海水贝类养殖:一项潜在的固碳和减排技术(英文)---冯景春VIP专享VIP免费

Renewable and Sustainable Energy Reviews 171 (2023) 113018
Available online 11 November 2022
1364-0321/© 2022 Elsevier Ltd. All rights reserved.
Carbon sequestration via shellsh farming: A potential negative
emissions technology
Jing-Chun Feng
a
,
b
,
e
,
1
,
**
, Liwei Sun
a
,
b
,
e
,
1
, Jinyue Yan
c
,
d
,
*
a
Research Centre of Ecology &Environment for Coastal Area and Deep Sea, Guangdong University of Technology, Guangzhou, 510006, PR China
b
Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, PR China
c
Future Energy Center, School of Business, Society and Engineering, M¨
alardalen University, SE-721 23, V¨
asterås, Sweden
d
Department of Building Environment and Energy Engineering, 999077, The Hong Kong Polytechnic University, Hongkong, China
e
Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong
University of Technology, Guangzhou, 510006, China
ARTICLE INFO
Keywords:
Shellsh farming
Carbon sink
Negative emissions technology
Carbon storage
Carbon budget
ABSTRACT
Negative emission technologies driven by nature with less energy input, lower costs, and long carbon storage
capacities are essential for meeting ambitious global carbon mitigation goals. This paper evaluates the carbon
sequestration potential of bivalve shellsh farming because its sequestration process is driven by nature, and it is
cost-effective and energy efcient. The carbon in shells and the carbon that enters sediments via bio-deposition
are long-lived forms of carbon. Using China as a case study, a preliminary estimation suggests that the carbon
sequestration efciency and intensity of cultivated shellshes are much higher than those of articial forests. In
China, approximately 6.23 Mt CO
2
-eq a
1
was xed via net carbon sequestration during shellsh growth from
2015 to 2019. In addition, the farmed shellshes provided 0.37 Mt of harvested protein, and approximately
37.39 Mt CO2-eq a-1 were reduced compared to the same amount of protein provided by beef, and thus, shellsh
farming has the win-win benets of carbon sequestration and high-quality food provision. More importantly, a
total of 5.64 Gt CO
2
-eq, accounting for 17.63% of the total emissions in 2020, can be potentially sequestrated at
the global scale under the worlds largest farming area scenario.
1. Introduction
To best avoid a dangerous amount of global warming, a deep
reduction target of 2.0 C and preferably 1.5 C was proposed in the
2015 United Nations Framework Convention on Climate Change
(UNFCCC) Conference [1]. To achieve this goal, apart from a reduction
of industrial and agricultural emissions, approximately 600 Gt of CO
2
needs to be removed from the atmosphere and safely stored during this
century. Various negative emission technologies (NETs), including
reforestation and afforestation, ocean fertilization [2], bioenergy with
carbon capture and storage (BECCS) [3], and direct air capture (DAC)
have been proposed [4]. However, there are still a great deal of un-
certainties regarding the application of current NETs. Technology
readiness level (TRL), cost-effectiveness (in terms of both price and re-
sources), long-term storage capacity, and eco-friendliness or
environmental sustainability are the main constraining factors that
determine whether NETs can be effective enough to meet the ambitious
climate change mitigation goal in the Paris agreements (see Table 1).
Land-based technologies, such as reforestation, afforestation, habitat
restoration, and soil management, have gained signicant attention for
their negative emissions potential [5]. However, there are signicant
uncertainties regarding the actual achievable net negative emissions
rates, and the potential conicts related to the large amount of land use.
Afforestation directly competes with crops for arable land, and accord-
ingly causes food security problems. Increased res, droughts, pests, and
disease could jeopardize the stability of carbon storage in newly planted
forests [6]. In addition, the Amazon rainforest has been shown to be a
carbon source due to climate change and deforestation [7]. Large-scale
afforestation in mid-latitude and northern regions may have a net
warming effect [8].
Methods that can increase carbon storage in soils, including
* Corresponding author.
** Corresponding author. Research Centre of Ecology &Environment for Coastal Area and Deep Sea, Guangdong University of Technology, Guangzhou, 510006, PR
China.
E-mail addresses: fengjc@gdut.edu.cn (J.-C. Feng), jinyue@kth.se (J. Yan).
1
These authors contributed equally to this work.
Contents lists available at ScienceDirect
Renewable and Sustainable Energy Reviews
journal homepage: www.elsevier.com/locate/rser
https://doi.org/10.1016/j.rser.2022.113018
Received 28 April 2022; Received in revised form 1 October 2022; Accepted 23 October 2022
Renewable and Sustainable Energy Reviews 171 (2023) 113018
2
innovative cropland management, biochar application, and enhanced
root phenotypes [9], all have good TRLs. However, the worlds soil
degradation has had negative consequences on carbon storage in terms
of the biological productivity, inducing the release of carbon back into
the atmosphere [10]. BECCS seeks the win-win results of clean energy,
negative emissions, and ecosystem services. Bioenergy crop production
with extensive application of BECCS is conducted at the expense of
pastures and grasslands, and can cause food security problems associ-
ated with the reduction of the food crop production area [11]. Fertilizer
utilization with BECCS inevitably causes environmental impacts [12]. It
has been proven that other NETs, such as DAC, which directly pulls CO
2
from the atmosphere through chemical reactions, may only be feasible
in specic and limited applications. Thus, it is difcult to conduct
long-term CO
2
removal, which is restricted by high costs and low ef-
ciency, on the scale with Gt a
1
[5].
NETs related to ocean activity have fewer challenges regarding food
and land source competition, and such technologies are insensitive to
the water intensity level [13]. The ocean is the largest active carbon pool
on Earth, and thus, causing ocean related NETs are promising techniques
for carbon emissions mitigation. Ocean liming and fertilization were
once regarded as potential NETs. However, ocean fertilization has the
drawback that the majority of the absorbed CO
2
is released back into the
atmosphere when the phytoplankton decompose. Such methods may
even reduce the yield of sheries elsewhere by depleting other nutrients
or increasing the risk of water deoxygenation [6]. Energy consumption
for calcination, and sufcient vessels and port facilities are the main
challenges in the large-scale application of ocean liming. In summary, it
is difcult, if not impossible, to reliably mitigate the global warming
trend before the 2050s.
To tackle such difculties related to the traditional NETs, NETs
linked with anthropological economic activity, lower energy consump-
tion, and lower capital and technology demands should be considered.
Actually, mariculture in coastal areas can have an important impact on
the marine carbon budget [13]. Like the carbon sequestration concept of
BECCS, bivalve shellsh (hereinafter referred as shellsh) farming could
be an effective method for capturing and removing carbon from the
oceans [14,15]. More importantly, shellsh farming is characterized by
low energy input, low costs, and technological feasibility. In shellsh
farming, carbon storage is achieved naturally in shells, which enables
the long-term, stable storage of carbon or cost-viable re-utilization as
building materials. In addition, the interactions with phytoplankton
populations via bio-deposition can signicantly promote carbon
sequestration in sediments, which is a long-term storage method [16].
However, whether or not shellsh farming can be considered a car-
bon sink is controversial. In this study, the different perspectives were
briey reviewed. The positive point was mainly proposed by Tang et al.
[14] and Humphreys et al. [17], who suggested that during shellsh
farming, the unidirectional ow of carbon from the atmosphere to the
sea (as dissolved inorganic carbon, DIC) and then into shells is seques-
trated for a long time in solid form as CaCO
3
. Thus, the CO
2
is locked
away from the atmospheric carbon cycle on the geological time scale. By
harvesting shellshes, DIC and organic carbon can be removed from the
seawater. This view suggests that the carbon in the shells is a net CO
2
sink.
According to the carbon budget, Ray et al. [18] suggested that the
carbon sequestered in shells should be corrected to account for the CO
2
released during shell formation. In this case shellsh can either be a CO
2
sink or a source to the atmosphere. During calcication, 2 mol of HCO
3
are consumed and the released CO
2
basically has the same effect as the
CO
2
captured from the atmosphere. In general, it is widely accepted that
about 0.6 mol of CO
2
can be released into the atmosphere after buffering
by the water column when producing 1 mol of CaCO
3
. However, this
ratio highly depends on the temperature and salinity conditions of the
seawater [19].
On the contrary, Munari et al. [20] suggested that shells are a net
CO
2
source because the amount of CO
2
released through metabolic
processes and shell formation is more than the amount of carbon
sequestered in the shell in the farming environment. Ahmed et al. [21]
and Mistri et al. [22] also argued that shellsh farming is a CO
2
source
since the amount of carbon released through the calcication and
catabolic mechanisms combined is larger than that assimilated into the
shell.
In addition, Filgueira et al. [23] further added the bio-deposition and
mineralization of bio-deposits to the organism level based on the results
of Munari et al. [20]. Filgueira et al. [23,24] also argued that bivalves
are primarily farmed with the aim of producing food, and thus, shell
production can be considered to be a by-product of the main ecosystem
value of bivalve aquaculture. They provided a justication for parti-
tioning the respired CO
2
between the soft tissue and shell when
considering the bivalve shells in the carbon trading system. Based on
these investigations, shellsh farming has the potential to be a net CO
2
sink in the specic ocean and atmosphere carbon cycles.
In conclusion, the majority of the models that consider shellsh
farming as a carbon source ignored the ecosystem function of shellsh
farming. For example, the coupling of the interactions with phyto-
plankton populations, suspended particle organic carbon, and DIC can
signicantly alter the CO
2
cycle. In the following section, a new po-
tential NET concept, namely, carbon sequestration via bivalve shellsh
Farming (CSSF) from the ecosystem perspective, is introduced. To
accomplish this, the following questions are addressed.
(1) Whether shellsh farming can effectively improve the absorption
and long-term sequestration of CO
2
. If so, what is the mechanism?
(2) When taking the life cycle of greenhouse gas (GHG) emissions
into account, can CSSF be a net carbon sink?
(3) How does the efciency of CSSF compare to those of other eco-
systems, such as mangroves and seagrass beds?
In this context, the carbon sequestrated in shells and soft tissues and
the bio-deposition are estimated. The possible negative effects and
corresponding solutions are also discussed in section 4.5. In addition, a
suggestion that appeals to more positive actions regarding the future of
CSSF is provided in section 4.6.
