确保清洁能源技术供应链(英)-IEAVIP专享VIP免费

Securing Clean
Energy Technology
Supply Chains
The IEA examines
the full spectrum
of energy issues
including oil, gas
and coal supply and
demand, renewable
energy
technologies,
electricity markets,
energy efficiency,
access to energy,
demand side
management and
much more.
Through its work,
the IEA advocates
policies that will
enhance the
reliability,
affordability and
sustainability of
energy in its
31 member
countries,
10 association
countries and
beyond.
Please note that this
publication is subject to
specific restrictions that limit
its use and distribution. The
terms and conditions are
available online at
www.iea.org/t&c/
This publication and any
map included herein are
without prejudice to the
status of or sovereignty over
any territory, to the
delimitation of international
frontiers and boundaries and
to the name of any territory,
city or area.
Source: IEA. All rights
reserved.
International Energy Agency
Website: www.iea.org
IEA member
countries:
Germany
Greece
Hungary
Ireland
Italy
Japan
Korea
Lithuania
Luxembourg
Mexico
Netherlands
New Zealand
Norway
Poland
Portugal
Slovak Republic
Spain
Sweden
Switzerland
Republic of Türkiye
United Kingdom
United States
The European
Commission also
participates in the
work of the IEA
IEA association
countries:
INTERNATIONAL ENERGY
AGENCY
Australia
Austria
Belgium
Canada
Czech Republic
Denmark
Estonia
Finland
France
Argentina
Brazil
China
Egypt
India
Indonesia
Morocco
Singapore
South Africa
Thailand
Securing clean energy
technology supply chains | International Energy Agency
i
Table of contents
Summary of recommendations .................................................................................. 3
About this report ........................................................................................................ 4
Scaling up clean energy supply chains ...................................................................... 5
The new energy security paradigm ............................................................................ 9
Assessing risks and vulnerabilities .......................................................................... 15
Making clean energy supply chains secure, resilient and sustainable is a priority .. 20
1. Diversifying supply chains ......................................................................... 20
2. Accelerating the clean energy transition ................................................... 26
3. Innovating clean energy technology.......................................................... 30
4. Collaborating on supply chain development ............................................. 33
5. Investing in clean energy .......................................................................... 36
List of figures
Figure 1 Global deployment of selected clean energy technologies in the Net Zero
Emissions by 2050 Scenario ......................................................................... 5
Figure 2 Supply chains of key energy technologies .................................................... 7
Figure 3 Estimated market sizes, by value, of oil and selected clean energy
technologies in the Net Zero Emissions by 2050 Scenario ......................... 10
Figure 4 Key indicators of energy security in the Net Zero Emissions by 2050
Scenario ...................................................................................................... 11
Figure 5 Mineral intensity of selected clean and fossil energy technologies ............. 12
Figure 6 International prices of selected metals and critical minerals for clean
energy technologies .................................................................................... 13
Figure 7 Likelihood and magnitude of the impact of potential supply disruptions for
leading clean energy inputs......................................................................... 18
Figure 8 Geographic concentration of selected clean energy technologies by supply
chain stage and country/region, 2021 ......................................................... 22
Figure 9 Production and proven reserves of selected critical minerals for
battery and PV cell materials, 2021 ............................................................. 25
Figure 10 Compound annual growth rate in deployment of solar PV, EVs and
low-emissions hydrogen in the Net Zero Emissions by 2050 Scenario ....... 27
Figure 11 Typical lead times to initial production for selected stages in EV
battery and solar PV supply chains ............................................................. 28
SecuringCleanEnergyTechnologySupplyChainsTheIEAexaminesthefullspectrumofenergyissuesincludingoil,gasandcoalsupplyanddemand,renewableenergytechnologies,electricitymarkets,energyefficiency,accesstoenergy,demandsidemanagementandmuchmore.Throughitswork,theIEAadvocatespoliciesthatwillenhancethereliability,affordabilityandsustainabilityofenergyinits31membercountries,10associationcountriesandbeyond.Pleasenotethatthispublicationissubjecttospecificrestrictionsthatlimititsuseanddistribution.Thetermsandconditionsareavailableonlineatwww.iea.org/t&c/Thispublicationandanymapincludedhereinarewithoutprejudicetothestatusoforsovereigntyoveranyterritory,tothedelimitationofinternationalfrontiersandboundariesandtothenameofanyterritory,cityorarea.Source:IEA.Allrightsreserved.InternationalEnergyAgencyWebsite:www.iea.orgIEAmembercountries:GermanyGreeceHungaryIrelandItalyJapanKoreaLithuaniaLuxembourgMexicoNetherlandsNewZealandNorwayPolandPortugalSlovakRepublicSpainSwedenSwitzerlandRepublicofTürkiyeUnitedKingdomUnitedStatesTheEuropeanCommissionalsoparticipatesintheworkoftheIEAIEAassociationcountries:INTERNATIONALENERGYAGENCYAustraliaAustriaBelgiumCanadaCzechRepublicDenmarkEstoniaFinlandFranceArgentinaBrazilChinaEgyptIndiaIndonesiaMoroccoSingaporeSouthAfricaThailandSecuringcleanenergytechnologysupplychainsInternationalEnergyAgencyiTableofcontentsSummaryofrecommendations..................................................................................3Aboutthisreport........................................................................................................4Scalingupcleanenergysupplychains......................................................................5Thenewenergysecurityparadigm............................................................................9Assessingrisksandvulnerabilities..........................................................................15Makingcleanenergysupplychainssecure,resilientandsustainableisapriority..201.Diversifyingsupplychains.........................................................................202.Acceleratingthecleanenergytransition...................................................263.Innovatingcleanenergytechnology..........................................................304.Collaboratingonsupplychaindevelopment.............................................335.Investingincleanenergy..........................................................................36ListoffiguresFigure1GlobaldeploymentofselectedcleanenergytechnologiesintheNetZeroEmissionsby2050Scenario.........................................................................5Figure2Supplychainsofkeyenergytechnologies....................................................7Figure3Estimatedmarketsizes,byvalue,ofoilandselectedcleanenergytechnologiesintheNetZeroEmissionsby2050Scenario.........................10Figure4KeyindicatorsofenergysecurityintheNetZeroEmissionsby2050Scenario......................................................................................................11Figure5Mineralintensityofselectedcleanandfossilenergytechnologies.............12Figure6Internationalpricesofselectedmetalsandcriticalmineralsforcleanenergytechnologies....................................................................................13Figure7Likelihoodandmagnitudeoftheimpactofpotentialsupplydisruptionsforleadingcleanenergyinputs.........................................................................18Figure8Geographicconcentrationofselectedcleanenergytechnologiesbysupplychainstageandcountry/region,2021.........................................................22Figure9ProductionandprovenreservesofselectedcriticalmineralsforbatteryandPVcellmaterials,2021.............................................................25Figure10CompoundannualgrowthrateindeploymentofsolarPV,EVsandlow-emissionshydrogenintheNetZeroEmissionsby2050Scenario.......27Figure11TypicalleadtimestoinitialproductionforselectedstagesinEVbatteryandsolarPVsupplychains.............................................................28iiInternationalEnergyAgencySecuringcleanenergytechnologysupplychainsFigure12TechnologyreadinessofsolarPV,EVbatteriesandhydrogentechnologies................................................................................................31Figure13EvolutionoftotalenergyR&DpublicbudgetperyearofIEAcountries.......32Figure14GlobalinvestmentinselectedcleanenergytechnologiesintheNetZeroEmissionsby2050Scenario........................................................37Figure15Employmentincleanenergybyregion(2019)andadditionalworkersbytechnology,occupation,andskilllevelin2030undertheNetZeroEmissionsby2050Scenario........................................................40ListoftablesTable1KeymilestonesforcleanenergytechnologiesintheNetZeroEmissionsby2050Scenario.........................................................................9Table2Characteristicsofsecure,resilientandsustainablecleanenergytechnologysupplychains............................................................................15Table3Supplychainriskassessmentframework...................................................16Table4Assessmentofvulnerabilitiesforselectedcleanenergytechnologiesbysupplychain...........................................................................................19Table5Risksofsupplychaindisruptionsassociatedwithconcentration................21Table6Priorityactionsforgovernmentandindustry–Diversify.............................26Table7Priorityactionsforgovernmentandindustry–Accelerate..........................30Table8Priorityactionsforgovernmentandindustry–Innovate.............................33Table9Priorityactionsforgovernmentandindustry–Collaborate.........................36Table10Priorityactionsforgovernmentandindustry–Invest..................................41SecuringcleanenergytechnologysupplychainsInternationalEnergyAgency3Summaryofrecommendations4InternationalEnergyAgencySecuringcleanenergytechnologysupplychainsAboutthisreport•Secure,resilientandsustainablecleanenergysupplychainsarecentraltotheglobalenergytransition.ThefalloutfromtheCovid-19pandemicandRussia’sinvasionofUkrainehasputglobalenergysupplychainsunderenormouspressure,leadingtosoaringpricesofoil,gasandcoal,aswellasshortagesofsemiconductorsandthecriticalmineralsneededtomanufacturecleanenergytechnologies.Whilethecurrentenergycrisisposesathreattonear-termeconomicprospects,italsoprovidesanopportunitytoacceleratetheshiftawayfromfossilfuelsthroughamassivesurgeininvestmentinrenewables,energyefficiencyandothercleanenergytechnologies.AstheIEAhasrepeatedlystressed,theworlddoesnothavetochoosebetweensolvingtheenergycrisisandtheclimatecrisis.