AclimateemergencyguidefornewandexistingbuildingsinAustraliaLOWCARBONINSTITUTERACETONETZEROCARBON3SubSectionheadingAcknowledgementofCountryTheauthorsofthisguideacknowledgetheBedegalpeople,theTraditionalCustodiansoftheLandonwhichthisresearchwasconducted.WepayourrespectstoEldersbothpastandpresentandextendthatrespecttoallFirstNationspeopleofAustralia.4AuthorsDeoPrasad,MalayDave,AysuKuru,PhilipOldfield,LanDing,CarolineNoller,BaojieHeTitleRacetoNetZeroCarbon:AClimateEmergencyGuideforNewandExistingBuildingsinAustraliav1bNovember2021(UpdatedJuly2022)CoverThecircle,signifyingnetzero,comprisesbothembodiedcarbon(ingreen)andoperationalcarbon(inyellow),illustratingthatbothembodiedandoperationalcarbonmustbeconsideredinabuilding’slifecycle.GuidedesignJingaDesignThisguideanditsbenchmarksandtargetshavebeenreviewedbyindustryadvisors:LesterPartridgefromLCIConsultants,IanDixonfromGHDandCarolinePidcockfromPIDCOCK.ThisprojectalsobenefitedfromthedataandcommentsprovidedbyNABERS,PlanningInstituteofAustralia,andArchitectsDeclareAustralia,andthereview,supportandguidanceoftheAustralianInstituteofArchitectsClimateActionandSustainabilityTaskforce(CAST)Group.ThiswasacollaborativeprojectundertakenwithCAST.Thisrevision(v1b)hasbenefitedfromthereviewandfeedbackreceivedfromGBCA,NABERS,DeltaQ,StrategyPolicyResearch,andtheAustralianDepartmentofIndustry,Science,EnergyandResources.ThisguidewasfundedandenabledbytheCRCforLowCarbonLivinginthepost-CRCphaseandpublishedbytheLowCarbonInstitutePtyLtd.TheLowCarbonInstitutetakescustodialcareofCRCforLowCarbonLivingpublications.PleasecontactScientiaProfessorDeoPrasadAOforfurtherinformationandapprovalforuseofmaterialsherein.Copyright©LowCarbonInstitute,2021ThisworkislicensedundertheCreativeCommonsAttribution-NonCommercial-ShareAlike3.0UnportedLicense.Toviewacopyofthislicense,visitwww.creativecommons.org/licenses/by-nc-sa/3.0ISBN978-0-7334-3997-1CitationPRASAD,D.,DAVE,M.,KURU,A.,OLDFIELD,P.,DING,L.,NOLLER,C.&HE,B.2021.RacetoNetZeroCarbon:AClimateEmergencyGuideforNewandExistingBuildingsinAustraliav1b,LowCarbonInstitute(UpdatedJuly2022).AcknowledgementsDisclaimerAnyopinionsexpressedinthisdocumentarethoseoftheauthors.TheydonotpurporttoreflecttheopinionsorviewsoftheCRCforLowCarbonLiving,LowCarbonInstituteortheirpartners,agentsoremployees.TheLowCarbonInstitutegivesnowarrantyorassuranceandmakesnorepresentationastotheaccuracyorreliabilityofanyinformationoradvicecontainedinthisdocument,orthatitissuitableforanyintendeduse.TheLowCarbonInstitute,itspartners,agents,employees,andtheauthorsdisclaimanyandallliabilityforanyerrorsoromissionsorinrespectofanythingortheconsequencesofanythingdoneoromittedtobedoneinrelianceuponthewholeoranypartofthisdocument.Suggestionsofdata,methodsorfeedbackforanyfutureeditionsoftheguidecanbeemailedtod.prasad@unsw.edu.auGlossary6Foreword70.Introduction91.Climateemergency:whytheurgency?131.1Globalwarmingtrends141.2Buildingsector’scarboncontribution151.3Carbonemissionsinabuilding’slifecycle162.Initiativesat2021:towardsanetzerocarbonbuiltenvironment192.1Globalinitiativessummary202.2Australianinitiativessummary223.Deliveringanetzerocarbonbuiltenvironment253.1Scopeofmethods263.1.1Keyvariablesimpactingoperationalcarbonbenchmarks263.1.2Keyvariablesimpactingembodiedcarbonbenchmarks273.2Netzerooperationalcarbonpathway283.2.1Methods283.2.2Currentperformanceandclimateemergencytargets303.2.3Strategiestowardsnetzerooperationalcarbon313.3Netzeroembodiedcarbonpathway333.3.1Methods333.3.2Currentperformance343.3.3Climateemergencytargets363.3.4Strategiestowardsnetzeroembodiedcarbon373.4Netzerowholelifecarbonpathway404.Concludingremarks42Appendices43A.1Implementationandreporting44Implementationchecklist44Reportingtemplate(example)45A.2Comparingandcombiningoperationalandembodieddatafromthisguide46A.3Furtherreading47References48CONTENTS6RacetonetzerocarbonABCBAustralianBuildingCodesBoardASBECAustralianSustainableBuiltEnvironmentCouncilATOAustralianTaxationOfficeBASIXBuildingSustainabilityIndexCLCACarbonLifeCycleAssessmentCO2eCarbondioxideequivalentCOAGCouncilofAustralianGovernmentsCRCLCLCooperativeResearchCentreforLowCarbonLivingEIOEconomicInput-OutputAnalysisEmbodiedcarbonThetotalofalldirectandindirectGHGemissionsoccurringduringtheproductionprocessesofthebuildingandconstructionmaterials.Thisincludesallemissionsassociatedwithmakingtheproductionprocessequipment,allothersupportingbusinessfunctionsforbringingaproducttothemarket,transportofmaterialstosite,andtheprocessofconstructingthebuildingitself.EUIEnergyUseIntensity(kWh/m2/year)GBCAGreenBuildingCouncilofAustraliaGFAGrossFloorArea:totalfloorareacontainedwithinabuilding,includingthehorizontalareaofexternalwalls1GHGGreenhousegasHAHybridAnalysisICMS-3InternationalCostManagementStandardkWhKilowatt-hourLCALifecycleAssessmentLCILifeCycleInventoryNABERSNationalAustralianBuiltEnvironmentRatingSystemNatHERSNationwideHouseEnergyRatingSchemeNCCNationalConstructionCodeNZCNetzerocarbon.Inthisguide‘netzerocarbon’means‘netzerowholelifecarbon’(definedbelow).NLANetLettableArea:areaofabuildingorindustrialparkforwhich,underalease,atenantcouldbechargedforoccupancy.Generally,itisthefloorspacecontainedwithinatenancyateachfloorlevelmeasuredfromtheinternalfinishedsurfacesofpermanentexternalwallsandpermanentinternalwallsbutexcludingfeaturessuchasbalconiesandverandahs,commonuseareas,areaslessthan1.5minheight,serviceareas,andpublicspacesandthoroughfares.NTENot-to-ExceedNetzerowholelifecarbonAstatusabuildingachieveswhen,andmaintainsituntil,theamountofcarbonemissionsassociatedwithbothoperational(scope1&2)andembodied(scope3)impactsoveritsnominatedservicelifearenetzeroornegative.OperationalcarbonThetotalofallthedirect(scope1)andindirect(scope2)GHGemissionfromallenergyconsumed(operationalenergy)duringtheusestageofthebuildinglifecycle(includingregulatedandunregulated/plugloads).2PAProcessAnalysisPCAPropertyCouncilofAustraliaRICSRoyalInstitutionofCharteredSurveyorsScopeofcarbonemissionsScope1:Directemissionsfrombuildings•Fossilfuelconsumptioninbuildings(boilers,cookingequipment,etc).•Naturalandsyntheticrefrigerants.Scope2:Indirectemissionsfrombuildingenergyconsumption•Electricityconsumptionby:(i)Heating,ventilation,andairconditioningsystems(ii)Refrigerationequipment(iii)Lightingandotherbuildingservices(pumps,lifts,etc).(iv)Equipmentandplugloads(computers,appliances,etc).•EnergyfromheatingandcoolingservicesprovidedbyutilitiesanddistrictplantsScope3:Indirectemissionsfromothersources•Embodiedcarbonfrommaterialsinthebuilding•Emissionsfrom:(i)wateruseandsewagetreatment(ii)wastesenttolandfillWGBCWorldGreenBuildingCouncilWholelifecarbonAtermforlifecyclecarbonemissions.ZerocarbonreadyAstatusofabuildingthatishighlyenergyefficientanddirectlyusesonsiteoroffsitegeneratedrenewableenergy,oralternativelyusesanenergysupplyontracktobeingfullydecarbonisedby2050.Thiswaythebuildingwillbecomeazerocarbon(operational)buildingby2050withoutanyfurtherchangestothebuildingoritsequipment3.Glossary7RacetonetzerocarbonForewordThereisglobalattentiononthepathwaystonetzerocarbon.Thisguideiswelltimedtobringtogethersciencebasedevidenceonhowthebuiltenvironmentcannavigateurgentlytowardsanetzerocarbonfuture.Itbuildsonpastworkonstrategiesforsustainablelowcarbondesign,theincreasingcosteffectivenessofbothonsiteandoffsiterenewableenergyandplacesitinthecontextof‘climateemergency’thinkingtoengagebuiltenvironmentprofessionalsineasytouseguidancetowardsnetzero.Ittakesawholeoflifeapproachandincludesbothoperationalandembodiedcarboninitsguidance.ItdrawsonAustralianclimatedataandthosefromlocaltoolmanagerslikethewidelyrecognisedNABERStoolinestablishingitsbenchmarks,targetsandtoolstodeliveronitsgoals.ThisguideiskeptsimpletobeeasilyreadandusedandisapartnerdocumenttotheaccompanyingbookbeingpublishedbyMacMillanPalgrave.Thisbookgoesintosomedepthondesignstrategiesandsystemsandexemplarsfromaroundtheworld,policysnapshotsfromvariouscountriesanddevelopingbenchmarksandtargetsfordeliveringonnetzerocarbonbuildingsglobally.Akeyelementofthisguideisa‘architect-client’conversationontrade-offsonwhenandhownetzerocarbonwillbedeliveredforthatbuilding.Thearchitectmayuseallthetoolsattheirdisposaltobringout‘bestperformance’atthedesigntimeforbothneworrefurbishedbuildings.Indoingsothematterofonsitegenerationandoutsourcingrenewablesshouldbediscussedandatimelinesetforachievingnetzeroforallbuildings.Thisisaverypositiveandinclusiveapproach.ThisguideisamongthelegacyprojectsoftheCo-operativeResearchCentreforLowCarbonLiving(CRCLCL)whichIhadthepleasureofChairing.ThisCRCLCLwasacollaborationofamyriadofAustralianindustries,governmentsandresearchers.ItshowedthatwhencollaborationsatsuchascalehappenAustralianresearchersandindustrycandeliveronpracticaloutcomesandimpacts.TheCRCLCLdevelopedasignificantevidencebaseforlowcarbonlivingpolicies,knowledgeforcommunities,toolsandtechnologiesforthemarketandworldclasscapacitybuilding.TheseallhelpcaptureeconomicandsocialopportunitiesforAustralia.ThisprojectbuiltonpastprojectsoftheCRCLCLandwaswellledbyresearchersfromtheUniversityofNewSouthWales,Sydney.TheypartneredwiththeAustralianInstituteofArchitects(CASTTaskGroup)andotherbuiltenvironmentstakeholdersinproducingtheguideforallbuiltenvironmentprofessions.HonRobertHillACChairoftheBoardoftheCRCforLowCarbonLiving(2012-2019)809INTRODUCTION10RacetonetzerocarbonThisguidebuildsonworkpreviouslydeliveredbyASBEC,GBCA,andotherstodeliverspecifictargetsforcurrentandfuturebuildingsintermsoftheiroperationalandembodiedcarbonemissions,andpresentsapathwaytowardsanetzerowholelifecarbonbuiltenvironment.SUMMARYOFALARGERBOOKThisguideisasummaryofalargerbook,DeliveringontheClimateEmergency:TowardsaNetZeroCarbonBuiltEnvironment,whichestablishesthedetailedmethodsbehindthescience-basedbenchmarks,targetsandpathways.Thebookprovidesanin-depthandcomprehensivecollectionofstrategiesandframeworksforverificationandreportingnetzerocarbonperformanceinthebuiltenvironmentwithintheinternationalcontext.AUSTRALIANCONTEXTThisguidepresentsamoreeasilydigestibleextractofthebook’sresearch,adaptedspecificallyfortheAustraliancontext.Thisguideanalysesandinterpretsdataandfindingsfrommultiplesourcesandoutlinesaseriesofcurrentperformancebenchmarksandclimateemergencyperformancetargetsforbothoperationalandembodiedcarbonpathwaystonetzero.Thesetargetvaluescanbeusedtosetrequirementstominimisecarbonemissionsfromthebuiltenvironmentsector,i.e.throughlegislation,non-regulatoryassessmentframeworks,designcompetitions,architectureawards,commitmentagreements,tenderdocumentsorprojectcontractdocuments.IntroductionWHOISTHISGUIDEFOR?•Architects•Engineers•Buildingdesigners•Sustainabilityconsultants•Researchers•Policymakers•Design/planningstudents•Otherbuiltenvironmentpractitioners11RacetonetzerocarbonSECTION1Asnapshotoftheevidenceoftheclimateemergencyandwhythereisanurgentneedforactionwithinbuiltenvironment.Thecaseforrapiddecarbonisationinthebuildingsectorisoutlinedalongwiththescopeofcarbonemissionsinabuilding’slifecycle.SECTION2AbriefoverviewofinternationalandAustralianinitiativeshighlightingthekeytargetsandtimelinesfordifferentpathwaystowardsanetzerocarbonbuiltenvironment.SECTION3Thecoreofthisguide—thisstudy’sscopeandtheoperationalcarbonandtheembodiedcarbonpathwaystowardsnetzero.Thepathwayscoverthemethodused,currentperformanceandcarbontargetsofdifferentbuildingtypesstudied,alongwithstrategiesforachievingnetzero.Finally,theproposednetzerowholelifecarbonpathwaywithkeymilestonesandtimelinesispresentedonatwo-pagespreadposter.SECTION4SummaryofkeyfindingsandrecommendationsfornextstepsfortheAustralianbuiltenvironmentsectorintermsofrapidlyadvancingnetzerowholelifecarbonemissions.APPENDICESTheseincludetemplatesforimplementationuseandforcollectingprojectrelatedperformancedataforthereportingpurposes.Amethodandanexampleforcomparingandcombiningoperationalandembodiedcarbondataisalsopresentedforapplicationonindividualprojects.Finally,alistofrelevantguidesisprovidedforfurtherreference.GuidestructurePRACTICALCONVERSATIONSThisguidestronglyrecommendsaconversationbetweentheclientandthedesignersonhowtonavigatetonetzero,andbywhen.Theconversationshouldincludethelevelsofonsiteefficiencytobeachieved,theoptimisationofonsiterenewableenergygeneration(andstorageasappropriate),andhowbesttobalancetheremainingcarbonemissionswitheitheroffsiterenewableenergyor,asalastresort,eligibleandapprovedcarbonoffsetsforanetzerowholelifecarbonoutcomeoneveryproject.Theconversationshouldleadtoacommitmentagreementanddrivedecisionsatallprojectstagesfromconceptdesignthroughtoconstructioncompletion,aswellaspost-occupancyoperationsandbeyond.NoteThechangesincludedinthisrevision(v1b)are:•SomeofthebenchmarksandtargetsalsoconvertedfromGFAtoNLAwhereapplicable;•Someofthefiguresandtextupdatedforconsistency,clarity,andtoincluderecentdevelopments.STATEMENTOFLIMITATIONSThestateofclimateemergencyrelatestounprecedentedenvironmentalchallengesattheinterfaceof,anddrivenby,thedynamicinterplaybetweenprimarilythreeareas:carbonemissions,biodiversityloss,andconsumptionimpacts.Thescopeofthisguide,however,islimitedtocarbonemissionsfromthebuiltenvironmentsector.Similarly,thebuiltenvironmentsectordirectlyorindirectlyinteractswiththeUN’sSustainableDevelopmentGoals(SDGs)thatdefinethekeychallengestheglobalcommunityneedstoaddressforachievingamoresustainablefutureforall.4Therefore,itisimportanttobalancetheroleofthebuiltenvironmentacrossmultipleprioritiesbeyondjustclimatechangeorcarbon.However,consideringthescopeofthisguideisaimedataddressingtheclimateemergency,theprimaryfocusofthisguideremainsonenergyuseandcarbonemissionsreductions.Thebenchmarksandtargetsestablishedinthisguidearebasedonunderlyingmethodologicalassumptionsandtheavailabilityofdataatthetimeofwriting.Therefore,itisexpectedthatthesebenchmarksandtargetswillbereviewedeverythreeyears,asnewdataandmethodsemerge.Anysuggestionsofdata,methodsorfeedbackforanyfutureeditionsofthisguidearewelcome.Thetargetssetinthisguideareminimumperformancetargets.Theyshouldnotbeusedasthenormnorasmaximumperformancetargets.Asrepeatedlyemphasisedinthisguide,itisnotenoughtojustmeetthesetargets;theyareonlyinterimmilestonesonthepathwaytonetzerocarbonacrosstheentirebuiltenvironment.Inmanycasesclientsanddesignteamswillhavethedesireandcapacitytoreducecarbonemissions(embodiedandoperational)wellbeyondthetargetspresentedinthisguide,whichshouldbeencouraged.EveryGHGemissionsavingisvitalassoonaspossible.12113CLIMATEEMERGENCY:WHYTHEURGENCY?14Climateemergency:whytheurgency?Climateemergency:Asituationinwhichurgentactionisrequiredtoreduceorhaltclimatechangeandavoidpotentiallyirreversibleenvironmentaldamageresultingfromit.5OxfordDictionariesannounced‘climateemergency’astheOxfordwordoftheyear2019.Thescienceofclimatechangeisclearandrobust,andtheevidenceofitsimpactisobservedglobally.Globaltemperaturetrendsinrecentyearshaveshownunprecedentedwarmingacrossalmostallregionsoftheplanet.Thelastsevenyearshavebeenthehottestyearsonrecord,while2020(tiedwith2016)wasthehottestyearonrecordfortheplanet6,7.1.1Globalwarmingtrends“Nodevelopedcountryhasmoretolosefromclimatechange-fuelledextremeweather,ormoretogainastheworldtransformstoazerocarboneconomy,thanAustraliadoes.”–ClimateCouncil12ThelatestIPCCSixthAssessmentReport,termed‘acoderedforhumanity’,providestheunderpinningevidence,whichvalidatesourreasonforproducingthisguideAustraliaisidentifiedasoneofthemostvulnerabledevelopednationstoclimatechange.Thereisincreasingevidenceofclimatechangeinteractingwithunderlyingnaturalvariabilityandresultinginsubstantialincreasesinthefrequencyandintensityofextremeweatherevents9.Australia’sNationallyDeterminedContributionsundertheParisAgreement,however,areinsufficientandinconsistentwiththegoaloflimitingwarmingwellbelow2°C.Infact,Australianandinternationalgovernments’currentpoliciesasofNovember2021,evenifsuccessfullyimplemented,wouldlikelycontributetoglobalwarmingofabout2.7°C10.Thiswouldhavegraveconsequencesforourentireecosystems,foodproduction,citiesandtowns,andhealthandwellbeing.Reachingnetzeroemissionsby2050isnowanabsolutelyminimumrequirementifwearetoavoidtheworstimpactsofclimatechange11.Figure1:GlobalgreenhousegasemissionsandwarmingscenariosSource:OurWorldinData8Currentemissiontrendshavethepotentialtocontributetoglobalwarmingbeyond4°Cbytheendofthecentury.Tolimitwarmingto1.5°C,theaspirationalgoalunderUN’sParisClimateAgreement,requiresasubstantialandurgentreductionincarbonemissions.Annualglobalgreenhousegasemissioningigatonnesofcarbondioxide-equivalentsNoclimatepolicies4.1-4.8°CExpectedemissionsinabaselinesenarioifcountrieshadnotimplementedclimatereductionpoliciesNote:Eachpathwaycomeswithuncertainty,markedbytheshadingfromlowtohighemissionsundereachsenarioCurrentpolicies2.5-2.9°CEmissionsby2100withcurrentclimatepoliciesinplacePledges&targets2.1°CEmissionsby2100ifallcountriesdeliveredonreductionpledges2°Cpathways1.5°Cpathways15Climateemergency:whytheurgency?GLOBALLYThebuildingsectorplaysacriticalroleinpreventingglobalwarmingbeyond1.5°Casbuildingsandconstructionareresponsiblefor38%ofglobalenergy-relatedgreenhousegasemissions13.AsillustratedinFigure2,thisincludes18%frombuildingoperations(scope1and2),0.5%fromtheconstructionprocess,andatleast20%frommaterialsproduction(industry).Apercentageof'Other'and'Transport'emissionsisrelatedtotheintermediatesupplychaintransportofmaterials.Thebuiltenvironmentsectorislowhangingfruitforurgentandeffectiveaction.Whiletheglobalcommunityisaimingfornetzeroby2050,thebuildingandconstructionsectorhasmuchgreaterpotentialandopportunitytodeliverquick,deep,andcost-effectivegreenhousegasmitigationascomparedtomanyothersectors.Withcurrentlyavailabletechnologies,itisarealisticgoaltoachieveasubstantialemissionsreductionby2030.Bytacklingthebuildingsectorwecanmakeasignificantcontributiontowardsthereductionintheoverallemissions.INAUSTRALIAThebuildingsectorinAustraliaisresponsibleforonefifthofallemissions.14Assuch,deliveringnetzerocarbonbuildingsisofgreatimportancefortacklingtheclimateemergencyinAustralia.ThesignificanceofthisismoreprominentasAustralia’sbuildingstockisestimatedtodoubleby2050basedonthe2019level15.1.2Buildingsector’scarboncontributionFigure3:Australia’semissionsbysector,2018Source:ClimateWorksAustralia14Industry21%Buildings12%47%Agriculture&land20%Transport<1%Non-ferrousmetals(aluminum,etc.)Figure2:GlobalGHGemissionsandthelifecycleofbuildingsSource:AIA-CLF1323%TransportIron&steelCementandothernon-metallicmineralsChemicalandpetrochemical6%OtherResidentialCommercial12%18%30%3%4%AgricultureBuildingoperationsIndustryWasteLandusechange&forestry<8%<7%6%11%7%8%Otherindustry<0.5%Construction<0.5%Woodandwoodproducts16stage)andStageB(operationalcarbon–theusestage)asshowninFigure4.AcoreobjectiveofISO14044/67istoenable“comparabilityorbenchmarking”amongstassessmentresultstoenabletheusertounderstandhowoneproductperformsagainstanother.TheRICSwholelifecarbonassessmentmethod17definesbenchmarkingasto“putallstudiesonthesamebasisprovidingconsistencyamongresults,enablingmeaningfulcomparisonsatdifferentlevels…”whichisfundamentaltothepropertysector.WhileEN15978providesavaluableframeworktoenablemeasuringbuildingemissions,therearesomeconcernsaboutalackofconsistency.LETI18observesthestandardis“opentointerpretationandleadstoinconsistencyandalackofcomparabilitybetweendifferentprojects”andtheCarbonLeadershipForum19arguesthat“Thereisanurgentneedtostandardizegeneralbuildingdesigndataandbuildinglifecycleassessmentdata.Alignmentindefinitionsofbuildingarea(gross,internalorexterior),buildinglifecyclestagesandscopesarecriticalforcomparison”.Significantadvancesindefinition,measurementmethodandallocationmethodsforreportinghaveoccurredin2021vastlyimprovingthepotentialtoachievecompleteness,accuracyandcomparability.Mostrecently,ICMS-3GlobalConsistencyinPresentingConstructionLifeCycleCostsandCarbonEmissionsresolvedabasisforglobalareadefinition(functionalunit)andreportingofemissionsby“partofthebuilding”i.e.building/infrastructureelementbylifecyclestage,addressingthesecriticalshortcomings.ThebestpracticemethodofwholeoflifecarbonmeasurementoutlinedinthisguideisbasedonthisseminalstandardandrefinesitfortheAustraliancontextinanumberofcriticalareastoachievesignificantconfidenceinbenchmarkcomparability.Climateemergency:whytheurgency?Carbonemissionswithinthebuiltenvironmentoccuracrossthestagesofabuilding’slifecycle.Theimpactofbothoperationalandembodiedemissionsmustbeconsideredindevelopinganetzerocarbonwholeoflifestrategy.Alifecyclecanbedefinedas“aseriesofstagesthroughwhichsomething(suchasanindividual,culture,orproduct)passesduringitslifetime”.16Thequantificationofthecarbon(greenhousegas)impactofbuiltassetsoveraservicelifetimehasbeenguidedbytheISO14044/14067familyofInternationalStandards.EN15978(sustainabilityassessmentofconstruction)contributesmorebyprovidinganumberoflifecycle“stages”(ormodulesasdefinedinthestandard)whichcompriseoffourmainstagesandseventeen“sub-stages”.Nowtermed,“wholeoflifecarbonassessment”,thisincludesStageA(productstageandconstruction);StageB(usestageincludingoperationsandreplacementcapitalworks)andStageC(end-of-life).StageD(beyondthelifecycle)providesvaluableinsightsaboutpotentialbenefits,butduetotheuncertaintyinvolved,theseestimatesshouldbereportedseparatelyandnotincludedincalculations.17TheinformationinthisguideisfocusedonStageA(upfrontembodiedcarbon–theproductstageandconstructionOperationalcarbonreferstothetotaldirect(scope1)and/orindirect(scope2)GHGemissionsfromallenergyconsumed(operationalenergy)duringtheusestageofthebuildinglifecycle.Itincludesboth:•Regulatedloadse.g.heating,cooling,ventilation,lighting•Unregulated/plugloadse.g.ICTequipment,cookingandrefrigerationappliancesItisusuallyexpressedinkilogramsofCO2e(KgCO2e).1.3Carbonemissionsinabuilding’slifecycleSCOPEOperationalcarbonconsideredinthisguideislimitedtoscope2emissionsfromelectricitygenerationmeasuredinkWh.Weareassumingallbuildingstobeelectrifiedandonsitefossilfuelseradicated.ForeachkWhofelectricityused,differentamountsofGHGsarereleasedintotheatmospheredependingonthecarbonintensityofthelocalelectricitysupply.OPERATIONALCARBONCARBONINTENSITIESOFELECTRICITYDifferentstatesinAustraliahavedifferent(andincreasinglychanging)carbonintensitiesofelectricity.Toallowforeaseofmeasurementandcomparisonweexpress,inthisguide,operationalperformanceatthebuildingscale,measuredintermsofEnergyUseIntensity(EUI)inkWh/m2/year.Figure4:ScopeofcarbonemissionsacrossdifferentstagesofthebuildinglifecycleCradleGateSiteConstructioncompletionEndofuseGraveCradleCarbonemissionsOperationalCarbonEmbodiedCarbonProductstageConstructionstageUsestageEndoflifestageBeyondbuildinglifecycleWholelifecarbon=++++Scopeofdatainthisguide17Climateemergency:whytheurgency?EmbodiedcarbonreferstothetotalofalldirectandindirectGHGemissionsarisingfromtheproductionofandprocessingactivitiesforproducingmaterialsandconstructingthebuildingandusestagematerialandserviceinputsintothemaintenanceandreplacementofabuildingandorinfrastructure.Thisincludestheshareofemissionsassociatedwithmakingtheproductionprocessequipmentandallothersupportingbusinessfunctionsforbringingaproducttothemarket.emissionsarereferredto,‘netzerooperationalcarbon’and‘netzeroembodiedcarbon’termsshouldbeusedrespectively.Theterm‘carbonneutral’istypicallyusedinthecontextofoperationalcarbononlyandhenceisinterchangeablewithnetzerooperationalcarbon.However,inawholelifecarbonframeworkitshouldalsoincludescope3emissions.Inthisguide‘netzerocarbon’means‘netzerowholelifecarbon’.AbuildingachievesanetzerowholelifecarbonEMBODIEDCARBONInaddition,allemissionsassociatedwithtransportofmaterialstositeandtheprocessofconstructingthebuildingitselfareallincludedwithinthescopeofembodiedcarbonemissionsassessmentinthisguide.AsillustratedinFigure4,embodiedcarbonalsoincludesemissionsduringotherstagesandthereforecanbemeasuredwithindifferentsystemboundaries,e.g.cradletogate,cradletosite,cradletoconstructioncompletion,cradletograve,orevencradletocradle.However,caremustbeexercisedtoavoiddoublecounting,forexampleinrelationtothebeyondthebuildinglifecycle.Embodiedcarbonbenchmarkfigureswithinthisguidearecradletoconstructioncompletion(typicallyreferredtoasupfrontcarbonorA1-A5stagesinEuropeanStandard15978:2011),whichincludesproductandconstructionstages,andareexpressedinkilogramsofCO2eperm2ofbuildingtype.NETZEROWHOLELIFECARBONBUILDING‘Netzerocarbon’isawidelyusedterm,however,bothAustralian15,20andinternational21definitionsgenerallyonlyincludeoperationalcarbon(scope1and2)andexcludeembodiedcarbon(scope3),exceptacoupleofrecentexceptions.22,23Forexample,WGBC’sexplanationofitsdefinitionuntil2021was:“Netzerocarboniswhentheamountofcarbondioxideemissionsreleasedonanannualbasisiszeroornegative.Ourdefinitionforanetzerocarbonbuildingisahighlyenergyefficientbuildingthatisfullypoweredfromonsiteand/oroffsiterenewablesourcesandoffsets”.24.NowScope3emissionsarealsoincludedintheWGBC'sNetZeroCarbonBuildingsCommitmenttocoverthefullscopeofWholeLifeCarbon.LETI,ontheotherhand,clearlystatesthatforthem‘netzerocarbon’means‘netzerowholelifecarbon’.25ThistermisalsousedbyRIBA,UKGBC,RICS,amongothers.Itisalsoconsistentwiththe‘WholeLifeCarbonVision’oftheWorldGreenBuildingCouncil.GBCAnowpreferstousetheterm‘ClimatePositive’,whichalsocoversallemissionscopes.Therefore,thisguiderecommendstheuseof‘netzerowholelifecarbon’and,asillustratedinFigure4,includesbothembodiedcarbonandoperationalcarbonemissionswithinitsscope.Wherespecificallyonlyoperational(scope1and2)orembodied(scope3)statuswhen,andmaintainsituntil,theamountsofcarbonemissionsassociatedwithbothoperationalandembodiedimpactsoveritsnominatedservicelifearenetzeroornegative.The‘net’zerostatusisachievedbyoffsettingunavoidablecarbonemissionsthroughrenewableenergygeneration,preferablythroughnature-basedsolutionsforcarbonremovalorothereligiblecarbonoffsetsapprovedundertheClimateActiveCarbonNeutralStandardforBuildingsorequivalentframeworks.EmissionsLowcarbonsupplychainEnergyefficiencyOnsiterenewablesOffsiterenewablesHighrecycledcontentFigure5:StrategiestoachievenetzerowholelifecarbonbuildingsNetzerocarbon(Carbonneutral)0+-LightingDemolitionMaterialsDisposalCarbonemissionsCarbonreductionsDematerialisationSpaceheatingManufacturingSpacecoolingTransportationMaintenanceAppliancesHotwaterConstructionCarbonoffset18219INITIATIVESAT2022towardsanetzerocarbonbuiltenvironment20Initiativesat2022towardsnetzerocarbonbuiltenvironmentInternationally,anumberofpeakbodies,industryassociations,governmentalandnon-governmentalorganisationshavesetspecificcarbonreductiontargetsanddevelopedpathwaystowardsnetzero.2.1Globalinitiatives:asummaryTable1:SummaryofkeyglobalpathwaystonetzerocarbonShortterm2030Mediumterm2040Longterm2050Net-zerooperationalreadyfornewbuildings.Net-zerooperationalcarbonforallnewbuildings.58%operationalenergyreductioninnewbuildoffices,and71%reductionindomesticbuildings.Net-zerooperationalcarbonforallnewbuildings.Allexistinghomesandnon-domesticbuildingstobeupgradedtonetzerocarbon.65%reductioninembodiedcarboninallnewbuildings(andNTEdesigntargets29).Mostnewbuildingsreachnet-zerowholelifecarbonemissions:Mostexistingbuildingsoperatingatnet-zerocarbonemissionsNet-zerooperationalcarbonforallbuildings,includingexistingbuildings.Net-zeroembodiedcarbonfornewbuildingsinsomecountries.40%reductioninembodiedcarbonfornewbuildings,infrastructuresandrenovations.40%reductioninembodiedcarbonfornewdomesticandofficebuildings(andNTEbuilttargets26).Offsetremainingcarbonemissions.Net-zeroembodiedcarbonformostnewbuildings.Net-zeroembodiedcarbonforallnewbuildings,infrastructureandrenovations.OperationalCarbonTargetsEmbodiedCarbonTargetsGABC55WGBC21,27RoyalInstituteofBritishArchitects(RIBA)28LETI18,25LONDONENERGYTRANSFORMATIONINITIATIVEAtthetimeofwriting,34countrieshavecommittedtoorproposednetzeroemissionstargets(mostby2050),and25ofthemhavepublishednetzeroplans.26Someofthekeyglobalnetzeroinitiativesforthebuiltenvironmentaresummarisedbelowandonthenextpage.21Initiativesat2022towardsnetzerocarbonbuiltenvironmentShortterm2030Mediumterm2040Longterm2050Phasedtargetsfrom2023reaching90%ofnewconstructionperformingbetterclimaticallythancurrentlyby2029.Phasedtargetsfrom2023(forallnewbuildingsover1000m2)until2029(forallnewbuildingsofallsizes)requiringLCAcalculationstomeetspecifiedCO2e/m2/yrlimitvalues.Morestringentvoluntarytargetsofferedateveryphase.DanishGovernment32OperationalCarbonTargetsEmbodiedCarbonTargets100%carbonneutral(usingnofossilfuelGHGemittingenergytooperate)forallnewbuildingsandmajorrenovations.45%reductionby2025and65%by2030inembodiedcarbonforallbuildings,infrastructure,andassociatedmaterials.Zeroembodiedcarbonforallbuildings,infrastructure,andassociatedmaterials.AmericanInstituteofArchitects31Architecture203030Allnewbuildingsarezerocarbonready.20%ofexistingbuildingsretrofittedtobezerocarbonready.50%ofexistingbuildingsretrofittedtozerocarbonreadylevels.40%reductionpersquaremetreofnewfloorarea.Morethan85%ofbuildingsarezerocarbonready.330%reductionintheuseofenergy-intensivematerialsperunitfloorarea.50%reductionintheuseofcementandsteel.20%relativeincreaseonaveragebuildinglifetime.95%reductioninembodiedcarbonduetoNZCemissionsinotherlinkedsectors.22QUEENSLAND2050:Netzeroemissions2030:30%reductionon2005levelsNEWSOUTHWALES2050:Netzeroemissions2030:50%reductionon2005levelsAUSTRALIANCAPITALTERRITORY2045:Netzeroemissions2040:90-95%reduction2030:65-75%reduction2025:50-60%reductionon1990levelsVICTORIA2050:Netzeroemissions2030:45-50%reductionon2005levels2025:28-33%reductionon2005levelsSOUTHAUSTRALIA2050:Netzeroemissions2030:50%reductionon2005levelsNATIONALTARGETS2050:Netzeroemissions2030:43%reductionon2005levelsNORTHERNTERRITORY2050:NetzeroemissionsTASMANIA2030:Netzeroemissions(achievedin2015)WESTERNAUSTRALIA2050:Netzeroemissions2.2Australianinitiatives:asummaryAUSTRALIANGOVERNMENTCOMMITMENTSInitiativesat2022towardsnetzerocarbonbuiltenvironmentArecentstudyofthe57largestlocalgovernmentsinAustraliafoundthat58%ofthecouncilshaveatargetoraspirationtoreducetheiroperationalemissionstonetzeroby2050.Morethanathirdofthecouncilsarealsoaimingtoachievenetzeroemissionsby2050forall,orthemajority,oftheircommunityemissions.34CityofSydney,thefirstcounciltobecomecarbonneutralin2007,declaredaClimateEmergencyin2019.Ithascommittedtoachievingnetzeroemissionsby2035andhasdevelopedperformancestandardsandpathwaysforhighperformingnetzeroenergybuildings.35CityofMelbourneisrunningtheClimateChangeMitigationStrategythatprioritiesnet-zerocarbonbuildingsandprecincts,100%renewableenergy,zeroemissiontransportandthereductioninwasteimpacttosupportnet-zerooperationalcarbonbuildings.CityofMelbournehasbeenoperatingasacarbonneutralorganisationsince2012andin2019declaredaClimateEmergencyandasaresulthascommittedtonetzeroemissionstargetforthemunicipalityby2040.CityofBrisbanehasbeencarbon-neutralsince2016andhasfurthertargetsforreducingitsownoperationalemissionsandthoseofitsresidentsandbusinesses.LeadingcouncilinitiativesLOCALGOVERNMENTFigure6:AustraliangovernmentinitiativestowardsnetzeroemissionsSource:AdaptedfromClimateWorksAustralia3323OTHERINITIATIVESTheCouncilofAustralianGovernments(COAG)EnergyCouncilin2019agreedtotheTrajectoryforLowEnergyBuildings.Itisanationalplanthatsetsatrajectorytowardszeroenergy(andcarbon)readybuildings.Asaresult,theNationalConstructionCode(NCC)iscurrentlyundergoingarevisiontoincreasetheenergyefficiencyprovisionsforresidentialandcommercialbuildingsfrom2022.BeyondZeroEmissions(BZE)aspartofitsZeroCarbonAustraliaprojectin2013producedaBuildingsPlan,whichwasthefirstcomprehensiveretrofitplantotransformAustralia’sbuildingsectortoachievezerooperationalenergyandemissionswithin10years.NatHERSschemeisbuiltuponascaleof0-10stars,whereahigherstarlevelcorrespondstoloweramountofenergydemand,anda10-starhouseisunlikelytorequireadditionalheatingorcooling.Workiscurrentlyunderwaytoconsiderraisingoftheminimumstarratingfrom6to7stars,todevelopNatHERS‘Whole-of-Home’tooltoassessandratetheenergyperformanceofthewholehouseincludingappliances,andtoextendtheschemeforexistinghomes.ASBECandClimateWorksAustraliacollaborativelydevelopedthe‘Builttoperform:anindustryledpathwaytoazerocarbonreadybuildingcode’,withthesettingofenergyperformancetargetsfordifferentbuildingtypesacrossdifferentclimates.ClimateWorksAustraliaNetZeroMomentumTracker:ItisacentralplacetotracknetzeroemissionscommitmentsinAustralia.Itcoversdifferentsectorsincludingthepropertysector.Outof215Australianorganisationsanalysed,18%havecommittedtonetzeroby2050foratleastsomeemissions.ClimateCounciliscallingfortheAustralianGovernmenttocommittoatleast75%emissionsreductionbelow2005levels,by2030.GreenBuildingCouncilofAustralia(GBCA)releasedin2018the‘CarbonPositiveRoadmapforthebuiltenvironment’.TheRoadmapnotedcleartargetsforbuildingdecarbonisationfornewandexistingbuildings(2030and2050respectively).Italsosettargetsforreductionsacrossallthreescopesovertime.Thepurposeoftheroadmapwastohelpindustryunderstandhowitshouldevolve,notedthechangestoregulationthatwouldbeneededtoachievethem,andsettargetsthroughGreenStar,tocreateindustryknowledgeandtheconditionsforchangeintheNCC.GreenStarisAustralia’smostwidelyusedholisticratingtoolforthebuiltenvironment.Itcoversnewbuildings,fitouts,precincts,andexistingbuildingoperations.GreenStarBuildings,thelatestversionfornewbuildingsandmajorrefurbishments,introducedtheClimatePositivePathway.Thispathwayrequiresall6starratedbuildingstobefossilfuelfree,highlyefficient,poweredbyrenewablesandbuiltwithlowupfrontcarbonemissions.Italsostronglyencouragesremainingemissionstobeoffsetwithnature,removingcarbonfromtheatmosphere.ThePathwayappliesto5starratingsforprojectsregisteredfrom2023onwards,andto4starratingsforthosethatregisterfrom2026onwards.Anybuilding,finishedonorafter2030,mustalsocomplywiththeserequirements.Thistieredapproachencouragesindustrytograpplewiththechallengesoverthenextdecade,enablingittolearnhowtodeliverclimatepositivebuildings,thusallowingtheNCCtomaketherelevantchanges.ThisapproachwillalsobefollowedforexistingbuildingsinGreenStarPerformance,andinnewprecinctsinGreenStarCommunities.GreenStarHomesalsofollowstheprinciplesofthePathway,thoughbeginningfirstwithnetzerocarbonoperationalcarbononly.GBCAhassignalledafutureversionwillincludeembodiedcarbon.Initiativesat2022towardsnetzerocarbonbuiltenvironmentClimateActive,anAustralianGovernmentadministeredprogram,hasdevelopedavoluntaryClimateActiveCarbonNeutralStandardforBuildings.Usingthisstandard,theCarbonNeutralCertificationforbuildingsisavailablethroughtheNationalAustralianBuiltEnvironmentRatingSystem(NABERS)andtheGreenBuildingCouncilofAustralia.AustralianInstituteofArchitectshascalledontheAustralianGovernmenttoestablishanationalplantowardszerocarbonbuildingsby2030.ThisissupportedbytheArchitectsAccreditationCouncilofAustralia(AACA)whohavereleasedtheNationalStandardofCompetencyforArchitects2021(v1.0),whichacknowledgesthetransitiontoacarbon-neutralbuiltenvironmentasoneofthefundamentalethicalresponsibilitiesofarchitecturaleducationandpractice.AustralianArchitectsDeclareistheleadinggroupforarchitectsdrivingactiononclimateandbiodiversityemergency.TheyhavepublishedashortbutveryusefulGuidetoGoingCarbonNeutral.TheMaterials&EmbodiedCarbonLeaders’Alliance(MECLA)waslaunchedin2021todrivereductioninembodiedcarbonacrossthebuildingsupplychainandtransformthebuildingandconstructionsectortoreachnetzeroemissions.NationalAustralianBuiltEnvironmentRatingSystem(NABERS)programassessesandratestheoperationalenergyperformanceofkeybuildingsectors,includingofficesandshoppingcentres.ThroughtheNSWAcceleratingNetZeroBuildingsInitiative,itisinvestigatinganddevelopingaframeworkformeasuring,benchmarkingandcertifyingemissionsfromconstructionandbuildingmaterials.NABERSwilllaunchaRenewableEnergyIndicatorlaterin2022whichwillbeprovidedwitheveryNABERSenergycertification.Theindicatorwilltrans-parentlydisplaythepercentageofenergyfromrenewables.Keyinitiativesandpathwaystonetzerobyleadingorganisationsinclude:24325DELIVERINGNETZERO26DeliveringanetzerocarbonbuiltenvironmentBENCHMARKSInordertosettheshort,midandlong-termcarbonreductiontargetsfordeliveringanet-zerocarbonbuiltenvironment,itisimportanttosetoutembodiedandoperationalcarbonbenchmarksthatconsiderthevariablesbelow.EMBODIEDCARBONBENCHMARKKEYVARIABLES•Buildingclassification•Functionalunitareadefinition•Lifecycleinventorycalculationmethod•Overallembodiedcarboncalculationmethod•Scopeofbuildingincluded•CountryoforiginThenotionofbenchmarkingisfundamentalinprogressingactiontowardsnetzerocarbonforbuildingsandbuiltenvironment.Benchmarkingputs“allstudiesonthesamebasisprovidingconsistencyamongresults,enablingmeaningfulcomparisonsatdifferentlevels…”.18Inabsenceofthis,targetsandperformancecannotbesetorcompared.3.1ScopeofmethodsOPERATIONALCARBONBENCHMARKKEYVARIABLES•Climate•Buildingclassification•Regionalend-usefuelmix•BuildingdesignanditssystemsThescopeofanalysisandbest-practicerulestoevolvenetzerocarbonassessmentoutcomestoaconsistent,credibleandtransparentlevelaresetoutheretoenablemeaningfulbenchmarking.ThisguiderecommendsthescopeofnetzerocarbonforAustralianbuildingstoextendtoembodiedcarbon(A1-A5stages)andoperationalcarbon(B6stage)forallbuildingtypes,asdefinedbytheNCCclassificationsystem.3.1.1KEYVARIABLESIMPACTINGOPERATIONALCARBONBENCHMARKSBuildingperformance,intermsofoperationalenergyconsumptionandrelatedcarbonemissions,isaffectedbymultiplefactors.Someofthekeyfactorsconsideredinthisstudyare:•ClimateconditionsThisguideincludesbuildingbenchmarksoffourofthemostpopulatedNCCclimatezones:Climatezone(CZ)2–Warmhumidsummerandmildwinter(e.g.Brisbane)Climatezone5–Warmtemperate(e.g.Sydney,Adelaide,Perth)Climatezone6–Mildtemperate(e.g.Melbourne)Climatezone7–Cooltemperate(e.g.CanberraandHobart)•BuildingtypeTheAustralianNCCBuildingClassificationincludestenclassesthatarecombinedintofivearchetypes.Thisguidecoversfourmajorbuildingarchetypes.Buildingclassescoveredinthisguidefallunderresidentialdetachedandapartmentbuildings,commercialofficeandretailbuildings,aswellaspublicandinstitutionalbuildings.