电动汽车部署及对电网的影响(英文版)---欧盟VIP专享VIP免费

E-mobility deployment
and impact on grids
Impact of EV and charging
infrastructure on European T&D grids
Innovation needs
ETIP SNET
European Technology and Innovation Platform
Smart Networks for Energy Transition
E-mobility deployment and impact on grids
2
Authors:
This report is the result of collaborative work in form of a Task force within ETIP SNET WG1, led by Sanitago Gallego Amores.
Editors: Santiago Gallego Amores.
Contributing authors: Guillermo Amann, Víctor Bermúdez, Elena Boscov Kovacs, Santiago Gallego, Spyros Giannelos, Antonio Iliceto, Albana
Ilo, Julián Romero Chavarro, Natalie Samovich, Laurent Schmitt, Nuno Souza e Silva, Goran Strbac, Zelijko Tomsic, Emre Zengin.
Acknowledgements
The authors would like to thank Daniela Gaddari for WG1 support, Maria Laura Trifiletti for coordination support with WGs, and Edoardo
Genova for the editing support.
EUROPEAN COMMISSION
Directorate-General for Energy
Directorate B Just Transition, Consumers, Energy Efficiency and
Innovation Unit B5 Innovation, Research, Digitalisation, Competitiveness
Contact: Mugurel-George Păunescu
E-mail: mugurel-george.paunescu@ec.europa.eu
European Commission
B-1049 Brussels
E-mobility deployment and impact on grids
3
E-mobility deployment and
impact on grids
Impact of EV and charging
infrastructure on European T&D
grids Innovation needs
ETIP SNET
Directorate-General for Energy
2022
E-mobilitydeploymentandimpactongridsImpactofEVandcharginginfrastructureonEuropeanT&Dgrids–InnovationneedsETIPSNETEuropeanTechnologyandInnovationPlatformSmartNetworksforEnergyTransitionE-mobilitydeploymentandimpactongrids2Authors:ThisreportistheresultofcollaborativeworkinformofaTaskforcewithinETIPSNETWG1,ledbySanitagoGallegoAmores.Editors:SantiagoGallegoAmores.Contributingauthors:GuillermoAmann,VíctorBermúdez,ElenaBoscovKovacs,SantiagoGallego,SpyrosGiannelos,AntonioIliceto,AlbanaIlo,JuliánRomeroChavarro,NatalieSamovich,LaurentSchmitt,NunoSouzaeSilva,GoranStrbac,ZelijkoTomsic,EmreZengin.AcknowledgementsTheauthorswouldliketothankDanielaGaddariforWG1support,MariaLauraTrifilettiforcoordinationsupportwithWGs,andEdoardoGenovafortheeditingsupport.EUROPEANCOMMISSIONDirectorate-GeneralforEnergyDirectorateB–JustTransition,Consumers,EnergyEfficiencyandInnovationUnitB5–Innovation,Research,Digitalisation,CompetitivenessContact:Mugurel-GeorgePăunescuE-mail:mugurel-george.paunescu@ec.europa.euEuropeanCommissionB-1049BrusselsE-mobilitydeploymentandimpactongrids3E-mobilitydeploymentandimpactongridsImpactofEVandcharginginfrastructureonEuropeanT&Dgrids–InnovationneedsETIPSNETDirectorate-GeneralforEnergy2022E-mobilitydeploymentandimpactongrids4LEGALNOTICEThisdocumenthasbeenpreparedfortheEuropeanCommissionhoweveritreflectstheviewsonlyoftheauthors,andtheEuropeanCommissionisnotliableforanyconsequencestemmingfromthereuseofthispublication.MoreinformationontheEuropeanUnionisavailableontheInternet(http://www.europa.eu).PrintISBN978-92-76-53456-3doi:10.2833/81672MJ-09-22-246-EN-CPDFISBN978-92-76-53455-6doi:10.2833/937755MJ-09-22-246-EN-NManuscriptcompletedinMarch2022Luxembourg:PublicationsOfficeoftheEuropeanUnion,2022©EuropeanUnion,2022ThereusepolicyofEuropeanCommissiondocumentsisimplementedbytheCommissionDecision2011/833/EUof12December2011onthereuseofCommissiondocuments(OJL330,14.12.2011,p.39).Exceptotherwisenoted,thereuseofthisdocumentisauthorisedunderaCreativeCommonsAttributionInternational(CC-BY4.0)licence(https://creativecommons.org/licenses/by/4.0/).Thismeansthatreuseisallowedprovidedappropriatecreditisgivenandanychangesareindicated.ForanyuseorreproductionofelementsthatarenotownedbytheEuropeanUnion,permissionmayneedtobesoughtdirectlyfromtherespectiverightholders.Directorate-GeneralforEnergy2022E-mobilitydeploymentandimpactongrids5CONTENTSEXECUTIVESUMMARY...............................................................................................................................................................9BASICDEFINITIONSANDSHORTGLOSSARY.......................................................................................................................101.SCOPEANDTARGET...............................................................................................................................................................111.1Inandoutofscope............................................................................................................................................................................................................111.2PreviousETIPSNETpapers.............................................................................................................................................................................................121.3Usersatthecentre...............................................................................................................................................................................................................121.4Targetsofthepaper...........................................................................................................................................................................................................122.E-MOBILITYANDPOWERGRIDS:CHALLENGESANDOPPORTUNITIES..................................................................142.1Awideecosystem,manyunrelateddecisionmakers....................................................................................................................................142.2Europeanregulatoryframeworkone-mobility..................................................................................................................................................162.3Electricvehicles.StateoftheArt................................................................................................................................................................................172.4Chargingdevicesandinfrastructures.StateoftheArt................................................................................................................................192.4.1Charginginfrastructures.....................................................................................................................................................................................192.4.2Detailedoverviewofthecurrentstateoftheart,standardsandtrends................................................................................202.4.3ChargingInfrastructurediffusion...................................................................................................................................................................212.4.4Chargingusecases...............................................................................................................................................................................................212.4.5Overviewofcommunicationstandardsandtrends................................................................................................................................222.52030changingscenario...................................................................................................................................................................................................232.6E-mobilitydeploymentthroughaholisticapproach.......................................................................................................................................232.6.1LINKholisticsolution...............................................................................................................................................................................................242.6.2E-mobilityandsectorcoupling...........................................................................................................................................................................303.TSOPERSPECTIVE....................................................................................................................................................................333.1Impactonenergyandcapacityadequacy............................................................................................................................................................333.2Gridimpactusecases:privateandpublicchargingsolutions..................................................................................................................333.3EVasanopportunitytothesystem..........................................................................................................................................................................353.3.1.Managingandmonitoringthechargingprocess......................................................................................................................................353.3.2.MainopportunitiesprovidedbyEVchargingmanagement...............................................................................................................363.3.2.Stackingtheopportunities...................................................................................................................................................................................403.4Demandsideflexibilityfromelectromobility......................................................................................................................................................413.5Differentperformancesandtheirlimitations:Vehicle-to-Grid................................................................................................................413.6Cross-borderimpactoftransportelectrification..............................................................................................................................................424.DSOPERSPECTIVE...................................................................................................................................................................434.1Impactondistributiongrids:visibility,monitorizationandforecasting..............................................................................................434.2Networkplanningandcapacityreinforcement..................................................................................................................................................43E-mobilitydeploymentandimpactongrids64.3Demandsideflexibilityfromelectromobility......................................................................................................................................................484.4Managingtheintegrationofelectricvehiclesinthedistributiongrid.................................................................................................494.5Deploymentofchargingpoints....................................................................................................................................................................................505.USERPERSPECTIVE.................................................................................................................................................................525.1Usertypologiesandtheirbehaviours.......................................................................................................................................................................525.2Userneedsandtheirsatisfaction...............................................................................................................................................................................525.3Advancedactivecustomersrole..................................................................................................................................................................................545.4Chargingoperators:profilesandbusinessmodel............................................................................................................................................555.5Newdigitalservices.............................................................................................................................................................................................................566.ENABLERS...................................................................................................................................................................................586.1Technologicaladvancements.......................................................................................................................................................................................586.2Interoperabilityandstandards.....................................................................................................................................................................................596.3Regulatoryframeworkandcross-sectorcooperation....................................................................................................................................597.R&DANDINNOVATIONNEEDS...........................................................................................................................................617.1WheretoconcentrateR&Iefforts..............................................................................................................................................................................617.2Wheretoconcentrateincentivesfordeployment............................................................................................................................................638.KEYFINDINGSANDMESSAGES..........................................................................................................................................658.1Keyfindings..............................................................................................................................................................................................................................658.2Keymessages.........................................................................................................................................................................................................................65E-mobilitydeploymentandimpactongrids7INDEXOFFIGURESFigure1User,bothasEVdriverandaselectricityconsumer,atthecentre..........................................................................................12Figure2Dataandenergyinteractionsamongelectromobilityecosystemactors.............................................................................15Figure3Economictransactionsforenergyandflexibilityservicesamongelectromobilityecosystemactors...............15Figure4MaindifferencesbetweenEVsandICEvehicles(Source:ENTSO-E).......................................................................................18Figure5Definitionsanddifferencesamongelectricvehicles(Source:ENTSO-E)..............................................................................19Figure6EVchargingtechnologies(Source:RSE).....................................................................................................................................................20Figure7FocusBox#2:Maindifferencesbetweenrefuellingandelectriccharging(Source:ENTSO-E)..............................20Figure8Europeaninstalledchargingstationsandvehicle/chargingpointsrationintheperiod2008–2020(Source:EAFO)....................................................................................................................................................................................................................................................21Figure9EVchargingusecases,structuredaccordingtoaccess,parkingcharacteristicsandchargingtime(Source:ENTSO-E)............................................................................................................................................................................................................................................22Figure10Privatechargerdiffusion,energydemandandpowercapacityin2019and2030bySTEPSandSustainableDevelopmentScenario(SDS)(Source:IEA)......................................................................................................................................23Figure11Publicchargerdiffusion,energydemandandpowercapacityin2019and2030bySTEPSandSDS(Source:IEA).....................................................................................................................................................................................................................................23Figure12OpenactionpathoftheLocalControlofswitchedcapacitorbanks....................................................................................24Figure13ClosedactionpathoftheLocalControlofswitchedcapacitorbanks.................................................................................25Figure14OverviewofthecontrolsetusedinLINK-Solution..........................................................................................................................25Figure15Overviewoftheholisticmodelshighlightinge-mobility:(a)ZoominCP;(b)Technicalmodelthe“Energysupplychainnet”;(c)Marketmodel..................................................................................................................................................................................27Figure16HolisticarchitecturalleveloftheLINK-basedarchitecture........................................................................................................27Figure17OverviewoftheGrid-Link:(a)Generaldepiction;(b)Link-Grid................................................................................................28Figure18ThecontrolschemessetonatypicalLink-Grid:(a)Herz/Wattsecondarycontrol;(b)Volt/varsecondarycontrol..................................................................................................................................................................................................................................................28Figure19SchematicpresentationoftheresilientHzWSCchain:(a)Linkstructure;(b)Hertz/Wattcontrolloops;(c)Activepowerprofile....................................................................................................................................................................................................................29Figure20E-mobilityandCross-VectorandEnd-UseSectorCouplingembeddedintheLINK-Solution...............................31Figure21Technical/functionalarchitectureofaSmartCitydistrict...........................................................................................................31Figure22Informationofemergency-drivenDRprocess:CongestiononHVGe.g.,lineoverload.............................................32Figure23FocusBox#3:EVsasaflexibleresource(Source:ENTSO-E)....................................................................................................35E-mobilitydeploymentandimpactongrids8Figure24Opportunitiesforthewholesystemandactors................................................................................................................................36Figure25FocusBox#4:TheeffectofsmartchargingandV2GonEVloadcurve...........................................................................37Figure26Chargingpointwithfrequencysensitivefunctionalitypossiblescenarios........................................................................38Figure27AveragetotalelectricityloadinGermanywithuncoordinated(up)andsmartcharging(down)(Source:EliaGroup).........................................................................................................................................................................................................................................41Figure28RelativenumberofEVs(Source:i-DE).....................................................................................................................................................45Figure29TheaverageEVchargingprofile(Source:i-DE).................................................................................................................................46Figure30Themodelperformshourlysimulationsofdifferentscenarios(Source:i-DE)..............................................................46Figure31FromtheEurelectricpositionpaper“Debunkingthemythofthegridasabarriertoe-mobility"....................47Figure32StagesoftheDistributionPlanningProcess(Source:EnelGlobalInfrastructureandNetworks)......................48Figure33EstimatedEVpeakdemandvs.overallcountrypeakdemandin2030(%),EDSO2018.......................................49INDEXOFTABLESTable1SmartChargingMatrix............................................................................................................................................................................................18Table2EVelectricityconsumptioninselectedcountriesandregions(Source:IEA).........................................................................33Table3Usecasesofchargingstrategieswithdifferentimpactsonthepowergrid.......................................................................34Table4Energycommunityactivitiesreferredtobytheguidelines.............................................................................................................55Table5Stakeholdersandactions(X=relevant;XX=veryrelevant;XXX=extremelyrelevant).............................................60Table6DifferentsupportmeasurestypesforEVs................................................................................................................................................61Table7DifferentsupportmeasurestypesforEVs................................................................................................................................................63E-mobilitydeploymentandimpactongrids9EXECUTIVESUMMARYThenumberofelectriccars,vans,trucksandbusesontheworld'sroadsisrapidlyincreasing,withalargervarietyofelectricvehicle(EV)modelscommerciallyavailable.Nevertheless,typicalusersstillhaveconcernswhencomparingthemtointernalcombustionengine(ICE)vehicles,suchasshort-rangeautonomyandhigherprices,whichareexpectedtobesolvedshortly.Thedevelopmentofasuitablecharginginfrastructureansweringtheneedsofdifferentstakeholdersintheelectromobilityvaluechainandtheadoptionofefficientchargingprocesses,especiallysmartcharging,currentlyrepresentthemajorgaptobecoveredbymostoftheactorsinvolvedinthiscomplexecosystem.TheEVchargingprocessrepresentsthetangibleinterfacebetweentransportandenergysectorsandthecrucialelementforguaranteeingtheirsuccessfuldevelopmentinthefutureenergysystemsprovidinganewflexibilityresourceforsystemoperators(SOs).Accordingtopreviouslyanalysedcharginguse-cases,leavingthechargingprocessuncontrolledmightresultinsignificantchallengesforthepowersystem,suchaspeakpowerdemandduetocumulativeeffectsinspecificperiods.Incontrast,managingthechargingprocessintermsoftimeschedulingandpowerprofile(e.g.withefficienttime-economicincentives)willnotonlylimitthepotentialchallengesbutalsoopennewopportunities.Thiscanbeachievedbytimeschedulingandpowerprofilemanagement,orthroughmarket-basedmechanisms(e.g.flexibilitymarkets).SeveralopportunitiesexisttoprofitablyexploitEVcharging,eachhavingdifferentaimsandbeneficiaries,andstackingthemispossibletomaximisethebenefits.SmartEVchargingcansupporttheintegrationofalargershareofrenewableenergysource(RES)generation,byreshapingthepowerdemandcurve,supportinggenerationfleetadequacy,andreducingsystemcostsandCO2emissions.Inaddition,SOswillenableimprovedsystemmanagement,bothintermsofancillaryservicesandgridcongestions,usingtheflexibilitythatthechargingprocessofEVscanprovide.EVuserswillalsobenefitfromlowerchargingenergycosts,morereliableservicesandbycontributingtoamoresustainabletransport.TherelevantaspectsunderpinningtheserequiredactionspresentaclearregulatoryframeworkthatsupportsafulldeploymentofEVcharging,includingthenecessaryreinforcementsinnetworks,minimumtechnicalrequirementsandstandardisation,dynamicpricingdefinitionandanovelmarketstructureandrules.Additionally,aholisticviewandarchitecturewillberequiredtoimproveandenhancecooperationamongthemanydifferentstakeholdersfromtraditionallyseparatedsectors:vehicles,batteries,electronicandautomationindustries,informationandcommunicationstechnology(ICT),dataplatformsandmobilityserviceproviders,transportandurbanplanningauthorities,electricitymarketaggregatorsandoperators,consumersandprosumers,andpowergridoperators.Inthismultipleandcomplexsystemintegrationeffort,gridoperators,actinginanunbiasedandnon-discriminatorymannerbothasoperatorsoftheentirepowersystem’sgrid,arecalledtoplayakeyroleinsupportingtheoptimalintegrationbetweenthetransportandtheenergysectors.DespitethecurrentleveloftechnologyreadinessforEVadoption,demonstrationactivitiesandpilotprojectswillbecrucialintestingproposedsolutionsandidentifyingopentechnicalandregulatoryissues.Atthesametime,studiesshouldbeperformedtoassessthemostefficientsolutionsandbusinessmodels.AstrongcooperationamongalltheactorsinvolvedshouldalsobepursuedtodefinenewefficientmarketfeaturesandproactivelyinvolveEVownersinparticipatinginsmartchargingsolutions.Toavoidtheriskofmissingthemultipleopportunitiesidentifiedanddescribedinthispaperthroughtheimplementationofthedifferentsolutions,suchassmart-chargingandvehicle-to-grid(V2G)solutions,ETIPSNETrecommendstakingintoaccountthefollowingideas:•Promotecoordinatedplanningforcharging.AlltherelevantactorsshouldbeincludedintheplanninganddevelopmentprocessforthedeploymentofEVcharginginfrastructure,especiallysystemoperatorspreparingthenetworksaheadofneed.•EnableanewecosystemfocusedonconsumerneedsbyfurtherenhancingtheparticipationofallagentsandfacilitatingcompetitionandmaximisingbenefitsbyunlockingthepotentialofEVcharging.Alsoimprovingcooperationthroughthedefinedrolesanddevelopingofthepropermodellingtools.•Managethechargingprocessbypromotinganadditionalandvaluableflexibilityresourcenecessaryforthesecureandefficientgridoperation,facilitatingasmartchargingapproach,thussmoothingpeaksintheloadcurve.•Promoteanewmarketstructure,rulesandregulatoryframeworkforpowergridsandforthewholeenergyecosystemtoimplementgridtariffsandpowerpriceschemes,launchingambitiousdeploymentsforEVcharging.•Deployelectromobilityenablerswithsmartmetering,efficientcommunicationcapabilitiesandtheadoptionofcommonstandardstoguaranteetheinteroperabilityofchargingnetworksanddata,aswellaseffectivedatamanagementandthesettingupofavaluepropositionfortheusers.•Thealignmentofthechargingprotocolsandstandardsimplementedforthecharginginfrastructureandthebatterymanagementsystemmustmakepossibletheparticipationofthedifferentagentsintheelectricitymarkets.Powergridshavespecificrequirementsintermsofmonitoring,dataexchangeandtimeresponse,andforthisreason,standardchargingprocesseshavestilltobecorrectlyfulfilled.