INNOVATIONOUTLOOKRENEWABLEAMMONIAinpartnershipwith©IRENA2022Unlessotherwisestated,materialinthispublicationmaybefreelyused,shared,copied,reproduced,printedand/orstored,providedthatappropriateacknowledgementisgivenofIRENAasthesourceandcopyrightholder.Materialinthispublicationthatisattributedtothirdpartiesmaybesubjecttoseparatetermsofuseandrestrictions,andappropriatepermissionsfromthesethirdpartiesmayneedtobesecuredbeforeanyuseofsuchmaterial.ISBN978-92-9260-423-3Citation:IRENAandAEA(2022),InnovationOutlook:RenewableAmmonia,InternationalRenewableEnergyAgency,AbuDhabi,AmmoniaEnergyAssociation,Brooklyn.AboutIRENATheInternationalRenewableEnergyAgency(IRENA)isanintergovernmentalorganisationthatsupportscountriesintheirtransitiontoasustainableenergyfutureandservesastheprincipalplatformforinternationalco-operation,acentreofexcellenceandarepositoryofpolicy,technology,resourceandfinancialknowledgeonrenewableenergy.IRENApromotesthewidespreadadoptionandsustainableuseofallformsofrenewableenergy,includingbioenergy,geothermal,hydropower,ocean,solarandwindenergy,inthepursuitofsustainabledevelopment,energyaccess,energysecurityandlow-carboneconomicgrowthandprosperity.www.irena.orgAbouttheAmmoniaEnergyAssociationTheAmmoniaEnergyAssociation(AEA)isaglobalindustryassociationthatpromotestheresponsibleuseofammoniainasustainableenergyeconomy.TheAEA’smissionencompassesboththedecarbonisationofammoniaforexistingapplications,includingfertilisers,chemicals,explosives,andotherindustrialprocesses,aswellastheadoptionoflow-carbonammoniainnewapplications,includingdirectuseasafuelforelectricpowergenerationormaritimetransport,andindirectuseasahydrogencarrierandcarbon-freeenergycommodity.www.ammoniaenergy.orgAcknowledgementsThisreportwasjointlydevelopedbytheInternationalRenewableEnergyAgency(IRENA)andtheAmmoniaEnergyAssociation(AEA).ThereportwasauthoredbyKevinRouwenhorst(AEA)andGabrielCastellanos(IRENA)undertheguidanceofFranciscoBoshellandRolandRoesch(IRENA).TheworkwassupervisedbyDolfGielen(Director,IRENAInnovationandTechnologyCentre)andTrevorBrown(ExecutiveDirector,AmmoniaEnergyAssociation).ValuablereviewandfeedbackwasalsoprovidedbyIRENAcolleaguesHeribBlanco,BarbaraJinks,EmanueleBiancoandUfukSezer.ThetextanddatacontainedinthisreporthavebenefitedfromaseriesofindustryconsultationswithAEAMembercompanies,includingworkshopsongreenhousegaslife-cycleanalysis,costandmarketprojections,andpolicyactions.TheauthorsappreciatethetechnicalreviewprovidedbyTobiasBirwe(ThyssenKrupp),VincentBordmann(TotalEnergies),OliverHatfield(ArgusMedia),TueJohannessen(MærskMc-KinneyMøllerCenterforZeroCarbonShipping),PeterKirkeby(MANES),VesaKoivumaa(Wärtsilä),SusumuMiyazaki(CleanFuelAmmoniaAssociation),ShigeruMuraki(CleanFuelAmmoniaAssociation),VinodPatel(InterContinentalEnergy),CedricPhilibert(InternationalEnergyAgency)andChristianRenk(ThyssenKrupp).Forfurtherinformationortoprovidefeedback,pleasecontactIRENAat:publications@irena.orgThisreportisavailablefordownloadfrom:www.irena.org/publicationsDisclaimerThispublicationandthematerialhereinareprovided“asis”.AllreasonableprecautionshavebeentakenbyIRENAtoverifythereliabilityofthematerialinthispublication.However,neitherIRENAnoranyofitsofficials,agents,dataorotherthird-partycontentprovidersprovidesawarrantyofanykind,eitherexpressedorimplied,andtheyacceptnoresponsibilityorliabilityforanyconsequenceofuseofthepublicationormaterialherein.TheinformationcontainedhereindoesnotnecessarilyrepresenttheviewsofallMembersofIRENA.ThementionofspecificcompaniesorcertainprojectsorproductsdoesnotimplythattheyareendorsedorrecommendedbyIRENAinpreferencetoothersofasimilarnaturethatarenotmentioned.ThedesignationsemployedandthepresentationofmaterialhereindonotimplytheexpressionofanyopiniononthepartofIRENAconcerningthelegalstatusofanyregion,country,territory,cityorareaorofitsauthorities,orconcerningthedelimitationoffrontiersorboundaries.RENEWABLEAMMONIA3CONTENTSKEYFINDINGS�������������������������������������������������������������������������������������������������������������������������������������������������10Ammonia�����������������������������������������������������������������������������������������������������������������������������������������������������������������������11Renewableammonia�������������������������������������������������������������������������������������������������������������������������������������������������11Costcompetitivenessofrenewableammonia���������������������������������������������������������������������������������������������������12Benefitsandchallengesforrenewableammonia��������������������������������������������������������������������������������������������13Creatingenablingframeworks:10recommendations������������������������������������������������������������������������������������13SUMMARYFORPOLICYMAKERS�����������������������������������������������������������������������������������������������������������������14Marketstatusandproductionprocess����������������������������������������������������������������������������������������������������������������15Renewableammonia�������������������������������������������������������������������������������������������������������������������������������������������������15Costcompetitivenessofrenewableammonia���������������������������������������������������������������������������������������������������16Outlookforrenewableammonia���������������������������������������������������������������������������������������������������������������������������18Actionareastofosterrenewableammoniaproduction���������������������������������������������������������������������������������181.CURRENTAMMONIAMARKET���������������������������������������������������������������������������������������������������������������211.1Usesofammonia�����������������������������������������������������������������������������������������������������������������������������������������������241.2Locationsforammoniaproductionandconsumption���������������������������������������������������������������������������281.3Storage,transportanddistributionofammonia�������������������������������������������������������������������������������������281.4Safetyaspects����������������������������������������������������������������������������������������������������������������������������������������������������292.PRODUCTIONPROCESSES,TECHNOLOGYSTATUSANDCOSTS����������������������������������������������������322.1Coal-basedammoniaproduction�����������������������������������������������������������������������������������������������������������������352.2Naturalgas-basedammoniaproduction���������������������������������������������������������������������������������������������������362.3Lower-carbonfossil-basedammoniaproduction�����������������������������������������������������������������������������������372.4Renewableammoniaproductionfromrenewableelectricity�������������������������������������������������������������432.5Renewableammoniaproductionfrombiomass��������������������������������������������������������������������������������������602.6Costcomparisonofrenewableammoniaandfossil-basedammoniawithcarboncaptureandstorage�����������������������������������������������������������������������������������������������������������������622.7Novelammoniaproductiontechnologies��������������������������������������������������������������������������������������������������64INNOVATIONOUTLOOK43.PERFORMANCEANDSUSTAINABILITY�����������������������������������������������������������������������������������������������653.1Performanceandefficiency���������������������������������������������������������������������������������������������������������������������������663.2Emissionsandsustainabilityofammoniaproduction���������������������������������������������������������������������������703.3Certificationschemes,CO2penaltiesandlegislation�����������������������������������������������������������������������������714.FUTUREMARKETSFORDECARBONISEDAMMONIA������������������������������������������������������������������������734.1Ammoniaasahydrogencarrier�������������������������������������������������������������������������������������������������������������������774.2Ammoniaasastationaryfuel������������������������������������������������������������������������������������������������������������������������784.3Ammoniaasamaritimefuelforinternationalshipping������������������������������������������������������������������������834.4Renewableammoniaversusotherenergycarriers��������������������������������������������������������������������������������864.5Theammoniasupplychain����������������������������������������������������������������������������������������������������������������������������894.6Outlookfortheammoniaeconomy������������������������������������������������������������������������������������������������������������905.POTENTIALANDBARRIERS�������������������������������������������������������������������������������������������������������������������965.1Demand����������������������������������������������������������������������������������������������������������������������������������������������������������������975.2Sustainableproduction�����������������������������������������������������������������������������������������������������������������������������������985.3Impactofrenewableammoniaontheenergysector����������������������������������������������������������������������������995.4Drivers�������������������������������������������������������������������������������������������������������������������������������������������������������������������995.5Barriers���������������������������������������������������������������������������������������������������������������������������������������������������������������1005.6Policiesandrecommendations�������������������������������������������������������������������������������������������������������������������101REFERENCES�������������������������������������������������������������������������������������������������������������������������������������������������104ANNEXES��������������������������������������������������������������������������������������������������������������������������������������������������������128AnnexAThenitrogencycle�������������������������������������������������������������������������������������������������������������������������������128AnnexBLife-cycleassessment������������������������������������������������������������������������������������������������������������������������130AnnexCCapitalinvestmentforrenewableammoniaproduction���������������������������������������������������������133AnnexDTechnologystatusfortheammoniaeconomy���������������������������������������������������������������������������135AnnexEProjectedammoniauseinvarioussectors����������������������������������������������������������������������������������138AnnexFStatedpoliciesdemandandproduction��������������������������������������������������������������������������������������141AnnexGKeyreferencedata������������������������������������������������������������������������������������������������������������������������������142AnnexHFuturecostestimatesforrenewableammonia��������������������������������������������������������������������������143RENEWABLEAMMONIA5FIGURESFigure1Expectedammoniaproductioncapacityupto2050forthe1.5°Cscenario............................................14Figure2Expectedammoniademandupto2050forthe1.5°Cscenario...................................................................15Figure3Currentandfutureproductioncostsofrenewableammonia,comparedwithproductioncostrangeforlow-carbonfossilammonia(USD2-10/GJ)..............................................................................17Figure4Comparisonofrenewableammoniawithotherfuelsbasedonthepriceperunitofenergy..............17Figure5Globalammoniademandin2019............................................................................................................................18Figure6Globalammoniademand,1900-2020(top),anduses(bottom)...................................................................23Figure7AmmoniamarketpriceintheBlackSearegion,2000-2020...........................................................................24Figure8Productionandusesofammonia............................................................................................................................25Figure9Nitrogenfertiliserapplicationbyregionandproduct.......................................................................................26Figure10Ammoniaproductioncapacitybyregionin2020..............................................................................................28Figure11Ammoniashippinginfrastructure,includingaheatmapofliquidammoniacarriers,aswellastheammonialoadingandunloadingfacilities.................................................................................29Figure12Productionpathwaysofammoniafromvariousfeedstocks...........................................................................34Figure13Costofnaturalgas-basedammoniaproduction,2010-2021.........................................................................37Figure14CO₂costovertimeintheEU,andtheeffectoftheCO₂costonthecarbonoffsetcostforfossil-basedammoniawithcarboncaptureandstorage..........................................................................38Figure15Schematicoverviewofstepsinvolvedinammoniasynthesisfromwaterandair...................................43Figure16Capitalintensityofrenewableammoniasynthesisasafunctionofammoniaproductioncapacity.....................................................................................................................................................45Figure17Expectedcostdecreaseforrenewableammoniaproductionforbestlocationsby2030....................47Figure18Heatmapfortheproductioncostofrenewableammoniaby2050.............................................................48Figure19Estimatedcostsofrenewableammoniaupto2050.........................................................................................49Figure20Estimatedcostrangeforrenewableammoniaproductionin2030forIRENAandothersources(top);costestimatesforrenewableammoniainthebestlocationsin2030forIRENAandothersources,aswellasamedianvalue(bottom)...........................................................................................50Figure21FertiliserproductioncostasafunctionofammoniaandCO2cost..............................................................51Figure22Projectedannualrenewableammoniaproductionandplannedprojects,2020-2030..........................53Figure23Schematicoverviewofstepsinvolvedinammoniasynthesisfrombiogasandsolidbiomass...........61Figure24Comparisonofrenewableammoniawithotherfuelsbasedonthepriceperunitofenergy..............63Figure25Bestavailabletechnology(BAT)forammoniasynthesisfromvariousfeedstock..................................68Figure26Illustrativerangesofestimatedgreenhousegasemissionsofammoniaproductionfromvariousfeedstock................................................................................................................................................71INNOVATIONOUTLOOK6Figure27Schematicoftheammoniaeconomy.....................................................................................................................75Figure28RoadmapoftheammoniafuelvaluechainforJapan.......................................................................................81Figure29Currentandprojectedammoniaproductionbysourceanddemandbysector......................................91Figure30Expectedammoniademandupto2050forthe1.5°Cscenario...................................................................92Figure31Ammoniademandestimatesforuseasmaritimefuelby2050fromvarioussources(seeTable13).................................................................................................................................................................93Figure32Ammoniademandestimatespowergenerationby2050fromvarioussources(seeTable13).................................................................................................................................................................93Figure33Ammoniademandestimatesforuseashydrogencarrierby2050fromvarioussources(seeTable13).................................................................................................................................................................94Figure34Expectedammoniaproductionbyfeedstockupto2050forthe1.5°Cscenario....................................95Figure35Globalnitrogenfixation,bothnaturalandanthropogenicinoxidisedandreducedforms,formedthroughcombustion,biologicalfixation,lightning,andfertiliserapplication,fortheyear2010........................................................................................................................................................128Figure36Ammoniademandestimatesfromvarioussources(seeTable13)............................................................141Figure37Expectedammoniademandupto2050forthestatedpoliciesscenario................................................141Figure38Expectedammoniaproductionbyfeedstockupto2050forthestatedpoliciesscenario................142IMAGESImage1Electrolysis-basedhydrogenproductionforrenewableammoniaproductioninCusco,Peru..............44Image2Morriswind-to-ammoniademonstrator...................................................................................................................58Image3FREAwind-to-ammoniademonstrator....................................................................................................................58Image4Greenammoniademonstrationsystem,RutherfordAppletonLaboratory,Oxfordshire,UK................59Image5Ammonia-fuelledbusinBelgiumduringtheSecondWorldWar...................................................................76Image6MitsubishiPower’sH-25Seriesgasturbines..........................................................................................................80Image7TheVikingEnergy,whichwillberetrofittedwithanammonia-fuelledsolidoxidefuelcell..................85Image8JaccoMooijer(right)ofProtonVenturesgivesCanadianPrimeMinisterJustinTrudeau(secondfromleft)andDutchPrimeMinisterMarkRutte(middle)Monia,themascotofProtonVentures,anammoniasolutionsprovider................................................................................................90RENEWABLEAMMONIA7TABLESTable1Overviewofexistingandplannedfacilitiesforfossil-basedammoniawithalowercarbonfootprint(existingcapacityof2.6Mt/yr;plannedcapacityof17.4Mt/yr)....................................................................41Table2Overviewofexistingandplannedfacilitiesandtechnologyprovidersforrenewableammoniaproduction(existingcapacityof0.02Mt/yr;plannedcapacityof15Mt/yr(2030)and71Mt/yr(total).........................................................................................................................................................................54Table3Typicalgrossenergyconsumptionforammoniasynthesisfromvariousfeedstocks,basedonmoderntechnology........................................................................................................................................................67Table4Round-tripefficiencyofammoniaproductionandutilisationforthemaritimesector............................69Table5Overviewofplannedfacilitiesforlarge-scaleammoniadecomposition......................................................78Table6Listofselectedconsortiaforammoniademonstrationsinthemaritimesector........................................83Table7Comparisonofphysicalandchemicalfuelpropertiesforinternationalshipping......................................87Table8Comparisonofammoniaandmethanolasamaritimefuel...............................................................................88Table9Greenhousegasintensityofammoniaproductionprocessfromvariousresources................................130Table10Productioncostsandproductioncapacityofgreenammoniareportedintheliterature....................133Table11Capitalcostforrenewableammoniaplants,includingorexcludingrenewableenergygenerationcost......................................................................................................................................................................134Table12Technologystatusforammoniaproductiontechnologies,ammoniatransportandstorage,andammoniautilisationtechnologies...................................................................................................................135Table13Projecteduseofammoniainvarioussectors.....................................................................................................138Table14Costestimateforrenewableammoniaproduction............................................................................................143BOXESANDCASESSTUDIESBox1Facilitatingthetransitiontorenewableammonia:Recommendationsforindustryandgovernments....................................................................................................................................................19Box2Risksassociatedwithammoniausedasafuelforships............................................................................30Casestudy1Facilitatingthetransitiontorenewableammonia:Recommendationsforindustryandgovernments....................................................................................................................................................68Casestudy2AmmoniaatfuelvalueinJapan.........................................................................................................................81Casestudy3Decarbonisedammoniademandandproductionforecast......................................................................91INNOVATIONOUTLOOK8ABBREVIATIONSATRAutothermalreformingCAPEXCapitalexpenditureCCSCarboncaptureandstorageCCUCarboncaptureandutilisationCfDContractfordifferenceCH3OHMethanolCH₄MethaneCOCarbonmonoxideCO₂CarbondioxideCO(NH₂)₂UreaDACDirectaircaptureeSMRElectrifiedsteammethanereformingEUEuropeanUnionH₂HydrogenIMOInternationalMaritimeOrganizationIRENAInternationalRenewableEnergyAgencyLHVLowerheatingvalueLNGLiquefiednaturalgasLOHCLiquidorganichydrogencarrierLPGLiquefiedpetroleumgasN₂NitrogenN₂ONitrousoxideNH3AmmoniaNOXNitrogenoxidesOPEXOperationalexpenditurePEMPolymerelectrolytemembraneR&DResearchanddevelopmentSCRSelectivecatalyticreductionSMRSteammethanereformingSOXSulphuroxidesUSDUnitedStatesdollarUNITSOFMEASURE°CDegreecelsiusBtuBritishthermalunitGJGigajouleGtGigatonneGWGigawattkgKilogramkmKilometrektKilotonnekWKilowattkWhKilowatthourLLitreMJMegajouleMtMilliontonnesMWMegawattMWhMegawatthourm3CubicmetreppmPartspermilliontTonnet/dTonnesperdayt/yrTonnesperyearINNOVATIONOUTLOOK10KEYFINDINGSAmmoniaisanessentialglobalcommodity.Around85%ofallammoniaisusedtoproducesyntheticnitrogenfertiliser.Awiderangeofotherapplicationsexistsuchasrefrigeration,mining,pharmaceuticals,watertreatment,plasticsandfibres,abatementofnitrogenoxides(NOx),etc.Ammoniaproductionaccountsforaround45%ofglobalhydrogenconsumption,oraround33milliontonnes(Mt)ofhydrogenin2020.Onlytherefiningindustryusesmorehydrogentoday.Replacingconventionalammoniawithrenewableammoniaproducedfromrenewablehydrogenpresentsanearlyopportunityforactionindecarbonisingthechemicalsector.Newapplicationsbeingexploredincluderenewableammoniaasazero-carbonfuelinthemaritimesectorandforstationarypowergeneration.Ammoniaisalsoproposedasahydrogencarrierforlong-rangetransport.ProjectionsfromtheInternationalRenewableEnergyAgency(IRENA)estimatethatby2050,inascenarioalignedwiththeParisAgreementgoalofkeepingglobaltemperaturerisewithin1.5degreesCelsius(°C),thistransitionwouldleadtoa688Mtammoniamarket,nearlyfourtimeslargerthantoday’smarket.Thisammoniawouldbedecarbonised,with566Mtofnewrenewableammoniaproduction(fromrenewablehydrogenandrenewablepower),complementedwithfossil-basedammoniaproductionincombinationwithcarboncaptureandstorage(CCS).Today’shighpricesfornaturalgascreateanexceptionalopportunityforrenewableammonia.Withtherightpolicies,renewableammoniamanufacturingcouldbewidelycostcompetitivefrom2030onwards.Thesecostreductionswouldbeachievedthroughrenewablehydrogencostreductions,gigawatt(GW)-scaledeployment,drivingdowncostsofrenewableelectricity,creatinghigh-volumedemandforelectrolysers,de-riskingnovelcombinationsofmaturetechnologiesandstimulatinginnovationthroughmarketcreation.Certificationschemes,contractsfordifference(CfD)andothermechanismswillthereforebeimportanttosupportthedevelopmentofrenewableammoniamarkets.Thefirstofmanyproposedmulti-gigawattrenewableammoniaproductionplantsarealreadyunderconstruction.Thefirstrenewablehydrogensupplywasretrofittedontoanexistingammoniaplantin2021.Renewableammoniaisexpectedtodominateallnewammoniaproductioncapacityafter2025.Around2025,thefirstmoversareexpectedtohavedemonstratedinnovativerenewableammoniadeploymenttechnologies.Gasturbines,furnacesandinternalcombustionenginescanberetrofittedtouserenewableammoniaasafuel.Industryisshowingclearsignalsinmovingrenewableammoniatechnologiesforward.Thefirstdedicatedammonia-fuelledvesselswillbeoperatingatsea,withtwo-strokeandfour-strokeenginescommerciallyavailablefornew-buildsandretrofits.Thefirst1GWpowerplantwillbeco-combustingammoniawithcoal,andammoniagasturbinesandfuelcellswillbeavailable.Thefirstgigawatt-scalerenewableammoniaproductionplantsatremotelocationswillshiptheiroutputtodistantconsumermarkets.RENEWABLEAMMONIA11Ammonia•Ammoniaisakeyproductinthefertiliserandchemicalindustries.Itisusedmainlyforproducingfertilisers,suchasureaandammoniumnitrate.Around183Mtofammoniaisproducedannually,nearlyallofwhichisgeneratedfromfossilfuels:naturalgas(72%),coal(22%),naphthaandheavyfueloil.•Ammonialife-cycleemissionsamountto0.5gigatonnes(Gt)ofcarbondioxide(CO2)annually(around15-20%oftotalchemicalsectoremissionsand1%ofglobalgreenhousegasemissions).•Ammoniafertiliserdemandhasbeenrisingsteadilyinrecentdecades,drivenbygrowingfooddemand.•IntheIRENA1.5°Cscenario,themainmarketgrowthisexpectedfromthemaritimesector,representingnewdemandof197Mtby2050,andfrominternationaltradeofammoniaasahydrogencarrier,representingnewdemandof127Mtby2050.•SignificantamountsofCO2fromfossil-basedammoniaproductionarestoredintheon-siteproductionofureafertiliser(1.3tonnespertonneofammoniafeedstock).ThisCO2isreleasedasthefertiliserisappliedinthefield.Ureafertiliserisdeployedindevelopingcountriesinparticular.CarbonaccountingrulesandpricingforthisCO2canhaveasignificantimpactonthefuturedecarbonisationstrategiesfornitrogenfertilisermanufacturing.Renewableammonia•Renewableammoniaisproducedfromrenewablehydrogen,whichinturnisproducedviawaterelectrolysisusingrenewableelectricity.Thishydrogenisconvertedintoammoniausingnitrogenthatisseparatedfromair.•Renewableammoniahasbeenproducedonacommercialscalesince1921.However,lessthan0.02Mtofrenewableammoniawasproducedin2021.•Industrialproductionisshiftingtowardsrenewableammonia.Theannualmanufacturingcapacityofannouncedrenewableammoniaplantsis15Mtby2030(around8%ofthecurrentammoniamarketacross54projects,notablyinAustralia,MauritaniaandOman).Apipelineof71Mtexistsoutto2040,butinvestmentdecisionsarestillpendingformostprojects.•Around80Mtofexistingammoniaproductioncapacityconstitutesanearlyopportunityfordecarbonisation.•IRENAanalysissuggeststhatina1.5°Cscenario,renewableammoniaproductioncapacitywillneedtoreach566Mtby2050.The71Mtofannouncedprojectsthereforerepresentsslightlyover10%ofthezero-carbonammoniamanufacturingcapacitythatwouldneedtobeoperationalby2050.•Renewableammoniaisexpectedtodominateallnewcapacityafter2025.Inthelongterm,renewableammoniaislikelytobecomethemaincommodityfortransportingrenewableenergybetweencontinents.INNOVATIONOUTLOOK12Costcompetitivenessofrenewableammonia•ThecostofrenewableammoniaiscurrentlyanestimatedUSD720pertonneatlocationswiththebestsolarandwindresources,andthisisexpectedtodecreasetoUSD480pertonneby2030andUSD310pertonneby2050.Thesecostestimatesareconfirmedbyotherliterature.AcarbonpriceofaroundUSD150pertonneofCO2isrequiredforrenewableammoniatobecompetitivewithexistingfossil-basedammoniaproduction.•Renewableammoniaisexpectedtoachievecostparitywithfossil-basedammoniawithCCSbeyond2030.•AnelectricitypricebelowUSD20permegawatt-hourisrequiredforrenewableammoniatobecompetitivewithfossil-basedammonia.Intherightregionalmarkets–forexample,explosivesmanufacturinginChile–localrenewableammoniaproductionmayalreadybecompetitivewithimportedfossil-basedammonia.•Thecostofproducingfossil-basedammoniaistypicallyintherangeofUSD110-340pertonne,dependingonthefossilfuelprice.Fossil-basedammoniaproductioncanbedecarbonisedwithCCStechnology.CCSaddscoststhatvarybytechnologyandbycaptureefficiency,typicallyyieldinganammoniaproductioncostofUSD170-465pertonneandamitigationcostofUSD60-90pertonneofCO2.•Thecostsassociatedwithcarbonemissions,CCS,premiumpriceoff-takeagreements,aswellasCfDschemeswillshiftthisdynamic.AcarbonpriceofUSD60-90pertonneofCO2isrequiredforCCStobecompetitivewithexistingfossil-basedammoniaproduction.•Thenewautothermalreforming(ATR)technologyisbettersuitedforCCSthantoday’ssteammethanereforming(SMR)technology.Around2.6Mt/yroffacilitycapacityexiststoday,producinglow-carbon-fossil-basedammoniaandtheplannedfacilitycapacityaccountsfor17.4Mt/yr.•Thecostofrenewableammoniadependstoalargeextentonthecostofrenewablehydrogen,whichrepresents90%oftheproductioncostofrenewableammonia.•Thefuturecostofrenewablehydrogendependsmainlyonthecombinationoffurtherreductionsinthecostofrenewablepowergenerationandelectrolysers,andgainsinefficiencyanddurability.•Thenumberofoperationalhoursperyearplaysakeyroleinreducingthecostofrenewableammoniaproduction.Locationswithcomplementaryvariablewindandsolarenergyprofilescanyieldelectrolysercapacityfactorsofupto70%.•Thecashcostofoperatingalarge-scalerenewableammoniaplantthatincludesrenewableenergygeneratingassetsiswellbelowUSD100pertonne.•Partialrevampingoffossil-basedammoniaplantstointroducerenewablehydrogenreducesthecost,comparedtostand-alonenew-builds.RENEWABLEAMMONIA131PutasufficientlyhighpriceonCO2emissions.2Translatepoliticalwillintopolicies.3Focusondeploymentofexistingrenewableammoniatechnologies.4Supportthedevelopmentofentiresupplychains.5Devisetradestrategiesthatmitigatesupplyrisks.6Investinelectrolysermanufacturing.7De-riskearlyinvestmentprojects.8Retrofittechnologytowardsrenewableammoniaproduction.9Supportthedemand-sidephase-outoffossilfuels.10Re-assesstheroleofammoniainhydrogenstrategies.Benefitsandchallengesforrenewableammonia•Ammoniaisaversatilefuelforstationarypowerandheatandformaritimetransportthatcanbeusedininternalcombustionengines,gasturbines,industrialfurnaces,generatorsetsandfuelcells.Itcanbestoredasaliquidat8baroraboveandatambienttemperature,oratatmosphericpressureat-33°C.•Around18-20Mtofammoniaisshippedinternationallyperyear.Substantialinvestmentswillberequiredtoexpandtheshippinginfrastructureandallowammoniarefuelling.•Renewableammoniacandisplacefossilfuelsatscaleinhard-to-abateareasofthepowerandtransportsectors.However,theuseofammoniaasafuelcouldincreaseemissionsofnitrogenoxides(NOXandnitrousoxide,N2O),whichmustbeavoided.•Mostoftheproposedrenewableammoniaplantsusevariablesolarphotovoltaics(PV)andwind.Anumberofelectrolysistechnologiesexist.Technologicalandoperationalinnovations,incombinationwithcarefulsiteselectionandprojectdesign,canfacilitatetheintegrationofhighsharesofsolarandwind.•Thecurrentglobalelectrolyserproductioncapacityofareported2.1GWperyear(in2020)needstoscaleupmorethan20-foldtomeettherenewableammoniamanufacturingobjectivesfor2050.•Demonstrations,technologycommercialisationandregulatorydevelopmentwillberequiredfortheammoniafuelmarkettotakeoff.Creatingenablingframeworks:10recommendationsINNOVATIONOUTLOOK14SUMMARYFORPOLICYMAKERSAmmoniaisoneofthesevenbasicchemicals–alongsideethylene,propylene,methanolandBTXaromatics(benzene,tolueneandxylene)–thatareusedtoproduceallotherchemicalproducts.Itisthesecondmostproducedchemicalbymass,aftersulphuricacid.Aroundfour-fifthsofallammoniaisusedtoproducenitrogenfertilisers,suchasureaandammoniumnitrate;assuch,itsupportsfoodproductionforaroundhalfoftheglobalpopulation.Ammonia’suseasacarbon-freefuelandhydrogencarrierhasbeenproposedbutisnotyetimplementedatsignificantscale.Forthesenewmarketstomaterialise,largeadditionalvolumesofammoniawillberequired–demandin2050isprojectedtoberoughlythreetimeswhatitwasin2020–andthesevolumesmustbelow-carbon.Althoughrenewableammoniahasbeenproducedatanindustrialscaleusinghydropowersince1920,mostammoniatodayisproducedfromnaturalgas(72%)andcoal(22%).Theammoniaproductionindustryhasannualemissionsof0.5gigatonnes(Gt)ofcarbondioxide(CO2),representingaround1%ofglobalCO2emissionsand15-20%ofthechemicalsector’sCO2emissions.Addressingemissionsfromammoniaproductionisthereforeakeycomponentofthedecarbonisationofthechemicalandagriculturalsectors.Decarbonisationofammoniawouldalsoextenditsuseasacarbon-freefuelinthetransportandstationarypowersectors.Figure1Expectedammoniaproductioncapacityupto2050forthe1.5°CscenarioAmmoniaproduction(Mt)FossilnoCCSFossilwithCCSRenewableSource:IRENA,2019b.RENEWABLEAMMONIA15MarketstatusandproductionprocessWorldwideproductionofammoniawas183milliontonnes(Mt)in2020,andexistingmarketsareexpectedtoincreasedemandto223Mtby2030andreach333Mtby2050ina1.5°Cscenario.Thissteadyriseindemandisdrivenprimarilybypopulationgrowth,withammoniademandforfertiliserapplicationsprojectedtogrowfrom156Mtin2020to267Mtin2050.Inaddition,significantnewmarketsareexpectedtodevelopoverthecomingdecadesforammoniaasahydrogencarrier,asafuelforstationarypowerandheat,andasatransportfuel,particularlyinthemaritimeindustry.Whilecurrentmarketscontributemostofthegrowthindemandthisdecade,energymarketsmayaccountforamuchfastergrowthrateafter2030.By2050,globalammoniademandisestimatedtoreach688Mtina1.5°Cscenario,morethanthreetimesthedemandexpectedin2025(seesection4.6).RenewableammoniaRenewableammoniaisproducedusingrenewableelectricityforhydrogenproductionandnitrogenpurificationfromair.Renewableammoniaischemicallyidenticaltoammoniaproducedfromfossilfuels,anditisnotpossibletoidentifyitsoriginsviaanychemicalanalysis.Thus,allfeedstocksandenergyusedtoproduceammonianeedtobeofrenewableorigin(e.g.biomass,solar,wind,hydro,geothermal)toqualifytheammoniaproducedasrenewable.Historically,renewableammoniahasbeenproducedfromhydropowersince1921,butonlyonecommercialplantisstilloperational.Lessthan0.02Mtofrenewableammoniaiscurrentlyproducedannually,equivalentto0.01%oftoday’sglobalammoniaproduction.Variousdemonstrationplantsareoperating,basedonvariablesolarandwindenergycoupledwithelectrolyserstoproducerenewablehydrogen.ThefirstrenewablehydrogenfeedtobetiedintoanexistingammoniaplantbecameoperationalinDecember2021inSpain,andthefirstgigawatt(GW)-scalerenewableammoniaplant,withacapacityof1.2Mtperyear,isunderconstructioninSaudiArabiaandisslatedtobeginoperationsin2025.Figure2Expectedammoniademandupto2050forthe1.5°CscenarioAmmoniademand(Mt)FertiliserapplicationsOtherexistingusesShippingHydrogencarrierPowergeneration(Japan)INNOVATIONOUTLOOK16Thecombinedcapacityofallthecurrentlyannouncedrenewableammoniaprojectsrepresents15Mtofrenewableammoniaby2030.Thisisaround8%ofthecurrentglobalammoniaproductionandshowsthatthereismomentumfromtheindustrytomovetowardsrenewableammonia,especiallygiventhatmostoftheseprojectswereannouncedonlyin2020and2021.However,whileoneoftheseprojectsisalreadyoperational,andsomeotherprojectsareunderconstruction,mostoftheannouncedprojectshavenotyetreachedafinalinvestmentdecision.Newprojectsarebeingannouncedeverymonth.Morethan60renewableammoniaplantswereannouncedduring2020and2021(Table2),whileonly10carbonfossil-basedammoniaplantswithCCSorwithmethanepyrolysistechnologyhavebeenannounced(Table1).Thisindicatesastrongmomentumtowardsrenewableammonia.Whilelow-emissionfossil-basedammoniamayplayatransitionalroleindecarbonisingcurrentmarkets,suchasfertilisers,renewableammoniaisexpectedtoplaythedominantroleinthelongterm,inbothcurrentandfuturemarkets.CostcompetitivenessofrenewableammoniaRenewableammoniaproductioncostsfornewplantsareestimatedtobeintherangeofUSD720-1400pertonnetoday,fallingtoUSD310-610pertonneby2050.Forexistingammoniaplants,co-productionoffossil-basedhydrogenandrenewablehydrogencouldenabletheintroductionofrenewableammoniabyutilisingexistingassetsandinfrastructuretoreducecosts.Forhybridplants,costsareestimatedtobeUSD300-400pertonneby2025,fallingtoaroundUSD250pertonneby2040.Whilethecostofproducingrenewableammoniatodayishigherthanthatofproducingfossil-basedammoniawithnomitigationofemissions,renewableammoniaisexpectedtobecomecheaperthanfossil-basedammoniabefore2050.Theproductioncostofnaturalgas-basedammoniaandcoal-basedammoniaisintherangeofUSD110-340pertonnetoday,butcarboncaptureandsequestrationwouldaddUSD100-150pertonnetothesecosts(HaldorTopsøeetal.,2020),bringinglow-emissionfossil-basedproductioncostsuptoUSD210-490pertonne.Thecostoflow-emissionfossil-basedammoniaissimilartorenewableammoniafromhybridplantsin2025,andmoreexpensivethanrenewableammoniafromsomenewplantsin2050.Thecostofrenewableammoniadependsmainlyonthecostofrenewablehydrogen,representingmorethan90%ofthecostforammoniaproduction.Thetwoothersignificantstepsinammoniaproduction–nitrogenpurificationandtheHaber-Boschprocess–representonlyaminorfractionofthetotalcost.Futurecostreductionsinrenewablehydrogenproductiondependmainlyonreductionsinthecostofrenewablepowerandthecostofelectrolysers,aswellasongainsinefficiencyandoptimisedstorage,buffering,sizingandflexibilityoftheHaber-Boschammoniasynthesisloop.Thenumberofoperationalhoursperyear(capacityfactor)playsakeyroleindeterminingproductioncosts,asanyincreaseintheutilisationrateofthesecapital-intensiveassetsdirectlyreducestheproductcost.Thiscancreateachallengeforprojectsusingvariablerenewableelectricityinputs;but,bycombiningcomplementarygenerationprofilesofwindandsolarenergy,thecapacityfactoroftheelectrolysercanreachupto70%.Inoptimallocations,renewableammoniacouldbecostcompetitivewithfossil-basedammoniawithCCSfrom2030.RENEWABLEAMMONIA17Figure4ComparisonofrenewableammoniawithotherfuelsbasedonthepriceperunitofenergyUSDGJUSDMWhFossiloilsFossiloilsUSDt-COLowcarbonfossilammoniaRenewableammoniaRenewableammoniaRenewableammoniaBio-methanolBio-ethanolBio-methanee-methanole-methanolSource:Low-carbonfossilammoniafromHaldorTopsøeetal.