DRDAVIDKEARNSSeniorConsultant,CCSTechnologyDRHARRYLIUConsultant,CCSProjectsDRCHRISCONSOLISeniorConsultant,StorageMARCH2021TECHNOLOGYREADINESSANDCOSTSOFCCSTECHNOLOGYREADINESSANDCOSTSOFCCS2THECIRCULARCARBONECONOMY:KEYSTONETOGLOBALSUSTAINABILITYSERIESassessestheopportunitiesandlimitsassociatedwithtransitiontowardmoreresilient,sustainableenergysystemsthataddressclimatechange,increaseaccesstoenergy,andsparkinnovationforathrivingglobaleconomy.AcknowledgementsThisresearchwasoverseenbyanAdvisoryCommitteeofeminentindividualsfromgovernment,academiaandindustrywithdeepexpertiseacrosstechnology,policy,economicsandfinancerelevanttoclimatechange.TheguidanceoftheAdvisoryCommitteehasbeeninvaluableindevelopingthiswork.ThanksarealsoduetotheCenterforGlobalEnergyPolicyatColumbiaUniversitySIPAfortheirreviewandinputtothisreport.AdvisoryCommitteefortheCircularCarbonEconomy:KeystonetoGlobalSustainabilitySeries•Mr.BradPage,CEO,GlobalCarbonCapture&StorageInstitute(Co-Chair)•Mr.AhmadAl-Khowaiter,CTO,SaudiAramco(Co-Chair)•Dr.StephenBohlen,ActingStateGeologist,CaliforniaDepartmentofConservation•Ms.HeidiHeitkamp,FormerSenatorfromNorthDakota,U.S.Senate,UnitedStatesofAmerica•Mr.RichardKaufmann,Chairman,NewYorkStateEnergyResearchandDevelopmentAuthority(NYSERDA)•Ms.MariaJelescuDreyfus,CEO,ArdinallInvestmentManagement•Dr.ArunMajumdar,Director,PrecourtInstituteforEnergyandStanfordUniversity•Dr.NebojsaNakicenovic,FormerDeputyDirectorGeneral/CEOofInternationalInstituteforAppliedSystemsAnalysis(IIASA)•Mr.AdamSiemenski,President,KingAbdullahPetroleumStudiesandResearchCenter(KAPSARC)•Prof.NobuoTanaka,FormerExecutiveDirector,InternationalEnergyAgency(IEA)andDistinguishedFellow,InstituteofEnergyEconomicsJapanTECHNOLOGYREADINESSANDCOSTSOFCCS3INTRODUCTION41.0EXECUTIVESUMMARY52.0ABOUTCARBONCAPTUREANDSTORAGE(CCS)63.0TECHNOLOGYASADRIVEROFCOSTREDUCTIONANDENABLEROFCCSDEPLOYMENT84.0TECHNOLOGYREADINESSOFCO2CAPTURETECHNOLOGIES95.0TECHNOLOGYREADINESSOFCO2TRANSPORTTECHNOLOGIES206.0TECHNOLOGYREADINESSOFCO2STORAGE227.0THECOSTOFCO2CAPTUREANDSTORAGE248.0COSTOFCO2CAPTURE259.0COSTREDUCTIONOPPORTUNITIESINCARBONCAPTURE3010.0COSTOFTRANSPORTANDSTORAGE3811.0CONCLUSION4312.0APPENDIX4413.0REFERENCES48CONTENTSTECHNOLOGYREADINESSANDCOSTSOFCCS4INTRODUCTIONStoppingglobalwarmingrequiresnetgreenhousegasemissionstofalltozeroandremainatzerothereafter.Putsimply,allemissionsmusteithercease,orbecompletelyoffsetbythepermanentremovalofgreenhousegases(particularlycarbondioxide-CO2)fromtheatmosphere.Thetimetakentoreducenetemissionstozero,andthusthetotalmassofgreenhousegasesintheatmosphere,willdeterminethefinalequilibriumtemperatureoftheEarth.Almostallanalysisconcludesthatreducingemissionsrapidlyenoughtoremainwithina1.5°Celsiuscarbonbudgetispracticallyimpossible.Consequently,tolimitglobalwarmingto1.5°Celsiusabovepre-industrialtimes,greenhousegasemissionsmustbereducedtonet-zeroassoonaspossible,andthenCO2mustbepermanentlyremovedfromtheatmospheretobringthetotalmassofgreenhousegasesintheatmospherebelowthe1.5°Celsiuscarbonbudget.Thistaskisasimmenseasitisurgent.Aconclusionthatmaybedrawnfromcredibleanalysisandmodellingofpathwaystoachievenet-zeroemissionsisthatthelowestcostandriskapproachwillembracethebroadestportfoliooftechnologiesandstrategies,sometimescolloquiallyreferredtoasan“alloftheabove”approach.TheKingAbdullahPetroleumStudiesandResearchCenter(KAPSARC)intheKingdomofSaudiArabiadevelopedtheCircularCarbonEconomy(CCE)frameworktomorepreciselydescribethisapproach.Thisframeworkrecognizesandvaluesallemissionreductionoptions.1TheCCEbuildsuponthewell-establishedCircularEconomyconcept,whichconsistsofthe“threeRs”whichareReduce,ReuseandRecycle.TheCircularEconomyiseffectiveindescribinganapproachtosustainabilityconsideringtheefficientutilizationofresourcesandwasteshoweveritisnotsufficienttodescribeawholisticapproachtomitigatinggreenhousegasemissions.Thisisbecauseitdoesnotexplicitlymakeprovisionfortheremovalofcarbondioxidefromtheatmosphere(CarbonDirectRemovalorCDR)orthepreventionofcarbondioxide,onceproduced,fromenteringtheatmosphereusingcarboncaptureandstorage(CCS).RigorousanalysisbytheIntergovernmentalPanelonClimateChange,theInternationalEnergyAgency,andmanyothersallconcludethatCCSandCDR,alongsideallothermitigationmeasures,areessentialtoachieveclimatetargets.TheCircularCarbonEconomyaddsafourth“R”tothe“threeRs”oftheCircularEconomy;Remove.RemoveincludesmeasureswhichremoveCO2fromatmosphereorpreventitfromenteringtheatmosphereafterithasbeenproducedsuchascarboncaptureandstorage(CCS)atindustrialandenergyfacilities,bio-energywithCCS(BECCS),DirectAirCapture(DAC)withgeologicalstorage,andafforestation.ThisreportexaminesCCStechnologyfromtwoperspectives.First,anexaminationofthetechnologyreadinessofeachcomponentoftheCCSvaluechainisexplored.Second,areviewofthefactorsthatinfluencethecurrentandfuturecostsofcarboncapture,compression,transportandstorageispresented.1KAPSARC(2019).InstantInsight,November06,2019.AchievingClimateGoalsbyClosingtheLoopinaCircularCarbonEconomy.TECHNOLOGYREADINESSANDCOSTSOFCCS5CarbonCaptureandStorageareessentialtechnologiestohelpachievetheambitionofnetzeroanthropogenicgreenhousegasemissionsby2050.Aswithallsolutions,thecostofdeploymentofCO2capture,transportandstoragesystemsisofvitaleconomicandenvironmentalimportance.ThisimportancewillcontinuetoincreaseasthescaleandbreadthofCCSdeploymentgrowsaroundtheworld.TheGlobalCCSInstitutehasdevelopedthisreporttodescribethefactorsthatdrivecurrentandfuturecostsofthetechnology.KeydriversofCCScostincludeeconomiesofscale(whichincentivisesthedevelopmentofCCShubstobuildscale);partialpressureofCO2inthesourcegas(lowerpartialpressuresaremorechallenging),whichmeanthereisvariationinCCScostsfromindustrytoindustry;energycosts(intheformsofheatandelectricity);andtechnologicalinnovation.ThelessonslearnedfromearlydeploymentsofCCSareshowntoplayanessentialroleinreducingCCSprojectcostsforsubsequentdevelopments.ThestrongimportanceofcapitalcostonoverallCCScostsmeansthattherearefinancialandpolicyleversavailabletomakecapitalmoreavailableandlowercostforlarge-scaleCCSprojects.TaxpoliciesalsoplayavitalroleintheincentivisationofCCSprojects.Thisreportalsosurveysthetechnologyreadinessofmatureandemergingtechnologiesinthecapture,transportandstorageofcarbondioxide.TechnologicaldevelopmentwillbeakeyelementofdrivingfuturecostreductionsinCCS,andindeedmakingCCSpossibleforsomehard-to-abatesectorssuchascement,steel,anddirectairCO2capture.1.0EXECUTIVESUMMARYTECHNOLOGYREADINESSANDCOSTSOFCCS6CCSisaprovenandsafetechnologythatpreventscarbondioxide(CO2)frombeingreleasedfrompointsourcesintotheatmosphereorremovesitdirectlyfromtheatmosphere.Thetechnologyinvolvescapturing(purifying)CO2producedbyindustrialplants(suchassteelmills,chemicalsplantsandcementplants),coalandnaturalgas-firedpowerplants,andoilrefineries,compressingitfortransportationandtheninjectingitdeepunderground–atleast800metersbelowthesurface–intoacarefullyselectedandsafegeologicalstoragesite,whereitistrappedandpermanentlystoredinporousrock–seeFigure1.CCSisanessentialtechnologyfortheworldefforttoachievenet-zerogreenhousegasemissionsby2050.CCScanreduceemissionsacrossmostindustrysectorsdirectly,bothasaretrofittechnologyforexistingindustrialandenergyfacilities,aswellasincorporatedintonewdevelopments.ItcanalsoremoveCO2fromtheatmosphere(throughbioenergywithCCS,aswellasDirectAirCaptureofCO2fromtheatmosphere),providingthepossibilityofdeepremovalofCO2fromtheclimatesystematscale(InternationalEnergyAgency2020a).2.0ABOUTCARBONCAPTUREANDSTORAGE(CCS)Figure1-Carboncaptureandstorage–aconceptualdiagramGASPROCESSINGTECHNICALANDLEGALCO2REQUIREMENTSCO2PURIFICATION&CONDITIONINGCAPTURETRANSPORTSTORAGESHIPSINDUSTRYEOR/EGRPOWERPLANTSPIPELINESSTORAGEINSALINEAQUIFIERSCO2INJECTIONTRUCKSCOCOTECHNOLOGYREADINESSANDCOSTSOFCCS7DuetotheneedforbroadanddeepdeploymentofCCSaroundtheworldoverthenext30years,aclearunderstandingofitscostsandeconomicsisimportant.ThecostsofCCScanvarywidelydependingontheapplication,location,andscaleofeachsourceofCO2.Technologydevelopmentisalsoplayingakeyrole,asistheoperatingexperiencegleanedfromCCSfacilitiesthatareoperatingtoday.Thisreportoutlineskeyfactorsthatinfluencethecostofcarboncaptureandstoragetoday.ItalsosummariseskeydriversthatwilldrivethecostoffuturedeploymentsofCCS.Finally,astechnologyisoneofthosekeydrivers,itoutlinesthetechnologyreadinessofarangeofCO2CCStechnologiesatvaryingstagesofdevelopment–fromearlyresearchthroughtofull-scalecommercialavailability.TECHNOLOGYREADINESSANDCOSTSOFCCS8ThetechnologiesthatenableCO2capture,transportandstoragearenotstatic.AstheworldmovestowardshigherambitionforemissionsreductionsandCO2removalfromtheatmosphere,thereisarelentlessfocusondrivingdownthecostsofallpartsoftheCCSvaluechain.Thisisdrivingconsiderableresearchanddevelopmentacrosstheworldintobetterandmorecost-effectiveCCStechnologies.Asdescribedearlierinthisreport,technologywillplayanimportantroleinreducingthecostsofCCS.Weareobservingimprovementsintechnologythatarebothincremental(improvementsofexistingtechnologies)andbreakthrough(newdevelopmentsinformand/orfunction).Incrementalimprovementstendtobelowerriskandmorepredictable.InCCSthisisobservedinthedevelopmentofnewCO2capturesolvents,improvedadsorbents,enhancedormorerobustmembranes,andthroughtheuseofengineeringtechniqueslikemodularisation.BreakthroughscanenableCCStobedeployedinnewapplicationsoutsideofindustrieswhereithaspreviouslybeenrolledout,ortoachievestep-changecostimprovementsoverexistingtechnologies.Examplesincludedirectaircapture(DAC)andinherentCO2capturetechnologies.3.0TECHNOLOGYASADRIVEROFCOSTREDUCTIONANDENABLEROFCCSDEPLOYMENTTECHNOLOGYREADINESSANDCOSTSOFCCS9CATEGORYTRLDESCRIPTIONDemonstration9Normalcommercialservice8Commercialdemonstration,full-scaledeploymentinfinalform7Sub-scaledemonstration,fullyfunctionalprototypeDevelopment6Fullyintegratedpilottestedinarelevantenvironment5Sub-systemvalidationinarelevantenvironment4SystemvalidationinalaboratoryenvironmentResearch3Proof-of-concepttests,componentlevel2Formulationoftheapplication1Basicprinciples,observed,initialconceptTechnologiesdevelopfrominitialobservationsandconcepts,throughlaboratorystudiesandbenchscaleequipment,allthewaythroughtopilot-scaleandeventuallyfull-scalecommercialservice.AqualitativescaleknownastheTechnologyReadinessLevel(TRL)definesthematurityoftechnologieswithinanincreasingscaleofcommercialdeployment;seeTable1.LowerTRLlevelsaretypicallyconcernedwiththepossibilitythatatechnologymightwork,whereashigherlevelsaremoreconcernedwithcommercialviability.ThefollowingsectionsofthisreportprovideahighlevelsummaryofcategoriesofCCStechnologiesandascribesaTRLscoretoeach.Insummary,CCStechnologiesspanthefullrangeofTRL,fromnewtechnologiesinfundamentalresearchanddevelopmentthroughtomaturesystemsthathavebeenincommercialoperationfordecades.4.0TECHNOLOGYREADINESSOFCO2CAPTURETECHNOLOGIESTable1-SimplifieddefinitionsofTechnologyReadinessLevel(TRL)(IEAGHG2014)forCCStechnologies.TECHNOLOGYREADINESSANDCOSTSOFCCS10Thedeploymentofcarboncaptureinindustrialprocessesdatesbacktothe1930s,whencarbondioxide(CO2)absorptionwithchemicalsolvents,suchasaminesinaqueoussolutions,wereusedinthenaturalgasindustrytoseparateCO2frommethane(Figure2)(GlobalCCSInstitute2016).Startinginthe1940s,processesusingphysicalsolventsemergedforCO2capturefromprocessgasstreamsthatcontainedhigherCO2concentrations(25to70percent)andunderhigher-pressureconditions(approximately100bar).TwocommercialexamplesofphysicalsolventsareSelexol™andRectisol®.Thesesolventsareusedatgasificationplantsusingcoal,petroleumcoke,andbiomassfeedstocks.Inthe1950sand1960s,adsorptionprocessesusingsolidsorbents,suchaspressureswingadsorption(PSA),enabledgasseparationinhydrogenproduction(refineries),nitrogenproduction,anddehydrationapplications(Siqueiraetal.2017).Inthe1970sand1980s,membranesweredevelopedtocaptureCO2foruseinnaturalgasprocessing.However,carboncaptureisincreasinglybeingappliedtodecarbonizethepowersectorandotherindustrieswithlow-concentrationdilutegasstreams.TheapplicationofcarboncapturetogasstreamswithdiluteCO2concentrations,suchasfrompowergenerationismorecostlyduetothelawsofthermodynamics.Consequently,theUSDepartmentofEnergy(DOE)hassettargetstoimprovestate-of-the-artcapturetechnologiestoreducethecostofcapturefromdilutegasstreams.