bpEnergyOutlook2022edition3bpEnergyOutlook:2022edition2EnergyOutlook2022exploresthekeyuncertaintiessurroundingtheenergytransitionEnergyOutlook2022isfocussedonthreemainscenarios:Accelerated,NetZeroandNewMomentum.Thesescenariosarenotpredictionsofwhatislikelytohappenorwhatbpwouldliketohappen.Rathertheyexplorethepossibleimplicationsofdifferentjudgementsandassumptionsconcerningthenatureoftheenergytransition.Thescenariosarebasedonexistinganddevelopingtechnologiesanddonotconsiderthepossibilityofentirelyneworunknowntechnologiesemerging.Themanyuncertaintiesmeanthattheprobabilityofanyoneofthesescenariosmaterializingexactlyasdescribedisnegligible.Moreover,thethreescenariosdonotprovideacomprehensivedescriptionofallpossibleoutcomes.However,theydospanawiderangeofpossibleoutcomesandsomighthelptoinformajudgementabouttheuncertaintysurroundingenergymarketsoutto2050.TheOutlookwaslargelypreparedbeforethemilitaryactionbyRussiainUkraineanddoesnotincludeanyanalysisofthepossibleimplicationsofthosedevelopmentsoneconomicgrowthorglobalenergymarkets.TheEnergyOutlookisproducedtoinformbp’sstrategyandispublishedasacontributiontothewiderdebateaboutthefactorsshapingtheenergytransition.ButtheOutlookisonlyonesourceamongmanywhenconsideringthefutureofglobalenergymarketsandbpconsidersawiderangeofotherexternalscenarios,analysisandinformationwhenformingitslong-termstrategy.ThecontentpublishedinthisinitialversionoftheOutlooksummarizessomeofthekeyhighlightsandfindingsfromtheupdatedscenarios.Moredetailedmaterialisplannedtobereleasedinthefutureandwillbeavailableatbp.com5bpEnergyOutlook:2022edition4Atthetimeofwriting,theworld’sattentionisfocussedontheterribleeventstakingplaceinUkraine.Ourthoughtsandhopesarewithallthoseaffected.ThescenariosincludedinEnergyOutlook2022werelargelypreparedbeforetheoutbreakofthemilitaryactionanddonotincludeanyanalysisofitspossibleimplicationsforeconomicgrowthandglobalenergymarkets.Thoseimplicationscouldhavelastingimpactsonglobaleconomicandenergysystemsandtheenergytransition.Wewillupdatethescenariosasthepossibleimpactsbecomeclearer.Inthemeantime,thisyear’sOutlookdescribesthreemainscenarios–Accelerated,NetZeroandNewMomentum–whichexploreawidespanofpossibleoutcomesastheworldtransitionstoalowercarbonenergysystem.Understandingthisrangeofuncertaintyhelpstoshapebp’sstrategy,increasingitsresiliencetothedifferentspeedsandwaysinwhichtheenergysystemmaytransitionoverthenext30years.DevelopmentssincethepreviousOutlookwaspublishedin2020showsomesignsofprogress.Governmentambitionsgloballytotackleclimatechangehaveincreasedmarkedly.Andkeyelementsofthelow-carbonenergysystemcriticalfortheworldtotransitionsuccessfullytoNetZero–installationofnewwindandsolarpowercapacity;salesofelectricvehicles;announcementsofblueandgreenhydrogenandCCUSprojects–haveallexpandedrapidly.TherearesignsofaNewMomentumintacklingclimatechange.Despitethat,otherthantheCOVID-19-induceddipin2020,carbonemissionshaverisenineveryyearsince2015,theyearoftheParisCOP.Thecarbonbudgetisfinite,anditisrunningout:furtherdelaysinreducingCO2emissionscouldgreatlyincreasetheeconomicandsocialcostsassociatedwithtryingtoremainwithinthecarbonbudget.Althoughthereisconsiderableuncertainty,somefeaturesoftheenergytransitionarecommonacrossallthemainscenariosinthisyear’sOutlookandsomayprovideaguideastohowtheenergysystemmaychangeoverthenextfewdecades:Windandsolarpowerexpandrapidly,supportedbyanincreasingelectrificationoftheworldArangeofenergysourcesandtechnologiesisrequiredtosupportdeepdecarbonizationoftheglobalenergysystem,includingelectricvehicles,blueandgreenhydrogen,bioenergy,andCCUSOilandnaturalgascontinuetoplayacriticalrolefordecades,butinlowervolumesassocietyreducesitsrelianceonfossilfuelsTheenergymixbecomesmorediverse,withincreasingcustomerchoiceandgrowingdemandsforintegrationacrossdifferentfuelsandenergyservices.Theimportanceoftheworldmakingadecisiveshifttowardsanet-zerofuturehasneverbeenclearer.Theopportunitiesandrisksassociatedwiththattransitionaresignificant.Ihopethisyear’sEnergyOutlookisusefultoeveryonetryingtonavigatethisuncertainfutureandacceleratethetransitiontoNetZero.Asalways,anyfeedbackontheOutlookandhowwecanimprovewouldbemostwelcome.SpencerDaleChiefeconomistWelcometothe2022editionofbp’sEnergyOutlook7bpEnergyOutlook:2022edition6TheOutlookcanbeusedtoidentifyaspectsoftheenergytransitionwhicharecommonacrossthemainscenariosandsomayprovideaguideastohowtheenergysystemmayevolveoverthenext30years.Thecarbonbudgetisrunningout:CO2emissionshaveincreasedineveryyearsincetheParisCOPin2015,exceptin2020.Delayingdecisiveactiontoreduceemissionssustainablycouldleadtosignificanteconomicandsocialcosts.Governmentambitionsgloballyhavegrownmarkedlyinthepastfewyearspointingtonew,increasedmomentumintacklingclimatechange.Butthereissignificantuncertaintyastohowsuccessfulcountriesandregionswillbeinachievingthoseaimsandpledges.Thestructureofenergydemandchanges,withtheimportanceoffossilfuelsgraduallydeclining,replacedbyagrowingshareofrenewableenergyandincreasingelectrification.Thetransitiontoalow-carbonworldrequiresarangeofotherenergysourcesandtechnologies,includinglow-carbonhydrogen,modernbioenergy,andcarboncapture,useandstorage(CCUS).Themovementtoalowercarbonenergysystemleadstoafundamentalrestructuringofglobalenergymarkets,withamorediversifiedenergymix,increasedlevelsofcompetition,shiftingeconomicrents,andagreaterroleforcustomerchoice.Oildemandincreasestoaboveitspre-COVID-19levelbeforefallingfurtherout.Declinesinoildemandaredrivenbytheincreasingefficiencyandelectrificationofroadtransportation.Naturaldeclinesinexistinghydrocarbonproductionimplycontinuinginvestmentinnewupstreamoilandgasisrequiredoverthenext30years.Theuseofnaturalgasissupported,atleastforaperiod,byincreasingdemandinfast-growingemergingeconomiesastheycontinuetoindustrializeandreducetheirrelianceoncoal.Growthinliquefiednaturalgasplaysacentralroleinincreasingemergingmarkets’accesstonaturalgas.Windandsolarpowerexpandrapidly,accountingforallormostoftheincreaseinglobalpowergeneration,underpinnedbycontinuingfallsintheircostsandanincreasingabilityofpowersystemstointegratehighconcentrationsofvariablepowersources.Thegrowthinwindandsolarpowerrequiresasubstantialincreaseinthepaceofinvestmentinbothnewcapacityandenablingtechnologiesandinfrastructure.Theuseofmodernbioenergyincreasessubstantially,providingalow-carbonalternativetofossilfuelsinhard-to-abatesectors.Theuseoflow-carbonhydrogenincreasesastheenergysystemprogressivelydecarbonizes,carryingenergytoactivitiesandprocesseswhicharedifficulttoelectrify,especiallyinindustryandtransport.Theproductionoflow-carbonhydrogenisdominatedbygreenandbluehydrogen,withgreenhydrogengrowinginimportanceovertime.CCUSplaysacentralroleinsupportingalow-carbonenergysystem:capturingemissionsfromindustrialprocesses,providingasourceofcarbondioxideremovals,andabatingemissionsfromfossilfuels.Arangeofcarbondioxideremovals–includingbioenergycombinedwithcarboncaptureandstorage,naturalclimatesolutions,anddirectaircapturewithstorage–maybeneededfortheworldtoachieveadeepandrapiddecarbonization.KeythemesfromEnergyOutlook20229bpEnergyOutlook:2022edition8ContentsOverview10Threescenarios:NetZero,AcceleratedandNewMomentum12ComparisonwithIPCCpathways14Finalenergydemand16ChangessinceEnergyOutlook202018ImpactofCOVID-1920Changeingovernmentambition22Decarbonizationoverthenext10years24Corebeliefs26Commontrendsinenergydemand28Low-carbonenergysourcesandtechnologies30Changingnatureofglobalenergymarkets32DelayedandDisorderlyscenario34Energydemand36Finalconsumptionshares38Primaryenergyshares40Oildemand42Oildemand44Oilintransport46Changingstructureofoildemand48Oilsupply50Oilsupply52Carbonintensityofoil54Naturalgas56Naturalgasdemand58Naturalgasinalow-carbonenergysystem60LNGtrade62Naturalgassupply64Renewableenergy66Windandsolar68Bioenergy70Electricityandpowersystems72Electricitydemand74Powergeneration76Hydrogen78Hydrogendemand80Hydrogenproduction82Investment84Levelsofimpliedinvestment86Carbonmitigationandremovals88Carboncaptureuseandstorage90Carbondioxideremovals92Annex94Datatables96ConstructionofIPCCscenariosampleranges98Economicimpactofclimatechange100Investmentmethodology102Carbonemissionsdefinitionsandsources104Otherdatadefinitionsandsources10611bpEnergyOutlook:2022edition10OverviewThreescenariostoexploretheenergytransitionto2050:Accelerated,NetZero,andNewMomentumAcceleratedandNetZeroarebroadlyinlinewith‘Parisconsistent’IPCCscenariosFinalenergydemandpeaksinallthreescenariosasgainsinenergyefficiencyaccelerate05101520253035404520002005201020152020202520302035204020452050AcceleratedNewMomentumNetZeroCarbonemissionsincludeCO2emissionsfromenergyuse,industrialprocesses,naturalgasflaring,andmethaneemissionsfromenergyproduction.Threescenariostoexploretheenergytransitionto2050:Accelerated,NetZero,andNewMomentum13bpEnergyOutlook:2022edition12OverviewGtofCO2eCarbonemissionsbp’sEnergyOutlook2022usesthreemainscenarios(Accelerated,NetZero,andNewMomentum)toexploretherangeofpossiblepathwaysfortheglobalenergysystemto2050andhelpshapearesilientstrategyforbp.Thescenariosarenotpredictionsofwhatislikelytohappenorwhatbpwouldliketohappen.Rather,thescenariostakencollectivelyareusedtoexploretherangeofpossibleoutcomesoverthenext30years.Importantly,thescenarioswerelargelypreparedbeforetheoutbreakofmilitaryactioninUkraineanddonotincludeanyanalysisofitspossibleimplicationsforeconomicgrowthandglobalenergymarkets.Althoughthescenariosdonotprovideacomprehensivedescriptionoffutureuncertainty,theyareintendedtoencompassasignificantrangeofthepossibleoutcomesfortheenergysystemoutto2050.Assuch,thescenariosareusedtoinformbp’scorebeliefsabouttheenergytransitionandhelpshapeastrategywhichisresilienttothatuncertainty.Thescenariosconsidercarbonemissionsfromenergyproductionanduse,mostnon-energyrelatedindustrialprocesses,andnaturalgasflaringplusmethaneemissionsfromtheproduction,transmissionanddistributionoffossilfuels.AcceleratedandNetZeroexplorehowdifferentelementsoftheenergysystemmightchangeinordertoachieveasubstantialreductionincarbonemissions.TheyareconditionedontheassumptionthatthereisasignificanttighteningofclimatepoliciesleadingtoapronouncedandsustainedfallinCO2-equivalent(CO2e)emissions.ThefallinemissionsinNetZeroisaidedbyashiftinsocietalbehaviourandpreferenceswhichfurthersupportsgainsinenergyefficiencyandtheadoptionoflow-carbonenergysources.NewMomentumisdesignedtocapturethebroadtrajectoryalongwhichtheglobalenergysystemiscurrentlyprogressing.Itplacesweightbothonthemarkedincreaseinglobalambitionfordecarbonisationseeninrecentyearsandthelikelihoodthatthoseaimsandambitionswillbeachieved,andonthemannerandspeedofprogressseenovertherecentpast.CO2eemissionsinallthreescenariosincreaseabovepre-Covidlevels.EmissionsinAcceleratedandNetZeropeakintheearly2020sandby2050arearound75%and95%below2019levelsrespectively.CO2eemissionsinNewMomentumpeakinthelate2020sandby2050arearound20%below2019levels.CarbonemissionsincludeCO2emissionsfromenergyuse,industrialprocesses,naturalgasflaring,andmethaneemissionsfromenergyproduction.Rangesshow10thand90thpercentilesoftheIPCCscenarios.-5051015202530354045AcceleratedIPCC1.5ºCmedianIPCC2ºCmedianIPCC1.5ºCrangeIPCC2ºCrangeNetZero20002005201020152020202520302035204020452050AcceleratedandNetZeroarebroadlyinlinewith‘Parisconsistent’IPCCscenarios15bpEnergyOutlook:2022editionThepaceandextentofdecarbonizationinAcceleratedandNetZeroarebroadlyalignedwitharangeofIPCCscenarioswhichareconsistentwithmaintainingglobalaveragetemperaturerisestowellbelow2ºCand1.5ºCrespectively.SincetheEnergyOutlookscenariosextendonlyto2050anddonotmodelallformsofgreenhousegasesitisnotpossibletomapdirectlybetweenthescenariosandtheirimplicationsfortheincreaseinaverageglobaltemperaturesin2100.However,forNetZeroandAccelerateditispossibletoprovideanindirectinferencebycomparingtheirtrajectoriesforCO2eemissionswiththerangeofcorrespondingpathwaystakenfromthescenariosincludedinthe2018IPCCSpecialReportonGlobalWarmingof1.5ºC(SR15).FordetailsoftheconstructionoftheIPCCscenarioranges(seepages98-99).CO2eemissionsinAcceleratedfallbyaround75%by2050(relativeto2019levels).TheextentandpaceofthisfallisbroadlyinthemiddleoftherangeofIPCCscenarioscorrespondingtoariseinaverageglobaltemperaturesofwellbelow2ºCby2100,withcumulativeCO2eemissions(2019-2050)aroundthe75thpercentileoftherangeofwellbelow2ºCIPCCscenarios.CO2eemissionsinAcceleratedfalltoaround10GtCO2eby2050.Theremainingemissionsareconcentratedinthehardest-to-abatesectors,withindustryaccountingforcloseto50%oftheresidualemissionsandtransportaround35%.CO2eemissionsinNetZerofallbyaround95%relativeto2019levelstoaround2.5GtCO2eby2050.TheinitialpaceofdeclineisslowerthantherangeofIPCC1.5ºCscenarios,butbythesecondhalfoftheoutlook,theemissionspathwayistowardsthebottomendoftherange.CumulativeCO2eemissions(2019-to-2050)inNetZeroarebetweenthe75thand90thpercentileoftherangeof1.5ºCIPCCscenarios.TheCO2eemissionsremaininginNetZeroin2050couldbefurtherreducedeitherbyadditionalchangestotheenergysystemorbytheuseofcarbondioxideremoval(CDR)options(seepages92-93),suchasnaturalclimatesolutions(NCS)ordirectaircarboncapturewithstorage(DACCS).14OverviewGtofCO2eCarbonemissions200020052010201520202025203020352040204520500100200300400500600AcceleratedNewMomentumNetZeroAcceleratedNetZeroNewMomentum-75%-50%-25%0%25%50%75%DevelopedregionsEmergingregionsWorldOverview17bpEnergyOutlook:2022editionGlobalenergydemandmeasuredatthefinalpointofuse(totalfinalconsumption,TFC)peaksinallthreescenariosasgainsinenergyefficiencyaccelerate.TFCpeaksintheearly2020sinNetZero,around2030inAcceleratedandinthemid-2040sinNewMomentum.By2050,TFCis10-25%lowerinAcceleratedandNetZerothan2019levelsandaround15%higherinNewMomentum.Theglobalpaceofimprovementinenergyefficiencyovertheoutlook–measuredbycomparinggrowthinfinalenergydemandandeconomicactivity–ismuchquickerinallthreescenariosthanoverthepast20years.Thisaccelerationinenergyefficiencyreflectsincreasingprocessandmaterialefficiencyaswellastheincreasinguseofelectricityatthefinalpointofuse.Theaverageratesofimprovementinenergyefficiencyovertheoutlookaresimilaracrossdevelopedandemergingeconomies.However,theincreasingprosperityandstrongereconomicgrowthinemergingeconomiesmeanstheoutlookforenergydemandwithinemergingeconomiesisfarstrongerthaninthedevelopedworld.Totalfinalconsumptionacrossallemergingeconomiesgrowsbyaround35%and5%by2050inNewMomentumandAcceleratedandfallsby10%inNetZero.Incomparison,TFCwithinthedevelopedworldfallsby25-50%by2050acrossthethreescenarios.Theincreasingimportanceofelectricityandhydrogenmeanstheoutlookfortotalprimaryenergydependsimportantlyonthemethodusedtoequatetheenergycontentofnon-fossilfuelswithtraditionalhydrocarbons.(Seepages106-107).Thesubstitutionmethod–whichgrossesupenergyderivedfromnon-fossilpowergenerationtoreflectthelossesassociatedwithconvertingfossilfuelstoelectricity–impliesthatprimaryenergygrowsby5-20%by2050acrossthethreescenarios.Thephysicalcontentmethod–whichusestheoutputofnon-fossilpowergenerationdirectly–impliesalowerrangeforprimaryenergyofbetweengrowthof10%(NewMomentum)andafallofaround25%(NetZero)by2050.Finalenergydemandpeaksinallthreescenariosasgainsinenergyefficiencyaccelerate16EJ2019-2050changeTotalfinalconsumptionChangeintotalfinalconsumption19bpEnergyOutlook:2022edition18EconomicimpactofCOVID-19innear-termlessthanpreviouslyfearedGrowinggovernmentambitionpointstoincreasedmomentumintacklingclimatechangeIncreasedfocusonspeedofglobaldecarbonizationto2030ChangessinceEnergyOutlook2020GlobalGDPTotalfinalconsumption-4%-2%0%2%4%EnergyOutlook2020EnergyOutlook20221999-20192019-2050DevelopedregionsEmergingregionsWorld0%1%2%3%4%TheCOVID-19pandemicisforemostahumanitariancrisis.ThescaleoftheeconomiccostanddisruptionmeansitisalsolikelytohaveasignificantandpersistentimpactontheglobaleconomyandenergysystemAlthoughconsiderableuncertaintyremains,thenear-termeconomicimpactofCOVID-19onglobalGDPlookssettobelessseverethanpreviouslyanticipated,pointingtoastronger-than-expectedoutlookforenergydemandandcarbonemissionsinthenearterm.TheOutlookwaslargelypreparedbeforethemilitaryactionbyRussiainUkraineanddoesnotincludeanyanalysisofthepossibleimplicationsofthosedevelopmentsoneconomicgrowthorglobalenergymarkets.InEnergyOutlook2020,theimpactoftheCOVID-19crisiswasassumedtolowerthelevelofglobalGDPbyaround2.5%in2025and3.5%in2050,withtheseeconomicimpactsfallingdisproportionatelyonemergingeconomies.Althoughconsiderableuncertaintyremains,thewidespreaddeploymentofeffectivevaccinescombinedwithhugefiscalandmonetarysupportmeansthenear-termeconomicimpactofCOVID-19islikelytobelessdamagingthanpreviouslyfeared,atleastinthedevelopedworld.Asaresult,thelevelofglobalGDPin2025inthisEnergyOutlookisaround1%higherthaninOutlook2020,withalmostallthisupwardrevisionoccurringinthedevelopedworld,whereaccesstovaccinesandgovernmentsupporthasbeengreatest.ThisstrongerprofileforGDPboostsenergydemandandcarbonemissionsinthenearterm.Incontrast,furtherout,thelevelofworldGDPisassumedtobealittlelowerthaninthe2020Outlook.Thisdownwardrevisionstemsentirelyfromemergingeconomies,reflectinginpartthelong-termeconomicscarringeffectsassociatedwiththepandemic.AsinEnergyOutlook2020,theoutlookforglobalGDPattemptstotakeaccountoftheimpactofclimatechangeoneconomicgrowth.Thisincludesestimatesofboththeimpactofincreasingtemperaturesoneconomicactivityandtheupfrontcostsofactionstoreducecarbonemissions.Moredetailsoftheapproachfollowedcanbefound(seepages100-101).Theenvironmentalandeconomicmodelsunderpinningtheseestimatesarehighlyuncertainandalmostcertainlyincomplete,andfutureeditionsoftheEnergyOutlookwillupdatetheseestimatesastheevolutionofthosemodelsenablesustodoso.Inallthreescenarios,globalGDPannualgrowthaveragesaround2.5%(ona2015PurchasingPowerParitybasis)overtheoutlook.Althoughthispaceofgrowthisconsiderablyslowerthanitsaverageoverthepast20years,itstillimpliesthattheworldeconomymorethandoublesby2050.Emergingeconomiesaccountforover80%ofthisexpansion,drivenbyincreasingprosperityandlivingstandards.21bpEnergyOutlook:2022edition20ChangessinceEnergyOutlook20202019-2025ChangeContributionstoannualaveragegrowthrateImpactofCOVID-19onglobalGDPandtotalfinalconsumptionofenergyGlobalGDPgrowthEconomicimpactofCOVID-19innear-termlessthanpreviouslyfearedForcomparisonpurposes,EO20datahasbeenrebasedtomatchEO22historicalenergyandprocessemissions.UpdatedforCOP26announcements.200020052010201520202025203020352040204520500510152025303540Business-as-usual(EO20)NewMomentum(EO22)IEAAnnouncedPledgesScenarioTherehasbeenamarkedstrengtheninginthepasttwoyearsintheambitionsofgovernmentsaroundtheworldtoincreasethepaceandextenttowhichtheyreducecarbonemissions.Althoughtheextenttowhichthesegreaterambitionswillbemetisuncertain,theydosuggestthattheremightbestrongermomentumtowardstheworldreducingcarbonemissionsthanimpliedbymany‘business-as-usual’typescenarios.OnenotablemeasureofthisincreasedambitionisthatsovereignaimsandpledgestoreduceCO2emissionstoNetZeronowcoveraround90%oftheworld’scarbonemissions,comparedwithlessthan20%in2019.Thishasbeenaccompaniedinsomecountriesbystrengtheningaimsandtargetsconcerningthepaceofdecarbonizationby2030.TheInternationalEnergyAgency,initsAnnouncedPledgesScenario,updatedtotakeaccountofpledgesandcommitmentsmadeatCOP26,estimatesthatifallannouncedclimatecommitmentsmadebygovernmentsaroundtheworldaremetinfullandontime,CO2emissionsfromenergyandindustrialprocesseswouldfallbyaround50%by2050(relativeto2019).Incomparison,theBusiness-as-usual(BAU)scenariointheEnergyOutlook2020–whichassumedthatgovernmentpolicies,technologiesandsocialpreferencescontinuetoevolveinamannerandspeedseenovertherecentpast–pointedtoafallinCO2emissionsfromenergyuseofonlyaround10%by2050.TheaimofNewMomentumistocapturethebroadtrajectoryalongwhichtheglobalenergysystemiscurrentlyevolving.Indoingso,aswellasplacingsomeweightonthepaceofprogressseenovertherecentpast,italsoplacesweightonthemarkedincreaseinglobalclimatepledgesandcommitmentsseeninthepastfewyearsandajudgementonthelikelihoodtheywillbeachieved.Therelativeweightstoplaceonthesetwofactorsisuncertain.InNewMomentum,CO2eemissionsfallbyaround20%by2050(relativeto2019).Thisscaleofdecarbonizationissignificantlylessthanthatimpliedifallglobalcommitmentsandpledgesaremetinfull.AnditissignificantlyslowerthanthepaceofdecarbonizationneededtobeconsistentwithmeetingtheParisclimategoals.Evenso,thespeedofdecarbonizationovertheoutlookisroughlydoublethatassumedinthe2020BAUscenario.23bpEnergyOutlook:2022editionGrowinggovernmentambitionpointstoincreasedmomentumintacklingclimatechange22GtofCO2CarbonemissionsfromenergyuseandindustrialprocessesChangessinceEnergyOutlook2020700800900100011001200IPCC1.5ºC10th-90thpercentileNetZero0510152025303540TheIPCC1.5°Cmedianisbasedonscenarioswithlimitedornoovershoot20502000200520102015202020252030-37%-19%IPCC1.5°CmedianNetZeroTherehasbeenincreasingattentionoverthepastfewyearsonachievingasignificantfallinglobalemissionsby2030toconservetheworld’sremainingcarbonbudget.Analysiscontainedinthe2018IPCCSpecialReport(SR15)suggestedthat,undersomescenarios,tobeconsistentwitha1.5ºCclimategoal,globalnetanthropogenicCO2emissionswouldneedtodeclinebyabout45%by2030(relativeto2010levels).ThisfallinCO2emissionsintheSR15analysisincludedreducedemissionsfromboththeenergyandindustrysectorsandtheAFOLU(Agriculture,ForestryandOtherLandUse)sector.ThefallinCO2emissionsfrom‘fossilfuelsandindustry’wasaround37%(relativeto2010).ThecorrespondingfallinCO2emissionsinNetZeroisaround20%.ThesmallerfallinCO2emissionsassumedinNetZeropartlyreflectsthehigherlevelofCO2emissionsin2019thanassumedintheSR15analysis,togetherwiththeassumptionthatemissionsriseoverthenextyearorsoastheglobaleconomycontinuestorecoverfromthepandemic.Italsoreflectsanassessmentofthelikelyleadtimesassociatedwithfinancingandimplementingtherequiredchangestotheglobalenergysystemthatarenecessarytosupportarapiddecarbonization.ThepaceofdecarbonizationinNetZerointhesecondhalfofthisdecadeisbroadlysimilartothatassumedintheSR15analysis,albeitfromahigherlevel.Asexplained(seepages98-99),cumulativeCO2emissionsinNetZerolieintherangeoftheIPCC1.5ºCscenarios.Theslowerpaceofdecarbonizationto2030inNetZeroispartiallyoffsetbyafasterpaceofdeclinethanthemedian1.5ºCscenariointhesecondhalfoftheOutlook.Evenso,cumulativeCO2emissionsinNetZerolieinthetophalfoftherange.Toachieveasignificantfallincarbonemissionsby2030,thelikelyriseinemissionsoverthenextyearorso,togetherwiththeleadtimesassociatedwithreformingsomeaspectsoftheenergysector,highlightsthepotentialimportanceofcarbondioxideremovals(CDRs)(seepages92-93),includingnaturalclimatesolutions,inhelpingtoreducenetcarbonemissionsintheshortrunwhiletheseinvestmentsandchangesareundertaken.25bpEnergyOutlook:2022editionIncreasedfocusonspeedofglobaldecarbonizationto203024GtofCO2GtofCO2eCO2emissionsfromenergyandindustrialprocessesCumulativecarbonemissions(2010-2050)ChangessinceEnergyOutlook202027bpEnergyOutlook:2022edition26Gradualshiftinenergydemand:decliningroleforhydrocarbons,rapidexpansioninrenewablesandelectrificationEnergytransitionunderpinnedbyarangeoflow-carbonenergysourcesandtechnologiesChangingnatureofglobalenergymarkets:morediverseenergymix,increasedcompetitionandgreatercustomerchoiceDelayingactionincreasestheriskofacostlyanddisorderlytransitionCorebeliefs20202025203020352040204520500%20%40%60%80%100%Includeswind,solar,bioenergyandgeothermal20202025203020352040204520500%20%40%60%80%100%20202025203020352040204520500%20%40%60%80%100%AcceleratedNewMomentumNetZeroThescenarioscanbeusedtoidentifythreetrendsinenergydemandwhichareapparentacrossarangeofdifferenttransitionpathways:agradualdeclineintheroleofhydrocarbons;arapidexpansionofrenewableenergy;andanincreasingelectrificationoftheworld.Theconsistencyofthesetrendsacrossallthreescenarioshelpsunderpinsomeofbp’scorebeliefsabouttheenergytransition.Considerthesethreetrendsinturn.Theroleofhydrocarbonsgraduallydeclinesastheworldtransitionstolowercarbonenergysources.Fossilfuelsin2019accountedforaround80%ofglobalprimaryenergy.Inthethreescenarios,thatsharedeclinestobetween60%and20%by2050.Indeed,thetotalconsumptionoffossilfuelsdeclinesinallthreescenariosovertheoutlook.Thiswouldbethefirsttimeinmodernhistorythatthereisasustainedfallinthedemandforanyfossilfuel.Thedecliningroleforfossilfuelsisoffsetbytherapidexpansionofrenewableenergy(windandsolarpower,bioenergy,andgeothermalpower).Theshareofrenewableenergyinglobalprimaryenergyincreasesfromaround10%in2019tobetween35%and65%by2050inthethreescenarios.Inallthreescenarios,thepaceatwhichrenewableenergypenetratestheglobalenergysystemisquickerthananyformoffuelinhistory.Third,theincreasingimportanceofrenewableenergyissupportedbythecontinuingelectrificationoftheenergysystem.Theshareofelectricityintotalfinalenergyconsumptionincreasesfromaround20%in2019tobetween30%and50%by2050inthethreescenarios.29bpEnergyOutlook:2022editionGradualshiftinenergydemand:decliningroleforhydrocarbons,rapidexpansioninrenewablesandelectrification28CorebeliefsShareofprimaryenergyShareofprimaryenergyShareoftotalfinalconsumptionFossilfuelsRenewablesElectricity20202025203020352040204520500500100015002000250001000020000300004000050000202020252030203520402045205020202025203020352040204520500246820202025203020352040204520500100200300400500AcceleratedNewMomentumNetZeroBiofuelsincludesliquidsbiofuelsandgaseousbiofuels(biomethane,expressedinbiodieselequivalentterms)31bpEnergyOutlook:2022editionEnergytransitionunderpinnedbyarangeoflow-carbonenergysourcesandtechnologies30CorebeliefsTWhMillionsMb/dMtWindandsolarpowergenerationElectricvehiclesBiofuelsLow-carbonhydrogenThetransitiontoalow-carbonenergysysteminAcceleratedandNetZeroisunderpinnedbyrapidgrowthinabroadrangeoflow-carbonenergysourcesandtechnologies:windandsolarpower,electricvehicles,biofuels,andlow-carbonhydrogen.AcentralelementofthetransitionpathwaysinAcceleratedandNetZeroisadeepdecarbonizationoftheglobalpowersectorandanincreasingelectrificationofenergyend-usesandprocesses.Thedecarbonizationofthepowersectorisdrivenbyrapidgrowthinwindandsolarpower.Windandsolarpowergenerationincreasesbyaround20-foldovertheoutlookinAcceleratedandNetZero,increasingtoaround40,000-45,000TWhandmorethanaccountingfortheentiregrowthinglobalpowergeneration(seepages76-77).Akeyareaofincreasingelectrificationisroadtransportation.Theshareofelectricvehicles(purebatteryelectricvehiclesandplug-inhybrids)innewvehiclesalesincreasesfrom2%in2019to25-30%in2030andaround90%in2050inAcceleratedandNetZero.Inthesetwoscenarios,therearearound2billionormoreelectricvehiclesintheglobalvehicleparcby2050,comparedwith7millionin2019.Butsomeend-usesandprocessesaredifficultorprohibitivelycostlytoelectrify.Thedecarbonizationofthesehard-to-abateusesandprocessescanbeaidedbytheuseofbiofuelsandhydrogen.Theuseofbiofuels(includingbiomethane)increasesmorethan2-foldovertheoutlookinAcceleratedandNetZeroto6-7Mb/dby2050.Biofuelsplayaparticularlyimportantrolehelpingtodecarbonizetheaviationsector,withbio-basedsustainableaviationfuelaccountingforaround30%ofaviationfueldemandinAcceleratedby2050and45%inNetZero(seepages46-47).Thewidespreaduseoflow-carbon(blueandgreen)hydrogenemergesinthe2030sand2040sinAcceleratedandNetZeroasithelpstodecarbonizepartsofindustryandtransport.Withinindustry,theuseoflow-carbonhydrogenisconcentratedinareasofheavyindustrywhichrelyonhigh-temperatureprocesses,suchasironandsteel,chemicals,andcement.Intransportation,hydrogen(andhydrogen-derivedfuels)areusedasanalternativetofossilfuelsinlong-distancemarine,aviation,andheavy-dutyroadtransportation.Thedemandforlow-carbonhydrogenincreasesto280-450mtpaby2050inAcceleratedandNetZero(seepages80-82).ExcludestraditionalbiomassOthernon-fossilfuelsincludeshydroandnuclear19001910192019301940195019601970198019902000201020202030204020500%20%40%60%80%100%Othernon-fossilfuelsRenewablesNaturalgasOilCoalThetransitiontoalow-carbonenergysystemwouldbelikelytoleadtoafundamentalreshapingofglobalenergymarkets,withamorediversifiedenergymix,increasedlevelsofcompetition,andagreaterroleforcustomerchoice.ThesechangescanbeillustratedbythechangingstructureofenergymarketsinAccelerated;similarfeaturesarealsoapparentinNetZero.Formuchofthepast100yearsorso,theenergysystemhasbeendominatedbyasingleenergysource:coalinthefirsthalfofthe20thcenturyandthenoilfromthe1970s.TheenergytransitionenvisagedinAcceleratedleadstoafarmorediversifiedenergymixoverthenext20-yearsorso,withrenewablesandothernon-fossilfuelsprovidingagrowingshareoftheworld’senergy,alongsidetraditionalfossilfuels.Thisgreatervarietyofenergysourcestogetherwiththegrowingrangeoftechnologiesthatallowforgreatersubstitutionbetweenenergysourcesandcarriersatthepointofuse–e.g.,thegrowthofelectriccarsalongsideinternalcombustionenginecars–meansthefuelmixisincreasinglydrivenbycustomerchoiceratherthantheavailabilityofdifferentfuels,withthepotentialforconsumerstoincreasetheirdemandsforintegrationacrossdifferentfuelsandenergyservices.Theincreasingdiversityofthefuelmix,togetherwiththegreaterroleforcustomerchoice,leadstogrowingcompetitionbetweendifferentformsofenergyastheycompeteformarketshare.Moreover,thedecliningdemandforfossilfuelsleadstoincreasingcompetitionwithinindividualfossilfuels,asproducerscompetetoensuretheirenergyresourcesareproducedandconsumed.Thisgrowingcompetition,bothacrossandwithinfuels,increasesthebargainingpowerofconsumers,witheconomicrentsshiftingawayfromtraditionalupstreamproducerstowardsenergyconsumers.33bpEnergyOutlook:2022editionChangingnatureofglobalenergymarkets:morediverseenergymix,increasedcompetitionandgreatercustomerchoice32CorebeliefsShareShareofprimaryenergyinAcceleratedCarbonemissionsincludeCO2emissionsfromenergyuse,industrialprocesses,naturalgasflaring,andmethaneemissionsfromenergyproduction20002005201020152020202520302035204020452050051015202530354045AcceleratedDelayedandDisorderlyNewMomentum0100200300400500600AcceleratedDelayedandDisorderly20002005201020152020202520302035204020452050CorebeliefsThenatureofthefinitecarbonbudgetconsistentwithachievingtheParisclimategoalsmeansthateveryyearinwhichdecisiveactiontoreduceglobalcarbonemissionsisdelayed,thedifficultyofstayingwithinthebudgetsignificantlyincreases.Thisraisestheriskthatanextendedperiodofdelaycouldgreatlyincreasetheeconomicandsocialcostsassociatedwithtryingtoremainwithinthecarbonbudget.ThispossibilityisexploredinanalternativeDelayedandDisorderlyscenarioinwhichtheglobalenergysystemisassumedtomoveinlinewithNewMomentumuntil2030,afterwhichsufficientpoliciesandactionsareundertakentolimitcumulativeCO2eemissionsovertheentireoutlook(2020-2050)tothatinAccelerated.DelayedandDisorderlyishighlystylized–thenatureofanydelayedtransitionpathwilldependonthefactorstriggeringtheeventualchangeandtheresponseofgovernmentandsociety.Evenso,ithighlightsanimportantfeatureofthecarbonbudgetthat,evenifimprovementsinenergyefficiencyandswitchingtolow-carbonfuelsoccurathistoricallyunprecedentedrates,achievingthesamelevelofcumulativeCO2eemissionsoverthenext30yearsasinAcceleratedwouldlikelybepossibleonlyiffinalenergyconsumedoverthatperiodwassubstantiallylower.Forexample,DelayedandDisorderlyassumesthat,althoughstarting10yearslater,bothenergyefficiencyandthecarbonintensityofthefuelmixareabletoreachthesamelevelsasinAcceleratedby2050.Despitethat,totalfinalenergyconsumptionby2050needstobearound40%lowerthaninAcceleratedtomeetthesamecarbonbudget,implyingthatenergyuseissignificantlyrationedandconstrained.Althoughnotmodelledexplicitly,therestrictionsandcontrolsneededtoachievethislowerlevelofenergyconsumptionarelikelytohaveasignificantcostonbotheconomicactivityandlevelsofwell-being.35bpEnergyOutlook:2022edition34DelayingactionincreasestheriskofacostlyanddisorderlytransitionGtofCO2eEJCarbonemissionsTotalfinalconsumption37bpEnergyOutlook:2022edition36TotalfinalenergyconsumptiondecarbonizesasfossilfuelsarereplacedbyelectricityandhydrogenTheshareoffossilfuelsinprimaryenergyfallsasrenewableenergyincreasesrapidlyEnergydemand20202025203020352040204520500%20%40%60%80%100%2019NewMomentumAcceleratedNetZero0100200300400500600OilNaturalgasCoalElectricityHydrogenOtherAcceleratedNewMomentumNetZero2050Globalenergydemandmeasuredatthefinalpointofenergyusedecarbonizesinallthreescenariosastheworldelectrifiesandmakesincreasinguseofhydrogen.Theshareoffossilfuelsintotalfinalenergyconsumption(TFC)declinesfromaround65%in2019to30-50%by2050inthethreescenarios.Withinhydrocarbons,thelargestfallsoccurintheshareofcoalastheworldincreasinglyshiftstowardslower-carbonfuelsinindustryandbuildings,andintheshareofoil,drivenprimarilybyfallinguseofoilinroadtransport(seepages46-47).Theroleofelectricityincreasessubstantially,withelectricityconsumptionincreasingby75-85%overtheoutlookinallthreescenarios.Theshareofelectricityatthefinalpointofuseincreasesfrom20%in2019toaround30%inNewMomentumand45-50%inAcceleratedandNetZero.Thegrowthinelectrificationinallthreescenariosismetmostlybytherapidgrowthinwindandsolarpower(seepages68-69).Low-carbonhydrogen(seepages80-81)isalsoincreasinglyusedinAcceleratedandNetZerohelpingtodecarbonizehard-to-abateindustrialprocessesandtransportmodes,aswellasprovidingfeedstockusedinthepetrochemicalandrefiningsectors.Theshareoflow-carbonhydrogeninTFCreachesbetween6%and8%by2050inAcceleratedandNetZero,withtotalhydrogendemand–includingthatusedtoproducesyntheticfuelsandgeneratepower–nearlydoublethis.39bpEnergyOutlook:2022editionTotalfinalenergyconsumptiondecarbonizesasfossilfuelsarereplacedbyelectricityandhydrogen38EnergydemandShareEnergydemand,EJFossilfuelsasashareoffinalconsumptionFuelcompositionoffinalconsumptionModernrenewablesincludeswind,solar,geothermal,biofuels,biomethaneandmodernbiomassSubstitutionmethodPhysicalcontentmethodSubstitutionmethodPhysicalcontentmethod0%20%40%60%80%100%TraditionalbiomassModernrenewablesHydroNuclearCoalNaturalgasOilAccelerated2019NewMomentumNetZero0200400600800FossilfuelsRenewablesNewMomentumAcceleratedNetZero20502019Asimilartrendtowardsalowercarbonfuelmixisalsoapparentinprimaryenergy,astheuseoffossilfuelsdeclinesandrenewableenergy(windandsolarpower,bioenergyandgeothermalpower)growsrapidly.Basedonthesubstitutionmethod–whichgrossesupenergyfromnon-fossilpowergenerationtoreflecttheequivalentlossesassociatedwithconvertingfossilfuelstoelectricity(seepages106-107)–theshareoffossilfuelsinprimaryenergyfallsfromcloseto80%in2019to30-20%by2050inAcceleratedandNetZero.Thisfallisdrivenbythevirtualeliminationofcoalfromtheglobalenergysystemandoildemandfallingsharply.Naturalgasismoredurable,althoughitsshareinprimaryenergyalsodeclinesinbothAcceleratedandNetZero.Thedecliningimportanceoffossilfuelsinglobalenergyisoffsetbytheincreasingroleplayedbyrenewableenergy,whoseshareinprimaryenergyincreasesfromalittleover10%in2019to55-65%by2050inAcceleratedandNetZero.Thesetrendstowardsalower-carbonfuelmixwithinprimaryenergyarelesspronouncedinNewMomentum.Fossilfuelsstillaccountforcloseto60%ofallprimaryenergyin2050,withrenewablesaccountingforaroundathird.Thesebroadtrendsofadecliningroleforfossilfuelsoffsetbytheincreasingimportanceofrenewableenergyarealsoapparentifprimaryenergyiscalculatedusingthealternativephysicalcontentmethod(seepages106-107).Butsincethismethoddoesnotgrossuprenewable(andothernon-fossil)energytotakeaccountoftheconversionlossesassociatedwithfossilfuels,theriseintheshareofrenewablesovertheoutlookisslightlylesspronounced,withrenewablesby2050accountingforbetween40-50%ofprimaryenergyinAcceleratedandNetZeroandaround25%inNewMomentum.Energydemand41bpEnergyOutlook:2022editionTheshareoffossilfuelsinprimaryenergyfallsasrenewableenergyincreasesrapidly40EJSharePrimaryenergybyfuelShareoffossilfuelsandrenewablesinprimaryenergyin205043bpEnergyOutlook:2022edition42Oildemandfallsovertheoutlook,drivenbydeclininguseinroadtransportationFallinguseofoilintransportledbyimprovingefficiencyandincreasingswitchtoelectrificationandotherlow-carbonfuelsThepatternofoilconsumptionshiftstowardsemergingeconomiesanditsuseasafeedstockOildemand0204060801001202020202520302035204020452050-80-60-40-20020RoadtransportOthertransportNon-transportTotalAcceleratedNetZeroNewMomentum2019AcceleratedNewMomentumNetZeroOildemandincreasestoaboveitspre-COVID-19levelinallthreescenarios,boostedbythestronger-than-expectedreboundineconomicgrowth.Oilconsumptionpeaksinthemid-2020sinAcceleratedandNetZeroandaroundtheturnofthedecadeinNewMomentum.Thereafter,oilconsumptioninAcceleratedandNetZerofallssubstantially;thedeclinesinoildemandinNewMomentumareslowerandlessmarked.OilconsumptioninAcceleratedandNetZerofallssubstantiallythroughthesecondhalfoftheoutlook,reachingaround45Mb/dand25Mb/dby2050,respectively.OildemandinNewMomentumisstronger,remainingabovepre-COVID-19levelsuntilthemid-2030sbeforedeclininggradually,reaching80Mb/dby2050.Thedeclinesinoilconsumptionaredominatedbythefallinguseofoilwithinroadtransportasthevehiclefleetbecomesmoreefficientandisincreasinglyelectrified.ThedecreasinguseofoilinroadtransportaccountsforaroundhalfofthefallinglobaloilconsumptioninAcceleratedandNetZeroandalmosttheentirefallinNewMomentum.Inallthreescenarios,thepaceofdeclineinoildemandacceleratesoverthecourseoftheoutlookastheelectrificationofroadvehiclesgatherspace.ThefallsinoilconsumptioninAcceleratedandNetZeroovertheoutlookalsoreflectamoregeneralizedshiftawayfromoilacrossothersectorsoftheeconomy,includingitsuseinindustryandbuildings.45bpEnergyOutlook:2022editionOildemandfallsovertheoutlook,drivenbydeclininguseinroadtransportation44OildemandMb/dMb/dOildemandChangeinoildemand(2019-2050)20202025203020352040204520500%20%40%60%80%100%RoadlightRoadheavyAviationMarine0%20%40%60%80%100%2019NetZeroNewMomentumAcceleratedAcceleratedNewMomentumNetZeroTheroleofoilintransportfallsinallthreescenarios.Inroadtransport,thisdeclinelargelyreflectsacombinationofimprovingvehicleefficiencyandincreasingelectrification.Inaviationandmarine,thedeclineinoilisdrivenbytheincreasinguseofbio-andhydrogen-derivedfuels.Thedominantfactorinreducingoilconsumptioninroadtransportoverthefirstpartoftheoutlookisthecontinuingimprovementinvehicleefficiency,especiallyofpassengercars.Thisreflectstheimpactofbothpastimprovementsinvehicleefficiencyastheglobalcarparcturnsoverandfurthertighteninginvehicleemissionstandardsovertheoutlook.By2035,improvementsinvehicleefficiencyaccountfor60-70%ofthefallinoilusedinroadtransportacrossthethreescenarios.Theothermajorfactorreducingtheuseofoilinroadtransportistheelectrificationofthevehicleparc.ElectricvehiclesinAcceleratedandNetZeroaccountfor65-80%ofthevehiclekilometres(VKM)travelledontheroadin2050,comparedwithlessthan1%in2020.ThecorrespondingshareinNewMomentumby2050isaround40%.Thereisalsoincreasinguseofhydrogenintrucking,accountingforaround15-20%ofheavytruckingVKMsinAcceleratedandNetZeroby2050.Oilusedinaviationfallsbyaround25%and75%,respectivelyinAcceleratedandNetZeroby2050,reflectingincreasinguseofsustainableaviationfuel(SAF)combinedwithimprovingfleetefficiency.InAccelerated,themajorityoftheSAFisderivedfrombioenergy(biojet).Incontrast,inNetZero,thereisagreaterroleforH-fuels(syntheticjetfuel)alongsidebiojet(seepages80-81).By2050,oilaccountsforbetween65%and25%ofthetotalenergyusedinaviationinAcceleratedandNetZero,comparedwithover90%inNewMomentum.Inmarine,themainalternativetooilisprovidedbyH-fuels(ammonia,methanolandsyntheticdiesel),whichaccountforbetween30%and55%oftotalfinalenergyusedinmarineinAcceleratedandNetZeroby2050.Bio-derivedfuels(biodieselandrenewablediesel)andnaturalgasalsoplayanincreasingroleinAcceleratedandNetZero.Incontrast,oilcontinuestoaccountforcloseto80%oftheenergyusedinmarineinNewMomentumin2050.47bpEnergyOutlook:2022editionFallinguseofoilintransportledbyimprovingefficiencyandincreasingswitchtoelectrificationandotherlow-carbonfuels46OildemandShareShareShareofcarandtruckvehiclekilometreselectrifiedOil’sshareoftransportsectorenergydemandin2050H-fuelsarefuelsderivedfromlow-carbonhydrogen,includingammonia,methanol,andothersynthetichydrocarbons.20190%20%40%60%80%100%20190%20%40%60%80%100%NewMomentumAcceleratedNetZero2050NewMomentumAcceleratedNetZero2050SharesarecalculatedonavolumetricbasisThefallsinoildemandovertheoutlookareaccompaniedbyashiftinthecentreofgravityofitsuse,withoilconsumptionbecomingincreasinglyconcentratedwithinemergingeconomies,andtheuseofoilasafeedstock,particularlyinthepetrochemicalssector,growinginimportance.Oildemandinemergingeconomiesincreasesoverthefirstpartoftheoutlook,drivenbyincreasingprosperityandrisinglivingstandards,includingincreasingcarownershipandgrowingaccesstointernationaltravel.Oilconsumptioninemergingeconomiesremainsaboveitspre-COVID-19levelduringthefirst10-yearsorsooftheoutlookinallthreescenarios.Incontrast,afterabriefrecoveryfromitsCOVID-19-induceddip,oildemandwithinthedevelopedworldresumesitslong-termdownwardtrend.Thesecontrastingtrendsmeanthat,inallthreescenarios,emergingeconomiesaccountforaroundthree-quartersofglobaloildemandin2050,comparedwithalittleoverhalfin2019.Theuseofoilasafeedstock,predominantlyforpetrochemicals,isoneofthemostpersistentsourcesofoildemandovertheoutlookastheconsumptionofplasticsandotherpetrochemicalsderivativesincreases,supportedbyamorethandoublingoftheworldeconomy.However,thepaceofgrowthintheuseofoilasafeedstockslowsandeventuallypeaksinallthreescenariosasactions,suchastheintensityofplasticrecycling,increaseandtheuseofsomemanufacturedproducts,suchassingle-useplasticpackaging,isdiscouraged.Thereisalsoanincreasingshifttowardsbio-basedfeedstocksasanalternativetooil,especiallyinAcceleratedandNetZero.Despitethesetrends,therelativepersistenceofoilasafeedstockmeansthatitsshareinoveralloildemandincreasesfromlessthan20%in2019tobetween25%and50%by2050acrossthethreescenarios.Thelevelofoilusedasanon-combustedfeedstockin2050rangesfromabove20Mb/dinNewMomentumtocloseto10Mb/dinNetZero.49bpEnergyOutlook:2022editionThepatternofoilconsumptionshiftstowardsemergingeconomiesanditsuseasafeedstock48OildemandShareShareEmergingeconomies'shareofoildemandOilfeedstocksasashareofoildemand51bpEnergyOutlook:2022edition50ThecompositionofglobaloilsuppliesisdominatedbytrendsinUStightoilandOPECproductionIncreasingclimatepoliciesincentivizereductioninthecarbonintensityofoilOilsupplyAcceleratedNetZeroNewMomentum2019-20302030-20502019-20302030-20502019-20302030-2050-4-3-2-10120002010202020302040205025%30%35%40%45%50%AcceleratedNewMomentumNetZeroOPECOthernon-OPECUStightoilTotalTheshiftingpatternofglobaloilsuppliesovertheoutlookisdrivenbycontrastingtrendsinUStightoilandOPECproduction.UStightoilrecoversoverthefirstpartoftheoutlook,afterwhichitbeginstofallandOPEC’smarketsharegraduallyincreases.UStightoil–includingnaturalgasliquids(NGLs)–bouncesbackfromtheimpactofCOVID-19,withoutputpeakingabovepre-COVID-19levelsataround15Mb/dduringthefirstdecadeoftheoutlookinallthreescenarios.Brazilianoutputalsogrowsoverthefirst10yearsoftheoutlook.ButasUStightformationsmatureandOPECadoptsamorecompetitivestrategyagainstabackdropofacceleratingdeclinesindemand,USproduction(andothersourcesofnon-OPECoutput)fallsfromthelate2020sonwards.TheshortcyclenatureofUStightoilproduction,togetherwiththealignmentofthegrowinguseofoilasafeedstockwithlightcrudesandNGLs,helpstomitigatethefall.Evenso,UStightoilfallsto5Mb/dorlessinAcceleratedandNetZeroby2050andtoaround10Mb/dinNewMomentum.OPEC’sproductionstrategychangesoverthecourseoftheoutlook.InresponsetothereboundinUSandothernon-OPECsupplies,OPEClowersitsproductionoverthefirstdecadeorsooftheoutlookallowingitsmarketsharetofallinordertomitigatethedownwardpressureonprices.ThefallinOPEC’smarketshareismostpronouncedinAcceleratedandNetZerogiventhebackdropoffallingoildemandfromthemid-2020s.AsthepaceofdeclineinoildemandincreasesthroughthesecondhalfoftheoutlookandthecompetitivenessofUSoutputwanes,OPECcompetesmoreactively,raisingitsmarketshare.OPEC’sshareofglobaloilproductionincreasestoover40%inNewMomentumand45-50%inAcceleratedandNetZero,whichisclosetothehistoricalhighsreachedintheearly1970s.Thehighercoststructureofnon-OPECproductionmeansaround70%ofthefallsinoilproductioninAcceleratedandNetZeroby2050arebornebynon-OPECsuppliesandallofthefallinNewMomentum.53bpEnergyOutlook:2022editionThecompositionofglobaloilsuppliesisdominatedbytrendsinUStightoilandOPECproduction52OilsupplyAverageannualgrowth,Mb/dShareOilsupplygrowthOPEC’smarketshareofglobaloilsupplyCanadaLibyaNigeriaAlgeriaIranIraqUnitedKingdomAngolaMexicoRussiaBrazilChinaKazakhstanQatarUnitedStatesNorwaySaudiArabiaUAEKuwaitkgCO2/boe01020304050Globalaverage051015202520192050NewMomentumAcceleratedNetZeroSource:RystadEnergyIncludescountrieswithoilproductionabove1Mb/din2019Thevariationincarbonintensityofdifferenttypesofoilproductionhasanincreasingbearingontheirrelativecompetitivenessaspoliciesoncarbonemissionstightenovertheoutlook.Thishelpstoincentivizeashifttowardsoilsupplieswithlowerlevelsofoperationalcarbonintensityaswellasencouragingallproducerstoreducelevelsofcarbonintensityintheirproductionprocesses.TheCO2emissionsassociatedwiththeproductionofoilaccountforaround2%oftotalcarbonemissionsfromenergyusein2019.Theseemissions,measuredbythecarbonintensity(CI)ofoilsupplies,varyconsiderablyacross(andwithin)differentcountries,reflectingdifferencesinthenatureandlocationoftheoperations.ThedifferencesinCIaffecttherelativeexposureofdifferenttypesofproductiontothetighteningincarbonemissionpoliciesovertheoutlookinallthreescenarios.ThesedifferinglevelsofexposureacttoreducetheaverageCIofoilsuppliesbyincreasingtheeffectivecostofhighcarbon-intensityoil,improvingthecompetitivenessofsupplieswithlowerlevelsofCI.Inaddition,thetighteninginclimatepolicesprovidesanincentiveforalloilproducerstotakestepstoreducetheCIoftheiroutput,suchasbyreducingflaring,increasingenergyefficiencyandelectrifyingprocesses.Asaresult,theaverageCIofglobaloilproductionfallsbyaround15%by2050inNewMomentumandby50-60%inAcceleratedandNetZero.Inasimilarmanner,tighteningpolicyoncarbonemissionsalsoaffectsthechoiceofopportunitiesforinvestmentinnewoilproduction,includingbetweenbrownfieldandgreenfieldsites,withinvestmenttendingtowardsthemostresilient,lowest-carbonresources.Formoredetailsoninvestmentneededtosupportthelevelofoilandgasproductioninthethreescenarios(seepages86-87).55bpEnergyOutlook:2022editionIncreasingclimatepoliciesincentivizereductioninthecarbonintensityofoil54OilsupplykgCO2/boeAveragecarbonintensityofoilproductionbycountry,2019Globalaveragecarbonintensityofoilproduction57bpEnergyOutlook:2022edition56ProspectsfornaturalgasdemanddependonthespeedoftheenergytransitionNaturalgascanhelpsupportthetransitiontoalow-carbonenergysystemLNGtradeincreasesemergingAsia’saccesstonaturalgas,supportingeconomicgrowthandashifttolower-carbonfuelsNaturalgasproductioncontinuestobedominatedbytheMiddleEast,RussiaandtheUSNaturalgasTotalHydrogenBuildingsIndustryPowerOther0100020003000400050006000-2500-2000-1500-1000-50005001000NewMomentumAcceleratedNetZeroNewMomentumNetZero200020102020203020402050AcceleratedNewMomentumNetZeroAccelerated2030-20502019-2030Globalgasdemandgrowsinitiallyinallthreescenarios,drivenbyincreasingdemandinemergingeconomies.ButthisgrowthissubsequentlyreversedinAcceleratedandNetZero,withglobalgasconsumptiondecliningbyaround35%and60%by2050respectively.Incontrast,gasdemandinNewMomentumcontinuestogrowovertheentireoutlook,expandingbyalmost30%ofits2019level.Overthefirst10yearsorsooftheoutlook,gasdemandincreasesinbothNewMomentumandAccelerated,drivenbystrongdemandinChina–underpinnedbypoliciesencouragingcontinuedcoal-to-gasswitching–andinIndiaandotheremergingAsia.Incontrast,demandgrowthinNetZeroisshorterlived,reachingapeakinthemid-2020sbeforestartingtodecline.NaturalgasdemandwithinemergingAsiagrowsrobustlyoutto2030,butthisisoutweighedbyincreasingfallsinthedevelopedworldledbytheUSandEU.Fromtheearly2030sonwards,naturalgasdemanddeclinesinbothAcceleratedandNetZeroastheincreasingswitchtolow-carbonenergysourcesleadstodeclininguseintheworld’smajordemandcentres.Incontrast,gasdemandinNewMomentumcontinuestogrowinthe2030sand2040s,drivenbyincreasingdemandinemergingAsia(outsideofChina)andAfrica.ThegrowthinglobalgasdemandinthefirstpartoftheoutlookinNewMomentumandAcceleratedisdrivenbyincreasinguseofnaturalgasinindustryinemergingeconomies,especiallyinAsia,astheseeconomiescontinuetoindustrialize.Thegrowingdeclinesinnaturalgasdemandseenafter2030inAcceleratedandNetZeroreflectthefallinguseofgasinindustryandbuildings,particularlyindevelopedeconomies,andtheincreasingpenetrationofrenewablesinglobalpowermarkets.Thisdeclineingasconsumptionispartiallyoffsetbythegrowinguseofnaturalgastoproducebluehydrogen(seepages82-83).Incontrast,globalgasconsumptioncontinuestogrowinNewMomentumsupportedinpartbynaturalgasbroadlymaintainingitsshareinglobalpowergenerationasoverallpowerproductionincreasesrobustly.59bpEnergyOutlook:2022editionProspectsfornaturalgasdemanddependonthespeedoftheenergytransition58NaturalgasBcmChange,BcmNaturalgasdemandNaturalgasdemandbysector2020202520302035110012001300140015002020202520302035020040060080020202025203020350100200300400AcceleratedAlternativeprofileNaturalgascanpotentiallyplaytwoimportantrolesastheworldtransitionstoalow-carbonenergysystem:increasingthespeedatwhichfast-growingemergingeconomiesreducetheirdependencyoncoal,andprovidingasourceoflow-carbonenergywhencombinedwithcarboncapture,useandstorage(CCUS).ThepotentialroleofgastohelpquickenthepaceatwhichemergingeconomiesreducetheiruseofcoalcanbeillustratedbytheoutlookfortheIndianpowersectorinAccelerated.InAccelerated,Indianwindandsolarpowerexpandsrapidlyinthe2020s,suchthatinstalledcapacityisaround400GWby2030andwindandsolarpowergenerationgrowsalmost6-foldcomparedto2019.Overthesameperiod,gas-poweredgenerationroughlytriples.However,theserapidincreasesinrenewableandnaturalgaspowergenerationarenotsufficienttomatchthesubstantialgrowthinIndianelectricitydemand.Asaresult,coal-firedgeneration,whichmaintainsitscostcompetitivenessrelativetootherfossilfuels,increasesuntilthelate2020sandremainsaboveits2019leveluntilthemid-2030s.Inordertoavoidanyincreaseincoal-firedgeneration,oneoptionwouldbeforwindandsolarpowertoincreaseevenmorerapidly.ButthatwouldrequirewindandsolarcapacitytoincreasebynearlytwicetherapidspeedalreadyassumedinAccelerated,reaching250GWbythemid-2020s.Analternativeoptionwouldbeforgas-poweredgenerationtoincreasetemporarilyfromthelevelsassumedinAccelerated,suchthatinthelate2020sitisaroundthreetimesitslevelin2019.Giventhecurrentunder-utilizationofexistinggas-firedpowercapacityinIndiathiswouldbepossiblewithlittleornoincreaseingasgenerationcapacity.Naturalgascanalsosupportthetransitiontoalow-carbonenergysystembyprovidingasourceoflow-carbonenergywhencombinedwithCCUS.By2050,around45%ofthenaturalgasconsumedinAcceleratedand80%inNetZeroisabatedusingCCUS.Aroundhalfofthisgasisuseddirectlyinindustryandpower.Theremainderisusedtoproducebluehydrogen,whichissubsequentlyusedasalow-carbonenergycarrierorfeedstock.(Seepages90-91formoredetailsoftheroleofCCUSintheenergytransitionandpages82-83forbluehydrogen).61bpEnergyOutlook:2022editionNaturalgascanhelpsupportthetransitiontoalow-carbonenergysystemIndiacasestudy60NaturalgasGeneration,TWhCapacity,GWGeneration,TWhPowergeneration:coalInstalledwindandsolarcapacityPowergeneration:naturalgas020040060080010001200-1500-1000-500050010001500OtherExportsAfricaMiddleEastAustraliaRussiaUSChinaImportsIndiaDevelopedOtheremergingAsiaOtheremerging200020102020203020402050AcceleratedNewMomentumNetZero2019AcceleratedNetZeroNewMomentum203020502030205020302050Growingtradeinliquefiednaturalgas(LNG)playsacentralroleinincreasingemergingmarkets’accesstonaturalgas,helpingtosupporteconomicgrowthandashifttolower-carbonfuels.LNGtradegrowsstronglyoverthefirst10yearsoftheoutlook,increasingbyaroundtwo-thirdsinNewMomentumandAccelerated,andathirdinNetZero.ThevastmajorityofthisgrowthisdrivenbyincreasinggasdemandinemergingAsia(China,IndiaandotheremergingAsia)astheyswitchawayfromcoaland,outsideofChina,continuetoindustrialize.LNGimportsarethemainincrementalsourceofthisincreaseduseofgas,accountingfor70-75%oftheincreasedgasconsumptioninemergingAsiaoutto2030acrossthethreescenarios.ThisgrowthinLNGtradeisreversedoverthesecondhalfoftheoutlookinAcceleratedandNetZero,astheuseofnaturalgas–andhenceneedforLNGimports–declinesacrossmuchoftheworld’smajorLNGdemandcentres.ThelevelofLNGtradeby2050isonly10%higherthan2019levelsinAcceleratedandaround20%lowerinNetZero.Incontrast,LNGimportscontinuetoexpandinNewMomentum,risingtoover1,000Bcmbytheendoftheoutlook,supportedbyincreasingimportsintoIndiaandotheremergingAsia,andcontinuingstrongimportsintoEurope.ThegrowthinLNGexportsoverthefirstpartoftheoutlookisdrivenbytheUS,whichaccountsforover40%oftheincreaseinLNGexportsto2030inallthreescenarios.GrowthinLNGexportsisalsosupportedbysizeableincreasesinsupplyfromtheMiddleEast,RussiaandAfrica.ThesubsequentfallinLNGtradeinthesecondhalfoftheoutlookinAcceleratedandNetZeroisalsobornedisproportionatelybytheUS,reflectingitshighertransportcoststotheremainingcentresofLNGdemandinAsiarelativetotheMiddleEastandEasternAfrica.Incontrast,LNGexportsfromtheUSandtheMiddleEastcontinuetogrowinthesecondhalfoftheoutlookinNewMomentum,reinforcingtheirroleasthemainglobalcentresofLNGexports.63bpEnergyOutlook:2022editionLNGtradeincreasesemergingAsia’saccesstonaturalgas,supportingeconomicgrowthandashifttolower-carbonfuels62NaturalgasBcmBcmLNGtradeLNGimportsandexportsbyregion01000200030004000500060002019AcceleratedNetZeroNewMomentum203020502030205020302050OtherAfricaMiddleEastRussiaUSChinaTheproductionofnaturalgasisdriveninitiallybyincreasingexportsofliquifiednaturalgastomeetgrowingdemandinemergingeconomies.GlobalgasproductionfallsinthesecondhalfoftheoutlookinAcceleratedandNetZero,mirroringthedeclinesindomesticdemandinthemajorgasconsumingcentres.Overthefirst10yearsorsooftheoutlook,increasesinglobalgasproductionareledbytheMiddleEast,Russia,andtheUS(inNewMomentum),withmuchofthisincreasedgasproductionbeingexportedintheformofliquefiednaturalgas(LNG)(seepages62to63).ThegrowthinLNGispartiallyoffsetbyfallsinpipelineexportsasthepatternofdemandshiftstoregionswithlessaccesstogaspipelines.TheproductionofnaturalgasfallsinthesecondhalfoftheoutlookinAcceleratedandNetZeroasdomesticdemandintheworld’smajorgasconsumingcentresdeclines,withthebruntofthereductionsingasoutputconcentratedintheUS,theMiddleEastandRussia.By2050,globalgasproductionisaround35%and60%lowerthanits2019levelinAcceleratedandNetZero,respectively,withtheUS,theMiddleEastandRussiatogetheraccountingforaroundhalfofthosedeclines.Incontrast,globalgasproductioninNewMomentumcontinuestoincreaseinthe2030sand2040s,ledbysignificantincreasesinAfricansuppliesfeedingtherapidlyexpandingdomesticmarketfornaturalgas.Thebasedeclinesingasproductionmeanthat,eveninNetZero,significantamountsofnewproductionarerequired.InNetZero,around1.5Tcmofnewgassuppliesarerequiredby2035;thisincreasesto2.5-3.0TcminAcceleratedandNewMomentum.Formoredetailsoftheimpliedlevelsofinvestmentinoilandnaturalgas(seepages86-87).Naturalgas65bpEnergyOutlook:2022editionNaturalgasproductioncontinuestobedominatedbytheMiddleEast,RussiaandtheUS64BcmNaturalgasproductionbyregion67bpEnergyOutlook:2022edition66WindandsolarpowergrowrapidlyModernbioenergyincreasessharply,supportingthetransitiontoalow-carbonenergysystemRenewableenergy0500010000150002000025000200020102020203020402050Costofwindandsolarreferstotheirglobalaveragelevelizedcostofelectricity,includingtheirintegrationcosts-100%-80%-60%-40%-20%0%2020202520302035204020452050AcceleratedNewMomentumNetZeroSolarWindWindandsolarpowerexpandrapidlyinallthreescenarios.Combinedinstalledwindandsolarcapacityby2050increasesmorethan15-foldfrom2019levelsinAcceleratedandNetZeroandbynine-foldinNewMomentum.Themajorityofthiscapacityisusedtoprovideelectricityatthefinalpointofuse,althoughby2050inAcceleratedandNetZeroaround20-30%isusedtoproducegreenhydrogen(seepages82-83).Therapidexpansioninwindandsolarpowerisunderpinnedbycontinuingfallsintheircosts,especiallyoverthefirst10yearsorsooftheoutlook,astechnologyandproductioncostsdeclinewithincreasingdeployment,supportedbyincreasingmoduleefficiencyandprojectscalesforsolar,andbyhigherloadfactorsandloweroperatingcostsforwind.Thelevelizedcostofelectricity(LCOE)generatedfromwindandsolarpower,includingintegrationcosts,fallsbyaround20-25%and40-55%,respectively,by2030acrossthethreescenarios.Thepaceofcostreductionsslowsandeventuallyplateausinthefinaltwodecadesoftheoutlookasfallingcostsofgenerationareoffsetbythegrowingexpenseofbalancingpowersystemswithincreasingsharesofvariablepowersources.Theexpansionininstalledcapacityinthethreescenariosrequiresasignificantaccelerationofthepaceatwhichnewcapacityisfinancedandbuilt.TheaveragerateofincreaseininstalledcapacityinAcceleratedandNetZerois600-750GWperyearinthe2030sand700-750GWinthe2040s–twoorthreetimesfasterthanthehighestrateofincreaseseeninthepast.Thisrapidaccelerationintheinstallationofwindandsolarcapacityisdependentonarangeofenablingfactorsscalingatasimilarrate,includingtransmissionanddistributioncapacity,availabilityofkeymaterials,planningandpermitting,andsocialacceptability.Thepaceofincreaseinwindandsolarcapacityslowsinthefinal10yearsorsooftheoutlook,especiallyinNetZero,asthepowersectornearsfulldecarbonizationandthecostofincludingincreasingsharesofwindandsolargrows.EmergingeconomiesaccountforoverthreequartersoftheincreaseddeploymentofwindandsolarcapacityinAcceleratedandNetZeroby2050,withChinacontributingaroundaquarteroftheincrease.69bpEnergyOutlook:2022edition68RenewableenergyWindandsolarpowergrowrapidlyGWChangerelativeto2019InstalledwindandsolarcapacityCostofwindandsolar0204060802050020406080HeatHydrogenPowerBuildingsIndustryTransportBiomethaneBiofuelsModernbiomassTraditionalbiomassWasteoilsMunicipalsolidwasteManureAgriculturalresiduesForestryresidues20192019NewMomentumAcceleratedNetZeroNewMomentumAcceleratedNetZero20502050Modernbiomassincludesbiogas(butexcludesbiomethane)IndustryincludesfeedstocksTheuseofmodernbioenergy–tradedsolidbiomass,biofuelsandbiomass-derivedgases–growssignificantlyinallthreescenariosasithelpstodecarbonizehard-to-abatesectors.ThegrowthinmodernbioenergyismostpronouncedinAcceleratedandNetZero,increasingtoaround70EJby2050,morethandoubleits2019level.Nearlyallthisgrowthindemandstemsfromemergingeconomies,aidedinpartbyavirtualeradicationoftheuseoftraditionalbiomass.TheconsumptionofmodernbioenergyinNewMomentumincreasestoaround50EJby2050,withlittlereductionintheuseoftraditionalbiomass.Theamountofbioenergyusedinallthreescenariosisjudgedtobeachievablewithoutanyincreasefromthecurrentlevelsoflanddevotedexclusivelytobioenergy,withthevastmajoritysourcedregionallythroughresidues(fromagricultureandforestry,manureandwastes)whichareaccessiblewithoutdetrimentaleffecttotheirecosystems.Thelargestsourceofmodernbioenergyissolidbiomass,whichaccountsforaroundthree-quartersoftotalbioenergydemandinAcceleratedandNetZeroby2050andaroundhalfinNewMomentum.Theincreasinguseofmodernsolidbiomassisdriveninpartbyitsgrowingroleinthepowersector,particularlyinAsia,aswellasinhard-to-abateindustrialprocesses,suchascement,andinbuildings.Theuseofbiofuelsincreasestoroughly10EJby2050inAcceleratedandNetZero,drivenbytheiruseinaviation.By2050,theuseofbio-derivedSAF(sustainableaviationfuel)accountsforbetween55-65%oftotalbiofuelsdemandinAcceleratedandNetZero.Thesescenariosalsoseeincreasinguseofbiofuelsinmarineandasanalternativetooil-basedfeedstocksinindustry.Biomethane(alsoknownasrenewablenaturalgas)growsrapidlyfromaround0.2EJin2019toaround5EJinAcceleratedandNetZeroby2050.Thegrowthinbiomethaneisbroadlybasedacrossallsectorsoftheeconomy:transport,industry,andbuildings.By2050,4-12EJofbioenergyinAcceleratedandNetZeroiscombinedwithcarboncaptureandstorage(BECCS)providingasourceofnegativeemissions.AroundhalfoftheavailableBECCSisusedinthepowersector,withtheremainderusedinindustry,andtoproducehydrogenandheat.71bpEnergyOutlook:2022edition70RenewableenergyModernbioenergyincreasessharply,supportingthetransitiontoalow-carbonenergysystemPrimaryenergy,EJPrimaryenergy,EJBioenergysupplyanddemandSourcesofmodernbioenergy73bpEnergyOutlook:2022edition72ElectricitydemandgrowsstronglyastheworldincreasinglyelectrifiesGrowthinpowergenerationisdominatedbywindandsolarastheglobalpowersystemdecarbonizesElectricityandpowersystems02000040000600002000201020202030204020500%10%20%30%40%50%60%OtheremergingDevelopedAfricaOtheremergingAsiaIndiaChinaAcceleratedNewMomentumNetZero2019NewMomentumAcceleratedNetZero2050Electricitydemandincreasesstronglyinallthreescenariosdrivenbygrowingprosperityinemergingeconomiesandincreasingelectrificationoftheglobalenergysystem.Finalelectricitydemandincreasesover80%by2050inAcceleratedandNetZeroandby75%inNewMomentum.Thevastmajorityofthegrowthinelectricityconsumptioninallthreescenariosisaccountedforbyemergingeconomies,ledbyemergingAsia(China,India,OtherAsia)andAfrica,asincreasingprosperityandlivingstandardsenablearapidexpansionintheuseofelectricity.Thisstronggrowthmeansthat,inallthreescenarios,emergingeconomiesaccountforaroundthree-quartersofglobalelectricitydemandby2050,upfrom60%in2019.Thetrendtowardstheincreasingelectrificationofenergy-usingactivitiesandprocessesismostmarkedinAcceleratedandNetZero,withtheshareofelectricityintotalfinalconsumption(TFC)increasingfrom20%in2019tocloseto45%inAcceleratedandover50%inNetZeroby2050.Despitetheslowerpaceofdecarbonization,theshareofelectricityinTFCinNewMomentumstillincreasestoaround30%bytheendoftheoutlook.Theincreaseinelectricitydemandisbroadly-basedacrossallthreeend-usesectors:industry,transportandbuildings.ThegrowthinelectricityuseinthetransportsectorisparticularlypronouncedinAcceleratedandNetZeroasroadtransportationisincreasinglyelectrified.75bpEnergyOutlook:2022editionElectricitydemandgrowsstronglyastheworldincreasinglyelectrifies74ElectricityandpowersystemsTWhShareFinalconsumptionofelectricityElectricityasashareoftotalfinalconsumption01500030000450006000075000OtherOtherlow-carbonWindandsolarCoalGasAcceleratedNewMomentumNetZero20190%20%40%60%80%100%200020102020203020402050NewMomentumAcceleratedNetZero2050GasincludesnaturalgasandbiomethaneOtherlow-carbonincludesbiomass,nuclear,hydroandgeothermalWorldpowersystemsareincreasinglydominatedbywindandsolarpower,whichmorethanaccountfortheentiregrowthofglobalpowergenerationinAcceleratedandNetZero,andaround85%oftheincreaseinNewMomentum.Theexpansionofwindandsolargenerationisledbywindpower,whichaccountsforcloseto40%oftotalpowergenerationby2050inAcceleratedandNetZero,withtheshareofsolarpoweraround30%.Withinwindpower,offshorewindincreasesrapidlyfromalowbase,accountingforaround20%oftheincreaseinwindgenerationby2050.By2050,windandsolarpoweraccountforaround70%ofglobalpowergeneration–andcloserto80%inthemostadvantagedregions–inAcceleratedandNetZero.Thesehighwindandsolarpenetrationlevelsareaidedbythefallingcostofintegratingvariablepowersources,includingfromtheuseofbatteriesandincreasingintegrationwithhydrogenasasourceofflexibledemand(useofelectrolysers)andsupply(hydrogenturbines).Inadditiontopoweringend-useactivities,around15-20%ofglobalelectricitygenerationby2050inAcceleratedandNetZeroisusedtoproducegreenhydrogen(seepages82-83).Themainfueltolosegroundtowindandsolariscoal,whichisvirtuallyeliminatedfromglobalpowergenerationby2050inAcceleratedandNetZero.TheroleofnaturalgasinglobalpowergenerationisrelativelystableoverthefirstpartoftheoutlookinAcceleratedandNewMomentum,supportedbyitsincreasingroleintheemergingworld(seepages60-61).ButtheuseofnaturalgasdeclinessharplyinthesecondhalfoftheoutlookinAcceleratedandNetZeroastheexpansionofwindandsolarpowergatherspace.Othersourcesoflow-carbonpowergeneration(nuclear,hydro,bioenergyandgeothermal)continuetoplayasignificantrole,especiallyinAcceleratedandNetZero,wheretheyaccountforaround25%ofpowergenerationin2050.Nuclearpowergenerationincreasesby80%by2050inAcceleratedandmorethandoublesinNetZero,accountingforaround10%ofpowergeneration.Theshifttorenewableenergy,combinedwithincreasinguseofCCUS(seepages90-91),meansCO2eemissionsfrompowergenerationinAcceleratedarealmostentirelyeliminatedby2050andarenegativeinNetZero.77bpEnergyOutlook:2022editionGrowthinpowergenerationisdominatedbywindandsolarastheglobalpowersystemdecarbonizes76ShareGeneration,TWhWindandsolarasashareoftotalpowergenerationElectricitygenerationbyfuelElectricityandpowersystems79bpEnergyOutlook:2022edition78Demandforlow-carbonhydrogengrowsastheworldtransitionstoalow-carbonenergysystemLow-carbonhydrogenisdominatedbygreenandbluehydrogenHydrogen01002003004005002019020406080100120140Transport(directuse)Transport(hydrogen-derivedfuels)IndustryFeedstockBuildingsPowerOtherRoadheavyMarineAviationAcceleratedNetZeroAcceleratedNetZeroAcceleratedNetZero205020502030TheuseofhydrogengrowssignificantlyinAcceleratedandNetZeroastheworldtransitionstoalow-carbonenergysystem,increasingmorethanfour-foldinAcceleratedandseven-foldinNetZeroby2050.ThegrowthofhydrogenoverthefirsttenyearsofAcceleratedandNetZeroisrelativelymodest,drivenbytheincreasinguseoflow-carbonhydrogenasafeedstock,albeitconstrainedbythelongleadtimesforlow-carbonhydrogenprojectstocomeonlineatscale.Thepaceofgrowthacceleratessharplyinthe2030sand2040sasfallingcostsofproductionandtighteningcarbonemissionpolicesallowlow-carbonhydrogentocompeteagainstincumbentfuels.Inparticular,theexpandinguseoflow-carbonhydrogencomplementsthegrowingelectrificationoftheenergysysteminAcceleratedandNetZero,providingasourceoflow-carbonenergyforactivitiesandprocesseswhicharedifficulttoelectrify,especiallyinindustryandtransport,aswellasbeingasourceofflexibilityforpowersystemstability.Theuseofhydrogeninindustryisconcentratedinpartsofheavyindustry,suchasironandsteel,chemicals,andcement,whichrelyonhigh-temperatureprocesses.By2050,hydrogenaccountsfor5-10%oftotalfinalenergyusedinindustryinAcceleratedandNetZero.Thegreatestuseofhydrogenwithinthetransportsectoristohelpdecarbonizelong-distancetransportation,especiallywithinmarine(intheformofammonia,methanolandsyntheticdiesel)andaviation(intheformofsyntheticjetfuel).TheproductionoftheseH-fuelsaccountforaround75-80%ofthehydrogenusedwithinthetransportsectorby2050inAcceleratedandNetZero.Theremainderisuseddirectlyinheavy-dutyroadtransportand,toamuchlesserextent,rail.By2050,H-fuelsandhydrogenaccountforaround5-15%oftotalfinalenergyusedbythetransportsectorinthetwoscenarios.Therelativelyhighcostsoftransportinghydrogenmeansthatmostofthehydrogenisproducedandconsumedwithinregions,althoughsomeinter-regionaltradedevelopsovertheoutlookinAcceleratedandNetZero,withexportsfromregionswithadvantagedproduction,includingtheMiddleEast,Russia,South&CentralAmericaandAfrica,flowingtodevelopedAsiaandtheEU.81bpEnergyOutlook:2022edition80HydrogenDemandforlow-carbonhydrogengrowsastheworldtransitionstoalow-carbonenergysystemMtMtHydrogendemandbysectorDemandforhydrogen-basedfuelsBECCShydrogenfrombiomassgasificationwithcarboncaptureandstorage0100200300400500020040060080010002000-20052005-20102010-20152015-20192019-20252025-20302030-20352035-20402040-20452045-2050BlueGreenBECCSAcceleratedNetZeroAcceleratedNetZero20302050NetZeroAlternativeprofile:greenhydrogenreplacesallbluehydrogenLow-carbonhydrogengrowsinimportanceovertheoutlookinAcceleratedandNetZero,accountingforvirtuallyallhydrogenproductionby2050.Low-carbonhydrogenisdominatedbyacombinationofgreenhydrogen,madeviaelectrolysisusingrenewablepower,andbluehydrogen,madefromnaturalgas(orcoal)withCO2captureandstored.Thegrowthoflow-carbonhydrogencrowdsoutso-calledgreyandbrownhydrogen,whichisproducedfromnaturalgasandcoalwithouttheuseofcarboncaptureandstorage.Atthebeginningoftheoutlook,thecostofproducingbluehydrogenislowerthanforgreenhydrogeninmostpartsoftheworld.Butthiscostadvantageisgraduallyerodedovertheoutlookasimprovementsintechnologyandmanufacturingefficiencyreducethepriceofbothwindandsolarpowerandelectrolysers.Incontrast,themorelimitedscopeforgainsintechnologyandmanufacturingefficiencyinhydrogenproductionfromnaturalgas(andcoal)withCO2capturemeansthecostofbluehydrogenremainsrelativelyflatovertheoutlook.Thestrongpolicysupportprovidedtogreenhydrogenovertheinitialpartoftheoutlook,combinedwiththesharpfallsinitsrelativecosts,meansgreenhydrogenaccountsforanincreasingshareoflow-carbonhydrogenproductioninAcceleratedandNetZero.In2030,greenhydrogenaccountsforaround55%oflow-carbonhydrogeninthetwoscenarios,withthatshareincreasingtoaround65%by2050.Mostoftheremaininglow-carbonhydrogenisprovidedbybluehydrogen,althoughthereisalsoasmallamountofhydrogenproducedfrombioenergycombinedwithCCS(BECCS)by2050inbothscenarios.Inadditiontobeingcostcompetitiveinmanypartsoftheworld,theproductionofbluehydrogeninAcceleratedandNetZerohelpsenabletheexpansionoflow-carbonhydrogenwithoutrelyingsolelyonrenewablepower.Forexample,tosubstitutegreenforbluehydrogeninNetZerowouldrequirewindandsolarcapacitytoincreasebycloseto850GWperannumonaverageinthe2030sand2040s,comparedwithalittleover700GWinNetZeroandahistoricalhighofaround250GW.83bpEnergyOutlook:2022edition82HydrogenLow-carbonhydrogenisdominatedbygreenandbluehydrogenMtGWLow-carbonhydrogensupplyAverageannualincreaseinwindandsolarcapacity85bpEnergyOutlook:2022edition84TheenergytransitionrequiressignificantlevelsofinvestmentInvestmentAverageannualinvestmentrange,$2020Billion01002003004005006007008002015-2019AcceleratedNetZeroNewMomentum2015-2019AcceleratedNetZeroNewMomentum2015-2019AcceleratedNetZeroNewMomentumWind&solarOil&naturalgasCCUS8687bpEnergyOutlook:2022editionInvestmentTheenergytransitionrequiressignificantlevelsofinvestmentAverageannualinvestment,historyand2020-2050Theenergypathwaysenvisagedbythethreescenariosrequiresubstantiallevelsofinvestmentacrossawiderangeofenergyvaluechains.Theimpliedlevelsofinvestmentinwindandsolarpowercapacityacceleratemarkedlyfromrecentlevels.Despitedeclininglevelsofdemand,continuinginvestmentinupstreamoilandgasisalsorequired.Estimatesoftheinvestmentpathsimpliedbydifferentscenariosareuncertainsincetheydependonanumberoffactorsaffectingthecostofenergyinvestmentsoverthenext30years,includingthecostofkeymaterials,technologytrendsandthecostandavailabilityofcapital.Theassumptionsunderlyingtheimpliedinvestmentrequirementsarediscussed(seepages102-103).Investmentsareinreal$2020prices.Thecentralrolethatwindandsolarpowerplayintheprovisionofincreasinglylow-carbonelectricityinAcceleratedandNetZeroimplyamaterialaccelerationininvestmentinnewcapacity.Despitethefallingcostofwindandsolarcapacity,theaverageannualinvestmentconsistentwiththesetwoscenariosovertheoutlookis$500-$800billion.Thisistwotothreetimesgreaterthanrecentinvestmentlevels,witharound65-70%ofthatimpliedinvestmentoccurringinemergingeconomies.Thissignificantincreaseinthepaceofinvestmentinwindandsolarpowerwouldneedtobesupportedbycorrespondinginvestmentincreasesincriticalenablingtechnologiesandinfrastructure,includingtransmissionanddistributioncapacity.Althoughthedemandforoilandgasfallsinallthreescenarios,naturaldeclineinexistingproductionimpliesthatcontinuinginvestmentinnewupstreamoilandgasisrequiredinallthreescenarios,includingNetZero.However,theimpliedratesofinvestment,especiallyinAcceleratedandNetZero,aremuchlowerthanpastlevelsandsignificantlylessthantherequiredinvestmentinwindandsolarcapacity.Theaverageannualinvestmentinupstreamoilandgasoverthenext10yearsconsistentwiththethreescenariosisaround$375-$500billion,comparedwitharound$415billionin2020.Theinvestmentlevelsimpliedbytheexpansionofcarboncapture,useandstorage(CCUS)facilitiesinthethreescenarios(includingthecostofcapture,transportandstorage)isrelativelysmallcomparedtothatrequiredbyeitherwindandsolarcapacityorupstreamoilandgas.However,itismuchgreaterthanrecenthistoricallevels,suggestingthatasignificantscaling-upinfinancingwouldberequiredtosupportthebuildout.Upstreamoilandgasinvestmentincludescapitalexpendituresonwellsconstruction,facilitiesandexploration.89bpEnergyOutlook:2022edition88CarbonmitigationandremovalsCCUSplaysavitalroleinthetransitiontoalow-carbonenergysystemCarbondioxideremovalsmayplayakeyroleinachievingtheParisclimategoals04008001200160001234567BECCS:BioenergywithcarboncapturestorageIndustrialprocessemissionsFossilfuelsBECCSNewMomentumAcceleratedNetZero2050NetZeroAlternativeprofile:greenhydrogenreplacesallbluehydrogen2000-20052005-20102010-20152015-20192019-20252025-20302030-20352035