttopolicymaking.Notonlydoclimatechangegoalsdemandurgentandinformedstrategicdecisionsaboutinnovation,butinvestmentinnewtechnologyfieldshastakencentrestageinproposedrecoveryplanstocombattheimpactsoftheCOVID-19pandemic(IEA,2020b).Asdescribedinthisreport,cleanenergytransitionsarebeingbuiltusinginnovationsthatrepresentadeparturefromthetypesoftechnologiesdevelopedbytheenergysectorinpreviousdecades.Newtechnologiessupportashifttogreaterrelianceonelectricalpowerinawiderangeofsectors,withmoreconsumer-orientedsolutionsandmoredistributedresources.Thisisresultinginafocusonsmallerunitsizesandadifferentsetoftechnologycustomers.Thesechangesarebringingnewentrantsintotheenergysystems,increasingthepressuretoinnovateinproductdesignandraisingtheroleofmanufacturinginnovations,amongotherthings.Asthisreportdescribes,thechangingdynamicsofenergyinnovationcanalreadybeseeninpatentingdata.Aimedatdecision-makersinboththeprivateandpublicsectors,thisreportisauniquesourceofintelligenceontheinnovationtrendsacrosstheenergysystem,andLCEtechnologiesinparticular.DrawingontheEPO'sdedicatedschemeforpatentinformationonclimatechangemitigation,thedatapresentedinthereportshowsthelatesttrendsinhigh-valueinventionsforwhichpatentshavebeenfiledinmorethanoneofficebycountinginternationalpatentfamilies(IPFs1).HighlightingtheLCEfieldsthataregatheringmomentumandthecrossfertilisationtakingplaceprovidesaguideforpolicyandbusinessdecision-makerstodirectresourcestowardsaneffectiveenergytransition.1EachIPFcoversasingleinventionandincludespatentapplicationsfiledandpublishedatseveralpatentoffices.Itisareliableproxyforinventiveactivitybecauseitprovidesadegreeofcontrolforpatentqualitybyonlyrepresentinginventionsforwhichtheinventorconsidersthevaluesufficienttoseekprotectioninternationally.ThepatenttrenddatapresentedinthisreportrefertonumbersofIPFs.10BacktocontentsAfterarapidriseintheperiodto2013,patentingactivityinLCEtechnologiesslumpedbetween2014and2016.However,thelatestdatashowthreeyearsofgrowthinLCE,whichisaparticularlyencouragingtrendwhencontrastedwiththesimultaneousdeclineofpatentinginfossilenergy–afour-yeardeclinethatisunprecedentedsincethesecondWorldWar.Thenewdriversarenotinenergysupplytechnologies,butrathercontinuedinnovationinend-usesectorsandrisinginnovationincross-cuttingtechnologiessuchasbatteriesandhydrogen.Overall,thecurrentgrowthrateremainsbelowthatwitnessedbefore2013,andanaccelerationinactivitywouldbeneededtomakeupforthelostyears.Highlight1:From2000to2019,patentingactivitieshavebeenincreasingfasterinlow-carbonenergy(LCE)technologiesthaninfossilfueltechnologies.Afterasignificantdropin2015,thenumberofinternationalpatentfamilies(IPFs)inLCEareashasresumedgrowthsince2017,whilefossilfuelinnovationstartedtodecline.However,theaverageannualgrowthrateofLCEpatentsinrecentyears(3.3%since2017)hasbeenconsiderablylowerthanthe12.5%averagegrowthintheperiod2000-2013.FigureE1GlobalgrowthofIPFsinlow-carbonenergytechnologiesversusalltechnologies,2000-2019(base100in2000)450%400%350%300%250%200%150%100%50%0%20002001200220032004200520062007200820092010201120122013201420152016201720182019Low-carbonenergyFossilfuelsAlltechnologiesSource:EuropeanPatentOffice11BacktocontentsHighlight2:Highactivityinfuel-switchingandenergyefficiencytechnologiesinend-usesectorshasdrivensteadyLCEpatentingsince2012.Theseareasrepresentastable60%ofallLCEpatentsoverthepastfiveyears,reflectingthemassivechallengeofreininginenergydemandacrosstheeconomy.Despitedrawingattention,renewables(likewind,solar,geothermalorhydroelectricpower)andotherLCEsupplytechnologiesrepresentedonly17%ofallLCEIPFsin2019.Patentinginthesefieldshasbeenfallingsince2012,incontrastwiththefastgrowthobservedinthepreviousdecade.ThekeydriverofLCEgrowthsince2017hasinsteadbeeninnovationincross-cuttingtechnologiessuchasbatteries,hydrogenandsmartgrids,aswellascarbon-capture,utilisationandstorage(CCUS),thatserveaskeyenablersoftheenergytransition.Theshareofthesetechnologiesincreasedfrom27%ofallLCEIPFsin2000to34%in2019.250002000015000100005000020002001200220032004200520062007200820092010201120122013201420152016201720182019End-useEnergysupplyEnablingSource:EuropeanPatentOfficeFigureE2GlobalgrowthofIPFsincleanenergysupply,enablingandend-usetechnologies,2000-20191999511381552812BacktocontentsHighlight3:Cross-cuttingtechnologiesareplayinganincreasinglyimportantroleasenablersforotherLCEtechnologies.Thesearehelpingtheenergysystemtobecomemoreflexibleandexploitsynergiesbetweenrelatedsectors.Thisisillustratedbytheirincreasingoverlapwithpatentingactivitiesinenergysupplyandend-usetechnologies.Aselectricitysupplybecomesmorevariable,theflexibilityofthepowergridandend-usetechnologiesisgrowinginimportance,includingtheirabilitytocommunicatewithoneanother.Forexample,digitaltechnologiesthatcanadjustthepatternsofconsumerenergydemandtotakeadvantageofenergysupplieswhentheyarecheapestaresettobecomekeyelementsoftheoverallenergysystem.FigureE3OverlapsofpatentingactivityinLCEenablingtechnologieswithenergysupplyandend-usetechnologiesinvarioussectors,2000-2019.BatteriesEVConsumerproductsSolarPVBuildingEVSmartgridBuildingSolarPVWindICTOtherproductionCombustionCCUSChemical&oilOtherroadFuelfromwasteConsumerproductsBioenergyBuildingMetal&mineralsAgricultureOtherproductionHydrogenConsumerproductsEVChemical&oilBuildingSolarPVFuelfromwasteCombustionOtherproductionOtherroadToday,areaslikeelectricitystorageandsmartgridsarecreatingmarketvaluebysupportinghigherlevelsofvariablerenewablepowerwithoutcompromisingelectricitynetworkresilience.Infuture,innovationsthathelpcompaniesofferconsumerscontractsforthequalityoftheirheating,coolingandvehiclecharging–"energy-as-a-service"–whilealsogettingpaidbyenergysuppliersforthedemand-sideflexibilitytheycanguaranteewillfurtherexpandtheseoverlaps.Source:EuropeanPatentOffice13BacktocontentsElectricvehiclesaredrivingthedominanceofend-usetechnologiesinlow-carbonenergypatentingHighlight4:Amongtheend-usesectors,thefastdevelopmentofelectricvehicles(EVs)andassociatedinfrastructurehasbeenthemostpowerfuldriverofinnovationinLCEtechnologiesoverthepastdecade.Thisisvisiblebothinend-usetechnologies,wherethenumberofIPFsinelectricvehiclesovertookothercleanenergytechnologiesforroadvehicles2asof2011,andinthefastriseofinnovationinbatteriesasenablingtechnologies.Inaddition,therearesignificantpatentingactivitiesinthe"hard-to-abate"sectors(e.g.metals),withinnovationinbothenergyefficiencyanddirectabatement(CCUS).2Includingtechnologiesaimedatmoreefficientcombustionengines,aswellasimprovedaerodynamics,weightreduction,ormoreenergy-efficientcomponentsandsubsystems.FigureE4GlobalgrowthofIPFsinelectricvehiclesversusotherLCEtechnologiesforroadtransportation,2000-2019500045004000350030002500200015001000500020002001200220032004200520062007200820092010201120122013201420152016201720182019Road/electricRoad/otherLCESource:EuropeanPatentOffice4579300014BacktocontentsHighlight5:Thelistofthetop15applicantsinLCEtechnologiesprovidesastrikingillustrationoftheexpectationsforcontinuedgrowthinEVdeploymentandthecommercialpressurethatisdrivingmajormanufacturerstocompeteforapositioninthischanginglandscapefortransport.Therankingincludessixautomotivecompanies(Toyota,GM,Ford,Honda,VW,Hyundai)andsixoftheirmainbatterysuppliers(Samsung,Panasonic,LG,RobertBosch,Hitachi,Toshiba).TheremainingthreetopapplicantsareGEandSiemens–twoconglomeratesdirectlyinvolvedintheenergysector–andUScompanyRaytheon,whichshowsastrongspecialisationinLCEforaviation.ToyotaMotor[JP]Samsung[KR]Panasonic[JP]GeneralElectric[US]LG[KR]RobertBosch[DE]Siemens[DE]Hitachi[JP]GeneralMotors[US]FordMotor[US]HondaMotor[JP]Volkswagen[DE]HyundaiMotor[KR]Toshiba[JP]RaytheonTechnologies[US]2000400060008000100001200014000[DE][JP][KR][US]Source:EuropeanPatentOffice131241202310073854879087470676454045222503348874081390537243724FigureE5Top15applicantsinLCEtechnologies,2000-201915BacktocontentsInnovationinenergysupplytechnologiessuchassolarPVhasshifteddownstreamasdeploymenthasrampedup,buthydrogen–cultivatedbyresearchinstitutions–isstillwaitingtohitthebigtimeHighlight6:Changesinpatentingactivityrevealhowinnovationshiftswhentechnologiespassthroughthekeyphasesoftheirdevelopment.Since2010,commercialsolarPVpaneltechnologieshavelargelyconsolidatedaroundacoupleofdominantdesignsforcrystallinesiliconcells.Inventiveactivityshiftedtooptimisingmanufacturingandscale-uptopushdownproductioncosts.Thisreducedtheabilityforotherdesignstoreachsufficientscaletocompeteanddecreasedtheincentivetoinventnewcelldesigns,asillustratedbythepatentdata.SolarpowertechnologiescontinuetoruletheroostamongLCEsupplytechnologies.However,twonotabletrendshaveemerged:amovetowardsothertypesofsolarPVdesignsandafocusontechnologiesformorecost-effectiveinstallationandoperation.Incelldesigns,therehasbeenamarkedshiftinpatentingfrominorganictoanewgenerationoforganicPVcells.Thisispavingthewaytoverylow-costmanufacturingandintegrationasanenergysourceintomanymoreapplications,includingwindows,wearablesandconnectedobjects.And,aspriceshavefallenforcellsandmodules,therehasbeenanincreaseinthevalueofcost-cuttingininstallationtechnologiessuchasmobilemountingandtechnologiesthatincreaseoutputsuchassmarttrackingtechnologies.ThishasledtoarapidgrowthinpatentingfortechnologiesthatraisetheperformanceandlocalvalueofsolarPVinstallations,especiallyinregionsthatdeploymostlyimportedsolarPVmodules.FigureE6EmergingtechnologiesinPVcellsandmountings,2015-201970%60%50%40%30%20%10%0%ShareoforganiccellsinPVcellsIPFsShareofmovablemountingsinPVmountingsIPFs2010-20142015-2019Source:EuropeanPatentOffice37%21%67%35%16BacktocontentsHighlight7:Despitewaningattentionbetween2010and2015andarecentsurgeininterestinhydrogen,relatedpatentingactivitieshaveremainedrelativelystable.Thisreflectssustainedresearchfundingthathasensuredasteadyflowofinventionandthelackofamarketforhydrogensupplyorusetogeneratesignificantcompetitionandscale-up.Japanclearlydominatesresearchinfuelcells,whileEuropeisinaleadingpositioninthedevelopmentoftechnologieswiththepotentialtosupplyandstorelow-carbonhydrogen,includingelectrolysers.Patentingactivitiesinhydrogensupplyandstoragehavebeenincreasingrapidlybetween2010and2019butremainbelowthoseforfuelcells.GermanyaloneaccountsfornearlyhalfofEurope'scontributioninIPFsrelatedtostorageandathirdinIPFsrelatedtolow-carbonhydrogensupply.FigureE7ShareofIPFsinfuelcellsandlow-carbonhydrogenproduction,2010-201940%35%30%25%20%15%10%5%0%EuropeUSJPKRCNElectrolysisforhydrogensupplyFuelcellsSource:EuropeanPatentOffice31.322.123.437.15.714.44.62.618.617.217BacktocontentsHighlight8:Overall,theshareofIPFsinLCEtechnologiesgeneratedbyresearchinstitutions(universitiesandpublicresearchorganisations)hasbeenincreasingoverthepasttwentyyears,from6.6%between2000and2009toabout8.5%between2010and2019.LCEend-usetechnologiesdominatepatentingactivityforLCEsasawhole,andresearchinstitutionsareespeciallyactiveinLCEsupplytechnologies(alternativefuels,nuclearenergyandsomerenewableenergies)andemergingenablingtechnologiessuchasCCUSandhydrogen.End-usetechnologiesshowalowershareofIPFsfromuniversitiesandpublicresearchorganisations,withthenotableexceptionofchemicalandrefining.FigureE8ShareofIPFsoriginatingfromuniversitiesandPROsinLCEtechnologyfields,2000-201920%15%10%5%0%2000-20092010-2019Source:EuropeanPatentOfficeNotes:AMR=Aerospace,maritime,railAllLCEBioenergyNuclearFuelfromwasteSolarPVGeothermalOceanSolarthermalCombustionHydroWindCCUSHydrogenOthergridandstorageBatteriesSmartgridChemicalandoilrefiningProductionotherMetalandmineralsBuildingComputinganddataTransportAMRTransportother18BacktocontentsJapanisaworldleaderinbatteriesandhydrogen,whichtranslatesintoanadvantageinEVs.Aswellasastrongspecialisationinfossilfueltechnologies,theUSshowsatechnologyadvantageinlow-carboncombustion(alternativefuels,efficientcombustion,nuclearaswellasCCUS)andrelatedend-usesectorssuchasaviation.R.Korea(10%ofallIPFs)andP.R.China(8%ofallIPFs)remainmodestinnovationcentresinLCEtechnologiesbutshowedasustainedincreaseinpatentingactivitiesinthepastdecade.Korea'smainstrengthslieinbatteries,solarPVtechnology,energyefficiencyinproductionandICT–thelatteralsobeingtrueforChina.CountriesarespecialisingnationallyandcollaboratinginternationallytofosterlocaltechnologyadvantagesHighlight9:Since2000,EuropehasconsistentlyledpatentingactivitiesinLCE,andgenerated28%ofallIPFsintheperiod2010-2019(with11.6%forGermanyalone).Itranksfirstinmostrenewableenergyfieldsandperformswellinsomeend-usesectorssuchasrailways.With25%ofallIPFssince2010,JapanremainedcloselybehindEuropeduringtheperiodofanalysis,followedatsomedistancebytheUSinthirdposition(with20%ofallIPFs).FigureE9Mainrevealedtechnologyadvantagesofglobalinnovationcentres2.521.510.50WindRailwaysSolarthermalOceanBatteriesEVHydrogenOtherroadvehiclesAviationBioenergyCCUSNuclearBatteriesCon-sumerproductsSolarPVICTICTRailwaysEuropeJapanUSR.KoreaP.R.ChinaSource:EuropeanPatentOfficeNotes:Therevealedtechnologyadvantage(RTA)indexindicatesacountry’sspecialisationintermsofLCEtechnologyinnovationrelativetoitsoverallinnovationcapacity.Itisdefinedasacountry’sshareofIPFsinaparticularfieldoftechnologydividedbythecountry’sshareofIPFsinallfieldsoftechnology.AnRTAaboveonereflectsacountry’sspecialisationinagiventechnology.OnlythehighestRTAs(approximately1.5ormore)arereportedinthechart.2.071.721.691.671.711.671.491.362.381.791.501.442.222.021.781.531.811.3619BacktocontentsHighlight10:InternationalcollaborationforthedevelopmentofLCEtechnologiesprovidesabasistofurtheraccelerateR&Deffortsbyfosteringinternationalknowledgediffusion.CollaborationnetworkstypicallyinvolvetheUSandEuropeancountries.TheUSinparticularplaysamajorroleintheorganisationandtechnologicalorientationofthosenetworks.Theyshowatechnologyadvantageinsevenofthetenmostcollaborativefieldsandareapartnerinnearlyallofthemainbilateralcollaborations,withrailwaysbeinganoticeableexception.