2. Materials and methods
2.1. Estimation of carbon sequestration
Shellsh mainly absorb and utilize carbon in two ways, that is, via by
carbon input from DIC uptake and organic carbon through ingestion.
First, dissolved HCO
3
is absorbed from seawater to generate calcium
carbonate shells:
Ca2++2HCO
3=CaCO3+CO2+H2O(1)
Additionally, organic carbon is utilized for the growth of shellsh. As
List of abbreviations:
GHGs Greenhouse gases
NET Negative emissions technologies
BECCS Bioenergy with carbon capture and storage
DAC Direct air capture
CSSF Carbon Sequestration via bivalve Shellsh farming
CCS: Carbon capture and storage
DIC Dissolved inorganic carbon
CO
2
-eq Carbon dioxide equivalence
TRL: Technology readiness level
J.-C. Feng et al.
Renewable and Sustainable Energy Reviews 171 (2023) 113018
3
was discussed in Section 3.2, the amount of carbon captured in the
shells, soft tissue, and sediments is dened as the input into the carbon
sink. To estimate how much carbon was removed from the ocean by
shellsh farming, it was necessary to make several assumptions or lim-
itations to simplify the study. The rst simplication was to limit the
categories of farmed shellshes to the ve major categories of oysters,
clams, scallops, mussels, and cockles as these are the ve most common
and major farmed species worldwide and in China. Second, due to the
limited available information, only 11 varieties of farmed shellsh were
selected for measurement of the dry weight ratio and carbon and protein
contents (detailed information is provided in S5).
The third limitation was to assume that the ratio of the dry weight
(DW) of the soft tissue to the shell was constant in each variety, and it
was assumed that the carbon content in the shell and soft tissue in each
category was constant.
Four main factors, the shell carbon content, soft tissue carbon con-
tent, dry weight of harvested shellshes, and dry weight ratio of soft
tissue and shell, were considered to calculate the amount of carbon
sequestration. The total carbon sequestration in each type of shellsh
was calculated as follows:
CT=
5
i=1
CTi(2)
CTi=CSTi+CSi+Cbi(3)
CSTi=Mi×Di×DSTi×wSTi(4)
CSi=Mi×Di×DSi×wSi(5)
Cbi=Cdepi×Rbi(6)
where C
T
is the total carbon sequestrated in the different categories (t).
C
Ti
is the carbon sequestration for each specie, and i denotes the specic
species of shellsh. C
STi
, C
Si
, and C
bi
are the amounts of xed carbon in
the soft tissue, in the shell, and via bio-deposition, respectively. M
i
is the
amount of shellsh production in wet weight (t), which was obtained
from the China Fishery Statistical Yearbook for 19852019. D
i
is the
ratio of the dry weight to the wet weight for the shellsh. D
STi
is the ratio
of the dry weight for soft tissue to the dry weight of the shellsh, and D
Si
is the ratio of the dry weight of the shell to the dry weight of the total
shellsh. w
STi
and w
Si
are the carbon contents of the soft tissue and the
shell, respectively. C
depi
is the amount of carbon in the bio-sediments;
and R
bi
is the ratio of the carbon sequestrated via deposition to the
total carbon in the bio-sediments (details are presented in S1).
2.2. Carbon budgets and carbon sequestration efciency
The carbon sequestration via bio-deposition, mainly including the
feces and pseudo-feces of the shellshes, was estimated based on the
carbon budgets of the shellsh. The carbon budgets were determined
through eld observations and laboratory experiments, and the specic
calculation is described in S1. The carbon sequestration efciency of
each technology was considered to be the carbon capture ability per unit
area per year, which is shown in S3 (The detailed value is shown in
Table 1).
2.3. Emissions reducing potential in food production sector
Shellsh is a type of food with the dual benets of high nutrition and
protein, and it has a lower carbon footprint than livestock products (S6).
When estimating the carbon emissions potential in food production, the
carbon emission differences between the high-carbon and low-carbon
foods were compared via the function unit of the same amount of
protein.
3. Results
3.1. Carbon sequestration function of shellsh farming
In the above section, the role of bivalves as a potential CO
2
sink was
introduced from the perspective of an ecosystem context was intro-
duced. Although phytoplankton can efciently capture CO
2
due to their
high intensity photosynthesis [25], most of the carbon absorbed from
near-surface photosynthesis will be respired back into the epipelagic
zone. Usually, less than 1% will be buried in the marine sediments [26,
27], resulting in the limited effects of ocean fertilization experiments.
Farmed shellsh can use phytoplankton as food, and then, they grow
shells to further sequester carbon in the form of CaCO
3
. In addition,
shellsh farming could accelerate organic carbon deposition in seawater
by generating pseudo-feces and feces, which also enhances long-term
carbon sequestration [23,24]. However, farmed shellsh metabolize
organic carbon (xed by phytoplankton) and respire the CO
2
back into
the air. The formation of shells also releases CO
2
(Equation (1)). Thus,
whether shellsh farming is a carbon sink is determined by the key point
of whether shellsh farming can lead to more effective carbon seques-
tration in an ecosystem. The permanent carbon storage capacity mainly
depends on the difference between the stored carbon and emitted car-
bon. The life cycle carbon budgets (Fig. 1) shows that the effective net
sequestration ratios (i.e., NR in Equation S3) of oysters, scallops, mus-
sels, cockles, and clams are 13.64%, 27.55%, 12.55%, 29.46%, and
33.68%, respectively. These net sequestration ratios are all much higher
than those in a natural ecosystem (less than 1%), indicating that shellsh
farming could signicantly promote carbon capture and storage in the
oceans. Thus, shellsh farming can be considered to be a potential NET.
3.2. Carbon sequestration potential
According to the above analysis, the harvested carbon in shells and
the carbon bio-deposited in sediments can be considered permanently
separated from the marine water and biosphere. Although the carbon
trapped in the soft tissue is eaten by people and enters the terrestrial
carbon cycle, it contributes to reducing GHG emissions from the food
production system, especially that of the meat production (Section 3.5).
The net sequestrated carbon can be dened as the percentage of carbon
stored in the shells and in the sediments through bio-deposition because
these two storage processes are permanent. Thus, the carbon captured in
the shells, soft tissue, and sediments is dened as the amount input into
the carbon sink.
Recently, globally farmed shellsh were dominated by bivalves, with
17.30 Mt of fresh live weight in 2018, and the majority were from
mariculture and coastal aquaculture [29]. Fig. 2 illustrates that global
shellsh farming rapidly increased before 1995, followed by a steady
Table 1
Carbon sequestration efciency (t CO
2
-eq ha
1
y
1
) of farmed shellsh in China during 20112019.
Species 2011 2012 2013 2014 2015 2016 2017 2018 2019
Oysters 11.07 10.89 11.56 11.72 11.61 12.66 12.65 12.78 12.93
Scallops 1.09 1.13 1.53 1.70 2.02 2.39 2.45 2.65 3.13
Clams 1.70 1.76 1.80 1.86 1.79 2.03 1.90 2.02 1.84
Cockles 11.70 11.16 11.19 13.06 14.18 14.11 13.77 20.61 19.06
Mussels 2.41 2.45 2.35 2.42 2.56 3.82 4.05 4.03 3.51
J.-C. Feng et al.
