碳经济学:重新设想欧洲能源系统(英)-高盛VIP专享VIP免费

Goldman Sachs does and seeks to do business with companies covered in its research reports. As a
result, investors should be aware that the firm may have a conflict of interest that could affect the
objectivity of this report. Investors should consider this report as only a single factor in making their
investment decision. For Reg AC certification and other important disclosures, see the Disclosure
Appendix, or go to www.gs.com/research/hedge.html. Analysts employed by non-US affiliates are not
registered/qualified as research analysts with FINRA in the U.S.
The Goldman Sachs Group, Inc.
EQUITY RESEARCH | July 20, 2022 | 5:16 PM BST
Michele Della Vigna, CFA
+44 20 7552-9383
michele.dellavigna@gs.com
Goldman Sachs International
Zoe Clarke
+44 20 7051-2816
zoe.clarke@gs.com
Goldman Sachs International
Re-Imagining Europe's Energy System
Can Europe strengthen its energy independence in the face of the Russia-Ukraine
crisis without compromising its climate change goals? We use our Carbonomics
framework to model the evolution of Europe’s energy system towards a lower
cost, lower imports, lower carbon system. Our analysis leads to five main
conclusions:
1) Cumulative infrastructure investments of €10 trn will be needed by 2050 for
Europe's energy transformation, reaching the equivalent of >2% of GDP by 2030.
This incremental investment is fully offset by a €10 trn reduction in net energy
imports, reducing the net energy import dependency rate of the region from
58% to 15% by 2050. Efficient financing and a reliable regulatory environment are
key to bridge the 10-year time gap between the two flows.
2) Europe's new energy system would improve affordability. We estimate the
direct energy cost to the average European consumer could be reduced by
c.40% vs 2021 and c.60% from the peak (2022) owing to improved energy
efficiency, lower cost LNG, cheaper renewables and better regional connectivity.
3) Natural gas remains key to Europes energy supply for the next two
decades and we believe it is in Europes interest to sign up to an additional 40
mtpa of 15-yr LNG contracts, and potentially up to another 50 mtpa of 10-yr
LNG contracts, to improve security of supply and drive a new cycle of LNG
construction. We identify 15 new LNG projects for a total of 155 mtpa that can
deliver gas to Europe at <$12/mcf.
4) Renewable power will be at the heart of Europe's future energy system, but
seasonality, heavy industry and transport will require a major green hydrogen
economy to complement the ecosystem, reaching 15% of Europe's final
energy mix long term.
5) An inter-connected European system of power networks and hydrogen
pipelines will be required to substitute hydrocarbon imports with clean energy
flows from low cost producers such as Iberia, parts of Southern Europe and
the UK to the rest of Europe.
Carbonomics
Bepul Shahab
+44 20 7774-3694
bepul.shahab@gs.com
Goldman Sachs International
Alberto Gandolfi
+39 02 8022-0157
alberto.gandolfi@gs.com
Goldman Sachs Bank Europe SE - Milan branch
Note: The following is a redacted version of the original report published July 20, 2022 [63 pgs].
Europes Energy Evolution - Thesis in charts 3
PM Summary: Re-imagining Europes energy system – lower cost, lower imports, lower carbon 7
Re-Inventing Europes energy system: A sectoral modeling approach consistent with the de-carbonization
ambitions of the region 10
Re-Inventing Europes energy system: A more secure, sustainable and resilient energy system 12
The investment path: €10 tn investment opportunity, largely recouped by lower net energy imports 21
A more affordable energy system: c.40% reduction in the average European direct energy cost per capita vs
2021 and c.60% vs the peak 25
Power generation: At the heart of Europe’s energy evolution, affordability and security 26
Buildings: Electrification and efficiency likely to govern the energy evolution path 29
Transportation: The rise of NEVs and alternative fuels drive differing energy evolution profiles across
transport modes 31
Industry: A new industrial technology revolution centered around efficiency, electrification, hydrogen, circular
economy and CCUS 39
Europes energy evolution and the need for molecular energy sources: Hydrogen and Bioenergy 43
The role of hydrocarbons: Signing LNG contracts is consistent with Europe’s de-carbonization ambitions and
critical to its security and diversification of energy supply 50
Appendix: Glossary of key terminology terms 58
Disclosure Appendix 59
20 July 2022 2
Goldman Sachs Carbonomics
Table of Contents
Europe’s Energy Evolution - Thesis in charts
Exhibit 1: We model Europe’s energy evolution, consistent with the
region’s ‘Fit for 55’ and net zero by 2050 ambitions...
EU27+UK Gross available energy (PJ)
Exhibit 2: ...driving overall a more secure, independent energy
system, with rising domestic energy production and lower energy
import reliance bringing the energy dependency rate to 15%.
EU27+UK Gross available energy (PJ)
-
10,000
20,000
30,000
40,000
50,000
60,000
70,000
80,000
90,000
EU27+UK Gross available energy (PJ)
Solid fossil fuels - domestic Solid fossil fuels - net imports
Oil and petroleum products - domestic Oil and petroleum products - net imports
Natural gas - domestic Natural gas - net imports
RES power domestic RES power domestic for hydrogen
RES imports (hydrogen) Bioenergy - domestic
Nuclear heat - domestic Other - domestic
57%
49%
28%
15%
0%
10%
20%
30%
40%
50%
60%
70%
-
10,000
20,000
30,000
40,000
50,000
60,000
70,000
80,000
90,000
2003
2005
2007
2009
2011
2013
2015
2017
2019
2021
2023
2025
2027
2029
2031
2033
2035
2037
2039
2041
2043
2045
2047
2049
EU27+UK Gross available energy
(PJ)
Gross available energy domestic Gross available energy net imports
Dependency rate
Source: Eurostat (historical), Goldman Sachs Global Investment Research Source: Eurostat (historical), Goldman Sachs Global Investment Research
Exhibit 3: We estimate €10 trn of infrastructure investments are
required for Europe to re-invent its energy system to net zero..
Cumulative infrastructure investments for EU28 net zero by 2050 (€tn)
Exhibit 4: ..reaching >2% of GDP by 2030 and peaking by mid-2030s.
Annual infrastructure investments for EU27+UK by 2050 (€bn)
1.3
1.2
1.0
1.5
0.5
0.6 0.3 0.4 0.3 0.6
1.0
0.9 0.01
10.1
-
2
4
6
8
10
12
RES
power
Power
networks
Energy
storage
(batteries)
Transp.
charging
and
refueling infra
Bioenergy
plants
H2
prod
plants
H2
strorage,
transport,
imports
infra
Buildings
heat
pumps
Buildings
efficiency
upgrades
Industrial
processes
incl.
CCUS
Nat.
sinks
Cum.
investments
to 2050
Cumulative investments for Europe on the
path to net zero by 2050 (€tn)
Solar PV
Onshore wind
Offshore wind
0.0%
0.5%
1.0%
1.5%
2.0%
2.5%
-
100
200
300
400
500
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
Annual infrastructure investments for
Europe's path to net zero (€bn)
Industrial plant upgrades (incl. CCUS) Hydrogen production, storage, transport
Natural sinks Bioenergy plants
Transport charging and refueling stations Insulation retrofits and other efficiency
Heat pumps Power generation
Energy storage (batteries) Power networks
Annual investments as a % of GDP (RHS)
Source: Goldman Sachs Global Investment Research Source: Goldman Sachs Global Investment Research
Exhibit 5: The infrastructure investment can be largely recouped
through lower net energy imports, yet with a decade lag...
EU27+UK annual required infrastructure investments vs net annual
energy import savings (€bn)
Exhibit 6: ...contributing to a material improvement in the balance
of payments for the region.
EU27+UK net energy product imports value (€bn)
-
100
200
300
400
500
600
700
800
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
EU27+UK Infrastructure
investments required vs net energy
imports savings (€bn)
Savings from energy imports reduction Required infrastructure investments
Net energy imports
savings: €9.8 tn
Required infrastructure
investments: € 10 tn
-1,200
-1,000
-800
-600
-400
-200
0
2017
2019
2021
2023
2025
2027
2029
2031
2033
2035
2037
2039
2041
2043
2045
2047
2049
EU27+UK Net energy products
imports value (€ bn)
Petroleum oil Natural gas Solid fossil fuels Clean hydrogen
Source: Goldman Sachs Global Investment Research Source: Eurostat (historical), Goldman Sachs Global Investment Research
20 July 2022 3
Goldman Sachs Carbonomics
GoldmanSachsdoesandseekstodobusinesswithcompaniescoveredinitsresearchreports.Asaresult,investorsshouldbeawarethatthefirmmayhaveaconflictofinterestthatcouldaffecttheobjectivityofthisreport.Investorsshouldconsiderthisreportasonlyasinglefactorinmakingtheirinvestmentdecision.ForRegACcertificationandotherimportantdisclosures,seetheDisclosureAppendix,orgotowww.gs.com/research/hedge.html.Analystsemployedbynon-USaffiliatesarenotregistered/qualifiedasresearchanalystswithFINRAintheU.S.TheGoldmanSachsGroup,Inc.EQUITYRESEARCHJuly20,20225:16PMBSTMicheleDellaVigna,CFA+44207552-9383michele.dellavigna@gs.comGoldmanSachsInternationalZoeClarke+44207051-2816zoe.clarke@gs.comGoldmanSachsInternationalRe-ImaginingEurope'sEnergySystemCanEuropestrengthenitsenergyindependenceinthefaceoftheRussia-Ukrainecrisiswithoutcompromisingitsclimatechangegoals?WeuseourCarbonomicsframeworktomodeltheevolutionofEurope’senergysystemtowardsalowercost,lowerimports,lowercarbonsystem.Ouranalysisleadstofivemainconclusions:1)Cumulativeinfrastructureinvestmentsof€10trnwillbeneededby2050forEurope'senergytransformation,reachingtheequivalentof>2%ofGDPby2030.Thisincrementalinvestmentisfullyoffsetbya€10trnreductioninnetenergyimports,reducingthenetenergyimportdependencyrateoftheregionfrom58%to15%by2050.Efficientfinancingandareliableregulatoryenvironmentarekeytobridgethe10-yeartimegapbetweenthetwoflows.2)Europe'snewenergysystemwouldimproveaffordability.WeestimatethedirectenergycosttotheaverageEuropeanconsumercouldbereducedbyc.40%vs2021andc.60%fromthepeak(2022)owingtoimprovedenergyefficiency,lowercostLNG,cheaperrenewablesandbetterregionalconnectivity.3)NaturalgasremainskeytoEurope’senergysupplyforthenexttwodecadesandwebelieveitisinEurope’sinteresttosignuptoanadditional40mtpaof15-yrLNGcontracts,andpotentiallyuptoanother50mtpaof10-yrLNGcontracts,toimprovesecurityofsupplyanddriveanewcycleofLNGconstruction.Weidentify15newLNGprojectsforatotalof155mtpathatcandelivergastoEuropeat<$12/mcf.4)RenewablepowerwillbeattheheartofEurope'sfutureenergysystem,butseasonality,heavyindustryandtransportwillrequireamajorgreenhydrogeneconomytocomplementtheecosystem,reaching15%ofEurope'sfinalenergymixlongterm.5)Aninter-connectedEuropeansystemofpowernetworksandhydrogenpipelineswillberequiredtosubstitutehydrocarbonimportswithcleanenergyflowsfromlowcostproducerssuchasIberia,partsofSouthernEuropeandtheUKtotherestofEurope.CarbonomicsBepulShahab+44207774-3694bepul.shahab@gs.comGoldmanSachsInternationalAlbertoGandolfi+39028022-0157alberto.gandolfi@gs.comGoldmanSachsBankEuropeSE-MilanbranchNote:ThefollowingisaredactedversionoftheoriginalreportpublishedJuly20,2022[63pgs].Europe’sEnergyEvolution-Thesisincharts3PMSummary:Re-imaginingEurope’senergysystem–lowercost,lowerimports,lowercarbon7Re-InventingEurope’senergysystem:Asectoralmodelingapproachconsistentwiththede-carbonizationambitionsoftheregion10Re-InventingEurope’senergysystem:Amoresecure,sustainableandresilientenergysystem12Theinvestmentpath:€10tninvestmentopportunity,largelyrecoupedbylowernetenergyimports21Amoreaffordableenergysystem:c.40%reductionintheaverageEuropeandirectenergycostpercapitavs2021andc.60%vsthepeak25Powergeneration:AttheheartofEurope’senergyevolution,affordabilityandsecurity26Buildings:Electrificationandefficiencylikelytogoverntheenergyevolutionpath29Transportation:TheriseofNEVsandalternativefuelsdrivedifferingenergyevolutionprofilesacrosstransportmodes31Industry:Anewindustrialtechnologyrevolutioncenteredaroundefficiency,electrification,hydrogen,circulareconomyandCCUS39Europe’senergyevolutionandtheneedformolecularenergysources:HydrogenandBioenergy43Theroleofhydrocarbons:SigningLNGcontractsisconsistentwithEurope’sde-carbonizationambitionsandcriticaltoitssecurityanddiversificationofenergysupply50Appendix:Glossaryofkeyterminologyterms58DisclosureAppendix5920July20222GoldmanSachsCarbonomicsTableofContentsEurope’sEnergyEvolution-ThesisinchartsExhibit1:WemodelEurope’senergyevolution,consistentwiththeregion’s‘Fitfor55’andnetzeroby2050ambitions...EU27+UKGrossavailableenergy(PJ)Exhibit2:...drivingoverallamoresecure,independentenergysystem,withrisingdomesticenergyproductionandlowerenergyimportreliancebringingtheenergydependencyrateto15%.EU27+UKGrossavailableenergy(PJ)-10,00020,00030,00040,00050,00060,00070,00080,00090,000EU27+UKGrossavailableenergy(PJ)Solidfossilfuels-domesticSolidfossilfuels-netimportsOilandpetroleumproducts-domesticOilandpetroleumproducts-netimportsNaturalgas-domesticNaturalgas-netimportsRESpowerdomesticRESpowerdomesticforhydrogenRESimports(hydrogen)Bioenergy-domesticNuclearheat-domesticOther-domestic57%49%28%15%0%10%20%30%40%50%60%70%-10,00020,00030,00040,00050,00060,00070,00080,00090,000200320052007200920112013201520172019202120232025202720292031203320352037203920412043204520472049EU27+UKGrossavailableenergy(PJ)GrossavailableenergydomesticGrossavailableenergynetimportsDependencyrateSource:Eurostat(historical),GoldmanSachsGlobalInvestmentResearchSource:Eurostat(historical),GoldmanSachsGlobalInvestmentResearchExhibit3:Weestimate€10trnofinfrastructureinvestmentsarerequiredforEuropetore-inventitsenergysystemtonetzero..CumulativeinfrastructureinvestmentsforEU28netzeroby2050(€tn)Exhibit4:..reaching>2%ofGDPby2030andpeakingbymid-2030s.AnnualinfrastructureinvestmentsforEU27+UKby2050(€bn)1.31.21.01.50.50.60.30.40.30.61.00.90.0110.1-24681012RESpowerPowernetworksEnergystorage(batteries)Transp.chargingandrefuelinginfraBioenergyplantsH2prodplantsH2strorage,transport,importsinfraBuildingsheatpumpsBuildingsefficiencyupgradesIndustrialprocessesincl.CCUSNat.sinksCum.investmentsto2050CumulativeinvestmentsforEuropeonthepathtonetzeroby2050(€tn)SolarPVOnshorewindOffshorewind0.0%0.5%1.0%1.5%2.0%2.5%-10020030040050020222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050AnnualinfrastructureinvestmentsforEurope'spathtonetzero(€bn)Industrialplantupgrades(incl.CCUS)Hydrogenproduction,storage,transportNaturalsinksBioenergyplantsTransportchargingandrefuelingstationsInsulationretrofitsandotherefficiencyHeatpumpsPowergenerationEnergystorage(batteries)PowernetworksAnnualinvestmentsasa%ofGDP(RHS)Source:GoldmanSachsGlobalInvestmentResearchSource:GoldmanSachsGlobalInvestmentResearchExhibit5:Theinfrastructureinvestmentcanbelargelyrecoupedthroughlowernetenergyimports,yetwithadecadelag...EU27+UKannualrequiredinfrastructureinvestmentsvsnetannualenergyimportsavings(€bn)Exhibit6:...contributingtoamaterialimprovementinthebalanceofpaymentsfortheregion.EU27+UKnetenergyproductimportsvalue(€bn)-10020030040050060070080020222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050EU27+UKInfrastructureinvestmentsrequiredvsnetenergyimportssavings(€bn)SavingsfromenergyimportsreductionRequiredinfrastructureinvestmentsNetenergyimportssavings:€9.8tnRequiredinfrastructureinvestments:€10tn-1,200-1,000-800-600-400-200020172019202120232025202720292031203320352037203920412043204520472049EU27+UKNetenergyproductsimportsvalue(€bn)PetroleumoilNaturalgasSolidfossilfuelsCleanhydrogenSource:GoldmanSachsGlobalInvestmentResearchSource:Eurostat(historical),GoldmanSachsGlobalInvestmentResearch20July20223GoldmanSachsCarbonomicsExhibit7:Renewableenergy(renewablepower,hydrogenandbioenergy)becomes>75%ofthetotalgrossavailableenergymixforEuropeby2050...EU27+UKGrossavailableenergymix(PJ)Exhibit8:...withpowersittingattheheartofEurope’senergyevolution,morethandoublingto2050...EU27+UKpowergenerationandmixovertime(TWh)0%20%40%60%200320052007200920112013201520172019202120232025202720292031203320352037203920412043204520472049EU27+UKGrossavailableenergymix(%)SolidfossilfuelsNaturalgasOilandpetroleumproductsNuclearheatRESpowerRESpowerforgreenhydrogenandhydrogenimportsBioenergy-1,0002,0003,0004,0005,0006,0007,0008,00020002002200420062008201020122014201620182020202220242026202820302032203420362038204020422044204620482050EU27+UKpowergeneration(TWh)Naturalgas(incl.othergases)SolidfossilfuelsOilandotherproductsNuclearHydroSolarWindBioenergyOtherRESOtherSource:Eurostat,GoldmanSachsGlobalInvestmentResearchSource:Eurostat(historical),GoldmanSachsGlobalInvestmentResearchExhibit9:...aselectrificationandrenewablescontributetoimprovedenergyefficiencyandmoreaffordableenergyfortheaverageEuropeanenergyconsumer.AverageEuropeandirectenergycostfortheconsumer(€/capita)Exhibit10:PowergenerationinEuropehasalreadystartedtotransformoverthepasttwodecades..EU27+UKpowergenerationmixovertime(%)020040060080010001200140016001800200920112013201520172019202120232025202720292031203320352037203920412043204520472049AverageEuropeandirectenergycostpercapitaassociatedwithfinalenergyconsumption(€/capita)Gasoline/dieselfuelcostNaturalgascostPowercostc.60%reductionfromthe2022peakc40%reductionvs2021c.36%reductionfromthe2022peakc.6%reductionvs20210%10%20%30%40%50%20002002200420062008201020122014201620182020202220242026202820302032203420362038204020422044204620482050EU27+UKpowergenerationmix(%)SolidfossilfuelsNaturalgas(incl.CCUSlongterm)OilandotherproductsHydroSolarWind(onshoreandoffshore)BioenergyOtherRESNuclearOtherSource:Eurostat,GoldmanSachsGlobalInvestmentResearchSource:Eurostat,GoldmanSachsGlobalInvestmentResearchExhibit11:..owingtoitsmorefavourablepositiononEurope’sde-carbonizationcostcurve,mostlyoccupyingthespectrumrequiring<$100/tnCO2..EuropeCarbonomicscostcurveofde-carbonizationExhibit12:..yetwenotethecriticalimportanceofenergystorage,inparticularseasonal(throughhydrogen),tosupportsuchasystemHydrogenconsumptionforEU27+UK(MtH2)-200-10001002003004005006007008009001,0001,1001,2001,3001,4001,5000.00.20.40.60.81.01.21.41.61.82.02.22.42.62.83.03.23.43.63.84.0Carbonabatementcost(US$/tnCO2eq)GHGemissionsabatementpotential(GtCO2eq)PowergenerationTransport(road,aviation,shipping)Industry(iron&steel,cement,chemicalsandother)Buildings(residential&commercial)Agriculture,forestry&otherlanduses(AFOLU)Non-abatableatcurrentconservationtechnologies0%25%50%75%100%020406080202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050%CleanhydrogenpenetrationHydrogenconsumptionforEU27+UK(MtH2)PowergenstorageChemicalfeedstockRefineriesIndustry-heatIndustry-steelTransport-internationalshipping(ammonia)Transport-internationalaviationTransport-domesticshippingTransport-domesticaviationTransport-railTransport-road(HDVs,buses)Blendingingrid%CleanhydrogenSource:GoldmanSachsGlobalInvestmentResearchSource:GoldmanSachsGlobalInvestmentResearch20July20224GoldmanSachsCarbonomicsExhibit13:OurmodelofEurope’senergyevolutionisconsistentwiththeambitionslaidoutin‘Fitfor55’(reducingemissionsbyc.55%vs1990)andnetzeroby2050..EUR27+UKnetGHGemissions(MtCO2eq)Exhibit14:..yetitisevidentthatnaturalgasisstillpivotalinthesystemfortwomoredecades..NaturalgasgrossenergyandfinalconsumptionforEU27+UK(PJ)-1,000-1,0002,0003,0004,0005,0006,00020002002200420062008201020122014201620182020202220242026202820302032203420362038204020422044204620482050EU27+UKGHGemissions(MtCO2eq)PowergenerationTransportIndustry,industrialwaste&otherfugitiveResidentialCommercialandpublicAgricultureInternationalmaritimebunkersInternationalaviation-2,0004,0006,0008,00010,00012,00014,00016,00018,00020,000200320052007200920112013201520172019202120232025202720292031203320352037203920412043204520472049NaturalgasgrossdemandamdfinalconsumptionforEU27+UK(PJ)TotalfinalconsumptionNon-energyconsumptionEnergyconsumptionGrossenergySource:Eurostat,EEA,GoldmanSachsGlobalInvestmentResearchSource:Eurostat,GoldmanSachsGlobalInvestmentResearchExhibit15:..whichimpliesthattheregionstillrequiresmaterialnaturalgasimportsto2040,especiallywhenconsideringtheRussiangasimportreductiontargets..EUR27+UKgrossnaturalgasdemandvssourcing(domestic,imports)Exhibit16:..leadingtoourestimateofc.40Mtpaofnew15-yrlong-termLNGcontractsrequirementuntil2040.Naturalgasdemandimpliedrequiredimports(bcm)-5,00010,00015,00020,000200320052007200920112013201520172019202120232025202720292031203320352037203920412043204520472049EU27+UKgrossrequirednaturalgas(PJ))RequiredLNGimportsRussiaimportsOtherpipelineimportsPrimarylocalproductionOtherchangeinstockGrossavailablenaturalgasdemandrequired2/3reductioninRussiangasimportsFeasibledemandrationingintheabsenceofanindustrialrecession100%reductioninRussiangasimports-5010015020025030035040045020192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050NaturalgasnetimportstoEU27+UK(bcm)ExistingLNGcontractsNewLNGcontractsalreadysignedSpotLNGRequiredLNGimportsTotalnaturalgasimportsrequiredPotentialforlong-term15-yearLNGcontractsc.40Mtpaofadditional15-yrLNGcontractscanbesignedSource:Eurostat,GoldmanSachsGlobalInvestmentResearchSource:Eurostat,GoldmanSachsGlobalInvestmentResearchExhibit17:Europe’soilconsumptiondeclineacceleratesmostlytowardstheendofthisdecade..Oilandoilproductsgrossenergyandfinalconsumption,EU27+UK(PJ)Exhibit18:..andweestimatethenextmajorcycleofrefiningclosureswilllikelyonlycomein2027,whentheutilisationratefallsbelowthehistoricalaverageEuropeanoilrefiningcapacity,throughput(LHS)andutilisationrate(RHS)-5,00010,00015,00020,00025,00030,00035,000200320052007200920112013201520172019202120232025202720292031203320352037203920412043204520472049Oilandoilproductsgrossdemandandfinalconsumption(PJ)TotalfinalconsumptionEnergyconsumptionNon-energyconsumptionGrossavailableenergy0%10%20%30%40%50%60%70%80%90%100%-1002003004005006007008009001000200320052007200920112013201520172019202120232025202720292031203320352037203920412043204520472049Europeanrefiningutilisation(%)mntoeEuropeanoilrefiningcapacity(mntoe)-LHSEuropenoilandoilproductsgrossavailableenergy(mntoe)-LHSEuropeanoilrefiningthroughput(mntoe),LHSEuropeanrefiningutilisation-RHSSource:Eurostat,GoldmanSachsGlobalInvestmentResearchSource:Eurostat,GoldmanSachsGlobalInvestmentResearch20July20225GoldmanSachsCarbonomicsReferencetotheEuroperegionthroughoutthisreportreferstotheEU27countriesplustheUK(previouslyreferredtoasEU28),unlessotherwiseindicated.Exhibit19:ThemapofenergyflowsistransformedbyemerginglowcostrenewablesandgreenhydrogenexportersincludingIberia,partsofSouthernEurope(SouthernFrance,Italy,Greece)andtheUK(wind).LCOEforsolar,onshorewindandoffshorewind,LCOHforgreenhydrogenandpopulationdensityforkeyEuropeanregionsLCOEsareestimatedatthecountryaveragelevel,acknowledgingthatdifferentpartsofaregionwillhavevarioussolar,windandLCOEprofiles.Weuseconsistently7%costofcapitalforsolarandonshorewind,9%costofcapitalforoffshore,8%costofcapitalforgreenhydrogen.Populationdensitydataarefor2019.Source:Eurostat(populationdensity),GoldmanSachsGlobalInvestmentResearch20July20226GoldmanSachsCarbonomicsPMSummary:Re-imaginingEurope’senergysystem–lowercost,lowerimports,lowercarbonEurope’scurrentenergysystemisunsustainableonthreekeymetrics:costs(c.