【研究】铱资源是否足以支撑未来氢能经济的发展VIP专享VIP免费

贵金属
Precious Metals
ISSN 1004-0676,CN 53-1063/TG
《贵金属》网络首发论文
题目: 铱资源是否足以支撑未来氢能经济的发展
作者: Dawn BROOKS
收稿日期: 2021-08-03
网络首发日期: 2021-11-17
引用格式: Dawn BROOKS.铱资源是否足以支撑未来氢能经济的发展[J/OL].贵金属.
https://kns.cnki.net/kcms/detail/53.1063.TG.20211117.0947.004.html
网络首发:在编辑部工作流程中,稿件从录用到出版要经历录用定稿、排版定稿、整期汇编定稿等阶
段。录用定稿指内容已经确定,且通过同行评议、主编终审同意刊用的稿件。排版定稿指录用定稿按照期
刊特定版式(包括网络呈现版式)排版后的稿件,可暂不确定出版年、卷、期和页码。整期汇编定稿指出
版年、卷、期、页码均已确定的印刷或数字出版的整期汇编稿件。录用定稿网络首发稿件内容必须符合《出
版管理条例》和《期刊出版管理规定》的有关规定;学术研究成果具有创新性、科学性和先进性,符合编
辑部对刊文的录用要求,不存在学术不端行为及其他侵权行为;稿件内容应基本符合国家有关书刊编辑、
出版的技术标准,正确使用和统一规范语言文字、符号、数字、外文字母、法定计量单位及地图标注等。
为确保录用定稿网络首发的严肃性,录用定稿一经发布,不得修改论文题目、作者、机构名称和学术内容,
只可基于编辑规范进行少量文字的修改。
出版确认:纸质期刊编辑部通过与《中国学术期刊(光盘版)》电子杂志社有限公司签约,在《中国
学术期刊(网络版)出版传播平台上创办与纸质期刊内容一致的网络版,以单篇或整期出版形式,在印刷
出版之前刊发论文的录用定稿、排版定稿、整期汇编定稿。因为《中国学术期刊(网络版)是国家新闻出
版广电总局批准的网络连续型出版物(ISSN 2096-4188CN 11-6037/Z,所以签约期刊的网络版上网络首
发论文视为正式出版。
Precious Metals
Received date: 2021-08-03
Author: Dawn BROOKS (Mr.), Dawn.Brooks@AngloAmerican.com
Will there be enough iridium to meet demand from the
hydrogen economy
Dawn BROOKS
(Anglo American, London EC1N 6RA, UK)
Abstract: Iridium’s main role in the hydrogen economy is alongside platinum as a catalyst in proton
exchange membrane (PEM) electrolysis. PEM electrolysis accounts for several hundred kg of iridium
demand per year today. On the basis that PGM loadings will fall heavily from today’s level, we think it
would be reasonable to expect annual iridium demand from PEM electrolysis to be somewhere up to 1 tonne
per year in 2030. Iridium usage may increase if the capacity of hydrogen from PEM electrolysis increases
significantly, and the demand for iridium in other industrial areas is likely to grow in the future. It is estimated
that iridium reserves are about 3,000 tons, and primary iridium production is about 7 tons per year. It is
expected that iridium availability will not be a limiting factor in the future development of green hydrogen
production.
Key words: iridium; PEM electrolysis; hydrogen energy
CLC number: TG146.3 Document code: A
铱资源是否足以支撑未来氢能经济的发展
Dawn BROOKS
(Anglo American, London SW1Y 5AN, UK)
要:铱在氢能经济中的主要角色是和铂金一起作为质子交换膜电解水制氢反应的催化剂。目前
铱在质子交换膜电解水制氢领域的消费量为每年几百千克。预计到 2030 年,用于质子交换膜电解
水制氢的铱年需求量将达到 1 t如果质子交换膜电解水制氢产能大幅增长,铱的用量也会相应
加,而且铱在其他工业领域未来可能也会带来需求增长。估计铱的地质储量约 3000 t,每年铱的矿
产量约为 7 t,铱的可获得性不会成为未来大规模制取绿氢的限制因素。
关键词:铱;质子交换膜电解;氢能
Cautionary statement: This article has been prepared
for information purposes only and does not constitute
investment recommendations or advice.