(Milleretal.2016).Second-generationtechnologies,yettobedeployedcommercially,aretargetedtoreducecostsby20percentfromcurrentstate-of-the-arttechnologies.Secondgenerationcapturetechnologiesareexpectedtobeavailablefordemonstrationby2025.Transformationaltechnologiesaretargetedtoreducecostsby30percentfromthefirstofakindtechnologyandbeavailablefordemonstrationinthe2030timeframe.OtherinnovativetechnologieswithinherentCO2captureprocesshavealsoemerged,forexample,8RiversCapital’sAllam-FetvedtCycle,Calix’sAdvancedCalciner.TheseuniquesystemsrequireminimalcaptureprocesstoproducepureCO2readyfortransport/use.CapturetechnologiesinthisreportarecategorizedbythemediausedtoseparateCO2fromagasstream.Foreachsub-section,ananalysisofeachclassofseparationmediaisprovided,includinganassessmentoftheexistingandemergingcapturetechnologies.TheoverviewofcapturetechnologiesTRLincludinghowtheyhaveadvancedbetween2014and2020isshowninTable2.Figure2-Developmentofcarboncapturestechnologies(GlobalCCSInstitute2016).1930GASABSORPTIONCHEMICALSOLVENTSGASABSORPTIONPHYSICALSOLVENTSGASABSORPTIONGASSEPARATIONMEMBRANES1940197019501980196019902000YEARHYDROGEN•AMMONIA•HYDROCARBONREFINING•CHEMICALSYNTHESISNITROGEN•AIRSEPARATION•CHEMICALPLANTSCARBONDIOXIDE•NATURALGASPROCESSINGGASIFIERS•COAL-FIREDBOILERSNATURALGASSWEETENINGDEHYDRATION•GASPROCESSING•AIRSEPARATIONTECHNOLOGYREADINESSANDCOSTSOFCCS11CapturetechnologiesinthisreportarecategorizedbythemediausedtoseparateCO2fromagasstream.Foreachsub-section,ananalysisofeachclassofseparationmediaisprovided,includinganassessmentoftheexistingandemergingcapturetechnologies.Thecapturetechnologiesdescribedinthefollowingsectionsareselectedbasedontheirsuitabilityandreadinesslevel.Hencesometechnologies,especiallythoseintheearlyresearchphase(TRLlessthan5),maynothavebeenincluded.Table2-TRLassessmentandkeytechnologyvendorsoftheCO2capturetechnologies.GlobalCCSInstituteanalysisincomparisonto(IEAGHG2014).TECHNOLOGYKEYVENDORSTRL2014TRL2020PROJECTSLiquidSolventTraditionalaminesolventsFluor,Shell,Dow,Kerr-McGee,AkerSolutions,etc99Widelyusedinfertilizer,sodaash,naturalgasprocessingplants,e.g.Sleipner,Snøhvit,andusedinBoundaryDamsince2014Physicalsolvent(Selexol,Rectisol)UOP,LindeandAirLiquide99Widelyusedinnaturalgasprocessing,coalgasificationplants,e.g.ValVerde,ShuteCreek,CenturyPlant,CoffeyvilleGasification,GreatPlainsSynfuelsPlant,LostCabinGasplantBenfieldprocessandvariantsUOP-9Fertiliserplants,e.g.EnidFertiliserStericallyhinderedamineMHI,Toshiba,CSIRO,etc6-86-9Demonstrationtocommercialplantsdependingontechnologyproviders,e.g.PetraNovacarboncaptureChilledammoniaprocessGE66-7PilotteststodemonstrationplantfeasibilitystudiesWater-LeansolventIonCleanEnergy,CHNEnergy,RTI4-54-7PilottestandcommercialscaleFEEDstudies:IonCleanEnergy’sGeraldGentlemanstationcarboncapture,CHNEnergy’sJinjiepilotplantPhasechangesolventsIFPEN/Axens45-6DMX™DemonstrationAminoacid-basedsolvent/PrecipitatingsolventsSiemens,GE4-54-5LabtesttoconceptualstudiesEncapsulatedsolventsR&Donly12-3LabtestsIonicliquidsR&Donly12-3LabtestsSolidadsorbentPressureSwingAdsorption/VacuumSwingAdsorptionAirLiquide,AirProducts,UOP39AirProductsPortArthurSMRCCSTemperatureSwingAdsorption(TSA)Svante15-7LargepilotteststoFEEDstudiesforcommercialplantsEnzymeCatalysedAdsorptionCO2solutions16PilotdemonstrationsSorbent-EnhancedWaterGasShift(SEWGS)ECN55Pilottests,e.g.STEPWISEElectrochemicallyMediatedAdsorptionR&Donly11LabtestTECHNOLOGYREADINESSANDCOSTSOFCCS12MembraneGasseparationmembranesfornaturalgasprocessingUOP,AirLiquide-9PetrobrasSantosBasinPre-SaltOilFieldCCSPolymericMembranesMTR67FEEDstudiesforlargepilotsElectrochemicalmembraneintegratedwithMCFCsFuelCellEnergy-7LargepilotsatPlantBarryPolymericMembranes/CryogenicSeparationHybridAirLiquide,LindeEngineering,MTR66PilotstudiesPolymericMembranes/SolventHybridMTR/UniversityofTexas-4ConceptualstudiesRoomTemperatureIonicLiquid(RTIL)MembranesR&Donly22LabtestsSolid-loopingCalciumLooping(CaL)CarbonEngineering66-7Feasibility/coststudiesforcommercialscaleChemicalLoopingCombustionAlstom25-6PilottestsInherentCO2captureAllam-FetvedtCycle8RiversCapital26-750MWDemonstrationPlantinLaPorteCalixAdvancedCalcinerCalix-5-6LargepilotLEILACnotassessedinIEAGHG2014/TR4report.TECHNOLOGYKEYVENDORSTRL2014TRL2020PROJECTS4.1.LiquidsolventsAbsorptionemployingchemicalsolvents(whichusechemicalbondstocaptureCO2)orphysicalsolvents(whichuseonlyintermolecularVanderWaalsforcetocaptureCO2)isthemostcommontechnologyusedforgasseparation.Inanabsorptionprocess,agaseouscomponentdissolvesintoaliquidsolventformingasolution(GlobalCCSInstitute2016).Duetothedifferentsolubilitiesofthegascomponentsinaparticularsolvent,thesolventcanbeusedforselectiveseparation.AtlowerCO2partialpressure,chemicalsolventshaveahigherabsorptioncapacity,whichmakesthemmoreattractiveforuseunderlowpartialpressuregasconditions.Athigherpartialpressure,therelationshipbetweensolventcapacityandpartialpressurefollowsHenry’sLaw(linearrelation),sophysicalsolventsarepreferred.Inthesolventregenerationprocess,chemicalsolventsareusuallyregeneratedbyraisingthetemperaturetoreleaseCO2.Forphysicalsolvents,thepressureisreduced.Themostwidelyusedphysicalsolvent-basedtechnologiesaretheglycol-basedSelexol™andmethanol-basedRectisol®systems(Mohammedetal.2014).TheSelexolprocessoperatesataroundambienttemperature,whereastheRectisolprocessoperatesatatemperatureaslowas-60°C.Thesesolventsareoperatingatlarge-scalefacilitiesseparatingupto4,000tonnesperday(tpd)ofCO2insyntheticgas(syngas)purificationandnaturalgasprocessing.Chemicalsolvent-basedsystemsavailablecommerciallyornearcommercializationcommonlyuseamine-basedsolvents.Therehavebeenconcertedeffortstodrivedownthecostandenergyrequirementofchemicalsolventtechnologies.TECHNOLOGYREADINESSANDCOSTSOFCCS13IonCleanEnergy’swater-leansolventcarboncapturesystem(seeFigure3)isanexampleofanext-generationsolvent.IonCleanEnergy’sinitialfeasibilitystudyattheNebraskaPublicPowerDistrict’sGeraldGentlemanStationUnit2,acoalfiredgenerator,estimatedcapturecostsofUS$39–44pertonneofCO2.Thisisa25-33%costreductionincomparisontothecostofcurrentindustry-standardaminesolventsusedforcoal-firedpowerplants.CO2Solutions,nowownedbyItalian-basedenergycompanySaipem,hasdevelopedanovelabsorptiontechnologybasedonmaturepotassiumcarbonatesolvents.Conventionalpotassiumcarbonatesolvents,usedfordecadesinchemicalsandnaturalgasprocessing,areaneffectivecarboncapturesolvent.However,theyhavethedisadvantageofslowratesofabsorptionofCO2,whichhasmadethemsuitableonlyforhighCO2partialpressures.CO2Solutionshaveaddedaproprietarybiologically-derivedenzyme,knownas1T1,tothepotassiumcarbonatesolution.Thisenzymeactsasacatalyst,speedinguptheconversionofdissolvedCO2inthesolvent.Thisenzymetransformsarelativelyslowabsorptiontechnologyintoamuchfasterone.ThisincreasedcaptureratemeansagivenCO2capturedutycanbeachievedwithamuchsmallerabsorberandstripper,makingpotassiumcarbonatesolventsmorecost-effectiveforpost-combustionandotherlowpartial-pressureapplications.Theprocessisalsocompetitivefromanenergyperspective–usinghotwaterratherthansteamasaheatsource,withaclaimedreboilerheatrateof2.4GJ/tonneofCO2captured(SaipemCO2Solutionsn.d.).Thehotwaterisadistinctadvantage–itmeanslowertemperaturewasteheatcanbeusedtopartiallyorfullysupplytheprocesswithenergyforthereboiler.Mostabsorption-basedtechnologiesrequirehighertemperaturesteam,whichrequiresadditionalheat.Figure3-IllustrationofprocessschematicinIonCleanEnergy’sWater-Leansolventcapture.Source:(IonEngineering2019).TECHNOLOGYREADINESSANDCOSTSOFCCS14SaipemhaspublishedaclaimedtotalcapturecostofUSD28/tonneofCO2foraspecificcasewherewasteheatisavailableatzerocost(Fradette,Lefebvre&Carley2017,p.1108).Thisisforacaseoperatingat0.45MtpaofCO2.Ifwasteheatisnotavailable,thecostwillbehigher.Ifthescaleweregreater,thereisadditionalscopetoreducethetotalcapturecost.ApilotplantoperateswithCO2SolutionstechnologyattheResolutepulpmillinQuébec,Canada(Figure4).Thisplantiscapturing30tonnes/dayofCO2athighpurity.Figure4–SaipemCO2Solutions’PilotPlantinQuébec,Canada(Source:Saipem)TECHNOLOGYREADINESSANDCOSTSOFCCS154.2.SolidadsorbentsDifferentmoleculeshavedifferentaffinitiestothesurfaceofasolidsorbent,whichallowsfortheseparationofaspecificgascomponentfromamixture.Basedontheinteractionbetweengasmoleculesandthesorbentsurface,adsorptioncanbecharacterizedaschemicaladsorptionorphysicaladsorption(GlobalCCSInstitute2016).Chemicaladsorption-viachemicalbonding-resultsinastronginteractionbetweenthegasmoleculeandsorbent,andisanappropriatechoiceforlow-concentrationgasstreams.Regenerationistypicallyaccomplishedusingathermalswingadsorption(TSA)process-theadsorbentisregeneratedbyraisingitstemperature(Hedinetal.2013)toliberatetheCO2.Physicaladsorption—viavanderWaalsforces—hasaweakerinteractionbetweenthegasmoleculeandsorbentandistypicallyappliedtohighCO2concentrationfeedstreams.Regenerationisgenerallybasedonapressureswingadsorption(PSA)mechanism.InPSA,thegasmixturecontainingCO2flowsthroughapackedbedofadsorbentatelevatedpressuresuntiltheadsorptionofthedesiredgasapproachesequilibriumwiththesolid.Thebedisthenregeneratedbystoppingthefeedmixtureandreducingthepressure(GlobalCCSInstitute2016)toliberatetheCO2.AtypicalemergingadsorptiontechnologyistheSvante(formerlyInventys)VeloxoTherm™systeminFigure5.Itisbasedonarapid-cycletemperatureswingadsorption(TSA)process.Thistechnologyusesapatentedadsorbentarchitecturearrangedinacircularstructuretosimultaneouslyexposedifferentsectorsofthestructuretoeachstepintheprocess,asshowninFigure5.VeloxoTherm™isclaimedtobe40to100timesfasterthanconventionalTSAprocesses,duetoitsuseofinnovativeadsorbentmaterialswhichenablerapidtemperatureswingsfrom40to110°C(NETL2018a).Figure5-SvanteVeloxoTherm™rotaryadsorptionmachineconcept.Source:(bctechnology2017;Paul,Ranjeet&Penny2017).TECHNOLOGYREADINESSANDCOSTSOFCCS164.3.MembranesAmembraneisabarrierormediumthatcanseparatechemicalconstituentsofagasmixturebasedonpermeationoftheconstituentsthroughthemembraneatdifferentrates(i.e.particularcomponentsofamixturepassthroughthebarrierfasterthantheothercomponents)(Drioli,Barbieri&Brunetti2018;GlobalCCSInstitute2016).Generally,gasseparationisaccomplishedbysomephysicalorchemicalinteractionbetweenthemembraneandthegasbeingseparated.Membraneseparationusespartialpressureasthedrivingforceandisusuallymorefavourablewhenthefeedgasstreamisathighpressure.Processinnovationssuchastheincorporationofcountercurrentsweep2inMembraneTechnologyandResearch’s(MTR)Polaris™process,andtheintegrationofmoltencarbonatefuelcells(MCFCs)3incapturesystemshaveenabledtheuseofmembranesinlow-concentrationCO2applications.Figure6showsMTR’smodularmembranesystem.Itconsistsofbanksofpressurevesselsthatarecombinedtoformasingle“mega-module”.Fora240MWecoal-firedpowerplant(e.g.thefluegasstreamfromPetraNovaunit8),around60mega-moduleswithamembraneareaofapproximately0.2to0.4millionm2wouldberequiredtocapture1.4MtpaCO2.Figure6-Photosofspiral-woundmembranevessels(left)usedinacommercialscalemembranesystem(right).Source:(NETL2018).2Thecountercurrentsweepprocessmeansflowingintheoppositedirectionwithrespecttotheflowintheotherprocessside.3MCFCsarehigh-temperaturefuelcellsoperatingapproximately650oC.MCFCsuseamixtureofmoltenpotassiumandlithiumcarbonateasanelectrolyte.TECHNOLOGYREADINESSANDCOSTSOFCCS174.4.Solid-loopingCalciumandchemicalloopingtechnologies(solidlooping)involvetheuseofmetaloxides(MeOx)orothercompounds,asregenerablesorbentstotransfereitherCO2oroxygenfromonereactortoanotherasshowninFigure7(GlobalCCSInstitute2016).Circulatingfluidizedbeds(CFBs),whichareincommercialusenowinotherapplications,canbeusedasoneorbothofthereactors.Bothtechnologieshaveemergedinrecentyearsassecond-generationCO2capturetechnologiesutilizinghigh-temperaturestreamstosignificantlyreducetheenergypenaltyassociatedwithCO