Techno-economicassessmentofCO2directaircaptureplantsMahdiFasihi,OlgaEfimova,ChristianBreyerLUTUniversity,Yliopistonkatu34,53850,Lappeenranta,FinlandarticleinfoArticlehistory:Received14October2018Receivedinrevisedform25January2019Accepted8March2019Availableonline14March2019Keywords:Carbondioxide(CO2)Directaircapture(DAC)Carboncaptureandutilisation(CCU)Negativeemissiontechnology(NET)EconomicsabstractCO2directaircapture(DAC)hasbeenincreasinglydiscussedasaclimatechangemitigationoption.Despitetechnicaladvancesinthepastdecade,therearestillmisconceptionsaboutDAC'scurrentandlong-termcostsaswellasenergy,waterandareademands.ThiscouldundermineDAC'santicipatedroleinaneutralornegativegreenhousegasemissionenergysystem,andinfluencepolicymakers.Inthisstudy,aliteraturereviewandtechno-economicanalysesofstate-of-the-artDACtechnologiesareper-formed,wherein,DACtechnologiesarecategorisedashightemperatureaqueoussolutions(HTDAC)andlowtemperaturesolidsorbent(LTDAC)systems,fromanenergysystemperspective.DACcapitalex-penditures,energydemandsandcostshavebeenestimatedundertwoscenariosforDACcapacitiesandfinanciallearningratesintheperiod2020to2050.DACsystemcostscouldbeloweredsignificantlywithcommercialisationinthe2020sfollowedbymassiveimplementationinthe2040sand2050s,makingthemcostcompetitivewithpointsourcecarboncaptureandanaffordableclimatechangemitigationsolution.ItisconcludedthatLTDACsystemsarefavourableduetolowerheatsupplycostsandthepossibilityofusingwasteheatfromothersystems.CO2capturecostsofLTDACsystemspoweredbyhybridPV-Wind-batterysystemsforMoroccanconditionsandbasedonaconservativescenario,without/withutilisationoffreewasteheatarecalculatedat222/133,105/60,69/40and54/32V/tCO2in2020,2030,2040and2050,respectively.ThesenewfindingscouldenhanceDAC'sroleinasuccessfulclimatechangemitigationstrategy.©2019TheAuthors.PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).1.IntroductionTheproblemofglobalwarmingcausedbygreenhousegas(GHG)emissions,mainlycarbondioxide(CO2),hasreacheddangerouslevels.CO2concentrationintheatmospherehasrapidlyincreasedfrom280ppminthepre-industrialerato403ppmin2016,withanannualgrowthrateof2ppm(IEA,2017).TheParisAgreementaimstomitigateclimatechangeandkeeptemperaturerisewellbelow2Candpreferably1.5Cincomparisontothepre-industrialagebyunitedeffortsofallcountries(UNFCCC,2015).Toachievethisgoal,alongwithsharplycuttinganthropogenicGHGemissions,actionsareneededforactiveCO2removalbyimple-mentationofNegativeCO2EmissionsTechnologies(NETs)(Kriegleretal.,2017;Rogeljetal.,2018).ArangeofoptionsareavailableforCO2emissionsremoval.CO2emissionscanbecapturedatpointsourcessuchasfluegasesfromconventionalpowerplantsornon-energeticsectorssuchascementplants.However,someplantsaretoooldandcannotberetrofitted.Moreover,eveninplantswithCO2removalsystems,notallemis-sionsarecapturedastheaveragecaptureratesareintherangeof50e94%(Leesonetal.,2017).Ontheotherhand,itisnotpossibletodirectlycaptureCO2emissionsproducedbylong-distanceaviationandmarinetransport.Largeamountofsmallemitters,suchasinthetransportsector,whichaccountfor50%ofglobalGHGemis-sions,arejustimpossibletoneutralisebyconventionalCO2captureapplications(Seippetal.,2017).ThesefactsleadtotheundeniablenecessityoffindingadditionalsolutionsthatarecapableofcapturingCO2independentoforiginandlocation.AnotherapproachforclimatechangemitigationiscapturingCO2directlyfromtheatmosphere.Hitherto,plantshavebeendoingitnaturallytosomeextent.Nonetheless,theycannotkeepupwiththeincreasinganthropogenicemissions(Goeppertetal.,2012).Afforestation,bioenergywithcarboncaptureandstorage(BECCS)andenhancedweatheringwereintroducedtoreduceCO2con-centrationintheatmosphere(Williamson,2016).However,theircommercialfeasibilityislimited,asallofthesemeasuresareassociatedwithrisks.Large-scaleBECCSandafforestationthreatbiodiversity,waterandfoodsecurity,asbotharecharacterisedbyCorrespondingauthor.E-mailaddress:Mahdi.Fasihi@lut.fi(M.Fasihi).ContentslistsavailableatScienceDirectJournalofCleanerProductionjournalhomepage:www.elsevier.com/locate/jcleprohttps://doi.org/10.1016/j.jclepro.2019.03.0860959-6526/©2019TheAuthors.PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).JournalofCleanerProduction224(2019)957e980hugelandrequirements(Smithetal.,2016).EnhancedweatheringprovokesrisingpHvaluesinriversandchangingthechemistryinoceans(Kohleretal.,2010).Besidesafforestation/reforestation,BECCSandenhancedweathering,thefullportfolioofNETsalsoincludesbiochar,oceanfertilisationandsoilcarbonsequestration(Fussetal.,2018;Minxetal.,2018),whichmayhavetobeappliedinaportfolioofNETsforeffectiveclimatechangemitigation(Buietal.,2018).CO2DirectAirCapture(DAC),besidesBECCS,istheotheroptionforcapturingCO2fromtheatmosphere,dilutedgasesanddistrib-utedsourcesofcarbonviaindustrialprocesses(Broehmetal.,2015;Goeppertetal.,2012;Lackner,2009).DACisarelativelynewandinnovativetechnologyinearlycommercialstages(Nemetetal.,2018),whichinalongtermperspective,alongwithconventionaltechnologies,canhelphumankindtocontrolandmitigateclimatechange(Keith,2009;Sanz-Perezetal.,2016).Inthispaper,atechno-economicassessmentofthemainCO2directaircapturetechnologies,fromanenergysystempointofview,hasbeencarriedout.Theremainingsectionsofthepaperareasfollows:Section2describesthemethodology.Insection3,aliteraturereviewhasbeencarriedout.Insection4,availabletechnologieshavebeendescribedandthecollectedtechno-economicdataiscategorisedandsummarisedintheformofta-bles.Thefinalmodelofmaintechnologiesin2020areintroduced.Later,DACcapitalexpenditures,energydemandsandcostshavebeenestimatedundertwoscenariosforDACcapacitiesandfinan-ciallearningratesintheperiod2020to2050andsensitivityana-lysesforthemostvaluableparametersaredone.Further,DAC'sareaandwaterdemands,aswellasCO2compression,transportandstoragearepresented.Insection5,relevanceofDACwithrespecttotheParisAgreement,aswellasbenefitsandchallengesofthemainDACtechnologiesarediscussed.Later,morefactorsonthefinalcostsoflarge-scaleDACsystemsareexaminedandresultsarecomparedtoprojectionsfromcompaniesorliterature.Moreover,acostcomparisontopointsourcecarboncapture(PSCC),asoneofthecompetingtechnologiesisperformed.Inaddition,thecostshareofCO2DACinpower-to-gassystemshasbeeninvestigated.Finally,conclusionsaredrawninsection6.2.MethodologyanddataAnextensivereviewhasbeenperformedconsideringliteraturepublishedfromtheearly2000stothepresenttimethatarerele-vanttothisresearch.Researchwasconductedinthefollowingmanner:datagatheringviasuchplatformsasScienceDirect,Sco-pus,GoogleScholar,ResearchGate,officialwebsitesofcompaniesandinternationalagenciessuchasIntergovernmentalPanelonClimateChange(IPCC)andInternationalEnergyAgency(IEA).Thefollowingkeywordswereused:CO2captureplant,CO2capturemethods,CO2scrubbing,CO2separation,directaircapture,costofCO2capturing,carboncapturestart-upcompaniesandatmosphericCO2capture.Adatabaseofrelevantdatahasbeencreatedfromallthereviewedpublications,forfurtheranalyses.Recalculationandaligningofthefindingswereconducted.Allparametersarepre-sentedonacomparablescaleforclassificationofallavailabletechnologiesandtodeliverthefinalmodels,includinglong-termestimations.Asensitivityanalysisofthemostvaluablevariablesisperformed.CostnumbersfromdifferentyearspresentedinUSDarecon-vertedtoeurosbyusingafixedexchangeratioof1.33USD/V,asthelongtermaverageexchangerate.Asanexception,costnumbersfromKeithetal.(2018)andvaluesinothercurrenciesareconvertedtoeurosbasedonexchangeratesofthecorrespondingyear.equations(1)e(4)belowhavebeenusedtocalculatethelev-elisedcostofelectricity(LCOE),thelevelisedcostofheat(LCOH)andthelevelisedcostofCO2DAC(LCOD).Abbreviations:capitalexpenditures,capex,annuityfactor,crf,annualoperationalexpen-ditures,opex,fixed,fix,variable,var,annualCO2productionofDACplant,OutputCO2,fullloadhoursperyear,FLh,electricitydemandofDACplantpertCO2produced,DACel.input,heatdemandofDACplantpertCO2produced,DACheat.input,fuelcosts,fuel,efficiency,h,coeffi-cientofperformanceofheatpumps,COP,weightedaveragecostofcapital,WACC,lifetime,N.AWACCof7%isusedforallthecalculationsinthisstudy.LCOE¼Capex,crfþOpexfixFLhþOpexvarþfuelh(1)LCOH¼Capex,crfþOpexfixFLhþOpexvarþfuelhþLCOECOP(2)NomenclatureBECCSBioenergywithCarbonCaptureandStoragecapexCapitalExpendituresCCSCarbonCaptureandStorageCCUCarbonCaptureandUtilisationCOPCoefficientofPerformanceDACDirectAirCaptureDACCSDirectAirCarbonCaptureandStorageFLhFullLoadhoursGHGGreenhouseGasHTHighTemperatureLCODLevelisedCostofCO2DirectAirCaptureLTLowTemperatureMOFMetalOrganicFrameworksMSAMoistureSwingAdsorptionNETNegativeEmissionTechnologyopexOperatingExpendituresPSCCPointSourceCarbonCapturePtGPower-to-GasPVPhotovoltaicRERenewableEnergySNGSyntheticNaturalGasTSATemperatureSwingAdsorptionTVSATemperatureVacuumSwingAdsorptionWACCWeightedAverageCostofCapitalSubscriptselelectricityfixfixedppeakththermalvarvariableM.Fasihietal./JournalofCleanerProduction224(2019)957e980958LCOD¼CapexDAC,crfþOpexfixOutputCO2þOpexvarþDACel:input,LCOEþDACth:input,LCOH(3)crf¼WACC,ð1þWACCÞNð1þWACCÞNÀ1(4)Maturityleveloftechnologiesisalsotakenintoconsideration,asthefocusofthisresearchisonpilotandcommercial-scaletech-nologies,whilethetheoreticalandlaboratory-scalestudieshavebeenincludedaswell.Costandtechnicaltrendsbasedontechnologyevolutionover20yearsofactiveresearchanddevelopmentareidentified.Asaresult,uptodatedataisusedforthelong-termestimationofkeypa-rametersforthetimeperiods2020to2050in10-yearsteps,basedonadaptedlearningrates.3.LiteraturereviewThefirstapplicationofcapturingCO2fromambientairwasintroducedinthe1930sincryogenicairseparationplantsandlateritfounditsapplicationinlifesupportsystemsofmannedclosedsystemssuchasspacestationsandsubmarines(Houseetal.,2011).Thefirstsystemsdatedbackto1965werenotregeneratable(Isobeetal.,2016).Whereas,modernspaceshuttlesareallequippedwithregeneratableCarbonDioxideRemovalAssembly(CDRA)thathelpstomaintainhabitableenvironmentforcrewmembers(NASA,2006).DuetoultradiluteconcentrationofCO2intheatmosphere,chemicalsorbentswithstrongbindingcharacteristicsbecamewidelydiscussedinliterature.AnaqueoussolutionofstrongbasesisusedinconventionalPSCCtechnologiesandmanyresearchershaveinvestigateditsapplicabilitytoDAC.Keithetal.(2006)ana-lysedphysicalandeconomiclimitsofBECCSandaqueoussolution-basedDACandconcludedthesecondoptiontobefeasibleinthenearterm.However,high-grade(900C)heatdemandofaqueoussolution-basedDACcouldlimittheoptionsforheatsourceandincreasethecosts.Baciocchietal.(2006)triedtooptimisethesystembasedonthesamechemicalsolutionandappliedtwodifferentcalciumcarbonateprecipitators.Zeman(2007)wasoneofthefirstwhoproposedthesameapproachonanindustrialscale.Inaddition,hehasbenchmarkedthesystemwithtwopreviousstudiesonthermodynamiclevels.Stolaroffetal.(2008)discussedoptimisationofenergydemandandpossiblereductionoffinalcostsbyimprovingthecontactorpart.TheextensivereportofAmericanPhysicalSociety(APS)bySocolowetal.(2011)comparedpost-combustionCO2capturemethodstoDACsystemsbasedontheworkofBaciocchietal.(2006).Zeman(2014)investigatedtheAPSreportandproposedareductioninfinalcostsofavoidedCO2byusinglow-carbonelectricityandminimisingplasticpackingmaterialsofthecontactorpart.Lietal.(2015)investigatedtheoptimaloperationofthesystemproposedintheearlyworkofZeman(2007)byusingwindpowerandbatteryastheenergyin-puts.Alltheabovementionedworksapplieddifferentapproachestoimprovetheperformanceofaqueousalkalinesolution,inparticularsodiumhydroxide;whereas,Nikulshinaetal.(2009)presentedasingle-cyclesystemcarryingoutcontinuousremovalofCO2viaserialCaO-carbonationathighertemperatures(ofabout365e400C)andCaCO3-calcinationat800e876C,poweredbyconcentratedsolarpower(CSP).MahmoudkhaniandKeith(2009)suggestedanovelapproachtoavoidcalciumcarbonateintheloop,byusingSodiumTri-Titanate.Thetechniquerequires50%lesshigh-gradeheatthanconventionalcausticisationandthemaximumtemperaturerequiredisreducedbyatleast50K,from900Cto850C.HolmesandKeith(2012)andHolmesetal.(2013)suggestedpotassiumhydroxide(KOH)asanon-toxicsolutionanddiscussedtheresultsoflaboratory-scaleandprototypetestsofimprovedcontactorparts.Keithetal.(2018)providedadetailedtechno-economicanalysisofa1MtCO2/adesignbasedonarealpilotplantforthefirsttime.Anothermajorgroupofscientificpublicationsarefocusedonsystemsbasedonadsorptionprocess.Temperatureswingadsorp-tion(TSA)isthemainDACmethodinthiscategory,describedbyKulkarniandSholl(2012)andSinhaetal.(2017).Unliketypicalaqueoussolution-basedsystems,theregenerationinsolidsorbentDAChappensatrelativelylowertemperatures(80e100C),whichischeapertoproduceorcouldbeavailableaswasteheatfromsomeindustrialplants,suchascombinedheatandpowerplants,powerplantswithcoolingtower,pulpandpapermills,steelorglassmakingplants,orwasteheatfromexothermicsyntheticfuelsproductionprocesses.Choietal.(2011a;2012)examinedmodifiedsorbentswithhigherCO2uptakecapacityandhigherstabilityindryconditions.Roestenberg(2015)introducedaLTDACdesignbasedonnon-aminesorbentandseparateadsorptionanddesorptionunitsforincreasingtheplant'sutilisationrate,evalu-atedcostsofsmall-scaleandlarge-scalesystemsandconsideredheatsupplyfrommethanolsynthesisplantcoupledtotheDACunit.Derevschikovetal.(2014)suggestedusingcompositesolidsorbentforDACandusingrenewableenergy(RE)toproducemethaneonsite.Pingetal.(2018a)introducedasystemwithfullcycleoflessthan30min.Moistureswingadsorption(MSA)istheothermethodinthiscategoryinwhichtheregenerationhappensbymoisturisingofCO2-richsorbent.Lackner(2009)examinedthepossibilityofMSACO2captureonamine-basedion-exchangeresinatlowtem-peratures(45C).Later,Goldbergetal.(2013)studiedthecombi-nationofthissystemwithwindenergyandoffshoregeologicalstorage.RadicalmethodshavebeensuggestedforDACbysomere-searchers.Eisamanetal.(2009)examinedelectrochemicalCO2capture.Freitas(2015)suggestedtheuseofnanofactory-basedmolecularfiltersandclaimedthatthesemethodsareabletobringthefinalcapturecostsdownto13.7V/tCO2(18.3USD/tCO2).Seippetal.(2017)introducedarathernovelapproachbasedoncrystallisationofCO2moleculeswithaguanidinesorbentwithlowtemperaturerequirementsof80e120C.Despitepromisingpre-liminaryresults,deeperinvestigationsandpossiblepilotplantsareneededforabetterevaluationoftheseapproaches.Inaddition,severalpapershavepresentedanoverviewofavailabletechnologies.Simonetal.(2011)analysedLCODofagenericDACbasedoncapturedevices,energysupplies,footprint,wateruseandsequestrationcosts.Goeppertetal.