•Yetwemustensurethatthepathoutofthecurrentenergysecuritycrisisandtheracetonetzeroemissionsdonotsimplyreplaceonesetofconcernswithanother.Cleanenergysupplychainslargelydependonminerals,notfossilfuels.Asaresult,therelatedenergysecurityconsiderationswillbeaboutaccesstothecriticalminerals,materialsandcomponentsneededtomanufacturecleanenergytechnologiesratherthanthesupplyoffuelsalone.Establishingsecure,resilientandsustainablesupplychainsforthesetechnologieswillbeessential.Importantlessonscanbedrawnfromestablishedmarketsandtechnologiessuchassolarphotovoltaics(PV)–whereChinahassecuredadominantpositionateachstepoftheglobalsupplychain–toshapeemergingmarketsforbatteries,low-emissionshydrogenandothertechnologiesvitaltothecleanenergytransition.•ThisreporthasbeenpreparedfortheSydneyEnergyForum,whichtheIEAisproudtoco-hostwiththeAustralianGovernmentandinpartnershipwiththeBusinessCouncilofAustralia.Itsummarisesdevelopmentsinselectedcleanenergytechnologysupplychainsandfutureneeds,focusingonsolarPV,batteriesforelectricvehicles(EVs)andlow-emissionshydrogen,andprovidesaframeworkforgovernmentsandindustrytoidentify,assessandrespondtoemergingopportunitiesandvulnerabilities,withspecificinsightsfortheIndo-Pacificregion.ItdrawsontheIEA’sanalysisofcriticalminerals,recentdetailedanalysisoftechnologysupplychains,notablytheIEA’sGlobalSupplyChainsofEVBatteriesandSpecialReportonSolarPVGlobalSupplyChains1,aswellastheIEA’sextensivecleanenergytechnologytrackingandanalysis,includingongoingworkontheIEA’sflagshipEnergyTechnologyPerspectives(ETP)publication.ThenexteditionofETP,duetobereleasedinearly2023,willfocusonwhatisneededtodevelopandexpandcleanenergytechnologysupplychainstoachievenetzeroemissionsacrossabroadrangeoftechnologies.1BothreportswillbelaunchedinearlyJuly2022.KeyinsightsoftheGlobalSupplyChainsofEVBatterieshavebeenpublishedaspartoftheGlobalElectricVehicleOutlook2022.SecuringcleanenergytechnologysupplychainsInternationalEnergyAgency5ScalingupcleanenergysupplychainsSustainablesupplychainsarekeytosustainableenergyThedeploymentofcleanenergytechnologiesneedstobescaleduprapidlyaroundtheworldtoaverttheworsteffectsofclimatechange.TheIEA’sNetZeroEmissionsby2050Scenario,describedindetailintheNetZeroby2050:ARoadmapfortheGlobalEnergySectorreportpreparedin2021fortheConferenceofthePartiesinGlasgow,setsoutanenergypathwayconsistentwithlimitingglobaltemperatureincreasetoaround1.5degreesCelsius.ThehugeincreaseinthedeploymentofsolarPV,EVsandlow-carbonhydrogeninthatscenariocallsforrapidgrowthinthemanufacturingofthesetechnologies,aswellastheproductionofessentialmaterialandmineralinputs(Figure1).Figure1GlobaldeploymentofselectedcleanenergytechnologiesintheNetZeroEmissionsby2050ScenarioIEA.Allrightsreserved.RapidexpansionofsolarenergyiscentraltogettingtonetzeroThegenerationofelectricityusingsolarPVtechnologyisacentralpillarofthecleanenergytransition.AnnualaveragecapacityadditionsintheNetZeroEmissionsby2050Scenarioquadrupleover2020-2030,withsolaraccountingforroughlyone-thirdoftotalgenerationbymid-century–upfromjust3%today.TheannualinstallationofPVpanelsreaches630GWin2030(upfrom151GWin2021),withassociateddemandforcriticalmineralsincreasingto4000kilotonnes(kt)by2030(upfrom1000ktin2021).SolarPVpanelproductionalreadyaccountedfor10%ofglobaldemandforsilverandover40%ofglobaltelluriumusein2021.The0500010000150002000025000202020302050TWhSolarPVgeneration0100200300400500600202020302050MtH2Low-emissionshydrogenproductionFossilwithCCUSElectrolysis02468101214202020302050TWhBatterydemandinEVs6InternationalEnergyAgencySecuringcleanenergytechnologysupplychainsaggregatedemandforcriticalmaterialsforsolarPVisestimatedtoexpandby150%to400%between2021and2030intheNetZeroEmissionsby2050Scenario.RisingglobalsolarPVneedswillboostopportunitiesforexpandingmanufacturingcapacityintheIndo-Pacificregion.Almostalloftoday’sglobalmanufacturingcapacityforsolarPVisintheIndo-Pacificregion,mostnotablyinChina.Theregionalsohoststhemajorityofmaterialprocessingcapacitytosustainsuchmanufacturingcapacity.AlthoughthereareplanstoscaleupmodulemanufacturingcapabilitiesinNorthAmericaandEurope,theregioniswellplacedtoremainamajorsupplierofcomponentsandakeymanufacturerofpanels.ElectrifyingvehicleshingesonadequatesuppliesofcriticalmineralsforbatteriesAcceleratingtheuptakeofEVswillrequireamassiveexpansioninthesupplyofbatteries,whichwilldriveupdemandforseveralcriticalminerals.LikesolarPV,globalsalesofelectriccarshavesoaredoverthelastfewyears,doublingin2021alonetoarecord6.6million.Just120000weresoldin2012.Salesofelectricbuses(up40%)andmedium-andheavy-dutytrucks(up100%)havelikewiseseenlargeincreasesinthelastyear.IntheNetZeroEmissionsby2050Scenario,theglobalfleetofEVsreaches350million(excludingtwo/three-wheelers)andtheirshareofthetotalvehiclefleetaround20%in2030.Bythen,EVsalesreachover65millionperyear–almost60%oftotalvehiclesales.Thiscontributestoanaverageincreaseof30%peryearover2021-2030inglobaldemandforlithium(comparedwith6%overthelastfiveyears),11%annualdemandgrowthfornickel(5%)and9%annualdemandgrowthforcobalt(8%).IncreasedmaterialandproductionrequirementsforEVbatteriesaresettobenefittheIndo-Pacificregion.Australiaisthelargestproduceroflithium,producingoverhalfofglobalminedproductionin2021,andishometotwoofthetopfiveglobalproducers–PilbaraMineralsandAllkem.Fornickel,lateritedepositsaremainlyfoundinIndonesia,thePhilippinesandNewCaledonia.Thereareplanstolaunchorexpandbatterymanufacturinginseveralcountries.Indonesiarecentlycreatedagovernment-ownedbatterycorporationthataimstobuild140GWhofbatterycapacityby2030,ofwhich50GWhwillbeforexport.Today’sglobalbatterymanufacturingproductioncapacityisabout871GWh.SecuringcleanenergytechnologysupplychainsInternationalEnergyAgency7Figure2SupplychainsofkeyenergytechnologiesIEA.Allrightsreserved.Note:ThesolarPVplantonlyappliestocrystalline-siliconPVmodules.Notallhydrogenpathwaysarerepresentedhere(e.g.,coal,biomassgasification).8InternationalEnergyAgencySecuringcleanenergytechnologysupplychainsLow-emissionshydrogenissettoplayanimportantandgrowingroleTheemergenceoflow-emissionshydrogenwillalsocallforexpandedandmoresustainablesupplychains.ComparedwithsolarPVandEVs,low-emissionshydrogen1–producedbyelectrolysisorsteamreformingofnaturalgaswithcarboncapture,utilisationandstorage(CCUS)–isstillinitsinfancy,withproductionofaround30ktviaelectrolysisand0.7MtviaCCUSin20212(lessthan0.8%oftotalhydrogenoutput).IntheNetZeroEmissionsby2050Scenario,low-emissionsproductiontakesoffquickly,reachingaround150Mtin2030and520Mtby2050.Thisrequiresamassiveincreaseinelectrolysiscapacity,from0.3GWtodaytocloseto850GWby2030andalmost3600GWby2050.Thematerialrequirementsforelectrolysersatthisscalewouldgreatlyincreaseoverallglobaldemandforplatinumgroupmetals,whichhasaconcentratedsupply,andnickel,forwhichdemandforbatteriesisalsosettorisesharply.Fossil-basedproductionwithCCUS–whichislessreliantoncriticalmineralsbutreliesontheavailabilityofCO2transportandstorageinfrastructure–alsoincreasessharply,from0.7Mttodaytoaround70Mtby2030and200Mtby2050.Hydrogenisparticularlypromisingasameansofstoringlow-emissionselectricitytobalanceelectricitysystemsandtodrasticallyreduceemissionsfromsectorswhereemissionsarehardtoabate,notablylong-distancetransportandheavyindustry.1Hydrogencanbeproducedusingalltypesofenergysourcesandthroughavarietyoftechnologies.Referencestolow-emissionshydrogeninthisreportincludeshydrogenproducedfromrenewableandnuclearelectricity,biomass,andfossilfuelswithCCUS.FurtherdetailsontheIEAapproachtohydrogenclassificationcanbefoundinthe2021GlobalHydrogenReview.2TheseincludefacilitiesthatproducepurehydrogenandcaptureCO2forgeologicalstorageorsale;CO2capturedfromammoniaplantsforuseinureamanufacturingisexcluded.SecuringcleanenergytechnologysupplychainsInternationalEnergyAgency9Table1KeymilestonesforcleanenergytechnologiesintheNetZeroEmissionsby2050Scenario202020302050SolarPVSolaraccountsforroughly3%ofglobalelectricitygenerationAnnualcapacityadditionsofaround130GWNearly25%annualgrowthrequiredover2020-2030Morethan600GWperyearofcapacityadditionsSolaraccountsforover30%ofglobalelectricitygenerationHydrogenProductionoflow-emissionshydrogenislessthan0.8%oftotalproductionGlobalelectrolysercapacityisaround0.3GW.CO2capturedinlowemissionshydrogenproductionisaround10MtHydrogendemandislessthan90MtProductionoflow-emissionshydrogenreaches70%Globalelectrolysercapacitymustincreasetocloseto850GWCO2capturedinlow-emissionshydrogenproductionmustincreasearound70-foldfrom2020levelsAnnualinvestmentinhydrogenreachesUSD165billionGlobalelectrolysercapacitymustincreasetoaround3600GWofcapacityCO2capturedinlow-emissionshydrogenproductionmustincrease180-foldfrom2020levelsHydrogendemandmultiplesalmostsix-fold,withhalfofthisdemandinindustryandtransport.AnnualinvestmentsreachUSD470billionElectricVehiclesAround16.5millionEVsontheroadBatterydemandforEVsisaround340GWhEVsaccountfor20%oftheglobalstockBatterymetaldemandforEVsincreasesbyaroundone-thirdperyearforlithiumandaround10%fornickelandforcobaltover2020-2030EVsaccountfor86%oftheglobalstockofpassengercarsAtover60%ofthetotal,batteriesaccountforthelion’sshareoftheestimatedmarketforcleanenergytechnologyequipmentThenewenergysecurityparadigmStrivingfornetzerowillredefineglobalenergysecurityThecleanenergytransitionisfundamentallychangingthenatureofenergysecurity.TheIEAdefinesenergysecuritybroadlyastheuninterruptedavailabilityofenergysourcesatanaffordableprice.Thereareseveralaspectstothis.Long-termsecurityhingesonthetimelinessofinvestmentstosupplyenergyinlinewithdemand,whileshort-termsecurityislinkedtotheabilityoftheenergysystemtoreactpromptlytosuddenchangesinthesupply-demandbalance.Untilrecently,discussionsaboutenergysecuritywerelargelyfocusedonthesupplyoffossilfuels,notablyoil.Indeed,10InternationalEnergyAgencySecuringcleanenergytechnologysupplychainstheIEAwasbornoutofthe1973-1974oilcrisis.Andalmost50yearson,fossilfuelsareagainattheheartofthecurrentglobalenergycrisis:oil,gasandcoalstillaccountfor80%oftheglobalenergymix.Thisisastarkreminderoftheneedtoalwaysensuresupplysecurityoftraditionalfuelsduringthecleanenergytransition,butitshouldnotdivertourattentionfromthesecurityofcleanenergytransitions.Theracetonetzerowillfocusattentiononthesecurityofsupplyforcleanenergytechnologies.InourNetZeroEmissionsby2050Scenario,renewablesmeettwo-thirdsofglobalenergyneedsbymid-century.Solarandwindalonecontributemorethanone-third,comparedwithjust2%today,andmorethantwo-thirdsofelectricitygeneration(9%today).Bycontrast,in2050fossilfuelsaccountforonlyaround20%oftheenergymix,withcoalusedecliningbyalmost90%.Thecombinedmarketfortheleadingcleanenergytechnologiesexceedsthatofoilby2030(Figure3).Mostofthenon-fossiltechnologiesrelyondomesticenergyresources,likesunshineandwind,buttheequipment,criticalminerals,materialsandcomponentsneededtoexploitthoseresourcesandmaketherelatedend-useequipmentoftenrelyonglobalsupplychains(Figure4).Figure3Estimatedmarketsizes,byvalue,ofoilandselectedcleanenergytechnologiesintheNetZeroEmissionsby2050ScenarioIEA.Allrightsreserved.Disruptionstocleanenergytechnologysupplychainsbringnewenergysystemchallenges.Anoilsupplycrisis,whenithappens,hasbroadrepercussionsacrosstheeconomywithexistingconsumersandindustriesaffectedbyreducedavailabilityandhigherprices.Low-emissionshydrogenanditsderivatives(includingammonia)andbioenergy/biofuels,mayfacesimilarenergysecuritychallengestotraditionalfuels.Bycontrast,ashortageorspikeinthepriceofarawmaterialsorcomponentrequiredforproducingbatteriesandsolarpanelswillprimarilyaffectthe050010001500OilCleantechOilCleantechOilCleantechOilCleantech2020203020402050USDbillion(2020)FuelcellsElectrolysersBatteriesWindSolarPVOilSecuringcleanenergytechnologysupplychainsInternationalEnergyAgency11roll-outandavailabilityofnewcapacityadditions.ConsumersdrivingexistingEVsorusingsolar-poweredelectricityareunlikelytobeaffected.Themainthreatsfromthesesupplychaindisruptionsarethereforedelayedandmoreexpensiveenergytransitions.Figure4KeyindicatorsofenergysecurityintheNetZeroEmissionsby2050ScenarioIEA.Allrightsreserved.Note:mb/d=millionbarrelsperday;Mt=milliontonnesThesupplyofcriticalmineralssuchascopper,lithium,nickel,cobaltandrareearthelementswillbeofparticularimportance.Thesecriticalmineralsareessentialformanycleanenergytechnologies(Figure5).Theworld’sresourcesofthesemineralsareundoubtedlybigenoughtomeetthisincrease,butproductionandprocessingoperationsformanyofthemarehighlyconcentratedinasmallnumberofcountriesatpresent,makingsuppliesvulnerabletopoliticalinstability,geopoliticalrisksandpossibleexportrestrictions.02040608010020202050Oilsupply(mb/d)0%20%40%60%80%100%20202050ShareofsolarPVandwindinelectricitygeneration0102030405020202050Criticalmineralsdemand(Mt)12InternationalEnergyAgencySecuringcleanenergytechnologysupplychainsFigure5MineralintensityofselectedcleanandfossilenergytechnologiesIEA.Allrightsreserved.Source:IEA(2022),TheRoleofCriticalMineralsinCleanEnergyTransitions.TheeffectsoftheeconomicdisruptioncausedbytheCovid-19pandemicandRussia’sinvasionofUkrainearebeingfeltacrosstheenergysystem,threateningthedecades-longtrendofcostdeclinesforcleanenergytechnologies.Theinternationalpricesoftheleadingcriticalmineralsandmetalshavesoaredsince2020,withthoseoflithiumandcobaltmorethandoublingandthoseofcopper,nickelandaluminiumrisingbyaround25%to40%in2021(Figure6).Priceshavecontinuedtorisein2022,withthepriceoflithiumjumpingbytwo-and-a-halftimessincethestartoftheyear,beforefallingbacksomewhat.Inmostcases,thepriceincreasessince2020haveexceededbyawidemarginthelargestannualincreasesseeninthe2010s.InthecaseofClass1battery-gradenickel,priceshavebeendrivenhigherbyworriesaboutsuppliesfromRussia,whichistheworld’slargestproduceraccountingforaboutone-fifthoftheglobalsupply.050100150200250ConventionalcarElectriccarCopperLithiumNickelManganeseCobaltChromiumMolybdenumGraphiteZincRareearthsSiliconOthersTransport(kg/vehicle)5000100001500020000NaturalgasCoalNuclearSolarPVOnshorewindOffshorewindPowergeneration(kg/MW)SecuringcleanenergytechnologysupplychainsInternationalEnergyAgency13Figure6InternationalpricesofselectedmetalsandcriticalmineralsforcleanenergytechnologiesIEA.Allrightsreserved.Source:IEAanalysisbasedonS&PGlobal(2022).Thesepriceincreasesthreatentoreversethelong-termdownwardtrendinthecostofcleanenergytechnologiesthathadbeendrivenbyinnovationandeconomiesofscale,withamajorimpactonfinancingneedsforcleanenergytransitionsaroundtheworld.Theshareofrawmaterialsinthetotalcostofallcleanenergytechnologiesisrisingsharply.Thecostofbuildingwindturbinesjumpedby9%andthatofmanufacturingsolarmodulesby16%in2021–thefirstannualincreaseinrealtermsfordecades.Thecostofshippingisalsorapidlyincreasingduetorisingfuelpricesandsupplyconstraints.TheShanghaiFreightIndex,whichtracksthepriceofsendingacontainerfromShanghaitoselectportsaroundtheworld,hasincreasedroughlysix-foldsinceearly2020.ThecostofmakingEVbatteriesisalsopoisedtorise,thoughthefullimpactoftherecentsurgeinmetalandothercommoditypriceshasyettobefelt.Batterypricesdeclinedin2021–by6%onaverage–thoughthiswaslessmarkedthanthe13%fallin2020.Severalfactorspartiallyinsulatedbatterypricesfromthecommoditypricerisesin2021,includingchangesinbatterychemistries–withmanyautomakersswitchingtolower-costcathodechemistrieswithlesscommoditypriceexposure–andtimelagsinlong-termmaterialsupplycontracts.Ifmetalpricesweretoremainatlevelsexperiencedinthefirstthreemonthsof2022throughouttherestoftheyear,thenweestimatethatbatterypackpricesmightincreasebyasmuchas15%fromthe2021weightedaverageprice,allelsebeingequal.IncreasesinlithiumpricesarealreadytranslatingintohigherpricesforEVs,withTesla,BYDandXpengannouncingpricehikesof2%to9%inMarch2022.0100200300400Index(2015=100)CopperAluminiumNickelIronOreBasemetals03006009001200CobaltLithiumPlatinumEnergytransitionminerals14InternationalEnergyAgencySecuringcleanenergytechnologysupplychainsPressureoncleantechnologysupplychainsisalsoaffectingthepaceofenergytransitions.InMay2022,TeslaandVolkswagenwarnedthatsupplychaindisruptionsandhigherrawmaterialpricesthreatenedtherolloutofEVs,withdemandthreateningtoexceedproductioncapacityCompaniesarestartingtoscalebacktheirEVproductiontargets,whilehigherpricescouldalsodelaytheachievementofcostparitywithconventionalinternalcombustionenginevehicles.VolkswagensoldoutofEVsintheUnitedStatesandEuropeinthefirstthreemonthsof2022duetoshortagesofsemiconductorsandwiringharnessesmadeinUkraine.TeslahadagreedadealwithPiedmontLithiumforthesupplyof53000tonnesoflithiumperyearforfiveyearsstartingduringtheperiodJuly2022andJuly2023,butshipmentshavebeenpushedbackduetodelaysinobtainingminingpermits.Nio,aChineseEVmanufacturer,hadtosuspendproductioninApril2022duetolocalsupplychainproblemscausedbyCovid-19restrictionsandrecentlyannouncedanincreaseinthepriceofitselectricsportsutilityvehicleduetohigherrawmaterialcosts.Futuresupplychainsmustbesecure,resilientandsustainableAcomprehensiveandcoordinatedapproachisrequiredtodevelopandexpandglobalcleanenergytechnologysupplychainsthataresecure,resilientandsustainable.Thismeanssupplychainsthatcanmeettheneedsofanetzeropathwayandthatcanabsorb,accommodateandrecoverfrombothshort-termshocksandlong-termchanges,includingmaterialshortages,climatechange,naturaldisastersandotherpotentialsupplydisruptions(Table2).Thegoalshouldbetoenhancethesecurityandresilienceofsupplychainswhilemaintainingacommitmenttoprinciplesofopenandtransparentmarketsandavoidingbarrierstotrade.Self-sufficiencyisnotalwaysanoption–particularlyforcriticalmineralsthataregeographicallyconcentrated–noraneconomicallyoptimalapproach:acombinationofopenmarkets,strategicpartnershipsanddiversityofsupplysourcescandeliversecurity,resilienceandsustainability.Critically,theemissionsintensityandenvironmentalimpactofcleanenergytechnologysupplychainsthemselvesmustalsobereducedrapidly.TheemissionsintensityofsolarPVmanufacturinghasdecreasedby40%inthelastdecadethankstoprocessimprovementsandaswitchtolow-emissionspowergeneration.ButfurthersteepdeclinesintheemissionsintensityofsolarPVandothercleanenergytechnologysupplychainswillbecriticalinanetzeroby2050pathway.Theglobaladoptionofsustainableminingpracticesthatminimisetheenvironmental,waterandsocialimpactsofresourceextractionwillalsobecentraltothesustainabilityofmanycleanenergytechnologysupplychains.SecuringcleanenergytechnologysupplychainsInternationalEnergyAgency15Table2Characteristicsofsecure,resilientandsustainablecleanenergytechnologysupplychainsSecureAdequate,reliableanduninterruptedsupplyofinputsStableandaffordablepricesResilientAbletorespondandquicklyadjusttodisruptionsDiversityinmarket,suppliersandtechnologiesInterconnectionacrosssupplychainsSustainableGHGemissionsaslowaspossibleandconsistentwithnetzeropathwaysRecognitionandadoptionofESGmeasuresalongallaspectsofthesupplychainEfficientandresponsibleuseofnaturalresources,includingthroughpromotionofrecyclingandend-of-lifestewardshipCleanenergytechnologysupplychainsinvolvenewopportunities,butalsonewrisksandvulnerabilitiesthatdifferfromfossilfuelsupply.Thecomposition,scaleandcomplexityofthedifferentstagesalongcleanenergysupplychains–resourceextraction,materialsproduction,equipmentmanufacturingandconstruction,transport,operationandend-of-lifehandling–canvarymarkedlydependingonthetechnologyorfuel.Thecleanenergytechnologysupplychainsneededtodeliveranetzerofuturehaveseveralsimilaritieswithfossil-basedenergysupplychains,includingstronginterdependencybetweenthesupplychainsteps,dependenceonaccesstoupstreamfuelsorminerals,andaneedforinfrastructuretotransportcommodities,equipmentorthefinalenergyproduct.Yetcleanenergytechnologysupplychainsrelymuchmoreoncriticalmineralsandgenerallyinvolvemoretechnicallycomplexandhighervalue-addedprocessingandtransport.Sometechnologies,notablyhydrogen,remainatanearlystageofdevelopmentsofuturesupplychainrisksandvulnerabilitiesareuncertain.AssessingrisksandvulnerabilitiesAframeworktomapsupplychainrisksandvulnerabilitiesDisruptionstocleanenergytechnologysupplychainscouldhaveamarkedimpactontheworld’sabilitytoachievenetzeroemissions.Understandingtheriskprofileofeachelementofthesupplychainisakeystepindevelopinganoverallappreciationoftheriskstoandvulnerabilitiesofthesupplychain.Itisalsocriticalforestablishingwhereeffortstoenhancesecurityandresilienceshouldbefocused.Theseriskprofilescanlookquitedifferentdependingonthecountry,regionandtechnology.Forexample,somecountriesorregionshaveabundantsuppliesofrawmaterialsoraccesstoskilledworkers.Inthecaseofnickel–usedinbothbatteries16InternationalEnergyAgencySecuringcleanenergytechnologysupplychainsandhydrogenelectrolysers–theeffectsofasupplydisruptioncanvaryaccordingtothedegreeofsubstitutabilityofnickelineachtechnology.Theriskprofileofcertaintechnologiesisalsolikelytochangeovertimeasnewtechnologiesandmaterialsemerge,andastechnologiesmatureandmarketsdevelop.Ariskassessmentframeworkcanbeusedtocapturetherisksandvulnerabilitiesofsupplychains.Table3coversthelikelihoodofasignificantandwidespreaddisruptionoccurringinonespecificpartofthesupplychainanditspotentialimpact.Theseaspectsneedtobeconsideredingovernmentpolicyresponsesandcorporatestrategies.Anelementofthesupplychainisconsideredtobevulnerableifthereisahighchanceofsignificantandwidespreaddisruption,andthesupplychainhasminimalcapacitytorespondandlimittheeffectsofadisruption.Theframeworkisdesignedtobeappliedtocurrentsupplychainstructures,withaviewtoassessinghowwellthesupplychaincanadaptandrespondintheshorttomediumterm–recognisingthatitiseasiertoadapttodisruptionsoverlongertimeframes.Table3SupplychainriskassessmentframeworkCriteriaDescriptionFactorstoconsiderLikelihood:Howlikelyistheretobeasignificantandwidespreaddisruptiontothatelementofthesupplychain?SupplychainconcentrationHighlyconcentratedproduction–eithergeographicallyorbyfirm–willincreasethelikelihoodofasignificantdisruptionduetoincreasedriskoftheentiremarketbeingexposedtothesameshock.Howconcentratedistheproductionatafirmlevel?Howconcentratedistheproductiongeographically(bothcountryandregion)?PaceandscaleofgrowthAlargerscale-uprequirementcomparedtotheaveragepaceobservedinthatmarket,ortherapiddevelopmentofanewsupplychaintoreachnetzero,willincreasethelikelihoodofasituationwheredemandandsupplybecomeimbalanced.Whatisthescale-uprequirementinpercentageterms,for2030and2050intheNetZeroEmissionsby2050Scenariocomparedtothepaceobservedinthepast10years?Howin-demandistheelementacrossothersupplychains?Exposuretotrade,natural,technicalorgeopoliticalrisksHighexposuretopotentialdisruptions,suchastraderestrictions,naturaldisasters,conflictorpoliticalinstabilitywillincreasethelikelihoodofadisruption–especiallywhencoupledwithahighlyconcentratedmarket.Arethemajorproducerslocatedinareaspronetonaturaldisastersthatarelikelytocauseprolongeddisruption?DothemajorproducersupholdESGstandards?Aretheregeopoliticalrisksandhowwellestablishedisthemarketintheinternationaltradingsystem?SecuringcleanenergytechnologysupplychainsInternationalEnergyAgency17CriteriaDescriptionFactorstoconsiderImpact:Ifadisruptionhappens,howeffectivelyandquicklycouldthesupplychainreorganizetoallowproductiontocontinueorresume?AbilitytopivottoothermaterialsortechnologiesIntheeventofadisruption,theimpactwillbereducediftherearereadilyavailablesubstitutabletechnologiesandmaterials,andthesupplychaincanpivottothemwithrelativeease.Usingarangeofmaterialsandtechnologieswouldreducethesupplychainimpact.Canthematerialsbedirectlysubstitutedwithalternatives?(i.e.,syntheticfornaturalgraphite)Aretherealternativetechnologiesavailable?(i.e.,batterychemistries)Isitpossibletouserecycledmaterials?Howadvancedarethealternatives?Scale-uporconversionleadtimesThespeedatwhichasupplychaincanreorganisewillhavesignificantimpactontheextentofthedisruptionandthesupplychain’sresilience.Thescale-upandconversiontimesforinfrastructurewillbeacriticalelementofthereorganisation.Isthereinfrastructurethatcouldbeconvertedorleveraged?Istherelatentcapacityorinventorythatcouldbeutilised?Howquicklycannewsourcesofsupply(mines,factories,etc.)bescaledup?Howresponsiveisthemarkettopricesignals?SupplyrisksandvulnerabilitiesareparticularlyacuteforbatteryandsolarcomponentsTheriskofasupplydisruptionanditspotentialimpactareespeciallypronouncedforseveralmajorcomponentsofbatteriesforelectricvehiclesandsolarPV(Figure7).Forexample,thesupplyoflithium–acriticalcomponentofbatteries–isrelativelyconcentrated,theinvestmentsneededtoboostsupplyarelargeandsomesourcesofsupplyarevulnerabletotradeornaturaldisruptions.Inaddition,lithiumisirreplaceableinlithium-ionbatteriesandtherearecurrentlynoalternativebatterychemistrieswhichdonotrequirelithiumavailableatscale.Leadtimesforopeningnewminesarealsoverylong.ThehighconcentrationofsolarPVcell,wafer,andmodulemanufacturinginChinaandahandfulofothercountriesalsomakesthatcomponentvulnerabletoasupplydisruption.18InternationalEnergyAgencySecuringcleanenergytechnologysupplychainsFigure7LikelihoodandmagnitudeoftheimpactofpotentialsupplydisruptionsforleadingcleanenergyinputsIEA.Allrightsreserved.SupplychainrisksforsolarPV,EVsandlow-emissionshydrogenaregenerallyhighestintheresourceextraction,materialproductionandmanufacturingphasesofthesupplychains(Table4).Forresourceextraction,highriskmineralsandmetalsincludecopper,cobalt,platinumandgraphite,aswellaslithium.Therelianceoncriticalmineralsisasignificantvulnerabilityinthesupplychainsofallthreetechnologies,especiallylithiumandcobaltforbatteries,copperforsolarPVandplatinumandnickelforhydrogenelectrolysers.Mostmineralsaresubjecttomoderate(lithium)tosevere(graphiteandcobalt)levelsofconcentration,bothatthecompanyandgeographic/jurisdictionallevel.Inaddition,manymineralsarealsoexposedtosocial,geopoliticalandtradedisruptions.Theleadtimeforthedevelopmentofnewminesisgenerallyverylong,rangingfromfourto20yearsandaveragingover16years.GiventheneedtorapidlyscaleupsupplytomeetthemilestonesoftheNetSecuringcleanenergytechnologysupplychainsInternationalEnergyAgency19ZeroEmissionsby2050Scenario,expandingcapacityatexistingminesandbuildingnewonesmuststartimmediatelytoensurethatthepipelineofprojectswillbesufficienttocoverdemandandtoavoidbottlenecks.Forsometechnologies,theremaybescopetoswitchtootherminerals,givingsomesupplyflexibility,butsome–suchassodium-ionbatteries–arestillunderdevelopmentandmaynotofferthesameadvantagesasexistingtechnologies.Theprocessingofcriticalmineralsandtheproductionofpolysiliconaremostatriskatthematerialproductionstage.Theprocessingofcriticalmineralsistypicallymoreconcentratedthanextraction,asitisheavilydominatedbyChina.Polysiliconmanufacturing–akeyinputtomakingcellwafersforsolarPVpanels–isalsoheavilyconcentratedinChina(seebelow).Expertiseisoftenhighlyconcentratedaswell,whichcanholdbacktechnologytransfer.Yettheleadtimestoopennewprocessingfacilitiesaregenerallymuchshorterthanformines.Table4AssessmentofvulnerabilitiesforselectedcleanenergytechnologiesbysupplychainResourceextractionMaterialproductionManufacturing/ConstructionOperationSolar●●●●Batteries●●●●Hydrogen●●●●Note:●High●Medium●LowAtthemanufacturingandconstructionstages,highriskcomponentsincludecathodeandanodeproductionforbatteries,aswellasPVcells,wafersandmodulesforsolarenergy.Thesourcesofriskvary.Concentrationisagainakeyfactor,withmanufacturingconcentratedinChinainmostcases,asarethelargeinvestmentsrequiredfornewcapacity.Alternativesforthesecomponentsaretypicallyatnascentstagesofdevelopment.Forexample,forbatteries,currentcathodeandanodematerialsarenotsubstitutableintheshortterm,althoughalternativematerialsareintheearlystagesofdevelopment.ForsolarPV,polysiliconwafertechnologiesdominatesolarPVproduction,althoughalternativetechnologies,suchasthin-film,existbuthavenotreachedthesamescaleasthedominanttechnology.Leadtimesaretypicallymuchshorterandwithfewerconstraintsonstartingproductioninotherlocationsformanufacturingthanforresourceextraction.Otherphasesofthesupplychainaregenerallylessexposedtodisruptionrisks.The20InternationalEnergyAgencySecuringcleanenergytechnologysupplychainstechnologyandinfrastructurefortransportingandstoringhydrogenislessmature,butsignificantpotentialexistsforrepurposinginfrastructureinwaysthatarebothcost-andtime-effective.Similarly,thebatteryrecyclingindustrywillneedtogrowsignificantly,bothtoachievesustainabilityandtoprovideanalternativesourceofcriticalminerals.Makingcleanenergysupplychainssecure,resilientandsustainableisapriorityBuildingsecure,resilientandsustainablesupplychainsforcleanenergytechnologiescallsfordecisiveactionaroundtheworld.Wehaveidentifiedfivekeyareas,orpillars,wheregovernmentsandindustrycollectivelyneedtoprioritiseactiontolowertheriskofandvulnerabilitytomajorsupplydisruptions:diversifyingsupplychains,acceleratingcleanenergytransitions,innovatingcleanenergytechnologies,collaboratingoncleanenergysupplychainsandinvestingincleanenergy.Thesepillarsarediscussedbelow.1.DiversifyingsupplychainsSupplychaindiversityisvitaltothesecurityofsupplyforcleanenergytransitionsSupplychainconcentration–theextenttowhichmarketsharesareconcentratedamongasmallnumberofproductionfacilities,firms,countriesorregions–isaprimaryriskforcleanenergytechnologies.Concentrationatanypointalongthesupplychainmakestheentiresupplychainvulnerabletoincidents,betheyrelatedtoindividualcountrypolicychoices,naturaldisasters,technicalfailuresorcompanydecisions(Table5).Russia’sinvasionofUkraine,whichcoulddisruptsuppliesofclass1nickelneededforEVbatteries,andtherecentdisruptionstomanufacturingofvariouscomponentsforsolarPVandbatteriesinChinaduetoCovid-19lockdowns,arebuttworecentillustrationsofthisrisk.Persistentsupplychaininterruptions,whichcoulddriveupthepricesofintermediateandfinalcleanenergyproducts,coulddelaycleanenergytransitions,increasethecostofmeetingnetzerogoalsandleadtoalessequitabletransition.Supplychaindiversity–attheleveloffirms,geographiesandtechnologies–isneededtoensurethatsupplychainsareresilienttoanyshocksandthatsuppliesaresecure.Giventhescaleofthedeploymentofcleanenergytechnologiesrequiredtogettonetzero,thispresentsasizeableopportunityforfirmsandregionswithaccesstoresources,skillsandcapitaltoenterthemarket.SecuringcleanenergytechnologysupplychainsInternationalEnergyAgency21Table5RisksofsupplychaindisruptionsassociatedwithconcentrationTypeofconcentrationDescriptionAssociatedriskspotentiallycausingsupplychaindisruptionJurisdictionalconcentrationTowhatextentisproductionconcentratedinasinglejurisdiction?DomesticpolicychangesGeopoliticaleventGeographicconcentrationTowhatextentisproductionconcentratedinasinglegeographicarea?Naturalhazardssuchasearthquakesandfires,andextremeweathereventssuchasdroughtandfloodingTechnicalfailuresofelectricity,gasgridsorotherinfrastructureFacilityconcentrationTowhatextentisproductionconcentratedinasinglefacility?Riskscitedabove,plus:OnsiteequipmentfailureMarketconcentrationTowhatextentisproductionconcentratedinasinglecompany?Riskofcollusion,pricefixinganddumpingTechnologyconcentrationTowhatextentisglobalproductioncentredonasingletechnology?Alltherisksmentionedabovewouldbeamplified,especiallyformaterialsupplyrisksIntellectualpropertyrightscouldslowtechnologytransferSource:AdaptedfromIEA(2022)SpecialReportonSolarPVGlobalSupplyChains.CleanenergysupplychainsarehighlyconcentratedtodayThereissignificantconcentrationacrossmanycleanenergytechnologysupplychains.Thesupplychainformanycleanenergytechnologiesandtheirrawmaterialsismoregeographicallyconcentratedthanitisforoilornaturalgas.Cleanenergytechnologiesoftenhavehighermaterialrequirementsthantraditionalenergytechnologies,theyrequiremoremanufacturingandprocessing,andtheygenerallyhavemorecomplexsupplychains.Theirmanufacturingisoftenverytechnicallycomplexandhighlyspecialised,whichalsolendsitselftoconcentration.Inaddition,asthetechnologieshavedeveloped,incumbentproducershavebenefitedfromeconomiesofscale,whichhasincreasedconcentration.22InternationalEnergyAgencySecuringcleanenergytechnologysupplychainsFigure8Geographicconcentrationofselectedcleanenergytechnologiesbysupplychainstageandcountry/region,2021IEA.Allrightsreserved.Notes:NAM:NorthAmerica;RestofAPAC:Asia-PacificexcludingChinaandIndia;CSAM:CentralandSouthAmerica.Alum:Aluminium.AlthoughIndonesiaproducesaround40%oftotalnickel,littleofthisiscurrentlyusedintheEVbatterysupplychain.ThelargestClass1battery-gradenickelproducersareRussia,CanadaandAustralia.Sources:IEA(2022)GlobalSupplyChainsofEVBatteries;IEA(2022)SpecialReportonSolarPVGlobalSupplyChains;andIEAanalysisbasedoninternetdataandUSGeologicalSurvey(2022).0%25%50%75%100%CopperBauxiteSilverMiningChinaIndiaRestofAPACCSAMNAMAfricaEurasiaEuropeUnspecifiedCopperAlum.PolysiliconMaterialprocessingWaferCellPVModuleManufacturingandassemblyPVmodule0%25%50%75%100%NickelPlatinumPalladiumMiningChinaIndiaRestofAPACCSAMNAMAfricaEurasiaEuropeUnspecifiedNickelMaterialprocessingElectrolyserFuelcellManufacturingandassemblyElectrolyserandfuelcell0%25%50%75%100%LithiumNickelCobaltGraphiteBauxiteMiningChinaIndiaRestofAPACCSAMNAMAfricaEurasiaEuropeUnspecifiedLithiumNickelCobaltGraphiteAlum.MaterialprocessingCathodeAnodeBatteryEVManufacturingandassemblyEVbatterySecuringcleanenergytechnologysupplychainsInternationalEnergyAgency23InthecaseofEVbatteries,Chinadominatesproductionateverystageofthesupplychaindownstreamofmining.Thisistheresultofmorethanadecadeofpoliciestosupportthedevelopmentofanintegrateddomesticsupplychainasastrategicindustrialsector.Aroundthree-quartersoftheworld’sproductioncapacityforbatterycells,around70%ofcathodecapacityand85%ofanodecapacity,aswellasmorethanhalfoftheglobalrawmaterialprocessingoflithium,cobaltandgraphite,arelocatedinChina.Thecountry’sdominationoftheentiregraphiteanodesupplychain–includingaround80%ofmining–isparticularlyacute.KoreaandJapanalsohavesignificantbatterysupplychainsdownstreamofrawmaterialprocessing,particularlyincathodeandanodematerialproduction.Koreaaccountsfor15%ofglobalproductioncapacityforcathodesand3%foranodes,whileJapanaccountsfor14%and11%,respectively.EuropeisresponsibleformorethanaquarterofEVproduction,butholdsverylittleoftherestofthesupplychain,apartfromcobaltprocessing(locatedmostlyinFinland).ThedownstreamEVbatterysupplychainissettobecomelessgeographicallyconcentratedinthecomingyears.Ifcurrentpoliciesandannouncementsofprojectsarerealised,one-quarterofbatteryproductioncapacitywillbelocatedinEuropeandtheUnitedStatesbytheendofthecurrentdecade.Therearealsoplanstoexpandcathodematerialsproductioninthoseregions.Bycontrast,anodematerialproductionislikelytocontinuetobedominatedbyChina,whichcontrolstheentiresupplychainfromminingthroughtoanodematerialproduction.SolarPVsupplychainsdownstreamofextraction–includingpolysilicon,wafer,cellandmodulemanufacturingcapacity–arealsohighlyconcentratedinChina.In2021,around40%ofglobalpolysiliconmanufacturingcapacityalongthesupplychainwaslocatedinasingleChineseprovince–Xinjiang–andasmuchas14%ofglobalwaferproductiontookplaceatasinglefactory.Thisconcentrationisexpectedtoincreaseoverthenextfiveyearsformostsupplychainsegments,basedonplantsunderconstructionandplanned.Wafermanufacturingiscurrentlythemostconcentratedsupplychainsegment,withChinaaccountingfor97%ofglobalcapacity.Itsshareofcellproductionis85%andthatofglobalpolysiliconisoverthree-quarters.TheproductionofsolarPVsupplychainsegmentsisalsoconcentratedatthecompanylevel,withthetopfivecompaniesholdingmorethan70%oftotalproductionforbothpolysiliconandwaferproduction,andaround50%oftotalproductionforbothcellsandmodules.InChinaandelsewhere,governmentshavesupportedthedevelopmentofsolarPVmanufacturingthroughgeneralindustrialpolicy,fundingofRD&D,anddemand-sideincentives.Theproductionofbothlow-emissionshydrogenandrelatedmaterialsandequipmentarelikelytobemorediversifiedthanexistingbatteryandsolarPV24InternationalEnergyAgencySecuringcleanenergytechnologysupplychainssupplychainsasthesectordevelopsoverthecomingdecades.Chinaisexpectedtoremainamajorhydrogenproducerandconsumer,butothercountries,includingAustraliaandtheUnitedStates,arewellplacedtobecomeimportantplayersinthesectorasittakesoffandasproductionshiftstolow-emissionspathways.Fornow,theglobalsupplychainforalltypesofelectrolysersremainsnascentasdemandhasyettomaterialiseonanysignificantscale.Consequently,thesupplyofmembranesforelectrolysersiscurrentlyveryconcentrated,withAGFA,aBelgian-Germancompany,thedominantsupplierofalkalineelectrolysismembranesandthemarketforPEMmembranesbeingdominatedbyafewmajorsuppliers.AccesstocriticalmineralsthreatenstoputabrakeonenergytransitionsTheconcentrationofsupply,particularlyatthemineralextractionstage,couldleadtosignificantdelaysindeployingcleanenergytechnologies.Atypicalelectriccarrequiressixtimesthemineralinputsofaconventionalcar,whileanonshorewindplantrequiresninetimesmoremineralresourcesthanagas-firedplantforthesamecapacity.Since2010,theaverageamountofmineralsneededforanadditionalunitofpowergenerationcapacityhasincreasedbyhalfastheshareofrenewablesinincrementalcapacityhasrisen.Thistrendissettocontinue.IntheNetZeroEmissionsby2050Scenario,mineralinputstotheproductionofenergy-relatedinfrastructureandend-useequipmentareuptosixtimeshigherin2040thantoday.Theconcentrationoftheproductionofmanyofthecriticalmineralsneededforcleanenergytechnologiesisaparticularconcern.Resourcesofthosemineralsaremoregeographicallyconcentratedthanoil,naturalgasorcoal.Forlithium,cobaltandrareearthelements(REEs),thetopthreeproducingnationsinaggregatecontrolwelloverthree-quartersofglobaloutput.Insomecases,asinglecountryisresponsibleforaroundhalfofworldwideproduction.SouthAfricaandtheDemocraticRepublicoftheCongoaccountforaround70%ofglobalproductionofplatinumandcobalt,respectively,whileChinacontrolsroughly60%ofglobalminedoutputforREE.Thisisamajorsourceofconcernforcompaniesthatproducesolarpanels,windturbines,electricmotorsandbatteriesusingimportedminerals,astheirsupplychainscanquicklybeaffectedbyregulatorychanges,traderestrictionsorpoliticalinstability.Thecurrentgeopoliticalsituation,risingcommoditypricesandsupplybottleneckshavehighlightedtheneedforactiononthepartofgovernmentsandindustrytoenhancethediversityandresilienceofcleanenergysupplychains.Thisimpliesaneedtopromotethedevelopmentofresources,wheretheyexist,andencourageinvestmentinnewsourcesofsupply.Formostminerals,provenreservesarelessconcentratedthancurrentproduction,implyingthatasignificantopportunityexiststodiversifysupply(Figure9).SecuringcleanenergytechnologysupplychainsInternationalEnergyAgency25Figure9ProductionandprovenreservesofselectedcriticalmineralsforbatteryandPVcellmaterials,2021IEA.Allrightsreserved.Notes:NAM:NorthAmerica;RestofAPAC:Asia-PacificexcludingChinaandIndia;CSAM:CentralandSouthAmerica.ReservesrefertoeconomicallyextractableresourceasdefinedanddeterminedbytheUSGeologicalSurvey.Source:IEAanalysisbasedonUSGeologicalSurvey(2022).WorkisunderwaytobolsterresiliencetopotentialcriticalmineralsupplydisruptionsAtthe2022IEAMinisterial,membercountriesrecognisedthegrowingimportanceofcriticalmineralsandmaterialstocleanenergytransitionsandaskedthatoptionstoensuretheresilienceofcriticalmineralsupplies,includingstockpiling,beinvestigated.Arangeofpotentialmechanismsexistsforbolsteringthesecurityofcriticalmineralsupplychains,includingstockpiles,publicprocurementviaofftakeagreements,regularstresstesting,jointrecyclingtargetsandmeasurestoawardESGperformance.AgroupofcountriesinterestedinclosercooperationlaunchedavoluntaryIEACriticalMineralsSecurityProgramme.Underthescheme,whichmaycoverstockpilingand,potentially,otherelementssuchasrecyclingandresilientandtransparentsupplychainmechanisms,participatingcountriesplantoshareexperienceanddatafromtheirownnationalprogrammestobolstersupplychainresilience.Voluntarystrategicstockpiling,whereapplicable,couldhelpcountriesweathershort-termsupplydisruptions.Somecountrieshavebeenoperatingstockpilingschemesformanyyearsasameansofenhancingsupplysecurity.Theseneedtobecarefullydesigned,basedonaperiodicreviewofpotentialvulnerabilities.Ingeneral,0%25%50%75%100%ProductionReservesProductionReservesProductionReservesProductionReservesProductionReservesProductionReservesLithiumNickelCobaltGraphiteCopperSilverUnspecifiedEuropeEurasiaAfricaNAMCSAMRestofAPACIndiaChina26InternationalEnergyAgencySecuringcleanenergytechnologysupplychainssuchschemescanbemoreeffectiveformineralswithsmallermarkets,opaquepricingandaconcentratedsupplystructurethanthosewithwell-developedmarketsandampleliquidity.Table6Priorityactionsforgovernmentandindustry–Diversify2.AcceleratingthecleanenergytransitionTogettonetzero,therolloutofcleanenergytechnologiesmustbesteppedupThemassiveincreaseinthedeploymentofcleanenergyneededfortheworldtoachievenetzeroispredicatedonanunprecedentedaccelerationinthescalingupofrelatedsupplychains.Thenextdecadewillbecritical.AnydelaysinrollingoutsolarPV,EVandhydrogentechnologieswillmeanthatreachingnetzerobymid