GREENHYDROGENINDEVELOPINGCOUNTRIESPublicDisclosureAuthorizedPublicDisclosureAuthorizedPublicDisclosureAuthorizedPublicDisclosureAuthorizedGREENHYDROGENINDEVELOPINGCOUNTRIESiiThisreportwasresearchedandpreparedbystaffandconsultantsattheEnergySectorManagementAssistanceProgram(ESMAP),partoftheWorldBank.TheworkwasfundedbyESMAPandtheWorldBank.TheauthorsandmaincontributorstothereportwereFernandodeSisternes(TaskTeamLeaderandEnergySpecialist,ES-MAP)andChristopherJackson(Consultant,ESMAP).TheauthorsthankpeerreviewersDemetriosPapathanasiou(PracticeManager,WorldBank),RafaelBen(EnergySpecialist,WorldBank),PeterMockel(PrincipalIndustrySpecialist,IFC),PierreAudinet(LeadEnergySpecialist,WorldBank),ManuelMillan(SeniorEnergySpecial-ist,WorldBank),GabrielaElizondo(SeniorEnergySpecialist,WorldBank),DanielRoberts(CSIRO),JennyHayward(CSIRO),ChrisMunnings(CSIRO),andJeniferBaxter(IMechE),whogavetheirtimeandcommentstodraftsofthisreport.TheauthorswishtoexpresstheirgratitudetoRohitKhanna(PracticeManager,ESMAP),ZuzanaDobrotkova(SeniorEnergySpecialist,ESMAP),IvanJaques(SeniorEnergySpecialist,ESMAP),SandraChavez(Consultant,ESMAP),andElizabethMinchew(AssociateOperationsOfficer,IFC)fortheirvaluablecommentsthroughoutdifferentstagesofthisreport.TheauthorsalsowishtothankMarjorieAraya(ProgramAssistant,ESMAP),PaulineChin(SeniorProgramAssistant,ESMAP),andMelissaTaylor(ProgramAssistant,ESMAP)fortheirinvaluablesupport,andAshleyYoung(PublicationsProfessionals),LindaStringer(PublicationsProfessionals),MarcyGessel(PublicationsProfessionals),andDebraNaylor(NaylorDesign)fortheireditorialanddesignwork.©2020InternationalBankforReconstructionandDevelopment/TheWorldBank1818HStreetNW,Washington,DC20433USA202-473-1000www.worldbank.orgThisworkisaproductofthestaffoftheWorldBankwithexternalcontributions.Thefindings,interpretations,andconclusionsexpressedinthisworkdonotnecessarilyreflecttheviewsoftheWorldBank,itsBoardofExecutiveDirectors,orthegovernmentstheyrepresent.TheWorldBankdoesnotguaranteetheaccuracyofthedataincludedinthiswork.Theboundaries,colors,denominations,andotherinformationshownonanymapinthisworkdonotimplyanyjudgmentonthepartoftheWorldBankconcerningthelegalstatusofanyterritoryortheendorsementoracceptanceofsuchboundaries.RIGHTSANDPERMISSIONSThematerialinthisworkissubjecttocopyright.BecausetheWorldBankencouragesdisseminationofitsknowledge,thisworkmaybereproduced,inwholeorinpart,fornoncommercialpurposesaslongasfullattributiontothisworkisgiven.Anyqueriesonrightsandlicenses,includingsubsidiaryrights,shouldbeaddressedto:WorldBankPublications,WorldBankGroup,1818HStreetNW,Washington,DC20433,USA;fax:202-522-2625;pubrights@worldbank.org.ESMAPwouldappreciateacopyoforlinktothepublicationthatusesthispublicationforitssource,addressedtoESMAPManager,WorldBank,1818HStreetNW,Washington,DC20433USA;esmap@worldbank.org.Allimagesremainthesolepropertyoftheirsourceandmaynotbeusedforanypurposewithoutwrittenpermissionfromthesource.Attribution—Pleasecitetheworkasfollows:ESMAP.2020.GreenHydrogeninDevelopingCountries.Washington,DC:WorldBank.FrontCover:©AdAstraRocketBackCover:©GeoffBrown/AngloAmericanTheEnergySectorManagementAssistanceProgram(ESMAP)isaglobalknowledgeandtechnicalassistanceprogramadministeredbytheWorldBank.ESMAPassistslow-andmiddle-incomecoun-triesinincreasingtheirknow-howandinstitutionalcapacitytoachieveenvironmentallysustainableenergysolutionsforpovertyreductionandeconomicgrowth.ESMAPisfundedbyAustralia,Austria,Canada,Denmark,theEuropeanCommission,Finland,France,Germany,Iceland,Italy,Japan,Lithuania,Luxembourg,theNetherlands,Norway,theRocke-fellerFoundation,Sweden,Switzerland,theUnitedKingdom,andtheWorldBank.ESMAPMISSION©CERESPOWER©SFCvCONTENTSEXECUTIVESUMMARY..................................................................xiABBREVIATIONSANDACRONYMS......................................................viiiGLOSSARYOFTERMS...................................................................ix1:INTRODUCTION.......................................................................12:WHYGREENHYDROGEN,WHYNOW,ANDWHYDEVELOPINGCOUNTRIES?...............92.1.Whygreenhydrogen?..............................................................102.2.Whynow?......................................................................112.3.Whydevelopingcountries?..........................................................162.4.Short-term,medium-term,andlong-termopportunitiesforgreenhydrogen...........................253:STATEOFTHEMARKET..............................................................273.1.Howfuelcellandelectrolyzertechnologieswork............................................283.2.Marketsize.....................................................................313.3.Costs.........................................................................364:ENERGYAPPLICATIONSANDCOMMERCIALSOLUTIONS................................454.1.Residentialapplications.............................................................464.2.Back-uppowerapplications..........................................................484.3.Off-gridpowerapplications..........................................................494.4.Commercialapplications............................................................514.5.Utility-scaleapplications.............................................................534.6.Levelizedcostofenergyillustrativemodeling:greenhydrogenproductionandfuelcellsystem.............555:MOBILITYAPPLICATIONS............................................................595.1.Fuelcellelectricvehicles............................................................615.2.Fuelcellelectricbuses.............................................................625.4.Shippingandtrains................................................................675.5.Hydrogenrefuelingstations..........................................................705.6.Materialhandlingandforklifts........................................................726:INDUSTRIALAPPLICATIONS..........................................................766.1.Ironandsteel....................................................................766.2.Ammonia.......................................................................776.3.Refining........................................................................796.4.Glass,food,andotherareas.........................................................796.5.Otherhydrogenfuels...............................................................807:IMPLEMENTATIONCHALLENGES......................................................837.1.Implementationcapacityandinfrastructurerequirements.......................................847.2.Gettingtherightinputs.............................................................907.3.Transportandstorage..............................................................938:AREASFORFURTHERRESEARCH.....................................................99BIBLIOGRAPHY.......................................................................101GREENHYDROGENINDEVELOPINGCOUNTRIESviLISTOFFIGURESES.1:Primaryhydrogenandfuelcellapplicationsandecosystemfordevelopingcountries...................xviES.2:HydrogenSouthAfricasolarplusbattery,hydrogenelectrolysis,andfuelcellsystem...................xix1.1:Globalhydrogenmarket,byproductionmethod.............................................31.2:Greenhydrogengenerationandfuelcellexamples:Electrolyzerandcommunitywindsite,Shapinsey,OrkneyIslands,UnitedKingdom(left)andBloomEnergycommercialunit,UnitedStates(right)...........62.1:OECDRD&DSpending,US$,millions,2001–17............................................122.2:World’sLargestElectrolyzer:NorskHydro135MWElectrolyzer,Glomfjord,Norway..................132.3:LifetimePerformanceofSiemens-WestinghouseSOFCUnits,TestResults............................142.4:World’slargestcurrentelectrolyzer(25MW),polysiliconplant,Sarawak,Malaysia....................192.5:FuelcellsforcriticalinfrastructureinIndonesia.............................................222.6:CommercialfuelcellinstallationinIndia.................................................243.1:Simplediagramofaprotonexchangemembranefuelcell.....................................283.2:SimplifieddiagramsofaPEMandalkalineelectrolyzer.......................................303.3:Projectionsandroadmapsforglobalhydrogenintheenergysectordemand.........................313.4:Powertogas,windtohydrogeninGermany..............................................323.5:ElectrolyzergigafactoryunderconstructioninSheffield,UnitedKingdom...........................343.6:Technologydeploymentcurvesforfuelcellsversuswind,andsolarphotovoltaic.......................353.7:Averagefuelcellelectricalefficienciesbetween2005and2019.................................363.8:SpreadinUnitedStateshydrogenpricesfromHyDRA,April2019................................383.9:ITMPEMelectrolyzer,NationalPhysicsLab,UnitedKingdom,2019(left)andSiemensSilyzer3000,MainzPark,Germany,2019(right)...................................................413.10:StationaryPEMfuelcellcost.........................................................423.11:Reportedequipmentcostdeclinecurvesfromleadingfuelcellsuppliers...........................434.1:Examplesofresidentialfuelcellsystems..................................................474.2:PhiSueaoff-the-gridhouse,Thailand,hydrogensystems.......................................484.3:HydrogenboilersdeployedatShapinseySchool,Kirkwall,UnitedKingdom.........................494.4:Snapshotofportablefuelcellsfortelecomapplications:GenCellA52019(right),SFCEnergymethanolfuelcell2019(center),andSFCEnergymethanolfuelcellback-upforlightingsystem2019(left)...............514.5:Utility-scalefuelcellsolutions:SolidoxidefuelcellunitsintheUS................................544.6:PEMfuelcell1MWunitusingexcesshydrogenfromislandrefinery,Martinique,2019.................564.7:Illustrativelevelizedcostofenergyofgreenhydrogen-basedelectricity,modelingunderthreescenarios,$/MWh...............................................565.1:Californiamonthlyfuelcellelectricvehiclemarket,January2014–December2019(numberofsoldandleasedunits)....................................................645.2:Pastandpresentfuelcellbusexamples,1993(left)and2014(right)..............................645.3:Decliningcostoffuelcellelectricbuses,usingBallardPowerSystemsdata..........................665.4:FuelcellbusrefuelinginWuhan,China..................................................665.5:Currentfuelcelltruckconcepts........................................................685.6:Greenhydrogenrefueling,withon-sitehydrogengenerationfromrooftopphotovoltaic:Freiburg,Germany,in2012(left)andEmeryville,California,in2011(right).................................................715.7:Exampleofhydrogenrefuelingstationconfiguration(noon-siteproduction)..........................715.8:Hydrogenforkliftrefueling...........................................................736.1:ElectrolyzeratanIndianironproductionplant.............................................766.2:HYBRITconceptimage..............................................................776.3:World’sfirstwind-to-ammoniaproject...................................................786.4:SunfiresyntheticgreenfuelsfromhydrogeninGermany.......................................80vii7.1:HydrogencompressorsforrefuelinginChina:CompressorforZhangjiekhoubusstation(left)andcompressorforZongshanDayanghydrogenbusrefuelingstation(right)..........................857.2:Safetymeasuresinstalledforhydrogenleakdetection,protection,andmitigation:KirkwallHarbourHydrogentanksventingline(left),KirkwallHarbourPEMfuelcellgasleakagemonitoringsensor(center),andShapinseySchoolpressurizedhydrogencanistersstoredinblastwall–coveredarea,outdoorswithaninfraredcamera..........887.3:WarningsystemconfigurationforPEMelectrolyzeratShapinsey:PEMelectrolysisunitinfraredcameraandwarningalarms,Shapinsey,OrkneyIslands,UnitedKingdom(left)andShapinseyPEMelectrolyzersonnonstaticconcreteandwithhydrogenventilationshafts.......................................887.4:Shapinseyferryhydrogentrailersandsafetymeasuresatsea:Orkneyislandhydrogentrailer(left);OrkneyferrytoShapinsey,UnitedKingdom(topright);andfirehouseforhydrogentrailer(bottomright)..................897.5:Pressurizedhydrogenstoragetrailers....................................................947.6:Liquidorganichydrogencarriersolutioninoperation,Tennessee,UnitedStates.......................96LISTOFBOXESES.1:Hydrogenfundamentals............................................................xxii2.1:HybridenergystoragesystemsinFrenchGuiana............................................182.2:BalancingwindinThailand:SoutheastAsia’sfirstmegawatt-scaleenergystorageproject................212.3:AstrategicvisionforAfrica’shydrogeneconomy............................................232.4:FuelcellbusesinIndia.............................................................254.1:DisplacingdieselinIndonesia’stelecommunicationssector.....................................504.2:PoweringschoolsinSouthAfrica......................................................524.3:Greenhydrogenstorageandbatteries...................................................555.1:Fuelcellversusbatteryelectricvehicles..................................................605.2:HydrogenmobilityinChina..........................................................635.3:CleanmobilityinCostaRicausingCentralAmerica’sfirstfuelcellbus.............................655.4:HydrogenforminingmobilityoperationsinChile...........................................695.5:EnergystorageandgreenhydrogenrefuelingonSingapore’sSemakauIsland........................727.1:Operationsandmaintenancechallengesforgreenhydrogenindevelopingcountries...................91LISTOFTABLESBES.1.1:Energycontentandenergypricecomparisonofcommonlyusedfuels...........................xxii3.1:Estimatedglobalmanufacturingcapacityforelectrolyzers(PEMandalkaline),2019...................333.2:Estimatedglobalmanufacturingcapacityforfuelcellsacrossalltechnologies,2019...................373.3:Productioncostestimatesofhydrogenfromsteammethanereformingandcoalgasification(excludingtransportandstoragecosts)................................................383.4:Costestimatesofhydrogengeneratedviawaterelectrolysis....................................403.5Sampleofelectrolyzercapitalexpenditureestimates..........................................413.6:Overviewofprimaryfuelcelltechnologies................................................443.7:Methanolandammoniafuelcells......................................................444.1:Overviewofstationaryfuelcellapplications...............................................465.1:Overviewofnotablecurrentlyavailableandannouncedpassengerfuelcellelectricvehiclemodels.........617.1:Hydrogenpurityrequirements.........................................................927.2:Overviewofhydrogentransportationmethods.............................................95GREENHYDROGENINDEVELOPINGCOUNTRIESviiiABBREVIATIONSANDACROYNYMSAEManionexchangemembraneAFCalkalinefuelcellAHPAfricanHydrogenPartnershipAssociationBEVbatteryelectricvehicleCAGRcompoundannualgrowthratecapexcapitalexpenditureCCGTcombinedcyclegasturbineCCScarboncaptureandstorageCCUcarboncaptureanduseCEOGCentraleÉlectriquedel’OuestGuyanais(FrenchGuiana)(WesternGuianaPowerPlant)CHPcombinedheatandpowerCSIROCommonwealthScientificandIndustrialResearchOrganisationCNGcompressednaturalgasCO2carbondioxideDMFCdirectmethanolfuelcellDOEDepartmentofEnergyEGATElectricityGeneratingAuthorityofThailandEJexajouleESMAPEnergySectorManagementAssistanceProgramEUEuropeanUnionEVelectricvehicleFCEBfuelcellelectricbusFCEVfuelcellelectricvehicleFCHJUFuelCellsandHydrogenJointUndertakingGHGgreenhousegasGWgigawattHRShydrogenrefuelingstationHTAPHydrogenTechnologyAdvisoryPanelHySAHydrogenSouthAfricaIEAInternationalEnergyAgencyIOCIndianOilCompanyIPCCIntergovernmentalPanelonClimateChangeIRENAInternationalRenewableEnergyAgencykgkilogramkWkilowattLNGliquefiednaturalgasLCOElevelizedcostofenergyLOHCliquidorganichydrogencarrierMCFCmoltencarbonatefuelcellMEAmembraneelectrodeassemblyMJmegajouleMtoemilliontonnesofoilequivalentMWmegawattMWhmegawatt-hourNASANationalAeronauticsandSpaceAdministrationNDCNationallyDeterminedContributionNRELNationalRenewableEnergyLaboratoryOEMoriginalequipmentmanufacturerPAFCphosphoricacidfuelcellPEMprotonexchangemembranePPApowerpurchasingagreementPVphotovoltaicR&DresearchanddevelopmentRD&Dresearch,development,anddeploymentSMRsteammethanereformingSOEsolidoxideelectrolysisSOFCsolidoxidefuelcellVREvariablerenewableenergyAlldollarfiguresdenoteUSdollarsunlessotherwisenoted.ixGLOSSARYOFTERMSGLOSSARYOFTERMSAlkalineelectrolyzer—Thisistheoldestestablishedtechnologyforcreatinghydrogenfromwaterandelectricity.Thenameisderivedfromtheelectrolyteused,whichistypicallybasedoneitherpotassiumhydroxide(KOH)orsodiumhydroxide(NaOH).Alkalinefuelcell—Thisisoneoftheoldestandcheapestfuelcelltechnologies.Becauseofthisfuelcell’shighlyconductiveelectrolyteandhighlyreactiveelectrodes,manufacturershavebeenabletoassemblelargerunits,andthusreducelossesandprovidehighergeneralelectricalefficienciesthanotherfuelcells.Despitethesefea-tures,relativelyfewhavebeendeployed.Bluehydrogen—Thistermisusedforhydrogenproducedusinglow-carbonprocesses.Itisalmostexclusivelyusedtorefertohydrogenproducedvianaturalgasorcoalgasificationbutcombinedwithcarboncapturestorage(CCS)orcarboncaptureuse(CCU)technologiesinordertoreducecarbonemissionssignificantlybelowtheirnormallevelsfortheseprocesses.Itcan,however,alsorefertohydrogenproducedviapyrolysis,bywhichhydrogenisseparatedintohydrogenandasolidcarbonproductcolloquiallycalled“carbonblack.”Blackhydrogen—Hydrogenproducedfromcoalviacoalgasificationandextraction.Brownhydrogen—Hydrogenproducedfromlignite(seeblackhydrogen).CHP—Anabbreviationthatstandsforcombinedheatandpower.Atermusedtodescribeatechnologythatproducesbothheatandpowerforcommercialuses.Coalgasification—Aprocessthroughwhichcoalisdeconstructedintoagasviaacombinationofhighpressureandhightemperaturesteam,andbyexternalheat.Thisprocesstransformsthecomplexhydrocarbonsfromasolidstateintoagaseousone,thusfacilitatingthereformingofthehydrocarbongasandallowinghydrogentobeextracted.DMFC—Anabbreviationthatstandsfordirectmethanolfuelcell.ThistechnologyisbasedonaPEMfuelcelldesign,whichcanacceptmethanoldirectly.Electrolyzer—Atechnologythatconvertswaterandelectricityintohydrogen,oxygen,andheat.Thetechnologyhasdifferingnamesdependingontheelectrolyteusedtofacilitatethechemicalreaction.FC—Anabbreviationforfuelcell,whichisatechnologythatconvertshydrogenintowater,heat,andelectricitythroughachemicalreactionthatcombineshydrogenwithoxygen,usuallyfromthefilteredambientair.Theab-breviation“FC”isfrequentlyaddedtotheendofadescriptor—forexample,PEMFCstandsforprotonexchangemembranefuelcell.Fuelcellscanrangefromafewwattsinsizetomultimegawattunits.Theycanbeusedforstationary,mobile,andportableapplications,withdifferingperformancelifetimes,efficiencies,andoperatingtemperaturesavailable,dependingonthespecificfuelcelltechnology.FCEV—Anabbreviationforfuelcellelectricvehicle.Themainbodyofthevehicleremainselectric,buttheprimarypropulsionfuelishydrogen,whichisconsumedbyafuelcellwithinthevehicle.Frequently,abatterycomponentisalsoincludedwiththefuelcellforquick-startfunctionsandactionswhenthevehicleisnotrunning.FCEB—Anabbreviationforfuelcellelectricbus.Thesevehiclesbuildonexistingbusorevenelectricbusdesignsbyaddingafuelcellandhydrogenfuelsupplyequipment,installedbyaspecialistsystemsintegrator.GREENHYDROGENINDEVELOPINGCOUNTRIESxGreenhydrogen—Thistermisusedforhydrogenproducedfrom100percentrenewablesources.Itmostcommonlyreferstohydrogencreatedfromaprocesscalledelectrolysis,whichcanuse100percentrenewablepowerandwatertocreatepurehydrogenandoxygen.Othergreenhydrogenproductionmethodsincludehydrogenextractionfromreformedbiogasandhydrogenextractionfromwaste.Grayhydrogen—Thistermusuallyreferstohydrogenproducedviasteammethanereforming(SMR),anditisthemostcommontypeofhydrogenproducedglobally.Grayhydrogencanalsorefertohydrogenthatiscreatedasaresidualproductofachemicalprocess—notably,theproductionofchlorinefromchlor-alkaliplants.Hydrides—Ahydrogenstoragetechnologythatisabletoabsorbhydrogenintodifferingsolids,includingcer-tainmetalliccompoundsandporousnanoparticles.Thehydrogenstoredinthisformcanthenbereleasedbackviachangesinpressure,decompositionoveracatalyst,oranincreaseinheat.Thestorageunitcanberecycledanddoesnotrequireregularreplacement.Hydrogen—Thelightestelementintheperiodictableandthemostcommonintheuniverse.Becauseofitsnaturaltendencytoformbondswithothermolecules,itisrarelyfoundunboundedinnature.Itcanthereforebeconsideredasastorageofenergybecausethemoleculescanbeeasilyencouragedtoformbondswithotherel-ementsthrougheitherchemicalorcombustionprocesses.Theproductsoftheseprocessesarewaterandenergy(which,dependingonthereaction,canbeintheformofelectricityandheat,orsimplyheat).Itisawidelyusedcommercialgas,withabroadrangeofapplicationsintheenergytransition.LOHC—Anabbreviationforliquidorganichydrogencarriers,whichare(usually)hydrocarbonmolecules,suchasmethylcyclohexaneordibenzyltolueneandcanbeusedtoabsorblargequantitiesofhydrogenforlong-dura-tionstorageorfortransportation.MCFC—Anabbreviationformoltencarbonatefuelcell.Thisisahigher-temperaturefuelcellthatispredomi-nantlydeployedintheRepublicofKoreaandtheUnitedStates,largelyrunningonnaturalgasfromthegrid.PAFC—Anabbreviationforphosphoricacidfuelcell,whichhasbeendeployedgloballyandisconsideredtooperateatintermediatetemperatures,withalongoperatinglifetime.PEM—Anabbreviationforprotonexchangemembrane,achemicalsolutionusedfortheelectrolyteineitherafuelcelloranelectrolyzerthatsharesthename.PEMfuelcellsarethemostwidelydeployedfuelcelltechnologytodayandaretheoverwhelminglypreferredtechnologyforfuelcellmobilityapplications.PEMelectrolyzersaremuchnewerandlessdevelopedthanalkalineelectrolyzersare.However,theyareshowingfastsignsofscalingandtypicallyproducehigher-purityhydrogenwithgreaterflexibilityinproductionthanalkalinesolutions.SMR—Anabbreviationforsteammethanereforming,aprocessbywhichhydrogenisextractedfromnaturalgasormethane.SOFC—Anabbreviationforsolidoxidefuelcells.Theseareamongthemostefficientandlongest-durationfuelcellscommerciallyavailable.Whilethereareemergingsolidoxideelectrolyzers(SOEs)thatpromisehigherefficienciesandlifetimesthanareavailableviaPEMandalkalineelectrolyzers,fornowSOEsremainatthepilotstagewithlimitedunitsinthefield,allofwhicharebelowthe1megawattscale.xiExecutiveSummaryKEYTAKEAWAYSnnInthefuture,greenhydrogen—hydrogenproducedwithrenewableenergyresources—couldprovidedevel-opingcountrieswithazero-carbonenergycarriertosupportnationalsustainableenergyobjectives,anditneedsfurtherconsiderationbypolicymakersandinvestors.nnDevelopingcountrieswithgoodrenewableenergyresourcescouldproducegreenhydrogenlocally,gener-atingeconomicopportunities,andincreasingenergysecuritybyreducingexposuretooilpricevolatilityandsupplydisruptions.nnGreenhydrogensolutionscoulddecarbonizehard-to-abatesectorssuchasheavyindustry,buildings,andtransportwhilecatalyzingrenewable-basedenergysystemsindevelopingcountries.nnElectrolyzersandfuelcelltechnologiesareexperiencingsignificantcost,efficiency,andproductqualityimprove-ments,withgreenhydrogensteadilyclosingthecostgapwithfossilfuel-derivedhydrogenincertaincontextsandgeographies.Still,furthercostreductionsareneededforgreenhydrogentoscaleup.nnThetechnologiesnecessarytoprovideasystemictransitionpathwayforsupplyinghydrogen-basedlow-emis-sionsheat,seasonalenergystorage,firmpower,andheavy-dutymobilitysolutionsalreadyexisttoday.nnGreenhydrogencouldprovideenergysystemswithalong-termenergystoragesolutioncapableofmitigatingthevariabilityofrenewableresources,thusincreasingthepaceandpenetrationofrenewableenergy.nnDeploymentofgreen-hydrogen–basedsystemscanfacilitate“sectorcoupling”amongdifferenteconomicsectors,minimizingthecostofmeetingsectors’combineddecarbonizedenergyneeds.nnFuelcellsmayhaveimmediateapplicationsindevelopingcountries,particularlyprovidingdecentralizedsolutionsforcriticalsystems,poweringequipmentinemergencyresponses,andincreasingenergyaccessinremoteareas.nnDespitethemanyyearsofexperiencehandlinghydrogeninindustry,risksthroughoutthehydrogenvaluechainstillrequirespecificknowledgeandcapabilitiestoensurethesafeproduction,storage,transport,anduseofhydrogen.nnIndevelopingcountries,thereisashortageofqualifiedengineerswhocaninstall,monitor,operate,andmaintainintegratedfuelcellandhydrogensystems.nnSupportfromdevelopmentfinanceinstitutionsandconcessionalfundscouldplayanimportantroleindeploy-ingfirst-of-a-kindgreenhydrogenprojects,acceleratingtheuptakeofgreenhydrogenindevelopingcoun-tries,andincreasingcapacityandcreatingthenecessarypolicyandregulatoryenablingenvironment.EXECUTIVESUMMARYGREENHYDROGENINDEVELOPINGCOUNTRIESxiiOVERVIEWHydrogenproducedusingelectrolysispoweredbyrenewableenergy—greenhydrogen—anditsuseinfuelcellshasalonghistoryofpromisingapathwaytoaglobalcleanenergyeconomyyetfailingtodeliver.Butmountingevidencesug-geststhatthistimethescriptcouldbedifferent.Asthecostsofproducinggreenhydrogenanditsuseinfuelcellssteadilydecreases,theglobalurgencytodelivercleanenergyalternativesanddecarbonizeisgrowing.Accordingly,greenhydrogen’sextraordinaryversatilitycouldplayanimportantroleinthistransition,particularlyindevelopingcountrieswhereaccesstolocalfuelsandotherfirm1low-carbonresourcessuchasgeothermalandlargehydromaybelimited.Theimpactofscalinginthegreenhydrogenmarketandimprovementsintheperformanceofelectrolysisandfuelcelltechnologieshasyettobetranslatedintoactionsandimplicationsfordevelopingcountries.Despiteasignificantvolumeofliteratureontheglobalhydrogenmarket,andthemarket’slatestprogressindevelopedcountries,thepotentialapplicationsforgreenhydrogenandfuelcellsindevelop-ingcountrieshavenotbeenfullyexplored.Hydrogenisacomplextechnologytooperatethatrequiresspecificknowledgeandcapabilitiestoensurethatitsproduction,storage,transport,anduseremainssafe.Indevelopingcountriestheserequirementsmayproduceimplementationchallengesthathavetobewellunderstood.Thisreportseekstoadvancetheunderstandingofopportunitiesandchallengesofgreenhydrogenindevelopingcountriesbydescribingexamplesofgreenhydrogenpilotapplicationsthathavealreadybeendeployedindevelopingcountries,bringingtolightpotentialusecasesandstrate-gicvalue,andhighlightingtechnologyrisksandimplementationchallenges.1Theterm“firm”referstoenergytechnologieswhoseavailabilityisguaranteedatalltimes,incontrastwithvariablerenewableenergyresourcessuchaswindandsolarphotovoltaics,whoseavailabilityisconstrainedbyinstantaneouswindspeedandsunlight,respectively.WHATHASCHANGEDINTHEHYDROGENTECHNOLOGYLANDSCAPE?Atagloballevel,therearefourkeyreasonsthathydrogenisnowemergingasaviableenergytechnologyfortheenergytransition:1.Increasedurgencytostopclimatechange:Theglobalcommitmenttomitigateclimatechangeandfocusonclimateregulationsismuchstrongernowthanatanytimepreviouslyinhistory.Thiscommitmentisgraduallypushingcountriestofindandsupportlow-emissiontechnologiesthatcanreliablysupplytheirgrowingenergydemands.Consequently,ascountriesincreasepressureonenergysup-plierstofindlow-andzero-carbonsolutions,significantnewfundingisbeingallocatedbycompanies,governments,andinvestorstoovercomethehistoricbarriersthathydrogentechnologieshavefaced.2.Reducedrenewableenergycostsandincreasedneedtofirmuprenewableenergyresources:Renewableenergycostshavedeclineddramaticallyandarecontinuingtofall,significantlyreducingthepricegapbetweenhydrogenfromelectrolysisandhydrogenderivedfromfossilfuels.Moreover,variablerenewableenergy(VRE)sourcesalonecannotprovidefirmenergysolutions,whicharenecessarytoguaranteethatdemandcanbemetatalltimes.Hydrogenstoragecouldthereforeemergeasawidelydeployablesolutiontocontributetomitigatingrenewableseasonalvariabilityandtomaximizingrenew-ableuseinanationalenergysystem.3.Significantadvancementinhydrogenandfuelcelltechnologies:Hydrogenandfuelcelltechnologieshaveexperiencedsignif-icanttechnicalprogressintheirefficiency,durability,reliability,andcostreduction.xiiiExecutiveSummaryDespiterequiringfurthercostreductionstoscaleupglobally,modernfuelcellsarenowconsiderablycheaper,moredurable,andmoreefficientthanduringthelastfuelcellboomcycleintheearly2000s.2Thus,companieshavebeguntoshifttheirfocusawayfromexclusivelyconcentratingonresearchanddevelopmenttowarddevelopingthecapacitytoincreasemanufacturingoutput.Incertainlocations,theseimprovementsarehelpingtoclosethepricegapbetweenelectricitygeneratedbyfuelcellsusinggreenhydrogenandelectricityprovidedfromfossilalternativessuchasdieselgenerators.4.Globaltransitiontowardselectricmobilitysolutions:Thetransitiontoelectricmobilityhashelpeddevelopenablingtechnologiesthathydrogenandfuelcellsareusingtoprovidesolutionsforlong-rangezero-emissionappli-cations:trucks,trains,maritimeshipping,buses,commercialvehicles,andperhapsevenaviation.Withtheuseofelectricdrive-trainarchitectureandsupportiveairqualityrequirementsestablishedbypolicymakersandregulators,hydrogenandfuelcellssooncouldbewellplacedtoreachthescaleneededtosignificantlydrivedownsystemscostsandmitigatetheheavypollutioncommoninmanycitiesindevelopingcountries.GREENHYDROGENMARKETTODAYWhile,theglobalmarketforgreenhydrogenremainsnascent,itcouldplayamoreprominentroleintheenergytransition.Themodularnatureofelectrolysisandfuelcellscombinedwiththewidespreadavailabilityofzerocarbonrenewableenergyresourcesmakesgreenhydrogenapartic-ularlyinterestingoptionforbringingsustainable2Currentsystemshavedemonstratedoperatinglifetimesofover34,000hoursinthefield,withcertaintechnologiesreportingelectricaleffi-cienciesover60percentandcombinedheatandpower(CHP)efficienciesinthe90+percentrange.Moregenerally,capitalexpendituresforprotonexchangemembrane(PEM)fuelcellshavefallenfrom$4perwattin2003tounder$2perwatttodayforstationaryapplications.hydrogensolutionstodevelopingcountries.Greenhydrogenistheonlyknowncleanenergymoleculethatcanbeproducedatanyscaleandinalmostanylocationonearth,acharacteristicthatisnotcomparableforothersyntheticgreenfuels.Accordingly,greenhydrogencouldofferalmostanycommunity,company,orcountrythepotentialtogeneratetheirownfuels,withtheflexibilityformultipleenduses,includingappli-cationsinindustry,buildings,andtransport.Despiteitspotential,hydrogenproductiontodayisafossilfuel–intensiveprocess,andsignificantscalingupisneededtodecarbonizeexistingproduction.Themostcommonmethodstoextracthydrogenarethroughthereformingofnaturalgas—aprocessthataccountsforaround6percentofglobalnaturalgasdemand—andgasification—forwhichabout2percentoftotalcoalproductionisallocated,mostofwhichisinChina.Together,theseprocessesareestimatedtoaccountforbetween96and99percentofglobalhydrogenproduction.Thus,hydrogengenerationfromelectricityandwaterthroughelectrolysisiscurrentlyestimatedtoprovideaslittleas4percentofglobalhydrogensupply.Thissituation,however,issettochangeasgreenhydrogencostsfallfurther.Growingglobaldemandforgreenhydrogenisdrivingsignificantcostdeclinesforelectrolyzerequipment.Globalwaterelectrolysisdeploy-mentshaverisenfromacumulative32.7mega-watts(MW)ofinstalledcapacitybetween2000and2013toover260MWofinstalledandcom-mittedcapacitybetween2014and2019(IEA2019b).ThesizeofelectrolyzerordersisalsorisingfromITMandShell’sworld-recordprotonexchangemembrane(PEM)orderof10MWin2017(ITM2018)toHydrogenics’s20MWorderinFebruary2019,andnewfeasibilitystudiesannouncedsinceMarch2019for250MWGREENHYDROGENINDEVELOPINGCOUNTRIESxivelectrolyzercapacityintheNetherlandsand12gigawatts(GW)inPilbara,Australia.Thesenewmarketdevelopmentsindicatethatscalingisoccurringatasignificantrate.Manufacturingcapacity(currentlyabout2.1GWannually)isrespondingtothisgrowingdemandandmovingtofullyautomatedproductionlines,withfuturepublicmanufacturingexpansioncommitmentsalreadyexceeding4.5GW.Thisscalingisim-portantnotsimplyforkeepingupwithdemand.Crucially,thescalingofmanufacturingisalsoleadingtosignificantcostdeclines,withtheestimatedcostofPEMelectrolyzersfallingfromover$2,400perkilowatt(kW)in2015tounder$1,100perkWin2019.3Moreover,alkalineelectrolysiscostsarefallingbelow$500perkWforordersabove10MW,andsomemarketsourcessuggestthatcostsbelow$300perkWcouldnowberealizedfrom$800perkWin2017.Alongwiththecostreductionsinelectrolyzers,therapidlydecliningcostofrenewableelec-tricityistranslatingintolowercostsforgreenhydrogenproduction.Inmarketswherewhole-saleelectricitypricesfallbelow$45permega-watt-hour(MWh),thecostofgreenhydrogenproductioncouldrangebetween$2.5and$6.8perkilogram(kg).Althoughitmayseemhighcomparedwitharangeof$1–$3perkgforhy-drogenfromsteammethanereforming(SMR)formarketsthatcanaccessnaturalgasbelow$8permillionBritishthermalunits,thispriceexcludestransportation,distribution,liquefaction,andgasificationcosts,whichcouldaddupto$4perkgofhydrogen,dependingonthetransportationmode(pipelineorship)andlocationofsupplyanddemand.Accordingly,localgreenhydro-genproductioncouldalreadybecostcompet-itiveinisolatedlocationswithgoodrenewableresources,particularlyinthosethatdonothavelocalhydrocarbonresourcesandarefarfrom3Figuresareanaveragefrommarketdatapointsandnumberscitedinthebroaderliterature.ForarangeofcurrentestimatesofalkalineandPEMelectrolyzerprices,seetable3.6.naturalgasexportingregions.Ifrenewableen-ergyandelectrolyzercostscontinuetodecline,greenhydrogencouldeventuallybecomecostcompetitiveinalargernumberoflocationsandinawiderrangeofapplications.Fuelcellsarealsobecomingcheaper,moredurableandmoreefficient,enablinglow-carbonapplicationsfortransport,criticalsystems,andenergyaccessinremoteareas.Thetotalcapacitydeployedoffuelcellsworldwideisabove2GW,withPEMandalkalinefuelcellsreachingcostsbelow$2,000perkWand$700perkW,respec-tively,andefficienciesabove50percentand60percent,respectively.Theseimprovementsarehelpingtoclosethepricegapbetweenelectricitygeneratedbyfuelcellsusinggreenhydrogenorothergreenhydrogen–derivedfuelsandelectric-ityprovidedfromfossilalternativessuchasdie-selgenerators.Thetransitiontoelectricmobilityhasalsohelpeddevelopenablingtechnologiesthatvendorsareintegratingwithfuelcellstoprovidesolutionsforlong-rangezero-emissionapplicationssuchastrucks,trains,maritimeship-ping,buses,andcommercialvehicles.Thedecliningpriceofgreenhydrogenproduc-tionandfuelcellsopensthedoortoitswideradoptionasadecarbonizationvectorforenergysectortransition.Significantcostdeclinesingreenhydrogenproductioncouldhelptoexpanditsmarketshareintheexisting$135.5billionayearglobalindustrialhydrogenmarket(MarketsandMarkets2018),whichisestimatedtorelease830milliontonnesofcarbondiox-ide(CO2)perannum(IEA2019b)—afigureequivalenttothecombinedannualemissionsofIndonesiaandtheUnitedKingdom.Giventhescaleofemissionsfromexistingindustrialdemandsourcesforhydrogen,itisunsurprisingthatoneofgreenhydrogen’sgreatestappealsisitsabilitytoprovideazero-emissionenergyvec-torfordecarbonizationofindustrialfeedstock.xvExecutiveSummaryThisdecarbonizationpathwouldalsoopenthedoorforgreenhydrogenproductiontoexpandintoindustrialheatdisplacingcarbonintensivefossilalternatives,astheearlyscalingbringsgreenhydrogencoststoward(andeventuallybelow)fossilparity.Therapidproliferationofinnovativegreenhydro-genapplicationsiscapturingtheimaginationofinternationalmediaandpolicymakers,creatingafeedbackloopthatisboostingawarenessandsupportforgreenhydrogentechnologies.Asignificantnumberofcountriesandcompanieshavebeguntodeveloppoliciesandsupportpilotprojectsgearedtowardexploitingnear-termgreenhydrogenopportunities.Thesehavefocusedlargelyoneitherdecarbonizingexistinghydrogenapplicationsorusinggreenhydrogenasanalternativetoheavyfuelsintransportandmorerecentlyinindustrialheat.Indevelopedcountries,exploitingexistinggasinfrastructure,developinggreenhydrogenhubsandtraderoutes,anddecarbonizingfreighttransportationcouldrepresenttransformationalopportunities.Lessonsfrominitialpilotscouldcascadeintoothersectors,increasingtheexperiencewithgreenhydrogentechnologyandfurtherdrivingdowncosts.Developmentofthegreenhydrogenmarketcouldofferaparticularadvantagetode-velopingcountriesthathavepressinginfrastruc-tureneedsandexposuretohighfuelprices—andthatalsorequiresolutionstoaddressenergysecurityandresiliencyconsiderations.GREENHYDROGENAPPLICATIONSINDEVELOPINGCOUNTRIESGreenhydrogencouldprovidedevelopingcountrieswithapowerfultechnologytosupportnationalsustainableenergyobjectivesandde-carbonizationstrategies.Greenhydrogencouldenhancenationalenergysecuritybyreducingtheexposuretooilpricevolatilityandsupplydisruptionswhereitisproducedlocally,whilealsoloweringenergysectorcostsovertimeincountriesthatrelyheavilyondiesel.Itcouldalsoprovideanarrayofdecentralizedservicesthatcouldcoverallenergyneedsinbuildings,trans-port,andindustry,whilehelpingtoshieldcriticalinfrastructurefrompowersupplydisruptions,thereforebolsteringclimateandextremeweatherresiliency.Atthecoreoftheappealfordevelopingcoun-triesistheversatilitythatgreenhydrogenanditsderivedfuelsofferasacleanenergyvector.Today,greenhydrogenisatechnologicalsolu-tionthatcanfacilitatesectorcouplingbyen-ablingsolar,wind,andotherrenewablesourcestobeconvertedintoanenergyvectorthatcandecarbonizeindustry,mobility,andelectricpower.Moreover,hydrogenandhydrogen-derivedfuelsareeasiertostore,transport,andrepurposeacrossanarrayofenergyneedsthanelectricity.Theexistinginfrastructureindevelop-ingcountriesthatsupportsthesupply,storage,andtransportationofmethanolandammoniacouldbeleveragedbygreenhydrogenapplica-tions(figureES.1).Existingdemandforfossil-derivedhydrogenindevelopingcountriesisconcentratedinthepro-ductionofammoniaforfertilizers;therefiningofpetroleumproductsfordomesticuse,exports,orboth;theproductionofmethanol;theproduc-tionofiron,glass,andpolysiliconinmanufac-turing;andthetreatmentofcertainfoodprod-uctsandothersmallerindustrialrequirements.Giventheexistingdemand,greenhydrogenmayofferaneconomicopportunityforpolicymakerstodeveloplocalindustrythroughdomesticgreenhydrogenproduction.Iffullyexploited,domesticgreenhydrogenproductioncouldenhancefoodandenergysecurity.Greenhydrogencouldalsohelpaddresskeychallengesinbringingexcellent-qualityre-newableresourcestomarketwhileincreasingrenewablepenetrationrates.VREresourcessuchaswindpower(bothonshoreandoffshore)andGREENHYDROGENINDEVELOPINGCOUNTRIESxviWINDSOLARHYDROPOWERGEOTHERMALORGANIC/BIOWASTEGREENHYDROGENPRODUCTIONBIOGASREFORMINGHYDROGENELECTROLYSISMEHYDROGENOXYGEN–+–+Source:ESMAP.FIGUREES.1PrimaryhydrogenandfuelcellapplicationsandecosystemfordevelopingcountriesxviiExecutiveSummaryTRANSPORTATIONPOWERandHEATUNINTERRUPTIBLEPOWERSUPPLYFERTILIZERFORAGRICULTUREANDEXPORTLIGHTDUTYVEHICLESBUSESTRUCKSTRAINSSHIPSGRIDBALANCINGCO-FIRINGTHERMALPOWERPLANTSBASELOADPOWERINDUSTRIALHEATANDSTEAMTELECOMMUNICATIONSENERGYACCESS—REMOTECOMMUNITIESNATURALDISASTERWARNINGSYSTEMSBLACKSTARTCAPABILITIESODUCTIONHYDROGENFUELAPPLICATIONHYDROGENDIRECTUSENGYSISAMMONIAPLANTMETHANOLPRODUCTIONHYDROGENGREENHYDROGENINDEVELOPINGCOUNTRIESxviiisolarphotovoltaic(PV)arefrequentlylocatedawayfromlargepopulationcentersandnotavailableondemand,makingthemcostlytode-ployandintegrateintothepowergrid.Theabil-itytobypasstheseconstraintsbycreatinggreenhydrogenon-siteandeitherstoringitforlateruseinafuelcellortransportingittodemandcentersholdsconsiderableappeal,especiallyifitcancouldbeproducedatsufficientscaleanduseexistingpipelinesortransportationroutes.ExploitingthesynergiesbetweenVREresourcesandgreenhydrogenproductioncouldhelpleveragehigh-qualityresourcesandsignificantlyincreaseVREdeploymentrates.Yet,furthercostdeclineswillbeneededtomeetexistinghydrogendemandindevelopingcoun-tries.Harnessingtheopportunitiespresentedbygreenhydrogentosupplyexistinghydrogendemandwillrequirefurtherelectrolyzercostdeclines,particularlyincountrieswithaccesstonaturalgasorcheapcoal.Iflong-termpredic-tionsarerealized,greenhydrogencostscouldfallbelowUS$2perkgby2030incountrieswithhigh-qualityrenewableresourcessuchasChina,Bangladesh,theArabRepublicofEgypt,India,Kenya,Mexico,Morocco,Nepal,Pakistan,Somalia,SouthAfrica,andTurkey(IEA2019b).Atsuchapricepoint,thecostofgreenhydrogenproductioncouldbecomparable,andinmanycaseslower,thanon-sitehydrogengenerationfromnaturalgasusingSMR.NEAR-TERMOPPORTUNITIESFORGREENHYDROGENINDEVELOPINGCOUNTRIESOpportunitiesexisttodaytopilotbothgreenhydrogenforlow-emissiontransportsolutionsandfuelcellsforremotepowerprovisionindevelopingcountries.China,India,Indonesia,thePhilippines,andSouthAfricaarestartingtogainexperienceusingammonia-basedandmethanol-basedfuelcellsystemsforthetele-communicationssector.Meanwhile,smallerstationaryfuelcellsystemshavealsostartedtobepilotedforresidentialandtourismconsumersinNamibiaandThailand.OtherlargerhydrogenorfuelcellprojectsarebeingpilotedtoprovidestationarypowersolutionsinArgentina,Mali,Martinique,andUganda.Onthemobilityside,fuelcellbuseshavebeenpilotedinChina,CostaRica,andMalaysia,withordersplacedinBulgaria,Indonesia,andIndia.ChinaandSouthAfricaalsohavebeguntopilothydrogenandfuelcellsystemsforforkliftsusedinmaterialhandling.Themotivatingbenefitsoftheseproj-ectsarecontextdependent,buttheybroadlyre-flectthefactthatforsomeapplicationshydrogencouldbemoreattractivethanelectricity-basedstoragesystemsgivenhydrogen’shigherenergydensity(figureES.2).Thetransitiontomodernfuelsinindustrycouldalsobeamajorareaofpotentialnear-termgrowthforgreenhydrogen.Developingcountriesthatareintheprocessofbuildingthemeanstosupplytheirrapidlygrowingindustrialdemandforenergywillalsoneedtotransitionawayfromtraditionalfuelsources—notably,biofuels,coal,andpetroleum-basedfuels—towardcleanenergysources.Giventhat25percentofglobalcarbonemissionscouldcomefromindustrialheatde-mandin2040(BellevratandWest2018),greenhydrogenrepresentsasignificantopportunityforinvestorsandpolicymakersseekingtolockoutheavyCO2-emittingenergysourcesfrombecom-ingthefoundationforindustrializationinmanydevelopingcountries.Islandlocations,remotecommunities,countrieswithexistinggasinfrastructure,areaswithpoorairquality,andareaswithexcellentrenewableresourcesorwithsevereseasonalrenewablevari-abilitycouldofferthemostattractiveopportunitiesfornear-termdeploymentsofgreenhydrogenandfuelcellprojects.Giventhehighenergyprices,synergieswithotherinfrastructure,andenviron-mentalchallengesthattheseterritoriesface,theapplicabilityofgreenhydrogensolutionscouldbeinitiallyexploredinthesecases:xixExecutiveSummary1.Islandsandremotecommunitiesthatareenergyimporterscouldusegreenhydrogenasadecarbonizationvectoracrossheat,transport,andpower.Giventheabilitytoproduceandstorehydrogeninlargequantitiesforlongperiodsoftime,aswellasthelimitedphysicalrequirementsforfuelcellsystems,islandsandremotecommunitiesrepresentanobviousinitialopportunityforgreenhydrogen.Initialanalysissuggeststhatgreenhydrogencombinedwithfuelcellsmayalreadyprovidecost-competitivepoweragainstdieselalterna-tivesincertainconditions.2.Middle-incomecountrieswithexistinggasinfrastructurehaveclearincentivestoexploregreenhydrogen.CountriessuchasArgentina,Egypt,Malaysia,andThailandhavemadesignificantinvestmentsingasandnowriskstrandingassetsastheyseektodecarbonize.However,existingnaturalgasassetscouldberepurposedtosupportgreenhydrogenproduction,minimizingtheriskofstrandedassets.Short-termopportunitiesmayalsoexistforblendinggreenhydrogenintogasgrids,therebyrequiringnochangestoexistingassetsbutleadingtoreducedemissions.Greenhydrogenalsoofferscountriesaroutetorepur-poseexistingturbinebasepowersystems,thusavoidingtheneedtoretireassetsearly.3.Heavilypollutedmetropolitanareasindevel-opingcountriescouldbenefitsignificantlyfromfuelcellbustransportsolutions.Theseareasoftenhavelargepublicsector–ownedtransportfleetsthatcouldberepurposedtohelpimprovelocalairqualityandreduceemissions.Becauseallfuelcellvehiclesrequireairfilters,acitywidefleetcouldhelpreduceparticulateemissionswhileemittingonlywater.Fuelcelloptionsalsoofferlongerrangesthanbatteryelectricalternatives,cre-atingalternativecleansolutionsfortransportactivitiesthatrelyonlong-haulfleets.Areaswithexcellentrenewableresourcesorwithahighdegreeofseasonalityintheirrenewablepowerproductionprofilescouldconsidergreenhydrogenasaseasonalenergystoragesolution.Inthisregard,greenhydrogencouldprovideop-portunitiesforincreasingthedeploymentlevelsofVREtechnologiesintheselocations,further©HySA.FIGUREES.2HydrogenSouthAfricasolarplusbattery,hydrogenelectrolysis,andfuelcellsystemGREENHYDROGENINDEVELOPINGCOUNTRIESxxreducingdemandforfossilfuelalternativesandeventuallyenablinggreenhydrogenexportswithsustaineddeclinesinproductioncost.REMAININGTECHNOLOGYANDIMPLEMENTATIONCHALLENGESSomesignificantsafetyandtechnicalrisksstillneedtobeunderstoodandaddressedbeforecountriescanleveragealltheopportunitiesthatgreenhydrogencouldoffer.Hydrogenisacomplexmoleculetocontain,store,andtrans-port.Ithasuniquesafetypropertiesthatcanbechallengingtoaddressandthatrequiretechni-calawarenessthatmaybelackingincountriesthatdonothavedomestichydrogenproductioncapabilities.Evenincountriesthatdohavesomeexpertise,knowledgeofhowelectrolyzersoper-ate,howtomaintainfuelcellsystems,andhowtoavoidleakagesfromhigh-pressurestorage(orcryogenicstorage)isessential.Hydrogentechnologiesarecapitalintensive,andfurthercostreductionsandefficiencygainsneedtoberealizedtoscaleupgreenhydrogensolutions.Highmaintenancerequirementsinsomeregionsmightalsoincreasecosts,becausehydrogentechnologiesareverypronetodamageanddeteriorationifinputqualitydoesnotmeetrequiredspecifications—forexample,impuri-tiesinwaterfortheelectrolyzerorimpuritiesinhydrogenforfuelcells.Moreover,aswithsomeexistingbatterytechnologies,fewsystemshavebeentestedtotheirfullanticipatedstacklifetimeand,asaresult,performancehasnotbeenfullyassessedatscaleforallcurrenttechnologypro-viders.Additionalefficienciescouldbegainedwithcurrenthydrogenstoragesystems,mostofwhichrequirepressurizationorliquefaction.Otherhydrogenstoragetechnologiesbasedonsolid-statecompoundsarebeingexploredandeventuallycouldbringmoreefficientsolutionstostoreandtransporthydrogen.Integrationofgreenhydrogentechnologiesandlaborcapacityconstraintsarestillsignificantbar-rierstothewiderdeploymentofgreenhydrogenandfuelcelltechnologies,especiallyindevelop-ingcountries.Fewengineeringcompanieshaveexperienceindevelopingandinstallinggreenhydrogenorfuelcelltechnologies,especiallyindevelopingcountries.Lackofsufficienttrainingprogramsonhydrogeninstallationisaconstraint,especiallywhenmanyofthesuppliershavealimitednumberofstaffmemberswhocanofferinstallationsupport.Theintegrationofhydrogentechnologiesintoothersystemsalsoposesachallenge,assuppliersmayhavelimitedexpe-rienceoptimizingtheirunitstofitwithinanewapplication.Electrolysisandfuelcellsystemsrequireregularmaintenancevisits,whichcouldposeabarrierinremotelocationsandeveninmarketswherethenumberofinstalledunitsistoolowtojustifyapermanentresourcefromthemanufacturer.Thereisalsoaneedtoguaranteethatmaintenanceworkisdoneproperlyandtomarketspecifications.Theinitialrolloutofgreenhydrogenwillrequirecountriestodevelopnationalstrategiesthatclearlyidentifybothapathwaytowardmeetingtheinfrastructureneedsandthesectorswheregreenhydrogensolutionscouldbecomecom-mercial.Thedevelopmentofgreenhydrogenenergysystemswillrequirecountriestothinkcarefullyaboutwhethertomakestrategicin-vestmentsintopipelineinfrastructureorwhethertorelyonroadtransportationandstorageacrossmultiplelocations.Insomeinstances,therepurposingofexistinginfrastructuremaybepossible,thusavoidingstrandedassetsandpotentiallyloweringdeploymentcosts.However,thatoptionwillnotbeapplicableinalldevelop-ingcountries.Further,localcapacitytoinstall,maintain,andhandlehydrogenanditsassoci-atedtechnologieswouldhavetobedeveloped,ataskthatwouldrequirealong-termcommitmenttoeducationprogramsindevelopingcoun-tries.Consequently,thedecisiontoinitiatethexxiExecutiveSummarydevelopmentofgreenhydrogenenergysystemsshouldbeconsideredwithinaclearframeworkandroadmapthathelpallstakeholders(includ-ingconsumersandgovernment)planandadjusttheirinvestmentsandactionsaccordingly.Theequipmentusedinproducinggreenhydro-geniscapitalintensiveand,assuch,requireshighutilizationratestoeconomicallyjustifyinvestments.Accordingly,developingcountriesmustassessatasystemlevelwhethergreenhydrogenproductionisappropriategiventheexistingresourcesavailableandtheenergyneedsfromdifferentsectors.Strategiesforlarge-scaledeploymentofgreenhydrogenshouldalsoconsiderthesystemwideimpactsofatransition,notablywhereotherenergystoragesolutionsmayoffergreatersystemefficiencies.Coordinationamongallenergysectorstakeholder,includingthepublicsectortodevelopthesestrategiesintoafavorableregulatoryenvironment,andwithde-velopmentfinanceinstitutionsworkingintandemtoprovideconcessionalfinancingthatmobilizesprivatecapital,willbeessentialtoensuringasuc-cessfulinitialrolloutofgreenhydrogen.Moreover,financialconstraintsderivedfromtechnologyandregulatoryrisksmayinhibitthenear-termdevelopmentofgreenhydrogenindevelopingcountries.Theseconstraintsincludetheinsufficientscaleortrackrecordofsomehydrogensystemcomponents,investors’lackofawarenessofgreenhydrogen’spotentialroleintheenergytransitionindevelopedcountries,andthelackofclearnationalstrategiesandregula-toryframeworksforsomehydrogenapplications,coupledwithaperceptionthatnewtechnologiesdeployedindevelopingcountriesmayposehigherrisks.Innovativecofinancingandcon-cessionalfundscouldplayanessentialroleinsupportingfirst-of-a-kindgreenhydrogenprojectsindevelopingcountries,inparticularthosewithtechnologycomponentsthatdonothaveasuffi-cientscaleortrackrecord.Forexample,investorscouldusecommercialfinancingforrenewablepowerprojectssuchaswindandsolarassetsdedicatedtoproducinggreenhydrogen,bene-fitingfromblendingwithconcessionalfundstoreducethefinancingcostoftheelectrolysisplant.Despiteexistingchallenges,thepotentialusesforgreenhydrogenmakeitanessentialareaforfur-therconsiderationandanalysisbypolicymakersandinvestorsindevelopingcountries(boxES.1).Greenhydrogenisincreasinglydrawinginterestfromgovernmentsinallregions,withvaluablenear-termapplicationsinsomecontextsandapredominantdecarbonizationroleinhard-to-abatesectors.Overthenext5years,earlyevidencesuggeststhatmobilityandpowerpro-visioncouldprovidethemainsourceofgrowthforgreenhydrogenandfuelcelltechnologiesindevelopingcountries.Thisforecastlargelyreflectsthefactthatfurthercostdeclinesareessentialforgreenhydrogenproductiontoreachcommercial-equivalentcostpointstoalternativeenergyvectorsindevelopingcountries.Effortsarethereforeneededtodaytoensurethattheop-portunitiesavailabletoscaleupgreenhydrogenandfuelcelldeploymentsindevelopingcoun-triesareresearchedandcapitalizedonbeforealternativecarbon-intensiveenergysystemsarelockedin.GREENHYDROGENINDEVELOPINGCOUNTRIESxxiiHYDROGENFUNDAMENTALSHydrogenisthemostabundantmoleculeintheuniverseandthelightestelementintheperiodictable.Itisrarelyfoundunboundedinnature,anditisalmostalwaysextractedfromanothersource.Hydrogenproductiontypicallycomesfromtheextractionofhydrogenfromwaterandelectricpowerorfromhydrocarbons,mostnotablybyusingnaturalgasandcoal.Asanenergycarrier,hydrogencanbeusedforawidearrayofenergyandindustrialapplica-tionsandcanbestoredforlongperiodsoftimeinvariousforms.Hydrogenisalreadyoneofthemostwidelyproducedindustrialgasesintheworld,anditisasignificantsourceofcarbondioxideemissionsbecauseofitstypicalproductionthroughextractionfromfossilfuels.However,theproductionofzero-emissionhydrogenthroughrenewableenergysourcescouldbecomeacommercialalternativetofossilfuel–derivedhydrogeninawidearrayofapplications.Produc-inghydrogenfromrenewableelectricityisdonethroughaprocesscalledelectrolysis,inwhichelectricityischanneledthroughadevicecalledanelectrolyzer,whichsplitsoxygenfromhydro-geninwater,creatingpureoxygenandpurehydrogenwithzerocarbonemissions.Approxi-mately50kilowatt-hoursofelectricityand9litersofdeionizedwaterarerequiredtoproduce1kilogramofhydrogenusinganelectrolyzerof80percentefficiency.Fuelcelltechnologiesofferamethodtogenerateelectricitybycombininghydrogenwithoxygeninachemicalprocess.Thisistypicallymuchmoreefficientthanacombustionprocess,whilealsobeingconsiderablyquieterandproducingzerocarbonemissions(ifpurehydrogen)orzeronitrogenoxideemissionswhenusinghydrocarbonfuels.Whenhydrogenreactsinafuelcelltogenerateelectricity,theonlyproductsareelectricity,asmallamountofheat,andwater.Approx-imately,42kilogramsofhydrogenareneededtoproduce1megawatt-hourofelectricityusingafuelcellof60percentefficiency.Hydrogen’sspecificenergyisthehighestamongconventionalfuels,butitsenergydensityisthelowest,sopressurizationorliquefactionisrequiredforhydrogentobeusedasafuel.Thesefundamentalcharacteristicsofhydrogenaretheprimarydriversofitsvalueasafuel.TableBES.1.1:SpecificenergyandenergydensitycomparisonofcommonlyusedfuelsFUELSPECIFICENERGY(MJ/kg)(1kWh=3.6MJ)ENERGYDENSITY(MJ/L)Hydrogen142.00.01(1atm);7.10(1,000bar);10.00(liquid)Methanol20.015.90Ammonia22.515.60Gasoline47.135.00Diesel42.840.40Heavyfueloil42.440.70Biodiesel42.233.00Naturalgas50.00.04LNG50.022.20Source:WorldBankcompilationofhigherheatingvaluesobtainedfrommultiplesources.Note:atm=atmospheres;kg=kilogram;kWh=kilowatt-hour;L=liter;LNG=liquefiednaturalgas;MJ=megajoule.BOXES.111:Introduction1:INTRODUCTIONKEYTAKEAWAYSnnGreenhydrogen,producedusingelectrolysispoweredbyrenewableelectricity,isemerginggloballyasanenergysolutionforadiversearrayofchallenges,includingclimatechangemitigationandadaptationandenergysecurity.nnGreenhydrogencouldcontributetothedecarbonizationofactivitiesinindustry(zero-emissionindustrialheatsupply),transport(cleanmobilitysolutions),andbuildings(climate-resilientfirmpowergeneration),increasingthescalabilityofrenewableenergyuse.nnThecurrenthydrogenmarketisalreadysignificantandcarbonintensive,thusprovidinganopportunityforinvestorsandpolicymakerstoreduceemissionsanddevelopnationalstrategiesforgreenhydrogen’sfutureproductionandforusesthatarecompatiblewithNationallyDeterminedContributions(NDCs).nnGreenhydrogencouldrepresentacleanalternativefuelfordevelopingcountriesastheytransitionfromaheavyrelianceonfossilfuelsandlookformodern,low-emission,andlocallyproducedenergyvectors.nnHydrogenproductiontechnologiesandfuelcellsarewellestablished,withresearchandinnovationeffortsfocusingmostlyoncostreductionsperunit.nnAnumberoftechnologychallengesremainsurroundingthecostefficiencyoftransportandstorageofhydrogen,andfurtherworkonalternativehydrogenstoragetechnologies(suchas,solid-statestorage,liquidorganichydrogencarriers[LOHCs],andsmall-scalehydrogenconversiontechnologies)isneeded.nnKnowledgeofgreenhydrogenasapotentialenergyvectorindevelopingcountriesislow,makingcapacitybuildingandtrainingessentialtosupportgreenhydrogendeploymentsindevelopingcountries.GREENHYDROGENINDEVELOPINGCOUNTRIES2Hydrogenisnotanewcommodity,norarefuelcellsanewtechnology.Theglobalhydro-genmarketin2018wasvaluedatover$135.5billion,withanestimatedcompoundannualgrowthrate(CAGR)of8percentuntil2023(MarketsandMarkets2018).Estimatesforthevolumeofhydrogenproducedvary,butasig-nificantnumberofdocumentssuggestthat55milliontonnes4to70milliontonnes(IEA2019b)ofhydrogenarecommerciallyproducedannual-ly.5Givenitsexistingscale,hydrogenproductionandstoragearewellunderstood.Butwhatisnewisthegrowinginterestaroundahydrogenproductionprocesscalledelectrolysis,whichisreachingapointofcostparitywithhydrogende-rivedfromfossilfuelsourcesincertaincontextsandgeographies.Theprospectofproducingazero-emissionenergyvectorthroughelectrolysiswithawidearrayofapplicationsinmanysectorscouldbetransformativetoeconomicdevelop-mentthatisalignedwithnationalandglobalclimategoals.Consistentfindingsacrossavailableliteratureandconsultationswithmarketplayersindicatethathydrogentechnologieshavebeenprogres-sivelyimprovingthroughoutthepastdecadeandsystemshavebeendevelopedthataremoreefficientandsafertooperatethanthoseinthepast.Ifprogressincostandperformancecontin-ues,andthescalingupofelectrolysisequipmentoverthenextdecadefurtherpushescostsdown,greenhydrogenproductioncouldeventuallybecomeaviablecommercialalternativetoex-istingfossil-basedsolutions.AstheInternationalRenewableEnergyAgency(IRENA)concludedinits2018hydrogenreport:“Thetechnologies4While55milliontonnesisabroadrepresentationfromtheavailableliterature,ithasalsobeenusedrecentlybytheCanadianHydrogenFuelCellAssociation.SeeLePan2019.5DNVGL’s2019paperfortheNorwegiangovernmentquoted55million,asdidtheHydrogenCouncil(2017),IRENA(2018),andSiemens(2019).WorldEnergyCouncil—Netherlandscited45million–50millionusing2010datainits2019report.6OtherWorldBankreportsareunderdevelopmentthatwilladdressgrayandbluehydrogeninmoredetail.7Thetermgreenhydrogencanalsorefertohydrogencreatedfrombiogas;however,fewprojectsorpilotshavebeenproposedanddevel-opedtodate.Thisreportthereforedoesnotfocusonthattechnology.areready.Arapidscalingupisnowneededtoachievethenecessarycostreductionsandensuretheeconomicviabilityofhydrogenasalong-termenableroftheenergytransition”(IRENA2018).Thisreportattemptstodrawattentiontoareasofcurrentsuccessandareasinwhichgreenhydrogencouldprovideacompellingsolutiontoaddressthecurrentandanticipatedenergychallengesfacedbydevelopingcountries.Inthisway,thisreportfocusesonhowgreenhydro-genandfuelcelltechnologiescouldbeinitiallyrolledoutindevelopingcountriesbypresentingaseriesofapplicationsthatcouldbeinitiallydeployedinsomelocationsandthatcouldscaleupinthefuture.Thisreportalsofocusesonsomeofthetech-nologyrisks,implementationchallenges,andknowledgegapsthatareemergingasnewhydro-genprojectsandtechnologiesarebeingde-ployedandtestedingreaternumbers.Crucially,thereportseekstodrawattentiontowherethesechallengesareuniversalandwheretheyaremorespecifictodevelopingcountries.Althoughothermethodsofhydrogenproduc-tiondoexist,thisreportwillfocuslargelyonhydrogenproducedfromelectrolysiswithrenewablesources(figure1.1).6Electrolysisissimplytheprocessofchemicallyseparatinghydrogenandoxygenmoleculesfromwaterusingelectricity.Whenthesourceofelectric-ityisrenewable,thisprocessisreferredtoasgreenhydrogen.7Themostobviousappealofgreenhydrogenisitsabilitytodecarbonizethecurrentglobalhydrogenmarketwhilealso31:Introductioncreatingaflexiblecleanenergycarrierthatcanbeusedforawidearrayofenergyapplications.Thedecarbonizationpotentialofabroaderuseofgreenhydrogenissignificant.In2019,about96percentofglobalhydro-genproductioncamefromfossilfuelsources,with4percentfromelectrolysis,48percentfromnaturalgasviasteammethanereforming(SMR),and48percentfromcoalgasification,oil,orotherchemicalprocesses(suchaschlo-rineproduction).8Thesetypesofhydrogenaretypicallyreferredtoasgray,black,orsometimesbrownhydrogen.Today,hydrogenaccountsfor6percentofglobalgasconsumptionand2percentofglobalcoalconsumption,apri-maryenergydemandequivalentto330milliontonnesofoilequivalent(Mtoe),whichastheInternationalEnergyAgency(IEA)notesislargerthanGermany’sprimaryenergydemand(IEA2019b,17).Moreover,thisdemandisgrowingastheworldrequiresevermorehydrogenasanin-dustrialfeedstock,theprimaryusesofwhichare8Ajayi-Oyakire2012,citingOgden2004;IEA2015,10;IRENA2018,13;andSiemens2019,slide8.forammoniaproduction,followedbyrefining,methanolproductiondirectironreduction,andvariousotherproducts(suchasglassproductionandhydrogenationoffats).Therefore,greenhydrogenproduction(figure1.2a)offerspolicymakersaroutetoremoving830milliontonnesofcarbondioxide(CO2)(IEA2019)fromglobalannualemissionsandpreventinganyincreaseinemissionsfromthissector.Achievingthisreductionisascrucialinthedevelopedworldasitisindevelopingcountries,especiallywherehydrogenandhydrogen-derivedproductsarees-sentialforthehealthoflocalindustries(notably,ammoniausedintheproductionoffertilizers).Giventhesizeandanticipatedgrowthoftheexistinghydrogenmarket,thedevelopmentofgreenhydrogenprojectscouldpresentasig-nificantinvestmentopportunityforinvestorsindevelopingcountries.Notonlydomanydevelopingcountriesenjoysomeofthemostabundantrenewableresources,buttheyalsoareoftenthecountriesthataremostinneed48%Nturlsstmmthnrformin(SMR)4%Wtrlctrolsis30%Oilrformin18%ColsifictionSources:Ajayi-Oyakhire2012andIRENA2018.FIGURE1.1Globalhydrogenmarket,byproductionmethodGREENHYDROGENINDEVELOPINGCOUNTRIES4ofnewandcleanformsofenergytosupporteconomicdevelopment.IEAdataillustrateoneareaofimmediateinterest:Roughly4.5percentoftheglobalenergysupplyin2015(approxi-mately28.24exajoules,EJ9)wassourcedfromtraditionalbiomass,whichisentirelyconsumedindevelopingcountries.Further,all28.24EJofdevelopingcountryenergyconsumptionthatiscurrentlyderivedfromtraditionalusesofbiomassmustbereplacedbymoremodernalternativefuelsasconsumerpurchasingpowergrowsinthesemarkets.Ensuringthatthealterna-tivefuelscreatezeroemissions,areaffordable,andareconvenienttouseisessentialtoavoidlockingdevelopingcountries(andultimatelyglobalCO2emissions)intoatrajectorythatleadstosignificantclimaticwarmingbythemiddleofthecentury.Buthydrogenapplicationsdonotcomewithoutchallenges.Hydrogenisanotoriouslycomplexandexpensivegastostore,witharangeofprop-ertiesthatrequirecarefulconsiderationtoensuresafeusage(theseareexploredmoreinchapter7).Althoughtechnologiesandproceduresdoexisttominimizeleaksandtoensurethat,wherenecessary,hydrogenisreleasedinacontrolledmanner,theseelementsarenotuniversallyunderstoodoutsidethepetrochemicalindustry.Indeed,wheretherehavebeensafetyincidentsinvolvinghydrogen,thecausehasoftenbeenafaultintheassemblyoftheunits,demonstratingtheimportanceofhavingaccesstoexperiencedinstallersandengineers.Accesstosuchskillsisalsoimportantfortheongoingmaintenanceoffuelcellsystems,notablythoseoperatingathighertemperaturesforwhichsuppliersareadvisingsomeformofbasicmaintenanceeverythreemonths.Butstorageandassemblycon-cernsarenotuniquetohydrogenandarealsoconsiderationsforthehandlingofotherfuelssuchasammonia—atoxicchemical—ornew9Thisamountistheproductofthe55.4percentoftraditionalbiomassusedforenergyin2015multipliedby51EJ.IEA,Bioenergywebsite,https://www.iea.org/topics/renewables/bioenergy/.technologiessuchaselectricbatterystorage,forwhichfiresfrompoorassemblyarealsoaconcern.Indeed,thekeytakeawayisnotthatsafetyisaninsurmountablebarrierorthattheissuesarenotsufficientlyunderstood;rather,theknowledgearoundhydrogenneedstobemorewidelydisseminatedandpracticedasthesenewapplicationsgaintraction.Beyondthesafety,cost,andconvenienceofdeploymentremainthetwokeyfactorsthatdeterminethepaceoftechnologyadoptionindevelopingcountries.Itisnotablethathydro-genanditsderivedproductsarealreadybeingusedforawidearrayofapplicationsinsomedevelopingcountrieswithouttheneedforlarge-scalegovernmentsupport.Thereasonsforthisareexploredindetailinchapter2ofthisreportbut,broadlyspeaking,consumersindevelopingcountriesoftenpayhigherthanaveragepricesforenergythantheirpeersindevelopedcoun-triesdo,andcommercialandindustrialconsum-ersindevelopingcountriesoftenfaceproblemswiththereliabilityoftheenergysupply.Thesefactorscannegatesomeofthechallengesthatfacehydrogendeploymentsindevelopedmar-kets,wheregreenhydrogeninpower-to-powerapplicationshasstruggledtoprovideacommer-ciallycompellingpropositionatcurrentcosts.Furthermore,hydrogenproductionandfuelcelltechnologiesareoftendeployedinprefabricatedcontainersatthedistributedscale,makinginstal-lationrelativelyfastandreducingtheconstruc-tiontime.Further,somedevelopingcountriessimplylacktheabilitytodevelopextensivedomesticre-newableenergyresourcesbecauseofphysicalconstraintssuchasthelackofaccesstolandonwhichtodeployrenewableplantsorthepoorqualityoflocalrenewableresources.Inthesecases,theabilitytoimportacleanfuelfromavarietyofsuppliersandprovidereliablepower51:Introductionwithoutrequiringlargeamountsofspaceisessential.Greenhydrogencanbeproducedandstoredforlongperiodsoftime,thendispensedwhenneeded.Electrolyzerscanevenprovideservicestogridoperators,adjustingtheirhydro-genoutputastheydoinmarketssuchastheUnitedKingdom,wheresix330kilowatt(kW)electrolyzerswillfollowademandoptimizationprofileprovidedbyasoftwareprovidercalledOpenEnergi(FuelCellWorks2019c).Onesignificantbarriertothedeploymentofgreenhydrogenindevelopingcountriesisalackofawareness.Fewbusinessandutilitiesindevelopingcountrieshaveaclearunderstandingofthepotentialapplicationsforgreenhydrogeninsidetheirbusinesses,andthustheyhavenotsoughttoengagewithsuppliers,financiers,orthegovernmenttopromoteitsuse.Concurrently,manypolicymakershavenotsoughttode-velopapolicyframeworkornationalstrategytosupporttheuptakeofgreenhydrogenandfuelcellsbecausetheymaybeunawareoftherolehydrogencouldplayintheirnationalenergystrategyandindustrialobjectives.Inaddition,thetechnicalexpertiseforhydrogensystemsisfrequentlylowandinmanycasesnonexis-tent.Becausetrainingmaytakeseveralyearsforworkersindevelopingcountriestogainthenecessaryskillstosupportthesetechnologies,developingcountrieswillhavetorelyonasmallpoolofqualifiedinternationalworkerswhowillbeinhighdemandwithintheirownmar-kets.Thisrequirementmayincreaseshort-termdeploymentcostsandincreasethetimetablesfordeploymentindevelopingcountries.Withregardtofuelcells,thetechnologyitselfwasfirstdevelopedin1839,andtodayover1.610Oneoftheleadingprovidersofmethanolfuelcells,CHEMCorporation,statedthatithasdeployedover3,000systems,mostlylocatedintheCaribbean,China,India,Indonesia,Japan,Malaysia,SouthAfrica,andothersmallermarkets(EngineeringNewsOnline2019).11TheCaliforniaFuelCellPartnership(CAFCP)reports9,789FCEVsinCaliforniaasofSeptember2019and3,386inJapan.Thiscombinedwithover500FCEVsannouncedintheEUundertheHydrogenMobilityEuropeinitiativeandtherecentlyannouncedsalesof1,106FCEVsforChinain2019(fromdataprovidedbythePowerBatteryApplicationBranchofChinaIndustrialAssociationofPowerSources)providesthebasisforthegreaterthan12,000figure.IncludingAustralia,Korea,andothermarketswillincreasethenumbersmodestly.Sources:CAFCP2019,Sampson2019,andXinhuaNewsAgency2019.gigawatts(GW)ofstationaryfuelcellcapacityhasbeendeployedglobally(IEA2019b).Indevelopingcountries,thebulkofdeployedfuelcellsystemsaresmallscaleandhavebeenusedtoprovideanuninterruptiblepowersupplyfortelecommunicationsandemergencyservices.Althoughthesizeofeachunitmaybesmall(typ-icallybelow10kW,butitcanvarydependingonthesite)theabsolutenumberofsystemsde-ployedissignificantandgrowing.10Onthelargerstationaryside,fuelcellsarebeginningtogaintractionforcommercialuses(below5megawatts[MW])indevelopingcountries,withcountriessuchasIndiaandSouthAfricabothdeployinghigh-temperaturesystems.Typically,theselargerunitswillmakecommercialsensewherethereisalreadyaccesstonaturalgas,whichremainsgloballythepreferredfuelforstationaryfuelcells.Nevertheless,currentdeploymentlevelsarelowandfurthercostdeclineswilllikelybeneededbeforestationaryfuelcellsinothermarketsareabletoreplicatethedeploymentscalesachievedintheRepublicofKoreaandtheUnitedStates(figure1.2b).Onthemobilityside,thereareover12,000fuelcellelectricvehicles(FCEVs)globally,11withhy-drogenbuses,trucks,trains,drones,andbicyclesallavailableforcommercialpurchase.Further,hydrogenandfuelcellprototypeshavebeende-velopedorfirstunitsorderedforferriesandsmallaircraft.Developingcountrieshavegraduallybeguntodeployfuelcellbuses,notablyinAsia,fundedprimarilythroughthesupportofeitherlocalgovernmentorlargenationalutilities.Inthelongterm,theappealofhydrogenisclear,withlocalgovernmentsinIndonesia(Borneo),Brazil,China,CostaRica,India,Malaysia,GREENHYDROGENINDEVELOPINGCOUNTRIES6Nepal,Thailand,andSouthAfricaallexpressinginterestoractivelyinvestinginfuelcellmobilityprojects.Althoughtherearevaryingmethodsforclassify-ingthedifferentapplicationsforgreenhydrogenandfuelcelltechnologies,thisreportwillgrouppotentialusesintothreecoreareasofinterest:nnGreenhydrogenforpowerandheat,nnGreenhydrogenformobility,and,nnGreenhydrogenforindustry.Withintheseareas,thetypesofpotentialgreenhydrogenprojectscanbeextremelydiverse,bothgeographicallyandwithrespecttotheirapplication.Forexample,a250MWelectro-lyzerhasbeenproposedbyBPforrefininggasolineforvehiclesintheNetherlands,whilea20MWelectrolyzerprojectforproducinggreenammoniaisbeingdeployedinQuebecanda12GWprojectisunderconsiderationinPilbara(Australia)forhydrogenexportstoAsiancoun-tries.Forfuelcellstheusesarejustasdiverse,witha50MWfuelcellinKoreabeingdeployedtogeneratepowerforDaesanIndustrialComplex(Hanwha2018),ahybridrenewableenergyandenergystoragesysteminFrenchGuianatopro-vide24-hourdispatchablepower,andafuelcellbusprogramannouncedinBorneo(Indonesia).Nonetheless,theseclassificationsdohelppro-videananalyticalreferencepoint,giventhatmo-bilityapplicationstypicallyrepresentthemostexpensiveformofenergy,followedbypowerandheatandthenbyhydrogenforindustrialuses.Accordingly,thecategorieshelpinfluenceassessmentsaboutwhencertainapplicationsarelikelytobecomecommerciallyviableandcom-petitiveagainstalternatives,andwhatconditionsareneededtoachievethis.Thisreportisstructuredtoprovidereadersfirstwithanoverviewofwhygreenhydrogenhasgainedtractioninrecentyears,whythatisrelevantfordevelopingcountries,andwhatimplementationchallengesremain.Inchapter2,thereportoffersahistoricalcontexttotheSource:ESMAP(left).©BloomEnergy(right).FIGURE1.2Greenhydrogengenerationandfuelcellexamples:Electrolyzerandcommunitywindsite,Shapinsey,OrkneyIslands,UnitedKingdom(left)andBloomEnergycommercialunit,UnitedStates(right)71:Introductiondevelopmentofthecurrentglobalhydrogenandfuelcellmarketandthenexplainswhathaschangedandprovidesexamplesofhowthesetechnologiesarebeingusedbyconsumersindevelopingcountries.Thatchapter,inturn,isdesignedtoshedlightonwherecurrentopportu-nitiesformarketgrowthingreenhydrogenexistandtodrawattentiontoapplicationsthathavebeenneglected.Tohelpframethediscussionofgreenhydrogenwithintheglobalcontext,chapter3providesarecapofhowhydrogentechnologiesworkanddetailscostsandthesizeofglobalmarketstoday.Chapters4,5,and6thenexplorethecurrentarrayofapplicationsforgreenhydrogenandfuelcelltechnologiesinpowerandheat,transport,andindustry,respectively,illustratingtheareasinwhichdevelopingcountrieshavealreadybeguntode-ployhydrogenandfuelcelltechnologies.Thesechaptersalsoshowthewiderarrayofpotentialapplicationsasthetechnologiesdevelopandcostsdeclinefurther.Chapter7providesalistofimplementationchallengesforgreenhydrogenandfuelcellprojects—includingsafety,trans-port,andstorage—withtheaimofhelpingreadersunderstandsomeofthetechnicalfactorsinvolvedindevelopingprojectsandofassistingpolicymakers,developers,andinvestorswhoareconsideringthesetypesofprojectsindevelopingcountries.Finally,chapter8suggestsareasforfurtherresearchtohelpdevelopingcountriesassessthepotentialforgreenhydrogenprojects.