二氧化碳直接空气捕获装置的技术经济评价(英)VIP专享VIP免费

Techno-economic assessment of CO
2
direct air capture plants
Mahdi Fasihi
*
, Olga Emova, Christian Breyer
LUT University, Yliopistonkatu 34, 53850, Lappeenranta, Finland
article info
Article history:
Received 14 October 2018
Received in revised form
25 January 2019
Accepted 8 March 2019
Available online 14 March 2019
Keywords:
Carbon dioxide (CO
2
)
Direct air capture (DAC)
Carbon capture and utilisation (CCU)
Negative emission technology (NET)
Economics
abstract
CO
2
direct air capture (DAC) has been increasingly discussed as a climate change mitigation option.
Despite technical advances in the past decade, there are still misconceptions about DAC's current and
long-term costs as well as energy, water and area demands. This could undermine DAC's anticipated role
in a neutral or negative greenhouse gas emission energy system, and inuence policy makers. In this
study, a literature review and techno-economic analyses of state-of-the-art DAC technologies are per-
formed, wherein, DAC technologies are categorised as high temperature aqueous solutions (HT DAC) and
low temperature solid sorbent (LT DAC) systems, from an energy system perspective. DAC capital ex-
penditures, energy demands and costs have been estimated under two scenarios for DAC capacities and
nancial learning rates in the period 2020 to 2050. DAC system costs could be lowered signicantly with
commercialisation in the 2020s followed by massive implementation in the 2040s and 2050s, making
them cost competitive with point source carbon capture and an affordable climate change mitigation
solution. It is concluded that LT DAC systems are favourable due to lower heat supply costs and the
possibility of using waste heat from other systems. CO
2
capture costs of LT DAC systems powered by
hybrid PV-Wind-battery systems for Moroccan conditions and based on a conservative scenario, without/
with utilisation of free waste heat are calculated at 222/133, 105/60, 69/40 and 54/32 V/t
CO2
in 2020,
2030, 2040 and 2050, respectively. These new ndings could enhance DAC's role in a successful climate
change mitigation strategy.
©2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction
The problem of global warming caused by greenhouse gas
(GHG) emissions, mainly carbon dioxide (CO
2
), has reached
dangerous levels. CO
2
concentration in the atmosphere has rapidly
increased from 280 ppm in the pre-industrial era to 403 ppm in
2016, with an annual growth rate of 2 ppm (IEA, 2017). The Paris
Agreement aims to mitigate climate change and keep temperature
rise well below 2
C and preferably 1.5
C in comparison to the pre-
industrial age by united efforts of all countries (UNFCCC, 2015). To
achieve this goal, along with sharply cutting anthropogenic GHG
emissions, actions are needed for active CO
2
removal by imple-
mentation of Negative CO
2
Emissions Technologies (NETs) (Kriegler
et al., 2017;Rogelj et al., 2018).
A range of options are available for CO
2
emissions removal. CO
2
emissions can be captured at point sources such as ue gases from
conventional power plants or non-energetic sectors such as cement
plants. However, some plants are too old and cannot be retrotted.
Moreover, even in plants with CO
2
removal systems, not all emis-
sions are captured as the average capture rates are in the range of
50e94% (Leeson et al., 2017). On the other hand, it is not possible to
directly capture CO
2
emissions produced by long-distance aviation
and marine transport. Large amount of small emitters, such as in
the transport sector, which account for 50% of global GHG emis-
sions, are just impossible to neutralise by conventional CO
2
capture
applications (Seipp et al., 2017). These facts lead to the undeniable
necessity of nding additional solutions that are capable of
capturing CO
2
independent of origin and location.
Another approach for climate change mitigation is capturing
CO
2
directly from the atmosphere. Hitherto, plants have been doing
it naturally to some extent. Nonetheless, they cannot keep up with
the increasing anthropogenic emissions (Goeppert et al., 2012).
Afforestation, bioenergy with carbon capture and storage (BECCS)
and enhanced weathering were introduced to reduce CO
2
con-
centration in the atmosphere (Williamson, 2016). However, their
commercial feasibility is limited, as all of these measures are
associated with risks. Large-scale BECCS and afforestation threat
biodiversity, water and food security, as both are characterised by
*Corresponding author.
E-mail address: Mahdi.Fasihi@lut.(M. Fasihi).
Contents lists available at ScienceDirect
Journal of Cleaner Production
journal homepage: www.elsevier.com/locate/jclepro
https://doi.org/10.1016/j.jclepro.2019.03.086
0959-6526/©2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Journal of Cleaner Production 224 (2019) 957e980
huge land requirements (Smith et al., 2016). Enhanced weathering
provokes rising pH values in rivers and changing the chemistry in
oceans (Kohler et al., 2010). Besides afforestation/reforestation,
BECCS and enhanced weathering, the full portfolio of NETs also
includes biochar, ocean fertilisation and soil carbon sequestration
(Fuss et al., 2018;Minx et al., 2018), which may have to be applied in
a portfolio of NETs for effective climate change mitigation (Bui et al.,
2018).
CO
2
Direct Air Capture (DAC), besides BECCS, is the other option
for capturing CO
2
from the atmosphere, diluted gases and distrib-
uted sources of carbon via industrial processes (Broehm et al., 2015;
Goeppert et al., 2012;Lackner, 2009). DAC is a relatively new and
innovative technology in early commercial stages (Nemet et al.,
2018), which in a long term perspective, along with conventional
technologies, can help humankind to control and mitigate climate
change (Keith, 2009;Sanz-P
erez et al., 2016).
In this paper, a techno-economic assessment of the main CO
2
direct air capture technologies, from an energy system point of
view, has been carried out. The remaining sections of the paper are
as follows: Section 2describes the methodology. In section 3,a
literature review has been carried out. In section 4, available
technologies have been described and the collected techno-
economic data is categorised and summarised in the form of ta-
bles. The nal model of main technologies in 2020 are introduced.
Later, DAC capital expenditures, energy demands and costs have
been estimated under two scenarios for DAC capacities and nan-
cial learning rates in the period 2020 to 2050 and sensitivity ana-
lyses for the most valuable parameters are done. Further, DAC's area
and water demands, as well as CO
2
compression, transport and
storage are presented. In section 5, relevance of DAC with respect to
the Paris Agreement, as well as benets and challenges of the main
DAC technologies are discussed. Later, more factors on the nal
costs of large-scale DAC systems are examined and results are
compared to projections from companies or literature. Moreover, a
cost comparison to point source carbon capture (PSCC), as one of
the competing technologies is performed. In addition, the cost
share of CO
2
DAC in power-to-gas systems has been investigated.
Finally, conclusions are drawn in section 6.
2. Methodology and data
An extensive review has been performed considering literature
published from the early 2000s to the present time that are rele-
vant to this research. Research was conducted in the following
manner: data gathering via such platforms as ScienceDirect, Sco-
pus, Google Scholar, ResearchGate, ofcial websites of companies
and international agencies such as Intergovernmental Panel on
Climate Change (IPCC) and International Energy Agency (IEA). The
following keywords were used: CO
2
capture plant, CO
2
capture
methods, CO
2
scrubbing, CO
2
separation, direct air capture, cost of
CO
2
capturing, carbon capture start-up companies and atmospheric
CO
2
capture.
A database of relevant data has been created from all the
reviewed publications, for further analyses. Recalculation and
aligning of the ndings were conducted. All parameters are pre-
sented on a comparable scale for classication of all available
technologies and to deliver the nal models, including long-term
estimations. A sensitivity analysis of the most valuable variables
is performed.
Cost numbers from different years presented in USD are con-
verted to euros by using a xed exchange ratio of 1.33 USD/V, as the
long term average exchange rate. As an exception, cost numbers
from Keith et al. (2018) and values in other currencies are converted
to euros based on exchange rates of the corresponding year.
equations (1)e(4) below have been used to calculate the lev-
elised cost of electricity (LCOE), the levelised cost of heat (LCOH)
and the levelised cost of CO
2
DAC (LCOD). Abbreviations: capital
expenditures, capex, annuity factor, crf, annual operational expen-
ditures, opex,xed, x, variable, var, annual CO
2
production of DAC
plant, Output
CO2
, full load hours per year, FLh, electricity demand of
DAC plant per t
CO2
produced, DAC
el.input
, heat demand of DAC plant
per t
CO2
produced, DAC
heat.input
, fuel costs, fuel,efciency,
h
, coef-
cient of performance of heat pumps, COP, weighted average cost of
capital, WACC, lifetime, N.
A WACC of 7% is used for all the calculations in this study.
LCOE ¼Capex,crf þOpex
fix
FLh þOpex
var
þfuel
h
(1)
LCOH ¼Capex,crf þOpex
fix
FLh þOpex
var
þfuel
h
þLCOE
COP (2)
Nomenclature
BECCS Bioenergy with Carbon Capture and Storage
capex Capital Expenditures
CCS Carbon Capture and Storage
CCU Carbon Capture and Utilisation
COP Coefcient of Performance
DAC Direct Air Capture
DACCS Direct Air Carbon Capture and Storage
FLh Full Load hours
GHG Greenhouse Gas
HT High Temperature
LCOD Levelised Cost of CO
2
Direct Air Capture
LT Low Temperature
MOF Metal Organic Frameworks
MSA Moisture Swing Adsorption
NET Negative Emission Technology
opex Operating Expenditures
PSCC Point Source Carbon Capture
PtG Power-to-Gas
PV Photovoltaic
RE Renewable Energy
SNG Synthetic Natural Gas
TSA Temperature Swing Adsorption
TVSA Temperature Vacuum Swing Adsorption
WACC Weighted Average Cost of Capital
Subscripts
el electricity
xxed
p peak
th thermal
var variable
M. Fasihi et al. / Journal of Cleaner Production 224 (2019) 957e980958
LCOD ¼Capex
DAC
,crf þOpex
fix
Output
CO
2
þOpex
var
þDAC
el:input
,LCOE
þDAC
th:input
,LCOH
(3)
crf ¼WACC,ð1þWACCÞ
N
ð1þWACCÞ
N
1(4)
Maturity level of technologies is also taken into consideration, as
the focus of this research is on pilot and commercial-scale tech-
nologies, while the theoretical and laboratory-scale studies have
been included as well.
Cost and technical trends based on technology evolution over 20
years of active research and development are identied. As a result,
up to date data is used for the long-term estimation of key pa-
rameters for the time periods 2020 to 2050 in 10-year steps, based
on adapted learning rates.
3. Literature review
The rst application of capturing CO
2
from ambient air was
introduced in the 1930s in cryogenic air separation plants and later
it found its application in life support systems of manned closed
systems such as space stations and submarines (House et al., 2011).
The rst systems dated back to 1965 were not regeneratable (Isobe
et al., 2016). Whereas, modern space shuttles are all equipped with
regeneratable Carbon Dioxide Removal Assembly (CDRA) that helps
to maintain habitable environment for crewmembers (NASA,
2006).
Due to ultra dilute concentration of CO
2
in the atmosphere,
chemical sorbents with strong binding characteristics became
widely discussed in literature. An aqueous solution of strong bases
is used in conventional PSCC technologies and many researchers
have investigated its applicability to DAC. Keith et al. (2006) ana-
lysed physical and economic limits of BECCS and aqueous solution-
based DAC and concluded the second option to be feasible in the
near term. However, high-grade (900
C) heat demand of aqueous
solution-based DAC could limit the options for heat source and
increase the costs. Baciocchi et al. (2006) tried to optimise the
system based on the same chemical solution and applied two
different calcium carbonate precipitators. Zeman (2007) was one of
the rst who proposed the same approach on an industrial scale. In
addition, he has benchmarked the system with two previous
studies on thermodynamic levels. Stolaroff et al. (2008) discussed
optimisation of energy demand and possible reduction of nal
costs by improving the contactor part. The extensive report of
American Physical Society (APS) by Socolow et al. (2011) compared
post-combustion CO
2
capture methods to DAC systems based on
the work of Baciocchi et al. (2006).Zeman (2014) investigated the
APS report and proposed a reduction in nal costs of avoided CO
2
by using low-carbon electricity and minimising plastic packing
materials of the contactor part. Li et al. (2015) investigated the
optimal operation of the system proposed in the early work of
Zeman (2007) by using wind power and battery as the energy in-
puts. All the above mentioned works applied different approaches
to improve the performance of aqueous alkaline solution, in
particular sodium hydroxide; whereas, Nikulshina et al. (2009)
presented a single-cycle system carrying out continuous removal
of CO
2
via serial CaO-carbonation at higher temperatures (of about
365e400
C) and CaCO
3
-calcination at 800e876
C, powered by
concentrated solar power (CSP). Mahmoudkhani and Keith (2009)
suggested a novel approach to avoid calcium carbonate in the
loop, by using Sodium Tri-Titanate. The technique requires 50% less
high-grade heat than conventional causticisation and the
maximum temperature required is reduced by at least 50 K, from
900
C to 850
C. Holmes and Keith (2012) and Holmes et al. (2013)
suggested potassium hydroxide (KOH) as a non-toxic solution and
discussed the results of laboratory-scale and prototype tests of
improved contactor parts. Keith et al. (2018) provided a detailed
techno-economic analysis of a 1 Mt
CO2
/a design based on a real
pilot plant for the rst time.
Another major group of scientic publications are focused on
systems based on adsorption process. Temperature swing adsorp-
tion (TSA) is the main DAC method in this category, described by
Kulkarni and Sholl (2012) and Sinha et al. (2017). Unlike typical
aqueous solution-based systems, the regeneration in solid sorbent
DAC happens at relatively lower temperatures (80e100
C), which
is cheaper to produce or could be available as waste heat from some
industrial plants, such as combined heat and power plants, power
plants with cooling tower, pulp and paper mills, steel or glass
making plants, or waste heat from exothermic synthetic fuels
production processes. Choi et al. (2011a;2012) examined modied
sorbents with higher CO
2
uptake capacity and higher stability in
dry conditions. Roestenberg (2015) introduced a LT DAC design
based on non-amine sorbent and separate adsorption and
desorption units for increasing the plant's utilisation rate, evalu-
ated costs of small-scale and large-scale systems and considered
heat supply from methanol synthesis plant coupled to the DAC unit.
Derevschikov et al. (2014) suggested using composite solid sorbent
for DAC and using renewable energy (RE) to produce methane on
site. Ping et al. (2018a) introduced a system with full cycle of less
than 30 min. Moisture swing adsorption (MSA) is the other method
in this category in which the regeneration happens by moisturising
of CO
2
-rich sorbent. Lackner (2009) examined the possibility of
MSA CO
2
capture on amine-based ion-exchange resin at low tem-
peratures (45
C). Later, Goldberg et al. (2013) studied the combi-
nation of this system with wind energy and offshore geological
storage.
Radical methods have been suggested for DAC by some re-
searchers. Eisaman et al. (2009) examined electrochemical CO
2
capture. Freitas (2015) suggested the use of nanofactory-based
molecular lters and claimed that these methods are able to
bring the nal capture costs down to 13.7 V/t
CO2
(18.3 USD/t
CO2
).
Seipp et al. (2017) introduced a rather novel approach based on
crystallisation of CO
2
molecules with a guanidine sorbent with low
temperature requirements of 80e120
C. Despite promising pre-
liminary results, deeper investigations and possible pilot plants are
needed for a better evaluation of these approaches.