€980bnofnetenergyimportsin2022Eonourestimates),securityofsupply(58%energydependencyrate)andcarbonintensity(3.7GtCO2eqnetGHGemissionspa).OurutilitiesteamhasaddressedthedeepimpactontheEuropeanindustrialsystemandconsumerdisposableincomeofRussiangasflowscurtailmentsinthereport‘WhathappensifRussiangasflowsfalltozero:ourassessment’.Inthisreport,welookatEurope’sopportunitytoleverageonthecurrentchallengingenvironmenttobuildamoresustainableenergysystemforthefuture,improvingaffordability,balanceofpayments,securityofsupplyandcreatingdomesticemploymentinkeycleantechinnovationareas.WeuseourCarbonomicsframeworktomodeltheevolutionofEurope’senergysystemoverthecomingdecadesbysector,aimingforNetZeroCarbonby2050,throughapathofleastcost,maximizingdomesticproductionandthecontinent’senergyinterconnectivity.TheGSmodelforEurope’senergyevolutionisconsistentwithachievingnetzeroby2050fortheregionandwiththekeyambitionslaidoutbytheEuropeanCommissionaspartofthe‘Fitfor55’package(atleast55%netemissionsreductionby2030vs1990level,atleast40%renewableenergysourcesintheoverallenergymixby2030).Cumulativeinfrastructureinvestmentsof€10trnwillbeneededby2050forEurope’senergytransformation,reachingtheequivalentof>2%ofGDPby2030Weestimateatotalinfrastructureinvestmentopportunityof€10trnby2050forthetransformationofEurope’senergysystem(EU27+UK)onthepathtonetzerocarbon,implyinganaverageannualgreeninfrastructureinvestmentopportunityof€350bnpa.Wenotethatthisfigurefocusessolelyonincrementalinfrastructureinvestmentsanddoesnotincludemaintenanceandotherend-usecapex.Weestimatethatthisinfrastructureinvestmentcanbeentirelyrecoupedfromthesavingsofnetenergyimports.Ourmodelseesamaterialreductionintheenergydependencyrateoftheregion,fromc.58%currentlyto<50%by2030,<30%by2040andc.15%by2050.Weestimatethatcloseto€10tncanberecoupedfromlowernetenergyimportsby2050,sufficienttofullycovertheinfrastructureinvestmentsrequired,althoughwithadecadeoftimelag.Efficientfinancingandareliableregulatoryenvironmentarekeytobridgethistimegap.WefurthernotethatwhilsttheenergyindependenceofEuropewillimprovesubstantially,theregionwilllikelystillneedtoimportc.15%ofitsgrossenergyneeds,accountingforfossilfuelsusedasfeedstocks(suchasforchemicalsmanufacturing)andaroundhalfofthegreenhydrogenvolumesitrequires.ThisenergyevolutionwilllikelybeveryaccretivetotheoverallBalanceofPayments,evenwhenconsideringtherisingvolumesofimportedequipment.Weestimatethatincludingtheimpactofnetimportedcleantechequipment(mostlysolarpanelsandbatteries),c.75%oftheinfrastructureinvestmentscanberecouped,withc.€7.5trninnetimportssavings.20July20227GoldmanSachsCarbonomicsWeestimatethedirectenergycosttotheaverageconsumerinEuropecouldbereducedbyc.40%longtermvs2021andc.60%fromthepeak(2022E)Improvedenergyefficiency,butalsolowercostlong-termLNGcontracts,cheaperrenewablepowerandbetterseasonalitymanagementthroughbatteriesandhydrogencansubstantiallyreducetheEuropeanconsumer’senergyspendinginthelongterm.WeestimatethatthedirectenergycosttotheaverageconsumerinEuropecouldfallbyc.40%longtermvs2021andc.60%fromthepeak(2022E).OuranalysisfocusesonthedirectcosttotheaverageEuropeanenergyconsumeroftheelectricity,fuelandgasthattheyuseintheirresidentialbuildingsandfortheirpassengervehicles,calculatedattheretailprice,includingallrelevanttaxesandlevies.NaturalgasremainskeytoEurope’senergysupplyforthenexttwodecadesandwebelieveitisintheinterestofEuropetosignnewlong-termLNGcontractstoimprovesecurityofsupplyNaturalgasremainsacorepartoftheEuropeanenergysystemforanother20years,inouranalysis,beingthemostversatileenergysourcefortheregionwithabroaduseacrossapplications.Despiteitskeyimportanceacrossindustries,powergenandbuildings,Europe’sreluctancetosignlong-termLNGcontractsoverthepast15yearshasresultedinanover-concentrationofnaturalgasimportsreachingtheregionviapipeline,withEuropeimporting>80%ofitsnaturalgasneedsandwiththatsupplylargelydominatedbyahandfulofregions:Russia,Norway,Algeria,Nigeria,theUS,andQatar.Thisisnolongersustainable,inlightofthecurrentgeopoliticallandscape.WeincorporatetheEU’sambitionfor2/3reductioninRussiangasimportsbytheendofthisyearandzerogasimportsbytheendofthisdecade(2030)intoourmodelling,concludingthattheshortfallbetweengrossnaturalgasdemandandavailabledomesticsupplyplusotherex-RussianpipelinesimportshastobemetwithincrementalLNGimportedvolumes.ThisanalysissuggestsitisinEurope’sinteresttosignuptoanadditional40mtpaof15-yrLNGcontracts,andpotentiallyuptoanother50mtpaof10-yrLNGcontracts,toimprovesecurityanddiversificationofsupply–andallowanewgenerationofLNGprojectstobedevelopedforEurope.WeleverageourTopprojectsdatabasetoidentify15projectsthatcouldsupplyuptoatotalof155mtpapatoEuropewithalong-termLNGpriceof$8-12/mcf.Ontheoilside,ourEuropeanenergysystemevolutionmodelshowsoildemandincreasingtothemiddleofthisdecade,largelydrivenbytheongoingrecoveryofaviation,beforestartingagradualdeclinewhichacceleratespost2030,drivenbythehigherpenetrationofEVsandbettercharginginfrastructure.WeestimatethatthenextmajorcycleofrefineryclosuresinEuropewillonlybeneededby2027,whentherefiningutilisationratefallsbelowthehistoricalaveragefortheregion.20July20228GoldmanSachsCarbonomicsRenewablepowerisattheheartofEurope’senergysystemre-invention,withpowerdemandmorethandoublingby2050,andgreenhydrogenaccountingforc.15%ofEurope’senergymixlongterm.Electrificationisthemostimportantdriverofloweremissionsandlowerenergyimportdependenceinourmodelling,withamorethandoublingofEuropeanpowerdemandby2050.Howeverrenewablepowerintermittencyandseasonalitycreatetheneedforlarge-scaleenergystoragesolutions,ofwhichgreenhydrogenwillbethemostimportant,inourview.Hydrogencurrentlyhasanicherole,mostlyinchemsandrefining.However,weseehydrogenemergingasacriticaltechnologyinthelongterm,addressingtheseasonaldiscrepancybetweenrenewablepowersupplyandpowerdemandandaidingthede-carbonizationofheavyindustryandtransport.Acceleratedelectrificationofheatingislikelytoresultinlargepowerdemandandsupplyimbalances,makingtheroleofamolecularseasonalenergystoragesolutionvital.Weidentifythreekeyrolesofcleanhydrogeninthepowergenerationindustrythatcanenhancesystemresilienceandenablehigheruptakeofrenewablepower,whileontheindustrialside,hydrogenisthenaturalsuccessorofnaturalgasandcoalfordiversificationofenergysupplyinenergy-intenseindustrialprocesses.Overall,webelievehydrogendemandforEuropewillsurpass60Mtpalongterm,inascenarioconsistentwith‘Fitfor55’,reachingc.15%oftheregion’sfinalenergyconsumptionandcreatingac.€0.74tncumulativeinvestmentopportunityinthedirecthydrogensupplychaininEurope.ThemapofenergyflowsistransformedbyemerginglowcostrenewablesandgreenhydrogenexportersincludingIberia,partsofSouthernEuropeandtheUKTheenergyimportdependencyofEuropecanbereducedmaterially,withinter-regionalhydrocarbonflowsbetweenEuropeandtherestoftheworldbeingsubstitutedbycleanenergyintra-regionalflowsbetweenEuropeancountries–inamoreinter-connectedEuropeansystemofpowernetworksandhydrogenpipelines.WeconductananalysistoaddressthecompetitivepositioningofkeyEuropeancountriesacrossthemostcriticalenergytechnologiesofthefuture:solar,onshorewind,offshorewind,greenhydrogen.Wealsonotetheinclusionofthepopulationdensitymeasureforcontextregardingthepotentialspaceconstrainsassociatedwiththescale-upofthesetechnologiesonshore.ThemapofEuropeanenergyflowscanbetransformedbyemerginglowcostrenewablesandgreenhydrogenexportersincludingIberia,partsofSouthernEurope(SoutheasternFrance,Italy,Greece)andtheUK(offshorewind).Iberiainparticularscreensveryattractivelyonthepotentialofsolarenergyandlowcostproductionofgreenhydrogen(bothintermsoftheimpliedsolarPVLCOEandwithregardstospaceavailabilityandpopulationdensity)whilsttheUKscreensattractivelyintermsofitscostpositioninginoffshorewind.20July20229GoldmanSachsCarbonomicsRe-InventingEurope’senergysystem:Asectoralmodelingapproachconsistentwiththede-carbonizationambitionsoftheregionLayingoutthepathforEurope’senergyevolution:AsectoralmodelingapproachleveragingourCarbonomicsframeworkInthisreport,weintroduceourmodelfortheevolutionoftheEuropeanenergysystemoverthecomingdecadestowardsamoresecure,moreaffordableandmoresustainablesystem,consistentwithachievingnetzeroby2050andthekeyambitionslaidoutbytheEuropeanCommissionaspartofthe‘Fitfor55’package(atleast55%netemissionsreductionby2030vs1990level,atleast40%renewableenergysourcesintheoverallenergymixby2030).Forthepurposeofthismodelingandanalysis,referencetotheEuroperegionthroughoutthisreportreferstotheEU27countriesplustheUK(formerlyreferredtoasEU28),unlessotherwiseindicated.ThemethodologyweadoptedwithregardstoourenergymodelingissummarizedinExhibit20below,andexplainedindetailinthesectionfollowingthisexhibit.ThekeyterminologyanddefinitionsofthetermsoutlinedintheexhibitandthroughoutthisreportareconsistentwiththeenergybalancesterminologyadoptedbyEurostat(theEuropeanStatisticalOffice,adirectorate-generaloftheEuropeanCommission).Exhibit20:AmethodoverviewfortheGSEuropeanenergysystemmodelsandanalysisSource:GoldmanSachsGlobalInvestmentResearch20July202210GoldmanSachsCarbonomicsStep1:Asafirststep,weleverageourCarbonomicsframeworkandadoptasectoralapproachtomodelthefinalenergyconsumptionevolutionofeachkeyenergyconsumingsectorinEurope(denotedasStep1inExhibit20):buildings(residential,commercial/servicesandpublic),transport(lightandheavy-dutyroadtransport,aviation,shipping,rail),industry(includingindustrialcombustion,industrialprocesses,fuelextraction,otherfugitiveandwaste)andagriculture.Thefinalenergyconsumptionisdefinedasthetotalenergyconsumedbytheendusersineachofthesesectors,theenergywhichreachesthefinalconsumer’sdoorandexcludesthatwhichisusedbytheenergysectoritself.Asmentioned,overall,forthemodelingofthefinalenergyconsumption,weleverageourCarbonomicsframeworktoconstructthismodel,andweadoptasectoralapproach,usingourde-carbonizationcostcurveintroducedinthisreportspecificallyforEurope,todeterminetherelativepaceofde-carbonizationandenergytransformationineachindustryonthebasisofthecurrentcostandtechnologicalreadinessoftheavailablealternativeenergyandde-carbonizationtechnologies.Thissectoralmodellingprovidestwocriticaloutputs:thefinalenergyandnon-energy(energysourcesusedasfeedstock)consumptionforEuropeovertime,wemodelto2050.Step2:Asasecondstep,wemodeltheevolutionoftheenergysectoritself,whichbridgesthegapbetweenthefinalenergyconsumptionobtainedfromStep1andtherequiredtotalsupplyforEurope.Thisincludesthemodelingofthepowergenerationsystem,aswellasotherenergytransformationinputsandoutputs(fuelconversions)anddistributionlosses.Step3:InStep3,weaddtothetotalEuropeanenergysupplytheenergyrequiredforinternationalmaritimebunkersandinternationalaviation(vesselswhichareinvolvedininternationalactivitiesforwhichthedemandforenergyisstemmingfromEurope).Thisbridgesthegapbetweentotalrequiredenergysupplyandgrossavailableenergy.Steps4&5:GrossavailableenergyisobtainedfromSteps1through3andisdefinedastheoverallsupplyofenergyforallactivitiesontheterritoryoftheEuropeanregionconsideredinouranalysis(EU27+UK).Itincludesenergyneedsforenergytransformation(includinggeneratingelectricityfromcombustiblefuels),supportoperationsoftheenergysectoritself,transmissionanddistributionlosses,finalenergyconsumption(industry,transport,buildingsincludinghouseholdsandservices,agriculture)andtheuseoffossilfuelproductsfornon-energypurposes(e.g.inthechemicalindustry).Italsoincludesfuelpurchasedwithinthecountrythatisusedelsewhere(e.g.internationalaviation,internationalmaritimebunkers).Grossavailableenergyforthetotalofallproducts(fuels)isthemostimportantaggregateinenergybalancesandrepresentsthequantityofenergynecessarytosatisfyalltheenergydemands.Grossavailableenergy=Primaryproduction+Recovered&Recycledproducts+Imports–Export+StockchangesStep6:Utilisingoursectoralmodelingoftheenergyandprocesstechnologicalmixevolutionovertimeforeachkeyemittingindustry(bothfinalenergyconsumingsectorsandenergyproducingsectorssuchaspowergeneration,fuelextraction,refining),wemodeltheoverallnetGHGemissionsoftheregionovertime.20July202211GoldmanSachsCarbonomicsRe-InventingEurope’senergysystem:Amoresecure,sustainableandresilientenergysystemTheoutputsofourmodelforEurope’senergysystemevolutionandtransformationarepresentedthroughouttheexhibitsofthisreport.Overall,Europe’sgrossenergyevolution(grossavailableenergyhasbeendefinedintheprevioussectionofthisreport),modeledacrosssectorsandfuels,ispresentedintheExhibit21below,andthefinalenergyconsumption(alsodefinedintheprevioussectionofthisreport)withitsmixevolutionisshowninExhibit22.Weseetheregion(EUR27+UK)graduallyreducingitsoverallgrossenergyconsumptionandenergyintensity,aresultofongoingimprovementsinefficiencyandswitchtoalternativecleanerandmore,onaggregate,efficientsourcesofenergy(suchaselectrification).Moreimportantly,weexpectthemixofthegrossEuropeanenergytocompletelytransforminthecomingyearsfromlargelyrelyingonimportedhydrocarbons(oilandoilproducts,solidfossilfuelsandnaturalgas)topredominantlyrelyingondomesticrenewableenergysourcesandfuels(renewablepower,bioenergy,hydrogen,nuclear).Acombinationofmoresustainablebutalsolargelydomesticallyproducedenergysourceswilllead,inourview,tobothamoresustainable,secureandindependentenergysystem,withalowerrelianceonimportedenergyandlowercarbonfootprint.ThissectionofthereportaddresseshowtheEuropeanenergysystemcouldevolvetobe(1)moresustainablewithalowercarbonfootprint,(2)moresecureandindependentthroughareducedrelianceonimportedenergysources,(3)moreresilientthroughanecosystemoftechnologiesextendingbeyondrenewablepowerespeciallywithregardstoenergystoragetosupportseasonalandintradayimbalancesinsuchasystem,and(4)moreaffordable.Exhibit21:WepresentinthisexhibittheresultingEuropeangrossavailableenergyevolutionovertime,consistentwiththeregion’sde-carbonizationambitions..Europe’s(EU27+UK)grossavailableenergyundertheGSEuropeenergyevolutionmodel(PJ)Exhibit22:..aswellastheevolutionofthefinalenergyconsumptionofEuropeanenergyend-users(buildings,industry,transport,agriculture)Europe’s(EU27+UK)finalenergyconsumptionundertheGSEuropeenergyevolutionmodel(PJ)-10,00020,00030,00040,00050,00060,00070,00080,00090,000EU27+UKGrossavailableenergy(PJ)Solidfossilfuels-domesticSolidfossilfuels-netimportsOilandpetroleumproducts-domesticOilandpetroleumproducts-netimportsNaturalgas-domesticNaturalgas-netimportsRESpowerdomesticRESpowerdomesticforhydrogenRESimports(hydrogen)Bioenergy-domesticNuclearheat-domesticOther-domestic-5,00010,00015,00020,00025,00030,00035,00040,00045,00050,000200920112013201520172019202120232025202720292031203320352037203920412043204520472049EU27+UKCO2finalenergyconsumption(PJ)SolidfossilfuelsPeatandpeatproductsNaturalgasOilandpetroleumproductsRenewablesandbiofuelsNon-renewablewasteElectricityHeatOtherSource:Eurostat(historical),GoldmanSachsGlobalInvestmentResearchSource:Eurostat,GoldmanSachsGlobalInvestmentResearch20July202212GoldmanSachsCarbonomicsAmoresustainableenergysystem:Apathconsistentwiththeemissionreductionambitionslaidoutin‘Fitfor55’,netzeroby2050,leveragingourCarbonomicscostcurveacrossemittingsectorsTheGSmodelforEurope’senergyevolutionisconsistentwithachievingnetzeroby2050fortheregionandthekeyambitionslaidoutbytheEuropeanCommissionaspartofthe‘Fitfor55’package(atleast55%netemissionsreductionby2030vs1990level,atleast40%renewableenergysourcesintheoverallenergymixby2030).OurEuropeanmodeladdressesallkeyemittingsectorsintheregion:powergeneration,buildings(residential,commercial/servicesandpublic),transport(lightandheavy-dutyroadtransport,aviation,shipping,rail),industry(includingindustrialcombustion,industrialprocesses,fuelextractionandotherfugitiveandwasteemissions)andagriculture.Thisenablesusnotonlytomodeltheenergyandprocesstechnologicalevolutionbyindustrybutalsotrackandestimatetheresultingoverallemissions(bothenergyandprocess)stemmingfromeachoftheseindustriesandthebroaderEuropeanregionconsideredinouranalysis.TheresultingemissionsprofileresultingfromourGSmodelofEurope’senergyevolutionisshowninExhibit23andisresultinginc.55%GHGemissionsreductionvs1990levelfortheregionby2030andnetzeroby2050.Withregardstoemissionsaccounting,weincludeinouremissionsprofiletheinternationaltransportelements(definedearlierinthisreport)aswellasthecontributionofthelanduse,land-usechangeandforestry(LULUCF)sector,consistentwiththeCommission’sproposaltostrengthenthecontributionofthatsectortoreversethecurrentdecliningtrendofcarbonremovalsandenhancethenaturalcarbonsinkthroughouttheEU.Specifically,therevisionofthecurrentlegislationproposestosetanEU-leveltargetfornetremovalsofgreenhousegasesofatleast310milliontonnesofCO2equivalentby2030,whichisdistributedamongthememberstatesasbindingtargets.Exhibit23:OurmodelofEurope’senergyevolutionisconsistentwiththeambitionslaidoutin‘Fitfor55’(reducingemissionsbyc.55%vs1990)andnetzeroby2050..EU27+UKGHGemissions(MtCO2eq),includingLULUCFExhibit24:..adoptingasectoralapproach,modellingtheemissionsacrossallkeyemittingsectorsEU27+UKGHGemissionsbykeyemittingsector(MtCO2eq)-1,000-1,0002,0003,0004,0005,0006,00020002002200420062008201020122014201620182020202220242026202820302032203420362038204020422044204620482050EU27+UKGHGemissions(MtCO2eq)PowergenerationTransportIndustry,industrialwaste&otherfugitiveResidentialCommercialandpublicAgricultureInternationalmaritimebunkersInternationalaviation-2004006008001,0001,2001,4001,6001,8002,00020002002200420062008201020122014201620182020202220242026202820302032203420362038204020422044204620482050EU27+UKGHGemissions(MtCO2eq)PowergenerationTransportIndustry,industrialwaste&otherfugitiveResidentialCommercialandpublicAgricultureInternationalmaritimebunkersInternationalaviationForecastSource:Eurostat,EEA,GoldmanSachsGlobalInvestmentResearchSource:Eurostat,EEA,GoldmanSachsGlobalInvestmentResearch20July202213GoldmanSachsCarbonomicsThepaceoftheenergytransformationandde-carbonizationachievedforeachsectoriscorrelatedtothesector’spositioningonourCarbonomicscostcurve.Inourdeep-divede-carbonizationreport,wehadintroducedindetailourCarbonomicscarbonabatementcostcurves.TheCarbonomicscostcurvesshowthereductionpotentialandcarbonabatementcostforanthropogenicGHGemissionsthrough>100differentapplicationsofGHGconservationandsequestrationtechnologiesacrossallkeyemittingsectorsintheregionthecostcurveisaddressing.Inthisreport,weintroducethefirstCarbonomicsde-carbonizationcostcurveforEurope(EU27+UK),presentedinExhibit25below.Overall,weexpectallthekeytechnologiesaddressedinourde-carbonizationcostcurvetoplayaroleinfacilitatingthepathtonetzero,eachintheirrespectivesector.Thespeedofde-carbonizationineachsectorislargelydependentonthecurrentcarbonabatementcostandstateofreadinessoftheavailablecleantechnologiespresentedinourCarbonomicscostcurve.Assuch,inourmodelsforEurope’senergyandemissionsevolutiononthepathtonetzero,differentsectorsde-carbonizeatdifferentspeedsandhaveadifferentcarbonbudgetallocation,dependingontheirrelativecostpositioningandreadinessonourde-carbonizationcostcurve.WenotethatourCarbonomicscostcurveofde-carbonizationisnotstatic,andisexpectedtoevolveovertimeasthecostsofexistingtechnologiescontinuetochangeandastechnologicalinnovationleadstotheadditionoffurtherde-carbonizationtechnologiesacrosssectors.Assuch,ourenergyevolutionandnetzeromodelsarealsodynamic,andareexpectedtoevolveovertimeastechnologicalinnovationandfocusonde-carbonizationcontinues.Exhibit25:OurGSEuropeanenergyevolutionandnetzeromodelincorporatesatransformationpathacrosssectorsthatislargelydependentonthecarbonabatementcostandreadinessoftheavailablede-carbonizationtechnologies,asshowninourCarbonomicscostcurve2022EuropeancarbonabatementcostcurveforanthropogenicGHGemissions,basedoncurrenttechnologiesandcurrentcosts,assumingeconomiesofscalefortechnologiesinthepilotphase-200-10001002003004005006007008009001,0001,1001,2001,3001,4001,5000.00.20.40.60.81.01.21.41.61.82.02.22.42.62.83.03.23.43.63.84.0Carbonabatementcost(US$/tnCO2eq)GHGemissionsabatementpotentialforEurope(GtCO2eq)PowergenerationTransport(road,aviation,shipping)Industry(iron&steel,cement,chemicalsandother)Buildings(residential&commercial)Agriculture,forestry&otherlanduses(AFOLU)Non-abatableatcurrentconservationtechnologiesSource:GoldmanSachsGlobalInvestmentResearch20July202214GoldmanSachsCarbonomicsAsmentionedpreviously,thepaceofde-carbonizationvariesbysectorandsub-sector,dependingonthecarbonabatementcostandtechnologicalreadiness,asaddressedbyourCarbonomicscostcurveshownabove.Exhibit26showsthatthepaceofde-carbonizationto2030foreachsub-sectorsinourEuropeanenergyevolutionmodeliscorrelatedwiththesub-sector’scurrentaveragecarbonabatementcost,asdescribedpreviously.Harder-to-abatesectorswithlimitedalternativeenergyandde-carbonizationtechnologiescurrentlyatlargescalesuchasaviation,heavyindustry,shippingwithahighercarbonabatementcost,de-carbonizeslower,comparedtosectorssuchaspowergeneration,buildingsandefficiencymeasures,whichareassociatedwithalowercarbonabatementcost.Inadditiontoahigherenergysustainability,wealsoexpecttheenergyefficiencyoftheregiontoimprovenotablyinthecomingyearsandwepresentinExhibit27theenergyintensityevolutionforEuropebasedonourmodel.Energyintensityisanindicatorusedtomeasuretheenergyneedsofaneconomyanditisoftenemployedasaproxyforenergyefficiency.EnergyintensityiscalculatedasunitsofenergyperunitofGDP.Wenotenonethelessthatmanyfactorscaninfluenceenergyintensity,asitreflectsonstructureofeconomyanditscycleandgeneralstandardsoflivinginthereferencearea.Moreinterestingly,overtheperiod2000-19,theoverwhelmingmajorityoftheenergyintensityreductionwasdrivenbytheriseinGDPfortheregion(drivingc.90%oftheenergyintensityreduction),whilstfromhere(2022-50)weexpecttheenergyintensityreductiontobelargelydrivenbytheoverallenergyefficiencyimprovementofthesystemasopposedtotheriseinGDP.Exhibit26:Thepaceofenergytransformationandde-carbonizationineachsectorandsub-sectoriscorrelatedtotheaveragecarbonabatementpriceoftheavailablecleantechnologiesinthatsector.GHGemissionsreductionin2030vs.2019bysub-sectorvs.averagecarbonabatementcostExhibit27:Weexpecttheenergyintensity(energyperunitGDP)oftheEuropeanenergysystemtocontinuetoimproveovertime,mostlydrivenbyhigherenergyefficiencyasopposedtohigherGDPgrowthwhichhasbeenthecaseover2000-19.EnergyintensityforEU27+UK(PJ/EURbnGDP)PowergenerationBuildings-residentialBuildings-commercialTransport-HDVsTransport-aviationTransport-shippingTransport-railIron&steelNon-metallicmineralsChemicalsPaperandpackagingOtherindustrialTransport-LDVsR²=0.7021-60%-50%-40%-30%-20%-10%0%10%20%02004006008001000GHGemissionsreductionvs2019baseline(%)Averagecarbonabatementcost(US$/tnCO2eq)0.01.02.03.04.05.06.07.08.09.020002002200420062008201020122014201620182020202220242026202820302032203420362038204020422044204620482050EnergyintensityforEU27+UK(PJ/EURbnGDP)Energyintensity-Grossavailableenergy/GDPEnergyintensity-Finalenergyconsumption/GDPSource:GoldmanSachsGlobalInvestmentResearchSource:Eurostat,GoldmanSachsGlobalInvestmentResearch20July202215GoldmanSachsCarbonomicsAmoresecureandindependentenergysystem:TheenergydependencyrateforEuropefallsfromc.58%toc.15%by2050onourestimateswiththeemergenceoflocal,lowcostrenewablepowerandgreenhydrogenexportersOurmodeloftheEuropeanenergysystemevolutionseesamaterialreductioninthedependencyrateoftheregion,fromc.58%currentlyto<50%by2030,<30%by2040andc.15%by2050.Theenergydependencyrateshowstheproportionofenergythataneconomymustimport.Itisdefinedasnetenergyimportsdividedbygrossavailableenergy,expressedasapercentage.Anegativedependencyrateindicatesanetexporterofenergywhileadependencyrateinexcessof100%indicatesthatenergyproductshavebeenstocked.Itcanbedefinedforallproductstotalaswellasforindividualfuels.In2020,everysinglecountrywithintheEU27andtheUKhasbeenanetimporterofenergy,asshowninExhibit28,withdependencyratesaslowas10%toashighas98%.Whilstwedonottakeaviewonacountrybycountrybasis,wenotethattheenergyimportdependencyoftheoverallregion(EU27+UK)willreducemateriallywithenergyflowsdominatedbyintra-regionalflowsbetweenEuropeancountriesratherthaninter-regionalhydrocarbonflowsbetweenEuropeandtherestoftheworld.Inthatcontext,weconductananalysistoaddressthecompetitivepositioningofkeyEuropeancountriesacrossthemostcriticalenergytechnologiesemergingasthedominatingenergypillars:solar,onshorewind,offshorewind,greenhydrogen.Wealsonotetheinclusionofthepopulationdensitymeasureforcontextregardingthepotentialspaceconstrainsassociatedwiththescale-upofthesetechnologiesandwhichextendsbeyondeconomicconsiderations.Wenotethatthisanalysisisnotexhaustive(doesnotaddresseverysinglecountryintheregion)andadoptsaveragecostfiguresforthesetechnologiesacrosstheseregions.OurresultsaresummarizedinExhibit32.Exhibit28:ThedependencyrateforEuropequantifiestheshareofnetenergyimportsaspartofthetotalgrossavailableenergyfortheregion,currentlyatc.58%forEurope..Europe’senergydependencyratebycountry(2019,2020andGSprojectionsfortheoverallregionto2030and2050),%Exhibit29:..yetweexpectittoreducemateriallyto<50%/<30%/c.15%by2030/40/50basedonourmodel,enhancingtheregion’senergysecurityandindependence...Europegrossavailableenergysplitbetweennetimportsanddomesticenergy(PJ)0102030405060708090100Dependencyratebycounry(%)20202019Europe-2019Europe-2030Europe-205057%49%28%15%0%10%20%30%40%50%60%70%-10,00020,00030,00040,00050,00060,00070,00080,00090,000200320052007200920112013201520172019202120232025202720292031203320352037203920412043204520472049EU27+UKGrossavailableenergy(Pj)GrossavailableenergydomesticGrossavailableenergynetimportsDependencyrateSource:Eurostat,GoldmanSachsGlobalInvestmentResearchSource:Eurostat,GoldmanSachsGlobalInvestmentResearch20July202216GoldmanSachsCarbonomicsThemapofenergyflowsistransformedbyemerginglowcostrenewablesandgreenhydrogenexportersincludingIberia,partsofSouthernEuropeandtheUKThemapofEuropeanenergyflowsistransformedbyemerginglowcostrenewablesandgreenhydrogenexportersincludingIberia,partsofSouthernEurope(SoutheasternFrance,Italy,Greece)andtheUK(offshorewind).Iberiainparticularscreensveryattractivelyonthepotentialofsolarenergyandlowcostproductionofgreenhydrogen(bothintermsoftheimpliedsolarPVLCOEandwithregardstospaceavailabilityandpopulationdensity)whilsttheUKscreensattractivelyintermsofitscostpositioninginoffshorewind.Exhibit32summarizesthekeycomparativemetricsacrosskeyregionsofEuropewithregardstodomesticallyproducedcleanenergy.Exhibit30:..drivenbyahighershareofdomesticallyproducedenergysources,primarilyrenewablepower,nuclear,bioenergy..EU27+UKgrossavailableenergymixevolution(%)Exhibit31:...allofwhichhaveanoveralllowerenergydependencyratecomparedtothehydrocarbonsourcestheyaredisplacing.EnergydependencyratebyenergysourceforEU27+UK(%)0%20%40%60%200320052007200920112013201520172019202120232025202720292031203320352037203920412043204520472049EU27+UKGrossavailableenergymix(%)SolidfossilfuelsNaturalgasOilandpetroleumproductsNuclearheatRESpowerRESpowerforgreenhydrogenandhydrogenimportsBioenergy0%10%20%30%40%50%60%70%80%90%100%OilandpetroleumproductsNaturalgasSolidfossilfuelsRES-hydrogenRESpowerandbiofuelsNuclearheatDependencyratebyfuellforEU27+UK(%)Source:Eurostat,GoldmanSachsGlobalInvestmentResearchSource:Eurostat,GoldmanSachsGlobalInvestmentResearch20July202217GoldmanSachsCarbonomicsExhibit32:ThemapofenergyflowsistransformedbyemerginglowcostrenewablesandgreenhydrogenexportersincludingIberia,partsofSouthernEurope(SouthernFrance,Italy,Greece).LCOEforsolar,onshorewindandoffshorewind,LCOHforgreenhydrogenandpopulationdensityforkeyEuropeanregionsLCOEsareestimatedatthecountryaveragelevel,acknowledgingthatdifferentpartsofaregionwillhavevarioussolar,windandLCOEprofiles.Weuseconsistently7%costofcapitalforsolarandonshorewind,9%costofcapitalforoffshore,8%costofcapitalforgreenhydrogen.Populationdensitydataarefor2019.Source:Eurostat(populationdensity),GoldmanSachsGlobalInvestmentResearch20July202218GoldmanSachsCarbonomicsMoreresilientenergysystem:AnecosystemofcleantechnologiessupportingaresilientsystemandfilingthepivotalneedforenergystorageAswehavehighlightednumeroustimesinourCarbonomicsresearchseriesandourglobalnetzeromodels,webelievethattheenergyevolutionandpathtonetzerocallsforanevolutionofthede-carbonizationprocessfromonedimensional(renewablepower)toamulti-dimensionalecosystem.Fourmoretechnologiesareemergingastransformationalinourviewinadditiontorenewablepower:hydrogen,bioenergy(includingtheroleofbiogas),batteryenergystorage,carbonsequestration(bothnaturalsinksandcarboncapture).Allofthesewill,inourview,berequiredtohelpthestabilityandresilienceoftheenergypathweenvisagefortheEuropeanregion.Renewablepowergenerationisakeydriverofthepathtonetzerocarbon.However,itsuffersfromtwokeyproblemsthatneedtobeaddressed:intermittencyandseasonality.Theseasonalnatureofnaturalgasconsumption,withEUaveragemonthlyconsumptionofc.20bcminJun/July/Augvs.c.45-50bcminDec/Jan/Feb,willmakeitverydifficultforRussiangastobesubstitutedwithrenewablepower–especiallysolarpower,whichhasoppositeseasonality.Asthegrowthinrenewablepoweraccelerates,intradayandseasonalvariabilityhastobeaddressedthroughenergystoragesolutions.Toreachfullreplacementofcoalandnaturalgasandde-carbonizationofpowermarkets,webelievetwokeytechnologieswilllikelycontributetosolvingtheenergystoragechallenge:utility-scalebatteriesandhydrogen,eachhavingacomplementaryrole,withbatteriesaddressingintermittencyandhydrogenaddressingseasonality.WeincorporatebothofthesetechnologiesinourenergyevolutionpathforEurope.Thislowcarboninfrastructurehoweverwillrequiretimetobebuilt.Untiltherelevantenergystorageinfrastructure(networksandsmartgrids)andtechnologies(utilityscalebatteriesandhydrogen)arereadytosupportanincreasinglyelectrifiedenergyeconomy,wearguethatbothnaturalgasandnuclearpowerhavearoletoplayintheneartermtoenableasmoothenergytransitionandhelpavoidapowercrunch.Exhibit33:Europeannaturalgasconsumptioninwintermonthsisonaveragec.2.5xthatofsummermonthsinordertomeetgrowingseasonalpowerdemandandaddressthecounter-seasonalityofrenewablepower.EU27averagemonthlypowergenerationbyfueltyperelativetoannualaverage,rebasedExhibit34:Hydrogencouldbetheoptimalsolutionforlarge-scale,long-durationenergystorage,particularlyfordischargedurationsbeyond50hours30507090110130150170190JanFebMarAprMayJunJulAugSepOctNovDecMonthlypowergenerationbyfuel,relativetoannualaverage(rebased)TotalNaturalGasWindonshoreWindoffshoreSolarCoalEU27Source:Eurostat,GoldmanSachsGlobalInvestmentResearchSource:HydrogenCouncil20July202219GoldmanSachsCarbonomicsWithregardstoenergystorage,whilebatteriesarecurrentlythemostdevelopedtechnologyforintradaypowergenerationstorage,weconsiderhydrogenasamorerelevanttechnologyforseasonalstorage,implyingtheneedforinnovationanddevelopmentofbothtechnologies.Batteries,forinstance,areparticularlysuitedtosunnyclimates,wheresolarPVproductionislargelystablethroughouttheyearandcanbestoredforeveningusage.Hydrogenontheotherhand,andtheprocessofstoringenergyinchemicalformandreconvertingittopowerthroughfuelcells,couldbeusedtooffsettheseasonalmismatchbetweenpowerdemandandrenewableoutput.Hydrogencurrentlyhasanicheroleinpowergeneration.However,aspowergenerationundergoesacompletetransformation,hydrogencouldemergeasacriticaltechnologyinthisindustry,complementingrenewablepowerasitunlocksseasonalenergystoragecapabilitiesandenhancestheresilienceofanincreasinglyelectrifiedenergysystem.Theroleofpowergenerationis,inourview,onlylikelytoincreaseinthecomingdecades,asthepenetrationandpaceofelectrificationrapidlyincreaseacrosssectors(includingroadtransport,buildingheating,industrialmanufacturingprocessesandlow-temperatureindustrialheat)astheyprogressivelyfollowtheirownde-carbonizationpath.Acceleratedelectrificationofheatingislikelytoresultinlargepowerdemandandsupplyimbalances,makingtheroleofamolecularseasonalenergystoragesolutionvital.Weidentifythreekeyrolesofcleanhydrogeninthepowergenerationindustrythatcanenhancesystemresilienceandenablehigheruptakeofrenewablepower:seesectionEurope’senergyevolutionandtheneedformolecularenergysources:HydrogenandBioenergylaterinthisreport.Exhibit35:..andweexpectEuropeanhydrogenconsumptiontorisemulti-foldonthepathtonetzero.HydrogenconsumptionforEU27+UK(MtH2)Exhibit36:..complementingtherisingneedforutility-scalebatteriestosupportanincreasinglyintermittentrenewablepower-dominatedgrid.Utility-scalebatteriesEuropeandemand(GW)0%25%50%75%100%020406080202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050%CleanhydrogenpenetrationHydrogenconsumptionforEU27+UK(MtH2)PowergenstorageChemicalfeedstockRefineriesIndustry-heatIndustry-steelTransport-internationalshipping(ammonia)Transport-internationalaviationTransport-domesticshippingTransport-domesticaviationTransport-railTransport-road(HDVs,buses)Blendingingrid%Cleanhydrogen0100200300400500600700800202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050Utility-scalebatteriesEuropeandemand(GW)Source:GoldmanSachsGlobalInvestmentResearchSource:GoldmanSachsGlobalInvestmentResearch20July202220GoldmanSachsCarbonomicsTheinvestmentpath:€10tninvestmentopportunity,largelyrecoupedbylowernetenergyimportsThere-inventionoftheEuropeanenergysystemandpathtonetzeroby2050hasthepotentialtotransformnotonlythelocalenergyecosystembutalsotheeconomyandsociety’sstandardofliving.Exhibit37showsthewiderangeofinvestmentopportunitiesassociatedwithwhatwebelievearethekeyinfrastructuremilestonesrequiredtotransformEurope’ssystem.Theseinclude,amongothers,theincreasinguptakeofrenewablepower,batteryenergystorage,hydrogen,bioenergy,aswellasanincreasingfocusoninfrastructureinvestmentsforpowernetworksandchargingstationsthatwillenableaneweraofelectrification,anupgradeand/orretrofitofindustrialplants,retrofittingofbuildingsandotherexistingheatinginfrastructureenablinggreaterefficiencyanduptakeofelectrification,andfinallyagreaterfocusoncarbonsequestration(naturalsinksandcarboncapture).Inaggregate,weestimateatotalinfrastructureinvestmentopportunityaround€10trnby2050forthetransformationofEurope’senergysystem(EU27+UK)onthepathtonetzero,whichimpliesanaverageannualgreeninfrastructureinvestmentopportunityofc.€350bnpa.Wenotethatthisfigurefocusessolelyonincrementalinfrastructureinvestmentsanddoesnotincludemaintenanceandotherend-usecapex.Exhibit37:Weestimatethatthereexistsinaggregatea€10trninfrastructureinvestmentopportunityforthetransformationofEurope’senergysystemonthepathtonetzeroCumulativeinvestmentopportunityacrosssectorsforthere-inventionofEurope’senergysystemtonetzeroby2050(€tn)1.31.21.01.50.50.60.30.40.30.61.00.90.0110.1-24681012RenewablepowerPowernetworksEnergystorage(batteries)TransportchargingandrefuelinginfraBioenergyplantsHydrogenproductionplants(domestic)Hydrogenstrorage,transport,importsinfraBuildings-heatpumpsBuildings-efficiencyupgradesIndustrialprocessesincl.CCUSNaturalsinksCumulativeinvestmentsto2050CumulativeinvestmentsforEurope'senergysystemevolutiononthepathtonetzeroby2050(€tn)SolarPVOnshorewindOffshorewindNuclearOtherRES(geothermal,biomass)Source:GoldmanSachsGlobalInvestmentResearch20July202221GoldmanSachsCarbonomicsThere-inventionofEurope’senergysystemrequires,onourestimates,c.€350bnpaofinfrastructureinvestments,representing>2%oftheregion’sGDPby2030andpeakinginthemid-2030sAshighlightedinExhibit37,weestimateatotalinvestmentopportunityofc.€10tnby2050foranenergytransformationpathconsistentwiththelong-termnetzeroand‘Fitfor55’ambitions,foramoresecure,independentandsustainableenergysystem.Wenotehoweverthatwewouldnotexpectthistobeevenlydistributedannuallyto2050.Instead,weanticipateanannualde-carbonizationinvestmentprofilesimilartothatshowninExhibit38,withanaccelerationofinvestmentsto2035,theyearswhenweexpectinvestmentstopeak,drivenlargelybytheinitialinfrastructureexpansionrequiredforpowernetworks,chargingnetworks,themassiveexpansionofrenewablepower,buildingsupgradesandheatingpipelineinfrastructuretoacceleratethepenetrationofelectrificationandcleanhydrogen,andfuelsubstitutionintransportandindustry.Overall,theaverageannualinvestmentsinde-carbonizationthatweestimateover2022-50arec.€350bn,withthepeakinthe2030s(c.€450bn)representing>2%oftheregion’sGDP(EU27+UK).Exhibit38:Weexpectanannualinvestmentprofilesimilartotheonepresentedhere,forthetransformationofEurope’senergysystemonthepathtonetzeroby2050,withinvestmentsreaching>2%oftheregion’sGDPby2030andpeakingaroundthemid-2030s0.0%0.5%1.0%1.5%2.0%2.5%-5010015020025030035040045050020222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050AnnualinfrastructureinvestmentsforEurope'senergyevolutionandpathtonetzeroby2050(€bn)Industrialplantupgrades(incl.CCUS)Hydrogenproduction,storage,transportandotherinfraNaturalsinksBioenergyplantsTransportchargingandrefuelingstationsInsulationretrofitsandotherefficiencyHeatpumpsPowergenerationEnergystorage(batteries)PowernetworksAnnualinvestmentsasa%ofGDP(RHS)Source:GoldmanSachsGlobalInvestmentResearch20July202222GoldmanSachsCarbonomicsWeestimatethattheinfrastructureinvestmentsrequiredcanlargelyberecoupedfromthesavingsofnetenergyimportscontributingtoamaterialimprovementinthebalanceofpaymentsfortheregionAsmentionedintheprevioussectionofthisreport,theevolutionoftheEuropeanenergysystemweenvisagewillleadtoanotablereductionofitsnetenergyimportsdependencyrate,astheshareofdomesticproductionovertakesanddominatesenergysupplylongterm(drivenlargelybytheriseofelectrificationsupportedbydomesticrenewablepowerproduction).ThereductionofnetenergyimportsdependencyoftheregionwillsubsequentlyresultinanotableimprovementtoEurope’snetenergyimportsbalance.Weestimatethat€10tncanberecoupedfromthesavingsassociatedwiththereductionofnetenergyimports,sufficienttofullycovertheinfrastructureinvestmentsrequired.Wehighlightnonethelessthattheannualevolutionandprofileofthesesavingsandrequiredinfrastructureinvestmentsdiffers,withtheformerlaggingthelatterbymorethanadecade.Efficientfinancingandareliableregulatoryenvironmentarekeytobridgethetimegap.WefurthernotethatwhilsttheenergyindependenceofEuropewillimprovesubstantially,theregionwilllikelystillneedtoimportc.15%ofitsgrossenergyneeds,accountingforfossilfuelsusedasfeedstocks(suchasforchemicalsmanufacturing)andaroundhalfofthegreenhydrogenvolumesitrequires(mostlyfromadvantageousregionswithlowcost,excessrenewablepowersuchastheMiddleEast,NorthAfrica,partsofLatinAmerica,Australia).Exhibit39:Theinfrastructureinvestmentcanbelargelyrecoupedthroughlowernetenergyimports,yetwithmorethanadecadelag...EU27+UKannualrequiredinfrastructureinvestmentsvsnetannualenergyimportsavings(€bn)Exhibit40:...contributingtoamaterialimprovementinthebalanceofpaymentsfortheregion.EU27+UKnetenergyproductimportsvalue(€bn)-10020030040050060070080020222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050EU27+UKInfrastructureinvestmentsrequiredvsnetenergyimportssavings(€bn)SavingsfromenergyimportsreductionRequiredinfrastructureinvestmentsNetenergyimportssavings:€9.8tnRequiredinfrastructureinvestments:€10tn-1,200-1,000-800-600-400-200020172019202120232025202720292031203320352037203920412043204520472049EU27+UKNetenergyproductsimportsvalue(€bn)PetroleumoilNaturalgasSolidfossilfuelsCleanhydrogenSource:GoldmanSachsGlobalInvestmentResearchSource:Eurostat(historical),GoldmanSachsGlobalInvestmentResearch20July202223GoldmanSachsCarbonomicsExtendingtheanalysisbeyondthechangesinenergyimports,andincorporatingthepotentialnetimportsofcleantechequipmentrequiredforEurope’senergytransformation(primarilysolarpanels,stationaryandroadtransportbatteries),westillviewthatEurope’senergyshiftwilllikelybeaccretivetoitsoverallBalanceofPayments.Weestimatethatevenincludingtheimpactofnetimportedequipment,c.75%oftheinfrastructureinvestmentscanberecoupedthroughnetimportsavings,withc.