EmissionsGapReport2022TheClosingWindowClimatecrisiscallsforrapidtransformationofsocieties©2022UnitedNationsEnvironmentProgrammeISBN:978-92-807-3979-4Jobnumber:DEW/2477/NAThispublicationmaybereproducedinwholeorinpartandinanyformforeducationalornon-profitserviceswithoutspecialpermissionfromthecopyrightholder,providedacknowledgementofthesourceismade.TheUnitedNationsEnvironmentProgrammewouldappreciatereceivingacopyofanypublicationthatusesthispublicationasasource.NouseofthispublicationmaybemadeforresaleoranyothercommercialpurposewhatsoeverwithoutpriorpermissioninwritingfromtheUnitedNationsEnvironmentProgramme.Applicationsforsuchpermission,withastatementofthepurposeandextentofthereproduction,shouldbeaddressedtotheDirector,CommunicationDivision,UnitedNationsEnvironmentProgramme,P.O.Box30552,Nairobi00100,Kenya.DisclaimersThedesignationsemployedandthepresentationofthematerialinthispublicationdonotimplytheexpressionofanyopinionwhatsoeveronthepartoftheSecretariatoftheUnitedNationsconcerningthelegalstatusofanycountry,territoryorcityoritsauthorities,orconcerningthedelimitationofitsfrontiersorboundaries.Someillustrationsorgraphicsappearinginthispublicationmayhavebeenadaptedfromcontentpublishedbythirdparties.Thismayhavebeendonetoillustrateandcommunicatetheauthors’owninterpretationsofthekeymessagesemergingfromillustrationsorgraphicsproducedbythirdparties.Insuchcases,thematerialinthispublicationdoesnotimplytheexpressionofanyopinionwhatsoeveronthepartoftheUnitedNationsEnvironmentProgrammeconcerningthesourcematerialsusedasabasisforsuchgraphicsorillustrations.MentionofacommercialcompanyorproductinthisdocumentdoesnotimplyendorsementbytheUnitedNationsEnvironmentProgrammeortheauthors.Theuseofinformationfromthisdocumentforpublicityoradvertisingisnotpermitted.Trademarknamesandsymbolsareusedinaneditorialfashionwithnointentiononinfringementoftrademarkorcopyrightlaws.TheviewsexpressedinthispublicationarethoseoftheauthorsanddonotnecessarilyreflecttheviewsoftheUnitedNationsEnvironmentProgramme.Weregretanyerrorsoromissionsthatmayhavebeenunwittinglymade.©Maps,photosandillustrationsasspecifiedSuggestedcitationUnitedNationsEnvironmentProgramme(2022).EmissionsGapReport2022:TheClosingWindow—Climatecrisiscallsforrapidtransformationofsocieties.Nairobi.https://www.unep.org/emissions-gap-report-2022Co-producedwith:UNEPCopenhagenClimateCentre(UNEP-CCC)andCONCITO–Denmark’sgreenthinktank.Supportedby:UNEPpromotesenvironmentallysoundpracticesgloballyandinitsownactivities.OurdistributionpolicyaimstoreduceUNEP'scarbonfootprint.TheClosingWindowClimatecrisiscallsforrapidtransformationofsocietiesEmissionsGapReport2022VEmissionsGapReport2022:TheClosingWindowAcknowledgementsAcknowledgementsTheUnitedNationsEnvironmentProgramme(UNEP)wouldliketothankthemembersofthesteeringcommittee,theleadandcontributingauthors,thereviewers,andtheSecretariatfortheircontributiontothepreparationofthisassessmentreport.Authorsandreviewershavecontributedtothereportintheirindividualcapacities.Theiraffiliationsareonlymentionedforidentificationpurposes.SteeringcommitteeJulianeBerger(GermanEnvironmentAgency),JohnChristensen(CONCITO–Denmark’sgreenthinktank),NavrozK.Dubash(CentreforPolicyResearch,India),SamuelKarslake(DepartmentforBusiness,EnergyandIndustrialStrategy,UnitedKingdom),WaelFaragBasyounyKeshk(MinistryofEnvironment,Egypt),JianLiu(UNEP),GerdLeipold(ClimateTransparency),SimonMaxwell(independent),SurabiMenon(ClimateWorksFoundation),DirkNemitz(UnitedNationsFrameworkConventiononClimateChange[UNFCCC]),HenryNeufeldt(UNEPCopenhagenClimateCentre[UNEP-CCC]),KatiaSimeonova(independent),YoubaSokona(IntergovernmentalPanelonClimateChange[IPCC]),OksanaTarasova(WorldMeteorologicalOrganization)AuthorsChapter1Authors:AnneOlhoff(CONCITO–Denmark'sgreenthinktank),JohnChristensen(CONCITO–Denmark’sgreenthinktank)Chapter2Leadauthors:WilliamF.Lamb(MercatorResearchInstituteonGlobalCommonsandClimateChangeandPriestleyInternationalCentreforClimate,SchoolofEarthandEnvironment,UniversityofLeeds,UnitedKingdom),GiacomoGrassi(EuropeanCommission,JointResearchCentre[JRC],Italy)Contributingauthors:LucasChancel(WorldInequalityLab,ParisSchoolofEconomics,France),MonicaCrippa(EuropeanCommission,JRC,Italy),DiegoGuizzardi(EuropeanCommission,JRC,Italy),MarilenaMuntean(EuropeanCommission,JRC,Italy),JosOlivier(PBLNetherlandsEnvironmentalAssessmentAgency,theNetherlands),GlenPeters(CICEROCenterforInternationalClimateResearch,Norway),JuliaPongratz(Ludwig-MaximiliansUniversityMunich,MaxPlanckInstituteforMeteorology,Germany)Chapter3Leadauthors:TakeshiKuramochi(NewClimateInstitute,Germany),MicheldenElzen(PBLNetherlandsEnvironmentalAssessmentAgency,InstituteforEnvironmentalStudies,VrijeUniversiteitAmsterdam,theNetherlands),TarynFransen(WorldResourcesInstitute,UnitedStatesofAmerica)Contributingauthors:CaitlingBergh(EnergySystemsResearchGroup,UniversityofCapeTown,SouthAfrica),AnnaChapman(ClimateAnalytics,Australia),NandiniDas(ClimateAnalytics,Australia),KimCoetzee(ClimateTransparency,Germany),NeilGrant(ClimateAnalytics,Germany),MarianaGutiérrez(HUMBOLDT-VIADRINAGovernancePlatform,Mexico),GaheeHan(SolutionsforOurClimate,RepublicofKorea),FredericHans(NewClimateInstitute,Germany),CamillaHyslop(NetZeroTrackerandUniversityofOxford,UnitedKingdom),JiangKejun(EnergyResearchInstitute,China),JoojinKim(SolutionsforOurClimate,RepublicofKorea),BenKing(RhodiumGroup,UnitedStatesofAmerica),AmanMajid(ClimateAnalytics,Germany),AndrewMarquard(EnergySystemsResearchGroup,UniversityofCapeTown,SouthAfrica),BryceMcCall(EnergySystemsResearchGroup,UniversityofCapeTown,SouthAfrica),MalteMeinshausen(UniversityofMelbourne,Australia),MiaMoisio(NewClimateInstitute,Germany),SilkeMooldijk(NewClimateInstitute,Germany),LeonardoNascimento(NewClimateInstitute,Germany),NataliePelekh(NewClimateInstitute,Germany),AnneOlhoff(CONCITO–Denmark’sgreenthinktank)JazmínRoccoPredassi(FundaciónAmbienteyRecursosNaturales,Argentina),AnaluzPresbítero(IniciativaClimáticadeMéxico,Mexico),MartinBirkRasmussen(CONCITO–Denmark’sgreenthinktank),CarleyReynolds(ClimateAnalytics,Germany),JoeriRogelj(GranthamInstitute,ImperialCollegeLondon,UnitedKingdom;InternationalInstituteforAppliedSystemsAnalysis[IIASA],Austria),ÜmitŞahin(IstanbulPolicyCenter,SabancıUniversityandStiftungMercator,Türkiye),CleaSchumer(WorldResourcesInstitute,UnitedStatesofAmerica),KentaroTamura(InstituteforGlobalEnvironmentalStrategies,Japan),FabbyTumiwa(InstituteforEssentialServicesReform,Indonesia),FarahVianda(InstituteforEssentialServicesReform,Indonesia),JorgeVillarreal(IniciativaClimáticadeMéxico,Mexico),ClaireStokwell(ClimateAnalytics,Germany),SarithaSudharmmaVishwanathan(IndianInstituteofManagement,Ahmedabad[IIMA],India),LisaWijayani(InstituteforEssentialServicesReform,Indonesia),WilliamWills(FederalUniversityofRiodeJaneiro,Brazil)Chapter4Leadauthors:JoeriRogelj(ImperialCollegeLondon,UnitedKingdom;InternationalInstituteforAppliedSystemsAnalysis[IIASA],Austria),MicheldenElzen(PBLNetherlandsEnvironmentalAssessmentAgency,theNetherlands),JoanaPortugal-Pereira(GraduateSchoolofEngineering[COPPE],UniversidadeFederaldoRiodeJaneiro,Brazil)Contributingauthors:TarynFransen(WorldResourcesInstitute,UnitedStatesofAmerica),GauravGanti(ClimateVIEmissionsGapReport2022:TheClosingWindowAnalytics,Germany),JarmoKikstra(ImperialCollegeLondon,UnitedKingdom),AlexKöberle(ImperialCollegeLondon,UnitedKingdom),RobinLamboll(ImperialCollegeLondon,UnitedKingdom),ShivikaMittal(ImperialCollegeLondon,UnitedKingdom),Carl-FriedrichSchleussner(ClimateAnalytics,Germany),CleaSchumer(WorldResourcesInstitute,UnitedStatesofAmerica)Chapter5Leadauthors:NiklasHöhne(NewClimateInstitute,Germany),KellyLevin(BezosEarthFund,UnitedStatesofAmerica),JoyashreeRoy(AsianInstituteofTechnology,Thailand,andJadavpurUniversity,India)Contributingauthors:StephenNaimoli(WorldResourcesInstitute,UnitedStatesofAmerica),LouiseJeffery(NewClimateInstitute,Germany),JuditHecke(NewClimateInstitute,Germany),JoshuaMiller(InternationalCouncilonCleanTransportation,UnitedStatesofAmerica)Chapter6Leadauthors:AlineMosnier(SustainableDevelopmentSolutionsNetwork,France),MarcoSpringmann(UniversityofOxford,UnitedKingdom),ShenggenFan(ChinaAgriculturalUniversity,China)Contributingauthors:BruceCampbell(Clim-EATandUniversityofCopenhagen,Denmark),HelenHarwatt(ChathamHouse,UnitedKingdom),JuliaRochaRomero(UNEP-CCC,Denmark),WeiZhang(CGIARandInternationalFoodPolicyResearchInstitute[IFPRI],UnitedStatesofAmerica)Chapter7Leadauthors:PieterPauw(EindhovenUniversityofTechnology,theNetherlands),DipakDasgupta(TheEnergyandResourcesInstitute–TERI,India),HeleendeConinck(EindhovenUniversityofTechnology,theNetherlands)Contributingauthors:LiliaCouto(UniversityCollegeLondonInstituteforSustainableResourcesandChathamHouse,UnitedKingdom),MichaelKönig(theFrankfurtSchool–UNEPCentreforClimateandSustainableEnergyFinance,Germany),GeorgeMarbuah(StockholmEnvironmentInstitute,Sweden),LuisZamarioli(theFrankfurtSchool–UNEPCentreforClimateandSustainableEnergyFinance,Germany)ReviewersNadiaAmeli(UniversityCollegeLondon)JesicaAndrews(UNEPFinanceInitiative),MarciRoseBaranski(UNEP),StefanoBattiston(UniversityofZurich),JulianeBerger(GermanEnvironmentAgency),MarinaBortoletti(UNEP),RuciMafiBotei(UNEP),DavidCarlin(UNEPFinanceInitiative),PieroCarlodosReis(Directorate-GeneralforClimateAction(DG-CLIMA]),HuguesChenet(UniversityCollegeLondon),JohnChristensen(CONCITO–Denmark’sgreenthinktank),IanCochran(UniversityofEdinburghBusinessSchool),ReneColditz(DG-CLIMA),PeterCooleman(DepartmentforBusiness,EnergyandIndustrialStrategy),AnnetteCowie(UniversityofNewEngland),MonicaCrippa(JRC),KrystalCrumpler(FoodandAgricultureOrganizationoftheUnitedNations[FAO]),RobDellink(OECD),PaulDowling(DG-CLIMA),NavrozDubash(CentreforPolicyResearch),FlorianEgli(EnergyandTechnologyPolicyGroup),JamesFoster(DepartmentforBusiness,EnergyandIndustrialStrategy),ChadFrischmann(ProjectDrawdown),OliverGeden(GermanInstituteforInternationalandSecurityAffairs),BernatGoni-Ros(DG-CLIMA),NiklasHagelberg(UNEP),ThomasHale(UniversityofOxford),AndreaHinwood(UNEP),ClaireHoolohan(UniversityofManchester),JasonJabbour(UNEP),NarcisJeler(DG-CLIMA),YasukoKameyama(NationalInstituteforEnvironmentalStudies),MaartenKappelle(UNEP),SamuelKarslake(DepartmentforBusiness,EnergyandIndustrialStrategy),WaelFaragBasyounyKeshk(MinistryofEnvironment,EgyptianEnvironmentalAffairsAgency),ThaddeusIdiKiplimo(UNEP),JohannesKlumpers(DG-CLIMA),BorisLeMontagner(UNEPEconomyDivision),GerdLeipold(ClimateTransparency),KaiLesmann(PotsdamInstituteforClimateImpactResearch),JianLiu(UNEP),JamesLomax(UNEP),PhillipLugmayr(DG-CLIMA),MarkLundy(ConsultativeGroupforInternationalAgriculturalResearch),DominicMacCormack(UNEP),MariaSocorroManguiat(UNEP),JadeMaron(UNEP),SimonMaxwell(independent),SurabiMenon(ClimateWorksFoundation),BertMetz(independent),IreneMonasterolo(ÉcoledesHautesEtudesCommercialesduNord),JongwoonMoon(YonseiUniversity),KanakoMorita(ForestryandForestProductsResearchInstitute),SusanMutebi-Richards(UNEP),DirkNemitz(UNFCCC),HenryNeufeldt(UNEP-CCC)ClementineO’Connor(UNEP),RowanPalmer(UNEP),FrederikPischke(GermanEnvironmentAgency),VickyPollard(DG-CLIMA),FriedemannPolzin(UtrechtUniversity),KatePower(HotorCoolCoalition),ClaraRabeloCaiafaPereira(EindhovenUniversityofTechnology),RaoniRajão(UniversidadeFederaldeMinasGerais),ElisabethResch(UNEP-CCC),CorneliusRhein(DG-CLIMA),YannRobiouduPontRobiouduPont(ClimateEnergyCollege),JohannaSchiele(DG-CLIMA),Laure-SophieSchiettecatte(FAO),JohannesSchuler(DG-CLIMA),XavierSeront(DG-CLIMA),HimanshuSharma(UNEP),KatiaSimeonova(independent),PaulSmith(UNEPFinanceInitiative),YoubaSokona(IPCC),ShreyaSome(AsianInstituteofTechnology),SandhyaSrinivasan(WorldBank),JamalSrouji(WorldResourcesInstitute),RichardSwannell(WRAP),KentaroTamura(InstituteforGlobalEnvironmentalStudies),OksanaTarasova(WorldMeteorologicalOrganization),SvenTeske(InstituteforSustainableFutures,UniversityofTechnology,Sydney),SimoneWestiHøjte(CONCITO–Denmark’sgreenthinktank),FrancescoTubiello(FAO),Jensvan‘tKlooster(UniversityofAmsterdam),MelvinvanVelthoven(DG-CLIMA),LouisVerchot(ConsultativeGroupforInternationalAgriculturalResearch),CleoVerkujl(StockholmEnvironmentInstitute),DanielWetzel(InternationalEnergyAgency),CharlieWilson(UniversityofOxford),ZhaoXiusheng(TshinguaUniversity),MajaZ.Ulezic(DG-CLIMA),EdoardoZandri(UNEP),CarolineZimm(IIASA)VIIEmissionsGapReport2022:TheClosingWindowChiefscientificeditorsAnneOlhoff(CONCITO–Denmark’sgreenthinktank),JohnChristensen(CONCITO–Denmark’sgreenthinktank),SimonMaxwell(independent)EditorialsupportJuliaRochaRomero(UNEP-CCC)Secretariat,productionandcoordinationAnneOlhoff(CONCITO–Denmark'sgreenthinktank),JuliaRochaRomero(UNEP-CCC),KaisaUusimaa(UNEP),MaartenKappelle(UNEP),EdoardoZandri(UNEP)MediaandlaunchsupportUNEP:DanielCooney,KatieElles,MariaVittoriaGalassi,MirandaGrant,NancyGroves,RuneKier,MichaelLogan,BeverleyMcDonald,DuncanMoore,PoojaMunshi,KeishamazaRukikaire,NicolienSchoneveld-deLange,JoyceSang,ReaganSirengo,NehaSudandseveralothermembersoftheUNEPCommunicationDivisionUNEP-CCC:MetteAnnelieRasmussen,LasseHemmingsen,MonnaHammershøyBlegvadDesignandlayoutCarenWeeksConcept&Design(figuresandtables),StrategicAgenda(layout),BeverleyMcDonald,UNEP(coverdesign)TranslationsoftheexecutivesummaryandlanguageeditingStrategicAgendaThanksalsoto:LarsChristiansen(UNEP-CCC),AngelineDjampou(UNEP),NathanBorgford-Parnell(UNEP),AmitGarg(IIMA),DanyGhafari(UNEP),LeonaHarting(UNEP-CCC),AmalieJensenius(CONCITO–Denmark’sgreenthinktank),ThomasLaursen(UNEP-CCC),PazLópez-Rey(UNEP),BertMetz(independent),JaneMuriithi(UNEP),LouPerpes(UNEP),EkaterinaPoleshchuk(UNEP),AlexanderPopp(PotsdamInstituteforClimateImpactResearch),PinyaSarasas(UNEP),DrewShindell(DukeUniversity),NanditaSurendran(UNEP),YingWang(UNEP)UNEPwouldliketothanktheClimateWorksFoundation,theDanishMinistryofForeignAffairs,theMinistryofEconomicAffairsandClimatePolicyoftheNetherlands,theGermanGovernmentanditsInternationalClimateInitiative(IKI),andtheSwedishInternationalDevelopmentAuthority(SIDA),aswellastheIKEAFoundationandLaudesFoundationfortheirsupporttotheworkoftheEmissionsGapReport2022.VIIIEmissionsGapReport2022:TheClosingWindowIXEmissionsGapReport2022:TheClosingWindowContentsAcknowledgementsVGlossaryXIForewordXVExecutivesummaryXVIChapter1Introduction11.1ContextandframingoftheEmissionsGapReport202211.2Approachandstructureofthereport2Chapter2Globalemissionstrends32.1Introduction32.2Globalemissionstrends52.3Emissionstrendsofmajoremitters7Chapter3Nationallydeterminedcontributionsandlong-termpledges:ThegloballandscapeandG20memberprogress113.1Introduction113.2Globaldevelopmentsinmitigationpledgesfor2030andbeyond123.3ImpactsofnewandupdatedNDCsonglobalGHGemissionsin2030133.4ProgressofG20memberstowardstheirNDCtargets153.5DetailsonG20members’net-zeropledges23Chapter4Theemissionsgap264.1Introduction264.2Scenariosconsideredforthe2030emissionsgapassessment274.3Theemissionsgap324.4Temperatureimplicationsoftheemissionsgap35Chapter5TransformationsneededtoachievetheParisAgreementinelectricitysupply,industry,buildingsandtransportation385.1Introduction385.2Initiating,acceleratingandaccomplishingthetransformationtowardszeroemissions385.3Electricitysupply405.4Industry435.5Transportation465.6Buildings49Chapter6Transformingfoodsystems526.1Introduction526.2Transformationneedsandpotential546.3Signsofprogressandoptionsforfurtheraction566.4Howcantransformationbeaccelerated?61Chapter7TransformingthefinancesystemtoenabletheachievementoftheParisAgreement657.1Introduction:Theneedforatransformationofthefinancialsystem657.2Aligningfinancialsystemactorswithclimatechange687.3Transformingthefinancialsystem:Sixapproachestopublicpolicy72References78XEmissionsGapReport2022:TheClosingWindowXIEmissionsGapReport2022:TheClosingWindowGlossaryGlossaryThisglossaryiscompiledaccordingtotheleadauthorsofthereport,drawingonglossariesandotherresourcesavailableonthewebsitesofthefollowingorganizations,networksandprojects:theIntergovernmentalPanelonClimateChange,UnitedNationsEnvironmentProgramme,UnitedNationsFrameworkConventiononClimateChange,andWorldResourcesInstitute.Anthropogenicmethane:Methaneemissionsderivedfromhumanactivities.Anthropogenicemissionssourcesincludecoalmining,agriculturalpractices,wastewatertreatment,certainindustrialprocesses,andoilandgassystems,amongothers.Baseline/reference:Thestateagainstwhichchangeismeasured.Inthecontextofclimatechangetransformationpathways,theterm‘baselinescenarios’referstoscenariosbasedontheassumptionthatnomitigationpoliciesormeasureswillbeimplementedbeyondthosealreadyinforceand/orlegislatedorplannedtobeadopted.Baselinescenariosarenotintendedtobepredictionsofthefuture,butrathercounterfactualconstructionsthatcanservetohighlightthelevelofemissionsthatwouldoccurwithoutfurtherpolicyefforts.Typically,baselinescenariosarecomparedtomitigationscenariosthatareconstructedtomeetdifferentgoalsforgreenhousegas(GHG)emissions,atmosphericconcentrationsortemperaturechange.Theterm‘baselinescenario’isusedinterchangeablywith‘referencescenario’and‘no-policyscenario’.Carbonborderadjustmentmechanisms:Mechanismsthatacttoequalizethepriceofcarbonbetweendomesticproductsandimports,toeliminatefinancialincentivestorelocateproductionoutsideregionswithstrongclimatecontrols.Carbondioxideemissionbudget(orcarbonbudget):Foragiventemperatureriselimit,forexamplea1.5°Cor2°Clong-termlimit,thecorrespondingcarbonbudgetreflectsthetotalamountofcarbonemissionsthatcanbeemittedfortemperaturestostaybelowthatlimit.Stateddifferently,acarbonbudgetistheareaunderacarbondioxide(CO2)emissiontrajectorythatsatisfiesassumptionsaboutlimitsoncumulativeemissionsestimatedtoavoidacertainlevelofglobalmeansurfacetemperaturerise.Carbondioxideequivalent(CO2e):Awaytoplaceemissionsofvariousradiativeforcingagentsonacommonfootingbyaccountingfortheireffectontheclimate.Itdescribes,foragivenmixtureandamountGHGs,theamountofCO2thatwouldhavethesameglobalwarmingability,whenmeasuredoveraspecifiedtimeperiod.Forthepurposeofthisreport,GHGemissions(unlessotherwisespecified)arethesumofthebasketofGHGslistedinAnnexAtotheKyotoProtocol,expressedasCO2eassuminga100-yearglobalwarmingpotential.Carbonmarkets:AtermforacarbontradingsystemthroughwhichcountriesmaybuyorsellunitsofGHGemissionsinanefforttomeettheirnationallimitsonemissions,eitherundertheKyotoProtocolorunderotheragreements,suchasthatamongmemberStatesoftheEuropeanUnion.ThetermcomesfromthefactthatcarbondioxideisthepredominantGHG,andothergasesaremeasuredinunitscalledcarbondioxideequivalents.Carbonneutrality:Isachievedwhenanactor’snetcontributiontoglobalCO2emissionsiszero.AnyCO2emissionsattributabletoanactor’sactivitiesarefullycompensatedbyCO2reductionsorremovalsexclusivelyclaimedbytheactor,irrespectiveofthetimeperiodortherelativemagnitudeofemissionsandremovalsinvolved.Carbonoffset:SeeOffset.Carbonprice:ThepriceforavoidedorreleasedCO2orCO2eemissions.Thismayrefertotherateofacarbontax,orthepriceofemissionpermits.Inmanymodelsusedtoassesstheeconomiccostsofmitigation,carbonpricesareusedasaproxytorepresentthelevelofeffortinmitigationpolicies.Conditionalnationallydeterminedcontribution:Aconditionalnationallydeterminedcontribution(NDC–seebelow)proposedbysomecountriesthatiscontingentonarangeofpossibleconditions,suchastheabilityofnationallegislaturestoenactthenecessarylaws,ambitiousactionfromothercountries,realizationoffinanceandtechnicalsupport,orotherfactors.ConferenceoftheParties(COP):ThesupremebodyoftheUnitedNationsFrameworkConventiononClimateChange(UNFCCC).ItcurrentlymeetsonceayeartoreviewtheUNFCCC’sprogress.XIIEmissionsGapReport2022:TheClosingWindowDoublecounting:Doublecountinginvolvestwocountriestakingcreditforthesameemissionsreductions,therebygivingtheimpressionthattheworldhasreducedemissionsmorethanitactuallyhas.Forexample,emissionsreductioncreditsfromacountrymightbesoldtoanothercountry,whilethosereductionsarestillcountedtowardsachievementoftheNDCinthecountrywherethecreditsoriginated.Emissionpathway:ThetrajectoryofannualGHGemissionsovertime.Emissionstrading:Amarket-basedinstrumentusedtolimitemissions.Theenvironmentalobjectiveorsumoftotalallowedemissionsisexpressedasanemissionscap.Thecapisdividedintradableemissionpermitsthatareallocated–eitherbyauctioningorhandingoutforfree–toentitieswithinthejurisdictionofthetradingscheme.Entitiesneedtosurrenderemissionpermitsequaltotheamountoftheiremissions(e.g.tonsofCO2).Anentitymaysellexcesspermits.Tradingschemesmayoccurattheintra-company,domesticorinternationallevel,andmayapplytoCO2,otherGHGs,orothersubstances.EmissionstradingisalsooneofthemechanismsspecifiedundertheKyotoProtocol.Financialsystem:Afinancialsystemisasetofglobal,regionalorfirm-specificinstitutionsandpracticesusedtofacilitatetheexchangeoffunds.Financialsystemscanbeorganizedusingmarketprinciples,centralplanning,orahybridofboth.Institutionswithinafinancialsystemincludeeverythingfrombanks,tostockexchanges,togovernmenttreasuries.Foodsecurity:Asituationthatexistswhenallpeople,atalltimes,havephysical,socialandeconomicaccesstosufficient,safeandnutritiousfoodthatmeetstheirdietaryneedsandfoodpreferencesforanactiveandhealthylife.Foodsystems:Foodsystemsarethepublicpolicydecisions,thenationalandglobalsystems(includingproduction,farming,processingandglobalsupplychains),andtheindividualsandgroups(publicandprivate),thatinfluencethequantityandqualityoffoodavailableforall.Globalwarmingpotential:AnindexrepresentingthecombinedeffectofthedifferingtimesGHGsremainintheatmosphereandtheirrelativeeffectivenessinabsorbingoutgoinginfraredradiation.Greenhousegases(GHGs):Theatmosphericgasesresponsibleforcausingglobalwarmingandclimaticchange.ThemajorGHGsarecarbondioxide(CO2),methane(CH4)andnitrousoxide(N2O).Lessprevalent,butverypowerful,GHGsincludehydrofluorocarbons(HFCs),perfluorocarbons(PFCs)andsulphurhexafluoride(SF6).Greenhousegasremoval:WithdrawalofaGHGand/oraprecursorfromtheatmospherebyasink.Industrialprocessesandproductsuse(IPPU):Theindustrialprocessesandproductuse(IPPU)sectorcoversGHGemissionsresultingfromvariousindustrialactivitiesthatproduceemissions,thatarenotthedirectresultofenergyconsumedduringthemanufacturingprocessandtheuseofman-madeGHGsinproducts.Integratedassessmentmodels:Modelsthatseektocombineknowledgefrommultipledisciplinesintheformofequationsand/oralgorithms,inordertoexplorecomplexenvironmentalproblems.Assuch,theydescribethefullchainofclimatechange,fromproductionofGHGstoatmosphericresponses.Thisnecessarilyincludesrelevantlinksandfeedbacksbetweensocioeconomicandbiophysicalprocesses.Intendednationallydeterminedcontribution:IntendedNDCsaresubmissionsfromcountriesdescribingthenationalactionsthattheyintendtotaketoreachtheParisAgreement’slong-termtemperaturegoaloflimitingwarmingtowellbelow2°C.OnceacountryhasratifiedtheParisAgreement,itsintendedNDCisautomaticallyconvertedtoitsNDC,unlessitchoosestofurtherupdateit.KyotoProtocol:Aninternationalagreementsignedin1997andwhichcameintoforcein2005,standingonitsown,andrequiringseparateratificationbygovernments,butlinkedtotheUNFCCC.TheKyotoProtocol,amongotherthings,setsbindingtargetsforthereductionofGHGemissionsbyindustrializedcountriesLanduse,land-usechangeandforestry(LULUCF):AGHGinventorysectorthatcoversemissionsandremovalsofGHGsresultingfromdirecthuman-inducedlanduse,land-usechangeandforestryactivities.Least-costpathway:Least-costpathwayscenariosidentifytheleastexpensivecombinationofmitigationoptionstofulfilaspecificclimatetarget.Aleast-costscenarioisbasedonthepremisethat,ifanoverarchingclimateobjectiveisset,societywantstoachievethisatthelowestpossiblecostovertime.Italsoassumesthatglobalactionsstartatthebaseyearofmodelsimulations(usuallyclosetothecurrentyear)andareimplementedfollowingacost-optimal(cost-efficient)sharingofthemitigationburdenbetweencurrentandfuturegenerations,dependingonthesocialdiscountrate.Likelychance:Alikelihoodgreaterthan66percentchance.Usedinthisassessmenttoconveytheprobabilitiesofmeetingtemperaturelimits.XIIIEmissionsGapReport2022:TheClosingWindowMitigation:Inthecontextofclimatechange,mitigationrelatestoahumaninterventiontoreducethesourcesorenhancethesinksofGHGs.Examplesincludeusingfossilfuelsmoreefficientlyforindustrialprocessesorelectricitygeneration,switchingtosolarenergyorwindpower,improvingtheinsulationofbuildings,andexpandingforestsandother‘sinks’toremovegreateramountsofCO2fromtheatmosphere.Nationallydeterminedcontribution(NDC):SubmissionsbycountriesthathaveratifiedtheParisAgreementwhichpresentstheirnationaleffortstoreachtheParisAgreement’slong-termtemperaturegoaloflimitingwarmingtowellbelow2°C.NeworupdatedNDCsaretobesubmittedin2020andeveryfiveyearsthereafter.NDCsthusrepresentacountry’scurrentambitionortargetforreducingemissionsnationally.Offset:Inclimatepolicy,aunitofCO2eemissionsthatisreduced,avoidedorsequesteredtocompensateforemissionsoccurringelsewhere.Purchasingpowerparity:Ameasurementthateconomistsusetocomparethespendingpowerbetweentwoormorenations.Scenario:Adescriptionofhowthefuturemayunfoldbasedon‘if-then’propositions.Scenariostypicallyincludeaninitialsocioeconomicsituationandadescriptionofthekeydrivingforcesandfuturechangesinemissions,temperatures,orotherclimatechange-relatedvariables.S-curve:AdoptionofnewtechnologiesoftenfollowsanS-curvetrajectory.UnderanS-curve,growthfollowsanon-linearpatterninwhichthecurveinitiallyincreasesslowly,beforeacceleratingrapidlytoafasterlineargrowthrate.Asthevariableapproachesanewsaturationpoint,thegrowthratedeceleratesuntilasteadystateisreached.Source:Anyprocess,activityormechanismthatreleasesaGHG,anaerosoloraprecursorofaGHGoraerosolintotheatmosphere.XVEmissionsGapReport2022:TheClosingWindowForewordForewordEveryyear,thenegativeimpactsofclimatechangebecomemoreintense.Everyyear,theybringmoremiseryandpaintohundredsofmillionsofpeopleacrosstheglobe.Everyyear,theybecomemoreaproblemofthehereandnow,aswellasawarningoftougherconsequencestocome.Weareinaclimateemergency.Andstill,asUNEP’sEmissionsGapReport2022shows,nationsprocrastinate.SinceCOP26inGlasgowin2021,newandupdatednationallydeterminedcontributions(NDCs)havebarelyimpactedthetemperatureswecanexpecttoseeattheendofthiscentury.Thisyear’sreporttellsusthatunconditionalNDCspointtoa2.6°Cincreaseintemperaturesby2100,farbeyondthegoalsoftheParisAgreement.Existingpoliciespointtoa2.8°Cincrease,highlightingagapbetweennationalcommitmentsandtheeffortstoenactthosecommitments.Inthebest-casescenario,fullimplementationofconditionalNDCs,plusadditionalnetzerocommitments,pointtoa1.8°Crise.However,thisscenarioiscurrentlynotcredible.Togetontracktolimitingglobalwarmingto1.5°C,wewouldneedtocut45percentoffcurrentgreenhousegasemissionsby2030.For2°C,wewouldneedtocut30percent.Astepwiseapproachisnolongeranoption.Weneedsystem-widetransformation.Thisreporttellsushowtogoaboutsuchatransformation.Itlooksin-depthatthechangesneededinelectricitysupply,industry,transport,buildingsandfoodsystems.Itlooksathowtoreformfinancialsystemssothattheseurgenttransformationscanbeadequatelyfinanced.Isitatallordertotransformoursystemsinjusteightyears?Yes.Canwereducegreenhousegasemissionsbysomuchinthattimeframe?Perhapsnot.Butwemusttry.Everyfractionofadegreematters:tovulnerablecommunities,tospeciesandecosystems,andtoeveryoneofus.Mostimportantly,wewillstillbesettingupacarbon-neutralfuture:onethatwillallowustobringdowntemperatureovershootsanddeliverotherbenefits,likecleanair.Theworldisfacingothercrises.Wemustdealwiththem.Butletusrememberthattheyalsoofferopportunitiestoreformourglobaleconomy.Wehavemissedtheopportunitytoinvestinalow-carbonrecoveryfromtheCOVID-19pandemic.Now,weareindangerofmissingtheopportunitytoboostcleanandefficientenergyasaresponsetotheenergycrisis.Insteadofmissingsuchopportunities,wemustcapitalizeonthemwithconfidence.Iurgeeverynationandeverycommunitytoporeoverthesolutionsofferedinthisreport,buildthemintotheirNDCsandimplementthem.Iurgeeveryoneintheprivatesectortostartreworkingtheirpractices.Iurgeeveryinvestortoputtheircapitaltowardsanet-zeroworld.Thetransformationbeginsnow.IngerAndersenExecutiveDirectorUnitedNationsEnvironmentProgrammeXVIEmissionsGapReport2022:TheClosingWindowExecutivesummary1.TestimonytoinadequateactionontheclimatecrisisandtheneedfortransformationThisthirteentheditionoftheEmissionsGapReportistestimonytoinadequateactionontheglobalclimatecrisis,andisacallfortherapidtransformationofsocieties.Sincethetwenty-sixthUnitedNationsClimateChangeConferenceoftheParties(COP26),therehasbeenverylimitedprogressinreducingtheimmenseemissionsgapfor2030,thegapbetweentheemissionsreductionspromisedandtheemissionsreductionsneededtoachievethetemperaturegoaloftheParisAgreement,illustratedinthefollowing:▶Countries’newandupdatednationallydeterminedcontributions(NDCs)submittedsinceCOP26reduceprojectedglobalgreenhousegas(GHG)emissionsin2030byonly0.5gigatonsofCO2equivalent(GtCO2e),comparedwithemissionsprojectionsbasedonmitigationpledgesatthetimeofCOP26.▶CountriesareofftracktoachieveeventhegloballyhighlyinsufficientNDCs.GlobalGHGemissionsin2030basedoncurrentpoliciesareestimatedat58GtCO2e.Theimplementationgapin2030betweenthisnumberandNDCsisabout3GtCO2efortheunconditionalNDCs,and6GtCO2efortheconditionalNDCs.▶Theemissionsgapin2030is15GtCO2eannuallyfora2°Cpathwayand23GtCO2efora1.5°Cpathway.ThisassumesfullimplementationoftheunconditionalNDCs,andisfora66percentchanceofstayingbelowthestatedtemperaturelimit.If,inaddition,theconditionalNDCsarefullyimplemented,eachofthesegapsisreducedbyabout3GtCO2e.▶Policiescurrentlyinplacewithnoadditionalactionareprojectedtoresultinglobalwarmingof2.8°Coverthetwenty-firstcentury.ImplementationofunconditionalandconditionalNDCscenariosreducethisto2.6°Cand2.4°Crespectively.▶Togetontrackforlimitingglobalwarmingto1.5°C,globalannualGHGemissionsmustbereducedby45percentcomparedwithemissionsprojectionsunderpoliciescurrentlyinplaceinjusteightyears,andtheymustcontinuetodeclinerapidlyafter2030,toavoidexhaustingthelimitedremainingatmosphericcarbonbudget.Astheseheadlinefindingsillustrate,incrementalchangeisnolongeranoption:broad-basedeconomy-widetransformationsarerequiredtoavoidclosingthewindowofopportunitytolimitglobalwarmingtowellbelow2°C,preferably1.5°C.Everyfractionofadegreematters.AtCOP26lastyear,thisdiresituationwasrecognized,andcountrieswerecalleduponto“revisitandstrengthen”their2030targetsbytheendof2022.Consequently,akeyquestionforthiseditionoftheEmissionsGapReportis,whatprogresshasbeenmadeinambitionandactionsinceCOP26,andhowcanthenecessarytransformationsbeinitiatedandaccelerated?Thereportconsiderstransformationsrequiredinthesectorsofelectricitysupply,industry,transportandbuildings.Itfurthermoreinvestigatescross-cuttingsystemictransformationsoffoodsystemsandthefinancialsystem,illustratingthatthereisimmensepotentialtoreduceemissionsbeyondcurrentmitigationpledges.Theclimatecrisisispartofthetripleplanetarycrisisofclimatechange,pollutionandbiodiversityloss.Thisyear,theworldiswitnessingcompoundingenergy,foodandcostoflivingcrises,exacerbatedbythewarinUkraine,allofwhicharecausingimmensehumansuffering.Severalmethodologicalimprovementsandupdateshavebeenmadethisyeartoimprovetheestimatesandensureconsistencyacrossthechaptersofthisreport.Thesechanges,alongwiththeirimplicationsfortheinterpretationofthereportresults,aredescribedindetailinthereportchaptersandonlineappendices.However,itisimportanttonotethattheseimprovementsimplythattheestimatespresentedarenotdirectlycomparabletothoseofpreviousreports.2.GlobalGHGemissionscouldsetanewrecordin2021Estimatesoflanduse,land-usechangeandforestry(LULUCF)arecurrentlyonlyavailableupto2020,limitingouranalysisoftotalglobalGHGemissionsfor2021.However,globalGHGemissionsfor2021,excludingLULUCF,arepreliminarilyestimatedat52.8GtCO2e,aslightincreasecomparedto2019,suggestingthattotalglobalGHGemissionsin2021willbesimilartoorevenbreaktherecord2019levels(figureES.1).ThisconfirmsearlierfindingsthattheglobalresponsetotheCOVID-19pandemicledtoanunprecedentedbutshort-livedreductioninglobalemissions.TotalglobalGHGemissionsdropped4.7percentfrom2019to2020.ThisdeclinewasdrivenbyasharpdeclineinCO2emissionsfromfossilfuelsandindustryof5.6percentin2020.However,CO2emissionsreboundedto2019levelsin2021,withglobalcoalemissionsexceeding2019levels.Methaneandnitrousoxideemissionsremainedsteadyfrom2019to2021,andfluorinatedgasescontinuedtosurge.XVIIEmissionsGapReport2022:TheClosingWindowGlobalGHGemissionshavecontinuedtogrowinthepast10years,buttherateofgrowthhasslowedcomparedtothepreviousdecade.Between2010and2019,averageannualgrowthwas1.1percentperyear,comparedto2.6percentperyearbetween2000and2009.Thirty-fivecountriesaccountingforabout10percentofglobalemissionshavepeakedinCO2andotherGHGemissions,buttheirreductionshavebeenoutweighedbyglobalemissionsgrowthelsewhere.EstimatesofLULUCFemissionsandsinksaresubstantial,butalsodeeplyuncertain.Basedonnationalinventories,theLULUCFsectorwasanetsinkin17oftheG20memberStatesin2020,includinginChina,theUnitedStatesofAmerica,India,theEU27andtheRussianFederation.GHGemissionsexcludingLULUCFinthesecountriesarethereforehigher,byasmuchas33percentintheRussianFederation,17percentintheUnitedStatesofAmerica,9percentinIndia,andabout8percentinChinaandintheEU27.Bycontrast,theLULUCFsectorisanetemitterinIndonesiaandBrazil,accountingfor44percentand22percentoftheiremissionsrespectively.3.GHGemissionsarehighlyunevenacrossregions,countriesandhouseholdsThetopsevenemitters(China,theEU27,India,Indonesia,Brazil,theRussianFederationandtheUnitedStatesofAmerica)plusinternationaltransportaccountedfor55percentofglobalGHGemissionsin2020(figureES.1).Collectively,G20membersareresponsiblefor75percentofglobalGHGemissions.Percapitaemissionsvarygreatlyacrosscountries(figureES.1).WorldaveragepercapitaGHGemissions(includingLULUCF)were6.3tonsofCO2equivalent(tCO2e)in2020.TheUnitedStatesofAmericaremainsfarabovethislevelat14tCO2e,followedby13tCO2eintheRussianFederation,9.7tCO2einChina,about7.5tCO2einBrazilandIndonesia,and7.2tCO2eintheEuropeanUnion.Indiaremainsfarbelowtheworldaverageat2.4tCO2e.Onaverage,leastdevelopedcountriesemit2.3tCO2epercapitaannually.FigureES.1TotalandpercapitaGHGemissionsofmajoremittersin2020,includinginventory-basedLULUCF03691215IndiaWorldEU27IndonesiaBrazilChinaRussianFederationUSA03691215InternationaltransportBrazilRussianFederationIndonesiaEU27IndiaUSAChinaPercapitaGHGemissions0-3TotalGHGemissionsGtCO2etCO2e/capitaLULUCFCO2FossilCO2FFI,CH4,N2O,F−gasesXVIIIEmissionsGapReport2022:TheClosingWindowFigureES.2ImpactonglobalGHGemissionsin2030ofnewandupdatedunconditionalNDCsrelativetoinitialNDCsConsumption-basedemissionsarealsohighlyunequalbetweenandwithincountries.Whenemissionsassociatedwithbothhouseholdconsumptionandpublicandprivateinvestmentsareallocatedtohouseholds,andhouseholdsarerankedbyGHGemissions(excludingLULUCF),thebottom50percentemitonaverage1.6tCO2e/capitaandcontribute12percentoftheglobaltotal,whereasthetop1percentemitonaverage110tCO2e/capitaandcontribute17percentofthetotal.High-emittinghouseholdsarepresentacrossallmajoreconomies,andlargeinequalitiesnowexistbothwithinandbetweencountries.4.Despitethecallforcountriesto“revisitandstrengthen”their2030targets,progresssinceCOP26ishighlyinadequateAspartoftheParisAgreement’sfive-yearambition-raisingcycle,countrieswererequestedtosubmitneworupdatedNDCsintimeforCOP26.TheGlasgowClimatePact,adoptedin2021atCOP26,furtherrequestedcountriestorevisitandstrengthentheir2030mitigationtargetstoalignwiththetemperaturegoaloftheParisAgreement.Between1January2020and23September2022(thecut-offdateusedforthisreport),166partiesrepresentingaround91percentofglobalGHGemissionshadsubmittedneworupdatedNDCs,upfrom152partiesasofCOP26.AstheEuropeanUnionandits27memberStatessubmitasingleNDC,139neworupdatedNDCshavebeensubmitted.RelativetoinitialNDCs,alargershareincludesGHGemissiontargets,coverageofsectorsandgasesisgenerallygreater,andmoreincludeunconditionalelements.Intotalandiffullyimplemented,theneworupdatedunconditionalNDCsareestimatedtoresultinanannualadditionalreductionof4.8GtCO2eby2030relativetotheinitialNDCs.ProgresssinceCOP26amountstoabout0.5GtCO2e,mainlyresultingfromneworupdatedNDCsfromAustralia,Brazil,IndonesiaandtheRepublicofKorea(figureES.2).ImpactofnewandupdatedNDCs(decreaseinemissions)ImpactofnewandupdatedNDCs(increaseinemissions)Zeroimpact,noneworupdatedNDCTotalimpactImpactsinceCOP26RussianFederationNon-G20OtherfactorsOtherfactorsTotalTotalMexicoSaudiArabiaIndonesiaChinaArgentinaSouthAfricaAustraliaTürkiyeBrazilCanadaJapanEU27IndiaUnitedKingdomUnitedStatesofAmericaRepublicofKorea0-4,000-3,000-2,000-1,000-500-4,500-5,000-3,500-2,500-1,500MtCO2eXIXEmissionsGapReport2022:TheClosingWindow5.G20membersarefarbehindindeliveringontheirmitigationcommitmentsfor2030,causinganimplementationgapMostoftheG20membersthathavesubmittedstrongerNDCtargetssince2020havejuststartedtheimplementationofpoliciesandactionstomeettheirnewtargets.ThosethatarecurrentlyprojectedtomeettheirNDCtargetsarecountriesthathaveeithernotupdatedtheiroriginalNDCs,ordidnotstrengthenoronlymoderatelystrengthenedtheirtargetlevelsintheirupdatedNDCs.AllotherG20memberswillneedadditionalpoliciestoachievetheirNDCs.ThecentralestimateofaggregateemissionsprojectionsforG20membersin2030undercurrentpoliciesdecreasedby1.3GtCO2ecomparedwiththe2021assessment,mainlyduetotheprojectedemissionreductionsfromtheInflationReductionActintheUnitedStatesofAmerica(about1GtCO2e).Collectively,theG20membersarenotontracktoachievetheirneworupdatedNDCs.Basedoncurrentpoliciesscenarioprojectionsinindependentstudies,thereisanimplementationgap,definedasthedifferencebetweenprojectedemissionsundercurrentpoliciesandprojectedemissionsunderfullimplementationoftheNDCs.Thisimplementationgapis1.8GtCO2eannuallyby2030fortheG20members.FortwoG20members,theRussianFederationandTürkiye,theprojectedemissionsundertheirNDCshaveconsistentlybeensignificantlyabovecurrentpoliciesprojections,therebyloweringtheimplementationgapcomparedtowhatcanreasonablybeexpected.IfNDCprojectionsaresubstitutedbycurrentpoliciesscenarioprojectionsforthesetwomembers,theG20memberswouldcollectivelyfallshortofachievingtheirNDCsby2.6GtCO2eannuallyby2030.BeyondG20members,theglobalimplementationgapfor2030isestimatedtobearound3GtCO2efortheunconditionalNDCsand6GtCO2efortheconditionalNDCs.6.Globally,theNDCsarehighlyinsufficient,andtheemissionsgapremainshighTheemissionsgapfor2030isdefinedasthedifferencebetweentheestimatedtotalglobalGHGemissionsresultingfromthefullimplementationoftheNDCs,andthetotalglobalGHGemissionsfromleast-costscenariosthatkeepglobalwarmingto2°C,1.8°Cor1.5°C,withvaryinglevelsoflikelihood.CurrentcommitmentsbycountriesasexpressedintheirunconditionalandconditionalNDCsfor2030areestimatedtoreduceglobalemissionsby5and10percentrespectively,comparedwithcurrentpoliciesandassumingthattheyarefullyimplemented.Togetontrackforlimitingglobalwarmingtobelow2.0°Cand1.5°C,globalGHGemissionsmustbereducedby30and45percentrespectively,comparedwithcurrentpolicyprojections.FullimplementationofunconditionalNDCsisestimatedtoresultinagapwiththe1.5°Cscenarioof23GtCO2e(range:19–25GtCO2e)(tableES.1,tableES.2andfigureES.3).Thisestimateisabout5GtCO2esmallerthaninthe2021editionoftheEmissionsGapReport.However,thisdifferenceisalmostentirelyduetomethodologicalupdatesandupdatestothe1.5°Cscenarios.Theemissionsin2030arehigherundertheupdated1.5°Cscenarios,becausetheystarttheirreductionsfromthemostup-to-datehistoricalemissions,whichhaveincreasedoverthepast5years.Thisdoesnotcomewithoutconsequences,asonaveragethesescenarioshavealowerchanceofeffectivelykeepingwarmingto1.5°C.IftheconditionalNDCsarealsofullyimplemented,the1.5°Cemissionsgapisreducedto20GtCO2e(range:16–22GtCO2e).TheemissionsgapbetweenunconditionalNDCsandbelow2°Cpathwaysisabout15GtCO2e(range:11–17GtCO2e),whichisabout2GtCO2elargerthanthatwhichwasreportedlastyear.Themainreasonforthisincreaseisthatthisyear’sreportcorrectsfordiscrepanciesinhistoricalemissionsthroughharmonization.IftheconditionalNDCsarealsofullyimplemented,thebelow2°Cemissionsgapisreducedto12GtCO2e(range:8–14GtCO2e).Emissionsundercurrentpoliciesareprojectedtoreach58GtCO2ein2030.Thisis3GtCO2ehigherthantheestimateoflastyear’sreport.Abouthalfoftheincreaseisduetotheharmonization,aboutonequartertothechangeofglobalwarmingpotentials(GWPs),andtheremaindertothemethodologicalchoiceofonlyselectingmodelstudiesthatexplicitlyaccountforthemostrecentcurrentpolicesandNDCestimates.XXEmissionsGapReport2022:TheClosingWindowFigureES.3GlobalGHGemissionsunderdifferentscenariosandtheemissionsgapin2030(medianestimateandtenthtoninetiethpercentilerange)TableES.1GlobaltotalGHGemissionsin2030andtheestimatedemissionsgapunderdifferentscenariosGHGemissionsin2030(GtCO2e)MedianandrangeEstimatedemissionsgapin2030(GtCO2e)Below2.0°CBelow1.8°CBelow1.5°CYear2010policies66(64–68)---Currentpolicies58(52–60)17(11–19)23(17–25)25(19–27)UnconditionalNDCs55(52–57)15(12–16)21(17–22)23(20–24)ConditionalNDCs52(49–54)12(8–14)18(14–20)20(16–22)Note:Thegapnumbersandrangesarecalculatedbasedontheoriginalnumbers(withoutrounding),andthesemaydifferfromtheroundednumbersinthetable.NumbersareroundedtofullGtCO2e.GHGemissionshavebeenaggregatedwithglobalwarmingpotentialover100years(GWP100)valuesoftheIntergovernmentalPanelonClimateChangeSixthAssessmentReport(IPCCAR6).2°Crange1.8°Crange1.5°CrangeBlueareashowspathwayslimitingglobaltemperatureincreasetobelow2°Cwithabout66%chanceGreenareashowspathwayslimitingglobaltemperatureincreasetobelow1.5°Cwitha66%chanceby2100andminimum33%chanceoverthecourseofthecenturyCurrentpoliciesscenarioConditionalNDCcaseUnconditionalNDCcaseConditionalNDCcaseUnconditionalNDCcaseRemaininggaptostaywithin2°ClimitRemaininggaptostaywithin2°ClimitConditionalNDCscenarioUnconditionalNDCscenario15GtCO2e23GtCO2e20GtCO2eMedianestimateoflevelconsistentwith2°C:41GtCO2e(range:37–46)Medianestimateoflevelconsistentwith1.5°C:33GtCO2e(range:26–34)2010policiesscenarioGtCO2e12GtCO2e2030405060702015202020252030XXIEmissionsGapReport2022:TheClosingWindow7.Withoutadditionalaction,currentpoliciesleadtoglobalwarmingof2.8°Coverthiscentury.ImplementationofunconditionalandconditionalNDCscenariosreducethisto2.6°Cand2.4°CrespectivelyAcontinuationofthelevelofclimatechangemitigationeffortimpliedbycurrentunconditionalNDCsisestimatedtolimitwarmingoverthetwenty-firstcenturytoabout2.6°C(range:1.9–3.1°C)witha66percentchance,andwarmingisexpectedtoincreasefurtherafter2100asCO2emissionsarenotyetprojectedtoreachnet-zerolevels.ContinuingtheeffortsofconditionalNDCslowerstheseprojectionsbyaround0.2°Cto2.4°C(range:1.8–3.0°C)witha66percentchance.AscurrentpoliciesareinsufficienttomeeteventheunconditionalofNDCs,acontinuationofcurrentpolicieswouldresultinabout0.2°Chigherestimatesof2.8°C(range:1.9–3.3°C)witha66percentchance.GlobalwarminglevelsonlygetclosetotheParisAgreementtemperaturegoaliffullimplementationofthehighlyuncertainnet-zeropledgesisassumed.Achievingnet-zerotargetsinadditiontounconditionalNDCsresultsinkeepingprojectedglobalwarmingto1.8°C(range:1.8–2.1°C)witha66percentchance.AssumingthatconditionalNDCsandpledgesareachievedandfollowedbynet-zerotargets,globalwarmingissimilarlyprojectedtobekeptto1.8°C(range:1.7–1.9°C)witha66percentchance.However,inmostcases,neithercurrentpoliciesnorNDCscurrentlytraceacrediblepathfrom2030towardstheachievementofnationalnet-zerotargets.8.Thecredibilityandfeasibilityofthenet-zeroemissionpledgesremainsveryuncertainGlobally,88partiescoveringapproximately79percentofglobalGHGemissionshavenowadoptednet-zerotargets,TableES.2GlobaltotalGHGemissionsin2030andglobalwarmingcharacteristicsofdifferentscenariosconsistentwithlimitingglobalwarmingtospecifictemperaturelimitsScenarioNumberofscenariosGlobaltotalGHGemissions(GtCO2e)EstimatedtemperatureoutcomeClosestapproximateIn2030In205050%chance66%chance90%chanceIPCCAR6WorkingGroup(WG)IIIscenarioclassBelow2.0°C(66%chance)19541(37–46)20(16–24)Peak:1.7–1.8°CIn2100:1.4–1.7°CPeak:1.8–1.9°CIn2100:1.6–1.9°CPeak:2.2–2.4°CIn2100:2.0-2.4°CC3aBelow1.8°C(66%chance)13935(28–40)12(8–16)Peak:1.5–1.7°CIn2100:1.3–1.6°CPeak:1.6–1.8°CIn2100:1.4–1.7°CPeak:1.9–2.2°CIn2100:1.8–2.2°CN/ABelow1.5°C(66%in2100withnoorlimitedovershoot)5033(26–34)8(5–13)Peak:1.5–1.6°CIn2100:1.1–1.3°CPeak:1.6–1.7°CIn2100:1.2–1.5°CPeak:1.9–2.1°CIn2100:1.6–1.9°CC1aValuesrepresentthemedianandtenthtoninetiethpercentilerangeacrossscenarios.Percentagechancereferstopeakwarmingatanytimeduringthetwenty-firstcenturyforthebelow1.8°Candbelow2.0°Cscenarios.Whenachievingnet-negativeCO2emissionsinthesecondhalfofthecentury,globalwarmingcanbefurtherreducedfromthesepeakwarmingcharacteristics,asillustratedbythe“Estimatedtemperatureoutcome”columns.Forthebelow1.5°Cscenario,thechanceappliestotheglobalwarmingintheyear2100,whilethe“noorlimitedovershoot”characteristiciscapturedbyensuringprojectionsdonotexceed1.5°Cwithmorethan67percentchanceoverthecourseofthetwenty-firstcenturyor,inotherwords,thatthelowestchanceofwarmingbeinglimitedto1.5°Cthroughouttheentiretwenty-firstcenturyisneverlessthan33percent.ThisdefinitionisidenticaltotheC1categorydefinitionusedbytheIPCCAR6WGIIIreport.ComparedtoIPCC(2022),theEmissionsGapReportanalysisalsoselectsscenariosbasedonwhetherornottheyassumeimmediateaction.Note:GHGemissionsinthistablehavebeenaggregatedwithGWP100valuesofIPCCAR6.XXIIEmissionsGapReport2022:TheClosingWindoweitherinlaw(21),inapolicydocumentsuchasanNDCoralong-termstrategy(47),orinanannouncementbyahigh-levelgovernmentofficial(20).Thisisupfrom74partiesatCOP26.Anadditionaleightpartiescoveringanadditional2percentofglobalGHGemissionshaveanother(non-net-zero)GHGmitigationtargetaspartoftheirlong-termstrategies.FocusingontheG20members,19membershavecommittedtoachievingnet-zeroemissions,upfrom17atCOP26.Thesetargetsvaryinanumberofimportantrespects,includingtheirlegalstatus;timeframe;explicitconsiderationoffairnessandequity;whichsources,sectorsandgasestheycover;whethertheywillallowtheuseofinternationaloffsetstocounttowardstheirachievement;thelevelofdetailtheyprovideontheroleofCO2removal;andthenatureofplanning,reviewofandreportingontargetimplementation.FigureES.4visualizesthenecessarydirectionforcountriestomovefromtheircurrentemissionlevelstotheirNDCtargetsfor2030,andindicatesthenet-zerotargetsforeachG20memberthathasanet-zerotarget(notingthatFrance,GermanyandItalyareonlyassessedaspartoftheEuropeanUnion).ThoseG20memberswhoseemissionshavealreadypeakedwillneedtofurtheracceleratetheiremissiondeclinestotheirnet-zerotargetyear,whilememberswhoseemissionswillcontinuetoincreasethrough2030undertheNDCswillrequirefurtherpolicyshiftsandinvestments–includingadequatesupporttodevelopingcountries,whereapplicable–toachievetheemissionsreductionsimpliedbytheirnationalnet-zerotargets.ThisillustrationdoesnotconsidertherelativemeritsintermsofequityorfairnessofthechoicescountriesmakeregardingtheirNDCsortheirnationallydeterminedpathwaystonet-zero.However,itbringstotheforethediscrepanciesbetweenshort-termpolicyimplementation,midtermtargetsandlong-termtargets.Italsoservesasanimportantreminderthatcurrentevidencedoesnotprovideconfidencethatthenationallydeterminednet-zerotargetswillbeachieved.9.Wide-ranging,large-scale,rapidandsystemictransformationisnowessentialtoachievethetemperaturegoaloftheParisAgreementThetaskfacingtheworldisimmense:notjusttosetmoreambitioustargets,butalsotodeliveronallcommitmentsmade.Thiswillrequirenotjustincrementalsector-by-sectorchange,butwide-ranging,large-scale,rapidandsystemictransformation.Thiswillnotbeeasy,giventhemanyotherpressuresonpolicymakersatalllevels.ClimateactionisimperativeinallcountriesbutmustbeachievedsimultaneouslywithotherUnitedNationsSustainableDevelopmentGoals.ThetransformationtowardszeroGHGemissionsinthesectorsofelectricitysupply,industry,transportationandbuildingsisunderway.However,increasedandacceleratedactionisneededifthesearetohappenatthepaceandscalerequiredtolimitglobalwarmingtowellbelow2°C,preferably1.5°C.Ofthesefoursectors,electricitysupplyisthemostadvanced,asthecostsofrenewableelectricityhavereduceddramatically.Still,majorobstaclescontinuetoexist,includingensuringthattransformationsarejustanddeliverenergyaccessforpeoplewhoarecurrentlynotserved.Furthermore,theimpactsoncommunitiesandnations,andexistingfossilenergycompaniesandsupplychains,mustbehandled,andgridintegrationoflargesharesofrenewableenergymustbeprepared.Forbuildingoperationsandroadtransport,themostefficienttechnologiescurrentlyavailableneedtobeapplied,whileforindustry,andshippingandaviation,zero-emissionstechnologiesneedtobefurtherdevelopedanddeployed.Thefollowingbroadportfolioofkeyactionstoinitiateandadvancethetransformationmustbeundertaken,tailoredtothespecificcontextofeachofthefoursectors:▶avoidinglock-inofnewfossilfuelintensiveinfrastructure▶enablingthetransitionbyfurtheradvancingzero-carbontechnologies,marketstructuresandplansforajusttransformation▶applyingzero-emissionstechnologiesandpromotingbehaviouralchangetosustainanddeepenreductionstoreachzeroemissionsAllactorshaverolestoplayininitiatingandacceleratingthetransformation,includingintheremovalofbarriersthatstandinthewayofprogress(tableES.3).Whileanyindividualactionsmaynotamounttosignificantenoughchange,takentogethertheycanspurmorefar-reaching,durable,systemicchange.XXIIIEmissionsGapReport2022:TheClosingWindowFigureES.4EmissionstrajectoriesimpliedbyNDCandnet-zerotargetsofG20members.NationalemissionsinMtCO2e/yearovertime.SaudiArabiaArgentinaAustraliaBrazilCanadaSouthAfricaTürkiyeRussianFederationUnitedKingdomUSARepublicofKoreaEmissionstrenduntil2030impliedbyNDCtargetsLinearcontinuationoftheemissionstrendimpliedbyNDCtargetsNetzerowithunclearorCO2-onlycoverageNet-zeroCO2targetsNet-zeroGHGtargetsMexicoIndonesiaJapanIndiaChinaEU27Historicaldata04000600015000800015000035005000025000150008000800060001000060000250006002020204020602020204020602020204020602020204020600202020402060202020402060202020402060202020402060202020402060202020402060202020402060202020402060202020402060202020402060202020402060202020402060XXIVEmissionsGapReport2022:TheClosingWindowTableES.3Importantactionstoacceleratetransformationsinelectricitysupply,industry,transportationandbuildingsbydifferentactors1TableES1Importantactionstoacceleratetransformationsinelectricitysupply,industry,transportationandbuildingsbydifferentactorsELECTRICITYSUPPLYINDUSTRYTRANSPORTATIONBUILDINGSNationalgovernmentsRRemovefossilfuelsubsidiesinasociallyacceptablemannerRRemovebarrierstoexpansionofrenewablesRStopexpansionoffossilfuelinfrastructureRPlanforajustfossilfuelphase-outRAdaptmarketrulesofelectricitysystemforhighsharesofrenewablesRSupportzero-carbonindustrialprocessesRPromotecircularmaterialflowRPromoteelectrificationRSupportalternativecarbonpricingmechanismsRSupportresearchandinnovationRPromotelow-carbonproductsRPlanforajusttransformationRSetmandatestoswitchtozero-emissionsroadvehiclesbyspecificdatesRRegulateandincentivizezero-carbonfuelsforaviationRAdjusttaxation/pricingschemesRInvestinzero-emissionstransportinfrastructureRRegulatetowardszero-carbonbuildingstockRIncentivizezero-carbonbuildingstockRFacilitatezero-carbonbuildingstockInternationalcooperationRCooperateonajustcoalphase-outRSupportinitiativesonemissions-freeelectricity,powersystemflexibilityandinterconnectionsolutionsRCooperateonzero-carbonbasicmaterialsRCooperateonhydrogenRSharebestpracticeRCooperateonfinancingandpolicydevelopmentRCoordinateontargetsettingandstandardsRProvideaccessandfavourableconditionstofinanceRSupportskillsandknowledgegrowthSubnationalgovernmentsRSet100percentrenewabletargetsRPlanforajustfossilfuelphase-outREngageinregionalplanningandregulationsRCooperatewithvariousstakeholdersRPlaninfrastructureandsupportingpoliciesthatreducetraveldemandRAdjusttaxation/pricingschemesRImplementzero-emissionsbuildingstockplansRIntegratelow-emissionsrequire-mentsinurbanplanningRAddrequirementsthatgobeyondthenationallevelBusinessesRSupporta100percentrenewableelectricityfutureRPlanandimplementzero-emissionstransformationRDesignlong-livedproductsRCreatecircularsupplychainRWorktowardszero-emissionstransportationRReducetravelinoperationsRConstructionandbuildingmaterialcompaniesreviewbusinessmodelsRAchievezero-carbonownedorrentedbuildingstockInvestors,privateanddevelopmentbanksREngagewithordivestfromfossilfuelelectricityutilitycompaniesRDonotinvestinorinsurenewfossilfuelinfrastructureREngagewithordivestfromemissions-intensiveindustryRInvestinlow-carbonenergyandprocesstechnologiesRDriveawarenessofclimaterisksRInvestinzero-emissionstransportinfrastructureRSupportzero-emissionsvehicles,vesselsandplanesRAdjuststrategyandinvestmentcriteriaforzero-carbonbuildingstockRSupportbuildingrenovationCitizensRPurchase100percentrenewableelectricityRConsumesustainablyRLobbyRAdoptactivemobilitypracticesRUsepublictransportationRUsezero-emissionsvehiclesRAvoidlong-haulflightsRRetrofitforimprovedcarbonfootprintRTenantschallengelandlordsRAdoptenergy-savingbehaviourXXVEmissionsGapReport2022:TheClosingWindow10.Thefoodsystemaccountsforonethirdofallemissions,andmustmakealargereductionFoodsystemsaremajorcontributorsnotonlytoclimatechange,butalsotoland-usechangeandbiodiversityloss,depletionoffreshwaterresources,andpollutionofaquaticandterrestrialecosystems.Adoptingafoodsystemslensimpliesacross-sectoralapproachthatexplicitlyconnectssupplyanddemandsides,andallactorsofthefoodsupplychain.Itfacilitatesidentifyingsynergiesandtrade-offsacrossinterconnectedenvironmental,healthandeconomicdimensions,buttheinclusionofseveralsectorsmakescomputationofemissionsmoredifficult,andincreasesrisksofdoublecounting.ThefoodsystemiscurrentlyresponsibleforaboutathirdoftotalGHGemissions,or18GtCO2e/year(range:14–22GtCO2e).Thelargestcontributionstemsfromagriculturalproduction(7.1GtCO2e,39percent)includingtheproductionofinputssuchasfertilizers,followedbychangesinlanduse(5.7GtCO2e,32percent),andsupplychainactivities(5.2GtCO2e,29percent).Thelatterincludesretail,transport,consumption,fuelproduction,wastemanagement,industrialprocessesandpackaging.Projectionsindicatethatfoodsystememissionscouldreachca30GtCO2e/yearby2050.TogetonanemissionspathwayalignedwiththeParisAgreementtemperaturegoal,foodsystemswillhavetoberapidlytransformedacrossmultipledomains.Requiredtransformationsincludeshiftingdiets,protectingnaturalecosystems,improvingfoodproductionanddecarbonizingthefoodvaluechain.Eachtransformationdomainincludesseveralmitigationmeasures.ThepotentialtoreduceGHGemissionsisupto24.7GtCO2e/yearin2050(figureES.5).Transformingfoodsystemsisnotonlyimportantforaddressingclimatechangeandenvironmentaldegradation,butalsoessentialforensuringhealthydietsandfoodsecurityforall.Actionsbyallmajorgroupsofactorsisrequiredtodrivetransformationsforwardandtoovercomebarriers.FigureES.5FoodsystemsemissionstrajectoryandmitigationpotentialsbytransformationdomainGHGemissions(GtCO2e)05201520302050Target2°C1015202530Demand-sidechangesProtectionofecosystemsFarm-levelimprovementsDecarbonizingsupplychainLesslossandwasteFlexitariandietsPescatariandietsVegetariandietsVegandietsReduceconversionofcoastalwetlandsReduceconversionofpeatlandsReduceconversionofgrasslandsReducedeforestationManuremanagementCropnutrientmanagementRicemanagementFeedcompositionSoilcarbonmanagementingrasslandSoilcarbonmanagementincroplandsDecarbonizesupplychainsXXVIEmissionsGapReport2022:TheClosingWindow11.RealignmentofthefinancialsystemisacriticalenablerofthetransformationsneededArealignmentofthefinancialsystemisvitallyimportanttoenablethetransformationsneededaretobeachieved.Thefinancialsystemisanetworkofprivateandpublicinstitutionssuchasbanks,institutionalinvestorsandpublicinstitutionsthatregulatethesafetyandsoundnessofthesystem,butalsoco-lendorfinancedirectly.Aglobaltransformationfromaheavilyfossilfuel-andunsustainablelanduse-dependenteconomytoalow-carboneconomyisexpectedtorequireinvestmentsofatleastUS$4–6trillionayear,arelativelysmall(1.5–2percent)shareoftotalfinancialassetsmanaged,butsignificant(20–28percent)intermsoftheadditionalannualresourcestobeallocated.TheIPCCassessesthatglobalmitigationinvestmentsneedtoincreasebyafactorofthreetosix,andevenmorefordevelopingcountries(figureES.6).Financialsystemschangeisrequiredtoenablesuchaglobaltransformation.Todate,mostfinancialactorshaveshownlimitedactiononclimatechangemitigationbecauseofshort-terminterestsandconflictingobjectives,andbecauseclimaterisksarenotadequatelyrecognized.Sixapproachestobringingaboutafinancialsystemthatiscapableoftheshiftingoffinanceflowsneededforsystemictransformationareidentified:▶Increasetheefficiencyoffinancialmarkets.Keyinterventionsincludetheprovisionofbetterinformation,includingtaxonomiesandtransparency,onclimaterisks.Indevelopingcountrycontexts,prioritieswillincludecapacity-buildingandstrengtheninginstitutions.