In addition, several papers have presented an overview of
available technologies. Simon et al. (2011) analysed LCOD of a
generic DAC based on capture devices, energy supplies, footprint,
water use and sequestration costs. Goeppert et al. (2012) discussed
capturing CO
2
from point sources, raised the question as to why
DAC is needed, summarised and discussed all available technolo-
gies on a technical level and listed active companies. It is concluded
that DAC is indispensable for stabilising climate change. In addition,
it points out that even though CO
2
concentration in the atmosphere
is about 250e300 times less than concentrated sources, the theo-
retical energy demand by DAC is only 2e4 times higher. However,
the vast range of projected overall costs of CO
2
DAC can become
clearer only after the construction of pilot plants. The detailed
numerical analyses by Wilcox et al. (2017) conrm the comparison
on minimum work of carbon capture from atmospheric and
concentrated sources by Goeppert et al. (2012), however, they show
M. Fasihi et al. / Journal of Cleaner Production 224 (2019) 957e980 959
Techno-economicassessmentofCO2directaircaptureplantsMahdiFasihi,OlgaEfimova,ChristianBreyerLUTUniversity,Yliopistonkatu34,53850,Lappeenranta,FinlandarticleinfoArticlehistory:Received14October2018Receivedinrevisedform25January2019Accepted8March2019Availableonline14March2019Keywords:Carbondioxide(CO2)Directaircapture(DAC)Carboncaptureandutilisation(CCU)Negativeemissiontechnology(NET)EconomicsabstractCO2directaircapture(DAC)hasbeenincreasinglydiscussedasaclimatechangemitigationoption.Despitetechnicaladvancesinthepastdecade,therearestillmisconceptionsaboutDAC'scurrentandlong-termcostsaswellasenergy,waterandareademands.ThiscouldundermineDAC'santicipatedroleinaneutralornegativegreenhousegasemissionenergysystem,andinfluencepolicymakers.Inthisstudy,aliteraturereviewandtechno-economicanalysesofstate-of-the-artDACtechnologiesareper-formed,wherein,DACtechnologiesarecategorisedashightemperatureaqueoussolutions(HTDAC)andlowtemperaturesolidsorbent(LTDAC)systems,fromanenergysystemperspective.DACcapitalex-penditures,energydemandsandcostshavebeenestimatedundertwoscenariosforDACcapacitiesandfinanciallearningratesintheperiod2020to2050.DACsystemcostscouldbeloweredsignificantlywithcommercialisationinthe2020sfollowedbymassiveimplementationinthe2040sand2050s,makingthemcostcompetitivewithpointsourcecarboncaptureandanaffordableclimatechangemitigationsolution.ItisconcludedthatLTDACsystemsarefavourableduetolowerheatsupplycostsandthepossibilityofusingwasteheatfromothersystems.CO2capturecostsofLTDACsystemspoweredbyhybridPV-Wind-batterysystemsforMoroccanconditionsandbasedonaconservativescenario,without/withutilisationoffreewasteheatarecalculatedat222/133,105/60,69/40and54/32V/tCO2in2020,2030,2040and2050,respectively.ThesenewfindingscouldenhanceDAC'sroleinasuccessfulclimatechangemitigationstrategy.©2019TheAuthors.PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).1.IntroductionTheproblemofglobalwarmingcausedbygreenhousegas(GHG)emissions,mainlycarbondioxide(CO2),hasreacheddangerouslevels.CO2concentrationintheatmospherehasrapidlyincreasedfrom280ppminthepre-industrialerato403ppmin2016,withanannualgrowthrateof2ppm(IEA,2017).TheParisAgreementaimstomitigateclimatechangeandkeeptemperaturerisewellbelow2Candpreferably1.5Cincomparisontothepre-industrialagebyunitedeffortsofallcountries(UNFCCC,2015).Toachievethisgoal,alongwithsharplycuttinganthropogenicGHGemissions,actionsareneededforactiveCO2removalbyimple-mentationofNegativeCO2EmissionsTechnologies(NETs)(Kriegleretal.,2017;Rogeljetal.,2018).ArangeofoptionsareavailableforCO2emissionsremoval.CO2emissionscanbecapturedatpointsourcessuchasfluegasesfromconventionalpowerplantsornon-energeticsectorssuchascementplants.However,someplantsaretoooldandcannotberetrofitted.Moreover,eveninplantswithCO2removalsystems,notallemis-sionsarecapturedastheaveragecaptureratesareintherangeof50e94%(Leesonetal.,2017).Ontheotherhand,itisnotpossibletodirectlycaptureCO2emissionsproducedbylong-distanceaviationandmarinetransport.Largeamountofsmallemitters,suchasinthetransportsector,whichaccountfor50%ofglobalGHGemis-sions,arejustimpossibletoneutralisebyconventionalCO2captureapplications(Seippetal.,2017).ThesefactsleadtotheundeniablenecessityoffindingadditionalsolutionsthatarecapableofcapturingCO2independentoforiginandlocation.AnotherapproachforclimatechangemitigationiscapturingCO2directlyfromtheatmosphere.Hitherto,plantshavebeendoingitnaturallytosomeextent.Nonetheless,theycannotkeepupwiththeincreasinganthropogenicemissions(Goeppertetal.,2012).Afforestation,bioenergywithcarboncaptureandstorage(BECCS)andenhancedweatheringwereintroducedtoreduceCO2con-centrationintheatmosphere(Williamson,2016).However,theircommercialfeasibilityislimited,asallofthesemeasuresareassociatedwithrisks.Large-scaleBECCSandafforestationthreatbiodiversity,waterandfoodsecurity,asbotharecharacterisedbyCorrespondingauthor.E-mailaddress:Mahdi.Fasihi@lut.fi(M.Fasihi).ContentslistsavailableatScienceDirectJournalofCleanerProductionjournalhomepage:www.elsevier.com/locate/jcleprohttps://doi.org/10.1016/j.jclepro.2019.03.0860959-6526/©2019TheAuthors.PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).JournalofCleanerProduction224(2019)957e980hugelandrequirements(Smithetal.,2016).EnhancedweatheringprovokesrisingpHvaluesinriversandchangingthechemistryinoceans(Kohleretal.,2010).Besidesafforestation/reforestation,BECCSandenhancedweathering,thefullportfolioofNETsalsoincludesbiochar,oceanfertilisationandsoilcarbonsequestration(Fussetal.,2018;Minxetal.,2018),whichmayhavetobeappliedinaportfolioofNETsforeffectiveclimatechangemitigation(Buietal.,2018).CO2DirectAirCapture(DAC),besidesBECCS,istheotheroptionforcapturingCO2fromtheatmosphere,dilutedgasesanddistrib-utedsourcesofcarbonviaindustrialprocesses(Broehmetal.,2015;Goeppertetal.,2012;Lackner,2009).DACisarelativelynewandinnovativetechnologyinearlycommercialstages(Nemetetal.,2018),whichinalongtermperspective,alongwithconventionaltechnologies,canhelphumankindtocontrolandmitigateclimatechange(Keith,2009;Sanz-Perezetal.,2016).Inthispaper,atechno-economicassessmentofthemainCO2directaircapturetechnologies,fromanenergysystempointofview,hasbeencarriedout.Theremainingsectionsofthepaperareasfollows:Section2describesthemethodology.Insection3,aliteraturereviewhasbeencarriedout.Insection4,availabletechnologieshavebeendescribedandthecollectedtechno-economicdataiscategorisedandsummarisedintheformofta-bles.Thefinalmodelofmaintechnologiesin2020areintroduced.Later,DACcapitalexpenditures,energydemandsandcostshavebeenestimatedundertwoscenariosforDACcapacitiesandfinan-ciallearningratesintheperiod2020to2050andsensitivityana-lysesforthemostvaluableparametersaredone.Further,DAC'sareaandwaterdemands,aswellasCO2compression,transportandstoragearepresented.Insection5,relevanceofDACwithrespecttotheParisAgreement,aswellasbenefitsandchallengesofthemainDACtechnologiesarediscussed.Later,morefactorsonthefinalcostsoflarge-scaleDACsystemsareexaminedandresultsarecomparedtoprojectionsfromcompaniesorliterature.Moreover,acostcomparisontopointsourcecarboncapture(PSCC),asoneofthecompetingtechnologiesisperformed.Inaddition,thecostshareofCO2DACinpower-to-gassystemshasbeeninvestigated.Finally,conclusionsaredrawninsection6.2.MethodologyanddataAnextensivereviewhasbeenperformedconsideringliteraturepublishedfromtheearly2000stothepresenttimethatarerele-vanttothisresearch.Researchwasconductedinthefollowingmanner:datagatheringviasuchplatformsasScienceDirect,Sco-pus,GoogleScholar,ResearchGate,officialwebsitesofcompaniesandinternationalagenciessuchasIntergovernmentalPanelonClimateChange(IPCC)andInternationalEnergyAgency(IEA).Thefollowingkeywordswereused:CO2captureplant,CO2capturemethods,CO2scrubbing,CO2separation,directaircapture,costofCO2capturing,carboncapturestart-upcompaniesandatmosphericCO2capture.Adatabaseofrelevantdatahasbeencreatedfromallthereviewedpublications,forfurtheranalyses.Recalculationandaligningofthefindingswereconducted.Allparametersarepre-sentedonacomparablescaleforclassificationofallavailabletechnologiesandtodeliverthefinalmodels,includinglong-termestimations.Asensitivityanalysisofthemostvaluablevariablesisperformed.CostnumbersfromdifferentyearspresentedinUSDarecon-vertedtoeurosbyusingafixedexchangeratioof1.33USD/V,asthelongtermaverageexchangerate.Asanexception,costnumbersfromKeithetal.(2018)andvaluesinothercurrenciesareconvertedtoeurosbasedonexchangeratesofthecorrespondingyear.equations(1)e(4)belowhavebeenusedtocalculatethelev-elisedcostofelectricity(LCOE),thelevelisedcostofheat(LCOH)andthelevelisedcostofCO2DAC(LCOD).Abbreviations:capitalexpenditures,capex,annuityfactor,crf,annualoperationalexpen-ditures,opex,fixed,fix,variable,var,annualCO2productionofDACplant,OutputCO2,fullloadhoursperyear,FLh,electricitydemandofDACplantpertCO2produced,DACel.input,heatdemandofDACplantpertCO2produced,DACheat.input,fuelcosts,fuel,efficiency,h,coeffi-cientofperformanceofheatpumps,COP,weightedaveragecostofcapital,WACC,lifetime,N.AWACCof7%isusedforallthecalculationsinthisstudy.LCOE¼Capex,crfþOpexfixFLhþOpexvarþfuelh(1)LCOH¼Capex,crfþOpexfixFLhþOpexvarþfuelhþLCOECOP(2)NomenclatureBECCSBioenergywithCarbonCaptureandStoragecapexCapitalExpendituresCCSCarbonCaptureandStorageCCUCarbonCaptureandUtilisationCOPCoefficientofPerformanceDACDirectAirCaptureDACCSDirectAirCarbonCaptureandStorageFLhFullLoadhoursGHGGreenhouseGasHTHighTemperatureLCODLevelisedCostofCO2DirectAirCaptureLTLowTemperatureMOFMetalOrganicFrameworksMSAMoistureSwingAdsorptionNETNegativeEmissionTechnologyopexOperatingExpendituresPSCCPointSourceCarbonCapturePtGPower-to-GasPVPhotovoltaicRERenewableEnergySNGSyntheticNaturalGasTSATemperatureSwingAdsorptionTVSATemperatureVacuumSwingAdsorptionWACCWeightedAverageCostofCapitalSubscriptselelectricityfixfixedppeakththermalvarvariableM.Fasihietal./JournalofCleanerProduction224(2019)957e980958LCOD¼CapexDAC,crfþOpexfixOutputCO2þOpexvarþDACel:input,LCOEþDACth:input,LCOH(3)crf¼WACC,ð1þWACCÞNð1þWACCÞNÀ1(4)Maturityleveloftechnologiesisalsotakenintoconsideration,asthefocusofthisresearchisonpilotandcommercial-scaletech-nologies,whilethetheoreticalandlaboratory-scalestudieshavebeenincludedaswell.Costandtechnicaltrendsbasedontechnologyevolutionover20yearsofactiveresearchanddevelopmentareidentified.Asaresult,uptodatedataisusedforthelong-termestimationofkeypa-rametersforthetimeperiods2020to2050in10-yearsteps,basedonadaptedlearningrates.3.LiteraturereviewThefirstapplicationofcapturingCO2fromambientairwasintroducedinthe1930sincryogenicairseparationplantsandlateritfounditsapplicationinlifesupportsystemsofmannedclosedsystemssuchasspacestationsandsubmarines(Houseetal.,2011).Thefirstsystemsdatedbackto1965werenotregeneratable(Isobeetal.,2016).Whereas,modernspaceshuttlesareallequippedwithregeneratableCarbonDioxideRemovalAssembly(CDRA)thathelpstomaintainhabitableenvironmentforcrewmembers(NASA,2006).DuetoultradiluteconcentrationofCO2intheatmosphere,chemicalsorbentswithstrongbindingcharacteristicsbecamewidelydiscussedinliterature.AnaqueoussolutionofstrongbasesisusedinconventionalPSCCtechnologiesandmanyresearchershaveinvestigateditsapplicabilitytoDAC.Keithetal.(2006)ana-lysedphysicalandeconomiclimitsofBECCSandaqueoussolution-basedDACandconcludedthesecondoptiontobefeasibleinthenearterm.However,high-grade(900C)heatdemandofaqueoussolution-basedDACcouldlimittheoptionsforheatsourceandincreasethecosts.Baciocchietal.(2006)triedtooptimisethesystembasedonthesamechemicalsolutionandappliedtwodifferentcalciumcarbonateprecipitators.Zeman(2007)wasoneofthefirstwhoproposedthesameapproachonanindustrialscale.Inaddition,hehasbenchmarkedthesystemwithtwopreviousstudiesonthermodynamiclevels.Stolaroffetal.(2008)discussedoptimisationofenergydemandandpossiblereductionoffinalcostsbyimprovingthecontactorpart.TheextensivereportofAmericanPhysicalSociety(APS)bySocolowetal.(2011)comparedpost-combustionCO2capturemethodstoDACsystemsbasedontheworkofBaciocchietal.(2006).Zeman(2014)investigatedtheAPSreportandproposedareductioninfinalcostsofavoidedCO2byusinglow-carbonelectricityandminimisingplasticpackingmaterialsofthecontactorpart.Lietal.(2015)investigatedtheoptimaloperationofthesystemproposedintheearlyworkofZeman(2007)byusingwindpowerandbatteryastheenergyin-puts.Alltheabovementionedworksapplieddifferentapproachestoimprovetheperformanceofaqueousalkalinesolution,inparticularsodiumhydroxide;whereas,Nikulshinaetal.(2009)presentedasingle-cyclesystemcarryingoutcontinuousremovalofCO2viaserialCaO-carbonationathighertemperatures(ofabout365e400C)andCaCO3-calcinationat800e876C,poweredbyconcentratedsolarpower(CSP).MahmoudkhaniandKeith(2009)suggestedanovelapproachtoavoidcalciumcarbonateintheloop,byusingSodiumTri-Titanate.Thetechniquerequires50%lesshigh-gradeheatthanconventionalcausticisationandthemaximumtemperaturerequiredisreducedbyatleast50K,from900Cto850C.HolmesandKeith(2012)andHolmesetal.(2013)suggestedpotassiumhydroxide(KOH)asanon-toxicsolutionanddiscussedtheresultsoflaboratory-scaleandprototypetestsofimprovedcontactorparts.Keithetal.(2018)providedadetailedtechno-economicanalysisofa1MtCO2/adesignbasedonarealpilotplantforthefirsttime.Anothermajorgroupofscientificpublicationsarefocusedonsystemsbasedonadsorptionprocess.Temperatureswingadsorp-tion(TSA)isthemainDACmethodinthiscategory,describedbyKulkarniandSholl(2012)andSinhaetal.(2017).Unliketypicalaqueoussolution-basedsystems,theregenerationinsolidsorbentDAChappensatrelativelylowertemperatures(80e100C),whichischeapertoproduceorcouldbeavailableaswasteheatfromsomeindustrialplants,suchascombinedheatandpowerplants,powerplantswithcoolingtower,pulpandpapermills,steelorglassmakingplants,orwasteheatfromexothermicsyntheticfuelsproductionprocesses.Choietal.(2011a;2012)examinedmodifiedsorbentswithhigherCO2uptakecapacityandhigherstabilityindryconditions.Roestenberg(2015)introducedaLTDACdesignbasedonnon-aminesorbentandseparateadsorptionanddesorptionunitsforincreasingtheplant'sutilisationrate,evalu-atedcostsofsmall-scaleandlarge-scalesystemsandconsideredheatsupplyfrommethanolsynthesisplantcoupledtotheDACunit.Derevschikovetal.(2014)suggestedusingcompositesolidsorbentforDACandusingrenewableenergy(RE)toproducemethaneonsite.Pingetal.(2018a)introducedasystemwithfullcycleoflessthan30min.Moistureswingadsorption(MSA)istheothermethodinthiscategoryinwhichtheregenerationhappensbymoisturisingofCO2-richsorbent.Lackner(2009)examinedthepossibilityofMSACO2captureonamine-basedion-exchangeresinatlowtem-peratures(45C).Later,Goldbergetal.(2013)studiedthecombi-nationofthissystemwithwindenergyandoffshoregeologicalstorage.RadicalmethodshavebeensuggestedforDACbysomere-searchers.Eisamanetal.(2009)examinedelectrochemicalCO2capture.Freitas(2015)suggestedtheuseofnanofactory-basedmolecularfiltersandclaimedthatthesemethodsareabletobringthefinalcapturecostsdownto13.7V/tCO2(18.3USD/tCO2).Seippetal.(2017)introducedarathernovelapproachbasedoncrystallisationofCO2moleculeswithaguanidinesorbentwithlowtemperaturerequirementsof80e120C.Despitepromisingpre-liminaryresults,deeperinvestigationsandpossiblepilotplantsareneededforabetterevaluationoftheseapproaches.Inaddition,severalpapershavepresentedanoverviewofavailabletechnologies.Simonetal.(2011)analysedLCODofagenericDACbasedoncapturedevices,energysupplies,footprint,wateruseandsequestrationcosts.Goeppertetal.(2012)discussedcapturingCO2frompointsources,raisedthequestionastowhyDACisneeded,summarisedanddiscussedallavailabletechnolo-giesonatechnicallevelandlistedactivecompanies.ItisconcludedthatDACisindispensableforstabilisingclimatechange.Inaddition,itpointsoutthateventhoughCO2concentrationintheatmosphereisabout250e300timeslessthanconcentratedsources,thetheo-reticalenergydemandbyDACisonly2e4timeshigher.However,thevastrangeofprojectedoverallcostsofCO2DACcanbecomecleareronlyaftertheconstructionofpilotplants.ThedetailednumericalanalysesbyWilcoxetal.(2017)confirmthecomparisononminimumworkofcarboncapturefromatmosphericandconcentratedsourcesbyGoeppertetal.(2012),however,theyshowM.Fasihietal./JournalofCleanerProduction224(2019)957e980959thattheratiooftherealworkdemandofcarboncapturefromat-mospheretoconcentratedsourcescouldbehigher.Ontheotherhand,itindicatesthateventhoughtheminimumworkofsepara-tionformambientairslightlyincreasesbyaimingforhigherCO2capturerates,therealworkdemandsignificantlydecreasesathighercapturerates.Broehmetal.