(2012)discussedcapturingCO2frompointsources,raisedthequestionastowhyDACisneeded,summarisedanddiscussedallavailabletechnolo-giesonatechnicallevelandlistedactivecompanies.ItisconcludedthatDACisindispensableforstabilisingclimatechange.Inaddition,itpointsoutthateventhoughCO2concentrationintheatmosphereisabout250e300timeslessthanconcentratedsources,thetheo-reticalenergydemandbyDACisonly2e4timeshigher.However,thevastrangeofprojectedoverallcostsofCO2DACcanbecomecleareronlyaftertheconstructionofpilotplants.ThedetailednumericalanalysesbyWilcoxetal.(2017)confirmthecomparisononminimumworkofcarboncapturefromatmosphericandconcentratedsourcesbyGoeppertetal.(2012),however,theyshowM.Fasihietal./JournalofCleanerProduction224(2019)957e980959thattheratiooftherealworkdemandofcarboncapturefromat-mospheretoconcentratedsourcescouldbehigher.Ontheotherhand,itindicatesthateventhoughtheminimumworkofsepara-tionformambientairslightlyincreasesbyaimingforhigherCO2capturerates,therealworkdemandsignificantlydecreasesathighercapturerates.Broehmetal.(2015)dividedallavailabletechnologiesintothreegroups(aqueoussolutionsofstrongbases,amineadsorptionsandinorganicsolidsorbents),comparedthembasedoncriticalcriteriasuchasenergydemandandeconomicestimation,addressedlimitingfactorssuchaslandandpotentiallocationoptions,associatedemissionsandwaterlosses.Inordertoprovidemoredetailsofthetechnology,Broehmetal.(2015)closelyanalysedtwocasestudies,onebasedonSocolowetal.(2011)technologyandtheotherbasedontheresultsachievedinprivatecommercialcompanies.HepointedoutthatsuccessofDACdoesnotonlydependonthetechnicalandeconomicperformance,butalsodependsonexternalfactorssuchasmarketdemandforCO2,developmentofsyntheticfuelsandsupportingtechnologiessuchasstorage.AbroadcomparisonofalltechniquescapturingCO2fromambientairwasdonebyWilliamson(2016),wherestrengthsandlimitationsofallpossibleapplicationswerepointedout.SeveralcompaniesareactiveinthefieldofCO2DAC,whichareshowninFig.1.CarbonEngineering,establishedin2009byKeithinSquamish,Canada(CarbonEngineering,2018a),istheonlydetec-tedcompanyactiveinhightemperature(HT)aqueoussolution-basedDAC.ThecompanyispartlyfundedbyBillGates(CarbonEngineering,2018a).The1tCO2/daydemonstrationplantwasintroducedinOctober2015andthecurrentgoalofthecompanyistoestablishbroadcommercialdeploymentofsyntheticfuelspro-ductionbasedontheirDACtechnology(CarbonEngineering,2018b).Atalargescale,thecompanyexpectstoachievecostsof75e113V/tCO2captured,purified,andcompressedto150bar(CarbonEngineering,2018c).Climeworks,foundedbyGebaldandWurzbacherin2009inZurich,Switzerland(Climeworks,2018a),isthemostwell-knownlowtemperature(LT)solidsorbent-basedDACcompany.In2014,inapartnershipwithAudiandSunfire,thecompanylaunchedapilotplantinDresdenthatcaptures80%ofCO2moleculesfromairpassingthroughthesystemandconvertsthemintosyntheticdiesel(Audi,2015).In2017,thecompanycommissionedanothercommercialscaleDACplantinSwitzerlandthatprovidesCO2foranearby-locatedgreenhouse.Inthesameyear,anotherDACunithasbeeninstalledinIcelandtopermanentlyfixaircapturedCO2inamineralisationprocess700munderground(Climeworks,2017).Thisistheworld'sfirstdirectaircarboncap-tureandstorage(DACCS)systemcoupledtoenhancedweathering,whichmayevolvetobeamajorNEToption(Fussetal.,2018;Minxetal.,2018).Thecompanyistargetingproductioncostsofabout75V/tCO2forlarge-scaleplants(Climeworks,2018b).GlobalThermo-stat,formedin2010byEisenbergerinNewYork,USA,istheotherLTDACcompany,withitsmultifunctionaltechnologycapableofcapturingCO2fromboththeatmosphereaswellaspointsourceemissions(GlobalThermostat,2018a).Majortechnologicalknow-how,particularlyinthefieldofcatalystsislicensedfromGeorgiaInstituteofTechnology(GlobalThermostat,2018b;Sanz-Perezetal.,2016).Thecompanyalreadyhaspilotandcommercialdemonstartionplantsoperatingsince2010atSRIInternationalinMenloPark,California(Pingetal.,2018a).Themodularunitscanutilisewasteheatat85e95CforCO2regenerationandhaveacapacityof40000tCO2/a.ThecompanyhasannouncedambitiousplanstodeliverCO2atacostof11e38V/tCO2(Kintisch,2014).Antecy,foundedin2010byO'ConnorinHoevelaken,Netherlands,istheotherEuropeanLTDACcompany(Antecy,2018)thatrequiresmoderatetemperaturesof80e100CforCO2regeneration.Afterlaboratorytestsandcompletingcommercial-scaledesigns,incooperationwithShell,thecompanyisreadyfortheimple-mentationofapilotplant(Roestenberg,2015).OyHydrocellLtdisaFinnishcompanyfoundedin1993thathasprovidedaDACsystemtoVTTTechnicalResearchCenterofFinland(Hydrocell,2018;Elfvingetal.,2017).The1.387tCO2/asystemispackedinastandardshippingcontainerandisfullyportable.Byusingtemperaturevacuumswingadsorption(TVSA),at70e80C,ithasthelowestregenerationtemperatureamongdetectedtechnologies,whichwidenstheoptionsforapplicablewasteheatsources(Bajamundi,2015;Bajamundietal.,2018).OtherDACcompaniesareSkytreeandInfinitree,howevertheirdisclosedinformationisverylimited.Skytree,foundedin2008andlocatedinAmsterdam,Netherlands,commercialisesaCO2capturingtechnologybasedonelectrostaticabsorptionandmoisturisingdesorption,asaspin-offoftheEuro-peanSpaceAgency(Ishimotoetal.,2017;Skytree,2018).Infinitree,foundedin2014andlocatedinHuntington,NewYork,utilisesanionexchangesorbentmaterialinamoistureswingprocess(Infinitree,2018).EarlynichemarketsforSkytreeandInfinitreeareurbanfarmingprojectsforwhichtheyprovideCO2forfastergrowthofplants.4.Results4.1.DescriptionoftechnologiesBasicaircapturemodelsconsistofcontactingarea,solventorsorbentandregenerationmodule.Contactingareaexposessorbenttoambientairandfacilitatesairflowthroughthemodel,increasingFig.1.CompaniesactiveinthefieldofCO2DAC.Abbreviations:hightemperature,HT,lowtemperature,LT,moistureswingadsorption,MSA,temperatureswingadsorption,TSA.M.Fasihietal./JournalofCleanerProduction224(2019)957e980960theabsorptionoradsorptionofCO2molecules.Solventorsorbentmustbeeasytohandle,resistanttocontaminationandshouldnotvanishduringtheprocess,asitspropertiesdeterminethewholeprocess.ThemainDACsystemsaredescribedbelow.4.1.1.Hightemperature(HT)aqueoussolutionAqueoussolutionconsistsoftwocyclesthatcanhappensimultaneously.ThebasicexampleoftheapproachisillustratedinFig.2.Inthefirstcycle,knownasabsorption,ambientairisbroughtintocontactwithsprayedsodiumhydroxide(NaOH)asthesolventintheabsorptioncolumn,withtheaidoffansornaturalairflow.CO2moleculesreactwithNaOHandformasolu-tionofsodiumcarbonate(Na2CO3)(Eq.(5)).Theabsorptionhap-pensatroomtemperatureandambientpressure.ThissolutionistransportedtotheregenerationcycleandCO2depletedairleavesthecolumn.Inthesecondcycle,knownasregeneration,Na2CO3ismixedwithcalciumhydroxide(Ca(OH)2)inthecausticiserunit,wheresolidcalciumcarbonate(CaCO3)isformedandNaOHisregenerated(Eq.(6)).NaOHissentbacktothecontactorandreadytostartanotherabsorptioncycle.Meanwhile,inthemostenergyintensivestep,CaCO3isheateduptoaround900Cinthekiln(calcinerunit)toreleaseCO2.AsshowninTable1,accordingtoliteratureandbasedonthelevelofheatintegration,theoverallheatdemandisintherangeof1420e2250kWhthpertonCO2.Theoutputsofthisreactionarecalciumoxide(CaO)andapurestreamofCO2(Eq.(7)).CO2iscollectedandCaOismixedwithwaterintheslakerunitforCa(OH)2regeneration(Eq.(8)).contactor2NaOHþCO2/Na2CO3þH2O(5)causticiserNa2CO3þCaðOHÞ2/2NaOHþCaCO3(6)calcinerCaCO3þheat/CaOþCO2(7)slakerCaOþH2O/CaðOHÞ2(8)Besidesheat,thesystemalsoneedselectricalpowerforblowingairthroughthecontactor,sprayingtheaqueousandmovingsolu-tionsfromoneunittoanother.Inliterature,thiselectricalpowerispresentedtobeintherangeof366e764kWhelpertonCO2(Table1).ThisalsoincludestheenergydemandforCO2compression,tothementionedpressuresasinTable1,priortotransportorstorage.AscanbeseeninTable1,inearlierliterature,naturalgashasbeenmainlysuggestedforthesupplyofhigh-gradeheatdemand.However,thiswouldnotbeasustainablesolution.Providing2000kWhthhigh-gradeheatbyoxy-fuelcombustionofnaturalgaswith90%efficiencyforcapturing1tonofatmosphericCO2,wouldrelease0.44tonofdirectnaturalgasbasedCO2emissions,withouttakingintoaccountitslifecycleemissions.OneofCarbonEngineering(2018c)DACtechnologiesfullypoweredbynaturalgaswouldrelease0.5tonofCO2pertonofatmosphericCO2captured.EventhoughthisCO2canbecapturedandutilisedasfeedstockforotherpurposes,itwillfinallyendupintheatmo-sphereaftersomecyclesofutilisation.Inaddition,thisimpactwoulddramaticallyincreasethecostofthenet-capturedCO2,asthereportedcostsinliteraturearemainlybasedonatmosphericortotalcapturedCO2.Theuseofcarbon-neutralrenewablesyntheticnaturalgas(RE-SNG)mightbeasolutiontothisproblem.However,evenwitha100%closedcycleofSNG-basedCO2andnoextraen-ergydemandforCO2recycling,convertingthat0.5tonoffuel-basedCO2tosyntheticnaturalgas(SNG)wouldneedabout4400kWhelforgenerationoftherequiredhydrogen,utilising2030electrolysertechnology(Fasihietal.,2017a).ThisisahugeincreaseinprimaryenergydemandandproductioncostsduetothehighcostsofSNGproduction.Thus,asustainableandaffordablesystemshouldbefullyelectrified,whichhasbeendiscussedinrelativelynewerstudies.ContentoftheCarbonEngineeringwebsite(2018c)inMarch2018includedafullyelectrifiedsystemwithatotalof1500kWheldemandforbothpowerandheating,inordertodeliver1tonofatmosphericCO2at150bar.Thus,afullyelectrifiedHTDACispracticallypossibleandhasbeenchosenasthefinalmodelforaqueoussolutiontechnologyinourstudy.Inourstudy,tohaveacommongroundforcomparisonbetweendifferenttechnologies,theCO2compressionstepisavoided.ThelatestpublicationfromtheCarbonEngineeringgroup(Keithetal.,2018)showssomeimprovementintotalenergydemandandpresents3differentscenarios.Inthefirstscenario,alltheheatandpowerdemandisprovidedbynaturalgasoxy-fuelcombustion,gasturbineandsteamturbine.Inthesecondscenario,gasturbinehasbeenremovedandtherespectivepowerissuppliedfromthegrid.Thisalsodecreasestheratiooffuel-based/atmosphericcapturedCO2from0.48to0.3,whichresultsindownsizingofseveralprocessFig.2.ExampleofCO2directaircapturebasedonaqueoussolutionofsodiumhydroxide(NaOH)andpotassiumhydroxide(KOH)asanalternative.ReproducedandmodifiedbasedonaprocessdiagrambyKeithetal.(2018).M.Fasihietal./JournalofCleanerProduction224(2019)957e980961unitsaswell.Forbothscenarios,allthecapturedCO2iscompressedto150bar.Inathirdscenario,heatingisstilldonebynaturalgascombustion,whileCO2isnotcompressedanditisassumedthatO2isavailableforfree,thuspowerdemandandcostsofCO2compressorandairseparationunithavebeenavoided.Thefuelandelectricitydemandinallthe3scenariosarepresentedinTable1.Inafullyelectrifiedsystem,thetotalcapturedCO2wouldbeloweredtothelevelofatmosphericCO2captured.Thiswoulddecreasethesizeandenergydemandofseveralparts.Theexactelectricityde-mandofafullyelectrifiedmodelcouldbecalculatedviathesamesimulationsoftware.Inaconservativeapproach,assumingthesameenergydemandasthethirdscenariowouldresultin1535kWhel/tCO2forafullyelectrifiedsystembasedontheCarbonEn-gineeringtechnology.Inthistechnology,NaOHhasbeenalsosubstitutedbypotassiumhydroxide(KOH)(CarbonEngineering,2018c;Keithetal.,2018).4.1.2.Lowtemperature(LT)solidsorbentMainly,technologiesinthisgrouphaveasingleunitwithsolidsorbent,whereadsorptionanddesorption(regeneration)happenoneafteranother.AsillustratedinFig.3,inthefirststepthesystemisopen,ambientairgoesthroughnaturallyorwiththehelpoffans.Atambienttemperature,CO2chemicallybindstothefilterandCO2depletedairleavesthesystem.ThisstepiscompletedwhenthesorbentisfullysaturatedwithCO2.Inthenextstep,thefansareswitchedoff,theinletvalveisclosedandtheremainingairisoptionallysweptoutthroughapressuredropbyvacuumingorinsertingsteamintothesystem.Then,regenerationhappensbyheatingthesystemtoacertaintem-perature,dependingonthesorbent.ReleasedCO2iscollectedandtransportedoutofthesystemforpurification,compressionorutilisation.Inordertostartanothercycle,thesystemshouldbecooleddowntoambientconditions.Thesorbentdeterminesthespecificconditionsofthecycles.Severaldifferentsorbentswereproposedinliterature,whichhavebeendescribedsubsequently.AminesareknownfortheirselectiveabilitytoabsorbCO2moleculesfromdilutedconcentrations.Climeworksusesafiltermadeofspecialcellulosefiberthatissupportedbyaminesinasolidform,whichbindsCO2moleculesalongwithairmoisture,thustheplantprovidesenoughwaterforitsownuse(Climeworks,2018b;Vogel,2017).InordertoreleaseCO2,pressureisreducedandthesystemisheatedto100C.Thesystemrequires200e300kWhel/tCO2mainlyforthefansandcontrolsystems.Italsoneeds1500e2000kWhth/tCO2forregeneration,whichcanbesuppliedbylow-gradeorwasteheat,asdemonstratedintherecentrespectivepilotplant(Climeworks,2018b).Afullcycleofthesystemtakes4e6hwithanoutputof99.9%purestreamofCO2.GlobalThermostat'sproprietaryamino-polymeradsorbentde-creasesthesystem'sfullcycletimetowellbelow30min,wheretheregenerationoccursinlessthan100sattemperaturesof85e95C.Toachievesuchafastprocess,saturatedsteamatsub-atmosphericpressureisusedasadirectheattransferfluidandasasweepgas.50%oftheregenerationheatisrecoveredanddependingontheplant'ssize,locationanddesiredCO2purity(>98.5%),theoverallFig.3.ExampleofalowtemperaturesolutionDACsystem.(1)Conditional(dependsonthesystem).Table1HTaqueoussolutionDACspecifications.type1stcyclesorbent2ndcyclesorbentCO2con.absorptiondesorptionenergydemandoutletpressureCO2purityreferenceppmT(C)T(C)kWhel/tkWhth/tbybar%2-cycleNaOHCa(OH)2-ambient900--NG100-Keithetal.(2006)NaOHCa(OH)2500ambient9004401678NG58-Baciocchietal.(2006)NaOHCa(OH)2380ambient9007641420NG/coal--Zeman(2007)NaOHCa(OH)2--9001199-2461el,tha---Stolaroffetal.(2008)NaOHCa(OH)2500-9004942250NG100-Socolowetal.(2011)NaOHCa(OH)2-ambient9002790-wind+batteryb--Lietal.(2015)cKOHCa(OH)2--900-2780NGd150-CarbonEngineering(2018c)KOHCa(OH)2--9001500-el.150-KOHCa(OH)2400ambient900-2450NG15097.1Keithetal.(2018)(CarbonEngineering)KOHCa(OH)2400ambient9003661458NG+el.15097.1KOHCa(OH)2400ambient90077e1458NG+el.197.1NaOHNa2O.3TiO2-ambient850-f-15gpureMahmoudkhaniandKeith(2009)1-cycle-CaO500365-400800-875--CSP-99.9Nikulshinaetal.(2009)2-cycleKOHCa(OH)2400ambient9001535-el.1>97finalmodel(thisstudy)aBasedondifferentcontactorsbBasedonZeman(2007),withoutheatrecycling.cTheheatgenerationmethodnotavailable.dHeatandelectricitygenerationrationotavailable.eAirseparationunitandCO2compressorexcluded.f50%lesshigh-gradeheatthanconventionalcausticisation.gCO2separationat15barandthencompressionto100bar.M.Fasihietal./JournalofCleanerProduction224(2019)957e980962electricityandheatdemandare150e260kWhel/tCO2and1170e1410kWhth/tCO2,respectively(Pingetal.,2018a).ThesystemproposedbyKulkarniandSholl(2012)isdifferentinthewaythatdesorptionofthesorbentsilica(TRI-PE-MCM-41)occurs,bytheintroductionofsteamat110C.Theoutputofthissystemis88%CO2and12%N2andwatertogether.Sinhaetal.