2capture.TheuseofcalciumloopinginCarbonEngineering’sdirectaircapturetechnologyisdiscussedindetailinthecasestudiesinthenextchapter.4.5.InherentCO2captureTherearebreakthroughtechnologieswhichareenablinginherentCO2capturein,whichrequirenoadditionalworkorenergytoseparateCO2.Theseofferconsiderablepromiseforastepchangereductionincapturecosts,butarenotabletoberetrofittedtoexistingplantsastheyincorporateCO2captureintotheirfundamentalprocessdesign.TypicalexamplesaretheAllam-FetvedtpowergenerationcycleandtheCalixAdvancedCalcinerforlimeandcementmanufacturing.TheAllam-FetvedtCycleisaninnovativenaturalgas(orsyngasfromgasificationofcoal)firedpowergenerationtechnology.Thetechnologyproducespipeline-readyCO2withouttheneedforadd-oncarboncaptureequipment.Itinvolvesoxy-fuelcombustionandtheuseoftheproducedCO2astheworkingfluidtodriveaturbinewhichenablesinherentCO2capture,compression,anddehydrationaswellastheeliminationofNOx/SOx(Allametal.2017;Luetal.2017),showninFigure8.Thistechnologycanproduceelectricitywith>97%CO2captureatalevelisedpowerpriceapproximately22%higherthanconventionalnaturalgascombinedcycleFigure7-ProcessschematicofchemicalloopingTECHNOLOGYREADINESSANDCOSTSOFCCS18today.Itcanalsobeintegratedwithhydrogenproductionandotherprocessestocreateaplantthatcanefficientlyproducepower,hydrogen,ammoniaandurea.Thecostpremiumaboveunabatednaturalgascombinedcyclepowergenerationisprojectedtoreducetolessthan10%by2050.CO2transportandstoragecostsareadditional.Anintegratedpowerandhydrogenplantwith100%captureofCO2couldproducecleanhydrogenatcostswhicharecompetitivewithconventionalproductionfromsteammethanereformation.Calixhasdevelopedanewtypeofcalcinertoreplacethetraditionalrotarykilndesignsfoundinconventionalcementandlimeplants.Itsadvancedcalcineremploysa“reversed”applicationofthecalciumloopingtechnology,wherecalcinationiscarriedoutatalowertemperature(650–760oC)thanthecarbonation(760-850oC).ThistogetherwiththeinherentCO2captureeliminatessomeofthekeytechnologicalchallengesofcalciumloopingprocesses,i.e.,decayinCO2capturecapacitythroughmultiplecycles,processheatintegration,etc.Figure9showtheconfigurationofCalixAdvancedCalcinerwithinherentCO2capture.Figure8-TheAllam-FetvedtCycleprocessflow.Source:8RiversCapital(supplied)COMPRESSORANDPUMPOXYGEN4.75%OFMASSVERYHOTCO₂97.25%OFMASSHOTCO₂94%OFMASSVERYHOTWATER2.75%OFMASSHOTWATER2.75%OFMASSCOOLWATER2.75%OFMASSCLEANWATER2.75%OFMASSPIPELINEREADYCO₂3.25%OFMASSLINEWIDTHPROPORTIONALTOMASSTheAllam-FetvedtCycleHOTCO₂97.25%OFMASSCOOLCO₂97.25%OFMASSNATURALGAS1.25%OFMASSTECHNOLOGYREADINESSANDCOSTSOFCCS19Figure9-Calixadvancedcalcinationreactordetailedview.Source:Calix(supplied)TECHNOLOGYREADINESSANDCOSTSOFCCS20ThetransportofCO2isanessentialpartoftheCCSchain,connectingCO2source(s)toCO2storagesites.Today,CO2iscompressedandtransportedprimarilythroughpipelinesandbyships.CO2isalsotransportedbytruckandrail.Fundamentally,thetransportationofgassesandliquidsviaanyofthesemethodsismature(i.e.TRL9).However,transportationofCO2attheverylargescaleassociatedwithCCShasnotyetbeenachievedusingshipsorrail(Figure10).OfallCO2transportmodes,onlypipelinesaretransportingCO2atsignificantscale.Over8,000kilometres(5,000miles)ofpipelinesstretchacrosstheUnitedStates.TheUnitedStatescomprises85%ofallCO2pipelines,withamixofanthropogenicandnaturalCO2movingapproximately70Mtpa(NationalPetroleumCouncil2019).ThesepipelineshavebeenoperatedwithanexcellentsafetyrecordsincethefirstCO2pipelineforalarge-scaleCCSfacilitywascommissionedintheearly1970s.5.0TECHNOLOGYREADINESSOFCO2TRANSPORTTECHNOLOGIESFigure10-TechnicalReadinessLevelofCO2Transport.COMPRESSIONPIPELINETRUCKRAILTRL1TRL2TRL3TRL4TRL5TRL6TRL7TRL8TRL9SHIPDESIGNSHIPINFRASTRUCTURETECHNOLOGYREADINESSANDCOSTSOFCCS21OutsidetheUS,CO2pipelinesarealsooperatinginBrazil,China,Canada,theNetherlandsandNorway.NorwayhostsanoffshoreCO2pipeline(153-kilometreoffshorepipelinefortheSnøhvitCO2storagefacility).Itisthiswidespreadandlong-termexperienceofpipelinesthatultimatelygivesCO2pipelinesamaturerating(TRL8-9).Incontrasttopipelines,shippingisonlynowbeingconsideredforlarge-scaletransportofCO2.Small-scalefood-gradeCO2shippinghasbeencommonpracticeformorethanthreedecadesbuthasnotyetbeenimplementedatscalessuitableforCCS.ThetechnicalfeasibilityandthecostofCO2shippingarewellunderstoodthroughdecadesofresearch,primarilyinEurope,withadditionalstudiesfromKoreaandJapan.ThefollowingsectionpresentsthelatestdevelopmentsinCO2shippingforCCS,providinganoverviewoftechnicalrequirements,maturity,cost,safety,regulationsandthemaindifferencescomparedtopipelines.TheshippingofCO2hasbeenpractisedforover30years,butthesizeoftheindustryissmall,withonlyapproximately3MtpaofCO2beingtransportedbyshipintotal(IEAGHG2009).Theshippingexperiencetodateisentirelyconnectedwiththefoodandbeveragesector.Today,CO2istransportedbysmallscaleshipsof800–1,800m3fromproductionsitestodistributionterminalsanddistributedviatrainortrucktoend-users.AccordingtotheIEAGHG(IEAGHG2020a),themaximumloadsizeintermsoftechno-economicvaluewouldbe10,000tonnesofCO2.AlthoughCO2shippingexperienceisrelativelylimited,thegasindustryhasmorethan80yearsofcommercialexperienceshippingvariouspressurizedgases.CO2transportbyshipsandtherequiredportinfrastructureareverysimilartothoseforLiquifiedNaturalGas(LNG)andLiquifiedPetroleumGas(LPG).Itis,therefore,reasonabletoassumethatthetechnicalscale-upofCO2shippingtothescalerequiredforCCSisachievablewithoutmajortechnicalchallenges.TheTRLforCO2shippingrangesfrom3to9.ThelowestTRL-3relatestooffshoreinjectionintoageologicalstoragesitefromaship.TheTRL-9ratingreferstoconventionalonshoreCO₂injectionfromonshorefacilities(whichcanbedeliveredtotheinjectionsitebyship).TECHNOLOGYREADINESSANDCOSTSOFCCS22ThegeologicalstorageofCO2(hereinstorage)isthefinalstepintheCCSvaluechain.GeologicalstoragepermanentlyisolatesCO₂fromtheatmosphere.StoragerequiresCO₂tobecompressedtoveryhighpressures(above74barasanabsoluteminimum,thecriticalpressureofCO₂andtypically100barormoretoprovideasuitablesafetymarginandaccountforpressuredropinpipelines).Thestorageformationmustbeatadepthofatleast800mtoensurethatthispressureismaintained.AtthesehighpressuresCO₂isinitsdensephase–adensitysimilartowaterbutwithpropertiessomewherebetweenaliquidandagas.DensephaseCO2maximizesthemassofCO₂thatcanbestoredinafixedvolume,ensuringtheefficientuseofthetargetgeologicalstoragevolumeandCO2movementiseasiertopredictandmonitor.TheCO2isstoredingeologicalformationscomparabletothosewhichnaturallycontainwater,oilorgas.Theinjection,storageandmonitoringofCO2inthosegeologicalformationsusesessentiallythesametechnologiesdevelopedovernearly50yearsforenhancedoilrecovery(EOR).Threeformsofgeologicalstoragearetechnicallymature:storagethroughCO2-enhancedoilrecovery(CO2-EOR),storageinsalineformations,andstorageindepletedoilandgasfields.6.1.StoragethroughCO2-EORCO2-EORhasbeeninoperationfornearly50years(TRL9)(NationalPetroleumCouncil2019).Currently,thereareover40CO2-EORoperations,thevastmajorityhostedintheUSA(Buietal.2018).TheprimaryaimofCO2-EORistomaximizeoilrecovery,notstoreCO2.However,CO2ispermanentlystoredinthecourseofEOR,becomingtrappedintheporespacethatpreviouslyheldhydrocarbons.AdditionalCO2-specificmonitoringtoverifythepermanentstorageoftheinjectedCO2isrequiredifCO2-EORistobeusedasanemissionsreductionoption(InternationalEnergyAgency2015).6.0TECHNOLOGYREADINESSOFCO2STORAGETable3-CO2storageoptionsofcommercialandpilot/demonstrationCCSfacilities.Notes:DGOF:Depletedgasandoilfield,SF:salineformation,EOR:CO2-enhancedoilrecovery(GlobalCCSInstitute2020).SCENARIODEVELOPMENTCONSTRUCTIONOPERATIONCOMPLETEDCOMMERCIALFACILITIESOnshoreDGOF1SF1231EOR9321OffshoreDGOF6SF92EOR1PILOT&DEMONSTRATIONPROJECTSOnshoreDGOF114SF31310EOR184OffshoreDGOF1TECHNOLOGYREADINESSANDCOSTSOFCCS236.2.StorageinSalineFormationsStorageofCO2storageinsalineformationshasaTRLofnine.StoringCO2insalineformationshasbeenoccurringintheNorthSeasince1996.TheSleipnerCCSfacilityhasinjectedover20MtofCO2intoadeepsalineformation.ThisfacilityisthefirstuseofCCSasaclimatemitigationtoolwithinacommercialoperation.Critically,theoperationshowedthat:•CO2couldbeinjectedatasignificantrate(1Mtpa)intosalineformations•CO2canbemonitored•StorageispermanentSinceSleipner,fourcommercialoperationsstoringCO2insalineformationsandnumerousdemonstrationprojects(Table3)havecommenced.Therapidadvancementofthetechnologyandknowledgedevelopedfromthesefacilitiesissignificantforsalineformationstorage.CO2isbeingstoredindifferentgeographies,terrains,andgeologicalconditions.Geologicalstoragealwaysrequiressite-specificanalysis,modellingandmonitoring.Thisincludesstoragecapacityprediction,injectionoptimizationandCO2verificationandquantificationthroughmonitoring.Thetechnologyandtoolsrequiredtoidentify,appraise,utilize,monitorandcloseageologicalstorageresourceareallwellestablishedandmature.6.3.StorageinDepletedOilandGasFieldsGeologicalstorageindepletedoilandgasfieldsistechnicallymature(i.e.substantivelynodifferenttostorageinsalineaquifers)buthasalowerTRLof5-8asithasonlybeenappliedindemonstrationprojects(Buietal.2018).Twelvepilotordemonstrationprojectshaveutiliseddepletedoilandgasfields(Table3).CommercialmaturityisimminentwithatleasteightprojectsintheCCSpipelineactivelypursuingstorageindepletedoilandgasfieldsespeciallyintheNorthSea(GlobalCCSInstitute2021a).6.4.UnconventionalStorageTherearetwoleadingunconventionaloptionsforthestorageofCO2;storageinBasaltandultramaficrocksandstorageincoalseamsthroughEnhancedCoalBedMethane(ECBM)production.6.4.1.Basaltandultra-maficrocks(TRL2-6)StorageofCO2inbasaltsandultra-maficsdependsonmineralcarbonation.ThemineralogyofthoserocktypesmeansCO2reactsveryrapidlytoformcarbonateminerals.NinetypercentofinjectedCO2ispredictedtobemineralizedwithinaperiodofafewmonthstodecades(Kelemenetal.2019)intheserockformations.Basaltsareacommonrocktype,particularlyinIndia,andinnearshoreoceaniccrustworldwide.Theestimatedstoragepotentialofmineralcarbonationis60,000,000GtCO2(Kelemenetal.2019).Basalticrockhasverylowpermeability,hencehydrologicallyfracturedbasaltorpermeablezonesbetweenbasaltflowsistargetedforCO2injection.TwopilotprojectshaveinjectedandstoredCO2intobasaltsformineralization(GlobalCCSInstitute2021a).Thepilot-scaleWallulaProject(USA)injectedaround970tofCO2.TheCarbFixProjectinIcelandisinjectingamixofwater,5000tCO2and3500tH2Speryear.ThegasesareseparatedfromthegeothermalsteamfromtheHellisheiðigeothermalpowerplant.Overall,basaltisnotanaturallypermeablerockandpermeabilityisdifficulttopredict.Evenwithinpermeablezones,injectionratesarelow.ThemajorityoftoolsforconventionalCCScannotbeappliedtomonitoraCO2plumeinabasalt.MonitoringtoolsforCO2plumeverificationandquantificationinbasalticformationsarestillintheresearchphase.TECHNOLOGYREADINESSANDCOSTSOFCCS246.4.2.Enhancedcoalbedmethane(ECBM;TRL2-3)CoalseamsnaturallyincorporatefracturesknownascleatswhichallowgasestopermeatethroughthecoalandareessentialtotheoperationofanECBMstoragesystem.Betweenthesefractures,thecoalhasabundantmicroporesthatcanholdmanygases,predominantlymethane.CoalhasahigheraffinitytogaseousCO2thanmethane.ForECBM,CO2isinjectedintothecoalseamwhereitisdiffusesintothesemicroporesandisadsorbed,displacingthemethane.Themethaneisthenproducedforsale.FourpilotECBMoperationshavebeencompleted,oneinChinaandthreeintheUSA.TheSanJuanECBMprojectintheUSAwasthelargestpilot,injecting18,000tofCO2.TherearenoactiveECBMprojects(GlobalCCSInstitute2021b).ECBMisaviabletechnologyandcanincreasemethaneproduction(comparedtostandardcoaldrainage)by90%(Bensonetal.2005).TheproducedmethaneprovidesrevenuetotheoperationwhilestoringtheCO2.ThemajordifficultyassociatedwithECBMisthatinjectionofCO2significantlyreducesthepermeabilityofcoaldueto‘plasterisation’andswellingofthecoal(reducingthesizeandconnectivityofthefractures).Reducedpermeabilityrequiresadditionalwellsincurringadditionalcostsandincreasingoperationalcomplexity.Moreover,ECBMcanonlybeappliedtocoalseamswhichwillneverbemined,otherwisetheCO2storedinthemwouldbereleasedtotheatmosphere.Forthatreason,deepun-mineablecoalseamsarepotentialtargetsforECBMoperations.ThetotalcostofCCSconsistsofthecostsof:•CO2captureattheemissionsource–purifyingCO2fromagasstreamuptoover95%puritybyvolume.