FigureE10Top10fieldsforshareofIPFsstemmingfrominternationalcollaboration(withtop5pairsofcollaboratingcountrieshighlightedineachfield),2000-2019.12%10%8%6%4%2%0%AgricultureMetalandmineralsprocessingFuelfromwasteRailwaysICTWindCombustionChemicalandoilrefiningBioenergyCCUSOtherCA-USDE-USUK-USIN-USFR-USNL-USDK-USIL-USCN-USBE-USCH-DEAT-DEDK-UKDE-RUDE-DKUK-JPCN-DECH-FRSource:EuropeanPatentOffice47.15.686.856.796.030.380.390.350.520.451.370.950.320.420.320.520.440.490.616.987.497.789.269.5010.170.780.611.070.380.680.420.580.590.590.370.560.500.660.330.440.460.560.710.410.470.740.840.770.350.280.250.190.210.200.260.200.270.260.320.320.790.3620BacktocontentsAbroadlypromisingpictureofglobalLCEinnovation,withmuchworkstilltodoTheevidenceispromising.Inventiveactivityhasincreasedinsomeareassuchasbatteriesandsmartgridsgivingusgreaterconfidencethattheycanenablecleanenergytransitions.Inaddition,end-usetechnologiesoccupyadominantpositioninLCEinventiveactivity,reflectingthebiggerroletheywillneedtoplayinthefutureenergysystem.Inaddition,thesourcesofLCEinventionhavebecomebroader.Meanwhile,thereisanincreaseininstitutionalandinternationalresearchcollaborationinfieldscentraltothecleanenergytransition(CET).Thesereportedtrendsareexpectedtounderpinfuturetrendsandinformsuccessfulcleanenergypolicies.Partofenergyinnovationstilldependsoncapital-intensivelarge-scaletechnologies.However,thebroadeningofthescopeofenergyinnovationandtheentryofnewparticipantsisinlinewiththeexpansivenatureofthecleanenergychallenge.Thisisparticularlytrueofthestrongercompetitionbetweenawiderrangeofenergysourcesandoptionsforintegratingthemintoresilientsystems.Ifinnovatorscontinuetofocusontechnologiesthatcanbestandardised,modularandtailoredtoconsumerpreferences,costsofLCEtechnologieswillhopefullycontinuetofall.However,thecurrentstagnationincleanenergypatentingactivityshouldconcerngovernmentsandcitizensalike.Thereisnoguaranteethatambitiouslong-termclimatechangetargetswillre-energiseLCEtechnologyinnovationwithouttherightpoliciestobackthemup.ThethreatofCOVID-19toconstraininvestmentsinR&D,start-upsanddemonstrationprojectshasarrivedatpreciselythewrongtime.Addressingtheclimatechallenge,includingkeepingthepipelineofimprovedLCEtechnologiesflowing,requiresjoined-upgovernmentthinking.Whiletherolesofclimateandinnovationpoliciesareprimordial,otherpolicyleversplayanimportantroleinencouragingthedevelopmentanddiffusionofLCEtechnologies.AsthekindsoftechnologiesrequiredtobringabouttheCETbecomemoredeeplyentrenchedintheeconomy,well-designedcompetition,consumer,tradeandinvestmentpolicieswillcomplementenvironmentalandinnovationpolicies.1.Introduction22BacktocontentsThefastestenergy-relatedexamplesinrecentdecadesincludeconsumerproductssuchasLEDsandlithium-ionbatteries,whichtooktento30yearstogofromthefirstprototypetothemassmarket.Theseexamplesmustprovidethebenchmarksforbuildingthearrayofenergytechnologiestoreachnet-zeroemissions.AccordingtoIEAscenarios,meetingnet-zeroemissionsby2050wouldrequirerobustmarketdeploymentrightafterthecompletionofonlyonesinglecommercial-scaledemonstration,whichisnotcommonpractice.1.IntroductionTheclimatechallengeislargelyanenergychallenge,withthree-quartersofglobalgreenhousegasemissionsarisingfromenergysupplyanduse.Inthelastyear,manyoftheplanet'slargesteconomiesandcompanieshaveannouncedthattheyaimtobringdowntheiremissionstonetzerobythemiddleofthiscentury,orsoonthereafter.Net-zeropledgesfromcountriesrepresentmorethanhalfoftheglobaleconomyandaroundhalfoftheCO2emissionsfromfossilfueluse.Thishasfocusedattentiononaplannednear-totaltransformationoftheenergysysteminaslittleasthreedecades.However,analysisfromtheIEAshowsthattheenergysectorwillonlyreachnet-zeroemissionsifthereisasignificantandconcertedglobalpushtoaccelerateinnovation(IEA,2020a).Technologiesstillcurrentlyattheprototypeordemonstrationphaserepresentaround35%ofthecumulativeCO2emissionsreductionsneededtoshifttoasustainablepathconsistentwithnet-zeroemissionsby2070.Fortoday'searly-stagetechnologiestodominatetheirsectorsbymid-century,wewouldrequiremorerapidinnovationcyclesthaninrecentenergytechnologyhistory.Figure1.1GlobalenergysectorCO2emissionsreductionsbycurrenttechnologyreadinesscategoryintheIEASustainableDevelopmentScenariorelativetotheStatedPoliciesScenarioGtCO2/yr0-5-10-15-20-25-30-35201920302040205020602070Notes:theIEASustainableDevelopmentScenariomapsoutawaytomeetthekeyenergy-relatedgoalsoftheUnitedNationsSustainableDevelopmentAgenda,includingbymitigatingclimatechangeinlinewiththeParisAgreement.ThetrajectoryforemissionsintheSustainableDevelopmentScenarioisconsistentwithreachingglobal"net-zero"CO2emissionsbyaround2070.TheStatedPoliciesScenarioassessestheevolutionoftheglobalenergysystemontheassumptionthatgovernmentpoliciesthathavealreadybeenadoptedorannouncedwithrespecttoenergyandtheenvironment,includingcommitmentsmadeinthenationallydeterminedcontributionsundertheParisAgreement,areimplemented.Percentagesrefertocumulativeemissionsreductionsby2070betweentheSustainableDevelopmentScenarioandtheStatedPoliciesScenarioenabledbytechnologiesatagivenlevelofmaturity.Source:IEA2020a:ETPSpecialReportonCleanEnergyInnovationMature(25%)Earlyadoption(41%)Demonstration(17%)Prototype(17%)EmissionstodayNet-zeroemissions23BacktocontentsCOVID-19pandemic(IEA,2020b).Inaddition,concernsaboutthedemandsfuturecleanenergytechnologiesmightplaceuponcriticalmineralsupplieshaveassumedstrategicglobalimportance.Patentdatacanhelpinformgovernmentsabouttheircomparativeadvantageatdifferentstagesofatechnology'svaluechainandshedlightoninnovativecompaniesandinstitutionsthatmaybeinapositiontocontributetoeconomicrecoveryandlong-termsustainablegrowth.Thedatapresentedinthisreportshowtrendsinhigh-valueinventionsforwhichpatentshavebeenfiledinmorethanoneoffice.3Patentinformationprovidesrobuststatisticalevidenceoftechnicalprogress.Companiesandinventorsmakeuseofthetemporaryexclusivityconferredbypatentrightstomarkettheirinnovationsandrecouptheirresearchanddevelopment(R&D)investments.ThedatahighlighttheLCEfieldsthataregatheringmomentumandthecross-fertilisationtakingplace.Inthisway,italsoprovidesaguideforpolicyandbusinessdecision-makerstodirectresourcestowardsvaluecreationinenergytransition.3EachIPFcoversasingleinventionandincludespatentapplicationsfiledandpublishedatseveralpatentoffices.Itisareliableproxyforinventiveactivitybecauseitprovidesadegreeofcontrolforpatentqualitybyonlyrepresentinginventionsforwhichtheinventorconsidersthevaluesufficienttoseekprotectioninternationally.ThepatenttrenddatapresentedinthisreportrefertonumbersofIPFs.SeeAnnex3forfurtherexplanationsonthemethodology.1.1AimofthestudyAimedatdecision-makersinboththeprivateandpublicsectors,thisreportisauniquesourceofintelligenceontheinnovationtrendsacrosstheenergysystem,inparticularlow-carbonenergy(LCE)technologies.ItdrawsonthelatestinformationavailableinpatentdocumentsandthecombinedexpertiseofIEAanalystsandEPOexaminers.Itisbasedonanupdatedinternationalclassificationoflow-carboninnovationthatprovidesawidelyusedstandardforconsistentandrobustanalysisofpatentsfortechnologiescontributingtoclimatechangemitigation(Box1).TrendsinLCEinnovationhaveneverbeenmoreimportanttopolicymaking.Notonlydoclimatechangegoalsdemandurgentandinformedstrategicdecisionsaboutinnovation,butinvestmentinnewtechnologyfieldshastakencentrestageinproposedrecoveryplanstocombattheimpactsoftheBOX1Asoneoftheworld'smainprovidersofpatentinformation,theEPOisuniquelyplacedtoobservetheearlyemergenceofLCEtechnologiesandtotrackanddocumenttheirdevelopment.ThestudybuildsontheEPO'sdedicatedclassificationschemeforclimatemitigationtechnologies.Theschemeconsistsofmorethan3milliondocumentsand372cross-sectionalclassesthathavebeendesignedtocoverareasrelatedtospecificcleanenergytechnologies(Y02E),smartgrids(Y04S),carboncaptureandstorage(Y02C),andenergy-efficienttechnologiesinend-usesectorssuchastransportation(Y02T),building(Y02B)orindustrialproduction(Y02P).TheY02/Y04SschemeisanintegralpartoftheCooperativePatentClassificationandfreelyavailableintheEPO'spatentinformationproductssuchasEspacenet,theGlobalPatentIndexorthePATSTATdatabase.Thefirstversionofthescheme(Veefkindetal.,2012),developedintheearly2010s,hasbecometheglobalbenchmarkforempiricalstudiesrelatedtoinnovationinclimatechangemitigation,withhundredsofarticlespublishedinpeer-reviewedjournals.Thisstudypresentsdatabasedonanewversionofthescheme.ItdrawsuponthecombinedexpertiseoftheIEAandtheEPOtoexploitthisdatatotracktechnicalprogressinLCEtechnologies.Italsointroducesanewfossilfueltechnologypatenttaggingscheme,whichisusedasacounterfactualbenchmarkinthisreport.Inthecontextofcleanenergytransitions,anychangeintherateofinventioninLCEtechnologiesshouldbeassessedrelativetotrendsinotherenergytechnologies.Tothisend,theEPOandtheIEAhavecollaboratedtodevelopasystematicsearchstrategyforanalysingpatentingforfossilfueltechnologies.Thescopeofthesearchstrategyincludestechnologicaldevelopmentshavetheeffectofreducingthecostsorimprovingtheattractivenessofusingfossilfuels.Itcoversthesupply,transformationanddistributionoffossilfuelsandfossilfuel-basedenergyproducts.TechnologiesthataredesignedtoreducegreenhousegasemissionsfromfossilfueluseareincludedamongtheLCEend-usetechnologies,includinge.g.,efficiencyimprovementsofinternalcombustionengines.Throughoutthereport,focustechnologyareas–suchassolarPV,hydrogen,EVsorindustrialprocesses–arehighlightedtoillustratedetailbehindthehigh-leveltrends.Giventhisreport'sfocusontheaggregateinsightsfromtheY02classes,ithasnotbeenpossibletopresentallofthefascinatingtechnologystoriesrevealedbythisanalysis,buttheauthorsplantoexploremanymoreoftheminfuture.TrackingLCEtechnologiesinpatentdata24BacktocontentsAbouttheEuropeanPatentOfficeTheEuropeanPatentOfficewascreatedin1977.AstheexecutivearmoftheEuropeanPatentOrganisation,itisresponsibleforexaminingEuropeanpatentapplicationsandgrantingEuropeanpatents,whichcanbevalidatedinupto44countriesinEuropeandbeyond.AsthepatentofficeforEurope,theEPOiscommittedtosupportinginnovation,competitivenessandeconomicgrowthacrossEuropebydeliveringhigh-qualityproductsandservicesandplayingaleadingroleininternationalco-operationonpatentmatters.TheEPOisalsooneoftheworld'smainprovidersofpatentinformation.Assuchitisuniquelyplacedtoobservetheearlyemergenceoftechnologiesandtofollowtheirdevelopmentovertime.Theanalysespresentedinthisstudyarearesultofthismonitoring.1.2StructureofthereportChapter2outlinesthetechnologyroadmaptowardsadecarbonisedenergyandthewayinwhichpatentdatacanbemappedtoLCEtechnologies.ThemaintrendsinLCEpatentinginthethreecategoriesof(i)energysupply,(ii)enablingtechnologies,and(iii)end-usetechnologiesarepresentedinchapter3.Thischapterhighlightsthecriticalroleofenablingtechnologiesinconnectingdiversecleanenergysolutions.Chapter4examinesinmoredetailthenatureoftheapplicants,andchapter5highlightsthemaininnovationtrendsbygeography,revealingtheevolvingtechnologicalstrengthsandadvantagesofdifferentregions.AbouttheInternationalEnergyAgencyTheInternationalEnergyAgencyprovidesauthoritativedata,analysisandrecommendationsacrossallfuelsandalltechnologies,andhelpsgovernmentsdeveloppoliciesforasecureandsustainablefutureforall.TheIEAwascreatedin1974andexaminesthefullspectrumofissues,includingenergysecurity,cleanenergytransitionsandenergyefficiency.Itisagloballeaderinunderstandingpathwaystomeetingclimategoals,reducingairpollutionandachievinguniversalenergyaccess,inlinewiththeUnitedNationsSustainableDevelopmentGoals.ItsworkonenergytechnologyinnovationspansthecollectionofnationaldataonpublicenergyR&Dbudgets,regulartechnologytrendanalysisandpolicyguidanceforgovernments.TheIEAfamilyofcountriesaccountsfor75%ofglobalenergyconsumptionandincludes30membercountriesandeightassociationcountries–Brazil,P.R.China,India,Indonesia,Morocco,Singapore,SouthAfricaandThailand.2.Technologyroadmaptoadecarbonisedeconomy26Backtocontents2.TechnologyroadmaptoadecarbonisedeconomySincetheturnofthecentury,patentingactivitieshavebeengrowingfasterinlow-carbonenergy(LCE)technologiesthaninfossilfueltechnologies.Thegapfurtherwidenedafter2015duetoadeclineininnovationinfossilfuelsupply,includingprocessinganddistribution.However,policymakersaroundtheworldshouldbeconcernedthattherapidgrowthinLCEpatentingbetween2000and2013hasnotbeensustained.Afterasignificantdropin2015,theaverageannualgrowthrateofLCEpatentssince2017hasbeenonly3.3%,morethanthreetimeslowerthantheimpressive12.5%averagegrowthsustainedbyLCEinnovationbetween2000and2013(Figure2.1).Aboostininventiveactivityisneededtoacceleratetheavailability,diversityandcostdeclinesofthesetechnologies.2.1Beyondtheheadlinetrend:capturingthediversedynamicsofenergyinnovationinthedataThelandscapeofLCEtechnologiesisdiverseandpolicyinsightsderivefromamoregranularanalysisoftheunderlyingtrends.Thisstudygroupsaselectionofthepatentclassesrelatedtolow-carbonenergytoshedlightonsomeofthemostpertinentdistinctionsbetweentechnologies.Thereisanotabledistinctionbetweenthosetechnologiesthatgenerateandsupplylow-carbonenergyandthosethatfacilitatemoreefficientuseofenergyinend-useapplicationsormoreuseoflow-carbonelectricityinenergyenduses,includingtransport.AthirdcategoryofLCEtechnologies,whichcutacrosssupplyandenduseorenhanceinfrastructuretoaccommodatehigherlevelsofcleanenergy,isclassifiedseparately(Table2.1).DetailsofthemethodologyusedtoidentifyrelevantpatentapplicationsandmapthemtothecartographyfieldscanbefoundinAnnex1.Eachofthecategoriesshownisfurthersubdividedtoensurethatthecartographyiscomprehensiveandtoenableananalysisatthemostgranularlevelpossible.AglobalperspectiveontherespectiveimpactofthesetechnologiesonCO2emissionmitigationisprovidedinBox2.Figure2.1GlobalgrowthofIPFsinlow-carbonenergytechnologiesversusalltechnologies,2000-2019450%400%350%300%250%200%150%100%50%0%20002001200220032004200520062007200820092010201120122013201420152016201720182