HydrogenpatentsforacleanenergyfutureAglobaltrendanalysisofinnovationalonghydrogenvaluechainsJanuary2023HYDROGENPATENTSFORACLEANENERGYFUTUREepo.org02ForewordFacedwithaconvergenceofcrisesspanningenergy,geopoliticsandtheenvironment,thefutureoftheEuropeaneconomynowdependsmorethananytimeinitshistoryonitscapacityforinnovationandcreativity.Thetransitionawayfromfossilfuelsisachallengeunparalleledinscaleandcomplexity,withanarrowingtimewindowbywhichtobringsolutionstomarket.Inthiscontext,producingreliableintelligenceontrendsinlow-carboninnovationiscrucialforsupportingrobustbusinessandpolicydecisions.ThisalsoformsavitalaspectofEPO’sstrategiccommitmenttosustainability.Thisstudy-thethirdofitskindundertakenincollaborationwiththeIEAsince2020-addressesinnovationtrendsrelatedtohydrogenwhichisacoreelementtoenergytransitionsintheEUandbeyond.CombiningtheenergyexpertiseoftheIEAwiththeEPO’spatentknowledge,itprovidesthemostcomprehensiveandup-to-dateglobalreviewofpatentingtrendsinabroadrangeoftechnologies–fromtheproductionofhydrogentoitsstorage,distributionandtransformation,throughtoitsend-useapplicationsacrossmanydifferentindustries.Becausepatentinformationistheearliestpossiblesignalofindustrialinnovation,thisreportoffersauniquesourceofintelligenceonacomplexandfast-movingtechnologylandscapethatisreachingnewheightsofstrategicimportancetodecision-makersaroundtheworld.Patentprotectioniskeyforinnovatorstotransformhydrogenresearchintomarket-readyinventions.Patentsenableenterprisesanduniversitiestoreaptherewardsoftheircreativityandhardwork.AsthepatentofficeforEurope,theEPOprovideshigh-qualitypatentstoprotectinnovationsinupto44countries(includingallEUmemberstates).Europeanpatentsarenotonlyforlargemultinationalcompanies.Theyarealsokeytohelpingsmallbusinessesraisefunding,establishcollaborationsandeventuallyscale.Thestudyisdesignedasaguideforpolicymakersanddecision-makerstoassesstheircomparativeadvantageatdifferentstagesofthevaluechain,shedlightoninnovativecompaniesandinstitutionsthatmaybeabletocontributetolong-termsustainablegrowth,anddirectresourcestowardspromisingtechnologies.DrawingontheEPO'scutting-edgepatentdata,itintroducesnewsearchstrategiestocompareincrementalinnovationrelatedtoestablishedfossilfuelprocesseswithemergingtechnologiesmotivatedbytheclimatechallenge.Theresultsrevealencouragingtransitionpatternsacrosscountriesandindustrysectors,includingamajorcontributionofEuropetotheemergenceofnewhydrogentechnologies.Importantly,theyhighlightthecontributionofstart-upstohydrogeninnovation,andtheirstrongrelianceonpatentstobringnewtechnologytomarket.However,thisreportalsoflagssomeblindspotswheremoreinnovationisneededtounlocknewapplicationsofgreenhydrogen.Bygivingdecision-makersanunparalleledperspectiveofpatentingtrendsalonghydrogenvaluechains,thesefindingscanactasavaluableguideinsteeringthetransitiontoanewhydrogeneconomy.AntónioCampinosPresident,EuropeanPatentOfficeTableofcontentsExecutivesummaryKeyfindingsContent<HYDROGENPATENTSFORACLEANENERGYFUTUREepo.org03ForewordTheglobalenergycrisissparkedbyRussia'sinvasionofUkrainehashighlightedtheurgentneedtotackletheoverlappingchallengesofenergysecurity,energyaccess,climatechangeandeconomicrecovery.Technology,includinghydrogen,isattheheartofanypolicypackagethatcansuccessfullyaddresstheseinterrelatedissues.Hydrogenproducedfromlow-emissionssourceshasthepotentialtoreducerelianceonfossilfuelsinapplicationswherefewotheralternativesexist.Inthemedium-tolong-term,itrepresentsourbestchancetolimitexposuretovolatilefuelpricesincriticalsectorslikelong-haultransportandfertilizerproduction.However,afutureofavailableandaffordablelow-emissionshydrogenisdependentonnear-termpoliciestodevelopandimprovetechnologiesandtoestablishvaluechainsforinvestment,equipmentandtrade.Manycountriesaresteppingup.TheREPowerEUplanandotherEuropeanUnionprogrammeswillmobiliseinvestmenttoreduceEUgasdemand.IntheUnitedStates,theInflationReductionActwilldrivecapitaltowardscleanersourcesofhydrogenand,wehope,alsofacilitatecompetitiveinternationalsupplychains.Japan'sGreenTransformationProgrammealsocontainsboldplansforfundingadvancedtechnologies.LastSeptember,16countriescommittedtofundingaglobalportfoliooflarge-scaledemonstrationprojectsthisdecadetobringtechnologieslikehydrogen-basedsteelproductiontomarketintimetoachievenetzeroemissionsby2050.Thisreportshowsthatcompetitiontobetheleaderinhydrogeninnovationisintensifyingandhasthepotentialtodrivecommercialisation.Thestakesarehigh:installationsofelectrolysersreach380gigawattsin2030intheInternationalEnergyAgency’s(IEA)NetZeroEmissionsby2050Scenario,illustratingtheeconomicopportunityforcountriesthatcantranslateresearchexcellenceintoindustrialcompetitiveness.However,activityremainsconcentratedinasmallnumberofregions,limitingtheexchangeofideas.Lookingahead,hydrogeninnovationmustaddressspecificnationalchallenges,forexamplebyhelpingAfricatapintosomeofthelowest-costcleanenergyontheplanet.Thisstudy,whichshowcasesthegrowingpartnershipbetweentheIEAandtheEuropeanPatentOffice(EPO)afterourworkonbatteries(2020)andlow-carbonenergy(2021),isthemostcomprehensivecomparisonofpatentingtrendsacrossthefullhydrogenvaluechain.Suchanintegratedapproachisessentialforhydrogen,whichreliesonmultipletechnologiestoconnectsupplyanddemand.Thedevelopmentofsecure,robustandsustainablesupplychainsforcleanenergyiscriticaltominimisetheriskofrepeatingtoday’senergycrisis.TheIEA’sEnergyTechnologyPerspectives2023,duetobereleasedinthesameweekasthisreport,exploresindetailthistopicandtheimportantrolethatinnovationhasforthedevelopmentofresilientcleanenergysystems.Thisreport'sfindingsgiveusconfidencethatinnovatorsarerespondingtotheneedforlow-emissionshydrogen,andtotheeconomicopportunityitrepresents.Butthereportalsoidentifiesareas–particularlyamongend-useapplications–wheremoreeffortisrequired.Ourcontinuedco-operationwiththeEPOwillallowustotrackprogressgoingforward.DrFatihBirolExecutiveDirector,InternationalEnergyAgencyTableofcontentsExecutivesummaryKeyfindingsContent<HYDROGENPATENTSFORACLEANENERGYFUTUREepo.org04TableofcontentsForeword02Listoftablesandfigures....................................................................................................................................................................................................................................................................................................05Listofabbreviations................................................................................................................................................................................................................................................................................................................07Listofcountries.............................................................................................................................................................................................................................................................................................................................08Executivesummary09Keyfindings101.Introduction191.1Whyhydrogen?...........................................................................................................................................................................................................................................................................................................191.2Theneedtorampupsupplyanddemandforlow-emissionhydrogen.......................................................................................................................................201.3Whythisreport?........................................................................................................................................................................................................................................................................................................241.4Structureofthereport.....................................................................................................................................................................................................................................................................................262.Hydrogenpatents:anoverview272.1Geographyofhydrogeninnovation...............................................................................................................................................................................................................................................272.2Generalpatentingtrendsinestablishedandemergingtechnologies..........................................................................................................................................313.Hydrogenproduction393.1Mainpatentingtrendsinhydrogenproduction...........................................................................................................................................................................................................393.2Technologiesforlow-emissionhydrogenproduction..........................................................................................................................................................................................413.3Recentdevelopmentsinelectrolysers.......................................................................................................................................................................................................................................454.Hydrogenstorage,distributionandtransformation504.1Mainpatentingtrendsinhydrogenstorage,distributionandtransformation...............................................................................................................514.2Recentdevelopmentsinestablishedstorageanddistributiontechnologies.....................................................................................................................524.3Recentdevelopmentsinstorage,distributionandtransformation:thecaseofhydrogen-basedfuels.......................................555.End-useapplications595.1Recentdevelopmentsinestablishedapplications.....................................................................................................................................................................................................595.2Recentdevelopmentsinapplicationsmotivatedbyclimate.....................................................................................................................................................................625.3Recentdevelopmentsintransporttechnologies.......................................................................................................................................................................................................64References69TableofcontentsExecutivesummaryKeyfindingsContent<<HYDROGENPATENTSFORACLEANENERGYFUTUREepo.org05ListoftablesandfiguresTablesTable2.1Revealedtechnologyadvantagesinhydrogentechnologiesbyvaluechainsegments,2011–2020............................28Table2.2World’stoptenhydrogeninnovationclusters,2011–2020.....................................................................................................................................................30Table3.1Emerginglower-carbontechnologiesforhydrogenproductionfromlighthydrocarbons.........................................................43Table3.2Emergingelectrolysistechnologies...........................................................................................................................................................................................................................45Table4.1Technologyareasforhydrogen-basedfuels.................................................................................................................................................................................................55Table5.1Emerginghydrogentechnologiesintransport........................................................................................................................................................................................64Table5.2Emergingapplicationsofhydrogeninsteelmanufacturing................................................................................................................................................64FiguresFigureE.1Shareofinternationalpatentingandrevealedtechnologyadvantagebymainworldregionsandvaluechainsegments(IPFs,2011–2020)..............................................................................................................................................................................................................................10FigureE.2Topinternationalapplicantsinestablishedtechnologiesandtechnologiesmotivatedbyclimate(IPFs,2011–2020)................................................................................................................................................................................................................................................................................12FigureE.3Originsofinventionsrelatedtoelectrolysersandmanufacturingcapacity...................................................................................................14FigureE.4Internationalpatentingtrendsingaseoushydrogenstorage,ammoniaproduction,methanolproductionandalternativehydrogen-basedfuels(IPFs,2001–2020)...........................................................................................................................................................15FigureE.5Internationalpatentingtrendsinhydrogen-basedpropulsiontechnologies,2011–2020..........................................................16FigureE.6Shareoffundingaccruingtostart-ups,byfundingstage,2000-2020.....................................................................................................................17Figure1.1Supplyanddemandforlow-emissionhydrogenintheIEAnetzeroemissionsscenario.............................................................21Figure1.2Electrolysercapacitybyregionbasedonprojectpipelinesto2030...........................................................................................................................22Figure1.3Venturecapitalinvestmentincleanenergystart-upsrelatedtohydrogen,2015–2022..............................................................23Figure1.4Cartographyofhydrogen-relatedtechnologies......................................................................................................................................................................................25Figure2.1Patentingtrendsbymainworldregions(IPFs,2001–2020)....................................................................................................................................................27Figure2.2Globaldistributionofhydrogeninnovationclusters(IPFs,2011–2020)................................................................................................................29Figure2.3Overviewofpatentingtrendsinhydrogentechnologies(IPFs,2001–2020)...................................................................................................32Figure2.4Profileofthetoptencorporateapplicantsinestablishedhydrogentechnologies(IPFs,2011–2020).......................33Figure2.5Profileofthetoptencorporateapplicantsinhydrogentechnologiesmotivatedbyclimate(IPFs,2011–2020)....34Figure2.6Profileofthetoptenresearchinstitutionsinhydrogentechnologies(IPFs,2011–2020).............................................................35Figure2.7Distributionofstart-upswithIPFsinhydrogen.....................................................................................................................................................................................36Figure2.8Numberofhydrogenstart-upsfoundedannuallyandtheirpatentapplications(2000–2020)..........................................37Figure2.9Shareoffundingaccruingtostart-ups,byfundingstage,2000-2020.....................................................................................................................38Figure3.1IPFtrendsinhydrogenproductiontechnologies,2001–2020.............................................................................................................................................40Figure3.2Originsofpatentsrelatedtohydrogenproduction,2011–2020.....................................................................................................................................40Figure3.3CO2intensityofhydrogenproduction...................................................................................................................................................................................................................41Figure3.4Inventionsrelatedtohydrogenproductionthatareprimarilymotivatedbyclimatechangeconcerns(IPFs,2001-2020)...................................................................................................................................................................................................................................................................................42Figure3.5ShareofIPFsinclimate-motivatedproductiontechnologies,2001–2020........................................................................................................42Figure3.6Emerginglower-carbontechnologiesforhydrogenproductionfromlighthydrocarbons........................................................44TableofcontentsExecutivesummaryKeyfindingsContent<<HYDROGENPATENTSFORACLEANENERGYFUTUREepo.org06FiguresFigure3.7Patentingtrendsinemergingtechnologiesforelectrolysers(IPFs,2011–2020)......................................................................................46Figure3.8Originsofinventionsrelatedtoelectrolysersandmanufacturingcapacity...................................................................................................47Figure3.9Toptenapplicantsinelectrolysertechnologies(IPFs,2011-2020)................................................................................................................................48Figure4.1Patentingtrendsinhydrogenstorage,distributionandtransformationtechnologies(IPFs,2001–2020)...........51Figure4.2OriginsofIPFsrelatedtostorage,distributionandtransformation,2011–2020.....................................................................................52Figure4.3Impactoftopapplicantsfromdifferentindustriesonpatentinginhydrogenstorageanddistributiontechnologies(shareofIPFs,2011–2020).............................................................................................................................................................................................................53Figure4.4Recenttrendsinspecificformsofliquidandgaseoushydrogenstorage,2011–2020.....................................................................54Figure4.5Profilesofmainregionsinhydrogen-basedfuels(IPFs,2011-2020)..........................................................................................................................56Figure4.6Recenttrendsinhydrogen-basedfuels(IPFs,2011–2020)........................................................................................................................................................57Figure5.1Patentingtrendsinhydrogenuseformethanolandammoniaproduction(numberofIPFs,2001–2020).........60Figure5.2OriginsofIPFsrelatedtoexistinghydrogenapplications,2011–2020...................................................................................................................60Figure5.3Topapplicantsinmethanolandammoniaproduction,2011-2020.............................................................................................................................61Figure5.4Patentingtrendsinhydrogenend-useapplications(IPFs,2001–2020)..................................................................................................................62Figure5.5OriginsofIPFsrelatedtohydrogenapplications,2011–2020..............................................................................................................................................63Figure5.6Hydrogenpropulsionversuson-boardstorageintransporttechnologies,2011–2020.................................................................64Figure5.7Internationalpatentingtrendsinhydrogen-basedpropulsiontechnologies,2011–2020..........................................................65Figure5.8Toptenapplicantsinautomotiveapplications,2011–2020..................................................................................................................................................66Figure5.9Profileofthetopapplicantsinsteelmanufacturing,2011–2020.................................................................................................................................68TableofcontentsExecutivesummaryKeyfindingsContent<<HYDROGENPATENTSFORACLEANENERGYFUTUREepo.org07ListofabbreviationsAEMAnionexchangemembraneALKAlkalineelectrolyserCCUSCarboncapture,utilisationandstorageCOCarbonmonoxideDRIDirectreducedironEPOEuropeanPatentOfficeeSMRElectrifiedsteammethanereformerEUEuropeanUnionFCEVFuelcellelectricvehicleFTFischer-TropschreactionH2HydrogenH2OWaterHVOHydrotreatedvegetableoilICEInternalcombustionengineICTInformationandcommunicationtechnologyIEAInternationalEnergyAgencyIPIntellectualpropertyIPFsInternationalpatentfamiliesLOHCLiquidorganichydrogencarriersMtMilliontonnesNZENetZeroEmissionsby2050ScenarioOEMOriginalequipmentmanufacturerPEMPolymerelectrolytemembranepHPotentialofhydrogenPROsPublicresearchorganisationsR&DResearchanddevelopmentRTARevealedtechnologyadvantageSDGsSustainableDevelopmentGoals(UnitedNations)SE-SMRSorption-enhancedsteammethanereformerSOECSolidoxideelectrolysercellSPESolidpolymerelectrolyteTRLTechnologyreadinesslevelVCVenturecapitalTableofcontentsExecutivesummaryKeyfindingsContent<<HYDROGENPATENTSFORACLEANENERGYFUTUREepo.org08ListofcountriesCACanadaCHSwitzerlandCNP.R.ChinaDEGermanyDKDenmarkEPCcountriesEuropeanPatentConvention(memberstatesoftheEuropeanPatentOrganisation)FRFranceITItalyJPJapanKRR.KoreaLULuxembourgNLNetherlandsOtherEurope(countries)MemberstatesoftheEuropeanPatentOrganisationthatarenotpartoftheEU27,i.e.AL,CH,IS,LI,MC,ME,MK,NO,RS,SM,TR,UK.RoWRestofworldUKUnitedKingdomUSUnitedStatesTableofcontentsExecutivesummaryKeyfindingsContent<<HYDROGENPATENTSFORACLEANENERGYFUTUREepo.org09ExecutivesummaryAsuccessfultransitiontoacleanenergyfuturewillbesupportedbyrapidchangesintheglobaleconomyandinpeople’spatternsofenergyconsumption,allofwhichhavethepotentialtosustainhealthiersocieties,moreequitableoutcomesandamoreresilientplanet.Technologywillbeattheheartofmanyofthesechanges,andnowheremoresothaninthescale-upofhydrogenasacleanenergycarrier.Whilestrongpolicywillbeneededtomakelow-emissionhydrogencost-competitive,itwillnotbepossiblewithouttechnologyimprovementsacrossavaluechainthattouchesnearlyeverypartoftheenergysystem.Innovatorsaroundtheworldarerampinguptheireffortsinareasasdiverseasfossilfuelconversion,electrochemicalsplittingofwater,graphenetanks,cryogenicstorage,fuelcellmotorsforaircraftandthereductionofironore.Ifhydrogenistoplayamajorroleinreducingfossilfuelemissions,itsfuturedependsonunitingawiderangeofadvancesindifferenttypesofhardwareandcreatingnewmarketsforthem.Comparedwithdigitaltechnologiessuchassoftware,hardwaregenerallytakesmoretimetodevelopandinvolvesgreaterinvestmentriskduringtheprototypingandmarketentryphases.Throughpatenting,inventorsseektoensurethattheycanrecouptheseinvestmentsininnovation.Coordinatingthedeploymentofthefullhydrogenenergyvaluechainisperhapsthemostcomplexofallthetechnicalchallengesfacingenergyengineersanditissometimeshardtodiscernthestatusofalltheunderpinningtechnologyareas.Patentsarestrongindicatorsofinnovationactivitywhichcangiveverydetailedinsightsintothestateanddirectionofthescience.Thisstudy,whichcombinestheexpertiseoftheInternationalEnergyAgencyandtheEuropeanPatentOffice,isthemostcomprehensive,globalandup-to-dateinvestigationofhydrogen-relatedpatentingsofar.Uniquely,itcoverstechnologiesforthefullrangeofhydrogensupply,storage,distribution,transformationandend-userapplications,aswellasintroducingnewsearchstrategiestocompareincrementalinnovationrelatedtoestablishedfossilfuelprocesseswithemergingtechnologiesmotivatedbytheclimatechallenge.TableofcontentsExecutivesummaryKeyfindingsContent<HYDROGENPATENTSFORACLEANENERGYFUTUREepo.org10<Keyfindings1.GlobalpatentinginhydrogenisledbyEuropeandJapan,withtheUSlosinggroundintheperiod2011–2020andhydrogen-relatedinnovationfromR.KoreaandP.R.Chinaonlystartingtoemergeattheinternationallevel.Abouthalfofinternationalpatentfamilies(IPFs)1inhydrogentechnologiesintheperiod2011–2020wererelatedtohydrogenproduction.TheotherIPFsweresplitbetweenend-useapplicationsofhydrogenandtechnologiesforthestorage,distributionandtransformationofhydrogen.With28%ofallIPFsintheperiod2011–2020andrevealedtechnologyadvantages(RTA2)acrossthethreetechnologysegmentsofthehydrogenvaluechain,EUcountriesaregloballeadersinhydrogenpatenting(including11%fromGermanyand6%fromFrance).Japanislikewiseastronginnovatorinhydrogen,with24%ofallIPFspublishedandarevealedtechnologyadvantageinallthreecategoriesoftechnology.HydrogenpatentinggrewevenfasterinJapanthaninEuropeduringthepastdecade,withcompoundaveragegrowthratesof6.2%and4.5%respectivelybetween2011and2020.TheUScontributed20%ofallIPFpublicationsrelatedtohydrogenbetween2011and2020andistheonlymajorregionwherethenumberofIPFsdecreasedduringthepastdecade.ThenumberofinternationalpatentapplicationsoriginatingfromR.KoreaandP.R.Chinaremainsmodestincomparison.However,itincreasedsteadilyintheperiod2011–2020,withaverageannualgrowthratesof12.2%and15.2%respectivelyandastrongfocusonemergingend-useapplicationsofhydrogeninthecaseofR.Korea.FigureE1Shareofinternationalpatentingandrevealedtechnologyadvantagebymainworldregionsandvaluechainsegments(IPFs,2011–2020)30%20%10%0%EUJPUSKRCNEUJPUSKRCNEUJPUSKRCNProductionStorage,distributionandtransformationEnd-useapplicationsShareofIPFsRTANote:ThecalculationsarebasedonthecountryoftheIPFapplicants,usingfractionalcountinginthecaseofco-applications.Source:author’scalculations1.510.5028%20%19%6%5%33%22%23%5%3%27%28%19%9%3%1EachIPFcoversasingleinventionandincludespatentapplicationsfiledandpublishedatseveralpatentoffices.Itisareliableproxyforinventiveactivitybecauseitprovidesadegreeofcontrolforpatentqualitybyonlyrepresentinginventionsforwhichtheinventorconsidersthevaluesufficienttoseekprotectioninternationally.ThepatenttrenddatapresentedinthisreportrefertonumbersofIPFs.2TheRTAindexindicatesacountry’sspecialisationintermsofhydrogeninnovationrelativetoitsoverallinnovationcapacity.Itisdefinedasacountry’sshareofIPFsinaparticularfieldoftechnologydividedbythecountry’sshareofIPFsinallfieldsoftechnology.AnRTAaboveonereflectsacountry’sspecialisationinagiventechnology.TableofcontentsExecutivesummaryKeyfindingsContentHYDROGENPATENTSFORACLEANENERGYFUTUREepo.org11<2.InnovationinestablishedhydrogentechnologiesisdominatedbytheEuropeanchemicalindustry,butthenewhydrogenpatentingheavyweightsarecompaniesfromtheautomotiveandchemicalssectorsfocusingonelectrolysisandfuelcelltechnologies.Withineachofthethreemaintechnologysegmentsofhydrogenvaluechains,adistinctioncanbemadebetweeni)incrementalimprovementstowell-establishedprocessesinthechemicalsandrefiningsectorsandii)emergingtechnologiesthatcouldhelpmitigateclimatechangebymakinghydrogenacleanenergyproductforamuchwiderrangeofsectors.HydrogentechnologiesprimarilymotivatedbyclimategeneratedtwiceasmanyIPFsintheperiod2011–2020thanestablishedtechnologies.Theywereparticularlyfocusedonend-useapplicationsandproductionmethods,whereasestablishedtechnologiesstillgenerateamajorityofIPFsinhydrogenstorage,distributionandtransformation.Topapplicantsinestablishedtechnologiesaredominatedbychemicalcompanieswithanextensivebackgroundintheproductionandhandlingofhydrogenfromfossilfuels.Theyarealsodiversifyingintoemergingtechnologies(suchascarboncapture,utilisationandstorage-CCUS)enablingthesupplyoflow-emissionhydrogen.TopapplicantsinemergingtechnologiesmotivatedbyclimateareledbyJapaneseandKoreancompanies,typicallyfromtheautomotiveindustry.Theirpatentportfoliosaremainlyfocusedonproductionbyelectrolysisandapplicationsbasedonfuelcellsbutalsoextendtoestablishedtechnologiesforthestorageanddistributionofliquidorgaseoushydrogen,anareaoffocusforthesecountrieswhichplantoimportstoredhydrogeninthenearfuture.Universitiesandpublicresearchinstitutionsgenerated13%ofallhydrogen-relatedIPFsbetween2011and2020,withthetoptenresearchinstitutionsaloneaccountingforabout3%ofallIPFs.TheyaredominatedbyKoreanandEuropeaninstitutionsandshowastrongfocusonclimate-motivatedhydrogenproductionmethods,suchaselectrolysis.TableofcontentsExecutivesummaryKeyfindingsContentHYDROGENPATENTSFORACLEANENERGYFUTUREepo.org12<ProductionStorage,distributionandtransformationEnd-useapplicationsEstablishedtechnologiesMotivatedbyclimateEstablishedtechnologiesMotivatedbyclimateEstablishedtechnologiesMotivatedbyclimateTop4–EstablishedAirLiquide(FR)1744494501821Linde(DE)155488740923AirProducts(US)6120301328BASF(DE)34342311213Top4–MotivatedbyclimateToyota(JP)1248114502528Hyundai(KR)1164414319Honda(JP)7484816200Panasonic(JP)5128216Top3–ResearchCEA(FR)10109211117IFPEN(FR)483048130CNRS(FR)33041217Note:IPFshavebeenallocatedtothelistedentitiesbasedontheidentificationoftheseentitiesasanindividualorco-applicantoftherelatedpatents.TechnologiesrelatedtoCCUSandCO2avoidanceinfossilfuel-basedhydrogenproduction,aswellastechnologiesforvehiclerefuelling,arelabelledinthischartas“motivatedbyclimate”.RankingisbasedonthesizeofapplicantportfoliosofIPFsinestablishedandclimate-motivatedhydrogentechnologies.Thesumoftheapplicants'IPFsreportedinthechartmayexceedtheactualsizeoftheirportfolioduetosomeIPFsbeingcountedasrelevanttotwoorthreedifferentsegmentsofthevaluechain.Source:author’scalculationsFigureE2Topinternationalapplicantsinestablishedtechnologiesandtechnologiesmotivatedbyclimate(IPFs,2011–2020)TableofcontentsExecutivesummaryKeyfindingsContentHYDROGENPATENTSFORACLEANENERGYFUTUREepo.org13<3.Whilehydrogenproductionremainsalmostentirelyfossilfuel-based,patentinghasalreadyseenamajorshifttowardsalternative,low-emissionmethods.Thisshiftanticipatesaboomforelectrolysers,afieldinwhichEuropehasgainedanedgeinnewmanufacturingcapacity.Acomparativeanalysisofpatentingtrendsinhydrogenproductiontechnologiesoverthepasttwentyyearsshowsaclearshiftofinnovationfromtraditional,carbon-intensivemethodstonewtechnologieswiththepotentialtodecarbonisehydrogenproduction.Technologiesmotivatedbyclimateconcernsgeneratednearly80%ofIPFsrelatedtohydrogenproductionin2020.Theirgrowthwaschieflydrivenbyaswiftriseininnovationinelectrolysis.Severalcategoriesofelectrolysersarecompetingforthelargeexpectedmarket,whichcouldrisefrom1GWtoover65GWperyearby2030underannouncedgovernmentpledges.Japanledpatentinginstate-of-the-artalkalinetechnologiesandmorecutting-edgePEMtechnologiesbetween2011and2020.However,investmentinmanufacturingcapacityforthesetechnologieshasnotyettakenoffthere.TheEU27andotherEuropeancountriesareactiveinbothpatentingandmanufacturing–notablyinSOECtechnologies–whilealsomakingsignificantcontributionsintermsofPEMandalkalinetechnologies.TheUSisveryactiveindevelopingPEMmanufacturingcapacity,butlessactiveininnovation,asindicatedbypatenting.P.R.Chinaisonlyasmallcontributortointernationalpatentinginelectrolysertechnologies,butisinvestingheavilyinmanufacturingcapacity,withanearlyexclusivefocusoncheaperalkalinetechnology,whichhasamuchlongerhistorybutlowerexpectationsforfutureimprovements.PublishedIPFsrelatedtohydrogenproductionfromfossilfuelshavebeendecreasingsince2007,withemergingsolutionstodecarbonisefossilfuel-basedhydrogengeneratingonlylimitedpatentingthusfar.Innovationinotherhydrogenproductiontechnologiesmotivatedbyclimatelikewiseappeartolackmomentum.Patentingactivitiesinhydrogenproductionfrombiomassorwaste(viagasificationorpyrolysis)rosesharplybetween2007and2011buthavedecreasedconsiderablysincethen.ThenumberofIPFsrelatedtowatersplittingvianon-electrolyticrouteshasalsodecreasedslightlysince2010.In2020,itrepresented12%ofthetotalnumberofIPFspublishedinthefieldofelectrolysis.TableofcontentsExecutivesummaryKeyfindingsContentHYDROGENPATENTSFORACLEANENERGYFUTUREepo.org14<FigureE3OriginsofinventionsrelatedtoelectrolysersandmanufacturingcapacityAlkalinePEMSOECCurrentmanufacturingcapacity(total:7GW)Plannedcapacityfor2025(total:47GW)Internationalpatentfamilies(2011-2020)EU27OtherEuropeUnitedStatesJapanR.KoreaP.R.ChinaOtherNote:ThecalculationsarebasedonthecountryoftheinvestorsandIPFapplicants,usingfractionalcountinginthecaseofco-applications.Source:author'scalculations(basedonannouncementsbyelectrolysermanufacturers)TableofcontentsExecutivesummaryKeyfindingsContentHYDROGENPATENTSFORACLEANENERGYFUTUREepo.org15<4.Patentingactivitiestargetingimprovementsinexistingtechnologiesforthestorageofhydrogenandtheproductionofammoniaandmethanolgrewsteadilyfrom2001to2020.However,innovationinthedevelopmentofhydrogen-basedfuelslostmomentuminthepastdecade.Purehydrogeniscurrentlytransportedeitheringaseousformbypipelinesandtubetrailersorinliquefiedformincryogenictanks.Patentingtrendssince2001showthattheseestablishedtechnologieshaveattractedincreasinginnovationeffortsoverthelasttwodecades,signallingtheindustry’sabilitytoimproveandinterestinimprovingthedeploymentandefficiencyofhydrogendistributionsystemsrightthroughtovehiclerefuelling.Whilelong-establishedactorsofthehydrogenindustryareactiveinalltechnologysegmentsofhydrogenstorageanddistribution,automotivecompanieshavealsobecomeimportantpatentapplicantsinsomeofthesesegmentsduetotheimportanceofon-boardhydrogenstoragetothecommercialisationofhydrogen-poweredvehicles.ThenumberofpublishedIPFsrelatedtotheuseofhydrogenforammoniaandmethanolproductionlikewisegrewbetween2001and2020,reflectingboththeeffortstoreducethesignificantclimateimpactoftheirproductionprocessesandtherecentinterestinthesemoleculesashydrogen-basedfuelsforthepowerandtransportsectors.Likepurehydrogenstoragetechnologies,innovationinthesefieldsischieflydrivenby(mostlyEuropean)companiesthatarealreadyspecialisedintheproductionandhandlingofhydrogenfromfossilfuels.Progressinotherhydrogen-basedfuels–forexamplesynthetickeroseneforaviationorsyntheticmethane–alsoreliesonimprovementstoefficiencyandcostreductions,butpatentdatasuggestthatinnovationinthesetechnologieslostmomentumduringthepastdecade.US-andEurope-ledeffortstodevelopsyntheticfuelshavestalledsince2011.Patentingforthecompetingtechnologiesforlong-distancetransportationofhydrogenenergyincreasedrapidlyfrom2011to2020,withcompoundaveragegrowthratesof12.5%forliquidorganichydrocarbons(LOHC)and7.8%forammoniacracking.Howevertheyonlyrepresentasmallnumberofpatentfamilies,halfofwhichstilloriginatefromscience-orientedresearchinstitutions.10080604020020012002200320042005200620072008200920102011201220132014201520162017201820192020GaseousstorageHydrogen-basedfuelsAmmoniaandmethanolproductionSource:author’scalculationsFigureE4Internationalpatentingtrendsingaseoushydrogenstorage,ammoniaproduction,methanolproductionandalternativehydrogen-basedfuels(IPFs,2001–2020)TableofcontentsExecutivesummaryKeyfindingsContentHYDROGENPATENTSFORACLEANENERGYFUTUREepo.org16<5.Patentingactivitiesforhydrogenuseintheautomotivesectorcontinuetoexpandatmuchhigherratesthanforotherend-useapplications,despitesomerecentprogresstowardstheuseofhydrogenforsteelproduction.However,innovationhasyettotakeoffsignificantlyinotherindustrialapplications,includinglong-distancetransportationusinghydrogen-basedfuels.ThestronggrowthofIPFsintransportationwasdrivenbyinnovationinfuelcellpropulsionintheautomotivesectorand,toalesserextent,short-distanceaviation(particularlydrones).PatentingactivitiesinthesefieldsarelargelydominatedbyJapaneseandKoreanautomotivecompanies,andappeartogeneratesynergieswithinnovationinPEMelectrolysis.Bycontrast,innovationininternalcombustionengines(ICE)andturbinesusinghydrogen,ammoniaormethanolasafuelhasnotyetbeenboostedbytherecentpolicymomentumbehindhydrogen,thoughthesetechnologiesarelikelytobeneededforlong-distancetransportation,particularlyforshippingandmedium-haulaviation.IPFpublicationsrelatedtotheuseofhydrogenforironandsteelproductionreboundedin2017followingseveralyearsofdecreasesince2014.Nearly40%ofpatentingactivitiesintheperiod2011–2020wereconcentratedamongasmallnumberofsteelproducersandequipmentsuppliers.ThelatterareledbyEuropeancompaniesandappeartobeinamoreadvancedpositiontointegratethemostadvancedhydrogentechnologies(suchasdirectreducedironandsmeltingreduction)intoanewgenerationofproductionequipment.Thelevelofpatentinginotherend-useapplicationsofhydrogeninbuildingsandelectricitygenerationdecreasedduringthe2010s,denotingalackofinterestinbuildingapplicationsinregionsotherthanJapanandagrowinginterestinbatteriesasanalternativesolutionforstationaryelectricitystorage.2011201220132014201520162017201820192020AutomotiveFuelcells647210598107187170171182234Internalcombustionengines80675169584754607961AviationFuelcells16193418222530252371Gasturbines6121017141516121516ShippingFuelcells3515128141081619Internalcombustionengines5101611111514121624Source:author’scalculationsFigureE5Internationalpatentingtrendsinhydrogen-basedpropulsiontechnologies,2011–2020TableofcontentsExecutivesummaryKeyfindingsContentHYDROGENPATENTSFORACLEANENERGYFUTUREepo.org17<6.Patentingunderpinsfundraisingbystart-upsdevelopinghydrogenbusinesses,withmorethan80%oflater-stageinvestmentinhydrogenstart-upsgoingtocompanieswhichhadalreadyfiledapatentapplication,indicatingtheimportanceofpatentingforyoungfirmsinthisarea.Almost70%ofthe391start-upswhichhaveactivitiesrelatedtohydrogenholdatleastonepatentapplication.Indeed,themajorityofstart-upsinthehydrogensectorstarttheirjourneyinthelaboratoryandrelyeitherontherecombinationofexistingtechnologiesoronleveragingemergingtechnologiestoaddressfundamentaltechnicalproblems.ThesetypesofventuresrequiresignificantinvestmentsinR&Dandengineering,andtypicallyrelyonpatentstosecurethoseinvestments.Only117ofthe391start-upsfiledIPFsinthescopeofthisstudyduringtheperiod2011–2020,mostlyintheEU(34%)andtheUS(33%),buttheyattracted55%oftheventurecapitalfundingprovidedforearly,lateandIPO/post-IPOstages.Abroaderanalysisofventurecapitaldealsinvolvinghydrogenstart-upswithorwithoutpatentapplicationsshowsthattheshareofthetotalamountoffundingraisedbycompanieswithpatentapplicationsgrowsconsistentlywhenmovingtolaterfundingrounds(FigureE6).Morethan80%ofthelater-stageinvestmentinhydrogenstart-upsisreceivedbycompanieswhichhadalreadyfiledtheirfirstpatentapplication.Thispercentageincreasesto95%whenfundingacquiredintheIPO/post-IPOstageistakenintoconsideration.TheIPFsofhydrogenstart-upsmainlytargettechnologiesprimarilymotivatedbyclimate,suchaselectrolysisandfuelcells.However,aboutathirdofthemalsoshowpatentingactivitiesinestablishedtechnologies,usuallyincombinationwithIPFsinclimate-motivatedtechnologies.Thisisthecaseinparticularinhydrogenproduction,thussignallingattemptstoreducethecarbonimpactofhydrogenfromgasandotherfossilfuels.0.01bnFigureE6Shareoffundingaccruingtostart-ups,byfundingstage,2000-2020600550500450400350300250200150100500Amountraised(USD)Numberofdeals/companies6.00bn5.50bn5.00bn4.50bn4.00bn3.50bn3.00bn2.50bn2.00bn1.50bn1.00bn0.50bn0.00bnEarlystageLaterstageIPO/post-IPOstageAfterfilingapplicationBeforefilingapplicationNopatentNumberofdealsNumberofcompaniesNote:Fundingdealsareonlyincludedforcompaniesthatwerefoundedbetween2000and2020.Thereferencedatewithrespecttothepatentfilingistheearliestprioritydatecalculatedforthesetofpatentfamiliesassignedtothespecificcompany.CleantechGroup,CrunchbaseandDealroomhavebeenusedasdatasourcesforfundingrounds.Early-stagefundingcontainsthefollowinginvestmenttypes:Seed,SeriesA,SeriesB.Later-stagefundingcontainsthefollowinginvestmenttypes:SeriesC-F.IPO/post-IPOstage:non-equitytypetransactionsarenotincludedinthisstage.Reportedfundingatthepost-IPOstageislimitedtoprivateinvestmentsinpublicequitytypesofinvestments,thusexcludingadditionalpublicsharesissues.Source:author’scalculations2.03bn0.54bn0.87bn4.87bn0.48bn0.74bn5.14bn0.20bn3.44bn6.09bn5.35bn247505227985620TableofcontentsExecutivesummaryKeyfindingsContentHYDROGENPATENTSFORACLEANENERGYFUTUREepo.org18<7.Theuneventrendsinhydrogen-relatedpatentingacrosstechnologiesandregionsindicateopportunitiesforpolicyactiontohelprealiseanetzeroemissionsfuture.Despiteoverallpositivesignalsfromthegrowthofpatentingactivityinhydrogentechnologies,thereareseveralareasofconcern.Therelianceofhydrogentechnologiesonacomplextechnicalvaluechainmeansthatthewidespreaduseoflow-emissionhydrogenwillonlyproceedasquicklyastheweakestlinkinthechain.Theemphasisofinnovatorsonhydrogenproductionisverywelcome,andwillleadtocostreductionsovertime,butcostandperformanceimprovementsarealsoneededinareassuchashydrogen-basedfuelssynthesisandend-useapplications.Whilecostreductionsintheseareasarewidelyanticipatedinanalysts’economicmodelsofthefutureenergysystem,patentdatasuggestthatinventorsarenotyetincentivisedtomakethemareality.Theriskofamismatchinsupplyanddemandtechnologiesshouldbetakenseriouslybygovernments.Thevarietyofelectrolysersolutionsbeingdevelopedinlaboratoriesand,morerecently,incommercial-scalefactorieshascreatedamomentumforinnovationthatissupportedbyeconomiccompetitionbetweencompaniesandregions.Thereisagoodcaseforgovernmentstosteerinnovationtowardsnovelmanufacturingtechniques,reducedrelianceonsomecriticalmineralsortheuseofdesirableinputssuchasbrineorcontaminatedwater,andthegeneraldirectionisalreadyveryencouraging.However,investmentsintothedeploymentofthesetechnologiesdependsontherebeingwillingpurchasersoflow-emissionhydrogen,whichinturndependsontheexistenceofappropriateandcompetitivetransformationandend-usetechnologies.Unlessso-called“drop-in”hydrogen-basedfuelsareavailableonthemarket,orthetechnologiestoswitchfromfossilfuel-basedhydrogenarewidelyaccessibletoconsumersandbusinessesaroundtheglobe,investmentwillbelimited.Governmentsplayakeyroleinsettingtheresearchagendaandadoptingpoliciesthatincentivisetheprivatesectortoinvestininnovation.Thepatentdataclearlyshowsthatestablishedplayersareheavyweightsinhydrogenpatentingandarecapableofexpandingintonewmarketsegments.Automotivecompaniesandchemicalcompaniesthatareactiveinfuelcellsandelectrolysisareaclearexample.Sendingsignalsabouttheneedtotransitiontocleanerfuelstocompaniesintheironandsteel,aviationandshippingsectorswillstimulatetechnologyeffortsamongincumbentsandalsocatalysenewstart-ups.Suchsignalscanbebasedonregulation,marketincentivesorfinancialtransfers,coupledwithsupportforinnovativeprojects.Similarly,patentingtrendsfortheuseofhydrogentoupgradebiofuelsandforstationarypowergenerationneedanewimpetus.Anotherareatobemonitoredinfuturestudiesofhydrogenpatentingforacleanenergyfutureistheproductionofhydrogenfromfossilfuels.Toreduceemissionssignificantly,thisestablishedsectoroftheeconomycannotcontinuewithincrementalinnovationstoimproveefficiency.Allfossilfuel-basedtechnologiesshouldbealignedwithclimatemotivationsifthesetechnologiesaimtohavearoleinanetzeroenergysystem.TableofcontentsExecutivesummaryKeyfindingsContentHYDROGENPATENTSFORACLEANENERGYFUTUREepo.org19<1.IntroductionToday,thereisanearuniversalconsensusthathydrogenisoneofthemeansbywhichafullydecarbonisedfuturecanberealised.Expectationsforthescale-upofhydrogentomeetcleanenergygoalshavecontinuedtogrowin2022,anditiswidelyunderstoodthatthisoutcomehingesonreductionsincostsofhydrogen-relatedequipment.However,thefullscopeanddynamicsofthistransitionremaindifficulttograsp.Thereisoftenlittleawarenessofwhichelementsofthevaluechainneedtocometogethertoconnecthydrogensupplytoawiderrangeofhydrogenapplications,wherenovelsolutionsarerequiredtosupplementtriedandtestedtechnologies,andwhichindustryactorswilldrivethesetransformations.Thepurposeofthisstudyistoaddressthesequestionsbyprovidingacomprehensiveoverviewoftheevolvinghydrogentechnologylandscapeusingpatentdataasameasureofinnovation.1.1Whyhydrogen?Therapidchangeinfortuneforhydrogenasapotentialwidely-usedenergycarrierrelateslargelytothreenewconsiderationsforenergyplannersthatareunrelatedtohydrogen’sunderlyingtechnologies:—Countriesandcompanieshavesettheirsightsoneliminating–notjustreducing–theimpactsoffossilfuelemissionsfromtheirenergysystems.Thistarget,oftenreferredtoas“netzeroemissions”,hasfocusedattentiononhowtoavoidfossilfuelemissionsinallsectors,includingsectorswherefossilfuelshavethelargestcomparativeadvantage,suchasheavyindustryandlong-distancetransportation(IEA,2021).Amongthefewalternativesforthesesectors,hydrogenandothercombustiblefuelsthatcanbemadefromithavethemostattractivecharacteristicsintermsofenergydensity,storabilityandchemicalproperties.