▶Introducecarbonpricing.Thiscanbedonethroughpolicyinstrumentssuchascarbontaxesorcap-and-tradesystems.Emissions-tradingschemesandcarbontaxesnowcover30percentofallglobalemissions,withaglobalaveragepriceofUS$6pertonofCO2.Boththecoverageandthepriceareinsufficientfortransformingthefinancialsystem:theInternationalMonetaryFundhassuggestedaglobalaveragepriceofUS$75asrequiredby2030.▶Nudgefinancialbehaviour.Climatefinancemarketsaresubjecttodeepinformationasymmetry,riskaversionandherdbehaviour,allofwhichresultininefficientchoices.Policy“nudges”canachievebetterresults,withstrongpublicpolicyinterventions,taxation,spendingandregulationspositivelyinfluencingbehaviour.▶Createmarkets.Publicpolicyactioncanremoveexistingmarketdistortionsandacceleratenewproductmarketsforlow-carbontechnology,pushinginnovationthroughpublicfinance,andreplacingolder,inefficientandfossilfuel-basedtechnology.Developmentbanks,includinggreenbanks,canplayamoreactiveroletostimulatefinancialmarketsasnewerproductmarketsarebeingaccelerated.Multilateraldevelopmentbankscansupportmarketcreationthroughshiftingfinancialflows,stimulatinginnovationandhelpingtosetstandards(e.g.forfossilfuelexclusionpolicies,GHGaccountingandclimateriskdisclosure).▶Mobilizecentralbanks.CentralBanksareincreasinglyaddressingtheclimatecrisis.InDecember2017,eightcentralbanksandsupervisorsestablishedtheNetworkforGreeningtheFinancialSystem,whichhasnowgrownto116membersand18observers.Mandatesofcentralbanksindevelopingcountriesareoftenbroaderthanthoseofcentralbanksindevelopedcountries;moreconcreteactiontowardsthisapproachcanthereforebeobserved.Forexample,theReserveBankofIndiarequiresthatcommercialbanksallocateacertainproportionoflendingtoalistof“prioritysectors”,includingrenewableenergy,andBangladeshBankhasintroducedaminimumcreditquotaof5percentthatfinancialinstitutionsmustallocatetogreensectors.▶Setupclimateclubsandcross-borderfinanceinitiatives.Thesecanincludejusttransitionpartnerships,andcanalterpolicynormsandchangethecourseoffinancethroughcrediblefinancialcommitmentdevicesoncross-borderfinancialflows,suchassovereignguarantees.Evidenceontheeffectivenessofthesixapproachesabovesuggeststhatthereisnosingle“silverbullet”.Instead,nestedandcoordinatedapproachesareneeded,tailoredtocontexts,andimplementedacrossmajorgroupsofcountries,withequityand“justtransition”withinandbetweencountries.Thesuccessofsuchcoordinatedandcooperativeaction,depend,ultimately,onpublicsupportandpressurestoavertthesignificantrisksofinaction,andthewillingnessofkeyfinancialsystemactorstotakeontheirroles.XXVIIEmissionsGapReport2022:TheClosingWindowFigureES.6Financeflowsandmitigationinvestmentneedspersector,typeofeconomyandregion(averageduntil2030)0Actualyearlyflowcomparedtoaverageannualneeds(billionUS$2015/year)Energyefficiency(IEA)TransportElectricityAgriculture,forestryandotherlanduse100015005002000Averageflows(2017–2020)Annualmitigationinvestmentneeds(averageduntil2030)lowlowhighhighMultiplicationfactorsValueGDPshareSectorx2x7x7x70Actualyearlyflowcomparedtoaverageannualneeds(billionUS$2015/year)DevelopingcountriesDevelopedcountries100020003000Typeofeconomyx4x74%9%2%4%x3x5x2x5x10x310Actualyearlyflowcomparedtoaverageannualneeds(billionUS$2015/year)EastAsiaNorthAmericaEuropeSouthAsiaLatinAmericaandCaribbeanJapan,AustraliaandNewZealandEasternEuropeandWest-CentralAsiaAfricaSouth-EastAsiaanddevelopingPacificMiddleEast6009003001200Regionx4x2x3x6x2x4x4x8x3x7x7x15x5x12x6x12x14x28x7x141EmissionsGapReport2022:TheClosingWindowIntroductionLeadauthors:AnneOlhoff(CONCITO–Denmark’sgreenthinktank),JohnChristensen(CONCITO–Denmark’sgreenthinktank)11.1ContextandframingoftheEmissionsGapReport2022Since2010,theUnitedNationsEnvironmentProgramme(UNEP)hasprovidedannualscience-basedassessmentsofthegapbetweencommitmentsmadebygovernmentstoreducegreenhousegas(GHG)emissionsandthoseneededtoachieveglobaltemperaturetargetsundertheUnitedNationsFrameworkConventiononClimateChange(UNFCCC).ThisthirteentheditionoftheEmissionsGapReportisatestimonytoinactionontheglobalclimatecrisis.Injusteightyears,globalGHGemissionsmustbereducedby30to45percentcomparedtowheretheyareheadedunderpoliciescurrentlyinplacetogetontracktolimitingglobalwarmingtowellbelow2.0°Cand1.5°Crespectively.Commitmentsbycountriesasexpressedintheirlatestunconditionalandconditionalnationallydeterminedcontributions(NDCs)for2030willonlyreduceglobalemissionsby5to10percent,assumingthattheyarefullyimplemented.Earlierthisyear,theIntergovernmentalPanelonClimateChange(IPCC)publishedtworeportsaspartofitsSixthAssessmentcycle,onImpacts,AdaptationandVulnerability(IPCC2022a)andMitigationofClimateChange(IPCC2022b).Thereportsrecordthevastimpactsofclimatechangethatwearealreadyexperiencing,andhowtheclimaterisksofthefutureareofamuchgreaterorderofmagnitude.Onceagain,thesereportsdocumentthatthescaleandrateofclimatechangeandassociatedrisksdependstronglyonnear-termmitigationandadaptationactions,findingthatprojectedadverseimpactsandrelatedlossesanddamagesescalatewitheveryincrementofglobalwarming.Thisyear,ashasrepeatedlybeenthecaseinrecentyears,manycountrieshaveexperiencedanunprecedentednumberofclimateevents,withextremeweatherleadingtoflooding,droughtandwildfires,andcausingfoodshortages,healthproblems,andmajordamagetoecosystemsandhumanhabitats,leadingtointernaldisplacementandmigrationaroundtheworld.InlinewiththeEmissionsGapReport,theIPCCreportssendareverberatingmessagethatthewindowofopportunitytolimitglobalwarmingtowellbelow2°C,preferably1.5°C,therebyavoidingsomeunmanageableclimaterisks,isclosingrapidly.Everyfractionofadegreematters.ConsistentwithpreviousEmissionsGapReports,theIPCCMitigationofClimateChangereportfindsthat“projectedglobalemissionsfromNDCsannouncedpriortoCOP26wouldmakeitlikelythatwarmingwillexceed1.5°Candalsomakeitharderafter2030tolimitwarmingtobelow2°C”(IPCC2022b).Specifically,thereportfindsthatGHGemissionslevelsby2030associatedwiththeimplementationofNDCs,implythatmitigationafter2030cannolongerestablishapathwaythatlimitsglobalwarmingto1.5°Cduringthetwenty-firstcenturywithoutsignificantovershoot,andthatreturningtobelow1.5°Cin2100isinfeasibleforsomescenarios(IPCC2022b).Unprecedentedscalingupofmitigationambitionsandimplementationisaprerequisitetobridgingtheemissionsgap,andisexpectedtobeoneofthefocusareasofthetwenty-seventhUnitedNationsClimateChangeConferenceoftheParties(COP27).FollowinguponthedecisionsmadeatCOP26,itwasdecidedtoestablishaworkprogrammeforurgentlyscalingupmitigationambitionandimplementation,thedetailsofwhichareexpectedtobeagreeduponatCOP27(UNFCCC2022a;UNFCCC2022b).Recognizingthesignificantemissionsgap,countrieswerefurthermoreencouragedtorevisitandstrengthentheir2030mitigationpledgesin2022,anditwasdecidedtoestablishannualhigh-levelministerialroundtablesonpre-2030ambitionalsostartingin2022.Consequently,akeyquestionforCOP27andforthisyear’sEmissionsGapReportis,whatprogresshasbeenmadesinceCOP26,andhowcanthetransformationnecessarytobridgetheemissionsgapbeinitiatedandaccelerated?Thereportlooksattransformationsrequiredinelectricitysupply,industry,transport,buildings,foodsystemsandthefinancialsystem.Itisimportanttoacknowledgethatfortransformationstobesuccessfultheyneedtobejustandsociallybalanced.Thereisnouniversalmodel,andtransformationswilllikelybeverydifferentbetweendevelopedanddevelopingcountries.2EmissionsGapReport2022:TheClosingWindowInparallelwiththeclimatecrisisandotherplanetarycrises,theworldfacescompoundingenergy,foodandcostoflivingcrises.ThesecrisesareexacerbatedbythewarinUkraine,whichiscausingimmensehumansufferingandunderminestherecoveryoftheglobaleconomyfollowingtheCOVID-19pandemic.Thecrisesareawake-upcalltotheglobalcommunityformore,ratherthanless,climateaction.AspreviouseditionsoftheEmissionsGapReporthavedocumented,theunprecedentedlylargefiscalrescueandrecoverypackagesinresponsetotheCOVID-19crisisweretoalargeextentmissedasanopeningtoacceleratethegreentransition.Whilethecurrentcrisesarefundamentallydifferent,governmentsaroundtheworldfacelargelysimilarchoices:(1)tousethemasanopeningtoacceleratethetransitionawayfromfossilfuelsandtheexpansionofrenewableenergy,whileboostingenergyconservationandenergyefficiency,or(2)toallowthemtodivertattentionfromclimatechangeactionandcontinueinvestmentinfossilfuels,causinglock-inandjeopardizingtheParisAgreementtemperaturegoal.TheglobalimplicationsofthesecrisesforclimateactionandGHGemissionsarestillunclear,andtheyarelikelytodifferintheshorttermandthelongterm,buttheycouldbesignificant,dependingonhowgovernmentsrespondtothem.1.2ApproachandstructureofthereportTheEmissionsGapReportisanassessmentreport.Itprovidesanevaluationofcrediblescientificandtechnicalknowledgeonemissionstrends,progress,gapsandopportunities,basedonasynthesisofthelatestscientificliterature,models,anddataanalysisandinterpretation,andmodels,includingthatpublishedinthecontextoftheIntergovernmentalPanelonClimateChange(IPCC).Asinpreviousyears,thisEmissionsGapReporthasbeenpreparedbyaninternationalteam.Thisyear,UNEPconvened77leadingscientistsfrom41expertinstitutionsacross23countries.Theassessmentprocesshasbeenoverseenbyarespectedinternationalsteeringcommitteeandhasbeentransparentandparticipatory,whilealsotakingintoaccountgeographicaldiversityandgenderconcerns.Allchaptershaveundergoneexternalreview,andtheassessmentmethodologyandpreliminaryfindingsweremadeavailabletothegovernmentsofthecountriesspecificallymentionedinthereport,toprovidethemwiththeopportunitytocommentonthefindings.Thisyear,severalmethodologicalupdatesweremadetoimprovetheestimatesandensureconsistencyacrossthechaptersofthereport.TwoworkinggroupswereestablishedtoaddressrecurrentissuesintheEmissionsGapReports,relatedto(1)landuse,land-usechangeandforestrydatasources,notablyreconciliationofdifferencesbetweenglobalmodelestimatesandnationalreportingofforestCO2sinks(alsoseechapter2),and(2)harmonizationofglobalemissionsdatabasedonhistoricalemissionsandglobalmodels(seechapters3and4).Furthermore,thereportscenarioshavebeenupdatedbasedonIPCC’sSixthAssessmentReport,andthemostrecentvaluesofglobalwarmingpotentialover100yearsareused.Itisimportanttonotethattheseimprovementsalsoimplythattheestimatespresentedarenotdirectlycomparabletothoseofpreviousreports.Fulldetailscanbefoundinchapters2to4andrelatedappendices.Thereportisorganizedintosevenchapters,includingthisintroduction.Chapter2assessesthetrendsinglobalGHGemissions,includingtheeffectsofCOVID-19,andconsidersconsumption-basedemissionsandtheirdistributionbetweenandwithincountries.Chapter3providesanupdatedgloballandscapeofNDCsandlong-termnet-zeroemissionspledges,andassessestheprogressofG20memberstowardsachievingtheirNDCsandnet-zeroemissionspledges.Chapter4updatestheassessmentoftheemissionsgapby2030basedonthelatestNDCs,andconsiderstheimplicationsoftheemissionsgaponthefeasibilityofachievingthelong-termtemperaturegoaloftheParisAgreement.Chapter5providesthestatusofthetransformationtowardszeroGHGemissionsinthesectorsofelectricitysupply,industry,transportationandbuildings,andidentifiesactor-basedactionsthatcouldacceleratethetransformation.Chapter6providesanassessmentofthefoodsystemstransformationsneeded,whethertherearesignsthattheyarehappening,andhowtheycouldbeaccelerated.Finally,chapter7considersthetransformationsofthefinancesystemneededtoenabletheachievementoftheParisAgreement.3EmissionsGapReport2022:TheClosingWindowGlobalemissionstrendsLeadauthors:WilliamF.Lamb(MercatorResearchInstituteonGlobalCommonsandClimateChangeandPriestleyInternationalCentreforClimate,SchoolofEarthandEnvironment,UniversityofLeeds,UnitedKingdom),GiacomoGrassi(EuropeanCommission,JointResearchCentre[JRC],Italy)Contributingauthors:LucasChancel(WorldInequalityLab,ParisSchoolofEconomics,France),MonicaCrippa(EuropeanCommission,JRC,Italy),DiegoGuizzardi(EuropeanCommission,JRC,Italy),MarilenaMuntean(EuropeanCommission,JRC,Italy),JosOlivier(PBLNetherlandsEnvironmentalAssessmentAgency,theNetherlands),GlenPeters(CICEROCenterforInternationalClimateResearch,Norway),JuliaPongratz(Ludwig-MaximiliansUniversityMunich,MaxPlanckInstituteforMeteorology,Germany)22.1IntroductionThischapterassessestrendsingreenhousegas(GHG)emissionsuptoandincluding2021.Itanalysesglobalemissionsbygas,country,householdandsector,providingthecurrentandhistoricalcontextforsubsequentchaptersoncountrypledgesandmitigationpathways.Therearebothshort-andlong-terminfluencesonGHGemissions.Intheshortterm,abruptgeopoliticalandeconomiceventssuchastheCOVID-19pandemicandthewarinUkrainecanleadtosignificantbuttemporarychangesinannualemissions.Inthelongterm,structuralshiftsintechnologies,productionandinvestmentdecisions,aswellaseconomicandclimatepolicies,playanimportantrole.Oneaimofthischapteristoprovidebothshort-andlong-termperspectivesontrendsinglobalGHGemissions.Anotherfocalareaofthechapterislanduse,land-usechangeandforestryemissions(LULUCF).TheLULUCFsectoriscomplexintermsofdefinitions,conceptsandquantification,duetothescientificchallengeofseparatinghumanfromnaturalinfluencesonGHGfluxes,andthefactthatitisbothasourceandsinkofCO2.Thisyear,theEmissionsGapReporthasadoptedanewapproachforLULUCFemissions,asdescribedinbox2.1.4EmissionsGapReport2022:TheClosingWindowBox2.1MethodologicalupdatetoensureconsistencybetweenglobalandnationalLULUCFemissionestimatesRecentliteraturehashighlightedsignificantdifferencesinanthropogenicLULUCFestimatesbetweentheapproachundertakenbycountriesintheirreportingtotheUnitedNationsFrameworkConventiononClimateChange(UNFCCC)(‘nationalinventoryapproach’)andtheglobalmodellingapproach(‘bookkeepingapproach’)pioneeredinthescientificcommunityandusedintheIntergovernmentalPanelonClimateChange(IPCC)AssessmentReports(Grassietal.2021;Grassi,Schwingshackletal.2022).Bothapproachesareapplicableintheirspecificcontexts,butarenotdirectlycomparableastheyusedifferentsystemboundaries.Themainconceptualdifferenceisthatbookkeepingmodelsconsiderasanthropogeniconlythefluxesthatareduetodirecthuman-inducedeffects,suchasland-usechange,shiftingcultivation,harvestandregrowth.Bycontrast,nationalinventoriesgenerallyconsiderasanthropogenicallthefluxesoccurringonalargerareaofmanagedforestthanthatusedbymodels,andincludemostindirecthuman-inducedeffectsonthisareathatmodelsconsidernatural(i.e.thenaturalresponsetohuman-inducedenvironmentalchangessuchasincreasedCO2atmosphericconcentrationandnitrogendeposition,whichenhancetreegrowth).OtherreasonsforthedifferencecanarisefromthelimitedrepresentationoflandmanagementinglobalmodelsandvaryinglevelsofaccuracyandcompletenessofestimatedLULUCFfluxesinnationalinventories.Thesedifferenceshampercomparabilitybetweennationalinventoriesandbookkeepingmodelsforthehistoricalperiod,andbetweennationallydeterminedcontributions(NDCs)(basedonthenationalinventoryapproach)andintegratedassessmentmodels(basedonthebookkeepingapproach)forprojections.Toreflectandaddressthis,themethodologicalapproachtoLULUCFemissionsdataisupdated:whendepictingcountryemissionstrends,nationalinventorydataisused.Inthischapterthisappliestohistoricalemissions(basedonGrassi,Concheddaetal.2022andgap-filledwhennecessary),andinchapter3itappliestocountryNDCemissions.WhenreportingglobaltotalGHGemissions,datafromglobalmodels,i.e.thebookkeepingapproach,isused.ThischapterusesbookkeepingmodelsthatonlycoverLULUCFemissions(basedonFriedlingsteinetal.2022),whilechapter4usesintegratedassessmentmodels.ThisapproachensuresthatcountryestimatesareconsistentwiththosereportedbycountriesthemselvestotheUNFCCC,andthatglobalestimatesareconsistentwiththecarboncycle,scenariosandclimatescienceliteratureusedintheIPCCAssessmentReports.Inaddition,aharmonizationprocedurehasbeenimplementedinchapter4toensurecomparabilitybetweengloballyaggregatedNDCestimatesandintegratedassessmentmodelemissionpathwaysconsistentwithdifferentwarminglevels.TheharmonizationprocedureadjustsglobalNDCscenariostotheoutputsfromintegratedassessmentmodelsforthehistoricalperiod.Forfurtherdetails,pleaseseeappendixA,whichisavailableonline.AllGHGemissionfiguresinthisreportareexpressedusingglobalwarmingpotentialover100years(GWP100)fromtheIPCCSixthAssessmentReport(Forsteretal.2021).Inlinewithpreviousreports,non-LULUCFemissionsinthischapterarebasedonasingleconsistentglobalsource,theEmissionsDatabaseforGlobalAtmosphericResearch(EDGAR),whichisavailableupto2021(Crippaetal.2022).1LULUCFemissions,basedonbothGrassi,Concheddaetal.(2022)andFriedlingsteinetal.(2022),arecurrentlyonlyavailableupto2020,limitingouranalysisoftotalglobalGHGemissionsto2020.Nonetheless,aninitialestimateoftotalglobalGHGemissionsin2021excludingLULUCFisprovided.1EDGARincludesallanthropogenicGHGemissionssourcesdefinedintheIPCCguidanceandreflectedinUNFCCCnationalinventories.Someadditionalsourceswithrelevantwarmingimpacts,suchaschlorofluorocarbons,hydrochlorofluorocarbonsandhydrogengasareexcluded(Minxetal.2021;Dhakaletal.2022).ItshouldbenotedthattheemissionsestimatespresenteddifferfromtheEmissionsGapReport2021(UnitedNationsEnvironmentProgramme[UNEP]2021)duetotherevisionoftheLULUCFdataandtheswitchtoGWP100valuesfromtheSixthAssessmentReport.IftotalGHGestimatesexcludingLULUCFarerecalculatedbasedontheGWP100fromtheIPCCFourthAssessmentReport,theyshowstrongagreementwithpreviousreports.Furtherinformationonthedataused,estimationsofgrowthratesanduncertaintiesisprovidedinappendixA,availableonline.5EmissionsGapReport2022:TheClosingWindow2.2Globalemissionstrends2.2.1TherateofgrowthinGHGemissionshasslowedinthepastdecade,butglobalGHGemissionscouldsetanewrecordin2021WhiletherateofgrowthinGHGemissions(includingLULUCF)inthepastdecadehasslowedcomparedtothepreviousdecade,averageGHGemissionsinthelastdecadewerethehighestonrecord(figure2.1).Between2010and2019,averageannualgrowthwas1.1percentperyear,comparedto2.6percentperyearbetween2000and2009.Reasonsforthisdecadalslowdownincludeaglobalreductioninnewcoalcapacityadditions(particularlyinChina),thesteadysubstitutionofcoalbygasinthepowersectorsofdevelopedcountries,theincreasingpaceofrenewableenergydeploymentsworldwide(Lamb,Wiedmannetal.2021;Dhakaletal.2022;Friedlingsteinetal.2022;Jacksonetal.2022;)andareductioninLULUCFnetemissions,althoughtheseareveryuncertain(Friedlingsteinetal.2022).ThisraisesthequestionofwhetherglobalGHGemissionsarereachingaplateau,orwhetherslowerlevelsofgrowthwillcontinueinthecomingyears(seealsosection2.2.3).TotalglobalGHGemissionsaveraged54.4gigatonsofCO2equivalent(GtCO2e)between2010and2019,andreachedahighin2019(figure2.1,table2.1).EstimatesofLULUCFemissionsfor2021arenotyetavailable,preventingconclusionsregardingtotalglobalGHGemissionsin2021.However,theinitialestimateoftotalglobalGHGemissionsexcludingLULUCFfor2021exceedscomparablelevelsin2019by0.26GtCO2e,or0.2percent(table2.1),suggestingthattotalglobalGHGemissionsin2021willbesimilarto,orevensurpassing,2019levels.Figure2.1TotalGHGemissions1990–2021andcomparisonofLULUCFestimatesSources:Crippaetal.(2022);Friedlingsteinetal.(2022);Grassi,Concheddaetal.(2022)Note:TotalemissionsincludeCO2fromfossilfuelandindustry(fossilCO2),CO2emissionsfromLULUCF,methane(CH4),nitrousoxide(N2O),andfluorinatedgases(F-gases).LULUCFCO2emissionsaredepictedinthetoppanelupto2020asanetglobalsourceusingthebookkeepingapproachfromtheGlobalCarbonBudget(nodataisavailablefor2021).AcomparisonofthebookkeepingtothenationalGHGinventoryapproachisprovidedinthelowerpanelfortheyear2020.01990200020102020GHGemissions(excludingLULUCF)reboundedandwere52.8GtCO2ein2021,comparedto52.6GtCO2ein201910-1020304050600102030405060ComparisonofLULUCFestimatesin2020(GtCO2e)TotalGHGemissions1990–2021(GtCO2e/year)GHGemissions+bookkeepingLULUCF54GtCO2e49GtCO2eGHGemissions+inventoryLULUCFFossilCO2CH4N2OF−gasesLULUCFCO254GtCO2e51GtCO2e42GtCO2e38GtCO2e6EmissionsGapReport2022:TheClosingWindowThisconfirmsthattheglobalresponsetotheCOVID-19pandemichadanunprecedentedbutshort-livedeffectonemissions(figure2.1,table2.1).TotalglobalGHGemissionsdropped4.7percentfrom2019to2020–thelargestsingle-yearabsolutedropinGHGemissionssince1970whenthedatasetstarts(Dhakaletal.2022).Nonetheless,dailyemissionsdatasuggeststhatCO2emissionsfromfossilfuelandindustry(hereafterreferredtoasfossilCO2forbrevity)hadalreadyreboundedbytheendof2020(LeQuéréetal.2020;Liuetal.2020;Davisetal.2022;Jacksonetal.2022).GlobalatmosphericCO2concentrationscontinuedtogrowfrom2019to2020,reachinganannualmeanof413partspermillion.Thiswasslightlyslowerthanduring2018to2019,butfasterthanthedecadalaveragerate,despiteCOVID-19restrictions(WorldMeteorologicalOrganization2022).Thelong-termimpactsofCOVID-19onglobalGHGemissionsarenotyetpossibletodiscern(Kikstraetal.2021;Shanetal.2021).Ontheonehand,theglobalresponsetoCOVID-19hasdisruptedsupplychainsandmayhaveledtounderlyingshiftsinenergysupplyanddemand;ontheotherhand,economicstimuluspackagesappeartohavefavouredfossilfuels,missinganopportunitytosupportrenewableenergyandlow-carboninvestments(Hepburnetal.2020;UNEP2020;Bertrametal.2021;LeQuéréetal.2021;UNEP2021).Emissionstrendsin2022andbeyondwillbefurtherinfluencedbythewarinUkraineandsubsequentdisruptionstoglobalenergysupplies,whicharedrivingarenewedpolicyfocusonenergysecurity.Earlyassessmentsprojectanincreaseinfossilfuelinvestmentsin2022,asmanycountrieshaveannouncedplanstoexpandnaturalgasinfrastructurestoshoreupdomesticsupplies(ClimateActionTracker2022;InternationalEnergyAgency2022).Table2.1Totalemissionsbysource,2019–2021YearGtCO2CH4,N2O,F-gases(GtCO2e)LULUCF(GtCO2)TotalGHGemissionsexcludingLULUCF(GtCO2e)TotalGHGemissions(GtCO2e)202137.9(±3)15(±3.6)N/A52.8N/A202036(±2.9)14.8(±3.6)3.2(±2.2)50.854201938(±3)14.6(±3.6)3.8(±2.2)52.656.42.2.2COVID-19responsesmainlyimpactedCO2emissionsfromfossilfuelsandindustry,whilemethaneandnitrousoxideremainedsteady,andF-gasescontinuedtosurgeFossilCO2emissionsdeclinedby5.6percentfrom2019to2020,butreboundedtolevelscomparableto2019levelsin2021(table2.1).Methane,nitrousoxideandF-gasemissionscontinuedtogrowduringandaftertheinitialCOVID-19pandemicresponse.Thesenon-CO2emissionssourcesaremainlylinkedtoagriculturalactivities(methaneandnitrousoxide),fossilfuelsupplychains(methane),andcoolingandindustrialprocesses(F-gases).Thattheyfollowedthelonger-termtrendofsteadygrowth(forF-gasemissions,rapidgrowth)indicatesthatthesesectorswerelessexposedtotheenergydemandreductiondynamicsoftheinitialCOVID-19pandemicresponse.Atasourcelevel,emissionsfromoilsawthesteepestdropin2020,followedbycoalandgas(Friedlingsteinetal.2022).Oilismainlyusedinlandtransportandaviationandshipping,whichweremostseverelyaffectedbythepandemic(LeQuéréetal.2020;Liuetal.2020).Emissionsfromoilhaveyettorebound,andremainedbelow2019levelsin2021(Jacksonetal.2022).Ontheotherhand,coalandgasreboundedstronglyin2021.In2021,globalcoalemissionsexceeded2019levels,mainlyduetoincreasedusageinChinaandIndia(Davisetal.2022;Jacksonetal.2022).Insomecountriestherehasbeenashiftfromcoaltogasinrecentdecades;whilethiscanreduceemissionsintheshortterm,ithascontributedthedevelopmentofnewgasinfrastructuresthathavelonglifetimesandcumulativeemissionsimpacts,includingviamethaneemissionsfromleakages(Alvarezetal.2018).2.2.3LULUCFemissionsremainsubstantial,butaredeeplyuncertainNetLULUCFCO2emissionsassessedusingthebookkeepingapproach(seebox2.1)experiencedasmalldeclinefrom2019to2020,largelyrelatedtoparticularlylargepeatandtropicaldeforestationanddegradationfiresin2019(Friedlingsteinetal.2022).WhilethenumberofdeforestationfiresintheAmazonremainedhighin2020,land-userelatedfireemissionsinIndonesiadecreasedastheunusuallydryconditionsof2019ceased.LULUCFemissionsfrombookkeepingmodelsarehighlyuncertaininbothmagnitudeandtrend,andvarysubstantiallybyglobalregions(Pongratzetal.2021).Averageemissionsbetween2011and2020were4.1±2.6GtCO2.ThedataindicatesadeclineinLULUCFemissionsoverthispastdecade(of4percent/year).However,theliteraturereportsaverylowconfidenceinthistrend,duetounderlyingdatalimitations(Dhakaletal.2022,Friedlingsteinetal.2022).Whereasremovalsmainlytakeplaceinregionswithapre-7EmissionsGapReport2022:TheClosingWindowtwentieth-centurylegacyofdeforestation(i.e.EuropeandNorthAmerica),emissionsareconcentratedintropicalregionswithahighpresent-dayburdenofdeforestation(theAmazonbasin,SoutheastAsiaandsub-SaharanAfrica).Netemissionstrendsareprimarilydrivenbydeforestation,inplaceswherethemonitoringandquantificationofland-usetrendsischallenging.NetLULUCFemissionsfromnationalinventoriesremainedstablebetween2011and2020atadecadalaverageofaround-2GtCO2/year(appendixA,figureA.1),withtemperateandborealregionsreportingnetremovalsandtropicalregionsreportingclosetonet-zeroemissions(Grassi,Concheddaetal.2022).For2011–2020,thedifferenceinglobalnetLULUCFCO2fluxesbetweennationalinventoriesandbookkeepingmodelsisabout6.1GtCO2(5.1GtCO2fortheyear2020;figure2.1).Thislargedifferenceisexplainedbyavarietyoffactors,themostimportantbeinghowareasofmanagedlandandanthropogenicforestsinksaredefined(Grassietal.2021;alsoseeappendixA).2.2.4SectoremissionstrendsEmissionscanbedividedamongfiveglobaleconomicsectors:energysupply;industry;agriculture,forestryandotherland-usechange(AFOLU);2transport;anddirectenergyuseinbuildings.Since1990,mostgrowthinemissionshasbeenfromtheenergysupply,industryandtransportsectors(Lamb,Wiedmannetal.2021;Dhakaletal.2022).In2020,theenergysupplysectorcontributed20GtCO2e(37percentofthetotal),industrywas14GtCO2e(26percent),AFOLUwas9.5GtCO2e(18percent),transportwas7.6GtCO2e(14percent)andbuildingswas3.1GtCO2e(5.7percent).Reallocatingtheemissionsassociatedwithelectricityandheatproduction(e.g.intheenergysupplysector)tofinalconsumingsectorsincreasesthecontributionoftheindustryandbuildingssectorsto34percentand16percent,respectively(Dhakaletal.2022).Thereareanumberofparticularlyhigh-emittingsubsectorsthatdriveglobalemissionsgrowth.Theseincludeelectricityandheatproduction(14GtCO2ein2020,25percentofthetotal),roadtransportation(5.6GtCO2e,10percent),andthe2AFOLUincludesLULUCFCO2emissions,hereaccountedforusingglobalbookkeepingmodeldata,plusadditionalagriculturalemissionsfromEDGAR,suchasmethanefromlivestockandricecultivationandnitrousoxidefromfertilizerapplication.metalsindustry(3.2GtCO2e,6percent).Methaneemissionsfromentericfermentation(i.e.livestockrearing),landfillsites,andfugitivemethaneemissionsfromoil,gasandcoalsupplychains,arealsosignificantglobalsourceswithshort-termwarmingimpacts(Dhakaletal.2022).Asat2021,emissionshavereboundedrelativeto2019emissionsacrossmostsectorsandsubsectors,exceptfortransportation,oilandgasfugitiveemissions,andpetroleumrefining.2.3EmissionstrendsofmajoremittersEightmajoremitters–sevenG20membersandinternationaltransport–contributedmorethan55percentoftotalglobalGHGemissionsin2020:China,theUnitedStatesofAmerica,theEuropeanUnion(27),India,Indonesia,Brazil,theRussianFederation,andinternationaltransport(figure2.2).TheG20asawholecontributed75percentofthetotal.Collectively,theemissionsofthetopeightfellfrom32.8GtCO2ein2019to31.5GtCO2ein2020(achangeof-3.8percent).In2020,theLULUCFsectorbasedonthenationalinventories(gap-filledwhennecessary)wasanetsinkintheemissionsinventoriesofChina,theEuropeanUnion,India,theRussianFederationandtheUnitedStatesofAmerica,andin17G20membersoverall(figure2.2).IfLULUCFemissionsandremovalsareexcluded,totalGHGemissionsarehigherbyasmuchas33percentintheRussianFederation,17percentintheUnitedStatesofAmerica,9percentinIndia,andabout8percentinChinaandtheEuropeanUnion.Bycontrast,theLULUCFsectorisanetemitterinIndonesiaandBrazil,accountingfor44percentand22percentoftheirtotalemissions.Formostmajoremitters,includingChina,India,theRussianFederation,BrazilandIndonesia,GHGemissions(excludingLULUCF)reboundedin2021,exceedingpre-pandemic2019levels(Crippaetal.2022;Davisetal.2022;Jacksonetal.2022).Thehighestincreasesbetween2019and2021wereobservedinIndonesiaandChina,at6.8percentand5.9percentrespectively.Internationaltransportemissionsin2021remainfarbelow2019levels(-15.9percent)(figure2.2).8EmissionsGapReport2022:TheClosingWindowFigure2.2TotalandpercapitaGHGemissions(includingLULUCF)ofmajoremittersin2020andsince1990,andestimatedGHGemissions(excludingLULUCF)in2021comparedto2019Sources:Crippaetal.(2022);Grassi,Concheddaetal.(2022)Note:Whereincluded,LULUCFemissionsarebasedonthenationalinventoryapproach,gap-filledwhennecessary.Percentagevaluesinthefinalpanelrefertotherelativeemissionschangebetween2019and2021.Insomecountries,mainlyduetodeforestation,theLULUCFsectorisanetsourceofemissions;inothercountriesitisanetsinkofemissions,mainlyduetoforestregrowthandafforestation.2020199020002010202019902000201005101520250369121503691215IndiaWorldEU27IndonesiaBrazilChinaRussianFederationUSA03691215InternationaltransportBrazilRussianFederationIndonesiaEU27IndiaUSAChinaPercapitaGHGemissionsin2020andtrendsince1990,includinginventory-basedLULUCF(tCO2e/capita)0-3GHGemissionsin2020andtrendsince1990,includinginventory-basedLULUCF(GtCO2e)LULUCFCO2FossilCO2,CH4,N2O,F−gases0Trend51015IndonesiaInternationaltransportBrazilRussianFederationEU27IndiaUSAChinaEstimateofGHGemissionsin2021comparedto2019,excludinginventory-basedLULUCF(GtCO2e)20192021+5.9%+3.2%+3.9%+4.9%+6.8%-6.7%-4.0%-15.9%9EmissionsGapReport2022:TheClosingWindowPercapitaGHGemissionsoftheUnitedStatesofAmericaandtheEuropeanUnionhavecontinuedtodeclineoverthepastdecade,whilethoseofmostotherregionsgrew(figure2.2).WorldaveragepercapitaGHGemissions(includingLULUCF)were6.3tCO2ein2020.TheUnitedStatesofAmericaremainsfarabovethislevelat14tCO2e,followedby13tCO2eintheRussianFederation,9.7tCO2einChina,about7.5tCO2einBrazilandIndonesia,and7.2tCO2eintheEuropeanUnion.Indiaremainsfarbelowtheworldaverageat2.4tCO2e.Onaverage,leastdevelopedcountriesemit2.3tCO2epercapitaannually.AswithcurrentpercapitaGHGemissions,contributionstohistoricalcumulativeCO2emissions(excludingLULUCF)varygreatlybetweencountriesandglobalregions(Gütschowetal.2016;Matthews2016).WhereastheUnitedStatesofAmericaandEuropeanUnioncontributed25percentand17percentrespectivelytototalfossilCO2emissionsfrom1850to2019,Chinacontributed13percent,theRussianFederation7percent,India3percent,andIndonesiaandBrazil1percenteach.Leastdevelopedcountriescontributedonly0.5percenttohistoricalCO2fossilfuelandindustryemissionsbetween1850and2019(Dhakaletal.2022).2.3.2Consumption-basedemissionsarehighlyunequalbetweenandwithincountriesWhennationalfossilCO2emissionsareestimatedonaconsumption-basis(i.e.wherethesupply-chainemissionsareallocatedtoconsumers)ratherthanontheterritorial-basisconsideredsofar,emissionstendtobehigherinhigh-incomecountriessuchastheUnitedStatesofAmericaandEuropeanUnion(by6percentand14percentrespectively;Friedlingsteinetal.[2020]).Conversely,theyarelowerincountriessuchasIndiaandChina(by9percentand10percentrespectively),whicharenetexportersofgoods.Internationaltransfersofemissionsembodiedintradedproductspeakedin2006andhavesincestabilizedtobeaboutonequarterofglobalCO2emissions,orabout6.5GtCO2esince2014accordingtothelatestassessment(Woodetal.2020;Hubaceketal.2021;Dhakaletal.2022).Consumption-basedaccountingisalsorelevantforAFOLUemissions,astheproductionofhighlytradedagriculturalcommoditiessuchassoybeans,palmoil,grainsandmeatproductsareknowntodrivedeforestationandcreatemethaneandnitrousoxideemissions(Pendrilletal.2022).SimilartofossilCO2transfers,high-incomecountries(UnitedStatesofAmerica,EuropeanUnionandJapan)tendtobenetimportersofagriculturalproductsandhencehavehigherconsumption-basedAFOLUemissions.MajornetexportersofsuchcommoditiesandtheirembodiedAFOLUemissionsincludeBrazil,Indonesia,ArgentinaandAustralia.AccordingtoHongetal.(2022),inthepastdecadeChinahasbecomethelargestnetimporterofembodiedAFOLUemissions,supersedingEuropeandtheUnitedStatesofAmerica.Approximately22percentofagriculturallandworldwideisusedfortradedproducts,resultinginannualconsumption-basedAFOLUemissionsof4.5–5.8GtCO2easat2017,excludingsinks(Hongetal.2022).Consumption-basedemissionsalsodivergestarklyatahouseholdlevel,inlargepartduetoincomeandwealthdisparitiesbetweenandwithincountries(Capstick,KhoslaandWang2020).Whentheemissionsassociatedwithbothhouseholdconsumptionandpublicandprivateinvestmentsareallocatedtohouseholds(seeappendixA),andhouseholdsarerankedbyGHGemissions(excludingLULUCF),thebottom50percentemitonaverage1.6tCO2e/capitaandcontribute12percentoftheglobaltotal,whereasthetop1percentemitonaverage110tCO2e/capitaandcontribute17percentofthetotal(Chancel2022;Chanceletal.2022).Super-emittersinthetop0.1percent(average467tCO2e/capita)andthetop0.01percent(2,531tCO2e/capita)haveseenthefastestgrowthinpersonalcarbonfootprintssince1990.High-emittinghouseholdsarepresentacrossallmajoreconomies,andlargeinequalitiesnowexistbothwithinandbetweencountries(figure2.3)(Chanceletal.2022).10EmissionsGapReport2022:TheClosingWindowFigure2.3Householdconsumption-basedemissions,excludingLULUCF,byemissionsgroupsSource:Chanceletal.(2022)Note:Percapitaemissionsincludeemissionsfromdomesticconsumption,publicandprivateinvestments,andimportsandexportsofcarbonembeddedintradewiththerestoftheworld.Householdsarerankedaccordingtototalemissionsanddividedaccordinglyintogroups(e.g.thebottom50percentreferstothe50percentofhouseholdswiththelowestemissionsinthatcountryorregion).2.3.3Somecountrieshavepeakedemissions,buttheirreductionshavebeenoutweighedbyemissionsgrowthelsewhereBy2019,35countriesaccountingforabout10percentofglobalemissionshadpeakedandreducednetGHGemissions,includingLULUCF,foratleast10years.Thesecountries,whicharemainlyinEuropeandalsoincludetheUnitedStatesofAmerica,thathavestartedfromahighbaseofpercapitaandhistoricalcumulativeemissions(Lamb,Grubbetal.2021;LeQuéréetal.2019).Mostofthemhavealsoachievedreductionsonaconsumptionbasis.Countrieswithsustainedemissionsreductionshavetendedtoreduceenergysystememissionsviaswitchingfromcoaltogas,lowornegativegrowthinenergydemand,and/orscalinguprenewableenergydeployments.Sofar,theyhavehadlimitedsuccessinreducingtransportoragriculturalemissions(Lamb,Grubbetal.2021;Lamb,Wiedmannetal.2021).However,totalreductionsintheannualemissionsofpeakingcountriestodatehavebeenmodest–3.2GtCO2efrompeakyearsto2018,accordingtooneestimate(Lamb,Grubbetal.2021)–andhavebeenoutweighedbyglobalemissionsgrowthelsewhere.Asat2019,themajorityofcountrieshadincreasedemissionsoverthepastdecade(74countries,65percentofglobalemissions),orremainedstable(39countries,25percentofglobalemissions).USARussianFederationChinaWorldEuropeBrazilIndonesiaIndia050100150200250HouseholdGHGemissionsin2019,excludingLULUCF(tCO2e/capita)Bottom50%Middle40%Next9%Top1%11EmissionsGapReport2022:TheClosingWindowNationallydeterminedcontributionsandlong-termpledges:ThegloballandscapeandG20memberprogressLeadauthors:TakeshiKuramochi(NewClimateInstitute,Germany),MicheldenElzen(PBLNetherlandsEnvironmentalAssessmentAgency,InstituteforEnvironmentalStudies,VrijeUniversiteitAmsterdam,theNetherlands),TarynFransen(WorldResourcesInstitute,UnitedStatesofAmerica)Contributingauthors:CaitlingBergh(EnergySystemsResearchGroup,UniversityofCapeTown,SouthAfrica),AnnaChapman(ClimateAnalytics,Australia),NandiniDas(ClimateAnalytics,Australia),KimCoetzee(ClimateTransparency,Germany),NeilGrant(ClimateAnalytics,Germany),MarianaGutiérrez(HUMBOLDT-VIADRINAGovernancePlatform,Mexico),GaheeHan(SolutionsforOurClimate,RepublicofKorea),FredericHans(NewClimateInstitute,Germany),CamillaHyslop(NetZeroTrackerandUniversityofOxford,UnitedKingdom),JiangKejun(EnergyResearchInstitute,China),JoojinKim(SolutionsforOurClimate,RepublicofKorea),BenKing(RhodiumGroup,UnitedStatesofAmerica),AmanMajid(ClimateAnalytics,Germany),AndrewMarquard(EnergySystemsResearchGroup,UniversityofCapeTown,SouthAfrica),BryceMcCall(EnergySystemsResearchGroup,UniversityofCapeTown,SouthAfrica),MalteMeinshausen(UniversityofMelbourne,Australia),MiaMoisio(NewClimateInstitute,Germany),SilkeMooldijk(NewClimateInstitute,Germany),LeonardoNascimento(NewClimateInstitute,Germany),NataliePelekh(NewClimateInstitute,Germany),AnneOlhoff(CONCITO-Denmark'sgreenthinktank)JazmínRoccoPredassi(FundaciónAmbienteyRecursosNaturales,Argentina),AnaluzPresbítero(IniciativaClimáticadeMéxico,Mexico),MartinBirkRasmussen(CONCITO-Denmark'sgreenthinktank),CarleyReynolds(ClimateAnalytics,Germany),JoeriRogelj(GranthamInstitute,ImperialCollegeLondon,UnitedKingdom;InternationalInstituteforAppliedSystemsAnalysis[IIASA],Austria),ÜmitŞahin(IstanbulPolicyCenter,SabancıUniversityandStiftungMercator,Türkiye),CleaSchumer(WorldResourcesInstitute,UnitedStatesofAmerica),KentaroTamura(InstituteforGlobalEnvironmentalStrategies,Japan),FabbyTumiwa(InstituteforEssentialServicesReform,Indonesia),FarahVianda(InstituteforEssentialServicesReform,Indonesia),JorgeVillarreal(IniciativaClimáticadeMéxico,Mexico),ClaireStokwell(ClimateAnalytics,Germany),SarithaSudharmmaVishwanathan(IndianInstituteofManagement,Ahmedabad[IIMA],India),LisaWijayani(InstituteforEssentialServicesReform,Indonesia),WilliamWills(FederalUniversityofRiodeJaneiro,Brazil)33.1IntroductionThischapterprovidesanupdatedassessmentofprogressonnationallydeterminedcontributions(NDCs)andlong-termpledges,focusingonthreekeyquestions:1)Whatglobalprogresshasbeenmade—overallandsincethe2021UnitedNationsClimateChangeConferenceofthePartiesCOP26—bycountriesintheirsubmissionsofneworupdatedNDCsandlong-term,net-zeroemissionpledges(section3.2)?2)Whatistheestimatedimpactonglobalgreenhousegas(GHG)emissionsin2030ofthelatestNDCs,assumingtheyarefullyachieved,andwhatprogressismadebyG20membersindividuallyandcollectivelytowardsachievingtheirNDCs(section3.3)?3)Whatisthestatusofnet-zeroemissionpledgesbyG20membersandarecurrentpoliciesandNDCtargetsalignedwiththelong-termpledges(section3.4)?Section3.2adoptsaglobalperspective,whereassubsequentsectionsfocusonG20members.Currently,G20membersaccountforabout75percentofglobalGHGemissions(seechapter2),andtheirsuccessinimplementingandpotentiallyexceedingtheirNDCtargetswillcarryamajorimpacton2030emissionsandthepossibilityforbridgingtheemissionsgap.Thecut-offdatefortheassessmentis23September2022.AllGHGemissionfiguresareexpressedusingthe100-yearglobalwarmingpotentials(GWPs)fromtheIntergovernmentalPanelonClimateChange(IPCC)SixthAssessmentReport(AR6).TheUnitedNationsFrameworkConventiononClimateChange(UNFCCC)inventoryreportsforhistoricalemissionsarereferredtowhencomparingthemtoindividualG20members’NDCtargets.ThemethodologyandpreliminaryfindingsofthischapterweremadeavailabletothegovernmentsoftheG20membersspecificallymentionedtoprovidethemwiththeopportunitytocommentonthefindings.FindingsrelatedtotheprogressofG20memberstowardstheirNDCandnet-zerotargetsshouldbereadwithtwoimportantcaveatsinmind.TheEmissionsGapReportdoesnotassessthelevelofambitionofNDCs.However,thelevelofambitionisoneofthefactorslikelytoinfluencewhethercountriesareontracktoachievingtheirNDCtargets.In12EmissionsGapReport2022:TheClosingWindowotherwords,acountrycurrentlyontracktoachieveitsNDCsisnotnecessarilyundertakingmoremitigationactionthanacountrynotyetontrack.Secondly,theParisAgreementrecognizesthateachcountryfacesuniquenationalcircumstances.Factorssuchasdevelopmentstageandassociatedopportunitiesandbarriersmayaffectbothtargetambitionandtargetimplementation.3.2Globaldevelopmentsinmitigationpledgesfor2030andbeyond3.2.1NDCsTheambition-raisingcycleoftheParisAgreementbuildsonthesubmissionbypartiesofincreasinglyambitiousNDCseveryfiveyears.DuetotheCOVID-19pandemic,manypartiessubmittedneworupdatedNDCsbyCOP26in2021insteadofin2020.AsassessedbytheEmissionsGapReport2021,thenewandupdatedNDCsshowedsomeprogress,butgloballytheyremainedhighlyinsufficienttobridgethe2030emissionsgap.Reflectingthis,theGlasgowClimatePact,adoptedatCOP26,requestedthatparties“revisitandstrengthen”their2030targetsbytheendof2022.ThissectionprovidesanupdateonthegloballandscapeandthekeycharacteristicsofthenewandupdatedNDCs(thosethatreplacedaninitialNDCbetween1January2020and23September2022)aswellastheinitialNDCs(thoseineffectasof31December2019).1ProgresssinceCOP26ishighlighted.Asat23September2022,166outof194ParisAgreementparties,representingaround91percentof2019globalGHGemissions(ClimateWatch2022),havesubmittedneworupdatedNDCs,upfrom152partiesasatCOP26.SincetheEuropeanUnionandits27memberstatessubmitasingleNDC,thisamountsto139neworupdatedNDCshavingbeensubmitted.TheseNDCsreflectemergingtrendsrelatedtotheambition,form,coverageandconditionalityofGHGmitigationpledges.Effecton2030emissions:Ofthe139neworupdatedNDCs,justoverhalf(74NDCsfrompartiesrepresenting77percentofglobalGHGemissions)wouldresultinlower2030emissionsrelativetotheinitialNDCs(figure3.1).Thisisupfrom67NDCsrepresenting69percentofglobalGHGemissionsasatCOP26.Twenty-threeNDCs,frompartiesrepresenting9percentofglobalGHGemissions,hadcommunicatedaneworupdatedNDCthatwouldnotreduce2030emissionsrelativetothepreviousNDCs.Forty-twoNDCsfrompartiesrepresenting5percentofglobalemissionscouldnotbecomparedwiththepreviousNDCsintermsof2030emissions,typicallyduetoinsufficient1ExcludingupdatedfirstandsecondNDCs.informationinthepreviousNDCs,astransparencyhasimprovedinthecurrentNDCs.Pledgeform:Atotalof146NDCs,frompartiesrepresenting91percentofglobalGHGemissions,nowcontainGHGtargets.Thisisupfromupfrom128initialNDCs(89percentofglobalemissions)andupfrom143NDCsasatCOP26(90.5percentofglobalGHGemissions).TheseGHGtargetscompriseseveraldifferenttypes,includingbase-yeartargets(commitmentstoreduceorcontroltheincreaseinemissionsbyaspecifiedamountrelativetoabaseyear,containedin43NDCs)andbaselinescenariotargets(commitmentstoreduceemissionsbyaspecifiedamountrelativetoaprojectedemissionsbaselinescenario,containedin83NDCs),amongotherformulations(20NDCs).Base-yeartargetstypicallyresultinemissionsdecreasingovertimerelativetohistoricallevels,whereasbaselinescenariotargetsaretypicallyformulatedtoallowabsoluteemissionstocontinuetogrow.Atotalof43NDCs,frompartiesrepresenting36percentofglobalGHGemissions,nowcontainabase-yeartarget.Thisisupfrom34initialNDCsfrompartiesrepresenting34percentofglobalGHGemissions.Ofthe21countriesadoptingaGHGtargetforthefirsttimeintheirneworupdatedNDCs,16alsoadoptedabaselinescenariotarget.Sectorcoverage:GHGtargetscanbeformulatedtocoveracountry’sentireeconomyoronlyasubsetofit.Targetswitheconomy-widecoverageincludetheenergy,industrialprocessandproductuse,wasteandlandsectors.Thereare95currentNDCs,frompartiesrepresenting55percentofglobalGHGemissions,thatcoverallsectors.Thisisupsignificantlyfromthe54initialNDCs,frompartiesrepresenting46percentofglobalGHGemissions,thatdidso.Gascoverage:Likewise,GHGtargetscanbeformulatedtocoverallmajorGHGs—carbondioxide(CO2),methane(CH4),nitrousoxide(N2O),hydrofluorocarbons(HFCs),perfluorochemicals(PFCs),sulfurhexafluoride(SF6)andnitrogentrifluoride(NF3)—oronlyasubsetofthem.GHGcoverageofNDCshasremainedrelativelyconstantfromtheinitialtothecurrentNDCs,24ofwhich,frompartiesrepresenting30percentofglobalemissions,coverallgases.Conditionality:SomepartieshavesubmittedNDCsthatareentirelyorpartiallyconditionalonfactorssuchasinternationalsupport(e.g.,financeortechnologytransfer),whileothershavesubmittedNDCsthatarenotconditional.NDCsnowincludemoreunconditionalelementsthanpreviously.Onehundredandtwenty-sixcurrentNDCs,frompartiesrepresenting80percentofglobalemissions,nowincludeatleastsomeunconditionalelements.Thisisupfrom103initialNDCs,frompartiesrepresenting76percentofglobalemissions.13EmissionsGapReport2022:TheClosingWindowFigure3.1EffectofneworupdatedNDCson2030GHGemissionsrelativetoinitialNDCs2Thisestimateincludesreductionsofaround0.3GtCO2eresultingfromotherfactors,includinglowerprojectionsofinternationalaviationandshippingemissions.3TheimpactofthenewandupdatedNDCsfromnon-G20memberssincethecut-offdateofthestudieswasnotincluded.3.2.2Long-termandnet-zeropledgesAsat23September2022,88partiescoveringapproximately79percentofglobalGHGemissionshaveadoptednet-zeropledgeseitherinlaw(21parties),inapolicydocumentsuchasanNDCoralong-termstrategy(47parties),orinanannouncementbyahigh-levelgovernmentofficial(20parties).Thisisupfrom74partiesasatCOP26.Anadditionaleightpartiescoveringanadditional2percentofglobalGHGemissionshaveanother(non-net-zero)GHGmitigationtargetaspartoftheirlong-termstrategy.Atotalof36percentofglobalGHGemissionsarecoveredbynet-zerotargetsfor2050orearlier,while43percentofglobalemissionsarecoveredbynet-zeropledgesforyearslaterthan2050.Currently,21percentofglobalemissionsarenotcoveredbynet-zeropledges.Atotalof53net-zerotargetscoverallsectors,while31donotspecifysectoralcoverage.Moreover,37coverallgases,eightcoverfewerthanallgasesand40donotspecify.Twocoverinternationalshippingandaviation,onecoversinternationalaviationbutnotshipping,12coverneitherand71donotspecify.Fivenet-zerotargetsruleouttheuseofinternationaloffsetstowardsthenet-zerotargets,19anticipatetheuseofinternationaloffsets,and61donotspecify.3.3ImpactsofnewandupdatedNDCsonglobalGHGemissionsin2030Thissectionestimatestheimpactonprojectedglobal2030emissionsofnewandupdatedNDCsasat23September2022(assumingtheyarefullyimplemented)comparedtoinitialNDCs.ThedatacomefromthreemodelgroupsthatincludeupdatedNDCswithcut-offdatesrangingfromNovember2021toSeptember2022(Keramidasetal.2021;denElzenetal.2022;Meinshausenetal.2022),andtwoopen-sourcetools(ClimateActionTracker2021;ClimateWatch2022).2ToenabletheinclusionoftheupdatedNDCsofG20membersthatweresubmittedafterthecut-offdatesofthefivedatasources(thatis,Australia,Brazil,India,Indonesia,RepublicofKoreaandtheUnitedKingdom),NDCemissionestimateswererecalculatedbasedonthehistoricalemissionsdatausedintherespectivestudies.3FullimplementationofallneworupdatedunconditionalNDCsisprojectedtoleadtoatotalreductioninglobalGHGemissionsfor2030ofabout4.8gigatons(Gt)ofCO2e(range:1.7–7.9GtCO2e)annually,comparedwithinitialpledges(figure3.2;seealsoappendixBandtableB.2).NewandupdatedNDCssubmittedsincetheEmissionsGapReport2021accountforabout0.7GtCO2eofthistotal,mainlyduetoadditionalreductionsfromtheupdatedNeworupdatedNDCnotcomparabletoinitialNDCNeworupdatedNDCwithequalorhigher2030emissionsrelativetoinitialNDCNeworupdatedNDCwithlower2030emissionsthaninitialNDCUpdatedNDCsinceCOP26NoneworupdatedNDCsubmitted14EmissionsGapReport2022:TheClosingWindowNDCsofAustralia(10percentofthe0.7GtCO2e),Brazil(35percent),Indonesia(10percent),SaudiArabia(about25percent),4RepublicofKorea(5percent)andnon-G20members(15percent),whilesubmissionssinceCOP26accountfor0.5GtCO2eofthetotal(mainlyfromAustralia,Brazil,IndonesiaandRepublicofKorea).ForsomeG20members,theimpactonglobalGHGemissionsin2030isestimatedatzero.Thisappliestomembersthathavenot4Brazil’s2022NDCsubmissionreducedemissionsrelativetotheirprevioussubmission,whichexplainsthecontributiontothe0.7GtCO2ereduction.However,the2022NDCsubmissionstillimpliesemissionsthatarehigherthanthoseoftheinitialNDCofBrazil.5AccordingtotheIPCCguidelinesfornationalinventoriesforBrazil.submittedanupdatedNDC(Türkiye),thathavesubmittedNDCswithasimilartargetasinapreviousupdate(UnitedKingdom)orwheretheupdatedtargetisestimatedtoresultinhigheremissionsthanemissionsprojectedbasedoncurrentpoliciesforsomestudies(IndiaandtheRussianFederation).Brazil5andMexicoshowanincreaseintheemissionstargetscomparedtotheprevioustargets,duetoachangeinthereferenceemissions.Figure3.2ImpactofnewandupdatedunconditionalNDCson2030globalemissionscomparedwithinitialNDCsNotes:Theadditionalreductionresultingfromotherfactors,includinglowerprojectionsofinternationalaviationandshippingemissions,isincludedinthefigure.TheupdatedNDCofBrazillowerstheprojectedincreaseinemissionsin2030comparedwiththepreviousNDC.ImpactofnewandupdatedNDCs(decreaseinemissions)ImpactofnewandupdatedNDCs(increaseinemissions)Zeroimpact,noneworupdatedNDCTotalimpactImpactsinceCOP26RussianFederationNon-G20OtherfactorsOtherfactorsTotalTotalMexicoSaudiArabiaIndonesiaChinaArgentinaSouthAfricaAustraliaTürkiyeBrazilCanadaJapanEU27IndiaUnitedKingdomUnitedStatesofAmericaRepublicofKorea0-4,000-3,000-2,000-1,000-500-4,500-5,000-3,500-2,500-1,500MtCO2e15EmissionsGapReport2022:TheClosingWindow3.4ProgressofG20memberstowardstheirNDCtargetsAmbitioustargetsareimportantbutmatterlittleunlesstheygohandinhandwithambitiouspoliciesandacceleratedimplementation.ThissectionprovidesanupdatedassessmentoftheprogressofG20memberstowardstheirlatestNDCtargetsasat23September2022basedonasynthesisofrecentlypublishedstudiesofemissionsprojections.6ForeachG20member,GHGemissionsprojectionswerecompiledandreviewedtoassesstheemissionlevelsexpectedunderexistingpoliciesi.e.thecurrentpoliciesscenario.7Expectedemissionlevelsin2030undercurrentpolicieswerethencomparedtoprojectedemissionsundertheNDCtargettoassesswhethertheG20membersarelikelytomeettheirrespectiveemissionsreductiontargetsfor2030.Theassessmentisbasedon‘pointintime’emissionsprojectionsintheNDCtargetyear.EuropeanUnionmemberstatesarenotassessedindividually.3.4.1MethodsandlimitationsCurrentpoliciesscenarioprojectionsarecomparedtothelatestunconditionalNDCsortoconditionalNDCsforG20memberswhoseNDCsdonothaveunconditionalelements.TheassessmentofconditionalityofNDCsfollowstheWorldResourcesInstitute(ClimateWatch2022),whichconsidersIndonesiaandMexicotohavebothunconditionalandconditionalNDCs,andIndiaandSouthAfricatohaveonlyconditionalNDCs(seeappendixB,tableB.2,availableonline).Toenablearobustcomparisonofprojectionspublishedbyindependentresearchinstitutions,themethodologyofdenElzenetal.