RenewableandSustainableEnergyReviews171(2023)113018Availableonline11November20221364-0321/©2022ElsevierLtd.Allrightsreserved.Carbonsequestrationviashellfishfarming:ApotentialnegativeemissionstechnologyJing-ChunFenga,b,e,1,,LiweiSuna,b,e,1,JinyueYanc,d,aResearchCentreofEcology&EnvironmentforCoastalAreaandDeepSea,GuangdongUniversityofTechnology,Guangzhou,510006,PRChinabSouthernMarineScienceandEngineeringGuangdongLaboratory(Guangzhou),Guangzhou,511458,PRChinacFutureEnergyCenter,SchoolofBusiness,SocietyandEngineering,M¨alardalenUniversity,SE-72123,V¨asterås,SwedendDepartmentofBuildingEnvironmentandEnergyEngineering,999077,TheHongKongPolytechnicUniversity,Hongkong,ChinaeKeyLaboratoryforCityClusterEnvironmentalSafetyandGreenDevelopmentoftheMinistryofEducation,SchoolofEcology,EnvironmentandResources,GuangdongUniversityofTechnology,Guangzhou,510006,ChinaARTICLEINFOKeywords:ShellfishfarmingCarbonsinkNegativeemissionstechnologyCarbonstorageCarbonbudgetABSTRACTNegativeemissiontechnologiesdrivenbynaturewithlessenergyinput,lowercosts,andlongcarbonstoragecapacitiesareessentialformeetingambitiousglobalcarbonmitigationgoals.Thispaperevaluatesthecarbonsequestrationpotentialofbivalveshellfishfarmingbecauseitssequestrationprocessisdrivenbynature,anditiscost-effectiveandenergyefficient.Thecarboninshellsandthecarbonthatenterssedimentsviabio-depositionarelong-livedformsofcarbon.UsingChinaasacasestudy,apreliminaryestimationsuggeststhatthecarbonsequestrationefficiencyandintensityofcultivatedshellfishesaremuchhigherthanthoseofartificialforests.InChina,approximately6.23MtCO2-eqa−1wasfixedvianetcarbonsequestrationduringshellfishgrowthfrom2015to2019.Inaddition,thefarmedshellfishesprovided0.37Mtofharvestedprotein,andapproximately37.39MtCO2-eqa-1werereducedcomparedtothesameamountofproteinprovidedbybeef,andthus,shellfishfarminghasthewin-winbenefitsofcarbonsequestrationandhigh-qualityfoodprovision.Moreimportantly,atotalof5.64GtCO2-eq,accountingfor17.63%ofthetotalemissionsin2020,canbepotentiallysequestratedattheglobalscaleundertheworld’slargestfarmingareascenario.1.IntroductionTobestavoidadangerousamountofglobalwarming,adeepreductiontargetof2.0◦Candpreferably1.5◦Cwasproposedinthe2015UnitedNationsFrameworkConventiononClimateChange(UNFCCC)Conference[1].Toachievethisgoal,apartfromareductionofindustrialandagriculturalemissions,approximately600GtofCO2needstoberemovedfromtheatmosphereandsafelystoredduringthiscentury.Variousnegativeemissiontechnologies(NETs),includingreforestationandafforestation,oceanfertilization[2],bioenergywithcarboncaptureandstorage(BECCS)[3],anddirectaircapture(DAC)havebeenproposed[4].However,therearestillagreatdealofun­certaintiesregardingtheapplicationofcurrentNETs.Technologyreadinesslevel(TRL),cost-effectiveness(intermsofbothpriceandre­sources),long-termstoragecapacity,andeco-friendlinessorenvironmentalsustainabilityarethemainconstrainingfactorsthatdeterminewhetherNETscanbeeffectiveenoughtomeettheambitiousclimatechangemitigationgoalintheParisagreements(seeTable1).Land-basedtechnologies,suchasreforestation,afforestation,habitatrestoration,andsoilmanagement,havegainedsignificantattentionfortheirnegativeemissionspotential[5].However,therearesignificantuncertaintiesregardingtheactualachievablenetnegativeemissionsrates,andthepotentialconflictsrelatedtothelargeamountoflanduse.Afforestationdirectlycompeteswithcropsforarableland,andaccord­inglycausesfoodsecurityproblems.Increasedfires,droughts,pests,anddiseasecouldjeopardizethestabilityofcarbonstorageinnewlyplantedforests[6].Inaddition,theAmazonrainforesthasbeenshowntobeacarbonsourceduetoclimatechangeanddeforestation[7].Large-scaleafforestationinmid-latitudeandnorthernregionsmayhaveanetwarmingeffect[8].Methodsthatcanincreasecarbonstorageinsoils,includingCorrespondingauthor.Correspondingauthor.ResearchCentreofEcology&EnvironmentforCoastalAreaandDeepSea,GuangdongUniversityofTechnology,Guangzhou,510006,PRChina.E-mailaddresses:fengjc@gdut.edu.cn(J.-C.Feng),jinyue@kth.se(J.Yan).1Theseauthorscontributedequallytothiswork.ContentslistsavailableatScienceDirectRenewableandSustainableEnergyReviewsjournalhomepage:www.elsevier.com/locate/rserhttps://doi.org/10.1016/j.rser.2022.113018Received28April2022;Receivedinrevisedform1October2022;Accepted23October2022RenewableandSustainableEnergyReviews171(2023)1130182innovativecroplandmanagement,biocharapplication,andenhancedrootphenotypes[9],allhavegoodTRLs.However,theworld’ssoildegradationhashadnegativeconsequencesoncarbonstorageintermsofthebiologicalproductivity,inducingthereleaseofcarbonbackintotheatmosphere[10].BECCSseeksthewin-winresultsofcleanenergy,negativeemissions,andecosystemservices.BioenergycropproductionwithextensiveapplicationofBECCSisconductedattheexpenseofpasturesandgrasslands,andcancausefoodsecurityproblemsassoci­atedwiththereductionofthefoodcropproductionarea[11].FertilizerutilizationwithBECCSinevitablycausesenvironmentalimpacts[12].IthasbeenproventhatotherNETs,suchasDAC,whichdirectlypullsCO2fromtheatmospherethroughchemicalreactions,mayonlybefeasibleinspecificandlimitedapplications.Thus,itisdifficulttoconductlong-termCO2removal,whichisrestrictedbyhighcostsandloweffi­ciency,onthescalewithGta−1[5].NETsrelatedtooceanactivityhavefewerchallengesregardingfoodandlandsourcecompetition,andsuchtechnologiesareinsensitivetothewaterintensitylevel[13].TheoceanisthelargestactivecarbonpoolonEarth,andthus,causingoceanrelatedNETsarepromisingtechniquesforcarbonemissionsmitigation.OceanlimingandfertilizationwereonceregardedaspotentialNETs.However,oceanfertilizationhasthedrawbackthatthemajorityoftheabsorbedCO2isreleasedbackintotheatmospherewhenthephytoplanktondecompose.Suchmethodsmayevenreducetheyieldoffisherieselsewherebydepletingothernutrientsorincreasingtheriskofwaterdeoxygenation[6].Energyconsumptionforcalcination,andsufficientvesselsandportfacilitiesarethemainchallengesinthelarge-scaleapplicationofoceanliming.Insummary,itisdifficult,ifnotimpossible,toreliablymitigatetheglobalwarmingtrendbeforethe2050s.TotacklesuchdifficultiesrelatedtothetraditionalNETs,NETslinkedwithanthropologicaleconomicactivity,lowerenergyconsump­tion,andlowercapitalandtechnologydemandsshouldbeconsidered.Actually,maricultureincoastalareascanhaveanimportantimpactonthemarinecarbonbudget[13].LikethecarbonsequestrationconceptofBECCS,bivalveshellfish(hereinafterreferredasshellfish)farmingcouldbeaneffectivemethodforcapturingandremovingcarbonfromtheoceans[14,15].Moreimportantly,shellfishfarmingischaracterizedbylowenergyinput,lowcosts,andtechnologicalfeasibility.Inshellfishfarming,carbonstorageisachievednaturallyinshells,whichenablesthelong-term,stablestorageofcarbonorcost-viablere-utilizationasbuildingmaterials.Inaddition,theinteractionswithphytoplanktonpopulationsviabio-depositioncansignificantlypromotecarbonsequestrationinsediments,whichisalong-termstoragemethod[16].However,whetherornotshellfishfarmingcanbeconsideredacar­bonsinkiscontroversial.Inthisstudy,thedifferentperspectiveswerebrieflyreviewed.ThepositivepointwasmainlyproposedbyTangetal.[14]andHumphreysetal.[17],whosuggestedthatduringshellfishfarming,theunidirectionalflowofcarbonfromtheatmospheretothesea(asdissolvedinorganiccarbon,DIC)andthenintoshellsisseques­tratedforalongtimeinsolidformasCaCO3.Thus,theCO2islockedawayfromtheatmosphericcarboncycleonthegeologicaltimescale.Byharvestingshellfishes,DICandorganiccarboncanberemovedfromtheseawater.ThisviewsuggeststhatthecarbonintheshellsisanetCO2sink.Accordingtothecarbonbudget,Rayetal.[18]suggestedthatthecarbonsequesteredinshellsshouldbecorrectedtoaccountfortheCO2releasedduringshellformation.InthiscaseshellfishcaneitherbeaCO2sinkorasourcetotheatmosphere.Duringcalcification,2molofHCO3−areconsumedandthereleasedCO2basicallyhasthesameeffectastheCO2capturedfromtheatmosphere.Ingeneral,itiswidelyacceptedthatabout0.6molofCO2canbereleasedintotheatmosphereafterbufferingbythewatercolumnwhenproducing1molofCaCO3.However,thisratiohighlydependsonthetemperatureandsalinityconditionsoftheseawater[19].Onthecontrary,Munarietal.[20]suggestedthatshellsareanetCO2sourcebecausetheamountofCO2releasedthroughmetabolicprocessesandshellformationismorethantheamountofcarbonsequesteredintheshellinthefarmingenvironment.Ahmedetal.[21]andMistrietal.[22]alsoarguedthatshellfishfarmingisaCO2sourcesincetheamountofcarbonreleasedthroughthecalcificationandcatabolicmechanismscombinedislargerthanthatassimilatedintotheshell.Inaddition,Filgueiraetal.[23]furtheraddedthebio-depositionandmineralizationofbio-depositstotheorganismlevelbasedontheresultsofMunarietal.[20].Filgueiraetal.[23,24]alsoarguedthatbivalvesareprimarilyfarmedwiththeaimofproducingfood,andthus,shellproductioncanbeconsideredtobeaby-productofthemainecosystemvalueofbivalveaquaculture.Theyprovidedajustificationforparti­tioningtherespiredCO2betweenthesofttissueandshellwhenconsideringthebivalveshellsinthecarbontradingsystem.Basedontheseinvestigations,shellfishfarminghasthepotentialtobeanetCO2sinkinthespecificoceanandatmospherecarboncycles.Inconclusion,themajorityofthemodelsthatconsidershellfishfarmingasacarbonsourceignoredtheecosystemfunctionofshellfishfarming.Forexample,thecouplingoftheinteractionswithphyto­planktonpopulations,suspendedparticleorganiccarbon,andDICcansignificantlyaltertheCO2cycle.Inthefollowingsection,anewpo­tentialNETconcept,namely,carbonsequestrationviabivalveshellfishFarming(CSSF)fromtheecosystemperspective,isintroduced.Toaccomplishthis,thefollowingquestionsareaddressed.