WMOProvisionalStateoftheGlobalClimate20222ContentsHighlights................................................................................................................................................3ExecutiveSummary.................................................................................................................................3GlobalClimateIndicators........................................................................................................................5Baselines.............................................................................................................................................5Greenhousegases...............................................................................................................................5Globaltemperature............................................................................................................................6Oceanheatcontent............................................................................................................................8Sealevel..............................................................................................................................................9Marineheatwaves............................................................................................................................10Cryosphere........................................................................................................................................11Seaice...........................................................................................................................................11Glaciers..........................................................................................................................................12Greenlandicesheet......................................................................................................................13Precipitation......................................................................................................................................14Short-termclimatedrivers................................................................................................................15HighImpactEvents...............................................................................................................................16Contributors..........................................................................................................................................20Datasetsandmethods.........................................................................................................................213HighlightsConcentrationsofthethreemaingreenhousegases–carbondioxide,methane,andnitrousoxide–reachedrecordhighsin2021.Theannualincreaseinmethaneconcentrationwasthehighestonrecord.Realtimedatafromspecificlocationsshowlevelsofthethreegasescontinuedtoincreasein2022.Globalmeantemperaturein2022iscurrentlyestimatedtobe1.15±0.13°Cabovethe1850-1900average.Theeightyears2015to2022arelikelytobetheeightwarmestyearsonrecord,with2022mostlikelytobe5thor6thwarmest.LaNiñaconditionshavecontinuedwithshortinterruptionssincelate2020andareexpectedtocontinuethroughlate2022.ThiswouldmarkthethirdconsecutiveyearofLaNiña.Suchatriple-dipLaNiñaisunusualandhaskeptglobaltemperaturelowforthesecondyearinarow.Sealevelcontinuedtorisein2022,reachinganewrecordhigh.SinceJanuary2020,globalmeansealevelhasrisenbynearly10mm,approximately10%oftheoverallriseinsealevelsincesatellitemeasurementsbeganin1993.Alowwintersnowpackin2021/22combinedwithanexceptionallywarmsummerinEuropeledtorecordglaciermasslossesinSwitzerlandwith6%oftheglaciericevolumelostbetween2021and2022.Between2001and2022thevolumeofglaciericeinSwitzerlanddecreasedfrom77km3to49km3,adeclineofmorethanathird.IneastAfrica,rainfallhasbeenbelowaverageinfourconsecutivewetseasons,thelongestsequencein40yearswithearlyindicationsthatthecurrentseasoncouldalsobedrierthanaverage.Acrosstheregion,undertheeffectsofthedroughtandothershocks,anestimated18.4to19.3millionpeoplehavefacedfoodCrisisorworselevelsofacutefoodinsecuritybeforeJune2022.RecordbreakingraininJulyandAugustledtoextensivefloodinginPakistan.Therewereatleast1700deathsand33millionpeopleaffected.7.9millionpeopleweredisplaced.RecordbreakingheatwavesaffectedChinaandEuropeduringthesummercoupledwithexceptionallydryconditionsinplaces.ThesouthernAfricaregionhasbeenbatteredbyaseriesofcyclonesovertwomonths,leadingtoasurgeintheneedforprotectionandshelterforhundredsofthousandsofaffectedpersons.ExecutiveSummaryTheStateoftheGlobalClimatein2022isproducedonanannualbasis,complementingthemostrecentlongassessmentcycleprovidedbythesixthIPCCAssessmentReport.Thisistheprovisionalversion;thefullandfinalreportisexpectedtobepublishedinMarch2023.Thereportprovidesanauthoritativevoiceonthecurrentstateoftheclimateusingkeyclimateindicatorsandreportingonextremeeventsandtheirimpacts.Collectingandanalysingdatafromthesevariablestakestime—where2022dataisnotyetavailable,figuresfrom2021areprovided.In2021,concentrationsofthethreemaingreenhousegases–carbondioxide,methane,andnitrousoxide–continuedtoreachrecordhighs.Theannualincreaseinmethaneconcentrationwasthehighestonrecord,whichisespeciallysignificantgiventhatmethaneismorethan25timesmorepotentthancarbondioxideattrappingheatintheatmosphere.Realtimedatafromspecificlocationsshowlevelsofthethreegasescontinuedtoincreasein2022.4TheimpactofincreasedconcentrationofGHGintheatmosphereisfirstandforemostonglobaltemperatures.Globalmeantemperaturein2022iscurrentlyestimatedtobe1.15±0.13°Cabovethepre-industrial(1850-1900)average,likelymakingthepasteightyears(2015-2022)thewarmestonrecord.DespiteLaNiñaconditionskeepingglobaltemperaturelowforthesecondconsecutiveyear,2022isstillmostlikelytobe5thor6thwarmestyearonrecord.Risingglobaltemperatureshaveimpactsonboththeseaandonland.Antarcticsea-iceextentreachedarecordlowinFebruary2022,atalmost1millionkm2belowthelong-termmean.Meanwhile,theoceancontinuedtowarmin2021andisexpectedtocontinuetowarmwellintothefuture.Astheoceanwarms,itexpands,contributingtoglobalsealevelrise.Sealevelcontinuedtorisein2022,reachingrecordhighlevels.SinceJanuary2020,globalsealevelhasrisennearly10mm.Althoughthismaynotsoundsignificant,itrepresentsapproximately10%oftheoverallriseinsealevelsincesatellitemeasurementsbeganin1993inonly2years,indicatingthattherateofriseisspeedingup.Astemperaturesrise,thecontinuedmeltingoficeoverlandaroundtheworldisfurthercontributingtoacceleratingsealevelrise.TheGreenlandIceSheetendedwithanegativetotalmassbalanceforthe26thyearinarow.Meanwhile,inSwitzerland,6%oftheglaciericevolumewaslostbetween2021and2022,followinglowwintersnowpack,dustcoatingsfromtheSaharaandanexceptionallywarmsummerinEurope.Between2001and2022thevolumeofglaciericeinSwitzerlanddecreasedfrom77km3to49km3,adeclineofmorethanathird.Weatherandclimateextremesandtheirinducedimpactsarealsoexacerbatedbyrisingglobalsurfaceandseatemperatures.InEastAfrica,rainfallhasbeenbelowaverageforfourconsecutivewetseasons,thelongestsequencein40years.Acrosstheregion,undertheeffectsofthedroughtandothershocks,anestimated18.4-19.3millionpeoplewerefacingacutefoodinsecurity.InPakistan,recordbreakingraininJulyandAugustledtoextensivefloodingandapproximately1700deaths,with7.9millionpeopledisplaced,and33millionpeopleaffected.Largepartsofthenorthernhemispherewereexceptionallyhotanddryin2022.Chinahadthemostextensiveandlong-lastingheatwavesincenationalrecordsbeganandthesecond-driestsummeronrecord.TheYangtzeRiveratWuhanreacheditslowestrecordedlevelforAugust.Thetemperatureexceeded40°CintheUnitedKingdomforthefirsttime,withareadingof40.3°CatConingsbyon19July,1.6°Cabovethepreviousnationalrecord.TheheatextendedasfarnorthasSweden,where37.2°CatMålillaon21Julywasthecountry’shighestsince1947.DroughtconditionswereattheirmostsevereinAugust,whenriversincludingtheRhine,LoireandDanubefelltocriticallylowlevels.Takentogether,thesechangestotheglobalclimateareunderminingtheglobalabilitytoachievesustainabledevelopment,directlyimpactingSustainableDevelopmentGoals1,2,3,6,7,10,13,14and15.However,thepictureisfarfromcomplete.Significantgapsstillexistformanykeyclimateparameters,includingoceanacidification(SDG14)andmethaneemissions(SDG13).Fillingthesegapsisessentialforunderstandingtheinterconnectionsbetweenclimatechangeanddevelopment,andbetteraddressingthedisparitiesofwhereimpactsarebeingfelt,improvingadaptation,andurgingrapidmitigation.5GlobalClimateIndicatorsTheglobalclimateindicatorsprovideanoverviewofchangesintheclimatesystematthebroadestscale1.Thissetofinterlinkedphysicalindicatorsconnectsthechangingcompositionoftheatmospherewithchangesinenergyintheclimatesystemandtheresponseofland,ocean,andice.Theglobalindicatorsarebasedonawiderangeofdatasetswhichare,inturn,basedonmultipleobservingsystemsincludingbothsatelliteandinsitudatasources.Foracompletelistofdatasetsandinformationonbaselinesusedinthereport,seeDatasetsandmethods.BaselinesBaselinesareperiodsoftime,usuallyspanningoneormoredecades,thatareusedasafixedbenchmarkagainstwhichconditionscanbecompared.Differentbaselinesareusedinthisreport,andthesearespecifiedinthetextandfigures.Wherepossible,theWMOclimatologicalstandardnormal,1981-2010,isusedforconsistentreporting.Forsomeindicators,however,thisisnotpossibleowingtoalackofmeasurementsduringtheearlypartoftheperiod,orbecausealongerperiodisrequiredtocalculaterepresentativestatistics(forexample,forprecipitation).Therearetwoexceptions.First,fortheglobalmeantemperaturetimeseries–andonlyfortheglobalmeanseries–areferenceperiodof1850-1900isused.ThisisthebaselineusedintherecentIPCCreportsasareferenceperiodforpre-industrialconditionsandisrelevantforunderstandingprogressinthecontextoftheParisAgreement.Second,greenhousegasconcentrationscanbeestimatedmuchfurtherbackintimeusinggasbubblestrappedinicecores.Theyear1750isthereforeusedinthisreporttorepresentpre-industrialgreenhousegasconcentrations.GreenhousegasesAtmosphericconcentrationsofgreenhousegasesreflectabalancebetweenemissionsfromhumanactivities,naturalsources,andsinksinthebiosphereandocean.Increasinglevelsofgreenhousegasesintheatmosphereduetohumanactivitiesarethemajordriverofclimatechangesincetheindustrialrevolution.Globalaveragemolefractionsofgreenhousegases–theconcentrationintheatmosphere–arecalculatedfrominsituobservationsmadeatmultiplesitesintheGlobalAtmosphereWatch(GAW)ProgrammeofWMOandpartnernetworks.Real-timedatafromspecificlocations,includingMaunaLoa2(Hawaii)andKennaook/CapeGrim3(Tasmania)indicatethatlevelsofCO2,CH4andN2Oreachedrecordlevelsin2022.In2021–thelatestyearforwhichconsolidatedglobalfiguresareavailable–atmosphericlevelsofgreenhousegasesreachednewhighs(Figure1),withgloballyaveragedsurfacemolefractionsforcarbondioxide(CO2)at415.7±0.2partspermillion(ppm),methane(CH4)at1908±2partsperbillion(ppb)andnitrousoxide(N2O)at334.5±0.1ppb,respectively,149%,262%and124%ofpre-industrial(1750)levels.TheincreaseinCO2from2020to2021wasequaltothatobservedfrom2019to2020,buthigherthantheaverageannualgrowthrateoverthelastdecade.Whilethelong-termincreaseinCO2isduetohumanemissions,year-to-yearvariationsintheratearelargelyassociatedwithnaturalvariabilityinthelandandoceancarbonsinks.Therecordannualincreasein2016wasassociatedwiththestrong2015/16ElNiño.1Trewin,B.,Cazenave,A.,Howell,S.,Huss,M.,Isensee,K.,Palmer,M.D.,Tarasova,O.,&Vermeulen,A.(2020).Headlineindicatorsforglobalclimatemonitoring,BulletinoftheAmericanMeteorologicalSociety.https://doi.org/10.1175/BAMS-D-19-0196.12www.esrl.noaa.gov/gmd/ccgg/trends/mlo.html3https://www.csiro.au/greenhouse-gases/6TheannualincreaseofCH4was18ppbfrom2020to2021.Thisisthelargestincreaseonrecordanditscausesarestillbeinginvestigated.MeasurementsoftheatmosphericCH4burdenanditsstablecarbonisotoperatio13C/12CsuggestthelargestcontributiontotherenewedincreaseinCH4since2007comesfrommicrobial/biogenicsources,buttherelativerolesofanthropogenicandnaturalsourcesareunclear4,5.Fillinggapsintheobservationsinclimatesensitiveareasliketropicalwetlandsisawaytoimproveunderstandingoftheprocessesthatdrivechangesingreenhousegasesandtousethisknowledgetosupportefficientmitigationstrategies.Figure1:Toprow:Globallyaveragedmolefraction(measureofatmosphericconcentration),from1984to2021,ofCO2inpartspermillion(left),CH4inpartsperbillion(centre)andN2Oinpartsperbillion(right).Theredlineisthemonthlymeanmolefractionwiththeseasonalvariationsremoved;thebluedotsandlineshowthemonthlyaverages.Bottomrow:thegrowthratesrepresentingincreasesinsuccessiveannualmeansofmolefractionsforCO2inpartspermillionperyearareshownasgreycolumns(left),CH4inpartsperbillionperyear(centre)andN2Oinpartsperbillionperyear(right)(Source:WMOGlobalAtmosphereWatch).GlobaltemperatureTheglobalmeantemperaturesofarin2022hasbeen1.15[1.02to1.28]°Cabovethe1850-1900average(Figure2,2022figuresarebasedondatafromJanuarytoSeptember).Ifthecurrentanomalycontinuestotheendoftheyear,thesixdatasetsusedintheanalysiswouldplace2022aseitherthe5thor6thwarmestyearonrecord(from1850),andineachcasemarginallywarmerthan2021.Theeightyears2015to2022arelikelytobetheeightwarmestyearsonrecordinalldatasets.4Lunt,M.F.,Palmer,P.I.,Feng,L.,Taylor,C.M.,Boesch,H.,andParker,R.J.(2019):AnincreaseinmethaneemissionsfromtropicalAfricabetween2010and2016inferredfromsatellitedata,Atmos.Chem.Phys.,19,14721–14740,https://doi.org/10.5194/acp-19-14721-2019.5Feng,L.,Palmer,P.I.,Zhu,S.,Parker,R.J.,&Liu,Y.(2022).Tropicalmethaneemissionsexplainlargefractionofrecentchangesinglobalatmosphericmethanegrowthrate.NatureCommunications,13(1),1–8.https://doi.org/10.1038/s41467-022-28989-z.7Figure2:Globalannualmeantemperaturedifferencefrompre-industrialconditions(1850–1900)forsixglobaltemperaturedatasets(1850–2022,2022basedonanaveragetoSeptember).FordetailsofthedatasetsandprocessingseeDatasetsandmethods.LaNiñaconditions,whichareassociatedwithatemporaryreductioninglobaltemperature,havecontinuedwithshortinterruptionsfromlate2020topresent.LaNiñaconditionsareexpectedtocontinuethroughlate20226andwouldmarkthethirdconsecutiveyearofLaNiña(seeShort-termclimatedrivers).2022and2021bothshowaclearcoolingeffectfromtheongoingLaNiñaconditions.Nonetheless,bothyearsarewarmerthan2011(whichhadananomalyof0.87[0.74to0.99]°C),thepreviousyearaffectedbyasignificantLaNiñaevent,andindeedanyyearpriorto2015.2016,whichwasassociatedwithanexceptionallystrongElNiño,remainsthewarmestyearonrecordglobally(withananomalyof1.28[1.15to1.40]°C)inmostofthedatasetssurveyed.IntheIPCCsixthassessmentreport,long-termwarmingwasassessedusingmulti-yearaverages7.Fortheperiod2011–2020,theaverageanomalywasestimatedtobe1.09[0.95to1.20]°C.The10-yearaveragefortheperiod2013-2022basedonthedatasetsusedhere,isestimatedtobe1.14[1.02to1.27]°Cabovethe1850-1900average,indicatingcontinuedwarming.Temperatureanomalieswerenotthesameeverywhere.Mostlandandoceanareaswerewarmerthanthe1981-2010averagefortheyearsofar(Figure3).Theperiod1981-2010isusedasabaselineforthetemperaturemapsbecausethereareinsufficientdatainthe19thcenturyinmostareastocalculateanomaliesrelativetoapre-industrialbaseline.Areasofunusualwarmthduringtheyearincludedtheexceptionallyhighsummer-averagetemperaturesoverwesternEurasiaandpartsofeastAsia.ColderthanaverageconditionsaffectedCanada,southernAfrica,andsouthernSouthAmericawithUruguayrecordingitscoldestJanuarytoSeptembersince1988.CoolerthanaverageconditionsinthetropicalPacificareassociatedwiththeongoingLaNiñaasarewarmerthanaverageconditionsinanareasurroundingtheLaNiña“coldtongue”runningfromthenorthPacific,alongthewesternrimofthePacific,anddownintothesouthPacific.6WMOElNiño/LaNiñaupdate,August2022https://filecloud.wmo.int/share/s/P4xHawHxTlKGmP1YQrb2lQ7IntergovernmentalPanelonClimateChange(IPCC),2021:SummaryforPolicymakers,A.1.2.In:AR6ClimateChange2021:ThePhysicalScienceBasis,https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_SPM_final.pdf.TheIPCCaveragewasbasedonfourdatasets:HadCRUT5,NOAAGlobalTemp—Interim,BerkeleyEarthandKadow,C.;Hall,D.M.;Ulbrich,U.ArtificialIntelligenceReconstructsMissingClimateInformation.NatureGeoscience2020,13(6),408–413.https://doi.org/10.1038/s41561-020-0582-5.Bracketedvaluesindicatethe5%–95%confidencerange.8Figure3:Near-surfacetemperaturedifferencesrelativetothe1981–2010averagefor2022toSeptember.Themapshowsthemediananomalycalculatedfromsixdatasets:HadCRUT5,ERA5,JRA-55,GISTEMP,NOAAGlobalTempandBerkeleyEarth.OceanheatcontentIncreasinghumanemissionsofCO2andothergreenhousegasescauseapositiveradiativeimbalanceatthetopoftheatmosphere–theEarthenergyImbalance–leadingtoanaccumulationofenergyintheformofheatintheEarthsystemthatisdrivingglobalwarming8,9,10.Around90%ofthisaccumulatedheatintheEarthsystemisstoredintheocean,whichismeasuredthroughOceanHeatContent(OHC).ApositiveEarthenergyImbalancesignalsthattheEarth’sclimatesystemisstillrespondingtothecurrentforcing11andthatmorewarmingwilloccureveniftheforcingdoesnotincreasefurther12.TheIntergovernmentalPanelonClimateChange(IPCC)concludedthat"Itisvirtuallycertainthattheglobalupperocean(0–700m)haswarmedsincethe1970sandextremelylikelythathumaninfluenceisthemaindriver."13,14.Theupper2000moftheoceancontinuedtowarmin202115(thelatestyearforwhichconsolidatedfiguresareavailable)anditisexpectedthatitwillcontinuetowarminthefuture–achangewhichisirreversibleoncentennialtomillennialtimescales16,17.Theoceanheatcontentin2021wasthehighestonrecord,exceedingthe2020valueby14±9ZJ(Figure4).Alldatasetsagreethatocean8Hansen,J.etal.