加币货币经济对电力系统的影响(英)-罗兰贝格VIP专享VIP免费

1
APRIL 2022
AUTHORS
CHRISTINE VAUGHAN
Director
PIERRE SAMATIES
Partner
BILL KEMP
Director
FEROZ SANAULLA
Partner
1 Feb 17, 2022, range of 55 to 361 TWh, Cambridge Bitcoin Electricity Consumption, University of Cambridge
HOW CRYPTO MINING
WILL TRANSFORM THE
ENERGY INDUSTRY
Implications of the crypto economy
for the electric system
The crypto economy is here to stay and crypto mining and staking
is one of the main areas of interest for investment funds, corporates
and governments.
Crypto mining refers to the process of validating transactions and therefore securing
and powering a blockchain protocol. The most famous protocol is Bitcoin – the current
king of crypto since its genesis block in 2009. Bitcoin mining is energy intensive. At the
time of writing, the total annual power consumption of Bitcoin is 145 TWh1 (~0.32%
of the total global energy consumption). The energy intensity is rooted in the choice of
its consensus mechanism, commonly known as proof-of-work. However, the same
laborious consensus mechanism is also the main reason for Bitcoin's security – it is
too costly (or in other words requires too much "work") for malicious actors to rewrite
transactions. In a nutshell, a Bitcoin mining rig consists of specialized machines
dedicated to solving an algorithmic puzzle. The brute force approach and the
2
dynamically adjusted difficulty of mining so that a block is mined around every ten
minutes (an intelligent design feature built into the protocol) are two factors for the
high energy demand of Bitcoin mining.
The answer to the much debated question of whether Bitcoin mining consumes too
much energy is in the eye of the beholder, e.g. it depends on what legacy systems Bitcoin
is replacing and what benefits it brings to society. While this is a highly interesting
debate that touches on philosophical, economic and philanthropic elements, this article
will focus on the impact and changes that Bitcoin mining (and proof-of-work based
mining in general) brings to the electrical system and how miners can form a symbiosis
with power and utility companies around the world.
Bitcoin mining growth
Bitcoin mining uses a tremendous amount of power. Some of the larger Bitcoin mines
are served by dedicated power plants. While the global energy mix used for mining is
now over 57% from clean energy sources,2 the demand it can create on the power grids
is immense.
In the past five years, the energy consumption has grown from 11.8 to 120.5 TWh3 per
year, which is the equivalent of adding 2,400 wind turbines every year. For context, the
US has installed on average about 3,000 wind turbines a year.4 On February 12, 2022,
the Bitcoin network hash rate (the aggregate volume of mining algorithm operations)
2 Bitcoin Mining Council Q3 2021 Report, defining clean sources as hydro, wind, solar, nuclear,
geothermal and carbon generation with carbon offsets
3 University of Cambridge
4 USGS
Source Roland Berger
How does Bitcoin mining work?
The Bitcoin mining process
Miners compete to solve a
cryptographic puzzle that is designed to
be di icult to solve but easy to verify
The puzzle uses signifi cant computational
power. The network di iculty is adjusted
about every 2 weeks so that 1 block is
verifi ed every 10 minutes.
Often miners pool together to solve the
puzzle and any rewards are distributed
based on computational power.
The Bitcoin supply is fi xed at
21 million and currently about
19 million has been mined.
The rewards for mining
are predetermined and are
currently 6.25 Bitcoin per
block or 900 per day.
After the puzzle
is solved or
hashed, the
miners verify the
transaction
The new block
is added to the
blockchain
Winning miners
(or pools of
miners) are
rewarded with
Bitcoin
Users generate
transactions with
Bitcoin. Pending
transactions are
grouped in a block
Miners
3
reached a new all-time high of 248.11 million terahashes per second (TH/s).5 NYDIG,
a Bitcoin company, estimates that electricity consumption could rise to a peak of
706 TWh in 2027 under its high Bitcoin price scenario.6
After the Bitcoin mining ban in China in September 2021, and after some countries
began restricting mining due to concerns around the strain it causes in their utility grid,
global hash rates quickly found new homes and the United States has taken the leading
position in global Bitcoin mining.