Hydrogen has long been used as a feedstock in a
range of chemical and industrial processes. A limiting
factor to the more widespread use of hydrogen to date
has been that it was previously often manufactured
from fossil fuels and consequently had a high carbon
footprint. The landscape is now changing as cheap and
widely available renewable energy allows the
production of cost competitive, 100% carbon-free
hydrogen. This makes the gas an enabler for multisector
decarbonisation.
Iridium’s main role in the hydrogen economy is
alongside platinum as a catalyst in proton exchange
membrane (PEM) electrolysis (as shown in Fig.1).
PEM electrolysis is the preferred process by which to
网络首发时间:2021-11-17 11:27:49
网络首发地址:https://kns.cnki.net/kcms/detail/53.1063.TG.20211117.0947.004.html
2
Precious Metals
produce green hydrogen due to the higher power
densities, higher capacities and quicker start-up times
supported by PEM electrolysis compared to other
electrolysis methods. PEM’s share of technology is
increasing.
Fig.1 Diagram showing the basic principles of PEM
electrolysis: Water molecules are split into hydrogen and
oxygen using electrical energy
1 How much iridium does PEM electrolysis
use today?
At present, every GW of PEM electrolysis
capacity installed reportedly uses about 1.5 tonnes of
iridium, according to Heraeus, a leading provider of
precious metals services and products[1]. At these
loadings, we estimate PEM electrolysis accounts for
several hundred kg of iridium demand per year today.
This demand can easily be met from existing
production. At present, around seven tonnes of iridium
is mined each year, the vast majority of which comes
from South Africa (see Fig.2).
Fig.2 Mined output of iridium from South Africa
(Source: SA Govt statistics)
2 How much could iridium demand from
this sector grow over the next decade?
Future iridium demand from this sector will
depend on two factors; the demand for PEM
electrolysers and the loading of iridium that they need.
There is growing interest from governments in
hydrogen and fuel cell technologies. The uptake of
hydrogen technology is primarily being driven by
government policies, many of which are predicated on
the availability of carbon-neutral hydrogen. The drivers
for promoting hydrogen and fuel cells in energy policy
relate to improving the reliability, efficiency and
security of energy systems, reducing environmental
impacts, and developing new low-carbon industries,
with their associated employment opportunities and
skills.
There are a variety of government targets for new
PEM electrolysis capacity. A cumulative installation of
35 GW of PEM electrolysis capacity worldwide by
2030 would be a reasonable estimate relative to
government targets, and is in line with the IEEFA’s
estimates[2], published in August 2020.
There is a heavy focus on thrifting iridium
loadings on PEM electrolysers to a small fraction of
today’s levels. There is widespread consensus that this
will occur, and we are confident loadings in the future
will be far lower than they are today. How far could
they fall? Heraeus suggests loadings could fall up to 90%
from current amounts i.e. as low as 100 kg/GW.
Another estimate by E4tech, a consultancy, suggests
low-case iridium loadings could be as little as 50
kg/GW.
On the basis that PGM loadings will fall heavily
from today’s level, we think it would be reasonable to
expect annual iridium demand from PEM electrolysis
to be somewhere up to 1 tonne per year in 2030. Again,
this could easily be met from mined iridium production
of around 7 tonnes per year.