•CO2dehydrationandcompression/liquefaction,dependingonthetransportmethod.•CO2transportbypipeline,shipormobilevehicle.•CO2injection,andmonitoringandverificationofstoredCO2.ThecostofeachCCScomponentvariesfromprojecttoproject,primarilyduetodifferencesinthesizeandlocationoftheCCSfacilityandthecharacteristicsoftheCO2source.TechnologyisavitalconsiderationinCCS,butitisnottheonlyfactor.ArangeofotherfactorsfeedintocostsacrosstheCCSvaluechain.7.0THECOSTOFCO2CAPTUREANDSTORAGETECHNOLOGYREADINESSANDCOSTSOFCCS25AkeyfactorinCO2capturecostisthepropertiesofthesourcegas.Table4summarisestheCO2characteristicsofvariouspowerandindustrialfluegasstreams.8.0COSTOFCO2CAPTURETable4-CO2characteristicsintypicalindustrialfluegasstreams(Bains,Psarras&Wilcox2017;GlobalCCSInstitute2015;IEAGHG1999;GranthamInstitute2014)INDUSTRYPOINTSOURCECO2PARTIALPRESSURE(WET)(KPA)GASSTREAMPRESSURE(KPA)INHERENTCO2CAPTUREPowerNaturalgascombinedcycle(NGCC)powerplant3.8–4.6AtmosphericNoCoalfired-powerplant12.2–14.2AtmosphericNoBiomass/waste-firedpowerplant10.1–12.2AtmosphericNoPower/IndustrialHeatNaturalgas-firedpowerand/orheatplant(OpenCycle)4.1–8.1AtmosphericNoPetroleumRefining/Petrochemicalsfluidcatalyticcracking10.1-14.2AtmosphericNoProcessheater8.1-10.1AtmosphericNoEthyleneproductionsteamcracking7.1-12.2AtmosphericNoSteammethanereforminghydrogenproduction300–4802000–3000NoEthyleneoxideproduction>92AtmosphericYesCementKilnfluegas~18AtmosphericNoPre-calciner20-30AtmosphericNoPulpandpaperLimekiln~16AtmosphericNoIron&SteelCOREXsmeltingreductionprocess32-35AtmosphericNoHotStove24-28AtmosphericNoLimecalcining7.1–8.1AtmosphericNoSinterplant3.7–4.2AtmosphericNoAluminiumAluminiumsmelter0.8–1.1AtmosphericNoFertiliserCoalgasificationsyngas750-25003000–6000YesNaturalgasreformingsyngas300-12002000–3000YesNaturalgasprocessingNaturalgasprocessingVaries,upto5000900–8200+Yes,acidgasremovalBioethanolEthanolfermentation>85AtmosphericCO2fromsyngasstreamiscapturedfordownstreamureaproductionOnlydehydrationandcompressionrequiredStandardatmosphericpressureis101.3kPa,whichisclosetotheaverageairpressureatsealevel.However,atmosphericpressuredoesvarybylocationandaltitude.TECHNOLOGYREADINESSANDCOSTSOFCCS26Fluegasstreamsinmostindustriesareproducedatclosetoatmosphericpressure(~100kPa)withCO2concentrationsbetween1vol%(aluminiumsmelter)to35vol%(Corexsmeltingreductionprocessinsteelplant).ThismakestheirCO2partialpressuresquitelow–below40kPa(foradescriptionofPartialPressure,seebreakout).Incertainsectors,suchasnaturalgasprocessing,fertiliserproductionandhydrogenproduction,thesourcegasisatquitehighpressure–manytimesatmosphericpressure.ThiscanmakeCO2partialpressureshigherthanthoseinthecapturedCO2stream.CO2captureinthepowergenerationandindustrialsectorsusuallyaccountsforthemajorityofthecostinthefullCCSchain.Allelsebeingequal,CO2capturecostsareinverselyrelatedtothepartialpressureofCO2inthegasstream.8.1.HowdoesCO2partialpressureinfluencecost?ThepartialpressureofCO2affectsthesizeofprocessequipment,captureplantenergyrequirements,andapplicablecapturetechnologies.TheseallcontributetothecostofcapturingCO2.HigherCO2partialpressuresmeanthatCO2willtransfermorerapidlyfromthesourcegastothesolvent,adsorbentorothermediausedtocapturetheCO2.Thishigherspeedtranslatesintophysicallysmallercaptureequipment,reducingitscapitalcost.Highertotalgaspressuresalsoreducethegasvolumepertonne.Thisalsoreducesequipmentsize,andthereforecapitalcost.HighCO2partialpressuresmakethetaskofcaptureeasierbyreducingtheinputofenergyneededtocaptureandthenrecovertheCO2fromthesourcegas.Lowerenergyconsumptionmeansloweroperatingcosts(allelsebeingequal).CO2partialpressurecanalsoinfluencethecostofcapturethroughthecapturetechnologiesavailable.Forexample,solvent-basedcapturetechnologiesfallintotwogeneraltypes:chemicalandphysical.Higherpartialpressuresenable"physical"solventstobeused.Theyaregenerallyslowerthanchemicalsolvents,butthisislessofaconcernathighCO2partialpressures.TheyalsoholdCO2insolutionthroughphysicalmechanismsratherthanchemicalreactions–assuch,thesolutionofCO2isweakerandeasiertobreakbyheating.Theseprocesseshavetheadvantagethattheenergyrequirementsfortheregenerationofthecapturemedia(i.e.strippingtheCO2fromthecapturemediasothatitmaybereused)arerelativelylowcomparedtoothercapturetechnologies,loweringoperatingcosts.Dalton'sLawisanempiricalobservationofhowmixturesofgasesbehave.Itstatesthatinamixtureofgases,thetotalpressureofthemixtureisequaltothesumofthepartialpressuresofeachindividualgasspeciesinthemixture.Eachgasspeciesinamixturecontributestothetotalpressureindependentlyofalltheothers.Inanidealgas,thepartialpressureofagasinamixtureisequaltothevolumefractionofthatgasinthatmixture,multipliedbythetotalpressure.E.g.,Ifagasconsistsofamixtureof15vol%CO2and85vol%nitrogen,andthetotalpressureis4bar:PartialpressureofCO2is0.15x4=0.60barPartialpressureofnitrogenis0.85x4=3.4barThepartialpressureofCO2reflectstherelativeeasewithwhichCO2canbecapturedfromagasmixture.HigherpartialpressuresareeasierandcheapertocapturethanlowerpressuresbecauselessexternalenergyisrequiredtoincreasetheCO2'spartialpressuretothatinthefinalcapturedCO2stream.HigherCO2partialpressuresareobservedwhenthefractionofCO2ishigher,theoverallgaspressureishigher,orboth.PARTIALPRESSURETECHNOLOGYREADINESSANDCOSTSOFCCS27AtlowCO2partialpressures,typicallyselective"chemical"solventsarerequiredtocapturetheCO2stream.ChemicalsolventsundergochemicalreactionswithCO2tosecureitintothesolvent.TheseareeffectivebutcanrequirelargeamountsofenergytosubsequentlyseparatethecapturedCO2fromthesolvent,increasingoperatingcosts.8.2.Howdoesscaleaffectcapturecost?Theothermainfactorthatdrivesthecostofcaptureiseconomiesofscale.Inmostindustrialprocesses,higherratesofproductiontypicallydrivelowerunitcosts.Carboncaptureisnoexception.Capitalcostsofprocessplants(includingCO2captureplants)tendtorisenon-linearlywithscale–typicallywiththecapitalcostbeingproportionaltoscaletothepowerofn(wherenrangesfrom0.6(singletrain)to0.8(multipletrainsinparallel)).Theexponentscanvaryfromplanttoplant–thesearesimplytypicalvalues(Tribe&Alpine1986).Forasingletraincaptureplant,adoublingofcapturecapacitycanbeexpectedtodeliveranincreaseincapitalcostintheorderof50%.Thismeansthecapitalcostperunitofproduction(i.e.costdividedbycapacity)wouldbeexpectedtofallbyapproximately25%.Theeffectisevenmorepronouncedforlargerincreases.A10timesincreaseinscaleyieldsacostsavingofapproximately60%perunitofproductionforasingletrainplant.Theeffectofscaleoncapturecostcanseesignificantcaptureplantcostsavings(pertonneofCO2captured)whenmovingfromsmallscale(e.g.pilotplant)tofull-scaleinstallationscapturingmillionsoftonnesofCO2peryear.Thesescaleeffectsaregeneralandvarysignificantlybetweenprocessplantsofdifferenttypes.Todemonstratetheeffectofscaleoncarboncapture,itwasinvestigatedinanInstitutemodellingstudy.8.3.QuantifyingtheimpactofpartialpressureandscaleontheCurrentCostofCarbonCaptureTheInstituteundertookprocessmodellingofCO2captureplantstoquantifyexpectedoverallcostsofCO2captureacrossarangeofapplicationsandscales.Aspecificcaptureprocesswasusedforthestudy-asolvent-basedcaptureprocessusinganaqueoussolutioncontaining30%byweightofMEA(monoethanolamine)asthecapturemedia.MEAisachemicalsolvent,whichmeansitissuitableforlowerpartialpressuresofCO2–unlikephysicalsolvents.ThisprocesswaschosenduetoitscommercialavailabilityanditscaptureperformanceoverarangeofCO2partialpressures(IEAGHG2019;Rochelle2009;Bains,Psarras&Wilcox2017).30%MEAiswellexploredandhasbeendeployedincaptureapplicationsinnaturalgasprocessingandpowergeneration.Althoughcostsofothertechnologieswillbedifferent,howthecostsofcapturevarywithscaleandwiththeapplicationcanbeinterpretedasapplicableforothercaptureprocessesaswell.Capturecostwasestimatedasthecombinationofcapitalandoperatingcostfortheplant,assumingan8%costofcapitalover30years,expressedinUSDollarspertonneofCO2captured.ThisisaformoflevelisedcostforCO2captureandisaconsistentbasisforcomparisonbetweencaptureplantsoperatingatdifferentscalesacrossdifferentapplications.Otherassumptionsinthemodellingareincludedintheappendices.Figure11showsthecostresultsofcarboncapturefromfluegasstreamswithvarioussourcegasCO2partialpressuresoverarangeofscalesforeachapplication.TECHNOLOGYREADINESSANDCOSTSOFCCS28Figure11-ImpactofCO2partialpressureandscaleonthecostofcarboncapture.Studiedfluegasstreamsareatatmosphericpressure.Thecirclemarkerindicatesthecostatthemaximumstudiedsizeofasinglecarboncaptureplant.Eachgreybarindicatesthecapturecostrangesfrom10%to100%ofthescalesshowninthecalloutsforthatparticularapplication.TwogeneraltrendsareobservedinFigure11.Thefirstisthatcapturecostisveryhigh(overUSD180/tonneCO2)whenCO2partialpressureisverylow(1kPa)andfallssignificantlyforhigherpartialpressures.Thesecondisthateconomiesofscalebecomeincreasinglyimportantaspartialpressuresgetsmaller.Althoughthepercentagesavingsfroma10-timesincreaseinscalearesimilar(fromtopofeachbartothebottom),themuchhigherabsolutecostnumbersmakescaleamorevitalcontributortocostsavingsatlowerpartialpressures.UnderstandinghowcostvariesbetweenindustriesisusefulatthemacroscalewhendecidingwheretomakeCCSinvestments.However,foragivenCO2source,itisunusualtohavecontroloverCO2partialpressureorthescaleofthestreamfromwhichcapturewilloccur.IfmultipleCO2sourcesarephysicallyclose,theycanbeaggregatedtoformalargersourcegasstream.Itisalsopossible(albeitexpensive)tocompressthesourcegastoincreasetheCO2partialpressure.Butmoretypically,thescaleandCO2partialpressurewillneedtobetakenasgiven.ThefollowingsectionoutlinesadditionalwaystoreducethecostofCO2captureforspecificsourcegasstreams.1234568101214182226303541050100200300150250AluminiumSmelting:0.02to0.2MtpaCO₂CapturedSteelPlantDedustingChimney:0.04to0.4MtpaCO₂CapturedNGCC/SteelSinterPlant:0.07to0.66MtpaCO₂CapturedPetroleumCoke/NaturalGasPowerPlant:0.12to1.2MtpaCO₂CapturedBiomassPowerPlant:0.13to1.3MtpaCO₂CapturedCoalPowerPlant:0.15to1.5MtpaCO₂CapturedSteelHotStovePlant:0.2to2.0MtpaCO₂CapturedSteelCOREXPlant:0.2to2.0MtpaCO₂CapturedCementKilnPlant:0.18to1.8MtpaCO₂CapturedCOSTDIFFERENCEATVARIOUSSCALEOFPLANTCOSTATMAXIMUMSTUDIEDSIZEOFCAPTUREPLANTTECHNOLOGYREADINESSANDCOSTSOFCCS29Figure12-Costofcarboncaptureinvarioustypesofpowerandindustrialprocesses,excludingdownstreamCO2compression.44ForindustrialprocesseswithhighconcentrationCO2/inherentCO2captureprocess,e.g.,naturalgasprocessing,fertiliser,bioethanol,ethyleneoxidationproduction,acostrangeof$0–10pertonneofCO2capturedisassumedforCO2conditioning.ThecostisadjustedaccordingtothepricesoffeedstockintheUnitedStates,e.g.,$2.11perGJcoaland$4.19perGJnaturalgasprices(Jamesetal.2019),aswellas$8.8perGJwoodpelletsbiomass(CanadianBiomassMagazine2020).050100200300150250POWERGENERATIONINDUSTRYSECTORSREFINERYCEMENTIRON&STEELTECHNOLOGYREADINESSANDCOSTSOFCCS309.1.EconomiesofscaleandmodularisationTheimpactofeconomiesofscalewasfurtherinvestigatedoverarangeoffluegasvolumesintwopowergenerationapplications:Naturalgascombinedcycle(NGCC)andSupercriticalPulverisedCoal(SCPC)(Figure13).ThiswastofurtherexaminethecosttrendswhenthefluegasCO2partialpressureisset,butthescaleisnot.9.0COSTREDUCTIONOPPORTUNITIESINCARBONCAPTUREFigure13-ImpactofplantscaleonthecostofcarboncaptureinNGCCandSCPC.Thecoalandnaturalgasreferenceprices(UnitedStates)appliedare$2.11perGJand$4.19perGJ(HHV)respectively(Jamesetal.2019).Aconstructionleadtimeof3yearsforallcasesisassumed.TECHNOLOGYREADINESSANDCOSTSOFCCS31Asscaleincreases,capturecostdeclinesconsiderablyasthecaptureplantscalesup.Thecostreductionsdiminishabovearound0.3MtpaofCO2captured,eventuallylevellingoffby0.5-0.6Mtpa.ThesefindingsareusefulwhenspecifyingfuturepowergenerationunitswithCCSorretrofitofCCStoexistingunits.Tominimisecapturecosts,thecapacityofCO2captureunitsshouldbeatleast0.4-0.45Mtpa.Therearecertainlyotheradvantagesofscalenotconsideredhere,suchasbuildinggenerationfacilitieswithmorecompetitiveelectricityproductioncosts–butthesefactorsarenormallyconsideredduringtheusualdevelopmentofnewpowergenerationfacilities.Thekeyfindingisthatitisessentialnottomakefuturegenerationunitstoosmall.TheCCScostsbecomemuchhigheratsmallscalesandshouldbeavoidedifpossible.Thefactthatthecostsofcaptureleveloffaboveacertainscaleprovidesanexcellentopportunitytofurtherreducecoststhroughmodularisation–thestandardisedproductionofcarboncaptureplants.Byspecifyingstandardunitsatasufficientlylargescale(say~0.5Mtpa),thefulleconomiesofscalecanbeexploited.Forapplicationsrequiringlargercapturerates,multiplecaptureunitscansimplybedeployedinparallel.9.2.ModularisationModularcarboncaptureplantsarethosebuiltinastandardisedwayundermassproductiontechniques.Typically,theyaremanufacturedoffsiteinpurpose-builtfacilitiesanddeliveredindiscrete,modularcomponents(ofteninshippingcontainers).Forexample,AkerCarbonCapturepresentlymarketsitsmodularcarboncaptureplantunderthe"JustCatch"brand.Modularsystemscanreduceplantcapitalcoststhroughincreasedeconomiesofplantmanufacturingscale.Modularcarboncaptureplantsalsohelpreducecoststhrough(GlobalCCSInstitute2020):•Standardisedplantfoundations•Standardisedplantdesigns,includingallengineeringdrawings•Remoteorautomatedoperation•Modularpackaging,whichgreatlyreduceson-siteconstructiontimeandcosts.Thereducedconstructiontime,enabledbymodularisation,yieldsadditionalprojectfinancialbenefits.Shorterconstructionperiodsrequireshorterperiodsofinsurance,lowercostsassociatedwithaccessingoracquiringland,shorterdeploymentoftemporarysiteconstructionfacilitiesorworkerfacilities,lesstimespentinthemanagementofcommunityandcompliancemattersrelatedtoconstruction,andareducedrequirementfortheuseofprojectmanagementstaff.Ashorterconstructionperiodalsobringsforwardoperationalcommencementandthusthebenefitsofoperation.Delaysinrevenuegenerationforanyprojectcansignificantlyimpactthenetpresentvalueoftheprojectasfuturerevenues(andcosts)arediscounted.Byusingmodularisationtoshortenconstructiontimes,significantsavingsintheaboveareascanbemade.Actingtogether,thesefactorsmaymakethedifferencebetweenaprojectmeetingfinancialhurdlesandproceedingtoinvestmentorfailing.9.3.Utilisinglow-costenergysupplystrategiesAsignificantcontributortothecostofcarboncaptureisthecostofenergy.Forsolvent-basedcaptureplants,thatenergyismostlyprovidedintheformofsteam.TheInstituteundertookastudyonthecostofcaptureusingdifferentregenerationheatsupplystrategies,assummarisedinFigure5.Thesolvent-basedcarboncapturetechnologyrequireslow-pressuresteamforsolventregeneration.Inmodernpowerplantsandwell-heat-integratedindustrialplants,theenergypenaltyforcarboncaptureisgenerallyreflectedaseitheralossofelectricitygenerationortheinvestmentandoperationcostofanewboiler.Inlargeindustrialplants,suchassteel,pulpandpaper,andwastetoenergyplants,theheatsupplyfromthecombinedheatandpower(CHP)plantscanbeused.Thisheat,inturn,supportstheefficientcarboncaptureprocessintegrationwithoutbuildinganewboiler.CHPplantscanbedeployedrapidlyandcost-effectivelywithlittlegeographicallimitation.CHPplantscanuseavarietyoffuels,bothfossilandrenewable-based.Incement,ironandsteelproduction,therearealsoampleopportunitiestousewasteheatfromtheproductionprocessestobringthecapturecostdown.TECHNOLOGYREADINESSANDCOSTSOFCCS32Forexample,thetemperatureofthecalcinationprocessincementproductionisover800°C(Alietal.2018).Thereisasubstantialamountofexcessheatfromtheoutletgasthatcanbeutilisedforcarboncapture.Inironandsteelproduction,thereareopportunitiestorecoverexcessheatfromdryslaggranulationandcokedryquenchingprocesses(Biermannetal.2019).AscanbeseenfromFigure14,usingwasteheat,whereavailable,canreducethecostofcapturebyaroundUSD10-20/tonne.9.4.FinancingSupporttoScaleUpAccordingtotheInternationalEnergyAgency(IEA)'sSustainableDevelopmentScenario(SDS),theoperatingcapacityofCCSneedstoincreasetoaround5.6gigatonnes(Gt)perannumby2050.TheSDSistheIEA'sfuturescenariowhereenergy-relatedsustainabledevelopmentgoalsforemissions,energyaccessandairqualityaremet(InternationalEnergyAgency2020b).PresentlytheglobaloperatingCCScapacityisonlyaround40Mtpa,lessthan1%oftherequiredcapacity(GlobalCCSInstitute2021a).ThegapbetweencurrentandrequiredCCScapacitywillrequirescale-upofCCSincentivestoaccelerateitsdeployment.Financialandpolicymeasureswillbeessentialtoachievetherequiredspeedandextentofcapacitygrowthrequired.Improvingtheavailabilityandcostoffinancehasasignificantimpactonthecostofcapture.Opportunitiesexistthroughbringingdowninterestratesthroughtheprovisionoflow-costfinance,loanguarantees,masterlimitedpartnerships5andprivateactivitybonds6(Brandletal.2021).Figure15showsthecostofCCS,includingdownstreamCO₂compression,transportandstorage.Asafamiliarpointofreference,thisiscomparedwiththeUSD50/tonnetaxcreditprovidedbytheUS§45QtaxcreditFigure14-Overviewofthecostofcarboncaptureusingdifferentregenerationenergysupplystrategies;naturalgasboiler,combinedheatandpower(CHP),coal-firedpower,NGCC,wasteheatandzeroenergybaseline.5MasterLimitedPartnerships(MLP)areUSFederaltaxstructuresthatprovidefavorabletreatmentofpartnershipsforFederaltaxpurposes.Theyareallowedtoraisefundsbyissuingandtradingequitysharessimilartoapubliccorporation,thusreducingthecostsoffinancingprojects.TheopportunitytoutilizethetaxstructureoftheseparticularpartnershipswouldbeadvantageoustoCO2pipelinesforCCUS.6PrivateActivityBonds(PABs)aretax-exemptbondsthataresimilartomunicipalbondswhichcanlowerthecostofcapitalforaprojectbymakingdebtavailableonmorefavorableterms.TECHNOLOGYREADINESSANDCOSTSOFCCS33Figure15-Thecostofcarboncapture,transportandstorageasafunctionofthecostofcapitalandCO₂partialpressure.A30yearprojectlifetimeisassumed.policy(seebreakoutbox)displayedonthechartbythereddottedline.InFigure15,auniformallowanceofUSD20/tonnewasmadeforCO2compression,transportandstorage.Thisisconsistentwithstorageclosetothecapturesite,atsignificantscale,withahighqualitystorageresource.ForallcostsofcapitalandallCO₂partialpressures,the45QincentiveisnotenoughtocoverthefullcostoftheCCSvaluechain,thoughforhighpartialpressuresandalowcostofcapitalitcomesclose.Therefore,additionalincentiveswouldberequired.Theseadditionalincentivescouldinclude:•RevenueforthesaleofCO₂forenhancedoilrecovery•Capitalgrantstoreducetheinvestmentrequiredbyproponents•RegulationofCO₂emissions(e.g.requiringprojectstohaveanemissionsintensitybelowalegallimit,orapplyingemitterstopayforCO₂emissions).ThisanalysisexplainswhathasbeenobservedintheUSA;CCSfacilitieshaveallbenefittedfromadditionalincentivessuchasEORrevenueorcapitalgrantsand/orhaveaccesstoverylowcostCO2transportandstorage.Thecostofcaptureforeachfluegasstreamdecreaseswithinterestrates(lowercostofcapital).However,themagnitudeofchangeismoreobviousatlowerCO2concentrationfluegasstreams.ThisisbecausecarboncaptureatlowerCO2concentrationsismorecapitalintensivepertonneCO2captured.ThismakesfinancialsupportmoreimportantformorediluteCO₂streamssuchasforcapturefromnaturalgaspowergenerationoraluminiumsmelting.TECHNOLOGYREADINESSANDCOSTSOFCCS34The45QtaxcreditintheUnitedStateswasintroducedundertheEnergyImprovementandExtensionActof2008andwasrecentlyamendedundertheBipartisanBudgetActin2018.ItprovidescaptureoperatorswithcreditsforeachtonneofCO2storedorutilised,includingforCO2-EOR,whichcanbeusedtoreducethecaptureoperator'staxliability.The45Qtaxcreditschemeisopentopowerplants,industrialplantsandDACfacilities,providedtheymeettheminimumeligibilityrequirementsspecifiedintheInternalRevenueCode.Thisincludestheneedfornewprojectstobeunderconstructionby1January2024andmeetminimumannualcapturethresholds.Therevisedschemeprovidesataxcreditof$31pertonneCO2in2019forCO2storedindedicatedgeologicalstorage,risingto$50pertonneCO2by2026.Thereafter,thetaxcreditvalueriseswithinflation.ForCO2-EORandotherCO2utilisationprocesses,theschemeprovidesataxcreditof$19pertonneCO2in2019risingto$35pertonneCO2in2026.Operatorscanclaimthecreditfor12years.§45Q-TAXCREDITFORCO2STORAGE(GlobalCCSInstitute2021c)9.5.LearningbydoingThecostofCO2capturefromlow-to-mediumpartialpressuresourcessuchascoal-firedpowergenerationhasbeenreducingoverthepastdecadeorso,andisprojectedtofallby50%by2025comparedto2010.Thisisdrivenbythefamiliarlearning-processesthataccompanythedevelopmentanddeploymentofanyindustrialtechnology.StudiesofthecostofcaptureandcompressionofCO2frompowerstationscompletedtenyearsagoaveragedaroundUSD202095/tCO2.Comparablestudiescompletedin2018/2019estimatedcaptureandcompressioncostscouldfalltoapproximatelyUSD202050/tCO2from2025asshowninFigure16.Forexample,twocoal-firedpowerplantCCSretrofitshavebeenconstructedinCanadaandtheUnitedStates.Thesetwofacilitiesuseddifferentproprietarycapturetechnologiesandadopteddifferentretrofitstrategieswithrespecttotheintegrationofthecaptureplantwiththepowerplant,sotheyarenotdirectlycomparable.However,thedifferenceinactualcaptureandcompressioncostsobservedinthesetwofacilitiesisconsistentwiththetrendobservedinstudies.CapturecostsforBoundaryDaminCanada,whichcommencedoperationin2014,areapproximatelyUSD2020105/tCO2(InternationalCCSKnowledgeCentre2018).ThesubsequentPetraNovaCCSretrofitintheUnitedStates,whichcommencedoperationin2017,achievedcaptureandcompressioncostsofapproximatelyUSD202070/tCO2(PetraNovaParishHoldingLLC2017).Inbothcases,thedevelopersofthesefacilitiesadvisedthatiftheybuiltthefacilityagain,theycouldreducethecapitalcostbyatleast20%byapplyingwhattheyhadlearnedfromtheirfirstproject.This"learningbydoing"effectisobservedacrossallindustrialtechnologies.Lessonsrelevanttoplantdesign,maintenance,operationandfinancingarehighlyvaluabletosubsequentprojects.Sharingofnon-proprietarylearningsfromCCSprojectswillenablefutureprojectstobedevelopedatlowercost.TECHNOLOGYREADINESSANDCOSTSOFCCS35Figure16-ThecostofCO2captureandcompressionatcommercialpost-combustionCO2capturefacilitiesatcoal-firedpowerplants,includingtheonesinoperationandinadvanceddevelopment(FrontEndEngineeringDesign,FEED)9.6.TechnologyinnovationTherehavebeenconcertedeffortsaimedatreducingcostsassociatedwithcarboncapturesystems,includingthenextgenerationtechnologiesthatareemergingandtransformationaltechnologiesinR&Dstage(NETL2020):•Nextgenerationtechnologiesaredefinedasthosethathaveprogressedthroughthelaboratory/benchdevelopmentstageandarenow(orsoonwillbe)undergoingtestingatpilotscale.Thesetechnologiesarespecificallytargetingcostreductionsthroughthedevelopmentofenhancedmaterials,processes,andequipmenttofacilitatethedeploymentofCCS.•Transformationaltechnologiesareanticipatedtooffersignificantreductionsincapturecostsbeyondthoseachievedforsecond-generationtechnologies.Mosttransformationaltechnologiesarecurrentlybeingtestedatthelaboratory/benchscale.Ingeneral,threekeyfactorsinfluencethecapitalcostsofcapturesystems:thesizeoftheequipment;theselectionofmaterials;andthecomplexityoftheprocessanditsintegrationwiththebasefacility:•LargeequipmentsizesarepartlyafunctionofthevolumeofgasthatrequirestreatmenttoremoveCO2.CapturemediawithfasteruptakeandregenerationkineticsorwithhigherCO2capacityrequiresmallervessels.Inaddition,differentprocessoperatingregimes,suchashigherpressures,mayallowfordecreasesinequipmentsize.•Intermsofmaterials,theuseofreactionvesselsfabricatedusingstainlesssteel(orotherhigh-costmaterials)canhaveamajorimpactoncapitalcost.Iflower-costmaterialscanbeused(e.g.,carbonsteelorconcrete),capitalcostscanbereduced.Thisneedstobebalancedagainsttheneedforgoodcorrosionresistanceandequipmentintegrity.