(2020).Fossilfuelvaluesarebasedonaveragevalues(2010-2020);seeIRENAandMethanolInstitute(2021).MethanolcostvaluesarebasedonIRENAandMethanolInstitute(2021).Bio-ethanolandbio-methaneestimatesarebasedonIRENAdata.Figure3Currentandfutureproductioncostsofrenewableammonia,comparedwithproductioncostrangeforlow-carbonfossilammonia(USD2-10/GJ)Productioncost(USDt)USDGJRenewableammoniaLowcarbonfossilammoniaNote:GJ=Gigajoules.INNOVATIONOUTLOOK18OutlookforrenewableammoniaAmmoniahasthesamechemicalstructure(NH3)whetheritisproducedfromfossilorrenewablesources.Renewableammoniaisthereforeadirectsubstituteforfossil-basedammoniainallitscurrentuses,meetingdemandof183Mtannuallyasafeedstockforfertilisers,chemicals,andmaterials(Figure5),althoughureafertiliserrepresentsaspecialcase(seesection5).Existingfossil-basedammoniaplantscanbegindecarbonisingusingtoday’stechnologies,introducingrenewablehydrogenintheplanttoreplace10-20%ofthenaturalgas.Beyonditsexistingmarkets,theoutlookforrenewableammoniaincludeslow-carbonenergymarketswhereammoniacouldbeusedasahydrogencarrierorasafuelforshippingorstationarypowerandheatgeneration.Comparedtocarbon-basedhydrogencarriers,ammoniabenefitsfromrequiringnitrogenasthehydrogencarrier:at780000partspermillion(ppm),purifyingatmosphericnitrogenhasalowercostbasisthanpurifyingatmosphericCO2,andnoCO2isemittedduringcombustionofammonia.By2050,thesenewenergymarketsrepresentadditionalrenewableammoniademandof354Mtina1.5°Cscenario(Figure2).ActionareastofosterrenewableammoniaproductionDemandandsupplycanbepromptedbyproperregulations,mandates,andsuitablepolicies,asisthecasewithallotherdecarbonisationtechnologyalternatives.Examplesincluderenewablefuelstandards,carbontaxes,incentivessuchasprojectfundingsupportandlow-costfinance,long-termguaranteedpricefloors,contractsfordifference,cap-and-tradeschemes,lowertaxesonrenewablefuelsandfeedstocks,eco-labellingforlow-carbonammoniaandinformationcampaigns.Definitionandharmonisationofmethodologiesforcarbonintensityandlife-cycleanalysis,andotherstandardsandbenchmarks,willsupportthedevelopmentofthesenewmarkets.Theseshouldincludemeaningfulsupplychainemissions;forexample,upstreammethaneemissionsforfossil-basedammoniawithcarbonmitigation.Inadditiontofosteringthedevelopmentofnewrenewableammoniaplants,thegradualandincreasingco-productionofrenewableammoniainexistingfossil-basedammoniaplantsshouldbestimulated,tobegindecarbonisingcurrentammoniaproductionassetsatanearlystage.Thiswillsupportincumbentammoniaproducersandtheirworkforcebyprovidingthemwithoperationalexperienceinrenewablehydrogenproduction.Figure5Globalammoniademandin2019MonoammoniumphosphateDirectapplicationOthermarketsUreaAmmoniumnitrateDiammoniumphosphateAmmoniumsulphateNote:Ammoniaproductionin2020was183Mt(Hatfield,2020).RENEWABLEAMMONIA19Box1Facilitatingthetransitiontorenewableammonia:RecommendationsforindustryandgovernmentsSuitablepoliciesandincentivesareessentialtomeetthegoalsoftheParisAgreementandtosustainenergysecurityandimprovequalityoflife.Withoutconfidenceinstrong,stable,predictable,andsustainedgovernmentpolicy,sufficientinvestmentinlong-lived,capital-intensiverenewabletechnologiesisnotlikelytooccurandflourish.1PutasufficientlyhighpriceonCO2emissionsApenaltyonCO2ofaroundUSD60-90pertonneofCO2isrequiredtobridgethegapbetweenfossil-basedammoniawithunmitigatedemissionsandfossil-basedammoniawithCCS.ACO2penaltyofuptoUSD150pertonneofCO2wouldbridgethegapbetweenfossil-basedandrenewableammonia(seesection2.3).Inthelongterm,renewableammoniaisexpectedtobecostcompetitivewithfossil-basedammoniawithCCS.Thus,CCScanplayaroleindecarbonisingcurrentammoniafacilities,butnewlybuiltfossil-basedammoniaplantswithCCSmayresultinstrandedassetsinthelongtermunlesssupportedbyverylownaturalgasprices.2TranslatepoliticalwillintopoliciesWithorwithoutapriceonCO2emissions,strong,stableandsustainedregulatorymeasuresforfuelstandardsandrenewablequotasormandateswillfacilitatepriceincentivestoprovidestabilityofsustainedgrowthandinvestment.Thesecanbesupportedbyrobustcertificationthatcanaccountforthecarbonintensityofammonia.Suitablepolicyinstrumentsareparamounttoensureequitabletaxtreatmentandalong-termguaranteedpricefloorforwideradoptionofrenewableammoniaandotherpromisingsustainablefuels.Whileenergytaxreductioncanbeprovidedforrenewablefuels,includingrenewableammonia,fuelexciseandothertaxesshouldbebasedonenergycontentandnotvolume(e.g.USDperkilowatt-hour[kWh],notUSDperlitre).Forexample,acontractfordifference(CfD)schemeinwhichadvancedrenewablefuelproductionprojectsbidforCfDs,andthewinnersareawardedtheminso-calledreverseauctions(lowestbidwins)isanappropriatetaxationpolicythatcan“makeorbreak”alternativefuels;thiscouldmotivateinvestmentsasameaningfulproductionsupportsystem.Moderatecarbontaxationlevelscanbeobtainedviaearmarkandreturnprinciples.3FocusondeploymentofexistingrenewableammoniatechnologiesThecurrentfocusshouldbeonimplementingexistingtechnologiesatscaleratherthandevelopingnew,breakthroughtechnologies,becausemostelementsintherenewableammoniavaluechainhavealreadybeendemonstrated.Deploymentwilldriveinnovationssuchasimprovingtheflexibilityoftheammoniasynthesisloop,improvingtheperformanceoftheelectrolyser,andimprovingtheperformanceofammoniacrackers,aswellasdrivingdowncostsoftoday’stechnologies.Near-termmarketcreationthroughdeploymentofexistingtechnologieswillaccelerateinnovationinthelongerterm.4SupportthedevelopmentofentiresupplychainsFundingprogrammesshouldextendtheirscopetoincludeammoniaandotherhydrogencarriers.Programmesthatfocusonasingletechnology(e.g.hydrogenorsolarpanels)tendtosupportearly-stageR&Dandpilotprojects.However,broaderfundingprogrammesthatfocusonapplicationsforthesetechnologies(e.g.electro-fuels,energystorage)supportdeploymentbyconnectingthevaluechainacrossproduction,distributionanduse.Programmesmayalsowishtoallowforeignparticipation,tosupportdevelopmentofglobalsupplychains,recognisingthatdemandmaynotbemetbydomesticproduction.INNOVATIONOUTLOOK205DevisetradestrategiesthatmitigatesupplyrisksTocreatejobsandencouragecompetitivenewindustriesforrenewableammoniainbothproducingandconsumingregions,internationalco-operationmustbefostered–forexample,betweenprojectdevelopers,ammoniausersandammoniaproductioncompanies.Increasingtheinvestmentsinrenewableammoniaproductioncapacitycouldbroadentheenergyandfeedstocksupplyrangeandminimisepoliticalrisks.6InvestinelectrolysermanufacturingMultiplegigawatt-scaleelectrolyserfactorieswillberequiredthisdecade.Thedevelopmentofsuchlarge-scaleelectrolyserfactorieswillinherentlydecreasethecostofelectrolyserproductionduetoanacceleratedlearningcurveandeconomiesofscale,whichwillinturnmakerenewableammoniamorecompetitivewithfossil-basedalternatives.7De-riskearlyinvestmentprojectsGovernmentscanhelptode-riskthebillionsofUSDininvestmentoffirstmoversseekingtobuildgigawatt-scalerenewableammoniaplants.Forinstance,grants,investments,loansandloanguaranteescande-riskpartofthecapitalexpenditure(CAPEX)sideoftheinvestment.Ontheoperationalexpenditure(OPEX)side,investmentscanbede-riskedwithCfDorgreenpremiums,renewablemandates,procurementcontractsandoff-takeguarantees,oranintermediatesecuredbuyerofauctionedprojects.8RetrofittechnologytowardsrenewableammoniaproductionAmmoniaplantsthatdonotcurrentlyproduceureacanbedecarbonisedwithoutdelay,eitherbyintegratingCCS,byretrofittingthemwitheSMR(electrifiedsteammethanereforming)technologyorbyreplacingfossilfeedstockwithrenewablehydrogen.Thisrepresentsaround80Mtperyearofexistingammoniacapacity,whichcanberegardedaslow-hangingfruittodecarbonise.9Supportthedemand-sidephase-outoffossilfuelsGovernmentalandregulatoryincentivesshouldbeprovidedtoexistingfossil-basedassetstoacceleratethetransitiontorenewables.Thispreventslocked-inCO2emissionsfromcontinuedoperations,reducesdemandforongoingfossilfueldiscoveryandextraction,andreducesthelikelihoodofstrandedassets.Retrofittingexistingassetsmayoftenbemorecosteffectivethanbuildingnewassets,especiallyduringtheinitialscale-upphase.Thisisalsovalidforammoniautilisationtechnology.Forboththepowersectorandthemaritimesector,currenttechnologycanoftenberetrofittedtooperateonammoniafuelatalowercostthanbuildingnewassets.Inthemaritimesector,ammoniatankerscanbeconvertedtouseammoniaasafuelfirst,intheknowledgethatfuelavailabilitywillnotbeanissueforthisvesseltypeatanyport.10Re-assesstheroleofammoniainhydrogenstrategiesMosthydrogenstrategiesconsiderammoniaonlyasaconsumerofhydrogen,inthecontextoffertiliserproduction,andomitconsiderationofitspotentialrolesasafuelandhydrogencarrier.Inlocationswhereammoniawillbeimportedasahydrogencarrier,itshouldbeutiliseddirectlywherepossible,ratherthanusinghydrogenobtainedfromthedecompositionofammonia.Ammoniamaybethemostcost-effectivevectorforlarge-scalehydrogenimports,butitscost-effectivenessincreaseswithdirectuse.Noveltechnologiestouseammoniaincentralisedanddecentralisedpowergeneration,aswellastransportapplications,areapproachingcommercialisationandmayofferanopportunitytore-assesstherolesofhydrogenandammoniainthecontextofanationalhydrogenstrategy.RENEWABLEAMMONIA211.CURRENTAMMONIAMARKETKeyfindingsAmmoniaisanessentialglobalcommodity.•Itisthesecondmostproducedchemicalworldwide.•Usedmainlyfornitrogenfertilisers,itsupportsfoodproductionforaroundhalfoftheglobalpopulation.•Ammoniaisalsousedinmanycornersofsociety,fromrefrigerationandminingtopharmaceuticals,electronics,watertreatment,polymers,nitrogenoxideabatement,furnitureandnylon.TheHaber-Boschprocessforsynthesisingammoniaisenergyefficient,butfossilfeedstocksandfuelscausesignificantCO2emissions.•Renewableammoniahasbeenproducedatanindustrialscalesincethe1920s,withhydroelectricitypoweringthealkalineelectrolyserstofeedtheHaber-Boschprocesswithrenewablehydrogen.•Inthe1940s,naturalgasstartedtobecomethedominantfeedstock,andlargerplantdesignsdeliveredeconomiesofscale.Onlyonerenewableammoniaplantremainsincommercialoperation,inPeru.•Today,fossil-basedammoniaproductioncausesglobalemissionsof0.5GtofCO2annually,oraround1%oftotalgreenhouseemissions.Renewableammoniarepresentsaviabledecarbonisationpathwayforindustriesthatuseammoniatoday,andopensnewmarketsforammoniaasafuelandhydrogencarrierinthefuture.•Thefirstfossil-freefertilisersareexpectedtobeavailablein2023,derivedfromrenewableammoniaproducedinNorwaywithananticipatedcarbonfootprintreductionof80-90%.•Nitratefertiliserscontainnocarbon,whereasureafertiliserscontaincarbon.Thissuggestsanopportunitytoeliminateemissionsatammoniaplantsthatmanufacturenitrates,andanopportunitytousecircularsourcesofCO2atammoniaplantsthatproduceurea.•Otherindustriesthatconsumeammoniacansubstituterenewableammoniaforfossil-basedammonia.•Theanticipatedavailabilityofrenewableandlow-carbonammoniasuggeststhatammoniawillseesignificantfuturedemandasafuelandhydrogencarrier(seesection4).INNOVATIONOUTLOOK22Themarketpriceofammoniaiscurrentlylinkedtonaturalgasandremainsvolatile.•Between2000and2020,themarketpriceforammoniarangedfromUSD100toUSD600pertonne.•In2021,drivenbynaturalgasshortages,ammoniapricesexceededUSD1000pertonneinallregions.•Ashifttorenewableammoniawoulddecoupleammoniapricingfromnaturalgasmarkets.In2020,globalammoniaproductioncapacitywasaround243Mt,withglobaldemandof183Mt.•Around90%ofammoniaisconsumedon-siteasafeedstockforderivativeproducts.•Eachyear,25-30Mtofammoniaistransportedbyroad,train,shipandpipeline.•Eachyear,18-20Mtistransportedbyship.Around170vesselsareinoperationthatcancarryammonia,ofwhich40carryammoniaonacontinuousbasis.Ammoniaisahazardouschemical,butitsriskscanbemanaged.•Ammoniahasawell-knownhazardprofileandhasbeenhandledsafelyformorethanacentury,withfewfatalincidentsreportedwhenhandledbytrainedpersonnel.•Thereisahighmaturityofstorage,transport,anddistributiontechnologies,aswellastraining,industrycodesandstandards,andregulationsthatensuresafetyandsecurity.©Bolbik/Shutterstock.comRENEWABLEAMMONIA23Ammonia(NH3)isoneofthesevenbasicchemicals–alongsideethylene,propylene,methanolandBTXaromatics(benzene,tolueneandxylene)–thatareusedtoproduceallotherchemicalproducts.Itisthesecondmostproducedchemicalbymass,aftersulphuricacid.Aroundfour-fifthsofallammoniaisusedtoproducenitrogenfertilisers,suchasureaandammoniumnitrate;assuch,itsupportsfoodproductionforaroundhalfoftheglobalpopulation(Erismanetal.,2008).Globaldemandforammoniawasaround183Mtin2020(Hatfield,2020)(Figure6),whiletheglobalproductioncapacityhasreached243Mt(HaldorTopsøeetal.,2020).Roughly90%ofallammoniaproducedtodayisconsumedon-siteasafeedstockfordownstreamprocesses,and18-20Mtofmerchantammoniaistransportedannuallybyship(Hatfield,2020,2021).Figure6Globalammoniademand,1900-2020(top),anduses(bottom)Annualammoniademand(Mt)Ammoniauses(Mty)MonoammoniumphosphateDirectapplicationOthermarketsUreaAmmoniumnitrateDiammoniumphosphateAmmoniumsulphateNote:Directapplicationreferstotheuseofammoniaasfertiliser.Othermarketsincludethetextileindustry,theexplosivesandminingindustry,pharmaceuticalsproduction,refrigeration,plasticsmanufacturing,wastetreatmentandairtreatment,suchasnitrogenoxide(NOX)abatement.Sources:ReproducedfromAppl(1999),Brightling(2018),Hatfield(2020)andSmil(2004).INNOVATIONOUTLOOK24Between2000and2020,theaveragecontractpriceforammoniafluctuatedbetweenUSD100andUSD600pertonneintheGulfCoast,EuropeandtheMiddleEastwhenadjustingforinflation(Figure7).Inrecentyears,ammoniapricesfluctuatedbetweenUSD200andUSD300pertonne(HaldorTopsøeetal.,2020;Hatfield,2020)until,naturalgasshortagesof2021,ammoniapricesexceededUSD1000pertonneateachofthesetradinghubs(S&PGlobalPlatts,2021).1.1UsesofammoniaNitrogenfertilisersaccountforaround80%oftoday’stotalammoniademand.Othermarketsincludemanufacturingofchemicals,plasticsandtextiles(acrylonitrile,melamine);theminingindustry(low-densityammoniumnitrateexplosives,metalsbrighteningprocesses),pharmaceuticals;refrigeration;wastetreatment;andairtreatment,suchasabatementofnitrogenoxide(NOX).Whiletheuseofammoniainfertilisermarketsbeganinthe1920sfollowingthescale-upoftheHaber-Boschsynthesisprocess,ammoniahadalreadybeenusedasarefrigerantsince1850.Around0.36MtofammoniaannuallyiscurrentlyusedasarefrigerantinNorthAmerica(HaldorTopsøeetal.,2020),andwhileithastobecarefullymanagedasitisapoisonouschemical,ithastheadvantageofhavingaglobalwarmingpotentialofzero.Ammoniaisalsoproposedasacarbon-freefuelandhydrogencarrier(RoyalSociety,2020;Valera-Medinaetal.,2018).However,ammoniaiscurrentlynotusedfortheseapplicationsbeyondresearch,developmentanddemonstrationprojects.Theroleofammoniaasafuelandhydrogencarrierisdiscussedinsection4.Figure7AmmoniamarketpriceintheBlackSearegion,2000-2020Ammoniaprice(USDt)PricesPricesadjustedforinflation(inUSD)Source:Hatfield,2020.RENEWABLEAMMONIA25AmmoniaforfertiliserapplicationsTheHaber-Boschprocessforammoniasynthesiswasinventedandcommercialisedduringthe1900sandthe1920s.FollowingtheadoptionofnaturalgasasthepreferredfuelandfeedstockfortheHaber-Boschprocessinthe1940sand1950s,andwithincreasesinplantsizeandenergyefficiencythatdeliveredeconomiesofscale,theuseofammonia-basedfertilisersacceleratedglobally,increasingagriculturalyieldstosupporttheevergrowingpopulation.Overtheyears,ammonia-derivedfertilisershavebecomeindispensableformodernagriculture,currentlysustainingaroundhalftheglobalpopulation(Erismanetal.,2008).TheimpactofthesefertilisersontheglobalnitrogencycleisdiscussedinAnnexB.Figure8Productionandusesofammonia<1%˜25%˜75%RenewablesCoalandHFONaturalgasandnaphthaUreaAmmoniumnitrate(AN)Diammoniumphosphate(DAP)Ammoniumsulphate(AS)Monoammoniumphosphate(MAP)DirectuseMaritimefuelStationarypowerIndirectuseHydrogencarrierTextilesRefrigerationExplosivesdeNOxPharmaceuticalsEmerginguseMobility(fuelcellvehiclesforkliftstrainsplanesmarinevesselsetc)StationarypowergenerationHeatapplicationsCurrentusesAmmoniasynthesisPetroleumrefiningindustryIronmanufacturing85%FertilisersOthercurrentusesHydrogenusesNewuses15%<1%AmmoniaINNOVATIONOUTLOOK26Urea(CO[NH2]2)accountsforaround55%ofallammoniaproduced,andammoniumnitrate(NH4NO3)accountsforaround15%(Figure9).Othernitrogenfertilisersincludevariousnitrates,monoammoniumphosphateanddiammoniumphosphate,ammoniumsulphate,aswellasmixturesofnitrogenfertiliserssuchasureaammoniumnitratesolutionandNPKfertilisers,whichmixnitrogenwiththeotherkeynutrients,suchaspotassiumandphosphate(Yara,2018).Thepreferredfertiliserdependsstronglyonthecropandlocation.NitratesaccountfornearlyhalfofthefertiliserapplicationinEurope,whereasdirectapplicationofammoniaasfertiliseraccountsforaquarterofthetotalfertiliserapplicationintheUnitedStates(Figure9).Intherestoftheworld,ureaisthedominantfertiliser.Thefirstfossil-freefertilisersareexpectedtobeavailableinEuropein2023,whenSwedishagriculturalco-operativeLantmännenbeginsmarketingnitratefertilisersderivedfromrenewableammoniaproducedinNorwaybyYara,withananticipatedcarbonfootprintreductionof80-90%(Yara,2022).Figure9NitrogenfertiliserapplicationbyregionandproductMonoammoniumphosphateDirectapplicationOthermarketsUreaAmmoniumnitrateDiammoniumphosphateAmmoniumsulphateMonoammoniumphosphateOtherAmmoniumsulphateNitrogen-phosphorus-potassiumUreaAmmoniumnitrateNitratesUreaammoniumnitrateUSA(Mt)Brazil(Mt)India(Mt)WestcentralEurope(Mt)China(Mt)11%23%27%2%26%6%6%54%16%1%18%12%11%23%40%13%10%3%1%46%8%38%6%1%81%3%15%Disclaimer:Thismapisprovidedforillustrationpurposesonly.BoundariesandnamesshownonthismapdonotimplyanyendorsementoracceptancebyIRENA.Sources:Hatfield,2020;Yara,2018.RENEWABLEAMMONIA27Ammoniumnitrate(NH4NO3)isproducedfromammoniaandnitricacid,anintermediateproducedfromammonia.Ammoniumnitrateisthebuildingblockforallinorganicnitratefertilisers,anditdoesnotcontaincarbon,soeliminationofproductionemissionsmaybeachievedbydecarbonisingtheammoniafeedstock.Ontheotherhand,ureaisproducedbycombiningammoniawithCO2.Urearequires0.75tonnesofCO2pertonneofurea,oraround1.3tonnesofCO2feedstockpertonneofammoniafeedstock,approximatelyequaltothehigh-purityCO2streamproducedasaby-productofhydrogenproductionfromnaturalgasreforming.Integratednaturalgas-basedammonia-ureaplantsarethereforecommon,withlowon-siteCO2emissions.However,alloftheCO2containedintheureamoleculeisreleasedtotheatmospherewhenappliedasafertiliser.DecreasingthecarbonfootprintofureacanbeachievedbycombiningCO2fromothersectors,suchassteelorenergyproduction,withlow-carbonammonia(Driveretal.,2019).Ureacanbecompletelydecarbonisedbycombiningrenewableammoniawithcircularcarbonsources,suchasatmosphericCO2orbiomass.Similarchallengesfordecarbonisationexistformethanol(IRENAandMethanolInstitute,2021),causingcompetitionforcircularCO2.Atransitionfromureatootherfertilisersmayberequired(EnergyTransitionsCommission,2018).Theroleofbiomassforureaproductionisexpectedtobelimitedduetothelimitedavailabilityoflow-costbiomass(seesection2.5),andtousesinotherhard-to-abatesectors.CO2removalfromtheatmosphereviadirectaircapture(DAC)iscurrentlyexpensive,alsoduetosmall-scaleequipment.Inthelongterm,DACmaycostaroundUSD65pertonneofCO2(Fasihi,EfimovaandBreyer,2019),resultinginanaddedcostofUSD50pertonneofurea.Forreference,theureamarketpricewasaroundUSD200-300pertonnein2020,resultinginapriceincreaseofaround20%uponusingDACforCO2purification.Decarbonisingtheentirevaluechainofcurrentmarkets,fromammoniaproductiontouse,requiressignificantinfrastructurechangesaswellasmajorinvestment.Largeammoniaproducersarenowcommittingtodecreasingtheircarbonfootprint(vandenBroeck,2020;Brown,2020a).IntheUnitedStates,CFIndustries,thelargestammoniaproducerwith10Mtofcapacity,announcedthatitwillonlyproducenetzerocarbonammoniaby2050(Brown,2020b).Similarly,theNorwegianammoniaproducerYara,theworld’ssecondlargestwitharound8.5Mtofcapacityacross17units,hascommittedtoaCO2-neutralvaluechainby2050(vandenBroeck,2020).Certificationoffertilisers,governmentalregulations,carbontaxesandcarbonpermitsareincentivesforvalue-addedzero-carbonfertilisers,asthisallowsforfoodproductionwithazero-carbonvaluechain.Intheend,theimpactisdrivenbypledgesmadefornetzeroemissionsbybigfoodcompanies,aswellasbyconsumerbehaviour.Bigfoodcompaniesthathavepledgedtobecarbonneutralby2050relyoncontractfarmers,whichcanbeanincentivefordecarbonisedfertilisers.However,fertilisersareasignificantcostforfarmers,sotheriskoffertiliserpriceincreasesshouldnotbebornesolelybythefarmerbutmitigatedanddistributedthroughthevaluechain.Inadditiontosupplychaindecarbonisation,theagriculturalsectorrequiresimprovednutrientuseefficiency,ashalfofthenitrogenappliedtoafieldiscurrentlyemittedtotheenvironment(GallowayandCowling,2002).Land-usechangesaccountfornearlyhalfoftheCO2-equivalentemissionsinagriculture,however,soamainchallengeintheagriculturalsectorisbalancingtheneedforincreasedyieldsfromlimitedlandagainstimprovedfertiliseruseefficiency.INNOVATIONOUTLOOK281.2LocationsforammoniaproductionandconsumptionAmmoniaisproducedmainlyinAsia,whichhasmorethanhalfoftheglobalammoniaproductioncapacity(Figure10).TheAsia-Pacificregionalsoaccountsformorethanhalfoftheworld’sammoniaconsumption,mainlyforagriculturalactivities.Thelargestconsumersofammonia-basedfertiliserareChinaandIndia(Figure9).Otherammoniaconsumersfromlargesttosmallestare:NorthAmerica,Europe,SouthAmerica,andtheMiddleEastandAfrica.1.3Storage,transportanddistributionofammoniaAmmoniahasbeenhandledinlargequantitiesformanydecades,andthereisahighmaturityofstorage,transport,anddistributiontechnologies,aswellastraining,industrycodesandstandards,andregulationsthatmustbeobservedtoensuresafetyandsecurity(Fecke,GarnerandCox,2016;FSDF,2016;OSHA,n.d.).Ammoniaistransportedbyroad,train,shipandpipeline(HaldorTopsøeetal.,2020).Intotal,around25-30Mtofammoniaaretransportedannually.Around18-20Mtofammoniaaretransportedannuallybyship(Hatfield,2020).Around170shipsareinoperationthatcancarryammonia,ofwhich40carryammoniaonacontinuousbasis(Brown,2019a).Amapofammoniaimport/exportterminalsandtraderoutesisshowninFigure11.Ammoniacanbetransportedbypipeline,andbothnaturalgaspipelinesandliquidspipelinescanberetrofittedforthispurpose(Nayak-Lukeetal.,2020).Around1.5MtofammoniaistransportedannuallyintheUnitedStatesthrough3220kilometresofmildcarbon-steelpipelinesconnectingsevenstates(Acker,2021;FertilizersEurope,2012;NuStar,n.d.;Papavinasam,2014).IntheRussianFederation,ammoniaistransportedacross2424kilometresbypipelinefromaproductionsiteinTolyattitotheportcityofOdessainUkraine(FertilizersEurope,2012;HaldorTopsøeetal.,2020).TheTolyatti-Odessapipelinehasacapacityof3-5Mtofammoniaannually(ArgusMedia,2019).TransportofammoniabypipelineisalsocommonacrossshortdistancesinEurope,withtypicalpipelinesspanning1-12kilometresinindustrialareas,althoughalongerpipelineof74kilometresislocatedinItaly(FertilizersEurope,2012).AmmoniaistransportedmainlybytrainwithinEurope,totallingaround1.5Mtannually(HaldorTopsøeetal.,2020).Figure10Ammoniaproductioncapacitybyregionin2020WestEuropeCentralEuropeEastEuropeandCentralAsiaOceaniaAfricaLatinAmericaandCaribbeanNorthAmericaWestAsiaSouthAsiaEastAsia131222202382712332Source:FAO,2019.RENEWABLEAMMONIA29Atalargescale(>5kilotonnes[kt]ofammonia),ammoniaisliquefiedbyrefrigeration,at-33°Candatmosphericpressure(Rouwenhorstetal.,2019).Thelargestammoniastoragetankscanstoreupto50kt(Appl,2011;Nielsen,1995).Largeammoniastoragefacilitiesaretypicallylocatedatportsnearammoniaproductionfacilities,withupto150ktofammoniastoragecapacitydividedovermultipletanks.Atasmallerscale(<1.5ktofammonia),ammoniaisliquefiedbypressure,storedatambienttemperatureand16-18bar(Rouwenhorstetal.,2019).IntheUnitedStates,whereammoniaisdirectlyusedasafertiliser,therearemorethan10000ammoniastoragelocations,mainlyintheMidwesterncornbelt;inIowaalone,morethan1000ammoniastoragefacilitiesexist,withatotalcapacityofaround800kt(Papavinasam,2014).Ammoniastorageisalsocommonincoastalareasatportsandimport/exportterminals,aswellasatcoal-firedpowerplants,wastewatertreatmentfacilitiesandcoldstoragefacilities.1.4SafetyaspectsAmmoniaisahazardouschemical,whichinambientconditionsisatoxicgas.Inliquidform,risksofexposureincreaseifunderpressure,aslargequantitieshavethepotentialtoberapidlyreleasedintotheair.Forthisreason,itisoftenpreferabletostoreammoniaasaliquidunderrefrigeration(-33°C)andnotunderpressure(7.5bar).Toaddresstherisksassociated,theindustryhasbeenengagedindevelopingstandardsandcodesforthesafehandlingofammoniaindifferentapplications.Sofar,ammoniahasbeenhandledsafelyformorethanacentury,withfewfatalincidentsreported1whenhandledbytrainedpersonnel(Anderson,2017).Mosthigh-profile“ammonia”accidentsreportedinthemediahaveactuallyinvolvedammoniaderivatives,suchasammoniumnitrate,insteadofammoniaitself.Ammoniacanbedetectedatconcentrationsaslowas2-5ppm(ClarkandGoff,2014),farbelowconcentrationswhereammoniaexposurecancauselastinghealthhazards.Ifammonialeaksfromarefrigeratedstoragetankatatmosphericpressure,itrapidlydispersesinthegasphasebecauseitislighterthanair(Afifetal.,2016).However,ifammonialeaksfromapressurisedstoragetank,itresultsintheformationofanaerosol,leadingtoadensecloudthatisheavierthanair(Mott,2019).1Atotalof18caseswasreportedintheperiod1994-2013;seeAnderson(2017).Figure11Ammoniashippinginfrastructure,includingaheatmapofliquidammoniacarriers,aswellastheammonialoadingandunloadingfacilitiesAmmoniaunloadingportfacilitiesAmmonialoadingfacilitiesDisclaimer:Thismapisprovidedforillustrationpurposesonly.BoundariesandnamesshownonthismapdonotimplyanyendorsementoracceptancebyIRENA.ReproducedfromRoyalSociety(2020).INNOVATIONOUTLOOK30Ammoniahasalowreactivitycomparedtootherfuelsandanarrowflammabilityrangeof15-28volume-percent(ClarkandGoff,2014;Valera-Medinaetal.,2018),reducingtheriskforfiresorexplosions.Thus,eventhoughammoniaiscorrosive,toxicandpotentiallylife-threateninguponinhalationinhighconcentrations(above0.1volume-percent(ClarkandGoff,2014;Wanetal.,2021)),theseriskscanbeeffectivelymitigatedbyusingestablishedindustrybestpractices(Fecke,GarnerandCox,2016).Inthecaseofaquaticspills,ammoniacancauseseverepHchanges,whichdisruptslifeintheaquaticecosystem.Box2RisksassociatedwithammoniausedasafuelforshipsAmmoniaiscurrentlynotapprovedasfuelbyvariousregulators,includingtheIMOandmanypowersectorauthorities.Althoughtechnologicalchallengesarenotexpectedtobeasignificanthurdle,experiencewithammoniafuelisrequiredbeforeitcanbewidelyadopted,notleasttoinformthedevelopmentofneworrevisedcodesandstandards.Hereby,operationalexperienceisessentialtoestablishprotocolsforsafehandlingandproductstandardsarerequiredtoestablishsafepuritylevelsacrossmultipleapplications.Further,emissiontestingandverificationisrequiredtoensurethatammoniacombustiondoesnotexceedacceptableemissionlevelsacrossarangeofpollutants.Theseactionsmustbecompletedbeforeitispossibletoachievebroadregulatoryapprovalofammoniaasafuel.Inthemeantime,theuseofammoniaasfuelislikelytobelimitedtodemonstrationsandpilots.Althoughammoniaisahazardouschemical,itsriskscanbemanagedasthereisahighmaturityofstorage,transport,anddistributiontechnologies,aswellastraining,industrycodesandstandards,andregulationsthatensuresafetyandsecurity.Developingsolidregulationsisatoppriorityontheagendaforshipowners&operators,technologydevelopers,ports,andparticularlyfortheclassificationsocieties,whoaredeeplyengagedinhazardidentificationanalyses,mitigationstrategiesandcleanenergytechnologiestoensurethattheuseofammoniaasafuelmeetsexistingsafetystandards.Inthiscontext,theclassificationsocietiesarestudyingtherisksanddevelopingframeworksforthefutureammoniacode.Accordingly,numerousclassificationsocietiesincludingDNV(DetNorskeVeritas),ABS(AmericanBureauofShipping),LloydsRegister,RINA(RegistroItalianoNavale),KoreanRegister,ClassNK,andBureauVeritashaverecentlyproduceddocuments.Besides,theAmmoniaEnergyAssociationistrackingapproximately20separateindustry,governmentandNGOprojectsaroundtheworldthatlookatthesafetyconsiderationsofammoniaasamaritimefuel.Accordingly,muchoftheactivityintheareaisdrivenbySingapore.TheportofSingaporeservesasalivinglabwithaphysicalanddigitaltestenvironment,andasaregulatorysandbox,todevelopsafebunkeringproceduresforammoniaandgainoperationalexperience.Forinstance,acoalitionoftheAmericanBureauofShipping,NanyangTechnologicalUniversity,SingaporeandtheAmmoniaSafetyandTrainingInstitute(ASTI)aimstostudythepotentialofammoniaforSingapore,exploringsupply,bunkeringandsafetychallengeswithammoniaasamaritimefuel.Safetyprotocolsandpossiblegapsinthesupplychainwillbeidentifiedwithinthescopeoftheproject.ExxonMobil,HoeghLNG,MANEnergySolutionsSingapore,JurongPort,PSASingaporeandITOCHUGrouparecontributingtechnicalinformation.RENEWABLEAMMONIA31INNOVATIONOUTLOOK322.PRODUCTIONPROCESSES,TECHNOLOGYSTATUSANDCOSTSKeyfindingsTheHaber-Boschprocesscombineshydrogenandnitrogentoformammonia.•Intoday’sammoniaplants,fossilfuelsarebothreformedtoproducehydrogenfeedstockandcombustedtopowertheprocess.•Oftheworld’sammoniaplants,72%usenaturalgas,emittingonaverage1.6-1.8tonnesofCO2pertonneofammonia,and22%usecoal,emittingonaverage4.0tonnesofCO2pertonneofammonia.Fossil-basedammoniaplantscanbedecarbonisedwithtoday’stechnologies.•Renewablehydrogencanbeintroducedinafossil-basedammoniaplant,replacing10-20%ofthenaturalgas.Thisconcepthasalreadybeenimplemented,inlate2021,byFertiberiaatPuertollanoinSpain.•Inanaturalgas-basedammoniaplant,two-thirdsoftheCO2isfromhydrogenproduction(processgas),whichispureandeasytocapture,butone-thirdoftheCO2isfromcombustion(fluegas),whichisdiluteandexpensivetocapture.•Alternativetechnologiesforreformingnaturalgas,includingautothermalreforming(ATR)andeSMR(electrifiedsteammethanereforming),couldreduceoreliminatethedilutefluegasemissions.MethanepyrolysiswouldessentiallyeliminateallCO2emissions,producinghydrogenandsolidcarboninstead.•Manyfossil-basedammoniaplantsalreadyusecarboncaptureandutilisation(CCU)orsourcehydrogenfromby-productorwastestreams.Globally,theinstalledannualcapacityismorethan4Mtoflower-carbonammonia.•Carboncaptureandstorage(CCS)istechnologicallyandeconomicallyfeasibleinthepresenceofacarbontax,andmanynewammoniaplantshavebeenproposedusingCCS.ThecombinedcapacityofannouncedCCSammoniaplantsismorethan5Mtoflow-carbonammonia.Renewableammoniaisontracktodominateallnewcapacityafter2025.•Renewableammoniaisamature,century-oldtechnology.Commercialammoniaplantsusedalkalineelectrolysersasbigas150MW,manytimeslargerthananyelectrolyserinservicetodayandpoweredbybaseloadhydropower.•Mostoftheproposedrenewableammoniaplants,however,usevariablesolarphotovoltaicsandwindtopowervariouselectrolysistechnologies,includingsolidoxideandpolymerelectrolytemembrane(PEM).RENEWABLEAMMONIA33Technologicalandoperationalinnovations,aswellascarefulsiteselectionanddesign,canovercomethechallengespresentedbyvariability.•Around15Mtoflow-carbonammoniacapacityhasbeenannouncedtobeoperationalby2030.Thetotalannouncedrenewableammoniacapacityis71Mt,likelytobeoperationalbefore2040,butinvestmentdecisionsarestillpendingformostprojects.•Renewableammoniafrombiomassgasificationisalsoamature,century-oldtechnology,althoughfuturedeploymentmaybelimitedtoopportunitieswherelocation-specificconditionsovercometheeconomichurdles.Renewableammoniaisalreadycostcompetitivewithotherzero-carbonfuels,butnotwithfossil-basedammonia.•TheestimatedcostofrenewableammoniaissettodecreasefromarangeofUSD720-1400pertonne(USD39-75pergigajoule[GJ])in2020toUSD475-950pertonne(USD25-51perGJ)in2030.By2050,theproductioncostofrenewableammoniaisexpectedtoreacharoundUSD310pertonne(USD17perGJ),foralarge-scaleplantinalocationwithexcellentrenewableenergyresources.•Costreductionsforrenewableammoniaaredrivenprimarilyby:a)scale-uptogigawatt-size,b)thecostofrenewableelectricity,c)thecostofelectrolysers,d)theefficiencyofelectrolysers,ande)optimisedstorage,buffering,sizingandflexibilityoftheHaber-Boschammoniasynthesisloop.•Inoptimallocations,renewableammoniacouldbecostcompetitivewithfossil-basedammoniawithCCSfrom2030.•Low-carbonammonia,whetherrenewableorfossil-basedwithCCS,iscurrentlynotcostcompetitiveattheconventionalcommoditypriceofUSD200-300pertonne.Therefore,itisexpectedthatseparatemarketswillneedtodevelop,supportedbycertificationschemes,contractsfordifferenceandothermechanisms.Ammoniacanbeproducedfromvariousfossil-basedhydrogensources,suchasnaturalgas,coal,naphthaandheavyfueloil.Decarbonisedhydrogensourcesincludebiomassandwater.Thenitrogenispurifiedfromair.ToproduceammoniausingtheHaber-Boschprocess,hydrogenandnitrogenarecombinedathightemperatureandpressure(350-500°Cand100-400bar)inthepresenceofanironcatalyst(Appl,1999;Liu,2013;Nielsen,1995).Theammoniaissubsequentlycondensedandstored.VariousproductionpathwaysareshowninFigure12.Coloursarecommonlyusedtorefertodifferentenergyinputsandtechnologiesforhydrogenaswellasforammoniaproduction.Renewableammonia,whetherproducedfrombiomassorrenewableelectricity,isgenerallytermedgreen.Ontheotherhand,brownammonia(fossil)canbegrey(naturalgas)orblack(coal).Colourcodingbecomesincreasinglycomplexasfossilammoniaisdecarbonised,becomingblue(naturalgaswithCCS)orturquoise(methanepyrolysis).Alternativeinputs–suchaselectricityfromnuclearenergyorfromthegrid,hydrogenfromwasteorby-productstreams,andheat–arelesseasilycommunicatedwithcolours.Inpractice,manyammoniaplantsareintegratedhybrids,incorporatingmorethanonecolour.Moreover,whilesomecoloursrefertocarbon-freeinputsorcarbonabatementtechnologies,thesecolourslacklegaldefinitionanddonotcommunicatethegreenhousegasemissionintensityoftheproduct,whichcanvarygreatly(e.g.blueammoniawitha70%carboncapturerateversusblueINNOVATIONOUTLOOK34ammoniawitha98%carboncapturerate)(seesection3.2).Forthisreason,robustcertificationschemesthatcancalculateandverifytheemissionintensityofammoniawillbeessential(seesection3.3).Formostlyeconomicreasons,thehydrogenfeedstockforammoniaisproducedalmostentirelyfromfossilfuelstoday.Around72%ofammoniaproductionusesnaturalgas;coalaccountsforaround22%;heavyfueloilandnaphthaaccountforaround4%and1%,respectively,while1%ofammoniaisderivedfromotherfeedstocks(Biceretal.,2016).MostammoniaproductioncapacityusingcoalislocatedinChina,wherevastcoalreservesareavailable(Zhouetal.,2010).Productionfromnaturalgasisthenormintherestoftheworld.Ammoniaproductioncurrentlyemitsaround0.5GtofCO2annually,or1%ofglobalCO2emissions(RoyalSociety,2020),makingammoniathelargestCO2emitterinthechemicalindustry.Ammoniaisconsideredoneofthe“bigFigure12ProductionpathwaysofammoniafromvariousfeedstocksBiomassRenewableelectricityRenewablehydrogenHNuclearhydrogenHCertificationrequiredtoaccountforcarbonintensityNHFossilhydrogenHFossilhydrogenwithreducedemissionsHNuclearpowerNaturalgas(naphtha)Coal(heavyfueloil)CarboncaptureandstorageCarboncaptureandstorageGasificationreformingElectrolysisElectrolysisThermochemicalcyclesMethanepyrolysisEthanecrackerschlorineplantsElectrifiedsteammethanereformingReformingGasificationNRENEWABLEAMMONIA35four”industrialprocesses–alongwithcement,steelandethyleneproduction–thatneedadecarbonisationplanandimplementationinordertomeetnetzerocarbonemissiontargetsby2050(dePeeetal.,2018).Thisdecarbonisationcanbeachievedbytransitioningammoniafeedstocksfromfossil-basedtorenewablehydrogen.2.1Coal-basedammoniaproductionTechnologyandproductionprocessToproduceammoniafromcoal,thecoalmustbeconvertedtosynthesisgas(syngas),amixtureofcarbonmonoxide(CO),hydrogen(H2),andcarbondioxide(CO2),followingpre-treatmenttoremoveimpuritiesandpoisons.Airisaddedtoprovidenitrogen(N2).Thesyngasisobtainedbycoalgasificationprocessesthatcombinepartialoxidationandsteamtreatmentathightemperature(800-1800°Cdependingontheprocessandfeedstock).Substantialpre-treatmentisrequiredforcoalfeedstock,toremoveimpuritiesandpoisons.TheCOisconvertedtoCO2viathewater-gasshiftreaction,andtheCO2issubsequentlyremovedfromthemixture.TheresultingmixtureofH2andN2isfedtotheammoniasynthesissection.Onaverage,around4tonnesofCO2areproducedpertonneofammoniaproducedfromcoal(Brightling,2018;IRENA,2020a).CostsThecapitalintensityofacoal-basedammoniaplantisaroundUSD2900perannualtonneofammoniacapacityforaplantwithacapacityof630ktofammoniaperyear(Appl,1999).ThespecificcostofammoniaproducedfromcoalrangesfromUSD225toUSD315pertonneofammonia,dependingonthecoalfeedstockcost,rangingfromUSD0.5toUSD2.5permillionBtu(Appl,1999).ThecostofCO2-equivalentemissionsforcoal-basedammoniaproductionisalsoestimated,assumingUSD75pertonneofCO2,resultinginanCO2costofUSD300pertonneofammoniaandacostrangeofUSD525-615pertonneofammoniaforcoal-basedammoniaproductionwithcarbonpricing.CurrentinstalledcapacityTheglobalcoal-basedammoniaproductioncapacityisestimatedtobearound53Mt.Coal-basedammoniaproductionismainlylocatedinChina,wherevastcoalreservesareavailable(Zhouetal.,2010).Thesecoal-basedammoniasynthesisplantsaretypicallyrelativelysmall,energyinefficientandyoung(IEA,2021a).Theytypicallyconsume55-65GJpertonneofammonia(Ma,HasanbeigiandChen,2015),haveacapacityintherangeof100-300ktofammoniaperyear(Zeng,2014)andhaveanaverageageofonly12years(IEA,2021a).Chinarecentlyintroducedanemissiontradingsystem(ETS)toputapriceonCO2emissions(ArgusMedia,2021a).Althoughcurrentpricesarelow,increasestomatchthecurrentpricelevelsoftheEuropeanUnion(EU)wouldresultinaprohibitivelyhighcostofUSD525-615pertonneofammonia.AlthoughCCScanprovidemitigation,productioncostswouldstillbeintherangeofUSD360-450pertonneofammonia.Forreference,renewableammoniaproductionisexpectedtocostbelowUSD500pertonneinChinabeyond2030(Fasihietal.,2021),whichsuggeststhatcoal-basedammoniaproductionmaybephasedoutbeyond2030.INNOVATIONOUTLOOK362.2Naturalgas-basedammoniaproductionTechnologyandproductionprocessToproduceammoniafromnaturalgas,naturalgasisconvertedtosyngasbyanumberofprocesses,includingsteammethanereforming(SMR),partialoxidation(POX),autothermalreforming(ATR),dryreformingofmethane(DRM),oracombinationthereof(Rostrup-Nielsen,1984).Airisaddedtoprovidenitrogen(N2).Theseprocessestypicallyoperateattemperaturesabove800°C.TheCOisconvertedtoCO2viathewater-gasshiftreaction,andtheCO2issubsequentlyremovedfromthemixture.TheresultingmixtureofH2andN2isfedtotheammoniasynthesissection.Typicallyaround1.6-1.8tonnesofCO2-equivalentisproducedduringammoniasynthesis.Includingupstreamemissionsfromnaturalgasextractionanddistribution,roughly2.2tonnesofCO2-equivalentisproducedpertonneofammoniaproducedfromnaturalgas(seesection3.2).Astate-of-the-art,world-scalenaturalgasammoniaplanthasaproductioncapacityofaround2000to3300tonnesperdayor0.7to1.2Mtperyear(Brightling,2018).Thelargestsingle-trainammoniaplantshaveacapacityof3760tonnesperdayor1.3Mtperyear(ThyssenKrupp,2019).Novellarge-scaletechnologyusingATRmayallowforammoniaproductioncapacitiesupto4000to6000tonnesperdayor1.4to2.1Mtperyear(HaldorTopsøeA/S,2020).Thelargestammoniaproductionsitesoperatingtodaycontainmultipleammoniaplants,resultinginsitecapacityashighas4.0Mtperyear.CostsNaturalgas-basedammoniaplantstypicallyhavecapacitiesbetween200ktand1200ktofammoniaperyear.Suchlarge-scaleplantsbenefitfromeconomiesofscale–forexample,buildinglargerplantsdecreasesthecapitalinvestmentperamountofammoniaproduct.Thecapitalintensityofanaturalgas-basedammoniaplantistypicallyUSD1500toUSD2000pertonneofammoniaproducedannually(Appl,1999;ArgusMedia,2020;Brown,n.d.).Thecostofnaturalgas-basedammoniaproductionisintherangeofUSD110-340pertonneofammonia,dependingonnaturalgaspricesrangingfromUSD2toUSD10permillionBtu(HaldorTopsøeetal.,2020).Thecostofnaturalgas-basedammoniaproductioninEuropeandtheUnitedStatesfortheperiod2010to2021isshowninFigure13.In2021,thecostofammoniaproductioninEuropeandAsiaincreasedsubstantiallyduetohighnaturalgasprices(Thapliyal,2021),resultingincurtailmentofsomeEuropeanammoniaproduction.ThecostofCO2-equivalentemissionsfornaturalgas-basedammoniaisalsoestimated,basedonaCO2costofUSD75pertonneofCO2.ThisresultsinanaddedcostofUSD165pertonneofammonia,resultinginacostrangeofUSD275-505pertonneofammoniafornaturalgas-basedammoniaproductionwithcarbonpricing.CurrentinstalledcapacityTheglobalnaturalgas-basedammoniaproductioncapacityisestimatedtobearound132Mtperyear.Mostnewlybuiltammoniaplantsarelocatedinplaceswithlow-costnaturalgasofUSD3permillionBtuorbelow,suchascountriesinNorthAfrica,Nigeria,NorthAmerica,theMiddleEastandtheformerSovietUnion.Europeannaturalgas-basedammoniaplantsaresomeoftheoldestplantsbutarealsoamongthemostefficient(IEA,2021a).Newlybuiltplantsaretypicallyverybig,tobenefitfromeconomiesofscale.Developmentofnewnaturalgasfrackingtechnologieshasledtoanexpansionoftheindustryinthelastdecade.RENEWABLEAMMONIA372.3Lower-carbonfossil-basedammoniaproductionTechnologyandproductionprocessVariousnon-renewabletechnologypathwaysexistforammoniaproductionwithreducedemissions.ExamplesincludeconventionalproductionwiththeadditionofCCS,CCUforenhancedoilrecoveryormethanolsynthesis,orreplacingthefeedstockproductionprocessbyusingby-producthydrogenfromotherprocesses,suchasethanecrackers,chlorineplantsandplasticgasificationplants(Brown,2018a;Elgowainy,2017andIRENAdata).Alternatively,electrifiedsteammethanereforming(eSMR)canbeadoptedtoreducethecarbonfootprintoftheSMRunitbyaboutathird,usingrenewableelectricitytosupplytheheatinputofthereformer(Wismannetal.,2019),sothatonlyconcentratedCO2isproduced,enablinglow-costCCS.Lastly,low-emissionhydrogencanbeproducedviamethanepyrolysis,whichconvertsnaturalgastosolidcarbonandhydrogen(Schneideretal.,2020).InaconventionalSMR-basedammoniaproductionunit,therearetwostreamsofCO2.Aroundtwo-thirdsoftheCO2isgeneratedinconcentratedformduringhydrogenproduction(HaldorTopsøeetal.,2020).Theremainingone-thirdoftheCO2isgeneratedindiluteformuponburningnaturalgasforheatingpurposes,andthisstreamisgenerallynotcapturedinaconventionalammoniaplant,resultinginanoverallcapturerangeofaround65%.IfthediluteCO2isalsocaptured,anoverallcapturerateofaround95%isachievable.Thus,themajorityofCO2generatedduringammoniaproductionisalreadycapturedinhundredsofammoniaplantsworldwide,suchthatthistechnologyiswellestablished(IRENA2020c).eSMRhasthepotentialtoincreasetheCO2capturerateto98%.Ontheotherhand,ATR-basedammoniaproductioncombineshydrogenproductionandheatinginasinglereactor,resultinginasingleconcentratedCO2stream.ThisdecreasesthecostofCO2captureandincreasestheeffectivecapturerateto98%(HydrogenCouncil,2021).Figure13Costofnaturalgas-basedammoniaproduction,2010-2021Ammoniaproductioncost(USDt)EuropeEuropeUSDt-COUSUSUSDt-CONote:USD75pertonneofCO₂isaddedasanindicationofcurrentcarbonpricingintheEU.Source:CAPEXandOPEXfromHaldorTopsøeetal.