•PromoteaholisticviewandarchitectureforaneffectiveintegrationofEVcharginginfrastructureintothepowergrid,enablingflexibleoperationandcoordinatedplanningofchargingstations.Today,theelectromobilityenvironmentisextremelydynamic,andEVdiffusioncouldreceiveasuddenboostviatheGreenDealandRecoveryPlan;theactionsstemmingfromthekeyfindingsofthetechnicalandunbiasedanalysisdescribedinthispapershouldthereforebepursuedwithnodelay,transformingachallengeforthesystemintoavaluableresourceforitsoptimalmanagement.Thepositiveeffectswillberelevantandsharedamongdifferentstakeholders.Firstandforemost,allEuropeancitizenswillbenefitfromcleanertransportandenergysystems,whoarethefinalusersofbothenergyandmobilityservices.ThroughthisPositionpaper,ETIPSNETintendstocontributetothedebateontechnicalandconnectivitysolutions,aswellasonEVchargingsolutionsandregulationstobeadoptedthroughtheconstructivecooperationbetweenthepowersystem,transportsector,urbanplanning,vehicleindustry,relatedstakeholdersanddecisionmakers.Thetimeforactionisnow,anticipatingamassiveEVdeploymentandavoidingtheneedofthefutureretrofittingofnon-efficientmodels.E-mobilitydeploymentandimpactongrids10BASICDEFINITIONSANDSHORTGLOSSARYBalanceServiceProviders(BSPs):Amarketparticipantprovidingeitherorbothbalancingenergyandbalancingcapacitytotransmissionsystemoperators.BatteryElectricVehicle(BEV):Avehiclepoweredsolelybyanelectricmotorandaplug-inbattery.ChargingPointOperator(CPO):Infrastructureoperatorwhoprovidesasetofgoodsandservices,suchasremotereservation,provisionofinformationonwhetherterminalsareoccupied,theirlocation,thetypeofsocket,parkingand,lastly,therechargingserviceperse.Chargingsolution:Itconsistsofachargerdevice,chargerstation(ifpresent),relatedinfrastructure,powerconnectionandsupplyscheme,chargingoperationandcontrol,setofservicesprovidedtothecustomer,businessmodelandappliedregulation.DistributedEnergyResource(DER):Itreferstosmall,geographicallydispersedgenerationresources,installedandoperatedonthedistributionsystematvoltagelevelsbelowthetypicalbulkpowersystem.DistributionSystemOperator(DSO):Anaturalorlegalpersonwhoisresponsibleforoperating,ensuringthemaintenanceofand,ifnecessary,developingthedistributionsysteminagivenareaand,whereapplicable,itsinterconnectionswithothersystems,andforensuringthelong-termabilityofthesystemtomeetreasonabledemandsforthedistributionofelectricity.Dynamiccharging:EVchargingtakingplacewhentheEVismoving;incontrasttostaticcharging,whichoccurswhentheEVisparked.ElectricVehicles(EVs):Forthispaper,roadvehicleswithanelectricengineandbatterywhichneedtochargeelectricityfromapowergrid(BEVsandPHEVs).Heavy-dutyvehicles(HDVs):Trucks,buses,andcoaches.InformationandCommunicationsTechnologies(ICT):Diversesetoftechnologicaltoolsandresourcesusedtotransmit,store,create,shareorexchangeinformation.InternalCombustionEngine(ICE):Anenginethatcreatesitsenergybyburningfuelinsideitself.LightCommercialVehicles(LCV):Passengercarsandvans.MobilityasaService(MaaS):Itintegratesvariousformsoftransportservicesintoasinglemobilityserviceaccessibleondemand.NationalAccessPoints(NAPs):AdigitalinterfaceinstalledbyaEUMemberStatetomaketrafficandmobilitydataaccessibleforawiderangeofdatausers.OriginalEquipmentManufacturer(OEM):Acompanywhosegoodsareusedascomponentsintheproductsofanothercompany,whichthensellsthefinisheditemtousers.OpenChargePointProtocol(OCPP):Anopen-sourcecommunicationstandardforEVchargingstations.PassengerCar(PC):Apassengercarisaroadmotorvehicle,otherthanamopedoramotorcycle,intendedforthecarriageofpassengersanddesignedtoseatnomorethanninepersons(includingthedriver)Plug-inhybridelectricvehicle(PHEV):avehiclepoweredbyacombinationofanelectricmotorandaplug-inbatteryontheonehandandaninternalcombustionengineontheother,allowingthesetoworkeithertogetherorseparately.RenewableEnergySource(RES):Energyfromrenewablenon-fossilsources,namelywind,solar(solarthermalandsolarphotovoltaic)andgeothermalenergy,ambientenergy,tide,waveamongothernaturalsources.SmartCharging:Anychargingwhichisnotplug-n-play,i.e.supervisedbyanexternalcontrolsystem.SystemOperator:EitheraDistributionSystemOperatororaTransmissionSystemOperator.TransmissionSystemOperator(TSO):Anaturalorlegalpersonwhoisresponsibleforoperating,ensuringthemaintenanceofand,ifnecessary,developingthetransmissionsysteminagivenareaand,whereapplicable,itsinterconnectionswithothersystems,andforensuringthelong-termabilityofthesystemtomeetreasonabledemandsforthetransmissionofelectricity.VehicletoGrid(V2G):Smartchargingwithbidirectionalenergyflowcapability.E-mobilitydeploymentandimpactongrids111.SCOPEANDTARGETTheenergyandtransportsectorwillfaceimportantchallengesinthenextdecade.Decarbonisationandpollutionreductionarenolongeroptional,andnewtechnologiesandsolutionsneedtobedeployedtoreachtheambitioustargetssetbytheEuropeanUnion(EU).Electricmobilityrepresentsacrucialopportunityforachievingtheenvironmentalgoalswithamoresustainabletransport,andoptimalchargingmanagementofEVswillgeneraterelevantbenefitsforalltheactorsoftheenergysectortoo,fundamentallyusersofelectricvehicles.ConsideringtheEuropeantargetsonCO2reduction,andtheincreasinglyrenewableenergysourceshareinthegenerationmix,itisinevitablethatelectricvehicleswillbecomethemainstreamofthecarindustry.The“Fitfor55package”releasedbytheEUonJuly2021statesthattheaverageemissionsofnewcarsmustbereducedby55%from2030and100%from2035comparedto2021levelsandthereforeallnewcarsontheEuropeanmarketmustbezero-emissionvehiclesfrom2035.“Fitfor55”alsomodifiestheRenewableEnergyDirective(RED)andintroducesrenewablehydrogenquotasfortransportby2030.Thisisapromisingscenariobutwhilezeroemissiontechnologiesarereachingmassmarketinthepassengercarssector,atransitionofheavy-dutyvehicles(HDVs),bothtrucksandbuses,tozeroemissionishighlychallenging.Batteriesandgreenhydrogenarethetwomaintechnologiestodecarbonizetransport.Battery-poweredandfuel-cellvehiclesarebothelectric,sharingthesamemotorsandmanyothercomponents,althoughfromthegridperspective,thelatterdonothaveadirectimpactonthegridsincetheyusegreenhydrogenmoleculesfromrenewableenergyresources.TensofmillionsofEVsprogressivelydeployedwillalsoimpacttheenergysectorintermsofdemandprofileandgridadequacy.Electricchargingisthephysicalinterfacebetweenthesetwoevolvingsectors,emphasisingthedualnatureofEVs:ameansoftransportationwhenonthemovebutagrid-connectedbatterywhenparked(andplugged).Relatedchallengesandopportunitiesarethereforecloselyintertwined:•ontheonehand,theproperdeploymentofcharginginfrastructuresandtheoptimalmanagementofthechargingprocessestoguaranteetherequiredrangeandoptimalchargingcosts.•ontheotherhand,anopportunitytotakeadvantagesoftheusetheEVchargingframeworkasaflexibleresourcethatcanprovideaddedvaluetogridoperatorsandmustbeincorporatedintogridmanagementandplanning.Thepossibilitytooptimisethechargingprocessaccordingtoawidersystemview,knownas“smartcharging”,mustaccompanythewidespreadadoptionofEVs.FurtherbenefitscanbeseizedbyextendingthesmartchargingconcepttoV2Gsolutions,wheretheuseofbi-directionalchargerspermitsadeeperdegreeofintegrationofplanningandoperationofbothtransportandpowersystems.Worldwideinstitutionsandacademiaarespearheadingtheuptakeofelectricmobility.Tomentionjustanexample,inits“Innovationoutlook2019”1,theInternationalRenewableEnergyAgency(IRENA)statesthat“Smartchargingforelectricvehiclesholdsthekeytounleashsynergiesbetweencleantransportandlow-carbonelectricity”.SimilarmessageshavecomefromdedicatedreportsfortheCleanEnergyMinisterialandfromtheGlobalSmartGridFederation.Futuretrendsinmobility,namelyinter-modality,mobility-as-a-service(MaaS)andautonomousdrive,althoughmodifyingmobilitypatternsandthetypesofEVusers,willnotsignificantlychangethepicturepreviouslydescribedforvehicle-gridinteraction,whichwillrelyonthemorerelevantroleofmobilityorfleetmanagerandnotonlyofthatofindividualowners.Similarly,theadoptionofotheremergingCO2-freetransporttechnologieswheredirectelectrificationisnotpossiblesuchasfuelcells,hydrogenpropulsionandgreenliquidfuelswillcompletethedecarbonisationoftransport,whilesimultaneouslypresentingdifferentchallengesandopportunitiestothepowersystem.1.1InandoutofscopeElectrificationisincreasinglybecominganessentialdriverinmanytransportareas.Thispaperaddressesthegridimpactthatelectricvehiclescanhaveinelectricitynetworksthroughtheirchargingprocessand,thereforeitismainlyfocusedonthoseaspectswhichareforeseenasbeingmoreimpactful:•Sector:Roadtransport.•Vehicles:LightCommercialandHeavy-Dutyvehicles.•Technology:Battery-propelledvehicles.•Charginginfrastructure:Conductive,stationarychargingsystems.Consequently,andhoweverbeenpartoftheelectrificationoftransport,sometopicsareconsideredoutofscopeinthispaperforthefollowingreasons:•Railways:electrictractionisalreadyinoperationinmostofEuropeanlinesandnodisruptivesituationsareexpectedforgridimpact.Theydonotusebatteries.•Micromobility:theenergyconsumptionrelatedtothesemeansoftransportislimited,aswellastheirimpactonthepowersystem;indeed,theirchargingcanbeconsideredpartofresidentialload.•Dynamiccharging(vehicleonthemove):stillatanearlystage,withlongtermandnichedevelopment;regardless,thefactthatthevehicleischargedduringitsuseandnotwhileparkedstronglylimitsthepossibilityforprovidinggridflexibilityservices.1https://www.irena.org/publications/2019/May/Innovation-Outlook-Smart-ChargingE-mobilitydeploymentandimpactongrids12Somenichesoftransportarealsodifficulttobedirectlyelectrifiedintheshorttermandareoutofscopeofthispaperaswell:•Maritimetransportandaviation:thehighamountofenergyrequiredfortractioncouldbeprofitablystoredonboardonlywithimportantimprovementsinbatterytechnology.Decarbonisationshouldthereforeoccurthroughothermeans(hydrogen,greenfuels,fuelcells)andinalong-termscenario.•Fuelcellsandgreenfuelspropelledvehicles:theydonotperformelectricchargingsotheirimpactontheenergysystemisindirect,throughthesectorintegration.1.2PreviousETIPSNETpapersInthepreviouslyreleasedETIPSNETPositionPaperonSmartSectorIntegration,“TowardsanEUSystemofSystems:Buildingblocks,enablers,architectures,regulatorybarriers,economicassessment”2,publishedinJuly2021,wasconcludedthatelectrificationoftransportwithinanincreasinglycleanelectricitymixisthemosteffective,efficientandsustainablewaytodecarbonisethissector.ItreducesitsdependenceonfossilfuelsimportsfromoutsideEuropeandeliminateairpollution.Thisrequiresthedeploymentofasolidanddensecharginginfrastructureforelectricvehiclesinatimelymannertosupportthedevelopmentofelectromobility.WhilethenumberofelectricvehiclesonEuropeanroadskeepincreasing,itisnecessarytoensuretheeffectiveintegrationofelectricvehiclesinthepowersysteminordertoalignthenetworkandmaintaintherequiredlevelsofqualityandsecurityofsupply.Someoftheseideasaretakenasaninputforthepresentpaper.1.3UsersatthecentreAconstantunderlyingprincipleinthecomplexandmultifacetedelectromobilityenvironmentistheEVuserasthekeyactorandhisneedsasthecentreofallthedevelopment:theEVusercanbethedriver,theownerorthefleetmanager.Inotherwords,itistheperson/bodywhodecideshow,where,andwhentochargeEVs.EVusershavespecificneedsandexpectationsfromthechargingprocess,regardingthepriceandqualityofthechargingservice:chargingpointsavailability,chargingpower/time,matchingwithpersonalhabits,dataandinformationavailability,interoperabilityandeasyaccess/payment,interactionwithotherelectricalassetsathome/work(Figure1);suchcustomerbehaviourmustbeanalysed,understood,andsatisfied.EVuserswillsettheconditionsforhavingtheirvehiclescharged(newtariffschemes,rewardsandpenalties,extraservices).Theirdirectinvolvementisthebasisformakingthechargingprocessasuccess.ThebehaviouroftheEVusersdrivesthesubsequentimpactontheelectricitygridsandthushowsystemoperatorsmustmanagethem.Figure1User,bothasEVdriverandaselectricityconsumer,atthecentre.1.4Targetsofthepaper2https://www.etip-snet.eu/wp-content/uploads/2021/03/ETIP-SNET-PP-Sector-Coupling-towards-an-EU-System-of-Systems_FINAL_V3.pdfE-mobilitydeploymentandimpactongrids13Electromobilitywillrepresentacrucialbuildingblockinthefutureenergysystem.Itmightgenerateimportanteffectsasanewload(additionalvolumesandspecificloadprofile),asanenergystoragesystemand,consequently,asanewflexibilityresourceforbothmarketactorsandsystemoperators.ThecapabilityofEVstoprovidevaluablesystemflexibilityservices,includingfastfrequencycontrol,rampingancillaryservices,balancingservices,aswellasinthefutureflexibilityservicesforTSO-DSOcongestionmanagement,coulddirectlyhelptoimprovethemanagementoftransmissionanddistributiongrids.ConsideringtheprobableaccelerationofEVpenetration,andtheparalleldeploymentofchargingsystems,ETIPSNETintendstocontributetothedebateontechnicalandconnectivitysolutions,aswellasonchargingprocessesandregulationstobeadopted.Thesesolutionsaremainlyintheirearlystages;therefore,itiscrucialtodeploythematthestartoftheEVsadoptiontoavoidtheneedforfutureretrofitting.E-mobilitydeploymentandimpactongrids142.E-MOBILITYANDPOWERGRIDS:CHALLENGESANDOPPORTUNITIES2.1Awideecosystem,manyunrelateddecisionmakersTheuseofelectricityinmobilityisparticularlyrelevantforelectricvehiclesandtherelatedvehicletogridpossibilities.Nevertheless,differencesregardingtheacceptanceanddeploymentofelectricmobilityvariesacrossgeographies.Theseevolvingdevelopmentsshowgreatpotentialforfuturedeploymentsandscalingup.AnotherrelevantaspecttobeconsideredisthattheEUStrategyforEnergySystemIntegration3proposedbytheEuropeanCommissionexplicitlyencouragesdemandsideflexibility,mentioningespeciallyelectromobilityandV2G.Furthermore,developmentofvehicle-to-gridshouldbeacceleratedtobeabletouseelectricvehiclestorageasaflexibilitytooltoimprovethenetworkoperation.ConsiderationshouldbegivenalsotothesecondlifeoftheEVbatteriesandhowtoensurethattheyarestillusedforstationaryapplicationsoncetheyarenolongersuitedformobileapplications.Itshouldalsobeensuredthatbatteriesaredesignedinamannerthateasestheirrepurposingandremanufacturing.Manyactors.EVshavetwomainoperatingstates:drivingand(smart)charging.Whileperforminganyofthese,severalactorsareinvolved.Asmentioned,thefirstandmostrelevantistheuser,abletodecidewhenandhowtoutilisethevehicle.Manufacturersandchargingoperators(includingelectricityaggregatorsactiveinthisfield)playanimportantroletoo,providingthetechnicalcapabilitytoeffectivelydriveandcharge.Whilecharging,theinteractionwiththecomplexenergysystemandtherelatedoperatorsbecomescentral.Asplayersabletosteertheevolutionofthesector,decisionmakersandresearchbodieshavealsotobecarefullyconsidered.EVusers·Privateusers·Companyfleetsmobilitymanagers·Logisticfleetsmobilitymanagers·Taxifleets·Sharingfleetscompanies·Publicadministrationfleetsmobilitymanager·Localpublictransportmanagers·TrucksdriversandownersManufacturers·EVmanufacturers·Batteryandbatterymanagementsystem(BMS)manufacturers·ChargingstationsmanufacturersChargingoperators·ChargingPointOperators(CPOs)(thisrolewillbeoftenplayedbyaggregatorsand/orsuppliers,takingintoaccounttheexistingelectricityregulation)·ElectromobilityServiceProviders(EMSPs)·Value-addedservicesprovidersActorsintheenergysystem·Energyproviders(utilities,traders)·DSOs·TSOs·Balanceserviceprovidersandaggregators·EnergyandflexibilitymarketsoperatorsDecisionmakers·EUdecisionmakers·National/localdecisionmakers·Regulatoryauthorities·Standardizationbodies·Urbanplanningauthorities·TransportauthoritiesResearchbodiesandassociations·Universities,institutes,technologyassociations,…Differentkindsofinteractions.Actorsinvolvedinelectromobilityareinterrelatedindifferentways.Fromaphysicalperspective,theelectricconnectionisthefundamentalone,linkingthevehicletopowergenerationthroughDSOsandTSOs.Propermanagementofthechargingprocessrequiresreal-timedataexchangewithTSO-DSOforcongestionmanagementandinvolvingactorssuchasenergyproviders,ChargingPointOperatorsandBalanceServiceProviders,andinthefuture,FlexibilityServicesProviders(Figure2).Economicfluxesrepresentthethirdkindofinteraction,relatedbothtoenergyandflexibilitytransactions(Figure3).Therespectivemarketsarepivotalfortheseexchanges,carriedoutbyenergytradersandmarketoperators.3https://energy.ec.europa.eu/select-language?destination=/node/1E-mobilitydeploymentandimpactongrids15Figure2Dataandenergyinteractionsamongelectromobilityecosystemactors.Wherearetheelectricitysystemoperators?InIntermsoftheuserandtheEV,electricityindustryactorsarenotcurrentlyperceivedaskeyplayers.Inaddition,EVuserstodaymainlydealwiththeDSO(forconnectingtothegrid)ratherthantheTSO.However,asthenumberofEVsincreases,thetransmissiongridandpowersystemasawholecouldalsobeaffected.TheTSOinvolvementine-mobilityisrequiredduringlong-termgridplanningphasestoproperlyhostnewcharginginfrastructure,withoutdelay.BoththeTSOandtheDSOshouldenabletheflexibilityopportunitiesprovidedbyEVsmartcharginginbalancingservices,congestionmanagementservicesorvoltagecontrol.Figure3EconomictransactionsforenergyandflexibilityservicesamongelectromobilityecosystemactorsElectrificationoftransportrequireselectricityoperatorstoadaptandsupportthebroaderintegrationofenergysystems,definedas“One-SystemofIntegratedSystems:SystemofSystems”andfocusedonimprovedcross-sectoralintegration.SmartchargingandV2Gsolutionswillincreasetheliquidityofnewmarketsandrequirenewwaysofmodellingfuturegenerationandloadprofiles.CoordinationbetweenDSOs,TSOs,aggregators,marketparticipantsandcustomersmustgothebeyondpureintegrationofmarketsandoperationsandexpandtoproactiveplanning.EnhancedDSO–TSOinteractionsforimprovedpowerflowsandsystemsecurity,inadditiontosuitablemarketplatforms,willenableEVsconnectedatthedistributionleveltoparticipateinthefutureinenergyandancillaryservicesmarketsforSOs.E-mobilitydeploymentandimpactongrids162.2Europeanregulatoryframeworkone-mobilityTheEUisstronglycommittedtofightingclimatechangeatthegloballevel,throughinterventionsimplementedwithinitsownterritoryandinternationalcooperation(e.g.,EUGreenDealandFitfor55Package).Withregardstotransport,Europeanruleshavebeenamaindriveroftheimpressiveimprovementsobtainedbyvehiclemanufacturersinthelast25yearsintermsofpollutantemissions.Today,thehugeeffortrequiredtoreduceCO2emissionsisanindirectlevertostimulateelectromobility.Atthesametime,regulatoryincentivesarenecessarytoensurethateffectivecharginginfrastructuresisimplemented,bothforprivateandpubliccharging.MAINREGULATORYFRAMEWORKRELATEDTOELECTROMOBILITY•DirectiveonAlternativeFuelsInfrastructure:oInforce(2014/94/EU):Itestablishesasetofmeasuresforthecreationofanalternativefuelinfrastructure,tominimiseoildependenceandmitigatetheenvironmentalimpactoftransport.oRevision:Itaimstoincreasethebuild-upofpubliclyaccessiblecharginginfrastructure,throughpossiblebindingandenforceabletargetsamongothers;toenablethedeploymentofsmartcharginginfrastructureandtoensurethefullinteroperabilityofinfrastructureandinfrastructureuseservices.•CO2emissionsforcarsandvansperformancestandards:oInforce(regulationEU2019/631):definesnewfueleconomystandardforcarsandvansfor2021–2030andaCO2emissionsstandardforheavy-dutyvehicles,withspecificrequirementsorbonusesforEVs.oRevision:Toimplementthenewplantowards55%CO2emissionreduction,theCommissionisproposingtorevisetheRegulationonCO2standardsforcarsandvans.Apublicconsultationwasopen,aimedatreceivinginputsontheambitionlevelofthetargets,theincentiveschemeforzero-andlow-emissionvehiclesanddesignelementsoftheregulatorysystemtopossiblyconsiderthecontributionsofrenewableandlowcarbonfuels.•Trans-EuropeanNetworkforTransport(TEN-T)Regulationreview:Basedontheresultsoftwoconsultations,itwillconsiderthenewandfar-reachingeconomic,political,technologicalandsocietalchallengesofthetransportsector,addressingissuessuchasstandardsandinfrastructurerequirements,implementationtoolsorvariousaspectsofthecomprehensivenetwork,aswellassoftmeasures.•CleanVehiclesDirective(EU)2019/1161:Itdefines"cleanvehicles"andsetsnationaltargetsfortheirpublicprocurement.Itappliestocars,vans,trucksandbuseswithdifferentmeansofpublicprocurement.•SustainableandSmartMobilityStrategy:Itwascommunicatedon9December2020bytheEUCommission,itincludesanActionPlanof82initiativesforgreenanddigitaltransportandsetskeymilestonesfor2030,2035and2050.ENERGYREGULATORYFRAMEWORKIMPACTINGONELECTROMOBILITY•RenewableEnergyDirectiveII2018/2001/EU:AimedatpromotingthecontributionsoftheMemberStatestotheachievementoftheEU2030targetofcoveragewithrenewablesourcesarelevantpercentageofgrossinlandenergyconsumption,includingtransport.Thereisareviewinprogress.•EnergyefficiencyDirective(EU)2018/2002:Itestablishesacommonframeworkofmeasurestopromoteenergyefficiency,includingthetransportsector,toensuretheachievementoftheEU’sheadlineenergyefficiencytargets.Thereisareviewinprogress.•EnergyperformanceinbuildingsDirectiveoInforce(2018/844/EU):Itoutlinesspecificmeasuresforthebuildingsector,includingpreparatoryworkandtheinstallationofchargingpointsinsideresidentialandnon-residentialbuildings.oRevision:ItshouldhelptoreachtheEU'sincreasedclimateambitionfor2030and2050.ItcouldincludenewrulesandmorechallengingobjectivesforEVcharginginbuildings.TheEuropeanGreenDealsetsaroadmapfor“makingtheEU'seconomysustainable”byturningclimateandenvironmentalchallengesintoindustrialopportunitiesandmakingthetransitionjustandinclusiveforall.Itprovidesasetofactionstoboosttheefficientuseofresourcesbymovingtoaclean,circulareconomy,stoppingclimatechange,revertingbiodiversitylossandcuttingpollution.The2030ClimateTargetPlantoreducetheEU'sgreenhousegasemissionsbyatleast55%in2030(comparedto1990levels).Regardingthefirst,andprobablythemostrelevantoftheabove,therevisionoftheAFIDirectivewasreleasedonJuly14,2021,aspartofthepackageofproposalstomaketheEU'sclimate,energy,landuse,transportandtaxationpoliciesfitforreducingnetgreenhousegasemissionsbyatleast55%by2030,comparedto1990levels(Fitfor55).Thespecificobjectivesare:(i)ensuringminimuminfrastructuretosupporttherequireduptakeofalternativefuelvehicles(electricityisconsideredalternativefuel)acrossalltransportmodesandinallMemberStatestomeettheEU’sclimateobjectives.(ii)ensuringtheinfrastructure’sfullinteroperability.(iii)ensuringfulluserinformationandadequatepaymentoptions.E-mobilitydeploymentandimpactongrids17Thetargetedinfrastructureincludeselectricityinstallations,aswellasLiquefiedNaturalGas(LNG)andhydrogeninfrastructure.Theobjectiveistoenhancetheconnectivityofthisinfrastructuretofacilitatetheuptakeofelectricvehicles(light-andheavy-duty)andnewmodelsofmaritimeandaviationtransportbasedonalternativefuels.Theemphasis,especiallyforelectricity,isonenhancementofgridconnectivityratherthangridcapacity.MemberStatesareobligedtofulfilthetargetforrefuellingandrechargingpointsbydeployingenoughofthese.Unfortunately,nomentionismadeofsupplementingthiswithenhancementofgridcapacitydespitetheimpactassessmentrecognizingthat“Distributionsystemoperatorswillhavetoinvestintogridstabilityandflexibilityand–wherenecessary-intogridextensions,inparticularlyinviewofHDVrechargingneeds”4.Thechosenpolicyapproachistointroducemandatoryfleet-basedtargetsforelectricrechargingpointsforlightdutyvehicles(LDVs)anddistance-basedtargetsforallroadvehiclesinfrastructurefortheTEN-Tnetwork,includingforurbannodesforheavy-dutyvehicleinfrastructure.MoredetailedprovisionsforportsandairportsontheTEN-Tnetworkwillbedevelopedaswellasgreaterharmonisationonpaymentoptions,physicalandcommunicationstandardsandconsumers’rightswhilecharging.Additionally,theDirectivewillstrengthenprovisionsonpricetransparencyandotheruserinformation,includingphysicalsignpostingofrechargingandrefuellinginfrastructure.Someofthemostimportantpointsofthisproposalare:•Smartrechargingpointsshouldcompriseasetofphysicalattributesandtechnicalspecifications(hardwareandsoftware).•SmartmeteringsystemsasdefinedinDirective(EU)2019/944enableneartoreal-timedatatobeproduced,whichisneededtoensurethestabilityofthegridandtoencouragerationaluseofrechargingservices.Theuseofsmartmeteringsystemsincombinationwithsmartrechargingpointscanoptimiserecharging,withbenefitsfortheenduser.Smartrecharginginparticularcanfacilitatetheintegrationofelectricvehiclesintotheelectricitysystemfurtherasitenablesdemandresponsethroughaggregationandthroughprice-baseddemandresponse(e.g.dynamicand/orspecifictariffs).Systemintegrationcanfurtherbefacilitatedthroughbi-directionalrecharging(vehicle-to-grid).•Thedevelopmentofinfrastructureforelectricvehicles,theinteractionofthatinfrastructurewiththeelectricitysystem,andtherightsandresponsibilitiesassignedtothedifferentactorsintheelectricmobilitymarket,havetobeconsistentwiththeprinciplesestablishedunderDirective(EU)2019/944.Inthatsense,distributionsystemoperators,asneutralfacilitators,shouldcooperateonanon-discriminatorybasiswithanypersonestablishingoroperatingpubliclyaccessiblerechargingpoints.Inturn,MemberStatesshouldensurethattheelectricitysupplyforarechargingpointcanbethesubjectofacontractwithasupplierotherthantheentitysupplyingelectricitytothehouseholdorpremiseswherethisrechargingpointislocated.•Theestablishmentandoperationofrechargingpointsforelectricvehiclesshouldbedevelopedasacompetitivemarketwithopenaccesstoallpartiesinterestedinrollingoutoroperatingrecharginginfrastructures.The“Fitfor55package”5releasedbytheEUonJuly2021statesthattheaverageemissionsofnewcarsmustbereducedby55%from2030and100%from2035comparedto2021levelsandthereforeallnewcarsontheEuropeanmarketmustbezero-emissionvehiclesfrom2035.Thisanimportantstepwithenormousconsequencesintermsofelectromobilitypolicies.2.3Electricvehicles.StateoftheArtAsabasicclassification,electricvehiclescanbeconsideredtobepartofoneofthetwofollowinggroups:BatteryElectricVehicles:Morethan20modelscurrentlyproposedbybigoriginalequipmentmanufacturers,andafewmoreinthepremiumsectorBatterycapacity:•16–50kWh,standardsegment•50–100kWh,premiumsegmentRange:•100–400km,standardsegment•500–700km,premiumsegmentPurchaseprice(includingtaxes):•30,000–40,000€,standardsegment•70,000–100,000€,premiumsegmentPlug-inHybridElectricVehiclesAround50modelsproposedbybigOEMs4https://ec.europa.eu/info/sites/default/files/revision_of_the_directive_on_deployment_of_the_alternative_fuels_infrastructure_with_annex_0.pdf5https://ec.europa.eu/commission/presscorner/detail/en/IP_21_3541E-mobilitydeploymentandimpactongrids18Batterycapacity:•7–15kWhThemaindifferencesbetweenEVsandICEvehiclesareshowninFigure4.Severalmodelsofelectriccarsaretodayonthemarket,mostlyproducedbycarmanufacturerswithdedicatedproductionlines.Themarketcanbedividedintotwomainsegments,mainlyaccordingtotheirpurchaseprice:a“medium”target,below40,000€,anda“premium”target,upto100,000€andmore.Thetwosegmentsarecharacterisedbydifferentbatterycapacityandautonomy.InadditiontoBatteryElectricVehicles(BEVs),Plug-InHybridElectricVehicles(PHEVs)arequicklyemergingonthemarket,particularlyinthepremiumsegment.Aftertheprivatecarsector,lightdutyvehicles(LDVs)areexpectedtorepresentanewmarketopportunityforvehiclemanufacturers.Today,lessthan10electricmodelsareavailable,commonlyequippedwiththesamepowertrainofsame-brandcars.Theusagepatternsofthesevehiclesareindeedcompatiblewiththerangeallowedby40–50kWhbatteries,typicalofBEVcars.Heavydutyvehicles(HDVs)arestillatthedevelopmentstageastheirenergydemandremainsachallengeforpresentbatteries.Interestingproposalsareexpectedinthecomingyears.Regardingbuses,adifferentbusinessmodelcharacterisestheirmarket.Electricbusesaretypicallysoldontherequestofpublicauthoritiesandmanymanufacturersareactiveonthemarketwithsmallnumbersofvehiclessold,oftencustomised.Onaverage,electricbusesusedforurbanlocalpublictransportservicesareequippedwith250–350kWhbatteries,dependingoniftheyfavouredopportunitychargingorchargingattheendoftheirassignedroute,andcostapproximately400,000€.FOCUSBOX#1WHATISDIFFERENTINEVsFROMINTERNALCOMBUSTIONENGINE(ICE)VEHICLES?TheelectricpowertrainisintrinsicallymoreperformantthananICE:higherefficiency,highermechanicalreliability(fewermovingparts,lessancillarydevices,lessmaintenance,lessnoise,etc.).Inadditiontoit,EVshavethepossibilityofusingthebrakestorecoverenergy.TheEVpurchasecost,althoughrapidlydecreasingisstillhigh,excludingfromtheEVmarketthesmall/lowermediumcarsegmentcostumers.However,operationalcostsareconsiderablylowercomparedwithICEvehicles.EVdonotburnfuelsinsidethevehicle,meaningnodirectCO2emissions,lowerairpollutantemissionsandasmallerimpactalongtheirlifecycle;theseenvironmentalbenefitsarethekeyrationaleforEVdeployment,andareprovidedthatelectricityisgeneratedCO2-free.EVstoreenergyon-boardthroughelectrochemicalbatteries,whichhavelessenergydensitythanliquidfuels,whichmeansheaviervehicleandlowerendurancerangeforeachrefuellingstop-over.However,somestudiesshowthatthetotalenergydemandfortransportislowerwhenelectricvehiclesareusediftheentirevaluechainisconsidered.On-boardbatteriescanbechargedatdifferentpowerlevels;eventhehighestpowernowtested(350kWDC)allowsthevehiclestobechargedatleast5timesslowerthanliquidfuelrefuelling.Figure4MaindifferencesbetweenEVsandICEvehicles(Source:ENTSO-E).Itisimportanttointroducetheconceptofsmartcharging,usuallyreferredasV1G,whichrelatestotheabilitytodynamicallymodifythechargerateorthechargingtime.Thiscanhelpminimizethecostofchargingavehicle,especiallyinthecaseoftimeofuse(ToU)andreal-timetariffs.Vehicle-to-grid(V2G)referstothebidirectionalflowofenergybetweenthebatteryofanelectricvehicleandthechargingstation.Energycanbetransferredtobuildingsaswellastotheelectricitygrid.Inthisway,energycostscanbemanaged.Toputitsimple,theelectricityproducedduringthedaytimeelectricitydemandpeaksisstoredinvehiclesandreturnedtothesystemtobeusedbyotherconsumersatthesamehours.Withthismethod,itispossibleforvehiclesthatareconnected21-22hoursoutof24hourstocontributetoelectricityproduction.Ofcourse,itisimportanttoconsiderthebatterychargingefficiency,whichiscalculatedbydividingtheenergyaddedtothebatterybytheenergyusedinthechargingsession.Theefficiencyislessthan100%becausesomeenergyiswastedintheprocess.AsimpleclassificationcanbeseeninTable1.Table1SmartChargingMatrixFeaturesV1GV2GOnewaycharging✓✓Settimeofcharge✓✓Setchargerate✓✓AccesEnergyMarkets✓✓Store+DischargeEnergy✓CombineEnergyfrommultipleEVs✓PerformGridServicesandsellenergybacktogrid✓Regardingthedifferenttechnologies,aclassificationcanalsobemade:HybridElectricVehicle(HEV).•SmallelectricmotorandbatterysupplementtheICEengine.Noelectriccharging.•TheelectricmotorinterveneswhentheICEhaspoorthermodynamicefficiency,(e.g.start-upphase,repeatedstop&go).