—Mostofthesenetzeropledgesbycountriesandcompaniesset2050asthetargetyear,inlinewithclimatescience.Havinglessthanthreedecadestoradicallyoverhaultheenergysystem,transportsystem,buildingstockandindustrialprocessesintandemrequireslargesumsofcapitaltobemobilisedquickly,includingforinfrastructure.Thetightnessofthetimelinegiveshydrogenanadvantagebecauseitcanlinknewassetswithexistinginfrastructure,suchasforthetransportandstorageofnaturalgasandoil.—Finally,thepaceofimprovementstothecostsandperformanceofwindandsolarelectricity,aswellasbatteries,hasforcedashiftinconsensusamongenergyplanners.In2021,investmentinwind,solarandbatteriesrepresented40%oftheglobalelectricitysectorinvestment,morethanthreetimesthesizeoftheinvestmentinfossilfuelpowergeneration(IEA,2022a).Thereisnowabroadexpectationthatthemostsecureandcompetitiveenergysystemofthefuturewillbeorientedaroundvariablerenewableelectricity,raisingthechallengeofhowtodeliveritaffordablytoasmanyenergyusesaspossible.Producinghydrogenfromwaterusingelectricityisamongthemosteffectivewaystostorethiselectricityoverlongperiodsandtherebyuseitinplacesthatarehardtoreachwithelectricityorforpurposesthatdonotmatchthetimeprofileofrenewablepowergeneration.Hydrogenisnotanenergysourcebutanenergycarrier,whichmeansthatitspotentialrolehassimilaritiestothatofelectricity.TheIEAreport“TheFutureofHydrogen”presentsthevariouswaysinwhichdifferentenergysourcescanbetransformedintohydrogen,thedifferentwaysinwhichhydrogencanbestoredanddistributed,andthedifferentapplicationsinwhichitcanbeused(IEA,2019).Likeelectricity,hydrogen’sstrengthliesinitsflexibilitytoperformavarietyofenergy-relatedtaskswithadiversityofenergyinputsandnocarbondioxideemissionsatthepointofuse.Thisflexibilityhasthepotentialtobolstertheoverallsecurityofenergynetworksiftheinterconnectionsbetweenelectricityandhydrogenvaluechainsarewellplanned.TableofcontentsExecutivesummaryKeyfindingsContentHYDROGENPATENTSFORACLEANENERGYFUTUREepo.org20<1.2Theneedtorampupsupplyanddemandforlow-emissionhydrogenWhileitispossibletoproducehydrogenfromarangeofenergyinputs,notallrouteswillleadtoanemissionsreduction.In2021,around94Mtofhydrogenwereproducedworldwide,withanenergycontentequivalentto2.5%ofglobalfinalenergyconsumption.Lessthan1%wasproducedusinglow-emissionproductiontechnologies(IEA,2022b).Thishydrogenwasproducedfortwomainsectors:oilrefiningandchemicalsproduction(includingammoniaforfertilisers).Tomakeavaluablecontributiontoenergytransitions,changesareneededonboththesupplyanddemandsides.—Onthesupplyside,onlylow-emissionhydrogeniscompatiblewiththedecarbonisationoftheenergysystem.Low-emissionhydrogenisproducedfromwaterusingelectricitygeneratedbyrenewablesornuclear,fromfossilfuelsprocessedinfacilitiesequippedtoavoidCO2emissions(e.g.viaCCUSwithahighcapturerate)andwithminimalassociatedmethaneemissions,orderivedfrombioenergy.Whilesomeofthesesolutionsarealreadybeingdeployed,othersarestillatanearlydevelopmentstage,andallofthemrequirefurtherdevelopmentandscalinguptoensurefullcost-competitiveness.—Onthedemandside,hydrogenneedstopenetratemoresectorsinadditiontochemicalsandrefining.Thesenewapplicationsaremostly“energy”applications,suchastransport,high-temperatureheatingandastheenergyinputformakingreplacementfuelsforshippingandaviation(so-calledlow-emissionhydrogen-basedfuelssuchasammoniaorsynthetickerosene).Newnon-energyapplicationsincludereplacingcoalandnaturalgasasareducingagentforsteelmanufacture.Aswithhydrogensupply,theseapplicationstypicallyinvolvetheimplementationofnewtechnologies,manyofwhichhaveyettobedemonstratedonalargescale.Demandineachsectorwilldependontheadvantagesofthesehydrogen-basedoptionscomparedwithotherdecarbonisationsolutions.Governmentactiononboththesupplyanddemandsidesisgrowing.Atotalof26governmentshaveadoptednationalhydrogenstrategies,includingnineadoptedsinceSeptember2021(IEA,2022b).InEurope,whereRussia’sinvasionofUkrainehasdisruptednaturalgassupplies,theEU’sresolvetoquicklyscale-uphydrogenfromrenewableelectricityhasstrengthened.InMay2022,theEuropeanCommissionproposedthatEUdemandcouldriseto20milliontonnesin2030,whichcouldreplace27billioncubicmetresofnaturalgasdemandandfourmilliontonnesofoildemand.GiventheEU’sdomesticresourcesformakinghydrogenfromrenewableelectricityandthechallengesofsucharapidscale-up,theproposalsuggestedthathalfofthistotalwouldneedtobeimportedfromoutsidetheEU.Atpresent,facilitiesforinternationaltradeinhydrogendonotexistcommercially,butconsiderableattentionisbeinggiventotheexplorationofhowexistinginfrastructure–suchasthatfortradingammoniaornaturalgas–couldbeusedforthispurpose.TableofcontentsExecutivesummaryKeyfindingsContentHYDROGENPATENTSFORACLEANENERGYFUTUREepo.org21<Figure1.1Supplyanddemandforlow-emissionhydrogenintheIEAnetzeroemissionsscenarioNote:OneMtH2containstheenergyequivalentoftheannualenergyconsumptionoftwomillionaverageEUhouseholds.Norway’snaturalgasproductionin2021wasequiva-lentto35MtH2.Source:author’scalculationsDemandMilliontonnesofhydrogen4003002001000202120302050IndustryTransportInputstoH2-basedfuelsproductionsPowergenerationBuildingsOilrefiningBiofuelsproductionSupplyMilliontonnesofhydrogen4003002001000202120302050WaterelectrolysisFossilfuelswithCCUSBioenergyTableofcontentsExecutivesummaryKeyfindingsContentHYDROGENPATENTSFORACLEANENERGYFUTUREepo.org22<Box1:InvestorsareplacingbetsonavarietyofhydrogentechnologiesInresponsetogovernmentactionandraisedexpectationsforthecompetitivenessofcleanenergy,morecapitalisflowingtokeyhydrogentechnologies.Moreelectrolysercapacitythatcanproducehydrogenfromwatercameonlinein2021thaninanypreviousyear–almost210megawatts(MW).Intotal,closeto900MWofelectrolysercapacityisplannedforoperationin2022,whichwouldproduceroughly0.1milliontonnesofhydrogenperyear.MorethanUSD1.5billionwasspentonprojectsatadvancedstagesin2021(IEA,2022b).Theseprojectsarenowreachingthecommercialscalesofindustrieslikerefiningandfertilisersthattheysupply.A150MWprojectcameonlineinP.R.Chinain2022,and200MWand260MWprojectshaveenteredconstructionintheNetherlandsandP.R.China.Before2020,noprojectworldwidehadreached10MWusingthesetechnologies.3Ifallprojectscurrentlyatanadvancedstageofplanningweretoberealised,by2030theproductionoflow-emissionhydrogencouldreach16milliontonnesperyear,with9milliontonnesbasedonelectrolysisand7milliontonnesbasedonfossilfuelswithCCUS.Tosupplytheseprojects,investmentisalsoneededfromthecompaniesdevelopingandintegratingthetechnologies.Thesecompanieshavebeenverysuccessfulinraisingfundinginrecentyearsdespitetheeconomicimpactsofthepandemicand,morerecently,inflation.Forexample,theinstalledcapacityofelectrolyserfactorieshasrapidlyincreased,reaching8GWin2022.Basedoncompanyannouncements,globalmanufacturingcapacitiescouldreach65GWperyearby2030andincludegigawattproductionlinesforthreeofthefourcompetingelectrolysertypes:alkaline,polymerelectrolytemembrane,andsolidoxideelectrolysercell(announcementsrelatedtoanionexchangemembraneelectrolysersarestilllimitedduetoitslowertechnologicaldevelopment).Companieshavenothaddifficultyincreasingtheircapitalisationsignificantlytofundtheseexpansions,aswellasgrowthinotherrelatedtechnologies.AportfolioofpubliclytradedcompaniestrackedbytheIEA,whosesuccessdependsontheincreasingdemandforlow-emissionhydrogen,iswortharoundtentimesmoretodaythanitwasfiveyearsago,atUSD33billion,andfourtimesmorethanattheendof2019.Atanearlierstageoftechnologydevelopment,venturecapital(VC)investmentsinhydrogentechnologiesboomedin2021,asinvestorsembracedawiderangeoftechnologyopportunitiesthatcouldhelpdrivemorelow-emissionenergyintoallsectorsandapplications.Early-stagedealsthatbackhigherrisk,innovativeideas–Seed,SeriesAandBrounds–reachedoverUSD1billion,nearlysixtimestheequivalentvaluein2020.Overall,hydrogenaccountedforabout10%ofallearly-stageVCinvestmentsincleanenergystart-ups,comparedwith5%in2020.3Therearesomeexceptions.Somelargeprojectsweredevelopedinthe20thcenturyinAfrica,EuropeandLatinAmerica,butthesewerenotdevelopedwithaviewtoreducingemissions,andmostweredecommissionedmanydecadesagoasnaturalgasbecamethepreferredhydrogensource.Figure1.2Electrolysercapacitybyregionbasedonprojectpipelinesto2030EuropeMiddleEastAustraliaLatinAmericaAfricaAsiaRoWNotes:Onlyprojectswithadisclosedstartyearforoperationareincluded.Projectsatveryearlystagesofdevelopment,suchasthoseinwhichonlyaco-operationagreementamongstakeholdershasbeenannounced,arenotincluded.Source:IEA,2022"GlobalHydrogenReview"NewinstalledcapacitybyregionGW35302520151050202220232024202520262027202820292030TotalinstalledcapacitybyregionGW120100806040200202220232024202520262027202820292030TableofcontentsExecutivesummaryKeyfindingsContentHYDROGENPATENTSFORACLEANENERGYFUTUREepo.org23<Therewerethreemajortrendsinearly-stagedealsin2021:theemergenceandfundraisingsuccessofstart-upsofferingprojectdevelopmentservices;thestrongperformanceoffirmswithtechnologiesforpotential(non-automotive)hydrogenusers;andmoreinterestinnon-electrolysisroutestolow-emissionhydrogen.Inlinewiththebroadunderstandingthathydrogen’skeypositioninthetransportsectormightbeinlonger-distancemodes,notableinvestmentsin2021wereledbyaviationcompaniesratherthanroadvehiclefirmsandwenttostart-upsdevelopinghydrogen-poweredaircraft.Figure1.3Venturecapitalinvestmentincleanenergystart-upsrelatedtohydrogen,2015–2022Electrolysers,componentsandinstallationFuelcells,componentsandinstallationH2storageandinfrastructureH2-basedfuelsNon-electrolysisH2productionOtherend-usetechnologyProjectdevelopmentandservicesVehiclesanddrivetrainsNumberofdealsSource:IEA-EPOcalculationsbasedonCleantechGroupdatabase(2022),CrunchbaseandDealroomdata2022dataareonlyforH12022EarlystageAmountraised(USDbillion)Numberofdeals1.000.800.600.400.200.0020152016201720182019202020212022131721174567830.040.040.150.140.181.040.340.0316LaterstageAmountraised(USDbillion)Numberofdeals1.000.800.600.400.200.00201520162017201820192020202120220.060.060.100.390.490.121.010.41798151417275807060504030201002824201612840TableofcontentsExecutivesummaryKeyfindingsContentHYDROGENPATENTSFORACLEANENERGYFUTUREepo.org24<1.3Whythisreport?Innovationinawiderangeoftechnologieswillbeindispensableforreducingthecostsofproducingandusinghydrogenandunlockingmoreapplicationsofhydrogeninhard-to-abateindustries.Lowercostsnarrowthefinancegapthatgovernmentshavetobridgethroughregulationorfundinginordertomakehydrogenanattractiveproductforusers.Byincreasinghydrogendemandinthisway,investmentinthevaluechainwillrise,furtherstimulatinginnovationandachievingcostreductionsthrougheconomiesofscale.Inthenear-term,researchersandbusinessdevelopersneedtherightconditionstofindandtestnewapproachesthathavethepotentialtomakelow-emissionhydrogenmorecompetitive.Alongsideinvestmentinfirst-of-a-kindprojectsthatdemonstratesafe,commercialoperation,sustainedtechnologyimprovementsthroughinnovationprovidethebestchanceofenteringavirtuouscycleofcostreductionanddeployment.Manygovernmentsandcompaniesaroundtheworldarethereforeaskingwhetherinnovationforhydrogentechnologiesisadequate,whichpartsofthevaluechainaremakingprogressorlaggingthemost,andinwhichdirectiontheyshouldfocustheirinnovationefforts.Understandingthebiggerpicturealsorequiresnotonlyidentifyingthecountriesandindustryplayersthatareleadingongoingprogressinhydrogentechnologies,butalsoaskingwhetherinnovationforlow-emissionhydrogenisnowoutpacingthatforfossilfuel-basedandlegacyhydrogenproductionmethods.Incrementalinnovationintraditional,pollutingroutesmakescost-competitivenessamovingtargetandlow-emissiontechnologieswillhavetorunfastertocompete.Thesheerbreadthofhydrogen-relatedtechnologiessignificantlycomplicateshowthesequestionscanbereliablyanswered.—Onthesupplyside,itisimportanttoincludeinventionsthatseektoimprovetheperformanceandcostsofextractinghydrogensustainablyfromwater,butalsothosethatlookforotherwaystoproducelow-emissionhydrogenfrombiomass,inorganicmaterialsorfossilfuels,includingpotentialfutureapproacheslikemethanepyrolysisaswellascomprehensiveCO2capture.Thelattercategoryposesaparticularchallenge.DistinguishinginventionsthatseektosustainunabatedfossilfuelusefromthosethatenabletheapplicationofCCUSisgenerallynotfeasible.Forexample,anyimprovementtotheefficiencyofsteamreformingofnaturalgastohydrogencouldimprovetheeconomicsofproductionwithorwithoutCCUS.—Onthedemandside,manypertinentpatentapplicationsdonotspecifyhydrogenintheirtitlesandsearchstrategiesmustbedevisedtoidentifyinventionsthatcouldreducethebarrierstoadoptinghydrogeninthetransport,industrialandbuildingssectors.Inaddition,manysuchinventionsarenotspecifictoasinglesectorandcouldbeappliedtodifferentend-uses.Fuelcellsareprimeexamplesofthissituation.—Inbetweensupplyanddemand,thedifferentmeansofstorage,distributionandtransformationoftenoverlap.Forexampleitmaynotbepossibletoallocateaninventionforcontainingliquefiedhydrogentoeitherstationaryhydrogenstorageorseabornetransportofhydrogen.Thereisasuiteoftechnologiesbeingdevelopedfortransforminghydrogenintoderivativeproductsthatcanbemoreeasilystoredandusedinturbinesandengineswithminimalmodifications.Whilethesetechnologiescouldincreasedemandforhydrogen,thefinalsectoral“demand”isnotforhydrogenitselfbutforafuelsuchasammoniaorsynthetickerosene.Inthecaseofammoniamanufacture,itisgenerallynotpossibletodistinguishinventionsforlow-emissionammoniafuelfromthosefortraditionalfertiliserapplications.Inthecaseofsynthetickerosene,theaviationsectordoesnotneedtoinnovatetoaccommodatethis“drop-in”fuel,leadingtoanunderrepresentationofaviationwhenlookingatend-useapplicationsseparatelyfromtransformation.TableofcontentsExecutivesummaryKeyfindingsContentHYDROGENPATENTSFORACLEANENERGYFUTUREepo.org25<Thisstudyusespatentinformationtotracktechnicalprogressinhydrogen-relatedtechnologiesandassessestheiralignmentwiththeneedsofenergytransitions.Thedatapresentedinthisreportshowtrendsinhigh-valueinventionsforwhichpatentprotectionhasbeensoughtinmorethanonecountry(IPFs).Whilesomelong-termtrendsareexaminedinthereport,mostoftheanalysisisfocusedonthelastdecade(2011–2020)inordertoprovideanup-to-datepictureofthecurrentstateofplaybyhighlightingtechnologyfieldsthataregatheringmomentumandthecross-fertilisationtakingplace.Therefore,thestudyisdesignedasaguideforpolicymakersanddecision-makerstoassesstheircomparativeadvantageatdifferentstagesofthevaluechain,shedlightoninnovativecompaniesandinstitutionsthatmaybeinapositiontocontributetolong-termsustainablegrowth,anddirectresourcestowardspromisingtechnologies.Figure1.4Cartographyofhydrogen-relatedtechnologiesNotes:Refiningisnotanalysedinthereportduetothedifficultyofreliablyassessingtherelevanceofhydrogenininventionsforwhichapatentapplicationhasbeenfiledinthisfield.Duetoindistinguishabilityoftechnologies,methodsfortheproductionofammoniafromhydrogenareincludedonlyunderchemicalproductionapplicationsandareomittedfromhydrogentransformation,despiterecentinventiveefforttofindnewmeansofintegratingammoniaandlow-emissionhydrogenproduction.Otherend-useapplicationsmaybedirectlybasedonhydrogen,aswellasonammoniaandmethanolderivedfromhydrogen.HydrogenproductionStorage,distributionandtransformationEnd-useapplicationsofhydrogenChemicalproduction(methanolandammonia)NaturalgasreformingFromotherfossilfuelsAsaby-productStoragebycompressionStoragebyliquefactionPipelines,ships,trucksAuxiliaryequipment(pumps,valvesetc.)ofwhich,forvehiclerefuellingofwhich,integrateCCUSoravoidCO2ElectrolysisofwaterFrombiomassorwasteOtherwatersplittingtechnologiesTransformationtoaliquidhydrocarbonfuelReconversionofammoniatohydrogenReversiblestorageinaliquid(LOHC)ReversiblestorageinasolidTransport(road,air,waterborne,rail)Buildings(heatandpower)ElectricitygenerationIronandsteelproductionUpgradingofbiofuelsImprovementstoestablishedtechnologiesEmergingtechnologiesmotivatedbyclimateconcernsTableofcontentsExecutivesummaryKeyfindingsContentHYDROGENPATENTSFORACLEANENERGYFUTUREepo.org26<4Thereisatechnicalargument,basedonformalenergyaccountingstandards,toallocatehydrogenuseinbiofuelsupgradingandelectricitygenerationtothe"transformation"category.However,forthepurposesofthisreport,wehaveplacedthemamongthe"applications"becausetheydonotdirectlytacklethesamesetofchallengesastheotheritemsunder"storage,distributionandtransformation";namely,thecontainmentorconversionofhydrogensothatitsenergycanbeusedatalatertimeorinadifferentlocation.5End-useapplicationsofteninvolvetheuseoffuelcellsinvehicles,buildingsorelectricityproduction.Internationalpatentfamiliesrelatedtohydrogen-basedfuelcellshavethereforebeenidentifiedinthecontextofthisstudy.Thiscorrespondstoaspecificandrelativelynarrowdefinitionoffuelcellspatents.Incomparison,thededicatedsectionoftheEPO'sY02taggingschemeforclimatechangemitigationtechnologiesisbroader,asitreferstoallpossibletypesoffuelcells.WiththecombinedexpertiseofboththeEPOandIEA,thereporthasbeenabletomaphydrogen-relatedtechnologiestopatentdatawithbothrelevanceandprecision.TheanalysisaimstobeinclusiveofallthetechnologiestrackedbytheIEAaspotentialcontributorstoanetzeroemissionsfuture.WhileexistingpatentclassificationsystemsandtheEPO’sY02taggingschemeforclimatechangemitigationtechnologiesalreadycontaindedicatedclassesforsomehydrogen-relatedtechnologies(suchasfuelcells),theyarenotsystematicallyalignedwiththeIEAapproachtoanalysingenergysystemsinalltheircomplexity.TheexpertiseoftheEPOwasthereforeusedtoidentifyallrelevanttechnologieswithintheuniverseofpatentapplicationsanddesignsearchstrategiesthatfairlypresenttherelevanttrends.Theresultingscopecoversthewholevaluechainascomprehensivelyaspossible,splitintothreecategories:1.Hydrogenproduction.Thesearetechnologiesthatseektoimprovetheperformanceorreducethecostsofprocessestoisolatehydrogenfromanyfeedstockthroughtheapplicationofenergy.2.Storage,distributionandtransformation.Thesearetechnologiesthatfacilitatetheuseofsuppliedhydrogenatadifferentgeographicallocationand/oradifferentpointintimefromitsproduction.Inthecaseofhydrogentransformedtohydrogen-basedfuels(ammonia,methanol,synthetichydrocarbons),theproductthatisultimatelyusedisnotintheformofhydrogen.43.End-useapplications.Thesearetechnologiesthatseektomakeitmoreattractiveorcheapertousehydrogentomakeproductsorsupplyenergyservices,includingtransportation,heatandpower.5Foreachcategory,thepatentanalysishasbeenfurthersplitintotwogroupingstorevealthetrendsforestablishedhydrogentechnologiesthatarealreadyemployedintheindustryandfornewly-emerginghydrogentechnologiesmotivatedbyclimatethatcancontributetoachievingnetzerofossilfuelemissions.Inthecaseofstorage,distributionandtransformation,thissplithelpstoshowwhetherinventionsarediversifyingawayfromestablishedapproachesandtowardsgreatercompetitionbetweenoptions.Thisdesignallowsforafine-grainedcomparativeanalysisofpatentingtrendsatdifferentstagesofthevaluechain,alsobyspecificallyassessingtheuptakeandimpactofinnovationbasedonnewtechnologyparadigmssupportingtheenergytransition.1.4StructureofthereportChapter2providesahigh-leveloverviewofpatentingtrendsinhydrogentechnologiesoverthepasttwodecades.Itbenchmarkstheemergenceofnewtechnologyparadigmsatdifferentstagesofthehydrogenvaluechainagainstincrementalprogressachievedinestablishedtechnologiesduringthatperiod,andoffersageographicperspectiveonhydrogeninnovationecosystemsatglobalandregionallevels.Thefollowingthreechaptersspecificallyaddressthedynamicsofinnovationatthedifferentlevelsofhydrogenvaluechains.Chapter3focusesontheproductionofhydrogenandanalysestrendsinbothestablishedfossilfuel-basedproductionroutesandemerginglow-emissionalternativessuchaswaterelectrolysis.Technologiesenablingthestorage,distributionandtransformationofhydrogenareaddressedinChapter4.Finally,Chapter5examinespatentingtrendsrelatedtoestablishedandemergingindustrialapplicationsfromhydrogen,rangingfromtheproductionofammoniaandmethanoltotheuseofhydrogentodecarbonisetransportindustriesorironandsteelproduction.TableofcontentsExecutivesummaryKeyfindingsContentHYDROGENPATENTSFORACLEANENERGYFUTUREepo.org27<2.Hydrogenpatents:anoverview2.1GeographyofhydrogeninnovationPublishedinternationalpatentfamilies(IPFs)areusedinthestudyasauniformmetrictomeasurepatentingactivitiesinthedifferentcategoriesofhydrogen-relatedtechnologies.Thissectionreportsontheglobalgeographyofhydrogeninnovation,asidentifiedbythelocationsoftheapplicantsandinventors6ofIPFsforhydrogen-relatedtechnologies.Thedistributionofinventiveactivitiesbetweenthemainglobalinnovationcentresisanalysedasafirststep.AsecondpartofthesectionfocusesonthemainhydrogeninnovationclustersinAsia,EuropeandNorthAmerica.Figure2.1providesatrendanalysisofhydrogen-relatedIPFsoriginatingfromtheworld’sfivelargestinnovativeregions–theEUcountriesbeingconsideredasablock–since2001.ItshowsaclearleadonthepartoftheEU,JapanandtheUS,butalsodifferenttrendsineachofthesecountries.BoththeEUandJapanshowasustainedgrowthofhydrogenpatenting,withasteadyincreaseinEuropeintheperiodfrom2001to2020andastagnationinJapanintheperiodfrom2006to2015followedbyarapidgrowthinmorerecentyears.Asaresult,hydrogenpatentinggrewevenfasterinJapanthaninEuropeduringthepastdecade,withcompoundaveragegrowthratesof6.2%and4.5%respectivelybetween2011and2020.Bycontrast,hydrogenpatentingdecreasedsignificantlyintheUSafter2015,andtheUSwasadistantthirdtotheEUandJapanin2020,despitebeingthemaininnovatorinhydrogenin2011intermsofvolumeofinternationalpatentfamilies.ThenumberofinternationalpatentapplicationsoriginatingfromR.KoreaandP.R.Chinastillremainsmodestincomparison.However,ittookoffintheperiod2011–2020,withaverageannualgrowthratesof12.2%and15.2%respectively.6ThecountryoftheapplicantisusedinthestudytoidentifythecountryoforiginoftheIPFs.Thecountryoftheinventor(s)isusedspecificallytotrackinventiveactivitiesatthemorelocallevelwhenanalysinghydrogeninnovationclusters.500400300200100020012002200320042005200620072008200920102011201220132014201520162017201820192020CNKRUSJPEUNote:ThecalculationsarebasedonthecountryoftheIPFapplicants,usingfractionalcountinginthecaseofco-applications.Source:author’scalculationsFigure2.1Patentingtrendsbymainworldregions(IPFs,2001–2020)TableofcontentsExecutivesummaryKeyfindingsContentHYDROGENPATENTSFORACLEANENERGYFUTUREepo.org28<Table2.1showstheseregions’sharesofIPFsinthemainsegmentsofhydrogenvaluechainsduringthelastdecade(2011–2020).Italsoprovidesinsightsintotheirrespectivespecialisationprofiles,asmeasuredbytherevealedtechnologyadvantage(RTA)index.AnRTAindicatesacountry’sspecialisationintermsofhydrogeninnovationrelativetoitsoverallinnovationcapacity.Itisdefinedasacountry’sshareofIPFsinaparticularfieldoftechnologydividedbythecountry’sshareofIPFsinallfieldsoftechnology.AnRTAaboveonethusreflectsacountry’sspecialisationinagiventechnology.TheseindicatorsclearlyconfirmtheleadershipofEuropeandJapaninhydrogeninnovation,withcleareconomiesofscopeacrossthevaluechainsegments.With28%ofallIPFsintheperiod2011–2020(including11%fromGermany,6%fromFranceand3%fromtheNetherlands)andanRTAinallthreemainsegmentsofhydrogentechnologies,EUcountriesrankfirstinhydrogenpatenting.Japanisaclosesecondwith24%ofallIPFsandlikewisehasanRTAinallthreecategoriesoftechnologies.Ithasinparticularastrongspecialisationinend-useapplicationsofhydrogen.R.Koreaistheonlyothermajorinnovationcentrethatshowsarevealedtechnologyadvantage,alsointhedomainofend-useapplicationsofhydrogen.Apartfromthesefivemaininnovationcentres,theUnitedKingdom,SwitzerlandandCanadaalsostandout,withastrongRTAinmostsegmentsofhydrogentechnologies.HydrogenproductionStorage,distributionandtransformationIndustrialapplicationsShareofallhydrogen-relatedIPFsShareofIPFsRTAShareofIPFsRTAShareofIPFsRTAEU28%28%1.233%1.327%1.1JP24%20%1.122%1.228%1.5US20%19%0.723%0.819%0.7KR7%6%0.75%0.69%1.1CN4%5%0.53%0.43%0.3DE11%10%0.914%1.312%1.1FR6%7%1.49%1.84%0.8NL3%4%2.52%1.23%1.8UK3%3%1.12%0.92%0.9CH2%2%1.51%1.22%1.4CA2%2%1.32%1.31%1.0Note:ThecalculationsarebasedonthecountryoftheIPFapplicants,usingfractionalcountinginthecaseofco-applications.Table2.1Revealedtechnologyadvantagesinhydrogentechnologiesbyvaluechainsegments,2011–2020ThemapsinFigure2.2provideamoredetailedoverviewofthegeographicdistributionofhydrogeninnovationclusters(eachofwhichisidentifiedbyadifferentcolour)basedonthegeolocationoftheinventorslistedinthepublishedIPFintheperiod2011–2020.Atotalof120clustershavebeenidentified,thelargemajority(98)ofwhicharelocatedacrossEurope.MostoftheseEuropeanclustersareofarelativelymodestsize.However,threeregionsinGermany(MunichandtheRuhrarea)andFrance(Paris)featureamongthetoptenglobalhydrogeninnovationclusters,withalargeandrapidlygrowingnumberofIPFsintheperiod2011–2020(Table2.2).TheMunichandParisclustersareledbywell-establishedplayersinthehydrogenindustry(LindeandAirLiquide),withimportantpatentactivitiesalsostemmingfromuniversitiesandpublicresearchorganisations(PROs)inthecaseofParis.TheRuhrareafeaturesThyssenkrupp,asteelproductioncompany,asitstopapplicant.TableofcontentsExecutivesummaryKeyfindingsContentHYDROGENPATENTSFORACLEANENERGYFUTUREepo.org29<Figure2.2Globaldistributionofhydrogeninnovationclusters(IPFs,2011–2020)Note:HydrogeninnovationclustersareidentifiedbyapplyingahierarchicalclusteringproceduretothegeocodedinventorlocationsforallrelevantIPFspublishedintheperiod2011–2020.Eachclusterisidentifiedbyadifferentcolour.Source:author'scalculationsTableofcontentsExecutivesummaryKeyfindingsContentHYDROGENPATENTSFORACLEANENERGYFUTUREepo.org30<Table2.2World'stoptenhydrogeninnovationclusters,2011–2020CityCountry%ofworld’sIPFsAveragegrowthofIPFsSpecialisation(technologiesmotivatedbyclimateinbold)Topthreeapplicants(%ofIPFsincluster)UniversitiesandPROs(%ofIPFsincluster)TokyoJP7.5%-1.1%DomesticapplicationsofH2;H2applicationsforrailMitsubishi(10%)Toshiba(8%)JXNipponOGE(6%)6.9%OsakaJP3.9%+5%DomesticapplicationsofH2Panasonic(21%)Kawasaki(9%)Hitachi(5%)5.8%NewYorkUS3.5%-1%H2productionasaby-product;H2applicationsforaviationandelectricitygenerationExxonMobil(10%)AirProducts(8%)HamiltonSundstrand(6%)6.1%NagoyaJP3.0%+7%H2applicationsintheautomotivesectorToyota(55%)Suzuki(8%)Panasonic(4%)4.9%HoustonUS2.9%+2%H2productionasaby-product;fromgas,otherfossilfuels,biomass/waste;distributiontasks;H2useformethanolandsyntheticfuelsproductionExxonMobil(13%)AirLiquide(10%)SABIC(9%)4.4%ParisFR2.8%+9%Separation/purification;liquidstorageAirLiquide(36%)IFPEN(12%)CNRS(6%)27.6%MunichDE2.5%+10%Separation/purification;liquidstorage;H2applicationsinaviationLinde(38%)BMW(22%)Airbus(9%)2.8%RuhrareaDE2.2%+10%Ammoniaproduction;H2applicationsinsteelproductionandrail;solidstorageThyssenkrupp(24%)BASF(8%)KautexTextron(7%)6.5%SendaiJP2.1%+3%H2carriers;H2applicationsinrail;domesticapplicationsofH2Toyota(18%)Mitsubishi(8%)KobeSteel(7%)6.3%SeoulKR2.1%+19%DomesticapplicationsofH2;H2applicationsinshippingKIER(6%)DaewooSME(5%)Hyundai(5%)20.9%Notes:TheallocationofIPFstolocalclustersisbasedontheaddressoftheinventorslistedinthepatents.TheshareofIPFsfromuniversitiesandPROsiscalculatedusingIPFslistingatleastoneuniversityorPROamongtheapplicants.TheaveragegrowthrateoftheIPFsiscomputedovertheperiod2011–2018toensureavailabilityofinventordata.SpecialisationinagivenfieldisdeterminedusingtheRTAasanindicator.TheRTAinafieldiscalculatedastheshareofthecluster’sIPFsinthatfield,dividedbytheshareofthesamecluster’sIPFsinallhydrogentechnologies.AnRTAthresholdof3.5hasbeensettoidentifyfieldsofspecialisation.TheshareofIPFsfromuniversitiesandPROsiscalculatedusingIPFslistingatleastoneuniversityorPROamongtheapplicants.Assuch,thefigurescannotbeinterpretedasmeasuresoftheshareofuniversitiesandPROsinIPFs.IncontrasttotheUSandEuropeancountries,hydrogeninnovationismoreconcentratedgeographicallyinJapan,R.KoreaandP.R.China,withasmallnumberofverylargeregionalclusters.FourJapaneseregionsfeatureamongthetoptenglobalclusters,includingTokyoandOsakaatthetopofthelist.ApartfromTokyo,patentingactivitiesrelatedtohydrogenhaveincreasedrapidlyintheseregions,typicallywithastrongfocusonend-useapplicationsofhydrogen.SeoulistheonlyclusteridentifiedinR.Korea,withasimilarfocusonend-useapplications.Itstandsoutwithaveryrapidgrowthofpatentingactivitiesintheperiod2011–2020andanimportantcontributionbypublicresearchinstitutionstotheseactivities.AnotherfourteenclustershavebeenidentifiedintheUS,ofwhichtwo(NewYorkandHouston)featureintheglobaltopten.Thesetwoclustersshowaspecialisationinestablishedhydrogenproductiontechnologies.UnlikeothermajorclustersinEuropeandAsia,theydidnotexperienceasignificantgrowthofpatentingactivitiesduringthepastdecade.TableofcontentsExecutivesummaryKeyfindingsContentHYDROGENPATENTSFORACLEANENERGYFUTUREepo.org31<2.2GeneralpatentingtrendsinestablishedandemergingtechnologiesIPFpublicationsrelatedtohydrogendatebacktothe1970s,butreallytookoffinthelate1990s.Asreportedinthetopleft-handcornerofFigure2.3,patentingisrelativelyevenlyspreadacrossthedifferenttechnologysegmentsofthehydrogenvaluechain,withtechnologiesmotivatedbyclimategeneratingmorethantwicethenumberofIPFsthanestablishedtechnologiesintheperiod2001–2020.ThelargestnumberofIPFsisobservedintechnologiessupportingtheproductionofhydrogen.Abouttwo-thirdsofthecorrespondinginventionsarefocusedontechnologiesmotivatedbyclimate,suchaselectrolysisortheproductionofhydrogenfrombiomassorinorganiccompounds.Overall,patentdatashowthatinnovationinthesetechnologiesincreasedrapidlybetween2001and2020,whereastheannualflowsofIPFpublicationstargetingestablished(fossilfuel-based)hydrogenproductiontechnologiesstagnatedduringthesameperiod(seealsoChapter3).Innovationinend-useapplicationsofhydrogenislikewisechieflydrivenbynewapplicationsmotivatedbyclimateconcerns,withmorethan90%ofIPFstargetingsuchapplicationsintransport,ironandsteelmanufacturing,buildingsorelectricitygeneration.ExistingapplicationsofhydrogeninthechemicalindustryfortheproductionofammoniaandmethanolrepresentonlyamodestvolumeofIPFsincomparison.However,therehasbeenasignificantincreasesince2008,whichmayberelatedtothepursuitofammoniaasacleanenergycarrierratherthanafertiliser(seealsosection5.1).Thestorage,distributionandtransformationofenergyusinghydrogenisacriticalchallengeforthelarge-scaledeploymentofhydrogenvaluechains.TherelativelylowernumberofIPFsinthisfieldcomparedwithhydrogenproductionandapplicationshidesdifferentdynamicsatamoregranulartechnologylevel.Establishedtechnologiessuchasthestorageandtransportationofpuregaseousorliquidhydrogengeneratedtwo-thirdsofpatentingactivitiesbetween2001and2020,withstronggrowthofthenumberofpublishedIPFsduringthisperiod,denotingthehighpotentialforlinkingtheassetsofnewhydrogenproductionandapplicationswithexistinginfrastructure.Bycontrast,thepublicationofIPFsrelatedtoemergingstorage,distributionandtransformationtechnologiesthataremotivatedbyclimate(suchaslow-emissionhydrogen-basedfuels,solidcarriersortheuseofhydrogeninbiofuelproduction)peakedin2012afterastronggrowthperiodbutthenfelldramatically,suggestingalossofmomentumforinnovationinthesetechnologies.AsshowninChapter5,thistrendismostlyduetopatentingactivitiesinlow-emissionhydrogen-basedsyntheticfuels,whereasinnovationinotherhydrogencarriershasbeengainingmomentumduringthesameperiod.TableofcontentsExecutivesummaryKeyfindingsContentHYDROGENPATENTSFORACLEANENERGYFUTUREepo.org32<Trendsinhydrogenproduction(base1in2001)3.53.02.52.01.51.00.502002200420062008201020122014201620182020EstablishedtechnologiesMotivatedbyclimateAllIPFsDistributionofIPFsbymaintechnologygroupsFigure2.3Overviewofpatentingtrendsinhydrogentechnologies,(IPFs,2001–2020)Trendsinstorage,distributionandtransformation(base1in2001)3.53.02.52.01.51.00.502002200420062008201020122014201620182020EstablishedtechnologiesMotivatedbyclimateAllIPFsTrendsinend-useapplications(base1in2001)4.54.03.53.02.52.01.51.00.502002200420062008201020122014201620182020EstablishedtechnologiesMotivatedbyclimateAllIPFsNote:TechnologiesrelatedtoCCUSandCO2avoidanceinfossil-basedhydrogenproduction,aswellastechnologiesforvehiclerefuelling,arelabelledinthischartas“motivatedbyclimate”toindicatethattheywouldmostlynotbepursuedwithouttheclimateimperative.Source:author’scalculationsProductionMotivatedbyclimateProductionEstablishedtechnologiesStorage,distribution,trans-formationEstablishedtechnologiesApplicationsMotivatedbyclimateStorage,distribution,trans-formationMotivatedbyclimateApplicationsEstablishedtechnologiesTableofcontentsExecutivesummaryKeyfindingsContentHYDROGENPATENTSFORACLEANENERGYFUTUREepo.org33<Theidentificationoftheleadingglobalapplicantsinestablishedtechnologiesandemergingtechnologiesmotivatedbyclimateintheperiod2011–2020providesfurtherinsightsintotheindustrydynamicsunderpinningthosetrends.Forstarters,Figure2.4featuresthetoptenglobalapplicantsinestablishedtechnologies(accountingtogetherforaroundafifthofallIPFsinthatfield)aswellasthedistributionoftheirIPFsbetweenthemainsubcategoriesofestablishedandemergingclimate-motivatedtechnologies.Thislistisdominatedbychemicalcompanies,suchasAirLiquide,LindeandAirProducts,whicharebuildingonanextensivebackgroundintheproductionandhandlingofhydrogenfromfossilfuelstoexpandtheirbusinessesintothesupplyoflow-emissionhydrogen.Unsurprisingly,theirspecialisationisconcentratedinimprovingestablishedtechnologiesforhydrogenproduction,storageandindustrialapplications.However,theyarealsodiversifyingintoinventionsrelatingtotechnologiesmotivatedbyclimateinordertostaycompetitive,withafocusontheuseofCCUSandbiomassforhydrogenproduction.TwoJapanesecompanies–ToyotaandHonda–aswellasR.Korea'sHyundaistandout.Allthreefeatureinthislistthankstopatentportfoliosinestablishedtechnologiesforthestorage,distributionandtransformationofgaseousorliquidhydrogen.However,theirinvestmentsininnovationappeartofocusmainlyonemerging,climate-motivatedproductiontechnologiesandapplicationssuchaselectrolysis(seeChapter3)andfuelcells(seeChapter5)respectively.Inthisrespect,theirprofileisclosertothatofnewentrantstothebusinessoflow-emissionhydrogen.ProductionStorage,distributionandtransformationEnd-useapplicationsEstablishedtechnologiesMotivatedbyclimateEstablishedtechnologiesMotivatedbyclimateEstablishedtechnologiesMotivatedbyclimateAirLiquide(FR)1744494501821Linde(DE)155488740923Toyota(JP)1248114502528AirProducts(US)6120301328BASF(DE)34342311213Shell(UK)52331814182Mitsubishi(JP)37461072075Honda(JP)7484816200Hyundai(KR)1174414319Note:IPFshavebeenallocatedtothelistedentitiesbasedontheidentificationoftheseentitiesasasingleorco-applicantoftherelatedpatents.TechnologiesrelatedtoCCUSandCO2avoidanceinfossil-basedhydrogenproduction,aswellastechnologiesforvehiclerefuelling,arelabelledinthischartas“motivatedbyclimate”toindicatethattheywouldmostlynotbepursuedwithouttheclimateimperative.RankingisbasedonthesizeofapplicantportfoliosofIPFsinestablishedhydrogentechnologies.Thesumoftheapplicants'IPFsreportedinthechartmayexceedtheactualsizeoftheirportfoliosduetosomeIPFsbeingrelevanttotwoormoresegmentsofthevaluechain.Source:author'scalculationsFigure2.4Profileofthetoptencorporateapplicantsinestablishedhydrogentechnologies(IPFs,2011–2020)TableofcontentsExecutivesummaryKeyfindingsContentHYDROGENPATENTSFORACLEANENERGYFUTUREepo.org34<Thelistofthetoptenapplicantsinemergingtechnologiesmotivatedbyclimate(Figure2.5)confirmsthisobservation,withToyota,HondaandHyundaifeaturingatthetopofthelist.Mostoftheapplicantsinthislisthavesimilarspecialisationprofiles,withastrongfocusonnewproductiontechnologiesandapplications,aswellassignificantpatentingactivitiesinestablishedtechnologiesforthestorage,distributionandtransformationofgaseousorliquidhydrogen.Mostofthemshowanoverlapof15%–20%betweentheirportfoliosofIPFsinfuelscellsandelectrolysis(typicallyfocusedonPEMtechnology),thussignallingsignificantsynergiesinresearchbetweenthesetwofields.Intheperiod2011–2020,thesetenapplicantsgeneratedaslightlyhighershare(18.5%)ofallhydrogen-relatedIPFsthanthetoptenapplicantsinestablishedhydrogentechnologies(16.6%).Whilethetopapplicantsinestablishedtechnologiesfeaturemainlychemicalcompanies,theleadingapplicantsinemergingtechnologiesmotivatedbyclimatearemainlyautomotivecompaniesandequipmentsuppliers.TheyaredominatedbyJapaneseandKoreanapplicants,whichoccupythefirstfiveplacesinthelist.Togetherthesetoptenapplicantsgeneratedupto20%ofIPFpublicationsrelatedtohydrogentechnologiesmotivatedbyclimateintheperiod2011–2020.ProductionStorage,distributionandtransformationEnd-useapplicationsEstablishedtechnologiesMotivatedbyclimateEstablishedtechnologiesMotivatedbyclimateEstablishedtechnologiesMotivatedbyclimateToyota(JP)1248114502528Hyundai(KR)1164214319Honda(JP)7484816200Panasonic(JP)24128141170Kia(KR)111256171Siemens(DE)14921191175Shell(UK)52331814186Mitsubishi(JP)37461072075GeneralElectric(US)43352510273AirLiquide(FR)1744494501821Note:IPFshavebeenallocatedtothelistedentitiesbasedontheidentificationoftheseentitiesasasingleorco-applicantoftherelatedpatents.TechnologiesrelatedtoCCUSandCO2avoidanceinfossilfuel-basedhydrogenproduction,aswellastechnologiesforvehiclerefuelling,arelabelledinthischartas“motivatedbyclimate”toindicatethattheywouldmostlynotbepursuedwithouttheclimateimperative.RankingisbasedonthesizeofapplicantportfoliosofIPFsinestablishedhydrogentechnologies.Thesumoftheapplicants'IPFsreportedinthechartmayexceedtheactualsizeoftheirportfoliosduetosomeIPFsbeingrelevanttotwoormoresegmentsofthevaluechain.Source:author’scalculationsFigure2.5Profileofthetoptencorporateapplicantsinhydrogentechnologiesmotivatedbyclimate(IPFs,2011–2020)TableofcontentsExecutivesummaryKeyfindingsContentHYDROGENPATENTSFORACLEANENERGYFUTUREepo.org35<Universitiesandpublicresearchinstitutionsgenerated13.5%ofallhydrogen-relatedIPFsintheperiod2011–2020.Theywereparticularlyactiveinhydrogenproductiontechnologieswith18%ofIPFsinthatfield,comparedwith13.3%forstorage,distributionandtransformationtechnologiesandonly7.1%forend-useapplications.Thetoptenresearchinstitutions(Figure2.6)togetheraccountedfor3.3%ofallIPFsrelatedtohydrogenintheperiod2011–2020,withastrongerpresenceinemergingtechnologiesmotivatedbyclimatethaninestablishedtechnologies.TheyareledbyFrenchandKoreaninstitutions,withthreeFrenchresearchcentrestoppingthelist,andfiveKoreanresearchcentresfeaturinginthelist.Interestingly,thereisnoJapaneseresearchinstitutionamongthetopten,althoughJapanesecompaniesarewellrepresentedinthelistforcorporatepatenting.Thetoptwoapplicants,France'sCommissariatàl'EnergieAtomique(CEA)andIFPEnergiesnouvelles(IFPEN),standoutwithsignificantcontributionsinestablishedtechnologiesforthestorageanddistributionofliquidorgaseoushydrogenandtheproductionofhydrogenfromfossilfuelsrespectively.However,byfarthemainfocusoftheCEA'spatentingactivitieshasbeenonclimate-motivatedproductiontechnologies(particularlyelectrolysis),whereastheIFPENalsoshowssignificantlevelsofactivityinclimate-motivatedproductionandstorage,distributionandtransformationtechnologies.ProductionStorage,distributionandtransformationEnd-useapplicationsEstablishedtechnologiesMotivatedbyclimateEstablishedtechnologiesMotivatedbyclimateEstablishedtechnologiesMotivatedbyclimateCEA(FR)10109211117IFPEN(FR)483048130CNRS(FR)33341217KIER(KR)2033419KIST(KR)6234528UniversityofCalifornia(US)2188122KAIST(KR)371