(2019)isfollowed.Officialassessmentspublishedbynationalgovernmentsarecomparedwithindependentassessments.AlldatasourcesarepresentedinappendixB(tableB.1),availableonline.Theassessmentisbasedonemissionsincludinglanduse,land-usechangeandforestry(LULUCF)(seeappendixBfordetailsonadjustmentsofemissionprojectionsexcludingLULUCF).HistoricalemissionsdataforenergyandindustrysectorsweretakenfromthelatestinventorysubmissionstotheUNFCCC,supplementedbythePotsdamReal-TimeIntegratedModelforprobabilisticAssessmentofemissionPaths(PRIMAP)databaseforintervalyearsandmostrecentyearsafterthelastinventorydatayear(Gütschow,GüntherandPflüger2021).ForhistoricalLULUCFemissions,harmonizeddatafromGrassi,Concheddaetal.(2022)andGrassi,Federicietal.(2022)areused.FortheemissiondatafromtheliteratureexpressedinGWPsotherthanthe100-yearGWPsfromthe6TheupdatedNDCsofIndiaandIndonesiasubmittedafterthecut-offdatewerenotconsideredinthissectionbecausenostudyreviewedinthissectionquantifiedandorexaminedthetargetlevelsasthereportwenttopress.7Currentpoliciesscenarioprojectionsassumethatnoadditionalmitigationactionistakenbeyondcurrentpolicies,evenifitresultsinNDCtargetsnotbeingachievedorbeingoverachieved(UnitedNationsEnvironmentProgramme[UNEP]2015;denElzenetal.2019).Currentpolicyprojectionsreflectalladoptedandimplementedpolicies,whichforthepurposeofthisreportaredefinedaslegislativedecisions,executiveordersortheirequivalent.Thisimpliesthatofficiallyannouncedplansorstrategiesalonewouldnotqualify,whileindividualexecutiveorderstoimplementsuchplansorstrategieswouldqualify.8Exceptionsweremadeinafewcases,whereexternalreviewerssuggestednationalstudiespublishedbefore2020,thatwereassessedtoproviderelevantinformation.IPCC’sAR6,conversionfactorsusedinAR6wereapplied(Lecocqetal.2022).Theselectionofstudiesprojecting2030emissionsisbasedonfourmainconsiderations:1)whetherthestudiestakeintoaccountthemostrecentsocietal,economicandpolicydevelopments—accordingly,onlystudiespublishedin2020orlaterareincluded,82)thatpeer-reviewedstudiesareincludedtotheextentpossible,3)inclusionofstudiespublishedbynationalexpertsand4)thatallGHGsandsectorsarecovered.Policycut-offdatesrangedfrom2019tomid-2022acrossstudies,meaningthatrecentlyadoptedpolicies,includingmostofthosepresentedlaterinsection3.4.3,arefullyreflectedinsomeofthescenariostudiesreviewed.ManystudiestooklimitedaccountofthepotentialimpactoftheCOVID-19pandemiconfutureemissions.Chapter2showsthatlong-termimpactsofthepandemiconemissionsremainuncertain,thatglobalemissionsareexpectedtoreboundfullyin2021andthatimpactsshowlargevariationacrossG20membersandsectors.Therefore,studiesthatdonotexplicitlytaketheimpactofthepandemicintoaccountarealsoconsidered.Furthermore,noneoftheemissionsprojectionsconsiderthepotentialimplicationsofthewarinUkraine.OtherlimitationsaresimilartopreviousEmissionsGapReports(seeappendixB.3).ForthethreeG20membersthatrecentlysubmittedmoreambitiousNDCs(Australia,BrazilandRepublicofKorea),afewstudiescomparedtheircurrentpoliciesscenarioprojectionstoearlierNDCtargets.Whererequired,NDCemissionlevelsarerecalculatedbasedonthehistoricalemissionsdatausedinrespectivestudies.NorecalculationsweredonefortheNDCsofIndiaandIndonesia,bothofwhichwereupdatedtowardstheendofthedraftingprocess.3.4.2SynthesisofrecentlypublishedscenariostudiesTable3.1showstheprogressofG20memberstowardstheirlatestNDCtargets,organizedbythestatusandassessmentofwhetherthesetargetswillbemet,basedoncurrentpolicies.MostG20membersthatsubmittedstrongerNDCtargetsin2020and2021havejustbeguntheirimplementationeffortstomeettheirnewtargets.ThosethatareprojectedtomeettheirlatestNDCtargetbasedonpoliciescurrentlyinplaceareG20membersthathavenotsubmittedaneworupdatedNDC,didnotstrengthenoronlymoderatelystrengthenedtheirtargetlevelsintheirupdatedNDCs(table3.1).AllotherG20memberswillneedadditionalpoliciestoachievetheirNDCs.16EmissionsGapReport2022:TheClosingWindowTable3.1AssessmentofprogresstowardsachievingthecurrentNDCtargets,2022(unconditional,unlessotherwisementioned)fortheG20undercurrentpolicies,basedonindependentstudiesmainlypublishedin2020orlaterProjectedprogresstowardsthelatestNDCtargetMeetthetargetwithexistingpolicies(Indicatedby+,ifoverachievedbymorethan15)MissthetargetwithexistingpoliciesUncertainStatusofneworupdatedNDCSubmittedstrongertargetChina(4/7),India(conditional:4/7),iSaudiArabia(2/2)Argentina(0/3),Australia(0/4)ii,Brazil(0/4,onewithinreach),Canada(0/4)EU27(0/3),ii,iiiJapan(0/3),RepublicofKorea(0/3)iv,SouthAfrica(conditional:0/3),UK(0/1),UnitedStatesofAmerica(0/4)Indonesia(0/3,onewithinreach)NonewtargetsubmittedTürkiye(3/3)SubmittedequivalentorweakertargetRussianFederation+(5/5)iiMexico(1/3)Notes:SeeappendixB.1forthelistofstudiesreviewed.ThenumberofindependentstudiesthatprojectacountrytomeetitspreviousorthefirstNDCtargetarecomparedtothetotalnumberofstudiesandindicatedinbrackets.“Withinreach”indicatesthatonlythelowerboundestimateofthecurrentpoliciesscenarioprojectionsiswithintheNDCtargetrange.iSubmittedupdatedNDCafter1August2022,whichhasnotbeenpossibletoconsiderinthisassessment.iiCurrentpoliciesscenarioprojectionsfromofficialpublicationswerealsoexamined.TheofficialpublicationsforthreeG20members(Canada,theEuropeanUnionandUnitedKingdom)showthattheydonotprojecttomeettheir‘pointintime’NDCtargetundertheircurrentpoliciesscenario.Australia’smostrecentofficialreportreporteditsprogresstowardstheirearlierNDC(Australia,DepartmentofIndustry,Science,EnergyandResources2021).iiiFortheEU27,werefertotheEuropeanUnionReferencescenario,whichassumesfullimplementationoftheNationalEnergyandClimatePlans(NECPs)fortheperiod2021–2030byEuropeanUnionmemberstatesandseesEuropeanUnionemissionsreducebyaround43percentbelow1990levelsby2030(EuropeanCommission2021a).IncludingnetremovalsfromLULUCF,thisincreasesto-45percent.ThisbaselinescenarioindicatesthatadditionaleffortwouldberequiredtomeettheEuropeanUnion’scurrent2030energyefficiencytargetwhileitscurrent2030renewableenergytargetwouldbemet.AdditionalmemberstatemeasureswillupdatetofullyimplementtheirNECPsfortheperiod2021–2030byJune2023(draft)andJune2024(finalplans)withadditionalmeasures,takingintoaccountrecentpolicyandgeopoliticaldevelopments(EuropeanCommission2020).ivTheRepublicofKorea’sEmissionsTradingScheme(K-ETS)isaninstrumenttofullyachievethecountry’sNDCtargetandcoversmorethan70percentofitsGHGemissions.Theimplementationphase3(2021–2025)hasnotbeenupdatedsincetheupdatedNDCwasannounced(InternationalCarbonActionPartnership2022).Collectively,theG20membersareprojectedtofallshortoftheirneworupdatedNDCsby1.8GtCO2e(centralestimate)annuallyby2030.Inotherwords,thereisanimplementationgap,definedasthedifferencebetweenprojectedemissionsin2030(assumingfullimplementationofNDC)andemissionsbasedoncurrentpoliciesscenarioprojections.FortwoG20members,theprojectedemissionsundertheNDChaveconsistentlybeenassessedtosignificantlyexceedcurrentpoliciesprojections(theRussianFederationandTürkiye)sincetheEmissionsGapReport2015(UNEP2015),therebyloweringtheimplementationgapcomparedtowhatcanbereasonablyexpected.IfNDCprojectionsforthesetwomembersaresubstitutedbycurrentpoliciesscenarioprojections,theG20memberswouldcollectivelyfallshortofachievingtheirNDCsin2030byanannual2.6GtCO2e.The2030GHGemissionestimatesoftheG20anditsindividualmembersundercurrentpoliciesscenario,unconditionalNDCsandconditionalNDCs(forfourG20members)arepresentedinfigure3.3incomparisonwithhistoricalemissionsfor2015,theyearinwhichcountriesadoptedtheParisAgreementandsubmittedtheirintendedNDCs.FormostG20members,centralestimatesofemissionsprojectionsundercurrentpoliciesfor2030arelowerthanatthetimeoftheEmission’sGapReport2021.ThecentralestimateofaggregateemissionsprojectionsforG20membersin2030undercurrentpoliciesdecreased17EmissionsGapReport2022:TheClosingWindowby1.3GtCO2eorabout4percentcomparedwiththe2021assessment,mainlyduetotheexpectedemissionreductionsfromtheInflationReductionAct(ofabout1GtCO2e)thatwouldbringtheUnitedStatesofAmerica’semissionsprojectionsfor2030closertotheNDCtarget.TheG20memberswith10percentlowerprojectionscomparedwiththe2021assessmentare:Indonesia,Mexico,SaudiArabiaandtheUnitedStatesofAmerica.Itisworthnotingthatthelowerboundestimatehasdecreasedbyabout2.4GtCO2e(comparedto1.1GtCO2efortheupperboundestimate),indicatingavariedinterpretationofNDCimplementationpoliciesandvariedforecastsonthedeploymentoflow-emissiontechnologiesacrossstudies.AlsonotethatforChinaandIndia,whichareassessedtomeettheirNDCswithexistingpoliciesintable3.1,thecentralestimatesofthecurrentpoliciesscenarioprojectionsarehigherthanthecentralestimatesoftheNDCtargetsmainlyduetothelargevariationofemissionsprojectionsacrossstudies.CO2$18EmissionsGapReport2022:TheClosingWindowFigure3.3GHG(allgasesandsectors,includingLULUCF)oftheG20anditsindividualmembersby2030undercurrentpoliciesscenario,unconditionalNDCs,andconditionalNDCs(forfourG20members),comparedwith2015historicalemissionsNotes:Forcurrentpoliciesscenarioprojections,estimatesbasedonindependentstudiesarepresented.Barsshowtheaveragevalues(medianvaluesincaseoffiveormorestudies)anderrorbarsshowtheminimumandmaximumvalues(tenthandninetiethpercentilesincaseoffiveormorestudies).ForNDCs,officialvalues(adjustedtoAR6’sGWPs)arepresentedwhereavailable.Forreportingreasons,theemissionsprojectionsforChina,theEU27,IndiaandUnitedStatesofAmericaareshowninthetopfigureandtheotherG20membersareshowninthebottomfigure,usingtwodifferentverticalaxes.SeeappendixB.1fordetailsontheunderlyingstudies.RussianFederationMexicoSaudiArabiaIndonesiaArgentinaSouthAfricaAustraliaTürkiyeBrazilCanadaJapanUnitedKingdomRepublicofKoreaChinaEU27IndiaUSA03691218153GtCO2e3GtCO2e0.00.51.01.52.02.53.0GHGemissions(GtCO2e/year)GHGemissions(GtCO2e/year)Historical2015Currentpolicies(officialdata)Currentpolicies(independentstudies)UnconditionalNDCConditionalNDC3GtCO2e3GtCO2e3GtCO2e3GtCO2e19EmissionsGapReport2022:TheClosingWindowTosupplementthefindingspresentedabove,table3.2presentspercapitaGHGemissionsin2015,whichareprojectionsfor2030underthecurrentNDCtargetsandcurrentpoliciesscenario,andtheexpectedemissionpeakingyearfortheG20members.Theaveragepercapitaemissionsin2030ofG20membersunderthelatestNDCsareprojectedtobeabout10percentlower(6.7tCO2e)thanunderthecurrentpoliciesscenario(7.4tCO2e).However,theyarenotloweredcomparedwith2010levelsandremainveryfarfromthemedianestimatesconsistentwith2°Cand1.5°Cscenariosby2050,whichare1.9tCO2e(tenthandninetiethpercentilerange:1.2–2.3tCO2e)and0.6tCO2e(0.3–1.1tCO2e),respectively.PercapitaemissionsrangewidelyacrossG20members:emissionsofIndiaareabouthalfoftheG20average,whereasSaudiArabiareachesmorethantwicetheG20average.Australia,theEuropeanUnionandSouthAfricaareprojectedtoreducetheirpercapitaemissionsbymorethanonethirdbetween2010and2030undercurrentpolicies.TheUnitedKingdomevenreacheshalf.Mexicoalsoreaches-10percentand-15percentoftheprojecteddevelopmentofpercapitaemissionsunderbothcurrentpoliciesandNDCscenarios,respectively.PercapitaemissionsundercurrentunconditionalNDCtargetsareprojectedtoincreasebetween2010and2030forsevenG20economies.Onthepeakingofemissions,allAnnexIG20membersandsomenon-AnnexIG20members(Argentina,Brazil,RepublicofKoreaandSouthAfrica)havepeakedtheiremissionsalreadywhiletheNDCsofafewnon-AnnexIG20members(China)areprojectedtopeaktheiremissionsby2030.However,sixofthenon-AnnexIG20membersdonotprojectapeakingby2030underthecurrentpoliciesscenario.Table3.2OverviewofG20memberstatusandprogresstowardsmeetingNDCtargetsCountryUnconditionalNDC:percapitaGHGemissionsCurrentpoliciesscenario:percapitaGHGemissionsEmissionpeakingtCO2e/capin2030vs.2015levelstCO2e/capin2030vs.2015levelsPeakingyearunconditionalNDCPeakingyearcurrentpoliciesArgentina7.7-11%8.70%around2005NotclearAustralia12.2-44%16.8-22%20072009Brazil6.2-9%6.7-1%around2005NotclearCanada10.2-50%14.9-28%20072007China9.818%10.324%Before2030(CO2only)NotclearEU274.8-39%5.4-31%1990orearlier1990orearlierIndia3.162%3.269%NocommitmenttopeakNotexpectedtopeakbefore2030Indonesia7.0-25%6.2-33%NocommitmenttopeakNotclearJapan6.5-35%8.3-17%20132013Mexico5.716%5.39%NocommitmenttopeakNotexpectedtopeakbefore203020EmissionsGapReport2022:TheClosingWindowRepublicofKorea8.5-34%11.5-10%By2018Possiblypeakedby2020RussianFederation15.258%12.428%1990orearlier(formerSovietrepublic)Peaked,butprojectedtobeonanincreasingtrendby2030SaudiArabia16.7-12%16.7-12%NocommitmenttopeakNotexpectedtopeakbefore2030SouthAfrica6.1-34%6.8-26%around2015around2015Türkiye10.5121%6.434%NocommitmenttopeakNotexpectedtopeakbefore2030UnitedKingdom4.0-49%5.1-34%1990orearlier1990orearlierUnitedStatesofAmerica9.2-49%11.7-36%20072007G206.9-7%7.3-1%NotassessedNotassessedSource:AdaptedfromdenElzenetal.(2022),basingtheassessmentofexpectedemissionpeakyearonthemethodofLevinandRich(2017)Notes:ThepopulationprojectionsarebasedonthemediumfertilityvariantoftheUnitedNationsPopulationProspects2022edition(UnitedNationsDepartmentofEconomicandSocialAffairs,PopulationDivision2022).3.4.3OverviewofrecentlyadoptedpoliciesTable3.3presentsselectedenergyandclimatepolicydevelopmentsthatmaycarrysignificant,directimpactontheimplementationofNDCtargetsandlong-termemissionreductiongoalsadoptedinlate2021and2022forthetop-sevenemittingeconomies(Brazil,China,EU27,India,Indonesia,RussianFederationandtheUnitedStatesofAmerica;forotherG20members’policies,seechapter2andappendixB.4).PolicyresponsestotheenergycrisisandthewarinUkrainearenotincluded.Someofthepolicieshighlightedbynationalpolicyexpertswereadoptedafterthepublicationofthescenariostudiesreviewedinsection3.4.1NotableexceptionsincludetheInflationReductionActandtheInfrastructureInvestmentandJobsActoftheUnitedStatesofAmerica.21EmissionsGapReport2022:TheClosingWindowTable3.3OverviewofrecentpolicymeasuresadoptedbythetopsevenGHG-emittingG20membersin2021and2022thatareexpectedtoaffecttheachievementoftheirNDCtargetsandlong-termpledgesBrazil•InitsupdatedNDC,BrazilcommitstoreducingitsGHGemissionsby37percentin2025andby50percentin2030relativeto2005levels.Ithasalsocommittedtoeliminatingillegaldeforestationby2028(Brazil2022a).•InMay2022,BraziladoptedafederaldecreeestablishingtheproceduresforsettingupanationalsystemforreducingGHGemissionsaswellassectoralplansforclimatechangemitigation.Thedecreealsoestablishesasingleregisterofcarbonandmethanecreditsandclassifiescarboncreditsasfinancialassets.Thedecreeisexpectedtobecomeamanagementmechanismandanoperationalinstrumentforthesectoralplans,whichshouldestablishgradualsectoraltargetsforemissionreductions.ThesesectoralplansmustbeapprovedbytheInterministerialCommitteeonClimateChangeandGreenGrowth.Deadlinesandspecificrulesarenotyetspecifiedunderthedecree(Brazil2022b).China•TherenewableenergydevelopmentinChinahascontinueditsstronggrowth.Bytheendof2021,theinstalledsolarphotovoltaics(PV)andwindcapacitywasmorethan300gigawatts(GW).Since1996,theannualnewlyinstalledsolarPVandwindcapacityhasaccountedforabout55percentofnewenergycapacity(Statista2022).•InApril2022,Chinaannouncedthatitwouldincreasecoalproductionby300milliontonsin2022throughcoalminingcapacityincrease,expandedandnewproduction,andothermeasures.ThiscomesdespiteChina’spledgetostrictlycontrolcoal-firedpowergenerationprojects,limittheincreaseincoalconsumptionoverthe14thFive-YearPlanperiod(2021–2025)andphasedowncoalconsumptionduringthe15thFive-YearPlanperiod(2026–2030).Thetransformationawayfromcoalinfrastructuresischallengedbyenergysecurityconcerns(China,NationalDevelopmentandReformCommission[NDRC]2022;China,NationalStateEnergyAdministration2022;Xinhua2022).•TopeakCO2emissionsandachievecarbonneutrality,ChinahasreleasedanActionPlanforCarbonDioxidePeakingbefore2030andaWorkingGuidanceforCarbonDioxidePeakingandCarbonNeutrality.Specificobjectivesandimplementingplansarepublishedattheregionallevelandacrossallsectorscoveringenergy,industry,urban-ruraldevelopment,transportation,carbonsink,technologydevelopment,carbonmarket,climateandgreenfinance,climateadaptationandsocialawareness(China,NDRC2021a;China,NDRC2021b).EuropeanUnion•InDecember2021,theEuropeanCommissionproposedlegislationtoboosttherenovationanddecarbonizationofbuildingsandreducemethaneemissionsintheenergysectorby80percentin2030(EuropeanCommission2021b;EuropeanCommission2021c).NewrequirementstopromotesustainableproductsandconstructionwereproposedinMarch2022,whichcouldleadto132milliontonsofoilequivalent(Mtoe)ofprimaryenergysavings(EuropeanCommission2022a).•InMay2022,theEuropeanCommissionpresenteditsREPowerEUPlaninordertophaseoutRussianfossilfuels.Amongothers,theplanincludesproposalstoinvest€210billionmostlyincleanenergyandindustry,speeduppermittingproceduresforrenewableenergyprojects,andincreaseambitionsforrenewableenergyandenergyefficiency.TheplanwouldbringtheEU’stotalrenewableenergygenerationto1236GWby2030ifadopted(EuropeanCommission2022b;EuropeanCommission2022c).•TheEU’srevisionandupdateoflegislationunderthe“Fitfor55”packagetoimplementits2030climatetargetisinitsfinalphase.TheEuropeanCommission,EuropeanParliamentandmemberstateshavealreadysupportedabanonthesaleofnewfossilfuelcarsandvansby2035,anEUCarbonBorderAdjustmentMechanism(CBAM),andanexpansionofemissionstradingtonewsectors(EuropeanCouncil2022a;EuropeanCouncil2022b;EuropeanParliament2022).22EmissionsGapReport2022:TheClosingWindowIndia•InAugust2022,theCabinetapprovedanupdateofIndia’sNDC.TheupdatedNDChasledtomajorpolicesbeingpushedforward,including1)electricvehicles(EVs),2)co-firingofbiomasspelletsinthermalpowerplantsby7percent,3)ethanolblendinginpetrolby20percent,4)inclusionofagroforestryandprivateforestry,5)solarizationofagriculturalpumps,6)cleancooking(byshiftingtoliquefiedpetroleumgas[LPG]),and7)rooftopsolarPV.TheGovernmentofIndiaisconsideringcoalgasification,conversionofcoalintochemicalprojects,ammoniaandhydrogenasfuturefuels.Energystorageissupportedthroughaproductionlinkedschemetopromoterenewableenergy(India,PressInformationBureau2022).•Inrecognitionoftheroleoflifestyles,themovementLifestyleforEnvironmenthasbeenproposedtofosteracitizen-centricapproachtocombatclimatechange(Bhaskar2022;India,PressInformationBureau2022).•TheLokSabhapassedtheEnergyConservation(Amendment)Billon9August2022,aimingtofacilitatetheestablishmentanddevelopmentofdomesticcarbonmarkets.Themarkets’objectiveistoincentivizeactionsforemissionreductionexpectedtoresultinincreasedinvestmentsincleanenergyandenergyefficiencyareas,especiallyintheprivatesector(PRSLegislativeResearch2022).Indonesia•InFebruary2022,theMinistryofEnvironmentandForestryreleasedMinisterialDecreeNo.168/2022onForestryandOtherLandUse(FOLU)NetSink2030alongwithitsoperationalplan.ThisregulationisexpectedtoremoveGHGemissionswhileimplementingtheenergytransitionanddecarbonization.TheFOLUNetSinkcommitmentwasintroducedinthelastLong-TermStrategytoLow-CarbonandClimateResilience2050publishedin2021(ForestHints2022).•TheMinistryofEnergyandMineralResourceshasannouncedanet-zeroemissionroadmapfortheenergysector,whichindicatesthatIndonesiawillnolongerbuildnewfossilfuelpowerplants,withtheexceptionofthe35GWpowercapacityadditionplan,andbegintoretiresubcriticalcoalpowerplantsfrom2030onwards.Intheperiodof2031–2060,45GWofcoalpowerplantswillberetiredandshutdown.Inaddition,theIndonesianState-ownedelectricitycompanyPerusahaanListrikNegaraseekstocancelsomecoalplantsunderconstruction.However,despitetheverbalstatementandpoliticaldecision,noregulationtophaseoutcoalhasbeenissuedyet(InternationalEnergyAgency[IEA]2022;Indonesia,MinistryofEnergyandMineralResources2022;OrganisationforEconomicCo-operationandDevelopment[OECD]CleanEnergyFinanceandInvestmentMobilisationProgramme2021).•TheElectricitySupplyBusinessPlan2021–2030,publishedinOctober2021,aimstoachieverenewableenergycapacitytoaccountfor51.6percentoftotalpoweradditionuntil2030.Hydropowerdominatestheupcomingrenewableplanbyaround25.6percent,followedbysolar(11.5percent),geothermalandotherrenewables(Indonesia,MinistryofEnergyandMineralResources2021;OECDCleanEnergyFinanceandInvestmentMobilisationProgramme2021).RussianFederation•InNovember2021,theRussianFederationreleasedthenewestversionoftheirTransportStrategyuntil2030.Thestrategyoutlinesmeasuresincludingenergy-efficientorelectricvehicles,low-carboninfrastructureandalternativefuelsintendedtoreducetransportemissionsby1.2percentrelativetototalemissionsin2017by2030(RussianFederation2021a).•TheConceptfortheDevelopmentofElectricVehicleProductionwasapprovedbytheRussianFederationinAugust2021,settingatargetforEVstomakeupatleast10percentoftheRussianmarketby2030.InadditiontomeasurespromotingEVproduction,theGovernmentplanstostimulatedemandbyprovidingsubsidiescoveringupto25%ofthepriceofdomesticallyproducedEVs(RussianFederation2021b;Reuters2021).•InAugust2021,theRussianGovernmentapprovedtheconceptfortheDevelopmentofHydrogenEnergy.Theplanpresentsstrategicinitiativestowardsthedevelopment,useandexportoflow-carbonhydrogenenergy(RussianFederation2021a).23EmissionsGapReport2022:TheClosingWindowUnitedStatesofAmerica•InAugust2022,theUnitedStatesofAmericaenactedtheInflationReductionAct,projectedtoreduceGHGemissionsby1Gt.Thelawmakesmajorinvestmentsincleanenergytechnologiesincludingutility-scaleanddistributedsolar,windandotherrenewableresources,existingzero-emittingnuclearplants,carboncapturefacilitiesinthepowerandindustrialsectors,light,mediumandheavy-dutycleanvehiclesaswellasheatpumpsandotherenergy-efficientupgradesforhomesandbusinesses.TheActalsoprovidestaxcreditsforemergingcleantechnologieslikecleanhydrogenproduction,directaircapturefacilitiesandcleanfuelproduction(UnitedStatesofAmerica,Congress2022a;UnitedStatesofAmerica,DepartmentofEnergy2022;Jenkinsetal.2022;Larsenetal.2022;Mahajanetal.2022).•TheUnitedStatesofAmericaalsoenactedtheInfrastructureInvestmentandJobsActinNovember2021,whichmakesUS$27billioninpowergridandtransmissioninvestments,createsanewUS$7.5billiongrantprogrammeforEVsandalternativefuelinfrastructuredeployment,andprovidesUS$3.5billionandUS$8billionfordirectaircaptureandcleanhydrogenhubs,respectively,amongotherkeyinvestments(UnitedStatesofAmerica,Congress2022b).•In2021and2022,theEnvironmentalProtectionAgencyandNationalHighwayTrafficSafetyAdministrationadoptedstandardsforlight-dutyvehiclesthroughmodelyear2026.TheEnvironmentalProtectionAgencyestimatesthatthestandardswillavoidmorethan3billiontonsofGHGemissionsthrough2050(UnitedStatesofAmerica,DepartmentofTransportationundated;UnitedStatesofAmerica,EnvironmentalProtectionAgency2021;UnitedStatesofAmerica,EnvironmentalProtectionAgency2022).3.5DetailsonG20members’net-zeropledgesAtotalof19G20membershavecommittedtoachievingnet-zeroemissions,upfrom17asatCOP26.Thesetargetsvaryinanumberofimportantcharacteristics,includingtheirlegalstatus;timeline;explicitconsiderationoffairnessandequity;whichsources,sectorsandgasestheycover;whethertheywillallowtheuseofinternationaloffsetstocounttowardstheirachievement;thelevelofdetailtheyprovideontheroleofcarbondioxideremoval;andthenatureofplanning,reviewandreportingontargetimplementation(table3.4).Figure3.4visualizesthedirectionneededforcountriestogetfromtheircurrentemissionlevelstotheirNDCtargetsfor2030andindicatestheirnet-zerotargetsforeachG20memberthathasanetzerotarget(notingthatFrance,GermanyandItalyareonlyassessedaspartoftheEuropeanUnion).ThoseG20memberswhoseemissionshavealreadypeakedwillneedtofurtheracceleratetheiremissiondeclinestotheirnet-zerotargetyear,whilethosememberswhoseemissionswillcontinuetoincreasethrough2030undertheNDCswillrequirefurtherpolicyshiftsandinvestments(includingadequatesupporttodevelopingcountries,whereapplicable)toachievetheemissionreductionsimpliedbytheirnationalnet-zerotargets.Thisillustrationdoesnotconsidertherelativemeritintermsoftheequityorfairnessofthechoicescountriesmakeregardingtheirnationallydeterminedpathwaystonetzero.However,ithighlightsthediscrepancybetweencurrentemissions,near-termNDCtargetsandlong-termnet-zerotargets.ThisservesasaclearremindertoallG20members,orindeedanycountry,thataspirationaltargetssuchasNDCsornet-zerotargetsneedtobebackedupwitheffectivepolicies.Italsoservesasanimportantreminderthatcurrentevidencedoesnotprovideconfidencethatthenationallydeterminednet-zerotargetswillbeachieved.Thishasclearrepercussionsfortheanticipatedglobaltemperatureprojections(seechapter4).24EmissionsGapReport2022:TheClosingWindowTable3.4Detailsonnet-zerotargetsofG20membersSources:AllindicatorsarebasedonareconciliationofdatafromClimateActionTracker(2022),ClimateWatch(2022)andNetZeroTracker(2022)withthefollowingexceptions:“Coversallsectors”isbasedonClimateWatch(2022);“Reviewprocess”isbasedonClimateActionTracker(2022);“Annualreporting”isbasedonNetZeroTracker(2022);“Removalstransparency”and“Referencetofairness”arebasedonClimateActionTracker(2022)andNetZeroTracker(2022).Notes:Greencheckmarksindicatethecriterionisfulfilled;yellowcheckmarksindicatethecriterionispartiallyfulfilledorfulfilledtoalowerlevelofrobustness;red“X”indicatesthecriterionisnotfulfilled;“?”indicatesthememberhasnotprovidedinformationonthecriterion(whererelevant);“[inconclusive]”indicatesinconsistencyacrossdatasourcesconsulted;“[nodata]”indicatesthedatasourcesconsulteddonottrackdataonthemember.SeeappendixB.5andtherespectivetrackersforfurtherexplanationsofindicatorsandcodingcriteria.1TableXG20NetZeroOverviewNotfulfilledPartiallyfulfilledFulfilledNoinformationG20memberAnnexFundamentalsScopeandcoverageCarbonremovalPlanning,review,reportingSourceTargetyearReferencetofairnessCoversallsectorsCoversallgasesCoversint'lshippingandaviationExcludesint'loffsetsSeparateremovalstargetsRemovalstransparencyPublishedplanReviewprocessAnnualreportingArgentinaNon-AnnexIannounce-ment20505????555?5AustraliaAnnexIlaw2050[incon-clusive]33?55[incon-clusive][incon-clusive]33BrazilNon-AnnexIpolicy205053???555?5CanadaAnnexIlaw2050[incon-clusive]33??5[incon-clusive]333ChinaNon-AnnexIpolicy20603?5??5[incon-clusive]335EuropeanUnionAnnexIlaw20505333353333FranceAnnexIlaw20503335333333GermanyAnnexIlaw2045333555[incon-clusive][incon-clusive]33IndiaNon-AnnexIpolicy20705????555?5IndonesiaNon-AnnexIpolicy206053???5[incon-clusive][incon-clusive]?5ItalyAnnexIpolicy20503???5533[nodata]3JapanAnnexIlaw2050533??5[incon-clusive][incon-clusive]33MexicoNon-AnnexI[nonet-zerotarget]RussianFederationAnnexIlaw20605???55[incon-clusive][incon-clusive]35SaudiArabiaNon-AnnexIannounce-ment20605????55[incon-clusive]35SouthAfricaNon-AnnexIpolicy2050[incon-clusive]35??555?5RepublicofKoreaNon-AnnexIlaw2050533??55[incon-clusive]?3TürkiyeAnnexIannounce-ment20535?3??555?3UnitedKingdomAnnexIlaw20503333553333UnitedStatesofAmericaAnnexIpolicy20505335353333FederationrabianaafricacofKoreasiaFederationrabianaafricacofKoreasiaFederationrabianaafricacofKoreasiaFederationrabianaafricacofKoreasiaFederationrabianaafricacofKoreasiaFederationrabianaafricacofKoreasiaFederationrabianaafricacofKoreasiaFederationrabianaafricacofKoreasiaFederationrabianaafricacofKoreasiaFederationrabianaafricacofKoreasiaFederationrabianaafricacofKoreasiaFederationrabianaafricacofKoreasiaRussianFederationSaudiArabiaArgentinaAustraliaBrazilCanadaSouthAfricaTürkiyeUKUSARepublicofKoreaMexicoIndonesiaJapanIndiaChinaEU27RussianFederationSaudiArabiaArgentinaAustraliaBrazilCanadaSouthAfricaTürkiyeUKUSARepublicofKoreaMexicoIndonesiaJapanIndiaChinaEU27FederationrabianaafricacofKoreasiaFederationrabianaafricacofKoreasiaFederationrabianaafricacofKoreasiaFederationrabianaafricacofKoreasiaFederationrabianaafricacofKoreasiaRussianFederationSaudiArabiaArgentinaAustraliaBrazilCanadaSouthAfricaTürkiyeUKUSARepublicofKoreaMexicoIndonesiaJapanIndiaChinaEU2725EmissionsGapReport2022:TheClosingWindowFigure3.4EmissionstrajectoriesimpliedbyNDCsandnet-zerotargetsofG20membersNotes:ThefigureshowsnationalnetemissionsinMtCO2e/yearovertime.Thetimingofnet-zerotargetsisapproximateinthisfigureforG20countriesthathavenet-zerotargetsthatonlyapplytoCO2.CO2-onlynet-zerotargetsimplylater(orno)achievementofnet-zeroGHGemissions(seetable3.4).SaudiArabiaArgentinaAustraliaBrazilCanadaSouthAfricaTürkiyeRussianFederationUnitedKingdomUSARepublicofKoreaEmissionstrenduntil2030impliedbyNDCtargetsLinearcontinuationoftheemissionstrendimpliedbyNDCtargetsNetzerowithunclearorCO2-onlycoverageNet-zeroCO2targetsNet-zeroGHGtargetsMexicoIndonesiaJapanIndiaChinaEU27Historicaldata0400060001500080001500003500500002500015000800080006000100006000025000600202020402060202020402060202020402060202020402060020202040206020202040206020202040206020202040206020202040206020202040206020202040206020202040206020202040206020202040206020202040206020202040206026EmissionsGapReport2022:TheClosingWindowTheemissionsgapLeadauthors:JoeriRogelj(ImperialCollegeLondon,UnitedKingdom;InternationalInstituteforAppliedSystemsAnalysis[IIASA],Austria),MicheldenElzen(PBLNetherlandsEnvironmentalAssessmentAgency,theNetherlands),JoanaPortugal-Pereira(GraduateSchoolofEngineering[COPPE],UniversidadeFederaldoRiodeJaneiro,Brazil)Contributingauthors:TarynFransen(WorldResourcesInstitute,UnitedStatesofAmerica),GauravGanti(ClimateAnalytics,Germany),JarmoKikstra(ImperialCollegeLondon,UnitedKingdom),AlexKöberle(ImperialCollegeLondon,UnitedKingdom),RobinLamboll(ImperialCollegeLondon,UnitedKingdom),ShivikaMittal(ImperialCollegeLondon,UnitedKingdom),Carl-FriedrichSchleussner(ClimateAnalytics,Germany),CleaSchumer(WorldResourcesInstitute,UnitedStatesofAmerica)44.1IntroductionTheemissionsgapisdefinedasthedifferencebetweentheestimatedtotalglobalgreenhousegas(GHG)emissionsresultingfromthefullimplementationofthenationallydeterminedcontributions(NDCs),andthetotalglobalGHGemissionsfromleast-costpathwaysconsistentwiththeParisAgreementlong-termgoaloflimitingglobalaveragetemperatureincreasetowellbelow2°C,andpursuingeffortstolimititto1.5°Crelativetopre-industriallevels.Orinotherwords,thegapbetweenpromisedandneededemissionreductions.Thekeyquestionsassessedinthischapterare,whatisthecurrentbestestimateoftheemissionsgapfor2030consideringthelatestNDCs?WhatlevelsofglobalemissionsareinlinewiththeclimatemitigationgoalsoftheParisAgreement?Whereareweheadedundercurrentpoliciesandvariousmitigationpledgescenariosintermsofglobalwarmingoverthecourseofthecentury?TheassembledscenariosreflectthelatestfindingsfromthereportsreleasedbyIntergovernmentalPanelonClimateChange(IPCC)WorkingGroupsIandIIIundertheSixthAssessmentReport(AR6)(Canadelletal.2021;IPCC2021;Byersetal.2022;IPCC2022b;Lecocqetal.2022;Riahietal.2022),ensuringconsistencywiththemostrecentclimatescienceandmitigationtrajectoryassumptions.Theachievementofnet-zeroGHGemissions,asaimedforundertheParisAgreement,wasconsideredaspartofthescenarioclassification.CurrentpoliciesandNDCscenariosarealsoalignedwiththeassessmentoftheIPCCAR6WGIIIReport(Lecocqetal.2022),takingintoaccounttheimpact1TheIPCCAR6assessedstudieswithcut-offdatesvaryingbetweenMay2021andOctober2021.ofCOVID-19andupdatedpoliciesonfutureemissionlevels.MovingbeyondtheIPCCassessment,theNDCscenariousesupdatedemissionsprojectionsbasedonthesamestudiesassessedintheAR6WGIIIReport,butincludingNDCupdatesuptoacut-offdateof23September2022.1Improvingonearlieremissionsgapestimates,thischapterusesupdatedinformationonlanduse,land-usechangeandforestryemissionsfromnationalinventorydataandthemostrecentIPCCAR6valuesofglobalwarmingpotentialover100years(GWP100);itharmonizesthedifferencesbetweenglobalemissionsdataandscenarios.Resolvingtheseissuesresultsinchangesintheglobalemissionsprojectionsforcurrentpolicies,NDCsandtemperaturepathways,comparedwithpreviousEmissionsGapReports,aswellaswiththeestimatesincludedintheUnitedNationsFrameworkConventiononClimateChange(UNFCCC)SynthesisReport(UNFCCC2021)andtheAR6WGIIIReport(IPCC2022).TheupdatesmeanthattheestimatesinthischaptercannotbedirectlycomparedwithpreviousEmissionsGapReportestimates.However,differencesintheestimatesareexplainedinthischapter,andthereport’scentralfindingremains:currentpoliciesandNDCsarewoefullyinsufficienttomeetthetemperaturegoaloftheParisAgreement.Thechapterfirstintroducestheupdatedscenariosthatunderliethequantificationoftheemissionsgap(section4.2).Theemissionsgapassessmentfor2030ispresentedinsection4.3,andtheglobaltemperatureimplicationsarediscussedinsection4.4.27EmissionsGapReport2022:TheClosingWindow4.2Scenariosconsideredforthe2030emissionsgapassessmentThissectionupdatesthethreescenariocategoriesconsideredforthe2030emissionsgapassessment.2Thecurrentpolicyscenarioadjustsoriginalmodellingstudiestoaccountfordifferentpolicycut-offdates,whichrangefrom2017to2020,andvaryingconsiderationoftheimpactoftheCOVID-19pandemiconsocioeconomicdrivers.3Thebelow1.5°Cdefinitionusedinthe2022EmissionsGapReportisconsistentwiththeC1acategoryoftheIPCCAR6WGIIISummaryforpolicymakersandselectsscenariosbasedonboththeirtemperatureoutcomeandonwhethertheyreachnet-zeroGHGemissionsoverthecourseofthecenturyinlinewiththeParisAgreementarticle4(Schleussneretal.2022).Thesecategoriescomprisereferenceandcurrentpoliciesscenarios(section4.2.1),newandupdatedNDCscenarios(4.2.2),andleast-costmitigationscenariosstartingin2020consistentwithspecifictemperaturetargets(4.2.3).Allscenariosaresummarizedintable4.1.Table4.1SummaryofassessedscenariosScenarioNumberofscenariosinsetGlobaltotalemissionsin2030(GtCO2e)Estimatedtemperatureoutcomes†ReferenceandcurrentpoliciesscenariosReferenceoryear2010policies2010Thisscenarioonlyincludesclimatepolicesimplementedupto2010andassumesnoadditionalmeasuresfrom2010onward.Currentpolicies2021ThisscenariocoverscurrentpoliciesandprojectsglobalGHGimplicationsofclimatemitigationpoliciesadoptedandimplementedasof2021.Thesescenariosaccountfortheshort-termandmidtermsocioeconomicimpactsofCOVID-192(cut-offdate:November2021)andareadjustedfortheimpactoftheInflationReductionActintheUnitedStatesofAmerica.NDCscenariosUnconditionalNDCs2022ThisscenariocoversallthelatestversionsoftheNDCsthathavebeenindicatedtobeimplementedwithoutanyexplicitexternalsupport(cut-offdate:23September2022).ConditionalNDCs2022Inadditiontotheunconditionalpledges,thisscenariocoversthelatestversionsofNDCstobeimplementedconditionaluponreceivinginternationalsupport(finance,technologytransferand/orcapacity-building)(cut-offdate:23September2022).MitigationscenariosconsistentwithkeepingwarmingbelowspecifictemperaturelimitsBelow2°CN/ALong-termleast-costpathwaystartingfrom2020andconsistentwithholdingglobalwarmingbelow2°Cthroughoutthetwenty-firstcenturywithatleast66%chance.Below1.8°CN/ALong-termleast-costpathwaystartingfrom2020andconsistentwithholdingglobalwarmingbelow1.8°Cthroughoutthetwenty-firstcenturywithatleast66%chance.Below1.5°CN/ALong-termleast-costpathwaystartingfrom2020andconsistentwithholdingglobalwarmingbelow1.5°Cthroughoutthetwenty-firstcenturywithlimitedornoovershoot.3Thisimpliesglobalwarmingin2100beingheldbelow1.5°Cwithatleast66%chance,whilethroughoutthetwenty-firstcenturyitiskeptbelow1.5°Cwithatleast33%chance.Inaddition,consistentwiththeParisAgreement,thesescenariosachievenet-zeroGHGemissionsinthesecondhalfofthecentury.28EmissionsGapReport2022:TheClosingWindow4.2.1ReferenceandcurrentpoliciesscenariosTwoscenariosareconsidered:thereferenceoryear2010policiesscenarioandtheupdatedcurrentpoliciesscenario.Theyear2010policiesscenarioassumesthatnoadditionalclimatemitigationpoliciesareimplementedafter2010.GlobalGHGemissionsinthisscenarioarebasedonthescenariosassessedbytheIPCCunderAR6WGIIIcategoryC8(Byersetal.2022;IPCC2022a;Riahietal.2022).Theestimatedglobalemissionsin2030undertheyear2010policiesscenariois66GtCO2e(range:64–68).ThecurrentpoliciesscenarioprojectsglobalGHGemissionsassumingallcurrentlyadoptedandimplementedpolicies(definedaslegislativedecisions,executiveordersorequivalent)arerealizedandthatnoadditionalmeasuresareundertaken.Typically,selectedpoliciesarebasedonliteratureresearch,inputfromtheClimatePolicyDatabase(NewClimateInstitute2020)andacountryexpertreviewofthepoliciesidentified,oftenfollowingamodellingprotocolfortheimplementationofpoliciesinglobalmodelsfromRoelfsemaetal.(2020;2022).ThedataforthisscenarioarebasedonthesamefourmodellingstudiesofthecurrentpoliciesassessmentoftheIPCCAR6WGIIIReport(Lecocqetal.2022),butusingmorerecentdatafromthesamefourmodellingstudiesthatprovideupdatedestimatesthatapplythemostrecentAR6GWP100valuesanduseapolicycut-offdateofNovember2021(seetable4.1andappendixC,availableonline,forfurtherdetail)(ClimateActionTracker2021;Keramidasetal.2021;Riahietal.2021;denElzenetal.2022;Roelfsemaetal.2022).ThescenarioconsiderstheimpactofCOVID-19onGHGemissionsprojections,andtheprojectionsareadjustedtoincludetheexpectedemissionreductionsfromtheInflationReductionActintheUnitedStatesofAmerica(amountingtoabout1GtCO2e).TheGHGemissionsprojectionsforthecurrentpoliciesscenarioswereharmonizedwith2015emissionsbasedontheIPCCAR6historicalemissionsdatabase(seebox4.1).TheresultingmedianestimateofglobalGHGemissionsin2030undercurrentpoliciesis58GtCO2e(range:52–60).Thisis3GtCO2ehigherthantheestimateofthe2021UnitedNationsEnvironmentProgramme(UNEP)EmissionsGapReport(accountingfortheimpactoftheUnitedStatesofAmerica).Abouthalfoftheincreaseisduetotheharmonization,aboutonequartertothechangeinglobalwarmingpotential(GWP),andtheremainingincreaseisduetothemethodologicalchoiceofonlyselectingmodelstudiesthatexplicitlyaccountforthemostrecentcurrentpolicesandNDCestimates(table4.2).4.2.2NDCscenariosTheNDCscenarioscoverthemostrecentversionsoftheNDCssubmitted,withacut-offdateof23September2022.TheestimatesarebasedonthestudiesusedintheIPCCAR6WGIIIassessment(seetable4.2ofLecocqetal.2022);however,toreflectNDCssubmittedsincetheIPCCpublication,updatedestimateshavebeenprovided.Thedatacomefromfourmodelgroupswithcut-offdatesrangingfromNovember2021toFebruary2022acrossstudies(ClimateActionTracker2021;Keramidasetal.2021;denElzenetal.2022;Meinshausenetal.2022).ToincludetheimplicationsofneworupdatedNDCssubmittedbycertainG20membersafterthesecut-offdates(i.e.Australia,Brazil,India,Indonesia,RepublicofKoreaandtheUnitedKingdom),NDCemissionestimateswererecalculatedbasedonthehistoricalemissionsdatausedinrespectivestudies(followingthesameapproachasinchapter3).ThelatestversionsoftheunconditionalNDCsresultinanannualemissionsreductionofabout0.7GtCO2ecomparedwithlastyear’sreport(table4.2,NDCupdatescolumn).Aswiththereferenceandcurrentpoliciesscenarios,theNDCscenarioswerealsoharmonizedwithhistorical2015emissions(seebox4.1).Table4.2TheimpactofthevariousupdatesontheGHGemissionsprojections(medianestimates)ScenarioEmissionsGapReport2022EmissionsGapReport2021DifferenceEGR2022-2021FactorsexplainingdifferencesbetweenEGR2022andEGR2021estimatesNDCupdatesMethodsAR6GWPHarmonizationScenarioliteratureupdateYear2010policies66.464.4+2.0+0.9+1.1Currentpolicies58.055.0+3.0+1.3+0.8+1.9-1.0UnconditionalNDCs55.452.0+3.4-0.7+0.8+0.8+2.5ConditionalNDCs52.449.7+2.7-0.7+0.5+0.7+2.2Below2.0°C40.739.2+1.5+0.6+0.9Below1.8°C34.733.2+1.6+0.5+1.1Below1.5°C32.724.6+8.2+0.4+7.8ImpactofInflationReductionActintheUnitedStatesofAmerica.29EmissionsGapReport2022:TheClosingWindowTheunconditionalandconditionalNDCscenariosresultinprojectedmedianglobalGHGemissionsin2030of55GtCO2e(range:52–57)and52GtCO2e,(range:49–54)respectively.Theseprojectionsare3.5GtCO2eand3GtCO2ehigherthanthemedianestimatesofthe2021UNEPEmissionsGapReport,respectively,forreasonssimilartothoseexplainingthechangesinthecurrentpoliciesscenario(seetable4.2).Theharmonizationofscenarioprojectionsandestimatesofhistoricalemissionsarealsothedominantfactorhere(seetable4.2),inadditiontotheimpactduetothechangeinGWPandthechangeinmethodologicalchoiceofonlyselectingmodelstudiesthataccountforthemostrecentNDCs.Notethatthisyear’supdatealsoaccountsfortheimpactoftheupdatedNDCsmadebetweentheSeptembercut-offdateofthe2021EmissionsGapReportandNovember2021.Box4.1HarmonizationofemissionsdataHistoricalemissioninventoriesandemissionsprojectionsfromglobalintegratedassessmentmodelsdifferandareassociatedwithuncertainties(seechapter2,Dhakaletal.2022).Toensurecomparability,datasourcesinthisyear’sreportwereharmonizedthroughthefollowingthreesteps:1.DiscrepanciesbetweentheemissionsofscenariosfromtheIPCCAR6WGIIIscenariodatabase(Byersetal.2022;Riahietal.2022)andupdatedhistoricalglobalemissionsestimateswereharmonizedaspartoftheIPCCAR6scenariopipeline(Kikstraetal.2022).2.EmissionsdatafromNDCestimates(basedonanationalinventoryapproach)andglobalintegratedassessmentmodellingscenarios(consistentwithabookkeepingapproach)weremadeconceptuallymorecomparableintermsofthelanduse,land-usechangeandforestryemissionsdefinitionthattheyuse,basedontheharmonizationpresentedinGrassietal.(2021)(seechapter2andappendixAforfurtherdetails).3.ThedifferencebetweenhistoricalemissionsassumedinNDCstudiesandthehistoricalemissionsdatabaseoftheIPCCAR6wasresolvedbyapplyingthemodelledabsolutechangebetweentheharmonizationyearandthe2030projectionsofNDCstudiestothehistoricalemissionsdatabaseoftheIPCCAR6for2015.Thesemethodologicalupdatesimprovethecomparabilityofvaluesacrosschapters,butitisimportanttonotethattheylimitthecomparabilityofthisyear’sestimatewiththoseofpreviouseditionsoftheEmissionsGapReport.4.2.3MitigationscenarioskeepingwarmingbelowspecifiedtemperaturelimitsToassesstheemissionsandimplementationgapsin2030,currentpoliciesandNDCscenariosarecomparedwithleast-costmitigationscenariosthatareconsistentwithkeepingwarmingbelowspecifictemperaturelimits.Least-costmitigationscenariosareinlinewiththeprincipleoftheUNFCCCthat“policiesandmeasurestodealwithclimatechangeshouldbecost-effectivesoastoensureglobalbenefitsatthelowestpossiblecost”(UNFCCC1992).However,least-costmitigationscenariosgenerallydonotaccountfortheeconomicco-benefitsandavoideddamagesofmitigation(seebox4.2).Emissionpathwaysfromtheliteraturearecategorizedaccordingtotheirprojectedpeakglobalwarmingoutcomesrelativetopre-industriallevelsoverthecourseofthiscentury.ThreescenariosaredefinedtoreflectthethreedifferentlevelsofwarmingrelevantforthetemperaturegoaloftheParisAgreement:2°C,1.8°Cand1.5°C(seetables4.1and4.3).Asoutlinedintheintroductiontothischapter,thisyearthemitigationscenarioshavebeenupdatedbasedonthelatestsetofscenarioscollectedaspartoftheIPCCAR6WGIIIReport(Byersetal.2022;Riahietal.2022),withtemperatureprojectionsbasedonthephysicalscienceassessmentbyWorkingGroupIundertheIPCCAR6(Forsteretal.2021).30EmissionsGapReport2022:TheClosingWindowTable4.3GlobaltotalGHGemissionsin2030andglobalwarmingcharacteristicsofdifferentscenariosconsistentwithlimitingglobalwarmingtospecifictemperaturelimitsScenarioNumberofscenariosGlobaltotalGHGemissions(GtCO2e)EstimatedtemperatureoutcomeClosestapproximateIn2030In205050%chance66%chance90%chanceIPCCAR6WGIIIscenarioclassBelow2.0°C(66%chance)19541(37–46)20(16–24)Peak:1.7–1.8°CIn2100:1.4-1.7°CPeak:1.8–1.9°CIn2100:1.6–1.9°CPeak:2.2–2.4°CIn2100:2.0–2.4°CC3aBelow1.8°C(66%chance)13935(28–40)12(8–16)Peak:1.5–1.7°CIn2100:1.3-1.6°CPeak:1.6–1.8°CIn2100:1.4–1.7°CPeak:1.9–2.2°CIn2100:1.8–2.2°CN/ABelow1.5°C(66%in2100withnoorlimitedovershoot)5033(26–34)8(5–13)Peak:1.5–1.6°CIn2100:1.1–1.3°CPeak:1.6–1.7°CIn2100:1.2–1.5°CPeak:1.9–2.1°CIn2100:1.6–1.9°CC1aValuesrepresentthemedianandtenthtoninetiethpercentilerangeacrossscenarios.Percentagechancereferstopeakwarmingatanytimeduringthetwenty-firstcenturyforthebelow1.8°Candbelow2.0°Cscenarios.Whenachievingnet-negativeCO2emissionsinthesecondhalfofthecentury,globalwarmingcanbefurtherreducedfromthesepeakwarmingcharacteristics,asillustratedbythe“Estimatedtemperatureoutcome”columns.Forthebelow1.5°Cscenario,thechanceappliestotheglobalwarmingintheyear2100,whilethe“noorlimitedovershoot”characteristiciscapturedbyensuringprojectionsdonotexceed1.5°Cwithmorethan67percentchanceoverthecourseofthetwenty-firstcenturyor,inotherwords,thatthelowestchanceofwarmingbeinglimitedto1.5°Cthroughouttheentiretwenty-firstcenturyisneverlessthan33percent.ThisdefinitionisidenticaltotheC1categorydefinitionusedbytheIPCCAR6WGIIIreport.ComparedtoIPCC(2022),theEmissionsGapReportanalysisalsoselectsscenariosbasedonwhetherornottheyassumeimmediateaction.Notes:GHGemissionsinthistablehavebeenaggregatedwithGWP100valuesofIPCCAR6.Source:BasedonunderlyingdatafromByersetal.(2022)andRiahietal.(2022)4ThesescenariosareallwithintheIPCCAR6WGIIIcategoryC1.5AdetaileddiscussionofthischangebetweentheIPCCSpecialReportonglobalwarmingof1.5°CandtheAR6WGIIIReportisprovidedinappendixIIItotheIPCCAR6WGIIIReport(IPCC2022a),section3.2.1.The2030emissionbenchmarkvaluesoftheleast-costmitigationpathwaysinthisyear’sreportarehigherthanthoseinpreviousreports,especiallyforthebelow1.5°Cscenario.Therearetwomainreasonsforthis(table4.2).ThemostimportantistheupdateofthescenarioliteratureevidencebasecollectedinsupportoftheIPCCAR6(Byersetal.2022;Riahietal.2022).Therateofemissionsdeclineafter2020inthebelow1.5°Cscenario4issimilartothatoftheIPCCSpecialReportonglobalwarmingof1.5°CandtheIPCCAR6.However,theAR6scenariosshowhigherGHGemissionsin2030becausetheemissionreductionsgenerallystartfromhigherlevelsin2020,asreflectedinthemostrecenthistoricalemissionsinventories(IPCC2022a;IPCC2022b).MorescenariosintheIPCCAR6scenariodatabasealsoendupclosertothetemperaturelimitinthebelow1.5°Cscenariocategory(seetable4.3),whichagainresultsinhigher2030emissionvalues.5Asecond,moreminorcontributingfactor,whichaffectsallscenariocategories,istheupdatetothemostrecentIPCCAR6valuesofGWP100.31EmissionsGapReport2022:TheClosingWindowBox4.2Puttingcostestimatesfromleast-costemissionsscenariosincontextLeast-costscenariosareconstructedtoachieveglobalemissionreductionsatthelowestcostpossible.However,estimatesofmitigationcostsvaryextensivelyanddependcriticallyonthereferenceandmitigationscenarioassumptionsanddataparameterizationchosen(Köberleetal.2021;Riahietal.2022).Ifareferencescenarioinwhichglobalandlocaleconomiesareattheirefficiencyfrontierisassumed,climatepolicieswillinevitablyentailmacroeconomiccosts.However,theliterature,includingthelatestIPCCassessment,illustratesthatthisisastylizedandunrealisticassumption(Riahietal.2022).Aneconomyatitsefficiencyfrontierimpliesnofossilfuelsubsidies,notaxationthatdistortstheallocationoflabour,no“misallocationorunder-utilizationofproductionfactorssuchasinvoluntaryunemployment”,andno“imperfectinformationornon-rationalbehaviours”(Riahietal.2022).Eachoftheseeconomicimperfectionsarecommonacrossreal-worldeconomiesatalllevelsofdevelopment.However,themodelsthatproduceleast-costpathwaysrarelyrepresentalltheseaspectsandhencedisregardthemintheirmodelestimatesofmitigationcosts.Thisresultsinmitigationcostestimatesthatarebiasedhigh(Köberleetal.2021;Riahietal.2022).Studiesthatmodelareferenceeconomybelowtheefficiencyfrontierfindthatalow-carbontransformationcanresultineconomicstimulusandincreaseeconomicgrowth,conditionalongreeninvestmentsnotreplacinginvestmentinotherpartsoftheeconomy(PollittandMercure2018;Mercureetal.2019;Riahietal.2022).Becauseofregionaldifferencesingovernance,developmentandsocietalandtechnologicalcontext,mitigationcostestimatesdifferbetweencountries.Forexample,undertheidealizedassumptionthatemissionreductionsareachievedthroughagloballyuniformcarbonprice,countrieswithcarbon-intensiveeconomiesorfossilfuelexportingcountrieswouldhaverelativelyhighermacroeconomiccostsastheireconomiesrequireadeepertransformation(Stern,PezzeyandLambie2012;Tavonietal.2015;Böhringeretal.2021).ForadetaileddiscussionseeRiahietal.(2022).Inaddition,mitigationcostestimatesofleast-costpathwaysdisregardtheeconomicbenefitsthataccruethroughavoideddamagesandsocietalco-benefitsofalow-carbontransition,suchasimprovedpublichealthbecauseofimprovedairquality(Köberleetal.2021;Riahietal.2022).Evenwhenconsideringleast-costmitigationscenarioswherecostsarebiasedhigh,thesebenefitslikelyoutstripthemodelledcosts(seefigure4.1)(Riahietal.2022).Forexample,onestudyfoundthathealthco-benefitsoutweighthepolicycostofachievingfairnationalcontributionstolimitwarmingto1.5°CinChinaandIndia,withthemodelledcostscompensatedbyhealthco-benefits(Markandyaetal.2018).Inconclusion,typicallyanideal,perfectlyworkingeconomyisassumedwhenmitigationcostsarequantified,whiletheeconomicco-benefitsandavoideddamagesareunaccountedfor.Asaresult,modelledmitigationcostestimatestypicallyonlyprovidelimitedreal-worldinsightsaboutthenetburdentoeconomiesorsociety.Inallcases,thesemodelledcostsoccurinaworldofcontinuedeconomicdevelopmentandgrowth.CO232EmissionsGapReport2022:TheClosingWindowFigure4.1EstimatedimplicationsforglobalGDPofmitigationmeasures,co-benefitsandclimatedamagesSources:GlobalbaselineGDPgrowthprojectionsandmodelledmitigationcostsarefromtheIPCCAR6WGIIIscenariodatabase(Byersetal.2022;Riahietal.2022).ModelledGDPco-benefits:cropyieldsbasedonVandycketal.(2018);avoidedlostlabourdaysderivedfromVandycketal.(2018);publichealthbenefitsofahealthierdietfromSpringmannetal.(2016);publichealthbenefitsofaglobalcoalexitbasedonRauneretal.(2020);andanadditionalestimateofco-benefitsfromair-qualityimprovementsfromstringentmitigationfollowingfromMarkandyaetal.(2018).EstimatedGDPreductionsfromeconomy-wideclimatedamagesarebasedontheIPCCAR6WGIICross-WorkingGroupBoxonEconomics(O’Neilletal.2022).Thelatterarequantifiedforwhenaspecificlevelofglobalwarmingisreachedforthefirsttime,irrespectiveofwhenexactlythistakesplace.Notethatundercurrentpolicies,globalwarmingby2050canrangeuptoabout2.0–2.5°C.Globalwarmingof3.0°Cwouldonlybeachievedlaterinthecentury.Notes:DarklinesinglobalbaselineGDPgrowthprojectionsandmodelledmitigationcostsaremedianestimates,withdarkandlightrangesrepresenting25–75percentand5–95percentconfidenceintervalsrespectively.Mitigationco-benefitestimatescannotbeaggregatedacrosssources.4.3TheemissionsgapTheemissionsgapfor2030isdefinedasthedifferencebetweenestimatedglobalGHGemissionsresultingfromfullimplementationofNDCs,andglobaltotalGHGemissionsunderleast-costscenariosthatkeepglobalwarmingtobelow2°C,1.8°Cor1.5°Cwithvaryinglevelsofchance(seetable4.4).Thissectionupdatesthegapbasedonthescenariosdescribedinsection4.2.Figure4.2showstheemissionsgapfor2030,withtable4.4indicatingthedetails.WhilethelatestNDCsnarrowthegapslightlycomparedwithpreviousNDCs,theyarehighlyinsufficienttobridgethegap.Altogether,theyreduceexpectedemissionsin2030undercurrentpoliciesbyonly5percent.MeetingallconditionsandimplementingtheconditionalNDCswouldtakethisreductionto10percent,whereas30or45percentisneededfor2.0°Cor1.5°C,respectively.FullimplementationofunconditionalNDCsisestimatedtoresultinagaptothe1.5°Cscenarioof23GtCO2e(range:20–24).Thisisabout5GtCO2esmallerthanestimatedinthe2021report(UNEP2021)–adifferencethatisalmostentirelyduetoupdatestothe1.5°Cscenarios(seetable4.2).Asoutlinedinsection4.2.3,theseshowhigheremissionsin2030becausetheystarttheirreductionsfromhigher2020emissionlevels,reflectingaglobaldelayinambitiousclimateaction.Thisdelayisnotwithoutconsequences:onaveragethebelow1.5°Cscenariosnowhavealowerchanceofeffectivelykeepingwarmingto1.5°C.IftheconditionalNDCsarealsofullyimplemented,theemissionsgaptothe1.5°Cscenarioisreducedbyabout3GtCO2e.050BaselineGDPgrowthfrom2020to2050ModelledGDPreductions(losses)in2050relativetomedianbaselineGDPgrowthLimitwarmingto1.5°C(>50%)withnoorlimitedovershoot(IPCCAR6WG3categoryC1)Limitwarmingto2.0°C(>67%)withnoorlimitedovershoot(IPCCAR6WG3categoryC3)Modelledco-benefits(gains)in2050relativetomedianbaselineGDPgrowthEstimatedeconomy-wideclimatedamagesrelativetomedianbaselineGDPgrowth100150200ChangeinglobalGDP(%)25th–75thpercentile5th–95thpercentile25th–75thpercentile5th–95thpercentileModelledco-benefits(gains)MedianMedianClimatedamageAvoidedcropyieldlossesAvoidedlostlabourdaysPublichealthbenefitsof…dietarychangeglobalcoalphaseoutairqualityimprovements1.5°C2.0°C2.5°C3.0°CBaselinegrowth2020–2050ModelledmitigationcostsMitigationco-benefitestimatesfrom:Estimatedcostsofclimatechangeofleastcostpathwaysassuminganidealized,perfectlyefficientglobaleconomyanddisregardingco-benefitsandavoidedimpactsforvariouslevelsofglobalwarmingrelativetopre-industriallevels33EmissionsGapReport2022:TheClosingWindowTheemissionsgapbetweenunconditionalNDCsandbelow2°Cpathwaysisabout15GtCO2e(range:12–16GtCO2e),whichisabout2GtCO2elargerthanlastyear.Themainreasonforthisincreaseintheassessedgapfor2°Cisthatthisyear’sreportcorrectsfordiscrepanciesinhistoricalemissionsthroughharmonization(seetable4.2andbox4.1).Again,theadditionalfullimplementationoftheconditionalNDCs,lowerstheemissionsgaptothe2°Cscenariobyabout3GtCO2e.Inconclusion,thecentralmessageremains:NDCsarehighlyinsufficienttoputtheworldonapathtomeetingthetemperaturegoaloftheParisAgreement.Furthermore,countriesarenotyetontracktoachievethesegloballyinsufficientNDCs.Theimplementationgap,whichisthedifferencebetweenemissionsexpectedunderthecurrentpoliciesscenarioandthoseneededtoachievetheNDCs,isestimatedtobeabout3GtCO2eand6GtCO2efortheunconditionalandconditionalNDCscenariosrespectively(table4.4).Thesegapestimatesare1GtCO2eand3GtCO2elargerthanlastyear,mainlybecauseNDCshavebeenupdatedwhilepolicieshavenotyetfollowedsuit.Figure4.2GHGemissionsunderdifferentscenariosandtheemissionsgapin2030(medianestimateandtenthtoninetiethpercentilerange)Witheightyearslefttobridgetheemissionsgap,theurgencyofrapidemissionreductionsisclear.Theurgencyisequallyevidentwhenconsideringtheremainingcarbonbudget.ThecarbonbudgetreferstothemaximumamountofcumulativenetglobalanthropogenicCO2emissionsthatwouldresultinlimitingglobalwarmingtoagivenlevelwithagivenchance,takingintoaccounttheeffectofotheranthropogenicclimateforcers.TheIPCCestimatesthattheremainingcarbonbudgetfromthebeginningof2020forlimitingwarmingtoamaximumof1.5°Cisapproximately400GtCO2and1,150GtCO2for2°C(bothwitha67percentchance)(IPCC2021).Whencomparingwiththecurrent2°Crange1.8°Crange1.5°CrangeBlueareashowspathwayslimitingglobaltemperatureincreasetobelow2°Cwithabout66%chanceGreenareashowspathwayslimitingglobaltemperatureincreasetobelow1.5°Cwitha66%chanceby2100andminimum33%chanceoverthecourseofthecenturyCurrentpoliciesscenarioConditionalNDCcaseUnconditionalNDCcaseConditionalNDCcaseUnconditionalNDCcaseRemaininggaptostaywithin2°ClimitRemaininggaptostaywithin2°ClimitConditionalNDCscenarioUnconditionalNDCscenario15GtCO2e23GtCO2e20GtCO2eMedianestimateoflevelconsistentwith2°C:41GtCO2e(range:37–46)Medianestimateoflevelconsistentwith1.5°C:33GtCO2e(range:26–34)2010policiesscenarioGtCO2e12GtCO2e203040506070201520202025203034EmissionsGapReport2022:TheClosingWindowlevelsofannualglobalemissionsprovidedinchapter2,itisevidentthattheremainingcarbonbudgetfor1.5°Cwillbeexhaustedaroundtheendofthisdecade,unlesssignificantemissionreductionsarerapidlyachieved.Inthiscontext,thereisgrowingattentiontothepotentialcontributionsfromreducingemissionsfromshort-livedclimatepollutants,particularlymethaneemissions(seebox4.3).Table4.4GlobaltotalGHGemissionsin2030andtheestimatedemissionsgapunderdifferentscenariosScenarioGHGemissionsin2030(GtCO2e)Estimatedemissionsgapin2030(GtCO2e)MedianandrangeBelow2.0°CBelow1.8°CBelow1.5°CYear2010policies66(64–68)------Currentpolicies58(52–60)17(11–19)23(17–25)25(19–27)UnconditionalNDCs55(52–57)15(12–16)21(17–22)23(20–24)ConditionalNDCs52(49–54)12(8–14)18(14–20)20(16–22)Notes:Thegapnumbersandrangesarecalculatedbasedontheoriginalnumbers(withoutrounding),andthesemaydifferfromtheroundednumbersinthetable.NumbersareroundedtofullGtCO2e.GHGemissionshavebeenaggregatedwiththeIPCCAR6valuesofGWP100.Box4.3TheroleofrapidmethaneemissionreductionsInconjunctionwithCO2emissionreductions,rapidreductionsinemissionsfrommethaneandothershort-livedclimatepollutantsarecriticaltolowerpeakwarming,reducethelikelihoodofovershootanddecreasetherelianceonCO2removalmethodstolimitwarminglaterinthiscentury(IPCC2021;IPCC2022).Globalaveragemethaneconcentrationsintheatmospherehaveincreasedby162percentcomparedwithpre-industriallevels(WMO2021).Thisincreaseislargelydrivenbyanthropogenicsources,mainlyentericfermentationoflivestockandmanure,ricecultivation,waste,andfossilfuelexploration(Jacksonetal.2020).MethanehasasignificantlyhigherglobalwarmingpotentialthanCO2(80and83timeshigherover20yearsforbiogenicandfossilmethane,respectively),butamuchshorteratmosphericlifetime(about12years)(Forsteretal.2021).Reducingmethaneemissionsthereforeaffectswarmingratesinthenearterm,resultinginbenefitsforecosystemsandpeople,andenablinghumanstoadapttoclimatechange(UNEP2021).Estimatesoftheremainingglobalcarbonbudgetfor1.5°Cassumethatmethaneisstronglyreducedbyatleast30percent,40percentand50percentrelativeto2020levelsin2030,2040and2050respectively(IPCC2018).Everyca100Mtshortfallinmethanereductionscomparedwiththesebenchmarksdiminishesthealreadyverysmallcumulativeremainingcarbonbudgetbyaround450GtCO2(UNEP2021).ReducingemissionsfrommethaneisthereforeanessentialpartofParis-compatiblemitigationstrategies.The2021EmissionsGapReport(UNEP2021)foundthatglobalanthropogenicmethaneemissionscanbereducedbyaround30percentby2030throughimplementationofreadilyavailablemethane-targetedmeasures.Implementationofbothreadilyavailablemitigationmeasuresandbroaderstructuralandbehaviouralmeasurescouldreducemethaneemissionsbynearly50percentby2030(UNEP2021).Thelargestmethaneemissionreductionpotentialisavailableinthefossilfuelsector,followedbythewastesectorandtheagriculturesector.Roughlyonethirdofalltechnicalmitigationoptionspayforthemselves,withthelargestfractionintheoilandgassubsector(UNEPandClimateandCleanAirCoalition2021).Torealizethisopportunity,aGlobalMethanePledgewasannouncedatUnitedNationsClimateChangeConferenceoftheParties(COP)26,withtheaimtoreduceglobalanthropogenicmethaneemissionsbyatleast30percentby2030from2020levels.Sofar,122countrieshavejoinedthepledge,coveringhalfofglobalmethaneemissionsandnearlytwothirdsoftheglobaleconomy.LargemethaneemitterssuchasAustralia,China,India,Iran,andtheRussianFederationhaveyettojointhepledge,andeffortstotrackitsimplementationarestillintheprocessofbeingestablished.35EmissionsGapReport2022:TheClosingWindowLookingbeyond2030,figure4.3projectsglobalGHGemissionsoutto2050underdifferentscenariosandindicatestheassociatedglobalwarmingimplicationsoverthiscentury(seesection4.3).Thefigureillustratesthesubstantialincreaseintheemissionsgapfor2050ifclimateeffortsimpliedbycurrentpoliciesandNDCscenariosarecontinuedwithoutfurtherstrengthening.Implementationofnet-zerotargetsbyaroundmid-centurywouldsignificantlyreducethesegaps,buteventhen,gapswiththe1.5°Cscenarioswouldremain.Figure4.3ProjectionsofGHGemissionsunderdifferentscenariosto2050andindicationsofemissionsgapandglobalwarmingimplicationsoverthiscentury(mediansonly)4.4TemperatureimplicationsoftheemissionsgapNeithercurrentpoliciesnorNDCsputemissionsontracktolimitglobalwarmingtothetemperaturegoaloftheParisAgreement.Theextentoftheshortfallinambitionandimplementationcanalsobeexpressedintermsoftheestimatedresultingglobalwarming.Thesamemethodisappliedasinlastyear’sreport(seebox4.1inUNEP2021)toprojecttheemissionsimplicationsofcurrentpoliciesandNDCsfrom2030outto2100.TheglobalwarmingimplicationsoftheseemissionsaresubsequentlyassessedwithaclimatemodelthatcapturesthelatestclimatescienceassessmentanduncertaintiesoftheIPCCAR6(Smithetal.2018;Forsteretal.2021).ThisapproachallowsaccountingfortheuncertaintiesincurrentpoliciesandNDCs,thedegreetowhichclimateactioncontinuesbeyond2030,andtheuncertaintiesofhowtheclimaterespondstotheseemissions.Astable4.5andfigure4.3show,acontinuationofthelevelofclimatechangemitigationeffortsimpliedbycurrentunconditionalNDCsisestimatedtolimitwarmingoverthetwenty-firstcenturytoabout2.6°C(range:1.9–3.1°C)witha66percentchance,andwarmingisexpectedtoincreasefurtherafter2100asCO2emissionsarenotyetprojectedtoreachnet-zerolevels.ContinuingtheeffortsofconditionalNDCslowerstheseprojectionsbyaround0.2°Cto2.4°C(range:1.8–3.0°C)fora66percentchance.BecausecurrentpoliciesareinsufficienttomeeteventheunconditionalNDCs,acontinuationofcurrentpolicieswouldresultinabout0.2°Chigherestimatesof2.8°C(range:1.9–3.3°C)fora66percentchance.2°Cpathway1.5°CpathwayCurrentpoliciesscenario:2.8°C(66%chance)Estimatedglobalwarmingoverthetwenty-firstcenturyConditionalNDCscenario:2.4°C(66%chance)UnconditionalNDCscenario:2.6°C(66%chance)UnconditionalNDCscenariowithnet-zerotargets:1.8°C(66%chance)GtCO2eConditionalNDCscenariowithnet-zerotargets:1.8°C(66%chance)2010policiesscenarioAreaoffigure4.2Indicativeemissionsgapto2°Cand1.5°CpathwaysfortheconditionalNDCscenarioIndicativeemissionsgapto2°Cand1.5°CpathwaysfortheunconditionalNDCscenario2010030405060702015202020252030203520402045205036EmissionsGapReport2022:TheClosingWindowTable4.5Estimatedglobalwarmingimplicationsoverthecourseofthetwenty-firstcenturyunderdifferentscenariosandlikelihoodsScenarioEstimatedglobalwarmingoverthetwenty-firstcenturywithvariouschances(medianandrange)66%50%90%Currentpolicies2.8°C(range:1.9–3.3°C)2.6°C(range:1.7–3.0°C)3.3°C(range:2.3–3.9°C)UnconditionalNDCs2.6°C(range:1.9–3.1°C)2.4°C(range:1.7–2.9°C)3.1°C(range:2.3–3.7°C)ConditionalNDCs2.4°C(range:1.8–3.0°C)2.2°C(range:1.7–2.7°C)2.8(range:2.2–3.5°C)UnconditionalNDCsandlong-termnet-zerotargets1.8°C(range:1.8–2.1°C)1.7°C(range:1.7–1.9°C)2.1(range:2.0–2.5°C)ConditionalNDCsandlong-termnet-zerotargets1.8°C(range:1.7–1.9°C)1.7°C(range:1.6–1.8°C)2.0°C(range:2.0–2.3°C)6Thisestimateassumescountries’emissionsremainconstantoncetheirnet-zerotargetisachieved.Net-zerotargetsprovidefurtherinformationabouthowemissionsmightevolveafter2030,assumingthesetargetsareachieved.Thisyear’sreportconsidersnet-zerotargetsandannouncementsoftheG20membersandnineothercountrieswithatleast100MtCO2e/yearemissionsintheyear2018(seeappendixC,tableC.3).6Thisisanexpansionoftheanalysiscomparedwithlastyear,whereonlytargetsofG20memberswereconsidered.Achievingnet-zerotargetsinadditiontounconditionalNDCsresultsinprojectedglobalwarmingbeingheldto1.8°C(range:1.8–2.1°C)witha66percentchance.AssumingthatconditionalNDCsandpledgesareachievedandfollowedbynet-zerotargets,globalwarmingissimilarlyprojectedtobekeptto1.8°C(range:1.7–1.9°C)witha66percentchance.However,inmostcasesneithercurrentpoliciesnorNDCscurrentlytraceacrediblepathfrom2030towardstheachievementofnationalnet-zerotargets(seechapter3).Thesetemperatureprojectionsareslightlylowerthanthosereportedinthe2021EmissionsGapReport,becausethelatestNDCs,iffullyimplemented,lower2030emissionsestimatesbyabout0.7GtCO2e(seetable4.3)andbecausetheinclusionofmorecountriesinthenet-zeroanalysisfurtherlowersemissionsprojectionsoverthecourseofthecentury.Theeffectofthemethodologicalupdatesforthegapestimationsismuchlower,assimilarmethodologicalstepswerealreadyusedinthetemperatureprojectionsinearlierreports.Asillustratedabove,globalwarminglevelsonlygetclosetotheParisAgreementtemperaturegoalwhenfullimplementationofthehighlyuncertainnet-zerotargetsisassumedinadditiontotheNDCscenarios.Inaddition,thereisstillsignificantuncertaintyabouthowmuchwarmingwewillexperienceoverthecourseofthiscentury.Figure4.4showstherangeofglobalwarmingoutcomesunderthreescenarios(currentpolicies,unconditionalNDCsandunconditionalNDCscombinedwithnet-zerotargetsannouncedbycountries).Thefigureillustratesthattheriskoflevelsofwarmingclearlybeyond2°Cremains,evenundertheoptimisticassumptionofcurrentclimatepromisesexpressedinNDCsandnet-zerotargets.Currentpolicyprojectionsgloballyleadtoabouta20percentchanceofglobalwarmingexceeding3°C.IfmeasuresareputinplacethatensurecurrentNDCandnet-zerotargetswillbeachieved,theriskofexceeding3°Cisstronglyreduced.Takingmoreambitiousclimateactionsby2030isurgentlyneededandisofutmostimportanceforgettingtheworldontracktomeetingtheParisAgreement.37EmissionsGapReport2022:TheClosingWindowFigure4.4RangeofglobalwarmingprojectionsforthreekeyscenariosRangeofglobalwarmingoutcomesprojectedifcurrentpolicies(left),unconditionalNDCs(middle),andunconditionalNDCscombinedwithnet-zerotargetsannouncedbycountries(right)areachieved.??????????higherthan4°C3.0–4.0°C2.5–3.0°C2.0–2.5°C1.5–2.0°Cbelow1.5°C1%7%37%16%43%28%36%19%12%20%61%17%1%1%CurrentpoliciesUnconditionalNDCswithnet-zerotargetsUnconditionalNDCs38EmissionsGapReport2022:TheClosingWindowTransformationsneededtoachievetheParisAgreementinelectricitysupply,industry,buildingsandtransportationLeadauthors:NiklasHöhne(NewClimateInstitute,Germany),KellyLevin(BezosEarthFund,UnitedStatesofAmerica),JoyashreeRoy(AsianInstituteofTechnology,Thailand,andJadavpurUniversity,India)Contributingauthors:StephenNaimoli(WorldResourcesInstitute,UnitedStatesofAmerica),LouiseJeffery(NewClimateInstitute,Germany),JuditHecke(NewClimateInstitute,Germany),JoshuaMiller(InternationalCouncilonCleanTransportation,UnitedStatesofAmerica)55.1IntroductionInlightofthemagnitudeoftheemissionsgap,wide-ranging,large-scale,rapidandsystemictransformationisnownecessarytoachievethetemperaturegoaloftheParisAgreement.Toinformaction,theemissionsgapcanbetranslatedintosectoraltransformationsthatbendtheemissionstrajectoryby2030andleadtozeroemissionsinthelongerterm.Thechallengeisthatmultiplemajortransformationsmustbeinitiatedinthisdecade,simultaneouslyacrossallsystems.Transformationsofthewaywepowerourhomesandbusinesses;transportpeople,goodsandservices;growandconsumefood;buildourcities;andmanageourlands,areamongtherequiredshifts,whichneedtotakeplacewhilesimultaneouslyimprovingthelivelihoodsofthepoorestincludingwomenandminorities,andachievingtheSustainableDevelopmentGoals.Shiftsareneededfromphasingoutfossilfuels,toelectrifyingtransport,tostoppingdeforestation,toretrofittingbuildings(IntergovernmentalPanelonClimateChange[IPCC]2021).Theenergy,foodsecurityandcostoflivingcrisesfuelledbythewarinUkraine,withresultingenergysupplyshortagesandpricespikes,hasaddedanadditionalimperativetoact.Theconflicthighlightsthevulnerabilityofthecurrentglobalenergysystem,givenitsdependenceonfossilfuelsproducedfromaverysmallnumberofcountries.Intheshortterm,manygovernmentsseektosecurealternativestoRussianoilandgas;insomecases,coaluseisontherise.Theyalsoaimtoreducedemandforfossilfuelsthroughbehaviouralmeasures,energyefficiencyandfasterinvestmentsinrenewableenergy.Theneteffectontheclimateagendaandtransitiontorenewablesisstillunknown(ClimateActionTracker[CAT]2022b).Thischapterfocusesonthekeytransformationsrequiredinelectricitysupply,industry,buildingsandtransportation,whilechapter6focusesonthetransformationoffoodsystems,andchapter7ontransformingthefinancialsystem.Forthepurposesofthisreport,transformationisdefinedas“thereconfigurationofasystem,includingitscomponentpartsandtheinteractionsbetweentheseelements,suchthatitleadstotheformationofanewsystemthatproducesaqualitativelydifferentoutcome”(Boehmetal.2021).Foreachsector,theshiftsrequiredtolimitwarmingtowellbelow2°C,preferably1.5°C,includingbenchmarksfor2030and2050,areassessedandpressurepointstoaccelerateactionareidentified.Setsofactionsthataremostcriticaltoadvance,aswellassetsofactionsthatshouldbeavoidedgiventhebarrierstheycreatetoacceleratingchange,areoffered,whilehighlightingwhatvariousactorscandotoaccelerateaction.Thechapterpresentsaglobalagenda.Whilethelistofpriorityactionsisrelevantformostcountries,thechapterdoesnotofferrecommendationsatthenationalorregionallevel.Eachnationvariesinitsresources,capacityandemissionscomposition,andaccordingly,mitigationprioritiesandopportunitieswillvary.5.2Initiating,acceleratingandaccomplishingthetransformationtowardszeroemissionsAsignificantchallengeisthattherequiredtransformationshavetohappeninallsectorsandallcountriesinparallel.Thesequencingofactionscanvaryslightlybycountry,butastheremainingcarbonbudgetissolimitedthatthetransitionneedstobeinitiatedatanacceleratedpaceimmediately,everywhere.SectoraltransformationbasedontechnologicalchangecanfollowanS-curvepath,withlimitedchangeinitially,followedbysuddenexponentialgrowthandthenbysaturation(figure5.1,alsoseetheglossary).Withthecleargoaloftransformationtowardszeroemissions,therearethreebroadareasofactionsthatneedtobeundertakeninallemittingsectors:39EmissionsGapReport2022:TheClosingWindow●Avoidlock-in:Decisionsmadetodaycandefineemissionstrajectoriesfordecadestocome.Forexample,abuildinglasts80yearsonaverage;acoal-firedpowerplant45years;acementplant40years(Erickson,LazarusandTempest2015).Pipelinesandgasconnectionscreatedecade-longdependencies.Interventionscanalsolockinbehaviourandpoliciesthatreinforceincumbentsystems(Setoetal.2016).Actionstodaythatlockinahigh-energyandhigh-carbonfuturefordecadesmustbeavoided,includingavoidingnewfossilfuelinfrastructureforelectricityandindustry,car-centredcityorregionalplanning,andinefficientnewbuildings.Theseactionsdonotalwaysresultinimmediateemissionreductions,butarefundamentalforthelong-termtransition.●Initiatezero-carbontechnologicaladvancements:Zero-carbontechnologies,marketstructuresandplanningforajusttransformationtypicallyneedtobeadvancedinthebeginningofatransitionandarefundamentalforthelong-termtransition.Formanytransformations,itwillalsobenecessarytophaseoutincumbentfossilfuel-intensiveindustriesatthesametimeaszero-carbonalternativesarescaledup.Focusingonlyonthelatterisrisky,aszero-carbonalternativesmaynotentirelyreplacenewdemandorexistinginfrastructure.●Sustaindeepreductions:Forsectorsandtechnologiesthatareadvancedonthetransformationcurve,deepreductionsneedtobesustained,forexamplethroughfurtherexpansionofrenewables,electrificationofindustry,electricvehiclesandincreasingtheretrofitrateofbuildings.Figure5.1Selectedimportanttransformationinterventions(green)andthingstoavoid(red)groupedby“avoidinglock-in”anddifferentstagesofthetransformationS-curveNotes:Seesections5.5–5.8formoredetails.Theabilitytoachievethetransformationsnecessarydependsonhowaseriesofinterrelatedbarriersanddriversofprogressareapproached.Theseincludethefollowing(Boehmetal.2021,basedonOlssonetal.2004;GeelsandSchot2007;Chapinetal.2010;Folkeetal.2010;Westleyetal.2011;Levinetal.2012;O’BrienandSygna2013;Mooreetal.2014;Fewetal.2017;Pattersonetal.2017;Sterletal.2017;Hölscheretal.2018;Reyersetal.2018;Victor,GeelsandSharpe2019;InitiativeforClimateActionTransparency2020;Levinetal.2020;Ottoetal.2020;SharpeandLenton2021):●Institutions:Institutionsguidedecision-making,andtheirdesigncanstymieoraccelerateprogress.●Policiesandincentives:Strongregulationssuchasmandatesandstandards,andincentivessuchastaxbreaks,caneithersteertowardslow-carbonalternativesorperpetuateanunevenplayingfieldfornewentrants.ExpandrenewablesElectrifyindustryPrepareelectricitysystemforhighsharesofrenewablesAvoidnewfossilfuelinfrastructurePlanajusttransitionDevelopzeroemissionsteelExpandelectricvehiclesShiftmodesintransportReducetransportdemandMinimizeembodiedemissionsBuildonlyzero-emissionsbuildingsIncreaseretrofittingrateDevelopzero-emissionscementCreatecirculareconomyAvoidfossilfuelsubsidiesAvoidfalsedichotomiesAvoiddelayAvoidunsustainablesolutionsAvoidnewgasconnectionsforbuildingsAvoidinefficientbuildingsAvoidnewCO2intensiveindustrialinfrastructureAvoidlock-inSectoraltransformationTimePreparetoenabletransformationtozeroemissionsSustaindeepreductionsELECTRICITYSUPPLYINDUSTRYTRANSPORTATIONBUILDINGS40EmissionsGapReport2022:TheClosingWindow●Norms,cultureandbehaviour:Oncenormsandculturethatfavourlow-carbonalternativesareengrainedinbehaviour,changecantakeoffmorerapidlyandishardertoreverse.●Actors:Actorsintheirindividualcapacity(e.g.leaders,citizens,consumers,voters),professionalcapacity(e.g.townplanners,builders,teachers,investors)orcollectivecapacity(e.g.theyouthclimatemovement)cancatalyseandsustainchange.Atthesametime,entrenchedinterestspresentsignificantbarrierstoadvancingsystemschange.Involvingdiversesetsofchampionscanhelpshapedurableoutcomes.●Innovation:Advancesintechnology,practiceandapproachescanhelpleapfrogcurrentonesandhastenratesofdecarbonization(Boehmetal.2021).Theenablingenvironmentforinnovation,e.g.spendingonresearchanddevelopmentandintellectualpropertyrights,canbedesignedinawaythateitheradvancesaninnovationagendaorstymiesprogress.●Exogenousshocks/change:Conflicts,recessions,elections,etc.,createopeningsforadvancingchange,orclosedoorstomakingprogress.Preparingfortheseopeningscanhelpensurethattransformationalchangeiscatalysedratherthanstalled.5.3ElectricitysupplyAchievingthetemperaturegoaloftheParisAgreementrequiresrapidglobaltransformationofthepowersystem,whichisthesinglelargestsourceofenergy-relatedCO2emissionsglobally,covering42percentoftotalenergy-relatedemissions(InternationalEnergyAgency[IEA]2021c).Atleastfourshiftsneedtooccurtodecarbonizepower:(1)steeplyacceleratingtheshareofzero-carbonpower,(2)phasingoutunabatedcoalandgasgeneration,(3)adaptinggrid/storageanddemandmanagement,and(4)ensuringreliableenergyaccessforall(Boehmetal.2022).(1)Steeplyacceleratetheshareofzero-carbonpowerinelectricitygeneration:Theshareofzero-carbonpowerinelectricitygenerationshouldbebetween65and92percentby2030,andbetween98and100percentby2050(MonteithandMenon2020;IEA2021e;InternationalRenewableEnergyAgency[IRENA]2021;Boehmetal.2022).(2)Phaseoutunabatedcoalandgasgeneration:Theshareofgenerationfromunabatedcoalneedstofalltozeroornearzeroin2030,requiringthepaceofchangetoacceleratebyaboutsixtimesinthenexteightyears(IEA2021e;IRENA2021;Boehmetal.2022).Tobealignedwith1.5°C,theshareofgenerationfromunabatednaturalgasneedstofallto17percentin2030beforebeingphasedoutby2040–2050,requiringaturnaroundfromitscurrentupwardtrend(IEA2021b;IRENA2021;Boehmetal.2022).(3)Adaptgrid/storageanddemandmanagement:Adecarbonizedpowersystemrelyingprimarilyonrenewableswillrequiredifferentgridsystemsthanexisttoday.Flexibilitywillbekeyindecentralizedsupply,storageanddemand,giventhecharacteristicsofwindandsolar.(4)Ensurereliableenergyaccessforall:Currently,10percentoftheworld’spopulationhasnoaccesstoelectricityandover40percenthasunreliableaccess(Ayaburietal.2020;WorldBank2022).Ensuringuniversalenergyaccessmustbepartoftheshifttoaglobalcleanenergysystem.Agenericsetofimmediateactionsthatarenecessarytoinitiateandacceleratetheglobaltransformationoftheelectricitysector(table5.1)andrelatedactionsbydifferentgroupsofactors(table5.2)aresummarizedbelow.41EmissionsGapReport2022:TheClosingWindowTable5.1Actionsthataccelerateorhinderthetransformationoftheelectricitysector1Table5.1ActionsthataccelerateorhinderthetransformationoftheelectricitysectorELECTRICITYSECTORTRANSFORMATIONMOSTIMPORTANTACTIONSACTIONSTOAVOIDEXPANDRENEWABLES:Renewableenergyneedstobeexpandedasfastaspossible.Removingbarriersismostimportant,ascostsarenolongertheissueinmanygeographies.Thiscanbeachievedthroughpolicies,incentives,purchasesofgreenelectricity,removalofadministrativebarriers,anddirectinvestments(Falk,Gaffneyetal.2020;IEA2021e;Clarkeetal.2022).PLANAJUSTTRANSFORMATION:Thetransformationneedstobeplannedcarefullyinregionsthatarecurrentlydependentonfossilfuelextractionforjobsandpublicrevenue.Anticipatingthechangeandplanningforitseemsessential(Falk,Gaffneyetal.2020;IEA2021e).PREPAREELECTRICITYSYSTEMFORHIGHSHARESOFRENEWABLES:Thisincludesprovidingflexibleelectricitysupply,short-andlong-termstorage,adaptingthedistributiongrids,consideringvariableelectricitydemand,andadaptingtheelectricitymarkettoincentivizethis(Falk,Gaffneyetal.2020;IEA2021e;Clarkeetal.2022).AVOIDNEWFOSSILFUELINFRASTRUCTURE:Buildingnewfossilfuelinfrastructureneedstobeavoided,asitlocksinfossilfueldependencyandgreenhousegasemissionsfordecades,inparticularforcoalandgas(Falk,Gaffneyetal.2020;Clarkeetal.2022).AVOIDFOSSILFUELSUBSIDIES:Fossilfuelsub-sidiesarestillwidelyappliedandstandinthewayofthetransformation.Itisimportanttoeliminatethesesubsidiesinasociallyacceptablemannerandnottointroducenewones(Falk,Gaffneyetal.2020;Clarkeetal.2022).42EmissionsGapReport2022:TheClosingWindow2ELECTRICITYSECTORTRANSFORMATION–RECOMMENDATIONSBYACTORGROUP+Removefossilfuelsubsidiesinasociallyacceptablemanner:WhileallG20membershavepledgedtoremovefossilfuelsubsidies,allG20membersstillapplysomefossilfuelsubsidies.Duetotheenergycrisis,manyhavedecreasedtaxesonfossilfuels,whichisaformofnewfossilfuelsubsidies(Falk,Gaffneyetal.2020;CAT2022b;Clarkeetal.2022).+Removebarrierstotheexpansionofrenewables:Allowproductionforownuse,accelerateplanningandprovisionofsites,removebureaucratichurdles,regulategridaccessandconnection,andeducateworkers(Falk,Gaffneyetal.2020).+Stopexpansionoffossilfuelinfrastructure:Thisisnecessarytoavoidlock-inofcontinuedhighemissionsorexpandingstrandedassets(IEA2021e).Manycoalpowerplantsarestillplannedglobally(GlobalEnergyMonitoretal.2022),andthecurrentenergycrisishasledtoagoldrushfornewfossilgasinfrastructure(CAT2022b).+Planforajustfossilfuelphase-out:Allgovernmentsneedtoplanforfossilfuelphase-outwellaheadandinasociallyjustmanner(Falk,Gaffneyetal.2020).Governmentsshouldquantifyanyinternationalsupporttheyneed.+Adaptmarketrulesofelectricitysystemforhighsharesofrenewables:Adapttheelectricitymarkettocopewiththefundamentallydifferentsituationoflargesharesofelectricityonlybeingavailableundercertainweatherconditions(Falk,Gaffneyetal.2020).+Cooperateonandsupportajustfossilfuelphase-out:Nationalgovernmentsneedtocooperateonjustfossilfuelphase-outplans(IEA2021e).Donorgovernmentsandmultilateraldevelopmentbankscantargetsupportforjobs,skillsandinvestments(IEAetal.2022).SouthAfricaisanexample,whereasetofdonorsprovideUS$8.5billionforajusttransitionawayfromcoal(Mason,ShalalandRumney2021).Donorgovernmentsshouldalsofacilitateexpertexchanges,capacity-buildingandsupportforpolicyreforms,andleveragebothpublicandprivatefinance(IEAetal.2022).+Supportinternationalinitiativesonemissions-freeelectricityandpowersystemflexibilityandinterconnectionsolutions:Governmentsshouldinitiate,signandimplementinternationalinitiativesoncoalphase-out,theendoffossilfuelproductionandtheendoffinancingfossilfuelinfrastructure,andonscalingrenewableelectricity,includingenergystorage,smartgridsandinterconnectionefforts(IEAetal.2022).+Agreetohigherenergyperformancestandards:Inconsultationwithindustry,governmentscancooperateonhigherminimumenergyperformancestandardsforhighenergy-consumingappliances,coupledwithsupportforimplementationofsuchstandards.Thiscancutcostsandgrowthindemand(IEAetal.2022).+Set100percentrenewabletargets:Subnationalgovernmentscancreatedemandforrenewableelectricitybysetting100percentrenewabletargets(Falk,Gaffneyetal.2020).+Planforajustfossilfuelphase-out:Subnationalgovernmentsneedtoplanforfossilfuelphase-outwellaheadandinasociallyjustmanner(Falk,Gaffneyetal.2020).+Supporta100percentrenewableelectricityfuture:Businessesshouldpurchase100percentrenewablepowerwithhighqualitypowerpurchaseagreementsorwithownproduction(notthroughrenewableenergycredits),electrifytheirenergyend-use,andprovidedemandflexibility,on-sitestorage,trainingandskills(Falk,Gaffneyetal.2020;Dayetal.2022).+Engagewithordivestfromfossilfuelelectricityutilities:Investorsneedtotakeresponsibilityfortheirsharesandengagewithfossilfuelelectricityutilitiestoincentivizechange,ordivestfromtheseassets.+Donotinvestinorinsurenewfossilfuelinfrastructure:Investors,banksandinsurersshouldrefrainfrominvestingin,supportingorinsuringnewfossilfuelinfra-structure(Falk,Gaffneyetal.2020).+Purchase100percentrenewableelectricity:Citizenswiththeeconomicpowertodososhouldcreatedemandforrenewableenergybypurchasing100percentrenewablepowerfromhighqualityproviders(Falk,Gaffneyetal.2020).NATIONALGOVERNMENTSINTERNATIONALCOOPERATIONSUBNATIONALGOVERNMENTSBUSINESSESINVESTORS,PRIVATEANDDEVELOPMENTBANKSCITIZENSTable5.2Immediateactionstoacceleratethetransformationoftheelectricitysectorbyactorgroups43EmissionsGapReport2022:TheClosingWindow5.4IndustryTheindustrysectoristhelargestcontributortoglobalemissionswhendirectandindirectemissionsareincluded,andthesecond-largestcontributorwhenonlydirectemissionsareconsidered(IPCC2022).Todate,effortstodecreaseemissionshavemainlyfocusedonimprovedenergyefficiencyandapplicationofbestavailabletechnologies.Asmanyindustrialprocesseshavealreadyreachedmaximumtheoreticallyattainableenergyefficiency,thekeytransformationsneededtobringtheindustrysectortoaParis-compatiblepathwayinclude(1)electrifyingindustryandtransformproductionprocesses,using(2)newfuels,and(3)specificsolutionsforhard-to-abatesectors;(4)acceleratingmaterialefficiencyandscalingupenergyefficiencyeverywhere,and(5)promotecircularmaterialflow.(1)Electrifyindustry:TogetontrackfortheParisAgreement,theshareofelectricityinindustry’sfinalenergydemandmustincreaseto35percentin2030and50–55percentin2050(CAT2020).Theshareofelectricityreached28.5percentin2019,butdecreasedslightlyto28.4percentin2020(IEA2021b).(2)Reducedemandforanddecreasecarbonintensityofglobalcementandsteelproduction:Demandreduction,substitutionandcarbonmanagementarecrucialfordecarbonizingtheindustrialsector.Thecarbonintensityofglobalcementproductionneedstobereducedby40percentfrom2015levelsby2030,andatleast85–91percentby2050(CAT2020).Thecarbonintensityofglobalsteelproductionneedstobereducedby25–30percentfrom2015levelsby2030,and93–100percentby2050(CAT2020).(3)Growandintegrategreenhydrogenproductioncapacity:Thereisvastpotentialforgreenhydrogentohelpdecarbonizeseveralsectors,especiallythehard-to-abateenergy-intensiveindustrysectorsthatcannotuseelectricity.Greenhydrogenproductioncapacityneedstogrowto0.23–3.5Mt(25GWcumulativeelectrolysercapacity)by2026(inordertoachievecostsbelowUS$2/kg)andthenmassivelyscaleupto500–800Mt(2,630–20,000GWcumulativeelectrolysercapacity)by2050(UnitedNationsFrameworkConventiononClimateChange2021),upfromalmost0tonstoday(IEA2021d).(4)Accelerateandscaleupmaterialandenergyefficiency:Demandformaterialshasgrown2.5–3.5timesoverthepast25years(Bashmakovetal.2022).Materialprocessingandrisingdemandarethemaindriversofindustrialemissions.Basicmaterialsproductionleadstoincreasesinbothdirectandindirectemissions.Supplysideinterventionsincludechangingthematerialintensityoftheproductused.(5)Promotecircularmaterialflow:Recyclingofwastematerialshelpstoreduceemissions,butthegrowingcomplexityofproductdesignandfunctionalityincreasesthedemandformaterials.Therearestillhugegapsandregionalvariationsinrecycling.Theratesofrecyclingacrossvariousmetalsvariesfrom20to85percent,andtherecyclingrateofend-of-lifewastefromindustrialmaterialisverylowatca10percent(IPCC2022;TeskeandPregger2022).Agenericsetofimmediateactionsnecessarytoinitiateandacceleratetheglobaltransformationoftheindustrysectoraresummarizedintable5.3,andrelatedactionsbydifferentgroupsofactorsaresummarizedintable5.4.44EmissionsGapReport2022:TheClosingWindowTable5.3Actionsthataccelerateorhinderthetransformationoftheindustrysector3Table5.3ActionsthataccelerateorhinderthetransformationoftheindustrysectorINDUSTRYTRANSFORMATIONMOSTIMPORTANTACTIONSACTIONSTOAVOIDFULLDECARBONIZATIONOFINDUSTRIALPRODUCTION:Fulldecarbonizationneedstobeinitiatedtodaybyuseofelectricity,greenhydrogenandcarbonmanagementforheatsourcesandfeedstock;forcement,ironandsteel;andchemicalsandplastics(Rissmanetal.2020;Royetal.2021;Bashmakovetal.2022).REDUCEMATERIALWASTEANDRECIRCULATEMATERIALS:Costsandemissionscanbeloweredbyusingfewermaterialsandbyincreasingtheusablelifetimethroughappropriateinfrastructure,industrialparksandnetworks,policiesandexpertise(Falk,Gaffneyetal.2020;Rissmanetal.2020;Bashmakovetal.2022).REDUCEDEMANDANDENHANCEACCESSTOENERGY-EFFICIENT,MATERIAL-EFFICIENTANDCO2-NEUTRALMATERIALS:Accesstomaterial-efficientdesign,light-weightproducts,andproductswithlongerlifetimereducestotalproductdemandandmaterialsneeded.Promotionofsharingeconomyreducesthedemandforauto-mobilesandbuildings,andcanbefacilitatedbyincreaseddigitalizationwithstrategicpoliciestoavoidreboundindemand(Rissmanetal.2020;Bashmakovetal.2022;Creutzig,Royetal.2022).Materialusecanalsobereducedthroughprocesschangeandtechnologychoice.AVOIDNEWCO2-INTENSIVEINFRASTRUCTURE:Thepipelineoflong-lived,carbon-intensivenewindustrialinfrastructure(e.g.steel,cement,chemicals)needstobeavoidedbyincentivizingnewlow-carbonprocesses(Falk,Gaffneyetal.2020;Bashmakovetal.2022).AVOIDFOCUSONNARROWLYDEFINEDPOLICIES:Policiesthatsupportlinearproductionprocesseswhichgeneratemorewasteneedtobeavoidedandtobereplacedbysequential,cross-sectoralpolicieswhichhaveawideimpactonsocietalandenvironmentaldomains(Rissmanetal.2020;IPCC2022)45EmissionsGapReport2022:TheClosingWindowTable5.4Immediateactionstoacceleratethetransformationoftheindustrysectorbyactorgroups4INDUSTRYSECTORTRANSFORMATION–RECOMMENDATIONSBYACTORGROUP+Supportzero-carbonindustrialprocesses:Implementstrategic,well-designedpolicyandincentivestoaccelerateinnovation,technologydeploymentofcleanenergyandlow-carboninputmaterials,e.g.developmentofnew,CO2-freeprocessesorcarboncapture(Rissmanetal.2020).+Promotecircularmaterialflow:Incentivizetheuseofrecycledmaterials,reducedemandthroughmaterialefficiency(e.g.fostershifttopaperwhichuseslesspulp),substitutelow-carbonforhigh-carbonmaterials,andintroducecirculareconomymeasuressuchasimprovingproductlongevity,reusabilityandrecyclability(Millward-Hopkinsetal.2018;Rissmanetal.2020).+Promoteelectrification:Introducepoliciestoincentivizeelectrificationoftheindustrialprocessesthatcurrentlyusefossilfuels(Rissmanetal.2020).+Supportalternativecarbonpricingmechanisms:Implementcarbonpricingpoliciestoincentivizeindustryleadershipinlow-carbonaction,improveproductivityanddriveinnovation(Rissmanetal.2020;WorldBank2021).+Supportresearchandinnovation:Removebarrierstoandinvestinresearch,development,deploymentandinnovation,andsupportenergyefficiencyand/oremissionsstandards(Falk,Gaffneyetal.2020;Rissmanetal.2020;Bashmakovetal.2022).+Promotelow-carbonproducts:Ensurelabellingandgovernmentprocurementoflow-carbonproducts,informationdissemination,promotingrepairwork,datacollectionandimplementationofdisclosurerequirements,andincentivesforrecycling(Rissmanetal.2020;Bashmakovetal.2022).+Planajusttransformation:Preparenational-levelplansforsocialprotectiontostaygendersensitive,meetdevelopmentneedsoflow-andmiddle-incomecountries,andenhancesocialacceptanceofnewproductionsystemswiththeaimtoensureajusttransformationfordisplacedworkersandaffectedcommunities(Rissmanetal.2020).+Cooperateonzero-carbonbasicmaterials:Internationalcooperationandcoordinationmaybeparticularlyimportantinenablingchangeinemissions-intensiveandhighlytradedbasicmaterialsindustries(IPCC2022).Thiscanincludeprocurementcommitments,strategicdialogues,sharedlearningonpilotprojects,andstandardadoption(IEAetal.2022).Additionally,fundingwillneedtobesignificantlyincreasedtosupporttheindustrialtransition(IEAetal.2022).+Sharebestpractice:Thereneedstobesupportforlow-andmiddle-incomecountrieswhilemakingtheInternationalOrganizationforStandardizationmoreprogressive,helpinginthedevelopmentofstandardsandregulations,sharingtechnology,andaccountingtoreducewasteintheglobalsupplychain.Globaldecarbonizationeffortsneedtoacknowledgevariousstartingpointsandstagesofhumanandeconomicdevelopment(Rissmanetal.2020;Bashmakovetal.2022).+Cooperateonhydrogen:Internationalcooperationandcoordinationisimportanttodevelopamarketforhydrogenfromrenewablesources,withcoordinatedtargets,standards,andbilateralandmultilateralcooperationagreementsandblendedfinance(IEAetal.2022).+Regionalplanningandregulation:Reconsiderregionalspatialplanningandregulations,reformprocurementguidelines,explorecarbonpricinginstruments,engageinlabelling,alignregulationstofacilitateimplementation,andensureaccountabilityforemissions(Bashmakovetal.2022).+Cooperatewithvariousstakeholders:Mitigationactionsareimplementedatsubnationallevels,sosubnationalgovernmentsmustcooperatewithnationalgovernments,industryandcitizensinimplementingmitigationactions(IPCC2022).+Planandimplementzero-emissiontransformation:Companies,includingthoseoperatinginhard-to-abatesectors,needtoplantheiroperationstobecomezerocarbonandtoimplementtheseplans(Falk,Bergmarketal.2020;Royetal.2021).+Designlong-livedproducts:Industrialserviceprovidersshouldleadindesignoflong-livedrepairableproductsandhelpinthedigitizationoftheprocesses(Rissmanetal.2020;Bashmakovetal.2022;Creutzig,Royetal.2022).+Createcircularsupplychains:Createcircularandvalue-freesupplychainsthroughcollaborationwithsuppliersandcustomers(Falk,Gaffneyetal.2020).NATIONALGOVERNMENTSINTERNATIONALCOOPERATIONSUBNATIONALGOVERNMENTSBUSINESSES46EmissionsGapReport2022:TheClosingWindow5.5TransportationTransportationisthesecond-largestsourceofenergy-relatedCO2emissionsglobally,contributing25percentoftotalenergy-relatedCO2emissions(IEA2021c).Transformationofthetransportationsystemrequiresanumberofshifts:(1)ashifttolow-emittingmodesoftransport,(2)anaccelerationofthemovetozero-carboncarsandtrucks,and(3)preparationforthemovetozero-carbonaviationandshipping.Inaddition,carandplaneusebyfrequenttravellersshouldbeabated.Theseshiftsshouldbepromotedsimultaneously,andmanyactionscanaddressmorethanoneshift.(1)Shifttolow-emittingmodesoftransport:Asignificantshifttoloweremittingmodes,includingpublictransport,walkingandcycling,isrequiredalongsidetheelectrificationoftransportmodestoalignwithawell-below2°Cand1.5°Cpathway(InstituteforTransportationandDevelopmentPolicy[ITDP]andUniversityofCaliforniaDavis2021).Currently,privatelight-dutyvehiclesmakeup53.2percentofalltrips(asat2015,InternationalTransportForum2021).Thenumberoftripsmadebyprivatelight-dutyvehiclesneedstodecreaseby4–14percentbelowbusiness-as-usuallevelsby2030.Thenumberofkilometresofpublictransitper1,000inhabitantsmustbedoubledby2030,whilethenumberofkilometresofhigh-qualitybicyclelanesper1,000inhabitantsshouldbeincreasedfivefold(TransformativeUrbanMobilityInitiative2021;Boehmetal.2022).(2)Acceleratethemovetozero-carboncarsandtrucks:Light-dutyelectricvehiclesalesreached8.3percentoftotalsalesin2021(Irle2021).Thismustincreasetobetween35percentand95percentby2030,andreach100percentby2035,requiringanincreaseintherateofchangeby1.8to6timesinthenexteightyears(BloombergNewEnergyFinance[BloombergNEF]2018;ICCT2021;IEA2021e;IRENA2021;McKerracheretal.2022;Boehmetal.2022;CheungandO’Donovan2022).Heaviervehicles,includingbusesandmedium-andheavy-dutyvehicles(MHDVs),shouldalsobedecarbonized.Buseshaveproventobeasuccessstoryforvehicleelectrification,reachingahighof43percentofbussalesin2017,drivenlargelybydemandinChina(BloombergNEF2021).However,saleshaveslowedsincethen,fallingto39percentin2020,whereastheshareneedstoincreaseto60–100percentin2030and100percentin2050(ICCT2021;IEA2021e;IRENA2021;Boehmetal.2022;SenandMiller2022).Zero-carbonoptionsforMHDVshaveonlyjustbeguntohitthemarket,reaching0.2percentofsalesin2020(BloombergNEF2021).ElectricandfuelcellMHDVsarerequiredtoreachbetween5and45percentofsalesin2030,and100percentbetween2040and2050(IEA2021e;IRENA2021;Boehmetal.2022;SenandMiller2022;Xie,DallmannandMuncrief2022).(3)Transformationtozero-carbonaviationandshipping:Sustainableaviationfuelsarerequiredtomeet13–18percentofaviationfuelneedsin2030and78–100percentin2050,requiringasignificantincreaseinuptake(IEA2021e;UniversityMaritimeAdvisoryServices2021;Boehmetal.2022;Graveretal.2022).Maritimeshippingfacessimilarproblems,withadearthofoptionsfordecarbonizationoutsidezero-emissionsfuels.Vesselshavenotyetbeguntousezero-emissionsshippingfuels,butzero-emissionsfuelswillneedtomeet5–17percentofmaritimeshippingneedsin2030and84–93percentby2050(IEA2021e;Boehmetal.2022).INDUSTRYSECTORTRANSFORMATION–RECOMMENDATIONSBYACTORGROUP+Engagewithordivestfromemissions-intensiveindustry:Investorscanactivelyengagewiththecompaniestheyownsharesoftomovethemtowardszeroemissions.Ifthisisnotsuccessful,theyshoulddivest(Creutzig,Royetal.2022).+Investinlow-carbonenergyandprocesstechnologies:Investorsandbanksshouldenableinvestmentinlow-carbonenergyandprocesstechnologiesandnovelchemistries.Investmentstosignificantlyreducecostsofnewtechnologiesandinnovationswillbeessentialforuptakebydevelopingcountries(Rissmanetal.2020).+Driveawarenessofclimaterisk:Despitevariousregulatoryandvoluntaryinitiatives,climate-relatedfinancialrisksremaingrosslyunderestimated.Banksandfinancialinstitutionscandriveawarenessandactions(Roy2021).+Consumesustainably:Userscanpracticesustainableconsumptionbyintensiveuseoflonger-livedrepairableproductsandavoidingshortlifespanproducts(Creutzig,Royetal.2022).+Lobby:Citizenscanjoinvariouslobbygroupstoadvocatenewnarrativestoinfluencesocialnorms,corporateadvertisementsandpublicpolicy.Professionalscanengageinmonitoring,developandcommunicateembodiedemissions(Creutzig,Royetal.2022).INVESTORS,PRIVATEANDDEVELOPMENTBANKSCITIZENS47EmissionsGapReport2022:TheClosingWindowAgenericsetofimmediateactionsthatarenecessarytoinitiateandacceleratetheglobaltransformationofthetransportsector(table5.5)andrelatedactionsbydifferentgroupsofactors(table5.6)aresummarizedbelow.Table5.5ActionsthataccelerateorhinderthetransformationofthetransportsectorTable5.6Immediateactionstoacceleratethetransformationofthetransportsectorbyactorgroups6Table5.5ActionsthataccelerateorhinderthetransformationofthetransportsectorTRANSPORTSECTORTRANSFORMATIONMOSTIMPORTANTACTIONSACTIONSTOAVOIDAVOID:Adoptintegratedland-useplanningtoavoidtransportneedbyprioritizingmovingpeopleandimprovingtransportaccessoverprivatecars.SHIFT:Makeinvestmentsin,establishpricingforandshifttowardslow-carbonmodesoftransport(trains,publictransport,cycling).IMPROVE:Completetransformationtozero-emissionsvehicletechnologiesforcars,vans,busesandtrucks,andforshipsandplanesincombinationwithzero-emissionsfuels.AVOIDUNSUSTAINABLESOLUTIONS:Avoidsupportingtechnologiesthatareincompatiblewithdeepdecarbonization,suchasnaturalgasinroadtransportandbiofuelsthatleadtodeforestationand/orcompetewithfoodproduction(Searchingeretal.2019).AVOIDDELAY:Itisimportantnottodelaytransportelectrificationuntiltheelectricitygridsarecleaner(Senetal.2021).AVOIDFALSEDICHOTOMIES:A1.5°Cpathwayrequiresbothelectrificationoftransportationandinvestmentinmorecompactcities(publictransit,walking,biking).7TRANSPORTSECTORTRANSFORMATION–RECOMMENDATIONSBYACTORGROUP+Setmandatestoswitchtozero-emissionsroadvehiclesbyspecificdates:Governments,regionsandcitiescansetregulationstoshifttowards100percentzero-emissionsvehiclesalesfornewbusesby2030,carsandvansby2035,andtrucksby2040(Halletal.2021;SenandMiller2022).Thesecanbecomplementedwithdemand-sideactiontoaccelerateuptake.SettingCO2standardsformanufacturerswillalsohelpacceleratethetransition.+Regulateandincentivizezero-carbonfuelsforaviation:Developregulationsandsupportfiscalpoliciestotransitionto100percentlow-carbonfuelsforaviationandmarinesectorsby2050,includingadvancedbiofuels,greenhydrogen,renewableelectricity,ande-fuelsgeneratedwithadditionalrenewableelectricity(Graveretal.2022;PavlenkoandO’Malley2022).+Adjusttaxation/pricingschemes:Alignpricing,taxesandfeesonvehiclesales(Wappelhorst2022),ownership,fuelsandtransportationactivitytosupportenvironmentalobjectives(technologychanges,modeshift,avoidedtravel)(Jaramilloetal.2022).+Investinzero-emissionstransportinfrastructure:Aligntransportationinfrastructurefundingtoinvestinhighqualityzero-emissionspublictransport,rail,walking/bicyclingfacilities,ships,aeroplanesandvehicle-charginginfrastructure(Minjaresetal.2021;Jaramilloetal.2022;Ragonetal.2022).NATIONALGOVERNMENTS48EmissionsGapReport2022:TheClosingWindowTRANSPORTSECTORTRANSFORMATION–RECOMMENDATIONSBYACTORGROUP+Cooperateonfinancingandpolicydevelopment:Enhancetheofferofinternationalfinancialandtechnicalassistancetosupportmoreambitioustransformationsandpolicydevelopmentinemergingmarketsanddevelopingeconomies(Khanetal.2022).Inaddition,governmentsshouldexchangebestpracticeandimproverulesgoverningtradeofvehicles(IEAetal.2022).+Coordinationontargetsettingandstandards:Governmentsandvehiclemanufacturerscanagreeontargetsforachievingnet-zerovehiclesales,harmonizedstandards,andscalinguprelatedinfrastructure(IEAetal.2022).+Planinfrastructureandsupportingpoliciestoreducetraveldemand:Initiateorintensifysystemicplanningandinfrastructurechangesthatreducetransportdemand(ITDPandUniversityofCaliforniaDavis2021;Creutzig,Niamiretal.2022;Creutzig,Royetal.2022;Jaramilloetal.2022).Thiscanincludethedevelopmentoflow-andzero-emissionzonestoaccelerateshiftstozero-emissionsvehiclesincities(Cui,GodeandWappelhorst2021).+Planinfrastructureandsupportingpoliciesforzero-emissionsvehicles:Investinsmart-charginginfrastructureandsupportregulationfortheaccelerationofrapiddeployment.+Adjusttaxation/pricingschemes:Regionalandlocalgovernmentshouldalignonlocalpricing(Basmaetal.2022),taxesandfeesoncarownership,parkingandcaraccesstocities,andpublictransporttosupporttransformation(technologychanges,modeshift,avoidedtravel)(Jaramilloetal.2022).+Worktowardszero-emissionstransport:Businessfleetownersandoperators,andsharedmobilityplatforms,canworktowards100percentzero-emissionscars(ClimateGroup2022),vans,trucks,buses,vessels(Martin2021)andaeroplanefleets(seeactionEinAustriaetal.2022).+Reducetravelinoperations:Thisespeciallyappliestolong-haulflights,andcanincludethepromotionoftelecommuting,andprovisionofworkplacechargingofelectricvehicles.INTERNATIONALCOOPERATIONSUBNATIONALGOVERNMENTSBUSINESSES+Investinzero-emissionstransportinfrastructure:Investintransitandactivetransportinfrastructure(Jaramilloetal.2022).+Supportzero-emissionsvehicles,vesselsandplanes:Supportanacceleratedtransitiontozero-emissionsvehiclesbyproactiveengagementwithinvestees,encouragingalltheirholdingstodecarbonizetheirfleets,bymakingcapitalandfinancialproductsavailableforconsumers,businessesandcharginginfrastructuremanufacturers(seeactionsFandGinAustriaetal.2022).+Adoptactivemobilitypractices:Optforwalkingandcyclingwhereabilityanddistanceallows,anduseteleworkingortelecommutinginothercases(Creutzig,Royetal.2022).+Usepublictransit:Optforpublictransitsuchas(ideallyzero-emissions)busesandtrainsforcommutingwhereavailable,andwhenactivemodesoftransportarenotpractical.+Usezero-emissionsvehicles:Choosezero-emissionsvehicleswhenpurchasing,leasingorrenting(wherepossible).+Avoidlong-haulflights:Avoidtheuseofprivatejetsandlimitlongflightswheneveralternativesexist,suchastrainsorelectricvehicles(Creutzig,Royetal.2022).INVESTORS,PRIVATEANDDEVELOPMENTBANKSCITIZENS49EmissionsGapReport2022:TheClosingWindow5.6BuildingsDirectemissionsthroughbuildingoperationsarerelativelysmallcomparedtoothersectorsandareestimatedat5percentofglobalgreenhousegasemissions,butthisnumberincreasesto17percentwhenaccountingforindirectemissionsfromelectricityandheatconsumption(IPCC2022).Whiledirectemissionshaveremainedrelativelystableat3gigatonsofCO2peryear,indirectemissionshavealmostdoubledsince1990(IEA2020).Todecreaseemissionsinthebuildingsector,fourmajorshiftsarenecessary:(1)excessfloorareamustbeminimized,(2)energyintensitymustbereduced,(3)theemissionsintensityofenergyusemustdecline,and(4)embodiedemissionsfromconstructionmustbereduced(Boehmetal.2022).(1)Reduceexcessfloorarea:Energyuseandemissionsfromspaceandwaterheatingandcoolingaredirectlylinkedtothetotalamountoffloorareathatundergoesactivethermalcontrol.Furthermore,thegreatertheextentofnewfloorareathatisconstructed,themorematerialsarerequired,andthehigheraretheembodiedemissions.Theamountoffloorareausedperpersonvastlydiffersacrosscountries,butalsowithincountries.Minimizingtheamountoffloorareawhichiswellabovetheareanecessarytomeetbasicneeds,canhavealargeeffectonemissionsinthesector.