©ORKNEYCOUNCIL92:Whygreenhydrogen,whynow,andwhydevelopingcountries?2:WHYGREENHYDROGEN,WHYNOW,ANDWHYDEVELOPINGCOUNTRIES?KEYTAKEAWAYSnnHydrogenisawell-understoodgasthatcouldoffersolutionstocertainenergy,climate,andpublichealthrequirementswhilecontributingtodecarbonizingeconomicactivities.nnHistoricallythemajorityofhydrogenwasgreen,producedfromwaterandpowerfromhydroelectricsites,butthismethodwassubsequentlyreplacedbyhydrogenfromfossilfuelsources.nnThehistoricallyhighcostofelectrolyzersandvariablerenewableenergytechnologiespreventedgreenhydro-genfromemergingasasignificantcleanenergytechnologyduringitsfirstmajorcommercializationwaveinthelate1990sandearly2000s,butthecircumstancestodayaredifferent.nnElectrolyzercostshavedeclinedbyover50percentinthepastfiveyears,whileefficienciesandsystemlifetimeshavealsoincreasedconsiderably.Meanwhile,thecostofrenewableelectricityhasfallendramatically,withsolarPVpowerpurchasingagreements(PPAs)signedforunder$20perMWh.nnThereisanemergingnationalandcorporateconsensusthathydrogenisessentialtosupportingdecarboniza-tionpathwaysindevelopedanddevelopingcountries.nnDevelopingcountriesthatexperiencehighelectricitypricesandreliabilityproblemscouldprovidemoreappealingcommercialopportunitiesforgreenhydrogenandfuelcelltechnologiesinthenearterm.nnHydrogenisnotanewtechnologyfordevelopingcountries.Large-scalegreenhydrogenproductionhaspre-viouslyoccurredindevelopingcountries,suchasEgypt,India,andZimbabwe,anditsreestablishmentcouldcreatelocaleconomicopportunitiesforindustrywhilefacilitatinghigherratesofVREdeployments.nnEnergystoragesolutionsbasedongreenhydrogencouldhelpincreasegridresiliency,addressingconcernsthatmayarisefromchallengesposedbyVREintegration,climatedisasters,orchallengesinmanaginggridloadrequirements.nnLong-terminvestmentdecisionstakentodaywilldefinethedesignandstructureoffutureenergysystems,whichmustalreadyconsiderhowtoreducegreenhousegas(GHG)emissions.Afailuretoidentifyanddevelopstrategiestoincorporategreenhydrogentodaycouldlockfossilfuelsinandgreenhydrogenoutofnationalenergysystemsfordecades,potentiallyhinderingCO2reductionefforts.GREENHYDROGENINDEVELOPINGCOUNTRIES102.1.WHYGREENHYDROGEN?GiventheincreasingurgencytomeetglobalclimatecommitmentsundertheParisAgreementandtoseekevenfasterreductionsasreflectedintheIntergovernmentalPanelonClimateChange(IPCC)1.5-degreescenario,thewidevarietyofapplicationsforgreenhydrogenmakeitanessentialpartofthedecarbonizationtoolkit.Indeed,hydrogenisaflexibleenergycarrierthatcanbetransformedintoelectricityandheatforuseindecarbonizingactivitiesinindustry,transport,andbuildings.AnalysisconductedbyMcKinseyfortheHydrogenCouncilin2017suggestedthatatransitiontowardahydrogeneconomycouldleadto7.5gigatonnesofannualCO2abatementby2050(equivalentannuallyto20percentofthetotalemissionsin2018)(McKinsey&Company2018).Further,aspolicymakersseektoencourageatransitiontocleanenergy,thereisagrowingawarenessofthees-sentialneedtofindtechnicalsolutionsthatallowforthedecarbonizationofeconomicactivitieswhileleveragingexistingassetswheneverpossi-ble.Inthiscontext,greenhydrogencouldofferavaluepropositiontoawidearrayofstakeholders,includinggascompanies,utilities,consumers,developersofrenewables,andpolicymakers.Becausehydrogenisawell-knownindustrialgasthattheworldhasproducedforover60years,thereissignificantglobalexpertiseontheproductionandhandlingofhydrogen,aswellasregulatoryguidance,safetystandards,andestablishedtrainingprograms.Hydrogencanbeusedthroughupgradestoexistinggasnetworks,adjustmentstoexistinggasturbinetechnologies,andmodificationsofboilersandtoexistingcommercialvehicles.Accordingly,hydrogenisseenasparticularlyappealingtomarketswithsizeableexistinggasinfrastructure,notablyinArgentina,China,Europe,theGulfCooperationCouncilcountries,Japan,Korea,Indonesia,Malaysia,NorthAmerica,andThailand.Buthydrogen’simportancetotheenergytransi-tiongoesbeyonditsconvenienceforexistinggasconsumers.Greenhydrogenisoneofthefewtechnologiesthatcurrentlyoffersthecapabilityofdeliveringseasonalenergystorageinallmar-kets—notably,inthosethatcannotdeveloplargepumpedhydrosolutions.Further,greenhydrogenanditsderivativefuels,suchasammoniaandmethanol,areamongthefewtechnicalsolutionsthatarecapableofreducingemissionsinheavy-dutytransportationsectorssuchasrail,shipping,trucking,andevenaviation.Todaytherearefuelcelltrainsactivelydeployedorunderconsider-ationinChina,Japan,Korea,France,Germany,theNetherlands,Russia,theUnitedKingdom,andtheUnitedStates,whilehydrogen-poweredfuelcellferrieswillbeginoperationin2021inNorwayandtheUnitedKingdom.Intruckingandtheurbanmobilityspace,hydrogenisalsoapowerfulpartnertobattery-basedelectricsolutions.Nearlyallfuelcellelectricbusestodayoperateintandemwithabattery,whiletheflagshipNikolafuelcelltrucksalsoincorporatelithiumionbatteriesalongsidefuelcells.Inthiscontext,greenhydrogenandfuelcellsshouldbeseenlessasthreatstothedevelopmentofelec-tricmobilitysolutionsandmoreasadditionalconfigurationsthatcanhelpoptimizesolutionsforlong-rangeorhigh-energyapplications.Since2018,energyagenciessuchasIRENAandtheIEAhaveconcludedthat“cleanhydro-geniscurrentlyenjoyingsignificantpoliticalandbusinessmomentum,withthenumberofpoliciesandprojectsaroundtheworldex-pandingrapidly....nowisthetimetoscaleuptechnologiesandbringdowncoststoallowhydrogentobecomewidelyused”(IEA2019b).Theimportanceofscalinghasthusbecomethefocusforcompaniesinthissector,drivenbyassessmentsthatbycreatinganenablingenvi-ronmentforgreenhydrogenproduction,costscouldfallbetween30percentto70percentby2030inaggregate(HydrogenCouncil2020;IEA2019b),andthatpricescouldfallevenfurtherincertainprojectcontexts.Atthatlevel,greenhydrogencouldnotonlyreachcostparitywith112:Whygreenhydrogen,whynow,andwhydevelopingcountries?fossil-derivedhydrogen—thusbecomingapow-erfulmechanismfordecarbonizingtheexistingenergyandcarbonintensiveindustrialhydrogencommoditymarket—butitcouldalsobecomeanimportantenergyvectorfordecarbonizingthewiderenergysector.2.2.WHYNOW?Deepdecarbonizationofeconomicactivitieswillrequireamultifacetedtechnologyapproachtodevelopaholisticstrategythatprovidesaf-fordable,reliable,low-orzero-emissionenergyfordevelopingcountries.Withintheseemerg-ingframeworks,greenhydrogenmustnowbeconsideredwhenpreviouslyitmayhavebeendiscountedastooexpensive.Thisisnotthefirsttimethathydrogenhasbeenidentifiedasapotentialenergysourceforthefuture—and,accordingly,therapidgrowthininterestandinvestmentsingreenhydrogenhavebeenmetwithsomeskepticism.However,foursignificantdifferencesinthemarkettodaycontrastwiththeconditionsexistingduringthefailedfirsthydro-genphaseintheearly1990sandmid-2000s:1.Climateregulationsaremuchstronger.TheParisClimateAgreement,theEuropeanUnion’s(EU)2030ClimateandEnergyFramework,andthecommitmenttoNetZeroin65nations(UnitedNations2019)areatestimonytothetransformationinpublicattitudesonclimatechange.GrowingconcerntoavoidtheIPCC’s1.5-degreescenariohasencouragedpolicymakersandcompaniestofindenergysolutionsthatcandecarbonizehard-to-abatesectorsandtoinvestresourcestodeploythem.Inthiscontext,fewalternativetechnologiescandemonstratesuchabreadthoftechnicallyviabledecarbonizationsolu-tionsasgreenhydrogencantoreduceemis-sionsinsectorssuchasmaritime,rail,andtrucking;toprovidearoutetoseasonalenergystorage;andtodecarbonizetheheatingneedsforindustrialandresidentialconsumers.2.Thecostofproducinghydrogenfromcleansourceshasfallendramatically.TheadventofsolarPVandonshorewindpricesthatreachlevelizedcostofenergy(LCOE)pointsbelow$25perMWhinChile,Portugal,SaudiArabia,theUnitedStates,andotherleadingmarketsisenablingsomeelectrolyzercompaniestoquoteagreenhydrogenproductiontotalcostofbelow$3.50perkg.Thus,decentralizedgreenhydrogenproductioncouldsoonbecomecostcompetitiveagainstdeliveredgrayhydrogenfromtrailertubesorcryogenictanks.3.Hydrogentechnologieshaveimprovedincostandperformance.Electrolyzersandfuelcellsolutionsnowhavesignificantlybetteroperatinglifetimesandsystemefficienciesthantheirpredecessors,whiletheyalsocostconsiderablylessandhavebeentestedexten-sivelyinthefieldandacrossawidearrayofapplications.Thiscreatesapowerfulposi-tivefeedbackloopinwhichgreenhydrogenproductioncostscontinuetobenefitfromadownwardcostspiralonboththerenewablepowersupplysideandtheelectrolyzerequip-mentside.Thisprogresshasunlockednewfundingstreamsforhydrogentechnologies,whichinturnenablessupplierstoprovidemoreattractivesolutionstoendcustomers.4.Thetechnologicalinfrastructuretosupportahydrogenenergysystemisnowavailable.Theclearestexampleofthispointwouldbethefuelcellmobilitysector,inwhichtheadventofbatteryelectricvehicleshasensuredthatelectricdrivetrainsarenowwidelyavailable,effective,andincreasinglyaffordable.Thesedrivetrainsareessentialforafuelcellvehicle,whichatitscoreisanelectricvehiclethatsimplyderivesitspowerfromhydrogenandwhichfrequentlyusesabatteryalongsidethefuelcellsystem.Theimpactofthesefourchangeshasbeenprofound,andunderstandingthemiskeytounderstandingwhythistimethediscussionsGREENHYDROGENINDEVELOPINGCOUNTRIES12aroundhydrogenaredifferent.Toassistinthisprocess,thisreportreviewsthecontextbehindthefirstphaseofusinghydrogenasanenergysolutiontoexplaintheearlybarriersandmarketfailures.2.2.1.HistoricalcontextAlthoughthedatesarecontested,thefirstsignif-icantattemptstodeployhydrogenasanenergysolutionbeganinearnestinthe1990s.IntheUnitedStatesthebestinitialstartingpointisthe1998HydrogenTechnologyAdvisoryPanel(HTAP)reviewofthestateofhydrogentechnolo-gies,whichwassubmittedtotheUSCongress.Init,theauthorswrote:“HydrogenisanimportantenergyoptionfortheNationandtheworld.Basedonfossilfuelsintheneartermandrenewableenergysourcesinthelongerterm,hydrogencancontributesignificantlytoeachofthefivegoalsstatedintheDOE’sComprehensiveNationalEnergyStrategy(April1998)regard-ingenergyefficiency,energysecurity,theenvironment,theexpansionoffutureenergychoices,andinternationalcompetitiveness”(HTAP1998,1).TheauthorsoftheHTAPreportwerenotaloneintheirconclusions.Overthenextdecadegov-ernmentsaroundtheworldinvestedheavilyinresearch,development,anddeployment(RD&D)ofhydrogenandfuelcellsolutions.TheIEAestimatesthatbetween2000and2010,thesectorreceivedonaverage7percentofglobalenergyRD&D(OECD2019)(seefigure2.1).Yet,thetechnologiesfailedtogaincommercialtraction,$0$500$1,000$1,500$2,000$2,500$3,00020012002200320042006200520072008200920102011201220132014201520162017HdronndfulcllsSolrWindEnrstorSource:IEA,“RD&DBudget.”IEAEnergyTechnologyRD&DStatistics(database),accessedMarch7,2019,https://doi.org/10.1787/data-00488-en.Note:OECD=OrganisationforEconomicCo-operationandDevelopment;RD&D=research,development,anddeploy-ment.Thedatasetincludesstatisticsonenergytechnologyresearchanddevelopment(R&D)anddisseminationaswellasR&DbudgetforInternationalEnergyAgencycountries.ItpresentsshiftsinR&Dexpendituresassociatedwithinvestmentsandfurtheranalyzesbudgetallocationsintermsofflow.FIGURE2.1OECDRD&DSpending,US$,millions,2001–17132:Whygreenhydrogen,whynow,andwhydevelopingcountries?andfrom2009to2017globalfundingroughlyhalved,fallingfrom9.2percentofworldenergyRD&Din2009to5.2percentin2017.Therearefourkeyreasonswhygreenhydrogenandfuelcelltechnologiesfailedtogaintraction:1.Therewasnomarketdemandforgreenhydro-genfromindustry.2.Hydrogenfromelectrolysiswasnotcostcom-petitiveagainstalternatives.3.Fuelcelltechnologieswerestillemerging,withshortoperatinglifetimes,lowefficiencies,andhighsystemcosts.4.Enablingtechnologies,suchaselectricdrive-trains,werealmostnonexistent.Thelackofgreenhydrogendemandfromindus-trywasafunctionofbotheconomicsandlimitedregulatoryincentivestoswitchtolower-carbonsolutions.Intheearlyyearsofthehydrogensec-tor(pre-1950s),whentransportationofammonia12Haber-BoschistheprocessofcreatingammoniathroughcombininghydrogenwithnitrogenfromtheatmospheretomakeNH3.AgoodexplanationisontheEncyclopaediaBritannicawebsite:https://www.britannica.com/technology/Haber-Bosch-process.andotherproductswastechnicallychalleng-ingandprohibitivelycostly,thosemarketsthatlackedaccesstocoalandnaturalgasfrequentlyturnedtoalkalineelectrolyzers.Thoseelectro-lyzerswereoftenusedinconjunctionwithlargehydropowerresourcesandreachedsignificantsizes,notablyNel’s(NorskHydro)worldrecord135MWelectrolyzerinGlomfjord(Norway),whichwasbuiltin1953andoperateduntil1991(Nel2018c)(figure2.2).Thisearlymarketforgreenhydrogenlostitscost-competitiveedgeoncetheglobalmaritimeindustryexpandedandvesseldesignsbecamemoreadvanced.Thisdevelopmentmadeitconsiderablyeasierandcheaperforsmallercountriesandconsumerstoimportammoniathathadalreadybeencreatedelsewhereratherthantoinstallelectrolyzersandsmaller-scaleHaber-Boschunitsthemselves.12Thesechangesensuredthatbytheearly1990stolate2000s,therewasalmostnocostadvantagetousinghydrogenfromelectrolysisexceptinverySource:Nel2018c,slide4.©Nel.FIGURE2.2World’sLargestElectrolyzer:NorskHydro135MWElectrolyzer,Glomfjord,NorwayGREENHYDROGENINDEVELOPINGCOUNTRIES14location-specificcontexts.Accordingly,industryneededeitheraregulatoryincentivetosup-plygreenhydrogenordemandforanenergyservicethatonlyhydrogencouldprovide.Intheearly1990sand2000s,thesectorfoundneither.Thechallengesfacedbythegreenhydrogensec-torinfindinganenergyservicetodrivedemandfortheproductwereamplifiedbythechallengesfacingthedevelopmentoffuelcelltechnologies,whichwereseenastheprimarymechanismtoconsumehydrogenforenergyapplications.Whilefuelcellshadexistedsince1831andhadbeendeployedbytheNationalAeronauticsandSpaceAdministration(NASA)intheearlyGeminispaceprograms,theconsiderableinvestmentsmadebetweenthe1990sandearly2000swerenotabletocreateaminimallycommerciallyvi-ableproductbeforehydrogen’sfirstphaseendedanditwasovertakenbysolar,wind,andelec-trochemicalbatteries.Akeychallengeformanycompaniesinvolvedintheearlyeffortswasthatfuelcellsystemshadpoorstacksystemlifetimesandlowsystemefficiencies.Consequently,sub-stantialamountsofinvestmentinresearchanddevelopment(R&D)wereneededtoimprovelifetimestothelevelexpectedforcommercialoperations.Thescaleofmoneysumsinvolvedwipedoutmanyearlyventurecapitalinvestorsandinflictedheavylossesonsomeoftheworld’slargestindustrialcorporations.AgoodillustrationofthischallengewasthecaseofSiemens-Westinghouse’sfundingforsolidoxidefuelcell(SOFC)systems(figure2.3).EarlySOFCsystemshadverypoorstacklife-times,makingthemunsuitableformostpower,andmanymobilityapplications.ImprovingthelifetimesofSOFCsrequiredsignificantandsus-tainedinvestment.Accordingly,itwasestimatedthatWestinghouseandtheUSDepartmentofEnergy(DOE)spent$150milliononSOFCre-searchfromthelate1980suntilthe1990s,when19901992199419961998200020022004200602,0004,0006,0008,00010,00012,00014,0001,66612,577SOFCOprtinHoursrSource:OECD/IEA2005.Note:SOFC=solidoxidefuelcell.FIGURE2.3LifetimePerformanceofSiemens-WestinghouseSOFCUnits,TestResults152:Whygreenhydrogen,whynow,andwhydevelopingcountries?Siemensacquiredthebusinessfor$1.53billionin1998.Yet,despiteadditionalinvestmentsandworkwiththeDOE,SiemenscloseditsSOFCunitandsoldtheassetsin2008,adecadelater(Olson2008).Inaddition,fuelcellsystemsrequiredotheren-ablingtechnologiestobedevelopedandscaledintandem,withthebestexamplebeingtheautomotivesector.Inthe1990sandearly2000s,mostinvestors,policymakers,andresearchersthoughtthatthemostattractivebusinesscaseforhydrogenandfuelcellscalingwaslightdutyvehicles.Atthetime,thiswasintuitivebecauseofrisingfearsaboutpeakoilprices;concernsinEurope,Japan,andtheUnitedStatesaboutreli-anceontheMiddleEastforpetroleumproducts;andthepotentiallyhigherefficienciespromisedbyfuelcellsystems.Yet,despitetheseconsider-ations,manufacturersquicklyrealizedthattorunafuelcell,theyalsoneededtobuildanelectriccar,13whichcreatedamajorproblembecausetheelectricvehicle(EV)sectorinthe’90swasnonexistent,andevenin2005therewerebarelymorethanafewhundredelectricvehiclesglob-ally(Plummer2016).Thefinalissuewasthatfuelcellsrequiredorigi-nalequipmentmanufacturers(OEMs)notonlytosupportadditionalR&Dtoimprovethestacktimeoffuelcellsbutalsotofindanddevelophydrogenstorage,hydrogencompressors,andhydrogensafetymechanismsforvehiclesfromscratch.Forthefewthatdidperseveretodevelopfuelcellelectricvehicles(FCEVs),thisprocesssimplycreatedexpensivevehiclesthatwereconsiderablylessefficientthantheirpotential.14InpartbecausePEMfuelcellsweremuchlessefficientduringthisperiodthantheyaretoday,butalsobecauseelec-tricdrivetraintechnologiesandinnovationssuch13Whilethereissomedebateaboutwhythisshiftoccurred,themainissuesappeartohavebeenlinkedtosafetyconcernsaroundgasleaksandquestionsaboutthecostsofaddinghydrogenstorageandpetroleumstorageinavehicle.14ResearchfromtheIEAin2005notedthattheassumedfuel-to-wheelefficiencyofFCEVsatthattimewasaround28percent(IEA/OECD2005),comparedwithfiguresthatMcKinsey&CompanyprovidedforFCEVsin2017thatshowedefficienciesabove44percent(HydrogenCouncil2017).Indeed,Toyotain2019announcedthatitslatestFCEVwouldachieveabove60percentefficiency.asregenerativebrakingwerefarlessefficient,theoverallsystemefficiencywaswellbelowwhatisexpectedfromamodernFCEV.2.2.2.PresentdayWhilethedeclineinthecostofrenewablepowerisbecomingessentialtoimprovingthecommercialviabilityofgreenhydrogen,otherchangesarealsoplayingakeyroleinfacilitatingtheinitialdeploymentofgreenhydrogenandfuelcelltechnologies.Principally,theglobalpressureforcleanenergytechnologicalsolutionsandtheemergenceofenablingtechnologies—suchasbatteries,electricdrivetrains,the“inter-netofthings,”andhigh-speedinternetaccess—aretransformingthecompetitivelandscapeforgreenhydrogenandforfuelcelltechnologies.Intandemtothesechanges,electrolyzerandfuelcelltechnologiesarenowbetter,withthebulkofinitialtechnicalchallengeshavingbeenad-dressedandcostbecomingthelargestremainingbarriertowidespreadcommercialization.Theresultsofthesechangesarebecomingclear.Currentlytherearemorethan20GWofglob-allyannouncedelectrolyzerprojectsinvaryingstagesofprojectdevelopment,includingfromprefeasibilitytofirmorders,coveringalmosteverycontinent.Inlessthanthreeyears,morethan82oftheworld’slargestcompanies,controllingover$2.6trillioninrevenue,havejoinedtheHydrogenCouncil,theflagshipindustryinitiativeforin-dustriesfosteringhydrogenasanenergysolution(FuelCellWorks2019b).Althoughmanyofthesepartnersarefocusedonhydrogengenerationfromfossilfuels,possiblycombinedwithcarboncapturetechnologies,almostallofthemarealsoexploringelectrolyzerbusinessmodels,includingthosewithexistingandsubstantialnaturalgasGREENHYDROGENINDEVELOPINGCOUNTRIES16resources.Countriesarenowchannelingsignifi-cantfinancialresourcesintothisspace,withChinaaloneallocatinganestimated$12.4billioninsubsidiesfordeploymentsandR&Dforfuelcell–poweredvehiclesin2018tobedistributedacrosslocal,state,andcentralgovernmentbudgetsandthroughstate-ownedenterprises(Sanderson2019).Asaresultofthesedevelopments,hydrogento-dayisrecognizedbymanyoftheworld’sleadingeconomiesandcorporationsasakeycomponentinenablingtheenergysectortransition.In2018theworld’sfirstHydrogenEnergyMinisterialsummitwashostedinTokyo,andasecondeventwasheldinSeptember2019.Atthefirstministe-rialsummit,participantsannouncedthe“TokyoStatement,”whichconsistedoffouractions:(1)Promotetechnicalcollaborationanden-couragestandardizationandharmonizationofstandardsandregulationsbetweencoun-triesandbusinesses;(2)definethedirectionofresearchanddevelopmentthatcountriesshouldcollaboratetoachievehydrogenenergysocietyincludingsecuringhydrogensafetyanddevelopmentofhydrogensupplychain;(3)studyandassesspotentialeco-nomiceffectsofhydrogenenergyuseandeffectsofCO2reductioninordertoattractinvestmentandcreatebusiness;and(4)em-phasizetheimportanceofeducationandpublicrelationsactivitieswhichallowsallcitizensintheworldtowidelyunderstandandaccepthydrogenenergy.(METIandNEDO2018)EnergyministersalsoagreedthattheoutcomeofthemeetingwouldbeaninputfortheG20SummitinJune2019.Atthissecondeventin2019,theIEAlaunchedits“FutureofHydrogen”report(IEA2019b),whichconcluded,“Thetimeisrighttotapintohydrogen’spotentialtoplayakeyroleinaclean,secureandaffordableenergy15WorldBank,“CO2Emissions(kt),”dataset,https://data.worldbank.org/indicator/EN.ATM.CO2E.KT;CenterforGlobalDevelopment(CGD)2015,https://www.cgdev.org/media/who-caused-climate-change-historically.future.”Thisreportfurtherproposedadraftofpolicymeasuresandidentifiedareasinwhichtechnologicalbreakthroughswereessentialtoseethesectorflourish.ThesedevelopmentshavesubsequentlybeenbuiltonduringthesecondHydrogenEnergyMinisterialinSeptember2019andfurthersupportedthroughthereleaseofthereport“Hydrogen:ARenewableEnergyPerspective,”whichIRENAproducedtoprovidecountrieswithhelpdevelopingsupportivepolicyframeworkstoacceleratethedeploymentofgreenhydrogen(IRENA2019).2.3.WHYDEVELOPINGCOUNTRIES?Developingcountriesareresponsibleformorethanhalfoftheworld’sGHGemissions,andtheircarbonfootprintisgrowinginbothab-soluteandproportionalterms.15Accordingly,thereisanincreasingneedtoidentify,assess,anddeploylow-tozero-emissionfuelssuchasgreenhydrogentosupportdevelopingcountriesinmeetingtheirdevelopmenttargetsandclimatecommitments.ThereemergenceofhydrogenasasolutionfortheenergysectorhaslargelybeendiscussedinthecontextofdevelopedmarketssuchasAustralia,theEuropeanUnion,Japan,andtheUnitedStates.Whilethisisunsurprisinggiveninvestorfamiliaritywiththesemarketsandthefinancialresourcesavailabletopolicymakersinthosecountries,thereareuniquefeaturesthatmakedevelopingcountriesextremelyenticingforinvestorsingreenhydrogentechnologiesandthatperhapshavenotbeengivensufficientconsideration.2.3.1.HydrogencanhelpincreaseenergysecurityGreenhydrogenallowsdevelopingcountriestolocallyproduceanextremelyversatilefuel172:Whygreenhydrogen,whynow,andwhydevelopingcountries?thatcanbestoredoverlongtimeperiodsandrequiresonlyrenewablepowerandwater.Thisistransformativeforcountriesthataredependentoncostlyenergyimports,typicallypetroleum,andthatareexposedtobothoilpricevolatilityandenergysecurityriskifthefuelsupplyispar-tiallyorfullydisrupted.Thesefuelsupplydisrup-tionscouldbecausedbyregionalconflicts,geo-politicaltensions,thefinancialsituationoflocalutilities,orcorruption—allofwhichundermineeconomicgrowthanddevelopmentobjectives.Itiscrucialthatdevelopingcountriescancountonreliableandaffordableresourcestopowertheireconomicactivitiesandmeettheirnationaldevelopmentobjectives.Althoughrenewableresourcesarewidelyavailableinmanydevel-opingcountries,theycannotbedispatchedoncommandandrequirestoragetomeetinstanta-neousdemand.Greenhydrogencouldthushelpsupportthedevelopmentofrenewableenergysystemsbyprovidingthelong-durationenergystoragecapabilityandflexibilitythatfossilfuelshavetraditionallyprovidedtothepowersector.Currentlytheimportdemandforoil-derivedfuelscanbeasourceofsignificanteconomicandpoliticalinstability,inpartbecauseofthevolatilityofglobaloilpricescombinedwiththelowelasticityoffuelconsumption,whichcanamplifypricespikesandhaveaseverenegativelocalimpactoncompetitivenessandeconomicgrowth.Whiledevelopingcountrieshavetraditionallyattemptedtomitigatetheseissuesthroughsubsidies,theconsequencesincludesignificantfiscalpressureonfinanceministries,economicinefficiencies,andpoliticalpressurestomaintainorexpandthesubsidies.Greenhydrogenproductioncouldplayamajorroleinprovidingadecentralizedformoffuelproduc-tionthatisdrivennotbythevolatilityofglobalprices,butratherbylocalrenewablepowerpric-ingandlocalsupplyanddemand.Thisoptioncouldalsoreducetheneedforsubsidiesandtheneedtodrawfromforeignexchangereservestopayforfuelimports.2.3.2.ElectricpowerindevelopingcountriescanbeextremelyexpensiveInmanydevelopingcountrieselectricpowerismoreexpensivethanindevelopedones,afeaturewhichisespeciallyconcerninggiventhelowerrelativepurchasingpowerofconsumersinthesecountries.Becauseoffuelpricevolatilityandadditionalcostsincurredbymanydevelopingeconomiesinimportingnaturalgas,coal,andpetroleumproductssuchasdiesel,theeconom-icsforgreenhydrogenandfuelcellsolutionscouldbesignificantlymoreappealingindevel-opingcountriesthanfordevelopedones.ThisiscertainlythecaseinremoteislandslikeKiribatiorVanuatu,whereretailpowerpricesexceed$400perMWh(UNECLOEngie2019),andevencountrieswithcloseproximitytolargepetroleumproducers,suchasMali,canfaceelectricpowerpricesexceeding$230perMWh(WorldBank2018).AlthoughsolarPV,windpower,andotherrenewablescouldhelpreducethesepricesandtheirunderlyinggenerationcosts,thegridintegra-tionofVREscanbechallengingathighpenetra-tionrates,andtheirvaluemaybelimitedwhenitcomestoprovidingfirmcapacity.Accordingly,therecouldbeopportunitiesforcountriestoprovidedispatchable,renewablepowerleverag-ingtheflexibilityofgreenhydrogen,particularlyinsystemsinwhichaccesstolow-costfuelsmaybelimited.Insmalldiesel-basedpowergrids,hydrogenhybridsystemsinconjunctionwithso-larpowerandbatteriescouldalsobeapotentialsolutionforprovidinglocallyproducedelectricityandfuels,thusreducingcostanddiversifyingfuelsupplytomitigatesupplyriskfromanyspecificcompanyorcountry(box2.1).2.3.3.Developingcountriesalreadyhaveexperiencewithlarge-scalehydrogenprojectsHydrogenisnotanewcommercialproductandelectrolyzersarenotnewtodevelopingcountries.HydrogenhaslongbeenanimportantGREENHYDROGENINDEVELOPINGCOUNTRIES18industrialgasfordevelopingcountries,owingtoitsroleintheproductionofammoniaforfertiliz-ers.Intheperiodbeforetheadventofadvancedmodernshipdesigns,whichmadeshipscapa-bleofstoringandtransportinglargevolumesofammonia,hydrogenproductionfromdomes-ticsourceswasessentialtohelpingemergingmarketsincreasedomesticfoodproduction.Accordingly,therehavebeenunitsaslargeas106.0MWinstalledinIndia(1958),74.6MWinZimbabwe(1975),and115.0MWinstalledattheAswandaminEgyptin1960(ButtlerandSpliethoff2018).Giventheseexperiences,hydrogenelectrolyzerprojectsarenotanewconceptforthedevelopmentfinancecommu-nity.Tomeettheneedtoproducelocalfertiliz-ers,oftenfromammonia(viahydrogen),multi-lateralorganizationsliketheWorldBankwereextensivelyinvolvedinprojectsthatrequiredtheconsumptionandproductionofhydrogenfromdomesticsources.ExamplesofprojectsfinancedbytheWorldBankinthefertilizersectorincludeHYBRIDENERGYSTORAGESYSTEMSINFRENCHGUIANARemotesystemshavelongbeenattractivetorenewableenergydevelopers,owingtothehighcostofimportedpowerandtheneedtoprovideresiliencyintheeventofgridoutages,whetherfromweatherevents,theft,orgridimbalances.Still,integratingVREintosmallgridscanbechallenging,despitethecompellingeconomicsofsolarPVcomparedwithdieselalternatives.ThepastfewyearshaveseentheproliferationofhybridsolarPV,diesel,andbatterysolutions,operatingconcurrentlyindifferentconfigurations,aspotentialalternativestodecarbonizeremoteenergysystems.ButinFrenchGuiana,HDFEnergybelievesthatgreenhydrogenandfuelcellscouldbepartoftheanswertodisplacingdieselentirelyandprovidinglonger-durationstoragethanbatteriesalone.TheCentraleÉlectriquedel’OuestGuyanais(CEOG)projectisseekingtodeploya55MWsolarPVsite,inconjunctionwitha20MWbattery,a20MWelectrolyzer,anda3MWfuelcell,toprovidewhatthecompanycallsa“RE-newstable”solutionforitscustomers.Ineffect,thecompanywillprovide10megawatt-hours(MWh)ofdispatchablepowerduringpeakdaytimehours,droppingdownto3MWhduringtheoff-peakeveningtimes.Theprojectsizeissignifi-cantwhencomparedtothecountry’snationalgridcapacityofjustover300MW.Theprojecthasalreadysecured60percentoftheequityfundingfromFrenchinvestmenthouseMeridiamandwasdueforfinancialcloseinDecember2019.Whiletheprojecthasnotdiscloseditspricingpublicly,thecompanyhasconfirmedthattheprojectwillnotrelyonsubsidiesandthusisexpectedtocomeinaround(orbelow)thelatestsolarandbatteryprojectintheregion,whichsecuredapowerpurchaseagreementatEUR260perMWh.Giventheabilitytoprovidedispatchablebaseloadpoweratpricesbeloworatleastcompa-rablewithdiesel,theCEOGprojectoffersauniqueapproachtodecarbonizingremoteenergysystems.Note:TheprojectdataisfromHDFEnergy2019.Thesourceofthegreaterthan300MWinstalledca-pacityfigureforFrenchGuianaisU.S.EnergyInformationAdministrationdatafor2016,https://www.eia.gov/opendata/qb.php?category=2134409&sdid=INTL.2-7-GUF-MK.A.BOX2.1192:Whygreenhydrogen,whynow,andwhydevelopingcountries?theIGSASfertilizerprojectinTurkeyin1980(WorldBank1980),theTalkhaIIfertilizerprojectinEgyptin1983(WorldBank1983),andtheFaujifertilizerplantinPakistanin1986(WorldBank1986).Eventoday,countrieslikeMalaysia,whichhaveaccesstonaturalgasandSMR,stillusealkalineelectrolyzerstosupportmanufacturing.Inthecaseshowninfigure2.4,a25MWelectrolyzerisusedinMalaysiaintheproductionofpolysil-icon.InCostaRica,hydrogenfromrenewablepowerandelectrolysisisalsousedforcertaincommercialapplications.Theseexperiencescreateastartingbasefromwhichascalingupofgreenhydrogenproductionforindustrialdecarbonizationcanbebuiltintothepolicydiscussionandinthenationalgreenhydrogenstrategiesindevelopingcountries.©Nel2018a,slide5.©Nel.Note:ESMAPresearchsuggeststhatthisisthelargestcurrentlyoperatingunitasof2019.FIGURE2.4World’slargestcurrentelectrolyzer(25MW),polysiliconplant,Sarawak,MalaysiaGREENHYDROGENINDEVELOPINGCOUNTRIES202.3.4.Integratinglargesharesofvariablerenewableenergyrequireslong-durationstorageAlthoughmanydevelopingcountrieshavesig-nificantrenewableresources,integratinglargeamountsofVREintolocalgridscanbetechni-callycomplexforanypowersystem.Aselectricpowersystemsgrow,sodoestheirpeakdemand,requiringcountriestoincreasetheamountofgenerationcapacityavailableduringthepeakorwhenitisneededmost.Thistypeofcapacityisknownas“firm.”TheamountoffirmcapacityprovidedbyVREtechnologies(alsoknownascapacityvalue)isverylimitedgiventhetechnolo-gies’uncontrolledvariability.Incountrieswithnoaccesstofirmgenerationtechnologies(typicallylargehydroorgeneratorsrunningonfossilfuels),meetingpeakdemandwithrenewablesrequiresthedeploymentofdifferentformsoflong-durationenergystorageto“firmup”theoutputfromVREplantsandguaranteethattherewillbesufficientenergyavailabletomeetthepeak.IntegratingVREintogridsisdifficultregardlessoflocation,butdevelopingcountriesfacepartic-ulardifficultiesposedbyunreliablegridswithinsufficientback-upgenerationcapacityandalackofautomatedsupervisorycontrolanddataacquisitionsystems.Gridsindevelopingcoun-triescanbemoresensitivetosuddenchangesindemandandsupplyandlessabletomain-taingridstabilitythanindevelopedcountries.Further,regulatorsandutilitiesinthesemarketsoftenhavelimitedtechnicalcapacitytoaddresstheimpactsofVREontheirsystems,andsoin-vestorsmayexperienceanaversiontodeployinglargeVREprojects.Inthiscontext,energystorage,includingbatteriesandgreenhydrogen,canhelpprovideadditionalbalancingmechanismstosupportVREintegration.Greenhydrogenisoneofthefewtechnologies16ThiswasderivedfromdiscussionswithVerbundstaffmembersaboutthecompany’shydrogenplansin2019.17CommentsfromJean-NoëldeCharentenayofHDFEnergy,July2019.thatcanmitigatethelong-termvariabilityofre-newableresources(weeklyandseasonal)becausehydrogencanbestoredforlongperiodsoftimeandsubsequentlyusedforpowergenerationinafuelcell(orturbines).Thisfeaturecouldcreateopportunitiestodevelopfirmrenewable-basedsolutionsorrenewablemicrogridsthatcanmeetapredefinedgenerationprofile,orfullyadapttothevariabilityofelectricitydemand.Althoughthisop-tionmaybealonger-termambition,theexistenceofhydrogengascavernsintheUnitedKingdomandtheUnitedStatesandpilotstousehydrogenforseasonalrenewableenergystorageinAustria16showthatgreenhydrogencouldbeanoptionworthexploringfordevelopingcountriesthatareplanningthefutureoftheirenergysystemsoverthenext30oreven50years.Theabilitytofirmuprenewablegeneration,ortodevelopwhatonedeveloperhascalled,“are-newstablesolution,”17thereforecanunlockmarketsforVREtechnolo-giesthathavethusfarbeenreluctanttoscaleupdeploymentsorcanfurtherincreaserenewableuseinlocationsthathavereachedtheirmaximumpenetrationlevels.Additionally,electrolyzersarealreadyprovidinggrid-balancingservicesinanumberofterritories,andtheearlyexperiencescanserveascasestud-iesforhowhydrogencansupportfurtherVREde-ployments.InCanada,forexample,theMarkhamEnergyStorageprojectusesa2.5MWelectrolyzertoprovidesecondaryfrequencycontrolfortheIndependentElectricitySystemOperator,whileintheUnitedKingdomITMPower’s3MWbusrefuelingstationinBirminghamprovidesdemandresponseservicestotheutility,NationalGrid.2.3.5.GreenhydrogenofferslocalindustrydevelopmentopportunitiesOneofthemostcompellingreasonsthatgreenhydrogenhassignificantpotentialasaresource212:Whygreenhydrogen,whynow,andwhydevelopingcountries?indevelopingcountriesisthatnationswithoutaccesstofossilfuelresources—suchasnaturalgas,oil,orcoal—butwithgoodrenewableresourcescoulduselocallyproducedgreenhydrogentodevelopboththeirnationalenergysystemandanindustrialmarketsimultaneously(box2.2).Greenhydrogencouldthusholdoutthepossibilityforsomedevelopingcountriestocreateadomestic,renewablefuelthatcouldcontributetolocaljobcreation(suchasinhydrogeninfrastructure,transport,construction,andagriculture)andnewsocialopportunities(byprovidingaccesstoheat,reducinglocalpollu-tion,enhancingthelivelihoodoflocalcommuni-ties,andaddressingexistinggendergaps).Greenhydrogenalsooffersdevelopingnationstheabilitytoexploitsectorcouplingopportuni-ties,inwhichgreatereconomicefficienciesareachievedbyusingthesameassetsinprocessesthatbelongtodifferentsectors.Forexample,theagriculturalsector,thewatersector,andthepowersectorcouldbeinterconnectedthroughtheuseofwaterandrenewable-generatedelec-tricitytoproducegreenhydrogen,whichcouldinturnbeusedinthesynthesisofammonia.Asthecostofelectrolysiscontinuestodeclineandrenewableenergycostscontinuetofall,itwouldbereasonabletoanticipateinthefutureanincreaseinthevolumeofgreenhydrogenpro-ductionwithinemergingmarkets,aprocessthatcouldtransformdomesticindustriesanddisruptmajorestablishedmarkets.Asnotedpreviously,manydevelopingcountriesdidhistoricallypro-ducetheirownhydrogenandammoniadomes-tically,beforeproductionmovedtolower-costmarketsasglobalpricingbecamelinkedtotheabilitytoaccesscheapdomesticnaturalgasresources.Akeychallengefordevelopingcountrieshasbeenthattheunitsizesthathavebeenorderedforelectrolyzers,fuelcellvehiclefleets,andstationarypowersolutionsinthefirstprojectshavebeensmallerthanindevelopedmarkets(withChinabeinganexception).ThatscaleBALANCINGWINDINTHAILAND:SOUTHEASTASIA’SFIRSTMEGA-WATT-SCALEENERGYSTORAGEPROJECTThailandhasemergedasoneofthemostdynamicmarketsforrenewableenergy,drivenbytherelativelackofdomesticoilandgasresourcesandtherelativeabundanceofwindandsolarre-sources.Nevertheless,likemanycountries,Thailandhasbeenmanagingthechallengesassoci-atedwithbalancingvariablerenewableenergywithinanationalgridsystemthatwasdesignedfordispatchablepowerresources.Whilebatteriesprovidegridoperatorsanddeveloperswithapowerfulresourcetoaddressanumberofthesechallenges,theElectricityGeneratingAuthor-ityofThailand(EGAT)hasalsobeenexploringtherolethathydrogenandfuelcellintegratedsolutionscanplayingridbalancing.In2016theLamTakhongWindHydrogenHybridProjectwasannounced.Theprojectcom-binesa22MWonshorewindsiteinNakhonRatchasimaProvince,Thailand,witha1MWprotonexchangemembrane(PEM)electrolyzeranda300kilowattPEMfuelcell.Theelec-trolyzerconvertsexcesspowerfromthewindsiteduringoff-peakhours,allowingthefuelcelltoprovidecleanpowertoEGAT’sLearningCenterbuilding,asneeded.Intotal,thesystemprovides3megawatt-hoursofcompressedhydrogenstorage(250bar),allowingforupto10hoursofcontinuouspowersupply.ThecostfortheelectrolyzerandfuelcellsystemwasEUR4.3million.BOX2.2GREENHYDROGENINDEVELOPINGCOUNTRIES22leadstohighercostsandputsfurtherpressureonthecommercialappealofthetechnologies.Accordingly,greatercommercialhydrogendeploymentindevelopingcountrieswillrequirebroadstrategicpathwaysandwidepartnershipstoaggregatedemandandjustifyinvestmentsatscale.Initiativesthathavebeguntodeveloptheseelementsareunderway.AnexampleistheAfricanHydrogenPartnership,whichishelpinginvestors,policymakers,andcompaniesviewhydrogenproductionaspartofawiderenergyecosystemthatcanunderpinregionaleconomicdevelopment,regionaltransportation,anddeepereconomicintegration(box2.3).2.3.6.Reliablepowersupplyforcriticalsystems,climateresiliency,andindustryPowersupplyinterruptionsareamajorinhibitorofeconomicgrowthindevelopingcountries.Accordingly,fuelcellsareatechnologythatcouldhelpreducetheriskofpowerlossestocrucialsectors,evenwhenthegridexperiencesdisruption.Fuelcellsystemsareduetosupplyover800telecommunicationsstationsinKenyathroughthelocaltelecomcompanyAdrianKenya,whiletodaytherearealreadyover800fuelcellsystemsprovidingpowertotelecommu-nicationsandothercriticalsystemsinIndonesia(figure2.5).ThenumberoffuelcellsystemsdeployedinChinaandIndiaishardertotrack,butsomemarketparticipantsestimatedittobeinthelowthousandsandgrowing.Suppliersarealsocommentingthatfuelcellsystemsarebeingusedtoprovidepowerforapplicationssuchaswildlifesurveillancesystemstopreventpoach-ingandforpoweringwindmetermeasurementtowersindevelopingcountriesacrossAsiaandAfrica.Somesystemsareevenbeingusedindronestomonitordeforestation.Fuelcellscouldoffersignificantbenefitsfordevelopingcountriesthatareseekingclimate-re-silientenergysolutions,becausetheycanprovidelong-durationpowersupply(insomecasesuptosixmonthswithoutrefuelingifammoniaormethanolisused)aswellasminimalrequiredmaintenanceandlowerriskoftheft.Theseat-tributesareparticularlyrelevantinsettingsthatfacefragility,conflict,andviolence,wherefuelcellscouldaddresssomeoftheimpactsderivedfromthefragilityofthesituation.IntheaftermathFIGURE2.5FuelcellsforcriticalinfrastructureinIndonesia©CascadiantIndonesia.232:Whygreenhydrogen,whynow,andwhydevelopingcountries?ASTRATEGICVISIONFORAFRICA’SHYDROGENECONOMYEnsuringthatAfricaisabletoobtainaffordable,reliable,andcleanenergyresourcesisessen-tialnotonlytothecontinent’seconomicdevelopmentbutalsototheworld’sabilitytostayunderthe1.5degreesincreasethresholdsetbytheIPCC.Energyaccessremainsapressingconcernforpolicymakers,businesses,andcommunities,whileevenconsumerswithaccesstoelectricitycanstillsufferfromfrequentblackouts.EnergyisalsoexpensiveformanyAfricanconsumers,whomayhaveaheavyrelianceonimportedpetroleumevenincountriesthatmightbenetexportersofcrudeoilproducts.Giventhesechallenges,theAfricanHydrogenPartnership(AHP)believesthathydrogenmightbethekeytoaddresssomeofAfrica’senergyproblems..Workinginpartnershipwithgovernments,privatesectorcompanies,andfinancialinstitutions,theAHPhasdraftedaseriesofhigh-levelstra-tegicdocumentstohelppolicymakersandinvestorsvisualizeanAfrica-widehydrogenstrategy.Thecorechallengeisachievingsignificantscaleassoonaspossible.Accordingly,theAHPrecom-mendsastrategyofestablishing“landingzones/bridgeheads,”whereinitialgreenhydrogenproj-ectscouldbedevelopedbeforeexpandingintootherclusters(figureB2.3.1).ThefirstninemarketsincludeDjibouti,theArabRepublicofEgypt,Ethiopia,Ghana,Kenya,Morocco,Nigeria,SouthAfrica,andTanzania.Specificplansaresetforeachcityandusecasesforeachmarket,mostno-tablythecoordinatedprocurementoffuelcellbusesacrossseveralcitiestoreducecosts.Tofinancethisvision,theAHPisproposingagreenbondsprogramforAfricaandisworkingalongsidestockexchangesinAfricaandEuropetodesignaframeworkforinvestorsandgaugeinitialappetite.WhiletheAHPinitiativemightappearabstract,evidencefromothermarketshasshownthatdevelopingstrategicconceptsisessentialtohelpingpolicymakers,investors,andconsumersunderstandtherolethathydrogenmightplay.FigureB2.3.1.AfricanHydrogenPartnershiplandingzonesandoperationalplanningoutlineSource:AfricanHydrogenPartnership2019.BOX2.3TransAfrican-Highways&Cities•Cities—AligierstoLagos—CairotoDakar—CairotoMogadishu—DakartoDjibouti—DakartoLagos—LagostoMombasa—LagostoLuanda—BeiratoLuanda—CapeTowntoDjibouti—GaboronetoLüderitz—DurbantoDaresSalaam—MombasatoDaresSalaamPipelines,existing&future(newusage)tHubs—Gasexisting(Hydrogen)----Gasfuture(Hydrogen)—Oilexisting(LOHC)----Oilfuture—Productsexisting(ammonia,LOHC/MCH)----Productsfuture(ammonia,LOHC/MCH)Railways,past&existing—RailwaysGREENHYDROGENINDEVELOPINGCOUNTRIES24ofHurricaneKatrina,theU.S.DOEnotedthatfuelcellshadplayedanessentialroleinensuringbackuppowerprovisionforcriticalcommunica-tionsequipmentandsubstationfunctions.Indeed,in2012fuelcellswerecreditedwithkeepingtheemergency911servicefunctionalinBarbadosafterHurricaneSandy(RenewableEnergyFocus2012).Fuelcellsystemshavealsobeendeployedformonitoringearthquaketremorsandforensur-ingthatmedicalsupplies—critically,thosethatrequirecooling—haveaccesstoreliablepower.Similarly,GenCell(aleadingprovideroffuelcellsforresiliencyapplications)recentlyannounceditsentryintothePhilippinemarketwithaspecificfocusonensuringbusinesscontinuityandsupportforcriticalinfrastructureduringseverestormsandearthquakes(GenCell2019).Whilelarge-scalestationaryfuelcellsmaytakelongertoarriveinemergingmarkets,severalnotableexampleshavealreadybeendeployed.BloomEnergyhassolditsfirstunitsinIndia(fig-ure2.6),whileHDFEnergyhasinstalleda1MWunitinMartinique(France).Hybridrenewableminigridsindevelopedcountriesincludehy-drogenandotherstoragetechnologiesandmayprovideamodelfordevelopingcountriesinthefuture.NotableamongthesearetheRaglanMineprojectinCanada,theCerroPabellónminigridinChile,andtheDaintreehydrogenmicrogridinAustralia(Maisch2019).2.3.7.UrbanmobilitysolutionstoreduceairpollutionHydrogenformobilityisagrowingareaoffocusforcountries.TheIEA’slatestresearchillustratesthatonly2countriesintheworldhavepoliciestoincentivizehydrogeninindustry,but5havepol-iciestopromotefuelcelltrucks,10havepoliciesforfuelcellbusesandrefuelingstations,and15havepoliciestoencouragehydrogeninpassengervehicles(IEA2019b).Indeed,forurbanmobilityapplicationsfuelcellbusesprovideacomple-mentarysolutionforurbanplannersseekingtoreducelocalizedairpollutionandalsotointegratebattery-electricsolutionsintoacongestedgrid.Hydrogenformobilityhaslongbeenofinteresttodevelopingcountrieswithbusprograms;itwasconsideredinBrazilin2012,whileNewDelhihadafleetoffuelcellrickshawsdevelopedaround2012(Yee2012).Between2008and2012,theFIGURE2.6CommercialfuelcellinstallationinIndia©BloomEnergy.252:Whygreenhydrogen,whynow,andwhydevelopingcountries?UnitedNationsDevelopmentProgrammewasinvolvedinaseriesofactivitiestobringhydrogenmobilitysolutionstoTurkey,whichwasfollowedbya$10milliongranttotheprograminChinain2017toadvisethelocalgovernmentofRugao.Today,fivedevelopingcountrieshaveeitherorderedordeployedfuelcellmobilitysolutions,includingIndonesia,China,CostaRica,India(box2.4),andMalaysia.Thedevelopmentfinancecom-munityhasalsosupportedsomeoftheseefforts.Forexample,theInteramericanDevelopmentBankprovidedfinancialsupporttothefuelcellmobilityproviderAdAstratosupportalocalfuelcellbusandhydrogenrefuelingstationprojectinCostaRica,whiletheAsianDevelopmentBankinvestedin10fuelcellelectricbusesforthe2022BeijingWinterOlympics.2.4.SHORT-TERM,MEDIUM-TERM,ANDLONG-TERMOPPORTUNITIESFORGREENHYDROGENAwidearrayofcompellingreasonsexplainwhygreenhydrogenproductionandfuelcelltechnologiesmaybecomecommerciallyandtechnicallyappealingtodevelopingcountriesinthenearfuture.Butdespitethesignificantpotentialforgreenhydrogendeploymentsindevelopingcountriesoverthemediumandlongterm,intheshorttermobserversanticipatethatthedeploymentofelectrolyzersandlarge-scaleproductionofgreenammoniacouldbeslow,particularlyincountrieswithaccesstolow-costnaturalgas.Thissituationislargelyduetothelowcostofhydrogenderivedfromnaturalgasandtotheexpectationthatcompanieswillfocusonlower-hangingopportunitieselsewhereintheenergysectorofdevelopedmarketsandwillwaitforgreenhydrogenpricestofallfurtherbeforeexpandingintodevelopingcountries.Yet,devel-opingcountriesmaystartdeployinggreenhydro-gensystemsearlyiftheyhaveexcellentrenew-ableresources,uniqueenergyrequirements,orahighlevelofsynergybetweenthedevelopmentofgreenhydrogenforindustry,mobility,power,andheat.Theseearlydeploymentsorfirst-of-a-kindprojectsmaybeconsideredinregionswithexceptionallygoodrenewableresourcesandwherethelackofpreexistinginfrastructurecreatesaclearincentivetoengagepolicymakersandinvestorssoonerratherthanlatertoavoidFUELCELLBUSESININDIAIndiahasbeencloselymonitoringhydrogenasadomesticalternativetolithiumionbattery–basedsystemsformobility.Giventheabundanceofdomesticbiowastethatcanbeconvertedintobiomethane(andreformedforhydrogen),coupledwithsignificantlocalairqualitychal-lengesandthedesiretopromotelocalmanufacturing,hydrogenhasbecomealogicalrouteforpolicymakerstoexplore.OneofthemostprominentactorsinthismovetowardhydrogenformobilityinIndiaistheIndianOilCompany(IOC),whichhasalreadytrialedTatabusesusingBallardfuelcellsonitsR&DCampus.RecentlyIOChasalsosubmittedabidtoprovidehydro-genandtodevelopfourIndian-manufacturedfuelcellbusesforoperationinDelhi,followingatenderbytheMinistryofNewandRenewableEnergy(Gupta2019).Indiaisexploringblendinghydrogenintoexistingbusesthatalreadyrunoncompressednaturalgas(CNG),withapilotcommissionedinDelhitorunupto50busesonan18percenthydro-gen/22percentCNGblend.IOCestimatesthiscouldcutcarbondioxideemissionsfromtheseCNGbusesbyupto70percent(Gupta.2019).BOX2.4GREENHYDROGENINDEVELOPINGCOUNTRIES26technologylock-intohigh-carbon-emittingen-ergyalternatives.Similarly,fuelcelldeploymentsarelikelytoac-celerateindevelopingcountries,asthesystemscontinuetodeclineincostandprovideanum-berofkeybenefitstoconsumerswhofaceanarrayofenergychallenges,suchasreliabilityofsupply,localairqualityissues,highcostofdieselorotherfossilfuels,andtheneedforlong-dura-tionpowersupply.Italsoremainslikelythatfuelcellmobilitysolutionswillcontinuetointerestdevelopingcountries.273:stateoftheMarket3:STATEOFTHEMARKETKEYTAKEAWAYSnnIn2019,theglobalhydrogenmarketwasworth$135billion,withover70milliontonnesproducedthatyearand10milliontonnesofthedemandcomingfromChina.nnGlobalelectrolyzermanufacturingcapacityiscurrentlyabove2GWperannum,anditisforecasttoexceed4.5GWonthebasisofcurrentexpansioncommitments.nnGlobalfuelcellmanufacturingcapacityiscurrentlyabout1.5GWperannum.Fuelcelldemandhasgrowndramatically,to1.6GWstationaryinstalledcapacityandover300,000unitsdeployed,mostofwhicharebasedonprotonexchangemembrane(PEM)systems.nnSimilartodevelopmentofthelithium-ionbatterymarket,PEMfuelcellmanufacturingcapacityandcostdeclinesarebeingdrivenbythetransportsector.However,themarketfocusforfuelcellintransportismov-ingtowardlargeruses—trucks,buses,trains,andships—ratherthanlight-dutycars.nnInsomecontextsandgeographiestheproductionofgreenhydrogencouldalreadybecostcompetivewithfossilalternatives.nnIfhydrogendemandweretoscaleatthepaceanticipatedbyanalysts,thelikelyconsequencewouldbetohaveashort-termincreaseincoalandnaturalgasdemandforhydrogenproduction.nnInthemediumtolongterm,demandforfossilfuel–producedhydrogenwilldependonwhetherexpectedelectrolysisandrenewablepowercostdeclinesarerealized.nnKeyfactorsthatwilldrivegreenhydrogenpricesarethequalityoftherenewableresource,renewableandelectrolyzercapitalexpenditures,andloadfactorsthatextendabove3,500hoursperannum.nnFuelcelltechnologiescomewithdifferentcosts,efficiencies,operatingtemperatures,andlifetimes.Therefore,capitalexendituresalonewillnotalwaysbethekeydriveroftechnologychoice.GREENHYDROGENINDEVELOPINGCOUNTRIES283.1.HOWFUELCELLANDELECTROLYZERTECHNOLOGIESWORK3.1.1.FuelcellsFuelcellsareenergyconversiondevicesthatcombinehydrogenwithoxygentoproducewaterandenergy(electricityandheat).Insidethefuelcell,hydrogenispassedthroughtheanode,wherehydrogenisoxidizedproducinghydrogenionsandelectronsthatmovetothecathodethroughanelectriccircuit.Anelectro-lytesolutionallowshydrogenionstomovefromtheanodetothecathode,wheretheyreactwithoxygenandelectronsfromtheanode,producingwater(figure3.1).Thefirstfuelcellwasinventedin1831intheUnitedKingdom,andfuelcellsystemsweredeployedinseveraloftheearlyNASAspaceprogramsinthe1950sand1960s—notably,intheGeminimissions.Theearliestandmostes-tablishedfuelcellsolutionsareprotonexchangemembrane(PEM)fuelcellsandalkalinefuelcells(AFC).Twocorecomponentsofafuelcellarethemembraneelectrodeassembly(MEA)andtheplatesthatareusedtoenclosethem,whichtypicallyareeithersteelorceramic.TheMEAiswheremostcompaniesholdtheirintellectualproperty,anditremainsthemostcomplexpartoftheunit.Afuelcellsystemcanusemultipletypesofelectrolytestofacilitateachemicalre-action,andindividualfuelcelltechnologiesgaintheirnamesfromthetypesofelectrolytesused.Fuelcellscanbeusedforawiderangeofap-plications,includingstationarypower,portablepower,andmobility.Theyarecommerciallydeployedinarangeofgeographiesandappli-cations,withacurrentscalerangeofseveralwattsupto50MW(underconsideration).Todaytherearefivecorefuelcelltechnologiesthatarecommerciallyavailable.ThesearePEM,AFC,moltencarbonatefuelcells(MCFCs),solidoxidefuelcells(SOFCs),andphosphoricacidfuelcells(PAFCs).Inthestationarypowermarket,unitsabove1MWaretypicallyPAFCorMCFC,whileunitsbetween100kWand1MWaretypicallySOFCorPAFC.Thetwokeydifferencesbetweentheprimaryfuelcelltechnologiesaretheirinputfuel(s)andtheiroperatingtemperatures.Typically,PEMandAFCsolutionsoperateunder100oC,thuslimitingtheirusageforcombinedheatandpower(CHP)services,butotherfuelcellscanoperatebetween500oCand650oC.High-temperaturefuelcellsystemstypicallyhavehigherelectrical(andthermal)efficienciesandrunalmostcontinuously,makingthembettersuitedforbaseloadpowerprovisionandwellsuitedforCHPapplications.Bycontrast,PEMandAFCcanprovidemoreadaptivepowerprovision,makingthemsuitableforbalancingapplications.Formobilityapplications,onlyPEMfuelcellshavebeenusedcommercially,withSOFCconsideredthusfaronlyasapoten-tialsourceofauxiliarypowerforlargermobilityapplications.OXYGENELECTROLYTESOLUTIONFLOWAREACATHODEANODEOXYGENHYDROGENFLOWAREAELECTRICITYWATERandHEATe–e–H+e–e–e–e–LOADFIGURE3.1SimplediagramofaprotonexchangemembranefuelcellSource:ESMAP,adaptedfromvarioussources.293:stateoftheMarketFourprimaryfuelsourcesareusedinfuelcells:hydrogen,ammonia,methanol,andnaturalgas(andbiogas).18Allfuelcellsultimatelyconsumehydrogen,butmostapplications(exceptforPEM)extracttheirhydrogenfromanotherfeedstockfirst.Thisisimportantbecausetheextractionprocessoftenreducestheoverallsystemeffi-ciencybelowthefuelcellsystem’squotedelec-tricalefficiency,leadingtoatrade-offbetweenefficiencyandconvenienceinthefuelsourcechosen.TodayalmostallSOFC,MCFC,andPAFCunitsrunonnaturalgas,withsomealsoconsum-ingbiogas.PEMfuelcellscanonlyrunonhydrogen,butmanysystemshavebeenadaptedtouseotherhydrogen-derivedfuels,suchasmethanolandammonia.Thisallowstheoperatortostoreandtransportthefuel(methanolorammonia)easilyandatlowercostthanhydrogen.Thesesolutions,however,appeartohaveshorterlifetimesandhigherupfrontcapitalexpenditures(capex)thanotherPEMsolutionsthatdirectlyusehydrogenoralternativefuelcelltechnologies.3.1.2.Greenhydrogengeneration—electrolyzersTheelectrolysisprocessuseswaterandelec-tricitytoproducehydrogenandoxygen.Itdoessobyusingadevicecalledanelectrolyzer,inwhichamoleculeofwaterissplitintooxygenandhydrogenusinganelectriccurrent.Thispro-cessistheonlycommerciallyproventechnologythathasbeendeployedwidelyandthatcanproducegreenhydrogen—hydrogenproducedentirelyfromrenewableenergysources.19Electrolyzersperformessentiallytheoppositechemicalreactionofthatofafuelcell.Anelectrolyzertakeselectricalpowerandwater18Somefuelcellscanalsorunonotherhydrocarbons;however,becausethesearenotcreatedasderivativesfromtheSMRhydrogenproduc-tionprocess,theyareoutsidethescopeforthisreport.19Therearepreliminarypilotprojectsunderwaythatseektocreatehydrogenfromwasteandthatcouldtheoreticallybeconsideredasgreenhydrogengenerationsources.However,theyarenotconsideredsignificantinthebroaderliteratureonthesectoratthistime.andthenusesanelectrolyteandamembranetofacilitatetheseparationofhydrogenmolecules(generatedinthecathode)fromoxygenmole-cules(generatedintheanode).Atypicalelectro-lyzerconsistsof100platecellsthataregroupedtogethertoformastack,whichalsoincludestheanodeandcathode.Thesestacksareaddedtogethertoreachtherequirednameplatecapac-ityfortheunitandarethenaddedtoasystemthatadjuststheheat,moisture,andpressureofthehydrogentosuitthespecificapplication.Becausethestackscanbemountedinparallelusingthesamebalanceofplantinfrastructure,costsdeclinequicklywithscale,thusmakingelectrolyzershighlymodularsystems(IEA2015,29)(figure3.2).Othermechanismstoproducehydrogen—nota-blythroughsteammethanereforming(SMR)orcoalgasification—arenotcoveredinthisreport.Thisisprimarilybecausethosetechnologiescreatewhatiscalledgrayhydrogen,whichhassignificantcarbonemissionsassociatedwithit.Althoughathirdtypeofhydrogencalledbluehydrogenexists,itisessentiallythesamepro-ductionprocessasgrayhydrogen,butitreliesoncarboncaptureanduse(CCU)orcarboncaptureandstorage(CCS)sotheproductionprocesscouldbeconsideredcarbonneutral.Thepoten-tialapplicationsforbluehydrogenindevelopingcountriesarenotcoveredinthisreportbutre-mainasignificantareaofinterestfordevelopedandsomedevelopingcountries,particularlythosewithaccesstonaturalgasresources.Themostestablishedelectrolyzertechnologyisthealkalineelectrolyzer,whichhasexistedcommerciallysincethe1940s.Despiteitslongexistence,thetechnologyhasexperiencedasharpcostdeclinecurveinrecenttimesassys-temefficiencieshaveimprovedandinterestinGREENHYDROGENINDEVELOPINGCOUNTRIES30hydrogenfromelectrolysishasgrown,increasingorders.Nonetheless,thefastest-growingelectro-lyzertechnologyisbasedonPEMelectrolysis,whichisconsideredtobemoredynamicandresponsivetochangingpowerinputrequire-mentsthanalkalineunitsare.WhilethelargestcurrentlydeployedPEMunitisa6MWunitinAustria,unitsfor20MWhavealreadybeenorderedinGermanyandCanada,withfeasibil-itystudiesandconceptdesignsunderwaytoexaminethedeploymentofa250MWunitintheNetherlandsandaprojectofupto12GWinnorthernAustralia.Typically,PEMunitshavebeensmall,andtheinteresthaslargelyfocusedaroundtheirroleaseitheramechanismtoab-sorbconstrainedpowerinanareawithsignifi-cantrenewableresourcesoraformofdistributedgenerationforhydrogenrefuelingstations.ThispicturemaychangeinthefutureifPEMunitscanreachlowercapexcoststhanalkalineelec-trolyzersasthemarketexpands.Twoadditionalelectrolyzertechnologieshavebecomecommerciallyavailableinthepasttwoyears—namely,anionexchangemembrane(AEM)technologyandsolidoxideelectrolysis(SOE).AEMtechnologyisseenasapotentialbreakthrough,givenitsabilitytoachievealkalineelectrolysis–levelefficiencieswiththeflexibilityofPEMandwiththeuseofplatinum,akeycompo-nentinmostPEMdesigns.Yet,fewunitshavebeendeployedandtodayonlytwocompaniesofferthisproduct.Meanwhile,SOE,ahigh‑temperatureelectrolysistechnology,hasdisplayedthehighesttheoreticalefficiencyacrosselectrolysistechnolo-giesandisbeingcloselystudiedbylargeindustrialconsumers.SOE,however,stillremainsavery-ear-ly-stageemergingtechnology,withatotalinstalledcapacitybelow300kWgloballyasofSeptember2019;thebulkofthesedeploymentsareattwopi-lotsitesoperatedbySunfireGmbHwithGermanandEUgrantfunding.Last,severalcompanieshaveadvocatedfortech-nologiesthatreformorextracthydrogenfromwaste.Althoughsuchtechnologiesholdoutanattractiveoptionformunicipalauthoritiesseek-ingtoreducewasteandprovidelow-costfuelforpublictransit,noneofthesetechnologieshavebeendeployedoutsideoftestingenvironments.CATHODEMEMBRANEPEMELECTROLYZERPOWERSUPPLYANODEANODEREACTIONCATHODEREACTIONOXYGENHYDROGEN–+–+CATHODEDIAPHRAGMALKALINEELECTROLYZERPOWERSUPPLYANODEANODEREACTIONCATHODEREACTIONOXYGENHYDROGEN–+–+OHFIGURE3.2SimplifieddiagramsofaPEMandalkalineelectrolyzerSource:ESMAP,adaptedfromvarioussources.Note:OH=hydroxideions;PEM=protonexchangemembrane.313:stateoftheMarket3.2.MARKETSIZE3.2.1.HydrogenandelectrolyzersTheglobalhydrogenmarketisvaluedatover$135.5billion,withanestimatedCAGRof8percentuntil2023(MarketsandMarkets2018).Whileexactfiguresforthevolumeofhydrogenproducedvary,theliteraturesuggests55milliontonnesupto70milliontonnes(IEA2019b)ofhydrogenareproducedannually.20Aspreviouslyillustratedinfigure1.1,around96percentofglobalhydrogenproductioncomesfromfossilfuelsources,with48percentfromnaturalgasviaSMRand48percentfromeithercoalgasificationorotherchemicalprocesses(suchaschlorineproduction).Only4percentcomesfromelectrol-ysis.21Giventhewiderangeofpotentialapplica-tions,determinationofthepotentialmarketsizeforhydrogenisextremelycontentious.Assessingthismyriadofusecases,McKinsey&CompanyinareportfortheHydrogenCouncil(2018)deter-minedthatthefuturehydrogenenergymarketcouldamounttoupto$2.5trillionayearby20TheIEA(Philibert2017)quoted60milliontonnesin2017.DNVGL’spaperfortheNorwegiangovernment(2019)quoted55milliontonnes,asdidSiemens(2019),theHydrogenCouncil(2020),andIRENA(2019).Inits2019report,WECNetherlandscited45milliontonnes–50milliontonnesusing2010data.21HydrogenCouncil2020,citingIEA2017;Ajayi-Oyakhire2012,citingOgden2004;IRENA2018,13;Siemens2019,slide8;andIEA2015,10.2050.Itisworthnotingthoughthatotheranalystshavecomeupwithsignificantlysmallerfigures.FourofthemostoftencitedgrowthscenariosforthehydrogensectorarefromtheHydrogenCouncil(2017),AcilAllen(2018),IRENA(2018),andShell’sSkyScenario(2018).Althoughthestudiesdonotcomparelikeforlike,theydoillustratethescaleofhydrogenasapotentialfuelsource.GiventhatintheirmodelingAcilAllen,IRENA,andShelldonotappeartoaccountfornonenergyusesofhydrogen(suchasammoniaproductionanduseasaprocessagentinrefining),anassumptionforthevalueoftheglobalhydro-genmarketforchemicalandprocessapplicationsmustalsobemadetoarriveataglobalhydrogenmarketdemandin2050.Consumptionofhy-drogenforenergyandmobilityisassumedtobebelow1percentoftotaldemand,soabout99percentofhydrogendemandtodayisforchemi-calandindustrialprocessapplications.Thisfigurecanthenbesubtractedfromtheseestimatestoproduceanestimateofglobalhydrogendemandforenergyapplications(seefigure3.3).050100150200250204020302025Mrktsi,milliontonsofH₂prnnumMcKins/HdronCouncil(2017)ShllSkScnrio(2018)AcilAlln(2018)Totlhdrondmndfromindustrndnr(HdronCouncil2017)2.81.48.93.08.520.119.634.8109.0FIGURE3.3ProjectionsandroadmapsforglobalhydrogendemandintheenergysectorGREENHYDROGENINDEVELOPINGCOUNTRIES32Despiteawidevariationinestimatedannualhy-drogendemandfromtheenergysector,itisclearthatthedemandforhydrogeninindustrialappli-cationswillremainsignificantlylargerthanthemarketforhydrogenintheelectricpowersector.Thisobservationnotonlyillustrateshowquicklythemarketcouldabsorbadditionalhydrogendemand,butitalsoillustratesthepotentialscaleofinvestmentforgreenhydrogentodecarbonizeexistinghydrogendemand.(Seefigure3.4foranexampleofarenewablepowertogasinvestment.)Noneofthesescenariosprovideanexplicitsplitbetweenwhatwouldbegreenhydrogen,grayhydrogen,andbluehydrogenateachmilestone,soitismoredifficulttoprovideanindicationofhowlargethemarketforgreenhydrogencouldbe.However,currentestimatessuggestthatbe-tween0.7milliontonnesand2.8milliontonnesofhydrogencomefromelectrolysistoday.Theobviousquestionsraisedbythegrowinginterestinthepotentialuseofhydrogenarewherethehydrogenwillcomefromandwhetherelectrolysiscompanieswillbeabletomeetthescaleofdemandatacost-competitivelevel.Answeringthesequestionsrequiresobtainingcleardataonthecurrentsizeofthemarketto-day,whichisverychallenging.Forpureelectrolysissolutions,currentresearchestimatesthatglobalelectrolyzersalesin2017reached100MWfortheyear(DOE2018),with2018salesestimatedat$286millionforwa-ter-basedelectrolyzersandgrowthforecastataCAGRof5.67percentduring2019–25(GIlResearch2019).Themostrecentpubliclyavailableestimateforwater-basedelectrolysisdeploymentsgloballyisfromtheIEA(2019b),whichestimatesthattheglobalinstalled-waterelectrolysiscapacitytodayisover100MWelectrical,whilecurrentor-dersforwaterelectrolysis(alkalineandPEM)willseetheinstalledcapacityreach285MWbytheendof2020.Bygeography,Asiaappearstobetheworld’slargestmarketforelectrolyzers,withChinaassumedtohaveamarketshareofabout47per-cent(MarketWatch2019).ItisworthnotingthatChina’sannualelectrolyzerdemandhasgrownfromroughly160unitsin2013to2,014unitsby2017,althoughnoinformationisavailableonwhethertheaveragesizeofunitshaschanged(GII2018).Ifchlor-alkalielectrolysisplantsareincluded,thencertainsourcesindicateglobalFIGURE3.4Powertogas,windtohydrogeninGermany©EnergieparkMainz,Siemens.333:stateoftheMarketinstalledelectrolysiscapacitycouldbebetween1.5and3.0GW.22Otherhigher-endestimatesbyBNEFhavesuggestedthatglobalinstalledcapacitycouldbeashighas20GWofelectrolysis,butwithonly2GWinstalledsince2000(BNEF2019).Publicsourcesestimatethat4percentofglobalhydrogenproductioncomesfromelectrolysis,sogreenhydrogenwillhavetoscaleupsignificantlyorCCUtechnologywillhavetogrowrapidly,orboth,toensurethatemissionsfromhydrogenproductionarereduced.Toputthischallengeincontext,ifthemarketdemandforhydrogenin2018stoodat55milliontonnesuntil2050andcurrentproductionfromelectrolysiswas2.2mil-liontonnesin2018,thentheelectrolysismarketwouldhavetogrowby11percentannuallytoachieve100percenthydrogengenerationfromelectrolysisby2050.Thus,giventhesignificantscale-upofgreenhydrogenrequiredtodecar-bonizeexistinghydrogendemand,anumberofanalystshavebecomeconcernedthatthedevel-opmentofahydrogenmarketmayperpetuatetheuseofnaturalgasreformingorcoalgasification,albeitcombinedwithCCU.TheIEA,forexam-ple,notesthatlessthan0.4milliontonnesofhydrogenisproducedwithCCUandlessthan0.1milliontonnesfromrenewables,amountsthatillustratethescaleofthechallengetosimply22ThisestimateisinformedbydatafromanH21(2018)study,whichclaimsthatabout5.5–7.0GWofhydrogenproductioncapacityisinstalledperyearoverthelast40–50years.Thisamountwouldaverageto137MWperannumofhydrogenelectrolyzers.Ifthemaximumelectrolyzerlifetimeisassumedtobe20years,thetheoreticalceilingofglobalinstalledcapacityisthusimpliedtobeaspreadofbetween1.5GWand3.0GW(H212018).However,theH21studyalsoincludeschlor-alkaliandsodium/chlorateunits,whichhavelongerlife-times.Nouryon,forexample,alreadyhasa1GWelectrolysisportfolio.decarbonizetheexistinghydrogenmarketintheindustrialsector(IEA2019a).Today,exactglobalelectrolyzermanufacturingcapacityfiguresarechallengingtoobtain.Inearly2019Nel,amarketleaderintheelec-trolysismarket,claimedthattheglobalmarketmanufacturingcapacitywasaround90MWperannum(Nel2018b).Yet,thisfiguredidnotappeartoreflecttheconsiderablemanufacturingcapacityofelectrolyzercompaniesinChinaandtheexistingcapacityinEurope.Accordingly,ESMAPanalysissuggeststhatcurrentmarketca-pacityacrossalkalineandPEMisabove2.1GWperannumandisscalingfast(table3.1).Thesefiguresaresubjecttoanumberofassump-tions,butwhatisclearisthattheglobalmarketisscalingrapidly.TwoexamplesofelectrolyzermanufacturingareNel,whichhascommittedtoincreasingitscurrentmanufacturingcapacity10-foldto360MW(witha1GWsiteidentifiedinAugust2019),andITMPower,whichalsohaspubliclycommittedtoa10-foldincreaseinitsmanufacturingwarehousespace(figure3.5).Thyssenkruppalsohaspubliclyacknowledgedithas1GWofalkalineelectrolysiscapacity,whileJohnCockerillalsohasconfirmeditscapacityincreasedto350MWasofQ42019.TABLE3.1Estimatedglobalmanufacturingcapacityforelectrolyzers(PEMandalkaline),2019TECHNOLOGYCURRENTMANUFACTURINGCAPACITY(MWPERANNUM)FUTURECOMMITTEDMANUFACTURINGCAPACITY,ESTIMATEDDELIVERY2025ANDAFTER(MWPERANNUM)PEMelectrolysis>300MW>1,500MWAlkalineelectrolysis>1,800MW>3,000MWSource:ESMAPresearchandcorrespondencewithsuppliers.Note:MW=megawatt;PEM=protonexchangemembrane.GREENHYDROGENINDEVELOPINGCOUNTRIES34Despitethisgrowth,researchconductedforthisreportindicatesthatundercurrentpracticeasignificantscale-upofhydrogendemandglob-allyisstilllikelytoincreaseshort-termdemandforfossilfuel–basedhydrogenproduction,thoughthemedium-tolong-termoutlookwillbedeterminedbythepaceofgrowth,greenhy-drogenscale-upandthedynamicsofhydrogenproductionpricingacrosstheavailabletechnol-ogies.Eventakingalongertimehorizon,currentevidencesuggeststhattoachievetheHydrogenCouncil’svisionofhydrogendemandreaching18percentoffinalenergydemandby2050whileminimizingthecarbonfootprintofhydro-genproduction,significantscale-upofgreenhydrogenwillneedtooccur.23Theimplicationtopolicymakersconsideringhydrogenapplica-tions,especiallyindevelopingcountries,isthatitisessentialtodevelopaclearroadmapforhowthehydrogencanbesourcedinaclimate-sus-tainablemannertoensurethatzero-emissionsourcesofhydrogenproductionarescaledup.23Thisfigureassumesthatby2050hydrogenwillprovide550terawatt-hoursofseasonalpowerstorage,fueling400millionlight-dutyvehi-cles,15millionto20milliontrucks,and5millionbuses(HydrogenCouncil2017).3.2.2.FuelcellsSourcescompliedbyESMAPsuggestthattheglobalfuelcellmarketexceeds$2billionperannumandthatmorethan2GWoffuelcellsystemshavebeenshippedsince2000.Toplacethispaceofdeploymentincontext,notethatthegrowthrateofvarioustechnologiesinthefiveyearsaftertheyreached100MWinstalledorshippedperannumindicatesthatfuelcells(portable,stationary,andmobilityapplications)havescaledfasterthansolarPVandonshorewind(figure3.6).Thebigdriversofthischangehavebeentherapidimprovementsinthecostoffuelcellunits,combinedwithimprovementsinefficienciesandintheoperationallifetimesoffuelcellstacks(figure3.7).Forexample,thepreviousSOFClifetimerecordwasunder20,000hoursin2005.Today,BloomEnergy,whichproducesSOFCtechnology,estimatesthatitssystemscanoperatefor40,000hoursbeforethestacksmayneedFIGURE3.5ElectrolyzergigafactoryunderconstructioninSheffield,UnitedKingdom©ITMPowerLtd.353:stateoftheMarketreplacement.Meanwhile,Ballard,whichspecial-izesinPEMfuelcells,hasprovidedawarrantythatitslateststationaryfuelcellsystemswillperformforover34,000hours,whileDoosanfuelcellshavereportedover70,000hoursofoperationallifetimefortheirPAFCunits.Increasingsystemefficienciesalsohasplayedanimportantroleinimprovingtheeconomicsoffuelcellapplications.Theseefficienciesincludenotonlygeneralimprovementstothechemistrybutalsocommercialinnovationssuchasadapt-ingunitstoprovideCHPsolutionsinstation-arycontextsandrecyclingheatinvehiclestoimproveefficiency.Theseincrementalgainsinefficiencyandrapidlydecliningcosts(figures3.7and3.11)havethere-foreledsomeindustryanalyststoaskwhetherthemarkethassufficientmanufacturingcapacitytomeettherapidincreasesindemand.Thisisanimportantbutcomplexquestion.Findingpubliclyavailablesourcesforglobalfuelcellmanufacturingcapacityisextremelychalleng-ing,especiallybecausemanycompaniesareprivatelyheldandfewpublicmarketreportspro-videgranularinformation.Notwithstandingthesechallenges,byusingpubliclyavailablesourcesandmakingreasonableassumptions,onecanestablisha“baseline”productioncapacity.AnalysisconductedforthisreportsuggeststhatsignificantcapacityforPEMfuelcellmanufactur-ingalreadyexistsandthatplansareinplaceforasignificantexpansion.Otherfuelcelltechnol-ogiesseemtobeconsiderablymoreconstrained(table3.2),andthatsituationmayleadtosupplyissuesifthesetechnologiesexperienceashort-termsurgeindemand.TheabilitytoprovidePEMfuelcellsolutionstothemobilitysectorisakeydriverofscalingcapabilitiesand,inturn,willlikelydrivecostsdownandincreaseuptake,despitethepotential05001,0001,5002,0002,500Yr8Yr7Yr6Yr5Yr4Yr3Yr2Yr1InstlldcpcitMWWindSolrPVFulclls(ll)2101731651,9301,7462,228Sources:U.S.DepartmentofEnergymarketanalysisreports,https://www.energy.gov/eere/fuelcells/market-analysis-reports;E4tech,“FuelCellIndustryReview,”variousyears;andKlippenstein2017,compiledbyESMAP.Note:MW=megawatt;PV=photovoltaic.FIGURE3.6Technologydeploymentcurvesforfuelcellsversuswind,andsolarphotovoltaicGREENHYDROGENINDEVELOPINGCOUNTRIES36forotherfuelcelltechnologiestoprovidesolu-tionswithhigherefficienciesandlongerstacklifetimes.Further,becausetheMCFC,SOFC,andPAFCmarketsaredominatedbyoneortwocompanies,thesuccessoftheseapplicationswilllikelybefarmorecloselytiedtothecompanies’owndecisionsthantothefateofthebroaderfuelcellindustry.ThismaycreateanotherdriverforconsumerstofocusonPEMtechnology,wheretheyaremorelikelytobeabletofindalternativesuppliers.3.3.COSTS3.1.1.HydrogenandelectrolyzersTheactualcostofhydrogenproductionandthepricepaidbymostendconsumersaredifficulttodeterminebecauseofthelackofpubliclyavailabledata.Reportsfrequentlystatethathydrogenfromelectrolysisismoreexpensivethanfromsteammethanereformationandfromcoalgasification.Yetthatobservationisfartoosimplistic.AsnotedbytheEU’sFuelCellsandHydrogenJointUndertaking(FCHJUinFraileandothers2015),hydrogenpricescanvaryfromEUR1.5perkgtoEUR60perkgintheEUmar-ket,arangethatremainstruetoday,accordingtoESMAP’sdiscussionswithcurrentmarketpar-ticipants.ThisrangeisalsonotedinotherlargehydrogenmarketsoutsidetheEU.Themostcommonlyquotedfigureforhydrogenpricingisderivedfromsteammethanereform-ingtechnologies,whichcanproducehydrogenfromnaturalgasataround$1.00–$1.50perkg.Butthispriceistypicallylinkedtolarge-scaleSMRunits,withaccesstolow-costnaturalgassuchasthoseintheUnitedStatesandNorthernEurope.Further,thesecostsoftenrefertoalreadyexistingassetsanddonotreflecttheDMFCMCFCPEMFCSOFCAFC0%10%20%30%40%50%60%70%20052019Sources:IEA,OECD2005anddatafrommultiplesourcescompiledbyESMAP.FIGURE3.7Averagefuelcellelectricalefficienciesbetween2005and2019373:stateoftheMarketcostsofcapitalexpenditureintheirpricing.Asshownintable3.3,sourcessuggestthathy-drogenproductioncostsfromSMRarecloselycorrelatedtomovesinnaturalgasprices,witharecentstudybyWECNetherlandsobservingthatnaturalgascostscorrespondto70–80percentofthetotalhydrogenproductioncost.Accordingtothissource,aEUR6pergigajoulepriceincreaseinnaturalgascorrespondstoahydrogenproductioncostincreaseofEUR1perkilogram(WECNetherlands2019).Nevertheless,thesefiguresareinmanysenseslimitingbecausetheyalmostexclusivelyprovidethecostonlyforconsumerswhoarecolocatedandwhorepresenttheprimaryoff-takerfortheSMRoperator.Therealityforsmaller-scaleconsumersisthathydrogencostsvaryconsiderably,andcalculatingwhatthepricingshouldbeofhydrogendeliveredtocus-tomersischallenging.Thesimplereasonisthattransportationandstorageofhydrogenremainexpensiveandcostvariesdependingonthevol-umeofhydrogendemandedbycustomersandtheirdistancefromthehydrogenproductionsite.HowbroadthespreadcanbeisillustratedbythepubliclyavailableHydrogenDemandandResourceAnalysistool(HyDRA)fromtheNationalRenewableEnergyLaboratory(NREL)(figure3.8).Ascanbeseenfromfigure3.8,thecostofdeliveringhydrogentocustomersisconsider-ablymorethantheproductioncost;thusthereTABLE3.2Estimatedglobalmanufacturingcapacityforfuelcellsacrossalltechnologies,2019FUELCELLTECHNOLOGYCURRENTMANUFACTURINGCAPACITY(MWPERANNUM)FUTURECOMMITTEDMANUFACTURINGCAPACITY(MWPERANNUM)PAFC126a>126MCFC100b>200SOFC>120c>120PEM>1,100d>12,000Note:MCFC=moltencarbonatefuelcell;PAFC=phosphoricacidfuelcell;PEM=protonexchangemembrane;SOFC=solidoxidefuelcell.a.Moon2017;DoosanFuelcellwebsite,http://doosanfuelcell.com.en/intro/manufacturing.b.FuelCellEnergy2018.c.PublicfilingsshowthatBloomEnergyhasdeployedover300MWsince2011,whichonalinearscalingwouldequatetoatleast30MWayear.ItisalsoknownthatBloom’smanufacturingsiteisover210,000squarefeetand,giventhecapacityofcompetitorFuelCellEnergy—whichreportsa64MWcapacityfroma60,000squarefootsite—andBallardPowerSystems(Ballard2017)—whichreportedthatitsSynergyBallardJVCocouldachieveanannualizedproductioncapacityofapproxi-mately20,000fuelcellstacks(80MW)from50,0000squarefoot—itcouldbeestimatedthatBloomEnergycanproduceatleast120MWperannum.Bloomdata,BloomEnergy2011;FuelCellEnergy2018.d.Hyundaicurrentlycanproduce3,000fuelcellstacksperyear.Itcouldscaleto40,000annuallyby2022andaimfor700,000perannumby2030.EachToyotaMiraiis114,000kW;therefore,thereis342MWcurrentcapacity,duetoreach4,560MWby2022.Toyotacurrentlycanproduce3,000fuelstacksperyear,withplanstoreach30,000by2020(Toyota2018).GiventhatToyota’sfuelcellstackisaround100kW,scalingisfrom300MWtoaround3GW.PlugPowerisquotedashavingcapacityin2019toproduce20,000fuelcellunitsperannum.In12months,fromSeptember2017toSeptempber2018,itproducedmorethan5,000stacks.Theaverageunitis2kWto4kW.Itcouldbeestimatedthatthecompanyproducesaround40MWto80MWperannum,averagedto60MW.Thesenumbersarecomparablewiththosegivenincorrespondencewiththecompany.Longerterm,ZhongshanBroad-OceanMotorCo.,al-readyBallard’slargestshareholder,isbuildingthreemanufacturingfacilitiesusingBallardtechnology.Thusthreeassemblylineswillmake10,000unitsof35kWto85kW(or3.5GW–8.5GW)(Broad-OceanMotorGroup2017,slide13).So5GWadditionalcapacityisassumed.Inadditiontothesesources,marketintelligencefromvarioussuppliershashelpedinformthebaseline.GREENHYDROGENINDEVELOPINGCOUNTRIES38TABLE3.3Productioncostestimatesofhydrogenfromsteammethanereformingandcoalgasification(excludingtransportandstoragecosts)ORGANIZATION/LOCATIONPRODUCTIONMETHODCOST(US$/KG)IGEM2012,UnitedKingdomSMR3.00aIGEM2012,WorldSMR0.80–6.00bIEA2015,UnitedStatesSMR0.90IEA2015,EuropeSMR2.20IEA2015,JapanSMR3.20IEA2017,WorldSMR1.00–3.00cWEC2018,NetherlandsSMR(Largescale)1.10–1.70dWEC2018,NetherlandsSMR(Smallscale)e4.60–-5.75fCSIRO2018,AustraliaSMR+CCS2.27–2.77gCSIRO2018,AustraliaBrowncoalgasification+CCS2.57–3.14gNote:CCS=carboncaptureandstorage;SMR=steammethanereforming;IGEM=InstitutionofGasEngineersandManagers;IEA=InternationalEnergyAgency;WEC=WorldEnergyCouncil;CSIRO=CommonwealthScientificandIndustrialResearchOrganisation.a.Ajayi-Oyakhire2012.b.Ajayi-Oyakhire2012.c.Philibert2017.d.WEC2019.e.Producing200kg–600kgperday.f.WECNetherlands2019.g.Bruceandothers2018.$costprkhdronIndustrilforcourtSMRCommrcilforcourtSMR246810AtlnticCount,NwJrsNwportNws,ViriniGlvston,TxsPrkins,SouthDkotVld-Cordov,AlskSource:NREL2019.Note:HyDRA=HydrogenDemandandResourceAnalysis(tool);NREL=NationalRenewableEnergyLaboratory;SMR=steammethanereforming.FIGURE3.8SpreadinUnitedStateshydrogenpricesfromHyDRA,April2019393:stateoftheMarketremainsasignificantcostadvantagetobeingabletoproducehydrogenon-site.Thisdynamichasunderpinnedmuchofthegrowinginter-estinelectrolyzers,anditisworthnotingthatasearlyas2015theIEA,citingtheUSDOE,arguedthatthecostofdistributedhydrogenproductionviaelectrolysisusingoff-peakelec-tricitycouldbe$3.90perkg(IEA2017).Onthisbasis,hydrogencreatedfromanelectro-lyzeron-sitecouldbecheaperthanthepriceofcommercialforecourthydrogenfromSMRinallthelocationsshowninfigure3.8exceptinAlaska.Thequestiontheniswhatdrivesthecostofhy-drogenfromelectrolysis,andcanthesesolutionsconsistentlydelivergreenhydrogenatpricesthatarebelowthosepricescurrentlyaccessibletoexistinghydrogenconsumers,excludingthelargestcaptiveproducers(forwhomthereisnoneedtotransporthydrogenbecauseitispro-ducedandconsumedon-site).Historicalanaly-sisofthecostofhydrogenfromelectrolyzershastypicallyconsideredcapexandelectricitycoststobearound50:50withregardtotheirimpactonthecostofhydrogen.Thatisespeciallytrueforunitsbelow1MW.Yet,asthemarkethasexpandedandelectrolyzercostshavefallen,companieshavebeguntoarguethatelectricitycostsnowaccountforaround75percentofhydrogen’scost(NelAsa2017).Nevertheless,capexclearlyisstillanimportantconsideration,especiallyatthesmaller,decentralizedscale.Thus,achievingloadfactorsabove3,500hoursperannumisessentialtosecuringlowhydrogenprices,evenwhenthecostofpowermightbelow(orfreewhencurtailed).Toillustratesomeofthecurrentgreenhy-drogencostestimates,table3.4consolidatesassessmentsfromawidearrayofsources,underdifferingsetsofassumptions.Asthetableshows,thereisconsiderablevariationinhydrogenpricingpoints.Thatvariationreflectstwosourcesofuncertainty:(a)considerablevariationinelectrolyzercostassumptionsandefficiencyvaluesand(b)considerationsaroundtheLCOEofelectricityusedandloadprofile/capacityfactoroftheelectrolyzer,reflectingtheuseoftheasset.Onesourceofdiscrepancyoncostassumptionsiswhetherthecapexfig-uregivenincludesonlytheelectrolyzer,orthebalanceofplant,installation,orboth.Yet,evenwiththeseconsiderations,thepricingrangeremainslarge.Evidencefromprojectsthatarepubliclyavail-ableappearstocorroboratefeedbackfromsuppliers,suggestingthatalkalineunitsabove20MWcanbeexpectedtocostbelow$700perkWonanequipment-onlybasis.ForPEMelectrolyzersthedeploymentamountshavebeenmuchsmallerandthereforepricingremainsextremelyvaried(table3.5).However,equip-mentcostsbelow$1,200perkWappearstobeanacceptedbenchmarkforthesesolutions.Theotheraspecttonoteisthatliteraturesourcesandsupplierscommonlyassumeelectrolyzerefficienciestobeatleast65percenttoday,withmanyusing70percentasthebasecase.Seefigure3.9forexamplesofPEMelectrolyzerunitsformobilityapplications.Fromtheevidenceavailableitisreasonabletoconcludethathydrogenfromelectrolysiscannotbecurrentlyproducedmorecheaplythanfromlargeexisting-scaleSMRinareaswithaccesstolow-costnaturalgas.Yet,costestimatesshownintable3.4suggestthat,forcustomerswithaccesstothegridandfallingwholesalepowerprices,hydrogenfromon-siteelectrolysiscanbecheaperthanthecostfromlarge-scaleSMRfacilitiesplustransportcosts.Italsoappearstobethecasethatevenwhereoff-takershaveaccesstonaturalgasatlowprices,smallerSMRunits(thoseproducinglessthan4.5kgofhydrogenperhour)wouldonlybeableproducehydrogenatacostthatwouldbecomparabletothatproducedviaelectrolysis(IEA2015;WECNetherlands2019).Lookingforward,ifwholesalepowerprices,renewablecosts,andelectrolyzercostsGREENHYDROGENINDEVELOPINGCOUNTRIES40continuetodecline,itappearsconceivablethatelectrolysiscouldbecomeacommercialalternativetoSMRorcoalgasificationforlarge-scalecentralizedproduction.ThesefindingssuggestavoidingtheassumptionthatmostofthegrowthinglobalhydrogendemandwillbemetbySMRdeployments,becausegreenhydrogenpricesmaywellreachparitywithfossil-derivedhydrogensoonerthananticipatedinlocationswithexceptionallygoodrenewableresource.3.1.2.FuelcellsOneofthebestillustrationsofthehistoricde-clineinthecostoffuelcelltechnologiescomesfromobservingthecostdeclinesforPEMfuelcellsystems(figure3.10).ThatisbecausePEMsystemshavebeendevelopedsincethe1950sandremainthemostcommonlyprocuredfuelcelltechnologyinaggregateacrosssectors(largelydrivenbymobilityapplications).ItisimportanttonotethatcostsforPEMfuelcellsinmobilityhavealwaysbeenlowerthanTABLE3.4CostestimatesofhydrogengeneratedviawaterelectrolysisORGANIZATIONELECTROLYSISCOSTRANGE($/KG)ASSUMPTIONSSiemens20164.40–7.70aBasedondataanalysisfromtheEnergieparkMainzproject.IEA20172.00Alkalineelectrolyzer,$850/kWcapex,WACC7%,lifetime30years,efficiency74%,4,500fullloadhoursNelASA20172.70–4.00bAlkalineelectrolyzer,capexbelow$700/kW,andasolarPPA$40–$60/MWhNelASA20171.30–2.70bAlkalineelectrolyzer,capexbelow$500/kWandsolarPPAis$20/MWh–$40/MWhIRENA20185.00–6.00cAlkalineelectrolyzer;2017Danishelectricitypricesthatincludeallgridfees,levies,andtaxes;loadfactorabove40%IRENA20184.20–5.80PEMelectrolyzer,Chile;wind+solar,withanLCOE$20/MWh–$50/MWhand6,840fullloadhoursTractebelEngieandCORFO2018d1.80–3.00NorthernChile,2023;electricitycost$28.40–$56.20/MWhCSIRO2018(basecase)e4.80–5.80Alkalineelectrolyzer,44MW,85%capacityfactor,57%efficiency,$60/MWh,capex$1,347/kWCSIRO2018(basecase)e6.10–7.40PEMelectrolyzer,1MW,85%capacityfactor,62%efficiency,$60/MWh,capex$3,496/kWESMAP2020(basecase)4.5–4.8Alkalineelectrolyzer,1MW,75%capacityfactor,80%efficiency,$30/MWh,capexat$800/kWESMAP2020(basecase)5.00–5.80PEMelectrolyzer,1MW,95%capacityfactor,72%efficiency,$30/MWh,capexat$1,100/kWESMAP2020(lowestprice)3.70–4.00Alkalineelectrolyzer,1MW,95%capacityfactor,80%efficiency,$30/MWh,capexat$800/kWSource:Asshown,andESMAP.Note:AllsumshavebeenconvertedtoU.S.dollarsatprevailingexchangerates.capex=capitalexpenditure;CSIRO=CommonwealthScientificandIndustrialResearchOrganisation;CORFO=ChileanEconomicDevelopmentAgency;ESMAP=EnergySectorManagementAssistanceProgram;IEA=InternationalEnergyAgency;IRENA=InternationalRe-newableEnergyAgency;LCOE=levelizedcostofenergy;PEM=protonexchangemembrane;PPA=powerpurchasingagreement;WACC=weightedaveragecostofcapital.a.Siemens2016—convertedfromEURtoUS$.b.NelAsa2017.c.IRENA2018.d.TractebelandChileanSolarCom-mittee2018.e.Bruceandothers2018.413:stateoftheMarketTABLE3.5SampleofelectrolyzercapitalexpenditureestimatesORGANIZATIONTECHNOLOGYCAPEX(US$/KW)IEA(2015)PEM2,650aCSIRO(2018)PEM3,496bH2I(2018)PEM2,800–3,400cIRENA(2018)PEM1,380dESMAP(2020)PEM1,100IEA(2015)Alkaline1,150eIEA(2017)Alkaline850fCSIRO(2018)Alkaline1,347gH2I(2018)Alkaline1,300–1,700hIRENA(2018)Alkaline860iESMAP(2020)Alkaline800Source:Asshown,andESMAP.Note:PEM=protonexchangemembrane.a.IEA2015.b.Bruceandothers2018.c.H2I2018.d.IRENA2018.e.IEA2015.f.Philibert2017.g.Bruceandothers2018.h.H2I2018.i.IRENA2018.