-20402040-20452045-2050CCUSplaysavitalroleinthetransitiontoalow-carbonenergysystem90CarbonmitigationandremovalsGtofCO2GWCarboncaptureuseandstoragein2050byemissionssourceAverageannualincreaseinwindandsolarcapacityCarboncapture,useandstorage(CCUS)playsacentralroleinsupportingthetransitiontoalow-carbonenergysystem.CCUSdeploymentreachesaround4-6GtCO2by2050inAcceleratedandNetZero,comparedwitharound1GtCO2inNewMomentum.ThestrongergrowthofCCUSinAcceleratedandNetZeroissupportedbytighteningcarbonemissionpolicies,aswellasbyincreasingrecognitionfrompolicymakersandsocietyoftheimportantroleCCUScanplayinenablinganefficienttransitiontoalow-carbonenergysystem.Evenso,thepaceofdeploymentisslowedbyseveralotherfactors,includingtheneedforextensiveappraisalandpermittingofprospectivestoragesites,andthelongleadtimesassociatedwithdevelopingstoragesitesandtheirrelatedtransportinfrastructure.InAcceleratedandNetZeroaround25-35%oftheCCUSoperatingin2050isusedeithertocaptureandstoreemissionswhichinherentlyarisefromindustrialprocesses,suchasfromtheproductionofcement,orasaformofcarbondioxideremoval(CDR)inconjunctionwiththeuseofbioenergy(BECCS)(seepages92-93).Theabilitytouseothertechnologiesorprocessestoperformthesetwofunctions–avoidindustrialprocessemissionsandprovideasourceofengineeredCDR–isrelativelylimited.TheremainingCCUSisusedtocaptureemissionsfromfossilfuels.CCUSisusedtobothabateemissionsfromnaturalgasandcoalcombustionintheindustrialandpowersectorsandtoproducebluehydrogen(seepages82-83).Withinthat,around65-70%ofCCUSby2050isusedwithnaturalgasandtheremainderwithcoal.Inprinciple,itispossibletoreducetheneedforCCUSusedwithfossilfuelsbyconsuminggreaterquantitiesofotherlow-carbonenergysourcessuchasgreenhydrogen.ButthiswouldrequireanevenfasterexpansionofrenewableenergythanassumedinAcceleratedandNetZero.Forexample,toreplacealltheabatedfossilfuelsusedinNetZerowithgreenhydrogenproducedbywindandsolarpowerwouldrequireanaverageannualincreaseinwindandsolarcapacityofaround1.2TWinthe2030sand2040s,roughly60%greaterthanassumedinNetZeroandaroundfivetimesfasterthanthehighestannualincreaseonrecord.91bpEnergyOutlook:2022edition0246810Roeetal.(2020)SeeAnnexformoredetailsGriscometal.(2017)EnergyTransitionsCommissionWorldEconomicForumRangeofwindandsolargenerationneeded(TWh)0123450200040006000800010000ReductionsfromDACCS(GtofCO2)CarbondioxideremovalsmayplayakeyroleinachievingtheParisclimategoals92GtofCO2perannumGtofCO2EstimatesofpotentialnaturalclimatesolutionsremovalsIllustrativeexample:rangeofadditionalenergyrequiredtoremove4GtofCO2viadirectaircarboncapturewithstorage(DACCS)ThescenariosintheEnergyOutlookfocuslargelyonemissionsemanatingfromtheproductionanduseofenergy.Inthatcontext,theyincludebioenergycombinedwithCCUS,butdonotexplicitlymodelotherformsofcarbondioxideremovalwhichoperateoutsideoftheenergysector.FortheworldtoremainwithinalimitedcarbonbudgetandachievetheParisclimategoals,arangeofothercarbondioxideremovals(CDRs)maybeneeded,includingnaturalclimatesolutions(NCS)anddirectaircarboncapturewithstorage(DACCS).NaturalClimateSolutions(NCS)NCSreferstoactionsthatconserve,restoreormanageforests,wetlands,grasslandsandagriculturallandsinsuchawayastoincreasecarbonstorageoravoidgreenhousegasemissions.Indoingso,NCScaneither‘reduce’carbonemissionsor‘remove’CO2alreadyintheatmosphere.BothtypesofNCS(reduceandremove)havethepotentialtoplayanimportantrole,buttowards2050attentionislikelytofocusincreasinglyonremovalssincetheydirectlyreducetheconcentrationofCO2intheatmosphere.ThereisconsiderableuncertaintyastothepotentialscaleofNCS.Focussingoncost-effectiveremovalmeasures,severalexternalestimatesimplyapotentialrangeof6-8GtCO2perannum,althoughsomeestimatesarelower.DirectAirCarbonCaptureDirectaircarboncaptureisaprocessofcapturingCO2directlyfromambientairtoformaconcentratedstreamofCO2,whichcantheneitherbeutilised,e.g.fortheproductionofH-fuels,orstoredtoactasaformofCDR.DACCShasanumberofattractions.Ithasthepotentialtobescaledmaterially.Itsflexibilitymeansitcanbelocatedinthemostadvantagedregions.Anditprovidesgreatercertaintyastothepermanenceandadditionalityofthecarbonremoved.ButDACCSalsofacessomechallenges.ThelowconcentrationsofCO2inambientairrequireslargequantitiesofairtobeprocessed.ThecurrentcostofDACCSishighrelativetootherformsofCDR.Anditisrelativelyenergyintensive.Forexample,toachieve4GtCO2ofcarbonremovalusingDACCSwouldrequiresomewhereintheregionof4,500-9,000TWhofrenewablepowergeneration,roughlyequivalenttoaround10-20%ofthetotalwindandsolarpowergenerationinNetZeroin2050.93bpEnergyOutlook:2022editionCarbonmitigationandremovalsTWh95bpEnergyOutlook:2022edition94AnnexDatatablesConstructionofIPCCscenariosamplerangesEconomicimpactofclimatechangeInvestmentmethodologyCarbonemissionsdefinitionsandsourcesOtherdatadefinitionsandsources96Annex97bpEnergyOutlook:2022editionLevelin2050Change2019-2050(p.a.)Shareofprimaryenergyin20502019AcceleratedNetZeroNewMomentumAcceleratedNetZeroNewMomentumAcceleratedNetZeroNewMomentumPrimaryenergybyfuelTotal6276926537600.3%0.1%0.6%100%100%100%Oil1938744154-2.5%-4.6%-0.7%13%7%20%Naturalgas1409461181-1.3%-2.7%0.8%14%9%24%Coal1582517103-5.8%-6.9%-1.4%4%3%13%Nuclear254049271.6%2.2%0.3%6%7%4%Hydro386165481.6%1.8%0.8%9%10%6%Renewables(incl.bioenergy)743844182475.5%5.7%4.0%56%64%33%Primaryenergybyfuel(nativeunits)Oil(Mb/d)98472481-2.4%-4.4%-0.6%Naturalgas(Bcm)3900261416815020-1.3%-2.7%0.8%PrimaryenergybyregionDeveloped234172167196-1.0%-1.1%-0.6%25%26%26%UnitedStates97737183-0.9%-1.0%-0.5%10%11%11%EuropeanUnion65484752-1.0%-1.1%-0.7%7%7%7%Emerging3935194865650.9%0.7%1.2%75%74%74%China1471561441660.2%-0.1%0.4%22%22%22%India429188962.5%2.5%2.7%13%14%13%MiddleEast374845500.8%0.6%0.9%7%7%7%Russia303229340.1%-0.1%0.4%5%5%4%Brazil161715200.3%-0.1%0.8%2%2%3%Levelin2050Change2019-2050(p.a.)Shareoffinalconsumptionin20502019AcceleratedNetZeroNewMomentumAcceleratedNetZeroNewMomentumAcceleratedNetZeroNewMomentumTotalfinalconsumptionbysectorTotal477420351542-0.4%-1.0%0.4%100%100%100%Transport11910391120-0.5%-0.8%0.0%25%26%22%Industry188163136217-0.5%-1.0%0.5%39%39%40%Feedstocks383930490.1%-0.7%0.8%9%8%9%Buildings13211494157-0.5%-1.1%0.6%27%27%29%Energycarriers(generation)Electricity('000TWh)275863502.5%2.8%2.0%50%65%33%Hydrogen(Mt)662874461464.8%6.3%2.6%8%15%3%ProductionOil(Mb/d)98462480-2.4%-4.4%-0.6%Naturalgas(Bcm)3976261716815020-1.3%-2.7%0.8%Coal(EJ)168251699-6.0%-7.2%-1.7%EmissionsCarbonemissions(GtofCO2e)39.89.92.431.1-4.4%-8.7%-0.8%Carboncaptureuse&storage(Gt)0.04.26.00.956%58%48%MacroGDP(trillionUS$PPP)1272832832832.6%2.6%2.6%Energyintensity(MJ/US$ofGDP)3.71.51.21.9-2.9%-3.5%-2.1%EJunlessotherwisestatedDatatables98Annex99bpEnergyOutlook:2022editionConstructionofIPCCscenariosamplerangesTheworld’sscientificcommunityhasdevelopedanumberof“integratedassessmentmodels”(IAMs)thatattempttorepresentinteractionsbetweenhumansystems(theeconomy,energy,agriculture)andclimate.Theyare“simplified,stylized,numericalapproachestorepresentenormouslycomplexphysicalandsocialsystems”(Clarke2014).Thesemodelshavebeenusedtogeneratemanyscenarios,exploringpossiblelong-runtrajectoriesforgreenhousegasemissionsandclimatechangeunderawiderangeofassumptions.TheIntergovernmentalPanelonClimateChange(IPCC)carriesoutregularsurveysofthisscenariomodellingaspartofitsassessmentwork.ThemostrecentsurveywascarriedoutinsupportoftheIPCCSpecialReportonGlobalWarmingof1.5°C(SR15).Atotalof414scenariosfrom13differentmodellingframeworkswerecompiledandmadeavailableviaanonlineportalhostedattheInternationalInstituteforAppliedSystemsAnalysis(IIASA).Someofthescenariosarenowquitedatedand,insomecases,scenarioresultsarealreadysignificantlyoutoflinewithrecenthistoricaldataandsowereexcludedfromouranalysis.Fromtheremainingmodelruns,112scenarioswerejudgedtobeconsistentwiththeParisclimatechangeagreementofholdingtheincreaseintheglobalaveragetemperaturetowellbelow2°Cabovepre-industriallevelsandpursuingeffortstolimitthetemperatureincreaseto1.5°Cabovepre-industriallevels.Thesescenarioswerefurtherdividedintotwosubsets:“wellbelow2°C”(69scenarios);and“1.5°Cwithnoorlowovershoot”(43scenarios).Thesetwosubsetswerefurtherrefinedbyexcluding,first,scenariosinwhichhistoricalyear2010emissionsfromenergyandindustrialsourcesdeviatemorethan5%fromthemeanofthescenariosampleand,second,scenarioswithimplied(shadow)pre-2020averageglobalcarbonpriceshigherthan$30pertonCO2($2010)whichwereviewedasbeingoverlyoptimisticaboutthestateofclimatepolicyby2020.Fortheremainingscenariosineachofthesetwosubsets,therangesofoutcomesforkeyvariablesaredescribedintermsofmediansandpercentiledistributions(SeeScenarioselectionmethodologybp.com)foramoredetailedexplanation).ToallowfordirectcomparisonswiththeEnergyOutlookscenarios,methaneemissionsfromenergysupplyareaddedtoemissionsfromenergyandindustrialprocesses.Forthosescenariosthatdonotreportmethaneemissionsweusedthecorrespondingsubsetaverage.ItisimportanttonotethatthescenariodatasetrepresentsacollectionofscenariosthatwereavailableatthetimeoftheIPCCsurvey,andwhichwereproducedforavarietyofpurposes.“Itisnotarandomsamplingoffuturepossibilitiesofhowtheworldeconomyshoulddecarbonize”(Gambhiretal,2019).ThatmeansthatthedistributionsofIPCCscenarioscannotbeinterpretedasreliableindicatorsoflikelihoodofwhatmightactuallyhappen.Rather,thedistributionssimplydescribethecharacteristicsofthescenarioscontainedintheIPCCreport.Inadditiontothisselectionofscenarios,chart(seepage14)showstheemissionspathforarepresentativescenariobasedontheinformationavailableinTable2.4intheIPCCreportMitigationPathwaysCompatiblewith1.5°CintheContextofSustainableDevelopment.ThispathisconstructedusingthemedianlevelofCO2fromfossilfuelsandindustry(net)in2030andtheaveragedeclineofemissionsin2010-2030and2020-2030for42scenariosconsistentwith1.5°Cwithnoorlimitedovershooting.SourcesClarkeL.etal(2014).AssessingTransformationPathways.In:ClimateChange2014:MitigationofClimateChange.ContributionofWorkingGroupIIItotheFifthAssessmentReportoftheIntergovernmentalPanelonClimateChangeGambhirA.etal(2019).Energysystemchangesin1.5°C,wellbelow2°Cand2°CscenariosEnergyStrategyReviews23Rogelj,J.,D.Shindell,K.Jiang,S.Fifita,P.Forster,V.Ginzburg,C.Handa,H.Kheshgi,S.Kobayashi,E.Kriegler,L.Mundaca,R.Séférian,andM.V.Vilariño,2018:MitigationPathwaysCompatiblewith1.5°CintheContextofSustainableDevelopment.In:GlobalWarmingof1.5°C.AnIPCCSpecialReportontheimpactsofglobalwarmingof1.5°Cabovepre-industriallevelsandrelatedglobalgreenhousegasemissionpathways,inthecontextofstrengtheningtheglobalresponsetothethreatofclimatechange,sustainabledevelopment,andeffortstoeradicatepoverty[Masson-Delmotte,V.,P.Zhai,H.-O.Pörtner,D.Roberts,J.Skea,P.R.Shukla,A.Pirani,W.Moufouma-Okia,C.Péan,R.Pidcock,S.Connors,J.B.R.Matthews,Y.Chen,X.Zhou,M.I.Gomis,E.Lonnoy,T.Maycock,M.Tignor,andT.Waterfield(eds.)].100101bpEnergyOutlook:2022editionEconomicimpactofclimatechangeTheGDPprofilesusedintheEnergyOutlookcomefromOxfordEconomics(OE).Theselong-termforecastsincorporateestimatesoftheeconomicimpactofclimatechange.TheseestimatesdrawonthelatestresearchinthescientificliteratureandfollowasimilarmethodologytothatusedinEnergyOutlook2020.OEupdatedandextendedthemodelsdevelopedbyBurke,HsiangandMiguel(2015),whichusetheIPCCRepresentativeConcentrationPathways(RCP)scenariostoassesstheimpactoftemperaturechangesonGDP.LikeBurkeetal.,OE’supdatedresultsfindevidenceofanon-linearrelationshipbetweenproductivityandtemperature,inwhichpercapitaincomegrowthrisestoanaverage(populationweighted)temperatureofjustunder15°C(Burkeetal’sinitialassessmentwas13°C).Thistemperaturecurvesuggeststhat‘coldcountry’incomegrowthincreaseswithannualtemperatures.However,atannualtemperaturesabove15°C,percapitaincomegrowthisincreasinglyadverselyaffectedbyhighertemperatures.TheOEforecastsarebroadlyinlinewiththeRCP6.0scenarioandassumeaverageglobaltemperatureswillreach2°Cabovepre-industriallevelsby2050.Theresultssuggestthatin2050globalGDPisaround3%lowerthaninacounterfactualscenariowherethetemperaturechangeremainedatthecurrentlevel.TheregionalimpactsaredistributedaccordingtotheevolutionoftheirtemperaturesrelativetotheconcavefunctionestimatedbyOE.Theseestimatesarehugelyuncertainandincomplete;theydonot,forexample,explicitlyincludeimpactfrommigrationorextensivecoastalflooding.Themitigationcostsofactionstodecarbonizetheenergysystemarealsouncertain,withsignificantvariationsacrossdifferentexternalestimates.Mostestimates,however,suggestthattheupfrontcostsincreasewiththestringencyofthemitigationeffort,suggestingthattheyarelikelytobebiggerinAcceleratedandNetZerothaninNewMomentum.EstimatespublishedbytheIPCC(AR5–Chapter6)suggestthatforscenariosconsistentwithkeepingglobaltemperatureincreasestowellbelow2°C,medianestimatesofmitigationcostsrangebetween2-6%ofglobalconsumptionby2050.Giventhehugerangeofuncertaintysurroundingestimatesoftheeconomicimpactofbothclimatechangesandmitigation,andthefactthatallthreeofthemainscenariosincludebothtypesofcoststoagreaterorlesserextent,theGDPprofilesusedintheOutlookarebasedontheillustrativeassumptionthattheseeffectsreduceGDPin2050byaround3%inallthreescenarios,relativetothecounterfactualinwhichtemperaturesareheldconstantatrecentaveragelevels.SourcesBurke,M.,Hsiang,S.