RenewableandSustainableEnergyReviews171(2023)113018Availableonline11November20221364-0321/©2022ElsevierLtd.Allrightsreserved.Carbonsequestrationviashellfishfarming:ApotentialnegativeemissionstechnologyJing-ChunFenga,b,e,1,,LiweiSuna,b,e,1,JinyueYanc,d,aResearchCentreofEcology&EnvironmentforCoastalAreaandDeepSea,GuangdongUniversityofTechnology,Guangzhou,510006,PRChinabSouthernMarineScienceandEngineeringGuangdongLaboratory(Guangzhou),Guangzhou,511458,PRChinacFutureEnergyCenter,SchoolofBusiness,SocietyandEngineering,M¨alardalenUniversity,SE-72123,V¨asterås,SwedendDepartmentofBuildingEnvironmentandEnergyEngineering,999077,TheHongKongPolytechnicUniversity,Hongkong,ChinaeKeyLaboratoryforCityClusterEnvironmentalSafetyandGreenDevelopmentoftheMinistryofEducation,SchoolofEcology,EnvironmentandResources,GuangdongUniversityofTechnology,Guangzhou,510006,ChinaARTICLEINFOKeywords:ShellfishfarmingCarbonsinkNegativeemissionstechnologyCarbonstorageCarbonbudgetABSTRACTNegativeemissiontechnologiesdrivenbynaturewithlessenergyinput,lowercosts,andlongcarbonstoragecapacitiesareessentialformeetingambitiousglobalcarbonmitigationgoals.Thispaperevaluatesthecarbonsequestrationpotentialofbivalveshellfishfarmingbecauseitssequestrationprocessisdrivenbynature,anditiscost-effectiveandenergyefficient.Thecarboninshellsandthecarbonthatenterssedimentsviabio-depositionarelong-livedformsofcarbon.UsingChinaasacasestudy,apreliminaryestimationsuggeststhatthecarbonsequestrationefficiencyandintensityofcultivatedshellfishesaremuchhigherthanthoseofartificialforests.InChina,approximately6.23MtCO2-eqa−1wasfixedvianetcarbonsequestrationduringshellfishgrowthfrom2015to2019.Inaddition,thefarmedshellfishesprovided0.37Mtofharvestedprotein,andapproximately37.39MtCO2-eqa-1werereducedcomparedtothesameamountofproteinprovidedbybeef,andthus,shellfishfarminghasthewin-winbenefitsofcarbonsequestrationandhigh-qualityfoodprovision.Moreimportantly,atotalof5.64GtCO2-eq,accountingfor17.63%ofthetotalemissionsin2020,canbepotentiallysequestratedattheglobalscaleundertheworld’slargestfarmingareascenario.1.IntroductionTobestavoidadangerousamountofglobalwarming,adeepreductiontargetof2.0◦Candpreferably1.5◦Cwasproposedinthe2015UnitedNationsFrameworkConventiononClimateChange(UNFCCC)Conference[1].Toachievethisgoal,apartfromareductionofindustrialandagriculturalemissions,approximately600GtofCO2needstoberemovedfromtheatmosphereandsafelystoredduringthiscentury.Variousnegativeemissiontechnologies(NETs),includingreforestationandafforestation,oceanfertilization[2],bioenergywithcarboncaptureandstorage(BECCS)[3],anddirectaircapture(DAC)havebeenproposed[4].However,therearestillagreatdealofuncertaintiesregardingtheapplicationofcurrentNETs.Technologyreadinesslevel(TRL),cost-effectiveness(intermsofbothpriceandresources),long-termstoragecapacity,andeco-friendlinessorenvironmentalsustainabilityarethemainconstrainingfactorsthatdeterminewhetherNETscanbeeffectiveenoughtomeettheambitiousclimatechangemitigationgoalintheParisagreements(seeTable1).Land-basedtechnologies,suchasreforestation,afforestation,habitatrestoration,andsoilmanagement,havegainedsignificantattentionfortheirnegativeemissionspotential[5].However,therearesignificantuncertaintiesregardingtheactualachievablenetnegativeemissionsrates,andthepotentialconflictsrelatedtothelargeamountoflanduse.Afforestationdirectlycompeteswithcropsforarableland,andaccordinglycausesfoodsecurityproblems.Increasedfires,droughts,pests,anddiseasecouldjeopardizethestabilityofcarbonstorageinnewlyplantedforests[6].Inaddition,theAmazonrainforesthasbeenshowntobeacarbonsourceduetoclimatechangeanddeforestation[7].Large-scaleafforestationinmid-latitudeandnorthernregionsmayhaveanetwarmingeffect[8].Methodsthatcanincreasecarbonstorageinsoils,includingCorrespondingauthor.Correspondingauthor.ResearchCentreofEcology&EnvironmentforCoastalAreaandDeepSea,GuangdongUniversityofTechnology,Guangzhou,510006,PRChina.E-mailaddresses:fengjc@gdut.edu.cn(J.-C.Feng),jinyue@kth.se(J.Yan).1Theseauthorscontributedequallytothiswork.ContentslistsavailableatScienceDirectRenewableandSustainableEnergyReviewsjournalhomepage:www.elsevier.com/locate/rserhttps://doi.org/10.1016/j.rser.2022.113018Received28April2022;Receivedinrevisedform1October2022;Accepted23October2022RenewableandSustainableEnergyReviews171(2023)1130182innovativecroplandmanagement,biocharapplication,andenhancedrootphenotypes[9],allhavegoodTRLs.However,theworld’ssoildegradationhashadnegativeconsequencesoncarbonstorageintermsofthebiologicalproductivity,inducingthereleaseofcarbonbackintotheatmosphere[10].BECCSseeksthewin-winresultsofcleanenergy,negativeemissions,andecosystemservices.BioenergycropproductionwithextensiveapplicationofBECCSisconductedattheexpenseofpasturesandgrasslands,andcancausefoodsecurityproblemsassociatedwiththereductionofthefoodcropproductionarea[11].FertilizerutilizationwithBECCSinevitablycausesenvironmentalimpacts[12].IthasbeenproventhatotherNETs,suchasDAC,whichdirectlypullsCO2fromtheatmospherethroughchemicalreactions,mayonlybefeasibleinspecificandlimitedapplications.Thus,itisdifficulttoconductlong-termCO2removal,whichisrestrictedbyhighcostsandlowefficiency,onthescalewithGta−1[5].NETsrelatedtooceanactivityhavefewerchallengesregardingfoodandlandsourcecompetition,andsuchtechnologiesareinsensitivetothewaterintensitylevel[13].TheoceanisthelargestactivecarbonpoolonEarth,andthus,causingoceanrelatedNETsarepromisingtechniquesforcarbonemissionsmitigation.OceanlimingandfertilizationwereonceregardedaspotentialNETs.However,oceanfertilizationhasthedrawbackthatthemajorityoftheabsorbedCO2isreleasedbackintotheatmospherewhenthephytoplanktondecompose.Suchmethodsmayevenreducetheyieldoffisherieselsewherebydepletingothernutrientsorincreasingtheriskofwaterdeoxygenation[6].Energyconsumptionforcalcination,andsufficientvesselsandportfacilitiesarethemainchallengesinthelarge-scaleapplicationofoceanliming.Insummary,itisdifficult,ifnotimpossible,toreliablymitigatetheglobalwarmingtrendbeforethe2050s.TotacklesuchdifficultiesrelatedtothetraditionalNETs,NETslinkedwithanthropologicaleconomicactivity,lowerenergyconsumption,andlowercapitalandtechnologydemandsshouldbeconsidered.Actually,maricultureincoastalareascanhaveanimportantimpactonthemarinecarbonbudget[13].LikethecarbonsequestrationconceptofBECCS,bivalveshellfish(hereinafterreferredasshellfish)farmingcouldbeaneffectivemethodforcapturingandremovingcarbonfromtheoceans[14,15].Moreimportantly,shellfishfarmingischaracterizedbylowenergyinput,lowcosts,andtechnologicalfeasibility.Inshellfishfarming,carbonstorageisachievednaturallyinshells,whichenablesthelong-term,stablestorageofcarbonorcost-viablere-utilizationasbuildingmaterials.Inaddition,theinteractionswithphytoplanktonpopulationsviabio-depositioncansignificantlypromotecarbonsequestrationinsediments,whichisalong-termstoragemethod[16].However,whetherornotshellfishfarmingcanbeconsideredacarbonsinkiscontroversial.Inthisstudy,thedifferentperspectiveswerebrieflyreviewed.ThepositivepointwasmainlyproposedbyTangetal.