•TheICEworksonlyaroundoptimalpointsofoperation,reducingfuelconsumption.•Fewkmareallowedinpureelectricmode.•Thepresenceoftheelectricalpartallows“regenerativebraking”,whichcontributestoreducingoverallconsumption.•Refuellingisonlyfortraditionalfuel(noexternalelectriccharging)asthebatteryischargedonlythroughtheICEwhenitisE-mobilitydeploymentandimpactongrids19ignited.Plug-InHybridElectricVehicle(PHEV).•DualFuel&DualTraction.•BasedonthesameprincipleasHEVbutbatteriesarelargerandcanbechargedfromthegrid.•MostPHEVvehiclesadopta“parallel”configuration:boththeinternalcombustionandtheelectricengineareconnectedtothewheelssothatbothcanprovidetractiontothevehicle.•Thevehiclecantravelonpureelectricuptoabout50km,suitableforthedailyuseonpureelectricofmanydrivers.•Thevehiclerefuelsbothtraditionalfuelandelectricityviaachargingplug.BatteryElectricVehicle(BEV).•Equippedexclusivelywithanelectricengine,poweredbybigsizebatteries.•Batterieshavetobechargedonaregularbasisthroughproperchargerandgridconnection.•Drivingrangetypicallygoesfrom200to700km.•Zero-tailpipeemissions.•Zeroend-to-endemissionsifelectricityisgeneratedfromRES.FuelCellElectricVehicle(FCEV).•Vehiclewithelectricengine.Powerisgeneratedonboardfromhydrogen.Noelectriccharging.•Anon-boardfuelcellgenerateselectricpowerfromhydrogenandoxygen,usedfortractionbyanelectricengine.•Oxygenistakenfromambientairwhereashydrogenisstockedonboardinhighpressuretanksandisrefuelledinashorttimethroughdedicatedfillingstations.•Smallbatteriesarenormallypresenttoallowregenerativebraking.•Zerotailpipeemission(onlyH20).•Zeroend-to-endemissionsifhydrogenisproducedCO2free(greenhydrogen).Figure5attemptstoschematicallyrepresentthepreviousclassification.Figure5Definitionsanddifferencesamongelectricvehicles(Source:ENTSO-E).2.4Chargingdevicesandinfrastructures.StateoftheArt2.4.1CharginginfrastructuresDifferenttechnologiesareavailableforEVcharging.Wiredsolutionsusingconductivemethodsarebyfarthemostdiffusedastheycaneasilyguaranteetherequiredpowerlevel,safetyandinteroperabilitywithmostofthevehicles.Non-wiredsolutions(exploitingtheinductivityprinciples)arebeingstudiedforhighwayapplications.Batteryswapisforspecialapplications(carraces)whererapidityisparamount,andcouldprovetobesuitableforfleets,sharingand/orHDV.AlternatingCurrent(AC)infrastructuresrelyonvehicles’on-boardchargersandarelimitedinpowerlevelduetovehiclelimitedsizeandcost.However,DirectCurrent(DC)infrastructuresuseoff-boardpowerelectronics,installedatthechargingstation.Thisallowsforlarger/bulkierandmoreexpensivecomponents,meaningachargingpowerofupto350kWintoday’sbestperformingdevices.AlthoughinthefirstyearsofelectromobilitydevelopmentthetrendwastoimproveACchargingpower(upto43kWinsomemodels),thepresentapproachistolimitACchargingtolessthan22kW(often7kWsinglephaseor11kWthree-phase).Infact,fastchargingwillbeperformedbyaDCcharger,whichisbecomingstandardequipmentforallEVs.Formoreinformationonthedifferentavailablechargingtechnologies,seeFigures6and7.Inthemeantime,newdevelopmentsarealsomadethroughtheecosystemofchargingpointsupplierstoofferDCcharginginhomeenvironments,inparticularinthecontextoffutureV2Gdeployments.ThemajorityofEVOEMscommittingtoV2GistodayconsideringitsapplicationonDCapplicationsassuccessfullydemonstratedthroughtheCHAdeMOstandard.E-mobilitydeploymentandimpactongrids20Figure6EVchargingtechnologies(Source:RSE).FOCUSBOX#2WHYISEVCHARGINGDIFFERENTFROMTRADITIONALREFUELING?Electricvehiclescanbechargedatlowpowerwhileparkedformedium/longtimes(athome,office,depot,recreationalordutiesstop-overs,etc.);formostuse-casescharacterisedbylimiteddailyortripmileage(i.e.,excludinglongrangetripsandpassengers/goodstransportation)EVuserscancoupleparkingandchargingneeds,avoidingtheneedtohaveawidespreadnetworkoffuelstations,asisthecasewithconventionalfuels.Bydoingso,theEVuserswouldrefuelnotonaneed-basis(goingtothepetrolstationwhenthetankisempty)butonanopportunitybasis(chargingtheEVeverytimetheopportunityoccurs),reducingtheriskoffindingtheEVoutofchargewhenneeded.EVuserswhogenerateelectricityathome(prosumers)couldchargetheircarsalsoconsideringtheirproductionprofileandtakebetteradvantageofself-consumption.Toallowlong-rangetravel,EVsalsorequireawidespreadcharginginfrastructureandfastchargingprocesstosatisfactorilymeettheusers’needs.AsignificantshareofEVusers(70–85%,dependingoncountryandonurbanarchitectureaccordingtotheIEA)willcountonprivatechargers(athome,office);theotherswillrelyonadiffusedpubliclyaccessiblecharginginfrastructure,eitheronprivateareas(malls,supermarkets,servicecompounds,recreationalareas,etc.)oronpublicstreets.Onextraurbanhighways“hyperchargeshubs”areanoption,withapowercapacityofuptotensofMW,thereforebeingHVconnected,especiallywhentrucksgoelectric;additionalstationarystoragesystemsmightberequiredtolimitpeakpowerdemand,exceptwhenhyperchargerhubsarestrategicallypositioned(e.g.,inthedirectproximityofsubstations).SlowcharginginfrastructuremakesmassdeployedEVusableas“batteriesonwheels”,whereCapexhasalreadybeenpaidbyvehicleuserandremunerationisneededonlyforOpex:batterydegradation,smarteningofchargingdeviceanduser’scommitmenttotheservice.Figure7FocusBox#2:Maindifferencesbetweenrefuellingandelectriccharging(Source:ENTSO-E).2.4.2Detailedoverviewofthecurrentstateoftheart,standardsandtrends.Differentstandpointscanbeconsideredtodescribethestateofart:Fromthepointofviewofthecharging:ThefuturewillbePlug&Charge(underIEC15118),inthisway,thecurrentstandard(IEC61851)willfallintodisuse.Itwilltaketimebecausethetransitionmeanssoftwareandhardwarechanges.Themainfeaturesanddifferencesbetweenthosestandardsare:•IEC61851:obasedonclientrecognitionbywhitelist-token.oInteroperabilitysimilartoroamingofmobilecommunications(basedonB2Bagreementsincludinginteroperabilityplatforms).Thereisnorealuniversalinteroperabilitytoday.oRadioFrequencyIDcardsormobileplatform(useropenswithcardorcommunicatesremotelywithchargingpointfromapplicationthatstartsthesession).oPromotedforsometimefromChargingPointsOperators,utilitiesandtheenergysectoringeneral.•IEC15118:oBasedondigitalexchangecertificate.oAutomaticandtotalinteroperability.oThecar(nottheuser)usesadigitalcertificatetocommunicatewiththechargingpoint,sharingthechargingcharacteristicsandwhoisgoingtopayforthecharge.ThechargingpointsharesinturnitsCPOownershipcertificateandavailablechargingconditions.oThevehicleholdsthecertificaterepository(thehaveacertificatefromtheenergycompanylinkedtotheOEM).oThisstandardiscurrentlypromotedbyOEMs.Itisbasedontotalinteroperability,whatitisinlinewiththecurrenttrendsE-mobilitydeploymentandimpactongrids21inEurope.Fromthepointofviewofthechargingpower.ThestateoftheartforPassengerCars(PC)andLightCommercialVehicles(LCV)isasfollows:•Tricklecharging.TheslowestmethodofcharginganEVathome,usingastandardACsingle-phase220Vplug.•ACcharging.Havingawallboxinstalledwhichcharges3-4timesfasterusingACsinglephase230Vand11kW.ACpublicchargingisalsoavailable.•DCCharging.ThefastestwaytochargetheEVisatapublicDCfastchargingstationwith50kWandabove.Withthismethod,thebatterycantopupfrom20%to80%inapproximately40minutes.Therearealsosomeultra-fastchargingstationsofmorethan150kW.Forhigh-endandHeavy-Dutyvehicles,higherpowers250–400kWarealreadyavailable.Fromthepointofviewoftheconnectors(inEurope).•Chargingpointsownedbytheuser:Type2.•Charginginanopportunitybasis(shopping,restaurants,etc.):Type2andthree-phase22kWAC.•Fast/ultra-fastchargingandfutureV2Gapplications:CCS2andCHAdeMOFromthepointofviewofthebatterycapacity.•BEVsegmentB,CandSUVB,C:40kWh•BEVsegmentsD,E,SUVD,E:75kWhormore(intheluxuryandsportsegment,usuallyabove100kWh)•PHEVforallsegments:15kWhandabove.RegardingV2G,theconceptisthatthereisenergyleftinthebatteryaftertheuseofEVsowners.OEMsingeneraltrytopromoteitbasedintheassumptionthatthecarcanispermanentlysharingdata:theE-Callorautomaticemergencycallimplya3GSIMcard(oramoreadvancedone)ineverycarsoldintheEUsinceMarch2018.Anotherconsiderationisthebatterywarrantybecauseitcancreateasignificantbarriertoentryforotheroperators.Inthissense,andundertheconceptofvirtualaggregator,thereareOEMsmanagingmillionsofEVsbatteriesthatcouldparticipateinflexibilitymarkets.2.4.3ChargingInfrastructurediffusionAsthenumberofelectricvehiclesalesincreases,sodochargingpoints.Inthelastfouryears,thenumberofpublicchargingpointsmorethandoubledreachingmorethan200,000units(seeFigure8).Approximately90%ofthesearestandardchargers(≤22kW)andtheremaining10%arefastchargers,equippedwithachargingpowerof50kWormore.TheNetherlands,FranceandGermanyaretheleadingcountriesinEurope.Akeyparameterthatisfrequentlyusedistheratiobetweenthevehicleandpublicchargingpoints.TheAlternativeFuelsInfrastructureDirectivesuggeststhattheappropriateaveragenumberofchargingpointsshouldbeequivalenttoatleastonechargingpointper10cars.ThisallowsbothforagoodavailabilityofchargersandfortheinvestmentreturnfortheCPOs.However,thisnumbercouldsignificantlychangeforthedifferentareas(e.g.,denselypopulatedorrural)andthechargingstrategies.Alowratiomeansthateachvehiclecanstayconnectedlonger,providingmoreroomforflexibilityservices.Figure8Europeaninstalledchargingstationsandvehicle/chargingpointsrationintheperiod2008–2020(Source:EAFO).2.4.4ChargingusecasesEVsaretypicallychargedatdifferentlocationsandwithdifferentpowerlevels.Consideringtheuser’sperspective,theoptimalchargingstrategywouldtakefulladvantageofthecarparkingperiods,withacoherentpowerabsorption.Privatepassengercarsareparkedmorethan90%oftime,normallyathomeorattheoffice,whicharealsotheplaceswhereV2Gmakesthemostsense.Slowchargingatthoselocations,whenfeasible,isindeedasuitableandvaluablesolutionandiscommonlysufficienttosatisfydailymileage.ForlongtripsexceedingtheEVrange,thereisaneedtochargewithhigh(orultra-high)powerduringshortstopoversin“hyperhubs”orin“fuelstation”-likefacilities,especiallyalonghighwaysormotorways.Subsequently,thereisthepossibilitytoslowchargeat“destinationchargers”(e.g.,hotels).WhenE-mobilitydeploymentandimpactongrids22usersdonothavethepossibilitytochargeatthehome/office,publicchargingstationsareaskedtocompletelyfulfiltheirchargingneeds.Inthiscase,acombinationofslowchargingonthestreetorinpark&ridestructuresandfastcharginginurbanhubscouldbeadopted.ExtramileagecouldbeaddedbyEVchargingatsociallocationsandrecreationalareaswherethetypicalparkingtimeexceedsonehour.Forcompanyfleets(carsanddutyvehicles)andbuses,theusagepatterniseasilypredictableandthereisoftenapossibilitytochargeatthecompanypremisesorinadeposit.Thismakesthechargingprocesslesscomplextomanage,especiallywhenthedailymileageiscompatiblewiththeEVrange.Criticalitiescouldariseifthenumberofvehiclesishighandthedesiredparkingtimeshort,makingitnecessarytoinstallmanychargerswithsignificantlyhighpower.Thereby,thereisnodefinitivechargingsolutionforelectricbusesandHDVsbecausetheyhavedifferentenergyrequirementsdependingonuse(urban,suburban…),numberandlengthofstops,orographydriven,andclimate.Otherkeyaspectsaretheavailabletimeperstoponrouteandtherecoverytimeatend-linestops,theinfrastructureofthepowergridandtheelectrictariffs.Thechargingstrategyforvehicleswithfixedroutesshouldconsider:availablechargingtimeandtheabilityofthebatterytoacceptfast-charging.Thechargertechnologymainlydependsonselectedstrategy,thepossibilityofplace,therequiredhardwareon-boardandthecharacteristicsofpowergrid(seeFigure9).Slowchargingallowsforflexiblerouting(forexample,inthecaseofroad)orchangingroutesduetotravel/businessdemands.However,chargingduringtheoperationisnotpossible,reducingtheavailabilitytimeofthevehicleandthepossibilityoflongroutes.Biggerbatteriescansolvethisproblembutaddingextraweighttothevehicleandtherebyreducingvehicleenergyefficiency,itscapacitytocarryweight,andincreasingcosts.Vehiclesusingfast/opportunitychargingusesmallerbatteriesthatcanbechargedathigherpowerthanthoseusingslowcharging,about50to200kWforinductivechargingandupto500kWforconductivecharging.Thesevehicleshaveasmallerfreerangebutshorterchargingtimesandthereforehigheravailability(theycanbechargedseveraltimesduringoperation).Smallerbatteriesallowforlightervehiclesandhigherenergyefficiencyresultinginhigherfreightbutthelimitedavailabletimeperstopon-routemaynotbeenoughtosufficientlyrechargethebatteries.Itmustbepointedoutthatfastchargingisonlypossibleinsomebatterytechnologies,reducingbatteryservicelifeifitisnotappliedfollowingtechnicalinstructionsofbatterymanufacturers.Moreover,fastchargingrequireshigherhardwareinversioncostsandputshigherstresstotheelectricgrid(highpowerdemandinshortperiodsoftime).Figure9EVchargingusecases,structuredaccordingtoaccess,parkingcharacteristicsandchargingtime(Source:ENTSO-E).2.4.5OverviewofcommunicationstandardsandtrendsInadditiontothecriteriadescribedabove,communicationstandardsalsopresentavarietyofpossibilities.•Fromthepointofviewofthechargestation:thecurrentstateoftheartofthechargingdevicesandinfrastructuresthatallowcommunicationsforthemonitoringandmanagementofthechargingisthroughtheOpenChargePointProtocol(OCPP)forchargingstation.OCPPimplementsthefollowingmodules:oCORE(Mandatory):allowsthemanagementandmonitoringofthecharginginfrastructure.oSmartCharging:Allowsthechargingpointtoworkatdifferentcurrentsorpowers,performingasmartcharging.oOthermodulesthatallowincreasingthefunctionalitiesofthechargingdevicesandinfrastructures.•Fromthepointofviewofthechargepointoperator:thestateoftheartoftheOCPPforaChargingStationManagementSystemtomanageallthecharginginfrastructuresandbeingabletosendchargingprofilesforsmartchargingbasedontheoperator'sneeds.•Fromthepointofviewoftheelectricmobilityserviceproviders:thecommunicationprotocolsdesignedforexchangeinformationE-mobilitydeploymentandimpactongrids23betweenCPOsandelectromobilityserviceprovidersallowroamingamongEVchargingwiththeabilitytosupportauthorizingprocesses,exchangeofcharginginformationandsmartcharging.Thisallowselectromobilityserviceproviderstoaccessflexibility.2.52030changingscenarioAccordingtotheInternationalEnergyAgency(IEA)6,the2030globalchargingscenario(seeFigures10and11)willbebasedonacombinationofprivatecharging(home/office),slowpubliccharging(≤22kWonstreets,recreationalareas,other)andfastpubliccharging(150kW).Privatechargingwillcoverthehighestpercentageofchargingneeds:over70%indenselypopulatedcountries(China,Japan)andover85%inotherregions.Thismeansthat,onaverage,approximatelyoneprivatechargingstationwillbeavailableforeachEV.Thenumberofprivatechargersforlightvehiclesanddedicatedchargersforbusesandtruckswillreachalmost135millionin2030,followingtheStatedPoliciesScenario(STEPS).Thecumulativeinstalledpowercapacityofthosechargerswillbe0.6TWglobally.Thecontributionofbusandtruckchargersisexpectedtobesignificant.Inaddition,publiclyaccessiblechargingwillbeinstalledtocomplementprivatechargingindenseurbanareas,wheremulti-unit/apartmentcomplexdwellingismoreprevalent,homechargingaccessisscarceandworkplacechargingisrestrictive.Thenumberofpubliclyaccessibleslowandfastchargerswillincreasetoalmost11millionin2030(STEPS),withacumulativepowercapacityof120GW.Theywillprovidealmost70TWhofenergy,roughlyone-fifthoftheelectricityconsumedbyprivatechargers.Figure10Privatechargerdiffusion,energydemandandpowercapacityin2019and2030bySTEPSandSustainableDevelopmentScenario(SDS)(Source:IEA).Figure11Publicchargerdiffusion,energydemandandpowercapacityin2019and2030bySTEPSandSDS(Source:IEA).2.6E-mobilitydeploymentthroughaholisticapproachAsmentionedinthepreviouschapters,acosteffectiveandsecuretransitiontolowercarbonelectricitysystemwillrequirethedevelopmentofnovelarchitecturesthatcanreliablymeettheneedsoftheemergingpowersystem,especiallyintheuptakeofnewelectromobilitypossibilitiesandtechnologies.Oneofthekeytasksassociatedwiththenewemergingarchitecturesistoenhancethecontrollabilityassociatedwithfuturepowersystemoperationinordertoenhancetheinfrastructureutilizationwhilecost-effectivelymanagingsecurityandresilience.6https://www.iea.org/data-and-statistics/charts/cumulative-installed-charging-power-capacity-for-electric-ldv-chargers-by-scenario-2020-2030E-mobilitydeploymentandimpactongrids24Theholisticarchitecturepresentedinthischapterunifiestheinteractionswithintheactorsdescribedthroughthepaper(“awideecosystem”),thuscreatingthepossibilitytoharmonizeandfacilitatingallprocesseswhicharenecessaryforareliable,economicandenvironmentallyfriendlyoperationofsmartpowersystems.ThemassiveincreaseofonlineservicesandconsequentlysmallpackageservicesduringtheCOVID-19crisissignificantlychallengesthetransportindustry:thefleetshouldexpand.Theelectrificationofthoselargefleetsandcommonvehicles,combinedwiththedesiredfast-charginginfrastructure,isexpectedtoposemassivetransmissionanddistributiongridschallenges.Theholisticconsiderationofthesetwopartsofthepowergridandthecustomers,includingEVs,isessentialtoensureasecureandsustainablepowersupply.LINKholisticarchitecture78describedbelowconsidersthepowergrid,customers,andthemarketasawhole.2.6.1LINKholisticsolutionThearchitecturalparadigmforSmartGridsLINKisderivedfromthesignatureoftheirfractalstructure9.LINK-Paradigmisfundamentaltodrawtheholistic,technical,andmarket-relatedSmartGridmodelwithlargeDERshares.ItisusedasaninstrumenttodesigntheLINK-basedholisticarchitecturethatfacilitatesmodellingoftheentirepowersystemfromhightolowvoltagelevels,includingCPs.LINKarchitectureallowsforthedescriptionofallpowersystemoperationprocessessuchasload-generationbalance,voltageassessment,dynamicsecurity,priceandemergencydrivendemandresponse,etc.10.ForabetterunderstandingoftheLINKsolution,someofthefundamentalconceptsandabbreviationsusedinthischaptershouldbeexplainedbeforehand:2.6.1.1Fundamentalconceptsandabbreviationsa)PopularcontrolstrategiesinpowersystemsThemostpopularcontrolstrategiesinpowersystemsarelocalcontrolsinopenandclosedloops.Whenthesecondarycontrolloopsareset,thelocalcontrolsinclosedloopsareusuallycalledprimarycontrols(PC).Localcontrol(LC)Itreferstocontrolactionsthatarecarriedoutlocallywithoutconsideringtheholisticreal-timebehaviouroftherelevantgridpart.Itsactionpathmayberealisedinopen-orclosed-loop:•Open-looppath–Theinputvariableusuallydiffersfromtheoutputone;theoutputvariablesareinfluencedbytheinputvariablesbutdonotactonthemselvescontinuouslyandagainviathesameinputvariables.Figure12showstheopen-loopactionpathofaswitched-capacitorbank,wheretheoutputvariableisalwaysreactivepower.Incontrast,theinputvariablemaybevoltage,current,time,andsoon.Figure12OpenactionpathoftheLocalControlofswitchedcapacitorbanks.•Closed-looppath–Inthiscase,thecontrolledvariablecontinuouslyinfluencesitself.Thedeviationoftheactualmeasuredvaluefromset-pointresultsinasignal,whichaffectsthevalvesorfrequency,excitationcurrentorreactivepower,transformersteps,andsooninsuchawaythatthedesiredpowerisdeliveredorthedesiredvoltageisreached.Figure13showstheclosed-loopactionpathoftheLocalControlofOLTC.ItkeepsthevoltagetotheUset-point.7ETIPSNET(2019)WhitePaperHolisticarchitecturesforfuturepowersystems.https://www.etip-snet.eu/white-paper-holistic-architectures-future-power-systems.Accessed12March20218A.Ilo,D.L.Schultis„AHolisticSolutionforSmartGridsbasedonLINK–Paradigm”,SpringerNatureSwitzerland,2022,XVIII,348.ISBN978-3-030-81529-59IloA(2019).DesignoftheSmartGridArchitectureAccordingtoFractalPrinciplesandtheBasicsofCorrespondingMarketStructure.Energies,4153.10VaahediE(2014)Practicalpowersystemoperation.JohnWiley&Sons,NewJersey.E-mobilitydeploymentandimpactongrids25Figure13ClosedactionpathoftheLocalControlofswitchedcapacitorbanks.LCautomaticallyadjuststheactive/reactivepowercontributions,tapandswitchpositions,etc.,ofthecorrespondingcontroldevicebasedonlocalmeasurementsortimeschedules(Sunetal.2019;RoytelmanandGanesan1999;Farivaretal2015).Theyusuallymaintainapowersystemparameter,whichislocallymeasuredorcalculatedbasedonlocalmeasurements,equaltothedesiredvalue.Thefixedcontrolsettingsarecalculatedbasedonofflinesystemanalysisfortypicaloperatingconditions.Localcontrolsaresimple,reliable,andquicklyrespondtochangingoperatingconditionswithouttheneedforacommunicationinfrastructure(Zhouetal.2021;Nowaketal.2020;RoytelmanandGanesan2000).Secondarycontrol(SC)SCinpowersystemsisquitepopularinthecaseofloadfrequencycontrol(LFC).LFC'ssignificantpurposesaremaintainingtheoperationarea'sfrequencyandkeepingpowerexchangeinthetielinesconformtotheschedules.PC'sobjectiveistomaintainabalancebetweengenerationandconsumption(demand)withinthesynchronousarea.SCmaintainsabalancebetweengenerationandconsumption(demand)withineachcontrolareaandthesynchronousarea'ssystemfrequency.TertiarycontrolisprimarilyusedtofreeuptheSCreservesinabalancedsystemsituationbyconsideringtheeconomicdispatch(ENTSO-E2015).ControlsetusedinLINK-SolutionAcontrolsetisusedintheLINK-SolutionthatconsistsofaDirect,Primary,andSecondaryControlloop,Figure14.PrimaryControl(PC)referstocontrolactionsdonelocallyinaclosed-loop:theinputandoutputvariablesarethesame.Theoutput-orcontrol-variableislocallymeasuredandcontinuouslycomparedwiththereferencevariable,i.e.thesetpointcalculatedbysecondarycontrol.Thedeviationfromthesetpointleadstoasignalthatinfluencesthevalvesorfrequency,excitationcurrentorreactivepower,transformersteps,etc.,inaprimary-controlledpowerplant,transformer,etc.,sothatthedesiredpowerisdeliveredorthedesiredvoltageisreached.DirectControl(DiC)referstocontrolactionsperformedinanopen-loop,takingintoaccountthereal-timeholisticbehaviourofthegridparthebelongs.SecondaryControlcalculatesitscontrolaction.Figure14OverviewofthecontrolsetusedinLINK-Solution.SecondaryControl(SC)referstocontrolvariablescalculatedbasedonacontrolarea'scurrentstate.ItfulfilsapredefinedobjectivefunctionE-mobilitydeploymentandimpactongrids26byrespectingthestatic,i.e.,electricalappliances'constraints(PQdiagramsofgenerators,transformerrating,etc.),anddynamicconditionsdictatedbyneighbouringareas.Atthesametime,itcalculatesandsendsthesetpointstoPCsandtheinputvariablestoDiCactingonitscontrolarea.b)AbbreviationsusedintheLINKapproachdescriptionACAlternatingCurrentBEVBatteryofElectricVehicleCPCustomerPlantCPGCustomerPlantGridCVRConservationVoltageReductionDERDistributedEnergyResourcesDevDeviceDGDistributedGenerationDiCDirectControlDMSDistributionManagementSystemDRDemandResponseDSODistributionSystemOperatorDSSEDistributionSystemStateEstimatorDTRDistributionTransformerECEnergyCommunityElAElectricalApplianceEMSEnergyManagementSystemEPOElectricityProducer-LinkOperatorESIEnergySystemsIntegrationFENIXFlexibleElectricityNetworktoIntegratetheexpected'energyevolution'GDPRGeneralDataProtectionRegulationGriLiOGrid-LinkOperatorHMUHouseManagementUnitHVHighvoltageHVGHighVoltageGridHVSOHighVoltageSystemGrid-LinkOperatorICTInformationandCommunicationTechnologyLCLocalControlLFCLoadFrequencyControlLRMLocalRetailMarketLVLowvoltageLVGLowvoltagegridLVRLineVoltageRegulatorLVSOLowVoltageSystemGrid-LinkOperator“M”MarketinterfaceMCManualcontrolMSRMechanicallyswitchedreactorMVMediumVoltageMVGMediumVoltageGridMVSOMediumVoltageSystemGrid-LinkOperatorOLTCOn-LoadTapChangerP2ChPower-to-ChemicalsP2XPower-to-XPCPrimaryControlPVPhotovoltaicRESRenewableEnergyResourcesRTURemoteTerminalUnitSCSecondarycontrolSCADASupervisoryControlandDataAcquisitionSEStateEstimatorSOSystemOperatorStOStorage-LinkOperatorSTRSupplyingtransformer“T”TechnicalinterfaceTSOTransmissionSystemOperatorUMLUnifiedModellingLanguageVvSCVolt/varSecondaryControlUactActualmeasuredvoltageWSCWattSecondaryControl2.6.1.2HolisticmodelFigure15showstheholistictechnicalmodel(the“EnergySupplyChainNet”).Itillustratesthelinks’compositionsandtheirrelativepositioninspace,bothhorizontallyandvertically.Inthehorizontalaxis,theinterconnectedHighVoltageGrids(HVG)arearranged.TheyareownedandoperatedbyTSOs.Medium(MVG)andLowVoltageGrids(LVG)andtheCustomerPlantGrids(CPG),includingtheHVGtowhichtheMVGisconnected,aresetvertically.MVGsandLVGsareownedandoperatedbytheDSOs,whilecustomersuseCPGs.Electricityproducers(hydroelectricpowerplants,windandPVplants,etc.)andstorage(pumpedhydroelectricpowerplants,batteries,EVbatteries,intheformofheatingandcooling,hydrogenproduction,etc.)areconnectedatalllevels.An“EnergySupplyChainNet”isasetofautomatedpowergridsintendedforchainlinks(abbreviatedaslinks),whichfitintooneanothertoestablishaflexibleandreliableelectricalconnection.Eachlinkorlinkbundleoperatesautonomouslyandhascontractualarrangementswithotherrelevantboundarylinksorlinkbundles.Theholisticmodelassociatedwiththeenergymarketisderivedfromtheholistictechnicalmodel,the“EnergySupplyChainNet,”asshowninFigure15b).Thewholeenergymarketconsistsofcoupledmarketareas(balancinggroups)atthehorizontalandverticalaxes.TSOsoperateonthehorizontalaxisoftheholisticmarketmodel,whileDSOsoperateonthevertical.Basedonthismodel,TSOsandDSOswillcommunicatedirectlywiththewholemarkettoensureacongestion-freedistributiongridoperationandtakeoverthetaskofload-productionbalance.LINKsolutionpostulatestherestructuringoftheactualmarketstructureandcreationofthelocalmarkettofacilitatetheeffectivelocaltrade11.Theownerofthedistributedenergyresourcesaswellastheprosumers(producersandconsumersofelectricity)mayparticipatedirectlyinthemarketormaydosoviaEnergyCommunities(ECs)12.TheBatteryofElectricVehiclesmaybeconnectedintothecustomerplantorlowvoltagelevelasshownbelow.BEVsofadistrictgarage11A,Ilo,H.Bruckner,M.Olofsgard,M.Adamcova“Deployinge-mobilityintheinteractenergycommunitytopromoteadditionalandvaluableflexibilityresourcesforsecureandefficientgridoperation”,acceptedtobepublishedinCIREDworkshop,2-3June2022,Porto,Portugal.12IloA,PrataR,IlicetoA,StrbacG(2019)EmbeddingofEnergyCommunitiesintheUnifiedLINK-BasedHolisticArchitecture.CIRED,Madrid,3-6June,pp1–5.E-mobilitydeploymentandimpactongrids27mayparticipateintotheBalancingGroupDistributionorEnergyCommunity.ThecontributionofBEV(s)ofaCP-garageisrealisedthroughthecustomer.(a)(b)(c)Figure15Overviewoftheholisticmodelshighlightinge-mobility:(a)ZoominCP;(b)Technicalmodelthe“Energysupplychainnet”;(c)Marketmodel.2.6.1.3HolisticarchitectureTheholisticarchitecturelevelisthecoreoftheLINK-basedarchitecture(Figure16).ItcomprisestheSmartGridsandtheelectricitymarket.Themarketsurroundsthegeneralisedarchitectureandcommunicateswithitthroughthemarketinterfaces“M”byexchangingaggregatedmeterreadings,externalschedules,etc.Atthisarchitecturallevel,thegridlinksofcustomerplantsareremovedfromthegeneralisedpresentationbecausetheyaretoosmalltoparticipatedirectlyinthewholemarket.Theymayparticipateinthecommonmarketthroughenergycommunities.Forthesakeofprivacyandcybersecurity,themarketinterfaces“M”aredesignedapartfromtechnicalinterfaces“T”.Thisarchitecturallevelformsthebasefordesigningandimplementingthedemandresponseprocess,themostcomprehensiveandcomplexoperationprocessinSmartGrids:Allvoltagelevels,customers,andthemarketareaffectedhere.Figure16HolisticarchitecturalleveloftheLINK-basedarchitecture.ThethreefundamentalcomponentsofthearchitecturearetheProducer,Storage,andGrid.TheyareanintegralpartofoneofthethreeE-mobilitydeploymentandimpactongrids28constituentelementsoftheLINK-Paradigm:Electricalappliances.ThecomponentsoftheholisticarchitectureareProducer-Link,Storage-Link,andGrid-Link.ThethirdandmostcomplexfundamentalcomponentofthenewarchitectureistheGrid-Link.Figure17ashowsanoverviewofit,whileFigure17billustratestheLink-Grid.Grid-Linkisacompositionofagridpart,calledLink-Grid,withthecorrespondingSecondaryControl(SC)..(a)(b)Figure17OverviewoftheGrid-Link:(a)Generaldepiction;(b)Link-Grid.Link-GridisthegridpartincludedwithintheLink.Itreferstoelectricalequipmentlikelines/cables,transformers,andreactivepowerdevicesconnecteddirectlytoeachotherbyforminganelectricalunity.Link-GridsizeisvariableandisdefinedfromtheareawheretheSecondary-Controlissetup.Thus,theLink-Gridmayinclude,e.g.,onesubsystem(thesupplyingtransformerandthefeederssuppliedfromit)orapartofthesub-transmissionnetwork,iftheSCissetupontherespectivearea.Asaresult,dependingonitssize,theLinkmayrepresentthehigh-,medium-,low-voltageandeventhecustomerplantgrid.Figure18showsthecontrolschemessetonatypicalLink-Grid.Figure18adepictstheHertz/Wattsecondarycontrol,whileFigure18btheVolt/varsecondarycontrol.EachLink-GridhasmanyBoundaryLinkNodes(BliN)throughwhichitconnectswithneighbouringLink-Grids.TheneighbouringLink-Gridsarerepresentedwiththesymbol(#).ProducersinjectdirectlyintoitviaBoundaryProducerNode(BPN);Storagesinjectorconsumepowervia(BoundaryStorageNode)BSN.(a)(b)Figure18ThecontrolschemessetonatypicalLink-Grid:(a)Herz/Wattsecondarycontrol;(b)Volt/varsecondarycontrol.Bydefinition,theLink-Gridisupgradedwithsecondarycontrolforbothsignificantpowersystemsentitiespairsthefrequency/activepowerandvoltage/reactivepowerbasedonthefactthatthefrequencydependsonactivepowerwhereasvoltagemainlyonreactivepower.Itsalgorithmneedstofulfiltechnicalissuesandcalculatetheconnectedfacilities'primarycontrols'setpointsbyrespectingthedynamicconstraintsnecessarytoenableastableoperation.TheLink-Grid’sfacilities,suchastransformersandthereactivepowerdevices,arealmostupgradedwithprimaryorlocalcontrol.Thus,SCsendssetpointstoitsfacilitiesandallentitiesconnectedattheboundarynodes.2.6.1.3TransmissionanddistributionlevelsandcustomerplantsataglanceChargingstationsareusuallyconnectedtothelowvoltagegrid.Exceptforlargefleetparkinglots,theyareconnectedtothemediumvoltagegridviaaMV/LVtransformer.TheshapeofloadconnectedinlowvoltagegridisusuallyspikyanddiscontinuousdependingonthedevicesinE-mobilitydeploymentandimpactongrids29operation.Fastchargingstationsinparticularcanfurtherdeformtheshapeoftheload.Theloaditselfincreasesnotablythusmakingtheloadshapedeformationinsubordinatedgridsmoreobvious.Figure19showsaschematicpresentationoftheGrid-LinksintheY-axiswiththecorrespondingHz/WSCchain.Sincefrequencyisaglobalparameterofpowersystems,thesub-processload-frequencycontrolthathappensminute-to-minuteisattributedonlytoHVTGrid-Links(setupontoday'stransmissiongrids).Figure19SchematicpresentationoftheresilientHzWSCchain:(a)Linkstructure;(b)Hertz/Wattcontrolloops;(c)Activepowerprofile.𝐻𝑧𝑊𝑺𝑪𝐻𝑉𝑇isstipulatedforthisGrid-Link.Meanwhile,bothsub-processes,theoperationplanningandeconomicdispatchapplyinallGrid-Links.Consequently,theload-generationbalanceprocessinGrid-Linksindistributionandcustomerplantlevelsincludesonlytheoperationplanningandeconomicdispatchsub-processes.Forthem,onlyWSCisstipulated.Figure19bshowsthe[Hz]WSCloopsofeachLink:𝐻𝑧𝑊𝑺𝑪𝐻𝑉𝑇,𝑊𝐒𝐂𝐻𝑉𝑆,𝑊𝑺𝑪𝑀𝑉,𝑊𝑺𝑪𝐿𝑉,𝑎𝑛𝑑𝑊𝑺𝑪𝐶𝑃.SimilartoVvSC,eachSCapplicationcalculatestherelevantsetpointsbyoptimisingitsowndecisionsthataresubjectto:E-mobilitydeploymentandimpactongrids30•Itsconstraints,and•DynamicconstraintsimposedbyneighbouringGrid-LinksDynamicconstraintscontroltheactivepowerflowinaHzWSCchain.Theychangeorshouldberecalculatedinreal-time,dependingonthecurrentsituation.Forexample:iftheactivepower𝑃𝑀𝑉𝐻𝑉𝑆suppliedfromHVS_Grid-LinkintotheMV_Grid-Linkshouldbereducedby20%,anewdesiredconstraintissenttotheMV_Grid-Link.WSCMVrecalculatesthesetpointsinitsareabyrespectingthenewconditionwiththesuperordinatedgrid.Otherwise,iftheactual𝑃𝑀𝑉𝐻𝑉𝑆isnotoptimalfortheMV_Grid-Linkoperation,arequestissenttotheHVS_Grid-Linktochangeit,andsoon.ThesameschemaworksacrosstheentireHzWSCchain.ThispermanentexchangeofdesiredactivepowerPbetweendifferentHzWSCloopscreatesaresilientinteractionbetweenthem.Figure19cshowstheactivepowerprofile.2.6.2E-mobilityandsectorcouplingFigure20showse-mobilityandtheCross-VectorandEnd-UseSectorCouplingembeddedintheLINK-Architecture.Energyvectorareasarepresentedindifferentcolours.Thelime-greenareapresentstheelectricityenergyvector,whiletheapricotareapresentsothervectorssuchasgas,heatingandcooling,andsoon.ItsmainelementsoutlinethegeneralisedLINK-Architecture:•Producersincludeallavailableplantsregardlessofsizeandtechnology,suchasconventional,hydro,wind,solar,geothermal,bioenergy,wasteheating,etc.•Gridsincludetransmission(veryhighandhighvoltagelevel)anddistribution(mediumandlowvoltagelevels);and•Storagesincludeallavailablefacilitiesregardlessofsizeandtechnology.Itcomprisesthetraditionalstoragefacilitiesandthe“virtualstorage”resources.Fortransparentmonitoringofstorageanditsappropriateconsiderationinalgorithmsofvariousapplicationsofmanagementsystems,theStorage-Linkisclassifiedasfollows:•Cat.A:Thestoredenergyisinjectedatthechargingpointofthegrid,suchaspumpedhydroelectricstorage,stationarybatteries,etc.•Cat.B:Thestoredenergyisnotinjectedbackatthechargingpointonthegrid,suchasPower-to-Gas(P2G),batteriesofe-cars,etc.•Cat.C:Thestoredenergyreducestheelectricityconsumptionatthechargingpointinthenearfuture,suchascoolingandheatingsystems(consumingdeviceswithenergystoragepotential).E-mobilitydeploymentandimpactongrids31Figure20E-mobilityandCross-VectorandEnd-UseSectorCouplingembeddedintheLINK-Solution2.6.2.1Smartcities’LINKarchitectureSmartCitiesareplaceswheredecarbonisationstrategiesforenergy,transport,buildings,andevenindustryandagriculturecoexistandintersect(EuropeanCommission2020).LINK-SolutionsupportsthedecarbonisationofalleconomicsectorsbyenablingEnergySystemsIntegrationinthecontextofsmartcities.TheflexiblesettingoftheGrid-LinksizeallowstheeasyapplicationofLINK-SolutiontotheSmartCitygrid.Figure21showsthetechnical/functionalarchitectureofadistrict.AnLVsubsystemwithadistributiontransformerandtwofeedersconnectsaresidentialbuilding,adistrictPVfacility,adistrictgaragewithe-carsandmanysingle-familyhouses.OntheresidentialbuildingisinstalledacommonroofPVsystemforallresidents,whileonthebasementisagaragewithe-cars.IntheonefamilyhousesarealsoinstalledrooftopPVfacilities,whileonthebasementofeachhouseisagaragewithane-car(thesearenotshownindetail).TwoLVGrid-Linksareidentified:theoneincludesthedistributiontransformerandthefeeders,theotherthegridwithintheresidentialbuilding.ThecorrespondingsecondarycontrolsaresetupontheLVgrids.CPGrid-Linksareputoneachflatandonefamilyhouse.OnthePVfacilitiesandchargingstationofe-carsaresetProducer-andStorages-Links.Figure21Technical/functionalarchitectureofaSmartCitydistrict.2.6.2.2E-mobilitydemandresponse:congestiononhighvoltagegrid.ThecurrentstructureofthegridandoperationoftheelectricitymarketpushtheoperationofthetransmissionsystemtoitslimitsrequiringaCOSTLYre-dispatchprocessforcongestionmanagement.Inthisprocess,TSOsareinterestedinknowingwhetheractivepowerflowsdecreaseorincreaseattheintersectionpointswithDSOs,butlessabouthowtheyoccur;whereastheDSOsarerequiredtokeepvoltagesthroughoutthegridwithinlimitsatalltimes,alsoduringthedemandresponseprocess.Figure22showsthedemandresponseprocessusedtosupportthecongestionalleviationprocess.Supposeanincreaseintheoverloadisexpectedinahigh-voltagetransmissionlineupto8%inthefollowinghours.TSOstartsthecongestionalleviationprocess:usingtherelevantapplications,hedefinestheBLiNsAHandBHonhisgridwheretheloaddecreaseshouldbe2%and6%,respectively.BothGrid-LinksconnectedontheBLiNsareMV_Grid-Links.TheyareoperatedfromthesameoperatorDSO_A.Afterwards,TSOinitiatesademanddecreaserequestandproposestwonewsetpointsaccompaniedbythesettingandduration.Afterreceivingtherequestforthenewsetpoints,DSO_Astartsthedemandresponseprocessandinvestigatesallpossibilitiestorealizethedemanddecreaseusingtheirinternalresources,e.g.,theCVR.The2%powerreductionintheBLiNAHwasrealizedbyperformingtheCVRonMV_Grid-Link.Nootheractionsareneeded.ThenewsetpointisnotifiedtotheTSO.ThereductiondesiredontheBLiNBHismoreextensivethanatAH,about6%,andonlyonepartofit,e.g.,5.4%,canbereachedbyperformingCVRinMV_Grid-Link_2.Fortherest,about0.6%demandreduction,otheractionsarenecessary.DSO_AinvestigateshisLink-Gridandtheday-1schedulesandidentifiestheBLiNsA2MandB2Masthemostsuitableones,wheretheflowshouldbereducedby0.4%and0.2%,respectively.LV_Grid-Link_1andLV_Grid-Link_2areconnectedrespectivelytotheBLiNsA2MandB2M.BothlinksareoperatedfromthesameDSO.Afterwards,DSO_Ainitiatesademanddecreaserequestandproposestwonewsetpointsaccompaniedbythesettingandduration.E-mobilitydeploymentandimpactongrids32Figure22Informationofemergency-drivenDRprocess:CongestiononHVGe.g.,lineoverload.Afterreceivingtherequestfornewsetpoints,DSO_Ainvestigatesallpossibilitiestorealisethedemanddecrease.HecannotperformtheCVRinitsLink-Grids,andtherefore,heshouldpassovertherequesttothecustomers,whoalreadyhavesignedacontractforparticipationintheDRprocess.Afterperformingthecalculations,DSO_AfindsthreeBLiNsthataremostsuitabletorealisethedemandreduction:A1LinLV_Grid-Link_1andA2LandB2LinLV_Grid-Link_2.Consequently,DSO-Ainitiatesademanddecreaserequestandgivesovertheloaddecreaseof0.4%,0.01%,and0.01%,respectively.Therequestisaccompaniedbythesettinganddurationtimeofthenewsetpoints.HMU-123,whichisadistrictgaragewithe-cars,isconnectedtotheBLiNA1L.Afterreceivingthenewsetpointrequest,HMU-123investigatesallpossibilitiestorealisethedemanddecrease.HeapprovesthenewsetpointandnotifiestheDSO-A.ThesameapprovalandnotifyingprocedureisalsousedbyHMU-945andHMU-1001.Aftercollectingallreplies,LVSO-BagreesonthenewsetpointsfortheBLiNsA2MandB2M.HavingtheapprovalsfromrelevantBLiNs,DSO_AcanalsofulfiltheBLiNBHrequirements,approvethenewsetpoint,andinformtheTSO.Thelattersenttheultimatesetpointsaccompaniedbythesettingandthedurationtime.DSO_AmakesthefinalchangesonthesetpointschedulesandsendstheinformationfurtheruptoHMUs.E-mobilitydeploymentandimpactongrids333.TSOPERSPECTIVETheincreasingnumberofEVsthatwillinteractwiththepowergridinthecomingyearswillcertainlyrequirespecialattentionfromgridoperators.EVswillrepresentanadditionalload,abigscaleenergystoragesystem,andadistributedflexibleresourceforgridservices.Onlythroughanoptimalmanagementofthebi-directionalchargingprocesswillitbepossibletosolvethepotentialsystemchallengesandtakeadvantageofallthepotentialopportunities.3.1ImpactonenergyandcapacityadequacyEVsareprojectedtoconsumeapproximately550TWhofelectricityintheyear2030,withLDVsaccountingforalmost70%ofthetotalEVpowerdemand,followedbytwo/three-wheelers(15%),buses(13%)andtrucks(4%).EVcontributionwithrespecttototalfinalelectricityconsumptionwillincreasefrompresentvaluesto1–6%(seeTable2).Despitebeinganimportantgrowth,percentagevaluesintotalelectricityconsumptionarestilllowandwillnotimplysignificantchallengesinthefutureforthepowersystemintermsofenergyconsumption.Inadvancedeconomies,theincreasingdemandassociatedwithEVsisexpectedtooccurinthecontextofasteadyorevenreducedtotalelectricitydemand,duetoenergyefficiencyimprovements.Inemergingeconomies,theconsumptionfromEVswillbeembeddedinthecontextoffast-growingelectricityconsumptionfromallsectors.However,intheeventthatsmartchargingisnotproperlydeployed(e.g.coordinatedwiththeactualgridcapacities),powerissuescouldariseduetomassiveEVdiffusion.Table2EVelectricityconsumptioninselectedcountriesandregions(Source:IEA).3.2Gridimpactusecases:privateandpublicchargingsolutionsTheregulatoryframeworkaswellastheassociatedtechnologytothepublicchargingnetworkaremovingforwardtodevelopanintelligentcharginginfrastructure.Thus,theintegrationtotheelectricitysystemwillnotbeanissue.ProfitablebusinessmodelsareexpectedtoemergeassoonasthepenetrationoftheEVinthetransportsectorincreasesenablingtheflexibilityofelectromobilityinthepowersystem.Nonetheless,andalthoughthemajorityofchargersdevelopedinprivateenvironmentsaretodayV1GenabledandtherearemanyusecasesdemonstratingV2Gfunctionalityinaprosumerenvironment,notallprivatechargingstationsareintendedtobesmart,inthesenseofobservabilityandcontrollability,atleastinaveryfirststage.Therefore,theimplementationofimplicitdemandsideflexibilitymechanismstoincentivizethecharginginvalleyperiodsbymeansofpricesignalswillbeveryusefultocounteractthefastandultra-fastrechargespromotedbypublicandsemi-publicinfrastructures.Thechargingstrategiescanhavedifferentimpactsonthepowergrid.Atthesametime,networkcharacteristics(e.g.,urbanorruralgrids,otherconnectedloads,gridtopologyandoperationalcharacteristics)couldleadtocertaincriticalities.Foracorrectimpactassessment,theanalysesonspecificgridportionsshould,therefore,beperformed.However,somecommonelementscanbeidentifiedtoprovideageneraloverviewofthepotentialgridissuesrelatedtodifferentusecases.Table3summarisessomeofthemostinterestingusecasesthathavebeenconsideredintermsofpowerandenergyissues,gridreinforcementneedsandpotentialflexibilityservices.Table1:EVelectricityconsumptioninselectedcountriesandregions(Source:IEA)CountryorRegion2019STEPS2030SDS2030China1,2%3%3%Europe0,2%4%6%India0,0%2%3%Japan0,0%1%2%UnitedStates0,1%1%4%E-mobilitydeploymentandimpactongrids34Table3Usecasesofchargingstrategieswithdifferentimpactsonthepowergrid.Fortheconsidereduse-cases,threemainconclusionscanbederived.Atfirst,diffusedslowchargingcouldgenerateexcessivepowerdemandduetocontemporaneityeffects.ThiswilloccurmostlywhenmanyotherloadsareconnectedtoLVlines(typicallyduringevening-peakhours)andcouldcreateoverloadsonSecondarySubstationsoronLVlinesthemselves.Asshowninthenextsection,smartchargingcandramaticallyreducethisproblem.Secondly,whenhighpowerconnectionsarepunctuallyrequired,new,dedicatedsubstations(andconnectionlines)mustPUBLIC,SLOWCHARGINGStreetparking,Social/recreationalareas,Park&RideHOME/PRIVATECHARGINGSinglehouses,apartments,hotels,officesCOMPANYFLEETSPoolvehicles(utilities,publicservices,privatecompanies)Slow,ACchargingConnectiontolowvoltagelinesMedium/longconnectiontimeConnectionCharacteristicsGridImpactanalysisPowerissues:Intheeventofmultipleinstallations,significantimpactscanbeexpectedinSecondarySubstations(MV/LVtransformers)andMVandLVlineswherepowerflowssumup.Peakshavingsolutionscouldsignificantlylimitthisproblem.Voltageissuescanbeexpectedinruralareas.Energyissues:nosignificantissuesintermsofenergysupply.Gridreinforcement:ItcouldbenecessarytoreplaceMV/LVtransformersand/orMVandLVfeeders.Potentialforflexibility:Highpotentialduetolongconnectiontimes.Bestcase:companyfleetswithpredictableusepatterns.UseCasesHIGHPOWERCHARGERS–“FUELSTATION”MODELFastchargers(50–150kW)inexistingfuelstationsURBANHYPERHUBSHyperfastchargers(150–350kW)innewdedicatedareas.Designedforcarsinurbanareas.Fastorultrafast,DCchargingConnectiontomediumvoltagelines,throughshared(fuelstation)ordedicated(hyperhub)POD.ShortconnectiontimePowerissues:Also,singleinstallationsmayrequireasignificantincreaseofpowerabsorption.LoadsgeneratedbyEVchargingadduptootherLVandMVloads.Theimpactscouldbesignificant,alsoonMVlines.Energyissues:energywithdrawalfromthenetworkcouldbesignificantbutnoissuesareexpectedGridreinforcement:itcouldbenecessarytoinstalladedicatedMVsubstationwithadditionalcostandtime.MVlines(andinsomecases,MV/LVtransformers)couldneedtobereplaced.Potentialforflexibility:minimumpotentialduetotimeconstraints.EnergystoragesystemscouldbeinstalledtolimitpeakpowerandtoallowtheparticipationtoflexibilityservicesBUSDEPOTSHighnumber(tens/hundreds)ofbusesperformingnightchargingHighpower(50–100kW/bus)charging,bothACandDC.Connectiontomediumvoltagelines.PossibilitytoshareconnectionwithotherLPTloads(e.g.subway).Longconnectiontime,butcoherentwithrequiredchargingtime(highbatterycapacity)Powerissues:Asingledepositcouldrequire5–10MW,ofteninurbanareas.Thereisastrongneedforcoordinationbetweengridoperatorsandlocalpublictransportoperators.Energyissues:Moderateadditionalenergydemand.Gridreinforcement:Intheeventofthehighnumberofbuses,newprimarysubstationscouldberequired.InterventionscouldberequiredforMVlines.Potentialforflexibility:Goodcontrolofvehicleconsumptionandofthechargingprocessduetopredictableusage.Onlyapartialopportunityforflexibilityservices,duetotime/powerconstraints.HIGHWAYHYPERHUBSHyperfastchargers(150–350kW)innewdedicatedareasonhighwaysbothforcarsandforheavydutyvehicles.Multipleultrafast,DCchargingConnectiontoHighVoltageLines,throughdedicatedPOD.ShortconnectiontimeandhighcontemporaneityfactorPowerissues:Asinglehubcouldrequiremorethan10MW,ofteninruralareas.ThereisastrongneedforcoordinationwithgridoperatorsinordertolocatehubsclosetoexistingHVlines.Energyissues:Energywithdrawalfromthenetworkcouldbesignificantbutnoissuesareexpected.Gridreinforcement:AnewPrimarySubstationwouldberequired.Awell-plannedlocationwouldminimisetheneedfornewHVlines.Potentialforflexibility:Minimumpotentialduetotimeconstraints.EnergystoragesystemscouldbeinstalledtolimitpeakpowerandtoallowtheparticipationtoflexibilityservicesE-mobilitydeploymentandimpactongrids35beinstalled.Thisgeneratesadditionalcostsandtime.Finally,whencharginginfrastructureisaimedatbusesandtrucks,tensofMWcouldbeadditionallyrequired.Inthiscase,newlinesorevennewprimarysubstationscouldbenecessary.Astrongcoordinationamongchargingoperatorsandgridoperatorsishighlyrecommendedtoidentifythebestlocationandthebesttechnicaloptions.3.3EVasanopportunitytothesystem3.3.1.ManagingandmonitoringthechargingprocessInthetraditionalchargingprocess,absorbedpowerisgivenbythetechnicalcapabilityofboththevehicleandthechargingstation.Itisthemaximumpowerthatbothcomponentscanstandandcouldbelimitedbyeitherthevehicleorthechargingdevice,dependingontheusecase.Oncetheacceptedpowerisidentified,itremainsconstantatitsmaximumlevelformostofthechargingprocess.Therefore,thechargingwilloccurintheshortestpossibletimeandwiththehighestpowerabsorption.Especiallywhenthevehicleconnectiontimeislong,thislogicshouldbecompletelymodified.Chargingstations,bothprivateandpublic,are(orshouldbe)equippedwithcommunicationandcontrolsystemsthatallowforthereal-timecontrolofthepowerset-pointtomanagethechargingprocessaccordingtothemostappropriatepowerabsorptionprofilefromthesystemperspective.Inaddition,thechargingtimeschedulingshouldalsobemanaged.Thiscouldoccurintwoways:•Theuserisencouraged,throughachargingsolutionrepresentingavalidvaluepropositionforhim,toconnectthevehicleatspecificmomentsoftheday(e.g.,duringdaytimeratherthanduringevening-peakhours).•Whenthevehicleisconnected,thechargingprofileisadjustedintermsofintensityofenergywithdrawalandintiming(postponedbutalsoanticipated)byanoperationalalgorithmoftheenergymanagementsystem.Bycombiningthepowerprofilecontrolandthetimescheduling,thechargingprocesscanbesignificantlyimprovedtoobtainbenefitswithrespecttostandardcharging.Thisapproach,commonlyknownassmartcharging,canbefurtherenhancedwhenconsideringV2G.Inthiscase,powercontroloperatesnotonlyonpowerabsorptionbutalsoontheEVbatterydischargepower.BothsmartchargingandV2Gareperformedwithtwomainobjectives.Thefirstoneistolimitpeakpowerdemandattimeswhererenewableelectricityproductionwillbelow(andinjectpowerinthegrid),andthegridcongestionissuesassociatedwithEVcharging.Thesecondobjectiveisgenerallytotakeadvantageofthebatteries’capabilitiesofferedbyEVsforflexibilityservices(e.g.,frequencycontrolandancillaryservices).Today,V2Gsolutionsprovidehigherflexibilitycapacitybutalsoahighertechnologycost,whichlimitstheirviabilitytoonlyaportionofEVs;theirwidespreaddiffusioncouldoccurinthemedium-termfuture,especiallyforhouseholds.Asdetailedfurtherinthenextsections,thepossibilityofdynamicallyadaptinggridtariffsandprovidingenergypricesignalswillbecrucialforengagingEVusersinsmartchargingschemes.Toallowthis,themassiverolloutofsmartmetersperformingminimumhourly/quarter-hourlymeteringrepresentsafundamentalpre-requisite,aswellastherelateddatamanagementsystem.FOCUSBOX#3EVFEATURESASFLEXIBILITYSOURCESEVscanremainconnectedtotheelectricgridformanyhours;thisallowsfortheiruseasaflexibilityresourceandasadistributedpoolwithinoneelectricitymarketzone,providedthechargingprocessisnotpurelypassive.Automotivebatterieshaveasmallcapacity(30–100kWh)andslowEVchargershavesmallpower(3-11kW)thusrequiringtoaggregatemanyvehicles,and/orotherlocalsmall-scaleflexibilityresourcestoenableancillaryservices.Vehiclesmustsatisfyusers’drivingneeds.Thislimitstheenergyandtimeavailabilitytoprovideflexibilityservices:•TheflexibilityprovidermustbalanceoutsingleEVunpredictabilitythroughaggregationattheproperleveltooffertheaggregatedamountasamarketableresourceofflexibility•LowattractivenessofpricesignalsforEVusers,tobepotentiallyenhancedbyprovidingacomfortableexperiencethroughautomaticchargingandextraservices(smartphoneapplication,gamification,driving&non-drivingamenities)•SimpleandreliableinformationaboutthelocationofthechargingpointsandtheiravailabilityinnearrealtimeneedstobeprovidedThesameEVcanchargeatdifferentplaces,times,andstateofcharge.Platform-basedforecastingshouldtacklethesemultiplechargingoptionsthroughstochasticaggregation.TheincreaseofEVadoptioncouldbeveryquick;therefore,itisparamounttoimmediatelybeginthedeploymentofsmartchargingand,wheneverviable,ofV2Gsolutions.Research&innovationarefocusedmoreonvehiclecostandperformances(e.g.,ultra-fastcharging)thanongrid-friendlyaspects(e.g.flexibilityprovision).Regardless,EVswithhighercapacitybatterieswillbewell-suitedtoprovideflexibilityservices.Figure23FocusBox#3:EVsasaflexibleresource(Source:ENTSO-E).Chargingstations,bothprivateandpublic,will(orshould)alsobeequippedwithcommunicationsystemsthatallowsreal-timemonitorofthepowerofthecharging/dischargingprocess.ObservabilitywillbecrucialinadvancedscenariosinwhichtheEVwillcontributetosatisfytheenergyneedsofhouseholdsandsmallandmedium-sizedenterprisesbymeanofV2H(VehicletoHome)orV2B(VehicletoBuilding)technologies.Fromthepointofviewofthesystemoperation,thelackofobservabilitywillintroduceuncertaintyintheconsumersdemandpatternsthatwillundoubtedlyaffecttothedemandforecast.Theguaranteeofthesecurityofsupplybymeansofthebalancebetweendemandandgenerationhasnottobecompromised.E-mobilitydeploymentandimpactongrids363.3.2.MainopportunitiesprovidedbyEVchargingmanagementBasedonthepreviousarguments,adetailedanalysisshowsthatseveralopportunitiescanemergefromtheEVchargingmanagement(Figure24).Figure24Opportunitiesforthewholesystemandactors.OPPORTUNITY#1–Reshapingthepowerloadcurve(Figure25)What?TheEVchargingprocesscanbeshiftedfrompeak(eveninghours)tooff-peakhourstoavoidtheneedforadditional(marginalandthereforemoreexpensive)powercapacityduringthepeaks(typicallyfossil-based).Justthetime-shiftofthechargingprocesswillhaveanimportanteffect,removingtheadditionalload.ThepositiveeffectcanbesignificantlyincreasedifEVschargeduringthedayandprovideenergybacktothegridduringthepeak,throughV2Gtechnology.Thisway,theuseofEVswouldreducetheneedforfossil-basedpowergenerationduringpeakhours.How?Differentsolutionscanbeapplied.Todrasticallyshiftchargingfromtheeveningtomoresuitabletimes,achangeinusers’habitsneedstobestimulated.Thiscanbeachievedthroughnewtariffschemes(e.g.,hourly)andbyfacilitatingthepossibilityofchargingEVsatofficepremisesorinPark&Ridefacilities.Toshiftchargingfromtheeveningtothenight,bothToUtariffsandchargingmanagementbyaggregatorscouldbeadopted.Itisimportanttohighlightthemaindifferencesbetweenthem:ToUtariffscannotbechangedfrequently(e.g.,weekly,daily)tobeeffective,whileaggregatorscanprovideflexibilityrequestedtheday-ahead(orinrealtime)andwhennecessaryinsomespecificpartsofthegrid.Inshort,bothsolutionsarecomplementary.Whobenefits?Benefitswouldbeobtainedbytheenergysystemasawhole.Generation-orientedpeakshavingwillreducegenerationcostsandCO2emissions.Moreover,gridswillbeoperatedinamoreefficientwaywhensomepeakconsumptionismovedtooff-peaktimes.Aneffectivemethodofidentifyingtariffvalues,reflectingthegeneralbenefits,shouldbedefinedbytheregulatoryauthorities.Asaserviceprovidedbyvehicles,theeconomicbenefitswouldbealsofeltbyEVowners(e.g.,inthecaseofchargingEVinsteadofexportingthesurplusofgenerationtothegrid(fromself-consumption);thismightbeveryusefulparticularlyinholidaydayswhenself-consumptioninstallationsmightcreateasurplusenergyexportedtothegrid).FOCUSBOX#4THEEFFECTOFSMARTCHARGINGANDV2GONEVLOADCURVEGraphsrepresentingthecaseofBelgiumclearlydepicttheseeffects,highlightingtheimpressiveregulationcapacitywhichcanbeofferedbyEVs.Consideringthetypicaluser’sdrivingbehaviour,EVswouldbecommonlyplugged-induringeveninghours.Thiswouldgenerateafastramp-upofEVelectricitydemandwhichcomesontopofthealreadyexistingcriticaleveningrampoftheresidualload(totalloadlessPVandwindgeneration),evenwithoutanyEVcharging.Therefore,uncoordinatedchargingcreatesaproblemofsharpeningthepeak,requiringcostlygenerationtointerveneandthepotentialinstabilityofthegrid.Regardinggridreinforcements,theissuewillbetackledinthenextchapter.SmartchargingcanbeneficiallyreshapetheEVloadcurve,shiftingthepowerrequestatsuitabletimes(fromthebluecurvetoorangecurve):E-mobilitydeploymentandimpactongrids37laterinthenight(whenthepowerrequestissmaller)andduringthedaytime(whenPVproductionishigher).IfsomesmartchargingisalsoequippedforV2G,thereshapingeffectisemphasised(greycurve),thereforecontributingtosmoothingoutnotonlytheEVloadbutevenpartoftheglobalresidualload.UncoordinatedEVload,smartchargingeffectandV2GeffectinBelgium2030,EVpenetrationscenario(Source:EliaGroup).Figure25FocusBox#4:TheeffectofsmartchargingandV2GonEVloadcurve.OPPORTUNITY#2–AncillaryservicesforsystemoperationWhat?EVscanbeusedtosupportthebalancingsystem,keepingthefrequencyclosetothereferenceof50Hz.EVscouldmodulatetheirchargingprofile(oreventhegeneratedpowerintheV2Gscheme)andparticipateinreservemarkets(whereinplace),providingfrequency-responsereserveandreplacementreserve.Duetothetechnicalcharacteristicsofautomotivebatteries,EVscanalsoprovidefast-frequencyreserve,whichisbecomingprogressivelymorerelevantforthesystemoperation.WithV2Gchargers,voltagecontrolfortransmissiongridcouldalsobeperformed.How?EVscouldmodulatetheircharging/dischargingpoweraccordingtotherequestsoftheTSO,channelledthroughaBSP(e.g.aggregators)anddefinedinproperflexibilitymarkets.Modulationcouldoccurforsecondsoruptohours,accordingtothekindofserviceoffered.NewrulesshouldbeappliedtoflexibilitymarketstoavoidexcludingapromisingtechnologysuchasEVsfromparticipatingintheAncillaryServicesMarketsinlinewiththeactualandfutureEuropeanregulatoryframework.Thecharginginfrastructurecouldalsomodulatethecharge/dischargepowerbasedonsystemfrequencyvaluestoprovideprimaryfrequencyresponseaccordingtoFigure26andundertherequestoftheTSO.E-mobilitydeploymentandimpactongrids38Figure26Chargingpointwithfrequencysensitivefunctionalitypossiblescenarios.Whobenefits?MostrelevantbenefitswillbeobtainedbyTSOsandgridusersasEVs’supportcontributestoguaranteeingthewholepowersystemgridstability,adequacyandqualityasapartialsubstitutionfortraditionalfrequency-controlsystems(e.g.,rotationalinertia)andsyntheticinertiasolutions.Asaserviceprovidedbyvehicles,theeconomicbenefitswouldbealsofeltbyEVowners.OPPORTUNITY#3-ManagementofgridcongestionsWhat?EVscanbeusedasdistributedresourcetoreducetheriskoftransmissiongridcongestions,sotominimize“re-despatching”.Beingwidelydiffusedontheterritory,theyofferTSOsandDSOsimportantpossibilitiestoeffectivelyinterveneinareaswherecongestionsinlinesandnodestypicallyhappen.How?EVscouldmodulatetheircharging/dischargingpoweraccordingtotherequestsoftheTSO,channelledthroughamarketserviceprovider.Thiscouldoccureitherinadvance(day-aheadmarket)orduringoperation(intra-dayandbalancingmarket).Whobenefits?MostrelevantbenefitsaretobeobtainedbyTSOsandDSOs,astheylimit“re-despatching”costs(useofsub-optimalgenerationorloads).RedispatchingcostsarereducedbecauseEVareofferingflexibilityservicesandincreasingtheliquidityofthemarkets.Asaserviceprovidedbyvehicles,economicbenefitswouldbealsoreflectedtoEVowners.OPPORTUNITY#4–AvoidoverloadsondistributiongridsWhat?EVchargingcanbeshiftedfromeveningpeakhourstooff-peakhours,(e.g.,night-time)toavoidadditionalloadsondistributiongridsandlimitelectricalandthermalstressesonMV,LVlinesandsecondarysubstations.Thissolutionparticularlysuitshomecharging,avoidingtheriskofcumulatedeffectswhenvehiclesarrivehome(highcontemporaneityfactoralsowithdomesticappliances).Relatedtothisopportunitytherearetwodifferentconcepts:ontheonehand,long-termflexibilitymarketsareusedtosolvestructuralcongestions,andontheotherhand,short-termflexibilitymarketsareusedtosolveunforeseencongestions,normallymadenowwithredispatchingmarkets(EVmightbeacomplementarysolutiontodeferringgridinvestmentsinreinforcementsoradditionalcapacityandunforeseenloads).Implicitflexibility(e.g.,ToUtariffs)mightbeanotherpossibility.How?Bothareshapingofthevehiclechargingcurve(flatteningpowerabsorptionforlongerperiod)oracompletechargingpostponingwouldhavepositiveeffects.TariffschemesandespeciallyToUtariffsarethefirstsolutiontostimulatechargingtime-shift.Regardless,staticToUtariffscouldgeneratetheriskofprice-ledcongestionsonthedistributiongrid.Instead,dynamictariffsreflectinglocalgridconstraintsandcommunicatedthroughautomaticpricesignalscouldguaranteethebestresults.Whobenefits?MostrelevantbenefitswillbeobtainedbyDSOs,reducingtheneedtoreinforcedistributiongrids.Asasolutiondrivenbytariffschemes,finaluseswillhaveadirecteconomicadvantage.E-mobilitydeploymentandimpactongrids39OPPORTUNITY#5-VoltagecontrolindistributiongridsWhat?Bi-directionalDCchargerscanbeusedtoperformvoltagecontrolondistributiongrids.Thiswouldoccurthroughreactivepowercontrolbypowerelectronicsequipmentinstalledinthechargers(regardingLVgrids,voltageismostlycontrolledbyactiveenergyinsteadofreactiveenergyduetoR/Xratio;however,ifEVchargingpointsaredirectlyconnectedtotheMV,thenreactiveflowsbecomemoreefficienttocontrolthevoltage).VoltagestabilityguaranteesgridcorrectoperationandisespeciallyrequiredwhenhighsharesofvolatileRESareconnected.How?VoltagecontrolhastooccurthroughadirectcontrolofbidirectionalchargersasperformedbychargingpointoperatorsorbyBSPs.Whobenefits?MostrelevantbenefitsaretobeobtainedbytheDSOs.Theywillexperienceabettergridoperationandthereductionoftraditionalvoltageregulatorsusage(lessagingandmaintenancecosts).Asaserviceprovidedthroughvehiclesandchargers,economicbenefitswouldbealsofeltbyEVownersandCPOs.OPPORTUNITY#6–Reductionof“over-generation”byRESWhat?ConsideringtheincreasingamountofRESgenerationexpectedinthenextdecades,over-generationandcurtailmentofgreenenergywillbecomearelevantissueinperiodsofsmallnationalconsumption,suchasnationalholidays.EVscanscheduletheirchargingprocesstofullymatchandhenceexploitrenewablegenerationavailability.Inregionsrelyingonwindpowergenerationthereislowerpredictability,butnight-chargingcouldbeeffective.InregionsrelyingonPVgeneration,chargingshouldbeconcentratedduringday-timecentralhours.How?Toalignwindgenerationandnightchargingnospecialmeasuresarerequired.TomatchEVchargingwithPVproduction,achangeinusers’habitneedtobestimulated.Thiscanbedonethroughnewtariffschemes(hourly/quarterlyorpotentiallyrealtime-basedtariffs)andbyfacilitatingthepossibilityofchargingattheofficepremisesorinpark&ridefacilities.Whobenefits?Benefitswouldbeobtainedbytheenergysystemasawhole.Over-generationreductionwilllowergenerationcostsandCO2emissions.Aneffectivemethodofidentifyingtariffvaluesreflectingthegeneralbenefitsshouldbedefinedbytheregulatoryauthorities.OPPORTUNITY#7-“Behindthemeter”services(consumerperspective)What?AlthoughthisopportunitycanbeconsideredformtheuserperspectiveinChapter5,itisimportantalsotorecognizethatEVscanbeusedforthesamepurposesasotherdomesticstoragesystems.Theycanincreaseself-consumptioninthepresenceofRESgeneration(prosumercase),thusreducingtheelectricitybill.EvenintheabsenceofRESgeneration,EVbatteriescanbeusedtoperformtariffoptimisation,chargingduringlow-priceperiods,andthenprovidingtheirenergyfordomesticloadsduringhigh-priceones.Thesameobjectivesandbenefitscanbeachievedbothwithprivatecarsandwithcompanyfleets.How?TariffschemesandespeciallyToUanddynamictariffsarethekeyenablersfortheseservices.Oncetheseareinplace,theuseroranautomaticenergymanagementsystemcancontrolvehiclecharging/dischargingtomaximisebenefits.Forthesepurposes,bi-directionalchargerscansignificantlyincreasetheadvantages.Whobenefits?EVowners(bothprivateandcompanies)canobtaininterestingeconomicbenefitsbyperformingbehind-the-meterservices.Withrespecttostandarddomesticstoragesystems,theuseofEVsallowsbatteryinvestmentcoststobeavoided,evenifpartially/temporarilylimitingstorageavailability.Ifgridtariffandpowerpriceschemesareproperlydesigned(forexample,avoidingdoublechargingforbidirectionalflows),theenergysystemcanbenefitfromtheseservices,shiftingEVschargingduringoff-peakhoursandalsoreducingdomesticloadspowerabsorptionduringpeakhours.OPPORTUNITY#8–TakeadvantageofHyperchargersforHeavyDutyVehiclesWhat?HDVswillaskforarelevantamountofpower,andtheirintensiveusagepatternwillnotleavemuchroomforperformingsmartchargingorprovidingservices.Thedaytimeuseofhyperchargers(150–350kWandmore)connectedtoHVgridsandproperlylocatedwillbothavoidtheriskofoverloadsinlowervoltagelevelsofthegridduringpeakhoursandenablethesignificantuseofrenewableenergy.How?E-mobilitydeploymentandimpactongrids40HyperchargersdesignedforheavydutyvehiclesshouldbeconnectedtoHVand/orMVgridsandlocatedclosetoexistinglines.Toensurethis,strongcooperationbetweentheTSOsandthehubinvestors/operatorswouldberequired,thusinstallingotherfacilities(e.g.,stationarybatteries)couldalsobetakenintoconsiderationtolimitthepeakpowerdemand.Inadditiontothis,specifictariffsordrivingschemesshouldalsobesupportedtostimulatedaytimecharging.Additionalservicesfordriversduringcharginghoursshouldbealsopromoted.Whobenefits?DSOswillexperiencerelevantbenefitsavoidingcriticalloadsontheirgrids.Thepropermanagementofheavy-dutyvehicles,accordingalsotoopportunity#1and#6,willhaveapositiveimpactontheoverallenergysystemtoo.Aneffectivemethodtoidentifytariffvaluesreflectingthegeneralbenefitsshouldbedefinedbytheregulatoryauthorities.However,ifEVchargingpointsparticipateinbalancingservices(FCR),suddenchangesintheirconsumption(ramps)mightresultinrelevantvoltageproblemsinthedistributiongrids.Thiscasecouldbemoreimpactfulingridswithlowlevelsofshort-circuitcurrents.3.3.2.StackingtheopportunitiesSomeoftheopportunitiesprovidedbyEVcharging,evenifdistinguishableasobjectives,canbestacked.Severalbenefitscanbeobtainedwiththesame“smartcharging”solution.ThemostrelevantexampleisshiftingEVchargingfromeveninghourstodaytime.Inthiscase,electricitycostreductionwillbeobtainedforfinalusers(Opportunity#7),overloadsondistributiongridswillbereduced(Opportunity#4),thepowergenerationcurvewillbebeneficiallyreshaped(Opportunity#1)andover-generationwillbelimited(Opportunity#6).Alltheseobjectivescanbereachedsimultaneously,andthebenefitswouldbeenjoyedbymultipleactors.Asanexample,inFigure27theeffectsofsmartchargingontheGermanloadprofilearedepicted,togetherwithaPVgenerationhistogram,showingtheshiftofdemandpeaktoatime-slotwheremoreelectricityisbeinggenerated.E-mobilitydeploymentandimpactongrids41Figure27AveragetotalelectricityloadinGermanywithuncoordinated(up)andsmartcharging(down)(Source:EliaGroup).Similarly,severalbenefitscanbeobtainedbyperformingreal-timecontrolonthechargingprocess.Chargingpeakscanbeshaved(Opportunity#4),voltagecontrolcanbeperformedbyDSOs(Opportunity#5),ancillaryservicesforthetransmissiongridcanbeprovided(Opportunity#2)andgridcongestionscanbemanaged(Opportunity#3).Differentlyfromthepreviousexample,inthiscasethefourobjectivescannotbesimultaneouslyreachedasdifferentcontrolstrategieswouldbeneededandallofthemcannotprovidedatthesametime.Whilepursuingonestrategy,crosseffectscouldoccur,andtheycouldbebothpositiveandnegativeforotherstrategies.Thesecrossrelationshipsshouldbecarefullyconsidered,soacompleteknowledgeofthetotaleffectisgainedbytheinvolvedactors.Forexample,thesumofindividualbehind-the-meteroptimisationscouldnotresultintheoptimalsystem-wideloadprofile.Itisnecessarytostudytheinteractionsbetweenthetwoaswellasappropriatepricesignalsforendusers.Thedescribedexamplescouldalsobestacked.Performingfine-tune,real-timecontrolonadaytimechargingprocesscouldindeedprovidethegreatestnumberofopportunities.3.4DemandsideflexibilityfromelectromobilityStorageanddemandsidemanagementaretwokeyflexibilitytoolsforthesystemoperation.Inthatsense,electromobilityit'scalledtobecomeanimportantplayerfortheflexibilityintheenergytransition.Butsmartchargingcomesfirstinprovidingsystemflexibility.TheCEP(CleanEnergyPackage)placesstorageanddemandfacilitiesatthesamelevelofgenerationplants,boostingintegrationofelectromobilityintotheelectricitynetworkalsothroughitsparticipationinthepowermarketsandnewflexibilityservicemarketsfordistributionnetworks.Inaddition,thankstothetranspositionoftheCEPintotheMemberStatesregulation,onthepathofconvergencetowardstheinternalelectricitymarket,aswellastheimplementationoftheElectricityBalancingGuideline,balancingmarketsarebeginningtoopentheparticipationtodemandandstoragefacilities.ItistheroleofTSOsaccompanythesechangesadaptingtheiroperatingproceduresinthefieldofscheduling,balanceservices,settlement,andmeasurestomakethishappen.HarmonizedandstandardizedproductstailoredtothesenewflexibilityresourcesmustbeimplementedwithintheEUmarkets.Smallerproductsizesandshorterschedulingtimeframeswillallowtheseflexibilityresourcestocompeteatalevelplayingfield.Therefore,ononehand,despiterequiringsmallerproducts,itisessentialthattheregulatoryframeworkoftheaggregator,andspecificallytheindependentaggregator,bedevelopedinthememberstatesregulation.Andontheotherhand,itisalsonecessarytheimplementationoflong-termcontractsandquarter-hourlyday-aheadandintradaymarketstoenabletheirparticipation.Thequarter-hourlyoffersallowgreaterflexibilitytotheelectricvehiclesmartchargingaggregators,beingabletoassignagreaternumberofoffersthaninthecaseofhourlymarkets.TSOscanmakeuseofdemand-sideflexibilitynotonlyonthebalancingmarketsandnon-frequencyancillaryservices,butalsoinothercapacitymarketsneededtotacklethecollateraleffectsofincreaseduptakeofgenerationfacilitiesfromrenewableenergysourcesthatduetoitsvariabilityandintermittency,certainrisksmayappearinthesecurityofsupply.Anotherperspectiveofdemandsideflexibilityfordistributionnetworkscanbereadinchapter4.3.3.5Differentperformancesandtheirlimitations:Vehicle-to-GridInaworldinwhichisnecessarytoincreasetheuseofrenewableenergiestoreducepollutionandfightclimatechange,wealsoneedlargeenergystoragesystemstodealwiththevariabilityofrenewablegeneration.Withthemainproblembeinglarge-scaleelectricitystorage,theroleoftheEVpresentsapossiblesolution.Thescenarioofmillionsofelectricvehiclesconnectedtothegridcanalsobeunderstoodashavingmillionsofbatteryenergystoragesystems(BESS)connectedifV2Gtechnologyisfinallyfullydeployed.FurthertechnologicalinnovationinthisfieldwillallowtheuseoftheEVasamechanismforenergystorage,anincreasedintegrationofrenewableenergiesintotheelectricitysystemandbidirectionalenergyflows(fromtheEVtothegrid,V2G,andfromthegridtotheEV,G2V).Thepreviousdevelopmentswillenablenewservices,suchasbuyingandsellingelectricityusingtheelectricvehiclebatteries.Userswillhavetheopportunity,forinstance,toexport(sell)energyfromtheirEVsatpeaktimes,andthenbeabletocharge(buy)energyduringathourswhenthepriceofenergyislower.ThesekindofactivitiesforEVuserscouldindirectlyhaveimportantbenefitsfortheelectricitysystemsincetheycouldbeconsideredatooltoreducepeakdemandand,thus,makingunnecessaryadditionalpowergenerationfrompowerplants.V2Gcanequallybeuseforpeakshavingtargetingmomentsofpeakdemand,byusingtheenergystoredinEVsandbringingsomeeconomicadvantagestobothSOsandconsumers:•Savingsinbillsbyavoidinghighpricesindemandpeaks.•Providingdemandresponseservicesthatcanreducedemandpeaks.•ProvidingflexibilityservicetoTSOsbasedonthesetofBESSs.•Reducingtheintermittentoperationofpowerplants(savingonstart-up/shutdownandmaintenancecosts),andthusavoidingextracosts.•Postponinginvestmentsininfrastructuresandoptimizingtheirutilization.Nevertheless,therestillexistimportantlimitationsnowadays.Charginginfrastructurewillneedasignificantinvestmenteffortforpublicandprivatechargerstoimplementthesetypesofservices.Ontheotherhand,oneofthemostrelevanttassofTSOsistomatchpowergenerationandconsumptioninacontinuousway,andforthisreasonthecurrentregulationrequiresthatgenerationfacilitieshavetheavailabilityofincreasingordecreasingpowergenerationunderthereal-timecontroloftheTSOinthedifferentbalancingservices.V2G(implementingcontrolledcharging)providesgridconnectedEVswithavolumeofstoredenergythatthegridoperatorcanrequestasaservicetoregulateE-mobilitydeploymentandimpactongrids42thenetworkfrequency.Nowadaysthisfrequencyregulationismostlyprovidedbylargegenerators,withlowerliquidityinthebalancingmarketsforthesystem,probablyleadingtogreatcosts,andusedtobalanceactiveenergysupplyanddemand.ThefastchargeanddischargecyclesofEVbatteriesmakeV2Ganalternativetothosetraditionalfrequencyregulationmechanisms.MoresimulationsofelectronicinterfaceswillbeneededtoperformcentralizedcontrolactionsadaptingtheoperatingconditionsofEVs,asinthecaseofprovidingfrequencyregulationservices.ItcanbededucedthatEVswithhighercapacitybatterieswillbewell-suitedtoprovidethoseflexibilityservices.EVscanbeconnectedtothegridduringlargeperiodsofthedayactingasanelectricitymarketzoneresource,providedthechargingprocessisalsoactive(itmustbenotedthatprovidingthiskindofflexibilityrequiresabatterywithhighchargingefficiencyandahighmaximumnumberofcycles,whichmightbeaneconomicbarriertoparticipateinthesemarketsifnotproperlyfulfilled).Inaddition,itisrecommendedtohavesimpleandtimelyinformationaboutthelocationofthechargingpointsandtheiravailabilityinnearreal-timeneeds.Aswell,improveddemandforecastmodelswillbenecessaryconsideringtheuserbehaviourwhenconnectingtheirEVtothegrid.3.6Cross-borderimpactoftransportelectrificationTherearedifferenttypesofcross-borderimpactscausedbytheelectrificationoftransport.Ontheonehand,thereareimpactsderivedfromthefreedomofmovementintheroadtransportofpassengersandgoodsatthebordersoftheEU.Butontheotherhand,thereisanimpactrelatedtotheinternalelectricitymarketthathasnothingtodowithpassengertraffic.Theimpactproducedbydirectroadtransportaffectstheplanningofthecharginginfrastructureandthereforethatoftheelectricitygrid.InEuropetherearecross-bordermigratoryflowsofpeoplewhotraveltospendvacationperiodsinothercountries.Roadtransportofgoodswillalsoproduceasignificantincreaseofthecross-borderelectricitydemandduethisactivitythatnowadaysitiscarriedoutbymeansofvehiclesbasedoninternalcombustionengines.ItisexpectedthatPan-Europeantransportcorridorswillattendtheseflows,andinthatsense,accompanythedeploymentofthechargingnetworktotheprogressiveincreaseofelectricvehicles.Butthefactisthatitisnotnecessarytocrosstheborderwithyourownvehicle:onecanrentacaratdestination,alsoproducingalocalincreaseintheuseofroads.Therefore,thereisalsoanindirectsignificativeimpactproducedbytheincreaseofvehiclescomingfromotherregions,which,addedtothosefromrentalfleetscan,insomecases,evendoubleortripletheusualvolume.Thisseasonalvariabilityindemandmeansthattheintensiveorlightuseofthecharginginfrastructuremustbeaccuratelyforecast.Consequently,thereisanimpactontheplanningofthegrid,butthechallengeitposesfortheoperationofthesystemtobalancegenerationwithdemandunderpotentialstresssituationsshouldnotbeunderestimated.ThereisanotherimpactofadifferentnaturethatisrelatedtotheconvergenceoftheEUintheinternalelectricitymarket.Europeanregulationscontemplatethecross-borderparticipationofdemandandstoragefacilitiesinelectricitymarkets.Thiswillallowsystemoperatorstohaveadditionalflexibilityresourcestoattendtothebalancingservices.Coordinationandinformationexchangebetweencross-borderTSOswillbecrucialtoavoidimbalancesbetweentheirgrids.E-mobilitydeploymentandimpactongrids434.DSOPERSPECTIVEDSOsplayamajorroleinfacilitatingcustomersandmarkets,includingelectromobilitydevelopment.TheuptakeofelectricvehiclesmightbeachallengeforDSOs,butalsoanopportunity:carbatteries’flexibilityopenspossibilitiesforintegratingrenewables,asanelectriccarcanchargeatanypointwhennotinuse.EVsarethusnotonlypartoftheenergytransition,buttheycanalsohelpfosteritsdevelopment.DSOsarereadytofacilitateelectromobilitydeployment,acrosslow-andmedium-voltagelevels,fromACtoDCanduptoultrafastchargers.Today,thelownumbersofEVsacrossEuropedonotyetposesignificantproblemsindistributiongrids.Astheirsharewillberisinginthecomingyearshowever,DSOswillneedtoimprovetheirnetworkoperationstomeetahigherinstantaneous(peak)capacitydemand.Thiswillbeneededparticularlyasmostofthechargingwillbeperformedatthelow-voltagelevels.TheelectricmobilityloadisexpectedtogrowfasterimpactingmainlytheLowVoltage(LV)networkintheshortterm(thelimitingfactorfortheLVgridisthecapacityofcables,transformersandotherparameterssuchasvoltagelevelsorasymmetry),whileinthemediumandlongtermtheimpactwillbeextendedtotheMediumVoltage(MV)andeventuallytotheHighVoltage(HV)networks.4.1Impactondistributiongrids:visibility,monitorizationandforecastingElectricitydistributioninfrastructures,whileplayingacoreroleinrenewableenergyintegrationandimprovementsinthedeploymentofinnovativetechnologiesinthetransitiontosustainableandsmartmobility,arealsoacrucialelementforthedecarbonisationandresilienceoftheenergysystem.Focusingontheelectromobilityangle,distributionsystemoperatorsarechallengedtoensurethatthedistributionnetworkispreparedtoconnectchargerstothepowergrid.OneofthemostrelevantchallengesthattheelectrificationoftransportposestoDSOs,togetherwithoperation,isrelatedtothedevelopmentofinnovativemethodologiesfornetworkplanningthatcantakeintoaccounttheuncertaintiesrelatedtotheforecastoffutureloadcapacityandthelocationofchargingpoints,privateandpublic.Inthissense,smartgridsmanagedbyDSOsareanimportantsourceofinformation.DistributionsmartgridsandsmartmetersdirectlyconnectedtotheDSOgridwillbethemainsourceformeasurementoftheenergywithdrawnfromthegridorinjectedintothegridbyelectricvehicles.ThesemainmeterswillguaranteethequalityofthemeasurementandareusedforthesystemobservabilitythatDSOsneedtoassessdynamicandpermanentnetworkconditionsandtoestablishwhen,whereandhowthegridcanbeimpactedbyahigherdemandcomingfromchargingactivity.Ontheonehand,planningforfutureloadsmakesexplicittherequirementforreliableforecasts,andontheotherhand,moreaccuratepredictionscananticipatetheidealsolutionsforthesystem.DSOmustensurethesecurityandqualityofsupplyand,justasanyotherloadonDSOs’networks,ACandDCloadsofEVsmayimpactsystemstabilityandsafety.Asdescribedinchapter2.1,thereisacompleteecosystemwithinteractionsbetweenallactors,andeffectsonpowerquality,suchasasymmetry,harmonics,andvoltagequality,thatcanbereducedifelectricvehicleandchargermanufacturersadopttherelevantrequirements.Therefore,andsinceDSOsareprimarilyfocusedonsafetyandreliabilitystandardsbasedonmeetingpeakdemand,datainputfromcustomersingeneral,andservicesproviders(e.g.,chargingpoints)inparticular,isessentialtohaveaccurateloadforecastsondistributionnetworks.Inthissense,itimprovesthereliabilityofthespecificcriteriaofoperationandinvestmentsininfrastructure,andtheintegrationofelectricvehiclesinthenetworkcouldoccurinatimelymanner.Smartandreliableoperationofdistributionsystemsdependsonthevisibilityoverchargingactivities,plannedchargingstations’locationandcapacityanddeployingsmartdistributionnetworkstoenablewidespreadroll-outofchargingstationsrequiresproactivedialogueandcoordinationbetweenDSOsandallparties.Therefore,somelevelsofanalysisandmodellingofsystemsarerequired,includingreal-timestateestimationbasedonreal-timedataandsophisticateddemandforecaststoolsusingmeteringdataandbottom-upaggregationofvariousloadcategories.Atthesametime,lookingatsynergiesbetweenforecastingtoolsappliedbyDSOsandotheragents(e.g.,TSOsandaggregators)canhelpDSOstoimproveforecasts.Forexample,throughcommondesign,dataexchangeandcooperationofthedifferentsystemoperators.Thatalsoincludesaholisticapproachtourbanplanningthatcouldsuccessfullyintegratechargingloaddistributionofelectrictransport(cars,buses)andbenefitbothgridsandmunicipalities.Beyondcities,earlyengagementwithDSOscanalsospeeduptheinstallationoffastchargersonmotorwayswhichplaceshigherpowerdemandsonMediumVoltagegrids.Theseforecastsareextremelyrelevantfornetworkplanningandoperation.Inthecaseofsmartchargingmanagement,theaccuracyintheprocessofforecastingismoreeasilyachievable.Sincetheamountofenergyrequiredforthechargingprocessandthechargingcapacityareknownuptoapoint,thechargingprocesscanbeoptimallyadaptedtothesystem.Forthispurpose,differentkindsofdatafromtheEVarerequired:thenecessaryelectricityforchargingcanbecalculatedfromthecurrentstateofchargeandthebatterycapacity.Themaximumandminimumchargingcapacityofthevehiclebatterycanbeusedtoknowtherangeinwhichthechargingcapacitycanbeadjustedforsmartchargingmanagement.Smartmetersremainthemostpowerfultooltoobtaintheinformation.Therefore,itisextremelyimportantthatthedatafromtheEVaretransmittedtothechargingdeviceandmadeavailabletoDSOs.Usually,theendconsumercanoftenviewthisinformationviaadisplayinthevehicleoranappfromthevehiclemanufacturer,butitstillexiststheneedthatexternalserviceproviderscanaccessthesamedata.Thiscouldbedonebyvehiclemanufacturersiftheyprovideastandardizedtechnicalinterfacefordataexchangeatnoextracostforthird-partyserviceproviders.Withsuchacommunicationsservice,DSOsandproviderscanhavedirectaccesstotherelevantdataandmanagetheflexibilitypotentialofelectromobility.4.2NetworkplanningandcapacityreinforcementE-mobilitydeploymentandimpactongrids44Networkcapacityupgradeisoftenwronglyidentifiedasoneofthemainbarrierstotheroll-outofEVcharginginfrastructureinatimelymanner.Forthisreason,networkplanningiskeytosupportthedeploymentandintegrationofEVcharginginfrastructureinthedistributionnetwork.ThisisaregularexerciseconductedbyDSOsaspartofnetworkdevelopmentandisnotspecifictointegratingEVcharginginfrastructuresinceotherrequirementsalsoneedtobeconsidered.UncertaintyremainsthemainchallengeforDSOsregardingthenetworkplanningforcharginginfrastructure,especiallyinthemechanismsforforecastingfutureloadcapacityandthelocationofchargingpointsasexplainedinchapter4.1.Forthisreason,theimplementationofflexibilitymarketsfordistributionnetworkscanrepresentanopportunitytofacetheseuncertainties,activatingflexibilityfromelectromobilitytosolveunforeseencongestionsorvoltageproblems.Nevertheless,electromobilitypoliciesandstrategiesindifferentcountries,bothlocallyandregionally,haveyettodefinethefinalscenarios,forinstance,theroleofmobilityincitiesorthelackofajointoverallstrategyforelectrification.Inthissense,amorecoordinatedapproachisessentialtoallowDSOstoperformgridplanning,andthesubsequentdevelopmentprocess,whichwillfacilitatetheadoptionandexpansionofelectricmobilityinamoreoptimalway.Moreover,DSOsneedsacomprehensiveandintegratedvisionoftheelectrificationplanfromboththedemandandproductionperspectives.FortheDSO'sperspective,electromobilityworksinparallelwiththeincreaseindistributedrenewablecapacityandworksinsynergywithittosupportelectrification.Thechallengeisnottheextraenergydemand,butthesimultaneouspowerdemandonlow-voltagenetworks.Inadditiontodoublingtheyearlyelectricityconsumptionofahousehold,EVscanincrease(peak)powerdemandfivetimeswhenmanyelectriccarspluginatthesametime(afterarrivingathome)inonestreet.TheresultisthatDSOswillneedtoexpandorreinforcetheirnetworks.Butnetworksmightnothavethedimensiontomanagethepeakdemandhappeningatshorttimeframes,whichimpliesthatDSOs’networksshouldbeusedasefficientlyaspossible;forinstance,bychargingtheEVintheafternoonwithsolarpowerconnectedtoaparking(orcharging)spot,orslowlyatnight.Herethecarbattery’sflexibility(smartcharging)comesintoplaytocomplementthenecessarygridreinforcements.Gridreinforcementrequiresanassessmentconsolidatedwithotherupstreamloadincreasestoevaluatetheoverallimpactonthenetwork.Theseparametersrelatetothecharacteristicsofthedistributionnetworkinareasunderconsideration,andtheexpectedfutureloadrequirements(accountingforboththelocationandpowercapacityrequirementsofthechargers).DSOsareevaluatingallthesefactorstoanalysethenetworkstatusanddevelopvariousEVchargingscenarios,thusallowingthemtoidentifytheavailablecapacityandconnectioncostatdifferentgridconnectionpoints.Inthisregard,differentsituationscanbeconsidered,andadistinctionshouldbemadebetweennetworkplanningperformedforaspecificconnectionrequirement(e.g.,integrationofaknownnumberofEVchargersinaspecificarea)andoverallnetworkplanning.Inbothcases,thetaskofDSOsistoidentifyifcongestionscouldhappenandtheirexactlocation,assessingawidesetofparametersrelatedtothecharacteristicsofthedistributionnetworkintheconsideredareaandthereforeproposesolutionsforthedifferenttimeframes.AccordingtotheEurelectricpositionpaper,“Debunkingthemythofthegridasabarriertoe-mobility”,202113,thefollowingfactorscanbeconsideredforthatpurpose:•Theexactlocationofthepublic,andeventuallyprivate,chargingstations,andnumberofchargingpoints.•Thetechnicalfeaturesofthechargerssuchasthetypeofconnection(1phasevs3phases),thechargingspeed(sloworfastcharger),powerqualityuse(mainlyharmonicsfromrectifiersortheexistenceofpowerinputintothegrid(V2Gtechnology).•Therequestedpowercapacityforthechargerorsetofchargersandthesimultaneityfactor.•Theuseofsmartchargingsolutions,e.g.,controllabilityoftheEVchargingpoint(s)vialoadshifting,energymanagementofthechargingstation.•Thecapacityofpowerlinesandpowertransformersintheconsideredareaandattheconnectionpoint.Usingdifferentmethodologiesandprocesses,DSOsshouldplayanactiveroleandidentifytheareaswherecustomersinstallprivateEVchargingpointsbehindtheirmeterstoanalysethepotentialimpactsofsuchcharginginfrastructuresonthepeakpowerdemandandthusevaluatethenetworksituation,whichcanhelptoidentifythebestsuitedgridconnectionpointwiththechargers.Forthispurpose,thebenefitsofextendedsmartgridsandthegranularityofdatathattheyprovidearekeytohaveavalidvisibilityofthedifferentpartsofthegrid.Asaresultofthepreviousprocess,DSOscandetermineifgridreinforcementisnecessaryinthatcaseoralternativesolutionscanbeproposed,suchastheprocurementofshort-termflexibilityservices.Inthecaseofmid-tolong-termnetworkplanning,thegoalistoaddresstheimpactofadditionalfutureloads,includingEVcharginginfrastructure,onthedistributiongrid.Thisisaforward-lookingexercisewhereaccesstoreliableandaccurateforecastsoffutureelectrificationtrendsiskey.ThisisinlinewithArticle32.3oftheElectricityDirective(EU)2019/944whichstatesthatDSOshoulddevelopthiskindofplansatleasteverytwoyearsandtheyshouldhaveaparticularemphasisonthemaindistributioninfrastructure,whichisrequiredinordertoconnectnewloads,includingrechargingpointsforelectricvehicles.However,itshouldbenotedthatnotallMemberStateshaveimplementedthisobligationintheirnationallegislativeframework.TheEuropeanregulatoryframeworkisalsoevolvingandcouldalsohavefurtherdevelopments,asinthecaseofsectorintegration.Nevertheless,thenetworkplanningshouldconsiderthetotalnumberofEVsalreadyinuseandtheirtype,whatshouldbeincloseconnectionwiththeforecasteddensityofchargingpointsandtheirpowerrequirements,ultrafast/fast/slowchargingcombinedwiththeexpectedEVchargingsimultaneityfactorandtheutilisationratesofchargingstations,takingintoaccountbehaviouralpatternsofthedriverssuchascharginglocation(e.g.homechargingorpubliccharging)anduseofsmartchargingsolutionsanddynamicelectricityprices.OtherrelevantfactorsarethetimingandmagnitudeofEVchargingpower.Moreover,additionalelectrificationtrendsandtheirevolutionshouldalsobeconsidered(e.g.,integrationofheatpumps).13https://cdn.eurelectric.org/media/5275/debunking_the_myth_of_the_grid_as_a_barrier_to_e-mobility_-_final-2021-030-0145-01-e-h-2DEE801C.pdfE-mobilitydeploymentandimpactongrids45TwousecasesarepresentedtoillustratehowDSOsaredealingwiththeincreasingpenetrationofEVs:Usecaseofi-DEAnexampleofhowDSOsusetheseparameterstodevelopvariousEVchargingscenariosandpredictfutureloadprofileisprovidedbyi-DE,theDSOofIberdrolaGroupinSpain,whichconductedastudytoassesshowtheincorporationoftheEVsandheatpumpswillmainlyimpacttheLVnetworkintheshortterm,whileinthemediumandlongtermtheimpactwillextendtotherestofvoltagelevels.Thereportprovideddetailedabottom-upnetworkimpactassessmenttodeterminethereinforcementsintheLVnetworkandsecondarysubstationsaheadofneeds,basedonsmartgridsinformationanddataanalytics.TheimpactstudydevelopedasetofrealisticscenariosbasedonsociodemographicdataandtheNationalEnergyandClimatePlanelectrificationgoalsandalsousesafleetdistributionmodel(seeFigure28).Figure28RelativenumberofEVs(Source:i-DE).Oncethemodelwasestablished,thenextstepwastoassignthecalculatednumberofEVs(andeventuallyheatpumps)foreachcensussectiontoindividualconnectionpointsbeforeperformingaLVsimulation.Themodelispreparedtoperformhourlysimulationsofdifferentscenarios,and,underthesecircumstances,theprofileoftheaverageloadcurveforEVscanbeobtainedfromagroupofexistingchargingpoints(Figure29).Suchprofilesarethenusedtoanalysethevoltageandcurrentloadonnetworkcomponentstoensurethatthenetworkcansatisfyallfutureloads(Figure30).E-mobilitydeploymentandimpactongrids46Figure29TheaverageEVchargingprofile(Source:i-DE).Figure30Themodelperformshourlysimulationsofdifferentscenarios(Source:i-DE).Inthefollowingstep,apowerflowsimulationmodelwasappliedto110.000MV-LVtransformersandto150.000kmofthelowvoltagenetwork.Thesimulationuseddatafromthei-DEGISwithaveryhighlevelofgranularity,whichmadeitpossibletoanalyseawidespectrumofcasesfortheentirei-DELVnetwork.Finally,foreachindividualsolution,thecalculationincludeddifferentparameters,suchastransformersandlinesloadratios,forecastdemandandthepossibilityofconnectinganewtransformer.Theanalysisshowedthatonly1%ofLVlineswillhaveoverloadsandvoltageproblemsby2030ini-DEarea.ThesimulationalsoconcludedE-mobilitydeploymentandimpactongrids47thatsmartchargingcouldpotentiallyreducenetworkinvestmentsbyupto40%(considering100%ofsmartchargingadoption)inmassiveadoptionscenarios.ThemostrelevantoutcomeofthisstudyisthattheadoptionofEVsisnotaproblemintheshortandmediumtermsincethemostsignificantimpactwilloccurmainlyinveryspecificareasuntil2030.Intheshortterm,theincorporationoftheEVswillparticularlyimpacttheLVnetwork.Inthelongterm,itwillbeextendedtoallvoltagelevelswherenewsubstationsandtransmissionlineswillhavetobeplannedtosupporttheexistingmediumandhighvoltagegrids.Thecombinedimpactofelectrificationinthemediumtermislowerthantheaveragepeakdemandincreasesbetween2000-2005ofiDEinSpain(e.g.,Inthefirsthalfofthe2000s,withahigheconomicgrowth,demandincreasewasapproximately2.8%peryear).DistributioncompanieshavesuccessfullyfacedsimilarchallengesinthepastandthusthenecessaryreinforcementsinLVandSecondarysubstationsinthemoststressedareascanbeadequatelyaddressedwiththeinvestmentplans.Itcanbeconcluded,asageneralprincipleforgridreinforcement,thattheanticipationtotheimpactofincreasedloadonthenetworkiscrucialtoensurethatthenetworkwillcontinuewithinstandardoperation(powerquality,reliability).Likewise,thelowvoltagenetworkcanalsobeoverloadedincertaincircumstances/scenarioswherethecapacityoftheelectricalequipmentisnearlyreachedbecauseofanaccumulationofsmallincreasesindemandoffromcustomersconnectedtothenetwork.Itisalsointerestingtopointoutthatwhenhomechargingstationsareinstalledgradually,insmallincrements,DSOscanmonitortheloaddevelopment,andtherefore,reinforcenetworkcomponentsastheybecomeoverburdened.Inthissense,themoreusualanalysesconsiderthenetworksituationinnormalconditions(i.e.,allelementsareinservice)andsimultaneityfactorsaretakenintoaccounttodetectwhenthenetworkcanbeoverloaded(i.e.,therequestedcapacityishigherthanthecurrentinstallednetworkcapacity).Figure31FromtheEurelectricpositionpaper“Debunkingthemythofthegridasabarriertoe-mobility"14Aspreviouslyemphasized,itisimportanttoadoptacoordinatedapproachfornetworkplanning.Infact,ifothercustomersrequestadditionalcapacityatthesamepointofthedistributiongrid,itisimportantthattheserequestsarecoordinatedinordertooptimisenetworkinvestmentsandadequatelydimensiongridreinforcement.UsecaseofEnelGlobalInfrastructureandNetworksEnelGlobalInfrastructureandNetworksisfacingseveralplanningandoperationalchallengesposedtothedistributionnetworkbytherapiduptakeofEVs.Inadditiontothealreadymentionedforecastinguncertainties,thegroupfacesincreasingcomplexitiescausedbywidedifferencesinthenetworkdesign,electricalinfrastructures,regulatoryframeworks,andmacroeconomicscenariosoftheeightdifferentcountrieswherethecompanyoperates.Inthisuncertainandcomplexfuturescenario,thetimeandresourcesrequiredbytraditionalnetworkplanningmethodsareoftentoohigh,especiallyconsideringthatrapidlychangingplanningparameters,includingdemandgrowth,EVsandDERpenetrationlevelsorevolvingelectricitymarketswouldrequirecontinuousadjustmentsofthenetworkanalyses.Theneedforafastandeffectivemethodtoperformlong-termdistributionplanninganalysesforEVsintegrationhasledEnelGlobalInfrastructureandNetworkstodevelopaninnovativenetworkplanningmethodology,abletorunmultiplesimulationsinashorttimeandeasilyscalabletodifferentnetworks.Thisisachievedbyimplementingapreliminaryscreeninganalysistoidentifythemostcriticalnetworkelementsinfuturescenarios.Onlythehigher-priority14Eurelectric,2021,“Debunkingthemythofthegridasabarriertoe-mobility”.E-mobilitydeploymentandimpactongrids48circuitsundergomoredetailedpowerflowstudiestoidentifynetworkconstraintsandgridneeds.Theintroductionofapreliminaryscreeningstageallowstolimittheeffortofdetailedpowerflowanalysesandthereforesignificantlyreducethecomputationalburdenforplanningengineers,withoutcompromisingtheaccuracyofresults.ThenewgridplanningmethodologyproposedbyEnelGlobalInfrastructureandNetworksusesafour-step,needs-basedapproach(seeFigure32)toidentifytheamountofEVsandDERthatcanbeaccommodatedonadistributionnetworkbeforeadverseimpactsoccur(commonlytermedashostingcapacity).Figure32StagesoftheDistributionPlanningProcess(Source:EnelGlobalInfrastructureandNetworks)First,thetooladdsthefutureneedsforecastedbyEnel’sproprietaryandlong-termenergyscenariostothecurrentneedsimposedontheexistingnetwork.Whilenetworkdataareavailableatcircuitandtransformerlevel,generationandloadforecastsmustbefurtherlymodelledtoprovidethesamedatagranularity.Forthisreason,thegridplanningtoolemploysmultiplestatisticalmethods(macro-economic,customer-levelandgeographicalmodelling)toallocatescenariosdatatothecircuitandtransformerlevelandincreasetheaccuracyofresults.EVsrepresentthelargestdriverofthefuturegridneedsandcanbemodelledbothasloadsandasgenerationresourcestoaccountforvehicle-to-gridapplications.TheGridNeedsAnalysisstageassessesthehostingcapacityforeverylineandtransformerofthenetwork.Ifthenetworkcomponenthasreachedorexceededitshostingcapacitythreshold,thetooltriggersaninterventionrequest.Theoutputofthisstageisacomprehensivemapofallthehostingcapacitygridneedsattheendofthestudyperiod,intheselectedconcessionarea.IntheTechnicalSolutionIdentificationstage,requirementstomeetthegridneedsthroughtraditional(networkrefurbishment,replacements…)aswellasdistributedflexibility(storage,demandsidemanagement…)optionsareconsidered.Lastly,usingcomponent-levelcostdata,theCostAssessmentstageestimatestheinvestmentsneededtoimplementtheoptimalsolution.SimulationresultsofthenewgridplanningtoolappliedtoEnel’snetworkusecases,showthatthenewmethodologyprovidesaquick,flexible,andeffectivesolutiontothechallengesofdistributionplanninginthecontextofhighEVsandrenewablespenetration,forecastsuncertaintiesandnetworkcomplexities.4.3DemandsideflexibilityfromelectromobilityDemand-sideflexibilityiscrucialtomaintainsecurityofenergysupplyandastablenetwork.Sincethemorerelevantchangessuchasmassivedevelopmentofvariableandrenewabledistributedgenerationandtheexpectedgrowthoftheelectricvehicleschargingwillhappenatdistributionlevel,theroleandtheresponsibilitiesoftheDSOsistoevolveintoanactivesystemoperatorandaneutralmarketfacilitatorwhilemaintainingsecurityofenergysupplyandamorereliablenetwork.Additionally,demand-sideflexibilityassumesthatconsumersarewillingtoengageindemandresponseactivities.Engagingconsumerswillrequireincentivesandtechnologiesfordemand-sideflexibilitytoworkanddeliveritsfullbenefits.Inthecaseofelectricvehicles,incentivescouldbeforexamplebasedonpricesignals,dynamictariffsforchargingvehiclesorincentive-baseddemandresponseallowingtheconsumertomakesavingsbyofferingcontrollablechargingtomarketandnetworkoperators.Intheplanningphase,demandsideflexibilitycanhelptodelayinvestmentswhenthegridcapacityisclosetoreachingitslimit.Usingflexibilityfromthedemand-sidethusavoidingordelayinganextensionofthephysicaldistributiongridcanleadtosignificantsavingsfortheDSO,forbothconsumersandsociety.ItcanalsogivetheDSOtimetoassessotheroptions,suchasnetworkreinforcementandsmartgrids,toensuregridstability.Intheoperationalphase,itcanbeausefulwaytosolvelocalcongestionbyinfluencingtheconsumptionpatternsofconsumers,thechargingpatternsofelectricvehiclesandotherappliancesthatareconsumingsignificantamountsofelectricity.Demand-sideflexibilitycanbedevelopedtogetherwithwell-identifiedlargeusers(usinganimportantcapacityduringtheirbusiness),andwithresidentialusersthatoptedforchargingtheirelectricvehicles,whichalsorepresentanimportantelectricityusewhenaggregated.Demand-sideflexibilitycanalsobeatooltobringadditionalbalancingcapabilities;eveniftheseservicesareusefulforTSO,itisimportanttoimplementnewproceduresandprocessesableincollaboration.Inordertoreapthesebenefits,DSOsshouldbecometheneutralmarketfacilitator:gathering,managingandsharingdatawithretailers,aggregatorsandotherauthorisedthirdparties,easingentranceofnewplayersinthemarket,measuringandvalidatingtheuseofdemand-sideresourcesconnectedtothedistributiongrid.Buttobesuccessful,appropriateincentivesshouldbesetupinorderforthecustomertoreapbenefits.Forinstance,someDSOsarecurrentlyusingandinvestigatingsolutionslikeincentive-baseddemandresponse(reducedtariffsorlump-sumpaymentsthatprovidetheDSOwithlimited,butclearlydefinedaccesstodemand-sideflexibility)whichenableconsumerstomakesavingsbyvoluntarilyadaptingtheirelectricityconsumptiontogridneeds.Again,itiscrucialthatDSOscooperatewithE-mobilitydeploymentandimpactongrids49TSOs,beingabletoidentifytheresourceswhicharedirectlyconnectedtothedistributiongridandatthesametimeinvolvedinancillaryservicesforTSOs.Inthisrespectelectricvehiclesconnectedtothedistributiongridscanbeahugeopportunitytoavoidnetworkoverloads.Theissueisthelongperiodoftimethatcars,onaverage,arenotusedduringtheday.Theyspendmostofthedayasa"stationaryvehicle"intheparkinglotoftheemployer,infrontofthesupermarketorathomeandthereforeaselectricvehiclescouldoffersignificantflexibilitypotentialtotheenergysystem.Duringthisidleperiod,thechargingprocesscanbeadjustedaccordingtovariousparameterssuchaselectricitysupplyandgridutilization.TheEVcould,forexample,chargepreferablyduringaperiodofhighinjectionofphotovoltaicandwindenergyandthusmakeefficientuseofsurplusrenewableelectricity.Furthermore,chargingcanbedoneattimesoflownetworkutilization,optimizingthegriduseandreducingtheneedoffurtherexpansionofthedistributionnetwork.Othersolutionswherebyflexibilityisextractedwithoutaconnectioncontractarealsoexplored.Examplesofmarket-basedsolutionsincludethepossibilityofa‘flexibilitymarketplace’wherecustomerscanoffertheirflexibilitythroughathird-party,usuallyanaggregator’sorsingleEVchargingpointoffer(dependingonthelowerbidsizeallowedfordemandresponse).Inthiscase,thecontractisbetweentheDSOandtheaggregator,anoptionwhichcanalsoallowtosolveaspecificlocalneed.UnlikefortheTSOandBRPs,thecongestioninthedistributionnetworkisaverylocalchallenge(butacrucialone).GiventhelocalnatureoftheDSOs’challenge,EVchargingstationshaveahighpotentialforthesenewflexibilitymarkets(providedbyconsumers/connectionswithflexibleloadsunderaspecificMV/LVsubstation).Nevertheless,liquidityinthelocalflexibilitymarketcouldbetoolimitedtocreateamarketplaceformanagingDSOscongestions(e.g.,inruralgrids).Wheretheregulationallowsit,directdynamicsmartchargingusingavariablecapacitycontractcombinedwiththerighttariffcanrepresentaviableandcost-efficientformoflocalloadmanagement.Thedynamicsmartchargingoption(withinthelimitsofthecontract)inordertobeeffectiveandefficientshouldbeeffectuatedthroughtheuseofstandardisedICTprotocols(fromtheDSOtotheCPO,andtothechargingstation).4.4ManagingtheintegrationofelectricvehiclesinthedistributiongridTheadditionaldemandfromEVsintermsoftotalconsumptionofenergyovertime(kWh)willnotrepresentacriticalfactorfortheDSOs,asthiscanbehandledwiththeexistinggridandgenerationcapacity.However,intermsofpowerdemand(kW)theadditionalloadscancauseasignificanthigherpeakload(i.e.,incaseofchargingresultinginsimultaneouspowerdemandondistributionnetworks).Theimpactonthepeakloadwillbecriticallydependentonthechargingbehaviourofusers:ifallEVsstarttochargeatthesamehour(i.e.,carschargeassoonasthedriverspluginonarrivalattheirdestinationorataspecifiedtimeframeincaseoflargedifferencesinthecostofenergyatnight),theimpactwillbemuchhigherthanincaseswherethechargeisspreadmoreevenlyonthelowdemandperiod.Figure33EstimatedEVpeakdemandvs.overallcountrypeakdemandin2030(%),EDSO2018.Higherpeakloadscancause(relativelyshorttime)congestionsondistributiongrids,adverselyimpactingonvoltageandnetworkcapacity.Overloadsofnetworkequipmentcanreducethelifeexpectancyofgridcomponents.Thesecanalsoleadtovoltagefluctuationsoutsidetheirdesignatedmarginscausingconsumers’devicesfailures.Fromthebalanceresponsiblepartypointofview,asignificantnumberofnewquickstartpowerplantsmightneedtoberampeduptoprovideancillaryservices,butthechallengeofcongestionisnotsodirect/obvious.Thecaseof(ultra)fastchargerscanillustratethechallengesthatDSOscouldfaceinthecomingyears,sinceitisthemostextremesituation.TheyareusuallyconnectedtotheMVgridwhich,innormalsituations,hasenoughcapacity.Thecostsoftheseconnectionsarebasedontheactualcostsofmakingtheconnection.Thus,gridconnections/extensionstofacilitate(ultra)fastchargersare,inmostcountries,fullypaidbytherequestersoftheconnection.Since(ultra)fastchargerswillinmostcaseshavetheirowntransformer,therearenootherusersthatwillbenegativelyaffectedbypossiblevoltagefluctuationswhenchargingstartsatfullcapacity.Theimpactontheothersideofthetransformer(MVside)willbelimited.Nevertheless,DSOswillneedtobeproperlyengagedandconsultedtocoordinateandfacilitatetheconnectionof(ultra)fastchargingstationstotheMVgrids(e.g.,managingsmootherupwardloadramps).Dependingonthespecificgridconditions,animpactmightbeconsiderableifthereareseveralultra-fastchargerswithdedicatedtransformersclosetoeachotherandattachedtothesameMVconnection/orincaseofpoweringmultipleelectricbusesataroundthesametime.Thiscanalsobeanissueinnetworkswheregasstationsontheroadsandmotorwaysareconnectedtolow-poweredtransformers(upto250kVA).Inthesecases,DSOswillhavetoupgradetransformersoreventhewholeMVfeeder(insomecasesalsoE-mobilitydeploymentandimpactongrids50HV/MVsubstationand/orHVnetworkcouldbeinvolved,dependingontotalpowerofinstalledfastchargers)tohandletheadditionalpower.Inamoregeneralsituation,smartcharging,alsoknownasV1Gcharging,enablestocontrolthechargingofelectriccarsinawaythatallowsthechargingpowertobeincreasedanddecreasedwhenneeded(inthiscase,thepowerflowismono-directional).V2Ggoesonestepfurtherandenablesthechargedpoweralsotobemomentarilypushedbacktothegridfromcarbatteriestobalancevariationsinenergyproductionandconsumption.Carscanbechargedsmartlyonlyiftheyareconnectedtochargingstationsthataresmartchargingready.Itshouldthenberecommendedtoequipbothexistingandnewchargingstationswithsmartchargingdevices.Developmentsofinteroperablecommunicationprotocols(IEC61850familyStandardcouldbeareferencebasis)areequallyimportant15.Interoperabilityofdata,commands/settingsandinformationisessentialtocommunicatewithallparties,includingaggregatorsamongothers,inthesmartchargingprocess–fromthegridtothechargingstationandthecaritself.Smartchargingcanhelptostreamlinedemandforenergy(andthuscapacity)byadjustingthechargingprofileswiththesupplyforenergyandgridcapacity.Thismeansthatthepowerleveltochargeanelectricvehiclecanbereducedattimeswhenthereishighdemandforenergyand/orlessavailablegridcapacity.Energystoredincarbatteriescanevenbeusedtofeedelectricitybacktothedistributionnetwork(V2Gtechnology)orlowerdemandfromthecustomer’sside(vehicletohomeorV2H).SmartchargingcouldbedonedirectlybytheDSOsifthereisacommunicationchannelavailablefromtheDSOtothechargingstation.DSOscancommunicatedirectlywiththeCPOoranaggregatorand,dependingonthetechnicalarchitecture,thesiteownerthroughanenergymanagementsystem.TheCPOthendeliverstherequestedsmartchargingprofileonthechargestationsmanagedbythatCPO,withinthepredefinedcontractualsettingsbetweentheDSOandthecustomer.Thesmartchargingprocesscouldalsofollowarouteviaacentralisedsystem–inthatcasethelocalnatureofthecongestionchallengeshouldbeconsidered.Astraightforwardaspectistoincludemandatoryregistrationofchargingstations(alsobehindthehouseholdconnection)tohaveagoodvisibilityonthem.InthiscasetheICT-routeisdifferentbutsmartchargingisperformedwithinthecontractbetweentheDSOandcustomer.TheaimisalsotomatchtheneedsofthesedifferentstakeholdersforanoptimalmanagementofEVs.Insuchamulti-playermarkettheDSOswillbeenablersfortheuptakeofinteroperableservicesforsmartcharging.ThereisthusaneedtoadopttheregulatoryframeworkregardingtheroleofDSOsindemandresponseandbydeployingspecificflexibilitymarketsindistributionnetworks.Atleastintheearlyadopters’phaseofintroducingdemandresponsetechnology,itshouldbenecessarytoconsidertheverylocalnatureofcongestionchallengesandthelackofliquiditytosolvethechallengeinamarket-orientedapproach.Inenablingdirectdynamicsmartcharging,DSOswillneedmoreinvestmentsinsmartgridsandenhancedsupervisiontoreachvisibilityofthestatusofLVgrids,wheresmartmeterscanplayamajorroletomonitorthegridinrealtimeandidentifytheneedtoprocureflexibilityservices.Investmentsinnewmethodologyandgridtoolswillalsobeneededtoassessthepotentialofcongestionmanagement,peakshaving,andthevalueofsmartcharging.ItiscrucialthatDSOshaveasmartgridinplacewheremostoftheLV/MVnetworksareremotelymonitoredandcontrolledtodetectpotentialcongestionsinrealtimeandavoidnetworkconstraints.Ingeneral,itisessentialforDSOsthatthesmartcharginginfrastructureisequippedwithallthenecessarytechnologytomanagethechargingprocess.Thismustincludebothacommunicationandacontrollink,butnotonly.Infact,V2GwillactasgeneratorsandtheECrequestisthatreferencestandardswillmirrortheprinciplesdefinedbyfamilyStandardEN50549.Thechargingprocessshouldbecontrolledaccordingtotrade-offsbetweenDSOs’constraintsandcustomers’needs.Smartchargingwillultimatelydependonmeetingcustomers’needssoDSOsandCPOsshouldfirstbetterunderstandthechargingprocessesandcustomers’behaviourwhendevelopingchargemanagementstrategiestoolsandmethods.Thiswillhelpraisecustomers’acceptanceandawarenessofrelatedbenefitsandrisks,includingovercominganxietyconcernsoflosingcontrolovertheircar.Indoingso,DSOswillcontributetoachievingmoresustainabletransportandgreenenergygoals.Assaid,inthefuture,notonlysmartchargingwillplayanimportantrolefortheenergysystemandnewbusinessmodels,butalsotheVehicle-to-grid(V2G).Thisconceptaimstooptimisethewaywetransport,useandproduceelectricitybyturningelectriccarsinto‘virtualpowerplants.Underthisconcept,electriccarswouldstoreanddispatchelectricalenergystoredinnetworkedvehiclebatterieswhichtogetheractasonecollectivebatteryfleetfor‘peakshaving’(sendingpowerbacktothegridwhendemandishigh)and‘valleyfilling’(chargingatnightwhendemandislow).Energycanbesenttothedistributionnetworkbyusingbidirectionalchargingsolutions.Possibleapplicationsincludeforexampletheprovisionofmanysystemservices.Possibleapplicationsincludeforexampletheprovisionofmanysystemservicessuchasbalancingtosupportfrequencycontrol,reactivepower,ortheuseoftheEVbatteryasasourceofprovidingflexibilitytothegrid.Infact,thereareongoingworktoidentifynewpossibilitiesofV2Gactingasgenerators(e.g.,asintheEuropeanStakeholderCommitteeExpertGroupofENTSO-Ewhichhascurrentlyanexpertgroupdiscussingtheadvancedcapabilitiesforgridswithhighsharesofpowerparkmodules,whichcanprovide,amongothers,supporttosystemsincasesoflowfrequencydisconnection,systeminertia,systemvoltage,shortcircuitpower,etc.).ItisimportanttoconsidertheV2Gconceptinordertousethisflexibilityeffectivelyinthefuture,andthus,todevelopthecorrectregulatoryframework.DSOswillfinallydeepentheirroleasactivesystemoperators,inadditiontotheirroleasnetworkoperators.4.5DeploymentofchargingpointsDSOsplayakeyroleinthedeploymentandintegrationofEVcharginginfrastructureintheelectricitynetworkandmuchexperiencehasbeengainedbyconnectingthousandsofchargingpointstothepowersystemacrossEurope.TheparticipationofDSOsinthedeploymentofcharginginfrastructureforEVscanbeexplainedfromtwoangles:planningofthegridconsideringtheneedsofpresentandfuture15EuropeanCommission,“Draftstandardisationrequestasregardscommunicationexchange,electricityandhydrogensupplyforroad,maritimetransportandinlandnavigationinsupportofDirective2014/94/EUanditsplannedrevisionunderthe‘Fitfor55’package”.E-mobilitydeploymentandimpactongrids51chargingpointsandstations,asexplainedinthepreviouschapters,andtherolethatDSOsthemselvesplayascharginginfrastructurepromoters.WhenDSOsactastheclosestnetworkoperatorstothecharginginfrastructure,theapproachtonetworkplanningfortheroll-outofchargingstationsfromtheirperspectiveissimilaracrossgeographiesinEuropeandcomparablewithothernewnetworkaccesses.However,networkplanningremainsalocalexercisethatdependsonawidesetofparameters.Furthermore,adistinctionshouldbemadebetweennetworkplanningperformedforaspecificconnectionrequirement(e.g.,integrationofaknownnumberofEVchargersinaspecificarea)andoverallnetworkplanning,whichshouldbebasedonanetworkdevelopmentplantobepublishedbytheDSOatleasteverytwoyearsaccordingtoArticle32.3oftheElectricityDirective(EU)2019/944.Butonanotherperspective,theroleofDSOsinthecontextofthedeploymentofelectricvehiclecharginginfrastructureisdefinedunderDirective(EU)2019/944oftheEuropeanParliamentandoftheCouncilof5June2019concerningcommonrulesfortheinternalmarketinelectricityandamendingDirective2012/27/EU.Article33,entitled“Integrationofelectromobilityintotheelectricitygrid”,statesthatMemberStatesshallprovidethenecessaryregulatoryframeworktofacilitatetheconnectionofpubliclyaccessibleandprivaterechargingpointstothedistributionnetworks.Moreover,MemberStatesshallensurethatdistributionsystemoperatorscooperateonanon-discriminatorybasiswithanyundertakingowningordevelopingoroperatingrechargingpointsforelectricvehicles,includingtheirconnectiontothegrid.Article33(2)oftheDirectivestatesthatdistributionsystemoperatorsmustnotown,manageoroperaterechargingpointsforelectricvehiclesunlessthedistributionsystemoperatorshaveprivaterechargingpointsfortheirownuseonly.Furthermore,paragraph3ofthesamearticlesetsouttheconditionsunderwhichitispossibletoderogatefromparagraph2ifitisestablishedthatthereisnointerestofotheroperatorstoperformthatactivity.Ifsuchaderogationisapplied,itisnecessarytoverifytheexistenceofinterestsofotherentitiesonaregularbasisand,incaseitisreported,MemberStatesshallensurethatdistributionsystemoperators’activitiesinthisregardarephasedout.AlthoughtheDirectiveclearlyestablishesthattheDSOshouldnotbeinvolvedinthedevelopment,installation,andmanagementofchargingstationsinthemoregeneralsituation,theroleoftheDSOmustbeseeninthecontextofplanningtheinstallationandconnectionofchargingpointstothedistributionnetworktohaveacoordinatedapproachwithdistributionnetworklong-termplanningandscenarioimprovement.Moreover,andwhenconditionsaremetundertheconsiderationofArticle33oftheDirective(EU)2019/944forDSOstoinstall,operateandmanagechargingpoints,thepossibilityofDSOperformingtheinstallationandrunningoperations,eitherinapublicorprivatearea,presentsacost-efficientsolution,acceleratingdeploymentofchargingspotsandguaranteeingopenaccessandsupportstandardisation,andavoidingheterogeneoustechnologiesatthesametime.NotcurrentlybeingaspecificobjectiveforDSOs,theaboveconsiderationsmustbeconsideredforthosenationalcasesinwhichtheyarecalledupontocontributetopromotingthedeploymentofchargingpoints.E-mobilitydeploymentandimpactongrids525.USERPERSPECTIVEEVusershavespecificneedsandexpectationsandtheirinteractionwithelectricalinfrastructuresathome,workorotherplacesmustbealsoanalysed,understood,andsatisfied.Infact,EVuserssettheconditionsforhavingtheirvehiclescharged.Theirdirectinvolvementisthebasisuponwhichtomakethechargingprocessasuccessandtheirbehaviourdrivesthesubsequentimpactontheelectricitygridsandthusthewaythatsystemoperatorsmustmanagethem.Theuserperspectiveiscrucialtounderstandthewholepictureoftheintegrationofelectromobility.5.1UsertypologiesandtheirbehavioursBasedontheirbehaviour,userscanbeclassifiedinseveraltypologies:•Domesticuserforprivateuse:generallyspeaking,thisconsistsofadailyuseofanEVforlessthan60kmduringtheworkingdaysandoccasionallyattheweekendsforlessthan150km.Chargingathomeeverydaybynightinaprivateslowchargingpoint.Occasionally,thedomesticuserneedstoconnecttofastandultra-fastchargingpointsduringlongdistance(morethat500km)journeys.•Domesticuserforprofessionaluse:dailyuseofthecarduringtheworkingdaysforupto300km.Occasionallyattheweekendsforlessthan150km.Chargingathomebynightinaprivateslowchargingpointandmanydayscharginginapublicfastchargingpoint.Occasionally,thedomesticuserneedstoconnecttofastandultra-fastchargingpointsduringlongdistance(morethat500km.)journeys.•Commercialuserlight:dailyuseofthecarduringtheworkingdaysforupto300km.Occasionally,thisuserneedstoconnecttofastandultra-fastchargingpointsduringlongdistance(morethat500km.)journeys.•Commercialuserheavy:dailyuseofabigvanorsmalltruckduringtheworkingdaysforupto300km.Occasionally,thisuserneedstoconnecttofastandultra-fastchargingpointsduringlongdistance(morethat500km.)journeys.•Publicuserlight:dailyuseofacarforpublictransportduringmorethan300km.Usuallyinthecitybutoccasionallylongdistance.•Publicuserheavy:dailyuseofabusforpublictransportduringmorethan300km.5.2UserneedsandtheirsatisfactionAnotherstepforwardinunderstandingthecustomerexperienceandinteractionswiththecharginginfrastructureistoconsidertheirrealneeds,whichcanbedifferentconsideringtheexistingtypesofusers.Anotherclassificationcanbeproposedtostructurethedifferentneedsofusers:Needsfordomesticusers:·Slowprivatechargingpointathome·Slowprivatechargingpointattheworkingplace·Fastpublicchargingpointsinthecities,malls,oranyotherpublicplaces·Fastandultra-fastchargingpointseveryXkilometreofthehighwaysandmainroadsNeedsforthelightcommercialvehicleuser:·Slowprivatechargingpointathome·Slowprivatechargingpointattheworkingplace·Fastpublicchargingpointsinthecities,malls,oranyotherpublicplaces.·Fastandultra-fastchargingpointseveryXkilometreofthehighwaysandmainroadsNeedsfortheheavycommercialvehicleuser:·Slowprivatechargingpointattheworkingplace·Fastpublicchargingpointsinthecities,malls,oranyotherpublicplaces.·Fastandultra-fastchargingpointseveryXkilometreofthehighwaysandmainroadsNeedsforthelightpublicvehicleuser:·Slowprivatechargingpointathome·Slowprivatechargingpointattheworkingplace·Fastpublicchargingpointsinthecities,malls,oranyotherpublicplaces.·Fastandultra-fastchargingpointseveryXkilometreofthehighwaysandmainroadsNeedsfortheheavypublicvehicleuser:·Slowprivatechargingpointattheworkingplace·Fastpublicchargingpointsinthecities,malls,oranyotherpublicplaces.TostreamlinetheuserexperienceandincreasethebroadacceptanceofEVsandtheirbenefitsfortheenergysystem,itisnecessarytodealwiththecurrentelectromobilityhurdles16,namelythefollowing:16SmartEnWhitePaper-Makingelectricvehiclesintegralpartsofthepowersystem(2019)-https://smarten.eu/wp-content/uploads/2019/07/FINAL-smartEn-White-Paper-E-Mobility.pdfE-mobilitydeploymentandimpactongrids531.InteroperableandbroadrangemobilitypaymentmethodsCurrentlytherearetwopaymentoptionsforelectromobility:adhocandcontract-basedcharging.Inadhocpayment,theEVdriversmustsignupforeachchargingprovidersystem,usinganAPPandaRadioFrequencyIdentification(RFID)card.Regardingdataprivacy,currentpaymentsystemsinpublicchargers,requireconfidentialPersonallyIdentifiableInformation(PII)associatedtotheirAPPaccounts,unlikegasstations,wherepeopleonlyusetheircreditcardorphysicalmoney.EUopenpaymentprotocolsandstandardswouldimprovethepublicchargersuser’sexperience,furtherpromotingEVadoption.Moreover,EVdriversshouldbeabletochoosethepaymentmethodthatmeetstheirpersonalpreferences.Thisispossiblebyensuringthatpublicchargingpointsalsoofferadhocchargingsolutionsandnotonlycontract-basedcharging.And,byensuringadhocpaymentsmethodsthatareuniversallyaccessibleandthatcomplywithGDPR,publicchargingpaymentswouldbesimpleraspayingforgasolineordiesel.2.EnsurepricetransparencyforpublicchargingpointsCurrently,inpublicchargingpoints,thereisstillgreatpriceuncertaintyfortheconsumer,particularlywhenroaming,sinceheisoftennotawareoftheexactpricebeforechargingorhasunexpectedcostsonhisbills.Asstatedinchapter2.2,thereistheneedtorevisetheAlternativeFuelsInfrastructureDirective(AFID),tomakeEVchargingtariffstransparentandcomparable.Forexample:•provideatransparentprice/kWhtoend-usersbeforecharginginsteadofusingtheamountofpowertochargeanEV.•encouragesmartapplicationsorwebsitesforpricecomparisonandreal-timepricingthatcouldalsodisplaypricingadjustmentsforflexibilityservicesprovided.3.Considerchargingpointoperatorsasserviceproviders.AFIDshouldemphasizethatCPOsmustbeconsideredasserviceprovidersofEVcharging,andnotasenergysuppliers.Thiswouldpreventadditionalsupplier-relatedrequirementsforCPOs.ThereisnoneedforalegalseparationbetweenCPOsandsuppliers,onlyforaclarificationofroles.4.Commonrequirementsforsmartmetersinthecharginginfrastructure.ImposingseparateandspecificmeteringrequirementsfortheEVcharginginfrastructure(CPOs,EVs,etc)woulddifferentiateloads,harminglocalenergyresourcesoptimization.Itwouldcreateuselesscomplexityinmeteringandbilling,creatingbarrierstosmartmeterdeploymentandslowingtheelectrificationofthetransportsector.Anylimitingrequirementstoalternativeinnovationsinthisfieldmustbeavoided,forbothprivateandpublicchargingstations.Chargingstationsshouldbedesignedtoprovidevariousservices(assmartcharging,V2G,V2H,etc.)avoidingobsoleteinfrastructuredeployment.5.CommonregistrationprocessesforEVsasserviceproviders.Theregistrationprocessisakeyfirststeptoprovideenergyservices.HarmonisationacrossEuropeisimportanttoavoidmixedrequirementsregardingregionalvariationsofthecountries’registrationmodelssincethiswouldlimitpossibleeconomiesofscalefromtheautomotivemanufacturerstoitsconsumers.Theregistrationprocesstoprovideservices,usinganEV,shouldbeeasy,tofacilitateconsumerengagementwiththeelectricitysystem.AspecificEUregulatoryframeworkcouldanticipatethatanEVanditsserviceswouldberegisteredatthesametimeoftheusualcarregistration.Nofurtherstepsshouldberequired.ThisregistrationshouldprovideclearinformationontheflexibilitycapabilitiesofeachEVanditsV1G/V2Gcapabilities.Thisinformationmustbetransparentandaccessibletoconsumers,priortopurchase.TakingthecaseofGermanyasanexample,wecanseethatthiscountryhasthebiggestnationalpassengercarmarketmeasuredinsalesinEurope(ACAE2019).Despitethis,itscurrentmarketsharesforPEVarearoundtheEuropeanaverageandlackingbehindNordiccountries.Oneofthediscussedandpossiblereasonsforthisisthelackofsocialacceptanceofthisnewkindoftechnologies17.Asthisexampleshows,socio-politicalacceptanceisparamounttounderstandthedevelopmentofelectricmobility.Relativelylownumberofacademicpublicationsinvestigatesgeneralattitudestowardselectricvehicles.OnethestudiesbyKühletal.(2019)analysedcurrentEnglishandGermanliteratureandcomparedthemwithGermanstatementsinTwitter.Thiscomparisonissupposedtointertwineuserstatementswithmoregeneraldiscussionshappeningintheliterature.Theyfoundoutthe60%ofcontentarediscussionaboutpriceandcarcharacteristicswhiletherestofthediscussionsvarymoreinscope,withinfrastructureandsocietalissuesasthenextstrongestcategoriesat40%ofthecontent.AnotherstudybyZaunbrecheretal.(2015)exploredtheattitudesandopinionsofnonPEVusersinfocus-groups.TheperceivedmainbenefitofPEVsseemstobeenvironmentaladvantagesandconcernsraisedwereaboutprice,infrastructure,securityofthetechnologyandpracticalities(someofthesepartlyguidedbymisconceptions).In2015Mazuretal.comparedthepolicystrategiesoftheUKandGermany,outliningdifferencesthatarerelevantforpolicymakers.ThestudyobservedthatinGermanythepolicymakersweremuchmorereluctanttoincreaseregulativepressure;however,thisdidn’tmeanthatthecountrywasagainsttheelectricmobilitytransitionbutthatitwasmuchmoreeconomicallydependentonthecurrentautomotiveindustry.AmorerecentstudybyBurghardetal.(2019)setouttoanalysetheactivitiesofGermanmunicipalitiesaroundelectricmobility.Itusedasurveystudythatfoundoutthat80%ofmunicipalitiesarealreadyactiveandrepresentativesfrommunicipaladministrationregardelectrictransportationashighlyrelevantandpromising.Thisstudy17FraunhoferISI-SocialacceptanceofelectricmobilityinGermany-https://publica.fraunhofer.de/eprints/urn_nbn_de_0011-n-6086626.pdfE-mobilitydeploymentandimpactongrids54wasconsideredagoodindicatorforacceptanceinthissocio-politicaldimension.However,theresearchinthisdomainisstilllimitedtocertainnichesandneedsfurtherinvestigation.Marketacceptanceisanotherrelevantfactorthatmustbeconvenientlystudied.OneoftheactorgroupswithgreatleverageonmarketdevelopmentanddiffusionofEVsarecarmanufacturerswhenthesupportivepoliciesaretechnologyneutral.Forthisgrouptheacceptanceofelectricmobilityvaries.Therearemanydifferentportfolios,businessmodelsanddifferentstrategies.Wesselingetal.(2015)foundoutthatthemanufacturersthatsoldmoreweretheoneswithagreaterincentiveandopportunitytoinnovateandthattheseinnovationscameespeciallyfromlessprofitablefirms.Thismightexplainsomeofthedifferencesbetweenmanufacturers’successwithPEVsales.Thegroupofintermediariesbetweensupplyanddemandalsoplayanimportantroleinspreadingthesetechnologies.Suchactorsarecardealers,leasingcompaniesandotheractorsthatdealwithinfrastructure,repair&maintenance.ThelevelofacceptancebythesegroupsisdirectlyrelatedtowhetherclientsarehinderedorenabledwhenpurchasingPEVs.ThereisnospecificliteraturefortheGermancasebutfortheoverallEuropeansaleslandscapethemaincentralbarriersidentifiedwaslackofPEVavailabilityandvisibility,andbothdealersandthepublicbeingsubjecttomisinformationandmisconceptions.InGermany64%ofnewlyregisteredpassengercars(2019)arefromcompanyfleetandcompanycarsandthisfollowsthetrendthatcarsharingfleetshaveanabove-averageshareofelectricvehicles.Thesefleetsareagoodwayforuserstotestoutelectricvehiclesatalowercost.Thesefleetsarealsoresoldmorequicklythanprivatelyownedcarsandpermeatethroughthesecond-handcarmarket.Thispointstocommercialadoptionhelpingtotriggerprivateadoption.Astudyin2015byKawgan-Kaganfoundoutthatcarsharing-userstendtoholdmorepositiveopinionsregardingtheenvironmentalimpactofPEVs.Otherstudiesalsofoundthatthesekindsofusersgivelessimportancetoowningacarthannonusers.Generally,theseusersfeellessrestrictedusingPEVsandevenwhencomparedtoprivatePEVuserstheyperceivetheusefulnessofPEVsmorepositivelyandhaveahigherinterestinbuyingaPEVthannon-users.InthecaseofpublicbodiesasoperatorsandusersofPEVs,Germanmunicipalitiesarealreadyactivewith86%ofthemdevelopingorplanningthisconversiontoelectricmobility.Finally,forprivateusersitwasfoundoutthatrangesatisfactionplaysanessentialroleforthisusergroup’sacceptance.Predictorsliketheregularityorpredictabilityofmobilitypatterns,theshareofjourneysnotcoverablebecauseofrangeissuesandtheindividualcomfortablerangeoftheusersinfluencetheirsatisfaction.Thesearecoupledtogetherwithindicatorslikechargingtimeandcharginglocations.Thetrippurposeisalsoconsidered,andleisureandbusinesstripsareperceivedhigherthanshoppingtripsortripstowork.Overall,studyresultsshowanheterogenousanotdiscreteperceptionofPEVs.Thelastdimensionofacceptancedealswiththelocalandcommunityaspect.Eventhoughthereisnoliteratureonthisaspectitispossibletolookatsomenon-academicarticles.Thefirstpointtoconsideristhedeploymentofpubliccharginginfrastructures,whichfacessomepublicoppositionsincethisroll-outinevitablytakesawaypublicspace(inmanycasesparkingspotsarereservedexclusivelyforcharging,convertedfromformerlyavailablespotsforallvehicles).Anotherpointthatexperiencesoppositionarethespecialrightssometimesgiventodriverstoelectricdrives(forexampletheusebuslanesandfreeparkingincertainareas).Thislastonecanbeseenasanadvantageforcurrentandfutureelectricdriversboostingtheiracceptancebutasadisadvantagefordriversoffossil-fuelpoweredvehiclesloweringtheiracceptance.Finally,otheraspectthatusuallyboostsacceptancelevelsisthatinnormallybusystreetselectricvehiclesareexperiencedasmorepleasantbybikersandpedestriansaswellasinhabitantssincetheyhavenolocalemissionsandreducednoisegeneration.Thisdimensionstillhasmanyopenquestions,andmoreresearchisneeded.5.3AdvancedactivecustomersroleActivecustomers–whetherasindividualcitizenslivinginhomesorapartmentsororganizedthroughneighbourorvirtualcommunities-willendupformingacentralfocalpointoftheenergysystemcrosssectorialintegrationselectingtheirbestfinancialoptionstolowertheirenergycostsanddecarbonizetheirlifestylesandsominimizetheirimpacttotheplanet.Asaresultoftheirgrowingimplicationintotheenergyandclimatechangedebatetheirinvestmentsandstrategieswillevolvetowardsnetzerolivingenvironmentssimultaneouslyinvestingintotohousinginsulation,renewableself-consumptiontomitigatetheirexposuretotheenergycrisis,switchingtoEVstodecarbonizetheirtransportationandminimizetheirfuelcostaswellasreplacetheirboilerswithsmarterelectricalheatpumpfortheirheating.Thesenewdevelopmentswillnaturallyleadtofurthertechnologyintegrationacrosstheirdistributedenergyresourcesaswellasnewbuildingenergyoptimizationtakingbestadvantageofnewdynamictariffsaswellasanalysinginreal-timethecarbonfootprintoftheelectrons,theyconsumethroughthedatapublishedbyTSOs&DSOs.TheEVisrepresentingasignificantgamechangerinthisenvironmentopeningopportunitiestomanagebilateralenergyexchanges(V1G,V2G,V2H).EVswillinsomecasesbecomplementedwithsupplementarybatteriestomaximiselocalPVself-consumptionbenefits.Beyondtheirindividualhomeenvironments,activeconsumersalsorepresentearlyadoptersofnewlowcarbonlivingstylesbecomingstrongadvocatesoftheirexperienceandbestpractisesacrosstheirneighbourandpeercommunities,naturallyorganisingintoself-administeredcommunitiesofearlyadopters.ThistrendisfurtheracceleratedthroughthenewCleanEnergypackageregulationsopeningnewregulatoryregimesenablingnewpeertopeerexchangemodelsattheedgeoftheelectricitysystem–whetherforenergyorcarbonemissionsavingsusedthroughgamification–andsoleveragingthepotentialofblockchaintechnologiesand24/7carbonorigintracking.V2HandV2Gareexpectedtoacceleratethesecommunityeffectfacilitatingsuchexchanges.TheEuropeanframeworkforenergycommunitiesAspartoftheCleanEnergyPackage,theEUhasdefinedtwotypesofenergycommunitiesthatcanactasnewplayersontheenergymarket.E-mobilitydeploymentandimpactongrids55InaccordancewithitsbasisintheInternalElectricityMarketDirective(CitizensEnergyCommunities)ortheRenewableEnergyDirective(RenewableEnergyCommunities),theydealwithrenewableenergyorelectricity.Whilerenewableenergycommunitiesfocusontheexpansion,localuseandpromotionofrenewableenergy,energycommunitiesarecreatingnewmarketplayerswithafocusonelectricity,whichenablesawiderangeofactivitiesandservicesandisnotlimitedtoalocalarea.Whatbothapproacheshaveincommonisthattheyrepresentaseparatelegalentity,wherethecommunityisenabledtoproduce,store,useandsellenergy.Thisincludestheuseofthepublicnetworkortheoperationofownnetworkinfrastructure.Theactivitieslistedinthiscontextalreadyresultinseveralusecasesfordigitalsolutions.Thisrangesfromtheoptimizationofself-consumptionandtheinternalallocationandbillingofjointlyproducedenergytotheintegrationintotheenergymarkets,whichamongotherthingsrequiresasuitabledataexchangeandthemappingofcorrespondingbusinessprocesses.Table4Energycommunityactivitiesreferredtobytheguidelines.EnergycommunityactivitiesRECCECProduction(REC:RenewableEnergy,CEC:Electricity)YesYesConsumptionYesYesStorageYesYesSale,e.g.through:YesNotmentionedexplicitlyContractsforthepurchaseofrenewableelectricity(powerpurchaseagreements,PPAs)YesNotmentionedexplicitlySuppliersYesNotmentionedexplicitlyPeer-to-peertradingNotmentionedexplicitlyNotmentionedexplicitlySharingYesYesDeliveryYesYesAggregationYesYesEnergyefficiencyservicesYesElectricvehiclechargingservicesYesOther(commercial)energyservicesYesYesAllEUmemberstatesarecurrentlydevelopinganationalframeworkfortheimplementationofenergycommunitiesorhavealreadycreatedone.ThisislinkedtotheimplementationoftherelevantEUdirectivesinnationallaw.ThedeadlineforthiswastheendofDecember2020forthe“InternalElectricityMarketDirective”(citizens'energycommunities)andtheendofJune2021forthe“RenewableEnergyDirective”.Twomainopportunitieshavebeenidentifiedregardingtheinteractionofelectricmobilityandtheroleofenergycommunities:1.Preparationofforecastsbasedoncommunity-internalleveldata.Theexistingdataaboutconsumerscanbeusedtogenerateforecastsforindividualdataseriesusingnew(e.g.,self-learningmethods,bigdatamethods).Technicalsolutionsarealgorithmsorsoftwaresolutionsthatcreateforecastsbasedonthedatacollected.Behaviouralanalysis(e-mobilitybehaviour,consumptionbehaviour)concernsthedevelopmentofconsumerbehaviourbasedonthemeasuredandrecordedvalues.Thisapplicationisveryspecificaboutthespecificapplicationforwhichitisused,e.g.,thechargingbehaviourortheconsumptionbehaviourofthemembers.Inthisusecase,gamificationapproachescanalsobeusedtocompareuser/internalbehaviour.Thiswouldresultinsoftwareproducts,methodsandalgorithmsthatareabletoextractconsumerbehaviourfromthemeasureddata.2.Real-timeanalysisofenergysystemsAswithDSOs,itispossibletofocusonprocessinglivedatatodeterminethestateoftheenergycommunity.Goingfurther,thisalsoallowsautomaticdetectionofincorrectmeasuredvaluesinadataseries.Thisisintended,forexample,toavoidaccountingerrorsandtodetectdatamanipulation,asthecollectedandevaluateddatamustbepreparedandvisualizedfordifferentstakeholders(energycommunitymembers,chargingoperators,externalthirdparties,etc.).5.4Chargingoperators:profilesandbusinessmodelAnothercrucialroleinthecustomerinvolvementtomakethechargingprocessasuccessisthatofchargingoperators.Tounderstandtheirinteractionwithotheractorsitisimportanttoconsiderwhattheirmainfunctionsare.Thereareseveralprofilesforchargingoperators:1.Localsmallbusinessinitiativesofslowand/orfastcharging2.Localcouncilsandmunicipalitiesinfrastructuresofslowand/orfastcharging3.Commercialservicesforslowand/orfastcharging4.Localorregionalfastandultra-fastchargingnetworks5.Nationalfastandultra-fastchargingnetworks6.Fleetsandenterprisesinfrastructuresforslow,fastandultra-fastchargingWithreferencetoChargingOperator’sbusinessmodeldifferentoptionsexist.Existingsolutionstoincentivisedriverstoshifttheirconsumptiontooff-peakperiodsthroughpriceincentives(ToUtariffs,critical-peak-pricing)canbeappliedtoEVcharging.Thisiscalled‘openloop’smartcharging,whereacustomermaydecidetotaketheofferornot.Inthiscase,theDSOcannotbesureabouttheacceptanceandeffectuationofsmartchargingbeforehand.AToUtariffimpliesabasic‘delayedcharging’strategytomovethechargeatacertaintimeframeoutsidetheE-mobilitydeploymentandimpactongrids56peak.ThisisafairlystaticapproachwiththedrawbackthatEVscanstillcauseoff-peaksharpdemandincreaseswhenalargenumberofEVswillstartthechargingprocesssimultaneouslywhenthelowtariffbegins.Whilethesebasicstrategiesmaybeeffectiveintheshort-term(chargingatnighttoavoidnetworkstress),theymightstillresultingridreinforcementsinnetworkswithlargeEVshares.Inthelong-term,fullflexibilityofEVchargingwithmoredynamicandadvancedsmartchargingstrategiesisnecessary.GridoperatorscouldmakeofferstoEVcustomerstomodulatethepowerorshifttheEVcharge(timeandpower)toavoidhighpeakload.SuchsmartchargingshouldbebaseduponanagreementbetweenDSOsandcustomers.Evenforthedynamicoption,thereshouldbeavariablecapacitycontractinplacebetweentheDSOandthecustomer,allowingtheDSOtomanagethecapacitywithinthelimitsoftheagreedvariablecapacity.Withtherightchargingstrategyinplace,customers’benefitsmayincludeanopportunitytoreducetheirmobilitycostsbytradingtimeflexibilitywithservicecostsavings.Thismayalsoreducetheneedforincreasingthecontractedpowerandrelatedconnectioncosts.Financialbenefitssuchasofferingattractivediscountsonelectricitytariffsandsavingsonmobilitybillswillplayaclearrole.Butotherfactorssuchasguaranteeingtechnicalreliabilityandoperation,orenvironmentalbenefitsofloadmanagement(i.e.,optionforagreenprovider),willalsobecriticalforchangingcustomers’attitudes.Nevertheless,thedecisiontoparticipateinloadmanagementwillultimatelyrestwiththecustomers.Chargingmanagementmustmeetcustomers’preferencesabouttheirdesiredchargingscheduleandthelevelofcharge.Thevehiclecanautomaticallymaintainthecontrolbymanagingtheamountofenergyandtheconstantpowerflowneededthroughoutthecharge.Rangeanxietycanbefurtherovercomebyallowingcustomerstousea‘directchargingoption’overriding‘delayedcharging’.Forthistohappen,chargingoperatorsneedtoworkoutbeststrategiestoincentivisecustomerswithactive(variablecapacityagreements)andpassive(pricesignals,criticalpeakpricing)demandresponseschemes.Compoundingthistrend,smarterregulationwillbeneededtoovercomeexistingbottlenecksbystimulatingtherightsmartchargingstrategy,flexibletariffstructureandtechnologyadoption.Andfinally,commoninteroperableinterfacesbetweentheelectricitydistributiongrid,thechargingstationandtheelectricvehicleitselfwillensuretherequiredsafetyandsecuritylevelforthecustomers.5.5NewdigitalservicesTechnologiesandnewdigitalservicesforelectromobilitycurrentlystillhaveaneedfordevelopment.Forecastingmethodsincomplexsystems(e.g.,energysystems)arecurrentlynotyetmatureenoughtobewidelyused.Inadditiontothenecessarytechnologicaldevelopment,thereisalsothequestionofhowthedatageneratedcanbeusedsensibly.Asdescribedinthepreviouschapters,theycouldbeusedtoregulateflexibilities.Inthiscontext,theambiguitiesregardingtheuseofflexibilitiesstandinthewayofsimpleapplicability.However,thisgapisbeingbridgedbycurrentresearch.PrivacyanddataprotectionDigitalapplicationssuchastheIoTleadtoalargevolumeofdata,forwhichitwillbeessentialtodeterminewhothedatabelongstoandwithwhomitcanbeshared,especiallyinthecasesofEVsthatcanbechargedindifferentpointsandusingmanyoperators.TheGeneralDataProtectionRegulation(GDPR)(2016/679)regulatestheprocessingofpersonaldata.TheInternalElectricityMarketDirectiveemphasizestherelevanceoftheGDPRalsofortheenergysector,inparticularArticle8-Righttoandprotectionofpersonaldata.Theregulationonthefreemovementofnon-personaldata(2018/1807)allowstheuseofnon-personaldataacrossnationalborders.Anotherrelevantfuturelegislationisthee-privacyregulation,whichregulatesdataprotectionwithafocusonelectroniccommunication.Simpleaccesstopreciseandtimelydataisseenasaprerequisiteforflexibilityservices,sincebothEVusersandtheCPOsortheenergycommunitiesmusthaveaclearunderstandingoftheflexibilitypotential.MemberStatesshouldintroducearegulatoryframeworkforadatamanagementconcepttoenablesecureandefficientdataaccessandexchange.AnalyticalservicesDifferentsoftwareproductsofferthepossibilitytousetheexistingdatatocreateforecastsaboutthefutureconsumptionofEVs.TheforecastscanbederivedfromdirectlymeasureddataorindirectlyviathepredictedbehaviouroftheEVusers.Theforecastscanbescaleddifferently,forexampleatthelevelofachargingpointorinrelationtogroupsofthemorentirepartsoftheenergysystem.Theforecastsmadecanbeshort-termorlong-term,dependingontheapplicationandneeds.Besides,softwareproductsandservicesinthisareahaveawiderangeofuses.Short-termforecastscouldbeusedfordeploymentplanning,sales,trading,butalsoforcontrollingthechargingstatus,forexample.Therearesimilarusecasesfortheoccupancyofchargingstations,althoughtheforecastingmethodsinthisareaarecurrentlylessdevelopedthantheforecastsforrenewablegeneration.Theuseofsuchtechnicalsolutionsrequiresappropriatehardware(computerorserver)onwhichthesoftwarecanbeoperated,orwhichistheinterfacetoacloudonwhichthecalculationsarecarriedout.Inaddition,itisnecessarytocarryoutcorrespondingmeasurementsintheenergysystemandtooperatethenecessarymeasuringdevices.InthecaseoftheanalysisoftheEVusers’behaviour,itcanbeassumedthataccompanyingmeasuresarealsotobecarriedoutinadditiontothenecessarycomponents.Iftheforecastsareusedtocontrolthechargingprocesses,itisalsonecessarytooperateacorrespondingcontrolandtheassociatedcomponents.Themainbenefitofthesesoftwareproductsisthatinformationaboutfutureconsumptionvaluesisavailable.Thisenablesbetterplanningtobecarriedout,whichcanleadtosavingsinresourcesandeffort.Inaddition,certainstrategiesforcontrollingchargingprocessesareonlymadepossiblebyforecastingmethods(modelpredictivecontrol).E-mobilitydeploymentandimpactongrids57RecommendationsforimplementationTheuseofthisgroupoftechnologies(softwareproducts)requiresthatthegeneratedforecastsareputtoameaningfulpurpose.Sincethesoftwareproductsrequirecomprehensivedataforuseand,inthecaseofbehaviouralanalysesandprognoses,alsorequireaccompanyingmeasures,acorrespondingeffortisassociatedwiththeiruse.Since,underthecurrentframeworkconditions,theuseofthesetechnologiesprimarilymakessenseinthecontextofcreatingthebasisforamodelpredictivecontrol,theavailablefeed-incapacities(V2G)andtheflexibilitiestobeadaptedtothemmustalsobeascertainedandaneedforflexibilitytobeclarified.Asanexampleofprojects,itisworthmentioningtheprojectoftokenisationofelectricvehiclesinVienna.Theusecasecomesfromastart-upwithasmallinitialfleetofvehiclesandthegoalofincreasingthefleetofvehiclesinthenexttwoyears,whichseemedquiteunrealisticwiththefundstheyhaveavailable.Asamatteroffact,theydecidedtotokenisethevehiclesandsharetheownershipwithalargecommunityofretailtokenbuyers.Interestedtokenbuyerscanregisteronthededicatedweb-basedassettokenisationdashboard,providingtheircontactinformation,andarethenredirectedtogothroughtheidentityverificationprocessconductedbytheAustrianStatePrintingHouse(Staatsdruckerei)inaccordancewithstringentfederalandlocalregulations.Oncetheverificationprocessiscompleted,userscangetaccesstothetokenpurchasingwebpage,aswellastoreportsonthevehiclefleetandthefinancials.ImportanttonoteisthatallthedataisrecordedinafullyGDPR-compliantprocess,withnoidentifiablepersonalinformationeverstoredinapubliclyaccessibleway.Possiblebarriersandrecommendationsincludeaccessto(almost)real-timedata(e.g.,smartmeters)withclearregulationofdataprotectionrequirementsandifnecessary,specificationoftechnicalrequirementsforhardwareandsoftwarewithregardtodataprotectionandprivacybydesign.E-mobilitydeploymentandimpactongrids586.ENABLERS6.1TechnologicaladvancementsIn2020closeto200.000normalpowerpublicchargingpoints,upto22kW,andother25.000high-powerpublicrechargingpoints(>22KW)wereavailableintheEU.ThisachievementhasbeenheldthankstotheimplicationoftheEuropeanregulatoryauthoritiesandtheMemberStatesGovernmentsaswellaspublic-privatecollaborationparticipations.ConnectingEuropeFacility(CEF)forTransportprogrammefundedprojectsperamountof€24.05billionforthe2014-2020period,makingpossiblethedeploymentofthisnetwork.TheTrans-EuropeanTransportNetwork(TEN-T)policyaddressestheimplementationanddevelopmentofaEurope-widenetworkofallkindsoftransportsincludingroads.Besidestheconstructionofnewphysicalinfrastructure,theTEN-Tpolicysupportstheapplicationofinnovation,newtechnologiesanddigitalsolutionstoallmodesoftransports,andtheobjectiveisimproveduseofinfrastructure,reduceenvironmentalimpactoftransport,enhanceenergyefficiency,andincreasesafety.Theobjectivesforeseenby2030isthecompletionoftheCoreNetwork,structuredaroundninemultimodalCoreNetworkCorridors,andtheComprehensiveNetworktocoverallEuropeanregionstobecompletedby2050.VehicletoGridtechnologyAfurthertechnologicaladvanceisthatoftheVehicletoGrid(V2G)technology(seeforreference“TheDriveTowardsaLow-CarbonGrid”,acollaborationinvolvingcarmakerNissan,E.ONDriveandImperialCollegeLondon18).Asexplainedinpreviouschapters,V2Gtechnologyallowselectricitytoflowinbothdirectionstoandfromelectricvehiclebatteries,allowingenergystoredinthebatterytobesoldbacktothegridwhendemandforpowerishigh.Vehiclescanthenchargewhendemandislowerorrenewablegenerationishigh,reducingrelianceonfossil-fuelledgenerationandgivingV2Garoleincarbonreductionefforts.Itcanalsoreleasecapacityontheelectricitynetworkswhichdistributepoweraroundthecountry.Giventhatmanyvehiclesspendahighpercentageoftimeidle,bothduringtheworkingdayandovernight,vehicle-to-grid(V2G)technologyoffersanidealsolutiontoeasegridcapacityconstraintsandprovideflexibilitytothepowersystem.V2GenablesenergytobedischargedfromEVbatteriestopowerbuildingsortheelectricitynetworkduringpeakperiods.Batteriescanberechargedwhendemandislower,andrenewableenergyisingreaterabundance.Indoingso,V2G-enabledEVscanlimittheneedforexpensiveinvestmentsinadditionalgenerationcapacityandgridreinforcement,whileprovidingthenecessaryflexibilitytosupportasmarter,moresustainableenergysystem.GivenexpectationsthatV2G-enabledEVfleetscanhaveanintegralroletoplayinthefutureelectricecosystem,itisimperativethatappropriatemarketandregulatoryconditionsareinplacetoensurethereissufficientvalueavailableforallstakeholdersinvolvedtomakeV2Gacommerciallyviableproposition.TheV2Gtechnologyhasbeenfoundtoholdsignificantbenefits,followingtheresultsofananalysisconductedintheBritishpowersystemfortheyears2025and2030over1millioncommercialEVs.Specifically,thesebenefitscanbecategorizedasfollows.Whole-systemeconomicbenefitsModellingresultsshowV2Gcanunlocksubstantialwhole-systemcostsavingsintherangeof£412-883m/year.Also,theadditionalcostassociatedwithmeetingtheelectricitydemandofamillionfleetEVscanbeoffsetbythevalueofflexibilityfromV2Gintheformof:•Avoidedcapitalexpenditureingeneration;•Reducedneedfordistributionnetworkreinforcement;•Moreefficientprovisionofbalancingservices,withreducedcurtailmentofrenewableenergy.Incontrast,unmanagedandsmartchargingscenariosareshowntoresultinincreasedsystemcostsof£567-773m/yearand£102-150m/yearrespectively,duetothehigherdemandplaceduponthepowersystembythesevehicles,andthelimitedflexibilitytheyoffer.NotealsothatV2Gflexibilitycanbeutilisedinvariouswaystocreatefinancialbenefits.CertainV2Gusecasesleadtocostsavingswhencomparedtoastandardunidirectionalchargingsolution.Alternatively,revenuescanbedirectlygeneratedfromtradinginenergymarketsorofferingspecificflexibilityproducts.Ingeneral,theseusecasescanbemarketedsimultaneouslytoboostoveralleconomicbenefits.Thisisknownasrevenuestacking.CarbonbenefitsResultsshowV2G-enabledEVfleetscanhaveasignificantnegativecarbonimpact,i.e.,reduceoverallpowersystemCO2emissions.Also,incrementalcarbonemissionsoffleetEVswithV2Gcanbeaslowas-243gCO2/km.Incontrast,unmanagedorsmartchargingregimesareshowntotriggeradditionalpowersystememissionsintherangeof36-52gCO2/km,asaresultoftheadditionalpowerdemandcreatedbyEVfleets.ThebenefitsofV2Garehighestinscenarioswithhighrenewablepenetrationandlowuptakeofotherflexibleoptions.CarbonsavingsfromV2Gfleetswouldmakeitpossibletoinstalllowervolumesoflow-carbongenerationcapacitywhilestillmeetingcurrentsystem-leveldecarbonisationtargets.NotethatthesebenefitsaresignificantlyimportantgiventhattransportistheUK’smostpollutingsectorwiththemajorityofgreenhousegasemissionscomingfromroadtransport.18https://www.eonenergy.com/content/dam/eon-energy-com/Files/vehicle-to-grid/The%20Drive%20Towards%20A%20Low-Carbon%20Grid%20Whitepaper.pdfE-mobilitydeploymentandimpactongrids59ValueofV2GforelectricitysystemoperationAnalysisalsosuggeststhatwithalowerpenetrationof50,000V2G-enabledEVs,eachEVcouldreducesystemoperationcostsbyapproximately£12,000perannumandCO2emissionsbyaround60tonnesperannum.ReducedwindcurtailmentandmoreefficientfrequencyresponseprovisionthroughV2Garethemaindriversofthesecostandemissionsavings.ThevalueofferedbyV2GEVsforsystemoperationfallswithlargerfleetsizes.With150,000EVsonthesystem,themarginalvalueperEVisapproximately£600.CompetingflexibilitysourcescouldalsodiminishoveralloperationalcostsavingsfromV2G.6.2InteroperabilityandstandardsDifferentstandardsandprotocolsareusedtosolvethesameissuesthroughoutthee-mobilityecosystem.WecanfinddifferentphysicalconnectorswithwhichtopluganEVtothechargingpoint,differentbatterymanagementstrategiestooptimizetheuseandthelongevityofthebatteries,differentcommunicationprotocolsbetweentheEVandthechargingstation,alsobetweenthechargingstationandtheChargingPointOperator,andmore.AndasmoreEVsareintroducedinthemarket,therelevantinteractionswillgrowincomplexity.Inthecaseofsmartchargingtechnology,thestartingpointisthatthechargingstationmustbe‘connected’tobeabletocommunicateandbemanagedbyaback-endsystem(oftheChargePointOperator(CPO)).Thiscommunicationshouldincludesmartchargingmessagestobeexchangedthroughstandardisedcommunicationprotocols.Forexample,theOCPP,inadditiontootherstandards(IEC63310),formsthebasisforthiscommunicationbetweenthechargingstationsandtheirback-endsystems.Buttofullyenablesmartcharging,standardisationofdataandcoordinationbetweenallcharginginfrastructureandelectromobilitymanagementsystemsisneededbeyondthoserequirementssetintheOCPP.Thewholeelectromobility‘chain’–startingfromtheelectricvehicleitself,thechargingstationandthegridshouldseamlesslycommunicatewitheachother.SeveralaspectshavebeenaddressedintheregulationwithintheEUinthismatterbuttherestillworktodoonsettingstandardsforoperationsthatensureinteroperabilitybetweenequipment,users,serviceprovidersandback-endsystems.Therearemultipleavailableoptionsintheindustry,therefore,standardizeduniqueidentifiers,datamodels,attributelistsandcommondatastructuresshouldbespecifiedtoenableawholeinteroperability.Themainstandardizedaspectsofelectromobilitysofarare:IEC62196plugs,socket-outlets,vehicleconnectorsandvehicleinlets(CCSandType2arethetwostandardvehicleconnectorstobeusedwithinEurope).•IEC61851Electricvehicleconductivechargingsystem•IEC61980Electricvehiclewirelesspowertransfer(WPT)systems•ISO15118Roadvehicles-VehicletogridcommunicationinterfaceOntheonehand,EuropeaninstitutionshaveaddressedimportantaspectsthatenablestheinteroperabilityandthatrespondstoDirectiveAFI2014/94/UE,andDirectiveITS2010/40/EUwithregardtheinformationexchangebetweenChargingPointOperators(CPOs)andNationalAccessPoints(NAPs).ThisworkwascarriedoutwithintheframeworkoftheIDACSproject(IDandDataCollectionforSustainablefuelsinEurope.Ontheotherhand,theSub-GrouptofosterthecreationofanelectricmobilityMarketofServicesoftheSustainableTransportForum(STF-SGEMS)setthefoundationsofdatamodels,andcommondatastructurestheelectricvehicleecosystem.Therearestillchallengestobeaddressed:•TheexistenceofawidespreadusedcommunicationprotocolbetweenchargingpointsandCPOs.OneofthemostextendedisOCPPwhichoffersauniformsolutionforthemethodofcommunicationbetweenchargepointandcentralsystem.Withthisprotocolitispossibletoconnectanycentralsystemwithanychargepoint,regardlessofthevendor.