(1)Whethershellfishfarmingcaneffectivelyimprovetheabsorptionandlong-termsequestrationofCO2.Ifso,whatisthemechanism?(2)Whentakingthelifecycleofgreenhousegas(GHG)emissionsintoaccount,canCSSFbeanetcarbonsink?(3)HowdoestheefficiencyofCSSFcomparetothoseofothereco­systems,suchasmangrovesandseagrassbeds?Inthiscontext,thecarbonsequestratedinshellsandsofttissuesandthebio-depositionareestimated.Thepossiblenegativeeffectsandcorrespondingsolutionsarealsodiscussedinsection4.5.Inaddition,asuggestionthatappealstomorepositiveactionsregardingthefutureofCSSFisprovidedinsection4.6.2.Materialsandmethods2.1.EstimationofcarbonsequestrationShellfishmainlyabsorbandutilizecarbonintwoways,thatis,viabycarboninputfromDICuptakeandorganiccarbonthroughingestion.First,dissolvedHCO3−isabsorbedfromseawatertogeneratecalciumcarbonateshells:Ca2++2HCO−3=CaCO3+CO2+H2O(1)Additionally,organiccarbonisutilizedforthegrowthofshellfish.AsListofabbreviations:GHGsGreenhousegasesNETNegativeemissionstechnologiesBECCSBioenergywithcarboncaptureandstorageDACDirectaircaptureCSSFCarbonSequestrationviabivalveShellfishfarmingCCS:CarboncaptureandstorageDICDissolvedinorganiccarbonCO2-eqCarbondioxideequivalenceTRL:TechnologyreadinesslevelJ.-C.Fengetal.RenewableandSustainableEnergyReviews171(2023)1130183wasdiscussedinSection3.2,theamountofcarboncapturedintheshells,softtissue,andsedimentsisdefinedastheinputintothecarbonsink.Toestimatehowmuchcarbonwasremovedfromtheoceanbyshellfishfarming,itwasnecessarytomakeseveralassumptionsorlim­itationstosimplifythestudy.Thefirstsimplificationwastolimitthecategoriesoffarmedshellfishestothefivemajorcategoriesofoysters,clams,scallops,mussels,andcocklesasthesearethefivemostcommonandmajorfarmedspeciesworldwideandinChina.Second,duetothelimitedavailableinformation,only11varietiesoffarmedshellfishwereselectedformeasurementofthedryweightratioandcarbonandproteincontents(detailedinformationisprovidedinS5).Thethirdlimitationwastoassumethattheratioofthedryweight(DW)ofthesofttissuetotheshellwasconstantineachvariety,anditwasassumedthatthecarboncontentintheshellandsofttissueineachcategorywasconstant.Fourmainfactors,theshellcarboncontent,softtissuecarboncon­tent,dryweightofharvestedshellfishes,anddryweightratioofsofttissueandshell,wereconsideredtocalculatetheamountofcarbonsequestration.Thetotalcarbonsequestrationineachtypeofshellfishwascalculatedasfollows:CT=∑5i=1CTi(2)CTi=CSTi+CSi+Cbi(3)CSTi=Mi×Di×DSTi×wSTi(4)CSi=Mi×Di×DSi×wSi(5)Cbi=Cdepi×Rbi(6)whereCTisthetotalcarbonsequestratedinthedifferentcategories(t).CTiisthecarbonsequestrationforeachspecie,andidenotesthespecificspeciesofshellfish.CSTi,CSi,andCbiaretheamountsoffixedcarboninthesofttissue,intheshell,andviabio-deposition,respectively.Miistheamountofshellfishproductioninwetweight(t),whichwasobtainedfromtheChinaFisheryStatisticalYearbookfor1985–2019.Diistheratioofthedryweighttothewetweightfortheshellfish.DSTiistheratioofthedryweightforsofttissuetothedryweightoftheshellfish,andDSiistheratioofthedryweightoftheshelltothedryweightofthetotalshellfish.wSTiandwSiarethecarboncontentsofthesofttissueandtheshell,respectively.Cdepiistheamountofcarboninthebio-sediments;andRbiistheratioofthecarbonsequestratedviadepositiontothetotalcarboninthebio-sediments(detailsarepresentedinS1).2.2.CarbonbudgetsandcarbonsequestrationefficiencyThecarbonsequestrationviabio-deposition,mainlyincludingthefecesandpseudo-fecesoftheshellfishes,wasestimatedbasedonthecarbonbudgetsoftheshellfish.Thecarbonbudgetsweredeterminedthroughfieldobservationsandlaboratoryexperiments,andthespecificcalculationisdescribedinS1.Thecarbonsequestrationefficiencyofeachtechnologywasconsideredtobethecarboncaptureabilityperunitareaperyear,whichisshowninS3(ThedetailedvalueisshowninTable1).2.3.EmissionsreducingpotentialinfoodproductionsectorShellfishisatypeoffoodwiththedualbenefitsofhighnutritionandprotein,andithasalowercarbonfootprintthanlivestockproducts(S6).Whenestimatingthecarbonemissionspotentialinfoodproduction,thecarbonemissiondifferencesbetweenthehigh-carbonandlow-carbonfoodswerecomparedviathefunctionunitofthesameamountofprotein.3.Results3.1.CarbonsequestrationfunctionofshellfishfarmingIntheabovesection,theroleofbivalvesasapotentialCO2sinkwasintroducedfromtheperspectiveofanecosystemcontextwasintro­duced.AlthoughphytoplanktoncanefficientlycaptureCO2duetotheirhighintensityphotosynthesis[25],mostofthecarbonabsorbedfromnear-surfacephotosynthesiswillberespiredbackintotheepipelagiczone.Usually,lessthan1%willbeburiedinthemarinesediments[26,27],resultinginthelimitedeffectsofoceanfertilizationexperiments.Farmedshellfishcanusephytoplanktonasfood,andthen,theygrowshellstofurthersequestercarbonintheformofCaCO3.Inaddition,shellfishfarmingcouldaccelerateorganiccarbondepositioninseawaterbygeneratingpseudo-fecesandfeces,whichalsoenhanceslong-termcarbonsequestration[23,24].However,farmedshellfishmetabolizeorganiccarbon(fixedbyphytoplankton)andrespiretheCO2backintotheair.TheformationofshellsalsoreleasesCO2(Equation(1)).Thus,whethershellfishfarmingisacarbonsinkisdeterminedbythekeypointofwhethershellfishfarmingcanleadtomoreeffectivecarbonseques­trationinanecosystem.Thepermanentcarbonstoragecapacitymainlydependsonthedifferencebetweenthestoredcarbonandemittedcar­bon.Thelifecyclecarbonbudgets(Fig.1)showsthattheeffectivenetsequestrationratios(i.e.,NRinEquationS3)ofoysters,scallops,mus­sels,cockles,andclamsare13.64%,27.55%,12.55%,29.46%,and33.68%,respectively.Thesenetsequestrationratiosareallmuchhigherthanthoseinanaturalecosystem(lessthan1%),indicatingthatshellfishfarmingcouldsignificantlypromotecarboncaptureandstorageintheoceans.Thus,shellfishfarmingcanbeconsideredtobeapotentialNET.3.2.CarbonsequestrationpotentialAccordingtotheaboveanalysis,theharvestedcarboninshellsandthecarbonbio-depositedinsedimentscanbeconsideredpermanentlyseparatedfromthemarinewaterandbiosphere.Althoughthecarbontrappedinthesofttissueiseatenbypeopleandenterstheterrestrialcarboncycle,itcontributestoreducingGHGemissionsfromthefoodproductionsystem,especiallythatofthemeatproduction(Section3.5).Thenetsequestratedcarboncanbedefinedasthepercentageofcarbonstoredintheshellsandinthesedimentsthroughbio-depositionbecausethesetwostorageprocessesarepermanent.Thus,thecarboncapturedintheshells,softtissue,andsedimentsisdefinedastheamountinputintothecarbonsink.Recently,globallyfarmedshellfishweredominatedbybivalves,with17.30Mtoffreshliveweightin2018,andthemajoritywerefrommaricultureandcoastalaquaculture[29].Fig.2illustratesthatglobalshellfishfarmingrapidlyincreasedbefore1995,followedbyasteadyTable1Carbonsequestrationefficiency(tCO2-eqha−1y−1)offarmedshellfishinChinaduring2011–2019.Species201120122013201420152016201720182019Oysters11.0710.8911.5611.7211.6112.6612.6512.7812.93Scallops1.091.131.531.702.022.392.452.653.13Clams1.701.761.801.861.792.031.902.021.84Cockles11.7011.1611.1913.0614.1814.1113.7720.6119.06Mussels2.412.452.352.422.563.824.054.033.51J.-C.Fengetal.RenewableandSustainableEnergyReviews171(2023)1130184andslightincrease.Theglobalannualyieldoffarmedshellfishhasexceeded10Mtsince2002,amongwhichmorethan80%isfromChina.InChina,theaverageamountofcarbonsequestratedthroughshellfishfarmingwasapproximately6.23MtCO2-eqa−1during2015–2019.Oysterfarminghasthegreatestcarbonsequestrationabilitybecauseithasthehighestyieldamongalloftheshellfishspeciesandboaststhebiggestshellvolume.Thecarbonsequestratedinshellsduringoysterfarmingisabout1.31MtCO2-eqa−1,accountingforapproximately83.96%ofthecarbonremoved.Thecontributionofcocklefarmingtocarbonremovalisthesmallest.Intotal,thecarbonsequestrationca­pacityofChina’scoastalzoneswasapproximately6.23MtCO2-eqperyearduring2015–2019.Sequestratingthisamountofcarbonisequiv­alenttoacarbonsinkvalueof12.22MhaofartificialforestsbecausethecarbonsequestrationefficiencyofartificialforestsinChinaiscurrently0.51tCO2-eqha−1a−1[30].Fig.3showsthatontheglobalscale,ChinaisthemaincontributortothemarinecarbonsinkviaCSSF.Chilemadethesecondlargecontri­butiontothiscarbonsink(0.30MtCO2-eq)in2019,followedbyKorea(0.23MtCO2-eq),Spain(0.18MtCO2-eq),andJapan(0.18MtCO2-eq).TheUnitedStatesalsohasarelativelyhighsequestrationamount(0.11MtCO2-eq)comparedtotheremainingcountries.Thecarbonseques­trationpotentialofthemaximumshellfishfarmingareawasalsoesti­mated,whichispresentedinSupplementaryInformation(SI)SectionS2indetail.Indonesiahasthemaximumexpansionandyieldproductionpotential(about0.93Gt).Brazilhasthesecondlargepotential(0.16Gt),followedbyArgentina(0.59Gt)andAustralia(0.50Gt).Underthemaximumfarmingareascenario,atotalof9.27Gtoffarmedshellfishcanbeharvestglobally,andshellfishfarminginChinacanreaches26.65Mta−1.Atotalof5.64GtofCO2,about17.63%ofthetotalemissionsin2020,canbesequestratedattheglobalscale,whichislargerthanthetotalemissionsinIndia,theworld’sthirdlargestcarbonemitterin2019.Consideringthatthemaximumecologicalcapacityfallsshortofthemaximumexpandedfarmingareascapacity,approximately1.19GtofCO2canbesequestratedviaCSSFonthepremiseofensuringtheecologicalsafetywithIndonesia(11.32%),Brazil(7.48%),Argentina(7.21%),Australia(6.08%),andNamibia(5.31%)beingthetopfivecontributors.Thus,shellfishfarmingcouldbeveryconducivetoachievingcarbonneutrality.3.3.CarbonsequestrationefficiencyAsisshowninFig.4,thecarbonsequestrationefficiencyofshellfishfarminginChinaismuchhigherthanthatofartificialforests(AF),exceptforthatofcocklesandclams.Musselfarminghasthehighestefficiency(14.31tCO2ha−1a−1),followedbyoysters(11.99tCO2ha−1a−1).Bothmusselandoysterfarminghavehighersequestrationeffi­cienciesthanthoseofsaltmarshes(SM),mangroves(MG),andseagrass(SG),whichare7.99,8.29and5.06tCO2ha−1a−1,respectively[31].Althoughclam(1.86tCO2ha−1a−1)andcockle(2.00tCO2ha−1a−1)farmingislessefficientthanSM,MG,andSG,theyperformbetterthantheaveragevalueforEastAsia’sartificialforests(AAF)andthatofChina’sartificialforests(CAF),whichare0.84tCO2and0.51tCO2ha−1a−1,respectively[32].CSSFcouldachievestablestorageformorethan100yearsbecauseitresultsinCaCO3formationorlong-termsedimentdeposition,whichisanotherimportantfactorfordeterminingtheeffi­ciencyofanNET.3.4.LifecycleGHGemissionsofshellfishfarminginChinaThemainserviceprovidedbyshellfishaquacultureismeatproduc­tion,andcarbonsequestrationfunctioncanbeconsideredtobeaby-productofthisanthropogenicactivity.Therefore,itisimportanttoindependentlyquantifythelifecycleGHGemissionstoseewhetherthisprocesswilloffsetthebenefitsofCO2sequestration.Fivetypesoffarmedshellfish(C.gigas,M.nobilis,M.edulis,T.granosa,andR.philippinarum)inChinawereselected,andtheir“fromcradletogate”carbonfootprintswereanalyzed(detailsarepresentedinSectionS4).Theenergyconsumedduringshellfishfarmingmainlyincludesdieselandelec­tricity.Thedieselisappliedfortransportationandvesselconsumption.Theelectricityismainlyconsumedforpumpingseawaterandaerationduringthehatcheryculturestage.Thelifecyclecarbonemissionsofthefarmedoyster(C.gigas),scallop(M.nobilis),mussel(M.edulis),clam(R.philippinarum),andcockle(T.granosa)are0.07,0.13,0.20,0.08,and0.17kgCO2-eqperkg,respectively.TheemissionsintheseedcultureFig.1.Carbonbudgetforshellfishlifecycles.Thecarbonuptakemainlyconsistsoforganiccarboningestionandtheassimilationofdissolveinorganiccarbon.Thecarbonismainlyreleasedthroughrespiration,calcification,andreproduction.Carbonsequestrationmainlyoccursthroughbio-depositionandshellandsofttissueharvesting.(A)ThecarbonbudgetoffarmedC.gigas,whichrepresentsthecarbonbudgetofoysters.(B)ThecarbonbudgetoffarmedC.farreri,whichrepresentsthatofscallops.(C)ThecarbonbudgetofM.edulis,whichrepresentsthatofmussels.(D)ThecarbonbudgetofS.subcrenata,whichrepresentsthatofcockles.(E)ThecarbonbudgetoffarmedM.meretrix,whichrepresentsthatofclams.J.-C.Fengetal.RenewableandSustainableEnergyReviews171(2023)1130185stage,accountforthemostimportantpart,mainlycomefromenergyinputs.AccordingtoEquation(2),foreachkilogramoffarmedshellfishharvested,0.15,0.17,0.21,0.15,and0.10kgofcarbonwillbecapturedforoyster,scallop,mussel,cockle,andclamfarming,respectively.Whenconvertedtothecarbondioxideequivalent,thesevaluesare0.54,0.62,0.77,0.54,and0.38kg,respectively.Giventhattheisolatedcarboncantotallyoffsetthelifecycleemissions,shellfishfarmingcanbeconsideredtobeanetcarbonsink.Comparedwithtraditionalfoods(beef,milk,pork,chicken,andeggs),farmedshellfishisamoresustainableproteinsourceandhassignificantadvantagesintermsofGHGemissions.AsestimatedinS6,thefarmedshellfishcanprovideabout0.37Mthigh-qualityproteinperyearforhumanconsumptioninChinafrom2015to2019(Fig.4B).Toproducethesameamountofprotein,beefpro­ductionemits37.39MtmoreCO2-eq.Eveneggproductionemits6.09MtmoreCO2-eq.Otherbenefitsregardingmitigatingclimatechange,e.g.,mitigationofeutrophicationandenhancementofprimaryproductioninthesea,arediscussedinS7.4.Discussion4.1.SimilaritiesbetweenBECCSandCSSFBECCS(Fig.5A)isawidelyacceptedcarbonsink,whichhasthebenefitsofcleanenergy,negativeemissions,andecosystemservices[13].Fromanecosystemperspective,CSSF(Fig.5B)hasmanysimi­laritiestoBECCSintermsofsequestratingcarboninanaturalway.(1)InBECCS,atmosphericcarbonisfirstabsorbedbyplantsandconvertedintobiomass.Similarly,inCSSF,atmosphericcarbonisdissolvedintheoceanandconvertedtoDIC.Then,itisabsorbedbyphytoplanktonandconvertedintobiomass.(2)InBECCS,thebiomassenergyisfurtherconvertedintoheatorelectricity.InCSSF,theDIC,thebiomassofthephytoplankton,andtheenergyareconvertedintosofttissueandshells.(3)InBECCS,thereleasedcarboniscapturedandstoredingeolog­icalformationsorembeddedinlong-lastingproducts.InCSSF,thecarbonisnaturallyabsorbedfromtheoceanandisusedtocreatetheshellsofshellfish.Inaddition,shellfishfarmingcanaccelerateorganiccarbondepositionfromseawaterbygener­atingpseudo-fecesandfeces,whichisconducivetothemarinecarbonsink[27].(4)InBECCS,theuncapturedCO2isreleasedintotheatmosphereagain.InCSSF,theCO2fromrespirationandcalcification(Equation(1))isreleasedintotheseawater.(5)InBECCS,theenergyisharvestedasausefulproduct.InCSSF,meat(softtissue)isharvestedasahigh-qualityfood.CSSFischaracterizedbyalowerenergyinputbecausethisprocessisdrivenbynatureandresultsincarboncaptureinastableandsolidstate.Inaddition,CSSFhassignificanteconomicbenefitsbecausetheshellfisharemainlyfarmedforfoodandthecarbonsequestrationfunctionisaby-product.Moreover,theindirecteffectsofshellfishfarmingontheecosystem,suchasthemitigationofeutrophicationandenhancementofprimaryproductionthroughincreasedwaterclarityandnutrientFig.2.Annualvariationsinglobalfarmedshellfishandsequestratedcarbon.(A)TheyieldproductionoffarmedshellfishinChina(yellowbars)andglobally(greenbars).(B)ThecarbonsequestratedviashellfishfarminginChina.Thepinkbarsrepresentthecarbonsequestratedviaoysterfarming;andthegreen,orange,blue,andlightpurplebarsrepresentthecarbonsequestratedviaclam,cockle,mussel,andscallopfarming,respectively.Itshouldbenotedthatasmallfractionofnon-bivalvespecies,e.g.,seasnailsandabalone,areincludedintheyieldproductionandgrowthratebecausetheircontributionissmallenoughtoignoreandishardtopreciselydeducttheircontributionbasedontheavailabledata.J.-C.Fengetal.RenewableandSustainableEnergyReviews171(2023)1130186turnover,alsohavepositiveimpactsontheCO2absorption[27].Basedontheaboveperspectives,CSSFcanbeanNETfortheoceanandatmosphere.4.2.HighefficiencyofCSSFThetimescaleoftheisolationfromtheatmosphericcarboncycleisanotherimportantfactorfordeterminingtheefficiencyofanNET.AlthoughatmosphericCO2concentrationscanbereducedbyvegetationsequestration,thecarbonstorageistemporaryandcanonlyreducetheatmosphericCO2concentrationsintheshort-term.AfewstudieshaveevenreportedthatthistypeoftemporarysequestrationcannotpreventclimatechangeandmayevenincreaseCO2concentrationsinthelong-term[33,34].Althoughthisideaisdebatableandtherearesomeopposingopinions(e.g.,DornburgandMarland[35]),itiswidelyacceptedthattheeffectivenessofshort-termcarbonsequestrationinmitigatingglobalwarmingshouldbediscounted[36,37].Takingforestsystemsasanexample,theenormousamountofcarbonstoredintreeisaffectedbybothdeforestationandwildfires[38].Regardingcarbonsequestration,researchershavestatedthatsoonerandlongersequestrationispreferred[35].Currently,manyproductsareusedinshortcycles,suchasfood,grass,wood,fuel,andpaper.Fromthispointofview,theydonotcontributetolong-termcarbonsequestration,nordotheysubstituteforothermaterialsthathavehighcarbonfoot­prints.ThemostimportantadvantageofCSSFisthatitcouldsequesterCO2inthelong-termviaeithershellgrowthorbio-deposition.CSSFcouldovercometheshortagesofoceancarbonsequestrationtosomeextentandfacilitateeffectiveisolation.TherearetwoprimitiveFig.3.Distributionofglobalcarbonsequestrationviashellfishfarmingin(A)1985and(B)2019,andthatunderfuturescenarioswiththe(C)maximumfarmingareaand(D)maximumecologicalcapacity.Thecoloredbarsineachsub-figurerepresenttheproductionofthecorrespondingcountryorregion.Fig.4.TheCarbonsequestrationefficiencyofshellfishfarming:(A)Comparisonofdifferentcarbonsequestrationsystems.SMrepresentssaltmarshsystems;MGrepresentsmangroveforestsystems;SGrepresentsseagrasssystems;AAFrepresentsEastAsia’sartificialforests(averagevalue);andCAFrepresentsChina’sartificialforests.