This large growth in energy use will affect decarbonization objectives if fossil fuel is used
as the source of power. We expect a continued movement towards using clean energy
given the increasing spotlight being placed on sustainability by regulators and investors
and the influence of economic concerns. In view of the inherent incentive of miners to
minimize energy costs, and the fact that clean energy in most locations is the cheapest
source of energy,7 we expect the Bitcoin mining industry to continue to move quickly to
clean energy. This is especially true in countries with a strong policy push for decarboni-
zation. We are also seeing a continued movement towards better energy efficiency,
partially offsetting the growing energy use. For instance, Intel claims that its recent circuit
innovations have 1,000 times better performance per watt than mainstream circuits.8
Without a doubt, even with the tremendous efficiency improvements, the exponential
expansion of crypto mining operations will add to global power generation demand,
especially in the US. This new surge in demand will amplify the needs of the electricity
5 A hash is the computation run by specialized mining computers in support of the blockchain.
A terahash is a trillion hashes
6 NYDIG, Bitcoin Net Zero, September 2021
7 "As available" energy
8 https://www.intel.com/content/www/us/en/newsroom/opinion/thoughts-blockchain-custom-compute-
group.html#gs.qb4u05
Source University of Cambridge, Blockchain.com, Roland Berger
Estimated TWh per year
Bitcoin energy consumption and network di iculty reached
new all-time highs
Development of global Bitcoin energy consumption and network di iculty
201420132012
140
120
100
80
60
40
20
0
2015 2016 2017 2018 2019 2020 2021 2022 201420132012
30t
25t
20t
15t
10t
5t
0t
2015 2016 2017 2018 2019 2020 2021 2022
GLOBAL BITCOIN ENERGY CONSUMPTION
[TWh]
NETWORK DIFFICULTY
[t]
A relative
measure of how
di icult it is to mine
a new block for
the blockchain
1APRIL2022AUTHORSCHRISTINEVAUGHANDirectorPIERRESAMATIESPartnerBILLKEMPDirectorFEROZSANAULLAPartner1Feb17,2022,rangeof55to361TWh,CambridgeBitcoinElectricityConsumption,UniversityofCambridgeHOWCRYPTOMININGWILLTRANSFORMTHEENERGYINDUSTRYImplicationsofthecryptoeconomyfortheelectricsystemThecryptoeconomyisheretostayandcryptominingandstakingisoneofthemainareasofinterestforinvestmentfunds,corporatesandgovernments.Cryptominingreferstotheprocessofvalidatingtransactionsandthereforesecuringandpoweringablockchainprotocol.ThemostfamousprotocolisBitcoin–thecurrentkingofcryptosinceitsgenesisblockin2009.Bitcoinminingisenergyintensive.Atthetimeofwriting,thetotalannualpowerconsumptionofBitcoinis145TWh1(~0.32%ofthetotalglobalenergyconsumption).Theenergyintensityisrootedinthechoiceofitsconsensusmechanism,commonlyknownasproof-of-work.However,thesamelaboriousconsensusmechanismisalsothemainreasonforBitcoin'ssecurity–itistoocostly(orinotherwordsrequirestoomuch"work")formaliciousactorstorewritetransactions.Inanutshell,aBitcoinminingrigconsistsofspecializedmachinesdedicatedtosolvinganalgorithmicpuzzle.Thebruteforceapproachandthe2dynamicallyadjusteddifficultyofminingsothatablockisminedaroundeverytenminutes(anintelligentdesignfeaturebuiltintotheprotocol)aretwofactorsforthehighenergydemandofBitcoinmining.TheanswertothemuchdebatedquestionofwhetherBitcoinminingconsumestoomuchenergyisintheeyeofthebeholder,e.g.itdependsonwhatlegacysystemsBitcoinisreplacingandwhatbenefitsitbringstosociety.Whilethisisahighlyinterestingdebatethattouchesonphilosophical,economicandphilanthropicelements,thisarticlewillfocusontheimpactandchangesthatBitcoinmining(andproof-of-workbasedminingingeneral)bringstotheelectricalsystemandhowminerscanformasymbiosiswithpowerandutilitycompaniesaroundtheworld.BitcoinmininggrowthBitcoinminingusesatremendousamountofpower.SomeofthelargerBitcoinminesareservedbydedicatedpowerplants.Whiletheglobalenergymixusedforminingisnowover57%fromcleanenergysources,2thedemanditcancreateonthepowergridsisimmense.Inthepastfiveyears,theenergyconsumptionhasgrownfrom11.8to120.5TWh3peryear,whichistheequivalentofadding2,400windturbineseveryyear.Forcontext,theUShasinstalledonaverageabout3,000windturbinesayear.4OnFebruary12,2022,theBitcoinnetworkhashrate(theaggregatevolumeofminingalgorithmoperations)2BitcoinMiningCouncilQ32021Report,definingcleansourcesashydro,wind,solar,nuclear,geothermalandcarbongenerationwithcarbonoffsets3UniversityofCambridge4USGSSourceRolandBergerHowdoesBitcoinminingwork?TheBitcoinminingprocessMinerscompetetosolveacryptographicpuzzlethatisdesignedtobediiculttosolvebuteasytoverifyThepuzzleusessignificantcomputationalpower.Thenetworkdifficultyisadjustedaboutevery2weekssothat1blockisverifiedevery10minutes.Oftenminerspooltogethertosolvethepuzzleandanyrewardsaredistributedbasedoncomputationalpower.TheBitcoinsupplyisfixedat21millionandcurrentlyabout19millionhasbeenmined.Therewardsforminingarepredeterminedandarecurrently6.25Bitcoinperblockor900perday.Afterthepuzzleissolvedorhashed,theminersverifythetransactionThenewblockisaddedtotheblockchainWinningminers(orpoolsofminers)arerewardedwithBitcoinUsersgeneratetransactionswithBitcoin.PendingtransactionsaregroupedinablockMiners3reachedanewall-timehighof248.11millionterahashespersecond(TH/s).5NYDIG,aBitcoincompany,estimatesthatelectricityconsumptioncouldrisetoapeakof706TWhin2027underitshighBitcoinpricescenario.6AftertheBitcoinminingbaninChinainSeptember2021,andaftersomecountriesbeganrestrictingminingduetoconcernsaroundthestrainitcausesintheirutilitygrid,globalhashratesquicklyfoundnewhomesandtheUnitedStateshastakentheleadingpositioninglobalBitcoinmining.Thislargegrowthinenergyusewillaffectdecarbonizationobjectivesiffossilfuelisusedasthesourceofpower.Weexpectacontinuedmovementtowardsusingcleanenergygiventheincreasingspotlightbeingplacedonsustainabilitybyregulatorsandinvestorsandtheinfluenceofeconomicconcerns.Inviewoftheinherentincentiveofminerstominimizeenergycosts,andthefactthatcleanenergyinmostlocationsisthecheapestsourceofenergy,7weexpecttheBitcoinminingindustrytocontinuetomovequicklytocleanenergy.Thisisespeciallytrueincountrieswithastrongpolicypushfordecarboni-zation.Wearealsoseeingacontinuedmovementtowardsbetterenergyefficiency,partiallyoffsettingthegrowingenergyuse.Forinstance,Intelclaimsthatitsrecentcircuitinnovationshave1,000timesbetterperformanceperwattthanmainstreamcircuits.8Withoutadoubt,evenwiththetremendousefficiencyimprovements,theexponentialexpansionofcryptominingoperationswilladdtoglobalpowergenerationdemand,especiallyintheUS.Thisnewsurgeindemandwillamplifytheneedsoftheelectricity5Ahashisthecomputationrunbyspecializedminingcomputersinsupportoftheblockchain.Aterahashisatrillionhashes6NYDIG,BitcoinNetZero,September20217"Asavailable"energy8https://www.intel.com/content/www/us/en/newsroom/opinion/thoughts-blockchain-custom-compute-group.html#gs.qb4u05SourceUniversityofCambridge,Blockchain.com,RolandBergerEstimatedTWhperyearBitcoinenergyconsumptionandnetworkdifficultyreachednewall-timehighsDevelopmentofglobalBitcoinenergyconsumptionandnetworkdifficulty2014201320121401201008060402002015201620172018201920202021202220142013201230t25t20t15t10t5t0t20152016201720182019202020212022GLOBALBITCOINENERGYCONSUMPTION[TWh]NETWORKDIFFICULTY[t]Arelativemeasureofhowdifficultitistomineanewblockfortheblockchain4sector,whichalreadyfacesthechallengeofmeetinglong-termelectrificationdemandsfromweaningthetransportationandbuildingsectorsofffossilfuelstomovetowardsnetzerogoals.SpecialattributesofBitcoinminingWhilecryptominingoperationssharethesameflat,veryhighloadfactor9usagecharacteristicsasothertypesofdatacenters,theirbusinessmodelandthenatureoftheiroutputcreateadistinctivesetofcustomerattributeswhencomparedtoothertypesofelectricityusers.•Energypricesensitive:Withthecostofpowerrepresentingover80%ofBitcoin'soperatingcosts,minersareextremelysensitivetothecostofpowerandarehighlyincentivizedtofindthebestdealglobally.Inthesearchforthelowestpowerprice,minersoftenseektostrikedealswithutilitiesandpowerplantstobedirectlylocatedonsite(andcircumventgridcosts)orutilizeexcessenergy(e.g.flaredgas).Atthetimeofwritingthisarticle,mostoftheBitcoinminingfacilitiesgloballyoperatewithpowercostsbetween3centsand8centsUSDperMWh,withminingprofitsthatcanpayoffthecostoftheminingequipmentinalittleoverayear.•Agnostictolocationandflexible:Miningrigsareoftenorganizedinmodularcontainers,makingthemveryflexibletodeployandmove.Theypreferlocationswithstableregulatoryregimesthatofferaccommodatingrelationshipswiththeutilitiesandthatideallyhavecolderclimatestoreducecoolingrequirements.HotterlocalessuchasTexasandtheMiddleEastareviablewithnewtechnologysuchashydro9Loadfactoristheactualamountofenergyusedinaperiodoftimedividedbythetotalpeakenergyinthatsameperiodoftime.Itisusedasameasureofefficiency.SourceBitcoinMiningCouncil,RolandBerger1ASICstandsforApplication-SpecificIntegratedCircuit,machinesspecializedjustforminingcryptocurrencyTheefficiencyofASIC1miningmachinesimprovedtremendouslyoverrecentyearsImprovementinASICminingmachineefficiency[J/Th]20142013201520162017201820192020AvalonB1JupiterU1BF864C55RockerBoxBE3000BM13850PickAxe0S9R4Ebit10S15S17S19Hugeefficiencygains1,2505003161871815914040983097921,4749,3515coolingandimmersioncooling–notetheUAE'sannouncementthatitwilldeploy500+MWofminingcapacity.Theycanoperateanywhereintheworld,creatingaglobalmarket.Besidesthecoolinginfrastructure,minersonlyneedastableinternetconnection.Inaddition,Bitcoinminerstrytomaximizetheuseoftheirassets,includingutilizationoftheheatforotherpurposes(e.g.greenhouses).•Focusedontheshortterm:Minersusespecializedcomputersdesignedtomineasfastaspossible.Thosewithfastermachinesearnmore.Thelifetimevalueoftheminingmachinesislessthanthreeyears,drivenbothbyrapidtechnologicaldevelopmentsandbytheintenseuseofthemachinesgiventheirhighprofitmargins(onaveragenorthof30%).Combinedwiththeacknowledgedvolatilityofcrypto-currencymarkets,thismeansthatminersaregenerallyunwillingtomakecontractualcommitmentsforpowerthatextendmorethanthreeyearsorso.Miningequipmentthatisolderthan3yearsisoftenusedonlyinregionswhereminershaveverylow(ornearlyfree)energycosts.Fromautility'spointofview,minerscanthereforebeseenasshort-termusersoftheoverallpowersystemthatcanhelpbridgegapsofoversupplyuntilfurthereconomicdevelopment.Ontheotherhand,basedonthepotentialshort-termtimehorizonoftheminingoperations(ifminersdon'tdecidetocontinuouslyupgradethetechnologyandcommittolong-termoperations),utilitieswillnotbekeentoinvestinadditionalinfrastructuretoaccommodatethemiftheydonotpaythefullcostsovertimeoftheinfrastructureupgrades.•Demandresponseready:Minerscanformaperfectsymbiosiswithutilitieswithregardtobalancingsupplyanddemandonashort-termbasiswithintheoverallsystem.Whileaminerwouldprefertorunasmuchaspossible,therearenoadverseimpacts,otherthanlostrevenue,iftheyareshutdown.Miningrewardsaregainedinsprints,notmarathons,andtheyarenotboundbyatimeofday.Theyverifyablockoftransactionsintheblockchain,intheexampleofBitcoin,everytenminutesonaverage.Theminerscancontrolthepaceanddegreeoftheirshutdownandhencecanbeveryscalableasdemandresponseresources.Ofcourse,utilitiesormarketoperatorswouldhavetomakeitworthwhileforminerstointerrupttheirrevenue-producingoperations.Thereareveryfewenergyusersthatarethislargeandhavethisdegreeofflexibilitytorampupanddowninamatterofminutes–withsomeminersclaimingtheycanshutdowninseconds.Giventhesedistinctiveattributes,andalargeamountoffastinterruptiblepower,cryptominingcanservetheelectricsysteminthreebeneficialways:(1)Newrevenuestreamsandassetoptimization,(2)Demandresponseandloadbalancingand(3)Systemcontrolandplanning.Thepotentialnegativeissuesareexploredbelow,afterthefollowingsection.Cryptomining'simpactontheelectricsystemNewrevenuestreamsandassetoptimizationDuetothegeographicflexibilityofcrypto,thisloadcanbeeasilysituatednearthepointofgeneration.Typically,thesystemworkstheotherwayround,withgenerationsituatedascloseaspossibletoloadcentersorlargetransmissionsystemscarryingloadfromfurtheraway.Thisprovidesauniqueopportunitytoobtainvaluefromunder-utilizedgenerationcapacity.1"Thecryptoeconomywilltransformmanyindustries,theenergyindustrybeingoneofthem.Minersandutilitiescanformasymbiosisintheenergysystemofthefuture."PIERRESAMATIESPartner6Cryptominingoffersanentirelynewwaytomonetizepowergeneration.Itcanbasicallyconvertpowerintoagloballyacceptedcryptocurrency.Generatorsanywherewithexcesspowercanearnfromthatpowerinsteadofcurtailingenergyorfindingandconnectingtootherusers.Bitcoincanunlocknewusesforenergythatotherwisewouldn'tbeused.Forinstance,hydrodamscangeneratemorepowerintherainyseasonthancanbeabsorbed,oil&gascompaniescanutilizeflaregas,etc.Generatorsconstrainedbytransmissionavailabilitycanfindnewoutletsfortheirpower,potentiallyenablingmoresolarandwindinruralareas.Locatingminingcontainersnearthisgenerationcanhelpimprovetheutilizationoftheassetsandwillextendtheirmarketablelives.NuclearfacilitiesintheUSarebeginningtousecryptocurrencyminingtoincreasetheirrevenuesandimprovetheireconomicsastheycompetewithlowerpricedgeneration.Thismayevenimpactcommunitysolarorothervirtualpowerplantswiththenewrevenuestreams,makingthemlessdependentonregulatorysubsidies.Withthegreenenergytransitioninmind,thereisunderstandableconcernaroundanytoolthatmayhelpimprovetheprofitabilityandlifetimeoffossil-fuel-basedpowerplants.Theindustryisundertremendouspressuretousecleanpowergeneration.Assistancecanalsobeprovidedforsolargeneration,enablingavaluestreamforprojectsthatareinlonginterconnectionqueuesorinareasthatarealreadyfilledwithtoomuchsolarpowerinaparticularlocation.Theadditionalvaluestreamswithcryptocapitalcanacceleratearenewablesbuildout.Thiscouldpotentiallychangetheeconomicsoftransmission,particularlyforprojectsthatareprimarilydesignedtoarbitragethepriceofgenerationintwodifferentregions.Withlowcosts,remotegenerationnowhasanalternativeoptionforuseinsteadofdependingontransmissionlinestoconnectthepowertocitiesandloadcenters.Inadditional,inhotterclimateswithsignificantseasonaldemandcurvedifferences(liketheMiddleEast),SourceBitOoda,RolandBergerWhatinfluencedoeselectricitycosthaveontheBitcoinprice?Bitcoinandelectricitypricingconnection(USexamplewithwholesaleenergypurchase)CostofwholesaleelectricityPriceofBitcoinCostofnaturalgas(rawmaterialforelectricityproducedatthemargin)SparkspreadIndicativeamounttocoverfixedcostofgeneratorandprofitsHashspreadTMIndicativeamounttocoverfixedcostofmachineandprofitsFebruary16,2022USD162/MWhhashspreadforS19machinesintheUSwithaveragecostofwholesalepowerUSD69.62/MWhandBitcoinpriceofUSD43,6227Bitcoinminerscanhelpincreasetheutilizationofassetsinwintermonths,whentheloadissignificantlylowerthaninthesummer(mainlybasedonACconsumption).DemandresponseandloadbalancingMoredynamicparticipationofcustomersinbalancingelectricitysupplyanddemandonaveryshort-termbasisisamegatrendintheutilityindustry.Tomaintainpowerreliabilityandquality,electricsystemoperatorsmustmatchsupplyanddemandinrealtime.Withelectricitysuppliesbecomingmoreintermittentandhighlyvariable(e.g.solarandwind),andnewelectricitydemandsalsobeingmorevolatile(e.g.EVcharging),flexibletoolstomanagebothsupplyanddemandareallthemoreimportantandvaluable.Typicalsupply-sidemeansformatchingavailablegenerationwithcustomerloadincludeflexiblepeakinggenerationplants,orbatteriesandotherformsofstorage.Themaininstrumentsonthedemandsideforreal-timesystembalancingareextremepeakpricing(todiscouragepeakusage)anddemandresponseprograms(tocontrolpeakusagevoluntarily).Ratherthanaddingnewsupplyresourcestomeetpeakelectricsystemdemands,itisoftenlesscostlytorecruitcustomerswhoarewillingtoreducetheirelectricityusageinresponsetorequestsfromtheutility,inreturnforadiscountorpayment.Hencetheterm"demandresponse."Thissavesmoneyforboththeutilityanditscustomers.Cryptominingcantakedemandresponsetoanewlevel,withlargeloadsthatcanbequicklycurtailedforafee.Forbesdescribesitasa"shockabsorberforgreenpower."Itcanprovideaseasonalbalanceinhotclimateswhereairconditionerusageandwaterdesalinationcreateseasonalloadpatterns.InnovativeutilitiessuchasBlackHillsEnergyaredevelopingnewflexibletariffstoaccommodatethisnewusecase.Otherusesforthesetariffscouldbeinterruptibledatacenterloads,whichwouldincludeotherapplicationsthatarenon-mission-criticalcomputationssuchassomemachinelearningandcomputationalbiology.Thesetariffsmayalsobeusedforotherlargeflexibleloadapplicationssuchastheproductionofgreenhydrogen,anotherusecasethatwillcompetewithcryptominingforlowenergypricingandcurtailedenergy.SystemcontrolandplanningJustasdemandresponsecanbeimplementedatthewholesaleleveltomanagethesystem,cryptominingalsohasthepotentialtohelplocalutilitieswithdistributionmanagement.Giventhelocationalflexibilityofminingoperations,theutilitycanstrategicallyplacetheoperationswhereit'smostbeneficialfromasystemcontrolpointofview.Withtheintegrationofdistributedgeneration,thegridisbecomingmorecomplex,withpowerneedingtoflowintwodirectionsinsteadofone.Giventhatthesystemmustalwaysbeinbalanceandthatitismoredifficulttopredictnewdemandandsupplyinthisenvironment,theutilitiesaregoingtoneedmoretoolstomanageandcontrolpowerflow.Cryptominingcanbeanadditionaltool,avacuumofsorts,absorbing"waste"powerwhereitisnotneededinthesystemsothatthegridcanoperatesmoother.Thistoolcanbeaddedtootherstrategiessuchasadvancedcontrolsystems,demandresponseandimprovedsystemarchitecturetooptimizethegridofthefuture.23"Cryptominingoffersanentirelynewwaytomonetizepowergeneration."CHRISTINEVAUGHANDirector8SystemrisksTheintensepowerusageofcryptominingcancausegridreliabilityandequipmentproblemsiflargeminingoperationsareconductedingridsthatdonothavethedemonstratedcapacitytohandletheexpectedincreaseinloads.Manygovernmentshavebannedorsignificantlyregulatedtheminingofcryptocurrencyduetoitsimpactsonthereliabilityofgridsthatwerealreadystressed,includingChina,IranandTurkey.Growthincryptominingcouldraisesimilarlocationalconcernsinothercountriesiftheincreaseinminingloadsoccursinareaswherethegridisatornearcapacity.Fromtheperspectiveofotherutilitycustomers,servicetonewlargecryptominingloadscouldbedetrimentaliftheenergyvolumesdemandedwouldrequiresignificantnewutilityinvestmentsinlong-livedgenerationortransmissionassets.Thefullrecoveryofsuchadditionalfixedcosts,oratleastthecostsoftheiraccelerationfromwhentheywouldbeneededtoserveothercustomers,isthreatenedbythevolatilityofthecryptocurrencymarket,thereluctanceofcryptominerstocommittolong-termenergypurchaseobligations,andtheportabilityoftheminers'majorphysicalassets(theircomputers).Inotherwords,theutilityanditsothercustomersfacesignificantrisksofstrandedgenerationortransmissioncostsshouldthecryptominersleavebeforetheircostresponsibilityisdischarged.Utilitiescanlargelymitigatesuchrisksthroughcollectingprepaymentsorsecuringobligationsfromthecryptominersbeforeundertakingsystemexpansioninvestmentontheirbehalf,andbymanagingastagedinterconnectionprocessthatrequiresgrowinglevelsoffinancialcommitmentsfromthecryptominersasanysystemexpansionprojectsprogress.Thishelpsimprovethecredibilityofnewservicerequeststhatmaysometimeshavespeculativeelements.Mostutilitiesalreadyhavesuchprocessesinplacefornewlargecustomerloads.Again,topresenttheriskpicturefairly,thesesystemreliabilityandstrandedinvestmentthreatsaremuchsmallerandmoremanageableiftheexistinggenerationandtransmissionsystemhasadequatecapacitytoservethenewcryptominerloads,orifthecryptominingoperationsarenotconnectedtothegrid.ConclusionTheriseofthecryptoeconomyandtheincreasedinvestmentsintoproof-of-workminingactivitiescomewithmajorimplicationsfortheenergysystem.Ifhandledwellwiththerightregulatoryandcommercialframework,itwillleadtoverypositiveopportunitiesforgovernmentsandutilitiesthatembracethepotentialsymbiosis,includinganindirectaccelerationofrenewableenergygrowth.Ontheotherhand,ifitisnotproperlydesignedwithaholisticviewoftheenergysystemandtheenergytransitionobjectives,itwillleadtorisksinthesystem.Hence,itisimportanttounderstandthein-depthmechanicsoftheindustryandbridgeittonationalenergystrategies."Evenwiththetremendousefficiencyimprovements,theexponentialexpansionofcryptominingoperationswilladdtoglobalpowergenerationdemand,especiallyintheUS."BILLKEMPDirector9CONTACT:THERISEOFTHECRYPTOECONOMYrb.digital/Crypto_EconomyEXPERTISE:ENERGY&UTILITIESrb.digital/Energy_and_UtilitiesNEXTLEVELGRIDOPERATIONSrb.digital/Next_level_grid_operationsFurtherreadingCHRISTINEVAUGHANDirectorBostonOffice+16173062139christine.vaughan@rolandberger.comPIERRESAMATIESPartnerDubaiOffice+97144464080pierre.samaties@rolandberger.comBILLKEMPDirectorChicagoOffice+19414485674bill.kemp@rolandberger.comFEROZSANAULLAPartnerDubaiOffice+97144464080feroz.sanaulla@rolandberger.comThispublicationhasbeenpreparedforgeneralguidanceonly.Thereadershouldnotactaccordingtoanyinformationprovidedinthispublicationwithoutreceivingspecificprofessionaladvice.RolandBergerGmbHshallnotbeliableforanydamagesresultingfromanyuseoftheinformationcontainedinthepublication.©2022ROLANDBERGERGMBH.ALLRIGHTSRESERVED.

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

碳中和
已认证
内容提供者

碳中和

确认删除?
回到顶部
微信客服
  • 管理员微信
QQ客服
  • QQ客服点击这里给我发消息
客服邮箱