PublicationdateMarch2022GlobalElectricityReview2022Windandsolar,thefastestgrowingsourcesofelectricity,reacharecord10%ofglobalelectricityin2021;allcleanpowerisnow38%ofsupply.Butdemandgrowthrebounded,leadingtoarecordriseincoalpowerandemissions.AboutEmber’sthirdannualGlobalElectricityReviewaimstoprovidethemosttransparentandup-to-dateoverviewofchangesintheglobalelectricitytransitionin2021.Wemakeallofthedatafreelyaccessibletoallowotherstodotheirownanalysisandhelpspeedtheswitchtocleanelectricity.Wearewitnessingextraordinaryeventsinrelationtoourglobalsecurityandglobalenergysystems.Weexpectaturbulentyearahead.Evenastheseimmediateissuesmustdrawourattention,weknowthatthelongerterm,severethreatofclimatechangeisonlygrowing.Wewillthereforecontinuetomonitorandreportontheglobalimpactoftheelectricitysectorandtoadvocateforaneffectiveandurgenttransitiontoazeroemissionssystem,whichwillultimatelyalsohelpreduceourenergyinsecurityandexposuretogeopoliticalrisks.Ourdatasetcomprisesannualpowergenerationandimportdatafor209countriescoveringtheperiod2000to2020.For2021,wehaveaddeddatafor75countrieswhichtogetherrepresent93%ofglobalpowerdemand.Thissummaryreport—andthedatabehindit—isanopenresource.Reliableandtransparenttrackingoftheglobalelectricitysectoriscriticaltoensureeffectiveactionatthetimeandscaleneededtokeepglobalheatingto1.5degrees.Alongsidethisanalysis,weofferthecomprehensivedatasetfreelyavailabletodownloadorexploreviaourdataexplorer.Emberisanindependent,not-for-profitthinktank.Wegratefullyacknowledgethephilanthropicorganisationsthathavefundedus,includingtheEuropeanClimateFoundation,QuadratureClimateFoundation,BloombergPhilanthropiesandClimateWorks—andthankstoeveryonewhohasdonatedattheCrowd.DatacontributorsMaciejZieliński;JeremyFletcher;MattEwen;NicolasFulghum;PeteTunbridgeAnalysiscontributorsDaveJones;AdityaLolla;AlisonCandlin;BryonyWorthington;CharlesMoore;HannahBroadbent;HarryBenham;MuyiYang;PhilMacDonaldDocumentdesign&layoutbyDivaCreativeCopyright©Ember,2022ContentsAboutExecutivesummaryTrendsinglobalelectricityIntroduction:ThechallengeaheadWindandsolarsurpass10%GrowthofothercleanelectricitysourcesstalledHighdemandgrowthRecordcoalpowerRecordemissionsriseDataSolarWindCoalBioenergyNuclearGasHydroCO2DemandMethodology2482342Recordwindandsolar-butalsorecordcoalandemissionsExecutivesummaryWindandsolarhitatenthofglobalelectricity,buttheglobalelectricitytransitionneedstosustainveryhighgrowthratestoreplacecoalandreduceemissions.Solargenerationrose23%lastyear,andwindby14%.Combined,thistakesthemtomorethan10%ofglobalelectricitygeneration.Allcleanelectricitysourcesgenerated38%oftheworld’selectricityin2021,morethancoal(36%).Tobeonapathwaythatkeepsglobalheatingto1.5degrees,windandsolarneedtosustainhighcompoundgrowthratesof20%everyyearto2030.That’sthesamerateofgrowthastheiraverageoverthelastdecade.Thisisnoweminentlypossible:windandsolararethelowestcostsourceofelectricityonalevelisedbasis,withever-increasingglobalexperienceofintegratingthemintogridsathighlevels.With50individualcountriesnowgeneratingmorethan10%oftheirelectricityfromthesequick-to-deployresources,andthreecountriesalreadygeneratingover40%,itisalreadyclearthatthesetechnologiesaredelivering.GovernmentsliketheUS,Germany,UKandCanadaaresoconfidentincleanelectricitythattheyareplanningtoshifttheirgridto100%cleanelectricitywithinthenextdecadeandahalf.Butwithcoalstillrisingandelectricitydemandcontinuingtoincrease,allgovernmentswithcarbonintensivegridsnowneedtoactwiththatsameboldnessandambition.5Windandsolar-thefastestgrowingsourcesofcleanelectricity-hitatenthofglobalelectricityWindandsolargeneratedoveratenth(10.3%)ofglobalelectricityforthefirsttimein2021,risingfrom9.3%in2020,andtwicethesharecomparedto2015whentheParisClimateAgreementwassigned(4.6%).Combined,cleanelectricitysourcesgenerated38%oftheworld’selectricityin2021,morethancoal(36%).50countrieshavenowcrossedthe10%windandsolarlandmark,withsevennewcountriesin2021alone:China,Japan,Mongolia,VietNam,Argentina,HungaryandElSalvador.Threecountries—theNetherlands,AustraliaandVietNam—shiftedover8%oftheirtotalelectricitydemandfromfossilfuelstowindandsolarinjustthelasttwoyears.HighdemandgrowthoutstrippedcleanpowerElectricitydemandrebounded,risingbythemosteverinabsoluteterms:1,414TWhfrom2020to2021,approximatelytheequivalentofaddinganewIndiatotheworld’selectricitydemand.At+5.4%,2021sawthefastestdemandgrowthsince2010.Manyadvancedeconomiesreboundedbacktopre-pandemiclevelsafterfallsin2020.01026ButtherealgrowthwasinAsia,inlargepartaseconomicgrowthboomed;Chinasawthebiggestrise,with13%higherdemandin2021thanin2019.Despitearecordriseinwindandsolargeneration,only29%oftheglobalriseinelectricitydemandin2021wasmetwithwindandsolar.Othercleanelectricityprovidednogrowth,withnuclearandhydrolevelsunchangedfortwoyears.Remainingdemandincreasewasthereforemetbyfossilfuels.59%oftheelectricitydemandrisein2021wasmetbycoalgenerationalone.CoalpowerrosetoanewrecordCoalpowerroseby9.0%in2021to10,042TWh,anewall-timehighand2%abovethepreviousrecordsetin2018.Itwasthebiggestpercentageriseonrecordsinceatleast1985,takingcoalgenerationto36%ofglobalelectricity.NewcoalrecordsweresetthroughoutAsiain2021,whereelectricitydemandboomed,includinginChina(+9%),India(+11%),Kazakhstan(+6%),Mongolia(+13%),Pakistan(+8%),thePhilippines(+8%)andmostlikelyIndonesia(datanotyetavailable).037In2021,coalpowerintheUS,EUandJapanstronglyreboundedcomparedto2020,butremainedbelow2019levels.China’sshareofglobalcoalpowerrosefrom50%in2019to54%in2021.Therecordriseincoalwasnotmatchedbyglobalgasgeneration,whichincreasedbyonly1%in2021.62%oftheworld’selectricitycamefromfossilfuelsin2021,upfrom61%in2020—thefirstyearsince2012thatfossilfuel’ssharehasrisen.Powersectoremissionsatanall-timehighPowersectorCO2emissionsrosetoanall-timerecord,beatingthepreviousrecordin2018by3%.Theyroseby7%in2021(778milliontonnes)—thebiggestpercentagerisesince2010,andthebiggestabsoluteriseever.The7%risefollowsafallofjust3%in2020,puttingemissionshigherthanbeforethepandemicstruck.04“Windandsolarhavearrived.Theprocessthatwillreshapetheexistingenergysystemhasbegun.Thisdecadetheyneedtobedeployedatlightningspeedtoreverseglobalemissionsincreasesandtackleclimatechange.Evenascoalandpoweremissionshitanotherall-timehigh,thereareclearsignsthattheglobalelectricitytransitioniswellunderway.Morewindandsolarisbeingaddedtogridsthanever.Andnotjustinafewcountries,butacrosstheworld.Theyareable—andexpected—toprovidethemajorityofcleanelectricityneededtophaseoutallfossilfuels,atthesametimehelpingtoincreaseenergysecurity.ButwithsustainedhighgaspricesamidRussia’swarwithUkraine,thereisarealriskofrelapseintocoal,threateningtheglobal1.5degreesclimategoal.Cleanelectricitynowneedstobebuiltonaheroicscale.Leadersareonlyjustwakinguptothechallengeofhowquicklytheyneedtomoveto100%cleanelectricity.”DaveJonesGloballead,EmberTrendsinglobalelectricityGlobaltrendsIntroduction:ThechallengeaheadTheelectricitysectorshouldersthebiggestburdenonthepathwaytokeepingglobalheatingtonomorethan1.5degrees.InMay2021,theInternationalEnergyAgency(IEA)publisheditsmonumentalNetZeroby2050report,whichshowstheelectricitysectorneedstomovefrombeingthehighestemittingsectorin2020,tobeingthefirstsectortohitnetzerogloballyby2040.Atthesametime,widespreadelectrificationmeanstheelectricitysectorwillmassivelyexpand,helpingtodecarboniseothersectors.9Thepreviousgraphic,usingIEAdataandmilestones,highlightsthescaleoftheelectricitytransition.Inthisreport,wetrackprogressagainsttheIEA’sNetZeroby2050pathwaytoaskthecriticalquestion:Istheelectricitytransitionhappeningfastenoughtokeepglobalheatingto1.5degrees?1.Windandsolarsurpass10%WindandsolarnowatenthofglobalelectricityWindandsolargeneratedoveratenth(10.3%)ofglobalelectricityforthefirsttimein2021,upfrom9.3%in2020.Thisismorethandoublethemarketshare(4.6%)fromwhentheParisagreementwassignedin2015.Theirgrowthratehasalsoincreased:windgenerationroseby+14%in2021(thehighestsince2017),andsolarby+23%(thehighestsince2018);combined,theyroseby17%.Thiswindandsolargrowthwasslowerin2021thanlastdecade,whentheyhadanaverageof20%year-on-yeargrowth.Cleanelectricitysourcesgenerated38%oftheworld’selectricityin2021.Takentogether,windandsolararenowthefourthlargestsourceofelectricityintheworld.Theywerealsothefastest-growingcleansourcesin2021;10otherzeroemissionssourcesofelectricityeitherfell(hydro)orwereroughlystatic(bioenergyandnuclear).Fossilfuelsstillgenerated62%ofglobalelectricity;mainlycoal(36%)andgas(22%).50countriesnowabove10%windandsolar50countrieshadoveratenthoftheirelectricityfromwindandsolarin2021,upfrom43in2020and36in2019.Sevencountrieshitthislandmarkin2021forthefirsttime:China(11.2%in2021),Japan(10.2%),Mongolia(10.6%),VietNam(10.7%),Argentina(10.4%),Hungary(11.1%)andElSalvador(12.0%).Allfiveoftheworld’slargesteconomieshavereachedthislandmark:theUS,China,Japan,GermanyandtheUK.Europeleadsthewaywithnineofthetentopcountries.Threecountrieshaveevenexceeded40%oftheirelectricityfromwindandsolar.In2021,Denmark,LuxembourgandUruguayachieved52%,43%and47%respectively,leadingthewayontechnologyforhighrenewablegridintegration.TheMiddleEastandAfricahadthefewestcountriesreachalandmarktenthofwindandsolar.SaudiArabia’selectricityisstilllessthan1%windandsolar,andthenexttwohostsofUNclimatesummits—EgyptandtheUAE—haveonly3%.ThecountrieswhichhavetransformedtheirelectricitysystemthefastestsincethepandemicweretheNetherlands,AustraliaandVietNam.From2019to2021,theyswitchedover8%oftheirtotalelectricitydemandtowindandsolar.11What’smore,thatnewwindandsolardirectlyreplacedfossilfuels.IntheNetherlands,theshareofwindandsolarrosefrom14%to25%injusttwoyears,whilsttheshareoffossilfuelsfellfrom78%to63%.InAustralia,windandsolarrosefrom13%to22%,whilsttheshareoffossilfuelsfellfrom79%to70%.InVietNam,theshareofwindandsolarrosefrom3%to11%,whilsttheshareoffossilfuelsfellfrom73%to63%.Ifthesetrendscanbereplicatedglobally,andsustained,thepowersectorwouldbeontrackfor1.5degreegoal.12VietNam’ssolarboomVietNamhasseenunparalleledgrowthinsolarpower.Thishasnotonlyreducedpowersectoremissions,butalsoreduceditscostlygasimportbill.In2021,VietNamsawastonishinggrowthinsolarasitincreaseditsgenerationby337%(+17TWh)inasingleyear,tobecometheworld’s10thlargestsolargenerator.ThissolargrowthmeantthatVietNamwastheonlycountryinAsiatomeetandexceeditsentiredemandrisewithnewwindandsolar.Thesolarincrease,evenasdemandgrew,reducedfossilfuelshare,withcoaldownfrom55%to52%,andgasfrom17%to12%—drivingemissionsdownbyasignificant6%.VietNam’scombinedwindandsolarcapacityhasincreasedbyfourtimessince2019.Anotherfour-foldincreaseto89gigawattsby2030wouldbeenoughtomatchalltheirincreaseindemandeveninahighelectricitygrowthscenario.Whenrapidrenewablesgrowthhappens,therestoftheelectricitysystemneedstoadaptquickly,andinVietNam’scase,therearesomekeylessons.Thefeed-in-tariffsweresopopulartheywereputonhold.Buttogetthecheapestprices,countriesneedalong-termrenewablespolicytocreateastableinvestmentenvironment;stop-startpolicyneedstobeavoided.13Thegridalsohadproblemsintegratingsuchlargeamounts.Moreupfrontplanningwouldhavehelped,tostrengthenthegridandaddsufficientinterconnection,alongsideflexibledemandandstoragecapacity.Thisrapidgrowthposessomeveryinterestingquestionsinrelationtoplansforanewthermalplant.VietNamhasmadeahighlevelcommitmenttostopbuildingnewcoalplants,andyettherearestillnewcoalplantsinplanning,andanincredible56gigawattsofplannedgaspowerplants.Thespeedandcostofthesolarboom,ifwellmanaged,couldunderminetheinvestmentcasesignificantly.Windandsolarneedtosustainhighgrowthratesfor1.5degreesTheIEA’s1.5degreepathwayshowswindandsolarasthepowerhouseofcleanelectricity,providingthree-quartersofallnewcleanelectricitytobecome40%oftheworld’selectricityby2030,upfrom10%now.Toincreasegenerationfrom2,837TWhin2021tothe14,978TWhneededby2030means20%compoundgrowtheveryyear.Inthelastdecade,windandsolarachievedanaverage20%peryear,andalthoughthegrowthratehadbeenfalling,itpickedbackupto17%in2021.Compoundgrowthof20%hasbeendonebefore,anditneedstobedoneagain.142.GrowthofothercleanelectricitysourcesstalledGrowthincleangeneration,otherthanwindandsolar,stalledin2021.Hydrofell2%ondrierconditions,especiallyinChina.Nuclearincreased4%asexistingreactorsinFranceandJapancamebackonlineandnewreactorsswitchedoninChinaandRussia.Bioenergygrew6%,althoughconcernscontinuetoberaisedaboutitstrueemissionsimpact.EmergingtechnologiescommonlyincludedinNetZeropathwaysstillprovidenomeaningfulelectricitygeneration:includingfossilfuelswithcarboncapture,hydrogen-basedfuels,CSP(concentratedsolarpower),geothermalandmarine.Althoughwindandsolararethefastestgrowingsourcesofcleanelectricity,theIEANetZeroby2050reportanticipatesthataquarterofthegrowthincleanelectricitywillstillcomefromothertechnologies.Theseothertechnologiesgenerallycomplement,ratherthancompetewith,windandsolar.Inparticular,theyprovidebenefitstothegridtosupportthevariabilityofwindandsolar.Stallingonthesecomplementarytechnologieswillmakeitevenmoredifficulttoachievetheemissionscutsneededby2030.AnalternativeIEAscenariosuggeststhatit’spossibletodecarbonisewithoutbioenergyandCCS,buttheIEAforecastitwouldlikelyincreasethecostofreachingzerocarbonpower.15Life-cycleassessmentsreportedbytheIPCCfindhydroandnuclearareextremelylow-carbonsourcesofpowergeneration.However,dependentonthecapture-rateofCCUS,thetechnologycanstillproducesignificantemissions.Bioenergyhasthehighestemissionsrisk,withawiderangedependentonsourcing.Moreinformationisavailableinourmethodology.16Chinadrivinggrowthofhydro,nuclearandbioenergyGrowthinbioenergy,hydroandnuclearinthelast20yearswasledbyChina.Since2000,Chinahasprovidedtwo-thirdsoftheglobalgrowthinhydrogeneration,allthenetgrowthofnuclear,andathirdofthegrowthinbioenergy.ThemajorityofthegrowthinhydrooutsideChinawasinIndia,BrazilandRussia.ThemajorityofthegrowthinbioenergyoutsideChinawasintheUK,Japan,IndiaandBrazil.3.HighdemandgrowthElectricitydemandrosebythemosteverinabsoluteterms:1,414TWhfrom2020to2021—approximatelytheequivalentofaddinganewIndiatotheworld’selectricitydemand.At5.4%,2021sawthefastestdemandgrowthsince2010.Therisefollowedfromasmall1%fallin2020.Manyadvancedcountriesreboundedafterthefallin2020,backtopre-pandemiclevels.Somecountrieshadlevelsslightlylowerthanpre-Covid,suchastheUK(4%lowerin2021thanin2019),Germany(-2%)andJapan(-2%).Butmostdevelopedcountries,includingtheUS,reboundedbackto2019demandlevels.Poland(+3%),Korea(+3%)andRussia(+3%)wereallslightlyhigher.17TherealgrowthcontinuestobeinAsia,inlargepartaseconomicgrowthboomed.Inmanycountries,itfollowedonfromagrowthyearevenin2020whenthepandemicstruck.Chinasawthebiggestrise,with14%higherelectricitydemandin2021comparedto2019.4.RecordcoalpowerCoalpowerroseby9.0%in2021to10,042TWh,more-thanreboundingfroma4.2%fallin2020.Itwasthebiggestpercentageriseonrecordsinceatleast1985.Thispushedcoaltosetanewrecordforglobalpowergeneration,beatingthepreviousrecordof9,838TWhin2018by2%.Itreached36.5%ofglobalelectricity,upfrom35.3%in2020.China’sshareofglobalcoalpowerwasunchangedat54%in2021,havingrisenfrom50%in2019to54%in2020.FortheIEA’s1.5degreepathway,unabatedcoalpowergenerationmustfallby73%globallyfrom2021to2030.Coal’snew2021recordshowsjusthowfaroff-tracktheelectricitytransitionis.Whydidcoalincrease?Coalpowerrosein2021becausecleanelectricitysimplywasnotdeployedquicklyenoughtokeepupwithunprecedenteddemandgrowth.18Despitearecordriseinwindandsolargeneration,only29%oftheglobalriseinelectricitydemandin2021wasmetwithwindandsolar.Othercleanelectricityprovidednonetgrowth,withnuclearincreasingbuthydrofalling.Remainingdemandincreasewasthereforemetbyfossilfuels.59%oftheelectricitydemandrisein2021wasmetbycoalgenerationalone.Gasandoilmadeupthefinal10%.ChinaandIndiaChinaandIndiaaretheworld’s#1and#2biggestcoalpowercountries.Theybothsetnewcoalpowerrecordsin2021.China’scoalgenerationroseby466TWh(9.5%)in2021,anincreaseequaltothecombinedcoalgenerationofJapanandGermanyin2021.Itisnowtwicethelevelitwasin2008,andsettinganewcoalrecordforthefifthyearinarow.Itwasthefirsttimesince2011thatChina’scoalmarketsharedidn’tfall,stayingconstantat63.6%.China’scleanelectricityrosefastin2021:windgenerationgrew32%,solar27%,bioenergy8%andnuclear11%.Hydrofellslightly,duetoadverseweather,butisstructurallygrowing.Gasgenerationroseby8%.However,cleanelectricitywasonlyenoughtomeet33%ofChina’sriseinelectricitydemand,whichincreasedby+9.5%in2021.Coalfilledthegap,meeting64%oftheelectricitydemandrise.19India’scoalgenerationroseby125TWh(11%)in2021,settinganewrecord,beatingtheprevioushighin2018by4%.Coalmarketsharerosefrom72%to74%ofIndia’selectricity.Theincreaseinwindandsolargenerationwasonlythethirdhighestonrecord,andmetonly12%oftheincreaseinelectricitydemand—coalfilledthegap.Therewerealsoall-timecoalpowerrecordssetinotherAsiancountriesin2021:Kazakhstan(+6%),Mongolia(+13%),Pakistan(+8%),andthePhilippines(+8%).ToptencoalcountriesThetoptencoalpowercountriesaccountedfor90%oftheworld’scoalpowergenerationin2021.CoalpowerintheUS,EUandJapanstronglyreboundedcomparedto2020,butremainedbelow2019levels.TheUSrebounded16%in2021,butwas7%below2019levels,Germanyrebounded24%in2021,butwas4%below2019levels,Japanrebounded3%in2021,butwas2%below2019levels.Thereboundincoalwasmostlycausedbythereboundinelectricity,butitwasalsopartlyexacerbatedbyariseingasprices.Aswitchfromgasgenerationtocoalgenerationhappenedatthreepointsin2021:inEuropeattheendoftheyearasgaspricesspiked,intheUSduringtheTexancrisisinFebruary2021,andinJapan.20Asthehighgaspricescontinueinto2022,ouranalysisforEuropefindsthatthegascrisisisinterruptingtheEU’scoalexit,andidentifiesa‘paradigmshift’asnewrenewablesreplacegasinsteadofcoal.Thisnewfeatureofthemarketonlypartlyimpactedfull-year2021data,butwillundoubtedlyimpact2022andbeyond.FortheIEA1.5degreepathway,OECDcountrieswillhavetophaseoutcoalby2030,andtherestoftheworldby2040.Sofar,oftheremainingtop10coalcountries,onlyGermanyhasacommitmenttophaseoutby2030.5.RecordemissionsriseTherecordriseincoal,coupledwithamodestriseingasgeneration,meanspowersectorCO2emissionsroseby7%(778milliontonnes)in2021.That’sthelargestabsoluteriseever,andthelargestpercentagerisesince2010.Thisrisefollowsfromafallin2020,butthatfallwasonly3%.Thistakespowersectoremissionstoanewrecordofover12billiontonnesofCO2,beatingthepreviousrecordin2018by3%.EmissionsgrowthisinsharpcontrasttowhatisneededfortheIEA’s1.5degreespathway:a60%fallinpowersectoremissionsfrom2021to2030.Thefutureelectricitysystemisexpectedtomorethantripleinsizeunderanetzeroglobalenergyscenario,displacingfossilfueluseinothersectorsandbringing21downemissionsoverall.However,intheinterim,thoughdemandforoilin2021remainedsuppressed,anincreaseinelectricitydemandwasmetpredominantlythroughfossilfuelsandthispushedupbothelectricityemissionsandtotalglobalemissionstorecordlevels.Overtime,continuedelectrification,coupledwithcleanelectricitydeploymentincreases,willturnglobalemissionsaround.22MovingtocleanpowerEmberestimatesglobalcarbonintensitywas442gCO₂perkWhin2021(upfrom437gin2020).TheIEA1.5degreepathwaymeansitmustrapidlyfalltozeroby2035inadvancedeconomiesandby2040worldwide.Wealreadyknowwhatneedstohappen—aboveall,windandsolargenerationneedtocontinueontheirgrowthcurvetoprovidethree-quartersofthegrowthincleanelectricitythroughto2030.Leadersinwindandsolarshowthatthislevelofmarketshareisrealistic,andthathugegrowthcanhappenrelativelyquickly.Butthoseshiftsaren’thappeningfastenoughacrossallcountries,andwe’refaroff-trackinreducingpowersectoremissions.Theresultin2021wascoal’srise,atatimewhenitneedstobefallingrapidly.EnergySourcesDataAnalysisofthedifferentglobalelectricitysourcesin2021Thefollowingpagesrunthroughamoredetailedanalysisofthechangesinsupplyofelectricityoverthelasttwelvemonths,andoveralongertrendperiod.Allofthegraphicscanbereproducedbyaccessingourdataportalwhichnowincludes2021data.Wehaveorderedthesectionsaccordingtothefastestgrowingsourcesofelectricity.24SolarChangein2021Globalsolargenerationrose23%in2021.Itwasthefastestrisingsourceofelectricitygenerationforthe17thyearrunning.Generationroseyear-on-yearby188TWhto1023TWh.LongtermtrendSolargenerated3.7%oftheworld’selectricityin2021.Thiswasupfromjust1.1%in2015,whentheParisAgreementwassigned.LeadersAustralia,with12%,hasthehighestproportionofitselectricityfromsolarofanymajorcountryintheworld.Meanwhile,VietNamsawthebiggestrisefrom2%in2020to10%in2021.InEurope,SpainandtheNetherlandssawthebiggestgrowth,bringingtheirsharetoalmost10%oftheirtotalelectricity.LaggardsOnly1%ofglobalsolargenerationisinAfricancountriesand2%inMiddleEasterncountries(having3%and4%ofglobalelectricitydemandrespectively).India’ssolargenerationsawitssmallestyear-on-yearincreasesince2016.ManyeasternEuropeancountrieshavepaused,withsimilarlevelsofsolargenerationin2021asto2015-notably,Bulgaria,Czechia,Romania,SlovakiaandSlovenia.Ontargetfornetzero?Solargenerationneedstoriseseven-foldby2030,takingitfrom4%ofglobalelectricityin2021to19%by2030.Thatmeansmaintainingyear-on-yeargrowthof24%;growthlastyearwas23%,andaveraged33%overthelasttenyears.25GlobalsolargenerationsplitbycountryAnnualchangeinsolargenerationWhichcountrieshavethehighestsolarshareofelectricitygeneration?ShareofsolarinelectricitymixSolarshareofelectricitygenerationofG20countriesGlobalsolargeneration26WindChangein2021Globalwindgenerationrose14%in2021,risingby227TWhto1,814TWh.Thiswasthehighest%growthrateinfouryears,andthehighestabsoluteincreaseever.Itwasthefastest-growingsourceofelectricityaftersolar.LongtermtrendWindgenerated6.6%oftheworld’selectricityin2021,upfrom3.5%in2015,whentheParisAgreementwassigned.LeadersChinawaswithoutdoubtthewindleaderof2021.65%ofthegrowthinglobalwindgenerationin2021wasinChina(China’sprevioushighestproportionwas37%ofglobalgrowthin2020).Itadded148TWh,thesameastheentireelectricitydemandofArgentina.Thelargebuild-outofoffshorewindinDecember2021willensurethisgrowthcontinuesinto2022.Denmarkhadthebiggestshareofitselectricityfromwind(48%);theUKandGermanywerebothover20%.AlthoughtheEUsawwindgenerationfallin2020duetopoorwindspeeds,therateofwindinstallationshitanewrecord.Kenyasawthebiggestyear-on-yearrise,from11%to16%ofitselectricityfromwind.Therearefourcountriesinaracetoembracewind,roughlydoublingfrom5%ofannualgenerationin2015to10%in2021:theUS(5%to9%),Australia(5%to10%),Turkey(4%to9%)andBrazil(4%to11%).LaggardsOnly1%ofglobalwindgenerationisinAfricancountriesand0.1%inMiddleEasterncountries(having3%and4%ofglobalelectricitydemandrespectively).InIndia,windgenerationequalledsolarforthefirsttime,havingalwaysbeeninfront.SouthKoreaandJapanbothhadlessthan1%oftheirelectricityfromwind.Ontargetfornetzero?Windgenerationneedstorisefour-foldby2030,takingitfrom7%ofglobalelectricityin2021to21%by2030.Thatmeansmaintainingyear-on-yeargrowthof18%;growthlastyearwas14%,andaveraged15%overthelasttenyears.27GlobalwindgenerationsplitbycountryAnnualchangeinwindgenerationWhichcountrieshavethehighestwindshareofelectricitygeneration?ShareofwindinelectricitymixWindshareofelectricitygenerationofG20countriesGlobalwindgeneration28CoalChangein2021Coalgenerationroseby9%2021toanall-timehigh,beatingthepreviousrecordsetin2018by2%.LongtermtrendUnfortunatelycoalgenerationis10%higherthanin2015whentheParisAgreementwassigned.China’scoalgenerationwas33%higherin2021than2015;thetotalfortherestoftheworldfellby8%.Consequently,China’sshareofglobalcoalpowerrosefrom44%to54%.LeadersChinasawthebiggestriseincoalin2021,risingby466TWh,aboutthesameasJapanandSouthKorea’scombinedcoalpowergenerationin2021.ItwasChina’sfifthyearinarowofsettinganewcoalpowerrecord.Indiaistheworld’ssecondlargestcoalpowergenerator,anditscoalpowerincreasedby11%in2021,settinganall-timehighbybeatingthepreviousrecordin2018by4%.Therewereall-timecoalpowerrecordssetinotherAsiancountriesin2021:Kazakhstan(+6%),Mongolia(+13%),Pakistan(+8%),andthePhilippines(+8%).MostcountriesinAsiaareseeingrapiddemandgrowth,soalthoughabsolutecoalgenerationisincreasing,theproportionofelectricityfromcoalisactuallyfalling.Ontargetfornetzero?Definitelynot.Coalpowermustfallby13%everyyearthisdecade.Thatmeansreducingitsshareofglobalelectricityfrom36%in2021to8%by2030.29GlobalcoalgenerationsplitbycountryAnnualchangeincoalgenerationWhichcountrieshavethehighestcoalshareofelectricitygeneration?ShareofcoalinelectricitymixCoalshareofelectricitygenerationofG20countriesGlobalcoalgeneration30BioenergyChangein2021Globalgenerationfrombioenergyroseby6%in2021to646TWh.Itmustbenotedthat—ofallthefueltypes—thedataonbioenergyistheleastreliable.LongtermtrendBioenergyhasincreasedinlinewithoverallelectricitydemandsince2015,keepingitsshareat2%ofglobalgeneration.Inthesametimeframe,solarquadrupledfrom1%to4%andwindalmostdoubledfrom4%to7%.LeadersChinaisbyfarthebiggestbioenergygenerator.Itisalsotheonlycountry-barJapan-thatissubstantiallyincreasingbioenergyproduction.China’sbioenergygenerationhastripledsince2015,drivingalmosttwothirdsofglobalgrowth.JapanleaptpasttheUKin2021tobecomethe#5biggestbioenergygenerator,increasingby29%in2021alone.Theotherbiggestbioenergygenerators-theUSin#2,Germanyin#3andBrazil#4-showednearlynogrowthfrom2015to2021.Ontargetfornetzero?BioenergyintheIEA’s1.5degreepathwayshowsadoublingfrom2020to2030.That’smuchfastergrowththanthelastfiveyears,whichwas32%.However,theIEAassumesthatthebioenergyislow-carbon;buttherearebigquestionsastowhetherbioenergyisyieldingtheCO2reductionsitpromises.Dependentonsourcing,bioenergycanbeveryhigh-carbon.Moreinformationisavailableinourmethodology.31GlobalbioenergygenerationsplitbycountryAnnualchangeinbioenergygenerationWhichcountrieshavethehighestbioenergyshareofelectricitygeneration?ShareofbioenergyinelectricitymixBioenergyshareofelectricitygenerationofG20countriesGlobalbioenergygeneration32NuclearChangein2021Nuclearelectricitygenerationroseby4%in2021by100TWhto2,736TWh.France’sreactorsslightlyrecoveredfromaterrible2020,Japanrestartedsomereactors,andnewreactorscameonlineinChina.LongtermtrendTheriseinnucleargenerationwassmallerthantheoverallriseinelectricitydemand,sonuclear’smarketsharecontinueditsgradualdecline.Itgenerated17%ofglobalelectricityin2000,andby2021thisfellto10%.LeadersChinaistheonlycountrythatissignificantlyincreasingnuclearpowerasitbringsnewreactorsonline.Nucleargenerationtripledinsevenyearsto2021.Butnuclearpowerstillonlygenerates5%ofChina’selectricity.Russia’snucleargenerationhasbeenslowlyincreasing,withafurther2%risein2021.Japan’snucleargenerationin2021rosetothesecondhighestlevelsinceFukushima,asreactorsreturnonline.However,generationwasstillonlyone-fifththelevelbackin2010.Francegotthelargestproportionofitselectricitygenerationfromnuclear,at69%in2021,followedbyUkrainewith55%.Ontargetfornetzero?Nucleargenerationneedstorise38%by2030,accordingtotheIEA’s1.5degreepathway,keepingitsmarketshareunchanged,aselectricitydemandrises.Thatmeansyear-on-yeargrowthof4%fromnowto2030.TheIEAshowsnucleargrowingmuchquickerafter2030.33AnnualchangeinnucleargenerationWhichcountrieshavethehighestnuclearshareofelectricitygeneration?NuclearshareofelectricitygenerationofG20countriesGlobalnucleargenerationGlobalnucleargenerationsplitbycountryShareofnuclearinelectricitymix34GasChangein2021Gasgenerationplateaued,risingbyonly1%in2021asotherelectricitysourcesroseaggressively.Itroseby81TWhto6098TWh.Asaconsequence,theshareofgenerationdroppedfrom23%in2020to22%in2021.LongtermtrendGasesrisehasbeenslowandrelentless,leadingtoadoublingingenerationfrom2002to2020.Butwiththegascrisishittingin2021,causinggaspricestospiketorecordlevelsinmanycountries,generationbarelyincreased.Isthisplateauanewtrend?LeadersThebiggestrisesingasin2021wereinRussia,TurkeyandBraziltocompensateforshortfallsinhydroproductionduetolittlerain.MostofthecountrieswiththehighestamountoftheirelectricityfromgaspowerareintheMiddleEastandAfrica;soaselectricitydemandintheseregionsrose,withlowlevelsofcleanpowerinvestment,gaspoweralsorose.LaggardsBothChinaandIndiageneratedonly3%oftheirelectricityfromgasin2021.However,from2020thesefiguresrepresentafallof18%inIndiaandanincreaseof8%inChina.InChina,gasgenerationhasdoubledsince2014.TheUSwasresponsiblefor46%oftheriseinglobalgasgenerationfrom2015to2020.But2021sawararefallduetorisingwind,solarandcoalgeneration.Ontargetfornetzero?TomeettheIEA’s1.5degreepathway,gasgenerationin2030cannotbesignificantlyhigherthanitwasin2020.After2030,unabatedgaspowermustquicklyreducetowardszeroby2040.35GlobalgasgenerationsplitbycountryAnnualchangeingasgenerationWhichcountrieshavethehighestgasshareofelectricitygeneration?ShareofgasinelectricitymixGasshareofelectricitygenerationofG20countriesGlobalgasgeneration36HydroChangein2021Hydroelectricityhada2%fallinproductionin2021,duetolowrainfallinkeycountriessuchasChina,Brazil,theUSandTurkey.LongtermtrendTheriseinhydrogenerationwassmallerthantheoverallriseinelectricity,sohydro’smarketsharecontinueditsgradualdecline.Itgenerated18%ofglobalelectricityin2000,andby2021thishadslidtoonly15%.LeadersChinahasprovidedtwo-thirdsofthegrowthinglobalhydroelectricitygenerationsince2000,andhasthreetimesthegenerationofthenextbiggestcountry,Canada.Ontargetfornetzero?Hydrogenerationneedstorise40%by2030,keepingitsmarketsharealmostunchangedaselectricitydemandrises.Thatmeansyear-on-yeargrowthof4%from2021to2030.Thelasttenyearsgrewby2%onaverage.37GlobalhydrogenerationsplitbycountryAnnualchangeinhydrogenerationWhichcountrieshavethehighesthydroshareofelectricitygeneration?ShareofhydroinelectricitymixHydroshareofelectricitygenerationofG20countriesGlobalhydrogeneration38CO2Changein2021Therecordriseincoal,coupledwithamodestriseingasgeneration,meanspowersectorCO2emissionsroseby7%(778milliontonnes)in2021.That’sthelargestabsoluteriseever,andthelargestpercentagerisesince2010.Thisrisefollowsfromafallin2020,butthatfallwasonly3%.Thistakespowersectoremissionstoanewrecordofover12billiontonnesofCO2,beatingthepreviousrecordin2018by3%.AnnualchangeinCO2generationCO2shareofelectricitygenerationofG20countriesGlobalCO2generationsplitbycountryShareofCO2inelectricitymix39Theworld’selectricitygot1%dirtierin2021,ascarbonintensityincreasedyear-on-yearfrom437gCO2/KWhto442.It’sthefirstyearsince2011thattheworld’selectricitywasdirtierthanthepreviousyear.LongtermtrendPowersectorCO2emissionswere10%higherthanin2015,whentheParisAgreementwassigned.However,theCO2intensityofelectricityfellby6%since2015.18oftheG20countrieshadcleanerelectricitythanin2015.LeadersHalfoftheCO2emissionsrisein2021wasfromChina.AustraliasawthebiggestchangestoitselectricitycarbonintensityofanyG20countrysince2015,assolarandwindreplacedcoalandgasgeneration.Itfellfrom644gCO2/KWhin2015to527in2021.ItisnowslightlylessdirtythanChina’selectricity(549gCO2/KWhin2021).Indiaalsofell(from663gCO2/KWhin2015633in2021),andisnowbelowIndonesia(663gCO2/KWhin2021).Ontargetfornetzero?No.TheemissionsgrowthisinsharpcontrasttowhatisneededfortheIEA’s1.5degreespathway:a60%fallinpowersectoremissionsfrom2021to2030.40DemandChangein2021Electricitydemandrosebythemosteverinabsoluteterms:1,414TWhfrom2020to2021—approximatelytheequivalentofaddinganewIndiatotheworld’selectricitydemand.At5.4%,2021sawthefastestdemandgrowthsince2010.Therisefollowedfromasmall1%fallin2020.Manyadvancedcountriesreboundedafterthefallin2020,backtopre-pandemiclevels.TherealgrowthcontinuestobeinAsia,inlargepartaseconomicgrowthboomed.Inmanycountries,itfollowedonfromagrowthyearevenin2020whenthepandemicstruck.Chinasawthebiggestrise,with13%higherelectricitydemandin2021comparedto2019.GlobalchangeindemandDemandpercapita(MWh)amongG20countriesDistributionofglobaldemandDemandpercapita(MWh)41LongtermtrendCountrieswiththehighestelectricitydemandpercapita,suchasCanada,theUSandSaudiArabia,haveseenafallcomparedto2015,whilstmostothercountrieshaveseenincreases.Chinahasseenbyfarthelargestincrease,overtakingthepercapitauseforboththeUKandItaly,thoughisstillbehindtheUS.Roughlyspeaking,Chinausessix-timesasmuchelectricitypercapitaasIndia.However,itisstillonlyhalfthatofelectricity-hungrySouthKorea.Ontargetfornetzero?Whathappenstoelectricitydemandiscriticalfornetzero.Electricitydemandrisessubstantially(38%)from2020to2030intheIEA’s1.5degreepathway,astheworldeconomygrows,andelectrificationreducesfueluseinothersectors.Butthat’sin-partoffsetbyamassiveexpectedimprovementinefficiency.Thelargeriseinelectricitydemandin2021suggeststheworldisstillnotlearningtouseelectricityasefficientlyasitneedsto.MethodologySupportingMaterialsOverviewThisreportanalysesannualpowergenerationandimportdatafor209countriesfrom2000to2020,with2021dataincludedfor75countriesrepresenting93%ofglobalpowerdemand.Dataiscollectedfrommulti-countrydatasets(EIA,Eurostat,BP,UN)aswellasnationalsources(e.gChinadatafromtheNationalBureauofStatistics).Thelatestannualgenerationdataisestimatedusingmonthlygenerationdata.AnnualcapacitydataiscollectedfromGEM,IRENAandWRI,andisincludedforasmanycountriesasitisavailablefor.AllthedatacanbeviewedanddownloadedfreelyfromEmber’swebsite.Adetailedmethodologycanbeaccessedhere.DisclaimerThedatausedinthisreportisprovidedonan‘asis’basis.Dataisassembledusingthebestavailabledataatthetimeofpublication.Everyefforthasbeenmadetoensureaccuracy,andwherepossiblewecomparemultiplesourcestoconfirmtheiragreement.Wetakenoresponsibilityforerrors.Ifyounoticeanissueorhaveanysuggestions,pleasedocontactusatdata@ember-climate.org.43FuelDefinitionsFueldataismappedintoninegenerationtypes:Bioenergy,Coal,Gas,Hydro,Nuclear,OtherFossil,OtherRenewables,Solar,andWind.Moreinformationonmappingfordifferentsourcesandcountriescanbeviewedbelow.Bioenergyhastypicallybeenassumed(bytheIPCC,theIEA,andmanyothers)tobearenewableenergysource,inthatforestandenergycropscanberegrownandreplenished,unlikefossilfuels.Itisincludedinmanygovernmentalclimatetargets,includingEUrenewableenergylegislation,andsoEmberincludesitin“renewable”toalloweasycomparisonwithlegislatedtargets.However,theclimateimpactofbioenergyishighlydependentonthefeedstock,howitwassourcedandwhatwouldhavehappenedhadthefeedstocknotbeenburntforenergy.Currentbioenergysustainabilitycriteria,includingthoseoftheEU,generallydonotsufficientlyregulateouthigh-riskfeedstocksandthereforeelectricitygenerationfrombioenergycannotbeautomaticallyassumedtodeliver1.Solarincludesbothsolarthermalandsolarphotovoltaicgeneration,andwherepossibledistributedsolargenerationisincluded2.Wherepossible,hydrogenerationexcludesanycontributionfrompumpedhydrogeneration3.Otherrenewablesgenerationincludesgeothermal,tidalandwavegeneration4.Otherfossilgenerationincludesgenerationfromoilandpetroleumproducts,aswellasmanufacturedgasesandwaste44similarclimatebenefitstootherrenewablessources.Giventheavailabilityofrisk-freealternativestogeneratingelectricitysuchaswindandsolar,Emberadvocatesforcountriestominimiseoreliminatetheinclusionoflarge-scalebioenergyinthepowersector.Formoreinformationpleaseseeourreports:UnderstandingtheCostoftheDraxBECCSPlanttoUKConsumers(May2021),TheBurningQuestion(June2020),andPlayingwithFire(December2019).MethodsCompilingafulldatasetfrom2000to2021requiresusingdataatmultipletimescales.Annualgenerationdataiscollectedfrombothnationalandmulti-countrysources.Forthemostrecentyears,dataisoftennotavailable.Inthesecasesweusemonthlydata,whichisreportedonashorterlag,toestimatethelatestannualgeneration.Powerdataisgatheredinawidevarietyofformatsfrommultiplesources.Inadditiontothisreconciliation,ourdatarequiresconsiderablecleaningandadjustmentoftherawdatareported.Anoverviewofourmethodsisbelow.AnnualdataAnnualdataispublishedwithasignificantlag,andisgenerallyonlyavailableuntil2019or2020.Anumberofcountriesreportgenerationdatain2020formostbutnotallfuels.Wherethisoccurs,missingfuelsaresimplycarriedforwardfromthepreviousyear.Fornetimports,dataformissingyearsiscarriedforward.MonthlydataInseveralcasesmonthlydataisreportedonalaggedbasis,ordatamaynotbeavailable.Inthesecases,incompletemonthsareprojectedbasedonbothseasonalandinterannualtrends.GiventheunusualnatureofpowergenerationduringtheCOVID-19pandemic,weuse2019ratherthan2020asapointofreference.EstimatinglatestyearlydataMonthlydatadoesnotalwaysalignwithannualdata:differenttypesofgenerationmaybeincludedatdifferentscales,orcoveragemaydiffer.Whereconflictsoccur,annualdataisgenerallymoreaccurate.Assuch,weprojectlatestgenerationdatabyapplyingabsolutechangesbyfuelfromavailableannualisedmonthlydatato45historicalannualvalues.Inthefewcaseswhereaspecificfuelisnotavailableinmonthlydata,itistreatedashavingshownnochangeintheannualisedprojection.Assuch,notethatsimplysummingupmonthlyvalueswillnotproducethesameresultsasourannualvaluesforanygivenyear.ThermaldisaggregationSomecountriesdonotreportdisaggregatedgenerationfromfossilfuels.ThiswasperformedbyEmberusingtwomethods.Ifpossible,thesplitbetweenfossilfuelswasestimatedusingtheratiosoffossilgenerationinannualdata,capacitydataormonthlydatathatprovidesasplitbetweenfuels.RegionalandworldestimatesAlthoughourdatacoversthevastmajorityoftheworld’selectricitygenerationfor2021,dataisnotavailableforallcountries.Assuch,regionalandworldfiguresforthisyearareestimated.Therelativechangesinincludedcountriesareappliedtothelatestcompletedatapointforagivenregionandtheworldtoarriveattheestimatedvalue.Electricityimportsandexportsarenotincludedinestimatesforregionalorworldvalues.EmissionsdataWereportemissionsvaluesbyfueltype,andemissionsintensitybycountry.ThesevaluesarecalculatedbymultiplyingourgenerationnumbersbyemissionsfactorstakenfromtheIPCC5thAssessmentReportAnnex3(2014).Thesefiguresaimtoincludefulllifecycleemissionsincludingupstreammethane,supply-chainandmanufacturingemissions,andincludeallgases,convertedintoCO2equivalentovera100yeartimescale.Theemissionsintensitiesweusearebelow,incarbondioxideequivalentemittedperkilowatthourofelectricity(gCO2eqkWh-1):•Coal:820•Gas:490•OtherFossil:700•Wind:11•Solar:48•Bioenergy:23046•Hydro:24•OtherRenewables:38(inlinewiththeIPCC’s“geothermal”)•Nuclear:12IPCCfiguresstillrepresentthemostcomprehensiveattempttoestimateglobalfuelemissionsintensities.Nonetheless,theseemissionsfactorsmaydifferfromrealityforavarietyofreasons.Pleaseseeourcompletemethodologyformoredetails.©Ember,2022PublishedunderaCreativeCommonsShareAlikeAttributionLicence(CCBY-SA4.0).Youareactivelyencouragedtoshareandadaptthereport,butyoumustcredittheauthorsandtitle,andyoumustshareanymaterialyoucreateunderthesamelicence.EmberTheFisheries,1MentmoreTerrace,LondonFields,E83PNTwitter@EmberClimateFacebook/emberclimateEmailinfo@ember-climate.org