[14]andHumphreysetal.[17],whosuggestedthatduringshellfishfarming,theunidirectionalflowofcarbonfromtheatmospheretothesea(asdissolvedinorganiccarbon,DIC)andthenintoshellsissequestratedforalongtimeinsolidformasCaCO3.Thus,theCO2islockedawayfromtheatmosphericcarboncycleonthegeologicaltimescale.Byharvestingshellfishes,DICandorganiccarboncanberemovedfromtheseawater.ThisviewsuggeststhatthecarbonintheshellsisanetCO2sink.Accordingtothecarbonbudget,Rayetal.[18]suggestedthatthecarbonsequesteredinshellsshouldbecorrectedtoaccountfortheCO2releasedduringshellformation.InthiscaseshellfishcaneitherbeaCO2sinkorasourcetotheatmosphere.Duringcalcification,2molofHCO3−areconsumedandthereleasedCO2basicallyhasthesameeffectastheCO2capturedfromtheatmosphere.Ingeneral,itiswidelyacceptedthatabout0.6molofCO2canbereleasedintotheatmosphereafterbufferingbythewatercolumnwhenproducing1molofCaCO3.However,thisratiohighlydependsonthetemperatureandsalinityconditionsoftheseawater[19].Onthecontrary,Munarietal.[20]suggestedthatshellsareanetCO2sourcebecausetheamountofCO2releasedthroughmetabolicprocessesandshellformationismorethantheamountofcarbonsequesteredintheshellinthefarmingenvironment.Ahmedetal.[21]andMistrietal.[22]alsoarguedthatshellfishfarmingisaCO2sourcesincetheamountofcarbonreleasedthroughthecalcificationandcatabolicmechanismscombinedislargerthanthatassimilatedintotheshell.Inaddition,Filgueiraetal.[23]furtheraddedthebio-depositionandmineralizationofbio-depositstotheorganismlevelbasedontheresultsofMunarietal.[20].Filgueiraetal.[23,24]alsoarguedthatbivalvesareprimarilyfarmedwiththeaimofproducingfood,andthus,shellproductioncanbeconsideredtobeaby-productofthemainecosystemvalueofbivalveaquaculture.TheyprovidedajustificationforpartitioningtherespiredCO2betweenthesofttissueandshellwhenconsideringthebivalveshellsinthecarbontradingsystem.Basedontheseinvestigations,shellfishfarminghasthepotentialtobeanetCO2sinkinthespecificoceanandatmospherecarboncycles.Inconclusion,themajorityofthemodelsthatconsidershellfishfarmingasacarbonsourceignoredtheecosystemfunctionofshellfishfarming.Forexample,thecouplingoftheinteractionswithphytoplanktonpopulations,suspendedparticleorganiccarbon,andDICcansignificantlyaltertheCO2cycle.Inthefollowingsection,anewpotentialNETconcept,namely,carbonsequestrationviabivalveshellfishFarming(CSSF)fromtheecosystemperspective,isintroduced.Toaccomplishthis,thefollowingquestionsareaddressed.(1)Whethershellfishfarmingcaneffectivelyimprovetheabsorptionandlong-termsequestrationofCO2.Ifso,whatisthemechanism?(2)Whentakingthelifecycleofgreenhousegas(GHG)emissionsintoaccount,canCSSFbeanetcarbonsink?(3)HowdoestheefficiencyofCSSFcomparetothoseofotherecosystems,suchasmangrovesandseagrassbeds?Inthiscontext,thecarbonsequestratedinshellsandsofttissuesandthebio-depositionareestimated.Thepossiblenegativeeffectsandcorrespondingsolutionsarealsodiscussedinsection4.5.Inaddition,asuggestionthatappealstomorepositiveactionsregardingthefutureofCSSFisprovidedinsection4.6.2.Materialsandmethods2.1.EstimationofcarbonsequestrationShellfishmainlyabsorbandutilizecarbonintwoways,thatis,viabycarboninputfromDICuptakeandorganiccarbonthroughingestion.First,dissolvedHCO3−isabsorbedfromseawatertogeneratecalciumcarbonateshells:Ca2++2HCO−3=CaCO3+CO2+H2O(1)Additionally,organiccarbonisutilizedforthegrowthofshellfish.AsListofabbreviations:GHGsGreenhousegasesNETNegativeemissionstechnologiesBECCSBioenergywithcarboncaptureandstorageDACDirectaircaptureCSSFCarbonSequestrationviabivalveShellfishfarmingCCS:CarboncaptureandstorageDICDissolvedinorganiccarbonCO2-eqCarbondioxideequivalenceTRL:TechnologyreadinesslevelJ.-C.Fengetal.RenewableandSustainableEnergyReviews171(2023)1130183wasdiscussedinSection3.2,theamountofcarboncapturedintheshells,softtissue,andsedimentsisdefinedastheinputintothecarbonsink.Toestimatehowmuchcarbonwasremovedfromtheoceanbyshellfishfarming,itwasnecessarytomakeseveralassumptionsorlimitationstosimplifythestudy.Thefirstsimplificationwastolimitthecategoriesoffarmedshellfishestothefivemajorcategoriesofoysters,clams,scallops,mussels,andcocklesasthesearethefivemostcommonandmajorfarmedspeciesworldwideandinChina.Second,duetothelimitedavailableinformation,only11varietiesoffarmedshellfishwereselectedformeasurementofthedryweightratioandcarbonandproteincontents(detailedinformationisprovidedinS5).Thethirdlimitationwastoassumethattheratioofthedryweight(DW)ofthesofttissuetotheshellwasconstantineachvariety,anditwasassumedthatthecarboncontentintheshellandsofttissueineachcategorywasconstant.Fourmainfactors,theshellcarboncontent,softtissuecarboncontent,dryweightofharvestedshellfishes,anddryweightratioofsofttissueandshell,wereconsideredtocalculatetheamountofcarbonsequestration.Thetotalcarbonsequestrationineachtypeofshellfishwascalculatedasfollows:CT=∑5i=1CTi(2)CTi=CSTi+CSi+Cbi(3)CSTi=Mi×Di×DSTi×wSTi(4)CSi=Mi×Di×DSi×wSi(5)Cbi=Cdepi×Rbi(6)whereCTisthetotalcarbonsequestratedinthedifferentcategories(t).CTiisthecarbonsequestrationforeachspecie,andidenotesthespecificspeciesofshellfish.CSTi,CSi,andCbiaretheamountsoffixedcarboninthesofttissue,intheshell,andviabio-deposition,respectively.Miistheamountofshellfishproductioninwetweight(t),whichwasobtainedfromtheChinaFisheryStatisticalYearbookfor1985–2019.Diistheratioofthedryweighttothewetweightfortheshellfish.DSTiistheratioofthedryweightforsofttissuetothedryweightoftheshellfish,andDSiistheratioofthedryweightoftheshelltothedryweightofthetotalshellfish.wSTiandwSiarethecarboncontentsofthesofttissueandtheshell,respectively.Cdepiistheamountofcarboninthebio-sediments;andRbiistheratioofthecarbonsequestratedviadepositiontothetotalcarboninthebio-sediments(detailsarepresentedinS1).2.2.CarbonbudgetsandcarbonsequestrationefficiencyThecarbonsequestrationviabio-deposition,mainlyincludingthefecesandpseudo-fecesoftheshellfishes,wasestimatedbasedonthecarbonbudgetsoftheshellfish.Thecarbonbudgetsweredeterminedthroughfieldobservationsandlaboratoryexperiments,andthespecificcalculationisdescribedinS1.Thecarbonsequestrationefficiencyofeachtechnologywasconsideredtobethecarboncaptureabilityperunitareaperyear,whichisshowninS3(ThedetailedvalueisshowninTable1).2.3.EmissionsreducingpotentialinfoodproductionsectorShellfishisatypeoffoodwiththedualbenefitsofhighnutritionandprotein,andithasalowercarbonfootprintthanlivestockproducts(S6).Whenestimatingthecarbonemissionspotentialinfoodproduction,thecarbonemissiondifferencesbetweenthehigh-carbonandlow-carbonfoodswerecomparedviathefunctionunitofthesameamountofprotein.3.Results3.1.CarbonsequestrationfunctionofshellfishfarmingIntheabovesection,theroleofbivalvesasapotentialCO2sinkwasintroducedfromtheperspectiveofanecosystemcontextwasintroduced.AlthoughphytoplanktoncanefficientlycaptureCO2duetotheirhighintensityphotosynthesis[25],mostofthecarbonabsorbedfromnear-surfacephotosynthesiswillberespiredbackintotheepipelagiczone.Usually,lessthan1%willbeburiedinthemarinesediments[26,27],resultinginthelimitedeffectsofoceanfertilizationexperiments.Farmedshellfishcanusephytoplanktonasfood,andthen,theygrowshellstofurthersequestercarbonintheformofCaCO3.Inaddition,shellfishfarmingcouldaccelerateorganiccarbondepositioninseawaterbygeneratingpseudo-fecesandfeces,whichalsoenhanceslong-termcarbonsequestration[23,24].However,farmedshellfishmetabolizeorganiccarbon(fixedbyphytoplankton)andrespiretheCO2backintotheair.TheformationofshellsalsoreleasesCO2(Equation(1)).Thus,whethershellfishfarmingisacarbonsinkisdeterminedbythekeypointofwhethershellfishfarmingcanleadtomoreeffectivecarbonsequestrationinanecosystem.Thepermanentcarbonstoragecapacitymainlydependsonthedifferencebetweenthestoredcarbonandemittedcarbon.Thelifecyclecarbonbudgets(Fig.1)showsthattheeffectivenetsequestrationratios(i.e.,NRinEquationS3)ofoysters,scallops,mussels,cockles,andclamsare13.64%,27.55%,12.55%,29.46%,and33.68%,respectively.Thesenetsequestrationratiosareallmuchhigherthanthoseinanaturalecosystem(lessthan1%),indicatingthatshellfishfarmingcouldsignificantlypromotecarboncaptureandstorageintheoceans.Thus,shellfishfarmingcanbeconsideredtobeapotentialNET.3.2.CarbonsequestrationpotentialAccordingtotheaboveanalysis,theharvestedcarboninshellsandthecarbonbio-depositedinsedimentscanbeconsideredpermanentlyseparatedfromthemarinewaterandbiosphere.Althoughthecarbontrappedinthesofttissueiseatenbypeopleandenterstheterrestrialcarboncycle,itcontributestoreducingGHGemissionsfromthefoodproductionsystem,especiallythatofthemeatproduction(Section3.5).Thenetsequestratedcarboncanbedefinedasthepercentageofcarbonstoredintheshellsandinthesedimentsthroughbio-depositionbecausethesetwostorageprocessesarepermanent.Thus,thecarboncapturedintheshells,softtissue,andsedimentsisdefinedastheamountinputintothecarbonsink.Recently,globallyfarmedshellfishweredominatedbybivalves,with17.30Mtoffreshliveweightin2018,andthemajoritywerefrommaricultureandcoastalaquaculture[29].Fig.2illustratesthatglobalshellfishfarmingrapidlyincreasedbefore1995,followedbyasteadyTable1Carbonsequestrationefficiency(tCO2-eqha−1y−1)offarmedshellfishinChinaduring2011–2019.Species201120122013201420152016201720182019Oysters11.0710.8911.5611.7211.6112.6612.6512.7812.93Scallops1.091.131.531.702.022.392.452.653.13Clams1.701.761.801.861.792.031.902.021.84Cockles11.7011.1611.1913.0614.1814.1113.7720.6119.06Mussels2.412.452.352.422.563.824.054.033.51J.-C.Fengetal.RenewableandSustainableEnergyReviews171(2023)1130184andslightincrease.Theglobalannualyieldoffarmedshellfishhasexceeded10Mtsince2002,amongwhichmorethan80%isfromChina.InChina,theaverageamountofcarbonsequestratedthroughshellfishfarmingwasapproximately6.23MtCO2-eqa−1during2015–2019.Oysterfarminghasthegreatestcarbonsequestrationabilitybecauseithasthehighestyieldamongalloftheshellfishspeciesandboaststhebiggestshellvolume.Thecarbonsequestratedinshellsduringoysterfarmingisabout1.31MtCO2-eqa−1,accountingforapproximately83.96%ofthecarbonremoved.Thecontributionofcocklefarmingtocarbonremovalisthesmallest.Intotal,thecarbonsequestrationcapacityofChina’scoastalzoneswasapproximately6.23MtCO2-eqperyearduring2015–2019.Sequestratingthisamountofcarbonisequivalenttoacarbonsinkvalueof12.22MhaofartificialforestsbecausethecarbonsequestrationefficiencyofartificialforestsinChinaiscurrently0.51tCO2-eqha−1a−1[30].Fig.3showsthatontheglobalscale,ChinaisthemaincontributortothemarinecarbonsinkviaCSSF.Chilemadethesecondlargecontributiontothiscarbonsink(0.30MtCO2-eq)in2019,followedbyKorea(0.23MtCO2-eq),Spain(0.18MtCO2-eq),andJapan(0.18MtCO2-eq).TheUnitedStatesalsohasarelativelyhighsequestrationamount(0.11MtCO2-eq)comparedtotheremainingcountries.Thecarbonsequestrationpotentialofthemaximumshellfishfarmingareawasalsoestimated,whichispresentedinSupplementaryInformation(SI)SectionS2indetail.Indonesiahasthemaximumexpansionandyieldproductionpotential(about0.93Gt).Brazilhasthesecondlargepotential(0.16Gt),followedbyArgentina(0.59Gt)andAustralia(0.50Gt).Underthemaximumfarmingareascenario,atotalof9.27Gtoffarmedshellfishcanbeharvestglobally,andshellfishfarminginChinacanreaches26.65Mta−1.Atotalof5.64GtofCO2,about17.63%ofthetotalemissionsin2020,canbesequestratedattheglobalscale,whichislargerthanthetotalemissionsinIndia,theworld’sthirdlargestcarbonemitterin2019.Consideringthatthemaximumecologicalcapacityfallsshortofthemaximumexpandedfarmingareascapacity,approximately1.19GtofCO2canbesequestratedviaCSSFonthepremiseofensuringtheecologicalsafetywithIndonesia(11.32%),Brazil(7.48%),Argentina(7.21%),Australia(6.08%),andNamibia(5.31%)beingthetopfivecontributors.Thus,shellfishfarmingcouldbeveryconducivetoachievingcarbonneutrality.3.3.CarbonsequestrationefficiencyAsisshowninFig.4,thecarbonsequestrationefficiencyofshellfishfarminginChinaismuchhigherthanthatofartificialforests(AF),exceptforthatofcocklesandclams.Musselfarminghasthehighestefficiency(14.31tCO2ha−1a−1),followedbyoysters(11.99tCO2ha−1a−1).Bothmusselandoysterfarminghavehighersequestrationefficienciesthanthoseofsaltmarshes(SM),mangroves(MG),andseagrass(SG),whichare7.99,8.29and5.06tCO2ha−1a−1,respectively[31].Althoughclam(1.86tCO2ha−1a−1)andcockle(2.00tCO2ha−1a−1)farmingislessefficientthanSM,MG,andSG,theyperformbetterthantheaveragevalueforEastAsia’sartificialforests(AAF)andthatofChina’sartificialforests(CAF),whichare0.84tCO2and0.51tCO2ha−1a−1,respectively[32].