(2017)hasstudiedthesametemperatureswingsystemandanalysedtwoamino-modifiedmetalorganicframeworks(MOF),MIL-101(Cr)-PEI-800andmmen-Mg2(dobpdc).Thissystemhasthesamecy-cles,butduetohighpossibilitiesofMOFsoxidisationathighertemperatures,vacuumisnecessarybeforeheating.Coolingisach-ievedbywaterevaporationfromthesurface.HeconcludesthatamongtwoMOFoptions,theonebasedonmagnesium(Mg)ismorefavourableduetolowerelectricityandheatdemand,whichis997kWh/tCO2(Sinhaetal.,2017).InAntecy'ssystem,CO2isadsorbedbycompositesorbentbasedonpotassiumcarbonate(K2CO3)atambientconditions.Beforeregeneration,airneedstobeevacuatedbywater,thenpressureisreducedandthesorbentisheatedupto80e100Cbylow-gradeheat(Roestenberg,2015).Thisslightlylowerregener-ationtemperatureincomparisontoClimworksisachievedbyduetothemoisture-aidedprocess.Derevschikovetal.(2014)intro-ducedaDACsystembasedonK2CO3/Y2O3sorbentpoweredbywindenergythatregeneratesattemperaturesof150e250C.Thesorbentisrathersensitivetohightemperaturesandcanbeeasilydestroyed.Table2summarisesthemaintechnicalcharacteristicsgatheredfromliterature.AlthoughAntecyclaimstobenefitfrombothcheapermaterialandlowerenergydemandthanotherDACtech-nologies(Antecy,2018),thereportedenergydemandofClime-worksappearstobelower,followedbyanevenlowerenergydemandbyGlobalThermostat(Pingetal.,2018a).Thus,asameanvalue,Climeworks'averageenergydemandhasbeenselectedastheenergydemandfortheLTDACtechnologyinthisstudy.AimingforagenericLTDACsystemfromanenergysystemperspective,nofinalsorbenthasbeenselected.Inaconservativeapproach,adesorptiontemperatureof100Chasbeenchosen,asthehighestrequiredtemperaturebyreviewedLTDACcompanies.Thecom-parisonsofchosenelectricity,heatanddesorptiontemperaturevaluestotheavailablerangeofdatahavebeenvisualisedinFig.4.Antecy'sCO2purityisunknowntotheauthors,howeverAntecy'splanforsyntheticfuelsproductioncouldonlybeachievedwithaCO2purityofabout99%.Thus,aCO2purityofmorethan99%hasbeenassumedforthefinalmodelasanaverageofCO2purityfromClimeworks,GlobalThermostatandAntecy.4.1.3.OthertechnologiesInadditiontothedescribedmajormodels,newapproacheshaveTable2LTsolidsorbentDACspecifications.sorbentCO2con.adsorptiondesorptionenergydemandcoolingCO2purityreferenceppmT(C)T(C)P(bar)kWhel/tkWhth/tbyT(C)by%amine-based400ambient1000.2200e3001500e2000wasteheat15air/water99.9Climeworks(2018b);Vogel(2017)amino-polymer400ambient85e950.5e0.9150e2601170e1410steamambientwaterevaporation>98.5Pingetal.(2018b)(GlobalThermostat)TRI-PE-MCM-41400ambient1101.42181656steamee88KulkarniandSholl(2012)MOF(Cr)400ambient135e48011420HTsteameeeSinhaetal.(2017)MOF(MG)400ambient135e4801997HTsteameeeK2CO3/Y2O3400ambient150e250eeeel.heatereeeDerevschikovetal.(2014)K2CO3eambient80e100e6942083wasteheatambientairfloweRoestenberg(2015);Antecy(2018)-400ambient100e2501750heatpump/wasteheatee>99finalmodel(thisstudy)Fig.4.Thecomparisonsofelectricity,heatanddesorptiontemperaturevaluesofthefinalLTDACmodelin2020totheavailabledata.M.Fasihietal./JournalofCleanerProduction224(2019)957e980963beensuggestedinliterature.Duetolackofpubliclyavailabletechnicalandfinancialinformationorpilot-scaleimplementationofthesetechnologies,theyhavenotbeenfurtherdiscussedinthispaper.ElectrochemicalCO2captureandmodifiedfuelcellapproachesatambienttemperatureweresuggestedbyEisamanetal.(2009).However,nocostassumptionshavebeenpresented.Ion-exchangeresincancaptureCO2byMSAapproach.Thinresinsheetsareexposedtoambientairtofacilitatefreeflowoftheairthroughthematerial.Whenloadingisfinished,thesheetsaremovedtoaclosedsystem.Insidethesystem,airisremovedandmoistureisadded.TheresinreleasesCO2bycontactingwithwater.CO2iscollected,driedandcanbecompressedifneeded.Aftergasisremoved,thesystemisheatedupto45Ctospeedupthedryingprocess(Lackner,2009;Goldbergetal.,2013).Lackner(2009)claimsthatthesystemwithnaturalairflowwouldonlyrequireelectricalenergyintheamountof316kWhel/tCO2,includingcompressionforliquefaction,butusingfanwilladd10kWhel/tCO2.Thesystemutilisesheatreleasedfromcompressionaswell.Goldbergetal.(2013)hasproposedacomplexDACsystemwhereCO2,afterbeingcaptured,iscooleduntilitprecipitatesasdryiceandafterwarming,itturnsintoapressurisedliquidforseques-tration.Thissystemispoweredbywindenergyandrequires423kWhel/tCO2,excludingfreezingand631kWhel/tCO2includingit.Asmentionedinsection3,MSAtechnologyisalsousedbythecom-paniesInfinitreeandSkytree.Freitas(2015)hasproposedaconceptualdesignofnanofactorybasedmolecularfiltersthatareabletocaptureCO2fromtheairpoweredbysolarenergy.Thesystemrequiresonly333kWhel/tCO2ofelectricityanddeliverspureCO2streamatapressureof100barwiththefinalproductioncostofabout14V/tCO2.Ifthisapproachmakesitatacommercial-scale,itcouldbearevolutionforDACtechnologies.Seippetal.(2017)hassuggestedanewtwo-cycleapproachbasedonNa2CO3andPyBIG(2.6-Pyridine-bis(iminoguanidine)).Inthismethod,regenerationcanhappenattemperaturesof80e120C,avoidinghigh-gradeheatdemandbyconventionalaqueoussolution-basedDACplants.Itisclaimedthatthiscrystallisationapproachcouldoffertheprospectsforlow-costDACtechnologies,however,nofinancialdatahasbeenprovided.Availabletechnicalparametersfromliteratureforthetechnol-ogiesinthisgrouparepresentedinTable3.4.2.EconomicsofCO2DACMostarticlesregardingDACarefocusedontechnicalparametersandonlyafewhaveconductedeconomicestimations.AllreviewedeconomicspecificationsandtherecalculatedcostsaresummarisedinTable4.ThefirstoriginallyreportedcostsassociatedwithHTaqueoussolutionDACreviewedinthisstudywas376V/tCO2byKeithetal.(2006).LaterHolmesandKeith(2012)changedthecontactdesignofthepreviousmodelfundamentally,whichreducedthecostto258V/tCO2.Socolowetal.(2011)presentabenchmarkDACsystemwithrelativelymoredetailsforbothenergybalanceandeconomicaspects.Consideringtheequipmentinvestmentcosts,thestudyintroducesanoptimisticandrealisticscenario.Fortheoptimisticscenario,aninstallationmultiplyingfactorof4.5(sameasPSCC)isusedtoconvertequipment'spurchasepricetothetotalplant'sinstallationcost.ConsideringthenoveltyofDACtechnology,aninstallationmultiplyingfactorof6hasbeenusedfortheinstallationcostofthesystemintherealisticscenario.ThishasincreasedthetotalreportedcostsofcapturedCO2from309to395V/tCO2.ThebenchmarksystemdescribedbySocolowetal.(2011)wasfurtherinvestigatedbyMazzottietal.(2013),wherenewpackingmaterialsweresuggestedfortheoptimisationofaircon-tactingunitandthefinalestimatedcostswerereducedto283e300V/tCO2,dependingonthecostsandtheenergyconsumptionofthethreedifferentproposedpackingmaterials.Zeman(2014)alsomodifiedandrecalculatedthecostsandenergydemandoftheSocolowetal.(2011)modelandconcludedthattheequipmentinvestmentcostscouldbeloweredby2.4%andtheannualopexcouldbereducedfrom4%to3%.Keithetal.(2018)fromCarbonEngineeringprovidedthetechno-economicassessmentsoftheirHTDACsystems,wherebothcapexandfinalcostsoftheHTDACsystemshavebeensignificantlyloweredincomparisontoAmer-icanPhysicalSocietymodel(Socolowetal.,2011),throughanewdesignandchoiceofmaterial.CarbonEngineeringhasalsoprac-ticallyachievedaCO2capturerateof74.5%,incomparisonto50%capturerateintheAPSmodel.Forthebaseconfiguration(poweredbynaturalgasandoutletCO2at150bar),itprovidesthecapexofthefirstplantat1132V/tCO2(1146USD/tCO2)andtheNthplantisexpectedtobe31%cheaperat714V/tCO2$a,duetoimprovementofconstructabilityandbuiltsupplychainrelationships.Inaddition,thecapexoftheNthplantbasedonthesecondconfiguration(usinggridelectricityinsteadofgasturbine)andthethirdconfiguration(avoidingCO2compressionandassumingavailabilityoffreeO2)arereportedat625V/tCO2$aand549V/tCO2$a,respectively.TheCO2capturecostsofallconfigurations,basedon5.6%and11.7%WACC(7.5%and12.5%annuityfactor)and27e54V/MWhforgridelec-tricity,areprovidedinTable4.ThethirdconfigurationbyKeithetal.(2018)istheclosesttothedesiredfullyelectrifiedsystemexplainedinsection4.1.1.,withCO2atambientpressureinordertohaveacommongroundforcom-parisonwithLTsolidsorbentDACtechnology.Inaddition,suchasystemwouldnotneedO2duetosubstitutionofnaturalgaswithdirectelectrification.Moreover,anydirectfuel-basedCO2isavoi-dedinsuchasystem,whichcoulddownscalesomesubunitsandthecostsoffuelcombustionandheatingsystemcouldbepossiblyloweredaswell.Withaconservativeapproach,inourmodel,suchcostreductionshavenotbeenincludedandtheprojectcostshavebeenrecalculatedforthefirstplantratherthantheNthone,whichincreasesthecapexfrom549to815V/tCO2$a.TheannualopexhasTable3TechnicalspecificationsofotherDACtechnologies.sorbentCO2con.adsorptiondesorptionenergydemandcoolingCO2purityreferenceppmT(C)T(C)P(bar)kWhel/tkWhth/tbyT(C)by%ion-exchangeresin400ambient,driedresinbymoisturising-316-self-heating45drying-Lackner(2009)ion-exchangeresin400ambient,driedresinbymoisturising-423-631-windpower45drying-Goldbergetal.(2013)K2CO3a400-2510-1002209-----Eisamanetal.(2009)Na2CO3&PyBIG400-80-120-------Seippetal.(2017)Nanofactory-basedb400---333-solarpower--100Freitas(2015)aElectrodialysis-basedCO2capturesystem.bMolecularfilters.M.Fasihietal./JournalofCleanerProduction224(2019)957e980964beensetto3.7%,accordingly.Thelifetimein2020issetto25yearsaccordingtoKeithetal.(2018).TheeconomicdataofLTsystemsbasedonsolidsorbentsaremorelimited.Climeworkshasclaimedatargetcostoflessthan75V/tCO2forlarge-scaleplants(Climeworks,2018b);however,noelectricitypriceorfinancialassumptionhavebeenprovided.GlobalThermostatexpectsCO2capturingcostsbelow113V/tCO2(150USD/tCO2)fortheirfirstcommercial-scaleplant(Pingetal.,2018b),whileKintisch(2014)hasreportedatargetcostof11e38V/tCO2,dependingonthelifetimeofaminesurfaces.Thetimeorscaleforreachingthiscostlevelisunknowntotheauthors.AlthoughCli-meworksistheforerunnerincommercialisingofsolidsorbentDACtechnologies,Antecy'scapexestimationof730V/tCO2$aistheonlyvalidpublicdatafound,asexplainedinsection4.1.2.Inaconser-vativeapproach,thelowerreportedlifetimeofClimeworks(20years)and4%annualopexhavebeenassumedforthefinalLTDACmodelinthisstudy,for2020.Lackner(2009)hasproposedaverypromisingLCODof144V/tCO2formoistureswingtechnologyasoftoday,whichisduetorelativelylowercapexof421V/tCO2$a,amountofresinrequiredandassumedcostofelectricity.However,intheabsenceofapilotplant,ithasnotbeenconsideredforfurtheranalysisinthisstudy.Withaskepticalapproach,Houseetal.(2011)investigatedtheenergeticandcapitalcostsofexistingDACsystemsinanempiricalanalysis,andconcludedthatthefinalcostsofthesystemareunderestimatedandcouldbeatthelevelof750V/tCO2.Themainargumentisthatat500ppmCO2concentrationinambientair,theworkrequirementand,toalargerscale,thecapitalcostsofCO2DACwouldbemorethanthoseproposedinliterature.Inaddition,carbon-freeelectricitywithcostsof75e150V/MWhinaforesee-ablefuturehavebeenconsideredastheonlysourceofenergy.IthasbeenstatedthattheaircaptureofCO2wouldlikely,requiremorethermodynamicworkthanNOxremovalfromfluegasat500kJ/molNOx,equalto3156kWhel/tCO2.However,withanoperationalplant,CarbonEngineeringhasalreadyproventheseenergyde-mandandcapexassumptionstobetoohigh.Inaddition,withtheTable4EconomicsofDACasreportedandrecalculated.technologycapacitycapexopexlifetimeel.demandel.priceheat/fueldemandindicatedtimeofcostcostreportedcostrecalculatedtypeofsourceareferencetCO2/a€/tCO2$a%yearskWhel/t€/MWhelkWhth/tyear€/tCO2€/tCO2HTaqueoussolution280000--20---2005376-OKeithetal.(2006)1000000----60--258-OHolmesandKeith(2012)10000001583b4d204945322502011309b314OSocolowetal.(2011)10000002086c4d204945322502011395c3881000000----5318402013283-300e-OMazzottietal.(2013)----1500-0large-scale75-113f-OCarbonEngineering(2018c)10000001032k3.7250-24502018151,209j200OKeithetal.(2018)(CarbonEngineering)1000000714k,l3.8250-24502018114,153j1581000000625k,l3.72536627-5414602018110-112,137-147j1391000000549k,l3.8257727-541460201885-87,115-117j1151000000815k3.72515355002020-186finalmodel(thisstudy)LTsolidsorbent36001220-25694-20832015-244,203gORoestenberg(2015)(Antecy)360000730-25694-20832015-177,135g----150-260-1170-1410firstplant<113-OKintisch(2014);Pingetal.(2018a;2018b)(GlobalThermostat)----150-260-1170-1410n/a11-38-300--20200-300-1500-20002014--OClimeworks(2018b)-------large-scale75-360000730420250-17502020-155,120g-finalmodel(thisstudy)moistureswingsolidsorbent365421-1030638-200914499OLackner(2009)-41-----long-term23-generic4004701.530-low-2011900h-OSimonetal.(2011)4009402.530-medium-mid-term220h-40023503.530-high-long-term75h-----315675-150-2011750-RHouseetal.(2011)----315675-150-2050225-500000330450---202945-ONemetandBrandt(2012)500000330450---205023-500000330450---210014--------long-term30,71,105i-RBroehmetal.(2015)a(O)originalsourceand(R)reviewarticle.bOptimistic.cPessimistic.dAdditional2.88V/tCO2asopexvariable.eBasedondifferentpackingmaterial.fCompressedto150bar.gBasedonfreewasteheat.hWindpower,waterconsumptionandcarbonsequestrationcostincluded.iOptimistic,realisticandpessimisticassumptions.jWACC:5.6%,11.7%.kBasedonV/USDexchangeratein2016:1.11.lNthplant.M.Fasihietal./JournalofCleanerProduction224(2019)957e980965ongoingsharpdeclineinthecostsofrenewableelectricity(Lazard,2017;Liebreich,2017),theassumedLCOEistoohighaswell.Thecostsfromliteraturearenotcomparable,duetolackoftransparencywithtechnologydescriptions,differentoutputconditions(e.g.pressureandCO2purity)andcostassumptionsforinputenergy(heatandelectricity)orWACC.Thus,agenericstandardisedcostevaluationhasbeenperformedforthefinalmodels,basedonthefollowingassumptions:WACC7%,elec-tricitycostof50V/MWhel,low-temperatureheatcostof20V/MWhth(<100C),high-temperatureheatcostof25V/MWhth(900C)andFLhof8000h.Itisimportanttoemphasisethatsuchcostsarecomparablewithtoday'sNG-basedelectricityandheatgenerationsystems,whichinduceCO2emissions.Foratrulysustainablesystem,renewableenergyshouldbeapplied,whichhasbeenlaterstudiedinsection4.3.2.,fortheyears2020e2050.Incaseoflackofdata,alifetimeof30yearsandanopexof4%ofthecapexhavebeenassumed.Theserecalculatedcostsarepre-sentedinTable4.ThecostrecalculationwasonlypossibleforthesystemsofSocolowetal.(2011),Keithetal.(2018),Roestenberg(2015)andLackner(2009),asthecrucialdata,suchasinputenergyorcapexismissingfromtheothermodels'specifications.Accordingtotheresults,itcanbeseenthatthefinalcostsre-portedbySocolowetal.(2011)arerecalculatedto314e388V/tCO2,whichmatchesthereportedcosts.At200V/tCO2,therecalculatedcostofthebasescenarioofKeithetal.