©ITMPowerLtd(left).©Siemens(right).FIGURE3.9ITMPEMelectrolyzerNationalPhysicsLab,UnitedKingdom,2019(left)andSiemensSilyzer3000,MainzPark,Germany,2019(right)GREENHYDROGENINDEVELOPINGCOUNTRIES42forstationaryapplications,owingtodifferentstacklifetimerequirements.Therefore,therearePEMfuelcellsavailabletodaythatsupplierswillquoteforbelow$2,000perkW.Typically,thehigherstacklifetimerequirementsforallstationaryfuelcellsleadtohighercosts,partofthereasonthatstationarysystemshaveahighercapexthanmobilitysolutions.PEMfuelcellsuppliersarenottheonlyonesseeingsignificantcostdeclines.Publiclyavailabledataalsoshowthatmanufacturersacrossotherfuelcelltechnologiesarereportingsignificantcostdeclinesasordersscaleup(figure3.11).24Thesecompaniesareoftenwell-establishedbusinesses,afactthatindicatesnotonlythetimeithastakentodevelopproductsthatarecommerciallyavail-abletogotomarket,butalsotheimportanceofachievingscaletodrivedowncostsandimprovetheeconomicsoffuelcellprojects.24Thefiguresarederivedfromannualreportsthatindicatedeclinesinpriceoverafixedperiodbutdonotprovideexactpricesforeachyear.Accordingly,the“midyear”datahasbeenextrapolatedbetweenthestartyearand2017figures.Butnotallfuelcellsystemcostsarestartingfromthesameposition.Fuelcelltechnologieshavedifferentapplications,stacklifetimes,electricalefficiencies,andfuelsourcesthatdrivetheiroverallcoststructures(tables3.6and3.7).Assessingfuelcellcosts,therefore,requiresmorethanasimpleanalysisofcapitalexpenditures.Forexample,PEMfuelcellsrelyonhigh-purityhydrogen,whichismoreexpensiveandmorecomplicatedtotransportandstorethanotherfuelalternativessuchasammonia,methanol,ornaturalgas.Further,itisimportanttoconsidertheapplication.Wherefuelcostsarecheapormaintenanceisaconcern,theremaybeanincentivetoswitchtowardlonger-durationandlower-costsystems,suchasPAFCorMCFCunitsinsteadofSOFCs.ForcustomerswhomayvalueaCHPapplication,high-temperaturefuelcellscanprovideamorecompellingsolutionanda$0$100,000$200,000$300,000$400,000$500,000$600,0002020201520102005200019951990198519801975$0$2,000$4,000$6,000$8,000$10,00020192017201520132011200920072005Source:ESMAP.Note:PEM=protonexchangemembrane.FIGURE3.10StationaryPEMfuelcellcostperkW433:stateoftheMarketRltivcostdclins(%fllovrpriod)BloomEnrFulCllEnrPluPowrBllrd0102030405060708090100200920102011201220132014201520162017Source:Extrapolatedfromcompany-reporteddeclines2018/19.FIGURE3.11Reportedequipmentcostdeclinecurvesfromleadingfuelcellsuppliersmuchhighersystemefficiencythanlower-tem-peraturefuelcells.Forexample,TransportforLondoninstalledaCHP(PAFC)unitinitsPalestrabuildingtohelpprovidepoweraswellasheatingandcooling.Inshort,choosingthemostappropriatefuelcellsolutionrequirescompaniestomakeavarietyofassessmentsandjudgmentswhenscopingthetechnologysolutionandtheapplicationfortheendcustomer.Capexaloneisnotalwaysthekeydriveroftechnologychoice.GREENHYDROGENINDEVELOPINGCOUNTRIES44TABLE3.7MethanolandammoniafuelcellsFUELSOURCECOSTPERKW($)SYSTEMEFFICIENCY(%)STACKLIFETIME(HOURS)SYSTEMLIFETIME(YEARS)WHEREUSED?Methanolfuelcell4,000–10,000Electriconly:50,Wholesystem35–40Stationary:5,000–10,00020UninterruptiblepowersupplyAmmoniafuelcell10,000Electriconly:~50Wholesystem:35-40Stationary:5,000–8,00020UninterruptiblepowersupplySource:ESMAP.Note:kW=kilowatt.TABLE3.6OverviewofprimaryfuelcelltechnologiesTECHNOLOGYTYPE$/kWSYSTEMEFFICIENCY(%)STACKLIFETIME(HOURS)SYSTEMLIFETIME(YEARS)PRIMARYAPPLICATIONSProtonexchangemembranefuelcell(PEM)Stationary:1,400–4,000Stationary:45–58Stationary:20,000–40,00020Allmobility,UPS,residentialpower,peakingpowerprovision.Mobility:1,000–3,000Mobility:45–60Mobility:6,000–20,000Moltencarbonatefuelcell(MCFC)Stationary:3,000–4,000Electriconly:45–55Stationary:60,000–80,00020Baseloadpowergenera-tion,UPS,CHPuses.CHP:70–85Alkalinefuelcell(AFC)aStationary:700Electriconly:55–65Stationary:5,000–6,00020BaseloadpowergenerationandUPS.CHP:80–90Solidoxidefuelcell(SOFC)Stationary:3,000–6,500Electriconly:45–65Stationary:25,000–40,00020Baseloadpowergeneration,UPS,rangeextenderforlargermobilityapplications,CHPuses.CHP:80–90Phosphoricacidfuelcells(PAFC)aStationary:4,000–5,000Electriconly:45–5570,000–80,00020Baseloadpowergenera-tion,UPS,CHPuses.CHP:85Source:IEA,ESMAP,varioussuppliers.Note:CHP=combinedheatandpower;kW=kilowatt;UPS=uninterruptiblepowersupply.a.IEA2015.454:EnergyApplicationsandCommercialSolutions4:ENERGYAPPLICATIONSANDCOMMERCIALSOLUTIONSKEYTAKEAWAYSnnVariablerenewableenergydeployments,balancedbyelectrolyzers,hydrogenstorage,andfuelcells,canachievealevelizedcostofenergyfortheprovisionofpowerthatcouldbebelowthecostofdieselalterna-tivesinsomedevelopingcountriesandremoteareas.nnThereisanabundanceofapplicationsforwhichgreenhydrogencouldprovidesolutionsforindustries,com-merce,utilitiesandpolicymakerstohelpdecarbonizeexistingfossil-basedenergysystems.nnNoteveryapplicationforgreenhydrogenwillbeappropriateineverycountrycontext,andcarefulanalysiswillbeneededtoensurethesolutionsaresuitable.nnDevelopingcountriesarealreadyaheadofdevelopedcountriesintheuseofcertainhydrogenandfuelcellapplicationstodaybecausetheymakecommercialsenseintheircontexts.nnGreenhydrogenandfuelcellscouldbecomeabuildingblockoffullydecarbonizedgrids,complementingexistingrenewableenergytechnologiesandfacilitatingtheirfurtherdeploymentbyaddressingconstraintssuchaslong-durationstorageandtransportation.nnGreenhydrogenstorage,electrochemicalbatteries,andotherformsofenergystorageofferdifferentvaluepropositionsandinmostcasescanberegardedascomplementary.GREENHYDROGENINDEVELOPINGCOUNTRIES46Hydrogenandfuelcelltechnologiesarealeadybeingusedinawidearrayofstationarypowerapplicationsattheutility,industrial,com-mercial,andresidentiallevel(table4.1).Onthefuelcellside,theapplicationsrangefromsub-1kWunitstosystemsover50MW,andbylate2019therewereestimatedtobe363,000stationaryfuelcellsinoperationglobally(IEA2019b).Asignificantproportionofstationarypowerapplicationsbelow3kWarelocatedindevelopingcountries—notablyinAsia,wheretheyplayanincreasinglyimportantroleinpowerprovisionforoff-gridsitesthatrequirehighavailabilityandareatriskfromdieselthefts.Theseapplicationstypicallyincludetelecommunicationstowers,butinJapancustomersalsoincluderesidentialCHPunits.Themajorityofunitsof100kWorlargerarelocatedinKoreaandtheUnitedStates,largelyforcommercialconsumersandafewlargeindustrialcustomers,withtheoverwhelmingmajorityoftheseunitsusingnaturalgasastheirprimaryfuel.Whilefuelcellsremainthepri-maryconsumerofhydrogenforenergy,thereisalsogrowinginterestinretrofittingordesigningcombustionturbinesandreciprocatingenginestoalsorunonhydrogen.4.1.RESIDENTIALAPPLICATIONSOneoftheareasoffocusforhydrogentech-nologiesintheresidentialsectoristheinstalla-tionofresidentialfuelcellcombinedheatandpowerunits,whichhavetransitionedinrecentyearsfromPEMtoSOFCbecauseofthehigherefficiencyandoperatingtemperatureofSOFC.ThelargestoftheserolloutsistheJapaneseEne-Farmproject,whichinoveradecadehasseenmorethan300,000unitsdeployeddomes-tically,makingitthelargestmarketbyfar.OtherTABLE4.1OverviewofstationaryfuelcellapplicationsAPPLICATIONTECHNOLOGYUNITSIZE(kW)COMPLIMENTARYTECHNOLOGIESEXAMPLESResidentialcom-binedheatandpowerPEMandSOFC<5SolarPV,batteriesEne-Farm,Ene-FieldBack-uppowerPEM,methanolandammonia<100SolarPV,batteries,micro-windAdrianKenya,PTTelekom,U.S.stateofMaryland,Bahamas,DanishemergencybroadcastsystemOff-gridpowerprovisionPEMfuelcells,mostly.<1SolarPV,wind,batteries,geothermalTigerPower,CerroPabellóngeothermalplant,RaglanMine,BIGHITCommercialofficepowerMostlySOFCandPAFC<5SolarPV,batteries,micro-windAppleHQ,MorganStanleyManhattan,PG&Ecampus,SouthAfricanMinistryofMinesBaseloadpowergenerationSOFC,PAFC,MCFC,retrofitgasturbine>400PowergridDaesanGreenEnergyJV,CEOG,NorthChungcheongProvince(KoreaWesternpower)Note:MCFC=moltencarbonatefuelcell;PAFC=phosphoricacidfuelcell;PEM=protonexchangemembrane;PV=photovoltaic;SOFC=solidoxidefuelcell.474:EnergyApplicationsandCommercialSolutionssuppliersinEurope,notablyCERESPowerandSunFireGmbH,areduetobeginrolloutsoftheirresidentialSOFCCHPunitsaspartofagrantfromtheEUcalledEne-field.TheseinnovationscouldbeparticularlyinterestingfordevelopingcountriesinEuropeandCentralAsiawhoseexistinggasgridcouldberepur-posedaccordingly.Fuelcellsarebeingconsideredprimarilyasres-identialpowersourcestohelppromotedistrib-utedgenerationandenhancesystemresiliency(figure4.1).JapaneseandEUprogramsthatalreadyprovidefeed-intariffstosupportmi-cro-CHPincludesupportforfuelcellunits.Whilesomeofthesesystemsarefocusedonnat-uralgasconsumptionforthepresent,inThailandacompanycalledEnapterhasalreadybuilttheworld’sfirst100percentrenewablehomewithgreenhydrogenandfuelcells.ThePhiSueahouseinChiangMai(figure4.2)isentirelyoff25InformationprovidedcourtesyofcorrespondencewiththesupplierinSeptember2019.thegridandprovides100percentrenewablepower24/7,using86kWofsolarPVandfourmodularelectrolysisunits,toconvertexcessso-larPVintostoredenergyforuseduringthedayandintheevening.25Recentlyanumberofschoolsandofficebuildingshavealsobeguntolookatgreenhydrogenproductionandfuelcellsystems,alongsideon-site(typicallyrooftop-mounted)solarPV,toprovide24-hourrenewablepower.InSingaporealocalcompany,SPGroup,hasconverteditstrainingcenteratWoodleighParktoa100percentrenewable,off-grid,hydro-gen-basedsystem.Thispilotisuniquenotonlyforbeingthefirstfullyzero-emissionofficeinSoutheastAsia,butalsobecauseitusessol-id-statehydrogenstorageonthepremises.Thissystemsignificantlyreducesconcernsaroundstorageandleakageofhydrogengas(SPGroup2019).©Sunfire(left).©CeresPowerLtd.(right).Note:SOFC=solidoxidefuelcell.FIGURE4.1SunfireGmbH2019ResidentialSOFC(left)andCeresPowerLtd2019residentialSOFC(right)GREENHYDROGENINDEVELOPINGCOUNTRIES48Anotherareaofinterestisthedistributionofgreenhydrogenthroughtheexistinggasgridtobeusedbyexistingheatingtechnologiessuchasboilers,burners,andCHPfuelcells.Onemethodistosimplyblendhydrogenwithnaturalgasinsidethegrid,aprocessthatisbeingpilotedbyKeeleUniversityintheUnitedKingdom(HyDeployn.d.).Theotherconceptistocon-vertgasgridsto100percentgreenhydrogenandconvertappliancesaccordingly.Althoughthatconversionmayseemdramatic,itisworthnotingthatfrom1967to1977,14millioncus-tomersand40millionappliancesintheUnitedKingdomwereconvertedfromtowngas(about50percenthydrogenand50percentmethane)tonaturalgas(Bruceandothers2018).Anumberofhydrogenappliancesandhydrogenupgradekitsarecommerciallyavailabletoenableresidentialconsumerstousegrillsandovens,waterheat-ers,cooktops,andgasheaters.Asanexample,hydrogenboilershavealreadybeeninstalledataschoolontheislandofShapinseyintheUnitedKingdom(figure4.3).Theseapplicationscouldofferdevelopingcountries—particularlythosewithanexistinggasinfrastructure—aninterestingpathwaytoachieveemissionreductionsintheirresidentialsectors.4.2.BACK-UPPOWERAPPLICATIONSTheprimarymarketforback-uppowerhasbeenthetelecommunicationssector,whichhaslongbeenapopularfocusareaforfuelcellsystems.Theneedforcontinuousoperationoftelecom-municationtowers,thefrequentlackofaccesstopowerfromthegrid,andsignificantsecurityissuesrelatedtotheftofdieselhaveencouragedmanydevelopedanddevelopingcountriestodeploythesesolutions.Whileearlyfuelcellsolutionsforthetelecommunicationsindustryof-tenfocusedonprovidingPEMunitsthatrequiredpurehydrogen,initialoperatingexperiencehasshownthatthiscombinationcreatessignificantlogisticalandperformanceissuesforearlyadopt-ers.Thoseissueswerealmostentirelyrelatedtosecuringhydrogenofsufficientpurityandhavingitdeliveredconsistentlytothetelecomsiteswhenneeded,achallengecompoundedbythecomplexityofstoringpurehydrogeninlarge©Enapter.FIGURE4.2PhiSueaoff-the-gridhouse,Thailand,hydrogensystems494:EnergyApplicationsandCommercialSolutionsquantitiesoverlongperiods.Accordingly,mosttelecomtowersystemstodayusemethanol-orammonia-basedfuelcellsolutions,withcom-paniessuchasGenCellandCascadiantleadingtherolloutinemergingmarkets.InIndonesiatherearealreadyover800fuelcellsystemsinthetelecomspace,includingmorethan40unitsinPapuaNewGuinea,whereasAdrianKenyarecentlyorderedmorethan800ammoniafuelcellstoreplacedieselgensets(GenCell2018).InEuropecompaniessuchasBallard,SFCEnergy,andSiqenshavedeployedvarioussolutions,rangingfromairportsystemsinNorwaytotheDanishemergencybroadcastingfrequencysystems.26Theseprojectsremainsmallinab-solutenumbers,butthenumberofprojectsisincreasing.Thekeytoexpansionistheabilitytocombinegreenhydrogenwithdirectaircapture/carboncapturetechniquestoproduceammonia.Thiscapabilityisimportantbecauseammonia(andmethanol)canbemoreeasilyprocuredandcan26In2007BallardwaschosenthestartprovidingsolutionsfortheDanishTETRANetworkalongsideMotorola.AdditionaldetailscanbefoundonBallard’swebsite,https://blog.ballard.com/motorola-fuel-cell-backup-power.bestoredforlongerperiodsoftimethanhydro-gen,andthustheyaremoreappealingfortele-communicationscompanies(box4.1).Bywayofillustration,thetwoplasticcontainersintheimageoftheSFCEnergyunitinfigure4.4(centerandright)canprovideupto30daysofpoweratcontinuousoperation.Thisabilityhasenabledfuelcellstoovercomesomeoftheinitialfuelsupplyissuesthathamperedtheearlyadoptionoffuelcellsfortelecomprovidersintheearly2000s.4.3.OFF-GRIDPOWERAPPLICATIONSProvidingpowertoremoteareasthroughmin-igridshaslongmeantanincreasedrelianceondieselgenerators.Historically,thesegeneratorshaveprovidedtheonlyreliablemeansoffirmenergysupply,throughtheuseofamultifacetedfuelthatcouldbeusedforbothpowergenera-tionandtransport.ButtodaygreenhydrogenandSource:ESMAP.FIGURE4.3HydrogenboilersdeployedatShapinseySchool,Kirkwall,UnitedKingdomGREENHYDROGENINDEVELOPINGCOUNTRIES50DISPLACINGDIESELININDONESIA’STELECOMMUNICATIONSSECTORIndonesiaisoneoftheworld’sfastest-growingtelecommunicationsmarkets,withthenumberofmobilephonesinthecountryrisingfrom124millionin2014toanestimated184millionin2018.Yet,ensuringthattheworld’sfourthmostpopulousnationstaysonlineisnoteasy.AreportbyPWCin2016(PWC2016)concludedthatgridblackoutscostIndonesianbusinesses$415millioneveryyear,whilethecountry’selectricityconsumptionpercapitastoodat1.02MWhin2018,belowVietnambutslightlyabovethePhilippines.Althoughthenationalelectrifi-cationratestoodat98.0percentin2017,theexistenceof18,000separateislandsmeansthataccesscanvary,from59.9percentto99.9percent.ToensurethatIndonesianscanstayconnected,thecountry’stelecomoperatorshavetypicallyresortedtoback-updieselgeneratorstoguaranteecontinuityduringgridblackoutsandcoverageinoff-gridareas.Theseassetsarefrequentlytargetedfordieseltheftandcontributetolocalairandnoisepollution.However,onecompanyisaddressingthisproblem.Cascadiantdevelopsandoperatesmethanol-basedfuelcellsforIndonesia’slargesttelecomprovider,PTTelkomIndonesia(figureB4.1.1).Thefuelcellsenjoyefficienciesabove40percentandruncontinuouslyinallcon-ditions,witha99.6percentuptimereportedacross815sitesinIndonesiaandTimor-Lestesince2010andextremelylimitedmaintenancerequired.Cascadiant’sfuelcellunitsrelyonmethanol,whichisproducedfromdomestichydrogenandthenblendedpartiallywithwater.Theblendinghasalimitedeffectonefficiencybutmakesthemethanolundesirableforthieves,incontrasttothechallengesfacedbydieseloperators.Since2013,thecompanyhasdeployed800fuelcellunitsacrossIndonesiaandTimor-Leste,withnoreportedtheftssinceitsfirstcontractin2013.Cascadiant’suseofmethanolinsteadofdieselalsohasavoidedover17,000tonnesofcarbondioxideemissionsandpreventedtheimportanduseofover6millionlitersofdieselfuelbyreplacingitwithdomesticallyproducedhydrogenandmethanolfuelstocks.AlthoughIndonesiaproducesitshydrogenfromreformingnaturalgas,thismethodcouldbereplacedorcomple-mentedbytheproductionofgreenhydrogenfromdomesticrenewableresources.FigureB4.1.1MethanolfuelcellsinIndonesia’stelecommunicationssectorBOX4.1©Cascadiant.514:EnergyApplicationsandCommercialSolutionsitsderivedfuelsareincreasinglyseenaspoten-tialalternatives.InUganda,aBelgiancompanycalledTigerPowerhasprovidedoff-gridpowerviaahybridsolarPVandgreenhydrogensolution,withthehydrogenproducedfromexcessPVandstoredforusebyafuelcellduringtheevening.Withintheminingsector,NRCANworkedwithGlenCoretodevelopahybridenergystoragesystematRaglanmineinCanadathatincorporatedhydrogenandfuelcells.Theminigridformsonlypartoftheminingsite’stotaldemandof20MWcapacity,butitreduceddieseldemandby3.4millionlitersandavoidedthereleaseof9,110tonsofGHGduringitsfirst18monthsofoperation(NRCAN2019).Thefullsystemcombinesa3MWtur-binewitha200kWflywheel,a200kWLi-Ionbattery,a315kWelectrolyzer,anda198kWfuelcell(NRCAN2019).Otherremoteareashaveincludednationalparks,suchasCerroPabellóngeothermalplantinChile’sAtacamaDesert,wherehydrogenisusedasalong-dura-tionstoragesolution,andAustralia’sDaintreemicrogridproject.Someprojects,suchasHychicoinPatagonia,havealsousedgreenhydrogenproductiontoblendwithanexistingnaturalgasturbinetoprovideanotherformofrenewableenergystorageinaremotearea(Hychicon.d.).Bycombiningthedifferentelementsinhybridapplications,theseprojectsmaximizetheuseofthecapexinvestedandprovideenhancedservices(box4.2).4.4.COMMERCIALAPPLICATIONSBecausemostfuelcellsinthecommercialsegmentrunonnaturalgas,theyareconsideredsimilartoconventionalboilerandCCGTtech-nologiesandthereforehavebeenestablishedinurbanenvironmentsformanyyears(figure2.7).Noteworthyprojectsincludea300kWCHPfuel©GenCell(left).©SFCEnergy(centerandright).FIGURE4.4Snapshotofportablefuelcellsfortelecomapplications:GenCellA52019(left),SFCEnergymethanolfuelcell2019(center),andSFCEnergymethanolfuelcellback-upforlightingsystem2019(right)GREENHYDROGENINDEVELOPINGCOUNTRIES52POWERINGSCHOOLSINSOUTHAFRICASouthAfricaisamajorproponentofgreenhydrogenproductionandfuelcelltechnologiesthroughitsHydrogenSouthAfrica(HySA)program.Thecountryisestimatedtohold75percentofglobalplatinumgroupmetalresourcesglobally,animportantcomponentofprotonexchangemembranetechnology.Thus,SouthAfricaseesgreenhydrogenasasolutiontoprovidecleanpowersolutionsdomesticallywhilecreatinganewmarketforplatinumgroupmetals.AtPoelanoHighSchoolinVentersdorp,HySAhaspartneredwithmultipleorganizations,includ-ingtheCouncilforIndustrialandScientificResearch,North-WestUniversity,UniversityofCapeTown,Mintek,andUniversityoftheWesternCape,todevelopa2.5kWhydrogenfuelcellsystem(figureB4.2.1).Theunitderivesitspowerfromarooftopsolarphotovoltaicarrayattheschoolandprovidescontinuousrenewablepowertothecurrentlyoff-gridlocation,allowingthe486studentstohaveaccesstoreliablecommunicationtechnologiesandlighting.TheSouthAfricanMinistryofScienceandTechnologylaunchedaZAR10million($590thou-sand)renewableenergyprograminApril2018toexpandenergyaccesstoapproximately5,000schoolsandclinicsthathavelittletonoaccesstoreliableelectricity.Theprogramaimstohelpreducethecostsofprovidingelectricityaccesstofacilitiesthatareoftenlocatedmorethan20kilometersfromtheEskomgridandthusrequirecostlytransmissionexpansionsintheabsenceofacompellingdistributedgenerationalternative.FigureB3.2.1.Pressurizedhydrogenstorage(left)andRooftopsolarPVsystem(right)BOX4.2Source:CourtesyofHydrogenSouthAfrica.534:EnergyApplicationsandCommercialSolutionscellinLondon’s20FenchurchStreetbuilding,calledthe“WalkieTalkie”skyscraper(LoganEnergy2019),anda750kWfuelcellontheroofofMorganStanley’sNewYorkoffice(BloomEnergy2016).Aspreviouslydiscussed,fuelcellsthatrunonpurehydrogenrequirehigherpressuresandmoreexhaustivesafetymeasurestostoreandmayrequiremoredevelopedinfra-structuretodeploythanotherfuels.ThemajorityoffuelcellunitsinKoreaandtheUnitedStatesoperateunderaleasingstructureinwhichthemanufacturerhasenteredintoarelationshipwithanexistingequipmentfinanceproviderorthemanufacturerhasraiseddebttoprovidetheservicetothecommercialclient.Theotheralternativeisoneinwhichmanufacturersofferanequipment-onlyPPAtocommercialcustomers.ThesePPAsmirroraleasemodeltoanextent,withmodificationstotermsofuse,durationofcontract,andotherpartsoftheagree-ment.Inbothcasesthemanufacturerwillusuallyalsosignaservicecontractwiththecommercialoff-takerinwhichthemanufactureragreestooperatethefuelcellsystem.Thefuelistypicallythenprovidedseparately,withmostoff-takersinKoreaandtheUnitedStatesworkingwiththeirexistingnaturalgasprovider.Atthistimesomespecializedgascompanies,suchasAirLiquide,AirProducts,orLinde,canprovidehydrogenifrequested,buttherehasbeenlimitedinterestinthisatthecommercialleveltodate.Fuelcellsupplierscontactedinthepreparationofthisreportcorroboratetheestimatethatfuelcellsystemsusingnaturalgascandeliverpoweratbetween$103and$152perMWh,withnaturalgascurrentlyaccountingfor$25–$28perMWhofthecost(Lazard2018).Otherinterestingapplicationsincludetheuseoffuelcellunitsinconjunctionwithwastesites,suchaswastewa-tertreatmentplants.ForSOFCandMCFCunits,thesystemshaveahighertoleranceforcarbondioxideandthereforecanrunbiogasmixturesofmorethan40percentcarbondioxide.Thisappli-cationdoesreducetheefficiencyofthesystems,andmajorsuppliershavesuggestedthatitisreasonabletohaveaceilingofabout10percentofdeployedstationarycommercialfuelcellunitsusingbiogas.Itisimportanttonotethatstationaryfuelcellscanberetrofittedatlowcosttorunonpurehydrogensolutions.Thatoptioncouldenablecountriestofuture-proofinvestmentsbyusingfuelcellswithnaturalgasorbiogastoday,thentransitioningthefuelcellstoconsumegreenhydrogeninthefuture.4.5.UTILITY-SCALEAPPLICATIONSOneofthemainappealsofstationaryfuelcellsistheirabilitytoprovideutility-scalefirmpowerinlow-carbongridstocomplementrenewableenergyoutput,includingancillaryservices,giventheirfastresponse.Aswasshownwithcommer-cialapplications,powergridswithaccesstonaturalgas(figure4.5)couldachievelowerelec-tricitycostswithfuelcellsrunningonnaturalgasthanwithgeneratorsrunningonheavyfueloil.Thesefuelcellscanrapidlyadapttheiroutputtocomplementrenewablevariabilityandcontrib-utetomeetinginstantaneouselectricitydemand.Yet,despitehavinglowercarbonemissionsthanelectricitygeneratedbyaCCGT,naturalgas–basedsolutionsarenotemissionsfree.Conversely,fuelcellsrunningongreenhydrogencoulddemonstratethesameperformanceandcouldcomplementrenewablevariabilitytomeetinstantaneousdemand,butwithoutproduc-inganycarbonemissions(box4.3).Moreover,greenhydrogencouldprovidepowergridswithalong-termenergystoragesolution,capableofmitigatingthelong-termandseasonalvariabil-ityofrenewableresources,andcouldbecomeabuildingblockoffullydecarbonizedpowergrids,particularlyincountrieswithoutaccesstootherfirmlow-carbonresourcessuchaslargehydroprojectsorgeothermalorthermalplantsGREENHYDROGENINDEVELOPINGCOUNTRIES54withcarboncaptureandstorage.Bystoringgreenhydrogenforlongperiodsoftimeandsubsequentlyusingitforpowergenerationinafuelcell(oreveninturbinesadaptedtorunonhydrogen),countriesgainopportunitiestodevelopfirmcleanpowersolutions.Thehybridizationofsolarpowergeneration,windpowergeneration,orbothwithelectro-lyzers,fuelcells,greenhydrogenstorage,andbatteriescouldprovidefirmgenerationsolutionsthatrelysolelyonrenewablesastheprimaryenergysource.OneofthelargestexamplesofsuchhybridconfigurationistheCEOGprojectinFrenchGuiana,whichwillcombinea55MWsolarPVgeneratorwitha20MWbattery,20MWelectrolyzer,and3MWfuelcell(HDFEnergyn.d.),withthegoaltoprovideadispatch-ablegreenpowersourcefortheutility.AnotherexampleisElectricityGeneratingAuthorityofThailand’s(EGAT)wind-hydrogensystem,whichconsistsofa1MWelectrolyzerlinkedtoa24MWonshorewindsite,witha300kWfuelcelltohelpbalancethevariablepoweroutputfromthewindfarmandtohelpEGATmanagetheimpactofvariableoutputonthegrid.SomePEMelectrolyzerunitsalsooperateonexcesshydrogenproductionfromindustrialsites,byconsumingthehydrogenforpowerandfeedingitbackintothegrid.AnexampleisHDFEnergy’s1MWunitatSararefineryinMartinique(figure4.6).Ambitiousplanshavebeenannouncedtoconvertlargeexistingnaturalgasturbinestorunonhydrogen,inanattempttouseexistinghydrogenproductionfromSMRsitesintheshortterm,beforetransitioningtogreenhydro-genoncethemarkethasdeveloped.Thebest-knownexampleofthisusecaseisthe400MWMagnumCCGTsiteoperatedbyEquinorintheNetherlands,whichisduetobe100percenthydrogenby2023.4.6.LEVELIZEDCOSTOFENERGYILLUSTRATIVEMODELING:GREENHYDROGENPRODUCTIONANDFUELCELLSYSTEMToillustratethecurrenteconomicsoffuelcellandgreenhydrogenhybridpowersystems,FIGURE4.5Utility-scalefuelcellsolutions:SolidoxidefuelcellunitsintheUS©BloomEnergy.554:EnergyApplicationsandCommercialSolutionsESMAPhasconstructedanillustrativeLCOEanalysisofahydrogenelectrolyzerunitlinkedtoaPEMfuelcellsystemtoprovideareferencepointforsystemcosts(figure4.7).Thispower-to-powerapplicationcouldbeusedtocomplementaVREplant,thusprovidingastationarypowersupplyforperiodsofloworzerooutputfromtheprimaryVREsource.ThemodelisdrivenbyafixedMWhoutputfromthefuelcell,andthustheelectrolyzerutilizationisdrivenbytheroleofthefuelcellinmeetingdemand.Atlowlevelsofutilization,thesystemshowssignsofprovidingpeakercapacity,whileat55percentoraboveitisprovidingaresidualbase-levelgeneration.Withtherapidscalingofbothfuelcelltech-nologiesandelectrolyzers,theeconomicsofgreenhydrogenhybridsystemsareexpectedtobecomeincreasinglyfavorablewhenviewedagainstdieselgenerationalternatives.Assumptionsnn1MWPEMfuelcellanda1.2MWelectrolyzernn1tonneofon-sitepressurizedstorage(canis-ters)assumedforeachscenarionnInstallationcostsare1.6×equipmentcapexnnWeightedaveragecostofcapitalis10percentGREENHYDROGENSTORAGEANDBATTERIESEnergystorageisafundamentalcomponentoffullydecarbonizedpowersystems,particularlythoserelyingonvariablerenewableenergyresources,tomeetfirmpowerneeds.Energystor-ageallowsfortheincreaseduseofwindandsolarpower,whichnotonlycanincreaseaccesstopowerindevelopingcountries,butalsoincreasetheresilienceofpowersystems,improvinggridreliability,stability,andpowerquality.Improvementsinbatterytechnologiesdrivenprimarilybythetransportsectorhaveloweredbatterycoststothepointatwhichtheyhavebecomecostcompetitiveinmanystationarypowerapplications.However,mostcommercialbatterytechnologiescandelivertheirratedpoweronlyduringafewhours(suchastwo-to-fourhoursinthecaseoflithiumion).Thischaracteristicisnotalimitationwhenitcomestomitigatingtheshort-termvariabilityofrenewables,butitrequiresoversizingthebatterypacktoaddressdailyorweeklyvariabilityphenomenaandtoguaranteepoweravailabilityduringlongerperiodswithoutrenewableresource.Theeconomicimplicationofoversizingbatteriesisthattheiraverageutilizationislower,andtheiraveragecostincreases.Thequestionthenarisesaboutwhetheritismorecostefficienttousegreenhydrogenorbatter-iestomeetthestorageneedsinafullydecarbonizedpowersystem.Theanswertothisquestionrequiresevaluatingtheenergystorageneedsinthesystemonthebasisofloadprofileandtherenewableresourcesavailable.Becausethespectrumofdemandandrenewablevariabilityisbroad,themostlikelyoutcomeisthatpowersystemscouldsimultaneouslybenefitfromallformsofstorage.Batterieswouldaddressshort-termandmedium-termrenewablevariabilityandgreenhydrogenorotherformsoflong-termstorage,suchashydroreservoirs,wouldaddresslong-termandseasonalvariability,particularlyinsystemsthatlackotherfirmlow-carbonresources.Theoptimalsharebetweentheseandotherformsofstoragewilldependontheirrelativeperfor-manceandtheirrelativecost,anditisanalogoustodeterminingtheoptimalshareofdifferentthermalgenerationoptionsinathermal-dominatedsystem.Thisoptimalsharewillbeamovingtargetasfuelpricesandtechnologiesevolve,withcostcurvesdecreasingatdifferentpaces.BOX4.3GREENHYDROGENINDEVELOPINGCOUNTRIES56FIGURE4.6PEMfuelcell1MWunitusingexcesshydrogenfromislandrefinery,Martinique,2019©HDFEnergy.$0$100$200$300$400$500AlklinElctrolrPEMElctrolrPEMElctrolrAlklinElctrolrAlklinElctrolrPEMElctrolrScnrio1Scnrio2Scnrio3$196$244$259$452$433$208Note:PEM=protonexchangemembrane.FIGURE4.7Illustrativelevelizedcostofenergyofgreenhydrogen-basedelectricity,modelingunderthreescenarios,$/MWh574:EnergyApplicationsandCommercialSolutionsnnAmortizinginitialcapexin10yearsandstackreplacementsoveraprojectlifeof20yearsnn$30perMWhpriceofpower.nnPEMfuelcellcapexis$3,450perkWnnAlkalineelectrolyzercapexis$800perkWnnPEMelectrolyzercapexis$1,200perkWThemodelingoperatesunderthreescenarios,allofwhichhaveassumedaccesstothegrid.nnScenarioone:fuelcellutilizationat70percent——Alkalineelectrolyzerutilizationat50percent——PEMelectrolyzerutilizationat50percentnnScenariotwo:fuelcellutilizationat55percent——Alkalineelectrolyzerutilizationat40percent——PEMelectrolyzerutilizationat40percentnnScenariothree:fuelcellutilizationat30percent——Alkalineelectrolyzerutilizationat20percent——PEMelectrolyzerutilizationat20percentSeveralbenchmarkreferencepointsinformtheLCOEanalysis.Forexample,CSIRO2018researchsuggeststhatunderthatstudy’sbasecasemodelingforagreenhydrogenandfuelcellsystemin2018,LCOEwouldbe$330–$410perMWh,whichcouldbeexpectedtofallto$120–$150perMWhby2025(Bruceandothers2018).AnotherreferencewasHinicio’s2016studyofahybrid115MWsolarPVunit,a40MWelectrolyzer,anda7MWfuelcellsystem,whichestimatedanLCOEof$360perMWh(Hinicio2016).TheseresultsappearreadytobetestedbyaFrenchdevelopercalledHDFEnergy,whoseprojectfortheCentraleÉlectriquedel’OuestGuyanais(CEOG)willinstalla55MWsolarPVunitwitha20MWbattery,20MWelectrolyzer,and3MWfuelcellinFrenchGuiana.AlthoughHDFEnergyhasnotofficiallyreleasedeconomicinformationforthisCEOGproject,ithasbeenstatedthattheprojectwillnotrequiresubsidies,andwehavethusassumedthattheanalysismusthavearrivedatanLCOEequivalenttoorbelowtheutilityrate.Becauseacoreconsiderationinassessingtheeconomicfeasibilityofgreenhydrogeninpowersystemsapplicationsistoseeifsuchahydrogenhybridsystemcandisplacedieselandheavyfueloilasafirmgenerationsolution,abenchmarktargettobeatisaround$140–$440perMWhforheavyfueloiland$250–$440perMWhfordiesel.Setagainstthisbenchmark,itappearsthatgreenhydrogenproductionandfuelcellhybridsolutionstodaycouldprovidepoweratcomparableorlowercostthandieselgensetsincertaincontexts,whilealsocomplementingVREdeploymentsfordevelopingcountries.Importantcontextualconsiderationsforearlydeploy-mentsofthesesystemsincludeareaswhereVREresourcescanbedeployedbelow$50perMWh(ideallybelow$30perMWh),gridresiliencyandclimateresiliencyareareasofconcern,thelocationsarenottooremotefromairaccess(es-peciallyformaintenancework),andthereistheabilitytoaccess(orproduce)water.