(2015)dividedallavailabletechnologiesintothreegroups(aqueoussolutionsofstrongbases,amineadsorptionsandinorganicsolidsorbents),comparedthembasedoncriticalcriteriasuchasenergydemandandeconomicestimation,addressedlimitingfactorssuchaslandandpotentiallocationoptions,associatedemissionsandwaterlosses.Inordertoprovidemoredetailsofthetechnology,Broehmetal.(2015)closelyanalysedtwocasestudies,onebasedonSocolowetal.(2011)technologyandtheotherbasedontheresultsachievedinprivatecommercialcompanies.HepointedoutthatsuccessofDACdoesnotonlydependonthetechnicalandeconomicperformance,butalsodependsonexternalfactorssuchasmarketdemandforCO2,developmentofsyntheticfuelsandsupportingtechnologiessuchasstorage.AbroadcomparisonofalltechniquescapturingCO2fromambientairwasdonebyWilliamson(2016),wherestrengthsandlimitationsofallpossibleapplicationswerepointedout.SeveralcompaniesareactiveinthefieldofCO2DAC,whichareshowninFig.1.CarbonEngineering,establishedin2009byKeithinSquamish,Canada(CarbonEngineering,2018a),istheonlydetec-tedcompanyactiveinhightemperature(HT)aqueoussolution-basedDAC.ThecompanyispartlyfundedbyBillGates(CarbonEngineering,2018a).The1tCO2/daydemonstrationplantwasintroducedinOctober2015andthecurrentgoalofthecompanyistoestablishbroadcommercialdeploymentofsyntheticfuelspro-ductionbasedontheirDACtechnology(CarbonEngineering,2018b).Atalargescale,thecompanyexpectstoachievecostsof75e113V/tCO2captured,purified,andcompressedto150bar(CarbonEngineering,2018c).Climeworks,foundedbyGebaldandWurzbacherin2009inZurich,Switzerland(Climeworks,2018a),isthemostwell-knownlowtemperature(LT)solidsorbent-basedDACcompany.In2014,inapartnershipwithAudiandSunfire,thecompanylaunchedapilotplantinDresdenthatcaptures80%ofCO2moleculesfromairpassingthroughthesystemandconvertsthemintosyntheticdiesel(Audi,2015).In2017,thecompanycommissionedanothercommercialscaleDACplantinSwitzerlandthatprovidesCO2foranearby-locatedgreenhouse.Inthesameyear,anotherDACunithasbeeninstalledinIcelandtopermanentlyfixaircapturedCO2inamineralisationprocess700munderground(Climeworks,2017).Thisistheworld'sfirstdirectaircarboncap-tureandstorage(DACCS)systemcoupledtoenhancedweathering,whichmayevolvetobeamajorNEToption(Fussetal.,2018;Minxetal.,2018).Thecompanyistargetingproductioncostsofabout75V/tCO2forlarge-scaleplants(Climeworks,2018b).GlobalThermo-stat,formedin2010byEisenbergerinNewYork,USA,istheotherLTDACcompany,withitsmultifunctionaltechnologycapableofcapturingCO2fromboththeatmosphereaswellaspointsourceemissions(GlobalThermostat,2018a).Majortechnologicalknow-how,particularlyinthefieldofcatalystsislicensedfromGeorgiaInstituteofTechnology(GlobalThermostat,2018b;Sanz-Perezetal.,2016).Thecompanyalreadyhaspilotandcommercialdemonstartionplantsoperatingsince2010atSRIInternationalinMenloPark,California(Pingetal.,2018a).Themodularunitscanutilisewasteheatat85e95CforCO2regenerationandhaveacapacityof40000tCO2/a.ThecompanyhasannouncedambitiousplanstodeliverCO2atacostof11e38V/tCO2(Kintisch,2014).Antecy,foundedin2010byO'ConnorinHoevelaken,Netherlands,istheotherEuropeanLTDACcompany(Antecy,2018)thatrequiresmoderatetemperaturesof80e100CforCO2regeneration.Afterlaboratorytestsandcompletingcommercial-scaledesigns,incooperationwithShell,thecompanyisreadyfortheimple-mentationofapilotplant(Roestenberg,2015).OyHydrocellLtdisaFinnishcompanyfoundedin1993thathasprovidedaDACsystemtoVTTTechnicalResearchCenterofFinland(Hydrocell,2018;Elfvingetal.,2017).The1.387tCO2/asystemispackedinastandardshippingcontainerandisfullyportable.Byusingtemperaturevacuumswingadsorption(TVSA),at70e80C,ithasthelowestregenerationtemperatureamongdetectedtechnologies,whichwidenstheoptionsforapplicablewasteheatsources(Bajamundi,2015;Bajamundietal.,2018).OtherDACcompaniesareSkytreeandInfinitree,howevertheirdisclosedinformationisverylimited.Skytree,foundedin2008andlocatedinAmsterdam,Netherlands,commercialisesaCO2capturingtechnologybasedonelectrostaticabsorptionandmoisturisingdesorption,asaspin-offoftheEuro-peanSpaceAgency(Ishimotoetal.,2017;Skytree,2018).Infinitree,foundedin2014andlocatedinHuntington,NewYork,utilisesanionexchangesorbentmaterialinamoistureswingprocess(Infinitree,2018).EarlynichemarketsforSkytreeandInfinitreeareurbanfarmingprojectsforwhichtheyprovideCO2forfastergrowthofplants.4.Results4.1.DescriptionoftechnologiesBasicaircapturemodelsconsistofcontactingarea,solventorsorbentandregenerationmodule.Contactingareaexposessorbenttoambientairandfacilitatesairflowthroughthemodel,increasingFig.1.CompaniesactiveinthefieldofCO2DAC.Abbreviations:hightemperature,HT,lowtemperature,LT,moistureswingadsorption,MSA,temperatureswingadsorption,TSA.M.Fasihietal./JournalofCleanerProduction224(2019)957e980960theabsorptionoradsorptionofCO2molecules.Solventorsorbentmustbeeasytohandle,resistanttocontaminationandshouldnotvanishduringtheprocess,asitspropertiesdeterminethewholeprocess.ThemainDACsystemsaredescribedbelow.4.1.1.Hightemperature(HT)aqueoussolutionAqueoussolutionconsistsoftwocyclesthatcanhappensimultaneously.ThebasicexampleoftheapproachisillustratedinFig.2.Inthefirstcycle,knownasabsorption,ambientairisbroughtintocontactwithsprayedsodiumhydroxide(NaOH)asthesolventintheabsorptioncolumn,withtheaidoffansornaturalairflow.CO2moleculesreactwithNaOHandformasolu-tionofsodiumcarbonate(Na2CO3)(Eq.(5)).Theabsorptionhap-pensatroomtemperatureandambientpressure.ThissolutionistransportedtotheregenerationcycleandCO2depletedairleavesthecolumn.Inthesecondcycle,knownasregeneration,Na2CO3ismixedwithcalciumhydroxide(Ca(OH)2)inthecausticiserunit,wheresolidcalciumcarbonate(CaCO3)isformedandNaOHisregenerated(Eq.(6)).NaOHissentbacktothecontactorandreadytostartanotherabsorptioncycle.Meanwhile,inthemostenergyintensivestep,CaCO3isheateduptoaround900Cinthekiln(calcinerunit)toreleaseCO2.AsshowninTable1,accordingtoliteratureandbasedonthelevelofheatintegration,theoverallheatdemandisintherangeof1420e2250kWhthpertonCO2.Theoutputsofthisreactionarecalciumoxide(CaO)andapurestreamofCO2(Eq.(7)).CO2iscollectedandCaOismixedwithwaterintheslakerunitforCa(OH)2regeneration(Eq.(8)).contactor2NaOHþCO2/Na2CO3þH2O(5)causticiserNa2CO3þCaðOHÞ2/2NaOHþCaCO3(6)calcinerCaCO3þheat/CaOþCO2(7)slakerCaOþH2O/CaðOHÞ2(8)Besidesheat,thesystemalsoneedselectricalpowerforblowingairthroughthecontactor,sprayingtheaqueousandmovingsolu-tionsfromoneunittoanother.Inliterature,thiselectricalpowerispresentedtobeintherangeof366e764kWhelpertonCO2(Table1).ThisalsoincludestheenergydemandforCO2compression,tothementionedpressuresasinTable1,priortotransportorstorage.AscanbeseeninTable1,inearlierliterature,naturalgashasbeenmainlysuggestedforthesupplyofhigh-gradeheatdemand.However,thiswouldnotbeasustainablesolution.Providing2000kWhthhigh-gradeheatbyoxy-fuelcombustionofnaturalgaswith90%efficiencyforcapturing1tonofatmosphericCO2,wouldrelease0.44tonofdirectnaturalgasbasedCO2emissions,withouttakingintoaccountitslifecycleemissions.OneofCarbonEngineering(2018c)DACtechnologiesfullypoweredbynaturalgaswouldrelease0.5tonofCO2pertonofatmosphericCO2captured.EventhoughthisCO2canbecapturedandutilisedasfeedstockforotherpurposes,itwillfinallyendupintheatmo-sphereaftersomecyclesofutilisation.Inaddition,thisimpactwoulddramaticallyincreasethecostofthenet-capturedCO2,asthereportedcostsinliteraturearemainlybasedonatmosphericortotalcapturedCO2.Theuseofcarbon-neutralrenewablesyntheticnaturalgas(RE-SNG)mightbeasolutiontothisproblem.However,evenwitha100%closedcycleofSNG-basedCO2andnoextraen-ergydemandforCO2recycling,convertingthat0.5tonoffuel-basedCO2tosyntheticnaturalgas(SNG)wouldneedabout4400kWhelforgenerationoftherequiredhydrogen,utilising2030electrolysertechnology(Fasihietal.,2017a).ThisisahugeincreaseinprimaryenergydemandandproductioncostsduetothehighcostsofSNGproduction.Thus,asustainableandaffordablesystemshouldbefullyelectrified,whichhasbeendiscussedinrelativelynewerstudies.ContentoftheCarbonEngineeringwebsite(2018c)inMarch2018includedafullyelectrifiedsystemwithatotalof1500kWheldemandforbothpowerandheating,inordertodeliver1tonofatmosphericCO2at150bar.Thus,afullyelectrifiedHTDACispracticallypossibleandhasbeenchosenasthefinalmodelforaqueoussolutiontechnologyinourstudy.Inourstudy,tohaveacommongroundforcomparisonbetweendifferenttechnologies,theCO2compressionstepisavoided.ThelatestpublicationfromtheCarbonEngineeringgroup(Keithetal.,2018)showssomeimprovementintotalenergydemandandpresents3differentscenarios.Inthefirstscenario,alltheheatandpowerdemandisprovidedbynaturalgasoxy-fuelcombustion,gasturbineandsteamturbine.Inthesecondscenario,gasturbinehasbeenremovedandtherespectivepowerissuppliedfromthegrid.Thisalsodecreasestheratiooffuel-based/atmosphericcapturedCO2from0.48to0.3,whichresultsindownsizingofseveralprocessFig.2.ExampleofCO2directaircapturebasedonaqueoussolutionofsodiumhydroxide(NaOH)andpotassiumhydroxide(KOH)asanalternative.ReproducedandmodifiedbasedonaprocessdiagrambyKeithetal.(2018).M.Fasihietal./JournalofCleanerProduction224(2019)957e980961unitsaswell.Forbothscenarios,allthecapturedCO2iscompressedto150bar.Inathirdscenario,heatingisstilldonebynaturalgascombustion,whileCO2isnotcompressedanditisassumedthatO2isavailableforfree,thuspowerdemandandcostsofCO2compressorandairseparationunithavebeenavoided.Thefuelandelectricitydemandinallthe3scenariosarepresentedinTable1.Inafullyelectrifiedsystem,thetotalcapturedCO2wouldbeloweredtothelevelofatmosphericCO2captured.Thiswoulddecreasethesizeandenergydemandofseveralparts.Theexactelectricityde-mandofafullyelectrifiedmodelcouldbecalculatedviathesamesimulationsoftware.Inaconservativeapproach,assumingthesameenergydemandasthethirdscenariowouldresultin1535kWhel/tCO2forafullyelectrifiedsystembasedontheCarbonEn-gineeringtechnology.Inthistechnology,NaOHhasbeenalsosubstitutedbypotassiumhydroxide(KOH)(CarbonEngineering,2018c;Keithetal.,2018).4.1.2.Lowtemperature(LT)solidsorbentMainly,technologiesinthisgrouphaveasingleunitwithsolidsorbent,whereadsorptionanddesorption(regeneration)happenoneafteranother.AsillustratedinFig.3,inthefirststepthesystemisopen,ambientairgoesthroughnaturallyorwiththehelpoffans.Atambienttemperature,CO2chemicallybindstothefilterandCO2depletedairleavesthesystem.ThisstepiscompletedwhenthesorbentisfullysaturatedwithCO2.Inthenextstep,thefansareswitchedoff,theinletvalveisclosedandtheremainingairisoptionallysweptoutthroughapressuredropbyvacuumingorinsertingsteamintothesystem.Then,regenerationhappensbyheatingthesystemtoacertaintem-perature,dependingonthesorbent.ReleasedCO2iscollectedandtransportedoutofthesystemforpurification,compressionorutilisation.Inordertostartanothercycle,thesystemshouldbecooleddowntoambientconditions.Thesorbentdeterminesthespecificconditionsofthecycles.Severaldifferentsorbentswereproposedinliterature,whichhavebeendescribedsubsequently.AminesareknownfortheirselectiveabilitytoabsorbCO2moleculesfromdilutedconcentrations.Climeworksusesafiltermadeofspecialcellulosefiberthatissupportedbyaminesinasolidform,whichbindsCO2moleculesalongwithairmoisture,thustheplantprovidesenoughwaterforitsownuse(Climeworks,2018b;Vogel,2017).InordertoreleaseCO2,pressureisreducedandthesystemisheatedto100C.Thesystemrequires200e300kWhel/tCO2mainlyforthefansandcontrolsystems.Italsoneeds1500e2000kWhth/tCO2forregeneration,whichcanbesuppliedbylow-gradeorwasteheat,asdemonstratedintherecentrespectivepilotplant(Climeworks,2018b).Afullcycleofthesystemtakes4e6hwithanoutputof99.9%purestreamofCO2.GlobalThermostat'sproprietaryamino-polymeradsorbentde-creasesthesystem'sfullcycletimetowellbelow30min,wheretheregenerationoccursinlessthan100sattemperaturesof85e95C.Toachievesuchafastprocess,saturatedsteamatsub-atmosphericpressureisusedasadirectheattransferfluidandasasweepgas.50%oftheregenerationheatisrecoveredanddependingontheplant'ssize,locationanddesiredCO2purity(>98.5%),theoverallFig.3.ExampleofalowtemperaturesolutionDACsystem.(1)Conditional(dependsonthesystem).Table1HTaqueoussolutionDACspecifications.type1stcyclesorbent2ndcyclesorbentCO2con.absorptiondesorptionenergydemandoutletpressureCO2purityreferenceppmT(C)T(C)kWhel/tkWhth/tbybar%2-cycleNaOHCa(OH)2-ambient900--NG100-Keithetal.(2006)NaOHCa(OH)2500ambient9004401678NG58-Baciocchietal.(2006)NaOHCa(OH)2380ambient9007641420NG/coal--Zeman(2007)NaOHCa(OH)2--9001199-2461el,tha---Stolaroffetal.(2008)NaOHCa(OH)2500-9004942250NG100-Socolowetal.(2011)NaOHCa(OH)2-ambient9002790-wind+batteryb--Lietal.(2015)cKOHCa(OH)2--900-2780NGd150-CarbonEngineering(2018c)KOHCa(OH)2--9001500-el.150-KOHCa(OH)2400ambient900-2450NG15097.1Keithetal.(2018)(CarbonEngineering)KOHCa(OH)2400ambient9003661458NG+el.15097.1KOHCa(OH)2400ambient90077e1458NG+el.197.1NaOHNa2O.3TiO2-ambient850-f-15gpureMahmoudkhaniandKeith(2009)1-cycle-CaO500365-400800-875--CSP-99.9Nikulshinaetal.(2009)2-cycleKOHCa(OH)2400ambient9001535-el.1>97finalmodel(thisstudy)aBasedondifferentcontactorsbBasedonZeman(2007),withoutheatrecycling.cTheheatgenerationmethodnotavailable.dHeatandelectricitygenerationrationotavailable.eAirseparationunitandCO2compressorexcluded.f50%lesshigh-gradeheatthanconventionalcausticisation.gCO2separationat15barandthencompressionto100bar.M.Fasihietal./JournalofCleanerProduction224(2019)957e980962electricityandheatdemandare150e260kWhel/tCO2and1170e1410kWhth/tCO2,respectively(Pingetal.,2018a).ThesystemproposedbyKulkarniandSholl(2012)isdifferentinthewaythatdesorptionofthesorbentsilica(TRI-PE-MCM-41)occurs,bytheintroductionofsteamat110C.Theoutputofthissystemis88%CO2and12%N2andwatertogether.Sinhaetal.(2017)hasstudiedthesametemperatureswingsystemandanalysedtwoamino-modifiedmetalorganicframeworks(MOF),MIL-101(Cr)-PEI-800andmmen-Mg2(dobpdc).Thissystemhasthesamecy-cles,butduetohighpossibilitiesofMOFsoxidisationathighertemperatures,vacuumisnecessarybeforeheating.Coolingisach-ievedbywaterevaporationfromthesurface.HeconcludesthatamongtwoMOFoptions,theonebasedonmagnesium(Mg)ismorefavourableduetolowerelectricityandheatdemand,whichis997kWh/tCO2(Sinhaetal.,2017).InAntecy'ssystem,CO2isadsorbedbycompositesorbentbasedonpotassiumcarbonate(K2CO3)atambientconditions.Beforeregeneration,airneedstobeevacuatedbywater,thenpressureisreducedandthesorbentisheatedupto80e100Cbylow-gradeheat(Roestenberg,2015).Thisslightlylowerregener-ationtemperatureincomparisontoClimworksisachievedbyduetothemoisture-aidedprocess.Derevschikovetal.(2014)intro-ducedaDACsystembasedonK2CO3/Y2O3sorbentpoweredbywindenergythatregeneratesattemperaturesof150e250C.Thesorbentisrathersensitivetohightemperaturesandcanbeeasilydestroyed.Table2summarisesthemaintechnicalcharacteristicsgatheredfromliterature.AlthoughAntecyclaimstobenefitfrombothcheapermaterialandlowerenergydemandthanotherDACtech-nologies(Antecy,2018),thereportedenergydemandofClime-worksappearstobelower,followedbyanevenlowerenergydemandbyGlobalThermostat(Pingetal.,2018a).Thus,asameanvalue,Climeworks'averageenergydemandhasbeenselectedastheenergydemandfortheLTDACtechnologyinthisstudy.AimingforagenericLTDACsystemfromanenergysystemperspective,nofinalsorbenthasbeenselected.Inaconservativeapproach,adesorptiontemperatureof100Chasbeenchosen,asthehighestrequiredtemperaturebyreviewedLTDACcompanies.Thecom-parisonsofchosenelectricity,heatanddesorptiontemperaturevaluestotheavailablerangeofdatahavebeenvisualisedinFig.4.Antecy'sCO2purityisunknowntotheauthors,howeverAntecy'splanforsyntheticfuelsproductioncouldonlybeachievedwithaCO2purityofabout99%.Thus,aCO2purityofmorethan99%hasbeenassumedforthefinalmodelasanaverageofCO2purityfromClimeworks,GlobalThermostatandAntecy.4.1.3.OthertechnologiesInadditiontothedescribedmajormodels,newapproacheshaveTable2LTsolidsorbentDACspecifications.sorbentCO2con.adsorptiondesorptionenergydemandcoolingCO2purityreferenceppmT(C)T(C)P(bar)kWhel/tkWhth/tbyT(C)by%amine-based400ambient1000.2200e3001500e2000wasteheat15air/water99.9Climeworks(2018b);Vogel(2017)amino-polymer400ambient85e950.5e0.9150e2601170e1410steamambientwaterevaporation>98.5Pingetal.(2018b)(GlobalThermostat)TRI-PE-MCM-41400ambient1101.42181656steamee88KulkarniandSholl(2012)MOF(Cr)400ambient135e48011420HTsteameeeSinhaetal.(2017)MOF(MG)400ambient135e4801997HTsteameeeK2CO3/Y2O3400ambient150e250eeeel.heatereeeDerevschikovetal.(2014)K2CO3eambient80e100e6942083wasteheatambientairfloweRoestenberg(2015);Antecy(2018)-400ambient100e2501750heatpump/wasteheatee>99finalmodel(thisstudy)Fig.4.Thecomparisonsofelectricity,heatanddesorptiontemperaturevaluesofthefinalLTDACmodelin2020totheavailabledata.M.Fasihietal./JournalofCleanerProduction224(2019)957e980963beensuggestedinliterature.Duetolackofpubliclyavailabletechnicalandfinancialinformationorpilot-scaleimplementationofthesetechnologies,theyhavenotbeenfurtherdiscussedinthispaper.ElectrochemicalCO2captureandmodifiedfuelcellapproachesatambienttemperatureweresuggestedbyEisamanetal.