0
2
4
6
8
2015 2016 2017 2018 2019
Ir production/(t/a)
贵金属PreciousMetalsISSN1004-0676,CN53-1063/TG《贵金属》网络首发论文题目:铱资源是否足以支撑未来氢能经济的发展作者:DawnBROOKS收稿日期:2021-08-03网络首发日期:2021-11-17引用格式:DawnBROOKS.铱资源是否足以支撑未来氢能经济的发展[J/OL].贵金属.https://kns.cnki.net/kcms/detail/53.1063.TG.20211117.0947.004.html网络首发:在编辑部工作流程中,稿件从录用到出版要经历录用定稿、排版定稿、整期汇编定稿等阶段。录用定稿指内容已经确定,且通过同行评议、主编终审同意刊用的稿件。排版定稿指录用定稿按照期刊特定版式(包括网络呈现版式)排版后的稿件,可暂不确定出版年、卷、期和页码。整期汇编定稿指出版年、卷、期、页码均已确定的印刷或数字出版的整期汇编稿件。录用定稿网络首发稿件内容必须符合《出版管理条例》和《期刊出版管理规定》的有关规定;学术研究成果具有创新性、科学性和先进性,符合编辑部对刊文的录用要求,不存在学术不端行为及其他侵权行为;稿件内容应基本符合国家有关书刊编辑、出版的技术标准,正确使用和统一规范语言文字、符号、数字、外文字母、法定计量单位及地图标注等。为确保录用定稿网络首发的严肃性,录用定稿一经发布,不得修改论文题目、作者、机构名称和学术内容,只可基于编辑规范进行少量文字的修改。出版确认:纸质期刊编辑部通过与《中国学术期刊(光盘版)》电子杂志社有限公司签约,在《中国学术期刊(网络版)》出版传播平台上创办与纸质期刊内容一致的网络版,以单篇或整期出版形式,在印刷出版之前刊发论文的录用定稿、排版定稿、整期汇编定稿。因为《中国学术期刊(网络版)》是国家新闻出版广电总局批准的网络连续型出版物(ISSN2096-4188,CN11-6037/Z),所以签约期刊的网络版上网络首发论文视为正式出版。贵金属PreciousMetalsReceiveddate:2021-08-03Author:DawnBROOKS(Mr.),Dawn.Brooks@AngloAmerican.comWilltherebeenoughiridiumtomeetdemandfromthehydrogeneconomyDawnBROOKS(AngloAmerican,LondonEC1N6RA,UK)Abstract:Iridium’smainroleinthehydrogeneconomyisalongsideplatinumasacatalystinprotonexchangemembrane(PEM)electrolysis.PEMelectrolysisaccountsforseveralhundredkgofiridiumdemandperyeartoday.OnthebasisthatPGMloadingswillfallheavilyfromtoday’slevel,wethinkitwouldbereasonabletoexpectannualiridiumdemandfromPEMelectrolysistobesomewhereupto1tonneperyearin2030.IridiumusagemayincreaseifthecapacityofhydrogenfromPEMelectrolysisincreasessignificantly,andthedemandforiridiuminotherindustrialareasislikelytogrowinthefuture.Itisestimatedthatiridiumreservesareabout3,000tons,andprimaryiridiumproductionisabout7tonsperyear.Itisexpectedthatiridiumavailabilitywillnotbealimitingfactorinthefuturedevelopmentofgreenhydrogenproduction.Keywords:iridium;PEMelectrolysis;hydrogenenergyCLCnumber:TG146.3Documentcode:A铱资源是否足以支撑未来氢能经济的发展DawnBROOKS(AngloAmerican,LondonSW1Y5AN,UK)摘要:铱在氢能经济中的主要角色是和铂金一起作为质子交换膜电解水制氢反应的催化剂。目前铱在质子交换膜电解水制氢领域的消费量为每年几百千克。预计到2030年,用于质子交换膜电解水制氢的铱年需求量将达到1t。如果质子交换膜电解水制氢产能大幅增长,铱的用量也会相应增加,而且铱在其他工业领域未来可能也会带来需求增长。估计铱的地质储量约3000t,每年铱的矿产量约为7t,铱的可获得性不会成为未来大规模制取绿氢的限制因素。关键词:铱;质子交换膜电解;氢能Cautionarystatement:Thisarticlehasbeenpreparedforinformationpurposesonlyanddoesnotconstituteinvestmentrecommendationsoradvice.Hydrogenhaslongbeenusedasafeedstockinarangeofchemicalandindustrialprocesses.Alimitingfactortothemorewidespreaduseofhydrogentodatehasbeenthatitwaspreviouslyoftenmanufacturedfromfossilfuelsandconsequentlyhadahighcarbonfootprint.Thelandscapeisnowchangingascheapandwidelyavailablerenewableenergyallowstheproductionofcostcompetitive,100%carbon-freehydrogen.Thismakesthegasanenablerformultisectordecarbonisation.Iridium’smainroleinthehydrogeneconomyisalongsideplatinumasacatalystinprotonexchangemembrane(PEM)electrolysis(asshowninFig.1).PEMelectrolysisisthepreferredprocessbywhichto网络首发时间:2021-11-1711:27:49网络首发地址:https://kns.cnki.net/kcms/detail/53.1063.TG.20211117.0947.004.html2PreciousMetalsproducegreenhydrogenduetothehigherpowerdensities,highercapacitiesandquickerstart-uptimessupportedbyPEMelectrolysiscomparedtootherelectrolysismethods.PEM’sshareoftechnologyisincreasing.Fig.1DiagramshowingthebasicprinciplesofPEMelectrolysis:Watermoleculesaresplitintohydrogenandoxygenusingelectricalenergy1HowmuchiridiumdoesPEMelectrolysisusetoday?Atpresent,everyGWofPEMelectrolysiscapacityinstalledreportedlyusesabout1.5tonnesofiridium,accordingtoHeraeus,aleadingproviderofpreciousmetalsservicesandproducts[1].Attheseloadings,weestimatePEMelectrolysisaccountsforseveralhundredkgofiridiumdemandperyeartoday.Thisdemandcaneasilybemetfromexistingproduction.Atpresent,aroundseventonnesofiridiumisminedeachyear,thevastmajorityofwhichcomesfromSouthAfrica(seeFig.2).Fig.2MinedoutputofiridiumfromSouthAfrica(Source:SAGovtstatistics)2Howmuchcouldiridiumdemandfromthissectorgrowoverthenextdecade?Futureiridiumdemandfromthissectorwilldependontwofactors;thedemandforPEMelectrolysersandtheloadingofiridiumthattheyneed.Thereisgrowinginterestfromgovernmentsinhydrogenandfuelcelltechnologies.Theuptakeofhydrogentechnologyisprimarilybeingdrivenbygovernmentpolicies,manyofwhicharepredicatedontheavailabilityofcarbon-neutralhydrogen.Thedriversforpromotinghydrogenandfuelcellsinenergypolicyrelatetoimprovingthereliability,efficiencyandsecurityofenergysystems,reducingenvironmentalimpacts,anddevelopingnewlow-carbonindustries,withtheirassociatedemploymentopportunitiesandskills.ThereareavarietyofgovernmenttargetsfornewPEMelectrolysiscapacity.Acumulativeinstallationof35GWofPEMelectrolysiscapacityworldwideby2030wouldbeareasonableestimaterelativetogovernmenttargets,andisinlinewiththeIEEFA’sestimates[2],publishedinAugust2020.ThereisaheavyfocusonthriftingiridiumloadingsonPEMelectrolyserstoasmallfractionoftoday’slevels.Thereiswidespreadconsensusthatthiswilloccur,andweareconfidentloadingsinthefuturewillbefarlowerthantheyaretoday.Howfarcouldtheyfall?Heraeussuggestsloadingscouldfallupto90%fromcurrentamountsi.e.aslowas100kg/GW.AnotherestimatebyE4tech,aconsultancy,suggestslow-caseiridiumloadingscouldbeaslittleas50kg/GW.OnthebasisthatPGMloadingswillfallheavilyfromtoday’slevel,wethinkitwouldbereasonabletoexpectannualiridiumdemandfromPEMelectrolysistobesomewhereupto1tonneperyearin2030.Again,thiscouldeasilybemetfromminediridiumproductionofaround7tonnesperyear.0246820152016201720182019Irproduction/(t/a)DawnBROOKS:Willtherebeenoughiridiumtomeetdemandfromthehydrogeneconomy33Howaboutoverthelongerterm?Itisalwaysdifficulttoforecastseveraldecadesahead–evenmoresoforatechnologysuchasPEMelectrolysis,whichisstillinitscommercialinfancy.However,wecanconsidertheideainbroadterms.Overtheverylongterm,lookingouttoperhaps2050,thereisthepossibilitythattheuseofhydrogenandfuelcelltechnologywillbecomesignificantlymorewidespread.Greenhydrogencouldbeusedinawiderangeofapplicationsaroundtheworld.Obviously,iftheamountofPEMelectrolysiscapacitygrowsextremelysharply,thiswouldlikelyresultinhigheriridiumdemandaswell.Potentialusesforgreenhydrogen(seeFig.3):Itcanbeburnedtouseasapowersourceforcookingandheating.Switchingaproportionofdemandfromnaturalgastohydrogeninthissectorcanbedonewithminimalchangestoexistinginfrastructureandoffersasolutiontoreducecarbonemissions.Similarly,hydrogenoffersanenvironmentallyfriendlyalternativeforcokingcoalintheblastfurnaceandtherearecurrentlyseveralsmall-scalecommercialdemonstrationsofthistechnologyinactionaroundtheworld.Itcanalsobeusedmorelikeabattery,providingamethodbywhichtostoreenergyforlateruseandcouldbeanidealsolutionforstoringexcessenergygeneratedfromrenewableenergysourcessuchassolarpower.Severalcountriesarealreadybeginningtoincorporatehydrogenenergystorageintotheirnationalpowernetwork.Hydrogencanalsobeusedtopowerfuelcelltechnology.Inturn,fuelcellscanbeusedinawiderangeofapplications.Fig.3Overviewofhydrogenapplication(Source:ChinaHydrogenAlliance,Pathtohydrogencompetitiveness)4PreciousMetalsItseemslikelythatiridiumloadingswouldcontinuetofallinthelongertermbasedonourexperienceofthriftinginothercatalystsystems.Assumingthishappens,consumptionofmetalperGWshouldfallbelowthe50kgmentionedaboveoverthelongerterm.4Whatareotherusesforiridium?Iridiumisusedinawidevarietyofindustrialapplications(seeFig.4).Themaindemandsectorsforiridiumincludetheelectrochemical,electricalandchemicalindustries.Thereareseveralareasofpossibledemandgrowthforthemetalinthefutureotherthanitsuseinhydrogentechnology.Oneoftheseisiridium’suseasamaterialtomakecrucibles.Thesecruciblesareinturnusedinthemanufactureofmanyproducts,includingthetechnologyusedfor5G.SFAestimatedoverthenextfewyears,5Gsmartphonesalesareexpectedtogrowrapidlyandmarketpenetrationispredictedtoincreasefromlessthan20%in2020,toaround70%by2025.TheChinaAcademyofInformationandCommunicationsTechnologyreportstheshareof5Genabledmobilephoneswithintotalmobilephonesaleshadrisentoabove70%inChinaduringQ12021.Anotherareaofpotentialdemandgrowthforiridiumcomesfromorganiclightemittingdiode(OLED)technology,whichiswidelyusedinvariouselectronicproductssuchastelevisionandmobilephonescreen.ThereispromisingdemandoutlookforiridiumcomplexbasedphosphorescentmaterialusedforOLED.Iridiumdemandfromchloralkalielectrodesmayalsoincrease,asaconsequenceofgrowingdemandfortitaniumanodesandanticorrosiveelectrodes,bothofwhichuseiridium.Fig.4Iridiumdemandbysegment(Source:AngloAmericanMarketIntelligence)5Couldiridiumhavearoletoplayinfuelcelltechnology?Iridiumissometimesusedasaco-catalystonanti-electrodereversalcatalystsinfuelcells,intheformofiridiumoxide.Thisisnotrequiredforallfuelcellapplications;theanti-electrodereversalcatalystusageisdependentonthespecificapplication.Itismostcommonlyusedforfuelcellswhichwillbeoperatedinverycoldenvironments,orforfuelcellswhichareusedonatransient,orfrequentstop-startbasis.Undertheseconditions,theuseofiridiumonthecatalystcanimprovethelifespanofthefuelcell.Iridiumloadingsonfuelcellcatalystsarefarlowerthantheequivalentplatinumloadings.WeestimatethatDawnBROOKS:Willtherebeenoughiridiumtomeetdemandfromthehydrogeneconomy5theiridiumloadingforthisapplicationislessthan1/10oftheplatinumloading.Forinstance,inafuelcellwithaplatinumloadingof1g/kW,theiridiumloadingwouldbesomewhereintheregionof0.067g/kW.6Howmuchiridiumistheoreticallyavailable?Isthisenoughtomeetdemand?Ontopofminedproduction,asmallvolumeofiridiumiscurrentlyalsoavailablefromrecycling.Thisaccountsforarelativelysmallshareofglobalsupplyatpresentbutwilllikelycontinuetogrowinthefuture.Metalusedinmanyapplicationsisnotlostandcaneventuallyberecovered.Forinstance,oldsparkplugsoriridiumcruciblesusedintheelectronicssectorcanberecycled;oneday,PEMelectrolyserstooarelikelytoberecycled.Thereisalsoknowntobefarmoreiridiumavailableinthegroundbeyondthedepositscurrentlybeingminedtoday.TheUnitedStatesGeologicalSocietyestimatestotalPGMresourcestobeover100,000tonnes[3],ofwhichwecouldestimatethatperhaps3%mightbeiridiumi.e.atleast3,000tonnes.However,iridiumisexclusivelyminedasaby-producttoplatinum,soitisveryunlikelythataminewouldeverbeopenedpurelyforitsiridium.It’shardtoimagineaworldwherethereisgreatdemandforgreenhydrogenbutnotforfuelcelltechnologyasonewouldexpectuptakeofthetwotechnologiestobebroadlycorrelated.Underascenariowherefuelcelltechnologyisubiquitous,minedoutputofplatinumcouldwellincreasefromtoday’slevel(albeittoanextentwhichcouldeasilybemetfromexistingprojectsandknownreserves).Thiswouldmeananincreaseintheminedproductionofiridium.Ofcourse,thisanalysisissensitivetoassumptionsontheuptakeofPEMelectrolysisandtheiridiumloadingsusedonitscatalysts.Theremayalsootherbeapplicationsforiridiumwithinthehydrogeneconomy,suchasfuelcellsthemselves,whichcouldaddtoiridiumdemand.Nevertheless,itdoesputthesenumbersintoperspectiveandhopefullyallaysanyfearsaroundiridiumsupply.Weareconfidentthatiridiumavailabilitywillnotbealimitingfactorinthefuturedevelopmentofgreenhydrogenproduction.【中文译稿】铱资源是否足以支撑未来氢能经济的发展曲艺,倪慧峰译(英美资源贸易(中国)有限公司,上海200120)免责声明:本文仅供信息参考,不构成投资推荐或建议。长期以来,氢气一直被用作生产各种化学品和工业产品工艺中的原料气,但限制其广泛应用的因素之一是它通常源自于化石燃料。随着廉价而且广泛可获得的可再生能源的充分利用,再经过电解水工艺就可以生产出成本颇具竞争力的零碳排放能源—“绿氢”,因此这种情况正在改变。这也使得氢气能够成为多个领域脱碳的先行推动者。铱在氢能经济中的主要角色是和铂一起作为质子交换膜电解水制氢反应的催化剂。质子交换膜电解水制氢(如图1所示)因其电流密度高,冷启动时间短是面向可再生能源生产“绿氢”的首选方法。电解是利用电能将水分子分解为氢气和氧气,其中氢气的用途十分广泛。图1质子交换膜电解水制氢的基本原理6PreciousMetals1目前铱金在质子交换膜电解水制氢中的消费量如何?根据德国贺利氏[1]的最新统计,基于铱在每吉瓦(GW)质子交换膜电解水制氢装置中的用量大约是1.5吨左右的涂敷量假设,我们认为目前铱在质子交换膜电解水制氢领域的消费量为几百千克。市场现有的供应可以轻松满足该需求。目前全球矿产铱的年产量约为7吨,大部分来自南非(参见图2)。图2南非矿产铱产量(数据来源:南非政府统计数据)2未来十年该领域铱需求将会增长多少?未来该领域铱需求量主要取决于两方面的因素:质子交换膜电解槽的需求以及铱的涂敷量。各国政府越来越多地关注氢能和燃料电池技术。对氢能技术的采用最初是由政府政策推动,其前提是需要多大的绿氢供应量来实现碳中和。在能源政策的制定中推广氢能与燃料电池技术的应用有助于建立可靠、高效及安全的能源体系,减少对环境的影响,发展低碳工业并创造就业机会。许多国家的政府都公布了新增电解水制氢的产能目标。考虑到这些新增产能计划,2030年全球累计质子交换膜电解水制氢产能将达到35吉瓦是较为合理的预测,这也和美国能源经济与金融分析研究所2020年8月发布的预测[2]保持一致。质子交换膜电解槽中的铱涂敷量是否在未来有可能大幅下降是影响需求预测的重要因素。市场参与者普遍认为这种情况将会发生,而且我们相信未来的涂敷量将远低于目前的水平。那么下降幅度会有多大呢?德国贺利氏预计涂敷量将从目前水平下降90%,低至100kg/GW。来自研究机构E4tech的预测显示,在较低需求情景假设中的铱的涂敷量可能只有50kg/GW。基于铂族金属涂敷量会从目前水平大幅下降的假设,我们预计到2030年,用于质子交换膜电解水制氢的铱年需求量将达到1吨。矿产铱每年的产量在7吨左右,因此原矿供应可以轻松满足需求。