i2022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTIONPhotocredit:JunarEliangDisclaimersThedesignationsemployedandthepresentationofthematerialinthispublicationdonotimplytheexpressionofanyopinionwhatsoeveronthepartoftheSecretariatoftheUnitedNationsconcerningthelegalstatusofanycountry,territoryorcityorareaoritsauthorities,orconcerningthedelimitationofitsfrontiersorboundaries.MentionofacommercialcompanyorproductinthisdocumentdoesnotimplyendorsementbytheUnitedNationsEnvironmentProgrammeortheauthors.Theuseofinformationfromthisdocumentforpublicityoradvertisingisnotpermitted.Trademarknamesandsymbolsareusedinaneditorialfashionwithnointentiononinfringementoftrademarkorcopyrightlaws.TheviewsexpressedinthispublicationarethoseoftheauthorsanddonotnecessarilyreflecttheviewsoftheUnitedNationsEnvironmentProgramme.Weregretanyerrorsoromissionsthatmayhavebeenunwittinglymade.©Maps,photosandillustrationsasspecifiedSuggestedcitationUnitedNationsEnvironmentProgramme(2022).2022GlobalStatusReportforBuildingsandConstruction:TowardsaZero‑emission,EfficientandResilientBuildingsandConstructionSector.Nairobi.Theelectroniccopyofthisreportcanbedownloadedatwww.globalabc.org.ProductionPenroseCDB©2022UnitedNationsEnvironmentProgrammeISBNNo:978-92-807-3984-8JobNo:DTI/2482/PAThispublicationmaybereproducedinwholeorinpartandinanyformforeducationalornon-profitserviceswithoutspecialpermissionfromthecopyrightholder,providedacknowledgementofthesourceismade.TheUnitedNationsEnvironmentProgrammewouldappreciatereceivingacopyofanypublicationthatusesthispublicationasasource.NouseofthispublicationmaybemadeforresaleoranyothercommercialpurposewhatsoeverwithoutpriorpermissioninwritingfromtheUnitedNationsEnvironmentProgramme.Applicationsforsuchpermission,withastatementofthepurposeandextentofthereproduction,shouldbeaddressedtotheDirector,CommunicationDivision,UnitedNationsEnvironmentProgramme,P.O.Box30552,Nairobi00100,Kenya.2022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTION2022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTIONACKNOWLEDGEMENTSThe2022GlobalStatusReportforBuildingsandConstructionwaspreparedbyProf.IanHamiltonandDr.HarryKennardfromUniversityCollegeLondon(UCL)andOliverRapf,Dr.JuditKockat,Dr.SheikhZuhaib,Dr.ZsoltToth,MargauxBarrettandCarolineMilnefromtheBuildingsPerformanceInstituteEurope(BPIE),withcontributionsfromDr.ClaraDelmastro,YannickMonschauerandDr.ChiaraCamarasaandRafaelMartinezGordonfromtheInternationalEnergyAgency(IEA)(TheInternationalEnergyAgency(IEA)contributedtothe2022GlobalStatusReportforBuildingsandConstructionbyprovidingdataonkeyenergy,emissionsandactivitymetricsforthebuildingssector.TheIEAdatausedinthispublicationispartofthe2022editionsofIEA'sTrackingCleanEnergyProgressandtheAfricaEnergyOutlookreports.);IbtissemBouattayfromSC2A;TunisiaGreenBuildingCouncil;InsafBenOthmaneandOmarWanasfromOecumeneSpacesforDignity;Prof.AnnaDyson,Dr.Mae-lingLokkoandDr.AlyMohamedfromYaleUniversity;Dr.NaomiKeenafromMcGillUniversity,andProfKarenScrivenerandHishamHafezfromÉcolePolytechniqueFédéraledeLausanne(EPFL);withsupportfromJonathanDuwyn,PaulineGuerecheau,NoraSteurerandYijunCuifromtheUnitedNationsEnvironmentProgramme(UNEP)/GlobalAllianceforBuildingsandConstruction(GlobalABC).ThecontentsofthisreportdonotnecessarilyreflecttheviewsorpoliciesofUNEPorcontributoryorganizations.MentionofacommercialentityorproductinthispublicationdoesnotimplyendorsementbyUNEP.ThedesignationsemployedandthepresentationsofmaterialdonotimplytheexpressionsofanyopinionwhatsoeveronthepartofUNEPorcontributoryorganizationsconcerningthelegalstatusofanycountry,territory,cityareaoritsauthorities,orconcerningthedelimitationofitsfrontiersorboundariesorthedesignationofitsname,frontiers,orboundaries.ThementionofacommercialentityorproductinthispublicationdoesnotimplyendorsementbyUNEP.TheInternationalEnergyAgency(IEA)contributedtothe2022GlobalStatusReportforBuildingsandConstructionbyprovidinginsightsanddataonkeyenergy,emissionsandactivitymetricsforthebuildingssector.TheIEAdatausedinthispublicationispartofthe2022editionsofIEA'sTrackingCleanEnergyProgressandtheAfricaEnergyOutlookreports.Photocredit:JamesFrewin2022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTIONAbdouIdrisOmar,DepartmentofEnergyEfficiencyinBuilding,FacultyofEngineering,UniversityofDjiboutiAdrianaGuadalupeSalazarRuiz,GIZAdeAwujoola,GCModgil,AhmedBolbol,ASHRAEAishwaryaIyer,YaleSchooloftheEnvironmentAlejandraAcevedo,UniversidaddeLimaAndre-DanielMueller,SwissAgencyforDevelopmentandCooperation(SDC),SwitzerlandAngelicaOspina,ColombiaGreenBuildingCouncil(ColombiaGBC)AnnaZinecker,ProgrammeforEnergyEfficiencyinBuildings(PEEB)/DeutscheGesellschaftfürInternationaleZusammenarbeit(GIZ)GmbHBrianDean,SustainableEnergyforAllCarlElefante,Architecture2030,ClimateHeritageNetworkCarlosBohorquez,MunicipalityofMedellin,ColombiaChristinaCheong,GGGIChristineLemaitre,GermanSustainableBuildingCouncil(DGNB)DanielRondinel,McGillUniversityDonavanStorey,ReallDuncanGibb,REN21SecretariatEdwardDeWernaMagalhaes,LondonSouthbankUniversityEfrenFranco,ICAElizabethChege,SustainableEnergyforAllFaisalAlFadl,SaudiGreenBuildingFoum(SGBF)FrederickWirekoManu,CouncilforScientificandIndustrialResearch-BuildingandRoadsResearchInstitute(CSIR-BRRI,Ghana)GCModgil,ASHRAEGrégoireBrethomé,Construction21HarveyJones,WorldGreenBuildingCouncil(WorldGBC)IbrahimNiang,AARMBN,SenegalIdrissKathrada,Inoal/Novasirhe,FidicIlyasEssabai,MinistryofNationalTerritoryPlanning,UrbanPlanning,HousingandCityPolicy(MUAT),KingdomofMoroccoIremGencer,YildizTechnicalUniversityJeanCarroon,GoodyClancyJeffLittleton,ASHRAEJérômeBilodeau,NaturalResourcesCanada(NRCan)KamelSahnoun,PresidentoftheTunisianOrderofEngineersKarimSelouane,ResallienceKennedyMatheka,StateDepartmentforPublicWorks,KenyaKizaZehra,RoyalInstitutionofCharteredSurveyors(RICS)KurtEmilEriksen,VELUXA/SLucaDeGiovanetti,WorldBusinessCouncilforSustainableDevelopment(WBCSD)LudwigLabuzinski,denaMarkStewart,ScottishGovernmentMelissaLott,CentreonGlobalEnergyPolicy,CGEPMinaHasman,SOMEfrenFranco,ICAMokoladeJohnson,UniversityofLagosMosesItanola,BIMAfricaOluSoluade,AOSConsultingPeterCox,ClimateHeritageNetworkPeterGraham,GlobalBuildingsPerformanceNetworkRanaKachab,Oecumene„SpacesForDignityRebeccaMoir,WorldGBCRegisMeyer,MinistryfortheEcologicalTransition(MTES),FrenchRepublicRiadhBhar,GuidehouseGermanyGmbHRobBernhardt,PassiveHouseCanadaRobynPender,HistoricEngland,ClimateHeritageNetworkRolandHunziker,WorldBusinessCouncilforSustainableDevelopment(WBCSD)SilkeKrawietz,SETANetworkWolframSchmidt,BAMYorkOstermeyer,CUESanalyticsTheauthorswouldliketothankthefollowingmembersandpartnerswhosupportedthisreportwiththeirimportantcontributions,input,commentsandreviews:2022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTIONFOREWORDThewarningsissuedbytheIntergovernmentalPanelonClimateChange(IPCC)abouttheconsequencesofclimatechangearenolongerwarnings.Theyarereality.In2022,wesawheatwavesacrosstheglobe.Wesawwildfiresthatdestroyedforests,homes,andlives.Wesawdroughtsthatarethreateningthefoodsecurityofmillionsofpeople.IfwedonotrapidlycutemissionsinlinewiththeParisAgreement,wewillbeindeepertrouble.Decarbonizingthebuildingssectorby2050iscriticaltodeliveringtheseemissioncuts–andtoaddressingthewidertripleplanetarycrisisofclimatechange,natureandbiodiversityloss,andpollutionandwaste.However,asthe2022BuildingsGlobalStatusReportshows,thesectorisnotmakingthedeepsystemicchangesneededtogetonthepathtothisgoal.Afterthepandemicslowdown,thesector’soperationalemissionsin2021reboundedtotwopercentmorethantheall-timehighsetin2019.Onepositivesignisthatinvestmentinbuildingenergyefficiencygrewaround16percentin2021,butthisgrowthistentativeinthefaceofacost-of-livingcrisisin2022andmustbesustainedtoachievebuildingsectordecarbonisation.Buildingsectorenergyintensitydidnotimprovein2021andrenewableenergygrowthinbuildingsremainsmodest,althoughgreenbuildingcertificationareimproving.Yet,asthereportshows,thesectorcanchange.Forexample,risingfossilfuelcostsmakecontinuedinvestmentinenergyefficiencymoreattractive–althoughtheerosionofpurchasingpowermightslowinvestment.Thesolutionmaylieingovernmentsdirectingrelieftowardslowandzero-carbonbuildingIngerAndersen,Under-Secretary-GeneraloftheUnitedNationsandExecutiveDirectoroftheUNEnvironmentProgrammeinvestmentactivitiesthroughfinancialandnon-financialincentives,particularlyforthosewhoaremostvulnerabletoenergypriceshocks.Therearealsoopportunitiesinrethinkingconstructionmaterials.Rawresourceuseispredictedtodoubleby2060–withconstructionmaterialssuchasconcreteandsteelalreadymajorcontributorstogreenhousegasemissions.However,thesectorcanreduceitsimpactby,forexample,lookingatalternativematerialsanddecarbonizingcement.TheuseofalternativematerialsisparticularlyrelevantfortheAfricancontinent,aspecialfocusofthereport.MuchofthenewhousingstockoverthecomingdecadeswillbebuiltinAfrica.Toavoidincreasingemissionsandcreatebuildingsthatareresilienttotheimpactsofclimatechange,Africancountriesshouldlookatsustainableconstructionmaterialsandtechniques,inwhichthecontinentisrich.Yes,wearerunningoutoftimetogetontopofthetripleplanetarycrisis.Yes,thebuildingssectorisnotdoingenoughtochange.However,byfollowingtherecommendationsinthisreport,thesectorcancatchupandcreatebuildingsthatarezero-carbon,resource-efficientandresilient.2022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTIONPhotocredit:UNEPAcknowledgements...........................................................................iiiStatementsofsupportfromGlobalABCmembers...............................xExecutivesummary...........................................................................xv1.Disruptivetrendsimpactingbuildingandconstructiondecarbonizationin2021and2022�����������������������251.1.Emergentchallengesfordecarbonizingthebuildingstock..................271.2.EmissionsreboundfromCOVIDandeffortsforeconomicrecovery.........................................................281.3.Solutionsforgovernmentsanddecisionmakers..................................282.GlobalBuildingsClimateTracker�����������������������������������������������������322.1.DescriptionoftheTracker......................................................................332.2.Statusin2021:Assessingprogresstowardsthe2050decarbonizationgoal...............................................342.3.Post-pandemicreboundandeconomicrecovery.................................342.4.DecarbonizationprogresssincetheParisAgreement..........................352.5.Summaryoftheresults...........................................................................363.Globalbuildingsandconstructionstatus�����������������������������������������373.1.Constructionactivitiesglobalandregional...........................................383.2.Energyinthebuildingsandconstructionsector...................................413.3.Emissionsinthebuildingssector.........................................................423.4.IPCCAR6findingsforbuildings.............................................................444.Sustainablebuildingsandconstructionpolicies������������������������������464.1.Internationalpolicyandnationallydeterminedcontributions......................................................474.2.Buildingenergycodes.............................................................................504.3.Zero-emission/energycodesandtheParisAgreement.......................524.4.Greenbuildingcertification....................................................................534.5.Minimumenergyperformancestandardsandlabels...........................555.Investmentandfinancingforsustainablebuildings�������������������������57TABLEOFCONTENTSvi2022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTION6.Regionalfocus:Africa���������������������������������������������������������������������596.1.Introduction............................................................................................606.2.DecarbonizingtheAfricanbuildingsandconstructionsector.............656.3.Theroutetonetzerothroughnationalinitiatives................................677.Topicfocus:Buildingmaterials�������������������������������������������������������717.1.Buildingmaterialsandtheclimate:Statusandsolutions....................727.2.Towardstheadoptionofawhole-life-cycleandsystems-thinkingapproach...............................737.3.Challenge:Procurementandimplementationofmaterials–fromdatatoactionableknowledge...............................747.4.Avoidingcarbonemissionsbybuildingbetter,and(with)less............757.5.Adaptandshiftbyusingbiobasedprocessestoreducecarbonemissions................................777.6.Reducingthecarbonemissionsandurbanheatislandeffectofconcretesurfacesthroughbiomaterials(greenroofs,facadesandwalls)........................777.7.Summaryofindustrytrendsandimpedimentstoglobaldecarbonizationofbuildingmaterials.............797.8.Casestudy:Shift–low-carbonbuildingalternativesinWestAfrica.......................................................817.9.Casestudy:Adapt–CarbonfootprintofbuildingmaterialsandhousingtypologiesinrapidlydevelopingurbanIndia..................827.10.Casestudy:shift-Neighbourhood-levellife-cyclecarbonfootprintinFinland....................................................838.Roadmapsforbuildingsandconstruction���������������������������������������848.1.GlobalABCsupportandcoordinationonroadmaps..............................858.2.ASEANRoadmapforEnergy-EfficientBuildingsandConstruction.........................................858.3.DanishNationalStrategyforSustainableConstruction.......................858.4.ColombiaNetZeroCarbonBuildingroadmap.......................................858.5.RoadmapforanEnergyEfficient,Low-CarbonBuildingsandConstructionSectorinIndonesia.............868.6.EUPolicyWholeLifeCarbonRoadmapforbuildings............................868.7.Emergingroadmapactivities..................................................................869.Keyrecommendationsforpolicyanddecisionmakers��������������������88References.......................................................................................91Annex:GlobalBuildingsClimateTracker.........................................100vii2022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTIONFigure1.Globalbuildingsandconstructionkeytrends2015and2021............16Figure2.Directreferencepathtoazero-carbonbuildingstocktargetin2050(left);zoomintotheperiodbetween2015and2021,comparingtheobservedGlobalBuildingsClimateTrackertothereferencepath(right)..................17Figure3.Energyconsumptioninbuildingsbyfuel,2010-2021(left)andCO2emissionsinbuildings2010-2021(right).........18Figure4.Mentionsofbuildingsacrossallcountries’latestNDCs......................19Figure5.Africa’sfinalenergyconsumptionbysector2020-2030...................21Figure6.Fromdatatoactionableknowledge:Howtogettherightinformationtostakeholdersattherightphaseofthebuiltenvironmentprocesslifecycleinordertofacilitatemaximumdecarbonizationthroughsystems-thinking.....22Figure7.GlobalbuildingsenergydemandandfloorareagrowthundertheIEANetZeroEmissionsby2050Scenario...............26Figure8.CompositionoftheGlobalBuildingsClimateTrackershowingitselementsandtheirweight..............33Figure9.DecarbonizationofbuildingsusingtheGlobalBuildingsClimateTracker2021.......34Figure10.Directreferencepathtoazero-carbonbuildingstocktargetin2050(left);zoomintotheperiodbetween2015and2021,comparingtheobservedGlobalBuildingsClimateTrackertothereferencepath(right)..................36Figure11.ChangeinconstructionactivitiesinselectedG20countries,2015-2021(relativeto2015)............................38Figure12.Globalfloorareaandbuildingsenergyintensity,2010-2021..............38Figure13.Differentlevelsofzero-carbonbuildings.........40Figure14.Energyconsumptioninbuildingsbyfuel,2010-2021(left),andshareofbuildingsintotalfinalenergyconsumptionsin2021(right)...............41Figure15.CO2emissionsinbuildings2010-2021(left)andshareofbuildingsinglobalenergyandprocessemissionsin2021(right).....................42Figure16.IPCCAR6WGIII-OverviewofA)GlobalbuildingemissionreductionscenariosandB)Mitigationoptionsandtheirestimatedrangesofcostsandpotentialsin2030...............................................45Figure17.NDCmentionsofbuildings................................47Figure18.Globalstatusofbuildingenergycodesin2021..........................50Figure19.Shareofenergyconsumptionforselectedend-usescoveredbyminimumenergyperformancestandards(MEPS)ormandatorycomparativelabels,2000-2021......56Figure20.PopulationgrowthperhourinAfricancities....60Figure21.Globalpopulationlivinginslums2018(percentofpopulation).....................................................61Figure22.Vulnerabilitytoclimatechange.Thelowestlevelofvulnerabilityisgivenascoreof0,thehighest100...................61Figure23.Africa’sfinalenergyconsumptionbysector2020-2030...................62Figure24.GreencertificationprojectsacrossAfrica(bluelabels)andinitiativesrelatingtoconstructionmaterials(orangelabels)...................................................67Figure25.Constructionmaterialsaresettodominateresourceconsumptioninfast-growingdevelopingeconomies,withbuildingmaterial-relatedemissionsprojectedtoincreaseby3.5to4.6GtCO2eq/yearby2060......................72Figure26.Whole-lifeandsystems-thinkingapproachtoenablemultiplestakeholdersateachdecisionpoint.................73Figure27.Materialsselectionandimplementationaffectsthecarbonfootprintofabuildingoveritslifecycle............75Figure28.Fromdatatoactionableknowledge:Howtogettherightinformationtostakeholdersattherightphaseofthebuiltenvironmentprocess..........................76Figure29.Greeninfrastructureandbiomaterialsystems....................................78Figure30.AnnualbuildingmaterialstradeforGhana(2020)andSenegal(2019)andcorrespondingCO2emissionsfromcementbuildingmaterialproduction,basedondatafromChathamHouse(2021)andGlobalCarbonAtlas2019...........................81LISTOFFIGURESNote:ReferencetoemissionsinthisreportreferstodirectorindirectCO2emissionsfrombuildingsoperations,ortheCO2fromenergyusedinmaterialsproduction,ortheCO2equivalentformaterialsprocessemissions,suchasfromconcreteandsteel.viii2022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTIONLISTOFTABLESLISTOFBOXESABBREVIATIONS°CdegreesCelsiusASEANAssociationofSoutheastAsianNationsBPIEBuildingsPerformanceInstituteEuropeCBECSCommercialBuildingsEnergyConsumptionSurveyCO2carbondioxideEJexajouleEUEuropeanUnionGBCTGlobalBuildingsClimateTrackerGDPgrossdomesticproductGlobalABCGlobalAllianceforBuildingsandConstructionGtgigatonIEAInternationalEnergyAgencyIECCInternationalEnergyConservationCodeIFCInternationalFinanceCorporationILOInternationalLabourOrganizationIPCCIntergovernmentalPanelonClimateChangekWhkilowatt-hourLEEDLeadershipinEnergyandEnvironmentalDesignm2squaremetresMEPSminimumenergyperformancestandardNDCNationallyDeterminedContributionNZEnetzeroemissionsOECDOrganisationforEconomicCo-operationandDevelopmentPEEBProgrammeforEnergyEfficiencyinBuildingsPVphotovoltaicSDGSustainableDevelopmentGoalttonTWhterawatt-hourSEforAllSustainableEnergyforAllUNUnitedNationsUNEPUnitedNationsEnvironmentProgrammeUNFCCCUnitedNationsFrameworkConventiononClimateChangeWwattBox1.Europeanresponsetotheenergycrisis........30Box2.DeclarationonSustainableUrbanization......31Box3.ExplainingtheGlobalBuildingsClimateTracker...................34Box4.Definingnet-zero-carbonbuildings...............39Box5.GlobalCO2emissionsfrombrick,aluminiumandglassproduction......................................43Box6.Trendsinproductionoflow-carboncement.........................................43Box7.UpdatedFrameworkGuidelinesforEnergyEfficiencyStandardsinBuildings......53Box8.Examplesoflow-carbonandtraditionalconstructionapproachesinAfrica................63Box9.Net-zeroconstructionmethodsinAfrica......69Box10.Advancedconstructionpracticesandsustainableandzero-carbonmaterials........70Table1.Buildings-relatedstatementsinNDCs..........48Table2.Selectedcountries’first,firstupdated,andsecondNDCswithbuilding-focusedactions,submittedsinceSeptember2021..................49Table3.Buildingenergycodesstatusin2022...........51Table4.Globalbuildingcertificationprogrammes...............................54Table5.ChallengesandopportunitiesforAfrica’sbuildingssector...........................64Table6.SelectionofAfricanNDCsrelatedtobuildings.........................................65ix2022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTIONSTATEMENTSOFSUPPORTFROMGLOBALABCMEMBERSFaisalALFADLChiefRepresentativetotheUnitedNationsSaudiGreenBuildingForumSaudiArabiaOurprosperityandtheplanet’sfuturedependonhowwetreatourbuilt-environment.Itisagreatconcernthatthegreenhouseeffectandclimatechangeswillthreatenourcities,neighborhoodsandbuildingsforgenerationstocome.NotrackerexistsliketheGlobalStatusReportforbuildingsandconstructionreferencingtrends,keydataandactionstakenbyleadingglobalchampionstodecarbonizethesectoractivitiesfromreporting,monitoringtocertifications.MaríaFernandaAGUIRREExecutiveDirectorofChileGreenBuildingCouncil/ChairoftheAmericasregionalNetworkoftheWorldGreenBuildingCouncilChileGreenBuildingCouncilChileAlthoughmanycountrieshavemadeprogressingeneratinginitiativesalignedwithcarbonneutralitygoalsforthebuiltenvironment,informationprovidedbyreferringorganizationssuchasGlobalABCthroughvaluableresourcessuchastheGlobalStatusReportforBuildingsandConstruction,hasmadetheurgencyofacceleratingthetransformationoftheconstructionsectortowardsonethatnotonlyreducesitsemissionsbutisalsoresilientandregenerativeevident.TheGlobalStatusReportforBuildingsandConstructiontracksprogressinthetransitiontowardsasustainableandresilientbuildingsector.Andthereport’sinsightshelpAutodeskasweworktoempowerourcustomerstocreatesolutions,connectdata,andacceleratemoresustainableoutcomessuchasnet-zerobuildings,resilientinfrastructure,andwastereduction.Asmembers,wearehonoredtocontributetotheimportantworkledbyGlobalABC.AndrewANAGNOSTCEOAUTODESKUnitedStatesWearesogladthatthe2022editionofGlobalABC’sflagshipGlobalStatusReportforBuildingsandConstruction(GlobalABC)willbelaunchedsoononNovemberandwouldbeavailableforallofustousethebenefits,discussandlearnfromitsexample.ElenaANASTASIADOUArchitectPublicWorksDepartmentMinistryofCommunicationsandWorkCyprusx2022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTIONCongratulationsforpublishingtheBuildings-GSR2022.Ihopethatthisreport,whichprovidesbasicdataandadvancedcasestudiesfromaglobalperspective,willbewidelyreadandusedasabasisforunderstandingtheneedtoachievedecarbonizationinthebuildingandconstructionsectorandforformulatingpoliciestosupportit.Asoneoftheconstructioncompanies,SekisuiHouseunderstandstheclimatecrisistheplanetfaces,andiscommittedtoleadingthewayindecarbonization.AsChairmanoftheSustainableConstructionCommitteeforCivilBuildings,Iconfirmmysupportforactionstoachievelowcarbonandsustainabilityinbuildings.Thisincludes:Firstworkingtoupdateregulationtextsandtechnicalspecificationstointroduceecologicalmaterialsandprocedures,secondincreasetherenewableenergyuseandimprovebuildings’energyefficiency.Finallymanagethewasteconstructionsiteanddevelopalifecyclesystemforconstructionmaterials.Currentcircumstancesrequirenewstructuresandmanagementmethodstoensureclimateandenvironmentalgovernance.ReportssuchastheBuildings-GSRrepresentakeyelementtodriveinnovationthroughassociativemodels,buildalliancesandlaunchplatformsthatenabletheemergenceoftherequirednewstructurestofaceactualchallengeswithgreaterdynamismandflexibility,drawingtheattentionofstakeholderstoengageinthiscollectivecommitment.LindsayBAKERCEOInternationalLivingFutureInstituteUnitedStatesTheglobalbuildingsindustryhasanenormousresponsibilitytotransformtowardsaregenerativeanddecarbonizedfuture.TheGlobalStatusReportforBuildingsandConstructionisacriticalresourcethathelpsourmovementunderstandhowwearedoing,whereweneedtofocus,andwhat’snext.ItisaninvaluablesourceofdatathatweuseattheInternationalLivingFutureInstitutetoinformourworkandmembership,andwecommendtheGlobalABCforitscontinuedsupportandcollaboration.HernánBAULODARHANPÉTechnicalSpecialist,MinistryofEnvironmentandSustainableDevelopmentClimateChangeandInnovationSecretariat(MinistryofEnvironmentandSustainableDevelopment)ArgentinaSondesBEJIKRAIEMProjectsDirector,MinistryofEquipmentandHousingMinistryofequipmentandhousingTunisiaArefBOUALWANChiefInitiativesandStartupsOfficerConsolidatedContractorsCompanyGreeceTheCCCjourneytowardsazero-emission,efficient,andresilientconstructionsectorwouldneverbepossiblewithoutGlobalABCactivemembership.WithGlobalABC,wecanworkcloselywithprivateandpublicsectormembersforthebenefitoftheindustry,stakeholdersanddefinitelytheenvironment.Dr.ToshiyaCHIKADAChairpersonoftheEnvironmentalSubcommitteeSekisuiHouse,Ltd.Japanxi2022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTIONTheBuildings-GSRprovideseveryyearanupdatedandcrediblesourceofinformationtoallbuiltenvironmentstakeholders.Importantly,thishelpsforgecommonunderstandingandactioninaveryfragmentedeconomicsystem.RolandHUNZIKERDIRECTORSustainableBuildingsandCities,WorldBusinessCouncilforSustainableDevelopment(WBCSD)SwitzerlandThefindingsoftheBuildings-GSR’shighlighttheshortfallintheglobalbuiltenvironmentsector’sdecarbonisationprogresstodate,urgingactionstobeimplementedbyallactors,withutmostpriority.Thelackofmandatorybuildingcodesinnearly60percentofthecountriesworldwide,placesgreateremphasis,nowmorethaneverbefore,onrapidupskillingandcapacitybuildingwhichwillrelyonradicalcollaborationsacrosstheindustryandacademiatoadvancethesector’sdecarbonisationconsistentlyandatscale.Withalmost40percentofglobalenergy-relatedemissionscomingfromthebuiltenvironment,governmentseverywheremustprioritiseitasawayofscalingeconomic,socialandclimateresilienceandkeepinga1.5degreefuturewithinreach.AsasupporterofthecollaborativeeffortsofGlobalABC,WorldGBCwelcomestheGlobalStatusReportforBuildingsandConstruction2022asaresourcefordescribingthestateofplayandopportunitiestodeliveramoresustainablebuiltenvironment.CristinaGAMBOACEOWorldGreenBuildingCouncilUnitedKingdomCarlELEFANTEGlobalABCLiaisonClimateHeritageNetwork(CHN)UnitedStatesCongratulationstoGlobalABConthe2022Buildings-GSR,especiallyforadvancingdiscourseontheAfricaRegionandBuildingMaterials.AsgrowthacceleratesinAfrica,India,andelsewhereinthe“GlobalSouth”,regionallyappropriatesolutionsareessential.Embodiedemissionsfromthevastconstructionindustryareascrucialasoperationalemissionsand,inmanyways,morechallengingtoarrest.The2022Buildings-GSRopenslong-overdueinternationaldiscourseontheseimportanttopics.Egypt’s2021-NDCfocusesondecarbonisingenergy-intensiveindustries.ThebuildingssectorisoneofitslargestGHGemittersat15percent,andrepresents23percentoftheenergyGHGemissions.Actionsfordemandsidemitigationofbuildingmaterialsiscritical.Itshouldincludeovercomingoverbuildingpracticeswithlow-costmaterials,alternativematerialsuse,circulareconomytechnology,efficientdesigns,incentivesandpoliciessettingtoreachtheglobal40percentembodiedcarbonreductionthresholdby2030.MayELWANYCEOSalūsGlobalforGreenBuildingsandSustainableCitiesEgyptMinaHASMANCAAChairofPracticeandGlobalABCFocalPointCommonwealthAssociationofArchitectsUnitedKingdomxii2022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTIONTheintersectingoftheeconomic,energy,securityandclimatecrisesischallengingtheprogressneededtodecarbonisetheglobalbuildingssector.Greaterpoliticalandorganizationalleadershiparerequiredtofurtherprioritizeandimplementactionssupportingthedecarbonisationandsustainabilitytransitionofthebuiltenvironment.TheBuildings-GSR2022describesalsotheessentialinvestmentandfinancingforsustainablebuildingsrequiredinordertoachievetheParisAgreementgoals.Dr.Arch.SilkeA.KRAWIETZ(ARB/RIBA)CEOandFounderSETANetworkUnitedKingdomProf.RobertoLAMBERTSFederalUniversityofSantaCatarina,LaboratoryforEnergyEfficiencyinBuildingsBrazilTheGlobalStatusReportforBuildingsandConstructionisaveryimportantreportthatmonitorsCO2emissionsbythebuildingsectorworldwide.Itiswrittenbytopauthorsinthefieldandisamustreadforpeopleconcernedwithbuildingdecarbonizationandresilience.Thisyearithasincludedaveryimportanttopicaldeepdiveonbuildingmaterialsthatleadsustoawholelifecycleapproach.MosesITANOLAExecutiveDirectorBIMAfricaNigeriaThoughrapidlyindustrializing,Africacontributesonly4percentofgreenhousegas(GHG)emissions.Yet,itisthemostvulnerabletoclimatechange.Alongsidepressuringfinanceandsupportformitigationandadaptation,Africamustleapfrogsince50percentofpotential2050GHG-emittingindustriesareyettobebuilt.Asanadvocateofinnovativeapproachesforaclimate-smartconstructionsector,BIMAfricasupportsthepolicyguidancebythe2022Buildings-GSR,particularlytheregionalfocusonAfrica.Dr.ChristineLEMAITRECEOGermanSustainableBuildingCouncil(DGNB)GermanyThisreportistotallyimportantforcreatingtransparencyaboutwherewestandindifferentcountriesaroundtheworld.Itthusformsaresilientcommonbasisforourinternationalandnationalactivities.CongratulationstoGlobalABContheannualGlobalStatusReportforBuildingsandConstruction,whichchartsprogressonthetransitiontoacarbonpositive,energy-efficient,resilientbuiltenvironment.It’sgreattoseethefocusoncarbonimpactsofmaterials,aswellasthefocusonsustainabledevelopmentexamplesintheglobalsouth.Nowisthetimetoaccelerateandexpandourefforts,lookingbeyondbuildingstoopportunitiesforemissionreductionsinplanning,infrastructure,andlandscapedesignandconstruction.VincentMARTINEZPresidentandCOOArchitecture2030UnitedStatesStéphanePOUFFARYCEOENERGIES2050FranceThisnewreporthighlightsandrecallstheuniqueroleofbuildingsinthetransformativepatternstowardthedecarbonizationofoureconomies.Thesleepinggiantremainsinsufficientlyconsideredandhastobepushedupfrontofpoliticalagendastodeliverconcrete,immediateandmeasurableco-benefitsbothonmitigation,adaptationandresiliencewhileconsideringthejusttransition.Solutionsarethereandmostofthemareaffordableormakeeconomicandsocialsense.xiii2022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTIONBirgitSCHWENKDirectorGeneralforClimateActionFederalMinistryforEconomicAffairsandClimateActionGermanyThebuildingssectorisessentialforclimatemitigation,resilience,andwell-being.GermanyisthereforecommittedtosupportingtheGlobalABCanditsGlobalStatusReportforBuildingsandConstruction.This2022editionhighlightsthatthecarbonfootprintofbuildingmaterialsneedstobedrasticallyreducedtoachieveourclimategoals.Weareconvincedthatthereports’findingsandpolicyrecommendationswillbekeytoinformstakeholdersonthenecessarystepstodecarbonisetheinternationalbuildingssector.DominicSIMS,CBOCEOInternationalCodeCouncilUnitedStatesEachyeartheInternationalCodeCouncilanticipatesthereleaseoftheBuildings-GSRasatooltoassessprogressandidentifyworktodotodecarbonizeandincreasetheresilienceofthebuildingsector.Weapplaudthisyear’sfocusonbuildingmaterials,particularlyaswelaunchdevelopmentofanewstandardformeasurementandverificationofwholelifecarboninbuildings.WelookforwardtocontinuedcollaborationwithGlobalABCtocreateadaptationandmitigationtoolsthatassistthesector.IanSHAPIROCEOREALLUnitedKingdomAsasocialenterpriseinvestingingreenandaffordablehomesinAfricaandAsia,ReallwelcomesthecalloftheGlobalStatusReportforBuildingsandConstructionforanurgentresetinthewayweplan,designandfundourbuiltenvironments.ThefocusonAfricaisparticularlytimely,giventhesignificantopportunitieswhichstillexisttosupportandinvestininnovativeandcreativesolutions.Wejointhecalltocollectivelyscaleupambition,strengthenpartnershipsandunlocktheinvestmentneeded.MaxVIESSMANNGroupCEOViessmannGroupGermanyThereporthighlightsthatdespiterecordinvestmentsintoenergyefficiencyand15percentheatpumpgrowthglobally,buildingsarestilldramaticallyofftracktoreachtheParisgoals.Thereport’smessagemustbeheardloudandclear:Wecannotaffordtoslowdowninvestmentintosustainablebuildingsespeciallyintimesofcrisis.Buildingdecarbonisationmustremainaprioritynotonlyforourclimatebutalsoforenergyresilienceandbetterlivingconditionsallovertheworld.AttheU.S.GreenBuildingCouncil,wearetransformingbuildingsandcommunitiesthroughourLEEDprogram,improvinghealthandresiliencewhilereducingcarbon.Betterbuildingsmustbeacoresolutiontotheclimatecrisis.TheGlobalStatusReportforBuildingsandConstructionunderscorestheurgencyofmomentumininvestmentandpolicytodrasticallyreducebuildingemissions.TheReportisanimportantresourceforallinthebuildingsandconstructionsector,addingcriticalaccountabilitytoourcollectiveeffort.PeterTEMPLETONCEOandPresidentU.S.GreenBuildingCouncilUnitedStatesxiv2022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTION3EXECUTIVESUMMARYIn2021,constructionactivitiesreboundedbacktopre-pandemiclevelsinmostmajoreconomies,alongsidemoreenergy-intensiveuseofbuildingsasworkplacesreopenedbuthybridworkingremained.Inaddition,moreemergingeconomiesincreasedtheiruseoffossilfuelgasesinbuildings.Asaresult,buildingsenergydemandincreasedbyaround4percentfrom2020to135EJ–thelargestincreaseinthelast10years.CO2emissionsfrombuildingsoperationshavereachedanall-timehighofaround10GtCO2,arounda5percentincreasefrom2020and2percenthigherthanthepreviouspeakin2019.Photocredit:GabriellaClareMarinoxv2022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTIONDISRUPTIVETRENDSIMPACTINGBUILDINGDECARBONIZATIONTheCOVID-19pandemicresultedinanunprecedentedchangeacrosstheworldinthebuildingsandconstructionsectorin2020.Thisincludedamajordropindemandforconstructionacrossmajoreconomies,workplaceshutdownsduetolockdown,labourandmaterialshortages,changingworkpatterns,andenergyaffordabilitychallenges,whichallstillpersisttoday.TheresultwasthesinglelargestdropinCO2emissionsinthelastdecade,asdocumentedinthelastGlobalStatusReportforBuildingsandConstruction.In2021,constructionactivitiesreboundedbacktopre-pandemiclevelsinmostmajoreconomies(section4.1),alongsidemoreenergy-intensiveuseofbuildingsasworkplacesreopenedbuthybridworkingremained(section4.2).Inaddition,moreemergingeconomiesincreasedtheiruseoffossilfuelgasesinbuildings.Asaresult,buildingsenergydemandincreasedbyaround4percentfrom2020to135EJ–thelargestincreaseinthelast10years(InternationalEnergyAgency[IEA]2022).TheimpactofthisisthatCO2emissionsfrombuildingsoperationshavereachedanall-timehighofaround10GtCO2,arounda5percentincreasefrom2020and2percenthigherthanthepreviouspeakin2019.WhenincludingestimatedCO2emissionsfromproducingbuildingsmaterialsofaround3.6GtCO2(i.e.concrete,steel,aluminium,glass,andbricks),buildingsrepresentedaround37percentofglobalCO2emissionsin2021.Alsoin2021,thegoalsoftheParisAgreementwerereaffirmedatthe26thConferenceofthePartiestotheUnitedNationsFrameworkConventiononClimateChange(UNFCCCCOP26).TheGlasgowClimatePactagreedatCOP26emphasizesacceleratingandrapidlyscalingupenergyefficiencymeasures(UnitedNationsFrameworkConventiononClimateChange[UNFCCC]2022a).Inaddition,COP26sawmorethan120eventsfocusedonthebuiltenvironmentandthelaunchofanumberofimportantbuildingsinitiatives.Nevertheless,thereboundinCO2emissionsshowsthatfewstructuralchangeshaveyetoccurredwithinthebuildingssectortoreduceenergydemandorcutemissions,andthat2020wasmerelyapandemic-relatedoutlierinbuildingemissionstrends.Overall,thekeytrendsfortheGlobalStatusReportforBuildingsandConstructionhighlightthatsince2015,someprogresshasbeenmadeonthepolicylevelandwithanincreaseininvestments,buttheremustbegreaterefforttoreduceemissionsoverallandimprovebuildingenergyperformancealongsidethecontinuingtrendofincreasingfloorarea(seefigure1).The2022updateoftheGlobalBuildingsClimateTrackerconfirmsthisobservationandshowsagrowinggapbetweentheactualclimateperformanceofthesectorandthenecessarydecarbonizationpathway.Thisisdespite2021havingseenagrowingnumberofcountriescommittingtoenergyefficiencyandofferingextensivedetailsfordecarbonizationofbuildingswithintheirnationallydeterminedcontributions(NDCs)(section5.1),andanapproximate16percentincreaseinglobalinvestmentinenergyefficiencytooverUSD230billion(section6).Aswemoveforwardthrough2022,therearesignificantriskstothedecarbonizationtrajectoryduetotheRussianinvasionofUkraineandtheensuingenergycrisisinEurope.Furtherrisksareposedbyglobalenergypricevolatility,alongwiththecost-of-livingcrisisfacingeconomiesandtheimplicationsofinterestraterisesoninvestmentinbuildingdecarbonizationfromgovernments,householdsandbusinesses.ThelatestassessmentreportfromtheIntergovernmentalPanelonClimateChange(IPCC)forthemitigationFigure1.Globalbuildingsandconstructionkeytrends2015and20211Energyintensity(kWh/m2)-0.7%20151532021152Investment(2021USDbn)+51.9%20151562021237Grossfloorarea(bnm2)+11.0%20152182021242NumberofNDCswhichmentionbuildings+79.5%2015882021158Emissionintensity(kgCO2/m2)2015432021-7.0%40Numberofcountrieswithbuildingenergycodes+27.4%2015622021791ValuesincludedforthebaselineshavebeenupdatedfrompreviousversionsoftheBuildings-GSRduetobothhistoricinputdataupdatesforemissionsandfloorspace,andalsodeflationfactorsforUSD.Theproportionalchangesbetweenpreviousyearsremainssimilar.xvi2022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTIONworkinggroup(AR6WGIII)sentaclearmessagethatthebuildingsandconstructionindustryoffersignificantglobalmitigationpotentialforreachingtheParisAgreement.Opportunitiesincludeimprovingexistingbuildingsefficiencyanduse,high-performancenewbuildings,efficientlightingappliancesandequipmentinbuildings,integratingrenewablesinbuildings,anddecarbonizingproductionofbuildingmaterials.TheconsensusoftheIPCCreportisthatbuildings’operationalemissionswillneedtodropbymorethan95percentcomparedtocurrentlevels,andthatthesereductionsarecost-effectiveandbeneficialtobuildingoccupantsandenergysecurity(seesection2.3).Thegrowingandintersectingeconomic,energy,securityandclimatecrisesbothchallengeandhighlighttheprogressneededtodecarbonizeandtoimprovetheresilienceoftheglobalbuildingssector.Greaterpoliticalandorganizationalleadershipisneededtofurtherprioritizeandimplementactionsthatsupportthedecarbonizationandsustainabilitytransitionofthebuiltenvironmentandtransformationofconstructionmaterialsproduction.In2021,manygovernmentscontinuedtoactwithaclearinteresttoaddressclimatechangeandbuildingssustainability.TheEuropeanUnion’sREPowerEUinitiativehassoughttoimprovetheenergyperformanceofbuildingsbyboostingthetake-upofefficiencyretrofits,renewablesandheatpumps,andtheuseoffiscalmeasuresforenergyefficiencyproductsforbuildings.Similarly,theUSInflationReductionActhasalsomadespecificreferencetosupportingenergyefficiencyandrenewableenergyinbuildings.Multiplyingsuchpolicycommitmentsandafocusonsustainingandincreasinginvestmentwillbecriticaltobendingtheemissionstrajectorydownwardinthecomingyears.GLOBALBUILDINGSCLIMATETRACKERTheGlobalBuildingsClimateTracker(section3)indicatesthatthebuildingsandconstructionsectorremainsofftracktoachievedecarbonizationby2050.TheGlobalBuildingsClimateTrackermonitorstheprogressofthebuildingsandconstructionsectortowardsachievingtheParisAgreement.In2021,thedecarbonizationleveldecreasedto8.1points,fromahighpointof11.3in20202.Thetrackershowsthatsincethepandemic,buildingdecarbonizationactivitieshaverevertedtotheirpreviousspeedofchange.20152016201720182019202020210246810121416182020150204060801002050GlobalBuildingsClimateTrackerDirectreferencepathtogoalBCTIndexPercentchangecomparedtothepreviousyear[±%]Zero-carbonbuildingstocktarget4.11.8[-56%]4.2[+2.2%]4.88.19.011.3[+165%][+68%]pandemicoutlier6.6Figure2.Directreferencepathtoazero-carbonbuildingstocktargetin2050(left);zoomintotheperiodbetween2015and2021,comparingtheobservedGlobalBuildingsClimateTrackertothereferencepath(right)Source:AdaptedbytheBuildingsPerformanceInstituteEurope.22021GlobalStatusReportforBuildingsandConstructionshowed17.3pointsfor2020.The2022reportusesupdatedhistoricdataandindicators,whichexplainsthediscrepanciesbetweenthenumbersinthetworeports.Fordetails,seeAnnex.xvii2022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTIONCurrentobservationsshowanegativereboundsince2020inthedecarbonizationofthebuildingssector,withincreasedenergyintensityandhigheremissions.Thisleadstoagrowinggapbetweentheobservedperformanceandthedesiredpathway,asshowninthelowerpartoffigure2.Thegapgrewfrom6.6pointsin2019to9.0pointsin2021.GLOBALBUILDINGSANDCONSTRUCTIONSTATUSOperationalenergydemandinbuildings(suchasspaceheatingandcooling,waterheating,lightingandcooking)hasgrowntoaround135EJ,whichisanincreaseofaround4percentfrom2020andexceedsthepreviouspeakin2019byover3percent(IEA2022f).Relatedtoenergydemand,theglobalbuildingssectorCO2operationalemissionshavealsoreboundedfrom2020byabout5percenttoalevelofaround10GtCO2.Thisincreaseinemissionsexceedsthepre-pandemicall-timehighin2019by2percent(IEA2022f)(seeFigure3).Theincreasereflectsthereopeningoftheglobaleconomyasworkplacesbegantousemoreenergy,alongsidehouseholdscontinuingtoworkinhybridmode,andagrowthineconomiesusinggasforheating.Theenergyintensityofbuildings,representingthetotalfinalenergyconsumptionpersquaremetre,hasremainedunchangedoverthelastthreeyearsataround150kWh/m2.Toachievetheneededpathwaytowardnetzerocarbon,theInternationalEnergyAgencyestimatesthatintensityneedstodropbyaround35percentofitscurrentleveltoaround95kWh/m2(IEA2022f).Unfortunately,energyintensityhaslargelybeenunchangedsince2019andmustimproveatarateof5percentperyearby2030toachievethesetargets.Todoso,alongsidedecarbonizationofthegrid,thebuildingrenovationratemustincreaseto2.5percentperyear(or10milliondwellingsperyear)by2030indevelopedeconomies(IEA2021b).SUSTAINABLEBUILDINGSANDCONSTRUCTIONPOLICIESBuildingsandconstructionpoliciessawprogressin2021,with23countriesrevisingandupdatingtheirNDCswithagreaterlevelofcommitmenttobuildingefficiencyandadaptation,andagreaterlevelofdetail.80percentofcountriesnowrefertobuildingsaspartoftheirNDCactionplans,comparedtoaround69percentin2020(seeFigure4).Thisisapositivesignasmoregovernmentsrecognizeandmakecommitmentstotherolebuildingsplayintheirdecarbonizationactions(seesection5.1).0306090120150EJ0246810GtCO22010201520192020202120102015201920202021Residential(direct)Non-residential(indirect)Residential(indirect)Non-residential(direct)Biomass(traditional)ElectricityHeatRenewablesCoalOilNaturalgasFigure3.Energyconsumptioninbuildingsbyfuel,2010-2021(left)andCO2emissionsinbuildings2010-2021(right)Source:InternationalEnergyAgency(2022).TrackingCleanEnergyProgress.Paris.xviii2022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTIONBuildingcodesarevitaltoaddressingbuildingssectoremissionsandprovidingclearguidelinesontheirfeatures.Theycanbeamaindriverforimprovementsinenergyperformance.AsofSeptember2022,40percentofcountrieshavemandatoryorvoluntaryregulationsorcodesforbuildingenergyperformance(seesection5.2)–thismarksanincreaseofonlyonecountryfromlastyear’sBuildingsGlobalStatusReport,duetoGeorgianowformallyapplyingtheEUdirective2010/31/EU(EuropeanParliament2010).Whenlookingatcountrieswithmandatorycodesorregulationsforbothresidentialandnon-residentialbuildings,theproportionfallsto26percent.In2021,sevenUSstatesadoptedmorestringentbuildingcodesforenforcement,includingWashingtonandNewYorkstates,whichhavefocusedonpromotingelectrificationanduseofheatpumps,andgeothermalheatingandcoolingsystems,whileDenmarkandFranceimplementedlifetimeCO2levelsfornewbuildings(seesection5.2and5.3).Asapriority,morejurisdictionsneedtoaligntheirbuildingcodestomeetingtheParisAgreement.In2021,severalorganisationsandjurisdictionsundertookeffortstoaligntheirnewbuildingenergycodestowardsbeingzerocarbon.Forexample,thenewvoluntaryappendixtothe2021InternationalEnergyConservationCode(IECC)workstowardsprovidingastandardforachievingzero-carbonbuildings(IECC2021),andWashingtonDC’s2020energycodeincludesanet-zeroenergyappendixfornewbuildings(GovernmentoftheDistrictofColumbia2017).NDCmentionsofbuildingsAdaptationFurtherdetailgiveninFourthBiennialReport(spotcolorcorrespondstomentioncategoryabove)BuildingcodesIncreaseddetailinNDCupdateEnergyEfficiencyExtensivedetailLimitedreferencetobuildingsNoknownNDCNomentionFigure4.Mentionsofbuildingsacrossallcountries’latestNDCsThismapiswithoutprejudicetothestatusoforthesovereigntyoveranyterritory,tothedelimitationofinternationalfrontiersandboundaries,andtothenameofanyterritory,city,orarea.Source:UnitedNationsFrameworkConventiononClimateChange[UNFCCC].Notes:Adaptationcanrefertoanymeasurestoimproveresiliencetotheimpactsofclimatechange,suchasimprovedfloodresilienceforhousing.Regionswithfineleft-hatchinghavespecificreferencetobuildingcodes.RegionswithdottedhatchinghavereportedactionsthroughtheBiennialReport.xix2022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTIONAsafurthertoolforpromotingbuildingsustainability,greenbuildingcertificationoffersawaytoadoptandrecognizehigherstandardsofbuildingenergyperformanceandbroadermetricsofbuildingsustainability.Since2020,therehasbeena19percentincreaseincertificationsacrosstheworldamongthetrackedsystems(section5.4).Energyusedforequipmentandappliancesrepresentedaround18percentofbuildingenergyusein2021(IEA2022f).Tofurtheraddressbuildingemissionsreductions,morecountrieshaveintroducedminimumenergyperformancestandardsforequipmentandappliances.Thesecovermorethan80percentofrefrigerators,75percentoflightingand82percentofairconditionersgloballybyfinalenergyuse,andaresupportedbyagrowinguseoflabelstoindicateperformancelevels(IEA2022f).INVESTMENTANDFINANCINGFORSUSTAINABLEBUILDINGSIn2021,globalbuildingssectorinvestmentinenergyefficiencyincreasedbyaround16percentfrom2020toatotalofapproximatelyUSD237billion(IEA2022g).ThisincreaseoccurredprimarilyamongEuropeancountrieswithexistingprogrammesofpublicinvestmentinefficiency,includingGermany,UKandItaly,andsustainedinvestmentinUSA,CanadaandJapan(seesection6).Thegrowthinconstructionactivitiesalsoincreasedtheinvestmentinmoreefficientnewbuildingsandbuildingscoveredundersustainabilityor“green”certifications,withanestimated19percentgrowthincertifiedbuildingscomparedto2020.InvestmentinimprovingtheenergyperformanceofexistingbuildingsandensuringexistingsystemsareoperatingasdesignediscriticaltobothreducingenergydemandandavoidingrelatedCO2emissions.Investinginfuelswitchingtocleanfuels,suchasthroughelectrificationandadoptionofheatpumpsforspaceheatingandcooling,willplayamajorroleinthistransition,withtheglobalheatpumpmarketestimatedtohavegrownbyaround15percentin2021(IEA2022g).Thisincreaseininvestmentiswelcomenewsbutalsohighlightsthechallengeofneedingtocontinuetoincreaseinvestmentsinefficiencyduringaperiodofinflationthatwillcauseincreasingpressureonborrowingcosts.Yetinthefaceofrisingenergyprices,investinginefficiencyisawaytoavoidfutureenergypricevolatilityaswellasreducingemissions.APATHWAYTOWARDSSUSTAINABILITYFORAFRICA’SBUILDINGSANDCONSTRUCTIONSECTORAround56percentoftheAfricanpopulationlivesininformalhousing(UNHabitat2016).ThepopulationacrossAfricaisexpectedtoreach2.4billionpeopleby2050and80percentofthisgrowthwilloccurincities(AfricanDevelopmentBank[ADB]2019).TheneedtoprovidehousingnowandinthefutureisamajordriverofgrowthforbuildingsacrosstheAfricancontinent.Thereareenormousopportunitiesforthesebuildingsandurbanenvironmentstobebuilttoahigh-qualityandsustainablestandard,tobezerocarbon(orzerocarbonready)andtobecapableofadaptingtoachangingclimate.Photocredit:KevinGrievexx2022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTIONAfricaaccountsforaround6percentofglobalenergydemandandcontributedtolessthan3percentofglobalgreenhousegasemissionsin2021(IEA2022b).HouseholdsinAfricaaccountedfor56percentoftotalfinalenergyconsumptionin2021,butonly43percentofthecontinent’spopulationhadaccesstoelectricity.TheIEAestimatesthathouseholdenergydemandby2030forcoolingandapplianceswillmorethandouble,thoughtheenergyintensityoflightingintheresidentialsectorwilldecreaseduetothemovementtowardsenergy-efficientlamps(IEA2022b).Further,SustainableEnergyforAllhighlightsthatofthe54high-impactandhigh-temperatureriskcountries,24areontheAfricancontinent(SustainableEnergyforAll[SEforALL]2022).Thismeansthattheneedforcoolingisamajorfuturechallengeforresidentialenergydemand,withownershipoffansstandingat0.6unitsperhouseholdandcurrentcoolingdeviceownershipstandingatonly0.06unitsperhousehold(IEA2022b).Sincethe2021Buildings-GSR,tenAfricancountriesprovidedfurtherdetailwithintheirNDCupdateregardingcommitmentstodecarbonizingthebuildingstock(seesection5.2andsection7.2).However,onlyfiveAfricancountries(9percent)haveamandatorybuildingcode(section5.2).Asapriority,itwillbecriticalforthosenationsthatdonotyethavemandatorycodestodevelopboththecodesandtheirregulatoryframeworkandtheskillsandcapacitytoimplementenergyefficientandsustainablebuildingcodesthatmakeuseoflocalbestpracticesandtraditions.Aspartofthiseffort,energyefficienttraditionalandsustainableconstructionandbuildingpractices,whichareacornerstoneofAfricanculturalheritage,shouldbepromotedandformalizedinbuildingcodessothathousingisconstructedwithinthelocalcontextandactstopreserveAfricanculturewhilebeingofahighqualityandaffordable.CONSTRUCTIONWITHWHOLELIFECYCLEAPPROACHESTOBUILDINGMATERIALSTheglobalconsumptionofrawmaterialswillalmostdoubleby2060astheworldeconomygrowsandlivingstandardsrise,exacerbatingtheenvironmentaloverloadingweareexperiencingtoday(OrganisationforEconomicCo-operationandDevelopment[OECD]2019).TheInternationalResourcePanelhasunderlinedthemassivegreenhousegasemissionsreductionpotentialfrommaterialefficiencystrategiesappliedacrossthebuildingstock(Hertwichetal.2020).InG7countriesalone,materialefficiencystrategies,includingtheuseofrecycledmaterials,couldreducegreenhousegasemissionsinthematerialcycleofresidentialbuildingsbyover80percentin2050.153045GJ102030EJAfricaNorthAfricaSouthAfricaSub-SaharanAfrica20202030202020302020203020202030HouseholdTraditionaluseofbiomassHouseholdmodernfuelsOtherproductiveusesIndustryMobilityFigure5.Africa’sfinalenergyconsumptionbysector2020-2030Source:IEAAfricaEnergyOutlook2022(IEA2022b).Notes:TUOB=traditionaluseofbiomass.Otherproductiveusesincludeservicesandagriculture.Householdmodernfuelsincludefossilfuels,electricityandrenewables,suchastheuseofbiomassinmodernstoves.xxi2022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTIONTransitioningtoafutureoflow-carbonbuildingsrequiresthedesignofmulti-beneficialmaterialstrategiesthattakeawholebuildinglifecycleandsystems-thinkingapproach.Thelongevityofbuildingsinfrastructureneedstobeincentivizedfinanciallyandlegislativelytoencouragelow-carbonadaptationandrefurbishmentthatextendsbuildinglifespanswithoutlockinginoperationalenergyinefficiencies.Despiteitsmassivecontributiontoglobalgreenhousegasemissions,embodiedcarbonhaspreviouslybeenunderaddressedinstrategiestoreducebuildingemissions.A(whole)lifecycleanalysisapproachisincreasinglybeingadoptedbyindustryleaderstoguidestrategiestosimultaneouslyaddressembodiedandoperationalcarbon.Thesecanbeclusteredinthreestrategies–“avoid”,“shift”and“improve”–allofwhichleadto“adaptability”.Measuresrangefrombuildingless,requiringlessmaterialandusinglow-carbonmaterials,tocircularapproachesandimproveddesignsthathavealongerlifetimeandloweroperationalemissionsduringbuildinguse.Todecarbonizethebuildingmaterialssector,allstakeholdersneedtotakegreaterresponsibilitytounderstandtheenvironmentalimpactoftheirdecisionsregardingmaterialselectionsacrossthelifecycle.Doingsorequiresgettingtherightdatatotherightstakeholdersatconsequentialstagesofdecision-making(seeFigure6).Builtenvironmentcarbonratingsystemsneedtoincludebetterrewardsforavoidingnewconstructionwherepossible,forshiftingtolow-carbonbiobasedsolutions,andforimprovingproductionmethodsforconventionalmaterials.AvoidingcarbonemissionsbyPRODUCTIONEXTRACTIONTRANSPORTATIONMANUFACTURING+++AVOIDSHIFTIMPROVEADAPTWORKOFTHEGEO-BIOSPHEREFOSSILFUELSSOILSMANAGEMENTAGRICULTUREMANAGEMENTRAWMATERIALS▪Minerals(Metals,Ceramics)▪PolimersandFossil-Based▪NaturalMaterialsEARTH+ECO-SCIENCEPROFESSIONALSARCHITECTUREFIRMSCONSTRUCTIONFIRMS+CONTRACTORSBUILDINGOCCUPANTSWASTEMANAGEMENTSERVICESEXTRACTION,AGRICULTURE+FORESTRYINDUSTRIESENGINEERINGFIRMSDEVELOPERSCOMMUNITIESSECONDARYPRODUCTIONSPECIALISTSCONSTRUCTIONINITIATIONPLANNINGIMPLEMENTATIONPERFORMANCECLOSINGUSEMAINTENANCEREPAIRREFURBISHMENTREPLACEMENTWATERUSEENDOFXUSEREUSEREDESIGNRECYCLINGINCINERATIONLANDFILLTRANSITIONBUILDINGLIFECYCLE(LCAPHASES)STAKEHOLDERSRESEARCHPOLICYFINANCEFigure6.Fromdatatoactionableknowledge:Howtogettherightinformationtostakeholdersattherightphaseofthebuiltenvironmentprocesslifecycleinordertofacilitatemaximumdecarbonizationthroughsystems-thinkingxxii2022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTIONbuildingbetter-designed,resource-efficientbuildingsiskeytoreducingrawmaterialconsumptionandrelatedemissions.However,themosturgentprioritymustbetoincreasethelongevityofexistingandnewbuildingstockandreuseexistingcomponentswheneverpossible.CHARTINGTHEPATHWAYTOSUSTAINABLE,ZERO-CARBON,EFFICIENTANDRESILIENTBUILDINGSTHROUGHBUILDINGANDCONSTRUCTIONROADMAPSTosupportcountriesandregionsindevelopingaclearsetofactionstowardsenablingasustainable,zero-carbonandresilientbuildingsandconstructionsector,theroadmapdevelopmentprocessprovidesawaytobuildtargets,strategiesandpartnershipsthroughacollaborativeapproach.Agrowingnumberofcountriesandregionsareusingtheroadmapprocessforchartingthepathtoasustainablebuildingsandconstructionsector.RoadmapsalreadypublishedincludetheGlobalABCandIEA’sjointlypublishedglobal,Asia,AfricaandLatinAmericaroadmapsalongwithcountryandregionalroadmaps,includingfortheASEANregion,IndonesiaandColombia(seesection9).Inaddition,roadmapsarebeingdevelopedformorethan30countriesandregions,highlightingtheimportanceofnationalgovernmentsandregionalcooperationandpartnershipsineffortstodecarbonizethebuildingsector.PlannedroadmapsincludeTürkiye,SriLanka,BurkinaFaso,Senegal,Ghana,India,Bangladesh,22countriesandterritoriesintheArabLeague,China’sGreaterBayArea(Guangdong–HongKong–Macau),CambodiaandVietNam.TheGlobalABCprovidessupportthroughtheRoadmapCoordinationHub,whichisagroupofcountryandnon-statestakeholdersworkingtogetherto“buildsynergiesbetweenthedifferentinitiatives[…]ensuringthatthelifespanoftheroadmapsextendswellbeyondtheprojects,throughlocalengagementandimplementation.”Photocredit:PedroMirandaxxiii2022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTIONCoalitionsofnationalstakeholdersshouldbedevelopedtosettargetsandstrategytowardsazero-emission,efficientandresilientbuildingsandconstructionsectorthroughbuildingdecarbonizationandresilienceroadmapsandinlinewiththeMarrakechPartnershipGlobalClimateActionHumanSettlementsPathway.Nationalandsub-nationalgovernmentsmustputinplacemandatorybuildingenergycodesandsetoutapathwayfortheirnewbuildingcodesandstandardstobeperformancebasedandtoachievezerocarbonacrossabuilding’slifecycleasquicklyaspossible.Forjurisdictionswithoutbuildingenergycodes,theseneedtobeformulatedandadopted.CodesshouldconsidertheGuidelinesforEnergyEfficiencyStandardsinBuildings(UnitedNationsEconomicCommissionforEurope[UNECE]2020).Governmentsandnon-stateactorsmustincreasetheirinvestmentinenergyefficiency.Thisinvestmentneedstotargetallbusinessesandhouseholds.Governmentswillneedtousefinancialandnon-financialincentivestoencourageinvestmentandprovidesupportforvulnerablehouseholds.Theconstructionandrealestateindustriesmustdevelopandimplementzero-carbonstrategiesfornewandexistingbuildingsinalljurisdictions,inordertoeffectivelysupportgovernmentpolicies.ThebuildingmaterialsandconstructionindustriesmustcommittoreducingtheirCO2emissionsthroughouttheirvaluechaininlinewiththeParisAgreement,supportinggovernmentpoliciestowardsacarbonneutralbuildingstock.Increasedfundingisurgentlyrequiredforpublic–privateresearchpartnershipstoacceleratethedevelopment,demonstrationandcommercializationofinnovationstoreduceembodiedcarboninbuildingmaterials.Forgovernmentsaimingtoachieveanet-zero-carbonbuiltenvironment,regulationsandassessmentofemissionsneedtotakealifecycleapproachthatconsidersbothmaterials’embodiedcarbonemissionsandoperationalemissions.Governments,especiallycities,needtoimplementpoliciesthatpromotetheshifttocirculareconomiesthatreplacelinear,non-renewable,toxicmaterialprocesseswithsustainablerenewablematerialsthatcansequestercarbonandbemanagedsustainablyovertheirlifecycles.Inparallel,formaterialsthatcannot(yet)bereplaced,theiruseandtheircarbonfootprintshouldbereducedasmuchaspossible.Fast-growingcountriesandeconomies,includinginAfricaandSoutheastAsia,needinvestmenttobuildcapacity,resourcesandsupplychainstopromoteenergy-efficientdesignsandlow-carbonandsustainableconstruction.KEYRECOMMENDATIONSFORPOLICYANDDECISIONMAKERSThestructuralchangesneededinthebuildingsandconstructionsectorarenotyetshowing,asisclearlydocumentedintheseriesofGlobalStatusReportsforBuildingsandConstruction.Whiletheincreaseininvestmentinenergyefficiencyamongexistingbuildingsandagreaternumberofnewbuildingsbeingconstructedtohigherenergyperformancestandardsarewelcometrends,theimpactonenergyuseandenergyintensityisnotyetshowing,noristhereanysignofemissionsfromthebuildingssectorbeingdecoupledfromenergyorconstruction.Policymakersanddecisionmakersmusturgentlyimplementdefinitivenear-termactionsthatdelivertheneededemissionsreductionswhileachievingtheobjectivesofasustainableandresilientbuildingsandconstructionsector.Thebuildingssectorwillcontinuetogrowtomeetcitizens’needsforsafehousingandworkplaces,butitsgrowthmustbeinalignmentwiththeParisAgreement.Thefollowingrecommendationsaredesignedtorespondtothesechallenges:1.2.3.4.5.6.7.8.9.xxiv2022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTION1.DISRUPTIVETRENDSIMPACTINGBUILDINGANDCONSTRUCTIONDECARBONIZATIONIN2021AND2022Thedecarbonizationandsustainabilitytransitionofthebuiltenvironmentremains“notontrack”.Buildingoperationalemissionsareatanall-timehigh,exceedingthe2019peak.The“perfectstorm”oftheconcurrenteconomic,energy,securityandclimatecrisesischallengingthenecessaryprogresstodecarbonizeandimprovetheresilienceoftheglobalbuildingsandconstructionsector,butpresentsanopportunityaswell.Politicalandorganizationalleadershipmustprioritizeactionsthatsupportthedecarbonizationandsustainabilitytransitionofthebuiltenvironment.Photocredit:MitchHodge252022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTIONTheglobalbuildingssectorconsumesanestimated30percentofglobalenergy(135EJ),intheformofelectricityandgaseous,liquidandsolidfuelsanddistrictenergyforbuildingenergyuses(e.g.heating,cooling,cooking,lightingandequipment),andisresponsibleforaround27percentofglobaloperationalrelatedCO2emissions(10GtCO2)(IEA2022f).Theproductionofconcrete,steelandaluminium,importantmaterialsusedintheconstructionofbuildings,addedafurther4percentofglobalenergyuseand6percentofglobalemissionsin2021(IEA2022f).Theproductionofglassandbrickscouldamounttoafurther2-4percentofglobalemissions.Combined,CO2emissionsfrombuildingsoperationsandthematerialsusedintheconstructionofbuildingsareestimatedtoaccountforaround37percentpercentofglobalenergyandprocess-relatedemissions.Tobealignedwithreachingnetzerocarbonemissionsby2050,emissionswouldneedtofallbyover98percentfrom2020levels(seefigure10).02468100100200300400500GtCO2billionm22020202520302035204020452050Residential(direct)Non-residential(direct)Non-residential(indirect)Residential(indirect)FloorareaFigure7.GlobalbuildingsenergydemandandfloorareagrowthundertheIEANetZeroEmissionsby2050ScenarioDecarbonizingtheglobalbuildingssectoristhereforecriticaltopreventingcatastrophicclimatechange.ToachievetheParisAgreement,theglobalbuildingsandconstructionsectormustbecomenetzero-carbonby2050,andallnewbuildingsmustbenet-zerocarbonfrom2030(UnitedNationsEnvironmentProgramme[UNEP]2021;UnitedNationsFrameworkConventiononClimateChange[UNFCCC]etal.2021).TheMarrakechPartnershipforGlobalClimateActionHumanSettlementsPathway,whichisco-ledbyGlobalABC,hasexplicitlycalledforthefollowingtargets:1)By2030,thebuiltenvironmentshouldhalveitsemissionswhereby100percentofnewbuildingsmustbenet-zerocarboninoperation;2)By2050,allnewandexistingassetsmustbenetzeroacrossthewholelifecycle,includingoperationalandembodiedemissions(MarrakechPartnershipforGlobalClimateAction[MPGCA]2021).MostcountriesrecognizethischallengeandaroundsixtypercentofcountriesthathavesubmittedNDCs(196)havecitedimprovingbuildingenergyperformanceasawaytotackleemissions(UNFCCC2021).Non-stateorganizationscontinuetomakecommitmentstoaddresstheiremissionsthroughpartnershipinitiatives,suchasScience-BasedTargets.YeteffortstoaddressbuildingssectorenergyperformanceandCO2emissionshavenotkeptpacewiththeParisAgreementtargets,withtheIEAdescribingthesectoras“notontrack”in2022(IEA2022f).Investmentinenergyefficiencyremainslow,buildingssectorenergyintensityisonlyslightlyimproving,andgrowthinintegratingrenewableenergyintobuildingsandcitiesismodest,thoughgreenbuildingcertificationandNDCsareimproving(UnitedNationsEnvironmentProgramme2021).Mostchallengingisthatonly35percentofcountrieshavemandatorybuildingenergyregulationsorcodesforsomeorallbuildingtypesthatregulatehowenergyefficientabuildingneedstobewhenconstructed;thisdropsto26percentforthosewithmandatorycodesforbothresidentialandnon-residentialbuildings.Whencombinedwithcountrieswithavailableperformancestandards,thisamountsSource:IEA2021.Allrightsreserved.Adaptedfrom“TrackingCleanEnergyProgress”(IEA2021c).262022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTIONto40percentofcountries(seesection5.2).Itisestimatedthat82percentofthepopulationtobeaddedby2030willbelivingincountrieswithoutanybuildingenergycodesoronlyvoluntarycodes(UnitedNationsEnvironmentProgramme2021).Buildingcodesneedtobedesignedtoensurebuildingsarefitforpurpose,energyefficient,andresilienttofuturechangeinclimateandshouldtakeintoaccountexistingbestpracticesforenergyefficiencystandardsinbuildings(seeBox7).Further,theoverwhelmingmajorityofcurrentbuildingcodesfailtoconsiderembodiedcarboninbuildingconstruction,whichiscriticaltoachievingthesector-andenergy-systemwidetargetsandadoptingwhole-life-cyclethinking(seesection7).Therearesignificantchallengestoaddressingtheseambitiongaps.Theseincludethepoliticalcapitalneededtoaddressregulatorybarriersandfinancingforbuildingenergyefficiencyanddecarbonization;promotingbehaviourchangestoreduceunnecessaryenergydemand;improvingskillsarounddesigningnewbuildingsandrefurbishingexistingones;andthetechnologicalrequirementsofrecommissioningandreplacingheatingandcoolingsystemsandrefurbishinghundredsofmillionsofbuildingsaroundtheworld.Finally,thereisaneedtoensureclimateactionsinthebuiltenvironmentsupportequityandjusticeaspartofthetransitiontoasustainablebuildingsstockthatisnetzerocarbonby2050.1.1.EMERGENTCHALLENGESFORDECARBONIZINGTHEBUILDINGSTOCKTheRussianinvasionofUkraineandtheimpactonenergysupplyandprices,alongsideanexistingcostoflivingcrisisandthecontinuedpressuresoftheCOVID-19pandemiconsupplychains,presentmajorpoliticalchallengesbutalsoopportunitiesforthetransitionoftheglobalbuildingstock.Europeancountriesarehavingtomakedifficultchoicesabouthowtocontinuetoprovidesecurityofsupplyforhouseholdsandbusinesses,whileenergypricesandmaterialsandequipmentcostsforinvestinginenergyefficiencyrise.Thecircumstancesarisingfromtheseconvergingcrisesshowthefragilityofavolatile,fossil-fuel-basedenergysystemanditslimitedresiliencetoshocks.Yettheyalsohighlighttheopportunityandurgencyofinvestinginbuildingssectorenergyefficiencytobothreducecurrentemissionsandimproveenergysecurityandresiliencetoclimatechange.Sincethestartof2022,thecostoffossil-basedenergyhasacceleratedatratesnotseensincetheonsetoftheglobalfinancialcrisisin2008(TradingEconomics2022b;TradingEconomics2022a).BetweenFebruaryandAugust2022,fossil(natural)gaspricesdoubledintheUSandincreasedby2.5timesinEurope(TradingEconomics2022b).Thesesteeprisesinfossil-fuel-basedenergycostshavebeenashocktohouseholdsandbusinessesaroundtheworld,withincreasingmonthlyenergyexpenditureaddingtotheimpactofinflationerodingpurchasingpower(TradingEconomics2022c).AcrossOECDcountries,forthefirsttwoquartersof2022,theannualgrowthrateforconsumerpricesindex3wasupto10percentand36percentforenergy(OECD2022).Europe’senergycostincreasesareevenhigherthantheOECDaverageat50percent(or70percentintheNetherlands)(OECD2022)duetotheirenergymarket’scloseconnectiontoRussia,withtheEuropeanUnionreceiving40percentofitsenergyfromRussiain2021(IEA2022a).Muchofthisenergypriceinflationwasduetofossilgasandgasolinepriceincreasesthataffectbothdirectconsumerfuelpricesandgasusedforelectricitygeneration.Withgreateradoptionofrenewables,buildingenergyusewouldbelessimpactedbyfossilfuelpricevolatility.Addingtothesecostpressures,theeffectsoftheCOVID-19pandemicthrough2021continuedtoconstrainsupplychains.Increasedtransportcosts(shippingcostssurgedbyover500percentbyMay2019(Freightos2022),limitedproductionandshortagesofmanufacturedgoods,andworkstoppagesorslowdownsduetopandemicrestrictions(InternationalLabourOrganization[ILO]2021)haveallmadegettingmaterialsandgoodstomarketsmorecostly.Thepandemichasalsoshownthevulnerabilitiesanddividesthatexistamongurbanandruralhouseholds,whohaveverydifferentcostsandlevelsofaccesstoservicesthatcanaddressenergyinsecurityandvulnerability(Memmottetal.2021).Tocalminflation,centralbanksacrosstheOECDhavetakenactiontostartraisinginterestrates,whichincreasesthecostofborrowingandhasadampeningeffectonbusinessandhouseholdexpenditureandinvestment.Theseconvergingenergyandlivingcostcriseshavesignificantimplicationsfordecarbonizingtheglobalbuildingstock.Althoughhighenergycostsareanincentivetoinvestinenergyefficiency,theerosionofpurchasingpowerduetoinflationandtheimpactoflabourandmaterials,alongsidethesustainedhighpriceofgoodsduetologisticalpressures,willalladdpressuretoslowinvestment,especiallyinthefaceofhigherborrowingcosts.Recommissioningexistingbuildingssystemsisoneimportantactionthatdoesnotrelyonsubstantialupfrontinvestmentandcanmaintainsystemperformanceasdesigned,thoughultimatelyconsiderablerefurbishmentwillbeneededtomeetdecarbonizationgoals.3OECDdefineInflationmeasuredasConsumerPriceIndex(CPI)as:“thechangeinthepricesofabasketofgoodsandservicesthataretypicallypurchasedbyspecificgroupsofhouseholds.Inflationismeasuredintermsoftheannualgrowthrateandinindex,2015baseyearwithabreakdownforfood,energyandtotalexcludingfoodandenergy.Inflationmeasurestheerosionoflivingstandards.”(OECD2022)272022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTIONThepoliticalsolutionsmaylieintheabilityofgovernmentstodirectsupporttowardsabroadrangeoflow-andzero-carbonbuildinginvestmentactivities,standardsanddeliverysystems–througheducation,partnerships,financialandnon-financialincentivesforhouseholdsandbusinesses,andtheirownleadershipthroughpoliciesandinternationalcommitments.Governmentshaveadutytobeefficientwithpublicexpenditures,sosupportingprivatehouseholdsandbusinessestomakechoicestoreduceenergydemandandtomaketheirowninvestmentsinenergyefficiencyandlow-carbontechnologiesandmaterialsshouldbeapriority.1.2.EMISSIONSREBOUNDFROMCOVIDANDEFFORTSFORECONOMICRECOVERYTheglobalpandemicprecipitatedthelargestannualreductioninglobalCO2emissions,falling6percentfromtheir2019peakof35GtCO2to33.3GtCO2(Davisetal.2022).However,aseconomieshavereopened,workandproductionpatterns(suchashybridworkingandincreasedproductdemandfollowingdelays)haveadapted.Estimatesfor2021showthatoverallglobalemissionshavereboundedtolessthan1percentbelowtheir2019all-timehighto34.9GtCO2,andresidentialandindustrialemissionsreboundedtotheir2019levels,whilepowersectoremissionsfromChinaandIndiaincreased(Davisetal.2022).Forthebuildingssector,emissionshaverebounded:supresseddemandfornewbuildingsre-emergedascountriesbegantoreopentheireconomies,andsimultaneouslyhouseholdsandbusinessesbegantomakeuseoftheirbuildingsmoreintensivelythanduringtheheightofthepandemic.EstimatesforthebuildingssectoroperationalCO2emissionsshoweda3percentdropin2020from2019levels,followedbyaround5percentincreaseinCO2emissionsin2021(IEA2022f).Thelatestestimatesformid-2022suggestalevellingofresidentialemissions(CarbonMonitor2022).Thisappearstoberelatedtocost-of-livingandinflationeffects,whichhaveatendencytoreduceenergydemandinnewandexistingbuildings.Theslownatureofstructuralchangesinthebuildingssectormeansthatactionsthatsupportdramaticemissionsreductions,suchasbehaviourchange,energyefficiencyrefurbishment,andwidespreadfuelswitchingtozero-carbon-readyheatingandcoolingsystems,havenotbeenrealizedduringthisperiodofhealth,economicandenergycrises.1.3.SOLUTIONSFORGOVERNMENTSANDDECISIONMAKERSIncrementalimprovementsintheenergyefficiencyoftheexistingbuildingstockmay–evenatanacceleratedrate–takeadecadetosubstantiallyreducecarbonemissionsacrossthebuildingssector.Actionsfornewbuildingswillavoidunnecessaryfutureemissionsbutwillhavelimitedimpactonemissionsbeinggeneratedfromthebuildingssectortoday.Creatingbenchmarksandperformancestandardsforexistingbuildings,suchasthoseusedinEuropeundertheEnergyPerformanceofBuildingsDirective,anddevelopingbuildingcodesforexistingbuildingsareanimportantsteptowardsthenecessarystructuralchangesneeded.Developingcodesandstandardsthataccountforoperationalandembodiedcarbonwhenconstructingnewbuildingsandrefurbishingexistingbuildingswillensurewhole-life-cyclethinkingisaddressed.Withopenandtransparentinformationonabuilding’senergyperformance,buildingownersandmanagerswillbeabletobetterunderstandtheoptionsavailabletothemtoreduceenergydemandthroughinvestmentandimprovingexistingbuildingcontrolsystems.Photocredit:DarshanGajara282022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTIONBuildingperformanceandembodiedcarboninformationcanalsoprovidethenecessaryevidenceforconsumers,lendersandinvestorstodirectfundstoimprovebuildingenergyperformancethroughrecommissioningandrefurbishment.Additionally,integratingsustainability,low-energydesignandunderstandingofembodiedcarbonintotrainingprogrammeswillnormalizetheconceptsofsustainableandzero-carbonbuildings.Commitmentsfromgovernmentsandheadsofstateaffirmtheimportanceofbuiltenvironmentsustainabilityinsupportingtheirmandatestoprotectcitizens,increaseenergysystemresilienceandsecurity,andaddressclimatechange.Forexample,theEuropeanCommission,workingwithEuropeangovernments,haslaunchedREPowerEU,whichaimstoreduceEUdependenceonRussianfossilfuelsandtackletheclimatecrisesthroughenergysavings,diversificationofenergysuppliesandacceleratedroll-outofrenewableenergy(seeBox1)(EuropeanCommission2022d).TheUSInflationReductionAct2022hasalsosetoutclearsupportforbuildingsdecarbonizationthroughenergyefficiencyandrenewableenergyadoption(UnitedStatesofAmerica,TheWhiteHouse2022b).Additionally,therecentDeclarationonSustainableUrbanizationfromtheleadersofCommonwealthgovernmentsacknowledgedtherelationshipbetweenasustainablebuiltenvironmentandcitizensafetyandwell-being,andlookedtosupportandencouragecitiestoworktogethertoaddressclimaterisksandreducetheiremissions(seeBox2)(TheCommonwealth2022).National-levelactionscontinuetoplayacriticalpartinaddressingthebuildingssectorandregulations.LawsthatsupportNDCsmustnowbeimplementedtochartapathwaytoadecarbonizedandresilientbuildingsandconstructionsector.Forexample,Colombia’sLaw21692021setsouttargetstoachieveitsNDCandincludestheconstructionsector,withguidanceforbuildingcertifications,localappliancelabelsandcertificates(ElCongresodeColombia2021).AfurtherexampleistheSaudiGreenInitiative,whichispromotinggreenbuildingsconcepts,methodologies,applicationsandtechnologiesthroughmorethan1,000projectsinbuildings,neighbourhoodsandcities(KingdomofSaudiArabia2021).Photocredit:GaryButterfield292022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTIONTheRussianinvasionofUkraine,whichhascauseddevastatingimpactsandlossofhumanlifeinUkraine,hasalsoprecipitatedanenergycrisisinEurope.EnergypricesinmostofEuropehaveincreaseddramatically,causingrisingcostsforelectricity,naturalgasandfueloilinthebuildingsector.InFebruary2022,approximately43percentofimportednaturalgasinEuropecamefromRussia;bytheendofJune,Russianimportshadbeenhalvedwithgasincreasinglycomingfromothersources(Simson2022).However,tofurtherreduceimportedRussianenergyandcontinuetosecureenergysuppliesforthecomingwinterperiod,demandreductionsarecritical.Thebuildingssectorrepresents40percentofEurope’senergydemand;80percentofthisisgeneratedbyfossilfuels.Thismakesthesectoranareaforimmediateaction,investmentandpoliciestopromoteshort-andlong-termenergysecurity.TheIEAproduceda10-pointplansettingouthowEuropecouldmanageandreduceRussiangasfromtheenergymix(IEA2022a).Ithighlightedactionsthatincludedspeedingupthereplacementofgasboilerswithheatpumps;acceleratingenergyefficiencyimprovementsinthebuildingssector,increasingrenovationratefrom1percentto1.7percent;anddemand-sidemanagementtoreduceindoortemperatureswhensafetodoso.Morespecifictothebuildingssector,areportbytheBuildingPerformanceInstituteEuropefocusedonfourclusterareasforchangeandasetofsupportingactions(BuildingPerformanceInstituteEurope[BPIE]2022):1.Showingleadershipwithinnovativeorganizationalmachinerya.CreateataskforceforbuildingrenovationintheEuropeanCommissionb.Setupa“RenovationCompact”unitingbusinessandsocialrepresentativesintheconstructionvaluechain2.Tellingthestory,promotingthenewvisiona.Runanall-mediacommunicationcampaignb.Promoteallnewandexistingrenovationanddecarbonizationprogrammesc.Enhancethemappingofthebuildingstock,especiallyatregionalandlocallevels3.Makingfinancingeasilyavailablea.ReallocateEUandnationalfundingb.ReduceVATonrenovationproductsandworksc.Mobilizeprivatesectorfinancialsolutions4.Preparingthesupplychaintodelivera.Boostupskillingactivitiestohaveaworkforcereadytorenovateandinstallquicklyb.Createaspecialinitiativeforenergy-savingcoachesc.SetupaspecialfundinglinecalledtheIndustrialRenovationAlliance,managedbytheEuropeanInvestmentBank,toboostinvestmentsinthesetypesofrenovationsandscalethemupquicklyd.Rolloutone-stop-shopsthroughoutEuropeBox1.Europeanresponsetotheenergycrisis302022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTIONBox2.DeclarationonSustainableUrbanizationDeclarationonSustainableUrbanization25June2022(TheCommonwealth2022)We,theCommonwealthHeadsofGovernment:•Acknowledgetheneedforintegratedstrategiesforsafeandsustainableurbandevelopmentthatenhancecommunitywellbeingandsecurity;•Supportcities,municipalities,andotherurbanauthoritiestomobiliseresourcestodevelopcomprehensive,scalableprogrammestoaddresskeychallengesofsustainableurbanizationandbuildclimateresiliencetoreduceriskandvulnerability;•Encouragecitiestocreateanenablingenvironmentthatsupportlocaleconomicdevelopment,jobcreation,andattractinvestment;and•EncouragesharingofknowledgeandexperienceincludingthroughCommonwealthdialogue;twinningofcities,andincreasedopportunitiesforprofessionaltraininginurbandevelopment,includingtownplanning.Photocredit:NereaMartiSesarino312022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTION2.GLOBALBUILDINGSCLIMATETRACKERAftertheimprovementofdecarbonizationprogressreportedinthe2020GlobalStatusReportforBuildingsandConstruction–aneffectoftheCOVID-19pandemic–theGlobalBuildingsClimateTrackerfindsthatthebuildingssectorremainsofftracktoachievedecarbonizationby2050.Whiledecarbonizationeffortshavemarginallyimprovedsince2019,theobservedemissionsandenergyconsumptioncontinuedtoincreasein2021evenbeyondpre-pandemiclevels.Thedecarbonizationofthebuildingstockis“notontrack”toreachthegoalsoftheParisAgreement.In2021,thebuildingsdecarbonizationindexisonlyat8.1pointsoutof100whileitshouldbeatover17.1pointsoutof100.Thisshowsthatthesectorisachievingabouthalfofthenecessarydecarbonization.Thegapbetweentheactualdecarbonizationperformanceandthedesiredpathwayhasbeenwideningsince2018.Thesignificantreboundinbuildingsectoremissionsconfirmsthattheboostindecarbonizationduringthepandemicwastemporary.Nostructural,systemicimprovementwasachievedinthebuildingssector,leavingitvulnerabletoexternalfactors,suchasfluctuatingconsumerprices,inflationandtemperaturechanges.Photocredit:StevenPecoraro322022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTIONTheGlobalBuildingsClimateTracker(GBCT),firstpublishedin2020,aimstomonitorprogresstowardsdecarbonizingtheconstructionandoperationofbuildings.Itprovidesasnapshotofthestatusofbuildingstockemissionsascomparedtoascenarioforthefuture(2050).Todothis,theGBCTusesasetofindicators–coveringemissions,energyintensity,investmentsandpolicy–toidentifyglobaltrendsindecarbonizationactionandimpacts.2.1.DESCRIPTIONOFTHETRACKERTheGlobalBuildingsClimateTrackerisaseven-partcompositeindexcreatedtotracktheprogresstowardsdecarbonizationofbuildings.Itincludesthreeindicators–CO2emissions4,energyintensity5andrenewableenergyshare6–thattogethershowtheimpactofdecarbonizationefforts.Inaddition,itincludesfourindicatorsthatmeasuretheactionstakentowardsdecarbonization:buildingregulations,energyefficiencyinvestments,greenbuildingcertificationsandbuilding37%IMPACTGreenbuildingcertification(cumulativegrowth)Buildingcodesandregulations(percent)63%ACTIONIncrementalEnergyefficiencyinvestmentinbuildings(global,USDbn)Buildingsectorenergyunitintensity(kWh/m²)Renewableshareinglobalfinalenergydemandinbuildings(percent)NDCwithbuildingsectoraction(numberofcountries)Figure8.CompositionoftheGlobalBuildingsClimateTrackershowingitselementsandtheirweightSource:AdaptedbytheBuildingsPerformanceInstituteEurope(BPIE)2022.Note:Theweightingofindividualindicatorsinthedecarbonizationindex,andtheirdatasources,areasfollows:energyintensity19percent(IEA2022f);renewableshare19percent(IEA2022f);buildingregulations18percent(authoranalysis);energyefficiencyinvestments19percent(IEA2022f);greenbuildingcertifications15percent(authoranalysis);buildingmeasuresinNDCs11percent(authoranalysis7).Insteadofaweightedshare,CO2emissionsareusedasafactorbecausetheyarethemainmeasurementfordecarbonization(IEA2022f).Formoreinformation,seetheAnnex.4Globalbuildingssector(residentialandnon-residential)energy-relatedemissions(directandindirect)5Finalenergyusedinbuildingsgloballyperunitoffloorarea6Shareofrenewablesinthefinalenergyuseofthebuildingssectorglobally7Percentagesshownarerounded332022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTIONmeasuresinNDCs.Theseindicatorsarenormalizedandaggregatedaccordingtotheirweight(seeFigure8)toconstructthedecarbonizationindex.Formoreinformation,seetheannex.TheGBCTisupdatedwiththelatestdatafrom2021andadjustmentsinhistoricdatafor2019and2020(fromupdatedandnewstatisticsthatbecameavailablein2021).Newindicatorswerenotincludedintheindex;however,amajorbuildingcertificationscheme(BREEAM)wasaddedtothegreenbuildingcertificationsindicatorandasub-element(qualitycontrolinconstruction8)inthebuildingcodesandregulationsindicatorwasexcludedasitssourcewasdiscontinued.Thedataonemissionsrelatedtoglobalbuildingmaterialsisnotsufficientlycomprehensive,sotheseemissionsarecurrentlynotreflectedintheGBCT.Chapter8providesdetailedinsightsonthistopic.2.2.STATUSIN2021:ASSESSINGPROGRESSTOWARDSTHE2050DECARBONIZATIONGOALAsshowninlastyear’sGlobalStatusReportforBuildingsandConstruction,thedecarbonizationlevelin2020wascalculatedat11.3points9(thehighestsince2015).In2021,thedecarbonizationleveldecreasedto8.1points,whichindicatesalowerprogresscomparedto2019(seeFigure9inbox3),drivenmainlybythereturnofthesectortoitspre-pandemicoperationlevels.Thisyear’sanalysisconfirmsthattheprogressrecordedin2021wasanoutlierduetotheimpactofCOVID-19,withnolastingeffectasitwasdisconnectedfromtrueimprovementinbuildings’energyefficiency.Astrongreboundintheglobalbuildingssectorisvisible,especiallyintheoperationofnon-residentialbuildingsandassociatedgreenhousegasemissions.2.3.POST-PANDEMICREBOUNDANDECONOMICRECOVERYDuetoperiodsofeconomicslowdownduring2020,astrongdeclineinglobalemissionswasobservedintheGlobalStatusReportforBuildingsandConstruction202110.However,in2021constructionprojectsrestartedandsupplychainswererevived,withhigherinflationandconsumerpricesdiscouragingenergyefficiencymeasuresinbuildings.TheeconomicrecoveryandtheBox3.ExplainingtheGlobalBuildingsClimateTrackerTheGBCTtracksdecarbonizationprogressinthebuildingssectorfrom2015.Thedecarbonizationstatusisthereforesetat0for2015,whichwasdefinedasthebaseyear.Thetargetvalueintheyear2050issetat100toreflectthemaximumdecarbonizationneededinthesector.Alinearpathwayfordecarbonizationwasdefinedbetween2015and2050.Thehouseimagebelowrepresentsthe2050goal,anditsgreenportionrepresentstheachievedprogressindecarbonization.Thebaronthescaletotherightmarktheprogressachievedtowardsthatgoal.In2021,8.1pointswerereached.DECARBONIZATION1008.10Figure9.DecarbonizationofbuildingsusingtheGlobalBuildingsClimateTracker20218Formoreonthemethodology,seetheAnnexandadetaileddescriptioninBPIE(2020).9TheBuildingsGlobalStatusReport2021showed17.3pointsfor2020.The2022reportusesupdatedhistoricdataandindicators,whichexplainsthediscrepanciesbetweenthenumbersinthetworeports.Fordetails,seeAnnex.10Theemissionsreportedfor2020havesincebeencorrected,showingthatthepandemicdidnotcausetheemissionreductionsinitiallyassessed.Asaresult,thisyear’sGlobalBCTshowsthatevenduringthepandemicthenet-zeropathwaywasnotreached.Source:AdaptedbytheBuildingsPerformanceInstituteEurope.Note:Eachindicatorhasanindividualgoal,whichisassignedacertainvalue.Indicatorstogetheragglomeratetothemaximumdecarbonizationlevels.DetailsonthemethodologycanbefoundinBPIE(2020).342022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTIONconnectedreboundinenergyuseinbuildingscausedanincreaseinCO2emissions11andmovedtheindexfurtherawayfromthereferencepaththanduringthepandemic,showingthelackoflastingprogressinthesectorin2020and2021.Emissionswentbeyondasimplereboundtoexceedthepre-pandemiclevels,showingthatpolicyandinvestmentmeasuresarenotmaterializingfastenoughtocounteractincreasesinenergyuseandemissions.2.4.DECARBONIZATIONPROGRESSSINCETHEPARISAGREEMENTTheyearlyindexhasimprovedfrom4.8in2019to8.1in2021buttheoveralloperationalemissionsfrombuildingshaveincreasedbyabout5percentcomparedto2020and2percentcomparedto201912,showingnorealprogresstowardsthe2050goal.Toputtheseresultsintocontext,Figure10showsthedirectpathtothegoaloftheParisAgreementontheleft.Thebluedotillustratesthetargetofazero-carbonbuildingstockby2050asdefinedbytheGBCT.Thedirectpathtogoalconnectsthestartingpoint0inthebaseyear2015withthetargetpoint100in2050.In2021,thetrackerisat8.1pointswhileitshouldbeatover17.1points.Thesectorisachievingabouthalfofthenecessarydecarbonization.Thegapbetweentheactualdecarbonizationperformanceandthedesiredpathwayhasbeenwideningsince2018.Thisrequiresbolderactionsbypolicymakersandtheprivatesector.Figure10zoomsintotheperiodfrom2015to2021.Thedotteddarkbluelineservesasabenchmark.Tobeontrack,thelighterbluelinemustbeonorabovethedottedblueline.In2020,theGBCTindexmovedclosertothereferencepath,asindicatedbythegreydashedlinethatapproachestheblueline.Thisisduetotheexceptionalslowdownoflargepartsoftheeconomy,includingtheconstructionsector,andthelimiteduseofnon-residentialbuildingssuchasofficesduringtheCOVID-19pandemic.Asthiswouldgiveafalsepositivemessageofdecarbonizationmovingtowardsbeing“ontrack”,the2020observationistreatedasanoutlier.Infact,buildings’decarbonizationprogressisslowingdownandthedecarbonizationgapisincreasing.Despitethe68percentimprovementshownintheGBCTindexbetween2019and2021,theindexhasfallenfurtherawayfromthepathtoazero-carbonbuildingstock:thedistancebetweentheorangeandthebluelinehasincreasedfrom6.6in2019to9.0in2021.ThisobservationrepresentsthereboundinCO2emissionsdescribedinsection4.3.Thenumbersconfirmtheslowingdownofdecarbonizationandprovideevidencethatthereductionofemissionsin2020wastemporaryandnolastingprogresswasachieved.11Findmoredetailsontheenergyconsumptiondevelopmentinsection4.212Findmoredetailsontheemissionsdevelopmentinsection4.3Photocredit:JoseLlamas352022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTION201520162017201820192020202102468101214161820201520202025203020352040204520500204060801002050GlobalBuildingsClimateTrackerDirectreferencepathtogoalBCTIndexPercentchangecomparedtothepreviousyear[±%]Zero-carbonbuildingstocktarget4.11.8[-56%]4.2[+2.2%]4.88.19.011.3[+165%][+68%]pandemicoutlier6.6Figure10.Directreferencepathtoazero-carbonbuildingstocktargetin2050(left);zoomintotheperiodbetween2015and2021,comparingtheobservedGlobalBuildingsClimateTrackertothereferencepath(right)Source:AdaptedbytheBuildingsPerformanceInstituteEurope2022.2.5.SUMMARYOFTHERESULTSSomepositivedevelopmentscanbehighlightedinthebuildingsdecarbonizationindexin2021.Forexample,a19percentcumulativegrowth(comparedto2020)isobservedingreenbuildingcertificationsindicatingsignificantprogressinenergy-efficientbuildings,evenifthisisonlyreflectedinschemesthatmadetheirdatatransparentandavailable13.Inaddition,energyefficiencyinvestmentswentupbyaround16percent14(comparedto2020),onecountryhasputinplacealawthatregulatesenergyperformanceofbuildings,andtwohavepublishednewdraftbuildingcodesthatarenotyetinforce15;agrowingnumberofcountriesarealigningtheirexistingcodestowardsbeingnet-zero;and23morecountrieshavementionedorexpandedtheirfocusonbuildingsintheirNDCs16.Thepandemicalsoacceleratedawarenessoftheinfluenceofbuildingsonhealthandwell-beinganddeepenedtheconsiderationofoccupants’comfortalongwithenergyefficiency(Awadaetal.2021).Decarbonizationmeasureswillneedtotaketheseaspectsintoaccount.However,afterthetemporaryimprovementindecarbonizationlevelsestimatedintheGlobalStatusReportforBuildingsandConstruction2021,theobservedemissionsandenergyconsumptionhavecontinuedtoincreasein2021evenbeyondpre-pandemiclevels,indicatingthedecarbonizationofthebuildingstockis“notontrack”toreachthegoalsoftheParisAgreement.Thesignificantreboundinbuildingssectoremissionsconfirmsthattheboostindecarbonizationduringthepandemicwastemporary.Nostructural,systemicimprovementwasachievedinthebuildingssector,leavingitvulnerabletoexternalfactorssuchasfluctuatingconsumerprices,inflationandtemperaturechanges.Anincreaseininvestmentsandprogressofnationalpoliciesisessentialtoreducefutureemissions,giventhattheyhaveanimpactoverthelongterm.However,investmentandpolicyimprovementsarenotyettriggeringthenecessaryimpactstocomplywiththeParisAgreementpathway.13Schemesthatmadetheircertificationdataavailablewere:LEED(USA),BREEAM(UK),MINERGIE(Switzerland),WELL(USA),PassiveHouse(Germany),EDGE(UK),DGNB(Germany),IGBC(India),GREENSTAR(Australia),CASBEE(Japan),SGBC(Sweden),SGBF(SaudiArabia),GRIHA(India)andBEAMPlus(HongKong).14Findmoredetailsoninvestmentinsection6.15Findmoredetailsonbuildingenergycodesinsection5.2.16ThisprogressislinkedtotheNDCupdatefortheCOP26,thefirstupdateincludingbuildingssince2017(refersection5.1).362022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTIONTheglobalbuildingssector’soperationalenergyusegrewbyaround4percentfrom2020levels,andCO2operationalemissionsincreasedbyaround5percent,reachingapproximately10GtCO2–anincreasethatexceedsthepre-pandemic2019peakby2percent.Thisreflectsboththereopeningoftheglobaleconomyandthelackofstructuralchangestosupportbuildingssectordecarbonizationduringtheperiodofthepandemic.Thebuildingsandconstructionindustryrepresentsanestimated37percentofglobaloperationalenergyandprocess-relatedCO2emissions.3.GLOBALBUILDINGSANDCONSTRUCTIONSTATUSPhotocredit:JennyTheolin372022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTION3.1.CONSTRUCTIONACTIVITIESGLOBALANDREGIONALBuildingconstructionactivitieshavereboundedfromtheirpandemiclowsandhavebeenadriverbehindboththegrowinginvestmentinmoreefficientbuildings(seesection5)andtheincreasedglobalenergydemandandrelatedemissions(seesection3.2and3.3).TheIEAestimatesthatbuildingfloorspacegrewbyaround1percentfrom2021tojustover242billionm2ofconstructedbuildings17.Proportionallymoreconstructionoccurredamonghigh-incomecountries,whichreflectedstronginvestmentthrough2021.AcrossEurope,constructionsectorexpenditure,whichdrivestheincreaseinfloorspace,hasvariedduetotheirdifferencesinpandemiceconomicrecovery.Forexample,theincreaseinconstructionsectoractivitiescomparedto2020forItalywas23percent,theUK12percent,Hungary11percentandFrance10percent(seeFigure11).Othershaveseenmoremodestincreases,suchasAustralia(5percent),Canada(6percent),SouthAfrica(8percent)andtheUnitedStatesofAmerica(8percent).Someeconomiescontinuedtostrugglewithconstructionandshownogrowth(GermanyandSwitzerlandat<1percentorPolandat0percent)orevencontinueddeclineasinSpain(-6percent),Brazil(-1percent)orMorocco(-4percent).Itisexpected,however,thatthemajorityoffuturebuildingsconstructiongrowthoverallwillbeinSub-SaharanAfrica(seesection6)andAsia.Yetdespitethisreboundingrowthinbuildingsconstructionactivitiesin2021,adifferentsituationisunfoldingthrough2022.Theincreasedlevelofinflationcouldputdownwardpressureonconstructionthroughincreasedlabourandmaterialcostsalongsideincreasedborrowingcostsforbuildingpurchasersandconstructioncompanies,thoughsucheffectsmaybetemporaryforconstructiontrendsoverall(RoyalInstitutionofCharteredSurveyors[RICS]2022).Housingunaffordabilityacrossarangeofcountrieshasrisenbymorethan10percentcomparedtoQ1of2021–thoughhasslowedfrompreviousgrowthpeaksacross2021(KnightFrank2022).Thisaddstowhatisalreadyahousingaffordabilitycrisisandthechallengeofaddressinghousinginformalityandlandinsecurity,whichtheCOVID-19pandemicexacerbatedbymakinglivingconditionsmoreprecariousduetoreducedincomesamongpoorhouseholdsacrosstheglobe(CitiesAlliance2021).Akeychallengethatmustbeaddressedishowthisanticipatedgrowthinconstructionactivitieswilldelivernet-zero-carbonbuildingsbothnowandinthefutureandwhattheseconceptsmeanindifferentlocationsaroundtheworld.TheIEAhassuggestedadefinitionofworkingtowardswhole-lifezero-carbonbuildings(seebox4).-200+20+40%changerelativeto20152015201620172018201920202021UnitedStatesofAmericaGermanyUnitedKingdomAustraliaFranceSpainMexicoNetherlandsCanadaItalyFigure11.ChangeinconstructionactivitiesinselectedG20countries,2015-2021(relativeto2015)Source:OECD2022.0501001502502003000306090150120180billionm2KWh/m220202030204020452050AdvancedeconomiesEmerginganddevelopingeconomiesEnergyintensityFigure12.Globalfloorareaandbuildingsenergyintensity,2010-2021Source:IEA2021.Allrightsreserved.Adaptedfrom“TrackingCleanEnergyProgress”(IEA2021c).17Asaresultofdataandmodelupdates,thefloorspacevaluefor2021andpreviousyear’sbaselinedatahaschangedforthisreport.382022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTIONBox4.Definingnet-zero-carbonbuildingsThereareanumberoftermsthatdescribetheCO2emissionsofbuildingsandconstruction.IntherecentlypublishedRoadmapforEnergy-EfficientBuildingsandConstructionintheAssociationofSoutheastAsianNations(IEA2022e),thesedifferentterms,whichcanapplytodifferentscopesandsiteboundaries,areprovidedasexamples.ThedefinitionsaredrawnfromtheNetZeroby2050report(IEA2021b)andZeroEnergyBuildingDefinitionsandPolicyActivity–anInternationalReview(OrganisationforEconomicCo-operationandDevelopment[OECD]andInternationalPartnershipforEnergyEfficiencyCooperation[IPEEC]2018).Theprogresstonet-zero-carbonbuildingscancover:•Energy-efficient:abuildingwithahighdegreeofenergyefficiencyinitsfabricandbuildingservicesthatconsumeenergy,e.g.heating,cooling,cooking,lighting,ventilation,hotwaterandappliances.•Low-carbon:abuildingthatisenergyefficient(lowenergy)andissuppliedbylow-carbonenergy.Somebuildingservicesequipmentmaynotbecapableofdecarbonizingwithoutbeingreplaced(e.g.fossilgasboilers).•Nearlyzero-carbon:abuildingthatisenergy-efficientandmayhavesomeavailablezero-emissionenergysupply(onsiteoroffsite),butthatdoesnotoffset100percentofthebuilding’senergydemand.•Netzero-carbon:abuildingthatisenergyefficientandreliesonzero-emissionenergysourcesthatmeettheenergydemandoverthecourseofayear(oranotherestablishedtimeline,e.g.amonth).•Zero-carbon:abuildingthatisenergyefficientandhasitsenergydemandcompletelymetthroughzero-emissionenergygeneratedeitheronsiteoroffsite.•Carbon-negative:anenergy-efficientbuildingthatgeneratesrenewableenergyonsitethatnotonlyfullycoversthebuilding’sownenergydemand,butalsoproducesexcessrenewableenergywhichisfedbackintoagridandcanbeusedforotheroffsitepurposes.•Wholelifecycle,netzero-carbon:Azero-carbonbuildingwiththeadditionalrequirementthattheembodiedemissionsassociatedwiththematerialsusedforconstructionarethemselvesnetzero,eitherthroughdecarbonizationoroffsetting(IEA2022e).392022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTIONHeatpumpsExternalshadesNaturalventilationLEDlightingRoofandwallinsulationGreenmaterials(bricks,timber,glassandsteel)WholelifeZero-carbonbuildingsEnergy-efficientbuildingsNetZero-carbonorZero-carbonbuildingsNearlyZero-carbonbuildingsOnsiterenewableand/ordecarbonisedgrid(greenpoweranddistrictenergy)Districtheating/coolingOnsiterenewable(solarorPV)EfficientheatingandcoolingsystemsHighperformancewindowsFigure13.Differentlevelsofzero-carbonbuildingsSource:IEA2021.Allrightsreserved.Adaptedfrom‘RoadmapforEnergy-EfficientBuildingsandConstructionintheAssociationofSoutheastAsianNations.(IEA2022e).402022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTION3.2.ENERGYINTHEBUILDINGSANDCONSTRUCTIONSECTOROperationalenergydemandinbuildings(forspaceheatingandcooling,waterheating,lighting,cookingandotheruses)accountsforaround30percentoffinaldemandandhasgrownto135EJ,whichisanincreaseofaround4percentfrom2020andexceedsthepreviouspeakin2019by3percent(IEA2022f).Thechangeinenergydemandinbuildingsin2021reflectsacomplexpicture.Ontheonehand,buildingsarebeingoperatedmoreintensivelythanduringthepandemicasworkplacesreopenandbusinessesresumemore“normal”operations.Equallymanyworkplacesarechoosingtomaintainhybridworkingpolicies(Microsoft2022),soadistributionofenergydemandinbothworkplacesandhomesremains.Energyusedforbuildingstoproduceconcrete,steel,andaluminiumaccountsforafurther4percentoffinalenergydemand(IEA2022f).Togetherwithoperationalenergydemandthisbringsbuildingsenergydemandto34percent.Othermaterialsusedintheconstructionofbuildings,suchasbricksandglass,alsocontributetoglobalenergyuseandtogetherwithconcrete,steelandaluminiumcouldaccounttoaround5percentofglobalenergydemand(UNEP2021).Similarly,inlow-andmiddle-incomecountries,accesstomodernfuelswasdisruptedduetothepandemic,withthemostrecentSDG7progressreportshowingthat733millionpeoplelackaccesstoelectricityandaround2.4billionpeopleareusingfuelsforcookingthatemitpollutionimpactingtheirhealth(IEAetal.2022).ThecountrieswiththelargestnumberofpeoplewithoutaccesstoelectricitywerewithinCentralandWesternAfrica,with442million(or60percent)beingwithintheAfricancontinent(seechapter7).Theselevelsofenergyaccesshaveimprovedfrom2010butareofftracktomeetingthecommitmentsoftheSustainableDevelopmentGoalsby2030.Between2010and2020,forexample,energyefficiencymeasuredastheratioofprimaryenergyoverpurchasingpowerparityhasfallenfrom5.6MJ/USDto4.7MJ/USDbuttheannualrateofimprovementinenergyintensitywouldneedtomorethandoublethecurrentrateto3.2percenttoreachthe2030SDG7goal.In2021,theincreaseinenergydemandsawanenergyintensityimprovementof1.9percentcomparedto2020,returningtoanaverageofthepreviousdecade(IEAetal.2022).Biomass(traditional)ElectricityHeatRenewablesCoalOilNaturalgas030609012015020102015201920202021Other6%Non-residential9%Buildingsconstructionindustry-concrete,aluminiumandsteel4%Materialssuchasbricksandglass~1%Otherbuildingandconstructionindustry3%Otherindustry31%Transport26%Residential21%EJ34%Figure14.Energyconsumptioninbuildingsbyfuel,2010-2021(left),andshareofbuildingsintotalfinalenergyconsumptionsin2021(right)Notes:Buildingsconstructionindustryandotherbuildingconstructionindustryreferstoconcrete,steelandaluminiumforbuildingsandinfrastructureconstructionrespectively.Buildingsconstructionindustryrelatedenergyusenotshowninleftpanel.Thenumbersinthepiechartareroundedvaluesandshouldnotbesummeduptocalculatetotalvalues.Source:IEA2022.Allrightsreserved.Adaptedfrom"TrackingCleanEnergyProgress"(IEA2022f).412022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTION3.3.EMISSIONSINTHEBUILDINGSSECTOROperationalenergy-relatedCO2emissionsfrombuildingsgrewbyaround5percentin2021comparedto2020toaround10GtCO2,exceedingtheprevious2019peakof9.6GtCO2by2percent(seeFigure15).ThisincreasefollowstheunprecedentedreductioninCO2emissionsin2020ofaround10percentfrom2019levelstoduetotheCOVID-19pandemic.TheriseinbuildingssectorCO2emissionsshowstherehasbeenlittlestructuralchangeintheoverallenergyefficiencyofexistingbuilding(seeFigure12).Buildingsaccountforaround27percentofoperationalenergyrelatedCO2emissions18,whichexcludesmaterials(IEA2022f).TheIEAestimatesthat,in2021,around8percentofoperationalenergyandprocess-relatedCO2emissionswerefromthedirectuseoffossilfuelsinbuildings(i.e.directemissions)andafurther19percentwereduetoelectricityuse(i.e.indirectemissions).TheIEAascribestheincreaseindirectCO2emissionstoincreaseduseoffossilfuelsinbothadvancedandemergingeconomies,particularlyfossilfuelgasinemergingeconomies.Theemissionsfromthemanufacturingofconcrete,steelandaluminiumusedintheconstructionofbuildingsareestimatedtorepresentafurther6percent(around2.3GtCO2)ofglobalemissions(IEA2022f).Othermaterialsusedintheconstructionofbuildings,suchasbricksandglass,areestimatedtoaccountforaround2-4percent(~1.2GtCO2)ofglobalemissions(seeBox5).Addedtogether,thesewouldrepresentaround9percentofglobaloperationalenergyandprocess-relatedemissions,meaningthebuildingsandconstructionindustryrepresentaround37percentofglobaloperationalenergyandprocess-relatedCO2emissions.Advancingtechniquesthatreducetheemissionsfromconcreteandsteelwouldleadtoafallinembodiedemissionsfornewlyconstructedbuildings(seeBox6),thoughthereisalsoastrongneedtoreducethedemandformaterialsandreuseconstructionmaterialsmoreeffectively.Formoreinformationonbuildingsmaterialsseechapter8.Thereboundinglobalemissionsisunfortunateandshowsthattheinvestmentinemissionreductionsthroughpandemicstimulusprogrammeshastodatemadelimitedimpact.ToachieveapathwayofnetzeroCO2emissionsby2050,theIEAestimatesthatoverallbuildingssectorCO2emissionsshouldfalltoaround5GtCO2in2030,orby0.6GtCO2peryear.Thiswouldimplyanannualrateofemissionsreductionequalto-8.3percentperyearovertheeight-yearperiod–equivalenttosustainingthereductioninemissionsrelatedtothepandemiceachyearuntil2030.Other8%Residential(direct)6%Residential(indirect)11%Non-residential(direct)3%Non-residential(indirect)8%Otherbuildingandconstructionindustry6%Otherindustry30%Transport22%0246810GtCO220102015201920202021Residential(direct)Non-residential(direct)Non-residential(indirect)Residential(indirect)Buildingsconstructionindustry-concrete,aluminiumandsteel6%Estimatedemissionsforbricksandglass~3%37%Notes:Buildingsconstructionindustryandotherconstructionindustryreferstoconcrete,steelandaluminiumforbuildingsandinfrastructureconstructionrespectively.Theboundariesoftheemissions(energyandprocess)accountforconstructionmaterialsincludefromrawmaterialspreparationandprocessingandthedifferentstepstoproducethematerials.Forexample,forcementthisincludestheentiremanufacturingprocesses,fromobtainingrawmaterialsandpreparingthefuelthroughtogrindingandmilling.Thenumbersinthepiechartareroundedvaluesandthereforedonotnecessarilysumtothetotalvalueforagivensector.Source:IEA2022.Allrightsreserved.Adaptedfrom"TrackingCleanEnergyProgress"(IEA2022f).Figure15.CO2emissionsinbuildings2010-2021(left)andshareofbuildingsinglobalenergyandprocessemissionsin2021(right)18Totaldirectandindirectbuildingoperationsemissionssumto27%butduetoroundingFigure15showsatotalof28%.422022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTIONTrackingtheglobaluseofsubsidiaryconstructionmaterialsandtheirassociatedcarbonemissionsischallenging(seealsosection8onmaterials).Therearefewopenlyaccessiblerepositoriesofmaterialsproductiondatafromwhichtoderiveemissionsestimates.Thereissomedegreeofconsensusthatannualbrickproductiongloballyisaround1.5trillion,or1.9trillionincludingconcreteblocks(GlobalIndustryAnalysts,Inc2021);however,theseestimatesarenotbackedupbyrigorous,openlyavailabledata.Assuch,thecarbonemissionsassociatedwithbrickproductionarehighlyuncertain.AnestimatebyZhang(Zhang1997)foundthatChinaproduced800billionbricksin1994,andthattheCO2emissionsvariedbetween48and113tonnesofCO2permillionbricksdependingontheproductionprocess,resultingin43milliontonnesofCO2and1.9milliontonnesofSO2.EstimatesbytheInternationalCentreforIntegratedMountainDevelopment(ICIMOD)suggestthatIndianbrickproductionwas260billionbricksin2017(emitting60–65milliontonnesofCO2)(InternationalCentreforIntegratedMountainDevelopment[ICIMOD]2019a),with82.5billionbricksproducedinPakistan(ICIMOD2019c)and5.14billionbricksproducedinNepal(ICIMOD2019b)in2018.In2014,carbondioxideemissionsfromthemanufactureof330billionbricksacrossSouthAsiawereestimatedat127milliontonnesperyear,or0.16kgofCO2perkgofbricks(Rajarathnametal.2014).Inothernations,brickproductionquantitiesarelower:accordingtoofficialfigures,theUKproduced1.9billionbricksin2021(UnitedKingdom,DepartmentforBusiness,Energy&IndustrialStrategy[BEIS](2022b).AstudybeingcarriedoutbyEPFLestimatesthetotalglobalproductionoffiredclaybrickstoaround2.2billiontonnes.Theaverageglobalemissionsintensityoftheproductionprocessisaround0.48kgCO2eq/kg.Thisgivesanestimateofaround1.1GtCO2eqemissionsfromthefiredclaybrickindustry(ScrivenerandHafez2022).Theglassindustryisbelievedtocontributeonlyaround0.1GtCO2eq/year,despitetheenergy-intensiveproductionprocessresultinginanemissionsintensityof0.69kgCO2eq/kg(IEA2020a).Box5.GlobalCO2emissionsfrombrick,aluminiumandglassproductionBox6.Trendsinproductionoflow-carboncementIn2020,theIEAestimates4.2Gtofcementwasmanufacturedworldwide,55percentofwhichwasmanufacturedinChina(IEA2022f).Cementproductionleadstoaround600kgofCO2pertonneofproduct(Nature2021),sosubstantialchangestoreduceitsassociatedemissionsarerequiredifthegoalsoftheParisAgreementaretobemet.RecentlyithasbecometechnicallyandeconomicallyfeasibletoreducethePortlandclinkercontentincementtoaslowas50percentwhileachievingsimilarperformancetoexistingcements,significantlyreducingCO2emissions.Oneoptionislimestonecalcinedclaycement(LC3)wherelimestoneandcalcinedclayareaddedtosubstituteuptohalfthePortlandclinkercontent.Asaresult,CO2emissionreductionsofupto40percentcanbeachievedoverallcomparedtoordinaryPortlandcement(LimestoneCalcinedClayCement[LC3]2022).NationalcementstandardsandregulationscansometimesbeanobstacletotheproductionandmarketintroductionofcementwithalowerclinkercontentthantheusualPortlandcement.Nevertheless,moreandmorecountriesareadaptingtheirregulationsinordertoclearthewayforgreenercementalternatives.ThefirstsuchadaptationtookplaceinEuropewheretheEN197standardwasamendedtoEN197-5inMay2021(EuropeanStandards2021).InmostofLatinAmerica,theuseofLC3isalsoalreadypossible.Severaladditionalcountriesarealsointheprocessofadaptingtheirownstandardstothisnewclinkerfactor,includingIndia,SenegalandEgypt.SeveralLC3productionplantshavebeeneitherbuilt(e.g.Colombia,CubaandIvoryCoast)orarecurrentlyunderconstruction(e.g.France,Ghana,Cameroon).By2025,theglobalcapacitytoproduceLC3isexpectedtoreach90milliontonnesannually,whichequatestoCO2savingsofatleast20milliontonnesperyearcomparedtoordinaryPortlandCement(LC32022).Severalotheravenuesalsoexistforthereductionofcementemissions.InMay2022,researchersatCambridgeUniversityannounceda“zeroemissions”cementinnovation(CambridgeDepartmentofEngineering2022).TheIEApointstothenecessityofcarboncapturetechnologiesreachingcommercializationby2030(IEA2021a).Itremainsunclearwhethersuchnewinnovationscanbescaledtomeetglobaldemand.432022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTION3.4.IPCCAR6FINDINGSFORBUILDINGSTheIntergovernmentalPanelonClimateChange(IPCC)sixthassessmentreportforthemitigationworkinggroup(AR6WGIII)hassoughttoprovideadefinitiveupdateonthescientific,technological,environmental,economicandsocialaspectsofmitigationofclimatechangesinceitslastreportin2015.The2022AR6WGIIIreportsentaclearmessagetothebuildingssectorontheopportunityforrapidbutachievablechange,withcomprehensivepolicypackagesintegratingtechnologyandpolicyactionstailoredtonationalcircumstances(Cabezaetal.2022).Examplesassessedwithahighdegreeofconfidenceofbeingabletoachievethesechangesincludedemissionsreductionsfrombuildingsthroughamixofefficiencytargets,buildingcodes,applianceperformancestandards,informationprovision,carbonpricing,financeandtechnicalassistance,andindustrialgreenhousegasemissionsreductionsthroughinnovationsupport,marketcreationandcapacitybuilding.TheAR6WGIIIidentifiedcriticalactionsforthebuildingssectortoachievethetargetsoftheParisAgreement.Theseincludedimplementingambitiousmeasures,including:•Mandatorybuildingenergycodesfornewconstructionalongsideacomplianceframework•Energyefficiencyrefurbishmentforexistingbuildingssupportedthroughanintegratedpolicyframework•Buildinglabelsandenergyperformancebenchmarkcertificatesfornewandexistingbuildings•Mandatorylabelsforplug-loadappliances(e.g.,washers,dryers,stoves)andinstaller-basedequipment(e.g.,airconditioningunits,hotwatersystems)•Energyauditsofbuildingsandsystemstoensureoperationalenergyperformance,whicharemandatoryforlargebuildingsorenergyusers•Minimumenergyperformancestandardsforbuildingequipmentandsystemstolimitinefficientproductsonthemarket•Adoptinglow-carbonmaterialsandnature-basedmaterialstoreducethelong-termembodiedcarbonofbuildings.Actionstoremovebarrierstodecarbonizationinclude:•Providinginformationonpracticesandtechnologiesthatcanreduceenergydemandandincreaseenergyefficiency•Increasinginvestmentintechnologicalsolutions(e.g.,insulation,efficientequipmentandbuildingintegratedrenewableenergy)•Changingpracticesandbehaviourstoreduceenergywasteandmakemoreefficientuseofdeliveredenergyservices(e.g.,heating,cooling,lighting,cooking).Themitigationpotentialofthebuildingssectorisconsiderable.MostscenariosreviewedinAR6WGIIIshowsubstantialreductionsfromthebuildingssectorby2050(seeFigure16).TheIEA’snet-zeroemissionsscenarioseesemissionsfromthebuildingssectorfallingto29MtCO2/yearby2050(orover95percentofcurrentlevels)(IEA2021b).Manyofthesemitigationoptionsforbuildingsarelargelycost-effectiveintheiremissionsabatement,withcostsrangingfromoverallcostsavings(throughavoideddemandandefficientequipment),toactionsrangingtomostly<USD100/tCO2eq)(seeFigure16).Yetthereareseriousriskstodeliveringthisnet-zero-carbonfutureifzero-carbon-readyconstructionandrenovationofbuildingscontinueatsuchslowrates.Thereportidentifiesrisksrelatedtothelonglifespanofbuildings.Whilethisisclearlybeneficialfromanembodiedcarbonpointofview(i.e.spreadingemissionsoverthelifetimeofthebuilding),itriskslockinginhigheremissionsforalongperiodifbuildingsarenotdesignedandconstructedwithenergyperformanceinmind.442022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTIONResidentialdirectemissionsResidentialindirectemissionsNon-residentialdirectemissionsNon-residentialindirectemissionsEmobodiedemissions02000-20004000600080001000012000140001600018000GHGEmissions(MtCO2eq-yr1)HistoricalHistoricalIEA2019CurrentpolicyScenarioIEA2020SustainableDevelopementScenarioIEA2021Net-zeroEmissionsScenarioIMAGELifestyleandRenewableScenarioRECCLEDand2°CPolicyScenarioScenarios199020002010201920202030204020502020203020402050202020302040205020202030204020502020203020402050Netlifetimecostofoptions:Costsarelowerthanthereference0-20(USDtCO2-eq-1)20-50(USDtCO2-eq-1)50-100(USDtCO2-eq-1)100-200(USDtCO2-eq-1)CostnotallocatedduetohighvariabilityorlackofdataUncertantyrangeappliestothetotalpotentialcontributiontoemissionreduction.TheindividualcostrangesarealsoassociatedwithuncertaintyAvoiddemandforenergyservicesEfficientlighting,appliancesandequipementNewbuildingswithhighenergyperformanceOnsiterenewableproductionanduseImprovementofexistingbuildingstockEnhanceduseofwoodproductsPotentialcontributionsnetemissionreduction(GtCO2eq-yr-1)GtCO2eq-yr-1024024MitigationoptionsBuildingsFigure16.IPCCAR6WGIII-OverviewofA)GlobalbuildingemissionreductionscenariosandB)Mitigationoptionsandtheirestimatedrangesofcostsandpotentialsin2030Source:AdaptedfromIPCCAR6WorkingGroupIII–Mitigation,Chapter9:Buildings,Figure9.3,page168andSPM.7,page63(IPCC2022).452022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTIONProgressonbuildingsandconstructionpolicesremainsslowinthefaceofthepandemicandthelackofactionhasmeantemissionsarenotbeingreduced.Todate,158outof196countries(80percent)referencebuildingsaspartoftheirNDCactionplansand79outof196(40percent)havebuildingenergycodes,thoughonly26percentofcountrieshavemandatorycodesforallbuildings.4.SUSTAINABLEBUILDINGSANDCONSTRUCTIONPOLICIESPhotocredit:JennyTheolin462022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTIONDecarbonizingtheglobalbuildingstockisakeysteptowardsfulfillingthecommitmentsoftheParisAgreement.TheUNFCCC’snationallydeterminedcontributions(NDCs)playacentralroleinoutliningcountries’sectoralcommitmentsandstrategies.Alongsidethis,regional,nationalandlocalbuildingenergycodes,greencertificationprogrammesandminimumenergyperformancestandardscandriveupefficiencyandreducebuildingenergyuse.4.1.INTERNATIONALPOLICYANDNATIONALLYDETERMINEDCONTRIBUTIONSAccordingtotheUNFCCCNDCrepository(UNFCCC2022b),193countriesplustheEUhavesubmittedanNDC.Only,Libya,IranandYemenhaveyettosubmitanNDCinanyform.ThisisdespitearequestatCOP26forallnationstosubmitrevisedNDCsintimeforCOP27.SincetheGlobalStatusReportforBuildingsandConstruction2021,afurther68NDCshavebeenpublished:IraqandTürkiyesubmittedanNDCforthefirsttime.Figure17providesdetailsofthementionsofbuildingswithinthesenewNDCs,aswellaspreviouslysubmittedversions.Therehasbeenanincreaseof23countriesmentioningbuildingsintheirNDCs,butjustunder20percentoftheworld’spopulationlivesincountrieswhoseNDChasnoorlimitedreferencestobuildings.Severalcountriesnowprovideextensivedetailsoftheirplanstorespondtoclimatechangeinthebuildingssectorwiththementionofadaptation,mitigationandbuildingscodesintheirNDC–MyanmarandSriLanka’slatestNDCsareparticularlydetailed.However,Indonesia,BrazilandthePhilippinesarenotablepopulouscountrieswhichlackadescriptionofplansforbuildingsintheirNDC.Thisyear’sGlobalStatusReportforBuildingsandConstructionalsoincorporatesmentionsofbuildingsinthefourthroundofbiennialreports,whicharesubmittedbythegroupofAnnex1industrializedcountries.NewZealandisanotableexample;eventhoughbuildingsarenotmentionedintheNDC,thecountryhascommittedtoanextensivebuildingdecarbonizationprogramme(NewZealand,MinistryofBusiness,InnovationandEmployment2021).NDCmentionsofbuildingsAdaptationFurtherdetailgiveninFourthBiennialReport(spotcolorcorrespondstomentioncategoryabove)BuildingcodesIncreaseddetailinNDCupdateEnergyEfficiencyExtensivedetailLimitedreferencetobuildingsNoknownNDCNomentionFigure17.NDCmentionsofbuildingsThismapiswithoutprejudicetothestatusoforthesovereigntyoveranyterritory,tothedelimitationofinternationalfrontiersandboundaries,andtothenameofanyterritory,city,orarea.472022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTIONYear20212022Adaptation1720Energyefficiency94103Extensivedetail1015Limitedreferencetobuildings1416NoknownNDC53Nomention5635Furtherdetailin4thbiennialreport–4Totalmentioningbuildings135158Total196196Asof4August2022.68NDCsupdatedsincelastBuildings-GSR:Detail:less(6),same(39),more(23)(highlightedinmap)ThefollowingtableprovidesselectedcountryhighlightsfromthelatestupdatesandnewlypublishedNDCsthatreflectactionsbeingundertakenonbuildingdecarbonizationandadaptationandresilience.Table1.Buildings-relatedstatementsinNDCs482022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTIONTable2.Selectedcountries’first,firstupdated,andsecondNDCswithbuilding-focusedactions,submittedsinceSeptember2021CountryDateDescriptionofmeasuresrelevanttobuildingsTypeSriLanka30/07/2021Introducemandatorybuildingenergyefficiencycodein2021-2022.Establishsectoraldatabasesforeco-certificationsystem,minimumperformanceandenergyefficiencylabellingprogrammes,greenbuildings,andbuildingmanagementsystems.FirstupdatedNDCTürkiye11/10/2021Newbuildingsconstructedinaccordancewithenergyperformanceregulations.Taxincentivesforlow-energybuildingmaterials.FirstNDCJordan12/10/2021Adoptgreenbuildingcodes.Retrofitforenergyefficiencyinpublicbuildings.Improveresilienceofbuildingsthroughbetterinsultation.Promoteenergy-efficientdevices.FirstupdatedNDCIraq15/10/2021LEDlightinginallgovernmentandcommercialbuildings.Energyefficiencylabelling.Greenbuildingcodes.Smartmeterroll-out.IntegratedsolarPVinbuildings.FirstNDCMozambique27/12/2021Reformulatebuildingscodetodevelopresilience.Micro-generationofenergyoncommercialandresidentialbuildings.Increaseenergyefficiency.Promoteenergy-efficientappliances.FirstupdatedNDCEgypt07/07/2022COP27hostcountry.Promotionofrenewablesandenergyefficiencyinnewandexistingbuildings.Expandenergyefficiencylabellingprogramme.Voluntarygreenbuildingguidelines.FirstupdatedNDC492022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTION4.2.BUILDINGENERGYCODESBuildingenergycodeshaveacentralroletoplayinimprovingbuildings’energyefficiencyandreducingcarbonemissions.Theyallowgovernmentstomandatestandardsfortheconstructionandmaintenanceofbuildingswhich,whenproperlyenforced,ensurethebuilding’sfabricmeetscriteriaforpreventingheatflow,ventilationratesaremaintained,andthebuilding’soperationalequipmentmeetsenergyusestandards.Buildingenergycodesmustbedesignedwithlocalenvironmentalconditionsandbuildinguseattheirheart.Theyareimportantnotjustattheconstructionstageofnewbuildings,butalsoforthemaintenanceandretrofitofexistingbuildings.TheIEA’sNet-Zero2050Roadmaprequires50percentofexistingbuildingstoberetrofittedtozero-carbon-readystatusby2040(IEA2021b).Toachievethisaim,adramaticincreaseinthepresenceofbuildingenergycodesworldwideisrequired.Thisyear’sGlobalStatusReportforBuildingsandConstructionupdatesthemethodbywhichglobalbuildingcodesaretracked.AsofSeptember2022,79outof196countries(40percent)havebuildingenergycodeswhichareeithermandatoryforatleastpartofthebuildingstockorhaveavoluntarycomponent.19Yetonly35percentpercentofcountrieshavemandatorycodesorregulationsforsomeorallbuildingtypesthatregulatehowenergyefficientabuildingneedstobewhenconstructed,whichdropsto26percentpercentforthosewithmandatorycodesforbothresidentialandnon-residentialbuildings.Thelegislativelandscapethatregulatesenergyinbuildingsiscomplicatedbydifferencesinthegeographicscopeofbuildingsenergycodes.Insomecases,especiallyinfederatedcountries,individualstateswilldeterminethestringencyorscopeofabuildingcode.Inothercountries,asinglebuildingcodemightapplytothewholecountry.Citiesormunicipalitiesmayalsohavelocalbuildingenergycodes,butthesearenottrackedhere.Furthercomplicationoccurswithregardstobuildingsstandards,whichmaybemandatoryormerelyavailabletolocalauthoritiesasameansofindicatingcompliance.Mexico,forexample,hasamandatorybuildingenergystandard,whichisnotstrictlyspeakingabuildingenergycodeeventhoughitmayfunctioninasimilarmanner,thoughitmustbeadoptedbystategovernmentstobecomemandatory.Therearealsodifferencesregardingthescopeofcodes,whethertheycoverallbuildingsorjustasubset,forexamplenewbuildingsaboveaparticularthresholdfootprint.ThesecomplexitiesaresummarizedinFigure18andTable3,withtheinclusionofanew“performancestandardavailable”category,referringtotheexistenceofanationalbuildingenergystandard.Finally,theextenttowhichbuildingsenergycodesareenforcedorcompliedwithisnottrackedbutwillinfluence,alongsideahostofotherfactors,thefinalenergydemandofthebuildingstock.19Intotal,51outof196countriestrackedbytheBuildingsGlobalStatusReporthavemandatorybuildingenergycodeswhichcoverbothresidentialandnon-residentialbuildings.Thisnumberishigherthanlastyear’stotal,butthemethodologicalchangesthisyearmeansthesenumbersshouldnotbedirectlycompared.Globalstatusofbuildingenergycodesin2021MandatoryPerformancestandardavailableIndevelopementNoknowncodeFigure18.Globalstatusofbuildingenergycodesin2021Thismapiswithoutprejudicetothestatusoforthesovereigntyoveranyterritory,tothedelimitationofinternationalfrontiersandboundaries,andtothenameofanyterritory,city,orarea.502022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTIONInthepastyeartherehasbeenlittleprogressonnationalbuildingenergycodesincountrieswhichareyettoadoptthem.AnexceptiontothisisthenewlawinGeorgiaonenergyefficiencyofbuildings(Zourabichvili2020),whichcameintoforceinmid-2021,whichappliesEUdirective2010/31/EU(EuropeanParliament2010)tobuildingsinthecountry.Alongsidethis,draftenergyefficiencybuildingcodeshavebeenpublishedforKenya(Kenya,StateDepartmentforPublicWorks2022)andTrinidadandTobago(TrinidadandTobago,BureauofStandards2022),butnotyetbroughtintoforce.InJune2022,theUSgovernmentannouncedaprogrammetoacceleratetheadoptionofmodernnationalbuildingcodes(UnitedStatesofAmerica,theWhiteHouse2022a).Progressiscleareratthestate,cityandlocallevel.ThestatesofIndiawhichhadyettoimplementabuildingenergycodehavenowratifiedIndia’s2017EnergyConservationBuildingCode,whichmandatesenergyefficiencyforlargecommercialbuildingsandprovidesvoluntarycodesforotherbuildings(Kwatraetal.2021).ThepastyearhasseenthescopeandstringencyofmandatoryandvoluntarybuildingenergycodesintheUnitedStatesofAmericaincreasedinCalifornia(CaliforniaEnergyCommission2021),Massachusetts(Wasser2022),Wisconsin(Hoffmann2022),Hawaii(HIPublicWorks2021)andOregon(OregonHomeBuildersAssociation2021).ThestrongestcommercialbuildingenergycodeissettocomeintoforceinJuly2023inWashingtonstate(SierraClub2022),whereelectrificationwillbemandatedforspaceandwaterheating(S&PGlobal2022).Similarly,NewYorkstateisplanningonprohibitingtheuseoffossilfuelsforheatingandcoolingby2030(NewYorkState2022),withnewlegislationdesignedtopromotetheconstructionofgeothermalnetworksforheating(GeothermalRising2022).Canadapublishedthe2020updateofthenationalenergycodesforbuildingsinMarch2022.Thesemodelcodesincludefourorfivelevelsofenergyefficiencyforbuildings,dependingonsize,withincreasingambition,towardstherequirementthatnewbuildingsmeetanenergyperformanceapproximatingnetzeroenergyready(Beer2022).InFrance,thenewCodeRE2020cameintoforceon1January2022andincludesimprovedmandatorythresholdsforenergydemandandconsumptionandforthefirsttimeaddsmandatorythresholdsforgreenhousegasemissions(oneforemissionsfromenergyandthesecondforemissionsrelatedtoconstruction,includingembodiedemissionsinmaterials).Thisnewcodewillenabletheremovaloffossilfuelsinnewbuildings,promotetheuseoflow-carbonmaterials,andaddressadaptationthroughalimitonthenumberofhoursofthermaldiscomfortincaseofheatwaves(France,MinistryofEcologicalTransition2022).Mandatory68Performancestandardavailable11Indevelopment32Noknowncode85Grandtotal196Table3.Buildingenergycodesstatusin2022512022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTIONToaligntowardsmeetingdecarbonizationtargets,newbuildingsmustbebuilttohigherperformancestandardsandcodes.AnexampleofthisistheBCEnergyStepCode(EnergyStepCodeCouncil2018),whichprovidesafirststeptowardsnet-zero-carbon-readybuildingsby2032andfullyzero-carbonastheutilitygriddecarbonizes.Forexistingbuildings,thefocusistoupgradebuildings–througheitheranincrementalapproach(e.g.,adoptingretrofitswhenrenovatingabuildingorupgradingtoahigh-performancesystematitsend-of-life)ortargeteddeeprenovationsthatupgradeabuildingthroughamulti-systemupgradetoachieveahighperformancestandard.However,theStepCodedoesnotyetmeetthecharacteristicsidentifiedbytheIPCCasnecessarytomeetthegoalsoftheParisAgreement.Europe’sRenovationWaveaimstoatleastdoubletheannualenergyrenovationrateofbuildingsby2030andfocusondeepenergyrenovationswithagoalofrenovatingmorethan35millionbuildings–or13percentofthetotal–by2030(EuropeanCommission2020).Thetechnologicalsolutionsforthetransitionoftheglobalbuildingstockareclearandincludetheuseofhigh-performanceandlow-costinsulationmaterials,glazingunitswithsolarcontrolfilmsandgases,highefficiencyheatingandcoolingsystems,highperformanceappliancesandequipment,andsmartanddigitalcontrolsystems(GlobalABCetal.2020).Inarecentanalysis,theIEAestimatedthattoachievethetargetofnetzeroemissionsby2050,thebuildingssectorwouldneedtorealizeanannualaverageenergyintensityimprovementof4-5percentperyearbetweennowand2050.Existingbuildingswouldneedtobenetzeroready(i.e.efficientandabletooperateatzeroemissionsasgridsdecarbonize).Morethan1.8billionheatpumpsand1.2billionsolarthermalsystemswouldneedtobeinstalled,alongwitharound7,500TWhofbuilding-integratedPVgeneration,whiletheenergyefficiencyofhouseholdapplianceswouldneedtoimproveby40percentcomparedtotoday(IEA2021b).4.3.ZERO-EMISSION/ENERGYCODESANDTHEPARISAGREEMENTInrecentyearstherehasbeenanincreasedinterestindevelopingbuildingenergycodesthatdelivernetzeroenergyuseon-site,usuallybycombiningstringentenergyefficiencystandardswithrenewableenergygeneration.AnewvoluntaryappendixtotheInternationalEnergyConservationCode(IECC)2021workstowardsprovidingsuchastandard(IECC2021).Forresidentialbuildings,thesupplementaryenergycanbegeneratedthroughlocalprojects,suchason-sitesolarPVarrays.Forcommercialbuildings,theIECCmakesuseoftheArchitecture2030ZEROCode,whichalsoincorporatesrequirementsforhighlyefficientbuildingenvelopes,passiveheatingandcooling,andeitheron-siterenewablesorcarbon-freeenergypurchasesfromthegrid(Architecture20302018).However,amajorchallengeexistsinensuringthatthe“netzero”codesdescribedinthissectionachievethegoalssetoutbytheIPCC(Schlegel2022)andtheUNFrameworkGuidelinesforEnergyEfficiencyStandardsinBuildings(seeBox7).TheGettingtoZeroForumtracksthedevelopmentofnew,stringentenergycodesintheUnitedStatesofAmerica(GettingtoZeroForum2022).Californiahasanumberofreachcodeswhichareadoptedbylocalcountyandcityjurisdictions(Steele2021),alongsideaproposedCaliforniaZEROcodeforcommercialbuildings(Zero-Code2022).InNewYorkstate,astretchcodeisavailabletoprovideanadditional10percentofenergysavingsinbuildingsoverthecurrentstateenergyconservationcode(NewYorkState2019).ThebuildingcodeofDelawarerequiresprogrammestobeestablishedwhichpromotezero-energyhomes(DelawareGovernment2010),andWashingtonDC’s2020energycodeincludesanet-zeroenergyappendixfornewbuildings(GovernmentoftheDistrictofColumbia2017).InChina,atechnicalstandardfornearlyzero-energybuildingswasissuedin2019(andcomeintoforcein2022).However,challengesstillremaininensuringthatwholelife-cycleemissionsareconsidered,notjustoperationalenergy-relatedemissions(YangandLi2021).IntheEuropeanUnion,anewproposalfromtheEUCommissionwouldrequireallnewbuildingstobezeroenergyby2030(EuropeanCommission2021b).TheWorldGreenBuildingCouncil’sEUPolicyWholeLifeCarbonRoadmapsetsoutindetailthenecessarypolicyinitiativesandtargetsatanationallevelforachievingnetzerowhole-lifecarbonemissionsfromtheEUbuildingstockby2050(Nugentetal.2022).Oneoftheprimarydriversbehindtheseeffortstopromotezero-energycodesiscompliancewiththeParisAgreement.IntheUnitedStatesofAmerica,aninitiativerunbytheNewBuildingsInstituteaimstopromoteclimate-alignedcodesthroughtheCodesforClimateprogramme(NewBuildingsInstituteandRMI2021).SuchexplicitalignmentofbuildingenergycodestothegoalsoftheParisAgreementisnotcurrentlycommonelsewhere,althoughanincreasingnumberofcountriesmentionbuildingcodesintheirNDCs.Ensuringthatanycodewhichisdescribedas“Paris-aligned”actuallyachievestheemissionssavingsrequiredpresentsaconsiderablechallenge.522022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTIONAClimateBondsInitiativereport(ClimateBondsInitiative2022)intotherolethatfinancingmustplayinachievingtheParisAgreementunderscoredtheimportanceofin-usebuildingsenergydata,whichbuildingcodesaloneoftendonotprovide.AreportbyBPIEexaminedwhole-life-cycleemissionsfrombuildingsinEurope(Broeretal.2022),andechoedthesefindings,emphasizingtheneedfortransparentemissionsdataandindependentcertificationschemestoprovidethemarketsignalsnecessarytodrivedownemissions.InapresentationdeliveredatCOP26,theWorldBusinessCouncilforSustainableDevelopmentdefinedtheprimarymarketleversforachievingnetzerowhole-life-cycleemissionsinthebuiltenvironment,includingintegratingthecostofwhole-lifecarbonemissionsintobuiltenvironmentservicesandproducts(WorldBusinessCouncilforSustainableDevelopment2021).Theabovecodesarecriticaltotheimprovementofnewbuildingsandthemajorityfocusonoperationalcarbon.However,tobezerocarbonaligned,itwillbenecessaryforthesecodestoexpandtocoverembodiedcarbonsothatthechoiceofmaterials,inadditiontoperformancetargets,ismanaged.Suchanapproachmightbenefitfromanembodiedcarbonperformance-basedmethod,whichwouldallowconstructiontoachievetargetsthroughthemostappropriateroutes.Box7.UpdatedFrameworkGuidelinesforEnergyEfficiencyStandardsinBuildingsInSeptember2020,theJointTaskForceonEnergyEfficiencyStandardsinBuildingsoftheUNEconomicandSocialCouncildevelopedUpdatedFrameworkGuidelinesforEnergyEfficiencyStandardsinBuildingsECE/ENERGY/GE.6/2020/4(UNECE2020).ThisupdatebuiltonpreviousworkoftheJointTaskForce,followingitsestablishmentin2015.Thegoaloftheworkistoreducetheenergyuseofbuildings,whiletransformingbuildingstoprovidethehighstandardsofsustainability,comfortandhealth.Theresultofthetaskforce’seffortswastoestablishathree-partframeworkofprinciples,fallingintothreecategories.First,thestrategicelementoutlines,amongotherprinciples,thatbuildingsmustbescience-based,properlyvalued,cost-effectiveandperformanceorientedusinglow-carbon,low-energytechnologies,withthehealthimpactsofbuildingsconsidered.Second,thedesignandconstructionprinciplesemphasizeaffordable,sustainableandcode-drivenconceptionanddeliveryofbuildings,usingvalidatedenergyperformancemodelsthatreliablypredictreal-worldperformance.Third,themanagementprinciplesrecognisethatbuildingsmustbemaintainedovertheirwholelifecycle.Here,theimportanceofbuildingssystemcommissioningisemphasized,withaneedformonitoringandbenchmarkingalongsideenergyperformancecertification.Finally,theframeworkguidelinesemphasizethateducationandresearcharecentraltothetransformativechangeofbuildings,alongsideengagement,disseminationtoandparticipationfrombroadercivilsociety.4.4.GREENBUILDINGCERTIFICATIONThereisacontinuedrecognitionofgreenbuildingcertificationsystemsacrosstheworld.Buildingenergyandsustainabilityratingsystemsarecontinuouslyevolvingtoaddressnetzeroemissionsandhaveestablishedcriteriafortheassessmentofsustainableactionsinthebuildingsectorrelatedtoenergy,water,waste,transport,materialsandresourceconsumption,pollution,landuseandhealth.Thesecertificationsprovidegrowingevidenceoftheprogressbeingmadebythebuildingssectortowardssustainableandeco-friendlypracticesinbuildingandconstruction.Asof2021,thereare74greenbuildingcertificationsystems20acrosstheworld,withthemajorityadministeredbymembersoftheWorldGreenBuildingCouncil(WorldGBC).Atleast184countrieshavebuildingsthatarecertifiedunderthesecertificationsystems.Table4belowshowsthegreenbuildingcertificationsystemsacrosstheworld.However,basedonthetransparentandavailabledata,only14certificationsystemsareusedintheGlobalBuildingsClimateTracker(section3).Thenumberofcertificatesissuedunderthese14certificationsystemsgrewwithanaveragecumulativegrowthof19percentin2021comparedto18percentin2020and24percentin2019.20Morecertificationsystems/ratingtoolsexistbutarenotadministeredbymembersofWorldGBC.532022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTIONREGIONCOUNTRYRATINGAfricaEgyptGreenPyramidRatingSystemKenyaGreenMarkSouthAfricaGreenStarSA,NetZero/NetPositiveTunisiaEcoBatUgandaGreenStarUgandaAmericasBrazilGBCBrasilCASA,GBCBrasilCondomini,GBCZeroEnergyColombiaCasa(Colombia),ICONTECGuatemalaCasaGuatemalaUnitedStatesofAmericaLEED,ILFIZeroEnergyandZeroCarbon,Parksmart,PEER,RELi,SITES,TRUE,WELLAsiaChinaAssessmentStandardforGreenBuildingofChinaHongKongBEAMPlusIndiaIGBC,GRIHAIndonesiaGreenshipJapanCASBEELebanonARZratingsystemMalaysiaGreenBuildingIndexPakistanPakistanGreenBuildingGuideline(PGBG)BD+CPhilippinesBERDE,AdvancingNetZero(ANZ/PH),PHILGBCHealthandWell-beingToolforBuildingsSaudiArabiasaaf(SaudiGreenBuildingForum)SingaporeGreenMark,SingaporeGreenBuildingProduct/ServicesCertificationSouthKoreaKoreaGreenBuildingCertificationSriLankaGreenSLTurkeyB.E.S.T–ResidentialandCommercialBuildingsCertificateUnitedArabEmiratesPEARL(AbuDhabi),TARSHEEDVietnamLOTUS21Thelistisnotcomprehensiveandincludessomecertificationsystems/ratingtoolswhicharenotadministeredbymembersofWorldGBC.Greenbuildingcertificationsacttoincreaselocalknowledge,creatingawarenessandtrainingopportunities.Theycanalsoplayanimportantroleasastandardforsustainableinvestmentandfinancingasaformofqualitymark.Forexample,theEuropeanBankforReconstructionandDevelopmenthasarequirementforallbuildingsconstructioninvestmentstouseagreencertificationsuchasEDGE,BREEAMorLEED–thoughthelimitedrecognitionoflocallabelscanreducelocallyrecognizedapproachestosustainability.Ultimately,presentingaclearpathwayaroundtheusesofcertificationswillhelpdesigners,investors,manufacturers,governmentandnon-governmentalorganizationsacrossthewholevaluechaintoacceleratedecarbonization.Table4.Globalbuildingcertificationprogrammes21542022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTIONREGIONCOUNTRYRATINGEuropeAustriaDGNBAustriaCroatiaDGNBCroatiaDenmarkDGNBDenmarkFranceHQEGermanyDGNBIrelandHomePerformanceIndexItalyGBCHome,HistoricBuilding,Quartieri,CondominiLatviaBREEAM-LVNetherlandsBREEAM-NL,DGBCWoonmerkNorwayBREEAM-NORRussiaOMIRSpainDGNBSpain,VERDESwedenBREEAM-SE,Miljöbyggnad,MiljöbyggnadiDrift,CEEQUAL,NollCO2SwitzerlandMinergie,SNBS,DGNBSwitzerlandUnitedKingdomBREEAM,EDGEOceaniaAustraliaGreenStarNewZealandHomestar,NABERSNZ,CarbonzeroSource:AdaptedbyauthorsfromWorldGBC2022.4.5.MINIMUMENERGYPERFORMANCESTANDARDSANDLABELSMinimumenergyperformancestandardsprovideanimportantmechanisminimprovingtheenergyperformanceofbuildingsthroughensuringthatequipmentandappliancesusedinbuildingsachieveaminimumlevelofenergyperformance.TheIEAestimatesthatminimumenergyperformancestandardsnowcoverover80percentoffinalenergyuseforresidentialrefrigeratorsandairconditionersandover75percentforlamps/lighting(seeFigure19),althoughselectingappropriatestandardswhicharecompatiblewithcontemporaryusepracticesremainsimportant.Morethan100countrieshaveminimumenergyperformancestandardsinplaceforatleastoneofthekeyapplianceandequipmentrelatedenduses(e.g.cooling,lightingandrefrigerators),andanother20arecurrentlydevelopingpolicies.Usingminimumenergyperformancestandardstosetproductenergyperformancerequirementsthatcoverallmajorappliancesandsystemsisaneffectivewaytoreducedemandincurrentandnewbuildingsasnewappliancesarereplacedoradded.Whenminimumenergyperformancestandardsaredevelopedincollaborationacrossregionsforcross-borderapplicabilitytheycanbeespeciallyeffectivetoenablestrongerlocalmanufacturingandincreasedtrade.Forexample,theASEANSHINEinitiative(ASEAN2016)hasbeenworkingtosupportSoutheastAsiancountriesonimprovingtheirapplianceandequipmentstandardsforthelast10yearswithafocusonairconditioners,lighting,motorsandtransformers.Whenimplementingminimumenergyperformancestandards,regulatorsshouldusebothvoluntaryandmandatoryenergyratingsandlabellingprogrammessothatconsumersunderstandtheproductstheyarepurchasing.Productlabelsensurethatconsumershaveavisualreferenceforcomparisonwhenselectingwhichproductstopurchase.Theselabelsareespecially552022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTIONpowerfulwhenshowingtheaverageannualcostsofoperations,whichcanbedramaticallydifferentamongsimilarappliancesduetotechnologiesused.Forexample,directcurrent(DC)ceilingfanscanuse70percentlessenergythanmorecommonalternatingcurrent(AC)fans,whichofferssignificantsavingstobillpayers–especiallythosereliantonfansforcooling.However,astechnologiesimprovethroughtheenforcementofthesestandards,itisimportanttoresetthebaselinesothatconsumerscanidentifythemostefficientproducts.TheEuropeanUnionrescaleditsminimumenergyperformancestandardsformostappliancesin2021(EuropeanCommission2021c).Additionally,regulatorsshouldconsidertheimplicationsofembodiedcarbonintheirminimumenergyperformancestandardstosupportcomponent-basedapproachestoupgradingapplianceperformance.ArecentstandardinCaliforniarequiresallhotwatertankstoincludesmarthotwaterheatingmanagementcomponentstobeavailableforinstallationandupgrading(CaliforniaEnergyCommission2020).Sincethe2021GlobalStatusReportforBuildingsandConstructiontherehavebeenalimitednumberofnewdevelopmentsinminimumenergyperformancestandards.InAustralia,regulationscameintoforceinApril2022whichlimitenergyconsumptionofairconditioningunitslargerthan65kw(IEA2022d)–thislegislationextendsexistingminimumenergyperformancestandardsforunitsbelow65kw.IntheUnitedStates,newminimumenergyperformancestandardswillcomeintoforceregulatingairconditioningunitsandheatpumpsmanufacturedafterJanuary2023(IEA2020b).NextyearwillalsoseetheenforcementofminimumenergyperformancestandardsonlightinginSingapore,whichwillrequireallbulbstobeatleastasenergyefficientasLEDlighting(IEA2017).2000201020210%20%40%60%80%100%0%20%40%60%80%100%RefrigeratorsSpaceCoolingLightingRefrigeratorsSpaceCoolingLightingMEPSMandatorylabelsFigure19.Shareofenergyconsumptionforselectedend-usescoveredbyminimumenergyperformancestandards(MEPS)ormandatorycomparativelabels,2000-2021Source:IEA2022.Allrightsreserved.Adaptedfrom“TrackingBuildings”(IEA2022f).562022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTION5.INVESTMENTANDFINANCINGFORSUSTAINABLEBUILDINGSInvestmentinenergyefficiencywithintheglobalbuildingssectorgrewtooverUSD237billionin2021,markingagrowthofaround16percentfrom2020levelsandreflectingbothmajorgovernmentinvestmentinefficiencyandgreaternumbersofnew,efficientbuildings.Photocredit:AnneNygard572022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTIONTherewasanincreaseinbuildingenergyefficiencyinvestmentin2021ofaround16percentcomparedto2020,thesinglelargestincreaseinthelast10yearsoftrackingbytheIEA(IEA2022g).TheincreasereflectsboththereboundinbuildingsconstructionactivitieswithintheUnitedStatesofAmericaandCanada,alongwithFrance,ItalyandtheUnitedKingdom,andthesustainedlow-levelgrowthinGermany,JapanandChina.TheIEAestimatestheglobalbuildingsconstructionsectorvalueincreasedby5percenttomorethanUSD6.3trillionin2021(IEA2022g).Inhighincomecountries,buildingenergyefficiencyupgradeshavebenefitedfromlargepublicprogrammeinvestments.TheGermanstate-ownedbankKfWinvestednearly€37billionin2021inimprovingenergyperformanceofexistingandnewbuildings.In2022,theGermaninvestmentprogrammeswerepausedduetofundsbeingdepletedbutwereresumedunderasmallerbudgetandfocusedonretrofitsandmoreambitiousefficiencystandardsfornewbuilds.Germanyplanstounleashsignificantspendingthroughto2024,announcing€177.5billiononclimateactions(Germany,FederalMinistryforEconomicAffairsandClimateAction2022)andaround€17billiontoinvestinenergy-efficientbuildings(Fokuhl2022).InJapan,zero-energyhousingaccountedforover16percentoftheprivatehousingmarketin2021,upfromaround3percentin2014,showingaconsiderableincreaseinsustainablebuildingconstructionactivitiesinashortperiod.AnalysisshowspandemicrecoverystimuluspackageshavemadeamajorcontributiontoenergyefficiencyinvestmentinWesternEurope.LargepublicsectorprogrammessuchasthoseintheUnitedKingdomandFranceprioritizedexpendituretowardsdecarbonisingbuildings.TheUnitedKingdom’sPublicSectorDecarbonisationSchemehasseen£1billionspendingbetween2020and2022onbuildingscarbonemissionsreductions(UnitedKingdom,DepartmentforBusiness,EnergyandIndustrialStrategy2022b).InFrance,theFranceRelanceprovidedupto€4billioninloansforrenovationsofschools,hospitalsandlocalandstatebuildings(EuropeanCommission2021a).However,despitethefocusonbuildingsaspartoftheeconomicrecoveryfromthepandemic,somecountrieshaveshownonlymodestincreasesinefficiencyspending.TheUnitedStatesofAmericaspentUSD377millionin2021onenergyefficiencyinvestmentthroughthefederalgovernmentWeatherizationprogrammes,whichwasthesameas2020duetobudgetrequisitionprocesstomaintainfederalspending(UnitedStatesofAmerica,OfficeoftheChiefFinancialOfficer2020).Canada’sGreenerHomesgrantoffersCAD5,000tosupporthouseholdinvestmenttoimprovebuildingenergyperformancethroughatotalbudgetofCAD2.6billionoverthecomingsevenyears(Canada,NaturalResourcesCanada2022).Manyemergingeconomiesshowedacontinueddeclineinnewbuildingconstructionactivities,includinginSouthAsia,SoutheastAsiaandAfrica(formoredetailsonsustainableconstructiontrendsinAfricaseechapter7).DevelopingeconomiesinAsiahavestruggledwiththecontinuedimpactofthepandemicandhaveexperiencedcontinueddisruptioninbuildingsconstructionactivitiesandlimitedpublicprogrammesofinvestment.Theimpacthasbeenasignificantslowdowninenergyefficiencyinvestmentin2021fromanalreadylowlevel,andinvestmentinthesecountriesremainsbelow2019levels.Pandemicstimulusprogrammesarebeingtaperedthrough2022asgovernmentsfocusonaddressinginflation,whichhasaffectedtheconstructionsectorduetobothsubstantialincreasesindemandandsupplyconstraints.Assupplychainscontinuetoreturntoamorenormallevelofoperation,materialsandlaboursupplywillmeetgrowingbuildingsconstructiondemandacrosstheglobe,butconsumerinterestinhousinginvestmentmaywanewithoutcontinueddirectedprogrammesupport.Basedontheseearlytrends,theIEAhasestimatedthatglobalinvestmentinenergyefficiencywillincreasebyamodest2percentin2022.582022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTION6.REGIONALFOCUS:AFRICAAnestimated70percentoftheAfricanbuildingstockin2040stillhastobebuilt,withmuchofthisgrowthhappeningincities.Thecurrentresilienceofbuildingsagainstthegrowingimpactsofclimatechangeislow,inparticularasmorethanhalfofAfricancitizensarelivingininformalhousing.TraditionalsustainableconstructionandbuildingpracticesareacornerstoneofAfricanculturalheritage.Promoting,preservingandfurtherdevelopingtheseconstructiontechniquesiskeytoenablingmoreaffordablehousingthatisadaptabletoclimateconditions.Photocredit:EvaBlue592022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTION6.1.INTRODUCTIONAfricaisadynamiccontinentwithdiverseculturesandayouthfulpopulation.Thecontinent’spopulationisprojectedtodoubleby2050,reachingapproximately2.4billion(ADB2019).SeventypercentoftheAfricanbuildingstockexpectedfor2040hasyettobebuilt(IEA2019)andmorethan80percentofthatgrowthwilloccurincities,especiallyslums(Myers2016).Thisgeneratesnewprospectsforeconomicgrowthandwillinfluencetheurbanlandscapeofthecontinent.By2025,Africawillhavethreemegacities:Lagos(Nigeria),Cairo(Egypt)andKinshasa(DemocraticRepublicoftheCongo)(seefigure19).Additionally,hundredsofsmallerAfricancitieshavedoubledinsizeevery20years(Vidal2018).Butthiscontextoffastexpansionpresentschallenges,asitisexpectedtostraininfrastructureandenergyresourceswhileexacerbatingexistingsocialandenvironmentalimbalances.Africaisoneoftheregionsmostvulnerabletotheeffectsofclimatechange:UN-Habitatestimatesthataround56percentofthepopulationlivesininformalhousing(UN-Habitat2016)(seeFigure21),whilethefrequencyofnaturaldisastershastripledinthelast30years(UnitedNationsChildren’sFund[UNICEF]2021).Figure22depictsAfrica’svulnerabilitytoclimatechangeindex.Despitebeingendowedwithrenewableenergysources,themajorityoftheAfricanpopulationsuffersfromlowenergyaccessibilityandaffordability.Only43percenthadaccesstoelectricityin2021(IEA2022b),whilethenumberwithoutaccesstocleancookingwas970million(IEA2022b).Intermsofenergyandemissions,thecontinentaccountsforaround6percentofglobalenergydemandandcontributeslessthan3percentofgreenhousegasemissions(IEA2022b).In2018,buildingscontributed61percentofAfrica’sfinalenergyconsumptionand32percentofcarbondioxideemissions(IEA2019).HouseholdsinAfricaaccountedfor56percent(Figure23)oftotalfinalenergyconsumptionin2020.TheIEAprojectsthat,by2030,Africanhouseholdenergydemandforcoolingwillincreasethemostandenergydemandforapplianceswillquadruple,whereasenergydemandforlightingintheresidentialsectorwilldecreaseduetothemovementtowardsenergy-efficientlamps(IEA2022b).Thisindicatesthattheneedforcoolingisthemajorfuturechallengeforresidentialenergydemand,withownershipoffansstandingat0.6unitsperhouseholdandcurrentcoolingdeviceownershipstandingatonly0.06unitsperhousehold(IEA2022b).0102030405060708090Laos,NigeriaKinshasa,DRCCairo,EgyptLuanda,AngolaOuagadougou,BurkinaFasoJohannesburg,SouthAfricaBamko,MaliAbidjan,Côted'IvoireNairobi,KenyaKhartoum,SudanFigure20.PopulationgrowthperhourinAfricancitiesSource:UNWorldUrbanizationProspects2014(Myers2016).602022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTION%ofpopulationlivinginslums0255075100Figure21.Globalpopulationlivinginslums2018(percentofpopulation)Thismapiswithoutprejudicetothestatusoforthesovereigntyoveranyterritory,tothedelimitationofinternationalfrontiersandboundaries,andtothenameofanyterritory,city,orarea.Source:WorldBank2018.Adaptedfrom“Populationlivinginslums(%ofurbanpopulation)-Sub-SaharanAfrica”.(WorldBank2018).Indexofphysicalvulnerabilitytoclimatechange60.2-70.054.6-60.150.2-54.546.3-50.139.3-46.2Figure22.Vulnerabilitytoclimatechange.Thelowestlevelofvulnerabilityisgivenascoreof0,thehighest100Thismapiswithoutprejudicetothestatusoforthesovereigntyoveranyterritory,tothedelimitationofinternationalfrontiersandboundaries,andtothenameofanyterritory,city,orarea.Source:Feindounoetal(2020).Adaptedfrom“ThePhysicalVulnerabilitytoClimateChangeIndex:AnIndextoBeUsedforInternationalPolicy”.