(2020).INNOVATIONOUTLOOK38CostsThecostofCCSforacoal-basedammoniaplantisaroundUSD135pertonneofammonia2(notincludingCO2penaltiesfromfugitiveCO2emissions),whichwouldresultinanammoniaproductioncostrangeofUSD360-450pertonneforcoal-basedammoniaproductionwithCCS.TheCCScostforSMR-basedammoniaplantsisanestimatedUSD100-150pertonneofammonia3forthediluteCO2stream(HaldorTopsøeetal.,2020),whichresultsinanammoniaproductioncostrangeofUSD235-465pertonneofammoniafromSMRwithCCS.ThecostofCCSforATR-basedammoniaisaroundUSD40-80pertonneofammonia,4resultinginanammoniaproductioncostrangeofUSD170-400pertonneofammoniafromATR.AsshowninFigure14,thecurrentCO2costintheEUclosesthecostgapforCCS(ISPT,n.d.),especiallyforATR-basedammonia,makingitaneconomicallyviableoptionintoday’smarket.ACO2penaltyofaround:•USD60-90pertonneofCO2isrequiredtobridgethegapbetweenfossil-basedammoniawithunmitigatedemissionsandfossil-basedammoniawithCCS;and•USD150pertonneofCO2wouldbridgethegapbetweenfossil-basedandrenewableammonia(SayginandGielen,2021).2Assuminga95%capturerateof3.8tonnesofCO2pertonneofammonia,aswellasatransportandstoragecostofUSD25-50pertonneofCO2(HaldorTopsøeetal.,2020).3Estimateassumesa95%capturerateof1.6tonnesofCO2pertonneofammonia(IRENA,n.d.),andincludingatransportandstoragecostofUSD25-50pertonneofCO2.4Estimateassumesa98%capturerateofthe1.6tonnesofCO2pertonneofammonia(Brightling,2018;HydrogenCouncil,2021),aswellasatransportandstoragecostofUSD25-50pertonneofCO2(HaldorTopsøeetal.,2020).Figure14CO₂costovertimeintheEU,andtheeffectoftheCO₂costonthecarbonoffsetcostforfossil-basedammoniawithcarboncaptureandstorageCarbonprice(USDtCO)Carbonosetbenefit(USDtammonia)CCScostrangeSMRCCScostrangeATRNote:AssumesaEURtoUSDconversionfactorof1.18.RENEWABLEAMMONIA39Fossil-basedammoniawithCCScanbeespeciallyinterestingforplaceswherethenaturalgaspriceisusuallybelowUSD3permillionBtu,suchasincountriesinNorthAfrica,NorthAmerica,andtheMiddleEast,aswellasintheRussianFederationandTrinidadandTobago,resultingincostsbelowUSD300pertonneofammoniaforfossil-basedammoniawithCCS(HaldorTopsøeetal.,2020).Anindustrialconsortiumexpectsthatthemarketvalueofnaturalgas-basedammoniawithCCSwillbearoundUSD350-400pertonneofammonia(HaldorTopsøeetal.,2020).Ontheotherhand,coal-basedammoniawithCCSalwayscostsmorethanUSD300pertonneofammonia.Thus,coal-basedammoniawithCCSisnotexpectedtoplayasignificantroleindecarbonisingammoniadespitethefactthatCO2captureratesofupto99%canbeachievedforcoalgasification(IEAGreenhouseGasR&DProgramme,2007).Atcertainlocations,by-producthydrogenfrom,forinstance,ethanecrackerscanbeavailableatfuelvalue(≤USD10permillionBtu),andanammoniaplantcanbeestablishedwithonlynitrogenpurificationandanammoniasynthesisloop.Thus,thecapitalintensityistypicallybelowUSD1000pertonneofammoniaannuallyforlarge-scaleplants.ThecostofhydrogenshouldbeatmostUSD1.1perkilogramofhydrogentoproduceammoniaatthemarketvalueofUSD250pertonneofammonia.CurrentinstalledcapacityandannouncedcapacityInrecentyears,variousprojectshavebeencommissionedforammoniaproductionwithareducedcarbonfootprint.Inmostcasesthehydrogenisaby-productfromanethanecrackerorCO2isusedforenhancedoilrecovery,whileoneotherplantalsouseshydrogenderivedfromwasteplastic(Table1).By-producthydrogenfromanethanecrackerhasanestimated25%lowerCO2footprintthanhydrogenfromSMR(Elgowainy,2017).Thefirstplanttoutiliseby-producthydrogenfromanethanecrackerislocatedinJoffre,Canada,whichstartedoperationin1987andhasaproductioncapacityofaround490ktofammoniaannually(Adair,2020).In2018,YarastartedoperatinganammoniaplantinFreeport,UnitedStates,alsoutilisingby-producthydrogenfromthenearbyBASFethanecrackerfacility(Brown,2018b),withacapacityofaround750ktofammoniaannually.In2019,Yaraalsostartedusingby-producthydrogenfromDowChemicalsatitsSluiskilfacility,producingaround22ktofreduced-carbonammoniaannually,whichrepresentsasmallportionofthetotalcapacityof1500ktofammoniaannuallyatSluiskil(Brown,2019b).InJapan,ShowaDenkohasproducedammoniafromwasteplasticgasificationsince2003,resultinginacarbonfootprintaround35%lowerthanSMR-basedammonia(ShowaDenkoK.K.,n.d.).Theplantcapacityisaround60ktofammoniaannually,whichissoldasapremiumNOX-reductionproductunderthetradenameEcoAnnTM.AnotherexampleistheuseofCO2fromSMRforenhancedoilrecoveryorformethanolproduction.HydrogenwithCO2usedforenhancedoilrecoveryhasanestimated62.5%lowerCO2footprint(Elgowainy,2017).ThefirstplanttoproduceammoniawithCO2utilisationviaenhancedoilrecoveryislocatedinEnid,Oklahoma,UnitedStates,whereaplantstartedproducing285ktofammoniaannuallyin1982(MIT,2016).InBeulah,NorthDakota,anotherammoniaplantwithCO2utilisationviaenhancedoilrecoverystartedoperatingin1991(Brown,2016).NutrienoperatestwosimilarplantsinGeismar,Louisiana,whichstartedoperationin2013withaproductioncapacityof200ktofammoniaannually,andinRedwater,Alberta,Canada,whichstartedoperationoftheCO2trunklinein2020withaproductioncapacityof245ktofammoniaannually(Adair,2020).In2021,SAFCOstartedoperatingalower-carbonammoniafacilityinSaudiArabia,whereCO2isusedforenhancedoilrecoveryandmethanolsynthesis(Herh,2020).VariousnewCCSprojectshavebeenannouncedoverthepastfewyears,withsomealreadyrealised,allowingfortheproductionofammoniawithalowcarbonfootprint.INNOVATIONOUTLOOK40Forexample,OCIrecentlyannouncedtheproductionof365ktofammoniaannuallyfromnaturalgaswithCCS(Ewing,2021).HorisontEnergyandHaldorTopsøeannouncedanotherammoniaplantbasedonATRwithCCS,whichisexpectedtobeoperationalby2025,producing1000-1400ktofammoniaannually(HorisontEnergi,2021a).Recently,itwasannouncedthatthiscapacitycouldbetripledto3000ktannually(HorisontEnergi,2021b).CFIndustrieshasannouncedfeasibilitystudiesfortheInceandBillinghamammoniaplantsintheUnitedKingdom,totallingaround1.0MtofCO2sequesteredonanannualbasis,therebyproducingaround875ktoflow-carbonammoniaannually(CFFertilisers,2021).Yaraisinvestigatingnaturalgas-basedammoniaproductionwithCCSatitsPilbarasite,toprovideJapanesepowerproducerJERAwithlow-carbonammoniaforco-firinginitscoal-firedpowerplantsby2024-2025(Hasegawa,2021).ADNOCannounceda1000ktlow-carbonammoniaplantinRuwais,UnitedArabEmirates,basedonnaturalgaswithCCS(ADNOC,2021).Theplantisexpectedtobeoperationalby2025.Recently,afeasibilitystudyonalow-carbonammoniaplantwasannouncedinCentralSulawesi,Indonesia.TheCO2emittedfromhydrogenproductionfromnaturalgaswillbecapturedandstored,producingupto660ktoflow-carbonammoniaannually(ArgusMedia,2021b).Alow-carbonammoniaplantbasedonnaturalgaswithCCSwasrecentlyproposedinPortBonython,Australia,potentiallyproducing16-1235ktammoniaannually(Pendlebury,MearesandTyrrell,2021).AnammoniaplantwasrecentlyannouncedinNebraska,UnitedStates,basedonmethanepyrolysistechnology,inwhichnaturalgasisconvertedtohydrogenandcarbonblackinsteadofCO2(Philibert,2020a;Schneideretal.,2020).Thecarbonfootprintofthisprocessduringammoniaproductionislow,asthecarbonblackisusedin,forinstance,steel,cartyres,andprinters,andthusnotemittedtotheatmosphere.Notably,around25-45%moremethaneisrequiredformethanepyrolysisascomparedtoSMRandATR(IEA,2021a),resultinginhigherupstreammethaneemissions.Ascarbonblackproductioniscurrentlyapollutingindustry,utilisingmethanepyrolysisdecreasestheenvironmentalfootprintofbothhydrogenandcarbonblack.ThecompanyMonolithMaterialsplanstousethermalplasmatechnologyformethanepyrolysis,andthehydrogenwillbeusedtoproduceabout275ktofammoniafrom2024(Brown,2020c).HazerGrouprecentlyannouncedbiomethaneproductionatawastewatertreatmentplant,whichwillalsobecombinedwithmethanepyrolysistoproduceammonia(HazerGroupLtd.,2018).RENEWABLEAMMONIA41Table1Overviewofexistingandplannedfacilitiesforfossil-basedammoniawithalowercarbonfootprint(existingcapacityof2.6Mt/yr;plannedcapacityof17.4Mt/yr)LocationCompanyStart-upyearCapacity(kt/yr)CarbonfootprintreductionrelativetoSMR(%)HydrogensourceSourceEnid,USKochNitrogenCompany,ChaparralEnergy198228562.5%CO2isusedforenhancedoilrecovery.(MIT,2016)Joffre,CanadaNutrien198749025%By-producthydrogenfromethanecracker.(Adair,2020)Beulah,USDakotaGasificationCompany199135562.5%CO2isusedforenhancedoilrecovery.(Brown,2016)Kawasaki,JapanShowaDenko20036035%65%ofhydrogenisfromrecycledplastic.(ShowaDenkoK.K.,n.d.)Coffeyville,USCVREnergy,ChaparralEnergy,BlueSource201337562.5%CO2isusedforenhancedoilrecovery.(MIT,2016)Geismar,USNutrien201320062.5%CO2isusedforenhancedoilrecovery.(Adair,2020)Freeport,USYara,BASF201875025%By-producthydrogenfromethanecracker.(Brown,2018b)Sluiskil,NetherlandsYara,Dow201922(onlypartofexistingfacility)25%By-producthydrogenfromethanecracker.(Brown,2019b)Redwater,CanadaNutrien202024562.5%CO2isusedforenhancedoilrecovery.(Adair,2020)Jubail,SaudiArabiaSAFCO2021116062.5%CO2isusedformethanolsynthesisandenhancedoilrecovery.(Herh,2020)Beaumont,USOCINitrogen2021365≥70%HydrogenisproducedfromnaturalgaswithCCS.(Ewing,2021)Nebraska,USMonolithMaterials2024275≥70%Hydrogenisproducedbymethanepyrolysis.(Brown,2020c)Pilbara,AustraliaYara(revamp)2024-2025orearlier≤800≥70%HydrogenisproducedfromnaturalgaswithCCS,tobeusedbyJERA(Hasegawa,2021).(Hasegawa,2021)Note:SMR=steammethanereforming;ATR=autothermalreforming;CCS=carboncaptureandstorage;CCUS=carboncapture,utilisationandstorage;TBD=tobedetermined;US=UnitedStates;UAE=UnitedArabEmirates;UK=UnitedKingdom.ThisconcernstheCO2emissionsfromthemethanefeedstock.Thecarbonintensityalsodependsontheelectricitysource(Biceretal.,2016);seealsosection3.2.INNOVATIONOUTLOOK42LocationCompanyStart-upyearCapacity(kt/yr)CarbonfootprintreductionrelativetoSMR(%)HydrogensourceSourceFinnmark,NorwayHorisontEnergy,HaldorTopsøe20251000-1400≥70%HydrogenisproducedwithATRwithCCS.(HorisontEnergi,2021a)Ruwais,UAEADNOC20251000≥70%HydrogenisproducedfromnaturalgaswithCCUS.(ADNOC,2021)CentralSulawesi,IndonesiaPAU,Mitsubishi,Jogmec,BandongIoT2026orbefore≤660≥70%HydrogenisproducedfromnaturalgaswithCCS.(ArgusMedia,2021b)WesternAustraliaHazerGroupTBDTBD≥70%Hydrogenisproducedbymethanepyrolysis.(HazerGroupLtd.,2021)Billingham,UKCFIndustries(revamp)TBD595≥70%HydrogenisproducedfromnaturalgaswithCCS;700000tonnesofCO2sequesteredannually.(Reed,2021)Ince,UKCFIndustries(revamp)TBD280≥70%HydrogenisproducedfromnaturalgaswithCCS;330000tonnesofCO2sequesteredannually.(CFFertilisers,2021)PortBonython,AustraliaTBDTBD16–1235≥70%HydrogenisproducedbyCCS.(Pendlebury,MearesandTyrrell,2021)Note:SMR=steammethanereforming;ATR=autothermalreforming;CCS=carboncaptureandstorage;CCUS=carboncapture,utilisationandstorage;TBD=tobedetermined;US=UnitedStates;UAE=UnitedArabEmirates;UK=UnitedKingdom.ThisconcernstheCO2emissionsfromthemethanefeedstock.Thecarbonintensityalsodependsontheelectricitysource(Biceretal.,2016);seealsosection3.2.Hydroelectricammoniahaveelectrolysercapacitiesofupto150MW,manytimeslargerthananyelectrolysercurrentlyinserviceRENEWABLEAMMONIA432.4RenewableammoniaproductionfromrenewableelectricityTechnologyandproductionprocessToproducerenewableammonia,water(H2O)issplitintohydrogen(H2)andoxygen(O2)viaelectrolysis.Variouselectrolysistechnologiescanbeused(Schmidtetal.,2017a),whichvaryintemperatureandenergyconsumption(seesection3.1).Nitrogen(N2)ispurifiedfromair.ThehydrogenandnitrogenareconvertedtoammoniainaHaber-Boschsynthesisloop.AschematicoverviewisshowninFigure15.Theproductionofhydrogenfromwaterusingelectrolysisrequiresaround1.6tonnesofwaterpertonneofammonia(Ghavametal.,2021).Additionalwaterisrequiredforcoolingtheammoniaplant,andsupportsystems.Waterdesalinationmayberequiredpriortofeedingwatertotheelectrolyser.TherequiredfootprintofrenewablesisdiscussedinAnnexE.Asearlyas1920,renewableammoniahasbeenproducedwithelectricityfromhydropower(Ernst,1928;ErnstandSherman,1927).In1930,renewableammoniaaccountedforaroundone-thirdoftheglobalammoniaproduction(Ernst,1928),whilecoal-basedammoniaaccountedfortheremainder.Mostelectrolysis-basedammoniaplantswereabandonedwhennaturalgasbecameabundantlyavailableandatalowercost(Krishnanetal.,2020).HydroelectricammoniaplantswerelocatedinCanada,Egypt,France,Iceland,India,Japan,theRepublicofKorea,Norway,Switzerland,theUnitedStates,theformerYugoslavia,andZimbabwe,withelectrolysercapacitiesofupto150MW,manytimeslargerthananyelectrolysercurrentlyinservice(Rouwenhorst,TravisandLefferts,2022).Figure15SchematicoverviewofstepsinvolvedinammoniasynthesisfromwaterandairElectrolyserOO,HOHeatpurgegasPowerPowerPowerAirpowerHOOandHOremovalOandHOremovalCompressionNHsynthesisHHNHNHReproducedfromRouwenhorstetal.(2020a)andSousaCardosoetal.(2021).INNOVATIONOUTLOOK44Theonly“classical”electrolysis-basedHaber-BoschplantstillinoperationislocatedinCusco,Peru,whichwasbuiltin1962(below)(Brown,2020d).Inthelastfewyears,however,numerousnewrenewableammoniaplantshavebeenannounced(Table2).CostsTherateatwhichrenewableammoniaplantsarecurrentlybeingannouncediscloselylinkedtothespeedatwhichthecostofrenewableelectricityisdecreasing.Renewableammoniamayalreadybecostcompetitivewithimportedfossil-basedammoniainsomelocations(SmithandTorrente-Murciano,2021).Today,renewableammoniaproductioncostsfornewplantsareestimatedtobeintherangeofUSD720-USD1400pertonne,fallingtoUSD310-610pertonneby2050.Electricityisthedominantoperationalcostfactorforlarge-scalerenewableammoniaproduction,whichtypicallyaccountsformorethanhalfofthecostofrenewableammonia.Forthisreason,unlikefossil-basedammoniaplants,manyoftherenewableammoniaplantscurrentlyunderdevelopmentincludetheelectricitygeneratingcapacitywithintheproposedinvestment,effectivelyshiftingelectricityinputfromanoperationalcost(OPEX)toacapitalcost(CAPEX).Theinvestmentforarenewableammoniaplant,excludingpowergeneration,isdominatedbyeithertheelectrolyserortheammoniasynthesisloop.Thecostofthesynthesisloopdominatesforsmall-scaleplants(<10ktperyearofammonia),whilethecostoftheelectrolyserdominatesforlargerplants.Thecapitalcostofelectrolysersisexpectedtodecreaseinthecomingdecades(Schmidtetal.,2017a)(Figure17).Thecombinedinvestmentcostofnitrogenpurification,waterdesalinationandammoniastorageaccountsforonlyaroundUSD5-30pertonneofammoniaandisminorcomparedtothecostofelectrolysisandtheammoniasynthesisloop(BatoolandWetzels,2019;Morgan,2013).Image1Electrolysis-basedhydrogenproductionforrenewableammoniaproductioninCusco,PeruImagecourtesyofIndustrieHauteTechnologie.RENEWABLEAMMONIA45Notably,thecapacityfactormayhaveasignificantimpactontheinvestmentcostofelectrolysis-basedammoniaproduction.Thisisduetothevariabilityofrenewablessuchassolarandwindenergy,which,withoutadditionalbufferingandstorage,impliesthatannualammoniaproductionwillbelowerthanthenameplatecapacity.Thus,anislandedrenewableammoniaplant–forexample,notconnectedtothegrid–istypicallyoversizedtoaccountforthelowerproductivity,resultinginahighercapitalintensity.Itisimportanttohaveahighcapacityfactortolimitthecapitalintensityofarenewableammoniaplant.Combinedsolarandwindresourcescanbeusedtomaximisethefullloadcapacityfractionoftheelectrolysertoaround70%(ArmijoandPhilibert,2020;Tancock,2020).Thereisanimportantdifferenceinthebusinesscaseoffossil-basedammoniaandrenewableammonia.Inthecaseoffossil-basedammonia,thefeedstockispurchasedduringoperationsandmaybevariableincost.Onlythehydrogenplant(e.g.theSMRorgasificationunit)andammoniaplantareconstructedupfront.Forrenewableammonia,ontheotherhand,allassetsmaybeconstructedupfront,includingelectricitygenerationassets,implyingthatthecostofrenewableammoniaproductionisdrivenmainlybythecapitalinvestment.Asaresult,theweightedaveragecapitalcost(WACC)hasaprofoundeffectonthecostofarenewableammonia.Renewablehydrogencanalsobeintroducedinanexistingfossil-basedammoniaplant,replacing10-20%ofthenaturalgaswithoutcausingsignificantfluctuationsintheammoniasynthesisloop.AccountingforavoidedCO2emissionandmethanefeedstock,thisresultsinanestimatednetrenewableammoniacostofaroundUSD300-400pertonneofammoniaby2025-2030,andacostofaroundUSD250pertonneofammoniaby2040(HaldorTopsøeetal.,2020).Whileahybridplant,combiningbothelectrolysisandnaturalgaswithCCS,isinsufficientforfulldecarbonisation,itcanreduceemissionsfromammoniasynthesis(HansenandHan,2018).Asthetechnologiesinvolvedaremature,ahybridproductionstrategylowersthebarriersfornear-terminvestmentdecisions,enablingtheimmediatedeploymentofelectrolysersatexistingsites.CapitalcostofrenewableammoniaplantsforcurrentandproposedprojectsVariousrenewableammoniaproductionprojectshavereportedinvestmentcosts,asshowninFigure16.Formanyrenewableammoniaprojects,theinvestmentcostincludesthefullcostofdevelopingrenewableelectricity.Directcomparisonstoexistingammoniaplantsarenotpossible,becausethecostofnaturalgasextractionandpipelinesisomitted.Foranintegratedrenewableammoniaplant,thehydrogen,nitrogenandammoniaproductionunitsthemselvesmayrepresentlessthan50%ofthetotalcost,withthemajorityinvestedinupstreamdevelopmentfortherenewableelectricitygeneration.Figure16CapitalintensityofrenewableammoniasynthesisasafunctionofammoniaproductioncapacityCAPEX(USDty)Ammoniaproductioncapacity(ktyammonia)Literature(exclrenewableenergygeneration)Industrialprojects(exclrenewableenergygeneration)Industrialprojects(inclrenewableenergygeneration)BasedonsourcesinTable10andTable11.INNOVATIONOUTLOOK46Aswithfossil-basedammoniaproduction,however,thecostofrenewableammoniabenefitsfromeconomiesofscale,withthelowestcostsatlargescale(≥1Mtperyearofammonia).Thecapitalintensityforthelargestannouncedrenewableammoniaplants(includingelectricitygeneration)tostartoperationbeyond2030decreasesfromaroundUSD4800pertonneannuallyatacapacityof0.5Mtofammoniaperyear,toaroundUSD3000pertonneannuallyatacapacityof10Mtperyear.Inaddition,operationalandasset-sizingdecisions,aswellasstrategicsiteselection,arefactorsthatcanreducecostsbyincreasingthecapacityfactor.DecreasingthecostofrenewableammoniathisdecadeThecostofrenewableammoniawilldecreasesubstantiallyoverthecomingdecades.Thefirstdriverforcostreductionisascale-uptogigawatt-scale.Renewableammoniabenefitsfromeconomiesofscale(Figure16),andtherelativecapitalintensitydecreasesatlargerscales.Furthermore,thecapacityfactormayincreaseuponscale-up,duetodecreasingfluctuationsofvariablerenewables(Tancock,2020).Asprojectdevelopersexpandfrompilotanddemonstration-scaleplantstofullcommercialscale,theobservedcapitalintensityofannouncedprojectswillfall.Thecostofrenewableelectricityisadominantfactor,accountingformorethan90%oftheexpectedcostreductionforrenewableammoniaoverthecomingdecade(Figure17).EveryincrementalUSD10perMWhaddsaroundUSD100pertonneofammoniaforatypicalalkalineelectrolysis-basedammoniaplantwithanenergyconsumptionof36GJpertonneofammonia,equivalentto10MWhpertonneofammonia(GrundtandChristiansen,1982).In2021,theaveragelevelisedcostofelectricity(LCOE)fornewsolarandonshorewindauctionswasUSD39perMWhandUSD43perMWhrespectively.ThesepricesimplyanelectricityinputcostofUSD390-430pertonneofammonia.FurtherdeploymentofrenewableenergyresultsinanLCOEbelowUSD20perMWhfromsolarandwindpower(IRENA,2021a;Tancock,2020),resultinginanelectricitycostbelowUSD200pertonneofammonia.Areductioninelectrolysercostisexpecteduponlarge-scaledeployment(IRENA,2020b),asthisacceleratesthelearningcurve(Schmidtetal.,2017b;Schootsetal.,2008).ISPT(2022)estimatesthatthecostofa1GWelectrolysisfactorywillhalvebetween2020and2030.Furthermore,anincreaseinelectrolyserefficiencyresultsinlessrenewableenergyconsumptionperamountofammoniaproduced(IRENA,2020b),andsubsequentlyalowercostforrenewableammoniaproduction.Whilesomehydrogenstoragecanbeusedtobufferfluctuationsinfeedstocksupplyfromelectrolysers,flexibilityoftheHaber-Boschammoniasynthesisloopallowsforammoniaproductiontoberampeddownifnecessary,atleastasfaras10-30%ofnominalcapacity(CheemaandKrewer,2018;OstuniandZardi,2012).Thisflexibleoperationallowsforminimisingtherelativelyexpensivehydrogenstoragecapacity(ArmijoandPhilibert,2020).One-day-equivalenthydrogenstoragecostsaroundUSD35-150pertonneofammonia(ArmijoandPhilibert,2020;Vrijenhoef,2016).HydrogenstorageinsaltcavernshasthelowestcostatUSD35pertonneofammonia,whilestorageinlinedrockcavernscostsaroundUSD65pertonneofammonia(Ahluwaliaetal.,2019).Thedevelopmentofrenewableenergyhubscanfurtherdecreasethecapitalintensityofrenewableammonia.Integratingrenewableammoniaintoafacilitywithexistinginfrastructure(brownfieldprojects)resultsinalowercapitalinvestmentthanbuildingacompletelynewfacility(greenfieldprojects).SuchdeploymentcouldlimitthecostofnewportinfrastructuretobelowUSD5pertonneofammonia(Salmon,Bañares-AlcántaraandNayak-Luke,2021).RENEWABLEAMMONIA47TransportbyshipcanadduptoUSD45-100pertonneofammonia,dependingondistance,fuelcostandshiptype(Hanketal.,2020;SalmonandBañares-Alcántara,2021).Thiscostislowenoughthatinternationaltransportofrenewableenergycanbecompetitivelyachievedusingammonia.However,thistransportcostalsoprovidesincentivesforsmaller-scaleplants,whichcanbeeconomicalwhenlocatednearrenewableenergyhubsand/orthepointofconsumption.Renewableammoniaproductionhubsnearuselocationscanbebeneficial.Ifdemandforlocalrenewableammoniaplantsmaterialises,small-scaleammoniaplantsoperatingatafewmegawattsofcapacitymaybenefitfromcostreductionsduetomodulardesignandrapidmanufacturing.Uponstandardisationofequipmentandrealisationofproductionandinstallationefficiencies,thecapitalcostofsmall-scaleammoniasynthesismaydecreaseupto25%(Sieversetal.,2017).AnoverviewoftheexpectedcostreductionforrenewableammoniaproductionoverthecomingdecadeisshowninFigure17.LocationsforrenewableammoniaTheoptimallocationsforrenewableammoniaproductioncombinehighsolarirradiationandahighwindloadfactor,resultinginahighcapacityfactorforproduction.Recentstudiesanalysedtheproductioncostofrenewableammoniaathundredsoflocationsworldwide(Fasihietal.,2021;Nayak-LukeandBañares-Alcántara,2020),asisvisualisedintheheatmapinFigure18.Figure17Expectedcostdecreaseforrenewableammoniaproductionforbestlocationsby2030Ammoniaproductioncost(USDt)OpExchangeElectricitycostElectrolysercostNote:Assumesaplantsizeof1Mtannually,anoperationalloadfactorof70%,anannualinterestrateof7%andlineardepreciationover20years.TheannualOPEXisassumedtobe3%oftheCAPEX.INNOVATIONOUTLOOK48AsshowninFigure18,variousregionsinAfrica,Asia,Australia,NorthAmerica,SouthAmericaandSouthernEuropehavehighpotentialforlow-costrenewableammonia.Itshouldbenotedthatgeopoliticalfactorsplayaroleindevelopingrenewableprojects.Favourablelegislationandpoliticalstabilityarerequiredtoallowfordevelopinglarge-scaleprojectswithalowriskfactor(Eastman,2021).Furthermore,large-scaleprojectstypicallyrequireoff-takemarkets,whichisdeterminedbyinternationalcollaboration.Thus,collaborationsamongammoniaproducers,transportcompaniesandconsumersarecurrentlysetup(ProtonVenturesB.V.,2021).Gigawatt-scaleprojectscanspanthousandsofsquarekilometresforrenewableenergygeneration(CWP,2021;Tancock,2020)andarenotviableindenselypopulatedareas.InEurope,thisimpliesthatoffshorewindistypicallyusedforlargeprojects.Ontheotherhand,anumberofgigawatt-scaleprojectswithonshorewindandsolarenergyhavebeenannouncedin,forexample,Australia,Chile,Mauritania,Namibia,Oman,andSaudiArabia,suchannouncementsinvolvingareasthatarenotdenselypopulated.Also,portareasarepreferableforexport-orientedprojects,aswellasforthesupplyofseawatertofeedtheelectrolysers.FuturecostofrenewableammoniaBy2050,theproductioncostofrenewableammoniaisexpectedtoreacharoundUSD310pertonne,foralarge-scaleplantinalocationwithexcellentrenewableenergyresources.Accountingforexpansionintoareaswithlower-qualityrenewables,thetotalammoniademandin2050canbemetwithrenewableammoniaatanestimatedcostbelowUSD355pertonne(Fasihietal.,2021).Theestimatedcostofrenewableammoniainvariousscenariosupto2050isshowninFigure19.Thecostofrenewableammoniain2020wasestimatedtobearoundUSD720toUSD1400pertonne(IRENA,2020a).By2030,thiscouldbearoundUSD475pertonneofammoniainthebestlocations(Fasihietal.,2021;Nayak-LukeandBañares-Alcántara,2020).Inthelongterm,thegapwithfossil-basedammoniaproductionwillbeclosed(Figure19).Figure18Heatmapfortheproductioncostofrenewableammoniaby2050tNHReproducedfromFasihietal.(2021).Disclaimer:Thismapisprovidedforillustrationpurposesonly.BoundariesandnamesshownonthismapdonotimplyanyendorsementoracceptancebyIRENA.RENEWABLEAMMONIA49Thefuturecostestimateforrenewableammoniaproductioninthecurrentreportiscomparedtoothersources(ArmijoandPhilibert,2020;BurgessandWashington,2021;Cesaroetal.,2021;Fasihietal.,2021;MærskMc-KinneyMøllerCenterforZeroCarbonShipping,2021;Nayak-LukeandBañares-Alcántara,2020).ThecostestimatesoftheInternationalRenewableEnergyAgency(IRENA)andotherauthorsforthebestlocationsin2030areshowninFigure20.IRENAestimatesareinlinewiththemediancostofpreviousestimations.Figure19Estimatedcostsofrenewableammoniaupto2050Productioncost(USDt)USDGJRenewableammoniaLowcarbonfossilammoniaNote:CAPEXandOPEXfortheproductionofhydrogenandnitrogenarealreadyincludedintherespectivecostofhydrogenandnitrogen.ThehydrogenpriceisbasedonIRENA(2020a),whichassumesalowelectricitycost,alongelectrolyserlifetimeandlowCAPEX.TheammoniasynthesisloopisestimatedtoaddUSD25-50pertonne(Salmon,Bañares-AlcántaraandNayak-Luke,2021),andnitrogenpurificationisestimatedtoaddUSD2.5-5pertonne.INNOVATIONOUTLOOK50RenewablefertilisercostFertiliserproductiondominatestoday’sammoniamarket,specificallyureaandammoniumnitrate,whichconsume55%and15%,respectively,ofallammoniaproducedtoday(Hatfield,2020).Becausethesefertilisershavecomparableyieldspermassoffertiliserapplied(Heuermann,HahnandvonWirén,2021;Moreiraetal.,2021),theycanbecomparedonacostpermassbasis.UrearequiresCO2,whichimpliesthatacarbon-neutralsourcesuchasdirectaircapture(DAC)orbiomasswillberequiredoverthelongterm.Currently,DACisrelativelyexpensivewithareportedcostintherangeUSD160-455pertonneofCO2(Fasihi,EfimovaandBreyer,2019;Shayegh,BosettiandTavoni,2021).Inthelongterm,estimatesforDACvaryintherangeofUSD65-200pertonneofCO2(Fasihi,EfimovaandBreyer,2019;Shayegh,BosettiandTavoni,2021).Figure20Estimatedcostrangeforrenewableammoniaproductionin2030forIRENAandothersources(top);costestimatesforrenewableammoniainthebestlocationsin2030forIRENAandothersources,aswellasamedianvalue(bottom)USDtammoniaIRENAvalueZerocarbonshippingFisihietalNayak-LukeetalMedianvalueUSDtammoniaZerocarbonshippingNayak-LukeetalIRENAvalueAustralianplantArmijoetalCesaroetalFisihietalMedianvalueRENEWABLEAMMONIA51AcostcomparisonbetweenureaandammoniumnitrateisshowninFigure21,basedontheammoniaandCO2feedstockcost.TheCAPEXandOPEXforureaproductionandammoniumnitrateproductionareexcluded,butthesecostsarewellbelowUSD50pertonneoffertiliser.Figure21suggeststhatureaisnotcostcompetitiveinadecarbonisedlandscape–forexample,without“free”CO2asaby-productfromfossilfuel-basedhydrogenproduction.However,ammoniumnitratehassafetyconcerns,duetoanexplosionhazard,andsignificantregulatoryrestrictions.Lastly,ureaisnoteasilyreplacedforricecultivation,themaincropinAsia.CurrentinstalledcapacityandannouncedcapacityCurrently,onlyonecommercialrenewableammoniaplantremainsinoperation.Operatingsince1965,theCuscoplantinPeruproduceslessthan0.02Mtannuallyofammoniaasfeedstockforammoniumnitrate,servingtheexplosivesmarket.Inthelastthreeyears,however,morethan60renewableammoniaplantshavebeenannounced,andbeyond2025renewableammoniaisexpectedtodominatecapacityadditions(Table2).Revampsofexistingfossil-basedammoniaplantswereannouncedbyvariousfertilisercompanies.ThesearelistedinTable2,aswellasvarioustechnologyproviders.Renewableammoniaplantswithacombinedcapacityof15Mtperyearhavebeenannouncedtobeginoperationswithinthisdecade,accountingfor6%oftotalammoniaproductionby2030.Thetotalannouncedrenewableammoniacapacityis71Mtperyear,likelytobeoperationalbefore2040.Althoughsomeoftheseprojectsarefullyfinancedandunderconstruction,mosthavenotyetreachedfinancialclose.Nonetheless,theprojectedrenewableammoniacapacityisexpectedtoincreasefurther,asindustrialdemonstration-scaleprojectsscaleup,frommulti-megawatttogigawatt-scale,andadditionallarge-scaleprojectsareannounced.Figure21FertiliserproductioncostasafunctionofammoniaandCO2costFertilisercost(USDt)Ammoniacost(USDt)AmmoniumnitrateUreaUSDt-COUreaUSDt-COUreaUSDt-COUreaUSDt-CONote:CAPEXandOPEXforammoniumnitrateandureaproductionnotincluded.INNOVATIONOUTLOOK52Theannouncedrenewableammoniaplantscanbecategorisedas1)brownfieldprojects,orrevampsofexistingfossil-basedplants,forbothcurrentmarketsandenergymarkets,and2)greenfieldprojects,ornew-buildplants,mainlyfortheenergymarket.Yara,thesecondlargestammoniaproducer,hasannouncedvariousprojectsaroundtheworld.Forexample,a5MWalkalineelectrolyserwillbeinstalledatPorsgrunn,Norwayby2022,whichrepresentsaround1%ofthetotalhydrogenproductioninPorsgrunn(Brown,2019c).ThePorsgrunnplantaimstocompletelydecarboniseby2025,totallingaround500ktperyearofrenewableammonia,fedbythehydroelectricgrid.Elsewhere,renewablehydrogenfromoffshorewindpowerwillbesuppliedtotheplantatSluiskil,intheNetherlands,by2024or2025,resultingin75ktperyearofrenewableammonia(Brown,2020c).Lastly,YararecentlypublishedafeasibilitystudytoexpanditsPilbarasitewith800ktofrenewableammoniacapacityperyearby2030(Brown,2020e;ENGIEandYara,2020).TheAustralianRenewableEnergyAgency(ARENA)grantedAUD42.5million(USD30.5million)toYaraandENGIEfora10MWelectrolysertobeoperationalby2023(Blackbourn,2021).CFIndustries,thelargestammoniaproducerintheworld,hasalsoannounceda20ktperyearrenewableammoniaprojectatitslocationinDonaldsonville,Louisiana,UnitedStates,tobeoperationalby2023.TheDonaldsonvillesitehasatotalammoniaproductioncapacityof4Mtperyear(Brown,2020b).BothYaraandCFIndustriesrecentlycommittedtoatargetofnetzeroemissionsby2050,forwhichsignificantscale-upoftheirexistingrenewableammoniaannouncementswillberequired.Attheendof2021,IberdrolaandFertiberiaintegratedrenewablehydrogenintoanexistingammoniaplantatPuertollanoinSpain.Arenewableammoniacapacityof6ktperyearisexpectedimmediately,withplanstoexpandto57ktperyearby2025(Brown,2020f;FertiberiaandIberdrola,2020).Thesiterevampincludesbatteriesandhydrogenstoragetomanagetheintermittencyofsolarpower(FertiberiaandIberdrola,2020).Greenfieldrenewableammoniaplantshavealsobeenannounced.Theseprojectsmostlyappearatcommercialscalefrom2025onward(Figure22).In2022,thefirstnewlybuilt,commercial-scalerenewableammoniaplantisexpectedtobeginoperationsinWesternJutland,Denmark,fedwithonshorewindpowerandwithacapacityof5ktperyearofammonia(Ravn,2020),developedbySkovgaardInvestandsupportedbyVestasandHaldorTopsøe.MostoftheannouncedrenewableammoniacapacityislocatedinAustralia.ByfarthelargestannouncedprojectsinthecountryaretheAsianRenewableEnergyHub(AREH)inPilbaraandtheWesternGreenEnergyHub(WGEH)inWesternAustralia(Tancock,2020;WGEH,2021).Atthesetwosites,asmuchas30Mtofrenewableammoniawillbeproducedannually,basedon76GWofonshorewindandsolarenergy(Brown,2020b;Tancock,2020;WGEH,2021).NumerousotherprojectshavebeenannouncedinAustraliawithcapacityintherangeof1-3Mtperyearofrenewableammonia(Table2).RenewableammoniaprojectshavealsobeenannouncedinlocationsacrosstheMiddleEast.InNEOM,aplannedcityinSaudiArabia,anammoniaplantpoweredbyonshorewindandsolarenergywillproducearound1.2Mtofrenewableammoniaperyearby2025(Brown,2020g);thisplantiscurrentlyunderconstruction.TheammoniawillbeexportedandsoldintohydrogenmarketsbyAirProducts.OtherrenewableammoniaplantshavebeenannouncedinOmanandtheUnitedArabEmirates(Table2).RenewableammoniaprojectshavealsobeenannouncedinLatinAmerica,especiallyinChile,duetooptimalwindandsolarconditions(ArmijoandPhilibert,2020)andanexistingminingindustryusingammoniumnitrate-basedexplosives.ENGIEandEnaexarebuildingapilotplantthatisexpectedtostartoperatingin2024,whilereachingfullcapacityof700ktperyearofrenewableammoniaby2030(PowerEngineeringInternational,2020).(Enaexalreadyoperatestheelectrolysis-basedammoniaplantinCusco.)VariousotherprojectshavebeenannouncedinLatinAmerica(Table2).RENEWABLEAMMONIA53MaireTechnimonthasannouncedthefirstgreenfieldrenewableammoniaplantintheUnitedStates,basedonsolarandwind(Stamicarbon,2021a).Furthermore,Hy2Genannouncedahydropower-basedammoniaplantinQuebec,Canada,tobeoperationalin2025(Hy2GenAG,2021).AfricanammoniaproducerOCPhasannouncedarenewableammoniapilotplantbasedonsolarenergy,incollaborationwithFraunhoferIMWSinGermany(Ayvalı,TsangandVanVrijaldenhoven,2021;Brown,2018c).Furthermore,StamicarbonsubsidiaryMaireTecnimontaimstoproducerenewablefertiliserinKenyaby2025(Stamicarbon,2021a).ThelargestrenewableammoniaprojectinAfricaisproposedforMauritania,where30GWofwindandsolarcapacitycouldproduce11Mtperyearofrenewableammonia(CWP,2021).Figure22Projectedannualrenewableammoniaproductionandplannedprojects,2020-2030Lowcarbonammoniacapacity(Mt)GlobalammoniademandNaturalgas-basedammoniaplantcapacityProjectedglobalrenewableammoniacapacityNote:Thefullgreenlinerepresentsprojectedannualrenewableammoniaproduction.Thegreendotsrepresentplannedrenewableammoniaprojects(Table2).Thefullblacklinerepresentstheprojectedglobalammoniaproduction.Thedottedbrownlinerepresentsaworld-scalenaturalgas-basedammoniaplantproducingaround0.7-1.2Mtofammoniaperyear.Source:Brightling,2018.©SebastianNoethlichs/Shutterstock.comINNOVATIONOUTLOOK54Table2Overviewofexistingandplannedfacilitiesandtechnologyprovidersforrenewableammoniaproduction(existingcapacityof0.02Mt/yr;plannedcapacityof15Mt/yr(2030)and71Mt/yr(total)LocationCompanyStart-upyearCapacity(kt/yr)ElectrolysistechnologyElectricitysourceSourceCommercialplantsCusco,PeruEnaex196510AlkalineHydro(Brown,2020d)Taranaki,NewZealandBallanceAgri-Nutrients,HiringaEnergy(revamp)20215-Wind(Ayvalı,TsangandVanVrijaldenhoven,2021;Brown,2020e)Puertollano,SpainFertiberia,Iberdrola(revamp)202120256.157-Solar,battery(Brown,2020f;FertiberiaandIberdrola,2020)Duqm,OmanACME,Tatweer2021TBDTBD(pilot)770-Solar(Zawya,2021)PortLincoln,AustraliaH2U,Mitsubishi,GovernmentofSouthAfrica,ThyssenKrupp2022Unknown40705–1410AlkalineWind,solar(Brown,2018d;Pendlebury,MearesandTyrrell,2021)Porsgrunn,NorwayYara(revamp)20222025-20265500AlkalineHydro(Brown,2019c;Tullo,2020)WesternJutland,DenmarkSkovgaardInvest,Vestas,HaldorTopsøe20225-Onshorewind,solar(Ravn,2020)OgataVillage,JapanTsubameBHB2022TBD-Wind,solar(Atchison,2021a)Rabat,MoroccoFusionFuel2026183PEMWind,solar(FusionFuel,2021)Pilbara,AustraliaYara(revampandnew)2023202620282030<848-160480800AlkalineorPEMOnshorewind,solar(ENGIEandYara,2020)FeasibilitystudyLouisiana,USCFIndustries,ThyssenKrupp(revamp)202320-Gridelectricity(Brown,2020b)PalosdelaFrontera,SpainFertibaria,Iberdola(revamp)2023202762100-Solar(Ludecke,2021)NorthernGermanyHaldorTopsøe,Aquamarine2024105SolidoxideOffshorewind(Frøhlke,2021a)Sluiskil,NetherlandsYara,Ørsted(revamp)2024-202575AlkalineOffshorewind(Brown,2020c)Note:TBD=tobedetermined;US=UnitedStates;UAE=UnitedArabEmirates;UK=UnitedKingdom.RENEWABLEAMMONIA55LocationCompanyStart-upyearCapacity(kt/yr)ElectrolysistechnologyElectricitysourceSourceCommercialplantsAntofagasta,ChileEnaex,ENGIE2024203018700-Solar(PowerEngineeringInternational,2020)FeasibilitystudyAbuDhabi,UAEKIZAD,HeliosIndustry2024202640200AlkalineSolar(KIZAD,2021)NEOM,SaudiArabiaNEOM,AirProducts,ACWAPower20251200AlkalineOnshorewind,solar(Brown,2020g)Berlevåg,NorwayVarangerKraft202590-Wind(Hydrogen.no,2020)BellBay,AustraliaOrigin2025420--(Origin,2020)Gladstone,AustraliaH2U20251750--(Brown,2020h)Tasmania,AustraliaFortescue2025250--(Crolius,2020a)LakeNaivasha,KenyaMaireTecnimont202545-Solar,geothermal(Stamicarbon,2021a)NorwayGriegEdge,ArendalsFossekompani2025TBD-Wind(Atchison,2021b)Quebec,CanadaHy2Gen2025183AlkalineorPEMHydro(Hy2GenAG,2021)ChileAustriaEnergy,Ökowind2026orbeforeTBDTBD850–1000-Onshorewind(Atchison,2021c;Trammo,2021)Esbjerg,DenmarkCopenhagenInfrastructurePartners,Maersk,DFDS2026650-Offshorewind(Barsoe,2021)Duqm,OmanDEMEConcessions,OQ2026TBD150520-Solar,wind(DEME,2021)Pilbara,AustraliaInterContinentalEnergy2030203530009900Alkaline,and/orPEM&solidoxideOnshorewind,solar(Brown,2020b;Tancock,2020)Murchison,AustraliaMRHP,CopenhagenInfrastructurePartners20281900PEMOnshorewind,solar(Matich,2020)Finaldecisionforammonianotmade,canalsobeliquidhydrogenAlWusta,OmanOQ,InterContinentalEnergy,EnerTech20282038TBD9500–11400-Onshorewind,solar(OQ,InterContinentalEnergyandEnerTech,2021)Note:TBD=tobedetermined;US=UnitedStates;UAE=UnitedArabEmirates;UK=UnitedKingdom.INNOVATIONOUTLOOK56LocationCompanyStart-upyearCapacity(kt/yr)ElectrolysistechnologyElectricitysourceSourceCommercialplantsCanarvon,AustraliaProvinceResources,Total-Eren2030orbefore2400-Onshorewind,solar(ProvinceResourcesLimited,2021)Gladstone,AustraliaAustromHydrogenTBD1125-Solar(Brown,2020i)WesternAustraliaInterContinentalEnergyTBD20000-(BurgessandWashington,2021)Moranbah,AustraliaDynoNobel,IncitecPivotTBD60-Solar(Brown,2019d,2020d)FeasibilitystudySkive,DenmarkSiemensGamesa,EnergifondenSkiveTBDTBD-Wind(Brown,2018e)Moura,AustraliaQueenslandNitrates,IncitecPivot,WesfarmersJV,Neoen,WorleyTBD20-Onshorewind,solar(ARENA,2019;Brown,2020d;Crolius,2020b)FeasibilitystudyPortAdelaide,AustraliaTBDTBD170-450-(Pendlebury,MearesandTyrrell,2021)Geraldton,AustraliaBP,GHD,ARENATBDTBD201000-Wind,solar(Brown,2020j)Canarvon,AustraliaHyEnergyTBD300-Onshorewind,solar(Peacock,2021)Portland,AustraliaCountrywideEnergy,GlenelgShireCouncil,PortofPortlandTBD56--(Pendlebury,MearesandTyrrell,2021)Orkney,ScotlandEneusEnergyTBD7-Wind(Brown,2020k;reNEWS.BIZ,2021a)LaosTsubameBHBTBDTBD-Hydro(TsubameBHB,2020)AbuDhabi,UAETAQAGroup,AbuDhabiPortsTBD1200-Solar(TAQAGroup,2021)Finnmark,NorwaySt1NordicOy,HorisontEnergiTBDTBD-Wind(Atchison,2021b)MauritaniaCWPTBD11425-Wind,solar(CWP,2021)EgyptThyssenKruppTBDTBD--(EgyptTodayStaff,2021)EspíritoSanto,BrazilAmmPowerTBDTBD--(AmmPower,2021)Iowa,USMaireTecnimontTBD84-Onshorewind,solar(Stamicarbon,2021b)Note:TBD=tobedetermined;US=UnitedStates;UAE=UnitedArabEmirates;UK=UnitedKingdom.RENEWABLEAMMONIA57LocationCompanyStart-upyearCapacity(kt/yr)ElectrolysistechnologyElectricitysourceSourceTechnologydemonstrationplants(pastandcurrent)Morris,USUniversityofMinnesota2014TBD0.025-0.0350.35AlkalineOnshorewind(Brown,2020d;RTIInternational,2021)Koriyama,JapanFREA,JGCCorporation20180.007-Onshorewind,solar(Brown,2020d)Harwell,UKSiemens,CardiffUniversity,UniversityofOxford20180.010-Onshorewind(Brown,2020d)Kawasaki,JapanTsubameBHB20190.020--(Crolius,2021)Foulum,DenmarkHaldorTopsøe20250.3SolidoxideOnshorewind(Brown,2020d)BenGuerir,MoroccoOCP,FraunhoferIMWSTBD0.7-Solar(Ayvalı,TsangandVanVrijaldenhoven,2021;Brown,2018c)SelectedtechnologyprovidersGermanyThyssenKruppTechnologyprovider2–1750AlkalineN/A(WillandLüke,2018)DenmarkHaldorTopsøeTechnologyprovider-SolidoxideN/A(HansenandHan,2018)SwitzerlandCasaleTechnologyprovider--N/A(Casale,2021)USKBR,CumminsTechnologyprovider-PEMN/A(KBR,2021)NetherlandsStamicarbonTechnologyprovider-N/A(Stamicarbon,2021c)NetherlandsProtonVenturesTechnologyprovider1-20-N/A(ProtonVenturesB.V.,2019)JapanTsubameBHBTechnologyprovider1-100-N/A(Crolius,2021)USStarfireEnergyTechnologyprovider17.5-N/A(StarfireEnergy,n.d.)Note:TBD=tobedetermined;US=UnitedStates;UAE=UnitedArabEmirates;UK=UnitedKingdom.INNOVATIONOUTLOOK58TechnologydevelopmentfordealingwithfluctuationsinelectricityThevariabilityofwindandsolarelectricitygenerationposeschallengesforrenewableammoniaproductionbecausetheHaber-Boschprocesspreferssteady-stateoperation.Addressingthisissue,anumberofpilot-scaleplantshavebeenbuiltoverthepastfewyearsthatdemonstratenewtechnologiesformanagingfluctuatingelectricinputsforrenewableammoniasynthesis.TheUniversityofMinnesotaintheUnitedStatesstartedoperatingawind-to-ammoniaplantin2014,withacapacityof25-35tonnesofammoniaperyear(Image2)(Brown,2020d;Reeseetal.,2016).Recently,withthesupportoftheUSDepartmentofEnergy’sARPA-E,abiggerdemonstrationwasannouncedthataimstoproducelocalfertiliser(RTIInternational,2021).Image2Morriswind-to-ammoniademonstratorHydrogenstoragetankskVtoVtransformerAmmoniaproductstorage(gallons)AmmoniapumpandloadoutNitrogenstoragetankSafetyequipmentandshowerbuildingHydrogennitrogenandammoniaproductionbuildingsImagecourtesyofMichaelReese,2013.Image3FREAwind-to-ammoniademonstratorImagecourtesyofTrevorBrown,2018.In2018,theJapaneseresearchinstituteFREAandJGCCorporationstartedoperatingasolar-andwind-poweredpilotplantwithacapacityof7tonnesofammoniaperyear,inordertotestanovelammoniasynthesiscatalystoperatingatlowertemperatureandpressure(Image3)(Brown,2020d).Thesitealsohasademonstratorforammoniacombustioningasturbines.RENEWABLEAMMONIA59AconsortiumincludingSiemens,CardiffUniversityandtheUniversityofOxfordalsooperateditswind-to-ammonia-to-powerdemonstratorsince2018(Image4)(Brown,2020d),aimingtoimprovetheunderstandingofammoniasynthesisfromelectricity,ammoniacombustioninaninternalcombustionengine,aswellasmanagementoffluctuatingenergyinputs.HaldorTopsøeannouncedawind-poweredammoniademonstratorwithacapacityofaround300tonnesofammoniaperyear,whichisexpectedtobeoperationalinFoulum,Denmarkby2025(Brown,2020d).Theaimistodemonstratenovelsolidoxideelectrolysistechnology,producingbothhydrogenandpurifiednitrogeninthesameunit,therebyeliminatingthecostoftheairseparationunitfornitrogenproduction.Thistechnologyhasthepotentialtoimprovetheenergyefficiencyofammoniasynthesistojust7.2MWhpertonne,comparedto7.8MWhpertonneforSMRand10MWhpertonneforcurrentalkalineelectrolysertechnologies.Additionalinnovationsforammoniasynthesisundermilderconditionsmayleadtobetterdynamicloadresponse.Forexample,amorethoroughunderstandingoftheHaber-Boschprocessisrequired,toelucidatetheeffectsoftemperatureandfeedstockfluctuationsoncatalyticactivity.Kineticmodelsarerequiredthatdescribetheindustrialironcatalystsforammoniasynthesisunderawiderangeofconditions–forexample,outsideconventionalsteady-stateoperation.Thismayallowforamorecontrolledramptoandfromfullloadoperation.OperationalstrategiesfordealingwithfluctuationsWhilethepilot-scaleprojectsdiscussedabovefocusontechnologiesformanagingthefluctuationsofrenewableenergyinputs,variousoperationalstrategieshavealsobeenproposed,whichdonotrequireR&Dbutrathercanbeadoptedinbothnewandexistingsitesusingtoday’stechnology.Variabilitycanbemanagedwithstoragebuffers,includingbatteries(PalysandDaoutidis,2020;Rouwenhorstetal.,2019)andhydrogenstorage(ArmijoandPhilibert,2020)tomanageshort-termandlong-termvariability,respectively.Forexample,inlate2021bothbatteryandhydrogenstorageassetswereintegratedintoFertiberia’ssolar-to-ammoniaprojectatPuertollanoinSpain(reNEWS.BIZ,2021b).Large-scalehydrogenstorageisalsopossibleinplaceswithsaltcaverns,linedrockcaverns,andotherundergroundshafts,aswellasthroughhydrogenpipelinenetworks(Gabriellietal.,2020).Image4Greenammoniademonstrationsystem,RutherfordAppletonLaboratory,Oxfordshire,UKImagecourtesyofUKScienceandTechnologyFacilitiesCouncil,2019.INNOVATIONOUTLOOK60Projectscalealsoplaysaroleinmitigatingvariability,notleastbecauseeconomiesofscalereducetherelativecostofbatteryandhydrogenstorageassets.Thesheersizeofgigawatt-scalewindandsolarfields,whichcanspanhundredstothousandsofsquarekilometres,canleveloutlocalfluctuations(CWP,2021;Tancock,2020).Verylargeprojectsmayalsocontainmultipleammoniaplantsofdifferentsizes,operatinginparallel,whichcanbescheduledtobeonstandbyaccordingtoanticipatedfluctuations.Combiningcomplementarysourcesofrenewableenergycandecreasethefluctuationsandthusincreasethecapacityfactor.Forexample,thecombinationofsolar(strongestatdaytime)andwind(strongestatmorningandnight)canenablefullloadfactorsof60-70%intherightlocations(ArmijoandPhilibert,2020;Tancock,2020),whilethefullloadfactorsforeachseparatelyaretypicallyaround20-60%.Themaindrawbackofthisapproachisthatinvestmentinparallelelectricitysourcesisrequired,buttheimpactofthisadditionalcostcanbeoutweighedbythehighercapacityfactor.Anotherstrategytomaintainaminimumbaseloadisfirmingwithasteadydecarbonisedelectricitysource,suchasgeothermal,hydropower,nuclearpoweroraconnectiontothegrid.However,thislatteroptionispossibleonlyatlocationswithastablegridatthescaleoftherenewableammoniaplant,anditraisesissuesofadditionality.Anymarginalelectricityfromthegridshouldbedecarbonisedotherwisethecarbonintensityofelectrolysis-basedhydrogenproductionmaybehigherthanthatofnaturalgas-basedhydrogenproduction(Ausfelderetal.,2021;Tunå,HultebergandAhlgren,2014).AHaber-Boschsynthesisloopcanbeoperatedatalowloadfactor,downtoatleast10-30%ofthenameplatecapacity(CheemaandKrewer,2018;OstuniandZardi,2012).Thetrade-offhereislowerenergyefficiency.Theenergyconsumptionoftheammoniasynthesisloopisestimatedtoincreasefrom2.2GJpertonneofammoniaatfullloadto14.4GJpertonneofammoniaat10%load(Bañares-Alcántaraetal.,2015).Thisramp-up/ramp-down(dynamicloadresponse)cangenerallybeachievedwithinafewhours(Rossi,2018;Verleysen,ParenteandContino,2021).However,theammoniasynthesisloopisnotnecessarilydirectlycoupledwithelectrolysis,duetohydrogenstorage.Electrolysersoperatemoreefficientlyatlowloadduetoalowercurrentdensity–forexample,from33GJpertonneofammoniaatfullloadtobelow30GJpertonneat10%load(BraunsandTurek,2020).Similarly,theHaber-Boschsynthesisloopcanbeoperatedwithinerts,nitrogenandargon,displacinghydrogen.Upto50volume-percentofthegasescirculatinginthesynthesisloopcanbereplacedwithinerts,effectivelyreducingtheloadfactorwithoutreducingthestandardoperatingtemperatureandpressure(OstuniandZardi,2012).2.5RenewableammoniaproductionfrombiomassTechnologyandproductionprocessBiomassisanotherfeedstockforhydrogenandalsoacircularsourceofCO2,whichmeansthatammoniaproducedfrombiomasscanbeupgradedtorenewableurea,foruseinfertiliserorindustrialNOx-reductionapplications.Likerenewableammoniafromelectrolysis,thistechnologypathwayismature:inthe1920s,around5ktperyearofrenewableammoniawasproducedinPeoria,Illinoisfromcornfermentation(ErnstandSherman,1927).Biomasscanbeprocessedtoammoniaalongvariouspathways(Figure23).Solidbiomasscanbegasifiedwithairtoformsyngas(amixtureofhydrogenandCO).Syngascanbeprocessedtoformammoniaaftercarbonremoval.Alternatively,biomasscanbegasifiedandmethanatedtoformbio-methaneorbiogas,whichisthenusedasfeedstock.Or,bio-methanecanbeproducedbyanaerobicdigestionofbiomass.Althoughbio-ammoniaisnotcommerciallyproducedtoday,alloftheprocessstepsforbiomass-to-ammoniahavebeencommerciallydemonstrated.RENEWABLEAMMONIA61Biomassisalreadyafeedstockformethanolproduction(IRENAandMethanolInstitute,2021),whereatleastpartofthefossilfeedstockisreplacedbyrenewablebiomass.Biomass-basedmethanolplantscurrentlyhaveaproductioncapacitytypicallyanorderofmagnitudelowerthanfossil-basedplants,andthiswouldalsobethecaseforbiomass-basedammoniaplants.Around10-12exajoulesofaffordablebiogasandbiomethaneisavailableforsustainablefuelproductionin2040(IEA,2020a;dePeeetal.,2018).Thiswouldbesufficientfeedstocktoproducearound535-745Mtofammonia.However,onlyafractionofglobalammoniaproductionisexpectedtoshifttobiomass.Thelimitedavailabilityofaffordablebiomassmayberequiredtoproduceotherbiofuels(suchasaviationfuels)andfeedstocksforthechemicalindustry.CostsThecapitalintensityofabiomass-basedammoniaplantexhibitseconomiesofscale,rangingfromUSD2300toUSD4500pertonneofannualammoniacapacity,dependingontheplantsize(5-150ktperyearofammonia)(Akbari,OyedunandKumar,2018;Tunå,HultebergandAhlgren,2014).Intermsofgeographicfootprint,theenergydensityofbiocropsisaroundtwoordersofmagnitudelowerthanforsolarpower,implyingthatbio-basedammoniaproductionatgigawatt-scalewouldbedifficult.Forsmall-scaleproduction,therelativelyhighinvestmentcostsmaybeprohibitive.Figure23SchematicoverviewofstepsinvolvedinammoniasynthesisfrombiogasandsolidbiomassSolidbiomassDesulphurisationBiogasNaturalgasAnaerobicdigestionGasificationDesulphurisationMethanationZnSFluegasHeatZnOHOFuelAirPowerHeatPowerPowerPowerHeatCondensateCOHeatPurgegasPrimaryreformerSecondaryreformerShiftconversionCOremovalMethanationCompressionAmmoniasynthesisNHPartiallyadaptedfromFertilizersEurope(2000).INNOVATIONOUTLOOK62Bio-basedammoniaproductionisestimatedtocostUSD455toUSD2000pertonneofammonia,dependingonthesourceofthebiomassandtheplantsize(Aroraetal.,2016;Sánchez,MartínandVega,2019).ThisissubstantiallyhigherthanthetypicalmarketvalueofUSD200-300pertonneofammonia(HaldorTopsøeetal.,2020).Biomasscanalsobeintroducedintoanexistingfossil-basedammoniaplant,todecarbonise10-15%ofitsfeedstock.AnestimatedCO2priceofUSD250-400pertonneofCO2wouldberequiredforthistobecostcompetitive(SayginandGielen,2021).CurrentinstalledcapacityandannouncedcapacityTherearenocommercial-scalebio-basedammoniaplantsinoperationtoday.Variousbiomass-to-ammoniaand-ureaplantswereannouncedinthelate2000sandearly2010s(Brown,2013),basedonfeedstockssuchaswoodybiomass,harvestleftoversandbiogas.However,theseprojectshavenotmaterialised,andsomeofthecompaniesinvolvedceasedoperations.Animportantreasonforthiswasthelowcostpenaltyforusingfossilfeedstocks,suchasnaturalgas,oil,andcoal,duringaperiodoflownaturalgasprices.Co-feedingofbiomassorbiogasmayplayaroleinthepartialdecarbonisationoffossil-basedammoniaplants,especiallyifsupportedbyhighercarbonemissionpenalties.CCSofthisbiomassorbiogascanproducecarbon-negativeammonia,offsettingemissionsfromfossil-basedammoniaproduction.Ingeneral,however,biomassisnotexpectedtoplayamajorroleintheglobaltradeofdecarbonisedammonia(dePeeetal.,2018)andmaybelimitedtoopportunitieswherelocation-specificconditionsovercometheeconomichurdles.Forexample,low-costbiomassoranimalwastecanbeusedasafeedstockforbio-basedammoniainisolatedcommunitieswithlimitedaccesstofossil-basedorelectrolysis-basedammonia,andwithrequirementforureafertiliser.2.6Costcomparisonofrenewableammoniaandfossil-basedammoniawithcarboncaptureandstorageRenewableammoniaproductioncostsfornewplantsareestimatedtobeintherangeofUSD720-1400pertonne(USD39-75perGJ)today.ThisisexpectedtofalltoUSD310-610pertonne(aroundUSD17-33perGJ)by2050,drivenbydecreasingpricesforrenewablepowerandelectrolysers,andbytechnologicalandoperationalimprovementsleadingtohigherutilisationrates.Forhybridplants,inwhichsomeamountofrenewablehydrogenisintroducedtoanexistingfossil-basedammoniaplant,renewableammoniacostsareestimatedtobeUSD300-400pertonneby2025,fallingtoaroundUSD250pertonneby2040.Bio-basedammoniaproductionisestimatedtocostUSD455toUSD2000pertonne,substantiallyhigherthanlow-carbonfossilammoniaandelectrolysis-basedrenewableammonia.Naturalgas-basedammoniaproductionwithCCScostsaroundUSD170-465pertonneofammoniaorUSD9-25perGJ(onalowerheatingvaluebasis),dependingonthecostofnaturalgas.Coal-basedammoniaproductionwithCCShasacostrangeofUSD360-450pertonneorUSD19-24perGJ.Mostlow-carbonammonia,whetherrenewableorfossil-basedwithCCS,iscurrentlynotcostcompetitiveattheconventionalcommoditypriceofUSD200-300pertonneinrecentyears(Hatfield,2020).(Recentnaturalgasshortageshaveresultedinasubstantiallyhigherammoniamarketprice,aboveUSD1000pertonne.)Therefore,itisexpectedthatseparatemarketswillneedtodevelop,supportedbycertificationschemes,contractsfordifferenceandothermechanisms.RENEWABLEAMMONIA63Thecostofrenewableammoniaisexpectedtodecreasesubstantially,suchthatrenewableammoniacanbecomecompetitiveinthelongterm,andthiscouldbeacceleratedwithsubstantialcarbonmitigationincentives(Figure24).Inoptimallocations,renewableammoniaisexpectedtobecostcompetitivewithfossil-basedammoniawithCCSbeyond2030.Thissuggeststhatimportedrenewableammoniamaybepreferredoverdomesticfossil-basedproductioninsomecases.Forimportprojects,ammoniatransportbyshipmayadduptoUSD45-100pertonneorUSD2-5perGJtothelocalproductioncost(Hanketal.,2020;SalmonandBañares-Alcántara,2021).Notably,low-carbonfossil-basedammoniaisalreadycompetitivewithfossiloilsonanenergybasis,andammoniaiscompetitivewithotherzero-carbonfuels(Figure24).Figure24ComparisonofrenewableammoniawithotherfuelsbasedonthepriceperunitofenergyUSDGJUSDMWhFossiloilsFossiloilsUSDt-COLowcarbonfossilammoniaRenewableammoniaRenewableammoniaRenewableammoniaBio-methanolBio-ethanolBio-methanee-methanole-methanolSource:Low-carbonfossilammoniafromHaldorTopsøeetal.(2020).Fossilfuelvaluesarebasedonaveragevalues(2010-2020);seeIRENAandMethanolInstitute(2021).MethanolcostvaluesarebasedonIRENAandMethanolInstitute(2021).Bio-ethanolandbio-methaneestimatesarebasedonIRENA(n.d.).Thecostofrenewableammoniaisexpectedtodecreasesubstantially,suchthatrenewableammoniacanbecomecompetitiveINNOVATIONOUTLOOK642.7NovelammoniaproductiontechnologiesTheHaber-Boschprocesshasbeenthedominantprocessfornitrogenfixationformorethanacentury(Erismanetal.,2008;Liu,2014;Smil,2004).Thesourceofhydrogenhasvariedovertheyears,buttheammoniasynthesisloophasstayedremarkablysimilartoBASF’soriginaldesign(Travis,2018).Asaresult,Haber-Boschishighlyoptimised,andtheenergyefficiencyofthenaturalgas-basedammoniaproductionprocessisashighas60-70%(onalowerheatingvaluebasis)(Smith,HillandTorrente-Murciano,2020).Thiscreatesahighhurdlefornewtechnologies.Awiderangeofnovelammoniaproductiontechnologieshasbeenresearched,suchaselectrochemicalandphotochemicalprocesses,plasma-basedprocesses,chemicalloopingapproaches,homogeneoussynthesis,biologicalprocesses,andammoniapurificationfromanimalwasteorwastewater(Cherkasov,IbhadonandFitzpatrick,2015;Nørskovetal.,2016;Rouwenhorstetal.,2020b).Furthermore,modificationstoHaber-Boschhavealsobeenproposedtoallowefficientoperationatlowertemperaturesandpressures(Malmalietal.,2017;Rouwenhorstetal.,2020b),whichmayallowforbetterintegrationofvariablerenewableenergyinputs.Novelammoniaproductiontechnologiesareespeciallyrelevantforsmall-scaleammoniasynthesis,typicallywithacapacitybelow10tonnesperday(Rouwenhorstetal.,2020b).Atsuchsmallscales,theenergyconsumptionofHaber-Boschistypicallyhighduetoheatlosses(Rouwenhorstetal.,2019)anddownscalingiscostlyduetothehighpressures(Yoshidaetal.,2021).Electrochemicalammoniasynthesishasreceivedsubstantialresearchinterestoverthepastdecades(Giddey,BadwalandKulkarni,2013;MacFarlaneetal.,2020;McPhersonetal.,2019),asitpotentiallyallowsforthedirectformationofammoniafromwaterandnitrogen.However,thishasremainedascientificchallengewithlowratesofformation(Kibsgaard,NørskovandChorkendorff,2019),andfalsepositiveswerepreviouslyreportedduetothepresenceofammoniainthesurroundings(Andersenetal.,2019;Choietal.,2020).Twocompanies,TsubameBHBinJapanandStarfireEnergyintheUnitedStates,arecommercialisingammoniasynthesiswithlow-temperaturecatalystsandseparationbyadsorptionorabsorption–forexample,asorbent-enhancedHaber-Boschsynthesisloop(Crolius,2021;StarfireEnergy,n.d.).Thisallowsformildertemperaturesandpressures,whichmayfacilitatevariableoperationaswellascost-effectivescale-downoftheprocess.Sofar,novelammoniatechnologieshavenotbeenfullycommercialised,andHaber-Boschisexpectedtoremainthedominanttechnologyforammoniasynthesisinthecomingdecades,especiallyatlargescale(Rouwenhorstetal.,2020c).NoveltechnologieswithdecarbonisationpotentialthatcanbeintegratedwithHaber-Boscharealreadyindevelopment,includingelectrifiedSMRunits,autothermalreforming,methanepyrolysisandsolidoxideelectrolysers.RENEWABLEAMMONIA653.PERFORMANCEANDSUSTAINABILITYKeyfindingsRenewablehydrogenproductiontakes90%oftheenergyneededtomakerenewableammonia.•Renewableammoniasynthesisusingelectrolysiscurrentlyconsumesabout36GJpertonneofammonia(around50%energyefficiency).Ofthis,thehydrogenproductionconsumes90%oraround33GJpertonneofammonia.•Improvementsinelectrolyserefficiencywillthereforehaveasignificantimpactontheenergyefficiencyofrenewableammonia.•Fromanotherperspective,theenergyrequiredtomakerenewableammoniaisasmallpremiumonrenewablehydrogen.Theenergyinputofrenewableammoniaproductionissimilartothatoffossil-basedammonia.•High-temperatureelectrolysis(solidoxide)promisesefficiencyimprovementsoverlow-temperatureelectrolysis(alkalineorPEM),andtypicallyconsumes30GJpertonneofammoniatoday,withpotentialtoreach26GJpertonne(upto70%energyefficiency).•Renewableammoniafrombiomassconsumesabout37-42GJpertonne(45-50%energyefficiency).•Bycontrast,modernnaturalgas-basedammoniaplantscanoperateat26-29GJpertonneofammonia,whiletheglobalaverageenergyconsumptionforammoniaproductiontodayisaround36GJpertonneofammonia.Renewableammoniacanreduceglobalgreenhousegasemissions.•Ammoniaproductioncurrentlygeneratesaround0.5GtofCO2-equivalentannually,accountingfor1%ofglobalgreenhousegasemissions.•Greenhousegasemissionsfromfossil-basedammoniaproductionvarydependingonthefeedstock,withnaturalgasgeneratingatleast1.6tonnesofCO2pertonneofammoniaandcoalgeneratingaround4.0tonnesofCO2pertonneofammonia.•Additionalgreenhousegasemissionsoccurupstream,withembeddedemissionsandfugitivemethane,anddownstream,duringstorage,transportanddistribution.•Includingupstreamanddownstreamemissions,renewableammoniafromelectrolysiscouldhaveacarbonfootprintbelow0.1tonneofCO2pertonneofammoniaby2050.INNOVATIONOUTLOOK66•Beyondgreenhousegasemissions,othersustainabilitycriteriashouldbeconsidered,includingtheavailabilityofwaterandland,scarcityofcertainmetalsandimpactsontheglobalnitrogencycle.Ammoniacertificationschemesareunderdevelopmenttosupportthedevelopmentofamarketforrenewableandlow-carbonammonia.•Anammoniamoleculederivedfromanysourceisthesame,butthecarbonfootprintisnot.•Guaranteesoforiginwouldallowproducersandconsumerstoreachagreementsonthevalueofammoniabasedonitscarbonintensity,aswellasothersustainabilitycriteria.•Abook-and-claimsystem,orsimilar,couldenablethetradingofcertificatesseparatefromthephysicalammoniaproduct.•Ammoniacertificationcouldbeusedtosupportregionalandsectoralpolicies,forexampleacarbontaxorborderadjustmentmechanism,oralow-emissionzoneport.3.1PerformanceandefficiencyModernrenewableammoniasynthesisfromlow-temperatureelectrolysis(alkalineorPEM)typicallyconsumesaround36GJpertonneofammonia(Smith,HillandTorrente-Murciano,2020),a50%energyconversionefficiency.Hydrogenproductiontypicallyconsumesmostoftheenergy,around33GJpertonneofammonia.Nitrogenpurificationfrompressureswingadsorption(PSA)consumesaround0.6-0.9GJpertonneofammonia,typicallyforsmall-scaleammoniaplants,whilenitrogenpurificationfromcryogenicdistillationconsumesaround0.3GJpertonneofammonia,typicallyforlarge-scaleammoniaplants(Rouwenhorstetal.,2019).Theammoniasynthesislooptypicallyconsumesatleast2GJpertonneofammonia(Bañares-Alcántaraetal.,2015;Smith,HillandTorrente-Murciano,2020).Renewableammoniasynthesisfromhigh-temperatureelectrolysis(solidoxide)typicallyconsumesaround30GJpertonneofammonia(Cintietal.,2017;Smith,HillandTorrente-Murciano,2020)andisexpectedtodecreaseto26GJpertonneinthelongterm(Hansen,2015),arounda60-70%energyconversionefficiency.Thelowerenergyconsumption,comparedtolow-temperatureelectrolysis,isduetomoreefficienthydrogenproductionandgreaterheatintegrationacrosstheprocess(Hansen,2015;Hauchetal.,2020).Renewableammoniasynthesisfromsolidbiomassfeedstockconsumesaround37-42GJpertonne(IEA,2021a;H.Zhangetal.,2020),arounda45-50%energyconversionefficiency.Bio-gasandbiomethaneproducedfrombiomasscanbeprocessedlikenaturalgas,withsimilarefficiency.TheenergyconsumptionforammoniasynthesisfromvariousfeedstocksistabulatedinTable3,andthehistoricaldevelopmentofthebestavailabletechnologyperfeedstockisshowninFigure25.Atypicalmodernnaturalgas-basedammoniaplantconsumesaround29GJpertonneofammonia(CEFIC,2013).Themostenergy-efficientplantsconsume26-27GJpertonneofammonia,andfurtheroptimisationisnotexpected,astheprocessapproachesatechnologicalasymptote(Figure25).However,olderplantscanbeoptimisedthroughrevamps(Kermelietal.,2017).Theoverallenergyconversionefficiencyonanloweringheatingvaluebasisforalarge-scale,modernnaturalgas-basedammoniaplantisaround65%(CEFIC,2013).TheadditionofCCStechnologywouldincreasethisenergyconsumptiontoaround33GJpertonneofammonia(Rouwenhorstetal.,2020b),arounda55%efficiency.ReplacingSMRwithATRtechnology,withCCS,maydecreasetheenergyconsumptionto29GJpertonneofammonia(IEA,2021a).RENEWABLEAMMONIA67Ammoniaproductionfrommethanepyrolysisconsumesaround49GJpertonneofammonia(IEA,2021a),ofwhichthemajoritycomprisesthenaturalgasfeedstockandtheminorityelectricityfeedstock,equivalenttoaround40%energyconversionefficiency.Theefficiencyforcoaltoammoniaisaround45%(Brightling,2018).Theglobalaverageenergyconsumptiontodayisaround36GJpertonneofammonia(IFA,2014).Ammoniaplantsinindustrialisedcountriestypicallyhavealowerenergyconsumption(33-36GJpertonneofammonia)comparedtodevelopingcountries(36-47GJpertonne)(Sayginetal.,2011),whichhasimplicationsforlocationswhererenewableammoniamaybemorecompetitiveinthenear-term.Table3Typicalgrossenergyconsumptionforammoniasynthesisfromvariousfeedstocks,basedonmoderntechnologyFeedstockTypicalenergyconsumption(GJ/tammonia)Potential(GJ/tammonia)SourceAmmoniafromnaturalgas(SMR,ATRoreSMR)28-2926(CEFIC,2013;IEA,2021a)Ammoniafromnaphtha35-(Brightling,2018)Ammoniafromheavyfueloil38-(Brightling,2018)Ammoniafromcoal4236(Brightling2018;IEA,2021a)Ammoniafromnaturalgas(SMR,ATRoreSMR)withcarboncaptureandstorage3329(IEA,2021a;Rouwenhorstetal.,2020b)Ammoniafromcoalwithcarboncaptureandstorage-39(IEA,2021a)Ammoniafrommethanepyrolysis4946(IEA,2021a)Ammoniafromlow-temperatureelectrolysis3633(Smith,HillandTorrente-Murciano,2020)Ammoniafromhigh-temperatureelectrolysis3026(Cintietal.,2017;Hansen,2015;Smith,HillandTorrente-Murciano,2020)Ammoniafrombiomassgasification4237(CEFIC,2013;IEA,2021a;H.Zhangetal.,2020)Note:Forreference,thelowerheatingvalueofammoniais18.6GJpertonne.SMR=steammethanereforming;ATR=autothermalreforming.©JonRehg/Shutterstock.comINNOVATIONOUTLOOK68Figure25Bestavailabletechnology(BAT)forammoniasynthesisfromvariousfeedstockTheoreticalminimumenergyconsumptionLowerheatingvalueEnergyconsumptionforBAT(GJtammonia)CoalNaturalgasLowTelectrolysisHighTelectrolysisBiomassgasificationNote:Theredlinerepresentsthetheoreticalminimumenergyconsumptionrequiredforammoniasynthesisfromwaterandair(22.5GJpertonneofammonia),andthegreenlinerepresentsthelowerheatingvalueofammonia(18.6GJpertonne).Source:BasedonoriginaldatafromCEFIC(2013);Ernst(1928);FertilizersEurope(2000);GrundtandChristiansen(1982);HansenandHan(2018);IEA(2021a);Smil(2004);Smith,HillandTorrente-Murciano(2020);H.Zhangetal.(2020).Casestudy1Facilitatingthetransitiontorenewableammonia:RecommendationsforindustryandgovernmentsOnestrategytodecreaseglobalprimaryenergyconsumptionistheuseofmoreenergy-efficienttechnologies.Thisisalsorelevantforammoniasynthesisandutilisation,forinstanceinthemaritimesector.Currently,renewableammoniaisbasedonlow-temperatureelectrolysis.Thisoperatesatatypicalenergyconsumptionof36GJpertonneofammonia,whiletheenergyconsumptionmaydecreaseto33GJpertonneofammoniainthelongterm(Smith,HillandTorrente-Murciano,2020).Thisisequivalenttoanenergyconversionefficiencyof52-57%onalowerheatingvaluebasis.However,renewableammoniaproducedviasolidoxideelectrolysisrequiresanenergyinputofonlyaround26-30GJpertonneofammonia(Hansen,2015;Smith,HillandTorrente-Murciano,2020).Thisisequivalenttoanenergyconversionefficiencyof62-72%onalowerheatingvaluebasis.Alarge-scalesolidoxideelectrolysermanufacturingfacilitywasannouncedin2021,withanannualelectrolysercapacityof500MWin2023,withanoptiontoexpandto5GW(Frøhlke,2021b).RENEWABLEAMMONIA69Ammoniacanbeusedasamarinefuel.Thecurrenttechnologyformaritimepropulsionisthetwo-strokeengine,whichcanberetrofittedtouseammoniaasafuel(MANEnergySolutions,2019),withanenergyefficiencyofabout45-50%onalowerheatingvaluebasis(MANDiesel&Turbo,2017).Likewise,four-strokeenginesareunderdevelopmentformarineapplications,withambitionstoconvertexistingenginesandnewbuildsfrom2023onward(WärtsiläCorporation,2020),withenergyefficienciesuptoaround50%onalowerheatingvaluebasis.Alternatively,however,ammoniamaybefeddirectlytoasolidoxidefuelcellwithpotentiallyhigherenergyefficiency,around55-60%onalowerheatingvaluebasis(Afifetal.,2016).Solidoxidefuelcelltechnologyiscurrentlyindevelopment,andcostsareexpectedtodecreasewithdeployment(Schmidtetal.,2017b;Staffelletal.,2019).Currently,solidoxidefuelcellsareavailableonlyforsmall-scaleapplications(<1MW)(PalysandDaoutidis,2020).Forreference,atypicalsizeforashipengineistensofmegawatts(MANEnergySolutions,2020).Otherminorenergylossesintheammoniavaluechainformaritimefueluseincludeconversionandtransmissionlossesinsolarandwindenergy,cooledammoniatransport,andammoniausageforNOXreduction(onlyrequiredforthetwo-strokeengine)(Johannessen,2020).Theseotherlossesamounttoatotalofaround8.3%energylossforthecurrenttechnologyand6.4%energylossforsolidoxidetechnology(Johannessen,2020),equivalenttoa92%and94%efficiencyinthesupplychain.Comparingthecurrenttechnologyforrenewableammoniaproductionandutilisationwiththesolidoxidetechnology,itisclearthatthetotalround-tripefficiencyforsolidoxidetechnologyishigher(Table4).Theround-tripefficiencyisimportant,assolarandwindelectricitytypicallyaccountforthemajorityofthecost(SánchezandMartín,2018)and,uponincreasingtheround-tripefficiency,therequirementforrenewableelectricitygenerationdecreases.Thelowerinvestmentinsolarandwindcapacitymayoutweightheslightlyhighercostofsolidoxidetechnology.Furthermore,ahigherround-tripefficiencyresultsin30-35%lesslanduseforrenewableenergygeneration.Table4Round-tripefficiencyofammoniaproductionandutilisationforthemaritimesectorCurrenttechnologySolidoxidetechnologyHydrogenproductiontechnologyAlkalineorPEMelectrolysisSolidoxideelectrolysis(SOE)Energyconsumption(GJ/tammonia)33-3626-30Energyconversionefficiency50-57%onLHVbasis62-72%onLHVbasisAmmoniaconversiontechnologyTwo-strokeengineSolidoxidefuelcell(SOFC)Energyconversionefficiency45-50%onLHVbasis55-60%onLHVbasisOtherlosses8.3%6.4%Round-tripefficiency21-26%32-40%Relativerenewablesfootprint(area)1.7-1.91.0-1.2Note:SeealsoTable3,andthetextabove.Indexedrelativeto26GJpertonneofammoniaforammoniaproductionand60%(lowerheatingvalue)energyefficiencyforconversionofammoniatoenergy.LHV=lowerheatingvalue.INNOVATIONOUTLOOK703.2EmissionsandsustainabilityofammoniaproductionThecurrentammoniaproductiontechnologygeneratesaround0.5GtofCO2-equivalentannually(RoyalSociety,2020),accountingfor1%ofglobalgreenhousegasemissions.Thecarbonfootprintofammoniaproductionprocessescanbequantifiedusinglife-cycleanalysis.Allstagesofammoniaproduction,distributionandconsumptionaretakenintoaccountinathoroughlife-cycleanalysis,alsoknownascradle-to-graveanalysis.Suchanalysesarehighlydependentonnumerousfactors,includingtheproductionpathway,thenatureoffeedstocks,andapplications,makingacomparisonwithotherfuelsandfeedstockschallenging.Nonetheless,thesetypesofanalyseswillbeincreasinglyneededtoassesstheenvironmentalimpactofdifferentfuels/materialsandprocesses.Thepresenceofglobalstandardsforlow-carbonfuelswillbeessential.ThegreenhousegasesemittedforammoniaproductionfromvariousresourcesarelistedinTable9inAnnexC,expressedasCO2-equivalents.Thegreenhousegasemissionsforbothrenewableammoniaandfossil-basedammoniawithCCSaresubstantiallylowerthanthoseforfossil-basedammoniawithoutemissionmitigation(Figure26).Forexample,SMR-basedammoniaproductionresultsinatleast1.6tonnesofCO2pertonneofammonia(Brightling,2018).Inaddition,dependingontheinfrastructurefornaturalgasproduction,processing,andtransport,methaneemissionscanbesubstantial,upto0.9tonnesofCO2-equivalentpertonneofammonia(GIE-MARCOGAZ,2019).ThisisahiddenCO2-equivalentemissionthatshouldbeaccountedforwhendeterminingthecarbonfootprintforammoniaproduction(HowarthandJacobson,2021).Methane(CH4)hasa30-timeshigherglobalwarmingpotentialthanCO2ona100-yeartimescale,andasmuchas85timesona20-yeartimescale.Thus,methaneemissionshaveamuchmoreprofoundimpactonestimatingtheglobalwarmingpotentialona20-yeartimescale.UpstreammethaneleaksareidenticalforammoniaproducedwithorwithoutCCS.Inaddition,withCCS,potentialdownstreamCO2slippagefromstoragemustalsobeaccountedfor.Asaresult,thelife-cycleemissionreductionsachievablebyimplementingCCSonaSMR-basedproductionsitemaybelimitedto60-85%(CommitteeonClimateChange,2018).Thus,fossil-basedammoniawithCCSservesonlyasanintermediatesteptowardsfullydecarbonisedammoniaproduction.Forrenewableammonia,thesustainabilityofelectrolysisdependsonthechoiceoftechnologyandofwatersource.Theavailabilityofscarcemetalsmaybecomealimitationforgigawatt-scalePEMelectrolysis(Kiemeletal.,2021),butsuchlimitationsdonotexistforalkalineorsolidoxideelectrolysis(SalmonandBañares-Alcántara,2021).Watersecurityshouldnotbecompromisedand,therefore,desalinatedseawatershouldbeusedforgigawatt-scaleammoniaplantsinmostlocations,whilelimitingbrackishwaterdisposal.Ammoniafromelectrolysisrequiresabout1.6tonnesofwaterfeedstockpertonneofammonia(Ghavametal.,2021),withadditionalwaterrequiredforcoolingandsupportsystems.AmmoniafromSMRrequiresaround0.6tonnesofwaterfeedstockpertonneofammonia(Ghavametal.,2021).Notably,electrolysis-basedhydrogenproductionshouldgenerallynotbebasedonmarginalelectricityfromthegrid,asthismayresultinhighergreenhousegasemissionsthanfromfossil-basedammoniaproduction(Ausfelderetal.,2021),unlesstheelectricgridhasaverylowfractionoffossil-basedproduction.Accountingforemissionsfromtransport,utilisingtoday’sinfrastructure,canaddupto10gramsofCO2-equivalentpermegajoule(MJ)ofammonia(Biceretal.,2016),equivalentto0.2tonnesofCO2pertonneofammonia.RENEWABLEAMMONIA71Regardingembeddedemissions,windandsolarpowerarecurrentlyproducedwithfossil-basedtechnologies.Upondecarbonisingtheentirevaluechain,thecarbonfootprintofrenewableammoniacoulddecreasefromthecurrentlevelofaround0.5tonneofCO2pertonneofammoniatobelow0.1tonneby2050(HydrogenCouncil,2021).Ifammoniaisusedasafuelforshipsandstationarypower,nitrousoxide(N2O)emissionsmustbesuppressed.N2Ohasaglobalwarmingpotential298timesthatofCO2(USEPA,2020).N2Oemissionshavebeenreducedovertheyearsthroughlegislation.Already,ammoniaanditsderivatives(ureasolution,knownasdieselexhaustfluidorAdBlue)arealreadyusedtodecreasetheseemissionsinthestationarypowerandtransportsectorsusingselectivecatalyticreduction(SCR)technology(Buscaetal.,1998).Ammoniaemissionscanbesuppressedthroughanammoniaoxidationcatalyst(AMOX).AsdiscussedinAnnexB,ammoniaemissionshaveamorelocaleffectontheenvironment,ratherthancausingglobalwarming.Ammoniaemissionsmustbesuppressedasmuchaspossibletopreventeutrophication.3.3Certificationschemes,CO2penaltiesandlegislationCertificationschemeswillberequiredtodistinguishbetweenfossil-basedammonia,fossil-basedammoniawithCCS,andrenewableammonia.Theammoniamoleculederivedfromanysourceisthesame,butthecarbonfootprintisnot.Therefore,guaranteesoforiginarerequired,indicatingtheCO2-equivalentfootprintoftheammoniafromrawmaterialextractiontotheusephase,whichallowsammoniaproducersandconsumerstoreachagreementsonthevalueoflow-carbonammonia.Similarcertificatesalreadyexistforelectricityproduction.Certificatescouldintheorybetradedseparatefromthephysicalammoniaproduct,forexamplewithinabook-and-claimsystem.Figure26IllustrativerangesofestimatedgreenhousegasemissionsofammoniaproductionfromvariousfeedstocktCOtammoniaNaturalgasNaphthaheavyfueloilCoalFossilwithCCSByproductHEthyleneByproductHChlorineMethanePyrolysisElectrolysisBiomassNote:Dataarerepresentedasmedianvalueswithstandarddeviation,andaredrawnfrommultipleliteraturereferencesbasedonvariousmethodologiesandboundaryassumptions.ThedevelopmentofGuaranteesofOriginwithstandardisedcalculationmethodsarerequiredtoverifytheactualemissionsintensityofammoniafromanyspecificproductionunit.Source:ValuesarefromTable9inAnnexB.INNOVATIONOUTLOOK72Theclassificationoflow-carbonammoniashouldbestraightforward.Inspirationcanbeobtainedfromhydrogenproduction.Onesuchsystemusestheterm“lowcarbon”forhydrogenwithacarbonfootprintatleast60%lowerthanforSMR(Barth,2016).Comparisonoflower-carbonfuelsbasedonenergycontentratherthanonmassbasisallowsforalevelplayingfieldamongalternativefuels.Thefocusshouldnotonlybeon-siteCO2emissionsbutonallgreenhousegasesaswellasothercriteriaincludingwateruseandupstreamemissions.Usingsuchcertificationschemesmayalsoallowforanoverallmarketcaponthecarbonemissionsforammoniaproduction.Ontheotherhand,usingamarket-basedapproach,ratherthanaspecificcapforallammoniaproduced,allowsforasmoothertransition,asaspecificcapcanresultinmarketdisruptionduetotheregulatoryshock.Variousschemesarebeingpursued,includingmethodologydevelopmentbyIPHE(InternationalPartnershipforHydrogenandFuelCellsintheEconomy)andanammoniacertificationschemeunderdevelopmentbytheAmmoniaEnergyAssociation.Dependingontheapplication,differentammoniapuritylevelsmayberequired.Minormetalimpuritiesfromtheammoniafeedstockmaycauseproblemsin,forinstance,solidoxidefuelcells.Thus,solidoxidefuelcellsrequirehighlypurifiedammonia(Makhloufi,2020).CertificationschemescouldprovideboththeCO2-equivalentfootprintandthepuritygradeoftheammonia.Certificatesoforiginmayalsosupportpoliciestodevelopalevelplayingfieldwithinaneconomiczone.AcarbontaxisappliedforammoniaproductionwithintheEU,withcurrentlevelsataroundUSD75pertonneofCO2-equivalent,ontopofwhichtheEUrecentlyannouncedacarbonborderadjustmentmechanism(CBAM)onexternalCO2emissionsimportedtotheEU(Haahr,2021).Certificationschemeswouldenablethedeterminationofacarbonfootprintforimportedammonia,andthuscouldsupportthelevyofacarbontaxonammoniaproducedoutsidetheEU.Therevenuefromcarbontaxescanbeusedassubsidiesforsupplychainsofrenewablefuelsorforresearchondecarbonisedsolutions,whichwouldfavourtheimport-exportinfrastructureofrenewableammonia(andfossil-basedlow-carbonammonia)inEuropeandelsewhere.ThePortofTokyorecentlywaivedtheentryfeeforshipspoweredbyliquefiednaturalgas(LNG)andhydrogeninanefforttopromotecleanermarinefuels(ReutersStaff,2021).Suchpoliciesmayalsobeappliedtoammoniaasamaritimefuel.RENEWABLEAMMONIA734.FUTUREMARKETSFORDECARBONISEDAMMONIAKeyfindingsAmmoniaisbeingconsideredasazero-carbonfuelforthemaritimesector.•Ammoniahasbeendemonstratedasafuelsincethe19thcentury.Mostfamously,theUSNationalAeronauticsandSpaceAdministration(NASA)usedammoniatofuelitsX-15hypersonicaircraftinthe1960s.•Maritimeenginemanufacturersexpecttocommercialiseammonia-fuelledtwo-strokeandfour-strokeenginesby2024or2025,fornewbuildsandretrofits.Ammoniaenginedevelopersbelievethattheycandelivercommercialperformancewithinexistingregulatorylimitsfornitrogenoxides.•Solidoxidefuelcellsarealsobeingdemonstrated,withpotentiallyhigherenergyefficiency(55-60%comparedto45-50%fortwo-strokeengines).•Variousconsortiahavebeenannounced,andthefirstammonia-fuelledvesselsareexpectedtobeoperatingatseaby2024or2025.Ammoniaisbeingconsideredasafuelforstationarypower.•Ammoniacandisplacecoalandnaturalgasinbothbaseloadandpeakerplants,atlargeorsmallscale,usinggasturbines,furnaces,enginesandfuelcells.•Ammoniacanalsobeusedtoreplacedieselinback-upandoff-gridapplications,usingenginesoralkalineorsolidoxidefuelcells.•Partialcracking,toproduceanammonia-hydrogenblend,canimprovethecombustionpropertiesofammonia.•InJapan,JERAisdemonstratingco-combustionof20%ammoniaand80%coalina1GWpowerplant.TheJapanesegovernmentroadmaptargetstheuseof30Mtoffuelammoniain2050,startingwithco-combustiontechnologiesandphasingoutfossilfuelsfor100%ammoniacombustion.Ammoniaisalsoproposedasahydrogencarrier,toovercomethestorageanddistributionchallengesofhydrogen.•Duringdecomposition,ammoniaiscrackedtoproducehydrogenandatmosphericnitrogen.•Hydrogenproducedfromimportedrenewableammoniacanbecheaperthanlocalrenewablehydrogen.INNOVATIONOUTLOOK74•Large-scaleammoniacrackershavebeenproposedtomeetnationalhydrogenimportdemand,includingatthePortofRotterdamintheNetherlandsandatWilhelmshaveninGermany,withcapacitiesofupto0.5Mtperyearofhydrogen(3.7Mtperyearofammonia).•Directuseofimportedammonia,wherepossible,wouldreduceconversionlosses.By2050,inthe1.5°Cscenario,themarketforammoniaasafuelformaritimetransportandforstationarypowerislargerthanallcurrentmarketsforammoniacombined.•Globalammoniademandincreasesfrom183Mtin2020to688Mtin2050.•Existingusesgrowto267Mtofammoniaforfertiliserand67Mtforotheruses.•By2050,themaritimesectorisexpectedtoconsume197Mtofammoniaasfuel.•By2050,ammoniaimportsasahydrogencarrierreach127Mt,supplyingdecarbonisedfeedstockandfuelforthechemicalandindustrialsectors.•Demandforammoniaasafuelforpowergenerationreaches30Mtby2050,basedonlyonstatedpolicieswithinJapan.Whilemanyofthesetechnologiesarealreadycommercialatscale,bottlenecksandbarriersexistthatmaylimitthespeedatwhichammoniaisdeployedasafuelandhydrogencarrier.•Governmentpoliciestoreducegreenhousegasemissionsareuncertain,causingdoubtandlimitinginvestment.•Electrolyserproductioncapacitywasreportedtobe2.1GWperyearin2020,whiletherequiredcapacityis40-65GWperyeartoproduce566Mtperyearofrenewableammoniaby2050.•Ammoniainfrastructuremustexpandbyafactorof10-15,requiringtensofbillionsofUSDinannualinvestmentinstorageandtransportassets.•Theuseofammoniainenergymarketsisdrivenbytheneedtoreducegreenhousegasemissions,andthereforenewrenewableorlow-carbonammoniaisrequired.•Demandforammoniainenergyapplicationsshouldnotputfertilisersupply,andthusfoodproduction,atrisk.Ammoniaiscurrentlyusedinvariousapplications,butprimarilyasafertiliser(seesection1.1).Newmarketsfordecarbonisedammoniamayincludeitsuseasafuelforthemaritimeindustryandforpowergeneration,orasahydrogencarrier(IRENA,2020c).AnoverviewofthepotentialrolesofammoniainthehydrogeneconomyisshowninFigure27.RENEWABLEAMMONIA75Asearlyasthe19thcentury,ammoniawasproposedasafuel(SousaCardosoetal.,2021).ItwasusedtofuelbusesinBelgiumduringtheSecondWorldWar(Image5),duetothescarcityofotherfuels(Kroch,1945).Mostfamously,NASAusedammoniatofuelitsX-15hypersonicrocket-poweredaircraftinthe1960s(Valera-Medinaetal.,2018).Morerecently,ammoniahasgainedinterestasafuelforstationarypowergeneration(Valera-Medinaetal.,2018)andforinternationalshipping(HaldorTopsøeetal.,2020).Figure27SchematicoftheammoniaeconomyPowerammoniaAirseparationMethanereformer(SMR)HOelectrolysisFertiliserNHtransportNHstorageNHsynthesisNOxandNOremovalChemicalprecursorMaritimefuelPowergenerationFuelcellvehiclesHydrogengridNHdecompositionPowerammoniaPowerammoniaWasteammoniaHydrogenFeedstockforchemicalindustryHHNHHNNHHHHHHSource:AdaptedandmodifiedfromProtonVentures(2021)andSousaCardosoetal.