NUCLEARENERGYINALOW-CARBONFUTURE:ImplicationsfortheUnitedStatesandJapanAtlanticCouncilGLOBALENERGYCENTERWRITTENBYStephenS.GreeneAtlanticCouncilGLOBALENERGYCENTERTheGlobalEnergyCenterpromotesenergysecuritybyworkingalongsidegovernment,industry,civilsociety,andpublicstakeholderstodevisepragmaticsolutionstothegeopolitical,sustainability,andeconomicchallengesofthechangingglobalenergylandscape.ThisreportiswrittenandpublishedinaccordancewiththeAtlanticCouncilPolicyonIntellectualIndependence.Theauthorsaresolelyresponsibleforitsanalysisandrecommendations.TheAtlanticCouncilanditsdonorsdonotdetermine,nordotheynecessarilyendorseoradvocatefor,anyofthisreport’sconclusions.AtlanticCouncil103015thStreetNW,12thFloorWashington,DC20005Formoreinformation,pleasevisitwww.AtlanticCouncil.org.TheAtlanticCouncilisgratefultoClearPathInc.,theHowardBakerForum,theFederationofElectricPowerCompaniesofJapan,TokyoElectricPowerCompanyHoldings,andtheNuclearEnergyInstitutefortheirgeneroussupportofthisproject.ISBN-13:978-1-61977-257-1November2022Cover:Electricalpowerpylonsofhigh-tensionelectricitypowerlinesinSaint-Folquin,France,inOctober2022.REUTERS/PascalRossignolDesign:DonaldPartykaandAnaisGonzalezAtlanticCouncilGLOBALENERGYCENTERWrittenbyStephenS.GreeneNUCLEARENERGYINALOW-CARBONFUTURE:ImplicationsfortheUnitedStatesandJapanTableofContentsTableofContents1Introduction3I.NuclearEnergyandDecarbonization4II.ChallengestoDecarbonization9III.ImplicationsfortheUnitedStates14IV.ImplicationsforJapan18Conclusion25AbouttheAuthor27NUCLEARENERGYINALOW-CARBONFUTURE:IMPLICATIONSFORTHEUNITEDSTATESANDJAPAN2NUCLEARENERGYINALOW-CARBONFUTURE:IMPLICATIONSFORTHEUNITEDSTATESANDJAPAN3Introduction1https://www.iea.org/reports/nuclear-power-and-secure-energy-transitions.2RobinsonMeyer,“NuclearIsHot,fortheMoment,”Atlantic,November10,2021,https://www.theatlantic.com/science/archive/2021/11/nuclear-power-hot-moment/620665.3LizAlderman,“FranceAnnouncesMajorNuclearPowerBuildup,”NewYorkTimes,February10,2022,https://www.nytimes.com/2022/02/10/world/europe/france-macron-nuclear-power.html.4DanMurtaughandKrystalChia,“China’sClimateGoalsHingeona$440BillionNuclearBuildout,”Bloomberg,November2,2021,https://www.bloomberg.com/news/features/2021-11-02/china-climate-goals-hinge-on-440-billion-nuclear-power-plan-to-rival-u-s.5“EUTaxonomy:CommissionBeginsExpertConsultationsonComplementaryDelegatedActCoveringCertainNuclearandGasActivities,”EuropeanCommission,January1,2022,https://ec.europa.eu/commission/presscorner/detail/en/ip_22_2.6See,e.g.,NestorA.Sepulveda,etal.,“TheRoleofFirmLow-CarbonElectricityResourcesinDeepDecarbonizationofPowerGeneration,”Joule(2018):2403–2420accessedMay6,2022,https://doi.org/10.1016/j.joule.2018.08.006.7“NetZeroby2050Scenario—DataProduct,”InternationalEnergyAgency,May2021,https://www.iea.org/data-and-statistics/data-product/net-zero-by-2050-scenario.Nuclearenergyhasrecentlyreceivedrenewedinterestasatooltoaddressthedualchallengesofenergysecurityandclimatechange.1AttheUnitedNationsClimateChangeConference(COP26),theUSdelegationhighlightedthepotentialroleofadvancednucleargenerationintheclimatestrategyitpresentedattheconference.2FrenchPresidentEmmanuelMacronhasproposedarenewedemphasisonnuclearpower,inadditiontoexpandedrenewablegeneration,toachieveFrance’sdecarbonizationgoals.3Chinacontin-uestorelyonanextensiveexpansionofnucleargenera-tion,aswellasrenewables,asitpursuesdecarbonizationwhileaddressinggrowingenergydemand.4InthecontextoftheenergymarketvolatilityresultingmainlyfromthewarinUkraine,Japanandothercountrieshaverenewedtheirpursuitofnuclearenergytoimproveenergysecurityandachievetheirdecarbonizationobjectives.5Nuclearpowerisademonstratedsourceofdispatchablezero-carbonelectricity.Today,itistheonlyzero-carbon,dispatchableoptionabletobedeployedatscale(withtheexception,insomeregions,ofhydropowerandgeothermalenergy,whichhavegeographic,resource,andenvironmen-tallimitations).Inaddition,nuclearenergycouldbeafea-siblesourceofpowerforhydrogenproductionthatisnotlimitedbyrenewable-resourceavailability,andadvancednucleartechnologycanproduceheatatthehightempera-turesrequiredformanyindustrialprocesses.Skepticsmaycontendthatthelonglicensingandcon-structiontimeforconventionalnuclearplantsmakesthemincompatiblewiththeobjectiveofswiftdecarbonizationofpowersystems.However,whilethenear-termaccelerationofdecarbonizationmaybeachieved,inlargepart,throughrapiddeploymentofrenewableenergy,thechallenginglaterstageswillneeddispatchablegenerationandstor-age(includingapproachestolong-termstoragethatarestillbeingdeveloped).6Forexample,withtheadditionofmorevariablerenewableenergy,weatherwillbegintohaveaneffectonpowersupplyaswellasdemand,anddispatchablegeneration—suchasnuclearpower—willbeneededtohelpsupportreliability.IntheInternationalEnergyAgency’snet-zeroscenario,worldwideelectricdemandwillalmostdoublebetween2030and2050,and,inthatperiod,morethanfivethousandgiga-watts(GW)ofnewdispatchablegenerationandstoragewillneedtobeadded.7Bythattime,advancednucleartechnol-ogiesthatarecurrentlybeingbuiltanddemonstratedwillbeinoperation,andthosetechnologieswillbeavailableforbroaderdeployment,inadditiontoconventionalnuclearpoweroptions.Nuclearenergyhasthepotentialtobeakeycomponentofdecarbonizationstrategiesworldwide.Thispaperdis-cussesthevaluenuclearenergycanhaveinadecarboniza-tionframework,thechallengesdecarbonizationeffortsmayface,hownuclearenergycouldcontributetodecarboniza-tioneffortsintheUnitedStatesandJapan,andstepsthatcouldstrengthenthoseefforts.NUCLEARENERGYINALOW-CARBONFUTURE:IMPLICATIONSFORTHEUNITEDSTATESANDJAPAN4I.NuclearEnergyandDecarbonization8HannahRitchie,“WhatAretheSafestandCleanestSourcesofEnergy?”OurWorldinData,February10,2020,https://ourworldindata.org/safest-sources-of-energy.9Conventionalnuclearpowerplantsrequirewaterforcooling,thoughthereareoptionstoreducetheimpactonwaterresources,andmanyadvancednucleartechnologiesusealternativeapproachesthatavoidsignificantwateruse.10“NuclearPowerinaCleanEnergySystem,”InternationalEnergyAgency,May2019,https://www.iea.org/reports/nuclear-power-in-a-clean-energy-system.11Thereareseveralreferencesformorecompletetechnicaldiscussionsofadvancednucleartechnology,suchasInternationalAtomicEnergyAgency,DivisionofNuclearPower,NuclearPowerTechnologyDevelopmentSection,Vienna(Austria)(2020);“AdvancesinSmallModularReactorTechnologyDevelopmentsASupplementto:IAEAAdvancedReactorsInformationSystem(ARIS)2020Edition,”InternationalAtomicEnergyAgency,September2020,https://inis.iaea.org/search/search.aspx?orig_q=RN:51111609;“AdvancedNuclearReactorTechnology:APrimer,”NuclearInnovationAlliance,2021,https://www.nuclearinnovationalliance.org/advanced-nuclear-reactor-technology-primer.Nuclearenergyhasamongthelowestlevelsoflife-cyclecarbon-dioxide(CO2)emissionsofallpow-er-generationoptions,accordingtosomestud-ies,lowerthanwindorsolarenergy.8Nuclearenergyisbothtimeindependent(itisdispatchable,anditsavailabilitydoesnotvarywithweatherconditions)andloca-tionindependent(itdoesnotdependonnaturalavailabilityofrenewableresourceslikehydropower,wind,solar,orgeo-thermalenergy).9It,therefore,providesaroutetozero-car-bonenergyforregionswhererenewableresourcesarelessavailable,andprovidespowerthatisnotsubjecttoweathervariability,reducingtheneedforenergystorageanditsassociatedcosts.Itprovidesanotheroptionforzero-carbonenergythatislesslandintensivethanrenewables,andthatimposeslessofanimpactonthephysicalspace(e.g.,lessofavisibilityimpact),representinganalternativeapproachthatmaybemoreattractivetosomecommunities.Today,nuclearpowerisamajorsourceofzero-carbonenergy.Itisthelargestsourceofzero-carbonelectricityin“advancedeconomies,”asdefinedbytheInternationalEnergyAgency(IEA),representing40percentofzero-car-bonpowerandexceedingtheoutputofrenewablegenera-tion,despiterecenteffortstoacceleratedeploymentofwindandsolarpower.10NuclearenergyisalsoacornerstoneoftheUSpowersector,representing20percentofelectricgener-ation(includingabouthalfofzero-carbonelectricity)and25percentintheEuropeanUnion(about40percentofzero-car-bonelectricity).Thereisnowextensivedevelopmentofadvancednucleardesignsthattakenewapproachestonuclearenergy.Theseadvanceddesignsmakeconstructionmoreefficient,inte-gratemorereadilyintopowersystemsthatincludevariablerenewablegeneration,makesafetyandsecuritypartoftheinherentdesign(whichalsodecreasescostsandincreasessitingoptions),and,inmanycases,cansupportindustrialpowerneedsandefficienthydrogenproduction,inadditiontoelectricgeneration.11Theattributesofadvancednuclearreactorsincludethefollowing.•Efficientconstruction:advanceddesignscanbemodular,withanemphasisoncomponentsthatcanbemanufac-turedinafactory,andwhich,therefore,requirelessonsiteconstructionandresultinshorterconstructiontimes.Longconstructiontimesareakeycontributortohighcosts,withthecostofconstructionfinancingrepresentingasignificantportionoftraditionalnuclearpowercosts.Modulardesignalsoallowsmorerapiditeration,resultinginimprovedcostandefficiencythroughtechnologicallearning.•Betterintegration:modulardesignsallowgenerationcapacitytobeaddedinsmallerincrements,bettermatch-inggrowthneedsandimposinglessfinancialstressonprojectsponsors.Advanceddesignsalsoincorporategreaterabilitytochangepoweroutputlevelsthantradi-tionaldesigns(especiallythosehistoricallyusedintheUnitedStates);someemphasizefastrampingspeedstorapidlyrespondtochanginglevelsofrenewablepower,andsomeincorporatethermalenergystorage,whichmaybemorecosteffectivethanbatterystorage.