3更加长远的需求前景展望预测几十年以后的需求总是有一定难度,尤其对于还处在商业化初期的质子交换膜电解水制氢技术更是如此。不过,我们可以从广义上考虑这个问题。从很长一段时间来看,到2050年氢能与燃料电池技术的使用可能会极其普遍。绿氢在全球的应用非常广泛,很显然,如果质子交换膜电解水制氢产能大幅增长,铱的用量也会相应增加。绿氢的潜在应用包括(参见图3):绿氢可以作为燃料燃烧为家庭烹饪和供暖提供能量。对现有基础设施做最小改变就可以将一部分天然气的需求转移到氢能领域,同时降低碳排放。在高炉炼铁中绿氢可以作为焦煤的环境友好型替代品。目前全球有一些小型的商业化示范项目在运行。绿氢也可以像电池一样提供储能功能,并为可再生能源如太阳能产生的未消纳电力提供理想的解决方案。一些国家已经将氢能储能融入了其电力网络。绿氢也可以为燃料电池技术提供能量,而燃料电池的应用已经十分广泛。根据我们对以往各种催化剂系统中因涂敷技术进步而带来的贵金属载量下降的经验来看,长期来讲铱的涂敷量可能会持续下降。如果以上假设成立,铱用量将会降至50kg/GW以下。4铱的传统应用有哪些?铱主要应用于工业领域(如图4所示),主要包括电化学,电子和化工。除氢能应用外还有几个领域未来可能会带来需求增长。0246820152016201720182019Irproduction/(t/a)DawnBROOKS:Willtherebeenoughiridiumtomeetdemandfromthehydrogeneconomy7图3氢能源应用(数据来源:中国氢能联盟-氢能平价之路)图4铱需求划分(数据来源:英美资源市场分析)其中之一就是铱作为坩埚的原材料。铱坩埚可以用来加工很多晶体产品,包括应用于5G技术。SFA预计未来五年5G智能手机销售将快速增长,其市场渗透率将可能从2020年的低于20%上升至2025年的70%左右。中国信息通信技术研究院的数据显示今年一季度中国市场的5G手机份额已经达8PreciousMetals到了70%以上。另外一个潜在的市场需求增长点来自有机发光半导体(OLED)技术,其广泛应用于各种电子产品如电视和移动电话显示屏。预计用于OLED的铱基磷光材料需求前景广阔。来自氯碱行业的铱需求也可能会增加,这是对钛阳极和防腐电极需求增长的结果,这两种电极均使用铱。5铱在燃料电池应用中的技术研究铱也会被用于燃料电池中的抗反极催化剂。目前看其中二氧化铱的涂敷量不足铂金的十分之一,如果铂金的涂敷量是1g/kW的话,铱的用量只有大约0.067g/kW。抗反极催化剂的使用取决于不同的应用场景。一般在有极冷启动要求和久停后瞬时启动的场景下需要抗反极催化剂。同时它还有助于改善燃料电池的使用寿命。6理论上有多少铱可供开采使用?在矿产铱供应的基础上,同时会有少量铱来自回收供应。回收的铱占全球供应量的比例很小,不过有望保持增长。在很多应用领域铱并没有被消耗掉且最终是可以被回收的。例如,报废的火花塞和电子领域的铱坩埚都可以回收利用。不久的将来,质子交换膜电解槽中的铱也可以被回收。据了解,除了目前正在开采的矿山以外,地下储藏可开采的铱资源更加充裕。美国地质学会估计[3]铂族金属资源的储藏总量超过10万吨,我们估计其中的3%可能是铱,即至少3000吨。但是,因为铱是铂开采的副产品,所以完全为了铱而开采的矿山是不太可能有的。我们很难想象一个对绿氢有巨大需求而对燃料电池技术没有同等需求的世界,因为这两种技术的应用是紧密相关的。在燃料电池技术普及的情况下,铂金的开采量可能会在目前水平上大幅增加(尽管现有项目和已知储量很容易满足该需求)。这将意味着铱矿产量亦会随之增加。当然,本文的分析主要是基于对质子交换膜电解水制氢需求量和铱涂敷量变化的种种假设。氢能经济中铱的其他应用,如燃料电池也会贡献铱的一部分需求增量。然而,本文对铱的需求预测还是有充足的依据,并有希望减轻市场参与者们对铱供应的担忧。我们相信,铱的可获得性不会成为未来大规模制取绿氢的限制因素。参考文献:[1]LORENZS.Milestoneforgreenhydrogen:Heraeuslaunchesnewelectrocatalyst[R/OL].(2020-09-28)[2021-08-03].https://www.heraeus.com/en/hpm/hpm_news/2020_hpm_news/09_milestone_for_green_hydrogen.html.[2]PORYL.GreatexpectationsAsia,AustraliaandEuropeleadingemerginggreenhydrogeneconomy,butprojectdelayslikely[R/OL].(2020-08-01)[2021-08-03].https://ieefa.org/wp-content/uploads/2020/08/Asia_Australia_Europe-Lead-Green-Hydrogen-Economy_August-2020.pdf.[3]BERNHARDTD,REILLYIIJF..Mineralcommoditysummaries2020[M/OL].(2020-01-31)[2021-08-03].http://pubs.usgs.gov/periodicals/mcs2020/mcs2020.pdf.

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

碳中和
已认证
内容提供者

碳中和

确认删除?
回到顶部
微信客服
  • 管理员微信
QQ客服
  • QQ客服点击这里给我发消息
客服邮箱