(2021).INNOVATIONOUTLOOK76Dahlberg,GreenJr.,andAverywereamongthefirsttoadvocateforammoniaasanenergyvectorinthehydrogeneconomyinthe1980s(Avery,1988;Dahlberg,1982;Green,1982).Ascenariowhereammoniaplaysadominantroleintheenergylandscapecanbecoinedtheammoniaeconomy(MacFarlaneetal.,2020;Morlanésetal.,2020).Thecurrentenergylandscapedependsstronglyoncarbon-basedfuels.Usingammoniaasanenergyvectorallowstobreakthecarboncyclebynotintroducingcarboninthefirstplace.Withrenewableammonia,theenergyconversionprocessstartswithairandwater,andendswithairandwater.Thepotentialmarketsizeforammoniaasafuelislargerthanthecombinedcurrentmarketsforammonia(MacFarlaneetal.,2020).However,therighttechnologies,therightmarkets,therightcoststructuresandtherightcertificationschemesneedtobeinplaceforimplementationofdecarbonisedfuels.Therateatwhichtherenewableammoniamarketwillexpandinthecomingdecadedependsonhowfastammoniaisadoptedasahydrogencarrierandfuel,aswellasontheelectrolyserproductioncapacityandammoniatransportinfrastructuredeployment.Asdiscussedinsection4.5,theelectrolyserproductioncapacityandammoniatransportinfrastructureshouldbescaledbyatleastanorderofmagnitudetoproducesufficientrenewablefuelsupto2050.Variouscommercial-scaleprojectsandproductshavebeenannounced,butcurrentlyonlysmall-scaledemonstrationsareinoperation.Thesedemonstrationsassessthetechnologicalviabilityofthepower-to-ammonia-to-powervaluechaininDenmark,Japan,theUnitedKingdomandtheUnitedStates(Brown,2018a;Valera-Medinaetal.,2021).However,theammoniavaluechainmustbedemonstratedatacommerciallyrelevantscale(Johannessen,2020),toconvinceinvestorsofitsviability.Mostoftheannouncedcommercial-scaleprojectsareexpectedtobecompletearound2025.Image5Ammonia-fuelledbusinBelgiumduringtheSecondWorldWarImagecourtesyofCamprigaz,Ltd.,1945.RENEWABLEAMMONIA774.1AmmoniaasahydrogencarrierAmmoniaisproposedasahydrogencarrier(Smith,HillandTorrente-Murciano,2020),toovercomestorageanddistributionchallengesofhydrogensupplyforthechemicalindustryorasafuel(Cesaro,ThatcherandBañares-Alcántara,2020;Valera-Medinaetal.,2018;ZamfirescuandDincer,2008).Ina1.5°Cscenario,demandforimportedammoniaasahydrogencarrierwouldreach127Mtofammonia.Duringthedecompositionreaction,ammoniaiscrackedtoproducehydrogen(H2)andnitrogen(N2).Hydrogencanbeproducedfromammoniaviacatalyticcrackingorviaplasmadecomposition(Makepeaceetal.,2019);however,thelattergenerallyhastoohighofanenergycostforindustrialapplications(Rouwenhorstetal.,2020d).Typicalcatalystsforcatalyticcrackingincludemetalssuchascobalt,iron,nickelandruthenium(BellandTorrente-Murciano,2016;Ganleyetal.,2004;Nielsenetal.,2021).Morerecently,abundantmaterialssuchascalciumimide,lithiumimideandsodiumimidehavealsobeenproposed(Makepeaceetal.,2019).Dependingontheapplication,partialdecompositionofammoniamaybeallthatisrequired,producingafuelmixofammoniaandhydrogenatvariousratios.However,forapplicationsrequiringpurehydrogen,completedecompositionmustbefollowedbyanadditionalpurificationofthehydrogen.Notably,ammoniadecompositionshouldbereservedforscenarioswheredirectammoniauseisnotfeasible,astheammoniadecompositionreactionisendothermic–itrequiresadditionalenergy.Inthebestcase,ammoniadecompositionconsumes13%ofthestoredenergyat100%conversionefficiencytohydrogenandnitrogen(Makepeaceetal.,2015).Residualammoniamayberemovedwithsolidmaterials(Christensenetal.,2006;Helminenetal.,2000),orconvertedwithoxygentowaterandnitrogen(Laanetal.,2019;Lanetal.,2020).Incasepurehydrogenisrequiredwithoutnitrogen,suchasforPEMfuelcells,hydrogencanbepurifiedwithmembranes,pressureswingadsorptionorcryogenicdistillation(Lamb,DolanandKennedy,2019;Luetal.,2007).Nowadays,ammoniadecompositionsystems,alsotermedammoniacrackers,arecommerciallyavailableforthemetallurgyindustry.Typicalcommercialammoniacrackershavecapacitiesof1to1500kilogramsofhydrogenperday,equivalenttoaround0.2to118ktofammoniaperyearonamassbasis,atenergyefficienciesof30-60%onalowerheatingvaluebasis.Theseunitsoperateattemperaturesof850°Cto1000°C(Makepeace,2020),andbothimprovementsinenergyefficiencyandmilderoperatingconditionswillberequiredformorewidespreadapplication,especiallyforlarge-scalehydrogenproduction.Twoammoniacrackersarealsooperationalforheavywaterproduction,withthelargestplantrequiringaround490ktofammoniaperyear(ComisionesdePresupuestoyHaciendaydeCienciayTechnolia,2003).Inrecentyears,feasibilitystudiesonlarge-scaleammoniacrackerswerereported(Siemensetal.,2020),andlarge-scaleammoniacrackerswererecentlyproposedforhydrogenproductioninnorthernEurope(Table5).TheproducedhydrogencanbefedtotheEuropeanhydrogengrid,whichisproposedtospan6800kilometresby2030and22900kilometresby2040(Janssen,2020).Around75%oftheEuropeanhydrogengridwillbebasedontheexistingnaturalgasgrid(Janssen,2020).TheTranshydrogenAlliance,aconsortiumincludingTrammo,Varo,ProtonVentures,andthePortofRotterdam,announcedplansfor500ktofhydrogenproductionannuallyfromammoniadecomposition,withtheinitialstageoftheprojecttobecompletedby2024(ProtonVenturesB.V.,2021).Forreference,thecurrentindustrialhydrogendemandintheNetherlandsisaround1500ktofhydrogenannually(TNO,2020).Theammoniafedtotheproposedcrackeris3.7Mtperyearbasedon75%ammoniaconversiontohydrogenonamassbasis(Nielsenetal.,2021).ThePortofRotterdamhasannouncedthatitwillimportupto18Mtofhydrogenby2050,equivalentto135Mtofammonia(PortofRotterdam,2020).INNOVATIONOUTLOOK78Furthermore,UniperannouncedanammoniacrackerfortheportofWilhelmshaveninGermany.Theproposedhydrogenoutputis295ktofhydrogenperyear,equivalentto10%oftheprojectedhydrogendemandinGermanyby2030(Uniper,2021).Theammoniatobefedtothecrackeris2.2Mtperyear,basedon75%ammoniaconversiontohydrogenonamassbasis.Theproducedhydrogencouldbeusedtofiretwocombined-cyclegasturbinesof500MW,forexample,ormultiplerefineries.Importingrenewableammoniafromlocationswithlow-costrenewableresourcesofbelowUSD20perMWhandconvertingtohydrogenwouldbecompetitivewithproducinglocalrenewablehydrogeninnorthernEuropewithoffshorewindataboutUSD50perMWh,despiteconversionlossesintheformercase(IEAandNEA,2020;IRENA,2021a).4.2AmmoniaasastationaryfuelAmmoniacanalsobeuseddirectlyasafuel(IEA,2021b).Similartohydrocarbonfuels,energyisstoredinchemicalbondsandisreleasedbyreactingammoniawithoxygen,formingwateranddinitrogen(atmosphericnitrogen).Instationarypowerapplications,ammoniacanbeusedasafueltodisplacecoalandnaturalgas(BicerandDincer,2018;JapanScienceandTechnologyAgency,2017;Kobayashietal.,2019;Valera-Medinaetal.,2018)inbothbaseloadapplicationsandpeakerplants,operatingbelow25%capacityfactor,toprovidestabilityinthegridwithahighpenetrationofintermittentsolarandwindpower(Cesaroetal.,2021).Alternatively,ammoniamaybeusedtodisplacedieselinback-uporoff-gridapplications.Ina1.5°Cscenario,demandforammoniaasafuelforpowergenerationreaches30Mtby2050,basedonlyonstatedpolicieswithinJapan.Inthecaseofcoal-firedpowerplants,ammoniacanreducethecarbonfootprintbyco-firingamixtureofupto60%ammoniabyenergycontent(Tamuraetal.,2020;J.Zhangetal.,2020).Thiswasrecentlydemonstratedina1.2MWfurnace(Tamuraetal.,2020).AmmoniacandecreaseNOxemissionsfromcoalcombustion,althoughanammoniaconcentrationabove40%resultsinemissionsofunburntammonia(Ishihara,ZhangandIto,2020;J.Zhangetal.,2020).FollowingsuccessfulburnertestsinAugust2021(JERA,2021),by2024JERAaimstodemonstrateco-firingupto20%ammoniaina1GWcoal-firedpowerplant(Image6).Thetransitionto50-60%ammoniaco-firingisexpectedbythe2030s,and100%ammoniafiringistargetedbythe2040s.Table5Overviewofplannedfacilitiesforlarge-scaleammoniadecompositionLocationCompanyStart-upyearAmmoniafeed(Mt/yr)Hydrogenoutput(kt/yr)HydrogenapplicationSourceCommercialplantsRotterdam,NetherlandsTranshydrogenAlliance2024long-term-3.7-500One-thirdofcurrentDutchhydrogendemand(ProtonVenturesB.V.,2021)Wilhelmshaven,GermanyUniper20302.229510%ofGermanhydrogendemandby2030(Uniper,2021)RENEWABLEAMMONIA79Similarly,theNorwegiangovernmentproposestoreplacetheexistingcoal-firedpowerplantinLongyearbyenontheislandofSvalbardwithamulti-fuelenginecapableofrunningonammonia(Holsen,2021).Ammoniacanalsobeco-firedwithnaturalgasorkeroseneingasturbines(Kobayashietal.,2019;Valera-Medinaetal.,2017a;Xiaoetal.,2017).Furthermore,fullydecomposedammoniaintohydrogenandnitrogen(ISPT,2017),orpartiallydecomposedammoniawitharound30%decomposedammonia,canbefiredingasturbinesathighstability(EPRI,2021;Valera-Medinaetal.,2017b,2019).NOxemissionsbelow50ppmhavebeenreportedforammonia-hydrogenblends(Kobayashietal.,2019;Kurataetal.,2017;Valera-Medinaetal.,2019).SteaminjectionisapromisingpracticetoreduceNOXemissionsbelowestablishedregulatorylimitsintheseblendswithoutsacrificingefficiency(GutešaBožoetal.,2019).Partialdecompositionofammoniatoanammonia-hydrogen-nitrogenblendcompensatesforthelowflamespeedofammoniaandalsothehighflamespeedofhydrogen(Valera-Medinaetal.,2018).Ammonia-hydrogenblendshavesimilarfuelcharacteristicsastowngasproducedfromcoaloroil(Valera-Medinaetal.,2017b).Variousindustrialcombined-cyclegasturbinemanufacturershavecommittedto100%hydrogenfiringcapabilityby2030(EUTurbines,2019);however,itwouldbeundesirabletofullydecomposeammoniatopurifiedhydrogenforthisapplication,duetotheenergypenaltyofammoniadecompositionandhydrogenpurification.Therefore,researchalsofocusesoncombustionofpureammonia,andpartiallydecomposedammonia,notingthatexhaustheatcanbeusedforthecrackingprocess.Inthecaseofcoal-firedpowerplants,ammoniacanreducethecarbonfootprintbyco-firingamixtureofupto60%ammoniabyenergycontent.Thetransitionto50-60%ammoniaco-firingisexpectedbythe2030s,and100%ammoniafiringistargetedbythe2040s.INNOVATIONOUTLOOK80Sofar,stableoperationofgasturbineswithpureammoniahasbeendemonstratedonlyatasmallscale(50kW)(Kurataetal.,2017,2019),usingcyclonicburners(Sorrentinoetal.,2019).IHIisdevelopinga2MWgasturbinethatcancombust100%ammoniawithaliquidammoniainjectionsystem,whichisexpectedtobecommercialby2023(Muraki,2018).MitsubishiPowerisdevelopinga40MWclassgasturbinethatcancombust100%ammonia(Image7),whichisexpectedtobecommercialbyaround2025(Patel,2021).AccordingtotheJapaneseSIPenergycarriersprogramme,anammonia-fedgasturbinewithacapacityabove100MWwillbecommerciallyavailableby2030(Muraki,2019).Ammoniahasalsobeenproposedasafuelforgasturbinesinothercountries,suchasintheNetherlands(ProtonVenturesB.V.,2016)andtheUnitedStates(EPRI,2021).Solidoxidefuelcellsandalkalinefuelcellscanbeusedforsmall-scaleapplications(<1MW)(PalysandDaoutidis,2020;Zhaoetal.,2019),wheretheefficiencyofothertechnologiesistoolow.Ammoniacanbeusedforoff-gridapplications,suchastelecommunicationtowersorback-upaggregates(Cesaro,ThatcherandBañares-Alcántara,2020;FuelCellsBulletin,2013;Klerkeetal.,2008;RoyalSociety,2020).Forinstance,off-gridelectricityproducedfromammoniainanalkalinefuelcellcancostlessthanUSD0.26perkWh,lowerthanadieselgeneratoratUSD0.31perkWh(OvirohandJen,2018).Alternatively,ammonia-drivengeneratorsetsaresmall-scalecombustionenginesforoff-gridpower(RoyalSociety,2020).Thesemayfindapplicationsinisolatedcommunitiesin,forexample,theArcticandAfrica,inparticularforpeakgeneration,displacingdiesel.However,forcentralisedapplications,conventionalpowerplantswillremaindominant.Ascombined-cyclegasturbinesystemscanapproach60%efficiencyonalowerheatingvaluebasis,theefficiencygainsbyusingsolidoxidefuelcellsarenotexpectedtooutweightheadditionalcostrequired,atleastnotwithinthisdecade.Existinggasturbineassetsmayberetrofittedtocombustammonia,furtherminimisingthecost.Especiallywhentheutilisationrateislow,forexampleforpeakerplants,thecapitalcostdisadvantageofsolidoxidefuelcellsnegativelyaffectstheoveralleconomics(Cesaroetal.,2021).PEMfuelcellscanalsobeused,althoughthesecurrentlyhaveahighcapitalcostandcanonlybefedwithhighpurityhydrogen.Alkalinefuelcellsrequirealowerhydrogenpurity,butrequirearelativelylargearea(Cesaroetal.,2021).Ammoniafiringincoal-firedpowerplantsandgasturbinessuggeststhatexistingassetscanbedecarbonised,therebypreventinglocked-inCO2emissionsorstrandedassets.Image6MitsubishiPower’sH-25SeriesgasturbinesImagecourtesyofMitsubishiHeavyIndustries,2021.RENEWABLEAMMONIA81Casestudy2AmmoniaatfuelvalueinJapanJapanhasbeenoneofthemainproponentsofrenewableammoniaasanenergycarrier,withaconcreteroadmapforimplementationofammoniaasafuel(Figure28).Alreadyin2014,Japanlaunchedatechnologydevelopmentconsortium,EnergyCarriers,promotedbytheCross-ministerialStrategicInnovationPromotionProgram(SIP).ThisispartoftheJapaneseframeworktoachievecarbonneutralityby2050.Figure28RoadmapoftheammoniafuelvaluechainforJapanRenewableenergyFossilfuelCCSEORUtilisation˜AmmoniaproductionfromrenewableenergyFSofgreenandblueammoniasupplychainsEstimatedpricefromUStoJapanUSDtonne(USDkg-H)GTsIndustrialfurnacesLarge-scaledemoandfacilitydesignPreparation-MtMtMtDevelopmentandcommercialisationDevelopmentandcommercialisationDevelopmentandcommercialisationstandardisationetcImplementationImplementationImplementationImplementationMarineenginesSmallMediumACCGTCoalpowerplants(˜MW)BlueammoniaGreenammoniaAdaptedfromMuraki(2021).INNOVATIONOUTLOOK82Intheshortterm,Japanplanstoimportlow-carbonfossil-basedammonia,whilerenewableammoniawillbeimportedbeyond2030(IEA,2021b).AmmoniaisconsideredinJapanatanearlierstagethaninothercountries,whichcanbeattributedtothehighpricesforimportedfossilfuelinJapan.LNGcostaroundUSD7-16perGJinJapanoverthepast10years,andemitsaround56.1kilogramsofCO2perGJofenergygeneration(SenterNovem,2005).CurrentcarbontaxesinJapancostaroundUSD3pertonneofCO2(ArimuraandMatsumoto,2020),resultinginanaddedcostofonlyUSD0.2perGJ.However,ifhighercarbontaxesofUSD50-100perGJareintroducedinthelongerterm,thisaddedcostincreasestoUSD2.8-5.6perGJ,roughlya25%premiumonthecostofLNG.Thiswouldmakelow-carbonammoniacompetitiveinthelongterm(Figure19).Low-carbonfossil-basedammoniaisexpectedtohaveamarketvalueofaroundUSD350-400pertonneofammonia(HaldorTopsøeetal.,2020)or,inanotheranalysis,USD340pertonneofammonia(Muraki,2021),equivalenttoaroundUSD19-21perGJorUSD18perGJ.Inthelongterm,renewableammoniawillprobablybeavailableatacostbelowUSD400pertonneofammonia(seesection2.4),equivalenttolessthanUSD21perGJ.Thus,ammoniaprovidesacost-competitivealternativetofossilfuelsinthelongterm.InitialshipmentsofammoniaforpowergenerationweredeliveredfromSaudiArabiatoJapanin2020,startingwith40tonnesof“blue”fossil-basedammonia(SaudiAramco,2020),launchinganewinternationalmarketforammoniaasafuel.Japanexpectstoimportammoniaforpowergeneration,totalling0.5-1Mtperyearby2025,3-5Mtperyearby2030and30Mtperyearby2050(ArgusMedia,2021c,2021d).TheinfrastructureofJapanisespeciallysuitableforusingammoniadirectly,asthenationhasinsufficientrenewableresourcestosatisfyitsenergydemand,andmostpowerplantsarelocatedinportareas.ItisexpectedthattheammoniareceivingandstoragefacilitiesinJapanwillbeexpandedoverthenextfewyears,tofacilitateammoniaco-firingingasturbinesandcoal-firedplants(Muraki,2021).Thegradualincreaseinammoniauseinthepowersectorgoeshandinhandwiththesupplychainscale-up.Forreference,ifallJapanesecoal-firedpowerplantswouldbeco-fedwith20%ammonia,thiswouldrequirearound20Mtofammonia,similartotheamountofammoniacurrentlyshippedworldwideeachyear.RENEWABLEAMMONIA834.3AmmoniaasamaritimefuelforinternationalshippingInrecentdecades,ammoniahasbeenproposedasatransportfuelforbuses,trams,locomotivesandaircraft(Giddeyetal.,2017;SousaCardosoetal.,2021;Valera-Medinaetal.,2018).WhilenumerousR&Dprojectsarefocusedonthoseareas,ammoniaisproposedformorewidespreaduseasamarinefuelforinternationalshipping,toreplaceheavyfueloilandLNG(HaldorTopsøeetal.,2020;MærskMc-KinneyMøllerCenterforZeroCarbonShipping,2021;Philibert,2020b).Directelectrificationofinternationalshippingisnotpossibleduetothelongdistancestravelled.Around95%ofallfreighttransporttakesplaceatsea,consumingaround10%ofthetotaltransportenergyworldwide(BP,2020;USEIA,2017)andaccountingfor2.6%ofglobalgreenhousegasemissions(Ayvalı,TsangandVanVrijaldenhoven,2021).AccordingtoitsInitialGHGStrategy,theInternationalMaritimeOrganization(IMO)aimstoreducethesector’semissions50%by2050ascomparedto2008levels(IMO,2019).Variousshippingcompanieshavecommittedtomoreambitiousemissionreductiontargets,drivenbynationaltargets,customerdemandand/orsustainabilitygoals.Forexample,Maerskhascommittedtonetzerocarbonemissionsby2050(Maersk,2019).Itscurrentfleet,around750containerships,wouldrequirearound20Mtofammoniaperyearifammoniaaloneisusedasafuel.Shipstypicallyhavelifetimesof20-25yearsorlonger,implyingthatinvestmentsfordecarbonisationofnew-builtshipsmustbemadesoonandthatnetzerovesselsmustbeoperationalby2030,tomeetthegreenhousegasemissionreductiontargetsby2050.Recently,aconsortiumofvariousindustrialcompaniesexpressedtheopinionthatammoniaislikelythepreferredfuelfortheinternationalmaritimesector(HaldorTopsøeetal.,2020).Recentoutlooksestimateademandforammoniaasamarinefuelrangingfrom100Mttomorethan1000Mtofammoniaby2050(Table13inAnnexF),dependingonthefuelmixshareofammonia,thefuturedemandscenarioandthespeedofsectoraldecarbonisation.By2050,ina1.5°Cscenario,theestimateddemandforammoniaasamarinefuelwouldamountto197Mt,ofwhich183Mtwouldbeforinternationalshippingand15Mtwouldbefordomesticshipping.Forreference,thecurrenttotalammoniaproductionamountstoaround183Mtofammonia,ofwhicharound18-20Mtisshippedinternationally(Hatfield,2020,2021).VariousconsortiaforthecommercialisationofammoniaasafuelinthemaritimesectorarelistedinTable6.Table6ListofselectedconsortiaforammoniademonstrationsinthemaritimesectorProjectDurationAimSourceMANtwo-strokeammoniaengine(Denmark)2019-2024USD5millionprojectledbyMANEnginestodevelopthefirstammonia-fuelledtwo-strokeengineby2022,andcommercialiseitby2024.(MANEnergySolutions,2019,2021)GettingtoZeroCoalition(Global)2019-Globalcoalitioninvestigatingpathwaystodecarboniseinternationalshipping.HeadedbyFriendsofOceanAction,GlobalMaritimeForumandWorldEconomicForum.(GettingtoZeroCoalition,2019)Wärtsiläfour-strokeammoniaengine(Norway)2020-2023ProjectledbyWärtsilätotestanammonia-fuelledfour-strokeengineatfullscaleandinthelongterm,supportedbyaUSD2milliongrantfromtheNorwegianResearchCouncil.(WärtsiläCorporation,2020)INNOVATIONOUTLOOK84ProjectDurationAimSourceShipFCAmmoniaproject(Europe)2020-2024A14-memberconsortiumofEuropeanindustrialcompaniesandresearchorganisations,co-ordinatedbyNCEMaritimeCleanTech.TheVikingEnergyshipwillberetrofittedwitha2MWammonia-fuelledsolidoxidefuelcell.ThetotalprojectbudgetisaroundUSD28million.(Eidesvik,2020)ZeroEmissionsfromShipsUsingAmmoniaFuel(Japan)2020-NYKLine,JapanMarineUnitedCorporation,IHIPowerSystems,andNipponKaijiKyokai(ClassNK)signedajointR&Dagreementforthecommercialisationofammonia-fuelledships,includingagascarrier,abargeforoffshorebunkeringandatugboat.(NYKLine,2020)MærskMc-KinneyMøllerCenterforZeroCarbonShipping(Denmark)2020-Thisresearchinstituteintendstodevelopnewfueltypesandtechnologiestodecarbonisethemaritimesector.ThelaunchingpartnersaretheAmericanBureauofShipping,A.P.Moller–Maersk,Cargill,MANEnergySolutions,MitsubishiHeavyIndustries,NYKLinesandSiemensEnergy.Theinstitutelaunchedwithastart-updonationofaroundUSD60millionfromtheA.P.MøllerFoundation.(Maersk,2020)TheCastorInitiative(Singapore)2020-AcoalitionofLloyd’sRegister,MISCBerhad,MANEnergySolutions,SamsungHeavyIndustries(SHI),Yara,andtheMaritimeandPortAuthorityofSingaporeaimstobuildanammonia-fuelledtankerby2025.(Lloyd’sRegister,2021)PotentialforAmmoniaasaMarineFuelinSingapore(Singapore)2021-AcoalitionoftheAmericanBureauofShipping,NanyangTechnologicalUniversity,SingaporeandtheAmmoniaSafetyandTrainingInstitute(ASTI)aimstostudythepotentialofammoniaforSingapore,exploringsupply,bunkeringandsafetychallengeswithammoniaasamaritimefuel.Safetyprotocolsandpossiblegapsinthesupplychainwillbeidentified.ExxonMobil,HoeghLNG,MANEnergySolutionsSingapore,JurongPort,PSASingaporeandITOCHUGrouparecontributingtechnicalinformation.(ABS,2021a)AmmoniaasmarinefuelinSingapore(Singapore)2021-Afeasibilitystudyforrenewableammoniaship-to-shipbunkeringisbeingconductedatthePortofSingaporebyA.P.Moller–MaerskA/S,FleetManagementLimited,KeppelOffshore&Marine,MaerskMc-KinneyMollerCenterforZeroCarbonShipping,SumitomoCorporationandYaraInternationalASA.(Maersk,2021)Maritimeenginemanufacturersexpecttocommercialiseammonia-fuelledtwo-strokeandfour-strokeenginesby2024or2025,forbothnewbuildsandretrofits(MANEnergySolutions,2019;WärtsiläCorporation,2021).Dual-fuelenginesallowforfuelflexibilityduringtheimplementationofammoniaasafuel.Thefirstammonia-fuelledvesselsareexpectedtobeoperatingatseaby2024and2025(Table6),withmorewidespreadadoptionby2030(Brown,2020l,2020m;GriegStar,2020).RENEWABLEAMMONIA85Preliminarystudiesshowthatthecombustioncharacteristicsofammonia—slowflamevelocity,slowerheatrelease—donotprohibititsuseasafuel(Ayvalı,TsangandVanVrijaldenhoven,2021).Rather,thehighNOxproductionduringcombustion,thelowflammabilityandlowradiationintensitypresentresearchchallenges.Nonetheless,enginedevelopersbelievethatthetechnologycandelivercommercialperformancewithinexistingregulatorylimitsforNOxemissions(WärtsiläCorporation,2021).Inadditiontoconventionalenginetechnologies,solidoxidefuelcellsareconsidered.Abenefitofthistechnologyisthehigherenergyefficiency(around55-60%onalowerheatingvaluebasis),ascomparedtothetwo-strokeengine(around45-50%onalowerheatingvaluebasis)(MANDiesel&Turbo,2017),therebydecreasingthefuelrequirement.TheShipFCconsortiumaimstodemonstratetheuseofammoniafuelusinga2MWsolidoxidefuelcell,startingin2024(Image8)(Eidesvik,2020).Solidoxidefuelcellsaremainlysuitableforstill,inlandwaterwaysratherthanforharshconditionsintheoceans.Althoughtechnologicalchallengesarenotexpectedtobeasignificanthurdle,experiencewithammoniafuelisrequiredbeforeitcanbewidelyadopted,notleasttoinformthedevelopmentofneworrevisedcodesandstandards.Therefore,ammoniafuelwillbedemonstratedintheportofSingaporeinvariousconsortia(Table6).LNGwasdemonstratedasafuelinSingaporefrom2017to2020,andinspirationcanbedrawnfromthisforammonia.TheportofSingaporeservesasalivinglabwithaphysicalanddigitaltestenvironment,andasaregulatorysandbox,todevelopsafebunkeringproceduresforammoniaandgainoperationalexperience(Atchison,2022a).Codesandstandardsforthesafeuseofammoniahavebeenlongestablishedwithintherefrigeration,chemical,andpowerindustries,whichcanalsobeappliedandstrengthenedforthemaritimesector(ABS,2021a).Afirststeptodecarboniseshippingistoconvertammoniatankerstouseammoniaasafuel,suchastheNutrien/Exmarlow-carbonammoniavessel(Nutrien,2021),andtheZEED’sMSGreenAmmonia(GriegEdge,2021).Ifammoniawereadoptedacrossthebroadergascarriersector,thiswouldrepresent5%oftheshippingsector’sfueldemand.Thisisroughlytheamountofzero-carbonfueladoptionrequiredinthemaritimesectorby2030,tocomplywiththeParisAgreement’s1.5°Cscenario(Osterkamp,SmithandSøgaard,2021).Image7TheVikingEnergy,whichwillberetrofittedwithanammonia-fuelledsolidoxidefuelcellImagecourtesyofEidesvik,2021.INNOVATIONOUTLOOK86Ontheregulatoryside,somestepsarerequiredforwidespreadadoptionofammoniaasamaritimefuel(ABS,2021b).AmmoniaisnotcurrentlyapprovedasafuelbytheIMOundereithertheIGCorIGFCodeandso,fornow,everyshipneedsindividualapprovaltouseammonia.Aftertheinitialdemonstrationvesselshaveprovensafeoperations,andproponentsdevelopnewcodeswithintheIMOtoassurethesafeuseofammoniaasamaritimefuel,theroll-outofammonia-fuelledshipswillaccelerate.Thesupportofaflagstatecanaidtointroduceammoniaasafuel,similartothecaseofmethanolasafuel.4.4RenewableammoniaversusotherenergycarriersLow-carbonammoniacanbeusedasahydrogencarrierandasafuel,butalternativessuchasliquidorganichydrogencarriers(LOHCs),andcarbon-basedbiofuelsande-fuelsarealsoproposed,suchasmethanolandsyntheticmethane.Fossil-basedammoniawithoutcarbonmitigationdoesnothavesignificantbenefitsoverotherfossilfuelsintermsofcarbonfootprintandshouldbeavoidedforenergyapplications(Al-Aboosietal.,2021).Somecharacteristicsofammoniaasafuelinclude(Al-Aboosietal.,2021;BartelsandPate,2008;Valera-Medinaetal.,2018):•Ammoniahasagravimetricenergydensityof22.5MJperkilogramonahigherheatingvaluebasis,whichiscomparabletocarbon-basedfuelssuchasmethanol(22.7MJ/kg),ethanol(29.7MJ/kg),andcoal(15MJ/kgforlignite,and27MJ/kgforanthracite).Theenergydensityofammoniaislowerthanthatofnaturalgas(55MJ/kg),diesel(45MJ/kg)andhydrogen(142MJ/kg)byweight.•Liquidammoniahasavolumetricenergydensityof12.7MJperlitre(L),whichislowerthanforheavyfueloil(35MJ/L)butcomparabletomethanol(15MJ/L),andhigherthanforliquefiedhydrogen(8.5MJ/L).Thus,atankofammoniacontains1.5timestheenergyofthesamesizetankofliquefiedhydrogen.•Ammoniacanbeliquefiedunderrelativelymildconditions,eitherbycompressionto8barat20°Corbycoolingto-33°Catatmosphericpressure.Thisalsomakestransportofammoniaaffordablecomparedtohydrogen(BartelsandPate,2008).•Ammoniahasanestablishedworldwideinfrastructureforammoniaproduction,storageanddistributionwitharound200portterminalsforammoniacurrentlyinoperation.Ammoniahasaproventrackrecordofsafehandling.•Ammoniahasanarrowflammabilityrange(15-28%inair),makingfireaccidentsunlikelytooccur.•Ammoniahasahighoctaneratingof120,comparedtopetrol(86-93).Thus,itcanbeusedininternalcombustionengineswithsomemodifications.Furthermore,ammoniacanbedirectlyusedinsolidoxidefuelcells.•CO2isnotrequiredforammoniaproduction,andCO2isnotemittedduringcombustion.Also,sulphurisnotpresent,eliminatingSOxemissionsfromcombustion.Rather,atmosphericnitrogenisrequired,whichisabundantinair(at780000ppm)andmuchcheapertocapturethanCO2(at420ppm).Thespecificationsdiscussedaboveestablishthetechnicalfeasibilityforammoniatobeconsideredasanalternativefuel.However,thedecisiveenablerforammoniaasafuelcomparedtoalternativesisthecostperenergyunit.RENEWABLEAMMONIA87HydrogencarrierAscomparedtohydrogen,ammoniaisshippedundermilderconditions,leadingtoalowertransportcost(Hanketal.,2020).Alternatively,liquidorganichydrogencarriers(LOHCs)areconsideredforhydrogentransport.However,variousanalysesshowthattransport,storageandreconversionofhydrogeninammoniahasalowercostthanliquidhydrogenorLOHCs(Aziz,WijayantaandNandiyanto,2020;IEA,2019a;Wijayantaetal.,2019).Toanextent,thisisbecauseammoniahasahighervolumetrichydrogendensitythanliquefiedhydrogenandLOHCs.Ammoniaisalreadyaglobalcommodity,transportedinternationallybyshipandpipeline,whereasaglobalinfrastructureforLOHCsorliquidhydrogendoesnotexistyet.Inthecaseofdirectlyusingammonia,ratherthandecompositiontohydrogen,ammoniabecomesevenmorecompetitive(Wijayantaetal.,2019).MaritimesectorAmmoniaisconsideredasoneofthedominantoptionsfortheinternationalmaritimesector,asitisalreadywidelyavailableatarelevantscalewithinternationalportinfrastructureinplace(RoyalSociety,2020),althoughfurtherscale-upisrequired.AcomparisonofpropertiesforvariousfuelsisprovidedinTable7.Table7ComparisonofphysicalandchemicalfuelpropertiesforinternationalshippingFuelSupplyenergy(MJ/kg,LHV)Energydensity(MJ/L,LHV)RelativetankvolumeSupplypressure(bar)Injectionpressure(bar)CO₂emissionfromcompletecombustion(gCO₂/km)SOXemissionfromcompletecombustion(gSOX/km)Heavyfueloil40.5351.007-8950490.36Liquefiednaturalgas(-162°C)50221.59300-380300-380370.02Liquefiedpetroleumgas46261.3550600-700--Methanol19.9152.3313500430.02Ethanol26211.7510500--Ammonia(-33°C)18.612.72.7683600-70000Hydrogen(-253°C)1208.54.12--00Corvus,batteryrack0.290.33106.1--00TeslaModel3batterycell21700.82.514.0--00Note:SOx=sulphuroxide;LHV=lowerheatingvalue.AdaptedfromAyvalı,TsangandVanVrijaldenhoven(2021)andMANEnergySolutions(2019).INNOVATIONOUTLOOK88Ascomparedtohydrogen,ammoniaisshippedandstoredundermilderconditions,resultinginalowercostasashippingfuel(Hanketal.,2020).Carbon-basedsyntheticfuelssuchasmethanolandmethanecanalsobeusedasamaritimefuel(Goeppert,OlahandSuryaPrakash,2017)butthesewillrequireacircularcarbonsource,namelydirectaircapture(DAC),whichisexpectedtobeaffordablelaterthandecarbonisationisrequired,inpartbecausethecurrentcostofDACisprohibitivelyhighforfuelproduction(Fasihi,EfimovaandBreyer,2019;IEA,2013).Furthermore,methaneslippagefrom(synthetic)naturalgasmayactuallycausehighergreenhousegasemissionsthanfromheavyfueloil,ifcombustionisnotcomplete(LindstadandRialland,2020).Biofuelsmaynotbeabletoscalesufficientlytosatisfymaritimedemand,becauseonlyasmallamountoftheavailablebiomasscanbeprocessedforfuelapplicationsaffordably,andadditionalcapacitywouldincreasethecostsubstantially(IEA,2020a).CO2emissionscanbecapturedpost-combustionfromshipengines,orpre-combustionduringfuelreformation,althoughthisrequiresadditionalon-boardcapacityforCO2storage(IEA,2021b).Thus,hydrogenandcarbon-basedfuelsarenotexpectedtobesufficienttoachievethe50%greenhousegasemissionreductionby2050targetedbytheIMO(IMO,2019).AcomparisonofammoniaandmethanolasmaritimefuelsisprovidedinTable8,astheseareamongthemainfueloptionsconsideredfordecarbonisingthemaritimesector(DNVGL,2020).Inconclusion,ammoniaisexpectedtobecomethedominantfuelfordecarboniseddeepseashipping,whereasbatteriesmayplayadominantrolefordecarbonisedinlandshippingandcoastalshipping,andotherfuelssuchasbiofuels,methanolandhydrogenmaybeusedforpassengershipsandlargeferries(Liebreich,GrabkaandPajda,2021).Ifammoniaisnotacceptedasamaritimefuel,thiswillslowthedecarbonisationofthemaritimesectorbyaroundfiveyears(MærskMc-KinneyMøllerCenterforZeroCarbonShipping,2021).Table8ComparisonofammoniaandmethanolasamaritimefuelAmmoniaMethanolCosteffectivenessAmmoniahasanadvantage,duetolowercostofnitrogenpurificationversusCO₂purificationSafetyRelativelysaferthanhydrogen,butstillpresentschallengesduetotoxicity.Flammabilityisnotanissue.Relativelysaferthanammonia,similartoxicityasdiesel.Flammabilitymaybeanissue.ExistinginfrastructureSimilarbenefitsTechnologyavailabilityAmmoniaenginesexpectedtobecommercialby2025.Dualmethanol–heavyfueloilenginesarealreadycommerciallyavailable.InternationalMaritimeOrganizationapprovalasfuelNotyet.ApprovedNovember2020(ShipInsight,2020).CO₂emissionsZeroemissionsatcombustion;NOXemissionscontrolledwithSCRsystems.CO₂emissionsatcombustion,althoughlowerthanconventionalfuelsandnetzeroifrenewablemethanol;NOXemissionscontrolledwithSCRsystems.Note:SCR=Selectivecatalyticreduction;NOx=nitrogenoxide.RENEWABLEAMMONIA894.5TheammoniasupplychainVariousapplicationsforammoniahavebeenproposed.Below,thetechnologystatusandregulatoryaspectsofapotentialammoniaeconomyarediscussed.Anoverviewofthetechnologystatusforammoniaproductiontechnologies,ammoniatransportandstorage,aswellasammoniautilisationtechnologiesislistedinTable12inAnnexE.Manytechnologiesarealreadycommercialattherequiredscale;however,afewbottleneckscanbeidentified:•GovernmentalincentivestodecreaseCO2emissions.Investmentisdrivenbyclearandconsistentpolicy.Currentmeasuresforgreenhousegasemissionreductionareuncertain,causingdoubtandlimitinginvestment,therebyslowingthelearningcurveofcleantechnologiesanddelayingthetippingpointforcost-competitiverenewableammonia.•Electrolyserproductioncapacity.Theglobalcapacitywasreportedtobe2.1GWperyearin2020(ESMAPandWorldBank,2020),whiletherequiredcapacityisaround40-65GWperyeartoproduce566Mtperyearofrenewableammoniaby2050inthe1.5°Cscenario(Figure29).Scale-upofelectrolyserproductionisexpectedtoacceleratethelearningcurve,therebydecreasingthecostofelectrolysis(Schmidtetal.,2017b).•Ammoniatransportinfrastructure.By2050,theammoniatransportinfrastructuremustincreasebyafactorof10-15,requiringtensofbillionsofUSDinannualinvestmentintheammoniasupplychainforstorageandtransport.Forexample,around235shipswithacapacityof85000cubicmetres(m3)(58ktofammonia)arerequiredby2050toaccommodate354Mtofadditionalammoniashippedaroundtheworld,assumingavoyageeverytwoweeks.ThisimpliesthatashipforammoniatransportmustbebuiltorrevampedfromLPGtransportroughlyeverytwomonthsuntil2050.•Ammonia’sapprovalasamaritimefuelbyinter-governmentalbodies.Untilinter-governmentalbodiesapproveammoniaasamaritimefuel,everyvesselrequiresseparatepermission,therebylimitingbroadadoption.RegulationandcertificationComprehensivelegislationandregulationisrequiredfortheuseofammoniaasafuel.Legislationfortheproduction,storage,transportanduseofammoniaalreadyexistsinvariouseconomiczones(Valera-Medina,IfanandChong,2021),andtheseregulatoryframeworkscanbeadaptedfornewammoniamarkets.Furthermore,legislationforotherfuelscanbeusedasablueprintforammonia.Forexample,limitsarealreadywellestablishedforNOxemissionsfromcombustionoffossilfuels,andtheseshouldnotberelaxedforammonia.However,newlegislationmayberequiredtolimitemissionsofammoniaandnitrousoxide(VanDammeetal.,2018).Thisshouldbesuchthatthereisalevelplayingfieldwithemissionsfromotherfuels,suchasCO2,carbonmonoxideslippage,methaneslippage,SOxandsootformation.Certificationwillbeessentialtoallowmarketparticipantstodistinguishbetweenammoniaproducedfromvarioussourcesandwithdifferentcarbonintensities,aswellastodistinguishbetweenammoniaandotherfuels,asdiscussedinsection3.3.INNOVATIONOUTLOOK904.6OutlookfortheammoniaeconomyAlthoughammoniaisnotusedinenergyapplicationstoday,itisincreasinglylikelythatammoniawillbeoneoftherenewableenergyvectorsofthe21stcentury,especiallyininter-continentaltradeofcarbon-freeenergy.Ammoniacanbeusedasahydrogencarrier,asamaritimefuelandasastationaryfuel.Inthepastfewyears,low-carbonammoniaproductionandutilisationprojectshavebeenannounced,and,especiallysince2020,themomentumhasbeensubstantial,inlinewithcommitmentsinvariouslocationstowardscarbonneutralityby2050.Thedemandforammoniaissettoincreaseto688Mtby2050intheIRENA1.5°Cscenariofromthecurrentdemandofaround183Mt(Figure29),withmorethanhalfthe2050demandcomingfromnewapplicationsforammoniainenergymarkets.Thequestiondoesnotappeartobewhetherammoniawillplayadominantroleinthehydrogeneconomy,butrather,when.InternationalorganisationssuchastheAmmoniaEnergyAssociation,andregionalonesliketheCleanFuelAmmoniaAssociationinJapanandtheGreenAmmoniaAllianceintheRepublicofKorea,bringtogethercompaniesworkingonammoniaproductionandutilisation,governments,andinstitutes,toidentifyknowledgegapsandacceleratethetransitiontowardsdecarbonisation.Localhydrogenandammoniacentresarerequiredtogenerateknowledgealongtheentirevaluechain.Publicperceptioniskeyinasuccessfultransitiontowardsanammoniaeconomy.AstudyontheYucatanPeninsula,Mexicoshowedthatpeopleareopentoammoniaasafuel,aslongasthecostissimilartonaturalgasbutwithbetterenvironmentalperformance,whileanynegativeinitialimpressionofammoniaisduemainlytoalackofinformation,showingtheimportanceofeducationandcommunityengagement(Mercado-GuatiRojoandValera-Medina,2018).Thegeneralperceptionofammoniaismorepositiveinruralareasascomparedtourbanareas,whichmaybeattributedtoahigherfertiliseruseinruralareas.Ammoniastorageindenselypopulatedareasisnotpreferredinanycase,andshouldbeavoidedwherepossible.Increasingly,policymakersareawareofthefeasibilityofammoniaenergy,especiallyinthecontextofthehydrogeneconomyandrenewableenergyimports.Ammoniaisacentralpillarinnationalhydrogenstrategies,andwasdiscussedasamaritimefuelintheUSSenatein2020(Lewis,2020).In2019,theconceptofammoniaenergywasintroducedtoCanadianPrimeMinisterJustinTrudeauandDutchPrimeMinisterMarkRuttebyJaccoMooijer,SalesDirectorofProtonVentures,whopresentedthemwiththecompanymascot,Monia(Image9).Image8JaccoMooijer(right)ofProtonVenturesgivesCanadianPrimeMinisterJustinTrudeau(secondfromleft)andDutchPrimeMinisterMarkRutte(middle)Monia,themascotofProtonVentures,anammoniasolutionsproviderImagecourtesyofAdamScotti,2018.RENEWABLEAMMONIA91Casestudy3DecarbonisedammoniademandandproductionforecastThefuturedemandforammoniaismadeupoftwodistinctmarkets,namelythecurrentmarketsasafertiliserandanindustrialchemical,andfuturemarketsasahydrogencarrierandafuel.Ammoniaproductionanddemand,bothcurrentandprojectedfor2020,2030,and2050,areshownsidebysideinFigure29fortwoscenarios,astatedpoliciesscenarioanda1.5°Cscenario(seeAnnexG),illustratingboththeexpecteddecarbonisationofammoniaproduction,anditsadoptioninenergymarketsinthecomingdecades.The1.5°Cscenarioseesthetotalammoniamarketgrowingto688Mtby2050.Figure29CurrentandprojectedammoniaproductionbysourceanddemandbysectorAmmoniademand(Mt)Ammoniaproduction(Mt)Statedpolicies°CScenarioStatedpolicies°CScenarioStatedpolicies°CScenarioStatedpolicies°CScenarioFossilnoCCSFossilwithCCSRenewableHydrogencarrierPowergeneration(Japan)FertiliserapplicationsOtherexistingusesShippingfuelINNOVATIONOUTLOOK92Thecurrentmarketdemandisaround183Mt,andtheseexistingmarketsareexpectedtogrowatarateof2-3%annually,resultingindemandin2050of334Mtinthe1.5°Cscenario,ofwhich267Mtwillbeforfertiliserapplicationsand67Mtforotherexistingmarkets.Inthe1.5°Cscenario,theexpectedmarketvolumesforammonia’snewapplicationsasahydrogencarrierandasfuelforshippingandpowergenerationgrowfromzerotodaytoacombined15Mtby2030.However,overthecomingtwodecadesthesenewmarketsgrowrapidlyandtheyexceedcurrentmarketvolumesby2050,reachingatotalof354Mtofammonia.Asahydrogencarrier,127Mtofammoniaistradedinternationally,providinghydrogenimportsprimarilyasachemicalfeedstockandindustrialfuel(equivalentto2363petajoules).Asamaritimefuel,197Mtofammoniaisconsumedin2050,with183Mtusedforinternationalshippingand15Mtindomesticshipping.Theuseofammoniaasafuelforpowergenerationisprojectedtoreach30Mtby2050,whichrepresentsthestatedpoliciesofJapanonly(asammoniapowergenerationtechnologiesdevelop,andasothernationsincludeammoniaintheirplans,thisfiguremaygrow).Reflectingtheuncertaintyoffuturepolicyandmarketadoption,projectionsoffuturedemandforammoniainenergyapplicationsvarywidelyamongotherorganisationsandpublications,from140Mttomorethan1000Mt(seeTable13inAnnexF).Theextenttowhichammoniaisimplementedintheseapplicationsdependsstronglyonclimate-drivenregulations,andonchoicesregardingdecarbonisedfeedstock.Theexpectedammoniademandupto2050forthe1.5°CscenarioisshowninFigure30,whilethestatedpoliciesscenarioisshowninFigure37inAnnexG.Theprimarydifferencebetweenthe2050volumesseeninthesescenariosisintheextenttowhichammoniaisadoptedasahydrogencarrierandasafuelforshipping.Bothapplicationsaresignificantinthestatedpoliciesscenario,with2050demandof109Mtasahydrogencarrierand77Mtasashippingfuel,contributingtototaldemandof550Mtofammoniain2050.However,thestatedpoliciesscenarioseesamarketreductionofmorethan130Mtrelativetothe1.5°Cscenariototaldemandof688Mtofammoniain2050.Acomparisonoftheestimatesforammoniauseasashippingfuel,hydrogencarrier,andforpowergenerationareshowninFigure31,Figure32andFigure33.Afargreaterdifferencebetweenthestatedpoliciesscenarioandthe1.5°Cscenariocanbeobservedonthesupplysideofthemarket,reflectingthespeedatwhichammoniaproductioncapacitycanbedecarbonised.Figure30Expectedammoniademandupto2050forthe1.5°CscenarioAmmoniademand(Mt)HydrogencarrierPowergeneration(Japan)FertiliserapplicationsOtherexistingusesShippingRENEWABLEAMMONIA93Figure31Ammoniademandestimatesforuseasmaritimefuelby2050fromvarioussources(seeTable13)Ammoniademandasmaritimefuel(Mt)IRENA°CscenarioIEAEnergyTechnologyPerspectivesIEASustainableDevelopmentScenarioIEANetZeroEmissionsDNVGL(range)GettingtozerocoalitionIMO(decarbonisationby)AmmonFuelIRENAstatedpoliciesZeroCarbonShippingCenterArgusMediaMedianFigure32Ammoniademandestimatespowergenerationby2050fromvarioussources(seeTable13)Ammoniademandforpowergeneration(Mt)IRENA(Japanonly)CleanFuelAmmoniaAssociation(Japan)TheInstituteofEnergyEconomics(Japan)ArgusMediaIEASustainableDevelopmentScenarioIEANETZeroEmissionsMedianNote:TheIRENAdemandforpowergenerationisbasedonthestatedpolicyoftheCleanFuelAmmoniaAssociation.INNOVATIONOUTLOOK94Additionalammoniaproductionisrequiredtomeettheaddeddemand.Ammoniaforenergyapplicationsshouldnotputfertilisersupply,andthusfoodproduction,atrisk.Currently,thereisaround40-60Mtperyearofovercapacity,ensuringthenear-termavailabilityofsufficientammoniaifnewmarketsdevelop(HaldorTopsøeetal.,2020;Hatfield,2020).Furthermore,low-carbonammoniaproductionpathwaysmustbeadoptedtodecreasethecarbonfootprintofammonia,forenergyapplicationsandalsoforcurrentmarkets.Theannounced2030capacityofproposedlow-carbonfossil-basedandrenewableammoniaplantsalreadyexceeds10%oftotalglobalammoniaproduction(seesections2.3and2.4).By2050,ina1.5°Cscenario,renewableammoniaproductionlevelsmustrisetoanestimated566Mtperyear,morethan80%ofthetotalglobalmarketof688Mtofammonia.Whilemostofthisammoniasupplywillcomefromelectrolysis-basedproduction,additionalsupplyfrombiomass-basedproductionassumesatransitionwhereurearemainsadominantfertiliser.Fossil-basedammoniaproductionshrinksfrom183Mtin2020to122Mtin2050,ofwhich71MtincludesCCSandonly51MtdoesnotincludeCCS.Figure33Ammoniademandestimatesforuseashydrogencarrierby2050fromvarioussources(seeTable13)Ammoniademandashydrogencarrier(Mt)ArgusMediaMedianIRENA°CscenarioIRENAstatedpoliciesRENEWABLEAMMONIA95Theexpectedammoniasupplyupto2050forthe1.5°CscenarioisshowninFigure34,whilethestatedpoliciesscenarioisshowninFigure38inAnnexG.Inthestatedpoliciesscenario,incontrasttothe1.5°Cscenario,conventionalfossil-basedammoniaproductiondoubles,reaching333Mtoffossil-basedammoniawithnoemissionsmitigation,andanadditional159Mtoffossil-basedammoniawithCCS,foratotalof492Mtoffossil-basedammonia.Inthestatedpoliciesscenario,only58Mtofammonia,lessthan10%ofthemarket,wouldberenewableby2050.Thedifferencebetweenthe1.5°Cscenarioandthestatedpoliciesscenarioillustratesstarklythegapbetweenclimateambitionsandthepoliciesthatstillneedtobeenactedinordertoreachthem.Thecombinedcapacityofalltherenewableammoniaprojectsannouncedsofarisaround15Mtperyearby2030andaround71Mtperyearby2040(Table2),relyingsolelyonelectrolysis,whichalreadyrelatestomorethan10%oftheestimated566Mtofdemandinthe1.5°Cscenario.Eventhoughitisunlikelythatallannouncedrenewableammoniaprojectswillmaterialise,thereissubstantialmomentumwithmultiplelarge-scaleprojectsannouncedoverthepastfewmonths.Forreference,before2020,thetotalannouncedrenewableammoniaproductionwasbelow0.1Mtperyear.Figure34Expectedammoniaproductionbyfeedstockupto2050forthe1.5°CscenarioAmmoniaproduction(Mt)FossilnoCCSFossilwithCCSRenewablesINNOVATIONOUTLOOK965.POTENTIALANDBARRIERSKeyfindingsRenewableammoniacandecarboniseexistingammoniamarketsanddisplacefossilfuelsinnewenergymarkets.•Thegreeningoftheindustrialsector,especiallythechemicalandfertiliserindustries,shouldbetheinitialtargetapplicationforrenewableammonia,especiallyforretrofitsofexistingammoniaplants.•Thestationarypowersectorisalsoexpectedtouseammoniaasafuel,withlong-termpurchasecommitmentsde-riskinginvestments.WhilethisiscurrentlydrivenbydemandfromJapan,othercountriesmayadoptthisoptionastechnologiesmature.•Themaritimesectorislikelytobeasignificantdriverforrenewableammoniaand,duetothevolumesrequired,islikelytobemostrelevantfornew-buildprojectsatamulti-gigawattscale.•Ammoniaasahydrogencarriercanprovidefeedstockforindustryandenablehydrogenimportswithalowercostthanlocalrenewablehydrogen.Again,duetothevolumesrequired,thismarketislikelytobemostrelevantfornew-buildprojectsatamulti-gigawattscale.•Inthelongterm,renewableammoniaislikelytobecomethemaincommodityfortransportingrenewableenergybetweencontinents.Renewableammoniacanhaveasignificantimpactontheenergysector.•Boththeproductionanduseofelectro-fuelshelptostabilisethehigh-renewablegrid.•Renewableammoniaproductionconsumespowerwhentheelectricitysupplyishigherthandemand,andprovidesfuelforpowergenerationwhenthesupplyislowerthandemand.•Areadymarketfortransportableelectro-fuelswillspurthedevelopmentofmulti-gigawattrenewableenergyassetsthatarecurrentlytoobigfortheirgrid-constrainedmarkets,especiallyinremoteandsparselypopulatedareas.Urearepresentsaspecialcase,withitsownchallengesandopportunities.•55%ofallammoniaworldwideisusedfortheproductionofurea,whichalsorequiresCO2,currentlysuppliedasby-productoffossil-basedhydrogenproduction.•Inanintegratedammonia-ureaplant,therefore,fossil-basedammoniacannotsimplybesubstitutedwithrenewableammonia,becausenewsourcesofCO2wouldberequired.RENEWABLEAMMONIA97•Ontheotherhand,abiomass-to-ammoniaprocesswouldproducemoreCO2thanisrequiredforureaproduction,creatinganopportunitytocombineureaproductionandCCS.•Thiswouldbeascalablepathwayforbioenergywithcarboncaptureandstorage(BECCS),producingcarbon-negativeurea.•Policies,regulationsandmandatesmustbeusedtoinducedemand.Themainbarrierstorenewableammoniaarethesameasforothercarbon-freefuelsandfeedstocks:thecostofproductionandtheabsenceofregulationsonCO2emissions.•ACO2penaltyofaroundUSD60-90pertonneofCO2mayberequiredtotransitiontowardslow-carbonammonia.Strong,stableandsustainedpoliciesareessential,astheinvestmentinlong-lived,capital-intensiverenewabletechnologiescannotdisseminateinthemarketwithoutconfidence.Thisreportconcludeswiththefollowingrecommendations:•PutasufficientlyhighpriceonCO2emissions.•Translatepoliticalwillintopolicies.•Focusondeploymentofexistingrenewableammoniatechnologies.•Supportthedevelopmentofentiresupplychains.•Devisetradestrategiesthatmitigatesupplyrisks.•Investinelectrolysermanufacturing.•De-riskearlyinvestmentprojects.•Retrofittechnologytowardsrenewableammoniaproduction.•Supportthedemand-sidephase-outoffossilfuels.•Re-assesstheroleofammoniainhydrogenstrategies.5.1DemandAmmoniahastheidenticalchemicalstructure,NH3,whetheritisproducedfromfossilorrenewablesources.Assuch,renewableammoniaisadirectsubstituteforfossilammoniainmostofitscurrentuses.Annualammoniaproductionisexpectedtogrowfromitscurrent183Mttomorethan200Mtby2025(dePeeetal.,2018).Withitsadoptioninenergyapplications,thetotalannualdemandforammoniaisexpectedtoreach688Mtby2050ina1.5°Cscenario(Figure29),ofwhich566Mt,ormorethan80%,isexpectedtoberenewableammonia.Already,thecombinedcapacityofannouncedrenewableammoniaplantswillbe15Mtby2030(Table2).INNOVATIONOUTLOOK98However,urea,whichaccountsforaround55%ofcurrentammoniademand,requiresbothammoniaandCO2,whichiscurrentlysuppliedasaby-productoffossil-basedhydrogenproductioninanintegratedammonia-ureaplant.Assuch,fossil-basedammoniaforureaproductioncannotsimplybesubstitutedwithrenewableammoniausingelectrolysers.Circularcarbonsourceswillneedtobeutilised,suchasbiomassordirectaircapture,andashiftawayfromureatowardsnitratesmaybeexpected.Notably,abiomass-to-ureaprocesswouldproducemoreCO2thanisrequiredforureaproduction,creatinganopportunityforscalablebioenergywithcarboncaptureandstorage(BECCS)andcarbon-negativeammoniaandfertilisers.Theintroductionofrenewableammoniawouldfacilitatethetransitiontoasustainablecirculareconomyinthechemical,power,transportandotherenergy-relatedsectors.Energymarketswillbesuppliedwithrenewableammoniafromareaswithlow-costsolarandwind.Ammoniaforenergy-relatedapplicationsmustbedecarbonisedinordertooffermeaningfulbenefitsintermsofitscarbonfootprintascomparedtofossilfuels(Al-Aboosietal.,2021).Aswithanyotherlow-carbonfuelorchemicalfeedstock,demandforrenewableammoniamustbestimulatedbyadequatepolicies,regulationsandmandates.Forexample,theRenewableEnergyDirectiveII(REDII)intheEUmandatesthat14%oftheenergyusedintransportshouldcomefromrenewablesourcesby2030.Themarketforrenewableammoniainthetransportsectorisfocusedoninternationalshipping,withestimateddemandof197Mtby2050ina1.5°Cscenario.Inthechemicalandindustrialsectors,ammoniaasahydrogencarrierisexpectedtoenablelow-costhydrogenimportsforfuelandfeedstock,meetingdemandof127Mtby2050ina1.5°Cscenario.Furthermore,renewableammoniawillfindapplicationsforstationarypower,startinginJapan.By2030,around3-5Mtperyearwillbeusedforstationarypowergenerationingasturbinesandcoal-firedpowerplantsinJapan,withdemandrisingto30Mtby2050.Ammoniamayalsobeusedasstationaryfuelin,forexample,EuropeandNorthAmerica,asammoniaoffersanalternativetonaturalgasforpeakerplantsforfulldecarbonisationoftheelectricitygrid(PalysandDaoutidis,2020).Currently,hydrogenisconsideredforsuchapplications,althoughduetothestoragechallengesofhydrogen,thisislikelylimitedtolocationswithsaltcaverns.5.2SustainableproductionElectrolysisElectrolysis-basedhydrogenproductionwithsolarandwindenergywillplayadominantroleindecarbonisingammoniaproduction.Variousworld-scalerenewableammoniaplantshavealreadybeenannounced,startingoperationatthegigawattscalearound2025.CommercialdemonstrationatasmallerscalebecameoperationalinPuertollano(Spain)in2021(Atchison,2022b).Alkalineelectrolysershavebeencommercialonthe150MWscaleforacentury(Ernst,1928),andnowothertechnologiesarebeingscaledup,includingPEMandsolidoxide.BothalkalineandPEMelectrolysisarecurrentlyavailableatthemegawattscale,whileasimilarscaleofsolidoxideelectrolysisisexpectedtobeavailableby2023(Frøhlke,2021b).Thepotentialforelectrolysis-basedrenewableammoniawilldependmainlyonfurtherreductionsinthecostofrenewablepower,reductionsinthecapitalcostofelectrolysers,andgainsinefficiencyanddurability.RENEWABLEAMMONIA99BiomassBiomasscanalsobeusedtoproducehydrogenaswellasbiogenicCO2.However,biomassisnotexpectedtoplayadominantroleindecarbonisingammoniaproduction,duetothelimitedavailabilityoflow-costbiomass,whichmayberequiredasfeedstockforotherchemicals(Sociaal-EconomischeRaad,2020).Biomassmayplayaroleindecarbonising10-20%ofexistingfossil-basedammonia-ureaplants,andforlocalproductioninareaswithverylowbiomasscost.5.3ImpactofrenewableammoniaontheenergysectorTheprogressindecarbonisationoftheenergy,industryandchemicalsectorsandtheirassociatedelectrificationthroughtheuseofrenewableenergysourcesislikelytohavesignificantconsequencesinthepowersector,consideringtheintermittencyofrenewablesourcessuchaswindandsolar.Theproductionanduseofelectro-fuelssuchasrenewableammoniacanprovideanoutletforrenewablepowerandsupportgridstabilisation,dependingonthenatureofimbalancesbetweensupplyanddemand.Putdifferently,renewablepowercanbeusedtoproducerenewablefuelswhenthesupplyishigherthanthedemand,and,conversely,renewablefuelscanbeusedtogeneratepowerwhenthesupplyislowerthanthedemand.Beyondtheexistinggrid,however,anoperationalmarketfortransportableelectro-fuelswillspurthedevelopmentofsignificantrenewableenergyassetsthatarecurrentlytoobigfortheirgrid-constrainedmarkets,especiallyinremoteandsparselypopulatedareas.5.4DriversAsmentionedpreviously,uptakeofrenewableammoniaisdrivenmainlybytheneedtodecarbonisesocietyandshiftawayfromfossilfuels.Intheongoingenergytransitionofend-usesectors,renewableammoniahasasubstantialpotentialtoactasanenergyvectortomitigateandeventuallyeliminatethecarbonfootprintofthechemicalproductionindustryandenergysectors.Inthelongterm,renewableammoniacanbefacilitatedasthemaincommodityfortransportingrenewableenergybetweencontinents.However,adequatepolicyframeworks,regulationsandsubsidiesareneededtostimulatetheproductionandconsumptionofrenewablefuels.TheEU’sEnergyRoadmapcallsfor80-95%reductionsingreenhousegasemissionsby2050(EuropeanCommission,2012).Thiswillrequireacompletetransformationoftheenergysector,witharoundtwo-thirdsofenergycomingfromrenewablesources.Asimilartransitionwillberequiredintherestoftheworldtoensureasecure,competitiveandsustainableenergysysteminthelongterm(IRENA,2019).AccordingtoIRENA,70%oftheworld’senergy-relatedCO2emissionsmustbecutby2050(IRENA,2020a).Thisisanopportunityforthedevelopmentofcost-competitiverenewableammoniaaspartofthesolution.Fossil-basedammoniahasbeenavailableonthemarketasacommoditychemicalforalongperiodoftime.Renewableammoniacouldsubstitutefossil-basedammoniainmostapplications,giventhatrenewableammoniaandlower-carbonfossil-basedammoniaareidealrawmaterialsforthechemicalindustryandthefertiliserindustry,andpotentiallyasfuel.Thefollowingaresomeofthemostimportantdriversforthedevelopmentoftherenewableammoniamarket:•Renewableammoniacanbeusedasfeedstockinawiderangeofapplicationsinthechemicalindustry.INNOVATIONOUTLOOK100•Itcanbeproducedvialow-carbonemissionproductionroutes.•Renewableammoniaisaliquidenergystoragemediumthatiseasytostoreandtransport.•Itrequiresanuncomplicatedproductionroutethatusesabundantatmosphericnitrogenandrenewableelectrolysisbasedonhydrogen.•Itiscompatiblewithexistingdistributioninfrastructureandcanbeblendedwithconventionalfuels,leadingtoareductioninotherharmfulemissions(SOx,particulatematter,etc.).Decarbonisationoftheindustrialsector,especiallythechemicalandfertiliserindustries,shouldbetheinitialtargetapplicationforrenewableammonia,especiallyforretrofitsofexistingammoniaplants.Renewableammoniacanbeafeedstockforexistingproductscurrentlyobtainedfromfossil-basedammonia,althoughinsomecasesCO2mayberequiredasadditionalfeedstock.Themaritimesectorisalsolikelytobeasignificantdriverforexpandingtheproductioncapacityofrenewableammonia,duetomandatesandlegislationbeingputinplacebyregulatorstoreducegreenhousegasemissions.Becauseofthevolumesrequiredtodelivermeaningfuldecarbonisationacrossthesector,thisapplicationislikelytobemostrelevantfornew-buildprojectsatamulti-gigawattscale.Thestationarypowersectorisalsoexpectedtouseammoniaasafuel,ledbyJapan.Thisisanimportantdriverforrenewableammonia,aslong-termpurchasecommitmentsareagreeduponbetweenproducersandoff-takersforpowergeneration,de-riskinginvestments(Kumagai,2021;Yara,2021).Islandedlocationswhererenewableenergycanbeproducedatacomparablylowercost,andwherefuelimportsarecostly,couldalsobegoodcandidatesfortheproductionofrenewableammoniaatasmallerscale.Finally,ammoniacanbeahydrogencarrier,providingfeedstockforthechemicalindustryandenablinghydrogenimports.Importedrenewableammoniamayhavealowerdeliveredcostofhydrogenthanlocalrenewablehydrogenproductionin,forexample,NorthernEuropeandJapan(Atchison,2021b;IEA,2019a).Thepotentialuseofrenewableammoniaasagloballytradedenergycommoditysupportsmassiveexport-scalerenewableenergydevelopment,especiallyfromcoastaldesertswheretheavailabilityofinexpensivebutstrandedrenewablepowerisaninherentdriverforrenewableammonia.Thisalsogeneratessustainedjobsinsuchareas.Productionofrenewableammoniacouldalsopromptglobaltradeopportunitiesbetweenrenewableenergy-richregionssuchasNorthAfrica,theMiddleEast,Oceania,andSouthAmerica,andenergy-importingregionssuchasAsiaandEurope.Politicalstabilityandwillingnesstoco-operateisrequiredforammoniaoff-takeagreementsbetweencountries.5.5BarriersThehighcostofproductionandtheabsenceofstrongregulationsonCO2emissionshampersthedevelopmentofarenewableammoniamarket,asitisthecaseforotherrenewableandcarbon-freefuelsorfeedstocks.Adequateregulatoryframeworkandpolicesareessentialtokickstartandsustainthemassdeploymentofrenewableammoniainthemarket.SubstantivegovernmentalincentivesarerequiredtodecreaseCO2emissions.ACO2penaltyofanestimatedUSD60-90pertonneofCO2isrequiredtotransitiontowardslow-carbonammoniaforcurrentammoniasynthesisinfrastructure(Figure14).CurrentCO2penaltiesvarywidelybycountry.Furthermore,costsaretypicallybelowUSD60pertonneofCO2outsidetheEU,andfluctuating.Investmentisdrivenbyclearpolicytrends.RENEWABLEAMMONIA101Withoutapriceoncarbon,thecostofrenewableammoniamustdecreaseinordertobecompetitiveontheglobalmarket.Renewableenergyaccountsformorethanhalfthecostofammonia,and,tobecompetitive,renewableenergypricesofUSD20perMWhandbelowarerequired.Suchpricesarealreadyachievableinafewlocationsandwillbecomemorewidespreadbeyond2030(IRENA,2021a;Tancock,2020).Inthelongterm,new-buildrenewableammoniaplantsareexpectedtoproduceammoniaatlessthanUSD400pertonneinmostplaces,andlessthanUSD350pertonneinthemostsuitablelocations.Uncertaintyinpolicyandtechnologyimpliesahighweightedaveragecapitalcost(WACC),resultinginahighlevelisedcostofrenewableammonia.Thisisespeciallytruebecauserenewableammoniaproductionrequireshighupfrontcapitalinvestment.TechnologydemonstrationscandecreasetheWACC(IEA,2019b).Theoperatingcostofrenewableammoniaplantsislow,resultinginalowcashcostofammoniaproductionforexistingfacilities.Currently,around25-30Mtofammoniaistransportedannuallyacrosslandandsea.However,newenergy-relatedmarketsmayrequiregreatlyexpandedammoniainfrastructure,capableoftransportingaround300Mtperyear.Thereisnotechnologicallimitationtothescale-upofammoniainfrastructure,whichisafunctionofdemand.However,co-ordinatedpoliciesandinvestmentsupportacrossregionsandacrosssectorswillbeadvantageous.Ammoniaiscurrentlynotapprovedasafuelbyvariousregulators,includingtheIMOandmanypowersectorauthorities.Operationalexperienceisrequiredtoestablishprotocolsforsafehandling.Productstandardsarerequiredtoestablishsafepuritylevelsacrossmultipleapplications.Emissiontestingandverificationisrequiredtoensurethatammoniacombustiondoesnotexceedacceptableemissionlevelsacrossarangeofpollutants.Theseactionsmustbecompletedbeforeitispossibletohavebroadregulatoryapprovalofammoniaasafuel.Inthemeantime,useofammoniaasafuelwillbelimitedtodemonstrationsandpilots.Someresearchgapsexist,suchasthelowburningvelocitiescomparedwithconventionalfuels,higherenergydemandforignition,andthepotentialofhighNOXemissionsfromcombustion(Elishavetal.,2020;Kobayashietal.,2019;Valera-Medinaetal.,2018).5.6PoliciesandrecommendationsSettingouttheappropriatepolicyframeworksandsupportmechanismsiscrucialtoreachingthegoalsofcarbonemissionmitigation,sustainabilityandenergysecurity.Adequateinvestmentinenduringandcapital-intensiverenewableenergytechnologiesisnotlikelytoemergewithoutgivingconfidencetoinvestorsthroughstrong,predictable,forward-lookinganddecisivepolicies.PutasufficientlyhighpriceonCO2emissionsACO2penaltyofaroundUSD60-90pertonneofCO2isrequiredtobridgethegapbetweenfossil-basedammoniawithunmitigatedemissionsandfossil-basedammoniawithCCS.ACO2penaltyofuptoUSD150pertonneofCO2wouldbridgethegapbetweenfossil-basedandrenewableammonia(seesection2.3).Inthelongterm,renewableammoniaisexpectedtobecostcompetitivewithfossil-basedammoniawithCCS.Thus,CCScanplayaroleindecarbonisingcurrentammoniafacilities,butnewlybuiltfossil-basedammoniaplantswithCCSmayresultinstrandedassetsinthelongterm,unlesssupportedbyverylownaturalgasprices.INNOVATIONOUTLOOK102TranslatepoliticalwillintopoliciesWithorwithoutapriceonCO2emissions,strong,stableandsustainedregulatorymeasuresforfuelstandardsandrenewablequotasormandateswillfacilitatepriceincentivestoprovidestabilityofsustainedgrowthandinvestment.Thesecanbesupportedbyrobustcertificationthatcanaccountforthecarbonintensityofammonia.Suitablepolicyinstrumentsareparamounttoensureequitabletaxtreatmentandalong-termguaranteedpricefloorforwideradoptionofrenewableammoniaandotherpromisingsustainablefuels.Whileenergytaxreductioncanbeprovidedforrenewablefuels,includingrenewableammonia,fuelexciseandothertaxesshouldbebasedonenergycontentandnotvolume(e.g.USDperkilowatt-hour[kWh],notUSDperlitre).Forexample,acontractfordifference(CfD)schemeinwhichadvancedrenewablefuelproductionprojectsbidforCfDs,andthewinnersareawardedtheminso-calledreverseauctions(lowestbidwins)isanappropriatetaxationpolicythatcan“makeorbreak”alternativefuels;thiscouldmotivateinvestmentsasameaningfulproductionsupportsystem.Moderatecarbontaxationlevelscanbeobtainedviaearmarkandreturnprinciples.FocusondeploymentofexistingrenewableammoniatechnologiesThecurrentfocusshouldbeonimplementingexistingtechnologiesatscaleratherthandevelopingnew,breakthroughtechnologies.Thelatterisnotnecessarilyrequired,asmostelementsintherenewableammoniavaluechainhavealreadybeendemonstrated.Rather,combinationsoftechnologiesshouldbedemonstratedatrelevantscaleandunderrelevantconditions,whichisthebreakthroughrequired.Thisconcernsinnovationssuchasimprovingtheflexibilityoftheammoniasynthesisloop,improvingtheperformanceoftheelectrolyser,improvingtheperformanceofammoniacrackersanddrivingdownthecostsoftoday’stechnologies.Near-termmarketcreationthroughthedeploymentofexistingtechnologieswillaccelerateinnovationinthelongerterm.SupportthedevelopmentofentiresupplychainsFundingprogrammesshouldextendtheirscopetoincludeammoniaandotherhydrogencarriers.Programmesthatfocusonasingletechnology(e.g.hydrogenorsolarpanels)tendtosupportearly-stageR&Dandpilotprojects.However,broaderfundingprogrammesthatfocusonapplicationsforthesetechnologies(e.g.electro-fuels,energystorage)supportdeploymentbyconnectingthevaluechainacrossproduction,distributionanduse.Programmesmayalsowishtoallowforeignparticipation,tosupportdevelopmentofglobalsupplychains,recognisingthatdemandmaynotbemetbydomesticproduction.DevisetradestrategiesthatmitigatesupplyrisksTocreatejobsandencouragecompetitivenewindustriesforrenewableammoniainbothproducingandconsumingregions,internationalco-operationmustbefostered–forexample,betweenprojectdevelopers,ammoniausersandammoniaproductioncompanies.Increasingtheinvestmentsinrenewableammoniaproductioncapacitycouldbroadentheenergyandfeedstocksupplyrangeandminimisepoliticalrisks.InvestinelectrolysermanufacturingSubstantialscale-upofelectrolyserfactoriesisrequired.Thereportedelectrolyserproductioncapacityin2020wasonly2.1GWperyear(ESMAPandWorldBank,2020),but40-65GWperyearwillberequiredtosupplythevolumeofhydrogenneededfordecarbonisingthefertiliser,powerandmaritimesectorswithrenewableammonia.Thus,multiplegigawatt-scaleelectrolyserfactorieswillberequired.Thedevelopmentofsuchlarge-scalefactorieswillinherentlydecreasethecostofelectrolyserproductionduetoanacceleratedlearningcurveandeconomiesofscale,whichwillinturnmakerenewableammoniamorecompetitivewithfossil-basedalternatives.RENEWABLEAMMONIA103De-riskearlyinvestmentprojectsGovernmentscanhelptode-riskthebillionsofUSDininvestmentoffirstmoversseekingtobuildgigawatt-scalerenewableammoniaplants.Forinstance,grants,investments,loansandloanguaranteescande-riskpartoftheCAPEXsideoftheinvestment.OntheOPEXside,investmentscanbede-riskedwithcontractsfordifference(CfD)orgreenpremiums,renewablemandates,procurementcontractsandoff-takeguarantees,oranintermediatesecuredbuyerofauctionedprojects.Noconventionalfossil-basedammoniaplantfinancesitsownnaturalgasextractionandpipelinesupply;however,mostgigawatt-scalerenewableammoniaplantsdotheequivalent,bydevelopingfullrenewableelectricitygenerationassets.ThismeansthatwhiletheCAPEXforrenewableammoniaishigher,theOPEXcanbemuchlowerthanforfossil-basedammonia.Oncearenewableammoniaplanthasbeendepreciated,itsoperatingexpenses,orcashcost,willbelow.Thismakesrenewableammoniacompetitive,bothonthechemicalcommoditymarketandasanalternativetofossilfuelsinenergymarkets.Alternatively,aseparatelyfinancedwindandsolarprojectcanprovideelectricitytoarenewableammoniaplantviaalong-termpowerpurchaseagreement(PPA).RetrofittechnologytowardsrenewableammoniaproductionAmmoniaplantsthatdonotcurrentlyproduceureacanbedecarbonisedwithoutdelay,eitherbyintegratingCCS,byretrofittingeSMRtechnologyorbyreplacingfossilfeedstockwithrenewablehydrogen.Thisrepresentsaround80Mtperyearofexistingammoniacapacity,whichcanberegardedaslow-hangingfruittodecarbonise,withacostgapofUSD60-150pertonneofCO2(HaldorTopsøeetal.,2020;SayginandGielen,2021).Supportthedemand-sidephase-outoffossilfuelsGovernmentalandregulatoryincentivesshouldbeprovidedtoexistingfossil-basedassetstoacceleratethetransitiontorenewables.Thispreventslocked-inCO2emissionsfromcontinuedoperations,reducesdemandforongoingfossilfueldiscoveryandextraction,andreducesthelikelihoodofstrandedassets.Retrofittingexistingassetsmayoftenbemorecosteffectivethanbuildingnewassets,especiallyduringtheinitialscale-upphase.Thisisalsovalidforammoniautilisationtechnology.Forboththepowersectorandmaritimesector,currenttechnologycanoftenberetrofittedtooperateonammoniafuelatalowercostthanbuildingnewtechnology.Inthemaritimesector,ammoniatankerscanbeconvertedtouseammoniaasafuelfirst,intheknowledgethatfuelavailabilitywillnotbeanissueforthisvesseltypeatanyport.Vesselconversionswillberequiredthisdecade,asshipstypicallyhavealifetimeof20-25years.Tocomplywiththe1.5°Cscenario,anestimated5%ofthemaritimefuelmixshouldbezero-carbonfuelsby2030(Osterkamp,SmithandSøgaard,2021).TheammoniaandLPGgascarriersegmentoftheglobalfleetrepresentsroughly2%ofmaritimefuelconsumption.Re-assesstheroleofammoniainhydrogenstrategiesMosthydrogenstrategiesconsiderammoniaonlyasaconsumerofhydrogen,inthecontextoffertiliserproduction,andomitconsiderationofitspotentialrolesasafuelandhydrogencarrier.Inlocationswhereammoniawillbeimportedasahydrogencarrier,ammoniashouldbeutiliseddirectlywherepossible,ratherthanusinghydrogenobtainedfromthedecompositionofammonia.Ammoniamaybethemostcost-effectivevectorforlarge-scalehydrogenimports,butitscost-effectivenessincreaseswithdirectuse.Noveltechnologiestouseammoniaincentralisedanddecentralisedpowergeneration,aswellastransportapplications,areapproachingcommercialisationandmayofferanopportunitytore-assesstherolesofhydrogenandammoniainthecontextofanationalhydrogenstrategy.INNOVATIONOUTLOOK104REFERENCESABS(2021a),JointStudytoExplorethePotentialforAmmoniaasaMarineFuelinSingapore,AmericanBureauofShipping,Houston,https://news.cision.com/american-bureau-of-shipping/r/joint-study-to-explore-the-potential-for-ammonia-as-a-marine-fuel-in-singapore,c3273423(accessed1June2021).ABS(2021b),AmmoniaasMarineFuel,AmericanBureauofShipping,Houston,https://safety4sea.com/wp-content/uploads/2021/01/Ammonia_as_Marine_Fuel_Whitepaper_20188.pdf.Acker,M.(2021),“Pipelinetransportationofammonia–helpingtobridgethegaptoacarbonfreefuture”,AmmoniaEnergyConference2021,Boston,www.ammoniaenergy.org/wp-content/uploads/2021/11/AEA-Ammonia-Pipeline-Transportation-MEA-11-4-2021.pdf.Adair,B.(2020),“Lowcarbonammoniacertification”,AmmoniaEnergyConference2020,17-20November,www.ammoniaenergy.org/wp-content/uploads/2020/12/Blake-Adair.pdf.ADNOC(24May2021),“ADNOCtobuildworld-scaleblueammoniaproject”,https://adnoc.ae/en/news-and-media/press-releases/2021/adnoc-to-build-world-scale-blue-ammonia-project.Afif,A.etal.(2016),“Ammonia-fedfuelcells:Acomprehensivereview”,RenewableandSustainableEnergyReviews,Vol.60,Elsevier,Amsterdam,pp.822-835,https://doi.org/10.1016/j.rser.2016.01.120.Ahlgren,S.etal.(2008),“Ammoniumnitratefertiliserproductionbasedonbiomass–environmentaleffectsfromalifecycleperspective”,BioresourceTechnology,Vol.99/17,Elsevier,Amsterdam,pp.8034-8041,https://doi.org/10.1016/j.biortech.2008.03.041.Ahluwalia,R.K.etal.(2019),“Systemlevelanalysisofhydrogenstorageoptions”,2019AnnualMeritReviewandPeerEvaluationMeeting,Washington,DC,pp.1-42,www.hydrogen.energy.gov/pdfs/review19/st001_ahluwalia_2019_o.pdf.Akbari,M.,A.O.OyedunandA.Kumar(2018),“Ammoniaproductionfromblackliquorgasificationandco-gasificationwithpulpandwastesludges:Atechno-economicassessment”,Energy,Vol.151,Elsevier,Amsterdam,pp.133-143,https://doi.org/10.1016/j.energy.2018.03.056.Al-Aboosi,F.Y.etal.(2021),“Renewableammoniaasanalternativefuelfortheshippingindustry”,CurrentOpinioninChemicalEngineering,Vol.31,Elsevier,Amsterdam,https://doi.org/10.1016/j.coche.2021.100670.Al-Breiki,M.andY.Bicer(2021),“Comparativelifecycleassessmentofsustainableenergycarriersincludingproduction,storage,overseastransportandutilization”,JournalofCleanerProduction,Vol.279,Elsevier,Amsterdam,p.123481,https://doi.org/10.1016/j.jclepro.2020.123481.AmmPower(2021),“AmmPowerCorp.SignsMoUtoprovidegreenammoniaenergysolutionstoPortoCentralinBrazil,Brazil’snewestdeep-waterport,locatedinthesouthofStateofEspíritoSantonearstateborderwithRiodeJaneiro”,https://ammpower.com/ammpower-corp-signs-mou-to-provide-green-ammonia-energy-solutions-to-porto-central-in-brazil-brazils-newest-deep-water-port-located-in-the-south-of-state-of-espirito-santo-near-state-borde(accessed2September2021).Andersen,S.Z.etal.(2019),“Arigorouselectrochemicalammoniasynthesisprotocolwithquantitativeisotopemeasurements”,Nature,Vol.570,Springer,Berlin,pp.504-508,https://doi.org/10.1038/s41586-019-1260-x.RENEWABLEAMMONIA105Anderson,K.(2017),“Ammoniasafety,aglobalperspective”,presentedatTechnionAmmoniaConference,Haifa,15November,https://chemeng.technion.ac.il/wp-content/uploads/2017/11/M.-Kent-Anderson.pdf.Appl,M.(2011),“Ammonia,1.Introduction”,Ullmann’sEncyclopediaofIndustrialChemistry.Appl,M.(1999),Ammonia:PrinciplesandIndustrialPractice,1sted.,Wiley-VCHVerlagGmbH,Weinheim.ARENA(10October2019),“RenewablefuturebeckonsforQueenslandammoniaplants”,ARENAWIRE,https://arena.gov.au/blog/renewable-future-beckons-for-queensland-ammonia-plants.ArgusMedia(2021a),“ChinaETS:Emissionsprices,volumeshitnewrecordlow”,www.argusmedia.com/en/news/2250672-china-ets-emissions-prices-volumes-hit-new-record-low(accessed7October2021).ArgusMedia(2021b),“JapanesepartnersstudyIndonesianblueammoniaoutput”,www.argusmedia.com/en/news/2197536-japanese-partners-study-indonesian-blue-ammonia-output(accessed26March2021).ArgusMedia(2021c),“Japanammoniafueldemandtohit5mnt/yrin2030:CFAA”,www.argusmedia.com/en/news/2193986-japan-ammonia-fuel-demand-to-hit-5mn-tyr-in-2030-cfaa(accessed11March2021).ArgusMedia(2021d),“JapanlookstoUS,Australiaforammoniasupplychain”,www.argusmedia.com/en/news/2194454-japan-looks-to-us-australia-for-ammonia-supply-chain(accessed11March2021).ArgusMedia(2021e),ARGUSGreenAmmoniaStrategyReport,www.argusmedia.com/en/fertilizer/argus-green-ammonia.ArgusMedia(2020),“Greenshifttocreate1billiontonne‘greenammonia’market?”view.argusmedia.com/rs/584-BUW-606/images/Argus%20White%20Paper%20-%20Green%20Ammonia.pdf.ArgusMedia(2019),“Yuzhnyammoniaexportersnavigatebearishmarket”,www.argusmedia.com/-/media/Files/white-papers/2019/argus-white-paper-yuzhny-ammonia-exporters-navigate-bearish-market-09-2019.ashx.Arimura,T.H.andS.Matsumoto(2020),CarbonPricinginJapan,Springer-Verlag,https://link.springer.com/book/10.1007/978-981-15-6964-7.Armijo,J.andC.Philibert(2020),“Flexibleproductionofgreenhydrogenandammoniafromvariablesolarandwindenergy:CasestudyofChileandArgentina”,InternationalJournalofHydrogenEnergy,Vol.45/3,Elsevier,Amsterdam,pp.1541-1558,https://doi.org/10.1016/j.ijhydene.2019.11.028.ArnaizdelPozo,C.andS.Cloete(2022),“Techno-economicassessmentofblueandgreenammoniaasenergycarriersinalow-carbonfuture”,EnergyConversionandManagement,Vol.255,Elsevier,Amsterdam,p.115312,https://doi.org/10.1016/j.enconman.2022.115312.Arora,P.etal.(2018),“Remote,small-scale,‘greener’routesofammoniaproduction”,JournalofCleanerProduction,Vol.199,Elsevier,Amsterdam,pp.177-192.Arora,P.etal.(2017),“Multi-objectiveoptimizationofbiomassbasedammoniaproduction-potentialandperspectiveindifferentcountries”,JournalofCleanerProduction,Vol.148,Elsevier,Amsterdam,pp.363-374,https://doi.org/10.1016/j.jclepro.2018.06.130.Arora,P.etal.(2016),“Small-scaleammoniaproductionfrombiomass:atechno-enviro-economicperspective”,Industrial&EngineeringChemistryResearch,Vol.55/22,ACSPublications,Washington,DC,pp.6422-6434,https://doi.org/10.1021/acs.iecr.5b04937.Atchison,J.(2022a),“Buildinga‘regulatorysandbox’forammoniabunkeringtrialsinSingapore”,AmmoniaEnergy,www.ammoniaenergy.org/articles/building-a-regulatory-sandbox-for-ammonia-bunkering-trials-in-singapore(accessed28February2022).INNOVATIONOUTLOOK106Atchison,J.(2022b),“FertiberiapreparesthePuertollanoplantforgreenhydrogen”,AmmoniaEnergy,www.ammoniaenergy.org/articles/fertiberia-prepares-the-puertollano-plant-for-green-hydrogen(accessed28February2022).Atchison,J.(2021a),“Theammoniawrap:commercialturbines,anotherGWofgreenammonia,VikingEnergyupdates,and‘any-fuel’high-tempPEMfuelcells”,AmmoniaEnergy,www.ammoniaenergy.org/articles/the-ammonia-wrap-commercial-ammonia-gas-turbines-and-more(accessed13April2021).Atchison,J.(2021b),“AtrioofgreenammoniaupdatesfromNorway”,AmmoniaEnergy,www.ammoniaenergy.org/articles/a-trio-of-green-ammonia-updates-from-norway(accessed2September2021).Atchison,J.(2021c),“Theammoniawrap:OCItocharterammonia-fueledvessels,JapaneseCCGTunitsawaitammonia,moregreenammoniaforChile,newSouthKoreaandUruguayupdates”,AmmoniaEnergy,www.ammoniaenergy.org/articles/the-ammonia-wrap-oci-to-charter-ammonia-fueled-vessels-japanese-ccgt-units-await-ammonia-more-green-ammonia-for-chile-new-south-korea-and-uruguay-updates(accessed13April2021).Ausfelder,F.etal.(2021),“Infrastructurechallengescausedbyindustrialtransformationtoachievegreenhousegasneutrality.AmmoniaproductionintheAntwerp-Rotterdam-Rhine-Ruhrarea”,Chemie-Ingenieur-Technik,Vol.93/3,Wiley-VCHVerlag,Weinheim,pp.373-389,http://dx.doi.org/10.1002/cite.202000199.Avery,W.H.(1988),“Aroleforammoniainthehydrogeneconomy”,InternationalJournalofHydrogenEnergy,Vol.13/12,Elsevier,Amsterdam,pp.761-773,https://doi.org/10.1016/0360-3199(88)90037-7.Ayvalı,T.,S.C.E.TsangandT.VanVrijaldenhoven(2021),“Thepositionofammoniaindecarbonisingmaritimeindustry:anoverviewandperspectives:PartI”,JohnsonMattheyTechnologyReview,Vol.65/2,JohnsonMatthey,Royston,pp.275-290,https://doi.org/10.1595/205651321X16043240667033.Aziz,M.,A.T.Wijayanta,andA.B.D.Nandiyanto(2020),“Ammoniaaseffectivehydrogenstorage:areviewonproduction,storageandutilization”,Energies,Vol.13/12,MDPI,Basel,pp.1-25,https://doi.org/10.3390/en13123062.Bañares-Alcántara,R.etal.(2015),AnalysisofIslandedAmmonia-BasedEnergyStorageSystems,UniversityofOxford,Oxford,https://dokumen.tips/documents/analysis-of-islanded-ammonia-based-energy-storage-of-islanded-ammonia-based.html.Barsoe,T.(2021),“MaerskbacksplanforlargegreenammoniaplantinDenmark”,Nasdaq,www.nasdaq.com/articles/maersk-backs-plan-for-large-green-ammonia-plant-in-denmark-2021-02-23(accessed13April2021).Bartels,J.R.andM.B.Pate(2008),AFeasibilityStudyofImplementinganAmmoniaEconomy,IowaStateUniversity,DesMoines.Barth,F.(2016),“CertifHy–DevelopingaEuropeanGuaranteeofOriginSchemeforGreenAmmonia”,www.certifhy.eu/images/media/files/CertifHy_Presentation_19_10_2016_final_Definition_of_Premium_Hydrogen.pdf.Batool,M.andW.Wetzels(2019),DecarbonisationOptionsfortheDutchFertilizerIndustry,PBLNetherlandsEnvironmentalAssessmentAgency,TheHague,www.pbl.nl/sites/default/files/downloads/pbl-2019-decarbonisation-options-for-the-dutch-fertiliser-industry_3657.pdf.Bell,T.E.andL.Torrente-Murciano(2016),“H2productionviaammoniadecompositionusingnon-noblemetalcatalysts:Areview”,TopicsinCatalysis,Vol.59/15-16,Springer,Berlin,pp.1438-1457,https://doi.org/10.1007/s11244-016-0653-4.Bicer,Y.andI.Dincer(2018),“Lifecycleassessmentofammoniautilizationincitytransportationandpowergeneration”,JournalofCleanerProduction,Vol.170,Elsevier,Amsterdam,pp.1594-1601,https://doi.org/10.1016/j.jclepro.2017.09.243.RENEWABLEAMMONIA107Bicer,Y.andI.Dincer(2017),“Lifecycleassessmentofnuclear-basedhydrogenandammoniaproductionoptions:Acomparativeevaluation”,InternationalJournalofHydrogenEnergy,Vol.42/33,Elsevier,Amsterdam,pp.21559-21570,https://doi.org/10.1016/j.ijhydene.2017.02.002.Bicer,Y.etal.(2016),“Comparativelifecycleassessmentofvariousammoniaproductionmethods”,JournalofCleanerProduction,Vol.135,Elsevier,Amsterdam,pp.1379-1395,https://doi.org/10.1016/j.jclepro.2016.07.023.Blackbourn,L.(5May2021),“Renewablehydrogenandammoniaproduction–YARAandENGIEwelcomeaA$42.5millionARENAgrant”,Yara,www.yara.com/news-and-media/news/archive/2020/renewable-hydrogen-and-ammonia-production-yara-and-engie-welcome-a-a$42.5-million-arena-grant.BP(2020),BPEnergyOutlook:2020Edition,London,www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/energy-outlook/bp-energy-outlook-2020.pdf.Brauns,J.andT.Turek(2020),“Alkalinewaterelectrolysispoweredbyrenewableenergy:Areview”,Processes,Vol.8/2,MDPI,Basel,p.248,https://doi.org/10.3390/pr8020248.Brightling,J.R.(2018),“Ammoniaandthefertiliserindustry:ThedevelopmentofammoniaatBillingham”,JohnsonMattheyTechnologyReview,Vol.62/1,JohnsonMatthey,Royston,pp.32-47,http://dx.doi.org/10.1595/205651318X696341.Brown,T.(2020a),“Greenammoniaatoilandgasscale:The15GWAsianRenewableEnergyHub”,AmmoniaEnergy,www.ammoniaenergy.org/articles/green-ammonia-at-oil-and-gas-scale-the-15-gw-asian-renewable-energy-hub(accessed5May2021).Brown,T.(2020b),“GreenammoniainAustralia,Spain,andtheUnitedStates”,AmmoniaEnergy,www.ammoniaenergy.org/articles/green-ammonia-in-australia-spain-and-the-united-states(accessed12April2021).Brown,T.(2020c),“Low-carbonammoniainNebraskaandtheNetherlands”,AmmoniaEnergy,www.ammoniaenergy.org/articles/low-carbon-ammonia-in-nebraska-and-the-netherlands(accessed9April2021).Brown,T.(2020d),“Ammoniaenergy”,AURI,MNRenewableEnergyRoundtable,www.auri.org/wp-content/uploads/2020/09/Trevor-Brown.pdf.Brown,T.(2020e),“GreenammoniaplantswinfinancinginAustraliaandNewZealand”,AmmoniaEnergy,www.ammoniaenergy.org/articles/green-ammonia-plants-win-financing-in-australia-and-new-zealand(accessed8April2021).Brown,T.(2020f),“Solarammonia,availableinSpainfrom2021”,AmmoniaEnergy,www.ammoniaenergy.org/articles/solar-ammonia-available-in-spain-from-2021(accessed8April2021).Brown,T.(2020g),“SaudiArabiatoexportrenewableenergyusinggreenammonia”,AmmoniaEnergy,www.ammoniaenergy.org/articles/saudi-arabia-to-export-renewable-energy-using-green-ammonia(accessed12October2020).Brown,T.(2020h),“H2Umovesforwardwith3GWgreenammoniaexportplant”,AmmoniaEnergy,www.ammoniaenergy.org/articles/h2u-moves-forward-with-3-gw-green-ammonia-export-plant(accessed13April2021).Brown,T.(2020i),“HydrogeninAustralia:Investmentsandjobs”,AmmoniaEnergy,www.ammoniaenergy.org/articles/hydrogen-in-australia-investments-and-jobs(accessed2May2021).Brown,T.(2020j),“ProjectGERI:BP’sgreenammoniafeasibilitystudy”,AmmoniaEnergy,www.ammoniaenergy.org/articles/project-geri-bp-green-ammonia-feasibility-study(accessed2May2021).Brown,T.(2020k),“GreenammoniaplantproposedforOrkney”,AmmoniaEnergy,www.ammoniaenergy.org/articles/green-ammonia-plant-proposed-for-orkney(accessed14April2021).INNOVATIONOUTLOOK108Brown,T.(2020l),“Maritimeammonia:Readyfordemonstration”,AmmoniaEnergy,www.ammoniaenergy.org/articles/maritime-ammonia-ready-for-demonstration(accessed30November2020).Brown,T.(2020m),“VikingEnergytoberetrofitforammoniafuelin2024”,AmmoniaEnergy,www.ammoniaenergy.org/articles/viking-energy-to-be-retrofit-for-ammonia-fuel-in-2024(accessed30November2020).Brown,T.(2019a),“MANEnergySolutions:Anammoniaengineforthemaritimesector”,AmmoniaEnergy,www.ammoniaenergy.org/articles/man-energy-solutions-an-ammonia-engine-for-the-maritime-sector(accessed28April2021).Brown,T.(2019b),“Ammoniaplantrevamptodecarbonize:YaraSluiskil”,AmmoniaIndustry.https://ammoniaindustry.com/ammonia-plant-revamp-to-decarbonize-yara-sluiskil(accessed12October2020).Brown,T.(2019c),“YaraandNelcollaboratetoreduceelectrolyzercosts;announcegreenammoniapilotinNorwayby2022”,AmmoniaEnergy,www.ammoniaenergy.org/articles/yara-and-nel-collaborate-to-reduce-electrolyzer-costs-announce-green-ammonia-pilot-in-norway-by-2022(accessed12October2020).Brown,T.(2019d),“GreenammoniaplantsinChile,Australia,NewZealand”,AmmoniaEnergy,www.ammoniaenergy.org/articles/green-ammonia-plants-in-chile-australia-new-zealand(accessed13April2021).Brown,T.(2018a),“Innovationsinammonia”,H2@ScaleR&DConsortiumKick-OffMeeting,www.energy.gov/sites/prod/files/2018/08/f54/fcto-h2-scale-kickoff-2018-10-burgunder.pdf.Brown,T.(2018b),“YaraandBASFopentheirbrand-new,world-scaleplant,producinglow-carbonammonia”,https://ammoniaindustry.com/yara-and-basf-open-low-carbon-ammonia(accessed9April2021).Brown,T.(2018c),“OCP’sgreenammoniapilotplant,andtheAfricanInstituteforSolarAmmonia”,AmmoniaEnergy,www.ammoniaenergy.org/articles/ocps-green-ammonia-pilot-plant-and-the-african-institute-for-solar-ammonia(accessed13April2021).Brown,T.(2018d),“ThyssenKrupp’s‘greenhydrogenandrenewableammoniavaluechain’”,AmmoniaEnergy,www.ammoniaenergy.org/articles/thyssenkrupps-green-hydrogen-and-renewable-ammonia-value-chain(accessed13April2021).Brown,T.(2018e),“SiemensGamesainvestigatinggreenammoniapilotplantinDenmark”,AmmoniaEnergy,www.ammoniaenergy.org/articles/siemens-gamesa-investigating-green-ammonia-pilot-plant-in-denmark(accessed13April2018).Brown,T.(2018f),“RenewableammoniademonstrationplantannouncedinSouthAustralia”,AmmoniaEnergy,www.ammoniaenergy.org/articles/renewable-ammonia-demonstration-plant-announced-in-south-australia(accessed5May2021).Brown,T.(2016),“Howtocreateamarketforlow-carbonammonia:Productlabeling”,AmmoniaEnergy,www.ammoniaenergy.org/articles/how-to-create-a-market-for-low-carbon-ammonia-product-labeling(accessed11October2021).Brown,T.(2013),“RenewableammoniafromBiomass:SynGest,BioNitrogen,Agrebon”,NH3FuelAssociation,https://nh3fuelassociation.org/2013/04/24/ammonia-from-biomass(accessed19March2021).Burgess,J.andT.Washington(2021),“INTERVIEW:World’slargestgreenhydrogenprojecteyesAustralianammoniaexports”,S&PGlobalPlatts,www.spglobal.com/platts/en/market-insights/latest-news/petrochemicals/050421-interview-worlds-largest-green-hydrogen-project-eyes-australian-ammonia-exports(accessed5May2021).Busca,G.etal.(1998),“ChemicalandmechanisticaspectsoftheselectivecatalyticreductionofNOxbyammoniaoveroxidecatalysts:Areview”,AppliedCatalysisB:Environmental,Vol.18/1-2,Elsevier,Amsterdam,pp.1-36,https://doi.org/10.1016/S0926-3373(98)00040-X.RENEWABLEAMMONIA109Casale(2021),“Greenandbluetechnologies”,www.casale.ch/green-and-blue-solutions/green-and-blue-technologies(accessed3June2021).CEFIC(2013),EuropeanChemistryforGrowth:UnlockingaCompetitive,LowCarbonandEnergyEfficientFuture,Brussels,https://cefic.org/app/uploads/2019/01/Energy-Roadmap-The-Report-European-chemistry-for-growth_BROCHURE-Energy.pdf.Cesaro,Z.etal.(2021),“Ammoniatopower:forecastingthelevelizedcostofelectricityfromgreenammoniainlarge-scalepowerplants”,AppliedEnergy,Vol.282/A,Elsevier,Amsterdam,https://doi.org/10.1016/j.apenergy.2020.116009.Cesaro,Z.,J.ThatcherandR.Bañares-Alcántara(2020),“Techno-economicaspectsoftheuseofammoniaasenergyvector”,inValera-Medina,A.andR.Bañares-Alcántara(eds.),Techno-EconomicChallengesofGreenAmmoniaasanEnergyVector,Elsevier,Amsterdam,pp.209-219.CFFertilisers(2021),“CFFertiliserswelcomescarboncaptureandstorage(CCS)fundingrelatedtoHynetNorthWestProject”,www.cffertilisers.co.uk/media-centre/news/cf-fertilisers-welcomes-carbon-capture-and-storage-ccs-funding-related-to-hynet-north-west-project(accessed7June2021).Cheema,I.I.andU.Krewer(2018),“OperatingenvelopeofHaber-Boschprocessdesignforpower-to-ammonia”,RSCAdvances,Vol.8/61,RoyalSocietyofChemistry,Cambridge,pp.34926-34936,https://doi.org/10.1039/C8RA06821F.Cherkasov,N.,A.O.IbhadonandP.Fitzpatrick(2015),“Areviewoftheexistingandalternativemethodsforgreenernitrogenfixation”,ChemicalEngineeringandProcessing:ProcessIntensification,Vol.90,Elsevier,Amsterdam,pp.24-33,http://dx.doi.org/10.1016/j.cep.2015.02.004.Choi,J.etal.(2020),“Electrochemicalnitrogenreductionstudies”,NatureCommunications.Vol.11/1,Springer,Berlin,https://doi.org/10.1038/s41467-020-19130-z.Christensen,C.H.etal.(2006),“Towardsanammonia-mediatedhydrogeneconomy?”CatalysisToday,Vol.111/1-2,Elsevier,Amsterdam,pp.140-144,https://doi.org/10.1016/j.cattod.2005.10.011.Cinti,G.etal.(2017),“CouplingSolidOxideElectrolyser(SOE)andammoniaproductionplant”,AppliedEnergy,Vol.192,Elsevier,Amsterdam,pp.466-476,https://doi.org/10.1016/j.apenergy.2016.09.026.Clark,K.andM.Goff(2014),“Ammoniatraining,CityofGrandForks,ND”,www.grandforksgov.com/home/showdocument?id=3378.ComisionesdePresupuestoyHaciendaydeCienciayTechnolia(2003),SESIONESORDINARIAS2003ORDENDELDIANo3421,https://www4.hcdn.gob.ar/dependencias/dcomisiones/periodo-120/120-3421.pdf.CommitteeonClimateChange(2018),HydrogeninaLow-CarbonEconomy,London,www.theccc.org.uk/wp-content/uploads/2018/11/Hydrogen-in-a-low-carbon-economy.pdf.Crolius,S.H.(2021),“TsubameBHBlaunchesjointevaluationwithMitsubishiChemical”,AmmoniaEnergy,www.ammoniaenergy.org/articles/tsubame-bhb-launches-joint-evaluation-with-mitsubishi-chemical(accessed13April2021).Crolius,S.H.(2020a),“Fortescuemakingmajormoveintogreenenergy”,AmmoniaEnergy,www.ammoniaenergy.org/articles/fortescue-making-major-move-into-green-energy(accessed13April2021).Crolius,S.H.(2020b),“GreenfinancingsightedinAustralia’sammoniaindustry”,AmmoniaEnergy,www.ammoniaenergy.org/articles/green-financing-sighted-in-australias-ammonia-industry(accessed13April2021).INNOVATIONOUTLOOK110CWP(28May2021),“CWPandMauritaniasignMoUforthedevelopmentofaUS$40billiongreenhydrogenproject”,www.cwp.global/wp-content/uploads/2021/05/CWP-Mauritania-Press-Release-1.pdf.Dahlberg,R.(1982),“Replacementoffossilfuelsbyhydrogen”,InternationalJournalofHydrogenEnergy,Vol.7/2,Elsevier,Amsterdam,pp.121-142,https://doi.org/10.1016/0360-3199(82)90140-9.dePee,A.etal.(2018),DecarbonizationofIndustrialSectors:TheNextFrontier,McKinsey&Company,www.mckinsey.com/~/media/McKinsey/BusinessFunctions/SustainabilityandResourceProductivity/OurInsights/Howindustrycanmovetowardalowcarbonfuture/Decarbonization-of-industrial-sectors-The-next-frontier.ashx.DEME(2021),“Kick-offoftheHYPORT®DUQMgreenhydrogenproject”,www.deme-group.com/news/kick-hyportr-duqm-green-hydrogen-project(accessed11October2021).DNVGL(2020),MaritimeForecastto2050:EnergyTransitionOutlook2020,https://download.dnvgl.com/eto-2020-download.Driver,JustinG.etal.(2019),“Blueurea:Fertilizerwithreducedenvironmentalimpact”,FrontiersinEnergyResearch,Vol.7(August),Frontiers,Lausanne,pp.1-15,https://doi.org/10.3389/fenrg.2019.00088.Dufour,J.etal.(2009),“Lifecycleassessmentofprocessesforhydrogenproduction.Environmentalfeasibilityandreductionofgreenhousegasesemissions”,InternationalJournalofHydrogenEnergy,Vol.34/3,Elsevier,Amsterdam,pp.1370-1376,https://doi.org/10.1016/j.ijhydene.2008.11.053.Eastman,A.(2021),“InterContinentalEnergy’sprojects”,AmmoniaEnergyConference2021–Australia,www.ammoniaenergy.org/paper/intercontinental-energys-projects.EgyptTodayStaff(2021),“EgyptStudiesestablishmentoffactoryforgreenhydrogen,ammoniaproduction”,EgyptToday,www.egypttoday.com/Article/1/104392/Egypt-studies-establishment-of-factory-for-green-hydrogen-ammonia-production(accessed31May2021).Eidesvik(2020),“VikingEnergywithammonia-drivenfuelcell”,https://eidesvik.no/viking-energy-with-ammonia-driven-fuel-cell(accessed29September2021).Elgowainy,A.(2017),“Resourcingbyproducthydrogenfromindustrialoperations”,H2@ScaleWorkshop,Houston,www.energy.gov/sites/prod/files/2017/05/f34/fcto_may_2017_h2_scale_wkshp_elgowainy.pdf.Elishav,O.etal.(2020),“Progressandprospectiveofnitrogen-basedalternativefuels”,ChemicalReviews,Vol.120/12,ACSPublications,Washington,DC,pp.5352-5436,https://doi.org/10.1021/acs.chemrev.9b00538.EnergyTransitionsCommission(2018),MissionPossible:ReachingNet-ZeroCarbonEmissionsfromHarder-to-AbateSectorsbyMid-Century,www.ieta.org/resources/COP24/Misc%20Media%20Files/Dec7/SE16%20(3).pdf.ENGIEandYara(2020),ENGIE-YARARenewableHydrogenandAmmoniaDeploymentinPilbara,https://arena.gov.au/assets/2020/11/engie-yara-renewable-hydrogen-and-ammonia-deployment-in-pilbara.pdf.EPRI(2021),TechnologyInsightBrief:AmmoniaandHydrogenFuelBlendsforToday’sGasTurbines–CombustionConsiderations,ElectricPowerResearchInstitute,PaloAlto,www.epri.com/research/products/000000003002020043.Erisman,J.W.etal.(2013),“Consequencesofhumanmodificationoftheglobalnitrogencycle”,PhilosophicalTransactionsoftheRoyalSocietyB:BiologicalSciences,Vol.368/1621,RoyalSocietyPublishing,London,https://doi.org/10.1098/rstb.2013.0116.Erisman,J.W.etal.(2008),“Howacenturyofammoniasynthesischangedtheworld”,NatureGeoscience,Vol.1/10,Springer,Berlin,pp.636-639,https://doi.org/10.1038/ngeo325.RENEWABLEAMMONIA111Ernst,F.A.(1928),IndustrialChemicalMonographs:FixationofAtmosphericNitrogen,Chapman&Hall,Ltd.,London.Ernst,F.A.andM.S.Sherman(1927),“Theworld’sinorganicnitrogenindustry”,Industrial&EngineeringChemistry,Vol.19/2,ACSPublishing,Washington,DC,pp.196-204,https://doi.org/10.1021/ie50206a003.ESMAPandWorldBank(2020),GreenHydrogeninDevelopingCountries,EnergySectorManagementAssistanceProgramme,WorldBank,Washington,DC,http://documents1.worldbank.org/curated/en/953571597951239276/pdf/Green-Hydrogen-in-Developing-Countries.pdf.EuropeanCommission(2012),EnergyRoadmap2050,Brussels,https://ec.europa.eu/energy/sites/ener/files/documents/2012_energy_roadmap_2050_en_0.pdf.EUTurbines(23January,2019),“ThegasturbineindustrycommitmentstodriveEurope’stransitiontoadecarbonisedenergymix”,www.euturbines.eu/cms/upload/Our_Mission/EUTurbines_press_release_on_the_Commitments.pdf.Ewing,R.(2021),“OCIBeaumonttodecarboniseinblueammoniadrive”,www.icis.com/explore/resources/news/2021/05/05/10635523/oci-beaumont-to-decarbonise-in-blue-ammonia-drive(accessed30May2021).FAO(2019),WorldFertilizerTrendsandOutlookto2022,FoodandAgricultureOrganizationoftheUnitedNations,Rome,www.fao.org/3/ca6746en/ca6746en.pdf.Fasihi,M.etal.(2021),“GlobalpotentialofgreenammoniabasedonhybridPV-windpowerplants”,AppliedEnergy,Vol.294,Elsevier,Amsterdam,p.116170,https://doi.org/10.1016/j.apenergy.2020.116170.Fasihi,M.,O.EfimovaandC.Breyer(2019),“Techno-economicassessmentofCO2directaircaptureplants”,JournalofCleanerProduction,Vol.224,Elsevier,Amsterdam,pp.957-980,https://doi.org/10.1016/j.jclepro.2019.03.086.Fecke,M.,S.GarnerandB.Cox(2016),“Reviewofglobalregulationsforanhydrousammoniaproduction,use,andstorage”,Hazards26,IChemE,Rugby,www.icheme.org/media/11771/hazards-26-paper-34-review-of-global-regulations-for-anhydrous-ammonia-production-use-and-storage.pdf.FertiberiaandIberdrola(28October,2020),“IberdrolayFertiberiaSitúanaEspañaaLaVanguardiaDelHidrógenoVerdeEnEuropa:Proyectan800MW,ConUnaInversiónde1.800MillonesHasta2027”,www.fertiberia.com/media/1741605/iberdrola-y-fertiberia-ponen-a-españa-a-la-vanguardia-del-hidrógeno-verde-en-europa.pdf.FertilizersEurope(2012),GuidanceforInspectionofandLeakDetectioninLiquidAmmoniaPipeline,www.fertilizerseurope.com/wp-content/uploads/2019/08/Guidance_for_inspection_of_and_leak_detection_in_liquid_ammonia_pipelines_FINAL_01.pdf.FertilizersEurope(2000),BestAvailableTechniquesforPollutionPreventionandControlintheEuropeanFertilizerIndustryProductionofAmmonia,Brussels,www.fertilizerseurope.com/wp-content/uploads/2019/08/Booklet_1_final.pdf.Fowler,D.etal.(2013),“Theglobalnitrogencycleinthetwenty-firstcentury”,PhilosophicalTransactionsoftheRoyalSocietyB:BiologicalSciences,Vol.368/1621,RoyalSocietyPublishing,London,https://doi.org/10.1098/rstb.2013.0164.Frøhlke,U.(2021a),“HaldorTopsoeandAquamarineenterintoaMemorandumofUnderstandingwiththepurposeofbuildingagreenammoniafacilitybasedonSOECelectrolysis”,https://blog.topsoe.com/haldor-topsoe-and-aquamarine-enters-into-a-memorandum-of-understanding-with-the-purpose-of-building-a-green-ammonia-facility-based-on-soec-electrolysis(accessed13April2021).INNOVATIONOUTLOOK112Frøhlke,U.(2021b),“HaldorTopsoetobuildlarge-scaleSOECelectrolyzermanufacturingfacilitytomeetcustomerneedsforgreenhydrogenproduction”,https://blog.topsoe.com/haldor-topsoe-to-build-large-scale-soec-electrolyzer-manufacturing-facility-to-meet-customer-needs-for-green-hydrogen-production(accessed28March2021).FSDF(2016),SafeManagementofAmmoniaRefrigerationSystems,FoodStorageandDistributionFederation,London,www.refcom.org.uk/media/1160/ammonia-guide-smars-2016_copy-0023_stephen-crocker.pdf.FuelCellsBulletin(2013),“AFCwinsfundingforAlkammoniaProject,gainsDiverseEnergy”,FuelCellsBulletin,Vol.2013/1,Elsevier,Amsterdam,p.9,https://doi.org/10.1016/S1464-2859(13)70022-1.FusionFuel(2021),“FusionFuelannouncesHEVOAmmoniaMoroccoProject,aimstoproduce183,000tonsofgreenammoniaby2026”,https://ir.fusion-fuel.eu/news-releases/news-release-details/fusion-fuel-announces-hevo-ammonia-morocco-project-aims-produce(accessed2September2021).Gabrielli,P.etal.(2020),“Seasonalenergystorageforzero-emissionsmulti-energysystemsviaundergroundhydrogenstorage”,RenewableandSustainableEnergyReviews,Vol.121,Elsevier,Amsterdam,p.109629,https://doi.org/10.1016/j.rser.2019.109629.Galloway,J.N.,andE.B.Cowling(2002),“Reactivenitrogenandtheworld:200yearsofchange”,AMBIO:AJournaloftheHumanEnvironment,Vol.31/2,RoyalSwedishAcademyofSciences,Stockholm,pp.64-71,https://doi.org/10.1579/0044-7447-31.2.64.Ganley,J.C.etal.(2004),“Aprioricatalyticactivitycorrelations:thedifficultcaseofhydrogenproductionfromammonia”,CatalysisLetters,Vol.96/3-4,Springer,Berlin,pp.117-122,https://doi.org/10.1023/B:CATL.0000030108.50691.d4.GettingtoZeroCoalition(2019),“AmbitionStatementGettingtoZeroCoalition”,www.globalmaritimeforum.org/content/2019/09/Getting-to-Zero-Coalition_Ambition-statement_230919.pdf.Ghavam,S.etal.(2021),“Sustainableammoniaproductionprocesses”,FrontiersinEnergyResearch,Vol.9,Frontiers,Lausanne,pp.1-19,https://doi.org/10.3389/fenrg.2021.580808.Giddey,S.,S.P.S.BadwalandA.Kulkarni(2013),“Reviewofelectrochemicalammoniaproductiontechnologiesandmaterials”,InternationalJournalofHydrogenEnergy,Vol.38/34,Elsevier,Amsterdam,pp.14576-14594,https://doi.org/10.1016/j.ijhydene.2013.09.054.Giddey,S.etal.(2017),“Ammoniaasarenewableenergytransportationmedia”,ACSSustainableChemistry&Engineering,Vol.5/11,ACSPublications,Washington,DC,pp.10231-10239,https://doi.org/10.1021/acssuschemeng.7b02219.GIE-MARCOGAZ(2019),PotentialWaystheGasIndustryCanContributetotheReductionofMethaneEmissions,ReportfortheMadridForum,5-6June,https://ec.europa.eu/info/sites/info/files/gie-marcogaz_-_report_-_reduction_of_methane_emissions.pdf.Gilbert,P.etal.(2014),“Assessingeconomicallyviablecarbonreductionsfortheproductionofammoniafrombiomassgasification”,JournalofCleanerProduction,Vol.64,Elsevier,Amsterdam,pp.581-589,https://doi.org/10.1016/j.jclepro.2013.09.011.Goeppert,A.,G.A.OlahandG.K.SuryaPrakash(2017),“Towardasustainablecarboncycle:Themethanoleconomy”,inGreenChemistry:AnInclusiveApproach,Elsevier,Amsterdam,pp.919-962.GovernmentofSouthAustraliaetal.(2017),SouthAustralianGreenHydrogenStudy,Melbourne,www.renewablessa.sa.gov.au/content/uploads/2020/03/green-h2-study-report-8-sept-2017.pdf.Green,L.,Jr.(1982),“Anammoniaenergyvectorforthehydrogeneconomy”,InternationalJournalofHydrogenEnergy,Vol.7/4,Elsevier,Amsterdam,pp.355-359,https://doi.org/10.1016/0360-3199(82)90128-8.RENEWABLEAMMONIA113GriegEdge(2021),“LMGMarintodesigntheMSGreenAmmonia”,https://griegedge.com/lmg-marin-to-design-the-ms-green-ammonia(accessed28February2022).GriegStar(2020),“GriegandWärtsilätobuildgroundbreakinggreenammoniatanker”,www.griegstar.com/grieg-and-wartsila-to-build-groundbreaking-green-ammonia-tanker(accessed11January2021).Grundt,T.andK.Christiansen(1982),“Hydrogenbywaterelectrolysisasbasisforsmallscaleammoniaproduction.Acomparisonwithhydrocarbonbasedtechnologies”,InternationalJournalofHydrogenEnergy,Vol.7/3,Elsevier,Amsterdam,pp.247-257,https://doi.org/10.1016/0360-3199(82)90088-X.GutešaBožo,M.etal.(2019),“Fuelrichammonia-hydrogeninjectionforhumidifiedgasturbines”,AppliedEnergy,Vol.251,Elsevier,Amsterdam,https://doi.org/10.1016/j.apenergy.2019.113334.Haahr,T.(2021),“CarbonlevyonEUimportsneededtoraiseglobalclimateambition”,www.europarl.europa.eu/news/en/press-room/20210201IPR96812/carbon-levy-on-eu-imports-needed-to-raise-global-climate-ambition(accessed31March2021).HaldorTopsøeetal.(2020),Ammonfuel–AnIndustrialViewofAmmoniaasaMarineFuel,KongensLyngby,www.topsoe.com/hubfs/DOWNLOADS/DOWNLOADS-Whitepapers/AmmonfuelReportVersion09.9August3_update.pdf.HaldorTopsøeA/S(2020),“SynCORAmmoniaTM–newprocessforgrassrootsplants”,www.topsoe.com/products/process-licensing/syncor-ammoniatm-new-process-for-grassroots-plants(accessed30May2021).Hank,C.etal.(2020),“Energyefficiencyandeconomicassessmentofimportedenergycarriersbasedonrenewableelectricity”,SustainableEnergy&Fuels,Vol.5/4,RoyalSocietyofChemistry,Cambridge,pp.2256-2273,https://doi.org/10.1039/D0SE00067A.Hansen,J.B.(2015),“Fuelprocessingforfuelcellsandpowertofuelsasseenfromanindustrialperspective”,JournalofCatalysis,Vol.328,Elsevier,Amsterdam,pp.280-296,https://doi.org/10.1016/j.jcat.2015.04.014.Hansen,J.B.andP.A.Han(2018),“RoadmaptoAllElectricAmmoniaPlants”,NH3FuelConference,Pittsburgh,https://nh3fuelassociation.org/2018/12/07/roadmap-to-all-electric-ammonia-plants.Hasegawa,M.(2021),“Jera,Yaraexplorecreatingcleanammoniapartnership”,www.argusmedia.com/en/news/2213718-jera-yara-explore-creating-clean-ammonia-partnership(accessed11May2021).Hatfield,O.(2021),“Countrytradedammonialogisticsandstorage,presentandfuture”,AmmoniaEnergyConference2021,Boston,www.ammoniaenergy.org/wp-content/uploads/2021/11/AEA-presentation-Oliver-Hatfield.pdf.Hatfield,O.(2020),“ReviewofGlobalAmmoniaSupply”,AmmoniaEnergyConference2020,www.ammoniaenergy.org/wp-content/uploads/2020/12/Oliver-Hatfield.pdf.Hauch,A.etal.(2020),“Recentadvancesinsolidoxidecelltechnologyforelectrolysis”,Science,Vol.370/6513,AmericanAssociationfortheAdvancementofScience,Washington,DC,https://doi.org/10.1126/science.aba6118.HazerGroupLtd.(2021),CommencementofSiteWorksandProjectUpdate,Perth,https://hazergroup.com.au/wp-content/uploads/2021/03/210315-Commencement-of-site-works-and-project-update-FINAL.pdf.HazerGroupLtd.(2018),HydrogenProductionDisruption,Perth,https://hazergroup.com.au/wp-content/uploads/2018/07/43wsbvctnwxf83.pdf.Hegge,F.etal.(2020),“EfficientandstablelowiridiumloadedanodesforPEMwaterelectrolysismadepossiblebynanofiberinterlayers”,ACSAppliedEnergyMaterials,Vol.3/9,ACSPublishing,Washington,DC,pp.8276-8284,https://doi.org/10.1021/acsaem.0c00735.INNOVATIONOUTLOOK114Helminen,J.etal.(2000),“ComparisonofsorbentsandisothermmodelsforNH3-gasseparationbyadsorption”,AIChEJournal,Vol.46/8,Wiley,Hoboken,pp.1541-1555,http://dx.doi.org/10.1002/aic.690460807.Herh,M.(2020),“DaelimIndustrialinstallscarbondioxideremovalfacilityinSaudiammoniaplant”,BusinessKorea,www.businesskorea.co.kr/news/articleView.html?idxno=52159(accessed9April2021).Heuermann,D.,H.HahnandN.vonWirén(2021),“Seedyieldandnitrogenefficiencyinoilseedrapeafterammoniumnitrateorureafertilization”,FrontiersinPlantScience,Vol.11,Frontiers,Lausanne,pp.1-14,https://doi.org/10.3389/fpls.2020.608785.HiringaEnergy(2020),“Hiringa&Ballancewelcomegovernmentsupportforworld-firstgreenenergyproject”,www.hiringa.co.nz/post/hiringa-ballance-welcome-government-support-for-world-first-green-energy-project(accessed5May2021).Holsen,B.(2021),“Energysolution:RenewableproposalforSvalbard”,Statkraft,www.statkraft.com/newsroom/news-and-stories/archive/2018/energy-solution-renewable-proposal-for-svalbard(accessed29November2021).HorisontEnergi(2021a),“HorisontEnergiawardedNOK10millionforconceptstudyfromEnovaforBarentsBlueProject”,www.horisontenergi.no/horisont-energi-awarded-nok-10-million-for-concept-study-from-enova-for-barents-blue-project(accessed28April2021).HorisontEnergi(2021b),“HorisontEnergi,EquinorandVårEnergientercooperationagreementforBarentsblueammoniaplant”,www.horisontenergi.no/horisont-energi-equinor-and-var-energi-enter-cooperation-agreement-for-barents-blue-ammonia-plant(accessed20September2021).Howarth,R.W.andM.Z.Jacobson(2021),“Howgreenisbluehydrogen?”EnergyScience&Engineering,Vol.9/10,Wiley,Hoboken,pp.1676-1687,https://doi.org/10.1002/ese3.956.Hy2GenAG(2021),“Hy2GenCanadaInc”,https://hy2gen.com/canada(accessed2September2021).Hydrogen.no(2020),“ProduksjonAvGrønnAmmoniakkiBerlevåg”,www.hydrogen.no/hva-skjer/aktuelt/produksjon-av-gronn-ammoniakk-i-berlevag(accessed13April2021).HydrogenCouncil(2021),HydrogenDecarbonizationPathways:ALife-CycleAssessment,Brussels,https://hydrogencouncil.com/wp-content/uploads/2021/01/Hydrogen-Council-Report_Decarbonization-Pathways_Part-1-Lifecycle-Assessment.pdf.IEAGreenhouseGasR&DProgramme(2007),CapturingCO2,Cheltenhamwww.globalccsinstitute.com/archive/hub/publications/95741/capturing-co2.pdf.IEAandNEA(2020),ProjectedCostsofGeneratingElectricity:2020Edition,InternationalEnergyAgencyandNuclearEnergyAgency,Paris,https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf.IEA(2013),TechnologyRoadmap:CarbonCaptureandStorage,InternationalEnergyAgency,Paris,www.iea.org/reports/technology-roadmap-carbon-capture-and-storage-2013.IEA(2021a),AmmoniaTechnologyRoadmap:TowardsMoreSustainableNitrogenFertiliserProduction,InternationalEnergyAgency,Paris,https://iea.blob.core.windows.net/assets/6ee41bb9-8e81-4b64-8701-2acc064ff6e4/AmmoniaTechnologyRoadmap.pdf.IEA(2021b),TheRoleofLow-CarbonFuelsintheCleanEnergyTransitionsofthePowerSector,InternationalEnergyAgency,Paris,https://iea.blob.core.windows.net/assets/9ac8f717-50ac-4a43-a9fe-c43e05b72a0b/Theroleoflow-carbonfuelsinthecleanenergytransitionsofthepowersector.pdf.RENEWABLEAMMONIA115IEA(2020a),OutlookforBiogasandBiomethane:ProspectsforOrganicGrowth,InternationalEnergyAgency,Paris,www.iea.org/reports/outlook-for-biogas-and-biomethane-prospects-for-organic-growth.IEA(2020b),WordEnergyInvestment2020,InternationalEnergyAgency,Paris,www.iea.org/reports/world-energy-investment-2020.IEA(2020c),EnergyTechnologyPerspectives2020,InternationalEnergyAgency,Paris,www.iea.org/reports/energy-technology-perspectives-2020.IEA(2019a),TheFutureofHydrogen:SeizingToday’sOpportunities,InternationalEnergyAgency,Paris,www.iea.org/reports/the-future-of-hydrogen.IEA(2019b),OffshoreWindOutlook2019,InternationalEnergyAgency,Paris,www.iea.org/reports/offshore-wind-outlook-2019.IMO(2019),“ReducingGreenhouseGasEmissionsfromShips”,InternationalMaritimeOrganization,Geneva.IFA(2014),AmmoniaProduction:MovingTowardsMaximumEfficiencyandLowerGHGEmissions,InternationalFertilizerAssociation,Paris,www.fertilizer.org/images/Library_Downloads/2014_ifa_ff_ammonia_emissions_july.pdf.IRENA(2022),GlobalHydrogenTradetoMeetthe1.5°CClimateGoal,InternationalRenewableEnergyAgency,AbuDhabi,www.irena.org/-/media/Files/IRENA/Agency/Publication/2022/Apr/IRENA_Global_Trade_Hydrogen_2022.pdf.IRENA(2021a),RenewablePowerGenerationCostsin2020,InternationalRenewableEnergyAgency,AbuDhabi,www.irena.org/-/media/Files/IRENA/Agency/Publication/2021/Jun/IRENA_Power_Generation_Costs_2020.pdf.IRENA(2021b),RenewableCapacityStatistics2021,InternationalRenewableEnergyAgency,AbuDhabi,www.irena.org/-/media/Files/IRENA/Agency/Publication/2021/Apr/IRENA_RE_Capacity_Statistics_2021.pdf.IRENA(2021c),APathwaytoDecarbonisetheShippingSectorby2050,InternationalRenewableEnergyAgency,AbuDhabi,www.irena.org/-/media/Files/IRENA/Agency/Publication/2021/Oct/IRENA_Decarbonising_Shipping_2021.pdf.IRENA(2021d),WorldEnergyTransitionsOutlook:1.5°CPathway,InternationalRenewableEnergyAgency,AbuDhabi,https://irena.org/publications/2021/Jun/-/media/E39E2962B96D489BBBB65DB5112DA1F2.ashx.IRENA(2020a),ReachingZerowithRenewables:EliminatingCO2EmissionsfromIndustryandTransportinLinewiththe1.5°CClimateGoal,InternationalRenewableEnergyAgency,AbuDhabi,www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Sep/IRENA_Reaching_zero_2020.pdf.IRENA(2020b),GreenHydrogenCostReduction:ScalingUpElectrolyserstoMeetthe1.5°CClimateGoal,InternationalRenewableEnergyAgency,AbuDhabi,https://irena.org/-/media/Files/IRENA/Agency/Publication/2020/Dec/IRENA_Green_hydrogen_cost_2020.pdf.IRENA(2020c),GlobalRenewablesOutlook:EnergyTransformation2050,InternationalRenewableEnergyAgency,AbuDhabi,www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Apr/IRENA_Global_Renewables_Outlook_2020.pdf.IRENA(2019),RenewablePowerGenerationCostsin2018,InternationalRenewableEnergyAgency,AbuDhabi,www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/May/IRENA_Renewable-Power-Generations-Costs-in-2018.pdf.IRENAandMethanolInstitute(2021),InnovationOutlook:RenewableMethanol,InternationalRenewableEnergyAgency,AbuDhabi,www.irena.org/-/media/Files/IRENA/Agency/Publication/2021/Jan/IRENA_Innovation_Renewable_Methanol_2021.pdf.INNOVATIONOUTLOOK116Ishihara,S.,J.ZhangandT.Ito(2020),“Numericalcalculationwithdetailedchemistryonammoniaco-firinginacoal-firedboiler:effectofammoniaco-firingratioonNOemissions”,Fuel,Vol.274,Elsevier,Amsterdam,https://doi.org/10.1016/j.fuel.2020.117742.ISPT(2022),AOne-GigaWattGreen-HydrogenPlantAdvancedDesignandTotalInstalled-CapitalCosts,InstituteforSustainableProcessTechnology,Amersfoort,https://ispt.eu/media/Public-report-gigawatt-advanced-green-electrolyser-design.pdf.ISPT(2017),PowertoAmmonia,InstituteforSustainableProcessTechnology,Amersfoort,https://ispt.eu/media/DR-20-09-Power-to-Ammonia-2017-publication.pdf.ISPT(n.d.),LowCarbonAmmonia:OpportunitiesforLowCarbonAmmoniain2030,InstituteforSustainableProcessTechnology,Amersfoort.Janssen,D.(2020),“GasGridOperatorsunveilplanforEuropeanhydrogeninfrastructure‘backbone’”,Euractiv,www.euractiv.com/section/energy/news/gas-grid-operators-unveil-plan-for-european-hydrogen-infrastructure-backbone(accessed31May2021).JapanScienceandTechnologyAgency(2017),“SIPEnergyCarriers–TheInnovationforAmmoniaFuelinJapan”.JERA(2021),“JERAandIHItostartademonstrationprojectrelatedtoammoniaco-firingatalarge-scalecommercialcoal-firedpowerplant”,www.jera.co.jp/english/information/20210524_677(accessed28February2022).Johannessen,T.(2020),“Ammonia&maritimedecarbonization”,AmmoniaEnergyConference2020,16-20November,www.ammoniaenergy.org/wp-content/uploads/2020/12/Tue-Johannssen.pdf.KBR(2021),“Ammonia&fertilizerstechnologies”,www.kbr.com/en/solutions/technologies/process-technologies/ammonia-fertilizers-technologies(accessed3June2021).Kermeli,K.etal.(2017),EnergyEfficiencyandCostSavingOpportunitiesforAmmoniaandNitrogenousFertilizerProduction,USEnvironmentalProtectionAgency,Washington,DC,www.energystar.gov/sites/default/files/tools/Fertilizer_guide_170418_508.pdf.Kibsgaard,J.,J.K.NørskovandI.Chorkendorff(2019),“Thedifficultyofprovingelectrochemicalammoniasynthesis”,ACSEnergyLetters,Vol.4/12,ACSPublications,Washington,DC,pp.2986-2988,https://doi.org/10.1021/acsenergylett.9b02286.Kiemel,S.etal.(2021),“CriticalmaterialsforwaterelectrolysersattheexampleoftheenergytransitioninGermany”,InternationalJournalofEnergyResearch,Vol.45/7,Wiley,Hoboken,pp.9914-9935,https://doi.org/10.1002/er.6487.KIZAD(2021),“AED3.67Bn‘HeliosIndustry’planttoexportgreenammoniafromAbuDhabi”,www.kizad.ae/2021/05/25/aed3-67-bn-helios-industry-plant-to-export-green-ammonia-from-abu-dhabi(accessed27May2021).Klerke,A.etal.(2008),“Ammoniaforhydrogenstorage:Challengesandopportunities”,JournalofMaterialsChemistry,Vol.18/20,RoyalSocietyofChemistry,Cambridge,pp.2304-2310,https://doi.org/10.1039/B720020J.Kobayashi,H.etal.(2019),“Scienceandtechnologyofammoniacombustion”,ProceedingsoftheCombustionInstitute,Vol.37/1,Elsevier,Amsterdam,pp.109-133,https://doi.org/10.1016/j.proci.2018.09.029.Krishnan,S.etal.(2020),“Powertogas(H2,pp.Alkalineelectrolysis”,inTechnologicalLearningintheTransitiontoaLow-CarbonEnergySystem:ConceptualIssues,EmpiricalFindings,andUse,inEnergyModeling,Elsevier,Amsterdam,pp.165-187.RENEWABLEAMMONIA117Kroch,E.(1945),“Ammonia–afuelformotorbuses”,JournaloftheInstituteofPetroleum,pp.213-223,http://claverton-energy.com/cms4/wp-content/files/NH3_bus_1945_JInstPetrol31_Pg213.pdf.Kumagai,T.(2021),“Japan’sJERAtoprocure40,000Mtammoniafor20%co-burningwithcoalby2024-25”,S&PGlobalPlatts,www.spglobal.com/platts/en/market-insights/latest-news/petrochemicals/052421-japans-jera-to-procure-40000-mt-ammonia-for-20-co-burning-with-coal-by-2024-25(accessed24May2021).Kurata,O.etal.(2019),“Developmentofawiderange-operable,rich-leanlow-NOxcombustorforNH3fuelgas-turbinepowergeneration”,ProceedingsoftheCombustionInstitute,Vol.37/4,Elsevier,Amsterdam,pp.4587-4595,https://doi.org/10.1016/j.proci.2018.09.012.Kurata,O.etal.(2017),“Successofammonia-fired,regenerator-heated,diffusioncombustiongasturbinepowergenerationandprospectoflowNOxcombustionwithhighcombustionefficiency”,AmericanSocietyofMechanicalEngineers,PowerDivision(Publication)POWER,Vol.1,pp.1-10,https://doi.org/10.1115/POWER-ICOPE2017-3277.Laan,P.C.M.etal.(2019),“Heterogeneouscatalyticoxidationofammoniabyvarioustransitionmetals”,JournalofChemicalEducation,Vol.96/10,ACSPublications,Washington,DC,pp.2266-2270,https://doi.org/10.1021/acs.jchemed.9b00351.Lamb,K.E.,M.D.DolanandD.F.Kennedy(2019),“Ammoniaforhydrogenstorage;areviewofcatalyticammoniadecompositionandhydrogenseparationandpurification”,InternationalJournalofHydrogenEnergy,Vol.44/7,Elsevier,Amsterdam,pp.3580-3593,https://doi.org/10.1016/j.ijhydene.2018.12.024.Lan,T.etal.(2020),“SelectivecatalyticoxidationofNH3overnoblemetal-basedcatalysts:Stateoftheartandfutureprospects”,CatalysisScienceandTechnology,Vol.10/17,RoyalSocietyofChemistry,Cambridge,pp.5792-5810,https://doi.org/10.1039/D0CY01137A.Leach,A.M.etal.(2012),“Anitrogenfootprintmodeltohelpconsumersunderstandtheirroleinnitrogenlossestotheenvironment”,EnvironmentalDevelopment,Vol.1/1,Elsevier,Amsterdam,pp.40-66,https://doi.org/10.1016/j.envdev.2011.12.005.Leighthy,W.(2017),“Ammoniarenewableenergyfuelsystemsatcontinentalscale”,NH3FuelConference,Minneapolis,1-2November,www.ammoniaenergy.org/wp-content/uploads/2019/12/NH3-Energy-2017-Bill-Leighty.pdf.Lewis,J.(2020),“USSenatorsshowstronginterestinammonia-fueledshipping”,AmmoniaEnergy,www.ammoniaenergy.org/articles/us-senators-show-strong-interest-in-ammonia-fueled-shipping(accessed14May2020).Liebreich,M.,M.GrabkaandP.Pajda(2021),OpportunitiesforElectricFerriesinLatinAmerica,Inter-AmericanDevelopmentBank,Washington,DC,https://publications.iadb.org/publications/english/document/Opportunities-for-Electric-Ferries-in-Latin-America.pdf.Lindstad,E.andA.Rialland(2020),“LNGandcruiseships,aneasywaytofulfilregulations-versustheneedforreducingGHGemissions”,Sustainability,Vol.12/5,MDPI,Basel,pp.1-15,https://doi.org/10.3390/su12052080.Liu,H.(2014),“AmmoniaSynthesisCatalyst100Years:Practice,EnlightenmentandChallenge”,CuihuaXuebao/ChineseJournalofCatalysis,Vol.35/10,Elsevier,Amsterdam,pp.1619-1640,https://doi.org/10.1016/S1872-2067(14)60118-2.Liu,H.(2013),AmmoniaSynthesisCatalysts:InnovationandPractice,WorldScientific,Singapore.INNOVATIONOUTLOOK118Liu,X.,A.ElgowainyandM.Wang(2020),“Lifecycleenergyuseandgreenhousegasemissionsofammoniaproductionfromrenewableresourcesandindustrialby-products”,GreenChemistry,Vol.22/17,RoyalSocietyofChemistry,Cambridge,pp.5751-5761,https://doi.org/10.1039/D0GC02301A.Lloyd’sRegister(2021),“UnveilingTheCastorInitiative”,www.lr.org/en/latest-news/unveiling-the-castor-initiative(accessed1June2021).Lu,G.Q.etal.(2007),“Inorganicmembranesforhydrogenproductionandpurification:Acriticalreviewandperspective”,JournalofColloidandInterfaceScience,Vol.314/2,Elsevier,Amsterdam,pp.589-603,https://doi.org/10.1016/j.jcis.2007.05.067.Lu,Z.,Y.KawakamiandH.Hirai(2018),AStudyontheUtilizationofAmmoniaasEnergyinJapan,InstituteofEnergyEconomics,Japan,https://eneken.ieej.or.jp/data/7923.pdf.Ludecke,R.(2021),“GreenH2Iberdrolaanddeliveringgreenammonia”,AmmoniaEnergyConference2021–Australia,www.ammoniaenergy.org/wp-content/uploads/2021/09/H2-Australian-Ammonia-Energy-Association-Presentation.pdf.Ma,D.,A.HasanbeigiandW.Chen(2015),Energy-EfficiencyandAir-PollutantEmissions-ReductionOpportunitiesfortheAmmoniaIndustryinChina,LawrenceBerkeleyNationalLaboratory’sChinaEnergyProgram,Berkeley,https://china.lbl.gov/sites/all/files/lbnl-183064.pdf.MacFarlane,D.R.etal.(2020),“Aroadmaptotheammoniaeconomy”,Joule,Vol.4/6,CellPress,Cambridge,pp.1186-1205,https://doi.org/10.1016/j.joule.2020.04.004.Maersk(10March2021),“MaritimeindustryleaderstoexploreammoniaasmarinefuelinSingapore”,www.maersk.com/news/articles/2021/03/10/maritime-industry-leaders-to-explore-ammonia-as-marine-fuel-in-singapore.Maersk(2020),“Newresearchcenterwillleadthewayfordecarbonizingshipping”,www.maersk.com/news/articles/2020/06/25/new-research-center-will-lead-the-way-for-decarbonizing-shipping(accessed1June2021).Maersk(2019),“Towardsazero-carbonfuture”,www.maersk.com/news/articles/2019/06/26/towards-a-zero-carbon-future(accessed14May2021).MærskMc-KinneyMøllerCenterforZeroCarbonShipping(2021),IndustryTransitionStrategyOctober2021,Copenhagen,https://cms.zerocarbonshipping.com/media/uploads/documents/MMMCZCS_Industry-Transition-Strategy_Oct_2021.pdf.Makepeace,J.(2020),“Ammoniacracking:When,how,andhowmuch?”AmmoniaEnergyConference2020,16-20November,www.ammoniaenergy.org/wp-content/uploads/2020/12/Josh-Makepeace.pdf.Makepeace,J.W.etal.(2019),“Reversibleammonia-basedandliquidorganichydrogencarriersforhigh-densityhydrogenstorage:Recentprogress”,InternationalJournalofHydrogenEnergy,Vol.44/15,Elsevier,Amsterdam,pp.7746-7767,https://doi.org/10.1016/j.ijhydene.2019.01.144.Makepeace,J.W.etal.(2015),“Ammoniadecompositioncatalysisusingnon-stoichiometriclithiumimide”,ChemicalScience,Vol.6/7,RoyalSocietyofChemistry,Cambridge,pp.3805-3815,https://doi.org/10.1039/C5SC00205B.Makhloufi,C.(2020),“Ammoniaashydrogencarriertounlockthefullpotentialofgreenrenewables”,AmmoniaEnergyConference2020,16-20November,www.ammoniaenergy.org/wp-content/uploads/2020/12/Camel-Makhloufi.pdf.Malmali,M.etal.(2017),“Convertingwindenergytoammoniaatlowerpressure”,ACSSustainableChemistry&Engineering,Vol.6/1,ACSPublications,Washington,DC,pp.827-834,https://doi.org/10.1021/acssuschemeng.7b03159.RENEWABLEAMMONIA119MANDiesel&Turbo(2017),EfficiencyofMANB&WTwo-StrokeEngines:ForStationaryApplication,Copenhagen,https://mandieselturbo.com/docs/default-source/shopwaredocuments/efficiency-of-man-b-w-two-stroke-engines.pdf.MANEnergySolutions(2021),“Unlockingammonia’spotentialforshipping”,www.man-es.com/discover/two-stroke-ammonia-engine(accessed1June2021).MANEnergySolutions(2020),“APowerfulPortfolio:MANB&WTwo-StrokePropulsionEngines”,www.man-es.com/marine/products/two-stroke-engines(accessed11January2021).MANEnergySolutions(2019),EngineeringtheFutureTwo-StrokeGreen-AmmoniaEngine,Copenhagen,https://marine.man-es.com/docs/librariesprovider6/test/engineering-the-future-two-stroke-green-ammonia-engine.pdf.Matich,B.(2020),“DanishInvestmentFundbacks5GWWArenewablehydrogenproject”,pvmagazine,www.pv-magazine-australia.com/2020/11/17/danish-investment-fund-backs-5000-mw-wa-renewable-hydrogen-project(accessed25April2021).McPherson,I.J.etal.(2019),“Materialsforelectrochemicalammoniasynthesis”,DaltonTransactions,Vol.48/5,RoyalSocietyofChemistry,Cambridge,pp.1562-1568,https://doi.org/10.1039/C8DT04019B.Mercado-GuatiRojo,A.andA.Valera-Medina(2018),“Importanceofpublicperceptiontowardsanammoniaeconomy”,AmmoniaEnergy,www.ammoniaenergy.org/articles/importance-of-public-perception-towards-an-ammonia-economy(accessed14May2021).MIT(2016),“EnidFertilizerFactSheet:CommercialEORUsingAnthropogenicCarbonDioxide”,MassachusettsInstituteforTechnology,Cambridge,https://sequestration.mit.edu/tools/projects/enid_fertilizer.html(accessed11October2021).Moreira,L.A.etal.(2021),“Urea-versusammoniumnitrate-basedfertilizersforgreensugarcanecultivation”,JournalofSoilScienceandPlantNutrition,Vol.21,Springer,Berlin,pp.1329-1338,https://doi.org/10.1007/s42729-021-00443-x.Morgan,E.,J.ManwellandJ.McGowan(2014),“Wind-poweredammoniafuelproductionforremoteislands:Acasestudy”,RenewableEnergy,Vol.72,Elsevier,Amsterdam,pp.51-61,https://doi.org/10.1016/j.renene.2014.06.034.Morgan,E.R.(2013),Techno-EconomicFeasibilityStudyofAmmoniaPlantsPoweredbyOffshoreWind,PhDdissertation,UniversityofMassachusetts,Amherst.Morlanés,N.etal.(2020),“Atechnologicalroadmaptotheammoniaenergyeconomy:Currentstateandmissingtechnologies”,ChemicalEngineeringJournal,Vol.408,Elsevier,Amsterdam,p.127310,https://doi.org/10.1016/j.cej.2020.127310.Mott,J.(2019),“Issuesaffectingsafetyriskswithammoniastorage,transportanddistribution”,AmmoniaEnergyConference2019–Australia,www.ammoniaenergy.org/wp-content/uploads/2021/06/4.4-Issues-affecting-safety-risks-with-ammonia-storage.pdf.Muraki,S.(2021),“RegulatorypoliciesinJapan,SingaporeandAustralia:Creatingviablepathwaysforgreenammonia”,ArgusGreenAmmoniaLive.Muraki,S.(2019),“Innovationfordirectuseofammoniaintheenergymarket”,TopicalConference:Synthetic&RenewableFuels(AIChEAnnualMeeting),Orlando.Muraki,S.(2018),“Developmentoftechnologiestoutilizegreenammoniainenergymarket”,NH3FuelConference2013,www.ammoniaenergy.org/wp-content/uploads/2021/02/AEA-Imp-Con-01Nov18-Shigeru-Muraki-Keynote-Address.pdf.INNOVATIONOUTLOOK120Nayak-Luke,R.M.andR.Bañares-Alcántara(2020),“Techno-economicviabilityofislandedgreenammoniaasacarbon-freeenergyvectorandasasubstituteforconventionalproduction”,Energy&EnvironmentalScience,Vol.13/9,RoyalSocietyofChemistry,Cambridge,pp.2957-2966,https://doi.org/10.1039/D0EE01707H.Nayak-Luke,R.M.etal.(2020),“Techno-economicaspectsofproduction,storageanddistributionofammonia”,inBañares-Alcántara,R.andA.Valera-Medina(eds.),Techno-EconomicChallengesofGreenAmmoniaasEnergyVector,Elsevier,Amsterdam,pp.191-208.Nielsen,A.(1995),Ammonia:CatalysisandManufacture.1sted.ed.,Springer-Verlag,BerlinandHeidelberg.Nielsen,R.etal.(2021),“Topsoe’sammoniacrackingtechnology–deliveringgreenhydrogen”,AmmoniaEnergyConference2021,Boston,www.ammoniaenergy.org/wp-content/uploads/2021/11/Rasmus-Topsoe-NH3-cracking-AEA-2021.pdf.Nørskov,J.etal.(2016),SustainableAmmoniaSynthesis:ExploringtheScientificChallengesAssociatedwithDiscoveringAlternative,SustainableProcessesforAmmoniaProduction,DOERoundtableReport,USDepartmentofEnergy,Dulles,https://www.osti.gov/servlets/purl/1283146.NuStar(n.d.),“Pipelineoperations”,www.nustarenergy.com/Business/Pipelines(accessed10December2021).Nutrien(2021),“NutrienandEXMARpartnerinbuildingavesselpoweredbylow-carbonammonia”,www.nutrien.com/investors/news-releases/2021-nutrien-and-exmar-partner-building-vessel-powered-low-carbon-ammonia(accessed28February2022).NYKLine(2020),“JointR&Dstartsforpracticalapplicationofammonia-fueledtugboat”,www.nyk.com/english/news/2020/20200903_01.html(accessed1June2021).OQ,InterContinentalEnergyandEnerTech(2021),“GreenfuelsmegaprojectsettomakeOmanworldleaderingreenhydrogenandgreenammonia”,https://intercontinentalenergy.com/documents/ICE-Announcement-20210511.pdf.Origin(2020),“OrigintoinvestigateexportscalegreenhydrogenprojectinTasmania”,www.originenergy.com.au/about/investors-media/media-centre/origin_to_investigate_export_scale_green_hydrogen_project_in_tasmania.html(accessed14April2021).OSHA(n.d.),“1910.111–Storageandhandlingofanhydrousammonia”,OccupationalSafetyandHealthAdministration,USDepartmentofLabor,Washington,DC,www.osha.gov/laws-regs/regulations/standardnumber/1910/1910.111.Osterkamp,P.,T.SmithandK.Søgaard(2021),“Fivepercentzeroemissionfuelsby2030neededforParis-alignedshippingdecarbonization”,GettingtoZeroCoalition,www.globalmaritimeforum.org/content/2021/03/Getting-to-Zero-Coalition_Five-percent-zero-emission-fuels-by-2030.pdf.Ostuni,R.andF.Zardi(2012),“Methodforloadregulationofanammoniaplant”,https://patentimages.storage.googleapis.com/c9/24/19/900095bd97b739/US9463983.pdf.Oviroh,P.O.andT.C.Jen(2018),“TheenergycostanalysisofhybridsystemsanddieselgeneratorsinpoweringselectedbasetransceiverstationlocationsinNigeria”,Energies,Vol.11/3,MDPI,Basel,pp.7-9,https://doi.org/10.3390/en11030687.Paddison,L.(27May2021),“Omanplanstobuildworld’slargestgreenhydrogenplant”,TheGuardian,www.theguardian.com/world/2021/may/27/oman-plans-to-build-worlds-largest-green-hydrogen-plant.Palys,M.J.andP.Daoutidis(2020),“Usinghydrogenandammoniaforrenewableenergystorage:Ageographicallycomprehensivetechno-economicstudy”,Computers&ChemicalEngineering,Vol.136,Elsevier,Amsterdam,p.106785,https://doi.org/10.1016/j.compchemeng.2020.106785.RENEWABLEAMMONIA121Papavinasam,S.(2014),“OilandGasIndustryNetwork”,inCorrosionControlintheOilandGasIndustry,pp.41-131,www.sciencedirect.com/science/article/pii/B9780123970220000029.Patel,S.(2021),“MitsubishiPowerdeveloping100%ammonia-capablegasturbine”,POWER,www.powermag.com/mitsubishi-power-developing-100-ammonia-capable-gas-turbine(accessed13May2021).Peacock,B.(2021),“BlueprintforAustralia’sfirstgreenhydrogenprojecthitASXtocolossalfanfare”,pvmagazine,www.pv-magazine-australia.com/2021/02/19/blueprint-for-australias-first-green-hydrogen-project-hit-asx-to-colossal-fanfare(accessed7June2021).Pendlebury,R.,T.MearesandJ.Tyrrell(2021),Hydrogen:TheNewAustralianManufacturingExportIndustryandtheImplicationsfortheNationalElectricityMarket(NEM),AustralianEnergyMarketCommission,Sydney,www.aemc.gov.au/hydrogen-new-australian-manufacturing-export-industry-and-implications-national-electricity-market.Philibert,C.(2020a),“Methanesplittingandturquoiseammonia”,AmmoniaEnergy,www.ammoniaenergy.org/articles/methane-splitting-and-turquoise-ammonia(accessed27November2021).Philibert,C.(2020b),“Theroleofhydrogenandsyntheticfuels”,ProspectsforEnergyandMaritimeTransportsintheNordicRegion,Malmö(Sweden),pp.1-22,www.nordicenergy.org/wp-content/uploads/2020/03/Session-3.2-Cedric-Filibert.pdf.PortofRotterdam(2020),HydrogenEconomyinRotterdamHandout,www.portofrotterdam.com/sites/default/files/hydrogen-economy-in-rotterdam-handout.pdf.PowerEngineeringInternational(2020),“FirstgreenhydrogenprojectsemergeinChile”,www.powerengineeringint.com/hydrogen/first-green-hydrogen-projects-emerge-in-chile(accessed12April2021).ProtonVentures(2021),“ProtonVentures”,https://protonventures.com(accessed13December2021).ProtonVenturesB.V.(2021),“TranshydrogenAllianceannouncescollaborationtobringgreenammoniatotheEuropeanmarket”,www.protonventures.com/news(accessed7June2021).ProtonVenturesB.V.(2019),CompanyPortfolio,Schiedam,www.protonventures.com/wp-content/uploads/2019/02/Company-Portfolio-2019.pdf.ProtonVenturesB.V.(2016),StoringRenewableEnergyasAmmonia,Schiedam,www.protonventures.com/wp-content/uploads/2016/06/AMMONIA.pdf.ProvinceResourcesLimited(19April,2021),“ProvinceandglobalrenewableenergyleaderTotalErentodeveloppotential8GWgreenhydrogenprojectinAustralia”,https://cdn-api.markitdigital.com/apiman-gateway/ASX/asx-research/1.0/file/2924-02364719-6A1028858.Raucci,C.etal.(2020),“Aggregateinvestmentforthedecarbonisationoftheshippingindustry”,UniversityMaritimeAdvisoryServices,www.globalmaritimeforum.org/content/2020/01/Aggregate-investment-for-the-decarbonisation-of-the-shipping-industry.pdf.Ravn,S.(2020),“Danishpartnershipsetsouttobuildworld’sfirstcommercialscalegreenammoniaplant”,HaldorTopsøeAS,https://blog.topsoe.com/danish-partnership-sets-out-to-build-worlds-first-commercial-scale-green-ammonia-plant(accessed8April2021).Reed,S.(2021),“Oilgiantspreparetoputcarbonbackintheground”,NewYorkTimes,www.nytimes.com/2021/03/08/business/carbon-capture-bp.html(accessed7June2021).Reese,M.(2007),“Windtoammonia:Anupdate”,NH3FuelConference,SanAntonio,https://nh3fuelassociation.org/wp-content/uploads/2012/05/reese_nh3.pdf.INNOVATIONOUTLOOK122Reese,M.etal.(2016),“Performanceofasmall-scaleHaberprocess”,Industrial&EngineeringChemistryResearch,Vol.55/13,ACSPublishing,Washington,DC,pp.3742-3750,https://doi.org/10.1021/acs.iecr.5b04909.renews.biz(2021a),“Orkneyplannersbackgreenammoniaplant”,https://renews.biz/65939/orkney-planners-back-green-ammonia-plant(accessed30April2021).renews.biz(2021b),“Iberdroladeliversfirstgreenhydrogentanks”,https://renews.biz/74305/iberdrola-delivers-first-green-hydrogen-tanks(accessed18February2021).ReutersStaff(2021),“TokyoporttowaiveentryfeeforshipspoweredbyLNG,hydrogen”,Reuters,www.reuters.com/article/us-japan-fueloil-ports/tokyo-port-to-waive-entry-fee-for-ships-powered-by-lng-hydrogen-idUSKBN2BI0XF(accessed14May2021).Revell,L.E.etal.(2015),“ThechangingozonedepletionpotentialofN2Oinafutureclimate”,GeophysicalResearchLetters,Vol.42/22,Wiley,Hobokenpp.10047-10055,https://doi.org/10.1002/2015GL065702.Rivarolo,M.etal.(2019),“CleanhydrogenandammoniasynthesisinParaguayfromtheItaipu14GWHydroelectricPlant”,ChemEngineering,Vol.3/4,MDPI,Basel,pp.1-11,https://doi.org/10.3390/chemengineering3040087.Rossi,U.(2018),“Ammoniafromrenewables”,NH3Event,Rotterdam.Rostrup-Nielsen,J.R.(1984),“Catalyticsteamreforming”,inAnderson,J.S.andM.Boudar(eds.),Catalysis:ScienceandTechnology,Springer-Verlag,BerlinandHeidelberg,pp.1-117.Rouwenhorst,K.H.R.etal.(2020a),“Ammonia,4.GreenAmmoniaProduction”,Ullmann’sEncyclopediaofIndustrialChemistry,Wiley-VCHVerlagGmbH&Co.,Weinheim,https://doi.org/10.1002/14356007.w02_w02.Rouwenhorst,K.H.R.etal.(2020b),“Ammoniaproductiontechnologies”,inBañares-Alcántara,R.andA.Valera-Medina(eds.),Techno-EconomicChallengesofGreenAmmoniaasEnergyVector,Elsevier,Amsterdam,pp.41-84.Rouwenhorst,K.H.R.etal.