•Inherentsafetyandsecurity:advancedapproachesincor-poratesafetyfeaturesasaninherentelementofthedesigns,typicallyrelyingon“passive”features,suchasgravityornaturalheatconvection,tocoolreactorswithoutrequiringmechanicalintervention.Inadditiontomakingsafetysystemsevenmorereliable,thisapproachreducestheamountofequipmentrequiredtoensuresafety,whichdecreasesoverallcosts.NUCLEARENERGYINALOW-CARBONFUTURE:IMPLICATIONSFORTHEUNITEDSTATESANDJAPAN5•Industrialintegration:manydesignsincorporatehigh-tem-peratureoutputcompatiblewithmanyindustrialrequire-ments(discussedfurtherbelow),whichalsoimprovetheabilityofthereactortoproducehydrogen.ThetwodemonstrationsfundedundertheUSAdvancedReactorDemonstrationProgram(ARDP)involvedesignsincorporatingmanyofthesefeatures.TheNatriumdesigntobeconstructedinWyomingallowsthereactortooper-ateatasteadyoutputequivalenttothreehundredandfor-ty-fivemegawatts(MW),butincorporatesathermalstoragesystemsothatitcandeliveraslittleasonehundredmega-wattswhilerenewableenergyisavailable,butuptofivehun-dredmegawattsfor5.5hourswhenrenewableenergypro-ductiondecreases,suchasintheeveninginasystemwithsubstantialsolarpower.12TheX-energyXe-100reactortobeconstructedinthestateofWashingtonisbuiltin80-MWmod-12“AdvancedNuclearReactorTechnology.”13Ibid.;“X-Energy,”X-Energy,lastvisitedMay6,2022,https://x-energy.com/.14“NuclearEnergyandSustainableDevelopment,”WorldNuclearAssociation,lastupdatedApril2020,https://world-nuclear.org/information-library/energy-and-the-environment/nuclear-energy-and-sustainable-development.aspx.15Estimatesoflanduseforpowergenerationvarywidely.TheseestimatesarefromBarryW.BrookandCoreyJ.A.Bradshaw,“KeyRoleforNuclearEnergyinGlobalBiodiversityConservation,”ConservationBiology(2015):702–712,https://conbio.onlinelibrary.wiley.com/doi/epdf/10.1111/cobi.12433.ules,operatesathightemperatureswithaheliumcoolant,andincorporatescontinuousrefuelingwithtri-structuraliso-tropic(TRISO)particlefuelthatcanwithstandhightempera-turesanddoesnotmelt.13DeploymentFlexibilityNuclearenergy,byitsnature,producesasubstantialamountofenergyinasmalllandarea,especiallycomparedtorenew-ablepower.Atwo-unitnuclearpowerplantabletoprovideelectricityforfourtofivemillionpeoplecoversafootprintofjusttwosquarekilometers.14Foranequalamountoflifetimeenergy,solarphotovoltaicgenerationmayrequireaboutsixtytimesasmuchlandasnucleargeneration,andwindgener-ationmaycoveralmostfivehundredtimesasmuchland,thoughthespacebetweentheturbinescanbeputtootheruses(SeeFigure1).15Figure1:NuclearEnergyandSustainableDevelopmentSOURCE:“NUCLEARENERGYANDSUSTAINABLEDEVELOPMENT,”WORLDNUCLEARASSOCIATION,UPDATEDAPRIL2020,HTTPS://WORLD-NUCLEAR.ORG/INFORMATION-LIBRARY/ENERGY-AND-THE-ENVIRONMENT/NUCLEAR-ENERGY-AND-SUSTAINABLE-DEVELOPMENT.ASPX.NUCLEARENERGYINALOW-CARBONFUTURE:IMPLICATIONSFORTHEUNITEDSTATESANDJAPAN6Themodulardesign,moderatesize,andinherentsafetyfea-turesofadvancednuclearapproachesenableflexibilityindeployingnewgeneration.TheNatriumdemonstrationproj-ect,forexample,willdemonstratethefeasibilityofsitingnewnucleargenerationatthesiteofaretiredcoalplant.Doingsowillenableusingabrownfieldsiteratherthandevelop-ingnewlandforpowergeneration,willtakeadvantageofexistingelectricalinfrastructure,suchasthesubstationandtransmission,andwillbenefitthecommunitythroughprovid-ingjobstoreplacethoselosttothecoalplantretirementandthroughaddingtothetaxbase.Fourcommunitiessoughttobeconsideredforthedemonstrationandtheprojectulti-matelyselectedasiteinKemmerer,Wyoming.16ResilienceNuclearpowerplantsarecapableofdispatchableopera-tiontooperateinsystemsalongsiderenewablegeneration.Asnotedearlier,advancednucleardesignsarecapableofextendedpowerflexibility(ramping),andsomeincorporateefficientthermalstorage.Theyarealsocapableofcontin-ued,reliablegenerationthatisnotsubjecttoweathercon-ditions,suchasthosethatcanthreatensystemsthatrelyonhighconcentrationsofrenewablepower.Furthermore,nucleargenerationishighlyresilientunderextremeweatherconditions.Nuclearrefuelingcyclesaremorethanayearlong,sotheyarerelativelyinsulatedagainstfuelsupplychallengessuchasthosefacedbynatural-gasdependentregionstoday,orthosethataffectedAsianlique-fiednaturalgas(LNG)usersandUSnaturalgasgenerationduringextendedwinterconditionsinearly2021,andevenagainstextendedsupplyshortages.Ifproperlyweatherized,nucleargeneratorscanoperatereliablyintheharshestcon-ditions.Forexample,althoughonenuclearunitincurredanoutageduetocoldweatherimpactsonitsfeedwatersystem(whichwereavoidablewithproperwinterization)duringtheTexaswinterstorminearly2021,itwasrestoredtofullpowerwithinthreedays.17Nuclearplantshadthebestperformanceofanygenerationtechnologyduringthatevent,delivering79percentoftheirexpectedperformance,comparedtonat-uralgasgeneratorsat55percentandwindat57percent.1816DanYurman,“TerraPowerSelectsKemmererWYforNatriumReactor,”NeutronBytes,November18,2021,https://neutronbytes.com/2021/11/18/terrapower-selects-kemmerer-wy-for-natrium-reactor.17MichaelMcAuliffe,“TexasNuclearUnitReturnstoServiceafterOutageRelatedtoColdWeather,”S&PGlobal,February18,2021,https://www.spglobal.com/platts/en/market-insights/latest-news/electric-power/021821-texas-nuclear-unit-returns-to-service-after-outage-related-to-cold-weather.18DerekStenclik,etal.,“RedefiningResourceAdequacyforModernPowerSystems,”EnergySystemsIntegrationGroup,2021,https://www.esig.energy/resource-adequacy-for-modern-power-systems/.19NathanielBullard,“TakingtheGas(andCoal)OutofHeat,”Bloomberg,September16,2021,https://www.bloomberg.com/news/articles/2021-09-16/making-things-hot-translates-to-substantial-greenhouse-gas-emissions.20JulioFriedmann,ZhiyuanFan,andKeTang,“Low-CarbonHeatSolutionsforHeavyIndustry:Sources,Options,andCostsToday,”ColumbiaUniversitySchoolofInternationalandPublicAffairs,CenteronGlobalEnergyPolicy,October7,2019,https://www.energypolicy.columbia.edu/research/report/low-carbon-heat-solutions-heavy-industry-sources-options-and-costs-today.21https://www.nice-future.org/assets/pdfs/japan.pdf.IndustrialEnergyOneofthemorechallengingareasofenergyusetodecar-bonizeisindustrialprocessheat.Worldwide,about75per-centofindustrialheatisgeneratedwithfossilfuels.19Manyadvancednucleartechnologies,includingthoseintheARDP,areabletogeneratetemperatureshigherthanconventionalreactorsbecauseoftheirinnovativefuelsandcoolants.Thesereactorscanproduceheatintherangeof600–800degreesCelsius,whichissuitableformanyindustrialrequire-ments,suchaspulpandpapermanufacturing,methanolpro-duction,andammoniasynthesis.20Japan’sHighTemperatureEngineeringTestReactor(HTTR)canproduceheatatninehundredandfiftydegreesCelsius,potentiallyopeningthedoortofurtherindustrialapplications.21HydrogenObtainingevenhighertemperatures,suchasthoserequiredforsteelproductionwithblastfurnaces,cement,andglassproduction,mayrequiretheuseofalternativefuelsthatcanbecombustedwithoutproducingCO2.Hydrogenhasattractedgreatinterestasapotentialfuel,orasakeypre-cursortoalternativefuels,suchasammonia.Hydrogenoralternativefuelsmadewithhydrogenmayalsobecriticaltosupportcarbon-freefreighttransport,suchasheavytruckingandmarinetransport,forwhichbatterypowermaybeinad-equateorimpractical.Muchofthediscussionaboutproducinghydrogenhasfocusedonproductionthroughelectrolysisusingrenewableelectricity(so-called“green”hydrogen)oraddingcarboncapturetothecurrentcarbon-intensiveproductionthroughmethane(naturalgas)reforming(withcarboncapture,thisisso-called“blue”hydrogen).Hydrogencanalsobeproducedthroughelectrolysisusingnuclearelectricity,anddoingsocouldhavesomeadvantages(somediscussionscharacterizenuclear-producedhydrogenas“pink,”butthecolorschemeisfaulty;becausenuclearelectricityiscarbonfree,thereisnoreasontodesignateitdifferentlythanhydrogenproducedbyrenewables).NUCLEARENERGYINALOW-CARBONFUTURE:IMPLICATIONSFORTHEUNITEDSTATESANDJAPAN7Thekeyfactorsinhydrogenproductionthroughelectrolysisarethecostoftheelectricity,thecapacityfactor(percentofoutput)oftheavailablepower,andthecapitalcostandeffi-ciencyoftheelectrolyzer.Thestandalonecostofpowerfromanewsolarorwindproject(withoutconsideringsystemcoststhatmaybenecessarytointegratetheseprojects)islessthanthatfromanewnuclearpowerplant,thoughadvancednuclearplantsmaybeabletodecreasetheircostswhentheyhavehadmoretimetomature,asrenewabletechnolo-gieshave.22However,thecapacityfactorfornuclearpowerplantsismuchgreaterthanthatforrenewablepower;intheUnitedStatesin2019,theaveragecapacityfactorfornuclearpowerwas94percentvs.35percentforwindand25per-centforsolar.23Thehighercapacityofnuclearpowerresultsinbetterutilizationoftheelectrolyzer,andsocanpartiallyoffsetahigheraverageperunitcostofpower.Furthermore,nuclearpower,whichproducesheat,canbeusedtosup-porthigh-temperatureelectrolysisthatuses24percentlessenergythantheapproachthatcanbeusedwithrenew-ables.24UsingitsHTTR,theJapanAtomicEnergyAgency(JAEA)istestingathermochemicalmethodofhydrogenpro-ductionthatcouldresultinevengreaterefficiency.25Consideringthesefactorscouldmakehydrogenproductionwithnuclearenergyattractivecomparedwithproductionusingrenewables.TheUSDepartmentofEnergy,throughtheIdahoNationalLaboratory,hasconductedseveralassessmentsofhydrogenproductionwithnuclearenergy.Someconcludethatsuchapproachescoulddeliverhydro-genfor$1–2perkilogramofhydrogen,inthetargetrangeforthehydrogen“Earthshot”program.”26TheDepartmentofEnergyiscurrentlysponsoringseveraldemonstrationsofhydrogenproductionatexistingnuclearplants.27Mostofthesedemonstrationswillincorporatelow-temperatureelec-trolysis,duetothetechnicalconstraintsofdemonstrationsatexistingfacilities;however,onedemonstrationinMinnesotawilltesthigh-temperatureelectrolysis.2822“LevelizedCostOfEnergy,LevelizedCostOfStorage,andLevelizedCostOfHydrogen2020,”Lazard,October19,2020,https://www.lazard.com/perspective/lcoe2020.23“Infographic—CapacityFactorbyEnergySource—2019,”USDepartmentofEnergy,OfficeofNuclearEnergy,May19,2020,https://www.energy.gov/ne/downloads/infographic-capacity-factor-energy-source-2019.24MarkF.Ruth,etal.,“TheTechnicalandEconomicPotentialoftheH2@ScaleConceptwithintheUnitedStates,”NationalRenewableEnergyLaboratory,October2020,https://www.nrel.gov/docs/fy21osti/77610.pdf.25MattFisher,“NuclearEnergyforNon-ElectricApplicationsKeyforClimateChangeMitigation,”InternationalAtomicEnergyAgency,DepartmentofNuclearEnergy,August7,2020,https://www.iaea.org/newscenter/news/nuclear-energy-for-non-electric-applications-key-for-climate-change-mitigation.26See,e.g.,RichardD.Boardman,“EvaluationofNon-electricMarketOptionsforaLight-waterReactorintheMidwest.LightWaterReactorSustainabilityProgram,”USDepartmentofEnergy,OfficeofScientificandTechnicalInformation,August1,2019,https://www.osti.gov/biblio/1559965-evaluation-non-electric-market-options-light-water-reactor-midwest;“SecretaryGranholmLaunchesHydrogenEnergyEarthshottoAccelerateBreakthroughsTowardaNet-ZeroEconomy,”USDepartmentofEnergy,pressrelease,June7,2021,https://www.energy.gov/articles/secretary-granholm-launches-hydrogen-energy-earthshot-accelerate-breakthroughs-toward-net.27DavidKramer,“CouldHydrogenBailoutNuclearPower?”PhysicsToday(2020):20–21,https://physicstoday.scitation.org/doi/10.1063/PT.3.4543.28“XcelEnergy’sPrairieIslandLikelyHydrogenDemoSite,”NuclearNews,November11,2020,https://www.ans.org/news/article-2366/xcel-energys-prairie-island-likely-hydrogen-demo-site/.29See,e.g.,CynthiaQuarterman,Brief3:HydrogenTransportationandStorage,AtlanticCouncil,July21,2019,https://www.atlanticcouncil.org/content-series/hydrogen-policy-sprint/hydrogen-policy-sprint-brief-3/.30MikeFowler,etal.,“BridgingtheGap:HowNuclear-DerivedZero-CarbonFuelsCanHelpDecarbonizeMarineShipping,”CleanAirTaskForce,August4,2021,https://www.catf.us/resource/nuclear-zero-carbon-fuels-shipping/.31“2021YearinReview,”IndependentElectricitySystemOperator,2021,https://www.ieso.ca/corporate-ieso/media/year-end-data.32“Ontario,”Canada’sSMRActionPlan,December18,2020,https://smractionplan.ca/content/ontario.33MatthewMcClearnandLauraStone,“OntarioPowerGenerationAnnouncesWhoWillDesignNewModularReactor,”GlobeandMail,December1,2021,https://www.theglobeandmail.com/canada/article-ontario-power-generation-announces-who-will-design-new-modular-reactor.Inadditiontobettercapacityfactorsandbetterefficiency,productionofhydrogenwithnuclearenergycouldbelocatedclosertodemandcenters,therebymitigatingthecomplica-tionsofstoringandtransportinghydrogen,especiallyintheearlystagesofadevelopinghydrogeninfrastructure.29Nuclearpowerplantsinindustrialhubscouldsupplybothprocessheatandhydrogen.Hydrogencouldbeproducedwithnuclearpoweratshippinghubstosupportmarinetrans-port.30HydrogenproducedwithnuclearpowerwouldbeparticularlysuitableforJapan,becauserenewablegener-ationoptionsarelimited,naturalgasisnotreadilyavailableinJapanforhydrogenproductionusingmethanereforming,andseabornehydrogentransportisdifficultandinefficient.WorldwideInterestinNuclearPowerInthecontextofclimatechangeandadesiretoachieveinde-pendencefromrelianceonfossilfuels,interestinnuclearenergyhasgrownworldwide,beyondtheeffortsintheUnitedStates.Ontario,Canada,alreadyreliesonnuclearpowerfor60percentofitselectricgeneration.31InDecember2019,itsignedamemorandumofunderstanding(MOU)withtheprovincesofNewBrunswickandSaskatchewantocollaborateonadvancingdevelopmentanddeploy-mentofasmallmodularreactor(SMR).TheMOUcontem-platesthreestreamsofdeployment:initialdeploymentofathree-hundred-megawattreactorinOntario(Darlingtonsite)by2028,withsubsequentdeploymentsinSaskatchewan;deploymentofadvancedreactorsinNewBrunswick(PointLepreau);anddemonstrationofamicroreactorinOntario.32EngineeringanddesignworkfortheDarlingtonSMRwaspursuedwiththreedevelopers,and,inDecember2021,OntarioPowerchosetoproceedwithGE-Hitachi’sBWRX-300reactor.33TheOntariomicroreactor,GlobalFirstPower’sfifteen-megawattthermaldemonstrationoftheUltraSafeNUCLEARENERGYINALOW-CARBONFUTURE:IMPLICATIONSFORTHEUNITEDSTATESANDJAPAN8NuclearCorporation’shigh-temperaturegasmicroreactor,isexpectedtobedeployedin2025.34PartsofEuropealreadyrelyonnuclearpowerforasubstan-tialpartoftheirelectricgeneration.Fourteenofthetwen-ty-eightEUmemberstatesgenerateelectricitywithnuclearpower,whichprovides27percentofEuropeanelectricgen-erationand50percentofitslow-carbonelectricity.35TheUKhascommittedtonuclearpoweraspartofitsnet-zerostrat-egy.Asnotedearlier,Francehascommittedtorelaunchcon-structionofnuclearreactors.36IntheNetherlands,thegov-ernmentcommissionedanassessmentofnuclearpoweraspartofitsreviewofoptionsfortheenergytransition.Thisassessmentfoundthatthesystemcostsfornuclearpowerarelowerthanthoseforvariablerenewables,and,afteradjustingforthosesystemcosts,theeffectivelevelizedcostfornuclearcouldbelowerthanthatforwindorsolar.37TheNetherlandscouldconsideradditionalnuclearpowerafter2030,particularlysmallmodularreactors.38InCentralandEasternEurope,thegovernmentofPolandhasstronginterestinnuclearpowerasameansoftransitioningoutofthecoun-try’sheavyrelianceoncoal,andsignedanagreementwiththeUSgovernmenttocollaborateonacivilnuclearprogram,whichledtoaletterofintentfromtheUSExport-ImportBanktosupporttheproject.39Romania,Bulgaria,andUkrainehavealsoexpressedinterestinworkingwiththeUnitedStatesonnuclearpower.40And,inNovember2021(duringCOP26),RomaniannuclearenergyproducerNuclearelectricaagreedtodeployaNuScaleSMR.41InJuly,2021,nearlyonehundredMembersoftheEuropeanParliamentsignedalettercallingontheEuropeanCommissiontoincludenuclearpowerintheEU’sSustainableFinanceTaxonomyasanessentialstepinrecognizingandsupportingnuclearpower’sroleasatooltoaddresstheclimatecrisis.42InJuly2022,theEuropean34AlanAhn,etal.,“AdvancedReactors:TurningtheCorner,”AdvancedNuclearEnergy,June16,2021,https://www.advancednuclearenergy.org/product/advanced-reactors-turning-the-corner.35“NuclearGeneratesAlmostHalfofEurope’sLow-CarbonElectricity,”FORATOM,lastvisitedMay6,2022,https://www.foratom.org/facts-figures/.36IngridMelander,“MacronSaysFranceWillBuildNewNuclearEnergyReactors,”Reuters,November9,2021,https://www.reuters.com/business/energy/macron-says-france-will-build-more-nuclear-energy-reactors-2021-11-09.37“PossibleRoleofNuclearintheDutchEnergyMixintheFuture,”MinistryofEconomicAffairsandClimatePolicyoftheNetherlands,September1,2020,https://www.rijksoverheid.nl/ministeries/ministerie-van-economische-zaken-en-klimaat/documenten/rapporten/2020/09/22/possible-role-of-nuclear-in-the-dutch-energy-mix-in-the-future.ThisconditionmayalsobethecaseinJapan.See:“OutlineofStrategicEnergyPlan,”MinistryofEconomy,Trade,andIndustry(Japan),October2021,https://www.enecho.meti.go.jp/en/category/others/basic_plan/pdf/6th_outline.pdf.38“NetherlandsConsidersMoreNuclearPower,”NuclearEnergyInternational,September28,2020,https://www.neimagazine.com/news/newsnetherlands-pushes-for-more-nuclear-8153490.39ColeSimons,“America:TheTrustedPartnerforNuclearExports,”ClearPath,November19,2020,https://clearpath.org/our-take/america-the-trusted-partner-for-nuclear-energy-exports.40Ibid.41“Romania’sNuclearelectricaandtheUSNuScalePowerTeamUptoBringFirstSMRstoEurope,”CEENERGYNEWS,November15,2021,https://ceenergynews.com/nuclear/romanias-nuclearelectrica-and-the-us-nuscale-power-team-up-to-bring-first-smrs-to-europe.42“MEPsCallonECtoRecognizeNuclearasSustainable,”WorldNuclearNews,July9,2021,https://www.world-nuclear-news.org/Articles/MEPs-call-on-EC-to-recognise-nuclear-as-sustainabl.43https://www.reuters.com/business/sustainable-business/eu-parliament-vote-green-gas-nuclear-rules-2022-07-06/.44“TheRoleofNuclearEnergyinSustainableDevelopment,”UnitedNationsEconomicCommissionforEurope,2020,https://unece.org/fileadmin/DAM/energy/se/pdfs/egrm/egrm11_apr2020/EGRM-11_The_Role_of_Nuclear_Energy_in_Sustainable_Development__v11.pdf.45“EmergingNuclearEnergyCountries,”WorldNuclearAssociation,January2020,https://world-nuclear.org/information-library/country-profiles/others/emerging-nuclear-energy-countries.aspx.46AlanAhn,etal.,“2021Update:MapoftheGlobalMarketforAdvancedNuclear,”ThirdWay,November9,2021,https://www.thirdway.org/memo/2021-update-map-of-the-global-market-for-advanced-nuclear.47JonathanTirone,“NuclearWatchdog’sPitchforWorldBankFinancingMakesHeadway,”Bloomberg,October25,2021,https://www.bloomberg.com/news/articles/2021-10-25/nuclear-watchdog-s-pitch-for-world-bank-financing-makes-headway.ParliamentvotedtoincludenuclearpowerintheTaxonomyasasustainabletransitionresource,albeitwithlimitations.43Nuclearpowercanserveasanelementofsustainabledevel-opment,notonlyindecarbonizingtheenergysector,butalsosupportingtheattainmentofothersustainable-developmentgoals.44TheWorldNuclearAssociationidentifiesaboutthirtycountriesthatareconsidering,planning,orstartingnucle-ar-powerprograms.45TheUSthinktankThirdWayhaschar-acterizedglobalmarketsforadvancednucleartechnology,andidentifiedsignificantopportunitiesfornewnucleardevel-opmentinnew-to-nuclearcountries,aswellascountriescur-rentlyoperatingnuclearpowerplantswithgrowingenergydemandand/ortheneedtoreplacecoal-firedgeneration.46However,theWorldBankcontinuestorejectfundingfornuclearpower.47Advancednucleartechnologiesmaybeofparticularinter-estinmanynew-to-nuclearcountries,asthosetechnologiesaredesignedtoaddgenerationinsmallerincrementsthatmaybemoreeasilyintegratedintosmallerordevelopingpowersystems.Forthatinteresttomaterialize,itisessen-tialthatthesetechnologiesbeinitiallydeployedincountrieswherenucleargenerationisalreadyestablished,toprovidetheassuranceofreviewbyestablishedregulatoryprocesses,andsomeclarityoncostandconstructionfeasibility.NUCLEARENERGYINALOW-CARBONFUTURE:IMPLICATIONSFORTHEUNITEDSTATESANDJAPAN9II.ChallengestoDecarbonization48“NetZeroby2050,”InternationalEnergyAgency,May2021,https://www.iea.org/reports/net-zero-by-2050.49ArmondCohen,etal.,“CleanFirmPowerIstheKeytoCalifornia’sCarbon-FreeEnergyFuture,”IssuesinScienceandTechnology,March24,2021,https://issues.org/california-decarbonizing-power-wind-solar-nuclear-gas.Worldwidestrategiesfordecarbonizationinevitablyfocusfirstonasubstantialincreaseinthedeploymentofrenewableenergy.InNetZeroby2050,theIEAanticipatesthatsolarandwindpowerwouldconstitutealmost70percentofelec-tricgenerationworldwideby2050,andrenewablesover-all(includinghydropower)wouldrepresentalmost90per-cent(seeFigure2),withmostoftheremaindercomingfromnuclear.48However,theavailabilityofrenewableresourcesvariessignificantlybyregion,andrenewableenergymaybeamorerobustresourceforpowergenerationinsomecoun-triesthaninothers.Furthermore,renewableresourcesarelocationconstrained,anditmaybechallenging,giventhestructureofexistingtransmissionsystemsandthedifficultyexpandingthem,tomoverenewablepowerfromtheloca-tionswhereitisgeneratedtothosewhereitwillbeused.Renewable-energygenerationisalsotimeconstrained.Especiallyinwinter,whensolargenerationisseverelycon-strainedinmid-latitudes,unexpectedlycalmconditionscanleadtoadisruptiveshortfalloftheremainingrenewable(wind)generation.49Withoutzero-carbondispatchablegen-eration,verylargeamountsofstoragewouldberequiredtomanagetheseshortfallsduringinfrequent,butinevitable,circumstances.Figure2:GlobalElectricityGenerationbySourceinIEA’sNet-ZeroEmissionsby2050ScenarioSOURCE:“NETZEROBY2050,”INTERNATIONALENERGYAGENCY,MAY2021,FIGURE3.10,HTTPS://WWW.IEA.ORG/REPORTS/NET-ZERO-BY-2050.NUCLEARENERGYINALOW-CARBONFUTURE:IMPLICATIONSFORTHEUNITEDSTATESANDJAPAN10Germany,whichhasinvestedheavilyinrenewableenergythroughitsenergytransition(“Energiewende”),hasrecog-nizedtheseconditionsas“dunkelflaute,”ordarkdoldrums.AlthoughrenewablepowercoverednearlyhalfofGermany’spowerconsumptionforallof2020,duringafour-daystretchinJanuary,renewablegenerationneverexceeded14–20percentofdemand.50TheUnitedKingdomsawanextendedcalmspellinitswindgenerationduringlateFebruaryandearlyMarch2021when,formorethanelevendays,windfarmsoperatedatjust11percentoftheirratedcapacity(seeFigure3).Thegenerationdeficitrepresented2,300giga-watthours(GWh)ofenergy,morethantwohundredandfiftytimestheenergystoredintheUK’slargestpumped-storagefacility,andtenthousandtimestheenergystorableintheworld’slargestbattery-storagesysteminSouthAustralia.51Today,thesedeficitsaretypicallycoveredwithincreasedfossilgeneration.But,inthefuture,therewillneedtobedispatchablezero-emissionssourcesofpowertoaddressthem.Theseconditionscanextendoverwideareas;evenbetweenGermanyandSpain,despitetheirdistanceanddif-ferentclimates,thereisroughlyaone-thirdprobabilitythatthehoursoflowrenewablegenerationcoincide.52Lowwind50BenjaminWehrmann,“‘DarkDoldrums’HighlightSupplyChallengesforGermany’sFossilPowerPhase-Out,”CleanEnergyWire,February3,2021,https://www.cleanenergywire.org/news/dark-doldrums-highlight-supply-challenges-germanys-fossil-power-phase-out.51IainStaffell,etal.,“Q12021Report,”ElectricInsights,2021,https://reports.electricinsights.co.uk/reports/q1-2021.52“NuclearPowerinaCleanEnergySystem.”53PippaStevens,“UKEnergyTitanSSESaysLowWind,DriestConditionsin70YearsHitRenewableGeneration,”CNBC,September29,2021,https://www.cnbc.com/2021/09/29/sse-says-low-wind-dry-conditions-hit-renewable-energy-generation.html.54Sepulveda,etal.,“TheRoleofFirmLow-CarbonElectricityResourcesinDeepDecarbonizationofPowerGeneration.”conditionsacrossEuropeduringthesummerof2021,alongwithlimitedimportsofgasfromRussiaandotherfactors,droveEuropeanpowerpricestowhatwerethenrecordhighs,thoughsinceexceededbypriceincreasesresultingfromthewarinUkraine..53Fortheseandotherreasons,manyanalyseshaveconcludedthat,inadditiontorenewableenergy,dispatchablelow-car-bongenerationtechnologiessuchasnuclearpower,natu-ral-gaspowerplantswithcarboncapture,andgenerationwithzero-carbonorrenewablefuels,suchashydrogen,willlikelybeneededaspartofcarbon-neutralelectric-powersystems.54However,thepotentialtoimplementthesetech-nologyoptionsalsovariesbyregion,dependingontheresourcesavailable.ElectrificationofEnergyUseOptionstodecarbonizeelementsoftheelectric-powerinfra-structure,althoughchallenging,arefurtheralongincon-cept,development,andpotentialavailabilitythanoptionstodecarbonizedistributedusesoffossilenergy,suchasFigure3:Britishwindandgasgenerationduringthefallandwinter2020–2021.SOURCE:IAINSTAFFELL,ETAL.,“Q12021REPORT,”ELECTRICINSIGHTS,2021.NUCLEARENERGYINALOW-CARBONFUTURE:IMPLICATIONSFORTHEUNITEDSTATESANDJAPAN11spaceheatingandtransportation.Forthatreason,contem-platedapproachestobroadenergydecarbonizationgener-allybeginwithshiftingmoreenergyrequirementstoelec-tricity,or“electrification.”TheIEAconcludesthat,toachievebroaderenergydecarbonization,electricitywillreplacefos-silfuelsforindustrialheat,transportationwillrelyprimarilyonelectricdrivetrains,andindustrialprocesseswillbecon-vertedtorelyonelectricpowerorzero-carbonfuels.Inthatview,electricitywillriseto49percentoffinalenergycon-sumptionworldwide,comparedto20percenttoday.55Policiesandcorporateactionshavebeguntopursuetheelectrificationobjective.IntheUnitedStates,PresidentJoeBidenisaimingforhalfofnewvehiclessoldin2030tobesomeformofelectricdrive,andvehiclemanufacturersfromGeneralMotorstoDaimlerhavemadecommitmentstoshifttheirsalesentirelytoelectricandhydrogen-poweredvehi-cles.56TheCaliforniaEnergyCommissionhasadoptedstan-dardsthatwillstronglyincentivizeuseofelectricheatpumpsforspaceandwaterheatinginallnewconstruction.57TheInflationReductionActcontainsanumberofincentivesforelectrification.55“NetZeroby2050.”56“FactSheet:PresidentBidenAnnouncesStepstoDriveAmericanLeadershipForwardonCleanCarsandTrucks,”WhiteHouse,pressrelease,August5,2021,https://www.whitehouse.gov/briefing-room/statements-releases/2021/08/05/fact-sheet-president-biden-announces-steps-to-drive-american-leadership-forward-on-clean-cars-and-trucks;NealE.BoudetteandCoralDavenport,“G.M.WillSellOnlyZero-EmissionVehiclesby2035,”NewYorkTimes,January28,2021,https://www.nytimes.com/2021/01/28/business/gm-zero-emission-vehicles.html;JackEwing,“World’sLargestLong-HaulTruckmakerSeesHydrogen-FueledFuture,”NewYorkTimes,May23,2021,https://www.nytimes.com/2021/05/23/business/hydrogen-trucks-semis.html.57KavyaBalaraman,“CaliforniaGreenlightsFirst-of-Its-KindEnergyCodetoEncourageElectrifiedBuildings,”UtilityDive,August12,2021,https://www.utilitydive.com/news/california-greenlights-first-of-its-kind-energy-code-to-encourage-electrifi/604863.58“ElectrificationFuturesStudy,”NationalRenewableEnergyLaboratory,https://www.nrel.gov/analysis/electrification-futures.html.Theadditionofsubstantialvehiclechargingandheatingloadstotheelectricinfrastructurewillnotonlyrequiremorepower,butwillalsochangeapproachestoplanningforresourceadequacyandelectric-systemoperation.Planningwillnowneedtocontemplatethetimingofvehiclechargingdemands,potentiallycreateincentives,andencouragetech-nicalmanagementapproachestooptimizethem.Perhapsmorechallenging,electrificationofspaceheatingwillrequirechangingtheplanningmindset,sincepeakloadrequire-mentsinsomeregionsmayshifttowinter(seeFigure4).58ReliabilityandResilienceTheLNGsupplyshockthroughoutAsiainearly2021,men-tionedearlier,isonlyoneexampleofthechallengestomain-tainingreliableenergysupplyasextremeweathereventsdrivenbyclimatechangecauseunanticipateddemandanddisruptenergysupply.TheAsiangas-supplychallengesofwinter2020–2021evolvedintoasupplyshortageandpricespikesinbothAsiaandEuropebeforebecomingdramaticallyworseasaresultofRussia'sinvasionofUkraine.SeasonSpringFallSummerWinter≥100806040201PeakLoad(GW)Figure4:PeakLoadbySeasonSOURCE:ELLAZHOUANDTRIEUMAI,“ELECTRIFICATIONFUTURESSTUDY:POWERSYSTEMSOPERATIONWITHNEWLYELECTRIFIEDANDFLEXIBLELOADS,”JUNE17,2021.REPRINTEDWITHPERMISSIONFROMTHENATIONALRENEWABLEENERGYLABORATORY,HTTPS://WWW.NREL.GOV/DOCS/FY21OSTI/80167.PDF,ACCESSEDNOVEMBER2,2021.NUCLEARENERGYINALOW-CARBONFUTURE:IMPLICATIONSFORTHEUNITEDSTATESANDJAPAN12IntheUnitedStates,eventsinCaliforniaandTexashigh-lightedsimilarvulnerabilities.Duringthesummerof2020inCalifornia,therewererollingblackoutsoverthecourseofseveraldaysdrivenbyaheatwavethatextendedacrossthewesternUnitedStates.59Avarietyoffactorscontributedtotheevent,includingretiringfossilgenerationbeforereplace-mentsupplywasputinplace,lackofclearaccountabilitybecauseofthesharedrolesofvariousstateagencies,andoverrelianceonimportsfromoutsideCalifornia,whichwerenotavailablebecausewidespreadweatherconditionslefttheentireregionshortofsupply.60Contractsfornewcapac-ityintendedtomeetpeakdemand,muchofitbatterystor-age,havesincebeenaccelerated.Muchoftheregioncon-tinuestofacepotentialshortfallsofpeakcapacityandtocontinue“over-relianceonimportstomaintainresourceadequacy.”61Inlatesummer2022,Californiaexperiencedanotherextremeheatwaveandrecordpowerdemand,butavoidedrollingoutagesthroughasuccessfulemergencypublicappealtoreducepoweruse.InFebruary2021inTexas,morethanonehundredandfiftypeopledied,millionsofpeoplelostaccesstocleanwater,andtherewaswidespreadpropertydamageduringextremewinterweather.Initially,stateofficialsblamedtheunreliabil-ityofrenewableenergy.However,itsoonbecameclearthatunavailablefossil-poweredgenerationaccountedformostoftheshortfall.Thecausesturnedouttoincludeafailuretoweatherizealltypesofpowerplants—includingnaturalgas,wind,andnuclear—aswellasnatural-gaspipelinesystems.Inaddition,thereweregasshortagescausedbyrisingdemandthroughoutthecountryduringthecoldspell,andanoveralllackofcoordination.62Theexperienceclarifiedthatevennat-ural-gaspowerplantsmaynotbereliableifgas-supplynet-worksarenotrobust,asituationsimilar,insomeways,totheJapaneseexperienceinearly2021,thoughthecauseofthefuel-supplychallengeswasdifferent.Therecognitionthatpowersystemsmustchangetorelymoreonvariablerenewablepower,andthatclimatechangewillaltertheconditionsunderwhichpower-systemreliabil-ityistested,hascausedareconsiderationofapproachesto59“2021SummerReadiness,”CaliforniaIndependentSystemOperator,http://www.caiso.com/about/Pages/News/SummerReadiness.aspx.60IvanPenn,“PoorPlanningLeftCaliforniaShortofElectricityinaHeatWave,”NewYorkTimes,August20,2020,https://www.nytimes.com/2020/08/20/business/energy-environment/california-blackout-electric-grid.html;CherylA.Lafleur,“What’sAilingCalifornia’sElectricSystem?”ColumbiaClimateSchool,September2,2020,https://news.climate.columbia.edu/2020/09/02/whats-ailing-californias-electric-system;JeffSt.John,“California’sRacetoSecureItsGridAgainstSummerBlackouts,”CanaryMedia,May19,2021,https://www.canarymedia.com/articles/californias-race-to-secure-its-grid-against-summer-blackouts/.61St.John,“California’sRacetoSecureItsGridAgainstSummerBlackouts.”62EdwardKump,MikeLee,andCarlosAnchondo,“DocumentsRevealNaturalGasChaosinTexasBlackouts,”Energywire,May20,2021,https://www.eenews.net/stories/1063733071.63Forexample,toaddressthelossofwindgenerationinMarch2021,gas-firedgenerationinBritainincreased20percentinthefirstquarterof2021comparedtothesamequarterintheprioryear.Staffell,etal.,“Q12021Report.”64“RedefiningResourceAdequacyforModernPowerSystems,”EnergySystemsIntegrationGroup,2021,https://www.esig.energy/resource-adequacy-for-modern-power-systems.65Ibid.reliability.Inthepast,weatherwasconsideredonlyasafac-tordrivingdemand,andresourceadequacyfocusedonman-agingdiscrete,independentmechanicalorelectricalfailures,suchasgenerating-unitoutages.Inthefuture,withmorevari-ableresourcessupplyingpower,weatherwilldrivebothsup-plyanddemand,andcorrelatedweather-relatedeventswilldeterminereliability.63Asaresult,theconventionalapproachofdesigningasystemtomeetpeak-loadconditionswithastaticreservemarginwillnolongerbeappropriate,andachronologicalevaluationofallhoursoftheplanningperiodwillberequiredsotheperiodsofshortfallcanbeidentified.64Furthermore,climatechangemeansthathistoricalweatherconditionsmaynotaccuratelypredictfutureconditions.DuringtheCaliforniaheatwave,someofthehighesttempera-turesinthepastthirty-fiveyearswererecordedacrosstheentirewesternUnitedStates.Similarly,duringthe2021winterstorm,Texasexperiencednear-recordlowtemperatures.65Thecombinationofincreasedrelianceonvariablerenewablegeneration,andtheneedtoanticipatepotentiallyincreasedvolatilityinweather-relateddemand,requiresastrongercommitmenttoenergystorageandfuelreserves.Inthepast,fuelreserveshavebeenconsideredonlyinthecontextoffossilfuel,whetherinstoragefacilitiesorinthegroundwait-ingtobeproduced.Inthefuture,storagewillneedtoincludelong-termpowerstorage(suchasadvancedbatteriesthatareonlynowbeingdemonstrated)andpotentiallyhydrogen(thoughhydrogenstoragemaybechallengingwithoutfavor-ablegeography).Theseconditionsalsoargueforthevalueofdispatchablezero-carbonenergyresources,particularlynuclearpower,whichbecauseofitslongfuelcyclesmain-tainsextensivepowerreservesonsite(conventionalreac-torshaverefuelingcyclesmorethanayearlong,andsomeadvancedreactorshaveevenlongercyclesorcancontinu-ouslyrefuel).Futureplanningforreliabilityandresiliencewillneedtobemuchmorecomplete,andincorporateawiderangeoffac-tors,includingNUCLEARENERGYINALOW-CARBONFUTURE:IMPLICATIONSFORTHEUNITEDSTATESANDJAPAN13•correlatedloadandsupplyvariabilityduetoweathercon-ditions,overextendedgeographicalareastoaccountforpotentiallimitationsonimports(traditionallyresourceade-quacyhasfocusedonlyontheloadvariability);•weatherconditionsoutsidenormalorhistoricalbounds;•probabilisticlikelihoodofmechanicalfailures(thisistradi-tionallythefocusofreliabilityanalysis);•transmissionconstraints(alsoatraditionalconcern);and•charginganddischargingenergy-limitedstorageresources.Futurepowersystemswillneedtoconsiderthecharacteris-ticsofspecificcomponentsthatsupportreliabilityandresil-ience,includingdemandmanagement,whichmaybegreatlyexpandedasaresultofdigitalcontroloverthetimingofcer-tainelementsofdemand(e.g.,spaceandwaterheating,vehi-clecharging).Inaddition,theywillneedtoconsiderresilienceofthepower-supplysystem,bothtodirectweatherimpactsandfuelsupply.Suchconsiderationswillplaceapremiumonresilientsupplyoptions.NUCLEARENERGYINALOW-CARBONFUTURE:IMPLICATIONSFORTHEUNITEDSTATESANDJAPAN14III.ImplicationsfortheUnitedStates66“ElectricPowerSectorCO2EmissionsDropasGenerationMixShiftsfromCoaltoNaturalGas,”USEnergyInformationAdministration,June9,2021,https://www.eia.gov/todayinenergy/detail.php?id=48296.Overthattimeperiod,renewablegeneration(includingconventionalhydroelectric)grewfrom9percentto18percent,drivenprimarilybyincreasedwindgeneration,whilenucleargenerationheldsteadyat20percent.Totalgenerationwasrelativelyconstant.67“MonthlyEnergyReview,”USEnergyInformationAdministration,table7.2A,https://www.eia.gov/totalenergy/data/browser/index.php?tbl=T07.02A#/?f=A&start=1949&end=2020&charted=8-10-11-12-13-14.68AnthonyLopez,etal.,“U.S.RenewableEnergyTechnicalPotentials:AGIS-BasedAnalysis,”NationalRenewableEnergyLaboratory,July2012,https://www.nrel.gov/docs/fy12osti/51946.pdf.TotalUSpowergenerationaveragesaround4,000terawatt-hours(TWh);inthisreportthetechnicalwindpotentialwasestimatedatabout50,000TWhandthetechnicalsolarpotentialatover280,000TWh;theestimatewouldlikelybehighertodayduetoimprovementsinthetechnologies.DecarbonizationintheUnitedStatesIntheUnitedStates,carbon-dioxideemissionsfromelectricpowerhavedeclinedsubstantiallyinrecentyears,duetothesubstitutionofgas-firedgenerationforcoal-firedgeneration.Between2005and2019,theshareofgenerationfromcoaldeclinedfrom50percentto23percent,whilethesharefromgasincreasedfrom19percentto38percent,andcarbon-di-oxideemissionsfromthepowersectorfellby32percent.66Growthingenerationfromrenewablesourceshasacceler-ated,withgenerationfromwindpoweralmostdoublinginthefiveyearsthrough2020,andgenerationfromsolaralmostquadrupling(seeFigure5,USElectricGenerationbyFuel).67Withvastlandareas,includingplainswithconsistentwindsanddesertswithconsistentsunlight,theUnitedStatesenjoysanenormouspotentialforrenewablegeneration.Thetech-nicalpotentialforUSrenewablegenerationistenstohun-dredsoftimeslargerthanitscurrentelectricdemand.68ManystudieshavebeendoneofthepotentialtodecarbonizeelectricgenerationandoverallenergysupplyintheUnitedStates.AreviewbytheUSNationalAcademiesofSciences,EngineeringandMedicine(NASEM)concludedthatfivenear-Figure5:USElectricGenerationbyFuelSOURCE:“U.S.ENERGY-RELATEDCARBONDIOXIDEEMISSIONS,2020,”USENERGYINFORMATIONADMINISTRATION,DECEMBER22,2021,HTTPS://WWW.EIA.GOV/ENVIRONMENT/EMISSIONS/CARBON.NUCLEARENERGYINALOW-CARBONFUTURE:IMPLICATIONSFORTHEUNITEDSTATESANDJAPAN15termactionswerecommontotheapproachesinthestudiestheyreviewed,including:1.improveenergyefficiency;2.electrifyenergyrequirementsfortransportation,build-ings,andindustry;3.decarbonizeelectricityproduction,includingdeploy-mentofwindandsolargenerationatafastpace(match-ingorexceedingrecordhistoricallevels)andcontinuedoracceleratedretirementofcoalgeneration;4.improveinfrastructure,includingelectrictransmissioncapacity(increasingitbyasmuchas60percentby2030),electric-vehiclechargingcapacity,andCO2transportandstorage(forcarboncapture);5.ongoingresearchanddevelopment(R&D)inseveralareastoexpandtechnicaloptions,suchasforadvancednuclearenergyandotherzero-carbondispatchablegen-eration,hydrogenproduction,andzero-carbonoptionsforshippingandindustry.69TheNASEMreviewfoundthatthestudiesgenerallyincor-poratedincreasesincleanelectricgenerationfrom37per-centin2020toasmuchas75percentby2030,includingtheadditionof250–350GWeachofwindandsolargener-ation,withcleangenerationreaching85percentormoreby2050.OtherstudieshavealsohighlightedthevarietyofscenariosthroughwhichUSenergydecarbonizationcouldbeachieved,andthewiderangeofelectricgenerationandothertechnologieslikelytoberequiredtodoso.7069“AcceleratingDecarbonizationoftheU.S.EnergySystem,”NationalAcademiesofSciences,Engineering,andMedicine,2021,https://www.nap.edu/catalog/25932/accelerating-decarbonization-of-the-us-energy-system.70LindseyWalter,LesleyJantarasami,andConradSchneider,“PathwaystoNet-ZeroEmissions,”DecarbAmerica,February4,2021,https://decarbamerica.org/report/pathways-to-net-zero-emissions.71SamanthaGross,“Renewables,LandUse,andLocalOppositionintheUnitedStates,”Brookings,January2020,https://www.brookings.edu/research/renewables-land-use-and-local-opposition-in-the-united-states/.72EmilyPontecorvo,“WeNeedtoBuildaLotofWindTurbines.WillAmericansAgreetoLiveNearThem?”Grist,January22,2021,https://grist.org/energy/we-need-to-build-a-lot-of-wind-turbines-will-americans-agree-to-live-near-them/.73AlexandraRekkas,“TransmissionUpgrades&Expansions:KeystoMeetingLargeCustomerDemandforRenewableEnergy,”DavidGardinerandAssociates,January16,2018,https://www.dgardiner.com/wef-dga-report-transmission-needed-meet-corporate-americas-growing-demand-renewable-power/.74“Net-ZeroAmerica,”PrincetonUniversity,https://netzeroamerica.princeton.edu/.75RobinsonMeyer,“Unfortunately,ICareAboutPowerLinesNow,”Atlantic,July28,2021,https://www.theatlantic.com/science/archive/2021/07/america-is-bad-at-building-power-lines-lets-fix-that-transmission-climate/619591/.RussellGold,“BuildingtheWindTurbinesWasEasy.TheHardPartWasPluggingThemIn,”WallStreetJournal,June22,2019,https://www.wsj.com/articles/building-the-wind-turbines-was-easy-the-hard-part-was-plugging-them-in-11561176010;“MaineVotersRejectQuebecHydropowerTransmissionLine,”Reuters,November3,2021,https://www.reuters.com/world/americas/maine-voters-reject-quebec-hydropower-transmission-line-2021-11-03/.ChallengestoDeploymentofRenewableEnergyDespitetheextensiveresourcebaseandthepotentialforrenewablegenerationtoprovidethefoundationforadecar-bonizedpowersystem,expansionofrenewablegenerationintheUnitedStatesatthepaceanticipatedindecarboniza-tionprojectionsmaybechallenging.Whilerenewablegen-erationisattractiveintheabstract,itisdistributedoverlargelandareasand,therefore,canhaveawidespreadimpactoncommunities.71Windpowerhasgeneratedlocalopposi-tionthroughouttheMidwest,andsolarprojectshavefacedoppositioninbothwesterndesertsandeasternfarmlands.72AlthoughtheUnitedStateshasextensiverenewableresources,theyarewidelydispersed,andthebestresourcesaredistantfromenergydemand(seeFigure6).Onestudyfoundthatabout90percentofUSwindpowerpotential,andalmost60percentofitssolar-powerpotential,wasinthefifteen-stateregionbetweentheMississippiRiverandtheRockyMountains,butthat70percentofelectricdemandwouldbefromoutsidethatregion.73Asaresult,increas-ingrelianceonrenewableenergymayalsorequiregreatlyexpandingelectrictransmission.OnemajorstudyofUSdecarbonizationoptionsprojectedthattransmissioncapacitywouldneedtomorethantripleby2050.74Expandingtrans-missioncapacityisoftenchallengingbecauseoftheimpactonthelandscapeandcommunitiesallalongtheroutes.TransmissionexpansionisparticularlydifficultintheUnitedStatesbecauseitrequiresstate-by-stateapprovalsandcanfaceresistancefromentrenchedinterests,andanumberoflong-distancetransmissionprojectstosupportrenewablegenerationhavebeenunsuccessful.75NUCLEARENERGYINALOW-CARBONFUTURE:IMPLICATIONSFORTHEUNITEDSTATESANDJAPAN16Ofcourse,thereismuchpolicyinterestinaddressingthechallengestodeployingrenewableenergyandexpandingtransmissioncapacityatthepacerequiredtoachievedecar-bonizationgoals.Thesechallengesalsoplaceapremiumonensuringotherlow-carbon-generatingoptions,includingnuclearpower,continuetobedevelopedandconsidered,sothepaceofdecarbonizationcanachieveclimate-preser-vationobjectives.NuclearPowerintheUnitedStatesNuclearpowerhasconsistentlyprovidedthegreatestshareofzero-carbonelectricityintheUnitedStates(seeFigure7).Throughresearch,testing,andexperience,existingUSpowerplantshavealsoimprovedtheiroperations,bothincreasingtheircapacityfactor(thepercentageofoutput76“U.S.NuclearIndustryCapacityFactors,”NuclearEnergyInstitute,https://www.nei.org/resources/statistics/us-nuclear-industry-capacity-factors;“U.S.NuclearIndustryYearlyPowerUpratesandCapacityAdditions,”NuclearEnergyInstitute,https://www.nei.org/resources/statistics/us-industry-yearly-uprates-and-capacity-additions.77StephenS.Greene,AdvancingUS-ROKCooperationonNuclearEnergy,AtlanticCouncil,March2,2021,https://www.atlanticcouncil.org/in-depth-research-reports/report/advancing-us-rok-cooperation-on-nuclear-energy/.78“DOESeeksApplications,Bidsfor$6BillionCivilNuclearCreditProgram,”USDepartmentofEnergy,pressrelease,April19,2022,https://www.energy.gov/articles/doe-seeks-applications-bids-6-billion-civil-nuclear-credit-program.availablethroughouttheyear)andimplementingpoweruprates,bothofwhichenableincreasedzero-carbongener-ationfromexistingassets.76However,existingnuclear-powergenerationintheUnitedStatesfaceseconomicchallengesdrivenbyadditionsofnaturalgasandrenewablegenerat-ingcapacity,therulesgoverningelectricmarkets,and,untilrecently,historicallylownatural-gasprices.Morethan8,400megawattsofnucleargenerationhaveretiredprematurelysince2013.77InApril2022,theUSDepartmentofEnergybeganseekingapplicationsforthe$6-billionCivilNuclearCreditProgram,whichwasauthorizedandfundedundertheBipartisanInfrastructureLaw,topreservethecleanenergyfromexistingnuclearpowerplants.78TheInflationReductionActincludestaxcreditsthatwillsupportexistingreactorsaswellasprovideincentivesfornewadvancednuclearenergyoptions.Figure6:TheBestUSRenewableResourcesAreDistantfromManyPopulationCentersSOURCE:“INTERCONNECTIONSSEAMSTUDY,”NATIONALRENEWABLEENERGYLABORATORY,HTTPS://WWW.NREL.GOV/ANALYSIS/SEAMS.HTML.ReprintedwithpermissionfromtheNationalRenewableEnergyLaboratory,https://www.nrel.gov/docs/fy21osti/78161.pdf,accessedSeptem-ber19,2022.Thefigureappearsonpage11ofthislinkedpublicationandwillbeacleanercitationthanpointingtothewebpagewhichcouldchange.PleasenotethattheNRELdevelopedfigureisnottobeusedtoimplyanendorsementbyNREL,theAllianceforSustainableEnergy,LLC,theoperatorofNREL,ortheUSDepartmentofEnergy.NUCLEARENERGYINALOW-CARBONFUTURE:IMPLICATIONSFORTHEUNITEDSTATESANDJAPAN17Whilegigawatt-scaleconventionalnuclearreactorscontinuetobeconstructedaroundtheworld(e.g.,inRussia,China,SouthKorea,andtheUnitedArabEmirates),thefutureofnuclearpowerintheUnitedStatesappearstobefocusedonadvancednucleartechnologies.Arecentstudyconcludedthatadvancednucleartechnologiescouldprovide20to50percentofUSelectricgenerationby2050.79TheUSgovernmentsupportsadvancednucleartechnolo-gies,mostvisiblythroughtheDepartmentofEnergy’sARDP.Thisprogramhasawardedpartialfunding—expectedtototalmorethan$3billion—fortwodemonstrationprojectsexpectedtoresultinoperatingreactorswithinsevenyears.80Theprogramhasalsoawardedfundinginsmallerincrementsfor“riskreduction”projectsandadvanced-reactorconceptworkondesignsthatcouldbedemonstratedoveralongertimeperiod.81InadditiontotheARDPandthetaxcreditsincludedintheInflationReductionAct,whichprovideincen-tivesfornuclearenergyonparwiththosepreviouslyoffered79AdamStein,JonahMessinger,SeaverWang,JuzelLloyd,JamesonMcBride,andRaniFranovich,"AdvancingNuclearEnergy:EvaluatingDeployment,Investment,andImpactinAmerica'sCleanEnergyFuture,"TheBreakthroughInstitute,July2022,https://thebreakthrough.org/articles/advancing-nuclear-energy-report.80“U.S.DepartmentofEnergyAnnounces$160MillioninFirstAwardsunderAdvancedReactorDemonstrationProgram,”USDepartmentofEnergy,pressrelease,October13,2020,https://www.energy.gov/ne/articles/us-department-energy-announces-160-million-first-awards-under-advanced-reactor.81“AdvancedReactorDemonstrationProgram,”USDepartmentofEnergy,https://www.energy.gov/ne/advanced-reactor-demonstration-program.82“AdvancedReactorsintheEnergyActof2020andtheNewAdministration,”NuclearInnovationAlliance,January2021,https://nuclearinnovationalliance.org/advanced-reactors-energy-act-2020-and-new-administration;AmyRomaandStephanieFishman,“AmericanNuclearInfrastructureActMakesa2021Comeback,”HoganLovells,July20,2021,https://www.hlnewnuclear.com/2021/07/american-nuclear-infrastructure-act-makes-a-2021-comeback/.83“USANeedsNucleartoAchieveNetZero,SaysGranholm,”WorldNuclearNews,June17,2021,https://www.world-nuclear-news.org/Articles/USA-needs-nuclear-to-achieve-net-zero-says-Granhol.torenewables,severallegislativeeffortshavebeentakentosupportadvancednuclearenergy.Theseincludeprovi-sionsintheEnergyActof2020tosupportfuelavailabilityforadvancedreactorsandresearch,development,demon-stration,andcommercializationprogramsfornuclearenergy,andthereintroductionoftheAmericanNuclearInfrastructureAct(ANIA),whichwouldauthorizetheNuclearRegulatoryCommission(NRC)tosupportinternationalnuclearregula-torycooperation,supportlicensingofadvancedreactors,andupdateownershipprovisionsfornuclearreactorstoper-mitinvestmentfromentitiesinalliedcountries.82Theadministration’seffortsexplicitlyincludenuclearpoweraspartoftheapproachtodecarbonization.Financialincen-tivesfornuclearpowerarepartofthelegislativeeffortssup-portingthedecarbonizationagenda,andSecretaryofEnergyJenniferGranholmhassaid,“Carbon-freenuclearpowerisanabsolutelycriticalpartofourdecarbonizationequation.”83Figure7:Carbon-FreeGenerationintheUnitedStatesKeysourcesofcarbon-freeelectricgenerationintheUnitedStatesasafractionoftotalgeneration.Excludesbiomassandgeothermalgeneration.SOURCEDATA:“STATISTICALREVIEWOFWORLDENERGY,”BP,2021,HTTPS://WWW.BP.COM/EN/GLOBAL/CORPORATE/ENERGY-ECONOMICS/STATISTICAL-REVIEW-OF-WORLD-ENERGY.HTML.NUCLEARENERGYINALOW-CARBONFUTURE:IMPLICATIONSFORTHEUNITEDSTATESANDJAPAN18IV.ImplicationsforJapanDecarbonizationinJapanJapan’senergy-supplyportfolioandprospectsfordecar-bonizationweredramaticallychangedbyitsresponsetotheGreatEastJapanEarthquake,andtheresultingfailureoftheFukushimaDaiichiPowerPlant,in2011.In2010,morethan30percentofJapan’selectricgenerationwascarbonfree,substantiallyduetotheamountofnuclearpower,compar-ingfavorablytootherlargeeconomies(seeFigures8and9).By2012,only10percentofJapan’sgenerationwascar-bonfree.Carbon-freegenerationhasrisentoabout20per-centonthestrengthofastrongcommitmenttosolarpower,despitelimitedresumptionofnuclear-plantoperations,butJapanremainswellbehindotherlargeeconomies.Moreimportant,perhaps,isthechangeinJapan’senergyaspirationspost-Fukushima.In2010,projectionsofelectricsupplyfortheyear2030anticipatedthat49percentofelec-tricitywouldcomefromnuclearpowerand19percentfromrenewables,atotalof68percentofsupplyfromzero-car-bonsources,which,atthetimeofthoseprojections,wouldhaveanticipatedoneoftheleastcarbon-intensiveenergysuppliesintheworld.By2015,projectionsaspiredto44Figure8:Carbon-freeelectricgenerationinselectedcountriesasafractionoftotalgenerationForsimplicity,calculatedasthesumofnuclear,hydroelectric,wind,andsolargenerationdividedbytotalelectricgeneration.Note,Franceisaround90percentasaresultofitssubstantialnucleargeneration,raisingtheOrganisationforEconomicCo-operationandDevelopment(OECD)average.SOURCEDATA:“STATISTICALREVIEWOFWORLDENERGY.”NUCLEARENERGYINALOW-CARBONFUTURE:IMPLICATIONSFORTHEUNITEDSTATESANDJAPAN19percentofsupplyfromzero-carbonsourcesandanticipatedan82-percentincreaseintheelectricgenerationfromfos-silfuelscomparedtothe2010plan.InOctober2021,thegovernmentofJapanapprovedtheSixthStrategicEnergyPlan,inwhichzero-carbonsourcesareprojectedtosup-ply59percentoftotalelectricgeneration.84Inaddition,theelectric-generationrequirementisexpectedtobereduced8percentfromfiscalyear2019(FY2019)throughgreatereffi-ciency,whichwillbeverychallenginggiventheneedtoelec-trifyagreaterproportionoftotalenergyrequirementstofacil-itatedecarbonization.ThedraftStrategicEnergyPlanwasalignedtoformerPrimeMinisterYoshihideSuga’sAprilpledgetoachievea46-per-centreductioninJapan’scarbonemissionsby2030.85The84“CabinetDecisionontheSixthStrategicEnergyPlan,”MinistryofEconomy,Trade,andIndustryofJapan,October22,2021,https://www.meti.go.jp/english/press/2021/1022_002.html;MasakazuToyoda,“TheRoleofNuclearPowerforCarbonNeutrality,AJapanesePerspective,”TheInstituteofEnergyEconomics,Japan(IEEJ),May2021;“Japan’sNew2030EnergyMixUnveilsRadicalPlanstoTransformtheEnergySystem,”WoodMackenzie,July2021,https://www.woodmac.com/press-releases/japans-new-2030-energy-mix-unveils-radical-plans-to-transform-the-energy-system/;TakeoKumagai,“JapanSetfor60%Non-FossilFuelPowerSupplyin2030inGHGSlashDrive,”S&PGlobalCommodityInsights,July21,2021,https://www.spglobal.com/platts/en/market-insights/latest-news/electric-power/072121-japan-set-for-60-non-fossil-fuel-power-supply-in-2030-in-ghg-slash-drive.85KikkawaTakeo,“TheRoadtoCarbonNeutralityandtheIssuesofthe6thStrategicEnergyPlan,”JapanForeignPolicyForum,August30,2021,https://www.japanpolicyforum.jp/economy/pt2021083013564211429.html.86Ibid.planincorporatesasubstantialexpansionofrenewableenergycomparedtopreviousplans;renewablegenera-tionwouldsupport36–38percentoftotalgenerationinthisplan,comparedtothe2015outlookof22–24percent,whichcouldbechallengingconsideringJapan’srenewablecostsandresourcebase(discussedfurtherbelow).Thedraftplancountsonnuclearpowertodeliver20–22percentofrequire-ments,whichisonlyachievableifitrequiresrestartsofmostofthetenreactorsforwhichreviewiscurrentlypending,aswellastheseventhathavereceivedpermissiontorestartbuthavenotyetdoneso.86Nuclearpowercontributedonlyabout6percentofelectricgenerationin2019.Undertheplan,Japanwouldcontinuetorelyoncoal-firedcapacityfor19percentofgenerationin2030andLNGfor20percent,allofwhichwouldrequirecarboncapture,fuelsubstitution,orFigure9:Keysourcesofcarbon-freeelectricgenerationinJapanasafractionoftotalgenerationSOURCE:“STATISTICALREVIEWOFWORLDENERGY.”NUCLEARENERGYINALOW-CARBONFUTURE:IMPLICATIONSFORTHEUNITEDSTATESANDJAPAN20replacementby2050toattaintheplan’s2050goalofcar-bonneutrality.87InresponsetotheenergycrisesdrivenbyRussia'sinva-sionofUkraine,PrimeMinisterFumioKishida,whoreplacedSugainlate2021,calledforensuringtheoperationsofthetennuclearreactorsthathadrestarted,maximizingeffortstorestartadditionalreactors,andextendingtheopera-tionsofexistingreactors.Healsonotedthatconstructionofnext-generationreactorsshouldbeconsideredinthefuture.TheResearchInstituteofInnovativeTechnologyfortheEarth(RITE)providedanalysistosupportthedevelopmentoftheStrategicEnergyPlan.88TheRITEanalysishighlightsseveralchallengestoJapan’sabilitytoachievecarbonneutralityby2050.87Theresultsoftheleadershipelectioncouldhaveameaningfulnear-terminfluenceontheroleofnuclearpowerinJapan,asKishidadefeatedTaroKono,whoisstronglyantinuclear.88“‘ScenarioAnalysesfor2050CarbonNeutralityinJapan’ProvidedtotheAdvisoryCommitteeforNaturalResourceandEnergy(IncludingAdditionalInformation),”ResearchInstituteofInnovativeTechnologyfortheEarth,June11,2021,https://www.rite.or.jp/system/en/latestanalysis/2021/06/2050carbonneutrality.html.89“RenewablePowerGenerationin2020,”InternationalRenewableEnergyAgency,June2021,https://www.irena.org/publications/2021/Jun/Renewable-Power-Costs-in-2020.ChallengestoRenewableGenerationFirst,theRITEscenariosanticipaterenewablegenerationsufficienttoprovide44–63percentofpowergenerationin2050(inadditiontoonescenarioinwhichrenewableswereexogenouslyassumedtocover100percent).Thestudycon-cludedthat,inJapan,achievinglevelsofrenewablegen-erationhigherthanthoseinthesescenariosmaybediffi-cult.Thestudyfoundthat,whilecostshavedeclinedovertimeastheyhaveelsewhereintheworld,renewablecostsinJapanremainsignificantlyhigherthanworldwideaverages.AccordingtodatafromtheInternationalRenewableEnergyAgency(IRENA),theinstalledcostofsolarinJapanisabout1.7timesgreaterthanitisintheUnitedStates,andabout2.6timesgreaterthaninGermany;asignificantareaofdiffer-enceisthecostofinstallation.89JapanesePrimeMinisterFumioKishidaspeaksduringapressconferenceattheprimeminister’sofficialresidenceinTokyo,Japan,onAugust10,2022.KishidahascalledformorenuclearpowertobeaddedtoJapan’senergymix.RodrigoReyesMarin/PoolviaREUTERSNUCLEARENERGYINALOW-CARBONFUTURE:IMPLICATIONSFORTHEUNITEDSTATESANDJAPAN21Figure11:PowerGridofJapanasofSeptember30,2019SOURCE:“NATIONALTRUNKLINECONNECTIONS,”FEDERATIONOFELECTRICPOWERCOMPANIESOFJAPAN,LASTUPDATEDSEPTEMBER30,2019,HTTPS://WWW.FEPC.OR.JP/ENGLISH/ENERGY_ELECTRICITY/COMPANY_STRUCTURE/SW_INDEX_02/INDEX.HTML.ThereareseveralchallengestoachievinghighlevelsofrenewablegenerationinJapan.Thecostsofintegratingrenewableresourcesintothegridarehigh,evenatmod-estpenetrationlevels.TheRITEstudycitesintegrationcostsforsolarpowerof$100permegawatthourifitprovides40percentoftotalpowergeneration,thenescalatingrapidlybeyondthat,andthesamecostsforwindpoweratonly2590ThecostsdescribedintheRITEstudyareattributedtoastudybytheUniversityofTokyoandtheInstituteofEnergyEconomics,Japan.percentofgeneration,thencontinuingtorise.90Theseinte-grationcostsarecaused,inpart,bythedistancebetweenpotentialrenewableresourcesandthemajordemandregionsofTokyo,Nagoya,andOsaka,whichislikelytorequireadditionorsubstantialenhancementoflong-dis-tancetransmissionlines.Inaddition,Japan’spowergridiscomplex,andoperatesatdifferentfrequenciesinthenorth-NUCLEARENERGYINALOW-CARBONFUTURE:IMPLICATIONSFORTHEUNITEDSTATESANDJAPAN22ernandsouthernpartsofthecountry(seeFigure11).Inaddi-tion,theamountofflatlandavailableforsolargenerationinJapanislimited,andmuchofthesolarpoweraddedtodatehasbeenthroughdeployingdistributedgenerationonroof-tops.91Wind-energydensityinJapanisalsolimited,andthecoastlinedropsoffintodeepseabed,sooffshorewindwouldrequiremoredifficult,andlessdemonstrated,floatingoff-shorewindproduction.92Japanisseekingtoexpandoffshorewindgenerationthroughlegislationestablishedin2019,andfourregionshavebeenidentifiedforadditionalfocus,buttheproposednear-termactionsarelimitedtoestablishingcouncilsandbeginningconsultations;actualprojectsappeardistant.93ContinuedFossilGenerationSecond,inRITE’sscenariosforelectricgenerationin2050,fossilgeneration—LNGandcoal,bothequippedwithcarboncapture—wouldcontinuetoprovide20–35percentofelec-tricgeneration.Thiscontinuedrelianceonfossilgenerationispartiallyafunctionofalackofalternatives(e.g.,limitedrenewableresourcesandsocialconstraintsonnucleargen-eration),andpartiallyduetotheyoungageofthefossilfleet.JapanandothercountriesinAsiahaverelativelyyoungcoalfleets,withsubstantialremainingtechnicalandeconomiclife-times.Specifically,abouthalfofJapan’sinstalledcapacityhasbeenbuiltwithinthepasttwentyyears,andanother40percentis20–40yearsold.Inaddition,asofMarch2020,Japanhadfourteencoalplantsunderconstructiontotaling8.4GWofcapacity,withexpectedcommercialoperationdatesbetween2020and2024.94Incontrast,forexample,intheUnitedStates,95GWofcoalplantshadbeenretiredorhadswitchedfuelsbetween2011and2020,andanother25GWareanticipatedtoretireby2025,atwhichpointtheUnitedStateswillhave200GWofcoalcapacityremaining(whichhasrecentlyoperatedatacapacityfactorbetween40–60percent)outoftotalgeneratingcapacityofmorethan1,100GW.95TheIEAhasrecommendedthatcoalplantsshouldbephasedoutcompletelyby2040,unlesstheyareretrofittedwithcarbon-capturetechnology,startingwiththeleasteffi-cientdesignsby2030.96TheRITEstudycontemplatesthat91Toyoda,“TheRoleofNuclearPowerforCarbonNeutrality,AJapanesePerspective.”92Forexample,allpartsoftheUSstateofSouthDakotahaveawind-powerdensityatleastasgreatasroughlythebest20percentofJapan,muchofwhichismountainousanddifficulttoaccess,pertheGlobalWindAtlashttps://globalwindatlas.info.Ibid.93“‘OffshoreWindPowerGeneration’ProgressSinceEnforcementoftheNewLaw,”MinistryofEconomy,Trade,andIndustryofJapan,June5,2020,https://www.enecho.meti.go.jp/en/category/special