IAEA:2021年核能的国际现状与前景VIP专享VIP免费

Report by the Director General
21-01962E
Board of Governors
General Conference
GOV/INF/2021/32-GC(65)/INF/6*
General Distribution
Original: English
For official use only
* The document has been re-posted on GovAtom and on IAEA.org with the addition of this cover page.
INTERNATIONAL STATUS
AND PROSPECTS FOR
NUCLEAR POWER 2021
Board of Governors
General Conference
GOV/INF/2021/32-GC(65)/INF/6
Date: 16 July 2021
General Distribution
Original: English
For official use only
Item 18 of the Conference's provisional agenda
(GC(65)/1 and Add.1)
International Status and Prospects for Nuclear
Power 2021
Report by the Director General
Summary
General Conference Resolution GC(50)/RES/13 requested the Secretariat to provide, on a
biennial basis, a comprehensive report on the international status and prospects for nuclear power,
beginning in 2008. General Conference resolution GC(60)/RES/12, issued in September 2016,
requested the Secretariat to continue to publish the International Status and Prospects for Nuclear
Power report on a four-year basis, starting in 2017. This report responds to resolution
GC(60)/RES/12.
ReportbytheDirectorGeneralBoardofGovernorsGeneralConferenceGOV/INF/2021/32-GC(65)/INF/6GeneralDistributionOriginal:EnglishForofficialuseonlyThedocumenthasbeenre-postedonGovAtomandonIAEA.orgwiththeadditionofthiscoverpage.INTERNATIONALSTATUSANDPROSPECTSFORNUCLEARPOWER2021BoardofGovernorsGeneralConferenceGOV/INF/2021/32-GC(65)/INF/6Date:16July2021GeneralDistributionOriginal:EnglishForofficialuseonlyItem18oftheConference'sprovisionalagenda(GC(65)/1andAdd.1)InternationalStatusandProspectsforNuclearPower2021ReportbytheDirectorGeneralSummary•GeneralConferenceResolutionGC(50)/RES/13requestedtheSecretariattoprovide,onabiennialbasis,acomprehensivereportontheinternationalstatusandprospectsfornuclearpower,beginningin2008.GeneralConferenceresolutionGC(60)/RES/12,issuedinSeptember2016,requestedtheSecretariattocontinuetopublishtheInternationalStatusandProspectsforNuclearPowerreportonafour-yearbasis,startingin2017.ThisreportrespondstoresolutionGC(60)/RES/12.AtomsforPeaceandDevelopmentGOV/INF/2021/32-GC(65)/INF/6Page1InternationalStatusandProspectsforNuclearPower2021ReportbytheDirectorGeneralA.CleanenergyforClimateandDevelopment:SocioeconomicContextA.1.TheEvolvingContext1.TherehavebeensignificantnationalandinternationaldevelopmentsunderscoringtheroleofnuclearpowerinmitigatingclimatechangeandachievingsustainabledevelopmentsinceInternationalStatusandProspectsforNuclearPower2017(documentGOV/INF/2017/12-GC(61)/INF/8)wasissued.Thissectionhighlightssomeofthemostimportantdevelopmentsaffectingthestatusandprospectsfornuclearpower.A.1.2.InternationalDevelopments2.Thereisgrowingglobalrecognitionthataccesstoaffordable,reliable,sustainableandmodernenergyforall(UnitedNationsSustainableDevelopmentGoal(SDG)7)iscriticaltoachievingvirtuallyalloftheother16SDGs.TheSDGs,adoptedbyworldleadersinSeptember2015,calluponallcountriestomobilizeeffortsupto2030toendallformsofpoverty,fightinequalitiesandtackleclimatechange.Theseeffortsgohandinhandwithstrategiesthatbuildeconomicgrowthandaddresssocialneeds,includingeducation,health,socialprotectionandjobopportunities,whiletacklingclimatechangeandenvironmentalprotection.AccordingtotheUnitedNationsDepartmentofEconomicandSocialAffairs(UNDESA),whichactsasthesecretariatfortheSDGs,SDG7iscrucialtoachievingalmostalloftheotherSDGs,“frompovertyeradicationviaadvancementsinhealth,education,watersupplyandindustrializationtomitigatingclimatechange”.ThatsamepointhasbeenrepeatedlyaffirmedbytheInternationalEnergyAgency(IEA)oftheOrganisationforEconomicCo-operationandDevelopment(OECD),whichinMarch2018statedthat“energyisattheheartofmanyoftheseSustainableDevelopmentGoals–fromexpandingaccesstoelectricity,toimprovingcleancookingfuels,fromreducingwastefulenergysubsidiestocurbingdeadlyairpollutionthatprematurelykillsmillionsaroundtheworld”.3.Estimationsofhowmuchcarbondioxide(CO2)hasbeeneffectivelyavoidedbytheuseofnuclearpowerinthelast50yearsvarybetween70gigatonnes(Gt)and78Gt,anddependonwhattechnologieswouldhavebeendeployedifnuclearpowerplants(NPPs)hadnotbeenbuilt.Calculatingavoidedemissionsfromthecurrentinstalledfleetiscomplex,sincethealternativetonuclearpowercouldrangefromgastoacombinationofgasandrenewables.Between1970and2010,theclearalternativestonuclearpowerwereoil,coalandlater,gas.Countriesthatdeployednuclearonalargescale,suchasGOV/INF/2021/32-GC(65)/INF/6Page2FranceandSweden,managedtodecarbonizetheirelectricitymixintwotothreedecades.In2019,nuclearpowerproduced10.4%oftheworld’selectricity,with2657terawatt-hours(TWh)oflowcarbonelectricityproduced.Hadthislevelofgenerationbeenproducedbygas,about1.5GtCO2wouldhavebeenemitted.Lifecycleanalysesofelectricitygenerationtechnologiesshowthatnuclearpowerisamongtheleastcarbonintensiveofalltechnologies,onaparwithhydroandwindpower.Nuclearpowerremainsakeyoptionfordecarbonizingtheelectricitysectorinthedecadestocome,togetherwithvariablerenewablessuchaswindandsolarphotovoltaics(PV).4.Internationalacknowledgementofthesignificantroleplayedbynuclearpowerinclimatechangemitigationandsustainabledevelopmenthasbeensteadilyadvancing.ManynationalandinternationalorganizationshaveanalysedtheneedstodecarbonizetheenergysystemconsistentwithachievingthegoalsoftheParisAgreement;andmanyoftheirscenarioscallforasubstantialincreaseinglobalnuclearpowercapacity,includingallfourillustrativescenariosdescribedbytheIntergovernmentalPanelonClimateChange(IPCC)inits2018SpecialReportonGlobalWarmingof1.5°C.Indeed,toachievethe1.5°Cobjective,thefourIPCCillustrativescenarioscallforanincreaseinnuclearpowercapacityofbetween60%and500%by2050.Atthesametime,nuclearpowerisincreasinglyseenasanimportantoptionforthedevelopingworldtomeetrisingenergydemandandimprovelivingstandardswithoutincreasinggreenhousegas(GHG)emissions.AccordingtotheIEA’sSustainableDevelopmentScenariofromitsWorldEnergyOutlook2019,nuclearpowerneedstoexpandsignificantlybeyonditshistoricalmarketsembarkingcountries,includingdevelopingones,andalsobeyondthepowersectoriftheworldistohaveareasonablechanceofmeetingclimatechangegoalsaswellastheotherenergyrelatedSDGs.5.InOctober2019,theAgencyorganizeditsfirstInternationalConferenceonClimateChangeandtheRoleofNuclearPower.Theevent,whichdrewmorethan500participantsfrom79MemberStatesand17internationalorganizations,forthefirsttimebroughttogethertheheadsofthemajorinternationalorganizationsdealingwithenergyandclimatechange(UnitedNationsFrameworkConventiononClimateChange,IPCC,IEAandUNDESA)fordiscussionsontheroleofnuclearpowerinaddressingglobalwarming.Nuclearpowerhasamajorroletoplayindecarbonizingtheenergysectortoachieveglobalclimategoalsbutwillneedenablingpoliciestoachieveitsfullpotential,saidConferencePresidentMikhailChudakov,IAEADeputyDirectorGeneralandHeadoftheDepartmentofNuclearEnergy,inhisconcludingsummary.GOV/INF/2021/32-GC(65)/INF/6Page36.InitsMay2019reportNuclearPowerinaCleanEnergySystem,theIEAwarnedthatafailuretomaketimelydecisionsonnuclearpowerwouldraisethecostsofthecleanenergytransitionwhilealsomakingitmuchmoredifficulttoachievethenet-zerogoals.TheIEAreiteratedthatsamepointinitslandmarkreportNetZeroby2050:ARoadmapfortheGlobalEnergySector,issuedinMay2021,whichdescribesapotentialpathwayfortheworldtoeliminategreenhousegasemissionsbymid-century.Thatreportseesnucleargeneratingcapacitynearlydoublingby2050,withannualgridconnectionsratereachingsome30gigawattsinsomeyears,evenasnuclearpower’soverallshareofglobalelectricityproductiondeclinesslightlyto8%in2050.Therestoftheelectricitymixin2050is,accordingtothisNetZeroscenario,dominatedbyrenewables,inparticularsolarandwind.ButtheIEAalsopointedoutinarecentreportTheroleofcriticalmineralsincleanenergytransitions,thatwind,solarandbatterytechnologiesareverydependentoncriticalminerals,theavailabilityofwhichcouldslowdownthedeploymentofthesetechnologies.Nuclearpower,ontheotherhand,isalongwithhydropower,oneofthelowcarbontechnologieswiththelowestmineralintensity.7.TheMassachusettsInstituteofTechnology(MIT)EnergyInitiative,inareportpublishedinSeptember2018,calledforamajorincreaseinglobalnucleargeneratingcapacitytomeetnet-zerogoals.Toachievethisincrease,thereportoutlinedpoliciesthatwouldestablishamorelevelplayingfieldfornuclearpowertocompetewithotherlowcarbonenergytechnologies,aswellasstepsneededtolowerthecostofnuclearnewbuildprojects.LiketheIEAreport,theMITstudyconcludedthatwithoutasignificantcontributionfromdispatchablenuclearpower,thecleanenergytransitionwouldbemuchmoreexpensiveandmoredifficulttoachieve.8.AccordingtotheDecember2020reportProjectedCostsofGeneratingElectricity,jointlyproducedbytheIEAandtheOECDNuclearEnergyAgency,extendingtheoperationallifetimeofexistingNPPsisthemostcost-effectiveinvestmentsinlowcarbonelectricitygeneration.Thereportnotedthatwhilehydropowercanprovidesimilarcontributionsatcomparablecosts,itremainshighlydependentonthenaturalresourcesofindividualcountries.9.AccordingtoaMarch2021reportbytheUnitedNationsEconomicCommissionforEurope,nuclearenergyisan“indispensabletool”forachievingtheSDGs,withavitalroletoplayinprovidingaffordableenergy,mitigatingclimatechange,eliminatingpoverty,achievingzerohunger,generatingeconomicgrowth,andprovidingbothindustrialinnovationandcleanwater.Reliablenuclearenergycanbeacriticalpartofdecarbonizedenergysystemsforcountriesseekingtomeetclimatechangeandsustainabledevelopmentgoals,accordingtothereport,entitledApplicationoftheUnitedNationsFrameworkClassificationforResourcesandtheUnitedNationsResourceManagementSystem:UseofNuclearFuelResourcesforSustainableDevelopment–EntryPathways.10.TheJointResearchCentre(JRC),thescienceandknowledgeserviceoftheEuropeanCommission,saidinaMarch2021technicalassessmentthat“thereisnoscience-basedevidencethatnuclearenergydoesmoreharmtohumanhealthortotheenvironmentthanother(lowcarbon)electricityproductiontechnologiesalreadyincludedintheEUTaxonomyasactivitiessupportingclimatechangemitigation”.Theassessmentwascarriedoutwiththerespecttothe‘donosignificantharm’criteriaoftheEuropeanUnion’s‘TaxonomyRegulation’,whichestablishestheframeworkforfacilitatingsustainableinvestmentsandwilleventuallyprovidethefoundationforscalinguplowcarbonenergyinvestmentsacrosstheEuropeanUnion.TheJRCreportcited2016datashowingthatnuclearpowerperformsverywellinevaluationsofitshealthimpactscomparedwithotherenergysources,usingthedisability-adjustedlifeyearmeasureofoveralldiseaseburdenexpressedasthecumulativenumberofyearslostduetoillhealth,disabilityorearlydeath.11.Investmentsincleanenergysourcessuchassolar,windandnuclearhaveanimpactongrossdomesticproduct(GDP)thatistwotoseventimesstrongerthanspendingonfossilsourcessuchasgas,coalandoil,accordingtoaworkingpaperpublishedbytheInternationalMonetaryFund(IMF)inMarchGOV/INF/2021/32-GC(65)/INF/6Page42021,entitledBuildingBackBetter:HowBigAreGreenSpendingMultipliers?.Nuclearpowerproducedthebiggesteconomicmultipliereffectofanycleanenergysource,thepapersaid,addingthatnuclearpowerproducesabout25%moreemploymentperunitofelectricitythanwindpowerandthatworkersinthenuclearsectorearnone-thirdmorethanthoseintherenewableenergyindustry.B.NuclearPowerToday12.Attheendof2020,theworld’stotalnuclearpowercapacitywas392.6GW(e)1,generatedby442operationalnuclearpowerreactorsin32countries.Countriesdemonstratedadaptabilitytothecoronavirusdisease(COVID-19)pandemicbytakingeffectivemeasures,reflectingstrongorganizationalculture.Attheoutsetofthepandemicinearly2020,theAgencyestablishedtheCOVID-19NuclearPowerPlantOperatingExperienceNetworktoshareinformationonmeasurestakentomitigatethepandemicanditsimpactontheoperationofNPPs.Noneofthe32countrieswithoperatingNPPsreportedthatthepandemichadinducedanoperationaleventimpactingsafeandreliableNPPoperation.13.Nuclearpowersupplied2553.2terawatt-hoursofGHGemission-freeelectricityin2020,accountingforabout10%oftotalglobalelectricitygenerationandnearlyathirdoftheworld’slowcarbonelectricityproduction.14.Some5.5GW(e)ofnewnuclearcapacitywasconnectedtothegrid,fromfivenewpressurizedwaterreactors(PWRs):1110megawatts(electrical)(MW(e))atBelarusian‑1inBelarus,1000MW(e)atTianwan-5and1000MW(e)atFuqing‑5inChina,1066MW(e)atLeningrad2-2intheRussianFederationand1345MW(e)atBarakah-1intheUnitedArabEmirates.Thestart-upofBelarusian-1in__________________________________________________________________________________1GW(e),orgigawatt(electrical),equalsonethousandmillionwattsofelectricalpower.AlldataonnuclearpowerreactorsasreportedtotheIAEAPowerReactorInformationSystem(PRIS)asof1June2021.GOV/INF/2021/32-GC(65)/INF/6Page5BelarusandofBarakah-1intheUnitedArabEmiratesmarkedthefirstinstancesofnuclearelectricitygenerationinthesetwocountries.15.Theworld’sfirstadvancedsmallmodularreactor(SMR)andonlyfloatingNPP,AkademikLomonosov,startedcommercialoperationin2020.ItislocatedjustofftheArcticcoastintheRussianFederationandfeaturestwo35(MW(e))KLT-40SSMRunits.16.Globally,some89.5%ofoperationalnuclearpowercapacitycomprisedlightwatermoderatedandcooledreactortypes;6%wereheavywatermoderatedandcooledreactortypes;2%werelightwatercooled,graphitemoderatedreactor(LWGR)types,while2%weregascooledreactortypes.Threereactorswereliquidmetalcooledfastreactors.Theremaining0.5%werethreeliquidmetalcooledfastreactorswithatotalcapacityof1.4GW(e).17.During2020,5.2GW(e)ofnuclearcapacitywasretired,withsixnuclearpowerreactorspermanentlyshutdown:Fessenheim-1(an880MW(e)PWR)andFessenheim-2(an880MW(e)PWR)inFrance,Leningrad-2(a925MW(e)LWGR)intheRussianFederation,andDuaneArnold-1(a601MW(e)boilingwaterreactor(BWR))andIndianPoint-2(a998MW(e)PWR)intheUnitedStatesofAmerica.Ringhals-1(an881MW(e)BWR)inSwedenwasshutdownonthelastdayof2020,aftermorethan46yearsofservice.18.Overall,nuclearpowercapacityinthepastdecadehasshownagradualgrowthtrend,includingsome23.7GW(e)ofnewcapacityaddedbynewreactorsorupgradestoexistingreactors.Nuclearpowergenerationhasdemonstratedcontinuousgrowth,expandingbymorethan6%since2011.19.Outofthe52reactorscurrentlyunderconstruction,9areinembarkingcountries.Atotalof28countrieshaveexpressedinterestinnuclearpowerandareconsidering,planningoractivelyworkingtoincludeitintotheirenergymix.Another24MemberStatesparticipateintheAgency’snuclearinfrastructurerelatedactivitiesorareinvolvedinenergyplanningprojectsthroughthetechnicalcooperationprogramme.TentotwelveembarkingMemberStatesplantooperateNPPsby2030-2035,representingapotentialincreaseofnearly30%inthenumberofoperatingcountries.SeveralembarkingcountrieshavealsoexpressedinterestinSMRstechnology,inparticularEstonia,Ghana,Jordan,Kenya,Poland,SaudiArabiaandSudan,aswellasexpandingcountriessuchasSouthAfrica.BasedonitsMilestonesApproach,theIAEAofferstheIntegratedNuclearInfrastructureReview(INIR)servicetobothembarkingcountriesandthosethatareexpandingtheirnuclearpowerprogramme,tohelpensurethattheinfrastructurerequiredforthesafe,secureandsustainableuseofnuclearpowerisdevelopedandimplementedinaresponsibleandorderlymanner.GOV/INF/2021/32-GC(65)/INF/6Page620.TheIntegratedNuclearInfrastructureReview(INIR)continuestobeasought-afterserviceoftheAgency,supportingMemberStatesinreviewingthestatusoftheirnationalnuclearinfrastructureandidentifyinggapsinasystematicandintegratedway.Todate,32INIRmissionshavebeenconductedto22MemberStates.GOV/INF/2021/32-GC(65)/INF/6Page7C.TheProspectsforNuclearPower21.Scenariomodellingconsistentwiththeobjectivesofthe2015ParisAgreementgenerallyindicatesthatnuclearpoweriskeytothesuccessofthedecarbonizationoftheelectricitysector,byprovidingreliablelowcarbonpowertothegridaroundtheclock.Withtheglobalincreaseinelectricitydemandtosatisfytheneedsoftheworld’spopulationandensuretheiraccesstoelectricityby2050,andtheincreasedlevelofelectrificationoftheeconomy,amajorincreaseinlowcarbongenerationwillbenecessary.Whilethebulkofthisgenerationistobeprovidedbyvariablerenewables,suchaswindandsolarPV,nuclearwillmaintainitsglobalshareofbetween8and10%,andprovidethenecessaryflexibilityanddispatchabilitythatlowcarbonelectricitysystemsrequire.TheAgency’shighcaseprojectionsupto2050seenuclearinstalledcapacityincreasingto715GW(e),relyingonextensivelong-termoperationoftheexistingfleetaswellas500GW(e)fromnewbuildstobeconstructedoverthreedecades.Inthelowcaseestimate,globalnuclearelectricitygeneratingcapacitywilldecreaseby7%to363GW(e)by2050,representinga6%shareofglobalelectricitygenerationversusaround10%in2019.However,eventhelowcaseestimateanticipatesasignificantconstructionofnewNPPs,assumingthataboutonethirdofexistingnuclearpowerreactorswillberetiredby2030,whilenewreactorswilladdalmost80GW(e)ofcapacity.Between2030and2050itisexpectedthatcapacityadditionsofnewreactorswillalmostmatchretirements.22.TorecoverfromtheimpactoftheCOVID-19pandemic,governmentsaroundtheworldareconsideringeconomicrecoverypackages.Thesemeasuresareauniqueopportunitytoalignpublicinvestmentswiththeneedsofthecleanenergytransition.Hence,attentionisbeingpaidtotheeffectsofinvestmentsingreentechnologies.InMarch2021,theIMFpublishedaworkingpapershowingthatinvestmentsingreentechnologieshaveagreaterimpactonnationalGDPthaninvestmentsinfossil-relatedassets.Moreover,investmentsinnuclearprogrammeshaveagreaterimpact(higherGDPmultiplier)thananyothergreentechnologyinvestments.MacroeconomicanalysisbytheAgencyhasalsoshownthatnuclearpowerprojectsleadtothecreationofahighnumberofwell-paidjobsandhaveotherpositiveimpactsontheeconomy.GOV/INF/2021/32-GC(65)/INF/6Page8D.InfluentialFactorsfortheFutureDeploymentofNuclearPowerD.1.FundingandFinancing23.ThecapitalcostsassociatedwithdevelopinganewNPParesubstantialandmayrepresentaboutthree-quartersofthelevelizedcostofnuclearelectricity.Theseinterest-relatedliabilitiesaredischargedthroughoutaplant’slifetime,offsetbytheincomegeneratedfromproducedelectricity.However,highlycapitalintensiveprojectsaresensitivetointerestratechangesandconstructiondurations,aswellastothenatureoftheseuncertainties.Avarietyofpotentialfinancingmodelshavebeendevelopedtoaddresssomeoftheseuncertainties,particularlythosemarketriskstowhichprojectdevelopers—andprovidersoffinance–maybeexposedduringtheoperatingphaseofaplant’slifecycle.Mitigationofsuchrisksmaybeachievedthrougharrangements–potentiallybackedbythegovernmentofthecountryhostingtheplant–tobuysomeorallofthepowerproducedbyaplantataguaranteedprice.SucharrangementshavebeencentraltodevelopingprojectssuchasOlkiluotoandHanhikiviNPPsinFinland,AkkuyuNPPinTurkey,andHinkleyPointCintheUnitedKingdom.24.MitigationofrisksatearlierstagesoftheNPPlifecycle–thoserelatedtoconstructiondelaysandassociatedcostoverruns–maybeaccomplishedinanumberofways,forexamplebythehostgovernmentprovidingdirectsovereignguaranteestolenders,orbynuclearsteamsupplysystemvendorsagreeingtotakeanequitystakeintheproject.ThelatterhappenedintheBarakahNPPprojectintheUnitedArabEmirates,wheretheKoreaElectricPowerCorporationtookan18%equitystakeintheNawahEnergyandBarakahOneCompany;intheHanhikiviNPPprojectinFinland,wheretheRussianFederation’sStateAtomicEnergyCorporation“Rosatom”acquireda34%share;andintheHinkleyGOV/INF/2021/32-GC(65)/INF/6Page9PointCprojectintheUnitedKingdomwhereFrenchÉlectricitédeFranceS.A.andChinaGeneralNuclearPowerGrouphavetwo-thirdandone-thirdequity,respectively.ForrecentnewbuildprojectsinembarkingandexpandingcountriessuchasBangladesh,Belarus,Egypt,Hungary,IranandPakistanthevendorcountryandthehostgovernmentchosetoenterintointer-governmentalagreementswithgovernmentalloans.25.SMRsmayhaveadvantagesoverlargereactors,suchasshorterconstructiontimes,lowerupfrontcapitalcosts,applicabilitytosmallergridsandmodularexpansionpossibilitiestograduallymeetthedemand.SuchadvantagescouldleadtorevisitingthecurrentfinancialmodelsusedforlargeNPPs.ThesuccessfuldemonstrationofSMRsinthenextdecadeorsocouldencouragemoreexpandingandembarkingcountriestoconsiderthem.PrivateinvestorsareshowinggrowinginterestinSMRtechnologydevelopment,demonstrationanddeployment.26.Anotherimportantliabilityconcernsthecostsarisingattheendoftheoperatinglifetimeofafacility,suchasthoserelatedtofacilitydecommissioningandthelong-termmanagementofhighlevelradioactivewaste.Asinthecaseof‘up-front’costs,provisionsmustalsobemadefromoperatingincometoaddressthese‘backend’costs.Thelattermayrepresentupto10%ofthelevelizedcostofnuclearelectricity.Legislationgoverningtheuseofnuclearenergygenerallylaysoutrequirementsforsettingasidefundstocoverback-endcostsduringtherevenueearningphaseofaplant’soperatinglife.Manydifferentapproachesaretaken,fromthoserequiringownerstomakeappropriateprovisionsinthecompany’sbooks,toarequirementthattherelevantfundsbetransferredtoanindependentorganizationthatisresponsiblefortheirmanagementandtheireventualdisbursementtocoverthebackendliabilitiesD.2.ElectricityMarketsandPolicies27.Keydevelopmentsintheglobalpowermarketssince2017includethecontinuousdeploymentoflargeamountsofrenewableenergywithdecreasingcosts(forwindandsolarPV),theshiftingofelectricitydemandfromOECDtonon-OECDcountriesowingtoincreasedelectrificationofvarioussectors,thesignificantincreaseincarbonpricingasaresultofpolicies,andchangesinemissionstradingschemes.Togetherwiththedevelopmentof‘taxonomies’or,moregenerally,environmentalsocialandgovernance(ESG)criteriaforsustainableinvestments,andincreasedcommitmentfrommanyMemberStatestomeetnetzeroemissionsbythemiddleofthecentury,coalassetshavebecomealiability,andfinancialinstitutionsaremovingawayfrominvestmentsincoal.Nuclearpowergenerationhascontinuedtogrow,reachingin2019itssecondhighestlevelever.In2020,COVID-19-relatedlockdownsshookpowermarkets;overseveralmonthsdemandfellsignificantlyandfossilfuelgenerationfellevenfurtherinfavouroflow-marginalcosttechnologiessuchasrenewablesandnuclear.Emissionshavesincereboundedwiththeeconomicrecovery.Inadditiontofocusingonreducingcarbonemissions,policymakershavetoaddresstheneedforsecurityofsupply,airqualityandresilience.28.TheParisAgreementshouldhaveapositiveinfluenceonnuclearpowerdevelopmentifnuclearpower’spotentialasalowcarbonenergysourcebecomesmorewidelyrecognized.TheIPCCSpecialReportonGlobalWarmingof1.5ºC,releasedin2018,andtheIEA’srecentlylaunchedNetZeroBy2050:ARoadmapfortheGlobalEnergySectorshowthatmosttrajectoriestonetzeroincludenuclearpower,withadoublingofnuclearelectricitygenerationinthenextthreedecades.Asyet,therecentlyupdatednationallydeterminedcontributionsundertheParisAgreementdonotseemtoindicateashiftinthecallfornuclearpowertocontributetonationalclimatemitigationstrategies.However,insomecountries,theclimatechangeissueisanincentivetosupportcontinuedoperationofNPPsorpartoftherationaleforhavinganewbuildprogramme.Oneclearpotentialofnuclearpowerliesinitsabilitytohelpdecarbonize‘hard-to-abate’sectors–whichcannotbeelectrifiedeasily.Lowcarbonheatorhydrogenproducedbycurrentfleetandadvancedreactorscouldbecomekeytothesuccessofcountries’netzeroobjectives,providedthatthetechnologybecomescommerciallyviablewithinthenextdecadeorso.Inthemeantime,increasingtheroleofnuclearinproducinglowcarbonelectricityandtosomeGOV/INF/2021/32-GC(65)/INF/6Page10extendheatthroughthelong-termoperationoftheexistingfleetandnewnuclearplantsremainscriticallyimportant.29.TheAgency’sprojectionsto2050suggestthatachievingtheParisAgreementobjectiveswillrequireatleastadoublingofcurrentnuclearpowercapacitylevelsby2050,inlinewithIEAprojections.Energypoliciesandelectricitymarketincentivesthatpromotealltypesoflowcarbonsolutions,includingnuclearpower,willplayafundamentalroleinincentivisinginvestmentinnuclearpowerandwillreducerisksandthecostoffinancing.Thisisnecessarytoensurethetimelydeploymentofnuclearpowerforclimatechangemitigation.Inparallel,itisnecessarytorecognizetheadvantagesofsecurityofsupply,reliabilityandpredictabilitythatnuclearpoweroffers,aswellasitscontributiontotheclimateresilienceofenergyinfrastructures.ThisisallthemoreurgentinanelectricityenvironmentthatreliesonincreasingamountsofvariablerenewabletechnologiessuchaswindandsolarPV.Recentpolicyexamplesservetoemphasizetheroleofelectricitymarketsinnuclearpowerdevelopment:intheUnitedKingdom,theContractforDifferenceortheRegulatedAssetBasemechanismsconsideredfornewnuclearprojectstosecurereturnsoninvestment;orthedifferenttypesofsupportenactedinseveralstatesintheUnitedStatesofAmerica(NewYork,Illinois,Connecticut,NewJerseyandOhio)tovaluelowcarbonnuclearelectricitygenerationandsupportexistingNPPs.D.3.Resilience30.InFebruary2021,theNorthAmericanwinterstormwithblackoutscausedbyacombinationoffactors,showedtheimportanceofhavingresilientenergysystems.Itisprojectedthatincreasedfrequencyofextremeweathereventswithgrowingintensitieswilloccurasaconsequenceofglobalwarming.Theseeventscouldrangefromwinterstormstointensefloodsorheatwavesanddroughts,whichcanaffectgenerationassetsaswellasgridinfrastructures.Whilethenuclearsectorhasreported2anincreasingnumberofweather-relatedoutagesoverthepastdecades,suchoutageshaveledtoarelativelylimitedlossofgenerationowingtothefactthatNPPsaredesignedtooperatesafelyandefficientlyinextremeweatherconditions.31.Specificadaptationmeasureshavebeenputinplaceinseveralplantsthatarepotentiallymostexposedtofloodingorlossofcoolingefficiencyasaresultofheatwavesanddroughts.However,whileinvestmentstoensurethehighestlevelsofsafetyaremadeconsistently,adaptationmeasuresthatareaimedonlyatimprovingtheperformanceofaplantinclimate-relatedeventsmayormaynotbeimplementeddependingontheexpectedreturnoninvestment.Thisisaneconomicdecisionthatutilitieshavetomakebyestimatingthecostofadaptationandtheexpectedreturnbasedontheremaininglifetimeofaplantaswellasprofitsfromtheenhancedperformance/generationofaplant.Thepriceatwhichpowercanbesoldonelectricitymarketsplaysakeyrole–andlowwholesaleelectricitypricesthathavebeenwitnessedinthepastdecadeinEuropeanandNorthAmericanmarketshavenotbeeninducivetosuchadaptationinvestments.Fornewbuilds,sitingandsizingofequipmentfurthertakeintoaccountthepotentialrisksposedbyclimateeventsthatcouldhappenduringthecentury.32.DuringtheCOVID-19-relatedlockdowns,MemberStateactionsfocusedonensuringthesafetyandwell-beingofstaffthroughpromptactiontominimizetheriskofthepandemic’sspread,whilemaintainingbusinesscontinuityandadequatelevelsofsafety,securityandsustainabilityofNPPs.NoMemberStatereportedtheenforcedshutdownofanynuclearpowerreactorsresultingfromtheeffectsofCOVID-19ontheirworkforceoressentialservicessuchassupplychains.Regulatorybodieshavegenerallyappliedagradedapproachduringthepandemicandadjustedthescopeofregulatoryorotherinspectionsbasedontheirsafetysignificance.TheAgencyreceivedreportsofoutageimpactsatNPPsin26ofthe32MemberStateswithoperatingNPPs.Insomecases,outagescopeswerereducedby__________________________________________________________________________________2IAEAPowerReactorInformationSystem(PRIS)GOV/INF/2021/32-GC(65)/INF/6Page11eliminatingnon-criticalworktominimizeexternalstaffbroughton-site.Inothercases,outageswereextendedtoallowworktoproceedataslowerpacethataccommodatedphysicaldistancingconstraints.Inyetothercases,entireoutagesweredeferredtothefollowingyear.Thefullimpactwillplayoutoveratleastthenextyearasfutureoutageplansarerevisedtocompletedeferredwork.D.4.AdvancedReactorsandNon-electricApplications33.TangibleadvanceshavebeenmadeinthetechnologydevelopmentofSMRsofallmajortechnologylines,powerranges,utilizationcategoriesanddeploymenttypes.ThekeydriversforSMRtechnologyincludereducedcapitalinvestment,shorterconstructiontimes,sitingflexibilityandapplicabilitytoawiderangeofuses,includingthereplacementofretiredfossilpowerplantsandforitsabilitytoworkinanintegratedenergysystemwithrenewableenergiesandnon-electricapplicationssuchaslowcarbonheatandhydrogenproduction.34.ThefirstSMRwasdeployedinamarine-basedfloatingpowerunitintheRussianFederationandhasbeenincommercialoperationsinceMay2020withapowercapacityof70MW(e).Withregardtoland-basedSMRs,thefirstmodularhightemperaturegascooledreactor(HTGR)isnowcompletingitshotfunctionaltests,withtheaimorconnectingittotheelectricitygridtowardstheendof2021inChina.AnotherexampleistheintegralPWRtypeSMRintheadvancedstage(75%)ofconstructioninArgentina,withstart-upandcriticalityaimedfor2024andanexpectedcapacityof30MW(e).35.TechnologicalcompetitivenessofSMRsisexpectedtobeachievedthroughahighdegreeofmodularizationtoreducethecostsandscheduleofconstruction,aswellasfeaturingthe‘economyofserialproduction’insteadofthe‘economyofscale’inlargereactors.Therearecurrently72SMRdesignsofdiversetechnologyreadiness3,ofwhichatleast25haveplanneddemonstrationdatesby2030.Iftheglobaldeploymentenvironment,includingfuelcycle,isfullyenabled,therecouldbeabout1.6additionalGW(e)contributedfromSMRs.However,SMRtechnologystillneedstoovercomedeploymentissuesandreachcommercialcompetitivenessforwhichseveralconditionshavetobemet:demonstrationofsafetyandoperationalperformanceofthefirst-of-a-kind(FOAK)reactorsofnoveldesignsandtechnologies;continuityoforders,costcompetitivenessagainstalternatives,robustsupplychain,fuelcycleavailableatscale,andviablefinancingschemes;andregulatoryframeworks(licensingpathways)mustbeestablishedthroughharmonization.Theappropriatenuclearinfrastructureshouldbeinplaceforresponsiblegovernanceofthisanticipatedbroaderserialdeploymentinnewmarkets.36.Microreactorsareanotheremergingtechnology,withapowerrangeofbetween1MW(e)and20MW(e),whichcouldsupplyindustrialremoteoroff-gridregionswithelectricity,providepower__________________________________________________________________________________3INTERNATIONALATOMICENERGYAGENCY,AdvancesinSmallModularReactorTechnologyDevelopments,ASupplementto:IAEAAdvancedReactorsInformationSystem(ARIS),IAEA,Vienna(2020).GOV/INF/2021/32-GC(65)/INF/6Page12resilience,serveasanalternativetodieselandbedeployedinmarketswhereeven‘normal’SMRswouldnotbesuitable.37.Therearefivefastreactorsalreadyinoperation:twooperatingreactors(BN-600andBN-800)andatestreactor(BOR-60)inRussia,India’sFastBreederTestReactorandtheChinaExperimentalFastReactor.IntheRussianFederation,constructionbeganinJune2021ontheBREST-OD-300fastreactor,whichwillbethefirstreactorforciviliannuclearenergytobecooledwithlead.Becauseleaddoesnotreactwithairandwater,thereactordesigncanbestreamlined,makingitmoreeconomicalcomparedwithotherfastreactors.The300MWreactorispartoftheProryvproject,aimedatdemonstratingthestableoperation,atonesite,oftheinstallationsneededforafullyclosednuclearfuelcycle.Ifsuccessful,itwillconstituteanimportantstepinthefurtherdevelopmentofnuclearenergy,providinggreatersustainabilitythroughfuelrecyclingandareducedwastefootprint.Othercountriesarealsomakingprogressinthisfield.China,forexample,isbuildingtwolargedemonstrationfastreactorunitsandplanstoeventuallydeploycommercialfastreactors.IndiaiscompletingcommissioningofitssodiumcooledPrototypeFastBreederReactor,thefirstofseveralindustrialfastreactorsthecountryisplanning.TerraPowerhasannouncedbuildingofitsfirstnextgenerationnuclearreactor,Natrium,onthesiteofoneoftheWyoming’sretiringcoalplants.JapanisconductingfeasibilitystudiesinitsNuclearEnergyxInnovationPromotion(NEXIP)Programme,asthefirstphaseofitsFastReactorStrategicRoadMapforFastReactorDevelopment.38.Innovationsinwatercooledreactor(WCR)technology,post-Fukushimaaccident,continueintheareasofsafety,constructiontechnologyandeconomics.Safetysystemsdesignedintotoday’sadvancedWCRshavepassivefeaturesthatdonotrelyonelectricpowerandincludelargerwaterinventories,allowingforcopingtimesofdaysinsteadofhoursintheeventofunplannedconditions,suchasextendedstationblackouts.AdditionaladvantagesofadvancedWCRsarethelowerwasteyields,greaterfuelutilization,greaterreliability,resistancetoproliferationandtheabilitytobeintegratedintoelectricandnon-electricapplications.Inimprovingthermalefficiencyandeconomics,asalogicalextensionofadvancedPWRandBWRdesigns,thesupercriticalWCRconceptsunderdevelopmentinanumberofMemberStates,highlightthisdesign’sfavourablefeatureswithregardtoeconomics,safetyandtechnology.39.Theneedforthedecarbonizationoftheheatandpowersectorhasledtoanincreasedinterestintheuseofnuclearenergynotonlyforelectricitygenerationbutalsoforotherenergyintensivenon-electricapplicationssuchasseawaterdesalination,districtheating,industrialprocessheatandfuelsynthesis(includinghydrogenproduction).Thereisagreatpotentialtocapitalizeonnuclearheatfromconventionalreactors,where60-70%ofitisrejectedintotheenvironmentaswasteheatandlost.Suchwasteheatcanbereusedincogenerationmode,i.e.thesimultaneousproductionofelectricpowerandheatoraheat-derivativeproduct.Forexample,attheendof2020China’sHaiyangNPPinShandongprovincestartedprovidingdistrictheatingtothesurroundingarea,whichisexpectedtoavoidtheuseof23200tonnesofcoalannually,cuttingCO2emissionsby60000tonnes.GOV/INF/2021/32-GC(65)/INF/6Page1340.Interestinhydrogenproductionfromnuclearenergyisgaininginterestinmanycountries,includingChina,France,Japan,Poland,theRussianFederation,theUnitedKingdom,andtheUnitedStatesofAmerica.Theactualimplementationofnuclearhydrogenproductionwilldependonthemarketconditionsexpressedinprices,competitors,totaldemandandgeographicaldistributionofconsumption.Inthecontextofclimatepolicymeasures,alargewindowofopportunityfornuclearhydrogenwillbecreatedifaneffectivediscouraging(throughtaxes)ofsteammethanereformingisbroadlyintroduced.41.Nuclearandrenewablesarethetwoprincipaloptionsforlowcarbonpowergeneration.Nuclear-renewablehybridenergysystems(HESs)leveragethebenefitsofeachtechnologyandtheirmodeofoperationinprovidingreliable,sustainable,andaffordableelectricitytothegridandlowcarbonenergytoothersectors.Inthisintegrationofnuclearandrenewableresourcesheat,electricityandotherenergyproductsorservicescouldbeproducedand,asappropriate,stored.Inadditiontoelectricity,nuclear-renewableHESscandeliverenergytovariousapplications,suchashydrogenandhydrocarbonproduction,districtheatingorcooling,theextractionoftertiaryoilresources,seawaterorbrackishwaterdesalination,andprocessheatapplications,includingcogeneration,coal-to-liquidsproductionandrefining,andsynthesisofchemicalfeedstock.However,toachieveafullyoperationaltightlycouplednuclear-renewableHES,severalexistinggapsneedtobeaddressedandclosed,includingachievingarequiredlevelofsafetyofthenuclear-renewableHESthatisatleastcomparabletothatofthecurrentstand-aloneNPPs;humancapitaldevelopmenttooperateandmaintainsuchsystems;theinteractionofthenuclear-renewableHESwiththeelectricitymarketandgridregulation;andthetechnology-readinesslevelofanuclear-renewableHES,whichisstronglydependentonthetechnology-readinesslevelofeachsubsystemandthecouplingandoperationalschemes.42.Overthepastyears,fusiontechnologyhasseenmajoradvances,resultinginamoresubstantialengagementoftheprivatesectorandnewjobopportunities.ITERisproceedingatasteadypaceandisacriticalsteptowardsthegoalofharnessingfusionenergy.Significantstrideswillbemadeinthenextfiveyears,andcontinuingonto2035,whenitisexpectedthatITERwillachieveitsultimategoal:demonstratingthefeasibilityoffusionenergy.Exceptforplasmaphysics,themajorchallengesforfusionreactorsareintheareasofmaterialsdevelopmentfortheheatsourcestructures(plasmafacingmaterial)anddesignofcoolingsystemsforhighefficiencies.Fusionmaynotbetheenergysourceoftomorrow,butitcouldbeasolutionfortheendofthecentury.Transferring70yearsofexperienceinpeacefulusesoffissionenergytoupcomingfusiontechnologywouldallowforcreatingasynergybetweentwonuclearenergysourcesthatcouldprovidesustainableenergyforfuturegenerations.GOV/INF/2021/32-GC(65)/INF/6Page14D.5.FuelSustainabilityandInnovativeFuelCycles43.By2040,theworldannualuraniumrequirementsareforecasttobeintherangeof56640to100225tonnesofuranium(tU),dependingonthenumberofnewbuildNPPsandlifeextensionsoftheexistingones.Therefore,intheAgency’slowcasescenario,currentglobaluraniumsupplyneedstoremainthesameas2019values.Conversely,intheAgency’shighcasescenario,uraniumannualproductionneedstoincreasebyabout41000tU.Thiswouldrequiresignificantexplorationactivities,innovationsandthedevelopmentofnewuraniummines.44.Since2009,primaryproductionfromoperatinguraniummineshasaveraged87%ofglobaldemand.Thedeficithasbeenmadeupbysecondarysupplieswhich,since2010,haveslowlybeendepleting.Theresourcesatmanymajoruraniumminesareforecasttobedepletedinthemid-2030s.Operationsincareandmaintenance,increasedproductionatexistingfacilitiesandfinaldevelopmentofadvancedprojectsmaynotbesufficienttofillthesupplygap.Consideringthe15-20yearsonaveragetoconstructandcommissionanewminethereisconcernintheindustryaboutsecurityofsupplyinthemidtolongterm.Exceptionalevents,suchastheCOVID-19pandemic,couldinduceadditionalstressonsupply:in2020,forinstance,anumberofmajoruraniumproducerssuspendedoperationsorsignificantlyreducedproduction.Asaresult,primaryuraniumsupplyfromoperatingmineswasreducedwithglobalproductionofabout46500tU.Thisrepresentedabout78%ofglobaldemandforuranium,therebyputtingmorepressureonsecondaryuraniumsuppliestofillthedemandforuraniumasnuclearfuel.45.Continuedimprovementoftechnology,includingadvancedmaterialsandnuclearfuels,remainscentraltothesuccessofthenuclearindustry.Themaindriversintheareaofnuclearfuelengineeringaretoincreasefuels’operationalsafetymargins,toreduceNPPs’operationandmaintenancecostsandtominimizenuclearwastegeneration,bydevelopingnewtypesoffuelsforcurrentandnewgenerationsofNPPs,aswellasbyrecyclingnuclearmaterials.46.Advancedtechnologyfuels(ATFs)arebeingdevelopedasalternativefuelsystemtechnologiestofurtherenhancethesafety,competitiveness,andeconomicsofcommercialNPPsforcurrentandfuturereactordesigns.Madeupofnewmaterials,forbothfuelandcladding,theATFsdevelopedinEurope,theRussianFederationandtheUnitedStatesofAmericasometimesrequirehigheruranium-235(235U)enrichmentstocompensateforthelossofneutronictransparencyoftheircladdingmaterials.Therefore,high-assaylowenricheduranium(HALEU)fuels,enrichedabove5%(butbelow20%),areunderproduction,development,andtesting.Toincreasetheeconomicbenefits,workisalsobeingundertakentoincreasedischargeburnupsandextendcyclesoffueloperationinNPPs,whichalsorequireshigher235Uenrichments.However,newfuelconceptswithhigherburnupswillhaveanimpactonaspectsofthebackendofthefuelcycle,suchasfueltransportationandspentfuelmanagementprocesses(fromstoragetodisposalthroughtoreprocessing).SignificantinvestmentsareneededfortheconstructionandlicensingofFOAKfacilitiestodeployadvancedfuels.GOV/INF/2021/32-GC(65)/INF/6Page1547.AsSMRsareofvarioustypes(e.g.lightwaterreactors(LWRs),HTGRs,fastreactorsandmoltensaltreactors),traditionalandnewtypesoffuelsarebeingdevelopedwith,forexample,differentdesigns,geometriesandenrichments.ForsometypesofSMRs,fueldesignandfabricationarebasedonknowntechnologies,althoughfuelsmayrequireenrichmentsatthetopendofwhatisdefinedaslowenricheduranium(HALEUfuelswith235Uenrichedabove5%,butbelow20%).48.Closingthenuclearfuelcycleisamajordriverforensuringthesustainabilityofnuclearpower.Fissilematerialscanberecoveredfromspentnuclearfueltoproducenewfuel.ReprocessingofuraniumoxidefuelsandrecyclingofuraniumandplutoniumisanindustrialpracticeinLWRstodayeventhoughtherearecurrentlyfewLWRslicensedtouserecycledfuels.Progressisbeingmadeinmulti-recyclingplutoniuminREMIX,CORAILandMIXfuels.Theserecycledfuelswillenablethetransitiontoplutoniummulti-recyclingstrategiesinfastreactors,allowingforamoreeffectiveuseofnaturalresourcesandreducingtheburdenofgeneratedwaste.Significantinvestmentswillbenecessarytosupporttheindustrialimplementationofsuchmulti-recyclingtechnologies.D.6.RadioactiveWasteDisposal49.Thecapacitytoprovidesolutionsforallradioactivewastemanagementstepsincludingtheassociatedwastedisposalsolutionsisacornerstoneandkeyenablerofthecontinuedsustainableuseofnucleartechnologies.Buildingondecadesofexperienceanddevelopmentsaroundtheworld,nationalprogrammesaremakinguseoftriedandproventechnologiestoimplementeffective,safe,secureand–wherenuclearmaterialsareinvolved–proliferationresistantsolutionsthroughallofthestepsofradioactivewastemanagement.Allofthesestepsleadtoandincluderadioactivewastedisposal,forwhichnumerousfacilitieshavebeenimplementedandareinoperationaroundtheworldforverylowlevelwaste,lowlevelwasteandintermediatelevelwaste.50.Averyrobustinternationalpoolofknowledgehasbeenbuiltthroughmultipledeepgeologicaldisposalprogrammesforhighlevelwaste,whichincludesspentfuelifdeclaredaswaste.Asillustratedbysomeoftheleadingdeepgeologicalrepository(DGR)programmesintheworld,thepastdecadehasdemonstratedsignificantprocessinseveralnationalprogrammestowardsthedisposalofhighlevelwaste–amilestoneIAEADirectorGeneralGrossireferredtoasa‘gamechanger’inreferencetothespecificcontextofFinland.Themostadvancednationalprogrammesarenearingtheformalrecommendationforthedisposalsite(CanadaandSwitzerland),preparingconstructionandindustrialoperationapproachesoftheirdeepgeologicaldisposalfacility(FranceandSweden)orpreparingthelicenceapplicationforspentfuelemplacementinafacilityunderconstruction(Finland).Abroadgroupofsuchnationalprogrammesiscurrentlybuildingonacooperativeresearch,developmentanddemonstrationframework–theImplementingGeologicalDisposalofRadioactiveWasteTechnologyPlatform–tofurtherprogresswiththeindustrializationandoptimizationofthedeepgeologicaldisposalprocessforhighlevelwaste.GOV/INF/2021/32-GC(65)/INF/6Page1651.Tofurtherprovidefortimelyandeffectivemanagementoffutureradioactivewastearisings,MemberStatesareimprovingtheestimationoftheirentirenationalwastestreamsfromallnucleartechnologyapplicationsandtoestablishintegratedapproachestonationalradioactivewastemanagementresponsibilities.Theintegratedapproachholdsgreatpromiseforreducingthecostsassociatedwithradioactivewastemanagementresponsibilities–fullyconsistentwithan‘aslowasreasonablyachievable’approachintegratedatallsteps,whileoptimizingtheuseofresourcesandprovidingforgreaterclarityofshort-andlong-termplanning.MemberStatesexperienceshowsthatdevelopingandimplementingwastemanagementsolutionsandtheirassociateddisposalendpointsisfeasible.Inmanyinstances,however,challengesstemmingfrompastnationalpracticesandhistoricallegaciesremain.Incompleteinventoriesandpoorlycharacterizedwastehinderfurthereffectiveprocessingandlimittheoptionsforadequatedisposal.Inadequatepastresourceestimateshavepreventedthenecessarydevelopmentofcapacityandfacilities,whilepastdisposalpracticeshavereinforcedthegeneralperceptionthatradioactivewastemanagement‘cannotbedone’.Thishasledtonegativeperceptionsaboutwastedisposal,makingdecisionmakershesitanttoembracethisresponsibilityandprovideaclearnationalframeworkforthesoundimplementationofsolutions.D.7.Decommissioning52.Whileinpreviousdecadesdeferreddismantlingwasthedominantdecommissioningstrategyadoptedbyfacilityowners,animmediatedismantlingapproachhasbeengainingfavour.Moreover,timeframesforbeginningfinaldismantlingofretiredplantsareincreasinglybeingbroughtforward,withanumberofdeferreddismantlingstrategiesbeingchangedtoimmediatedismantling.Thischangehasbeendrivenbyadesiretoreduceuncertaintiesoverdecommissioningcosts.53.Giventhatdecommissioninginvolvestheconversionofredundantfacilitiesintoapassivelysafestate,theabilitytoproceedwithprojectimplementationisstronglydependentontheavailabilityofadequatefinancialresourcesandanadequatesystemforlong-termmanagementofspentfuelandradioactivewaste.Althoughnofacilityforfinaldisposalofspentfuelisyetinoperation,spentfuelcanbestoredsafelyinstoragepoolsordrystoragefacilities,soseveralpermanentlyshutdownplantshaveerecteddrystoragefacilitiesadjacenttothesiteofthenuclearfacility,thusenablingprogresswithdismantlinganddemolitionoperations.GOV/INF/2021/32-GC(65)/INF/6Page1754.Alargeproportionofdisusedmaterialfromdecommissioninghasinsignificantlevelsofradioactivity,suchthatitcouldinmanycasesbereleasedfromregulatorycontrol(dependingonthenationallegalregime)andreusedforotherpurposes.Suchanapproachworkswellinseveralcountries,butnotall.Thelattercaseincludessituationswherelackofpublicacceptancetoreusematerialoriginatingfromnuclearfacilities,regardlessofitsradioactivitylevel,maypreventsuchmaterialfrombeingreusedorrecycled.Giventheabsenceofsignificantriskassociatedwithsuchactivities,suchsituationsaredeemedsuboptimalfromascientificandtechnicalperspective.D.8.HumanResourceDevelopment:TheNextGeneration55.Acquiringandretainingskilledpersonneltoensureacompetentworkforceforallphasesofthenuclearfacilitylifecycleareamongthetopprioritiesforthenuclearcommunity.However,long-termcareerprospectsinallphasesofthelifecycleofnuclearfacilitiesandorganizationsmakesworkinginthenuclearindustryanattractiveoption.Moreover,careersinthenuclearfieldalsooffermanyopportunitiesforsocietallymeaningfulwork,suchasprovidingcleanenergyandwaterorhelpingcountriesachievesocioeconomicdevelopment.56.Concernsaboutpossibleshortagesofqualifiedpersonnelposedifferentchallengesfordifferentcountries.Aparticularchallengefornuclearnewbuildprojectsistheidentificationanddevelopmentofexpertiseandhumancapital,astherearefewsuchprojectsandthereareoftenmanyyearsbetweenthem(withtheexceptionofChina,Japan,theRepublicofKoreaandtheRussianFederation).Innovativeapproaches,suchasdigitalandblendedlearning,arebeingputintopracticetomakenucleartraining,educationandcapacitybuildingmoreeasilyaccessibletonewgenerationsofthenuclearworkforceinbothoperatingandembarkingcountries.Forcountrieswithexpandingnuclearpowerprogrammes,thechallengeistoscaleuptheirexistingeducationandtraininginordertohavetherequiredqualifiedworkforceassoonasitisneeded.57.Countriesplanningtosupplynuclearenergytechnologycansupportrecipientcountriesinmeetingtheirnationalhumanresourceneedsbytransferringcapabilitiestobuildeducationandtraininginfrastructure.Cooperationbetweennuclearoperatingcountriesandembarkingcountrieshasalreadybeenprovenasbeneficialforbridgingtheexperiencegap.58.Inthechanginggloballandscape,talentattractionandretentioninthenuclearfieldisfurtherchallengedbytechnologicalinnovation,increasedmobilityandevolvingdemographics.Atthesametime,innovativetechnologicalapproaches,suchasdigitalandblendedlearning,areputintopracticetomakenucleartraining,educationandcapacitybuildingmoreeasilyaccessibletonewgenerationsofthenuclearworkforceinbothoperatingandembarkingcountries.D.9.Licensing/RegulatoryFrameworks/Approaches59.Anenablingenvironmentforthesafe,secure,andsustainableintroductionorexpansionofnuclearenergyissupportedbytheroleofgovernmentsinsettinguptheappropriatepolicies,programmes,andlegalframeworkfornuclearpowerprogrammes.Alllowcarbonenergysourcesrequirespecificpoliciestosupporttheirdeployment.Policiesshouldbereflectedinthenationallegal,institutionalandregulatorysystems,withtheaimofensuringastableandpredictableenvironmentandmaximizingtheirimpact.60.Currently,globalnuclearenergydeploymentisgovernedbyawell-establishedinternationallegalregime.Asnuclearenergyplaysanimportantroleinmitigatingtheclimatechange,issuessuchasfurtherregulatoryharmonizationornew-deploymentbusinessmodelscouldbefactoredintoinnovationstoreachacleanerandmoresustainablefuture.61.LicensinganNPPrequiresextensiveassessmentofitsdesignandtechnicalcharacteristicsintermsofsafety,securityandsafeguards.TheAgency’ssafetystandardsandsecurityguidanceareusedbyGOV/INF/2021/32-GC(65)/INF/6Page18countriestosupportthedevelopmentoftheirnationalregulatoryframeworks.Broaderinternationalcooperationisregardedasofprimeimportanceforknowledgetransfer,acquisitionofcompetencesindevelopingandapplyingthenationalregulatoryframework,andfurtheraccelerateddeployment.62.ThetimelydevelopmentofanenablingnuclearinfrastructureandtherelatednuclearlegalandregulatoryframeworkcurrentlyappliedtolargenuclearreactorsinembarkingcountriesisacriticalfactorforacceleratedmarketpreparationtoanticipatethedeploymentofSMRs.63.ExistingregulatoryguidesandprocessesforassessingadvancedtechnologiessuchasSMRsarelaggingandinsomecasesarenotyetavailable.Infuture,robust,technologyneutralregulatoryreviewmethodologieswouldbebeneficialtominimizethetimeneededtoadoptandcommercializenewnuclearreactortechnologies.Inanyevent,regulatorsanddeveloperswillneedtoworktogethertofacilitatetherecognitionofthedesigncertificationanddemonstrationoftheseFOAKreactorssothatthepathtoconstructionandoperationissafeandstreamlined,whilecostsaredriventoreachcompetitivedeployment.Currently,theAgencyishostingtheSMRregulator'sForumandisreviewingthesafetystandardsapplicabilitywithatechnologyneutralapproachwhenSMRsareconsidered.D.10.PublicPerceptions64.Nuclearenergycanhelpaddresspressingglobalissues;however,misperceptionsaboutnuclearpowercontinuetoimpactpublicacceptanceandpolicymaking.Publicperceptionofthebenefitsandrisksassociatedwithnuclearpower,and,inparticular,concernsaboutradiationrisks,wastemanagement,safetyandproliferationremaintheareasthatmostinfluencepublicacceptance.Aspublicopinionplaysamajorroleinhowgovernmentschoosetoproduceenergy,understandingstakeholders’opinions,awarenessandknowledgeregardingnuclearpowerisacrucialcomponentfordecisionmakingandforthesuccessofanuclearpowerprogramme.Buildingstrong,positiveandlong-termrelationshipswithstakeholdersisakeyfactorforexisting,newandfuturenuclearpowerprogrammes.65.Experienceshowsthatinvolvingstakeholdersindecisionmakingprocesses,eventhosestakeholdergroupsthatdonothaveadirectroleindecisionmaking,canenhancepublicconfidenceintheapplicationofnuclearscienceandtechnology.Thisincludesopenandtransparentdialoguethatbuildsmutualtrustamongvariousstakeholders,fromthenuclearindustryandgovernmentinstitutions,tothemedia,localcommunitiesandnon-governmentalorganizations.Suchinteractionhelpstobuildawarenessandunderstandingofallaspectsofthenuclearfuelcycle,fromuraniummining,tospentfuelandradioactivewastemanagement,butalsoopensanopportunityforstakeholderstovoicetheirconcernsandinfluencedecisionsthatareaffectingtheircommunities.66.Openandaccessiblemeansofstakeholderinvolvementinexistingnuclearprogrammeshasevolved,andthesestrategieshavealsobecomethenorminmanyareasofwastemanagementfacilitysitinganddevelopment.Newnuclearpowerprogrammesarefollowingthistrend.Indeed,stakeholderinvolvementisoneofthe19infrastructureissuesoftheAgency’sMilestonesapproach,asoundthree-phaseprocessfordevelopingthenecessaryinfrastructureforanuclearpowerprogramme.67.Engagingstakeholdersearly,substantivelyandfrequentlywillalsosupportthedevelopmentanddeploymentofnewtechnologies,suchasSMRs,ascountriesassesstheirviabilityasanoptionforlowcarbonelectricityandnon-powerapplications.Experienceofbothoperatingandembarkingcountriesaswellaslessonslearnedfromthedeploymentofexistingtechnologiescancontributetothesuccessofnewnucleartechnologies.68.Finally,betterunderstandingbyvariousstakeholdersoftheimportantroleofnuclearpowerinprovidingstabilitytoelectricalgrids,especiallythosewithhighsharesofvariablerenewablesources,couldleadtoincreasedpublicacceptanceofnuclearpower.SuchacombinationofnuclearpowerwithrenewablesinHESscanhelpsignificantlyreduceGHGemissionswhileprovidingreliableelectricityGOV/INF/2021/32-GC(65)/INF/6Page19forsocioeconomicdevelopment,addressingtheconcernsofmanystakeholders.Enhancedstakeholderappreciationthatnuclearenergycanbeusedtodesalinateseawater,producelowcarbonhydrogenandgenerateheatforbuildingsandindustrialapplicationscanfurtherimprovepublicsupportforthislowcarbonsourceofenergy,expandingitspotentialtocontributetoclimateactionandsustainabledevelopment.www.iaea.orgInternationalAtomicEnergyAgencyPOBox100,ViennaInternationalCentre1400Vienna,AustriaTel.:(+43-1)2600-0Fax:(+43-1)2600-7Email:Official.Mail@iaea.org21-01962E

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

碳中和
已认证
内容提供者

碳中和

确认删除?
回到顶部
微信客服
  • 管理员微信
QQ客服
  • QQ客服点击这里给我发消息
客服邮箱