©GROVEHYDROGENAUTOMOTIVE595:MobilityApplications5:MOBILITYAPPLICATIONSKEYTAKEAWAYSnnGreenhydrogenoffersanimmediatelydeployabletechnologicalsolutiontowardachievingdecarbonizationofheavy-dutyandfreighttransportsectorsindevelopingcountries.nnFuelcellandgreenhydrogenmobilitysolutionscouldaddressimmediateairqualityissueswhileimprovingsystemenergyefficienciesandreducingthestrainonpowergrids.nnBatteriesandfuelcellsarecomplementarytoeachotherinthemobilitysector,especiallyinheavy-dutyappli-cationsinwhichbothtechnologiescouldbeusedintandem.nnTheuseofexistinginfrastructureingreenhydrogenandfuelcellstransportationsystemscouldreducetheriskofgeneratingstrandedassets.nnAsdeploymentsgrowinChinaandothercountries—notably,theUnitedStates,Korea,andJapan—thecostoffuelcellmobilitysolutionswillrapidlydecline.nnAsignificantconstraintfortheinitialscale-upofhydrogenmobilityapplicationsistheavailabilityandcostofrefuelingstations.GREENHYDROGENINDEVELOPINGCOUNTRIES60Mobilityhaslongbeenseenbyhydrogenandfuelcellproponentsasthekeysectortogen-eratingsignificantmarketdemandandscalingtechnologiessothatcostscanfall.Currentlyawidearrayofhydrogen-basedmobilityapplica-tionsisavailableacrossthesector—includingcars,buses,trucks,trains,planes,andships—withthemostattractivemarketsegmentforcurrentmarketparticipantsintheheavier-dutyusecases(thatis,greaterthan2tonscarryingca-pacity)andfreighttransport,includingmaritimeshipping.Whilefuelcellsareoftenportrayedascompetitorstobatteryelectricsolutions,itismorehelpfultoconsiderthemaspartnertech-nologiesthatcomplementoneanother.MostfuelcellvehiclesusebatteriestoprovideimmediateFUELCELLVERSUSBATTERYELECTRICVEHICLESThequestionofwhetherfuelcellsorbatterieswilldominatetheelectricvehiclemarketoftenemergesduringdiscussionsofthefutureofelectrictransport.Batteryelectricvehicles(BEVs)havecomealongway,representinganon-negligibleshareoftotalpassengercarsalesinmanycountries,whilethenumberofFCEVsontheroadremainsmuchlower,withonlyafewmodelsavailable.Yet,therelativestrengthsandweaknessesofthesetwoelectricvehicletypesindicatethattheywilllikelyhavecomplementaryrolesinthefuture.Technically,themaindifferencebetweenstoringelectricityinabatteryandstoringhydrogeninatankliesintheirdifferentspecificenergyandenergydensity.Althoughbatteriescanstorealargeamountofenergyinasmallvolume,batteriesareheavyandrequiremoreenergytobetransportedwiththevehicle.AchievinglongrangeswithBEVsthereforeinvolvescarryinganincreasinglyheavybatterythatreducestheoverallfuelefficiencyofthevehicle.Conversely,hy-drogenhasamuchhigherspecificenergy(approximately150timesmoreenergythanbatteriesforthesameweight)butverylowenergydensity(ittakesalargervolumeandrequiresveryhighpressurestobecontainedinasmallvolume).Anotherimportantdifferenceisthecurrentavailabilityofrechargingandrefuelingstationsandtherecharging/refuelingtime.BEVscanberechargedathome,andpubliccharginginfra-structurehasimprovedcontinuouslyoverthepastdecade,withanetworkofchargingstationsalreadyavailableinmanycountries.Incontrast,FCEVscannotberefueledathome,andthenumberofpublicrefuelingstationsismuchmorelimitedthanforBEVs(forareference,in2017itwas328versus90,000,accordingtoUnicredit2019).However,agrowingnumberofcoun-trieshaveambitiousplanstodevelopnewhydrogenrefuelingstationsinthenearfuture.Also,FCEVscanberefueledinjustafewminutes,whereasitmighttakehourstorechargeaBEV.Intermsofcost,BEVsofferalowertotalcostofownershipthanFCEVs(4.44cents/kmforBEVsversus9.50cents/kmforFCEVs,accordingtoUnicredit2019).However,thisfactorisdirectlydependentontheuseofthevehicle,andvehiclesthataremeanttooperateoverlongerdistanc-es,suchasFCEVs,couldseethisfigurereduced.Becauseofthesefactors,thecurrentexpectationisthat,formostpassengercars,BEVswillcontinuetosignificantlyoutnumberfuelcellvehicles,butforlonger-rangeapplications,freighttransportation,buses,maritime,andairtransport,FCEVscouldhaveastrongcompetitiveedgeinthefuture.BOX5.1615:MobilityApplicationspowerresponse,especiallyforheavier-dutyap-plications.Fuelcells,however,canhavehigherspecificenergythanbatteriesandcanextendtherangeofvehiclesmoreeffectivelythanbatteriesbecauseoftheirlowertotalsystemweightandquickerrefuelingtime.Additionally,fuelcellsarelessaffectedbyexternaltemperaturesandthusarelesslikelytoexperiencerangereductionsowingtoabnormalconditions.Atthetimeofwritingthisreport,itisestimatedthatthereare3,000fuelcellbusesandtrucksdeployedglob-ally(ObikoPearson2019)andover12,000fuelcellpassengervehicles.5.1.FUELCELLELECTRICVEHICLESTodaymorethan12,000FCEVsareontheroadsglobally,withtheoverwhelmingmajorityinJapanandtheUnitedStates.Mostoftheseunitsarepurpose-builthydrogenmodels,butinsomemarkets,suchasEurope,asignificantnumberofFCEVsareessentiallymodifiedelectricvehiclesinwhichthefuelcellsfunctionasarangeextender(table5.1).Whileaconsid-erablysmallermarketthanthebatteryelectricvehicle(BEV)market,FCEVsaregainingpop-ularityamonguserswhoeitherhaveconsid-erablylongeraveragedrivingdistances(suchasCalifornia)orcustomerswhosehighrateofvehicleuseplacesapremiumontheavailabil-ityofpower.Aclearexampleofthesecondgroupisthetaxiindustry,withFCEVtaxisnowbeingusedinChina,Denmark,France,Germany,theNetherlands,andtheUnitedKingdom.Anotherexampleistheride-sharingindustry.ThefirstsuchprogramannouncedpubliclywasbyGrove—aChineseautomotivecompany—whichannounceda200-vehiclefirstrunintheChinesecityofRugaoin2019thatwillexpandto10,000FCEVsby2020–21(NewMobility2019).Grovehasalsoannouncedinitialdiscussionswithpart-nersinMinasGerais,Brazil(GreenCarCongress2019)andwithDSMGlobaltodeployFCEVstoNepal(Kreetzer2019).Recently,FCEVshavealsobeendeployedinBritishColumbiaasaride-sharesolution,withearlysignsthatthecarshaveprovedpopularwithconsumers(McCredie2019).ThegrowinginterestinpassengerFCEVsisdrivenbyseveralfactors.ThefirstistheTABLE5.1OverviewofnotablecurrentlyavailableandannouncedpassengerfuelcellelectricvehiclemodelsMODELCOMPANYCOUNTRYRELEASEDATECONFIGURATIONRANGE(km)aCOST($)bMiraiToyotaJapan2014114kW49957,500KangooRenaultFrance2017varies100(est.)OrderdependentiX-35HyundaiKorea,Rep.2015100kW59465,000ClarityHondaJapan2018130kW61660,000GLCF-CellMercedesGermany2019155kW475NotreleasedNexoHyundaiKorea,Rep.2019135kW79558,000d5SeriescBMWGermany2020180kW480Notreleasedi8BMWGermany2020Unknown496Notreleaseda.Convertedintokilometers.b.AllconvertedintoU.S.dollarsatXErateonSeptember17,2019.c.HydrogenCarsNown.d.d.Crosse2019GREENHYDROGENINDEVELOPINGCOUNTRIES62recognitionthatlow-emissiontechnologiesareessentialfortheautomotivesector.FCEVshavenotailpipeemissions—onlywater.Thesecondiscustomerexperience.AlthoughFCEVstodaymaylackawiderefuelingnetwork,theydoprovidesignificantlylongerrangesthancantypicallybefoundinbatteryelectricvehicles,andtheyrefuelinunderfiveminutes.FCEVmanufacturershavealsoidentifiedotherbenefitstohighlight.Forexample,becausefuelcellsrequireaccesstocleanoxygentoreactwithhydrogen,allFCEVsrequiresomeformofairpurifieronboard.Onthataccount,HyundaihasrecentlybeguntomarketitslatestFCEVsport-utilityvehicle,the“Nexo,”as“anairpuri-fieronwheels”thatclaimstoleavetheairevencleanerthanitwaswhenitenteredthecar.Thevehiclehasafiltersystemtoseparatetheoxygenbeforeitiscompressedandfilteredintothefuelcell(TheWheelNetwork2018),thusHyundaiarguesthattheNexoisactuallybetterforad-dressinglocalizedairpollutionthanBEVsare.DecliningfuelcellvehiclecostsarealsolikelytobeasignificantcontributingfactorinrisingglobalFCEVdeployments.Forexample,thecostofaToyotaFCEVlaunchedin2015wasexpectedtobe95percentlowerthananequiv-alentmodelavailablein2008(Millikin2014).Nevertheless,fuelcellvehiclesalesarestillstartingfromalowbase,withnofuelcellvehi-cleeverhavingenteredthetop50mostpopularmodels(JADA2019),despitestronggovernmentsupport(box5.2).FewFCEVsarepurchaseddirectlytodaybecauseofthelimitednumberofrefuelingstationsandthelackofwidespreadtechnicalcapabilitytoaddresscarservicingneeds,bothofwhichmakeindividualownershipchallenging.Toaddressthoseissues,manufacturershaveensuredthatalmostallFCEVsareleasedtoday,withtheToyotaMiraiavailableforleaseintheUnitedStatesat$349permonth(IEA2017).AsrefuelingcapacityisrolledoutfurtherandasautomotivedealershipsseesufficientdemandtotraintheirstafftoserviceFCEVs,itisanticipatedthatmoreFCEVswillbepurchaseddirectlybyconsumers.CaliforniaoffersoneexampleofthegrowthoftheFCEVmarketoverthepastfiveyearsinanearly-adoptingmarket(figure5.1).5.2.FUELCELLELECTRICBUSESThenumberoffuelcellapplicationsforbusesiscurrentlysignificantlylargerthanthenumberofFCEVsdeployedglobally.BallardPowerSystemsdelivereditsfirstfuelcellbusin1993.Todaythereareseveralhundredfuelcellbuses(FCEBs)inoperation,notablyinEurope,withincreas-inggrowthinChina,Japan,Korea,andNorthAmerica(figure5.2).Theadvantagesoffuelcellbusesaretheirrange,quickrefuelingtimes,and,increasingly,theirdecliningcostversusbatteryalternatives.Developingcountriesarecatchingupquickly,withBrunei,CostaRica,India,andMalaysiaamongthefirstmovers.Asof2019,FCEBshavedemonstratedoperatingtimesabove20,000hoursinmultiplecoun-tries.Infact,TransportforLondon’seightFCEBsprocuredfortheOlympicsin2012haveex-ceeded34,000hoursoperatingtimeandremainontheroadstoday.InAberdeen,Scotland,the10FCEBsprocuredin2014havedemonstratedremarkableperformance,withallunitsexceed-ing1millionmilesanddemonstratingrangesofupto250milesperday,refuelinginonlyfivetosevenminutes(BallardPowerSystems2019a).Consequently,theAberdeenCityCouncilcon-firmedfinancialsupportforanadditionalfiveFCEBsin2019(FuelCellWorks2019a)onthebasisoftheperformanceoftheexistingunits,whichtestssuggesthaveprovedtobealmostfourtimesmorefuelefficientthantheirdieselequiv-alents(IMechE2016).Newerunitsaretargetingevenhigherperformance.Forthe2022WinterOlympicsinChina,ToyotaispartneringwithBeiqiFotonMotorandYihuatongTechnologytoprovideafleetofFCEBs.Thesewillhavea60kW635:MobilityApplicationsfuelcell,andFotonclaimsthatitsfourth-genera-tionbuseswillprovidearangeof450kilometers(Xu2019).ItisimportanttonotethatFCEBsarenotlimitedtodevelopedmarkets.Indeed,AdAstradeployedthefirstFCEBinCentralAmericain2018,usingsolarPVandelectrolyzerstogen-erategreenhydrogenon-siteforitstworefuelingstations(Kazmier2018)(box5.3).ExistingexperiencesshowthatthecostsofFCEBsareaconstraintincertainmarkets,asisaccesstorefuelingunits.Forexample,electricbusesintheUnitedStatesappeartobelessexpensivethanthemostrecentpubliclyquotedpriceforanFCEB,atroughly$1.1millionforanFCEBinCaliforniaversus$750,000perbatteryelectricbus(Stromsta2019).Further,HYDROGENMOBILITYINCHINAFollowingChina’srisetobecometheworld’spremiermarketforbatteryelectricmobilitysolu-tions,thebatteryelectrictransportleasingmarketisswitchingitsfocusincreasinglytowardfuelcellmobilitysolutions.In2018alone,ChinaisreportedtohaveinvestedoverUS$12billioninresearch,development,anddeploymentofhydrogenandfuelcellsolutions,almostexclusivelywithinthetransportationsector.AllofChina’smajorcarcompanieshaveannouncedfuelcellvehiclesunderdevelopment,whilethecityofRugao,backedbytechnicalsupportthroughaUS$10millionprogramwiththeUnitedNationsDevelopmentProgramme,hascommittedtopurchasing10,000fuelcellvehiclesfromChinesestart-upGrove.Thefastest-movingsectorsofthefuelcellindustryinChinahavebeeninthebusandlogisticssegments.Alibabahasalreadybeguntousefuelcellvehiclestosupportitslogisticsoperationsinandarounditsvastwarehouses,whileseveralChinesecitieshaveprocuredandareexpand-ingtheirfleetsoffuelcellbuses.InBeijing,thegovernmentrecentlyprocured10fuelcellbusestosupportthe2022Olympics,withfinancingpartlyprovidedbytheAsianDevelopmentBank.MeanwhileinShanghai,SAICandtheShanghaiChemicalIndustryParkopenedtheworld’slargesthydrogenrefuelingstationinJune2019.Thesitesupportstherefuelingof74fuelcellbuses,dispensingaround1.5tonnesofhydrogendailyona24/7basis.AsofDecember2019alone,itwasreportedthatBallardanditsjointventurepartnersinChina(FoshanFeichiBusandYunnanWulongBus)secured354fuelcellbusorders.Statesupporthasprovedtobeessentialinacceleratingdeployments.SAIC’sMaxusFCV80wasoriginallylaunchedatapricetagofRMB1.3million,butwithsubsidiestheactualcostwasestimatedtocomeinclosertoRMB300,000.Meanwhile,fuelcellbuseswereexpectedtoreceiveasubsidyworthinexcessofUS$100,000,reducingthecostoffuelcellbusesfromUS$500,000tobelowUS$400,000beforelocalandregionalsubsidies.Further,mostofChina’shydrogenissourcedfromhydrogenproducedasanon-coreproductofanotherchemi-calorindustrialprocessandthusitisoftensoldbelowthepricepointofUS$10–US$14perkgcommonlyseenindevelopedmarkets.Furthermore,fuelcellcostsandelectricvehiclecostsareclearlyfalling,suggestingthattheChinesegovernment’splannedphaseoutofsubsidiesby2023couldmarkthepointatwhichfuelcellvehicleswillreachcommercialviabilityinthedomesticmarket.Sources:Sanderson2019andESMAPcorrespondencewithsuppliers.BOX5.2GREENHYDROGENINDEVELOPINGCOUNTRIES64fulclllctricvhiclsonthrods02,0004,0006,0008,00010,000Oct-19Jul-19Apr-19Jn-19Oct-18Jul-18Apr-18Jn-18Oct-17Jul-17Apr-17Jn-17Oct-16Jul-16Apr-16Jn-16Oct-15Jul-15Apr-15Jn-15Oct-14Jul-14Apr-14Jn-14Source:Energy.govandCaliforniaFuelCellPartnerships,compiledbyESMAP2020.FIGURE5.1Californiamonthlyfuelcellelectricvehiclemarket,January2014–December2019(numberofsoldandleasedunits)©BallardPowerSystems.FIGURE5.2Pastandpresentfuelcellbusexamples,1993(right)and2014(left)655:MobilityApplicationssignificantlyfewerhydrogenrefuelingstationsthanelectriccharginglocationshavebeeninstalled.Yet,thecostadvantageofbatteriesoverFCEBsdoesnotholdinallmarkets.Forexample,inpublicfilingsBallardprovidedcostestimatesofUS$500,000perFCEBinChina,whilesourcesallsuggestthatEUtargetpricesofEUR650,000(GBP520,000)setin2016havebeenmetintheUnitedKingdommarkettoday(PocardandReid2016).Atthesepricepoints,FCEBsmaylookattractiveevencomparedwithconventionaldieselbusesincertainmarkets(figure5.3),particularlywheredieselbuspricesofUS$500,000perunithavebeenreported(Stromsta2019).ItisalsothecasethatmostFCEBsnowaredeliveredalongsidehydrogenrefuelingstationsattheirbaseofoperations,thusaddressingsomeoftheconcernsaroundaccesstofuelsupply(figure5.4).Nevertheless,withrespecttochargingorrefueling,hydrogenrefuelingstationsremainmoreexpensivetoinstallthanpureelectricalternatives.5.3.FuelCellTrucksFuelcelltrucksareoneofthemostpromisingareasofgrowingdemandforfuelcellsolutionsinthemobilitysector.Asof2020,governmentagenciesandcompaniesinChina,Japan,Korea,Norway,andSwitzerlandallhavepledgedtoCLEANMOBILITYINCOSTARICAUSINGCENTRALAMERICA’SFIRSTFUELCELLBUSCostaRicaisfrequentlyrecognizedasagloballeaderinsustainability,ecotourism,andcleanpower,butdecarbonizingthecountry’stransportationsectorhasremainedachallenge.Localgridsareoftenillsuitedtorapidchargingrequirementsthatbatteryelectricdriversexpect(asofApril2018therewere20electricvehiclechargingstationsintheentirecountry).Further,thecountry’spopulationdependsonthebusnetworktocommutetoworkandschool,particularlyinpoorercommunities.Inthiscontext,U.S.-basedAdAstraRocketdeployedCentralAmerica’sfirstfuelcellelectricbus(FCEB),hydrogenrefuelingstation,andgreenhydrogenelectrolysisunit.TheprojectwaspartlyfundedbyIDBInvest,theprivatesectorarmoftheInter-AmericanDevelopmentBank,andisintendedtodemonstratethatfuelcellbusescanbeaserioussolutiontohelpdecarbonizethetransportationsectorinCostaRica,throughoutthewiderLatinAmericaregion,andbeyond.Atacostof$4.4milliontodate,theprojecthasdemonstratedthatthetechnologyistechnicallyviable,thatitisclean,andthatitcouldbeapowerfulcontributiontoCostaRica’sdecarboniza-tionefforts.Thebusitselfwasdeployedin2017inLiberia,Guanacaste,andhasarangeofupto340kilometers(210miles)on38kg(83lbs.)ofcompressedhydrogen.Thecapacityofthevehicleisabout35passengers,anditcanreachaspeedlimitofupto110kmperhour(68mph).Asapublic-privatepartnership,theprojecthasbenefitedfromthecollaborationofthegovernmentofCostaRica,AdAstraRocketCompany,AirLiquide,CumminsInc.,SistemadeBancaparaelDesarollo,RelaxuryS.A.,andUSHybridCorporation.Thepowerisgeneratedbyacombinationofsolarphotovoltaicpanelsandanonshorewindturbinelocatednexttothecompany’sCostaRicanoffice.Thesitenowalsorefuelsthecountry’sfirstfourfuelcellelectricve-hicles,threeofwhichareleasedtotouristsatalocalecotouristhotel,asazero-emissionsolutioncapableofdrivinglongdistanceswithoutrangeconcerns.Source:ESMAPcorrespondencewithsuppliers.BOX5.3GREENHYDROGENINDEVELOPINGCOUNTRIES66CostprVCEB,$0500,0001,000,0001,500,0002,000,0002,500,000$2,000,000$950,000$500,000$417,0002010201120122013201420152016201720182019Source:Ballarddata2019andBloomberg2019,reconstructedbyESMAP.FIGURE5.3DecliningcostoffuelcellelectricbusesFIGURE5.4FuelcellbusrefuelinginWuhan,China©GroveHydrogenAutomotive.675:MobilityApplicationsprocureanddeployover1,000fuelcelltrucksoverthenextdecade.ThusfarChinahasbeenthedominantmarketforactualdeploymentsoffuelcelltrucks.AsofDecember2019,HorizonFuelCellsthroughitsjointventurewithFordMotorCompanyinChinahaddeployedover400fuelcelltrucks(ranging8tonsto42tons),notablythefirst42-tonhy-drogentrucksdeliveredintheworld(Gu2019).Meanwhile,Ballardanditspartnershavedeployedover1,400fuelcelltrucksinChina,rangingfrom500three-tontrucksinShanghaitolarger12-tonunits(Ballard2018,2019b).Numerousothercom-paniesarenowenteringthesector,contributingtoanestimated4,000fuelcellcommercialvehiclesinChinaby2018(Ballard2018).However,althoughChinaisthelargestcurrentmarketforfuelcelltrucks,theriseofacompanycalledNikolaintheUnitedStateshascapturedthebulkofinvestorandmediainterestrecently.NikolaCorp.iscurrentlyoneofthemarketleadersintermsofordersandscaleforhydrogentrucks,andithasplanstoofferthreetruckprod-ucts:NikolaOne,NikolaTwo,andtheNikolaTre(Europeanmodel).TheflagshipmodelistheNikolaOne,whichoffersupto2,000poundsoftorque,upto1,000horsepower,a500–700milerange,anda15–20minuterefuelingtime.Acrossallthreemodels,Nikolaclaimstohaveabacklogof13,000orders(Wiles2019).PowerfulstrategicpartnershipsunderpintheNikolaproposition.ElectrolyzershavebeenorderedfrommarketleaderNel,fora1GWinitialorder,toprovideinitial50x20MWelectrolyzerunitsforrefuel-ing.BoschistheOEMprovider(withfuelcellslikelytobefromBallard,thoughthatisnotyetconfirmed).ConfirmedclientsincludeAnheuserBusch,whichhasalreadycommittedtotakingmorethan600trucks.Intotal,Nikolaclaimstohave$11billioninpreordersandhasraisedover$450millioninfinancinginthepastfiveyears.ItisimportanttonotethatNikola’sbusinessmodeldifferssignificantlyfromcurrentmarketpracticesandthatNikola’ssolution,atleastintheUnitedStates,willoperateunderanintegratedleasingstructure,inwhichasinglemonthlypaymentwillcovervehiclerental,hydrogenrefueling,warranty,andmaintenance.Thepricingisbasedonanestimateddistancetraveled,andownerswillhavetheoptiontotradeinforanewNikolavehicleevery700,000milesor84months,whichevercomesfirst(Nikolan.d.).DespitethepotentialforNikolatotransformUStrucking,theonlydeployedhydrogenandfuelcelltrucksintheUStodayareruninLongBeach,California,whereToyotaisusingtwohydrogentrucksfordrayageoperations,withShellprovidingthehydrogenforrefueling(PRNewswire2018).ToyotahaspartneredwithKenworthfortheproject,andtheirtwopilottrucksareduetoexpandto10unitsby2020.Thusfarthetruckshaveloggedmorethan14,000milesoftestinganddrayageoperations(Babcock2019).MikeDozier,thegeneralmanagerofKenworth,stated,“Theperformanceofthe10KenworthClass8trucksbeingdevel-opedunderthisprogram…istargetedtomeetorexceedthatofadiesel-poweredtruck,whileproducingwaterastheonlyemissionsbyprod-uct”(Babcock2019).Inadditiontothoseunits,Toyota/KenworthhaveordersfromUPS,whosefirstthreedeliveriesweredueattheendof2019(Abt2019)(figure5.5).Box5.4describesaheavytransportcaseinvolvinggreenhydrogen.5.4.SHIPPINGANDTRAINSTwoofthelargestpotentialsourcesofgreenhy-drogendemandinthemobilitysectorarefreightandmaritimeapplications.ThefirsthydrogenvesselwasaretrofittedGermanferryforinternalwaterwayscommissionedin2006,andnewocean-capablevesselsbeingdesignedtodayhavereceivedprovisionalclassi-ficationsandmaybeinserviceby2021.ThesenewvesselsincludeagreenhydrogenferryforGREENHYDROGENINDEVELOPINGCOUNTRIES68Sources:a.CourtesyofToyotaviaToyotanewsroom.b.CourtesyofNikolaCorp.c.CourtesyofHorizonFuelCells.FIGURE5.5Currentfuelcelltruckconcepts:Kenworth/Toyotafuelcellelectrictruck(top),NikolaOne(bottomleft),andHorizonfuelcellinJMCtruck(bottomright)695:MobilityApplicationstheOrkneys,beingdevelopedundertheHySeasIIIprograminScotland,andseveralprojectsinNorway.Initially,thefocusforhydrogeninship-pinghasbeentoprovideauxiliarypower.DuringtheFellowSHIPprograminNorwayin2009,theVikingLadyinstalleda330kWmoltencarbon-atefuelcellfromMTUOnsiteEnergythatranonnaturalgaswithoutpre-reforming(FuelCellToday2013).Duringthetrial,thefuelcelllogged18,500successfuloperatinghours,providingsupplementarypowertotheshipatanelectricalefficiencyofover52percentatfullload(FuelCellToday2013).Nowthesectorislookingtopoweralloperationsviahydrogen,withsomeconfigu-rationsusingpurePEMunitsandothersconsid-eringPEMtopowertheturbineswhileauxiliaryHYDROGENFORMININGMOBILITYOPERATIONSINCHILEMiningisanenergy-intensivebusiness.TheWorldBank’sClimate-SmartMiningFacilityre-portsthatminingoperationsconsumearound11percentoftotalenergydemandworldwide,with4percentusedforcrushingrocksalone.Yet,thesector’sheavyrelianceondieselformobilityandremotepowerprovisionindicatesthatthesector’semissionprofilemaybeevenworsethantheheadlinenumbers.InChile,acountrywhereminingaccountsfor10percentofgrossdomesticproductandcopperaloneaccountsfor50percentofexports,thedesiretoreplaceexpensivefuelimportsforminingoperationsbylower-costlocallyproducedenergyisencouragingearlyinvestments.In2017thecountry’sleadingresearchagency,CORFO,announcedthataconsortiumofleadingmining,fuelcell,hydrogen,andrenewableprojectdevelopmentcompanieswouldworktogethertodevelophydrogenmobilitysolutionsforminingoperationsinChile.Theapproxi-mately$6millioninvestment,backedbyupto$6millionofinvestmentfromtheproject’sprivatesectorpartners,isdesignedtohelpexaminethetechnicalandeconomicviabilityofhydrogenasacleanfuelsourceinthelargeminingvehiclesthatoperateinthecountry’snorthernregions.AlongsidethiseffortinChile,AngloAmericanhasinvestedin900kWofprotonexchangemembranefuelcellsfromBallardtopoweraretrofittedUltraheavy-dutyminingtruckinSouthAfricathatwillbeginitspilotoperationsin2020(Ballard2019c).Furtheron,hydrogenmayalsobeabletohelpprovideremoteenergystorage,asitdoesinoneofChile’smicrogridsintheAtacamaDesert,anditmayevenbeabletohelpwithprocessingoreafteritsextraction.AkeyreasonthatChilehasemergedinrecentyearsasahotspotforgreenhydrogenprojectsisthecountry’sexceptionalrenewableresources,complementedbyastrongregulatoryframeworkandinvestmentenvironment.AstudybyTractebelandtheChileanSolarCommittee(2018)concludedthatgreenhydrogencouldbeproducedatbetween$1.80perkgand$3.00perkgassoonas2023,makingthefuelcompetitivewithhydrogenfromnaturalgasimports,ifnotcheaper.ThisforecastfurtheralignswithresearchconductedbytheInternationalRenewableEnergyAgencyin2018,whichconcludedthatChilecouldproducehydrogenfromrenewableresourcestodayatbetween$4.00perkgandjustunder$6.00perkg,decliningtobetween$2.50perkgand$4.00perkgby2030.Giventheseanticipatedcostdeclines,andmarketex-pectationsthathydrogeninmobilitycancompetewithdieselatbelow$7.00perkgatthepointofdelivery,Chileappearswellpositionedtoleadthedeploymentoflow-emissiontechnologiestoreduceheavytransportemissionsintheminingsector.Source:TractebelandChileanSolarCommittee2018;ESMAPcorrespondencewithsuppliers.BOX5.4GREENHYDROGENINDEVELOPINGCOUNTRIES70powermightbehandledbyothertechnologiessuchasSOFCunits.Forexample,BloomEnergyhasannouncedapartnershipwithSamsungHeavyindustriestoexamineSOFCuseinship-pingasofSeptember2019(BusinessWire2019).NoteworthypartnershipsinthisspaceincludePowerCellandSiemens(Siemens2018),BallardandABB(GreenCarCongress2018),aswellasNedstackandGeneralElectric(Terpilowski2019).Giventheintensiveuseofheavyandlighthy-drocarbonsasbunkerfuelsinmaritimeshippingandthelargepotentialenvironmentalbenefitsofdecarbonizingthissector,theWorldBankthroughitstrustfundProbluehasbegunaprogramtosupportdevelopingcountriesintheirambitionstoswitchtozero-carbonbunkerfuels,andtodevelopsustainablemarineresources.Initialstepshavebeentakentoexplorethepotentialdemandforzero-carbonbunkerintheportsofafewselectedcountries,andtheresourcesrequiredtomeetthatdemand.Withrespecttotrains,onlytwocountriescurrentlyoperatethem:onehydrogentraininGermanyandahydrogentraminChina(Yang2017).Germany’strainisdevelopedbyAlstomandHydrogenics(RailwayTechnologyn.d.).Butothercompaniesarecatchingup,withBallardandSiemensworkingtogetheronahydrogentrainbasedontheMireoplatform.BallardalreadyreceivedanorderfromPorterbrook(aleadingparticipantintheUKrailleasingmarket)toprovidefuelcellsfor100car-riagesthatwilloperateintheUnitedKingdomun-derthe“HydroFLEXTrain”banner(Songer2018).InterestinhydrogentrainshasalsobeenexpressedinCanadaandNorthCarolina(UnitedStates)andinFranceandotherEUmarkets.5.5.HYDROGENREFUELINGSTATIONSAsignificantconstraintforhydrogenmobil-ityapplicationsistheavailabilityofrefueling27ESMAPdiscussionswithsuppliers,2019.stations.Relativelyfewstationsareinplaceglobally,withtheIEAestimatingthat432stationswereoperatingattheendof2019.Butthissituationisforecasttochangerapidly,andasof2017globalcumulativeannounce-mentsforhydrogenrefuelingstations(HRSs)exceeded1,100newunitsby2020,3,000by2025,andabout15,000by2030(HydrogenCouncil2017).Thesefiguresarebeingrevisedupward,withAgrola,AVIA,Migros,Migrol,andCoopinSwitzerlandcommittingtosupportthedeploymentof1,500HRSsalone,andKOGAScommittingover$4billiontohydrogenproduc-tionandrefuelingstationinfrastructureinKoreabetween2019and2030.HydrogenrefuelingstationsarealsomovingoutfromtraditionalmarketslikeChina,France,Germany,Japan,Norway,theUnitedKingdom,andtheUnitedStates(figure5.6).In2018thefirstHRSunitswereinstalledinAustria,Canada,CostaRica,Iceland,Spain,andtheUnitedArabEmirates;meanwhile,MalaysiaannouncedplanstoexpanditshydrogenrefuelingstationnetworkfromonetoseveninDecember2019,mak-ingitoneofthelargestnetworksintheworldannouncedoutsideofJapan,Germany,France,theUnitedKingdom,andtheUnitedStates(FuelCellWorks2020).Inadditiontothenumberofstationsdeployed,hydrogenrefuelingstationsarealsoscalingintheircapacity.Whileearlysitesmayhavebeenabletorefuelonlyasmallnumberofcarsperday,newstationscanprovidefuelingforpo-tentiallyhundredsofvehicles,withtheworld’slargestrefuelingstationinChinaprovidinghydrogenfor74fuelcellbusesaday,dispensing1.5tonnesofhydrogen(Haskel2019).PossiblythelargestconstraintforHRSunitsistheircost.Estimatessuggestthatwithouton-siterefueling(hydrogenbroughtinexternally),HRScanbedevelopedforaround$1.1millionintheUnitedStates27andforaround$1.5million715:MobilityApplicationsFIGURE5.6Greenhydrogenrefueling,withon-sitehydrogengenerationfromrooftopphotovoltaic:Freiburg,Germany,in2012(left)andEmeryville,California,in2011(right)Source:CourtesyofNel.FIGURE5.7Exampleofhydrogenrefuelingstationconfiguration(noon-siteproduction)Note:IR=infrared.©NREL.NotesaddedbyESMAP.dispenserandchillercompressorsIRdetectionsystemelectronicshighandlowpressurestorageGREENHYDROGENINDEVELOPINGCOUNTRIES72inChina(Wanyi2018).(Seefigure5.7.)AstudybytheHydrogenCouncilnotedthattheCEP/H2MobilityprograminGermanysawHRScostsfallfromEUR2million(US$2.4million)perstationin2008toEUR1million(US$1.2million)asof2017(HydrogenCouncil2017).Thesameyear,theIEAreported,“ThecostofearlymarketHRSrangesfromUS$2.1milliontoUS$3millioninCalifornia”(IEA2017).HRSunitstodayemployingon-sitegreenhydrogengenerationcanaddUS$2million–US$4milliontothesite’scostdependingontheelectrolyzersizeandthetechnologyused(box5.5).IthasbeennotedthatPEMelectrolyzerunitsintheUnitedKingdomcanqualifyforancillaryserviceprovisionundertheUK’s“demandon”programrunbyNationalGrid,whichmaypro-videanadditionalrevenuestreamtoimprovethecommercialviabilityofon-sitegenerationforHRSlocations.5.6.MATERIALHANDLINGANDFORKLIFTSOneoftheworld’sleadingcompaniesinmaterialhandlingunitsisPlugPower,aUS-listedfuelcellmanufacturerwithover30,000fuelcellforklifttrucksdeployedglobally,mostlyintheUnitedStates(PlugPower2020).Currently,hydrogenandfuelcelltechnologiesENERGYSTORAGEANDGREENHYDROGENREFUELINGONSINGAPORE’SSEMAKAUISLANDTheislandofSemakauinSingaporelies8kilometersawayfromthemainlandandoperatesasanentirelyseparatemicrogrid.WhiletheislandislargelyusedasalandfillsiteforashesfromSingapore’swasteincinerationplant,ithasalsodeployedseveralrenewableresources,includ-inganonshorewindturbine,andisnowthepilotsitefortheREIDSinitiative(RenewableEnergyIntegrationDemonstrator—Singapore).Theislandisatestcaseforthegovernmenttoshowthathydrogenandfuelcellscanhelpworkalongsidetheotherrenewabletechnologiesontheislandtoenhancegridstabilityandprovideinnovativesolutionstotheisland’senergyneeds.LedbyEngieviaitsSustainablePoweringofOff-GridRegions(SPORE)project,Semakauhasdeployedaspeciallydesignedonshorewindturbine,supportedbya200kWIneobattery,whichfunctionsastheprimaryenergystoragesolutionfortheisland.Toprovideadditionalstoragebeyondtheseveral-hourtimeframeandtoprovideanenergysolutionforvehiclesontheisland,anelectrolyzerprovidedbyMcPhythatcanstoreupto2MWh(80kg)ofhydrogenhasbeendeployed.ThishydrogencanthenbeusedeitherbythehydrogenrefuelingstationontheislandtopoweramodifiedRenaultKangooelectricvanortoprovideadditionalenergystorageforperiodsthatexceedthestoragecapacityofthebattery.AlthoughSemakauissmallislandwithonly2squarekilometers,theprojectitselfhasdemon-stratedthatgreenhydrogencanbeausefulcontributortomaintaininggridstability,mitigatingrenewablevariability,andprovidingmultipleenergyendapplicationsforoff-gridorremoteenergysystems.BOX5.5735:MobilityApplicationsareextremelyappealingtomaterialhandlingbusinessesbecausetheyrequiresignificantlylessspacethanbatteryalternativesandtheyhaveahigheroperationalavailability(figure5.8).MajorcustomersofhydrogenandfuelcellforkliftunitsincludeAmazon(aninvestorinPlugPower)andWalmart,bothofwhichareestimatedtousePlugPowerunitsinover25percentofalltheirUSwarehouses.OutsideoftheUnitedStates,Carrefour,Alibaba,andToyotaarealsoscalinguptheiruseofhydrogenandfuelcellforklifts.FIGURE5.8Hydrogenforkliftrefueling©GroveHydrogenAutomotive.©PDCMACHINES756:IndustrialApplications6:INDUSTRIALAPPLICATIONSKEYTAKEAWAYSnnGrayhydrogeniswidelyusedinindustrytoday.Thescalingupofgreenhydrogenprovidescompaniesandpolicymakerswithapowerfultooltodecarbonizeexistingandnewsourcesofindustrialenergydemandandindustrialprocesses.nnAmmoniaproduction,refiningprocessesandmethanolproductionconstituteover90percentofthetotalhydrogendemandtoday.nnGreenhydrogencouldbeacleanalternativetocoalinthereductionofironore,andcouldreplacenaturalgasasasourceofhigh-temperatureheatintheironandsteelindustry.nnHydrogencarrierssuchasmethanol,ammoniaandsyntheticmethaneareeasiertostoreandtransportthanhydrogenbutcomewithhigherefficiencylosses.Still,theirphysicalpropertiesmakethemmoreappropriatethanhydrogenforspecificindustrialapplicationsnnProducinggreenammoniaindevelopingcountries,usinglowcostrenewableenergyandelectrolysis,createamoredistributedproductionmodel,reducingtransportcostsandcreatingopportunitiesforlocalindustrialdevelopment.GREENHYDROGENINDEVELOPINGCOUNTRIES766.1.IRONANDSTEELIndustrialandchemicalusesremainthecoremarketforhydrogentoday.Broadly,thecurrentmarketcanbesplitintoproductionofammonia,refiningofgasoline,andproductionofmetha-nol.However,asindustriesincreasinglylooktodecarbonizetheirindustrialheatrequirements,anumberofcompaniesareexaminingtheroleofgreenhydrogeninprocessessuchassteelandglassmanufacturing.Steelproductionisaparticularlyinterestingareaforhydrogenbecauseoftheprocess’shighcarbonemissionsandtherelativelackofviablealternatives.Currentlyhydrogenisalreadypartlyusedinmetalprocessingtoyieldironreduction,andAirLiquideestimatesthatthetypicalhydro-genconsumptioninthistypeofplantisbetween36tonnesperyearand720tonnesperyear(Fraileandothers2015).Thus,steelrepresentsanaddressablemarketbyelectrolysisandgreenhydrogen.Indeed,therearecompaniesusinghydrogenastheprotectiongasintheproduc-tionofsteelplate,withaunitsuppliedbyTHEChinaprovidingthisservicetoasiteinBulgaria(THEn.d.a.).Hydrogenisalsousedintheironindustrytopreventpartialoxidationofironorewhiletheoreisinthefurnace.Somesiteswillfloodthefurnaceswithhydrogen,sothatitwillreactwithanyfugitiveoxygenmoleculesandpreventoxidation(figure6.1).Thebiggerquestionthatresearchersareattempt-ingtoassessiswhetherhydrogencanplayagreaterrolebyreplacingcoalandotherheatingfuels.Threeflagshipprojectsoperateinthisspace:Tata,ThyssenKrupp,Nouryon,andthePortofAmsterdamproject;HYBRITinSweden;andH2FUTUREinAustria.ByfarthelargestoftheseisthePortofAmsterdam,whichisatthefeasibilitystudyphaseandislookingata100MWelectro-lyzerthatwouldproduce15,000tonnesofgreenhydrogenayearandcreateoxygenforthesteelsiteaswell.ThefirstpilotthatisactuallyinstalledandoperatingisH2FUTUREinAustria,wherea6MWPEMelectrolyzerprovidedbySiemensisworkingonaVoestalpinesteelsite,usingpowerfromVerbund’salmostentirelyrenewable-basedportfolio(Voestalpine2018).FortheHYBRITproject,SSAB,LKAB,andVattenfallareusinga4.5MWalkalineelectro-lyzertooperateinLuleå,Sweden,from2021untilFIGURE6.1ElectrolyzeratanIndianironproductionplant©EnerBlue.776:IndustrialApplications2024,beforetheprojectentersademonstrationphasewiththegoaltohaveanindustrialprocessinplaceby2035.TheHYBRITprocessisbasedondirectreductionofironoreusingrenewableenergyandhydrogen;thehydrogenreactswiththeoxygenintheironore,thuscreatingmetallicironandwater(Cision2019)(figure6.2).Atthistime,intheabsenceofsupportingpolicies,evi-dencefromHYBRITstudiessuggeststhatthecostsfromelectrolysisremaintoohigh.Thecapitalexpenditurerequiredforsettingupadirectironprocessor,anelectrolyzer,andahydrogenstoragefacilityisestimatedatEUR1,000pertonneofcrudesteel,comprisingalmost80percentofthetotalproductioncostsandyieldingasteelpriceofEUR1,200pertonne(WECNetherlands2019).6.2.AMMONIAAspreviouslyindicated,ammoniaisthelargestdemandsourceforhydrogentodayandaprimeoptionfordecarbonizationeffortswithgreenhydrogen.Twolarge-scaleprojectsthatarebeingconsideredforinvestmentarea20MWelectrolyzerunitatAirLiquide’sammoniasiteinQuebec(AirLiquide2019)anda100MWsolarPVcombinedwitha50MWelectrolyzerforYARA’sammoniasiteinWesternAustralia(ENGIE2019).Theseprojectsarefollowingpilothydrogen-from-windtoammoniaprojectsthatalreadyhavebeendeployedandwhichprovideevidenceofthetechnicalfeasibilityandcostconsiderationsforsuchanapplication(figure6.3).©HybritDevelopment,2019.FIGURE6.2HYBRITconceptimageGREENHYDROGENINDEVELOPINGCOUNTRIES78Ammoniaasamarketforgreenhydrogenisparticularlyappealingbecauseofthescaleofde-mand.AstudyfortheFCHJUin2015estimatedthatatypicalammoniaplanthasthecapacitytoproducebetween1,000and2,000tonnesofam-moniaperday,thusrequiring57,500to115,000tonnesofhydrogenperyear(Fraileandothers2015),whileThyssenkruppsuggestsatraditionalplantwouldproducecloserto3,000tonnesperday(Thyssenkruppn.d.).Suchalevelwouldrequireelectrolyzerunitssignificantlylargerthanthosecurrentlycommerciallydeployed,andasinglesitewouldlikelyabsorbmanymanufac-turer’sannualcapacityforseveralyears,giventhecurrentinstalledcapacityofelectrolyzersuppliers.TheotherappealisthatifthecostofhydrogenfromelectrolysisweretofallbelowthecostfromSMR,itwouldbeconceivablethatthecentralizedammoniaproductionprocessitselfwouldchangeandmovetowardamoredistrib-utedproductionmodel.Suchasituationwouldreducetransportcostsandwouldalsocreatetheopportunityformanycountriestoproducegreatervolumesofammoniadomestically,creatingjobs.ItisforthisreasonthatcompaniessuchasThyssenkrupphavebeguntomarketsmaller-scaleammoniasolutionsbasedonsystemsthatcanrunona20MWpowerinput,withmodularscalingupto120MW.Regardingtheusecasesforsmallerdesigns,thecompanynoted,“atlandlockedlocationswithlowpowercosts,installationofagreenammoniaplantmaywellbeaninterestingoption,notleastforthefertilizerorchemicalindustry.Notsurprisingly,economiesofscalefavorconventionalplantsathigherproductioncapacities.Butbesidesitseconomicallyfeasibleexistenceasanicheprod-uct,greenammoniaisbecomingincreasinglyinterestingtorenewableenergyproducersasasuitableenergystorageandcarriermedium.”(Thyssenkruppn.d.).Whiletheprimaryinterestinammoniaisitsuseasafertilizer,itcanalsobeusedasamechanismforstoringenergyhydrogencheaplyandforlongperiodsoftime,beforethehydrogenisextractedoutoftheammoniaagain.Althoughthisprocessentailshighefficiencylosses,withround-tripFIGURE6.3World’sfirstwind-to-ammoniaprojectSource:NelelectrolyzeratMorris,Minnesota,UnitedStates.CourtesyNel.796:IndustrialApplicationsefficiencyfiguresaround20–30percent,depend-ingontheinitialefficiencyoftheelectrolyzer/SMRused,itmaystillbeviableinareaswheretheproductionofhydrogenislow.Inaddition,morerecentresearchhasexaminedwhetherammoniacanbeuseddirectlyasafuel,whetherwithareformeronafuelcellorcombustedinaturbine.Somecompaniesinthepowersectoral-readyuseammonia.ThelargestuserofammoniaforfuelcellapplicationsisGenCell,whoseunitsprovideoff-gridpowersupplyusingammoniawithareformer(GenCelln.d.).TheseunitshavelowersystemefficiencythantypicalhydrogenorSOFCcells,buttheycanstoreammoniaeasilyon-siteforuptosixmonthsatatime.CompaniessuchasBakerHughesandMANGrouphavealsobeenworkingtodevelopandcommer-cializeturbinetechnologythatcouldgeneratepowerfrom100percentammoniafuel.Thisisbeingcloselymonitoredbyofficialsincoun-trieswithexistingnaturalgasturbinesinstalled,whoseegreenammoniaasapotentiallymoreconvenienthydrogen-derivedfuelforzero-car-bon-emissionpower.6.3.REFININGOneofthemostimmediatesourcesofpotentialindustrialdemandforgreenhydrogenisrefining.Atypicalrefinerymightrequirebetween7,200tonnesand108,800tonnesofhydrogenperyear,withnewandcomplexlarge-scalerefineriesrequiringupto288,000tonnesperyear(Fraileandothers2015).Accordingly,agrowingareaofinterestforindustryintheshorttomediumtermiswhetheremissionsfromrefiningandgasolineconsumptioninmobilitycanbereducedbyusinggreenhydrogen.Althoughtheeconomicsatthistimeappearchallenging,thesegmentmaybedrivenbypolicyifitisacceptedthattheuse28Converting320normalcubicmetersperhourat0.08988kgper1normalcubicmeterperhour,usinghttp://www.uigi.com/h2_conv.htmlwithsourcedatafromFraileandothers2015,16.29Converting44normalcubicmetersperhourat0.08988kgper1normalcubicmeterperhour,usinghttp://www.uigi.com/h2_conv.htmlwithsourcedatafromFraileandothers2015,16.ofgreenhydrogencanbecountedtowardreduc-tioninnationaltransportationemissions.Thus,thefirstbigtestislikelytobeITMPower’s10MWunitinsideShell’sRhinelandfactory,closelyfollowedbyBP’s250MWfeasibilitystudyinthePortofRotterdamthatislookingatproducingupto45,000tonnesofgreenhydrogenperannum(PortofRotterdam2019).6.4.GLASS,FOOD,ANDOTHERAREASOthersegmentsofinterestforgreenhydrogeninindustryincludethefoodindustryandglassindustry.Hydrogenationoffatsisthecoreareaofapplicationforthefoodindustry,withthedemandprofilesuitableforelectrolyzerunitsbe-tween0.5MWand2MW.ThisamountisbasedonestimatesfromtheFCHJUthatonaveragehydrogenationoffatssitesrequirehydrogenpro-ductionofupto28kgperhour,28correspondingto672kgadayifoperating24hours.Glassmanufacturingisalsoagrowingareaofinterestforgreenhydrogen,withsuppliersindicatinggrowingawarenessinAsia,Europe,andNorthAmerica.Giventhelowdemandforhydrogenfromatypicalglassplant,around3.95kgperhour,thismarketsegmentiswellsuitedtoon-sitegenerationviaelectrolysis.29InSlovenia,onecompanyisusingrooftopsolarPVtocreatehydrogenthatisblendedwithnaturalgasintotheglasssitefurnaces(Willuhn2019).Acom-panyinVietnamhasbeenusinghydrogenwithinitsglassprocesses(THEn.d.b.).Othernotableareasnotexploredherearetheuseofgreenhydrogeninthesemiconductorindustryasaheattransferfluid(whenkeptinavacuum)andasrocketpropellantfortheaero-spaceindustry.GREENHYDROGENINDEVELOPINGCOUNTRIES806.5.OTHERHYDROGENFUELSAlthoughhydrogenitselfisavaluableandeffectivefuel,severalalternativefuelscanalsobecreatedfromgreenhydrogen.Thesefuelshavedifferingpropertiesfromhydrogenthatcansometimesbemoreattractivethanpurehydrogenforspecificusecasesandapplica-tions.Examplescommonlyincludemethanol,ammonia,and,increasingly,syntheticmethane,allofwhichareconsiderablyeasiertostoreandtransportthanhydrogenbutcomewithhigherefficiencylossesingeneration(figure6.4).6.5.1.MethanolBysomeestimates,methanolproductionac-countsforaround10percentofglobalhydrogendemand.Althoughitisusedinawidearrayofapplications,methanolisparticularlyusefulforfuelcellunitsthatprovideuninterruptiblepowersupplyservices,especiallyinoff-gridareas.Oneliterofmethanolisapproximately4.8kWh,or1kgisabout5.6kWh.Thisisasignificantreductionfromthe33.33kWhheldinakgofhydrogen.Nonetheless,thefuelisaverylightliquidandcanbeeasilystoredandcarried.Further,itisreadilyavailableacrossbothemerg-inganddevelopedmarkets,makingitattractiveforlocationswherehydrogeninfrastructureandsafetycapabilitiesarelow.Today,metha-nolislargelycreatedvianaturalgasandistheresultofatwo-stageprocessthatrequiresboththeproductionofhydrogenanditssubsequentbondingwithcarboninsideanewmolecularstructure.Theaverageplantcapacityisaround5,000tonnesperdaywithayearlyhydrogenconsumptionof266,104tonnes.KeyindustrialplayersincludeMethanexandSabic(Fraileandothers2015).6.5.2.SyntheticMethaneOneofthelargestareasofinterest,particularlyforEuropeancompaniesandpolicymakerswhoareexploringgreenhydrogenapplications,istheabilitytosynthesizehydrogenwithcarbontocre-atemethane.CreationofsyntheticmethanecanbeenormouslyappealingbecauseitallowsforthecontinueduseofcurrentnaturalgasinfrastructureFIGURE6.4SunfiresyntheticgreenfuelsfromhydrogeninGermany©SunfireGmbH,Dresden/ReneDeutscher,2019.Note:Unitsinthephotoaremarkedrawnaphtha,rawdiesel,andrawwax.816:IndustrialApplicationsandavoidstheneedtoreplaceorretireexistingnaturalgasassets.Syntheticmethanealsohastheaddedadvantageofbeingeasiertogenerateatlargerscalesandacrossawiderrangeoflocationsthanbiogas,whichhaslongbeenseenasameansof“greening”thegassupply.Onlyafewpilotprojectsarecurrentlygener-atingsyntheticmethane.Mostofthemextracttheircarbonfromanaerobicdigesterslinkedtoagriculturalwasteorlandfillwaste.ButapilotinItalysourcesitscarbonfromdirectaircapturetechnology,andbothoptionscanbeconsideredcarbonneutral.ThelargestapprovedprojectistheUndergroundSunConversionprojectinAustria,whichwillcombinesolarPVwitha13MWalkalineelectrolyzer.Theprojectwillproduceandstoresyntheticmethaneinanundergroundcavernandwillthenreleasethemethanedirectlytocustom-ersasneeded(McPhy2017).Twootherflag-shipsareinGermanyandFrance.ThisincludesUniper’s“STORE&GO”projectinGermany,whichuseswindpowerandelectrolysistoproduceupto1,400cubicmetersofsyntheticmethaneaday,orapproximately14,500kWhofenergy(Eckert2019).InFrance,theJupiter1000programaimstouseahybridofalkalineandPEMelectrolysis,withcarboncapturestorage,tocreateanddistributesyntheticmethane(Jupiter1000n.d.).