019Low-carbonenergyFossilfuelsAlltechnologiesSource:EuropeanPatentOffice27BacktocontentsGroupingTechnologyareaExamplesofinnovationprioritiestomaximisetechnologypotentialandtheircurrentTRLlevelEnergysupplytechnologiesWindFloatingoffshorewind(TRL8)SolarSolarPVConcentratedPV(TRL9)Organicprintablethin-filmPV(TRL6)SolarthermalLinearFresnelreflectors(TRL7)OthersolarMassproductionofsolarthermalheating(TRL9)OtherrenewablesGeothermalenergyKalinacyclelowtemperaturegeothermal(TRL6)HydroFurtherstandardisationandenvironmentalprotection(TRL9)OceanpowerOceanthermalenergyconversion(TRL4)Waveenergyconverters(TRL4)Salinitygradient(TRL3)Fuelofnon-fossiloriginBioenergyLignocellulosicethanolviaenzymaticfermentation(TRL8)FuelfromwasteWastegasificationandsyngasfermentation(TRL7)OtherLiquidfuelsfromhydrogenandCO2(TRL6)CombustiontechnologieswithmitigationpotentialWasteheatrecoverysystemsusingphasechangematerials(TRL8)IntegratedgasificationcombinedcycletoenableCO2capture(TRL7)Energygenerationofnuclearorigin(electricity)Lightwaterreactor-basedsmallmodularreactor(TRL6)Fusion(TRL3)EnablingtechnologiesCCUSCO2storageinasalineformation(TRL9)Directaircapture(TRL6)BatteriesRedoxflow(TRL8)Solidstatelithiummetalbatteryforvehicles(TRL5)HydrogenandfuelcellsSaltcavernhydrogenstorage(TRL9)Polymerelectrolytemembrane(TRL8)Solidoxideelectrolysercell(TRL7)OtherCompressedairenergystorage(TRL8)Virtualinertiaforfastfrequencyresponse(TRL6)SmartgridsSmartinverter(TRL8)Transactiveenergy(TRL4)Gamificationofdemandresponse(TRL8)Level4+automatedandconnectedvehicles(TRL6)End-usetechnologiesBuildingsOrganicandpolymerLED(TRL9)Highlyinsulatingwindow(TRL8)Directcurrentbuilding,directcurrentmicrogridsystem(TRL7)Waterheatingheatpump(TRL7)Production/chemicalandoilrefiningBTXfrommethanolorlignin(TRL6)Oxyfluidcatalyticcracking(TRL5)Steamcrackerelectrification(TRL3)Production/metalandmineralsprocessingCCUSonDRIsteelproduction(TRL9)DRIsteelbasedon100%hydrogen(TRL5)CementkilnoxyfuellingwithCCUS(TRL6)Production/otherAgricultureElectromagneticheatingforlarge-scaleindustrialprocesses(TRL5)Foldingshearing(TRL3)ConsumerproductsOtherproductionTransportation/electricvehiclesandEVinfrastructureEVandinfrastructureElectricheavy-dutytrucks(TRL9)Conductiveelectricroadsystems(TRL8)FuelcellsforroadvehiclesFuelcelltruck(TRL7)Low-platinumintensityPEMfuelcell(TRL7)Transportation/otherroadtechnologies(Bio)gasinternalcombustionenginevehicles(TRL9)OthertransportationAviationUltra-highbypassratioengine(TRL9)Electrictaxiing(TRL6)Batteryandhydrogenplanes(TRL4)MaritimeandwaterwaysRotorsailorkite(TRL9)Batteryelectricship(TRL8)Solidoxideammoniafuelcellship(TRL4)RailwaysHydrogenfuelcelltrain(TRL8)Gashybridtrain(TRL7)ComputingandcommunicationPowerefficientCPUsandGPUsNotes:colourcodingindicatesthestatusofthetechnologyareasincomparisonwiththedeploymentlevelsintheSustainableDevelopmentScenarioandasassessedintheIEA's2020TrackingCleanEnergyProgressreport(IEA,2020c).Greenindicates"ontrack".Orangeindicates"moreeffortsneeded".Redindicates"notontrack".TheexamplesofinnovationprioritiesarefromtheIEAETPCleanTechnologyGuide,whichcontainsexplanationsoftechnologyreadinesslevels(TRL)asanindicatoroftechnologymaturity(IEA,2020d).ThehighestachievedTRLisshownforagiventechnology,whichmaynotcorrespondtoitscompetitivenessinthemarketplaceortotheTRLlevelofthemostpromisingdesignofthattechnologytoday.Table2.1Overviewofthecartographyandhowitmapstokeytechnologygaps28BacktocontentsBOX2IEAscenariosrevealthescaleofthechallengeTheIEAWorldEnergyOutlookandEnergyTechnologyPerspectivesscenariosprojecthowtheglobalenergysystemmightevolveoverthecomingdecades.TheSustainableDevelopmentScenario(SDS)setsoutanambitiousandpragmaticvisionofhowtheglobalenergysectorcanevolveinordertoachievethecriticalenergy-relatedsustainabledevelopmentgoals(SDGs):achievinguniversalaccesstoenergy(SDG7),reducingseverehealthimpactscausedbyairpollution(partofSDG3)andtacklingclimatechange(SDG13).TheIEAstartsbylookingattheSDGtargetandthenworksbackwardstosetoutwhatisneededtodeliverthesegoalsinarealisticandcost-effectiveway.TheSDSincorporatesthemostambitiousclimateob-jectivesandtargetsbeingconsideredbygovernmentsaroundtheworldandreliesontheirfullimplementation,alongsiderapidandwholesalechangesinallotherpartsoftheenergysystem.Asaresult,manyoftheadvancedeconomieswillreachnet-zeroemissionsby2050,orear-lierinsomecases,andglobalemissionsareoncoursetoreachnetzeroby2070.Thisputstheworldfirmlyontracktolimitthetemperaturerisetowellbelow2°C.Itlimitsthetemperatureriseto1.5°Cin2100ontheassumptionthatnegativeemissionstechnologiesaredeployedinthesecondhalfofthecentury(atlevelstowardsthelowerendoftherangeseeninscenariosassessedbytheIntergovernmentalPanelonClimateChange).WerequireawidearrayoftechnologicalchangesaswellaschangesininvestmentpatternsandotherbehaviourstoshifttheworldtotheSDSfromthetrajectoryitwouldfollowunderexistinggovernmentpoliciestoday.Thischallengehasthreemaincomponents.Firstly,newdemandforenergyservices,especiallyinemerginganddevelopingeconomies,mustbemetinasustainableway.Secondly,existingassetsattheendsoftheirlivesmustbereplacedinthemostenergy-efficientorlow-carbonmanner.Finally,insomecases,expectedfutureemissionsfromrecentlyinstalledassetsmustbereducedbycapturingtheemissions,orusingthemless.Thescaleofthelatterisoftenlittleappreciated–CO2emissionsfromthecontinueduseofexistingenergyinfrastructureandpowerplantsunderconstructionwouldontheirownleadtoaglobalaveragetemperatureriseofaround1.65°Cby2070(Figure2.2).Toreachnet-zeroemissionsby2050,manyoftheseplantswouldneedtoberetrofitted,closedoroperatedfarless.AgainstthebackdropoftheSDS,theIEAtrackstheoverallprogressmadeindevelopinganddeployingLCEtechnologiesinitsannualTrackingCleanEnergyProgressreport,aswellasthepolicyframeworkconditionssurroundingallkeytechnologiesneededtoachievetheenergytransition.TheIEAiscurrentlydevelopingaglobalroadmapfortheenergysectortoreachnet-zeroemissionsby2050,tobepublishedinmid-2021.Figure2.2HistoricalandprojectedCO2emissionsfromexistingenergyinfrastructureandemissionspathwaysinIEAclimatechangemitigationscenariosGtCO2/yr302010020102020e20302040205020602070Source:WorldEnergyOutlook2020,IEA2020eHistoricalSDSExistingenergyinfrastructureandpowerplantsunderconstructionPathwayfornet-zeroCO2emissionsin205029Backtocontents2.2Therisingimportanceofend-useandenablingtechnologiesforcleanenergyAsindicatedinFigure2.3,mostofthepatentingactivityforLCEtechnologiesisrelatedtoend-usetechnologies,andnotthesupplyoflow-carbonenergy.In2019,end-usetechnologiesrepresentedmorethan60%ofLCEtechnologypatenting.Whilepatentingintheareaoflow-carbonenergysupplyhasdeclinedto17%since2013,patentinginend-usetechnologieshasremainedrelativelystable.Atthesametime,therehasbeenariseinpatentinginenablingtechnologyareassuchaselectricitystorageandsmartgrids,whichnowhaveclearmarketvaluefortheresilientoperationofelectricitynetworkswithhigherlevelsofvariablerenewablepower.Patentingactivityforenablingtechnologieshasrisenfrom27%ofallLCEIPFsin2000to34%in2019.Aselectricitysupplybecomesmorevariable,theflexibilityofthepowergridandend-usetechnologies,includingtheirabilitytocommunicatewithoneanother,isgrowinginimportance.Forexample,asendusesbecomemoreelectrified,digitaltechnologiesthatcanadjustthepatternsofconsumers'energydemandtotakeadvantageofenergysupplieswhentheyarecheapest(knownas"demand-sideresponse")willbecomekeyinmanagingtheoverallenergysystem.PatentinginLCEsupplytechnologiespeakedin2012,andhasrecentlybeendeclininginlinewithpatentinginfossilfuelsupply(chapter3).Meanwhile,patentingforend-useandenablingtechnologieshasmaintainedanoverallstabletrend.However,thereisstillaneedforinnovationinLCEsupplytechnologies,despitethemarketforcespropellingwindandsolarPVinallregions.Thedipseenintheperiodfrom2012needstobeanaberration.250002000015000100005000020002001200220032004200520062007200820092010201120122013201420152016201720182019End-useEnergysupplyEnablingSource:EuropeanPatentOfficeFigure2.3GlobalgrowthofIPFsinLCEsupply,enablingandend-usetechnologies,2000-20191999511381552830Backtocontents2.3End-useandenablingtechnologiesareacceleratingnewtypesofinnovationInnovationinenergytechnologiestransformedthetwentiethcentury,asgasturbines,nuclearpowerandelectricitynetworksrevolutionisedtheavailabilityofhigh-qualityenergy.Thepaceofchangeneededfortoday'senergytransitionsneedonlyreplicatethefastestspeedsoftechnologydevelopmentinrecenthistory.However,changesinthecharacteristicsofenergytechnologieshaveintroducednewdynamicsinenergyinnovationthathelpexplainsomeofthepatentingtrendsoverthepasttwodecades.Thesechangeswillunderpinfuturetrendsandprovideinformationforsuccessfulcleanenergypolicies.Muchofpastenergyinnovationarosefromlargecompaniesthatbenefittedfromhighlevelsofmarketpower.Thesecompanies,mostlyinenergysupplysectorsbutalsoinindustryandtransportsectors,operatedsizeableresearchfacilitiesandcontrolledextensiveinfrastructureandmarketsfordeployingnewtechnologies.Thismodelwasoftenagoodfitwiththeeconomiesofscaleandprecisionengineeringinherentinnuclearenergy,fuelprocessingandcombustion.However,thescopeofenergyinnovationhasbroadenedoutwiththewidespreadintroductionofmoreenergysourcesandassociatedenergysystemchallenges.TwomainwaysinwhichmanyLCEtechnologiesdifferinclude:Economiesofscaleindifferentplacesinthevaluechain.Traditionalfuelpowerplantsandrefineriestypicallyhavelargeeconomiesofscaleinplant-levelcapitalandfuelcosts.Thebenefitsofbuildingarelativelysmallnumberoflargefacilitiesoftenoutweighsthebenefitsofhighlystandardiseddesignsandmassproductionofthemajorcomponents.Incontrast,LCEtechnologiesoftenhavelimitedeconomiesofscaleatplantlevel,butlargereconomiesofscaleinequipmentmanufacturingandnetworkeffects.Thisisprimarilyforthreereasons:–Efficiencydoesnotgenerallyincreasewiththesizeofphotoelectric,electrochemical,electricalordigitalunits.–Renewableenergyhasadiffuseresourcebase,andcostsarenotsignificantlylowerwhenwind,solar,bioenergyoroceanenergyplantsaregeographicallyconcentrated.–Plantsizeismorelikelytobelimitedbytheneedsandcapitalresourcesofconsumers,whoownahighershareofenergysupplyandenablingtechnologies,aswellascriticalend-usetechnologieswithamoreactiveroleincleanenergysystems.31BacktocontentsHigherpenetrationofvariablerenewableenergyandmoreuseofelectricityforenduses.Thisplacesmoreimportanceonthedemandprofileofend-usertechnologiesandincreasesthemarketvalueofflexibleenablingtechnologies.Forexample,innovationsthathelpchargingvehiclestobemoreresponsivetominute-by-minutechangesinexternalfactorsaremorevaluableinresilientsystems.Thesetwodifferences(newdynamicsofeconomiesofscaleandmorevalueforflexibility)havefundamentalimpactsoninnovation,relatingtotechnologysizes,users,ownersandproducers.Intermsofsize,thelowerincentivesforplantstoreachlargeeconomiesofscalefavourssmallerunits.Fuelcell,batteryandsolarPVunitsaredesignedforenergythroughputofupto0.1kWto100kW.Theyaredeployedatratesof100000tomorethan400millionunitsperyearworldwideintheIEASustainableDevelopmentScenario.Newnucleardesigns,CCUSandlow-carbonindustrialprocessesaresimilarinmanywaystothetypesoftechnologiesthathavedominatedenergysupplyoverthepastcentury(eachunitisdesignedfor50MWto2GWofenergythroughput)(Figure2.4).Forsmallerunitswithmanybuyers,newproductswithimprovedfeaturescanhitthemarketeveryfewyearsandtherecanberapidprogressionthroughmultiplegenerationsoftechnologyforeverygigawattorterawattofcapacityinstalled.ThishasbeenobservedintheearlydaysofsolarPVandthedeploymentoflithium-ionbatteries.Figure2.4Low-carbontechnologiesbyunitsizeandaverageannualinstallationsintheSustainableDevelopmentScenarioAverageunitsize(kW)10000001000001000010001001010.11100100001000000100000000AveragenumberofunitsinstalledperyearintheSDS(2018-2040)Source:WorldEnergyOutlook2019,IEA2019a.Notes:CCUS=carboncapture,utilisationandstorage;CSP=concentratingsolarpower;SMR=smallmodularreactor;EV=electricvehicles;OCGT=open-cyclegasturbine;PV=photovoltaics;SDS=SustainableDevelopmentScenario.Capacitiesrefertoratedmaximumenergyoutput.Fortechnologiesthatdonothaveoutputratedinenergyterms,energythroughputfortherelevanttechnologycomponentisused.CCUS-equippedsteelNuclear(large)Nuclear(SMR)WaterelectrolysersOCGTAdvancedbiorefineriesOffshorewindturbinesEVbatteriesVehiclefuelcellsHeatpumpsHomefuelcellsSolarPVCSP32BacktocontentsThereismoreopportunityforproductdifferentiation.Thisisbecausecitizensaremoreinvolvedasbuyersandownersofcriticalassetsincleanandresilientenergysystems.Manyimportantend-usertechnologiesareconsumergoodssuchasEVs,appliances,heatpumpsandevenenergyefficienthomes.Consumersoftheseproductsvaluemultipleattributes,notjustreliabilityandcost,andoftenpreferpersonalownershiptocommunalsolutions.Innovatorshavewidescopetodevelopsolutionsatdifferentpricepointstomeetconsumerwishes.Thiscanbeespeciallyusefulatmarketentryifthereareearlyadopterswillingtopayforthelow-carbonoption.Itcanalsodrivecompetitionbetweenmultiplesupplierswhocancompeteacrossnumerousdimensions,includingcost,design,comfort,convenience,sizeandspeed.Standardisation,modularityandmassproductionaremoreimportantforsmallerproductswithnofuelcosts.Forthesetechnologies,thebenefitsofeconomiesofscaleinmanufacturingcanoutweighanydisadvantagesbroughtbyalackoftailoredsolutionsforeachapplicationorsizeofproject.Competitiononthebasisofthecostofstandardisedproductsleadstomoreinventioninmanufacturingprocessesandcostreductionsthatcloselyfollowthelevelofcumulativeproduction–so-calledlearningrates(Figure2.5).Furthermore,ifatechnologycanimprovetheproductivityofmanyapplications,thentherearemoreopportunitiestoinnovate,improveanddominate(themostwidespreadexamplesarecalled"generalpurposetechnologies").ThishasalreadybeenseenwithsolarPV,batteriesandLEDs,anditisexpectedforelectrolysers,fuelcells,andevenmodularoptionsforcapturingCO2directlyfromtheair.Figure2.5Capitalcostsforselectedenergytechnologiesin2040relativeto2019-20%-40%-60%HeatpumpsEVsSolarPVGrid-scalebatteriesOffshorewindHydrogenelectrolysersSource:WorldEnergyOutlook2020,IEA2020eSTEPSSDS33BacktocontentsLessverticalcorporateintegrationalongthesupplychainislikelytobeamoreefficientmeansofprovidingenergyserviceswhenassetsaresmaller,distributedandconnected.Enablingtechnologies–includingsmartmeters,bidirectionalnetworksandvariableloadregulators–facilitatefurtherunbundlingofthedifferentelementsofenergyservices.Afarwidervarietyofentitiescancompetetoprovideservicesinseparatemarketsforpeakpowersupply,demandresponseandfrequencycontrol.Thisdisaggregationofthemarket,coupledwithtechnologiesthathavelowoperationalcosts,reducesbarrierstoentryforbusinesseswithnewtechnologies,therebyfosteringcompetitiveinnovation.Inaddition,lowerscopeforhorizontalmonopolybehaviourisexpectedinanenergysystemwithlowerplant-leveleconomiesofscale.Withlowerbarrierstoentryforsmallerassetownersorsocalledvirtualpowerplantswithnophysicalassetownership,theincentivesfortechnologicalinnovationarelikelytobehigher.Connectedend-usetechnologiesaswellasgeothermalenergy,onshorewindandmini-gridsystemsareexpectedtobenefit,andthereareemergingexamplesofinnovativewaystopairrenewableenergyprojectswithenergystorageorprovidepay-as-you-goenergytoremotelocations.Afurtherresultoflowerbarrierstomarketentryismoreinvolvementofventurecapitalinvestorsininnovativeenergy-relatedtechnologies,withhigherinvestorconfidencethatstart-upscanfollowinthefootstepsofTesla,NorthvoltandArrayTechnologies.In2020,cleanenergystart-upsinfieldssuchassmartgrids,electricvehiclesandend-useenergyefficiencywerethemostsuccessfulatattractinginvestment(IEA,2021).Thisdynamiccanprovideahigherincentivetopatent,aspatentingcanattractearly-stageequityinvestment(Hall,2019).However,thesedynamicsarenotrelevanttoallcleanenergytransitions.Severalmajorchallengesforemissionsreductionareexpectedtoneedlarge-scalesolutionswithplant-leveleconomiesofscale.Theseincludelargeprocesstechnologiesformaterialsproductionandthelargeenginesofshipsandaircraft.Inotherareas,suchasthehydrogeneconomy,convenientdrop-insolutionsforenduserscouldbeprovided,butrelyonsystem-widedevelopments,includinglargeinfrastructuredevelopments.Whileventurecapitalinvestorsshowincreasedconfidenceinthegrowthpotentialofcleanenergy,theyoftenfocusonincrementalimprovementstopartsoftheenergysystemalreadyintransition.Theseincludedigitaloptimisationtechnologies.Keylarge-scaletechnologiesforindustryandtransportaregenerallylessmatureandlikelytoneedmoregovernmentsupportatallstagesoftheinnovationprocess.Governmentpoliciesfornet-zeroemissionsneedtoincreasetheincentivesforinventorstotacklethesemoreuncertainandcostlychallenges.3.Maintechnologytrends35BacktocontentsHowever,between2015and2019,alltechnologiesrelatedtoLCEsupplyshowasimilardecreaseinpatentingactivities,afterexperiencingalongperiodofsustainedgrowthfrom2000tothebeginningofthe2010s(Figure3.1).Giventhatasimilardeclinecanbeobservedinthecaseoffossilfuelexplorationandextractiontechnologies,itispossiblethatinnovationdirectedtothesupplysideofenergyunderwentageneraldeclineinrecentyears.LCEsupplytechnologiesfarednobetter,despitepolicyactiontofavourthem,includingallocating80%ofpublicenergyR&Dfundingtolow-carbonenergy(IEA,2020f).3.MaintechnologytrendsUsingthecartographyofLCEtechnologiesdescribedinchapter2,weidentifiedatotalof421537IPFs,eachcorrespondingtoanLCEinventionpatentedintwoormorejurisdictionsorinaregionalpatentofficegloballybetween2000and2019.Thischapterlooksatthemaintrendsintheseinventionsoverthelasttwodecadesandacrossdifferenttechnologyfieldsandsectors.3.1TrendsinenergysupplytechnologiesLCEsupplytechnologiessupportingtheenergytransitionincluderenewableenergytechnologies(e.g.wind,solar,marine,hydroandgeothermalenergy),alternativefuels(e.g.biofuelsandfuelsfromwaste)aswellasnuclearenergyandefficientcombustiontechnologieswithpotentialtosaveGHGemissions.Amongthem,technologiesrelatedtosolarenergy–andinparticularsolarphotovoltaicenergy(Box2)–generatedbyfarthelargestvolumeofpatentingactivities(with46500IPFsbetween2000and2019),followedbythoserelatedtowindenergy(17000IPFs)4andalternativefuels(10000IPFs).Incomparison,otherrenewableenergies,nuclearandefficientcombustiontechnologiesshowrelativelylowlevelsofpatentingduringthesameperiod(respectively2000,5000and6600IPFsbetween2000and2019).4TheproportionofIPFsfocusedonoffshoreversusonshorewindenergyhasremainedstableoverthewholeperiodofanalysis,withapproximatelytwoIPFsrelatedtoonshorewindforeveryIPFrelatedtooffshorewind.However,giventheconsiderableoverlapbetweenthesetwoareas,onshorewindIPFslikelyincludemanydevelopmentsthatareapplicabletobothonshorewindandoffshorewind.Figure3.1GrowthofIPFsinenergysupplytechnologies,2000-201920000150001000050000SolarWindOtherrenewablesAlternativefuelsCombustionNuclear2000-20042005-20092010-20142015-2019Source:EuropeanPatentOffice2373723121483158469682773751459564651352263220177462517448927209311378266516479049731714172236BacktocontentsBOX3LatesttrendsinsolarPVtechnologies(2010-2019)Overthepastdecade,themarketforsolarPVhasexpandeddramatically,shiftingthefocusofinventiveactivity.Between2010and2020,annualglobalinstallationsofsolarPVrosemorethansix-fold,from17GWtoover100GWperyear,morethananyotherelectricitysource.Atthetime,annualinvestmentintheseinstallationswasrelativelyflat,reachingnearlyUSD140bnin2019beforethestartoftheCOVID-19pandemic,just13%higherthanin2010.Toachievethesetwotrendsinparallel,thesolarPVindustryrapidlyscaledupmassmanufacturingofcellspackedintomodulesthatcouldbeshippedworldwideinstandardisedformats.Intechnologyterms,therewasmarketconsolidationaroundtypesofcellsthatcouldcompeteinahighlycompetitivepriceenvironment.Inaddition,therewasintensiveefforttoinnovatenewmanufacturingprocessesthatcouldminimisewasteandshavecostsinalow-marginindustry.Alongsidetheseinnovations,therewereequallyimpressivecostreductionsin"balance-of-system"(BOS)coststhatincludeinverters,racking,mountingandinstallation.TheshareofBOScostsintotalcostsforutility-scalesolarPVhasbeenrelativelystableoverthepastdecade.Forexample,ithasremainedaround50%inItaly.SolarPVcellsarestillthemosttechnology-intensiveelementandcontinuedtogeneratethelargestproportionofsolarPVpatentingactivities(48%intheperiod2010-2019).However,theindustry'stransitiontoacutthroatmanufacturingbusinessmeanttherewerefewopportunitiesfornewentrantstogainafootholdagainstthemajorcrystallinesiliconmakers.Thiscausedadeclineininventionincrystallineandthin-filmcells,whichhadbeentusslingformarketleadership.Intheirplace,therehasbeenasteadyriseinpatentingactivityinanewcompetitorfield,namelyorganicPVcells.OrganiccellsareamorerecentgenerationofPVcells,basedonconductiveorganicpolymersorsmallorganicmolecules.Comparedwithsilicon-baseddevices,theyarelighter,moreflexibleandmorecustomisableonthemolecularlevel,andallowfornewapplicationsasanenergysourceonsupportssuchaswindows,wearablesandconnectedobjects.However,theyaresignificantlylessefficientthanothercellsonthemarketandnotyetfullycompetitive.JapanandKorealeadwithPVcells.ChinahasreplacedtheUS,whichspecialisesinnon-organicPVcells,inthedomainoforganiccells.14001200100080060040020002010201120122013201420152016201720182019OrganicPVcellsOtherPVcellsSource:EuropeanPatentOfficeFigure3.2IPFsinorganicPVcellsversusothertypesofPVcells,2010-2019104029937BacktocontentsTheincreasingrelianceonstandardisedmoduleimports,especiallyfromChina,meansthatmuchcompetition,andthereforeprofitability,hasbeenaroundBOScosts.PowerconversionsystemsandmountingsandtrackinghavebeendynamicBOSinnovations,whichhavehelpedtoreducethetotalcostsofpowergenerationfromsolarPV(Figure3.3).EuropeandtheUSareclearlydominantinmountingandtrackingtechnologies,whichareincreasinglyfocusedonsmart,flexibleapplicationsallowingforsolartracking.JapanandChinashowsomespecialisationinpowerconversionsystems,despitetrailingEuropeintermsofshareofglobalIPFsinthisfield.Concentratorphotovoltaics,aspecifictechnologyusinglensesorcurvedmirrorstofocussunlightontosolarcells,isnolongeramajorpriorityarea,aftergeneratingimportantpatentingactivitiesintheearly2010s.No.ofIPFs,2010-2019Growth2010-2019EPCshareUSshareJPshareKRshareCNsharePVcells,organic8052111%20.3%9.0%25.0%26.0%13.5%PVcells,other7908-54%17.3%20.8%31.0%16.7%4.1%Mountingortracking332611%33.9%25.0%11.3%8.3%9.7%Powerconversion331233%26.7%20.4%24.2%7.0%11.4%ConcentratorPVsystems3316-46%24.0%23.9%22.1%9.7%5.9%Note:thecolourcodesindicatetheRTA,calculatedwithrespecttoaregion'sshareinalltypesoftechnologies.Highlightedranges(fromlightesttodarkestblue)are:1-1.25;1.25-1.5;1.5-1.75;1.75-2;>2.Table3.1DistributionofglobalIPFsinPVtechnologybetweentheworldmainregions,2010-2019Figure3.3Innovationtrendsinmountingandtracking100%80%60%40%20%0%2020-20142015-2019MountingsadaptedforroofMountingsadaptedforbuildingMountingsfixedtothegroundMountingsadaptedformovablestructures31%36%21%35%30%22%12%13%38Backtocontents3.2Trendsinend-usetechnologiesTransportationshowsthehighestlevelofpatentingactivityamongthedifferenttypesofLCEtechnologiesinend-usesectors.Morethan40%oftheIPFsrelatedtoend-usetechnologiesfrom2000to2019,includingabout35%forroadtransportationalone.ToillustratetheimportanceofEVswithinroadtransport,EVIPFs(includingfuelcellsandelectricchargingtechnologies)havebeenseparatedfromothertechnologiesthatcouldreducethecarbonfootprintofcombustionengine-basedvehicles(Figure3.4).Bothcategoriesgeneratedrelativelysimilarlevelsofpatentingactivities(respectively47000and49000IPFs)andcontinuousgrowthbetween2000and2019.However,thenumberofIPFsinEVshasbeengrowingsignificantlyfaster.In2011,EVsovertookotherLCEtechnologiesforroadvehicles(Box5).Besidesroadtransport,therewereabout20000IPFsforaviation,rail,marineandinlandwaterwaytransportationbetween2000and2019.Patentingactivityforthisgroupgrewsteadilyatanannualrateof9%onaverage.Reducingtheemissionsandenergyintensityofindustrialproductionisanothermajorareaofinnovation,accountingfornearlyathird(30%)ofalltheIPFsrecordedinend-usetechnologiesbetween2000and2019.Heavyindustriessuchasthechemicalandoilsectorandmetalandmineralprocessinggeneratedrespectively24700and17200IPFsduringtheperiod.Innovationinmoreenergy-efficienttechnologiesformetalandmineralprocessinghasbeenparticularlydynamicinrecentyears,withanaverageannualgrowthrateofnearly12%from2010to2019.Incontrast,thenumberofnewIPFsrelatedtocleanenergyinthechemicalandoilprocessingsectorssignificantlydecreasedafter2015,despitesteadygrowthsince2000.Othersectorsofindustrialproductiongenerated44000IPFsrelatedtocleanenergybetween2000and2019,whichrepresents16%ofallIPFsinend-usetechnologiesduringthatperiod.Theyincludeinnovationintheproductionofconsumergoods,aswellascleantechnologiesforagriculture.Thelasttwocategoriesofend-usetechnologiesrelatetobuildings(includingefficientlighting,heating,air-conditioningandhomeappliances,aswellasconstruction)andinformationandcommunicationtechnologies(ICT).Energysavinginbuildingsisasignificantareaofinnovation,accountingfor17.7%ofIPFsrelatedtoend-usetechnologiesfrom2000to2019.However,afterasharpincreasefrom2000to2013,patentingactivitiesinthissectorhasdeclined,witha10%dropbetween2010-2014and2015-2019.CleanenergyIPFsintheICTsectorgrewatanimpressiveaverageannualrateof10%between2000and2019.Thisreflectstheacuteneedforenergysavingincomputingandcommunicationtechnologies,withthecontinualandrapidincreaseofdigitalcommunicationandbigdata.Figure3.4GrowthofIPFsinend-usetechnologies,2000-201920000150001000050000ElectricvehiclesOtherroadvehiclesOthertransportationChemicalandoilMetalandmineralprocessingOtherindustryBuildingICT2000-20042005-20092010-20142015-2019Source:EuropeanPatentOffice316668631687120502727710927144321605319223804607981134607584778376471236229114188770154639150144761484548729451175461669812884112092987611039Backtocontents3.3TrendsinenablingtechnologiesCross-cuttingtechnologiessuchasbatteries,hydrogen,smartgridsandCCUSaresettoplayapivotalroleinenergytransitions.Thesewillenablethedeploymentofcleanenergysourcesonthesupplyside,whilefacilitatingtheintegrationofthosesources(inparticularelectricityfromrenewables)inend-usesectors.Technicalprogressinenablingtechnologiesisthereforeapowerfuldriverofinnovationinenergysupplyandenduse,whichareincreasinglyintertwined.Indeed,uptoathirdoftheIPFsrelatedtoenablingtechnologiesproducedsince2010(representingmorethan10%ofallcleanenergyIPFs)alsoqualifyasLCEsupplyand/orend-usetechnologies(Table3.2).ThepositiveaggregatetrendinpatentingactivityinLCEenablingtechnologieshasbeenchieflydrivenbyinnovationinbatterytechnologies,whichalonegenerated57%oftheIPFsin2010-2019,withanaverageannualgrowthrateof13%(Figure3.5).Thisreflectstheincreasinguseofbatteriesinanever-expandingarrayofpersonaldevicesandtools,andinparticulartherapiddevelopmentandindustrialisationoflithium-ionbatterytechnologiesforelectricmobility(EPO&IEA,2020).ForEVs,lithium-ionbatterypriceshavedecreasedbyalmost90%since2010,whileforstationaryapplications,includingelectricitygridmanagement,theyhavedroppedbyaroundtwo-thirdsoverthesameperiod.Thesecostreductionsarepartlyduetonewtypesofchemistriesmostlyadjustmentstothecompositionofthebatterycathode,aswellasmanufacturingeconomiesofscale.EnablingtechnologiessuchasbatterieshavemanylinkswithLCEsupplyandend-usetechnologies,forwhichtheyfacilitateintegrationoremissionsreduction.However,thelinkswithLCEend-usetechnologiesaremuchmoresignificantthanthoseonthesupplyside,furtherreinforcingtherisingimportanceofend-useapplicationsasintegralpartsofthetransformingenergysystem(Table3.2).PatentdatarevealsastrongsynergybetweenbatteryinnovationandEVs.Thereisastrongoverlapbetweenpatentsinthetwoareas,comparedwiththeoverlapbetweenbatteriesand,forexample,industrialproduction.InnovationinEVsappearstoalsodrivetechnicalprogressinotherenablingtechnologies,includingsmartgrids,hydrogen,andothergridandstoragetechnologies.Figure3.5GrowthofIPFsinenablingtechnologies,2000-2019300002500020000150001000050000BatteriesHydrogenandfuelcellsSmartgridCCUSOthergridandstorage2000-20042005-20092010-20142015-2019Source:EuropeanPatentOffice53248781217412999659791084095888191382512170311282213198212652181583457369232481340BacktocontentsComparedwithbatteries,thedatashowmoresynergiesbetweenfuelcellsandhydrogenandawiderangeofend-usesectors,includingchemicalsandotherindustrialsectors,aswellasbuildingsandroadtransportation.However,whilehydrogenandfuelcellpatentingnearlydoubledfrom2000-2004to2005-2009andcontinuedtogenerateasignificantvolumeofpatentingactivitiesduringtheperiodofanalysis(about19000IPFssince2010),ithaslostmomentumduringthepastdecade.Thisislargelyexplainedbystagnationofinnovationinfuelcellsandtheirapplications,whichgeneratethelargestshareofpatentingactivitiesrelatedtohydrogen.Incontrast,newtechnologiesforthecleanproductionandstorageofhydrogenhavebeendevelopingatarapidpaceinthepastdecade,albeitfromarelativelylowinitiallevel(Box4).Itremainstobeseenwhethertherecententhusiasmforhydrogenasapotentialcornerstoneoflow-carbonenergysystemsisyettranslatingintoanincreaseininventiveactivity.Withastableaverageofabout1000IPFsperyearduring2010-2019,therewassignificantlylesspatentingactivityinsmartgridsthaninbatteriesorhydrogen-relatedtechnologies.However,smart-gridpatentingisamorerecentphenomenon,withonlylownumbersreportedin2000-2009(about200IPFseveryyearonaverage).FurthergrowthisBatteriesHydrogenandfuelcellsSmartgridOthergridandstorageCCUSNumberofIPFs51737188209934101474195LCEsupplyWind0%0%4%11%0%SolarPV1%1%8%10%0%Solarthermal0%0%0%3%0%Othersolar0%0%0%0%0%Geothermal0%0%0%1%0%Hydro0%0%0%3%0%Ocean0%0%0%1%0%Bioenergy0%0%0%0%1%Fuelfromwaste0%1%0%0%3%Combustion0%1%0%1%9%Nuclear0%0%0%0%0%End-useBuilding1%3%42%15%1%Chemicalandoil0%5%0%1%28%Metalandminerals0%0%0%0%1%Agriculture0%0%0%0%1%Consumerproducts5%14%0%2%3%Otherproduction0%1%4%5%1%EVandinfrastructure17%12%26%18%0%Roadvehicles-other0%1%0%1%4%Othertransportation0%0%0%0%0%ICT0%0%2%0%0%Table3.2ShareofIPFsinenablingtechnologiesoverlappingwithotherfields,2010-2019widelyexpected,supportedbytheunrelentinganddisruptiveintroductionofnewdigitalplatforms,includingtheInternetofThings,5Gcommunicationnetworks,cloudcomputingandartificialintelligence(EPO,2020).Substantialsynergieswithrenewableenergy,energyefficiencygainsinbuildingsandindustrialproduction,aswellEVchargingarealreadyevidentinthedata.Inaddition,manyinventionsinthe"otherenablingtechnologies"categoryalsorelatetothestorage(e.g.capacitorsandthermalstorage),transmissionanddistributionofelectricpower.Togethertheygeneratedavolumeofpatentingactivitiescomparabletothatofsmartgrids.CCUS(asetoftechnologiesforcapturingCO2andpreventingitfromcontributingtoclimatechange)accountedforlessthan5%ofpatentingactivityrelatedtoLCEenablingtechnologiesbetween2000and2019.CCUSpatentinggrewupto2014,whichcoincidedwithseveralmajorresearchanddemonstrationprogrammesinAustralia,EuropeandNorthAmerica,buthassincedeclined.ThispatternismoreinlinewithLCEandfossilfuelsupplytechnologiesthanotherenablingtechnologies.Nonetheless,itscross-cuttingnatureisvisibleinthedataonsynergieswithLCEenduses,includingchemicalsandoil,whichaccountfor28%ofIPFsinCCUS.41BacktocontentsBOX4TrendsinhydrogenandfuelcellsAlthoughcurrentconsumptionforenergypurposesisrelativelylow,hydrogenreceivesagreatdealofattentionanditsproductionforavarietyofcleanenergyapplicationsiswidelyexpectedtorapidlyexpand.Hydrogenisaversatileenergycarrierthatcanbeproducedfromfossilfuelsorelectricityviawaterelectrolysis.Amoreresilientenergysectorcouldmakeuseoflow-carbonhydrogeninavarietyofapplications,e.g.ironandsteelandfertiliserproduction,transport(directlyinroadvehiclesandtrains,orassyntheticfuelsinairplanesandships)andbuildings(forheating)(IEA,2019b).Itcouldalsobeusedtostoreelectricityoverweeksormonthsandtogenerateclean,on-demandpowergenerationtohelpbalancepowersystems.Notallapplicationsforlow-carbonhydrogenusefuelcells.However,manyendusesinthetransportandpowersectorstakeadvantageofthepairingofhydrogenandfuelcellsforconvertingthechemicalenergyinhydrogenintoelectricity(andheat),withrelativelyhighefficiency.Theflexibilityofhydrogen,combinedwithitsanticipatedimportanceintacklingemissionsinthehard-to-abatesectors,underpinsthecurrenteffortsinmanycountriestodevelopeffectivepolicysupportforlow-carbonhydrogen.Despiterecentefforts,patentingactivityhasnotrisensharplyinrecentyearsandremainsmuchhigherinfuelcellsthaninotheraspectsofthehydrogenvaluechain.Thisreflectssustainedresearchfundingthathasensuredasteadyflowofinvention,butanabsenceofamarketforhydrogensupplyorusetogeneratesignificantcompetitionandscale-up.Withoutmarketgrowth,therehavebeenfewincentivesforassociatedinnovationstooptimisereal-worldperformance,installation,safetyandmanufacturingoftechnologiessuchaselectrolysersorhydrogenstorage.Fuelcells,ontheotherhand,havefoundnichemarketssuchasprovidingback-uppowerorpoweringforklifttrucksthatrunonnaturalgasorhydrogenproducedfromfossilfuelswithoutCCUS.2000150010005000%20002001200220032004200520062007200820092010201120122013201420152016201720182019FuelcellsStorage,productionanddistributionSource:EuropeanPatentOfficeFigure3.6IPFsinhydrogen-relatedtechnologies,2000-201951711475315911851311152117311912206620431791144514681461153915461343145614181549153820520326429032737536937138542838546752748751958064559442BacktocontentsThereisgoodreasontoexpectthissituationtochangeinthecomingyears.Investmentsinlow-carbonhydrogenproductionandhydrogen-relatedcompaniesareincreasing,triggeringscale-upinmanufacturing,inEuropeandChinainparticular.Manygovernmentshavepublishedambitioushydrogenstrategies,andseveralhavesignalledtheirintentiontoinvesteconomicstimulusfundsinthisarea.Capacityadditionsofelectrolyserstoproducehydrogenhaveexpandedrapidly,from2MWein2010to25MWein2019,representingcapitalexpenditureofaroundUSD40million(IEA,2020g).Theyhavegrowninscale,frombelow0.5MWeonaveragein2010to6MWein2019,witha20MWepolymerelectrolytemembrane(PEM)facilitycommissionedinFrancein2021.QuotedcostsfornewerdesignssuchasPEMhavehalved,butexpectationsforfutureplantsizesandcostsfarexceedthispaceofchange.Severalplantsof1GWsizearenowproposedforoperationbefore2030,andtheirfuturecompetitivenesslikelyreliesonequipmentpricesthathavenotyetbeenrealised.Japandominatesresearchinfuelcells.However,Europeleadsthedevelopmentofnewtechnologiesforhydrogenproductionfromnon-carboncontainingsourcesandhydrogenstorage.Patentingactivitiesinthisareaincreasedrapidlyfrom2010to2018.GermanyaloneaccountsfornearlyhalfofEurope'scontributioninIPFsrelatedtostorageandathirdoftheIPFsrelatedtolow-carbonhydrogenproduction.No.ofIPFs,2010-2019Growth2010-2019EPCshareUSshareJPshareKRshareCNshareStorage185925.2%40.2%19.2%26.7%5.3%1.5%Production330869.9%31.3%18.6%23.4%5.7%4.6%Fuelcells147636.4%22.1%17.2%37.1%14.4%2.6%Note:thecolourcodesindicatetheRTA,calculatedwithrespecttoaregion'sshareinalltypesoftechnologies.Highlightedranges(fromlightesttodarkestblue)are:1-1.25;1.25-1.5;1.5-1.75.Table3.3DistributionofglobalIPFsinhydrogenbetweentheworldmainregions,2010-20194.ProfileofapplicantsinLCEtechnologies44Backtocontents4.ProfileofapplicantsinLCEtechnologiesFurtherinnovationinawiderangeofLCEtechnologiesisrequiredtoachievethecleanenergyambitionsoftheParisAgreementandothermajorpolicygoals.Someofthesetechnologiesarealreadyexploitedonanindustrialscale,whileothersarestillatanearlystageofdevelopmentordeployment.ThisdiversitytranslatesintodifferentformsofR&Dactivities:progressinsomefieldsremainsstronglyreliantonfundamentalresearchcarriedoutinuniversitiesandpublicresearchorganisations,whileitischieflydrivenbyappliedcorporateR&DinmorematureareasofLCEtechnology.Thischapterdrawsoninformationonpatentapplicants.DocumentingtheprofileandtechnologyspecialisationofthemainactorsofLCEinnovationhighlightsthesedifferences.4.1UniversitiesandpublicresearchorganisationsPublicresearchisakeyelementofLCEinnovationecosystems.Itcanprovideforthetypeofbasic,exploratory,scientificresearchneededinthefirstdevelopmentstagesofemergingtechnologies.Industryresearchtendstofocusonincrementalinnovationintechnologiesthathavereachedasufficientdegreeofmaturity.Intotal,worldwidegovernmentenergyR&DreachedUSD30bnin2019(IEA,2020f),mostofwhichisdirectedatnuclearandotherlow-carbonenergies.Theoutcomeoftheseinvestmentsisvisibleinthepatentapplicationsfiledbyuniversitiesandpublicresearchorganisations(PRO).Overthepast20years,theoverallshareofIPFsinLCEtechnologiesgeneratedbyresearchinstitutionshassignificantlyincreased,risingfrom6.6%in2000-2009to8.5%in2010-2019.However,thissharealsodiffersconsiderablybetweenLCEtechnologyfields,highlightingthedifferentdegreesofmaturityoftherespectivefields(Figure4.1).ResearchinstitutionsareespeciallyactiveinLCEsupplytechnologiessuchasbiofuels(with21%ofIPFsin2010-2019)andfuelfromwaste(16%),nuclearenergy(17%)andsomerenewableenergies(namelysolarPV,geothermal,marineandsolarthermalenergies).Incontrast,universitiesandPROmakeonlyasmallcontributiontopatentingactivitiesinhydroandwindenergies,signallingthehighermaturityofthesetechnologies.USD(2019)billion141210864201974197919841989199419992004200920142019Source:EnergyTechnologyRD&DBudgets2020,IEA202fFigure4.1EstimatedtotalpublicenergyR&D,includingdemonstrationbudgetforIEAmembergovernments,1974-2019Cleanenergy(exeptnuclear)NuclearFossilfuels(excl.CCS)45BacktocontentsThe15mostimportantPROanduniversitiestogethergeneratedmorethanaquarter(27%)ofallLCEIPFsoriginatingfromresearchinstitutionsbetween2000and2009.TheymainlyconsistoflargePROswithdiversespecialisationprofiles,ofwhichfivearelocatedinR.Korea,threeinFranceandoneinGermany,theUS,ChineseTaipei,andJapan.TheremainingthreearemajoruniversitiesintheUS(MITandtheUniversityofCalifornia)andChina(TsinghuaUniversity).TheFrenchCEAandIFPshowparticularlystrongspecialisation,respectivelyinnuclearenergyandhydrogen,andinalternativefuels,CCUSandchemistryandoilrefining.Amongtheotherinstitutions,theKoreanInstituteofEnergyResearchandtheUS'sUniversityofCaliforniaandBattelleMemorialInstitutealsoshowatechnologyadvantageinCCUS.TheCEA,Germany'sFraunhoferInstituteandChineseTaipei'sITRIdominateresearchinsolarenergy.TheKoreanETRIandMyongjiUniversityshowaspecialisationinsmartgrids,theformerwithastrongadvantageinenergy-efficientICT.LCEenablingtechnologyfieldssuchasCCUS(21%in2020-2019),hydrogen(18%)andothergridandstoragetechnologies(14%)yettoconsolidatearounddominantcommercialdesignshaveahighershareofIPFsfromscientificresearchinstitutions.Thiscontrastswithcommercialisedbatteryandsmart-gridtechnologies,forwhichthebarrierstonewmarketentrantsarelower(section2.3).Likewise,LCEend-usetechnologiesarecharacterisedbysmallunitsizesandcompetitionforconsumerspending,asreflectedinalowershareofIPFsfromuniversitiesandPROsandahighersharefromtheprivatesector.Thisisevenmorepronouncedfortransport,ICTandbuildings.Chemicalandrefining(20%)technologiesand,toalesserextent,metalandmineralprocessingareinsteadcharacterisedbylargeunitsizesandmoremarketconcentration.Figure4.2ShareofIPFsoriginatingfromuniversitiesandPROsinLCEtechnologyfields,2000-201920%15%10%5%0%2000-20092010-2019Source:EuropeanPatentOfficeNotes:AMR=Aerospace,maritime,railAllLCEBioenergyNuclearFuelfromwasteSolarPVGeothermalOceanSolarthermalCombustionHydroWindCCUSHydrogenOthergridanstorageBatteriesSmartgridChemicalandoilrefiningProductionotherMetalandmineralsBuildingComputinganddataTransportAMRTransportother46BacktocontentsShareofIPFsinselectedfieldsCoun-tryLCEIPFsCombus-tionAlterna-tivefuelsNuclearSolarBatteriesCCUSHydrogenandfuelcellsSmartgridOtherenablingChemicalandoilrefiningICTCEA/AlternativeEnergiesandAtomicEnergyCommissionFR17720.1%0.2%3.9%0.9%0.6%0.0%1.2%0.1%0.6%0.2%0.1%IndustrialTechnologyResearchInstituteTW8460.1%0.1%0.0%0.5%0.2%0.2%0.3%0.1%0.2%0.1%0.2%FraunhoferGesellschaftzurFörderungderangewandtenForschunge.V.DE7250.1%0.2%0.0%0.6%0.1%0.0%0.3%0.1%0.2%0.2%0.1%IFPEnergiesNouvelles/IFPENFR7210.8%1.2%0.0%0.0%0.0%1.4%0.1%0.0%0.2%1.2%0.0%UniversityofCaliforniaUS6660.1%0.8%0.4%0.3%0.2%0.6%0.4%0.1%0.3%0.3%0.0%ElectronicsandTelecommuni-cationsResearchInstituteKR6260.0%0.0%0.0%0.3%0.1%0.0%0.0%0.5%0.1%0.0%1.0%CNRS/NationalCentreforScientificResearchFR5940.0%0.2%0.1%0.3%0.2%0.2%0.3%0.0%0.2%0.4%0.0%TsinghuaUniversityCN5690.1%0.2%0.3%0.2%0.4%0.1%0.2%0.3%0.3%0.1%0.0%NationalInstituteofAdvancedIndustrialScienceandTechnologyJP4550.0%0.2%0.0%0.2%0.3%0.2%0.2%0.0%0.1%0.2%0.0%BattelleMemorialInstituteUS4020.1%0.3%0.4%0.0%0.1%0.5%0.3%0.2%0.2%0.3%0.0%KoreaInstituteofScienceandTechnologyKR3690.1%0.2%0.0%0.2%0.1%0.1%0.3%0.0%0.1%0.2%0.0%KoreaAdvancedInstituteofScienceAndTechnologyKR3680.0%0.1%0.2%0.1%0.1%0.2%0.2%0.1%0.1%0.1%0.1%MassachusettsInstituteofTechnologyUS3630.1%0.1%0.1%0.2%0.1%0.2%0.2%0.0%0.1%0.1%0.0%KoreaInstituteofEnergyResearchKR3460.4%0.1%0.0%0.2%0.0%1.1%0.3%0.0%0.1%0.2%0.0%MyongJiUniversityIndustryAcademiaKR3330.0%0.0%0.0%0.1%0.0%0.0%0.0%0.9%0.6%0.0%0.0%Total15Topapplicants91552.0%3.9%5.4%4.1%2.5%4.8%4.3%2.4%3.4%3.6%1.5%Note:specialisationisreportedintermsofshareofallIPFsintheselectedfield,onlyforfieldsinwhichoneormoreofthelistedinstitutionshavecontributedatleast0.5%ofallIPFs.DifferentcolourcodesareusedtohighlightIPFsharesinthefollowingranges:>0%-0.5%;0.5%-1%;1%-2%;>2%.Table4.1Top15universitiesandPROsinLCEtechnologies,2000-201947BacktocontentsBOX5EmergingregionalclustersinenablingtechnologiesInnovativeactivitiesareoftengeographicallyconcentratedintoregionalclusters,typicallyinlargeurbanagglomerationswithanecosystemofR&D-performinginstitutionsaroundleadingcompanies.Regionalinnovationclustersarisefromtherealisationoftheeconomicefficienciesandknowledgespilloversthatexistfromtheco-locationofsimilarindustriesandsuppliersinamoregeneralsense,butalsofrommoreformalrelationsthatcanexistbetweendifferentorganisationsthataremembersofthecluster.Table4.2showsthemostimportantoftheseclustersforfourdifferenttypesofenablingtechnologiesrelatedtoelectrification,namelybatteries,hydrogenandfuelcells,smartgridsandCCUS.Enablingtechnologieshaveacross-cuttingimpactonLCEsupplyandend-usetechnologiesinawiderangeofsectors.Regionalclustersthatconcentrateinnovationcapacitiesinthesefieldsarethereforepoisedtoplayaleadingroleintheglobalenergytransition.EighteensuchclustershavebeenidentifiedbasedonthelocationoftheinventorsofLCEIPFsintheperiod2010-2018(Annex4forfurtherdetailsonthemethodology).Theyaredistributedbetweenninemetropolitanareas,severalofwhicharehostingtopclustersinseveraldifferentenablingtechnologyfields.JapaneseandKoreanregionsdominatetheranking,withfourteenoutoftheeighteenclustersidentified.TheregionsofTokyoandSeoulhostaclusterineachofthefourcategoriesofenablingtechnologies,whichalsoreflectsthefactthatmanynationalcompanies’headquarters5arelocatedinthesecapitalcities.ThesixclustersspecialisedinbatteriesshowthelargestvolumeofpatentingactivitiesaswellasimpressiveannualgrowthratesofIPFsovertheperiodofanalysis.Theylargelyoverlapwiththelocationofclustersspecialisedinhydrogenandfuelcellswhich,withtheexceptionoftheregionofNagoyainJapan,showloweraveragegrowthratesduringthesameperiod.ApartfromtheregionsofStuttgart(Germany)inthecaseofbatteriesandRochester(US)inthecaseofhydrogen,alltheseclustersarelocatedinJapanorR.ofKorea.InthecaseofRochester,thegrowthrateinIPFshasbeennegativeintheperiod2010-2018.Threetopclustershavebeenidentifiedinthecaseofsmartgridtechnologies.TheyarelargelydominatedbytheregionofTokyo,Japan,whichalonegeneratednearlytwicethetotalofsmartgridIPFscomingfromtheothertwotopclusters(Seoul,R.ofKorea,andBeijing,P.R.ofChina)between2010and2018.Allofthemshowparticularlyimpressivegrowthratesduringtheperiodofanalysis.Bycontrast,thetopthreeclustersspecialisinginCCUSshowrelativelylowlevelsofpatentingactivitiesandcontrastingdynamics,withastrongpositivegrowthforSeoul,anegativegrowthforParis,andstablepatentingactivitiesforTokyo,whichagaintopstheranking.5SomelargeapplicantsreporttheirIPheadquarters'locationsastheaddressoftheinventors,whichmayincreasetheproportionofIPFsattributedtotheselocations.Figure4.3GeographicaloriginsofIPFsrelatedtoLCEtechnologies,2000-2018Y02inventionswordwide48BacktocontentsTable4.2Topglobalclustersinenablingtechnologies,2000-2018BatteriesNumberofIPFs,2010-2018Av.growthrate,2010-2018LeadingapplicantsRelatedexpertiseTokyo,JP762913.3%NissanMotor(8%),Sony(8%),NEC(7%)EVs,Otherroadtransportation,Hydrogen&fuelcells,ConsumerproductsSeoul,KR543915.9%Samsung(54%),LG(11%),HyundaiMotor(5%)EVs,Otherroadtransportation,Hydrogen&fuelcells,ConsumerproductsOsaka,JP454914.0%Panasonic(45%),GSYuasaCorp.(9%),Murata(5%)EVs,Otherroadtransportation,Hydrogen&fuelcells,ConsumerproductsNagoya,JP250413.7%Toyota(57%),Denso(9%),NGKInsulators(6%)EVs,Otherroadtransportation,Hydrogen&fuelcellsDaejeon,KR293923.0%LG(68%),Samsung(8%),SKGroup(7%)EVs,Otherroadtransportation,Hydrogen&fuelcells,ConsumerproductsStuttgart,DE152619.4%RobertBosch(56%),Daimler(9%),MAHLE-Stiftung(6%)EVs,Otherroadtransportation,Hydrogen&fuelcells,ConsumerproductsHydrogenandfuelcellsNumberofIPFs,2010-2018Av.growthrate,2010-2018LeadingapplicantsRelatedexpertiseTokyo,JP25212.6%HondaMotor(22%),NissanMotor(13%),Toshiba(8%)Buildings,Consumerproducts,EV,batteriesSeoul,KR16497.9%Samsung(37%),Hyundai(25%),KIST(4%)Consumerproducts,EV,Otherroadtransportation,batteriesOsaka,JP12223.8%Panasonic(45%),SumimotoElectric(8%),Toyota(3%)Buildings,Consumerproducts,Chemicalandoilrefining,batteriesNagoya,JP118424.8%Toyota(62%),AisinSeiki(7%),NGKInsulators(4%)Consumerproducts,EV,Chemicalandoilrefining,Otherroadtransportation,batteriesDaejeon,KR5519.2%LG(23%),Samsung(19%),KIST(12%)Buildings,Consumerproducts,EV,batteriesRochester,US358-14.3%GeneralMotors(82%),Aptiv(7%),Delphi(6%)Consumerproducts,EV,Chemicalandoilrefining,batteriesSmartgridsNumberofIPFs,2010-2018Av.growthrate,2010-2018LeadingapplicantsRelatedexpertiseTokyo,JP128034.9%Toshiba(14%),NEC(12%),MitsubishiElectric(12%)Buildings,EVSeoul,KR49658.8%Samsung(20%),LG(15%),MyongJiUniversity(14%)Buildings,EVBeijing,CN18320.6%StateGridCorporationofChina(21%),TsinghuaUniversity(15%),ABB(6%)Buildings,EVCCUSNumberofIPFs,2010-2018Av.growthrate,2010-2018LeadingapplicantsRelatedexpertiseTokyo,JP3530.5%MitsubishiHeavy(23%),Toshiba(16%),Hitachi(5%)ChemicalandoilrefiningParis,FR165-15.2%AirLiquide(57%),IFP(20%),Total(2%)ChemicalandoilrefiningSeoul,KR16515.9%KIST(14%),Samsung(10%),HanyangUniversity(4%)Chemicalandoilrefining49Backtocontents4.2TopapplicantsinLCEtechnologiesCompaniesgeneratethemajorityofIPFs,despitemanyLCEtechnologyfieldsshowingahighshareofIPFsoriginatingfromresearchinstitutions.Thetop15applicantsalonegeneratedmorethanathirdofallIPFsrelatedtoLCEtechnologiesin2000-2019.AsindicatedinFigure4.4,automotivecompaniesandtheirsupplierslargelydominate,illustratinghowEVsandtheirrelatedenablingtechnologieshaveactedasaprimemoverinenergytransitionoverthepasttwodecades.Ofthetop15applicants,sixareautomotivecompanies(Toyota,GeneralMotors,Ford,Honda,Volkswagen,Hyundai)andanothersixaretheirmainbatterysuppliers(Samsung,Panasonic,LG,RobertBosch,Hitachi,Toshiba).TheremainingtopapplicantsareGEandSiemens,twoconglomeratesdirectlyinvolvedintheenergysector,andUScompanyRaytheon,whichshowsastrongspecialisationinLCEforaviation.ToyotaMotor[JP]Samsung[KR]Panasonic[JP]GeneralElectric[US]LG[KR]RobertBosch[DE]Siemens[DE]Hitachi[JP]GeneralMotors[US]FordMotor[US]HondaMotor[JP]Volkswagen[DE]HyundaiMotor[KR]Toshiba[JP]RaytheonTechnologies[US]2000400060008000100001200014000[DE][JP][KR][US]Source:EuropeanPatentOffice131241202310073854879087470676454045222503348874081390537243724Figure4.4Top15applicantsinLCEtechnologies,2000-201950BacktocontentsAcloseranalysisofthesetopapplicants'specialisationconfirmsthestrongfootprintoftechnologiesrelatedtoEVintheirrespectiveIPFportfolios.Toyotatopstheranking,thankstoastrongcontributioninEV,hydrogen,batteriesandsmartgrids,althoughitalsogeneratedasignificantshareofIPFsinotherLCEtechnologiesforroadtransportation.Otherhigh-rankingautomotivecompaniesshowsimilarprofiles(Box6).CompaniessuchasSamsung,LGandPanasonicspecialiseinbatteriesandarelikewiseactiveinEVandsmartgridtechnologies,aswellassolarandotherend-usetechnologies(building,industrialproduction,ICT),withpossiblespillovereffects.GeneralElectricandSiemensshowadifferentprofile,specialisinginallLCEenergysupplytechnologies,especiallyefficientcombustionandwindpower,aswellasinsmartgridsandothergridandstoragetechnologies.JapanesecompaniesHitachiandToshibahaveacomparableprofile,withpatentingactivitiesinthesefields,aswellasinEVandbatteries.GeneralElectric,Hitachi,Toshibaand,toalesserextent,Siemensaretheonlycompaniesspecialisedinnuclearenergy.Nearlyalltopapplicantsaresignificantlyactiveinthefullspectrumofenablingtechnologies,withastrongerfocusonbatteries,hydrogenandsmartgrids.Raytheonistheonlyexception:itspresenceintherankingisduetoitsstrongspecialisationinLCEtechnologiesforaeronautics.EnergysupplyCountryCombustionNon-fossilfuelNuclearSolarWindOtherrenewablesToyotaMotorJP0.4%0.4%0.0%0.3%0.0%0.0%SamsungKR0.1%0.1%0.0%4.0%0.3%0.2%PanasonicJP0.5%0.1%0.0%2.7%0.2%0.0%GeneralElectricUS15.4%0.3%3.3%0.8%10.4%0.8%LGKR0.5%0.0%0.0%2.8%0.1%0.1%RobertBoschDE0.6%0.0%0.0%0.5%0.7%0.8%SiemensDE5.0%0.2%0.3%0.7%11.4%0.4%HitachiJP2.2%0.2%4.8%0.9%1.4%0.3%GeneralMotorsUS0.1%0.0%0.0%0.0%0.0%0.0%FordMotorUS0.0%0.0%0.0%0.0%0.0%0.0%HondaMotorJP0.8%0.2%0.0%0.1%0.0%0.0%VolkswagenDE0.3%0.0%0.0%0.0%0.0%0.0%HyundaiMotorKR0.1%0.0%0.0%0.1%0.0%0.0%ToshibaJP1.0%0.1%4.4%0.6%0.3%0.7%RaytheonTechnologiesUS0.1%0.0%0.0%0.1%0.3%0.1%Note:theresultsreportedinthecellsarethecompanies'respectivesharesofallIPFsinthetechnologyfieldintheperiod2000-2019.DifferentcolourcodesareusedtohighlightIPFsharesinthefollowingranges:>0%-0.5%;0.5%-1%;1%-5%;5%-10%;>10%.Table4.3LCEtechnologyprofilesoftop15applicants,2000-201951BacktocontentsEnd-usetechnologiesCountryBuildingChemicalandoilrefiningICTMetalandmineralsProductionotherEVOtherroadtransportOthertransportToyotaMotorJP0.3%0.3%0.0%0.2%1.6%11.1%9.4%0.1%SamsungKR2.2%0.4%6.9%0.4%3.4%1.2%0.1%0.2%PanasonicJP3.6%0.5%1.8%0.6%2.1%2.6%0.1%0.1%GeneralElectricUS1.2%0.8%0.0%4.0%1.6%0.6%0.6%12.6%LGKR2.1%0.4%3.3%0.3%1.9%1.7%0.1%0.1%RobertBoschDE1.4%0.1%0.2%0.2%0.7%3.5%5.9%0.0%SiemensDE1.0%0.4%0.5%2.2%3.1%1.2%0.5%3.1%HitachiJP0.9%0.3%1.2%0.5%1.5%2.1%1.4%0.4%GeneralMotorsUS0.1%0.2%0.1%0.2%0.4%3.5%4.4%0.0%FordMotorUS0.1%0.0%0.1%0.2%0.1%4.2%5.8%0.0%HondaMotorJP0.1%0.2%0.0%0.1%0.6%3.9%2.9%0.2%VolkswagenDE0.1%0.0%0.1%0.2%0.2%3.0%4.4%0.1%HyundaiMotorKR0.1%0.0%0.1%0.1%0.5%4.1%2.5%0.0%ToshibaJP1.3%0.3%1.9%0.2%0.9%0.9%0.0%0.2%RaytheonTechnologiesUS0.2%0.0%0.1%1.3%0.1%0.1%0.1%15.4%Note:theresultsreportedinthecellsarethecompanies'respectivesharesofallIPFsinthetechnologyfieldin2000-2019.DifferentcolourcodesareusedtohighlightIPFsharesinthefollowingranges:>0%-0.5%;0.5%-1%;1%-5%;5%-10%;>10%.EnablingtechnologiesCountryBatteriesCCUSHydrogenandfuelcellsSmartgridOthergridandstorageToyotaMotorJP4.5%0.7%6.1%2.1%1.6%SamsungKR7.2%0.5%3.1%1.2%1.1%PanasonicJP6.7%0.1%3.4%3.5%2.2%GeneralElectricUS0.2%3.7%0.5%3.3%3.7%LGKR5.8%0.1%1.0%1.0%0.4%RobertBoschDE2.7%0.2%1.2%1.1%1.0%SiemensDE0.3%1.4%1.0%4.2%4.6%HitachiJP1.7%1.3%0.8%2.2%1.5%GeneralMotorsUS1.0%0.2%3.7%0.4%0.3%FordMotorUS0.8%0.2%0.4%0.7%0.3%HondaMotorJP0.9%0.1%4.1%0.8%0.5%VolkswagenDE0.7%0.3%0.9%0.6%0.2%HyundaiMotorKR0.7%0.2%2.3%0.5%0.2%ToshibaJP1.3%1.5%1.3%1.9%1.1%RaytheonTechnologiesUS0.0%0.2%0.2%0.1%0.1%Note:theresultsreportedinthecellsarethecompanies'respectivesharesofallIPFsinthetechnologyfieldin2000-2019.DifferentcolourcodesareusedtohighlightIPFsharesinthefollowingranges:>0%-0.5%;0.5%-1%;1%-5%;5%-10%;>10%.52BacktocontentsBOX6TheautomotiveindustryshiftstowardsEVRoadtransportationisoneofthemostimportantend-usesectorsforLCEtechnologies,withalmost100000IPFsbetween2000-2019.Thisreflectsitsglobalimportanceasamajoreconomicsectorandonethatiscurrentlyundergoingadiscontinuoustransitiontolower-emittingtechnologies.Patentdataillustratesthespeedwithwhichthesectoristransforming.Innovativeactivityhasincreasedinlinewiththestrongpressuresforcompaniestoinnovatetocompeteinachangingandmoregloballandscape.Moreover,inthepastdecade,EVshaveemergedasthedominantfocusofinvention,leadingtheindustryinaradicalnewdirection.PatentingactivitiesinEV(anditsassociatedinfrastructure)overtookothercleanenergytechnologiesforroadvehicles6asof2011,beforesalesofEVstartedtotakeoff(Figure4.5).Untilthen,thereductionoffuelconsumptionandcarbonemissionsinconventionalfuelengineswasclearlythedominantparadigmintheautomotiveindustry.6Thesetechnologiesaimatmoreefficientcombustionengines,aswellasimprovedaerodynamics,weightreduction,ormoreenergy-efficientcomponentsandsubsystems.Figure4.5GlobalgrowthofIPFsinelectricvehiclesversusotherLCEtechnologiesforroadtransportation,2000-2019500045004000350030002500200015001000500020002001200220032004200520062007200820092010201120122013201420152016201720182019Road/electricRoad/otherLCESource:EuropeanPatentOffice4579300053BacktocontentsFigure4.6showsthetencompaniesthatcontributedmosttocleanroadtransportinnovationbetween2000and2019.Toyota,astheleaderinallLCEtechnologies,dominatesthelist,consistingexclusivelyofincumbentcarmanufacturersandtheirsuppliers.Withover9000IPFs,Toyotaalonecontributedmorethanthesecondandthirdbiggestapplicants,FordandRobertBosch,together.However,whenlookingatthelatestfive-yearperiod,importantchangesininnovationeffortsbytopapplicantsarecleartosee.Forexample,Toyota,RobertBoschandHondamaintainedtheirstrongpositionsincleanroadtransportation,whileNissanandespeciallyGeneralMotorssawasteepdeclineintheircontributions.Atthesametime,Hyundai,VolkswagenandFordsignificantlyexpandedtheirinnovationactivities.BeyondtheiroverallcontributiontoLCEtechnologiesforroadtransportation,companieshavealsoreorientedtheirLCEinnovationeffortsfrominternalcombustionengines(ICE)towardsEVtechnologies.Figure4.6showstheratiobetweenthetopapplicants'IPFsinbothtechnologyfields.AratioaboveonerepresentshighercontributiontoEVthantoothercleanroadtransportationtechnologies.Mostcompaniesincreasedtheirratiosoverthelasttwodecades;forsevenofthetoptencompaniestheratioexceededoneinthemostrecentfive-yearperiod.NissanandHondaevengeneratedtwiceasmanyIPFsinEVthaninICEin2015-2019.Hitachi,Toyota,FordandVolkswagenalsoshowedasignificantefforttoreachandsurpassparitybetweenthetwofields.RobertBosch,DensoandinparticularGeneralMotorsaretheonlytopapplicantsthatsawtheirratiosremainingatordecliningtobelowone.Figure4.6Top10applicantsinLCEroadtransporttechnologies,2000-2019300025002000150010005000Toyota(JP)FordMotor(US)RobertBosch(DE)GeneralMotors(US)Volkswagen(DE)HondaMotor(JP)HyundaiMotor(KR)Denso(JP)Nissan(JP)Hitachi(JP)2000-20042005-20092010-20142015-2019Ratioelectricvehicle(EV)tointernalcombustionengine(ICE)Source:EuropeanPatentOffice3.532.521.510.505.Geographicaldistributionoflow-carbonenergyinnovation55Backtocontents5.Geographicaldistributionoflow-carbonenergyinnovationThischapterreportsonthegeographyofLCEinnovation,asidentifiedbythelocationsoftheinventorsofIPFsforLCEtechnologies.ItfocusesonthemainglobalLCEinnovationcentres.Europeisdefinedhereascomprisingall38memberstatesoftheEuropeanPatentConvention(EPC).5.1GlobalinnovationcentresEurope,JapanandtheUSdominatetheglobalLCEinnovationlandscape,togetheraccountingformorethanthreequartersofallIPFsgeneratedfrom2000to2019.Afterinitialrapidgrowth,allregionshavestagnatedsince2015,withpatentingactivitiesinLCEtechnologiesdecliningrelativetonon-LCEtechnologyfields.Since2000,Europehasconsistentlyledpatentingactivitiesrelatedtocleanenergy,generating28%ofallIPFsinLCEtechnologiesbetween2010and2019.Japanfollowedclosebehind,withabout25%IPFsbetween2010and2019,andtheUScameamoredistantthird(20