(2018)is36%cheaperthanAPS'soptimisticmodelat314V/tCO2.Despiteofhighercostassumptionsforelectricitythanhightemperatureheat,at186V/tCO2,therecalculatedLCODofthefinalHTDACmodel(fullyelectrified,1stplant,1baroutletpressure)islowerthanthebasescenarioofKeithetal.(2018),duetolowercapexandenergydemandofthesystem,consideringthereliefofavoidedairseparationunit,CO2compressionto150baranddownscalingoffuel-basedCO2handlingsubunits.TheLCODofthefinalLTDACmodelisslightlylowerthantherecalculatedcostsofAntecy'scommercial-sizemodel,whichisduetolowerenergydemandofClimeworkstechnology;however,Antecy'soriginallyreportedcostsareunknowntotheauthors.ThecostofLackner'ssystemisloweredfrom144V/tCO2to99V/tCO2.SuchadifferencecouldbepossiblyrelatedtoahigherrateofopexforMSAsystems.Intotal,therecalculatedLTDACsystemcostsarelowerthanHTDACsystem.Currently,DACisinanearlystageofdevelopment.However,itisassumedthatthemaintenancecostswillbereducedalongwithequipmentcapexduetomassproduction,alongwithloweren-ergyconsumptionduetotechnicaladvancesinthelongterm(Lackner,2009;Simonetal.,2011).Keithetal.(2006)consideredafactorofthree,astheaccuracyrangeforanyestimationofDACplants.Whilesuggesting376V/tCO2asanachievablecostwithtoday'stechnology,thisstudyexpectsacostdeclinetothesamerangeasconventionalmitigationtechnologies,duetoindepen-dencyandstrongereconomiesofscale.Socolowetal.(2011)emphasisedthesignificantamountofuncertainty,whichmakesithardtopredicttheperformanceofaplantcommissionedinthefuture.WhilethecurrentCO2DACcostsforLTsolidsorbenttech-nologiesareratherunrevealed,Climeworkshassetagoalof75V/tCO2forlarge-scaleplants(Climeworks,2018b).Inaddition,moistureswingsolidsorbentsarealsopredictedtodevelopsignificantly.Lackner(2009)expectsthatthesorbentmaterial(asthemostexpensivepartofthistechnology)willbeimprovedsignificantlywith10timeshighersurfaceareaanduptakeca-pacityperkgofsorbent.Thiswouldalsodecreasethevolumeofthefilterboxby10times,increasingCO2capturecapacitypervolumeofthedeviceaswell.Itisprojectedthatthis,togetherwiththeeconomiesofscaleanddecreaseinthecostsofothermaterials,woulddecreasethecapexfrom421to41V/tCO2$aandthefinalcostcouldbeloweredto23V/tCO2,takingintoaccountlow-costelectricityalongwithreductionofoperationalexpenditures.InordertoestimatepotentialcostsofDAC,Simonetal.(2011)conductedresearchwhereagenericDACtechnologywasexam-inedbasedonassumptionssuchaselectricity,heat,landandwateruse.ThestudyclaimsthatitispossibletocaptureCO2for220V/tCO2,however,itpointsoutthatsubstantialresearchintokineticsandthermodynamicsofcapturechemistryisneededtoproveit.Inadditiontothereferencescenario,basedonpessimistic(achievabletoday)andoptimisticscenarios,acostrangeof75V/tCO2tomorethan800V/tCO2havebeenprovided.Asmentionedintheprevioussection,Houseetal.(2011)skepticallypointedoutthatthecurrentcostsofCO2capturefromambientairhavebeenunderestimatedandcouldbearound750V/tCO2.However,thestudysuggeststhattechnologicalbreak-throughcandramaticallyimproveDACtechnology,whichcouldmakeitpossibletoreduceproductioncoststoamoderatelevelof225V/tCO2.Nevertheless,mostofthepapersagreeonthelongtermimprovementofDACtechnologies.ItwasconcludedbyBroehmetal.(2015)that,amongalldifferentapproaches,aqueoussolu-tionisthemostdevelopedDACsystemandhasshownsignificanttechnologicalimprovementoverthepastyearsandwillcontinuetofollowthepatternwhichinthelongtermwillbringcapitalandoperationalexpendituresdown.ForagenericDACsysteminthelongterm,Broehmetal.(2015)expectthecostsforcapturedCO2togodownto30,71and105V/tCO2foroptimistic,realistic,andpessimisticassumptions,respectively.ThesameopinionissharedbyNemetandBrandt(2012).Theyperformedasensitivityanalysisoftheappropriatetechno-economicenvironmentforDACimplementationonalargescale,estimatedcompetitivecostsofDACandtheeffectsitwillhaveonconventionaltypeofliquidfuels.TheypointedoutthataftercommercialisationofDAC,whichislikelyinthenearterm,thecostswillgodownrapidlyduetoeconomiesofscaleandlearningbydoing.Theyconsiderlearningratesof0.101forcapitalcosts,0.135forenergycostsand0.135foroperationalandmaintenancecostsfrompreviousresearchesperformedbyRubinetal.(2007)andvandenBroeketal.(2009),dedicatedtoPSCC(theclosesttechnol-ogytoDAC).NemetandBrandt(2012)concludethatundertheseassumptions,by2029,DACwillreachthefloorcostof45V/tCO2,withpossiblefurtherreductionto23V/tCO2and14V/tCO2in2050and2100respectively.Inaddition,NemetandBrandt(2012)suggestalifetimeof50yearsforagenericDACsystem,whichexceedsanyotherlifetimeassumptionsinliteratureby20years.4.3.EstimatesforDACdevelopmentintheperiod2020to20504.3.1.PotentialcumulativeDACcapacitydemandandthelearningcurveimpactoncapexThestandardlearningcurveapproachisappliedforestimatingtheDACcapexdevelopment,accordingtoCalderaandBreyer(2017),assummarisedinEquations(9-11)forthelog-linearlearningcurveconcept.Abbreviationsarecapitalexpenditures,capex,progressratio,PR,binaryexponentialexpressionoftheprogressration,b,learningrate,LR,appliedforthehistoriccumu-lativeproductionforspecificyears,prod:capexnew¼capexinitial,prodnewprodinitialÀb(9)M.Fasihietal./JournalofCleanerProduction224(2019)957e980966PR¼ð2ÞÀb(10)LR¼1ÀPR(11)ThreefundamentalinputdataarerequiredforestimatingfutureDACsystemcapex:(1)TheinitialcapexaretakenfromTable4;(2)ThehistoriccumulativeDACcapacitydemandisderivedinthefollowingmanner;(3)ThelearningratesforDACsystemsaredis-cussedbasedonrespectiveDACliteratureandexperiencefromcomparabletechnologies.Article2oftheParisAgreementsetsthetargetoflimitingglobaltemperatureincreasetowellbelow2Candpreferably1.5Cabovepre-industriallevels.InArticle4,reachinganetzeroGHGemissionsysteminthesecondhalfofthecenturyissuggestedasameansofachievingthetargetsofArticle2.However,scientistsreportthatwearealreadyontheedgeofexploitingthecarbonbudgetfor1.5CscenarioandnetnegativeGHGemissionsystemsarenecessarytoachievethetargetsoftheParisAgreement(Kriegleretal.,2017;Rogeljetal.,2018).InthefollowingitisassumedthatthetargetsoftheParisAgreementshallbeachievedbythemidofthiscentury.Weconsidera2050scenariowithhighratesofdirectRE-basedelec-trification,substitutionofremainingfossilfuelsdemandbyRE-basedsyntheticfuelsandchemicals,aswellasdirectcarbonremovalintheenergysystem.Assuch,theremainingCO2sources,demandsandsinksarepresentedaccordingtothelistedbulletpointsandtheequivalentDACcapacities,asthemainpotentialCO2suppliers,areestimated.SeawaterCO2extractionisnotconsideredduetoitsearlystageofdevelopment.TheannualDACcapacitydemands,assummarisedinTable5,areestimatedfortheperiod2020to2050,inthesectorspower(power-to-gas,waste-to-energy,sewageplants),transport(road,rail,marine,aviation),industry(chemicalindustry,pulpandpaper,cementmills,others)andinfuturesectorofCO2removal.Inthepowersector,carboncaptureandutilisation(CCU)isnotappliedtoSNG-basedgasturbinesduetotheirbalancingrolewithlowFLhinaRE-basedpowersystem.ThefossilenergybasedCCUislimitedtoalmostunavoidablelimestonerelatedCO2emissionsfromcementmills.Afossil-basedtransportandchemicalindustrycouldreducetheirrespectivesyntheticfuelsand,consequently,CO2demand.How-ever,approximatelythesameamountofCO2wouldadduptothedirectCO2removalsectiontokeepthesystem'sCO2atthesamelevel.Since,PSCCcannotbeappliedtotransportandmostremainingnon-energeticusesoffossilfuelsinchemicalindustry.Moreover,thiswouldcauseadditionalCO2emissionsfromfossil-basedhydrogenproduction(mainlysteammethanereforming)insteadofwaterelectrolysis.Theironandsteelsectorisnotlistedduetotheassumptionthattheleastcostpathwayforthisindustrywouldleadtohydrogen-baseddirectreductionofiron(H2-DRI)andlatertoelectricityreducediron,asdiscussedbyOttoetal.(2017)andFischedicketal.(2014).TheDACcapacitydemandisfor:power-to-gastakenfromBreyeretal.(2018)andRametal.(2017);waste-to-energynegativeduetoitsCCUpotentialandbasedonwasteresourcepotentialtakenfromBreyeretal.(2018)andRametal.(2017),aCCUimplementationrateassumedtogrowfrom2%(2025)to50%(2050),acarboncaptureefficiencyof87%(EC,2014)andaCO2contentinwastetobe0.37MtCO2/TWhth,waste(IPCC,2003);transportmodes'demandistakenfromBreyeretal.(2019a)forthesyntheticFischer-Tropsch-fueldemand,whereas,therela-tivemixofdieselandkerosenemaychangethroughoutthetransitionperiod,andaspecificCO2DACcapacitydemandof0.36MtCO2/aperTWhth,fuelfor8000FLhbasedonFasihietal.(2017a;2017b);chemicalindustrybasedonthechemicalindustry'senergyfeedstockandfinalprocessenergydemandgrowth,excludingelectricity,from10280TWhth(2015)to19200TWhth(IEA,2009;RembrandtandMatt,2016),ademandcoveragegrowthbynaphthaastheby-productofFischer-Tropschfuelsproduc-tionfrom2%(2030)to16%(2050)accordingtoBreyeretal.(2019a),anestimated80%energyshareofcarbon-basedchemicalsandaspecificCO2DACcapacitydemandof0.25MtCO2/aperTWhth,feedstockfor8000FLhbasedonFasihietal.(2017a)foranaverageofcarbon-basedfeedstockchemicals;pulpandpapernegativeduetoitsCCUpotentialandbasedonthe2015pulpproductionandextrapolatedtill2050withtheTable5GlobalannualCO2DAC(orequivalent)capacitydemandbysector.sectorunit2020203020402050powerpower-to-gasMtCO2/a37142363waste-to-energyMtCO2/a0À17À99À165sewageplantMtCO2/a0n/an/an/atransportroad(cars/bus/trucks)MtCO2/a021813091101railMtCO2/a076682marineMtCO2/a0569621667aviationMtCO2/a0549641543industrychemicalindustryMtCO2/a022411573255pulpandpaperMtCO2/a0À8À52À95cementmills(limestone)MtCO2/a0À69À425À607othersMtCO2/a0n/an/an/aCO2DAC,energysystemMtCO2/a3.047340257144CO2removalMtCO2,captured/a00100010000thereofotherNegativeEmissionTechnologiesMtCO2,captured/a003002500thereofCO2DAC,CO2removalMtCO2/a007678213CO2DAC,totalMtCO2/a3473479115356M.Fasihietal./JournalofCleanerProduction224(2019)957e980967compoundannualgrowthratebetween2000and2015takenfromKuparinenetal.(2018),aCCUimplementationrateassumedtogrowfrom2%(2025)to50%(2050),acarboncaptureefficiencyof87%(EC,2014);cementmillsnegativeduetoitsCCUpotentialandbasedoncementproductionestimatestakenfromFarfanetal.(2019),aCCUimplementationrateassumedtogrowfrom5%(2030)to50%(2050),anefficiencyincreaseofoverallcapturedCO2from60%(2030)to80%(2050);CO2removaldemandbasedonKriegleretal.(2017),butwithademandfor10GtCO2/aremovalfor2050insteadof2055forahigherlevelofsustainabilityandthereofa300and2500MtCO2/aremovalsharebyafforestationin2040and2050,respectively,andtheremainingforCO2DACsystemswith8000FLh.TheestimatedannualCO2DACcapacitydemandgrowsfrom3MtCO2/a(2020)toabout15360MtCO2/a(2050),thereofabout8200MtCO2/afromCO2removal(2050).TheestimatesofannualCO2DACcapacitydemandsinTable5andrespectiveDAClifetimesdefinethehistoriccumulativeCO2DACcapacitydemandsinTable6,whicharetakenasinputfortheDACcapexestimates,accordingtothelearningcurveapproachforaconservativeandabasecasescenario.ThetwoscenariosforDACcapexdevelopmentaredefinedasfollows:Theconservativescenarioassumesonly50%realisationofthecumulativeDACcapacitydemandduetodelayedexecutionoftheParisAgreementandaDAClearningrateof10%,asassumedbyNemetandBrandt(2012)andbasedonRubinetal.(2007),vandenBroeketal.(2009)andRubinetal.(2004).ThebasecasescenarioassumesaneffectiveexecutionoftheParisAgreementwithoutdelay,leadingtonetzeroGHGemis-sionsfromtheenergysystemandalreadystartedCO2removal.TheDAClearningrateisassumedtobe15%,whichmatchesbetterthetechnologyspecificcharacteristicsofCO2DACsys-temsthantheeffectivelyassumedsulphurremovalsystemsoflarge-scalecentralisedcoal-firedpowerplantsthatarethebasisfortheassumed10%learningrate(NemetandBrandt,2012;Rubinetal.,2007,2004).Highlymodularenergytechnologiesexhibitlearningratesaround15%,asdocumentedforwaterelectrolyserswith18%(Schmidtetal.,2017),seawaterreverseosmosisdesalinationwith15%(CalderaandBreyer,2017),lithium-ionbatterysystemswith12%e17%(Kittneretal.,2017;Schmidtetal.,2017),whicharefinallyaconsequenceofmorecomprehensiveinternationalproductstandardisationandsub-stantialeconomiesofscale.ResultsofthelearningcurveapproachforestimatingtheDACsystemcapexaresummarisedinTable6andvisualisedinFig.5.TheDACsystemcapexareassumedtobe730V/tCO2$a(LT)and815V/tCO2$a(HT)in2020(Table4).ThecapexcandeclineforLTDACsystemsto199V/tCO2$a(conservative)and84V/tCO2$a(basecase)andforHTDACsystemsto222V/tCO2$a(conservative)and93V/tCO2$a(basecase)in2050,respectively.TheconsideredinitialDACcapacityin2020(1.5MtCO2/a)usedincapexdevelopmentcalculationsarewellabovethereportedcapacitiesofreferenceunitsofLTDAC(0.36MtCO2/a)andHTDAC(1MtCO2/a),whichemphasisestheroomforfurthercapexreduction.TheestimatedDACcapexprojectionsareusedinthefollowingasinputforthecostscenariosinlevelisedcostofCO2DACforspecificsites.4.3.2.LevelisedcostofCO2DAC(LCOD)intheperiod2020to2050HTaqueoussolutionandLTsolidsorbentarethetwomaintechnologies,whicharereadyforcommercialscaleimple-mentation.ThefinalmodelsofHTaqueoussolutionandLTsolidsorbentDACtechnologiesin2020,presentedinsections4.1.and4.2.,havebeenfurtherstudiedbasedonassumptionsforlongtermdevelopmentofthemainspecificationsbasedonthecon-servativescenariodescribedinsection4.3.1.,andasshowninTable7.Thecapexassumptionsforbothtechnologiesarebasedonthecumulativeinstalledcapacitiesandlearningrates,applyingtheconservativescenario,describedinsection4.3.1.ThelifetimeofLTDACtechnologyin2020is20years(Climeworks,2018b),whichhasbeenexpandedto25and30yearsin2030andbeyond,respec-tively,accordingtothelong-termestimationsforgenericDACplantsinliterature.ThelifetimeofHTDACissetto25yearsin2020accordingtoKeithetal.(2018),andlaterhasbeenextendedto30Table6ConservativeandbasecasescenariosforLTandHTDACcapexreduction.parameterunit2020203020402050CO2DAC,totalMtCO2/a3.0473479115356thereof50%,conservativescenarioMtCO2/a1.523723967678thereof100%,basecasescenarioMtCO2/a1.5473479115356historiccumulativecapacity(conservative/basecase)MtCO2/a1.5/1.5237/4732397/47937679/15357doublingsbetweenperiods(conservative/basecase)-07.3/8.33.4/3.41.7/1.7capexCO2DACLT(conservative/basecase)V/tCO2$a730338/189237/110199/84capexCO2DACHT(conservative/basecase)V/tCO2$a815378/211265/122222/93Fig.5.CO2DACcapexdevelopmentforLTandHTsystemsbasedonthelearningcurveapproachandtheappliedconservative(CS)andbasecasescenarios(BS).TheDACcumulativecapacityisbasedonthefindingsinTables5and6andtherespectiveDACcapexarebasedonEqs.(9)-(11).M.Fasihietal./JournalofCleanerProduction224(2019)957e980968yearsfortheyears2030andbeyond,asSimonetal.