€7.5trninnetimportssavingsfortheregion,asshownintheexhibitbelow.Exhibit41:Evenwhenconsideringtheimpactofrisingimportedequipmentvolumes(solarpanels,stationaryandtransportbatteries),weestimateac.€7.5trnnetimprovementinEurope’sbalanceofpaymentscumulativelyto2050...EU27+UKinfrastructureinvestmentsvsnetenergyimportssavingsandrequiredequipmentimports(€bn)Exhibit42:..withtheimprovementmostlyseenfrom2028NetchangeinEurope’sbalanceofpaymentsasaresultoftheEuropeanenergyevolutionweenvisage(€bn)-10020030040050060070080020222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050EU27+UKInfrastructureinvestmentsrequiredvsnetenergyimportssavings(€bn)SavingsfromenergyimportsreductionRequiredinfrastructureinvestmentsRequiredimportedequipmentNetenergyimportssavings:€9.8tnRequiredinfrastructureinvestments:€10tnRequiredimportedequipment:€2.3tn-200-100-10020030040050060070080020222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050ImpactofEurope'senergytransformationonbalanceofpayments(€bn)ChangeinnetenergyimportsChangeinnetequipmentimportsNetchangeinEurope'sbalanceofpaymentsSource:GoldmanSachsGlobalInvestmentResearchSource:GoldmanSachsGlobalInvestmentResearch20July202224GoldmanSachsCarbonomicsAmoreaffordableenergysystem:c.40%reductionintheaverageEuropeandirectenergycostpercapitavs2021andc.60%vsthepeakWebelievetheaverageEuropeandirectenergycostpercapitacanbereducedbyc.40%to2050(vs2021)andc.60%vsthepeakin2022Inadditiontothemoresustainable,secureandresilientenergysystemweenvisageforEurope,webelievethisenergysystemcouldprovetoalsobemoreaffordable.WeestimatethedirectenergycosttotheaverageconsumerinEurope(doneonapercapitabasis)couldbereducedbyc.40%longterm(by2050)vs2021figureandc.60%fromthepeak(2022).OuranalysisfocusesonthedirectcosttheaverageEuropeanenergyconsumerpaysinEuropeandincludesthetotalcostoffuelatthepump(gasoline,dieselforpassengerroadtransport),naturalgasfinalenergyconsumptioninresidentialbuildingsandelectricityfinalconsumptionforresidentialbuildingsbutalsofortransportelectrification.Wenotethatthisanalysisisdonebasedontheretailpricesthatconsumerspayforenergyandwhichincludeallrelevanttaxesandlevies.TheresultsoftheanalysisarepresentedinExhibit43.TheaverageEuropeanenergycostpercapitaisgoingthroughanabruptandlargeincreasein2022,consistentwiththetrendsobservedacrosstheenergypricebenchmarks(oilproducts,naturalgasandpowerprices)beforegraduallyreducingtothe2021levelbythemiddleofthedecade,onourestimates.Thereafter,thehighershareofpowerintheaverageEuropeanconsumer’senergyspendingaswellastheimprovedenergyefficiencyofEuropedrivesagradualreductionintotalenergycostpercapita,assumingthatthehighershareofrenewablesandPPAsdrivesthewholesaleandsubsequentlypowerpricelowerlongterm.Exhibit43:WeestimatethedirectenergycosttotheaverageenergyconsumerinEurope(doneonapercapitabasis)couldbereducedbyc.36%longterm(by2050)vs2021figureandc.60%vsthepeakin2022.AverageEuropeandirectenergycostpercapitaassociatedwithfinalenergyconsumption(EUR/capitapa)020040060080010001200140016001800200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050AveragerEuropeandirectenergycostpercapitaassociatedwithfinalenergyconsumption(EUR/capita)Gasoline/dieselfuelcostNaturalgascostPowercostc.60%reductionfromthe2022peakc.40%reductionc.36%reductionfromthe2022peakc.6%reductionvs2021Source:Eurostat,GoldmanSachsGlobalInvestmentResearch20July202225GoldmanSachsCarbonomicsPowergeneration:AttheheartofEurope’senergyevolution,affordabilityandsecurityPowergenerationisthemostvitalcomponentforanyEuropeanenergyevolutionandnetzeropath,withthesectorcontributingto>20%ofthetotalanthropogenicGHGemissionsfortheregion.Theroleofpowergenerationis,inourview,onlylikelytoincreaseinthecomingdecades,asthepenetrationandpaceofelectrificationisrapidlyincreasingacrosssectorsastheseprogressivelyfollowtheirownenergyevolutionandde-carbonizationpath,including,amongstothers,theelectrificationofroadtransport,buildings,industrialmanufacturingprocessesandlow-temperatureindustrialheat.Overall,weexpecttotalEuropeandemandforelectricitygenerationtomorethandouble(vs.thatof2019)andsurpass7,500TWhasthede-carbonizationprocessunfoldsandelectricityformsc.65%oftheoverallEuropeanfinalenergyconsumptionmix.BasedonourEuropeanCarbonomicscostcurveanalysis,powergenerationcurrentlydominatesthelowendofthecarbonabatementcostspectrum,withrenewablepowertechnologiesalreadydevelopedatscaleandcoststhathavefallenrapidlyoverthepastdecademakingthemcompetitivewithfossilfuelpowergenerationtechnologiesacrosskeyEuropeanregions.Assuch,webelievethatpowergenerationwilllikelybeamongstthesectorsthattransformtheirmixandde-carbonizeatafasterpacethanothers,asshowninExhibit26earlierinthisreport.Infact,asshowninExhibit47,itcanbearguedthatthetransformationofpowerinEuropehasalreadystartedandacceleratedoverthepastdecadewithrenewablepowerthemostcriticalcomponentofthemixmovingforward.BasedonourEuropeanenergyevolutionmodel,consistentwiththe‘Fitfor55’ambitions,weestimatethattheshareofrenewablesintheEuropeanpowermixwillrisefromc.40%currently(2021,includinginadditiontosolarandwind,hydro,bioenergyandrenewablewaste)to>60%by2030and>90%by2050.Exhibit44:WeestimatethattotaldemandforpowerinEuropewillincreasealmostthree-foldto2050..EU27+UKelectricitygeneration(TWh)Exhibit45:..asitformsacriticalpartoftheenergyevolutionandde-carbonizationrouteforothersectorssuchastheelectrificationoftransport,buildings,industry,productionofgreenhydrogen..EU27+UKelectricitybridgeto2050E(TWh)-1,0002,0003,0004,0005,0006,0007,0008,00020002002200420062008201020122014201620182020202220242026202820302032203420362038204020422044204620482050EU27+UKpowergeneration(TWh)Naturalgas(incl.othergases)SolidfossilfuelsOilandotherproductsNuclearHydroSolarWindBioenergyOtherRESOther3,0912391,4146702,2317,64601,0002,0003,0004,0005,0006,0007,0008,0009,000EU27+UKelectricitygeneration-2020BuildingsTransportIndustryandotherDomesticgreenhydrogenEU27+UKNetZero2050EU27+UKelectricitygeneratyiondemandbysector(TWh)Source:Eurostat,GoldmanSachsGlobalInvestmentResearchSource:GoldmanSachsGlobalInvestmentResearch20July202226GoldmanSachsCarbonomicsExhibit46:..anditsshareintheEuropeanfinalenergymixisrising,reachingc.65%oftheEuropeanfinalenergyconsumption,fromc.23%currently.Europe’s(EU27+UK)finalenergyconsumptionmixundertheGSEuropeenergyevolutionmodel(%)Exhibit47:Thetransformationofthepowergenerationmixhasalreadystartedandweonlyexpectittoacceleratefromherewithrenewableenergyhavingthemostcriticalroletoplay...EU27+UKelectricitygenerationmix(%)0%10%20%30%40%50%60%70%200920112013201520172019202120232025202720292031203320352037203920412043204520472049EU27+UKfinalenergyconsumptionmixbytypeoffuel(%)SolidfossilfuelsPeatandpeatproductsNaturalgasOilandpetroleumproductsRenewablesandbiofuelsNon-renewablewasteElectricityHeatOther0%10%20%30%40%50%20002002200420062008201020122014201620182020202220242026202820302032203420362038204020422044204620482050EU27+UKpowergenerationmix(%)SolidfossilfuelsNaturalgas(incl.CCUSlongterm)OilandotherproductsHydroSolarWind(onshoreandoffshore)BioenergyOtherRESNuclearOtherSource:Eurostat,GoldmanSachsGlobalInvestmentResearchSource:Eurostat(historical),GoldmanSachsGlobalInvestmentResearchExhibit48:...anddominatingcapacityadditionsfromhere,withtotalinstalledrenewablecapacityreaching3,000GWby2050..EU27+UKgenerationcapacityadditionsbridge(GW)Exhibit49:...drivenpredominantlybysolarandwind(onshoreandoffshore)SolarpvandwindinstalledcapacityforEurope(GW)-5001,0001,5002,0002,5003,0003,5004,000EU27+UKpowergenerationcapacity-2020FossilfuelretirementsSolarWindBiomassandbiogasOtherRESEU27+UKNetZero2050EU27+UKPowergenerationcapacityadditionsbridge(GW)CoalNaturalgasOilNuclearHydroSolarWind-2004006008001,0001,2001,4001,6001,800201020122014201620182020202220242026202820302032203420362038204020422044204620482050SolarandwindinstalledcapacityforEU27+UK(GW)OnshorewindOffshorewindSolarPVSource:Eurostat(2020),GoldmanSachsGlobalInvestmentResearchSource:Eurostat,GoldmanSachsGlobalInvestmentResearchExhibit50:Accesstorenewablepoweristhemostcriticalde-carbonizationcomponent,beingbroadlyvitalforthede-carbonizationofc.50%ofthecurrentEuropeanemissionsEurope(EU27+UK)GHGemissionsde-carbonizationcostcurvewithorangeindicatingtechnologiesreliantonaccesstorenewablepower(cleanelectricity)Exhibit51:PowergenerationemissionshavebeenonadownwardtrajectoryinEuropeformostofthelasttwodecadesandweexpectthattocontinueto2050,despitetheslowdownin2022-23PowergenerationCO2emissions(LHS)andcarbonintensity(RHS)-200-10001002003004005006007008009001,0001,1001,2001,3001,4001,5000.00.40.81.21.62.02.42.83.23.64.0Carbonabatementcost(US$/tnCO2eq)GHGemissionsabatementpotential(GtCO2eq)De-carbonizationtechnologiesrelyingonrenewablepowerOtherde-carbonizationtechnologies-100200300400500-2004006008001,0001,2001,4001,60020002002200420062008201020122014201620182020202220242026202820302032203420362038204020422044204620482050Carbonintensity(kgCO2/MWh)PowergenerationCO2emissions(MtCO2)Solidfossilfuels(coal)NaturalgasOilandpetroleumNon-renewablewasteOtherNaturalgas+CCUSPowergenerationcarbonintensitySource:GoldmanSachsGlobalInvestmentResearchSource:Eurostat,GoldmanSachsGlobalInvestmentResearch20July202227GoldmanSachsCarbonomicsThepowergenerationinvestmentopportunity:Highercapitalintensityofrenewablepowerandtherisingimportanceofenergystorageandnetworksinfrastructurepavethewayforac.€6tninvestmentopportunityEarlierinthisreport,wehighlightedthesubstantialpotentialinvestmentcreationopportunityassociatedwithEurope’senergyevolutionpath.Renewablepowergenerationactsasamajorcontributortothisinfrastructureinvestmentopportunity(Exhibit37).Thisismainlyattributedtothehighercapitalintensityofthesetechnologiesandtheirassociatedinfrastructure,comparedwithtraditionalfossilfuelenergydevelopments.Intheexhibitsthatfollow,wepresentthecapitalintensity(capex)perunitofoutputenergyforeachtypeofpowergenerationtechnology.Wepresenttheresultsbothinunitsofcapexperflowingunitofenergy(US$/GJofpeakenergycapacity)andperunitofenergyoverthelifeoftheasset(US$/GJ).Thisshowshighercapitalintensityperunitofenergyaswemovetocleaneralternativesforpowergeneration.However,thisdoesnotnecessarilytranslateintohighercostsfortheconsumer,thankstotheavailabilityofverycheapfinancing(underanattractiveandstablelong-termregulatoryframework)andloweropex,comparedwithtraditionalhydrocarbondevelopments.Infact,inthecurrentcommoditypricelandscape,renewablepoweronaggregateimprovestheaffordabilityofpower.Asthegrowthinrenewablepoweraccelerates,intradayandseasonalvariabilityhastobeaddressedthroughenergystoragesolutions,ashighlightedinanearliersectionofthisreport.Toreachfullde-carbonizationofpowermarkets,webelievetwokeytechnologieswilllikelycontributetosolvingtheenergystoragechallenge:utility-scalebatteriesandhydrogen,eachhavingacomplementaryrole.WeincorporatebothofthesetechnologiesinourmodelforEurope’senergyevolution.Energystorageandtheneedforextensivenetworkinfrastructureisaparticularlyimportantconsiderationasdemandforpowergenerationgrowthaccelerates,toensurearesilientglobalenergyecosystem.Exhibit52:Renewablecleantechnologiesinpowergenerationhavehighercapitalintensitycomparedwithtraditionalfossilfuelsources,basedonperflowingunitofenergy...Capexperflowingunitofenergy(US$/GJ)Exhibit53:...andoverthelifetimeoftheassetCapexperunitofenergyoverthelifeoftheasset(US$/GJ)foreachtechnology0100200300400500600Coal-firedcombustionNaturalgasCGGTOnshorewindHydroSolarPVBiomassOffshorewindGeothermalCapitalintensityperflowingunitofenergy($/GJ)CapexperflowingunitofenergyCapexperflowingunitofenergy-GSbasecaseforChina0510152025Coal-firedcombustionNaturalgasCGGTOnshorewindHydroSolarPVBiomassOffshorewindGeothermalCapitalintensityperunitofenergyoverthelifetimeoftheasset($/GJ)Capexperunitofenergyoverassetlife-rangeCapexperunitofenergyoverassetlife-GSbasecaseforChinaSource:Companydata,GoldmanSachsGlobalInvestmentResearchSource:Companydata,GoldmanSachsGlobalInvestmentResearch20July202228GoldmanSachsCarbonomicsBuildings:ElectrificationandefficiencylikelytogoverntheenergyevolutionpathBuildings,bothresidentialandcommercial(includingservicesandpublic),accountforc.42%ofthefinalenergyconsumptioninEurope,withtheenergymixcurrentlydominatedbyelectricityandnaturalgas(primarilyforheating).Whilstthekeytechnologiesthatgoverntheenergyevolutionandde-carbonizationofbuildingsinthenearandmediumtermarereadilyavailable,includingelectricheatpumps(airandgroundsource)andresidentialsolar,geothermal,andbioenergy,thelonglifespanofbuildingsmakestheneedforcomparativelycostlyretrofitsessentialtoachievenetzeroemissionsby2050,particularlyforresidentialbuildingswheretheswitchislargelyreliantonconsumerpreference.Assuch,anyaspirationforgrosszeroemissionsinbuildingshastocomewiththeneedforanacceleratedpaceofretrofits.OurenergyevolutionmodelforEuropeincorporatesastepchangeinthepaceofaccelerationofenergyefficiency,aswellastheflexibilityofthestockandashiftawayfromfossilfuels.Theformercanbeachievedbyacombinationofmeasures,includingtheswitchtobest-availabletechnology(BAT)acrossapplianceswithheatpumpsinparticularbeingveryenergyefficiencyaccretive(asshowninExhibit58),insulation(cavitywall,floor),automationandsmartmeters,andwilllargelybegovernedbyunderlyingbuildingcodesandstandards.Thelatterislargelydependentonthecostandavailabilityofcleanalternativetechnologies.Overall,asshowninExhibit55,electricityaccountsforaroundonethirdofthetotalfinalenergyconsumptionofbuildings,andweexpectitssharetomorethandouble,reachingc.74%by2050,whilsttheshareofdirectrenewableenergy,suchasresidentialsolar,geothermalandbioenergy,isalsoincreasingovertime,reaching>15%by2050.Thisimplies,onourestimates,morethan40millionheatpumpsinstalledacrossEuropeby2030.Increasingheatpumpinstallationscoupledwithincreasedspendingonefficiencyandinsulationcontributetoc.€1.6trnofcumulativeinfrastructureinvestmentsforbuildingsinEurope(mostlyretrofits).20July202229GoldmanSachsCarbonomicsExhibit54:Thecurrentfinalenergyconsumptionofbuildingsisdominatedbyelectricityandnaturalgasconsumption,eachaccountingforc.32%/34%ofthefinalenergyconsumptionacrosstotalbuildings(residential,commercial/servicesandpublic)..EU27+UKBuildingsfinalenergyconsumption(PJ)Exhibit55:...withelectrificationanddirectrenewableshoweverdominatingtheenergymixlongerterm,eachrepresentingc.74%/15%ofthemixrespectively...EU27+UKfinalenergyconsumptionmixinbuildings(%)04,0008,00012,00016,00020,00024,000200920112013201520172019202120232025202720292031203320352037203920412043204520472049EU27+UKbuildingsfinalenergyconsumption(PJ)OtherElectricityRenewablesinclbiofuelsPeatandpeatproductsOilandpetroleumproducts(excl.biofuels)HeatNaturalgasManufacturedgasesSolidfossilfuels0%20%40%60%80%200920112013201520172019202120232025202720292031203320352037203920412043204520472049EU27+UKfinalenergyconsumptionmixinbuildings(%)SolidfossilfuelsManufacturedgasesElectricityNaturalgasHeatOilandpetroleumproducts(excl.biofuels)PeatandpeatproductsRenewablesinclbiofuelsOtherSource:Eurostat(historical),GoldmanSachsGlobalInvestmentResearchSource:Eurostat(historical),GoldmanSachsGlobalInvestmentResearchExhibit56:..andheatpumpinstallationssurpassing40mnby2030and75mnby2040Cumulativeheatpumpsinstallations(mn)Exhibit57:Switchtoelectrificationandacceleratedefficiencyimprovementsdrivethebuildings’carbonintensityandemissionslowerEU27+UKbuildings’directcarbonintensity(LHS)andtotaldirectCO2emissions(RHS)14.441.175.3111.4-204060801001202020203020402050HeatpumpsinstalledinEurope(mn)CAGR:11%CAGR:6%CAGR:4%01002003004005006007000.05.010.015.020.025.030.035.0200920112013201520172019202120232025202720292031203320352037203920412043204520472049BuildingsCO2emissions(MtCO2)Buildingsdirectcarbonintensity(tnCO2/GJ)Buildingsdirectcarbonintensity(LHS)BuildingsCO2emissions(residentialandcommercial/services)(RHS)Source:EHPA,REHVA,GoldmanSachsGlobalInvestmentResearchSource:Eurostat,GoldmanSachsGlobalInvestmentResearchExhibit58:Heatpumptechnologieshaveadistinctadvantageforbuildingswheretheycanbesuccessfullydeployed,giventheirrelativelyhighefficiency(lowprimaryenergyfactor)..PrimaryenergyfactorofheatproductionacrosstechnologiesandfuelsExhibit59:..yettheinfrastructureinvestmentandtimeittakesforabroadretrofitandadoptionmayprovetobeatransitionopportunityforblendinghydrogeninthenaturalgasgrid,subjecttofurthertestingandanupgradeofglobalhydrogenblendinglimitsHydrogenblendinglimitsinnaturalgasgridbyvolume(%)0123456DistrictResistanceHeatpumpBiolerHeatpumpStoveBiolerHybridheatpumpFuelcellHeatElectricityNaturalgasBiomassHydrogenPrimaryenergyfactorofheatproduction0%5%10%15%20%25%30%CaliforniaBelgiumJapanLatviaFinlandNetherlandsSwitzerlandLithuaniaUSAAustriaSpainAustraliaFranceUKGermanyHydrogenblendinglimitsinnaturalgasgridbyvolume(%)H2blendlimitAllowableundercertaincircumstancesSource:IEASource:S&PGlobalPlatts20July202230GoldmanSachsCarbonomicsTransportation:TheriseofNEVsandalternativefuelsdrivedifferingenergyevolutionprofilesacrosstransportmodesTransportation,incontrasttopowergeneration,mostlysitsinthe‘high-cost’areaofthede-carbonizationcostcurve,withthesectorresponsibleforc.30%oftheEuropeanfinalenergyconsumptionandc.25%ofthenetEuropeanGHGemissions(excludinginternationalbunkersandaviation).Aspartofouranalysis,welayouttheenergyevolutionandde-carbonizationpathforEurope’stransportation,asshowninExhibit60,addressingallkeytransportationmodes:shortandmedium-haulroadtransport,heavylong-haultransport,rail,domesticaviationandnavigation.Wehighlightthatthespeedoftheenergytransformationandde-carbonizationvariesdependingonthetransportmode,largelydrivenbythedifferenceincostsandtechnologicalreadinessoftheavailablecleanalternativesrequiredforeachsub-sector.Light-dutyvehiclesandrail(whichisalreadylargelyde-carbonizedthroughelectrification)arethetwotransportmodeswithafasterrelativede-carbonization,giventhereadinessandrisingscaleofthecleantechnologiesforboth(electrification).Conversely,aviationandshippingde-carbonizeataslowerpace,giventhestilllargelyundevelopedorearlystagedevelopmentde-carbonizationalternativesinboth(sustainableaviationfuels,syntheticfuels,cleanhydrogenandammonia/methanol),whichweexpecttoenjoyalargeuptakeinadoptionandaccountforanotablepartofthefleetonlypost2030.WefurtheraddresshowthefuelmixoftheenergyconsumptionoftransportevolvesovertimeinourEuropeanenergyevolutionmodelandpresenttheresultsinExhibit61.Overall,electricityincreasesitsshareintotaltransportenergyconsumptiontoc.40%by2050(>60%ifweexcludeinternationaltransport).Bioenergy,cleanhydrogen&hydrogen-derivedfuels(syntheticfuels,ammonia/methanol)allemergeasimportantenergysourcesfortransportation,particularlyforshipping,aviationandheavylong-haulheavytransport(lorries).Exhibit60:InourEuropeanenergyevolutionmodel,weaddresstheenergyevolutionofeachtransportmode...EU27+UKtransportfinalenergyconsumptionbytransportmode(PJ)Exhibit61:...andofeachfuel,includinginternationalaviationandshipping(wherefueldemandstemsfromEurope)EU27+UKtransportfinalenergyconsumptionbyfuel(PJ)02,0004,0006,0008,00010,00012,00014,00016,00018,00020,000200920112013201520172019202120232025202720292031203320352037203920412043204520472049TransportEU27+UKfinalenergyconsumption(PJ)CarsOtherLDVBusesandHDtrucksMotorcyclesDomesticaviationRailDomesticnavigationInternationalaviationInternationalbunkers05,00010,00015,00020,000200920112013201520172019202120232025202720292031203320352037203920412043204520472049TransportEU27+UKfinalenergyconsumption(PJ)Gasoilanddieseloil(exclbiofuel)Motorgasoline(exclbiofuel)Kero/jetfuelLPGElectricityNaturalgasFueloilRoadbiofuelsSAFSynfuelAmmoniaHydrogenBiogasSource:Eurostat,GoldmanSachsGlobalInvestmentResearchSource:Eurostat,GoldmanSachsGlobalInvestmentResearch20July202231GoldmanSachsCarbonomicsWenotethatwhilstfueldemandforinternationalaviationandmaritimebunkers(definedinasectionearlierinthisreport)isnottypicallyincludedinthedefinitionof‘finalenergyconsumption’butisratherpartof‘grossavailableenergy’forEurope,weincludeitintheexhibitswhichfollowtoprovideabetteroverviewoftheultimatetransportationfueldemandstemmingfromtheregion(evenifthatfueldemandisultimatelyusedforinternationaltripactivities).Chargingandrefuelinginfrastructurecriticalforthetransformationoftransport:Weestimateac.