•Forretrofitapplications,asignificantpartofthecapitalcostisrequiredtointegratethenewsystem0202012201420162018202020222024202620282030406080100120BOUNDARYDAMPETRANOVAPROJECTTUNDRASHANDSANJUANSURATHELEGERALDGENTLEMANTECHNOLOGYREADINESSANDCOSTSOFCCS36intotheexistingasset(e.g.,powerplant).Thiscantaketheformofintegrationofthesteamandcondensatesystems,expansionofthecoolingsystems,fluegasandexhaustconnections,gasrecyclingsystems,andothers.Steamextractioncanbeparticularlycomplexandcostlywhensignificantmodificationsarenecessaryonasteamturbine;intheworstscenario,completereplacementofthesteamturbinemaybeneeded.Savingsonoperatingexpenseshavebeenachievedthroughthedevelopmentofadvancedsolventswithlowerregenerationenergyandhighdegradationresistance.Forexample,theenergyrequiredforamineregenerationappliedtocoalcombustionfluegashassignificantlyimprovedfromaround5.5to3.0GJpertonneCO2capturedforadvancedamines,andtobelow2.5GJpertonneCO2inthelatestenhancedsolventtechnology.Thistranslatesdirectlyintoareducedcostofsteamforthecaptureplant.SolventdegradationoccurswhenrepeatedheatingandcoolingofsolventsenablethechemicalbreakdownofthecomponentsofthesolventneededforCO2capture.ItisaparticularconcernforconventionalsolventssuchasMEA.Itcancontributetosignificantongoingcoststoreplace(makeup)degradedsolvents.Technologicaldevelopmentshavebeentargetedatreducingsolventdegradationthroughnewcompoundsandsolventadditives.Thiscanreducedemandforthemakeupofthecapturesolvent,reducingoperatingcosts.Additionally,improvementsinprocessdesignandoptimisationsuchasinter-cooling,leanvapourrecompression,splitflowarrangementandstripperinter-heatingcanfurtherdrivecostsdownwhenproperlyused.Heatintegrationisanothertechniquetoreduceoperatingexpensesandtheamountofsteam/coolingwaterneeded.Thisinvolvesusingsourcesofheatandcoldinthehostplanttoprovidesomeoftheheatingandcoolingrequiredforthecaptureplant.Findingtheoptimalsteamsupplymethod,minimisingtheinefficiencyofthesteamextractionatnominalandpartialloads,andrecoveringwasteheatfromthecapturesystemforuseintheplantsteamcyclearenowbeingwidelyappliedtothedevelopmentofnewgenerationcarboncaptureplant.Othercarboncapturetechnologyplatforms,suchasmembranes,adsorption,oxy-fuel,andotherswillexhibitdifferentdistributionsofcostandenergyconsumption.Ifoperatingcostsarehigh,thenthecapitalcostswillneedtobelow,andviceversa(analogoustothetrade-offthatoftenexistsbetweencapitalandoperatingcostsinmostindustrialprocesses).Thesectionsbelowintroduceapproachesbeingpursuedtodecreasecostsandenergyconsumptionassociatedwithcarboncaptureacrossawiderangeoftechnologies.Table5summarisesaselectionofnext-generationcapturetechnologiesthatcouldofferuniquefeatures,eitherthroughmaterialinnovation,processinnovationand/orequipmentinnovationforreducedcapitalandoperatingcostandimprovedcaptureperformance.MoretechnologiesaredescribedintheCCSTechnologyReadinessLevelsection.TECHNOLOGYREADINESSANDCOSTSOFCCS37Table5-Selectednext-generationcapturetechnologiesbeingtestedat0.5MWe(10t/d)scaleorlargerwithactualfluegas.Amongthem,afewtechnologiesarealreadybeingnominatedasthecarboncapturecandidatesforthenextsignificantwaveofCCSfacilities(GlobalCCSInstitute2021a).•IonCleanEnergy'snon-aqueousICE-21solventhasbeenselectedforaFront-EndEngineeringDesign(FEED)studyofretrofittingCCStoNebraskaPublicPowerDistrict'sGeraldGentlemanStation.•MembraneTechnologyandResearch'sPolarisTMmembranesystemhasbeenselectedforaFEEDstudyatBasinElectric'sDryForkStation.•MitsubishiHeavyIndustries'newKS-21TMsolventhasbeenselectedforaFEEDstudyofretrofittingCCStoPrairieStateGeneratingCompany'sEnergyCampus.•Linde-BASF'slean-richsolventabsorption/regenerationcycletechnologyhasbeenselectedforaFEEDstudyatSouthernCompany'snaturalgas-firedpowerplant.•TheUniversityofTexas'spiperazineadvancedstripper(PZAS)processhasbeenselectedforaFEEDstudyattheMustangStationofGoldenSpreadElectricCooperative.•Svante'sVeloxoThermTMhasbeenselectedforaFEEDstudytocaptureCO2fromthefluegasofthecementkilnandnaturalgasfiredboilerinaLafargeHolcimcementproductionfacilityTosummarise,thereareampleopportunitiestodrivedownthecostofcarboncaptureandtoshortenprojectdeploymenttimelines,througheconomiesofscale,modularisation,heatintegration,processoptimisation,combinedwithnext-generationtechnologies.However,alloftheserequirescale-uptofacilitatelearning-by-doingandlearningbyinnovating.Itwouldbesimplistictodrawupthefuturecostofcarboncapturethroughasinglelearningratetofactorallthecostreductiondrivers,ascarboncapturehasonlyjustbeguninmanypowerandindustrialsectors.Therearealsomanycapturetechnologiesinthenear-commercialpipeline(forexample,advancedchemicalsolvents,highCO2permeancemembraneandadsorbenttechnologies)thatcouldbemorecost-effectiveandefficientincapturingCO2.VENDORTECHNOLOGYCURRENTSCALEY14Y15Y16Y17Y18Y19Y20Y21Y22Y23Y24Y25SOLVENTSLinde/BASFAdvancedAmine/HeatIntegration15MWeIONCleanEnergyNon-AqueousSolvent/AmineMixture12MWeIFPEN/AxensSolid-liquidPhaseChangeSolvents0.7MWeUniversityofKentuckyHeat-IntegratedAdvanced0.7MWeUniversityofTexasatAustinPiperazineandFlashStripperProcess0.5MWeSORBENTSSvanteIntensifiedRapid-CycleTSA2MWeTDAAlkalizedAluminaSorbent0.5MWeMEMBRANESFuelCellEnergyMCFCwithElectrochemicalMembrane3MWeMTRPolaris™Membrane1MWeSOLIDLOOPINGCarbonEngineeringChemicalLooping0.5MWeINHERENTCAPTURENETPower/8RiversCapitalAllamCycle25MWeBENCHDEMOSMALLPILOTLARGEPILOTTECHNOLOGYREADINESSANDCOSTSOFCCS3810.0COSTOFTRANSPORTANDSTORAGECapturedCO2needstobetransportedtoastoragesiteforinjectionintoageologicalformation.TherearetwowaysbywhichlargeamountsofCO2maybetransported:•CompressionofCO2todensephase(>74bar)forpipelinetransport•RefrigerationofCO2toliquidphasefortransportbyship,truckorothervehiclesCapturedCO2usuallycontainswater.WatermustberemovedpriortotransporttopreventCO2andwaterformingacidsthatcancorrodepipelinesandotherequipment.Dehydrationistypicallydoneinconjunctionwithcompressionorrefrigeration.Theindicativecostsofpipelineandshippingtransportmodesvarysignificantlywithscaleandwithtransportdistance.TheCCSvaluechainconsistsofvariouscomponents,eachwitharangeofcoststhatvarywithdifferentdrivers.CO2mustbecaptured,compressedanddehydrated,thentransportedtotheinjectionsiteandfinallyinjectedandthenmonitored.Figure17providesindicativecostsforeachpartofthevaluechain(notingthattransportwillbebyshiporpipeline,andgenerallynotboth)assumingconstructionontheUSGulfcoast.Figure17costsareindicativeonly.Thecostsarealwaysprojectspecific.Therearesignificantvariationsinthecostofcapital,ofcapitalequipment,oflabour,ofenergyandotherconsumablesbetweenlocations.Figure17-IndicativeCostRangesforCCSValueChainComponents(excludingcapture)–USGulfCoast77BasedonGCCSIprocesssimulationandanalysisof:ZEP2019,ThecostofsubsurfacestorageofCO2,ZEPMemorandum,December2019.IEAGHGZEP2011,TheCostsofCO2Storage,Post-demonstrationCCSintheEU.NationalPetroleumCouncil2019,MeetingtheDualChallenge,ARoadmaptoat-scaledeploymentofcarboncaptureuseandstorage.NationalPetroleumCouncil2019,Topicpaper#1,SupplyandDemandAnalysisforCaptureandStorageofAnthropogenicCarbonDioxideintheCentralUS.TECHNOLOGYREADINESSANDCOSTSOFCCS39Projectcharacteristicsalsodetermineprojectcostsinanylocation.Forexample,theNorthernLightsproject,whichplanstotransportCO2byshipfromvariousportstoastoragesiteundertheseabedoftheNorthSea,istargetingstoragecostsof€35-50/tCO2whichisconsiderablyhigherthantheshippingcostsshowninFigure5.810.1.CO2transportcostdriversPipelinecostsarestronglyaffectedbyeconomiesofscale.Thisisthecasefordensephasepipelines(>74bar)orgasphasepipelines.Allelsebeingequal,gas-phasepipelinesarelargerindiameterthandensephasepipelines–thistendstomakethemmoreexpensive.Assuch,bulktransportofCO2isusuallydoneunderdensephaseconditions.Figure18showsanestimateofthecostofCO2pipelines,basedonaninternalanalysisofCO2pipelinecostsinAustralia.Theanalysisincludedannualisedcapitalcostandoperatingcosts.Althoughspecificpipelinecostsvaryfromcountrytocountry,thegeneralpatternofthesecostcurveswillbeobservedinalllocations.Pipelinecostsareremarkablyhighatsmallflowrates,fallingrapidlywithincreasingflowbeforeeffectivelylevellingoffonceflowsreachthemegatonnerange.ThestronginfluenceofpipelineeconomiesofscaleisakeydriverofthedevelopmentofCCShubs.MegatonneCO2sourcessuchaspowerstations,gasprocessingplantsorotherlargeindustrialsourcesshouldbeabletosupportaneconomicalCO2pipelineontheirown.Thesecanthenserveasanchorcustomersforahub,enablingsmallerCO2sourcestoalsousethepipelinewithoutincurringthemuchhigherpipelinecostsobservedatsmallflowrates.Forverylongtransportdistancesandmid-rangetonnages,shippingcanbecomemoreeconomicalthanpipelines.Shippingdoesnothavethesameeconomiesofscaleaspipelines,buthastheadvantagethatitcanbedeployedinamodularfashion–startingwithoneshipandscalingupovertimeasneeded.Itcanalsobedirectedtodifferentstoragesites,whichmaybeusefulifpricecompetitionbetweenstoragesitesemerges.8AasenE.I.,andP.Sandberg.2020.NorthernLights.AEuropeanCO2transportandstoragenetwork.PresentationbyEquinortotheZeroEmissionsPlatform(ZEP)Conference,EuropeanParliament.28January2020;BrusselsFigure18-IndicativeCostsofCO2pipelines-densephase(>74bar)andgasphaseDENSEPHASELINESGASPHASELINES00.511.522.533.544.550.600.500.400.300.200.100.00TECHNOLOGYREADINESSANDCOSTSOFCCS4010.2.CO2compressiondriversCO2compressiontothedensephase(>74bar)isrequiredforstorage,thusmakingthebestuseoftheavailablevoidspaceinthestorageformation.Forpipelinetransport,compressingtodensephasealsoreducesthecostoftheCO2pipelinecomparedtogas-phasetransport(referfigure18).CO2compressioncosthastwomaincomponents:capitalcostoftheequipment,andenergycosttodrivethecompressor.Compressionenergycostsscalelinearlywithflow–doublingtheflowwilldoublethecompressionenergycost,allelsebeingequal.Assuch,thereisnocostadvantagetoincreasingthescaleforenergycost.Compressioncapitalcostsdoexperienceeconomiesofscale,uptoapoint.CommerciallyavailableCO2compressionsystemsareavailableuptoamaximumpowerratingintheorderof40MW(Mccollum&Ogden2006,p.3).ForCO2flowsrequiringmorepowerthanthis(overaround3MtpaofCO2),multiplecompressiontrainswillberequired.Atthispoint,theeconomiesofscalewillhavebeenexploited.Ascompressionsystemsratedover40MWbecomeavailable,itmaybepossibletoextendtheeconomiesofscaletosomewhathigherflowrates.Althoughtherecontinuetobeincrementalimprovementsincompressiontechnology–mainlyaimedatincreasingefficiencyandreliability–significantimprovementsinCO2compressioncostsarenotanticipatedduetothematurityofcompressortechnology.10.3.DriversforcostinstorageandfuturecostreductionsInjecting,storingandmonitoringCO2withinthesubsurfacearewellestablished.Thedriversforcostandfuturecostreductionsarefoundinthreekeyareas:siteselection,deploymentandtechnologyadvancement.10.3.1.SiteSelectionThematurityofthetechnologyadoptedfromtheoilandgasindustryandenvironmentalservicesprovideshigherconfidenceincostestimates.Thereisabroadrangeofgeologicalstoragecosts.Forexample,theNationalPetroleumCouncilestimatedstorageintheUnitedStatesat$1to$18pertonneofCO2(NationalPetroleumCouncil2019).Thefactorsthatcontributetothisrangeincostsareattributedtothesite;andinclude:1.Access:offshoreissignificantlymoreexpensivethanonshorestorage;existinglandusesandaccesscanimpactcostsonshore.2.Knowledge:awell-characterisedsite(previousoilandgas,CO2explorationordevelopment)haslowerdevelopmentcoststhanun-exploredsites.Forexample,depletedoilandgasfieldshaveasignificantamountofdata,attainedduringproductionofhydrocarbon,requiringlessadditionaldatatoprovethesuitabilityofthestorageformation.3.Existinginfrastructure:surfacefacilities,offshoreplatforms,pipesandwellscanbere-usedreducingthecapitalinvestmentrequired.4.Storagecapacity/injectivity:largestorageformationswithhigherinjectionratesrequirefewerinjectionwellspertonneofCO2injected.5.CO2volumeandpurity:alargevolumeofnear-pureCO2improvesinjectionefficienciesoveranoperation'slifetime.6.Monitoring:easeofdeployment,CO2footprint,post-closurerequirementsallimpacttheongoingcostsofmonitoringanoperation.AcomprehensivebuttheoreticalanalysisinEuropehighlightedthecostdifferencesdependingonsitechoice,re-useofinfrastructure,andexistingknowledge(Figure19).Asdetailedabove,theanalysisfoundanonshoresitewithexistingdataandinfrastructurere-useisthelowestcost.Themostexpensiveisanoffshoresitewithlittledataandnoexistinginfrastructuretobere-purposedforCO2storage(ZeroEmissionsPlatform2013).TECHNOLOGYREADINESSANDCOSTSOFCCS41Figure19-Storagecostrangesfordifferentscenarios;Ons:Onshore,Offs:Offshore,DOGF:DepletedOilorGasfield,SA:salineformation,Leg:re-useinfrastructure,Noleg:nore-useofinfrastructure(ZeroEmissionsPlatform2013).Table6-Selectedstoragescenariosforcommercialandpilot/demonstrationCCSfacilities.DOGF:DepletedOilorGasfield,SA:salineaquiferformation(GlobalCCSInstitute2021b).