/article/detail_152.html.94“Japan2021:EnergyPolicyReview,”InternationalEnergyAgency,March2021,https://www.iea.org/reports/japan-2021.95MarkMoreyandAlexGorski,“AsU.S.Coal-FiredCapacityandUtilizationDecline,OperatorsConsiderSeasonalOperation,”USEnergyInformationAdministration,September1,2020,https://www.eia.gov/todayinenergy/detail.php?id=44976;“ElectricityExplained:ElectricityGeneration,Capacity,andSalesintheUnitedStates,”USEnergyInformationAdministration,April19,2022,https://www.eia.gov/energyexplained/electricity/electricity-in-the-us-generation-capacity-and-sales.php.96“NetZeroby2050.”97YoshinobuOno,“Japan,China,andSouthKoreaCompeteforLNGasColdWaveHits,”NikkeiAsia,January15,2021,https://asia.nikkei.com/Business/Energy/Japan-China-and-South-Korea-compete-for-LNG-as-cold-wave-hits.thefossilcapacityremaininginJapanwouldbeequippedwithcarboncapture.However,domesticstoragecapacityforcapturedCO2islimited,andthereference-caseanaly-sisassumesthatmorethan70percentoftheavailablestor-agecapacityisoverseas.RelyingonoverseasCO2storagewouldnotonlyincurthetechnicalchallengesoftransportingCO2byshipandtheexpenseoftransportvessels,butwillalsorequirenegotiatingagreementfromdestinationcoun-triestoreceiveandstoretheCO2,whichcouldbepoliticallydifficult.InadditiontocaptureandstorageofCO2frompowergeneration,theRITEscenariosincorporatecarboncapturefromindustry(particularlysteelandcement)andasubstan-tialamountofdirectaircapturetooffsetremainingemissionsfromindustrialorotherprocesses,allofwhichwilladdtothedemandontheverylimitedcarbon-capturepotential.TotheextentJapancontinuestorelyonfossilgeneration,espe-ciallycoal,andisunabletoimplementitsambitiousplansforcarboncapture,includingoverseasCO2storage,JapanrisksbeingunabletoachieveitsCO2-reductiongoalsandbecominganoutlieramongadvancedeconomiesthataresubstantiallyreducingtheircoalgenerationastheypursueCO2reduction.TheStrategicEnergyPlanandtheRITEscenariosfor2050alsocontinuetoanticipaterelianceonimportedLNG.ImportsofLNGnotonlypreserveongoingdependenceonforeignproducersoffossilfuels,butalsomakeJapanvulnerabletosupplydisruptionsandextremepricevolatility.TheimpactofthewarinUkrainehasdramaticallyhighlightedthisvulnera-bility,withAsianLNGpricesrisingtotherecordlevelofover$50permillionBTUinmid-2022.97Thus,separatefromcon-siderationsofcarbonemissions,continuedrelianceonLNGcreatesarangeofrisksforJapan’senergysecurity.HydrogenforPowerGenerationIntheRITEReferenceCase,about13percentofgenerationin2050isexpectedtocomefromacombinationofhydro-genandammonia(madefromhydrogen),morethanfromnucleargeneration.Someofthehydrogencouldbepro-duceddomestically:Japanhasconstructedtheworld’slarg-est“green”hydrogenplanttoproducehydrogenfromsolarpoweronasiteneartheFukushimaDaiichinuclearpowerNUCLEARENERGYINALOW-CARBONFUTURE:IMPLICATIONSFORTHEUNITEDSTATESANDJAPAN23plant.98However,muchofthehydrogen,likeLNG,wouldbeimported.InitialdemonstrationsofhydrogenshipmentstoJapanincludehydrogenmadeinAustraliafrombrowncoalandshippedasliquefiedhydrogen(theHySTRAproj-ect)andhydrogenfromBruneiprocessedandshippedasanorganichydride,whichthenrequiresreconversionatthedestination(theAHEADproject).99Theworld’sfirstdemon-strationliquid-hydrogencarrierwaslaunchedin2019aspartofHySTRA.TheUnitedStatescouldbecomeacompetitivesourceofcleanhydrogenforexporttoJapan,100ascouldlargegreen-ammoniaprojectsbeingdevelopedaroundtheworldforexport,suchasthe4-GW,650-tonne-per-dayplantbeingconstructedaspartoftheNeomprojectinSaudiArabia.101Overseastransportofhydrogeniscomplexandexpensive,evenmoresothanforLNG.Liquefactionofhydrogenrequirescoolingtonegative253degreesCelsius,vs.negative162degreesforLNG.Liquefactionofhydrogenconsumes25–35percentoftheoriginalenergycontentusingcurrenttechnol-ogy,amuchgreaterimpactthanforLNG,whereitconsumesabout10percent.102Furthermore,liquidhydrogencontainslessthanhalftheenergybyvolumeasLNG,soitrequiresmoreorlargershipstotransporttheequivalentamountofenergy.InitialestimatesarethatthetotalcostoftransportingliquidhydrogenfromtheUnitedStatestoJapan,forexam-ple,wouldbe$5–6perkilogram.103Toputthatincontext,forUSdomesticconsumption,theDepartmentofEnergy’s“Earthshot”initiativeaimstoproducecleanhydrogenatacostof$1perkilogram.104Ofcourse,importsofhydrogencre-atesimilar,ifnotgreater,exposuretovolatility,potentialdis-ruption,andrelianceonforeignsupply,asdoimportsofLNG.Hydrogencanalsobetransportedintheformofammo-nia.Thetechnicalhandlingconditionsaremoremanage-ablethanthoseforliquidhydrogen,althoughammoniaistoxicandrequiressafetyprotocols;thereisalonghistoryof98SimonDenyer,“JapanBetsonHydrogentoLiftItsAmbitiousCarbon-NeutralPlans,”WashingtonPost,April15,2021,https://www.washingtonpost.com/climate-solutions/japan-hydrogen-energy-carbon/2021/04/13/0dd68e4e-9229-11eb-aadc-af78701a30ca_story.html.99“HydrogenEnergyUpdateAPromisingImageofa‘Hydrogen-BasedSociety’IsEmergingNow,”MinistryofEconomy,Trade,andIndustryofJapan,June10,2020,https://www.enecho.meti.go.jp/en/category/special/article/detail_153.html.100RyanRusali,SpencerNelson,andNatalieHoughtalen,“AmericanCleanHydrogen:ATremendousExportOpportunity,”ClearPath,October2021,https://static.clearpath.org/2021/10/american-clean-hydrogen-1.pdf.101“SaudiArabia’s$5bnGreenHydrogen-BasedAmmoniaPlanttoBeginProductionin2025,”Informa,April21,2021,https://energy-utilities.com/saudi-arabia-s-5bn-green-hydrogenbased-ammonia-news111872.html.102“TheFutureofHydrogen,”InternationalEnergyAgency,June2019,https://www.iea.org/reports/the-future-of-hydrogen.103SunitaSatyapal,“2021AMRPlenarySession,”USDepartmentofEnergy,June7,2021,https://www.hydrogen.energy.gov/pdfs/review21/plenary5_satyapal_2021_o.pdf.104RachelFrazin,“GranholmLaunches‘Earthshot’GoalofReducingHydrogenEnergyCostto$1,”Hill,June7,2021,https://thehill.com/policy/energy-environment/557156-granholm-launches-earthshot-goal-of-reducing-hydrogen-energy-cost.105“MitsubishiPowerCommencesDevelopmentofWorld’sFirstAmmonia-Fired40MWClassGasTurbineSystem,”MitsubishiPower,pressrelease,March1,2021,https://power.mhi.com/news/20210301.html.106“Japan2021:EnergyPolicyReview.”107“Japan’sNuclearPowerPlantsin2021,”Nippon,March31,2021,https://www.nippon.com/en/japan-data/h00967/.108TomokoMurakami,“OutlookandChallengesforNuclearPowerGenerationin2020,”InstituteofEnergyEconomics,Japan,2019,https://eneken.ieej.or.jp/data/8835.pdf.109HisaoKodachi,“Japan’sTopBusinessLobbyLooksBeyondBordersonClimate,”NikkeiAsia,February24,2021,https://asia.nikkei.com/Editor-s-Picks/Interview/Japan-s-top-business-lobby-looks-beyond-borders-on-climate.productionandtransport.Ratherthanextractingthehydro-gen,whichaddscomplexity,itmaybefeasibletouseammo-niadirectlyincertainapplications,suchasmaritimetrans-port,thoughthenitrogenemissionsmustbecontrolled.Developmenthasbegunonusingammoniadirectlyingasturbinesforpowergeneration.105NuclearPowerinJapanUntilMarch2011,fifty-fournuclearreactorswithacapacityofaboutforty-ninegigawattssuppliedabout25percentofthepowerinJapan.106Nuclearpowerwasanticipatedtoprovidealmosthalfthepowersupplyby2030,improvingJapan’senergyindependenceanditscarbonprofile.Ofcourse,thatchangeddramaticallyaftertheGreatEastJapanEarthquake.AfterthefailureoftheFukushimaDaiichiplant,nuclearreac-torsacrossJapanwereshutdown,theresponsibilityfornuclearregulationwasextensivelyreorganized,andsafetyreviewswererequiredbeforereactorscouldberestarted.Atleasttwenty-fourreactorshavebeendecommissionedasaresultofage,costtosatisfynewstandards,orotherfactors.AsofSeptember2021,tenreactorshadrestarted,anothersevenhadmetsafetystandards,andseveralotherswerestillinreview(seeFigure12).107Thereviewprocesshasentailedsubstantialtimeandcost,includinghundredsofhearingsperplant,unpredictabledelays,andabout$27billion(3trillionyen)ofcoststhroughfiscalyear2018(FY2018).108Theextensivefocusonrestartsofexistingreactors,andthecostsinvolved,havedrawnmoneyandattentionawayfromthedevelopmentofadvancednuclearreactors,incontrasttotheinterestandsupportthathasoccurredintheUnitedStates,China,Russia,andelsewhere.109TheJAEAhasdevel-opedanHTTRthathasrecordedthehighestoutlettempera-tureachievedfromanuclearreactor(potentiallyusefulforNUCLEARENERGYINALOW-CARBONFUTURE:IMPLICATIONSFORTHEUNITEDSTATESANDJAPAN24Figure12SOURCE:“NUCLEARPOWERPLANTSINJAPAN,”JAPANATOMICENERGYRELATIONSORGANIZATION,LASTUPDATEDDECEMBER20,2021,HTTPS://WWW.ENE100.JP/WWW/WP-CONTENT/UPLOADS/ZUMEN/E4-1-3.PDF.hydrogenproductionandsupplyofindustrialheat),butitwasshutdownin2011andonlyrestartedin2021.110JapanhasanuclearinnovationprogramcalledNEXIP(“NuclearEnergyXInnovationPromotion”),nominallysimilartotheUSARDPprogram,butitsfundingfornewtechnologieshasbeenmuchmorelimited.Despitethelimitedcommitmenttodateonadvancednucleartechnology,thenuclearindustryisoneofthefourenergy-relatedindustriesidentifiedasgrowthopportunitiesinthe“GreenGrowthStrategyThroughAchievingCarbonNeutralityin2050”releasedbytheMinistryofEconomy,TradeandIndustry(METI)inlate2020,whichisdescribedasanindustrialpolicysupportingthegoalofcarbonneu-tralityby2050.111ThisstrategywasestablishedtosetgoalsandestablishnecessarypoliciestosupportthegrowthoffourteenindustrialfieldsthatwillsupportJapan’scar-110“RestartofHighTemperatureEngineeringTestReactor,”JapanAtomicEnergyAgency,July2021,https://www.jaea.go.jp/english/news/press/2021/073003/.111“‘GreenGrowthStrategyThroughAchievingCarbonNeutralityin2050’Formulated,”MinistryofEconomy,Trade,andIndustryofJapan,December25,2020,https://www.meti.go.jp/english/press/2020/1225_001.html.bon-neutralitygoal,aswellasprovidingabasisforeco-nomicgrowth.ThestrategystatesthatthegovernmentwillsupporteffortsofJapanesecompaniestoparticipateinfor-eigndemonstrationsofadvancedreactors.However,thestrategydoesnotappeartocontemplatedemonstrationsordeploymentsofcommerciallyfocusedadvancedreactorsinJapan,thoughPrimeMinisterKishida'sstatementsindi-catethatcouldchangeinthefuture.LimitingthisefforttoforeigndemonstrationswillplaceJapanesecompaniesatacompetitivedisadvantageindevelopmentefforts,andaninabilitytodeployadvancednucleartechnologiesdomesti-callywillmakeithardertomarkettheminothercountries.Furthermore,anunwillingnesstoconsiderdemonstrationsdomesticallyignoresapotentialopportunitytodirectpublicfocustothefutureofnuclearpowerthatiscurrentlybeingexploredinternationally,ratherthanthepoliticallychalleng-ingrestartsofexistingunits.NUCLEARENERGYINALOW-CARBONFUTURE:IMPLICATIONSFORTHEUNITEDSTATESANDJAPAN25Conclusion112“NetZeroby2050.”113“GlobalWarmingof1.5°C,”IntergovernmentalPanelonClimateChange,”https://www.ipcc.ch/sr15/andhttps://www.iea.org/reports/net-zero-by-2050.114Bordoff,“3ReasonsNuclearPowerHasReturnedtotheEnergyDebate.”115“IHICorporationEntersSmallModularReactorMarketThroughInvestmentinNuScalePower,”IHI,pressrelease,May27,2021,https://www.ihi.co.jp/en/all_news/2021/resources_energy_environment/1197417_3360.html;“JGCHoldingsEntersEPCBusinessforSmallModularReactors(SMRs)InvestsinU.S.CompanyNuScalePower,”JGCHoldings,pressrelease,April6,2021,https://www.jgc.com/en/news/2021/20210406.html;“US,JapaneseFirmsAgreetoCooperateonFastReactors,”WorldNuclearNews,January27,2022,https://www.world-nuclear-news.org/Articles/US,-Japanese-firms-agree-to-cooperate-on-fast-reac.116“‘GreenGrowthStrategyThroughAchievingCarbonNeutralityin2050’Formulated.”InthecontextoftheenergycrisistriggeredbythewarinUkraine,aswellastheongoingcommitmenttoaddressingclimatechange,manycountrieshavemadeanenhancedcommitmenttoreducingtheirdependenceonfossilfuels.Thechallengestoachievethesereductionswillbesignif-icant,andwillbedifferentforeachcountry.Forexample,toachievetheIEA’snet-zerotargets,renewablegenera-tionwouldneedtogrowby940GWperyearonaveragebetween2030and2050,fourtimestherecordpaceachievedin2020.112Transmissioncapacityandenergystor-age,includingnewformsofenergystoragenotyetdeployed,willalsoneedtobeaddedinvastquantities.Nuclearenergycancontributetoenergysecurityanddecar-bonizationeffortsandincreasethelikelihoodthatanenergytransitioncanbeachievedinthetimerequired,throughpro-vidingzero-carbonpowerthatisnotdependentonlocalrenewableresources,doesnotrequirestoragetoproduceconsistentpower,andrequireslesslandthanrenewablegeneration.TheIPCCitself,theInternationalEnergyAgency,andmanygovernmentshaveconcludedthatnuclearenergycanbeakeycomponentofthesetransitionefforts.113TheinstabilitydrivenbythewarinUkrainehasledtoincreasingrecognitionthatnuclearenergycanbeakeytooltoaddressbothclimateconcernsandenergysecurity.TheUnitedStatesbenefitsfromsubstantialrenewableresources,butnuclearpowercouldserveasignificantrole,especiallyinkeyregions,asadispatchablepowerresourceandasasourceofindustrialenergyandhydrogenoralter-nativefuels.Japanhasmuchmorelimitedoptionstopursuedecarbonization,andappearspoisedtopursueadifficultandexpensivecourseofcontinuingitsrelianceonimportedfuels(fossiland,later,hydrogen)andeventheabilitytoexportcarbondioxideforsequestrationelsewhere.ShouldJapanbeabletorebuildpublictrustinthetechnology,nuclearenergyistechnicallywellsuitedtoitsenergychallengesandcouldprovidepowerandhydrogenwhileaccommodat-ingthecountry’sgeographicandelectric-transmissioncon-straints.Rebuildingtrustisfeasible,asevidencedbythesup-portfornuclearenergyinmanypartsofEuropeandfromthemembersoftheEuropeanParliament,andtherecognitionbymanygovernmentsandadvocatesthatitwillneedtobepartofanet-zerofuture.114PolicyRecommendationsTherearearangeofpolicyoptionsthatcouldenabletheUnitedStatesandJapantostrengthentheirabilitytoachievedecarbonizationobjectiveswhileimprovingenergysecurity,reliability,andresilience.Inparticular,policymakersshouldconsiderthefollowingactions.•Encourageandsupportinternationalcooperationinadvancednucleardevelopmentanddeployment.TheUnitedStatesissupportingthefutureofnuclearpowerwithfinancialassistancethroughtheARDP,theInflationReductionAct,andotherprograms,aswellaspastandpendinglegislativeefforts.Theseeffortscouldbeenhancedthroughinternationalpartnershipsthatcouldinvolveinvestmentsand/orsupplycommitments,suchasIHICorporation’sandJHGHoldings’investmentsinNuScale,Mitsubishi’sandJAEA’sagreementstocooper-atewithTerraPoweronthedevelopmentofsodium-cooledfastreactors,orjointresearchanddevelopment,suchasparticipationintheVersatileTestReactor(VTR).115Japan’sGreenGrowthStrategydescribesaroadmaponSMRsthatincludesJapaneseparticipationinforeigndemonstrationprojects.116CooperationininternationalprojectscouldbeessentialtocompetewithRussiaandChina,includingstrengtheningcooperationonfinancingnuclearprojects.NUCLEARENERGYINALOW-CARBONFUTURE:IMPLICATIONSFORTHEUNITEDSTATESANDJAPAN26SecretaryofEnergyJenniferGranholmhascommentedthatpartnershipsbetweennationsandindustriesmaybekeyforUSnucleardevelopersandoperatorstoparticipateintheglobalclean-energymarket.117Oneactionthatcouldenhancecooperationwouldbetoremoveanachronisticrestrictionsonforeignownershipinnuclearpowerplants.118•Acceleratethedevelopmentofareliablesupplychain.WhiletheARDPandotherprogramshelpsupportinitialdeploymentsofadvancedtechnologies,akeytoasuc-cessfuladvanced-reactorindustrywillbeefficientman-ufacturingandareliablesupplychain.Theweakenednuclearmanufacturingbasehasalsobeencitedasafac-torinthechallengestorecentconventionalnuclearproj-ects.119Internationalcooperation,suchasparticipationbyJapan’sstrongmanufacturingsector,perhapsintheformofadvancecommitmentstocreatingmanufacturingcapa-bilities,couldhelptoaddressthisneed.•Worktowardregulatoryharmonization:Similarly,inter-nationalcooperationcouldhelpachieveharmonized,andmoreefficient,licensingprocesses.ThereintroducedAmericanNuclearInfrastructureActwouldauthorizetheNuclearRegulatoryCommission(NRC)tosupportinterna-tionalregulatorycooperation.120Licensingimprovementsthatwillhelpshortenlicensingtimelinesandreducetheneedtorepeatlicensingstepsforinternationaldeploy-mentwillbeessentialtogrowingtheinternationalmar-ket,andenablingadvancedreactorstocontributetodecarbonization.•ConsiderapathtowardadvancednucleardemonstrationinJapan.Japanisseekingtorebuildpublictrustinnuclearpower,whichwillbeanessentialcomponentofitsdecar-bonizationefforts.Currently,thateffortisalmostentirely117JonathanTirone,“TopU.S.EnergyOfficialSees‘UnusualPartnerships’forNuclear,”Bloomberg,September21,2021,https://www.bloomberg.com/news/articles/2021-09-21/top-u-s-energy-official-sees-unusual-partnerships-for-nuclear.118MattBowen,JenniferT.Gordon,andJackieSiebens,“StrengtheningCooperationwithAlliesCouldHelptheUnitedStatesLeadinExportingCarbon-FreeNuclearEnergy,”EnergySource,October7,2020,https://www.atlanticcouncil.org/blogs/energysource/strengthening-cooperation-with-allies-could-help-the-united-states-lead-in-exporting-carbon-free-nuclear-energy/.119“ReducingtheCostsofNuclearPoweronthePathTowardsaCleanEnergyFuture,”NuclearEnergyAgency,July2,2020,https://www.oecd-nea.org/jcms/pl_37787/reducing-the-costs-of-nuclear-power-on-the-path-towards-a-clean-energy-future.120RomaandFishman,“AmericanNuclearInfrastructureActMakesa2021Comeback.”focusedonrestartingexistingreactors.TheGreenGrowthStrategycontemplatesJapaneseprogressinadvancednuclearenergyprincipallythroughresearchandpartici-pationindemonstrationsoutsideJapan.AdemonstrationprojectwithinJapan,whetherfocusedonelectricsupplyor,perhaps,hydrogenproduction,wouldbeconsistentwithPrimeMinisterKishida'srenewedemphasisonnuclearpower,andcouldofferadifferent,andperhapsmorefor-ward-looking,frameworkforrebuildingtrust.TotheextentJapancouldmakeprogressonadvancednuclearpowerandhydrogenproductionfromnuclearenergydomesti-cally,perhapsevenusingnucleardesalination,itwouldnotonlysupportitsownself-sufficiencygoals,butalsodevelopaproductforexporttoothercountrieswithlimitedrenewable-resourceoptions.Ofcourse,thegovernmentalsoneedstomaintainconsistentprogresstowardrestart-ingtheremainingreactorsthathavenotbeendecommis-sioned,andtosupportanefficientpathtowardachievingthelifetimeextensionsthatwillbenecessarytomeettheobjectivesintheStrategicEnergyPlan,whilemaintainingthefocusonsafetythatisacentralprincipleoftheplan.Thechallengestoreducedependenceonfossilfuels,improveenergysecurity,andmeetclimatecommitmentswillbesignificant.Nuclearpowercanhelpachievethoseobjec-tivesthroughitsabilitytogeneratepower,andpotentiallysupplyindustrialenergyandzero-carbonfuels,withoutcar-bonemissions,inacompactlandarea,regardlessofgeog-raphyorrenewableresourceconditions.BoththeUSandJapanesegovernmentssupportthepreservationofexist-ingnuclearpoweranddemonstrationofadvancednucleargeneration.Additionaleffortscouldimprovetheprospectsforsuccessfullyaddressingthesourcesofclimatechangeintimetomitigateclimateimpacts,andreducingfuturethreatstoenergysecurity.NUCLEARENERGYINALOW-CARBONFUTURE:IMPLICATIONSFORTHEUNITEDSTATESANDJAPAN28AbouttheAuthorStephenS.Greeneisaformerenergyandfinanceexecutivewithextensiveexpe-rienceincommercialandpolicyissuesrelatedtoenergy.Mostrecently,heservedinseniorfinanceroles,includingaschieffinancialofficerforCentrusEnergy,apub-liccompanyengagedinthesaleofnuclearfuelandthedevelopmentofnuclearenrichmenttechnology.HeledstrategyforProgressEnergy,aninvestor-ownedelec-tricutility,andservedaspractice-arealeaderforthecon-sultantPaceGlobalEnergyfocusedonenergymarketsandriskmanagement.HearrangedprojectfinancingforPG&ENationalEnergyGroup(USGeneratingCompany),alead-ingindependent-powerdeveloperandenergytrader,andsubsequentlydevelopedthecompany’spowermarketout-looktosupportprojectdevelopment.Earlyinhiscareer,heworkedattheUSEnvironmentalProtectionAgencyonair-pollutionrules.HeholdsamastersinpublicpolicyfromtheHarvardKennedySchoolandaBAinphysicsfromPrincetonUniversity.NUCLEARENERGYINALOW-CARBONFUTURE:IMPLICATIONSFORTHEUNITEDSTATESANDJAPANExecutiveCommitteeMembersListasofOctober20,2022CHAIRMANJohnF.W.RogersEXECUTIVECHAIRMANEMERITUSJamesL.JonesPRESIDENTANDCEOFrederickKempeEXECUTIVEVICECHAIRSAdrienneArshtStephenJ.HadleyVICECHAIRSRobertJ.AbernethyC.BoydenGrayAlexanderV.MirtchevTREASURERGeorgeLundDIRECTORSToddAchillesTimothyD.AdamsMichaelAnderssonDavidD.AufhauserBarbaraBarrettColleenBellStephenBiegunLindenP.BlueAdamBoehlerJohnBonsellPhilipM.BreedloveMyronBrilliantEstherBrimmerRichardR.BurtTeresaCarlsonJamesE.CartwrightJohnE.ChapotonAhmedCharaiMelanieChenMichaelChertoffGeorgeChopivskyWesleyK.ClarkHelimaCroftAnkitN.DesaiDarioDestePaulaJ.DobrianskyJosephF.Dunford,Jr.RichardEdelmanThomasJ.Egan,Jr.StuartE.EizenstatMarkT.EsperMichaelFischAlanH.FleischmannJendayiE.FrazerMegGentleThomasH.GlocerJohnB.GoodmanSherriW.GoodmanJarosławGrzesiakMurathanGünalFrankHaunMichaelV.HaydenTimHoltKarlV.HopkinsKayBaileyHutchisonIanIhnatowyczMarkIsakowitzWolfgangF.IschingerDeborahLeeJamesJoiaM.JohnsonSafiKaloAndreKellenersBrianL.KellyHenryA.KissingerJohnE.KleinC.JeffreyKnittelJosephKonzelmannFranklinD.KramerLauraLaneAlmarLatourYannLePallecJanM.LodalDouglasLuteJaneHollLuteWilliamJ.LynnMarkMachinUmerManshaMarcoMargheriMichaelMargolisChrisMarlinWilliamMarronChristianMarroneGerardoMatoErinMcGrainJohnM.McHughJudithA.MillerDariuszMioduskiMichaelJ.MorellRichardMorningstarGeorgetteMosbacherMajidaMouradVirginiaA.MulbergerMaryClaireMurphyEdwardJ.NewberryFrancoNuscheseJosephS.NyeAhmetM.ÖrenSallyA.PainterAnaI.PalacioKostasPantazopoulosAlanPellegriniDavidH.PetraeusLisaPollinaDanielB.PonemanDinaH.PowelldddMcCormickMichaelPunkeAshrafQaziThomasJ.RidgeGaryRieschelLawrenceDiRitaMichaelJ.RogersCharlesO.RossottiHarrySachinisC.MichaelScaparrottiIvanA.SchlagerRajivShahGreggSherrillJeffShockeyAliJehangirSiddiquiKrisSinghWalterSlocombeChristopherSmithCliffordM.SobelJamesG.StavridisMichaelS.SteeleRichardJ.A.SteeleMaryStreettGilTenzerFrancesM.TownsendClydeC.TuggleMelanneVerveerCharlesF.WaldMichaelF.WalshRonaldWeiserAlWilliamsMaciejWituckiNealS.WolinJennyWoodGuangYangMaryC.YatesDovS.ZakheimHONORARYDIRECTORSJamesA.Baker,IIIAshtonB.CarterRobertM.GatesJamesN.MattisMichaelG.MullenLeonE.PanettaWilliamJ.PerryCondoleezzaRiceHorstTeltschikWilliamH.Webster3132TheAtlanticCouncilisanonpartisanorganizationthatpromotesconstructiveUSleadershipandengagementininternationalaffairsbasedonthecentralroleoftheAtlanticcommunityinmeetingtoday’sglobalchallenges.103015thStreet,NW,12thFloor,Washington,DC20005(202)778-4952www.AtlanticCouncil.org