-centurywillbecomeincreasinglymoredifficult.InourNetZeroEmissionsby2050Scenario,theelectricitysectoristhefirsttoachievenetzeroemissions,mainlybecauseanarrayofrenewableandothercleanenergytechnologiesarealreadyavailableonthemarket.SolarPV,whichhasseenrecordgrowthoverthelastfewyears(solargenerationincreasedby26%in2021,upfromthepreviousrecordof23%in2020)acceleratesinthecomingyears,increasingnine-foldby2030andalmosta30-foldby2050comparedwith2020levels(Figure10).ThiswouldrequireasustainedincreaseintheproductionofPVmodulesandrelatedcomponentsandrawmaterials.SalesofEVsalsocontinuetosurgeinthenextfewyears,drivingupboththeneedtogenerateelectricityandtheneedformaterialsandcomponentstomakebatteries.Hydrogenandhydrogen-basedfuels–anotherkeypillarofdecarbonisation–takeoffduringthe2020s,callingfornewandexpandedsupplychainsforelectrolysersandCO2capture,transportandstorageinfrastructure.SecuringcleanenergytechnologysupplychainsInternationalEnergyAgency27Figure10CompoundannualgrowthrateindeploymentofsolarPV,EVsandlow-emissionshydrogenintheNetZeroEmissionsby2050ScenarioIEA.Allrightsreserved.LongprojectdevelopmenttimesriskholdingbacksupplychainsasdemandgrowsTheconsiderableleadtimesrequiredtodeveloptherawmaterials,manufacturingcapacityandend-useinfrastructureformanycleanenergytechnologiesrisksconstrainingtherateatwhichtheycanbedeployed.Thecomplexityofsupplychainsmeansthatanyshortagesordisruptionsatonepointinthechaincancausesignificantdelayswhilenewfacilitiesarebuilt.Thishighlightstheimportanceoftimelyinvestmentacrossallelementsofthesupplychaintoensurethatsufficientmaterialsareavailableinthefuturetomeetrisingdemandforinputsandfinalproducts.Buildingnewminestoextractrawmaterialsgenerallytakeslongerthaninstallingproductioncapacityatotherstagesinthesupplychain.Leadtimesforminingoperations(fromdiscoverytofirstproduction)exceeded16yearsonaveragebetween2010and2019,thoughtheyvariedgreatlybymineral,locationandminetype(Figure11).Explorationandfeasibilitystudiesoftenrequired12years,andconstructionfourtofiveyears.Antimony,cadmium,gallium,germanium,indiumandselenium–primarilyusedinthin-filmsolarPVtechnologies–aremostlyrecoveredasminingby-products.Itisthereforedifficulttorapidlyadaptsupplytochangesindemand,sincetheyareoftennoteconomictomineindividually.Bothlongleadtimesanddependenceonby-productscancontributetopricevariability,sincesupplycanoftenlagdemandforyears.0102030405060702010s2020s%SolarPVgenerationGlobalEVstockLow-emissionshydrogenproductionNZEHistoric28InternationalEnergyAgencySecuringcleanenergytechnologysupplychainsFigure11TypicalleadtimestoinitialproductionforselectedstagesinEVbatteryandsolarPVsupplychainsIEA.Allrightsreserved.Sources:IEA(2022)GlobalSupplyChainsofEVBatteries;IEA(2022)SpecialReportonSolarPVGlobalSupplyChains.Manufacturingleadtimesvaryacrosssupplychainsegmentsandlocations.Newpolysiliconfactoriestakelongertobuildthanthoseforwafers,cellsandmodules,rangingfrom12to40months.Inaddition,rampingupproductionofpolysilicontofullcapacityusuallytakestime.Foringotsandwafers,developmenttimelinesareusuallyquickerandleadtimessimilaracrosscountriesandregions.Cellandmodulefactoriescangenerallybecommissionedwithinfourto12monthsinmostpartsoftheworld.InthecaseofEVs,leadtimesaregenerallyfastestforvehicleassembly,sinceautomobileproductioncapacitycurrentlyexceedsdemandworldwide,allowingautomakerstoretoolexistingconventionalvehiclefactories.Forexample,workonretoolingVolkswagen’sZwickaufactoryinGermanybeganin2018andthefirstEVswereproducedinNovember2019.Similarly,Tesla’sEVfactoryinShanghaiwascompletedinroughlyoneyearafterbreakinggroundinearly2019.Batteryproductionleadtimesvarymore.InChina,CATLwasabletocompleteanewcellmanufacturingfacilityinunderoneyear,butNorthvolt’sfirstfactoryinSwedentookfouryears.Regulatory,permittingandapprovalprocessesareamajorcontributortoprojectdevelopmentleadtimes.Securingpermitsforminingoperationscantakefromoneto10years,withmultiplepermitsoftenrequireddueto,thecomplexityandscaleoftheseprojects.ThisisoneofthemainreasonswhyprojectleadtimesintheEuropeanUnionandtheUnitedStatesaregenerallymuchlongerthaninotherpartsoftheworld,thoughlandacquisitionandconstructiontimesarealsogenerallylongertoo.Forexample,the800kmCortezCO2pipelineintheUnitedStatestookeightyearstocomplete,thoughconstructiontookonlytwoyears.Whilethereisanobvious0510152025EVBattery/cellCathode/AnodeCellsandmodulesIngotsandwafersPolysiliconRawmaterialprocessingSilverCopperNickelLithiumManufacturing&AssemblyMiningYearsEVSolarPVSecuringcleanenergytechnologysupplychainsInternationalEnergyAgency29needtobalanceenvironmentalstandardsandconsultationandengagementwithindigenouspeopleswithspeed,improvingtheefficiencyofthepermittingandapprovalsprocessforcriticalmineralandcleanenergyprojectswouldhelptoacceleratetheirdeployment.Forexample,intheEuropeanUnionstrategicenergyinfrastructureprojectsthatreceiveadesignatedstatusareeligibleforacceleratedpermitting,andintheUnitedStatesnationalsecuritylawsallowthegovernmenttoincreasedomesticmanufacturingcapacityforcriticaltechnologiesandmaterials.BuildingcleanenergymarketsrequiresafocusonbothsupplyanddemandAmbitiousgovernmentpoliciesareneededtoacceleratetheroll-outofcleanenergytechnologiesandbuildthesupplychainstosupportthem.Amixoftechnology-pushpoliciesthatdriveinnovationstomarketandmarket-pullpolicesthatincentivisetheiruseandstimulateeconomiesofscaleisthemostcost-effectiveapproach.Toincreasethesupplyofcleanenergytechnologies,governmentsneedtostepupsupportforRD&D.Policyoptionsincludegrants,contracts-for-difference,feed-intariffs,taxincentives,competitiveauctions,innovationprizes,andbalancesheetsupporttoolssuchasdebtguaranteesandequitytocoverupfrontinvestmentcosts–aswellasregulatoryandothertypesofsupportforprojectsthatwouldotherwisenotbeviable.Acceleratingthecreationofmarketsforcleanenergytechnologiesrequiressimultaneousdemand-sidesupporttostimulateprivatesectorinvestmentandadoption.Actionwithinthenextdecadeoncreatingdemand-sidesupportmechanismsiscrucialtoestablishingdefinedcleanenergymarkets.Examplesofpoliciestopullcleanenergytechnologiestomarketincludetargetsorstandards,subsidies,taxcreditsandotherfinancialincentives.Carbonpricingmechanisms,suchasacarbontaxandemissiontradingschemes,canprovidepolicydirectionandalevelplayingfieldforlow-carbontechnologies.PublicprocurementprogrammeshavealsoproventobeeffectiveinstimulatingdemandforEVsinparticular.IntheEuropeanUnion,Colombia,ChileandIndia,EVprocurementprogrammeshavebeenestablishedorarebeingplanned.Suchprogrammescouldalsobeusedtocreatedemandforlow-emissionshydrogenbymodifyingprocurementcontractstorequireitsuseforpublictransportandmunicipalservices,ortheuseofnearzeroemissions-producedsteelandcementininfrastructureprojects.Certification,standardisationandregulatoryregimesforcleanenergytechnologies,theirconnectinginfrastructureandendproductsarealsoneededtoboostdemand.Itisvitalthatsupportforsupplyanddemandbealignedtoavoidsupplychainimbalancesandinefficiencies.Forexample,globalpolicysupportforlow-emissionshydrogenhastendedtofocusonscalingupsupply,andnotoncreatingnewdemand.30InternationalEnergyAgencySecuringcleanenergytechnologysupplychainsThereissufficientpossibilitytoabsorblow-emissionshydrogenproductionintheneartermbyreplacingfossil-basedproductioninexistingapplications.Butthereisariskthatitdiscouragesnewinvestmentinproduction,reducingopportunitiesforcostreductionsfromscaleeconomiesanddelayingthewideradoptionofhydrogenasacleanenergyvector.LessonscanbelearnedfromsolarPVdeployment.InGermany,JapanandKorea,acombinationofdemandandsupplyincentiveshelpedthembecomethelargestmanufacturersinthesolarPVsupplychainduringthelate1990sandearly2000s.TheearliestmeasuresinthesecountrieswereR&DincentivesforsolarPVinthelate1970sand1980s,aswellasgrants,taxincentives,developmentfundsandloanprogrammes.Intheearly2000s,theyintroducedattractivefeed-intariffstostimulatedemand.Table7Priorityactionsforgovernmentandindustry–Accelerate3.InnovatingcleanenergytechnologyManyofthetechnologiesneededtoreachnetzeroarenotyetcommerciallyavailableAchievingnetzeroby2050requiresamajoraccelerationincleanenergyinnovation,asmanyofthetechnologiesneededarenotyetonthemarket.Almosthalfoftheemissionsreductionsin2050intheNetZeroEmissionsby2050Scenariostemfromtechnologiesthatareonlyatdemonstrationandprototypestagestoday(Figure12).Commercialisingthosetechnologieshingesonfasterinnovation.Theleveloftechnologyreadinesshassignificantimplicationsacrosssupplychains.Forexample,inthecaseoflow-emissionshydrogen,decliningelectrolyserproductioncostsandthedevelopmentofdedicatedinfrastructurewillplayacrucialroleinitswidespreadadoption.Someemergingelectrolysistechnologies,suchassolidoxideelectrolysercellsandanionexchangemembranes,relymuchlessoncriticalminerals.MarketsforbatteriesandsolarPVaremoredevelopedandthetechnologiesalreadycost-competitiveinmanycases,buttherearestillemergingtechnologiesinthesesupplychainsthatcouldgreatlyimprovecostandefficiency–especiallythosethatSecuringcleanenergytechnologysupplychainsInternationalEnergyAgency31involverecyclingandreducedrelianceonexpensiverawmaterials.Forbatteries,emergingsodium-iontechnologiesrelyonabundantandcheapminerals,whilesolid-statebatteriescouldleadtoastepimprovementinperformance.ForsolarPV,organicandnon-siliconthin-filmtechnologiescurrentlyattheprototypestagepromisehigherefficienciesandlowermanufacturingcosts.Figure12TechnologyreadinessofsolarPV,EVbatteriesandhydrogentechnologiesIEA.Allrightsreserved.Note:TRL=technologyreadinesslevel,ameasureofthelevelofmaturityofagiventechnologywithinadefinedscale(seetheIEA'sCleanEnergyTechnologyGuideformoredetails).Steelreferstohydrogen-baseddirectreducedironproduction,truckingreferstohydrogenfuelcelltrucksandshippingreferstointernalcombustionenginesfuelledbyhydrogenorammonia.Innovationiskeytotechnologicaladvancesacrossandalongcleanenergysupplychains.Itisparticularlyimportantinreducingmaterialdependency,i.e.tomaketechnologieslessdependentonindividualmaterialsorthoseexposedtovulnerablesupplychains,lessmaterial-intensiveoreasiertorecycle.Innovationindigitaltechnologiesalsopresentshugeopportunitiesforbuildingmoresecure,resilientandsustainablesupplychains.Theuseofadvanceddigitaltechnologies–suchasblockchain,artificialintelligence,dataanalytics,InternetofThingsandautomation–canhelpcompaniesatdifferentstagesofthesupplychaintoimprovetheirresponsiveness,transparencyandefficiency.Theywillbekeyfornewmarketentrantstobecompetitive.Oneexampleistheuseofdigitaltwinstomodelrealtimedisruptionstoacompany’ssupplychains,whichallowsmoreresponsivemanagementofproblemsthroughintelligentanalytics.Sodium-ionAllsolidstateLithiumNMCoxidePerovskiteOrganicthinfilmCadmiumtelluridethinfilmCrystallinesiliconProtonexchangemembraneAlkalineSolidoxideelectrolysiscellAnionexchangemembraneChemicalloopingCoalgasificationSteamreformingSteelShippingTrucking01234567891011EVbatteriesSolarPVLow-emissionshydrogenproductionHydrogendemandTRLSmallprototypeLargeprototypeDemonstrationEarlyadoption32InternationalEnergyAgencySecuringcleanenergytechnologysupplychainsPublicfundingforinnovationmustbeakeypillarofnationalnetzeroplansPublicfundingofinnovationremainsessentialtomitigatetherisksinherenttodevelopingcleanenergytechnologiesandtoleverageprivateinvestment.In2021,globalpublicRD&DspendingonalltypesofenergyisestimatedtohavereachedaboutUSD38billion,ofwhichUSD23billion,or61%,wasinIEAcountries(Figure12).Althoughglobalspendinginrealtermshasbeenrisinginabsolutetermsinrecentdecades,ithasfallensharplyasashareofgrossdomesticproduct,fromapeakof0.1%in1980tojust0.04%in2021.ThegoodnewsisthattheshareofthisspendinginIEAcountriesgoingtocleanenergyhasbeenrising,with90%goingtothosetechnologiesin2021–one-halftoenergyefficiencyandnuclearenergyalone.Figure13EvolutionoftotalenergyR&DpublicbudgetperyearofIEAcountriesIEA.Allrightsreserved.Source:IEA(2022)EnergyTechnologyRD&DBudgetsdatabase.Giventhescaleandpaceoftherequiredexpansionincleanenergyandthelargecontributionoftechnologiesthatarenotyetcommercial,astepincreaseinpublicfundingofinnovationintheneartermisvital.WeestimatethatatleastUSD90billionofpublicfundingwillneedtobemobilisedby2026tosupportcompletionofaportfolioofdemonstrationprojectsincriticalareastobeontrackfornetzeroby2050.Therearesignsthatthiscouldmaterialise.IntheUnitedStates,the2021BipartisanInfrastructureLawandthe2020EnergyActtogetherprovideforUSD62billionoffundingformajornewcleanenergydemonstrationanddeploymentprogrammes,morethantriplingtotalspendingandsignificantlyexpandingtheRD&Dbudget.Asignificantshareisexpectedtogotodemonstrationprojects.Intotal,weestimatethataroundUSD50billionofpublicfundscouldbeavailableforlarge-scalelow-carbondemonstrationprojectsworldwideovertheperiodto2030undercurrentplans.050001000015000200002500030000millionUSD(2021)UnallocatedOthercross-cuttingtechs/researchOtherpowerandstoragetechnologiesHydrogenandfuelcellsNuclearRenewableenergysourcesEnergyefficiencyFossilfuelsSecuringcleanenergytechnologysupplychainsInternationalEnergyAgency33GovernmentsupportforRD&Dneedstogobeyondfinancingandbetailoredinawaythatmaximisesthecontributionoftheprivatesector.EnergyR&DspendingbylistedcompaniesreachedaroundUSD117billion,5%higherthanpre-pandemiclevelsin2019.Despitelargecorporatespendingonenergyinnovation,around60%ofcorporateinvestmentsinenergyR&Darespentintheautomotiveandoilandgassectors,andUSD10billion(around9%)wasspentonrenewablesin2021.Policysupportthatcanbeparticularlybeneficialforencouraginginnovationincludespublicprocurement,incubationandprizesforentrepreneurs.Forlarge-scaledemonstrationprojects,measuresareneededtoimproveaccesstolow-costfinancing,suchascreditenhancement(provisionsusedbyaborrowertoreducedebtbyimprovingitscreditworthiness),risk-sharingschemesandin-kindadvisorysupport.Table8Priorityactionsforgovernmentandindustry–Innovate4.CollaboratingonsupplychaindevelopmentNetzerorequiresanunprecedentedcollaborativeeffortSecuringthesupplychainsforcleanenergytechnologiesmustbeacollaborativeeffortbetweenthepublicandprivatesectors,andbetweengovernments.Allstakeholdersneedtoworktogethertoidentifyandmapoutpotentialopportunitiesandvulnerabilitiesinthosesupplychains,takingaccountoflocalcircumstancesandthespecificcharacteristicsofeachsectorandtechnology.Addressingthemultiplechallengespresentedbythecleanenergytransitionrequiresafocusontransparentpublicdialogue,developingprogrammestoboostskillsinemergingindustriesandsupportingthegrowthofnewjobopportunitiesinmoresustainableeconomicactivities.Takingaregionalorinternationalapproachcanfacilitatetheidentificationofopportunitiesforcollaborationandtheestablishmentofstrategicpartnerships.34InternationalEnergyAgencySecuringcleanenergytechnologysupplychainsGovernmentsarealreadyestablishingstrategicpartnershipsinthefieldofcleanenergysupplychains.Forexample,theEuropeanUnionrecentlysignedanagreementwithCanadaonadvancingtradeandinvestmentinsecure,sustainableandresilientrawmaterialsvaluechains.ThisformspartoftheEUcriticalrawmaterialsactionplan,whichenvisagestheUnionengaginginstrategicpartnershipswithresource-richthirdcountries,makinguseofexternalpolicyinstrumentsandrespectingitsinternationalobligations.SimilarpartnershipshavebeenstruckbetweentheUnitedStatesandAustralia,andtheUnitedStatesandCanada.InMay2022,theIndo-PacificEconomicFrameworkforProsperitywasagreedbetween13nationsandincludedafocusonsecuringcriticalsupplychains,includingto“ensureaccesstokeyrawandprocessedmaterials,semiconductors,criticalminerals,andcleanenergytechnology”.InternationalstandardscansupportmarketsforcleanenergyandrelatedmaterialsAsforothereconomicactivities,internationalstandardsareanimportantmeansofsupportingthedevelopmentofmarketsforcleantechnologiesandfuels,andassociatedsupplychains,byfacilitatingtradeandtechnologytransfer.Theyareneededtoovercometechnicalbarriersininternationalcommercecausedbydifferencesamongtechnicalregulationsandstandardsdevelopedseparatelybycountries,nationalstandardsbodiesorcompanies,andshouldbealignedwithsustainabilityandclimategoals.ConsiderableprogresshasalreadybeenmadewithestablishedtechnologieslikesolarPVandEVbatteries.Experienceinthosefieldsneedstobeappliedtoemergingtechnologies,notablylow-emissionshydrogen,whileregulatorycooperationframeworks,certificationschemesandstandardswillbeneedtobeharmonisedtoreducebarriersforstakeholders.Internationalagreementonamethodologyforcalculatingthecarbonfootprintofhydrogenproductioniscritical,asitisthebasisfromwhichaglobalcertificatesmarketcoulddevelop.Importingcountries,regionsandcompanieswouldthenbeabletodecidewhatcarbonfootprintthresholdtheydeemacceptableforimportedcleanhydrogen(althoughacommonlyagreedinternationalstandardisvitaltoavoidfutureimpedimentstocross-bordertradeinhydrogen).GovernmentsandindustrycanleveragetheworkoftheInternationalPartnershipforHydrogenandFuelCellsintheEconomy(IPHE),whichhasbeenleadinginternationaleffortsintheseareasformanyyears.Traceabilityencompassingwholesupplychainsisanimportantaspectofinternationalstandards.Itcanhelpmanagesupplychainsandqualitycontrolmoreeffectively,aswellasidentifyandaddressESGconcerns,suchasgreenhousegasemissions,wateruse,wastemanagement,humanrights,fairlabourpractices,SecuringcleanenergytechnologysupplychainsInternationalEnergyAgency35diversity,businessethicsandcommunityrelations.However,mappingandtrackingactivityacrossinterconnectedglobalsupplychainsiscomplexandrequiresacombinationoftoolslikeblockchainandmachinelearning.TodemonstratecompliancewithESGbestpractices,theindustryandintergovernmentalorganisationshavealreadydevelopedmanynewinitiatives,tools,standards,andcertificationsrelevanttocleanenergysupplychains,includingtheGlobalReportingInitiative,theOECD’sDueDiligenceGuidanceforResponsibleSupplyChains,theUNGlobalCompactPrinciples,theInitiativeforResponsibleMiningAssurance,andtheResponsibleMineralsInitiative.Traceabilityiscomplextoimplementandthereisnosilverbullet.Effectiveregulatoryenforcementisessential,aswellasastrong,unifiedpolicyonESGstandards.Degreesoftraceabilityandregulationstillvarymarkedlybetweensupplychains,mineralsandmaterials.Theapplicationoftraceabilitystandardsincleanenergyisprogressing,especiallyintheadvancedeconomies.TraceabilityprotocolshavebeendevelopedforsolarPVandREEsupplychainsintheUnitedStates.Andon23February2022,theEuropeanCommissionpublishedaproposalforadirectiveoncorporatesustainabilityandduediligenceinallvaluechains.ItisalsopreparinganewlegislativeinstrumenttoeffectivelyprohibitthesaleofproductsmadewithforcedlabouronEUmarkets.TheEuropeanUnionalsoissuedon12July2021guidelinesonforcedlabourduediligencetohelpEUcompaniesaddresstheriskofforcedlabourintheiroperationsandsupplychains,inlinewithinternationalstandards.HelpingemergingmarketsanddevelopingeconomiessecuresupplychainsiskeytoanequitabletransitionTheworld’senergyandclimatefutureincreasinglydependsondecisionsmadeinemergingmarketanddevelopingeconomies,socollaborationwithandamongthemisbecomingmoreimportant.Thedecliningcostofcleanenergytechnologiesoffersatremendousopportunityforthesecountriestochartanew,lower-emissionspathwayforgrowthandprosperity.Ifthisopportunityisnottaken,thiswillbecomeamajorfaultlineinglobaleffortstoaddressclimatechangeandreachsustainabledevelopmentgoals.Fornow,investmentincleanenergyintheemergingeconomiesfallsfarshortofwhatisneededtomaketheNetZeroEmissionsby2050Scenarioareality.Emergingmarketsanddevelopingeconomiesaccountfortwo-thirdsoftheworld’spopulationbutonlyone-fifthofglobalinvestmentincleanenergy.Investmentinthesecountriesneedstoincreasenearlyeight-fold,toreacharoundUSD1.7trillionannuallyby2030tobeconsistentwithnetzerogoals.Helpingemergingeconomiestobuildsecure,resilientandsustainablecleanenergysupplychainscouldbringmajorneweconomicopportunitiesforallcountries.36InternationalEnergyAgencySecuringcleanenergytechnologysupplychainsTable9Priorityactionsforgovernmentandindustry–Collaborate5.InvestingincleanenergyAmassivesurgeincleanenergyinvestmentisurgentlyneededby2030Investmentincleanenergyneedstoincreaseenormouslyovertherestofthecurrentdecadefortheworldtogetontrackfornetzeroemissionsbythemiddleofthecentury.TheUSD1.4trillionthatisexpectedtobespentoncleanenergytechnologiesandefficiencyworldwidein2022remainsfarbelowwhatisrequiredintheNetZeroEmissionsby2050Scenario:almostUSD5trillion(inrealterms)in2035,fallingtoUSD4.5trillionin2050.SolarPVinvestmentneedspeakataroundUSD430billionaround2030,whileEV-relatedinvestmentskeeprisingto2050,reachingoverUSD1.1trillion.CapitalspendingonhydrogenpeaksatoverUSD120billionaround2030,fallingbacktoaroundUSD80billionby2050(Figure14).SecuringcleanenergytechnologysupplychainsInternationalEnergyAgency37Figure14GlobalinvestmentinselectedcleanenergytechnologiesintheNetZeroEmissionsby2050ScenarioIEA.Allrightsreserved.Note:APAC=Asia-Pacific(includingChinaandIndia).Totalprivateandpublicinvestmentspendingincleanenergytechnologies,whichincludeEVs,low-emissionsfuels(modernliquidandgaseousbioenergy,low-emissionshydrogenandhydrogen-basedfuels),CCUS,gridsandbatterystorage,energyefficiency,nuclear,renewablepower,andrenewablesforendusesandelectrificationinthebuildings,transportandindustrysectors.Inresponsetorisinginflation,centralbanksaroundtheworldhavestartedtoraiseinterestrates,increasingthecostofdebt.Forenergy-relatedsectors,thishasleddebtcoststorisebyover30%frompre-pandemiclevelsandbyanaverageofnearly50%inthelastyearaloneduetolowratesduringthepandemic.Itislikelythatthiswilldelaydecisionstoinvestinenergyefficiencymeasures,reducetheamountofRD&D,especiallyamongsmallfirms,andseeawithdrawalofcapitalfromventurecapitalmarkets.Inthiscontext,publicfundingsupportforenergyinnovationwillplayavitalroleinmitigatingexposuretomorecostlysourcesofcapital.Astheenergysystembecomesmorecapital-intensive,keepingfinancingcostslowwillbecriticaltomakingthemaffordableandacceleratingenergytransitions.Upfrontfinancingrequirementsforcleanenergyprojectsaregenerallybiggerthanfortraditionalenergyprojectsperunitofenergyproducedorused,thoughtheyareoffsetovertimebyloweroperatingandfuelexpenditures.Thereisnoshortageofglobalcapital,butthereisadearthofopportunitiesforcleanenergyinvestmentaroundtheworldthatofferadequatereturnstobalancetherisks–inlargepartbecausetheenvironmentalvalueofcleanenergytechnologiesisnotadequatelyreflectedinmarketpricestoday.Atthebeginningof2020,globalfinancialwealthheldbypotentialinvestorsstoodatoverUSD200trillion.Thereis,nonetheless,agrowingappetiteamonginvestorstofundcleanenergyprojects,withglobalissuanceofsustainabledebtsoaringtorecordlevelsin2021,thoughmostofthisisconcentratedinadvancedeconomies.0%6%12%18%24%30%04008001200160020212022202520302035204020452050AnnualinvestmentUSDbillion(2021)ElectricvehiclesRestoftheworldAsiaPacificShareoftotal0%6%12%18%24%30%030060090020212022202520302035204020452050SolarPV0%6%12%18%24%30%05010015020212022202520302035204020452050Hydrogen38InternationalEnergyAgencySecuringcleanenergytechnologysupplychainsReducinginvestmentriskswillbeessentialtomobiliseprivatecapitalMostoftheincreaseinfundingforcleanenergyprojectswillhavetocomefromtheprivatesector.IntheNetZeroEmissionsby2050Scenario,around70%ofcleanenergyinvestmentoverthenextdecadeiscarriedoutbyprivatedevelopers,consumersandfinanciers.Thisislikelytobefinancedmainlybychannellingretainedearningsfromthebalancesheetsoflargeenergycompanies,aswellasexternalsources–notablybanksandtheenormouspoolsofcapitalinfinancialmarkets.Thereis,nonetheless,animportantroleforgovernments,notjustinfundingtheother30%ofinvestment,butalsoincreatinganenablingenvironmentforprivateinvestmentandfacilitatingprivateaccesstopublicinfrastructureprojects.Publicactors,includingstate-ownedenterprises(SOEs),willoftenhaveakeyparttoplayinfundingnetworkinfrastructureandcleanenergyinvestmentsinemissions-intensivesectorslikeheavyindustry,aswellasacceleratinginnovationintechnologiesthatareinthedemonstrationorprototypephasetoday.Publicfinanceinstitutionswillalsoneedtocatalyseprivatecapital.Clearpolicysignalsfromgovernmentwouldreduceuncertaintiesassociatedwithcleanenergyandavoidpotentialcostsfrominvestinginassetsthatriskbeingunderutilisedorstranded.Mismatchesinthespeedofenergytransitionscancreaterisks;forexample,ifalackofgridinvestmentleadstobottlenecksforwindandsolarPV,orifoilandgassuppliersswitchfromhydrocarbonstocleanenergyfasterthantheirconsumers.Asfinancialregulatorsworktoaligncapitalflowswithclimategoals,slowerprogressintherealeconomycanleadinvestorstoovervaluesomesectorswhilepenalisingothers.Toattractinvestment,policymakerscancreatemarketcertaintyandreducepolicyrisksthroughwell-designedlegislativeandregulatoryframeworks.Policyriskcanbereducedthroughacombinationofdedicatedlong-termandshort-termnationaltargetsforspecifictechnologiesandroadmapswithinanoverallnetzeroplan.Strategicinvestmentcantransformtoday’sinfrastructureforanetzeroenergysystemInvestmentininfrastructuretoconnectlow-emissionsenergysourcestoend-userswillbecentraltoenergytransitions.Cleantechnologieshavedifferentinfrastructurerequirementstoexistingenergysystems,involvingconnectingthegridtolocalsourcesofrenewablepowergenerationandbuildingsmartgrids,publicelectricvehiclecharginginfrastructureandhydrogentransportandstoragefacilities.IntheNetZeroEmissionsby2050Scenario,annualinvestmentinexpandingandmodernisingelectricitynetworksgrowsfromaroundUSD300billiononaverageinrecentyearstoaroundUSD860billionby2030.InvestmentsinCO2pipelinesandhydrogen-enablinginfrastructureincreasefromaroundUSD1billionayeartodaytoSecuringcleanenergytechnologysupplychainsInternationalEnergyAgency39USD40billionin2030.By2030,thetotallengthofhydrogenpipelinesgloballyquadruplestoover20000km,whileEVcharginginfrastructureexpandsmorethan12-foldwith22millionchargingpointsaddedeachyear–1.3timesmorethanhavebeeninstalledtodate.Deploymentofthisinfrastructureneedstogohand-in-handwithcleantechnologyroll-outstoavoidbottlenecks.Repurposingexistinginfrastructurewouldhelpkeepcostsdownandspeeduptherolloutofcleantechnologies,especiallyhydrogenandCCUS.Repurposingexistinggaspipelinescouldsignificantlyreducethecostofestablishingnationalandregionalhydrogentransportationandstoragenetworks.Thefirstconversionofanaturalgaspipelineforfullhydrogenservice–a12kmlinewithcapacityof4Mt/yearownedbyGasunieintheNetherlands–begancommercialserviceinNovember2018.Theconversionworktooklessthansevenmonths.The2021EuropeanHydrogenBackbone(EHB)studysuggestsconversionrepresentsbetween21%and33%ofthecostofbuildinganewdedicatedhydrogenpipeline.ThereisalsoconsiderablepotentialtorepurposeexistingoilandgaspipelinesforthetransportofcapturedCO₂inmanypartsoftheworld.ThiscouldsignificantlyreducethecostsofdevelopingCO₂infrastructure:theinvestmentneededtoconvertanexistingpipelineisestimatedtobebetweenjust1%and10%ofthecostofbuildinganewone.Twosignificantprojectsarecurrentlyplanned:theAcornCCSprojectintheUnitedKingdom,whichinvolvesrepurposinganonshoregaspipelinetostorecapturedCO2inadepletedgasfieldintheNorthSea,andtheCarbonTransportandStorageCompanyprojectinQueensland'sSuratBasin.RepurposingforhydrogenorCO2couldhelptodelaythesubstantialcostsofdecommissioningpipelines.TheworldneedstoinvestintheenergyskillsofthefutureAmajorbenefitofthecleanenergytransitiontonetzeroemissionsisanetincreaseinenergysectorjobs,aswellasmoreskilledwork.IntheNetZeroEmissionsby2050Scenario,anestimated14millionnewjobsaregeneratedincleanenergysupplygloballyby2030–offsettingthelossof5millionpositionsinfossilfuelsupplyandresultinginanetgainof9millionjobsinthispathway.Inaddition,cleanenergyindustries–suchasthoserelatedtomoreefficientappliances,EVmanufacturing,andbuildingretrofitsandenergy-efficientconstruction–employsafurther16millionnewworkers,bringingtotalcreationincleanenergytoaround30millionjobs(Figure15).Nearlytwo‐thirdsofthenewworkersinthecleanenergysectorsby2030arehighlyskilled,themajorityrequiringsubstantialtraining.Forexample,solarPVmanufacturingrequiresadiversesetofworkers,includingproductionengineers,materialshandlersandassemblers.InestablishedmarketssuchasChinaandcountriesinSoutheastAsia,between1000and1100jobsare40InternationalEnergyAgencySecuringcleanenergytechnologysupplychainsneededperGWofcapacitymanufactured–coveringpolysilicon,ingots,wafers,cellsandmodules–inlargefactories.Labourrequirementscanbenearly60%higherinsmallerplantsincountrieswithcheaperlabour.Figure15Employmentincleanenergybyregion(2019)andadditionalworkersbytechnology,occupation,andskilllevelin2030undertheNetZeroEmissionsby2050ScenarioIEA.Allrightsreserved.Sources:IEA(2022)WorldEnergyEmployment;IEA(2021)NetZeroby2050-ARoadmapfortheGlobalEnergySector.Itisessentialthatgovernments,industryandeducational/traininginstitutionsputinplacetrainingandeducationalprogrammestoensurethatsufficientqualifiedworkersareavailabletofillthenewposts.Thecleanenergysectoralreadyfacesdifficultieshiringqualifiedpersonneltokeeppacewithdemandandlabourshortagesareholdingbackinvestmentinsomecountriesandsectors–forexampleinbatterymanufacturinginKoreaandinbuildingsolarPVplantsinAustralia.Risingcompetitionbetweencountriesandcompaniesforscarcequalifiedpersonnelisleadingtoa“braindrain”insomecountrieswhereimmigrationlawspermit.Mappingoutfuturejobandskillneedsincleanenergysupplychainscanhelpavoidtheseproblems.Whilesomeskillsgapscanbefilledthroughshorttrainingprogrammesorbytransferringskillsfromotherindustries,manyrequireeducationand/oron-the-jobexperience,whichcanoftentakealongtime.Skillsneedsandlabourinputswillchangeovertimeoncetechnologiesmature,thescaleandcomplexityofoperationsgrows,learningtakeseffectandautomationprogresses,socontinuousretrainingorupskillingmaybenecessary.Atthesametime,newjobswillnotalwaysbeinthesameplacesorsectorswhereemploymentislost,socaremustbetakentoensureajustenergytransitionforall–akeyrecommendationoftheGlobalCommissiononPeople-CentredCleanEnergyTransitionsthattheIEAconvenedin2021.Bytechnology0102030GridsPowergenerationEvsBioenergyEfficiencyEnd-userenewablesInnovativetechnologiesJobscreatedbytechnlogy,occupationandskilllevelintheNZE,2030(millions)0%20%40%60%80%100%EVsSolarPVTotalChinaIndiaRestofAPACNAMCSAMEuropeAfricaRestofWorldWorkersincleanenergybyregion(2019)(%)Byoccupation0102030ProfessionalConstructionManufacturingOtherByskilllevel051015202530HighskillsMediumskillsLowskillsSecuringcleanenergytechnologysupplychainsInternationalEnergyAgency41Table10Priorityactionsforgovernmentandindustry–InvestThispublicationreflectstheviewsoftheIEASecretariatbutdoesnotnecessarilyreflectthoseofindividualIEAmembercountries.TheIEAmakesnorepresentationorwarranty,expressorimplied,inrespectofthepublication’scontents(includingitscompletenessoraccuracy)andshallnotberesponsibleforanyuseof,orrelianceon,thepublication.Unlessotherwiseindicated,allmaterialpresentedinfiguresandtablesisderivedfromIEAdataandanalysis.Thispublicationandanymapincludedhereinarewithoutprejudicetothestatusoforsovereigntyoveranyterritory,tothedelimitationofinternationalfrontiersandboundariesandtothenameofanyterritory,cityorarea.IEA.Allrightsreserved.IEAPublicationsInternationalEnergyAgencyWebsite:www.iea.orgContactinformation:www.iea.org/about/contactPrintedinAustralia-July2022Coverdesign:IEAPhotocredits:©GettyImage

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

碳中和
已认证
内容提供者

碳中和

确认删除?
回到顶部
微信客服
  • 管理员微信
QQ客服
  • QQ客服点击这里给我发消息
客服邮箱