CSSFcouldachievestablestorageformorethan100yearsbecauseitresultsinCaCO3formationorlong-termsedimentdeposition,whichisanotherimportantfactorfordeterminingtheefficiencyofanNET.3.4.LifecycleGHGemissionsofshellfishfarminginChinaThemainserviceprovidedbyshellfishaquacultureismeatproduction,andcarbonsequestrationfunctioncanbeconsideredtobeaby-productofthisanthropogenicactivity.Therefore,itisimportanttoindependentlyquantifythelifecycleGHGemissionstoseewhetherthisprocesswilloffsetthebenefitsofCO2sequestration.Fivetypesoffarmedshellfish(C.gigas,M.nobilis,M.edulis,T.granosa,andR.philippinarum)inChinawereselected,andtheir“fromcradletogate”carbonfootprintswereanalyzed(detailsarepresentedinSectionS4).Theenergyconsumedduringshellfishfarmingmainlyincludesdieselandelectricity.Thedieselisappliedfortransportationandvesselconsumption.Theelectricityismainlyconsumedforpumpingseawaterandaerationduringthehatcheryculturestage.Thelifecyclecarbonemissionsofthefarmedoyster(C.gigas),scallop(M.nobilis),mussel(M.edulis),clam(R.philippinarum),andcockle(T.granosa)are0.07,0.13,0.20,0.08,and0.17kgCO2-eqperkg,respectively.TheemissionsintheseedcultureFig.1.Carbonbudgetforshellfishlifecycles.Thecarbonuptakemainlyconsistsoforganiccarboningestionandtheassimilationofdissolveinorganiccarbon.Thecarbonismainlyreleasedthroughrespiration,calcification,andreproduction.Carbonsequestrationmainlyoccursthroughbio-depositionandshellandsofttissueharvesting.(A)ThecarbonbudgetoffarmedC.gigas,whichrepresentsthecarbonbudgetofoysters.(B)ThecarbonbudgetoffarmedC.farreri,whichrepresentsthatofscallops.(C)ThecarbonbudgetofM.edulis,whichrepresentsthatofmussels.(D)ThecarbonbudgetofS.subcrenata,whichrepresentsthatofcockles.(E)ThecarbonbudgetoffarmedM.meretrix,whichrepresentsthatofclams.J.-C.Fengetal.RenewableandSustainableEnergyReviews171(2023)1130185stage,accountforthemostimportantpart,mainlycomefromenergyinputs.AccordingtoEquation(2),foreachkilogramoffarmedshellfishharvested,0.15,0.17,0.21,0.15,and0.10kgofcarbonwillbecapturedforoyster,scallop,mussel,cockle,andclamfarming,respectively.Whenconvertedtothecarbondioxideequivalent,thesevaluesare0.54,0.62,0.77,0.54,and0.38kg,respectively.Giventhattheisolatedcarboncantotallyoffsetthelifecycleemissions,shellfishfarmingcanbeconsideredtobeanetcarbonsink.Comparedwithtraditionalfoods(beef,milk,pork,chicken,andeggs),farmedshellfishisamoresustainableproteinsourceandhassignificantadvantagesintermsofGHGemissions.AsestimatedinS6,thefarmedshellfishcanprovideabout0.37Mthigh-qualityproteinperyearforhumanconsumptioninChinafrom2015to2019(Fig.4B).Toproducethesameamountofprotein,beefproductionemits37.39MtmoreCO2-eq.Eveneggproductionemits6.09MtmoreCO2-eq.Otherbenefitsregardingmitigatingclimatechange,e.g.,mitigationofeutrophicationandenhancementofprimaryproductioninthesea,arediscussedinS7.4.Discussion4.1.SimilaritiesbetweenBECCSandCSSFBECCS(Fig.5A)isawidelyacceptedcarbonsink,whichhasthebenefitsofcleanenergy,negativeemissions,andecosystemservices[13].Fromanecosystemperspective,CSSF(Fig.5B)hasmanysimilaritiestoBECCSintermsofsequestratingcarboninanaturalway.(1)InBECCS,atmosphericcarbonisfirstabsorbedbyplantsandconvertedintobiomass.Similarly,inCSSF,atmosphericcarbonisdissolvedintheoceanandconvertedtoDIC.Then,itisabsorbedbyphytoplanktonandconvertedintobiomass.(2)InBECCS,thebiomassenergyisfurtherconvertedintoheatorelectricity.InCSSF,theDIC,thebiomassofthephytoplankton,andtheenergyareconvertedintosofttissueandshells.(3)InBECCS,thereleasedcarboniscapturedandstoredingeologicalformationsorembeddedinlong-lastingproducts.InCSSF,thecarbonisnaturallyabsorbedfromtheoceanandisusedtocreatetheshellsofshellfish.Inaddition,shellfishfarmingcanaccelerateorganiccarbondepositionfromseawaterbygeneratingpseudo-fecesandfeces,whichisconducivetothemarinecarbonsink[27].(4)InBECCS,theuncapturedCO2isreleasedintotheatmosphereagain.InCSSF,theCO2fromrespirationandcalcification(Equation(1))isreleasedintotheseawater.(5)InBECCS,theenergyisharvestedasausefulproduct.InCSSF,meat(softtissue)isharvestedasahigh-qualityfood.CSSFischaracterizedbyalowerenergyinputbecausethisprocessisdrivenbynatureandresultsincarboncaptureinastableandsolidstate.Inaddition,CSSFhassignificanteconomicbenefitsbecausetheshellfisharemainlyfarmedforfoodandthecarbonsequestrationfunctionisaby-product.Moreover,theindirecteffectsofshellfishfarmingontheecosystem,suchasthemitigationofeutrophicationandenhancementofprimaryproductionthroughincreasedwaterclarityandnutrientFig.2.Annualvariationsinglobalfarmedshellfishandsequestratedcarbon.(A)TheyieldproductionoffarmedshellfishinChina(yellowbars)andglobally(greenbars).(B)ThecarbonsequestratedviashellfishfarminginChina.Thepinkbarsrepresentthecarbonsequestratedviaoysterfarming;andthegreen,orange,blue,andlightpurplebarsrepresentthecarbonsequestratedviaclam,cockle,mussel,andscallopfarming,respectively.Itshouldbenotedthatasmallfractionofnon-bivalvespecies,e.g.,seasnailsandabalone,areincludedintheyieldproductionandgrowthratebecausetheircontributionissmallenoughtoignoreandishardtopreciselydeducttheircontributionbasedontheavailabledata.J.-C.Fengetal.RenewableandSustainableEnergyReviews171(2023)1130186turnover,alsohavepositiveimpactsontheCO2absorption[27].Basedontheaboveperspectives,CSSFcanbeanNETfortheoceanandatmosphere.4.2.HighefficiencyofCSSFThetimescaleoftheisolationfromtheatmosphericcarboncycleisanotherimportantfactorfordeterminingtheefficiencyofanNET.AlthoughatmosphericCO2concentrationscanbereducedbyvegetationsequestration,thecarbonstorageistemporaryandcanonlyreducetheatmosphericCO2concentrationsintheshort-term.AfewstudieshaveevenreportedthatthistypeoftemporarysequestrationcannotpreventclimatechangeandmayevenincreaseCO2concentrationsinthelong-term[33,34].Althoughthisideaisdebatableandtherearesomeopposingopinions(e.g.,DornburgandMarland[35]),itiswidelyacceptedthattheeffectivenessofshort-termcarbonsequestrationinmitigatingglobalwarmingshouldbediscounted[36,37].Takingforestsystemsasanexample,theenormousamountofcarbonstoredintreeisaffectedbybothdeforestationandwildfires[38].Regardingcarbonsequestration,researchershavestatedthatsoonerandlongersequestrationispreferred[35].Currently,manyproductsareusedinshortcycles,suchasfood,grass,wood,fuel,andpaper.Fromthispointofview,theydonotcontributetolong-termcarbonsequestration,nordotheysubstituteforothermaterialsthathavehighcarbonfootprints.ThemostimportantadvantageofCSSFisthatitcouldsequesterCO2inthelong-termviaeithershellgrowthorbio-deposition.CSSFcouldovercometheshortagesofoceancarbonsequestrationtosomeextentandfacilitateeffectiveisolation.TherearetwoprimitiveFig.3.Distributionofglobalcarbonsequestrationviashellfishfarmingin(A)1985and(B)2019,andthatunderfuturescenarioswiththe(C)maximumfarmingareaand(D)maximumecologicalcapacity.Thecoloredbarsineachsub-figurerepresenttheproductionofthecorrespondingcountryorregion.Fig.4.TheCarbonsequestrationefficiencyofshellfishfarming:(A)Comparisonofdifferentcarbonsequestrationsystems.SMrepresentssaltmarshsystems;MGrepresentsmangroveforestsystems;SGrepresentsseagrasssystems;AAFrepresentsEastAsia’sartificialforests(averagevalue);andCAFrepresentsChina’sartificialforests.