-Selectedstoragescenariosforcommercialandpilot/demonstrationCCSfacilities.DOGF:DepletedOilorGasfield,SA:salineaquiferformation,re-usereferstooilandgasproductioninfrastructure(GlobalCCSInstitute2021b).AccordingtotheCO2REdatabase,themajorityofoperatingprojectstodatehavetargetedonshore,deepsalineformations(GlobalCCSInstitute2021b)(Table3).However,offshoresalineformationsareincreasinglybeingdeveloped,especiallyintheNorthSeaoftheUK,EU,andNorway.Depletedoilandgasfieldshaveonlybeenusedforpilotanddemonstrationprojectstodate,undoubtedlyreflectingthelowestcostR&D.Despitetheloweroverallcosts,commercialCCSfacilitiesinthedevelopmentpipelinearenotsolelypursuingoilandgasfields.FutureCCSoperationscompriseamixofdeepsalineformationsandoilandgasfields,asseeninTable6.Accesstodepletedfieldsisnottheprimaryreasonforthismix.TheprimarydriverfordevelopingdeepsalineformationswithlargecapacityandhighinjectionratesappearstobeincreasingCO2storageratesandimprovingeconomiesofscale.ThisincreasedCO2storagerateisevidentinthatthemajorityofCCShubsindevelopmentwhicharepursuingtheseoptions,includingCarbonNet(Australia),NorthernLights(Norway),andPORTHOS(TheNetherlands).STORAGESCENARIOCOMMERCIALCCS/HUBSPILOTOnshore;DOGF;Re-use211Onshore;DOGF;Nore-use21Onshore;SA;NoRe-use1618Offshore;DOGF;Re-use4Offshore;DOGF;Nore-use0Offshore;SA;NoRe-use12TECHNOLOGYREADINESSANDCOSTSOFCCS4210.3.2.DeploymentAhighinjectionrateperwellandCO2storedpersiteisnottheonlywaytoachieveeconomiesofscale.IncreasingtherateofdeploymentofCCSoverallwillalsoreducethecostsforCO2storageoperations.Todate,themanufacturingofCO2-specificmaterialsandexperienceinCO2operations,althoughmature,isstillsmallscalecomparedtotheoilandgasindustry.In2018,around80MtpaofnaturalandanthropogenicCO2wasinjected(GlobalCCSInstitute2020;NationalPetroleumCouncil2019).Tomeetclimatetargets,over5,000MtpaofanthropogenicCO2mustbeinjectedby2050(GlobalCCSInstitute2020).AsexplorationandappraisalforCO2storagesitesbecomeroutine,a20%reductioninappraisalcostsisexpecteddueprimarilytothedevelopmentofCO2-specificseismicandwelldrilling(IEAGHG2020b)processes.TheIEAGHGestimatesthat30-60storagesitesmustbedevelopedeachyeartomeettheIEASDS(Burnard2017).Intermsofnewwells,thisequals300-1200wellsannually.Thisroll-outofinfrastructure(rigs,platforms,wells,piping)mayresultinamaterialreductionincostsoverallasCO2corrosion-resistantsteel,cement,andothercomponentsaremanufacturedatgreaterscale.TheQuestCCSFacilityinCanadahascitedimprovedfutureeconomiesofscaleofinfrastructureandrefinementoftheCO2storageprocesswillreducefutureoperationalcosts(Shell2015).10.3.3.TechnologyAdvancementTechnologyadvancementisexpectedtodelivermodestreductionsinthecostofstorage.Futuresavingsareseenintherefinementofexistingequipment,digitalinnovationandautomation.Costreductionsofover$45millioninCAPEXand$60millioninOPEXareestimatedforatheoreticalfutureCCSfacilitystoringinanoffshoresalineformationaccordingtotheIEAGHG(2020).Thesecostreductionsaremainlyattributedtodigitalinnovations(automationandpredictivemaintenance).MuchlikeCO2injection,theequipmentformonitoring,measurementandverification(MMV)arematureandadoptedfromrelatedindustries.ThesetechnologiesarebeingoptimisedforCO2monitoringtoreducecosts.Threekeyareasinclude:•Development:improvedpredictionofCO2movement,verificationandquantificationinthestorageformation.•Experience:improvedprocessingandreal-timetesting.•Innovation:increasedautonomyandremoteoperation;predictiveandadvancedanalysis.TheprimaryareaforcostreductionsinMMVisthequantificationoftheCO2,particularlywithdiffuseorsmallvolumesofCO2.Instorageoperations,theseconditionsoccurattheedgesoftheCO2plume,orduringphasesofresidualtrappinganddissolution.Todate,thecostofdeployingequipmenttodetectsmallvolumesofCO2ishigh.Severalwellsincloseproximitytoeachother,orpermanentseismicsystemsarerequired.Refinementofthetechnology,whichwillresultinlowercosts,isbeingpursuedattheAquistore(Canada)andOtway(Australia)sites.InadditiontosmallvolumesofCO2,thequantificationofCO2outofthestorageformation,intoeitherthesurroundinggeologyoratmosphereCO2isalsoanareaofhighcostsasthisleakagehasnoequivalentindustrialmonitoringanalogues.Severaltechnologiesarebeingpursuedglobally(IEAGHG2020c).TECHNOLOGYREADINESSANDCOSTSOFCCS43Allelementsofthecarboncaptureandstoragevaluechainarematureandhavebeenincommercialoperationfordecades.Howeverincrementalimprovementsinthosetechnologieshave,andwillcontinuetoreducetheircost.Forexample,thecostofcapturefromacoalfiredpowerstationhasreducedbyaround50%overthepast10-15years.Thoseimprovementsarisefromlearningbydoing,throughcompetitionbetweenvendors,throughlargerdevelopmentsthattakeadvantageofeconomiesofscale,andthroughcommercialsynergiesthatreducetheriskandthereforethecostofinvestinginCCS.Inaddition,newtechnologiesarebeingdevelopedthatwilldeliverstep-changecostreductions.Withrespecttoperformanceimprovementsandcostreductions,CCSreallyisnodifferenttoanyotherindustrialtechnology.CCSisfollowingthefamiliarpatternofcostreductionwithincreaseddeployment.Regardlessoftheparticulartechnologyused,thedominantdriversofthecostofCCSare:•ThecharacteristicsofthegasstreamfromwhichtheCO2isbeingcaptured:ThehighertheconcentrationofCO2inthegasstream,thelowerthecapturecost.•ThescaleoftheCO2capturefacilitiesandtransportinfrastructure:ThecostpertonneofCO2capturedfromdilutesourcesrisesrapidlyasthecapacityofthecaptureplantfallsbelowapproximately250ktofCO2peryear.Similarly,thecostofCO2transportrisesrapidlyasthecapacityofthepipelineinfrastructurefallsbelowapproximately500ktCO2peryear.Transportcostsfallsignificantlyasthecapacityofpipelineinfrastructureincreasesfrom500ktCO2peryearupto4MtCO2peryear.•Thecostofenergy:CCSrequiressignificantenergytoregenerateCO2capturemediaandtocompressCO2toveryhighpressuresnecessarytoachieveadensephasesuitablefortransportandgeologicalstorage.•Thecostofcapital:CCSiscapitalintensive.•Thecharacteristicsofthegeologicalstorageresource:Costswillbelowerforstorageresourcesthatarewellcharacterised(requiringlessnewdatatobecollected),areclosertothecapturefacility,areonshoreasopposedtooffshore,thathavehighinjectivity(requiringfewerwells),andforwhichexistinginfrastructuremaybere-taskedforstoragepurposes.Thus,thereisaverylargerangeinthecostofCCS.Forthelowestcostopportunities,forexamplelargescalenaturalgasprocessing,CCSmaycostlessthan$20/tCO2.ForrelativelydilutesourcesofCO2suchasthefluegasfromagaspowerstation,orwheretransportdistancesarelongorstoragecostsarehigh,CCSmaycostover$120/tCO2.ItisclearthattherearemanyopportunitiestodeployCCStodaythatcandelivermaterialemissionabatementatcoststhatareverycompetitivewithotheroptions.Toachieveclimatetargets,thoseopportunitiesmustberealisedtorapidlyacceleratetherateofdeploymentofCCS.ThiswillrequirestrongpolicytoremovebarriersandincentiviseprivatesectorinvestmentinCCS.Thepolicyoptionsareallfamiliarandhaveprovensuccessfulinotherindustries.Theywillbeexploredanddescribedinanotherreportinthisseries.11.0CONCLUSIONTECHNOLOGYREADINESSANDCOSTSOFCCS4412.0APPENDIXCarbonCaptureTechno-economicAssessmentMethodologyThechemicalsolventprocesses,especiallythoseusingamine-basedsolvents,arethemostwidespreadtechnologiesforcarboncapture.Theyhavebeenusedextensivelyinnaturalgassweeteningandpost-combustioncaptureinpowersectors.Toprovideinsightintothecurrentcostofcarboncaptureinvariousindustries,adetailedtechno-economicstudyusingchemicalabsorption-basedsolventcapturetechnologywasperformed.Thechemicalsolvents,especiallytheamine-basedsolvents,arethecurrentstate-of-the-arttechnologiesforcarboncapture.Theyhavebeenextensivelyusedandstudiedinnaturalgassweeteningandpost-combustioncaptureinpowerplants(GlobalCCSInstitute2021a).The30wt%aqueousmonoethanolamine(MEA)isusedforthecostbenchmarkingstudy,duetoitscommercialavailabilityandpreferredpropertiesforcarboncaptureoffluegasesunderambientpressures(IEAGHG2019;Rochelle2009;Bains,Psarras&Wilcox2017).ThecapturecoststudiedheredoesnotconsiderdownstreamCO2compression,whichisdiscussedseparatelyinthecompressionsection.Itshouldbenotedthatthereareotherproject-specificfactorsimpactingthecapturecost,suchasbusinessmodel,location,labour,heating/coolingsupplystrategies,processvariations,differenttechnologiesetc(GlobalCCSInstitute2017),whicharenotextendedinthisanalysis.ThefluegasstreamswithCO2concentrationsrangingfrom1vol%to40vol%wereconsideredandthemaximumvolumeoffluegasflowwaslimitedbytheabsorbersize(Ф11x20m)inasingleCO2capturetrain(oneabsorberandonedesorberconfiguration).Thiscorrespondstoa90%CO2captureplantatthecapturecapacityof0.6Mtpaina240MWNGCCplant(4vol%CO2gasstream),and1.4Mtpaina230MWsupercriticalpulverisedcoal(SCPC)powerplant(14vol%CO2gasstream)(Jamesetal.2019).Largerscalesofpowerandindustrialplantscanbeequippedwithmultipletrainsofcaptureplants(Feronetal.2019).Arigorous,rate-basedmodeldevelopedinAspenPlus®wasappliedtoevaluatedtechnicalperformance.Thisisabottom-upapproachbasedonadetailedprocessflowsheet.ThewholeamineCO2captureprocessisdescribedbelowandshowninFigureA1:1.Thefluegasisinitiallycooledinthedirectcontactcoolerusingthewaterwash.ThecausticscrubbinginthedirectcontactcoolerisincludedforfluegasstreamscontainingSO2.2.Thecooledfluegasisthenfedtothebottomoftheabsorbercolumn,whichconsistsofpackedbedsintheCO2absorptionsection(s),andawaterwashsection.3.Thefluegasiscontactedwithasemi-leanaminesolventinthepackedbedwheretheCO2inthefluegasisabsorbed.Theintercoolingprocessisappliedimprovestheefficiencyoftheabsorptionprocess.4.ThefluegasleavingtheCO2absorptionsectionisscrubbedinthetopwaterwashsectionandpassesthroughademistersectiontoremoveanyMEAand/ordegradedsolvent.5.Therichaminesolventleavesthebottomoftheabsorber.Thisisdividedintotwodifferentstreams(richaminesplitprocess).ThefirstrichaminestreamenterstheLean-RichHeatExchangerandisheatedbythehotleanaminecomingfromthebottomofthedesorber.Theheatedrichamineisthensenttothetopofthedesorber.Thesecondrichaminestreamissentdirectlytothetopofthedesorberabovethefirstrichaminestream.6.Therichaminesolventisregeneratedinthedesorbercolumnwhichisheatedbyareboilersituatedatthebaseofthedesorbercolumn.Thereboilerisheatedbythelow-pressuresteam.7.Periodically,someofthecirculatingaminesaresenttothefiltrationunittoremoveanyheat-stablesaltsandtraceimpurities.FreshMEAfromtheaminestoragetanksisaddedtoreplenishthelostsolvent.8.Theoverheadvapourfromthedesorbercolumnpassesthroughademisterandissenttothecondenserwhichiscooledbythecoolingwater.ThewetCO2isseparatedinarefluxdrum,whiletheseparatedliquidisrecycledbacktothecolumnasrefluxorwaterstoragetankforwaterbalance.TECHNOLOGYREADINESSANDCOSTSOFCCS45Acomprehensivetechno-economicanalysismodelwasusedtodeterminetherequiredcapitalinvestmentandeconomicperformanceusingtheAspenCapitalCostEstimator(ACCE)V12,basedontheequipmentparameters,materialsandenergybalancefromprocesssimulation.Thelean-richheatexchangeristhemajorcostcomponentinthecarboncaptureplant.ItwasoptimisedusingtheAspenExchangerDesignRating(EDR)V12toproducethefeasibleandeconomicallyoptimaldesignforcostanalysis.ACCEusestheequipmentmodelscontainedintheIcarusEvaluationEnginetogeneratepreliminaryequipmentdesignsandsimulatevendor-costingprocedurestodevelopdetailedcostestimates.TheassociationfortheAdvancementofCostEngineers(AACE)internationalRecommendedPractice(ClassIV)andtheDOEeconomicanalysiswereusedheretoguideestimatesofcapitalcostsandcalculatethetotalcapitalinvestmentwithinanexpectedaccuracyrangeof±40%.TableA1liststhekeyassumptions,parametersandmethodologiesforthetechno-economicanalysisinCO2capture.DESIGNPARAMETERSLocationTexas,UnitedStatesPresentValue2020USDcostescalated9fromAspenV122019USDcostbasisConstructionyears3CostRecoveryFactor(CRF)8.88%basedon8%discountrateOperatinglife30yearsCapacityfactor90%CO2capturerate90%FigureA1.Conventionalaqueousaminesolventplantprocessflowsheetintegratedwithprocessoptimisationusingtheintercoolingandrichsplitprocesses.TableA1.Technoeconomicanalysisparameters,assumptionsandmethods.9Usingtheaverageescalationvalueofthe2011-2018percentchangeovertimewithinTheHandy-WhitmanIndexofPublicUtilityConstructionCosts,1912toJanuary1,2018–CostTrendsofGasUtilityConstructionacrossthesixregions.