(B)EstimatedproteinproducedbyshellfishfarminginChinafrom2015to2019.Thered,green,purple,yellow,andbluebarsrepresenttheproteinproducedviascallop,mussel,clam,cockle,andoysterfarming,respectively.J.-C.Fengetal.RenewableandSustainableEnergyReviews171(2023)1130187pathwaysforCO2absorptionintheocean.Thefirstisthenaturalab­sorptionofCO2,includingabsorptionpromotedbyrockweatheringanddirectdissolution.ThesecondisDICabsorptionviaphotosynthesisandconversiontoorganiccarbon.ThedirectabsorptionofCO2fromtheatmosphereandconversionintoDICcouldcauseoceanacidification(OA),whichwouldreducetheprimaryproductivitywhenitreachedacertainlevel.Furthermore,DICisareactiveformandcanbereleasedbackintotheatmosphereoverashortperiod.Regardingrockweath­eringprocesses,theformofthecarbonischanged,butitisnotsequestered,aswasstatedbyCurletal.[2].SuchwatersmayalsoincreasethepartialpressureofCO2inthesurfacelayeroftheoceans,therebyeitherslowingdownorreversingthetransferofatmosphericCO2intotheocean.FortheDICcapturedbyphotosynthesis,theabsorbedCO2trendstoberecycledbackthroughdecompositioninthesurfaceorsubsurfacewaters.Lessthan1%settlesoutofthewaterandispermanentlysequesteredinthesediments.Eventheoceanfertilizationschemecannoteffectivelyimprovethis.CSSFcouldfacilitatebio-deposition,resultinginlong-termcarbonsequestration.Fig.5.Schematicdiagramillustratingthemechanismsof(A)BECCS(bioenergywithcarboncaptureandstorage)and(B)CSSF(CarbonSequestrationviaShellfishFarming).POCisparticulateorganiccarbon,andDICisdissolvedinorganiccarbon.Thecarbonemissionbarsin(A)and(B)representthecarbonbudgetsofBECCSandCSSF,respectively.Thebluesquareinsideindicatesthatthecarbonemissionis0fromthebeginningtothecurrentstage,andafter/belowthisstagetheemissionisnegative.InBECCSthe0emissionrepresentthattheCO2isfirstcapturedbytheplantsandthenreleasedviapowerplantburning.AfterthereleasedCO2isrecapturedandstorageviageologicalmethod,thetotalemissionsinBECCSisnegative.InCSSF(B),the0emissionrepresentthattheCO2isfirstcapturedbyphytoplankton,andthenreleasedviashellfishmetabolization.AftertheDICisisolatedintheshell,andthePOCsequestratedinsofttissueandseabed,thetotalcarboninCSSFemissionsisnegative.J.-C.Fengetal.RenewableandSustainableEnergyReviews171(2023)11301884.3.AdvantageofGHGsemissionsreductioninfoodproductionsystemInadditiontoNETs,climatesmartsolutionsarenecessarytotrans­formthecurrentfoodproductionsystemsintomorecircularandclimate-neutralsystemstobettermeettheParisagreement.Currently,theglobalfoodproductionsystemcontributesabout30%ofglobalGHGemissions[39,40],ofwhichthebio-basedproductionsystemsareoftencoupledwithhighGHGemissions[41].Nevertheless,reducingemis­sionsfromthisindustryhasreceivedlessattentionandisverychal­lenging.Bio-basedproductionisaveryvaluablesourceofessentialnutrients(e.g.,essentialaminoacids,minerals,andvitamins),andemissionsmayseemtobeanunavoidableenvironmentalcostoffeedingthegrowingpopulation[42].Itisnoteworthythattheglobalfoodproductionsystemswillhavealargerenvironmentalfootprintby2050[43].CSSFisapromisingmethodofachievingfoodsecurity[44–46]whilestillachievingthegoalsofreducingemissions.Toremove600GtofCO2duringthiscentury,430–580millionhectaresoflandareneeded(aboutone-thirdofthecurrenttotalarablelandonEarth)forplantingcropsforBECCS[6].CSSFdoesnotrequirearableland.Onthecontrary,CSSFincreasesthesupplyofaffordablenutritionforhumanconsumption[44].Itwasestimatedinthisstudythatfarmedoysters,scallops,mus­sels,cockles,andclamscouldprovideabout0.37Mtofhigh-qualityproteinperyearforhumanconsumptioninChina.Moreimportantly,theanalysisconductedinthisstudyindicatesthatfarmedshellfishhavelowlifecycleemissions.Similarresultshavebeenwidelyreported[47–50].Shellfishmeathasbeenacceptedasapopularfoodthatprovideshigh-qualityproteinforalonghistory,soithasthepotentialtoreplaceaproportionofmeatproduction[44].TakingChinaasanexample,comparedtobeefproduction,shellfishcouldrelieveCO2emissionsbyabout37.39MtCO2-eqperyear(showninS6).Evencomparedwitheggproduction,shellfishfarmingcouldproduceasignificantadvantageinGHGemissionsreduction.Becauseshellfishfarmingdoesnotrequireaddedchemicals,commodityfeed,orantibioticsduringthefarmingstageinthesea,shellfishmeatisamuchmoreenvironmentallyfriendlyproduct[51].Shellfishfarminghasagreatexpansionpotentialsincethere­quirementsfornon-renewableresourcesoffreshwaterandterrestriallandareminimal[47,50],anditistechnologicallyfeasible.Aftercon­strainingthesuitablefarmingarea,thatwiththewaterdepthsoflessthan200m,asuitabletemperaturerange,andahighchlorophyllcon­tent,andexcludingareasdesignatedformarineanimalprotectionandfishing-boatactivityareas,atleast1,500,000km2areavailableforshellfishfarming[52].Inthisscenario,morethan5.6GtofCO2a−1wouldbesequestratedattheglobalscale.4.4.SynergisticbenefitswithotherstrategiesAswaspreviouslydiscussed,shellfishfarmingcanhelpreduceemissionsinfoodproductionsystems.Therefore,CSSFcancertainlyplayasynergisticroleinemissionsreductionwithdietarymanagementstrategies.Aswasprojectedinapreviousstudy[53],thecumulativeGHGemissionscausedbyfoodconsumptionfrom2020to2060willbe374GtCO2equivalent.However,byreplacingthetraditionalmeatby10%,30%,and50%withmusselmeat,thecumulativeGHGemissionscanbereducedby4.5%,13.6%,and22.4%,respectively.Althoughaplant-richdietcanalsoresultinasignificantreduction,amusselorshellfishrichdietcouldbeahealthierandmorenutritiousoption,asshellfishmeatisrichinprotein,docosahexaenoicacid,andmicro­nutrients[44,54,55].ShellfishfarmingcouldbecoupledwithotheroceanicNETssuchasoceanfertilization.Forexample,oceanfertilizationcouldbeperformedinchlorophyllbarrenareasandeveninareaswithwaterdepthsofgreaterthan200m,whichcouldstimulateanalgaebloom,thuseffec­tivelyexpandingtheseaareasuitableforshellfishframing.Furthermore,shellfishfarmingcanrapidlyfilterouttheorganiccarbonanddeposititontheseedbed.Thus,thecarbonsequestrationintradi­tionalfertilizationexperimentscouldbesignificantlypromoted.Althoughthefeasibilityofthiscombinationlacksexperimentalevi­dence,itisworthattemptingbecauseithaslongbeenproventhatunderprecisecontrolofthefarmingvolumes,thecombinationofshellfishfarmingandphytoplanktonphotosynthesiscanabsorbmoreCO2fromtheatmospherethanasinglesystem[56].Thepositiveenvironmentalandecologicaleffectsofshellfishfarmingareimportantforclimatechangemitigation.Theindirecteffectsofshellfishfarmingontheecosystem,suchasthemitigationofeutro­phicationandenhancementofprimaryproductionthroughincreasedwaterclarityandnutrientturnover,willaffecttheCO2cycle[24].Previousstudies[56],havereportedthatarelativelylowabundanceofclamscoulddoubleprimaryproductionandalterthephytoplanktoncommunitystructure.Ingeneral,intensivegrazingbyculturedbivalvesisexpectedtoreducewaterturbidity,andimprovelightpenetrationtothebottom,andthusextendsthewaterdepthsuitableforthegrowthofbenthicmacrophytesandmicrophytobenthos[57].Inanutrient-limitedsystem,shellfishperformbottom-upcontrolofphytoplanktonbyincreasingtherateofnutrientcyclingandconsequentlyimprovesthenutrientavailability[58].Insummary,itisimportantforshellfishfarmingtoworkinsynergywithotherecologicalmanagementandrestorationprojects.4.5.PotentialnegativeimpactsofshellfishfarmingLikeotherhumanactivities,large-scaleshellfishfarmingexpansionwillinevitablyexertnegativeimpacts.Oneofthemostfrequentlyre­portedimpactisover-farming,inwhichthefarmingcapacityexceedsoverthemaximumecologicalcarryingcapacity[59].Thiswillcauseareductionintheprimaryproductivity[60].OnepromisingwaytoavoidtheseeffectsisthroughtheadoptionofIntegratedMulti-TrophicAquaculture(IMTA).Sar`aetal.