%).TheUSrecordedabout30%lessthanEurope,withabout60000IPFsinLCEtechnologiessince2010.R.KoreaandP.R.ChinaremainmodestinnovationcentresinthedomainofLCEtechnologies,withonly10%and8%respectivelyofallIPFsgeneratedfrom2010to2019.However,bothcountrieshaveexperiencedasustainedincreaseofpatentingactivitiesinthesetechnologies.R.Korea,inparticular,hadthehighestshareofdomesticIPFsrelatedtocleanenergyfrom2015to2019–theonlyinnovationcentreinwhichthisincreasedduringthattime.Figure5.1GrowthofIPFsinLCEtechnologiesbyglobalinnovationcentres,2000-201940000350003000025000200001500010000500002000-20042005-20092010-20142015-20192000-20042005-20092010-20142015-20192000-20042005-20092010-20142015-20192000-20042005-20092010-20142015-20192000-20042005-20092010-20142015-2019EPCJapanUSR.KoreaP.R.ChinaLCEIPFsShareofLCESource:EuropeanPatentOffice14%12%10%8%6%4%2%0%56BacktocontentsForgovernmentsseekingtounderstandtheircountry’scomparativeadvantageinbatterytechnologyinmoredetail,therevealedtechnologicaladvantage(RTA)7indexindicatesacountry’sspecialisationintermsofLCEtechnologyinnova-tionrelativetoitsoverallinnovationcapacity.AnRTAaboveonereflectsacountry’sspecialisationinagiventechnology.Conversely,countrieswithalowerRTAinagiventechnologyfaceabiggerchallengeindevelopingthetechnologicalleadershipneededtoaddsignificantvaluetotheireconomiesinfuturedecades.Giventheleveloftechnologicaldetailinthisreport,thedataprovidedmayalsorevealnichesinwhichcountriescanbuildontheirrelativestrengthseveniftheirRTAislessthanoneatahigherlevelofaggregation.RTAindicatorsshowthatEuropespecialisesinnearlyallrenewableenergytechnologies,andinparticularinwindenergy(Table5.1).However,italsospecialisesinfossilenergysupplytechnologies(reportedinthissectionasabenchmark).ThemainexceptionissolarPV,whereEuropedoesn'tspecialise,butnonethelessdominatesBOStechnologiessuchasmountings,trackingandPVsystemsrelevanttomaximisingthevalueoflocaldeployment(Box3).Europealsohasarelativetechnologicaladvantage(RTA)8inenergyefficiencyandfuel-switchingtechnologiesformostend-usesectors,withthenotableexceptionofICT.Itgeneratesarelativelylowshareofenablingtechnologies,apartfromCCUSinwhichEuropeexhibitsanRTA.7AnRTAisdefinedasacountry’sshareofIPFsinaparticularfieldoftechnologydividedbythecountry’sshareofIPFsinallfieldsoftechnology.8TheRTAindexindicatesacountry'srelativespecialisationinagiventechnologyinnovationinrelationtoothercountries.AnRTAaboveoneindicatesthatacountrytendstoproducemoreinnovationinthattechnologyareathanitdoesinothers.Itiscalculatedasacountry'sshareofglobalIPFsinacategorydividedbythecountry'sshareofIPFsinallfieldsoftechnology.JapanandtheUSshowdivergentspecialisations.Withtheexceptionofsolarcells(Box3),JapanspecialiseslessinLCEsupplytechnologies.Japanthoughisaworldleaderincross-cuttingtechnologiesenablingenergytransitions,suchasbatteries,hydrogenandfuelcellsand,toalesserextent,smartgrids.ThistranslatesintoastrongRTAinelectricroadtransportation,whichcomplementsJapan'sstrongpositioninotherestablishedLCEtechnologiesforroadtransportation.TheUSdoesnotappearamongthemostimportantplayersininnovationinrenewableenergiesandLCEenablingtechnologies,apartfromCCUS.However,itdoeshaveanRTAinLCEcombustiontechnologies(alternativefuels,efficientcombustion)andgeothermalenergy,aswellasnuclearandLCEend-usetechnologiesforchemicals,oilrefiningandlong-distancetransport.ThisadvantageislikelylinkedtostrongUStechnologyspecialisationinfossilfueltechnologies.Inaddition,asaresultofitsleadershipinICT(EPO,2020),italsospecialises,togetherwithP.R.China,inenergy-efficienttechnologiesfortheICTsector.R.KoreaspecialisesinbatterytechnologiesandalsohasRTAsinsolarPVandnuclearenergy,hydrogenandfuelcells,plusLCEend-usetechnologiesintheICT,consumergoods,maritimetransportationandEVsectors.PatentingactivityinLCEtechnologiesinP.R.Chinahasemergedmorerecentlyanddoesnotyetrevealaclearspecialisationpattern.NotableexceptionsarerailwaytransportationandtheICTsector,reflectingthecountry'sstrongperformanceinIThardwareandconnectivitytechnologies(EPO,2020).However,thisstrengthinLCEforICThasnottranslatedintospecialisationindigital-intensiveLCEenablingtechnologiessuchassmartgrids.57BacktocontentsEnergysupplyNo.ofIPFs2010-2019EPCUSJPKRCNSolarPV332480.840.831.121.780.91Solarthermal69881.690.930.370.420.65Wind134702.070.740.400.440.64Geothermal6501.581.210.350.570.51Hydro24771.580.640.440.890.60Ocean24621.670.790.250.990.71Bioenergy53941.161.790.380.640.37Fuelsfromwaste32221.641.220.370.640.37Efficientcombustion43121.441.370.690.480.36Nuclear34360.931.440.771.330.65Fossilfuels559691.102.100.220.280.47Note:theRTAiscalculatedwithrespecttoaregion'sshareinalltypesoftechnologies.Highlightedrangesare:1-1.25;1.25-1.5;1.5-1.75;1.75-2;>2.Table5.1Specialisation(RTA)ofglobalinnovationcentresbyLCEtechnologyfields,2010-2019End-usetechnologiesNo.ofIPFs2010-2019EPCUSJPKRCNBuilding342441.170.840.831.011.08Chemicalandoil143081.171.430.590.620.79Metalmineral118891.321.090.870.550.65Agriculture29051.071.050.570.800.99Consumerproducts176720.930.641.332.020.56Electricvehicles373731.010.761.671.250.44Otherroadvehicles304851.341.041.360.660.18Railways7101.720.790.590.231.26Aviation125501.512.380.170.120.11Maritimeandwaterways9661.390.641.061.440.25ICT240930.511.320.741.531.81Note:theRTAiscalculatedwithrespecttoaregion'sshareinalltypesoftechnologies.Highlightedrangesare:1-1.25;1.25-1.5;1.5-1.75;1.75-2;>2.EnablingtechnologiesNo.ofIPFs2010-2019EPCUSJPKRCNCCUS41951.181.500.740.860.22Batteries517370.570.591.712.220.86Hydrogenandfuelcells188200.920.851.491.470.28Smartgrid99340.991.191.060.900.73Othergrid&storage115701.230.921.170.900.83Note:theRTAiscalculatedwithrespecttoaregion'sshareinalltypesoftechnologies.Highlightedrangesare:1-1.25;1.25-1.5;1.5-1.75;1.75-2;>2.58BacktocontentsBOX7PatentingactivitiesinfossilfuelsversusLCEsupplytechnologiesTheidentificationofIPFsrelatedtofossilfueltechnologies(Annex2)providesaparticularlyrelevantbenchmarkfortrendsinLCEsupplytechnologies.WhilethereremainregionaldifferencesintherelativestrengthsofLCEandfossilfuelpatenting,theglobaltrendinfossilfuelpatentinginrecentyearshasbeendownwards.Since2015,fossilfuelpatentingactivityhasdeclinedforfourstraightyearsglobally,anoutcomethathasonlyoneprecedentsince1900andthatwaspriortothesecondWorldWar(Figure5.2).Inthe1940s,theannualnumberofIPFsinthisareawasaround150timeslessthantoday,makingtherecentdropinpatentingmuchmoresignificantinabsoluteterms.ItisallthemoresignificantgiventhatLCEtechnologypatentingactivityhasrisenthepastthreeyears,whilethatforfossilfuelshasfallen.Unlessthereisasuddenuptickinfossilfuelpatentinginthenearfuture,itappearspossiblethatrapidannualgrowthsince1995–averagingover8%peryear-hasendedwithahistoricpeakof9000IPFsperyear.ItcannotyetbeknownwhetherthisreflectslessspendingonfossilfuelsupplyR&D(forpublicspendingseeFigure4.1),orlowerincentivestopatenttechnologiesinthecurrentuncertainmarketoutlookforfossilfuels.Figure5.2Long-termtrendofpatentinginfossilfuelstechnologies,1945-201990008000700060005000400030002000100001945194919531957196119651969197319771981198519891993199720012005200920132017/19Growthrate(rightaxis)CountofIPFsSource:EuropeanPatentOffice1.210.80.60.40.20-0.2-0.459BacktocontentsAsreportedinFigure5.3,patentingactivitiesinfossilfuelswerebelowthoseinLCEsupplyinmajorinnovationcentresbetween2000and2019,withthemajorexceptionoftheUS.FossilfueltechnologyishardlypresentinR.Korea'sandJapan'spatentingtechnologymix,butremainsanimportantpartofenergyinnovationactivitiesintheotherinnovationcentres.InEurope,JapanandR.Korea,innovationinfossilfueltechnologiesstagnatedafter2010,whileLCEtechnologiesexperiencedfastgrowth.Theresultinggapspersistedafterwards,despitethedeclineinthenumberofIPFsrelatedtoLCEsupplyfrom2015to2019.P.R.Chinashowedasteadyincreaseinbothtypesoftechnologiesfrom2000to2019,withasignificantlylargervolumeofIPFsinLCEsupply.TheUSstandsoutduetoitssignificantlylargervolumeofpatentinginfossilfueltechnologyduringtheentireperiodofanalysis.AfastergrowthofIPFsinLCEsupplycausedconvergencebetween2000and2014.AsteepdropinthenumberofIPFsinLCEsupplytechnologiesthenfurtherwidenedthegapbetween2015and2019,accompaniedbyasignificantincreaseofIPFsinfossilfueltechnologies.Figure5.3GrowthofIPFsinfossilfuelversusLCEsupplytechnologiesbyglobalinnovationcentres,2000-2019140001200010000800060004000200002000-20042005-20092010-20142015-20192000-20042005-20092010-20142015-20192000-20042005-20092010-20142015-20192000-20042005-20092010-20142015-20192000-20042005-20092010-20142015-2019EPCJapanUSR.KoreaP.R.ChinaFossilLCEsupplySource:EuropeanPatentOffice60Backtocontents5.1.1.FocusonEuropeLCEinnovationincreasedverysignificantlyinallleadingEuropeancountriesafter2010(Figure5.4),andaccountedforabout10%ofallpatentingactivitiesinmostcountriesduringthefollowingdecade.ItislargelydominatedbyGermany,whichalonecontributedabout11.6%ofglobalIPFsbetween2010and2019.Interestingly,DenmarkalsoshowsaparticularlyhighLCEshareofpatents,whichindicatesastrongspecialisationinthesetechnologies.Allcountries,exceptSweden,registeredadropin2015-2019comparedwiththepreviousperiod.TherearesomenotableexamplesofextremespecialisationinLCEsupplysub-categories.Denmark'sfocusonwindtechnologiesisthemostevidentexample(Table5.2).Spainisalsonotableinanumberofdomains(wind,solarthermal,hydroelectricandoceantechnologies,fuelfromwaste);theUKinoceanandhydroelectrictechnologies,andAustriainhydroelectricandsolarthermaltechnologies.Europeancountrieswithanactiveoilandgasindustry,suchastheUK,Denmark,theNetherlandsandFrance,alsospecialiseinfossilfuelsupplytechnologiesatasimilarhighleveltoLCEtechnologies.NationalspecialisationsinLCEend-usetechnologiesfollowstheimportanceoftheend-usesectorsinthatcountry'seconomy.Austrianspecialisationinrailwayswouldfitthispattern,aswouldFrenchspecialisationinrailwaysandaeronautics,andDutchspecialisationinagriculture.However,othercasesarelesseasilyexplicableinsuchterms(e.g.Denmarkinconsumerproducts).ForLCEenablingtechnologies,DutchspecialisationinCCUSstandsout,asdoesDenmark’sspecialisationinothertechnologiesthatrelatetothestorage(e.g.capacitorsandthermalstorage),transmissionanddistributionofelectricpower.Figure5.4GrowthofIPFsinLCEtechnologiesinEuropeancountries,2000-20191800016200144001260010800900072005400360018000DEFRUKITNLSEDKCHATESLCEIPFsShareofLCEinallIPFs2000-20042005-20092010-20142015-2019Source:EuropeanPatentOffice25%20%15%10%5%0%61BacktocontentsEnergysupplyATCHDEDKESFRITNLSEUKSolarPV0.601.090.950.311.100.870.870.880.300.72Solarthermal2.562.441.571.316.461.422.400.960.900.85Wind1.110.581.8328.915.650.650.911.570.721.82Geothermal1.882.561.391.571.861.081.931.252.370.77Hydro2.801.241.040.652.421.601.500.991.082.55Ocean0.440.320.651.613.561.791.161.222.124.18Fuelfromwaste1.760.701.393.632.041.491.432.341.641.26Bioenergy0.840.440.724.141.861.200.902.561.440.97Combustion1.562.781.491.270.701.141.690.801.801.04Nuclear0.140.430.590.110.782.890.540.201.410.93Fossilfuels0.750.290.632.010.521.350.671.690.662.19Note:theRTAiscalculatedwithrespecttoaregion'sshareinalltypesoftechnologies.Highlightedrangesare:1-1.25;1.25-1.5;1.5-1.75;1.75-2;>2.Table5.2Specialisation(RTA)oftop10EPCcountriesbyLCEtechnologyfields,2010-2019End-usetechnologiesATCHDEDKESFRITNLSEUKBuilding2.071.080.961.741.230.971.532.430.811.11Metalandmineral1.791.051.550.501.311.221.030.641.331.15Chemicalandoil0.800.900.932.471.371.241.152.430.571.05Agriculture0.591.170.591.412.221.091.312.470.711.01Consumerproducts0.770.640.824.231.050.881.271.501.281.41Electricvehicles1.130.371.620.080.431.070.490.261.170.61Otherroadvehicles1.440.461.850.810.411.441.140.351.440.98Railways6.541.141.950.000.183.171.460.670.480.53Aviation0.250.501.220.201.604.070.480.200.522.96Maritimeandwaterways0.770.640.824.231.050.881.271.501.281.41ICT0.180.190.270.290.310.430.190.412.420.95Note:theRTAiscalculatedwithrespecttoaregion'sshareinalltypesoftechnologies.Highlightedrangesare:1-1.25;1.25-1.5;1.5-1.75;1.75-2;>2.EnablingtechnologiesATCHDEDKESFRITNLSEUKCCUS0.961.130.931.181.361.590.762.510.751.33Batteries0.800.290.920.110.220.630.200.130.240.37Hydrogenandfuelcells1.160.561.081.540.631.180.480.510.261.13Smartgrid1.160.561.081.540.631.180.480.510.261.13Othergridandstorage1.130.991.312.261.471.290.650.581.451.56NNote:theRTAiscalculatedwithrespecttoaregion'sshareinalltypesoftechnologies.Highlightedrangesare:1-1.25;1.25-1.5;1.5-1.75;1.75-2;>2.62BacktocontentsBOX8InternationalR&DcollaborationClimatechangeisaglobalchallenge,sosharingsomeoftheburdenandopportunitiesbetweencountrieswillleadtomoretechnologicalprogressinternationally.IPFsoriginatingfrominternationalteamsofinventorsillustrateexistingcross-countryco-operationforthedevelopmentofLCEtechnologies.Co-operationcanaccelerateR&DeffortsmadebyleadinginnovationcentresandenableothercountriestomorerapidlyabsorbandexploitLCEtechnologies.Theshareofco-inventedIPFsinLCEtechnologiesindicatestherespectivedegreeofinvolvementofleadinginnovationcentresininternationalR&Dcollaboration.Itrevealsastrikingcontrastbetweentherelativelyhighshareofinternationalco-inventionsintheUSandEuropeandthemuchlowerfiguresreportedforAsia.Between2015and2019,about13%oftheIPFsoriginatingfromtheUS,GermanyandFrancestemmedfrominternationalcollaboration,evenexceeding22%intheUK.Moreover,theshareofinternationalco-inventionshasincreasedovertimeinallthesecountries,withtheexceptionofFrance,whereithasremainedconstantatarelativelyhighlevel.Incontrast,JapanandR.KoreaaremuchlessengagedininternationalR&Dcollaboration,representinglessthan2%and3%respectivelyofinternationalco-inventionsin2015-2019.Afterarelativelyhighshare(13%)ofco-inventionsin2000-2009,co-inventionsinP.R.ChinaasashareofallLCEIPFsreachedjust7%in2015-2019.Althoughinternationalco-inventionsinP.R.ChinaandR.Koreahavebeenconstantsince2012,theyhavebeenoutpacedbyIPFswithnooverseascollaboration,indicatingself-sufficientnationalinnovationsystems,butalsopotentialmissedopportunitiesforsharedlearning.Figure5.5ShareofIPFsinleadinginnovationcentresthatareco-inventedwithothercountries,2000-201925%20%15%10%5%0%USDEUKFRJPKRCN2000-20042005-20092010-20142015-2019Source:EuropeanPatentOffice9.39.610.511.112.212.512.713.120.620.622.322.312.913.913.013.21.81.71.71.63.82.62.212.913.212.57.23.963BacktocontentsThehighshareofco-inventioninUSIPFsmeansthatthetopLCEtechnologyfieldsforinternationalcollaborationarelargelydeterminedbyUSparticipation.Asaresult,thetopfourfields–andsevenofthetopten–arefieldsinwhichtheUShasanRTA(CCUS,biofuels,chemicalandoilrefining,combustion,ICT,metalandmineralprocessing,andagriculture).Itisalsoapartnerinnearlyallofthemainbilateralcollaborationsreportedforthesefields;withthefieldofrailwaysbeingtheonlynoticeableexception.CanadaandIndiaalsohavehighsharesofco-invention,appearingeightandthreetimesrespectivelyamongthefivebiggestbilateralparingsforthetoptentechnologies.TheUSisthepartnerineachcase.In2005-2019,co-inventedIPFsrepresented29%ofallIPFsrelatedtoLCEinCanada,andupto45%inIndia.Inbothcases,thiswastheresultofasteadygrowthintheshareofco-inventedIPFsoverthepasttwodecades,fromaninitial20%(Canada)and26%(India)in2000.IncontrastwithEuropeancountries,Japan,R.KoreaandP.R.Chinaareonlyinvolvedinafewofthecollaborationsinthechart.Figure5.6Top10fieldsforshareofIPFsstemmingfrominternationalcollaboration(withtop5pairsofcollaboratingcountrieshighlightedineachfield),2000-201912%10%8%6%4%2%0%AgricultureMetalandmineralsprocessingFuelfromwasteRailwaysICTWindCombustionChemicalandoilrefiningBioenergyCCUSOtherCA-USDE-USUK-USIN-USFR-USNL-USDK-USIL-USCN-USBE-USCH-DEAT-DEDK-UKDE-RUDE-DKUK-JPCN-DECH-FRSource:EuropeanPatentOffice6.031.370.950.320.420.327.490.780.610.380.680.429.260.590.370.560.500.660.339.500.440.460.560.710.4110.170.470.740.840.770.355.680.280.250.190.210.206.850.380.390.350.260.206.790.520.450.270.260.520.440.490.616.980.327.781.070.580.590.320.790.36Annex65BacktocontentsAnnex1CartographyofLCEtechnologiesThisannexprovidesadescriptionoftheLCEcartographyusedinthestudytoidentifyIPFsthatconstitutethebuildingblocksofLCEtechnologies.Itisbasedonarigorousselectionandre-organisationofdifferentsectionsofEPO’sdedicatedclassificationschemesforclimatechangemitigationtechnologies(Y02scheme)andsmartgridstechnologies(Y04Sscheme).Forthepurposeofthestudy,theseY02/Y04Sdatahavebeenaggregatedintothreemainsectors,namely“LCEsupplytechnologies”,“enablingtechnologies”and“end-usetechnologies”,eachofwhicharesubdividedintoseveraltechnologyfields.TableA1belowprovidesthedetailsofthesesubdivisionsaswellasthecorrespondingY02/Y04Scodes.Low-carbonenergysupplyWindY02E10/70/LOWSolarSolarPVY02E10/50/LOWSolarthermalY02E10/40/LOWOthersolarY02E10/60OtherrenewablesGeothermalenergyY02E10/10/LOWHydroFY02E10/20/LOWMarineY02E10/30/LOWOtherY02E10/00Technologiesfortheproductionoffuelofnon-fossiloriginBiofuelsY02E50/10FuelfromwasteY02E50/30OtherY02E50/00CombustiontechnologieswithmitigationpotentialY02E20/00/LOWEnergygenerationofnuclearorigin(electricity)Y02E30/00/LOWEnablingandcross-cuttingenergysystems(enablingtechnologies)CCUSY02C20/00/LOWBatteriesY02E60/10HydrogenandfuelcellsY02E60/30/LOWOtherY02E60/00Y02E60/13ORY02E60/14ORY02E60/16ORY02E70/00/LOWORY02E60/60ORY02E40/00orY02E40/10,20,30,40,50,60SmartgridsY04SEnergysubstitutionandefficiencyinenduse(end-usetechnologies)BuildingsY02BProduction/chemicalandoilrefiningY02P20/00/LOWORY02P30/00/LOWProduction/metalandmineralsprocessingY02P10/00/LOWORY02P40/00/LOWProduction/otherAgricultureY02P60/00/LOWConsumerproductsY02P70/00lowOtherproductionY02P80/00/LOWORY02P90/00/LOWTransportation/electricvehiclesandEVinfrastructureEVandinfrastructureY02T10/60/LOWORY02T10/92ORY02T90/10/LOWFuelcellsforroadvehiclesY02T90/40/LOWTransportation/otherroadtechnologiesY02T10/00ORY02T10/10/LOWORY02T10/80,82,84,86,88,90ORY02T90/00Othertransportation/aeronautics,maritimeandrailwaysAeronauticsY02T50/00/LOWMaritimeandwaterwaysY02T70/00/LOWRailwaysY02T30/00ComputingandcommunicationY02D10/00ORY02D30/00/LOWNote:Amarker“/LOW”hasbeenplacedattheendofsomeoftheCPCClassesabove;thisindicatesthatforeachoftheseCPCclasses,notonlytheclassitselfbutalsoitsrespectivesubclassesshouldbetakenintoaccountforthecorrespondingcartographylabel.TableA.1CartographyofLCEtechnologies66BacktocontentsAnnex2CartographyoffossilfueltechnologiesThisannexprovidesadescriptionofthenewcartographyusedinthestudytoidentifytheIPFsrelatedtofossilfueltechnologies.ItisbasedonarigorousselectionbyIEAandEPOexpertsofpatentdocumentsrelatedtothesupplyoffossilfuelenergy,fromupstreamoilandgasexplorationtoprocessing,transportanddistribution.ThestructureofthecartographyisindicatedinTableA2belowandthedetailsoftheidentificationmethodologyareavailableinaseparatedocumentthatwillbeavailableonepo.org/trends-energyandtheiea.li/patents-in-transitions.Level1Level2UpstreamConventionaloilandgasexplorationandextractionUnconventionaloilandgasexplorationandextractionCoalandsolidfuelsexplorationandminingProcessinganddownstreamOilrefiningGasconditioningSolidfuelconditioningCoal-to-gasCoal-to-liquidsandgas-to-liquidsHydrogenproductionfromhydrocarbonsTransmissionanddistributionLiquidfuelpipelinesGasfuelpipelinesLiquidfueltankershippingLiquefiedgaseousfuelshippingCompressedgaseousfuelshippingSolidfuelshippingRoadtankerliquidfuelstransportRoadtankergaseousfuelstransportRailtankerliquidfuelstransportRailtankergaseousfuelstransportRailsolidfueltransportUndergroundliquidfuelsstorageUndergroundgaseousfuelsstorageStationarytankstorageforliquidsStationarytankstorageforgasesSolidfuelstorageLiquidfueldistribution(gasstations)GaseousfueldistributionTableA.2Cartographyoffossilfuelsupplytechnologies67BacktocontentsEachIPFidentifiedasrelevanttoLCEtechnologiesisassignedtooneormoresectorsorfieldsofthecartography.Theanalysiscoverstheperiod2000-2019.ThedateattributedtoagivenIPFalwaysreferstotheyearoftheearliestpublicationwithintheIPF.ThegeographicdistributionofIPFsiscalculatedusinginformationabouttheoriginoftheinventorsdisclosedinthepatentapplications.Wheremultipleinventorswereindicatedonthepatentdocumentswithinafamily,eachinventorwasassignedafractionofthepatentfamily.Wherenecessary,thedatasetwasfurtherenrichedwithbibliographicpatentdatafromPATSTAT,theEPO’sworldwidepatentstatisticaldatabase,aswellasfrominternaldatabases,providingadditionalinformation,forexample,onthenamesandaddressesofapplicantsandinventors,orwhethertheapplicantisacompanyoraresearchorganisation.Inaddition,informationwasretrievedfromtheBureauvanDijkORBIS(2020version)databaseandusedtoharmoniseandconsolidateapplicantnamesandtheiraddresses.EachapplicantnamewasconsolidatedattheleveloftheglobalultimateowneraccordingtothelatestcompanydataavailableinORBIS.Ifthatinformationwasnotavailable,thedatawascleanedmanually.Annex3PatentmetricsThepropertyrightsgrantedthroughpatentsarestrictlyterritorial.Toprotectasingleinventioninmultiplemarkets,anumberofnational,regional,orinternationalpatentapplicationsmayberequired.Alargenumberofpatentapplications,therefore,doesnotnecessarilymeanalargenumberofinventions.Amorereliablemeasureofinventiveactivityistocountinternationalpatentfamilies(IPFs),eachofwhichrepresentsauniqueinventionandincludespatentapplicationstargetingatleasttwocountries.Morespecif-ically,anIPFisasetofapplicationsforthesameinventionthatincludesapublishedinternationalpatentapplication,apublishedpatentapplicationataregionalpatentofficeorpublishedpatentapplicationsattwoormorenationalpatentoffices.TheregionalpatentofficesaretheAfricanIntellectualPropertyOrganization(OAPI),theAfricanRegionalIntellectualPropertyOrganization(ARIPO),theEurasianPatentOrganization(EAPO),theEuropeanPatentOffice(EPO)andthePatentOfficeoftheCooperationCouncilfortheArabStatesoftheGulf(GCCPO).IPFsareareliableandneutralproxyforinventiveactivitybecausetheyprovideadegreeofcontrolforpatentqualityandvaluebyonlyrepresentinginventionsdeemedimportantenoughbytheapplicanttoseekprotectioninternationally(Dernisetal.,2001;Harhoffetal.,2003;VanPottelsbergheandvanZeebroeck,2008;FrietschandSchmoch,2010;Martinez,2011;Squicciarinietal.,2013;Dechezleprêtreetal.,2017).Arelativelysmallproportionofapplicationsmeetthisthreshold,andthisvarieswidelyacrosscountryofresidenceoftheinventorandotherimportantvectors.Assuch,thisconceptenablesacomparisonoftheinnovativeactivitiesofcountries,fieldsandcompaniesinternationally,sinceitcreatesasufficientlyhomogeneouspopulationofpatentfamiliesthatcanbedirectlycomparedwithoneanother,therebyreducingthenationalbiasesthatoftenarisewhencomparingpatentapplicationsacrossdifferentnationalpatentoffices.68BacktocontentsAnnex4ClusteranalysisToidentifytheregionalinnovationclustersinenablingtechnologies(Box5),thedensity-basedDBSCANalgorithm(Esteretal.1996)wasappliedtothegeocodedinventorlocationsforallrelevantIPFs.Thisalgorithmgroupstogetherlocationpointswithadenseneighbourhoodintoclustersandhastwoimportantadvantages.First,itisabletorepresentclustersofarbitraryshape,andsecond,itlabelslocationpointsthatdonotbelongtoanyclusterasnoise.Thisallowstheanalysistofocusontheidentifiedinnovationclustersanddismissinventoraddressesoutsidesaidclusters.ForeachIPF,thelocationsofalluniqueinventor-addresspairslistedinoneofthepatentapplicationsinthepatentfamilywereselectedandrepresentedasseparatedatapoints.Noduplicatesofanyaddresswereremoved,i.e.twodifferentinventorshavingthesameaddressproducedtwoseparatepointsinthesamelocation.Equally,ifthesameinventorwaslistedinmultiplepatentapplications,thenmultiplepointswereplacedinthesamelocation.TheDBSCANclusteringalgorithmwasthenappliedtothesetofpoints.Twoparameterswererequiredasinputstothealgorithm:theepsradius,whichdefinedtheradiusoftheneighbourhoodaroundeachpoint(i.e.eachinventoraddress),andtheminimumnumberofpointsintheneighbourhoodofapointtoconsideritasacorepoint,i.e.apointinahigh-densityregion.Thecharacteristicsoftheclustersfoundbythealgorithmdependdirectlyontheselectionofthesetwoparameters.69BacktocontentsReferencesDechezleprêtre,A.,Ménière,Y.,andM.Mohnen,“Internationalpatentfamilies:fromapplicationstrategiestostatisticalindicators”,2017.Scientometrics,111(2):793-828.Dernis,H.,Guellec,D.,andvanPottelsberghe,B.,“Usingpatentcountsforcross-countrycomparisonoftechnologyoutput”,2001.STIReview(OECD),27,129–146.EPOandIEA,“Innovationinbatteriesandelectricitystorage”,2020.Retrievedfromepo.org/trends-batteriesEPO,“PatentsandtheFourthIndustrialRevolution”,2020.Retrievedfromepo.org/trends-4IREster,M.,etal.,“Adensity-basedalgorithmfordiscoveringclustersinlargespatialdatabaseswithnoise”,1996.Publishedin:Proceedingsofthe2ndinternationalconferenceonknowledgediscoveryanddatamining,August1996,Portland,OR,226–231.Frietsch,R.andSchmoch,U.,“Transnationalpatentsandinternationalmarkets”,2010.Scientometrics,82(1),185-200.Hall,B.,“Istherearoleforpatentsinthefinancingofnewinnovativefirms?”,IndustrialandCorporateChange,Volume28,Issue3,June2019,Pages657–680.Retrievedfromhttps://doi.org/10.1093/icc/dty074Harhoff,D.,Scherer,F.M.andVopel,K.,“Citations,familysize,oppositionandthevalueofpatentrights”,2003.ResearchPolicy,vol.32(8),pp.1343-1363.IEA,“ETPSpecialReportonCleanEnergyInnovation”,2020a.Retrievedfromhttps://www.iea.org/reports/clean-energy-innovationIEA,“SustainableRecovery”,2020b.Retrievedfromhttps://www.iea.org/reports/sustainable-recoveryIEA,“TrackingCleanEnergyProgress.Aframeworkforusingindicatorstoinformpolicy”,2020c.Retrievedfromhttps://www.iea.org/topics/tracking-clean-energy-progressIEA,“ETPCleanEnergyTechnologyGuide”,2020d.Retrievedfromhttps://www.iea.org/articles/etp-clean-energy-technology-guideIEA,“WorldEnergyOutlook2020”.2020e.Retrievedfromhttps://www.iea.org/reports/world-energy-outlook-2020IEA,“EnergyTechnologyRD&DBudgets2020”,2020f.Retrievedfromhttps://www.iea.org/reports/energy-technology-rdd-budgets-2020IEA,“WorldEnergyInvestment2020”,2020g.Retrievedfromhttps://www.iea.org/reports/world-energy-investment-2020IEA,“EnergyTechnologyPerspectives2020”.2020h.Retrievedfromhttps://www.iea.org/reports/world-energy-outlook-2020IEA,“WorldEnergyOutlook2019”.2019a.Retrievedfromhttps://www.iea.org/reports/world-energy-outlook-201970BacktocontentsIEA,“TheFutureofHydrogen-Seizingtoday’sopportunities”,2019b.Retrievedfromhttps://www.iea.org/reports/the-future-of-hydrogenIEA,“Indialaunchessupportforinnovativecleanenergystart-upsasglobalinvestmentsbeginrecoveryfrom2020”,2021.Retrievedfromhttps://www.iea.org/commentaries/india-launches-support-for-innovative-clean-energy-start-ups-as-global-investments-begin-recovery-from-2020Martinez,C.,“Patentfamilies:whendodifferentdefinitionsreallymatter?”,2011.Scientometrics,86(1),39-63.Squicciarini,M.,Dernis,H.andCriscuolo,C.,“MeasuringPatentQuality:IndicatorsofTechnologicalandEconomicValue”,2013.OECDScience,TechnologyandIndustryWorkingPapers,2013/03,OECDPublishing.http://dx.doi.org/10.1787/5k4522wkw1r8-enVanPottelsberghe,B.andvanZeebroeck,N.,“ABriefHistoryofSpaceandTime:theScope-YearIndexasAPatentValueIndicatorBasedonFamiliesandRenewals”,2008.Scientometrics75(2),319-338.Veefkind,V.,etal,“AnewEPOclassificationschemeforclimatechangemitigationtechnologies”,2012.Retrievedfromhttps://www.sciencedirect.com/science/article/pii/S0172219011001979.71Publishedandeditedby©2021EPOandOECD/IEAAuthorsYannMénière,CédricRossatto,IljaRudyk,JavierPoseRodríguez,MarBonoraOrtega,andteamofexpertexaminersledbyVictorVeefkind(EPO)NickJohnstone,SimonBennett(IEA)DesignPDCommunication(EPO)Thereportcanbedownloadedfrom:epo.org/trends-energyiea.li/patents-in-transitionsPublishedandeditedby©2021EPOandOECD/IEAepo.orgiea.orgThefullreportcanbedownloadedfrom:epo.org/trends-energyiea.li/patents-in-transitionsISBN:978-3-89605-270-4

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

碳中和
已认证
内容提供者

碳中和

确认删除?
回到顶部
微信客服
  • 管理员微信
QQ客服
  • QQ客服点击这里给我发消息
客服邮箱