(2)Reduceenergyintensityofbuildings:Theenergythatisusedforheating,coolingandappliancespersquaremetreoffloorarea,needstodecreasegloballyby10–30percentincommercialbuildingsand20–30percentinresidentialbuildings,relativeto2015levels,by2030(CAT2020).Globalaverageenergyintensityinbuildingsreducedby19percentbetween2000and2015,butthereductionhasslowedinrecentyears,withonlyanadditional2percentbetween2015and2019(Boehmetal.2022).(3)Reduceemissionsintensityofenergyuseinbuildings:Emissionsintensity,ortheamountofCO2emittedperfloorarea,isrelatedtoenergyintensity,butaddsthedecarbonizationfactor,meaningthataswitchfromfossilfuelstoelectricpower(sourcedfromrenewableenergy)isneeded.Inbuildings,thisentailsinstallingandreplacingcookingandheatingdeviceswithcleanertechnologies,suchasheatpumpsinsteadofoilorgasheating,ordistrictheatingindenseurbanareas(CAT2020).Emissionsintensityinbuildingsneedsbereducedby45–65percentforresidentialbuildingsand65–75percentforcommercialbuildingscomparedto2015levelsby2030,and95–100percentby2050(CAT2020).Althoughemissionsintensityhasdecreasedsteadily,thepaceneedstobeacceleratedtomeetthesetargets(Boehmetal.2022).(4)Reduceemissionsfromconstruction:Theproductionofmaterialssuchassteel,cementandconcretetoconstructbuildingsisahighlyenergy-andemissions-intensiveprocess.Whilemeasurestoreducetheemissionsintensityofthesematerialsshouldbepursued(seesectiononindustryabove),furtherreductionscanbeachievedbymoreefficientuseofthesematerials.Thiscanincludereconstructingexistingbuildings(ratherthandemolitionandnewconstruction),minimizingthevolumeofmaterialsrequiredandsubstitutingalternativeconstructionmaterials(EnergyTransitionsCommission2019).Integratedplanninganddesigncanbeusedtominimizeenergydemandthroughoutthebuildingconstructionphase,includingtransportandon-siteenergyuse.Furnishingtheinteriorofbuildingscanalsobeenergyintensive,withcirculareconomyprinciplesprovidingopportunitiesforlifecycleemissionreductions.Agenericsetofimmediateactionsthatarenecessarytoinitiateandacceleratetheglobaltransformationofthebuildingssector(table5.7)andrelatedactionsbydifferentgroupsofactors(table5.8)aresummarizedbelow.50EmissionsGapReport2022:TheClosingWindowTable5.7Actionsthataccelerateorhinderthetransformationofthebuildingssector9Table5.7ActionsthataccelerateorhinderthetransformationofthebuildingssectorBUILDINGSSECTORTRANSFORMATIONMOSTIMPORTANTACTIONSACTIONSTOAVOIDEFFICIENTBUILDINGSHELL:Optimizebuildingshellstominimizetheneedforactiveheatingandcooling.SCALEUPZERO-EMISSIONSHEATINGANDCOOLINGTECHNOLOGY:Highlyefficientairconditionersandheatpumpswithouthydrofluoro-carbonscanbepoweredbyrenewables,eitheron-siteorsuppliedoff-sitethroughelectricity.ALLNEWBUILDINGSSHOULDBEZEROCARBONINOPERATION:Newbuildingsshouldbedesignedandconstructedsothattheyarezerocarboninoperation,withaminimalenergydemandthatismetthroughzero-carbonsources(IEA2021e).MINIMIZEEMBODIEDEMISSIONS:Emissionsfromconstructionmaterialsshouldbeminimizedbyreducingtheemissionsintensityofsteelandcementproductionandsubstitutinglowercarbonmaterials,includingrecycledmaterials,wherepossible.INCREASERETROFITTINGRATE:2.5–3.5percentofbuildingsneedtoberetrofittedeveryyear,butrecentratesarebelow1percentperyear(IEA2021a).AVOIDINEFFICIENTBUILDINGS:Duetothelonglifetimeofbuildings,thelock-ineffectofinefficientnewbuildingsissignificantandcurrentlypotentiallyincentivizedbylowambitionornobuildingcodes(Cabezaetal.2022).AVOIDNEWFOSSILGASCONNECTIONS:Newgasconnectionsshouldbeavoidedtonotcreatealock-in,whichwouldlastdecades.Improvedinsulationandelectricheatingandcoolingcanreducefossilgasdemand.PHASEOUTFOSSILFUELSUBSIDIES:Severalcountriessubsidizefossilfueluseinbuildings,directlyorindirectly.51EmissionsGapReport2022:TheClosingWindowTable5.8Recommendationsfromimmediateactionstoacceleratethetransformationofthebuildingssectorbyactorgroups10BUILDINGSSECTORTRANSFORMATION–RECOMMENDATIONSBYACTORGROUP+Regulatetowardszero-carbonbuildingstock:Requireallnewbuildingstobezerocarboninoperationandintroduceminimumenergyperformancestandardsforexistingbuildingstoincreaseretrofitrates,bothaccompaniedbyacomprehensiveenforcementstrategy(CAT2022a).Buildingscodescanbeusedtoacceleratethetransitiontousinglow-carbonbuildingmaterialsforconstruction,andinlimitingemissionsduringtheend-of-lifephaseofabuilding.Settingrequirementstocalculateandmonitortheseembodiedemissionsisanimportantfirststep(Jordanetal.2020).+Incentivizezero-carbonbuildingstock:Modifycoststructuresinfavourofzero-carbonoptionsthroughtaxesandsubsidies,provideincentivesfor‘bestinclass’technologiesandpractices,improveaccesstofinance,andaddressthelandlord-tenantdilemma(CAT2022a).+Facilitatezero-carbonbuildingstock:Ensureanappropriatelyskilledworkforceandincreaseinstitutionalcapacityforenforcementandawareness-raising(CAT2022a).+Provideaccessandfavourableconditionstofinance:Support,de-riskorguaranteetheupfrontinvestmentsrequiredtoachieveazero-carbonbuildingstock(GlobalABCandUNEP2022).+Supportskillsandknowledgegrowth:Expandthemassivelyneededskillstrainingandknowledgeexchange(GlobalABCandUNEP2022).+Implementzero-emissionsbuildingstockplans:Subnationalgovernmentsinparticularcitiesshouldplanandimplementhowtoarriveatan100percentzero-emissionsbuildingstock(Burrowsetal.2021).Particularlyimportantisthatthedesignofanynewconstructionisfossilfuelfree,andthepresenceofavisiontorapidlyreduceembodiedemissions.+Integratelowemissionsrequirementsinurbanplanning:Thisincludeszoningandparks(Jordanetal.2020).+Addrequirementsontopofnationalrequirements:Strongerrequirementsatsubnationallevelcanacceleratethetransformation(Falk,Gaffneyetal.2020).Severalexamplesexistwhere,forexample,citiesaddrenewableobligationsorlow/nointerestloansforlow-incomehouseholdsthatarenotrequiredatthenationallevel(CAT2022a).+Constructionandbuildingmaterialcompaniesreviewbusinessmodels:Makeandimplementzero-emissionsplanswithzero-carbonbuildingmaterialsifthebusinessmodelreliesoncarbonintensiverawmaterialsandhighenergybuildings(Falk,Gaffneyetal.2020).+Achievezero-carbonownedorrentedbuildingstock:Buildingownersshouldmaketheirbuildingstockzerocarbonwithoutoverburdeningtenants.Companiesthatownorrentbuildingsfortheiroperation,suchasoffices,shops,warehousesandfactories,shoulddothesame(Falk,Gaffneyetal.2020;WorldEconomicForum2021).NATIONALGOVERNMENTSINTERNATIONALCOOPERATIONSUBNATIONALGOVERNMENTSBUSINESSES+Adjuststrategyandinvestmentcriteriaforzero-carbonbuildingstock:Reviewstrategiesandaligninvestmentcriteriawithazero-carbonbuildingstock.Thisincludesthehighneedforlong-term,low-interestloansforzero-carbonbuildingswiththeirhigherupfrontinvestmentandloweroperatingcosts.+Supportbuildingretrofits:Financialinstitutions,inparticularbanks,shouldactivelysupportbuildingretrofitswithfavourableconditions.+Retrofit:Privatehomeownersshouldretrofittheirbuildingstobecomezerocarbon,whererelevant.+Tenantschallengelandlords:Tenantsshouldactivelyapproachtheirlandlordsandaskforzero-carbonbuildingsandnecessaryretrofits.+Adoptenergy-savingbehaviour:Citizensshouldsaveenergybychoosingdesiredinsidetemperaturesthatdonotgreatlydifferfromoutsidetemperatures,switchingoffunnecessarylightsandbeingmindfulwhenusingappliances(Creutzig,Royetal.2022).INVESTORS,PRIVATEANDDEVELOPMENTBANKSCITIZENS52EmissionsGapReport2022:TheClosingWindowTransformingfoodsystemsLeadauthors:AlineMosnier(SustainableDevelopmentSolutionsNetwork,France),MarcoSpringmann(UniversityofOxford,UnitedKingdom),ShenggenFan(ChinaAgriculturalUniversity,China)Contributingauthors:BruceCampbell(Clim-EATandUniversityofCopenhagen,Denmark),HelenHarwatt(ChathamHouse,UnitedKingdom),JuliaRochaRomero(UNEP-CCC,Denmark),WeiZhang(CGIARandInternationalFoodPolicyResearchInstitute[IFPRI],UnitedStatesofAmerica)66.1IntroductionFoodsystemsaremajorcontributorstoclimatechangeandotherenvironmentalproblems,suchasland-usechangeandbiodiversityloss,depletionoffreshwaterresources,andpollutionofaquaticandterrestrialecosystemsthroughnitrogenandphosphorusrun-offfromfertilizerandmanureapplication(CordellandWhite2014;Crippaetal.2021;DiazandRosenberg2008;Foleyetal.2005;Newboldetal.2015;RobertsonandVitousek2009;ShiklomanovandRodda2004;IntergovernmentalPanelonClimateChange[IPCC]2019;Wadaetal.2010;Willettetal.2019).Ifcurrenttrendscontinue,theenvironmentalpressuresonfoodsystemsarelikelytointensify(Jalavaetal.2014;TilmanandClark2014;Davisetal.2016;Springmannetal.2016;Springmann,Clarketal.2018).KeytargetsofseveralSustainableDevelopmentGoals(SDGs)areprojectedtobeatrisk(Springmann,Clarketal.2018;Springmannetal.2020),andthegreenhousegas(GHG)emissionsfromfoodsystemscould,ontheirown,precludeachievingtheParisAgreementgoaloflimitingglobalwarmingtobelow2°C,aimingfor1.5°C(Clarketal.2020).Transformingfoodsystemsisthereforeimperativeforavoidingdangerouslevelsofclimatechangeandotherenvironmentalproblems.Moreover,transformingfoodsystemsisnotonlyimportantforaddressingclimatechangeandenvironmentaldegradation,butalsoessentialforensuringhealthydietsandfoodsecurityforall.Currently,imbalanceddietsthatarelowinfruits,vegetables,nutsandwholegrainsandhighinredandprocessedmeatarealeadinghealthburdeninmostregionsandareresponsibleformorethanoneinfiveprematuredeathsglobally(GBD2017DietCollaborators2019;Springmann,Mozaffarianetal.2021).Inaddition,about2billionpeopleareoverweightandobese,and2billionhavenutritionaldeficiencies,whileabout800millionarestillsufferingfromhungerduetopovertyandpoorlydevelopedfoodsystems(FoodandAgricultureOrganizationoftheUnitedNations[FAO]etal.2020).Asthedietarytransitiontowardsmoreprocessedandhigh-valueproductscontinuesinmanyregionsoftheworld,thesedietaryhealthrisksareexpectedtoworsen(Springmannetal.2016;Springmann,Wiebeetal.2018).Atthesametime,manyoftheworld’spoorcannotaffordtopayforhealthyandsustainablediets(FAOetal.2020;Springmann,Clarketal.2021),andtheongoingcrisescausedbyCOVID-19,thewarinUkraine,andwidespreadextremeclimateeventsarefurtherexacerbatingthissituationbydisruptingfoodsystemsandincreasingthecostsoffoods(Guénette,KoseandSugawara2022;OrganisationforEconomicCo-operationandDevelopment[OECD]2020;OgundejiandOkolie2022)(seebox6.1).Adoptingafoodsystemslenscanhelpinidentifyingthesynergiesandtrade-offsacrossthevariousinterconnectedenvironmental,healthandeconomicimpacts.Comparedtothetraditionalcategorizationofagriculture,forestryandotherlanduse(AFOLU),foodsystemsincludepre-andpost-productionprocesses,whicharerelatedtothetransportation,industrialactivities,storageandconsumptionoffood(IPCC2019;Rosenzweigetal.2020).Theinclusionofseveralsectorsmakesthecomputationoffoodsystememissionsmoredifficultandincreasestheriskofdoublecountingwhensummedwithandcomparedtoindividualsectors(figure6.1).However,havingafoodsystemsapproachthatexplicitlyconnectsthesupplyanddemandsidesandalltheactorsofthefoodsupplychainhasmanyadvantages.Itensuresthatclimatechangemitigationstrategiesarecompatiblewithfoodsecurity,andfacilitatesthedesignofintegratedadaptationandmitigationpolicies,includingtheirtrade-offsandsynergies(Rosenzweigetal.2020).Thisisparticularlyimportantinthecurrentcontextinwhichmultiplecrisesimpactthesupplyanddemandoffood.53EmissionsGapReport2022:TheClosingWindowThischapterpresentstheneeds,currentstateandoptionsforacceleratingafoodsystemtransformation.ItfocusesonGHGemissionsandclimatechange,butalsodiscussesimportantsynergiesandtrade-offswiththeenvironmental,health,andeconomic/equitydimensionsthroughoutthechapter.Thechapterwillpresentanddiscusstransformativesolutionsthatcandecreaseemissionsinthesupplyanddemandsideoffoodsystemsalongwithexamplesofinitiativesalreadyinplaceinvariouspartsoftheworld.ItwillalsodiscusshowfurtheractionscanbeacceleratedtoensurethatfoodsystemscontributetheirsharetofulfillingthegoalsoftheParisAgreement.Box6.1EquityandjusticeasvitalcomponentstoacceleratetransformationsoffoodsystemsAlthoughanyclimatestabilizationpathwayrequiresasubstantialreductioninemissionsfromfoodsystems,suchmitigationeffortsmustnotcomeattheexpenseofthehealthandlivelihoodsoflow-incomepopulations.Ataper-personlevel,therichest10percentoftheworld’spopulationproducesthehighestemissions,whilethepoorestproducetheleastemissionsandsufferthehighestconsequencesofclimatechangeduetotheirsocioeconomicstatusandreducedadaptivecapacities.In2021,approximately828millionpeoplewereaffectedbyhungerglobally,andthisfigureisestimatedtocontinueincreasingwiththeinstabilitycausedbyCOVID-19andthewarinUkraine.Thecurrentriseininflationandenergypricesaddsfurtherpressuretotheworld’sfoodsupplychain.Theseadverseimpactsconcerneveryone,buttheyareespeciallyfeltbythepoorestandthemostvulnerableinsociety,themajorityofwhomarewomen.Betterdistributionoffoodandmoreefficientuseofresourceisessentialtofightfoodinsecurityandmalnutritionwithinthedecade(FAOetal.2022).Reducingtheuseofmuchoftheworld'sgrainproductiontofeedanimalsandproducingmorefoodfordirecthumanconsumptioncansignificantlycontributetothisobjective(IPCC2022a).Inmosthighandmiddle-incomecountries,healthierandmoresustainabledietscanbecheaperthancurrentdiets,butinmanylow-incomecountries,theyarehigherincostthantheprevalentstarch-baseddiets(FAOetal.2020;Springmann,Clarketal.2021).Makinghealthyandsustainabledietsaffordableforallispossible,butwillrequirededicatedfoodsysteminterventionsinlow-incomesettings(Springmann,Clarketal.2021).Povertyalleviationremainsaprimegoaloflow-incomecountries,andagriculturaldevelopmentwillremainakeypartoftheirdevelopmentstrategies,withclimateactionsmorefocusedonadaptationthanmitigation.Climate-resilientdevelopmentinAfrica’sruralareas,ifitistotackleentrenchedchronicpoverty,willneedtobetransformational,withelementsoffarmconsolidation,irrigationdevelopment,improvedfertilizerusage,increasedmarketaccessandenhancedsocialsafetynets,amongotherelements(Orretal.2013;Beegle,CoudouelandMonsalve2018;Leforeetal.2019;Giller2022).Someoftheexpectedchangescanproducemitigationco-benefits,butinothercasesfoodsystememissionsarelikelytorise(Springmann,Wiebeetal.2018).Animportantobjectiveisthereforetoensurethatruraltransformationisplacedonalowemissionstrajectory.54EmissionsGapReport2022:TheClosingWindowFigure6.1ClassificationoffoodsystemsemissionsandthedifferencetostandardemissionscategoriesoftheIPCCNotes:TheIPCCcategoriesincludedinfoodsystemsareshownwithinthefadedgreysquare.ThisfigureshowsthemaindifferencesandoverlapswiththemoretraditionalIPCCcategoryofAFOLU(Crippaetal.2021;IPCC2019).ForallofficialIPCCcategories,onlypartsareincludedinfoodsystems.Althoughsomeagriculturalproductionisdedicatedtonon-fooduses,non-foodcropsonlyrepresent2percentoftheemissions,somostofagriculturalproductionisincludedinfoodsystems.Fromthecategorylanduse,land-usechangeandforestry(LULUCF),weonlyincludeemissionsfromlanduseandland-usechangewithinfoodsystems.Thus,emissionsand/orsequestrationinremainingforestlandareexcludedfromfoodsystems.WefollowedFAO’sdefinitionforthecategoriesenergy,industrialprocessesandproductuse(IPPU),andwaste(Tubielloetal.2021).6.2TransformationneedsandpotentialThefoodsystemiscurrentlyresponsibleforaboutathirdoftotalGHGemissionsor18(range:14–22)gigatonsofCO2equivalent(GtCO2e)peryear(IPCC2019;Crippaetal.2021).Thelargestcontributionstemsfromagriculturalproduction(7.1GtCO2e,39percent)includingtheproductionofinputssuchasfertilizers,followedbychangesinlanduse(5.7GtCO2e,32percent),andsupplychainactivities(5.2GtCO2e,29percent).Thelatterincludesretail,transport,consumption,fuelproduction,wastemanagement,industrialprocessesandpackaging.Developingcountriescurrentlycontributeaboutthreequarters(73percent)ofemissionsfromfoodsystems,butgiventheirlargepopulations,percapitaemissionfootprintsareuptofourtimeslowerthanthoseinindustrializedcountries(Crippaetal.2021).Foodsystememissionsareprojectedtoincreasebyupto60–90percentbetween2010and2050withoutdedicatedmeasuresandifcurrenttrendscontinuewithrespecttopopulationgrowthanddietarychangestowardsmoreanimalsourcefoods,especiallyinlowandmiddle-incomecountries(Riahietal.2017;Springmann,Clarketal.2018;Mbowetal.2020).BoththecurrentandtheprojectedlevelsoffoodsystememissionsareatoddswiththescaleofrapidemissionsreductionsneededacrossallsectorstoachievetheParisAgreementgoals(Clarketal.2020;IPCC2022b).Eveniffossilfuelemissionswerequicklyreduced,foodsystememissionscouldpreventachievingthewellbelow2°C,preferably1.5°Cgoalbytheendofthecentury(Clarketal.2020).Forhavinga66percentchanceoflimitingglobalwarmingtobelow2°C,estimatesfromintegratedassessmentmodelshavesuggestedalimitofagriculturalemissions(i.e.methaneandnitrousoxide)ofabout5GtCO2ein2050,inadditiontodecarbonizingtheenergysystemandlimitingemissionsfromland-usechanges(Costaetal.2022;Willettetal.2019).Arangeoftransformationdomainswithseveralmitigationmeasureshavebeenidentifiedwherefoodsystemscancontributetobridgetheemissionsgap(Springmann,Clark,etal.2018;Roeetal.2019;Clarketal.2020;IPCC2022b).Theyinclude:1)demand-sidechanges,includingdietarychangestowardssustainableandnutritionallybalanceddiets,andreductionsinfoodlossandwaste,ForestryChangesinwoodybiomassstocksLULUCLanduseandland-usechangeandCO2removalsfromsoilsrelatedtoagriculturallandEntericfermentation,manuremanagement,burningofcropresidues,agriculturalsoils,indirectN2OinagricultureProductionofnon-foodcropsAgricultureWasteSolidfoodwaste,foodincineration,industrialanddomesticwastewaterIndustrialprocessesandproductuse(IPPU)RefrigerationfromretailEnergyOn-farmenergyuse,transportation,fertilizermanufacturing,packaging,retailOtherGHGsrelatedtoenergyuse(includingbioenergyandBECCS)OtherGHGsrelatedtotheproductionofminerals,metal,high-valuechemicalsOtherGHGsrelatedtowastewater,landfill,wasteincinerationFoodsupplychainFoodsystemsemissionsAFOLU55EmissionsGapReport2022:TheClosingWindow2)protectionofnaturalecosystems,includingreductionsindeforestationforagricultureanddegradationofagriculturalland,3)improvementsinfoodproductionatthefarmlevel,includingchangesinthecompositionofanimalfeeds,betterricemanagement,bettermanuremanagement,andimprovementsincropnutrientmanagement,and4)decarbonizingthefoodsupplychain,includinginretail,transport,fueluse,industrialprocesses,wastemanagementandpackaging.Figure6.2providesanoverviewofthemitigationpotentialsofthedifferentmeasures.Wefocusonthetechnicalmitigationpotentialsinthefigure,butnotethateconomicpotentials(i.e.thoseachievablebelowacostofcarbonofUS$100/tCO2e)aremuchlowerandoftenjusthalfofthetechnicallyachievablepotential(IPCC2022b).Toavoiddoublecountingintheseestimates,thechapterisolatesthedemand-sideimpactsfromlanduseandtechnicalimprovementsatthefarmlevel.However,anyonedomainwillgenerallybeaffectedbychangesinanyotherdomain.Forexample,dietarychangestowardsmoreplant-baseddietswillreducethedemandforcroplandthattheneasesmeasurestoreducedeforestation.Inaddition,eachestimateissubjecttoconsiderableuncertainty.Thisisespeciallyevidentfortechnologiesormanagementpracticesthathavenotyetbeenproventoworkatscale,includingbioenergywithcarboncaptureandstorage(LowandSchäfer2020)andarangeofsoil-relatedactivitiesoftenclassifiedasregenerativeagriculture(Willettetal.2019;Giller2022).Whatisclearhoweveristhatthereisnosimplesolution,andacombinationofmeasureswillbeneededtotransformfoodsystemsinlinewithtargetsandpathwaysforreducingemissions.Whencombiningmitigationmeasures,carewillhavetobetakentoavoidtrade-offswithotherissuesofconcern,includingfoodsecurityandhealth,andinsteadgeneratesynergies.Especiallywhenitcomestofoodanddiets,importantsynergiesexistacrossthepublichealthconcernsfortheprovisionofhealthydietsandtheeliminationofmalnutritionandtheclimatechangeconcernforreducingemissions(Springmann,Wiebeetal.2018;Willettetal.2019).Figure6.2FoodsystemsemissionstrajectoryandmitigationpotentialsbytransformationdomainNotes:CurrentfoodsystemsemissionswereadaptedfromCrippaetal.(2021),futureprojectionsfromCostaetal.(2022)andthetargetvalueforlimitingglobalwarmingtobelow2°CfromWillettetal.(2019).TheprojectionsoffutureemissionsarebasedonlifecycleassessmentsthatincludeallGHGemissionsandland-useeffectsbutholdtechnologiesconstantatcurrentlevels.Themitigationpotentialsdenotetechnicalpotentialsand,exceptfordietchangesandsupplychains,wereadoptedfromtheIPCCSixthAssessmentReport(AR6)(2022b).ThepotentialsfordietarychangeswereupdatedbasedonSpringmannetal.(2018),whicharecontrolledfordoublecountingandincludeallGHGemissionsexceptthoseforland-usechanges.TheestimateofcurrentsupplychainemissionsfromCrippaetal.(2021)wasusedasanillustrativevalueformitigationpotentialfordecarbonizingsupplychains.GHGemissions(GtCO2e)05201520302050Target2°C1015202530Demand-sidechangesProtectionofecosystemsFarm-levelimprovementsDecarbonizingsupplychainLesslossandwasteFlexitariandietsPescatariandietsVegetariandietsVegandietsReduceconversionofcoastalwetlandsReduceconversionofpeatlandsReduceconversionofgrasslandsReducedeforestationManuremanagementCropnutrientmanagementRicemanagementFeedcompositionSoilcarbonmanagementingrasslandSoilcarbonmanagementincroplandsDecarbonizesupplychains56EmissionsGapReport2022:TheClosingWindow6.3SignsofprogressandoptionsforfurtheractionTheevolutionofglobalGHGemissionspertransformationdomainhighlightssignsofprogressandoptionsforfurtheraction.Italsoshowssomeencouragingexamplesacrosstheworld.Globalfoodsystememissionshaveincreasedduringthelasttwodecades(figure6.3).Emissionsfromagriculturehaveonlyslightlyincreased,whileemissionsfromthefoodsupplychainhavedramaticallyincreased(FAO2021a;Ritchie2019).Thefollowingexamineskeysubcategorieswithineachtransformationdomaintogetamoredetailedunderstandingoftheirrelativeimportanceanddiscussconcretemitigationoptions.Theselectedsubcategoriesaremeatconsumptionfordemand-sidechanges,deforestationfortheprotectionofnaturalecosystems,nitrousoxideemissionsfromagriculturalsoilsforimprovementsinfoodproductionatfarmlevel,andenergyuseinfoodsystemsfordecarbonizingthefoodsupplychain.Figure6.3showstheevolutionofemissionsbysubcategories.Thesesubcategoriestogetheraccountformorethanhalfoftotalemissionsfromfoodsystems.Figure6.3Averageglobalannualemissionsfromfoodsystemsbetween2000–2009and2010–2019Source:TheGHGemissionsfromfoodsystemssupplychain,agriculture,andlanduseandland-usechange(LULUC)excludingforestcoverchangearetakenfromFAOSTATEmissionssharesandEmissionsTotals(Tubielloetal.2021).EmissionsfromtreecoverlossaretakenfromGlobalForestWatch(Curtisetal.2018).ThisselectionleadstohighertotalemissionsfromfoodsystemsthanCrippaetal.(2021),Tubielloetal.(2022),andCostaetal.(2022).6.3.1SustainableandnutritionallybalanceddietsTheproductionofmeatwasresponsibleforapproximately54percentofGHGemissionsfromagriculturebetween2018and2020(OECDandFAO2021).Lifecycleanalysesindicatethatmeatproduction—frominputsinitsproductiontoretail—hasamedianvalueofCO2eper100gofproteinthatissignificantlyhigherthanalternativeplant-basedsourcesofprotein(PooreandNemecek2018).Forexample,beefhasamedianGHGintensitythatismorethan5–10timeshigherthanporkandpoultry,and50–100timeshigherthanplant-basedproteinsourcessuchasbeansandlentils.Inadditiontotheclimatebenefits,eatinglessredmeat,onlymoderateamountsofpoultry,seafoodandleanfishaswellasincreasingtheintakeofplant-basedfoodsisassociatedwithalowerriskofmajorchronicdiseases(Springmann,Wiebeetal.2018;FAOandWHO2019;Willettetal.2019).GHGemissions(GtCO2e/year)0123456LULUCAgricultureSupplychainLULUCAgri-cultureSupplychain04812162024TreecoverlossduetoshiftingagricultureAgriculturalorganicsoilsOtherEntericfermentationNitrogenemissionsManuremanagement-nonN2ORicecultivationOtherEnergyWasteIPPUagrifoodsystemsCommodity-driventreecoverlossAverage2000–2009Average2010–2019Totalaverage2000–2009Totalaverage2010–201957EmissionsGapReport2022:TheClosingWindowTheproductionofmeathasmorethanquadrupledsincethe1960s(Ritchie2019).However,developmentsinhowmuchmeatindividualsconsumepercountryhavebeenuneven.Weseeahighcorrelationbetweenmeatconsumptionandincomelevel.Theaveragedailymeatconsumptionpercapitavariesfromaround25ginlow-andlower-middle-incomecountrieswhichasatotaliswithintherangeofrecommendedintake,butredmeatconsumptionaloneisabovetherecommendedlevels.Inupper-middle-incomecountriesandhigh-incomecountries,averagemeatconsumptionisfaraboverecommendedlevelswith105g/cap/dinupper-middle-incomecountriesand154g/cap/dinhigh-incomecountries.Inmanyindustrializedcountrieswherethepercapitaredmeatconsumptionhasstartedtodecreaseitispartlycompensatedbyanincreaseinpoultryconsumption.Thesetrendsshowthatprogressonchangingdietshasbeenverylimited.Thisisalsoreflectedinareviewofthenationallydeterminedcontributions(NDCs)thatshowstheinactiontowardsreducingmeatconsumptionbothinhigh-incomeandhigher-middle-incomecountries(box6.2).Meatproductionisprojectedtoincreasemorethan60percentbetween2010and2050,primarilybeingdrivenbypopulationandeconomicgrowth,especiallyinlow-andmiddle-incomecountries.However,ifeverybodyontheplanetconsumedwithinlevelsrecommendedforhealthandtheenvironment(14g/dorlessofredmeat,29g/dorlessofpoultry,and28g/dorlessoffish),meatproductionwouldnotneedtoincreasebeyondcurrentlevels(Springmann,Clarketal.2018).Table6.1ExamplesofpositiveshiftsinmeatconsumptionAreaPositiveshiftsSlovenia,UruguayandEcuadorAveragepercapitameatconsumptionbetween2010and2019hasdecreaseddespiteeconomicgrowth(Ritchie2019).Moreresearchisneededtohighlightthedeterminantsofthischange.EuropeandNorthAmericaVegetariandietsareincreasinginpopularity.Non-meatconsumersrepresentbetween5and10percentofthetotalpopulation(KansasStateUniversity2022;LuskandNorwood2016).GlobalTotalconsumptionofmeatsubstituteshasincreasedbymorethanthreetimes,andtotalconsumptionofmilksubstituteshasalmostdoubledbetween2013and2020(Friedlingsteinetal.2022).Intheseareas,meatconsumptioncurrentlyfarexceedsrecommendedlevels.Box6.2CoverageoffoodsysteminrevisedNDCsCurrently,allNDCsincludefoodsystems.However,demand-sidemeasuresandactionstoreduceemissionsfromfoodprocessing,storageandtransportationofthefoodsystemsarefrequentlyoverlooked(FoodandLandUseCoalition[FOLU]andFood,Environment,LandandDevelopmentActionTracker2021;GlobalAlliancefortheFutureofFood2022;Hamiltonetal.2021).NoneoftherevisedNDCssubmittedaheadofthe2021UnitedNationsClimateChangeConferenceoftheParties(COP26)mentiontheneedtoreducetheconsumptionofanimalprotein.FoodlossandwasteareonlycoveredinafewNDCsincludingtheonesfortheUnitedKingdom,theEuropeanUnion,FranceandSouthAfrica(GlobalAlliancefortheFutureofFood,2022).Ontheproductionside,theagricultureandlandusesectorsfeatureprominentlyintheNDCsofdevelopingcountrieswith86percentprioritizingmitigationinthesesectors(Crumpleretal.2021),butsustainablelivestockproductioncouldbebettercovered,especiallybylargemeatproducingcountries(GlobalAlliancefortheFutureofFood,2022).Agroecologyandregenerativeapproachesarecommon,butaclearoperationaldefinitionofregenerativeagricultureisneeded.ExceptforColombia,foodsystemsactorstendedtobeoverlookedindomesticconsultationprocesseswhichhaslikelyledtogapsinfoodsystemscoverageintheNDCs.WithnewdataavailableinFAOSTATEmissionssharesandtheEmissionsDatabaseforGlobalAtmosphereResearch’sglobalfoodemission(EDGAR-FOOD)databases(Crippaetal.2022)releasedin2021,quantifyinganddiscerningfoodsystems-relatedemissionsandacquiringdataonemissionpatternshasimproved.ThisshouldfacilitatethecoverageoffoodsystemsinfutureNDCs(Crippaetal.2021).58EmissionsGapReport2022:TheClosingWindow6.3.1ProtectionofremainingnaturalecosystemsForthistransformationdomain,theselectedsubcategoryisdeforestation,themainsourceofemissionsfromLULUC(figure6.3).Deforestationalsoreducesthefutureremovalsofatmosphericcarboninnaturalforests,furtherexacerbatingclimatechange(Maxwelletal.2019).Atthegloballevel,foodsystemscanbedirectlyrelatedtoalmosthalfoftreecoverlossthroughcommodity-drivendeforestationandshiftingagriculture,andthecontributioncouldbehigheriflinkedtowildfires(Curtisetal.2018;Pendrilletal.2022).Haltingdeforestationthereforeiskeyforbothenvironmentprotectionandclimatechangemitigation.TheSDGsincludeatargetofhaltingdeforestationby2020(target15.1),andtheobjectivehasbeenrestatedinseveraldeclarationse.g.duringCOP26withtheGlasgowLeaders’DeclarationonForestsandLandUse.Despiteallthesecommitments,deforestationrelatedtofoodsystemshascontinuedtoincreasefrom8millionhectares(Mha)peryearin2001–2010to11.5Mha/yearin2011–2020accordingtostatisticsfromtheGlobalForestWatch(GFW)ontreecoverlossdrivenbycommoditiesandshiftingagriculture(GFW2022).Itisestimatedthat29–39percentofemissionsweredrivenbyinternationaltrade(Pendrilletal.2019).GlobalGHGemissionsestimatesfordeforestationin2001–2020varybetween3.4and9.5GtCO2peryearonaverage(FAO2021a;Grassietal.2022;Friedlingsteinetal.2022;GFW2022).Differencescanbepartlyexplainedduetodifferencesindefinitionsofforestsanddeforestation.Uncertaintyincarbonstocksinforestsisanothersourceofvariationacrossestimates,especiallyatfinescales.Withoutnewforestconservationpolicies,289millionhectaresoftropicalforestcouldbeclearedby2050(BuschandEngelmann2017)andhavedramaticimpactsonclimatechange,traditionallivelihoods,humanhealth,biodiversitylossandecosystemservices.Withlessthaneightyearstoclosetheemissionsgapthereisaneedforeffective,unifiedandpublicsystemsofmonitoring,reportingandverification(MRV)ofdeforestationtomakegovernmentsandcompaniesaccountablefortheirdeforestationcommitments(Nabuursetal.2022).Localcommunitiesandtraditionallymarginalizedgroupssuchasindigenouscommunitiesinhabitingandorlivingclosetoforestedareasaredeeplyvulnerabletotheimpactsofdeforestationandthereforeshouldbecloselyinvolved(FAO2022).Theircontributionsandknowledgeareinvaluableandcanhelptoaddressimportantsourcesofrisk.Table6.2ExamplesofpositiveshiftsinaddressingdeforestationAreaPositiveshiftsBrazilTherewasanimpressiveslowdownindeforestationintheBrazilianAmazonbetween2005and2011.Thecombinationofreal-timemonitoring(RealTimeDeforestationDetectionSystem),publicreleaseofannualdeforestationdata(BasinRestorationProgram),stronglawenforcement,expansionofprotectedterritoryandadoptionofaconditionalruralcreditpolicyhasbeenkeytocurbingdeforestationduringthatperiod(Assunção,GandourandRocha2015).Unfortunately,politicalchangesmeanthatdeforestationhasincreasedagainsincethen,evenifitremainsbelowitspeakin2005(zuErmgassenetal.2020).IndonesiaDeforestationinIndonesiahasbeenreducedforthefourthyearinarow(GFW2022;Gaveauetal.2022).Themoratoriumonnewlicencesforprimaryforestsandpeatlandsintroducedin2011hasplayedanimportantroletoreduceconversionofnaturalforestsandpeatlanddrainagetoinstalltimberoroilpalmplantations.Morethan80percentoftheoilpalmrefiningcapacitiesandthepulpandpaperindustryinIndonesiahavealsocommittedto‘NoDeforestation,NoPeatandNoExploitation’.EuropeanUnionInSeptember2022,theEuropeanParliamentvotedtoenablealawthatconditionsfarmerstodocumentthatproductsbeingsoldtotheEuropeanUnionareneitherinvolvedwithhumanrightsabusenordeforestation.Beingresponsibleforapproximately16percentofdeforestationinthetropics(Pachecoetal.2021),theEuropeanUnioncanaddressitsconsumptionofproductsassociatedwithecosystemdegradationtohaverealimpacts.59EmissionsGapReport2022:TheClosingWindow6.3.2ReductionofemissionsfromagriculturalproductionEntericfermentationofruminantlivestockisthemajorsourceofemissionsfromagriculturalproduction.beyondchangesindiets,thereductionofmethaneemissionsfromruminantscanbeachievedthroughchangesinfeedlevelandfeedcomposition,whichcanalsoincreaseanimalproductivity(Franketal.2018;Arndtetal.2022).Growingriceisanotherimportantsourceofemissionsfromagriculture,especiallyforlow-andmiddle-incomecountries.Paddyfarmingreliesonfloodedcultivationfieldsthatemitlargequantitiesofmethaneintotheatmosphereviaanaerobicdecomposition(Guptaetal.2021).Changesinwatermanagementcansignificantlyreducemethaneemissionsfromrice(Islam2021).AnotherprominentGHGisnitrousoxide,whichismainlyemittedfromagriculturalactivities.Thisincludesemissionsfromtheapplicationofsyntheticfertilizersonagriculturallandandfromlivestockmanurethatiseitherusedasorganicfertilizersforcropsorleftonpastures.In2019,nitrousoxideemissionsfromsoilsrepresented25percentoftotalagriculturalemissions(FAO2021a),makingitthesecondlargestsourceofemissionsfromagricultureaftermethaneemissions.Productionofsyntheticfertilizersisalsoalargesourceofemissionsfromthesupplychain.reducingon-farmsyntheticfertilizerwouldthereforeleadtoareductioninthissourceofemissionstoo.Tacklingexcessiveon-farmnitrogenusecarriesimportantco-benefitsforairpollutionthroughreducedammoniaemissionsthatwouldotherwisecontributetoparticularmatterconcentrations,andforwaterquality,asexcessivenitrogenuseleadstotheexcessivegrowthofaquaticplantsandalgaethatcanreducethediversityofanimalsandplantsandcompromisethepossibleusesoftheaffectedwater(deVries2021;Maúreetal.2021).Globalnitrogenemissionsfromsyntheticfertilizersandlivestockmanurehavecontinuedtogrowafter2010,andtheaverageannualemissionsin2010–2019were14percenthigherthanin2000–2009(FAO2022).Whileaverageannualemissionshavebeennearlystableinhigh-incomecountriesandonlyincreasedby7percentinupper-middle-incomecountries,theyhavestronglyincreasedinlower-middle-incomeandlow-incomecountries(by25and69percent,respectively).Reducingnitrogenusewithoutimpactingyieldisnotstraightforwardduetothefactthatdifferentcropshavedifferentneedsindependentoffactorssuchastopographyandslope(whichcanvaryduringthegrowingcycle),croptypeandweatherconditions(SharmaandBali2018).Fromequityandfoodsecurityperspectives,unequalaccesstofertilizersisanimportantareaofconcern.Forexample,judicioususeoffertilizersandorganicnutrientsareessentialtoincreasingcropproductivityinlargeareasofinherentlypoorandhighlyweatheredsoilsinAfrica(ZingoreandNjoroge2022).Forcontext,toachieveself-sufficiencyinmaizeinninecountriesinsub-SaharanAfrica,maizeyieldswouldhavetoincreasefromabout20percentofwater-limitedyieldpotentialcurrentlytoapproximately50–75percentofthepotential,withnitrogeninputrisingdisproportionatelymore(by9–15times)(Rurindaetal.2020).Table6.3ExamplesofpositiveshiftsinemissionsfromagriculturalproductionAreaPositiveshiftsChinaNitrogenemissionsfromsyntheticfertilizersandlivestockmanurehavereducedoverthelastthreeyearsbecauseofalongfocusonreducingfertilizeruse.Since2005,apolicyonzeroincreaseinchemicalfertilizerusehasbeenintroduced(Wangetal.2022)andaprogrammehasbeenrunningtotestsoilsandusefertilizersbasedonexactneeds,withUS$1.2billionofgovernmentinvestment.Theschemehasbeenappliedon100Mhaofland,whichhasincreasedtheefficiencyoffertilizeruseby5percentwhileincreasinggrainharvestsby6–10percent.In2017,theGovernmentofChinastartedafive-prongedpushtodevelopgreenagriculture.Thisincludedreplacingchemicalfertilizerswithorganiccompostmadefromfruits,vegetablesandtea(KunandGenxing2021).EuropeNitrousoxideemissionsdeclinedfrom1990levels(IPCC2022b)andthenitrogensurplusappliedtoagriculturallandwasreducedby18percentbetween2000and2009,(Cook2018),mainlythankstopublicregulation.TheEuropeanUnionNitratesDirective(91/676/EEC)wasestablishedin1991tobalancefertilizationrequirementsandprohibitednitrogenapplicationduringsomeperiods(EuropeanEnvironmentAgency2020).Thishasbeenstrengthenedbyotherdirectivesonimprovingthequalityofwaterandsettingemissionreductioncommitmentsbycountry,andpolicyinstrumentswithintheCommonAgriculturalPolicy.DenmarkFromthe1980s,awiderangeofpolicyinstrumentswereintroducedthatledtoacutinnitrogenusebyalmosttwobetween1990and2011withoutreductionofagriculturalproduction(Petersenetal.2021).Akeyfactorofsuccesswasthedefinitionofseveralactionplanswithcleartargetsthathavebeenprogressivelyadjustedaccordingtothemonitoredprogress.Introductionoffarm-levelnitrogenquotashasalsoprovedtobecostlybuteffective.60EmissionsGapReport2022:TheClosingWindowIndiaLegumessuchasbeans,peasandlentilsincreasethereleaseofammoniumnitrogenintothesoil.Thegreateravailabilityofnitrogeninthesoilcanreducetheneedsfornitrogenfertilizersforothercropswhenlegumesareusedinrotationsorascovercropsorintercrops.Indiahasobservedaconsistentincreaseintheproductionoflegumesinthelastfiveyears.In2020,somestatesdecidedtoincludepulsesinthePublicDistributionPackagethatpreviouslyonlyincludedwheatandricetofurtherencourageproduction.NorthAmericaPrecisionfarmingtechniqueshaveincreasinglybeenadopted.Theseincludeamanagementapproachthatfocuseson(nearreal-time)observation,measurementandresponsestovariabilityincrops,fieldsandanimals.However,ithasnotyettranslatedintolowernitrogenemissions.Itisnotsoclearifeventhemostpromisingtechnologiesforreducednutrientuse(SharmaandBali2018)cansignificantlyreducenitrogeninputuseandincreaseeconomicbenefits(Späti,HuberandFinger2021).VietNamThenationalstrategyforachievingemissionreductionsinriceincludescontrolledwatermanagement,reductionofstrawburningandconversionofinefficientricelandforotheruses.Low-emissionpracticeshavealreadybeensuccessfullyimplementedinAnGiang,amajorrice-producingprovinceintheMekongDelta,contributingtoareductionofover2megatons(Mt)ofCO2e/yearandimprovingsmallholderfamers’netincomeperhectareby7–25percentthroughtheuseofalternatewettinganddrying(Tranetal.2019).IntheMekong,alternatewettinganddryingcouldbepractisedonanadditional900,000hectares,resultinginemissionreductionsof10.97MtCO2e.GlobalTheareaunderorganicfarmingisincreasinginallcontinentswithcloseto75millionhagloballyin2020(1.6percentofglobalfarmland)comparedto11Mhain1999(Willeretal.2021).ThecontributionoforganicfarmingtotheoverallreductioninGHGemissionsisdebatedbecauseofindirectland-useeffectsduetoloweryieldsandtheincreasedmanure-relatedemissionscomparedtosyntheticfertilizers(Smithetal.2019).6.3.3DecarbonizingthefoodsupplychainEnergyusealongthewholefoodsupplychainisthesourceofemissionsinthefoodsystemsthathasgrownthefastestduringthelasttwodecades.Thiscoversemissionsfromon-farmfueluseformachineryandirrigation,foodtransportation,energyuseforcooking,coolingandfreezinginthefoodprocessingindustryandforpackaging,energyusewithinretailandsupermarkets,andhouseholdfood-relatedenergyconsumption.Householdfood-relatedenergyconsumptionincludesenergyuserelatedtotraveltopurchasefoods,foodstorageinfreezers/refrigerators,mealpreparationandclean-up(Pelletieretal.2011).Householdsrepresent30percentoftotalfoodsystems’energyemissions,whiletheretailandsupermarketsectorcomesecondwith20percentoffoodsystems’energyemissions(Tubielloetal.2021),anumberonlyexpectedtoincreaseassupermarketscontinueexpandingindevelopingcountries(Reardon,TimmerandMinten2012).Despiteahighaveragedistancetravelledformanyfoodproducts(Pelletieretal.2011),transportrepresentsonlybetween5and11percentoftotalemissionsfromenergyintheglobalfoodsystem(PooreandNemecek,2018;Tubielloetal.2022).Therapidgrowthinfluorinatedgases(F-gases)emissionsfromcoolingequipmentusedinthefoodchain,particularlyinemergingeconomies,isworryingasF-gasesgreatlycontributetoclimatechangeduetotheirsignificantlyhigherwarmingpotentialthanCO2.Thefoodandbeverageindustryisacriticalareaofactivitycharacterizedby:alargegeographicalspreadunlikemanyotherindustries,largemultinationalcorporationsalongsidenumeroussmallandmediumenterprises,abroadheterogeneityofproductsthatcutacrossverydifferentprocesses,andstringentrequirementsrelatedtorapidpost-productionshelflifeandhealthconsiderations(Sovacooletal.2021).Thisleadstospecificmitigationoptionsandpotentialscomparedwithotherindustries.Themainoptionsincludeimprovedmanagementandtechnologiestoincreaseenergyuseefficiencyandbetterwasterecoveryanduseofby-products(Sovacooletal.2021).Moregenerally,thefoodsectorhasgreatpotentialforadoptingrenewablesourcesofelectricityorheat,especiallybiomasswasteorbiogasfromanaerobicdigestion.Itisprojectedthatrenewableenergycouldcover60percentofexistingheatdemandsofthesector(InternationalRenewableEnergyAgency[IRENA]2015).Simplethingslikeputtingdoorsonrefrigeratorsinsupermarketscouldalsohelpcutenergyuse,butthisisoftenperceivedasasalesbarrier(Jesse,PerottiandRoos2022).61EmissionsGapReport2022:TheClosingWindowTable6.4ExamplesofpositiveshiftsindecarbonizingsupplychainsAreaPositiveshiftsKenyaAmajordairyprocessorhaspartneredwithanoff-gridsolartechnologyprovidertoprovidesolar-poweredirrigationtosupportfoddercropsandwateraccessforcattle,thusboostingmilkproduction(IRENAandFAO2021;Lukhanyu2021).EuropeAleadingEuropeandairyproducerisworkingcloselywithalmost8,000farmsinsevencountriestopromotecircularfarmingpractices.Asaresult,thecarbonfootprintofmilkproductionforthecompanyislessthanhalftheglobalaverageperkilogram(Jesse,PerottiandRoos2022).6.4Howcantransformationbeaccelerated?Althoughafoodsystemstransformationisessentialforlimitingglobalwarmingandwouldhaveanumberofotherenvironmental,health,foodsecurityandequitybenefits,littleprogresshasbeenmadeinthelasttwodecades(UNEPandUNDP2021).Inthisfinalsection,theroleofdifferentactorsinacceleratingtransformationsisdiscussed.Mainactorsincludenationalgovernments,citiesandlocalgovernments,theprivatesector,civilsocietyandthescientificcommunity.6.4.1NationalgovernmentsAtthenationallevel,structuresforfoodsystemgovernancethatintegraterelevantsectorsandfoodsystemcomponentsareessentialtodrivetransformativeaction(Springmannetal.2020;Steineretal.2020).Oneofthefirstchallengestoscalingtransformationsisthefragmentizedstateofdata,information,knowledgeandawarenessacrosssectors,populationgroupsandpublicandprivateagencies(OECDandFAO2022).Multicomponentapproachesthatcombinee.g.informationcampaignswitheconomicincentivesandfiscalmeasuresaremorelikelytoleadtomeaningfulchangesthanthenarrowfocusontheprovisionofinformationthatmanygovernmentshavetraditionallyfollowed(Mozaffarianetal.2012;Mozaffarian2016).Reformingnationaldietaryguidelinescanbeagoodstartandhelpguidecitizensmakehealthierandmoresustainablefoodchoices(e.g.Seychelles,MinistryofHealth2020),butthisneedstobedisseminatedboththrougheducationalprogrammesandgovernment-sponsoredcampaigns(Springmannetal.2020),andcombinedwithothermeasuressuchasmandatorylabellingandtheprovisionofadditionalinformatione.g.carbonfootprintdata.Thepracticeofpublicinstitutionsmakingtheirdatasetsavailabletothewiderpublic('opengovernmentdata')allowscitizens,civilsocietyorganizationsandbusinessestocreativelyuseandcombinethesedata,whichmayinturnleadtoinnovativewaysofdeliveringpublicservices(Deconincketal.2021)andincreasedtrustforupcomingpolicyreforms.Fiscalpolicies,includingtaxationandtheprovisionofdirectedsubsidies,isanothermeasurethatcancontributetofoodsystemtransformation.Aglobalanalysiswithcountry-leveldatahasshownthattaxingfoodsinaccordancewiththeirGHGemissionscouldimprovedietsandreduceemissionsbyabout1GtCO2eforamodestcarbonpriceofaboutUS$50/tCO2e(Springmannetal.2017).Whenexaminingsubsidies,currentlyapproximately87percentofsupporttoagriculturalproducersiseitherdistortingpricesorsupportingapproachesthatareharmfultonatureandhealth(UNEPandUNDP2021).Reformsarenecessarytodirectsubsidiestotheproductionofhealthyandmoresustainablefoodstoincreasetheiravailability,reducetheirpricesandincreasetheirconsumption,whichcarriesknock-oneffectsintheformofreducedGHGemissions(FOLU2019;SpringmannandFreund2022).Lastly,targetedinvestmentsandregulationcanalsoplayarole.Reducingon-farmemissionswillrequireincreasedinvestmentinpublicinfrastructuresuchasstorageorwastemanagement.Moreovertosupportfarmers,thefoodindustryandretailerscaninvestinrenewableenergyandequipmentviasubsidizedloans(UNEPandUNDP2021).6.4.2CitiesandlocalgovernmentsCitieswillbehometotwothirdsoftheworld’spopulationby2050andalreadyapproximately70percentofallfoodproducedworldwideisconsumedinsidecities(UnitedNationsDepartmentofEconomicandSocialAffairs2019).Citymanagementcanthereforeplayakeyroleinfoodsystemstransformation.Since2015,city-to-citycooperationandbestpracticesexchangeshavebeenfosteredbytheMilanUrbanFoodPolicyPact,whichincludes225citiesworldwide.Inmanycities,thishastranslatedintorevisedpublicprocurementpolicies(e.g.forpublicschools,canteens,hospitals,carecentresandsoon)toalignthemwithhealthydietrecommendations(FAOetal.2020),toincreasetheshareoforganicproductsand/orfromlocalsuppliersandtoreducewastethroughdirectives,resolutionsororders,forexample.Moreover,integratingfoodproduction,accessanddistributionacrossurbanplanningmustbeconsideredascitiesexpand(FAOetal.2020).Policiesrelatedtofoodsystemsinsidecitiesalsopositivelyimpactthecreationofjobsrelatedtoproducing,distributing,delivering,redistributingandrecyclingfood.62EmissionsGapReport2022:TheClosingWindowLastly,citiesandlocalgovernmentscanserveastestinggroundsforpoliciesthatcouldbescalednationallyandforinnovativesolutions,includingthosefromstart-ups.6.4.3PrivatesectorBusinessopportunitiesinimplementingtheSDGsrelatedtofoodhavebeenestimatedtobearoundUS$4.5trillionoutofthetotalfoodsectorturnoverofUS$10trillionperyearby2030,representingahugeopportunityforcurrentbusinessesandforentrepreneurshipinthesector(FOLU2019).Giventheinvestmentopportunitiesinthefoodsystem,companiesandtheirinvestorscouldpursuenewopportunities,disruptiveinnovationsandtechnologytransferinlinewithsocialandenvironmentalgoals.Newproteinsourcesareadisruptivetechnology.In2021,plant-basedmeatsubstitutesgeneratedUS$5billioninsales,andforecastssuggestuptoUS$85billionin2030(Thornton,Gurney-SmithandWollenberg,forthcoming).Processingplant-basedproteinsourcessuchaslegumesintomeatsubstitutesgeneratefivetimeshigheremissionsthanunprocessedplant-basedsources,butremains5–8timeslowerthanthosefrombeef(Clune,CrossinandVerghese2017;Rubio,XiangandKaplan2020;Smetanaetal.2015).Incontrast,lab-grownmeat(sometimesreferredtoascellularmeat)currentlyhasfootprintsthatcanbeashighasthoseofbeef(Smetanaetal.2015;WorldEconomicForum2019).Anotherimportantareatodrivefoodsystemtransformation,fromaprivatesectorperspective,includessector-andcompany-widetargetstoreduceemissionsandeventuallyreachcarbonneutrality(Burnsetal.2022).TheScience-BasedTargetsinitiative(SBTi)andotherentitiesoffercompanieswithtarget-settingmethodologiesbasedonthebestscientificevidenceandguidelinestotrackGHGemissionswithinthecompanies’operations.Thisinitiativealreadycomprisesover1,200companiesworldwide.Akeyaspectisenhancedtransparencythroughsystematicreportingandverificationofcompanyoperations.AnexamplethatopenlyaccessibleinformationcanhelpdriveactionistheBigClimateDatabasedevelopedinDenmarkusinglifecycleassessments,whichhasalreadybeenusedbyseveralsupermarketchainsandthefoodserviceindustry.Publicdisclosureofdatausedtomeasureprogressandindependentauditsandinitiatives,suchasthoseoftheWorldBenchmarkingAlliancewhichrankscompaniesontheirperformance,willbeimportantinassessingprogressandincreasingaccountability.6.4.4Civilsociety(citizensandnon-governmentalorganizations)Citizenscandrivefoodsystemstransformationthroughtheirconsumptionchoices,theirelectoralchoicesandtheirmobilizationinfavouroragainstcertainpolicyreformsrelatedtofoodsystemse.g.throughboycott,publicdemonstration,disruptionoftraffic,etc.Socialmediahasalsoplayedanimportantroleinraisingawarenessontheneedtoshiftdietsandhowtoshiftdietstoreduceourcarbonfootprint.Butthismayonlyreachacertainaudiencee.g.withahighereducationlevel(Ekeretal.2021).Animportantvoiceforcivilsocietyinitiativesarenon-governmentalorganizations(NGOs).Theyoftenworkcloselywithcitizensandcanrepresentamultitudeofvoicesatlocal,nationalandinternationallevelsofgovernance.Forexample,theUnitedNationsWorldFoodProgramme(WFP)workswithover1,000NGOsworldwidetosupport'closetocitizen'activitiesandefforts.63EmissionsGapReport2022:TheClosingWindowTable6.5Potentialsolutionsandbarrierstofoodsystemstransformationbyactorgroup6.4.4InternationalcooperationInternationalcooperationisessentialamidastronginterconnectednessofcountries’foodsystems,largeinequalitiessuchastheimpactsofclimatechangeonfoodproductionandthecomplexityofclimatechange.Whiledevelopmentsinfoodtradeoverthepastdecadeshaveincreasedfoodavailabilityanddiversity,ithasalsoincreasedthevulnerabilityofsomecountries’foodsystemstoclimateandpoliticalshocks(WangandDai2021)andacceleratedthedestructionofnaturalecosystemssuchastropicalforests(zuErmgassenetal.2020).Withstronginterconnectedness,evenwell-intentionednationalpoliciestoreduceGHGemissionsfromfoodsystemscanbeoffsetbyspilloverstotherestoftheworldand/orcouldraisefoodpricesbutcouldalsospurpositivechangeinothercountries.Thenegativeimpactsofclimatechangeonagriculturalproductionarealsoespeciallystrongindevelopingcountries.Internationalcooperationtoensurethatnoonewillbeleftbehindiscrucial.Channellingemergencyfoodaidwhentherearecrises,avoidingtradedisruptionsevenwhenthereisawar,orreducingfoodoverconsumptioncanallcontributetoreducinginequalitieswithinglobalfoodsystems.Manytechnologiesexistthatarecapableofincreasingcropandlivestockproductivity,enhancingnutritionoffoodcropsandreducingGHGemissions(PathakandAggarwal2012;1Table6.5PotentialsolutionsandbarrierstofoodsystemstransformationbyactorgroupMAJORTRANSFORMATIONGAPSPOTENTIALSOLUTIONSBARRIERSNationalgovernments–Absenceofnationalstrategyandclearmeasurabletargets–Lackofdataandcapacity–Lackofkeyperformanceindicatorstomonitorprogress–Weakevaluationofexternalitiesandincorporationintonationalaccounting›Science-basednationalfoodsystemstransformationstrategyandcorrespondingnationalcoordinationandaccountabilitymechanism›Opengovernmentdata›Integratelowcarbonintonationalfoodanddietaryguidelines›Strengthennationallandmonitoringsystemforcarbonreduction!Unbalancedpoweracrossministries(andobjectives)!Lackofmultisectoralcoordination!AcceptabilityofmeasuresversussuccessatnextelectionsCitiesandlocalgovernments–Carbonreductionisnotpartofthelocalandcitygovernmentmandate–Lackofawarenessofcarbonfootprintoffoodsystems›Strengthencoordinationbetweennationalandcitygovernments/localplansandpolicies›Strengthencoordinationbetweenurbanandruralareas›Alignpublicprocurementwithhealthyandsustainablediets!Localeconomicdevelopmentversuscarbonreduction!Nationalversuslocal/cityinterestsPrivatesector–Lackofcommitments–Lackofcapacity–Lobbyagainsttaxesandenvironmentalregulations›Monitoranddiscloseprogresstowardsenvironmentalcommitments›Remove'bestbefore'labelfromfreshfruitsandvegetables!EconomicprofitabilityversussocialandenvironmentalobjectivesCivilsociety–Lackofknowledgeandincentives–Smallnumberofplatformswhichenableinvolvementindecision-making–Lackofresources(NGOs)›Socialcampaignsandsocialmovements›Mainstreamlowcarbonintoteachingcurriculums›NGOsdevelopscorecardsforcompanies!Budgetconstraints!Well-being,culturalnormsandpreferencesversussocialandenvironmentalgoalsAcademia–Sciencenotfullyalignedwithsocietalneeds–Interdisciplinaryapproachesrequiredbutdifficulttoimplement›Buildstrongscience-policyinterfacebetweengovernmentsandacademia›Independentmonitoringofprogresstowardstargetsrelatedtofoodpolicy!Disciplinaryfundingstructuresandresearchtraditions!Independence/separationofacademiafrompolicyprocesses64EmissionsGapReport2022:TheClosingWindowFan2021;Islam2021;Huangetal.2022)butmuchneedstobedonetoscaleup,adapttolocalcontextsandalsoensuretheequitabledistributionofcostsandbenefits.Internationalcooperations,includingSouth-Southcooperation,haveacriticalroleinlow-emissiontechnologytransferandscaling.Ashighlightedinthischapter,positiveexamplesofreducingGHGemissionsfromfoodsystemsexistbuttheyarescarce.InternationalnetworkssuchastheMilanUrbanFoodPolicyPactforcities,theWorldBusinessCouncilforSustainableDevelopmentforprivatecompanies,andtheFood,Agriculture,Biodiversity,LandandEnergyConsortiumforscientistscanhelpinsharingpositiveexperienceandpeerlearningacrosscountries,fosteringinnovation.Inthesamevein,aglobaldataandknowledgeplatformwouldbedesirabletoguidefoodsystemstransformationusingsciencebasedrecommendations(Singhetal.2021).DuringCOP26inGlasgow,variousinternationalkeyfoodsystems-relatedactivitieswereannounced(box6.3).Theseandsimilarinitiativescarrythepotentialtouniteactorsinternationally,(e.g.countries,internationalorganizations,thinktanks,developmentbanksandmore)tomobilizeresourcesandcapacityandpursuecommongoals.Box6.3COP26initiativesthatbearstrongmitigativepotentialwithregardstolandandfoodsystemsemissionsandtheprotectionofnaturalecosystemsTheGlasgowLeaders’DeclarationonForestsandLandUsereaffirmsthecriticalroleofforests“inenablingtheworldtomeetitssustainabledevelopmentgoals”andtheneedto“reduce,halt,andreverseforestlossandlanddegradationby2030”.TheDeclarationhas141signatorygovernmentsthattogetherrepresentaround91percentofforestedareas.TheForest,AgricultureandCommodityTradeRoadmapaimstohaltforestlossassociatedwithagriculturalcommodityproductionandtrade,joinedby28countriesand12companiessofarthatholdaconsiderablemarketshareinforestcommodities(thatis,insoy,palmoil,cocoaandcattle).TheHighAmbitionCoalitionforNatureandPeopleincludesnearly100countriesthatpushfortheratificationofambitiouspost-2020biodiversitytargetsattheupcomingConventiononBiologicalDiversity,suchasplacing30percentoftheterritoryunderprotectionby2030.TheGlobalMethanePledge,currentlysignedby122countries,aimstoreducemethaneemissionsby30percentbelow2020levels.65EmissionsGapReport2022:TheClosingWindowTransformingthefinancesystemtoenabletheachievementoftheParisAgreementLeadauthors:PieterPauw(EindhovenUniversityofTechnology,theNetherlands),DipakDasgupta(TheEnergyandResourcesInstitute-TERI,India),HeleendeConinck(EindhovenUniversityofTechnology,theNetherlands)Contributingauthors:LiliaCouto(UniversityCollegeLondonInstituteforSustainableResourcesandChathamHouse,UnitedKingdom),MichaelKönig(theFrankfurtSchool–UNEPCentreforClimateandSustainableEnergyFinance,Germany),GeorgeMarbuah(StockholmEnvironmentInstitute,Sweden),LuisZamarioli(theFrankfurtSchool–UNEPCentreforClimateandSustainableEnergyFinance,Germany)77.1Introduction:TheneedforatransformationofthefinancialsystemArealignmentofthefinancialsystemisacriticalenablerofthesectoraltransitionsrequiredtoaddressthecurrentclimatecrises.Article2.1(c)oftheParisAgreementcallsforthisandestablishesanewobjectiveforallcountriestomakefinanceflowsconsistentwithlow-carbonandclimate-resilientdevelopmentpathways(UnitedNationsFrameworkonClimateChangeConvention[UNFCCC]2015).IncontrasttothemobilizationofclimatefinancefordevelopingcountriesundertheUNFCCC(article9),anotherkeygoal,theclimateconsistencyoffinanceflowsrepresentsanewpurposethatreliesonsupportandactiontotransformtheglobalfinancialsystem(Zamariolietal.2021).Thischapterthereforefocusesonatransformationofthefinancialsystemthatengagesallrelevantactors,includinggovernments,centralbanks,commercialbanksandinstitutionalinvestors.Thesuccessofthetransformationcanultimatelybemeasuredbasedontwoindicators:arapidincreaseininvestmentsinlow-carbonassetsworldwideandarapiddecreaseininvestmentsingreenhousegas(GHG)-intensiveassets.Althoughthishassignificanceforallsectors,examplesinthischapterfocusontheenergysector,whereliteratureonfinanceandtransformationisemerging(SteffenandSchmidt2021).1Methodologicalissuesanddatalimitationspersist.Limiteddataavailabilitypreventsafullaccountingofdomesticgovernmentexpendituresonclimatefinanceandofprivatesectorinvestmentsinenergyefficiency,transportandlanduse(Buchneretal.2021).Investmentsinlow-carbonassetsneedtorapidlyincrease.Trackedclimate-relatedinvestmentsinmitigationrosesignificantlytoaboutUS$571billionperyearin2019–2020(Buchneretal.2021).1However,theIntergovernmentalPanelonClimateChange(IPCC)estimatesthatglobalmitigationinvestmentsneedtoincreasebythefactorof3to6.Indevelopingcountries,thisgapisevenlarger(seefigure7.1)(Kreibiehletal.2022).Accesstocapitalindevelopingcountriesismoredifficultandfinancingcostsmuchhigher,reflectingperceivedcross-borderinvestmentrisksandinternationalcapitalmarketinefficiencies(seebox7.1).66EmissionsGapReport2022:TheClosingWindowFigure7.1Financeflowsandmitigationinvestmentneedsbysector,typeofeconomyandregionSource:AdaptedandmodifiedfromFigureTS.25fromPathak,M.,Slade,R.,Shukla,P.R.,Skea,J.,Pichs-Madruga,R.,Ürge-Vorsatz,D.etal.