©ENAPTOR837:ImplementationChallenges7:IMPLEMENTATIONCHALLENGESKEYTAKEAWAYSnnHydrogenisawell-establishedindustrialgas,butleveragingthefullpotentialofgreenhydrogenindevel-opingcountriesrequiresbuildinglocalcapacityandincreasingaccesstoexpertisethat,atthegloballevel,remainslimited.nnSafetyisparamountforallgreenhydrogenapplications:althoughhydrogenhasbeensafelyproduced,stored,handledandusedfordecades,itisagaswithuniquepropertiesandspecificsafetyconsiderations.nnHydrogen-derivedfuelslikeammoniaandmethanolcanbeeasiertotransportandstorethanhydrogenbutposeadditionalsafetyandenvironmentalconsiderationsthatshouldbeclearlyunderstoodandfactoredinwhendesigningprojects.nnCostsoftransportingsmallvolumesofhydrogencanpotentiallydoubleortripletheend-usercostofhydro-gen.Demandaggregatorsthatexploiteconomiesofscaleanddistributedproductionclosertodemandlocationscouldinmanyinstancesreducetransportationcost.nnGreenhydrogenstoragewilllikelyremainfocusedongaseousstorage—eitherpressurized,pipelineorgascavern—unlesssignificantbreakthroughsreducethecostandincreasetheefficiencyofalternativestoragemethods.nnUseofliquidorganichydrogencarriers(LOHCs)isapromisingstoragemethodtomeetlarger-scalehydro-gentransportationneeds,suchasthosefrominternationalhydrogentransport;andsolidstatehydrogen(hydrides)couldofferinterestingsolutionsforurbanareasandformobilityapplications.nnHigh-puritywaterisanimpotantinputforgreenhydrogenproduction,andaccesstoitmightposeabarrierinmanycountries.GREENHYDROGENINDEVELOPINGCOUNTRIES847.1.IMPLEMENTATIONCAPACITYANDINFRASTRUCTUREREQUIREMENTSOneofthemostimportantfactorsindeterminingacountry’sexistingcapacitytoimplementgreenhydrogensolutionsisitsaccesstoindividualswiththetechnicalknowledgeandexpertisetohandle,install,andmaintainhydrogenandhydrogensystems.Giventhewidespreaduseofhydrogenasanindustrialgas,somecountriesalreadyhavethetechnicalcapacitytoimplementandoperatehydrogenprojects.Thisisthecaseparticularlyincountries,suchasArgentina,Indonesia,orMalaysia,thatalsopossessnaturalgasresources.Yet,theavailabilityofindividualswiththetechni-calskillsneededtoassemble,install,andmain-tainhydrogen-associatedequipmentisusuallyconfinedtoafewlargecompaniesthatconsumelargevolumesofhydrogenandarelesscommoninregionsthatarelookingtodeploysmallerandmoreremotehydrogensolutions.Moreover,whiletherearestandards,procedures,andregulationsalreadyinplacethatgoverntheproduction,storage,andtransportationofhy-drogeninmanydevelopingcountries,thesearemuchlesscommonforsmaller-scale(decentral-ized)solutionsandforfuelcells.Thedifferenceisthathydrogenisalreadyanindustrialmarket,withsignificantscaleandseveraldecadesofdevelopment,thathascreatedapoolofskilledworkersandtrainingresources,whereasthecommercialfuelcellmarketisonlynowbegin-ningtoemerge,andgreenhydrogenproductionisscalingfromasmallbase.7.1.1.SystemsintegrationThemostsignificanttechnicalchallengefacingtheimplementationofgreenhydrogen-basedsolutionsistheintegrationofthehydrogensystemwithothersystemsthatarepartofthe30Systemsintegrationherereferstothedevelopmentofenergysolutionsthatusearangeofindividualtechnologiesthatmaynothavebeeninitiallydesignedtoworkintandembutthathavebeenadaptedtomeetaspecificneed.valuechain.Applicationsusinggreenhydrogenasanenergystoragemediumrequiredifferenttechnologiesandsystemstoworkintandemtoprocure,store,anddeliverthehydrogentoanendsolution.Itisthusessentialthatprojectsponsorsworkwithcompaniesthatareabletointegrateallthedifferentsystemcomponents,whilealsoacceptingtheengineeringliabilityriskifthesystemtheyhavedesigneddoesnotperform.Forstandaloneelectrolysisplantsorfuelcellap-plications,mostofthesesystemsintegration30is-suescanbeaddressedbytheequipmentsupplierandrarelyappeartoposesignificantchallengesforendcustomers.However,multisectoralap-plicationsandcountrystrategiesinvolvinglargeprojectsneedtocarefullyplanhowallthediffer-entsystemswillbeworkingtogether.Examplesmightincludesystemsinwhichelectrolyzersarecombinedwitharenewablepowerresourceoracombinationofbattery,fuelcell,orhydrogenrefuelinginfrastructureformobilityapplications.Othersincludetheretrofitordevelopmentofhybridfuelcellandbatterysolutionsforbuses,trucks,orlargeindustrialneeds.Itcouldalsoincludeincorporatinghydrogenintoexistinginternalcombustionenginevehiclestoprovideahybridsolutionwithalowervehicleemissionprofile.Systemsintegrationisthereforeimportantbe-causealthoughtheindividualcomponentsmayworkwellindividually,someconfigurationsmaynotbeappropriate,andthetrade-offsbetweencost,sizingofdifferentequipment,andsystemavailabilityarecomplexandneedtobebetterunderstood.Forexample,incorrectlysizingthecompressorwiththeelectrolyzerandusingthewrongpipingtoconnectthecompressor,storagevessel,andfuelcellnozzlescouldcreateleakagesandreducetheefficiencyoftheover-allsystem.Similarly,intheCleanHydrogenin857:ImplementationChallengesEuropeanCitiesfinalsummaryreport(Müllerandothers2017,29),theauthorsnotedthat“compressorsarethesinglebiggestcauseofsta-tionfailure,”withseveralcauseslisted,includingcompressorheadcracks,membranefailures,andconnectionleaks.Acommonissuewithstationaryapplicationsistheneedtoproduce,store,andreleasegreenhydrogenwithinasystem.Typically,hybridsys-temsstorehydrogengeneratedon-siteforlateruse.Thisapproachrequiresthehydrogentobereleasedfromtheelectrolyzerandtheneitherpressurizedorliquefiedforstorage.Atallpointsintheprocess,thefailureofacompressor,poorweldingorconfigurationofthehydrogenpiping,andlackofaccesstoon-sitebasicspares—nottomention,alackoflocalengineers—allcouldcreatesignificantrisksforthesuccessfulimple-mentationandoperationofahybridhydrogensystem.Forbothmobilityandsomestationaryappli-cations,earlyfindingsfromprojectssuggestthatthesinglelargestfactorthataffectstheoperationalavailabilityofahybridsystemisthemethodandequipmenttheprojectusestopressurizehydrogen.Themostcommonstoragesolutionistopressurizeatleastpartofthehydro-genbetween200and1,000bar,sotheoriginalpressureatwhichhydrogenisreleasedfromtheelectrolyzeristoolowforimmediateuseandthusrequiresadditionalcompression.Typically,electrolyzersproducehydrogenatbetween1and2bar,butsomesystemsproduceatupto35barorhigher,whichcansignificantlyreducethecostofthecompressionprocessbutwillaffecttheoverallsystemcapex.Thefourmaintypesofcompressiontechnolo-giesthenusedarepiston,hydraulic,diaphragm,andelectromagnetic,withpistonbeingthemostcommonsolution(figure7.1).Mostsystemintegratorschoosepistoncompressorsbecauseoftheirlowcost.Yet,thiscomeswithatrade-offbecausetheseunitsfrequentlyhavealifetimeofunder1,000hours,becausethesealsarequicklywornoutandwillneedreplacing,whichcansignificantlyreducetheavailabilityoftheunit.Thissituationisespeciallytruewhentheloca-tionisremoteandanengineerneedstotravelFIGURE7.1HydrogencompressorsforrefuelinginChina:CompressorforZhangjiekhoubusstation(left)andcompressorforZongshanDayanghydrogenbusrefuelingstation(right)©PDCMachines.GREENHYDROGENINDEVELOPINGCOUNTRIES86fromoutsidetheimmediatevicinitytoreplacetheseal.Thedesignproblemisthatdiaphragmcompressors,whichhavemuchbetterlifetimes(over5,000hours),aremoreexpensiveandaddtotheinitialprojectcapex.Hydrauliccompres-sorsrepresentahybridoption,whileelectromag-neticcompressorsareintheirearlydeploymentphase.Accordingly,somehybridsystemstodayhaveexperiencedloweravailabilitythanantici-patedasaresultofmaintenanceissuesrelatedtocompression.Creatingnewfuelcellmobilityapplicationspoweredbygreenhydrogenisextremelychal-lenginginpartbecausemostmanufacturersofferonlyaone-yearwarrantyasstandardandingeneralcannotofferlong-termwarrantiesatcommercialrates,combinedwiththeissuethatmostmanufacturersareunabletoofferleasefinancingsolutions.Itisthusimportanttonotethat,excludingNikola’strucks,Symbio’sRenaultKangooretrofits,andArcola/Wrightbus’sFCEBsinLiverpool,almostallmobilityapplicationstodayareprovidedbymajorcorporationsthatabsorbrisksontheirbalancesheets.Understandingtheneedsofcustomers,thecostconsiderationsrequiredtomakeaprojectbankable,thewaysthatwarrantiesofdifferentcomponentscanbeintegratedtoguaranteetheadequateoperationofnewsystems,andthelevelofresiliencyrequiredtomeetregulatoryrequirementsareessentialskillsthatquali-fiedsystemsintegratorscanbringtoprojects.However,evenindevelopedmarkets,veryfewsystemintegratorspossessanestablishedtrackrecordindeployingthesetypesofhybridgreenhydrogenproductionandfuelcelltechnologies,andmostmanufacturersnowprovidesystemintegrationservicestocustomersasameanstoaddressthisshortage.Thisscarcitymaybemore31Alternatively,thisattributecanoftenenhancesafety,becausearapiddeflagrationmeansthatlessheatisconveyedtosurroundingareasthanwithothergaseousfuels.Inafamoustestwhenaconventionalinternalcombustionenginecarwithgasolinewaspuncturedwitha16milimeterholeandaninternalcombustionenginecarwithhydrogenwasalsopunctured,thegasolinecarsufferedseveredamagewhilethehydrogencarwaslargelyunphased(Ajayi-Oyakhire2012).acuteindevelopingcountriesanditisanareathatwillrequirefurtherinvestmenttoensurethesuccessfuluptakeofthesesolutions.7.1.2.SafetyconsiderationsAswithanyotherflammablefuels,safetyisofparamountimportanceforallhydrogenappli-cations.Yet,hydrogenhasuniquepropertiesthatrequirespecialtreatmentcomparedwithconventionalfuelsusedforenergypurposes.Thefirstisthathydrogeniscolorlessandodorless.Itburnswithaninvisibleflamethatreleaseslittleheat,anditcanbechallengingtohandleforfirstresponderswhohavenotreceivedadequatetraining.Hydrogenhasaverywideflammabilityrange,andtheenergyrequiredtostartahydro-gen/airexplosionisconsideredlow.Ithasalsobeennotedthatevensmallsparksproducedfromdroppingaplastic-basedpenwouldbesufficienttoignitehydrogen-airmixtures(Ajayi-Oyakhire2012).Hydrogenalsoburnsaroundeighttimesfasterthannaturalgas,makingitextremelydifficulttocontainespeciallyinclosedenviron-ments.31Initspureform,itburnsnocarbonandproducesnohotashandverylittleradiantheat,whileburningfossilfuelproduceshotash,creat-ingradiantheat(HydrogenEuropen.d.).Asaresultofthesespecialpropertiesanduniquesafetyconsiderations,hydrogensafetyremainsaconcern,asindicatedbyasurveyconductedbytheWorldEconomicCouncilin2019.Inthissurveyonly49.5percentofrespondentsconsideredhydrogenanditspotentialuseasanenergysourcetobe“safe,”and31.4percentstillconsideredhydrogentobeeitherdanger-ous/unsafeorextremelydangerous/veryunsafe(WEFNetherlands2019).ThisperceptionofhydrogenasadangeroustechnologyisoftenexemplifiedbytheHindenburgdisasterin1937877:ImplementationChallengesandtheexplosionoftheChallengerspacecraftin1986.32Despitethesetwofamousaccidents,thesafetyrisksassociatedwithhydrogenarewellknownandwellunderstood.Hydrogenhasbeeneffectivelyregulatedbynationalandinterna-tionalstandardsforover50years,andthereareestablishedsafetymeasures,protocols,andguidelinesthatcanbeimplementedtoaddresstheseaspects.33Themostsignificantsafetyconsiderationsforhydrogenrevolvearoundhowthemoleculeisstored,howgasleaksaremonitored,andhowventingisconductedwhenaleakoccurs.Becausehydrogenhasaveryhighdiffusioncoefficient,consideredtoberoughlyfourtimesthatofmethane,acommonsafetyprocedureistoventhydrogen.Ventingisasafeandpracti-calsafetymeasurebecausewhenhydrogenisreleasedintotheatmosphere,itquicklyrisesanddissipates.Thus,theprimarysafetymechanismforthemajorityofhydrogenunitsisto“vent”inthecaseofamajorbreachincident.Thefactthathydrogenisnothazardous,norradioac-tive,corrosive,carcinogenic,orself-igniting,furthersupportsthatventingisasensibleandenvironmentallyfriendlysafetyprocedure.Foron-sitehydrogenstorage,itisstandardpracticetostorethehydrogenoutside,withminimalamountskeptindoors.Thehydrogenstoragetanksthemselvesshouldbeplacedonnonstaticconcreteandcombinedwithfirewalls,ventstacks,sensors,pressure-relievingdevices,andclearlabelingofequipment(tanks)andelectricaldevicesforengineers(figure7.2).3432InthecaseoftheHindenburg,theGermanHydrogenandFuelCellAssociationhasarguedthattheextremelyflammablepaintontheblimpwasthekeychallenge,burningin90secondsandtriggeringthecatastrophe.Meanwhile,fortheChallengeraircraft,ithasbeenarguedthatadefectivesealintheauxiliaryboosterswasthecauseoftheflamedamagingthefueltanks,anissuethatisnotuniquetohydrogen(Ajayi-Oyakhire2012).33TheprimaryinternationalISOisTC197,whichcomprisesthetechnicalcommitteethatdevelopsstandardsonhydrogenvehicles,fueldeliv-ery,storage,measurement,anduseofhydrogen(IEA2017).Therearealsomultiplenationalregulationsthatgovernsafetyproceduresandoperationswithhydrogen.34Feedbackfromassetoperators,systemintegrators,andsuppliers.35Toyota,2016YouTubedemonstration,https://www.youtube.com/watch?v=jVeagFmmwA0.Theprincipleissimilarforhydrogenelectrolyz-ers.Infraredcamerascombinedwithwarningalarmsareessentialtonotifythoseinthesur-roundingareathataleakhasbeendetected.Theelectrolyzerunitsareinstalledonnonstaticcon-creteandhaveventilationlinesthatheadstraightabovetheassets(figure7.3).Formobilityapplications,thequestioniswhetherhydrogenisstoredinapressurizedunit,inacryogenicform,orinahybridofboth.Mosttanksarecoveredwithcarbonfibertoincreasetheprotectionofhydrogencanistersagainstcrashes.In2018,forexample,theHyundaiNexosecuredamaximumfive-starEuroNewCarAssessmentProgrammesafetyratingforitsfuelcellvehicle(Attwood2018).Eveninex-tremepunctureeventssuchasbulletspiercingthetanks,evidencefromtheToyotaMiraibullettestsshowsthatpassengersremainsafe.35Thecriticalissuecomeswhenhydrogenstorageunitsareexposedtofiresfromanexternalsource.Forhydrogenstoredinvery-high-pressuretanks,thebiggestconcernisthattheexternaltem-peraturerisesandcauseshydrogentoexpand.Theseissueshavebeenknownandaddressedbytheindustryinamyriadofwayssince2006.Forexample,inastudybyBMWonitsBMW7hydrogenmodel:tanksfilledwithhydrogenwerefullyen-compassedbyflamesatatemperatureofmorethan1,000°C(1,830°F)forupto70minutes.Evenundersuchconditions,tankbehaviordidnotpresentanyproblems,withthehydrogeninthetanksescapingslowlyGREENHYDROGENINDEVELOPINGCOUNTRIES88©KirkwallHarbour.FIGURE7.2Safetymeasuresinstalledforhydrogenleakdetection,protection,andmitigation:KirkwallHarbourHydrogentanksventingline(left),KirkwallHarbourPEMfuelcellgasleakagemonitoringsensor(center),andShapinseySchoolpressurizedhydrogencanistersstoredinblastwall–coveredarea,outdoorswithaninfraredcamera(right)FIGURE7.3WarningsystemconfigurationforPEMelectrolyzeratShapinsey:PEMelectrolysisunitinfraredcameraandwarningalarms,Shapinsey,OrkneyIslands,UnitedKingdom(left)andShapinseyPEMelectrolyzersonnonstaticconcreteandwithhydrogenventilationshafts(right)Source:ESMAP.897:ImplementationChallengesandalmostimperceptiblythroughthesafetyvalves.Followingthesemostdemandingtestsandexaminations,bothTÜVSouthGermanyandthefirebrigadespecialistsactingasconsultantsarrivedattheconclu-sionthatthehydrogencarisatleastassafeasaconventionalgasolinecar.(BMW2006,15–16.)Forlargermobilityapplicationssuchasships,trucks,andtrains,safetyprocedurescanbemorecomplex.Thecurrentunderstandingisthathydrogenwillcontinuetoventwherepossibleduringafiresafetyevent,withcryogenichydro-genwarmedbytheambientairtemperatureandvented.Inconfinedspaces,analternativesolu-tionistouseexistingfirefightingsystemstokeepstorageunitscool.Forexample,fortransitbyferryofacustom-builthydrogentrailercarrying250kgofhydrogenintheOrkneys(UK),theunitisconnectedtotheferrysprinklersystem.Thisunitcanreleaseupto2,400litersofwateranhourtokeepthepressurizedcontainerscoolandtoeliminatetheneedforventing(figure7.4).7.1.3.InfrastructureconsiderationsWhetherusedinasmalldistributedapplication,orasapartofalargeindustrialscalesystem,greenhydrogenhasanumberofessentialinfra-structureimplicationsthatmustbeconsideredandassessedattheveryearlystagesofprojectdesign.Theseincludeavoidingphysicaldam-agetotheequipmentinplace,assessingtheimpactonexistingtransportationandelectricitynetworks,consideringthepotentialofrepurpos-ingsomeoftheexistinginfrastructuretoavoidgeneratingstrandedassets,andcomplyingwiththemaintenancerequirementsofthehydrogenequipment.Ensuringtheavailabilityanduseofappropriateequipmenttohandlehydrogeniskey.Hydrogencanembrittlemetals,anditsbuoyancyandmolecularsizerequirecarefulattentiontoSource:ESMAP.FIGURE7.4Shapinseyferryhydrogentrailersandsafetymeasuresatsea:Orkneyislandhydro-gentrailer(left);OrkneyferrytoShapinsey,UnitedKingdom(topright);andfirehouseforhydrogentrailer(bottomright)GREENHYDROGENINDEVELOPINGCOUNTRIES90potentialleakages,includingthedeploymentofthenecessarysystemstomonitorandrespondtopotentialleaks.Incorrectuseofcompressiontechnologies(typicallyinsituationswherenatu-ralgasassetsaresimplyrepurposedwithlittletonomodifications)canalsoprovokethedegrada-tionofmaterials,potentiallyleadingtoreducedefficienciesandsafetyissues.Anotherkeyaspecttoconsideristhecorrectassemblyofhydrogenunits,particularlytheconnectionsbetweenpres-surizedstoragetanksusedforhydrogenrefuelingsystemsandtherefuelingnozzles.Giventhebenefitsofcolocatingelectrolyzersnexttorenewableenergyplants,itisessentialtoconsiderhowthewaterrequiredintheelectrol-ysisandthegreenhydrogenproducedwillbetransportedtoandfromtheproductionsiteifthehydrogenisnottobeconsumedon-site.Inremoteareaswithlowactivity,alargegreen-hy-drogenprojectmayleadtoincreasedroadtrafficandnoise,aswellasincreasedcongestionandroadworkinthelocalroadsystemthatmightul-timatelyrequireupgradestothelocalinfrastruc-ture.Theseupgradescouldbejustifiedifthereisaclearlocalbenefit,suchastheprospectoflocaljobcreation,energysecurityandresiliency,andadditionalrevenueforlocalbusinessesandmunicipalities.Theseaspectsmustbeaddressedatanearlystagetoavoidunnecessarycostsanddelaysastheprojectdevelops.Itisalsoimport-anttoanticipatewhatimpactalargegreen-hy-drogenproductionfacilitymayhaveonthelocalgridandontheexistingwaterinfrastructure,especiallyiffurtherenhancementsorupgradesarerequired,andwhoshouldcoverthesecosts.Last,astheworldtransitionstowardazero-emis-sionenergysystem,asignificantconsiderationwillbethetreatmentofexistingoilandnaturalgasassetsthatmaybecomestranded.Greenhydrogeninthisregardcanhelpmitigatesomeoftheriskassociatedwithstrandedassets,byusingsometransportationandstorageassetsdevelopedfortheoilandgassector.Thisdoesnotmeanthathydrogenisasilverbulletforexistingassetowners.Forexample,mostpipe-lineinfrastructuretodaycannotsupport100percenthydrogenwithoutriskofleakagesandembrittlement.Similarly,naturalgasstoragetanksintheircurrentstatearenotappropriateforstoringpurehydrogen.However,greenhydrogencanbeblendedintoexistinggasgridswithoutfurtherchangestoexistingassets,withseveralEUstudiessuggestingblendsofupto20percenthydrogenareacceptable.Greenhydrogenalsocanbeblendedintonaturalgascaverns.Butthemostsignificantpotentialforrepurposingoilandgasassetsmaycomefromthesuccessfuldevel-opmentandrolloutofliquidorganichydrogencarriers(section7.3.2).LOHCscanbestoredinexistingoilfacilities,bunkers,pipelines,andtanks.Theycanholdgreenhydrogenformonths(oryears)anddonotrequirehighpressureorlowtemperaturestokeephydrogenstable.Inthisway,LOHCscouldprovideacruciallifelinefordevelopingcountriesthatintendtodecarbonizetheirenergyconsumptionandwhoseprimaryenergyinfrastructureisnotthepowergrid,butratherfuels.Box7.1examinesoperationsandmaintenancechallengesthatdevelopingcountriesmayencounter.7.2.GETTINGTHERIGHTINPUTS7.2.1.HydrogenpurityNotallhydrogeniscreatedequal.Thepurityofhydrogenisveryimportantforanumberofapplications,especiallyforfuelcells,andfailuretoensurethatthecorrecthydrogenpurityisusedcanhavenegativeconsequences.ThemostsensitiveissueistheuseofhydrogenthatisnotofahighenoughpuritygradeinPEMfuelcells.Thiscanseverelydamagethestacksandshortenequipmentlife,aswellasreducesystemefficiency.IntheEuropeanUnion,thetransportsectorpurityqualitystandardsarespecifiedinISO14687,withalevelof99.995percentpurity917:ImplementationChallengesneeded(Fraileandothers2015).ThisqualityrequirementishigherthanintheUnitedStates,wherecompanieswillprovidehydrogenforfuelcellsatmorethan99.97percent(UnitedHydrogenn.d.).Typically,industrialgradehydrogenistheleastsensitivewithrespecttopurityandissuppliedat99.95percentinboththeEuropeanUnionandtheUnitedStates.Butultra-pureapplications(suchasPEMfuelcells)requirehydrogenpuritiesofgreaterthan99.999percent(table7.1).Itisimportanttonotethatdifferenthydrogenproductiontechnologiesdeliverdifferentpuritiesofhydrogen.Typically,astandardPEMelectro-lyzerwilldeliverthehighesthydrogenpurity,fol-lowedbyalkalineelectrolysisandthenSMR.Forastandardalkalineelectrolyzer,99.95percentpurityfromproductionisreasonable,whileSMRcanbeaslowas95.00percent.Still,hydrogencanbepurifiedtoachieveupto99.999percentpurityrequirements,eitherwithmodificationmadetotheelectrolyzerunit(ifalkaline)orthroughaclean-upprocessafterthehydrogenhasbeenproduced.7.2.2.WaterAllfuelcellsrequiresomewatertoachievethehumidityinsidethestackstooptimizetheiroper-ations,whileelectrolyzersrequirewaterastheirprimaryfeedstock.Accesstowateristhereforeacommonlycitedconcernbysomeanalystswhoareevaluatingtheviabilityofhydrogenapplica-tions.However,discussionswithfuelcellandelectrolyzersuppliersandprojectdeveloperssuggestthatthevolumeofwaterrequiredforoperationsisingenerallessofaconcernthantypicallyassumed.Instead,waterqualityisagreaterissuethanisoftenunderstood.OPERATIONSANDMAINTENANCECHALLENGESFORGREENHYDROGENINDEVELOPINGCOUNTRIESUnlikethermalgenerators,greenhydrogenproductionandfuelcellsystemshaverelativelyfewconstantlymovingpartsthataresubjecttowearandtear.Thosefewmovingparts,however,aresensitivecomponentsofthesystemandcouldprovokesystemfailureifnotoperatedandmain-tainedcorrectly.Fansthatdrivethemovementofgases,compressorvalves,andcomponentsas-sociatedwiththemovementofwaterintheassetareamongthemostsensitivecomponentsand,whilenotnecessarilyexpensivetoreplace,theycanbehighlydisruptivewherelocalcapacitydoesnotexist.Manycompanieshavepartiallymitigatedthisexposurebydevelopingmodularsystems,suchthatafaultinoneunitdoesnotincapacitatetheentiresystem.Thiscanbeusefulwherelargermultistackedsystemsaredeployed,butthisislesscommonforremoteordistributedsystemsthatarelikelysmallerandharderfortechnicianstoaccess.Anotherchallengingissueishandlinghydrogenfuels.Althoughhydrogencanistersarewidelyavailableindevelopedcountriesandconsideredsafetouse,inremoteareasofdevelopingcountriesthereisagreaterlikelihoodthathydrogenfuelslikeammoniaormethanolwillbeused.Thevirtueofnotusinghydrogenisthefactthatmethanolandammoniaarelesslikelytoescapecontainment.Thetradeoff,however,isthatthesefuelsaremorehazardoustohandle—notablyammonia,whichistoxicandcanbeextremelyproblematicifleaked.Amajorammonialeakwouldrequirecoordinationbetweenlocalemergencyservicestoensurethatastheammoniaisvaporized,membersofthepublicarenotexposedtothefumesandthosewhoarecanbetreatedcarefully(MarylandDepartmentofAgriculturen.d.).BOX7.1GREENHYDROGENINDEVELOPINGCOUNTRIES92Theelectrolysisprocessrequires9litersofwatertogenerate1kgofhydrogen.However,ifthewaterisstraightfromthepublicwatersystem,itmustbedeionizedfirst.Thismeansthatactualwaterdemandscanbebetween15and30literstofilter9litersofdeionizedwaterforelectroly-sis.Theremainingwatercanthenbeconsumedorusedasneeded,butitcannotbeusedbytheelectrolyzer.Accordingly,thereisasignifi-cantdifferencebetweenactualwaterdemandforelectrolysisandactualwaterconsumption.Giventhatthewaterisreusableafterpurifica-tion,themorereasonableassessmentofwaterneedsiswaterconsumed;onthatbasis,hydro-genelectrolysishasafairlyreasonablewaterdemandprofilerelativetomanyalternativefuels.Bymeansofcomparison,hydrogenproducedviaSMRrequires4.5litersofwaterperkgofhydro-genandcoalgasificationrequires9litersofwa-terperkg(Bruceandothers2018).Thisdoesnotincludethewateractuallyrequiredtoextractthecoalorgas,butitdoesreflectthewaterdemandsforhydrogenproductiontechnologieson-site.Thus,electrolysisproductionmayrequiremorewaterinitspureproductionthanSMRdoes,dependingoncountrycontext,buttheamount36Assumesa460kWPAFCrunningat98percentavailabilityand48percentelectricalefficiencyandconsuming2,000gallonsayear(convertedtolitersataratioof1gallon=4.54609liters).37Assumes33.33kWhperkgofhydrogen,requiringabout30kgtoreach1megawatt-hour,electricstorage.Atanelectricalefficiencyofrequirediscomparabletoproducinghydrogenfromcoalgasification.Forfuelcellsthepictureismorecomplex.Becausemanyfuelcellsrunonnaturalgasormethanol(oftenmixedwithwater),theiractualwaterconsumptionisextremelylow.Indeed,severalsuppliersclaimthattheirunitsmayrequireonlyafewlitersper100kWeveryyear.OthertechnologiessuchasPAFCrequirearound2,000gallonsayearfora460kWunit,withwaterusepeakingatagallonortwoperhourduringa40°Cday.Evenassuming2,000gallonsayear,a460kWfuelcellunitwith98percentavailabilitywillconsumeonly4.8literspermegawatt-hour(MWh)generated.36Onapurewaterdemandbasis,fuelcellsthereforerequirelesswaterforwaterwithdrawalthanallotherformsofthermalpower.Onaconsumptionbasisonly,fuelcellsrequiremuchlesswaterthannaturalgassteamturbinesorCCGTunits,whichconsumebetween757and1,461litersperMWhand150to400litersperMWh,respectively(UnionofConcernedScientists2013).Evenforfuelcellsconsuminggreenhydrogen,thelife-cy-clewaterdemandsarebetween545litersperMWhand725litersperMWh,dependingonsystemefficiencies.37AnaveragenuclearplantTABLE7.1HydrogenpurityrequirementsTYPEOFHYDROGENTYPICALUSESHYDROGENPURITYNEEDED(%)GaseousGeneralandindustrial99.950GaseousHydrogenationandwaterchemistry99.990GaseousInstrumentationandpropellant99.995GaseousSemiconductorandspecialtyapplications99.999LiquidStandardindustrial,fuelandstandardpropellant99.995LiquidHighpurity:industrial,fuelandpropellant99.999LiquidSemiconductor99.9997Source:Fraileandothers2015.937:ImplementationChallengesconsumes700–1,200litersperMWh(UnionofConcernedScientists2013).Ingeneral,waterqualityisanunderappreciatedconcern.PEMtechnologiesremainthemostsensi-tivetowaterqualityissues,andPEMelectrolyzersrequiredeionizedwaterthatisusuallyprocessedthroughanadditionalbuilt-inwater-purificationunitinsidetheelectrolyzer.38Foralkalineelectro-lyzers,waterqualityisalsoanissue,withcertainsupplierssettingacleanwatertargetofconduc-tivitylowerthan20microsiemenspercentimeter.Mostelectrolyzerunitsincludeanoptiontoaddwaterpurifierstotheirsolutions.Thesearearela-tivelylowadditionalcapexcost,andmostmanu-facturersclaimthatwaterpurityissuesareaddress-able,providingthesourceofwaterisnotheavilycontaminated.Typically,mostelectrolyzerunitshavenoproblemsacceptingwaterfromapublicsupplyandthenpurifyingitthroughtheunit.Forfuelcells,althoughPEMunitsremainsensi-tive,othertechnologiessuchasSOFC,PAFC,andMCFCarelesssensitivetowaterandcanaddre-verseosmosispurifiersifneeded.Mostmanufac-turersofthesetechnologiesreportthattheyhavenotfacednoticeablewaterchallengesintheirop-erationsthusfar.Similartoelectrolyzerunits,mostunitswillaccesswaterthroughapublicsource,thoughwatercanalsobeaddedexternallywherethereisnoaccesstoapublicwatersource.7.3.TRANSPORTANDSTORAGEOneofthemainstrengthsofliquidfossilfuelsisthattheycanberelativelyeasilytransportedandstored.Conversely,transportingandstoringhydrogenhasbeenforseveraldecadesoneof50percent,thisdoublesto60kg,requiringbetween10and12litersperkg.Usinganelectricalefficiencyof60percentforthefuelcellreducesdemandto54kg.38Onesupplier,PeakScientific,requireslessthan1microsiemenspercentimeterormorethan1megaohm-centimeterfortheirwaterpurity.39Severalreasonsforthispreferenceincludeconvenience,easeofaccesstosuppliers,andthefactthatcostsandrisksarealreadyknownandregulationshavealreadybeendrafted.Further,itistypicallythecasethatatshorterdistances,aloweramountofhydrogenwillbeneeded(becauseforlargeramounts,acompanywouldtypicallyconsiderbuildinggenerationon-site).Thuspressuredcontainersareamorelogicalchoice.themainconstraintsforbroad-basedapplica-tions.Theseconstraintsarefundamentallyrootedinhydrogen’slowenergydensityatatmosphericpressure,theefficiencylossesassociatedwithhydrogenpressurizationandliquefaction,andthespecialconditionsrequiredtoensurethathydrogentransportationandstoragearesafe.7.3.1.TransportTherearefourmodesoftransportandfourstor-agemediumstotransporthydrogen.Dependingonthespecificmarket,hydrogenmodesoftransporttodaycanincluderoads,rail,shipping,orpipeline.Thestoragemediumsfortransportincludecompressedhydrogen,liquidhydro-gen,convertedhydrogen(eithertoammoniaormethanol),orabsorbedhydrogen(hydridesandLOHCs).Themostcommonmethodoftransportisforhy-drogentobepressurizedbetween200and500barandmovedviaroad(figure7.5).Australia’sCSIROsuggeststhatforjourneysunder1,000kmorwheredemandisbelow1.5tonnesofhydrogen,pressurizedhydrogenismostsuitable(Bruceandothers2018),withcryogenic(liquid)hydrogenpreferredforlargervolumesandlongerdistances.39Hydrogentransitislesscommonbyrailexceptwhenconvertedintoammonia.Hydrogenpipelinestodaycanusuallybefoundonlyinmarketswithestablishedpetrochemi-calinfrastructure,suchasChina,Japan,Korea,andtheUnitedStates,certainGulfstates,andEurope.Eveninthesemarkets,infrastructureremainslimited.ThelongesthydrogenpipelineinEurope,whichliesbetweenBelgiumandFrance,isonly400km,whilein2011theUnitedGREENHYDROGENINDEVELOPINGCOUNTRIES94Kingdomhadonly25kmofhydrogenpipeline(Ajayi-Oyakhire2012,19).Ammoniashippingiscommonandhasbeenestablishedformanyyears.Companieshavealsobeguntoexplorethetechnicalandcommercialviabilityofliquefiedhydrogenshipping,withKawasakicommittedtodevelopingatleastonevesselforthispurpose(Crolius2017).Transportinghydrogenisexpensive.UsingaHinicio2016analysis,IRENAestimatedthathydrogencompression,logistics,anddistributioncouldadd$6–$10perkgforahydrogenrefuel-ingstationunit(IRENA2018,28).Oneofthemostanticipatedinnovationsinhydrogentransportationliesintheabilitytotransporthydrogenbyabsorbingitintoeitherametalliccomposition(calledahydride)orintoaliquidcomposition(liquidorganichydrogencarriers).Ofthetwo,LOHCsareshowingthegreatestprogresstowardcommercializingtheirsolution.LOHCsareusuallyheattransferfluids,suchastolueneordibenzyltoluene,whichab-sorbhydrogeninaprocessthatcreatesheaten-ergyandthenreleasehydrogenwhenexposedtoheatattheirpointofuse.Therearetwocurrentcommercialpilotsusingthesesolutions,oneinJapanandoneinTennessee,UnitedStates.OtherareasactivelyexploringthetechnologyincludeBotswana(H2-Industries2018)andGermany.InGermanythereareseveralpilotsitesinoperation,butmostappeartobeforresearchpurposes.Seetable7.2foranoverview.7.3.2.StorageHydrogencanbestoredinpressurized,liquid,converted,orabsorbedmediums.Mostlargeindustrialusersconsumehydrogenasitispro-duced,withSMRorgasificationoftencolocatednearthedemandsource,andmostsignificantstoragecapacityisforeitherwholesaledistribu-tionorsmalleron-sitegeneration.Byfar,themostcommonstoragemethodfordistributedhydrogenispressurizedcontainment.Thisprocessincludesaseriesoftanksthatareusuallylinkedtogethertoreleasepressuresi-multaneouslyasneeded.ForhydrogenrefuelingFIGURE7.5Pressurizedhydrogenstoragetrailers©Hexagon.957:ImplementationChallengessystems,ahybridofcontainerizedandliquidhy-drogenisalsoattractive.Intheseconfigurations,themajorityofhydrogenisheldinaliquefiedtankthatmaybepressurizedupto30bar.Thisisthenconvertedfromitsliquidtogaseousformusingambientheatfromthesurroundingarea.(Hydrogenneedstobebelow−423.17°Ftostayfullyliquid.)Thehydrogenisthenfedintoacompressortobringthepressureuptotherequirementfornearbycompressedstoragetanksthatusuallydistributethehydrogen.Smallersitesmayavoidthisprocessbysimplyusingpressur-izedhydrogenonly,especiallywhereon-sitecompressionwouldaddsignificantcosts.Veryfewprovidersofhydridestorageexist—onlyArdica,HydrogeninMotion,andH2GOPower.Butmosthavenotdeployedalarge-scalepilot,letaloneacommercialprojecttodate,andallthreecompanieshavelargelyfocusedonstorageapplicationsforeitherthemilitary,unmannedautonomousvehicles,orboth.Nevertheless,inthelongruntheabilitytostorehydrogeninasolidstatecouldbetransformativetoaddressing40DiscussionswithOrkneyIslandsCouncilMarineServices,partoftheHySeasIIIhydrogenferrydeliveryteam,April2019.41Correspondencewithsystemintegratorssuggeststhatthismaybeoptimalgivenrefuelingtimepriorities,April2019.safetyconsiderationsforstationaryusecasesaswellasformobility,especiallyinbuilt-upareas.Arecentexampleoftheinterestinsolid-statehydrogenhasbeentheannouncementthatSPGroupwillusesolarPV,electrolysis,andsol-id-statehydrogenstorageforitstrainingcenterinWoodleighPark,Singapore(Mohan2019).Conversely,itappearsthatLOHCsarestartingtomovetowardcommercializationandgreatercompetition,withseveralleadingLOHCprovidersalreadyofferingcommercialsolutions,includingChiyoda,HydrogeniousLOHCTechnologies,Covalion,andH2-Industries(figure7.6).Formobilityapplications,themostcommonmethodtodayistopressurizehydrogenintocarbonfibertanks,incontrasttoearlyhydrogencars,suchastheBMW7,thatusedcryogenichydrogenstorage.Nonetheless,cryogenichydro-genstorageisnowbeingreviewedforferries,40ships,andtrucks.41Therearetwoadvantagestocryogenichydrogenformobilityplatformsthatrequiresignificantamountsofstorage.TheTABLE7.2OverviewofhydrogentransportationmethodsTECHNOLOGYVOLUMEOFHYDROGENPERTRUCKTRANSPORTCAPEX(US$),TRACTORANDTRAILERENERGYREQUIRED(KWHPERKGHYDROGEN,EXCL.TRANSPORT)BOILOFF(%)LOHC–HydrogeniousLOHCTechnologiesUpto1,800kg180,0001.5–10.00Compressedgashydrogen(@250bar)Upto350kg>440,0001.5–2.00Compressedgashydrogen(@500bar)Upto1,100kg1.0million–1.2million4.0–5.00Liquidhydrogen(@−250°C)Upto3,300kg750,000–1.7million10.01–3perdayPipelineSizedependentInitialInvestment:300,000–1.2millionperkm(rural)and700,000–1.3million(urban)n/a0Source:IEA2015;ESMAPdiscussionswithHydrogeniousLOHCTechnologies;andmarketfeedback.Note:capex=capitalexpenditure;LOHC=liquidorganichydrogencarrier.n/a=notapplicable.GREENHYDROGENINDEVELOPINGCOUNTRIES96firstisthatcryogenichydrogenisconsiderablymoreenergydensethanpressurizedhydrogen,whichsavesspace(andweight)ontheplatform.Thesecondisrefuelingtime.Tomeetsafetystandards,theflowrateofhydrogenrefuelingissetbytemperaturebands,with80oCbeingtheuppersafetylimit,althoughmostrefuelingstationsaimtokeepthetemperaturearoundtherefuelingnozzleto50oCorlower.Tokeeptherefuelingtimeofhydrogenlow,someengineershavesuggestedthatcryogenichydrogenwouldbefasterthanpressurizedhydrogenbecauseitwouldavoidthetemperatureconstraintthatiscreatedbytryingtopushhydrogenintoafixedspace(aprocessthatgeneratesheat).Anotherareaofresearchinhydrogenstorageisaroundtheuseofammoniaasanenergystoragemethod.AlthoughthisprocessleadstohigherFIGURE7.6Liquidorganichydrogencarriersolutioninoperation,Tennessee,UnitedStates©HydrogeniousLOHCTechnologies.977:ImplementationChallengesefficiencylosses,ammoniaisconsiderablyeasiertotransportandstore,makingitacompellingpropositioninanenvironmentwherethecostofdieselandotherformsofstoredenergymaybecomparativelyexpensive.Thefirstpilotofthisapproachbeganin2018inOxford,whereSiemens,theScienceandTechnologyFacilitiesCouncil(STFC),theUniversityofCardiff,andtheUniversityofOxfordhavedevelopedademonstratorthatcreatesgreenhydrogenfromelectrolysisinanon-site12kWwindturbineandthencombinesitwithoxygentomakeammonia(STFC.2018).Insomeenvironments,thiscouldbecomeacompellingsolutionforoff-gridrenew-ablesseekinganeasy-to-storeandeasy-to-trans-portfuel,withnocarbonemissions.Thelargeststorageapplicationbeingconsideredistheuseofhydrogencaverns.ThesealreadyexistintheUnitedKingdomandUnitedStates,withanumberofprojectsnowexaminingtheuseofsaltcavernstostorehydrogeninandaroundtheNorthSea.Insomedevelopingcountriesthismaybeanexistingopportunityforlarge-scaleandlow-costgreen-hydrogenstorage,particularlywhereexistingoilandgasfieldsexist.Despitethispotential,thereisextremelylimitedpublicresearchavailabletodateontheavailability,technicalchallenges,andcostcon-siderationsofhydrogencavernsforgreen-hydro-genstorageindevelopingcountries.