[61]demonstratedthatmussels(M.galloprovincialis)andtheEuropeanflatoyster(O.edulis)hadhighergrowthratesnearfishfarmscomparedtothatintheopensea.Moreover,shellfishover-farmingmayalsohavenegativeeffectsonthebenthicenvironmentandspeciesassemblagesviaadditionalbio-deposition.Sedimentorganicenrichmentthroughfecaldepositionfromfarmedshellfishcouldcreateanaerobicandacidicconditions,resultinginadverseeffectscausedbyelevatedlevelsofsulfidesandammonium[62].OnepossiblewaytoavoidtheseimpactsisthroughtheadoptionofBestManagementPractices(BMPs),suchasselectionoffarmingsiteswithappropriatewaterdepthsandwaterflowcharacteristics,andtheadoptionoffarmlayoutsthatavoidexcessivedensity[63].Actually,thelocalwaterchemistrymaychangeinanegativewayintermsofthetotalalkalinity(TA)andoceanacidification(OA)ifshellfisharefarmedinanextremelyinappropriateway.However,theimpactontheTAisnegli­giblecomparedtothestrongbufferingcapabilityoftheoceans,whichabsorblargeamountsofbicarbonateviarockweatheringandriverdischargeintothesea.TheimpactsonOAaremainlycausedbytheCO2releaseduringrespirationandcalcification,whichcouldbecompletelycounteractedbyphotosynthesiswhenthefarmingvolumeisproperlycontrolled.Forexample,aM.coruscusandG.lemaneiformispolyculture[64]witharatioof1:0.45couldeffectivelyincreasethepHandCO2absorptioncapacityofseawater.Phytoplankton,whichcouldabsorbmorethan18.3GtofCO2peryearintheocean,ismoreefficientintermofphotosynthesis[65]andismoreabletooffsettheimpactsofOA.4.6.PositiveactionsareimperativeAlthoughshellfishfarmingseldomdependsonnonrenewablere­sources,large-scaleexpansionofshellfishfarmingmaystillhavemanychallengesintermsofglobalwarming.Forshellfishfarmingexpansion,theearlierthebetter.Currently,mostareasinalmostallcoastalcoun­triesaresuitableforaquaculture[52].However,iftheglobalwarmingJ.-C.Fengetal.RenewableandSustainableEnergyReviews171(2023)1130189trendpersistsinthefuture,itwillmostlikelyresultinseriousshrinkageoftheareasuitableforaquacultureandshellfishfarming.AsproposedbyFroehlichetal.[60],theproductionpotentialofaquaculturewilldeclineinmostofthesuitableareasovertime,withthepotentialofsomeareasevendisappearingcompletelyduetotemperaturechangesandtheresultantdecreaseinthechlorophyllcontent.OAcausedbytheCO2emissionswillpersistentlyexistandwillfurtherlowerthepHofthesurfacelayeroftheoceans.Inaddition,OAwillpotentiallythreatenthebio-calcificationofshellfishfarming.Gaz­eauetal.[19]demonstratedthatthecalcificationratesofM.edulisandC.gigassignificantlydecreaseasthepCO2increases.Milleretal.[66]alsoreportedthatOAcouldhaveanegativeimpactontheoystergrowth.Tofacethispotentialchallenge,newgeneticbreedingtech­niquescanbeusedtobreednewvarietiesofshellfishesthatcantolerateoradapttohightemperaturesandOA.Newfarmingmodels,suchastheshellfish-algaepolycultures,mightmoresustainableunderthecontextofOA.TheculturingofmacroalgaefacilitatesabsorbingmoreCO2fromtheseawaterandincreasesthepHofthelocalseawater.Thus,moreresearchisessentialinthesefields.5.ConclusionsExploringthecarbonsinkpotentialoftheoceanisessentialtoachievingtheambitiousgoalofcarbonneutrality.Thisstudyproposedanewconcept,carbonsequestrationviashellfishfarming(CSSF),whichisapotentialnegativeemissiontechnologydrivenbynaturalprocesses.ThecarbonsequestrationmechanismofCSSFwasanalyzedfromacomprehensiveandobjectiveperspective,andthecarbonsequestrationpotentialandefficiencyofCSSFwereinvestigatedandcomparedwithothernegativeemissionsystems.Theresultssuggestthatthecarbonsequestrationefficiencyandintensityofcultivatedshellfishesaremuchhigherthanthoseofartificialforests.Underthelargestfarmingareascenario,atotalof5.64GtCO2canbepotentiallysequestratedthroughcarbonsequestrationviashellfishfarming.Thisresearchhighlightsthefundamentalimplicationsofmarinecarbonsequestrationtechnologyandlow-carbonfoodsupply.Resultsshowthattheoysterandmusselfarmingshowsignificantadvantageincarbonsequestrationefficiency.Thescallopandcockleperformbetterinproteinproductionandcarbonfootprint,andthus,aremoreconducivetocarbonemissionreductioninfoodproduction.AnalysisfromtheperspectiveofecosystemshowsthatCSSFcanbeaNETswithwelltechnologyreadinesslevels.6.UncertaintiesandlimitationsofthisstudyThesuggestionoftheCO2sinkfunctionofshellfishfarmingwasbasedontheestimationthatshellfishfarminghasamuchhighernetcarbonsequestrationratiothannaturalmarinesystems(usuallylessthan1%).Accordingly,thecarbonstoredviatheshell,thecarboninthesofttissue,andthecarboninbio-depositionwereassumedtoperformacarboncapturefunction.However,theestimationofthenetsequestra­tionratiowasbasedonthelifecyclecarbonbudgetofashellfishdeterminedthroughobservationexperiments.Althoughallwerecon­tainedinthelifecyclecarbonbudget,thekineticprocesses,suchasfeedingonphytoplankton,shellfishgrowthrate,andmetabolicrate,havestronginteractionswiththelocalenvironmentandaretoocomplextoparameterizeandquantify.Therefore,thenetcarbonsequestrationratiomayvarysignificantly.Inthefuture,detailedresearchisneededtosystematicallyobservethedynamicprocessofthecarbonbudgetandprovidemoreaccurateestimations.Inthisstudy,onlyoysters,mussels,cockles,clams,andscallopswereselectedfortheestimationinthisstudybecauseoftheirwidedistributionsandlargeproductionglobally.TheyieldinformationfortheshellfishfarminginChinawasobtainedfromtheChinaFisheryStatisticalYearbook,whichdoesnotcontaindetailedinformationaboutthespeciesofeachtypeofshellfish(e.g.,C.gigasandC.hongkongensisproportionsforoysters).Thus,inthisstudy,thecarbonsequestrationofeachtypewasestimatedusingthemeanvalueforselectedrepresentativevarieties.Differentspecieshavedifferentdryweightratiosofsofttissuetoshells.Therecouldevenbelocalvariationsinthisratioforthesamespecieswhenfarmedindifferentregions.Thisvariationmayaffecttheestimatedamountofcarbonsequesteredintheshellsandsofttissue.Theassumptionthat40%ofthebio-depositionissequesteredintheseabedisarawestimation,becauseinformationabouttheactualvalueisverylimitedandstronglydependentonthelocalenvironmentalconditions.Theestimationsofthecarbonfootprintswerebasedontheinfor­mationforachosenspeciesforeachtypeofshellfish(presentedinS3).Therewereconsiderabledifferencesbetweentheinformationobtainedthroughtheinterviewswithfarmersandexpertsandtheprimarydataforthecontributionstothecarbonfootprint.Thismaybeanaturalvarianceduetodifferentseaareaconditions,farmingmethods,andnutrientlevels.Thiscouldbefurtherinvestigatedbybroadeningthescopeoftheinvestigation.Theglobalmaximumareaproductionandthemaximumecologicalproductionwerealsorawestimations.Moreexactresultscouldbeobtainedbyrefiningthedetailofthelocalinformationaboutthehydrologyandecologyofpotentialfarmingareas,forinstance,thewaterresidencetimeinabayandtherateofphytoplanktonproduction.CreditauthorstatementJ.C.FengandJ.Y.Yandesignedresearch.J.C.FengandL.W.Sunperformedtheresearch,analyzeddata,andwrotethepaper.DeclarationofcompetinginterestTheauthorsdeclarethattheyhavenoknowncompetingfinancialinterestsorpersonalrelationshipsthatcouldhaveappearedtoinfluencetheworkreportedinthispaper.DataavailabilityDatawillbemadeavailableonrequest.AcknowledgmentsTheauthorsaregratefultotheeditorsandreviewersfortheirkindhelp.Dr.JinyueYanwouldliketothankProf.XunLiforhisinspirationandideasduringdiscussionsofCO2captureandstoragemorethan15yearsago,whichresultedinthelaterconceptofcapturingCO2usingshellfish.HewouldalsoliketothanktheSwedishEnergyAgencyforfinancialsupportfromtheNegativeEmissionTechnologies:ReadinessAssessment,PolicyInstrumentDesign,OptionsforGovernanceandDialogue(NET-RAPIDO)project(46193–1).Dr.Jing-ChunFengwouldliketoacknowledgethefinancialsupportforthisresearchreceivedfromtheNationalNaturalScienceFoundationofChina(42022046),theNationalKeyResearchandDevelopmentProgram(2021YFF0502300),andGuangdongNaturalResourcesFoundation,(GDNRC[2022]45).Dr.Jing-ChunFengwouldalsoliketothankProfs.SiZhang,SaiLiang,andZhifengYangfortheirkindguidance.Prof.LinlinXiaisespeciallyappreciatedforherhelpincreatingthefigures.Theauthorsalsothankmaster’scandidatesYanyanHuangandMingruiZhangfortheirhelpwiththedatacollection.AppendixA.SupplementarydataSupplementarydatatothisarticlecanbefoundonlineathttps://doi.org/10.1016/j.rser.2022.113018.References[1]McKinleyGA,PilcherDJ,FayAR,LindsayK,LongMC,LovenduskiNS.Timescalesfordetectionoftrendsintheoceancarbonsink.Nature2016;530(7591):469–72.J.-C.Fengetal.RenewableandSustainableEnergyReviews171(2023)11301810[2]CurlRL.Carbonshiftedbutnotsequestered.Science2012;335(6069).655-655.[3]M¨ollerstenK,YanJ,JoseRM.PotentialmarketnichesforbiomassenergywithCO2captureandstorage-OpportunitiesforenergysupplywithnegativeCO2emissions.BiomassBioenergy2003;25(3):273–85.[4]Krause-JensenD,DuarteCM.Substantialroleofmacroalgaeinmarinecarbonsequestration.NatGeosci2016;9(10):737–42.[5]McLarenD.Quantifyingthepotentialscaleofmitigationdeterrencefromgreenhousegasremovaltechniques.ClimChange2020;162(4):2411–28.[6]WilliamsonP.ScrutinizeCO2removalmethods.Nature2016;530(7589):153–5.[7]GattiLV,BassoLS,MillerJB,etal.Amazoniaasacarbonsourcelinkedtodeforestationandclimatechange.Nature2021;595(7867):388–93.[8]KellerDP,FengEY,OschliesA.Potentialclimateengineeringeffectivenessandsideeffectsduringahighcarbondioxide-emissionscenario.NatCom2014;5(1).[9]PaustianK,LehmannJ,OgleS,ReayD,RobertsonGP,SmithP.Climate-smartsoils.Nature2016;532(7597):49–57.