(2022).Technicalsummary.InClimateChange2022:MitigationofClimateChange.ContributionofWorkingGroupIIItotheSixthAssessmentReportoftheIntergovernmentalPanelonClimateChange.IntergovernmentalPanelonClimateChange.Geneva.https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_TS.pdf.0Actualyearlyflowcomparedtoaverageannualneeds(billionUS$2015/year)Energyefficiency(IEA)TransportElectricityAgriculture,forestryandotherlanduse100015005002000Averageflows(2017–2020)Annualmitigationinvestmentneeds(averageduntil2030)lowlowhighhighMultiplicationfactorsValueGDPshareSectorx2x7x7x70Actualyearlyflowcomparedtoaverageannualneeds(billionUS$2015/year)DevelopingcountriesDevelopedcountries100020003000Typeofeconomyx4x74%9%2%4%x3x5x2x5x10x310Actualyearlyflowcomparedtoaverageannualneeds(billionUS$2015/year)EastAsiaNorthAmericaEuropeSouthAsiaLatinAmericaandCaribbeanJapan,AustraliaandNewZealandEasternEuropeandWest-CentralAsiaAfricaSouth-EastAsiaanddevelopingPacificMiddleEast6009003001200Regionx4x2x3x6x2x4x4x8x3x7x7x15x5x12x6x12x14x28x7x1467EmissionsGapReport2022:TheClosingWindowBox7.1Financingthelow-carbontransformationindevelopingcountries2Parry,BlackandVernon(2021)estimatethatimplicitfossilfuelsubsidies(underchargedenvironmentalcosts,includingclimatechange,andforegoneconsumptiontaxes)amountaroundUS$5.9trillionperyear.Developingeconomiesaccountfor83percentofglobalpopulation,onehalfofglobalGDP(inpurchasingpowerparityterms),and36percentofglobalGDP(atmarket-basedexchangerates)(WorldBank2020).Giventheirdevelopmentneedsandlowpercapitaconsumptionofenergy,virtuallytheentirefutureincreaseinglobalprimaryenergydemandisexpectedtooccurintheseeconomies(InternationalEnergyAgency2021).An'efficient'globalfinancialmarketwouldmobilizeflowsfromcapitalabundanthigh-incomeeconomiesforinvestmentinfaster-growingandcapital-scarcedevelopingeconomiesintheory(seesection7.3),butthismobilizationismissinginpractice(Agenor2001;GourinchasandJeanne2006;Obstfeld2021).Thereareatleastthree‘frictions’thatpreventcapitalmarketsfrominvestingmoreindevelopingcountries.First,theperceivedhighrisksofinvesting(Koepke2018),sometimesattributedtoweakerpolicysettingsandcompoundedbycreditratingagencyriskassessmentandtheirobservedbiasortendencytoassignhighercreditratingstofirmsandenterpriseslocatedinfinancialcentres(Ioannou,WójcikandPažitka2021).Exchangerateriskscanbeanadditionaldeterrentincontextswherelocalcapitalmarketsarenotwelldevelopedandtheriskscannotbehedgedbecauseoflimitedriskmarkets.Inmarkedcontrast,investmentsinfossilfuelsectorsinmanydevelopingcountriesareconsideredlessriskybecausesuchinvestments,asgloballytradedprimaryenergysources,havegreaterassetbackingandliquidity.Forexample,thesinglebiggestprivateinvestmentinsub-SaharanAfricain2020wasinfossilfuel(liquefiednaturalgas[LNG])exportinvestment(Pekic2022).Second,persistent‘home-bias’ofinvestorsinhigh-incomemarketstoinvestwithintheirownborders,contraveningefficientcapitalmarketsfunctioning(HauandRey2008)(Ardalan2019).Finally,observedprocyclicalvolatilityofcapitalflows(largerinflowsin‘goodtimes’andfasteroutflowsin‘badtimes’)canexacerbatetheproblemandleadtoperiodiceconomiccrises,debtdefaultsandexchangeratevolatility(Dadush,DasguptaandRatha2000).Thesethreefrictionscanpotentiallyworsenwithincreasingclimatevulnerabilityandunsustainabledebtburdens(Volzetal.2020)orleadtoa“climateinvestmenttrap”,especiallyforleastdevelopedcountries,asinsub-SaharanAfrica(Amelietal.2021).Multilateraldevelopmentbanks(MDBs)andregionaldevelopmentbankscanplayalargerandcountercyclicalrole,buttheiroverallroleinglobalcapitalmarketsisrelativelysmallanddecreasing(seesection2).StrategicinternationalpositioningandgrowingfinancialresourceshaveledtoalternativeSouth-Southfinancinginrecentyears(Chen,DollarandTang2016).Somedevelopingcountrieshavealsobenefitedfromnewmarketinstruments,suchasgreenbonds(seesection2),butthishasnotprovidedasolutiontothefinancingdifficulties.Investmentsinfossilfuelassetsneedtodeclinerapidly,becausetheyworkagainstthecleanenergytransitionnowandlockinGHGemissionsfordecadestocome,leadingtostrandedassetsinthefuture(Campiglioetal.2018;Mercureetal.2018;Kreibiehletal.2022).ThefinancialsectorhashistoricallyfundedandishighlyexposedtoGHG-intensiveassets(seesection7.2),includingfossilfuelextractionandGHG-intensiveindustrialsectors(e.g.steelandcement).Forexample,oftheequityholdingsportfoliosoftheEuropeanUnion's50biggestbanks,4–13percentisdirectlyinthefossilfuelsectorand36–48percentisinclimate-relevantsectorssuchasfossilfuels,utilitiesandenergy-intensiveindustries(Battistonetal.2017).Acrossallportfoliosintheenergysector,renewablepowergeneratedhigherreturnsthanfossilfuelinvestments(Fomicovetal.2020).Additionally,currentreturnsinfossilfuelinvestmentsareonlypossiblebecauseofthecontinuedabsenceofcleargovernmentpoliciestocounteractrisingclimaterisk(Griffinetal.2015)andbecauseofcontinuedpublicfossilfuelsubsidies.Explicitfossilfuel-relatedsubsidies(US$340billionannually)2areestimatedtobemuchgreaterthanforrenewableenergy(US$170billion)(IPCC2022).Itisalsointhelong-terminterestofthefinancialsystemtoreduceinvestmentsinfossilfuelassets,becauseaconsiderableshareoffossilfuelassetsislikelytobecomestranded(Campiglioetal.2018;Mercureetal.2018;Kreibiehletal.2022).Basedonongoinglow-carbontechnologytrends,globalestimatesofpotentialstrandedfossilfuelassetsamounttoatleastUS$1trillion.Whenmorestringentpoliciestolimitglobalwarmingtowellbelow2°Careadopted,thesecanincreasetoUS$4trillion(Mercureetal.2018).Togetherwithsocietalandlitigationrisks,thesetechnologicalandpolicyriskscausea“transitionrisk”that68EmissionsGapReport2022:TheClosingWindowshouldbemanagedtoavoidfinancialinstability(Campiglioetal.2018).Theburstingofacarbonbubblecannotberuledout(Griffinetal.2015).7.2AligningfinancialsystemactorswithclimatechangeThecorefunctionofthelargeandcomplexglobalfinancialsystemis“tofacilitatetheallocationanddeploymentofresources,spatiallyandacrosstime,inanuncertainenvironment”(Merton1990).Thefinancialsystemisanetworkofprivateandpublicinstitutionssuchasbanks,institutionalinvestorsandpublicinstitutionsthatregulatethesafetyandsoundnessofthesystembutalsoco-lendorfinancedirectly.Financialsystemsareregulatedastheyinfluencetheeconomicsystem,andtheircapabilitiesfacilitatethegrowthandproductivityofrealassets(seefigure7.2formoreinsightintokeyrolesandrelationsofactorsinthefinancialsystem).Thesizeofassetsheldbyamyriadoffinancialactorsinglobalcapitalmarketsisverylarge:recentestimatesindicateUS$128trillioninglobalbondmarkets(InternationalCapitalMarketAssociation2020),US$83trillioninbankingcredit(BankforInternationalSettlements2021),andUS$124trillioninequitymarkets(SecuritiesIndustryandFinancialMarketsAssociation2021),totallingsomeUS$225trillionincredittothenon-financialsector(BankforInternationalSettlements2021)andgrowingbyabout7percent(US$15trillion)annually.Givenrapidlychangingeconomicopportunities,risksandreturns,decisionsbyactorsincapitalmarketstochangetheirallocationofassetsevenmodestly,ornot,haveanenormousbearingoneconomictransitions(seebox7.2).Figure7.2Thefinancialsystem,itsactorsandtheirrolesandrelationsSource:Authors’illustration,basedonClimateFinanceLeadershipInitiative(2019)SystemicriskDevelopmentfinanceinstitutionsExportcreditagenciesFundowner,includinginstitutionalinvestorsClimatefundsRisksharing,co-lendingDelegateDirect:publicfinanceAssetmanager,includingcommercialbanksRatingsagenciesEquityandbondmarketsInsurancesLoans,bonds,sharesRisk/returnIndirect:policiesinfluenceinvestmentsPrivateandpubliccorporates(CAPEXandOPEX)FossilfuelflowsClimate-consistentflowsFinancialregulatorsandcentralbanksGovernments(e.g.fiscalpolicy)69EmissionsGapReport2022:TheClosingWindowBox7.2Complexityoffinancialsystem,policyandclimatefinanceprogressClimate-relatedinvestmentshaveincreasedconsiderablyoverrecentyearsandsohastheinterestinclimateactionofvariousactorsinthefinancialsystem.Nevertheless,progressonthealignmentoffinancialflowstowardsthegoalsoftheParisAgreementremainsslow(Kreibiehletal.2022).Thisboxthereforeputstheclimate-relatedfinanceflowsinabroadermacrofinancialeconomicperspective.Trackedclimate-relatedfinanceflowsfallconsistentlyshortofthelevelsneeded.Theirshareintotalcredittothenon-financialsector(coredebt)during2012–2021remainedverylow(risingfrom0.23percentin2012to0.32percentin2021)(IPCC2022;BankforInternationalSettlements2022).Inequitymarkets(reportedfrompublicdata),themarketcapitalizationofthetop-tenlistedrenewableenergycompaniesgloballywasasmall0.2percent(US$215billion)ofglobalequitymarketsin2021.Toputthisinperspective,marketcapitalizationofmajortechnologystockswasbiggerandrosefaster(US$600billionin2012tooverUS$9trillionby2021).Evenhighlyspeculativecryptocurrencystocks(withenergy-intensive‘mining’operations)reachedhigherpeakvaluations(US$2trillionin2022),beforeslidingrecently.Inthewakeofthe2008financialcrisis,there-emergenceoftherealestateandhousingsectorasareinvigoratedglobalassetclass,afteritsearliermarketcollapse,hasbeenremarkable(Fields2017;Ghent,TorousandValkanov2019;Christophers2021).Between2012and2021,aperiodthatsawasurgeindebtandequitymarkets,therewasnosignificantincreaseintherelativescaleofclimatefinance,despitelargetechnologygainsasseeninrenewableenergy.Incontrast,othersectors,manyhighlyspeculative,sawextremelyrapidgrowth,attractingbiggerinvestmentandfinancingsupport.Theshareof‘zombie’firms,forexample,definedasfirmsunabletoevencoverdebtservicingcostsfromcurrentprofits,rosefrom4percentinlate1980sto15percentby2017.Suchmisallocationinfinancialmarketscanbeattributedtolownominalinterestratesandquantitativeeasingpoliciesaswellasariseincentralbankbalancesheetassets,whichhitcreditworthyfirms(Acharyaetal.2019).Aconsensusoncuttingwealthtaxesemergedinpublicfinances(Lierse2022)whilefossilfuelfinancingremainedunabated(Kirschetal.2022).Whethersuchbroadermacroeconomicpolicyandfinancedirectionscarriedsignificantnegativeeffectsontheslow,observedprogressofclimatefinanceisacomplexquestion(van’tKloosterandFontan2020),buttherelativemagnitudesconfirmthatclimatefinancehasnotbeensignificantinthefinancialsystemnorintheoverallmacrofinancialsettingglobally.Aglobaltransformationfromaheavilyfossilfuelenergy-dependenteconomytoalow-carboneconomyisexpectedtorequireinvestmentsofatleastUS$4–6trillionayear,arelativelysmall(1.5–2percent)shareoftotalfinancialassetsmanaged,butsignificant(20–28percent)intermsoftheadditionalannualresourcestobeallocated.Whilethesizeoftheglobalfinancialsystemisclearlysufficienttoclosefundinggaps,thereisaqualitativemismatchbetweenavailableandrequiredtypesofcapital(PolzinandSanders2020;IPCC2022).Table7.1ActorsinthefinancialsystemrelevanttoclimatechangeActorRoleinfinancialsystemGovernmentsSetoutpoliciesandregulations,especiallytomanagepublicgoodsexternalities,suchasclimate.Inaddition,governmentsinfluenceinvestmentsthroughfiscalpolicylevers(includinggreenprocurement),publicfinance(includinggrants,loansandsovereignguarantees)andinformationinstruments(Whitleyetal.2018).Furthermore,governmentsownandoperatefinancialinstitutionssuchasdevelopmentfinanceinstitutions(DFIs),‘green’banks,climatefunds,exportcreditandaidagencies(seebelow).CentralbanksandfinancialregulatorsPrimarymandatetoensurepricestabilityandfinancialstabilityintheeconomy.Institutionalsettingsvarybetweencountries,butmanycentralbanksalsohaveamandatetosupportgovernmentpolicies.DikauandVolz(2021)foundthat114centralbanksconsidercurbingclimatechangeaspartoftheirexistingmandate.Besides,climatechangeposesriskstofinancialstabilityandhasimplicationsforprudentialregulation.70EmissionsGapReport2022:TheClosingWindowDFIs(bilateralandmultilateral)Providefinancialandtechnicalsupporttodevelopingcountriespublicandprivatesectors,therebyfillinggapswheregovernmentsandotherfinancialactorscannotdeployneededinvestmentsincriticalsectorsoftheeconomy.Backedbytheirshareholders,DFIshaverecognizedtheneedtoplayanessentialrolethroughinitiatives(e.g.greenbondprogrammesbytheInternationalFinanceCorporation,AfricanDevelopmentBankandEuropeanInvestmentBank;mainstreamingclimateinfinancialinstitutions’initiatives)inaddressingglobaldevelopmentchallengessuchasclimatechange.InternationalclimatefundsChannelinternationalpublicfinancetomitigationandadaptationprojectsindevelopingcountries.Thefundsvaryinsize,geographiccoverage,aimsandgovernance.Exportcreditagencies(ECAs)Officialorquasi-officialgovernmentagenciesthatprovidegovernment-backedsupportfortheinternationaloperationsofcorporationsfromtheirhomecountry.Suchsupportcaneithertaketheformofcredits(financialsupport)orcreditinsuranceandguarantees(purecover)orboth,dependingontheECA'smandate.Thisway,ECAscancrowdinbillionsofdollarsofprivateinvestment.InsuranceindustryProvidesinsuranceasariskmanagementinstrumenttohedgeagainsttheriskofcontingentoruncertain(financial)loss.Insurancepayoutsforcatastropheshaveincreasedsignificantlyoverthelast10years,andthistrendisexpectedtocontinue(Kreibiehletal.2022).CommercialbanksCommercialbanksarefinancialinstitutionsthatacceptdepositsfromthepublicandgiveloansforthepurposesofconsumptionandinvestmenttomakeprofit.Loansfromcommercialbanksarethemostimportantsourceofexternalfinanceforfirms.InstitutionalinvestorsInstitutionalinvestors,suchasmutualfunds,pensionfundsandinsurancecompaniesinvestmoneyonbehalfofothers.Theyhavelargeassetsundermanagement(US$84trillion)inOrganisationforEconomicCo-operationandDevelopment(OECD)countriesin2017(OECD2018)andlongtimescalesoftheirliabilities,whichcanpotentiallymatchthetimescalesofclimatechange(Amelietal.2020).EquitymarketsComparedtootherfinancialinstruments(e.g.debtinstruments,guaranteesandgrants),equityinvestmentsrequireenhancedassessmentandgovernance(OECD2021)becauseofincreasedinvestors’ownershipofacompanyorassetclass.CreditratingagenciesCreditratingagencies(CRAs)arecrucialactorsforaccesstofinanceoninternationalanddomesticcapitalmarkets.CRAsratethecreditworthinessofdebtandequitysecuritiesbasedonquantitativeandqualitativeanalyses(Mathiesen2018).Notes:Seealsofigure7.2.Theactorswithinthefinancialsystemcanplaykeyrolesinshapingitstransformation(seeHölscher,WittmayerandLoorbach2018).Someoftheactorsinthefinancialsystemhaveanexplicitmandateoraimtoenableactiononclimatechange(table7.1).However,itisnottheprimaryobjectiveofanyofthem,exceptfortheclimatefunds,toaddressclimatechange.Furthermore,successfulintegrationofclimaterisksintofinancialdecision-makingrequiresatime-horizonofmultipledecades,butmostactorsintheclimatefinancesystemtypicallyhavetime-horizonsof1–5years(Chenet2019).AligningtheactorsofthefinancialsystemwiththegoalsoftheParisAgreementisthereforechallenging.PublicsectoractorsPublicsectorauthoritiesaremoststronglylinkedtoclimatechange,inparticulargovernments,centralbanksandregulators,DFIsandclimatefunds.Governments,assignatoriestotheParisAgreement,havearesponsibilitytoimplementitsarticle2.1(c),buttheyarealsoimportanttogiveclimatepolicysignalstoaddressmacroeconomicuncertaintyandtohelpguideinvestmentdecisions(Kreibiehletal.2022).Centralbanksandfinancialregulatorsrecognizethatclimatechangecanimpactthemacroeconomicaggregatesthattheyarerequiredtostabilize,suchasinflationandemployment(Robins,DikauandVolz2021).Furthermore,climateimpactsandthetransitiontonetzerowillaffectfinancialmarkets(keyforthemonetarytransmission),financialinstitutions(oftensupervisedbycentralbanks)andthebroaderfinancialsystem,forwhichcentralbankshave71EmissionsGapReport2022:TheClosingWindowamacroprudentialmandate(Chenet,Ryan-CollinsandvanLerven2021;Svartzmanetal.2021).Centralbanksmustchoosehowtoreacttoclimatechange:bytryingtomaintainthestatusquobyfocusingpurelyonclimateriskassessment,whichismoreeasilyframedwithintheirprimarymandateoffinancialstability,orproactivelybyaddressingclimatechangeandtransitionrisksbyincludingclimateriskcriteria,e.g.intheirassetpurchaseprogrammes,adjustingcollateralframeworksandcapitalrequirements(seeBoltonetal.2020).Theformerwillposeabarriertothetransformationofthefinancialsystembecauseriskdisclosurealonedoesnotensuretheexpectedshiftinfinancialdecision-making(Amelietal.2021).BilateralandmultilateralDFIshaverecognizedtheirroleinaddressingclimatechange.Forexample,someEuropeanDFIshavecommittedtoendinglendingtofossilfuelprojectsby2030aswellasimmediatelyceasingthefinancingofnewoilandcoalprojects(e.g.EuropeanInvestmentBank,InvestmentFundforDevelopingCountries[IFU],andSwedfund,whichhasinvestedinrenewablesonlysince2014).Usinginstrumentssuchasloans,guaranteesandequityacquisitions,manyDFIsleveragetheirfinancialresourcestomobilizeandscaleupfinancetoaddressclimatechangeindevelopingcountries(Lemma2015;Attridge,teVeldeandAndreasen2019).However,despitetheirpotentialsignificanceinclimatefinance,theeightlargestinternationalDFIsonlymobilizedUS$50billioninmitigationfinancein2020(AfricanDevelopmentBanketal.2020).Thismayreflecttheirpreferencefordirectprojectfinanceoperations(Hourcade,DasguptaandGhersi2020)overde-riskingandcrowdinginprivatecapital(AfricanDevelopmentBanketal.2015)aswellaslimitsontheircapitalexposure(single-countryexposurelimits).ClimatefundshaveastrongerfocusonclimatechangethanDFIsbuttheyarerelativelysmall:together,theyheldUS$34.8billionindepositsfromdonorsandcommittedUS$28.4billioninapprovedprojectsbyJanuary2022(ClimateFundsUpdate2022).Somefundsfunctionexclusivelythroughgrants,asinthecaseoftheAdaptationFund,whileothers,suchastheGreenClimateFund(GCF),useavarietyoffinancialinstrumentstoengagepublicandprivateactorstoimplementandco-financeprojects.Since2020,theGCFalsointendstosupportmainstreamingofclimateconsiderationsindevelopingcountries’nationalfinancialsystems,bydevelopingclimateinvestmentcapacitiesofnationalinstitutionsorbyformulatingsupportivepolicy/regulatoryframeworks(GCF2020).Finally,exportcreditagencies:between2016and2018,ECAsfromOECDmembersreportedUS$5.7billionofclimatefinancethroughexportcredits(OECD2021).Inthesameperiod,theECAsoftheG20providedat3TheBaselaccordsproviderecommendationsonbankingregulationsissuedbytheBaselCommitteeonBankingSupervision.BaselIIIintroducesstricterstandardsforbanksonboththeliquidityoftheirassetsandtherobustnessoftheircapital.leastUS$120.3billioninsupportforfossilfuelprojects(excludingtheExport-ImportBankoftheUnitedStates)(TuckerandDeAngelis2020).ECAsthuscurrentlytendtoworkagainsttheimplementationofarticle2.1(c)andthelow-carbontransformation(seeShishlov,CenskowskyandDarouich2021).Ifthepublicsector-backedfinancialsystemactorswouldworkinanalignedwaytowardsshiftingfinancialflowsawayfromhigh-GHGinvestmentstolow-GHGones,theycouldmultiplyeachother’simpactandincreasetheviabilityoflow-GHGprojects.PrivatesectoractorsPrivateactorsinthefinancialsystemincludecommercialbanks,insurancecompanies,institutionalinvestorsandprivateequity(equitymarkets).Commercialbanksaresimultaneouslyanimportantsourceofdebtfinancingforlow-carboninvestments(Polzin,SandersandTäube2017)andasourceoffossilfuelfinancing.Asanillustration,theworld’s60largestbanksaloneprovidedUS$4.6trillioninfossilfuelfinancinginthesixyearssincetheadoptionoftheParisAgreement,withnosignofdecline(seeKirschetal.2022).Macroprudentialregulation,suchasBaselIII,3promotesshort-termismandhencenegativelyaffectsthealreadyproblematicaccesstofinanceoflow-emissionsectors(Campiglio2016).Fortheinsuranceindustry,climatechangeisathreatbecauselosseslimittheaffordability(throughincreasedpremiums)andavailabilityofcoverage(wheninsurerswithdrawfromparticularperilsandgeographicalareas)(Collier,ElliottandLehtonen2021).Financialinstrumentsarebeingdevelopedbyprivateinsurersandotherfinancialservicesentitiestopriceinclimaterisks,butamajorityofthecompaniesdoesnotintegrateclimatechangeintotheirriskmanagementpractices(e.g.ThistletwaiteandWood2018).Furthermore,internalconflictsmayarisewhenaninsurer’sunderwritersadviseagainstissuinginsuranceinareaswithincreasingclimaterisk,whiledoingsowoulddecreasethevalueoftheinsurer’srealestateinvestmentsinthatsamearea(Riedl2022).Institutionalinvestors(includinginsurers)accountedforjust0.2percentoftotalclimate-relatedfinanceflowsin2016(Amelietal.2020).Theverybroadcurrentpermissiveclassificationsofenvironmental,socialandgovernance(ESG)investmentsobscuresratherthanpromotesscaled-upclimatefinances(Berg,KölbelandRigobon2019).Moresignificantactionhasalsobeenlimitedbytheprioritiesofinstitutionalinvestorsonshort-termreturns,lackofclimateexpertiseandtheirlingeringscepticismaboutclimateriskexposure.72EmissionsGapReport2022:TheClosingWindowInequitymarkets,privateequityexpansion(e.g.corporatefinancingorearly-stageinvestorsintoaportfolioofstart-ups)isessentialforriskiertranchesoflow-carboninvestments(Hourcadeetal.2021),butprivateequityenergyinvestmentscontinuetobedominatedbyGHG-intensiveactivities.ThehighercostofequitycapitalforGHG-intensiveproductionactivitiesprovidesstillarelativelyweakmarketdisincentivemechanism(Trinksetal.2022).Whilestillpredominantlyabarriertoaddressingclimatechange,privateactorsinthefinancialsystemdemonstrateawillingnesstoactonclimatechange.Forexample,theUnitedNations-convenedNet-ZeroBankingAlliancebringstogetheraglobalgroupof117banks,currentlyrepresentingabout39percentofglobalbankingassets(UNEPFinanceInitiative2022).InsurancecompaniesandinstitutionalinvestorsareincreasinglyawareoftheriskclimatechangeisposingaswellasincreasingESGpressuresfromshareholdersandstakeholders.However,effectshavebeenlimitedsofar.ThisiswhereCRAsmaycontribute.ClimateandESGrisksareincreasinglyintegratedintoCRAs’ratingmethodologies(Mathiesen2018;Angelovaetal.2021)andclimateriskshavestartedtonegativelyaffectcreditratings(CevikandJalles2020).Especiallyindevelopingcountries,higher-riskpremiumshavealreadyraisedcostsofpublic(sovereign)capital(Beirne,RenzhiandVolz2021;Klingetal.2021).However,climateriskstendtomaterializewithhighuncertaintiesandonlongertime-horizons(NetworkforGreeningtheFinancialSystem[NGFS]2020;CoelhoandRestoy2022),whileratingsissuedbyCRAsarerelativelyshort-term-oriented.ThelimitedresponsebyCRAstothegrowingscientificandeconomicevidenceofclimate-relatedrisksmaycausemarketsandinvestorstostruggletocorrectlyidentify,priceandmanagetheirinvestments(Agarwalaetal.2021).Insummary,mostactorsinthefinancialsystemonlyaligntheiractivitieswiththeaimsoftheParisAgreementtoalimitedextentcomparedtothetotalscaleoftheiractivities.Foractorstodomoreandmovefastertoaddresstheclimatecrisis,bothindividuallyandasasystem,externalforcesofclimatepolicy-settingbygovernmentsaswellasfinancialregulatorsandsupervisorsarenecessary.Box7.3GenderresponsivetransformationofthefinancialsystemAgrowingnumberofrecentstudies(e.g.Bosone,BogliardiandGiudici2022;Clancyetal.2020;RobinoandJackson2022)haveconsolidatedtheimportanceofagenderlensandgenderresponsivenessininvestmentsandfinancialpoliciesforlow-carbontransitions,bothintermsofequityandincreasedimpact.Agenderedapproachshouldensurethatwomenwillgainequallyintheemergingopportunitiesfromagreeneconomy,whilealsoimprovingeffectivenesstodecarbonizethrough,forexample,girls’education.Womenareinordinatelyaffectedbyclimatechange,creatingstronglinksbetweengenderandadaptation.Yetevidencehasshowntherelevanceofgenderandgender-smartinvestmentsalsoformostmitigation-relatedareas,fromrenewableenergytoagricultureandforestry,infrastructureandwaste.Thepracticeisdevelopingtoboostwomen’sfinancialinclusioninclimatefinance/investment,withtheexampleofclimatefunds(Kreibiehletal.2022).Overall,however,practiceandliteratureremaindeficient,particularlyinadvancingthebusinesscasetomainstreaminggenderinthebroadercontextofshiftingfinanceflows.7.3Transformingthefinancialsystem:SixapproachestopublicpolicyInspiredbytheinnovationsystemliterature(Bergeketal.2008;Geels2002),thefinancialsystemcanbeviewedasacomplexconstellationofactors,interactionsandinstitutionswithaspecificinternaldynamic,aswellasarelationtotherealeconomyofprojects,assetsandpolicyinstruments.Whenasystemisinfluencedbyexternalpressuresorbysocial,technologicalorinstitutionalinnovationswithinthesystem,itcanchangerapidly.Thishasbeenextensivelydocumentedfortechnologicalinnovationsystems(Blancoetal.2022)andrecentlyscholarsstartedapplyingtheconcepttofinance(Hafneretal.2020;Naidoo2020;SteffenandSchmidt2021).Processestoshapetransitionsarenecessarilyaboutinteractionsbetweentechnology,policy/power/politics,economics/business/markets,andculture/discourse/publicopinion(Geels2011).Therearemultipleapproachestoreachinflectionpointsthatleadtoafinancialsystemcapableofsupportingactionstolimitwarmingto1.5°C:▶Increasetheefficiencyoffinancialmarkets.Inwell-developedfinancialmarkets,marketsfunctionefficiently,butintheir‘weak’form,marketsareinefficient,especiallyinthecontextofuncertainty.However,agentscancorrectthiswithtimeandbetterinformation(Kruegeretal.2020).Financialinnovationsthrough‘engineering’ofnewfinancial73EmissionsGapReport2022:TheClosingWindowproductstoaddressspecialneedsareamarkofsuchrelativelyefficientmarkets.Themainpolicyprescriptionisbetterinformation,includingtaxonomiesforsustainableeconomicactivitiesandtransparencythroughdisclosureofclimaterisks(Carney2015;Dietzetal.2016;ZenghelisandStern2016;Campiglioetal.2018).Indevelopingcountrycontexts(Bond,TyboutandUtar2015;Hamidetal.2017),prioritieswillincludecapacity-buildingandstrengtheninginstitutions(Banga2019).Relyingsolelyontheefficientmarketsandinformationdisclosurecanhideimperfectionsthatareinherenttofinancialmarkets’structureandpractices(Ameli,KothariandGrubb2021;BoltonandKacpercyzk2021)anddependontheuncertain(behavioural)responsesofboards,stockholdersandmarketstosuchdisclosures.Examplesofincreasingtheefficiencyoffinancialmarketscanbefoundinbothdevelopedanddevelopingcountries.Forexample:●throughvoluntarydisclosures(e.g.recommendationsfromtheTaskForceonClimate-RelatedFinancialRiskDisclosures)andmandatoryrules(e.g.EuropeanUnionCorporateSustainabilityReportingDirective)onenterprises’observedemissionsandprojectedrisksfromclimatechange●thedefinitionoflow-carbonconsistentortransitionactivitiesviataxonomiesandclassificationsystems(e.g.ChineseGreenBondCatalogueandGreenIndustryGuidingCatalogue;BangladeshiGreenTaxonomy;EuropeanUnionTaxonomyforsustainableactivities)●theprotectionofconsumersofESG-relatedservicesagainst‘greenwashing’(e.g.bytheUnitedStatesofAmericaSecuritiesandExchangeCommissionortheGermanFederalFinancialSupervisoryAuthority)▶Introducecarbonpricing.Inthepresenceofstrongexternalitiesandmissingorincompletefuturesmarkets,thisapproachsuggeststhatthemostimportantresponseistopricecarbonexplicitlyandhighenoughforittoprovidesignalsforinvestorstoalterdecisions(Aghionetal.2016).Thiscanbedonethroughcarbontaxesorthroughcap-and-tradesystems(Haites2018).Carbontaxeshavepracticalappealbecausetheyprovidemorecertaintyoverfutureemissionsprices,helpingencouragelow-carboninvestmentsandlowerenergyuse.Emissionstradingschemes,ontheotherhand,providecertaintyoverfutureemissionlevels.Theycanbedesignedtomimicsomeoftheadvantagesoftaxes,includingthroughcarbonpricefloors(Newbery,ReinerandRitz2019).Anincreasingnumberofcountriesareputtingcarbonpricinginplace.Emissiontradingschemesandcarbontaxesnowcover30percentofallglobalemissions,withaglobalaveragepriceofUS$6pertonofCO2(Black,ParryandZhunussova2022).Boththecoverageandthepriceareinsufficienttotransformthefinancialsystem:theInternationalMonetaryFund(IMF)(Black,ParryandZhunussova2022)suggestedaglobalaveragepriceofUS$75asrequiredby2030.Similarly,theHigh-LevelCommissiononCarbonPrices(2017)concludedthatanexplicitcarbonpricelevelshouldbeatleastUS$50–100/tonsofCO2(tCO2)by2030tolimitglobalwarmingtobetween1.5°Cand2°Cwarmingabovepre-industriallevels,providedasupportivepolicyenvironmentisinplace.Thereportproposedthatthisgoalcanalsobeachievedwithlowernear-termcarbonprices,butthatthiswouldrequirestrongeractionthroughotherpoliciesandinstrumentsand/orhighercarbonpriceslater(SternandStiglitz2017).Currently,thereareproposalsforhighernear-terminternationalcarbonpricefloors(Chateau,JaumotteandSchwerhoff2022),differentiatedbetweenhigh-,medium-andlow-incomecountries(US$75,US$50andUS$25,respectively).Injurisdictionswithoutexplicitcarbonpricing,shadowpricingisatoolforfirms,developmentbanksandgovernmentstointernalizeacarbonpriceininvestmentsandtakemoreinformeddecisions.Rising(minimum)carbonpricefloorscanstrengthensuchfutureinvestmentdecision-making(SternandStiglitz2017).▶Nudgefinancialbehaviour.Climatefinancemarketsaresubjecttodeepinformationasymmetry,risk-aversionandherdbehaviour(contagionandbandwagon),allofwhichresultininefficientchoices,statusquoanddeteractions.Inaddition,thefinancialsystemischaracterizedbytheexistenceofstrongandcomplexnetworks,nodesandinter-linkagesamongfinancialinstitutions(Battistonetal.2016),(Hüser2015).Whilethismightcreatehard-to-changebehaviourandinertia,theycanbeaddressedthroughcrediblepublicsignalsdirectedatsuchfinancialnetworksandnodes.Routinesarestronglydeterminedbynetworksandarerelativelyeasilyadaptable:imitationofotheractors’newroutinescanresultinherdingeffectstowardstransformation(SteffenandSchmidt2021).Onthedemandside,solutionstoreduceconsumptionofGHG-intensiveusescanbesignificant,reducing40–70percentofthegapinlow-carbontransition(Creutzigetal.2016;Creutzigetal.2022;IPCC74EmissionsGapReport2022:TheClosingWindow2022)andcanenhancehouseholdwelfare.Currentdemand-sidepolicystrategies,however,stillrelyheavilyonindividualself-responsibility.Governmentsneedtosteermoreactively,throughtaxes,subsidies,regulations,standards,labellingandpublicinfrastructure,especiallyinsectorssuchasmobility,food,housingandurbantransitions(Mobergetal.2019).Inthecaseofelectricvehicles,forexample,inadditiontosubsidiesandtaxrebates,chargingdensity,fuelpricesandroadpriorityincentivesareincreasinglyimportantacrosscountries(IngeborgrudandRyghaug2019;Wangetal.2019).Greenfinanceinstitutionsadditionallyplayacriticalrole(PolzinandSanders2020;Song,XieandShen2021)innudginginvestorandfinancialbehaviour(Zhang,LiandJi2020;Koutsandreasetal.2022).Institutionsandlocalgovernmentspledgingtodivestfromcarbon-intenseassets,forexamplecoalandoilcompanies,canhelp.Buildingonclimateawarenessanditsassociatedmoralclaims,shareholdersandactivistscreateuncertaintyamonginstitutionalinvestorsaboutthefuturestabilityofthefossilfuelindustryanditsreliabilityasacontinuingsourceofprofitableinvestment(AylingandGunningham2017).Theeffectivenessofdivestmenthasbeencriticized,forexamplebecauseentitiesthataredivestingdonotaccountforalargeshareofinvestors,theeffectsmightonlybetemporary(Ansar,CaldecottandTilbury2013),orbecauseinvestmentfundsarenotmandatedtooperatebasedonethicsbutonrulesthatprotectthemfromtheforcesofpolitics(Mercure2019).However,thestigmatizationandreputationaldamagesimpactthefossilfuelcompanies(AylingandGunningham2017).Basedonadivestmentcampaignby350.org,about1500institutionsin71countriesrepresentingUS$40trillioninassetsaredivesting(Lipman2021).Divestmentalsotakesplaceoutsideofthismovement.Forexample,Europe’sbiggestpensionfund,ABPoftheNetherlands,pledgedtodivestUS$17.4billionworthoffossilfuelassetsby2023(Marsh2021)andstatedthatitreducedtheCO2footprintofitsportfolioby40percentin2022comparedwith2015(ABP2022).▶Createmarkets.Publicpolicycanacceleratenewproductmarketsforlow-carbontechnology,replacingtheolder,inefficient(fossilfuel-based)technology.Publicpolicyactionsinclude:(a)financialandproductmarketregulations(suchasfuelorenergy-efficiencystandards),(b)alteringtherisk-rewardprofilesofinvestmentclassesthroughpublicpolicies,taxesandsubsidiesand(c)directlyengaginginpublicfinancingthroughpublicfinancialinstitutions,greenbanksandinnovationfunds,publicfinancialguaranteestoprivateinvestments,andbypubliccontractingandguaranteedpurchaseagreements.Allactionslowertherisksofnewtechnologyandcanleadthefinancialsystemtofollowandshiftfinancialflowsaccordingly.ThemostimportantrecentexampleofswiftpublicactionstorapidlydevelopaproductmarketusingablendofindirectanddirectinstrumentswasthedevelopmentofCOVID-19vaccines.Inthecaseoflow-carbonproductmarkets,anexampleistherapiduptakeofLEDsinIndia’slightingmarketfromnegligibletoadominantshareinfiveyears(annualsalesgrew130timesbetween2014and2018)(Kamatetal.2020),attributabletoaprogrammeaimedatloweringpricesthroughat-scalepublicagencyprocurement.Industrializedcountriescansupportthecreationofmarketsindevelopingcountries.Developmentbanks,includinggreenbanks,canplayamoreactiveroletostimulatefinancialmarketsasnewerproductmarketsarebeingaccelerated.Thesebanksareatthenexusofthepublicandprivatesectorsandthedevelopedanddevelopingworlds,andwiththeirabilitytoprovideconcessionalpublicfinancing,alongsidetechnicalandpolicyexpertise,andworkingwithdomesticfinancialinstitutions,theycanlowerrisksinnewlow-carbonassetmarkets(e.g.acceleratedsolarrooftoppowerinIndia).MDBscansupportmarketcreationthroughshiftingfinancialflows,stimulatinginnovationandhelpingtosetstandards(e.g.forfossilfuelexclusionpolicies,GHGaccountingandclimateriskdisclosure).Consistencyofpublicpolicyis,however,essential:signalsmustgoinonedirection.Alignmentofpublicpoliciestowardscreatingnewmarketsinlow-carbonenergytransitionalsorequiresexitingfromsubsidiesandothersupporttofossilfuelsectors,suchasguaranteesfromECAs.Steeringinotherdirectionsprolongsthestatusquo,andisexpensiveandineffective.Italsopreventsnormsandpracticesfromchanging,becausesignalstowardstheactorsinthefinancialsystemareunclear.▶Mobilizecentralbanks.Centralbanksareincreasinglyaddressingtheclimatecrisis,andhavedifferenttoolsattheirdisposal(seesection7.2).InDecember2017,eightcentralbanksandsupervisorsestablishedtheNGFS,whichhasnowgrownto116membersand18observers.Mandatesofcentralbanksindevelopingcountriesareoftenbroaderthanthoseofcentralbanksindevelopedcountries;Moreconcreteactiontowardsthisapproachcanthereforebeobserved.Forexample,theReserveBankofIndiarequiresthatcommercialbanksallocateacertainproportionoflendingtoalistof‘prioritysectors’,includingrenewableenergy,andBangladeshBankhasintroducedaminimumcreditquotaof5percentthatfinancialinstitutionsmustallocatetogreensectors(Campiglioetal.2018).75EmissionsGapReport2022:TheClosingWindowFurthermore,prudentialregulationsareincreasinglystartingtoincludeclimatechange.Prudentialregulationaimsatensuringthatbanksandotherfinancialinstitutions(themicrolevel)andthewholeofthefinancialsystem(themacrolevel)arerobustagainstmarketrisks.Apartfromstresstesting,centralbankscouldalsoconsidergreenquantitativeeasingandmakingtransitionplans,ortransitionpathways,mandatoryforcommercialbanks,forexamplethroughscience-basednet-zerotargetswithinterimemissionsreductiontargetseveryfiveyears,sectoraldecarbonizationtrajectoriesfortheentireportfolio,andminimizingtheuseofoffsets(PinkoandPastor2022).TheEuropeanCentralBank,forexample,announcedtheincorporationofclimatecriteriaintheirassetpurchaseprogrammesin2022.Theprioritizationofwhichbondstopurchase,ortokeepintheirportfolio,iscrucial.Bychoosingtoreleasehigh-emittingassetsfirst,centralbankssendastrongsignaltothemarketforfirmsandfinancialinstitutions.Thesameistrueforchangingcapitalrequirementsandcollateralframeworks.AnotherimportantrecentdevelopmentisthattheIMFhassetupaspecialResilienceandSustainabilityTrustFund(specialdrawingrights[SDR]33billion,equivalenttoUS$45billion)aspartoftherecentSDRissuanceofUS$650billioninAugust2021.Aimistohelplow-incomeandvulnerablemiddle-incomecountriesaccesslong-termfunding(upto20years)forclimatechangeandotherstructuralchallenges,atlowinterestrates,usingapartofnewSDRreserves(IMF2022).▶Setupclimateclubsandcross-borderfinanceinitiatives.Thisapproachdrawsfromgametheoryliterature,andsuggestsastrongadvantageofsmaller‘clubs’ofcooperatingcountries(Nordhaus2015),tomovefasteroncommitmentstoshiftingfinancialflows(sinceglobalclimateagreementshavegreaterdifficultiesincoordinatedactions).Becauseofthesmallersizeandleverageofparticipatingcountries,suchclubscouldalterpolicynormsandchangethecourseoffinancethroughcrediblefinancialcommitmentdevices,suchassovereignguaranteesoncross-borderfinancialflows.Forexample,atCOP26inGlasgow,agroupof34countriessignedanagreementtoendnewdirectpublicsupportfortheinternationalunabatedfossilfuelenergysectorbytheendof2022,exceptinlimitedandclearlydefinedcircumstancesthatareconsistentwitha1.5°CwarminglimitandthegoalsoftheParisAgreement(UnitedNationsClimateChangeConferenceoftheParties2021).ThisagreementdirectlytargetsECAs.Forthetransitionofthefinancialsystem,itiscrucialthatthisagreementisfullyimplementedandthatadditionalcountriesjointheagreement,asJapandidinthecontextoftheG7meetingin2022.TheInternationalJustEnergyTransitionPartnershipinitiativewasalsoannouncedatCOP26,andcouldbeenlargedandoperationalized.Climateclubsaremoreeffectiveandcoulddomore;theycurrentlyprimarilyactasinformation-sharingandvoluntaryarrangementsamongsmallgroupsofinfluentialcooperatingcountries(suchasattheG20)(UngerandThielges2021).Anotherexampleisfossilfuelsubsidyreform,anemergingnorm(SkovgaardandvanAsselt2019)thatisadvocatedbyclimateclubs.Forexample,afterearliercommitmentsbytheG20andtheAsia-PacificEconomicCooperationtoreformfossilfuelsubsidies,thiswasalsomentionedintheUNFCCCGlasgowClimatePact.Ademonstrationeffectcausedbydeepeningtheseinitiativesdomesticallywouldhaveanimportantimpact.Evidenceontheeffectivenessofthesixapproachesabovesuggeststhatthereisnosingle‘silverbullet’thatwilltransformthefinancialsystem,andthatmultipleinstruments,institutionsandactorsunderdifferentapproachesneedtobemobilized(seetable7.2).Forexample,whileinstitutionalinvestorsaremakingmarketsmoreefficientbyapplyingexclusionaryscreens(ornot),theyhavedonesosolelyonthebasisofscope1emissionsintensity,andonlyfortheindustrieswiththehighestCO2emissions(oilandgas,utilities,andmotorindustries)(BoltonandKacperczyk2021).Itwilltaketimeandmorereliabledatatoovercomesuchshortcomings.Similarly,whengovernmentspostponeambitiousclimatepolicy,thetransitionrisksaredownplayed,whichmakestheshort-termeffectsforfinancialstabilitylessproblematic,thuslimitingactionbycentralbankswiththemandatestheyhave(eveniflong-termrisksareaggravated).Instead,nestedandcoordinatedapproachesarelikelytoworkbetterintransformingclimatefinance(SchmidtandSewerin2019;Bhandary,GallagherandZhang2020):theensurethatactionisimplementedinthesamedirection,tailoredtocontextsandpursuedacrossmajorgroupsofcountries,withequityandajusttransitionwithinandbetweencountries.Theinstitutionalchallengestoachievingsuchcoordinatedandcooperativeactions,however,ultimatelydependonpublicsupportandpressurestoavertthesignificantrisksofinaction.Adoptingmultipleapproachesinthesamedirectionultimatelyhelpsaddressavarietyofdifferentbindingconstraintstoacceleratethepaceofchange.Low-carbontransitionsareundertakenbyawiderangeofactorswithdifferinginterests,resources,capabilitiesandbeliefsabouttheirpreferredsolutions(Geels,BerkhoutandvanVuuren2016;Edomahetal.2020).Theotherreasonisthatamultiplicityofapproachesmaysignalastronger‘wholeof76EmissionsGapReport2022:TheClosingWindowsociety’commitment.Forexample,combinationsofcarbontaxes,useofpooledgreenbondmarketsandsupportivestatefiscalpolicieshaveworkedinsomecontexts(Hoff2017;Nassiry2018;Andersen2020;Hansetal.2022).These,inturn,helpdrivefastermovementupthetypicalS-curvesobservedintheuptakeoflargesystem/technological/financetransitionswheresuchtransitionsaretypicallynon-linear(Dasgupta2015;Grubb,DrummondandHughes2020).Table7.2Acceleratingclimatefinanceflowsforemissionsgapreductionandlow-carbontransition:Multipleapproaches,instrumentsandactorsInstrumentsInstitutionsandactorsIncreasetheefficiencyoffinancialmarkets•Financialtransparencyrulesandprotectionofinvestorsandconsumers•Climate-relatedfinancialriskdisclosure(voluntaryandmandatory)•Taxonomiesandclassificationsystems•Financialengineering(structuredfinance,asset-backednon-recoursedebt,venturecapital,privateequityetc.)•Definitionsanddisclosure/recognitionofriskofstrandedassets•Greenbondsandbondmarketclassificationsandstandards,includingESGstandards•Capacity-building•Financialregulatoryinstitutions•Centralbanks•Creditratingandrelatedagencies•Banksandinstitutionalinvestors•BondmarketregulatorsIntroducecarbonpricing•Carbontaxes•Emissionstradingschemes•Fossilfuelsubsidyreduction•Carboncreditinstruments•Ministriesoffinanceandtreasuries•Financialregulatoryagencies•Ministriesofpower/environment•Internationalagreements(e.g.UNFCCC)Nudgefinancialbehaviour•Nudgestoaddressherdbehaviourandbehaviouralandsysteminertias,andtoprovidebenefitsfromswitchingtolow-carbonalternatives•Divestmentmovements•Taxbenefitstoacceleratelow-carboninvestments•Producttaxes,subsidies,regulations,standards,labellingandpublicinfrastructure•CarbontaxesandregulationsonGHG-intensiveactivities•Ministriesoffinanceandtreasuries•Ministriesofenvironment•Largecorporates,supplychains•MDBs,DFIs,ECAsCreatemarkets•Publicbondsandguaranteeissuancesfordomestic,early-stageresearchanddevelopmentinvestmentanddirectinvestmentsupport,greenbanks•Innovationintermediariesandinvestment•Public-privatepartnerships•Enablingpolicysupport(feed-intariffs,reverseauctionsetc.)•Productmarketregulationsandstandards•Publicprocurementcontractsandpurchaseguarantees•Taxesandsubsidies•Ministriesoffinanceandtreasuries•Nationalandregionaldevelopmentbanksandgreenbanks•Citiesandregions•Privateequityinvestors77EmissionsGapReport2022:TheClosingWindowMobilizecentralbanks•Prioritysectorlendingandcreditquotas•Prudentiallendingstandardsandbanksupervision,collateralrequirements•Stresstestingandfinancialstabilityprudentialrequirements•Enhancedliquiditysupporttofinancialsystem•Creatingnewassetclassesforclimateinbanking/investmentregulation•Quantitativeeasingandcentralbankbalancesheetactivities•Low-carbonclimateremediationassets•IMFSDRissuancefundingforclimateinvestmentsupportinlow-incomecontexts•Centralbanks•Financialregulators•IMF•BanksandinstitutionalinvestorsSetupclimateclubsandinternationalcross-borderfinancialinitiativesInstrumentsdependsontypeofinitiative,butinclude:•Voluntarystandardsandagreementsonfossilfuelsubsidyreductions•AgreementonECAnorms•Justtransitioninitiativesandfinancialsupportstructures•Multilateralandbilateralclimatefunds•Multi-sovereignandotherguaranteesupporttode-riskandleverageprivateinvestment•Climatefunds•MDBs,ECAs•Multi-sovereignguaranteemechanisms•CRAs•G7/G20agreements•LargerprivateinstitutionalactorsNotes:Therearesignificantoverlapsbetweencategories,andonlyalimitedexercisehasbeenconductedtonetouttheseoverlaps.78EmissionsGapReport2022:TheClosingWindowReferencesIUABCDChapter1IntergovernmentalPanelonClimateChange(2022a).ClimateChange2022:Impacts,Adaptation,andVulnerability.WorkingGroupIIContributiontotheSixthAssessmentReportoftheIntergovernmentalPanelonClimateChange.Geneva.https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_FinalDraft_FullReport.pdf.__________(2022b).ClimateChange2022:MitigationofClimateChange.WorkingGroupIIIContributiontotheSixthAssessmentReportoftheIntergovernmentalPanelonClimateChange.Geneva.https://www.ipcc.ch/report/ar6/wg3/.UnitedNationsFrameworkConventiononClimateChange(2022a).ReportoftheConferenceofthePartiesServingastheMeetingofthePartiestotheParisAgreementonitsThirdSession,HeldinGlasgowfrom31Octoberto13November2021.Addendum.PartTwo:ActionTakenbytheConferenceofthePartiesServingastheMeetingofthePartiestotheParisAgreementatitsThirdSession.8March.FCCC/PA/CMA/2021/10/Add.1.https://unfccc.int/sites/default/files/resource/cma2021_10a01E.pdf.__________(2022b).Co-facilitators’informalnoteonSBSTA/SBIagendaitem6:Mattersrelatingtotheworkprogrammeforurgentlyscalingupmitigationambitionandimplementationreferredtoinparagraph27ofdecision1/CMA.3.14June.https://unfccc.int/sites/default/files/resource/MWP_inf_note_SB56.pdf.Chapter2Alvarez,R.A.,Zavala-Araiza,D.,Lyon,D.R.,Allen,D.T.,Barkley,Z.R.,Brandt,A.R.etal.(2018).AssessmentofmethaneemissionsfromtheU.S.oilandgassupplychain.Science361(6398),186–188.https://doi.org/10.1126/science.aar7204.Bertram,C.,Luderer,G.,Creutzig,F.,Bauer,N.,Ueckerdt,F.,Malik,A.andEdenhoferO.(2021).COVID-19-inducedlowpowerdemandandmarketforcesstarklyreduceCO2emissions.NatureClimateChange11(3),193–196.https://doi.org/10.1038/s41558-021-00987-x.Capstick,S.,Khosla,R.andWangS.(2020).Bridgingthegap–Theroleofequitablelow-carbonlifestyles.InEmissionsGapReport2020.UnitedNationsEnvironmentProgramme.Nairobi.62–75.https://doi.org/10.18356/9789280738124c010.Chancel,L.(2022).Globalcarboninequalityover1990-2019.NatureSustainability.https://doi.org/10.1038/s41893-022-00955-z.Chancel,L.,PikettyT.,Saez,E.andZucman,G.(2022).WorldInequalityReport2022.Paris:WorldInequalityLab.https://wir2022.wid.world/www-site/uploads/2022/03/0098-21_WIL_RIM_RAPPORT_A4.pdf.ClimateActionTracker(2022).GlobalReactiontoEnergyCrisisRisksZeroCarbonTransition:AnalysisofGovernmentResponsestoRussia’sInvasionofUkraine.NewYork:ClimateAnalyticsandNewClimateInstitute.https://climateactiontracker.org/documents/1055/CAT_2022-06-08_Briefing_EnergyCrisisReaction.pdf.Crippa,M.,Guizzardi,D.,Banja,M.,Solazzo,E.,Muntean,M.,Schaaf,E.,Pagani,F.etal.(2022).CO2EmissionsofAllWorldCountries:JRC/IEA/PBL2022Report.Luxembourg:PublicationsOfficeoftheEuropeanUnion.https://doi.org/10.2760/07904.Davis,S.J.,Liu,Z.,Deng,Z.,Zhu,B.,Ke,P.,Sun,T.etal.(2022).EmissionsreboundfromtheCOVID-19pandemic.NatureClimateChange12(5),412–414.https://doi.org/10.1038/s41558-022-01332-6.Dhakal,S.,Minx,J.C.,Toth,F.L.,Abdel-Aziz,A.,Meza,M.J.F.,Hubacek,K.,Jonckheere,I.G.C.etal.(2022).Chapter2:Emissionstrendsanddrivers.InClimateChange2022:MitigationofClimateChange.WorkingGroupIIIContributiontotheSixthAssessmentReportoftheIntergovernmentalPanelonClimateChange.IntergovernmentalPanelonClimateChange.Geneva.https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_Chapter_02.pdf.79EmissionsGapReport2022:TheClosingWindowFGHIJKLForster,P.,Storelvmo,T.,Armour,K.,Collins,W.,Dufresne,J.,Frame,D.etal.(2021).Chapter7:TheEarth’senergybudget,climatefeedbacksandclimatesensitivity.InClimateChange2021:ThePhysicalScienceBasis.ContributionofWorkingGroupItotheSixthAssessmentReportoftheIntergovernmentalPanelonClimateChange.IntergovernmentalPanelonClimateChange.Geneva.923–1054.https://doi.org/10.1017/9781009157896.009.Friedlingstein,P.,O’Sullivan,M.,Jones,M.W.,Andrew,R.M.andHauck,J.(2020).Globalcarbonbudget2020.EarthSystemScienceData12(4),3269–3340.https://doi.org/10.5194/essd-12-3269-2020.Friedlingstein,P.,Jones,M.W.O’Sullivan,M.,Andrew,R.M.,Bakker,D.C.E.,Hauck,J.etal.(2022).Globalcarbonbudget2021.EarthSystemScienceData14(4),1917–2005.https://doi.org/10.5194/essd-14-1917-2022.Grassi,G.,Conchedda,G.,Federici,S.,Viñas,R.A.,Korosuo,A.,Melo,J.etal.(2022).Carbonfluxesfromland2000–2020:Bringingclarityoncountries’reporting.EarthSystemScienceData14(10),4643–4666.https://doi.org/10.5194/essd-14-4643-2022.Grassi,G.,Schwingshackl,C.,Gasser,T.,Houghton,R.A.,Sitch,S.,Canadell,J.G.etal.