©PDCMACHINE998:AreasforFurtherResearch8:AREASFORFURTHERRESEARCHThisreporthassoughttoillustratecurrentandpotentialareasofdeploymentforgreenhydro-genproductionandfuelcelltechnologiesindevelopingcountries.Whilethecurrentfocusindevelopingcountriesappearstobesplitbetweenhydrogenapplicationsformobility,ammoniaandmethanolfromremotepowerfuelcellsystems,andsomeindustrialuses,thisscopewillevolveashydrogentechnologiesdeclineincostandtheircomplexityisbetterunderstood.Hydrogenisnotandwillnotbecomeasilverbulletforallenergychallengesindevelop-ingcountries.Butwhatgreenhydrogencouldprovideisanotherpowerfultechnologicalleverthatpolicymakersandinvestorscouldusetodevelopcleansolutionsthataretailoredtotheenergycontextandtotheuniquechallengesthatthecountryisseekingtoaddress.Fordevelopingcountriestobeabletofullyben-efitfromtheinvestmentopportunitiesthatcouldbebroughtbygreenhydrogen,itwillbeincreas-inglyimportantfororganizationstoworkwithinvestorsandgovernmentsondevelopingnationalroadmapstohighlightareasofnationalfocusandtoassesstheapplicationsinwhichgreenhydrogencandelivergains.Theseroadmapswillneedtoestablishhowhydrogencanbesourcedinaclimate-sustainablemanner,leveraginglocalrenewableresourceswheneveravailable.Atthebroaderlevel,anareaofworkthathasnotbeenaddressedinthisreportisamorein-depthassess-mentofhowlargethepotentialgreenhydrogenmarketmightbeindevelopingcountries.Thisisadifficultendeavorpartlybecauseofthelackofdataoncurrenthydrogenproductionindifferentcountriesandbecauseoftheuncertaintyaroundwhetherthegreenhydrogenmarketwillbecomeexportdrivenliketheglobaloilmarketistodayorwhetheritwillbemorelikenaturalgas,inwhichsomeinternationaltradeoccursbutlargelymarketsareregionalnotglobal.Furtherresearchandanalysisofthedriversthatwouldencouragedomesticproductionversusimportsofgreenhydrogenwillbeneededandcouldperhapsbuildonmethodologiesalreadyadoptedforassessingthescaleofhydrogenanditssourcesfordevel-opedcountries.Itisalsoimportanttoconsiderfurtherresearchthatcanhelpquantifynonmonetizedbenefitsthatgreenhydrogencanprovidefordevelopingcountries.Theseincludetheabilitytoswitchtoafuelwithawidediversityofpotentialsuppliers,thusreducingtheriskofconcentratedenergysupplyamongafewentities.Further,itcouldallowsmall-islanddevelopingnationstoobtainaversatile,easytostore,andgreenenergysourcefortheirenergyneedswithoutinhibitingeco-nomicgrowth.TheWorldBankthroughESMAPissupportingdevelopingcountriesinfactoringintheseandotherconsiderationsinthedevelop-mentofnationalstrategiesthatexploretherolethatgreenhydrogencouldplayindecarbonizingeconomicactivitiesandpathwaystoleverageitsfullbenefits.Thisreportalsofocusedonhydrogenproducedviaelectrolysisusingvariablerenewableen-ergysourcessuchasonshorewindandsolarPV.FuturestudiesmaywishtoconsiderwhatGREENHYDROGENINDEVELOPINGCOUNTRIES100greenhydrogendevelopmentcouldlooklikeincountriesthatareendowedwithotherrenewablepowersources,suchasgeothermal,hydroelec-tricpower,oroffshorewindthattypicallyhavehighercapacityfactorsthanonshorewindandsolarPV.Understandinghowgreenhydrogentechnologiescouldbeintegratedwithinablendedportfolioofrenewableenergydistributedresourcesshouldalsobeafocusformultilateraldevelopmentagenciesandotherenergyorganizationsthatareseekingtoidentifysolutionsforoff-gridenergyaccess.Notably,theuseofbatteriesintandemwithvariablerenewablescouldhelpoptimizethesizeofanelectrolyzerbyensuringaconsis-tentqualityofpower.SuchsolutionsmayalsoallowmoredevelopedalkalinetechnologiestoovercomesomeoftheconcernsaroundtheirresponsespeedthathavetypicallyencouragedrenewabledeveloperstoconsiderPEM.Ifsuchsolutionsweretechnicallyfeasible,theycouldprovidearoutetobothreducetotalsystemcostsandreduceefficiencylossesthroughtheconver-siontoahydrogenprocess.Last,thisreporthasfocusedexclusivelyongreenhydrogenproductionviaelectrolysis.Thereareanumberofpilotsnowunderconsiderationtogenerategreenhydrogenfromwaste,whicharebeingpilotedinsomecountriessuchasinBangladesh.ThispilotprojectfundedbythegovernmentofBangladeshwillprovide5MWofpowertothegridfromgreenhydrogengeneratedfromwastein2020(Saha2019).Thisisthereforeanotherareaworthexploring,especiallygiventhepotentialeconomicbenefitsformunicipalgovernmentsofturningwasteintoaresourceforclean,localpowerprovision.101BibliographyBIBLIOGRAPHYAbt.2019.“Kenworth,ToyotapresentelectricfuelcelltrucktoUPS.”https://www.fleetowner.com/running-green/article/21703733/kenworth-toyota-present-electric-fuel-cell-truck-to-ups.AcilAllenConsulting.2018.“OpportunitiesforAustraliafromHydrogenExports.”ReportforARENA(AustralianRenewableEnergyAgency),Canberra.https://renewablesnow.com/news/hydrogen-demand-in-asia-presents-significant-opportunity-for-australia-623850/.AfricanHydrogenPartnership.2019.“GreenAfricanHydrogen:OperationalPlanning.”Report,AfricanHydrogenPartnership,Henley-on-Thames,UK,andHarare,Zimbabwe.https://www.afr-h2-p.com/prospectus.AirLiquide.2019.“AirLiquideInvestsintheWorld’sLargestMembrane-BasedElectrolyzertoDevelopItsCarbon-FreeHydrogenProduction.”Newsrelease,February25.https://industry.airliquide.ca/air-liquide-invests-worlds-largest-membrane-based-electrolyzer-develop-its-carbon-free-hydrogen.Ajayi-Oyakhire,Olu.2012.Hydrogen—UntappedEnergy?Derbyshire,UK:InstitutionofGasEngineersandManagers.https://www.scribd.com/document/404042241/Hydrogen-Untapped-Energy.Attwood,James.2018.“HyundaiNexoFuelCellSUVAchievesTopSafetyRating.”Newsrelease,October24.https://www.autocar.co.uk/car-news/new-cars/hyundai-nexo-fuel-cell-suv-achieves-top-safety-rating.Babcock,Stephane.2019.“Kenworth,ToyotaUnveilJointlyDevelopedHydrogenFuelCellTruck.”HeavyDutyTruckingnewsrelease,April22.https://www.truckinginfo.com/330270/toyota-and-kenworth-unveil-jointly-developed-hydrogen-fuel-cell-truck.BallardPowerSystems.2017.“CeremonialOpeningofBallard’sChinaStackJointVentureProductionFacility.”PressreleasefromBallardPowerSystems.https://www.ballard.com/about-ballard/newsroom/news-releases/2017/09/06/ceremonial-opening-of-ballard-s-china-stack-joint-venture-production-facility.BallardPowerSystems.2018.“BallardAnnouncesPlannedDeploymentof500FuelCellCommercialTrucksinShanghai.”PressreleasefromBallardPowerSystems.https://www.ballard.com/about-ballard/newsroom/news-releases/2018/02/14/ballard-announces-planned-deployment-of-500-fuel-cell-commercial-trucks-in-shanghai.BallardPowerSystems.2019a.“RecentDevelopmentsinEurope’sFuelCellBusMarket.”Ballardwebsite,February11.http://ballard.com/about-ballard/newsroom/market-updates/recent-developments-in-europe-s-fuel-cell-bus-market.BallardPowerSystems.2019b.“BallardReceivesPOfromAngloAmericanfor900kWofFuelCellModulestoSupportMiningTruckDemonstrationProject.”Newsrelease,Ballardwebsite,October28.https://www.ballard.com/about-ballard/newsroom/news-releases/2019/10/29/ballard-receives-po-from-anglo-american-for-900kw-of-fuel-cell-modules-to-support-mining-truck-demonstration-project?utm_campaign=Ballard:%20News%20Releases&utm_content=104300706&utm_medium=social&utm_source=linkedin&hss_channel=lcp-10026.Bellevrat,Elie,andKiraWest.2018.“CleanandEfficientHeatforIndustry.”Commentary,InternationalEnergyAgency(IEA)website,January23.https://www.iea.org/commentaries/clean-and-efficient-heat-for-industry.BloomEnergy.2011.“BloomEnergyQuadruplesSizeofItsManufacturingOperationsProvidingover1,000CaliforniaJobs.”Pressrelease,April15.https://www.bloomenergy.com/newsroom/press-releases/bloom-energy-quadruples-size-its-manufacturing-operations-providing-over.GREENHYDROGENANDFUELCELLSINDEVELOPINGCOUNTRIES102BloomEnergy.2016.“BloomEnergyCompletesFuelCellProjectatMorganStanleyGlobalHeadquartersinNewYorkCity.”Pressrelease,December13.https://www.bloomenergy.com/newsroom/press-releases/bloom-energy-completes-fuel-cell-project-morgan-stanley-global-headquarters.BMW.2006.“BMWHydrogen7—MediaInformation.”Presspackage,November.https://www.wired.com/images_blogs/autopia/files/bmw_hydrogen_7.pdf.BNEF(BloombergNewEnergyFinance).2019.“Hydrogen:TheEconomicsofProductionfromRenewables.CoststoPlummet.”ReportreleasedAugust21.Broad-OceanMotorGroup.2017.“TogetherWEChangetheWorld.”PresentationbyCharlesLu.https://www.ballard.com/docs/default-source/investors/broad-ocean-motor-group.pdf?sfvrsn=2&sfvrsn=2.Bruce,S.,M.Temminghoff,J.Hayward,E.Schmidt,C.Munnings,D.Palfreyman,andP.Hartley.2018.NationalHydrogenRoadmap.Canberra,Australia:CSIRO.https://www.csiro.au/~/media/Do-Business/Files/Futures/18-00314_EN_NationalHydrogenRoadmap_WEB_180823.pdf?la=en&hash=36839EEC2DE1BC38DC738F5AAE7B40895F3E15F4.Buttler,Alexander,andHartmutSpliethoff.2018.“CurrentStatusofWaterElectrolysisforEnergyStorage,GridBalancingandSectorCouplingviaPower-to-GasandPower-to-Liquids:AReview.”RenewablesandSustainableEnergyReviews82(P3):2440–54.BusinessWire.2019.“BloomEnergyandSamsungHeavyIndustriesTeamUptoBuildShipsPoweredbySolidOxideFuelCells”.Newsrelease,September25.https://www.businesswire.com/news/home/20190925005968/en/Bloom-Energy-Samsung-Heavy-Industries-Team-Build.CAFCP(CaliforniaFuelCellPartnership.2019.“BytheNumbers:FCEVSales,FCEB,andHydrogenStationData,”CAFCPwebsite.AccessedSeptember2019.https://cafcp.org/by_the_numbers.Cision.2019.“HYBRITOrdersNorwegianElectrolyzersforFossilFreeSteelProductioninLuleå.”Newsrelease,April25.https://news.cision.com/hybrit-development/r/hybrit-orders-norwegian-electrolyzers-for-fossil-free-steel-production-in-lulea,c2796814.Crolius,Stephen.2017.“KawasakiMovingAheadwithLH2TankerProject.”AmmoniaEnergyAssociationnewsrelease,September14.https://www.ammoniaenergy.org/kawasaki-moving-ahead-with-lh2-tanker-project.Crosse,Jesse.2019.“NewHyundaiNexoFuelCellSUV:UKPricingRevealed.”Newsrelease,April5.https://www.autocar.co.uk/car-news/motor-shows-ces/new-hyundai-nexo-fuel-cell-suv-uk-pricing-revealed.DNVGL.2019.ProduksjonogBrukavHydrogeniNorge.Høvik,Norway:DNVGLMarketsandTechnology.ReportinNorwegianwithEnglishsummary.https://www.regjeringen.no/contentassets/0762c0682ad04e6abd66a9555e7468df/hydrogen-i-norge---synteserapport.pdf.DOE(USDepartmentofEnergy).2018.“GlobalElectrolyzerSalesReach100MWperYear.”FactoftheMonth,August.https://www.energy.gov/eere/fuelcells/fact-month-august-2018-global-electrolyzer-sales-reach-100-mw-year.Doosan.n.d.“Manufacturing.”Doosanwebsite,accessedMay4,2019.http://www.doosanfuelcell.com/en/intro/manufacturing.Eckert,Vera.2019.“Germany’sUniperFeedsWindPower-to-MethaneintoGasGrid.”Reuters,March26.https://www.reuters.com/article/us-uniper-methane/germanys-uniper-feeds-wind-power-to-methane-into-gas-grid-idUSKCN1R726F.ENGIE.2019.“ENGIEandYARATakeGreenHydrogenIntotheFactory.”Newsrelease,February12.https://www.engie.com/en/news/yara-green-hydrogen-factory.EngineeringNewsOnline.2019.“CHEMtoSetUpSouthAfrica’sFirstFuelCellFactoryintheDubeTradePort.”September11.https://www.engineeringnews.co.za/article/chem-to-set-up-south-africas-first-fuel-cell-factory-in-the-dube-tradeport-2019-09-11.Fraile,Daniel,Jean-ChristopheLanoix,PatrickMaio,AzaleaRangel,andAngelicaTorres.2015.“OverviewoftheMarketSegmentationforHydrogenAcrossPotentialCustomerGroups,BasedonKeyApplicationAreas.”ReportfortheFCHJU.CertifHy,Brussels.FuelCellEnergy.2018.“FuelCellEnergyAnnouncesIncreaseinAnnualProductionandCreationofOver100NewManufacturingJobs.”Pressrelease,July18.https://investor.fce.com/press-releases/press-release-103Bibliographydetails/2018/FuelCell-Energy-Announces-Increase-in-Annual-Production-and--Creation-of-Over-100-New-Manufacturing-Jobs/default.aspx.FuelCellToday.2013.“FuelCellsandHydrogeninNorway.”Report,FuelCellToday,Herts,UK.http://www.fuelcelltoday.com/analysis/surveys/2013/fuel-cells-and-hydrogen-in-norway.FuelCellWorks.2019a.“AberdeenCityCouncilApprovesPurchaseofNewHydrogenBuses.”Newsitem,April27.https://fuelcellsworks.com/news/aberdeen-city-council-approves-purchase-of-new-hydrogen-buses.FuelCellWorks.2019b.“HydrogenCouncilGrowsto60MemberCompaniesAheadofG20SummitEvents.”Newsitem,June18.https://fuelcellsworks.com/news/hydrogen-council-grows-to-60-member-companies-ahead-of-g20-summit-events.FuelCellWorks.2019c.“OpenEnergiSelectedbyITMPowertoOptimiseElectrolysers.”Newsitem,August12.https://fuelcellsworks.com/news/open-energi-selected-by-itm-power-to-optimise-electrolysers/.FuelCellWorks.2020.“In2019:83NewHydrogenRefuellingStationsWorldwide.”https://fuelcellsworks.com/news/in-2019-83-new-hydrogen-refuelling-stations-worldwide/.GenCell.n.d.“OurProductsforOff-Grid&BackupPower.”GenCellwebsite,accessedJune18,2019.https://www.gencellenergy.com/our-products.GenCell.2018.“AdrianKenyaSelectsNewGenCellA5FuelCellSolutiontoProvideGreen,Off-GridPowerto800TelecomBaseStations.”Newsrelease,July2.https://www.gencellenergy.com/news/adrian-kenya-800-telecom-base-stations.GenCell.2019.“GenCellLaunchesFuelCellsinthePhilippinestoDeliverClean,ReliablePowertoMitigateImpactofFrequentPowerOutages.”Newsrelease,May31.https://www.gencellenergy.com/news/gencell-launches-fuel-cells-philippines-deliver-clean-reliable-power-mitigate-impact-frequent-power-outages/?utm_source=Website&utm_medium=Organic&utm_content=Philippines_launch_PR_Website&utm_campaign=GenCell_Social+&utm_source=Linkedin&utm_medium=Organic&utm_content=Philippines_Launch_PR_Linkedin&utm_campaign=GenCell_Social.Gu,George.2019.LinkedInpostfromCEO,HyzonMotors,October6.https://www.linkedin.com/feed/update/urn:li:activity:6586596788482990080/.GII(GlobalInformation,Inc.).2018.ChinaWaterElectrolysisResearchReport2018.WestHartford,CT:GlobalInformation,Inc.https://www.giiresearch.com/report/qyr660502-china-water-electrolysis-market-research-report.html.GII.2019.GlobalWaterElectrolysisSalesMarketReport2019.WestHartford,CT:GlobalInformation,Inc.https://www.giiresearch.com/report/qyr701076-global-water-electrolysis-sales-market-report.html.GreenCarCongress.2018.“ABBandBallardPowerSystemsPartnertoDevelopMW-ScaleFuelCellPowerPlantforShippingIndustry.”Newsrelease,June27.https://www.greencarcongress.com/2018/06/20180627-abb.html.GreenCarCongress.2019.“GroveHydrogenAutomotiveandStateGovernmentofMinasGeraisBrazilAnnounceHydrogenVehicleCooperationProgram.”Newsrelease,April24.https://www.greencarcongress.com/2019/04/20190424-grove.html.Gupta,Ashish.2019.“IOCBetsonHydrogenFuelCells.”FortuneIndia,October23.https://www.fortuneindia.com/technology/ioc-bets-on-hydrogen-fuel-cells/103695.H21.2018.“H21NorthofEngland.”https://www.h21.green/wp-content/uploads/2019/01/H21-NoE-PRINT-PDF-FINAL-1.pdf.H2-Industries.2018.“GermanCompanyPlansUsinganInnovativeEnergyStorageTechnologyforSolarEnergyDistributioninBotswanaandSouthernAfricawithShumbaEnergy.”Pressrelease,December13.https://h2-industries.com/en/german-company-plans-using-innovative-energy-storage-technology-solar-energy-distribution-botswana-southern-africa-shumba-energy.Hanwha.2018.“HanwhaEnergyBreaksGroundonaGroundbreakingPowerPlant.”Pressrelease,August30.https://www.hanwha.com/en/news_and_media/press_release/hanwha-energy-breaks-ground-on-a-groundbreaking-power-plant.html.GREENHYDROGENANDFUELCELLSINDEVELOPINGCOUNTRIES104Haskel.2019.“HydrogenTechnologyandRefuelingStations:HowOneCountryIsNormalizingtheChangetoCleanEnergy.”Haskelwebsite,May9.https://solutions.haskel.com/blog/hydrogen-technology-and-refueling-stations-how-one-country-is-normalizing-the-change-to-clean-energy.HDFEnergy.n.d.“CEOGProject—CEOG:FrenchWesternGuianaPowerPlant.”CEOGwebsite,accessedApril16,2019.https://www.ceog.fr/.HDFEnergy.2019.“HDFEnergyAnnouncesMeridiam’sInvestmentinCEOG,CurrentlytheGreatestProjectWorldwideofaPowerGeneratingPlantStoringIntermittentRenewableEnergyUsingHydrogen.”Newsrelease,September12.https://www.businesswire.com/news/home/20180912005406/en/HDF-Energy-Announces-Meridiams-Investment-CEOG-Greatest.Hinicio.2016.“IsHydrogenaSolutionforGreenEnergyResilienceintheCaribbean?”Newsrelease,October.http://www.hinicio.com/file/2017/10/Is-Hydrogen-a-solution-for-green-energy-resilience-in-the-Caribbean.pdf.HTAP(HydrogenTechnologyAdvisoryPanel).1998.“AnalysisoftheEffectivenessoftheDOEHydrogenProgram:AReporttoCongressRequiredbytheHydrogenFutureActof1996(P.L.104-271).”HTAP,Washington,DC.Hychico.n.d.“HydrogenPlant”Hychicowebsite.http://www.hychico.com.ar/eng/hydrogen-plant.htmlHychico.2018.“UndergroundHydrogenStorage.”Hychicowebsite.http://www.hychico.com.ar/eng/underground-hydrogen-storage.html.HyDeploy.n.d.HyDeploywebsite,accessedApril16,2019.https://hydeploy.co.uk/.HydrogenCarsNow.n.d.“BMWSeries5GTHydrogen.”HydrogenCarsNowwebsite,accessedJune19,2019.https://www.hydrogencarsnow.com/index.php/bmw-series-5-gt-hydrogen.HydrogenCouncil.2017.“Hydrogen,ScalingUp.”HydrogenCouncil,Belgium.http://hydrogencouncil.com/study-hydrogen-scaling-up/.HydrogenCouncil.2020.“PathtoHydrogenCompetitiveness—ACostPerspective.”HydrogenCouncilreport,Brussels,January20.https://hydrogencouncil.com/wp-content/uploads/2020/01/Path-to-Hydrogen-Competitiveness_Full-Study-1.pdf.HydrogenEurope.n.d.“HydrogenSafety.”HydrogenEuropewebsite,accessedApril1,2019.https://hydrogeneurope.eu/hydrogen-safety.IEA(InternationalEnergyAgency).2015.TechnologyRoadmap:HydrogenandFuelCells.Paris:IEA.https://www.iea.org/publications/freepublications/publication/TechnologyRoadmapHydrogenandFuelCells.pdf.IEA.2017.“GlobalTrendsandOutlookforHydrogen.”Brief,IEA,Paris,December.https://www.iea.org/tcep/energyintegration/hydrogen/.IEA.2019a.“Hydrogen:TrackingCleanEnergyProgress.”IEAwebsite,LastupdatedJune19.https://www.iea.org/tcep/energyintegration/hydrogen.IEA.2019b.TheFutureofHydrogen:SeizingToday’sOpportunities.ReportpreparedfortheG20,Japan.Paris:IEA.IEAandOECD.2005.ProspectsforHydrogenandFuelCells:EnergyTechnologyAnalysis.Paris:IEA.http://ieahydrogen.org/Activities/Subtask-A,-Hydrogen-Resouce-Study-2008,-Resource-S/2005-IEA-Prospects-for-H2-and-FC.aspx.IMechE(InstitutionofMechanicalEngineers).2016.“Aberdeen’sHydrogenBuses‘OutperformExpectations.’”Newsrelease,March14.http://www.imeche.org/news/news-article/aberdeen’s-hydrogen-buses-outperform-expectations.IRENA(InternationalRenewableEnergyAgency).2018.“HydrogenfromRenewablePower:TechnologyOutlookfortheEnergyTransition.”InternationalRenewableEnergyAgency,AbuDhabi.https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2018/Sep/IRENA_Hydrogen_from_renewable_power_2018.pdf.IRENA.2019.“Hydrogen:ARenewableEnergyPerspective.”Reportpreparedforthe2ndHydrogenEnergyMinisterialMeetinginTokyo,Japan,”September.InternationalRenewableEnergyAgency,AbuDhabi.https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Sep/IRENA_Hydrogen_2019.pdf105BibliographyITMPower.2018.“World’sLargestHydrogenElectrolysisinShell’sRhinelandRefinery.”Newsrelease,January18.http://www.itm-power.com/news-item/worlds-largest-hydrogen-electrolysis-in-shells-rhineland-refinery.JADA.2019.RankingbyPassengerCarBrandCommonNamehttp://www.jada.or.jp/data/month/m-brand-ranking/Jupiter1000.n.d.Jupiter1000website,accessedJune18,2019.https://www.jupiter1000.eu/english.Kazmier,Robin.2018.“CentralAmerica’sFirstHydrogen-FueledBusHitstheRoadinCostaRica.”TicoTimes,April18.https://ticotimes.net/2018/04/18/central-americas-first-hydrogen-fueled-bus-hits-the-road-in-costa-rica.Klippenstein,Matthew.2017.“FuelCellsin2017AreWhereSolarWasin2002.”GreentechMedia,December27.https://www.greentechmedia.com/articles/read/fuel-cells-in-2017-are-where-solar-was-in-2002.Kreetzer,Alex.2019.“GroveandDSMLaunchNewPartnershipforHydrogenCarDistributioninNepal.AutoFutures,April25.https://www.autofutures.tv/2019/04/25/grove-and-dsm-launch-new-partnership-for-hydrogen-car-distribution-in-nepal/.Lazard.2018.“Lazard’sLevelizedCostofEnergyAnalysis–Version12.0”.https://www.lazard.com/media/450784/lazards-levelized-cost-of-energy-version-120-vfinal.pdfLePan,Nicholas.2019.“TheEvolutionofHydrogen:FromtheBigBangtoFuelCells.”VisualCapitalistnewsrelease,April23.https://www.visualcapitalist.com/evolution-of-hydrogen-fuel-cells.LoganEnergy.2019.“20FenchurchStreet.”LoganEnergyLimitedwebsite,accessedMarch28,2019.http://www.loganenergy.com/portfolio/20-fenchurch-street.Maisch,Marija.2019.“Australia’sFirstSolartoHydrogen-BasedMicrogridGetsNearly$1MillioninFederalFunding.”PVMagazine,May7.https://www.pv-magazine-australia.com/2019/05/07/australias-first-solar-to-hydrogen-based-microgrid-gets-nearly-1-million-in-federal-funding.McCredie,Andrew.2019.“APartnershipMadeinFuelCellHeaven:VancouverCarshareCo-opModoJoinsForceswithHyundaitoPlantHydrogenFootprint.”Driving,March19.https://driving.ca/hyundai/auto-news/news/a-partnership-made-in-fuel-cell-heaven.MarketsandMarkets.2018.“HydrogenGenerationMarketWorth$199.1Billionby2023.”Pressrelease,November13.https://www.marketsandmarkets.com/PressReleases/hydrogen.asp.MarketWatch.2019.“WaterElectrolysisMarket2019GlobalIndustrySize,Segments,DevelopmentStatus,SalesRevenue,HistoricalAnalysis,Landscape,Demand,UpcomingTrendandForecastto2023.”Pressrelease,January18.https://www.marketwatch.com/press-release/water-electrolysis-market-2019-global-industry-size-segments-development-status-sales-revenue-historical-analysis-landscape-demand-upcoming-trend--and-forecast-to-2023-2019-01-18.MarylandDepartmentofAgriculture.n.d.“FireDepartmentResponsetoAmmoniaReleases.”website,https://www.mda.state.mn.us/fire-department-response-ammonia-releases.McKinsey&Company.2018.“RoadmaptowardsaHydrogenEconomy:MarketPerspective.”InvestorDaypresentationfortheHydrogenCouncil,July24.http://hydrogencouncil.com/mckinsey-investor-day-presentation/.McPhy.2017.“Power-to-GasinAustria.”Newsrelease,September7.https://mcphy.com/en/press-releases/power-to-gas-in-austria.METI(MinistryofEconomy,TradeandIndustry)andNEDO(NewEnergyandIndustrialTechnologyDevelopment).2018.“SummaryStatementoftheHydrogenEnergyMinisterialMeeting.”Pressrelease,October23.https://www.meti.go.jp/english/press/2018/pdf/1023_007a.pdf.Millikin,Mike.2014.“ToyotaContinuestoPreparetheMarketforFuelCellVehiclein2015.”GreenCarCongress,March11.https://www.greencarcongress.com/2014/03/20140311-fcv.html.Mohan,Matthew.2019.“SPGroupLaunchesFirstZero-EmissionBuildinginSoutheastAsiaPoweredbyGreenHydrogen,”ChannelNewsAsia,October30.https://www.channelnewsasia.com/news/singapore/sp-group-first-zero-emission-building-green-hydrogen-12046124.Moon,Ji-Woong.2017.“Doosan’sFuelCellBizinFullSwingwithNewOrdersTopping1TrWonThisYear.”PulseNews,October10.https://pulsenews.co.kr/view.php?year=2017&no=668058.GREENHYDROGENANDFUELCELLSINDEVELOPINGCOUNTRIES106Mulder,Machiel,PeterL.Perey,andJoséL.Moraga.2019.OutlookforaDutchHydrogenMarket:EconomicConditionsandScenarios.”CEERPolicyPapers,5,CentreforEnergyEconomicsResearch,UniversityofGroningen,theNetherlands.Müller,KerstinK.,FrankSchnitzeler,AleksandarLozanovski,SabrineSkiker,andMadelineOjakovoh.2017.CleanHydrogeninEuropeanCities(CHIC)FinalReport.Brussels:FuelCellsandHydrogenJointUndertaking(FCHJU).NelASA.2017.“Q32017GeneralMarketUpdate.”PresentationbyJonAndréLøkke,September30.https://nelhydrogen.com/assets/uploads/2018/07/nel-q3-2017-presentation.pdf.Nel.2018a.“AwardedMulti-BillionNOKElectrolyzerandFuelingStationContractbyNikola.”June28.https://nelhydrogen.com/press-release/awarded-multi-billion-nok-electrolyzer-and-fueling-station-contract-by-nikola.Nel.2018b.“ConstructingtheWorld’sLargestElectrolyzerManufacturingPlant.”Pressrelease,August22.https://nelhydrogen.com/press-release/constructing-the-worlds-largest-electrolyzer-manufacturing-plant.Nel.2018c.“RenewableHydrogenfromElectrolysis:HowDoWeGettoaRelevantScale?”PresentationforH2@ScaleConsortiumKick-OffMeeting,August1.Nel.2019a.“NelFieldExperienceandReferences:HydrogenProductionandFuelingEquipment—Worldwide.”PowerPointpresentation.Nel.2019b.“NelHydrogenPresentation.”PresentationbyJonAndréLøkke,January.https://nelhydrogen.com/assets/uploads/2019/01/Nel-ASA-Company-presentation-Jan-2019.pdf.NewMobility.2019.“China’sFirstHydrogenCarSharingProjectLaunchedinNan’anDistrictofChongqing.”Newsrelease,April16.https://www.newmobility.global/future-transportation/chinas-first-hydrogen-car-sharing-project-launched-nanan-district-chongqing.NikolaMotors.n.d.Corporatewebsite.ConsultedonMay2020https://nikolamotor.com/twoNRCAN(NaturalResourcesCanada).2019.“GlencoreRAGLANMineRenewableElectricitySmart-GridPilotDemonstration.”NRCANwebsite,January31.https://www.nrcan.gc.ca/energy/funding/current-funding-programs/eii/16662.NREL(NationalRenewableEnergyLaboratory).2019.“HydrogenDemandandResourceAnalysis.”NRELwebapplicationandtool,accessedApril27.https://maps.nrel.gov/hydra/?aL=xZMS-8%255Bv%255D%3Dt%26AJ_mtU%255Bv%255D%3Dt%26AJ_mtU%255Bd%255D%3D1%26rwcrCN%255Bv%255D%3Dt%26rwcrCN%255Bd%255D%3D2&bL=clight&cE=0&lR=0&mC=40.306759936589636%2C-74.344482421875&zL=8.Nikola.n.d.Nikolawebsite,accessedApril27,2019.https://nikolamotor.com/one.ObikoPearson,Natalie.2019.“After40-YearLosingStreak,Fuel-CellMakerSharesAreSoaring.”Bloombergnews,October25.https://www.bnnbloomberg.ca/after-40-year-losing-streak-fuel-cell-maker-shares-are-soaring-1.1337453.OECD(OrganisationforEconomicCo-operationandDevelopment).2019.“IEAEnergyTechnologyRD&DStatistics.”Dataset,accessedMarch7,2020.https://www.oecd-ilibrary.org/energy/data/iea-energy-technology-r-d-statistics_enetech-data-en.[[AQ:Correctyearforaccess?]]OECD/IEA.2005.ProspectsforHydrogenandFuelCells.EnergyTechnologyAnalysis.Paris:IEA.http://ieahydrogen.org/Activities/Subtask-A,-Hydrogen-Resouce-Study-2008,-Resource-S/2005-IEA-Prospects-for-H2-and-FC.aspx.Ogden,Joan.2004.“TransitionStrategiesforHydrogenandFuelCells.”UniversityofCalifornia,Davis.Olson,Thomas.2008.“SiemensPowertoPutSolid-OxideFuelUnitonBlock.”TribLive(Pittsburgh),June28.https://archive.triblive.com/news/siemens-power-to-put-solid-oxide-fuel-unit-on-block.Philibert,Cédric.2017.“Commentary:ProducingIndustrialHydrogenfromRenewableEnergy.”IEAnewsrelease,April18.https://www.iea.org/newsroom/news/2017/april/producing-industrial-hydrogen-from-renewable-energy.html.PlugPower.2019.“PlugPowerExpandsManufacturinginNewYork’sFingerLakesRegionwiththeGrandOpeningofItsFacilityinRochester.”Newsrelease,February22.https://www.globenewswire.com/107Bibliographynews-release/2019/02/22/1740500/0/en/Plug-Power-Expands-Manufacturing-in-New-York-s-Finger-Lakes-Region-with-the-Grand-Opening-of-its-Facility-in-Rochester.html.PlugPower.2020.“PlugPowerReceives$172MOrderforHydrogenandFuelCellSolutionsfromFortune100Customer.”Pressrelease,January6.https://www.ir.plugpower.com/Press-Releases/Press-Release-Details/2020/Plug-Power-Receives-172M-Order-for-Hydrogen-and-Fuel-Cell-Solutions-From-Fortune-100-Customer/default.aspx.Plummer,Brad.2016.“TheRapidGrowthofElectricCarsWorldwide,in4Charts.”Vox,June6.https://www.vox.com/2016/6/6/11867894/electric-cars-global-sales.Pocard,Nicolas,andCatherineReid.2016.FuelCellElectricBuses:AnAttractiveValuePropositionforZero-EmissionBusesintheUnitedKingdom.Burnaby,Canada:BallardPowerSystems.https://www.fuelcellbuses.eu/sites/default/files/Ballard%20-%20fuel%20cell%20electric%20buses.pdf.PortofRotterdam.2019.“BP,NouryonandPortofRotterdamPartneronGreenHydrogenStudy.”Pressrelease,April15.https://www.portofrotterdam.com/en/news-and-press-releases/bp-nouryon-and-port-of-rotterdam-partner-on-green-hydrogen-study.PRNewswire.2018.“ShellandToyotaMoveForwardwithHydrogenFacilityatPortofLongBeach.”PRNewswire,April19.https://www.prnewswire.com/news-releases/shell-and-toyota-move-forward-with-hydrogen-facility-at-port-of-long-beach-300633259.html.PWC.2016.“PrivatePowerUtilities:TheEconomicBenefitsofCaptivePowerinIndustrialEstatesinIndonesia.”www.pwc.com/id.RailwayTechnology.n.d.“CoradiaiLintRegionalTrain.”RailwayTechnologywebsite,accessedApril15,2019.https://www.railway-technology.com/projects/coradia-ilint-regional-train.RenewableEnergyFocus.2012.“BallardFuelCellsProvideBahamasTelecomBackupPowerduringHurricaneSandy.”Newsrelease,November7.http://www.renewableenergyfocus.com/view/29223/ballard-fuel-cells-provide-bahamas-telecom-backup-power-during-hurricane-sandy.Ruth,Mark.2019.“H2@Scale:HydrogenIntegratingEnergySystems.”PresentationfromNationalRenewableEnergyLabtotheMITEnergyClub,November13.Sampson,Joanna.2019.“HydrogenMobilityEuropeReachesKeyMilestone.”H2View,August8.https://www.h2-view.com/story/hydrogen-mobility-europe-reaches-key-milestone/.Sanderson,Henry.2019.“HydrogenPower:ChinaBacksFuelCellTechnology.”FinancialTimes,January1.Saha,Joyanta.2019.“BangladeshiScientistsPlantoTurnWasteintoEco-friendlyHydrogenFuel.”Bdnews24.com,October28.https://m-bdnews24-com.cdn.ampproject.org/c/s/m.bdnews24.com/amp/en/detail/economy/1682000Shell.2018.“ShellScenarios:Sky—MeetingtheGoalsoftheParisAgreement.”https://www.shell.com/promos/business-customers-promos/download-latest-scenario-sky/_jcr_content.stream/1530643931055/eca19f7fc0d20adbe830d3b0b27bcc9ef72198f5/shell-scenario-sky.pdf.Siemens.2018.“SiemensandPowerCelltoCollaborateinFuelCellSystemsforShips.”Pressrelease.https://press.siemens.com/global/en/pressrelease/siemens-and-powercell-collaborate-fuel-cell-systems-ships.Siemens.2019.“HydrogenSolutionsOverview,Slide8.”PowerPointpresentation,February.Songer,Dave.2018.“PorterbrookandBallardSignalArrivalofUK’s1stHydrogen-PoweredDemonstratorTrain.”SmartRailWorld,December17.https://www.smartrailworld.com/porterbrook-ballard-uks-1st-hydrogen-powered-demonstrator-train.SPGroup.2019.“SPGroupSetsUpFirstZero-EmissionBuildingPoweredbyGreenHydrogeninSoutheastAsia.”Mediarelease,October302019.https://www.spgroup.com.sg/wcm/connect/spgrp/c9d8ef18-9a18-4b91-a98b-0e0c0f611b68/%5B20191030%5D+Media+Release+-+SP+Group+Sets+Up+First+Zero-Emission+Building+Powered+By+Green+Hydrogen+In+Southeast+Asia.pdf?MOD=AJPERES&CVID=.STFC(ScienceandTechnologyFacilitiesCouncil).2018.“UKTeamDevelopWorld’sFirstGreenEnergyStorageDemonstratortoDeliverCarbonFreePower.”Newsitem,June27.https://stfc.ukri.org/news/uk-team-develop-worlds-first-green-energy-storage-demonstrator/.GREENHYDROGENANDFUELCELLSINDEVELOPINGCOUNTRIES108Stromsta,Karl-Erik.2019.“ProterraRollsOut$200MillionElectricBusBatteryLeasingProgramwithMitsui.”GreentechMedia,newsrelease,April16.https://www.greentechmedia.com/articles/read/proterra-rolls-out-bus-battery-leasing-program-with-mitsui#gs.5pqcso.Terpilowski,Sue.2019.“GEandNedstackPartnershipSetsSightsonZeroEmissionCruiseVessels.”SeaNews,March22.https://seanews.co.uk/news/ge-and-nedstack-partnership-sets-sights-on-zero-emission-cruise-vessels/.THE(TianjinMainlandHydrogenEquipmentCo.,Ltd.).n.d.a.“BulgarianProjectofMetallurgicalIndustry.”THEwebsite,accessedJune18,2019.http://www.cnthe.com/en/case_detail-48-37-60.html.THE.n.d.b.“FloatGlassFactoryofVietnam.”THEwebsite,accessedApril4,2019.http://www.cnthe.com/en/case_detail-48-35-53.html.Thyssenkrupp.n.d.“Small-ScaleGreenAmmoniaPlantsOpenUpNewStoragePossibilitiesforWindandSolarPower.”Website,accessedDecember12,2019.https://insights.thyssenkrupp-industrial-solutions.com/story/small-scale-green-ammonia-plants-open-up-new-storage-possibilities-for-wind-and-solar-power/.Toyota.2018.“ToyotaMovestoExpandMass-ProductionofFuelCellStacksandHydrogenTanksTowardsTen-FoldIncreasePost-2020.”Newsrelease,May24.https://newsroom.toyota.co.jp/en/corporate/22647198.html.TractebelandChileanSolarCommittee.2018.“OpportunitiesfortheDevelopmentofaSolarHydrogenIndustryintheRegionsofAntofagastaandAtacama:Innovationsfor100%RenewableEnergySystem.”TractebelandChileanSolarCommittee,Santiago.UnionofConcernedScientists.2013.“HowItWorks:WaterforNaturalGas.”UnionofConcernedScientistswebsite,July15.https://www.ucsusa.org/clean-energy/energy-water-use/water-energy-electricity-natural-gas#.WqBgcujwaUk.UNECLOEngie.2019.“ElectricityRates.”UNECLOwebsite,https://www.unelco.engie.com/en/electricity/electricity-rates.Unicredit.2019.“HydrogenFuelCellorBatteryElectricVehicles?”Sectorreport—Automobiles&Parts.https://www.research.unicredit.eu/DocsKey/credit_docs_9999_168629.ashx?EXT=pdf&KEY=n03ZZLYZf5miJJA2_uTR8mqUF5IJHZJN8vXBBofEwW4=.UnitedHydrogen.n.d.UnitedHydrogenwebsite,accessedMay4,2019.https://unitedhydrogen.com/united-hydrogen/.UnitedNations.2019.“ClimateActionSummit2019”,UNwebsite,https://www.un.org/en/climatechange/assets/pdf/CAS_closing_release.pdfVoestalpine.2018.“H2FUTUREonTrack:ConstructionStartsattheWorld’sLargestHydrogenPilotFacility.”Newsrelease,April16.https://www.voestalpine.com/group/en/media/press-releases/2018-04-16-H2FUTURE-on-track-construction-starts-at-the-worlds-largest-hydrogen-pilot-facility.Wanyi,Miao.2018.“FuturewithZeroEmissions:HydrogenPoweredVehiclesThriveinChina.”ChinaPeople’sDaily,November16.http://en.people.cn/n3/2018/1116/c90000-9518797.html.Wesoff,Eric.2013.“Bloom’sFuelCells:JustHowGreenIsaBloomBox.”GreentechMedia,September4.https://www.greentechmedia.com/articles/read/blooms-fuel-cells-just-how-green-is-a-bloom-box#gs.3jduio.TheWheelNetwork.2018.“2019HyundaiNexo—TheMostPollutedRoadinLondon.”YouTubevideo,uploadedOctober17.https://m.youtube.com/watch?v=ormfLJmWGC8.Wiles,Russ.2019.“SeetheZeroEmissionsHeavyTrucksThatNikolaWillBuildinArizona—andThatCouldRevolutionizetheIndustry.”ArizonaRepublic,April17.https://www.azcentral.com/story/money/business/2019/04/17/nikola-corp-unveils-zero-emissions-trucks-in-scottsdale-built-coolidge-arizona/3479907002/.Willuhn,Marian.2019.“SlovenianGlassFactorytoUsePVforGreenHydrogen.”PVMagazine,April5.https://www.pv-magazine.com/2019/04/05/slovenian-glass-factory-to-use-pv-for-green-hydrogen.WorldBank.1980.“Turkey—IGSASFertilizerProject.”ProjectPerformanceAuditReportNo.3037,WorldBank,Washington,DC.http://documents.worldbank.org/curated/en/540611468915328419/pdf/multi-page.pdf.109BibliographyWorldBank.1983.“Egypt—TalkhaIIFertilizerProject.”ProjectCompletionReportNo.4455,WorldBank,Washington,DC.http://documents.worldbank.org/curated/en/542051468023410553/pdf/multi-page.pdf.WorldBank.1986.“Pakistan—FaujiFertilizerProject.”ProjectPerformanceAuditReportNo.6214,WorldBank,Washington,DC.http://documents.worldbank.org/curated/en/247001468915251139/pdf/multi0page.pdf.WorldBank.2018.“MaliElectricitySectorEmergencyProject(MESEP).”ProjectInformationDocument/IntegratedSafeguardsDataSheetReportNo.PIDISDSC24182.WorldBank,Washington,DC.http://documents.worldbank.org/curated/en/864571522875815839/text/Concept-Project-Information-Document-Integrated-Safeguards-Data-Sheet-Mali-Electricity-Sector-Improvement-Project-MESIP-P166796.txt.WEC(WorldEnergyCouncil)Netherlands.2019.“Hydrogen—IndustryasaCatalyst:AcceleratingtheDecarbonisationofOurEconomyby2030.”WorldEnergyCouncilNetherlands,Tilburg.http://www.wereldenergieraad.nl/wp-content/uploads/2019/02/190207-WEC-brochure-2019-A4.pdf.Xu,Wei.2019.“ToyotaDebutsHydrogenBusfor2022BeijingWinterOlympics.”YicaiGlobal,April22.https://www.yicaiglobal.com/news/toyota-debuts-hydrogen-bus-for-2022-beijing-winter-olympics-.XinhuaNewsAgency.2019.“China’sInstalledCapacityofHydrogenFuelCellsSoarsSixfoldinFirstSevenMonths.”XinhuaNet,September1.http://www.xinhuanet.com/english/2019-09/01/c_138356098.htm.Yang,Yi.2017.“World’sFirstHydrogen-PoweredTramPutintoOperation.”Xinhua,October27.http://www.xinhuanet.com//english/2017-10/27/c_136710000.htm.Yee,Amy.2012.“HydrogenFuelsAutorickshawsandDreamsofCleanerAir.”NewYorkTimes,Oct.1.https://www.nytimes.com/2012/10/02/business/energy-environment/hydrogen-fuels-autorickshaws-and-dreams-of-cleaner-air.html.EnergySectorManagementAssistanceProgramTheWorldBank1818HStreet,N.W.Washington,DC20433USAesmap.orgesmap@worldbank.org