(2011)andNemetandBrandt(2012)consideralifetimeof30and50years,respectively.Inaddition,althoughNemetandBrandt(2012)sug-gestahigherlearningrateforopexofDACsystems,ithasbeenkeptconstantat3.7%and3%ofcapexfrom2020to2050forLTandHTDACtechnologies,respectively.InapersonalcommunicationwithClimeworks(Kronenberg,2015),theaverageelectricityandLTheatdemandfor2030wereestimatedtobe10%and14.3%lessthanthecurrentnumbers.ConsideringtheminimumachievedelectricityandheatdemandbyotherLTcompanies(Fig.4),thesamedemandreductionrateshavebeenassumedforeach10-yearstepuntil2050.Anelectricityde-mandreductionrateof5%hasbeenappliedtoafullyelectrifiedHTDACsystemfrom2020onwards,consideringthelimitsbythetheoreticalheatdemandofthecalcinerunitinthecurrentlyknownsetup.MoroccowaschosenasapotentialsiteforalargescaleDACplantimplementationwith2400FLhforsingle-axistrackingsolarphotovoltaic(PV)systemand3500FLhforwindpowertechnology(Fasihietal.,2017a).DACplantsandheatpumpsarecapexinten-sive,thusitisimportanttorunthemonhighFLh,whichwoulddemandhighavailabilityofelectricity.Batteriesareneededtoin-creasetheavailabilityofrenewableelectricity,especiallyforaPV-basedsystem.Fig.6illustratestheimpactofDACFLhonthenetLCOEandLCOD.Ascanbeseen,increasingFLhfrom3000to8000hwouldincreasethenetLCOE.However,thenegativeimpactofhigherLCOEonLCODhasbeenoffsetbyhigherDACFLhwhichprovidesthechanceforfurtherreductionofLCOD.ThehighestimpactisobservedforincreasingFLhofLTDACfrom3000to6000handfromthereto8000FLh,thedecreaseinLCODisverylow.ForthecaseofHTDAC,LCODstaysmoreorlessstableat5000to7000FLh,withaslightincreaseat8000FLh,whichisduetobiggerimpactofenergycostonHTDAC.TheLCOEnetfor4000and8000FLhhavebeencalculatedbasedonthespecificationsofpowersectorcomponentsasinTable8.TheratioofinstalledcapacityofPVtowindgraduallyincreasesfrom7in2030to10in2050,duetofasterdeclineinPVLCOEandcostdeclineofsupportivebatterysystems.Batteryshareis11%and56%for4000FLhand8000FLh,respectively.ElectricalcompressionheatpumpshavebeenusedforLTheatgeneration,wheretheCo-efficientofPerformance(COP)graduallyincreasesfrom3.0in2020to3.5in2050(DEA,2016).LCOE,LCODandLCOHwerecalculatedfor4000and8000FLhconditionsandbasedontheconservativescenariowiththeabovedescribedassumptions.TheresultsarepresentedinTable7.Fig.7illustratesthefinalcontributionsforLCODoftheLTandHTDACsystemsat8000FLhin2040fortheconservativescenario.TheLCODoftheLTDACsystemreaches69V/tCO2,wherethehighestsharesbelongtoheatdemandat43%andtoDACcapitalexpendi-turesat30%.Incaseofaccesstofreewasteheat,theLCODcouldbeloweredtoabout40V/tCO2.Ontheotherhand,at91V/tCO2,theLCODoftheHTDACsystemin2040ishigherthanLTDAC,wheretheelectricitycostdominatesthetotalcostsat62%andtheshareofcapitalexpendituresisabout26%.Thus,itisrathercrucialforbothDACsystemstohavetheDACplantslocatedatsitesofabundantandverylow-costrenewableelectricityinordertobringthefinalCO2productioncostsdown.Inthecaseofaccesstoverylow-costorfreewasteheatforLTsystem,itsdependencyonverylow-costelectricityisrelativelylower.4.3.3.SensitivityanalysisDuetouncertaintiesaboutliterature-basedDACsystemmodels’specificationsandtheirdevelopmentsinthelongterm,asensitivityanalysisiscrucialinthisstudy.Inaddition,inputvaluescanvarybasedontheselectedlocationoftheDACplantandoveralleco-nomicenvironment.Thus,asensitivityanalysiswasconductedfor±10%changesineconomic,energeticandgeographicalfactorsforLTandHTDACsystemswith8000FLhin2040,forwhichtheresultsarepresentedinFig.8.AsillustratedinFig.8a,a10%changeinWACCorDACcapexhasa4e5%impactonLCOD,followedby2e3%and1%impactfrombatteryandPVcapex,respectively.Althoughwindhasahighercapex,itsimpactontheresultsarenegligible,astheinstalledcapacityofwindissettooneninthofPVcapacityin2040.AsshowninFig.8b,theimpactofa10%changeinopexofPV,windorbatteryonLCODisnegligible,whiletheDACopeximpactisabout1.5e2%.However,thebiggestoperationalcostimpactsareFig.6.TheimpactofDACFLhonnetLCOE,LTLCODandHTLCOD(conservativescenario).M.Fasihietal./JournalofCleanerProduction224(2019)957e980969associatedwithenergyconsumptionoftheplant.FortheLTDACsystem,witha5%changeinLCOD,heatdemandhasthebiggestimpactasthemajorityofenergydemandissuppliedbyheat,whileat7%,electricitydemandofafullyelectrifiedHTDACwouldhavethesameimpactonLCOD.Fig.8cemphasisesthebigroleofDACFLhonLCOD,however,unlikeFig.6,hereitisassumedthatincreasingDACFLhhasnoimpactonLCOE.Italsoshowsthataregionwith10%morePVFLhcoulddecreasetheLCODbyabout2%.Fig.8dillustratesthata10%lowerbatteryorLTDAClifetimecouldincreasethecostbyabout1%.4.4.AreademandandriskoflocalCO2depletionOneofthemostcommonconcernsaboutwidescaleDACplantsimplementationislocalCO2depletion,asitmayaffecttheenvi-ronmentandvegetation.Inaddition,aCO2-poorenvironmentwoulddecreasetheefficiencyofDACsystemsandincreasefinalCO2capturecosts.Thus,itisimportanttoevaluatetherecoverytimeandtheminimumdistancebetweenDACunitstoavoidsuchproblems.Inaddition,footprintandrespectivelandusagemaybeakeyissue,assubstantiallandrequirementmightbeabarrierfortheTable8Powerandheatsectorkeyspecifications.unit2020203020402050referencePVsingle-axistrackingplantETIP-PV(2017);Bolingeretal.(2017)capexV/kWp638429330271opexfixV/(kWp$a)15.012.010.08.0opexvarV/kWhel0000lifetimeYear30354040WindpowerplantNeij(2008);Breyeretal.(2018)capexV/kWp11501000940900opexfix%ofcapexp.a.2.0%2.0%2.0%2.0%opexvarV/kWhel0000lifetimeYear25252525PV/Windcapacityratioe78910thisstudyBatteryBreyeretal.(2018)capexV/kWhel(energy)30015010075opexfix%ofcapexp.a.2.5%2.5%2.5%2.5%opexvarV/kWhel0.00020.00020.00020.0002lifetimeYear20202020cycleeff.%91939595energytopowerratioe6666ElectricalCompressionHeatPumpDEA(2016)capexV/kWth660590554530opexfixV/(kWth$a)2222opexvarV/kWhth0.001800.001700.001630.00160lifetimeyear25252525COPe33.263.413.51Table7Long-termspecificationsofDACandgenericcosts(conservativescenario).unit2020203020402050LTDACcapexV/tCO2$a730338237199opex%ofcapexp.a.4%4%4%4%lifetimea20253030el.demandkWhel/tCO2250225203182LTheatdemandkWhth/tCO21750150012861102HTDAC(electrified)capexV/tCO2$a815378265222opex%ofcapexp.a.3.7%3.7%3.7%3.7%lifetimea25303030el.demandkWhel/tCO215351458138513164000FLhLCOEnetV/MWhel44282118LCOH-LT(byheatpump)V/MWhth36272422LCOD-LTV/tCO22891419780LCOD-LT(freewasteheat)V/tCO2226996756LCOD-HTV/tCO228613898808000FLhLCOEnetV/MWhel103584132LCOH-LT(byheatpump)V/MWhth51302320LCOD-LTV/tCO22221056954LCOD-LT(freewasteheat)V/tCO2133604032LCOD-HTV/tCO22681339171M.Fasihietal./JournalofCleanerProduction224(2019)957e980970largescaleimplementationofthetechnology.ThestudybyJohnstonetal.(2003)hasanalysedthecarboncapturepotentialofanengineeredflatsinkwith4⁰Â5⁰latitude/longituderesolutionanditslongtermlocalCO2depletionimpactin5differentregionsoftheworld,withathreedimensionalchemicaltransportmodel.Itconcludesthatthelocaldepletioncouldbeintherangeofnaturaldaily,seasonalCO2flections,thusnotanissuefortheimple-mentationofDACsystems.Inaddition,itnotesthattheCO2uptakedependsontheCO2velocityand,atatypicalvelocityof1m/s,anareaof75000km2wouldbeenoughtocapture3GtCO2/a,repre-sentingafootprintof25km2/MtCO2.Ithasbeenemphasisedthatthesameuptakecapacitiescanbeexpectedfromverticallyalignedsystems,whiledecreasingthedirectlanduseatthesameactivearea.Ontheotherhand,byspreadingthisverylarge-scalesysteminsmallerunitsacrossdifferentregionstoavoidmeetingeachother'sCO2shadow,theactiveareademandcouldbereducedbymorethananorderofmagnitude.Socolowetal.(2011)claimsthatforaHTaqueousbasedDACsystemwith1MtCO2/acapacity,thetotalareademandwouldbe1.5km2thatleadstoafootprintof1.5km2/MtCO2,whichisbasedonthefollowingassumptions:Fivecontactingfacilitieswithalengthof1kmandwidthof1marelocated250mapartfromeachother,whichistheminimumalloweddistancetopreventdualdepletedairintake.Thisindicatesthat,likewindfarms,themajorarede-mandofDACsystemsisreservedforthefreespacebetweenDACunits.Inaddition,awarehouseforchemicalstorageandaregen-erationunitisincludedinthefootprint.Climeworks(2018b)cap-tureplanthas18unitslocatedin3rowsontopofeachotherandiscurrentlythemaximumverticalexpansionforClimeworks.How-ever,theoverallfootprintoftheirsystemforcapturing8GtCO2peryearis3300km2,whichisequalto0.4km2/MtCO2annually.Although,noneofthesetwosourceshavespecifiedhowthetotallanddemandortheminimumalloweddistancebetweenunitswereestimated,theiroverallfootprintisinlinewithJohnstonetal.(2003),whichconductedlanduseestimationforrelativelysmall-scaleDACsystems.Keithetal.(2006)alsodiscussedDACsystemslandrequirementsinlesserdetail,whereithasbeenconcludedthatthedirectareademandofpotentialDACplantscanberathersmall,asthelandbetweentheunitscanbefreelyusedforotherpurposes.4.5.WaterdemandThewaterdemandofDACunitsistheotherfactorwhichshouldbeconsideredforthelargescaleimplementationofthetechnology.ThewaterlossinHTaqueoussolutionDACsystemscouldbebe-tween0and50tonspertonCO2captured,dependingonthetemperatureandhumidityoftheambientairandconcentrationofthesolution(Keithetal.,2006;Stolaroffetal.,2008;Smithetal.,2016;Zeman,2007).ThenewCarbonEngineeringdesignneeds4.7tonsofwaterpertonCO2captured,atambientconditionsof64%relativehumidityand20C(Keithetal.,2018).Incaseofwaterstressintheregion,waterdesalinationandtransportationcouldcost0.6to1.6V/m3in2030(Calderaetal.,2016),whichwouldaddabout3e8V/tCO2,accordingtowatercostimpactinKeithetal.(2018).ThiscouldlimitthelocationalflexibilityofDACplants,particularlyindryandremotedesertregionswherebothwaterdemandanditstransportationcostcouldbesignificantlyhigher.Ontheotherhand,someLTDACsystemscancapturewaterasaby-product.Forexample,Climeworkstechnologycancapture2e5molofwaterpermoleCO2captured,equalto0.8e2tonwaterpertCO2.Generally,fromanenergypointofview,itistheirgoaltocaptureaslittlewateraspossible.However,at2molwaterpermoleCO2theenergydemandwouldbeinthelowerendofenergyconsumptionrangeofClimeworkstechnology(Kronenberg,2015).AccordingtoBajamundietal.(2018),Hydrocell'sDACsystemoperatedintheFinnishclimatehasalsoproduced4.6molofwaterpermoleofcapturedCO2,equalto1.9tonwaterpertCO2.Thus,waterdemandwouldnotbeaconstraintforLTDACsystems,quitetothecontraryDACsystemscouldprovidewaterneededforsubsequentwaterelectrolysisprocesses,asrequiredforpower-to-fuelandpower-to-chemicalconversion(Fasihietal.,2017a,2017b).4.6.CO2compression,transportandstorageThecapturedCO2couldbestoredorutilisedasfeedstockforotherapplications.Forthesematters,additionalstepssuchaspu-rification,compressionandtransportation(ingaseousorliquidphase)maybeneeded,whichcouldbeenergyandcostintensive(AspelundandJordal,2007;Johnsenetal.,2011;Knoopeetal.,2014).CO2couldbeliquefiedbycompressiontoacriticalpressureof73.8barandthencanbepressurisedfurtherbypumps(McCollumandOgden,2006).WhencompressingCO2,recoverableheatisgeneratedandcanbeutilisedinotherpartsofthesystem(Lackner,2009).InPSCC,priortocompression,CO2needstobecleanedfromawiderangeofimpuritiesassociatedwithfluegases.Thus,theFig.7.LCODcostbreakdownforthefullyelectrifiedHTDACsystem(left)andLTDACsystem(right)for8000FLhandconditionsinMoroccoin2040.M.Fasihietal./JournalofCleanerProduction224(2019)957e980971Fig.8.SensitivityanalysisofLCODfortheLTDAC(left)andHTDAC(right)systemsbasedoninputdatafor(a)investment,(b)operational,(c)FLhand(d)lifetimeassumptionsfor8000FLhin2040.M.Fasihietal./JournalofCleanerProduction224(2019)957e980972compressionstationiscombinedwiththepurificationunit(Skaugenetal.,2016).Simonetal.(2011)reported62.5kWhel/tCO2astheminimumenergyrequirementforCO2compressionto138barafterDAC,equalto104kWhel/tCO2ofpracticalenergyde-mandbasedonacompressionefficiencyof60%.Kolsteretal.(2017)reportedanenergyrequirementof96e103kWhel/tCO2forCO2dehydrationandcompressionto120bar,forPSCC.Keithetal.(2018)reportedanenergyrequirementof132kWhel/tCO2forCO2compressionto150barfromDAC,wherethecompressorstandsforabout3%ofthetotaldirectfieldcost.CO2transportationcanbedonebypipelines,ships,railways,trucks,tankcontainersoracombinationofthem.Transportationtypestronglydependsontheterrain,distanceandcapacity.Pipe-lineisawell-regulated,safeandmatureoption(IEA,2016)thatisfavourableforbigvolumesofCO2withannualtransportationca-pacityof1e5milliontonanddistancesintherangeof100e500km(IEA,2010).Overlongdistances(>2400km),shiptransportismorecost-effective(IEA,2016).Italsohasadvantagesoverpipelinenetworkintermsofflexibilityandscalability.Ontheotherside,shipsrequirewell-developedhubsandterminals.CO2istrans-portedonlyintheliquefiedformbyships,thusanadditionalpressurisationstationisneededattheharbour.Karjunenetal.(2017)hasanalyseddifferentsitesattheterrainwhereshipsandsufficientinfrastructureofpipelinesdonotexistandconcludedthatthepriceofCO2transportationbytrucks,trainsandpipelinesforshortdistances(100e400km)willbeintherangeof4.4e14V/tCO2.CostparametersassociatedwithallmentionedmeansoftransportationaresummarisedandpresentedinTable9.TraditionaloptionsforCO2sequestration(permanentstorage)arelimitedtodeepsalineformations(1000e~10000GtCO2),depletedoilandgasfields(675e900GtCO2),coalseams(3e200GtCO2),basalts,shales,saltcavernsandabandonedmines(IEA,2016;Svenssonetal.,2004).ChenandTavoni(2013)havere-portedaCO2storagecostofabout10V/tCO2forthebestsitesintheworld,withacumulativecapacityofabout700GtCO2.Trans-portationdistanceandassociatedcostscouldincreaseforfutureprojects.Amoresustainablelong-termCO2storagesolutionwouldconvertCO2intoachemicallyinertcompoundwithahighcom-bustionpointsothatlateremissionriskscanbereducedtoanabsoluteminimum.Also,CO2fromDACtechnologiescouldbeusedforsyntheticfuelproductioninaclosedcarbonloop(Vazquezetal.,2018).Forcouplingthesesectors,dependingontheoperationtimingandcapacitiesofDACsystemsandsyntheticunits,inter-mediateandseasonalstoragewithhighcapacitiesmightbeneeded.However,mostplantswouldbeoperatedclosetobaseload,whichreducestheneedforseasonalstorage.GastankscanbeusedforintermediatestorageofCO2.Karjunenetal.(2017)hasstatedthatcostsofintermediatestorageincylindricaltankscanbeabout10V/tCO2.5.Discussion5.1.RelevanceofDACwithrespecttotheParisAgreementTheParisAgreementsymbolisesacommonunderstandingoftheextremesituationandactionsneededtobetaken.Toreversethistrend,adeepandfastdefossilisationofthepower,heat,transportationandindustrysectorsthroughhigherutilisationofREby2050isneeded(Breyeretal.,2018;Jacobsonetal.,2017;Mathiesenetal.,2015;Rametal.,2017;Sgouridisetal.,2016).However,a100%directelectrificationofthesesectorsisnotpossible,especiallyforhightemperatureindustrialheating,long-rangeaviationandmarinetransportation,wherefossilfuelsandlatersyntheticfuelsareexpectedtobeplayaroleby2050.Somebalancinggaspowerplantswouldbeneededforthepowersectorduringthetransitionperiod,whichcouldswitchduringthetran-sitionperiodtosyntheticnaturalgasorothersyntheticfuels(Rametal.,2017).Inaddition,apartofnon-energeticuseoffossilfuelsinthechemicalindustrycouldfinallyturntoCO2emissionsintheatmosphere,suchasburningofplasticwastesinincinerators.TheunavoidablefossilCO2emissionsfromcementindustrywouldalsostillcontributetoclimatechange(Farfanetal.,2019).PointsourceTable9CO2transportationcost.transp.typecapacitydistancecostreferenceMtCO2/akmV/tCO2truck15e20Â10À6>10013Freitas(2015)train1.465987.3Gaoetal.