€0.6trninfrastructureinvestmentopportunityinEuropeTheabilitytofacilitatetheenergyevolutionoftransportenvisaged,withrapiduptickofelectrificationandalternativefuels,callsforsubstantialinfrastructureinvestments,whichweestimateat€0.6tncumulativelyto2050.Thisisimperativefortheincreasingnumberofpublicbutalsoprivatechargersaswellasalternativefuelsrefuelingstations.Exhibit62:Electricity,bioenergy,hydrogenandhydrogen-derivedfuels(ammonia,synfuels,methanol)dominateEurope’stransportationenergymixinthecomingdecades...EU27+UKtransportfuelmix-incl.internationalaviationandtransport(%)Exhibit63:..anddrivetherequiredemissionsreduction,mostlyacceleratingfrom2030.EU27+UKtransportCO2emissions(MtCO2)0%20%40%60%80%100%202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050EU27+UKtransportfuelmix-incl.internationalaviationandmaritime(%)Gasoilanddieseloil(exclbiofuel)Motorgasoline(exclbiofuel)Kero/jetfuelLPGElectricityNaturalgasFueloilRoadbiofuelsSAFSynfuelAmmonia/methanolHydrogenBiogas02004006008001,0001,2001,400200920112013201520172019202120232025202720292031203320352037203920412043204520472049TransportEU27+UKCO2emissions(MtCO2)CarsOtherLDVBusesandHDtrucksMotorcyclesDomesticaviationRailDomesticnavigationInternationalaviationInternationalbunkersSource:GoldmanSachsGlobalInvestmentResearchSource:Eurostat(EEA),GoldmanSachsGlobalInvestmentResearchExhibit64:Theenergyevolutionoftransportrequiresonourestimatesc.€0.6tninchargingandrefuelinginfrastructureinvestmentsChargingconnectionsforEurope(mnunits)02040608010012014016020222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050Europechargingconnections(mnunits)FastpublicchargersSlowpublicchargersPrivatechargersSource:GoldmanSachsGlobalInvestmentResearch20July202232GoldmanSachsCarbonomicsLight-dutyroadtransportvehicles:ElectrificationattheheartofthetransportevolutionWebelieveroadtransportisatthestartofitsmostsignificanttechnologicalchangeinacentury,withelectrification,autonomousdrivingandcleanhydrogenatthecoreofthede-carbonizationchallenge.Forlight-dutyvehicles(LDVs)transport(primarilyconstitutingpassengervehicles,specialpurposevehicles,motorcycles,commercialvehiclesandshort/medium-haultrucks),weconsiderelectrificationthekeyde-carbonizationtechnology.Overall,weestimatethatthetotalLDVsEuropeanroadfleet(includingpassengervehicles,shortandmedium-haultrucks)willincreasec.5%by2050(froma2019base),withnewenergyvehicles–NEVs(includingallofBEVs,PHEVsandFCEVs)reachingalmost100%penetrationintheroadtransportfleet,asshowninExhibit67,forapathconsistentwithnetzeroemissionsby2050.OurmodelingoftheLDVsenergyevolutionforEuropeisconsistentwiththeregion’sambitionslaidoutin‘Fitfor55’,whichhadintroducedEU-widereductiontargetsfor2030andsetatargetof100%carbonintensityreductionforcarandvanvehiclesalesby2035.Thisimpliesallsalesfrom2035(100%)inEuropewillbeNEVsandourmodelsassumes>65%ofnewLDVsaleswillbenetzeroby2030,aspresentedinExhibit66.Whileweprojectconsiderablegrowthinpurebatteryvehiclesintheultimatede-carbonizationsolutionforlightroadtransport(essentialforanetzeropath),weexpectmulti-energypowertraintoalsoplayaroleinthefacilitationofthistransition,accountingforaconsiderableportionofsalesandthefleetoverthenext20years.Multi-energyvehiclesincludeplug-inhybridEV(PHEVs),range-extendedEVs,andlightemissionhybridcars(HEVs).Overall,consideringallNEVtypes,ournetzeropathrequiresaNEVpenetrationinthelight-dutyroadtransportfleettoreach>25%by2030,closeto>65%by2040,andalmost100%by2050.NEVssalesmakeup>35%/>65%and100%oftotalLDVsalesby2025/30/35Erespectively,effectivelyreachingzerocarbonintensityinLDVsalesby2035,asshowninExhibit66.Weprimarilyfocusontheevolutionofthefleetforthepurposeofemissionaccountinginthisanalysis,withthefleetevolutionreliantonbothvehiclessalesandretirements,asitisultimatelythepenetrationinthefleetthatdirectlytranslatesintotransportemissions.Exhibit65:Europe’senergyevolutionmodelcallsforatransformationalshiftinthemixoftheLDVsfleetto2050..EU27+UKpassengerLDVsfleet(kvehicles)Exhibit66:..withtheshareofNEVsinthesalesmixreaching100%by2035and>60%by2030..EU27+UKpassengerLDVssalesmix(%)050,000100,000150,000200,000250,000300,000350,000400,0002017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050EU27+UKpassengercars(kvehicles)PetroleumproductsLiquefiedpetroleumgases(LPG)DieselNaturalGasBEVPHEVOther0.0%10.0%20.0%30.0%40.0%50.0%60.0%70.0%80.0%90.0%100.0%2020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050PassengerLDVssalesmix(%)BEVPHEVOtherpetroleumproductsLiquefiedpetroleumgases(LPG)DieselNaturalGasOtherNEVs100%ofsalesby2035NEVs>65%ofsalesby2030NEVs>35%ofsalesby2025Source:GoldmanSachsGlobalInvestmentResearchSource:GoldmanSachsGlobalInvestmentResearch20July202233GoldmanSachsCarbonomicsHeavy-dutyroadtransport:AcomparativelysmallerpartoftheEuropeantransportenergysystemwithamorecompetitivelandscapeencompassingelectrification,bioenergyandpotentialcleanhydrogenWhilewebelievethatelectricvehiclesscreenasthemostattractivede-carbonizationsolutionforLDVapplications,includingshortandmedium-haultransport,webelievethatthespacebecomesmorecompetitiveoncewelooktoaddressheaviersegmentsofthetransportationmarket,primarilybusesandlorries.Weacknowledgehowever,thattheshareofheavy-dutytransportinthecaseofEuropeiscomparativelysmallcomparedtolight-dutygivenrequiredmileagestoppageandrecharging/refuelingfrequency.Nonetheless,wenotethatbothbioenergyandcleanhydrogencouldbekeycompetingtechnologieswhenlong-haulheavytransportisconsidered(primarilylorries),givenitshighenergycontentperunitmassandshorterrefuelingtime.AlthoughtheFCEVs(fuelcellelectricvehicles)globalstockwasestimated(byIEA)tobearound25,000attheExhibit67:...anddrivingthetransformationofthefleetwithac.12-15yeardelaygiventhereplacementcycleofaveragevehicles.EU27+UKpassengerLDVsfleetmixevolution(%)Exhibit68:LDVsandrailareachievingthemostrapidenergytransformationandde-carbonizationrelativetoothertransportationmodesgiventhetechnologicalreadinessandcostoftheavailabletechnologiesEU27+UKtransportemissionsreductionbymoderelativetothe2019base(%)0.0%10.0%20.0%30.0%40.0%50.0%60.0%70.0%80.0%90.0%100.0%2017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050EU27+UKpassengercarsfleetevolution(%)OtherpetroleumproductsLiquefiedpetroleumgases(LPG)DieselNaturalGasBEVPHEVOtherNEVs>25%offleetby2030NEVs>65%offleetby2040-120%-100%-80%-60%-40%-20%0%20%2020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050Transportemissionsreductionbymode-changevs2019base(%)LDVs(passengercarsandother)BusesHDVs(lorries)RailAviationShippingTotaldomestictransportSource:GoldmanSachsGlobalInvestmentResearchSource:GoldmanSachsGlobalInvestmentResearchExhibit69:Despitetheirde-carbonizationandefficiencyimprovementpotential,wenotethatinEurope,theaverageBEVretailsfor>30%morethanICEvehiclesAverageretailpriceICEvsBEV(€),2021Exhibit70:..andweforecastagradualimprovementinbatterycellcostswillmaterializepost2023Source:GoldmanSachsGlobalInvestmentResearchSource:GoldmanSachsGlobalInvestmentResearch20July202234GoldmanSachsCarbonomicsendof2019,owingtoalimitedproductoffering,non-competitivepricepointsandlittleinfrastructure,weseetherecentpolicydrivetowardsde-carbonizationasareasontoreconsiderthepotentialforFCEVs.Despitesmallabsolutevolumes,thegrowthofFCEVscouldacceleratenotably,particularlyinheavylong-haultransportapplications,busesandforklifts.OverallwemodelconsiderablegrowthinbothelectricvehiclesandFCEVsasthepenetrationofbothovertakesinternalcombustionenginevehiclesinthecomingdecadesforbusesandheavy-dutylorries,aspresentedinExhibit71andExhibit72.However,theshiftinthefleetmixforheavy-dutyvehiclesstartslaterthanthetransitioninLDVs,giventhelowerproductofferingandtheneedforfurthertechnologicalinnovation(inthecaseoflong-haullargecapacitybatteries)andcostdeflation(inthecaseoffuelcells).Exhibit71:WeexpecttheevolutionofthebusesfleetinEuropetobedominatedbyelectrificationandcleanhydrogen...EUR27+UKbusesfleetevolution(%)Exhibit72:...withasimilartrendobservedinheavy-dutylorries,withagreaterroleforcleanhydrogeninamorenichetransportationendmarketinEuropeEU27+UKHDVs(lorries)fleetevolution(%)0%10%20%30%40%50%60%70%80%90%100%2013201520172019202120232025202720292031203320352037203920412043204520472049EU27+UKbusesfleetevolution(%)Diesel&otherpetroleumproductsElectricityHydrogenFC0%10%20%30%40%50%60%70%80%90%100%2013201520172019202120232025202720292031203320352037203920412043204520472049EU27+UKHDVs(lorries)fleetevolution(%)Diesel&otherpetroleumproductsNaturalgas(CNG)ElectricityHydrogenFCSource:GoldmanSachsGlobalInvestmentResearchSource:GoldmanSachsGlobalInvestmentResearchExhibit73:HydrogenoutperformssignificantlywhenwecomparetherefuelingtimesofFCEVsversusBEVsatdifferentkWchargingratings...minstorefuel/rechargeExhibit74:...andalsoprovidesarangeadvantage,particularlyusefulforlong-haultruckapplicationsZEVClass8trucksandrange(km)3330150020406080100120140160ICEFCEVBEV-DC(100kW)BEV-AC(22kW)Timetorefuel(measuredinminutes)200km200km210km300km400km483km500km805km1,000kmMaxEUdailytruckdistacnce:c.800kmSource:Companydata,GoldmanSachsGlobalInvestmentResearchEUmaxdailydrivingtimeat9hours(assumingaveragespeedof90km/h)Source:Transport&Environment,EU,GoldmanSachsGlobalInvestmentResearch20July202235GoldmanSachsCarbonomicsIntheexhibitsbelow,wecomparethetotalcostofownershipforICE,BEVandFCEV,forheavy-dutylong-haultrucks.Aswelookintoheavy-roadlong-haultransport,wefindthehydrogenpropositionpotentiallycompetitive,withaTCOthatissimilartothatofBEVbutbenefitingfromlowerweightandfasterrefuelingtimes.WhilebothoptionsremainmorecostlythanconventionaldieselICEtrucks,weexpecttechnologicalinnovationandcostdeflationthatgenerallycomesonthebackofeconomiesofscaletoreducethecostsofbothtechnologiesovertime.Exhibit75:Long-haulheavytransportcouldbeanewpotentialendmarketforhydrogen,withFCEVtrucksbecomingcostcompetitive,yetwenotetheshareoflonghaulHDVsinEuropeantransportisrelativelysmallTotalcostofownershipofaClass8truck(15yearsassumedusefullife)Exhibit76:Longerterm,weestimateahydrogenpricearoundUS$4-4.5/kgH2wouldbesufficientforcostparitywithdiesel(normalizeddieselprices)Hydrogenpriceatthepumprequiredforcostparitywithdiesel00.20.40.60.811.21.41.61.82ICEDieselBEVFCEVICEDieselBEVFCEVCurrentLong-termTCOforlong-haulheavytruck($/km)CostofthetruckMaintenance&operationsFuel/electricitycost0.01.02.03.04.05.06.07.08.09.02.02.53.03.54.04.55.05.56.06.57.07.5Hydrogenpriceatthepumpforcostparitywithdieseltrucks($/kgH2)Dieselpricepergallon(US$/gl)Long-termFCEVTCOCurrentFCEVTCODieselpriceassumptionofUS$6.5/gl,retailpowerpriceassumptionof$0.6/kWh($0.4/kWhlong-term),hydrogenpriceatthepumpof$12/kg($5/kglong-term)Source:Companydata,GoldmanSachsGlobalInvestmentResearchSource:GoldmanSachsGlobalInvestmentResearch20July202236GoldmanSachsCarbonomicsAviation&Shipping:Harder-to-abatesectors,withnewgenerationaircraft/fleetrenewal,sustainableaviationfuels(SAFs)andhydrogen-basedfuelsandnewpropulsiontechnologiespavingthewayfortechnologicalinnovationandtransformationAviationsitsatthetopofourCarbonomicscostcurveforEurope,andisoneofthetoughestsectorstode-carbonize.Wenotethatdomesticaviationaccountedforonlyc.2%ofthetotaltransportenergyconsumptionforEurope;however,withtheinclusionofinternationalaviation,thissharerisestoc.14%(2019),makingitanimportantandchallengingpartoftheenergysystemtotransform.Sustainableaviationfuels(SAFs),syntheticfuelsandimprovedaircraftefficiencyareinourviewallkeypartsofthesolution.Inthenearterm,weviewthenewgenerationofaircraftandfleetrenewalaslikelytoachievethelowest-costaviationemissionsabatement.Newgenerationaircraft,whichcanburnc.15%-20%lessfuelthantheirpredecessors,currentlyhavelimitedpenetrationacrosstheglobalfleet,yetwithfuelcostsaccountingfor>30%ofairlinesfuelopexwebelievetheongoingshiftwillaccelerateinthecomingyears.AlthoughlowerinvestmentcapacityamidweakenedbalancesheetspostCovidhadresultedinaircraftdeferrals,wedonotexpectmedium-andlong-termfleetrenewalplanstochange.Fromhere,weseeagradualandongoingimprovementinaviationactivitywithefficiencyanimportantpillarforthesustainabilityandultimateenergydemandprogressionofthissub-segmentoftransportation.Havingsaidthat,ultimately,inthemediumandlongtermweexpectthefuelswitchfromcurrentkeroseneandjetfuelintosustainableaviationfuel(SAF)andlonger-termsyntheticandotherfuelstodrivethemostmeaningfulchangeintheenergyevolutionoftheaviationindustryinEurope,withthetwofuelsmakingupc.63%/37%ofthemixlongerterm,respectively.WhilsttheeconomicsofSAFremainmorechallengingrelativetotraditionaljetfuelatpresent,wenotethatthefirstlegoftheenergyswitchwilllikelybedrivenbyEU-wideblendingmandates,withtheReFuelEUproposalincorporatingthecommencementfrom2025for2%SAF,graduallyincreasingto63%in2050,consistentwithourmodel.Exhibit77:Theswitchtomoreefficientaircraftshasthepotentialtoleadtoc.15%-20%fuelburnimprovement...Fuelburnimprovementvs.previousgenerationaspercompanydataExhibit78:...andisakeytoolfortheenergyevolutionofaviationinthenearandmediumtermgiventheongoingincreaseinactivityweexpectinthesector...Aviationpkmandfuelconsumption25%25%20%20%14%10%0%5%10%15%20%25%30%A330neoA350A320neo787737MAX777X02,0004,0006,0008,00010,00012,00014,00016,0000500,0001,000,0001,500,0002,000,0002,500,000Passengerairtransportovernationalterritory(inclterritorialsea)-mnpkm-LHSFreighttonnekmairtransportovernationalterritory(includingterritorialsea)-tnkm(RHS)Source:CompanydataSource:IATA(historical),GoldmanSachsGlobalInvestmentResearch20July202237GoldmanSachsCarbonomicsDomesticnavigation(coversthequantitiesdeliveredtovesselsnotengagedininternationalnavigation)accountedforc.2%ofthetotalEuropeanfinalenergyconsumptionintransport,butsimilarlytoaviation,consideringalsointernationalmarinebunkers,thissharerisestoc.11%.Shippingisanothersectorwithhard-to-abateemissionsgivenalackofwidespreadadoptionoftheavailablelow-carbonde-carbonizationtechnologiesatscale,andtherelativelylongoperatinglifeofvessels.Similartoaviation,wedonotexpectgrossemissionsinshippingtoreachabsolutezeroin2050,yetwedomodelanotablereductioninemissions,asalternativefuelsbecomemorewidelyadopted.Amongsttheseisliquefiednaturalgas(LNG),which,whilstnotazero-emittingfuel,canplayakeyroleasatransitionfuelfortheshippingsector,aswellasadvancedbiofuels,andcleanhydrogen-derivedfuelssuchasammonia/methanolcanplayalargerroleastheultimatede-carbonizationtechnologiesforthesector.InourEuropeanenergyevolutionmodel,cleanammoniaoralternativecleanhydrogen-basedfuels(suchasmethanol)accountforc.69%ofthetotalenergyinshippingin2050,sustainablebiofuelsprovidec.20%oftotalshippingenergyneeds,withtheremainingenergyprovidedbyLNG.Exhibit79:..butultimately,fuelswitchisnecessary,withSAFs,syntheticandotherfuelspavingtheenergyevolutionofaviationinthemediumandlong-term..EU27+UKaviation(domesticandinternational)energyconsumption(PJ)Exhibit80:..accountingforc.63%/37%oftheaviationfuelmixrespectivelyby2050EU27+UKaviation(domesticandinternational)energymixevolution(%)05001,0001,5002,0002,5003,000201020122014201620182020202220242026202820302032203420362038204020422044204620482050EU27+UKdomesticandinternationalaviationfinalenergyconsumption(PJ)Kerosene/jetfuelSAFSyntheticfuels0%20%40%60%80%100%2020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050Domesticandinternationalnavigationenergyconsumptionmix(PJ)OilandpetroleumproductsBiofuelsLNGAmmonia/methanolorotherhydrogen-basedfuels)Source:Eurostat,GoldmanSachsGlobalInvestmentResearchSource:GoldmanSachsGlobalInvestmentResearchExhibit81:Fuelswitchingwillbekeyfortheenergyevolutionofmaritimebunkers...EU27+UKdomesticandinternationalmaritimebunkersenergyconsumption(PJ)Exhibit82:..withcleanammonia/methanol,advancedbiofuelsandLNGallplayingaroleintheenergytransitionEU27+UKdomesticandinternational050010001500200025003000201020122014201620182020202220242026202820302032203420362038204020422044204620482050EU27+UKdomesticandinternationalmaritimebunkersenergyconsumption(PJ)Ammonia/methanolorotherhydrogen-basedfuelsLNGBiofuelsOilandpetroleumproducts0%20%40%60%80%100%2020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050Domesticandinternationalnavigationenergyconsumptionmix(PJ)OilandpetroleumproductsBiofuelsLNGAmmonia/methanolorotherhydrogen-basedfuels)Source:Eurostat,GoldmanSachsGlobalInvestmentResearchSource:GoldmanSachsGlobalInvestmentResearch20July202238GoldmanSachsCarbonomicsIndustry:Anewindustrialtechnologyrevolutioncenteredaroundefficiency,electrification,hydrogen,circulareconomyandCCUSTheindustrialsectoraccountsforc.25%ofEurope’sfinalenergyconsumption,makingitthethird-largestenergyconsumingindustryintheregion(afterbuildingsandtransportation).ThesectornonethelesscontributesthehighestEuropeannetGHGemissions,atc.33%in2019.Theindustrialsectorforthepurposeofthisanalysisincorporatesallofindustrialcombustion,industrialprocesses,wasteandotherfugitiveemissions(includingthoseassociatedwiththeextractionandrefiningoffossilfuels).Whiletheexactsplitofallthedifferentindustrialsub-sectoremissionsissubjecttouncertainty,withdifferencesbetweensources,weestimatethatc.50%oftheEuropeanindustryenergyconsumptionstemsfromthekeyheavyindustriesasshowninExhibit85(ferrousandnon-ferrousmetalsmanufacturing,non-metallicmineralssuchascementandchemicals).WebelieveEuropeanindustry,similartothetransportandbuildingssectors,willhavetoundergoatechnologicalrevolutiononitspathtonetzerowiththekeyleversofthistransformationbeingenergyefficiency,electrification,hydrogen,circulareconomyandCCUS(forsectorswhereanalternativeenergysourcedoesnotdrivethecompleteabatementofemissions,suchasinprocessessuchascementproduction).Overall,ourmodelforEuropeanindustrypointstoalong-termshareofelectricityofc.58%,directrenewables(renewablewasteandbioenergybothintheformofbiogasandbiomass)c.24%,cleanhydrogenc.10%,asshowninExhibit84,withthelattertwo(bioenergyandcleanhydrogen)beingvitalforheavyindustrieswheredirectelectrificationisnotpossiblegiventhehightemperaturesinvolvedintheseindustrialprocesses.Exhibit83:Weseeenergyefficiency,electrification,hydrogen,circulareconomy,bioenergyaskeydriversoftheenergytransformationofEuropeanindustry..EU27+UKindustryfinalenergyconsumption(PJ)Exhibit84:..requiredtode-carbonizeanddiversifytheenergyofbothlowtemperatureconventionalmanufacturingprocessesbutalsoheavyindustryEU27+UKindustryfinalenergyconsumptionfuelmix(%)-2,0004,0006,0008,00010,00012,000200920112013201520172019202120232025202720292031203320352037203920412043204520472049EU27+UKIndustryfinalenergyconsumption(PJ)SolidfossilfuelsManufacturedgasesElectricityNaturalgasHeatOilandpetroleumproducts(excl.bio)PeatandpeatproductsRenewablesandbiofuelsNonrenewablewasteHydrogen0%10%20%30%40%50%60%70%200920112013201520172019202120232025202720292031203320352037203920412043204520472049EU27+UKindustryfinalenergyconsumptionfuelmix(%)SolidfossilfuelsManufacturedgasesElectricityNaturalgasHeatOilandpetroleumproducts(excl.bio)PeatandpeatproductsRenewablesandbiofuelsSource:Eurostat(historical),GoldmanSachsGlobalInvestmentResearchSource:Eurostat(historical),GoldmanSachsGlobalInvestmentResearch20July202239GoldmanSachsCarbonomicsTheenergyevolutionandtechnologicalmixofeachsub-segmentofindustrywilldifferdependingonthecharacteristicsoftheprocessinvolved,callingfortheneedofcontributionsfromallofelectrification,circulareconomy,efficiency,hydrogen,bioenergy,CCUSTheenergyevolutionofEuropeanindustrywilldifferbothinpaceandintechnologicalandfuelmixdependingonthespecificprocessanditscharacteristics.Morebroadly,Europeanindustrialenergyconsumptionissplitfairlyevenlybetweenlowandmediumtemperatureheatprocessessuchasbroaderequipmentmanufacturing,andhightemperatureheatprocesses,primarilyheavyindustrysuchasiron&steel,non-metallicmineralsandnon-ferrousmetalsmanufacturing,aswellaspetrochemicals,asshowninExhibit85.Whilstenergyandmaterialefficiency(includingcirculareconomyandwastemanagement)willlikelyberelevantforallindustrialsub-segments,wenotethatthedominanttechnologiesandultimateenergymixwilldifferforeachtypeofindustrialprocess.Overall,weviewelectrificationaslikelytobethedominantsourceofenergyforlowtemperatureheatprocesses(suchasbroaderequipmentmanufacturing),asthosedefinedinExhibit85,whilstmolecularsourcesofenergyincludingbioenergy,hydrogenandhydrocarbonsretrofittedwithcarboncapturearelikelytodominatehightemperatureprocessesforwhichfullelectrificationisnotpossiblewithexistingtechnologiesatscale.Exhibit85:Europeanindustryissplitbetweenlowandhightemperatureprocesses,makingtheneedforbothelectrificationbutalsomolecularenergysourcesforitsde-carbonizationandenergyevolutionHeattemperatureExamplesofprocessesAvailablecleantechnologiesc.24%Veryhigh-temperatureheat>1,000degreesCalcinationoflimestoneforcementproductionMeltinginglassfurnaceReheatingforslabinhotstripmillFossilfuels+CCUSBioenergyCleanhydrogenElectricityc.25%High-temperatureheat400-1,000degreesSteamreformingandcrackinginpetrochemicals(ammonia,methanol)Fossilfuels+CCUSBioenergyCleanhydrogenElectricityc.28%Medium-temperatureheat100-400degreesDrying,evaporation,distillationactivationBroadermanufacturingFossilfuels+CCUSBioenergyCleanhydrogenElectricityc.13%Low-temperatureheat<100degreesandotherunclassifiedWashing,rinsing,foodpreparationBroadermanufacturingFossilfuels+CCUSBioenergyCleanhydrogenElectricityEuropeanindustryfinalenergyconsumptionsplitbysub-industryandtypeofprocess,2019ApplicableandcurrentlyavailableatlargescaleApplicablebutnotyetatlargescaleNotapplicableIron&steel,10%Nonmetallicminerals,14%Nonferrousmetals,4%Chemicalandpetrochemical,21%Machinery,transportequipment,construction,14%Paper,pulpandprinting,13%Food&beverage,tobacco,12%Other,12%Veryhightemperature,23%Hightemperature,25%Mediumtemperature,28%Low-temperatureandother,24%Source:GoldmanSachsGlobalInvestmentResearch20July202240GoldmanSachsCarbonomicsOverall,ourEuropeanindustryenergymodelisconsistentwithanotableaccelerationofindustrialGHGemissionsreduction(includingindustrialcombustion,processes,fugitiveandwasteemissions).WenotenonethelessthatgrossindustrialGHGemissionsneverreachabsolutezero,giventheharder-to-abateprocessemissionsacrosskeysectors,makingtheneedforLULUCF(definedearlierinthisreportandincludingnaturalsinks)importantfornetzerofortheregion,consistentwiththeframeworkofemissionsreductionsuggestedby‘Fitfor55’.TheoverallprofileofEuropeanindustrialemissionsispresentedinExhibit87,includingfugitiveandotherwasteemissions.Exhibit86:TheenergyevolutionofEuropeanindustrydiffersdependingonthespecificprocessanditsenergyandheatrequirements,withanecosystemofenergysourcesandtechnologiesrequiredtoaddressthefullspectrumofprocessesEU27+UKindustryfinalenergyconsumptionbysub-industry(%-topchart,PJ-bottomchart)OthernotspecifiedTextileandleatherMiningandquarryingWoodandwoodproducts0%20%40%60%80%100%20202030204020502020203020402050202020302040205020202030204020502020203020402050202020302040205020202030204020502020203020402050Iron&steelNon-metallicmineralsNon-ferrousmetalsChemicalandpetrochemicalMachinery,transportequipment,consructionPaper,pulpandprintingFood&beverage,tobaccoOther(textiles,miningandquarrying,woodproducts,unspecified)Europeanindustryfinalenergyconsumptionmix(%)SolidfossilfuelsManufacturedgasesElectricityNaturalgasHeatOilandpetroleumproducts(excl.bio)PeatandpeatproductsRenewablesandbiofuelsNonrenewablewasteHydrogen05001,0001,5002,0002,50020202030204020502020203020402050202020302040205020202030204020502020203020402050202020302040205020202030204020502020203020402050Iron&steelNon-metallicmineralsNon-ferrousmetalsChemicalandpetrochemicalMachinery,transportequipment,consructionPaper,pulpandprintingFood&beverage,tobaccoOther(textiles,miningandquarrying,woodproducts,unspecified)Europeanindustryfinalenergyconsumptionmix(PJ)SolidfossilfuelsManufacturedgasesElectricityNaturalgasHeatOilandpetroleumproducts(excl.bio)PeatandpeatproductsRenewablesandbiofuelsNonrenewablewasteHydrogenSource:Eurostat(historical),GoldmanSachsGlobalInvestmentResearch20July202241GoldmanSachsCarbonomicsExhibit87:Industrialemissionsstemfromaverydiverserangeofsourcesandindustries,requiringanecosystemofde-carbonizationtechnologies,includingcarbonoffsets,toachievenetzeroGHGemissionsby2050EU27+UKindustrialGHGemissions(MtCO2eq)-2004006008001,0001,2001,4001,600200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050EU27+UKindustrialemissions(MtCO2eq)Iron&steelNonmetallicmineralsNonferrousmetalsChemicalandpetrochemicalMachinery,transportequipment,constructionPaper,pulpandprintingFood&beverage,tobaccoOtherCO2emissionsWasteemissionsOthernonCO2emissionsSource:Eurostat(EEA),GoldmanSachsGlobalInvestmentResearch20July202242GoldmanSachsCarbonomicsEurope’senergyevolutionandtheneedformolecularenergysources:HydrogenandBioenergyAswehavehighlightedearlierinthisreport,webelieveEurope’senergytransformationandpathtonetzerocallsforanevolutionofthede-carbonizationprocessfromonedimensional(renewablepower)toamulti-dimensionalecosystem.Whilstrenewablepoweristhemostcriticalpartoftheenergysystemweenvisage(withc.50%ofthede-carbonizationoftheregionrelyingonaccesstocleanpower),wenotethatthenatureofitposestwokeychallenges,intermittencyandseasonality,increasingtheimportanceofmolecularsources.Inthissectionofthereport,wefocusonaddressingthepotentialroleandopportunityforthetwomolecularenergysourcescomplementingrenewablepower:cleanhydrogenandbioenergy.TheriseoftheEuropeangreenhydrogeneconomy:BridgingthegapbetweenenergysustainabilityandenergyresilienceHydrogenhasacriticalroletoplayinanyaspiringenergyevolutionpathwhichlargelyreliesontheresilienceofanincreasinglyelectrifiedenergysystemdependentonrenewablesources.Hydrogenhasawiderangeofapplicationsacrosssectorsincluding,butnotlimitedto,itspotentialuseasanenergyvectorandstorage(seasonal)solutionthatcanextendelectricity’sreach,industrialenergysourceandindustrialprocessfeedstockincludingitspotentialuseinreplacingcoalinsteelmills,servingasabuildingblockforsomeprimarychemicalsandprovidinganadditionalcleanfueloptionforhightemperatureheat,andlong-haulheavytransport.Weestimatethatcleanhydrogencanconstitutec.15%ofEurope’stotalfinalenergyconsumptionwithitsaddressablemarket,growingtoc.66Mtpaby2050inascenarioconsistentwith‘Fitfor55’.Exhibit88:OurEuropeanenergyevolutionmodelseestotalhydrogendemandincreasingtoc.66Mtpaby2050,withfurtherpotentialupsidefromthe‘REPowerEU’proposalHydrogenconsumptionforEU27+UK(Mtpa)andshareofcleanhydrogen(%)0%20%40%60%80%100%0.010.020.030.040.050.060.070.0202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050%CleanhydrogenpenetrationHydrogenconsumptionforEU27+UK(MtH2)BlendingingridTransport-road(HDVs,buses)Transport-railTransport-domesticaviationTransport-domesticshippingTransport-internationalaviationTransport-internationalshipping(ammonia)Industry-steelIndustry-heatRefineriesChemicalfeedstockPowergenstorageSource:GoldmanSachsGlobalInvestmentResearch20July202243GoldmanSachsCarbonomicsFurthermore,webelieverecentgeopoliticaleventshavechangedtheEU’spriorityinrelationtoitsenergypolicy,withtheEuropeanCommissionpublishingthe‘REPowerEU‘planoutliningasetofjointactionstoreduceEurope’sdependenceonRussiangasimportsandunlockincreasedinvestmentsandreformsformoreaffordable,sustainableandsecureenergysupply.Whiletheenergypolicyfocusappearstohaveshiftedtoenergysecurity,onekeyprioritywhichremainsintactandisgainingmomentumfortheEUistheneedtoacceleratetherenewablesbuild-upandelectrificationaswellasfast-tracktheroll-outofrenewablegases:hydrogenandbiogas.Green(renewable)hydrogenisidentifiedasacriticaltechnologyinhelpingtounlockfurtherdiversificationawayfromnaturalgasinthecomingyearsandtheproposalincludesanotableupgradeofthe‘Fitfor55’targetof5.6Mtpaofrenewablehydrogenby2030to20Mtpaoverthesametimeframeonacombinationoflocallyproducedandimportedvolumes.ThisposesfurtherupsidepotentialforthetechnologythanourEuropeanenergyevolutionmodelsuggests(consistentwiththe‘Fitfor55’target).Cleanhydrogencreatesac€0.74trncumulativeinvestmentopportunityforthedirectdomesticEuropeancleanhydrogensupplychainOverall,ourEuropeanenergypathconsistentwiththe‘Fitfor55’ambitionslaidoutforhydrogencallsfor€0.74tnofcumulativeinvestmentsinthedirectdomesticEuropeanhydrogenvaluechainto2050,evenwhenaccountingforc.50%ofvolumesbeingimportedfromneighboringregions.Thisfigurecapturesinvestmentsinthedirectsupplychainofcleanhydrogen,includinginvestmentsrequiredforitsproduction(electrolyzersandCCUSforgreenandbluehydrogen,respectively),storage,distribution,transmissionandglobaltrade(regasificationterminals).WenotethisissolelydomesticEuropeancapexinvestmentsinthedirectsupplychainofcleanhydrogenanddoesnotincludecapexassociatedwithendmarkets(industry,transport,buildings)orupstreamcapexassociatedwiththepowergenerationplantsrequiredforelectricitygenerationforgreenhydrogen.Exhibit89:Weestimatec.€0.74tnofcumulativedomesticEuropeaninvestmentswillberequiredinthecleanhydrogensupplychainto2050...CumulativeinvestmentsinthedomesticEuropeancleanhydrogenvaluechainto2050(EURbn)Exhibit90:...withelectrolysiscapacitymakingupthelargestshareoftheseinvestmentsInstalledelectrolysiscapacityrequiredforEurope’shydrogenconsumption(splitbetweendomesticandthatrequiredforhydrogenimportedvolumes),(GW)Electrolysisequipment,€325CCUS,€88Localdistribution,€127Storage,€38Transportandinternationaltrade,€158€740bncumulativeinvestmentsonthedomesticEuropeancleanhydrogenvaluechain02004006008001000120020222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050InstalledelectrolysiscapacityrequiredforEurope'shydrogenconsumption(GW)Importedhydrogeninstalledwaterelectrolysiscapacity(GW)Domesticinstalledwaterelectrolysiscapacity(GW)Source:GoldmanSachsGlobalInvestmentResearchSource:GoldmanSachsGlobalInvestmentResearch20July202244GoldmanSachsCarbonomics(1)Greenhydrogenakeyenablerofelectrification,unlockingseasonalenergystorageandhavinggridbuffercapabilitiesHydrogencurrentlyhasanicheroleinpowergeneration.However,aspowergenerationundergoesacompletetransformation,hydrogencouldemergeasacriticaltechnologyinthisindustry,complementingrenewablepowerasitunlocksseasonalenergystoragecapabilitiesandenhancestheresilienceofanincreasinglyelectrifiedenergysystem.Theseasonalnatureofnaturalgasconsumption,withEUaveragemonthlyconsumptionofc.20bcminJun/July/Augvs.c.45-50bcminDec/Jan/Feb,willmakeitverydifficultfornaturalgastobesubstitutedwithrenewablepower–especiallysolarpower,whichhasoppositeseasonality.Asgrowthinrenewablepoweraccelerates,intradayandseasonalvariabilityhastobeaddressedthroughenergystoragesolutions.Theroleofpowergenerationis,inourview,onlylikelytoincreaseinthecomingdecades,asthepenetrationandpaceofelectrificationrapidlyincreaseacrosssectors(includingroadtransport,buildingheating,industrialmanufacturingprocessesandlow-temperatureindustrialheat)astheyprogressivelyfollowtheirownde-carbonizationpath.Acceleratedelectrificationofheatingislikelytoresultinlargepowerdemandandsupplyimbalances,makingtheroleofamolecularseasonalenergystoragesolutionvital.Weidentifythreekeyrolesofcleanhydrogeninthepowergenerationindustrythatcanenhancesystemresilienceandenablehigheruptakeofrenewablepower:(a)Large-scaleseasonalenergystorage:Webelievehydrogenwillbethepreferredsolutionforlong-termenergystoragerequiredtobalancetheseasonalvariationofpowergenerationdemand;particularlyimportantisthatelectricitythroughheatpumpsforresidentialheatingbecomesamoreprominentfeatureandrisesinshareintotalpowergenerationdemand.Whilebatteries,super-capacitorsandcompressedaircanalsosupportbalancing,theylackthepowercapacityorthestoragetimespanneededtoaddressseasonalimbalances,asoutlinedbytheHydrogenCouncilandshowninExhibit91.Whilepumpedhydroinparticularoffersanalternativetohydrogenforlarge-scale,long-termenergystorageandhasbeentodatethepreferredpowerstoragesolution,accountingformorethan95%ofglobalpowerstorage,itsremaininguntappedpotentialissubjecttolocalgeographicconditions.Thekeydisadvantageofhydrogen-basedstorageoptionsremainsitslowround-tripefficiency,withtheprocessofelectrolysisandthenconversionofhydrogenbacktoelectricityconsumingc.60%ofthetotalenergy.Yetgiventheabundanceofthemolecule(mostabundantintheuniverse),webelievethat,intheabsenceofalternativemolecular,cleanseasonalenergystoragesolutions,lowerefficiencyshouldnotbeaconstraintforitswideradoption.20July202245GoldmanSachsCarbonomics(b)Flexiblepowergeneration:Hydrogen-firedgasturbinesandcombined-cyclegasturbinescouldbeusedasasourceofflexibilityinelectricitysystems(substitutingnaturalgas)withincreasingsharesofvariablerenewableenergy(VRE)aidingtheintermittencyproblem.Fuelcellscanalsobeusedwithelectricalefficienciestypicallyexceeding50%-60%(similartothoseofturbines),andthestationaryfuelcellsmarkethasbeengrowingsteadilyoverthepastdecade.However,fuelcellstypicallyhaveshortertechnicallifetimesthangasturbinesandsmallerpoweroutput,makingthemmoresuitedtodistributedpower.Inthepowersector,thetimingofvariableelectricitysupplyanddemandisnotwell-matched,requiringadditionaloperationalflexibility.Variousoptionsexisttoresolvethisintermittencyissuesuchasgridinfrastructureupgradesortechnologiesforshort-orlonger-termbalancingofsupplyanddemand(dynamicpowernetworks),flexibleback-upgeneration,demand-sidemanagement,orenergystoragetechnologies.GiventhecurrentfocusonreducingEuropeannaturalgasdemand,hydrogen-firedturbinescanhelpcomplementrenewablepowerinthepowermix,withspotnaturalgaspricesinEuropealreadymakinggas-basedCCGTsandgasturbineslesscostcompetitivecomparedtolow-costgreenhydrogen(producedwithRESfixedPPAswithLCOE<US$60/MWh).Exhibit91:Hydrogencouldbetheoptimalsolutionforlarge-scale,long-durationenergystorage,particularlyfordischargedurationsbeyond50hoursCapacityvsdischargedurationforenergystorage1.AshydrogenorSNGSource:HydrogenCouncil20July202246GoldmanSachsCarbonomics(c)Buffer,back-upandoff-gridpowersupply:Hydrogenhasvaluableattributesthatcouldmakeitakeysolutionforpowergenerationsystemback-upaselectrolysiscanconvertexcesselectricityintohydrogenduringtimesofoversupply.Theproducedhydrogencanthenbeusedtoprovideback-uppowerduringpowerdeficitsorbeusedinothersectorssuchastransport,industryorresidential.Hydrogenoffersacentralizedordecentralizedsourceofprimaryorback-uppower.Inaddition,electrolyzersmayprovideancillaryservicestothegrid,suchasfrequencyregulation.Fuelcellstherefore,incombinationwithstorage,arelikelytobeconsideredacost-effectivedecarbonizationalternativetodieselgeneration(currentlyoftendeployedforback-uppower).Exhibit92:Hydrogenturbinesandfuelcellscanbeusedforloadbalancing;theyarebecomingincreasinglycompetitivegiventhehighspotEUgaspricesLevelizedcostofelectricity-LCOE(US$/MWh)-50100150200250300$10/mcf$15/mcf$20/mcf$25/mcf$10/mcf$15/mcf$20/mcf$25/mcf$10/mcf$15/mcf$20/mcf$25/mcf$1.5/kgH2$2.0/kgH2$3.0/kgH2$4.0/kgH2$1.5/kgH2$2.0/kgH2$3.0/kgH2$4.0/kgH2$1.5/kgH2$2.0/kgH2$3.0/kgH2$4.0/kgH2GasturbineNGCCGTNGCCGTNG+CCUSGasturbineH2CCGTH2FuelcellH2LCOE(US$/MWh)CapexOtheropexFuelcostCCUS(all-incost)Carbonprice($100/tnCO2)Source:GoldmanSachsGlobalInvestmentResearch20July202247GoldmanSachsCarbonomics(2)Hydrogenisthenaturalsuccessorofnaturalgasfordiversificationofenergysupplyinenergy-intenseindustrialprocessesIndustrialuseofnaturalgasaccountsforc.30%ofEurope’stotalnaturalgasconsumption,asthecommodityisusedasbothafuel(forenergyuse)andafeedstock(primarilyforchemicals)acrossindustrialprocesses.Whilemanyoftheseindustrialsub-segmentscouldpotentiallybeelectrified(machinerymanufacturing,transportequipment,textiles,food,beverages&tobacco),>50%oftheregion’sindustrialnaturalgasconsumptionstemsfromheavyindustries,typicallyrequiringhighoperatingtemperaturesmakingdirectelectrificationunfeasible.Wethereforebelievethatrenewablegaseswillbekeyinsubstitutingnaturalgasinthesesub-industrialsegments.Amongthesearehightemperaturechemicalandpetrochemicalsmanufacturing,iron&steel,andnon-metallicminerals(clay,limestone,cement).Whilegreenhydrogen’smovetowardscostparitywithgreyhydrogenisaccelerating,andweexpectthistobereachedbefore2030acrossregionsoflowrenewablepowercosts,wenotethatthecurrentmacroenvironmentofhighercommodityprices,inparticularforEuropeannaturalgas,combinedwithcarbonpricesiscreatingauniquegreenhydrogencostparitydynamicinEurope(asshowninExhibit94).Withmostcurrentlyproducedhydrogenbeingsourcedfromnaturalgasintheregion,thenotablyhighernaturalgaspricetowhichtheregioniscurrentlyexposedistiltingthescaleinfavourofgreenhydrogenfromaneconomicstandpoint.Weestimatethatthecarbonpriceimpliedbythecurrenthighernaturalgaspriceenvironmentintheregionisequivalentto>US$200/tnCO2eq(whenaccountingforthescope1,2,3carbonintensityofnaturalgas)evenwithoutconsideringEuropeanETScarbonprices,whicharecurrentlywellaboveUS$50/tnCO2eqdespitetheircorrectionfromthepeak.ThisismorethansufficienttobridgethecostofgreyhydrogenwithgreenacrossregionsofEuropewheregreenhydrogenisproducedwithdedicatedRESandarenewablepowerLCOElowerthanUS$70/MWh.Exhibit93:Whilsthighercarbonpricesarerequiredatthepointofusetoencouragelarge-scaleadoptionandpenetrationofcleanhydrogeninthehard-to-de-carbonizeendmarkets(assumingnormalizedcommodityprices)..Carbonomicscostcurvecarbonabatementprice(US$/tnCO2eq)forcleanhydrogenapplicationsExhibit94:..thecurrentcombinationofcarbonandcommodity(naturalgas)pricesbringsgreen(atLCOEs<$75/MWh)atcostparitywithgreyhydrogeninEuropeatthepointofproductionLevelizedcostofproductionofhydrogen-LCOH(US$/kgH2)020406080100120140160180200Jan-19Mar-19May-19Jul-19Sep-19Nov-19Jan-20Mar-20May-20Jul-20Sep-20Nov-20Jan-21Mar-21May-21Jul-21Sep-21Nov-21Jan-22Mar-22May-22Jul-22Carboncabatementprice(US$/tnCO2eq)HydrogenDRI-EAFOtherchemsCCUSPowergenenergystorageGreenammonia(electrolysis)Greenchems(electrolysishydrogen)AmmoniaCCUSRefiningFCtrains250300350400450500GreenammoniafuelforshippingFCEVlong-haulheavytrucksFCEVbusesHydrogeninheating(residential)0.01.02.03.04.05.06.0NG:US$5/mcfNG:US$10/mcfNG:US$15/mcfNG:US$20/mcfNG:US$25/mcfNG:US$5/mcfNG:US$10/mcfNG:US$15/mcfNG:US$20/mcfNG:US$25/mcfLCOE:US$15/MWhLCOE:US$30/MWhLCOE:US$45/MWhLCOE:US$60/MWhLCOE:US$75/MWhGreyH2-SMRBlueH2-SMR+CCUSGreenH2Levelisedcostofproductionofhydrogen-LCOH(US$/kgH2)CapexOpexFuel/electricityCarbontax-$50/tnCO2Source:ThomsonReutersEikon,GoldmanSachsGlobalInvestmentResearchSource:GoldmanSachsGlobalInvestmentResearch20July202248GoldmanSachsCarbonomicsBioenergy:Biogas,advancedbiofuels,renewablewasteandbiomassallhavetheirkeyrolesintheenergytransitionofspecificindustriesBioenergyisalreadyanimportantpartofEuropeanenergyconsumption,mostlyintheformofsolidbiofuels(primarilyusedinbuildingsandindustry)aswellasroadbiofuelsblendedinroadtransport.Weseebiogas,advancedbiofuels(includingbothroadbiofuelsandsustainableaviationfuel-SAF)aswellassolidbiofuelsandRESwasteascontinuingtohaveanimportantroleforEurope’senergysystem.AsshowninExhibit95,weexpectbioenergyandRESwasteconsumptioninEuropetoincreasec.15%,withmostoftheincreasedrivenbyadvancedbiofuels(andinparticularSAF)aswellasbiogas.Exhibit95:WeexpectEuropeanfinalbioenergyconsumptiontocontinuetoincreasefromhereonthepathtonetzero..EU27+UKbioenergyfinalenergyconsumption(PJ)Exhibit96:..primarilydrivenbygrowthinbiogasandadvancedbiofuels(inparticularSAF)EU27+UKbioenergyfinalenergyconsumptionsplitbybioenergyproduct(PJ)0%2%4%6%8%10%12%14%16%18%20%01,0002,0003,0004,0005,0006,000200920112013201520172019202120232025202720292031203320352037203920412043204520472049EU27+UKbioenergyfinalenergyconsumption(PJ)BioenergyShareofbioenergyinEurope'sfinalenergyconsumption05001,0001,5002,0002,5003,0003,500200920112013201520172019202120232025202720292031203320352037203920412043204520472049EU27+UKbioenergyfinalenergyconsumption(PJ)BiogasLiquidbiofuelsSolidbiofuelsandRESwasteIncludinginternationalaviationandinternationalmaritimebunkersSource:Eurostat,GoldmanSachsGlobalInvestmentResearchIncludinginternationalaviationandinternationalmaritimebunkersSource:Eurostat,GoldmanSachsGlobalInvestmentResearch20July202249GoldmanSachsCarbonomicsTheroleofhydrocarbons:SigningLNGcontractsisconsistentwithEurope’sde-carbonizationambitionsandcriticaltoitssecurityanddiversificationofenergysupplyWhilstEurope’senergytransformationwillundoubtedlyleadtoareductionintheconsumptionofhydrocarbonenergysourcesovertime,wenotethattheoutlookacrosshydrocarbonsdiffersdependingontheendconsumingsectors(markets)theyserveandtheirrespectivepaceofenergytransformation,aswellastherespectivecarboncontent.Inthissectionofthereport,weaddresstheoutlookandimplicationsresultingfromtheenergyconsumptionprofilesfornaturalgas,oilandoilproductsandcoalfortheregion,inlightofthecurrentgeopoliticallandscapeanddisruptions.Naturalgas:RemainskeytoEurope’senergysupplyforthenexttwodecadeswiththepotentialforanadditional40mtpaof15-yrLNGcontractstoimprovesecurityanddiversificationofsupplyWhilstoverallgrossnaturalgasdemandforEuropewillgraduallycomedownovertimeastheenergyevolutionoftheEuropeanenergysystemunfolds,wenotethatnaturalgasremainsacorepartoftheEuropeanenergysystemforanother20years,beingthemostversatileenergysourcefortheregionwithabroaduseacrossapplications(asshowninExhibit97).Despiteitsversatileconsumptionintheregionacrossindustries,thediversificationofnaturalgassupplyforEuropehasbeenverylow,withEuropeimportingc.83%(2019)ofitsgrossnaturalgasneedsandwiththatsupplylargelydominatedbyahandfulofregions:Russia,Norway,Algeria,Nigeria,theUSandQatar.Moreimportantly,Europe’sreluctancetosignlong-termLNGcontractsoverthepastyearshasresultedinanover-concentrationofnaturalgasimportsreachingtheregionviapipeline.Webelievethatinlightofthecurrentgeopoliticallandscapeandpoliticaldisruptionsthistrendhastochange.Exhibit97:NaturalgasisEurope’smostversatileenergysource,withitsconsumptionintheregionsplitamongstthreekeyenergyconsumingsectors:powergeneration,buildingsandindustry(particularlyheavyindustrysuchaschemicals,steel,nonmetallicmineralsandnonferrousmetals)EU27+UKtotalnaturalgasconsumptionsplit,201943%,Powergeneration6%,Energysector34%,Buildingsresidential14%,Buildingscommercial1%,Transport2%,Agriculture3%,Industry-steel5%,Industry-nonmetallicminerals1%,Industry-othernonferrous12%,Industry-chemicals4%,Industry-machinery2%,Industry-paper&packaging5%,Industry-food&bev2%,Industry-other33%,IndustryEU27+UKtotalnaturalgasgrossconsumptionsplit2019(16,832PJ,471bcm)Source:Eurostat20July202250GoldmanSachsCarbonomicsExhibit100presentsouroverallgrossnaturalgasdemandprofileforEurope(EU27+UK).Despiteincorporatinginourmodelanaccelerationoftheshiftawayfromnaturalgas,particularlyinindustrieswherealternativeexistingtechnologieshaveavailablesparecapacity,suchascoalinpowergeneration,andalsoincorporatingsomedegreeofnaturalgasdemandrationingingasintensiveindustries(yetnotalarge-scaleindustrialrecession)forthenearterm,itbecomesevidentthatdemandforthefuelwilllikelypersistforatleastanothertwodecades.ThisisshowninExhibit100,withthereductioninthe2022-23periodincorporatingourviewofthecurrentlyfeasibledemandrationingintheabsenceofalarge-scaleindustrialrecession.Exhibit98:DespitetheversatileuseofnaturalgasanditscorerolefortheEuropeanenergysystem,theimportedsupplyhasbeenlargelyconcentratedinafewregions..EU27+UKnetnaturalgasimportsbyregion(PJ)Exhibit99:..withtheenergyimportdependencyforthefueltrendingupwardsforthepasttwodecades,morethananyotherenergysourceconsumedbyEurope.EU27+UKenergydependencyrate(%)-2,0004,0006,0008,00010,00012,00014,00016,00018,000200020012002200320042005200620072008200920102011201220132014201520162017201820192020EU27+UKNetnaturalgasimports(Pj)RussiaNorwayAlgeriaNigeriaUSTrinidadandTobagoQatarOther0%10%20%30%40%50%60%70%80%90%100%2003200420052006200720082009201020112012201320142015201620172018201920202021EU27+UKenergydependencyrate(%)NaturalgasOilandoilproductsSolidfossilfuelsRESandotherSource:Eurostat,GoldmanSachsGlobalInvestmentResearchSource:Eurostat,GoldmanSachsGlobalInvestmentResearchExhibit100:NaturalgasremainsacriticalpartofEurope’senergysystemforanothertwodecades,evenwhenincorporatingsomelevelofnear-termrationingandaccelerationoftheshiftawayfromitwheretechnologicalreadinessofalternativesisavailable.Naturalgasgrossenergydemandandfinalconsumption(splitbetweenenergyandnonenergy)forEU27+UK(PJ)-2,0004,0006,0008,00010,00012,00014,00016,00018,00020,000200320052007200920112013201520172019202120232025202720292031203320352037203920412043204520472049NaturalgasgrossdemandamdfinalconsumptionforEU27+UK(PJ)TotalfinalconsumptionNon-energyconsumptionEnergyconsumptionGrossenergyForecastSource:Eurostat(historical),GoldmanSachsGlobalInvestmentResearch20July202251GoldmanSachsCarbonomicsOverall,basedonthenaturalgasdemandprofilethatemergesasanoutputofourEuropeanenergymodel,incorporatingtheEU’sambitionfor2/3reductioninRussiangasimportsbytheendofthisyearandzerogasimportsbytheendofthisdecade(2030),weconcludethattheshortfallbetweengrossnaturalgasdemandandavailabledomesticsupplyplusotherex-RussianimportshastobemetwithincrementalLNGimportedvolumes,asshowninExhibit101.WebelieveitisintheEU+UK’sinteresttosignuptoanadditional40mtpaof15-yrLNGcontractstoimprovesecurityanddiversificationofsupply,asshowninExhibit102(andpotentiallyuptoanother50Mtpaof10-yrLNGcontracts).Exhibit101:OurEuropeannaturalgasdemandprofile,incorporatingtheEU’sambitionfor2/3reductioninRussiangasimportsbytheendofthisyearandzerogasimportsbytheendofthisdecade(2030),leadsustoconcludethattheshortfallhastobemetwithincrementalLNGimports,potentiallythrough15-yearLNGcontractsNaturalgasgrossenergydemandvsdomesticsupply,pipelineimportsandrequiredLNGimportsforEU27+UK(PJ)-2,0004,0006,0008,00010,00012,00014,00016,00018,00020,000200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050EU27+UKgrossrequirednaturalgas(PJ))OtherchangeinstockPrimarylocalproductionOtherpipelineimportsRussiaimportsRequiredLNGimportsGrossavailablenaturalgasdemandrequired2/3reductioninRussiangasimportsFeasibledemandrationingintheabsenceofanindustrialrecession100%reductioninRussiangasimportsSource:Eurostat(historical),GoldmanSachsGlobalInvestmentResearchExhibit102:WebelieveitisintheEU+UKinteresttosignanadditional40mtpaof15-yrLNGcontractstoimprovethesecurityanddiversificationofsupplyinnaturalgasNaturalgasnetimportstoEU27+UK(PJ)-2,0004,0006,0008,00010,00012,00014,00016,00018,00020192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050NaturalgasnetimportstoEU27+UK(PJ)ExistingLNGcontractsNewLNGcontractsalreadysignedSpotLNGRequiredLNGimportsTotalnaturalgasnetimportsrequiredPotentialforlong-term15-yearLNGcontractsUptoc.40Mtpaof15-yrLNGcontractsandpotentiallyanaditionalc.50Mtpaof10-yrLNGcontractscanbesignedSource:GoldmanSachsGlobalInvestmentResearch20July202252GoldmanSachsCarbonomicsThereturnofLNGwithastrongpipelineofprojectscomingonstreameconomicatUS$8-12/mcfwhichcouldaidEurope’senergysecuritysubjecttothesigningofnecessaryLNGcontractsAsweanalyseindetailinouroil&gassectordeep-dive,TopProjects,thelasttwoyearshavebeencharacterizedbycapitaldisciplineacrosstheindustry,withFIDpostponementsandcapitalexpenditurereductionsasaresultofCOVID-19.Capexin2021remainedatverylowlevelsfortheindustry,bothinoilandLNG.OurTopProjectsanalysissuggeststhataggregatecapexin2021increasedby6%comparedto2020yetremainedc.31%/16%below2015/2016levels,respectively,duringthepreviouscommoditydowncycle,andsufferedamoreabruptchangeastheindustryreactedquickertorebasecapexlevelslower.In2022,weanticipatetheoveralllevelofTopProjectscapextoincreasebyc.13%yoy,yettoremainwellbelowthehistoricalandnormalizedlevels(-12%vs2019).Lookinginto2022-2024,weseeLNGasalikelyareaofcapexincreases;thisisprimarilyowingtoalreadycommittedcapexthatislargelyspentandrampinguponLNGprojectssanctionedoverthepast2-3years,manyofwhichfaceddelaysduringthe2020downturn.LNGbenefitsfromalowercostofcapital,makingitastrongerareaofcapexgrowththatispro-environmentandalignswithEurope’splantodiversifyawayfromRussianoilandgasintheshort-to-mediumterm.OurTopProjectsanalysisindicatesanewwaveofLNGprojectscomingatverycompetitivecostlevelsrelativetohistory(US$1.0-2.1bn/mtpain2022-2025EvsUS$4.0bn/mtpain2015-16)withprojectsinQatar,CanadaandtheUS,amongothers,contributingtoasignificantlylowercostcurvein2022vs2014.ThereisavastamountofLNGprojectswhichcouldpotentiallybeusedtocontractvolumestoEurope,highlightedinExhibit105.Exhibit103:TheLNGmarketissettoreturntocapacitygrowthpost2022E,withmostofthesupplyadditionscomingin2025-26E.AnnualincreaseinLNGproductionandcapacityinmtpaExhibit104:ThenewwaveofLNGprojectsiscomingataverycompetitivecostrelativetohistory.TopProjectscapexperflowingLNGoutput,US$bnpermtpa0510152025303540452010201120122013201420152016201720182019202020212022E2023E2024E2025E2026EmtpaCapacityadditionProductiongrowth0.00.51.01.52.02.53.03.54.04.52010201120122013201420152016201720182019202020212022E2023E2024ECapexperflowingLNGincludinginfra.(US$bn/mtpa)Source:GoldmanSachsGlobalInvestmentResearchSource:GoldmanSachsGlobalInvestmentResearch20July202253GoldmanSachsCarbonomicsOilandpetroleumproducts:Demanddeclineaccelerationpost2030withthenextmajorrefineryclosurescycleonlycomingaround2027OurEuropeanenergysystemevolutionmodelshowsoildemandonlyincreasingtothemiddleofthisdecade,largelydrivenbytheongoingrecoveryofcovid-ledreductionintransport(particularlyaviation)anditshighershareinthenearterm(2022-23)acrossapplicationswhereitcanflexiblysubstitutenaturalgaswithexistingavailablecapacity,asshowninExhibit106,beforestartingagradualdeclinewhichacceleratespost2030,drivenbythehigherpenetrationofEVsandbettercharginginfrastructure.It’sworthnoting,however,thatoildemanddoesnotreachabsolutezeroby2050,givenitsusesinnon-energyconsumptionapplications,suchasafeedstockforchemicalsmanufacturing,asshowninExhibit107.Exhibit105:ThereisavastamountofLNGprojectswhichcouldpotentiallybeusedtocontractvolumestoEurope,ashighlightedintheexhibitbelowCommercialbreakevenbyproject(US$/mcf)46810121416182002,0004,0006,0008,00010,00012,000Commercialbreakeven(US$/mcf)Cumulativepeakproduction(kboe/d)QatarLNGExpansionElk/AntelopeLNGCanadaSabinePassElbaLNGMambaCameronLNGExpansionGoldenPassDriftwoodLakeCharlesCostaAzulCalcasieuPassCameronPlaqueminesCorpusChristiHilliEpiseyoFreeportLNGSakhalinTortueProsperidadeNigeriaLNGTrain7Golfinho-AtumArcticLNG-2CoralFLNGGreaterSunriseLNGAbadiLNGTanzaniaLNGPreludePortArthurScarboroughVistaPacificoSource:GoldmanSachsGlobalInvestmentResearch20July202254GoldmanSachsCarbonomicsBasedonourEuropeanenergymodelandresultingoilandoilproductsdemandprofile,inthissectionofthereportweaddressthetimingofthenextpotentialmajorcycleofrefineryclosuresforEurope.Overall,weestimatethatthenextmajorcycleofrefineryclosuresinEuropewillonlybeneededby2027,asshowninExhibit108,wheretherefiningutilisationratefallsbelowthehistoricalaverageEuropeanutilisationrateofc.80%.Forthepurposeofthisanalysis,weonlyincorporateintheEuropean(EU27+UK)capacityprofilethealreadyannouncedcapacityclosuresforthecomingyears.Exhibit106:Europeangrossoilandoilproductsdemandpeaksbythemiddleofthisdecadewiththedeclineacceleratingpost2030..EU27+UKoilandoilproductsgrossdemandandfinalconsumption(PJ)Exhibit107:...butneverreachesabsolutezerogivenitsuseinnon-energyapplications,primarilyasafeedstockforchemicalsmanufacturing.EU27+UKoilandoilproductsgrossavailableconsumptionsplitbysector(PJ)-5,00010,00015,00020,00025,00030,00035,000200320052007200920112013201520172019202120232025202720292031203320352037203920412043204520472049Oilandoilproductsgrossdemandandfinalconsumption(PJ)TotalfinalconsumptionEnergyconsumptionNon-energyconsumptionGrossavailableenergy-5,00010,00015,00020,00025,00030,000200920112013201520172019202120232025202720292031203320352037203920412043204520472049Oilandoilproductsgrossavailableenergydemand(PJ)Industry-nonenergyBuildings-residentialBuildings-commercialTransport-gasoilanddieselTransport-motorgasolineTransport-kero/jetTransport-LPGTransport-fueloilIndustry-energyAgricultureOtherPowergenerationEnergysectorInternationalbunkersInternationalaviationDistroandotherlossesSource:Eurostat(historical),GoldmanSachsGlobalInvestmentResearchSource:Eurostat(historical),GoldmanSachsGlobalInvestmentResearchExhibit108:BasedonourEuropeanenergymodelandresultingoilandoilproductsdemandprofile,weestimatethatrefiningclosureswilllikelyberequiredaround2027,whentheimpliedutilisationfallsbelowtheEuropeanhistoricalutilisationrateaverage(c.80%)Europeanrefiningcapacity,throughput,oilandoilproductsgrossdemand(LHS)andutilisationrate(RHS)0%10%20%30%40%50%60%70%80%90%100%-1002003004005006007008009001000200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050Europeanrefiningutilisation(%)mntoeEUROPEANoilrefiningcapacity(mntoe)-LHSEuropenoilandoilproductsgrossavailableenergy(mntoe)-LHSEuropeanoilrefiningthroughput(mntoe),LHSEuropeanrefiningutilisation-RHSSource:BPStatisticalReview,GoldmanSachsGlobalInvestmentResearch20July202255GoldmanSachsCarbonomicsCoal:Near-termrevivaldrivenbypowergenerationdoesnotderaillong-termstructuraldeclineThegrossdemandforsolidfossilfuelsinEuropehasbeeninstructuraldeclineforthepasttwodecadesonaggregate,asshowninExhibit109,andwhilstweexpectthistocontinueinthemediumandlongterm,wenotethatinthenearterm(2022-23),solidfossilfuels(ie.coal)willpotentiallygothroughashortrevivalinordertosupportEurope’senergysecurity.Specifically,weassumemostofthenaturalgasdemandswitchintheneartermoccursinpowergeneration,theonlykeynaturalgasconsumingsectorwithavailablesparecapacityinothertechnologiessuchascoalwhichcanprovidenear-termrelieftosomeextent.Nonetheless,wedonotexpectthestructuraldeclinetrendtoreversepermanently,andweseethefuelreturningtoanacceleratedstructuraldeclinethereafter.Theimpactofthenear-termrevivalonEurope’sde-carbonizationpathwilllikelybesmall,withtheregionstillabletoachievetheambitionslaidoutin‘Fitfor55’basedonourmodel.Exhibit109:ConsumptionofsolidfossilfuelshasbeeninstructuraldeclineinEuropeforthepasttwodecades,atrendweexpecttocontinuelongterm..EU27+UKsolidfossilfuelsgrossdemandandfinalconsumption(PJ)Exhibit110:..despitethenear-termrevivalofthefuelinpowergeneration,EU27+UKsolidfossilfuelsgrossenergydemand(PJ)-2,0004,0006,0008,00010,00012,00014,00016,000200320052007200920112013201520172019202120232025202720292031203320352037203920412043204520472049EU27+UKsolidfossilfuelsgrossavailableenergyandfinalconsumption(PJ)GrossavailableenergyforsolidfossilfuelsFinalconsumptionofsolidfossilfuels-2,0004,0006,0008,00010,00012,00014,000200920112013201520172019202120232025202720292031203320352037203920412043204520472049EU27+UKsolidfossilfuelsgrossavailableenergy(PJ)Series17DistrolossesIndustry-non-energyAgricultureIndustry-otherIndustry-food&bevIndustry-paper&packagingIndustry-machineryIndustry-chemicalsIndustry-othernonferrousIndustry-nonmetallicmineralsIndustry-steelBuildingscommercialBuildingsresidentialEnergysectorEnergytransformation(cokeovers,blastfurnaces)Source:Eurostat(historical),GoldmanSachsGlobalInvestmentResearchSource:Eurostat(historical),GoldmanSachsGlobalInvestmentResearchExhibit111:..requiredtoaidtheenergysecuritychallengefacingEuropeinlightoftherecentgeopoliticalnaturalgasdisruptions...EU27+UKpowergenerationmix(%)Exhibit112:...which,whilstderailingtheemissionreductionprofileinthesectorbyc.2years,doesnotposeamaterialrisktoEurope’sclimateambitionsbasedonourmodelEU27+UKpowergenerationCO2emissions(MtCO2)0%5%10%15%20%25%30%35%20002002200420062008201020122014201620182020202220242026202820302032203420362038204020422044204620482050EU27+UKpowergenerationmix(%)SolidfossilfuelsNaturalgas(incl.CCUSlongterm)-2004006008001,0001,2001,4001,60020002002200420062008201020122014201620182020202220242026202820302032203420362038204020422044204620482050EU27+UKpowergenCO2emissions(MtCO2)Source:Eurostat,GoldmanSachsGlobalInvestmentResearchSource:Eurostat(EEA),GoldmanSachsGlobalInvestmentResearch20July202256GoldmanSachsCarbonomicsAppendix:GlossaryofkeyterminologytermsTerminologyusedinthisreportDefinitionGrossavailableenergyGrossavailableenergyisdefinedastheoverallsupplyofenergyforallactivitiesontheterritoryoftheEuropeanregionconsideredinouranalysis(EU27+UK).Itincludesenergyneedsforenergytransformation(includinggeneratingelectricityfromcombustiblefuels),supportoperationsoftheenergysectoritself,transmissionanddistributionlosses,finalenergyconsumption(industry,transport,households,services,agriculture)andtheuseoffossilfuelproductsfornon-energypurposes(e.g.inthechemicalindustry).Italsoincludesfuelpurchasedwithinthecountrythatisusedelsewhere(e.g.internationalaviation,internationalmaritimebunkers).Grossavailableenergyforthetotalofallproducts(fuels)isthemostimportantaggregateinenergybalancesandrepresentsthequantityofenergynecessarytosatisfyalltheenergydemands.Itsinterpretationforindividualproducts(fuels)isvaryingandneedstotakeintoconsiderationotherpartsofenergybalances.Grossavailableenergy=Primaryproduction+Recovered&Recycledproducts+Imports–Export+StockchangesFinalenergyconsumptionThefinalenergyconsumptionisthetotalenergyconsumedbytheendusersineachoftheenergyconsumingsectors(buildings,transport,industry,agricultureandother),theenergywhichreachesthefinalconsumer’sdoorandexcludesthatwhichisusedbytheenergysectoritself.InternationalmaritimebunkersandaviationBunkersincludesalldutiablepetroleumproductsloadedaboardavesselforconsumptionbythatvessel.Internationalmaritimebunkersdescribethequantitiesoffueloildeliveredtoshipsofallflagsthatareengagedininternationalnavigation.Itisthefuelusedtopowertheseships.Internationalnavigationmaytakeplaceatsea,oninlandlakesandwaterways,andincoastalwaters.Internationalmaritimebunkersdonotincludefueloilconsumptionby:(a)shipsengagedindomesticnavigation;whetheravesselisengagedindomesticorinternationalnavigationisdeterminedonlybytheship’sportofdepartureandportofarrival-notbytheflagornationalityoftheship;(b)fishingvessels,(c)militaryforces.EnergydependencyrateTheenergydependencyrateshowstheshareofenergythataneconomyisnetimporting.Itisdefinedasnetenergyimportsdividedbygrossavailableenergy,expressedasapercentage.Anegativedependencyrateindicatesanetexporterofenergywhileadependencyrateinexcessof100%indicatesthatenergyproductshavebeenstocked.Itcanbedefinedforallproductstotalaswellasforindividualfuels(forexample:crudeoil,naturalgas).EnergyintensityEnergyintensityisoneoftheindicatorstomeasuretheenergyneedsofaneconomyandisoftenusedasaproxyforenergyefficiency.Manyfactorsinfluenceenergyintensity.Itreflectsonstructureofeconomyanditscycle,generalstandardsoflivingandweatherconditionsinthereferencearea.EnergyintensityiscalculatedasunitsofenergyperunitofGDP.LULUCFTheLULUCF(LandUse,LandUseChangeandForestry)sectorisusedtoreporttheCO2flowsbetweendifferentterrestrialreservoirs(biomass,soils,etc.)andtheatmospherethattakeplaceonthemanagedsurfacesofaterritory.ItcanthusconstituteanetsourceoranetsinkofCO2.Thissector,definedwithintheframeworkofnationalgreenhousegasemissioninventories,reflectsinparticularemissionsandabsorptionslinkedtolanduse(growth,biomassmortalityandwoodremovalinforests;impactsofchangesinagriculturalpracticesoncultivatedsoils,etc.)andtochangesinlanduse(deforestation,afforestation,soilartificialisation,etc.).ThemethodsforcalculatingtheseemissionsandremovalsaredefinedbytheIntergovernmentalPanelonClimateChange(IPCC),undertheUnitedNationsFrameworkConventiononClimateChange(UNFCCC).20July202257GoldmanSachsCarbonomicsDisclosureAppendixRegACWe,MicheleDellaVigna,CFAandZoeClarke,herebycertifythatalloftheviewsexpressedinthisreportaccuratelyreflectourpersonalviewsaboutthesubjectcompanyorcompaniesanditsortheirsecurities.Wealsocertifythatnopartofourcompensationwas,isorwillbe,directlyorindirectly,relatedtothespecificrecommendationsorviewsexpressedinthisreport.Unlessotherwisestated,theindividualslistedonthecoverpageofthisreportareanalystsinGoldmanSachs’GlobalInvestmentResearchdivision.GSFactorProfileTheGoldmanSachsFactorProfileprovidesinvestmentcontextforastockbycomparingkeyattributestothemarket(i.e.ourcoverageuniverse)anditssectorpeers.Thefourkeyattributesdepictedare:Growth,FinancialReturns,Multiple(e.g.valuation)andIntegrated(acompositeofGrowth,FinancialReturnsandMultiple).Growth,FinancialReturnsandMultiplearecalculatedbyusingnormalizedranksforspecificmetricsforeachstock.Thenormalizedranksforthemetricsarethenaveragedandconvertedintopercentilesfortherelevantattribute.Theprecisecalculationofeachmetricmayvarydependingonthefiscalyear,industryandregion,butthestandardapproachisasfollows:Growthisbasedonastock’sforward-lookingsalesgrowth,EBITDAgrowthandEPSgrowth(forfinancialstocks,onlyEPSandsalesgrowth),withahigherpercentileindicatingahighergrowthcompany.FinancialReturnsisbasedonastock’sforward-lookingROE,ROCEandCROCI(forfinancialstocks,onlyROE),withahigherpercentileindicatingacompanywithhigherfinancialreturns.Multipleisbasedonastock’sforward-lookingP/E,P/B,price/dividend(P/D),EV/EBITDA,EV/FCFandEV/DebtAdjustedCashFlow(DACF)(forfinancialstocks,onlyP/E,P/BandP/D),withahigherpercentileindicatingastocktradingatahighermultiple.TheIntegratedpercentileiscalculatedastheaverageoftheGrowthpercentile,FinancialReturnspercentileand(100%-Multiplepercentile).FinancialReturnsandMultipleusetheGoldmanSachsanalystforecastsatthefiscalyear-endatleastthreequartersinthefuture.Growthusesinputsforthefiscalyearatleastsevenquartersinthefuturecomparedwiththeyearatleastthreequartersinthefuture(onaper-sharebasisforallmetrics).ForamoredetaileddescriptionofhowwecalculatetheGSFactorProfile,pleasecontactyourGSrepresentative.M&ARankAcrossourglobalcoverage,weexaminestocksusinganM&Aframework,consideringbothqualitativefactorsandquantitativefactors(whichmayvaryacrosssectorsandregions)toincorporatethepotentialthatcertaincompaniescouldbeacquired.WethenassignaM&Arankasameansofscoringcompaniesunderourratedcoveragefrom1to3,with1representinghigh(30%-50%)probabilityofthecompanybecominganacquisitiontarget,2representingmedium(15%-30%)probabilityand3representinglow(0%-15%)probability.Forcompaniesranked1or2,inlinewithourstandarddepartmentalguidelinesweincorporateanM&Acomponentintoourtargetprice.M&Arankof3isconsideredimmaterialandthereforedoesnotfactorintoourpricetarget,andmayormaynotbediscussedinresearch.QuantumQuantumisGoldmanSachs’proprietarydatabaseprovidingaccesstodetailedfinancialstatementhistories,forecastsandratios.Itcanbeusedforin-depthanalysisofasinglecompany,ortomakecomparisonsbetweencompaniesindifferentsectorsandmarkets.DisclosuresRegulatorydisclosuresDisclosuresrequiredbyUnitedStateslawsandregulationsSeecompany-specificregulatorydisclosuresaboveforanyofthefollowingdisclosuresrequiredastocompaniesreferredtointhisreport:managerorco-managerinapendingtransaction;1%orotherownership;compensationforcertainservices;typesofclientrelationships;managed/co-managedpublicofferingsinpriorperiods;directorships;forequitysecurities,marketmakingand/orspecialistrole.GoldmanSachstradesormaytradeasaprincipalindebtsecurities(orinrelatedderivatives)ofissuersdiscussedinthisreport.Thefollowingareadditionalrequireddisclosures:Ownershipandmaterialconflictsofinterest:GoldmanSachspolicyprohibitsitsanalysts,professionalsreportingtoanalystsandmembersoftheirhouseholdsfromowningsecuritiesofanycompanyintheanalyst’sareaofcoverage.Analystcompensation:AnalystsarepaidinpartbasedontheprofitabilityofGoldmanSachs,whichincludesinvestmentbankingrevenues.Analystasofficerordirector:GoldmanSachspolicygenerallyprohibitsitsanalysts,personsreportingtoanalystsormembersoftheirhouseholdsfromservingasanofficer,directororadvisorofanycompanyintheanalyst’sareaofcoverage.Non-U.S.Analysts:Non-U.S.analystsmaynotbeassociatedpersonsofGoldmanSachs&Co.LLCandthereforemaynotbesubjecttoFINRARule2241orFINRARule2242restrictionsoncommunicationswithsubjectcompany,publicappearancesandtradingsecuritiesheldbytheanalysts.Distributionofratings:Seethedistributionofratingsdisclosureabove.Pricechart:Seethepricechart,withchangesofratingsandpricetargetsinpriorperiods,above,or,ifelectronicformatorifwithrespecttomultiplecompanieswhicharethesubjectofthisreport,ontheGoldmanSachswebsiteathttps://www.gs.com/research/hedge.html.20July202258GoldmanSachsCarbonomicsAdditionaldisclosuresrequiredunderthelawsandregulationsofjurisdictionsotherthantheUnitedStatesThefollowingdisclosuresarethoserequiredbythejurisdictionindicated,excepttotheextentalreadymadeabovepursuanttoUnitedStateslawsandregulations.Australia:GoldmanSachsAustraliaPtyLtdanditsaffiliatesarenotauthoriseddeposit-takinginstitutions(asthattermisdefinedintheBankingAct1959(Cth))inAustraliaanddonotprovidebankingservices,norcarryonabankingbusiness,inAustralia.Thisresearch,andanyaccesstoit,isintendedonlyfor“wholesaleclients”withinthemeaningoftheAustralianCorporationsAct,unlessotherwiseagreedbyGoldmanSachs.Inproducingresearchreports,membersoftheGlobalInvestmentResearchDivisionofGoldmanSachsAustraliamayattendsitevisitsandothermeetingshostedbythecompaniesandotherentitieswhicharethesubjectofitsresearchreports.InsomeinstancesthecostsofsuchsitevisitsormeetingsmaybemetinpartorinwholebytheissuersconcernedifGoldmanSachsAustraliaconsidersitisappropriateandreasonableinthespecificcircumstancesrelatingtothesitevisitormeeting.Totheextentthatthecontentsofthisdocumentcontainsanyfinancialproductadvice,itisgeneraladviceonlyandhasbeenpreparedbyGoldmanSachswithouttakingintoaccountaclient’sobjectives,financialsituationorneeds.Aclientshould,beforeactingonanysuchadvice,considertheappropriatenessoftheadvicehavingregardtotheclient’sownobjectives,financialsituationandneeds.AcopyofcertainGoldmanSachsAustraliaandNewZealanddisclosureofinterestsandacopyofGoldmanSachs’AustralianSell-SideResearchIndependencePolicyStatementareavailableat:https://www.goldmansachs.com/disclosures/australia-new-zealand/index.html.Brazil:DisclosureinformationinrelationtoCVMResolutionn.20isavailableathttps://www.gs.com/worldwide/brazil/area/gir/index.html.Whereapplicable,theBrazil-registeredanalystprimarilyresponsibleforthecontentofthisresearchreport,asdefinedinArticle20ofCVMResolutionn.20,isthefirstauthornamedatthebeginningofthisreport,unlessindicatedotherwiseattheendofthetext.Canada:Thisinformationisbeingprovidedtoyouforinformationpurposesonlyandisnot,andundernocircumstancesshouldbeconstruedas,anadvertisement,offeringorsolicitationbyGoldmanSachs&Co.LLCforpurchasersofsecuritiesinCanadatotradeinanyCanadiansecurity.GoldmanSachs&Co.LLCisnotregisteredasadealerinanyjurisdictioninCanadaunderapplicableCanadiansecuritieslawsandgenerallyisnotpermittedtotradeinCanadiansecuritiesandmaybeprohibitedfromsellingcertainsecuritiesandproductsincertainjurisdictionsinCanada.IfyouwishtotradeinanyCanadiansecuritiesorotherproductsinCanadapleasecontactGoldmanSachsCanadaInc.,anaffiliateofTheGoldmanSachsGroupInc.,oranotherregisteredCanadiandealer.HongKong:FurtherinformationonthesecuritiesofcoveredcompaniesreferredtointhisresearchmaybeobtainedonrequestfromGoldmanSachs(Asia)L.L.C.India:FurtherinformationonthesubjectcompanyorcompaniesreferredtointhisresearchmaybeobtainedfromGoldmanSachs(India)SecuritiesPrivateLimited,ResearchAnalyst-SEBIRegistrationNumberINH000001493,951-A,RationalHouse,AppasahebMaratheMarg,Prabhadevi,Mumbai400025,India,CorporateIdentityNumberU74140MH2006FTC160634,Phone+912266169000,Fax+912266169001.GoldmanSachsmaybeneficiallyown1%ormoreofthesecurities(assuchtermisdefinedinclause2(h)theIndianSecuritiesContracts(Regulation)Act,1956)ofthesubjectcompanyorcompaniesreferredtointhisresearchreport.Japan:Seebelow.Korea:Thisresearch,andanyaccesstoit,isintendedonlyfor“professionalinvestors”withinthemeaningoftheFinancialServicesandCapitalMarketsAct,unlessotherwiseagreedbyGoldmanSachs.FurtherinformationonthesubjectcompanyorcompaniesreferredtointhisresearchmaybeobtainedfromGoldmanSachs(Asia)L.L.C.,SeoulBranch.NewZealand:GoldmanSachsNewZealandLimitedanditsaffiliatesareneither“registeredbanks”nor“deposittakers”(asdefinedintheReserveBankofNewZealandAct1989)inNewZealand.Thisresearch,andanyaccesstoit,isintendedfor“wholesaleclients”(asdefinedintheFinancialAdvisersAct2008)unlessotherwiseagreedbyGoldmanSachs.AcopyofcertainGoldmanSachsAustraliaandNewZealanddisclosureofinterestsisavailableat:https://www.goldmansachs.com/disclosures/australia-new-zealand/index.html.Russia:ResearchreportsdistributedintheRussianFederationarenotadvertisingasdefinedintheRussianlegislation,butareinformationandanalysisnothavingproductpromotionastheirmainpurposeanddonotprovideappraisalwithinthemeaningoftheRussianlegislationonappraisalactivity.ResearchreportsdonotconstituteapersonalizedinvestmentrecommendationasdefinedinRussianlawsandregulations,arenotaddressedtoaspecificclient,andarepreparedwithoutanalyzingthefinancialcircumstances,investmentprofilesorriskprofilesofclients.GoldmanSachsassumesnoresponsibilityforanyinvestmentdecisionsthatmaybetakenbyaclientoranyotherpersonbasedonthisresearchreport.Singapore:GoldmanSachs(Singapore)Pte.(CompanyNumber:198602165W),whichisregulatedbytheMonetaryAuthorityofSingapore,acceptslegalresponsibilityforthisresearch,andshouldbecontactedwithrespecttoanymattersarisingfrom,orinconnectionwith,thisresearch.Taiwan:Thismaterialisforreferenceonlyandmustnotbereprintedwithoutpermission.Investorsshouldcarefullyconsidertheirowninvestmentrisk.Investmentresultsaretheresponsibilityoftheindividualinvestor.UnitedKingdom:PersonswhowouldbecategorizedasretailclientsintheUnitedKingdom,assuchtermisdefinedintherulesoftheFinancialConductAuthority,shouldreadthisresearchinconjunctionwithpriorGoldmanSachsresearchonthecoveredcompaniesreferredtohereinandshouldrefertotheriskwarningsthathavebeensenttothembyGoldmanSachsInternational.Acopyoftheseriskswarnings,andaglossaryofcertainfinancialtermsusedinthisreport,areavailablefromGoldmanSachsInternationalonrequest.EuropeanUnionandUnitedKingdom:DisclosureinformationinrelationtoArticle6(2)oftheEuropeanCommissionDelegatedRegulation(EU)(2016/958)supplementingRegulation(EU)No596/2014oftheEuropeanParliamentandoftheCouncil(includingasthatDelegatedRegulationisimplementedintoUnitedKingdomdomesticlawandregulationfollowingtheUnitedKingdom’sdeparturefromtheEuropeanUnionandtheEuropeanEconomicArea)withregardtoregulatorytechnicalstandardsforthetechnicalarrangementsforobjectivepresentationofinvestmentrecommendationsorotherinformationrecommendingorsuggestinganinvestmentstrategyandfordisclosureofparticularinterestsorindicationsofconflictsofinterestisavailableathttps://www.gs.com/disclosures/europeanpolicy.htmlwhichstatestheEuropeanPolicyforManagingConflictsofInterestinConnectionwithInvestmentResearch.Japan:GoldmanSachsJapanCo.,Ltd.isaFinancialInstrumentDealerregisteredwiththeKantoFinancialBureauunderregistrationnumberKinsho69,andamemberofJapanSecuritiesDealersAssociation,FinancialFuturesAssociationofJapanandTypeIIFinancialInstrumentsFirmsAssociation.Salesandpurchaseofequitiesaresubjecttocommissionpre-determinedwithclientsplusconsumptiontax.Seecompany-specificdisclosuresastoanyapplicabledisclosuresrequiredbyJapanesestockexchanges,theJapaneseSecuritiesDealersAssociationortheJapaneseSecuritiesFinanceCompany.20July202259GoldmanSachsCarbonomicsGlobalproduct;distributingentitiesTheGlobalInvestmentResearchDivisionofGoldmanSachsproducesanddistributesresearchproductsforclientsofGoldmanSachsonaglobalbasis.AnalystsbasedinGoldmanSachsofficesaroundtheworldproduceresearchonindustriesandcompanies,andresearchonmacroeconomics,currencies,commoditiesandportfoliostrategy.ThisresearchisdisseminatedinAustraliabyGoldmanSachsAustraliaPtyLtd(ABN21006797897);inBrazilbyGoldmanSachsdoBrasilCorretoradeTítuloseValoresMobiliáriosS.A.;PublicCommunicationChannelGoldmanSachsBrazil:08007275764and/orcontatogoldmanbrasil@gs.com.AvailableWeekdays(exceptholidays),from9amto6pm.CanaldeComunicaçãocomoPúblicoGoldmanSachsBrasil:08007275764e/oucontatogoldmanbrasil@gs.com.Horáriodefuncionamento:segunda-feiraàsexta-feira(excetoferiados),das9hàs18h;inCanadabyGoldmanSachs&Co.LLC;inHongKongbyGoldmanSachs(Asia)L.L.C.;inIndiabyGoldmanSachs(India)SecuritiesPrivateLtd.;inJapanbyGoldmanSachsJapanCo.,Ltd.;intheRepublicofKoreabyGoldmanSachs(Asia)L.L.C.,SeoulBranch;inNewZealandbyGoldmanSachsNewZealandLimited;inRussiabyOOOGoldmanSachs;inSingaporebyGoldmanSachs(Singapore)Pte.(CompanyNumber:198602165W);andintheUnitedStatesofAmericabyGoldmanSachs&Co.LLC.GoldmanSachsInternationalhasapprovedthisresearchinconnectionwithitsdistributionintheUnitedKingdom.EffectivefromthedateoftheUnitedKingdom’sdeparturefromtheEuropeanUnionandtheEuropeanEconomicArea(“BrexitDay”)thefollowinginformationwithrespecttodistributingentitieswillapply:GoldmanSachsInternational(“GSI”),authorisedbythePrudentialRegulationAuthority(“PRA”)andregulatedbytheFinancialConductAuthority(“FCA”)andthePRA,hasapprovedthisresearchinconnectionwithitsdistributionintheUnitedKingdom.EuropeanEconomicArea:GSI,authorisedbythePRAandregulatedbytheFCAandthePRA,disseminatesresearchinthefollowingjurisdictionswithintheEuropeanEconomicArea:theGrandDuchyofLuxembourg,Italy,theKingdomofBelgium,theKingdomofDenmark,theKingdomofNorway,theRepublicofFinland,theRepublicofCyprusandtheRepublicofIreland;GS-SuccursaledeParis(Parisbranch)which,fromBrexitDay,willbeauthorisedbytheFrenchAutoritédecontrôleprudentieletderesolution(“ACPR”)andregulatedbytheAutoritédecontrôleprudentieletderesolutionandtheAutoritédesmarchesfinanciers(“AMF”)disseminatesresearchinFrance;GSI-SucursalenEspaña(Madridbranch)authorizedinSpainbytheComisiónNacionaldelMercadodeValoresdisseminatesresearchintheKingdomofSpain;GSI-SwedenBankfilial(Stockholmbranch)isauthorizedbytheSFSAasa“thirdcountrybranch”inaccordancewithChapter4,Section4oftheSwedishSecuritiesandMarketAct(Sw.lag(2007:528)omvärdepappersmarknaden)disseminatesresearchintheKingdomofSweden;GoldmanSachsBankEuropeSE(“GSBE”)isacreditinstitutionincorporatedinGermanyand,withintheSingleSupervisoryMechanism,subjecttodirectprudentialsupervisionbytheEuropeanCentralBankandinotherrespectssupervisedbyGermanFederalFinancialSupervisoryAuthority(BundesanstaltfürFinanzdienstleistungsaufsicht,BaFin)andDeutscheBundesbankanddisseminatesresearchintheFederalRepublicofGermanyandthosejurisdictionswithintheEuropeanEconomicAreawhereGSIisnotauthorisedtodisseminateresearchandadditionally,GSBE,CopenhagenBranchfilialafGSBE,Tyskland,supervisedbytheDanishFinancialAuthoritydisseminatesresearchintheKingdomofDenmark;GSBE-SucursalenEspaña(Madridbranch)subject(toalimitedextent)tolocalsupervisionbytheBankofSpaindisseminatesresearchintheKingdomofSpain;GSBE-SuccursaleItalia(Milanbranch)totherelevantapplicableextent,subjecttolocalsupervisionbytheBankofItaly(Bancad’Italia)andtheItalianCompaniesandExchangeCommission(CommissioneNazionaleperleSocietàelaBorsa“Consob”)disseminatesresearchinItaly;GSBE-SuccursaledeParis(Parisbranch),supervisedbytheAMFandbytheACPRdisseminatesresearchinFrance;andGSBE-SwedenBankfilial(Stockholmbranch),toalimitedextent,subjecttolocalsupervisionbytheSwedishFinancialSupervisoryAuthority(Finansinpektionen)disseminatesresearchintheKingdomofSweden.GeneraldisclosuresThisresearchisforourclientsonly.OtherthandisclosuresrelatingtoGoldmanSachs,thisresearchisbasedoncurrentpublicinformationthatweconsiderreliable,butwedonotrepresentitisaccurateorcomplete,anditshouldnotbereliedonassuch.Theinformation,opinions,estimatesandforecastscontainedhereinareasofthedatehereofandaresubjecttochangewithoutpriornotification.Weseektoupdateourresearchasappropriate,butvariousregulationsmaypreventusfromdoingso.Otherthancertainindustryreportspublishedonaperiodicbasis,thelargemajorityofreportsarepublishedatirregularintervalsasappropriateintheanalyst’sjudgment.GoldmanSachsconductsaglobalfull-service,integratedinvestmentbanking,investmentmanagement,andbrokeragebusiness.WehaveinvestmentbankingandotherbusinessrelationshipswithasubstantialpercentageofthecompaniescoveredbyourGlobalInvestmentResearchDivision.GoldmanSachs&Co.LLC,theUnitedStatesbrokerdealer,isamemberofSIPC(https://www.sipc.org).Oursalespeople,traders,andotherprofessionalsmayprovideoralorwrittenmarketcommentaryortradingstrategiestoourclientsandprincipaltradingdesksthatreflectopinionsthatarecontrarytotheopinionsexpressedinthisresearch.Ourassetmanagementarea,principaltradingdesksandinvestingbusinessesmaymakeinvestmentdecisionsthatareinconsistentwiththerecommendationsorviewsexpressedinthisresearch.Theanalystsnamedinthisreportmayhavefromtimetotimediscussedwithourclients,includingGoldmanSachssalespersonsandtraders,ormaydiscussinthisreport,tradingstrategiesthatreferencecatalystsoreventsthatmayhaveanear-termimpactonthemarketpriceoftheequitysecuritiesdiscussedinthisreport,whichimpactmaybedirectionallycountertotheanalyst’spublishedpricetargetexpectationsforsuchstocks.Anysuchtradingstrategiesaredistinctfromanddonotaffecttheanalyst’sfundamentalequityratingforsuchstocks,whichratingreflectsastock’sreturnpotentialrelativetoitscoverageuniverseasdescribedherein.Weandouraffiliates,officers,directors,andemployees,excludingequityandcreditanalysts,willfromtimetotimehavelongorshortpositionsin,actasprincipalin,andbuyorsell,thesecuritiesorderivatives,ifany,referredtointhisresearch.TheviewsattributedtothirdpartypresentersatGoldmanSachsarrangedconferences,includingindividualsfromotherpartsofGoldmanSachs,donotnecessarilyreflectthoseofGlobalInvestmentResearchandarenotanofficialviewofGoldmanSachs.Anythirdpartyreferencedherein,includinganysalespeople,tradersandotherprofessionalsormembersoftheirhousehold,mayhavepositionsintheproductsmentionedthatareinconsistentwiththeviewsexpressedbyanalystsnamedinthisreport.Thisresearchisnotanoffertosellorthesolicitationofanoffertobuyanysecurityinanyjurisdictionwheresuchanofferorsolicitationwouldbeillegal.Itdoesnotconstituteapersonalrecommendationortakeintoaccounttheparticularinvestmentobjectives,financialsituations,orneedsofindividualclients.Clientsshouldconsiderwhetheranyadviceorrecommendationinthisresearchissuitablefortheirparticularcircumstancesand,ifappropriate,seekprofessionaladvice,includingtaxadvice.Thepriceandvalueofinvestmentsreferredtointhisresearchandtheincomefromthemmayfluctuate.Pastperformanceisnotaguidetofutureperformance,futurereturnsarenotguaranteed,andalossoforiginalcapitalmayoccur.Fluctuationsinexchangeratescouldhaveadverseeffectsonthevalueorpriceof,orincomederivedfrom,certaininvestments.Certaintransactions,includingthoseinvolvingfutures,options,andotherderivatives,giverisetosubstantialriskandarenotsuitableforallinvestors.InvestorsshouldreviewcurrentoptionsandfuturesdisclosuredocumentswhichareavailablefromGoldmanSachssalesrepresentativesorathttps://www.theocc.com/about/publications/character-risks.jspandhttps://www.fiadocumentation.org/fia/regulatory-disclosures_1/fia-uniform-futures-and-options-on-futures-risk-disclosures-booklet-pdf-version-2018.Transactioncostsmaybesignificantinoptionstrategiescallingformultiplepurchaseandsalesofoptionssuchasspreads.Supportingdocumentation20July202260GoldmanSachsCarbonomicswillbesupplieduponrequest.DifferingLevelsofServiceprovidedbyGlobalInvestmentResearch:ThelevelandtypesofservicesprovidedtoyoubytheGlobalInvestmentResearchdivisionofGSmayvaryascomparedtothatprovidedtointernalandotherexternalclientsofGS,dependingonvariousfactorsincludingyourindividualpreferencesastothefrequencyandmannerofreceivingcommunication,yourriskprofileandinvestmentfocusandperspective(e.g.,marketwide,sectorspecific,longterm,shortterm),thesizeandscopeofyouroverallclientrelationshipwithGS,andlegalandregulatoryconstraints.Asanexample,certainclientsmayrequesttoreceivenotificationswhenresearchonspecificsecuritiesispublished,andcertainclientsmayrequestthatspecificdataunderlyinganalysts’fundamentalanalysisavailableonourinternalclientwebsitesbedeliveredtothemelectronicallythroughdatafeedsorotherwise.Nochangetoananalyst’sfundamentalresearchviews(e.g.,ratings,pricetargets,ormaterialchangestoearningsestimatesforequitysecurities),willbecommunicatedtoanyclientpriortoinclusionofsuchinformationinaresearchreportbroadlydisseminatedthroughelectronicpublicationtoourinternalclientwebsitesorthroughothermeans,asnecessary,toallclientswhoareentitledtoreceivesuchreports.Allresearchreportsaredisseminatedandavailabletoallclientssimultaneouslythroughelectronicpublicationtoourinternalclientwebsites.Notallresearchcontentisredistributedtoourclientsoravailabletothird-partyaggregators,norisGoldmanSachsresponsiblefortheredistributionofourresearchbythirdpartyaggregators.Forresearch,modelsorotherdatarelatedtooneormoresecurities,marketsorassetclasses(includingrelatedservices)thatmaybeavailabletoyou,pleasecontactyourGSrepresentativeorgotohttps://research.gs.com.Disclosureinformationisalsoavailableathttps://www.gs.com/research/hedge.htmlorfromResearchCompliance,200WestStreet,NewYork,NY10282.©2022GoldmanSachs.Nopartofthismaterialmaybe(i)copied,photocopiedorduplicatedinanyformbyanymeansor(ii)redistributedwithoutthepriorwrittenconsentofTheGoldmanSachsGroup,Inc.20July202261GoldmanSachsCarbonomics

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

碳中和
已认证
内容提供者

碳中和

确认删除?
回到顶部
微信客服
  • 管理员微信
QQ客服
  • QQ客服点击这里给我发消息
客服邮箱