(2020c),“Futuretrends”,inBañares-Alcántara,R.andA.Valera-Medina(eds.),Techno-EconomicChallengesofGreenAmmoniaasEnergyVector,Elsevier,Amsterdam,pp.303-319.Rouwenhorst,K.H.R.etal.(2020d),“Plasma-drivencatalysis:Greenammoniasynthesiswithintermittentelectricity”,GreenChemistry,Vol.22/19,RoyalSocietyofChemistry,Cambridge,pp.6258-6287,https://doi.org/10.1039/D0GC02058C.Rouwenhorst,K.H.R.etal.(2019),“Islandedammoniapowersystems:Technologyreview&conceptualprocessdesign”,RenewableandSustainableEnergyReviews,Vol.114,Elsevier,Amsterdam,p.109339,https://doi.org/10.1016/j.rser.2019.109339.Rouwenhorst,K.H.R.,A.S.TravisandL.Lefferts(2022),“1921-2021:Acenturyofrenewableammoniasynthesis”,SustainableChemistry,Vol.3/2,MDPI,Basel,pp.149-171,https://doi.org/10.3390/suschem3020011.RoyalSociety(2020),Ammonia:Zero-CarbonFertiliser,FuelandEnergyStore,TheRoyalSociety,London,https://royalsociety.org/-/media/policy/projects/green-ammonia/green-ammonia-policy-briefing.pdf.RTIInternational(2021),“RTIInternationalawarded$10millionfromU.S.DepartmentofEnergy’sARPA-Etodemonstraterenewableammoniaproductionanduse”,www.rti.org/news/rti-international-awarded-funding-us-department-energy(accessed31May2021).S&PGlobalPlatts(2021),“GlobalammoniapricessurgeonEuropeannaturalgascostpush”,www.spglobal.com/platts/en/market-insights/latest-news/energy-transition/121621-global-ammonia-prices-surge-on-european-natural-gas-cost-push(accessed10February2022).RENEWABLEAMMONIA123Salmon,N.andR.Bañares-Alcántara(2021),“Greenammoniaasaspatialenergyvector:Areview”,SustainableEnergy&Fuels,Vol.5,RoyalSocietyofChemistry,Cambridge,pp.2814-2839,https://doi.org/10.1039/D1SE00345C.Salmon,N.,R.Bañares-AlcántaraandR.Nayak-Luke(2021),“Optimizationofgreenammoniadistributionsystemsforintercontinentalenergytransport”,Science,Vol.24/8,AmericanAssociationfortheAdvancementofScience,Washington,DC,p.102903,https://doi.org/10.1016/j.isci.2021.102903.Sánchez,A.andM.Martín(2018),“Scaleupandscaledownissuesofrenewableammoniaplants:Towardsmodulardesign”,SustainableProductionandConsumption,Vol.16,Elsevier,Amsterdam,pp.176-192,https://doi.org/10.1016/j.spc.2018.08.001.Sánchez,A.,M.MartínandP.Vega(2019),“Biomassbasedsustainableammoniaproduction:Digestionvsgasification”,ACSSustainableChemistryandEngineering,Vol.7/11,ACSPublishing,Washington,DC,pp.9995-10007,https://doi.org/10.1021/acssuschemeng.9b01158.Sarkar,S.,A.KumarandA.Sultana(2011),“BiofuelsandbiochemicalsproductionfromforestbiomassinWesternCanada”,Energy,Vol.36/10,Elsevier,Amsterdam,pp.6251-6262,https://doi.org/10.1016/j.energy.2011.07.024.SaudiAramco(27September,2020),“World’sfirstblueammoniashipmentopensnewroutetoasustainablefuture”,www.aramco.com/en/news-media/news/2020/first-blue-ammonia-shipment.Saygin,D.andD.Gielen(2021),“Zero-emissionpathwayfortheglobalchemicalandpetrochemicalsector”,Energies,Vol.14/13,MDPI,Basel,p.3772,https://doi.org/10.3390/en14133772.Saygin,D.etal.(2011),“Benchmarkingtheenergyuseofenergy-intensiveindustriesinindustrializedandindevelopingcountries”,Energy,Vol.36/11,Elsevier,Amsterdam,pp.6661-6673,https://doi.org/10.1016/j.energy.2011.08.025.Schmidt,O.etal.(2017a),“Futurecostandperformanceofwaterelectrolysis:Anexpertelicitationstudy”,InternationalJournalofHydrogenEnergy,Vol.42/52,Elsevier,Amsterdam,pp.30470-30492,https://doi.org/10.1016/j.ijhydene.2017.10.045.Schmidt,O.etal.(2017b),“Thefuturecostofelectricalenergystoragebasedonexperiencerates”,NatureEnergy,Vol.2/8,Springer,Berlin,pp.1-8,https://doi.org/10.1038/nenergy.2017.110.Schneider,S.etal.(2020),“Stateoftheartofhydrogenproductionviapyrolysisofnaturalgas”,ChemBioEngReviews,Vol.7/5,Wiley-VCHGmbH,Weinheim,pp.150-158,https://doi.org/10.1002/cben.202000014.Schoots,K.etal.(2008),“Learningcurvesforhydrogenproductiontechnology:Anassessmentofobservedcostreductions”,InternationalJournalofHydrogenEnergy,Vol.33/11,Elsevier,Amsterdam,pp.2630-2645,https://doi.org/10.1016/j.ijhydene.2008.03.011.SenterNovem(2005),TheNetherlands:ListofFuelsandStandardCO2EmissionFactors,Amsterdam,www.rvo.nl/sites/default/files/2013/10/Vreuls2005NLEnergiedragerlijst-Update.pdf.Shayegh,S.,V.BosettiandM.Tavoni(2021),“Futureprospectsofdirectaircapturetechnologies:insightsfromanexpertelicitationsurvey”,FrontiersinClimate,Vol.3,Frontiers,Lausanne,pp.1-14,https://doi.org/10.3389/fclim.2021.630893.ShipInsight(2020),“ApprovalofmethanolguidelinesbyIMOwillrelease‘pent-updemand’forlowcarbonalternatives”,https://shipinsight.com/articles/approval-of-methanol-guidelines-by-imo-will-release-pent-up-demand-for-low-carbon-alternatives(accessed28February2022).ShowaDenkoK.K.(n.d.),“ECOANNTM”,https://www.sdk.co.jp/english/products/104/105/ecoann.html.INNOVATIONOUTLOOK124Siemensetal.(2020),AmmoniatoGreenHydrogenProject,Birmingham,https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf.Sievers,S.etal.(2017),“Fixedcapitalinvestmentestimationformodularproductionplants”,ChemicalEngineeringScience,Vol.158,Elsevier,Amsterdam,pp.395-410,https://doi.org/10.1016/j.ces.2016.09.029.Singh,V.,I.DincerandM.A.Rosen(2018),“Lifecycleassessmentofammoniaproductionmethods”,inExergetic,EnergeticandEnvironmentalDimensions,Elsevier,Amsterdam,pp.935-959.Smil,V.(2004),EnrichingtheEarth:FritzHaber,CarlBosch,andtheTransformationofWorldFoodProduction,MITPress,Cambridge.Smith,C.andL.Torrente-Murciano(2021),“ThepotentialofgreenammoniaforagriculturalandeconomicdevelopmentinSierraLeone”,OneEarth,Vol.4/1,CellPress,Cambridge,pp.104-113,https://doi.org/10.1016/j.oneear.2020.12.015.Smith,C.,A.K.HillandL.Torrente-Murciano(2020),“CurrentandfutureroleofHaber–Boschammoniainacarbon-freeenergylandscape”,Energy&EnvironmentalScience,Vol.13/2,RoyalSocietyofChemistry,Cambridge,pp.331-344,https://doi.org/10.1039/C9EE02873K.Sociaal-EconomischeRaad(2020),BiomassainBalans–EenDuurzaamheidskaderVoorHoogwaardigeInzetvanBiogrondstoffen,TheHague,www.ser.nl/-/media/ser/downloads/adviezen/2020/biomassa-in-balans.pdf.Sorrentino,G.etal.(2019),“Low-NOxconversionofpureammoniainacyclonicburnerunderlocallydilutedandpreheatedconditions”,AppliedEnergy,Vol.254,Elsevier,Amsterdam,pp.1-7,http://dx.doi.org/10.1016/j.apenergy.2019.113676.SousaCardoso,J.etal.(2021),“Ammoniaasanenergyvector:currentandfutureprospectsforlow-carbonfuelapplicationsininternalcombustionengines”,JournalofCleanerProduction,Vol.296,Elsevier,Amsterdam,p.126562,https://doi.org/10.1016/j.jclepro.2021.126562.Staffell,I.etal.(2019),“Theroleofhydrogenandfuelcellsintheglobalenergysystem”,Energy&EnvironmentalScience,Vol.12/2,RoyalSocietyofChemistry,Cambridge,pp.463-491,https://doi.org/10.1039/C8EE01157E.Stamicarbon(2021a),“MaireTecnimontGroupstartspreliminaryworkonarenewablepower-to-fertilizerplantinKenya”,www.stamicarbon.com/press-release/maire-tecnimont-group-starts-preliminary-work-renewable-power-fertilizer-plant-kenya(accessed25May2021).Stamicarbon(2021b),“ThefirstgreenammoniaplanttobedevelopedintheUSmidwestwillbebasedonStamicarbon’stechnology”,www.stamicarbon.com/news/first-green-ammonia-plant-be-developed-us-midwest-will-be-based-stamicarbons-technology(accessed28September2021).Stamicarbon(2021c),“Stamigreenammonia”,www.stamicarbon.com/what-we-do/green-ammonia(accessed3June2021).StarfireEnergy(n.d.),“RapidRamp©ModularAmmoniaSynthesisPlants”,https://starfireenergy.com/rapid-ramp-nh3(accessed14April2021).Tamura,M.etal.(2020),“Experimentalinvestigationofammoniacombustioninabenchscale1.2MW-thermalpulverisedcoalfiringfurnace”,AppliedEnergy,Vol.277,Elsevier,Amsterdam,p.115580,https://doi.org/10.1016/j.apenergy.2020.115580.Tancock,A.(2020),“Greenammoniaatoilandgasscale”,AmmoniaEnergyConference2020,www.ammoniaenergy.org/wp-content/uploads/2020/12/Alex-Tancock-Keynote.pdf.RENEWABLEAMMONIA125TAQAGroup(2021),“TAQAGroupandAbuDhabiPortsplanning2GWgreenhydrogentoammoniaproject”,www.taqa.com/press-releases/taqa-group-and-abu-dhabi-ports-planning-2-gw-green-hydrogen-to-ammonia-project-2(accessed2September2021).Thapliyal,D.(2021),“Fertilizersinthecross-commodityimpactofrecordhighgasprices”,www.icis.com/explore/resources/news/2021/09/20/10686659/topic-page-fertilizers-in-the-cross-commodity-impact-of-record-high-gas-prices(accessed7October2021).ThyssenKrupp(2019),“Makingtheworld’slargestammoniaplantevenlarger”,https://insights.thyssenkrupp-industrial-solutions.com/story/making-the-worlds-largest-ammonia-plant-even-larger(accessed30May2021).TNO(2020),TheDutchHydrogenBalance,andtheCurrentandFutureRepresentationofHydrogenintheEnergyStatistics,Amsterdam,www.cbs.nl/-/media/_pdf/2020/27/the-dutch-hydrogen-balance-and-current-and-future-representation-of-hydrogen-in-energy-statistics.pdf.Trammo(2021),“Trammo,AustriaEnergyandOekowindsignMemorandumofUnderstandingforexclusivegreenammonia&greenhydrogenofftakeinChile”,www.trammo.com/news-trammo-austriaenergy(accessed25May2021).Travis,A.S.(2018),NitrogenCapture:TheGrowthofanInternationalIndustry(1900-1940),Springer,Berlin.TsubameBHB(2020),“TsubameBHBselectedfortheJICASDGsBusinessSupportingSurveys–basicsurveyoflocalfertilizerproductionutilizingsurplushydroelectricpowergenerationinLaos”,https://tsubame-bhb.co.jp/en/news/press-release/2020-10-22-1820(accessed7June2021).Tullo,A.H.(2020),“YaraplanstomakegreenammoniainNorway”,Chemical&EngineeringNews,https://cen.acs.org/business/petrochemicals/Yara-plans-make-green-ammonia/98/web/2020/12%0A(accessed8April2021).Tunå,P.,C.HultebergandS.Ahlgren(2014),“Techno-economicassessmentofnonfossilammoniaproduction”,EnvironmentalProgress&SustainableEnergy,Vol.33/4,AmericanInstituteofChemicalEngineers,NewYork,pp.1290-1297,https://doi.org/10.1002/ep.11886.Uniper(2021),“UniperplanstomakeWilhelmshavenahubforclimatefriendlyhydrogen”,www.uniper.energy/news/uniper-plans-to-make-wilhelmshaven-a-hub-for-climate-friendly-hydrogen(accessed7June2021).USEIA(2017),GlobalTransportationEnergyConsumption:ExaminationofScenariosto2040UsingITEDD,USEnergyInformationAdministration,Washington,DC,www.eia.gov/analysis/studies/transportation/scenarios/pdf/globaltransportation.pdf.USEPA(2020),InventoryofU.S.GreenhouseGasEmissionsandSinks:1990-2018,USEnvironmentalProtectionAgency,Washington,DC,www.epa.gov/sites/production/files/2020-04/documents/us-ghg-inventory-2020-chapter-executive-summary.pdf.Valera-Medina,A.etal.(2021),“Reviewonammoniaasapotentialfuel:fromsynthesistoeconomics”,EnergyandFuels,Vol.35/9,ACSPublishing,Washington,DC,pp.6964-7029,https://doi.org/10.1021/acs.energyfuels.0c03685.Valera-Medina,A.etal.(2019),“Premixedammonia/hydrogenswirlcombustionunderrichfuelconditionsforgasturbinesoperation”,InternationalJournalofHydrogenEnergy,Vol.44/16,Elsevier,Amsterdam,pp.8615-8626,https://doi.org/10.1016/j.ijhydene.2019.02.041.Valera-Medina,A.etal.(2018),“Ammoniaforpower”,ProgressinEnergyandCombustionScience,Vol.69,Elsevier,Amsterdam,pp.63-102,https://doi.org/10.1016/j.pecs.2018.07.001.INNOVATIONOUTLOOK126Valera-Medina,A.etal.(2017a),“Ammonia–methanecombustionintangentialswirlburnersforgasturbinepowergeneration”,AppliedEnergy,Vol.185/2,Elsevier,Amsterdam,pp.1362-1371,https://doi.org/10.1016/j.apenergy.2016.02.073.Valera-Medina,A.etal.(2017b),“Preliminarystudyonleanpremixedcombustionofammonia-hydrogenforswirlinggasturbinecombustors”,InternationalJournalofHydrogenEnergy,Vol.42/38,Elsevier,Amsterdam,pp.24495-24503,https://doi.org/10.1016/j.ijhydene.2017.08.028.Valera-Medina,A.,E.L.IfanandC.T.Chong(2021),“Regulatoryframework”,inValera-Medina,A.andR.Bañares-Alcántara(eds.),Techno-EconomicChallengesofGreenAmmoniaasanEnergyVector,Elsevier,Amsterdam,pp.259-276.VanDamme,M.etal.(2018),“Industrialandagriculturalammoniapointsourcesexposed”,Nature,Vol.564/7734,Springer,Berlin,pp.99-103,https://doi.org/10.1038/s41586-018-0747-1.vandenBroeck,S.(2020),“Cleanammoniatransition@Yara”,AmmoniaEnergyConference2020,16-20November,www.ammoniaenergy.org/wp-content/uploads/2020/12/Sammy-van-den-Broeck.pdf.VanZalk,J.andP.Behrens(2018),“Thespatialextentofrenewableandnon-renewablepowergeneration:Areviewandmeta-analysisofpowerdensitiesandtheirapplicationintheU.S.”,EnergyPolicy,Vol.123,Elsevier,Amsterdam,pp.83-91,https://doi.org/10.1016/j.enpol.2018.08.023.Verleysen,K.,A.ParenteandF.Contino(2021),“Howsensitiveisadynamicammoniasynthesisprocess?globalsensitivityanalysisofadynamicHaber-Boschprocess(forflexibleseasonalenergystorage)”,Energy,Vol.232,Elsevier,Amsterdam,p.121016,https://doi.org/10.1016/j.energy.2021.121016.Vrijenhoef,J.P.(2016),“DecentralisedammoniaproductionintheNetherlands”,NH3FuelConference,LosAngeles,20September,https://nh3fuelassociation.org/wp-content/uploads/2016/09/hans-vrijenhoef-decentralised-ammonia-production-in-the-netherlands-nh3fa2016.pdf.Wan,Z.etal.(2021),“Ammoniaasaneffectivehydrogencarrierandacleanfuelforsolidoxidefuelcells”,EnergyConversionandManagement,Vol.228,Elsevier,Amsterdam,p.113729,https://doi.org/10.1016/j.enconman.2020.113729.WärtsiläCorporation(2021),“Wärtsilälaunchesmajortestprogrammetowardscarbon-freesolutionswithhydrogenandammonia”,www.wartsila.com/media/news/14-07-2021-wartsila-launches-major-test-programme-towards-carbon-free-solutions-with-hydrogen-and-ammonia-2953362(accessed28February2022).WärtsiläCorporation(2020),“World’sfirstfullscaleammoniaenginetest–animportantsteptowardscarbonfreeshipping”,www.wartsila.com/media/news/30-06-2020-world-s-first-full-scale-ammonia-engine-test---an-important-step-towards-carbon-free-shipping-2737809(accessed1June2021).Weng,Z.etal.(2015),“Adetailedassessmentofglobalrareearthelementresources:opportunitiesandchallenges”,EconomicGeology,Vol.110/8,SocietyofEconomicGeologists,Littleton,pp.1925-1952,https://doi.org/10.2113/econgeo.110.8.1925.WGEH(2021),“WesternGreenEnergyHubinAustraliasettotransformglobalgreenfuelsproductioninhistoricpartnershipwiththeMirningpeople”,WesternGreenEnergyHub,www.ammoniaenergy.org/wp-content/uploads/2021/07/WGEH-PressRelease-20210713.pdf(accessed2September2021).Wijayanta,A.T.etal.(2019),“Liquidhydrogen,methylcyclohexane,andammoniaaspotentialhydrogenstorage:Comparisonreview”,InternationalJournalofHydrogenEnergy,Vol.44/29,Elsevier,Amsterdam,pp.15026-15044,https://doi.org/10.1016/j.ijhydene.2019.04.112.RENEWABLEAMMONIA127Will,M.andL.Lüke(2018),“Realisationoflarge-scalegreenammoniaplants”,NH3Event,Rotterdam.Wismann,S.T.etal.(2019),“Electrifiedmethanereforming:Acompactapproachtogreenerindustrialhydrogenproduction”,Science,Vol.364/6442,AmericanAssociationfortheAdvancementofScience,Washington,DC,pp.756-759,https://doi.org/10.1126/science.aaw8775.Xiao,H.etal.(2017),“Reducedchemicalmechanismsforammonia/methaneco-firingforgasturbineapplications”,EnergyProcedia,Vol.105,Elsevier,Amsterdam,pp.1483-1488,https://doi.org/10.1016/j.egypro.2017.03.441.Yara(2022),“YaraandLantmännensignfirstcommercialagreementforfossilfreefertilizers”,www.yara.com/corporate-releases/yara-and-lantmannen-sign-first-commercial-agreement-for-fossil-free-fertilizers(accessed10February2022).Yara(2021)“YaraandJERAplantocollaborateoncleanammoniatodecarbonizepowerproductioninJapan”,www.yara.com/corporate-releases/yara-and-jera-plan-to-collaborate-on-clean-ammonia-to-decarbonize-power-production-in-japan(accessed24May2021).Yara(2018),YaraFertilizerIndustryHandbook,Oslo,www.yara.com/siteassets/investors/057-reports-and-presentations/other/2018/fertilizer-industry-handbook-2018-with-notes.pdf.Yoshida,M.etal.(2021),“Economiesofscaleinammoniasynthesisloopsembeddedwithiron-andruthenium-basedcatalysts”,InternationalJournalofHydrogenEnergy,Vol.46/57,Elsevier,Amsterdam,pp.28840-28854,https://doi.org/10.1016/j.ijhydene.2020.12.081.Zamfirescu,C.andI.Dincer(2008),“Usingammoniaasasustainablefuel”,JournalofPowerSources,Vol.185/1,Elsevier,Amsterdam,pp.459-465,https://doi.org/10.1016/j.jpowsour.2008.02.097.Zawya(2021),“Oman-IndiaJVplans$2.5blngreenammoniaprojectinDuqmSEZ”,www.zawya.com/mena/en/business/story/OmanIndia_JV_plans_25bln_green_ammonia_project_in_Duqm_SEZ-SNG_205188247(accessed13April2021).Zeng,C.(2014),“OverviewofChinaAmmoniaIndustry”,AmmoniaTechnicalManual2014,www.iffcokandla.in/data/polopoly_fs/1.2465646.1437673193!/fileserver/file/507750/filename/012.pdf.Zhang,H.etal.(2020),“Techno-economiccomparisonofgreenammoniaproductionprocesses”,AppliedEnergy,Vol.259,Elsevier,Amsterdam,p.114135,https://doi.org/10.1016/j.apenergy.2019.114135.Zhang,J.etal.(2020),“Numericalinvestigationonammoniaco-firinginapulverizedcoalcombustionfacility:Effectofammoniaco-firingratio”,Fuel,Vol.267,Elsevier,Amsterdam,p.117166,https://doi.org/10.1016/j.fuel.2020.117166.Zhang,X.etal.(2020),“Globalnitrogencycle:criticalenzymes,organisms,andprocessesfornitrogenbudgetsanddynamics”,ChemicalReviews,Vol.120/12,ACSPublications,Washington,DC,pp.5308-5351,https://doi.org/10.1021/acs.chemrev.9b00613.Zhou,W.etal.(2010),“CO2emissionsandmitigationpotentialinChina’sammoniaindustry”,EnergyPolicy,Vol.38/7,Elsevier,Amsterdam,pp.3701-3709,https://doi.org/10.1016/j.enpol.2010.02.048.Zhao,Y.etal.(2019),“Anefficientdirectammoniafuelcellforaffordablecarbon-neutraltransportation”,Joule,Vol.3/10,CellPress,Cambridge,pp.2472-2484,https://doi.org/10.1016/j.joule.2019.07.005.INNOVATIONOUTLOOK128ANNEXESAnnexAThenitrogencycleAtmosphericnitrogenisfixatedthroughnaturalprocesses,suchasmicrobeswiththeabilitytofixatenitrogen(biologicalnitrogenfixation(BNF))andlightning.Furthermore,atmosphericnitrogenisfixatedthroughanthropogenicprocesses,suchasfertiliserproductionwithassociatedagriculturalbiologicalnitrogenfixationandthecombustionoffuels.AschematicoftheglobalatmosphericnitrogenfixationprocessisshowninFigure35.Thebiologicnitrogenfixationprocessconsistsoffixationofatmosphericnitrogenbymicrobesinsoilsandinoceans,totallingaround200Mtofammonia-equivalentnitrogenfixationperyear(Fowleretal.,2013).Lightningaccountsforanother5Mtofammonia-equivalentnitrogenfixationperyear(Fowleretal.,2013).Industrialnitrogenfixationforfertilisationandemissionsthereoftotheenvironment,agriculturalbiologicalnitrogenfixation,aswellasNOxemissionsfromcombustioncontributetoatotalof210Mtofammonia-equivalentnitrogenfixationperyear(Fowleretal.,2013;X.Zhangetal.,2020).Thisisequalinsizetothebiologicalnitrogenfixationprocesses.Figure35Globalnitrogenfixation,bothnaturalandanthropogenicinoxidisedandreducedforms,formedthroughcombustion,biologicalfixation,lightning,andfertiliserapplication,fortheyear2010BNFLightningCombustionfertiliserproductionAgriculturalBNFLandAnnualfixationNrTGNyr-AnthropogenicTGNyr-Ocean±BNF±±±±±ReproducedfromFowleretal.(2013).RENEWABLEAMMONIA129Only14-20%ofthenitrogenfertilisersappliedinvegetarianagricultureisconsumedbyhumans,whiletheremainderleachesintothesoil,airandwater(GallowayandCowling,2002;Leachetal.,2012),therebycausingeutrophication.Forreference,lessthan5%ofthenitrogenfertiliserappliedforacarnivorousdietisconsumedbyhumans(GallowayandCowling,2002).Eutrophicationistheeffectwheremineralsandnutrients,inthiscasenitrogenfertilisersandNOXemissions,impacttheterrestrialandaquaticecosystems,assomeorganismsgrowmuchfasterthanotherorganismsthroughexcessivenitrogennutrientenrichment,leadingtoalossinbiodiversity.Upondepositionofammoniatosoil,itmaybeconvertedtonitrousoxide(N2O)bynitrogenfixationmicrobesinthesoil.Nitrousoxideisastronggreenhousegaswith298timestheglobalwarmingpotentialofCO2(USEPA,2020).Furthermore,N2OcausesstratosphericozonelossthroughtheformationofNOX(Erismanetal.,2013;Revelletal.,2015).Nitrogenemissionsfromammoniaforenergyapplicationsshouldonlybeatmosphericdinitrogen(N2),inordertolimittheeffectofdecarbonisingtheenergyinfrastructuretoanammoniaeconomy.UnconvertedammoniaandNOxformedduringincompletecombustionshouldbeconvertedtoatmosphericnitrogenandwater.TechnologiestoconvertammoniaandNOxtoatmosphericdinitrogenandwaterarealreadycommerciallyavailableforexhaustclean-upinvehicles,forships,andforstationarypower.NOxemissionshavebeenreducedovertheyearsthroughlegislation.AmmoniaandammoniaderivativescanbeusedtodecreasetheNOxemissionsinthestationarypowersectorandtransportsectorthroughselectivecatalyticreduction(SCR)technology(Buscaetal.,1998).ThistechnologyenhancestheconversionofNOxthroughareactionwithammoniaonmetalsurfacesandmetaloxidesurfacestoformdinitrogenandwater.INNOVATIONOUTLOOK130AnnexBLife-cycleassessmentTable9GreenhousegasintensityofammoniaproductionprocessfromvariousresourcesFeedstockOriginalsystemboundariesRawmaterialtofinaluseGHGemittedingCO2-eq/MJSourceResourcetype:Fossilfuel-basedNaturalgasA116.4(HydrogenCouncil,2021)NaturalgasB85.8(Brightling,2018)NaturalgasB136.8(Liu,ElgowainyandWang,2020)NaturalgasA129.8(Al-BreikiandBicer,2021)NaturalgasB162.6(Singh,DincerandRosen,2018)NaturalgasB89.7(Smith,HillandTorrente-Murciano,2020)NaturalgasB150.7(Aroraetal.,2018)NaturalgasB101.9(Aroraetal.,2017)NaturalgasB123.0(Zhouetal.,2010)NaturalgasB118.2(Dufouretal.,2009)NaphthaB134.1(Brightling,2018)HeavyfueloilB160.9(Brightling,2018)HeavyfueloilB175.5(Zhouetal.,2010)CoalB203.8(Brightling,2018)CoalB193.1(Rouwenhorstetal.,2020b)CoalB206.7(Singh,DincerandRosen,2018)CoalB225.2(Aroraetal.,2018)CoalB245.7(Zhouetal.,2010)Resourcetype:Lower-carbonfossilfuel-basedNaturalgaswithCCSA97.6(Al-BreikiandBicer,2021)NaturalgaswithCCSB50.9(RoyalSociety,2020)NaturalgaswithCCSB46.0(Dufouretal.,2009)NaturalgaswithCCS(RussianFederation,2030)B32.5(HydrogenCouncil,2021)NaturalgaswithCCS(RussianFederation,2050)B32.5(HydrogenCouncil,2021)(A)Fromrawmaterialextractionuntilusephase;nocorrectionneeded.(B)Fromrawmaterialextractionuntilammoniaproductiongate;addmaximum10gramsofCO₂-equivalentperMJfortransportanddistributionofammonia(Al-BreikiandBicer,2021).RawmaterialtofinalusegreenhousegasemissionsingramsofCO₂-equivalentperMJcalculatedfromtheoriginalsystemboundary.ThevaluesfortheCO₂-equivalentemissionsfromDufouretal.(2009)andHydrogenCouncil(2021)arerecalculatedtoammoniasynthesisfromhydrogensynthesis.Note:ATR=autothermalreforming;SMR=steammethanereforming;ASU=airseparationunit;PSA=pressureswingadsorption.RENEWABLEAMMONIA131FeedstockOriginalsystemboundariesRawmaterialtofinaluseGHGemittedingCO2-eq/MJSourceResourcetype:Lower-carbonfossilfuel-basedNaturalgas,SMRwithCCS(Norway,2030)B12.5(HydrogenCouncil,2021)Naturalgas,SMRwithCCS(Norway,2050)B12.5(HydrogenCouncil,2021)Naturalgas,ATRwithCCS(Norway,2030)B10.0(HydrogenCouncil,2021)Naturalgas,ATRwithCCS(Norway,2050)B6.7(HydrogenCouncil,2021)CoalgasificationwithCCSB36.1(Singh,DincerandRosen,2018)CoalgasificationwithCCS(China,2030)B76.7(HydrogenCouncil,2021)CoalgasificationwithCCS(China,2050)B65.9(HydrogenCouncil,2021)CoalgasificationwithCCS(Australia,2030)B29.2(HydrogenCouncil,2021)CoalgasificationwithCCS(Australia,2050)B25.8(HydrogenCouncil,2021)Hydrogenfromethanecracker,nitrogenfromASUB92.8(Liu,ElgowainyandWang,2020)Hydrogenfromethanecracker,nitrogenfromPSAB97.6(Liu,ElgowainyandWang,2020)Hydrogenfromchloralkali,nitrogenfromASUB19.8(Liu,ElgowainyandWang,2020)Hydrogenfromchloralkali,nitrogenfromPSAB24.1(Liu,ElgowainyandWang,2020)MethanepyrolysisB33.8(Dufouretal.,2009)MethanepyrolysisB19.9(Dufouretal.,2009)MethanepyrolysisB37.6(Dufouretal.,2009)Resourcetype:Power-basedRenewablehydrogen(2030)A10.2(HydrogenCouncil,2021)Renewablehydrogen(2050)A4.8(HydrogenCouncil,2021)Electrolysis-basedhydrogenA18.8(Smith,HillandTorrente-Murciano,2020)Electrolysis-basedhydrogenA26.3(Smith,HillandTorrente-Murciano,2020)Low-temperatureelectrolysis,nitrogenfromASUB11.8(Liu,ElgowainyandWang,2020)Low-temperatureelectrolysis,nitrogenfromPSAB16.1(Liu,ElgowainyandWang,2020)High-temperatureelectrolysis,nitrogenfromASUB13.4(Liu,ElgowainyandWang,2020)INNOVATIONOUTLOOK132FeedstockOriginalsystemboundariesRawmaterialtofinaluseGHGemittedingCO2-eq/MJSourceResourcetype:Power-basedHigh-temperatureelectrolysis,nitrogenfromPSAB17.7(Liu,ElgowainyandWang,2020)ElectrolysisfromwindA34.9(Al-BreikiandBicer,2021)ElectrolysisfromwindB26.6(Singh,DincerandRosen,2018)ElectrolysisfromsolarA60.1(Al-BreikiandBicer,2021)ElectrolysisfromsolarB68.5(Singh,DincerandRosen,2018)ElectrolysisfromhydropowerB20.8(Biceretal.,2016)ElectrolysisfrommunicipalwasteB18.6(Biceretal.,2016)ElectrolysisfrombiomassB46.0(Biceretal.,2016)High-temperatureelectrolysisfromnuclearB45.2(Biceretal.,2016)Resourcetype:Bio-basedBiomassgasificationB20.3(Singh,DincerandRosen,2018)BiomassgasificationB64.4(Aroraetal.,2018)WoodATRB41.5(Aroraetal.,2017)WoodsteamreformingB45.2(Aroraetal.,2017)WoodCO₂reformingB54.7(Aroraetal.,2017)StrawATRB60.1(Aroraetal.,2017)StrawsteamreformingB68.1(Aroraetal.,2017)StrawCO₂reformingB77.2(Aroraetal.,2017)StrawgasificationB37.5(Ahlgrenetal.,2008)SalixgasificationB29.5(Ahlgrenetal.,2008)BagasseATRB13.0(Aroraetal.,2017)BagassesteamreformingB17.6(Aroraetal.,2017)BagasseCO₂reformingB19.0(Aroraetal.,2017)RoundwoodgasificationB35.9(Gilbertetal.,2014)WoodchipsgasificationB0.3(Sarkar,KumarandSultana,2011)Resourcetype:NuclearHigh-temperatureelectrolysisB24.3(BicerandDincer,2017)Low-temperatureelectrolysisB25.8(BicerandDincer,2017)Cu-ClCycle(3step)B30.8(BicerandDincer,2017)Cu-ClCycle(4step)B29.8(BicerandDincer,2017)Cu-ClCycle(5step)B31.3(BicerandDincer,2017)RENEWABLEAMMONIA133AnnexCCapitalinvestmentforrenewableammoniaproductionAnumberofliteraturestudieshasbeenconductedonthecostofrenewableammonia.AselectedoverviewoftheseestimatedproductioncostsispresentedinTable10.Overall,theCAPEXisroughlybetweenUSD6000andUSD1500pertonneannuallyforrenewableammoniaproductionplants(excludingwindandsolargeneration),withplantproductioncapacitiesrangingfrom1ktperyearofammoniato500ktperyear.Table11providesadetailedinsightintothecapitalcostofrenewableammoniaplantsaroundtheworld.AvisualisationofthecapitalintensityofvariousammoniaplantsisshowninFigure16.Clearly,ammoniaproductiondependsstronglyontheplantsize,wherelarge-scaleoperationresultsinalowerrelativecapitalinvestment.Thecapitalintensityofvariousbiomass-basedammoniaproductionplantsisalsoshowninFigure16,basedonAkbari,OyedunandKumar(2018)andTunå,HultebergandAhlgren(2014).Table10ProductioncostsandproductioncapacityofgreenammoniareportedintheliteratureElectricitysourceforelectrolysisElectrolysistypeCapacity(kt/y)CAPEX(millionUSD)CAPEX(USD/t/y)OPEX(MUSD/y)OPEX(USD/t)Ammoniacost(USD/t)SourceAlkaline9.310426.414828461423------(GrundtandChristiansen,1982)Grid-2.06.810.229.0548446963.09.61474142517251640(Tunå,HultebergandAhlgren,2014)--0.0351.80.838.7283025919------(Morgan,ManwellandMcGowan,2014)HydroAlkaline701752633505251603274515687862307189217401644151622.352.283.7117198318298319333377432392405414452(Rivaroloetal.,2019)Wind,solarAlkaline--3955458338304709----273264261320471493452556(ArmijoandPhilibert,2020)INNOVATIONOUTLOOK134Table11Capitalcostforrenewableammoniaplants,includingorexcludingrenewableenergygenerationcostLocationCompaniesAmmoniacapacity(kt/y)CAPEX(millionUSD)CAPEX(USD/t/y)CAPEX(USD/kW)SourceIncludingenergygenerationMorris,UnitedStatesUniversityofMinnesota0.0253.75107145181335(Reese,2007)Puertollano,SpainIberdrola,Fertiberia4200177212443760106207406017975(Brown,2020f;FertiberiaandIberdrolaTaranaki,NewZealandBallanceAgri-Nutrients,HiringaEnergy536721012200(HiringaEnergy,2020)Revamp,onlywindandhydrogencapacityPilbara,AustraliaInterContinentalEnergy5710990017080277902990280550604750(Brown,2020a,2020b)Neom,SaudiArabiaAirProducts,ACWAPower,ThyssenKrupp,HaldorTopsøe1200500041657050(Brown,2020g)Pilbara,AustraliaYara242001000016925(Brown,2020e)Revamp,onlywind,solarandhydrogencapacityDuqm,OmanACME,Tatweer770250032455495(Zawya,2021)AbuDhabi,UnitedArabEmiratesKIZAD,HeliosIndustry20010005000118170(KIZAD,2021)AlWusta,OmanOQ,InterContinentalEnergy,EnerTech104502500023904050(Paddison,2021)MauritaniaCWP114254000035005925(CWP,2021)ExcludingenergygenerationPortLincoln,PortBonython,AustraliaH2U,Mitsubishi,SAgov,ThyssenKrupp1940951864935466083507890(Brown,2018f)Esbjerg,DenmarkCopenhagenInfrastructurePartners,Maersk,DFDS650121018603150(Barsoe,2021)SouthAustraliaGovernmentofSouthAustralia,Advisian,Siemens,AcilAllen200680-7203400–36005755–6095(GovernmentofSouthAustraliaetal.,2017)RENEWABLEAMMONIA135AnnexDTechnologystatusfortheammoniaeconomyTable12Technologystatusforammoniaproductiontechnologies,ammoniatransportandstorage,andammoniautilisationtechnologiesStatusNotesRenewableammoniaproductionRenewableenergyCommercialatrequiredscale•Thecombinedaddedsolarandwindcapacitywas238GWin2020(IRENA,2021b).•Annualrenewablesrequirementisaround115-170GWperyearfor566Mtofrenewableammoniaby2050,assuminglineargrowthandnotincludingrenewablesreplacement.Thisassumesaround5-8GWofrenewablesper1GWammoniaplant(ArnaizdelPozoandCloete,2022).•Materialshortageisnotexpected.CurrentexplorationofrawmaterialsislimitedtoEasternAsia,althoughdepositsareavailableinothercountries(Wengetal.,2015).WaterpurificationCommercialatrequiredscale•Watersecuritycanbeanissueatlocationswithhighsolarirradiation.•Wateruseforgigawatt-scaleprojectscanbesignificant.Thiscanstrainlocalcleanwatersupply,ifwatersupplyisnotadded.•Comparedtoelectrolyser,energyconsumptionfordesalinationislow.ThemaximumcostofdesalinationisaroundUSD0.02perkilogramofhydrogen(SalmonandBañares-Alcántara,2021).HydrogenproductionCommercialbutsignificantscaleuprequired•In2020,theelectrolyserproductioncapacitywasaround2.1GWperyear(ESMAPandWorldBank,2020).•Each1Mtperyearofammoniaaddedrequiresaround2-3GWofelectrolysers(ArnaizdelPozoandCloete,2022),dependingonthecapacityfactorforsolarandwindresources.Hydrogenstoragemayberequired.•Annualelectrolysersrequirementabout40-65GWperyearfor566Mtofrenewableammoniaby2050,assuminglineargrowthandnotincludingelectrolyserreplacement.Thisimpliesafactor20-30increaseinelectrolysercapacityrequired.•Alkalineelectrolysisreliesonnickel.Materialshortageisnotexpected(SalmonandBañares-Alcántara,2021).•PEMelectrolysisreliesonplatinumandiridium(Hauchetal.,2020).Around5tonnesofiridiumisproducedglobally,whilea1GWelectrolyserrequires0.5tonnesofiridium(Heggeetal.,2020).Thus,materialshortageisexpectedifPEMisappliedformultiplegigawatt-scaleprojects.•Solidoxideelectrolysisreliesonyttrium.Materialshortageisnotexpected(SalmonandBañares-Alcántara,2021).•Large-scalehydrogenstorageisalsopossibleinplaceswithsaltcaverns,linedrockcaverns,andotherundergroundshafts,aswellasthroughhydrogenpipelinenetworks(Gabriellietal.,2020).Batterystorageisrelativelycostlyandismainlyrelevantforstorageofafewhours.•One-day-equivalenthydrogenstoragecostsaroundUSD35-150pertonneofammonia(ArmijoandPhilibert,2020;Vrijenhoef,2016).StorageinsaltcavernshasthelowestcostatUSD35pertonneofammonia,whilestorageinlinedrockcavernscostsaroundUSD65pertonneofammonia(Ahluwaliaetal.,2019).INNOVATIONOUTLOOK136StatusNotesRenewableammoniaproductionNitrogenpurification,ammoniaproductionCommercialatindustrialscale,demonstrationrequired•World-scalefossil-basedammoniaplantsarealreadyoperatingat0.7-1.2Mtperyear(Brightling,2018).•Renewableammoniahasbeencommercialat0.1-0.2Mtperyearsincethe1920s(Ernst,1928;Krishnanetal.,2020).•Themainchallengeoftheammoniasynthesisloopisintermittentoperation.•Nitrogenpurificationrequireslimitedenergy,e.g.around1GJpertonneofammonia(Rouwenhorstetal.,2019).However,intermittentoperationofacryogenicairseparationunittobelow50%isdifficult.InvestmentNolimitationsexpected•TotalinvestmentofaroundUSD2000billionisrequiredfor566Mtofrenewableammoniaby2050,basedonaninvestmentofUSD3000toUSD4000pertonneperyear,includingrenewablesgeneration(Figure16).ThisisequivalenttoannualinvestmentofaroundUSD75billion,assuminglineargrowth.•Forreference,aroundUSD300billionisinvestedannuallyinrenewablepowergeneration(IEA,2020b).LanduseNolimitationsexpected•Thearearequirementisaround315000to375000squarekilometres(km2)for566Mtofrenewableammoniaby2050.Therangeisduetothepowerenergydensitiesforsolarandwindenergy(vanZalkandBehrens,2018),combinedwithanestimatefromanactualrenewableammoniaplantbasedmainlyononshorewindpower(Tancock,2020).Mostoftheareaisrequiredforrenewableelectricitygeneration.Theammoniasynthesisplantaccountsfor0.2%ofthetotalarearequirement(SalmonandBañares-Alcántara,2021).•Theupperarearequirementestimatefor566MtofrenewableammoniaislargerthanthesizeofGermany(357000km2).•Moreefficientsolidoxideelectrolysistechnologycandecreasetheland-userequirementbyaround30-35%(Table4).AmmoniatransportTransportinfrastructureCommercial,butnotatrequiredscale•Infrastructureexistsfortransportbyship,pipeline,andrail,totalling25-30Mt(section1.2).•Newmarketsrequireinfrastructureof354Mtby2050(Figure29).Thisimpliesafactor10-15increaserequiredforthetransportinfrastructure.Around235shipswith85000m3ammoniacapacity(58kt)arerequiredtoaccommodate300Mttransportby2050,assumingavoyageeverytwoweeks.ThisimpliesthatashipforammoniatransportmustbebuiltorrevampedfromLPGtransportroughlyeverytwomonthsupto2050.•TypicalammoniatransportcostsareUSD30-75pertonneofammonia(SalmonandBañares-Alcántara,2021),resultinginuptoUSD26.5billioninannualtransportcostsfortheglobalammoniamarket.•AirProductsannounceditwouldinvestaroundUSD2billiontodistributerenewableammoniatoendcustomers(Brown,2020g).•Safetyisasignificantissue.Ammoniahasbeenhandledforacentury.Itneedscommercialdemonstrationfornewapplicationswithtrainedoperators.RENEWABLEAMMONIA137StatusNotesAmmoniatransportPortinfrastructureandbunkeringCommercial,butnotatrequiredscale•Newmarketsrequireinfrastructureof354Mtby2050(Figure29).Around735ammoniastoragetanksof50ktofammoniaarerequiredtoaccountforoneweekofammoniastorageontheproductionanddemandsides.ThisrequiresaninvestmentofUSD20billionforammoniastoragecapacityto2050.CAPEXestimatesfromLeighthy(2017).•Variousdemonstrationswillinvestigateammoniabunkeringinthecomingyears.RegulatoryframeworkNotinplace,requiredforammoniaproducersandconsumers•Certificatesoforiginforlow-carbonammoniaarenotyetinplace.Thesemayberequiredtoreachagreementbetweenammoniaproducersandconsumers.•Life-cycleassessmentcanbeusedtoassessthecarbonfootprint(seesection3.2).AmmoniautilisationGeneralaspectsN/A•Low-carbonammoniafromfossilfuelswithCCSde-risksthetransitionfromcurrentfuelstorenewableammonia.Inthelongterm,renewableammoniaismostdesirable.•Partnershipsbetweenexportingandimportingcompaniesarerequired.Currently,variousMemorandaofUnderstandingarebeingsigned.•Certificationmayberequiredtoreachagreementbetweenexportingandimportingcompanies.HydrogenproductionNotcommercialyet,butnolimitationsexpected•Notcommercialyetatlargescale,butgigawatt-scaleprojectsareannouncedintheNetherlandsandGermany(Table5).Gigawatt-scaleoperationisexpectedby2030.•Technologyisnotabottleneck,althoughdemonstrationisrequired.Thetechnologyisprobablysimilartosteammethanereformingtechnologyforhydrogenproduction.ShippingfuelNotcommercialyet,limitationinregulatoryframework•Notcommercialyet,butengineswillbereadybythemid2020s,basedonretrofittechnologyfortwo-strokeandfour-strokeengines(Table6).Solidoxidefuelcellsmaybeintroducedatalaterstageorsimultaneously.•Commercial-scaledemonstrationsofammoniaasamaritimefuelisexpectedbythemid2020s(Table6).•Shipownersneedtomakedecisionforarenewablefueloptionsoon,asshipshavealifetimeof20-25years.Dual-fuelenginesmaybeusedtode-riskinvestmentinammonia-fuelledships.•AmmoniaiscurrentlynotapprovedasamaritimefuelbytheIMO,implyingthatroll-outofammoniaasamaritimefuelislimited.•5%zero-carbonfuelsarerequiredby2030tomeetthe1.5°Cscenario(Osterkamp,SmithandSøgaard,2021).Decarbonisingammoniavesselsisalow-hangingfruit.StationarypowerNotcommercialyet,limitationsexpectednearresidentialareas,butnolimitationsinportareas•Notcommercialyet,butcommercial-scaletechnologywillbereadyinJapanbythemid2020s.Thisincludes20%ammoniaco-firingincoal-firedplants(Kumagai,2021),andammonia-firedgasturbines(Patel,2021).•Ammoniacanbeusedincurrentfossil-fuelbasedinfrastructure,implyinglocked-inCO2emissionsarealleviated,andstrandedassetsareprevented.•NOXemissionsshouldbeminimised.NOXemissioncontrolwithammonia(SCR)issometimesalreadyinplace.•InEurope,changesofpermitstatusarerequiredforco-firingammoniaincoal-firedpowerplants.Currently,therearesafetyconcerns.INNOVATIONOUTLOOK138AnnexEProjectedammoniauseinvarioussectorsTable13ProjecteduseofammoniainvarioussectorsLocationYearAmmoniacapacity(Mt)NotesSourceCurrentusesWorld201820202050181184299AccordingtoMcKinsey,assuming65%growthto2050duetopopulationgrowth(dePeeetal.,2018)World20302050216252AccordingtotheIEA,Baseline(IEA,2021a)World20302050205227AccordingtotheIEA,SustainableDevelopmentScenario(SDS),NetZeroEmissions(NZE)(IEA,2021a)AmmoniaashydrogencarrierEuropeanUnion203520506.012AnnouncedcapacityAssuminglineargrowthofannouncedcapacityto2050Table5EuropeanUnion2050135Assuming18Mtofhydrogenimportedasammoniaby2050(PortofRotterdam,2020)RepublicofKorea203020402050103356AssumingtheimportedhydrogenisproducedbyammoniadecompositionAssuminglineargrowth(SalmonandBañares-Alcántara,2021)Global202520302035204020452050027121621AccordingtoArgusMedia(ArgusMedia,2021e)Global202520302035204020452050013932110AccordingtoIRENA(statedpolicies)(IRENA,2022)Global2025203020352040204520500251544127AccordingtoIRENA(1.5°Cscenario)(IRENA,2022)RENEWABLEAMMONIA139LocationYearAmmoniacapacity(Mt)NotesSourceAmmoniaforpowergenerationJapan2025203020500.5-13-530AccordingtotheCleanFuelAmmoniaAssociation(ArgusMedia,2021d,2021c)Japan20302035204020452050003581186AccordingtotheInstituteofEnergyEconomics(Japan),assumeslimitedroleofrenewables(33%by2050)(Lu,KawakamiandHirai,2018)Japan2030203520402045205012355485AccordingtotheInstituteofEnergyEconomics(Japan)withmax.25%ammoniainpowermix,assumeslimitedroleofrenewables(36%by2050)(Lu,KawakamiandHirai,2018)Global202520302035204020452050037111214AccordingtoArgusMedia(ArgusMedia,2021e)Global20302050363AccordingtotheIEA,SustainableDevelopmentScenario(SDS)(IEA,2021a)Global203020505484AccordingtotheIEA,NetZeroEmissions(NZE)(IEA,2021a)AmmoniaasmaritimefuelGlobal20302040205020602070841103188302EnergyTechnologyPerspectives(IEA,2020c)Global2050173-774DNVGL2020,assumingIMOambitions(DNVGL,2020)Global2050251-1069DNVGL2020,assumingdecarbonisationby2040(DNVGL,2020)Global203120362041204620500192315803952AccordingtotheGettingToZeroCoalition,decarbonisationby2050(1.5°Caligned)(Rauccietal.,2020)INNOVATIONOUTLOOK140LocationYearAmmoniacapacity(Mt)NotesSourceAmmoniaasmaritimefuelGlobal203120362041204620500178349539673AccordingtotheGettingToZeroCoalition,decarbonisationby2070(IMOaligned)(Rauccietal.,2020)Global2050150Assuming30%ofmaritimefuelsuppliedbyammonia(HaldorTopsøeetal.,2020)Global2050247AccordingtoIRENA’sWorldEnergyTransitionsOutlook:1.5°CPathway(IRENA,2021c)Global202520302035204020452050012745146AccordingtoArgusMedia(ArgusMedia,2021e)Global203020507127AccordingtotheIEA,SustainableDevelopmentScenario(SDS)(IEA,2021a)Global2030205037245AccordingtotheIEA,NetZeroEmissions(NZE)(IEA,2021a)Global2025203020352040204520500110207283336333AccordingtoZeroCarbonShippingCenter(basecase)(MærskMc-KinneyMøllerCenterforZeroCarbonShipping,2021)Global20252030203520402045205001026435977AccordingtoIRENA(statedpolicies)(IRENA,2021d)Global20252030203520402045205002668111152197AccordingtoIRENA(1.5°Cscenario)(IRENA,2021d)RENEWABLEAMMONIA141AnnexFStatedpoliciesdemandandproductionFigure36Ammoniademandestimatesfromvarioussources(seeTable13)Ammoniademand(Mt)MarketFertiliserOthercurrentmarketsShippingfuelHydrogenfeedstockPowergenerationMedianFigure37Expectedammoniademandupto2050forthestatedpoliciesscenarioAmmoniademand(Mt)FertiliserapplicationsOtherexistingusesShippingHydrogencarrierPowergeneration(Japan)Total°CINNOVATIONOUTLOOK142AnnexGKeyreferencedataFigure38Expectedammoniaproductionbyfeedstockupto2050forthestatedpoliciesscenarioAmmoniademand(Mt)FossilnoCCSFossilwithCCSRenewableCoalNaturalgasMethaneHydrogenAmmoniaMethanolMolarmass(gmol-1)207.25-16.0432.01617.03132.04Density(kg/m3)-0.7770.7160.08990.7700.791Meltingpoint(°C)---182.5-259.16-77.73-97.6Boilingpoint(°C)---161.5-252.88-33.3464.7Lowerheatingvalue(MJ/kg)-47.150.0120.018.619.9Higherheatingvalue(MJ/kg)30-3352.255.5141.722.523.0Coal:Anthraciteorbituminous.molarmassofanthracite.Naturalgas:USmarket.Densityat0°Cand1bar.RENEWABLEAMMONIA143AnnexHFuturecostestimatesforrenewableammoniaTable14CostestimateforrenewableammoniaproductionYear2020203020402050Lowend(USD/tonne)720475380310Highend(USD/tonne)1400950750610Note:RoundedtoUSD5pertonne.INNOVATIONOUTLOOK144www.irena.orgirena.orgirenairenaimagesCopyright©IRENA2022