(2011)onshorepipeline0.731006.8McCollumandOgden(2006)0.7350043.6McCollumandOgden(2006)2.51805.4ZEP(2011)7.31001.5McCollumandOgden(2006)7.35009.8McCollumandOgden(2006)201801.5ZEP(2011)207505.3ZEP(2011)offshorepipeline2.51809.3ZEP(2011)2.5150051.7ZEP(2011)201803.4ZEP(2011)20150016.3ZEP(2011)shipping275011.1aAspelundetal.(2006)2.518013.5aZEP(2011)2.5150019.8aZEP(2011)3195011.8bKujanp€a€aetal.(2011)2018011.1aZEP(2011)20150016.1aZEP(2011)aLiquefactioncostincluded.bLiquefactioncostnotincluded.M.Fasihietal./JournalofCleanerProduction224(2019)957e980973carboncaptureandstorage(CCS)couldonlydecreasetheGHGemissionsfromthesesectors,andnotfullyremovethem(Leesonetal.,2017).Inaddition,pointsourceCCScouldnotbeappliedtoships,planesandsmallerpollutersThus,afossil-basedsystem,evenwithCCSorCCU,wouldstillbeanet-polluter(SAPEA,2018).DACwillfinallyallowtoclosethecarboncycleinaworldwhereitisnotpossibletoeliminateGHGemissionsproducedbyaviationandmarinesectors,alongwithuntappedCO2fromunavoidablepointsources(cementandwaste-to-energyincinerators)andfromlanduseandagriculture.TargetsoftheParisAgreementaremostlikelynotachievablebypointsourceCCS,asnotasingleproposedtechnologycancaptureallemittedCO2,whereasitcanbecollectedbyDACplants.Inaddition,asmentionedinsection4.3.1.,DACca-pacitiescoupledwithCO2storageareneededasanegativeemis-siontechnologytoreverseclimatechangeimpacts.IntegratedAssessmentModels(IAMs)havepreferredBECCSasNETinthepast,ascriticisedbyCreutzigetal.(2019),whereasDACsystemsaresuperiorinmostcriteria.ButthereportedcostsofDACarestillregardedasthemainobstacleforabroaderconsiderationofDACsystemsasanimpactfulNET.Breyeretal.(2018)foundforthecaseoftheMaghrebregionthatDACsystemscanbeaverycost-effectiveNETin2050.Creutzigetal.(2019)alsopointoutthattheenergysystemintegrationofDACCScanbeexpectedtobesuperiortoBECCSforrenewablesbasedenergysystems,whichisconfirmedbyBreyeretal.(2019b)forDACCScoupledtoa100%renewableenergysystemintheMaghrebregion.AccordingtoWilcoxetal.(2017),CO2puritiesofabout50%aresuitableformineralcarbonationasapermanentCO2storagesolution.Atsuchpuritylevels,theenergydemandandconsequentlythecostofDACsystemsarerelativelylowerthanDACsystemswithmorethan99%puritydiscussedinthiswork.ThiscouldpotentiallyleadtoacheaperDACCSprocess,assumingnosignificantnegativeimpactbyimpuritiesduringpost-captureprocesses.5.2.BenefitsandchallengesofthemainDACtechnologiesLTsolidsorbet-basedandHTaqueoussolution-basedDACsys-temshavebeenreviewedinthisstudy.TheHTtechnologyisadoptedfromPSCCwithprovenabsorbentmaterials.Nevertheless,inmostHTDACmodelsfossilfuelsareusedtoprovidetherequiredhigh-gradeheat.ThiswouldbeanunsustainablesystemforCCU,asthefossilCO2partwouldfinallyendupintheatmosphere.ACCSchainbasedonthissystemcouldenableonlypartiallynegativeemissions,whichwouldincreasethenetLCODofavoidedCO2.Theuseofsyntheticfuelswouldalsodramaticallyincreasetheprimaryenergydemandandthecostofthesystem.However,afullyelec-trifiedHTDACtechnologyprovidesthechancetofullyrunthesystemonRE.Ontheotherhand,LTDACsystemshavemoreop-tionsforprovidingheat,suchasheatpumps,whicharemoreen-ergyefficientandcanbedirectlypoweredbyRE.Thewasteheatfromindustrycouldbeseenasasourceoffreeorcheapenergy,whichcouldreducetheLCODsignificantly(Fig.6).ForsomeCCUprocesses,andinparticularsyntheticfuelsproductionintegratedwithLTDACunits,thewasteheatfromfuelproductionprocessescouldberecycledandusedintheLTDACunits,reducingtheoverallcostsoffinaloutput(Fasihietal.,2017b;Rametal.,2018).ThisisaclearadvantageofLTDACsystems.Moreover,whilethewaterde-mandofHTDACsystemsistypicallyseenasanegativefactor,someLTDACtechnologiesarecapableofcapturingmoisturefromtheatmosphereasaby-product,whichcouldbeusedforhydrogenproductionasthefirststepinsyntheticfuelsandchemicalspro-duction.Thiscouldpartiallyorfullyavoidthedependencyofsuchsystemsonexternalwater(Fasihietal.,2017b).ThemoistureaidedLTDACtechnologies,suchastheoneappliedbyAntecy(Roestenberg,2015),couldfurtherdecreasethetemperatureandtheamountofheatdemand,openingtheroomformorevarietyofwasteheatsourcesandhigherenergyefficiencyofsuchDACsys-tems.Ontheotherhand,totheknowledgeoftheauthors,sofarLTDACsystemshavebeenoperatedinmoderateclimates.OperatingthesesystemsinsunnyandhotregionssuchasMoroccomaydecreasetheheatingdemand,howeverthiswouldincreasethecoolingdemandofthesystem,asthenaturalaircoolingwouldnotbeenoughanymore.Theimpactofsuchachangeontheoverallenergydemandofthesystemisunknowntotheauthors,sameasthechangeinmoistureintheatmosphereofdryregions.HTDACsystemsconsistofseparatecarboncaptureandregen-erationunits,whichmaketheconstantcarbonabsorptionandregenerationpossible.Ontheotherhand,fortheavailableLTDACtechnologies,bothadsorptionanddesorptionhappenstepwiseinoneunit,whichlimitstheoperatinghoursofeachstep.ThismaycauseadditionalcoststothesystemfortimemanagementandstorageofREandRE-basedheat.Antecy(2018)andGlobalTher-mostat(Pingetal.,2018b)haveintroducedLTDACsystemswithseparateunitsexclusivelydesignedforadsorptionordesorption,whichhaveahigherefficiencyandoperatingtimethatcoulddecreasethefinalsystemcosts.Fromaneconomicperspective,judgingbypubliclyavailableinformationandpromisesforfurthercostreductions,LTDACseemstobethecheaperoptionwhenfreewasteheatisavailable.ItisimportanttoemphasisethatevenlowercostsareforeseenforLTDACbyGlobalThermostat(Table4).However,asnofinancialdetailsarepubliclyavailable,ithasbeenexcludedfromthiscomparison.5.3.Finalcostoflarge-scaleDACAsdiscussedinsection4.3.2,LCODofHT/LTDACsystemswith8000FLh,undertheconservativescenariowith50%implementa-tionofneededDACsystemsand10%learningrateofDACcapex,isprojectedtobeabout268/222,133/105,91/69and71/54V/tCO2in2020,2030,2040and2050,respectively.However,asillustratedinFig.9,underbasecasescenarioassumptionswith100%imple-mentationofneededDACsystemsand15%learningrate,thecostsforHT/LTDACsystemscouldgodownto268/222,111/84,72/53and54/38V/tCO2in2020,2030,2040and2050,respectively.At111e133V/tCO2,theresultsforHTDACin2030arehigherthantheprojectedcostsofCarbonEngineering(thirdscenario),at85e87V/tCO2,fortheNthgas-basedplantwithawellregulatedFig.9.LCODforLTandHTDACsystemswith8000FLhand7%WACCforthecon-servativescenario(CS)andbasecasescenario(BS)assumptions.M.Fasihietal./JournalofCleanerProduction224(2019)957e980974constructionandsupplychainrelationship.Inthisyear,thehistoriccumulativeDACinthesetscenarioshavewellpassedthematuritylevelandthecapexisbelowtheNthplant'scapex.However,theimpactofclose-to-baseloadrenewableelectricity(58V/MWhel)onthefinalcostsissignificantlybiggerthantheassumedcheapgaspriceof11V/MWhthbyKeithetal.(2018),whereinthecostsoffossil-CO2emissionshavenotbeentakenintoaccount.Basedonthis,thelong-termcostsrecalculatedinthisresearchof54e71V/tCO2forHTDACin2050appearsachievable.NofinalnumberisprovidedinliteratureforthecurrentcostsofLTDAC,however,asthedefinedgenericLTDACinthisresearchisfullybasedonspec-ificationsofavailableplantsorcommercialdesigns.Thecalculatedcostof222V/tCO2in2020isexpectedtobereliable.Forthe2040e2050period,LTDACcostshavebeencalculatedtobe38e69V/tCO2,whichisinlinewithprojectedcostsofClimeworks(75V/tCO2)andGlobalThermostat(11e38V/tCO2)forlong-termorlarge-scaledeploymentofDACtechnologies.Besidestheimpactofmoreenergyefficientsystemsandaccessibilitytocheaperenergyinthefuture,thecapexdevelop-mentandrelativecostreductionfrom2020to2050emphasisesthebigroleoftheimplementationrateandlearningcurve.Neverthe-less,therelativelyhighcostofDACin2020couldremainasachallengeforattractinginvestmentsneededforintroducingthesystemtothemarketandscalingup.Inthisstudy,aCOPof3hasbeenusedasaglobalaverageforheatpumpsin2020,whichgraduallyincreasesto3.51in2050(DEA,2016).However,thiscouldbearatherconservativeassumptionforthewarmclimateofMorocco.Ontheotherhand,thenatureofthemarketin2020e2030couldberelativelydifferentfromthosein2040e2050,asDACcoupledwithpermanentstorageasanegativeemissiontechnologyisprojectedtobeimplementedfrom2040onwards.AlltheprojectedDACcapacityin2020e2030isassociatedwithsyntheticfuelsandchemicalsproductionwithpossiblyavailableexcessheatasabyproduct,fromwhichtheLTDACsystemcouldbenefittofurtherdecreasetheproductioncostto133,60,40and32V/tCO2in2020,2030,2040and2050,respec-tively,whichcouldmakemarketentryeasier.Ontheotherhand,forthe2020e2030period,theglobalenergysystemwouldstillincludehighsharesoffossil-basedpointsourceCO2frompowerandindustrialsectors,whichcouldbeacheapersourceofCO2throughpointsourceCCUandcouldbeacompetitortoDAC.Whetherregulatorsallowitremainsunclear.However,lookingatthebigpicture,therewouldnotbeenoughpointsourceCO2tomeetalltheCO2demandinafullysustainableenergysystemin2050(Table5).Thus,DACwouldfinallyhavethelargermarketshareand,tomakeitcheapbythen,theimplementationneedstostarttoday.Allcostanalysesinthisresearcharebasedon7%WACC,how-ever,abusinesscasewith5%WACCmaybepossibleinsomere-gionsoftheworld.AccesstocheapREinsuchregionscouldfurtherreducetheLCODbyabout12%.NichemarketscouldalsohelptoincreasethemarketshareofDAC.Asanexample,theawarenessanddemandforsustainableCO2orCO2-basedproductssuchassyntheticfuelsorchemicalsisgrowing,whichmakesDAConeoftheveryfewavailableoptions.Finally,CO2emissionscostsarethelastmeansofregulatingthemarket,whichcouldhaveasmallorbigimpactoncostcompetitivenessofDACsystems,dependingontheregulationsdevelopedbypolicy-makers.5.4.CO2DACvs.pointsourcecarboncapture,todayandinthefutureDACisusuallycomparedtoPSCCbasedoncosts,whichisnotfullycorrect.Asexplainedinsection5.1.,pointsourceCCUandCCScanonlyreducethepaceofCO2emissionsincreaseduetoimplementationrateandcarboncaptureefficiencylosses,whileDACcoupledwithCO2storage(DACCS)cantrulyactasanetNET(Choietal.,2011b).Inaddition,asshowninsection4.3.1,inasustainableenergysystemby2050,therewouldnotbeenoughpointsourceCO2asfeedstockforotherapplications.Thus,thetwotechnologiescouldcomplementeachotherfordifferentapplica-tions.However,therecouldbesomemarketsegmentswherebothtechnologiescouldbeapplied,butthefinalchoicecouldbederivedbyfinancialfactors.Underequalpreconditionssuchasenergydemandandcosts,itseemslogicaltoexpectlowercarboncapturecostsfrompointsourcesduetothehigherconcentrationofCO2.Fig.10illustratesthecostrangeofPSCCin2020andprojectedcostsin2050,basedonthescenarioexplainedbyLeesonetal.(2017)andDACcostsin2040and2050,basedontheconserva-tive(upperlimit)andbasescenarios(lowerlimit)presentedinthisstudy.Literature-basedindustrialPSCCcostrangeforeachFig.10.CostdistributionrangeofPSCCfordifferentindustries(reproducedafterLeesonetal.(2017))andDAC.Abbreviations:naturalgasproduction,NGP,steammethanereforming,SMR.M.Fasihietal./JournalofCleanerProduction224(2019)957e980975sectorin2020representdifferentstudiesunderdifferenttech-nologies,carboncaptureefficienciesandcostassumptions.ThecostsinLeesonetal.(2017)havebeenconvertedfromUSD/tCO2,avoidedtoV/tCO2,capturedbythefixedUSD/Vconversionrateof1.33andtheavoidedCO2issetto78%ofcapturedCO2basedoncoal-poweredPCSSdescribedinSocolowetal.(2011).Themin-imumPSCCcostfromironandsteelindustryisrelatedtousageofsteelslagforcarbonationwithonly8%efficiency,whichcannotfulfilltheinitialgoalofPSCC.Inaddition,thesustainablepathwayforironandsteelindustrycouldbeCO2-free(Fischedicketal.,2014;Ottoetal.,2017).PSCCcostrangefromrefineriesandcementin2020isabout30e100V/tCO2,whilethecostrangefrompulpandpaperisbetween29and41V/tCO2,originatedfromreviewingtwopublications.Theprojectedcostsofindus-trialPSCCin2050havebeencalculatedbyLeesonetal.(2017)basedonthemeanvaluesforthecostsofbestcandidatePSCCtechnologiesforeachsectorin2020andappliedinstalledca-pacitiesby2050.Underthisscenario,PSCCcostsfromcementreach12V/tCO2,however,stillusingfossilfuel,whichmaybepricedveryhighforavoidablefossilfuelsourcesin2050.Inaddition,highpurity(>95%)sourcesofindustrialCO2alreadyhavethePSCCpotentialwithcostswellbelow20V/tCO2,assuchCO2streamsonlyrequirecompression,anddonotneedexpen-sivecarboncapturedevices.Incasefossilfuelshadbeentheinputfeedstock,onemayhavetopayinadditionaCO2priceforthefinalemissions,whichcoulddrasticallyincreasethecosts,comparedtothesustainableDACroute.Naturalgasprocessing(NGP),ammoniaproduction,ethyleneoxideproductionandsteam-methanereformingforhydrogenproductionaresomeoftheprocesseswithfossil-basedfeedstock,whichaccountforabout7%ofindustrialemissionsLeesonetal.(2017).ThesearethesocalledlowhangingfruitsforPSCC,however,someoftheseprocessescouldbesubstitutedwithadecarbonisedtechnologyinthefutureenergysystem,decreasingtheirCO2productionpo-tential.Forinstance,withfurthercostdeclineofREandelec-trolysers,hydrogencouldbeproducedbywaterelectrolysiswithoxygenastheonlyby-product,andfurtherupgradedtohighervaluedproductswithadditionalRE-basedpower-to-chemicalsprocesses.AsshowninFig.10,HTDAC,LTandfree-heatLTDACin2040starttobecostcompetitivewithupperrange,middlerangeandlowerrangePSCCcostsin2020,respectively.ThefurthercostreductionofDACsystemsin2050couldmakethemevenmorecostcompetitive,dependingonwhethertheprojectedPSCCcostsin2050areachievedornot.However,thePSCCcostsarenotthefullcostsforcapturedCO2,ifthesourcehadbeenfossilfuels.Because,notallthereleasedCO2couldbecapturedandalsolateremissionstotheatmospherehavetobeconsideredforalmostallroutes(e.g.syntheticfuelsusedinaviationormarinesectors)andtherespectiveCO2pricehastobetakenintoaccountasanadditionalcost.ThisisnotthecaseforRE-basedDAC.Therefore,DACmaybecostcompetitiveearlierasindicatedbyFig.10.HighermodularityandlocationalflexibilityofDACsystemscouldmakethemevenmorecostcompetitiveinthewholeCCUorCCSchain.PSCCislimitedtolocationswithhighcapacitiesofCO2stream,whichcouldalsolimittheaccesstocheapenergyforPSCC.Aprobablelongdistancetoutilisationorstoragesitescouldincreasethetransportationcostsaswell.Ontheotherhand,DACsystemscouldbelocatedincost-optimalsites,takingintoaccountaccesstolowcostenergyandutilisationorstoragesites.5.5.ThecostshareofCO2inpower-to-gasAsmentionedinsection5.3.,CO2fromDACisnotonlyaproductforstorage,butalsoafeedstockforproductionofsyntheticfuelsandchemicals.Inthatcase,costsofthefinalproductisofhigherimportancethantheLCOD,aslongasthecostshareofCO2isnotsignificantorifthefinalproductcostsareinanattractiverangeregardlessofLCOD.Asanexample,theproductioncostsofsyntheticnaturalgas(SNG),integratedwithCO2DACinMoroccohavebeeninvestigated.Theelectrolyserandmethanationplants’specificationsaretakenfromRametal.