•ConditionofbuildingThetwomainbuildingconditionsconsideredwithinthisguidearenewbuildingsandexistingbuildingsundergoingmajorrenovations/retrofits.•AreadefinitionsHowthebuildingfloorareasaremeasuredcanhavesignificantimpactonthescopeandhenceoveralloperationalcarbonemissions.GFAisthebasisoftheParisProofMethod.However,notingthechallengesincomparingGFA,thishasbeenconvertedtomorestandardisedfloorareabenchmarkswherepossible,suchasnetlettablearea(NLA)orNetFloor/habitablearea(terminologydependingonthebuildingclassification).•BuildingdesignanditssystemsAbuilding’sdesignfeatures,size,orientation,form,materials,elementsandsystemsusedinfluencetheoperationalcarbonperformance.Inthisguide,wehaveconsideredtheseaspectsbasedonthemodellingpreviouslyperformedbyCRCforLowCarbonLivinginitsBuildingCodeEnergyPerformanceTrajectoryFinalReport.Anumberofotherfactorsalsoimpactoperationalcarbonemissionssuchasmicroclimaticcontext,designandconstructionquality,occupancylevelanduserbehaviour,howeverthesehavebeenconsideredbeyondthescopeofthisguide.Ingeneral,energyandcarbonperformanceofabuildingisdirectlyassociatedwithenergysources(e.g.gas,electricity).InAustralia,eachstatehasdifferentcarbonintensityofelectricity,duetodifferentfuelmixesused.Theapplicationofon-siteandoff-siterenewablescanalsodramaticallyreducetheenergydemandfromthegridandassociatedemissions.However,thisaspectofenergysourceandfuelmixesalsoremainsoutofscopeduetotheadoptedmethodusingnationaldata.27Table2:KeyvariablesimpactingembodiedcarbonbenchmarksVariablePossibleImpactBestpracticemeasurementapproachBuildingClassificationPotentially100%TheuseoftheAustralianNCCbuildingclassificationsystemisfundamentaltoeffectingavalidcomparisonofembodiedcarbonintensityforbenchmarkingpurposes.AllbenchmarkfiguresproposedinthisguidearealignedtotheAustralianNCCclassifications.FunctionalUnitAreaDefinition12-30%+InternationalCostManagementStandard(ICMS-3)referstotheInternationalPropertyMeasurementStandardsasthebasisforfloorareameasurementandreporting.DependingonthebuildingclassthedifferencebetweenNetandGrossfloorareacanbeaslowas12-15%forClass5(office)and>30%forClass6retail.56ThisguidepresentsdataonaNetFloorAreabasissoastoalignembodiedcarbonwithoperatingcarbonintensityalignedtotheNABERSratingscheme.LifeCycleInventoryCalculationMethod22-88%+TherearethreerecognisedlifecycleinventorycomputationmethodsincludingProcessAnalysis(PA),HybridAnalysis(HA)andEconomicInput-OutputAnalysis(EIO).PAhasthestrengthofdetailatthefactorylevelbutsufferssignificanttruncationerrors.EIOisconsidered“complete”atthenationalorsub-nationallevelbuthasweaknesswithpricingandhomogeneityassumptions.HAutilisesthestrengthsofbothPAandEIOmethods,withtheobjectiveofreducingtheimpactoftheirweaknesses.TheembodiedcarbonvaluespublishedinthisguidearegenerallybuiltonHAdatavalues.OverallEmbodiedCarbonCalculationMethod22-50%+Thisguiderecommendsameasurementapproachwhichisa"hybrid"onewhichcombinestheuseofEIO(i.e.value-based$)methodandpysicalmeasureofquantitiesmultipliedbyEITHERPAorHALCIcoefficientstoachieve"completeness"to>95%ofthetotalbuildingvalue.Atfeasibility/early-stagedesignfavoringEIOmethods,butprogressingtowards,asfaraspossible,processmeasuresoffinalas-builtquantities.ThechoiceofLCIdataforeachquantityinputshouldbenotedandadjustedasfaraspracticaltoachievecompleteness.ScopeofBuildingIncluded40%+BothRICSmethodforwholelifecarbonassessmentforthebuiltenvironmentandICMS-3havedefinedthemeasurementandallocationofembodiedcarbontobuildingelements(ratherthanlimitingtomassofmaterial)andtorequire95%ofthevalueofabuildingtobeincluded.InthisguideweadopttheelementalallocationdefinitionsforupfrontcarbonmeasurementasoutlinedinbothICMS-3andRICSwholelifecarbonassessmentforthebuiltenvironment.Countryoforigin0-50%ItisessentialtousebasicmaterialLCIdatawhichalignstothecountryoforiginofthematerialandappreciatetheimplicationthatthiswillhaveonthewholebuildingintensityresult.Forinstance,muchoftheconstructionsteelforAustralianprojectsissourcedfromChina,whereembodiedcarbonintensityishigherthanAustralianproduction.ItisessentialtoselectthematerialkgCO2ecoefficientwhichrepresentsthecountryofproductionofthematerial.DeliveringanetzerocarbonbuiltenvironmentToachievea‘complete’andcomparablequantificationofembodiedcarbon,itisessentialtoharmonisesixcriticalvariables.Thecriticalityofbuildingtypology,areadefinition,end-useenergytypeandemissionscoefficientiswellacceptedandunderstoodforoperatingcarbonassessmentandbenchmarking.Untilnowhowevertheimportanceofthesevariablesonthecomparabilityofembodiedcarbonintensitybenchmarkshasbeenoverlooked.TheseareoutlinedinTable2.3.1.2KEYVARIABLESIMPACTINGEMBODIEDCARBONBENCHMARKS28DeliveringanetzerocarbonbuiltenvironmentOperationalcarbon3.2.1METHODSThemethodologytodeveloptheoperationalcarbonpathwayemploystwocomplementarymethods:top-downandbottom-up.TOP-DOWNMETHODToestablishoperationalcarbonperformancetargetsachievingnetzerooperationalcarboninnewbuildandretrofittedbuildingsinAustralia,theParisProofMethodhasbeenadopted.TheParisProofMethodisatop-downapproachandconsiderstheenergysupplyanddemandacrosstheeconomyatalargescaletocalculatetheindividualbuilding’sshareofrenewableelectricity.TheParisProofMethodhasbeenpreviouslyusedbyDGBC,andpreviouslyusedbyUKGBCandLETItoestablishwhatiscalled‘budget’energytargetsforabuildingsectorpoweredfullybyrenewableenergy.25,36,37InordertoadapttheParisProofMethodtotheAustraliancontext,wehaveenlargeditsscopetoencompassthebuildingclassificationsaspertheNCCandthediverseclimatezoneswithinAustralia.Initsadaptedform,themethodcomprisesofseveralbuildingarchetypesandAustralianclimatezones.ThestepstoestablishoperationalenergytargetsusingtheParisProofMethodareoutlinedinFigure7.Thebuildingarchetypesandclimatezonesincludedinthisguidearedependentontheavailabilityofexistingdata.Currentlyinthisguide,wehavegathereddatafromgovernmentandnon-governmentalorganisations,suchastheCouncilofAustralianGovernmentsBaselineStudies,AustralianGovernmentDepartmentoftheEnvironmentandEnergyCommercialandResidentialBuildingsBaseline,NationalAustralianBuiltEnvironmentRatingSystem(NABERS),NationwideHouseEnergyRatingScheme(NatHERS),CRCforLowCarbonLivingBuildingCodeEnergyPerformanceTrajectory,ClimateWorksAustralia,andtheClimateCouncil.Itisexpectedthatwiththeincreasedavailabilityandaccesstonewdata,thismethodcanbeexpandedtoincludeotherbuildingclassificationsandclimatezonesinthefuture.3.2NetzerooperationalcarbonpathwayTOPDOWNAPPROACHUsescomprehensivefactorsasabasisfordecisionmakingandcalculationstoidentifythebigpicture.Inthisguide,welookatthebuildingsectoracrosstheeconomyanddivideitintoitsindividualsubcategoriesbasedonbuildingtype,locationandclimate.PARISPROOFMETHODThetop-downmethodisderivedfromdeterminingtheenergysupplyanddemandacrosstheeconomyatalargescaletocalculatetheindividualbuilding’sshareofrenewableelectricity.TheParisProofMethodhasbeendevelopedbyDGBC,andpreviouslyusedbyUKGBCandLETItoestablishwhatiscalled‘budget’energytargetsforabuildingsectorpoweredfullybyrenewableenergy.Calculatetheelectricityequivalentofthetotalcurrentenergydemandinthebuildingstock(TWhe)Estimaterenewableenergysupplyinthefuture(TWhe)Determinetheenergydemandreductionrequiredtobalancethefuturedemandandfuturerenewableenergysupply(%)Determinetheenergydemandofthebuildingstockproportionedacrosstheeconomy(TWhe)Allocatetheavailableenergysupplytodifferentbuildingtypesbasedontheirenergyuseproportionwithinthebuildingstock(commercialandresidentialTWhe)Determinethetotalfloorspaceperbuildingarchetypeinthefuture(m²)Calculatethemaximumaverageenergyconsumptionpersquaremeterperbuildingarchetypeinthefuture(kWh/m²)Figure7:Stepsofthetop-downapproach123456729DeliveringanetzerocarbonbuiltenvironmentOperationalcarbonBOTTOM-UPMETHODThebottom-upmethodusedinthisguidelooksattheextensivemodellingdataandsimulationresultsavailableattheBuildingCodeEnergyPerformanceTrajectory–FinalTechnicalReportbytheCRCforLowCarbonLiving(Fig9).38Thebottom-upmodellingmethodistakenintoaccountinordertohaveanoutlineoftheperformanceofdifferentbuildingarchetypesbasedonvariousAustralianclimatezones.ThemodellingperformedintheEnergyPerformanceTrajectoryProjectiscomprehensiveandcontainsrecentinformationinrespecttothecurrentlegislation.ThemodellingperformedbytheCRCforLowCarbonLivingintheBuildingCodeEnergyTrajectoryProjectexaminedmultiplebuildingarchetypeslocatedinfourAustralianclimatezonescoveringthecountry’slargestpopulationcentres.38ThisprojectaccompaniestheBuilttoPerformreportthatprovidesdetailsontheunderlyingassumptionsandresultsfromthework.15ThestepsarealsooutlinedinFigure8.BOTTOMUPAPPROACHFocusesontheindividualparametersandcomponentsbroughttogethertoprovideanoverallunderstanding.Inthisguide,welookatindividuallymodelledbuildingarchetypesindifferentclimatestohaveanoverallunderstandingofthebuildingstock.Figure9:MethodofgeneratingEUItargetsFigure8:Stepsofthebottom-upapproachPresentingthefinaltrajectoryin3-yearstepperiodsDefiningtheperformanceatfixedpointsinthefuturethrougha5-yearstepperiodMulti-dimensionaltrajectoryanalysisofthemodellingandsimulationresultsSingle-dimensionaltrajectoryanalysisofthemodellingandsimulationresultsInvestigatingarangeofenergyefficiencyimprovementstothebuildingfabricandfixedequipmentandon-siterenewablesSimulatingtheperformanceofthemodelledrepresentativebuildingarchetypesModellingrepresentativebuildingarchetypestoproducesimulationmodels7654321Thecombinedmethodtodelivernetzerooperationalcarbonbuildingsisamixedapproachofthetop-downParisProofMethodandthebottom-upmodellingmethod.ThecombinationofmethodsdefinestherangeforminimumEUItarget.Therangeisdeterminedbytakingthelowerandupperbandsthatthetop-downandbottom-upmethodsprovide.ItisimportanttonotethattherangethesemethodsprovideisdefinedasapositiveEUI.However,theactualtargetfordeliveringnetzerooperationalcarbonisnetzeroemissions.Therefore,therangeprovidedaimsatestablishingstringentEUItargetsforhighlyenergyefficientbuildings(effectivelynetzerocarbonreadybuildings)tothenachievenetzeroemissionsthroughincorporatingenergygenerationfromon-oroff-siterenewablesourcesandcarbonoffsetting.COMBINEDMETHODTOESTABLISHEUIPERFORMANCETARGETSNetzeroEUItargetrangeBOTTOM-UPExistingmodelsofimprovedbuildingstockTOP-DOWNTotalrenewableenergysupplyinthefutureallocatedtobuildingtypesEUI–EnergyUseIntensity(kWh/m2/year)Renewableenergybudget(future)CurrentbestpracticeTotalenergybudgetDatafromCRCLCL,ASBECandNABERSAdaptedParisProofMethod30BuildingtypeClimateAverageexistingbuildingEUI39,40Currentpractice(2022)Minimumperformancetargets(EUIGFA)Min.performancetargets(EUINFAifapplicable)PerformanceequivalenttoOperationalcarbontargetClass1:DetachedhouseNational42.6NatHERS7star#11-36NatHERS#orCZ211-35CZ511-35CZ611-36CZ711-37Class1:Semi-detachedhouseNational44.8NatHERS7star#11-34GreenStarHomesequivalentwith100%GreenPowerCZ210-34CZ510-33CZ611-35CZ711-36Class2:ResidentialapartmentNational69.2NatHERS7star#29-5523-44NatHERS#,NABERSorGreenStarBuildingsratingwith100%GreenPowerCZ229-5423-43CZ529-5423-43CZ629-5623-44CZ730-5724-45Class3:HotelNational459NABERS3.5star71-77CZ276-81CZ573-77CZ669-74CZ769-78Class5:OfficeNational138NABERS5.5star63-6755-58NABERSorGreenStarBuildingsratingwith100%GreenPowerCZ269-7760-67CZ566-7257-63CZ656-6849-59CZ757-6849-59Class6:RetailNational414NABERS3.5star70-18149-126CZ275-19552-136CZ569-17948-125CZ667-17346-121CZ768-17547-122Class9a:HospitalNational465SectionJoftheNCC68-115CZ267-113CZ563-108CZ672-121CZ771-119Class9b:EducationalbuildingNational199SectionJoftheNCC29-36GreenStarBuildingsratingwith100%GreenPowerCZ233-43CZ529-31CZ620-30CZ732-40Class9b:PublicassemblybuildingNational98SectionJoftheNCC44-48CZ244-48CZ544-48CZ644-48CZ744-48DeliveringanetzerocarbonbuiltenvironmentOperationalcarbon3.2.2CURRENTPERFORMANCEANDCLIMATEEMERGENCYTARGETSEnergyUseIntensityinkWh/m2GFA/yrforwholebuilding(includingplugloads)TheaverageexistingbuildingEUIisbasedonthereportsandcalculatorspublishedbytheCouncilofAustralianGovernmentsandtheAustralianGovernmentDepartmentofClimateChange,Energy,EnvironmentandWaterthatdeterminecode-compliantbaselineenergyconsumptionfiguresfor2020basedontheNationalConstructionCodeofAustralia.Areadefinition:GFAusedforallbuildingsduetoitbeingthebasisoftheParisProofMethod.Whereapplicable,thishasbeenconvertedtootherfloorareabenchmarkssuchasnetlettablearea(NLA).