(2009).However,nocostassumptionshavebeenpresented.Ion-exchangeresincancaptureCO2byMSAapproach.Thinresinsheetsareexposedtoambientairtofacilitatefreeflowoftheairthroughthematerial.Whenloadingisfinished,thesheetsaremovedtoaclosedsystem.Insidethesystem,airisremovedandmoistureisadded.TheresinreleasesCO2bycontactingwithwater.CO2iscollected,driedandcanbecompressedifneeded.Aftergasisremoved,thesystemisheatedupto45Ctospeedupthedryingprocess(Lackner,2009;Goldbergetal.,2013).Lackner(2009)claimsthatthesystemwithnaturalairflowwouldonlyrequireelectricalenergyintheamountof316kWhel/tCO2,includingcompressionforliquefaction,butusingfanwilladd10kWhel/tCO2.Thesystemutilisesheatreleasedfromcompressionaswell.Goldbergetal.(2013)hasproposedacomplexDACsystemwhereCO2,afterbeingcaptured,iscooleduntilitprecipitatesasdryiceandafterwarming,itturnsintoapressurisedliquidforseques-tration.Thissystemispoweredbywindenergyandrequires423kWhel/tCO2,excludingfreezingand631kWhel/tCO2includingit.Asmentionedinsection3,MSAtechnologyisalsousedbythecom-paniesInfinitreeandSkytree.Freitas(2015)hasproposedaconceptualdesignofnanofactorybasedmolecularfiltersthatareabletocaptureCO2fromtheairpoweredbysolarenergy.Thesystemrequiresonly333kWhel/tCO2ofelectricityanddeliverspureCO2streamatapressureof100barwiththefinalproductioncostofabout14V/tCO2.Ifthisapproachmakesitatacommercial-scale,itcouldbearevolutionforDACtechnologies.Seippetal.(2017)hassuggestedanewtwo-cycleapproachbasedonNa2CO3andPyBIG(2.6-Pyridine-bis(iminoguanidine)).Inthismethod,regenerationcanhappenattemperaturesof80e120C,avoidinghigh-gradeheatdemandbyconventionalaqueoussolution-basedDACplants.Itisclaimedthatthiscrystallisationapproachcouldoffertheprospectsforlow-costDACtechnologies,however,nofinancialdatahasbeenprovided.Availabletechnicalparametersfromliteratureforthetechnol-ogiesinthisgrouparepresentedinTable3.4.2.EconomicsofCO2DACMostarticlesregardingDACarefocusedontechnicalparametersandonlyafewhaveconductedeconomicestimations.AllreviewedeconomicspecificationsandtherecalculatedcostsaresummarisedinTable4.ThefirstoriginallyreportedcostsassociatedwithHTaqueoussolutionDACreviewedinthisstudywas376V/tCO2byKeithetal.(2006).LaterHolmesandKeith(2012)changedthecontactdesignofthepreviousmodelfundamentally,whichreducedthecostto258V/tCO2.Socolowetal.(2011)presentabenchmarkDACsystemwithrelativelymoredetailsforbothenergybalanceandeconomicaspects.Consideringtheequipmentinvestmentcosts,thestudyintroducesanoptimisticandrealisticscenario.Fortheoptimisticscenario,aninstallationmultiplyingfactorof4.5(sameasPSCC)isusedtoconvertequipment'spurchasepricetothetotalplant'sinstallationcost.ConsideringthenoveltyofDACtechnology,aninstallationmultiplyingfactorof6hasbeenusedfortheinstallationcostofthesystemintherealisticscenario.ThishasincreasedthetotalreportedcostsofcapturedCO2from309to395V/tCO2.ThebenchmarksystemdescribedbySocolowetal.(2011)wasfurtherinvestigatedbyMazzottietal.(2013),wherenewpackingmaterialsweresuggestedfortheoptimisationofaircon-tactingunitandthefinalestimatedcostswerereducedto283e300V/tCO2,dependingonthecostsandtheenergyconsumptionofthethreedifferentproposedpackingmaterials.Zeman(2014)alsomodifiedandrecalculatedthecostsandenergydemandoftheSocolowetal.(2011)modelandconcludedthattheequipmentinvestmentcostscouldbeloweredby2.4%andtheannualopexcouldbereducedfrom4%to3%.Keithetal.(2018)fromCarbonEngineeringprovidedthetechno-economicassessmentsoftheirHTDACsystems,wherebothcapexandfinalcostsoftheHTDACsystemshavebeensignificantlyloweredincomparisontoAmer-icanPhysicalSocietymodel(Socolowetal.,2011),throughanewdesignandchoiceofmaterial.CarbonEngineeringhasalsoprac-ticallyachievedaCO2capturerateof74.5%,incomparisonto50%capturerateintheAPSmodel.Forthebaseconfiguration(poweredbynaturalgasandoutletCO2at150bar),itprovidesthecapexofthefirstplantat1132V/tCO2(1146USD/tCO2)andtheNthplantisexpectedtobe31%cheaperat714V/tCO2$a,duetoimprovementofconstructabilityandbuiltsupplychainrelationships.Inaddition,thecapexoftheNthplantbasedonthesecondconfiguration(usinggridelectricityinsteadofgasturbine)andthethirdconfiguration(avoidingCO2compressionandassumingavailabilityoffreeO2)arereportedat625V/tCO2$aand549V/tCO2$a,respectively.TheCO2capturecostsofallconfigurations,basedon5.6%and11.7%WACC(7.5%and12.5%annuityfactor)and27e54V/MWhforgridelec-tricity,areprovidedinTable4.ThethirdconfigurationbyKeithetal.(2018)istheclosesttothedesiredfullyelectrifiedsystemexplainedinsection4.1.1.,withCO2atambientpressureinordertohaveacommongroundforcom-parisonwithLTsolidsorbentDACtechnology.Inaddition,suchasystemwouldnotneedO2duetosubstitutionofnaturalgaswithdirectelectrification.Moreover,anydirectfuel-basedCO2isavoi-dedinsuchasystem,whichcoulddownscalesomesubunitsandthecostsoffuelcombustionandheatingsystemcouldbepossiblyloweredaswell.Withaconservativeapproach,inourmodel,suchcostreductionshavenotbeenincludedandtheprojectcostshavebeenrecalculatedforthefirstplantratherthantheNthone,whichincreasesthecapexfrom549to815V/tCO2$a.TheannualopexhasTable3TechnicalspecificationsofotherDACtechnologies.sorbentCO2con.adsorptiondesorptionenergydemandcoolingCO2purityreferenceppmT(C)T(C)P(bar)kWhel/tkWhth/tbyT(C)by%ion-exchangeresin400ambient,driedresinbymoisturising-316-self-heating45drying-Lackner(2009)ion-exchangeresin400ambient,driedresinbymoisturising-423-631-windpower45drying-Goldbergetal.(2013)K2CO3a400-2510-1002209-----Eisamanetal.(2009)Na2CO3&PyBIG400-80-120-------Seippetal.(2017)Nanofactory-basedb400---333-solarpower--100Freitas(2015)aElectrodialysis-basedCO2capturesystem.bMolecularfilters.M.Fasihietal./JournalofCleanerProduction224(2019)957e980964beensetto3.7%,accordingly.Thelifetimein2020issetto25yearsaccordingtoKeithetal.(2018).TheeconomicdataofLTsystemsbasedonsolidsorbentsaremorelimited.Climeworkshasclaimedatargetcostoflessthan75V/tCO2forlarge-scaleplants(Climeworks,2018b);however,noelectricitypriceorfinancialassumptionhavebeenprovided.GlobalThermostatexpectsCO2capturingcostsbelow113V/tCO2(150USD/tCO2)fortheirfirstcommercial-scaleplant(Pingetal.,2018b),whileKintisch(2014)hasreportedatargetcostof11e38V/tCO2,dependingonthelifetimeofaminesurfaces.Thetimeorscaleforreachingthiscostlevelisunknowntotheauthors.AlthoughCli-meworksistheforerunnerincommercialisingofsolidsorbentDACtechnologies,Antecy'scapexestimationof730V/tCO2$aistheonlyvalidpublicdatafound,asexplainedinsection4.1.2.Inaconser-vativeapproach,thelowerreportedlifetimeofClimeworks(20years)and4%annualopexhavebeenassumedforthefinalLTDACmodelinthisstudy,for2020.Lackner(2009)hasproposedaverypromisingLCODof144V/tCO2formoistureswingtechnologyasoftoday,whichisduetorelativelylowercapexof421V/tCO2$a,amountofresinrequiredandassumedcostofelectricity.However,intheabsenceofapilotplant,ithasnotbeenconsideredforfurtheranalysisinthisstudy.Withaskepticalapproach,Houseetal.(2011)investigatedtheenergeticandcapitalcostsofexistingDACsystemsinanempiricalanalysis,andconcludedthatthefinalcostsofthesystemareunderestimatedandcouldbeatthelevelof750V/tCO2.Themainargumentisthatat500ppmCO2concentrationinambientair,theworkrequirementand,toalargerscale,thecapitalcostsofCO2DACwouldbemorethanthoseproposedinliterature.Inaddition,carbon-freeelectricitywithcostsof75e150V/MWhinaforesee-ablefuturehavebeenconsideredastheonlysourceofenergy.IthasbeenstatedthattheaircaptureofCO2wouldlikely,requiremorethermodynamicworkthanNOxremovalfromfluegasat500kJ/molNOx,equalto3156kWhel/tCO2.However,withanoperationalplant,CarbonEngineeringhasalreadyproventheseenergyde-mandandcapexassumptionstobetoohigh.Inaddition,withtheTable4EconomicsofDACasreportedandrecalculated.technologycapacitycapexopexlifetimeel.demandel.priceheat/fueldemandindicatedtimeofcostcostreportedcostrecalculatedtypeofsourceareferencetCO2/a€/tCO2$a%yearskWhel/t€/MWhelkWhth/tyear€/tCO2€/tCO2HTaqueoussolution280000--20---2005376-OKeithetal.(2006)1000000----60--258-OHolmesandKeith(2012)10000001583b4d204945322502011309b314OSocolowetal.(2011)10000002086c4d204945322502011395c3881000000----5318402013283-300e-OMazzottietal.(2013)----1500-0large-scale75-113f-OCarbonEngineering(2018c)10000001032k3.7250-24502018151,209j200OKeithetal.(2018)(CarbonEngineering)1000000714k,l3.8250-24502018114,153j1581000000625k,l3.72536627-5414602018110-112,137-147j1391000000549k,l3.8257727-541460201885-87,115-117j1151000000815k3.72515355002020-186finalmodel(thisstudy)LTsolidsorbent36001220-25694-20832015-244,203gORoestenberg(2015)(Antecy)360000730-25694-20832015-177,135g----150-260-1170-1410firstplant<113-OKintisch(2014);Pingetal.(2018a;2018b)(GlobalThermostat)----150-260-1170-1410n/a11-38-300--20200-300-1500-20002014--OClimeworks(2018b)-------large-scale75-360000730420250-17502020-155,120g-finalmodel(thisstudy)moistureswingsolidsorbent365421-1030638-200914499OLackner(2009)-41-----long-term23-generic4004701.530-low-2011900h-OSimonetal.(2011)4009402.530-medium-mid-term220h-40023503.530-high-long-term75h-----315675-150-2011750-RHouseetal.(2011)----315675-150-2050225-500000330450---202945-ONemetandBrandt(2012)500000330450---205023-500000330450---210014--------long-term30,71,105i-RBroehmetal.(2015)a(O)originalsourceand(R)reviewarticle.bOptimistic.cPessimistic.dAdditional2.88V/tCO2asopexvariable.eBasedondifferentpackingmaterial.fCompressedto150bar.gBasedonfreewasteheat.hWindpower,waterconsumptionandcarbonsequestrationcostincluded.iOptimistic,realisticandpessimisticassumptions.jWACC:5.6%,11.7%.kBasedonV/USDexchangeratein2016:1.11.lNthplant.M.Fasihietal./JournalofCleanerProduction224(2019)957e980965ongoingsharpdeclineinthecostsofrenewableelectricity(Lazard,2017;Liebreich,2017),theassumedLCOEistoohighaswell.Thecostsfromliteraturearenotcomparable,duetolackoftransparencywithtechnologydescriptions,differentoutputconditions(e.g.pressureandCO2purity)andcostassumptionsforinputenergy(heatandelectricity)orWACC.Thus,agenericstandardisedcostevaluationhasbeenperformedforthefinalmodels,basedonthefollowingassumptions:WACC7%,elec-tricitycostof50V/MWhel,low-temperatureheatcostof20V/MWhth(<100C),high-temperatureheatcostof25V/MWhth(900C)andFLhof8000h.Itisimportanttoemphasisethatsuchcostsarecomparablewithtoday'sNG-basedelectricityandheatgenerationsystems,whichinduceCO2emissions.Foratrulysustainablesystem,renewableenergyshouldbeapplied,whichhasbeenlaterstudiedinsection4.3.2.,fortheyears2020e2050.Incaseoflackofdata,alifetimeof30yearsandanopexof4%ofthecapexhavebeenassumed.Theserecalculatedcostsarepre-sentedinTable4.ThecostrecalculationwasonlypossibleforthesystemsofSocolowetal.(2011),Keithetal.(2018),Roestenberg(2015)andLackner(2009),asthecrucialdata,suchasinputenergyorcapexismissingfromtheothermodels'specifications.Accordingtotheresults,itcanbeseenthatthefinalcostsre-portedbySocolowetal.(2011)arerecalculatedto314e388V/tCO2,whichmatchesthereportedcosts.At200V/tCO2,therecalculatedcostofthebasescenarioofKeithetal.(2018)is36%cheaperthanAPS'soptimisticmodelat314V/tCO2.Despiteofhighercostassumptionsforelectricitythanhightemperatureheat,at186V/tCO2,therecalculatedLCODofthefinalHTDACmodel(fullyelectrified,1stplant,1baroutletpressure)islowerthanthebasescenarioofKeithetal.(2018),duetolowercapexandenergydemandofthesystem,consideringthereliefofavoidedairseparationunit,CO2compressionto150baranddownscalingoffuel-basedCO2handlingsubunits.TheLCODofthefinalLTDACmodelisslightlylowerthantherecalculatedcostsofAntecy'scommercial-sizemodel,whichisduetolowerenergydemandofClimeworkstechnology;however,Antecy'soriginallyreportedcostsareunknowntotheauthors.ThecostofLackner'ssystemisloweredfrom144V/tCO2to99V/tCO2.SuchadifferencecouldbepossiblyrelatedtoahigherrateofopexforMSAsystems.Intotal,therecalculatedLTDACsystemcostsarelowerthanHTDACsystem.Currently,DACisinanearlystageofdevelopment.However,itisassumedthatthemaintenancecostswillbereducedalongwithequipmentcapexduetomassproduction,alongwithloweren-ergyconsumptionduetotechnicaladvancesinthelongterm(Lackner,2009;Simonetal.,2011).Keithetal.(2006)consideredafactorofthree,astheaccuracyrangeforanyestimationofDACplants.Whilesuggesting376V/tCO2asanachievablecostwithtoday'stechnology,thisstudyexpectsacostdeclinetothesamerangeasconventionalmitigationtechnologies,duetoindepen-dencyandstrongereconomiesofscale.Socolowetal.(2011)emphasisedthesignificantamountofuncertainty,whichmakesithardtopredicttheperformanceofaplantcommissionedinthefuture.WhilethecurrentCO2DACcostsforLTsolidsorbenttech-nologiesareratherunrevealed,Climeworkshassetagoalof75V/tCO2forlarge-scaleplants(Climeworks,2018b).Inaddition,moistureswingsolidsorbentsarealsopredictedtodevelopsignificantly.Lackner(2009)expectsthatthesorbentmaterial(asthemostexpensivepartofthistechnology)willbeimprovedsignificantlywith10timeshighersurfaceareaanduptakeca-pacityperkgofsorbent.Thiswouldalsodecreasethevolumeofthefilterboxby10times,increasingCO2capturecapacitypervolumeofthedeviceaswell.Itisprojectedthatthis,togetherwiththeeconomiesofscaleanddecreaseinthecostsofothermaterials,woulddecreasethecapexfrom421to41V/tCO2$aandthefinalcostcouldbeloweredto23V/tCO2,takingintoaccountlow-costelectricityalongwithreductionofoperationalexpenditures.InordertoestimatepotentialcostsofDAC,Simonetal.(2011)conductedresearchwhereagenericDACtechnologywasexam-inedbasedonassumptionssuchaselectricity,heat,landandwateruse.ThestudyclaimsthatitispossibletocaptureCO2for220V/tCO2,however,itpointsoutthatsubstantialresearchintokineticsandthermodynamicsofcapturechemistryisneededtoproveit.Inadditiontothereferencescenario,basedonpessimistic(achievabletoday)andoptimisticscenarios,acostrangeof75V/tCO2tomorethan800V/tCO2havebeenprovided.Asmentionedintheprevioussection,Houseetal.(2011)skepticallypointedoutthatthecurrentcostsofCO2capturefromambientairhavebeenunderestimatedandcouldbearound750V/tCO2.However,thestudysuggeststhattechnologicalbreak-throughcandramaticallyimproveDACtechnology,whichcouldmakeitpossibletoreduceproductioncoststoamoderatelevelof225V/tCO2.Nevertheless,mostofthepapersagreeonthelongtermimprovementofDACtechnologies.ItwasconcludedbyBroehmetal.(2015)that,amongalldifferentapproaches,aqueoussolu-tionisthemostdevelopedDACsystemandhasshownsignificanttechnologicalimprovementoverthepastyearsandwillcontinuetofollowthepatternwhichinthelongtermwillbringcapitalandoperationalexpendituresdown.ForagenericDACsysteminthelongterm,Broehmetal.(2015)expectthecostsforcapturedCO2togodownto30,71and105V/tCO2foroptimistic,realistic,andpessimisticassumptions,respectively.ThesameopinionissharedbyNemetandBrandt(2012).Theyperformedasensitivityanalysisoftheappropriatetechno-economicenvironmentforDACimplementationonalargescale,estimatedcompetitivecostsofDACandtheeffectsitwillhaveonconventionaltypeofliquidfuels.TheypointedoutthataftercommercialisationofDAC,whichislikelyinthenearterm,thecostswillgodownrapidlyduetoeconomiesofscaleandlearningbydoing.Theyconsiderlearningratesof0.101forcapitalcosts,0.135forenergycostsand0.135foroperationalandmaintenancecostsfrompreviousresearchesperformedbyRubinetal.(2007)andvandenBroeketal.