(2017).AccordingtoFasihietal.(2017a),thewasteheatfromwaterelectrolyserandmethanationunitscansupplyalltheLTheatdemandofLTDACsystemsin2030,whichwouldbethecaseforyearsafterwards,astheenergydemandoftheDACsystemdecreases.However,in2020,theenergydemandofLTDACsystemscouldexceedtheavailablewasteheatby10%.Forthesakeofsimplicity,thisextrademandhasnotbeentakenintoaccountandisassumedthattheheatintegrationsuppliesalltherequiredheat.TominimisetheLCOD,LTDACFLhshouldbefixedat8000FLh,asshowninFig.6.However,forconsistency,inthissectionDACFLhfollowspower-to-gas(PtG)FLhandthecostsofSNGunderdifferentPtGFLhhavebeenillustratedinFig.11.Forsuchaconfiguration,theLCOGofacoupledDAC-PtGsystemwith4000FLhwouldbe148,84,63and52V/MWhth,HHVin2020,2030,2040and2050,respectively.Ascanbeseen,unlikeDACunits,byincreasingtheFLhofPtGunits,thelevelisedcostofgas(LCOG)increases.ThisisbecausePtGisrelativelylesscapexintensivethanDACandthehigherLCOEnetforhigherFLhhasabiggerimpactonthefinalLCOG.Itshouldbenotedthatinthissimplifiedsystem,DAC,electrolyserandmethanationunitshavebeencoupledandnoCO2orhydrogenstoragehasbeenincluded.ThecostshareofLTDAC-basedCO2(conservativescenario)ofLCOGfor4000FLhunderrespectiveLCOEisillustratedinFig.12.Ascanbeseen,CO2costsharewouldbeabout27%in2020,whichwoulddropto21%,19%and19%in2030,2040and2050,respectively.ItisimportanttoemphasisethatadecoupledsystemwithhigherDACFLhwouldhaveasignificantlylowerLCOD,LCOGandconsequentlylowerCO2costshare.Forexample,adecoupledsys-temwith8000DACFLhand4000PtGFLhwouldresultinlowerLCODandLCOGof133,60,40and32V/tCO2and132,76,58and48V/MWhth,HHV,respectively.Inaddition,theabsolutecostofCO2anditsrespectivesharewouldbeevenlowerintheDACbasecasescenario.Therefore,thecostsofCO2DACmaynothaveadecisiveFig.11.TheimpactofPtGFLhonLCOG.M.Fasihietal./JournalofCleanerProduction224(2019)957e980976impactontheintroductionofsyntheticnaturalgastothemarket.Thissimplifiedmodelanditsresultsdonotrepresenttheconditionforallclimatesorsyntheticproducts.6.ConclusionsLarge-scaleCO2DACsystemsareneededtomeettheParisAgreementtargetsbymid-21stcentury,eveninaworldwithhighlevelsofdefossilisationandPSCCimplementation.Itisestimatedthat3,470,4798and15402MtCO2/aDACcapacitiesareneededby2020,2030,2040and2050,respectively.AliteraturereviewonDACtechnologiesisperformedandtheavailabletechnologiesarecat-egorisedfromanenergysystemperspective.Hightemperatureaqueoussolution-baseddirectaircapture(HTDAC)andlowtem-peraturesolidsorbent-baseddirectaircapture(LTDAC)arethetwomaincategoriesofcommerciallyavailabletechnologieswhicharefurtheranalysedfortheperiod2020to2050,technicallyandeconomically.AlthoughtheenergydemandofaLTDACsystemishigher,forhighFLh,itstotalenergydemandcouldbemetataboutthesamecost,asthemajorshareofenergydemandcouldbesuppliedbyrelativelycheaperlow-gradeheatsuppliedbyheatpumps.Inaddition,althoughthecapitalexpenditureofbothtechnologiesisatthesamelevel,theLTDACtechnologyisthemorefavourableoptiontodayandinfuture,duetoitspotentialforextensivecostreductionbyutilisationofwasteheatfromothersources.Moreover,theLTDACsystemshowsahighmodularity,andhasnodemandforexternalwater.TheLCODdevelopmentinthedecadestocome,mainlydependsonthelearningcurveofcapitalexpenditures,itsenergydemandandthecostdevelopmentofrenewableelectricity.Inaconserva-tivescenariowith10%learningrateofcapexandtherealisationofhalftherequiredDACcapacitiesateachtimestep,thecapexofHT/LTDACsystemsarecalculatedtobe815/730,378/338,265/237and222/199V/tCO2$ain2020,2030,2040and2050,respectively.Whilethebasecasescenariohasbeendefinedas100%implementationoftherequiredcapacitieswith15%learningcurveofcapex,inlinewiththeexperiencefromcomparabletechnologies.Underthisscenario,thecapexofHT/LTDACsystemswouldshrinkto815/730,211/189,119/106and89/79V/tCO2$ain2020,2030,2040and2050,respectively.Inaddition,a5/10%electricitydemandreductionforHT/LTDACand14.3%low-gradeheatdemandreductionisforeseenateach10-yeartimestep.Asacasestudy,theCO2capturecostsinMorocco,suppliedbyhybridPV-Wind-batteryplantsandheatpumpshavebeeninves-tigated.Theresultsshowthat,despitehigherelectricitycosts,DACsystemswithhigherFLhwouldhavelowerLCOD.Intheconser-vativescenario,theLCODofHT/LTDACsystemswith8000FLharecalculatedtobe268/222,133/105,91/69and71/54V/tCO2in2020,2030,2040and2050,respectively.Whileinthebasecasescenario,thecostswouldbereducedto268/222,111/84,72/53and54/38V/tCO2,respectively.Basedonthediscussioninsection5.3.,itcanbeenconcludedthatsuchresultsareinlinewithresultsofmajorpublicationsandcompanies’targetsasoftodayandinthelongterm.However,suchcostreductionscouldbeexpectedonlyifthetechnologyimplementationstartsin2020accordingtothedefinedscenarios.Inaddition,accesstofreewasteheatcouldfurtherdecreasetheLCODofLTDACby40e57%,dependingontheyearandappliedscenario.Atsuchcosts,DACiscompetitivetoPSCCwithlessrestrictionsoncapacityandlocation.Whereas,fossilfuelbasedCO2mayinducefurthercoststhanonlythecapturingcosts,sincelateremissionstotheatmospherearemostlikelytobeincluded,inparticularforanetzeroemissionssystem,sothatthecapturingcostsmaybetheminorcostfractionforPSCC.SuchfreedomcouldfurtherincreasethecompetitivenessofDACinprojectsassociatedwithCO2storageorutilisation,byminimisingthetransportationcosts.AcknowledgementsTheauthorsgratefullyacknowledgethepublicfinancingofTekes,theFinnishFundingAgencyforInnovation,forthe‘Neo-CarbonEnergy’projectunderthenumber40101/14.WealsothankCyrilJoseE.BajamundiforthevaluablecommentsandManishRamforproofreading.ReferencesAntecy,2018.Aboutus.Hoevelaken,Netherlands.Availableat:http://www.antecy.com/about-us/.(Accessed5February2018).Aspelund,A.,Jordal,K.,2007.Gasconditioning-theinterfacebetweenCO2captureandtransport.InternationalJournalofGreenhouseGasControl1(3),343e354.Aspelund,A.,Mølnvik,M.J.,DeKoeijer,G.,2006.ShiptransportofCO2technicalsolutionsandanalysisofcosts,energyutilization,exergyefficiencyandCO2emissions.Chem.Eng.Res.Des.84(A9),847e855.Audi,2015.CorporateResponsibilityReport2014.AudiAG,Ingolstadt,Germany.Availableat:https://www.audi.com/content/dam/com/corporate-responsibility/nachhaltigkeit_pdfs/Audi_CR-Report%202014_English_Printversion.pdf.(Accessed24May2018).Baciocchi,R.,Storti,G.,Mazzotti,M.,2006.Processdesignandenergyrequirementsforthecaptureofcarbondioxidefromair.Chem.Eng.Process:ProcessInten-sification45(12),1047e1058.Bajamundi,C.,2015.ProgressPresentationonCO2CaptureDeviceAcquisition.NeoCarbonEnergy2ndReseachers'Semniar,Lappeenranta.March.Availableat:http://www.neocarbonenergy.fi/wp-content/uploads/2016/02/12_Bajamundi.pdf.(Accessed24May2018).Bajamundi,C.,Elfving,J.,Kauppinen,J.,2018.Assessmentoftheperformanceofabenchscaledirectaircapturedeviceoperatedatoutdoorenvironment.In:InternationalConferenceonNegativeCO2Emissions,Gothenburg,May22-24.Bolinger,M.,Seel,J.,HamachiLaCommare,K.,2017.Utility-ScaleSolar2016-AnEmpiricalAnalysisofProjectCost,PerformanceandPricingTrendsintheUnitedStates.LawrenceBerkeleyNationalLaboratory,Berkeley,September.Availableat:https://utilityscalesolar.lbl.gov.(Accessed24May2018).Breyer,C.,Bogdanov,D.,Aghahosseini,A.,Gulagi,A.,Child,M.,Oyewo,A.,Farfan,J.,Sadovskaia,K.,Vainikka,P.,2018.Solarphotovoltaicsdemandfortheglobalenergytransitioninthepowersector.Prog.PhotovoltaicsRes.Appl.26,505e523.Breyer,C,Khalili,S.,Bogdanov,D.,2019a.SolarphotovoltaiccapacitydemandforasustainabletransportationsectortofulfiltheParisagreementby2050.Prog.PhotovoltaicsRes.Appl.1e12.https://doi.org/10.1002/pip.3114.Breyer,C.,Fasihi,M.,Aghahosseini,A.,2019b.Carbondioxidedirectaircaptureforeffectiveclimatechangemitigationbasedonrenewableelectricity:anewtypeofenergysystemsectorcoupling.MitigAdaptStrategGlobChange.https://doi.org/10.1007/s11027-019-9847-y.Broehm,M.,Strefler,J.,Bauer,N.,2015.Techno-economicreviewofdirectaircap-turesystemsforlargescalemitigationofatmosphericCO2.SSRNElectronicJournal.Availableat:https://papers.ssrn.com/sol3/papers.cfm?abstract_Fig.12.CO2costshareofLCOGcostdevelopmentforDACandPtGwith4000FLh.M.Fasihietal./JournalofCleanerProduction224(2019)957e980977id¼2665702.(Accessed24May2018).Bui,M.,Adjiman,C.S.,Bardow,A.,Anthony,E.J.,Boston,A.,Brown,S.,Fennell,P.S.,Fuss,S.,Galindo,A.,etal.,2018.Carboncaptureandstorage(CCS):thewayforward.EnergyEnviron.Sci.11,1062.Caldera,U.,Breyer,C.,2017.Learningcurveforseawaterreverseosmosisdesali-nationplants:capitalcosttrendofthepast,presentandfuture.WaterResour.Res.53,10523e10538.Caldera,U.,Bogdanov,D.,Breyer,C.,2016.LocalcostofseawaterROdesalinationbasedonsolarPVandwindenergy:aglobalestimate.Desalination385,207e216.CarbonEngineering,2018a.Teamandboard.Squamish,Canada.Availableat:http://carbonengineering.com/company-profile/.(Accessed15January2018).CarbonEngineering,2018b.CEDemonstrationPlanteaYearinReview.Squamish,Canada.Availableat:http://carbonengineering.com/ce-demonstration-plant-a-year-in-review/.(Accessed5February2018).CarbonEngineering,2018c.DirectAirCapture.Squamish,Canada.Availablefrom:http://carbonengineering.com/about-dac/.(Accessed25January2018).Chen,C.,Tavoni,M.,2013.DirectaircaptureofCO2andclimatestabilization:amodelbasedassessment.Clim.Change118,59e72.Choi,S.,Gray,M.,Jones,C.,2011a.Amine-tetheredsolidadsorbentscouplinghighadsorptioncapacityandregenerabilityforCO2capturefromambientair.ChemSusChem4(5),628e635.Choi,S.,Drese,J.H.,Eisenberger,P.M.,Jones,C.W.,2011b.Applicationofamine-tetheredsolidsorbentsfordirectCO2capturefromtheambientair.Environ.Sci.Technol.45,2420e2427.Choi,S.,Watanabe,T.,Bae,T.,Sholl,D.S.,Jones,C.W.,2012.ModificationoftheMg/DOBDCMOFwithaminestoenhanceCO2adsorptionfromultradilutegases.J.Phys.Chem.Lett.3,1136e1141.Climeworks,2017.ClimeworksStartsPlantinIcelandandTherebyCreatestheWorld'sFirstCarbonRemovalSolutionthroughDirectAirCapture.Pressrelease,October12,Hellisheiði,Iceland.Availableat:http://www.climeworks.com/wp-content/uploads/2017/10/PR-Climeworks-CarbFix-Carbon-Removal-1.pdf.(Accessed28May2018).Climeworks,2018a.Aboutus.Zurich,Switzerland.Availableat:http://www.climeworks.com/about/.(Accessed5February2018).Climeworks,2018b.CapturingCO2fromAir.Zurich,Switzerland.Availableat:http://www.climeworks.com/co2-removal/.(Accessed1February2018).Creutzig,F.,Breyer,C.,Hilaire,J.,Minx,J.,Peters,G.,Socolow,R.,2019.TheMutualDependenceofNegativeEmissionTechnologiesandEnergySystems.https://doi.org/10.1039/c8ee03682a(inpress).DEA,2016.TechnologyDataforEnergyPlantsUpdatedChapters.August2016.DanishEnergyAgency,p.117.Copenhagen,Denmark.Availableat:https://ens.dk/sites/ens.dk/files/Analyser/update_-_technology_data_catalogue_for_energy_plants_-_aug_2016.pdf.(Accessed1April2018).Derevschikov,V.,Veselovskaya,J.,Kardash,T.,Trubitsyn,D.,Okunev,A.,2014.DirectCO2capturefromambientairusingK2CO3/Y2O3compositesorbent.Fuel127,212e218.[EC]-EuropeanCommission,2014.ETRI2014denergyTechnologyReferenceIn-dicatorProjectionsfor2010e2050.ECJointResearchCentreInstituteforEnergyandTransport,Petten.Availablefrom:https://setis.ec.europa.eu/system/files/ETRI_2014.pdf.(Accessed21May2018).Eisaman,M.D.,Schwartz,D.E.,Amic,S.,Larner,D.L.,Zesch,J.,Torres,F.,Littau,K.,2009.Energy-efficientelectrochemicalCO2capturefromtheatmosphere.In:TechnicalProceedingsofthe2009CleanTechnologyConferenceandTradeShow,May3-7,Houston,TX.Elfving,J.,Bajamundi,C.,Kauppinen,J.,Sainio,T.,2017.ModellingofequilibriumworkingcapacityofPSA,TSAandTVSAprocessesforCO2adsorptionunderdirectaircaptureconditions.J.CO2Utilization22,270e277.[ETIP-PV]-EuropeanTechnology&InnovationPlatformePhotovoltaic,2017.TheTrueCompetitivenessofSolarPVeaEuropeanCaseStudy.ETIP-PV,Munich,March29.Availableat:https://goo.gl/UjyGuU.(Accessed22May2018).Farfan,J.,Fasihi,M.,Breyer,C.,2019.Trendsintheglobalcementindustryandopportunitiesforalong-termsustainableCCUpotentialforPower-to-X.J.Clean.Prod.217,821e835.https://doi.org/10.1016/j.jclepro.2019.01.226.Fasihi,M.,Bogdanov,D.,Breyer,C.,2017a.Long-termhydrocarbontradeoptionsfortheMaghrebregionandeurope-renewableenergybasedsyntheticfuelsforanetzeroemissionsworld.Sustainability9(2),306.Fasihi,M.,Bogdanov,D.,Breyer,C.,2017b.OverviewonPtXoptionsstudiedinNCEandtheirglobalpotentialbasedonhybridPV-windpowerplants.In:Neo-CarbonEnergy9thResearchers'Seminar.December11-13.Lappeenranta,Finland.Availableat:http://www.neocarbonenergy.fi/wp-content/uploads/2016/02/13_Fasihi.pdf.(Accessed22May2018).Fischedick,M.,Marzinkowski,J.,Winzer,P.,Weigel,M.,2014.Techno-economicevaluationofinnovativesteelproductiontechnologies.J.Clean.Prod.84,563e580.FreitasJr.,R.A.,2015.TheNanofactorySolutiontoGlobalClimateChange:Atmo-sphericCarbonCapture.IMMReportNo.45,December.InstituteforMolecularManufacturing,PaloAlto,USA.Availableat:http://www.imm.org/Reports/rep045.pdf.(Accessed22May2018).Fuss,S.,Lamb,W.F.,Callaghan,M.W.,Hilaire,J.,Creutzig,F.,Amann,T.,Beringer,T.,deOliveiraGarcia,W.,Hartmann,J.,etal.,2018.NegativeemissionsdPart2:costs,potentialsandsideeffects.Environ.Res.Lett.13,063002.Gao,L.,Fang,M.,Li,H.,Hetland,J.,2011.CostanalysisofCO2transportation:casestudyinChina.EnergyProcedia4,5974e5981.GlobalThermostat,2018a.AboutGlobalThermostat.NewYork,USAAvailableat:https://globalthermostat.com/about-global-thermostat/.(Accessed15January2018).GlobalThermostat,2018b.AUniqueCaptureProcess.NewYork,USAAvailableat:https://globalthermostat.com/a-unique-capture-process/.(Accessed15May2018).Goeppert,A.,Czaun,M.,SuryaPrakash,G.,Olah,G.,2012.Airastherenewablecarbonsourceofthefuture:anoverviewofCO2capturefromtheatmosphere.EnergyEnviron.Sci.5(7),7833.Goldberg,D.,Lackner,K.,Han,P.,Slagle,A.,Wang,T.,2013.Co-locationofaircap-ture,subseafloorCO2sequestration,andenergyproductionontheKerguelenplateau.Environ.Sci.Technol.47(13),7521e7529.Holmes,G.,Keith,D.,2012.Anair-liquidcontactorforlarge-scalecaptureofCO2fromair.Phil.Trans.Math.Phys.Eng.Sci.370(1974),4380e4403.Holmes,G.,Nold,K.,Walsh,T.,Heidel,K.,Henderson,M.,Ritchie,J.,Klavins,P.,Singh,A.,Keith,D.,2013.Outdoorprototyperesultsfordirectatmosphericcaptureofcarbondioxide.EnergyProcedia37,6079e6095.House,K.,Baclig,A.,Ranjan,M.,vanNierop,E.,Wilcox,J.,Herzog,H.,2011.EconomicandenergeticanalysisofcapturingCO2fromambientair.Proc.Natl.Acad.Sci.Unit.StatesAm.108(51),20428e20433.Hydrocell,2018.DirectAirCapture(DAC)Appliances.OyHydrocellLtd,J€arvenp€a€a,Finland.Availableat:http://hydrocell.fi/en/air-cleaners-carbon-dioxide-filters-and-dac-appliances/dac-appliances/.