(2022).Mappingland-usefluxesfor2001–2020fromglobalmodelstonationalinventories.EarthSystemScienceData.https://doi.org/10.5194/essd-2022-245.Grassi,G.,Stehfest,E.,Rogelj,J.,vanVuuren,D.,Cescatti,A.,House,J.etal.(2021).Criticaladjustmentoflandmitigationpathwaysforassessingcountries’climateprogress.NatureClimateChange11,425–434.https://doi.org/10.1038/s41558-021-01033-6Gütschow,J.,Jeffery,M.L.,Gieseke,R.,Gebel,R.,Stevens,D.,Krapp,M.andRocha,M.(2016).ThePRIMAP-HistNationalHistoricalEmissionsTimeSeries.EarthSystemScienceData8(2),571–603.https://doi.org/10.5194/essd-8-571-2016.Hepburn,C.,O’Callaghan,B.,Stern,N.,Stiglitz,J.andZenghelisD.(2020).WillCOVID-19fiscalrecoverypackagesaccelerateorretardprogressonclimatechange?OxfordReviewofEconomicPolicy36(Supplement1),S359–81.https://doi.org/10.1093/oxrep/graa015.Hong,C.,Zhao,H.,Qin,Y.,Burney,J.A.,Pongratz,J.,Hartung,K.etal.(2022).Land-useemissionsembodiedininternationaltrade.Science376(6593),597–603.https://doi.org/10.1126/science.abj1572.Hubacek,K.,Chen,X.,Feng,K.Wiedmann,T.andShan,Y.(2021).Evidenceofdecouplingconsumption-basedCO2emissionsfromeconomicgrowth.AdvancesinAppliedEnergy4,100074.https://doi.org/10.1016/j.adapen.2021.100074.InternationalAirTransportAssociation(2022).Airpassengernumberstorecoverin2024,1March.https://www.iata.org/en/pressroom/2022-releases/2022-03-01-01/.Accessed14October2022.InternationalEnergyAgency(2022).WorldEnergyInvestment2022.Paris.https://iea.blob.core.windows.net/assets/db74ebb7-272f-4613-bdbd-a2e0922449e7/WorldEnergyInvestment2022.pdf.Jackson,R.B.,Friedlingstein,P.,LeQuéré,C.,Abernethy,S.,Andrew,R.M.,Canadell,J.G.etal.(2022).Globalfossilcarbonemissionsreboundnearpre-COVID-19levels.EnvironmentalResearchLetters17(3),031001.https://doi.org/10.1088/1748-9326/ac55b6.Kikstra,J.S.,Vinca,A.,Lovat,F.,Boza-Kiss,B.,vanRuijven,B.,Wilson,C.etal.(2021).ClimatemitigationscenarioswithpersistentCOVID-19-relatedenergydemandchanges.NatureEnergy6(12),1114–1123.https://doi.org/10.1038/s41560-021-00904-8.Lamb,W.F.,Grubb,M.,Diluiso,F.andMinx,J.C.(2021).Countrieswithsustainedgreenhousegasemissionsreductions:Ananalysisoftrendsandprogressbysector.ClimatePolicy22(1),1–17.https://doi.org/10.1080/14693062.2021.1990831.Lamb,W.F.,Wiedmann,T.,Pongratz,J.,Andrew,R.,Crippa,M.,Olivier,J.G.J.etal.(2021).Areviewoftrendsanddriversofgreenhousegasemissionsbysectorfrom1990to2018.EnvironmentalResearchLetters16(7),073005.https://doi.org/10.1088/1748-9326/abee4e.LeQuéré,C.,Jackson,R.B.,Jones,M.W.,Smith,A.J.P.,Abernethy,S.,Andrew,R.M.etal.(2020).TemporaryreductionindailyglobalCO2emissionsduringtheCOVID-19forcedconfinement.NatureClimateChange10,647–654.https://doi.org/10.1038/s41558-020-0797-x.LeQuéré,C.,Korsbakken,J.I.,Wilson,C.,Tosun,J.,Andrew,R.,Andres,R.J.etal.(2019).DriversofdecliningCO2emissionsin18developedeconomies.NatureClimateChange9,213–217.https://doi.org/10.1038/s41558-019-0419-7.LeQuéré,C.,Peters,G.P.,Friedlingstein,P.,Andrew,R.M.,Canadell,J.G.Davis,S.J.etal.(2021).FossilCO2emissionsinthepost-COVID-19era.NatureClimateChange11,197–199.https://doi.org/10.1038/s41558-021-01001-0.Liu,Z.,Ciais,P.,Deng,Z.,Lei,R.,Davis,S.J.Feng,S.etal.(2020).Near-real-timemonitoringofglobalCO2emissionsrevealstheeffectsoftheCOVID-19pandemic.NatureCommunications11,5172.https://doi.org/10.1038/s41467-020-18922-7.80EmissionsGapReport2022:TheClosingWindowABCMSUWPMatthews,H.D.(2016).Quantifyinghistoricalcarbonandclimatedebtsamongnations.NatureClimateChange6,60–64.https://doi.org/10.1038/NCLIMATE2774.Minx,J.C.,Lamb,W.F.,Andrew,R.M.,Canadell,J.G.,Crippa,M.,Döbbeling,N.etal.(2021).Acomprehensiveandsyntheticdatasetforglobal,regional,andnationalgreenhousegasemissionsbysector1970–2018withanextensionto2019.EarthSystemScienceData13(11),5213–5252.https://doi.org/10.5194/essd-13-5213-2021.Pendrill,F.,Gardner,T.A.,Meyfroidt,P.,Persson,U.M.,Adams,J.,Azevedo,T.etal.(2022).Disentanglingthenumbersbehindagriculture-driventropicaldeforestation.Science377(6611):eabm9267.https://doi.org/10.1126/science.abm9267.Peters,G.P.,Andrew,R.M.,Canadell,J.G.,Friedlingstein,P.,Jackson,R.B.,Korsbakken,J.I.etal.(2020).Carbondioxideemissionscontinuetogrowamidstslowlyemergingclimatepolicies.NatureClimateChange10,3–6.https://doi.org/10.1038/s41558-019-0659-6.Pongratz,J.,Schwingshackl,C.,Bultan,S.Obermeier,W.,Havermann,F.andGuo,S.(2021).Landuseeffectsonclimate:Currentstate,recentprogress,andemergingtopics.CurrentClimateChangeReports7(4),99–120.https://doi.org/10.1007/s40641-021-00178-y.Shan,Y.,Ou,J.,Wang,D.,Zeng,Z.,Zhang,S.,Guan,D.andHubacek,K.(2021).ImpactsofCOVID-19andfiscalstimulionglobalemissionsandtheParisAgreement.NatureClimateChange11(3),200–206.https://doi.org/10.5281/zenodo.4290117.UnitedNationsEnvironmentProgramme(2020).Chapter2:GlobalemissionstrendsandG20statusandoutlook.InEmissionsGapReport2020.Nairobi.3–24.https://wedocs.unep.org/xmlui/bitstream/handle/20.500.11822/34428/EGR20ch2.pdf.__________(2021).Trendsinglobalemissions,newpledgesfor2030andG20statusandoutlook.InEmissionsGapReport2021:TheHeatIsOn–AWorldofClimatePromisesNotYetDelivered.Nairobi.3–17.https://www.unep.org/resources/emissions-gap-report-2021.Wood,R.,Grubb,M.,Anger-Kraavi,A.,Pollitt,H.,Rizzo,B.,Alexandri,E.,Stadler,K.etal.(2020).Beyondpeakemissiontransfers:Historicalimpactsofglobalizationandfutureimpactsofclimatepoliciesoninternationalemissiontransfers.ClimatePolicy20(supplement1),S14–27.https://doi.org/10.1080/14693062.2019.1619507.WorldMeteorologicalOrganization(2022).StateoftheGlobalClimate2021.Geneva.https://library.wmo.int/doc_num.php?explnum_id=11178.Chapter3Australia,DepartmentofIndustry,Science,EnergyandResources(2021).Australia’sEmissionsProjections2021.Canberra.https://www.dcceew.gov.au/sites/default/files/documents/australias_emissions_projections_2021_0.pdf.Bhaskar,U.(2022).Billlikelytomakeuseofcleanenergycompulsory,18July.Mint.https://www.livemint.com/industry/energy/mandatory-green-energy-use-carbon-trading-rules-soon-11658081150590.html.Accessed17October2022.Brazil(2022a).ParisAgreement:NationallyDeterminedContribution(NDC).https://unfccc.int/sites/default/files/NDC/2022-06/Updated%20-%20First%20NDC%20-%20%20FINAL%20-%20PDF.pdf.__________(2022b).DecretoNo.11.075.http://www.planalto.gov.br/ccivil_03/_ato2019-2022/2022/decreto/D11075.htm.China,NationalDevelopmentandReformCommission(2021a).WorkingGuidanceforCarbonDioxidePeakingandCarbonNeutralityinFullandFaithfulImplementationoftheNewDevelopmentPhilosophy.Beijing.https://en.ndrc.gov.cn/policies/202110/t20211024_1300725.html.__________(2021b).ActionPlanforCarbonDioxidePeakingBefore2030.Beijing.https://en.ndrc.gov.cn/policies/202110/t20211027_1301020.html.__________(2022).TheOutlineofthe14thFive-YearPlanforEconomicandSocialDevelopmentandLong-RangeObjectivesthroughtheYear2035ofthePeople’sRepublicofChina.Beijing.https://en.ndrc.gov.cn/policies/202203/P020220315511326748336.pdf.China,NationalEnergyAdministration(2022).国务院常务会议解读:发挥煤炭主体能源作用今年新增产能3亿吨,22April.http://www.nea.gov.cn/2022-04/22/c_1310569203.htm.Accessed21October2022.81EmissionsGapReport2022:TheClosingWindowFGDEClimateActionTracker(2022).GlobalReactiontoEnergyCrisisRisksZeroCarbonTransition:AnalysisofGovernmentResponsestoRussia’sInvasionofUkraine.NewYork:ClimateAnalyticsandNewClimateInstitute.https://climateactiontracker.org/documents/1055/CAT_2022-06-08_Briefing_EnergyCrisisReaction.pdf.ClimateWatch(2022).NDCEnhancementTracker.https://www.climatewatchdata.org/2020-ndc-tracker.Accessed13October2022.denElzen,M.,Dafnomilis,I.,Forsell,N.,Fragkos,P.,Fragkiadakis,K.,Höhne,N.etal.(2022).UpdatednationallydeterminedcontributionscollectivelyraiseambitionlevelsbutneedstrengtheningfurthertokeepParisgoalswithinreach.MitigationandAdaptationStrategiesforGlobalChange27(6),33.https://doi.org/10.1007/s11027-022-10008-7.denElzen,M.,Kuramochi,T.,Höhne,N.,Cantzler,J.,Esmeijer,K.,Fekete,H.etal.(2019).AretheG20economiesmakingenoughprogresstomeettheirNDCtargets?EnergyPolicy126,238–250.https://doi.org/10.1016/j.enpol.2018.11.027.EuropeanCommission(2020).AnEU-wideassessmentofNationalEnergyandClimatePlans.Drivingforwardthegreentransitionandpromotingeconomicrecoverythroughintegratedenergyandclimateplanning,17September.COM(2020)564final.https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020DC0564.Accessed13October2022.__________(2021a).EUReferenceScenario2020,July.https://ec.europa.eu/energy/data-analysis/energy-modelling/eu-reference-scenario-2020_en.Accessed13October2022.__________(2021b).CommissionproposesnewEUframeworktodecarbonisegasmarkets,promotehydrogenandreducemethaneemissions.15December.https://ec.europa.eu/commission/presscorner/detail/en/ip_21_6682.__________(2021c).EuropeanGreenDeal:Commissionproposestoboostrenovationanddecarbonisationofbuildings.15December.https://ec.europa.eu/commission/presscorner/detail/en/ip_21_6683.__________(2022a).GreenDeal:NewproposalstomakesustainableproductsthenormandboostEurope’sresourceindependence.30March.https://ec.europa.eu/commission/presscorner/detail/en/IP_22_2013.__________(2022b).REPowerEUwithCleanEnergy:GoingFasterandFurtherwithCleanEnergyProjects.BrusselsandLuxembourg.https://doi.org/10.2775/245144.__________(2022c).REPowerEU:AplantorapidlyreducedependenceonRussianfossilfuelsandfastforwardthegreentransition.18May.https://ec.europa.eu/commission/presscorner/detail/en/IP_22_3131.EuropeanCouncil(2022a).Fitfor55package:Councilreachesgeneralapproachesrelatingtoemissionsreductionsandtheirsocialimpacts.29June.https://www.consilium.europa.eu/en/press/press-releases/2022/06/29/fit-for-55-council-reaches-general-approaches-relating-to-emissions-reductions-and-removals-and-their-social-impacts/__________(2022b).TheEU’splanforagreentransition,30June.https://www.consilium.europa.eu/en/policies/green-deal/fit-for-55-the-eu-plan-for-a-green-transition.Accessed17October2022.EuropeanParliament(2022).ClimateChange:ParliamentpushesforfasterEUactionandenergyindependence.22June.https://www.europarl.europa.eu/news/en/press-room/20220616IPR33219/climate-change-parliament-pushes-for-faster-eu-action-and-energy-independence.ForestHints(2022).Indonesia’sFOLUnetsink2030operationalplanreleased,12March.https://foresthints.news/indonesia-folu-net-sink-2030-operational-plan-released/.Accessed17October2022.Grassi,G.,Conchedda,G.,Federici,S.,Raul,A.V.,Korosuo,R.,Melo,A.etal.(2022).Carbonfluxesfromland2000–2020:bringingclarityoncountries’reporting.EarthSystemScienceData14(10),4643–4666.https://doi.org/10.5194/essd-14-4643-2022.Grassi,G.,Federici,S.,Raul,A.V.Korosuo,A.andSimone,R.(2022).LULUCFDataBasedonNationalGHGInventories(NGHGIDB).Zenodo.https://zenodo.org/record/7190601#.Y0fuunbMJD8.Accessed13October2022.Gütschow,J.,Günther,A.andPflüger,M.(2021).ThePRIMAP-histNationalHistoricalEmissionsTimeSeries(1750-2019)v2.3.1.Zenodo.https://zenodo.org/record/5494497#.Y0fwg3bMJD8.Accessed13October2022.India,PressInformationBureau(2022).CabinetapprovesIndia’sUpdatedNationallyDeterminedContributionstobecommunicatedtotheUnitedNationsFrameworkConventiononClimateChange.3August.https://pib.gov.in/PressReleaseIframePage.aspx?PRID=1847812.Indonesia,MinistryofEnergyandMineralResources(2021).Biggersharegiventorenewablesin2021-2030ElectricityProcurementPlan.5October.https://www.esdm.go.id/en/media-center/news-archives/luncurkan-peta-jalan-nze-sektor-energi-indonesia-ini-hasil-pemodelan-iea.__________(2022).EnergyMinistry,IEAlaunchNZEroadmap,2September.https://www.esdm.go.id/en/media-center/news-archives/luncurkan-peta-jalan-nze-sektor-energi-indonesia-ini-hasil-pemodelan-iea.Accessed13October2022.I82EmissionsGapReport2022:TheClosingWindowJKLMOPRSUInternationalCarbonActionPartnership(2022).KoreaEmissionsTradingScheme.Seoul.https://icapcarbonaction.com/system/files/ets_pdfs/icap-etsmap-factsheet-47.pdf.InternationalEnergyAgency(2022).AnEnergySectorRoadmaptoNetZeroEmissionsinIndonesia.Paris,France.https://iea.blob.core.windows.net/assets/b496b141-8c3b-47fc-adb2-90740eb0b3b8/AnEnergySectorRoadmaptoNetZeroEmissionsinIndonesia.pdf.Jenkins,J.D.,Mayfield,E.N.,Farbes,J.,Jones,R.,Patankar,N.,Xu,Q.andSchively,G.(2022).PreliminaryReport:TheClimateandEnergyImpactsoftheInflationReductionActof2022.Princeton:REPEATProject.https://repeatproject.org/docs/REPEAT_IRA_Prelminary_Report_2022-08-04.pdf.Keramidas,K.,Fosse,F.,DiazVazquez,A.,Dowling,P.,Garaffa,R.,Deprés,J.etal.(2021).GlobalEnergyandClimateOutlook2021:AdvancingTowardsClimateNeutrality.Luxembourg:PublicationsOfficeoftheEuropeanUnion.https://publications.jrc.ec.europa.eu/repository/handle/JRC126767.Larsen,J.,King,B.,Kolus,H.,Dasari,N.,Hiltbrand,G.andHerndon,W.(2022).ATurningPointforUSClimateProgress:AssessingtheClimateandCleanEnergyProvisionsintheInflationReductionAct.NewYork,NY:RhodiumGroup.https://rhg.com/research/climate-clean-energy-inflation-reduction-act/.Lecocq,F.,Winkler,H.,Daka,J.P.,Fu,S.,Gerber,J.S.,Kartha,S.etal.(2022).Chapter4:Mitigationanddevelopmentpathwaysinthenear-tomid-term.InClimateChange2022:MitigationofClimateChange.ContributionofWorkingGroupIIItotheSixthAssessmentReportoftheIntergovernmentalPanelonClimateChange.IntergovernmentalPanelonClimateChange.Geneva.https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_Chapter_04.pdf.Levin,K.andRich,D.(2017).TurningPoints:TrendsinCountries'ReachingPeakGreenhouseGasEmissionsOverTime.Washington,D.C.:WorldResourcesInstitute.https://files.wri.org/d8/s3fs-public/turning-points-trends-countries-reaching-peak-greenhouse-gas-emissions-over-time.pdf.Mahajan,M.,Ashmoore,O.,Rissman,J.,Orvis,R.andGopal,A.(2022).UpdatedInflationReductionActModelingUsingtheEnergyPolicySimulator.SanFrancisco:EnergyInnovationPolicyandTechnology.https://energyinnovation.org/publication/updated-inflation-reduction-act-modeling-using-the-energy-policy-simulator/.Meinshausen,M.,Lewis,J.,McGlade,C.,Gütschow,J.,Nicholls,Z.,Burdon,R.etal.(2022).RealizationofParisAgreementpledgesmaylimitwarmingjustbelow2°C.Nature604(7905),304–309.https://doi.org/10.1038/s41586-022-04553-z.OECDCleanEnergyFinanceandInvestmentMobilisationProgramme(2021).RUPTL2021-30:PLNStepsUpAmbitionstoAccelerateCleanEnergyInvestmentsinIndonesia.Paris:OECDPublishing.https://www.oecd.org/environment/cc/cefim/indonesia/RUPTL-2021-30-PLN-steps-up-ambitions-to-accelerate-clean-energy-investments-in-Indonesia.pdf.PRSLegislativeResearch(2022).EnergyConservation(Amendment)Bill,2022,17October.https://prsindia.org/billtrack/the-energy-conservation-amendment-bill-2022.Accessed17October2022.Reuters(2021).Russiaplanstosubsidiseelectriccarstospurdemand,4August.https://www.reuters.com/business/autos-transportation/russia-plans-subsidise-electric-cars-spur-demand-2021-08-04/.RussianFederation(2021a).ПРАВИТЕЛЬСТВОРОССИЙСКОЙФЕДЕРАЦИИ.http://government.ru/.__________(2021b).ПРАВИТЕЛЬСТВОРОССИЙСКОЙФЕДЕРАЦИИПОСТАНОВЛЕНИЕ,29December,No.2559.Statista(2022).CumulativeInstalledSolarPowerCapacityinChinafrom2012to2021,17June.https://www.statista.com/statistics/279504/cumulative-installed-capacity-of-solar-power-in-china/.Accessed13October2022.UnitedNationsDepartmentofEconomicandSocialAffairs,PopulationDivision(2022).WorldPopulationProspects2022.NewYork.https://population.un.org/wpp/.UnitedNationsEnvironmentProgramme(2015).TheEmissionsGapReport2015:AUNEPSynthesisReport.Nairobi.https://newclimateinstitute.files.wordpress.com/2015/12/unep-emissions-gap-report-2015.pdf.UnitedStatesofAmerica,Congress(2022a).InflationReductionAct2022.__________(2022b).InfrastructureInvestmentandJobsAct.UnitedStatesofAmerica,DepartmentofEnergy(2022).TheInflationReductionActDrivesSignificantEmissionsReductionsandPositionsAmericatoReachOurClimateGoals.Washington,D.C.https://www.energy.gov/sites/default/files/2022-08/8.18%20InflationReductionAct_Factsheet_Final.pdfUnitedStatesofAmerica,DepartmentofTransportation(undated).Corporateaveragefueleconomy.https://www.nhtsa.gov/laws-regulations/corporate-average-fuel-economy.UnitedStatesofAmerica,EnvironmentalProtectionAgency(2021).Light-dutyvehiclegreenhousegasregulationsandstandards,20December.https://www.epa.gov/greenvehicles/light-duty-vehicle-greenhouse-gas-regulations-and-standards.83EmissionsGapReport2022:TheClosingWindowBCDFAGHI__________(2022).FinalRuletoReviseExistingNationalGHGEmissionsStandardsforPassengerCarsandLightTrucksThroughModelYear2026.https://www.epa.gov/regulations-emissions-vehicles-and-engines/final-rule-revise-existing-national-ghg-emissions.Xinhua(2022).Chinatotakefurtherstepsforspringfarming,ensureandincreaseenergysupply,21April.http://english.www.gov.cn/premier/news/202204/21/content_WS626092e4c6d02e5335329b51.html.Accessed26October2022.Chapter4Arias,P.A.,Bellouin,N.,Coppola,E.,Jones,R.G.,Krinner,G.,Marotzke,J.etal.(2021).Technicalsummary.InClimateChange2021:ThePhysicalScienceBasis.ContributionofWorkingGroupItotheSixthAssessmentReportoftheIntergovernmentalPanelonClimateChange.IntergovernmentalPanelonClimateChange.Geneva.33−144.Böhringer,C.,Peterson,S.,Rutherford,T.F.,Schneider,J.andWinkler,M.(2021).ClimatepoliciesafterParis:pledge,tradeandrecycle.EnergyEconomics103,105471.https://doi.org/10.1016/j.eneco.2021.105471.Byers,E.,Krey,V.,Kriegler,E.,Riahi,K.,SchaeffermR.,Kikstra,J.etal.(2022).AR6ScenariosDatabase.https://doi.org/10.5281/zenodo.5886912.Accessed17October2022.Canadell,J.G.,Monteiro,P.M.S.,Costa,M.H.,CotrimdaCunha,L.,Cox,P.M.,Eliseev,S.etal.(2021).Chapter5:Globalcarbonandotherbiogeochemicalcyclesandfeedbacks.InClimateChange2021:ThePhysicalScienceBasis.ContributionofWorkingGroupItotheSixthAssessmentReportoftheIntergovernmentalPanelonClimateChange.IntergovernmentalPanelonClimateChange.Geneva.673–816.ClimateActionTracker(2021).WarmingProjectionsGlobalUpdate-November2021.https://climateactiontracker.org/documents/997/CAT_2021-11-09_Briefing_Global-Update_Glasgow2030CredibilityGap.pdf.denElzen,M.G.J.,Dafnomilis,I.,Forsel,N.,Fragkos,P.,Fragkiadakis,K.,Höhne,N.etal.(2022).UpdatednationallydeterminedcontributionscollectivelyraiseambitionlevelsbutneedstrengtheningfurthertokeepParisgoalswithinreach.MitigationandAdaptationStrategiesforGlobalChange27(5),33.https://doi.org/10.1007/s11027-022-10008-7.Dhakal,S.,Minx,J.C.,Toth,F.L.,Abdel-Aziz,A.,Meza,M.J.F.,Hubacek,K.,Jonckheere,I.G.C.etal.(2022).Chapter2:Emissionstrendsanddrivers.InClimateChange2022:MitigationofClimateChange.WorkingGroupIIIContributiontotheSixthAssessmentReportoftheIntergovernmentalPanelonClimateChange.Geneva.https://www.ipcc.ch/report/ar6/wg3/.Forster,P.Storelvmo,T.,Armour,K.,Collins,W.,Dufresne,J.,Frame,D.etal.(2021).Chapter7:TheEarth’senergybudget,climatefeedbacksandclimatesensitivity.InClimateChange2021:ThePhysicalScienceBasis.ContributionofWorkingGroupItotheSixthAssessmentReportoftheIntergovernmentalPanelonClimateChange.IntergovernmentalPanelonClimateChange.Geneva.923–1054.Grassi,G.,Stehfest,E.,Rogelj,J.,vanVuuren,D.,Cescatti,A.,House,J.etal.(2021).Criticaladjustmentoflandmitigationpathwaysforassessingcountries’climateprogress.NatureClimateChange11,425–434.https://doi.org/10.1038/s41558-021-01033-6Huppmann,D.,Kriegler,E.,Krey,V.,Riahi,K.,Rogelj,J.,Rose,S.K.etal.(2018).IAMC1.5°CScenarioExplorerandDatahostedbyIIASA.InternationalInstituteforAppliedSystemsAnalysis&IntegratedAssessmentModelingConsortium.https://doi.org/10.22022/SR15/08-2018.15429.Accessed17October2022.IntergovernmentalPanelonClimateChange(2018).Summaryforpolicymakers.InGlobalWarmingof1.5°C.AnIPCCSpecialReportontheImpactsofGlobalWarmingof1.5°CAbovePre-industrialLevelsandRelatedGlobalGreenhouseGasEmissionPathways,intheContextofStrengtheningtheGlobalResponsetotheThreatofClimateChange.IntergovernmentalPanelonClimateChangeandWorldMeteorologicalOrganization.Geneva.1–24.https://doi.org/10.1017/9781009157940.001.__________(2021).Summaryforpolicymakers.InClimateChange2021:ThePhysicalScienceBasis.ContributionofWorkingGroupItotheSixthAssessmentReportoftheIntergovernmentalPanelonClimateChange.IntergovernmentalPanelonClimateChange.Geneva.3−32.https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_SPM.pdf.__________(2022a).AnnexIII:Scenariosandmodellingmethods.InClimateChange2022:MitigationofClimateChange.WorkingGroupIIIContributiontotheSixthAssessmentReportoftheIntergovernmentalPanelonClimateChange.Geneva.https://www.ipcc.ch/report/ar6/wg3/.__________(2022b).Summaryforpolicymakers.InClimateChange2022:MitigationofClimateChange.WorkingGroupIIIContributiontotheSixthAssessmentReportoftheIntergovernmentalPanelonClimateChange.Geneva.https://www.ipcc.ch/report/ar6/wg3/.84EmissionsGapReport2022:TheClosingWindowJKLMONPRJackson,R.B.,Saunois,M.,Bousquet,P.,Canadell,J.G.,Poulter,B.,Stavert,A.R.etal.(2020).Increasinganthropogenicmethaneemissionsariseequallyfromagriculturalandfossilfuelsources.EnvironmentalResearchLetters15(7),71002.https://doi.org/10.1088/1748-9326/ab9ed2.Keramidas,K.,Fosse,F.,DíazVazquez,A.,Dowling,P.,Garaffa,R.,Després,J.etal.(2021).GlobalEnergyandClimateOutlook2021:AdvancingTowardsClimateNeutrality–TakingStockofClimatePolicyPledgesafterCOP26andtheCorrespondingEnergy–EconomyImplications.EuropeanCommissionJointResearchCentreScienceforPolicyReport.Luxembourg:PublicationsOfficeoftheEuropeanUnion.Kikstra,J.S.,Nicholls,Z.,Smith,C.J.,Lewis,J.,Lamboll,R.D.,Byers,E.etal.(2022).TheIPCCSixthAssessmentReportWGIIIClimateAssessmentofMitigationPathways:FromEmissionstoGlobalTemperatures.EGUsphere[preprint].https://doi.org/10.5194/egusphere-2022-471.Köberle,A.C.,Vandyck,T.,Guivarch,C.,Macaluso,N.,Bosetti,V.,Gambhir,A.etal.(2021).Thecostofmitigationrevisited.NatureClimateChange11(12),1035–1045.https://doi.org/10.1038/s41558-021-01203-6.Lecocq,F.,Winkler,H.,Daka,J.P.,Fu,S.,Gerber,J.S.,Kartha,S.etal.(2022).Chapter4:Mitigationanddevelopmentpathwaysinthenear-tomid-term.InClimateChange2022:MitigationofClimateChange.WorkingGroupIIIContributiontotheSixthAssessmentReportoftheIntergovernmentalPanelonClimateChange.IntergovernmentalPanelonClimateChange.Geneva.https://www.ipcc.ch/report/ar6/wg3/.Markandya,A.,Sampedro,J.,Smith,S.J.,VanDingenen,R.,Pizarro-Irizar,C.,Arto,I.etal.(2018).Healthco-benefitsfromairpollutionandmitigationcostsoftheParisAgreement:amodellingstudy.LancetPlanetaryHealth2(3),e126–e133.https://doi.org/10.1016/S2542-5196(18)30029-9.Meinshausen,M.,Lewis,J.,McGlade,C.,Gütschow,J.,Nicholls,Z.,Burdon,R.etal.(2022).RealizationofParisAgreementpledgesmaylimitwarmingjustbelow2°C.Nature604(7905),304–309.https://doi.org/10.1038/s41586-022-04553-z.Mercure,J.,Knobloch,F.,Pollitt,H.,Paroussos,L.,Scrieciu,S.S.andLewney,R.(2019).Modellinginnovationandthemacroeconomicsoflow-carbontransitions:theory,perspectivesandpracticaluse.ClimatePolicy19(8),1019–1037.https://doi.org/10.1080/14693062.2019.1617665.NewClimateInstitute(2020).ClimatePolicyDatabase.https://climatepolicydatabase.org/.Accessed17October2022.O’Neill,B.,vanAalst,M.,Ibrahim,Z.Z.,Ford,L.B.,Bhadwal,S.,Buhaug,H.etal.(2022).Chapter16:Keyrisksacrosssectorsandregions.InClimateChange2022:Impacts,AdaptationandVulnerability.ContributionofWorkingGroupIItotheSixthAssessmentReportoftheIntergovernmentalPanelonClimateChangeIntergovernmentalPanelonClimateChange.Geneva.2411–2538.https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_Chapter16.pdf.Pollitt,H.,andMercure,J.(2018).Theroleofmoneyandthefinancialsectorinenergy-economymodelsusedforassessingclimateandenergypolicy.ClimatePolicy18(2),184–197.https://doi.org/10.1080/14693062.2016.1277685.Rauner,S.,Bauer,N.,Dirnaichner,A.,VanDingenen,R.,Mutuel,C.andLuderer,G.(2020).Coal-exithealthandenvironmentaldamagereductionsoutweigheconomicimpacts.NatureClimateChange10(4),308–312.https://doi.org/10.1038/s41558-020-0728-x.Riahi,K.,Bertram,C.,Huppmann,D.,Rogelj,J.,Bosetti,V.,Cabardos,A.etal.(2021).Costandattainabilityofmeetingstringentclimatetargetswithoutovershoot.NatureClimateChange11,1063–1069.https://doi.org/10.1038/s41558-021-01215-2.Riahi,K.,Schaeffer,R.,Arango,J.,Calvin,K.,Guivarch,C.,Hasegawa,T.etal.(2022)Chapter3:Mitigationpathwayscompatiblewithlong-termGoals.InClimateChange2022:MitigationofClimateChange.WorkingGroupIIIContributiontotheSixthAssessmentReportoftheIntergovernmentalPanelonClimateChange.IntergovernmentalPanelonClimateChange.Geneva.https://www.ipcc.ch/report/ar6/wg3/.Roelfsema,M.,vanSoest,H.L.,denElzen,M.,deConinck,H.,Kuramochi,.T.,Harmsen,M.etal.(2022).DevelopingscenariosinthecontextoftheParisAgreementandapplicationintheintegratedassessmentmodelIMAGE:aframeworkforbridgingthepolicy-modellingdivide.EnvironmentalScience&Policy135,104–116.https://doi.org/10.1016/j.envsci.2022.05.001.Roelfsema,M.,vanSoest,H.L.,Harmsen,M.,vanVuuren,D.P.,Bertram,C.,denElzen,M.etal.(2020).TakingstockofnationalclimatepoliciestoevaluateimplementationoftheParisAgreement.NatureCommunications11(1),2096.https://doi.org/10.1038/s41467-020-15414-6.Rogelj,J.,Shindell,D.,Jiang,K.,Fifita,S.,Forster,P.,Ginzburg,V.etal.(2018).Chapter2:Mitigationpathwayscompatiblewith1.5°Cinthecontextofsustainabledevelopment.InGlobalwarmingof1.5°C.AnIPCCSpecialReportontheImpactsofGlobalWarmingof1.5°CAbovePre-industrialLevelsandRelatedGlobalGreenhouseGasEmissionPathways,intheContextofStrengtheningtheGlobalResponsetotheThreatofClimateChange.IntergovernmentalPanelonClimateChange.Geneva.https://www.ipcc.ch/site/assets/uploads/sites/2/2022/06/SR15_Chapter_2_LR.pdf.85EmissionsGapReport2022:TheClosingWindowSTUVWABSchleussner,C.,Ganti,G.,Rogelj,J.andGidden,M.J.(2022).AnemissionpathwayclassificationreflectingtheParisAgreementclimateobjectives.CommunicationsEarth&Environment3(1),135.https://doi.org/10.1038/s43247-022-00467-w.Smith,C.J.,Forster,P.M.,Allen,M.,Leach,N.,Millar,R.J.,Passarello,G.A.etal.(2018).FAIRv1.3:asimpleemissions-basedimpulseresponseandcarboncyclemodel.GeoscientificModelDevelopment11(6),2273–2297.https://doi.org/10.5194/gmd-11-2273-2018.Springmann,M.,Godfray,H.C.J.,Rayner,M.andScarborough,P.(2016).Analysisandvaluationofthehealthandclimatechangecobenefitsofdietarychange.ProceedingsoftheNationalAcademyofSciences113(15),4146–4151.https://doi.org/10.1073/pnas.1523119113.Stern,D.I.,Pezzey,J.C.V.andLambie,N.R.(2012).Whereintheworldisitcheapesttocutcarbonemissions?AustralianJournalofAgriculturalandResourceEconomics56(3),315–331.https://doi.org/10.1111/j.1467-8489.2011.00576.x.Tavoni,M.,Kriegler,E.,Riahi,K.,vanVuuren.D.P.,Aboumahboub,T.,Bowen,A.etal.(2015).Post-2020climateagreementsinthemajoreconomiesassessedinthelightofglobalmodels.NatureClimateChange5(2),119–126.https://doi.org/10.1038/nclimate2475.UnitedNationsEnvironmentProgramme(2021).EmissionsGapReport2021:TheHeatIsOn–AWorldofClimatePromisesNotYetDelivered.Nairobi.https://www.unep.org/resources/emissions-gap-report-2021.UnitedNationsEnvironmentProgrammeandClimateandCleanAirCoalition(2021).GlobalMethaneAssessment:BenefitsandCostsofMitigatingMethaneEmissions.Nairobi:UnitedNationsEnvironmentProgramme.UnitedNationsFrameworkConventiononClimateChange(1992).UnitedNationsFrameworkConventiononClimateChange.FCCC/INFORMAL/84.__________(2021).NationallyDeterminedContributionsundertheParisAgreementRevisedSynthesisReportbytheSecretariat.25October.FCCC/PA/CMA/2021/8/Rev.1.https://unfccc.int/documents/307628.Vandyck,T.,Keramidas,K.,Kitous,A.,Spadaro,J.,VanDingenen,R.,Holland,M.etal.(2018).Airqualityco-benefitsforhumanhealthandagriculturecounterbalancecoststomeetParisAgreementpledges.NatureCommunications9(1),4939.https://doi.org/10.1038/s41467-018-06885-9.WorldMeteorologicalOrganization(2021).TheStateofGreenhouseGasesintheAtmosphereBasedonGlobalObservationsthrough2020.WMOGreenhouseGasBulletinNo.17.https://library.wmo.int/doc_num.php?explnum_id=10904.Chapter5Austria,Azerbaijan,Belgium,Canada,CapeVerde,Chileetal.(2022)COP26DeclarationonAcceleratingtheTransitionto100%ZeroEmissionCarsandVans.https://www.gov.uk/government/publications/cop26-declaration-zero-emission-cars-and-vans/cop26-declaration-on-accelerating-the-transition-to-100-zero-emission-cars-and-vans.Ayaburi,J.,Bazilian,M.,Kincer,J.andMoss,T.(2020).Measuring“reasonablyreliable”accesstoelectricityservices.TheElectricityJournal,33(7),106828.https://doi.org/10.1016/j.tej.2020.106828.Bashmakov,I.A.,Nilsson,L.J.,Acquaye,A.,Bataille,C.,Cullen,J.M.,delaRuedeCan,S.etal.(2022).Chapter11:Industry.InClimateChange2022:MitigationofClimateChange.WorkingGroupIIIContributiontotheSixthAssessmentReportoftheIntergovernmentalPanelonClimateChange.IntergovernmentalPanelonClimateChange.Geneva.https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_Chapter_11.pdf.Basma,H.,Rodríguez,F.,Hildermeier,J.andJahn,A.(2022)ElectrifyingLast-mileDelivery:ATotalCostofOwnershipComparisonofBattery-electricandDieselTrucksinEurope.Washington,D.C.andBrussels:InternationalCouncilonCleanTransportationandRegulatoryAssistanceProject.https://theicct.org/publication/tco-battery-diesel-delivery-trucks-jun2022/.BloombergNewEnergyFinance(2018).ElectricBusesinCities:DrivingTowardsCleanerAirandLowerCO2.NewYork.https://assets.bbhub.io/professional/sites/24/2018/05/Electric-Buses-in-Cities-Report-BNEF-C40-Citi.pdf.__________(2021)ElectricVehicleOutlook2021.NewYork.https://bnef.turtl.co/story/evo-2021/page/1.Boehm,S.,Lebling,K.,Levin,K.,Fekete,H.,Jaeger,J.,Nilsson,A.etal.(2021)StateofClimateAction2021:SystemsTransformationsRequiredtoLimitGlobalWarmingto1.5°C.Washington,D.C.:WorldResourcesInstitute.https://www.wri.org/research/state-climate-action-2021.Boehm,S.,Jeffery,L.,Levin,K.,etal.(2022).StateofClimateAction2022.BerlinandWashington,D.C.:WorldResourcesInstitute.https://doi.org/10.46830/wrirpt.22.00028.86EmissionsGapReport2022:TheClosingWindowCDFEBurrows,V.K.,Black,M.,Al-Musa,A.andWatson,E.(2021)WorldGBCStatusReportJune2021.LondonandToronto:WorldGreenBuildingCouncil.https://www.worldgbc.org/sites/default/files/WorldGBCANZStatusReport2021_FINAL.pdf.Cabeza,L.F.,Bai,Q.,Bertoldi,P.,Kihila,J.,Lucena,A.F.P.,Mata,É.etal.(2022).Chapter9:Buildings.InClimateChange2022:MitigationofClimateChange.WorkingGroupIIIContributiontotheSixthAssessmentReportoftheIntergovernmentalPanelonClimateChange.IntergovernmentalPanelonClimateChange.Geneva.https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_Chapter_09.pdf.Chapin,F.S.,Carpenter,S.R.,Kofinas,G.P.,Folke,C.,Abel,N.,Clark,W.C.etal.(2010).Ecosystemstewardship:Sustainabilitystrategiesforarapidlychangingplanet.TrendsinEcology&Evolution,25(4),241–249.https://doi.org/10.1016/j.tree.2009.10.008.Cheung,A.andO’Donovan,A.(2022).ZeroEmissionVehicleTransitionCouncil:Progressdashboard,18May.https://about.bnef.com/blog/zero-emission-vehicle-transition-council-progress-dashboard/.Accessed16October2022.Clarke,L.,Wei,Y.,Navarro,A.D.,Garg,A.,Hahmann,A.N.,Khennas,S.etal.(2022).Chapter6:Energysystems.InClimateChange2022:MitigationofClimateChange.WorkingGroupIIIContributiontotheSixthAssessmentReportoftheIntergovernmentalPanelonClimateChange.IntergovernmentalPanelonClimateChange.Geneva.https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_Chapter_06.pdf.ClimateActionTracker(2020).ParisAgreementCompatibleSectoralBenchmarks:ElaboratingtheDecarbonisationRoadmap.NewYork:ClimateAnalyticsandNewClimateInstitute.https://climateactiontracker.org/publications/paris-agreement-benchmarks/.__________(2022a).DecarbonisingBuildings:AchievingZeroCarbonHeatingandCooling.NewYork:ClimateAnalyticsandNewClimateInstitute.https://climateactiontracker.org/publications/decarbonising-buildings-achieving-net-zero-carbon-heating-and-cooling/.__________(2022b).GlobalReactiontoEnergyCrisisRisksZeroCarbonTransition:AnalysisofGovernmentResponsestoRussia’sInvasionofUkraine.NewYork:ClimateAnalyticsandNewClimateInstitute.https://climateactiontracker.org/documents/1055/CAT_2022-06-08_Briefing_EnergyCrisisReaction.pdf.ClimateGroup(2022).Makingelectrictransportthenewnormalby2030.https://www.theclimategroup.org/ev100.Accessed24June2022.Creutzig,F.,Niamir,L.,Bai,X.,Callaghan,M.,Cullen,Díaz-José,J.etal.(2022).Demand-sidesolutionstoclimatechangemitigationconsistentwithhighlevelsofwell-being.NatureClimateChange,12(1),36–46.https://doi.org/10.5281/zenodo.5163965.Creutzig,F.,Roy,J.,Devine-Wright,P.,Díaz-José,J.,Geels,F.,Grubler,A.etal.(2022).Chapter5:Demand,servicesandsocialaspectsofmitigation.InClimateChange2022:MitigationofClimateChange.WorkingGroupIIIContributiontotheSixthAssessmentReportoftheIntergovernmentalPanelonClimateChange.IntergovernmentalPanelonClimateChange.Geneva.https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_Chapter_05.pdf.Cui,H.,Gode,P.andWappelhorst,S.(2021).AGlobalOverviewofZero-emissionZonesinCitiesandTheirDevelopmentProgress.Washington,D.C.:InternationalCouncilonCleanTransportation.https://theicct.org/sites/default/files/publications/global-cities-zez-dev-EN-aug21.pdf.Day,T.,Mooldijk,S.,Smit,S.,Posada,E.,Hans,F.,Fearnehough,H.etal.(2022).CorporateClimateResponsibilityMonitor2022.CologneandBrussels:NewClimateInstituteandCarbonMarketWatch.https://newclimate.org/wp-content/uploads/2022/02/CorporateClimateResponsibilityMonitor2022.pdf.EnergyTransitionsCommission(2019).MissionPossible:ReachingNet-zeroCarbonEmissionsfromHarder-to-abateSectorsbyMid-century.SectoralFocus:Steel.London.https://www.energy-transitions.org/wp-content/uploads/2020/08/ETC-sectoral-focus-Steel_final.pdf.Erickson,P.,Lazarus,M.andTempest,K.(2015)CarbonLock-infromFossilFuelSupplyInfrastructure.Seattle:StockholmEnvironmentInstitute.https://www.sei.org/publications/carbon-lock-in-from-fossil-fuel-supply-infrastructure/.Falk,J.,Bergmark,P.,Gaffney,O.,Erselius,G.,Widheden,J.,Myrman,J.etal.(2020).The1.5°CBusinessPlaybook:BuildingaStrategyforExponentialClimateActionTowardsNet-zeroEmissions.Stockholm:ExponentialRoadmapInitiative,RaceToZeroandSMEClimateHub.https://exponentialroadmap.org/wp-content/uploads/2020/11/1.5C-Business-Playbook-v1.1.1pdf.pdf.Falk,J.,Gaffney,O.,Bhowmik,A.K.,Bergmark,P.,Galaz,V.,Gaskell,N.etal.(2020).ExponentialRoadmap1.5.1.Stockholm:ExponentialRoadmapInitiative.https://exponentialroadmap.org/wp-content/uploads/2020/03/ExponentialRoadmap_1.5.1_216x279_08_AW_Download_Singles_Small.pdf.Few,R.,Morchain,D.,Spear,D.,Mensah,A.andBendapudi,R.(2017).Transformation,adaptationanddevelopment:Relatingconceptstopractice.PalgraveCommunications,3,17092.https://doi.org/10.1057/palcomms.2017.92.87EmissionsGapReport2022:TheClosingWindowFolke,C.,Carpenter,S.R.,Walker,B.,Scheffer,M.,Chapin,T.andRockström(2010).Resiliencethinking:Integratingresilience,adaptabilityandtransformability.EcologyandSociety,15(4),20.https://www.ecologyandsociety.org/vol15/iss4/art20/.Geels,F.W.andSchot,J.(2007).Typologyofsociotechnicaltransitionpathways.ResearchPolicy,36(3),399–417.https://doi.org/10.1016/j.respol.2007.01.003.GlobalEnergyMonitor,CentreforResearchonEnergyandCleanAir,E3G,SierraClub,SolutionsforOurClimate,KikoNetworketal.(2022).BoomandBustCoal2022.SanFrancisco:GlobalEnergyMonitor.https://globalenergymonitor.org/report/boom-and-bust-coal-2022/.Graver,B.,Zheng,X.S.,Rutherford,D.,Mukhopadhaya,J.andPronk,E.(2022).Vision2050:AligningAviationwiththeParisAgreement.Washington,D.C.:InternationalCouncilonCleanTransportation.https://theicct.org/publication/global-aviation-vision-2050-align-aviation-paris-jun22/.Hall,D.,Xie,Y.,Minjares,R.,Lutsey,N.andKodjak,D.(2021).DecarbonizingRoadTransportby2050:EffectivePoliciestoAcceleratetheTransitiontoZero-emissionVehicles.Washington,D.C.:TheInternationalCouncilonCleanTransportation.https://theicct.org/publication/zevtc-effective-policies-dec2021/.Hölscher,K.,Wittmayer,J.M.andLoorbach,D.(2018).Transitionversustransformation:What’sthedifference?EnvironmentalInnovationandSocietalTransitions,27,1–13.https://doi.org/10.1016/j.eist.2017.10.007.InitiativeforClimateActionTransparency(2020).Non-StateandSubnationalActionGuide:IntegratingtheImpactofNon-StateandSubnationalMitigationActionsintoNationalGreenhouseGasProjections,TargetsandPlanning.Berlin,Washington,D.C.andBonn:NewClimateInstitute,WorldResourcesInstituteandInitiativeforClimateActionTransparency.https://climateactiontransparency.org/wp-content/uploads/2020/04/Non-State-and-Subnational-Action-Assessment-Guide.pdf.InstituteforTransportationandDevelopmentPolicyandUniversityofCaliforniaDavis(2021).TheCompactCityScenario–Electrified:TheOnlyWayto1.5°C.InstituteforTransportationandDevelopmentPolicy:NewYork.https://www.itdp.org/wp-content/uploads/2021/12/EN_Compact-Cities-BRIEF_SINGLEPAGE.pdf.IntergovernmentalPanelonClimateChange(2021).Summaryforpolicymakers.InClimateChange2021:ThePhysicalScienceBasis.ContributionofWorkingGroupItotheSixthAssessmentReportoftheIntergovernmentalPanelonClimateChange.Geneva.https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_SPM.pdf.__________(2022).Summaryforpolicymakers.InClimateChange2022:MitigationofClimateChange.WorkingGroupIIIContributiontotheSixthAssessmentReportoftheIntergovernmentalPanelonClimateChange.Geneva.https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_SPM.pdf.InternationalCouncilonCleanTransportation(2021).Vision2050.https://theicct.org/vision-2050/.Accessed24June2022.InternationalEnergyAgency(2020).TrackingBuildings.Availableat:https://www.iea.org/reports/tracking-buildings-2020.__________(2021a).BuildingEnvelopes.Paris.__________(2021b).GlobalEnergyReview2021.Paris.https://www.iea.org/reports/global-energy-review-2021/co2-emissions.__________(2021c).GreenhouseGasEmissionsfromEnergy.Paris__________(2021d).HydrogenProjectsDatabase.Paris.__________(2021e).NetZeroby2050:ARoadmapfortheGlobalEnergySector.Paris.https://www.iea.org/reports/net-zero-by-2050.InternationalEnergyAgency,InternationalRenewableEnergyAgencyandUnitedNationsClimateChangeHigh-LevelChampions(2022).TheBreakthroughAgendaReport:AcceleratingSectorTransitionsThroughStrongerInternationalCollaboration.Paris:InternationalEnergyAgency.https://iea.blob.core.windows.net/assets/49ae4839-90a9-4d88-92bc-371e2b24546a/THEBREAKTHROUGHAGENDAREPORT2022.pdf.InternationalRenewableEnergyAgency(2021).WorldEnergyTransitionsOutlook:1.5°CPathway.AbuDhabi.https://www.irena.org/publications/2021/Jun/World-Energy-Transitions-Outlook.InternationalTransportForum(2021).ITFTransportOutlook2021.Paris:OECDPublishing.https://www.oecd-ilibrary.org/transport/itf-transport-outlook-2021_16826a30-en.Irle,R.(2021).GlobalEVsalesfor2021.https://www.ev-volumes.com/news/ev-sales-for-2021/.Accessed24June2022.Jaramillo,P.,Ribeiro,S.K.,Newman,P.,Dhar,S.,Diemuodeke,O.,Kajino,T.etal.(2022).Chapter10:Transport.InClimateChange2022:MitigationofClimateChange.WorkingGroupIIIContributiontotheSixthAssessmentReportoftheIntergovernmentalPanelonClimateChange.IntergovernmentalPanelonClimateChange.Geneva.https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_Chapter_10.pdf.GHIJ88EmissionsGapReport2022:TheClosingWindowJordan,M.,Hamilton,I.,Ha,J.H.,Steurer,N.,Abergel,T.,Bayer,E.etal.(2020).GlobalABCRoadmapforBuildingsandConstruction.ParisandNairobi:InternationalEnergyAgencyandUnitedNationsEnvironmentProgramme.https://globalabc.org/sites/default/files/inline-files/GlobalABC_Roadmap_for_Buildings_and_Construction_2020-2050_3.pdf.Khan,T.,Yang,Z.,Kohli,S.andMiller,J.(2022).ACriticalReviewofZEVDeploymentinEmergingMarkets.Washington,D.C.:InternationalCouncilonCleanTransportation.https://theicct.org/publication/zev-market-review-global-feb22/.Levin,K.,Cashore,B.,Bernstein,S.andAuld,G.(2012).Overcomingthetragedyofsuperwickedproblems:Constrainingourfutureselvestoameliorateglobalclimatechange.PolicySciences,45(2),123–152.https://doi.org/10.1007/s11077-012-9151-0.Levin,K.,Rich,D.,Ross,K.,Fransen,T.andElliott,C.(2020).DesigningandCommunicatingNet-zeroTargets.Washington,D.C.:WorldResourcesInstitute.https://files.wri.org/d8/s3fs-public/designing-communicating-net-zero-targets.pdf.Martin,A.(2021).Astepforwardfor“green”methanolanditspotentialtodeliverdeepGHGreductionsinmaritimeshipping,1September.https://theicct.org/a-step-forward-for-green-methanol-and-its-potential-to-deliver-deep-ghg-reductions-in-maritime-shipping/.Accessed24June2022.Mason,J.,Shalal,A.andRumney,E.(2021).SouthAfricatoget$8.5blnfromU.S.,EUandUKtospeedupshiftfromcoal,2November.https://www.reuters.com/business/environment/us-eu-others-will-invest-speed-safricas-transition-clean-energy-biden-2021-11-02/.Accessed27June2022.McKerracher,C.,O’Donovan,A.,Soulopoulos,N.,Grant,A.,Mi,S.,Doherty,D.etal.(2022).ElectricVehicleOutlook2022.NewYork:BloombergNewEnergyFinance.https://about.bnef.com/electric-vehicle-outlook/.Millward-Hopkins,J.,Busch,J.,Purnell,P.,Zwirner,O.,Velis,C.A.,Brown,A.etal.(2018).Fullyintegratedmodellingforsustainabilityassessmentofresourcerecoveryfromwaste.ScienceoftheTotalEnvironment,612,613–624.https://doi.org/10.1016/j.scitotenv.2017.08.211.Minjares,R.,Rodríguez,F.,Sen,A.andBraun,C.(2021).InfrastructuretoSupporta100%Zero-emissionTractor-trailerFleetintheUnitedStatesby2040.Washington,D.C.:InternationalCouncilonCleanTransportation.https://theicct.org/publication/infrastructure-to-support-a-100-zero-emission-tractor-trailer-fleet-in-the-united-states-by-2040/.Monteith,S.andMenon,S.(2020).AchievingGlobalClimateGoalsby2050:ActionableOpportunitiesforThisDecade.SanFrancisco:ClimateWorksFoundation.https://www.climateworks.org/report/achieving-global-climate-goals-by-2050-actionable-opportunities-for-this-decade/.Moore,M.,Tjornbo,O.,Enfors,E.,Knapp,C.,Hodbod,J.,Baggio,J.A.etal.(2014).Studyingthecomplexityofchange:Towardananalyticalframeworkforunderstandingdeliberatesocial-ecologicaltransformations.EcologyandSociety,19(4),54.http://dx.doi.org/10.5751/ES-06966-190454.O’Brien,K.andSygna,L.(2013).RespondingtoClimateChange:TheThreeSpheresofTransformation.Oslo:cCHANGE.https://www.sv.uio.no/iss/english/research/projects/adaptation/publications/1-responding-to-climate-change---three-spheres-of-transformation_obrien-and-sygna_webversion_final.pdf.Olsson,P.,Folke,C.andHahn,T.(2004).Social-ecologicaltransformationforecosystemmanagement:Thedevelopmentofadaptiveco-managementofawetlandlandscapeinsouthernSweden.EcologyandSociety,9(4),2.https://www.ecologyandsociety.org/vol9/iss4/art2/.Otto,I.M.,Donges,J.F.,Cremades,R.,Bhowmik,A.,Hewitt,R.J.,Lucht,W.etal.(2020).SocialtippingdynamicsforstabilizingEarth’sclimateby2050.ProceedingsoftheNationalAcademyofSciences,117(5),2354–2365.https://doi.org/10.1073/pnas.1900577117.Patterson,J.,Schulz,K.,Vervoort,J.,vanderHel,S.,Widerberg,O.,Adler,C.etal.(2017).Exploringthegovernanceandpoliticsoftransformationstowardssustainability.EnvironmentalInnovationandSocietalTransitions,24,1–16.https://doi.org/10.1016/j.eist.2016.09.001.Pavlenko,N.andO’Malley,J.(2022)LeveragingEUPoliciesandClimateAmbitiontoClosetheCostGapBetweenConventionalandSustainableAviationFuels.Washington,D.C.:InternationalCouncilonCleanTransportation.https://theicct.org/publication/eu-fuels-aviation-cost-gap-safs-apr22/.Ragon,P.,Mulholland,E.,Basma,H.andRodríguez,F.(2022)AReviewoftheAFIRProposal:PublicInfrastructureNeedstoSupporttheTransitiontoaZero-emissionTruckFleetintheEuropeanUnion.Washington,D.C.:InternationalCouncilonCleanTransportation.https://theicct.org/publication/afir-eu-hdv-infrastructure-mar22/.Reyers,B.,Folke,C.,Moore,M.,Biggs,R.andGalaz,V.(2018).Social-ecologicalsystemsinsightsfornavigatingthedynamicsoftheanthropocene.AnnualReviewofEnvironmentandResources,43(1),267–289.https://doi.org/10.1146/annurev-environ-110615-085349.Rissman,J.,Bataille,C.,Masanet,E.,Aden,N.,Morrow,W.R.,Zhou,N.etal.(2020).Technologiesandpoliciestodecarbonizeglobalindustry:Reviewandassessmentofmitigationdriversthrough2070.AppliedEnergy,266,114848.https://doi.org/10.1016/j.apenergy.2020.114848.KLMORP89EmissionsGapReport2022:TheClosingWindowRoy,J.,Das,N.,Ghosh,D.,Kahn-Ribero,S.,Konar,M.,Masera,O.etal.(2021).CriticalJunctionsontheJourneyto1.5°C:TheDecisiveDecade.LondonandTheHague:ClimateStrategies.https://mission2020.global/wp-content/uploads/2021/05/Critical-Junctions-on-the-Journey-to-1.5C.pdf.Searchinger,T.,Waite,R.,Hanson,C.andRanganathan,J.(2019).CreatingaSustainableFoodFuture:AMenuofSolutionstoFeedNearly10BillionPeopleby2050.Washington,D.C.:WorldResourcesInstitute.https://research.wri.org/sites/default/files/2019-07/WRR_Food_Full_Report_0.pdf.Sen,A.andMiller,J.(2022).EmissionsReductionBenefitsofaFaster,GlobalTransitiontoZero-emissionVehicles.Washington,D.C.:InternationalCouncilonCleanTransportation.https://theicct.org/publication/zevs-global-transition-benefits-mar22/.Sen,A.,Miller,J.,Bandivadekar,A.,Sharma,M.,Nagar,P.K.andSingh,D.(2021)UnderstandingtheAirQualityandHealthImpactsofLarge-scaleVehicleElectrificationinIndia.Washington,D.C.:InternationalCouncilonCleanTransportation.https://theicct.org/publication/understanding-the-air-quality-and-health-impacts-of-large-scale-vehicle-electrification-in-india/.Seto,K.C.,Davis,S.J.,Mitchell,R.B.,Stokes,E.C.,Unruh,G.andÜrge-Vorsatz,D.(2016).Carbonlock-in:Types,causes,andpolicyimplications.AnnualReviewofEnvironmentandResources,41(1),425–452.https://doi.org/10.1146/annurev-environ-110615-085934.Sharpe,S.andLenton,T.M.(2021)Upward-scalingtippingcascadestomeetclimategoals:Plausiblegroundsforhope.ClimatePolicy,21(4),421–433.https://doi.org/10.1146/annurev-environ-110615-085934.Sterl,S.andHagemann,M.,Fekete,H.,Höhne,N.,Cantzler,J.,Ancygier,A.etal.(2017).FasterandCleaner2.Kick-startingGlobalDecarbonization:ItOnlyTakesaFewActorstoGettheBallRolling.Cologne:NewClimateInstitute.https://newclimateinstitute.files.wordpress.com/2017/04/faster-cleaner-fulldoc_041817.pdf.Teske,S.andPregger,T.(2022).Science-basedindustrygreenhousegas(GHG)targets:Definingthechallenge.InAchievingtheParisClimateAgreementGoals.Teske,S.(ed.).Cham:Springer.9–21.https://link.springer.com/chapter/10.1007/978-3-030-99177-7_2.TransformativeUrbanMobilityInitiative(2021).HereIsWhyCitiesAroundtheWorldShouldBuild2kmHighQuality,SegregatedCyclingLanePer1000Inhabitants.BonnandEschbornhttps://www.transformative-mobility.org/assets/publications/TUMI_Strategy-Outlook_2km-bike-lanes-per-1000-inhabitants.pdf.UnitedNationsEnvironmentProgrammeandGlobalAllianceforBuildingsandConstruction(2022).TheGlobalABCworkareas.https://globalabc.org/our-work/work-areas.Accessed27June2022.UnitedNationsFrameworkCommissiononClimateChange(2021).UpgradingOurSystemsTogether:AGlobalChallengetoAccelerateSectorBreakthroughsforCOP26–andBeyond.Bonn.https://racetozero.unfccc.int/wp-content/uploads/2021/09/2030-breakthroughs-upgrading-our-systems-together.pdf.UniversityMaritimeAdvisoryServices(2021).AStrategyfortheTransitiontoZero-emissionShipping:AnAnalysisofTransitionPathways,Scenarios,andLeversforChange.London:UniversityMaritimeAdvisoryServicesandGettingtoZeroCoalition.https://www.u-mas.co.uk/wp-content/uploads/2021/10/Transition-Strategy-Report.pdf.Victor,D.G.,Geels,F.W.andSharpe,S.(2019).AcceleratingtheLowCarbonTransition:TheCaseforStronger,MoreTargetedandCoordinatedInternationalAction.Washington,D.C.:BrookingsInstitution.https://www.brookings.edu/wp-content/uploads/2019/12/Coordinatedactionreport.pdf.Wappelhorst,S.(2022).Incentivizingzero-andlow-emissionvehicles:Themagicoffeebateprograms,8June.https://theicct.org/magic-of-feebate-programs-jun22/.Accessed24June2022.Westley,F.,Olsson,P.,Folke,C.,Homer-Dixon,T.,Vredenburg,H.,Loorbach,D.etal.(2011).Tippingtowardsustainability:Emergingpathwaysoftransformation.Ambio,40,762.https://doi.org/10.1007/s13280-011-0186-9.WorldBank(2021).StateandTrendsofCarbonPricing2021.WashingtonD.C.https://openknowledge.worldbank.org/handle/10986/35620.__________(2022).WorldDevelopmentIndicators.https://databank.worldbank.org/source/world-development-indicators.Accessed18May2022.WorldEconomicForum(2021).GreenBuildingPrinciples:TheActionPlanforNet-zeroCarbonBuildings.Geneva.https://www3.weforum.org/docs/WEF_Green_Building_Principles_2021.pdf.Xie,Y.,Dallmann,T.andMuncrief,R.(2022).Heavy-dutyZero-emissionVehicles:PaceandOpportunitiesforaRapidGlobalTransition.Washington,D.C.:InternationalCouncilonCleanTransportation.https://theicct.org/publication/hdv-zevtc-global-may22/.STUVWX90EmissionsGapReport2022:TheClosingWindowFChapter6Arndt,C.,Hristov,A.N.,Price,W.J.,McClelland,S.C.,Pelaez,A.M.,Cueva,S.F.etal.(2022).Fulladoptionofthemosteffectivestrategiestomitigatemethaneemissionsbyruminantscanhelpmeetthe1.5°Ctargetby2030butnot2050.ProceedingsoftheNationalAcademyofSciences119(20),e2111294119.https://doi.org/10.1073/pnas.2111294119.Assunção,J.,Gandour,C.andRocha,R.(2015).DeforestationslowdownintheBrazilianAmazon:Pricesorpolicies?EnvironmentandDevelopmentEconomics20(6),697–722.https://doi.org/10.1017/S1355770X15000078.Beegle,K.,Coudouel,A.andMonsalve,E.(2018).RealizingtheFullPotentialofSocialSafetyNetsinAfrica.Washington,D.C.:WorldBank.https://doi.org/10.1596/978-1-4648-1164-7.Burns,D.,Langer,P.,Seymour,F.,Taylor,R.,Czebiniak,R.,Hanson,C.etal.(2022).Guidanceonvoluntaryuseofnature-basedsolutioncarboncreditsthrough2040,2June.https://www.wri.org/insights/guidance-voluntary-use-nature-based-solution-carbon-credits-through-2040.Accessed11October2022.Busch,J.andEngelmann,J.(2017).Cost-effectivenessofreducingemissionsfromtropicaldeforestation,2016–2050.EnvironmentalResearchLetters13(1),015001.https://doi.org/10.1088/1748-9326/aa907c.Clark,M.A.,Domingo,N.G.G.,Colgan,K.,Thakrar,S.K.,Tilman,D.,Lynch,J.etal.(2020).Globalfoodsystememissionscouldprecludeachievingthe1.5°and2°Cclimatechangetargets.Science370(6517),705–708.https://doi.org/10.1126/science.aba7357.Clune,S.,Crossin,E.andVerghese,K.(2017).Systematicreviewofgreenhousegasemissionsfordifferentfreshfoodcategories.JournalofCleanerProduction140,766–783.https://doi.org/10.1016/j.jclepro.2016.04.082.Cook,E.(ed.)(2018).Agriculture,ForestryandFisheryStatistics:2018Edition.Luxembourg:Eurostat.https://ec.europa.eu/eurostat/web/products-statistical-books/-/ks-fk-18-001.Cordell,D.andWhite,S.(2014).Life’sbottleneck:Sustainingtheworld’sphosphorusforafoodsecurefuture.AnnualReviewofEnvironmentandResources39,161–188.https://www.annualreviews.org/doi/abs/10.1146/annurev-environ-010213-113300.CostaJr.,C.,Wollenberg,E.,Benitez,M.,Newman,R.,Gardner,N.andBellone,F.(2022).Roadmapforachievingnet-zeroemissionsinglobalfoodsystemsby2050.ScientificReports12(1).https://doi.org/10.1038/s41598-022-18601-1.CounciloftheEuropeanUnion.CouncilDirective(1991)concerningtheprotectionofwatersagainstpollutioncausedbynitratesfromagriculturalsources(91/676/EEC),enteredintoforce12December1991.Crippa,M.,Solazzo,E.,Guizzardi,D.,Monforti-Ferrario,F.,Tubiello,F.N.andLeip,A.(2021).FoodsystemsareresponsibleforathirdofglobalanthropogenicGHGemissions.NatureFood2(3),198–209.https://doi.org/10.1038/s43016-021-00225-9.Crippa,M.,Solazzo,E.,Guizzardi,D.,Tubiello,F.N.andLeip,A.(2022).Climategoalsrequirefoodsystemsemissioninventories.NatureFood3(1).https://doi.org/10.1038/s43016-021-00450-2.Crumpler,K.,Khalil,A.R.,Tanganelli,E.,Rai,N.,Roffredi,L.,Meybeck,A.etal.(2021).2021(Interim)GlobalUpdateReport:Agriculture,ForestryandFisheriesintheNationallyDeterminedContributions.Rome.FoodandAgricultureOrganizationoftheUnitedNations.https://doi.org/10.4060/cb7442en.Curtis,P.G.,Slay,C.M.,Harris,N.L.,Tyukavina,A.andHansen,M.C.(2018).Classifyingdriversofglobalforestloss.Science361(6407),1108–1111.https://doi.org/10.1126/science.aau3445.Davis,K.F.,Gephart,J.A.,Emery,K.A.,Leach,A.M.,Galloway,J.N.andD’Odorico,P.(2016).Meetingfuturefooddemandwithcurrentagriculturalresources.GlobalEnvironmentalChange39,125–132.https://doi.org/10.1016/j.gloenvcha.2016.05.004.deVries,W.(2021).Impactsofnitrogenemissionsonecosystemsandhumanhealth:Aminireview.CurrentOpinioninEnvironmentalScience&Health21,100249.https://doi.org/10.1016/j.coesh.2021.100249.Deconinck,K.,Giner,C.,Jackson,L.A.andToyama,L.(2021).OvercomingEvidenceGapsonFoodSystems.Paris,France:OrganizationforEconomicCooperationandDevelopment.https://doi.org/10.1787/44ba7574-en.Diaz,R.J.andRosenberg,R.(2008).Spreadingdeadzonesandconsequencesformarineecosystems.Science321(5891),926–929.https://doi.org/10.1126/science.1156401.Eker,S.,Garcia,D.,Valin,H.andvanRuijven,B.(2021).Usingsocialmediaaudiencedatatoanalysethedriversoflow-carbondiets.EnvironmentalResearchLetters16(7),074001.https://doi.org/10.1088/1748-9326/abf770.EuropeanEnvironmentAgency(2020).Nitratedirective,23November.https://www.eea.europa.eu/archived/archived-content-water-topic/water-pollution/prevention-strategies/nitrate-directive.Accessed11October2022.Fan,S.(2021).Economicsinfoodsystemstransformation.NatureFood2(4),218–219.https://doi.org/10.1038/s43016-021-00266-0.Foley,J.A.,DeFries,R.,Asner,G.P.,Barford,C.,Bonan,G.,Carpenter,S.R.etal.(2005).Globalconsequencesoflanduse.Science309(5734),570–574.https://www.science.org/doi/abs/10.1126/science.1111772.CABDE91EmissionsGapReport2022:TheClosingWindowFoodandLandUseCoalition(2019).GrowingBetter:TenCriticalTransitionstoTransformFoodandLandUse.London,UK.https://www.foodandlandusecoalition.org/wp-content/uploads/2019/09/FOLU-GrowingBetter-GlobalReport.pdf.FoodandLandUseCoalitionandFood,Environment,LandandDevelopmentActionTracker(2021).FromGlobalCommitmentstoNationalAction:ACloserLookatNationallyDeterminedContributionsfromaFoodandLandPerspective.London.FoodandLandUseCoalition.https://www.foodandlandusecoalition.org/wp-content/uploads/2021/11/From-COP-to-national-action-Assessing-the-NDCs-from-a-food-land-perspective.pdf.FoodandAgricultureOrganizationoftheUnitedNations(2021a).EmissionsfromAgricultureandForestLand.Global,RegionalandCountryTrends1990–2019.http://www.fao.org/food-agriculture-statistics/data-release/data-release-detail/en/c/1413420/.Accessed11October2022.__________(2021b).TheShareofAgri-foodSystemsinTotalGreenhouseGasEmissions.Global,RegionalandCountryTrends1990–2019.http://www.fao.org/food-agriculture-statistics/data-release/data-release-detail/en/c/1454718/.Accessed11October2022.__________(2022).TheStateoftheWorld’sForests2022:ForestPathwaysforGreenRecoveryandBuildingInclusive,ResilientandSustainableEconomies.Rome.https://doi.org/10.4060/cb9360en.FoodandAgricultureOrganizationoftheUnitedNations,InternationalFundforAgriculturalDevelopment,UnitedNationsChildren’sFund,WorldFoodProgrammeandWorldHealthOrganization(2020).TheStateofFoodSecurityandNutritionintheWorld2020:TransformingFoodSystemsforAffordableHealthyDiets.Rome:FoodandAgricultureOrganizationoftheUnitedNations.https://doi.org/10.4060/ca9692en.___________(2022).TheStateofFoodSecurityandNutritionintheWorld2022:RepurposingFoodandAgriculturalPoliciestoMakeHealthyDietsMoreAffordable.Rome:FoodandAgricultureOrganizationoftheUnitedNations.https://doi.org/10.4060/cc0639en.FoodandAgricultureOrganizationoftheUnitedNationsandWorldHealthOrganization(2019).SustainableHealthyDiets:GuidingPrinciples.Rome:FoodandAgricultureOrganizationoftheUnitedNations.https://www.fao.org/3/ca6640en/ca6640en.pdf.Frank,S.,Beach,R.,Havlík,P.,Valin,H.,Herrero,M.,Mosnier,A.etal.(2018).Structuralchangeasakeycomponentforagriculturalnon-CO2mitigationefforts.NatureCommunications9.https://doi.org/10.1038/s41467-018-03489-1.Friedlingstein,P.,Jones,M.W.,O’Sullivan,M.,Andrew,R.M.,Bakker,D.C.E.,Hauck,J.etal.(2022).Globalcarbonbudget2021.EarthSystemScienceData14(4),1917–2005.https://doi.org/10.5194/essd-14-1917-2022.Gaveau,D.L.A.,Locatelli,B.,Salim,M.A.,Husnayaen,Manurung,T.,Descals,A.,Angelsen,A.etal.(2022).SlowingdeforestationinIndonesiafollowsdecliningoilpalmexpansionandloweroilprices.PLOSONE17(3),e0266178.https://doi.org/10.1371/journal.pone.0266178.GBD2017DietCollaborators(2019).Healtheffectsofdietaryrisksin195countries,1990–2017:AsystematicanalysisfortheGlobalBurdenofDiseaseStudy2017.TheLancet393(10184),1958–1972.https://doi.org/10.1016/S0140-6736(19)30041-8.Giller,K.E.(2022).Whythebuzzonregenerativeagriculture?GrowingAfrica1(1).https://doi.org/10.55693/ga11.kdvj45831.GlobalAlliancefortheFutureofFood(2022).UntappedOpportunitiesforClimateAction:AnAssessmentofFoodSystemsinNationallyDeterminedContributions.GlobalAlliancefortheFutureofFood.https://futureoffood.org/wp-content/uploads/2022/03/assessment-of-food-systems-in-ndcs.pdf.GlobalForestWatch(2022).GlobalDeforestationRates&StatisticsbyCountry.GlobalForestWatch.https://www.globalforestwatch.org/dashboards/global.Accessed11October2022.Grassi,G.,Conchedda,G.,Federici,S.,AbadViñas,R.,Korosuo,A.,Melo,J.etal.(2022).Carbonfluxesfromland2000–2020:Bringingclarityoncountries’reporting.EarthSystemScienceData14(10),4643–4666.https://doi.org/10.5194/essd-14-4643-2022.Guénette,J.D.,Kose,M.A.andSugawara,N.(2022).IsaGlobalRecessionImminent?Washington,DC:WorldBank.https://openknowledge.worldbank.org/bitstream/handle/10986/38019/Global-Recession.pdf.Gupta,K.,Kumar,R.,Baruah,K.K.,Hazarika,S.,Karmakar,S.andBordoloi,N.(2021).Greenhousegasemissionfromricefields:areviewfromIndiancontext.EnvironmentalScienceandPollutionResearch28(24),30551–30572.https://doi.org/10.1007/s11356-021-13935-1.Hamilton,I.,Kennard,H.,McGushin,A.,Höglund-Isaksson,L.,Kiesewetter,G.,Lott,M.,etal.(2021).ThepublichealthimplicationsoftheParisAgreement:amodellingstudy.TheLancetPlanetaryHealth5(2)E74–E83.https://www.thelancet.com/journals/lanplh/article/PIIS2542-5196(20)30249-7/fulltext.Huang,B.,Kong,H.,Yu,J.andZhang,X.(2022).Astudyontheimpactoflow-carbontechnologyapplicationinagricultureonthereturnsoflarge-scalefarmers.InternationalJournalofEnvironmentalResearchandPublicHealth19(16).https://doi.org/10.3390/ijerph191610177.GH92EmissionsGapReport2022:TheClosingWindowIntergovernmentalPanelonClimateChange(2019).ClimateChangeandLand:AnIPCCSpecialReportonClimateChange,Desertification,LandDegradation,SustainableLandManagement,FoodSecurity,andGreenhouseGasFluxesinTerrestrialEcosystems.Geneva.https://www.ipcc.ch/site/assets/uploads/2019/11/SRCCL-Full-Report-Compiled-191128.pdf.__________(2022a).ClimateChange2022:Impacts,AdaptationandVulnerability.Geneva.https://www.ipcc.ch/report/ar6/wg2/.__________(2022b).ClimateChange2022:MitigationofClimateChange.ContributionofWorkingGroupIIItotheSixthAssessmentReportoftheIntergovernmentalPanelonClimateChange.Geneva.https://www.ipcc.ch/report/sixth-assessment-report-working-group-3/.InternationalRenewableEnergyAgency(2015).RenewableEnergyOptionsfortheIndustrySector:GlobalandRegionalPotentialUntil2030:Backgroundto“RenewableEnergyinManufacturing”TechnologyRoadmap(IRENA2014a).AbuDhabi:IRENA.https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2014/Aug/IRENA_RE_Potential_for_Industry_BP_2015.pdf.InternationalRenewableEnergyAgencyandFoodandAgricultureOrganizationoftheUnitedNations(2021).RenewableEnergyforAgri-FoodSystems:TowardstheSustainableDevelopmentGoalsandtheParisAgreement.Rome.https://www.fao.org/documents/card/en/c/cb7433en/.Islam,S.(2021).Evaluationoflow-carbonsustainabletechnologiesinagriculturesectorthroughgreyordinalpriorityapproach.InternationalJournalofGreySystems1(1),5–26.https://doi.org/10.52812/ijgs.3.Jalava,M.,Kummu,M.,Porkka,M.,Siebert,S.andVaris,O.(2014).Dietchange—asolutiontoreducewateruse?EnvironmentalResearchLetters9(7).https://doi.org/10.1088/1748-9326/9/7/074016.Jesse,A.,Perotti,A.andRoos,D.(2022).Decarbonizinggrocery,22July.https://www.mckinsey.com/industries/retail/our-insights/decarbonizing-grocery.Accessed11October2022.KansasStateUniversity(2022).MonthlyMeatDemandMonitor.https://www.agmanager.info/livestock-meat/meat-demand/monthly-meat-demand-monitor-survey-data.Accessed11October2022.Kun,C.andGenxing,P.(2021).HowcanChinacutemissionsfromitsfarms?,22January.https://chinadialogue.net/en/food/how-can-china-cut-emissions-from-its-farms/.Accessed11October2022.Lefore,N.,Giordano,M.,Ringler,C.andBarron,J.(2019).Sustainableandequitablegrowthinfarmer-ledirrigationinsub-SaharanAfrica:Whatwillittake?WaterAlternatives12(1).https://www.water-alternatives.org/index.php/alldoc/articles/vol12/v12issue1/484-a12-1-10.Low,S.andSchäfer,S.(2020).Isbio-energycarboncaptureandstorage(BECCS)feasible?Thecontestedauthorityofintegratedassessmentmodeling.EnergyResearch&SocialScience60.https://doi.org/10.1016/j.erss.2019.101326.Lukhanyu,M.(2021).BrooksidePartnerswithSun-Culturetoprovidefarmerswithsolar-poweredirrigationsystem,26May.https://techmoran.com/2021/05/26/brookside-partners-with-sun-culture-to-provide-farmers-with-solar-powered-irrigation-system/.Lusk,J.L.andNorwood,F.B.(2016).Somevegetariansspendlessmoneyonfood,othersdon’t.EcologicalEconomics130,232–242.https://doi.org/10.1016/j.ecolecon.2016.07.005.Maúre,E.deR.,Terauchi,G.,Ishizaka,J.,Clinton,N.andDeWitt,M.(2021).Globallyconsistentassessmentofcoastaleutrophication.NatureCommunications12(6142).https://doi.org/10.1038/s41467-021-26391-9.Maxwell,S.L.,Evans,T.,Watson,J.E.M.,Morel,A.,Grantham,H.,Duncan,A.etal.(2019).Degradationandforgoneremovalsincreasethecarbonimpactofintactforestlossby626%.ScienceAdvances5(10).https://doi.org/10.1126/sciadv.aax2546.Mbow,C.,Rosenzweig,C.E.,Barioni,L.G.,Benton,T.G.,Herrero,M.,Krishnapillai,M.etal.(2020).Chapter5:Foodsecurity.InClimateChangeandLand:AnIPCCSpecialReportonClimateChange,Desertification,LandDegradation,SustainableLandManagement,FoodSecurity,andGreenhouseGasFluxesinTerrestrialEcosystems.IntergovernmentalPanelonClimateChange.Geneva.https://www.ipcc.ch/site/assets/uploads/sites/4/2021/02/08_Chapter-5_3.pdf.Mozaffarian,D.(2016).Dietaryandpolicyprioritiesforcardiovasculardisease,diabetes,andobesity:Acomprehensivereview.Circulation133(2),187–225.https://www.ahajournals.org/doi/10.1161/CIRCULATIONAHA.115.018585.Mozaffarian,D.,Afshin,A.,Benowitz,N.L.,Bittner,V.,Daniels,S.R.,Franch,H.A.etal.(2012).Populationapproachestoimprovediet,physicalactivity,andsmokinghabits:AscientificstatementfromtheAmericanHeartAssociation.Circulation126(12),1514–1563.https://www.ahajournals.org/doi/10.1161/CIR.0b013e318260a20b.IJKLM93EmissionsGapReport2022:TheClosingWindowNabuurs,G.,Harris,N.,Sheil,D.,Palahi,M.,Chirici,G.,Boissière,M.etal.(2022).Glasgowforestdeclarationneedsnewmodesofdataownership.NatureClimateChange12(5),415–417.https://doi.org/10.1038/s41558-022-01343-3.Newbold,T.,Hudson,L.N.,Hill,S.L.L.,Contu,S.,Lysenko,I.,Senior,R.A.etal.(2015).Globaleffectsoflanduseonlocalterrestrialbiodiversity.Nature520,45–50.https://doi.org/10.1038/nature14324.Ogundeji,A.A.andOkolie,C.C.(2022).PerceptionandAdaptationStrategiesofSmallholderFarmerstoDroughtRisk:AScientometricAnalysis.Agriculture12(8),1129.https://doi.org/10.3390/agriculture12081129.OrganisationforEconomicCo-operationandDevelopment(2020).TheTerritorialImpactofCOVID-19:ManagingtheCrisisAcrossLevelsofGovernment.Paris:OECDPublishing.http://www.oecd.org/coronavirus/policy-responses/the-territorial-impact-of-covid-19-managing-the-crisis-across-levels-of-government-d3e314e1/.OrganisationforEconomicCo-operationandDevelopmentandFoodandAgricultureOrganizationoftheUnitedNations(2021).Chapter6:Meat.InOECD-FAOAgriculturalOutlook2021–2030.Paris:OECDPublishing.163–179.https://doi.org/10.1787/19428846-en.OrganisationforEconomicCo-operationandDevelopmentandFoodandAgricultureOrganizationoftheUnitedNations(2022).OECD-FAOAgriculturalOutlook2022–2031.Paris.OECDPublishing.https://doi.org/10.1787/f1b0b29c-en.Orr,A.,Kabombo,B.,Roth,C.,Harris,D.andDoyle,V.(2013).Testingintegratedfoodenergysystems:ImprovedstovesandpigeonpeainsouthernMalawi.Socioeconomicsdiscussionpaperseries8.Nairobi:InternationalCropsResearchInstitutefortheSemi-AridTropics.http://oar.icrisat.org/7215/7/A_Orr_et_al_2013_ISEDPS_8.pdf.Pacheco,P.,Mo,K.,Dudley,N.,Shapiro,A.,Aguilar-Amuchastegui,N.,Ling,P.Y.etal.(2021).DeforestationFronts:DriversandResponsesinaChangingWorld.Gland:WorldWideFundforNature.https://files.worldwildlife.org/wwfcmsprod/files/Publication/file/ocuoxmdil_Deforestation_fronts___drivers_and_responses_in_a_changing_world___full_report__1_.pdf.Pathak,H.andAggarwal,P.K.(eds.)(2012).LowCarbonTechnologiesforAgriculture:AStudyonRiceandWheatSystemsintheIndo-GangeticPlains.NewDelhi:IndianAgriculturalResearchInstitute.Pelletier,N.,Audsley,E.,Brodt,S.,Garnett,T.,Henriksson,P.,Kendall,A.etal.(2011).Energyintensityofagricultureandfoodsystems.AnnualReviewofEnvironmentandResources36,223–246.https://doi.org/10.1146/annurev-environ-081710-161014.Pendrill,F.,Gardner,T.A.,Meyfroidt,P.,Persson,U.M.,Adams,J.,Azevedo,T.etal.(2022).Disentanglingthenumbersbehindagriculture-driventropicaldeforestation.Science377(6611).https://doi.org/10.1126/science.abm9267.Pendrill,F.,Persson,U.M.,Godar,J.,Kastner,T.,Moran,D.,Schmidt,S.etal.(2019).Agriculturalandforestrytradedriveslargeshareoftropicaldeforestationemissions.GlobalEnvironmentalChange56,1–10.https://doi.org/10.1016/j.gloenvcha.2019.03.002.Petersen,R.J.,Blicher-Mathiesen,G.,Rolighed,J.,Andersen,H.E.andKronvang,B.(2021).Threedecadesofregulationofagriculturalnitrogenlosses:ExperiencesfromtheDanishAgriculturalMonitoringProgram.ScienceofTheTotalEnvironment787,147619.https://doi.org/10.1016/j.scitotenv.2021.147619.Poore,J.andNemecek,T.(2018).Reducingfood’senvironmentalimpactsthroughproducersandconsumers.Science360(6392),987–992.https://doi.org/10.1126/science.aaq0216.Reardon,T.,Timmer,C.P.andMinten,B.(2012).SupermarketrevolutioninAsiaandemergingdevelopmentstrategiestoincludesmallfarmers.ProceedingsoftheNationalAcademyofSciences109(31),12332–12337.https://doi.org/10.1073/pnas.1003160108.Riahi,K.,vanVuuren,D.P.,Kriegler,E.,Edmonds,J.,O’Neill,B.C.,Fujimori,S.etal.(2017).TheSharedSocioeconomicPathwaysandtheirenergy,landuse,andgreenhousegasemissionsimplications:Anoverview.GlobalEnvironmentalChange42,153–168.https://doi.org/10.1016/j.gloenvcha.2016.05.009.Ritchie,H.(2019).Foodproductionisresponsibleforone-quarteroftheworld’sgreenhousegasemissions,6November.https://ourworldindata.org/food-ghg-emissions.Accessed11October2022.Robertson,G.P.andVitousek,P.M.(2009).Nitrogeninagriculture:Balancingthecostofanessentialresource.AnnualReviewofEnvironmentandResources34,97–125.https://doi.org/10.1146/annurev.environ.032108.105046.Roe,S.,Streck,C.,Obersteiner,M.,Frank,S.,Griscom,B.,Drouet,L.etal.(2019).Contributionofthelandsectortoa1.5°Cworld.NatureClimateChange9(11),817–828.https://doi.org/10.1038/s41558-019-0591-9.Rosenzweig,C.,Mbow,C.,Barioni,L.G.,Benton,T.G.,Herrero,M.,Krishnapillai,M.etal.(2020).Climatechangeresponsesbenefitfromaglobalfoodsystemapproach.NatureFood1,94–97.https://doi.org/10.1038/s43016-020-0031-z.Rubio,N.R.,Xiang,N.andKaplan,D.L.(2020).Plant-basedandcell-basedapproachestomeatproduction.NatureCommunications11,6276.https://doi.org/10.1038/s41467-020-20061-y.ONPR94EmissionsGapReport2022:TheClosingWindowSTRurinda,J.,Zingore,S.,Jibrin,J.M.,Balemi,T.,Masuki,K.,Andersson,J.A.etal.(2020).Science-baseddecisionsupportforformulatingcropfertilizerrecommendationsinsub-SaharanAfrica.AgriculturalSystems180,102790.https://doi.org/10.1016/j.agsy.2020.102790.Seychelles,MinistryofHealth(2020).SeychellesFood-BasedDietaryGuidelines2020.http://www.health.gov.sc/index.php/reports/.Sharma,L.K.andBali,S.K.(2018).Areviewofmethodstoimprovenitrogenuseefficiencyinagriculture.Sustainability,10(1),51.https://doi.org/10.3390/su10010051.Shiklomanov,I.A.andRodda,J.C.(eds.)(2004).WorldWaterResourcesattheBeginningoftheTwenty-FirstCentury.Cambridge:CambridgeUniversityPress.Singh,B.K.,Arnold,T.,Biermayr-Jenzano,P.,Broerse,J.,Brunori,G.,Caron,P.etal.(2021).Enhancingscience–policyinterfacesforfoodsystemstransformation.NatureFood2(11),838–842.https://doi.org/10.1038/s43016-021-00406-6.Smetana,S.,Mathys,A.,Knoch,A.andHeinz,V.(2015).Meatalternatives:Lifecycleassessmentofmostknownmeatsubstitutes.TheInternationalJournalofLifeCycleAssessment20(9),1254–1267.https://doi.org/10.1007/s11367-015-0931-6.Smith,L.G.,Kirk,G.J.D.,Jones,P.J.andWilliams,A.G.(2019).ThegreenhousegasimpactsofconvertingfoodproductioninEnglandandWalestoorganicmethods.NatureCommunications10(1),4641.https://doi.org/10.1038/s41467-019-12622-7.Sovacool,B.K.,Bazilian,M.,Griffiths,S.,Kim,J.,Foley,A.andRooney,D.(2021).Decarbonizingthefoodandbeveragesindustry:Acriticalandsystematicreviewofdevelopments,sociotechnicalsystemsandpolicyoptions.RenewableandSustainableEnergyReviews143,110856.https://doi.org/10.1016/j.rser.2021.110856.Späti,K.,Huber,R.andFinger,R.(2021).Benefitsofincreasinginformationaccuracyinvariableratetechnologies.EcologicalEconomics185,107047.https://doi.org/10.1016/j.ecolecon.2021.107047.Springmann,M.,Clark,M.A.,Mason-D’Croz,D.,Wiebe,K.,Bodirsky,B.L.,Lassaletta,L.etal.(2018).Optionsforkeepingthefoodsystemwithinenvironmentallimits.Nature562(7728),519–525.https://doi.org/10.1038/s41586-018-0594-0.Springmann,M.,Clark,M.A.,Rayner,M.,Scarborough,P.andWebb,P.(2021).Theglobalandregionalcostsofhealthyandsustainabledietarypatterns:amodellingstudy.TheLancetPlanetaryHealth5(11),e797–e807.https://doi.org/10.1016/S2542-5196(21)00251-5.Springmann,M.andFreund,F.(2022).Optionsforreformingagriculturalsubsidiesfromhealth,climate,andeconomicperspectives.NatureCommunications13(1),82.https://doi.org/10.1038/s41467-021-27645-2.Springmann,M.,Godfray,H.C.J.,Rayner,M.,&Scarborough,P.(2016).Analysisandvaluationofthehealthandclimatechangecobenefitsofdietarychange.ProceedingsoftheNationalAcademyofSciences113(15),4146–4151.https://doi.org/10.1073/pnas.1523119113.Springmann,M.,Mason-D’Croz,D.,Robinson,S.,Wiebe,K.,Godfray,H.C.J.,Rayner,M.etal.(2017).Mitigationpotentialandglobalhealthimpactsfromemissionspricingoffoodcommodities.NatureClimateChange7,69–74.Springmann,M.,Mozaffarian,D.,Rosenzweig,C.andMicha,R.(2021).Whatweeatmatters:Healthandenvironmentalimpactsofdietsworldwide.In2021GlobalNutritionReport:TheStateofGlobalNutrition.Micha,R.(ed.).Bristol,UK:DevelopmentInitiatives.Chapter2.34–50.https://globalnutritionreport.org/reports/2021-global-nutrition-report/.Springmann,M.,Spajic,L.,Clark,M.A.,Poore,J.,Herforth,A.,Webb,P.etal.(2020).Thehealthinessandsustainabilityofnationalandglobalfoodbaseddietaryguidelines:modellingstudy.TheBritishMedicalJournal370,2322.http://dx.doi.org/10.1136.Springmann,M.,Wiebe,K.,Mason-D’Croz,D.,Sulser,T.B.,Rayner,M.andScarborough,P.(2018).Healthandnutritionalaspectsofsustainabledietstrategiesandtheirassociationwithenvironmentalimpacts:aglobalmodellinganalysiswithcountry-leveldetail.TheLancetPlanetaryHealth,2(10),e451–e461.https://doi.org/10.1016/S2542-5196(18)30206-7.Steiner,A.,Aguilar,G.,Bonilla,J.P.,Bomba,K.,Campbell,A.,Echeverria,R.etal.(2020).ActionstoTransformFoodSystemsUnderClimateChange.Wageningen,TheNetherlands:CGIARResearchProgramonClimateChange,AgricultureandFoodSecurity.https://ccafs.cgiar.org/resources/publications/actions-transform-food-systems-under-climate-change.Thornton,P.,Gurney-Smith,H.andWollenberg,E.(forthcoming).Alternativesourcesofproteinforfoodandfeed.CurrentOpinioninEnvironmentalSustainability.Tilman,D.andClark,M.(2014).Globaldietslinkenvironmentalsustainabilityandhumanhealth.Nature515,518–522.https://doi.org/10.1038/nature13959.Tran,T.A.,Nguyen,T.H.andVo,T.T.(2019).AdaptationtofloodandsalinityenvironmentsintheVietnameseMekongDelta:Empiricalanalysisoffarmer-ledinnovations.AgriculturalWaterManagement216,89–97.https://doi.org/10.1016/j.agwat.2019.01.020.95EmissionsGapReport2022:TheClosingWindowTubiello,F.N.,Karl,K.,Flammini,A.,Gütschow,J.,Obli-Laryea,G.,Conchedda,G.etal.(2022).Pre-andpost-productionprocessesincreasinglydominategreenhousegasemissionsfromagri-foodsystems.EarthSystemScienceData14(4),1795–1809.https://doi.org/10.5194/essd-14-1795-2022.Tubiello,F.N.,Rosenzweig,C.,Conchedda,G.,Karl,K.,Gütschow,J.,Xueyao,P.etal.(2021).Greenhousegasemissionsfromfoodsystems:buildingtheevidencebase.EnvironmentalResearchLetters16(6),065007.https://doi.org/10.1088/1748-9326/ac018e.UnitedNationsDepartmentofEconomicandSocialAffairs(2019).WorldUrbanizationProspects:The2018Revision.NewYork,NY:UnitedNations,DepartmentofEconomicandSocialAffairs,PopulationDivision(2019).UnitedNationsEnvironmentProgrammeandUnitedNationsDevelopmentProgramme(2021).AMulti-Billion-DollarOpportunity:RepurposingAgriculturalSupporttoTransformFoodSystems.Rome,Italy.FoodandAgricultureOrganizationoftheUnitedNations,UnitedNationsDevelopmentProgrammeandUnitedNationsEnvironmentProgramme.http://www.unep.org/resources/repurposing-agricultural-support-transform-food-systems.Wada,Y.,vanBeek,L.P.H.,vanKempen,C.M.,Reckman,J.W.T.M.,Vasak,S.andBierkens,M.F.P.(2010).Globaldepletionofgroundwaterresources.GeophysicalResearchLetters37(20).https://doi.org/10.1029/2010GL044571.Wang,J.andDai,C.(2021).Evolutionofglobalfoodtradepatternsanditsimplicationsforfoodsecuritybasedoncomplexnetworkanalysis.Foods10(11),2657.https://doi.org/10.3390/foods10112657.Wang,X.,Xu,M.,Lin,B.,Bodirsky,B.L.,Xuan,J.,Dietrich,J.P.etal.(2022).ReformingChina’sfertilizerpolicies:Implicationsfornitrogenpollutionreductionandfoodsecurity.SustainabilityScience.https://doi.org/10.1007/s11625-022-01189-w.WorldEconomicForum(2019).Meat:TheFutureSeriesAlternativeProteins.Cologny.WorldEconomicForum.https://www3.weforum.org/docs/WEF_White_Paper_Alternative_Proteins.pdf.Willer,H.,Trávníček,J.,Meier,C.andSchlatter,B.(eds.)(2021).TheWorldofOrganicAgricultureStatisticsandEmergingTrends2021.Bonn.ResearchInstituteofOrganicAgricultureFiBL,FrickandIFOAM–OrganicsInternational.https://www.ifoam.bio/sites/default/files/2022-01/1150-organic-world-2021.pdf.Willett,W.,Rockström,J.,Loken,B.,Springmann,M.,Lang,T.,Vermeulen,S.etal.(2019).FoodintheAnthropocene:theEAT–LancetCommissiononhealthydietsfromsustainablefoodsystems.TheLancet393(10170),447–492.https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(18)31788-4/.Zingore,S.andNjoroge,S.(2022).Soilorganicmatterregulatesmaizeproductivityandfertilizerresponseinmaizeproduction.SoilHealthforImprovedLivelihoodsSub-SaharanAfrica1,4.https://www.growingafrica.pub/wp-content/uploads/2022/05/Zingore-GA-1-1-22.pdf.zuErmgassen,E.K.H.J.,Godar,J.,Lathuillière,M.J.,Löfgren,P.,Gardner,T.,Vasconcelos,A.andMeyfroidt,P.(2020).Theorigin,supplychain,anddeforestationriskofBrazil’sbeefexports.ProceedingsoftheNationalAcademyofSciences117(50),31770–31779.https://doi.org/10.1073/pnas.2003270117.Chapter7ABP(2022).‘Maarerisnoggenoegtedoen’CO2-voetafdrukaandelenbeleggingenisbijnagehalveerd,June17.https://www.abp.nl/over-abp/actueel/nieuws/CO-2-voetafdruk-aandelenbeleggingen-bijna-gehalveerd.aspx.Accessed16October2022.Acharya,V.V.,Eisert,T.,Eufinger,C.andHirsch,C.(2019).Whateverittakes:Therealeffectsofunconventionalmonetarypolicy.TheReviewofFinancialStudies32(9),3366–3411.https://doi.org/10.1093/rfs/hhz005.AfricanDevelopmentBank,AsianDevelopmentBank,AsianInfrastructureInvestmentBank,EuropeanBankforReconstructionandDevelopment,EuropeanInvestmentBank,Inter-AmericanDevelopmentBankGroup,IslamicDevelopmentBank,NewDevelopmentBankandWorldBankGroup(2020).JointReportonMultilateralDevelopmentBanks’ClimateFinance.London:EuropeanBankforReconstructionandDevelopment.https://thedocs.worldbank.org/en/doc/9234bfc633439d0172f6a6eb8df1b881-0020012021/original/2020-Joint-MDB-report-on-climate-finance-Report-final-web.pdf.AfricanDevelopmentBank,AsianDevelopmentBank,EuropeanBankforReconstructionandDevelopment,EuropeanInvestmentBank,Inter-AmericanDevelopmentBank,InternationalMonetaryFundandWorldBankGroup(2015).FromBillionstoTrillions:TransformingDevelopmentFinancePost-2015FinancingforDevelopment:MultilateralDevelopmentFinance.https://olc.worldbank.org/system/files/From_Billions_to_Trillions-Transforming_Development_Finance_Pg_1_to_5.pdf.Agenor,P.(2001).BenefitsandCostsofInternationalFinancialIntegration:TheoryandFacts.Washington,D.CWorldBank.https://openknowledge.worldbank.org/bitstream/handle/10986/19503/multi0page.pdf.UWZA96EmissionsGapReport2022:TheClosingWindowAghion,P.,Dechezleprêtre,A.,Hémous,D.,Martin,R.andVanReenen,J.(2016).Carbontaxes,pathdependency,anddirectedtechnicalchange:Evidencefromtheautoindustry.JournalofPoliticalEconomy124(1),1–51.https://doi.org/10.1086/684581.Agrawala,S.,Carraroi,M.Kingsmilli,N.,Lanzii,E.,MullaniM.andPrudent-Richardii,G.(2011).PrivateSectorEngagementinAdaptationtoClimateChange.Paris:OrganisationforEconomicCo-operationandDevelopment.https://www.oecd-ilibrary.org/docserver/5kg221jkf1g7-en.pdf.Ameli,N.,Dessens,O.,Winning,M.,Cronin,J.,Chenet,H.,Drummond,P.etal.(2021).Highercostoffinanceexacerbatesaclimateinvestmenttrapindevelopingeconomies.NatureCommunications12(4046).https://doi.org/10.1038/s41467-021-24305-3.Ameli,N.,Drummond,P.,Bisaro,A.,Grubb,M.andChenet,H.(2020).Climatefinanceanddisclosureforinstitutionalinvestors:Whytransparencyisnotenough.ClimaticChange160(4),565–589.https://doi.org/10.1007/s10584-019-02542-2.Ameli,N.,Kothari,S.andGrubb,M.(2021).Misplacedexpectationsfromclimatedisclosureinitiatives.NatureClimateChange11(11),917–924.https://doi.org/10.1038/s41558-021-01174-8.Andersen,M.S.(2020).Governance,greenfinanceandglobalclimateadvocacyoftheNordiccountries.InClimateGovernanceAcrosstheGlobe.Wurzel,R.K.W.,Andersen,M.S.andTobin,P.(eds.).London:Routledge.Chapter11.https://www.taylorfrancis.com/chapters/edit/10.4324/9781003014249-14/governance-green-finance-global-climate-advocacy-nordic-countries-mikael-skou-andersen.Angelova,D.,Bosello,F.,Bigano,A.andGiove,S.(2021).Sovereignratingmethodologies,ESGandclimatechangerisk:Anoverview.Venice,May.http://dx.doi.org/10.2139/ssrn.3841948.Ansar,A.,Caldecott,B.andTilbury,J.(2013).StrandedAssetsandtheFossilFuelDivestmentCampaign:WhatDoesDivestmentMeanfortheValuationofFossilFuelAssets?Oxford:UniversityofOxford’sSmithSchoolofEnterpriseandtheEnvironment.https://www.smithschool.ox.ac.uk/sites/default/files/2022-03/SAP-divestment-report-final.pdf.Ardalan,K.(2019).Equityhomebias:Areviewessay.JournalofEconomicSurveys33(3),949–967.https://doi.org/10.1111/joes.12302.Attridge,S.,teVelde,D.W.andAndreasen,S.P.(2019).ImpactofDevelopmentFinanceInstitutionsonSustainableDevelopment:AnEssaySeries.London:OverseasDevelopmentInstituteandEuropeanDevelopmentFinanceInstitutions.https://cdn.odi.org/media/documents/12892.pdf.Ayling,J.andGunningham,N.(2017).Non-stategovernanceandclimatepolicy:thefossilfueldivestmentmovement.ClimatePolicy17(2),131–149.https://doi.org/10.1080/14693062.2015.1094729.Banga,J.(2019).Thegreenbondmarket:apotentialsourceofclimatefinancefordevelopingcountries.JournalofSustainableFinance&Investment9(1),17–32.https://doi.org/10.1080/20430795.2018.1498617.BankforInternationalSettlements(2022).CredittotheNon-FinancialSector.https://www.bis.org/statistics/totcredit.htm.Accessed17October2022.Battiston,S.,Farmer,J.D.,Flache,A.,Garlaschelli,D.,Haldane,A.G.,Heesterbeek,H.etal.(2016).Complexitytheoryandfinancialregulation.Science351(6275),818–819.https://www.science.org/doi/10.1126/science.aad0299.Battiston,S.,Mandel,A.,Monasterolo,I.,Schütze,F.andVisentin,G.(2017).Aclimatestress-testofthefinancialsystem.NatureClimateChange7(4),283–288.https://doi.org/10.1038/nclimate3255.Beirne,J.,Renzhi,N.andVolz,U.(2021).Feelingtheheat:Climaterisksandthecostofsovereignborrowing.InternationalReviewofEconomics&Finance76,920–936.https://doi.org/10.1016/j.iref.2021.06.019.Bendahou,S.,Pauthier,A.andCochran,I.(2022).Long-TermStrategyUseforParis-AlignedInvestmentstheCaseofDevelopmentFinance.Edinburgh:UniversityofEdinburgh.https://www.research.ed.ac.uk/en/publications/long-term-strategy-use-for-paris-aligned-investments-the-case-of-.Berg,F.,Koelbel,J.F.andRigobon,R.(2019).Aggregateconfusion:ThedivergenceofESGratings.ReviewofFinance(forthcoming).https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3438533.Bergek,A.,Jacobsson,S.,Carlsson,B.,Lindmark,S.andRickne,A.(2008).Analyzingthefunctionaldynamicsoftechnologicalinnovationsystems:Aschemeofanalysis.Researchpolicy37(3),407–429.https://doi.org/10.1016/j.respol.2007.12.003.Bhandary,R.R.,Gallagher,K.S.andZhang,F.(2021).Climatefinancepolicyinpractice:Areviewoftheevidence.ClimatePolicy21(4),529–545.https://doi.org/10.1080/14693062.2020.1871313.Black,S.,Parry,I.andZhunussova,K.(2022).Morecountriesarepricingcarbon,butemissionsarestilltoocheap,21July.https://blogs.imf.org/2022/07/21/more-countries-are-pricing-carbon-but-emissions-are-still-too-cheap/?utm_medium=email&utm_source=govdelivery.Accessed17October2022.Bolton,P.andKacperczyk,M.(2021).Doinvestorscareaboutcarbonrisk?JournalofFinancialEconomics142(2),517–549.https://doi.org/10.1016/j.jfineco.2021.05.008.B97EmissionsGapReport2022:TheClosingWindowBolton,P.,Despres,M.,PereiradaSilva,L.A.,Samama,F.andSvartzman,R.(2020).TheGreenSwan:CentralBankingandFinancialStabilityintheAgeofClimateChange.Basel:BankforInternationalSettlements.https://www.bis.org/publ/othp31.pdf.Bond,E.W.,Tybout,J.andUtar,H.(2015).Creditrationing,riskaversion,andindustrialevolutionindevelopingcountries.InternationalEconomicReview56(3),695–722.https://doi.org/10.1111/iere.12119.Bosone,C.,Bogliardi,S.M.andGiudici,P.(2022).AreESGfemale?Thehiddenbenefitsoffemalepresenceonsustainablefinance.ReviewofEconomicAnalysis14(2),253–274.https://openjournals.uwaterloo.ca/index.php/rofea/article/view/5005.Buchner,B.,Naran,B.,Fernandes,P.,Padmanabhi,R.,Rosane,P.,Solomon,M.etal.(2021).GlobalLandscapeofClimateFinance2021.SanFrancisco:ClimatePolicyInitiative.https://www.climatepolicyinitiative.org/publication/global-landscape-of-climate-finance-2021/.Campiglio,E.(2016).Beyondcarbonpricing:Theroleofbankingandmonetarypolicyinfinancingthetransitiontoalow-carboneconomy.EcologicalEconomics121,220–230.https://doi.org/10.1016/j.ecolecon.2015.03.020.Campiglio,E.,Dafermos,Y.,Monnin,P.,Ryan-Collins,J.,Schotten,G.andTanaka,M.(2018).Climatechangechallengesforcentralbanksandfinancialregulators.NatureClimateChange8(6),462–468.https://doi.org/10.1038/s41558-018-0175-0.Carney,M.(2015).Breakingthetragedyofthehorizon–climatechangeandfinancialstability.SpeechbyMarkCarney.London,29September.https://www.bankofengland.co.uk/speech/2015/breaking-the-tragedy-of-the-horizon-climate-change-and-financial-stability.Cevik,S.,andJalles,J.T.(2020).Feelingtheheat:Climateshocksandcreditratings.Washington,D.C.,18December.https://www.imf.org/en/Publications/WP/Issues/2020/12/18/Feeling-the-Heat-Climate-Shocks-and-Credit-Ratings-49945.Chateau,J.,Jaumotte,F.andSchwerhoff,G.(2022).EconomicandEnvironmentalBenefitsfromInternationalClimateCooperation.Washington,D.C.:InternationalMonetaryFund.https://www.imf.org/en/Publications/Departmental-Papers-Policy-Papers/Issues/2022/03/16/Economic-and-Environmental-Benefits-from-International-Cooperation-on-Climate-Policies-511562.Chen,W.,Dollar,D.andTang,H.(2016).WhyisChinainvestinginAfrica?Evidencefromthefirmlevel.TheWorldBankEconomicReview32(3),610–632.https://doi.org/10.1093/wber/lhw049.Chenet,H.(2019).PlanetaryHealthandtheGlobalFinancialSystem.Oxford:RockefellerFoundationEconomicCouncilonPlanetaryHealth.https://www.planetaryhealth.ox.ac.uk/wp-content/uploads/sites/7/2019/10/Planetary-Health-and-the-Financial-System-for-web.pdf.Chenet,H.,Ryan-Collins,J.andvanLerven,F.(2021).Finance,climate-changeandradicaluncertainty:Towardsaprecautionaryapproachtofinancialpolicy.EcologicalEconomics183,106957.https://doi.org/10.1016/j.ecolecon.2021.106957.Christophers,B.(2021).HowandwhyU.S.single-familyhousingbecameaninvestorassetclass.JournalofUrbanHistory.https://doi.org/10.1177/00961442211029601.Clancy,J.,Özerol,G.,Mohlakoana,N.,Feenstra,M.andCueva,L.S.(eds.)(2020).EngenderingtheEnergyTransition.London:PalgraveMacmillan.https://doi.org/10.1007/978-3-030-43513-4.ClimateFinanceLeadershipInitiative.(2019).FinancingtheLow-CarbonFuture:APrivate-SectorViewonMobilizingClimateFinance.NewYork.https://data.bloomberglp.com/company/sites/55/2019/09/Financing-the-Low-Carbon-Future_CFLI-Full-Report_September-2019.pdf.ClimateFundsUpdate(2022).ClimateFundsUpdate.https://climatefundsupdate.org/.Coelho,R.andRestoy,F.(2022).TheRegulatoryResponsetoClimateRisks:SomeChallenges.Basel:FinancialStabilityInstitute.https://www.tbb.org.tr/en/Content/Upload/Dokuman/1197/FSI_Briefs-The_Regulatory_Response_to_Climate_Risks.pdf.Collier,S.J.,Elliott,R.andLehtonen,T.K.(2021).Climatechangeandinsurance.EconomyandSociety50(2),158–172.https://doi.org/10.1080/03085147.2021.1903771.Creutzig,F.,Fernandez,B.,Haberl,H.,Khosla,R.,Mulugetta,Y.andSeto,K.C.(2016).Beyondtechnology:Demand-sidesolutionsforclimatechangemitigation.AnnualReviewofEnvironmentandResources41,173–198.https://doi.org/10.1146/annurev-environ-110615-085428.Creutzig,F.,Niamir,L.,Bai,X.,Callaghan,M.,Cullen,J.,Díaz-José,J.etal.(2022).Demand-sidesolutionstoclimatechangemitigationconsistentwithhighlevelsofwell-being.NatureClimateChange12,36–46.https://doi.org/10.1038/s41558-021-01219-y.Dadush,U.,Dasgupta,D.andRatha,D.(2000).Theroleofshort-termdebtinrecentcrises.Finance&Development,37(4).https://www.imf.org/external/pubs/ft/fandd/2000/12/dadush.htm.Dasgupta,D.(2015).FinancialInnovationandthestate:Lessonsfor21stcenturyclimatefinancefromthe19thcenturyrailwaysera,1October.http://www.cepii.fr/blog/bi/post.asp?IDcommunique=407.Accessed17October2022.CD98EmissionsGapReport2022:TheClosingWindowDietz,S.,Bowen,A.,Dixon,C.andGradwell,P.(2016).‘Climatevalueatrisk’ofglobalfinancialassets.NatureClimateChange6(7),676–679.https://doi.org/10.1038/nclimate2972.Dikau,S.andVolz,U.(2021).Centralbankmandates,sustainabilityobjectivesandthepromotionofgreenfinance.EcologicalEconomics184.https://doi.org/10.1016/J.ECOLECON.2021.107022.Edomah,N.(2020).ElectricityandEnergyTransitioninNigeria.London:Routledge.https://doi.org/10.4324/9780367201456.Fields,D.J.(2018)Constructinganewassetclass:Property-ledfinancialaccumulationafterthecrisis.EconomicGeography94(2),118–140.https://doi.org/10.1080/00130095.2017.1397492.Fomicov,M.,Hwang,I.,Waldron,M.,Hayden,C.andSiard,D.(2021).CleanEnergyInvesting:GlobalComparisonofInvestmentReturns.London:ImperialCollegeBusinessSchoolandCentreforClimateFinance&Investment.https://imperialcollegelondon.app.box.com/s/73em3ob3h1pu0a0ek3bay2ydiss8x0rr.Geels,F.W.(2002).Technologicaltransitionsasevolutionaryreconfigurationprocesses:Amulti-levelperspectiveandacase-study.ResearchPolicy31(8–9),1257–1274.https://doi.org/10.1016/S0048-7333(02)00062-8.__________(2011).Themulti-levelperspectiveonsustainabilitytransitions:Responsestosevencriticisms.EnvironmentalInnovationandSocietalTransitions1(1),24–40.https://doi.org/10.1016/j.eist.2011.02.002.Geels,F.W.,Berkhout,F.andvanVuuren,D.(2016).Bridginganalyticalapproachesforlow-carbontransitions.NatureClimateChange6,576–583.https://doi.org/10.1038/nclimate2980.Ghent,A.C.,Torous,W.N.andValkanov,R.I.(2019).Commercialrealestateasanassetclass.AnnualReviewofFinancialEconomics11,153–171.https://doi.org/10.1146/annurev-financial-110118-123121.Gourinchas,P.andJeanne,O.(2006).Theelusivegainsfrominternationalfinancialintegration.ReviewofEconomicStudies73(3),715–741.https://doi.org/10.1111/j.1467-937X.2006.00393.x.GreenClimateFund(2020).UpdatedStrategicPlanfortheGreenClimateFund2020–2023.Incheon.https://www.greenclimate.fund/sites/default/files/document/updated-strategic-plan-green-climate-fund-2020-2023.pdf.Griffin,P.A.,Jaffe,A.M.,Lont,D.H.andDominguez-Faus,R.(2015).Scienceandthestockmarket:Investors’recognitionofunburnablecarbon.EnergyEconomics52,1–12.https://doi.org/10.1016/J.ENECO.2015.08.028.Grubb,M.,Drummond,P.andHughes,N.(2020).TheShapeandPaceofChangeintheElectricityTransition:SectoralDynamicsandIndicatorsofProgress.London:UniversityCollegeLondonInstituteforSustainableResources.https://www.wemeanbusinesscoalition.org/wp-content/uploads/2020/10/Shape-and-Pace-of-Change-in-the-Electricity-Transition-1.pdf.Hafner,S.,Jones,A.,Anger-Kraavi,A.andPohl,J.(2020).Closingthegreenfinancegap–Asystemsperspective.EnvironmentalInnovationandSocietalTransitions34,26–60.https://doi.org/10.1016/j.eist.2019.11.007.Haites,E.(2018)Carbontaxesandgreenhousegasemissionstradingsystems:Whathavewelearned?ClimatePolicy18(8),955–966.https://doi.org/10.1080/14693062.2018.1492897.Hamid,K.,Suleman,M.,Shah,S.A.,Akash,I.andShahid,R.(2017).Testingtheweakformofefficientmarkethypothesis:EmpiricalevidencefromAsia-Pacificmarkets.InternationalResearchJournalofFinanceandEconomics(58).https://dx.doi.org/10.2139/ssrn.2912908.Hans,F.,Kuramochi,T.,Woollands,S.,Höhne,N.,Olhoff,A.andRochaRomero,J.(2022).PolicyBrief:UnpackingtheGreenRecoverySpending:AnAssessmentofSeizedandMissedOpportunitiesforaLow-CarbonRecoveryGlobally,intheEUandintheNordiccountries.Copenhagen:NordicCouncilofMinisters.http://norden.diva-portal.org/smash/record.jsf?pid=diva2%3A1661525&dswid=-9295.Hau,H.andRey,H.(2008).Homebiasatthefundlevel.AmericanEconomicReview98(2),333–338.https://doi.org/10.1257/aer.98.2.333.Hoff,J.(2017).Thegreen‘heavyweights’:TheclimatepoliciesoftheNordiccountries.InTheRoutledgeHandbookofScandinavianPolitics.Nedergaard,P.andWivel,A.(eds.).London:Routledge.Chapter5.49–65.https://www.taylorfrancis.com/chapters/edit/10.4324/9781315695716-5/green-heavyweights-jens-hoff.Hölscher,K.,Wittmayer,J.M.andLoorbach,D.(2018).Transitionversustransformation:What’sthedifference?EnvironmentalInnovationandSocietalTransitions27,1–3.https://doi.org/10.1016/j.eist.2017.10.007.Hourcade,J.,Dasgupta,D.andGhersi,F.(2020).Acceleratingthespeedandscaleofclimatefinanceinthepost-pandemiccontext.ClimatePolicy21,1383–1397.https://doi.org/10.1080/14693062.2021.1977599.Hourcade,J.,Glemarec,Y.,deConinck,H.,Bayat-Renoux,F.,Ramakrishna,K.andRevi,A.(2021).ScalingUpClimateFinanceinthecontextofCovid-19:AScience-basedCallforFinancialDecision-makers.RepublicofKorea:GreenClimateFund.https://www.greenclimate.fund/sites/default/files/document/scaling-climate-finance-context-covid-19-full-report_0.pdf.Hüser,A.(2015).Toointerconnectedtofail:Asurveyoftheinterbanknetworksliterature.SAFEWorkingPaperNo.91.Frankfurt,1October.http://dx.doi.org/10.2139/ssrn.2577241.Ingeborgrud,L.andRyghaug,M.(2019).Theroleofpractical,cognitiveandsymbolicfactorsinthesuccessfulimplementationofbatteryelectricvehiclesinNorway.TransportationResearchPartA:PolicyandPractice130,507–516.https://doi.org/10.1016/j.tra.2019.09.045.FEGHI99EmissionsGapReport2022:TheClosingWindowIntergovernmentalPanelonClimateChange(2022).ClimateChange2022:MitigationofClimateChange.ContributionofWorkingGroupIIItotheSixthAssessmentReportoftheIntergovernmentalPanelonClimateChange.Geneva.https://www.ipcc.ch/report/sixth-assessment-report-working-group-3/.InternationalCapitalMarketAssociation(2020).Bondmarketsize.https://www.icmagroup.org/market-practice-and-regulatory-policy/secondary-markets/bond-market-size/.Accessed17October2022.InternationalEnergyAgency(2021).WorldEnergyOutlook2021.Paris.https://www.iea.org/reports/world-energy-outlook-2021.Ioannou,S.,Wójcik,D.andPažitka,V.(2021).Financialcentrebiasinsub-sovereigncreditratings.JournalofInternationalFinancialMarkets,InstitutionsandMoney70,101261.https://doi.org/10.1016/j.intfin.2020.101261.Kamat,A.S.,Khosla,R.andNarayanamurti,V.(2020).IlluminatinghomeswithLEDsinIndia:Rapidmarketcreationtowardslow-carbontechnologytransitioninadevelopingcountry.EnergyResearch&SocialScience66,101488.https://doi.org/10.1016/j.erss.2020.101488.Kirsch,A.,Marr,G.,OpenaDisterhoft,J.,Butijn,H.,Frijns,J.,Beenes,M.etal.(2022).BankingonClimateChaos22:FossilFuelFinanceReport2022.SanFrancisco:RainforestActionNetwork.https://www.ran.org/wp-content/uploads/2022/03/BOCC_2022_vSPREAD-1.pdf.Kling,G.,Volz,U.,Murinde,V.andAyas,S.(2021).Theimpactofclimatevulnerabilityonfirms’costofcapitalandaccesstofinance.WorldDevelopment137,105131.https://doi.org/10.1016/j.worlddev.2020.105131.Koepke,R.(2018).Whatdrivescapitalflowstoemergingmarkets?Asurveyoftheempiricalliterature.JournalofEconomicSurveys33(2),516–540.https://doi.org/10.1111/joes.12273.Koutsandreas,D.,Kleanthis,N.,Flamos,A.,Karakosta,C.andDoukas,H.(2022).Risksandmitigationstrategiesinenergyefficiencyfinancing:Asystematicliteraturereview.EnergyReports8,1789–1802.https://doi.org/10.1016/j.egyr.2022.01.006.Kreibiehl,S.,Jung,T.Y.,Battiston,S.,Carvajal,P.E.,Clapp,C.,Dasgupta,D.etal.(2022).Investmentandfinance.InClimateChange2022:MitigationofClimateChange.ContributionofWorkingGroupIIItotheSixthAssessmentReportoftheIntergovernmentalPanelonClimateChange.IntergovernmentalPanelonClimateChange.Geneva.https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_Chapter_15.pdf.Lemma,A.(2015).DevelopmentImpactofDFIs.WhatAreTheirImpactsandHowAreTheyMeasured?London:OverseasDevelopmentInstitute.https://assets.publishing.service.gov.uk/media/57a08992e5274a27b200014f/Development-Impact-of-DFIs.pdf.Lierse,H.(2022).Globalizationandthesocietalconsensusofwealthtaxcuts.JournalofEuropeanPublicPolicy29(5),748–766.https://doi.org/10.1080/13501763.2021.1992487.Lipman,J.(2021).InvestDivest2021:ADecadeofProgressTowardsaJustClimateFuture.DivestInvest.https://www.divestinvest.org/wp-content/uploads/2021/10/Divest-Invest-Program-FINAL10-26_B.pdf.Marsh,A.(2021).EU’sbiggestpensionfundtodump$17billioninfossilfuels,26October.https://www.bloomberg.com/news/articles/2021-10-26/fossil-fuel-divestment-supported-by-investors-with-39-trillion#xj4y7vzkg.Accessed17October2022.Mathiesen,K.(2018).Ratingclimateriskstocreditworthiness.NatureClimateChange8,454–456(2018).https://doi.org/10.1038/s41558-018-0184-z.Mercure,J.F.(2019).Towardrisk-opportunityassessmentinclimate-friendlyfinance.OneEarth1(4),395–398.https://doi.org/10.1016/j.oneear.2019.11.007.Mercure,J.F.,Pollitt,H.,Viñuales,J.E.,Edwards,N.R.,Holden,P.B.,Chewpreecha,U.etal.(2018).Macroeconomicimpactofstrandedfossilfuelassets.NatureClimateChange8(7),588–593.https://doi.org/10.1038/s41558-018-0182-1.Merton,R.C.(1990).Thefinancialsystemandeconomicperformance.JournalofFinancialServicesResearch4,263–300.https://doi.org/10.1007/BF00122867.Moberg,K.R.,Aall,C.,Dorner,F.,Reimerson,E.,Ceron,J.,Sköld,B.etal.(2018).Mobility,foodandhousing:Responsibility,individualconsumptionanddemand-sidepoliciesinEuropeandeepdecarbonisationpathways.EnergyEfficiency12,497–519.https://doi.org/10.1007/s12053-018-9708-7.Naidoo,C.P.(2020).Relatingfinancialsystemstosustainabilitytransitions:Challenges,demandsanddesignfeatures.EnvironmentalInnovationandSocietalTransitions36,270–290.https://doi.org/10.1016/j.eist.2019.10.004.Nassiry,D.(2018).GreenbondexperienceintheNordiccountries.ADBIWorkingPaper816.Tokyo,March.https://www.adb.org/sites/default/files/publication/408336/adbi-wp816.pdf.NetworkforGreeningtheFinancialSystem(2020).AnnualReport2019.Paris.https://www.ngfs.net/sites/default/files/medias/documents/ngfs_annual_report_2019.pdf.Newbery,D.M.,Reiner,D.M.andRitz,R.A.(2019).Thepoliticaleconomyofacarbonpricefloorforpowergeneration.TheEnergyJournal40(1).https://doi.org/10.5547/01956574.40.1.dnew.KLMN100EmissionsGapReport2022:TheClosingWindowNordhaus,W.(2015).Climateclubs:overcomingfree-ridingininternationalclimatepolicy.AmericanEconomicReview105(4),1339–1370.https://doi.org/10.1257/aer.15000001.Obstfeld,M.(2021).Theglobalcapitalmarketreconsidered.OxfordReviewofEconomicPolicy37(4),690–706.https://doi.org/10.1093/oxrep/grab023.OrganisationforEconomicCo-operationandDevelopment(2018).OECDInstitutionalInvestorsStatistics2018.Paris.https://doi.org/10.1787/instinv-2018-en.__________(2021).ClimateFinanceProvidedandMobilisedbyDevelopedCountriesAggregateTrendsUpdatedwith2019Data.Paris.https://www.oecd.org/env/climate-finance-provided-and-mobilised-by-developed-countries-aggregate-trends-updated-with-2019-data-03590fb7-en.htm.Parry,I.,Black,S.andVernon,N.(2021).Stillnotgettingenergypricesright:Aglobalandcountryupdateoffossilfuelsubsidies.IMFWorkingPapers2021(236).https://doi.org/10.5089/9781513595405.001.Pathak,M.,Slade,R.,Shukla,P.R.,Skea,J.,Pichs-Madruga,R.,Ürge-Vorsatz,D.etal.(2022).Technicalsummary.InClimateChange2022:MitigationofClimateChange.ContributionofWorkingGroupIIItotheSixthAssessmentReportoftheIntergovernmentalPanelonClimateChange.IntergovernmentalPanelonClimateChange.Geneva.https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_TS.pdf.Pauw,W.P.,Castro,P.,Pickering,J.andBhasin,S.(2020).ConditionalnationallydeterminedcontributionsintheParisAgreement:footholdforequityorAchillesheel?ClimatePolicy20(4),468–484.https://doi.org/10.1080/14693062.2019.1635874.Pekic,S.(2022).TotalEnergiestoresumeMozambiqueLNGprojectin2022,1February.https://www.offshore-energy.biz/totalenergies-to-resume-mozambique-lng-project-in-2022/.Accessed17October2022.Pinko,N.andPastor,A.O.(2022).WhatMakesaTransitionPlanCredible?ConsiderationsforFinancialInstitutions.SanFrancisco:ClimatePolicyInitiative.https://www.climatepolicyinitiative.org/wp-content/uploads/2022/03/Credible-Transition-Plans.pdf.Polzin,F.andSanders,M.(2020).Howtofinancethetransitiontolow-carbonenergyinEurope?EnergyPolicy147.https://doi.org/10.1016/j.enpol.2020.111863.Polzin,F.,Sanders,M.andTäube,F.(2017).Adiverseandresilientfinancialsystemforinvestmentsintheenergytransition.CurrentOpinioninEnvironmentalSustainability28,24–32.https://doi.org/10.1016/j.cosust.2017.07.004.Riedl,D.(2022).Whymarketactorsfuelthecarbonbubble:Theagency,governance,andincentiveproblemsthatdistortcorporateclimateriskmanagement.JournalofSustainableFinanceandInvestment12(2),407–422.https://doi.org/10.1080/20430795.2020.1769986.Robino,C.andJackson,E.T.(2022).Editorial:Growinggenderlensinvestinginemergingmarkets.JournalofSustainableFinanceandInvestment12(3),671–683.https://doi.org/10.1080/20430795.2022.2070121.RobinsN.,Dikau,S.andVolz,U.(2021)Net-ZeroCentralBanking:ANewPhaseinGreeningtheFinancialSystem.London:GranthamResearchInstituteonClimateChangeandtheEnvironmentandCentreforClimateChangeEconomicsandPolicy,LondonSchoolofEconomicsandPoliticalScienceandCentreforSustainableFinance,SOAS,UniversityofLondon.https://www.lse.ac.uk/granthaminstitute/publication/net-zero-central-banking-a-new-phase-in-greening-the-financial-system/.Schmidt,T.S.andSewerin,S.(2019).Measuringthetemporaldynamicsofpolicymixes–Anempiricalanalysisofrenewableenergypolicymixes’balanceanddesignfeaturesinninecountries.ResearchPolicy48(10),103557.https://doi.org/10.1016/j.respol.2018.03.012.SecuritiesIndustryandFinancialMarketsAssociation(2021).2021CapitalMarketsFactBook.NewYork.https://www.sifma.org/wp-content/uploads/2021/07/CM-Fact-Book-2021-SIFMA.pdf.Shishlov,I.,Censkowsky,P.andDarouich,L.(2021).AligningExportCreditAgencieswiththeParisAgreement.Freiburg:PerspectivesClimateResearch.https://www.perspectives.cc/public/fileadmin/Publications/21-07-06_Paris_Alignment_of_ECAs.pdfSkovgaardJ.,vanAsseltH.(2019)Thepoliticsoffossilfuelsubsidiesandtheirreform:Implicationsforclimatechangemitigation.WIREsClimateChange10(4),e581.https://doi.org/10.1002/wcc.581.Song,M.,Xie,Q.andShen,Z.(2021).Impactofgreencreditonhigh-efficiencyutilizationofenergyinChinaconsideringenvironmentalconstraints.EnergyPolicy153,112267.https://doi.org/10.1016/j.enpol.2021.112267.Steffen,B.andSchmidt,T.S.(2021).Strengthenfinanceinsustainabilitytransitionsresearch.EnvironmentalInnovationandSocietalTransitions41,77–80.https://doi.org/10.1016/j.eist.2021.10.018.Stern,N.andStiglitz,J.E.(2017).ReportoftheHigh-LevelCommissiononCarbonPrices.Washington,D.C.:CarbonPricingLeadershipCoalition.https://static1.squarespace.com/static/54ff9c5ce4b0a53decccfb4c/t/59b7f2409f8dce5316811916/1505227332748/CarbonPricing_FullReport.pdf.Svartzman,R.,Bolton,P.,Despres,M.,daSilva,L.A.P.,andSamama,F.(2021).Centralbanks,financialstabilityandpolicycoordinationintheageofclimateuncertainty:athree-layeredanalyticalandoperationalframework.ClimatePolicy21(4),563–580.https://doi.org/10.1080/14693062.2020.1862743.POSR101EmissionsGapReport2022:TheClosingWindowThistlethwaite,J.andWood,M.O.(2018).Insuranceandclimatechangeriskmanagement:Rescalingtolookbeyondthehorizon.BritishJournalofManagement29(2),279–298.https://doi.org/10.1111/1467-8551.12302.Trinks,A.,Ibikunle,G.,Mulder,M.andScholtens,B.(2022).Carbonintensityandthecostofequitycapital.TheEnergyJournal43(2).https://doi.org/10.5547/01956574.43.2.atri.Tucker,B.andDeAngelis,K.(2020).StillDigging:G20GovernmentsContinuetoFinancetheClimateCrisis.Washington,D.C.andAmsterdam:OilChangeInternationalandFriendsoftheEarth.http://priceofoil.org/content/uploads/2020/05/G20-Still-Digging.pdf.Unger,C.andThielges,S.(2021).Preparingtheplayingfield:ClimateclubgovernanceoftheG20,ClimateandCleanAirCoalition,andUnder2Coalition.ClimateChange167,41.https://doi.org/10.1007/s10584-021-03189-8.UnitedNationsClimateChangeConferenceoftheParties(2021).Statementoninternationalpublicsupportforthecleanenergytransition.COP26.https://ukcop26.org/statement-on-international-public-support-for-the-clean-energy-transition/.Glasgow,11April.UnitedNationsEnvironmentProgrammeFinanceInitiative.(2022).Net-zerobankingalliance.https://www.unepfi.org/net-zero-banking/.UnitedNationsFrameworkonClimateChangeConvention.(2015).AdoptionoftheParisAgreement.FCCC/CP/2015/L.9/Rev.1.Paris.van’tKlooster,J.andFontan,C.(2020).Themythofmarketneutrality:AcomparativestudyoftheEuropeanCentralBank’sandtheSwissNationalBank’scorporatesecuritypurchases.NewPoliticalEconomy25(6),865–879.https://doi.org/10.1080/13563467.2019.1657077.Wang,N.,Tang,L.andPan,H.(2019).Aglobalcomparisonandassessmentofincentivepolicyonelectricvehiclepromotion.SustainableCitiesandSociety44,597–603.https://doi.org/10.1016/j.scs.2018.10.024.Whitley,S.,Thwaites,J.,Wright,H.andOtt,C.(2018).MakingFinanceConsistentwithClimateGoals:InsightsforOperationalisingArticle2.1coftheUNFCCCParisAgreement.London:OverseasDevelopmentInstitute.https://odi.org/en/publications/making-finance-consistent-with-climate-goals-insights-for-operationalising-article-21c-of-the-unfccc-paris-agreement/.WorldBank(2020).PurchasingPowerParitiesandtheSizeofWorldEconomies:Resultsfromthe2017InternationalComparisonProgram.Washington,D.C.https://openknowledge.worldbank.org/bitstream/handle/10986/33623/9781464815300.pdfZamarioli,L.H.,Pauw,W.P.,Koenig,M.andChenet,H.(2021).Theclimateconsistencygoalandthetransformationofglobalfinance.NatureClimateChange11,578–583.https://doi.org/10.1038/s41558-021-01083-w.Zenghelis,D.andStern,N.(2016).TheImportanceofLookingForwardtoManageRisks:SubmissiontotheTaskForceonClimate-RelatedFinancialDisclosures.London:EconomicandSocialResearchCouncilCentreforClimateChangeEconomicsandPolicyandGranthamResearchInstituteonClimateChangeandtheEnvironment.https://www.lse.ac.uk/granthaminstitute/wp-content/uploads/2016/06/Zenghelis-and-Stern-policy-paper-June-2016.pdf.Zhang,D.,Li,J.andJi,Q.(2020).DoesbetteraccesstocredithelpreduceenergyintensityinChina?Evidencefrommanufacturingfirms.EnergyPolicy145,111710.https://doi.org/10.1016/j.enpol.2020.111710.UTVWZUnitedNationsAvenue,GigiriPOBox30552,00100Nairobi,KenyaTel+254720200200communication@unep.orgwww.unep.org