(2009),dedicatedtoPSCC(theclosesttechnol-ogytoDAC).NemetandBrandt(2012)concludethatundertheseassumptions,by2029,DACwillreachthefloorcostof45V/tCO2,withpossiblefurtherreductionto23V/tCO2and14V/tCO2in2050and2100respectively.Inaddition,NemetandBrandt(2012)suggestalifetimeof50yearsforagenericDACsystem,whichexceedsanyotherlifetimeassumptionsinliteratureby20years.4.3.EstimatesforDACdevelopmentintheperiod2020to20504.3.1.PotentialcumulativeDACcapacitydemandandthelearningcurveimpactoncapexThestandardlearningcurveapproachisappliedforestimatingtheDACcapexdevelopment,accordingtoCalderaandBreyer(2017),assummarisedinEquations(9-11)forthelog-linearlearningcurveconcept.Abbreviationsarecapitalexpenditures,capex,progressratio,PR,binaryexponentialexpressionoftheprogressration,b,learningrate,LR,appliedforthehistoriccumu-lativeproductionforspecificyears,prod:capexnew¼capexinitial,prodnewprodinitialÀb(9)M.Fasihietal./JournalofCleanerProduction224(2019)957e980966PR¼ð2ÞÀb(10)LR¼1ÀPR(11)ThreefundamentalinputdataarerequiredforestimatingfutureDACsystemcapex:(1)TheinitialcapexaretakenfromTable4;(2)ThehistoriccumulativeDACcapacitydemandisderivedinthefollowingmanner;(3)ThelearningratesforDACsystemsaredis-cussedbasedonrespectiveDACliteratureandexperiencefromcomparabletechnologies.Article2oftheParisAgreementsetsthetargetoflimitingglobaltemperatureincreasetowellbelow2Candpreferably1.5Cabovepre-industriallevels.InArticle4,reachinganetzeroGHGemissionsysteminthesecondhalfofthecenturyissuggestedasameansofachievingthetargetsofArticle2.However,scientistsreportthatwearealreadyontheedgeofexploitingthecarbonbudgetfor1.5CscenarioandnetnegativeGHGemissionsystemsarenecessarytoachievethetargetsoftheParisAgreement(Kriegleretal.,2017;Rogeljetal.,2018).InthefollowingitisassumedthatthetargetsoftheParisAgreementshallbeachievedbythemidofthiscentury.Weconsidera2050scenariowithhighratesofdirectRE-basedelec-trification,substitutionofremainingfossilfuelsdemandbyRE-basedsyntheticfuelsandchemicals,aswellasdirectcarbonremovalintheenergysystem.Assuch,theremainingCO2sources,demandsandsinksarepresentedaccordingtothelistedbulletpointsandtheequivalentDACcapacities,asthemainpotentialCO2suppliers,areestimated.SeawaterCO2extractionisnotconsideredduetoitsearlystageofdevelopment.TheannualDACcapacitydemands,assummarisedinTable5,areestimatedfortheperiod2020to2050,inthesectorspower(power-to-gas,waste-to-energy,sewageplants),transport(road,rail,marine,aviation),industry(chemicalindustry,pulpandpaper,cementmills,others)andinfuturesectorofCO2removal.Inthepowersector,carboncaptureandutilisation(CCU)isnotappliedtoSNG-basedgasturbinesduetotheirbalancingrolewithlowFLhinaRE-basedpowersystem.ThefossilenergybasedCCUislimitedtoalmostunavoidablelimestonerelatedCO2emissionsfromcementmills.Afossil-basedtransportandchemicalindustrycouldreducetheirrespectivesyntheticfuelsand,consequently,CO2demand.How-ever,approximatelythesameamountofCO2wouldadduptothedirectCO2removalsectiontokeepthesystem'sCO2atthesamelevel.Since,PSCCcannotbeappliedtotransportandmostremainingnon-energeticusesoffossilfuelsinchemicalindustry.Moreover,thiswouldcauseadditionalCO2emissionsfromfossil-basedhydrogenproduction(mainlysteammethanereforming)insteadofwaterelectrolysis.Theironandsteelsectorisnotlistedduetotheassumptionthattheleastcostpathwayforthisindustrywouldleadtohydrogen-baseddirectreductionofiron(H2-DRI)andlatertoelectricityreducediron,asdiscussedbyOttoetal.(2017)andFischedicketal.(2014).TheDACcapacitydemandisfor:power-to-gastakenfromBreyeretal.(2018)andRametal.(2017);waste-to-energynegativeduetoitsCCUpotentialandbasedonwasteresourcepotentialtakenfromBreyeretal.(2018)andRametal.(2017),aCCUimplementationrateassumedtogrowfrom2%(2025)to50%(2050),acarboncaptureefficiencyof87%(EC,2014)andaCO2contentinwastetobe0.37MtCO2/TWhth,waste(IPCC,2003);transportmodes'demandistakenfromBreyeretal.(2019a)forthesyntheticFischer-Tropsch-fueldemand,whereas,therela-tivemixofdieselandkerosenemaychangethroughoutthetransitionperiod,andaspecificCO2DACcapacitydemandof0.36MtCO2/aperTWhth,fuelfor8000FLhbasedonFasihietal.(2017a;2017b);chemicalindustrybasedonthechemicalindustry'senergyfeedstockandfinalprocessenergydemandgrowth,excludingelectricity,from10280TWhth(2015)to19200TWhth(IEA,2009;RembrandtandMatt,2016),ademandcoveragegrowthbynaphthaastheby-productofFischer-Tropschfuelsproduc-tionfrom2%(2030)to16%(2050)accordingtoBreyeretal.(2019a),anestimated80%energyshareofcarbon-basedchemicalsandaspecificCO2DACcapacitydemandof0.25MtCO2/aperTWhth,feedstockfor8000FLhbasedonFasihietal.(2017a)foranaverageofcarbon-basedfeedstockchemicals;pulpandpapernegativeduetoitsCCUpotentialandbasedonthe2015pulpproductionandextrapolatedtill2050withtheTable5GlobalannualCO2DAC(orequivalent)capacitydemandbysector.sectorunit2020203020402050powerpower-to-gasMtCO2/a37142363waste-to-energyMtCO2/a0À17À99À165sewageplantMtCO2/a0n/an/an/atransportroad(cars/bus/trucks)MtCO2/a021813091101railMtCO2/a076682marineMtCO2/a0569621667aviationMtCO2/a0549641543industrychemicalindustryMtCO2/a022411573255pulpandpaperMtCO2/a0À8À52À95cementmills(limestone)MtCO2/a0À69À425À607othersMtCO2/a0n/an/an/aCO2DAC,energysystemMtCO2/a3.047340257144CO2removalMtCO2,captured/a00100010000thereofotherNegativeEmissionTechnologiesMtCO2,captured/a003002500thereofCO2DAC,CO2removalMtCO2/a007678213CO2DAC,totalMtCO2/a3473479115356M.Fasihietal./JournalofCleanerProduction224(2019)957e980967compoundannualgrowthratebetween2000and2015takenfromKuparinenetal.(2018),aCCUimplementationrateassumedtogrowfrom2%(2025)to50%(2050),acarboncaptureefficiencyof87%(EC,2014);cementmillsnegativeduetoitsCCUpotentialandbasedoncementproductionestimatestakenfromFarfanetal.(2019),aCCUimplementationrateassumedtogrowfrom5%(2030)to50%(2050),anefficiencyincreaseofoverallcapturedCO2from60%(2030)to80%(2050);CO2removaldemandbasedonKriegleretal.(2017),butwithademandfor10GtCO2/aremovalfor2050insteadof2055forahigherlevelofsustainabilityandthereofa300and2500MtCO2/aremovalsharebyafforestationin2040and2050,respectively,andtheremainingforCO2DACsystemswith8000FLh.TheestimatedannualCO2DACcapacitydemandgrowsfrom3MtCO2/a(2020)toabout15360MtCO2/a(2050),thereofabout8200MtCO2/afromCO2removal(2050).TheestimatesofannualCO2DACcapacitydemandsinTable5andrespectiveDAClifetimesdefinethehistoriccumulativeCO2DACcapacitydemandsinTable6,whicharetakenasinputfortheDACcapexestimates,accordingtothelearningcurveapproachforaconservativeandabasecasescenario.ThetwoscenariosforDACcapexdevelopmentaredefinedasfollows:Theconservativescenarioassumesonly50%realisationofthecumulativeDACcapacitydemandduetodelayedexecutionoftheParisAgreementandaDAClearningrateof10%,asassumedbyNemetandBrandt(2012)andbasedonRubinetal.(2007),vandenBroeketal.(2009)andRubinetal.(2004).ThebasecasescenarioassumesaneffectiveexecutionoftheParisAgreementwithoutdelay,leadingtonetzeroGHGemis-sionsfromtheenergysystemandalreadystartedCO2removal.TheDAClearningrateisassumedtobe15%,whichmatchesbetterthetechnologyspecificcharacteristicsofCO2DACsys-temsthantheeffectivelyassumedsulphurremovalsystemsoflarge-scalecentralisedcoal-firedpowerplantsthatarethebasisfortheassumed10%learningrate(NemetandBrandt,2012;Rubinetal.,2007,2004).Highlymodularenergytechnologiesexhibitlearningratesaround15%,asdocumentedforwaterelectrolyserswith18%(Schmidtetal.,2017),seawaterreverseosmosisdesalinationwith15%(CalderaandBreyer,2017),lithium-ionbatterysystemswith12%e17%(Kittneretal.,2017;Schmidtetal.,2017),whicharefinallyaconsequenceofmorecomprehensiveinternationalproductstandardisationandsub-stantialeconomiesofscale.ResultsofthelearningcurveapproachforestimatingtheDACsystemcapexaresummarisedinTable6andvisualisedinFig.5.TheDACsystemcapexareassumedtobe730V/tCO2$a(LT)and815V/tCO2$a(HT)in2020(Table4).ThecapexcandeclineforLTDACsystemsto199V/tCO2$a(conservative)and84V/tCO2$a(basecase)andforHTDACsystemsto222V/tCO2$a(conservative)and93V/tCO2$a(basecase)in2050,respectively.TheconsideredinitialDACcapacityin2020(1.5MtCO2/a)usedincapexdevelopmentcalculationsarewellabovethereportedcapacitiesofreferenceunitsofLTDAC(0.36MtCO2/a)andHTDAC(1MtCO2/a),whichemphasisestheroomforfurthercapexreduction.TheestimatedDACcapexprojectionsareusedinthefollowingasinputforthecostscenariosinlevelisedcostofCO2DACforspecificsites.4.3.2.LevelisedcostofCO2DAC(LCOD)intheperiod2020to2050HTaqueoussolutionandLTsolidsorbentarethetwomaintechnologies,whicharereadyforcommercialscaleimple-mentation.ThefinalmodelsofHTaqueoussolutionandLTsolidsorbentDACtechnologiesin2020,presentedinsections4.1.and4.2.,havebeenfurtherstudiedbasedonassumptionsforlongtermdevelopmentofthemainspecificationsbasedonthecon-servativescenariodescribedinsection4.3.1.,andasshowninTable7.Thecapexassumptionsforbothtechnologiesarebasedonthecumulativeinstalledcapacitiesandlearningrates,applyingtheconservativescenario,describedinsection4.3.1.ThelifetimeofLTDACtechnologyin2020is20years(Climeworks,2018b),whichhasbeenexpandedto25and30yearsin2030andbeyond,respec-tively,accordingtothelong-termestimationsforgenericDACplantsinliterature.ThelifetimeofHTDACissetto25yearsin2020accordingtoKeithetal.(2018),andlaterhasbeenextendedto30Table6ConservativeandbasecasescenariosforLTandHTDACcapexreduction.parameterunit2020203020402050CO2DAC,totalMtCO2/a3.0473479115356thereof50%,conservativescenarioMtCO2/a1.523723967678thereof100%,basecasescenarioMtCO2/a1.5473479115356historiccumulativecapacity(conservative/basecase)MtCO2/a1.5/1.5237/4732397/47937679/15357doublingsbetweenperiods(conservative/basecase)-07.3/8.33.4/3.41.7/1.7capexCO2DACLT(conservative/basecase)V/tCO2$a730338/189237/110199/84capexCO2DACHT(conservative/basecase)V/tCO2$a815378/211265/122222/93Fig.5.CO2DACcapexdevelopmentforLTandHTsystemsbasedonthelearningcurveapproachandtheappliedconservative(CS)andbasecasescenarios(BS).TheDACcumulativecapacityisbasedonthefindingsinTables5and6andtherespectiveDACcapexarebasedonEqs.(9)-(11).M.Fasihietal./JournalofCleanerProduction224(2019)957e980968yearsfortheyears2030andbeyond,asSimonetal.(2011)andNemetandBrandt(2012)consideralifetimeof30and50years,respectively.Inaddition,althoughNemetandBrandt(2012)sug-gestahigherlearningrateforopexofDACsystems,ithasbeenkeptconstantat3.7%and3%ofcapexfrom2020to2050forLTandHTDACtechnologies,respectively.InapersonalcommunicationwithClimeworks(Kronenberg,2015),theaverageelectricityandLTheatdemandfor2030wereestimatedtobe10%and14.3%lessthanthecurrentnumbers.ConsideringtheminimumachievedelectricityandheatdemandbyotherLTcompanies(Fig.4),thesamedemandreductionrateshavebeenassumedforeach10-yearstepuntil2050.Anelectricityde-mandreductionrateof5%hasbeenappliedtoafullyelectrifiedHTDACsystemfrom2020onwards,consideringthelimitsbythetheoreticalheatdemandofthecalcinerunitinthecurrentlyknownsetup.MoroccowaschosenasapotentialsiteforalargescaleDACplantimplementationwith2400FLhforsingle-axistrackingsolarphotovoltaic(PV)systemand3500FLhforwindpowertechnology(Fasihietal.,2017a).DACplantsandheatpumpsarecapexinten-sive,thusitisimportanttorunthemonhighFLh,whichwoulddemandhighavailabilityofelectricity.Batteriesareneededtoin-creasetheavailabilityofrenewableelectricity,especiallyforaPV-basedsystem.Fig.6illustratestheimpactofDACFLhonthenetLCOEandLCOD.Ascanbeseen,increasingFLhfrom3000to8000hwouldincreasethenetLCOE.However,thenegativeimpactofhigherLCOEonLCODhasbeenoffsetbyhigherDACFLhwhichprovidesthechanceforfurtherreductionofLCOD.ThehighestimpactisobservedforincreasingFLhofLTDACfrom3000to6000handfromthereto8000FLh,thedecreaseinLCODisverylow.ForthecaseofHTDAC,LCODstaysmoreorlessstableat5000to7000FLh,withaslightincreaseat8000FLh,whichisduetobiggerimpactofenergycostonHTDAC.TheLCOEnetfor4000and8000FLhhavebeencalculatedbasedonthespecificationsofpowersectorcomponentsasinTable8.TheratioofinstalledcapacityofPVtowindgraduallyincreasesfrom7in2030to10in2050,duetofasterdeclineinPVLCOEandcostdeclineofsupportivebatterysystems.Batteryshareis11%and56%for4000FLhand8000FLh,respectively.ElectricalcompressionheatpumpshavebeenusedforLTheatgeneration,wheretheCo-efficientofPerformance(COP)graduallyincreasesfrom3.0in2020to3.5in2050(DEA,2016).LCOE,LCODandLCOHwerecalculatedfor4000and8000FLhconditionsandbasedontheconservativescenariowiththeabovedescribedassumptions.TheresultsarepresentedinTable7.Fig.7illustratesthefinalcontributionsforLCODoftheLTandHTDACsystemsat8000FLhin2040fortheconservativescenario.TheLCODoftheLTDACsystemreaches69V/tCO2,wherethehighestsharesbelongtoheatdemandat43%andtoDACcapitalexpendi-turesat30%.Incaseofaccesstofreewasteheat,theLCODcouldbeloweredtoabout40V/tCO2.Ontheotherhand,at91V/tCO2,theLCODoftheHTDACsystemin2040ishigherthanLTDAC,wheretheelectricitycostdominatesthetotalcostsat62%andtheshareofcapitalexpendituresisabout26%.Thus,itisrathercrucialforbothDACsystemstohavetheDACplantslocatedatsitesofabundantandverylow-costrenewableelectricityinordertobringthefinalCO2productioncostsdown.Inthecaseofaccesstoverylow-costorfreewasteheatforLTsystem,itsdependencyonverylow-costelectricityisrelativelylower.4.3.3.SensitivityanalysisDuetouncertaintiesaboutliterature-basedDACsystemmodels’specificationsandtheirdevelopmentsinthelongterm,asensitivityanalysisiscrucialinthisstudy.Inaddition,inputvaluescanvarybasedontheselectedlocationoftheDACplantandoveralleco-nomicenvironment.Thus,asensitivityanalysiswasconductedfor±10%changesineconomic,energeticandgeographicalfactorsforLTandHTDACsystemswith8000FLhin2040,forwhichtheresultsarepresentedinFig.8.AsillustratedinFig.8a,a10%changeinWACCorDACcapexhasa4e5%impactonLCOD,followedby2e3%and1%impactfrombatteryandPVcapex,respectively.Althoughwindhasahighercapex,itsimpactontheresultsarenegligible,astheinstalledcapacityofwindissettooneninthofPVcapacityin2040.AsshowninFig.8b,theimpactofa10%changeinopexofPV,windorbatteryonLCODisnegligible,whiletheDACopeximpactisabout1.5e2%.However,thebiggestoperationalcostimpactsareFig.6.TheimpactofDACFLhonnetLCOE,LTLCODandHTLCOD(conservativescenario).M.Fasihietal./JournalofCleanerProduction224(2019)957e980969associatedwithenergyconsumptionoftheplant.FortheLTDACsystem,witha5%changeinLCOD,heatdemandhasthebiggestimpactasthemajorityofenergydemandissuppliedbyheat,whileat7%,electricitydemandofafullyelectrifiedHTDACwouldhavethesameimpactonLCOD.Fig.8cemphasisesthebigroleofDACFLhonLCOD,however,unlikeFig.6,hereitisassumedthatincreasingDACFLhhasnoimpactonLCOE.Italsoshowsthataregionwith10%morePVFLhcoulddecreasetheLCODbyabout2%.Fig.8dillustratesthata10%lowerbatteryorLTDAClifetimecouldincreasethecostbyabout1%.4.4.AreademandandriskoflocalCO2depletionOneofthemostcommonconcernsaboutwidescaleDACplantsimplementationislocalCO2depletion,asitmayaffecttheenvi-ronmentandvegetation.Inaddition,aCO2-poorenvironmentwoulddecreasetheefficiencyofDACsystemsandincreasefinalCO2capturecosts.Thus,itisimportanttoevaluatetherecoverytimeandtheminimumdistancebetweenDACunitstoavoidsuchproblems.Inaddition,footprintandrespectivelandusagemaybeakeyissue,assubstantiallandrequirementmightbeabarrierfortheTable8Powerandheatsectorkeyspecifications.unit2020203020402050referencePVsingle-axistrackingplantETIP-PV(2017);Bolingeretal.(2017)capexV/kWp638429330271opexfixV/(kWp$a)15.012.010.08.0opexvarV/kWhel0000lifetimeYear30354040WindpowerplantNeij(2008);Breyeretal.(2018)capexV/kWp11501000940900opexfix%ofcapexp.a.2.0%2.0%2.0%2.0%opexvarV/kWhel0000lifetimeYear25252525PV/Windcapacityratioe78910thisstudyBatteryBreyeretal.(2018)capexV/kWhel(energy)30015010075opexfix%ofcapexp.a.2.5%2.5%2.5%2.5%opexvarV/kWhel0.00020.00020.00020.0002lifetimeYear20202020cycleeff.%91939595energytopowerratioe6666ElectricalCompressionHeatPumpDEA(2016)capexV/kWth660590554530opexfixV/(kWth$a)2222opexvarV/kWhth0.001800.001700.001630.00160lifetimeyear25252525COPe33.263.413.51Table7Long-termspecificationsofDACandgenericcosts(conservativescenario).unit2020203020402050LTDACcapexV/tCO2$a730338237199opex%ofcapexp.a.4%4%4%4%lifetimea20253030el.demandkWhel/tCO2250225203182LTheatdemandkWhth/tCO21750150012861102HTDAC(electrified)capexV/tCO2$a815378265222opex%ofcapexp.a.3.7%3.7%3.7%3.7%lifetimea25303030el.demandkWhel/tCO215351458138513164000FLhLCOEnetV/MWhel44282118LCOH-LT(byheatpump)V/MWhth36272422LCOD-LTV/tCO22891419780LCOD-LT(freewasteheat)V/tCO2226996756LCOD-HTV/tCO228613898808000FLhLCOEnetV/MWhel103584132LCOH-LT(byheatpump)V/MWhth51302320LCOD-LTV/tCO22221056954LCOD-LT(freewasteheat)V/tCO2133604032LCOD-HTV/tCO22681339171M.Fasihietal./JournalofCleanerProduction224(2019)957e980970largescaleimplementationofthetechnology.ThestudybyJohnstonetal.(2003)hasanalysedthecarboncapturepotentialofanengineeredflatsinkwith4⁰Â5⁰latitude/longituderesolutionanditslongtermlocalCO2depletionimpactin5differentregionsoftheworld,withathreedimensionalchemicaltransportmodel.Itconcludesthatthelocaldepletioncouldbeintherangeofnaturaldaily,seasonalCO2flections,thusnotanissuefortheimple-mentationofDACsystems.Inaddition,itnotesthattheCO2uptakedependsontheCO2velocityand,atatypicalvelocityof1m/s,anareaof75000km2wouldbeenoughtocapture3GtCO2/a,repre-sentingafootprintof25km2/MtCO2.Ithasbeenemphasisedthatthesameuptakecapacitiescanbeexpectedfromverticallyalignedsystems,whiledecreasingthedirectlanduseatthesameactivearea.Ontheotherhand,byspreadingthisverylarge-scalesysteminsmallerunitsacrossdifferentregionstoavoidmeetingeachother'sCO2shadow,theactiveareademandcouldbereducedbymorethananorderofmagnitude.Socolowetal.(2011)claimsthatforaHTaqueousbasedDACsystemwith1MtCO2/acapacity,thetotalareademandwouldbe1.5km2thatleadstoafootprintof1.5km2/MtCO2,whichisbasedonthefollowingassumptions:Fivecontactingfacilitieswithalengthof1kmandwidthof1marelocated250mapartfromeachother,whichistheminimumalloweddistancetopreventdualdepletedairintake.Thisindicatesthat,likewindfarms,themajorarede-mandofDACsystemsisreservedforthefreespacebetweenDACunits.Inaddition,awarehouseforchemicalstorageandaregen-erationunitisincludedinthefootprint.Climeworks(2018b)cap-tureplanthas18unitslocatedin3rowsontopofeachotherandiscurrentlythemaximumverticalexpansionforClimeworks.How-ever,theoverallfootprintoftheirsystemforcapturing8GtCO2peryearis3300km2,whichisequalto0.4km2/MtCO2annually.Although,noneofthesetwosourceshavespecifiedhowthetotallanddemandortheminimumalloweddistancebetweenunitswereestimated,theiroverallfootprintisinlinewithJohnstonetal.