415KRICT(KR)41023ForschungszentrumJulich(DE)37113RIIST(KR)2132Note:IPFshavebeenallocatedtothelistedentitiesbasedontheidentificationoftheseentitiesasasingleorco-applicantoftherelatedpatents.TechnologiesrelatedtoCCUSandCO2avoidanceinfossilfuel-basedhydrogenproduction,aswellastechnologiesforvehiclerefuelling,arelabelledinthischartas“motivatedbyclimate”toindicatethattheywouldmostlynotbepursuedwithouttheclimateimperative.RankingisbasedonthesizeofapplicantportfoliosofIPFsinestablishedhydrogentechnologies.Thesumoftheapplicants'IPFsreportedinthechartmayexceedtheactualsizeoftheirportfoliosduetosomeIPFsbeingrelevanttotwoormoresegmentsofthevaluechain.Source:author’scalculationsFigure2.6Profileofthetoptenresearchinstitutionsinhydrogentechnologies(IPFs,2011–2020)TableofcontentsExecutivesummaryKeyfindingsContentHYDROGENPATENTSFORACLEANENERGYFUTUREepo.org36<Finally,Figure2.7providesanoverviewofthenumberanddistribution(bothintermsofregionsandtechnologies)ofstart-upswhichfiledinternationalpatentsapplicationsrelatedtohydrogenintheperiod2011–2020.Atotalof117suchhydrogenstart-upshavebeenidentified,mostofwhicharelocatedintheUS(33%)orEurope(51%),including34%forEUcountriesalone.Thissubsetofhydrogenstart-upsattracted55%oftheventurecapitalfundingprovidedforearly,lateandIPO/post-IPOstages(seeBox2).Unsurprisingly,amajorityoftheirIPFsrelatetoemergingtechnologiesmotivatedbyclimate,suchaselectrolysisandfuelcellsinparticular.However,aboutathirdofthestart-upsalsoshowpatentingactivitiesinestablishedtechnologies,usuallyincombinationwithIPFsinclimate-motivatedtechnologies.Thisisparticularlythecaseinhydrogenproduction,thushighlightingattemptsbycompaniessuchasLanzaTech,MonolithMaterials(bothUS)andVelocys(UK)todeveloptechnologiesthatcanreducethecarbonimpactofhydrogenfromgasandotherfossilfuels(seeBox3forafurtherdiscussionofthesetechnologies).ProductionStorage,distributionandtransformationEnd-useapplicationsEstablishedtechnologiesMotivatedbyclimateEstablishedtechnologiesMotivatedbyclimateEstablishedtechnologiesMotivatedbyclimateUS1329913311EU27931710213OtherEurope214415Japan111Other212162Note:Thechartisbasedonallstart-upslistedbyCleantechGroup,CrunchbaseandDealroomwhicharelessthan20yearsold,havefewerthan500employeesandhavefiledinternationalpatentapplicationsintheperiod2011–2020.ThepatentportfolioofsuchcompanieshasbeenderivedbyperforminganautomaticnamematchingprocedureusingtheEPOinternaldatabaseofpatentapplications.Source:author’scalculationsFigure2.7Distributionofstart-upswithIPFsonhydrogenTableofcontentsExecutivesummaryKeyfindingsContentHYDROGENPATENTSFORACLEANENERGYFUTUREepo.org37<Box2:Hydrogenstart-upsandpatentsStart-upsareoneofthemainroutesbywhichhydrogeninnovationsreachthemarketplace.Manyoftheunderlyingtechnologiesdependonadvancedsciencecomingoutofpublicresearchorganisationsanduniversities,andrepresenthigh-risk,disruptivebetsforbusinessdevelopers.However,giventhatmanyofthetechnologiesalsohavesmallunitsizesthatlendthemselvestostandardisedmanufacturing,theyareattractivetoventurecapitalinvestorshuntingforexponentialreturnsasthecleanenergytransitiongathersspeed.Since2000,thenumberofnew,independentcompaniesfoundedinthehydrogensectorhasgrownconsistently,andmanyofthemownedpatentsatthetimetheywereincorporatedorfiledforthemshortlyafterwards.Weestimatethat70%ofstart-upsactiveinthehydrogentechnologyareascoveredbythisstudyholdatleastonepatentapplication.Owningintellectualpropertycanprovideinvestorswithconfidenceintheunderlyingtechnologyandinsureagainstimitationbycompetitors.Thesebenefitsarecriticallyimportantwhentherecanbelongdevelopmenttimescalesbeforeearly-stageinvestorsareabletoseeanyreturnsfromproductsales,acquisitionsorstockmarketflotation.Aspartofthecategoryofcompaniesoftenreferredtoas"deeptech"start-ups,hydrogenentrepreneurstypicallyrequiresignificantR&Dandengineeringtotesttheirideas,buildprototypesanddeveloppracticalmarketofferings.7ThetechnologydevelopmentcyclesarethereforemuchlongerthanthoseintheICTsector,withtheaverageageofhydrogenstart-upsraisinglater-stageventurecapitalfundingbeingaroundtenyears.Fortheseentrepreneurs,patentscanbeusedasproofofinnovation,asignalofvalueandevencollateralagainstdebt.Ananalysisofventurecapitaldealsinvolvinghydrogenstart-upsshowsthattheshareofthetotalamountoffundingraisedbycompanieswithpatentapplicationsgrowsconsistentlywhenmovingtolaterstagesoffundraising.Morethan80%ofthelater-stageventureinvestmentinhydrogenstart-upswasincompanieswhichhadalreadyfiledatleastonepatentapplication.Thesharerisesto95%whenconsideringfundingacquiredintheIPO/post-IPOstage.Itthusappearscriticalforyoungstart-upsinthishighlytechnicalfieldtosecurepatentprotectionpriortoraisingearly-stagefunding.7Deeptechreferstoapplyingadvancesinbasicscienceareastoengineeringandsocietalchallengestogeneratenewclassesofsolutionstoimproveexistingtechnologies,outsidethescopeofmoreincrementalR&D.Advancedmaterials,advancedmanufacturing,artificialintelligence,biotechnology,blockchain,robotics,photonicsandquantumcomputingarealltypicallyconsidereddeeptechfields.Figure2.8Numberofhydrogenstart-upsfoundedannuallyandtheirpatentapplications(2000–2020)NumberofcompaniesNumberofpatentfamilies35H2companiespatentapplicationownershipNopatentapplicationOwnspatentapplications302520151050200020012002200320042005200620072008200920102011201220132014201520162017201820192020FoundationyearEarliestpublicationyearStart-upsfoundedPatentfamiliesNote:Thenumberofcompaniesisdisplayedwithrespecttotheirfoundationyear,whilethenumberofpatentfamiliesispresentedwithrespecttotheyearofpublication.CleantechGroup,CrunchbaseandDealroomhavebeenusedasdatasourcesforcompanyidentification.ThepatentportfolioofsuchcompanieshasbeenderivedbyperforminganautomaticnamematchingprocedureusingtheEPOinternaldatabaseofpatentapplications.Theautomaticpre-selectionhasbeenmanuallycuratedandenrichedbytheEPOandIEAresearchteams.Source:author’scalculations450400350300250200150100500921109131418131716211223142520233128282668.5%31.5%TableofcontentsExecutivesummaryKeyfindingsContentHYDROGENPATENTSFORACLEANENERGYFUTUREepo.org38<Figure2.9Shareoffundingaccruingtostart-ups,byfundingstage,2000-2020Amountraised(USDbillion)Numberofdeals/companies6.005.505.004.504.003.503.002.502.001.501.000.500.00EarlystageLaterstageIPO/post-IPOstageAfterfilingapplicationBeforefilingapplicationNopatentNumberofdealsNumberofcompaniesNote:Fundingdealsareonlyincludedforcompaniesthatwerefoundedbetween2000and2020.Thereferencedatewithrespecttothepatentfilingistheearliestprioritydatecalculatedforthesetofpatentfamiliesassignedtothespecificcompany.CleantechGroup,CrunchbaseandDealroomhavebeenusedasdatasourcesforfundingrounds.Early-stagefundingcontainsthefollowinginvestmenttypes:Seed,SeriesA,SeriesB.Later-stagefundingcontainsthefollowinginvestmenttypes:SeriesC-F.IPO/post-IPOstage:non-equitytypetransactionsarenotincludedinthisstage.Reportedfundingatthepost-IPOstageislimitedtoprivateinvestmentsinpublicequitytypesofinvestments,thusexcludingadditionalpublicsharesissues.Source:author’scalculations6005505004504003503002502001501005002.030.540.873.440.012475055.140.205.355620227984.870.486.090.74TableofcontentsExecutivesummaryKeyfindingsContentHYDROGENPATENTSFORACLEANENERGYFUTUREepo.org39<3.HydrogenproductionGlobalhydrogendemandof94Mtin2021wasmetalmostentirelybyfossilfuel-basedhydrogen,62%ofwhichcamefromdedicatednaturalgasreformingplantswithoutCO2capture.Unabatedcoalplants,mostlyinP.R.China,supplied19%ofthetotal,withmostoftheremaindercomingasaby-productfromfacilitiesdesignedprimarilyforotherproducts,suchasrefineriesthatreformnaphthaintogasolineandgeneratehydrogenasaninevitablepartoftheprocess.Thedominanceoffossilfuelsmadehydrogenproductionresponsibleforover900MtofdirectCO2emissionsin2020(2.5%ofglobalCO2emissionsinenergyandindustry).Astheproductionofhydrogenfromcoalandnaturalgasisanestablished,competitivebusiness,therehasbeenasubstantialamountofincrementalinnovationtoimproveefficiencyandenvironmentalperformance.However,technologydevelopmentmotivatedbyclimateconcernsisgrowingintheareaofhydrogenproduction.Thesetechnologiescanhelpproducelow-emissionhydrogeninvariousways:fromwaterandelectricity(knownaselectrolysis),fromfossilfuelswithminimalCO2emissions(usingcarboncapture,utilisationandstorage(CCUS)),andfrombioenergy(forexampleviabiomassgasification).Thefirsttwoofthesearealreadyusedcommercially,butinverylimitedquantitiesbecausetheyaremoreexpensivethanusingfossilfuels,giventhelimitedregulatorycostsofemittingCO2.SixteennaturalgasplantswithCCUSproduced0.7Mtoflow-emissionhydrogen(0.7%oftotalhydrogenproduction)in2021,whilewaterelectrolysiswasresponsibleforaround0.04%oftotalhydrogenproduction.In2022,theeconomicshaveshiftedinfavouroflow-emissionhydrogenfromelectrolysis,duetohighnaturalgasprices.Atthesametime,governmentsaroundtheworldhavesoughttobridgetheremainingcostgapandmanagefuturenaturalgaspricerisksforhydrogenproducers.NewtaxcreditsfromtheUSInflationReductionActandfundingfromEUmemberstatesundertheImportantProjectsofCommonEuropeanInterest(IPCEI)programmeareexamplesofpoliciesthataimtoestablishtechnologicalleadership,cutemissionsandreducefuturefossilfueldemand.Projectsaremorelikelytotakeinvestmentdecisionsinthenearfutureasaresult,andtherebygeneraterevenueformanyholdersofpatentsinthisarea,butitwilltakeseveralyearsbeforetheprojectscumulativelyhaveanimpactonenergydemandandemissions.3.1MainpatentingtrendsinhydrogenproductionAcomparativeanalysisofpatentingtrendsinhydrogenproductiontechnologiesoverthepasttwentyyearsshowsaclearshiftfromtraditional,carbon-intensivemethodstonewtechnologieswiththepotentialtodecarbonisehydrogenproduction(Figure3.1).Specifically,thegrowthofpatentinginhydrogenproductiontechnologiessince2001hasbeenchieflydrivenbytherapidriseofinnovationinelectrolysis,whereaspatentinginhydrogenproductionfromfossilfuelshasbeendecreasingoverthepastdecadeafterapeakinIPFpublicationsin2007.Incontrasttothestrongdynamicobservedinelectrolysis,otheremergingtechnologiesforhydrogenproductionthataremotivatedbyclimateconcernsappeartohavebeenoverlooked.Patentingactivitiesinhydrogenproductionfrombiomassorwaste(viagasificationorpyrolysis)boomedbetween2007and2011,butdecreasedsignificantlyafterthat,until2020.ThenumberofIPFsrelatedtowatersplittingvianon-electrolyticroutesshowedanincreaseinIPFpublicationsuntil2010,butremainedrelativelyconstantafterwards.In2020,thisrepresented12%ofthetotalnumberofIPFspublishedinthefieldofelectrolysis.ThegeographicoriginsoftheIPFsintheperiod2011–2020revealastrongleadbyEuropean,USorJapaneseapplicantsinmosthydrogenproductiontechnologies.EU-basedapplicantsaccountforalargeshare(39%)ofIPFpublicationsrelatedtoanytypeofhydrogenproductionfromgas,whereasUSapplicantsaredominantinhydrogenproductionfromotherfossilfuelsorasaby-productofotherchemicalprocesses.WhileJapangeneratedonlyamodestshareofIPFsinestablishedproductiontechnologies,itisleadingpatentingactivitiesinelectrolysistechnologieswith28%ofallIPFsinthisfield.EUcountriesfollowwith24%(including10%forGermanyalone).TheUSisadistantthirdinelectrolysiswith13%ofIPFs,buthasbeenleadingpatentingactivitiesinhydrogenproductionfrombiomassorwastewithathirdofallIPFsinthatfield–inlinewithitsgeneralspecialisationinbioenergytechnologies(EPO-IEA,2021).TableofcontentsExecutivesummaryKeyfindingsContentHYDROGENPATENTSFORACLEANENERGYFUTUREepo.org40<Technologiesmotivatedbyclimate50040030020010002002200420062008201020122014201620182020ElectrolysisFrombiomassorwasteOtherwatersplittingFigure3.1IPFtrendsinhydrogenproductiontechnologies,2001–2020Note:Technologiesforhydrogenproductionfromalcoholsandseparation/purificationtechnologiesgeneratecomparativelylowernumbersofIPFsandarenotreportedinthischart.Forthepurposesofthischart,technologiesrelatedtolow-emissionhydrogenproductionfromgasandotherfossilfuelshavebeenpooledwiththerespectivecategoriesofestablishedtechnologies.Source:author’scalculationsEstablishedtechnologies1801601401201008060402002002200420062008201020122014201620182020By-productFromgasFromotherfossilfuelsGasOtherfossilfuelsBy-productElectrolysisBiomassorwasteWatersplitting0%10%20%30%40%50%60%70%80%90%100%USCAJPKRCNDEFRNLOtherEUUKCHOtherEuropeOtherNote:ThecalculationsarebasedonthecountryoftheIPFapplicants,usingfractionalcountinginthecaseofco-applications.Thevaluelabelsarenotreportedforsharesbeloworequalto1%.Forthepurposesofthischart,technologiesrelatedtolow-emissionhydrogenproductionfromgasandotherfossilfuelshavebeenpooledwiththerespectivecategoriesofestablishedtechnologies.Source:author’scalculationsFigure3.2Originsofpatentsrelatedtohydrogenproduction,2011–202026%2%11%6%13%10%6%10%4%3%7%35%3%13%5%6%7%5%4%7%3%10%38%8%5%5%12%4%8%5%12%13%2%28%7%6%10%5%2%2%2%7%16%34%4%6%4%6%8%6%2%3%13%11%18%22%5%5%4%7%6%8%6%7%13%EU27:39%EU27:23%EU27:29%EU27:24%EU27:30%EU27:26%TableofcontentsExecutivesummaryKeyfindingsContentHYDROGENPATENTSFORACLEANENERGYFUTUREepo.org41<3.2Technologiesforlow-emissionhydrogenproductionAsuccessfultransitiontoanenergysystemwithnetzerogreenhousegasemissionsultimatelyrequiresallhydrogenproducedtobelow-emissionhydrogen.However,itishardtodrawaclearboundarybetweenpatentsforlow-emissionhydrogenproductionandthoseforunabatedfossilfuel-basedhydrogen.Manyofthetechnologiescanbepoweredbyrenewableenergy,nuclearenergyorfossilfuels,whetherequippedwithCCUSornot.Waterelectrolysersdonotproducegreenhousegasemissionsduringtheiroperation,butiftheyarepoweredbyelectricityderivedfromnaturalgas,theclimateimpactisalmosttwicethatofhydrogenproductionfromsteamreformingofnaturalgas(notaccountingforanyupstreammethaneemissionsinthesupplyofthegas).FacilitiestoreformnaturalgastofossilfuelsaremostlynotequippedwithCCUStodayandiftheyare,thenitisoftenonlypartialCCUS,butthiscouldconceivablychangeifCCUStechnologybecomesmoreattractive.InnovationsthatimprovetheefficiencyofnaturalgasreformingmightthereforebeakeyenablerofCCUSorfacilitatethereformingofbioenergytolow-emissionhydrogen.HardcoalWithCCUS,90%capturerateWithoutCCUSNaturalgasWithCCUS,90%capturerateWithCCUS,56%capturerateWithoutCCUSElectricityRenewableornucleargenerationGas-firedgenerationCoal-firedgenerationWorldaverageelectricitymix0510152025303540kgCo2/kgH2Note:Neitherupstreammethaneemissionsfromfossilfuelproductionnoremissionsrelatedtodownstreamdistributionofhydrogenareincludedinthecalculations.Thereis,however,aconsensusthatalllife-cycleemissionsshouldbetakenintoaccountforcomparisonsofhydrogenCO2intensities.Globalmedianupstreammethaneemissionswouldincreasetheemissionsintensityofhydrogenfromnaturalgaswith90%CO2captureby4kgCO2/kgH2,althoughthereiswidevariationbetweendifferentnaturalgassources.Source:IEA,“FutureofHydrogen”,2019Figure3.3CO2intensityofhydrogenproductionThecartographyforthisstudydistinguishesbetweenincrementalimprovementstoestablishedtechnologiesthatrelyonfossilfuelsandtechnologyareasthataremotivatedbyclimateconcerns.Thelattercategoryincludeslow-emissionhydrogenproductiontechnologies:electrolysis,whichhasthepotentialtobepoweredbyrenewableornuclearenergy;hydrogenproductionfrombiomass;recoveryofby-producthydrogenfromchlor-alkalielectrolysis;methanepyrolysis;andfossilfuel-basedapproachesthatstateintheirpatentapplicationsthattheycanbecombinedwithCO2capture(seeBox3).TableofcontentsExecutivesummaryKeyfindingsContentHYDROGENPATENTSFORACLEANENERGYFUTUREepo.org42<Inrecentyears,climate-motivatedhydrogenproductiontechnologieshavecometodominatepatentingactivity(Figure3.4).Thesteadyincreaseinthesetechnologyareassince2005hasnowbeencomplementedbyaconsistentdecreaseinIPFsforestablishedtechnologies(Figure3.5).Electrolysistechnologies,havingthepotentialtobepoweredexclusivelybyrenewableornuclearenergy,areclassified,forthepurposesofthisreport,aslow-emission.Likewise,hydrogenproductionfrombiomassisclassifiedaslow-emission(forthepurposesofthisreport,non-organicwasteisnotclassifiedaslow-emission).Amongthetechnologiesdesignedforusewithnaturalgasastheprimaryinput,onlymethanepyrolysisandthoseIPFsthatstatethattheycanbecombinedwithCO2captureareclassifiedasnet-zeroaligned(seeBox3).Asimilarapproachisappliedtootherfossilfuels,while,intheby-productcategory,onlytechnologiesfortherecoveryofhydrogenfromprocesseslikechlor-alkalielectrolysisaredefinedasnet-zeroaligned.WaterelectrolysisFrominorganiccompoundsFrombiomassorwasteFromnaturalgasFromotherfossilfuelsBy-product0100020003000400050006000MotivatedbyclimateOtherSource:author’scalculations513613482098261895111326Figure3.4Inventionsrelatedtohydrogenproductionthatareprimarilymotivatedbyclimatechangeconcerns(IPFs,2001-2020)74206159469Figure3.5ShareofIPFsinclimate-motivatedproductiontechnologies,2001–2020700600500400300200100020012002200320042005200620072008200920102011201220132014201520162017201820192020MotivatedbyclimateOtherShareofclimate-motivatedNote:Forthepreparationofthischart,IPFsrelatedtotheproductionofhydrogenfromalcoholsandtoseparation/purificationmethodshavealsobeenincludedinthe“Other”category.Source:author’scalculations80%70%60%50%40%30%20%10%0%TableofcontentsExecutivesummaryKeyfindingsContentHYDROGENPATENTSFORACLEANENERGYFUTUREepo.org43<Box3:NewapproachestohydrogenproductionfromnaturalgasHydrogenproductionfortherefiningandchemicalssectorsisestimatedtoaccountforasmuchas3%ofglobalCO2emissionstoday,andaround60%ofthishydrogenisproducedfromnaturalgas.Themostcommonmeansofmakinghydrogenfromnaturalgasiswithasteammethanereformer(SMR),whichtypicallyemits7–11kgCO2perkgofhydrogen,dependingonfuelandefficiency.NotalloftheCO2resultsfromtheseparationofthecarboninmethanefromthehydrogen:upto41%isduetothecombustionfortheheatsupplytotheSMR.8TheSMRprocessisnotcompatiblewithanetzeroemissionsfutureforeitherthechemicalssectorornewapplicationsofhydrogenasanenergyvector.However,theextensiveexistingassetbaseofSMRsandthewidespreadinfrastructureforsupplyingnaturalgas–afuelwithahighhydrogencontent–wouldbehighlyvaluableiftechnologiesforconvertingnaturalgastohydrogenwithsignificantlyreducedCO2emissionscanbemadecost-competitive.Thenecessaryspeedofcapacityscale-upinanetzeroemissionsscenario,coupledwithvariabilityincountries'energyresources,furthersupportadiversificationoflow-emissionhydrogensources(IEA,2022d).One"end-of-pipe"technologyapproachistocapturetheCO2fromanSMRbeforeitisemittedtotheatmosphereandsafelystoreitunderground(atypeofCCUS).ThisiscurrentlyinoperationatalargescaleatseveralfertiliserfacilitiesintheUnitedStates,wheretheCO2isstoredduringtheprocessofextractingoil,andatabitumenupgraderinCanada.Thereisalsoworkontechnologieswhereby"stranded"hydrocarbonreserveswouldbereformedtohydrogeninsituundergroundandthenextracted,withtheresultingCO2storedinthesameoilorgasfield.Otherapproachesthatarelessmature,butintegrateemissionsreductionintotheprocessmorefully,includesorption-enhancedsteammethanereforming(SE-SMR),electrically-heatedreforming,plasmareformingandmethanepyrolysis.However,thesetechnologiesrepresentonlyaminorshareofrecentpatentingactivitiesrelatedtohydrogenproductionfromnaturalgas(Figure3.4),thoughpyrolysisIPFsarerisingtowardsthelevelofapproachesintegratingCCUS.Sorption-enhancedSMR(SESMR)IntheSMRprocess,methaneisfirstreformedwithsteamtoseparateitscarbonfromitshydrogen.Then,inasecondsteptheresultingcarbonmonoxide(CO)isreactedwithmoresteamasameansofextractingadditionalhydrogenfromthewatermolecules.CH4(g)+H2O(g)H₂(g)+CO(g)(1)CO(g)+H2O(g)H₂(g)+CO2(g)(2)Thistwo-stepprocesssuffersfromtheneedforhightemperatureandpressure(800–1000°Cand1.53MPa),aswellasdifficultiesinreachingveryhighconversionrates.SE-SMRcombinesthesestepsintoasinglestepthathasmoremoderateoperatingconditionsandcanresultinanoutputthatmaycontainasmuchas98%H2andmuchlowerlevelsofCOandCO2.Itthereforeneedstoburnlessnaturalgas,lessenergyforpurificationoftheH2productandcheaperreactormaterialsthatdonotneedtotoleratesuchharshconditions.Inaddition,separationoftheCO2canbeachievedmuchmoreeasilyforCCUS.Furthermore,thehigh-temperature,high-alloysteelsrequiredinthereformingreactorcanbereplacedwithlessexpensiveconstructionmaterials.Patentingactivityinthisareaislimited,however.Just19IPFshavebeenidentifiedfromsixdifferentapplicants,includingtworesearchinstitutions(TNOandOhioStateUniversity)andfourSMEs.ElectrifiedSMR(eSMR)Onemeansoftacklingthetwo-fifthsofSMRemissionsthatarisefromtheheatingrequirementsistouseelectricityforthispurposeinsteadofnaturalgascombustion.Innovationinthisareahasfocusedondesigningcompactreformersthatcanavoidtheneedforalargegasfurnacewithanarrayofhundredsofreformertubes,eachmorethan10mlongandloadedwithacatalyst.Whereasthegas-basedheatingsystemrequiresflametemperaturesabovethereactiontemperaturetoaccountforheattransferlosses,anelectricalresistanceheatingsystemcanusemuchmorepreciseandefficientheating,variedinrealtimeaccordingtotheprofileofthechemicalreactionstoachievehighermethaneconversionratios.IfsuchsystemswereappliedtoallSMRs,usingrenewableornuclearelectricity,globalCO2emissionscouldpotentiallybereducedby1%.9BecauseaneSMRcanbeoperatedwithsomeflexibility,itisconceivablethatitcouldberampeddownwhenrenewableelectricityisinshortsupplyifincentivesareinplacetoencourage"systemfriendly"operation.Between2011and2020,eSMRwasarelativelyactivefieldofpatentingwith22IPFspublished,ofwhichnineoriginatedfromDanishfirmTopsoe.PlasmareformingAmoreradicalmeansofshiftingtoelectricity-basedreformingheatinginvolvesthecreationofahotplasmaofionisedgasinwhichthereactiontakesplace.Thishasseveraladvantages:–waterinputsarenotrequired–theequipmentcanbemadeverycompact–itcanprocessbiomassorheavyhydrocarbons,aswellasnaturalgas,toformhydrogen–smalleramountsofcatalystcanpotentiallybeused,withthefreeradicalsintheplasmaitselfhelpingtoachievehigheryields–thereactionconditionscouldpotentiallybeadjustedsothatthehydrogenproductisfurtherconvertedtosyntheticfuelsusingthesameequipment.TechnologyTechnologyreadinesslevelSorption-enhancedsteamreformingEarlyprototypeTRL4Electrically-heatedreformingLargeprototypeTRL5PlasmareformingConceptTRL3MethanepyrolysisPre-commercialdemonstrationTRL7Table3.1Emerginglower-carbontechnologiesforhydrogenproductionfromlighthydrocarbons8Sources:Wismannetal.,Science364,6642,756–759,2019;Wismannetal.,ChemicalEngineeringJournal425,2021,131509.9Themostefficientnaturalgas-basedammoniaplantsproducedanaverageof1.6tonnesofCO2pertonneofammonia(theaveragebeing1.9tonnesofCO2/tonneammonia).About30%ofthenaturalgasenteringanammoniaplantisusedtoprovideheat,mainlyinthereformingunit.ElectrifiedheatingofthisSMRunitcouldresultinareductionofthecarbonintensityto1.1tonnesofCO2pertonneofammonia.TableofcontentsExecutivesummaryKeyfindingsContentHYDROGENPATENTSFORACLEANENERGYFUTUREepo.org44<However,theelectricityrequirementsforformingtheplasmaremainhigh.Itssuitabilityasasmall-scaleandflexibleoptionforhydrogenproductionisyettobedemonstrated.ThereareonlyafewrelatedIPFs,mostlyfromKoreanresearchinstitutes.Goingevenfurther,theneedforwaterinputscanbeeliminatedin"drymethanereforming"byoperatinginthepresenceofCO2.CH4(g)+CO2(g)→2CO(g)+2H2(g)Thishastheadditionalattractionofgeneratingcarbonmonoxidethatcouldpotentiallybereactedwiththehydrogeninthesameequipmenttoproducesyntheticliquidfuels.However,sustainablesourcesofCO2remaincostly.MethanepyrolysisWithpyrolysis,methanecanbedecomposedintohydrogenandcarbonwithoutanyCO2emissionsfromthechemicalprocess.CH4(g)→C(s)+2H2(g)Understandably,thereisconsiderableinterestinsuchanapproach,andinnovationisfocusedonreducingthetemperaturesrequiredtoovercomethestrongC-Hbond,leadingtodifferenttechnologicalroutes:thermal,catalyticandplasmapyrolysis.Inthermaldecomposition(TRL4),thereactionoccurswithoutthepresenceofacatalystandtemperaturesabove1200°Caretypicallyneededtoobtainareasonableyield.Incatalyticdecomposition(TRL6)thiscanbereducedtobelow1000°C.Achievingsuchhightemperatureswithoutfossilfuelcombustionisachallenge,andplasma(generatedbyelectricity)isthoughttobeapromisingoption.Moreover,itisthemostadvancedpyrolysisroute(TRL7),withapre-commercialdemonstrationplantbeingoperatedbyMonolithMaterialsintheUnitedStatessince2021andaplant14timeslargerbeingplanned.Furtherareasofresearchincludeimprovingproductpuritybypreventingsidereactionsthatleadtounwantedhydrocarbonsandmanagingthesolidcarbonby-product.So-called"carbonblack"canblockreactors,deactivatecatalystsandcauserespiratoryproblems.Whilethereisamarketforover12Mtofcarbonblackforink,rubberandmaterialslikegraphene,thiswouldbedwarfedbytheoutputfromlarge-scalelow-emissionhydrogenproduction.Caphenia,Thyssenkrupp,SABICandExxonMobilleadpatentingformethanepyrolysis.Capheniaisanexampleofastart-upinthisarea,oneofseveralthathaveemergedinthepastdecade.Notably,theGermancompanyhasaspecialisationinplasmadecomposition.ExxonMobilisalsoatoppatenterforCCUS-relatedpatentsforhydrogenfromnaturalgas,alongsideTopsoeandCasale.Figure3.6Emerginglower-carbontechnologiesforhydrogenproductionfromlighthydrocarbons2011201220132014201520162017201820192020SteammethanereformingWithCCUS1571212851110915Electricallyheated34132322910Sorption-enhanced6113314Plasmareforming333224127MethanepyrolysisPlasmadecomposition1432337311Otherpyrolysis25121416101011121218Source:author’scalculationsTableofcontentsExecutivesummaryKeyfindingsContentHYDROGENPATENTSFORACLEANENERGYFUTUREepo.org45<3.3RecentdevelopmentsinelectrolysersElectrolysistechnologieshavebeenthekeydriverofinnovationinhydrogenproductionoverthepasttwodecades.Theyarecurrentlythemostpromisingmethodofhydrogenproductionfromwater,withhigherefficiencythanthermochemicalandphotocatalyticmethods.Byenablingtheproductionofhydrogenfromrenewable-poweredelectrolysisonanindustrialscale,theyhavethepotentialtounlockitsuseinreplacingexistingdemandforunabatedfossilfuel-basedhydrogenandinnewapplicationsinso-called"hard-to-abate"sectors.Technologically,theyoperatelikeafuelcellinreverseandsometypesofcellscanbeusedinbothdirections:tomakehydrogenortoproduceelectricityfromit.Electrolytictechnologiesunderdevelopmentalsohavethepotentialtofurtherreactthehydrogenoutputtoformhydrogen-basedfuelsbyaddingnitrogenorCO2tothecellundertherightconditions.However,thetechnologylandscapeofwaterelectrolysishasnotyetreachedasingledominantdesign,withseveralfamiliesofelectrolysersofvaryingmaturitylevelscurrentlycompeting(Table3.2).Ongoingresearchforeachfamilytargetsincreasedefficiency,moreaffordablematerials,easierstackabilityforlarge-scaleproductionandlow-costmass-manufacturing(EPOandIRENA,2022).Thepresentsectionfocusesspecificallyonpatentingactivitiesrelatedtothesemaincategoriesofelectrolysers.Alkalinewaterelectrolysisistheoldestofthesetechnologies.Itinvolvestwoelectrodesmadeofanon-noblemetal(typicallynickel)operatinginaliquidalkalineelectrolytesolution,andpresentstheadvantageofbeinglessexpensivetobuildandmoredurablethanmorerecentandsophisticatedelectrolysistechnologiesthatusenoblematerialstoachievehigherefficiency.Alkalineelectrolysersarecurrentlythemostcommonlyusedtoenableenergyconversionandstoragetoproducehydrogen,andtheyhavecontinuedtogenerateasteadyflowofinventionsoverthepastdecade(Figure3.7).Polymerelectrolytemembrane(PEM)electrolysisandsolidoxideelectrolysercellsaretwootherpromisingsolutions,withahighernumberofpublishedIPFsthanalkalinewaterelectrolysis,andanaveragecompoundgrowthrateof12.5%and13.5%respectivelyintheperiod2011–2020.Bothtechnologiesarepromisingsolutionstoaddressingthechallengeofintegratingthegrowingshareofrenewable(andthusmorevariable)sourcesofelectricityintoapowerinfrastructurethatmustmeetcontinuousdemand.TechnologyTechnologyreadinesslevelAlkalineMarketuptakeTRL9AnionexchangemembranesLargeprototypeTRL6PolymerelectrolytemembranesMarketuptakeTRL9SolidoxideelectrolysercellsPre-commercialdemonstrationTRL7Table3.2EmergingelectrolysistechnologiesTableofcontentsExecutivesummaryKeyfindingsContentHYDROGENPATENTSFORACLEANENERGYFUTUREepo.org46<PEMwasfirstintroducedinthe1960sasafuelcelltechnologywithasolidpolymerelectrolytethatisresponsiblefortheconductionofprotons,separationofproductgases,andelectricalinsulationoftheelectrodes.Asanelectrolyserorfuelcell,thistechnologycanoperateathighcurrentdensities.Itisexpectedtobeadvantageousincombinationwithintermittentrenewableenergy,whichcangeneratesuddenspikesinenergyinput.Itcanalsoproducecompressedhydrogen(eliminatingtheneedforanexternalcompressor)aswellashighpurityhydrogen(increasingstoragesafety).However,unlikealkalineelectrolysers,PEMelectrolysersrequiretheuseofnoblemetalsduetothehighlyacidicenvironmentinwhichtheyoperate,andthehighcostofthesematerialsiscurrentlyabarriertotheirbroaderuseanddeployment.Solidoxideelectrolysercells(SOEC)achievetheelectrolysisofwaterusingasolidoxide,orceramic,electrolytetoproducehydrogengasandoxygen.Thesedevicescanusenonpreciousmetalsascatalysts,whichallowsforscalableproductionmethods.Theyoperateabove600°C,therebyenablingahighconversionefficiencythankstofavourablethermodynamicsandkinetics.Performanceanddurabilityimprovementsaswellasincreasedscale-upeffortshaveledtoahundredfoldgasproductioncapacityincreasewithinthepastdecadeandtocommissioningofthefirstdemonstration-scaleSOECplants.Anionexchangemembranes(AEM)usealkalinewater(althoughlessalkaline)andcanthusberegardedasanevolutionofalkalinewaterelectrolysis.AEMcanincreasetheperformanceofexistingmaterialswhileensuringdurability,andmaybeusedinelectrolyticcellsaswellasfuelcellsforelectricitygeneration.However,theyhaveemergedmorerecentlyandarenotyetexploitedonanindustrialscale.ThenumberofpublishedIPFsremainssmallinthisfield,butitgrewrapidlybetween2011and2020,withanaveragecompoundgrowthrateof11.3%duringthisperiod.2011201220132014201520162017201820192020Alkaline8101926252229302135Anionexchangemembranes21114677814Protonexchangemembranes15203541294047587268Solidoxideelectrolysercells18152925233437504355Source:author’scalculationsFigure3.7Patentingtrendsinemergingtechnologiesforelectrolysers(IPFs,2011–2020)TableofcontentsExecutivesummaryKeyfindingsContentHYDROGENPATENTSFORACLEANENERGYFUTUREepo.org47<Figure3.8comparesthegeographicoriginsoftheseinventionswithcurrentandplannedinvestmentsinmanufacturingcapacityfortherespectivetypesofelectrolysers.Itshowsthatalkalinewaterelectrolysisissettoremainthedominanttechnologyinindustryintheyearstocome.However,PEMandSOECgeneratedmorepatentingactivitiesintheperiod2011–2020,andrelatedinvestmentinmanufacturingcapacityisnowtakingoff.WhileJapanhasbeenpushingthefrontiersofthesciencefordecadesinthesetechnologies,deploymenthashardlystartedinJapansofar(withthesameobservationapplyingalsotoR.Korea).WhetherornotJapancangetinvolvedinthedeploymentdependsonwhether(i)projectdevelopersarewillingtopayapremiumforperformance,(ii)therearedomesticalternativesand(iii)whethersubsidiesfavourlocalproducers.Bycontrast,P.R.Chinaisonlyasmallcontributortotheinternationalpatentingofelectrolysertechnologies,butisinvestingheavilyinmanufacturingcapacity,withanearlyexclusivefocusonthemorematureandnon-cuttingedgealkalinetechnology.EuropeappearsasaclearleaderinSOECpatentingbutalsoasanimportantcontributortoPEM,alkalineandAEM.UnlikeinJapan,thereisnowagenuineindustrybeingbuiltinEurope,alsospanningallmainelectrolysertechnologies.ThereareseveralestablishedGermanandNorwegiancompaniesthatcansupplyalkalinewaterelectrolysisandhavealargemarketshare,whileinvestmentinmanufacturingcapacityforPEMandSOECisdrivenbyyoungercompaniesornewmarketentrants.TheUSislikewisecurrentlyaleaderindevelopingmanufacturingcapacity,withamarketforpremium(PEM)productsscalingup,andenoughlocalsupplyforasmallmarket.However,theUSappearstobelaggingbehindinpatentinginPEMtechnologyaswellasinotherelectrolysercategories,exceptforthenewlyemergingAEM.Figure3.8OriginsofinventionsrelatedtoelectrolysersandmanufacturingcapacityAlkalineAEMPEMSOECCurrentmanufacturingcapacity(total:7GW)Plannedcapacityfor2025(total:47GW)Internationalpatentfamilies(2011-2020)EU27OtherEuropeUnitedStatesJapanR.KoreaP.R.ChinaOtherNote:ThecalculationsarebasedonthecountryoftheinvestorsandIPFapplicants,usingfractionalcountinginthecaseofco-applications.Source:author'scalculations(basedonannouncementsbyelectrolysermanufacturers)TableofcontentsExecutivesummaryKeyfindingsContentHYDROGENPATENTSFORACLEANENERGYFUTUREepo.org48<Finally,thetoptenapplicantsinelectrolysertechnologiesarereportedinFigure3.9.TogethertheyaccountedforaroundaquarterofpublishedIPFsinalkalinewaterelectrolysis(27%)andPEM(25%),butupto39%inSOECandonly6.7%inanionexchangemembranes.AsreportedinFigure3.9,theyconsistexclusivelyandinequalproportionsofJapaneseandEuropeanentities.PEMistheonlytechnologyinwhichalltopapplicantshavebeenactive.Twoofthem–AsahiKaseiandItaliancompanyDeNora–focusmainlyonalkalinewaterelectrolysis,whereasSOECaccountsforthelargestshareoftheportfoliosoffiveotherapplicants.Amongthelatter,France'sCEAalonegenerated19%ofthepublishedIPFsinSOEC,thankstoitslong-terminterestinelectrolysisbasedon(high-temperature)nuclearenergy.DanishfirmTopsoealsospecialisesinSOEC,likewisereflectingitsexperienceofhigh-temperatureenergysources.GermanfirmSiemensandJapanesefirmToshibaaretheonlytopapplicantsthatareactiveinallfourtechnologies,whilePanasonicandSumitomoarealsoactiveinalkaline,PEMandSOECtechnologies.WhiletopJapaneseapplicantsareyettosignificantlyinvestinmanufacturingcapacity,EuropeanSiemensandDeNora(aspartofnucera,theirjointventurewithThyssenkrupp)arealreadyproducingandcommercialisingelectrolysers.AlkalineAEMPEMSOECCEA(FR)1863AsahiKasei(JP)2117Panasonic(JP)41415DeNora(IT)2018Toshiba(JP)72810Siemens(DE)31138Topsoe(DK)119Sumitomo(JP)1313Bosch(DE)123AGCGroup(JP)613EU27JapanNote:IPFshavebeenallocatedtothelistedentitiesbasedontheidentificationoftheseentitiesasasingleorco-applicantoftherelatedpatents.RankingisbasedonthesizeofapplicantportfoliosofIPFsinelectrolysertechnologies.Thesumoftheapplicants'IPFsreportedinthechartmayexceedtheactualsizeoftheirportfoliosduetosomeIPFsbeingrelevanttotwodifferentcategoriesofelectrolysertechnologies.Source:author’scalculationsFigure3.9Toptenapplicantsinelectrolysertechnologies(IPFs,2011-2020)TableofcontentsExecutivesummaryKeyfindingsContentHYDROGENPATENTSFORACLEANENERGYFUTUREepo.org49<Box4:Comprehensiveanalysisofhydrogen-relatedinnovation,productionandusewillrequiremoreco-operationondataItisnotcurrentlypossibletomaphydrogen-relatedinnovationactivitiestodataonhydrogenproductionanduseatthenationallevel.Nearlyallhydrogenproducedtodaycomesfromfossilfuelsconvertedwithinindustrialfacilitiessuchasrefineriesandchemicalplants.Statisticsofenergyflowsintheeconomy–commonlycalled"energybalances"–havenothistoricallyincludedanyinformationonthishydrogenasithasnotbeentreatedasatraded"energyproduct".Asmuchofitisproduced"on-site",itisnotreflectedintheenergybalancesforthesesectors,whichreportonlythepurchasedfuelinput,suchasnaturalgas,usedandnotthetotalamountofhydrogenused.Suchon-siteproduction,whichislargelyabsentfrompublishedenergystatistics,isnotexpectedtobephasedoutashydrogenproductionbecomescleaner;intheIEANZEScenario,nearlyone-quarterofthelow-emissionhydrogenproducedin2050wouldbeproducedon-site.Toensurethatglobalreportingofenergyremainscompleteandrelevant,theIEAisworkingwithinternationalpartnerorganisationstodeveloprobustdatacollectionbycountriesonhydrogenandhydrogen-basedfuels.Anewannualquestionnaire,whichwillinitiallybepilotedandcompletedbyreportingcountrieswithdataforyears2022and2023,willcomplementtheexistingfiveannualquestionnairesthatcollectdatarelatingtocoal,oil,gas,electricityandrenewableenergysources.Dataflowsbeingconsideredforcollectioninclude:–productionofhydrogenandammonia,byenergyinput(e.g.naturalgas,renewableelectricityetc.)–storageofhydrogen,bytype(e.g.pressurisedorliquefied)–transformationwithinandoutsidetheenergysector–finalconsumption,bysector(e.g.industry,transportetc.)–cross-bordertrade,byoriginanddestination–hydrogenproductioncapacity,bytechnologyComplementaryworkisongoingtodevelopanappropriatemethodologytoidentifyandincorporatehydrogenwithinthewiderframeworkoftheIEA'senergydatacollectionefforts.Thiswillhelptomaintainconsistencybetweenotherfuelsandhydrogenproductionanduse,andtoensurethataccountingfortheenergysystemasawholeisconsistent.Sucheffortswillbekeytounderstandingalltheflowsofenergywithintheeconomyasnewpatternsemergeduringenergytransitions.TableofcontentsExecutivesummaryKeyfindingsContentHYDROGENPATENTSFORACLEANENERGYFUTUREepo.org50<4.Hydrogenstorage,distributionandtransformationHydrogenisthelightestandsmallestelement,andalsohighlyflammable.Itthereforeneedsspecialistequipmenttocontainitandmoveitaround.Withouteffectiveandcost-efficientsystemsforstoringandtransportinghydrogenbetweenwhereitisproducedandwhereitisconsumed,large-scalehydrogendeploymentwillnotbepossible.Standardisedinfrastructureforhydrogentradeisessentialforamarketthatcanoptimisethelocationandtimingofsupplyanddemandatlowestcost.Innovationinthistechnologycategoryaimstohelptacklethechallengesofstoring,movinganddeliveringtheenergyinhydrogen,ortransformingitintoacommoditythatdoesnotfacethesamechallenges.Itisessentialthatrapidprogressismadeintheseareasbecauseuncertaintyaboutwhichmeansofstorageandtransportwillbecomedominantisamajorriskfacinginvestorsandgovernments.Inthisstudy,thetechnologyareasaresplitintothosethatareestablishedonthemarkettodayandthosethatareemergingduetoclimatechangeconcerns.Innovationinalltheseareaswillsupportthescale-upofhydrogenasacleanenergycarrier.Today,hydrogenisstoredinsmallamountsasacompressedgasintanksonindustrialsites,atrefuellingstationsorontrucksfordistribution.Foraspecialistproduct,theserelativelyexpensiveformsofstoragecanbetolerated.Inasmallnumberoflocations(notablyinnorthernEuropeandTexas,US),regionaldemandforhydrogenasacommodityforrefiningandchemicalsishighenoughtojustifylarger-scalestorageundergroundinsaltcavernsandoverlandpipelinestodistributeitinacompressedform.Improvementsinthetechnologiesusingcompressedhydrogenwouldcertainlyimprovetheprospectsforhydrogenasacleanenergycarrier.Costimprovementscouldarisethroughinnovationintherepurposingofexistingnaturalgaspipelines,shipsandstorestohandlecombinedhydrogenandnaturalgasstreams.Performanceimprovementscouldbeachievedifstoragefacilitiescouldbechargedanddischargedmorequickly,inlinewiththevariabilityinrenewableelectricitysupply.However,iflow-emissionhydrogenbecomesmorecompetitiveasanenergycarrier,regionswithpotentiallylowproductioncosts(suchasLatinAmerica,theMiddleEastorAfrica)areexpectedtobeabletoprofitablysupplydistantusers(suchasthoseinJapan,R.KoreaorEurope)withotherformsofhydrogen.Liquefactionisanestablishedtechnologyforhydrogentrucksthatcouldalsofacilitatethelong-distancetransportationofhydrogeninships,followedbyregasificationuponarrival,ifthehighcostsrelatedtotheliquefactionofenergyinputsandlossesacrossthesupplychainarereduced.Tocutcostsfurther,theclimateimperativehasspurredoneffortsinemergingareassuchashydrogen-basedfuels,solidhydrogenstorageandothermoleculesthatcanreversiblyincorporatehydrogen.Thesemayrequiremoreenergytotransformthehydrogenbutpresentsignificantlowertransportcostsand,insomecases,canbeusedwithoutbeingtransformedbacktohydrogenatthepointofuse,minimisingtotalenergylosses.Byconvertinghydrogen(whichhasverylowenergydensity)intofuelsthathavesimilarpropertiestooilandgas,notonlycanthecostsofstorageandtransportbereducedbutitalsobecomeseasiertouselow-emissionhydrogeninlong-distanceroad,airandmaritimetransport,whichrelyheavilyonliquidfossilfuelswithoutaclearalternativeinanetzeroemissionsfuture.TableofcontentsExecutivesummaryKeyfindingsContentHYDROGENPATENTSFORACLEANENERGYFUTUREepo.org51<4.1Mainpatentingtrendsinhydrogenstorage,distributionandtransformationPatentingtrendssince2001showthatestablishedtechnologieshaveattractedincreasinginnovationeffortsoverthelasttwodecades(Figure4.1).Innovationindistributioninfrastructure,suchaspipelinenetworksandrelatedancillaryequipment(e.g.cryogenicheatpumps,valves),hasgeneratedhighlevelsofpatentingactivities,withanincreasingtrendovertheperiod.Havingexperiencedrapidgrowthsince2001,thenumberofpublishedIPFsrelatedtothestorageofpurehydrogenin2020wasalmostequivalenttoacompoundaveragegrowthrateof13%.Innovationhastakenoffmorerecentlyinliquidstorageandvehiclerefuelling,butstillwithhighcompoundaveragegrowthratesof13%inbothcasesintheperiod2011–2020.Bycontrast,thesearchforalternativesolutionsinvolvinglow-emissionhydrogen-basedfuels(suchassyntheticmethane,dieselorkerosene)andthestorageofhydrogeninsolidcarrierslostmomentumoverthesameperiod.AdecreaseinthenumberofIPFscaninparticularbeobservedinthecaseofsolidhydrogenstoragetechnologies,afteraperiodofconcertedinterestinpotentialmobileapplicationsofthesetechnologiesintheperiod2001–2010.Therearetwomaintypesofsolidhydrogenstorage:hydrides,suchassodiumborohydride,thatchemicallybindhydrogenintoacrystallinesolid;andadsorption,wherebyhydrogen"sticks"tothesurfaceofasolid,vastlyincreasingitsdensitywithouttheneedforhighpressures.Figure4.1Patentingtrendsinhydrogenstorage,distributionandtransformationtechnologies(IPFs,2001–2020)Note:Forthepurposesofthischart,technologiesrelatedtovehiclerefuellinghavebeenpooledwithestablishedhydrogentechnologies.Source:author’scalculationsGaseousandliquidhydrogen1401201008060402002002200420062008201020122014201620182020GaseousstorageLiquidstoragePipelinesandequipmentRefuellingTransformationtechnologies7060504030201002002200420062008201020122014201620182020Hydrogen-basedfuelsHydridesAdsorptionTableofcontentsExecutivesummaryKeyfindingsContentHYDROGENPATENTSFORACLEANENERGYFUTUREepo.org52<AsshowninFigure4.2,theEUblocledpatentingactivitiesinmostareasofhydrogenstorageanddistributionintheperiod2011–2020.TheEUshowsaparticularlystrongleadinestablishedtechnologiessupportingthestorageandtransportofpurehydrogen,withhalfofpublishedIPFsinliquidstorage,38%forgaseousstorage,39%inrefuellingand32%innetworksandrelatedequipment.TheEUisalsoaheadinthefieldoflow-emissionhydrogen-basedsyntheticfuelsandsolidhydrogenstoragebyadsorption.TheshareofEUcountriesshrinksto20%inthefieldofhydrides.TheUSmadeasignificantcontributiontopatentingactivitiesrelatedtonetworksandequipment(26%),hydrogen-basedalternativefuels(23%),hydrides(26%)andadsorption(22%)butotherwisehasrelativelylowsharesofIPFsinotherestablishedhydrogentransportandstoragetechnologies.JapanhasbeenmoreactivethantheUSintheseestablishedfieldsaswellasinrefuelling,andisonlyovertakenbytheUSintechnologiesinvolvinglow-emissionalternativefuels.4.2RecentdevelopmentsinestablishedstorageanddistributiontechnologiesThestorageanddistributionofhydrogeningaseousorliquidformiscurrentlythedominantparadigminhydrogensupplychains,involvingtheuseofrelativelymaturetechnologiessuchashydrogencontainers,pipelinesandliquefactiontechnologies(Table4.1).However,itremainssubjecttoanumberofchallenges,suchasthehighweightandvolumeofcurrenthydrogenstoragesystems,energylossesassociatedwithcompressionandliquefaction,durabilityandcostofthestoragesystemsandthechallengesofscalingup.Ananalysisoftheleadinginnovatorsinthesetechnologiesprovidesfurtherinsightsintotheindustriesinvolvedinthisinnovationecosystem.Intheperiod2011–2020,thetopapplicantslistedinFigure4.3accountedforupto43%oftheIPFsrelatedtogaseousstorage,31%forliquidstorageand46%forrefuelling,andasmaller21%innetworksandequipmentwhereabroaderrangeofactorsareinvolvedininnovation.Themodestcontributionofuniversitiesandresearchorganisations(below10%inallthesefields)suggestsarelativelyhighdegreeofmaturityofthetechnologies,withafocusonincrementalinnovation.GaseousstorageLiquidstorageNetworksandequipmentRefuellingH2-basedfuelsHydridesAdsorption0%10%20%30%40%50%60%70%80%90%100%USCAJPKRCNDEFRNLOtherEUUKCHOtherEuropeOtherNote:ThecalculationsarebasedonthecountryoftheIPFapplicants,usingfractionalcountinginthecaseofco-applications.Thevaluelabelsarenotreportedforsharesbeloworequalto1%.Forthepurposesofthischart,technologiesrelatedtovehiclerefuellinghavebeenpooledwithestablishedhydrogendistributiontechnologies.Source:author’scalculationsFigure4.2OriginsofIPFsrelatedtostorage,distributionandtransformation,2011–202019%26%17%23%26%22%3%2%3%3%19%18%32%16%24%17%21%13%16%13%8%13%6%6%9%18%9%15%10%4%5%2%2%3%4%2%4%3%2%8%6%2%9%3%4%8%4%11%11%11%4%5%4%4%5%8%7%9%3%2%EU27:38%EU27:50%EU27:32%EU27:39%EU27:31%EU27:20%EU27:28%19%28%16%11%10%2%4%4%2%TableofcontentsExecutivesummaryKeyfindingsContentHYDROGENPATENTSFORACLEANENERGYFUTUREepo.org53<AirLiquide,LindeandAirProducts,threechemicalcompaniesspecialisinginindustrialgaseswhichcombinedownthemajorityofexistinghydrogenpipelinesintheworld,standoutwithsignificantpatentpositionsinallcategoriesofestablishedtechnologiesandinparticularcombinedsharesof22%inliquidhydrogenandupto25%inrefuelling.Theautomotiveindustryisanothermajordriverofinnovationinhydrogenstorageanddistribution,withamainfocusongaseousstoragetechnologies(typicallyhydrogentanks),andsignificantpatentingactivitiesinnetworksandequipmentandinrefuelling.JapanesecompaniesToyotaandHondadominatethisgroup.Finally,equipmentsupplierssuchasBosch,GeneralElectricandSiemensappeartospecialiseindistributionnetworksandrelatedequipment,andtosomeextentingaseousstoragetechnologies.Whilepatentedinventionsrelatedtohydrogenstoragetypicallyconcernvesselsforgaseousandliquidhydrogen,someofthemalsoaddressthespecificinstancesinwhichhydrogenwillbestored.AsshowninFigure4.4,themostfrequentoftheseinstancesinvolvesthestorageofhydrogeninfuelstations,thusdenotingtheimportanceofhydrogen-fuelledvehiclesasadriverofinnovationinhydrogenstorageanddistribution.Thestorageofhydrogeninterminalsorplatformsanditstransportbytruckareotherimportantareasofinnovationinstoragetechnologies.Otherformsofstorageincludethestationarystorageofhydrogen,oritstransportbyrailwayorships,buttheyrepresentonlyamodestnumberofIPFs.Figure4.3Impactoftopapplicantsfromdifferentindustriesonpatentinginhydrogenstorageanddistributiontechnologies(shareofIPFs,2011–2020)LiquidstorageGaseousstorageNetworksandequipmentRefuellingChemicalsAirLiquide(FR)31593744Linde(DE)39214830AirProducts(US)6172415AutomotiveToyota(JP)9942124Honda(JP)142915BMW(DE)14251310Hyundai(KR)118219GeneralMotors(US)324116EquipmentBosch(DE)14303GeneralElectric(US)25244Siemens(DE)1551Note:IPFshavebeenallocatedtothelistedentitiesbasedontheidentificationoftheseentitiesasasingleorco-applicantoftherelatedpatents.RankingisbasedonthesizeofapplicantportfoliosofIPFsinhydrogenstorageanddistributiontechnologies.Thesumoftheapplicants'IPFsreportedinthechartmayexceedtheactualsizeoftheirportfoliosduetosomeIPFsbeingrelevanttomorethanonestorageordistributiontechnology.Source:author’scalculationsTableofcontentsExecutivesummaryKeyfindingsContentHYDROGENPATENTSFORACLEANENERGYFUTUREepo.org54<2011201220132014201520162017201820192020GaseoushydrogenStationarystorageFuelstations1061312181212242726Terminalsorplatforms31121112Byburyingtanks111Bydiggingcavities21341Byusingnaturalcavities21OtherstorageDeepsea112Offshore12113TransportbyTrucks4161167651116Railway442312127Ships122LiquidhydrogenStationarystorageFuelstations453856839Terminalsorplatforms221241112Byburyingtanks111Bydiggingcavities1OtherstorageOffshore1111212Deepsea1TransportbyTrucks3224423168Railway1121122Ships1222Source:author’scalculationsFigure4.4Recenttrendsinspecificformsofliquidandgaseoushydrogenstorage,2011–2020TableofcontentsExecutivesummaryKeyfindingsContentHYDROGENPATENTSFORACLEANENERGYFUTUREepo.org55<4.3Recentdevelopmentsinstorage,distributionandtransformation:thecaseofhydrogen-basedfuelsEmergingtechnologies,suchasthoseforthetransformationofhydrogenintosyntheticfuelsorotherhydrogencarriers,couldsupportthescale-upofwidespreadhydrogendistributionanditspenetrationintopartsoftheenergysystemthatarethehardesttoweanofffossilfuels.Theseincludesectorssuchasaviation,shippingandpowerplantsrunningoncoalornaturalgastoprovideflexibilitytothegrid.Toreduceemissions,hydrogen-basedfuelsmustbeproducedfromlow-emissionhydrogenandothersustainableinputs(Box5).ThefourbroadtechnologyareasinTable4.1involvecombiningthehydrogenwithcarbonandareatdifferenttechnologyreadinesslevels(Table4.1).Liquidorganichydrogencarriers(LOHC)aremolecules,suchascyclohexane,thatcanbe"loaded"withhydrogenandthencheaplytransportedlongdistancesasliquidsinoiltankersandpipesbeforebeingdehydrogenatedtoreleasethehydrogen.LOHCshaveonlyrecentlybeenseriouslyconsideredforpotentialuseintheenergysystem.Ammoniaproduction,whichisanotherrecenthydrogen-basedfuelcandidatebasedonhydrogenandnitrogen,isnotincludedherebecausetheIPFsforammoniaandmethanolfuelproductioncannotbeeasilydistinguishedfromthemuchmorenumerousIPFsforammoniachemicalandfertiliserproduction.However,low-temperatureammonia"cracking"toreleasepurehydrogenfromammoniaisincludedhereasitissolelymotivatedbyclimateconcernsandrelativelyimmature.TechnologyTechnologyreadinesslevelSyntheticmethanePre-commercialdemonstrationTRL7Syntheticliquidhydrogen-basedfuelsLargeprototypeTRL6Low-temperatureammoniacrackingEarlyprototypeTRL4LiquidorganichydrogencarriersPre-commercialdemonstrationTRL7Table4.1Technologyareasforhydrogen-basedfuelsTableofcontentsExecutivesummaryKeyfindingsContentHYDROGENPATENTSFORACLEANENERGYFUTUREepo.org56<Mostpatentingactivityinhydrogen-basedfuelshasoccurredintheUSandEuropeandisrelatedtosyntheticmethaneandliquidhydrocarbons(Figure4.5).However,thenumberofIPFsinthesefieldshasbeendecreasingfollowingapeakin2011.Therateofdecreasehasbeenfasterforsyntheticliquidfuelsthansyntheticmethane.Therearetwopossibleexplanationsforthistrend:oneisthatthereisdiminishingscopetoimproveconversiontechnologiesforwhichthefundamentalreactionshavebeenknownforacentury,anotheristhatinterestintheproductionofsyntheticfuelsfromcoal–whichsharesthesameprocessasproductionfromotherhydrogensources–hasdroppedduetotheregulationofemissionsfromcoal.Europeancompaniesinthegasindustry,suchasTopsoe,Engie,AirLiquideandLinde,hadallpreviouslybeenactiveintryingtomakecoal-to-gasprocessesmorecompetitive.InnovationtargetingsyntheticdieselandkerosenewasmoreconcentratedintheUS,thoughIFPEN(France),ExpanderEnergy(Canada),JXNipponOil&GasExploration(Japan),Sasol(SouthAfrica)andTopsoe(Denmark)werealsoamongthetopapplicants.Bothfieldsinvolvearelativelylarge(22%and16%respectively)proportionofpatentsstemmingfromresearchinstitutions,signallinganenduringroleforfundamentalresearch,particularlyincatalysis.Figure4.5Profilesofmainregionsinhydrogen-basedfuels(IPFs,2011-2020)SyntheticfuelsHydrogencarriersSyntheticmethaneSynthetichydrocarbonsLOHCAmmoniacrackingUnitedStatesResearch11383Industry443979EU27Research107133Industry7922218OtherEuropeResearch51Industry16435JapanResearch2114Industry1681236R.KoreaResearch932Industry71P.R.ChinaResearch4334Industry18542Note:ThecalculationsarebasedonthecountryoftheIPFapplicants,usingfractionalcountinginthecaseofco-applications.Source:author’scalculationsTableofcontentsExecutivesummaryKeyfindingsContentHYDROGENPATENTSFORACLEANENERGYFUTUREepo.org57<PatentinginthefieldsofLOHCandammoniacrackingincreasedrapidlybetween2011and2020,withcompoundaveragegrowthratesof12.5%forLOHCand7.8%forammoniadecomposition,buttheystillrepresentasmallnumberofpatentfamilies(Figure4.6).Innovationinallcategoriesofhydrogencarriersremainsconcentratedamongasmallnumberofactors.Itisstillclosetoupstreamscience-basedresearch,withalargeproportionofIPFsstemmingfullyorpartlyfromuniversitiesandPROs(49%forLOHCand59%forammoniacracking)intheperiod2011–2020(Figure4.5).Japanhasastrongspecialisationinammoniacracking,with61%oftheIPFspublishedinthatfieldandeightofthetoptenapplicantsinthatfieldintheperiod2011–2020(includingToyota,Mitsubishi,HitachiandfiveJapaneseuniversitiesorPROs).PatentingactivitiestargetingLOHCarespearheadedbyEurope,whichprovidedsixofthetoptenapplicantsinthisemergingfield(includingfourfromGermany).Overall,Europeaccountedfor49%ofpublishedIPFsinLOHCintheperiod2011–2020,andGermanyalonefor30%.Figure4.6Recenttrendsinhydrogen-basedfuels(IPFs,2011–2020)2011201220132014201520162017201820192020Low-emissionhydrogen-basedsyntheticfuelsSyntheticmethane26342423282713191920Synthetichydrocarbons82020201274867HydrogencarriersAmmoniacracking63673711101217Liquidorganichydrogencarrier4563971010313Source:author’scalculationsTableofcontentsExecutivesummaryKeyfindingsContentHYDROGENPATENTSFORACLEANENERGYFUTUREepo.org58<Box5:Hydrogentohydrogen-basedfuelsTheleadingprocessesformakinghydrogen-basedfuelsarenotnew,butarereceivingfreshattentionnowthattheirpotentialtoenablenetzeroemissionshasbeenrecognised.ThemainrouteforproducingsyntheticoilproductsfromhydrogenistheFischer-Tropsch(FT)reaction,forwhichapatentwasfirstsoughtin1926.ThemainrouteforproducingsyntheticmethaneandmethanolfromhydrogenistheSabatierreaction,whichsawitsfirstpatentapplicationin1908.Forproducingammoniafromhydrogen,thepatentfortheHaber-Boschreaction,whichisstillthemainprocess,wasfiledin1908andwasthesubjectofthe1918NobelPrizeinChemistry.However,despiteimprovementsoveracentury,eachprocessisenergyintensiveandoptimisedforfossilfuelinputsratherthanseparatestreamsofhydrogenandhighlystablemoleculessuchasCO2.Theinnovationchallengeistofindnewcatalystsandconfigurationsforlow-emissionfuels,ortoinvententirelynewpathwaysfromsustainableinputstofuelproducts.Ifinnovatorsaresuccessful,thepotentialmarketislarge.IntheIEANetZeroEmissionsby2050Scenario,demandforlow-emissionhydrogen-basedliquidfuelsreachestheequivalentofnearlysixmillionbarrelsofoilperdayin2050,around6%oftoday'soilmarket.Thisdemandin2050isroughlyevenlysplitbetweenaviation,powergenerationandshipping.SyntheticoilproductsTheFTreactionwasdevelopedtomakelonger-chainhydrocarbonfuels(so-calledalkanes)fromcarbonmonoxideandhydrogen(so-calledsyngas):nCO+(2n+1)H2→CnH2n+2+nH2OByvaryingtheprocessconditions,catalystandpost-processing,differentmixturesofhydrocarbonscanbeobtained,includinglighthydrocarbons(n<4),gasoline(roughly5<n<12),kerosene(roughly12<n<15),diesel(roughly16<n<18)orwaxes(n>18).TheFTreactionhelpedtoreduceGermany'sdependenceonoilduringWorldWarIIandisstillusedinlarge-scalefacilities,suchasthoseinSouthAfricathatwerefirstbuiltinthe1950sinpursuitofenergyindependence.Whilecarbonmonoxide(CO)isreadilyobtainedfromfossilfuels,itishardertofindnon-fossilfuelsources.Oneoptionistogasifybiomasstomakesyngas,inwhichcaseitisnotnecessarytoproducehydrogenseparately.AnotheroptionistostartwithCO2andconvertittoCOviaareversewater-gasshiftreaction(firstpatentedin1925).However,thisoptionisenergyintensiveandadditionalproductionofhydrogenisneededjusttomakeCO.Afurtheroptionistouseasolidoxideelectrolysercell(SOEC)thatconsumesCO2andsteamintheproductionofsyngasbutisyettoreachcommercialscale.Non-fossilCO2isaby-productofbioethanolorbiomethaneproductionorcanbecapturedfromtheatmosphereoreventheocean.Whilebio-basedsourcesmaybelimitedbytheavailabilityofsustainablebiomass,atmosphericCO2iscostlyandenergyintensivetoobtain.SyntheticmethaneProducingsyntheticmethanegasviatheSabatierreactionrequireslessCO2thanFTforthesameenergyoutput,butgenerallyhashigherenergyinputrequirements.However,therehasbeensomeprogresstowardsabiologicalconversionprocessthatreducesthereactionheatusingenzymes.Asafuel,methanecanbeblendedwithnaturalgasorusedinpowerplantsdirectly,butislessusefulthanliquidfuelsforreplacingfossilfuelsintransport.Thelargestlow-emissionsyntheticmethaneplantstartedoperationatWerlteinGermanyin2013,combiningaround330tonnesofhydrogenperyearwiththeCO2by-productfrombiomethaneproduction.In2022,apilotforsynthetickerosenewasstartedatthesamelocation,withacapacityofaround350tonnesofhydrocarbonperyear.AmmoniaForacentury,theHaber-Boschreactionhasbeenusedfortheproductionofchemicals–forfertilisers,polymersandexplosives–andover31Mtofhydrogenfromfossilfuelsisalreadyusedforthispurposeeachyear(IEA,2019).Attentionhasonlybeenpaidtoammoniaasapossiblefuel,orameansoftransportinghydrogenenergy,aspartoftherecentsearchforlow-emissionhydrogen-basedfuels.IntheHaber-Boschprocess,hydrogenisreactedwithnitrogenfromtheairathightemperatureandpressure,whichmakesammoniaasustainableoptiononlyifenoughlow-emissionenergyisavailabletopowertheprocessattherightpriceorifalternativestotheHaber-Boschprocesscanbefound.Someattentioniscurrentlybeingdirectedatelectrochemicalapproachesatlowerpressure.Nevertheless,asameansofstoringandtransportinghydrogen,ammoniabenefitsfromwidespreadexistinginfrastructureandtheabsenceofCO2emissions,thoughothergreenhousegases,suchasnitrousoxide,mustalsobecarefullyavoided(Wolframetal.,2022).Thelargestlow-emissionammoniaplantsintheworldarelocatedintheUSandusefossilfuelswithCCUS.Theyeachhavethecapacitytoproducearound60000tonnesoflow-emissionhydrogenperyear(i.e.thefractionoftotalhydrogenthatnolongerhasassociatedCO2emissions).Thelargestplantproducinglow-emissionammoniaviaelectrolysistodayisatPuertollanoinSpain,withacapacityfor3000tonnesperyearofhydrogeninput.MethanolLikeammonia,methanolisabulkcommoditythatisproducedtodayfromfossilfuels,oftenviahydrogenationofCOinaversionoftheSabatierreaction.Interestinmethanolasafuelincreasedasaresultofthe1970soilcrisisandagainrecentlydrivenbythechallengetofindcost-effectivelow-emissionfuels.Low-emissionmethanolcanbeusedmoreeasilyinexistingenginesintheshippingsectorthanammoniaandcanbeconvertedtopetrochemicals,buthasthedrawbackofneedingasustainablecarbonfeedstock.TheuseofCO2asafeedstockforsyntheticmethanolisscientificallymoreadvancedthanforothercarbon-containingfuels,andaplantinIcelandwithcapacitytouse765tonnesoflow-emissionhydrogenperyearhasbeeninoperationsince2015,withCO2beingcapturedfromapowerplant.Inmid-2022,Maerskordered19methanol-poweredcontainershipsandplanstosourcelow-emissionmethanol.UpgradingbiofuelsVegetableoilscanbetreatedwithhydrogentomakemoleculesofsmallersizethataremoresuitablebiofuelsforengines.Theresultinghydrotreatedvegetableoil(HVO)hasbeencommercialisedatlarge-scaleplantsinthepastdecade,andglobaloutputgrewby65%toaroundsevenmilliontonnesbetween2019and2021(IEA,2022c).WithfurtherexpansionofHVOproductionexpected,thedemandforlow-emissionhydrogenwillincrease.Thisislikelytostimulateinnovationinhydrotreatment,hydrogenproductionandsustainablesourcesofvegetableoil,possibleincludinglignocellulosicmaterialsandalgae.TableofcontentsExecutivesummaryKeyfindingsContentHYDROGENPATENTSFORACLEANENERGYFUTUREepo.org59<5.End-useapplicationsGlobalhydrogendemandwasaround94MtH2in2021,morethan50%higherthanin2000.Almostallofthisdemandcomesfromestablishedrefiningandindustrialapplications.Refineriesconsumedcloseto40MtH2asfeedstockandreagentsorasasourceofenergy.Chemicalproductionaccountedfornearly50MtH2ofdemand,withroughlythree-quartersdirectedatammoniaproduction(forfertilisers,explosivesandotherchemicals)andone-quarteratmethanol(forsolvents,fuelsandpetrochemicals).Althoughtheequipmentsuppliedfortheseapplicationsisdominatedbyasmallnumberoflargecompanies,thereisacompetitivemarketforcheaperandmoreprofitableproductsthatcontinuestodriveinnovationformarginalgains,evenforprocessesthathavechangedonlymarginallyinmanydecades.Inrecentyears,manyofthesecompanies,theircustomersandtheirsuppliershavebeguntoexpectthattheywillneedtoradicallycurtailfossilfuelemissionsandareexploringtechnologiesforintegratinglow-emissionhydrogensourcesdirectlyintotheirprocesses.Justassignificantly,apathwaytonetzeroemissionsislikelytorequirethepenetrationofhydrogenuseintosectorswhereitplaysalmostnoroletoday.Whileinterestinhydrogenasafuelforpassengervehicleshaspassedthroughseveral"hype"cyclessincethe1970s,oftenforenergysecuritymotives,applicationsfortrucks,trains,aircraft,shipsandsteelmakingnowattractmoreattention.Progresswithpilotanddemonstrationprojectsintheseareashasbeenencouraginginthepastfiveyears,butattractingsufficientinvestmentandpolicyattentiontodrivecommercialisationwillrequirecontinualtechnologicalimprovementsthatreducecostsandraiseperformance.5.1RecentdevelopmentsinestablishedapplicationsPatentdataindicateanincreaseininnovationsince2005fortheestablishedapplicationsofhydrogenfortheproductionofmethanolandammonia.Theunderlyinginventionsaretypicallydirectedatenergyefficiency;theyfocusonoptimisingtheheatintegrationofhydrogenandammoniaormethanolsynthesis,aswellastheefficiencyofammoniapurification.However,thekeydifferenceinpatentingsince2005comparedwithpreviousyearsistheresponseofequipmentsupplierstotheinterestinusinglow-emissionhydrogen.Interestinlow-emissionammoniaandmethanolstemsfromtheimperativetoreducefossilfuelemissionsfromtheseenergy-intensiveindustrialprocesses,aswellastheidentificationofthesechemicalsaspotentialhydrogen-basedfuelsfortransportandpowergenerationinacleanenergyfuture(seesection4).Giventheadvantagestheyofferasfuelscomparedwithhydrogen,coupledwithextensiveexistinginfrastructureandexperienceintradingthesecommodities,demandforammoniaandmethanolcouldexpandsignificantlyiftheycanbeproducedcleanlyandcheaplyenough.IntheIEANetZeroEmissionsby2050Scenario,demandforlow-emissionhydrogenformakingammoniaforthepowergenerationandshippingsectorsgrowsto75Mtin2050,50%higherthanthemarketforallhydrogenforchemicalstoday.InJapan,thelargestpowergenerationcompany,JERA,issuedatenderin2022forupto0.5Mtoflow-emissionammoniatoreplace20%ofthecoalatalargepowerplantunitfrom2027.TableofcontentsExecutivesummaryKeyfindingsContentHYDROGENPATENTSFORACLEANENERGYFUTUREepo.org60<Growingtargetsforpatentinginthisareaincludeelectrically-heatedreactorsforammoniasynthesisthatreducetheneedforfossilfuelcombustionandhavethepotentialtoeliminatefossilfuelson-siteifthehydrogenissourcedfromwaterelectrolysis.However,itwillprovetrickiertoremovefossilcarbonfromthefertiliservaluechain;oftenonly35%ofthehydrogenfromfossilfuelscanbereplaced(orfittedwithCCUS)duetothecommonpracticeofconvertingammoniatoureausingcarbonfromtheintegratedfossilfuel-to-hydrogenproductionprocess.Thisraisestheissueofsustainablesourcingofcarboninputsforhydrogen-basedfuels,particularlyhowtoreducetheenergyintensivenessofextractingthecarbonfromcapturedCO2andintegratingitintoproductslikemethanol.Europedominatedpatentinginthesefieldsovertheperiod2011to2020,with34%and48%respectivelyofIPFsintheproductionofammoniaandmethanol.With14%ofIPFsineachfield,Germanyisastronginnovationleaderwithintheblock.OtherEuropeancountriesarealsoverysignificantcontributors,inparticularSwitzerlandandDenmarkforammoniaproduction(13.5%and9.0%respectively)andDenmark,theUKandtheNetherlandsformethanolproduction(11.4%,9.9%and9.1%respectively).ThecombinedcontributionsoftheUSandJapanfalljustshortofthatofEuropeinammoniaproduction,andwellshortinthecaseofmethanol.5040302010020012002200320042005200620072008200920102011201220132014201520162017201820192020AmmoniaproductionMethanolproductionSource:author’scalculationsAmmoniaproductionMethanolproduction0%10%20%30%40%50%60%70%80%90%100%USCAJPCNKRDEFRNLOtherEUUKCHOtherEPCRoWNote:ThecalculationsarebasedonthecountryoftheIPFapplicants,usingfractionalcountinginthecaseofco-applications.Thevaluelabelsarenotreportedforsharesbeloworequalto1%.Source:author’scalculationsFigure5.2OriginsofIPFsrelatedtoexistinghydrogenapplications,2011–202012%10%4%6%21%8%2%7%2%6%5%13%14%15%15%10%3%7%6%2%2%14%14%EU27:34%EU27:48%Figure5.1Patentingtrendsinhydrogenuseformethanolandammoniaproduction(numberofIPFs,2001–2020)TableofcontentsExecutivesummaryKeyfindingsContentHYDROGENPATENTSFORACLEANENERGYFUTUREepo.org61<Europeancompanieslikewisedominatethelistofleadingapplicantsintheproductionofammoniaormethanol,with70%oftheIPFsstemmingfromthetoptenapplicants.Alltheseapplicantsinnovateinbothhydrogen-basedammoniaandmethanolproduction.TogethertheygeneratednearlyhalfofallIPFsinmethanolproductionandathirdinammoniaproductionintheperiod2011–2020,denotingastrongconcentrationofinnovationinbothsectors.TherelativelylargeshareofIPFsoriginatingfromresearchinstitutionsinammonia(23%)comparedwithmethanol(13%)productionsuggestsastrongerfocusonfundamentalresearch.Figure5.3Topapplicantsinmethanolandammoniaproduction,2011-2020CumulativeshareofpatentingactivitiesMethanolproduction(250IPFs)Ammoniaproduction(283IPFs)Top10OtherNote:IPFshavebeenallocatedtothelistedentitiesbasedontheidentificationoftheseentitiesasasingleorco-applicantoftherelatedpatents.Source:author’scalculationsTop10applicants(bynumberofIPFs)Topsoe(DK)SABIC(SA)Casale(CH)Thyssenkrupp(DE)AirLiquide(FR)JohnsonMatthey(UK)Mitsubishi(JP)JST(JP)Linde(DE)Siemens(DE)0102030405060EPCcountriesOther5847402623222015151547%33%53%67%TableofcontentsExecutivesummaryKeyfindingsContentHYDROGENPATENTSFORACLEANENERGYFUTUREepo.org62<5.2RecentdevelopmentsinapplicationsmotivatedbyclimateSince2001,therehavebeenmoreIPFsforautomotiveapplicationsofhydrogenthanforalltheotheremergingusesofhydrogencombined(Figure6.1).Patentinginthisareacontinuestogrow,atanaverageannualrateof7%overthepastdecade.Roadtransport,particularlypassengercars,hasbeenthemainfocusforhydrogeninnovationsincetheoilcrisesofthe1970s.Thatcrisislaunchedinterestinhydrogenfuelcellsalongsideinvestmentinnuclearpower,whichwasperceivedtobemoresecurethanoil,andintheabsenceofadequatebatteriesforelectricvehicles.Theaccumulatedknowledgebaseinthisareaisnowbeingcommercialisedinpursuitoflowemissions.Bytheendof2021,theglobalfuelcellelectricvehicle(FCEV)stockwasmorethan51000,upfromabout33000in2020,representingthelargestannualdeploymentofFCEVssincetheybecamecommerciallyavailablein2014.Carsandbusesarethebiggestsourceofdemandforhydrogenoutsideestablishedapplications,andmuchoftheintellectualpropertyisnowbeingappliedtotrucks,wherehydrogenisconsideredtohaveamorecompetitiveadvantageoverbatteries.Demandforlow-emissionhydrogenforroadtransportintheIEANetZeroEmissionsby2050Scenariosoarstomorethan90MtH2in2050,butisovertakenby200Mtofdemandforothermodesoftransport(includingthehydrogeninputstomakehydrogen-basedfuelsforaviationandshipping).Thechallengeofdecarbonisingaviationandshipping,forwhichhydrogenistheleadingoptionoverlongdistances,hasbecomemuchmoreprominentinrecentyearsandthisisreflectedinthepatentdata.IPFsforaviationapplicationshavegrownatanaverageannualrateof15%overthelastdecade,andforshippingtheratehasbeen8%.ProgresshasmainlybeenledbyJapanintheautomotivesector,bytheUSinaviationandbyEuropeanapplicantsinthecaseofshipping,suggestingatrendtowardsapatternofglobalspecialisationinthesesectors(Figure6.2).Japaninparticularshowsastrongleadinhydrogenapplicationsfortheautomotivesector–themostimportantapplicationfieldbyfarintermsofpatentingactivities–with39%ofIPFsinthatfield.Only33IPFswerepublishedforrailapplicationsoverthewholeperioddespitetherebeingmoretrainsrunningonhydrogenintheworldtoday(around14)thanaircraftorships.Otherend-useapplications807060504030201002002200420062008201020122014201620182020BuildingsElectricitygenerationIronandsteelUpgradingbiofuelsFigure5.4Patentingtrendsinhydrogenend-useapplications(IPFs,2001–2020)Source:author’scalculationsTransport3503002502001501005002002200420062008201020122014201620182020AutomotiveAviationRailShippingTableofcontentsExecutivesummaryKeyfindingsContentHYDROGENPATENTSFORACLEANENERGYFUTUREepo.org63<Inotherapplications,thereisnocleartrendtowardsmoreinnovation.Thegloballevelofpatentingfortechnologiesthatenablehydrogenuseforsteelmaking,powergenerationandthebuildingssector(forheat,electricityorcooking)waslowerin2020thaninthe2000–2015period.Forpowergenerationandbuildings,thetrendisoneofdecline.However,thesesectorsmayneedtorelyonhydrogentechnologiesfordecarbonisation.Thefirstcommercialironandsteelplantusinglow-emissionhydrogencouldcomeonlineasearlyas2026(seeBox6).IntheIEANetZeroEmissionsby2050Scenario,useoflow-emissionhydrogenintheironandsteelsectorreachesaround50MtH2in2050.PatentingintheuseofhydrogenforironandsteelproductionhasmainlybeenledbyEuropeanandJapaneseapplicants,whichtogetheraccountedformorethanhalfofIPFpublicationsovertheperiod2011–2020.Withmoremoneyandinterestbeingdedicatedtothistopic,itseemslikelythatthecurrentupturnwillaccelerateandbecomemoreglobalisedastechnicalchallengesareovercomeoneverlargerscales.Inthepowersector,demandrisesto90MtintheScenario,includingforstationaryfuelcellsandhydrogenthatistransformedtoammoniaandco-firedwithfossilfuels.Theseflexibleformsofgenerationhelptobalanceincreasinggenerationfromvariablerenewablesbyrespondingrapidlytoimbalancesinsupplyanddemandandusinghydrogenasameansofstoringortransportingelectricity.Hydrogenuseinbuildingsalsoincreases,althoughitspenetrationislimitedtocertainsituationsinwhichitoffersclearadvantagesoverothertechnologyoptions.10Inbothcases,thedeclineinpatentingappearssomewhatcorrelatedwithrisingexpectationsforbatteriesasameansofstoringelectricityatgrid-scaleorinbuildings.Forbuildingsinparticular,thehigherlevelofpatentingbetween2005and2015islikelytohavebeenunderpinnedbygovernmentaction.TheapplicationsareheavilyconcentratedinJapan(52%ofIPFsintheperiod2011–2020),whereseveralprogrammessoughttodevelop"micro"fuelcellsforbuildingsasanalternativetonaturalgas.Nonetheless,costreductionsforstationaryfuelcells,particularlyfuelcellmanufacturing,arestillconsideredfundamentaltotheprospectsforhydrogeninthesesectorsandthefallinpatentingisnotapromisingsign.10Somecountriesalsoexpecttoblendsmallpercentagesoflow-emissionhydrogenintotheirnaturalgasgrids,thoughtherequirementsfornewtechnologiesforpowerplantsandinbuildingswouldbemodest.AutomotiveAviationShippingRailIronandsteelElectricitygenerationBuildingsUpgradingbiofuels0%10%20%30%40%50%60%70%80%90%100%USCAJPKRCNDEFRNLOtherEUUKCHOtherEuropeRoWNote:ThecalculationsarebasedonthecountryoftheIPFapplicants,usingfractionalcountinginthecaseofco-applications.Thevaluelabelsarenotreportedforsharesbelow2%.Source:author’scalculationsFigure5.5OriginsofIPFsrelatedtohydrogenapplications,2011–202014%35%16%24%2%2%21%11%2%39%2%8%10%3%12%17%13%15%9%9%6%7%3%3%3%2%8%3%6%7%8%11%8%14%9%8%13%22%34%48%9%3%2%2%7%18%2%15%4%18%3%3%9%2%5%3%2%2%3%2%11%10%7%12%16%7%7%3%52%9%10%3%2%6%5%21%2%EU27:22%EU27:27%EU27:33%EU27:33%EU27:33%EU27:22%EU27:18%EU27:36%TableofcontentsExecutivesummaryKeyfindingsContentHYDROGENPATENTSFORACLEANENERGYFUTUREepo.org64<5.3RecentdevelopmentsintransporttechnologiesPatentdatacanbedisaggregatedtoexploretrendswithinindividualtransportapplications.Asdifferentapplicationsadvancetowardshighlevelsoftechnologyreadiness,andthenovercomechallengesrelatedtocommercialproduction,thefocusofinnovationevolves.Fuelcellroadvehiclesareinsomecasesalreadydiscoveringthehurdlestomassproduction,whileaviationandshippingapplicationsareatamuchearlierstageoftroubleshootingpilotprojects.Foreachapplicationofhydrogen,therearetechnicalchallengesrelatingtoon-boardstorageofhydrogenandpropulsion–i.e.howtoconvertthechemicalenergyintomotiveforce,forexampleviaafuelcellcombinedwithanelectricmotor.Forautomotiveandaviationsectors,theareaswiththehighestlevelsofpatenting,propulsiondominates,mainlydrivenbyinnovationinfuelcellsduringtheperiod2011–2020(Figures5.6and5.7).ThenumberofIPFsincreasedsignificantlyoverthisperiodforfuelcell-relatedinventionsinbothsectors,withcompoundaveragegrowthratesof15%intheautomotivesectorandnearly18%inaviation.Inaviation,thistrendisdominatedbyinnovationforunmannedaircraftordrones,whichaccountedfortwo-thirdsofIPFsinfuelcellpropulsionforaviationin2020.Forpassengerandcargoaircraft,thereisanexpectationthathydrogenandfuelcellscouldbethemostcompetitiveoptionsformedium-haulflightsthatmightrequireprohibitivenumbersofbatteriestoelectrifybyothermeans.Thepatentdataoffersomeevidenceofatechnicalconsensusinfavouroffuelcells,asthenumberofIPFsforacompetitor-hydrogeninternalcombustionenginesonaircraft-decreasedoverthepastdecade.Since2021,ZeroAvia,astart-upfoundedin2017,hasraisedUSD78milliontodevelopafuelcellaircraftwithupto100seats.However,forlongerdistances,thehigherpowerofturbinesandthegreaterenergydensityofhydrogen-basedfuelsareexpectedtobemorecompetitive.Airbusisaimingtodeveloptheworld'sfirstzero-emissioncommercialaircraftby2035usingahydrogenturbine.UniversalHydrogen,astart-upfoundedin2020,hasraisedoverUSD80millionforhydrogenturbinedrivetrains.Despitethisactivity,patentingactivityforaviationgasturbinesusinghydrogen,ammoniaormethanolforlong-haulaviationincreasedonlyslightlyfrom2011to2020.AutomotiveAviationShippingRail0%10%20%30%40%50%60%70%80%90%100%PropulsionOn-boardstorageSource:author’scalculationsFigure5.6Hydrogenpropulsionversuson-boardstorageintransporttechnologies,2011–202029%71%17%83%62%92%38%8%TechnologyTechnologyreadinesslevelFuelcellsforlightdutyroadMarketuptakeTRL9FuelcellsforheavydutyroadMarketuptakeTRL9H2ICEforroadPre-commercialdemonstrationTRL7FuelcellsforshippingFirst-of-a-kindcommercialTRL8H2ICEforshippingLargeprototypeTRL5SmallaircraftPre-commercialdemonstrationTRL7MediumaircraftEarlyprototypeTRL4RailFirst-of-a-kindcommercialTRL8Table5.1EmerginghydrogentechnologiesintransportTableofcontentsExecutivesummaryKeyfindingsContentHYDROGENPATENTSFORACLEANENERGYFUTUREepo.org65<Patentingactivitiesrelatedtorailandshipping(includingpatentsforammoniaandmethanolengines)suggestthattheon-boardstorageofhydrogenisthemaininnovationconcernfortheseapplications.Moreover,thepatentingofhydrogen-relatedpropulsiontechnologiesforshippingremainslargelyfocusedonthespecificapplicationofthesetechnologiestosubmarines.Intermsofthetypeofpropulsionforships,patentingactivitiesremainevenlydistributedbetweenfuelcellsandinternalcombustionengines,withanincreaseinbothcasesduringthepastdecade.2011201220132014201520162017201820192020AutomotiveFuelcells647210598107187170171182234Internalcombustionengines80675169584754607961AviationFuelcells16193418222530252371Gasturbines6121017141516121516ShippingFuelcells3515128141081619Internalcombustionengines5101611111514121624Source:author’scalculationsFigure5.7Internationalpatentingtrendsinhydrogen-basedpropulsiontechnologies,2011–2020TableofcontentsExecutivesummaryKeyfindingsContentHYDROGENPATENTSFORACLEANENERGYFUTUREepo.org66<ThetoptenapplicantswiththelargestnumberofIPFsrelatedtofuelcellsforautomotivepropulsionincludenineautomotiveOEMsandoneoftheirkeysuppliers,Bosch.Itisnoticeablethat"pureplay"fuelcelldevelopers,suchasBallard,aCanadiancompany,orPlugPower,aUScompany,havefewerpatentsinthisarea,thoughtheyalsoownintellectualpropertyinmoregenericfuelcelltechnologyunrelatedtoautomotiveintegration.Thesetoptenapplicantstogetheraccountfornearly80%oftheIPFspublishedinthatfieldbetween2011and2020(Figure5.8).TheyareledbytwoJapanesecompanies(ToyotaandHonda)andtwoKoreancompanies(HyundaiandKia).ThreeGermancompanies,twoUScompaniesandathirdJapanesecompanycompletethelist.Theright-handpartofFigure5.8showsthatinnovationinfuelcellsfortheautomotivesectoralsogeneratestechnologyknowledgeforelectrolysis.Specifically,alargepartoftheOEMs'patentportfoliosrelatestopolymerseparatormembranematerialsthatarealsorelevantforPEMelectrolysis.ThisisduetothereversibilityofPEMfuelcells,whichcanbeusedinreverseforelectrolysis,andthereforeallowsforimportantsynergiesbetweeninnovationeffortsaimedatelectricityuseandelectricitygenerationusingPEMtechnology.IPFsonfuelcellsforpropulsionIPFswithrelevancetoelectrolysisPolymerseparatormembranematerialsInorganicseparatormembranematerialsElectrocatalystmaterialsStackingToyota(JP)4312571084Hyundai(KR)22315833Honda(JP)16812216916Kia(KR)11110123GeneralMotors(US)499411Nissan(JP)441259Audi(DE)35801Bosch(DE)3411812215BMW(DE)3315Ford(US)2248DEEU27JPKRUSNote:IPFshavebeenallocatedtothelistedentitiesbasedontheidentificationoftheseentitiesasasingleofco-applicantoftherelatedpatents.Source:author’scalculationsFigure5.8Toptenapplicantsinautomotiveapplications,2011–2020TableofcontentsExecutivesummaryKeyfindingsContentHYDROGENPATENTSFORACLEANENERGYFUTUREepo.org67<Box6:HydrogeninsteelmanufacturingTheironandsteelindustryiscurrentlyresponsiblefor8%ofglobalfinalenergydemandandabout7%oftheenergysectorCO2emissions,makingitthelargestindustrialsourceofsuchemissions(IEA,2020).Producingsteelrequiresiron(Fe),andproducingironrequiresthereactionofironore(usuallyintheformofFe2O3)withareducingagentathightemperature.Themainroutetodayusesablastfurnace,inwhichtheoreandthereducingagent(coke)areexposedtohotairandmetallicironisproducedinaliquidstate.MostoftheCO2emissionsstemfromtheuseoffossilfuelstoproducethehightemperatureandfromthecarboninthecoke,whichacceptstheoxygenleavingtheoreinaccordancewiththefollowingreactions:2C+O2→2COFe2O3+3CO→2Fe+3CO22Fe2O3+3C→4Fe+3CO2Useofhydrogenasthereducingagentisoneofthemostpromisingwaystoreducethecarbonfootprintofprimarysteelproduction,alongsideapproachessuchasCCUS,bioenergyanddirectelectrification.Withhydrogen,waterisproducedratherthanCO2.Fe2O3+3H2→2Fe+3H2OThehydrogencanbeusedinablastfurnacewhereitcanbeblendedwithcoketoachieveuptoaround20%lowerCO2emissions(Yilmaz,2017).Itcanalsobeblendedwithnaturalgasinadirectreducediron(DRI)plantthatproducesasponge-typeofironthatcanbeprocessedintosteelinanelectricarcfurnace,potentallyrunningonelectricitygeneratedeitherfromrenewablesorfromnuclearpowerplants.HydrogencanbeblendedwiththenaturalgasinaDRIplant,partiallyreducingemissions.Togofurthertowardsdecarbonisationoftheironandsteelsector,DRIplantscanbeoperatedusingonlyhydrogenasthereducingagent,butthisrequiresthefacilitytoberedesignedandtheinputofverylargequantitiesofhydrogen.Thefirst100%hydrogenDRIpilotprojectstartedoperatinginSwedenin2021andthefirstindustrialplantsarecurrentlyunderconstruction(oneinSweden)oratanadvancedstageofplanninginGermany,SpainandP.R.China.Ifallarecompletedasplanned,theycouldmeet1.8Mtoflow-emissionhydrogendemandby2030.Smeltreductionisathirdoptionthatcouldalsoincorporatehydrogen.Pelletsorfineorearefirstpartiallyreducedandthenfedtoagasifier-melterinasecondstep.Hydrogencouldpotentiallybethesolereducingagentinthisprocessbuttherearecurrentlynoimmediateplanstobuildcommercial-scalefacilitiesusingthistechnology.Patentdatashowsimilartrendsforallthreeprocesses,withadropinthenumberofpublishedIPFsafterapeakin2014,andgrowthresumingintheperiod2017–2020(seeFigure5.4).Itislikelythatthisreflectseffortsstimulatedbytwomajorresearchprogrammes–ULCOSinEuropeandCOURSE50inJapan–thatwereinitiallysupportedbygovernmentsbetween2005and2015.Betweentheseprogrammesarangeofdifferentapproachestoreducingemissionsfromthesectorwerepursued.Inrecentyears,hydrogen-basedDRIhasemergedasthemainfocusareaforinvestmentinR&Danddemonstration.Thisislargelyduetotheincreasedambitionofgovernmentsandcompaniestoachievesignificantemissionsreductionsandnotjustpartialdecreases,aswellashigherexpectationsaboutthecostsandavailabilityoflow-emissionhydrogen.TechnologyTechnologyreadinesslevelDirectreducedironFullprototypeTRL6BlendinginblastfurnacesPre-commercialdemonstrationTRL7SmeltingreductionEarlyprototypeTRL4Table5.2EmergingapplicationsofhydrogeninsteelmanufacturingTableofcontentsExecutivesummaryKeyfindingsContentHYDROGENPATENTSFORACLEANENERGYFUTUREepo.org68<Nearly40%ofpatentingactivitiesintheperiod2011–2020wereconcentratedamongasmallnumberofsteelproducersandequipmentsuppliers(Figure5.9).JapanesecompaniesappeartobeleadingamongthetopOEMs,withthreeapplicantsfeaturinginthetopfive.TheportfoliosofmostOEMstendtofocusoneasier-to-implementblastfurnacetechnology,inparticularinthecaseofJFESteelandThyssenkrupp,withPoscostandingoutwitharelativespecialisationinDRI.Bycontrast,threeEuropeancompaniesandtwofromtheUSformthetopfiveequipmentsuppliers.ComparedwithOEMs,theirportfoliosaremorediversifiedandsignalastrongerfocusonDRIandsmeltingreduction.Moreover,asignificantproportionoftheirpatentedinventionsareofrelevancefortwoormorehydrogen-basedsteelproductiontechnologies.ThissuggeststhatsuppliersarebetterpositionedthanOEMstocombinethesedifferentroutesinnewequipmentandtofacilitatethediffusionofnewhydrogen-basedtechnologiestowardsthedifferentOEMs.Figure5.9Profileoftopapplicantsinsteelmanufacturing,2011–2020TotalBlastfurnaceDirectreducedironSmeltingreductionOEMsJFESteel(JP)392939Posco(KR)2810202KobeSteel(JP)16781Thyssenkrupp(DE)141324Nipponsteel(JP)13627SuppliersSiemens(DE)35162121Primetals(UK)3492215Midrex(US)199183TechnicalResources(US)121310Danieli(IT)111102Note:IPFshavebeenallocatedtothelistedentitiesbasedontheidentificationoftheseentitiesasasingleorco-applicantoftherelatedpatents.Source:author’scalculationsTableofcontentsExecutivesummaryKeyfindingsContentHYDROGENPATENTSFORACLEANENERGYFUTUREepo.org69ReferencesBCG,"DeepTechandtheGreatWaveofInnovation",2021.Retrievedfrombcg.com/de-de/publications/2021/deep-tech-innovationBogaertsetal.,"PlasmaTechnologyforCO2Conversion:APersonalPerspectiveonProspectsandGaps",2020,FrontiersinEnergyResearch.Retrievedfromhttps://www.frontiersin.org/articles/10.3389/fenrg.2020.00111/fullEPOandIEA,"Patentsandtheenergytransition–Globaltrendsincleanenergytechnologyinnovation",April2021,epo.org/trends-energy;iea.org/reports/patents-and-the-energy-transitionEPOandIRENA,"Innovationtrendsinelectrolysersforhydrogenproduction",PatentInsightReport,April2022.Retrievedfromhttps://www.epo.org/searching-for-patents/business/patent-insight-reports.htmlHarrison,D.P."Sorption-EnhancedHydrogenProduction:AReview"2008.Ind.Eng.Chem.Res.47,6486–6501.Retrievedfromhttps://pubs.acs.org/doi/full/10.1021/ie800298zHolladayetal.,"Anoverviewofhydrogenproductiontechnologies",2009.CatalysisToday,vol.139,4,244–260.Retrievedfromhttps://www.sciencedirect.com/science/article/pii/S0920586108004100?via%3DihubIEA,"TheFutureofHydrogen–Seizingtoday'sopportunities",Technologyreport,June2019.Retrievedfromiea.org/reports/the-future-of-hydrogenIEA,"IronandSteelTechnologyRoadmap",Technologyreport,October2020.Retrievedfromiea.org/reports/iron-and-steel-technology-roadmapIEA,"NetZeroby2050–AroadmapfortheGlobalEnergySector",Flagshipreport,May2021.Retrievedfromiea.org/reports/net-zero-by-2050IEA,"WorldEnergyInvestment2022",Flagshipreport,June2022a.Retrievedfromiea.org/reports/world-energy-investment-2022IEA,"GlobalHydrogenReview2022",Technologyreport,September2022b.Retrievedfromiea.org/reports/global-hydrogen-review-2022IEA,"Biofuels",September2022,Trackingreport,September2022c.Retrievedfromiea.org/reports/biofuelsIEA,"WorldEnergyOutlook2022",Flagshipreport,October2022d.Retrievedfromhttps://www.iea.org/reports/world-energy-outlook-2022MasoudiS.etal.,"Sorption-enhancedSteamMethaneReformingforCombinedCO2CaptureandHydrogenProduction:AState-of-the-ArtReview",2021.CarbonCaptureScience&Technology,vol.1,100003.Retrievedfromhttps://www.sciencedirect.com/science/article/pii/S2772656821000038?via%3DihubSánchez-Bastardoetal.,"MethanePyrolysisforZero-EmissionHydrogenProduction:APotentialBridgeTechnologyfromFossilFuelstoaRenewableandSustainableHydrogenEconomy",2021.Ind.Eng.Chem.Res.2021,60,32,11855–11881.Retrievedfromhttps://pubs.acs.org/doi/10.1021/acs.iecr.1c01679Schneideretal.,"StateoftheArtofHydrogenProductionviaPyrolysisofNaturalGas",2020.ChemBioEngRev,vol.7,issue5,150-158.Retrievedfromhttps://onlinelibrary.wiley.com/doi/10.1002/cben.202000014Wismannetal.,"Electrifiedmethanereforming:Acompactapproachtogreenerindustrialhydrogenproduction",2019.Science,vol.364,issue6442,756–759.Retrievedfromhttps://www.science.org/doi/abs/10.1126/science.aaw8775Wismannetal.,"Electrifiedmethanereforming:Elucidatingtransientphenomena",2021,ChemicalEngineeringJournal425,131509.Retrievedfromhttps://www.sciencedirect.com/science/article/pii/S1385894721030904Wolframetal.,"Usingammoniaasashippingfuelcoulddisturbthenitrogencycle",NatureEnergy,2022.Retrievedfromhttps://www.nature.com/articles/s41560-022-01124-4Yilmaz,C.,Wendelstorf,J.,Turek,T."Modelingandsimulationofhydrogeninjectionintoablastfurnacetoreducecarbondioxideemissions",2017.JournalofCleanerProduction,vol.154,488–501.Retrievedfromhttps://www.sciencedirect.com/science/article/pii/S0959652617306169?via%3DihubTableofcontentsExecutivesummaryKeyfindingsContent<HYDROGENPATENTSFORACLEANENERGYFUTUREepo.org70Publishedandeditedby©2023EPOandOECD/IEAAuthorsJoséAlconchelyUngria,CristinaAlvarezRodriguez,PaoloBurattini,IoanaCristescu,ValérieDesbois,IreneGattinger,LluisGimeno-Fabra,DirkGöritz,MuzioGrilli,ElisabethHarf-Bapin,RégisJung,RalphLux,LaurentMauriès,YannMénière,ThomasOtt,MichailPapagiannis,VasilikiPapanikolaou,OlivierPorté,IljaRudyk,ChristofSodtke,VictorVeefkind,AnsgarWansing(EPO)SimonBennett,NickJohnstone,JoseMiguelBermudezMenendez(IEA)DesignPDCommunication(EPO)Thereportcanbedownloadedfrom:epo.org/trends-hydrogeniea.li/hydrogen-innovationISBN978-3-89605-314-5TableofcontentsExecutivesummaryKeyfindingsContent<