(2011).Earth’senergyimbalanceandimplications.AtmosphericChemistryandPhysicshttps://doi.org/10.5194/acp-11-13421-20119Rhein,M.etal.2013.Climatechange2013:Thephysicalsciencebasis.10vonSchuckmann,K.etal.(2016).AnimperativetomonitorEarth’senergyimbalance.InNatureClimateChange.https://doi.org/10.1038/nclimate287611Hansen,J.etal.(2005).Earth’sEnergyImbalance:ConfirmationandImplications.Science,308(5727),1431LP–1435.https://doi.org/10.1126/science.111025212Hansen,J.etal.(2017).Youngpeople’sburden:requirementofnegativeCO2emissions.EarthSyst.Dynam.,8(3),577–616.https://doi.org/10.5194/esd-8-577-201713IPCC,2021:SummaryforPolicymakers.In:ClimateChange2021:ThePhysicalScienceBasis.ContributionofWorkingGroupItotheSixthAssessmentReportoftheIntergovernmentalPanelonClimateChange[Masson-Delmotte,V.,etal.(eds.)].CambridgeUniversityPress,Cambridge,UnitedKingdomandNewYork,NY,USA,pp.3−32,doi:10.1017/9781009157896.001.https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_SPM.pdf14Cheng,L.;Trenberth,K.E.;Fasullo,J.etal.Improvedestimatesofoceanheatcontentfrom1960to2015,ScienceAdvances2017,3(3),e1601545.https://doi.org/10.1126/sciadv.160154515vonSchuckmann,K.,Cheng,L.,Palmer,M.D.,Hansen,J.,Tassone,C.,Aich,V.,Adusumilli,S.,Beltrami,H.,Boyer,T.,Cuesta-Valero,F.J.,Desbruyères,D.,Domingues,C.,García-García,A.,Gentine,P.,Gilson,J.,Gorfer,M.,Haimberger,L.,Ishii,M.,Johnson,G.C.,…Wijffels,S.E.(2020).HeatstoredintheEarthsystem:wheredoestheenergygo?EarthSyst.Sci.Data,12(3),2013–2041.https://doi.org/10.5194/essd-12-2013-202016Cheng,L.;Trenberth,K.E.;Fasullo,J.etal.Improvedestimatesofoceanheatcontentfrom1960to2015,ScienceAdvances2017,3(3),e1601545.https://doi.org/10.1126/sciadv.1601545.17IPCC,2019:SummaryforPolicymakers.In:IPCCSpecialReportontheOceanandCryosphereinaChangingClimate[H.-O.Pörtner,D.C.Roberts,V.Masson-Delmotte,P.Zhai,M.Tignor,E.Poloczanska,K.Mintenbeck,A.Alegría,M.Nicolai,A.Okem,J.Petzold,B.Rama,N.M.Weyer(eds.)].Inpress.9warmingratesshowaparticularlystrongincreaseinthepasttwodecades.Therateofoceanwarmingforthe0-2000mlayerwas0.6±0.1W·m-2from1971-2021,but1.0±0.1W·m-2from2006-2021.Figure4:1960-2021ensemblemeantimeseriesandensemblestandarddeviation(2-standarddeviations,shaded)ofglobaloceanheatcontent(OHC)anomaliesrelativetothe2005-2017averageforthe0-300m(grey),0-700m(blue),0-2000m(yellow)and700-2000mdepthlayer(green).Theensemblemeanisanupdateoftheoutcomeofaconcertedinternationaleffort18,andallproductsusedarereferencedinthesectiononOceanheatcontentdata.Notethatvaluesaregivenfortheoceansurfaceareabetween60°S-60°Nandlimitedtoareasdeeperthan300mineachproduct.Theensemble-meanOHCanomaliesfortheyear2021hasbeenaddedasseparatepoints,togetherwiththeirensemblespread,andisbasedonthe4productslistedinOceanheatcontent.SealevelIn2022,globalmeansealevel(GMSL)hascontinuedtorise(Figure5).TheGMSLriseisestimatedtobe3.4±0.3mm∙yr-1overthe30years(1993-2022)ofthesatellitealtimeterrecord,buttheratehasdoubledbetweenthefirstdecadeoftherecord(1993-2002)andthelast(2013-2022)duringwhichtheratehasexceeded4.4mm∙yr-1.TheGMSLaccelerationisestimatedtobe0.12±0.05mm∙yr-2overthe30-yearperiod.GMSLincreasedbyabout5mmbetweenJanuary2021andAugust2022.SinceJanuary2020,theincreaseinGMSLamountstoaround10mm,asubstantialfractionoftheGMSLrisesince1993(around100mm),despitetheongoingLaNiña.18vonSchuckmann,K.,Cheng,L.,Palmer,M.D.,Hansen,J.,Tassone,C.,Aich,V.,Adusumilli,S.,Beltrami,H.,Boyer,T.,Cuesta-Valero,F.J.,Desbruyères,D.,Domingues,C.,García-García,A.,Gentine,P.,Gilson,J.,Gorfer,M.,Haimberger,L.,Ishii,M.,Johnson,G.C.,…Wijffels,S.E.(2020).HeatstoredintheEarthsystem:wheredoestheenergygo?EarthSyst.Sci.Data,12(3),2013–2041.https://doi.org/10.5194/essd-12-2013-202019601965197019751980198519901995200020052010201520202021Year864202OHC(Jm2)1e8OHC0-300mOHC0-700mOHC0-2000mOHC700-2000m10Figure5:GlobalmeansealevelevolutionfromJanuary1993toAugust2022(blackcurve)withassociateduncertainty(shadedarea)Thehorizontal,colouredstraightlinesrepresenttheaveragelineartrendsoverthreesuccessivetimespans.(SourceLEGOS;datafromAVISOaltimetrywww.aviso.altimetry.fr)MarineheatwavesAswithheatwavesandcoldspellsonland,marineheatwaves(MHW)andmarinecold-spells(MCS)areprolongedperiodsofextremeheatorcoldintheseasandoceansthatcanhavearangeofconsequencesformarinelifeanddependentcommunities.MHWshavebecomemorefrequentoverthe20thand21stCenturywhileMCShavebecomelessfrequent.Satelliteretrievalsofsea-surfacetemperatureareusedtomonitorMHWsandMCSsglobally,categorisedhereasmoderate,strong,severe,orextreme(fordefinitions,seeDatasetsandmethods).Overall,55%oftheoceansurfaceexperiencedatleastoneMHWduring2022(Figure6)–lessthantherecordof65%in2016andthelowestannualcoveragesince2012(57%).Intotal,22%oftheoceansurfaceexperiencedatleastoneMCSduring2022(Figure7),lessthan2021(25%),andmuchlessthanthe1985record(63%).TheongoingLaNiñaandassociatedlower-than-averagesea-surfacetemperaturesmeanthattheequatorialPacificisoneofthefewoceanregionstoseewide-spreadcoverageofstrongMCSin2022(Figure7).TheSouthernOceanis,however,theonlyregioninwhichMCSshaveseenalong-termincreaseinduration.IntheArctic,theLaptevandBeaufortSeasexperiencedsevereandextremeMHWsfromnorthernhemispherespringtoautumnof2022.Theice-edgetothenorthofSvalbardandeastoftheRossSeaexperiencednotableextremeMHWforthesecondconsecutiveyear.Figure6:(a)GlobalmapshowingthehighestMHWcategory(fordefinitions,seeMarineheatwaveandmarinecold-spelldata)experiencedateachpixelover2022to17October(referenceperiod1982–2011).LightgreyindicatesthatnoMHW11occurredinapixelovertheentireyear;(b)StackedbarplotshowingthepercentageofthesurfaceoftheoceanexperiencinganMHWonanygivendayoftheyear;(c)StackedbarplotshowingthecumulativepercentageofthesurfaceoftheoceanthatexperiencedanMHWovertheyear.Note:ThesevaluesarebasedonwhenintheyearapixelfirstexperienceditshighestMHWcategory,sonopixeliscountedtwice.HorizontallinesinthisfigureshowthefinalpercentagesforeachcategoryofMHW;d)StackedbarplotshowingthecumulativenumberofMHWdaysaveragedoverthesurfaceoftheocean.Note:ThisaverageiscalculatedbydividingthecumulativesumofMHWdaysperpixelweightedbythesurfaceareaofthosepixels.DataarefromNOAAOISST.Source:RobertSchlegelFigure7:asforFigure6butshowingmarinecold-spells(MCSs)ratherthanmarineheatwaves(MHWs).DataarefromNOAAOISST.Source:RobertSchlegelCryosphereThecryospherecomprisesthefrozenpartsoftheearth–glaciersandicesheets,seaice,snow,andpermafrost.Satellitesprovidelong-termmeasurementsofmanyaspectsofthecryosphere,providingacomplementarysourceofinformationtothedatagatheredinsituintheremoteandofteninhospitableenvironmentsinwhichthecomponentsofthecryospherearefound.SeaiceArcticsea-iceextentwasbelowthelong-term(1981-2010)averageformostoftheyear,withaSpringsea-icemaximumof14.59millionkm2inMarch2022,0.84millionkm2belowthelong-termmean(Figure8).TheSeptemberextentwas4.87millionkm2,1.54millionkm2belowthelong-termmeanextent.Thisrepresentsgreatericeextentthantheaverageminimumvaluesofthelastdecade–amoderatesummerforArcticsea-icemelt–butitistiedforthe11thlowestmonthlyminimumiceextentinthesatelliterecord.Thesmallestdailyextentoftheyear,4.67millionkm2,occurredaround18Septemberandwasthe9thor10thlowestannual-minimumdailyextentonrecord19,20.SeaiceextentintheAntarctichasseenbothrecordhigh(2014)andlow(2017/2022)extentsinthepast10years(Figure8).Antarcticsea-iceextentdroppedto1.92millionkm2onFebruary252022,thelowestlevelonrecordandalmost1millionkm2belowthelong-term(1981-2010)mean21.TheoriginsoftheicelosscanbetracedbacktoOctober/November2021whentherewasaseriesofverydeepstormstothewestoftheAntarcticPeninsula.ThisareaisstronglyinfluencedbythephaseoftheElNiño–SouthernOscillationandthedeepstormsinlate2021wereconsistentwiththeLaNiñaconditionsatthetime.FollowingtheannualseaiceextentminimuminFebruary,thetotalextentofAntarcticseaicehasbeencontinuouslybelowthe30-year(1981-2010)meanuptoOctober2022;itwasevenrecordlowattimesinJuneandJuly.TheWeddellSea,IndianOceanandPacificsectorshaveallretainednegative19https://climate.copernicus.eu/sea-ice-cover-september-202220https://nsidc.org/arcticseaicenews/2022/09/arctic-sea-ice-minimum-ties-tenth-lowest/21Turner,J.,Holmes,C.,CatonHarrison,T.,Phillips,T.,Jena,B.,Reeves-Francois,T.,etal.