#NatHERSassessesheatingandcoolingenergyonlyandexcludesotherenergyuses.Whererelevant,wholebuildingenergyuseequivalenttoNSW’sBASIXratingschemecanbeusedwithNatHERS.Note:Allbuildingsareassumedtobefullyelectrifiedandonsitefossilfuelseradicated.ThecalculationscarriedouttogeneratetheEUIperformancetargetsinthisguideincludedifferentbuildingconditions(newbuiltandmajorrenovations),variousAustralianclimatezones(zones2,5,6,7;referredtoasCZinthistable)andseveralbuildingarchetypes(buildingclasses1,2,5,6,7,9a,9b)asperNCC.ThecalculationmethodconsidersGFAtodetermineEUIperformancetargets.Indoingso,thetargetsdefinedinthisguidearedifferent,andhencenotcomparable,tosomeotherlocalandglobalEUItargets.Forexample,forcommercialofficebuildings,LETIdefinesasingletargetforanentirecountryforGFAandNLA.Inaddition,CityofSydney,definestargetsforthespecificcontext,geographicallocation,andclimateoftheCityofSydneyforbasebuildingorwholebuildingdependingonbuildingtypes.35AIMAllnewbuildingsandmajorrenovationsachievenetzerooperationalcarbonby2030NETZEROwith100%GreenPowerTable3:AustralianClimateEmergencyTargetsforOperationalCarbonPerformanceforNewBuildingsandMajorRenovations2030OperationalCarbonPerformanceTargets31RETROFITS1.BuildingfabricandopeningsupgradesCommercialbuildings•Improvingoraddinginsulation•Implementingcoolandgreenroofs•UsingadvancedglazingResidentialbuildings•Deciduousplanting•Improvingnaturalventilationthroughopenings•Windowupgrades•Providingexternalwindowshading•Improvingoraddinginsulation•Improvingairtightness•Addingthermalmass2.HVACandlightingupgradesCommercialbuildings•HVACupgrades•Usingcombinedheatandpowerplants•Usinghigh-efficiencylighting•Daylightenhancingdesignandsystems•Usinghigh-efficiencyequipment•BuildingautomationandcontrolsResidentialbuildings•Hotwatersystemsupgrades•Airconditioningupgrades•Usingceilingfans•Appliancesupgrades•Usinghigh-efficiencylighting•EnergymonitoringOff-siteenergygeneration:•Off-sitegeneratione.g.communityfund•Off-sitesupplye.g.greenpowerDeliveringanetzerocarbonbuiltenvironmentOperationalcarbonENERGYEFFICIENCY1.ENERGYEFFICIENTDESIGN3.OFF-SITEENERGYGENERATION2.ON-SITEENERGYGENERATIONENERGYGENERATIONOn-siteenergygeneration:•Inbuildingfootprint•Onlandtitle•Privatewire•On-sitegenerationfromoff-sitesourcesEnergyefficientdesignstrategies:•Designinginresponsetotheclimateandthesite•Appropriatebuildingfabricandopenings•Efficientsystems,HVACandlighting3.2.3STRATEGIESTOWARDSNETZEROOPERATIONALCARBONStrategiescanbebroadlycategorisedintothreepriorities.Demandreductionthroughenergyefficiencymustbeconsideredthefirstpriorityinanybuildingasitincludesalargenumberofstrategiesofferingsignificantoperationalcarbonreductionpotential.Maximisingonsitelowcarbonenergysupply,andthenoffsitesupply,ofrenewablesshouldbethesubsequentoptionstomeettheremainingenergydemand(seeTable4below).Figure10:StrategiesforachievingnetzerooperationalcarbonSource:AdaptedfromASBEC41Table4:KeystrategiesforachievingnetzerooperationalcarbonperformanceSource:AdaptedfromCRCLCLguides42(seeAppendixA.3)NEWBUILDINGS&RETROFITSCommercialandresidentialbuildings1.Generatingenergyfromon-siterenewables•Photovoltaicsystems2.Generatingenergyfromoff-siterenewables•Precinctlevelenergygeneration•PowerPurchaseAgreement(PPA)•Greenpower3.Energystorage•Electricstoragehotwatersystems•DistributedenergystoragesystemsNEWBUILDINGS1.DesigninginresponsetoclimateandsiteCommercialandresidentialbuildings•Climate-responsiveness•Appropriateexternalsurfacecolourandsurroundingvegetation2.Buildingsize,formandorientationCommercialandresidentialbuildings•Optimumbuildingsize•Appropriateorientationandefficientform3.EfficientbuildingfabricandopeningsCommercialbuildings•Efficientandappropriateglazingandshading•Appropriateinsulation•AppropriateairtightnessResidentialbuildings•Efficientandappropriateglazingandshading•Appropriateinsulationandairtightness•Providingnaturalventilation•Appropriatelevelsofthermalmass•Avoidingthermalbridges4.EfficientHVACandlightingCommercialbuildings•Efficientventilation,heatingandcooling•Usingcontrolsystems•Increasingrangeforsetpoints•EfficientartificiallightingandimprovingdaylightingResidentialbuildings•Efficienthotwaterheating•Usingpassiveheatingandcooling•Efficientartificiallighting•Efficientappliances•Usingsmarthomesystems32TARGETNETZEROBy2030Timelineandplansetuponconsultationwiththeclient,projectstakeholdersandconsultantsENERGYEFFICIENCYENERGYGENERATIONDecreaseenergyuseDecreaseenergyuseOffsetenergy&carbonDeficitCurrentaverageperformanceBestperformanceTargetperformanceEfficientHVACEfficientlightingEfficientequipmentEfficientshadingandglazingSuitablebuildingfabricandsize<27%<22%<20%<17%<38%<11%On-siteelectricitygenerationEnergystorageOff-siteelectricitygenerationCarbonoffsetFigure11:CommercialBuildings:StrategiestoachievenetzerooperationalcarbonSource:BasedonCRCLCL43,44andBZE45howoperationalcarbonsavingscanbemadebeyondcurrentandbestperformancepractices.Theproportionspresentedareindicativeofwhatispotentiallythehighestpercentagepossibleatpresentandwillvarydependingontheclimate,designandsystems.3.2.3STRATEGIESTOWARDSNETZEROOPERATIONALCARBONcontinuedThepotentialcarbonimprovementthatcanbeachievedthroughenergyefficiencystrategies,reducedenergyuse,energygenerationandtomeetandevenexceednetzerooperationcarbontargetsareillustratedinFigure11and12below.ThesestrategiesaimtoprovideaquantitativeindicationofCOMMERCIALDeliveringanetzerocarbonbuiltenvironmentOperationalcarbonFigure12:ResidentialBuildings:StrategiestoachievenetzerooperationalcarbonSource:BasedonCRCLCL46,47andBZE45RESIDENTIALTARGETNETZEROBy2030Timelineandplansetuponconsultationwiththeclient,projectstakeholdersandconsultantsENERGYEFFICIENCYENERGYGENERATIONDecreaseenergyuseOffsetenergy&carbonDeficitCurrentaverageperformanceBestperformanceTargetperformanceEfficientHVACEfficienthotwatersystemEfficientappliancesEfficientglazingSuitableshadingSmartsensorsSuitablebuildingfabricandsizeGeothermalheating+cooling<35%<12%<21%<20%<15%<320%<38%<75%11-100%On-siteelectricitygenerationEnergystorageOff-siteelectricitygenerationCarbonoffset33DeliveringanetzerocarbonbuiltenvironmentEmbodiedCarbon3.3Netzeroembodiedcarbonpathway3.3.1METHODSThescopeforembodiedcarbonassessmentforbuildingsinthisguideislimitedtotheupfrontstage(A1-A5).Astheconstructionindustry’scapacitytoachievequality,consistencyandcompletenessforupfrontembodiedcarbonassessmentincreases,therewillbeabasisforextendingbenchmarkstolifecyclestagesB(refurbishment)andC(endoflife).Theproblemofcomparabilityinlifecyclecostplanninginengineeringandcostmanagementfieldsiswellknown.Thereliableestimating,modellingandscenariosoflifecyclecostofcomplexproducts(suchasbuildingsandinfrastructure)islimitedandhighlyuncertain(inbothscaleandtiming)owingtotheindividualnatureofassumptionswithlimitedinformationattheearlystage.Unlessmandatorylifecycleoperating(B1);maintenance(B2,3)andrenewal/replacement(B4,5)inputsandcyclesforeveryaspectofabuildingorinfrastructurearedefined,anyresultissubjecttouncertaintyandlimitedtotheopinionofthestudyproponent.Asnotedinsection1.3,theCarbonLeadershipForum’s(CLF)seminalEmbodiedCarbonBenchmarkStudy19concludes“thereisanurgentneedtostandardisegeneralbuildingdesigndata[includingarea,lifecycleandmaterialsscope],criticalforcomparison”InpreparingthisguidetheauthorshavecompletedaninternationalreviewofnotedpublishedbenchmarksandstudiesandhavemadeanattempttoadjustthefindingsforthecriticalvariablesoutlinedinTable2(refertoFigures15and16inSection3.3.2).ThepublicationoftheICMS-3standardin2021,substantiallyprogressedbestpracticemeasurementmethodsandelementalallocationrequirementsforEmbodiedCarbon.ICMS-3inparticularhasassistedbydefiningmandatoryreportingof1)totalGHGemissionsand2)emissionsintensityintermsofbothNetFloorandGrossFloorarea(orinISO14044terms,theFunctionalUnits).ItisalsoimportanttonotetheinclusionofPreliminaries(i.e.allinputsandcostsintothebuildingprocess;waste,onsiteenergy,shedsetc)andthemandatoryexclusionofany“sequestration”fromthetotalGHGemissionsreported.Inthisguideweoutlineanapproachtoamethodofembodiedcarbonmeasurement,thatconsiderstwocriticalareastoaddresskeymethodinconsistenciesincluding:1)theadoptionoftheNCCbuildingclassificationsystemasthebasisforbenchmarkcomparisonand2)theuseofCombinedLCAandthevaluableroleitandEIOmethodshavetoplayinfeasibility,earlyandconceptleveldesignstages.Figure18(onpage37)demonstratesthemostsuitableLCAapproachestoapplyacrossthedesignprocess.TheproblemofLCImethodisnotresolvedsoitisrecommendedthatLCImethodisclearlydisclosed,asistheinventorysource,andevidencetosupportrelevantcountryoforigindataisusedforthestudy.•UseNCCclassificationtodefinebuildingtype.•DefinetheNetandGrossfloorareaFunctionalUnitdefinitionusingtherelevantIPMSbuildingclassstandard.•Defineservice-lifeperiodsusingAustralianTaxOffice(ATO)servicelifeoutlinedinseries66110to67200.ThemethodrecommendedbythisguideusesCombinedLCAmethodsfromfeasibilitytoas-builtforcompletenessandconsistency.Insummarythemainmethodologicalstepsinclude:•UseICMS-3forimpactallocationacrossallmainandsub-elements(buildingandinfrastructure)forUpfrontCarbon.•Ensurethatinformationisavailableinphysicalunitsordollarstocoveraminimum95%ofthebuilding/infrastructurevalue.•Includeallworkswithinthesiteboundary(i.e.Notjustthebuildingbutallgroundandexternalworks).•Usetheprojectfeasibilityorearlystagecostplantoestablishbothmoneyandphysicalquantities,whereavailable.•UseEIOcoefficientsxmoneywherequantitiescannotbeestablishedandmaterialLCIcoefficientsxquantitieswhereavailabletoachieveacombinedLCAassessmentfor95%oftheproject.•EnsurethatthematerialLCIcarboncoefficientsarecountryrelevant.•CalculatetoestablishtheReferencecaseTotalA1-A5embodiedcarbonbythesumof$xEIOcoefficientplusphysicalquantitiesxmaterialscoefficientforthereferencedesignona“typicalbusinessasusual”basis(i.edesignasiscodecompliantandwithnoadvancedmaterials/recycledcontent,etc).•Modelreductionpotentialalternativesthroughthesystemicapplicationofdesignefficiencies,lowcarbonmaterialssubstitutions,recycleandorrepurposedmaterialsorelements.•NormaliseallresultingtotalembodiedcarbonvaluesinKilogramsofCO2einabsolutetermsandthennormalizetobothNetandGrossfloorareabyelementconsistentwithICMS-3reportingtables.•ComparetheresultsinkgCO2e/m2NLAtotheguide’srecommendedperformancebandsinFigure14toestablishwhetherthescenariosresolvedmeettheClimateEmergencypathwayand,ifnot,thenunderstandwhichelementsofthedesignaredrivingtheimpactandworktoresolveperformancepathwaystoachievethetargets.1.Definition2.BuildingScope3.CombinedLCAMethodology4.EmbodiedCarbonImpactAssessment5.Interpretation&CommunicationFigure13:Methodforbenchmarkingandcomparingembodiedcarbonperformance34DeliveringanetzerocarbonbuiltenvironmentEmbodiedCarbon3.3.2CURRENTPERFORMANCEThissectionpresentsAustralianembodiedcarbonemissionsfordifferentbuildings(seeFigure14).ThesehavebeencalculatedusingthepreviousdefinedmethodandTheFootprintCompany’slargedataset,whichcoversover1700wholebuildingembodiedcarbonassessments.Thesebuildingsarecategorisedintoavarietyoftypologieswithover30datapointsforeachtypology48.Figure14presentstheaveragesofthesedatapoints.TheserepresenttheaverageembodiedcarbonvaluesinAustralianconstructionpracticeconsistentwithNCCSectionJ2018.Forexample,theliftservicing(number,speed,qualityetc.)significantlyincreasesbetweentheclassesandhasadirectimpactontheembodiedcarboncontentofliftservicing(inmanycasesbyafactorofupto100%).Thisisrepeatedformostelementsofthebuilding.Thus,PremiumAbuildingswillalwayshaveanembodiedcarbonintensitythatisabovetheaveragevalueandassuch,inacarbonconstrainedworld,,itwouldsuggesttheopportunityforafurthersustainabilityreviewofthePCApropertystandards,toconsidertheissueandpossiblyincorporatetheproposedembodiedcarbonquotasintheenvironmentalqualityperformancematrix.49Figure14:TypicalAustralianembodiedcarbonvaluesbybuildingclassificationClassBuildingtypeGoodAveragePoor1Residential(Timber/BrickVeneer)7621,2701,7781Residential(Concrete/Brick)8781,4642,0502Multi-Residential(Low/MidRise<25m)1,1851,9752,7652Multi-Residential(HighRise>25m)2,0123,3544,6965Office(AGrade)2,0193,3654,7115OfficeFitout1,1281,8802,6326Retail(Regional/Sub-Regional)1,9583,2644,5706FoodRetailFitout5298821,2356Non-foodRetailFitout3375627877Carpark(Basement/Deck)1,2072,0122,817TypicalEmbodiedCarbonvaluesinAustralianbuildingskgCO2e/m2NLA(A1-A5)1,0002,00003,0004,0005,000Valuesatthelowerrange(i.e.betterthanaverage)generallyrepresentprojectresultswheretherehasbeenthesystemicapplicationoflowembodiedcarbondesignprinciples(andcirculareconomy)suchas,buildless/retain,recycledcontent,lowcarbonsupplychain,etc.ForClass2,5and6therangeislargeandreflectstheadditionalsub-categorisationwithinthebuildingclass.