(Whitman,RequardtandAssociates2018)TECHNOLOGYREADINESSANDCOSTSOFCCS46TOTALCAPITALREQUIREMENT10BareErectedCost(BEC)•Processequipment•Installation•Supportingfacilities•DirectandindirectlabourEngineeringProcurementandConstruction(EPC)0.15BECProcessContingency0.159(BEC+EPC)ProjectContingency0.207(BEC+EPC+ProcessContingency)TotalPlantCost(TPC)SumoftheaboveFIXEDOPERATINGCOSTMaintenancecosts2.2%ofTPC/yearMaintenancelabour40%ofmaintenancecostsMaintenancematerials60%ofmaintenancecostsOperatinglabourcost$75,000/person-yearNumberofoperators3(basecase)Numberofshifts5Administrative/supportlabour30%operatinglabour+12%ofmaintenancecostInsurancecost0.5%TPCLocaltaxesandfees0.5%TPCStart-upcosts•6monthsoperatinglabour•1monthmaintenancematerials•1monthchemicalandconsumables•1monthwastedisposal•25%ofonemonthfuelcost•2%TPCInventoryCapital•2monthsfuel•0.5%TPCFinancingcost2.7%TPCOtherOwners'costs15%TPCOwner'sCostSumofthebelowTotalOvernightCost(TOC)TPC+Owner’scostsDistributionofTOCovertheCapitalExpenditure(beforeescalation)10%,60%,30%,in3-yearperiodEscalationMultiplier(dependantonCRF)1.16(basecase)TotalAs-SpentCapital(TASC)EscalationmultiplierXTOC10ParametersusedtocalculatethetotalcapitalinvestmentwereunderguidelineofAssociationfortheAdvancementofCostEngineersInternationalRecommendedPractice(AACE2011),theUnitedStatesNationalEnergyTechnologyLaboratory(NETL)QualityGuidelinesforEnergySystemsStudies:CostEstimationMethodologyforNETLAssessmentsofPowerPlantPerformance(USDoE/NETL2019a)andProcessModelingDesignParameters(USDoE/NETL2019b).TECHNOLOGYREADINESSANDCOSTSOFCCS47VARIABLEOPERATINGCOSTRawprocesswater$2/cubicmetreActivatedcarbon$2.2/kgDiatomaceousEarth$2.75/kgMEAamine$2/kgCorrosionInhibitor20%ofMEAcostSodaash$0.68/kgSpecialwastedisposalcosts(non-hazardous)$88.2/tonne11Sewagecost$2.7/cubicmetreFEEDSTOCKCOSTCoal$2.11/GJNaturalgas$4.19/GJBiomass(woodpellets)$8.8/GJ11Takenfromthespecialwastedisposalcostof(Jamesetal.2019)TECHNOLOGYREADINESSANDCOSTSOFCCS4813.0REFERENCESAACE2011,Costestimateclassificationsystem–asappliedinengineering,procurement,andconstructionfortheprocessindustries.No.18R-97,.Ali,H,Eldrup,NH,Normann,F,Andersson,V,Skagestad,R,Mathisen,A&Øi,LE2018,‘Costestimationofheatrecoverynetworksforutilizationofindustrialexcessheatforcarbondioxideabsorption’,InternationalJournalofGreenhouseGasControl,vol.74,pp.219–228.Allam,R,Martin,S,Forrest,B,Fetvedt,J,Lu,X,Freed,D,Brown,GW,Sasaki,T,Itoh,M&Manning,J2017,‘DemonstrationoftheAllamCycle:AnUpdateontheDevelopmentStatusofaHighEfficiencySupercriticalCarbonDioxidePowerProcessEmployingFullCarbonCapture’,EnergyProcedia,vol.114,pp.5948–5966.Bains,P,Psarras,P&Wilcox,J2017,‘CO2capturefromtheindustrysector’,ProgressinEnergyandCombustionScience,vol.63,pp.146–172.bctechnology2017,‘EmergingBCCleantechCompanyInventysAppointsIndustrialProjectsVeteranasNewPresident&CEO’,.Benson,S,Cook,P,Anderson,J,Bachu,S,Nimir,HB,Basu,B,Bradshaw,J&Deguchi,G2005,‘Undergroundgeologicalstorage’,Ipcc,pp.195–276.Biermann,M,Ali,H,Sundqvist,M,Larsson,M,Normann,F&Johnsson,F2019,‘Excessheat-drivencarboncaptureatanintegratedsteelmill–Considerationsforcapturecostoptimization’,InternationalJournalofGreenhouseGasControl,vol.91,no.September,p.102833.Brandl,P,Bui,M,Hallett,JP&MacDowell,N2021,‘Beyond90%capture:Possible,butatwhatcost?’,InternationalJournalofGreenhouseGasControl,vol.105,p.103239.Bui,M,Adjiman,CS,Bardow,A,Anthony,EJ,Boston,A,Brown,S,Fennell,PS,Fuss,S,Galindo,A,Hackett,LA,Hallett,JP,Herzog,HJ,Jackson,G,Kemper,J,Krevor,S,Maitland,GC,Matuszewski,M,Metcalfe,IS,Petit,C,Puxty,G,Reimer,J,Reiner,DM,Rubin,ES,Scott,SA,Shah,N,Smit,B,Trusler,JPM,Webley,P,Wilcox,J&MacDowell,N2018,‘Carboncaptureandstorage(CCS):thewayforward’,Energy&EnvironmentalScience,vol.11,no.5,pp.1062–1176.Burnard,K2017,‘IEAGHGTechnicalReviewJune2017CCSIndustryBuild-OutRates–ComparisonwithIndustryAnalogues’,,no.June.Drioli,E,Barbieri,G&Brunetti,A2018,MembraneEngineeringfortheTreatmentofGases,TheRoyalSocietyofChemistry.Feron,P,Cousins,A,Jiang,K,Zhai,R,ShweHla,S,Thiruvenkatachari,R&Burnard,K2019,‘TowardsZeroEmissionsfromFossilFuelPowerStations’,InternationalJournalofGreenhouseGasControl,vol.87,pp.188–202.Fradette,L,Lefebvre,S&Carley,J2017,‘DemonstrationResultsofEnzyme-AcceleratedCO2Capture’,EnergyProcedia,vol.114,pp.1100–1109.GlobalCCSInstitute2015,ApplyingcarboncaptureandstoragetoaChinesesteelplant,Melbourne,Australia.GlobalCCSInstitute2016,TheGlobalStatusofCCS2016-Volume3:CCSTechnologies,.GlobalCCSInstitute2017,Globalcostsofcarboncaptureandstorage,Melbourne,Australia.GlobalCCSInstitute2020,GlobalStatusofCCS2020,.GlobalCCSInstitute2021a,‘CO2REDatabase,FacilitiesReport’,.GlobalCCSInstitute2021b,‘CO2REDatabase’,.GlobalCCSInstitute2021c,‘CO2REDatabase,PoliciesDatabase’,.GranthamInstitute2014,ASystematicReviewofCurrentTechnologyandCostforIndustrialCarbonCapture,.Hedin,N,Andersson,L,Bergström,L&Yan,J2013,‘Adsorbentsforthepost-combustioncaptureofCO2usingrapidtemperatureswingorvacuumswingadsorption’,AppliedEnergy,vol.104,pp.418–433.IEAGHG2009,‘CO2StorageinDepletedGasFields’,,no.2009/01,p.121.IEAGHG1999,Thereductionofgreenhousegasemissionfromtheoilrefiningandpetrochemicalindustry,.IEAGHG2014,2013/TR4AssessmentofEmergingCO2CaptureTechnologiesandTheirPotentialtoReduceCost,.IEAGHG2019,TowardsZeroEmissionsCCSfromPowerStationsusingHigherCaptureRatesorBiomass2019-02,.IEAGHG2020a,TheStatusandChallengesofCO₂ShippingInfrastructures,.IEAGHG2020b,ValueofEmergingandEnablingTechnologiesinReducingCosts,RisksandTimescalesforCCS,2020-05,.IEAGHG2020c,MonitoringandModellingofCO₂Storage:ThePotentialforImprovingtheCost-BenefitRatioofReducingRisk,2020-01,.InternationalCCSKnowledgeCentre2018,TheShandCCSFeasibilityStudyPublicReport,.InternationalEnergyAgency2020a,EnergyTechnologyPerspectives2020:SpecialReportonCarbonCaptureUtilisationandStorage,accessedNovember6,2020,from<https://webstore.iea.org/download/direct/4191>.InternationalEnergyAgency2020b,EnergyTechnologyPerspectives2020,.InternationalEnergyAgency,IEA2015,‘StoringCO2throughEnhancedOilRecovery,CombiningEORwithCO2storage(EOR+)forprofit’,.IonEngineering2019,‘TheIONSystemsSolution’,.James,RE,Kearins,D,Turner,M,Woods,M,Kuehn,N&Zoelle,A2019,CostandPerformanceBaselineforFossilEnergyPlantsVolume1:BituminousCoalandNaturalGastoElectricity,UnitedStates.Kelemen,P,Benson,SM,Pilorgé,H,Psarras,P&Wilcox,J2019,‘AnOverviewoftheStatusandChallengesofCO2StorageinMineralsandGeologicalFormations’,FrontiersinClimate,vol.1,no.9.Lu,X,Martin,S,McGroddy,M,Swanson,M,Stanislowski,J&Laumb,JD2017,‘TestingofaNovelPostCombustionAcidRemovalProcessfortheDirect-Fired,Oxy-CombustionTECHNOLOGYREADINESSANDCOSTSOFCCS49AllamCyclePowerGenerationSystem’,,no.50961,p.V009T38A032.Mccollum,DL&Ogden,JM2006,‘Techno-EconomicModelsforCarbonDioxideCompression,Transport,andStorageCorrelationsforEstimatingCarbonDioxideDensityandViscosity’,,no.530,p.87,accessedfrom<http://its.ucdavis.edu/>.Miller,DC,Litynski,JT,Brickett,LA&Morreale,BD2016,‘Towardtransformationalcarboncapturesystems’,AIChEJournal,vol.62,no.1,pp.2–10.Mohammed,IY,Samah,M,Sabina,G&Mohamed,A2014,‘ComparisonofSelexolTMandRectisol®TechnologiesinanIntegratedGasificationCombinedCycle(IGCC)PlantforCleanEnergyProduction’,InternationalJournalofEngineeringResearch,vol.3,no.12,pp.742–744.NationalPetroleumCouncil2019,MeetingtheDualChallenge:ReportSummary,Washington,D.C.NETL2018,‘InitialEngineeringDesignofaPost-CombustionCO2CaptureSystemforDukeEnergy’sEastBendStationUsingMembrane-BasedTechnology’,.NETL2020,CompendiumofCarbonCaptureTechnology2020,.Paul,W,Ranjeet,S&Penny,X2017,‘AdsorptionProcessesforCO2Capture:AnOverview’,inCO2SummitIII:PathwaystoCarbonCapture,Utilization,andStorageDeployment.PetraNovaParishHoldingLLC2017,W.A.ParishPost-CombustionCO2CaptureandSequestrationProject-TopicalReport,.Rochelle,GT2009,‘AmineScrubbingforCO2Capture’,Science,vol.325,no.5948,pp.1652LP–1654.SaipemCO2Solutions‘CO2Solutions:Projects’,accessedMarch9,2021,from<https://CO2solutions.com/en/projects/>.Shell2015,THEQUESTFORLESSCO2:LEARNINGFROMCCSIMPLEMENTATIONINCANADA,.Siqueira,RM,Freitas,GR,Peixoto,HR,Nascimento,JFdo,Musse,APS,Torres,AEB,Azevedo,DCS&Bastos-Neto,M2017,‘CarbonDioxideCapturebyPressureSwingAdsorption’,EnergyProcedia,vol.114,pp.2182–2192.Tribe,MA&Alpine,RLW1986,‘Scaleeconomiesandthe“0.6rule”’,EngineeringCostsandProductionEconomics,vol.10,no.4,pp.271–278.USDoE/NETL2019a,QualityGuidelinesforEnergySystemsStudies:CostEstimationMethodologyforNETLAssessmentsofPowerPlantPerformance,UnitedStates.USDoE/NETL2019b,QualityGuidelinesforEnergySystemStudies:ProcessModelingDesignParameters,UnitedStates.Whitman,RequardtandAssociates,L2018,TheHandy-WhitmanIndexofPublicUtilityConstructionCosts,1912toJanuary1,2018-CostTrendsofGasUtilityConstruction,Baltimore.ZeroEmissionsPlatform2013,TheCostofCO2Storage,.TECHNOLOGYREADINESSANDCOSTSOFCCS50AMERICASWashingtonDC,UnitedStatesamericasoffice@globalccsinstitute.comAUSTRALIAMelbourne,Australiainfo@globalccsinstitute.comCHINABeijing,Chinachinaoffice@globalccsinstitute.comEUROPE&MIDDLEEASTBrussels,Belgiumeuropeoffice@globalccsinstitute.comUNITEDKINGDOMLondon,UnitedKingdomukoffice@globalccsinstitute.comJAPANTokyo,Japanjapanoffice@globalccsinstitute.comGETINTOUCHTofindoutmoreabouttheGlobalCCSInstituteincludingMembershipandourConsultancyservices,visitglobalccsinstitute.comorcontactus.Copyright©2021GlobalCCSInstituteTheinformationinthisdocumentissuppliedbytheGlobalCarbonCaptureandStorageInstituteLtd(GlobalCCSInstitute)andissubjecttotheprovisionsoutlinedinthissection.Thereceiptofthisdocumentbythepersonsorentitynamedatthefrontofthisdocumentoranyotherrecipient(Recipient)evidencesacceptanceoftheseprovisions.ThisdocumentisaddressedsolelytotheRecipientandisfortheirsolereviewonlyandmaynotbeprovidedordisclosedtoanyotherpersonwithoutthepriorwrittenconsentofGlobalCCSInstitute.IftheseprovisionsarenotagreedandacceptedbytheRecipient,thisdocumentandanycopiesofitmustbeimmediatelyreturnedtoGlobalCCSInstituteorotherwisedestroyed.ThisdocumenthasbeenmadeavailabletotheRecipientforinformationpurposesonlyandisnotintendedtobeanddoesnotconstituteanyformofofferingdocument,adviceorrecommendation.Tothemaximumextentpermittedbylaw,GlobalCCSInstituteanditsaffiliates,associates,relatedbodiescorporate,shareholders,officers,employees,partners,representatives,agents,advisersandconsultants(eachaRelevantPerson)expresslydisclaimallliabilityforanylossordamage(includingbutnotlimitedtofornegligence,defaultorlackofcare)foruseorrelianceontheinformationinthisdocumentoranyinformationwhichismadeavailableinconnectionwithanyfurtherorrelatedenquiries,includinganycommercialorinvestmentdecisionsmadeonthebasisofinformationprovidedinthisdocument.ThisdocumenthasbeenpreparedonthebasisofpubliclyavailableinformationorotherinformationknowntoGlobalCCSInstituteatthetimethisdocumentwascompiledandtheaccuracyofsuchinformationhasnotbeenindependentlyverifiedbytheGlobalCCSInstituteoranyRelevantPerson.GlobalCCSInstitutedoesnotguaranteethattheinformationinthispublicationistotallyreliable,accurateorcompleteandthereforetheinformationinthisdocumentmustnotberelieduponwhenmakingcommercial,investmentorotherdecisions.NeithertheGlobalCCSInstitutenoranyRelevantPersonsmakeanyrepresentationorwarranty(expressorimplied)astotheaccuracy,sufficiencyorcompletenessofthecontentsofthisdocumentandacceptnoliabilityforuseorrelianceofanyinformationinthisdocument.Thisdocumentisbasedoninformationavailableasatthedateofthisreport,unlessspecifiedotherwise.TheRecipientacknowledgesthatcircumstancesmaychangeandthecontentsofthisdocumentmaybecomeoutdatedasaresult.NeitherGlobalCCSInstitutenoranyRelevantPersonswillbeunderanyobligationtoprovidetheRecipientwithaccesstoanyadditionalinformation,toupdatethisdocumentortocorrectanyinaccuraciesthatmaybecomeapparentinthisdocumentafterthedateofitsissue.