(2022).RecordlowAntarcticseaicecoverinFebruary2022.GeophysicalResearchLetters,49,e2022GL098904.https://doi.org/10.1029/2022GL09890412seaiceextentanomaliessinceFebruary2022,leadingtothetotalSouthernOceaniceextentbeingabout0.5millionkm2belowthemeanmaximumextentinOctober2022.Figure8:Seaiceextentanomalies(relativetothe1981-2010average)from1979to2022for(left)theArcticand(right)theAntarctic.Blue/greenlinesindicatetheanomaliesinannualmaximumiceextent(MarchfortheArcticandSeptemberfortheAntarctic)andorange/redcorrespondtotheannualminimumiceextent(SeptemberfortheArcticandFebruaryfortheAntarctic).DatafromEUMETSATOSISAFv2p1andNationalSnowandIceDataCentre(NSIDC)v3(Fettereretal.,2017)(seedetailsinSeaice).GlaciersGlaciersareformedfromsnowthathascompactedtoformice,whichdeformsandflowsdownhilltolowerandwarmeraltitudes,whereitmelts.Whereglaciersterminateinalakeortheocean,ablationalsooccursthroughmeltingattheice-waterinterfaceandthroughcalvingprocesses.AccordingtotheWorldGlacierMonitoringService,inthehydrologicalyear2020-2021,the40orsoglacierswithlong-termobservationsexperiencedanaveragemassbalanceof–0.77mwaterequivalent(mw.e.).Thisisasmallerlossthantheaverageforthelastdecadebutstillmorethantheaveragefortheperiod1991-2020.Preliminaryresultsfor2022areonlyavailableforafewselectedregionsatthistime,asfieldobservationsarerecentlycompletedandneedtobeevaluated.WereporthereonpreliminarydatafromtheSwissAlps.Figure9:TotalannuallossofSwissglaciersrelatedtothecurrenticevolume2002-2022.Theverticalbarsindicatethepercentagechangeinicevolumerelativetothepreviousyear.Redbarsarethe10largestrelativemasslossesonrecord.Thepurplebaristherelativemasslossfor2022.Theblueshadedareainthebackgroundrepresentstheoverallicevolume.IntheEuropeanAlps,recordsofglaciermasslosswereshatteredin2022.Masslosseswerefarbeyondtherangeofhistoricalvariability.Averagethicknesschangesofbetween3andover4metreswere13measuredthroughouttheAlps,substantiallymorethaninthepreviousrecordyear2003.InSwitzerland6%oftheglaciericevolumewaslostbetween2021and2022(Figure9).Therearethreereasonsforthisextremeglaciermelt.First,therewasverylittlewintersnowandthismeantthattheicewasunprotectedinearlysummer.Second,SaharandustblewovertheAlpsdarkeningthesnowsurface,thusfurtheracceleratingmelt.Third,longandpersistentheatwavesbetweenMayandearlySeptember2022ledtomassiveiceloss.Forthefirsttimeinhistory,nosnowoutlastedthesummerseasonevenattheveryhighestmeasurementsitesandthusnoaccumulationoffreshiceoccurred.Between2001and2022thevolumeofglaciericeinSwitzerlanddecreasedfrom77km3to49km3,adeclineofmorethanathird.GreenlandicesheetAnicesheetisanareaofglacialicethatexceeds50000km2.Inthecurrentclimatetherearetwoicesheets:oneonGreenland,theotheronAntarctica.ThetotalmassbalanceoftheGreenlandicesheetisthesumofthreecomponents:thesurfacemassbalance,themarinemassbalanceandthebasalmassbalance.Thesurfacemassbalanceisthedifferencebetweensnowaccumulationandmeltwaterrunofffromtheicesheet.Themarinemassbalanceisthemasslossattheedgeoftheicesheetfromthecalvingoficebergsandthemeltingofglaciertonguesincontactwiththeocean.Basalmassbalanceconsistsofmeltingattheicesheetbed.ForGreenland22theestimatedtotalmassbalance23was-85Gtrepresentinganeticelossduringthe2022massbalanceyear(1September2021–31August2022).Thisyear,theGreenlandicesheetendedwithasurfacemassbalanceofabout423Gt,whichisthe10thhighestvalueinthedatasetthatgoesback1980(Figure10left).Nevertheless,theGreenlandIceSheetendedwithanegativetotalmassbalanceforthe26thyearinarow,mainlyduetothestrongnegativemarinemassbalanceof-486Gt.ThemeltingandablationseasonsinGreenlandbeganlatein2022andthesummerwasrelativelycoolcomparedwithrecentyears.However,therewasaperiodofhightemperaturesattheendofJuly2022withintensesurfacemeltoverlargepartsoftheicesheetandlargeicelossesoverafewdays.September2022wasalsoextraordinarilywarm,withwidespreadandgenerallyhighpositivetemperatureanomaliesalongwithwidespreadmeltingearlyinthemonth(Figure10right).SummitStation,thehighestpointinGreenland(3200m),haditswarmestSeptemberonrecord(since1991)andexperiencedmeltingconditionsonSeptember3,2022,thefirsttimemeltinghasbeenregisteredatthissiteinSeptember24.LaterinSeptember,heavyrainassociatedwithpost-tropicalcycloneFionafellontheicesheet,alsoafirstforSeptember.22Basedontheaverageofthreeregionalclimateandmassbalancemodels.SeeMankoff,K.D.,X.Fettweis,P.L.Langen,M.Stendel,K.K.Kjeldsen,N.B.Karlsson,B.Noël,M.R.vandenBroeke,W.Colgan,S.B.Simonsen,J.E.Box,A.Solgaard,A.P.Ahlstrøm,S.B.AndersenandR.S.Fausto,2021:Greenlandicesheetmassbalancefrom1840throughnextweek.EarthSyst.Sci.Data13,5001–5025,doi:10.5194/essd-13-5001-202123Anegativemassbalanceindicatesalossoficemass,apositivemassbalanceindicatesagain.24https://nsidc.org/greenland-today/14Figure10:(left)ComponentsofthetotalmassbalanceoftheGreenlandIceSheet1987-2022.Blue:Surfacemassbalance(SMB),green:marinemassbalance(MMB),orange:basalmassbalance(BMB),red:totalmassbalance(TMB),thesumofSMB,MMBandBMB.Mankoffetal.(2021),updatedandredrawnbyM.Stendel.(right)GreenlandIceSheetmeltextent,2022..ImageandanalysiscourtesyofThomasMote,U.S.NationalSnowandIceDataCenter.PrecipitationPrecipitationtotalswereabovethelong-termaverage(Figure11)innortheastAsia,thewesternIndiansummermonsoonregion,southeastAsia,theMaritimeContinent,Australia,NewZealand,areasofnorthernSouthAmerica,partsofNorthAmericaandtheCaribbean,westAfrica,Sudan,coastalareasextendingfromwesternLibyatoEgypt,andthesouthernArabianPeninsulaincludingUAE,OmanandYemen.Regionswithamarkedrainfalldeficitincluded:Europe,CentralAsia,NorthernAustralia,EasternAfrica,mostofNorthAfrica,centralandsouthernSouthAmerica,andcentralandwesternNorthAmerica.TheIndianMonsoononsetwasearlierandthewithdrawallaterthannormalthisyear.ThemajorityoftheIndianSubcontinentreceivedhighprecipitationtotalsandthemonsoonextendedfartherwestwardthenusualtowardsPakistanwheretherewasextensiveflooding.LaNiñabringsdistinctivepatternsofrainfall,whicharedescribedinthenextsection,Short-termclimatedrivers.Figure11:TotalprecipitationinJan-Sep2022,expressedasapercentileofthe1951–2000referenceperiod,forareasthatwouldhavebeeninthedriest20%(brown)andwettest20%(green)ofyearsduringthereferenceperiod,withdarkershadesofbrownandgreenindicatingthedriestandwettest10%,respectively(Source:GlobalPrecipitationClimatologyCentre(GPCC),DeutscherWetterdienst,Germany)-600-500-400-300-200-100010020030040050060070019851990199520002005201020152020MassBalance(Gt)YearGreenlandtotalmassbalanceanditscomponents1987-2022BasalMassBalanceMarineMassBalanceSurfaceMassBalanceTotalMassBalance15Short-termclimatedriversTherearemanydifferentnaturalphenomena,oftenreferredtoasclimatepatternsorclimatemodes,thataffectweatherattimescalesrangingfromdaystoseveralmonthsorevenyears.In2022,theElNiño–SouthernOscillation(ENSO)andtheIndianOceandipole(IOD)contributedtomajorweatherandclimateeventsacrosslargeareasoftheworld.ENSO–ElNiñoSouthernOscillationENSOisoneofthemostimportantdriversofyear-to-yearvariabilityinweatherpatternsworldwide.Itislinkedtohazardssuchasheavyrains,