(Accessed25May2018).IEA,2009.ChemicalandPetrochemicalSector-PotentialofBestPracticeTech-nologyandOtherMeasuresforImprovingEnergyEfficiency.IEAinformationpaper.OECD/IEA,Paris,September.Availableat:https://www.iea.org/publications/freepublications/publication/chemical_petrochemical_sector.pdf.(Accessed25May2018).IEA,2010.CO2CaptureandStorage.EnergyTechnologySystemAnalysisProgramme(ETSAP).Paris.Availableat:https://iea-etsap.org/E-TechDS/PDF/E14_CCS_oct2010_GS_gc_AD_gs.pdf.(Accessed25May2018).IEA,2016.20YearsofCarbonCaptureandStorage,AcceleratingFutureDeployment.OECD/IEA,Paris.Availableat:https://www.iea.org/publications/freepublications/publication/20YearsofCarbonCaptureandStorage_WEB.pdf.(Accessed25May2018).IEA,2017.CO2EmissionsfromFuelCombustion.Statistics.OECD/IEA,Paris.Avail-ableat:https://www.iea.org/publications/freepublications/publication/CO2EmissionsfromFuelCombustionHighlights2017.pdf.(Accessed25May2018).Infinitree,2018.Company'sWebsite.Huntington,NewYork.Availableat:http://www.infinitreellc.com/technology/.(Accessed28May2018).IPCC,2003.EmissionsfromWasteIncineration.IntergovernmentalPanelonClimateChange,Geneva,Switzerland.Availableat:http://www.ipcc-nggip.iges.or.jp/public/gp/bgp/5_3_Waste_Incineration.pdf.(Accessed25May2018).Ishimoto,Y.,Sugiyama,M.,Kato,E.,Moriyama,R.,Tsuzuki,K.,Kurosawa,A.,2017.Puttingcostsofdirectaircaptureincontext.In:SocialScienceResearchNetwork(SSRN),FCEAWorkingPaperSeries:002,June.Availableat:https://papers.ssrn.com/sol3/papers.cfm?abstract_id¼2982422.(Accessed30May2018).Isobe,J.,Henson,P.,MacKnight,A.,Yates,S.,Schuck,D.,Winton,D.,2016.CarbondioxideremovaltechnologiesforU.S.Spacevehicles:past,present,andfuture.In:46thInternationalConferenceonEnvironmentalSystems.ICES-2016-425.July10-14,Vienna,Austria.Jacobson,M.Z.,Delucchi,M.A.,Bauer,Z.A.F.,Goodman,S.C.,Chapman,W.E.,Cameron,M.A.,Bozonnat,C.,etal.,2017.100%cleanandrenewablewind,water,andsunlightall-sectorenergyroadmapsfor139countriesoftheworld.Joule1,108e121.Johnsen,K.,Helle,K.,Røneid,S.,Holt,H.,2011.DNVrecommendedpractice:designandoperationofCO2pipelines.EnergyProcedia4,3032e3039.Johnston,N.A.C.,Blake,D.R.,Rowland,F.S.,Elliott,S.,Lackner,K.S.,Ziock,H.J.,Dubey,M.K.,Hanson,H.P.,Barr,S.,2003.Chemicaltransportmodelingofpo-tentialatmosphericCO2sinks.EnergyConvers.Manag.44,681e689.Karjunen,H.,Tynj€al€a,T.,Hypp€anen,T.,2017.AmethodforassessinginfrastructureforCO2utilization:acasestudyofFinland.Appl.Energy205,33e43.Keith,D.,2009.WhycaptureCO2fromtheatmosphere?Science325(5948),1654e1655.Keith,D.,Ha-Duong,M.,Stolaroff,J.,2006.ClimatestrategywithCO2capturefromtheair.Clim.Change74(1e3),17e45.Keith,D.W.,Holmes,G.,StAngelo,D.,Heidel,K.,15August2018.AprocessforcapturingCO2fromtheatmosphere.Joule2(8),1573e1594(inpress).https://doi.org/10.1016/j.joule.2018.05.006.Kintisch,E.,2014.MITTechnologyReview:CanSuckingCO2OutoftheAtmosphereReallyWork?MITTechnologyReviewmagazine.October7.Availableat:https://www.technologyreview.com/s/531346/can-sucking-co2-out-of-the-atmo-sphere-really-work/.(Accessed25May2018).Kittner,N.,Lill,F.,Kammen,D.,2017.Energystoragedeploymentandinnovationforthecleanenergytransition.NatureEnergy2(9),17125.Knoope,M.,Guijt,W.,Ramírez,A.,Faaij,A.,2014.Improvedcostmodelsforopti-mizingCO2pipelineconfigurationforpoint-to-pointpipelinesandsimplenetworks.InternationalJournalofGreenhouseGasControl22,25e46.Kohler,P.,Hartmann,J.,Wolf-Gladrow,D.,2010.Geoengineeringpotentialofarti-ficiallyenhancedsilicateweatheringofolivine.Proc.Natl.Acad.Sci.Unit.StatesAm.107(47),20228e20233.Kolster,C.,Mechleri,E.,Krevor,S.,MacDowell,N.,2017.TheroleofCO2purificationandtransportnetworksincarboncaptureandstoragecostreduction.Inter-nationalJournalofGreenhouseGasControl58,127e141.Kriegler,E.,Bauer,N.,Popp,A.,Humpen€oder,F.,Leimbach,M.,Strefler,J.,M.Fasihietal./JournalofCleanerProduction224(2019)957e980978Baumstark,L.,Bodirsky,B.,Hilaire,J.,Klein,D.,etal.,2017.Fossil-fueleddevelopment(SSP5):anenergyandresourceintensivescenarioforthe21stcentury.Glob.Environ.Chang.42,297e315.Kronenberg,D.,2015.PersonalCommunication.ClimeworksAG,Zürich,Switzerland.September6.Kujanp€a€a,L.,Rauramo,J.,Arasto,A.,2011.Cross-borderCO2infrastructureoptionsforaCCSdemonstrationinFinland.EnergyProcedia4,2425e2431.Kulkarni,A.,Sholl,D.,2012.Analysisofequilibrium-basedTSAprocessesfordirectcaptureofCO2fromair.Ind.Eng.Chem.Res.51(25),8631e8645.Kuparinen,K.,Vakkilainen,E.,Tynj€al€a,T.,2018.PulpmillasBioCCU.In:Interna-tionalConferenceonNegativeCO2Emissions,May22-24,G€oteborg,Sweden.Lackner,K.,2009.Captureofcarbondioxidefromambientair.Eur.Phys.J.Spec.Top.176(1),93e106.Lazard,2017.Lazard'sLevelizedCostofEnergyAnalysis-Version11.November.Lazard,Hamilton,USA.Availableat:https://www.lazard.com/media/450337/lazard-levelized-cost-of-energy-version-110.pdf.(Accessed10May2018).Leeson,D.,MacDowell,N.,Shah,N.,Petit,C.,Fennell,P.S.,2017.ATechno-economicanalysisandsystematicreviewofcarboncaptureandstorage(CCS)appliedtotheironandsteel,cement,oilrefiningandpulpandpaperindustries,aswellasotherhighpuritysources.InternationalJournalofGreenhouseGasControl61,71e84.Li,C.,Shi,H.,Cao,Y.,Kuang,Y.,Zhang,Y.,Gao,D.,Sun,L.,2015.Modelingandoptimaloperationofcarboncapturefromtheairdrivenbyintermittentandvolatilewindpower.Energy87,201e211.Liebreich,M.,2017.GlobalNewCleanEnergyInvestmentandCapacityInstallations.BloombergNewEnergyFinance,Londonsummit.September.Availablefrom:https://data.bloomberglp.com/bnef/sites/14/2017/09/BNEF-Summit-London-2017-Michael-Liebreich-State-of-the-Industry.pdf.(Accessed10May2018).Mahmoudkhani,M.,Keith,D.,2009.Low-energysodiumhydroxiderecoveryforCO2capturefromatmosphericairdthermodynamicanalysis.InternationalJournalofGreenhouseGasControl3(4),376e384.Mathiesen,B.,Lund,H.,Connolly,D.,Wenzel,H.,Østergaard,P.,M€oller,B.,Nielsen,S.,Ridjan,I.,Karnøe,P.,Sperling,K.,etal.,2015.SmartEnergySystemsforcoherent100%renewableenergyandtransportsolutions.Appl.Energy145,139e154.Mazzotti,M.,Baciocchi,R.,Desmond,M.J.,Socolow,R.H.,2013.DirectaircaptureofCO2withchemicals:optimizationofatwo-loophydroxidecarbonatesystemusingacountercurrentair-liquidcontactor.Clim.Change118(1),119e135.McCollum,D.L.,Ogden,J.M.,2006.Techno-economicModelsforCarbonDioxideCompression,Transport,andStorage&CorrelationsforEstimatingCarbonDi-oxideDensityandViscosity.Report.UniversityofCalifornia,Davis,USA.Availableat:https://escholarship.org/uc/item/1zg00532.(Accessed10May2018).Minx,J.C.,Lamb,W.F.,Callaghan,M.W.,Fuss,S.,Hilaire,J.,Lenzi,D.,Nemet,G.,Creutzig,F.,Amann,T.,etal.,2018.NegativeemissionsdPart1:researchlandscapeandsynthesis.Environ.Res.Lett.13,063001.NASA,2006.ClosingtheLoopRecyclingWaterandAirinSpace.NationalAero-nauticsandSpaceAdministration,Washington,USA.Availableat:https://www.nasa.gov/pdf/146558main_RecyclingEDA(final)%204_10_06.pdf.(Accessed27July2017).Neij,L.,2008.Costdevelopmentoffuturetechnologiesforpowergenerationdastudybasedonexperiencecurvesandcomplementarybottom-upassessments.EnergyPolicy36,2200e2211.Nemet,G.F.,Brandt,A.R.,2012.Willingnesstopayforaclimatebackstop:liquidfuelproducersanddirectCO₂aircapture.EnergyJ.53e81.Nemet,G.F.,Callaghan,M.W.,Creuzig,F.,Fuss,S.,Hartmann,J.,Hilaire,J.,Lamb,W.F.,Minx,J.C.,Rogers,S.,Smith,P.,2018.NegativeemissionsdPart3:innovationandupscaling.Environ.Res.Lett.13,063003.Nikulshina,V.,Gebald,C.,Steinfeld,A.,2009.CO2capturefromatmosphericairviaconsecutiveCaO-carbonationandCaCO3-calcinationcyclesinafluidized-bedsolarreactor.Chem.Eng.J.146(2),244e248.Otto,A.,Robinius,M.,Grube,T.,Schiebahn,S.,Praktiknjo,A.,Stolten,D.,2017.Po-wer-to-Steel:reducingCO2throughtheintegrationofrenewableenergyandhydrogenintotheGermansteelindustry.Energies10(4),451.Ping,E.,Sakwa-Novak,M.,Eisenberger,P.,2018a.GlobalThermostatlowcostdirectaircapturetechnology.In:InternationalConferenceonNegativeCO2Emissions,Gothenburg,May22-24.Ping,E.,Sakwa-Novak,M.,Eisenberger,P.,2018b.Loweringthecostofdirectaircapture:pilottocommercialdeployment.In:PresentationatInternationalConferenceonNegativeCO2Emissions,Gothenburg,May22-24.Ram,M.,Bogdanov,D.,Aghahosseini,A.,Oyewo,A.S.,Gulagi,A.,Child,M.,Fell,H.-J.,Breyer,C.,2017.GlobalEnergySystemBasedon100%RenewableEnergyePowerSector.StudybyLappeenrantaUniversityofTechnologyandEnergyWatchGroup,Lappeenranta,Berlin.November.Availableat:http://bitly.com/2hU4Bn9.(Accessed10May2018).Ram,M.,Bogdanov,D.,Aghahosseini,A.,Gulagi,A.,Oyewo,A.S.,Child,M.,Caldera,U.,Sadovskaia,K.,Farfan,J.,Barbosa,L.S.N.S.,Fasihi,M.,Khalili,S.,Fell,H.-J.,Breyer,C.,2018.GlobalEnergySystemBasedon100%RenewableEnergyeEnergyTransitioninEuropeacrossPower,Heat,TransportandDesalinationSectors.StudybyLUTUniversityandEnergyWatchGroup,Lap-peenranta,Berlin,December.ISBN:978-952-335-329-9.Availableat:https://goo.gl/dkoGeD.(Accessed18January2019).Rembrandt,S.,Matt,F.,2016.TheDriversofGlobalEnergyDemandGrowthto2050.Onlinearticle,McKinsey&Company,London,UK.Availableat:https://www.mckinseyenergyinsights.com/insights/the-drivers-of-global-energy-demand-growth-to-2050.(Accessed10May2018).Roestenberg,T.,2015.DesignStudyReport-ANTECYSolarFuelsDevelopment.Antecy.Hoevelaken,theNetherlands.Availableat:http://www.antecy.com/wp-content/uploads/2016/05/Design-study-report.pdf.(Accessed10May2018).Rogelj,J.,Shindell,D.,Jiang,K.,Fifita,S.,Forster,P.,Ginzburg,V.,Handa,C.,Kheshgi,H.,Kobayashi,S.,Kriegler,E.,Mundaca,L.,Seferian,R.,Vilari~no,M.V.,2018.Mitigationpathwayscompatiblewith1.5Cinthecontextofsustainabledevelopment.In:Masson-Delmotte,V.,Zhai,P.,P€ortner,H.O.,Roberts,D.,Skea,J.,Shukla,P.R.,Pirani,A.,Moufouma-Okia,W.,Pean,C.,Pidcock,R.,Connors,S.,Matthews,J.B.R.,Chen,Y.,Zhou,X.,Gomis,M.I.,Lonnoy,E.,Maycock,T.,Tignor,M.,Waterfield,T.(Eds.),GlobalWarmingof1.5C.AnIPCCSpecialReportontheImpactsofGlobalWarmingof1.5CabovePre-industrialLevelsandRelatedGlobalGreenhouseGasEmissionPathways,intheContextofStrengtheningtheGlobalResponsetotheThreatofClimateChange,SustainableDevelopment,andEffortstoEradicatePoverty.https://www.ipcc.ch/sr15/.Rubin,E.S.,Yeh,S.,Taylor,M.R.,Hounshell,D.A.,2004.Experiencecurvesforpowerplantemissioncontroltechnologies.Int.J.EnergyTechnol.Pol.Policy2(1e2),52e69.Rubin,E.S.,Yeh,S.,Antes,M.,Berkenpas,M.,Davison,J.,2007.UseofexperiencecurvestoestimatethefuturecostofpowerplantswithCO2capture.Interna-tionalJournalofGreenhouseGasControl1(2),188e197.Sanz-Perez,E.,Murdock,C.,Didas,S.,Jones,C.,2016.DirectcaptureofCO2fromambientair.Chem.Rev.116(19),11840e11876.SAPEA,2018.NovelCarbonCaptureandUtilisationTechnologies:ResearchandClimateAspects.SAPEAEvidenceReviewReportNo.2,Berlin,Germany.Availableat:https://www.sapea.info/wp-content/uploads/CCU-report-proof3-for-23-May.pdf.(Accessed27May2018).Schmidt,O.,Hawkes,A.,Gambhir,A.,Staffell,I.,2017.Thefuturecostofelectricalenergystoragebasedonexperiencerates.NatureEnergy2,17110.Seipp,C.,Williams,N.,Kidder,M.,Custelcean,R.,2017.CO2capturefromambientairbycrystallizationwithaguanidinesorbent.Angew.Chem.Int.Ed.56(4),1042e1045.Sgouridis,S.,Csala,D.,Bardi,U.,2016.Thesower'sway:quantifyingthenarrowingnet-energypathwaystoaglobalenergytransition.Environ.Res.Lett.11,094009.Simon,A.,Kaahaaina,N.,JulioFriedmann,S.,Aines,R.,2011.Systemsanalysisandcostestimatesforlargescalecaptureofcarbondioxidefromair.EnergyPro-cedia4,2893e2900.Sinha,A.,Darunte,L.,Jones,C.,Realff,M.,Kawajiri,Y.,2017.SystemsdesignandeconomicanalysisofdirectaircaptureofCO2throughtemperaturevacuumswingadsorptionusingMIL-101(Cr)-PEI-800andmmen-Mg2(dobpdc)MOFadsorbents.Ind.Eng.Chem.Res.56(3),750e764.Skaugen,G.,Roussanaly,S.,Jakobsen,J.,Brunsvold,A.,2016.Techno-economicevaluationoftheeffectsofimpuritiesonconditioningandtransportofCO2bypipeline.InternationalJournalofGreenhouseGasControl54,627e639.Skytree,2018.CO2Removal.Skytreecompany,Amsterdam,TheNetherlands.Availableat:https://www.skytree.eu/direct-air-capture/.(Accessed28May2018).Smith,P.,Davis,S.J.,Creutzig,F.,Fuss,S.,Minx,J.,Gabrielle,B.,Kato,E.,Jackson,R.B.,Cowie,A.,Kriegler,E.,etal.,2016.BiophysicalandeconomiclimitstonegativeCO2emissions.Nat.Clim.Change6,42e50.Socolow,R.H.,Desmond,M.J.,Aines,R.,Blackstock,J.,Bolland,O.,Kaarsberg,T.,Lewis,N.,etal.,2011.DirectAirCaptureofCO2withChemicals:ATechnologyAssessmentfortheAPSPanelonPublicAffairs.AmericanPhysicalSociety,CollegePark,MD.Stolaroff,J.,Keith,D.,Lowry,G.,2008.Carbondioxidecapturefromatmosphericairusingsodiumhydroxidespray.Environ.Sci.Technol.42(8),2728e2735.Svensson,R.,Odenberger,M.,Johnsson,F.,Str€omberg,L.,2004.TransportationsystemsforCO2-applicationtocarboncaptureandstorage.EnergyConvers.Manag.45(15e16),2343e2353.UNFCCC,2015.AdoptionoftheParisAgreementdProposalbythePresident.UnitedNationsFrameworkConventiononClimateChangeParis,France.vandenBroek,M.,Hoefnagels,R.,Rubin,E.,Turkenburg,W.,Faaij,A.,2009.EffectsoftechnologicallearningonfuturecostandperformanceofpowerplantswithCO2capture.Prog.EnergyCombust.Sci.35(6),457e480.Vazquez,F.V.,Koponen,J.,Ruuskanen,V.,Bajamundi,C.,Kosonen,A.,Simell,P.,Ahola,J.,Frilund,C.,Elfving,J.,Reinikainen,M.,Heikkinen,N.,Kauppinen,J.,Piermartini,P.,2018.Power-to-Xtechnologyusingrenewableelectricityandcarbondioxidefromambientair:SOLETAIRproof-of-conceptandimprovedprocessconcept.J.CO2Utilization28,235e246.Vogel,A.B.,2017.CO2etheRawMaterialthatComesfromAIR.SwissFederalOfficeofEnergy.Availableat:http://www.bfe.admin.ch/cleantech/05761/05763/05782/index.html?lang¼en&dossier_id¼05135.(Accessed10May2018).Wilcox,J.,Psarras,C.P.,Liguori,S.,2017.Assessmentofreasonableopportunitiesfordirectaircapture.Environ.Res.Lett.12,065001.Williamson,P.,2016.Emissionsreduction:scrutinizeCO2removalmethods.Nature530(7589),153e155.Zeman,F.,2007.EnergyandmaterialbalanceofCO2capturefromambientair.Environ.Sci.Technol.41(21),7558e7563.M.Fasihietal./JournalofCleanerProduction224(2019)957e980979Zeman,F.,2014.ReducingthecostofCa-baseddirectaircaptureofCO2.Environ.Sci.Technol.48(19),11730e11735.[ZEP]eZeroEmissionPlatform,2011.TheCostsofCO2Capture,TransportandStorage.Post-demonstrationCCSintheEU.EuropeanTechnologyPlatformforZeroEmissionFossilFuelPowerPlants,Brussels,Belgium.Availableat:http://www.globalccsinstitute.com/sites/www.globalccsinstitute.com/files/publications/17011/costs-co2-capture-transport-and-storage.pdf.(Accessed10May2018).M.Fasihietal./JournalofCleanerProduction224(2019)957e980980