2022EnergyPerspectivesGlobalmacroeconomicandenergymarketoutlook2EnergyPerspectives2022WEBUILDTOOMANYWALLSANDNOTENOUGHBRIDGESSirIsaacNewtonEnergyPerspectives20223WelcometoEquinor’sEnergyPerspectives2022Meetingglobalclimategoalsthroughanenergytransitionisanimmensechallengethatrequirescommitmentfromgovernments,industryandindividualsalike.Russia’sinvasionofUkraineearlierthisyearhasnotonlytragicallyimpactedthelivesandlivelihoodsofthosedirectlyaffected,buttheassociatedgeopoliticaltensionshavealsofurtherdeterioratedglobalcooperationandtradeandsupplyflowsonwhichasustainableenergytransitioniscompletelydependent.Securityofenergysupplyhascometotheforefrontoftheenergypolicyagenda,withrisingenergypricesandunprecedentedoverallcostofliving,keepingenergyaffordabilityfirmlyontheagendaaswell.Inordertobringtheworldontracktoaddresslong-termsustainabilitychallengesinabalancedmanner,trust,cooperation,andburden-sharingmustbeestablished.Thiswilltaketimeandisbynomeansguaranteed.Aslongasshort-termismandlocalprioritiesdominatepolicymaking,thenecessaryglobalchangesinthedirectionofsustainabledevelopmentwillbedelayed.EnergyPerspectivespresentstwodistinctscenariosforthefutureworldeconomy,internationalenergymarketsandenergy-relatedgreenhousegasemissions.Thescenariosarenotpredictions,butpossiblecontrastingpathways,providingaplatformfordebateanddecisionmaking.Thetwoscenarios,WallsandBridges,illustrateverydifferentfuturepathwaysdrivenbyavarietyoffactors,rangingfromeconomicgrowthandtechnologicaldevelopmenttoclimatepolicyandgeopolitics.Thescenariosaimtohighlighttheimmensechallengesthatmustbeovercometomakethemovefromtheslow,incrementalchangesthatcharacterisetheenergytransitiontoday(Walls),totheradicalchangesneededtomovetheworldontoapathalignedwiththe1.5°CambitionoftheParisAgreement(Bridges).Wearecommittedtobeingaleaderintheenergytransition.EnergyPerspectivesprovidesmeandmycolleagueswithcrucialinsightabouttheoutcomespacewithinwhichwehavetobalanceourstrategicpriorities.AndersOpedalPresidentandCEOWallsdivideandbridgesconnect.Ournewscenariospaintalargeoutcomespaceforwhatthelong-termenergyfuturemightlooklikebasedonchoicesmadetodayandgoingforward.EirikWærnessSeniorvicepresidentandChiefeconomist4EnergyPerspectives2022EnergyPerspectives2022presentstwoscenariosforeconomicandenergymarketdevelopment,WallsandBridges.Wallsbuildsoncurrentenergymarkettrendsandenergyandclimatepolicies,assumingclimateactiontoprogressataslowlyacceleratingpaceinthefuture.Bridgesisanormativeback-castcomplyingwiththe1.5°Ccarbonbudget,demonstratingtheenormousandsustainedeffortsrequiredtoreachthistarget.DecarbonisationAffordabilitySecurityExtremeweatherWarinEuropeCostoflivingcrisisSustainableenergypolicy0246810121420102020203020402050WallsBridgesHistoryGlobalfossilfueldemandGtoeIEA(history),Equinor(projections)KeyinsightsfromEnergyPerspectives2022Policy-makers’focushasshiftedrepeatedlyoverthelast18monthsThisisduetothecost-of-livingcrisis,theRussianinvasionofUkraine,andextremeweatherevents.Sustainableenergypolicyrequiresmaintainingbetweenthesecompetingprioritiestobemaintained.Peakdemandforfossilfuelsarrivesbefore2030InWalls,thepeakoccursin2026,followedbyagentledownwardtrajectory.InBridges,fossilfueldemanddeclinesatarapidpaceafter2025.By2050,allremainingfossilfueluseiseitherfullyabatedorcompensatedbycarbonremoval.WALLSBRIDGESGasdemandwillcontinuetogrowinWalls,butdeclinessharplyinBridgesInWalls,gasdemandpeaksin2041andisaround10%higherthantoday’slevelin2050.InBridges,gasdemandpeaksin2025andfallstoaroundaquarteroftoday’slevelin2050.EnergyconsumptionshiftstowardselectricityInWalls,electrificationacceleratessteadilytowards2050,increasingitssharebyhalf.InBridges,amassiveaccelerationhappensbefore2030.By2050,theshareexceeds50%,twoandahalftimesaslargeastoday.Thegrowthofwind&solarphotovoltaics(PV)capacityoutrunsallprevioustrendsInWalls,windcapacityissixtimesgreater,andsolarPVcapacity12timesgreaterin2050comparedwithtoday.InBridges,windcapacityis12timesgreater,andsolarPVcapacity27timesgreaterin2050comparedwithtoday.01234520102020203020402050WallsBridgesHistory0510152025WallsBridgesWallsBridgesSolarPVWind201920302050GlobalgasdemandThousandBcmWind&solarPVcapacityThousandGW010203040506020102020203020402050WallsBridgesHistoryElectricityshareofenergyconsumption%EnergyPerspectives20225IEA(history),Equinor(projections)IEA(history),Equinor(projections)IEA(history),Equinor(projections)Electrificationandhydrogen-basedfuelswillcontributetothedecarbonisationoftransportInbothscenarios,electricvehiclesreplaceinternalcombustionenginesinroadtransport.InBridges,furtherdecarbonisationisachievedbyincreasingtheuseofhydrogen-basedfuelsinmarineandairtransport.Carboncapture,utilisationandstorage(CCUS)willplayanessentialroleinthedecarbonisationofthepowerandindustrysectorsInWalls,CCUSonbothcoalandgasstartstoaccelerateafter2030.InBridges,thereismassivegrowthinCCUSevenbefore2030,andnounabatedfossilfueluseremainsin2050.01234567WallsBridgesWallsBridgesCoalOilGasNBSDACBECCS201920302050-1001020304020152020202520302035204020452050WallsBridgesHistory01234WallsBridgesWallsBridgesMillionsOilGasBiomassHydrogenElectricity201920302050CarboncapturedandstoredannuallyGtCO₂Globalenergy-relatedCO₂emissions,aftercarbonremovalGtCO₂TransportfuelmixGtoeSource:IEA(history)Equinor(projections)Source:IEA(history)Equinor(projections)NBS/DAC/BECCS–definitionsareonpage9Currentnetzerocommitmentsarenotenoughtoavoidglobalwarmingabove1.5°CInWalls,the1.5°Cbudgetisexhaustedby2032.InBridges,currentcommitmentsaremet,andfurthercommitmentsaremadethatenableemissionstoremainwithinthe1.5°Ccarbonbudgetwiththehelpofcarbonremovaltechnologies.6EnergyPerspectives2022Source:IEA(history)Equinor(projections)TableofcontentsWelcometoEquinor’sEnergyPerspectives2022................................................................................................................................................................3KeyinsightsfromEnergyPerspectives2022...........................................................................................................................................................................4Tableofcontents................................................................................................................................................................................................................................................7Introduction............................................................................................................................................................................................................................................................8Theenergytransition...........................................................................................................................................................................................................................9Netzeroand1.5°Ctargets............................................................................................................................................................................................................10Theenergytrilemma..........................................................................................................................................................................................................................12Energyintensity......................................................................................................................................................................................................................................14Short-termoutlook........................................................................................................................................................................................................................................16Geopoliticaldrivers..............................................................................................................................................................................................................................17Globaleconomy.....................................................................................................................................................................................................................................18Outlookto2025.....................................................................................................................................................................................................................................19Commodities...........................................................................................................................................................................................................................................20Thescenarios.....................................................................................................................................................................................................................................................22Thescenarios..........................................................................................................................................................................................................................................23Walls...............................................................................................................................................................................................................................................................25Bridges..........................................................................................................................................................................................................................................................27Long-termoutlook........................................................................................................................................................................................................................................30Theenergyworld:Twoscenarios.............................................................................................................................................................................................31Globalenergydemand....................................................................................................................................................................................................................32Globalenergyconsumption:Fuelmix...................................................................................................................................................................................33Globalenergyconsumption:Regionalperspectives...............................................................................................................................................34Theenergyworldin2030and2050..................................................................................................................................................................................35Globaleconomy....................................................................................................................................................................................................................................36Elevatedinflation...................................................................................................................................................................................................................................37Globaloilmarket..................................................................................................................................................................................................................................38Challengesforthefutureofrefining.....................................................................................................................................................................................39Decarbonisingtheaviationindustry.....................................................................................................................................................................................40Globalgasmarket...............................................................................................................................................................................................................................41RussiangassupplytoEurope....................................................................................................................................................................................................42Globalelectricitymarket...............................................................................................................................................................................................................43Iscurrentmarketdesignfitforpurpose?.........................................................................................................................................................................44Globalhydrogenmarket................................................................................................................................................................................................................45Keysectorinsights:Industry........................................................................................................................................................................................................46Keysectorinsights:Buildings.......................................................