floods,anddrought.ElNiño,characterisedbyhigher-than-averageseasurfacetemperaturesintheeasterntropicalPacificandaweakeningofthetradewinds,typicallyhasawarminginfluenceonglobaltemperatures.LaNiña,whichischaracterisedbybelow-averageseasurfacetemperaturesinthecentralandeasterntropicalPacificandastrengtheningofthetradewinds,hastheoppositeeffect.LaNiñaconditionsemergedinmid-2020andcontinuedinto2021withseasurfacetemperaturesbrieflybecomingENSO-neutral(temperatureswithin0.5°Cofnormal,Figure12),althoughstillcoolerthanaverageduringmostoftheNorthernHemispheresummer.Temperaturesdeclinedagain,andLaNiñare-emergedduringtheJuly−Septemberperiodof2021,quicklyevolvingtoamoderatestrengtheventwhereitremainedthroughatleastSeptember2022.IndicationsarethatLaNiñaislikelytocontinuethroughnorthernhemisphereautumn,whichwouldmarkthethirdconsecutiveyearofLaNiña25.Thisisthethirdtimesuchaneventhasoccurredinthelast50years,following1973-76and1998-2001.Aswellashavingatemporarycoolinginfluenceonglobaltemperature,LaNiñaisoften–thoughnotalways–associatedwithcharacteristicpatternsofrainfall.Insomeregionsthepatternofprecipitationanomaliesin2022wastypicalofLaNiña:drierthanusualconditionsinPatagoniaandsouthwestNorthAmerica,andwetterthanusualinSouthernAfrica,northernSouthAmerica,themaritimecontinentandeasternAustralia.MoreintenseandlongermonsoonrainfallinsoutheastAsiaisassociatedwithLaNiña.PakistanexperiencedheavyrainsinJulyandAugust.LaNiñaisalsoassociatedwithdrier-than-normalconditionsineastAfrica.MostofKenya,Ethiopia,andSomaliahaveexperiencedfourconsecutivebelow-averagerainfallseasonswithseverehumanitarianimpacts26.MoredetailsaretobefoundinthesectiononSelectedhighimpactevents.Althoughittypicallyreducesglobaltemperature,LaNiñaisnotassociatedwithlowertemperatureseverywhere.InNewZealanditistypicallyassociatedwithwarmandwetairmasses.Thecountryreporteditsfifthwarmestsummer(2020/21),followedbyitssecondwarmestautumnanditswarmestandwettestwinteronrecord.Thismarkedthethirdconsecutivewintertobreakthetemperaturerecord.25WMOENSOupdatehttps://public.wmo.int/en/our-mandate/climate/el-ni%C3%B1ola-ni%C3%B1a-update26https://reliefweb.int/report/ethiopia/horn-africa-drought-regional-humanitarian-overview-call-action-revised-24-august-202216Figure12:TimeseriesofNOAA’sOceanicNiñoindexfrom1950toAugust2022showingthepresenceofbelow-averageconditions(blue)andaboveaverageconditions(red)during3-monthaveragetimeperiods.(Source:NOAANCEI)IOD–IndianOceanDipoleThepositivephaseoftheIODischaracterisedbybelow-averagesea-surfacetemperaturesintheeasternIndianOceanandaboveaveragesea-surfacetemperaturesinthewest.Thenegativephasehastheoppositepattern.Theresultingchangeinthegradientofsea-surfacetemperatureacrosstheoceanbasinaffectstheweatherofthesurroundingcontinents,primarilyintheSouthernHemisphere.PositiveIODeventsareoftenassociatedwithElNiñoandnegativeeventswithLaNiña.Forthesecondconsecutiveyear,anegativeIODdevelopedduringaustralwinter.IncombinationwithLaNiña,thisphasecontributedtowetconditionsacrossmuchofAustraliainlateaustralwinterandspring.Itwasthewettestwintersince2016forbothQueenslandandtheNorthernTerritory.Conversely,thenegativeIOD,againincombinationwithLaNiña,iscontributingonceagaintotheextremedryconditionsineasternAfrica.SelectedhighimpacteventsAlthoughthebroad-scalechangesintheclimate,astrackedbythekeyindicators,areimportant,theimpactsofweatherandclimatearemostoftenandmostclearlyfeltduringextremeeventssuchasheavyrainandsnow,droughts,heatwaves,coldwavesandstorms,includingtropicalstormsandcyclones.Inconjunctionwithotherfactors,thesecanleadtoorexacerbateotherhigh-impacteventssuchasflooding,landslides,andwildfires.Thissection,describesasmallselectionofhigh-impacteventsof2022andisbasedoninputfromWMOMembersandUNagencies.Thisrepresentsonlyasmallselectionoftheeventsof2022andawiderrangeofextremeeventsandtheirimpactswillbesharedviatheStoryMap.SouthAsiaheatwavesandfloodsThepre-monsoonperiodwasexceptionallyhotinIndiaandPakistan.PakistanhaditshottestMarchandhottestAprilonrecord.Theheatcausedadeclineincropyields.ThiscombinedwiththebanningofwheatexportsandrestrictionsonriceexportsinIndiaarethreateningtheinternationalfoodmarketsandposingriskstocountriesalreadyaffectedbyshortagesofstaplefoods27.27BMJ.2022;378:e071534http://dx.doi.org/10.1136/bmj-2022-071534Published:29September202217Pakistanexperiencedexceptionalfloodingduringthemonsoonseason,peakinginlateAugust.July(181%abovenormal)andAugust(243%abovenormal)wereeachthewettestonrecordnationally.Sindhprovincewasparticularlybadlyaffected,withBalochistanalsohard-hit.Preliminarysatellitedataindicatedthat75000squarekilometres,about9%ofPakistan’sarea,wasinundatedatsomestageduringAugust28.1700peopledied29inthefloodsalongwith936000headoflivestock.Rainfall-triggeredfloodingandlandslideshavealsosubstantiallydisruptedtransportationandbuildinginfrastructure,andfoodpricesincreasedby29%30.Some33millionpeoplewereaffected,and7.9millionpeopleweredisplaced,withnearly600000livinginreliefsites31.ThefloodinginPakistanledtothespreadofwater-bornediseaseswiththegreatestimpactsamongthemostvulnerableandfood-insecureregionsofsouthernandcentralPakistan.Asitcouldtakemonthsforthewatertorecede,thethreatofwaterbornediseasesandfoodinaccessibilityareexpectedtorise.AdjacentareasofAfghanistanwerealsoaffected.TherewasalsosignificantfloodinginIndiaatvariousstagesduringthemonsoonseason,particularlyinthenorth-eastinJune,withover700deathsreportedduringtheseasonfromfloodingandlandslides,andafurther900fromlightning.Floodsalsotriggered663000displacementsintheIndianstateofAssam32.InBangladesh,theworstfloodsin20yearshaveaffectedsome7.2millionpeoplewith481000displacementsrecorded33.InCox’sBazar,heavyrainsaffectednearly60000refugeesandtriggeredsecondarydisplacement34.Emergencyshelterassistancewasprovidedtoover15000affectedfamilies35.DroughtintheGreaterHornofAfricaDroughtintensifiedintheGreaterHornofAfricaregion,focusedonKenya,Somalia,andsouthernEthiopia.RainfallwaswellbelowaverageacrosstheregionintheMarch-Mayrainyseason,thefourthconsecutivepoorwetseasonsincethesecondhalfof2020,whichwasthelongestsuchsequencein40years.Asinthepreviousprolongeddroughtin2010-12,LaNiñaandthenegativeIndianOceanDipoleweresubstantialcontributorstothedryconditions.TheseasonalforecastsfortheOctober-December2022rainsindicateyetanotherbelow-averageseason,whichwilllikelyresultincropfailureandfurtherexacerbatethefoodinsecuritysituationsinKenya,Somalia,andEthiopia.AcrosstheEastAfricaregion,undertheeffectsofthedroughtandothershocks,anestimated18.4to19.3millionpeoplehavefacedfoodCrisisorworselevelsofacutefoodinsecuritybeforeJune202236.Pairedwithfundingshortfallsandtheglobalincreaseinfoodprices,morethan3.5millionrefugeesintheregion(75%ofthetotalrefugeepopulation)havebeenaffectedbymajorcutsinfoodassistance37.Over1.1millionpeoplehavebeeninternallydisplacedinSomaliaasaconsequenceofthedroughtbySeptember202238.Fleeingacomplexmixofconflictanddrought,over16000Somalirefugeesarrived28https://www.unitar.org/maps/map/360429NDMAMonsoon2022DailySituationReportNo115(Dated6thOct,2022)https://reliefweb.int/report/pakistan/ndma-monsoon-2022-daily-situation-report-no-115-dated-6th-oct-2022(Dated20thOct,2022)https://reliefweb.int/report/pakistan/ndma-monsoon-2022-daily-situation-report-no-129-dated-20th-oct-202230WFPandFAO.2022.HungerHotspots.FAO-WFPearlywarningsonacutefoodinsecurity:JunetoSeptember2022Outlook.Rome.https://www.wfp.org/publications/hunger-hotspots-fao-wfp-early-warnings-acute-food-insecurity-june-september-202231UNHCRNews-UNHCRurgentlyseeksUS$66millionforcommunitiesdevastatedbyPakistanfloodsOctober2022;IOM:PakistanFloodsResponseSituationReport.September2022.32IDMCmid-yearupdateSeptember202233IDMCmid-yearupdateSeptember202234ISCGFlashUpdate#6onMonsoonResponseof25August202235ISCGFlashUpdate#6onMonsoonResponseof25August202236InternationalBankforReconstructionandDevelopment/TheWorldBank2022.FoodSecurityupdate,September29,2022.37UNHCREastandHornofAfrica,andtheGreatLakesRegionOperationalUpdateRegionApril-June202238OCHA,UNHCR,IOMSomalia:DroughtandFamineDisplacementMonitoringDashboard(September2022)18inDolloAdo,Ethiopiaandanother10000inKenyauntilJune202239.Addingtothemultiplerisksalreadyfacedbydisplacedpeople,resiliencetoclimate-relateddisasters,environmentaldegradationanddisplacementisoftenlowestinconflict-affectedcontexts.SouthernAfricafloodsManyofthehigh-impactdisastersin2022happenedconsecutively,leavinglittletimeforrecoverybetweenoneshockandthenext.ThesouthernAfricaregionhasbeenbatteredbyaseriesofcyclonesovertwomonths,leadingtoasurgeintheneedforprotectionandshelterforhundredsofthousandsofaffectedpersons,includingrefugeesandInternallyDisplacedPersons(IDPs)40.MadagascarhadfourlandfallsinthespaceofamonthinlateJanuaryandFebruary.Ana(January)andBatsirai(February)bothcausedsignificantlossoflifethere,withAnaalsogoingontohavemajorimpactsfromfloodinginMozambiqueandMalawi.Gombe(March)broughtfloodingtoMozambiquewithsignificantcasualties.Morethan190000peoplewholostorfledtheirhomesduringTropicalStormAnainJanuaryremaineddisplacedinsideMalawiinApril41.Twomonthsafterthestormhaddisplacedover20000IDPhouseholdsinMozambique42,UNHCRrecorded736000peopleaffectedbyTropicalCycloneGombeinNampulaandZambeziaprovinces,whileover129000peoplewereinternallydisplaced43.SubtropicalDepressionIssa,incombinationwithacut-offlowpressuresystem,causedextremefloodinginAprilintheKwaZulu-NatalregionofeasternSouthAfrica,withrainfalltotalsofupto311mmin24hourson11-12April.Over400deathswereattributedtotheflooding,whichalsodisplaced40000people,withdirectimpactsontransportation,buildings,andwaterinfrastructure,thusaffectingpost-harvestfacilitiesforagrifoodstorageandprocessing,transportation,marketsandconsumptionthroughreducedaccesstofacilitiesandreducedincome44.ThesouthandwesternregionsofMadagascarenteredanextendedmulti-yeardryperiodsince2015-16duringwhichtherehavebeendroughtsofvaryingseveritynearlyeveryseason.Whilstsignificantrainfellduring2021-22inmanypartsofsouthernAfrica,long-termlocaliseddroughtpersistsinsomeareas,especiallyinsouthernMadagascar,whererainfalltotalshavebeenbelowaverageinmostyearssince2011.NorthernhemispheresummerheatwavesanddroughtExceptionallyhotand,inplaces,dryconditionsaffectedChina,EuropeandNorthAfricaduringthesummer.Chinahadthemostextensiveandlong-lastingheatwavesincenationalrecordsbegan,extendingfrommid-JunetotheendofAugustandresultinginthehottestsummeronrecordbyamarginofmorethan0.5°C.Itwasalsothesecond-driestsummeronrecord,withmostofthesouthernhalfofChina(apartfromGuangdongprovince)havingseasonalrainfall20%to50%belowaverage.TheheatwasparticularlysevereintheYangtzeRivervalley,whichalsosufferedfromsignificantdroughtduringitsdriestsummeronrecord;theYangtzeRiveratWuhanreacheditslowestrecordedlevelforAugust.Therewerealsonumerouswildfiresintheregion.39EastandHornofAfrica,andtheGreatLakesRegion:UNHCRDroughtSituationResponseUpdate#1August202240UNHCRNews-UrgenthelpneededinMalawitorebuildliveswreckedbyTropicalStormAnaApril202241UNHCRNews-UrgenthelpneededinMalawitorebuildliveswreckedbyTropicalStormAnaApril202242IOMMozambique–TropicalStormAnaFlashReport03(02February2022)43UNHCRMozambiqueCountryFactsheetAugust2022;IOMDisplacementTrackingMechanism,Round16,June2022..44BMJ.2022;378:e071534http://dx.doi.org/10.1136/bmj-2022-071534Published:29September202219Europealsoexperiencednumerousmajorheatwavesduringthesummer,withsignificantheatwavesoccurringineachofthethreesummermonths.Themostexceptionaloccurredinmid-July.Thetemperatureexceeded40°CintheUnitedKingdomforthefirsttime,withareadingof40.3°CatConingsbyon19July45,1.6°Cabovethepreviousnationalrecord,whilst33.0°Con18JulyatPhoenixPark(Dublin)wasthehighestinIrelandsince1887.Numerouslocationsbrokepreviousrecordsbymorethan3°C,particularlyinnorthernEnglandandwesternFrance.TheheatextendedasfarnorthasSweden,where37.2°CatMålillaon21Julywasthecountry’shighestsince1947.South-westernFrancewasparticularlyaffectedbywildfires,withover62000hectaresburnt,whilsttherewassignificantpropertylossinseveralfiresintheoutersuburbsofLondon.InPortugal,thehydrologicalyear(October-September)wasthethirddriestonrecordandthesummerheatexacerbatedthealreadyseveredroughtsituation46,47.Theseconditionsfuelledseverewildfiresandthetotalburnedareain2022(to15October)was110000ha,thehighestsincethecatastrophicfireseasonof201748.TheMediterraneanregionexperiencedmajorheatwavesinJuneandAugust.TunisiahaditshottestJuneonrecordandsomelocationssetrecordhighsinAugust.Forthesecondconsecutiveyear,wildfirescausedmajorlossoflifeinAlgeria,with44deathsreportedinfiresfrom16to18August.EstimatedmortalityduetotheheatiscomplicatedbychangesinbackgrounddeathratesduetoCOVID.Nevertheless,someofficialestimateshavebeenmadeincludingaround2800deathsintheUK49(amongthoseaged65andolder),4500inGermany50,and11000inFrance51.DroughtalsoaffectedmanypartsofEuropeandtheMediterranean.InEurope,conditionswereattheirmostsevereinAugust,whenriversincludingtheRhine,LoireandDanubefelltocriticallylowlevels.Threestatesinwest-centralGermanyhadtheirdriestsummeronrecord.FrancehaditsdriestJanuarytoSeptemberperiodsince1976,andtheUnitedKingdomandUccle(Belgium)hadtheirdriestJanuarytoAugustsince1976,whilethe12monthsendinginAugust2022werethedriestforatleast40yearsinMorocco.SignificantdroughtalsocontinuestoaffectpartsofsouthwestAsia,particularlyIranandIraq.HurricaneIanInlateSeptember,HurricaneIanformedinthewesternCaribbean52.OnSeptember27,HurricaneIancrossedwesternCubabeforeintensifyingtocategory4andmakinglandfallinsouthwestFloridaon28September,bringingextensivestorm-surgeinundationinlow-lyingcoastalareasandriverfloodingfurthernortheast,where4-dayrainfallsexceeded500mmintheDaytonaBeacharea.Ianmadelandfallwithsustained10-minutewindsof241km/h(150mph),thefourth-strongestlandfallonrecordinFlorida.131deathswerereportedintheUSwithadditionallossoflifeinCuba53.45https://www.metoffice.gov.uk/about-us/press-office/news/weather-and-climate/2022/july-heat-review46IPMA:https://www.ipma.pt/resources.www/docs/im.publicacoes/edicoes.online/20221007/aiheZPiRtGVzsVeKFTuO/cli_20220901_20220930_sec_mm_co_pt.pdf47IPMA:https://www.ipma.pt/pt/oclima/observatorio.secas/48ICNF:https://www.icnf.pt/florestas/gfr/gfrgestaoinformacao/grfrelatorios/areasardidaseocorrencias49https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/articles/excessmortalityduringheatperiods/englandandwales1juneto31august202250https://www.rki.de/DE/Content/Infekt/EpidBull/Archiv/2022/42/Art_01.html51FromtheFrenchcontribution52https://www.ncei.noaa.gov/access/monitoring/monthly-report/national/202209/supplemental/page-553https://www.ncei.noaa.gov/access/billions/events/US/202220ContributorsIndividuals(inalphabeticalorder)SigneAaboe(NorwegianMeteorologicalInstitute),AhmatYounousAbdel-lathif(WFP),JorgeAlvar-Beltrán(FAO),JoseÁlvaroMendesPimpaoAlvesSilva(WMO),OmarBaddour(WMO),HamzaBenlarabi(IOM),JanaBirner(UNHCR),JessicaBlunden(NOAANCEI),RogerioBonifacio(WFP),TimBoyer(NOAA'sNationalCentersforEnvironmentalInformation,SilverSpring,Maryland,USA),AnnyCazenave(LEGOSCNESandOMP),XuanChe(UNDRR),LijingCheng(InstituteofAtmosphericPhysics,ChineseAcademyofSciences,Beijing,China;CenterforOceanMega-Science,ChineseAcademyofSciences,Qingdao,266071,China),JohnChurch(UniversityofNewSouthWales,Sydney,Australia),DamienDesbruyeres(Ifremer,UniversityofBrest,CNRS,IRD,Laboratoired'OcéanographiePhysiqueetSpatiale,Brest,France),CatiaM.Domingues(NOC),RobertDunn(MetOffice,UK)AriannaGialletti(FAO),DonataGiglio(UniversityofColorado,Boulder,USA),JohnE.Gilson(SCRIPPSInstitutionofOceanography,UniversityofCaliforniaSanDiego,LaJolla,California,USA),AtsushiGoto(WMO),YvanGouzenes(LEGOSandOMP),StephanGruber(CarletonUniversity,Ottawa,Canada),FloraGues(CELAD,MercatorOceanInternational,Toulouse,France),ShigekiHosoda(JapanMarine-EarthScienceandTechnology(JAMSTEC),Japan),SanderHouweling(VrijeUniversiteitAmsterdam,theNetherlands),MatthiasHuss(ETHZürich,Switzerland),KirstenIsensee(IOCUNESCO),GregoryC.Johnson(NOAAPMEL),MaartenKappelle(UNEP,Nairobi),JohnKennedy(WMO),RachelKillick(MetOffice,UK),BrianKing(NOC),NicolasKolodziejczyk(UniversityofBrest,CNRS,IRD,Ifremer,Laboratoired'OcéanographiePhysiqueetSpatiale,IUEM,Brest,France),AnimeshKumar(UNDRR),MikaelKuusela(CarnegieMellonUniversity,Pittsburg,USA),ThomasLavergne(NorwegianMeteorologicalInstitute),YuehuaLi(SchoolofEarthSciences,YunnanUniversity,Kunming,China),JohnLyman(NOAAPMEL),ShawnMarshall(ECCCandUniversityofCalgary),JesseMason(WFP),TrevorMcDougall(UniversityofNewSouthWales),BrianMenounos(UniversityofNorthernBritishColumbia,Canada),AudreyMinère(MercatorOceanInternational,France),ColinMorice(MetOffice,UK),DidierPaoloMonselesan(CSIROOceansandAtmosphere),LevNeretin(FAO),JeannetteNoetzli(InstituteforSnowandAvalancheResearch,Switzerland),InèsOtosaka(CPOM),GiancarloPini(WFP),ClaireRansom(WMO),DeanRoemmich(SCRIPPSInstitutionofOceanography,UniversityofCaliforniaSanDiego,LaJolla,California,USA),KanakoSato(JapanMarine-EarthScienceandTechnology(JAMSTEC),Japan),KatsunariSato(JapanMeteorologicalAgency,Japan),AbhishekSavita(GEOMAR,Kiel,Germany),YousukeSawa(JapanMeteorologicalAgency,WDCGG,Japan),RobertW.Schlegel(SorbonneUniversité,CNRS,Laboratoired’OcéanographiedeVillefranche),KatherinaSchoo(IOCUNESCO),KarinavonSchuckmann(MercatorOceanInternational),RahulSengupta(UNDRR),MartinStendel(DMI),DmitryStreletskiy(GeorgeWashingtonUniversity,WashingtonDC,USA),ToshioSuga(TohokuUniversity/JapanMarine-EarthScienceandTechnology(JAMSTEC),Japan),TanguySzekely(OceanScope,Brest,France),OksanaTarasova(WMO),BlairTrewin(BureauofMeteorology),JohnTurner(BAS),FrejaVamborg(ECMWF),AlexVermeulen(CarbonPortal,LundUniversity,Sweden),YingWang(UNEP,Nairobi),SusanE.Wjiffels(CSIROOceansandAtmosphere,Hobart,Tasmania,AustraliaWoodsHoleOceanographicInstitution,Massachusetts,USA),MarkusZiese(GPCC,DWD,Germany)WMOMembersArgentina,Australia,Bahrain,Bangladesh,Barbados,Belgium,BosniaandHerzegovina,Brazil,BritishCaribbeanTerritories,Bulgaria,Canada,CaymanIslands,Chile,China,Colombia,Coted’Ivoire,Croatia,CzechRepublic,Denmark,DominicanRepublic,Ecuador,Egypt,Estonia,Finland,France,Georgia,Germany,Greece,Grenada,Guatemala,Hungary,HongKong(China),India,Indonesia,Iran,Iraq,Ireland,Italy,Japan,Jordan,Kenya,Latvia,Libya,Luxembourg,Macao(China),Madagascar,Maldives,Mali,Mauritius,Morocco,Myanmar,Namibia,NewZealand,NorthMacedonia,Norway,Pakistan,21Peru,Poland,RussianFederation,Rwanda,SaudiArabia,Seychelles,Slovakia,Slovenia,SouthAfrica,SriLanka,Sweden,Switzerland,Tanzania,Thailand,TrinidadandTobago,Tunisia,Türkiye,Uganda,Ukraine,UnitedKingdom,UnitedStates,Uruguay,UzbekistanUNagenciesUnitedNationsEnvironmentProgramme(UNEP),IntergovernmentalOceanographicCommission–UnitedNations(IOC-UNESCO),UnitedNationsHighCommissionerforRefugees(UNHCR),InternationalOrganizationforMigration(IOM),FoodandAgricultureOrganizationoftheUnitedNations(FAO),WorldFoodProgramme(WFP),UnitedNationsOfficeforDisasterRiskReduction(UNDRR)InstitutionsBritishAntarcticSurvey(BAS);BureauofMeteorology;CarbonPortal,LundUniversity,Sweden;CarletonUniversity,Ottawa,Canada;CarnegieMellonUniversity,Pittsburg,USA;CELAD,MercatorOceanInternational,Toulouse,France;CenterforOceanMega-Science,ChineseAcademyofSciences,Qingdao,266071,China;CentreforPolarObservationandModelling,UniversityofLeeds,UK(CPOM);CSIROOceansandAtmosphere,Hobart,Tasmania,Australia;DanmarksMeteorologiskeInstitut(DMI);DeutscherWetterdienst(DWD);EnvironmentandClimateChangeCanada(ECCC);ETHZürich,Switzerland;EuropeanCentreforMedium-rangeWeatherForecasts(ECMWF);GeorgeWashingtonUniversity,WashingtonDC,USA;GlobalPrecipitationClimatologyCentre(GPCC);Ifremer,UniversityofBrest,CNRS,IRD,Laboratoired'OcéanographiePhysiqueetSpatiale,Brest,France;InstituteforSnowandAvalancheResearch,Switzerland;InstituteofAtmosphericPhysics,ChineseAcademyofSciences,Beijing,China;JapanMarine-EarthScienceandTechnology(JAMSTEC),Japan;JapanMeteorologicalAgency,WDCGG,Japan;LEGOSCNES;MercatorOceanInternational,Toulouse,France;MetOffice,UK;NationalOceanographicandAtmosphereAdministration,NationalCentersforEnvironmentalInformation(NOAANCEI);NOAA,PacificMarineEnvironmentalLaboratory,Seattle,USA(NOAAPMEL);NationalOceanographicCentre,Southampton,UK(NOC);NorwegianMeteorologicalInstitute;OceanScope,Brest,France;OMP;SchoolofEarthSciences,YunnanUniversity,Kunming,China;SCRIPPSInstitutionofOceanography,UniversityofCaliforniaSanDiego,LaJolla,California,USA;SorbonneUniversité,CNRS,Laboratoired’OcéanographiedeVillefranche;TohokuUniversity,Japan;UniversityofCalgary;UniversityofColorado,Boulder,USA;UniversityofNewSouthWales,Sydney,Australia;UniversityofNorthernBritishColumbia,Canada;VrijeUniversiteitAmsterdam,theNetherlandsDatasetsandmethodsGreenhousegasesEstimatedconcentrationsfrom1750areusedtorepresentpre-industrialconditions.Calculationsassumeapre-industrialmolefractionof278ppmforCO2,722ppbforCH4and270ppbforN2O.WorldDataCentreforGreenhouseGasesoperatedbyJapanMeteorologicalAgencyhttps://gaw.kishou.go.jp/.WorldMeteorologicalOrganization(WMO).WMOGreenhouseGasBulletin–No.17:TheStateofGreenhouseGasesintheAtmosphereBasedonGlobalObservationsthrough2020.Geneva,2021.https://library.wmo.int/index.php?lvl=notice_display&id=21975WorldOzoneandUltravioletRadiationDataCentreoperatedbyEnvironmentandClimateChangeCanadahttps://woudc.org/home.php.22TemperatureGlobalmeantemperatureseriesThemethodforcalculatingglobalmeantemperatureanomaliesrelativetoan1850–1900baselinehasbeenupdatedsincetheStateoftheGlobalClimate2020report.Themethodwasupdatedtotakeadvantageoftheassessmentoflong-termchangeanditsuncertaintymadebyWorkingGroupIinitscontributiontotheIPCCSixthAssessmentReport.Thenewmethodalsomakesuseofawiderrangeofshorterdatasetsthatareroutinelyupdatedtoprovideanauthoritativeassessmentofrecenttemperaturechanges.Inthe2020report(andearlierreports),changesrelativetothe1850–1900baselinewerebasedontheHadCRUT4datasetwhichwastheonlydatasetthatextendedbackto1850.OtherdatasetswereoffsettomatchtheaverageofHadCRUT4overtheperiod1880–1900(NASAGISTEMPandNOAAGlobalTemp)or1981–2010(ERA5,JRA-55).In2021,theIPCCSixthAssessmentReportWorkingGroupIassessedchangefrom1850–1900tootherperiodsbasedonanaverageoffourdatasets–HadCRUT5,BerkeleyEarth,NOAA–InterimandKadowetal.(2020)–whichallextendbackto1850.Theyassesseduncertaintybyconsideringtherangefromthefourestimates,takenfromthelowerboundoftheuncertaintyrangeofthecoolestdatasettotheupperboundoftheuncertaintyrangeofthewarmest.Bymakinguseoffourdatasetsthatextendbackto1850,WorkingGroupIwasabletomakeamorecomprehensiveestimateofuncertainty.AstwoofthefourIPCCdatasetsarenotregularlyupdated,inthepresentreporttheestimatemadebytheIPCCforthetemperaturechangebetween1850–1900and1981–2010iscombinedwithestimatedchangesbetween1981–2010andthecurrentyearfromsixdatasetstocalculateanomaliesfor2021relativeto1850–1900.Thereisgood,thoughnotperfect,agreementbetweenthesixdatasetsonchangesfrom1981–2010tothepresent,asthisisaperiodwithgoodobservationalcoverage.TheadditionalmodestuncertaintyfromthespreadofthesixdatasetsiscombinedwiththatoftheIPCC’sestimateoftheuncertaintyinthechangefrom1850–1900to1981–2010.Moreprecisely,sixdatasets(citedbelow)wereusedinthecalculationofglobaltemperature.Globalmeantemperatureanomalieswerecalculatedrelativetoan1850–1900baselineusingthefollowingsteps:1.Thestartingpointwasatimeseriesofglobalmonthlymeantemperaturesforeachdataset,asprovidedbythedataproviders.Theanomalieswerepresentedondifferentbaselines.2.Foreachdataset,anomalieswerecalculatedrelativetothe1981–2010averagebysubtractingtheaveragefortheperiod1981–2010foreachmonthseparately3.Anannualaveragewascalculatedfromtheavailablemonthlyaverages.4.Theamount0.69°Cwasaddedtoeachseries,basedontheestimateddifferencebetween1850–1900and1981–2010,calculatedusingthemethodfromtheIPCCSixthAssessmentReportWorkingGroupI(thenumberisprovidedinthecaptionforFigure1.12inthatreport).5.Themeanandstandarddeviationofthesixestimateswerecalculated.6.TheuncertaintyintheIPCCestimatewascombinedwiththestandarddeviation,assumingthetwoareindependentandassumingtheIPCCuncertaintyrange(0.54°Cto0.79°C)isrepresentativeofa90%confidencerange(1.645standarddeviations).Thenumberquotedinthisreportfor2022(1.15±0.13°C)wascalculatedinthiswaywith1.15°Cbeingthemeanofthesixestimates.23AnnualtemperaturemapsThemethodforcalculatingthemapofannualtemperatureanomalieshasalsobeenupdated.Inthe2020report,amapshowinganomaliesrelativeto1981–2010fromasingledataset(ERA5)wasused.Whilethemapwasbasedonasingledataset,theaccompanyingassessmentwasbasedonallavailabledatasets.Forthemapoftemperatureanomaliesfor2022,amedianvalueofsixdatasetswasused(thesamesetusedfortheglobalmean)regriddedtothespatialgridofthelowestresolutiondatasets(NOAAGlobalTempandHadCRUT5datasets),whicharepresentedona5°latitudeby5°longitudegrid.Themedianisusedinpreferencetothemeantominimizetheeffectofpotentialoutliersinindividualgridcells.Thehalf-rangeofthedatasetsprovidesanindicationoftheuncertainty.ThespreadbetweenthedatasetsislargestathighlatitudesandinCentralAfrica,bothregionswithsparsedatacoverage.Thefollowingsixdatasetswereused:BerkeleyEarth:Rohde,R.A.;Hausfather,Z.TheBerkeleyEarthLand/OceanTemperatureRecord.EarthSystemScienceData2020,12,3469–3479.https://doi.org/10.5194/essd-12-3469-2020ERA5:Hersbach,H.;Bell,B.;Berrisford,P.etal.TheERA5globalreanalysis.QuarterlyJournaloftheRoyalMeteorologicalSociety2020,146(730),1999–2049.https://doi.org/10.1002/qj.3803GISTEMPv4:GISTEMPTeam,2022:GISSSurfaceTemperatureAnalysis(GISTEMP),version4.NASAGoddardInstituteforSpaceStudies,https://data.giss.nasa.gov/gistemp/.Lenssen,N.;Schmidt,G.;Hansen,J.etal.ImprovementsintheGISTEMPUncertaintyModel.JournalofGeophysicalResearch:Atmospheres2019,124(12):6307–6326.https://doi.org/10.1029/2018JD029522HadCRUT.5.0.1.0:Morice,C.P.;Kennedy,J.J.;Rayner,N.A.etal.AnUpdatedAssessmentofNear-SurfaceTemperatureChangeFrom1850:TheHadCRUT5DataSet.JournalofGeophysicalResearch:Atmospheres2021,126(3),e2019JD032361.https://doi.org/10.1029/2019JD032361.HadCRUT.5.0.1.0datawereobtainedfromhttp://www.metoffice.gov.uk/hadobs/hadcrut5on21October2022andare©BritishCrownCopyright,MetOffice2021,providedunderanOpenGovernmentLicense,http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/JRA-55:Kobayashi,S.;Ota,Y.;Harada,Y.etal.TheJRA-55Reanalysis:GeneralSpecificationsandBasicCharacteristics.JournaloftheMeteorologicalSocietyofJapan.Ser.II2015,93(1),5–48.https://doi.org/10.2151/jmsj.2015-001,https://www.jstage.jst.go.jp/article/jmsj/93/1/93_2015-001/_article.NOAAGlobalTempv5:Zhang,H.-M.,etal.,NOAAGlobalSurfaceTemperatureDataset(NOAAGlobalTemp),Version5.0.NOAANationalCentersforEnvironmentalInformation.doi:10.7289/V5FN144H.Huang,B.;Menne,M.J.;Boyer,T.etal.UncertaintyEstimatesforSeaSurfaceTemperatureandLandSurfaceAirTemperatureinNOAAGlobalTempVersion5.JournalofClimate2020,33(4),1351–1379.https://journals.ametsoc.org/view/journals/clim/33/4/jcli-d-19-0395.1.xmlOceanheatcontentDatausedforestimatesupto2021:Cheng,L.;Trenberth,K.E.;Fasullo,J.etal.Improvedestimatesofoceanheatcontentfrom1960to2015,ScienceAdvances2017,3(3),e1601545.https://doi.org/10.1126/sciadv.160154524Ishii,M.;Fukuda,Y.;Hirahara,S.etal.AccuracyofGlobalUpperOceanHeatContentEstimationExpectedfromPresentObservationalDataSets.SOLA2017,13,163–167.https://doi.org/10.2151/sola.2017-030Lyman,J.M.;Johnson,G.C.EstimatingGlobalOceanHeatContentChangesintheUpper1800msince1950andtheInfluenceofClimatologyChoice.JournalofClimate2014,27(5),1945–1957.https://doi.org/10.1175/JCLI-D-12-00752.1vonSchuckmann,K.;LeTraon,P.-Y.HowwellcanwederiveGlobalOceanIndicatorsfromArgodata?OceanScience2011,7(6),783–791.https://doi.org/10.5194/os-7-783-2011.Inaddition,datausedupto2020:Desbruyères,D.G.;Purkey,S.G.;McDonagh,E.L.etal.Deepandabyssaloceanwarmingfrom35yearsofrepeathydrography,GeophysicalResearchLetters2016,43(19),310–356.https://doi.org/10.1002/2016GL070413Gaillard,F.;Reynaud,T.;Thierry,V.etal.InSitu–BasedReanalysisoftheGlobalOceanTemperatureandSalinitywithISAS:VariabilityoftheHeatContentandStericHeight,JournalofClimate2016,29(4),1305–1323.https://doi.org/10.1175/JCLI-D-15-0028.1Hosoda,S.;Ohira,T.;Nakamura,T.AmonthlymeandatasetofglobaloceanictemperatureandsalinityderivedfromArgofloatobservations.JAMSTECReportofResearchandDevelopment2008,8,47–59.https://www.jstage.jst.go.jp/article/jamstecr/8/0/8_0_47/_articleKuuselaM.;Stein,M.L.Locallystationaryspatio-temporalinterpolationofArgoprofilingfloatdata.ProceedingsoftheRoyalSocietyA2018,474,20180400.http://dx.doi.org/10.1098/rspa.2018.0400Levitus,S.;Antonov,J.I.;Boyer,T.P.etal.WorldOceanheatcontentandthermostericsealevelchange(0-2000m)1955–2010.GeophysicalResearchLetters2012,39(10),L10603.https://doi.org/10.1029/2012GL051106Li,H.;Xu,F.;Zhou,W.etal.DevelopmentofaglobalgriddedArgodatasetwithBarnessuccessivecorrections,JournalofGeophysicalResearch:Oceans2017,122(2),866–889,https://doi.org/10.1002/2016JC012285Roemmich,D.;Gilson,J.The2004–2008meanandannualcycleoftemperature,salinity,andstericheightintheglobaloceanfromtheArgoProgram,ProgressinOceanography2009,82(2),81–100.https://doi.org/10.1016/j.pocean.2009.03.004vonSchuckmann,K.;LeTraon,P.-Y.;Smith,N.etal.,Eds.CopernicusMarineServiceOceanStateReport,JournalofOperationalOceanography2018,11,S1–S142.https://doi.org/10.1080/1755876X.2018.1489208SealevelGMSLfromCNES/Aviso+https://www.aviso.altimetry.fr/en/data/products/ocean-indicators-products/mean-sea-level/data-acces.html#c12195Marineheatwaveandmarinecold-spelldataMHWsarecategorizedasmoderatewhenthesea-surfacetemperature(SST)isabovethe90thpercentileoftheclimatologicaldistributionforfivedaysorlonger;thesubsequentcategoriesaredefinedwithrespecttothedifferencebetweentheSSTandtheclimatologicaldistributionaverage:strong,severe,orextreme,ifthatdifferenceis,respectively,morethantwo,threeorfourtimesthe25differencebetweenthe90thpercentileandtheclimatologicaldistributionaverage(Hobdayetal.,2018).MCScategoriesareanalogousbutcountingdaysbelowthe10thpercentile.ThebaselineusedforMHWsandMCSsis1982–2011,whichisshiftedbyoneyearfromthestandardnormalperiodof1981–2010becausethefirstfullyearofthesatelliteSSTseriesonwhichitisbasedis1982.Hobday,A.J.etal.,2018:CategorizingandNamingMarineHeatwaves.Oceanography,31(2):1–13.doi:https://eprints.utas.edu.au/27875/.NOAAOISSTv2:OptimumInterpolationSeaSurfaceTemperature(OISST):Banzon,V.etal.,2016:ALong-TermRecordofBlendedSatelliteandinSituSea-SurfaceTemperatureforClimateMonitoring,ModelingandEnvironmentalStudies.EarthSystemScienceData,8(1):165–176.doi:https://essd.copernicus.org/articles/8/165/2016/SeaiceDatasetbackground:TheseaicesectionusesdatafromtheEUMETSATOSISAFSeaIceIndexv2.1(OSI-SAF,basedonLavergneetal.,2019-https://osisaf-hl.met.no/v2p1-sea-ice-index)andtheNSIDCv3SeaIceIndex(Fettereretal.,2017).Seaiceconcentrationsareestimatedfrommicrowaveradiancesmeasuredfromsatellites.Extentiscalculatedastheareaofoceangridcellswherethesea-iceconcentrationexceeds15%.Althoughtherearerelativelylargedifferencesintheabsoluteextentbetweendatasets,theyagreewellontheyear-to-yearchangesandthetrends.Inthisreport,NSIDCvaluesarereportedforabsoluteextents(e.g.“18.95millionkm2”)forconsistencywithearlierreports,whilerankingsarereportedforbothdatasets.GreenlandicesheetGreenlandicesheetmassbalancedataarereportedfromthreesources.Modelledchangesinsurfacemassbalanceandtotalmassbalancefrom1985to2021arebasedontheaverageofthreeregionalclimateandmassbalancemodels,describedinMankoffetal.(2021).Analternativeestimateof2021massbalanceisgivenintheNOAAArcticReportCard(Moonetal.,2021),basedonsatelliteobservationsofmeltareaandsurfacemassbalancemodelsdrivenbythePROMICEsurfaceweatherstationnetwork.SatellitegravitydataoftotalicesheetmassbalancefromtheGRACEandGRACE-FOmissionsareavailablefromWieseetal.(2019,updatedto2021).ThesedataareavailableforboththeGreenlandandAntarcticicesheets.Mankoff,K.D.;Fettweis,X.;Langen,P.L.etal.Greenlandicesheetmassbalancefrom1840throughnextweek.EarthSystemScienceData2021,13(10),5001–5025.https://doi.org/10.5194/essd-13-5001-2021.Moon,T.A.;Tedesco,M.;Box,J.E.etal.GreenlandIceSheet.InArcticReportCard2021;Moon,T.A.;Druckenmiller,M.L.;Thoman,R.L.,Eds.;NationalOceanicandAtmosphericAdministration,2021.https://doi.org/10.25923/546g-ms61.Wiese,D.N.;Yuan,D.-N;Boening,C.etal.2019.JPLGRACEandGRACE-FOMasconOcean,Ice,andHydrologyEquivalentWaterHeightRL06MCRIFilteredVersion2.0,Ver.2.0,PO.DAAC,CA,USA.http://dx.doi.org/10.5067/TEMSC-3MJ62.PrecipitationTheseGPCCdatasetswereusedintheanalysis:•FirstGuessMonthly,DOI:10.5676/DWD_GPCC/FG_M_10026•MonitoringProduct(Version2022),DOI:10.5676/DWD_GPCC/MP_M_V2022_100•FullDataMonthly(Version2022),DOI:10.5676/DWD_GPCC/FD_M_V2022_100•PrecipitationClimatology(Version2022),DOI:10.5676/DWD_GPCC/CLIM_M_V2022_100