&Miguel,E.Globalnon-lineareffectoftemperatureoneconomicproduction.Nature527,235–239(2015)TheglobalaggregatemitigationcostestimatesintermsofGDPlossesaretakenfromIPCCAR5–Chapter6Annex103bpEnergyOutlook:2022edition102AnnexInvestmentmethodologyOilandgasupstreamImpliedlevelsofoilandgasinvestmentarederivedfromtheproductionlevelsineachscenario.Upstreamoilandnaturalgascapitalexpenditureincludeswellcapex(costsrelatedtowellconstruction,wellcompletion,wellsimulation,steelcostsandmaterials),facilitycapex(coststodevelop,install,maintain,andmodifysurfaceinstallationsandinfrastructure)andexplorationcapex(costsincurredtofindandprovehydrocarbons).ItexcludesoperatingcostsandmidstreamcapexsuchascapexassociatedwithdevelopingLNGliquefactioncapacity.Assetlevelproductionprofilesareaggregatedbygeography,supplysegment(onshore,offshore,shaleandoilsands),supplytype(crude,condensates,NGLs,naturalgas)anddevelopmentalstage,i.e.,classifiedbywhethertheassetiscurrentlyproducing,underdevelopment,ornon-producingandunsanctioned.Asproductionfromproducingandsanctionedassetsdeclines,incrementalproductionfrominfilldrillingandnew,unsanctionedassetsiscalledontomeettheoilandgasdemandshortfalls.Theinvestmentrequiredtobringthisvolumeonlineisthenaddedtoanycapitalcostsassociatedwithmaintainingproducingandsanctionedprojects.Theaverage2022-2050declinerateforassetscurrentlyproducingandunderdevelopmentisaround5.0%p.a.foroiland5.5%p.a.forgasbutvarieswidelybysegmentandhydrocarbontype.Allestimatesarederivedfromasset-levelassessmentsfromRystadEnergy.WindandsolarWindandsolarenergyinvestmentrequirementsarebasedonthecapitalexpenditurecostsassociatedwiththedeploymentprofilesofeachtechnologyineachscenario.Windandsolardeploymentprofilesincludebothrenewablepowercapacityforend-useandforgreenhydrogenproduction.Thedeploymentprofilesalsoconsiderthepotentialimpactofcurtailment.Capitalexpenditurecostsareassignedtoeachscenariobasedontheirhistoricalvaluesandestimatedfutureevolution.Theyaredifferentiatedbytechnology,regionandscenariousingacombinationofinternalbpestimatesandexternalbenchmarking.Thecapitalexpenditurefiguresdonotincludetheincrementalwidersystemintegrationcostsassociatedwithwindandsolardeployment.CarboncaptureuseandstoragePowersectorpost-combustioncapturecostsarebasedoninternalbpestimatesdrawnfromawiderangeofsources.Capturecostsforindustry,heatandhydrogenarebasedonthe2019USNationalPetroleumCouncilReportMeetingtheDualChallenge:ARoadmaptoAt-ScaleDeploymentofCarbonCapture,Use,andStorage.Transportationandstoragecostswerebasedoninternalexpertjudgmentbyprimarystoragearchetypeforeachregionandassessmentofeitherpipelineorshippingcosts.105bpEnergyOutlook:2022edition104AnnexCarbonemissionsdefinitionsandsourcesUnlessotherwisestated,carbonemissionsrefertoCO2emissionsfromenergyuse(ietheproductionanduseofenergyinthethreefinalend-usesectors:industry,transportandbuildings),mostnon-energyrelatedindustrialprocesses,andnaturalgasflaring,plusmethaneemissionsassociatedwiththeproduction,transmissionanddistributionoffossilfuels,expressedinCO2equivalentterms.CO2emissionsfromindustrialprocessesreferonlytonon-energyemissionsfromcementproduction.CO2emissionsassociatedwiththeproductionofhydrogenfeedstockforammoniaandmethanolareincludedunderhydrogensectoremissions.AsinthebpStatisticalReview,historicaldatafornaturalgasflaringdataistakenfromVIIRSNightfire(VNF)dataandproducedbytheEarthObservationGroup(EOG),PayneInstituteforPublicPolicy,ColoradoSchoolofMines.Theprofilesfornaturalgasflaringinthescenariosassumethatflaringmovesinlinewithwellheadupstreamoutput.Historicaldataonmethaneemissionsassociatedwiththeproduction,transportationanddistributionoffossilfuelsaresourcedfromIEAestimatesofgreenhousegasemissions.TheprofilesforfuturemethaneemissionsassumedinthescenariosarebasedonfossilfuelproductionandtakeaccountofrecentpolicyinitiativessuchastheGlobalMethanePledge.Thenetchangeinmethaneemissionsistheaggregationoffuturechangestofossilfuelproductionandmethaneintensity.Thereisawiderangeofuncertaintywithrespecttobothcurrentestimatesofmethaneemissionsandtheglobalwarmingpotentialofmethaneemissions.Toensurealignmentwithfinancialandgovernmentreportingstandards,themethanetoCO2efactorusedinthescenariosisa100-yearGlobalWarmingPotential(GWP)of25,recommendedbytheIPCCinAR4.SourcesAndrew,R.M.,2019.GlobalCO2emissionsfromcementproduction,1928–2018.EarthSystemScienceData11,1675–1710,(updateddatasetJuly2021)IPCC2006,2006IPCCGuidelinesforNationalGreenhouseGasInventories,PreparedbytheNationalGreenhouseGasInventoriesProgramme,EgglestonH.S.,BuendiaL.,MiwaK.,NgaraT.andTanabeK.(eds).VIIRSNightfire(VNF)producedbytheEarthObservationGroup(EOG),PayneInstituteforPublicPolicy,ColoradoSchoolofMines.IEA(2021),GreenhouseGasEmissionsfromEnergyDataExplorer,IEA,ParisIPCCFourthAssessmentReport:ClimateChange2007.IEA(2021),MethaneTracker2021,IEA,ParisSustainabilityReportingGuidancefortheOilandGasIndustry,4thEdition,2020.IPIECA/API/IOGP.106AnnexOtherdatadefinitionsandsourcesDataDatadefinitionsarebasedonthebpStatisticalReviewofWorldEnergy,unlessotherwisenoted.Datausedforcomparisons,includingscenariosfromtheIntergovernmentalPanelonClimateChange(IPCC),unlessotherwisenotedarerebasedtobeconsistentwiththebpStatisticalReview.Primaryenergy,unlessotherwisenoted,comprisescommerciallytradedfuelsandtraditionalbiomass.InthisOutlook,primaryenergyisderivedintwoways:thesubstitutionmethod-whichgrossesupenergyderivedfromnon-fossilpowerbytheequivalentamountoffossilfuelrequiredtogeneratethesamevolumeofelectricityinathermalpowerstation.Thegrossingassumptionistimevarying,withthesimplifiedassumptionthatefficiencywillincreaselinearlyfrom40%todayto45%by2050thephysicalcontentmethod–whichusestheoutputofnon-fossilpowergenerationdirectly.Figuresandchartsofprimaryenergyareestimatedusingthesubstitutionmethod,unlessotherwisestated.GrossDomesticProduct(GDP)isexpressedintermsofrealPurchasingPowerParity(PPP)at2015prices.SectorsTransportincludesenergyusedinheavyroad,lightroad,marine,railandaviation.Electricvehiclesincludeallfourwheeledvehiclescapableofplug-inelectriccharging.Industryincludesenergyusedincommodityandgoodsmanufacturing,construction,mining,theenergyindustryincludingpipelinetransport,andfortransformationprocessesoutsideofpower,heatandhydrogengeneration.Feedstocksincludesnon-combustedfuelthatisusedasafeedstocktocreatematerialssuchaspetrochemicals,lubricantandbitumen.Buildingsincludesenergyusedinresidentialandcommercialbuildings,agriculture,forestry,andfishing.RegionsDevelopedisapproximatedasNorthAmericaplusEuropeplusDevelopedAsia.DevelopedAsiaincludesOECDAsiaplusotherhighincomeAsiancountriesandregions.EmergingreferstoallothercountriesandregionsnotinDeveloped.ChinareferstotheChineseMainland.OtherEmergingAsiaincludesallcountriesandregionsinAsiaexcludingmainlandChina,IndiaandDevelopedAsia.107bpEnergyOutlook:2022editionFuels,energycarriers,carbonandmaterialsOil,unlessotherwisenoted,includescrude(includingshaleoilandoilsands),naturalgasliquids(NGLs),gas-to-liquids(GTLs),coal-to-liquids(CTLs),condensates,andrefinerygains.H-fuelsareallfuelsderivedfromlow-carbonhydrogen,includingammonia,methanol,andothersynthetichydrocarbonsRenewables,unlessotherwisenoted,includeswind,solar,geothermal,biomass,biomethane,andbiofuelsandexcludelarge-scalehydro.Non-fossilsincluderenewables,nuclearandhydro.Traditionalbiomassreferstosolidbiomass(typicallynottraded)usedwithbasictechnologiese.g.forcooking.Hydrogendemandincludesitsdirectconsumptionintransport,industry,buildings,powerandheat,aswellasfeedstockdemandfortheproductionofH-fuelsandforconventionalrefiningandpetrochemicalfeedstockdemand.Low-carbonhydrogenincludesgreenhydrogen,biomasswithCCUS,gaswithCCUS,andcoalwithCCUS.CCUSoptionsincludeCO2captureratesof93-98%overtheOutlook.Theglobalaveragemethaneemissionsrateforthegasorcoalconsumedtoproducebluehydrogenisbetween1.4-0.7%overtheOutlook.SourcesBPp.l.c.,bpStatisticalReviewofWorldEnergy,London,UnitedKingdom,June2021InternationalEnergyAgency,WorldEnergyStatistics,September2021InternationalEnergyAgency,WorldEnergyBalances,July2021OxfordEconomics,GlobalGDPForecasts,2021UnitedNations,DepartmentofEconomicandSocialAffairs,PopulationDivision(2019).WorldPopulationProspects2019,OnlineEdition.Rev.1Roeetal.(2020),Land-basedmeasurestomitigateclimatechange:PotentialandfeasibilitybycountryGriscometal.(2017),NaturalclimatesolutionsEnergyTransitionsCommission(2022),Reachingclimateobjectives–theroleofcarbondioxideremovalsWorldEconomicForum(2021),NatureandNetZero109bpEnergyOutlook:2022editionDisclaimerThispublicationcontainsforward-lookingstatements–thatis,statementsrelatedtofuture,notpasteventsandcircumstances.Thesestatementsmaygenerally,butnotalways,beidentifiedbytheuseofwordssuchas‘will’,‘expects,‘isexpectedto’,‘aims’,‘should’,‘may’,‘objective’,‘islikelyto’,‘intends’,‘believes’,anticipates,‘plans’,‘wesee’orsimilarexpressions.Inparticular,thefollowing,amongotherstatements,areallforwardlookinginnature:statementsregardingtheglobalenergytransition,increasingprosperityandlivingstandardsinthedevelopingworldandemergingeconomies,expansionofthecirculareconomy,urbanizationandincreasingindustrializationandproductivity,energydemand,consumptionandaccess,impactsoftheCoronaviruspandemic,theglobalfuelmixincludingitscompositionandhowthatmaychangeovertimeandindifferentpathwaysorscenarios,theglobalenergysystemincludingdifferentpathwaysandscenariosandhowitmayberestructured,societalpreferences,globaleconomicgrowthincludingtheimpactofclimatechangeonthis,populationgrowth,demandforpassengerandcommercialtransportation,energymarkets,energyefficiency,policymeasuresandsupportforrenewableenergiesandotherlower-carbonalternatives,sourcesofenergysupplyandproduction,technologicaldevelopments,tradedisputes,sanctionsandothermattersthatmayimpactenergysecurity,andthegrowthofcarbonemissions.Forward-lookingstatementsinvolverisksanduncertaintiesbecausetheyrelatetoevents,anddependoncircumstances,thatwillormayoccurinthefuture.Actualoutcomesmaydiffermateriallyfromthoseexpressedinsuchstatementsdependingonavarietyoffactors,including:thespecificfactorsidentifiedinthediscussionsexpressedinsuchstatements;productsupply,demandandpricing;politicalstability;generaleconomicconditions;demographicchanges;legalandregulatorydevelopments;availabilityofnewtechnologies;naturaldisastersandadverseweatherconditions;warsandactsofterrorismorsabotage;publichealthsituationsincludingtheimpactsofanepidemicorpandemicandotherfactorsdiscussedinthispublication.bpdisclaimsanyobligationtoupdatethispublicationortocorrectanyinaccuracieswhichmaybecomeapparent.NeitherBPp.l.c.noranyofitssubsidiaries(noranyoftheirrespectiveofficers,employeesandagents)acceptliabilityforanyinaccuraciesoromissionsorforanydirect,indirect,special,consequentialorotherlossesordamagesofwhatsoeverkindinorinconnectionwiththispublicationoranyinformationcontainedinit.108Annex©BPp.l.c.2022