(B)EstimatedproteinproducedbyshellfishfarminginChinafrom2015to2019.Thered,green,purple,yellow,andbluebarsrepresenttheproteinproducedviascallop,mussel,clam,cockle,andoysterfarming,respectively.J.-C.Fengetal.RenewableandSustainableEnergyReviews171(2023)1130187pathwaysforCO2absorptionintheocean.ThefirstisthenaturalabsorptionofCO2,includingabsorptionpromotedbyrockweatheringanddirectdissolution.ThesecondisDICabsorptionviaphotosynthesisandconversiontoorganiccarbon.ThedirectabsorptionofCO2fromtheatmosphereandconversionintoDICcouldcauseoceanacidification(OA),whichwouldreducetheprimaryproductivitywhenitreachedacertainlevel.Furthermore,DICisareactiveformandcanbereleasedbackintotheatmosphereoverashortperiod.Regardingrockweatheringprocesses,theformofthecarbonischanged,butitisnotsequestered,aswasstatedbyCurletal.[2].SuchwatersmayalsoincreasethepartialpressureofCO2inthesurfacelayeroftheoceans,therebyeitherslowingdownorreversingthetransferofatmosphericCO2intotheocean.FortheDICcapturedbyphotosynthesis,theabsorbedCO2trendstoberecycledbackthroughdecompositioninthesurfaceorsubsurfacewaters.Lessthan1%settlesoutofthewaterandispermanentlysequesteredinthesediments.Eventheoceanfertilizationschemecannoteffectivelyimprovethis.CSSFcouldfacilitatebio-deposition,resultinginlong-termcarbonsequestration.Fig.5.Schematicdiagramillustratingthemechanismsof(A)BECCS(bioenergywithcarboncaptureandstorage)and(B)CSSF(CarbonSequestrationviaShellfishFarming).POCisparticulateorganiccarbon,andDICisdissolvedinorganiccarbon.Thecarbonemissionbarsin(A)and(B)representthecarbonbudgetsofBECCSandCSSF,respectively.Thebluesquareinsideindicatesthatthecarbonemissionis0fromthebeginningtothecurrentstage,andafter/belowthisstagetheemissionisnegative.InBECCSthe0emissionrepresentthattheCO2isfirstcapturedbytheplantsandthenreleasedviapowerplantburning.AfterthereleasedCO2isrecapturedandstorageviageologicalmethod,thetotalemissionsinBECCSisnegative.InCSSF(B),the0emissionrepresentthattheCO2isfirstcapturedbyphytoplankton,andthenreleasedviashellfishmetabolization.AftertheDICisisolatedintheshell,andthePOCsequestratedinsofttissueandseabed,thetotalcarboninCSSFemissionsisnegative.J.-C.Fengetal.RenewableandSustainableEnergyReviews171(2023)11301884.3.AdvantageofGHGsemissionsreductioninfoodproductionsystemInadditiontoNETs,climatesmartsolutionsarenecessarytotransformthecurrentfoodproductionsystemsintomorecircularandclimate-neutralsystemstobettermeettheParisagreement.Currently,theglobalfoodproductionsystemcontributesabout30%ofglobalGHGemissions[39,40],ofwhichthebio-basedproductionsystemsareoftencoupledwithhighGHGemissions[41].Nevertheless,reducingemissionsfromthisindustryhasreceivedlessattentionandisverychallenging.Bio-basedproductionisaveryvaluablesourceofessentialnutrients(e.g.,essentialaminoacids,minerals,andvitamins),andemissionsmayseemtobeanunavoidableenvironmentalcostoffeedingthegrowingpopulation[42].Itisnoteworthythattheglobalfoodproductionsystemswillhavealargerenvironmentalfootprintby2050[43].CSSFisapromisingmethodofachievingfoodsecurity[44–46]whilestillachievingthegoalsofreducingemissions.Toremove600GtofCO2duringthiscentury,430–580millionhectaresoflandareneeded(aboutone-thirdofthecurrenttotalarablelandonEarth)forplantingcropsforBECCS[6].CSSFdoesnotrequirearableland.Onthecontrary,CSSFincreasesthesupplyofaffordablenutritionforhumanconsumption[44].Itwasestimatedinthisstudythatfarmedoysters,scallops,mussels,cockles,andclamscouldprovideabout0.37Mtofhigh-qualityproteinperyearforhumanconsumptioninChina.Moreimportantly,theanalysisconductedinthisstudyindicatesthatfarmedshellfishhavelowlifecycleemissions.Similarresultshavebeenwidelyreported[47–50].Shellfishmeathasbeenacceptedasapopularfoodthatprovideshigh-qualityproteinforalonghistory,soithasthepotentialtoreplaceaproportionofmeatproduction[44].TakingChinaasanexample,comparedtobeefproduction,shellfishcouldrelieveCO2emissionsbyabout37.39MtCO2-eqperyear(showninS6).Evencomparedwitheggproduction,shellfishfarmingcouldproduceasignificantadvantageinGHGemissionsreduction.Becauseshellfishfarmingdoesnotrequireaddedchemicals,commodityfeed,orantibioticsduringthefarmingstageinthesea,shellfishmeatisamuchmoreenvironmentallyfriendlyproduct[51].Shellfishfarminghasagreatexpansionpotentialsincetherequirementsfornon-renewableresourcesoffreshwaterandterrestriallandareminimal[47,50],anditistechnologicallyfeasible.Afterconstrainingthesuitablefarmingarea,thatwiththewaterdepthsoflessthan200m,asuitabletemperaturerange,andahighchlorophyllcontent,andexcludingareasdesignatedformarineanimalprotectionandfishing-boatactivityareas,atleast1,500,000km2areavailableforshellfishfarming[52].Inthisscenario,morethan5.6GtofCO2a−1wouldbesequestratedattheglobalscale.4.4.SynergisticbenefitswithotherstrategiesAswaspreviouslydiscussed,shellfishfarmingcanhelpreduceemissionsinfoodproductionsystems.Therefore,CSSFcancertainlyplayasynergisticroleinemissionsreductionwithdietarymanagementstrategies.Aswasprojectedinapreviousstudy[53],thecumulativeGHGemissionscausedbyfoodconsumptionfrom2020to2060willbe374GtCO2equivalent.However,byreplacingthetraditionalmeatby10%,30%,and50%withmusselmeat,thecumulativeGHGemissionscanbereducedby4.5%,13.6%,and22.4%,respectively.Althoughaplant-richdietcanalsoresultinasignificantreduction,amusselorshellfishrichdietcouldbeahealthierandmorenutritiousoption,asshellfishmeatisrichinprotein,docosahexaenoicacid,andmicronutrients[44,54,55].ShellfishfarmingcouldbecoupledwithotheroceanicNETssuchasoceanfertilization.Forexample,oceanfertilizationcouldbeperformedinchlorophyllbarrenareasandeveninareaswithwaterdepthsofgreaterthan200m,whichcouldstimulateanalgaebloom,thuseffectivelyexpandingtheseaareasuitableforshellfishframing.Furthermore,shellfishfarmingcanrapidlyfilterouttheorganiccarbonanddeposititontheseedbed.Thus,thecarbonsequestrationintraditionalfertilizationexperimentscouldbesignificantlypromoted.Althoughthefeasibilityofthiscombinationlacksexperimentalevidence,itisworthattemptingbecauseithaslongbeenproventhatunderprecisecontrolofthefarmingvolumes,thecombinationofshellfishfarmingandphytoplanktonphotosynthesiscanabsorbmoreCO2fromtheatmospherethanasinglesystem[56].Thepositiveenvironmentalandecologicaleffectsofshellfishfarmingareimportantforclimatechangemitigation.Theindirecteffectsofshellfishfarmingontheecosystem,suchasthemitigationofeutrophicationandenhancementofprimaryproductionthroughincreasedwaterclarityandnutrientturnover,willaffecttheCO2cycle[24].Previousstudies[56],havereportedthatarelativelylowabundanceofclamscoulddoubleprimaryproductionandalterthephytoplanktoncommunitystructure.Ingeneral,intensivegrazingbyculturedbivalvesisexpectedtoreducewaterturbidity,andimprovelightpenetrationtothebottom,andthusextendsthewaterdepthsuitableforthegrowthofbenthicmacrophytesandmicrophytobenthos[57].Inanutrient-limitedsystem,shellfishperformbottom-upcontrolofphytoplanktonbyincreasingtherateofnutrientcyclingandconsequentlyimprovesthenutrientavailability[58].Insummary,itisimportantforshellfishfarmingtoworkinsynergywithotherecologicalmanagementandrestorationprojects.4.5.PotentialnegativeimpactsofshellfishfarmingLikeotherhumanactivities,large-scaleshellfishfarmingexpansionwillinevitablyexertnegativeimpacts.Oneofthemostfrequentlyreportedimpactisover-farming,inwhichthefarmingcapacityexceedsoverthemaximumecologicalcarryingcapacity[59].Thiswillcauseareductionintheprimaryproductivity[60].OnepromisingwaytoavoidtheseeffectsisthroughtheadoptionofIntegratedMulti-TrophicAquaculture(IMTA).Sar`aetal.[61]demonstratedthatmussels(M.galloprovincialis)andtheEuropeanflatoyster(O.edulis)hadhighergrowthratesnearfishfarmscomparedtothatintheopensea.Moreover,shellfishover-farmingmayalsohavenegativeeffectsonthebenthicenvironmentandspeciesassemblagesviaadditionalbio-deposition.Sedimentorganicenrichmentthroughfecaldepositionfromfarmedshellfishcouldcreateanaerobicandacidicconditions,resultinginadverseeffectscausedbyelevatedlevelsofsulfidesandammonium[62].OnepossiblewaytoavoidtheseimpactsisthroughtheadoptionofBestManagementPractices(BMPs),suchasselectionoffarmingsiteswithappropriatewaterdepthsandwaterflowcharacteristics,andtheadoptionoffarmlayoutsthatavoidexcessivedensity[63].Actually,thelocalwaterchemistrymaychangeinanegativewayintermsofthetotalalkalinity(TA)andoceanacidification(OA)ifshellfisharefarmedinanextremelyinappropriateway.However,theimpactontheTAisnegligiblecomparedtothestrongbufferingcapabilityoftheoceans,whichabsorblargeamountsofbicarbonateviarockweatheringandriverdischargeintothesea.TheimpactsonOAaremainlycausedbytheCO2releaseduringrespirationandcalcification,whichcouldbecompletelycounteractedbyphotosynthesiswhenthefarmingvolumeisproperlycontrolled.Forexample,aM.coruscusandG.lemaneiformispolyculture[64]witharatioof1:0.45couldeffectivelyincreasethepHandCO2absorptioncapacityofseawater.Phytoplankton,whichcouldabsorbmorethan18.3GtofCO2peryearintheocean,ismoreefficientintermofphotosynthesis[65]andismoreabletooffsettheimpactsofOA.4.6.PositiveactionsareimperativeAlthoughshellfishfarmingseldomdependsonnonrenewableresources,large-scaleexpansionofshellfishfarmingmaystillhavemanychallengesintermsofglobalwarming.Forshellfishfarmingexpansion,theearlierthebetter.Currently,mostareasinalmostallcoastalcountriesaresuitableforaquaculture[52].However,iftheglobalwarmingJ.-C.Fengetal.RenewableandSustainableEnergyReviews171(2023)1130189trendpersistsinthefuture,itwillmostlikelyresultinseriousshrinkageoftheareasuitableforaquacultureandshellfishfarming.AsproposedbyFroehlichetal.[60],theproductionpotentialofaquaculturewilldeclineinmostofthesuitableareasovertime,withthepotentialofsomeareasevendisappearingcompletelyduetotemperaturechangesandtheresultantdecreaseinthechlorophyllcontent.OAcausedbytheCO2emissionswillpersistentlyexistandwillfurtherlowerthepHofthesurfacelayeroftheoceans.Inaddition,OAwillpotentiallythreatenthebio-calcificationofshellfishfarming.Gazeauetal.[19]demonstratedthatthecalcificationratesofM.edulisandC.gigassignificantlydecreaseasthepCO2increases.Milleretal.[66]alsoreportedthatOAcouldhaveanegativeimpactontheoystergrowth.Tofacethispotentialchallenge,newgeneticbreedingtechniquescanbeusedtobreednewvarietiesofshellfishesthatcantolerateoradapttohightemperaturesandOA.Newfarmingmodels,suchastheshellfish-algaepolycultures,mightmoresustainableunderthecontextofOA.TheculturingofmacroalgaefacilitatesabsorbingmoreCO2fromtheseawaterandincreasesthepHofthelocalseawater.Thus,moreresearchisessentialinthesefields.5.ConclusionsExploringthecarbonsinkpotentialoftheoceanisessentialtoachievingtheambitiousgoalofcarbonneutrality.Thisstudyproposedanewconcept,carbonsequestrationviashellfishfarming(CSSF),whichisapotentialnegativeemissiontechnologydrivenbynaturalprocesses.ThecarbonsequestrationmechanismofCSSFwasanalyzedfromacomprehensiveandobjectiveperspective,andthecarbonsequestrationpotentialandefficiencyofCSSFwereinvestigatedandcomparedwithothernegativeemissionsystems.Theresultssuggestthatthecarbonsequestrationefficiencyandintensityofcultivatedshellfishesaremuchhigherthanthoseofartificialforests.Underthelargestfarmingareascenario,atotalof5.64GtCO2canbepotentiallysequestratedthroughcarbonsequestrationviashellfishfarming.Thisresearchhighlightsthefundamentalimplicationsofmarinecarbonsequestrationtechnologyandlow-carbonfoodsupply.Resultsshowthattheoysterandmusselfarmingshowsignificantadvantageincarbonsequestrationefficiency.Thescallopandcockleperformbetterinproteinproductionandcarbonfootprint,andthus,aremoreconducivetocarbonemissionreductioninfoodproduction.AnalysisfromtheperspectiveofecosystemshowsthatCSSFcanbeaNETswithwelltechnologyreadinesslevels.6.UncertaintiesandlimitationsofthisstudyThesuggestionoftheCO2sinkfunctionofshellfishfarmingwasbasedontheestimationthatshellfishfarminghasamuchhighernetcarbonsequestrationratiothannaturalmarinesystems(usuallylessthan1%).Accordingly,thecarbonstoredviatheshell,thecarboninthesofttissue,andthecarboninbio-depositionwereassumedtoperformacarboncapturefunction.However,theestimationofthenetsequestrationratiowasbasedonthelifecyclecarbonbudgetofashellfishdeterminedthroughobservationexperiments.Althoughallwerecontainedinthelifecyclecarbonbudget,thekineticprocesses,suchasfeedingonphytoplankton,shellfishgrowthrate,andmetabolicrate,havestronginteractionswiththelocalenvironmentandaretoocomplextoparameterizeandquantify.Therefore,thenetcarbonsequestrationratiomayvarysignificantly.Inthefuture,detailedresearchisneededtosystematicallyobservethedynamicprocessofthecarbonbudgetandprovidemoreaccurateestimations.Inthisstudy,onlyoysters,mussels,cockles,clams,andscallopswereselectedfortheestimationinthisstudybecauseoftheirwidedistributionsandlargeproductionglobally.TheyieldinformationfortheshellfishfarminginChinawasobtainedfromtheChinaFisheryStatisticalYearbook,whichdoesnotcontaindetailedinformationaboutthespeciesofeachtypeofshellfish(e.g.,C.gigasandC.hongkongensisproportionsforoysters).Thus,inthisstudy,thecarbonsequestrationofeachtypewasestimatedusingthemeanvalueforselectedrepresentativevarieties.Differentspecieshavedifferentdryweightratiosofsofttissuetoshells.Therecouldevenbelocalvariationsinthisratioforthesamespecieswhenfarmedindifferentregions.Thisvariationmayaffecttheestimatedamountofcarbonsequesteredintheshellsandsofttissue.Theassumptionthat40%ofthebio-depositionissequesteredintheseabedisarawestimation,becauseinformationabouttheactualvalueisverylimitedandstronglydependentonthelocalenvironmentalconditions.Theestimationsofthecarbonfootprintswerebasedontheinformationforachosenspeciesforeachtypeofshellfish(presentedinS3).Therewereconsiderabledifferencesbetweentheinformationobtainedthroughtheinterviewswithfarmersandexpertsandtheprimarydataforthecontributionstothecarbonfootprint.Thismaybeanaturalvarianceduetodifferentseaareaconditions,farmingmethods,andnutrientlevels.Thiscouldbefurtherinvestigatedbybroadeningthescopeoftheinvestigation.Theglobalmaximumareaproductionandthemaximumecologicalproductionwerealsorawestimations.Moreexactresultscouldbeobtainedbyrefiningthedetailofthelocalinformationaboutthehydrologyandecologyofpotentialfarmingareas,forinstance,thewaterresidencetimeinabayandtherateofphytoplanktonproduction.CreditauthorstatementJ.C.FengandJ.Y.Yandesignedresearch.J.C.FengandL.W.Sunperformedtheresearch,analyzeddata,andwrotethepaper.DeclarationofcompetinginterestTheauthorsdeclarethattheyhavenoknowncompetingfinancialinterestsorpersonalrelationshipsthatcouldhaveappearedtoinfluencetheworkreportedinthispaper.DataavailabilityDatawillbemadeavailableonrequest.AcknowledgmentsTheauthorsaregratefultotheeditorsandreviewersfortheirkindhelp.Dr.JinyueYanwouldliketothankProf.XunLiforhisinspirationandideasduringdiscussionsofCO2captureandstoragemorethan15yearsago,whichresultedinthelaterconceptofcapturingCO2usingshellfish.HewouldalsoliketothanktheSwedishEnergyAgencyforfinancialsupportfromtheNegativeEmissionTechnologies:ReadinessAssessment,PolicyInstrumentDesign,OptionsforGovernanceandDialogue(NET-RAPIDO)project(46193–1).Dr.Jing-ChunFengwouldliketoacknowledgethefinancialsupportforthisresearchreceivedfromtheNationalNaturalScienceFoundationofChina(42022046),theNationalKeyResearchandDevelopmentProgram(2021YFF0502300),andGuangdongNaturalResourcesFoundation,(GDNRC[2022]45).Dr.Jing-ChunFengwouldalsoliketothankProfs.SiZhang,SaiLiang,andZhifengYangfortheirkindguidance.Prof.LinlinXiaisespeciallyappreciatedforherhelpincreatingthefigures.Theauthorsalsothankmaster’scandidatesYanyanHuangandMingruiZhangfortheirhelpwiththedatacollection.AppendixA.SupplementarydataSupplementarydatatothisarticlecanbefoundonlineathttps://doi.org/10.1016/j.rser.2022.113018.References[1]McKinleyGA,PilcherDJ,FayAR,LindsayK,LongMC,LovenduskiNS.Timescalesfordetectionoftrendsintheoceancarbonsink.Nature2016;530(7591):469–72.J.-C.Fengetal.RenewableandSustainableEnergyReviews171(2023)11301810[2]CurlRL.Carbonshiftedbutnotsequestered.Science2012;335(6069).655-655.[3]M¨ollerstenK,YanJ,JoseRM.PotentialmarketnichesforbiomassenergywithCO2captureandstorage-OpportunitiesforenergysupplywithnegativeCO2emissions.BiomassBioenergy2003;25(3):273–85.[4]Krause-JensenD,DuarteCM.Substantialroleofmacroalgaeinmarinecarbonsequestration.NatGeosci2016;9(10):737–42.[5]McLarenD.Quantifyingthepotentialscaleofmitigationdeterrencefromgreenhousegasremovaltechniques.ClimChange2020;162(4):2411–28.[6]WilliamsonP.ScrutinizeCO2removalmethods.Nature2016;530(7589):153–5.[7]GattiLV,BassoLS,MillerJB,etal.Amazoniaasacarbonsourcelinkedtodeforestationandclimatechange.Nature2021;595(7867):388–93.[8]KellerDP,FengEY,OschliesA.Potentialclimateengineeringeffectivenessandsideeffectsduringahighcarbondioxide-emissionscenario.NatCom2014;5(1).[9]PaustianK,LehmannJ,OgleS,ReayD,RobertsonGP,SmithP.Climate-smartsoils.Nature2016;532(7597):49–57.[10]RumpelC,AmiraslaniF,Lydie-StellaKoutika,SmithP,WhiteheadD,WollenbergE.PutmorecarboninsoilstomeetParisclimatepledges.Nature2018;564(7734):32–4.[11]SmithP,DavisS,CreutzingF,etal.BiophysicalandeconomiclimitstonegativeCO2emissions.NatClimChange2016;6(1):42–50.[12]McLarenD.Acomparativeglobalassessmentofpotentialnegativeemissionstechnologies.ProcessSafEnvironProtect2012;90(6):489–500.[13]BauerJE,CaiWJ,RaymondPA,BianchiCS,etal.Thechangingcarboncycleofthecoastalocean.Nature2013;504(7478):61–70.[14]TangQ,ZhangJ,FangJ.ShellfishandseaweedmaricultureincreaseatmosphericCO2absorptionbycoastalecosystems.MarEcolProgSer2011;424:97–104.[15]RenW.StudyontheremovablecarbonsinkestimationanddecompositionofinfluencingfactorsofmaricultureshellfishandalgaeinChina—atwo-dimensionalperspectivebasedonscaleandstructure.EnvironSciPollutRes2021;28(17):21528–39.[16]JansenHM.Bivalvenutrientcycling.WageningenUniversity;2012.M1-PhD.[17]HumphreysMP,DanielsCJ,Wolf-GladrowDA,TyrrellT,AchterbergEP.OntheinfluenceofmarinebiogeochemicalprocessesoverCO2exchangebetweentheatmosphereandocean.MarChem2018;199:1–11.[18]RayNE,O’MearaT,WiliamsonT,IzursaJL,KangasPC.ConsiderationofcarbondioxidereleaseduringshellproductioninLCAofbivalves.IntJLifeCycleAssess2018;23(5):1042–8.[19]GazeauF,QuiblierG,JansenJM,etal.ImpactofelevatedCO2onshellfishcalcification.GeophysResLett2007;34(7).[20]MunariC,RossettiE,MistriM.Shellformationincultivatedbivalvescannotbepartofcarbontradingsystems:astudycasewithMytilusgalloprovincialis.MarEnvironRes2013;92:264–7.[21]AhmedN,BuntingSW,GlaserM,FlahertyMS,DianaJS.Cangreeningofaquaculturesequesterbluecarbon?Ambio2017;46(4):468–77.[22]MistriM,MunariC.ClamfarminggeneratesCO2:astudycaseintheMarinettalagoon(Italy).MarPollutBull2012;64(10):2261–4.[23]FilgueiraR,ByronCJ,ComeauLA,etal.Anintegratedecosystemapproachforassessingthepotentialroleofcultivatedbivalveshellsaspartofthecarbontradingsystem.MarEcolProgSer2015;518:281–7.