Forexample,class5,officesinAustraliacanbesub-categorised,ClassA(premium);A;BandC.Thesesub-classificationshaveadirectbearingontheresultantembodiedcarbonintensityduetoavarietyofqualityandservicingstandardsdefinedbythePropertyCouncilofAustralia(PCA).Theranges‘Good’and‘Poor’reflectperformancewhichis40%betterandworsecomparedtothe‘average’performance.35DeliveringanetzerocarbonbuiltenvironmentEmbodiedCarbonComparingourdatawithotherinternationalstudiesInpreparingthisguidetheauthorshavecompletedaninternationalreviewofnotedpublishedembodiedcarbonbenchmarksandstudies.TherehasthenbeenanattempttoadjustthesefindingsforthecriticalvariablesoutlinedinTable2onpage27.ThisisoutlinedinFigures15and16below.Thefiguresforembodiedcarbonpresentedinthisguidearehigherthanthosefoundintheliteratureandotherbenchmarks.Figures15and16showtheembodiedcarbonintensity(representingaveragepractice),fromanumberofsourcesforResidential(Class1&2)andCommercial(Class5&6)buildingsrespectively,onapersquaremeterbasisforthelifecyclestagesofA1-A5.Thesearecolourcodedtobetterhighlightthebuildingelementscopeincludedwithinthe“benchmark”values.Itcanbeseenthatotherpublisheddataonembodiedcarbonislowerthanthebenchmarkshere.Thisisduetothecompletenessofthematerialsincludedintheanalysisinthisguide,andtheHybrid/Hybrid(bothhybridLCIdataandahybridlifecycleanalysis)methodused(forexample,includingpreliminaries).Assuch,careshouldbetakenwhenusinganyembodiedcarbonbenchmarks,toensurecomparisonsuseconsistentmethodsandboundaries.Figure15:Internationalresidential(Class1&2)embodiedcarbonbenchmark(Averagepractice)Sources:TheFootprintCompany48,Carre50,GBCA51,Schmidtetal.52,Röcketal.53,CLF19,PasanenandCastro54,andLETI18Figure16:Internationalresidential(Class5&6)embodiedcarbonbenchmark(Averagepractice)Sources:TheFootprintCompany48,PasanenandCastro54,GBCA51,Röcketal.53,CLF19,andLETI181,000EmbodiedcarbonkgCO2-e/m2NFA1,5002,0002,5005000TheFootprintCompany(Class1–Australia)GBCA(Class1–Australia)PasanenandCastro(Class2–Europe)LETI(Class2–UK)Röck&Sørensen(Class2–EU)CLF(Class2–Global)Robatietal(Class2–Australia)Röck&Sørensen(Class1–EU)Carre&Crossin(Class2–Australia)Schmidtetal(Class1–Australia)Carre(Class1–Australia)TheFootprintCompany(Class2–Australia)1,0002,0002,5003,0003,5001,5005000EmbodiedcarbonkgCO2-e/m2NFATheFootprintCompany(Class5–Australia)Röck&Sørensen(Class5–EU)LETI(Class5–UK)GBCA(Class5/6–Australia)CLF(Class5–Global)PasanenandCastro(Class5–Europe)TheFootprintCompany(Class6–Australia)Areadefinitions:NHA=Nethabitablearea:InternalconditionedhabitablespaceexcludingcommonareasandservicesareasNLA=Netlettablearea:AreaofabuildingforwhichatenantcouldbechargedforoccupancyGDA=Grossdwellingarea:Grossinternaldwellingareaplusexternalun-enclosedbalconyareas(higherthanNHA)GFA=Grossfloorarea:Totalfloorareacontainedwithinabuilding,includingtheareaofexternalwalls(canbeupto30%higherthanNLA)TotalPrelims/ExtService/SiteworksServicesInternalFinishes&FitmentsInternalWallsEnvelope&RoofStructure/FoundationTotalPrelims/ExtService/SiteworksServicesInternalFinishes&FitmentsInternalWallsEnvelope&RoofStructure/FoundationAdjustmentsAddpreliminariesAdjustforPA“cutoff”(30%)57AdjustareatonetLETI(Class6–UK)36ClassBuildingtype20212025^2030^2040^1Residential(Timber/BrickVeneer)1,2707626101Residential(Concrete/Brick)1,4648787032Multi-Residential(Low/MidRise<25m)1,9751,1859482Multi-Residential(HighRise>25m)3,3542,0121,6105Office(AGrade)3,3652,0191,6155OfficeFitout1,8801,1289026Retail(Regional/Sub-Regional)3,2641,9581,5676FoodRetailFitout8825294236Non-foodRetailFitout5623372707Carpark(Basement/Deck)2,0121,207966DeliveringanetzerocarbonbuiltenvironmentEmbodiedCarbon3.3.3CLIMATEEMERGENCYTARGETSWeproposeasteppedapproachtodevelopinginterimtargetsasthepathwaytowardsa2040netzeroembodiedcarbongoal.ThisapproachconsidersthecurrentAustralianaverageembodiedcarbonbenchmarkandthereductionspossiblethroughtheapplicationofadvancedcirculareconomypracticeavailableinthebuildingindustrytoday.Therecommendednot-to-exceed(NTE)targetstowardsnetzeroembodiedcarbonforallnewbuildingsandmajorrenovationsinAustraliaareoutlinedonthispage.2025RatchetdownthemaximumNTEembodiedcarbonquotasto40%belowtheaveragein2021.Measureandreport(mandatory)fordisclosureofperformanceforallnewbuildingsandmajorrenovations.2030FurtherreducethemaximumNTEembodiedcarbonquotasto20%belowtheaveragein2025.ReviewthereportedoutcomesandrevisetheNTElevelsbasedonnewdata.2040Achievenetzeroembodiedcarbonforallnewbuildingsandmajorrenovationsthroughtheuseofeligiblecarbonoffsetseitheronoroffsite.2021Immediatelyadoptthecurrentaverageembodiedcarbonvalue(kgCO2e/m2A1-A5absolute)asthevoluntaryNTEquotaforallbuildingtypes.Wherepossible,aimforafurther40%improvement.Adoptandapplythismethodofmeasurementandreportingtosupportdisclosureofperformanceincomplianceagainstthetargets.Undertakeindependentthirdpartyreviewifdesired,toincreaseassuranceofresults,ensuringthatpeerreviewisconsistentwiththerequirementsofISO14044.Figure17:ProposedapproachtointerimembodiedcarbontargetsNot-to-ExceedtargetsinkgCO2e/m2NLA(A1-A5)representmaximumallowableembodiedcarbon^MandatoryreportingTable5:EmbodiedcarbonperformancetargetsfornewbuildingsandmajorrenovationsNetzeroNTEOffsetNTENTENTE40%20%10%kgCO2e/m2(A1-A5)bybuildingclassEmbodiedCarbonNTEMinimumPerformanceTargetsNetzerowitheligibleoffsets202120252030204037DeliveringanetzerocarbonbuiltenvironmentEmbodiedCarbonAnetzeroembodiedcarbonbuildingappliescirculareconomyanddesignmitigationstrategiestothemaximumpossibleextenttoachievethelowestfeasibleupfrontembodiedcarbonemission(A1-A5).Theresidualemissionsarethenfullyoffsetuponachievingpracticalcompletion.Offsetscanbeachievedonoroff-sitewithapreferenceforon-site.Figure18belowshowstheorderofmagnitudeofembodiedcarbonmitigationpossibleacrossthemajordesignphases,byapplyinganumberofkeyprinciplesandstrategies.3.3.4STRATEGIESTOWARDSNETZEROEMBODIEDCARBONConsiderinvestigatingwhetheron-siteembodiedcarbonoffsettingispossible.Todothis,annualisetheresidualA1-A5emissionsbylifespaninyears,consistentwiththebuildingtypology(beingguidedbytheAustralianTaxOfficedepreciationschedules).OncetheannualkgCO2eofA1-A5isdeterminedestablishwhetheranequivalentcanbegeneratedon-site.Figure18:EmbodiedcarbonreductionpotentialbydesignstageandrecommendedmeasurementmethodCarbonreductionpotentialTimeCostofreductionstrategiesDesignreductionstrategy40-15%LowcarbonsupplychainLeveragesupplychainforlowestmaterialfitforpurposeBestatprocurement/constructionDesignreductionstrategy30-20%Build/design”smarter”Lowestcarbonelementsystem/prefabrication/designstrategy(fabricvsgalvanisedairductsystems)BestatsketchdesigntodetaileddesignDesignreductionstrategy20-20%Buildless(optimisesystems/dematerialisenoceilingsetc.)Bestatearly-stagetosketchdesignDesignreductionstrategy10-100%Build-Nobuild/RetainorAdaptiveRe-use/Right-sizeBestatmasterplan/early-stageFeasibility/MasterplanSketchDesignDetailedDesignConstructionDocumentationBestfitmethodofmeasurement:EIOx$forhighlevelcompleteestimateMethodofmeasure:HYBRID–$xEIOcoefficient+quantityxcoefficienttoachieveconceptlevelestimateMethodofmeasure:HYBRIDtoPROCESStransitiontomajority–QuantityxkgCO2+$xEIOcoefficientforPrelimstoAs-BuiltEarlystage/Concept38DeliveringanetzerocarbonbuiltenvironmentEmbodiedCarbonTable6:KeystrategiestoapplyinsequencetomaximisetheembodiedcarbonreductionpotentialThestrategiesforachievingnetzeroembodiedcarboncanbeorganisedunderfourgeneralcategories.Table6belowsummarisestheseprinciplestrategiesandprovidesanindicationoftheorderofmagnitudeofmitigationbenefitpossible.Abriefnarrativeofthesortsofspecificstrategiestoinvestigateandthebestdesignphasetoapplytheseprinciplestoachievemaximumoutcomeisalsooutlined.Figure18onthepreviouspagedemonstratestheprinciplesoverlaidwithcost/timeandcarbonbenefitorderofmagnitude.Afterminimisingtheembodiedcarbonthroughallfourstrategies,theresidualemissionscanbeoffsetusingaccreditedcarbonoffsetschemes.3.3.4STRATEGIESTOWARDSNETZEROEMBODIEDCARBONcontinuedNOBUILD/BUILD/RIGHT-SIZE(0-100%)–onlyapplicableatearlystageorend-of-lifeincorporatesadaptivere-useandorretentionofexistingwhetheritisstructure,envelopeorpotentiallymanyserviceselements.BUILDLESS/DEMATERIALISE(0-20%)–bestusedinearlystageandconceptdesignstages-lookforsystemoptimisation(servicesinparticular),floortofloorheightreductions,lessmaterials(e.g.exposedservices/andnofloorfinishes).Whereanembodiedcarbon“caporquota”isestablished,thenthesedesignstrategiesbecomeanimplicitrequirementtobeabletomeet40-50%reductiontargets.BUILD“SMARTER”(0-20%)–bestusedatconceptstagewherethe“big”designdecisionsareresolved(e.g.façadefenestration,structuralsystemstrategy,servicingstrategyetc.)adoptthelowestcarbonsystem(e.g.prefabricatedelements;post-tensionstructures).Canbeusedatdetaileddesign,orbythebuildingcontractorwherethereisadesignlevelresponsibility.LEVERAGESUPPLYCHAINANDPROCUREMENTMETHODS(0-15%)–thephaseatwhichtheabilitytoeffectively“benchmarkorcompare”materialsfortheirembodiedcarboncontentisbestserved.Looktothelowestcarbonsupplychainsourcingorcarbonneutralproducts.Ideally,theprogressionofembodiedcarbonlabellingofindividualmaterialsinindustrystandardunits,willprovideimmensebenefittocontractorsandsub-contractorstopresenttheirinformationindirectlycomparableunitsalignedtothefinaluseoftheproduct(e.g.persquaremetreoffinishedwall/floor/ceilingetc).39DeliveringanetzerocarbonbuiltenvironmentEmbodiedCarbonTheprocessofsettingnetzerotargetsfordeliveryUseModellingtoConfirmUsecarbonmodellingcalculatorsortoolstoconfirmdesigndirectionhasthepotentialtoachievethequotaatconceptstage.ApplyAllCircularMaterialsPrinciples:•Minimiseabsolutematerialsuse•Lowestembodiedcarbondesign•Highestrecycledcontent•LowemissionssupplychainsourcesOffsetResidualEmissionsInvestigatethescopeofoptionstoachievefullcarbonoffsetovertheATOdefinedservicelifespan.SelecttheBuildingClassEmbodiedCarbonQuotaSetanembodiedcarbonnot-to-exceedquotainkgCO2e/m2(A1-A5)of(relevant)floorareaforthebuildingtypeFigure19:Achievingnetzeroembodiedcarbon500kgCO2e/m2NLA(A1-A5)1,00015002,0000-500-1,000DematerialiseSupplychainRecycledcontentReferenceembodiedcarbonOffset1.2.3.4.40Deliveringanetzerocarbonbuiltenvironment3.4NetzerowholelifecarbonpathwayEmbodiedOperationalZone5Zone6Zone7Zone2NewRetrofitAllnewbuildingsandmajorretrofitsAchievenetzerooperationalcarbon60%embodiedcarbonreductionforallnewbuildingsandmajorretrofitsSetbenchmarksConsistentmeasuringandreportingofwholelifecarbonperformance.Inclusioninarchitecturalawardsanddesigncompetitionsfornewbuildings.Thechallenge:Allbuildingtypes,newandexistingMajorityofbuildingsachievenetzeroembodiedcarbonChallengingprojectsmayachieveby204040%embodiedcarbonreductionforallnewbuildingsandmajorretrofitsNote:TheEUItargetsforoperationalcarbonpresentedherearederivedbasedondifferentbuildingconditions,variousAustralianclimatezonesandseveralbuildingtypesaspertheNCC.ThecalculationmethodconsidersGFAtodetermineEUIperformancetargets.Indoingso,thetargetsdefinedinthisguidearedifferentto,andhencenotdirectlycomparableto,someotherlocalandglobalEUItargets.Similarly,NTEtargetsforembodiedcarbonpresentedherearehigherthanthosetypicallypresentedintheliteratureandotherbenchmarks.Thisisduetothecompletenessofthematerialsincludedintheanalysisinthisguide,andtheHybrid/Hybridmethodused(forexample,includingpreliminaries,externalservices,etc).Assuch,careshouldbetakenwhenusingthesebenchmarks,toensureanycomparisonsutilisethesamecomprehensivemethodsandboundaries.2030minimumperformancetargets(EUIGFA)Min.performancetargets(EUINFAifapplicable)Performanceequivalentto^OperationalcarbontargetClass1:DetachedhouseNational11-36NatHERS#orGreenStarHomesequivalentwith100%GreenPowerCZ211-35CZ511-35CZ611-36CZ711-37Class1:Semi-detachedhouseNational11-34CZ210-34CZ510-33CZ611-35CZ711-36Class2:ResidentialapartmentNational29-5523-44NatHERS#,NABERSorGreenStarBuildingsratingwith100%GreenPowerCZ229-5423-43CZ529-5423-43CZ629-5623-44CZ730-5724-45Class3:HotelNational71-77CZ276-81CZ573-77CZ669-74CZ769-78Class5:OfficeNational63-6755-58NABERSorGreenStarBuildingswith100%GreenPowerCZ269-7760-67CZ566-7257-63CZ656-6849-59CZ757-6849-59Class6:RetailNational70-18149-126CZ275-19552-136CZ569-17948-125CZ667-17346-121CZ768-17547-122Class9a:HospitalNational68-115GreenStarBuildingsratingwith100%GreenPowerCZ267-113CZ563-108CZ672-121CZ771-119Class9b:EducationalbuildingNational29-36CZ233-43CZ529-31CZ620-30CZ732-40Class9b:PublicassemblybuildingNational44-48CZ244-48CZ544-48CZ644-48CZ744-48NETZEROwith100%GreenPowerOperationalcarbonperformancetargetsfornewbuildingsandmajorrenovationsAllexistingbuildingsAchievenetzerocarbonperformanceNETZERORACETOWholebuiltenvironmentsectorAllbuildings,precinctsandinfrastructureachievenetzerowholelifecarbonNETZEROEMBODIEDNETZEROOPERATIONALPublicCLIMATEBUILDINGTYPESCARBONBUILDINGCONDITIONCommercialResidentialAllnewbuildingsandmajorretrofitsAchievenetzeroembodiedcarbonWholelifecarbonstandards,regulationsandreportinginplaceMandatorydisclosureofwholelifecarbonperformanceaspartoftheplanningapprovalforallnewbuildingsNot-to-ExceedtargetsinkgCO2e/m2NLA(A1-A5)representmaximumallowableembodiedcarbon^MandatoryreportingEmbodiedcarbonperformancetargetsfornewbuildingsandmajorrenovationsClassBuildingtype20212025^2030^2040^1Residential(Timber/BrickVeneer)1,2707626101Residential(Concrete/Brick)1,4648787032Multi-Residential(Low/MidRise<25m)1,9751,1859482Multi-Residential(HighRise>25m)3,3542,0121,6105Office(AGrade)3,3652,0191,6155OfficeFitout1,8801,1289026Retail(Regional/Sub-Regional)3,2641,9581,5676FoodRetailFitout8825294236Non-foodRetailFitout5623372707Carpark(Basement/Deck)2,0121,207966EmbodiedCarbonNTEMinimumPerformanceTargetsNetzerowitheligibleoffsets41442CONCLUDINGREMARKThisguideoutlinesbenchmarksforoperationalandembodiedcarbonemissions,withtheaimofmovingAustraliatoanetzerowholelifecarbonbuiltenvironment.Itusescurrentlyavailabledataandbestpracticemethodstodeterminecurrentperformanceandclimateemergencytargets.However,asmorefine-tunedmethodsandupdatedbuildingperformancedataemerge,andregionalenergysystemschangeinthecomingyears,therewillbeaneedtoreviseassumptionsandupdatethefigureswithin.Assuch,theauthorsaimtorevisethesebenchmarkseverythreeyears,toensurebuildingprofessionalsarecomparingperformanceagainstthebestpossibledata.Thisguideisanextractofamuchlargerbook:DeliveringontheClimateEmergency:TowardsaNetZeroCarbonBuiltEnvironment.Thebookpresentsadetailedreviewoftheglobalstateofplayoftheresearchandpracticeofthenetzerocarbonbuiltenvironment.Itdescribesdetailedmethodologyandpresentsabroadrangeofstrategies,assessmenttoolsandtechniques,andbestpracticeintermsofexemplarlowcarbonbuildingandprecinctdesigns,energytechnologies,andcirculareconomyprojects.Itisexpectedtobesuitableforinternationalaudiencesincludingarchitects,designers,consultants,developers,owners,academicprofessions,aswellasundergraduateandpostgraduatestudentswhoasthefuturepractitionersandeducatorsmaybeinterestedinexploringthesubjectofnetzerocarbonbuiltenvironmentinfurtherdetail.APPENDICESThecontentsofthisguide,includingtheclimateemergencyperformancetargets,strategies,andimplementationandreportingtemplatespresentedonthefollowingpages,couldallbeusefulduringapracticalconversationbetweentheclientandthedesignersonhowtonavigatetonetzero,andbywhen.Suchaconversationwouldideallystartwiththeprojectbriefandinvolvediscussionsaboutthelevelsofonsiteefficiencytobeachieved,theoptimisationofonsiterenewableenergygeneration(andstorageasappropriate),andhowbesttobalancetheremainingcarbonemissionswitheitheroffsiterenewableenergyor,asalastresort,eligiblecarbonoffsetsforanetzerowholelifecarbonoutcome.Thiscouldincludeconsiderationsofanybudgetimplications,timefactor,oranyotherprojectspecificconstraintsandopportunitiesfornetzero.Suchaconversationshouldleadtoacommitmentagreementfornetzeroperformance,whichcananchortheconversations,anddrivedecisions,acrosstheprojectstagesfromconceptdesignthroughtoconstructioncompletion,aswellaspost-occupancyoperationallifeandbeyond.43Appendices44AppendicesA.1ImplementationandreportingImplementationchecklistInternalCommitmentOperationalCarbonEmbodiedCarbonB6A1-A5PartnersandemployeescommitmentandeducationCommitmentInform/confirmthatthepracticeisinvolvedintheRacetoNetZeroCarbonDevelopandimplementadesignphilosophycentringaroundcarbonefficientbuildingdevelopmentAcquiretheRacetoNetZeroCarbonguideEducationRequireallemployeestobecomeeducatedincarbonefficientbuildingsRequireallemployeestobecomeeducatedinrenewableenergygenerationOrganiseeventsanddiscussionsontheapplicationofRacetoNetZeroCarbonguideExternalCommitmentClient,stakeholdersandconsultantscommunicationandmanagementClientandstakeholdersInform/confirmthatthepracticeisinvolvedintheRacetoNetZeroCarbonDiscussthebenefitsofcommittingtotheraceExplaintheimportanceofreducingcarbonemissionsinthebuildingsectorinAustraliaasanationalgoalEngageclientsindiscussionsregardingcarbonefficientbuildingsDiscusshowcarbonefficientbuildingdesigncanbecost-effectiveEstablishaportfoliothathighlightsthepractice’scarbonefficientprojectsConsultantsEngageconsultantswhoarecommittedtotheRacetoNetZeroCarbonInvolveconsultantsintheprojectdevelopmentatanearlydesignstageApproachprojectswithafocusonenergyefficientdesignApproachprojectswithafocusonenergygenerationfromrenewablesourcesImplementationProjectdevelopmentandverificationtomeetthecheckpointsandtargetsSettingtargetsFamiliarisetheemployeeswiththecurrentbenchmarksFamiliarisetheemployeeswiththeAustralianClimateEmergencyperformancetargetsFamiliarisetheemployeeswiththeenergygenerationtargetsCalculateenergyuseofprojectsusingtoolswiththehelpofconsultantsCompletetheRacetoNetZeroCarbonreportingCompareyourproject`sperformanceagainstbenchmarksandtargetsCalculatecarbonreductionrequiredtomeetthetargetsAdoptingcarbonefficientstrategiesFamiliarisetheemployeeswiththecarbonefficientstrategiesDeterminesuitablecarbonefficientstrategiesapplicabletotheprojectCalculatecarbonreductionachievablethroughthesuitableenergyefficientstrategiesProcuringrenewableenergyFamiliarisetheemployeeswithrenewableenergyprocurementDeterminesuitablerenewableenergysourcesapplicabletotheprojectCalculateenergygenerationrequiredthroughthesuitablerenewableenergysourcesDataDisclosureMeteringanddatadisclosureofenergyconsumption,carbonemissionandcarbonoffsetMeteringSubmeterrenewablesforenergygenerationSubmeterenergyconsumptionContinuouslymonitorwithasmartmeterConsidermonitoringinternalconditionsIncludeadataloggeralongsidethesmartmetertomakedatasharingpossibleDatadisclosureDiscloseannualbuildingenergyconsumptionandgenerationAggregateaverageoperationalreportinge.g.bypostcodeforanonymityorupstreammetersBeopentosharethedataAppendices46OperationalCarbonEmbodiedCarbonAsDesignedUnitResultCETargetAccomplishedYes/No^AsDesignedUnitResultCETargetAccomplishedYes/No^Energyuse-WholeBuilding(base+tenantend-use)kWh/m2/yr4950YesEmbodiedCarbonIntensityAbsolutekgCO2e/m220002019YesGreenStarperformancecredit:Energypoint2222YesEmbodiedCarbonIntensityAnnualkgCO2e/m2/yr50<200YesAsBuiltUnitResultCETargetAccomplishedYes/No^AsBuiltUnitResultCETargetAccomplishedYes/No^Energyuse-WholeBuilding(base+tenantend-use)kWh/m2/yr5565YesEmbodiedCarbonIntensityAbsolutekgCO2e/m22000MeetsorexceedsdesignYesGreenStarperformancecredit:Energypoints2222YesNatHERSRatingstar10BASIXRating-70EnergyEfficientSystemsUnitReferenceAsDesignedAsBuiltContributorsUnitResultKeyStrategiesHVACkWh98,958FoundationskgCO2e/m2100GeopolymerEquipmentkWh68,937Super-StructurekgCO2e/m2200100%recycledsteelLightingapplianceskWh60,349Envelope(WindowsandWalls)kgCO2e/m2400LowcarbonglassOthersystemskWh60,349InternalWallskgCO2e/m2200HebelEnergyGenerationAmountAsDesigned(%)AsBuilt(%)InternalFinisheskgCO2e/m2100RecycledcontentOn-siteenergygenerationkWh112,741ServiceskgCO2e/m2500Lowcarbonsteel/reclaimedcopperOff-siteenergygenerationkWh100,246ExternalSiteWorksandServiceskgCO2e/m2100ReducedtimeforprefabGreenpowerkWhPreliminarieskgCO2e/m2400CarbonOffsetUnitResultCETargetAccomplishedYes/No^CarbonOffsetUnitResultCETargetAccomplishedYes/No^TotalcarbonemissionskgCO2e+230,154NetzeroYesTotalcarbonemissionskgCO2e+(reportvalue)NetzeroYesCarbonoffsetkgCO2e-212,987CarbonoffsetkgCO2e-(reportvalue)Overallemissionstobeachieved17,167OverallemissionstobeachievedkgCO2e0CarbonStatusOperationalcarbonstatusEmbodiedcarbonstatusStatusofcarbonoffsettingYes/NoYesNoEmissionReductionPlan%ofachievementRemainingtargetOperationalcarbonplanYeardueStagesoftheplan%ofachievementRemainingtargetEmbodiedcarbonplanYeardueStagesoftheplanEmissionreductionplantoachievenetzerostatus92%8%Ontrack20231stage50%50%Ontrack20302stagesNetZeroPlanStagesRequiredcarbonoffsetOperationalcarbonplanStrategyYeardueStagesRequiredcarbonoffsetEmbodiedcarbonplanStrategyYearduePlantoachivenetzerocarbonStage18%or17,167kgCO2eEnergyefficiencyVariablethermostatcontrolsforHVACupgrade2023Stage125%EnvelopemitigationUpgradetolowcarbonmaterials2024Stage225%ServicesUsereclaimedorrecycledmaterials2030Reportingtemplate(example)PleaseentertheCEperformancetargetsfromTable3foroperationalcarbonandfromTable5forembodiedcarbon.^Pleasereporttheaccomplishmentofyourproject.IftheresultisequaltoorlessthantheCETarget,report‘Yes’asaccomplished.IftheresultismorethantheCETarget,report‘No’asontrack.Everythingreportedasa‘No’issuggestedtobelistedinthe‘NetZeroPlan’withaplantoachieveanetzerostatus.45Appendices46AppendicesA.2ComparingandcombiningoperationalandembodieddatafromthisguideThisguidesetsoutbenchmarksandtargetsforoperationalenergyandembodiedcarbonusingdifferentmetrics(kWh/m²GFA/annumandkgCO2e/m²NLA).Thisisbecauseweuseddifferentmethodologiestodeterminethese.However,somepractitionersmaywishtocompareorcombinethedataforoperationalandembodiedperformanceintheirbuilding.Todoso,twostepsareneededtoconverttheoperationalenergydatatocomparablecarbon.Step1:ConvertGFAtothefloorareadefinedintheembodiedcarbonfunctionalunitConvertorensurethatbothoperatingcarbonandembodiedcarbonvaluesarebasedonthesamefunctionalunitareadefinition.Itisessentialtorememberthatresidentialandnon-residentialbuildingsaremeasureddifferently.Forexample,anofficebuildingmayhaveaNLAthatis83%ofthetotalGFA.Inwhichcaseifitsoperationalenergywas50kWh/m²GFA/annum,itwouldalsobe60.2kWh/m²NLA/annum.Step2:ConvertElectricitytoCarbonDioxideEquivalent(CO2e)Theenergybenchmarksinthisguideassumebuildingsareallelectric.EachstateinAustraliahasdifferentemissionfactorsforeachkWhofelectricityconsumed,duetodifferentfuelmixesused.ThesefactorsarepublishedbytheAustraliangovernmentinthetablebelow.Inthecasementionedbefore,anofficebuildingwithoperatingenergyof60.2kWh/m²NLA/annum,wouldberesponsibleforcarbonemissionsof60.2x0.81=48.76kgCO2e/m²NLAinNSWandACT,but60.2x0.17=10.23m²kgCO2e/NLAinTasmania.StateorterritoryEmissionfactorkgCO2e/kWhNewSouthWalesandAustralianCapitalTerritory0.81Victoria0.98Queensland0.81SouthAustralia0.43SouthWestInterconnectedSystem(SWIS)inWesternAustralia0.68NorthWestInterconnectedSystem(SWIS)inWesternAustralia0.58DarwinKatherineInterconnectedSystem(DKIS)inNorthernTerritory0.53Tasmania0.17NorthernTerritory0.62Example:AnofficebuildinginSydneyAnA-gradeCBDofficebuildinginSydneyisdesignedtoperformatthebenchmarklevelforbothoperationalandembodiedemissionsin2030.ItsNLAis80%oftheGFA.Operational=66kWh/m²GFA/annum(CZ5,2030target)Embodied=1,615kgCO2e/m²NLA66x(1/0.8)=82.5kWh/m²NLA/annum82.5x0.81=66.8kgCO2e/m²NLAInthisinstance,thebuilding’sembodiedcarbon(A1–A5)isequivalentto24.2yearsofoperatingemissions(ata2020baseline).Limitations:Themethodoutlinedhereforcomparingoperationalcarbonwithembodiedcarbonisusefulfor2020only(oneyear).Thisisbecauseaswedecarbonisethegridtheemissionfactorswillchange.Therefore,while66kWh=53kgCO2ein2020inNSW,itmightbe45kgCO2ein2025and30kgCO2ein2030–evenwhereEUIstaysthesame.Withafullydecarbonisedgrid66kWhwouldequal≈0kgCO2ein2050.2020indirect(scope2)emissionfactorsforpurchasedelectricitySource:DepartmentofIndustry,Science,EnergyandResources5847AppendicesA.3FurtherreadingWehopethedataandadvicepresentedinthisguidewillhelpbuiltenvironmentprofessionalsestablishappropriatebenchmarksandtargetsfortheirindividualbuildingprojectsandassistinachievingsignificantreductionsincarbonemissionsfordeliveringanetzerocarbonbuiltenvironment.Ifyoufoundthisguideuseful,pleaseshareitwithothersintheindustry.Ifyouarelookingforfurtherinformation,browsethesereadingsuggestions.•Book:DeliveringontheClimateEmergency:TowardsaNetZeroCarbonBuiltEnvironment•CRCforLowCarbonLivingguides:EachLowCarbonguidesummarisesbestpracticeinvariousphasesofthebuildinglifecycle—construction,retrofit,operation—forarangeofbuildingtypesintheresidentialandcommercialsectorsandatthelevelofprecincts.Theseriesincludes:GuidetoLowCarbonResidentialBuildings–NewBuildOptionsforhomeowners,buildersanddesignersduringtheplanningandconstructionofnewhomes.GuidetoLowCarbonResidentialBuildings–RetrofitRetrofitsolutionsforexistinghomes,tailoredforhomeownersandtheircontractors.GuidetoLowCarbonHouseholdsAdvicetohomeownersandrentersonoperatinghouseholdsusinglowcarbonlivingapproaches.GuidetoLowCarbonCommercialBuildings–NewBuildThedesignandconstructionoflowcarboncommercialbuildings.GuidetoLowCarbonCommercialBuildings–RetrofitMethodsforretrofittingcommercialbuildingstoimproveperformancewhilereducingenergyandcarbonuse.GuidetoLowCarbonPrecinctsFrameworksandoptionstoassistcouncilsanddeveloperswithstrategicplanningdecisionswhenimplementinglow-carbonneighbourhoods.FurtherguidescoverLandscape,UrbanCooling,Value-chainandothertopics.Forfurtherinformationgotolowcarbonlivingcrc.com.au.48References1.StandardsAustralia,GrossFloorArea.NationalDictionaryofBuilding&PlumbingTerms.2020.Availablefrom:https://www.constructiondictionary.com.au/term/gross-floor-area[Accessed18July2021].2.StandardsAustralia,NetLettableArea.NationalDictionaryofBuilding&PlumbingTerms.2020.Availablefrom:https://www.constructiondictionary.com.au/term/net-lettable-area[Accessed18July2021].3.InternationalEnergyAgency.NetZeroby2050:ARoadmapfortheGlobalEnergySector.2021.Availablefrom:https://www.iea.org/reports/net-zero-by-20504.RoyanDanishAcademyandInternationalUnionofArchitects(UIA),AnArchitectureGuidetotheUN17SustainableDevelopmentGoals.2021.Availablefrom:https://uia2023cph.org/the-guides[Accessed15June2021].5.OxfordLanguages,WordoftheYear2019.2021.Availablefrom:https://languages.oup.com/word-of-the-year/2019/[Accessed12March2021].6.ClimateCouncil,140-Yearheatmapshowscleartrendinglobaltemperaturechange.2020.Availablefrom:https://www.climatecouncil.org.au/resources/140-year-heat-map-shows-clear-trend-global-temperature-change/[Accessed18June2021].7.Hausfather,Z.,Stateoftheclimate:2020tiesaswarmestyearonrecord.StateoftheClimate.2021.Availablefrom:https://www.carbonbrief.org/state-of-the-climate-2020-ties-as-warmest-year-on-record[Accessed20April2021].8.Ritchie,H.andRoser,M.,FutureGreenhouseGasEmissions.2020.Availablefrom:https://ourworldindata.org/future-emissions#future-greenhouse-gas-emissions-scenarios[Accessed21March2021].9.Bruyère,C.,Buckley,B.,Prein,A.,Holland,G.,Leplastrier,M.,Henderson,D.,Chan,P.,Done,J.,andDyer,A.Severeweatherinachangingclimate.2020.IAGandNationalCentreforAtmosphericResearch.Availablefrom:https://www.iag.com.au/sites/default/files/Documents/Climate%20action/Severe-weather-in-a-changing-climate-2nd-Edition.pdf10.ClimateActionTracker,Temperature.2021.Availablefrom:https://climateactiontracker.org/global/temperatures/[Accessed23May2022]11.AustralianAcademyofScience.TheRiskstoAustraliaofa3°CWarmerWorld.2021.Availablefrom:https://www.science.org.au/supporting-science/science-policy-and-analysis/reports-and-publications/risks-australia-three-degrees-c-warmer-world12.Steffen,W.andBradshaw,S.HittingHome:TheCompoundingCostsofClimateInaction.2021.ClimateCouncil.Availablefrom:https://www.climatecouncil.org.au/wp-content/uploads/2021/01/hitting-home-report-V7-210122.pdf13.AIA-CLF.EmbodiedCarbonToolkitforArchitects.2022.Availablefrom:https://carbonleadershipforum.org/toolkit-1-introduction/[Accessed20May2022]14.ClimateWorksAustralia.DecarbonisationFutures:Solutions,actionsandbenchmarksforanetzeroemissionsAustralia.2020.Melbourne.Availablefrom:https://www.climateworksaustralia.org/wp-content/uploads/2020/04/Decarbonisation-Futures-March-2020-full-report-.pdf15.ASBECandClimateWorksAustralia.BuilttoPerform:Anindustryledpathwaytoazerocarbonreadybuildingcode.BuildingCodeEnergyPerformanceTrajectoryProject–FinalReport.2018.ClimateWorksAustralia:Melbourne.Availablefrom:http://www.asbec.asn.au/research-items/built-perform/16.Merriam-Webster,Lifecycle.2021.Availablefrom:https://www.merriam-webster.com/dictionary/life%20cycle[Accessed15October2021].17.RICS.Wholelifecarbonassessmentforthebuiltenvironment.RICSprofessionalstandards,UK.2017.London.Availablefrom:https://www.rics.org/globalassets/rics-website/media/news/whole-life-carbon-assessment-for-the--built-environment-november-2017.pdf18.LondonEnergyTransformationInitiative.LETIEmbodiedCarbonPrimer:SupplementaryguidancetotheClimateEmergencyDesignGuide.2020.Availablefrom:https://www.leti.london/ecp19.Simonen,K.,Rodriguez,B.,McDade,E.,andStrain,L.EmbodiedCarbonBenchmarkStudy:LCAforLowCarbonConstruction-PartOne.2017.TheCarbonLeadershipForum.Availablefrom:https://carbonleadershipforum.org/wp-content/uploads/2017/02/CLF-Embodied-Carbon-Benchmark-Study.pdfREFERENCES49References20.ASBEC.LowCarbon,HighPerformance:HowbuildingscanmakeamajorcontributiontoAustralia'semissionsandproductivitygoals.2016.Availablefrom:http://www.climateworksaustralia.org/sites/default/files/documents/publications/full_report_-_low_carbon_high_performance_-_final_-_20160511.pdf21.WorldGreenBuildingCouncil.AdvancingNetZeroStatusReport2020.2020.Availablefrom:https://www.worldgbc.org/advancing-net-zero-status-report-202022.ASBEC.RatingsSnapshot:BuiltenvironmentsustainabilityframeworkscommonlyusedinAustralia.2021.Availablefrom:https://www.asbec.asn.au/wordpress/wp-content/uploads/2021/08/210727-ASBEC_RatingsSnapshot_website-upload.pdf23.GBCA.ClimatePositiveBuildings&ourNetZeroAmbition:GuidanceforGreenStarontheuseofoffsetsandrenewables.2021.Availablefrom:https://gbca-web.s3.amazonaws.com/media/documents/climate-positive-buildings-net-zero-ambitions_Z3pcK5R.pdf24.WorldGreenBuildingCouncil,TheNetZeroCarbonBuildingsCommitment–FAQs.2021.Availablefrom:https://www.worldgbc.org/thecommitment[Accessed18June2021].25.LondonEnergyTransformationInitiative.LETIClimateEmergencyDesignGuide:HownewbuildingscanmeetUKclimatechangetargets.2020.Availablefrom:https://www.leti.london/cedg26.Energy&ClimateIntelligenceUnit,NetZeroTracker.2021.Availablefrom:https://eciu.net/netzerotracker[Accessed18July2021].27.WorldGreenBuildingCouncil.BringingEmbodiedCarbonUpfront:Coordinatedactionforthebuildingandconstructionsectortotackleembodiedcarbon.2019.Availablefrom:https://worldgbc.org/article/bringing-embodied-carbon-upfront/28.RoyalInstituteofBritishArchitects.2030ClimateChallengeVersion2(2021).2021.London.Availablefrom:https://www.architecture.com/-/media/files/climate-action/riba-2030-climate-challenge.pdf29.LondonEnergyTransformationInitiative.EmbodiedCarbonTargetAlignment.2021.Availablefrom:https://b80d7a04-1c28-45e2-b904-e0715cface93.filesusr.com/ugd/252d09_89cf50315c884fa796fdf07d1428b2e6.pdf30.Architecture2030,2030Challenges.n.d.Availablefrom:https://architecture2030.org/2030_challenges/[Accessed19Jun2021].31.TheAmericanInstituteofArchitects,The2030Commitment:Areyouupforthechallenge?2021.Availablefrom:https://www.aia.org/resources/202041-the-2030-commitment[Accessed19July2021].32.PassiveHousePlus,DenmarksetsoutphasedembodiedcarbontargetsforbuildingsNewsdesk.2021.Availablefrom:https://passivehouseplus.co.uk/news/general/denmark-sets-out-phased-embodied-carbon-targets-for-buildings[Accessed11June2021].33.ClimateWorksAustralia.Stateandterritoryclimateaction:LeadingpoliciesandprogramsinAustralia.2021.Availablefrom:https://www.climateworksaustralia.org/wp-content/uploads/2021/10/CWA_State-and-territory-climate-action_October-2021.pdf34.ClimateWorksAustralia.Netzeromomentumtracker–localgovernmentreport.2020.Availablefrom:https://www.climateworksaustralia.org/resource/net-zero-momentum-tracker-local-government-report/35.WSP,CommonCapital,WTPartnership,andEltonConsulting.Planningfornetzeroenergybuildings:Performancestandardstoachievehigh-performingnetzeroenergybuildingsinGreaterSydney.2021.CityofSydney.Availablefrom:https://www.cityofsydney.nsw.gov.au/surveys-case-studies-reports/planning-for-net-zero-energy-buildings36.DutchGreenBuildingCouncil,ParisProof.2021.Availablefrom:https://www.dgbc.nl/themas/paris-proof[Accessed19July2021].37.UKGreenBuildingCouncil.Energyperformancetargetsfornetzerocarbonoffices:Technicalreportandsummaryofconsultationresponses.2020.London.Availablefrom:https://www.ukgbc.org/ukgbc-work/net-zero-carbon-energy-performance-targets-for-offices/38.Bannister,P.,Moffitt,S.,Zhang,H.,Johnston,D.,Shen,D.,Robinson,D.,Cooper,P.,Ma,Z.,Ledo,L.,andGreen,L.BuildingCodeEnergyPerformanceTrajectory–FinalTechnicalReport.2018.CRCforLowCarbonLiving.Availablefrom:www.lowcarbonlivingcrc.com.au/sites/all/files/publications_file_attachments/sp0016_trajectory_project_final_tech_report.pdf50References39.CouncilofAustralianGovernments.BaselineEnergyConsumptionandGreenhouseGasEmissionsInCommercialBuildingsinAustralia–Part1–Report.2012.DepartmentofClimateChangeandEnergyEfficiency.Availablefrom:https://www.energy.gov.au/publications/baseline-energy-consumption-and-greenhouse-gas-emissions-commercial-buildings-australia40.StrategyPolicyResearch.EmissionsandenergysavingsfrompotentialchangestoNationalConstructionCodeenergyperformancerequirements–theCodeCalculator.2017.CommonwealthofAustralia.Availablefrom:https://www.energy.gov.au/publications/building-code-calculator41.Riedy,C.,Lederwasch,A.,andIson,N.DefiningZeroEmissionBuildings–ReviewandRecommenations:FinalReport.2011.ASBEC.Availablefrom:https://www.asbec.asn.au/research-items/zero-emissions-residential-defining-zero-emission-buildings-review-and-recommendations-report/42.BuiltBetter,Lowcarbonguides.2017.Availablefrom:https://builtbetter.org/lowcarbonguides[Accessed19July2021].43.Augros,R.,Dixon,I.,Oldfield,P.,Partridge,L.,Slee,B.,andVasilakopoulou,K.GuidetoLowCarbonCommercialBuildings-NewBuild.2019.CRCforLowCarbonLiving.Availablefrom:https://www.unsworks.unsw.edu.au/primo-explore/fulldisplay/unsworks_modsunsworks_64804/UNSWORKS44.Drosou,V.,Giama,E.,Oxizidis,S.,Papadopoulos,A.,andSantamouris,M.GuidetoLowCarbonCommercialBuildings-Retrofit.2018.CRCforLowCarbonLiving.Availablefrom:http://www.lowcarbonlivingcrc.com.au/resources/-crc-publications/-guide-low-carbon-commercial-buildings-%E2%80%93-retrofit45.BeyondZeroEmissions.ZeroCarbonAustralia:BuildingsPlan.2013.Emissions,B.Z.:Fitzroy,Victoria.Availablefrom:http://media.bze.org.au/bp/bze_buildings_plan.pdf46.Byrne,J.,Taylor,M.,Ambrose,M.,Berry,S.,andSproul,A.GuidetoLowCarbonResidentialBuildings–NewBuild.2018.CRCforLowCarbonLiving.Availablefrom:http://www.lowcarbonlivingcrc.com.au/resources/-crc-publications/-guide-low-carbon-residential-buildings-%E2%80%93-new-build47.Whitehouse,M.,Osmond,P.,Daly,D.,Kokogiannakis,G.,Jones,D.,Picard−Bromilow,A.,andCooper,P.GuidetoLowCarbonResidentialBuildings–Retrofit.2018.CRCforLowCarbonLiving.Availablefrom:http://www.lowcarbonlivingcrc.com.au/resources/crc-publications/guide-low-carbon-residential-buildings-%E2%80%93-retrofit48.TheFootprintCompany,TheFootprintCalculator.2020.Availablefrom:https://footprintcompany.com/the-lca-calculators/[Accessed20July2021].49.PropertyCouncilofAustralia,AGuidetoOfficeBuildingQuality–3rdEdition.2019.Availablefrom:https://research.propertycouncil.com.au/research-and-data/a-guide-to-office-building-quality[Accessed20July2021].50.Carre,A.AcomparativelifecycleassessmentofalternativeconstructionsofatypicalAustralianhousedesign.MarketAccessandDevelopment,Projectnumber:PNA147-0809.2011.Availablefrom:http://www.fwpa.com.au/sites/default/files/PNA147-0809_Research_Report_Comparative-LCA_0.pdfhttp://www.fwpa.com.au/sites/default/files/Addendum_Construction_Type_Costing.pdf51.GBCAandthinkstep-anz.EmbodiedCarbon&EmbodiedEnergyinAustralia'sBuildings.2021.Sydney.Availablefrom:https://gbca-web.s3.amazonaws.com/media/documents/embodied-carbon--embodied-energy-in-australias-buildings-2021-07-22-final-public.pdf52.Schmidt,M.,Crawford,R.H.,andWarren-Myers,G.,QuantifyingAustralia’slifecyclegreenhousegasemissionsfornewhomes.EnergyandBuildings,2020.224:p.110287.53.Röck,M.,Saade,M.R.M.,Balouktsi,M.,Rasmussen,F.N.,Birgisdottir,H.,Frischknecht,R.,Habert,G.,Lützkendorf,T.,andPasser,A.,EmbodiedGHGemissionsofbuildings–Thehiddenchallengeforeffectiveclimatechangemitigation.AppliedEnergy,2020.258:p.114107.54.Pasanen,P.andCastro,R.,CarbonHeroesBenchmarkProgram–wholebuildingembodiedcarbonprofiling.IOPConferenceSeries:EarthandEnvironmentalScience,2019.323:p.012028.55.UnitedNationsEnvironmentProgramme.2021GlobalStatusReportforBuildingsandConstruction:Towardsazero-emissions,efficientandresilientbuildingsandconstructionsector.2021.Nairobi.Availablefrom:https://globalabc.org/resources/publications/2021-global-status-report-buildings-and-construction51References56.Sev,A.andÖzgen,A.SpaceEfficiencyinHigh-RiseOfficeBuildings.MiddleEastTechnicalUniversityJournaloftheFacultyofArchitecture.26:2.Availablefrom:http://jfa.arch.metu.edu.tr/archive/0258-5316/2009/cilt26/sayi_2/69-89.pdf57.Crawford,R.et.al,2022,TheEPiCdatabase:HybridEnvironmentalFlowCoefficientsforconstructionmaterials.Figure6,p.8.58.AustralianGovernmentDepartmentofIndustry,Science,EnergyandResources,NationalGreenhouseAccountsFactors.2020.CommonwealthofAustralia.Availablefrom:https://www.dcceew.gov.au/climate-change/publications/national-greenhouse-accounts-factors-2020