................................................................................................................................................47Keysectorinsights:Transport....................................................................................................................................................................................................48Emissions................................................................................................................................................................................................................................................................50Energy-relatedgreenhousegasemissions.....................................................................................................................................................................51Energy-relatedCO₂emissions..................................................................................................................................................................................................52Keyfigures............................................................................................................................................................................................................................................................53Units,definitionsandphotocredits...............................................................................................................................................................................................54Acknowledgementsanddisclaimer...............................................................................................................................................................................................55EnergyPerspectives20227INTRODUCTION8EnergyPerspectives2022«PreviousBacktotableofcontentsNext»EnergyPerspectives20229TheenergytransitionTheenergytransitionisdefinedbyanongoingprocessofrestructuringtheenergysystemthroughenergyefficiencyandsubstitutingawayfromfossilfuelstowardssustainablelow-carbonenergysources,inordertodeliversufficientenergy,reduceCO₂emissionsandlimitglobalwarming.Asthethreatsposedbyglobalwarminghavebecomeprogressivelymoreevident,theconceptofenergytransitionhasbecomecoupledwiththeambitiontoreducenetgreenhousegasemissionstozerobythemiddleofthecentury,andpreferablycapglobalwarmingat1.5°Cabovepre-industriallevels.Massivetransformativemeasuresandstructuralchangesintheglobalenergysystemareneededtosupporttheenergytransition.Thekeyenablerstothistransitioncanbecategorisedasfollows:Rapidgrowthinthesharesofwindandsolarphotovoltaic(PV)generationinthepowersector,andelectricvehicle(EV)sales,demonstratethattheenergytransitionisunderwayinsomesectors.However,whilepowergenerationaccountsforsome40%ofglobalCO₂emissions,andpassengercaruseforanother9%,completedecarbonisationofthesetwosectorswould,allelsebeingequal,leavetheworldwithemissionsatabouthalfoftoday’slevel.Thiswouldreduceglobalwarmingbutnotcomeclosetodeliveringonthe1.5°Ctarget.Furthermore,emissionsremaininginothersectorsareprovingmorechallengingtoeliminate,forexamplehigh-temperatureindustrialprocessheatingandnon-roadtransportation.Theenergytransitionneedstoconsiderthegrowthaspirationsofpoorercountriesand,moregenerally,theaffordabilityofelectricityandfuelstoconsumers.Climbingoutofpovertymaycomeintoatleasttemporaryconflictwithemissionreductiontargets,suggestingdifficulttrade-offs.Inaddition,theenergytransition,ashighlightedbyeventsthiswinter,needstobealignedwiththerequirementforsupplysecurity.Facilitatinganenergytransitionthatdeliversonthe1.5°Ctargetisanenormouschallenge.Meetingthe1.5°Ctargetinajustandsustainablemannerforalladdsadditionallevelsofcomplexity.ENERGYINTENSITYDecouplingeconomicactivityandenergyuse•Structuralchangestotheeconomy•Technologicalimprovements•BehaviouralchangesCARBONINTENSITYDecarbonisingenergyuse•Fuel-switching,includingelectrification•Renewableenergysources•Carboncapture,utilisationandstorageCARBONREMOVALRemovingcarbonfromtheatmosphere•Nature-basedsolutions(NBS)•Bioenergywithcarboncaptureandstorage(BECCS)•Directaircapture(DAC)10EnergyPerspectives2022Netzeroand1.5°CtargetsAroundseventycountrieshavealreadycommittedtoreducingtheirCO₂emissionstonetzerobythemiddleofthe21stcentury,comprisingaroundthree-quartersofcurrentglobalemissions.Manycorporationshavealsoannouncednetzerotargetsandputforwardstrategiestoachievetheseambitions.Itisacommonmisperceptionthatachievingnetzerowilldeliveronthe1.5°Ccaponglobalwarming.Cappingglobalwarmingat1.5°Cabovepre-industriallevelswasagreeduponasanambitioninParisin2015attheUnitedNationsClimateChangeConference.ItbecamethedominanttargetaftertheIntergovernmentalPanelonClimateChange(IPCC)publishedareportonglobalwarmingof1.5°Cin2018.The1.5°Ctargetcorrespondstoaspecificremainingcarbonemissionsbudget.TheIPCCAR6reportof2021estimatedthisbudgettobe500GtCO₂fortheperiod2020-50,whichcoversemissionsintheenergysystemaswellasotheruses.Thisimpliesthattheworldhaslessthantenyearsatcurrentemissionslevelsbeforethebudgetisexhausted.Netzero,sometimescalledcarbonneutrality,referstotheequilibriumbetweenthenumberofanthropogenicgreenhousegasesreleasedintotheatmosphereandtheamountremovedandstoredbycarbonsinks.Acommitmenttonetzeroentailsacommitmenttoachievingthisequilibriumataspecificfuturepointintimeandsustainingthisbalanceindefinitely.Inshort,the1.5°Ctargetrequirescumulativenetcarbonemissionstoremainunderafinitelevel,whilstnetzerorequiresonlythatemissionsarebalancedbyanequivalentamountofcarbonremovalaftersomespecificpointinthefuture.Itfollowsthatthe1.5°Ctargetisthemoreonerousconstraint:ofthemanypathwaysthatleadtonetzerobymid-century,thevastmajoritywillnotmeetthe1.5°Ctarget.Countrieswithnetzerotargetsseteitherinlaw,policydocumentsorpledges2035204020452050205320602070TheIPCC’s6thAssessmentReportputstheCO₂budgetforthe2020-50periodat500Gt.Thisbudgetistobesharedbetweenemissionsinenergy,industrialuseslikecement,andagriculture.Inthisanalysisabudgetof445Gtisallocatedtoemissionsforenergypurposes.Source:Energy&ClimateIntelligenceUnit,MapChartEnergyPerspectives202211The1.5°Ctargetcanbeachievedonlythrougharadicalandunprecedentedreductioninemissionsasaresultofanacceleratedphase-outoffossilfuelsintheshort-to-mediumterm,asdemonstratedinBridges,ascenariowhichnotonlyachievesnetzeroby2050butalsocomplieswiththerequiredcarbonbudget.Postponingthephase-outoffossilfuelsandmaintaining,orincreasing,emissionsintheshort-to-mediumtermwillonlyexacerbatethechallengeandwillrequireevenmoreradicalandchallengingemissionreductionsinlateryears.Totrytoputintocontexttheunprecedentedemissionsreductionsrequiredtoachievethe1.5°Ctarget,considerthetwofollowingpossiblefutures,illustratedinthechartsbelow:•Lineardecline:Alineardeclineinemissionsofapproximately1.1Gtperyear,reachingnetzeroin2050,whichwillovershoottheemissionsbudgetintheyear2038.•Coviddecline:Anannualreductioninemissionsof5.8%peryearuntil2050,asimilarlevelofdeclinetothatobservedin2020inresponsetoreducedactivitylevelsduringtheCovid-19lockdowns,whichwillovershoottheemissionsbudgetintheyear2043.Neitheroftheseextremealternativesavoidsovershootingtheemissionbudgetcompatiblewitha1.5°Ctemperatureincrease,meaningthatinbothcasesnegativeemissionsatafuturedatewouldberequiredtoreducetheaggregatecarbonemissionsandcomplywiththebudget.20152020202520302035204020452050LineardeclineCoviddeclineTarget0100200300400500600Cumulativeenergy-relatedemissionsGtCO₂051015202530354020152020202520302035204020452050LineardeclineCoviddeclineHistoryAnnualenergy-relatedemissionsGtCO₂Source:IEA(history),Equinor(projections)Source:Equinor12EnergyPerspectives2022TheenergytrilemmaThepurposeofenergypolicymakingistousethetoolsofgovernmentincludingnationallegislation,internationaltreaties,investmentincentives,taxationandotherpublicpolicyelements,tofindanacceptableandsustainablecompromisebetweenamyriadofcompetingpriorities.Thiscompromiseiscommonlysimplifiedandreferredtoasthe‘EnergyTrilemma’,atrade-offbetweenthreecriteria:•Energyaffordability:thatconsumers’needsforheating,coolingandotherenergyservicescanbemetwithoutcompromisingtheirabilitytomeetotherbasicneeds•Energysecurity:thatenergysupplyisalwaysavailableinadequateamounts,robustagainstgeopoliticalinstabilityand/ornaturaldisasters•Energydecarbonisation:thatenergyservicesareprovidedandconsumedinwaysthatdonotendangerfuturesupplyornegativelyimpacttheclimate,disadvantagingfuturegenerationsPolicymakers’concernsaboutindividualcriteriahaveebbedandflowed,andpolicyprioritieshaveshiftedaccordingly.Thediagrambelowisasimplifiedillustrationofthechangingfocusofglobalenergypolicyoverthepastdecade,withthelasteighteenmonthsexhibitingaparticularlyerratictrajectory.PriortotheParisAgreement,energypolicywaspredominantlyefficiency-drivenanddirectedmainlyatsecuringenergysupplyascheaplyaspossible,althoughtherewereremindersinperiodsofoilmarketturbulencethatenergyaffordabilitydependedverymuchonenergysupplysecurity.Localpollutionwasafactorinenergypolicymaking,butwiderenvironmentalissues,withthenotableexceptionoftheholeintheozonelayer,receivedlimitedattention.TheParisAgreementbroughtclimatechangetotheforefrontofenergypolicy,andsubsequentIPCCreportsandConferencesoftheParties(COPs)havereinforcedthisprioritisation.Althoughthecostsofpursuingdecarbonisationtargetswerenotaltogetherignored,energyaffordabilitywasoftenrelegatedtoasecondaryconcern,andpotentialsupplysecuritychallengesweretypicallydiscounted.AlthoughtheeconomicrecoveryfromCovid-19droveasharpreboundinfossilfueldemandandmadeenergyaffordabilityahigh-profileissueinthesummerof2021,COP26inGlasgowinlate2021seemedtohavemaintainedthefocusondecarbonisation.However,theinvasionofUkrainebyRussianforcesinFebruaryofthisyearbroughttheissueofsecuritybacktotheforefrontofenergypolicy.Furtherrisesinenergypricesandtheoverallcostoflivingkeptenergyaffordabilityatthetopoftheagendainmanycountries.DecarbonisationAffordabilitySecurityPre-ParisPost-ParisSustainableenergypolicyLockdownreboundCOP26PresentRussia’sinvasionofUkraineAschematicillustrationofthechangingfocusofglobalenergypolicysincetheParisAgreementwasnegotiatedandadoptedin2015Source:EquinorEnergyPerspectives202213Itishighlyuncertainnowwherethefocusofenergypolicywillmovenext.•Willdecarbonisationregainitsmomentumanditspositiononthepoliticalagenda?Willtheincreasingfrequencyofextremeweathereventsimpactingnaturalhabitats,destroyingpeople’shomes,anddisruptinginfrastructure,provokepolicymakerstofocusmoreonclimatechangemitigationoradaptation?•Willthecost-of-livingcrisisleadtoincreasedenergypovertyandfoodshortages?WilltheongoingsituationinUkraineexacerbatethecrisis,andfoodsecuritybecomeaglobalissue?•Asemergingeconomiesstrivetoraisethelivingstandardsoftheirpopulationsandinevitablyconsumemoreenergy,willthatenergybesuppliedsustainably?Shouldtheeconomicriseoftheseregionsbelimitedbytheemissionlegacyoftheindustrialisedregions?•Willbottlenecksinthesupplyofmineralscriticaltotheenergytransition,includinglithiumandcobalt(forbatteries),silicon(forsolarpanels),rareearthelements(forpermanentmagnets)andsteel,copper,aluminiumandnickel(forpracticallyeverything),imposelimitstotherateofelectrificationofroadtransportanddecarbonisationofregionalpowersystems?Willtherelianceonasmallnumberofcountriesformanyoftheseminerals,andrelianceonChinaforrefinement,givefurtherreasonsforconcern?WilltheexclusionofRussiafromglobaltradeexacerbatecriticalbottlenecks?Theenergysupplysecurityandenergydecarbonisationcriteriacallformanyofthesamelong-termsolutions,namelytheprioritisationofenergyefficiencymeasuresandanacceleratedshiftfromimportedfossilfuelstoindigenousrenewableenergysources,meaninginmostcaseswindandsolarpower.Moreover,climatechangewilllikelyprovideasteadystreamofremindersofitsexistence,asithasthissummer,withheatwaves,forestfires,floodsanddroughtsaffectinglargepartsofEurope,NorthAmericaandAsia.Atthesametime,theissueofenergyaffordabilityisnotexpectedtodiminishinimportanceintheshortterm.Theseconflictingdemandsshouldensurethatthefocusofactualpolicymakingwillbenearthesweetspotwheretheconflictingdemandsofenergysecurity,affordabilityanddecarbonisationareadequatelybalanced.Theaimofenergypolicymakersistofindapathwaytothesweetspot.Anysuchpathwaywillmeetbarriers,andthetestwillbeinhowefficientlyobstructionscanbesurmounted,circumventedordismantled.14EnergyPerspectives2022EnergyintensityTheenergyintensityofaneconomy,beittheworld,aregion,acountryoranindustry,denotestheamountofenergyrequiredtoproduceaunitoftheeconomy’soutput.Changesinthisamountarenotonlydrivenbychangesinenergyefficiency,butbymanyotherfactorsaswell.Energyintensityisthusawiderconceptthanenergyefficiency.Energyintensityisausefulmetricforenergyscenariobuildersbecauseitispossibletoseetrendsinpastchanges,indicatingthescopeforfuturechanges.Energyintensityprojectionstogetherwitheconomicoutputprojectionsenableanalyststodevelopenergydemandoutlookswhichareessentialcomponentsofenergyscenarioanalysis.Technologicalchangesarethemaindriverofenergyintensityimprovements,encompassingthedevelopmentoftechnologycapableofdeliveringthesameamountsofoutputwithlessenergyinputalongwiththedeploymentofthistechnologyviatheturnoverofcapitalstock,andthesubsequentchangestotheenergymixthatresultfromthis.Themostprominentexampleofthelatteriselectrification.Electricengineswastelessenergythancombustionengines,andthustheongoinggradualreplacementofconventionalcarswithEVslowerstheenergyintensityofroadtransport.Normally,theprofitmotivewouldstimulateprogressinthedevelopmentanddeploymentofmoreenergy-efficienttechnologyinordertoreduceinputcosts.Itmaybe,however,thatthemarketdoesnotdeliverimprovementsatthepacerequiredbyenvironmentalorsupplysecurityconcerns.Ifso,policymakersmayintervenewithtargetsandincentivestoaccelerateprogress.Theseconddriverofenergyintensityimprovementsisstructuralchangestotheeconomy,i.e.changesinthesectorcompositionofitsoutput.Economiestypicallyevolveinstages,withthefirststagecharacterisedbyagrarianproduction,thesecondbyindustrialisationandthethirdbyrapidgrowthintheprovisionofservices.Arecurrentpatternisthatthemigrationofresourcesbetweensectorsfirstleadstoanincreaseandthentoadeclineinenergyintensity.Thethirddriverischangesinbehaviour.Givenincentives,peoplemaybewillingtomakedowithsmalleramountsofenergyservices.Theymayaccepttotravelless,turndowntheirradiatorsandevenadjusttheireatinghabitstowardsfoodproducedwithasmallerenergyandemissionfootprint.Thishashappenedbefore,atleastovershortperiods,andmayhappenagain.Annualchangesinenergyintensitiesfluctuateastheweatherplaysapart.Whilecoldwintersandhotsummerspushupthedemandforheatingandcooling,mildwintersandsummersdotheopposite,withsharpdeviationsfromthetrendasaresult.However,cleartrendsexist,andtheyaremostlydown.Between1990and2019,theenergyintensitiesofNorthAmerica,theEU27area,ChinaandIndiadeclinedbyaveragesof1.8%,1.8%,3.9%and1.9%peryearrespectively,accordingtoIEAdata.Globally,therewasalevellingoutintheearly2000sreflectingChina’srapidindustrialisationandbuild-outofinfrastructure,butsincearound2010thedownwardtrendhasreasserteditself.1990199520002005201020152020ChinaIndiaIndustrialisedOtheremerging0200400600800EnergyintensitytoepermillionUSDSource:IEA©OxfordEconomicsLimited2022EnergyintensityTechnologicalchangesStructuralchangesBehaviouralchangesMarketsignalsEnergypolicyDriversofenergyintensitySource:EquinorEnergyPerspectives202215SHORT-TERMOUTLOOK16EnergyPerspectives2022«PreviousBacktotableofcontentsNext»EnergyPerspectives202217GeopoliticaldriversRussia’sinvasionofUkrainewilldrivebroadglobalchange.Thecoreconflictwillnotberesolvedintheshort-to-mediumterm,andthewarwillcontinuetolastformonthsifnotyears.TheliberalworldorderwillremainunderpressurefromRussia’schallenge,andtheoutcomeinUkrainewillreverberatearoundtheworld.NatowillspendmoreondefenceandtensioninEuropewillgrow.Russiawillmuddlethrougheconomicallydespitesanctions,increasinglyrelyingonawareconomyapproach.Thewarwillimpacttheglobaleconomynegativelyfarbeyondoriginalexpectations,whichmayinturnleadtoincreasedpoliticalvolatility.Withenergyweaponised,energysecuritywillbeakeypolicypriority.Thereislittletosuggestareturntonormalcyanytimesoon.TheEUhascommittedtoshuttingoutRussianhydrocarbons.BeforeRussiangasbecomesobsolete,MoscowwilldowhatitcantomakesuregasshortagesmakethenextcoupleofwintersinEuropeeconomicallyandpoliticallychallenging.TheEUwillnotabandontheirenergytransitionandclimategoals,buttheywillbemorepainfulthananticipatedtoachieve.Opec+willseektocontinuetowielditsmarketpowerandsustainhighoilprices.Cooperationandunityonaddressingclimatechangecouldbeinjeopardy.Thedividebetweendevelopedandemergingeconomieswilldeepen.First,thepost-pandemiceconomicdownturnwillaffectpoorcountriesandpoorpeopledisproportionately.Second,theaftermathoftheCovid-19pandemicandtheperceivedunfairnessinvaccinedistributionwilllinger.Third,climatepolicyandtheenergytransitionwillincreasinglybeseenbytheglobalSouthasaNorth-westernresponsibility,andtherewillbefearthatclimatepoliciescanentrenchdeveloped-economydominance.Allofthiswillreducetheworld’sabilitytotacklemainissuestogether.Reglobalisationisglobalisationthatrecognisestheimportanceofnationalsecurity,supplychainresilience,andclimatechange,whichinturnaddsnewrisks.After30yearsofglobalisationwithvastgainsforbusinessandconsumers,Chinese-USrivalryandRussia’sinvasionofUkrainearechangingtheglobaleconomy.Commodities,logistics,technology,andfinancewillbethemostvulnerablesectors,andsupplychainscouldbeselectivelydecoupledforpoliticalpurposes.Inaworldwithlesstrust,autarkyandprotectionismwillbepoliticallyfashionable.Businesseswillhavedifferentriskstoconsider.However,thiswillnotbetheendofglobaltradeandsupplychains;ratherglobalisationwithanewruleset:reglobalisation.WILDCARD:EvenwiththepositivemomentumoftheInflationReductionAct,theelectionofaUSrepublicanpresidentin2024couldfastoverturnBiden’spoliciesonclimate,energy,trade,andsecurity(Nato).Intheshortterm,USgloballeadershipwillalsobehamperedbyinternaldivisionsandisolationistimpulses.18EnergyPerspectives2022GlobaleconomyIn2021,theglobaleconomyreboundedfollowingtheCovid-19pandemiceconomicdownturn.Globaleconomicgrowthin2021was5.9%comparedtothe3.4%contractionin2020.Growthwasstrongamongmosteconomies.TheEurozoneeconomyexpandedby5.3%,theUSeconomyby5.7%,andtheChineseeconomyby8.1%.Globally,GDPrecoveredtothepre-pandemiclevelinthefirstquarterof2021.AsRussiainvadedUkraineinFebruary2022globalgrowthexpectationsfortheyearweresignificantlyreduced.RussiaandUkraineaccountforarelativelysmallpartoftheglobaleconomy,buttheyareimportantsuppliersofenergy,foodcommodities,fertilisers,andcertainmetals.ThewarhasledtothedestructionofUkrainianproductioncapacity,disruptionofsupplychainsandeconomicsanctionsonRussia.Thesedevelopmentshavecontributedtosupplyshortagesandincreasedpricelevelsforthegoodsmentionedabove.Asaconsequence,theglobaleconomyhasslowedduringthefirsthalfof2022.EuropeistheregionmostsignificantlyhitbythewarinUkraine.Priortothewar,RussiawastheEU’smainenergyprovider,supplyingalmost40%ofgasandsignificantamountsofoilandcoal.WhiletheEUisworkingtowardsreducingitsdependenceonRussianenergy,anyshortageswillhavemajoreconomicconsequencesfortheregion.Governmentsareexpectedtoseektoshieldhouseholds,inwhichcaseshortagescouldmeansignificantcontractionsinindustry.Germany,ItalyandothercentralEuropeancountriesaremostatrisk.Highglobalfoodpriceswillhitemergingmarketsthehardest.Asglobalfoodpriceincreasesareexacerbatedbythewar,emergingmarketsareparticularlyvulnerabletofoodpriceinflationorpotentialfoodshortages.SeveralAfricanandMiddleEastcountriesaredependentonwheatimportsfromRussiaandUkraine.Followingaperiodofsignificantexportdisruptions,grainexportsbyshiphavetentativelystartedagain.Highcostsoffertiliserscouldalsocausedisruptionofdomesticfoodproductioninmanycountries,includinginadvancedeconomies.WhileLatinAmericaandAsiaarelessdependentonRussianandUkrainianfoodcommodities,highglobalfoodandfertilizerpricescouldputsignificantstrainsontheseregions.China’sCovid-19restrictionscontinuetobeakeyriskfactorintheglobaleconomy.ThelockdowninShanghaiandotherChinesecitiesduringthesecondquarterof2022exacerbatedexistingglobalsupplychaindisruptionsfollowingthepandemicasitdisruptsChinesegoodsmanufacturingandexport.WhileitisexpectedthatpotentialfuturelockdownswillbelesssevereasChinahasmovedtowards“societalzero-Covid”,anymajorlockdownwillhavenegativeconsequencesfortheglobaleconomy.TheUSeconomyhasshownresilienceandisexpectedtogaineconomicallyfromthewarintheshortterm.USenergyexportswillbekeyforEuropeasitreducesrelianceonRussianfossilfuels.However,surgingUSinflationfollowedbymonetarytighteningwillrestraingrowth.TwoconsecutivequarterlydeclinesinGDPduringspring/summer2022raisedrecessionfears.Inflationissettoremainhighinthenearterm,beforeeasing.Atightlabourmarketandhighconsumerspendinghavecausedconcernsaboutaprice-wageupwardspiralfuellinginflation.-30030609020172019202120232025AgriculturerawmaterialsNon-fuelFertilisersFoodProjectionWorldcommodityprices%changey/ySource:©OxfordEconomicsLimited2022EnergyPerspectives202219Outlookto2025Twoextraordinaryevents,theCovid-19pandemicandRussia’sinvasionofUkraine,havedominatedtheheadlinesinthepastcoupleofyearsandhavelefttheirmarkonenergymarketsandtheshort-termcommoditydemandforecast.Covid-19hadashockeffectonenergydemandin2020withtheoilmarketbeinghardesthit.Oildemandfellduetoasignificantdropinthetransportsector,aspeoplerefrainedfromtravellingtoworkandusingairtransportforholidaysandbusinessappointments.GasdemandprovedresilienttotheimpactofCovid-19inthewesternworldbutsufferedinAsiaduetodampenedindustrialactivity.Electricitydemandintheresidentialsectorincreasedduringthepeakofthepandemicaspeoplewereforcedtospendmoretimeathome,butthiswasbyfaroutweighedbythedeclineindemandfromthecommercialandindustrialsectorsduringthesameperiod.WhilstCovid-19isstillverymuchpresent,theimplicationsforenergymarketshaveproventobeshort-lived.Allmarketsmadeastrongrecoveryduring2021and2022asactivityreturnedtopre-Covidlevels.Thelessseverehealthimplicationsofthemorerecentvariants,combinedwithimpressivevaccinerolloutsinlargepartsoftheworld,meanthattheCovid-19virushasbecomepartofanewnormalwayoflife.WithCovid-19posinglessofathreatthefocushasshifted,andtheneedforsustainedeconomicgrowthnowoutweighstheriskposedbythevirus.Recentwhole-citylockdownsinChinabearwitnesstoamoredrawn-outreturntonormalinAsia,leadingtosomelingeringimpactsonenergydemandreboundandcontinueddisruptionstoglobalsupplychains.Russia’sinvasionofUkrainewillhaveasignificantimpactonenergymarketsinthenextdecade.Geopoliticaltensionsandtheweaponisationofcommoditieswillforceachangeintheenergymixandtradeflows.OutsideRussia,theimpactofthewarwillbemostseverelyfeltinEurope,asdeclining,ifnotnon-existent,gasflowsfromRussiaarereplacedbyotherenergysourcesandenergyefficienciesinadditiontoLNG(Liquefiednaturalgas)andalternativepipelineimports.BuildoutofrenewablecapacitywillbeacceleratedaspartoftheREPowerEUambition,withlifetimeextensionsofcoalandnuclearpowerplantshelpingtofillthesupplygapintheshortterm.RussianoilandgaswillfindotheroutletsthanEurope,withincreasedsupplyavailabletothedomesticmarketsandexporttoAsia.Demanddestructionmaybeseenacrossallcommoditiesandregionsasaresultoflimitedorlackofsupplyandhighprices.GlobalLNGsupplyislikelytoproveinsufficienttomeetdemand,asRussianflowsarereducedandpotentiallyswitchedoffaltogether,withthesupplydeficitandhigherpricesleadingtodemanddestruction.Russianoilsupplyisunlikelytoreturntopre-warlevels.8590951001051101151202019202020212022202320242025CoalOilGasElectricity-8-4048122016201920222025ChinaCISEUNorthAmericaWorldProjectionCoal,oil,gasandelectricitydemandIndexed2019=100GDPgrowth%changey/ySource:IEA(history),Equinor(projections)Source:©OxfordEconomicsLimited2022(history),Equinor(forecastfromJune2022)CommoditiesOilOilmarketsremainvolatile,drivenbysupplyanddemanduncertainty.SanctionsonRussianoilfollowingtheinvasionofUkraine,Opec+failingtodeliverontheiragreedproductionaswellassupplydisruptionsinotherregions,haveledtofearsofsupplyshortages.Adownwardrevisionofglobaleconomicgrowth,continuedlockdownsinChinaandhighpricesleadtodecreaseddemand.Marketvolatilityisexpectedtoremainhighintheshortterm,withconsiderableupsideanddownsiderisk,dependentonhoweventsunfold.PowerPowerpriceswillremainstretchedbetweentheneedforsecurityofsupplyandthevolatilityofunderlyingcommodities.Bothwillbedependentuponpoliticalchangesemergingfromtheongoingcrisisandweatherpatternsuntil2025.Acombinationofheightenedpoliticaltension,ahighershareofintermittentgenerationandlackofinvestmentindispatchablecapacityoverthepastdecadehasresultedinthedelayofaround10GWofcoalcapacityretirementsinEuropeandashifttowardsnuclearforreliability.Russia’sinvasionofUkrainehastakenEuropefrombeingthemarketoflastresortforLNGandcoaltoaprimelocation.Thisinturnhassubstantiallyincreasedthefuelcostforpowergenerationacrosstheworld.Powerpriceswillbestronglyaffectedbyaworldwidesurgeinfuelpricesandthecurrentmarketdesign.Thesectorisexpectedtoleanheavilytowardsmarketreformstoprovidecorrectivemeasuresandacceleratetheenergytransition.HydrogenHydrogendemandintheenergysectorislookingtogrow.Currentgeopoliticalandenergymarketturmoilencumbersthedevelopmentofahydrogenmarket.Inanuncertaincontext,governmentscoulddelaytheirdecarbonisationstrategies,makingitharderforcompaniestojustifyinvestmentsinemerginglow-carbontechnologies.Whilehydrogenisarelevantpartofthedecarbonisationnarrative,short-termmarketeffectswilllikelypostponeitsuptake.GasShort-termoutlooksofferlittlerespitetostressedglobalgasmarkets.TheNordStream2gaspipelinebetweenRussiaandGermanywouldhaveprovidedsomesupplyrelief,buttheprojecthasbeenhaltedindefinitely.Thishasbeenreplacedbyincreasedtightnessandreducedflexibility,asrisinghostilitiesbetweentheEastandtheWestdisruptgasflowswithglobalconsequences.Withverylimitedoptionstoincreaseshort-termgassupply,globalgasmarketsarevolatileandhighlysensitivetodisruptionsinsupplyandseasonalvariationsindemand.USliquefiednaturalgascanbufferbutnotcureshort-termglobaltightness,andinfrastructurebottlenecks,policiesandregulationspreventfurtherloosening.Theshort-termfocusisthereforeonefficienciesandalternativestoeasetheburdenoftightbalances.Thisreportdoesnotconsidergreyhydrogen,i.e.hydrogenproducedbyreformingnaturalgaswithoutcarboncaptureandstoragesincehydrogenproducedinthiswayisnotusedforenergy-relatedpurposes.20EnergyPerspectives2022EnergyPerspectives20222122EnergyPerspectives2022THESCENARIOS«PreviousBacktotableofcontentsNext»EnergyPerspectives202223ThescenariosEnergyPerspectives2022breakswithtraditionandpresentstwoscenariosforglobaldevelopmentandfutureglobalenergymarkets:WallsandBridges.Twoscenariosarepresented,notbecausetheworldhasbecomesimpler,quitetheopposite.Asharpdichotomyisemergingbetweentheslow,incrementalchangethatcharacterisestheenergytransitionseentoday,andtheaccelerationnecessarytoachievetheradicalchangesrequiredtomovetheworldontoatrulysustainablepath.Thetwoscenariosencapsulatethisdichotomy.Thefutureofenergymarketsisdifficulttopredict.Recenteventshaveshownitisnotonlythelong-termdevelopmentofmacroeconomicsandenergymarketsthatareuncertain.Covid-19hasonlyashort-termimpactinbothscenarios,withnosignificantlastingimpactexpectedinthemediumandlongterm.However,theRussianinvasionofUkraineandtheassociatedgeopoliticaltensionshavegivenrisetothereappearanceofobstaclestocooperationandexistingtradeandsupplyflowswhichmayhavelong-lastingeffectsoneconomicdevelopment,governmentpolicyandcorporatedecision-makinginsomeregions.Thescenariosconsiderthesekeyuncertainties.Thescenariosstartfromtheworldasitistoday,wheretheenergytransitionhasbegunbuthasyettoacceleratetothespeedrequiredtoachievethegoalsoftheParisAgreement.Theysharenear-identicalpathsupuntil2025,atwhichpointtheystarttodiverge.Wallsshowsapathwayofwheretheworldcouldgoifitcontinuestobroadlyfollowcurrenttrends,whilstBridgesillustratesapathwaytheworldwouldneedtofollowtoreachthe1.5°Ctarget.Bothscenariosconsiderthesamesetofdrivers,rangingfromeconomicgrowthandtechnologicaldevelopmenttoclimatepolicyandgeopolitics,andbothscenariosrecognisetheprofoundsystemicchangerequiredtoputtheenergysystemonamoresustainabletrack.Thedifferencebetweenthetwoscenariosistherelativeforceofthesedriversandtheextenttowhichtheyinfluencethefuturepathoftheglobalenergysystemafter2025.Inshort,Wallsfailstomakethistransitiontoasustainablepathway,whilstBridgessucceeds.EnergyPerspectivesdoesnottrytopredictthefuturebutshowspossiblefuturepathsfortheglobalenergysystembasedonthechoicestheworldmakes,providingaplatformfordebateandinformeddecision-making.24EnergyPerspectives2022WallsWallssignifytheabundanceofbarriersblockingfundamentalandacceleratedchangeintheglobalenergysystem.Throughouthumanhistory,wallshavebeenbuilttoprotectusfromthethingsthatwefear:intruders,plagues,viruses,theweather,andwildanimals.Inadvertently,wallsexcludeus,cutoffoptionsandplaceobstaclesinourpath.Wallsshieldus,butalsoformbarrierstotransitionandmovement.Wallsprotect,buttheyalsodivide.TheWallsscenariobuildsoncurrenttrendsinmarket,technologyandpolicy,assumingthemtocontinuedevelopingataslowlyacceleratingpaceinthefuture.Economicgrowthremainsthekeydriverforgrowingenergydemand,andnationalgovernmentscontinuetoprioritiseshort-termeconomicgrowthoverlong-termclimategoals.GeopoliticaltensionsinthewakeoftheRussianinvasionofUkraineleadtolong-lastingeffectsoneconomicdevelopmentandgovernmentpolicy,especiallyintheCommonwealthofIndependentStates(CIS),theEUandChina.Theenergytransitionishamperedbyalackofcooperationandtrust,andalthoughclimatepoliciescontinuetotighten,withmomentum-drivenmainlybytheindustrialisedregions,thescenariodoesnotmeetallstatedtargetsanddoesnotmovefastenoughtosatisfythegoalsoftheParisAgreement.Changeissimplynothappeningfastenough.Wallsisastoryaboutanenergytransitionthatisslowlyaccelerating,butthatdoesnotreachclimatetargets.However,itisimportanttonotethatthechangestotheglobalenergysystemoutlinedinWallsarenotagiven.Theywillstillrequireenormouschangestothefoundationsoftheglobalenergysystem,butthiswillnotbesufficient.BridgesIfWallssignifythebarrierstochange,Bridgesrepresenttheovercomingofthesebarriersandtheimpetustowardsacceleratedchange.Bridgeshelpustoconnect,allowingpeopletoreachplacestheywouldnototherwisehavebeenabletoreachandachievethingstheywouldnototherwisehavebeenabletoachieve.Bridgesareopen-endedandfacilitatetransition,movement,tradeandcommunication.Bridgesconnectandenable.TheBridgesscenarioisanormativeback-castconstrainedbyanenergy-relatedCO₂emissionsbudgetof445GtCO₂compliantwitha50%probabilityofnomorethana1.5°Ctemperaturerise.Abenigngeopoliticallandscapeisre-established,supportingrenewedcooperationandfriendlycompetitionamongnations.Energymarketsbecomemoreintegratedandtechnologicaladvancementsaresharedmorereadily.Climateactionremainsthekeydriver,andallregionsareunderpressuretorapidlyphaseoutfossilfuels,buildrenewablecapacity,improveenergyefficiencyandmakedrasticbehaviouralchanges.Theacceleratedtransitionbringssignificantchangestotheenergysystemevenbefore2030.Thisambitiousscenarioservestoillustratetheenormouschallengetheworldisfacedwith.Itistechnicallywithinreach,butwhetheritisalsopracticallyandeconomicallyachievable,andsaleabletovotersoncealltheimplicationsareclear,isopentodebate.Thescenarioisnotanchoredindetailedanalyticalconvictionsbutratheraimstostimulatediscussionsaroundthefeasibilityofthechangesrequiredtolimitglobalwarmingto1.5°Cbytheendofthecentury.Seefootnoteonpage10EnergyPerspectives202225WallsTheWallsscenariobuildsoncurrenttrendsinenergymarkets,technologyandpolicy.EnergyintensityInWalls,theenergyintensityoftheglobaleconomyimprovesby2%peryearbetween2020and2050.Thepaceofimprovementissignificantlyhigherthantheaverageof1.2%peryearforthe1990-2019period,drivenbyastrongfocusonenergyefficiency.Someregionsaccomplishevenmoreimpressiveimprovementsthantheaverage:theEuropeanUnionandpartsofAsiadroptheirenergyintensitiesbybetween2.5%and3%peryear.ThoughWallsisnotasustainablescenariofromaclimateperspective,peoplebecomemorekeenlyawareoftheglobalwarmingthreatanditslinktoenergyconsumption,andalargeshareofthelow-hangingfruitisharvested.Energyintensitydeclineratesaresignificantlyimprovedasaresultoftheelectrificationofroadtransportand,tolesserdegrees,theindustryandthebuildingssectors.However,asarule,high-emittingindustrialassetsarenotretiredaheadoftheirnormaleconomiclifetimes,constrainingtheturnoverofcapitalstockandthedeploymentofthemostefficienttechnologies.DecarbonisationDecarbonisationoccursinboththeenergyend-useandtransformationsectorsataslowlyacceleratingpacecomparedwithrecenthistory.Fossilfuelsdoremainapartofthefuelmixwherealternativesresultinsignificantlyhighercosts,andwhereabatementviaCCUSoffersaneconomicoptionfordecarbonisation.Theshareoffossilfuelsintotalprimaryenergyisaround80%todayandhasbeensoforthelastthirtyyearsatleast.InWalls,thissharesteadilydecreasesto62%in2050.Fossilfueluseonlybeginstofallinthe2030sandis20%lowerin2050comparedwith2019.Coalseesthebiggestreduction,halvingovertheperiodto2050.Thetransportsectorcontinuestoseeincreasingelectrification,contributingtoareductionintheoilshareoftotalprimaryenergyfromaround30%todayto25%in2050.Gasmaintainsashareofaroundaquarteroftotalprimaryenergydemandthroughouttheprojection(2019-2050)period.Fossilfuelscomprisearoundtwo-thirdsofend-useenergyconsumptiontoday,andthishasbeenthecaseforthelastthirtyyearsatleast.InWalls,thissharesteadilydecreasestoaroundhalfin2050.Inaddition,CCUSintheindustrialsectorcontributesaround0.2GtCO₂ofdirectabatementin2050.ElectrificationElectrification,measuredbyboththeamountofelectricityusedandtheshareofelectricityinenergyconsumption,hasincreasedsteadilyoverthelastthirtyyears.Consumptionincreasedatarateof2.9%peryearacrosstheperiod1990-2019,andtheelectricityshareincreasedfrom13%in1990to20%in2019.ThisincreaseismainlytheresultofmassiveelectrificationinChinasincetheturnofthemillennium,contributingtoanincreaseintotalelectricitydemandof130%between1990andtoday.However,China’sgrowthratecannotbemaintainedindefinitely,andthiswillleadtoadeclineintheglobalgrowthrateoverthenextthreedecades.InWalls,electricitydemandgrowsbytwo-thirdsovertheprojectionperiod,withanannualaveragegrowthrateof1.6%.Theshareofelectricityinfinalconsumptionincreasesfrom20%todaytoaround30%in2050.02004006008001990200020102020203020402050WorldIndustrialisedChinaIndiaOtheremergingHistoryWalls–EnergyintensitytoepermillionUSDSource:IEA,©OxfordEconomicsInternational2022(history),Equinor(projections)26EnergyPerspectives20221990200020102020203020402050CoalGasHistory0246810122020203020402050TransportIndustryPower&heatOther050100150200250Walls–GlobalcoalandgaspowergenerationThousandTWhWalls–GlobalhydrogendemandMtoeSource:IEA(history),Equinor(projections)Source:EquinorPowergenerationfromcoalgrewbyanaverageof2.8%peryearovertheperiod1990-2019.InWalls,thisgrowthendsimmediately,andpowerfromcoaldecreasesby2.2%peryearacrosstheprojectionperiod,adropof50%by2050.Gaspowergenerationgrewbyanaverageof2.4%peryearovertheperiod1990-2019.InWalls,thisgrowthcontinuesinthe2020s,andreachesaplateausoonafter2030.Gaspowergrowsbyanannualaverageof0.6%peryearacrosstheprojectionperiod,anincreaseof20%overall.Coalpowerpeaksin2024,andgasovertakescoalin2039.Gas-to-powerachievesapeakin2041.InWalls,CCUSonfossilfueluseinthepowersectorcontributesaround0.3GtCO₂ofabatementin2050.Windpowercapacitygrowsatanannualrateof5.6%overtheprojectionperiod,makingwindgenerationroughlyfivetimesgreaterin2050thanitistoday.Evenmoreimpressively,solarpowercapacitygrowsatanannualrateofover8%overthesameperiod,makingsolargenerationin2050around16timesgreaterthantoday.Together,windandsolarconstitute45%oftheglobalpowergenerationmixin2050,upfrom8%today.By2050,windandsolarpowerbothexceedgas,andhydropowerisgreaterthancoal.Nuclearpowercapacitygrowsatarateof1%peryearacrosstheprojectionperiod,comparedwiththe1990-2019rateof0.7%,makingnucleargeneration50%higherin2050thantoday’slevel.Theshareoftotalzero-carbongenerationintheglobalpowermixincreasesfromaround40%todaytonearlythree-quartersin2050.Potentialbottlenecks,suchasinsufficientelectricitygridsorlandspacefornewrenewables,areaddressedandadequatelysolved,withsuitableregulatoryframeworksandmarketdesignstructuresimplementedtoharnesstheefficiencyofmarketforceswherepossible.Hydrogen-basedfuelsInWalls,bothblueandgreenhydrogenareintroducedintotheenergymixfrom2025onwardsandscaledupinthe2030s.Hydrogen,anditsderivatives,suchasammoniaandothere-fuels,areslowlyintroducedinsectorsthatcannoteasilyelectrify,suchasheavyindustry,marinetransportandaviation.However,thereremainsverylimitedpenetrationinallsectors,withcostsremainingtoohighcomparedwithcompetingdecarbonisationtechnologiesandcarbonemissionallowances.CCUSrequiredforbluehydrogenproductionisapproximately0.6GtCO₂in2050.CarbonremovalAlthoughresearchanddevelopmentintocarbonremovaltechnologiesproceeds,thereremainsverylimitedpenetration,andinWalls,negligiblecarbonisremovedfromtheatmospherein2050viacarbonremovalmethods.EnergyPerspectives202227BridgesInBridges,changesbeyond2025needtohappenatanastonishingrate,supportedanddrivenbypolicythroughout.EnergyIntensityInBridges,theenergyintensityoftheglobaleconomyimprovesbyanaverageof3.1%peryearbetween2020and2050,withallregionsmakingsignificantcontributions.Thepaceofchangeismuchhigherthanthe2%peryearimprovementinWalls,relyingonenergyefficiencyincreasesfarbeyondanythingexperiencedinrecenthistory.Technologiesthatmakethispossibleareconceivablebutwouldrequiresignificantandsustainedpolicysupportandfinancingtomakethemareality,andinBridgesthisisforthcoming.After2025,anabsolutedecouplingofeconomicgrowthfromenergydemandoccursatagloballevel,somethingneverseenbeforeinmodernhistory,enablingglobaleconomicgrowthtocontinuewhilsttotalprimaryenergydemandpeaksandthendeclines.Thisdeclineinprimaryenergydemandispresenttoagreaterorlesserextentinalmostallregions,Indiabeingtheprominentexception,whereprimaryenergydemandcontinuestogrowtowards2050byafurther20%comparedtothe2025level.However,India’spercapitaenergyuse,althoughrisingacrosstheperiod,remainslowerthanallbuttheverypoorestregionsofAsiaandAfrica.DecarbonisationInBridges,theimpetustowardsdecarbonisationisimmediateandunrelenting.Fossilfuelusedecreasesbymorethan5%peryearacrosstheperiodto2050,comparedtolessthan1%inWalls,andsignificantchangeisalreadyobservableby2030.Bridgesseestheshareoffossilfuelsintotalprimaryenergyfallto67%in2030(comparedto76%inWalls)andto22%in2050(62%inWalls).Fossilfuelusein2050isafifthofitscurrentlevel.Coalisbyfarthehardesthit,withitsshareofprimaryenergydemandshrinkingfromaquartertodaytoaround3%.Oilandgasfarealittlebetter,theirsharesbeingreducedbyapproximatelytwo-thirdsby2050.Inaddition,CCUSonindustrialfossilfuelusecontributesaround0.4GtCO₂ofdirectabatementin2050.ElectrificationInBridges,electrificationhappenseverywherepossible,andithappensfast.Electricitycurrentlysuppliesaroundafifthofthetotalend-useenergydemand.By2030,thisshareincreasestonearly30%,andby2050electricitymakesupthelargestshareoftotalfinalconsumption.Electricitydemandincreases2%peryearacrosstheprojectionperiod,whichlooksreasonablecomparedtogrowthobservedinthelasttwodecades,whichwasdrivenbyChina’selectrification.However,thismasksthefactthattheincreaseto2030is3.1%peryear,fallingto2.3%inthefollowingdecadeto2040,andonly0.5%inthedecadeafterthat.ItisthespeedofelectrificationintheearlypartoftheprojectionperiodthatiskeytodifferentiatingBridgesfromWalls.Theroadtransportsectorundergoesthelargesttransformation,withnearlythree-quartersofglobaldemandsuppliedbyelectricityin2050,comparedtoaroundafifthinWalls.Electricitydemandintheroadtransportsectorin2050isaround35timestheleveltoday.1990200020102020203020402050WorldIndustrialisedChinaIndiaOtheremergingHistory0200400600800Bridges–EnergyintensitytoepermillionUSDSource:IEA,©OxfordEconomicsInternational2022(history),Equinor(projections)28EnergyPerspectives2022InBridges,electricitydemandintheindustrialsectorgrowsatarateof1.3%peryear,withanincreaseofnearly50%in2050comparedwithtoday.Residentialelectricitydemandincreasesby2.2%peryear,andby2050isalmostdoubletoday’slevelandathirdlargerthanthatinWalls,drivenbyacceleratingdemandforelectricalheating,particularlyinthedecadeafter2025.Windandsolarpowerbearmostoftheburden,supportedbyvaryingamountsofdispatchablerenewablessuchashydroandbiomassdependingonregionalconditionsandpoliticalfeasibility.Windcapacitygrowsataround7%peryearovertheperiod,resultinginwindgenerationeleventimeshigherin2050thantoday.Solarcapacitygrowsatnearly10%peryear,resultinginsolargeneration25timeshigherin2050thantoday.Nuclearpowercapacityincreasesatnearly2%peryearovertheperiod,resultinginnucleargeneration50%higherin2050thantoday.Alreadyby2030,nearly60%ofelectricitycomesfromzero-carbonsources(comparedto47%inWalls),withhalfofthisprovidedbyintermittentgeneration.Zero-carbonpowergenerationaccountsfor96%ofallelectricitysupplyin2050,withtwo-thirdsofthispowercomingfromintermittentsources.Thisrequiresextensiveupgradesandextensionstoexistingpowergrids,andthewidespreaddeploymentofelectricitystoragetechnologiesacrossalltimescales.Hydrogen-basedfuelsInBridges,hydrogenisintroducedintotheenergymixfrom2025onwardsandscaleduprapidly.Demandforhydrogenin2050isapproximately466Mt,approximatelyseventimesthelevelseeninWalls.1990200020102020203020402050CoalGasHistory02468101205001000150020002020203020402050TransportIndustryPower&heatOtherBridges–CoalandgaspowergenerationThousandTWhBridges–GlobalhydrogendemandMtoeSource:IEA(history),Equinor(projections)Source:EquinorInBridges,theutilisationofexistingcoalandgaspowerplantsisreducedasquicklyaspossible,withemissionsfromremainingplantscapturedandstored.Thisrequiresaround1GtCO₂ofabatementin2050splitevenlybetweencoalandgas.Powergenerationfromcoalpeaksin2022andthereaftershrinksatanaveragerateofmorethan10%peryearuntil2045.Powergenerationfromgasgrowsuntil2030,peaksandthendeclinesatasimilarratetocoal.By2050,nounabatedcoalorgaspowergenerationcapacityremains.CoalandgaswithCCUScontributeapproximately1,250GWofdispatchable,zero-carbonpowergenerationcapacityin2050.Zero-carbonpowerRapidlyincreasingelectricitydemandinBridgesmakesitimperativethatelectricitysupplyisdecarbonisedquicklyandcompletely.EnergyPerspectives202229TheindustrialandtransportsectorsseesignificantincreasescomparedtoWalls,butitistheenergytransformationsectorsthatreallydifferentiatethescenarios,withdemandinthepower&heatsectornearly20timesgreaterin2050inBridgesthaninWalls,drivenbythecriticalnecessitytodriveoutremainingemissionsfromgaspowergeneration.ThevastmajorityoftheadditionalhydrogeninBridgesisgreenhydrogen.CCUSrequiredforbluehydrogenproductionisaround0.8GtCO₂in2050,anincreaseofapproximatelyathirdcomparedwithWalls.CarbonremovalInBridges,carbonremovaltechnologiesmakeacriticalcontributiontoachievingthegoalofremainingwithinthecarbonbudgetrequiredfor1.5°C.In2050,nature-basedsolutionsforcarbonremoval,whichincludeforestry,wetland,agriculturalandocean-basedpractices,areresponsibleforremoving2.3GtCO₂fromtheatmosphere.Bioenergywithcarboncaptureandstorage,anddirectaircapture,areresponsibleforremovingafurther1.4GtCO₂and0.6GtCO₂,respectively.Policy&behaviourToensurethatthesystemicchangesandtechnologicalimprovementsoutlinedaboveactuallyachievetheirpotential,afirmandtargetedenergypolicyisrequired.AsignificantshiftinhumanbehaviourandexpectationsisabsolutelycriticaltosuccessinBridges,incentivisingconsumerstochoosemoreecologicalgoodsandservices,andinvestorstoprovidefinanceforresearch,developmentanddeploymentoflowcarbontechnologies.Changesinhomeheating,travelanddietaryhabitswillalsoplayanimportantrole.Ahighercarbonpriceisessential,sincecarbonpricingisaproven,cost-effectivewaytoincentiviseareductioninCO₂emissions.Thiswillencourageconsumersandcompaniestofindsolutionswithloweremissions.Thereiscurrentlylimitedevidencetosupporttheideathatvotersindemocraciesareinclinedtodelegatepersonalinvestment,dietaryandotherlifestylechoicestotheauthorities.Raisingthelevelofacceptancefortheenergytransition,andtheenormouslifestylechangesthatitrequires,willbeessentialtoitssuccess,andinBridges,itisassumedthatthisisacceptedandpromptlyestablished.2015202520352045DirectaircaptureBioenergywithcarboncaptureandstorageNature-basedsolutions012345Bridges-AnnualcarbonremovalGtCO₂Source:EquinorLONG-TERMOUTLOOK30EnergyPerspectives2022«PreviousBacktotableofcontentsNext»EnergyPerspectives202231Theenergyworld:Twoscenarios199020002010202020302040205002468101214161990200020102020203020402050024681012141619902000201020202030204020500246810121990200020102020203020402050024681012201520202025203020352040204520500102030405060201520202025203020352040204520500102030405060Walls–TotalprimaryenergydemandGtoeBridges–TotalprimaryenergydemandGtoeWalls–TotalfinalenergyconsumptionGtoeBridges–TotalfinalenergyconsumptionGtoeWalls–PowergenerationThousandTWhBridges–PowergenerationThousandTWhSource:IEA(history),Equinor(projections)Source:IEA(history),Equinor(projections)Source:IEA(history),Equinor(projections)Source:IEA(history),Equinor(projections)Source:IEA(history),Equinor(projections)Source:IEA(history),Equinor(projections)CoalOilGasBiomassHydroNuclearNewrenewablesCoalOilGasBiomassNewrenewablesElectricityHeatHydrogenCoalOilGasBiomassHydroNuclearWindSolarHydrogenGeothermalOther32EnergyPerspectives2022GlobalenergydemandTotalprimaryenergydemandTotalprimaryenergydemand(TPED)isthesumofdemandforcoal,oil,gas,nuclearenergy,hydroenergy,wind,solarandotherrenewableenergysources.Itincludestheenergylostintransmission,transportationandconversionofenergy.Electricityandheatarenotincludedintheprimaryenergydefinition,buttheenergyinputsusedtogenerateelectricityandheatare.InWalls,totalprimaryenergydemandpeaksinthelate2030sasrapidlydecliningdemandinindustrialisedregionsoutweighsacontinuedincreaseindemandinmostemergingregions.DespitegrowthintheglobalpopulationandGDP,thedemandin2050isonly5%higherthanthatseenin2019.Curtailmentisaidedbyelectrification,efficiencygainsandadegreeofbehaviouralchangesaspoliticians,investorsandconsumersalllooktosupportamoresustainablefuture.TotalprimaryenergydemandinBridgespeaksmuchsoonerthaninWalls,in2025,beforegoingintoasharpdeclineandendingupataglobaldemandlevelin2050thatis25%lowerthanthatobservedin2019.FossilfuelsinprimaryenergydemandInWalls,coaldemandpeakedin2018.FollowingadropduringtheCovid-19pandemic,coaldemandrecoversto2019levelsin2022beforegoingintoasteadydeclinetowards2050.Oildemandalsoseesarapidreturntopre-Covidlevelsandstartstodropafter2028.Gasfulfilstheroleofatransitionfuelandcontinuestogrowuntil2040,withdemandincreasingby14%relativetothe2019level,beforegentlydecreasingtowards2050.Despiteadropintheshareoffossilfuelsinthetotalprimaryenergydemandfroma2019levelof81%,theshareoffossilfuelsinWallsremainshighat62%in2050.InBridges,gasisnotgiventheopportunitytoactasatransitionfuelwithallfossilfuelsdecliningrapidlyfrom2025onwards.By2050theshareoffossilfuelsinthetotalprimaryenergydemandis22%.AsinWalls,coaldemandpeakedin2018anddeclinesfrom2022followingashort-liveddemandreboundpostCovid-19.Oilandgasdemandhastodeclinerapidlytoalignwithclimatetargetswithoildecliningfrom2019andgasfrom2025.0246810121416199020002010202020302040205002468101214161990200020102020203020402050Walls–TotalprimaryenergydemandGtoeBridges–TotalprimaryenergydemandGtoeSource:IEA(history),Equinor(projections)Source:IEA(history),Equinor(projections)CoalOilGasBiomassHydroNuclearNewrenewablesEnergyPerspectives202233Globalenergyconsumption:FuelmixTotalfinalconsumption(TFC)istheamountofenergyusedintheend-usesectors.TheglobalfuelmixintotalfinalconsumptionwillchangesignificantlyoverthenextdecadesasenergyefficiencyimprovementbringsTFCdownandelectrificationissettoaccelerateandreducetherelianceonfossilfuels.However,thefuelmixandtheroleoffossilfuelsinBridgesisradicallydifferenttothatrepresentedinWalls.InBridges,totalelectricitydemandisonlyslightlyhigherin2050comparedtoWalls,buttheincreaseinelectricitydemandstartsearlierandthebuild-upisfaster.Totalfinalconsumptionissignificantlylowerin2050inBridges,duetothemassive,assumedefficiencygains.This,combinedwithonlyaslightlyhigherelectricitydemand,resultsinahigherelectricityshareofthetotalfinalconsumption.TheelectricityshareinTFCis31%inWallsand51%inBridgesin2050.Forcomparison,the2019shareis20%.InWalls,thedemandforelectricityisincreasinginlinewiththehistorictrendandmakesupjustoverhalfofglobalconsumptionin2050.In2019,oilhadthelargestshareofenergyconsumptionat40%,drivenbythetransportsector.Assectorsincreasinglyelectrify,especiallytransport,oillosessomemarketshare,butremainsanimportantpartofthefuelmix,withelectricityandoilhavingequalsharesatjustover30%in2050.Gasconsumptionmaintainsaconstantshareofthefuelmixtowards2050.Aslightdeclineisseenbeyond2040,drivenbysolarandwindreplacinggasinthepowersector,andnewrenewablesandhydrogengainingmarketshareintheindustrysector.Drivenbyclimateambitions,electricityconsumptionincreasesrapidlyinBridges,replacingfossilfuels.Fossilfuelconsumptionisreducedto23%ofthefuelmixin2050andallremainingemissionsfromfossilfuelsareremovedbyCCUSorcompensatedforbycarbonremovaltechnologies.Oilconsumptiondrops75%fromitspeakin2019to2050,withelectricityconsumptionnearlydoublingoverthesameperiod.Electricityconsumptionsurpassesoilasthemainfuelintheearly2030s,asthetransportsectorundergoesaradicaltransformation.Hydrogenalsoseesarapiduptakeinmarketshareasexpandingrenewablecapacitypavesthewayforhydrogenintheindustryandtransportsectors.01234519902000201020202030204020501990200020102020203020402050012345GasCoalOilBiomassHeatElectricityNewrenewablesHydrogen024681012WallsBridges31%51%Walls–TotalfinalenergyconsumptionbyfueltypeGtoeBridges–TotalfinalenergyconsumptionbyfueltypeGtoeTotalfinalenergyconsumptionin2050GtoeSource:IEA(history),Equinor(projections)Source:IEA(history),Equinor(projections)Source:EquinorIncludeswind.solarPV,concentratedsolarpower,tidal,geothermalIncludesbiomass,newrenewableandheatGasCoalOilElectricityOtherHydrogenHistory34EnergyPerspectives2022Globalenergyconsumption:RegionalperspectivesTotalenergyconsumptionwillpeaklaterinemergingthaninindustrialisedregions.Globalenergyconsumptionpeaksin2039and2025inWallsandBridges,respectively.InWalls,theindustrialisedeconomiessawpeakconsumptionin2018,whilsttheemergingeconomiescontinuetoincreasetheirenergyconsumptiontowards2050.InBridges,theemergingeconomiesdonotincreasetheirconsumptionbeyond2025.Emergingregionswillclaimanincreasingshareofglobalenergyconsumptionfrom60%todayto72%in2050.Thedelayedpeakandincreasingshareinconsumptionintheemergingregionsarebeingdrivenbygrowingpopulations,urbanisationandtheexpandingmiddleclass,demandingmoregoodsandservices.ThisgrowthisledbyChina,IndiaandAfrica.ChinaisthelargestenergyconsumergloballytodayandremainssothroughoutthescenarioperiodinbothWallsandBridges.InWalls,China’sconsumptiongrowsby1.3%peryearuntil2038beforeexperiencingaverygentledeclinetowards2050.Theconsumptionisdrivenbytheindustrialsector,whichremainssteadilyabove40%ofconsumptionuntil2050.NorthAmerica,followedbyIndustrialAsiaPacific,exhibitsthehighestpercapitaenergyconsumption,currentlyconsuminguptotentimesmoreenergypercapitathanemergingregionssuchasIndia,AfricaandOtherAsiaPacific.Percapita,energydemanddoesnotincreasesignificantlyinmostemergingregionsineitherscenarioasthedemandincreasefromeconomicandpopulationgrowtharecounteredbyelectrificationandefficiencydevelopments.Percapitaenergyconsumptionisdownintheindustrialisedregions,withelectrificationboostingenergyefficiencyinthetransportandresidentialsectors.InBridges,theseeffectsaresignificantlyamplifiedbytougherefficiencystandards,taxation,subsidies,andchangesinbehaviourandconsumptionhabits,resultinginapercapitaenergyconsumptionintheindustrialisedregionoflessthanhalfoftoday’slevelin2050.01020304050601990200020102020203020402050WallsBridgesHistoryRichestthreeregionsPoorestthreeregions0123451990200020102020203020402050IndustrialisedChinaEmergingHistoryIndustralisedEmerginginc.China205040%60%28%72%2019GDPpercapitaintherichestandpoorestregionsRealthousandUSDatmarketexchangeratesEnergydemandpercapitatoepercapitaWalls–TotalfinalenergyconsumptionSource:©OxfordEconomicsInternational2022(history),Equinor(projections),UN(population)Source:IEA(history),Equinor(projections),UN(population)Source:IEA(history),Equinor(projections)IndustralisedEmerginginc.China205040%60%28%72%2019IndustralisedEmerginginc.China205040%60%28%72%2019EnergyPerspectives202235Theenergyworldin2030and2050Source:IEA(history),Equinor(projections).105869982302019203020503445273851201920302050499527755439377552820192030205040%60%4324437939773873118720192030205072021133201920302050WallsHistoryBridgesGlobalOilDemandmbdGlobalGasDemandBcmGlobalCoalDemandBtceGlobalElectricityDemandPWhGlobalWind&SolarElectricitySupplyPWh36EnergyPerspectives2022GlobaleconomyGlobaleconomicgrowthcontinuesthroughoutthescenarioperiod,drivenbyemergingeconomies,butatalowerratethanobservedhistorically.Adeclininggrowthinthelabourforce,coupledwithanageingpopulationisassumedinbothscenarios.GlobalgrowthinWallsislowerthanthehistoricalgrowthrateof2.9%since1990.Thisiscausedbyadecreasingcatch-uppotentialforemergingcountrieswhenreplicatingtechnologiesandproductionmethods,comparedtohistory.Increasingcarbonlevelsintheatmosphereleadtoamoderatelynegativeclimateimpactoneconomies.Theglobaleconomywillgrowonaverageby2.1%peryearfrom2026-2050,headedbyemergingcountries.InBridges,consumersprimarilyinindustrialisedcountriesfaceasignificantlyhighercarboncosttocurbtheuseoffossilfuelsandtofinancetherapidenergytransition.Investmentsandtransferoftechnologyandknowledgearedirectedtowardsemergingeconomies.Theglobaleconomygrowsonaverageby2.2%peryearduringtheperiod.Followinginitialcurtailedgrowth,BridgesassumesthattheenergytransitionoffersasmallglobalGDPbenefitby2050.Bridges,comparedtoWalls,seesinitiallylowergrowthasconsumersinindustrialisedeconomiesarehitbyreducedpurchasingpower.Overtime,climateimpactsinBridgesarereducedandhigherconsumptiongrowthfiltersthroughascarbontaxationpressureeases.Bridgessufferssomeefficiencyloss,forexampleashareofthefossilfuelinfrastructurewillbereplacedbeforetheendofworkinglife,butstilloutpacesWalls’growthratefromaroundthemid-2030sonwards.Russia’sinvasionofUkraineanditsimpactonthegeopoliticallandscapewillhavelong-lastingconsequencesfortheglobaleconomy.DuetotheinvasionofUkraineandintensifiedrivalrybetweentheUSandChina,geopoliticalconsiderationsandpoliticsaremorelikelytotrumpdecisionsbasedonpurecommercialandmarketmotives.Inaddition,globaltradebecomesmoreregionalised,leadingtomorefracturedsupplychains.Thefutureoftheglobaleconomyisuncertain.Duetohighdebtlevelsandimbalancesineconomies,theabilityofgovernmentstoreducespendingandforcentralbankstotightenmonetarypolicyareuncertaintiesinaworldthathasbecomeusedtostrongpolicystimulus.Futureproductivitydevelopmentisalsoakeyunknown,affectingbothscenarios.Gainsliketechnologicalbreakthroughs,moreefficientuseoflabourandtechnology,andsmarterregulationsandreformsmaybesignificantgrowthcontributorsoutintime,withthespeedofimplementationandsuccessinfluencingthefuturepathway.100150200250300350201520252035204510015020025030035020152025203520451001502002503003502015202520352045IndustrialisedeconomiesGDPindexedto2015EmergingeconomiesGDPindexedto2015GlobaleconomyGDPindexedto