•TheexistenceofawidespreadusedcommunicationprotocolbetweentheCPOsandotherplayers.TheOpenChargePointInterfaceprotocol(OCPI)supportsconnectionsbetweenelectricmobilityServiceProviders(eMSP)whohaveEVdriversascustomers,andCPOswhomanagechargestations.Nevertheless,DATEXIIistheelectroniclanguageusedinEuropefortheexchangeoftrafficinformationandtrafficdatathatCPOshastoimplementtosendinformationtotheNAPs.Itisexpectedthatotheractorsintheenergysector,suchasdemandandstorageaggregators,willenableEVstoparticipateintheenergymarkets,whichwillhavespecificneeds,differentfromthoseaddressedtothetransportsector,thatmustbeconsidered.ThisprotocolwillalsoneedinthefuturetointerfacethedataexchangeprotocolshistoricallydevelopedinthegridindustryandreferredthroughtheSmartGridarchitecturemodelandsoensureaseamlessintegrationofdatafromTSO-DSOdowntoBSP&CPOs.6.3Regulatoryframeworkandcross-sectorcooperationTheregulatoryframeworkshouldincludethepossibilityfortheDSOsusesmartcharging(signals),sinceEVsareconnecteddirectlytotheirgrids.Itisimportantthattheytakepartindynamicnetworkcontrolaspartoftheirresponsibilityformaintainingastableandefficientnetworkoperation.Ascurrentpossibilitiestoapplyflexibilityinthistypeofcontractsdifferfromcountrytocountry,ahigherdegreeofcomparabilityofthedifferentexperienceswouldbeuseful.ConsideringthediverseregulatorystartingpointsacrossEUmemberstates,andcustomers’experiencewithdifferenttariffschemes,apotentialcomparisonshouldnottoostraightforwardlyneglectcommonalities.Inthissense,bothtransportandenergyactorsshouldbeinvolvedinthenecessarytransformation.Allthestakeholderswhoarepartoftheecosystemwillhavearole(Table5).EVuserswillplaythecrucialroleofmaindecisionmakersintheEVchargingprocess.TheframeworkE-mobilitydeploymentandimpactongrids60toprofitablychannelusers’decisionswillhavetobedevelopedandmanagedbyenergysystemoperatorsanddecisionmakers.Chargingoperators,aswellasresearchcentres,willbefundamentaltodefineandsupportthenewchargingschemes.Manufacturerswillhavethekeytaskoftechnicallyimplementingthenewsolutionsintheirproducts(bothEVsandchargingstations).Table5Stakeholdersandactions(X=relevant;XX=veryrelevant;XXX=extremelyrelevant).MainissuesStakeholdersEVusersManufacturersChargingoperatorsAggregators/energymarketoperatorsGrid/SystemoperatorsDecisionmakersResearchandassociations1)MultidimensionalinfrastructureplanningXXXXXXXXXXXXXXXXX2)PlanningthroughscenariodefinitionXXXXXXXXXXX3)HyperhubsintegrationXXXXXXXX4)Smartcharging&V2GXXXXXXXXXXXXXXXXX5)ChargingmanagementtoensurebenefitsforusersandthesystemXXXXXXXXXXXXXX6)MinimumsmartnessrequirementsXXXXXXXXXXXX7)Standards&InteroperabilityXXXXXXXXXXXXXXX8)DatamanagementrulesXXXXXXXXXXXXXX9)RolesandresponsibilitiesXXXXXXXXXXXXXXX10)DSO–TSOcooperationXXXXXXX11)DynamictariffsandpricesignalsXXXXXXXXXXXXXXXXX12)NewmarketregulationXXXXXXXXXXXX13)StrategyforflexibilitymarketsXXXXXXXXXXXXXXXE-mobilitydeploymentandimpactongrids617.R&DANDINNOVATIONNEEDS7.1WheretoconcentrateR&IeffortsThenewEuropeanframeworkprogrammeforresearchandinnovation,HorizonEurope,coverstheperiodfrom2021to2027(EuropeanUnion,2019),withanimportantaimtobededicatedtoR&Dactivitiessupportingthedeliveryofscientific,technological,economic,andsocietalimpact.ItisframedintothreePillars(ExcellentScience,GlobalChallengesandEuropeanIndustrialCompetitiveness,InnovativeEurope)withaspecificmissionareacommittedto“Adaptationtoclimatechangeincludingsocietaltransformation”.AccordingtotheEuropeanCommission,thefocus“willbeonsolutionsandpreparednessfortheimpactofclimatechangetoprotectlivesandassets.Itwillincludebehaviouralchangesandsocialaspectsbyaddressingnewcommunitiesbeyondusualstakeholders,whichhelpleadtoasocietaltransformation”(EuropeanCommission,2020d).Electrificationoftransport(electromobility)isapriorityfortheEuropeanCommissionandforthisreasonishighintheprioritylistofitsresearchprogramme.Consistently,Cluster5ofHorizonEuropeonClimate,EnergyandMobilityenvisagesenergyandmobilitysystemsthatare“climateandenvironment-friendly,smarter,safer,moreresilient,inclusive,competitiveandefficient”(EuropeanCommission,2019).TheexpectedimpactwithfurtherResearch,DevelopmentandInnovation,inlinewiththeStrategicPlan,istocontribute“TowardsclimateneutralandenvironmentallyfriendlymobilitythroughcleansolutionsacrossalltransportmodeswhileincreasingglobalcompetitivenessoftheEUtransportsector".Inwhatconcernsroadtransport,whichisthescopeofthisdocumentthatshouldbedonethroughtransformingroadtransporttozero-emissionmobilitythroughaworld-classEuropeanresearchandinnovationandindustrialsystem,ensuringthatEuroperemainsworldleaderininnovation,production,andservicesinrelationtoroadtransport.WiththeaimofacceleratingthedevelopmentanddeploymentofzerotailpipeemissionroadtransportwithasystemapproachinEurope,theEuropeanPartnership“Towardszeroemissionroadtransport”(2Zero)isworkingtowardsacommonvisionanddeliveringamultistakeholdersroadmapforaclimateneutralandcleanroadtransportsystemthatimprovesmobilityandsafetyofpeopleandgoodsandensuresfutureEuropeanleadershipininnovation,production,andservices.RelyingonthesuccessoftheGreenCarsandGreenVehiclesinitiatives,the2ZeropartnershipisorganisingconstantexchangebetweentheECservicesandthestakeholdersgatherinthenon-for-profitassociationEGVIAfor2ZerotoidentifyresearchandinnovationprioritiesinHorizonEurope.Atotalbudgetofupto615millioneuroswillbededicatedtofourpillarscoveredbythepartnership:1.VehicletechnologiesandvehiclepropulsionsolutionsforBEVandFCEV2.Integrationofthebatteryelectricvehiclesintotheenergysystemandrelatedcharginginfrastructure3.Innovativeconcepts,solutions,andservicesforthezero-emissionmobilityofpeopleandgoods4.Lifecycleassessmentandcirculareconomyapproachesforthesustainableandinnovativeroadmobilitysolutions.ETIP-SNETbeingoneofthefivetechnologyplatformsupportingthe2Zeropartnership,itsactivities,andprioritiesidentifiedinthispaper,willbeanimportantinputforthefutureidentificationofresearchandinnovationpriorities.WithinthecontextofETIP-SNET“SmartNetworkforEnergyTransition”andinparticularWG1“Reliable,EconomicandEfficientEnergySystem”,therearetworelevantaspectstoconsider:•Affordable,user-friendlycharginginfrastructureconceptsandtechnologiesthatincludevehicle-grid-interactions•Innovativeusecasesfortheintegrationofzerotailpipeemissionvehicles,andinfrastructureconceptsfortheroadmobilityofpeopleandgoods.Forthispurpose,thefollowingR&D&IeffortscouldbeidentifiedbasedonthemainETIPSNETResearchAreas,asshowninTable6Table6DifferentsupportmeasuretypesforEVs.ETIPSNETResearchAreaTopicsSYSTEMOPERATIONChargingStrategiesPLANNINGandHOLISTICARCHITECTURESystemintegrationFLEXIBILITYStorageUsageFlexibilityinnetworksRenewablesIntegrationSYSTEMECONOMICSMarketImplicationsEconomicAssessmentRegulatoryAspectsCONSUMERUserExperienceEVOwnerCompensationModelDIGITALIZATIONDataFlowsOnChargingStrategies(mainlyrelatedtoETIP-SNETResearchAreaSYSTEMOPERATION):•DefinitionoftheoptimalsmartchargingconceptsabletocopewithmassdeploymentofElectricVehicles(EV)deployedindifferentE-mobilitydeploymentandimpactongrids62environments,avoidinguncontrolledcharging(i.e.,maximumavailablepowerfromthemomentthevehicleispluggedin),that,whenscaledtoamass-market-level,couldcontributetocreateanextraburdenonthepowersystem.•Innovativeconceptsandtechnologiesperformancestocreateaffordable,user-friendlysmartandbidirectional(V2X,whereXcanbeGforGrid,HforHomeandBforBusiness)chargingsolutions,co-optimisingtheneedsofEVusers,ofthehouse/buildingandofthesupplyinggrid.•Researchonprosandcons,underdifferentscenarios(geographical,topological,penetration,etc),underadifferentmixofslow,quick,fast,andultra-fastcharging,underamixofACandDCsolutionsand,eventually,underadditionalinductivesolutions(besidesthetraditionalconductive).Clarifyandunderstand“gridimpactusecases”.OnoverallSystemIntegration(mainlyrelatedtoETIP-SNETResearchAreaPLANNING–HOLISTICARCHITECTURE):•Developmentofsmartchargingstrategiesandcontrolmechanismsthatmaximisetheefficiencyofthewholeenergysystem,increasingtheuseofrenewableelectricityharnessingunusedEVstoragecapacity,whilstminimisinggridreinforcementsandenergygenerationneeds.•Contributiontotheintegratedplanningprocessofsystemsaimedatexploitingcross-sectormutualbenefits(G2XandV2X).•Implementanopenarchitecture(i.e.,notproprietary)concerningsmartandbidirectionalchargingsolutions,askeysuccessfactorstobuildamutuallybeneficialchargingexperiencefortheuserandforthegrid.•Implementaholistictechnicalarchitectureandrestructureofthemarketforitsharmonisationwiththepowergrid.Promotionofthelocalmarketforeffectiveparticipationandroleofdistributedenergyresources(includinge-mobility)inprovidingflexibilitywhilebeingeconomicallyandcommerciallyviable.•Optimizingthespecificcharginginfrastructuresforlogisticshubsand/orTEN-Turbannodes.•Establishmentofquantitativeparametricandprobabilisticmodelsforassessingtheimpactofprogressive,massiveEVpenetrationontheelectricitysystem.•ExplorehowTSO–DSOcooperationshouldbeenhanced,beingessentialtofavourablymanagingEVcharging.•ResearchwithsystemintegratedcontroltoenableexperimentsforACgriddynamicsfromDCchargingofEVssoresearcherscanemulategridresponseforevaluatinghowchargingequipmentcontrolsimpactthegrid.OnStorageUsage(mainlyrelatedtoETIP-SNETResearchAreaFLEXIBILITY):•Exploretheavailabilityofbatterystorage,providedbyparkedEVs(bothlightandheavy-dutyvehicles)tobeusedasabenefitifanintegratedapproachisadoptedconsideringthedifferentchargingscenarios(publiccharging,homecharging,depotcharging,etc.).•Researchontheestimateddifferentbidirectionalchargingprofilesandenergyflowswiththegrid,toprovideinputstootherareasrelatedwithbatteriesandelectronicslifetime.OnFlexibility(mainlyrelatedtoETIP-SNETResearchAreaFLEXIBILITY):•EffectiveexploitationofEVchargingflexibilitytominimiseinvestmentsintheelectricgrids,resultinginreducedsystemchargesforthenetworkusers.•AssessmentofEVDRpotentialandappropriateIntegrationoftheEVsectorforDRpurposes.OnMarketImplications(relatedtoETIP-SNETResearchAreaSYSTEMECONOMICS):•Researchofimpactonmarketsunderdifferentscenariosandusescases.OnEconomicAssessment(relatedtoETIP-SNETResearchAreaSYSTEMECONOMICS):•Increasetheunderstandingoftheoperationalandeconomictrade-offsfortheuserandthevehicle(e.g.,costofbatterydamage,additionalcostforelectronicstoenableV2G),andonthecharging(e.g.,installationcost,batterydamage/degradation)infrastructureofthedifferentsmartandbidirectional(V2G)chargingapproachesandtechnologies(forinstanceACvsDC),aswellasthecostsforthedifferentactorsinvolved.•Considercurrentslow/mediumpowercharging,analyseanddevelopanddemonstratelowercostalternatives,appropriateforthemassdeploymentofslowcharging,consideringbothACandDCV2Xsolutions,relatedcostsandissues(forinstancepowerqualityofACsystems),inviewofoptimisingthecostofon-vehicleandinfrastructuresideelectronics.•Explorethetrade-offs,underdifferentEVpenetrationscenarios,aimingatdefiningtheoptimalbalancebetweenthevehicleandinfrastructurecosts,thelocationandtypologyofcharginginfrastructures,anditsinteroperabilitywhilstdemonstratingtheefficiencyofV2XcentralizedanddecentralizedscenariosandcateringfordifferentEVcategories,indifferentenvironments.OncontributiontoRenewablesIntegration(mainlyrelatedtoETIP-SNETResearchAreaFLEXIBILITY):•DemonstrateV2Xpotentialinencouragingrenewableenergygrowththroughtheintegrationwithlowpowerrenewableenergysources(e.g.,photovoltaicsontherooforinparkinglots),byreducingenergyexchangewiththegrid(inbothdirections).OnUserExperience(mainlyrelatedtoETIP-SNETResearchAreaCONSUMER):•Improvethewholeuserexperience(localization,booking,paymentandbillingprocess)whenchargingEVsunderdifferentscenarios(onstreetandinpersonalparking,incompanyandpublicbuildings,etc.)andconsideringdifferentelectricvehiclefleets(passengercars,lightE-mobilitydeploymentandimpactongrids63andmediumcommercialdutyvehicles).OnEVOwnerCompensationModel(mainlyrelatedtoETIP-SNETResearchAreaCONSUMER):ResearchstructuredinUseCasesapproach,namely,individualparkingandcharging,collectiveparkingandchargingandstop-overcharging.OnDataFlows(mainlyrelatedtoETIP-SNETResearchAreaDIGITALIZATION):•Researchonthedatamodelsandcommunicationrequirementsbetweenthedifferentactors,promotinginteroperability.•Investigatetheframeworkforuseofthenecessarypersonaldataanddataportabilitygeneratedbythenaturalpersonsmakinguseofvehicleinfrastructurepair.•Researchondefinitionandregulationofaccesstodataanddatamanagementasakeyenablertoimplementnewservices.•ResearchondevelopmentandadoptionofcommonstandardstoguaranteetheinteroperabilityofchargingnetworksandtoperformV2G.•Researchoncybersecuritythreatsunderdifferentusecases,namely,vulnerabilityanalysisandriskassessmentforasmartEVchargingsystem,anddevelopmentofcountermeasurestosecurethenetwork.OnRegulatoryAspects(mainlyrelatedtoETIP-SNETResearchAreaSYSTEMECONOMICS):•Demonstrationoffastchargingconceptscapableoffittingestablishedregulationsandbusinesspractices,particularlyatload/unloadpointsenablingefficientoperations.•ResearchonSmartregulationaspectsrelatedtotariffinordertoincentivizetheconsumeror,atleast,avoidnegativetarifforchargingstructures.Inadditiontoalltheprevioustopics,thestrategyrelatedtobattery-poweredvehiclesshouldbemainlyfocusedontechnologicaloptimisationandmarketdevelopment,includingreliabilityanddurabilityofbatteriesandnewmaterials,reducingbatteryweightandvolume,safety,costreduction,charginginfrastructureandplug-insolutionsandITinteroperability.AnimportantconsiderationaboutthepriorityandrelevanceofthedifferentresearchareasidentifiedaboveisthattheSETRoadmapandImplementationPlanareexpectedtoaddressthedifferentneeds,definetimelinesandbudgets,takingintoaccounttheobjectivesoftheGreenDealandFitfor55initiatives.Oneofthegoalsofthiswhitepaperistoprovideinformationandguidinginthisregardbydifferentstakeholderscomingfromdifferentfields(SystemOperators,Customers,Academia,Manufacturers,ServiceProviders…).7.2WheretoconcentrateincentivesfordeploymentTwobigchallengesremainasimportantbarriersforafulldeploymentofelectricmobility:thepriceofvehiclesandtheavailabilityofcharginginfrastructure.ThespecificobjectivesoftheincentivesmustbetoachievecostcompetitivenessandtoensureminimuminfrastructurethatsupporttherequireduptakeofelectricvehiclesacrossalltransportmodesandinallMemberStatestomeettheEU’sclimateobjectives.Highpricesforelectricvehicles,mainlybecauseofthecostofbatteries,remainanimportantbarrierforalargerEVuptake.Inthisframework,itshouldbehighlightedthatpurchasecostsdecreaseastechnologyevolvesandmoremodelsareavailableonthemarketandincreasecompetition.Additionally,supportpoliciesandincentiveschemescouldbefacilitatedtosupportthetransitiontolowemissionmobility.AnotableincreaseinEVdemandhasbeenobservedinvariousEuropeancountrieswhereincentiveschemeswereintroduced,whilecountrieswithlowornoincentivespresentlowEVregistrationsandmarketshares.Thus,totalEVregistrationsandmarketsharesobservedacrossEuropeancountriesalignwellwiththelevelsoffinancialbenefitsaccompanyingtheEVmarket,provingthattheformoftheincentivesanditscontinuitycanplayacatalyticroleinEVdeploymentatthisstage(“ElectricvehiclesinEuropefrom2010to2017:isfull-scalecommercialisationbeginning?19”,JointResearchCentre,2018).Table7summarizesthetypesofsupportmeasuresthatcouldbeimplemented:Table7DifferentsupportmeasuretypesforEVsImpactonTypeofSupportPurchaseTaxreduction/exemption,purchasepremium,penaltyforpollutingcarsAnnualtax/costTaxreduction/exemptionPrivilegedaccessFreeaccesstobus/taxilanes,accessbanforpollutingvehicles,reductionorexemptionfromroadtollsorparkingfeesRechargingProvisionofpublicrechargingpoints(slow/fast),freerecharging,conditiontouselow-carbonelectricityResearch,development,anddemonstrationSupporttoR&DprojectsandfieldtestsRegardingcharginginfrastructure,supportmeasuresstimulatingEVdemandarenotharmonisedintheEUMemberStatesandthishasledtoacertainmarketfragmentationbothintermsofEVsontheroadandavailabilityofpubliclyaccessiblerecharginginfrastructure.Moreover,interoperabilityandnon-discriminatoryaccesstoavailablepublicrechargingpointsiscrucial.Ensuringtheinfrastructure’sfullinteroperabilityandfulluserinformationandadequatepaymentoptionsshouldbeaprioritygoal.19https://op.europa.eu/en/publication-detail/-/publication/2f0c7419-e890-11e8-b690-01aa75ed71a1/language-enE-mobilitydeploymentandimpactongrids64Inthissense,theproposalforarevisionoftheEuropeanRegulationonthedeploymentofalternativefuelsinfrastructure(AFID)seekstoensuretheavailabilityandusabilityofalternativefuelvehicles(includingvesselsandaircraft),enablingthedeploymentofkeycharginginfrastructuresuchasinmotorwaysandotherroads.E-mobilitydeploymentandimpactongrids658.KEYFINDINGSANDMESSAGES8.1Keyfindings•TheshifttoelectrictransportislikelytoaccelerateintheEU,bothduetoEuropeanandnationallegislation,andtheindustryinvolvement.Onlyincertainniches,suchasaviationormaritimetransport,greenfuelsandfuelcellsmaybemorecompetitive.•TheimpactofelectromobilityandcharginginfrastructureonEuropeantransmissionanddistributiongridsremainstosomeextentunquantified,butstudiesandforecastsbysystemoperators,industry,academiaandEuropeanandinternationalbodiespresentedinthisstudyshowasignificantimpactinthemediumandlongterm,affectingtheMediumVoltage(MV)andeventuallytotheHighVoltagenetworks(DSO-TSOnetworks),whileintheshorttermtheelectricmobilityloadisexpectedtoimpactmainlytotheDSOLowVoltagenetworks.Thiswhitepapershowcasessomeexperiencesandusecasesinthisregard.•TSOs’interesttodayisonfacilitatingtheelectrificationofroadtransport(carsandtrucks).TSOspositionthemselvesbothasgridoperator,marketfacilitatorandaselectric/energysystemmanagerandsupervisor(onesystemview).•DSOsplayakeyroleinmanagingtheimpactofelectricvehiclesinthepowersystemsincemuchexperiencehasbeengainedbyconnectingthousandsofchargingpointstotheirnetworksacrossEurope.BytakingadvantageofDSOs’in-depthknowledgeofthedistributionnetworkandplannednetworkdevelopment,itispossibletomakeamoreoptimaluseofthenetworkwhilemaintainingtherequiredlevelsofqualityandsecurityofsupply.EVshavetobeconsideredaspartofawideandintertwinedecosystemthatinvolvesbothtransportandelectricsystems,aswellasurbanplanners,regulatoryauthoritiesandnewchargingoperators.•Whileelectricmobilityusersareatthecentreofthisnewecosystem,TSOandDSOs,asgridoperators,playtheroleofenergyfacilitatorsintheelectricityportionoftheecosystemandtheyshouldjointlyleadajointstandpoint.Thediffusionofotheremergingtechnologiesaswellasfuturetrendsinmobility,suchashydrogenfuelledEVsandsharedmobility,shouldbecarefullyconsideredastheycouldalsoplayarelevantroleinaddressingtransportationneedsinthemoredifficulttoelectrifynichesandinofferingflexibilitytothepowersystem.•EVownersarethekeyactorsofelectricmobilitydeployment.Itiscrucialtounderstandandsatisfytheirexpectationsintermsofthechargingprocess,especiallyfocusedoncomfort,economicinterest,andfunctionalities.Relevantaspectswouldincludechargingpointlocation,reservation,access,chargingduration,monitoring,paymentandadditionalservices(e.g.,servicesprovidedwhilewaitingfortherechargetoend)andtheinteractionwithotherelectricalassetsathome/work.Thechallengeistodoitwhilemaintainingthelevelsofsecurityofsupply.•EVpowertrainsandvehiclesareintrinsicallyefficientandareprogressivelybecomingmature.Importantimprovementsarestillexpectedonthecharginginfrastructureandthechargingprocess,includingdigitalservices,datamanagement,businessmodelsandvalueproposition.•Aholisticviewofthepowergridbasedonfractalfeatures(e.g.,LINK-architecture)andmarketrestructuringoffersgreatopportunitiesforsmoothintegrationofelectromobilityandenablesrepeatabilityandscalabilityperdesign.•Severalcharginguse-caseswillbedeployed(private/public,individual/collective,fast/slow,fleetdepots/street/,fuelstations/highwayshubs).Gridoperatorsshouldsupportthetailoredgrid-friendlycombinationsofthepreviousoptions.8.2KeymessagesThemainmessageofthispaperisthataproperenvironmentisneededtoallowtheoptimalexploitationofelectricvehiclesandtheopportunitiestheycanoffertoelectricitynetworks.ThepresentsituationstilllimitsthepossibilitiesofferedbysmartchargingandV2Gtechnologies,whichhavetobefosteredthroughcoordinatedplanningandupdatedregulation.Systemoperatorshaveanimportantroletoplay,bothdirectlyasgridoperatorsandasfacilitators(throughmarketservices).a)Promoteintegratedplanningforcharginginfrastructureandelectricgrids.Charginginfrastructureplanningshouldconsidertransport,urbanplanning,privatehouseholds’buildings,andenergysystemneeds.ThechargingbehaviourofEVusersandconfiguration/characteristicsofthecharginginfrastructurewillhaveanimpactbothontransmissionanddistributiongrids,aswellasonthepowersystemasawhole.Hence,asynergicandcoordinatedapproachshouldbeadopted.Moreover,bycouplingtheuser’sparkingneedwiththechargingneed,thechargingprocesscanbecomeanew,cost-effectiveresourceofflexibility.b)Gridplanningshouldbeperformedthroughacarefulscenariodefinition.Improvedmodellingshouldbeadoptedtoperformrobustsimulationsofgrids’impactandcross-sectoroptimisationsscenariosbymeansofnewmodelsandalgorithmsaswellaswhat-ifandsensitivitiesanalysis.QuantitativeparametricandprobabilisticmodelsshouldassesstheimpactofprogressivemassiveEVpenetrationontheelectricitysystem,includingmodificationsofhourly/weekly/seasonalloadprofiles,conditionsforenergyadequacy(primaryenergysupply)andpoweradequacy(gridcongestions/reinforcements).E-mobilitydeploymentandimpactongrids66c)DSOsplayakeyroleinthedeploymentandintegrationofEVcharginginfrastructureintheelectricitynetworkasmuchexperiencehasbeengainedbyconnectingthousandsofchargingpointstothepowersystem.Therefore,DSOsshouldbeincludedintheplanninganddevelopmentprocessforthedeploymentofEVcharginginfrastructureasearlyaspossible,tofacilitategridnetworkconnections.Gridreinforcementrequiresanassessmentconsolidatedwithotherloadincreasesupstreamtoevaluatetheoverallimpactonthenetwork.Theseparametersrelatetothecharacteristicsofthedistributionnetworkandtheexpectedfutureloadrequirements(accountingforboththelocationandpowercapacityrequirementsofthechargers).DSOsevaluateallthesefactorstoanalysethenetworksituationanddevelopvariousEVchargingscenarios,thusallowingthemtoidentifytheavailablecapacityandconnectioncostatdifferentgridconnectionpoints.d)Systemoperatorsshouldcarefullyconsiderthediffusionof“hyperchargerhubs”onhighways.Hyperchargerhubsrequiresrelevantpower(tensofMW)andcouldbeconnecteddirectlytoHVgrids.Thisissuecouldassumemorerelevanceifbothelectriccarsandelectrictruckshavetobeserved.StrongcooperationbetweentheTSO,DSOsandthehuboperatorsshouldbepursued.Theoptionofinstallingstationarystoragesystemstolimitpeakpowerdemandshouldalsobeconsidered.e)Asmartmanagementofthechargingprocessshouldbepursued.Itis,indeed,acrucialsolutiontolimittheneedforadditionalpeakcapacitywhenrenewableproductionisscarceandpreventgridoverloads(especiallyatlocallevel).Italsomayavoid,limit,orpostponegridreinforcementcostsandenablenewopportunitiesofprovidingservicestothepowersystem.SmartchargingandV2Gcansolvepeakpowerissues,increaseRESpenetration,andprovideflexibilityservices.Forgridoperatorstheywillbeavaluablesourceofflexibility,complementingotherssuchastraditionaldemandresponse.f)ApropermanagementoftheEVchargingprocessshouldbebasedonplannedandoptimisedschemestoobtainadvantagesforbothEVownersandtheenergysystem.ThemanagementofanEVoptimalchargingstrategyhastobeperformedbyelectromobilityserviceprovidersandaggregators,operatingthroughmarketmechanismswithproperinputsandcooperationamongsystemoperators.Theuserwillhavemultiplechargingoptionsregardless,makingoptimalschedulingmorecomplicated.EVscanbealsoprofitablyincludingprosumerschemesanddomesticmulti-energyconfigurationstooptimisedomesticenergyflowsinthepresenceofrenewableenergygenerationandstoragesystems(batteries,waterheaters,etc..).TheInternetofThings(IoT)andcloud-basedmonitoringandcontrolsystemswillfacilitatetheadoptionoftheseschemes.g)Bothprivateandpubliccharginginfrastructureshouldbeequippedwithaminimumlevelof“smartness”bydesign,avoidingpassivechargingwheneverfeasible,forallchargingusecases.MeteringandcommunicationcapabilitiesareafundamentalprerequisitetomanagingthechargingprocessanddeliveringservicesatscaletoEVowners.Furthermore,inprivatehouseholds,plug-and-playsolutionsshouldbeavoidedinfavourofsmartchargersthatguaranteeremotemonitoringandcontrol.Tostimulateuserstofrequentlyconnecttheircars,automaticconnectivitysystemsshouldbeencouraged,reducingtheneedforuser-unfriendlycableconnections.h)CommonstandardsshouldbedevelopedandadoptedtoguaranteetheinteroperabilityofchargingnetworksandtoperformV2G.Currentregulationstilldoesnotcompletelycovercertainstandardisationissues.Forinstance,communicationaspectsbetweenthechargingstationsandthecontrolsystemarenotcompletelydefined,creatinginteroperabilityissuesforbothEVusersandserviceproviders.Moreover,theCombinedChargingSystemstandard(CCS)stilldoesnotallowbidirectionalcharging,thushinderingthepossibilitiesofimplementingV2Gschemes.i)Accesstodataanddatamanagementshouldbewelldefinedandregulatedasakeyenablertoimplementnewservices.Toeffectivelyimplementsmartchargingandprovideflexibilityservices,arelevantamountofdatamustcirculateamongtheinvolvedactors.Vehicleusagepatterns,batterystateofcharge,infrastructureandvehiclepowercapabilities,gridtariffsandenergyprices,distributionandtransmissiongridsituation,andrenewableproduction(forecastandreal-time)arejustsomeofthepiecesofinformationrequiredtoproperlymanagethechargingprocessofEV.Clearly,thesedataaretodayownedbydifferentactorsandnoexchangerule/protocols/platformshavebeenyetdefined.Inadditiontotechnicalaspects(e.g.,protocolsandsharingmethods),othercrucialaspectsneedtobetackled,suchasdatapropriety,dataprivacyanddataeconomicvalue.AsEVswillbeincreasinglyintegratedintheenergysystem,securityfromcyber-attackswillalsorepresentakeyissue,toavoiddatabeingintentionallymanipulatedtogeneratenegativeimpactsonthesystembalance.Moreover,controlsystemsofEV-chargingshouldbedesignedinsuchamannerthatdatafailureormanipulationdoesnotleadtoasubstantialchangeinsystembalance(cyber-resilience)andemergencysituationsareproperlymanaged(e.g.,restorationafterblack-outs).j)Enableanewconsumer-orientedecosystem.Therolesandresponsibilitiesofthedifferentactorsinvolvedinelectricmobilityshouldbeclarified.AuniformandhomogeneousframeworkshouldbesettledattheEuropeanlevel,abletoincludealltherelevantactorswithacross-sectoralapproachtodeliverconsumer-orientedservices.ElectricitygridoperatorswillplayanenablingroleinfosteringcompetitionandunlockingthepotentialofflexibilityfromEVs.k)TSO–DSOcooperationshouldbeenhanced,beingessentialtofavourablymanagingEVcharging.Theoptimalsystemconfigurationcanbedefinedonlybymeansoftheincreasedvisibilityofthedistributionandtransmissiongridsstatusandoftheconnectedflexibilityresources.Inthisregard,TSO–DSOcooperationhastobefosteredduringgridplanning,loadforecasting,gridoperation,systemdespatchingandflexibleresourcesmanagement.Cooperationbetweenmarketactorsandsystemoperatorswillalsobecrucialtomaximisethebenefitsforthedifferentplayersacrossthevaluechain.l)Restructuremarketandrulesandestablishlocalmarketstoharmonisewiththepowergrid(holisticapproach)andenabletheeffectiveparticipationoftheEVusers.FinaluserschargingtariffsandenergypriceshouldstimulatetheadoptionofE-mobilitydeploymentandimpactongrids67smartchargingschemes.Theyshoulddynamicallyreflectinfrastructurecosts(capitalandoperational),energycostsandgridconstraints.Thisway,bothlocationalandtime-of-usepricesignalscouldbeset.EVusersshouldbenefitfrombothreducedtariffsandenergypriceastheycontributetoreducinggridinvestments,stabilisingthegrid,andprovidingancillaryservices.DoubletaxationanddoublecountingofgridtariffsmustbeavoidedtoavoidhinderingV2Gservices.m)Regulationauthoritiesshouldintervenetoenablenewformsofparticipationtoenergyandflexibilitymarkets.Presentregulationsallowonlythepartialadoptionofsmartchargingschemesandrepresentanobstacletointroducingnewflexibilityschemeswithnewactors.Technicalanddimensionalrequirementsformarketaccessare,indeed,toodemandingtoallowEVfleetparticipation.EvenV2Gimplementationwouldrequireupdatesinregulations,e.g.,onenergyownership,imbalanceissues,theEVuserroleasenergyproducer,etc.E-mobilitydeploymentandimpactongrids68GETTINGINTOUCHWITHTHEEUInpersonAllovertheEuropeanUniontherearehundredsofEuropeDirectinformationcentres.Youcanfindtheaddressofthecentrenearestyouat:https://europa.eu/european-union/contact_en.OnthephoneorbyemailEuropeDirectisaservicethatanswersyourquestionsabouttheEuropeanUnion.Youcancontactthisservice:–byfreephone:0080067891011(certainoperatorsmaychargeforthesecalls),–atthefollowingstandardnumber:+3222999696,or–byemailvia:https://europa.eu/european-union/contact_en.FINDINGINFORMATIONABOUTTHEEUOnlineInformationabouttheEuropeanUnioninalltheofficiallanguagesoftheEUisavailableontheEuropawebsiteat:https://europa.eu/european-union/index_en.EUpublicationsYoucandownloadororderfreeandpricedEUpublicationsfrom:https://op.europa.eu/en/publications.MultiplecopiesoffreepublicationsmaybeobtainedbycontactingEuropeDirectoryourlocalinformationcentre(seehttps://europa.eu/european-union/contact_en).EUlawandrelateddocumentsForaccesstolegalinformationfromtheEU,includingallEUlawsince1952inalltheofficiallanguageversions,gotoEUR-Lexat:http://eur-lex.europa.eu.OpendatafromtheEUTheEUOpenDataPortal(http://data.europa.eu/euodp/en)providesaccesstodatasetsfromtheEU.Datacanbedownloadedandreusedforfree,forbothcommercialandnon-commercialpurposes.ISBN978-92-76-53455-6TheSPRINGEUServiceContract(n.300003009)supportsETIPSNETactivities,fundedbytheEU.MJ-09-22-246-EN-N

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

碳中和
已认证
内容提供者

碳中和

确认删除?
回到顶部
微信客服
  • 管理员微信
QQ客服
  • QQ客服点击这里给我发消息
客服邮箱