[24]FilgueiraR,StrohmeierT,StrandO.Regulatingservicesofbivalvemolluscsinthecontextofthecarboncycleandimplicationsforecosystemvaluation.In:Goodsandservicesofmarinebivalves.Cham:Springer;2018.[25]Muller-KargerFE,VarelaR,ThunellR,LuerssenR,HuC,WalshJJ.Theimportanceofcontinentalmarginsintheglobalcarboncycle.GeophysResLett2005;32(1).[26]WilliamsonP,WallaceDWR,LawCS,etal.Oceanfertilizationforgeoengineering:areviewofeffectiveness,environmentalimpactsandemerginggovernance.ProcessSafEnvironProtect2012;90(6):475–88.[27]HerndlGJ,ReinthalerT.Microbialcontrolofthedarkendofthebiologicalpump.NatGeosci2013;6(9):718–24.[29]FangJY,GuoZD,HuHF,KatoT,MuraokaH,SonY.ForestbiomasscarbonsinksinEastAsia,withspecialreferencetotherelativecontributionsofforestexpansionandforestgrowth.GlobalChangeBiol2014;20:2019–30.[30]RehdanzK,TolRSJ,WetzelP.Oceancarbonsinksandinternationalclimatepolicy.EnergyPol2006;34(18):3516–26.[31]McleodE,ChmuraGL,BouillonS,SalmR,Bj¨orkM,DuarteCM,LovelockCE,SchlesingerWH,SillimanBR.Ablueprintforbluecarbon:towardanimprovedunderstandingoftheroleofvegetatedcoastalhabitatsinsequesteringCO2.FrontEcolEnviron2011;9(10):552–60.[32]FangJY,GuoZD,HuHF,KatoT,MuraokaH,SonYH.ForestbiomasscarbonsinksinEastAsia,withspecialreferencetotherelativecontributionsofforestexpansionandforestgrowth.GlobalChangeBiol2014;20(6):2019–30.[33]KirschbaumMUF.Cantreesbuytime?Anassessmentoftheroleofvegetationsinksaspartoftheglobalcarboncycle.ClimChange2003;58(1):47–71.[34]KirschbaumMUF.Temporarycarbonsequestrationcannotpreventclimatechange.MitigAdaptStrategiesGlobChange2006;11(5–6):1151–64.[35]DornburgV,MarlandG.Temporarystorageofcarboninthebiospheredoeshavevalueforclimatechangemitigation:aresponsetothepaperbyMikoKirschbaum.MitigAdaptStrategiesGlobChange2008;13(3):211–7.[36]HirschAL,WilhelmM,DavinEL,ThieryW,SeneviratneSI.Canclimate-effectivelandmanagementreduceregionalwarming?JGeophysResAtmos2017;122(4):2269–88.[37]JørgensenSV,HauschildMZ,NielsenPH.Thepotentialcontributiontoclimatechangemitigationfromtemporarycarbonstorageinbiomaterials.IntJLifeCycleAssess2015;20(4):451–62.[38]Arag˜aoLEOC,AndersonLO,FonsecaMG.21stCenturydrought-relatedfirescounteractthedeclineofAmazondeforestationcarbonemissions.NatCom2018;9(1).[39]CrippaM,SolazzoE,GuizzardiD,etal.FoodsystemsareresponsibleforathirdofglobalanthropogenicGHGemissions.NatFood2021;2(3):198–209.[40]SpringmannM,ClarkM,Mason-DCD,etal.Optionsforkeepingthefoodsystemwithinenvironmentallimits.Nature2018;562(7728):519–25.[41]HerreroM,HavlikP,ValinH,etal.Biomassuse,production,feedefficiencies,andgreenhousegasemissionsfromgloballivestocksystems.ProcNatlAcadSciUSA2013;110(52):20888–93.[42]ClarkMA,DomingoNGG,ColganK,etal.Globalfoodsystememissionscouldprecludeachievingthe1.5◦Cand2◦Cclimatechangetargets.Science2020;370(6517):705–8.[43]SuplicyFM.Areviewofthemultiplebenefitsofmusselfarming.RevAquacult2019;12(1):204–23.[44]WillerDF,AldridgeDC.Sustainablebivalvefarmingcandeliverfoodsecurityinthetropics.NatFood2020;1(7):384–8.[45]GephartJA,GoldenCD,AscheF,etal.Environmentalperformanceofbluefoods.Nature2021;597(7876):360–5.[46]NaylorRL,KishoreA,SumailaUR,etal.Bluefooddemandacrossgeographicandtemporalscales.NatCom2021;12(1).[47]IribarrenD,MoreiraMT,FeijooG.Revisitingthelifecycleassessmentofmusselsfromasectorialperspective.JCleanProd2010;18(2):101–11.[48]FryJM.Carbonfootprintofscottishsuspendedmusselsandintertidaloysters.Scottishaquacultureresearchforum(SAFR).Pitlochry:PH;2012.p.1–6.[49]SunL,FengJC,ZhangS.ThecarbonfootprintofpacificoysterfarminginChina.IntConfApplEnergy2021.[50]RobertsCA,NewtonRW,BostockJC,etal.Ariskbenefitanalysisofmaricultureasameanstoreducetheimpactsofterrestrialproductionoffoodandenergy.Astudycommissionedbythescottishaquacultureresearchforum(SARF).Pitlochry,PH:SARF/WWF-UK;2015.[51]SchatteOA,JonesL,VayLL,ChristieM,WilsonJ,MalhamSK.Aglobalreviewoftheecosystemservicesprovidedbybivalveaquaculture.RevAquacult2019;12(1):3–25.[52]GentryRR,FroehichHE,GrimmD,etal.Mappingtheglobalpotentialformarineaquaculture.NatEcolEvol2017;1(9):1317–24.[53]ZhangMR,FengJC,SunLW,LiP,HuangYY,ZhangS,YangZF.Individualdietarystructurechangespromotegreenhousegasemissionreduction.JCleanProd2022;366:132787.[54]Fern´andezA,GrienkeU,Soler-VilaA,etal.Seasonalandgeographicalvariationsinthebiochemicalcompositionofthebluemussel(MytilusedulisL.)fromIreland.FoodChem2015;177:43–52.[55]PanayotovaV,MerdzhanovaA,DobrevaDA,etal.Nutritionalcomposition,bioactivecompoundsandhealth-beneficialpropertiesofblackseashellfish.JIMAB2020;26(3):3293–7.[56]DoeringPH,OviattCA,BeattyLL,etal.Onpelagiccommunitystructure.Zooplanktonwereholoplanktonicincharacterandhighertrophic.MarEcolProgSer1989;52:287–99.[57]ChopinT,CooperJA,ReidG,CrossS,MooreS.Open-waterintegratedmulti-trophicaquaculture:environmentalbiomitigationandeconomicdiversificationoffedaquaculturebyextractiveaquaculture.RevAquacult2012;(4):209–20.[58]DameR,DankersN,PrinsT,JongsmaH,SmaalA.TheinfluenceofmusselbedsonnutrientsintheWesternWaddenseaandEasternscheldtestuaries.Estuaries1991;14:130.[59]IkicaZ,Peˇsi´cA,Nikoli´cM,etal.ComparisonbetweenIMTAandmonoculturefarmingofmussels(MytilusgalloprovincialisL.)inthebokaKotorskabay.ActaAdriat2018;58:271–84.[60]FroehlichHE,GentryRR,HalpernBS.Globalchangeinmarineaquacultureproductionpotentialunderclimatechange.NatEcolEvol2018;2(11):1745–50.[61]Sar`aG,ReidGK,RinaldiA,etal.GrowthandreproductivesimulationofcandidateshellfishspeciesatfishcagesintheSouthernMediterranean:dynamicEnergyBudget(DEB)modellingforintegratedmulti-trophicaquaculture.Aquaculture2012;324–325:259–66.[62]CranfordPJ,StrainPM,DowdM,etal.Influenceofmusselaquacultureonnitrogendynamicsinanutrientenrichedcoastalembayment.MarEcolProgSer2007;347:61–78.[63]HargreavesJA.Molluscanshellfishaquacultureandbestmanagementpractices.In:ShumwaySE,editor.Shellfishaquacultureandtheenvironment.Chichester:JohnWiley&Sons;2011.[64]WuWZ,HangHR,PengYY,ZhaoS.Effectofalgae-shellfishpolycultureonCO2intheaquaculturezonelocatedatDongjiIslandofZhoushan(inChinese).JAnhuiAgricSci2019;47:53–5.[65]FieldCB,BehrenfeldMJ,RandersonJT,FalkowskiP.Primaryproductionofthebiosphere:integratingterrestrialandoceaniccomponents.Science1998;281:237–40.[66]MillerAW,ReynoldsAC,SobrinoC,RiedelGF.ShellfishfaceuncertainfutureinhighCO2world:influenceofacidificationonoysterlarvaecalcificationandgrowthinestuaries.PLoSOne2009;4:e5661.J.-C.Fengetal.