[10]RumpelC,AmiraslaniF,Lydie-StellaKoutika,SmithP,WhiteheadD,WollenbergE.PutmorecarboninsoilstomeetParisclimatepledges.Nature2018;564(7734):32–4.[11]SmithP,DavisS,CreutzingF,etal.BiophysicalandeconomiclimitstonegativeCO2emissions.NatClimChange2016;6(1):42–50.[12]McLarenD.Acomparativeglobalassessmentofpotentialnegativeemissionstechnologies.ProcessSafEnvironProtect2012;90(6):489–500.[13]BauerJE,CaiWJ,RaymondPA,BianchiCS,etal.Thechangingcarboncycleofthecoastalocean.Nature2013;504(7478):61–70.[14]TangQ,ZhangJ,FangJ.ShellfishandseaweedmaricultureincreaseatmosphericCO2absorptionbycoastalecosystems.MarEcolProgSer2011;424:97–104.[15]RenW.StudyontheremovablecarbonsinkestimationanddecompositionofinfluencingfactorsofmaricultureshellfishandalgaeinChina—atwo-dimensionalperspectivebasedonscaleandstructure.EnvironSciPollutRes2021;28(17):21528–39.[16]JansenHM.Bivalvenutrientcycling.WageningenUniversity;2012.M1-PhD.[17]HumphreysMP,DanielsCJ,Wolf-GladrowDA,TyrrellT,AchterbergEP.OntheinfluenceofmarinebiogeochemicalprocessesoverCO2exchangebetweentheatmosphereandocean.MarChem2018;199:1–11.[18]RayNE,O’MearaT,WiliamsonT,IzursaJL,KangasPC.ConsiderationofcarbondioxidereleaseduringshellproductioninLCAofbivalves.IntJLifeCycleAssess2018;23(5):1042–8.[19]GazeauF,QuiblierG,JansenJM,etal.ImpactofelevatedCO2onshellfishcalcification.GeophysResLett2007;34(7).[20]MunariC,RossettiE,MistriM.Shellformationincultivatedbivalvescannotbepartofcarbontradingsystems:astudycasewithMytilusgalloprovincialis.MarEnvironRes2013;92:264–7.[21]AhmedN,BuntingSW,GlaserM,FlahertyMS,DianaJS.Cangreeningofaquaculturesequesterbluecarbon?Ambio2017;46(4):468–77.[22]MistriM,MunariC.ClamfarminggeneratesCO2:astudycaseintheMarinettalagoon(Italy).MarPollutBull2012;64(10):2261–4.[23]FilgueiraR,ByronCJ,ComeauLA,etal.Anintegratedecosystemapproachforassessingthepotentialroleofcultivatedbivalveshellsaspartofthecarbontradingsystem.MarEcolProgSer2015;518:281–7.[24]FilgueiraR,StrohmeierT,StrandO.Regulatingservicesofbivalvemolluscsinthecontextofthecarboncycleandimplicationsforecosystemvaluation.In:Goodsandservicesofmarinebivalves.Cham:Springer;2018.[25]Muller-KargerFE,VarelaR,ThunellR,LuerssenR,HuC,WalshJJ.Theimportanceofcontinentalmarginsintheglobalcarboncycle.GeophysResLett2005;32(1).[26]WilliamsonP,WallaceDWR,LawCS,etal.Oceanfertilizationforgeoengineering:areviewofeffectiveness,environmentalimpactsandemerginggovernance.ProcessSafEnvironProtect2012;90(6):475–88.[27]HerndlGJ,ReinthalerT.Microbialcontrolofthedarkendofthebiologicalpump.NatGeosci2013;6(9):718–24.[29]FangJY,GuoZD,HuHF,KatoT,MuraokaH,SonY.ForestbiomasscarbonsinksinEastAsia,withspecialreferencetotherelativecontributionsofforestexpansionandforestgrowth.GlobalChangeBiol2014;20:2019–30.[30]RehdanzK,TolRSJ,WetzelP.Oceancarbonsinksandinternationalclimatepolicy.EnergyPol2006;34(18):3516–26.[31]McleodE,ChmuraGL,BouillonS,SalmR,Bj¨orkM,DuarteCM,LovelockCE,SchlesingerWH,SillimanBR.Ablueprintforbluecarbon:towardanimprovedunderstandingoftheroleofvegetatedcoastalhabitatsinsequesteringCO2.FrontEcolEnviron2011;9(10):552–60.[32]FangJY,GuoZD,HuHF,KatoT,MuraokaH,SonYH.ForestbiomasscarbonsinksinEastAsia,withspecialreferencetotherelativecontributionsofforestexpansionandforestgrowth.GlobalChangeBiol2014;20(6):2019–30.[33]KirschbaumMUF.Cantreesbuytime?Anassessmentoftheroleofvegetationsinksaspartoftheglobalcarboncycle.ClimChange2003;58(1):47–71.[34]KirschbaumMUF.Temporarycarbonsequestrationcannotpreventclimatechange.MitigAdaptStrategiesGlobChange2006;11(5–6):1151–64.[35]DornburgV,MarlandG.Temporarystorageofcarboninthebiospheredoeshavevalueforclimatechangemitigation:aresponsetothepaperbyMikoKirschbaum.MitigAdaptStrategiesGlobChange2008;13(3):211–7.[36]HirschAL,WilhelmM,DavinEL,ThieryW,SeneviratneSI.Canclimate-effectivelandmanagementreduceregionalwarming?JGeophysResAtmos2017;122(4):2269–88.[37]JørgensenSV,HauschildMZ,NielsenPH.Thepotentialcontributiontoclimatechangemitigationfromtemporarycarbonstorageinbiomaterials.IntJLifeCycleAssess2015;20(4):451–62.[38]Arag˜aoLEOC,AndersonLO,FonsecaMG.21stCenturydrought-relatedfirescounteractthedeclineofAmazondeforestationcarbonemissions.NatCom2018;9(1).[39]CrippaM,SolazzoE,GuizzardiD,etal.FoodsystemsareresponsibleforathirdofglobalanthropogenicGHGemissions.NatFood2021;2(3):198–209.[40]SpringmannM,ClarkM,Mason-DCD,etal.Optionsforkeepingthefoodsystemwithinenvironmentallimits.Nature2018;562(7728):519–25.[41]HerreroM,HavlikP,ValinH,etal.Biomassuse,production,feedefficiencies,andgreenhousegasemissionsfromgloballivestocksystems.ProcNatlAcadSciUSA2013;110(52):20888–93.[42]ClarkMA,DomingoNGG,ColganK,etal.Globalfoodsystememissionscouldprecludeachievingthe1.5◦Cand2◦Cclimatechangetargets.Science2020;370(6517):705–8.[43]SuplicyFM.Areviewofthemultiplebenefitsofmusselfarming.RevAquacult2019;12(1):204–23.[44]WillerDF,AldridgeDC.Sustainablebivalvefarmingcandeliverfoodsecurityinthetropics.NatFood2020;1(7):384–8.[45]GephartJA,GoldenCD,AscheF,etal.Environmentalperformanceofbluefoods.Nature2021;597(7876):360–5.[46]NaylorRL,KishoreA,SumailaUR,etal.Bluefooddemandacrossgeographicandtemporalscales.NatCom2021;12(1).[47]IribarrenD,MoreiraMT,FeijooG.Revisitingthelifecycleassessmentofmusselsfromasectorialperspective.JCleanProd2010;18(2):101–11.[48]FryJM.Carbonfootprintofscottishsuspendedmusselsandintertidaloysters.Scottishaquacultureresearchforum(SAFR).Pitlochry:PH;2012.p.1–6.[49]SunL,FengJC,ZhangS.ThecarbonfootprintofpacificoysterfarminginChina.IntConfApplEnergy2021.[50]RobertsCA,NewtonRW,BostockJC,etal.Ariskbenefitanalysisofmaricultureasameanstoreducetheimpactsofterrestrialproductionoffoodandenergy.Astudycommissionedbythescottishaquacultureresearchforum(SARF).Pitlochry,PH:SARF/WWF-UK;2015.[51]SchatteOA,JonesL,VayLL,ChristieM,WilsonJ,MalhamSK.Aglobalreviewoftheecosystemservicesprovidedbybivalveaquaculture.RevAquacult2019;12(1):3–25.[52]GentryRR,FroehichHE,GrimmD,etal.Mappingtheglobalpotentialformarineaquaculture.NatEcolEvol2017;1(9):1317–24.[53]ZhangMR,FengJC,SunLW,LiP,HuangYY,ZhangS,YangZF.Individualdietarystructurechangespromotegreenhousegasemissionreduction.JCleanProd2022;366:132787.[54]Fern´andezA,GrienkeU,Soler-VilaA,etal.Seasonalandgeographicalvariationsinthebiochemicalcompositionofthebluemussel(MytilusedulisL.)fromIreland.FoodChem2015;177:43–52.[55]PanayotovaV,MerdzhanovaA,DobrevaDA,etal.Nutritionalcomposition,bioactivecompoundsandhealth-beneficialpropertiesofblackseashellfish.JIMAB2020;26(3):3293–7.[56]DoeringPH,OviattCA,BeattyLL,etal.Onpelagiccommunitystructure.Zooplanktonwereholoplanktonicincharacterandhighertrophic.MarEcolProgSer1989;52:287–99.[57]ChopinT,CooperJA,ReidG,CrossS,MooreS.Open-waterintegratedmulti-trophicaquaculture:environmentalbiomitigationandeconomicdiversificationoffedaquaculturebyextractiveaquaculture.RevAquacult2012;(4):209–20.[58]DameR,DankersN,PrinsT,JongsmaH,SmaalA.TheinfluenceofmusselbedsonnutrientsintheWesternWaddenseaandEasternscheldtestuaries.Estuaries1991;14:130.[59]IkicaZ,Peˇsi´cA,Nikoli´cM,etal.ComparisonbetweenIMTAandmonoculturefarmingofmussels(MytilusgalloprovincialisL.)inthebokaKotorskabay.ActaAdriat2018;58:271–84.[60]FroehlichHE,GentryRR,HalpernBS.Globalchangeinmarineaquacultureproductionpotentialunderclimatechange.NatEcolEvol2018;2(11):1745–50.[61]Sar`aG,ReidGK,RinaldiA,etal.GrowthandreproductivesimulationofcandidateshellfishspeciesatfishcagesintheSouthernMediterranean:dynamicEnergyBudget(DEB)modellingforintegratedmulti-trophicaquaculture.Aquaculture2012;324–325:259–66.[62]CranfordPJ,StrainPM,DowdM,etal.Influenceofmusselaquacultureonnitrogendynamicsinanutrientenrichedcoastalembayment.MarEcolProgSer2007;347:61–78.[63]HargreavesJA.Molluscanshellfishaquacultureandbestmanagementpractices.In:ShumwaySE,editor.Shellfishaquacultureandtheenvironment.Chichester:JohnWiley&Sons;2011.[64]WuWZ,HangHR,PengYY,ZhaoS.Effectofalgae-shellfishpolycultureonCO2intheaquaculturezonelocatedatDongjiIslandofZhoushan(inChinese).JAnhuiAgricSci2019;47:53–5.[65]FieldCB,BehrenfeldMJ,RandersonJT,FalkowskiP.Primaryproductionofthebiosphere:integratingterrestrialandoceaniccomponents.Science1998;281:237–40.[66]MillerAW,ReynoldsAC,SobrinoC,RiedelGF.ShellfishfaceuncertainfutureinhighCO2world:influenceofacidificationonoysterlarvaecalcificationandgrowthinestuaries.PLoSOne2009;4:e5661.J.-C.Fengetal.

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

碳中和
已认证
内容提供者

碳中和

确认删除?
回到顶部
微信客服
  • 管理员微信
QQ客服
  • QQ客服点击这里给我发消息
客服邮箱