(2003),whichconductedlanduseestimationforrelativelysmall-scaleDACsystems.Keithetal.(2006)alsodiscussedDACsystemslandrequirementsinlesserdetail,whereithasbeenconcludedthatthedirectareademandofpotentialDACplantscanberathersmall,asthelandbetweentheunitscanbefreelyusedforotherpurposes.4.5.WaterdemandThewaterdemandofDACunitsistheotherfactorwhichshouldbeconsideredforthelargescaleimplementationofthetechnology.ThewaterlossinHTaqueoussolutionDACsystemscouldbebe-tween0and50tonspertonCO2captured,dependingonthetemperatureandhumidityoftheambientairandconcentrationofthesolution(Keithetal.,2006;Stolaroffetal.,2008;Smithetal.,2016;Zeman,2007).ThenewCarbonEngineeringdesignneeds4.7tonsofwaterpertonCO2captured,atambientconditionsof64%relativehumidityand20C(Keithetal.,2018).Incaseofwaterstressintheregion,waterdesalinationandtransportationcouldcost0.6to1.6V/m3in2030(Calderaetal.,2016),whichwouldaddabout3e8V/tCO2,accordingtowatercostimpactinKeithetal.(2018).ThiscouldlimitthelocationalflexibilityofDACplants,particularlyindryandremotedesertregionswherebothwaterdemandanditstransportationcostcouldbesignificantlyhigher.Ontheotherhand,someLTDACsystemscancapturewaterasaby-product.Forexample,Climeworkstechnologycancapture2e5molofwaterpermoleCO2captured,equalto0.8e2tonwaterpertCO2.Generally,fromanenergypointofview,itistheirgoaltocaptureaslittlewateraspossible.However,at2molwaterpermoleCO2theenergydemandwouldbeinthelowerendofenergyconsumptionrangeofClimeworkstechnology(Kronenberg,2015).AccordingtoBajamundietal.(2018),Hydrocell'sDACsystemoperatedintheFinnishclimatehasalsoproduced4.6molofwaterpermoleofcapturedCO2,equalto1.9tonwaterpertCO2.Thus,waterdemandwouldnotbeaconstraintforLTDACsystems,quitetothecontraryDACsystemscouldprovidewaterneededforsubsequentwaterelectrolysisprocesses,asrequiredforpower-to-fuelandpower-to-chemicalconversion(Fasihietal.,2017a,2017b).4.6.CO2compression,transportandstorageThecapturedCO2couldbestoredorutilisedasfeedstockforotherapplications.Forthesematters,additionalstepssuchaspu-rification,compressionandtransportation(ingaseousorliquidphase)maybeneeded,whichcouldbeenergyandcostintensive(AspelundandJordal,2007;Johnsenetal.,2011;Knoopeetal.,2014).CO2couldbeliquefiedbycompressiontoacriticalpressureof73.8barandthencanbepressurisedfurtherbypumps(McCollumandOgden,2006).WhencompressingCO2,recoverableheatisgeneratedandcanbeutilisedinotherpartsofthesystem(Lackner,2009).InPSCC,priortocompression,CO2needstobecleanedfromawiderangeofimpuritiesassociatedwithfluegases.Thus,theFig.7.LCODcostbreakdownforthefullyelectrifiedHTDACsystem(left)andLTDACsystem(right)for8000FLhandconditionsinMoroccoin2040.M.Fasihietal./JournalofCleanerProduction224(2019)957e980971Fig.8.SensitivityanalysisofLCODfortheLTDAC(left)andHTDAC(right)systemsbasedoninputdatafor(a)investment,(b)operational,(c)FLhand(d)lifetimeassumptionsfor8000FLhin2040.M.Fasihietal./JournalofCleanerProduction224(2019)957e980972compressionstationiscombinedwiththepurificationunit(Skaugenetal.,2016).Simonetal.(2011)reported62.5kWhel/tCO2astheminimumenergyrequirementforCO2compressionto138barafterDAC,equalto104kWhel/tCO2ofpracticalenergyde-mandbasedonacompressionefficiencyof60%.Kolsteretal.(2017)reportedanenergyrequirementof96e103kWhel/tCO2forCO2dehydrationandcompressionto120bar,forPSCC.Keithetal.(2018)reportedanenergyrequirementof132kWhel/tCO2forCO2compressionto150barfromDAC,wherethecompressorstandsforabout3%ofthetotaldirectfieldcost.CO2transportationcanbedonebypipelines,ships,railways,trucks,tankcontainersoracombinationofthem.Transportationtypestronglydependsontheterrain,distanceandcapacity.Pipe-lineisawell-regulated,safeandmatureoption(IEA,2016)thatisfavourableforbigvolumesofCO2withannualtransportationca-pacityof1e5milliontonanddistancesintherangeof100e500km(IEA,2010).Overlongdistances(>2400km),shiptransportismorecost-effective(IEA,2016).Italsohasadvantagesoverpipelinenetworkintermsofflexibilityandscalability.Ontheotherside,shipsrequirewell-developedhubsandterminals.CO2istrans-portedonlyintheliquefiedformbyships,thusanadditionalpressurisationstationisneededattheharbour.Karjunenetal.(2017)hasanalyseddifferentsitesattheterrainwhereshipsandsufficientinfrastructureofpipelinesdonotexistandconcludedthatthepriceofCO2transportationbytrucks,trainsandpipelinesforshortdistances(100e400km)willbeintherangeof4.4e14V/tCO2.CostparametersassociatedwithallmentionedmeansoftransportationaresummarisedandpresentedinTable9.TraditionaloptionsforCO2sequestration(permanentstorage)arelimitedtodeepsalineformations(1000e~10000GtCO2),depletedoilandgasfields(675e900GtCO2),coalseams(3e200GtCO2),basalts,shales,saltcavernsandabandonedmines(IEA,2016;Svenssonetal.,2004).ChenandTavoni(2013)havere-portedaCO2storagecostofabout10V/tCO2forthebestsitesintheworld,withacumulativecapacityofabout700GtCO2.Trans-portationdistanceandassociatedcostscouldincreaseforfutureprojects.Amoresustainablelong-termCO2storagesolutionwouldconvertCO2intoachemicallyinertcompoundwithahighcom-bustionpointsothatlateremissionriskscanbereducedtoanabsoluteminimum.Also,CO2fromDACtechnologiescouldbeusedforsyntheticfuelproductioninaclosedcarbonloop(Vazquezetal.,2018).Forcouplingthesesectors,dependingontheoperationtimingandcapacitiesofDACsystemsandsyntheticunits,inter-mediateandseasonalstoragewithhighcapacitiesmightbeneeded.However,mostplantswouldbeoperatedclosetobaseload,whichreducestheneedforseasonalstorage.GastankscanbeusedforintermediatestorageofCO2.Karjunenetal.(2017)hasstatedthatcostsofintermediatestorageincylindricaltankscanbeabout10V/tCO2.5.Discussion5.1.RelevanceofDACwithrespecttotheParisAgreementTheParisAgreementsymbolisesacommonunderstandingoftheextremesituationandactionsneededtobetaken.Toreversethistrend,adeepandfastdefossilisationofthepower,heat,transportationandindustrysectorsthroughhigherutilisationofREby2050isneeded(Breyeretal.,2018;Jacobsonetal.,2017;Mathiesenetal.,2015;Rametal.,2017;Sgouridisetal.,2016).However,a100%directelectrificationofthesesectorsisnotpossible,especiallyforhightemperatureindustrialheating,long-rangeaviationandmarinetransportation,wherefossilfuelsandlatersyntheticfuelsareexpectedtobeplayaroleby2050.Somebalancinggaspowerplantswouldbeneededforthepowersectorduringthetransitionperiod,whichcouldswitchduringthetran-sitionperiodtosyntheticnaturalgasorothersyntheticfuels(Rametal.,2017).Inaddition,apartofnon-energeticuseoffossilfuelsinthechemicalindustrycouldfinallyturntoCO2emissionsintheatmosphere,suchasburningofplasticwastesinincinerators.TheunavoidablefossilCO2emissionsfromcementindustrywouldalsostillcontributetoclimatechange(Farfanetal.,2019).PointsourceTable9CO2transportationcost.transp.typecapacitydistancecostreferenceMtCO2/akmV/tCO2truck15e20Â10À6>10013Freitas(2015)train1.465987.3Gaoetal.(2011)onshorepipeline0.731006.8McCollumandOgden(2006)0.7350043.6McCollumandOgden(2006)2.51805.4ZEP(2011)7.31001.5McCollumandOgden(2006)7.35009.8McCollumandOgden(2006)201801.5ZEP(2011)207505.3ZEP(2011)offshorepipeline2.51809.3ZEP(2011)2.5150051.7ZEP(2011)201803.4ZEP(2011)20150016.3ZEP(2011)shipping275011.1aAspelundetal.(2006)2.518013.5aZEP(2011)2.5150019.8aZEP(2011)3195011.8bKujanp€a€aetal.(2011)2018011.1aZEP(2011)20150016.1aZEP(2011)aLiquefactioncostincluded.bLiquefactioncostnotincluded.M.Fasihietal./JournalofCleanerProduction224(2019)957e980973carboncaptureandstorage(CCS)couldonlydecreasetheGHGemissionsfromthesesectors,andnotfullyremovethem(Leesonetal.,2017).Inaddition,pointsourceCCScouldnotbeappliedtoships,planesandsmallerpollutersThus,afossil-basedsystem,evenwithCCSorCCU,wouldstillbeanet-polluter(SAPEA,2018).DACwillfinallyallowtoclosethecarboncycleinaworldwhereitisnotpossibletoeliminateGHGemissionsproducedbyaviationandmarinesectors,alongwithuntappedCO2fromunavoidablepointsources(cementandwaste-to-energyincinerators)andfromlanduseandagriculture.TargetsoftheParisAgreementaremostlikelynotachievablebypointsourceCCS,asnotasingleproposedtechnologycancaptureallemittedCO2,whereasitcanbecollectedbyDACplants.Inaddition,asmentionedinsection4.3.1.,DACca-pacitiescoupledwithCO2storageareneededasanegativeemis-siontechnologytoreverseclimatechangeimpacts.IntegratedAssessmentModels(IAMs)havepreferredBECCSasNETinthepast,ascriticisedbyCreutzigetal.(2019),whereasDACsystemsaresuperiorinmostcriteria.ButthereportedcostsofDACarestillregardedasthemainobstacleforabroaderconsiderationofDACsystemsasanimpactfulNET.Breyeretal.(2018)foundforthecaseoftheMaghrebregionthatDACsystemscanbeaverycost-effectiveNETin2050.Creutzigetal.(2019)alsopointoutthattheenergysystemintegrationofDACCScanbeexpectedtobesuperiortoBECCSforrenewablesbasedenergysystems,whichisconfirmedbyBreyeretal.(2019b)forDACCScoupledtoa100%renewableenergysystemintheMaghrebregion.AccordingtoWilcoxetal.(2017),CO2puritiesofabout50%aresuitableformineralcarbonationasapermanentCO2storagesolution.Atsuchpuritylevels,theenergydemandandconsequentlythecostofDACsystemsarerelativelylowerthanDACsystemswithmorethan99%puritydiscussedinthiswork.ThiscouldpotentiallyleadtoacheaperDACCSprocess,assumingnosignificantnegativeimpactbyimpuritiesduringpost-captureprocesses.5.2.BenefitsandchallengesofthemainDACtechnologiesLTsolidsorbet-basedandHTaqueoussolution-basedDACsys-temshavebeenreviewedinthisstudy.TheHTtechnologyisadoptedfromPSCCwithprovenabsorbentmaterials.Nevertheless,inmostHTDACmodelsfossilfuelsareusedtoprovidetherequiredhigh-gradeheat.ThiswouldbeanunsustainablesystemforCCU,asthefossilCO2partwouldfinallyendupintheatmosphere.ACCSchainbasedonthissystemcouldenableonlypartiallynegativeemissions,whichwouldincreasethenetLCODofavoidedCO2.Theuseofsyntheticfuelswouldalsodramaticallyincreasetheprimaryenergydemandandthecostofthesystem.However,afullyelec-trifiedHTDACtechnologyprovidesthechancetofullyrunthesystemonRE.Ontheotherhand,LTDACsystemshavemoreop-tionsforprovidingheat,suchasheatpumps,whicharemoreen-ergyefficientandcanbedirectlypoweredbyRE.Thewasteheatfromindustrycouldbeseenasasourceoffreeorcheapenergy,whichcouldreducetheLCODsignificantly(Fig.6).ForsomeCCUprocesses,andinparticularsyntheticfuelsproductionintegratedwithLTDACunits,thewasteheatfromfuelproductionprocessescouldberecycledandusedintheLTDACunits,reducingtheoverallcostsoffinaloutput(Fasihietal.,2017b;Rametal.,2018).ThisisaclearadvantageofLTDACsystems.Moreover,whilethewaterde-mandofHTDACsystemsistypicallyseenasanegativefactor,someLTDACtechnologiesarecapableofcapturingmoisturefromtheatmosphereasaby-product,whichcouldbeusedforhydrogenproductionasthefirststepinsyntheticfuelsandchemicalspro-duction.Thiscouldpartiallyorfullyavoidthedependencyofsuchsystemsonexternalwater(Fasihietal.,2017b).ThemoistureaidedLTDACtechnologies,suchastheoneappliedbyAntecy(Roestenberg,2015),couldfurtherdecreasethetemperatureandtheamountofheatdemand,openingtheroomformorevarietyofwasteheatsourcesandhigherenergyefficiencyofsuchDACsys-tems.Ontheotherhand,totheknowledgeoftheauthors,sofarLTDACsystemshavebeenoperatedinmoderateclimates.OperatingthesesystemsinsunnyandhotregionssuchasMoroccomaydecreasetheheatingdemand,howeverthiswouldincreasethecoolingdemandofthesystem,asthenaturalaircoolingwouldnotbeenoughanymore.Theimpactofsuchachangeontheoverallenergydemandofthesystemisunknowntotheauthors,sameasthechangeinmoistureintheatmosphereofdryregions.HTDACsystemsconsistofseparatecarboncaptureandregen-erationunits,whichmaketheconstantcarbonabsorptionandregenerationpossible.Ontheotherhand,fortheavailableLTDACtechnologies,bothadsorptionanddesorptionhappenstepwiseinoneunit,whichlimitstheoperatinghoursofeachstep.ThismaycauseadditionalcoststothesystemfortimemanagementandstorageofREandRE-basedheat.Antecy(2018)andGlobalTher-mostat(Pingetal.,2018b)haveintroducedLTDACsystemswithseparateunitsexclusivelydesignedforadsorptionordesorption,whichhaveahigherefficiencyandoperatingtimethatcoulddecreasethefinalsystemcosts.Fromaneconomicperspective,judgingbypubliclyavailableinformationandpromisesforfurthercostreductions,LTDACseemstobethecheaperoptionwhenfreewasteheatisavailable.ItisimportanttoemphasisethatevenlowercostsareforeseenforLTDACbyGlobalThermostat(Table4).However,asnofinancialdetailsarepubliclyavailable,ithasbeenexcludedfromthiscomparison.5.3.Finalcostoflarge-scaleDACAsdiscussedinsection4.3.2,LCODofHT/LTDACsystemswith8000FLh,undertheconservativescenariowith50%implementa-tionofneededDACsystemsand10%learningrateofDACcapex,isprojectedtobeabout268/222,133/105,91/69and71/54V/tCO2in2020,2030,2040and2050,respectively.However,asillustratedinFig.9,underbasecasescenarioassumptionswith100%imple-mentationofneededDACsystemsand15%learningrate,thecostsforHT/LTDACsystemscouldgodownto268/222,111/84,72/53and54/38V/tCO2in2020,2030,2040and2050,respectively.At111e133V/tCO2,theresultsforHTDACin2030arehigherthantheprojectedcostsofCarbonEngineering(thirdscenario),at85e87V/tCO2,fortheNthgas-basedplantwithawellregulatedFig.9.LCODforLTandHTDACsystemswith8000FLhand7%WACCforthecon-servativescenario(CS)andbasecasescenario(BS)assumptions.M.Fasihietal./JournalofCleanerProduction224(2019)957e980974constructionandsupplychainrelationship.Inthisyear,thehistoriccumulativeDACinthesetscenarioshavewellpassedthematuritylevelandthecapexisbelowtheNthplant'scapex.However,theimpactofclose-to-baseloadrenewableelectricity(58V/MWhel)onthefinalcostsissignificantlybiggerthantheassumedcheapgaspriceof11V/MWhthbyKeithetal.(2018),whereinthecostsoffossil-CO2emissionshavenotbeentakenintoaccount.Basedonthis,thelong-termcostsrecalculatedinthisresearchof54e71V/tCO2forHTDACin2050appearsachievable.NofinalnumberisprovidedinliteratureforthecurrentcostsofLTDAC,however,asthedefinedgenericLTDACinthisresearchisfullybasedonspec-ificationsofavailableplantsorcommercialdesigns.Thecalculatedcostof222V/tCO2in2020isexpectedtobereliable.Forthe2040e2050period,LTDACcostshavebeencalculatedtobe38e69V/tCO2,whichisinlinewithprojectedcostsofClimeworks(75V/tCO2)andGlobalThermostat(11e38V/tCO2)forlong-termorlarge-scaledeploymentofDACtechnologies.Besidestheimpactofmoreenergyefficientsystemsandaccessibilitytocheaperenergyinthefuture,thecapexdevelop-mentandrelativecostreductionfrom2020to2050emphasisesthebigroleoftheimplementationrateandlearningcurve.Neverthe-less,therelativelyhighcostofDACin2020couldremainasachallengeforattractinginvestmentsneededforintroducingthesystemtothemarketandscalingup.Inthisstudy,aCOPof3hasbeenusedasaglobalaverageforheatpumpsin2020,whichgraduallyincreasesto3.51in2050(DEA,2016).However,thiscouldbearatherconservativeassumptionforthewarmclimateofMorocco.Ontheotherhand,thenatureofthemarketin2020e2030couldberelativelydifferentfromthosein2040e2050,asDACcoupledwithpermanentstorageasanegativeemissiontechnologyisprojectedtobeimplementedfrom2040onwards.AlltheprojectedDACcapacityin2020e2030isassociatedwithsyntheticfuelsandchemicalsproductionwithpossiblyavailableexcessheatasabyproduct,fromwhichtheLTDACsystemcouldbenefittofurtherdecreasetheproductioncostto133,60,40and32V/tCO2in2020,2030,2040and2050,respec-tively,whichcouldmakemarketentryeasier.Ontheotherhand,forthe2020e2030period,theglobalenergysystemwouldstillincludehighsharesoffossil-basedpointsourceCO2frompowerandindustrialsectors,whichcouldbeacheapersourceofCO2throughpointsourceCCUandcouldbeacompetitortoDAC.Whetherregulatorsallowitremainsunclear.However,lookingatthebigpicture,therewouldnotbeenoughpointsourceCO2tomeetalltheCO2demandinafullysustainableenergysystemin2050(Table5).Thus,DACwouldfinallyhavethelargermarketshareand,tomakeitcheapbythen,theimplementationneedstostarttoday.Allcostanalysesinthisresearcharebasedon7%WACC,how-ever,abusinesscasewith5%WACCmaybepossibleinsomere-gionsoftheworld.AccesstocheapREinsuchregionscouldfurtherreducetheLCODbyabout12%.NichemarketscouldalsohelptoincreasethemarketshareofDAC.Asanexample,theawarenessanddemandforsustainableCO2orCO2-basedproductssuchassyntheticfuelsorchemicalsisgrowing,whichmakesDAConeoftheveryfewavailableoptions.Finally,CO2emissionscostsarethelastmeansofregulatingthemarket,whichcouldhaveasmallorbigimpactoncostcompetitivenessofDACsystems,dependingontheregulationsdevelopedbypolicy-makers.5.4.CO2DACvs.pointsourcecarboncapture,todayandinthefutureDACisusuallycomparedtoPSCCbasedoncosts,whichisnotfullycorrect.Asexplainedinsection5.1.,pointsourceCCUandCCScanonlyreducethepaceofCO2emissionsincreaseduetoimplementationrateandcarboncaptureefficiencylosses,whileDACcoupledwithCO2storage(DACCS)cantrulyactasanetNET(Choietal.,2011b).Inaddition,asshowninsection4.3.1,inasustainableenergysystemby2050,therewouldnotbeenoughpointsourceCO2asfeedstockforotherapplications.Thus,thetwotechnologiescouldcomplementeachotherfordifferentapplica-tions.However,therecouldbesomemarketsegmentswherebothtechnologiescouldbeapplied,butthefinalchoicecouldbederivedbyfinancialfactors.Underequalpreconditionssuchasenergydemandandcosts,itseemslogicaltoexpectlowercarboncapturecostsfrompointsourcesduetothehigherconcentrationofCO2.Fig.10illustratesthecostrangeofPSCCin2020andprojectedcostsin2050,basedonthescenarioexplainedbyLeesonetal.(2017)andDACcostsin2040and2050,basedontheconserva-tive(upperlimit)andbasescenarios(lowerlimit)presentedinthisstudy.Literature-basedindustrialPSCCcostrangeforeachFig.10.CostdistributionrangeofPSCCfordifferentindustries(reproducedafterLeesonetal.(2017))andDAC.Abbreviations:naturalgasproduction,NGP,steammethanereforming,SMR.M.Fasihietal./JournalofCleanerProduction224(2019)957e980975sectorin2020representdifferentstudiesunderdifferenttech-nologies,carboncaptureefficienciesandcostassumptions.ThecostsinLeesonetal.(2017)havebeenconvertedfromUSD/tCO2,avoidedtoV/tCO2,capturedbythefixedUSD/Vconversionrateof1.33andtheavoidedCO2issetto78%ofcapturedCO2basedoncoal-poweredPCSSdescribedinSocolowetal.(2011).Themin-imumPSCCcostfromironandsteelindustryisrelatedtousageofsteelslagforcarbonationwithonly8%efficiency,whichcannotfulfilltheinitialgoalofPSCC.Inaddition,thesustainablepathwayforironandsteelindustrycouldbeCO2-free(Fischedicketal.,2014;Ottoetal.,2017).PSCCcostrangefromrefineriesandcementin2020isabout30e100V/tCO2,whilethecostrangefrompulpandpaperisbetween29and41V/tCO2,originatedfromreviewingtwopublications.Theprojectedcostsofindus-trialPSCCin2050havebeencalculatedbyLeesonetal.(2017)basedonthemeanvaluesforthecostsofbestcandidatePSCCtechnologiesforeachsectorin2020andappliedinstalledca-pacitiesby2050.Underthisscenario,PSCCcostsfromcementreach12V/tCO2,however,stillusingfossilfuel,whichmaybepricedveryhighforavoidablefossilfuelsourcesin2050.Inaddition,highpurity(>95%)sourcesofindustrialCO2alreadyhavethePSCCpotentialwithcostswellbelow20V/tCO2,assuchCO2streamsonlyrequirecompression,anddonotneedexpen-sivecarboncapturedevices.Incasefossilfuelshadbeentheinputfeedstock,onemayhavetopayinadditionaCO2priceforthefinalemissions,whichcoulddrasticallyincreasethecosts,comparedtothesustainableDACroute.Naturalgasprocessing(NGP),ammoniaproduction,ethyleneoxideproductionandsteam-methanereformingforhydrogenproductionaresomeoftheprocesseswithfossil-basedfeedstock,whichaccountforabout7%ofindustrialemissionsLeesonetal.(2017).ThesearethesocalledlowhangingfruitsforPSCC,however,someoftheseprocessescouldbesubstitutedwithadecarbonisedtechnologyinthefutureenergysystem,decreasingtheirCO2productionpo-tential.Forinstance,withfurthercostdeclineofREandelec-trolysers,hydrogencouldbeproducedbywaterelectrolysiswithoxygenastheonlyby-product,andfurtherupgradedtohighervaluedproductswithadditionalRE-basedpower-to-chemicalsprocesses.AsshowninFig.10,HTDAC,LTandfree-heatLTDACin2040starttobecostcompetitivewithupperrange,middlerangeandlowerrangePSCCcostsin2020,respectively.ThefurthercostreductionofDACsystemsin2050couldmakethemevenmorecostcompetitive,dependingonwhethertheprojectedPSCCcostsin2050areachievedornot.However,thePSCCcostsarenotthefullcostsforcapturedCO2,ifthesourcehadbeenfossilfuels.Because,notallthereleasedCO2couldbecapturedandalsolateremissionstotheatmospherehavetobeconsideredforalmostallroutes(e.g.syntheticfuelsusedinaviationormarinesectors)andtherespectiveCO2pricehastobetakenintoaccountasanadditionalcost.ThisisnotthecaseforRE-basedDAC.Therefore,DACmaybecostcompetitiveearlierasindicatedbyFig.10.HighermodularityandlocationalflexibilityofDACsystemscouldmakethemevenmorecostcompetitiveinthewholeCCUorCCSchain.PSCCislimitedtolocationswithhighcapacitiesofCO2stream,whichcouldalsolimittheaccesstocheapenergyforPSCC.Aprobablelongdistancetoutilisationorstoragesitescouldincreasethetransportationcostsaswell.Ontheotherhand,DACsystemscouldbelocatedincost-optimalsites,takingintoaccountaccesstolowcostenergyandutilisationorstoragesites.5.5.ThecostshareofCO2inpower-to-gasAsmentionedinsection5.3.,CO2fromDACisnotonlyaproductforstorage,butalsoafeedstockforproductionofsyntheticfuelsandchemicals.Inthatcase,costsofthefinalproductisofhigherimportancethantheLCOD,aslongasthecostshareofCO2isnotsignificantorifthefinalproductcostsareinanattractiverangeregardlessofLCOD.Asanexample,theproductioncostsofsyntheticnaturalgas(SNG),integratedwithCO2DACinMoroccohavebeeninvestigated.Theelectrolyserandmethanationplants’specificationsaretakenfromRametal.(2017).AccordingtoFasihietal.(2017a),thewasteheatfromwaterelectrolyserandmethanationunitscansupplyalltheLTheatdemandofLTDACsystemsin2030,whichwouldbethecaseforyearsafterwards,astheenergydemandoftheDACsystemdecreases.However,in2020,theenergydemandofLTDACsystemscouldexceedtheavailablewasteheatby10%.Forthesakeofsimplicity,thisextrademandhasnotbeentakenintoaccountandisassumedthattheheatintegrationsuppliesalltherequiredheat.TominimisetheLCOD,LTDACFLhshouldbefixedat8000FLh,asshowninFig.6.However,forconsistency,inthissectionDACFLhfollowspower-to-gas(PtG)FLhandthecostsofSNGunderdifferentPtGFLhhavebeenillustratedinFig.11.Forsuchaconfiguration,theLCOGofacoupledDAC-PtGsystemwith4000FLhwouldbe148,84,63and52V/MWhth,HHVin2020,2030,2040and2050,respectively.Ascanbeseen,unlikeDACunits,byincreasingtheFLhofPtGunits,thelevelisedcostofgas(LCOG)increases.ThisisbecausePtGisrelativelylesscapexintensivethanDACandthehigherLCOEnetforhigherFLhhasabiggerimpactonthefinalLCOG.Itshouldbenotedthatinthissimplifiedsystem,DAC,electrolyserandmethanationunitshavebeencoupledandnoCO2orhydrogenstoragehasbeenincluded.ThecostshareofLTDAC-basedCO2(conservativescenario)ofLCOGfor4000FLhunderrespectiveLCOEisillustratedinFig.12.Ascanbeseen,CO2costsharewouldbeabout27%in2020,whichwoulddropto21%,19%and19%in2030,2040and2050,respectively.ItisimportanttoemphasisethatadecoupledsystemwithhigherDACFLhwouldhaveasignificantlylowerLCOD,LCOGandconsequentlylowerCO2costshare.Forexample,adecoupledsys-temwith8000DACFLhand4000PtGFLhwouldresultinlowerLCODandLCOGof133,60,40and32V/tCO2and132,76,58and48V/MWhth,HHV,respectively.Inaddition,theabsolutecostofCO2anditsrespectivesharewouldbeevenlowerintheDACbasecasescenario.Therefore,thecostsofCO2DACmaynothaveadecisiveFig.11.TheimpactofPtGFLhonLCOG.M.Fasihietal./JournalofCleanerProduction224(2019)957e980976impactontheintroductionofsyntheticnaturalgastothemarket.Thissimplifiedmodelanditsresultsdonotrepresenttheconditionforallclimatesorsyntheticproducts.6.ConclusionsLarge-scaleCO2DACsystemsareneededtomeettheParisAgreementtargetsbymid-21stcentury,eveninaworldwithhighlevelsofdefossilisationandPSCCimplementation.Itisestimatedthat3,470,4798and15402MtCO2/aDACcapacitiesareneededby2020,2030,2040and2050,respectively.AliteraturereviewonDACtechnologiesisperformedandtheavailabletechnologiesarecat-egorisedfromanenergysystemperspective.Hightemperatureaqueoussolution-baseddirectaircapture(HTDAC)andlowtem-peraturesolidsorbent-baseddirectaircapture(LTDAC)arethetwomaincategoriesofcommerciallyavailabletechnologieswhicharefurtheranalysedfortheperiod2020to2050,technicallyandeconomically.AlthoughtheenergydemandofaLTDACsystemishigher,forhighFLh,itstotalenergydemandcouldbemetataboutthesamecost,asthemajorshareofenergydemandcouldbesuppliedbyrelativelycheaperlow-gradeheatsuppliedbyheatpumps.Inaddition,althoughthecapitalexpenditureofbothtechnologiesisatthesamelevel,theLTDACtechnologyisthemorefavourableoptiontodayandinfuture,duetoitspotentialforextensivecostreductionbyutilisationofwasteheatfromothersources.Moreover,theLTDACsystemshowsahighmodularity,andhasnodemandforexternalwater.TheLCODdevelopmentinthedecadestocome,mainlydependsonthelearningcurveofcapitalexpenditures,itsenergydemandandthecostdevelopmentofrenewableelectricity.Inaconserva-tivescenariowith10%learningrateofcapexandtherealisationofhalftherequiredDACcapacitiesateachtimestep,thecapexofHT/LTDACsystemsarecalculatedtobe815/730,378/338,265/237and222/199V/tCO2$ain2020,2030,2040and2050,respectively.Whilethebasecasescenariohasbeendefinedas100%implementationoftherequiredcapacitieswith15%learningcurveofcapex,inlinewiththeexperiencefromcomparabletechnologies.Underthisscenario,thecapexofHT/LTDACsystemswouldshrinkto815/730,211/189,119/106and89/79V/tCO2$ain2020,2030,2040and2050,respectively.Inaddition,a5/10%electricitydemandreductionforHT/LTDACand14.3%low-gradeheatdemandreductionisforeseenateach10-yeartimestep.Asacasestudy,theCO2capturecostsinMorocco,suppliedbyhybridPV-Wind-batteryplantsandheatpumpshavebeeninves-tigated.Theresultsshowthat,despitehigherelectricitycosts,DACsystemswithhigherFLhwouldhavelowerLCOD.Intheconser-vativescenario,theLCODofHT/LTDACsystemswith8000FLharecalculatedtobe268/222,133/105,91/69and71/54V/tCO2in2020,2030,2040and2050,respectively.Whileinthebasecasescenario,thecostswouldbereducedto268/222,111/84,72/53and54/38V/tCO2,respectively.Basedonthediscussioninsection5.3.,itcanbeenconcludedthatsuchresultsareinlinewithresultsofmajorpublicationsandcompanies’targetsasoftodayandinthelongterm.However,suchcostreductionscouldbeexpectedonlyifthetechnologyimplementationstartsin2020accordingtothedefinedscenarios.Inaddition,accesstofreewasteheatcouldfurtherdecreasetheLCODofLTDACby40e57%,dependingontheyearandappliedscenario.Atsuchcosts,DACiscompetitivetoPSCCwithlessrestrictionsoncapacityandlocation.Whereas,fossilfuelbasedCO2mayinducefurthercoststhanonlythecapturingcosts,sincelateremissionstotheatmospherearemostlikelytobeincluded,inparticularforanetzeroemissionssystem,sothatthecapturingcostsmaybetheminorcostfractionforPSCC.SuchfreedomcouldfurtherincreasethecompetitivenessofDACinprojectsassociatedwithCO2storageorutilisation,byminimisingthetransportationcosts.AcknowledgementsTheauthorsgratefullyacknowledgethepublicfinancingofTekes,theFinnishFundingAgencyforInnovation,forthe‘Neo-CarbonEnergy’projectunderthenumber40101/14.WealsothankCyrilJoseE.BajamundiforthevaluablecommentsandManishRamforproofreading.ReferencesAntecy,2018.Aboutus.Hoevelaken,Netherlands.Availableat:http://www.antecy.com/about-us/.(Accessed5February2018).Aspelund,A.,Jordal,K.,2007.Gasconditioning-theinterfacebetweenCO2captureandtransport.InternationalJournalofGreenhouseGasControl1(3),343e354.Aspelund,A.,Mølnvik,M.J.,DeKoeijer,G.,2006.ShiptransportofCO2technicalsolutionsandanalysisofcosts,energyutilization,exergyefficiencyandCO2emissions.Chem.Eng.Res.Des.84(A9),847e855.Audi,2015.CorporateResponsibilityReport2014.AudiAG,Ingolstadt,Germany.Availableat:https://www.audi.com/content/dam/com/corporate-responsibility/nachhaltigkeit_pdfs/Audi_CR-Report%202014_English_Printversion.pdf.(Accessed24May2018).Baciocchi,R.,Storti,G.,Mazzotti,M.,2006.Processdesignandenergyrequirementsforthecaptureofcarbondioxidefromair.Chem.Eng.Process:ProcessInten-sification45(12),1047e1058.Bajamundi,C.,2015.ProgressPresentationonCO2CaptureDeviceAcquisition.NeoCarbonEnergy2ndReseachers'Semniar,Lappeenranta.March.Availableat:http://www.neocarbonenergy.fi/wp-content/uploads/2016/02/12_Bajamundi.pdf.(Accessed24May2018).Bajamundi,C.,Elfving,J.,Kauppinen,J.,2018.Assessmentoftheperformanceofabenchscaledirectaircapturedeviceoperatedatoutdoorenvironment.In:InternationalConferenceonNegativeCO2Emissions,Gothenburg,May22-24.Bolinger,M.,Seel,J.,HamachiLaCommare,K.,2017.Utility-ScaleSolar2016-AnEmpiricalAnalysisofProjectCost,PerformanceandPricingTrendsintheUnitedStates.LawrenceBerkeleyNationalLaboratory,Berkeley,September.Availableat:https://utilityscalesolar.lbl.gov.(Accessed24May2018).Breyer,C.,Bogdanov,D.,Aghahosseini,A.,Gulagi,A.,Child,M.,Oyewo,A.,Farfan,J.,Sadovskaia,K.,Vainikka,P.,2018.Solarphotovoltaicsdemandfortheglobalenergytransitioninthepowersector.Prog.PhotovoltaicsRes.Appl.26,505e523.Breyer,C,Khalili,S.,Bogdanov,D.,2019a.SolarphotovoltaiccapacitydemandforasustainabletransportationsectortofulfiltheParisagreementby2050.Prog.PhotovoltaicsRes.Appl.1e12.https://doi.org/10.1002/pip.3114.Breyer,C.,Fasihi,M.,Aghahosseini,A.,2019b.Carbondioxidedirectaircaptureforeffectiveclimatechangemitigationbasedonrenewableelectricity:anewtypeofenergysystemsectorcoupling.MitigAdaptStrategGlobChange.https://doi.org/10.1007/s11027-019-9847-y.Broehm,M.,Strefler,J.,Bauer,N.,2015.Techno-economicreviewofdirectaircap-turesystemsforlargescalemitigationofatmosphericCO2.SSRNElectronicJournal.Availableat:https://papers.ssrn.com/sol3/papers.cfm?abstract_Fig.12.CO2costshareofLCOGcostdevelopmentforDACandPtGwith4000FLh.M.Fasihietal./JournalofCleanerProduction224(2019)957e980977id¼2665702.(Accessed24May2018).Bui,M.,Adjiman,C.S.,Bardow,A.,Anthony,E.J.,Boston,A.,Brown,S.,Fennell,P.S.,Fuss,S.,Galindo,A.,etal.,2018.Carboncaptureandstorage(CCS):thewayforward.EnergyEnviron.Sci.11,1062.Caldera,U.,Breyer,C.,2017.Learningcurveforseawaterreverseosmosisdesali-nationplants:capitalcosttrendofthepast,presentandfuture.WaterResour.Res.53,10523e10538.Caldera,U.,Bogdanov,D.,Breyer,C.,2016.LocalcostofseawaterROdesalinationbasedonsolarPVandwindenergy:aglobalestimate.Desalination385,207e216.CarbonEngineering,2018a.Teamandboard.Squamish,Canada.Availableat:http://carbonengineering.com/company-profile/.(Accessed15January2018).CarbonEngineering,2018b.CEDemonstrationPlanteaYearinReview.Squamish,Canada.Availableat:http://carbonengineering.com/ce-demonstration-plant-a-year-in-review/.(Accessed5February2018).CarbonEngineering,2018c.DirectAirCapture.Squamish,Canada.Availablefrom:http://carbonengineering.com/about-dac/.(Accessed25January2018).Chen,C.,Tavoni,M.,2013.DirectaircaptureofCO2andclimatestabilization:amodelbasedassessment.Clim.Change118,59e72.Choi,S.,Gray,M.,Jones,C.,2011a.Amine-tetheredsolidadsorbentscouplinghighadsorptioncapacityandregenerabilityforCO2capturefromambientair.ChemSusChem4(5),628e635.Choi,S.,Drese,J.H.,Eisenberger,P.M.,Jones,C.W.,2011b.Applicationofamine-tetheredsolidsorbentsfordirectCO2capturefromtheambientair.Environ.Sci.Technol.45,2420e2427.Choi,S.,Watanabe,T.,Bae,T.,Sholl,D.S.,Jones,C.W.,2012.ModificationoftheMg/DOBDCMOFwithaminestoenhanceCO2adsorptionfromultradilutegases.J.Phys.Chem.Lett.3,1136e1141.Climeworks,2017.ClimeworksStartsPlantinIcelandandTherebyCreatestheWorld'sFirstCarbonRemovalSolutionthroughDirectAirCapture.Pressrelease,October12,Hellisheiði,Iceland.Availableat:http://www.climeworks.com/wp-content/uploads/2017/10/PR-Climeworks-CarbFix-Carbon-Removal-1.pdf.(Accessed28May2018).Climeworks,2018a.Aboutus.Zurich,Switzerland.Availableat:http://www.climeworks.com/about/.(Accessed5February2018).Climeworks,2018b.CapturingCO2fromAir.Zurich,Switzerland.Availableat:http://www.climeworks.com/co2-removal/.(Accessed1February2018).Creutzig,F.,Breyer,C.,Hilaire,J.,Minx,J.,Peters,G.,Socolow,R.,2019.TheMutualDependenceofNegativeEmissionTechnologiesandEnergySystems.https://doi.org/10.1039/c8ee03682a(inpress).DEA,2016.TechnologyDataforEnergyPlantsUpdatedChapters.August2016.DanishEnergyAgency,p.117.Copenhagen,Denmark.Availableat:https://ens.dk/sites/ens.dk/files/Analyser/update_-_technology_data_catalogue_for_energy_plants_-_aug_2016.pdf.(Accessed1April2018).Derevschikov,V.,Veselovskaya,J.,Kardash,T.,Trubitsyn,D.,Okunev,A.,2014.DirectCO2capturefromambientairusingK2CO3/Y2O3compositesorbent.Fuel127,212e218.[EC]-EuropeanCommission,2014.ETRI2014denergyTechnologyReferenceIn-dicatorProjectionsfor2010e2050.ECJointResearchCentreInstituteforEnergyandTransport,Petten.Availablefrom:https://setis.ec.europa.eu/system/files/ETRI_2014.pdf.(Accessed21May2018).Eisaman,M.D.,Schwartz,D.E.,Amic,S.,Larner,D.L.,Zesch,J.,Torres,F.,Littau,K.,2009.Energy-efficientelectrochemicalCO2capturefromtheatmosphere.In:TechnicalProceedingsofthe2009CleanTechnologyConferenceandTradeShow,May3-7,Houston,TX.Elfving,J.,Bajamundi,C.,Kauppinen,J.,Sainio,T.,2017.ModellingofequilibriumworkingcapacityofPSA,TSAandTVSAprocessesforCO2adsorptionunderdirectaircaptureconditions.J.CO2Utilization22,270e277.[ETIP-PV]-EuropeanTechnology&InnovationPlatformePhotovoltaic,2017.TheTrueCompetitivenessofSolarPVeaEuropeanCaseStudy.ETIP-PV,Munich,March29.Availableat:https://goo.gl/UjyGuU.(Accessed22May2018).Farfan,J.,Fasihi,M.,Breyer,C.,2019.Trendsintheglobalcementindustryandopportunitiesforalong-termsustainableCCUpotentialforPower-to-X.J.Clean.Prod.217,821e835.https://doi.org/10.1016/j.jclepro.2019.01.226.Fasihi,M.,Bogdanov,D.,Breyer,C.,2017a.Long-termhydrocarbontradeoptionsfortheMaghrebregionandeurope-renewableenergybasedsyntheticfuelsforanetzeroemissionsworld.Sustainability9(2),306.Fasihi,M.,Bogdanov,D.,Breyer,C.,2017b.OverviewonPtXoptionsstudiedinNCEandtheirglobalpotentialbasedonhybridPV-windpowerplants.In:Neo-CarbonEnergy9thResearchers'Seminar.December11-13.Lappeenranta,Finland.Availableat:http://www.neocarbonenergy.fi/wp-content/uploads/2016/02/13_Fasihi.pdf.