2015Source:©OxfordEconomicsLimited2022(history),Equinor(projections)WallsBridgesHistoryElevatedinflationEnergyPerspectives202237Inflationiselevatedandstickyacrosseconomies,potentiallyimpactingtheenergytransition.Globaleconomiesareexperiencingaworldwidesurgeininflation.Inflationisanticipatedtoremainhigherforlonger,however,theshort-termoutlookisuncertain.Thekeydriversofthecurrentinflationsurgearesupply-chainbottlenecks,ashiftindemandtowardgoodsandawayfromservices,lackoflaboursupply,andasupplyshocktoenergyandfoodduetotheinvasionofUkraine.Increasingandvolatileinflationmakesitmoredifficultforhouseholdsandfirmstoplanforsavingsandinvestments,andcentralbanks’credibilitymayerodeashighinflationpersists.Thereisaworrythattheglobaleconomymightenteraphaseofstagflation,meaningsloweconomicgrowthandrelativelyhighunemployment,accompaniedbyincreasingfoodandenergyprices.Thesehighpricesarefosteringsocialunrestacrosseconomies,particularlyinemergingmarkets.Majorcentralbankshaverespondedtotherisinginflationbyaggressivelyhikinginterestratesandbyothertighteningmeasures.Thesuccessofmonetarypolicytightening,dampeninginflationwithoutchokinggrowth,iscrucialtobringingdowninflation.Thecostanddurationofinflationwilldependontheinterplaybetweenthepersistenceoflabourmarkettightness,supply-sidedisruptionsandthecentralbanks’response.Inaddition,thedurationofthewarinUkraineanditsimpactonenergyprices,foodpricesandgrowthareofkeyimportance.Thelonger-termpathforinflationwilldependonwhetherdisinflationaryforcesseenoverthepastdecadeswillfadeorgraduallyre-emerge.Thereareseveralpossibleeffectsofhighinflationontheoilandgasindustry.Higheroilandgaspricesprovideanaturaloffsetagainstinflation,whilealsoincreasingthecompetitivenessofrenewables.However,thereislikelytobeacost-pushinsupplychains,andtightlabourmarketscausewagecoststoincreases.Forcapital-intensiveprojects,suchaswindandsolarPV,higherinterestratesandfinancingcostsarelikelytoimprovetherelativecompetitivenessoffirmswithstrongbalancesheets.Thethreatofinflationandrisinginterestratescancreateachallengingenvironmentforindustriesandtheenergytransition.Inflationdampenseconomicgrowthifindustriesandhouseholdscannotsubstituteawayfromcarbon-intensiveenergytogreenerandcheaperalternatives.Higherinflationandinterestratescouldalsolimittheprivatesector’sabilitytofundthetransitionandpointthepublicsectortowardsshort-termpovertyalleviationratherthanlong-termclimateriskmitigation.Bothmonetaryandfiscalpolicyhavearoletoplayintheenergytransition.Monetarypolicyshouldrecognisethatinvestinginamoresustainableeconomycouldposearisktomedium-terminflationandmaycallforadeviationfrominflationtargets.Onthefiscalside,governmentsarefacingabalancingactneedingtopushtheenergytransitionforwardwhilstatthesametimeprotectingthevulnerablefromenergypoverty.Energyshortage,securityofsupplyconcernsandrisingenergypricesmayslowtheenergytransitionintheshort-to-mediumterm.Inthelongerterm,inflation,interestratesandeconomicgrowthwillimpactinvestmentdecisionsandwaysoffundingthetransition.38EnergyPerspectives2022Oildemanddeclinesastheenergytransitioncontinuestogainmomentum.However,severalyearsofunderinvestmentinupstreamprojectshaveraisedconcernsoversupplyshortagesandfearsthatsupplymaydeclinefasterthandemand.Energysecurityremainsakeyfactorintheenergytrilemmaandrenewedupstreaminvestmentinthemediumtermmaybeseen.InWalls,oildemandpeaksinthelate2020s,followedbyadecreaseof18%(19mbd)by2050,astheenergytransitiondrivesdemanddown.TheindustrialisedregionsandChinaaredrivingthedemanddecline,leadingtoacombineddecreaseof37%(24mbd)between2025and2050.ThischangeistheresultofshiftsderivedfromcarbonneutralitypledgesandchangesinroadtransportwhereefficiencygainsandaswitchtoEVsreducedemand.Keyemergingregions,suchasAfrica,IndiaandtheMiddleEast,continuetoseeincreasingoildemand,up27%between2025and2050.Thesectorsdrivingthisincreaseareresidential,industryandpetrochemicalastheregionscontinuetodevelopandindustrialise.Russianproductionlevelsareunlikelytoreturntopre-invasionlevelsduetoalong-termlackofinternationalinvestmentinRussianprojectsgoingforward.Anyshortfallsinthemediumtermareexpectedtobecoveredbyotherregions,mostnotablystrongergrowthinUSshale,withareconfigurationoftradeflowsbeingthelargestchangeasaresultoftheconflict.TheprojectionforoilinBridgesisgovernedbytheenergytransitionwithpolicies,technologyandbehaviouralchangesdrivingtotaldemanddown70%(69mbd)from2025to2050.Demandpeaksin2019inBridges.TheroadtransportsectoraccountsforthemajorityofthereductioninoildemandasLDVinternalcombustionenginesarereplacedbyelectricvehicles,anddieselenginetrucksarereplacedpredominantlybyelectricandhybridvehicles,buthydrogenvehiclesarealsointroduced.Overalldemandfromthenon-energysectorpeaksinearly2030butcontinuestoincreasetowards2050inregionssuchastheMiddleEast,ChinaandCIS,reflectingasurplusofindigenoussupplyasexternaldemandiscurtailed.Gasoilandgasolineseethebiggestdeclineindemandastheroadtransportsectoristransformed,whilenaphthaistheonlyproductthatcontinuestoincreasetowards2050duetodemandfromthepetrochemicalsector.Globaloilmarket0204060801002019TransportPowerBuildingsIndustryFeedstockuse20500204060801002019TransportPowerBuildingsIndustryFeedstockuse2050Walls–ChangeinoildemandmbdBridges–ChangeinoildemandmbdSource:IEA(history),Equinor(projections)Source:IEA(history),Equinor(projections)Thedemandtrendforrefinedproductsandpressuretoeithercloseorbuildnewrefiningcapacitiesiscloselylinkedtoregionalvariationsinsocio-economicdevelopment.Inindustrialisedcountries,economiesaremorematureandtendtogrowataslowerpace,withpeoplebecomingmoreconsciousoftheeffectofcarbonemissionsleadingtostrongerdemandforcleanenergy.Asaresult,refinersinNorthAmerica,EuropeandIndustrialisedAsiaPacifichavehadtoshutinpartoftheirproduction.Conversely,demandforcheapenergycontinuestogrowintheemergingregionsoftheworldwherepeoplehavelessmoneytospendonnon-fossilfuels.Demandforrefinedproductscontinuestogrow.Thelong-termtrendisthatincreasingdemandforalternativefuelswilloutweighthatforrefinedproducts,butnotallrefineryproductswillbeaffectedequally.Dieselandgasolinedemandislikelytodecreaseasroadtransportiselectrified,whilstproductssuchasnaphtha,LPGandjetfuelwillbelessaffected.Thefirsttwoduearetoincreaseduseinpetrochemicalindustriesandthelatterduetothedifficultyofreplacingitwithmoresustainableoptions.Twochallengesarisefromthis:thecurrentrefineryset-upisnotequippedforthefuture,anddemandforcrudefeedwillchangeovertime.Toaddressthisrefinerieswillhavetoinvestinnewequipment,andthedemandforcrudeoilwillshifttowardsthoserefineriesthatyieldhigherquantitiesofproductsthatareindemand.Refiningcompanieshaveoverthepastthreeyearsstartedtosetindividualtargetsforreducingcarbonemissions,addingfurtherincentivetocloserefineriesamidsteconomicpressures.RefineriesemitlargeamountsofCO₂andshuttingarefinerycangoalongwaytowardscompaniesachievingamorecarbonneutralstatus.Thisweighedheavilyintherecentdecisionstoclosetworefineries:LyondellBasell’sHoustonrefineryintheUSandIdemitsu’sYamaguchirefineryinJapanandislikelytoplayanincreasingroleincompanydecisionsgoingforward.Thegrowthofalternativefuelsisunlikelytomakecrudeoilrefiningredundantintheforeseeablefuture,butadaptationswillbeneededforindividualrefineriestosurvive.Goingforwardtherewillbeasharpcompetitionwithwinnersandlosersalike.Futurecompetitiverefineriesarelikelytobethosethatcanadapttothechangingenvironmentandmeetthefollowingcriteria:•Low-cost•Flexibilitytohandlechangingcrudeslateslinkedtochangesindemandforaspecificproduct•Flexibilitytoswitchtorenewablesproduction•Tightintegrationwiththepetrochemicalindustry,whichisexpectedtoseefuturegrowthindemandStrongcompetitionandlowprofitmarginshaveforcedmanyrefinerstomakedifficultdecisionsoverthepastthreeyears;shutdownproduction,converttoprocessingofrenewablefeedstock,orcontinueproductionandwaitforbettertimes.Theworldeconomyandglobalpopulationaregrowing,peoplearebecomingricher,demandingmoregoodsandtravellingtheworld.Thedemandforenergyappearstobeboundless,sohowcanrefineriescopeinsuchanenvironment?ChallengesforthefutureofrefiningEnergyPerspectives202239Around3.8billionpeopleflyeveryyear,63millionpeopleareemployedintheindustryandairtransportmakesup35%ofglobaltrade.Today,aviationaccountsforaround2%ofglobalgreenhousegasemissions.Thisissettoincreaseasthedemandforairtransportwillgrowalongwiththeglobaleconomy,reaching3%by2050.Decarbonisingtheaviationindustry40EnergyPerspectives2022Aviationisoneofthehardestsectorstodecarbonise.TheEUiscurrentlyworkingonaproposaltoextendthedefinitionofsustainableandadvancedfeedstocksandincreasetargetsfortheirshareinaviationfuel.Thisproposalwantsa2%shareby2025,37%by2040,and80%by2050.Theprevioustargetswere32%by2040,and63%by2050.Thereareeffortstobuildplanesusingbatteriesandelectricmotors,butthiswillonlyfindaroleinshorter-distanceaviation.Theenergydensityofbatteriesdoesnotcomparewellwiththatofjetfuel,whichhas30timesmoreenergyperkilogramthanlithium-ionbatteries.ThismeansthatanAirbusA380,whichcantravel15,000kminasingleflightusingconventionalfuel,wouldonlybeabletocoveralittleover1,000kmwithanelectricengine.Moreuseofbiofuelsandothersustainableaviationfuels(SAF)willbenecessaryinordertodecarbonisetheaviationindustry.SAFhavethesamepropertiesasconventionalfuels.Theyaredrop-infuels,whichmeanstheycanbeblendedwithconventionaljetfuelsandtransportedusingtheexistinginfrastructure.Itiscurrentlypossibletoblend50%biofuelwithtraditionaljetfuelwithouthavingtomakeanychangestoexistingmachineryorinfrastructure.Around400thousandflightspoweredbyabiofuelblendhavesofarbeencarriedout.TherearethreemainpathwaysfortheproductionofSAF:Fats-to-fuelreliesontheesterificationoffatsfrombiomasssuchasusedcookingoil;Waste-to-fuelisbasedonupgradingofcarbohydratesderivedfromwaste;andAir-to-fuel,basedonadirectcombinationofcapturedandsequesteredcarbondioxideandgreenhydrogenandisbysomeseenastheholygrailoffutureaviationfuels.Sustainableaviationfuelscanhelpreduceemissions,buttherearesignificantchallenges.Fats-to-fuelhasthepotentialtoreduceemissionsby85%comparedwithconventionalfossilfuels.Itiswellestablished,anditdoesnothavetheIndirectlandusechange(ILUC)problemthatvegetableoil-basedfuelshave.However,securingsufficientfeedstockforproductionisachallenge.Theuseofoilsfromalgaecouldprovideasolution,butsofarthissourcehasprovidedmixedresults.DuetofeedstockconstraintstheAirtransportactiongroup(ATAG)expectsthatfuelfromthispathwaywillonlybeabletoprovideupto8%ofthesustainableaviationfuelneededfornetzeroemissionsby2050.UsingWaste-to-fuelitispossibletoreduceemissionsby95%.Residuefromagricultureandforestrycanbeusedasfeedstock,buttherearesignificantchallenges.Duetolowenergydensity,upto10timestheamountoffeedstockistypicallyneededcomparedwithconventionalfuelandthiscreateslogisticalbottlenecks.Productionplantswillhavetobecollocatedwithfeedstocksourcesandtheplantsizewillbesmallcomparedwitharefinery.Forthisreason,ATAGestimatesthatfuelfromthistypeofproductioncancontributeupto45%ofSAFby2050.WithAir-to-fuelitwillactuallybepossibletoreduceemissionsbymorethan100%.IfCO₂isabundantlyavailablethroughcarboncaptureandstorage,thisproductionmethodhasnofeedstockconstraint.However,whatwillbeneeded,andwhatposesaconstraint,isrenewableenergytoproducegreenhydrogen.TheinvestmentbankBarclaysestimatesthataround7to9timesthecurrentsolarandwindcapacityintheUSwillberequiredtoproduce50%ofthesustainableaviationfuelneededfornetzeroby2050.Significantinvestmentsareneededtoreplaceconventionalaviationfuelwithsustainablealternativesinanindustrythatislargeandgrowing.BarclaysstipulatesthatoverUSD1trillionincapitalwillbenecessarytoovercomeallhurdles.If,orwhen,challengesareovercome,sustainableaviationfuelcouldmakeitpossibletopracticallyeliminatetheindustry’sgreenhousegasemissions.EnergyPerspectives202241InWalls,gasdemandgrowsby11%(435Bcm)from2025toitspeakdemandin2040asitreceivessupportfrompoliciesandregulationsandaidsgrowthanddevelopment.Italsofacilitatestheglobalenergytransitionbyphasingoutmorepollutingformsofenergyandbalancingelectricitysystemswithgrowingsharesofintermittentrenewables.After2040however,demandisultimatelydampenedasdecarbonisationintensifies.Asiaisthekeydriverbehinddemandgrowth,drivenbyindustrialandpowersectorsandincreasedcoaltogasswitchinginresponsetocleanairconcernsandannouncedcarbonneutralitypledges.WaningindigenousproductionandsubsequentimportdependenciescontinuetoexposeEuropetoglobalgasmarketfundamentals.ReducedRussianflowstoEuropedrivemoresignificantadjustmentsintheregionalsupplymixandthereforeimpactcosts,prices,tradedflowsandvolatility.Gasmarketsaretighter,morevolatileandlessflexiblefollowingthereducedRussiansupply.InBridges,theglobalgasdemanddeclinesby71%(2914Bcm)between2025and2050duetoarapidshifttowardsrenewables,supportedbybatteriesandpoliciesconstrainingfossilfuels.Theuptakeofrenewablesandhencethephase-outoffossilfuelsoccurssoquicklythattheroleofgasasatransitionfuelislimited.Thechangeingasdemandismostsignificantintheindustrialisedregionsthatseean81%droponaveragefrom2025-50.Gasdemandpeaksin2025,withChina’sdemandpeakingslightlylater,in2027.Thedemandreductionacceleratesafter2030,affectingallflowsandtrade(pipe,LNGanddomestic)plusallinvestmentsingasexploration,production,infrastructureandusage.Hydrogenproductionandthechemicalandpetrochemicalsectorsaretheonlyareastoseegasdemandgrowthbeyond2025.Gasdemandinhydrogenproductionpeaksin2040beforeslightlydecliningtowards2050,asenoughcapacityisbuiltinrenewablestomakegreenhydrogenthemorefeasibleandsustainablechoice.GlobalgasmarketInWalls,gasdemandremainsavitalpartofthefuelmixinthemedium-to-longterm.However,inBridges,gasisnotperceivedasatransitionfuelanddeclinesrapidlyafter2025.Pre-warEuropeannaturalgasimportsin2021Bcm/yr-bysourceandtypeSource:Kpler,Equinor,MapChartUSLNGNorwayPipeRussia~90%Pipe,10%LNGMiddleEastPipeandLNGAfricaPipeandLNGLatinAmericaLNGRUShareofRussianGasinEuropeanImports202118066303142021unusualyear,typically95%pipeand5%LNG113RussiangassupplytoEuropeOneconsequenceofRussia’sinvasionofUkraineisasignificantreductioninRussiangasexportstoEurope.Growinguncertaintyshroudsexistinglong-termcontractsandfutureRussianflowstothecontinent,withglobalramifications.SincegasmarketsareconnectedgloballybyLNG,thelossofRussianexportvolumestoEuropeisfeltgloballyasEuropecallsongreaterLNGvolumestofillthesupplygap.Importingregions,likeEuropeandAsia,aremostexposedtosupplychanges.ExportingregionslikeNorthAmericaaremoreshelteredfromsupplydisruptions.Intheshortterm,furtherreductionsinRussianflowswillcausedemanddestruction,asimportingnationscompeteforsupplyandendusersreduceorsubstitutetheirdemandinresponsetothetightmarkets,highpricesandincreasedvolatility.Inthemedium-to-longterm,LNGvolumesfromUSandQatarareexpectedtostepupandhelpfillthesupplygap.However,additionalvolumesarelimitedbyinfrastructureandriskappetite,particularlywithoutlong-termcontractsaccompanyinginvestments.Futuregasmarketsaresusceptibletoinflexibilityaswellastightnessupto2030,withadditionalLNGvolumesonlymadeaccessiblebyoutbiddingotherregionsorsectors.FurthercutstoflowsfromRussiatoEuropewillhavepronouncedeffectsongasdemand,economicgrowthandclimateambitions,asthereisnotenoughalternativegassupplyintheworldtocovertheimmediatesupplygapleftbyRussia.SuchcutswouldpotentiallyaffectRussia’sLNGexportsector,anditisnotinconceivablethatgasflowsfromRussiatoEuropewillcompletelycease.Increaseddisruptionsalsoendangertheconnectivityandoptimisationoftoday’sgasmarkets,sinceRussianflowstoEuropelackalternativeroutesandarelostwithoutinvestmentinnewpipelinestoAsia.However,risksofoversupplyremain,duetogeopoliticalchanges,economicrecession,andexportingnationsrespondingstronglytocurrentmarketfundamentals.Regardlessofthefuturesupplysituation,riskstogasmarketshaveunquestionablybeenexacerbatedbygrowinghostilitiesandabreakdowninglobalcollaboration.42EnergyPerspectives2022EnergyPerspectives202243InWalls,electricitydemandgrowsby47%globally.A65%growthinelectricitydemandisseenintheemergingregions,drivenbyeconomicdevelopment,increasedstandardsoflivingandambitionstodecarbonise.Electricitydemandinthetransportsectorseesthelargestgrowth,increasingbynearly600%overtheprojectionperiod,owingtothesurgeinthedeploymentofelectricvehicles.Decarbonisationofemission-intensiveprocessesintheindustrysectordrivesa46%increaseinelectricitydemand,whilsta32%increaseisseeninbuildings,duetoelectrificationofheatingandincreasedcoolingneeds.Energyefficiencyimprovementsintheresidentialsector,willdampenlong-termelectricityconsumption,especiallyintheindustrialisedregions.Thepowergenerationfuelmixchangessignificantlyacrossthe2025-50period.Fossilfuelsdeclineby29%,drivenbynetzeroambitions,whilstsolarandwindgrowby562%and260%,respectively.After2025coalwillreduceitsshareinthegenerationmix.In2050fossilfuelswillform28%ofthepowergenerationfuelmix,with45%ofthesharebeingsolarandwind.InBridges,electricitydemandgrowsby61%between2025-50.Allregionselectrifyfastinthemid-termtodriveoutfossilfuels.Thelargestelectricityconsumerstoday,ChinaandNorthAmerica,seepeakpowerdemandinthe2040s,astotalfinalenergyconsumptionfallsduetoefficiencygains.However,theregionsstillaccountfor38%ofdemandin2050.Industryandresidentialarethehighestelectricitydemandsectorsgloballybeyond2028,withdemandinindustrybeingdominatedbyChinathroughouttheperiod.TheresidentialsectorseespersistenthighdemandinChinaandNorthAmerica,withdemandintheIndiaandAfricaincreasingmostrapidlytowards2050.Thetransportsectorseesthemostsignificantgrowthinelectricitydemand,growingalmost450%overtheprojectionperiod.Thepowersectorseesaradicalshiftawayfromfossilfuelstowardsrenewables,especiallysolarandwind,froma57%shareoffossilfuelsin2025to4%in2050.Solarandwindmakeup65%ofthepowergenerationfuelmixin2050.GlobalelectricitymarketClearpoliticalvisionssupportedbyappropriateregulationandmarketreformsencouraginginvestments,arerequiredtobuildadecarbonisedandreliablepowersystemglobally.Suchsystemsarekeytoachievingglobalclimatetargetsandhelpimproveenergysecurityforregionsrelyingheavilyonfossilfuelimports.010203040506020152020202520302035204020452050010203040506020152020202520302035204020452050Walls–FuelmixinpowergenerationThousandTWhBridges–FuelmixinpowergenerationThousandTWhSource,IEA(history),Equinor(projections)Source,IEA(history),Equinor(projections)CoalOilGasBiomassHydroNuclearWindSolarHydrogenGeothermalOtherIsthecurrentpowermarketdesignfitforpurpose?Duetotheenergycrisisandskyrocketingprices,manyEuropeanpoliticiansandcommentatorsarguethat“themarketisbroken”andthatthere’saneedtomakechangestothecurrentelectricitymarketdesign.Thecurrentdesignischaracterisedbythemostexpensiveunitofgenerationneededtomatchdemandsettingthepriceforallproducers.Withextremelyhighgaspricesthisisweighingheavilyonallconsumersasthepriceofgassetsthemarketpriceofallelectricitygeneratedincertainmarkets,despitegasholdingarelativelysmallshareintheelectricitygenerationmix.Argumentsformarketreformshavebeenofferedearlieraswellbuthavebeenrelatedtoanincreasingshareofrenewablesaspartofmeetingclimatetargets.Beingtechnologieswithclosetozeroproductioncosttheyareprojectedtopushoutthehighestcostgenerationtechnologiesandtherebydrivedownthemarketprice.Thismakesitchallengingtoattractenoughinvestmentsintonewgenerationcapacitytokeepupwithdemandgrowthaslowerpriceswillreducethereturnoninvestments.Thehighmarketpriceindicatesthatsupplyislimitedwithregardtokeepingupwithademandthatisinelasticand/orhasfewsubstitutionalternatives.Thecurrentsituationisseriousasthereisarealunder-supplyofgastoEuropeandthathasadirecteffectonconsumerelectricityprices,aswellasputsaneconomicstrainonindustry,businessesandhouseholdsusinggasasaninputfactororforheating.WholesalepricesarenotthishighduetoRussia’sinvasionofUkraineorthestrugglesofFrenchnuclearelectricity.Itisthemarketdesignthatiscausingthespikesandthemarkethasreactedexactlythewayitwassetuptodo–givingapricesignaltostimulateinvestmentinmoreproductioncapacity,althoughtheshort-termconsequenceswouldalsobeareductionindemandoruseofalternativegenerationcapacitythatmightbeevenmoreexpensiveandlesssustainable.Theresultingchallengeisthatthecurrentdesignprovidesneitheranaffordable,securenordecarbonisedpowersystem.Whilethecaseforafundamentalchangetopowermarketpricemechanismswasacontroversialissueonlysixmonthsago,callsforare-designarenowheardbothfromEuropeancountriesaswellasEuropeaninstitutionsthathaveacknowledgedthatafundamentalchangeisnecessary.Tofacilitatethetremendousinvestmentsnowrequiredtorebalanceanddecarbonisetheelectricitymarket,oneofthemostimportantchallengesare-designwillhavetoaddressistherequirementsforlong-termrevenuevisibility.Withthecombinationofthecurrentmarketdesignprinciples,thedecarbonisationobjectives,andthecurrentmarketsituation,suchvisibilityislow.Deliveringonthethreeobjectivesofaffordability,securityanddecarbonisationwillinsteadmostlikelyrequirebettercentralcoordinationandinterventiontodrivetherequiredinvestments,butalsocompetition,innovation,andrisksharing.Giventheconsequencesofthecurrentmarketdesign,thequestionnowappearstobenotifsuchinterventionisnecessary,butratherbywhatentityandmechanisms,andwhereinthevaluechainsuchcoordinationandinterventionshouldbeplaced.44EnergyPerspectives2022EnergyPerspectives202245InWalls,theroll-outofhydrogenstartstoaccelerateinthe2030saslargenewprojectsarebeingdevelopedinparallelwithhydrogeninfrastructure.Intheoverallenergymix,hydrogendemandremainssmallatlessthan2%ofthetotalenergydemandby2050,withgreenhydrogenmakingup40%.Europe,Asia,andtheUSformthemainhydrogendemandregions.China,EU,India,andIndustrialAsiaPacificallrelyonimportstomeettheirdemand.Hydrogendemandtakesoffintheindustrysector,replacingsomegreyhydrogen,aswellasthetransportsector,inparticularinshippingwhereitmeets18%ofdemandin2050throughconversiontoammonia.InBridgestheshareofhydrogenintheenergymixrapidlyincreases,reaching9.8%in2050,drivenbyaneedtoreplacetheremainingemissionsfromgaspowergeneration.Chinaseesthefastestgrowthindemandintheshortterm,reaching53%oftheglobaltotalin2030.Itremainsthebiggestconsumerin2050,butitsshareshrinksto30%by2050.90%ofdemandin2050comesfromtransportandindustry.Theshareofgreenhydrogenproductionincreasesrapidlyandbythemid-2030sismorethanhalfofproduction.Itexceeds80%by2050.Obstaclestotheroll-outofhydrogenTheintroductionofcleanhydrogenisnotwithoutpolitical,technologicalandfinancialchallenges.Short-termmarketissuescloudthefutureofdevelopinganewmarketplaceforhydrogenasanenergycarrier.Areducedpoliticalappetitetodeployhydrogenintheshorttermcouldimpedethedevelopmentofahydrogeneconomyinthemid-to-longterm.Thefirstprojectswillneedstronggovernmentsupporttoberealised.HydrogendevelopmentinEuropeiskey,includingforthegrowthexpectationsofpotentialexportregionssuchasAfrica,theMiddleEast,andNorthAmerica.Deploymentofhydrogencouldbedelayedoverconcernsaboutnaturalgasandelectricity/renewablesscarcity,whicharenecessarytoproducehydrogen.Areductioningreenhydrogentechnologycostsisdependentonmoreprojectsbeingdeveloped.Theenergyefficiencyofhydrogenisalsoanissue.Fewsectorsarereadytousehydrogen,andeventhosewhereitisalreadyanintegratedpartoftheproductionprocess(e.g.,refineries,fertiliser,andmethanolproduction)couldfacedifficultiesinswitchingtolow-carbonhydrogen.GlobalhydrogenmarketThepotentialofcleanhydrogenasasubstituteforCO₂-emittingfossilfuels,includinginthosesectorsthatarehardtoelectrify,meansthatitisreceivingeverincreasinginterest.01002003004005006007008002020202520302035204020452050RestofworldCISIndiaChinaIndustrialAsiaPacificEuropeNorthAmerica01002003004005006007008002020202520302035204020452050RestofworldCISIndiaChinaIndustrialAsiaPacificEuropeNorthAmericaWalls–HydrogendemandMtoeBridges–HydrogendemandMtoeSource:EquinorSource:Equinor46EnergyPerspectives2022Transformingtheindustrialsectorwillbedifficultasprocessessuchascementandsteelrelyonveryhightemperaturesthatarebestachievedthroughtheburningoffossilfuels.Sincetheturnofthecenturyenergyconsumptioninindustryhasincreasedbymorethan55%,andindustrialemissionsin2019accountedfor16%oftotalemissions.Theindustryfuelmixhasremainedfairlyconstantsince1990,withfossilfuelsmakingupapproximately60%annually.However,theshareoffossilfuelshasstartedtodeclinewithelectricityincreasingitssharebyfourpercentagepointssince2000,accountingforjustlessthan30%ofthetotalmixin2019.EnergyconsumptioninindustrycontinuestoincreaseinWallstowards2050butdecreasesinBridgesfrom2025onwards.Electricityconsumptionincreasesgraduallyinlinewiththehistorictrendfrom2000andbyequalamountsinWallsandBridges.Itcoversanincreasinglygreatershareoftotalconsumptioninbothscenarios.However,duetogreaterefficiencygainsinBridgestheshareofelectricityisconsiderablyhigherthaninWallsby2050,accountingfor55%inBridgesasopposedto42%inWalls.HydrogenbecomesanimportantpartoftheindustryfuelmixinBridges,accountingfor16%oftotalconsumption,butcoversalowershareofthefuelmixinWalls.EnergyintensityintheindustrialsectorisdecliningandcontinuestodosoinbothWallsandBridges.Thedeclineisbeingfacilitatedbyashiftawayfromtheenergy-intensiveheavyindustriestowardsmoreservice-basedindustriesinmanyregions.Technologicaladvances,theuseofelectricarcfurnacesandagreaterlevelofsteelrecyclingaresomeofthekeydevelopmentsthatwillhelpfurtherdrivedowndemandandimproveefficiency.Keysectorinsights:Industry01234WallsBridgesWallsBridges201920302050GasCoalOilHeatBiomassNewrenewablesElectricityHydrogen01234WallsBridgesWallsBridges201920302050GasCoalOilHeatBiomassNewrenewablesElectricityHydrogenIndustrialdemandGtoeSource:IEA(history),Equinor(projections)EnergyPerspectives202247Energydemandforbuildingsusedforresidentialandcommercialpurposeshasseenasteadyincrease.Growingeconomiesandpopulations,aswellasincreasedurbanisationandashifttowardsservice-basedeconomies,havefacilitatedthedemandformorebuildingsandhouseholdappliances.Between2000-19theenergydemandfrombuildingsincreasedbynearly30%,withthedemandfromcommercialbuildingsaloneincreasingbymorethan50%.Buildingsmadeupathirdofthetotalenergyconsumptionin2019andaccountedfor10%ofglobalemissions.Therelativelylowshareofemissionscomparedtoconsumptionreflectsafuelmixthathistoricallyhasbeenlessreliantonfossilfuelsthanothersectors.In2019thebuildingsectorhadlessthan40%shareoffossilfuels.Biomassandelectricityhaveaccountedforapproximatelyhalfofannualconsumptionthroughoutthe1990-2019period,fuellingwoodstovesandelectricalappliances.Thedemandgrowthhasmainlybeencoveredbyanincreaseinelectricityconsumption,whichhasrisenmorethan80%sincetheturnofthecentury.Electrificationcontinuestotransformthesector,accountingforanincreasingshareofthefuelmixasit,alongwithnewrenewables,continuestoreplacefossilfuelsinbothscenarios.InWalls,theenergydemandfrombuildingscontinuestoincreaseuntilthemid-2030sbeforedeclininggentlytowards2050.InBridges,thechangecomessooner,andefficiencygainshelpdrivedowndemandbynearlyaquarterby2050.Thedemandleveliscomparabletotheearly2000sby2050.Electricitymakesup46%ofconsumptioninWallsand72%inBridgesin2050.Technologicaladvances,policiesandbehaviouralchangesarealreadyhavinganimpactthatwillhelpsecureamoresustainablefutureforthebuildingssector.TheintroductionofLEDbulbs,smartmetersandthermostatsiswellunderwayand,inmanyinstances,incentivised.Thedemandforcoolingunitsisincreasingduetorisingtemperaturesandurbanisationandoverallwealthpushingupthewantforcomfort.Alotwillbegainedfromtechnologicaladvancesimprovingtheefficiencyoftheseunitsandotherhouseholdappliances,suchasfridgesandfreezers.Severalcountriesareputtinginplacepoliciesandincentivestopromoteheatpumpsandphaseouttraditionalgasboilers.Growingpopulationsandurbanisationwillleadtoasignificantincreaseinfloorspacedemandgoingforward.Stricterregulationsare,andwillcontinuetobe,putinplacetoreducethecarbonfootprintofnewbuildingprojects.Carbonneutral,andevencarbonnegative,housingistechnologicallyattainable,butprovidingefficientandsustainablehousinggloballyandatscale,nottomentionmakingitaffordable,remainsasignificantchallenge.Inaddition,therewillundoubtedlybealagintransformingtheoverallhousingstockeveniffuturenewbuildsmeetcarbon-neutralstandards,asitisinconceivablethatallexistinginefficientbuildingswillbedemolishedearly.Hence,themovetowardscarbon-neutralbuildingsislikelytoaccelerateoverthecomingdecade,butafullturnoverofbuildingstockandtransitiontoglobalcarbon-neutralhousingwilltaketime.Behaviouralchangeswillalsoberequiredtodrivedemanddownwithrecommendationsforwaterandspaceheatingandcoolingtemperatures,morerecyclingofclothesandplastics,aswellasdietarychangesallhavingaroletoplay.Keysectorinsights:Buildings01234WallsBridgesWallsBridges201920302050GasCoalOilHeatBiomassNewrenewablesElectricityHydrogen01234WallsBridgesWallsBridges201920302050GasCoalOilHeatBiomassNewrenewablesElectricityHydrogenBuildingsdemandGtoeSource:IEA(history),Equinor(projections)48EnergyPerspectives2022Historically,growthinGDPandpopulationhastranslatedintoagrowingnumberofvehiclesontheroads,whilstalsogreatlyincreasingthedemandforoilandpushingupgreenhousegasemissions.Since1990,oildemandfromtransporthasgrownby86%,reachingnearly58mbdin2019.Themajorityofthisdemandincreasecomesfromroadtransportsuchascars,buses,trucksandtwo-wheelers.Thetransportsectorisresponsibleforaquarterofglobalenergy-relatedgreenhousegasemissions,andoverthepastdecade,therehasbeenasignificantglobaldrivetowardsloweringemissionsfromtransportingeneralandroadtransportinparticular.Thetransitionofthetransportsectorhasalreadybegunandtheshareoffossilfuelsinthefuelmixhasdecreasedby3%between2000and2019.Whilstthismaynotseemlikeasignificantchangeitshouldbeseeninrelationtoanoverallsectorialdemandincreaseofnearly50%andthefactthattheshareofnon-fossilfuelshasmorethantripledoverthesameperiodfrom1.5%to5%.Therateofphase-downoffossilfuelsissettoaccelerate,withefficiencyimprovements,electrification,biofuelsandhydrogentransformingthesector.Thefuelmixchangesinasimilarmannerinbothscenarios,butchangeoccursmuchmorerapidlyandtoagreaterextentinBridgesthaninWalls,especiallyinthecurrentdecade.Theimmensechangesneededtoensureasustainablepathaheadforthetransportsectorwillrequirecontinuedgovernmentincentivesandlegislativemeasures.Suchmeasureswillreducethenumberofheavilypollutingvehicles,promotegreateruseofcollectivepassengertransport,andreplaceflightswithalternativemeansoftransport,amongstotherthings.Initiativestopromotethesepathwaysarealreadybeingputinplacebygovernmentswith,forexample,theUKintroducingabanonthesaleofnewKeysectorinsights:Transport20192030205001234WallsBridgesWallsBridgesHydrogenOilElectricityGasBiofuels20192030205001234WallsBridgesWallsBridgesHydrogenOilElectricityGasBiofuels20192030205001234WallsBridgesWallsBridgesHydrogenOilElectricityGasBiofuelsTransportdemandGtoeSource:IEA(history),Equinor(projections)pureinternalcombustionenginecarsfrom2030andFranceprohibitingselectflightswhereatrainorbusalternativeoftwoandahalfhoursorlessexists.However,theenergyuseandfuelmixinBridgesin2050,comparedtotoday’ssituation,isavividillustrationofthechallengesahead.EnergyPerspectives202249EMISSIONS50EnergyPerspectives2022«PreviousBacktotableofcontentsNext»EnergyPerspectives202251SourcesandsinksCarbonsourcesreleasemorecarbonthantheyabsorb,whilecarbonsinksabsorbmorecarbonthantheyrelease.FossilfuelcombustionisthegreatestcontributortoglobalCO₂emissions.Ofthetotalman-madeCO₂emissions,fossilfuelusehasrecentlyaccountedforapproximately85%,withlandusechangescontributingsome9%,cementandothermanufacturingprocessescloseto4%andflaringtheremainder.GlobalCO₂emissionsfromfossilfuelcombustionandcementmanufacturingincreasedby1.7%peryearbetween1990and2019,tosome36.7Gt,whilstemissionsfromlandusechangesweredownby0.4%peryear,accordingtotheGlobalcarbonproject.LandandoceansinksarecurrentlyabsorbingapproximatelyhalfoftheglobalCO₂emissions.CO₂absorptionintooceansandvegetationfluctuatesannuallybutwasupby1.2%ayearbetween1990and2019.Therateofabsorptionbysinksisnotsufficienttokeepupwiththerateofemissionsfromsources.Asaresult,thenetCO₂additionstotheatmosphereincreasedfrom9.3Gtin1990to19.8Gtin2019.Thepaceofincreaseacrosstheperiodwasunevenreflectingupsanddownsonthesinksidemorethanfluctuationsinemissions.MethaneMethaneisashort-livedbutpotentglobalwarmingdriver.Anestimated30%ofthe1.1°Cwarmingthathasoccurredsincetheindustrialrevolutionisduetomethaneemissions.Approximately20-25%ofmethaneemissionsareduetooilandgasactivities,withagricultureresponsiblefor40-50%andcoalminingfor10-15%.Globalmethaneemissionslevelledoutintheearly2000sbuthaverecentlystartedtoriseagain.Thereasonforthisrecentriseisuncertain,butevidencesuggeststhatagricultureandlandusechangesmayberesponsible.Theoilandgassectoremissionscanbemoreeasilymanagedandcanbereducedbychangingwellcompletionpracticesandfixingleakyinfrastructure.Suchimprovementsareessentialfortheindustry’slicencetooperateandcorrespondinglyhighonitsto-dolist.Energy-relatedgreenhousegasemissionsAglobalmethanepledgewasannouncedatCOP26inGlasgowinNovember2021.Itaspirestoreduceglobalmethaneemissionsby30%by2030.Thepledgehasbeenendorsedbymorethan100countriesrepresenting45%ofglobalmethaneemissions.GlobalwarmingimplicationsGlobalwarmingreflectsthetotalamountofgreenhousegasesintheatmosphere,andrelativetothisamount,fluctuationsinemissionsfromoneyeartothenextmakelittledifference.Thedeclinesinemissionsin2009duetothefinancialcrisis,andin2020duetotheCovid-19pandemic,werefollowedbysharpreboundsin2010and2021andprovidedonlyabriefrespite.Inthemselvestheywarrantednochangesinthewarmingprojectionsdevelopedintheprecedingyears.-40-200204060199119962001200620112016CementcarbonationsinkLandsinkOceansinkEmissionsfromlanduseEmissionsfromfossilfuelcombustionandcementmanufacturingNetadditionstoatmosphereGlobalCO₂emissionsourcesandsinksGtBudgetimbalancenumbernettedoutSource:Globalcarbonproject52EnergyPerspectives2022GlobalCO₂emissionsfromfossilfuelcombustiondeclineinbothscenarios,buckingthehistorictrend.InWalls,emissionspeakin2025andseeanoverallreductionbyone-thirdbetween2019and2050.ThisillustratesthatWallsisanythingbutalong-termtrendextrapolationexercise,butascenariothatpicksuponthecurrentsignsofdecarbonisationofpowergenerationandroadtransport,inparticular.ThedeclineismostsignificantinBridgeswhereCO₂emissionsfromfossilfuelusearesettodeclinebyaround1.7Gtperyearinthelate2020sandearly2030s.Exceptfor2020,whichsawanextraordinarydropinemissionsofseveralgigatonnesduetotheCovid-19lockdowns,noyearsince1990hasseenemissionreductionsatthescalerequiredinordertoreachthe1.5°CtargetmodelledinBridges.Thefinancialcrisisin2009,forinstance,ledtoadeclineofonlyaroundhalfofonegigatonne.ReducingglobalCO₂emissionsfromfossilfuelcombustionthroughenergyefficiencyimprovements,switchingtolowercarbonfuels,andcountinginCCUSonfossilfuels,isnotsufficienttodelivercumulativeemissionsinlinewiththe1.5°Ctarget.CCUShasbeenappliedtoindustry,powergenerationandbluehydrogenproductioninbothWallsandBridges.ThetotalCCUSonfossilfueluseinBridgesincreasesto2.2Gtperyearby2050,whichisapproximatelydoubletheamountassumedinWalls.Inordertomeetthe1.5°CemissionsbudgetthatdefinesBridges,afurtherassumptionhasbeenmaderegardingcarbonremovalthroughBECCS,DACandnature-basedsolutions.Carbonremovalthroughthesemeasuresequatestoaround1.3Gtperyearin2030and4.3Gtperyearin2050.InBridgestheworldbecomesnetzerointhemid-2040s,withmoredevelopedregionshavingtogonetnegativeintheearly2040stoallowother,lessdevelopedregionsmoretimetoreachthetarget.Volumesarelowtoday,buttherearesignificanteffortstorampupcarbonremovalmarketsincludingfromgovernmentssuchastheUSandUK,aswellastheEU.Energy-relatedCO₂emissions0102030401990200020102020203020402050CoalOilGas-1001020304020152020202520302035204020452050ThousandsWallsBridgesBridgeswithoutcHistory0102030401990200020102020203020402050CoalOilGasWalls–CO₂emissionsbeforecarbonremovalGtCO₂emissionsbeforeandaftercarbonremovalGtBridges–CO₂emissionsbeforecarbonremovalGtSource:IEA(history),Equinor(projections)Source:IEA(history),Equinor(projections)-1001020304020152020202520302035204020452050ThousandsWallsBridgesBridgeswithoutcarbHistory-1001020304020152020202520302035204020452050ThousandsWallsBridgesBridgeswithoutcarbonremovalHistoryEnergyPerspectives202253KeyfiguresUnitsWallsBridgesWallsBridgesGlobalGDP2015-USDtrillion84.1162.7164.22.12.2NorthAmerica,Europe,IndustrialAsiaPacific2015-USDtrillion51.378.877.91.41.4China2015-USDtrillion14.638.138.73.23.2RestofWorld2015-USDtrillion18.345.847.63.03.1Globalenergyintensity-indexedto201910054.138.0-2.0-3.1Globalpopulationbillion7.719.739.730.80.8GlobalenergydemandGtoe14.3715.0210.640.1-1.0CoalGtoe3.811.940.37-2.1-7.2OilGtoe4.483.721.02-0.6-4.7GasGtoe3.303.640.980.3-3.8NuclearGtoe0.731.011.141.31.4NewrenewablesGtoe0.332.635.406.99.4Oilexclbiofuelsmbd96.881.524.1-0.6-4.4GasBcm3,9774,3791,1870.3-3.8Globalenergy-relatedCO₂emissions(Gt)Gt33.422.31.2-1.3-10.2NorthAmericaGt5.92.80.2-2.3-10.8EuropeGt3.81.20.0-3.6-15.4ChinaGt10.15.10.1-2.1-14.3IndiaGt2.33.00.10.9-8.6WorldCO₂emissionsfromfossilfueluseremovedbyCCUSMt141,1442,21115.217.6WorldCO₂emissionsremovedfromatmosphereMt004,300--Globallightdutyvehicles(LDVs)fleetmillion1,3451,5611,3820.50.1LDVSoildemandMtoe1,14754329-2.4-11.2LDVsbiofueldemandMtoe72461-1.4-13.9LDVselectricitydemandMtoe216627016.117.9201920502019-2050growthperyear(%),CAGR«PreviousBacktotableofcontentsNext»DefinitionsEnergydemandandconsumptionHistory:1990-2019Projection:2019-2050Short-termoutlook:2019-2025Long-termoutlook:2025-2050RegionsThereare12regionsmodelled.Industralised:EuropeanUnion,IndustralisedAsiaPacific,NorthAmerica,OtherEurope.Emerging:Africa,China,CIS(CommonwealthofIndependentStates),India,MiddleEast,OtherAmericas,OtherAsiaPacific,SoutheastAsiaSectorsThereare8sectorsmodelled.Industry,residential,otherstationary,transport,non-energy,power&heat,hydrogen,othertransformationPhotocreditsPage8SethReese,UnsplashPage9VictorSánchezBerruezo,UnsplashPage11YosefFutsum,UnsplashPage13JoshAppel,UnsplashPage13CaseyHorner,UnsplashPage13JasonDent,UnsplashPage15FréSonneveld,UnsplashPage16ØivindHaug,EquinorPage17PolinaRytova,UnsplashPage21NateWatson,UnsplashPage22Valdemaras,UnsplashPage23FabioComparelli,UnsplashPage23MarcusLoke,UnsplashOnlyunitsusedinthereportarelistedUnitsCoalBtcebilliontonnesofcoalequivalentOilmbdmillionbarrelsperdayGasBcmbillioncubicmetrePowerTWhterawatt-hourPWhpetawatt-hourGWgigawatt(1wattx109)EnergyMtmilliontonnes(1tonnex106)Gtgigatonnes(1tonnex109)toetonneofoilequivalentktoethousandtonnesofoilequivalentMtoemilliontonnesofoilequivalentGtoegigatonnesofoilequivalentCarbonGtC0₂gigatonnesofcarbondioxideMonetaryUSD1USdollarPage29CourtneyHill,UnsplashPage30FrederikLower,UnsplashPage32AppolinaryKalashnikova,UnsplashPage37SanderWeeteling,UnsplashPage39KhamkeoVilaysing,UnsplashPage40IwanShimko,UnsplashPage42HaraldPettersen,EquinorPage44SebAtkinson,UnsplashPage46LennyKuhne,UnsplashPage49JackAnstey,UnsplashPage48TomasAntonEscobar,UnsplashPage50WesleyTingey,UnsplashPage55OleJørgenBratland,Equinor54EnergyPerspectives2022«PreviousBacktotableofcontentsNext»AcknowledgementsanddisclaimerAcknowledgementsTheanalyticalbasisforthisoutlookislong-termresearchonmacroeconomicsandenergymarketsundertakenbytheEquinororganisationduringthefirsthalfof2022.TheresearchprocesshasbeencoordinatedbyEquinor’sunitforMacroeconomicsandEnergyMarketAnalysis,withcrucialanalyticalinput,supportandcommentsfromotherpartsofthecompany.Jointeffortsandclosecooperationinthecompanyhavebeencriticalforthepreparationofanintegratedandconsistentoutlookfortotalenergydemandandtheprojectionsofthefutureenergymixindifferentscenarios.Weherebyextendourgratitudetoeverybodyinvolved.Theeditorialprocessconcludedon13thSeptember2022.DisclaimerThisreportispreparedbyavarietyofEquinoranalystpersons,topresentmattersfordiscussionandanalysis,notconclusionsordecisions.Findings,views,andconclusionsrepresentfirstandforemosttheviewsoftheanalystpersonscontributingtothisreportandcannotbeassumedtoreflecttheofficialpositionofpoliciesofEquinor.Furthermore,thisreportcontainscertainstatementsthatinvolvesignificantrisksanduncertainties,especiallyassuchstatementsoftenrelatetofutureeventsandcircumstancesbeyondthecontroloftheanalystpersonsandEquinor.Thisreportcontainsseveralforward-lookingstatementsthatinvolverisksanduncertainties.Insomecases,weusewordssuchas”ambition”,”believe”,”continue”,”could”,”estimate”,”expect”,”intend”,”likely”,”may”,”objective”,”outlook”,”plan”,”propose”,”should”,”will”andsimilarexpressionstoidentifyforward-lookingstatements.Theseforward-lookingstatementsreflectcurrentviewsconcerningfutureeventsandare,bytheirnature,subjecttosignificantrisksanduncertaintiesbecausetheyrelatetoeventsanddependoncircumstancesthatwilloccurinthefuture.Severalfactorscouldcauseactualresultsanddevelopmentstodiffermateriallyfromthoseexpressedorimpliedbytheseforward-lookingstatements.Hence,neithertheanalystpersonsnorEquinorassumeanyresponsibilityforstatementsgiveninthisreport.EnergyPerspectives202255«PreviousBacktotableofcontents©EquinorASAThisreport,includingthecontentsandarrangementofthecontentsofeachindividualpageorthecollectionofthepages,isownedbyEquinor.Copyrighttoallmaterialincluding,butnotlimitedto,writtenmaterial,photographs,drawings,images,tablesanddataremainsthepropertyofEquinor.Allrightsreserved.Anyotheruse,reproduction,translation,adaption,arrangement,alteration,distributionorstorageofthispresentation,inwholeorinpart,withoutthepriorwrittenpermissionofEquinorisprohibited.Theinformationcontainedinthispresentationmaynotbeaccurate,uptodateorapplicabletothecircumstancesofanyparticularcase,despiteourefforts.Equinorcannotacceptanyliabilityforanyinaccuraciesoromissions.EnergyPerspectives2022