(Accessed22May2018).Fischedick,M.,Marzinkowski,J.,Winzer,P.,Weigel,M.,2014.Techno-economicevaluationofinnovativesteelproductiontechnologies.J.Clean.Prod.84,563e580.FreitasJr.,R.A.,2015.TheNanofactorySolutiontoGlobalClimateChange:Atmo-sphericCarbonCapture.IMMReportNo.45,December.InstituteforMolecularManufacturing,PaloAlto,USA.Availableat:http://www.imm.org/Reports/rep045.pdf.(Accessed22May2018).Fuss,S.,Lamb,W.F.,Callaghan,M.W.,Hilaire,J.,Creutzig,F.,Amann,T.,Beringer,T.,deOliveiraGarcia,W.,Hartmann,J.,etal.,2018.NegativeemissionsdPart2:costs,potentialsandsideeffects.Environ.Res.Lett.13,063002.Gao,L.,Fang,M.,Li,H.,Hetland,J.,2011.CostanalysisofCO2transportation:casestudyinChina.EnergyProcedia4,5974e5981.GlobalThermostat,2018a.AboutGlobalThermostat.NewYork,USAAvailableat:https://globalthermostat.com/about-global-thermostat/.(Accessed15January2018).GlobalThermostat,2018b.AUniqueCaptureProcess.NewYork,USAAvailableat:https://globalthermostat.com/a-unique-capture-process/.(Accessed15May2018).Goeppert,A.,Czaun,M.,SuryaPrakash,G.,Olah,G.,2012.Airastherenewablecarbonsourceofthefuture:anoverviewofCO2capturefromtheatmosphere.EnergyEnviron.Sci.5(7),7833.Goldberg,D.,Lackner,K.,Han,P.,Slagle,A.,Wang,T.,2013.Co-locationofaircap-ture,subseafloorCO2sequestration,andenergyproductionontheKerguelenplateau.Environ.Sci.Technol.47(13),7521e7529.Holmes,G.,Keith,D.,2012.Anair-liquidcontactorforlarge-scalecaptureofCO2fromair.Phil.Trans.Math.Phys.Eng.Sci.370(1974),4380e4403.Holmes,G.,Nold,K.,Walsh,T.,Heidel,K.,Henderson,M.,Ritchie,J.,Klavins,P.,Singh,A.,Keith,D.,2013.Outdoorprototyperesultsfordirectatmosphericcaptureofcarbondioxide.EnergyProcedia37,6079e6095.House,K.,Baclig,A.,Ranjan,M.,vanNierop,E.,Wilcox,J.,Herzog,H.,2011.EconomicandenergeticanalysisofcapturingCO2fromambientair.Proc.Natl.Acad.Sci.Unit.StatesAm.108(51),20428e20433.Hydrocell,2018.DirectAirCapture(DAC)Appliances.OyHydrocellLtd,J€arvenp€a€a,Finland.Availableat:http://hydrocell.fi/en/air-cleaners-carbon-dioxide-filters-and-dac-appliances/dac-appliances/.(Accessed25May2018).IEA,2009.ChemicalandPetrochemicalSector-PotentialofBestPracticeTech-nologyandOtherMeasuresforImprovingEnergyEfficiency.IEAinformationpaper.OECD/IEA,Paris,September.Availableat:https://www.iea.org/publications/freepublications/publication/chemical_petrochemical_sector.pdf.(Accessed25May2018).IEA,2010.CO2CaptureandStorage.EnergyTechnologySystemAnalysisProgramme(ETSAP).Paris.Availableat:https://iea-etsap.org/E-TechDS/PDF/E14_CCS_oct2010_GS_gc_AD_gs.pdf.(Accessed25May2018).IEA,2016.20YearsofCarbonCaptureandStorage,AcceleratingFutureDeployment.OECD/IEA,Paris.Availableat:https://www.iea.org/publications/freepublications/publication/20YearsofCarbonCaptureandStorage_WEB.pdf.(Accessed25May2018).IEA,2017.CO2EmissionsfromFuelCombustion.Statistics.OECD/IEA,Paris.Avail-ableat:https://www.iea.org/publications/freepublications/publication/CO2EmissionsfromFuelCombustionHighlights2017.pdf.(Accessed25May2018).Infinitree,2018.Company'sWebsite.Huntington,NewYork.Availableat:http://www.infinitreellc.com/technology/.(Accessed28May2018).IPCC,2003.EmissionsfromWasteIncineration.IntergovernmentalPanelonClimateChange,Geneva,Switzerland.Availableat:http://www.ipcc-nggip.iges.or.jp/public/gp/bgp/5_3_Waste_Incineration.pdf.(Accessed25May2018).Ishimoto,Y.,Sugiyama,M.,Kato,E.,Moriyama,R.,Tsuzuki,K.,Kurosawa,A.,2017.Puttingcostsofdirectaircaptureincontext.In:SocialScienceResearchNetwork(SSRN),FCEAWorkingPaperSeries:002,June.Availableat:https://papers.ssrn.com/sol3/papers.cfm?abstract_id¼2982422.(Accessed30May2018).Isobe,J.,Henson,P.,MacKnight,A.,Yates,S.,Schuck,D.,Winton,D.,2016.CarbondioxideremovaltechnologiesforU.S.Spacevehicles:past,present,andfuture.In:46thInternationalConferenceonEnvironmentalSystems.ICES-2016-425.July10-14,Vienna,Austria.Jacobson,M.Z.,Delucchi,M.A.,Bauer,Z.A.F.,Goodman,S.C.,Chapman,W.E.,Cameron,M.A.,Bozonnat,C.,etal.,2017.100%cleanandrenewablewind,water,andsunlightall-sectorenergyroadmapsfor139countriesoftheworld.Joule1,108e121.Johnsen,K.,Helle,K.,Røneid,S.,Holt,H.,2011.DNVrecommendedpractice:designandoperationofCO2pipelines.EnergyProcedia4,3032e3039.Johnston,N.A.C.,Blake,D.R.,Rowland,F.S.,Elliott,S.,Lackner,K.S.,Ziock,H.J.,Dubey,M.K.,Hanson,H.P.,Barr,S.,2003.Chemicaltransportmodelingofpo-tentialatmosphericCO2sinks.EnergyConvers.Manag.44,681e689.Karjunen,H.,Tynj€al€a,T.,Hypp€anen,T.,2017.AmethodforassessinginfrastructureforCO2utilization:acasestudyofFinland.Appl.Energy205,33e43.Keith,D.,2009.WhycaptureCO2fromtheatmosphere?Science325(5948),1654e1655.Keith,D.,Ha-Duong,M.,Stolaroff,J.,2006.ClimatestrategywithCO2capturefromtheair.Clim.Change74(1e3),17e45.Keith,D.W.,Holmes,G.,StAngelo,D.,Heidel,K.,15August2018.AprocessforcapturingCO2fromtheatmosphere.Joule2(8),1573e1594(inpress).https://doi.org/10.1016/j.joule.2018.05.006.Kintisch,E.,2014.MITTechnologyReview:CanSuckingCO2OutoftheAtmosphereReallyWork?MITTechnologyReviewmagazine.October7.Availableat:https://www.technologyreview.com/s/531346/can-sucking-co2-out-of-the-atmo-sphere-really-work/.(Accessed25May2018).Kittner,N.,Lill,F.,Kammen,D.,2017.Energystoragedeploymentandinnovationforthecleanenergytransition.NatureEnergy2(9),17125.Knoope,M.,Guijt,W.,Ramírez,A.,Faaij,A.,2014.Improvedcostmodelsforopti-mizingCO2pipelineconfigurationforpoint-to-pointpipelinesandsimplenetworks.InternationalJournalofGreenhouseGasControl22,25e46.Kohler,P.,Hartmann,J.,Wolf-Gladrow,D.,2010.Geoengineeringpotentialofarti-ficiallyenhancedsilicateweatheringofolivine.Proc.Natl.Acad.Sci.Unit.StatesAm.107(47),20228e20233.Kolster,C.,Mechleri,E.,Krevor,S.,MacDowell,N.,2017.TheroleofCO2purificationandtransportnetworksincarboncaptureandstoragecostreduction.Inter-nationalJournalofGreenhouseGasControl58,127e141.Kriegler,E.,Bauer,N.,Popp,A.,Humpen€oder,F.,Leimbach,M.,Strefler,J.,M.Fasihietal./JournalofCleanerProduction224(2019)957e980978Baumstark,L.,Bodirsky,B.,Hilaire,J.,Klein,D.,etal.,2017.Fossil-fueleddevelopment(SSP5):anenergyandresourceintensivescenarioforthe21stcentury.Glob.Environ.Chang.42,297e315.Kronenberg,D.,2015.PersonalCommunication.ClimeworksAG,Zürich,Switzerland.September6.Kujanp€a€a,L.,Rauramo,J.,Arasto,A.,2011.Cross-borderCO2infrastructureoptionsforaCCSdemonstrationinFinland.EnergyProcedia4,2425e2431.Kulkarni,A.,Sholl,D.,2012.Analysisofequilibrium-basedTSAprocessesfordirectcaptureofCO2fromair.Ind.Eng.Chem.Res.51(25),8631e8645.Kuparinen,K.,Vakkilainen,E.,Tynj€al€a,T.,2018.PulpmillasBioCCU.In:Interna-tionalConferenceonNegativeCO2Emissions,May22-24,G€oteborg,Sweden.Lackner,K.,2009.Captureofcarbondioxidefromambientair.Eur.Phys.J.Spec.Top.176(1),93e106.Lazard,2017.Lazard'sLevelizedCostofEnergyAnalysis-Version11.November.Lazard,Hamilton,USA.Availableat:https://www.lazard.com/media/450337/lazard-levelized-cost-of-energy-version-110.pdf.(Accessed10May2018).Leeson,D.,MacDowell,N.,Shah,N.,Petit,C.,Fennell,P.S.,2017.ATechno-economicanalysisandsystematicreviewofcarboncaptureandstorage(CCS)appliedtotheironandsteel,cement,oilrefiningandpulpandpaperindustries,aswellasotherhighpuritysources.InternationalJournalofGreenhouseGasControl61,71e84.Li,C.,Shi,H.,Cao,Y.,Kuang,Y.,Zhang,Y.,Gao,D.,Sun,L.,2015.Modelingandoptimaloperationofcarboncapturefromtheairdrivenbyintermittentandvolatilewindpower.Energy87,201e211.Liebreich,M.,2017.GlobalNewCleanEnergyInvestmentandCapacityInstallations.BloombergNewEnergyFinance,Londonsummit.September.Availablefrom:https://data.bloomberglp.com/bnef/sites/14/2017/09/BNEF-Summit-London-2017-Michael-Liebreich-State-of-the-Industry.pdf.(Accessed10May2018).Mahmoudkhani,M.,Keith,D.,2009.Low-energysodiumhydroxiderecoveryforCO2capturefromatmosphericairdthermodynamicanalysis.InternationalJournalofGreenhouseGasControl3(4),376e384.Mathiesen,B.,Lund,H.,Connolly,D.,Wenzel,H.,Østergaard,P.,M€oller,B.,Nielsen,S.,Ridjan,I.,Karnøe,P.,Sperling,K.,etal.,2015.SmartEnergySystemsforcoherent100%renewableenergyandtransportsolutions.Appl.Energy145,139e154.Mazzotti,M.,Baciocchi,R.,Desmond,M.J.,Socolow,R.H.,2013.DirectaircaptureofCO2withchemicals:optimizationofatwo-loophydroxidecarbonatesystemusingacountercurrentair-liquidcontactor.Clim.Change118(1),119e135.McCollum,D.L.,Ogden,J.M.,2006.Techno-economicModelsforCarbonDioxideCompression,Transport,andStorage&CorrelationsforEstimatingCarbonDi-oxideDensityandViscosity.Report.UniversityofCalifornia,Davis,USA.Availableat:https://escholarship.org/uc/item/1zg00532.(Accessed10May2018).Minx,J.C.,Lamb,W.F.,Callaghan,M.W.,Fuss,S.,Hilaire,J.,Lenzi,D.,Nemet,G.,Creutzig,F.,Amann,T.,etal.,2018.NegativeemissionsdPart1:researchlandscapeandsynthesis.Environ.Res.Lett.13,063001.NASA,2006.ClosingtheLoopRecyclingWaterandAirinSpace.NationalAero-nauticsandSpaceAdministration,Washington,USA.Availableat:https://www.nasa.gov/pdf/146558main_RecyclingEDA(final)%204_10_06.pdf.(Accessed27July2017).Neij,L.,2008.Costdevelopmentoffuturetechnologiesforpowergenerationdastudybasedonexperiencecurvesandcomplementarybottom-upassessments.EnergyPolicy36,2200e2211.Nemet,G.F.,Brandt,A.R.,2012.Willingnesstopayforaclimatebackstop:liquidfuelproducersanddirectCO₂aircapture.EnergyJ.53e81.Nemet,G.F.,Callaghan,M.W.,Creuzig,F.,Fuss,S.,Hartmann,J.,Hilaire,J.,Lamb,W.F.,Minx,J.C.,Rogers,S.,Smith,P.,2018.NegativeemissionsdPart3:innovationandupscaling.Environ.Res.Lett.13,063003.Nikulshina,V.,Gebald,C.,Steinfeld,A.,2009.CO2capturefromatmosphericairviaconsecutiveCaO-carbonationandCaCO3-calcinationcyclesinafluidized-bedsolarreactor.Chem.Eng.J.146(2),244e248.Otto,A.,Robinius,M.,Grube,T.,Schiebahn,S.,Praktiknjo,A.,Stolten,D.,2017.Po-wer-to-Steel:reducingCO2throughtheintegrationofrenewableenergyandhydrogenintotheGermansteelindustry.Energies10(4),451.Ping,E.,Sakwa-Novak,M.,Eisenberger,P.,2018a.GlobalThermostatlowcostdirectaircapturetechnology.In:InternationalConferenceonNegativeCO2Emissions,Gothenburg,May22-24.Ping,E.,Sakwa-Novak,M.,Eisenberger,P.,2018b.Loweringthecostofdirectaircapture:pilottocommercialdeployment.In:PresentationatInternationalConferenceonNegativeCO2Emissions,Gothenburg,May22-24.Ram,M.,Bogdanov,D.,Aghahosseini,A.,Oyewo,A.S.,Gulagi,A.,Child,M.,Fell,H.-J.,Breyer,C.,2017.GlobalEnergySystemBasedon100%RenewableEnergyePowerSector.StudybyLappeenrantaUniversityofTechnologyandEnergyWatchGroup,Lappeenranta,Berlin.November.Availableat:http://bitly.com/2hU4Bn9.(Accessed10May2018).Ram,M.,Bogdanov,D.,Aghahosseini,A.,Gulagi,A.,Oyewo,A.S.,Child,M.,Caldera,U.,Sadovskaia,K.,Farfan,J.,Barbosa,L.S.N.S.,Fasihi,M.,Khalili,S.,Fell,H.-J.,Breyer,C.,2018.GlobalEnergySystemBasedon100%RenewableEnergyeEnergyTransitioninEuropeacrossPower,Heat,TransportandDesalinationSectors.StudybyLUTUniversityandEnergyWatchGroup,Lap-peenranta,Berlin,December.ISBN:978-952-335-329-9.Availableat:https://goo.gl/dkoGeD.(Accessed18January2019).Rembrandt,S.,Matt,F.,2016.TheDriversofGlobalEnergyDemandGrowthto2050.Onlinearticle,McKinsey&Company,London,UK.Availableat:https://www.mckinseyenergyinsights.com/insights/the-drivers-of-global-energy-demand-growth-to-2050.(Accessed10May2018).Roestenberg,T.,2015.DesignStudyReport-ANTECYSolarFuelsDevelopment.Antecy.Hoevelaken,theNetherlands.Availableat:http://www.antecy.com/wp-content/uploads/2016/05/Design-study-report.pdf.(Accessed10May2018).Rogelj,J.,Shindell,D.,Jiang,K.,Fifita,S.,Forster,P.,Ginzburg,V.,Handa,C.,Kheshgi,H.,Kobayashi,S.,Kriegler,E.,Mundaca,L.,Seferian,R.,Vilari~no,M.V.,2018.Mitigationpathwayscompatiblewith1.5Cinthecontextofsustainabledevelopment.In:Masson-Delmotte,V.,Zhai,P.,P€ortner,H.O.,Roberts,D.,Skea,J.,Shukla,P.R.,Pirani,A.,Moufouma-Okia,W.,Pean,C.,Pidcock,R.,Connors,S.,Matthews,J.B.R.,Chen,Y.,Zhou,X.,Gomis,M.I.,Lonnoy,E.,Maycock,T.,Tignor,M.,Waterfield,T.(Eds.),GlobalWarmingof1.5C.AnIPCCSpecialReportontheImpactsofGlobalWarmingof1.5CabovePre-industrialLevelsandRelatedGlobalGreenhouseGasEmissionPathways,intheContextofStrengtheningtheGlobalResponsetotheThreatofClimateChange,SustainableDevelopment,andEffortstoEradicatePoverty.https://www.ipcc.ch/sr15/.Rubin,E.S.,Yeh,S.,Taylor,M.R.,Hounshell,D.A.,2004.Experiencecurvesforpowerplantemissioncontroltechnologies.Int.J.EnergyTechnol.Pol.Policy2(1e2),52e69.Rubin,E.S.,Yeh,S.,Antes,M.,Berkenpas,M.,Davison,J.,2007.UseofexperiencecurvestoestimatethefuturecostofpowerplantswithCO2capture.Interna-tionalJournalofGreenhouseGasControl1(2),188e197.Sanz-Perez,E.,Murdock,C.,Didas,S.,Jones,C.,2016.DirectcaptureofCO2fromambientair.Chem.Rev.116(19),11840e11876.SAPEA,2018.NovelCarbonCaptureandUtilisationTechnologies:ResearchandClimateAspects.SAPEAEvidenceReviewReportNo.2,Berlin,Germany.Availableat:https://www.sapea.info/wp-content/uploads/CCU-report-proof3-for-23-May.pdf.(Accessed27May2018).Schmidt,O.,Hawkes,A.,Gambhir,A.,Staffell,I.,2017.Thefuturecostofelectricalenergystoragebasedonexperiencerates.NatureEnergy2,17110.Seipp,C.,Williams,N.,Kidder,M.,Custelcean,R.,2017.CO2capturefromambientairbycrystallizationwithaguanidinesorbent.Angew.Chem.Int.Ed.56(4),1042e1045.Sgouridis,S.,Csala,D.,Bardi,U.,2016.Thesower'sway:quantifyingthenarrowingnet-energypathwaystoaglobalenergytransition.Environ.Res.Lett.11,094009.Simon,A.,Kaahaaina,N.,JulioFriedmann,S.,Aines,R.,2011.Systemsanalysisandcostestimatesforlargescalecaptureofcarbondioxidefromair.EnergyPro-cedia4,2893e2900.Sinha,A.,Darunte,L.,Jones,C.,Realff,M.,Kawajiri,Y.,2017.SystemsdesignandeconomicanalysisofdirectaircaptureofCO2throughtemperaturevacuumswingadsorptionusingMIL-101(Cr)-PEI-800andmmen-Mg2(dobpdc)MOFadsorbents.Ind.Eng.Chem.Res.56(3),750e764.Skaugen,G.,Roussanaly,S.,Jakobsen,J.,Brunsvold,A.,2016.Techno-economicevaluationoftheeffectsofimpuritiesonconditioningandtransportofCO2bypipeline.InternationalJournalofGreenhouseGasControl54,627e639.Skytree,2018.CO2Removal.Skytreecompany,Amsterdam,TheNetherlands.Availableat:https://www.skytree.eu/direct-air-capture/.(Accessed28May2018).Smith,P.,Davis,S.J.,Creutzig,F.,Fuss,S.,Minx,J.,Gabrielle,B.,Kato,E.,Jackson,R.B.,Cowie,A.,Kriegler,E.,etal.,2016.BiophysicalandeconomiclimitstonegativeCO2emissions.Nat.Clim.Change6,42e50.Socolow,R.H.,Desmond,M.J.,Aines,R.,Blackstock,J.,Bolland,O.,Kaarsberg,T.,Lewis,N.,etal.,2011.DirectAirCaptureofCO2withChemicals:ATechnologyAssessmentfortheAPSPanelonPublicAffairs.AmericanPhysicalSociety,CollegePark,MD.Stolaroff,J.,Keith,D.,Lowry,G.,2008.Carbondioxidecapturefromatmosphericairusingsodiumhydroxidespray.Environ.Sci.Technol.42(8),2728e2735.Svensson,R.,Odenberger,M.,Johnsson,F.,Str€omberg,L.,2004.TransportationsystemsforCO2-applicationtocarboncaptureandstorage.EnergyConvers.Manag.45(15e16),2343e2353.UNFCCC,2015.AdoptionoftheParisAgreementdProposalbythePresident.UnitedNationsFrameworkConventiononClimateChangeParis,France.vandenBroek,M.,Hoefnagels,R.,Rubin,E.,Turkenburg,W.,Faaij,A.,2009.EffectsoftechnologicallearningonfuturecostandperformanceofpowerplantswithCO2capture.Prog.EnergyCombust.Sci.35(6),457e480.Vazquez,F.V.,Koponen,J.,Ruuskanen,V.,Bajamundi,C.,Kosonen,A.,Simell,P.,Ahola,J.,Frilund,C.,Elfving,J.,Reinikainen,M.,Heikkinen,N.,Kauppinen,J.,Piermartini,P.,2018.Power-to-Xtechnologyusingrenewableelectricityandcarbondioxidefromambientair:SOLETAIRproof-of-conceptandimprovedprocessconcept.J.CO2Utilization28,235e246.Vogel,A.B.,2017.CO2etheRawMaterialthatComesfromAIR.SwissFederalOfficeofEnergy.Availableat:http://www.bfe.admin.ch/cleantech/05761/05763/05782/index.html?lang¼en&dossier_id¼05135.(Accessed10May2018).Wilcox,J.,Psarras,C.P.,Liguori,S.,2017.Assessmentofreasonableopportunitiesfordirectaircapture.Environ.Res.Lett.12,065001.Williamson,P.,2016.Emissionsreduction:scrutinizeCO2removalmethods.Nature530(7589),153e155.Zeman,F.,2007.EnergyandmaterialbalanceofCO2capturefromambientair.Environ.Sci.Technol.41(21),7558e7563.M.Fasihietal./JournalofCleanerProduction224(2019)957e980979Zeman,F.,2014.ReducingthecostofCa-baseddirectaircaptureofCO2.Environ.Sci.Technol.48(19),11730e11735.[ZEP]eZeroEmissionPlatform,2011.TheCostsofCO2Capture,TransportandStorage.Post-demonstrationCCSintheEU.EuropeanTechnologyPlatformforZeroEmissionFossilFuelPowerPlants,Brussels,Belgium.Availableat:http://www.globalccsinstitute.com/sites/www.globalccsinstitute.com/files/publications/17011/costs-co2-capture-transport-and-storage.pdf.(Accessed10May2018).M.Fasihietal./JournalofCleanerProduction224(2019)957e980980

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

碳中和
已认证
内容提供者

碳中和

确认删除?
回到顶部
微信客服
  • 管理员微信
QQ客服
  • QQ客服点击这里给我发消息
客服邮箱