(Feindounoetal2020).612022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTIONGiventhatincreaseduseofmaterialsisstronglyassociatedwithurbangrowth,ariseingreenhousegasemissionsisalsopredictedasthesteelandcementindustriesaccountfor38percentofAfricanemissions(Nwamarahetal.2018b)(seealsochapter8casestudyonSub-SaharanAfrica).Thishighlightstheneedtopromotetheuseofsustainableconstructionmaterialsandadoptlow-carbondevelopment(Nwamarahetal.2018b),particularlywhenAfricaisrichinlocalconstructiontechniquesandmaterials.Localmaterialsincludeadobe,laterite,termitemoundsoil(Legeseetal.2021),timber,stone,bamboo,sandandavarietyofdryvegetation,whiletraditionalconstructiontechniquesincluderammedearth,sun-driedbricks,compressedearthblocks,wattleanddaub,cob,timber-framedconstruction,sandbagconstructionandthatchedroofs(DosumuandAigbavboa2019).102030EJAfricaNorthAfricaSouthAfricaSub-SaharanAfrica20202030202020302020203020202030HouseholdTraditionaluseofbiomassHouseholdmodernfuelsOtherproductiveusesIndustryMobilityFigure23.Africa’sfinalenergyconsumptionbysector2020-2030Source:IEA2022.Allrightsreserved.Adaptedfrom“AfricaEnergyOutlook2022”(IEA2022b).Notes:Otherproductiveusesincludeservicesandagriculture.Householdmodernfuelsincludefossilfuels,electricityandrenewables,suchastheuseofbiomassinmodernstoves.ThebuildingsandconstructionsectorinAfricaisworthUSD5.4billionandisexpectedtogrowatacompoundannualrateof6.4percentby2024(Cheongetal.2021).AcrossAfrica,large-scaleconstructionactivitiesdecreasedbyapproximately15percentbetween2019and2020,with50percentoftotalconstructionbyvalueoccurringinEgypt,NigeriaandSouthAfricaandonly2percentinCentralAfricancountries(Cheongetal.2021).TheclimatefinanceflowsintoAfricahaveincreasedby3percentagepoints,from23percent(between2010-2015)to26percent(2016-2019)toatotalinvestmentvalueofUSD73billion(ADB2022).Moreover,theeconomyisanticipatedtoexpand2.8percentin2022and2.7percentin2023,poweredbytheconstructionandservicesindustries(Nwamarahetal.2018a).Thereisnoone-size-fits-allanswerwhenaddressingthefuturebuildingdemandsinAfrica.Despitecommonpatternsandissues,meetingAfrica’sconstructionneedswillnecessitatecreativethinkingandscalablesolutionsconsideringthespecificitiesofeachcontext.Inanefforttobeproactive,table5belowsumsupthemainchallengesandopportunitiesfacingtheAfricanbuildingssector.TheAfricanbuildingssectorshouldbecontextualizedwithinthebroaderframeworkofsustainablecities.Integratingenvironmentalsustainabilityshouldextendtoincludeurbanfoodsystems,infrastructure,waste,waterandsanitation,andenergyefficiencytopavethewayforoverallsustainabilityonthecitylevel.622022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTIONBox8.Examplesoflow-carbonandtraditionalconstructionapproachesinAfricaThe10x10sandbaghousesinFreedomParkontheoutskirtsofCapeTown,SouthAfricaareacaseoflocalmaterialsandtechniquesbeingusedtobuildaffordablehousingunits(MMAArchitects2008).ThebudgetwasUSD4,300–8,600in2007(Fairs2008).Thesandusedinthebagswaslocallysourcedfromdunesnearthesiteandmostofthelabourwascarriedoutbythelocalsandfutureresidents(SouthAfricaToday2019).AnotherprojectthatdemonstratesthefusionbetweenlocalconstructionmaterialsandadaptabilitytothelocalclimateistheTayebatWorkersVillageinElBaharyaOasis,Egypt,builtin2015.Thevillageisdesignedtoprovidehousingfor350workersandisconstructedfromlocalmaterialsincludingsandstone(Cooke2016).VaultsanddomesareusedforroofconstructionandPVsolarpanelsareintegratedwithinthedesigntogenerateenergybutalsotoprovidesolarprotectionfortheroofs(Cooke2016).Despitefinancialandlandaccesschallenges,cooperativescanalsoplayaneffectiveroleinthedisseminationoflocalconstructionmaterials.EvidenceofthiscanbeseenintheRegionalUnionofConstructionandHousingCooperativesinThiès,Senegal,whichlaunchedaframeworkbywhichlocalscanconstructaffordablehousingunits(USD125-140/m2)in2015-2016(ProgrammeforEnergyEfficiencyinBuildings2021).Theunionfacilitatedandoversawthecompleteprojectprocess–frombuildingpermissionsanddesigntocompletionofconstruction–throughtheprovisionof25designoptionsandtrainedlocalcraftspeopleandsitesupervisors.Theunion’stwo-storeyheadquarterwasbuiltasaprototypeusingreinforcedconcreteforthestructure,compressedearthblocksmadefromlocallysourcedmaterialsforthewallsandfullypoweredbysolarenergy(ProgrammeforEnergyEfficiencyinBuildings2021).Photocredit:FreedomParksandbaghouses,CapeTown(SouthAfricaToday2019).SandbaghomesinMitchellsPlain,CapeTown(DopplerandMpahlwa2021).Photocredit:TheRegionalUnionofConstructionandHousingCooperativesHeadquartersinThiès,Senegal.632022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTIONChallenges•Lackofaccesstoenergysources.•Extremevulnerabilityofthebuiltenvironmenttonaturaldisasters.•Expectedexpansionintheinformalbuildingsector.•Increaseinfuturecoolingdemand,specificallyintheresidentialsector.•Lackofenforcedbuildingenergycodes(seesection4.2).•Limitedmortgagefinanceandhighinterestratesonmortgageswhenavailable,whichrangefrom3percentto32percent(CentreforAffordableHousingFinanceinAfrica2021).•Difficultyofmobilizingfundstowardsgreenbuildingsandconstruction.Opportunities•70percentoftheAfricanbuildingstockexpectedfor2040hasyettobebuilt(IEA2019).•Africa’syoungpopulationanddiversifyingeconomy.•Africaisrichinrenewableenergysources,withnearlyhalf(44.8percent)ofthetotalrenewableenergytechnologicalpotential(UlbrichandvanOostrom2021).•Overallenergydemandintheresidentialsectorcanbereducedbyone-quarterbyimplementingenergyefficiencymeasures(buildingenergyefficiencycodesandhigherminimumenergyperformancestandardsforappliancesandcoolingsystems)anddisplacingbiomassincooking.Thiswoulddecreasetheresidentialsector’ssharetoapproximately33percentoftotalenergyconsumptionin2040,assumingacceleratedindustrialization(IEA2021d).•CapitalizinganddevelopingAfrica’slocalconstructionmaterialsandtechniquescancontributetocreatingjobs,stimulatingeconomicgrowth,reducingnegativeimpactsonecosystems,fosteringculturalheritageandimprovinghousingconditions(IEA2019).•PassivedesignmeasuresareaneffectivestrategyinAfricaasallowingfornaturalventilationandreducingsolarheatgainscanreducetheairconditioningcoolingdemandby65-70percentinclimatessimilartocoastalSenegal(IEA2019).•Integratingrenewableenergyintobuildingdesigncansolveproblemsassociatedwithenergyaccessibilityandbiomassusewithoutrequiringcostlyinfrastructureinvestments(CentreforAffordableHousingFinanceinAfrica2021).•InvestmentinAfricaninfrastructureisaglobalpublicgoodinthecontextoftheworldwidesignificanceofAfrica’sdemographicevolutionanditsnecessaryproductivetransformation.Table5.ChallengesandopportunitiesforAfrica’sbuildingssector642022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTION6.2.DECARBONIZINGTHEAFRICANBUILDINGSANDCONSTRUCTIONSECTOROnthepolicylevel,manyAfricancountrieshavejoinedtheglobalefforttoreducegreenhousegasemissionsthroughNDCs.AllAfricancountriesexceptLibyahavesubmittedtheirfirstNDCs,and38countriesoutof54havesubmittedtheirupdatedNDCs.Manyoftheseaddressthebuildingssectorinavarietyoftopics,includingbuildingcodes,energy-efficientappliancesandlighting,integrationofrenewableenergy,andtheuseoflocalandtraditionalconstructionmaterialsandtechniques.Thisisastepintherightdirectionforthecontinent’sgreentransition.Table3identifiesNDCmeasuresrelatingtobuildingsinkeyAfricancountries.InadditiontotheNDCcommitments,buildingenergycodesareaneffectivemeasuretopromoteenergyefficiency.Worldwide,Sub-SaharanAfricaandSouthandCentralAmericahavethefewestmandatorycodes(section4.2,figure10).CountriesthathaveimplementedamandatorybuildingcodeincludeSouthAfrica,Ghana,Nigeria,TunisiaandMorocco,whileEgypthasavoluntarycode.AtleastsevenotherAfricancountriesareintheprocessofdevelopingbuildingcodes(seesection4.2).Buildinglabellingschemesarecomplementarytopoliciesandareaneffectivetooltoinformactorsintheconstructionsector,buyersandtenantsabouttheenergyperformanceofbuildingsandpromoteenergyefficiencyimprovements(IEA2021d).ActorsintheAfricanbuildingsandconstructionsectorhavesoughtaccreditationfromnon-Africanbuildingenergylabels.AccordingtotheUSGreenBuildingCouncil’sLEEDratingsysteminventoryfor2022,thenumberofLEED-certifiedbuildingsinAfricastandsatapproximately80(withatotalof286buildingscertifiedorregisteredforcertification);Egyptrankshighestwith22buildingsfollowedbySouthAfricawith18(Verdinez2022).Althoughvoluntarycertificationmighthaveitsadvantages,itcanseldombeascalableapproachwhereitisnotcontextsensitiveorreflectiveofnationalpoliciessuchasnationalenergycodesorland-usepolicies.Table6.SelectionofAfricanNDCsrelatedtobuildingsRegionCountryNDCdraftIssueAreaoffocusofNDCNorthAfricaEgypt2Promotingtheuseofrenewableenergyandenergyefficiencyinnewandexistingbuildingse.g.usingrooftopPV,solarwaterheaters,andexpandingtheuseofLEDlightinginresidentialsectorby2030.Expandingonspecificationsandenergyefficiencylabelsforappliances.Activatingtheenergyefficiencycodesfornewandexistingbuildings,embracingvoluntarygreenbuildingsguidelines,promotingcommunityparticipationonachievingsustainablestandards,andallocatingincentivestoencouragetheuseofsustainabletechnologieswiththeaimofachieving16,960greenstandardresidentialunitsby2030.Tunisia2Determiningthemostappropriateandpracticalenergytechnologiesforthebuildingssector,whichconsumed37percentofthetotalenergydemandandcontributed55percentoftotalgreenhousegasemissionsinTunisia.Includingrenewableenergyinbuildingsandmakinguseofavailablecarbonmarketmechanismstopromoteenergyefficiencyinthesector.Morocco2Reducingenergyconsumptioninbuildings,industryandtransportsectorby5percentin2020andby20percentin2030.Encouragingtheuseofgreenroofsandwalls.652022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTIONRegionCountryNDCdraftIssueAreaoffocusofNDCWestAfricaCapeVerde2Promotingenergy-efficientappliancesanddevelopingloansforcompaniesactiveintheenergyefficiency/renewableenergyfield(e.g.insulationmaterials,solarwaterheaters,energy-efficientappliances).Integratinglow-carbonspecificationsinbuildingcodese.g.passivedesigntechniques(naturalventilation,orientation,vegetation)andlocalconstruction/vernaculartechniquesandmaterials.Guinea-Bissau2Implementingenergyefficiencymeasuresinpublicandcommercialbuildings.Increasingthedistributionrateofprepaidmeterstoallowhouseholdstomonitorandoptimizeelectricityconsumption.Senegal1Promotingenergyefficiencythroughtheuseofenergy-efficientlampsandappliances.SouthernAfricaSouthAfrica2Includingclimate-change-consciousmeasuresinurbanplanningandbuildingdesignandincorporatingclimaterisksinbuildingstandards/codes.EastAfricaEthiopia2Promotingimprovementsintheenergyefficiencyofappliancesandbuildings.Mozambique2Promotingtheuseofenergy-efficienthouseholdappliances.Seychelles2Increasingenergyefficiencymeasuresinpubliclighting,appliancesandbuildings.Adoptingcontext-sensitivelow-carbonspecificationsandcriteriaintobuildingcodes,e.g.passive,low-techandvernacularconstructionmethods.Malawi2Reducingconsumptionofcharcoalthroughpromotionofefficientcharcoalstoves.Increasingdependenceonsustainablelocalmaterialsanddevelopinglocalconstructionmaterialsmarket.Promotingtheuseofearthstabilizedblocksinplaceofcementstabilizedblocksingovernmentalandresidentialbuildings.Encouraginglow-carboncementproductionprocesses.Updatingexistingbuildingstandardswithclimatechangeconsiderations.CentralAfricaCameroon2Promotingenergyefficiencyinbuildingsthroughtheuseofenergy-efficientlamps.Source:UNFCCC,NationallyDeterminedContributionsRegistry(UNFCCC2022b).Legend:AddressingrenewableenergyandenergyefficiencytechnologiesinbuildingsAddressingenergyefficiencyinhouseholdappliancesAddressingbuildingcodesandstandardsAddressingbuildingmaterialsandconstructiontechniques662022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTIONAsforAfricanlabellingschemes,theEgyptianHousingandBuildingNationalResearchCentre(HBRC)introducedtheGreenPyramidratingsystemin2009(Moussa2019),andtheGreenMarkratingsystemwasintroducedinKenyain2018,bothofwhicharevoluntary.Ontheotherhand,Tunisia’sbuildingenergylabellingsystemisabestpracticeexampleofintegration,asitwasdevelopedin2004alongsidethenationalbuildingenergycode(IEA2013).Bothbecamemandatoryforofficebuildingslargerthan500m2in2008,extendedtoincluderesidentialbuildings(excludingsingle-familydwellings)in2009(IEA2013).SouthAfrica’sGreenStarratingsystemhasalsoachievedsignificantsuccess.Afterbeingestablishedin2007,itreached200certificationsin2016(EpropertyNews2016)and140buildingswerecertifiedin2021(Magoum2021).OnehundredbuildingswithGreenStaraccreditationcansave170millionkilolitresofwaterand130millionkilowatthoursofelectricity(GreenBuildingCouncilSouthAfrica[GBCSA]2017).GreenStarhasalsoextendedtocertifybuildingsinotherAfricancountries:Botswana,Ghana,Kenya,Mauritius,Morocco,Namibia,Rwanda,Tanzania,Uganda(GBCSA2017).Asforhouseholdappliances,SouthAfrica’sstandardsarevoluntary,whileGhanahasachievedacompliancerateof97percentforrefrigeratorsandairconditioningunits(REN212022).Regardingrenewableenergyandenergyefficiency,manyregionalandnationaleffortshavebeenlaunchedinAfrica(InternationalRenewableEnergyAgency[IRENA]andAfricanDevelopmentBank[AfDB]2022).Onthebuildinglevel,thegovernmentofGhanaprovidesasubsidyforsolarwaterheaterinstallationsandSenegalpassedlegislationin2015requiringallnewbuildingstobeoutfittedwithsolarpanels(IRENAandAfDB2022).SolarphotovoltaicpanelshavealsobeeninstalledonmunicipalbuildingsinCapeTown,SouthAfrica:by2020,42megawattsofrooftopPVcellshadbeenapproved,withplanstoexpandintoresidentialandcommercialbuildings(IRENAandAfDB2022).6.3.THEROUTETONETZEROTHROUGHNATIONALINITIATIVESTheconstructionandbuildingssectorshaveacriticalroletoplayontheroadtodecarbonization.InSouthAfrica,thegovernmenthasmandatedthatallnewbuildingsbedesignedandconstructedtobenetzeroenergyby2030,similarlyinKenyaby2035andNigeriaby2050(IRENAandAfDB2022).SeveralAfricancountrieshavecommittedtoachievingnetzerocarbonemissionsby2050.Thisincludesreducingtheiremissionsasmuchaspossibleandoffsettinganyremainingemissionsthroughactivitiessuchasinvestinginrenewableenergy.ThelistofAfricancountriescommittedtoachievingnetzerocarbonemissionsby2050includesAlgeria,Egypt,Ethiopia,Kenya,Morocco,Nigeria,SouthAfrica,SudanandTunisia(IRENAandAfDB2022).Figure24.GreencertificationprojectsacrossAfrica(bluelabels)andinitiativesrelatingtoconstructionmaterials(orangelabels)Source:Themapidentifiesprojectsregisteredoraccreditedundernon-AfricanandAfricanenergylabels.Findoutmorehere:padlet.com.672022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTIONAmongtheAfricancountriesthathaveorareplanningroadmapstowardsdecarbonizationareSenegal,GhanaandSouthAfrica(AfricanDevelopmentBank2018).Senegalhaspromotedenergyefficiencyinthebuildingssectorthroughoptimizedthermalinsulation,LEDlighting,anenergyauditofexistingpublicandcommercialbuildingsandenergydemandstudiesforthenewlyconstructed.Ghanahastakenmeasurestocreateclimate-resilientinfrastructuretoadapttoclimatechange(Adsheadetal.2022).SouthAfricahassetmeasurestoupgradeexistinginfrastructureandreducetheenvironmentalimpactoftheresidentialbuildingstockbyenhancingthebuildings’energyperformance,encouragingtheuseofsolarthermalorheatpumpsfordomestichotwater,andfacilitatingcleancookingmethods.TheUnitedArabEmiratesMinistryofEnergyandInfrastructure,incoordinationwithGuidehouseandtheRegionalCenterforRenewableEnergyandEnergyEfficiency(RCREEE),isleadingthedevelopmentofbuildingdecarbonizationroadmapsforthe22countriesandterritoriesintheArabLeague.Basedonanassessmentofgeneralsocio-economicindicators,high-levelsustainabilityindicatorsandefficientbuildingsindicators,these22countries/territorieshavebeenclassifiedintothreegroups(early,mediumandadvanced).Asub-roadmapisdevelopedforeachgroup,allowingeachcountry/territorytobuilditsownnationalroadmap.Theseroadmaps,whichfollowtheGlobalABCroadmapmodel,willbelaunchedatCOP27(seesection9.7.1).TheforthcomingroadmapforbuildingsandconstructionforthecountriesandterritoriesintheArabLeaguewillbehighlyfocusedonactionstosupportbuildingdecarbonizationacrosstheregion(seesection9.6.3).Box9showcaseseffortstowardsnet-zeroconstructioninAfrica.Theexamplesrepresentdifferenturbanscalesanduses,andincludeexistingandnewlyconstructedbuildings.Photocredit:AdriaanVennerScheepers682022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTIONAssieGayeisanenergy-positiverefurbishmentofa264m2residentialareainDakar,Senegalcarriedoutbetween2009and2010(Couture2016).Theprojectwascarriedoutbylocalcraftspeopleandusedcompressedearthblocks,energy-efficientLEDlighting,a160-litresolarwaterheaterandrenewableenergy,whichincluded10solarpanels(capacity:1,300W)andasmall200Wwindturbine.Thehouseachievesanenergysavingofapproximately2,000kWhandan80percentreductioninCO2emissionswhencomparedwithsimilarhouses.SustainableEnergyAfrica’sofficebuildinginCapeTownisa700m2net-zero-energybuildingconstructedin2004.Thebuildingwasconstructedusinglocalstone,reconstitutedbricksandrecycledmetalandtimber.Itachievesanenergyconsumptionof30-50kWh/m2/year.Toachievenetzerocarbon,thebuildinguseson-siterenewableenergygeneration.Itwasinitiallyconstructedwitha2kWsolarPVsystem,whichwasupgradedto14kWby2018asthepriceofthesystembecamecheaper(WorldEconomicForum2022).TheFacultyofScienceattheUniversityofKisanganiisa2,700m2low-carbonbuildingdedicatedtohousingandeducationusesintheDemocraticRepublicoftheCongo.Thebuildingisconstructedusingearthenbricks(seeImage5)andappliespassivedesigntechniquesofnaturalventilationandsolarshadingtoreduceitscarbonfootprint(Gonzalez2018).Theprojectteamtookthetimetotrainunskilledlocalworkerstocarryouttheconstructionprocessefficiently(Gonzalez2018).OneAirportSquareinAccra,Ghanaisalargemulti-usebuildingconstructedbetween2010and2015.Itincludesretailuseonthegroundfloor,officespacedistributedthroughouttheupperfloorsandtwobasementlevelsforparking(Yemeli2021).Thebuilding’sconcretestructureandflooroverhangsprovideovershadowingtotheglazedIevels(seeaboveimage).Additionally,aninternalatriumwasintroducedtoenhanceventilationandincreasenaturallightinglevels.Thebuildingwasgranteda4-starratingbytheGreenStarratingsystemoftheSouthAfricaGreenBuildingCouncil(Yemeli2021).TheFacultyofScienceattheUniversityofKisanganiPhotocredit:CIFORPhoto/AxelFassio.Box9.Net-zeroconstructionmethodsinAfricaAssieGayesolarPVarrayPhotocredit:habiter-autrement.orgSolarPVsystemontheroofofSustainableEnergyAfricaofficebuildingPhotocredit:SustainableEnergyAfrica2018.692022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTIONISOCALMusesNapiergrass(Pennisetumpurpureumspecies,alsoknownaselephantgrass)tocreatethermalinsulationboardswhicharehand-manufacturedinGambia.TheprocessisCO2neutralfromgrowthtotransport,andreducesairpollutionbyavoidingburningofthegrass(Kelsch2018).SimilarlyinRwanda,Strawtecusesstrawandrecycledpapertomanufacturecompressedboardsforpartitioningwithlowembodiedenergyandcarbonemissions.TheBurkinabeAgencyforStandardization,MetrologyandQualityhasdevelopedeightcodestostandardizethetechnicalspecificationandmanufacturingprocessofcompressedearthblocks(Cheongetal.2021).EcoKilninMalawiisreducingemissionsthroughenergy-efficientkilnsthatuseindustrialwasteandachievesavingsof30-50percentonfuelcosts.EarthEnableinRwandaisadvocatingforahealthierindoorenvironmentbyreplacingdirtfloorswithwaterproofcompressedearthfloorsmadefromlocallysourcedlaterite,fineearthmixandsealedbyalayerofoil(EasyHousing2022).Finally,EasyHousinginUgandaissupportingcarbon-negativeconstructionmaterialsthroughitsaffordablehousingprototype(seeFigure26)builtinAruafromsustainablysourcedtimber(EasyHousing2022).Box10.Advancedconstructionpracticesandsustainableandzero-carbonmaterialsEasyHousingsustainablysourcedtimberconstructionPhotocredit:EasyHousing2022Alow-carbontransitionintheAfricanconstructionsectorfacesseveralchallenges,whichincludetheprovisionoffinance,promotinglow-carbontransitionpolicies,developinglabourskills,andsupportingresearch,developmentanddemonstration(Hogarthetal.2015).Box10providesseveralcasestudiesofentrepreneursattemptingtoproducegreenandlow-carbonmaterialsbasedonlocalmaterialsandtechniques.InterlockingcompressedearthblocksinconstructionPhotocredit:DSFAfrica(CleantechMalawi2022)ManufacturingprocessforstrawpanelsPhotocredit:StrawtecBuildingSolutions.702022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTION7.TOPICFOCUS:BUILDINGMATERIALSGlobally,approximately100billiontonnesofwasteiscausedbyconstruction,renovationanddemolition,withabout35percentsenttolandfills.Infast-growingdevelopingeconomies,constructionmaterialsaresettodominateresourceconsumption,withassociatedgreenhousegasemissionsexpectedtodoubleby2060.Embodiedcarboninbuildings–allemissionsassociatedwithmaterialsandconstructionprocesses–needtobetackledsoontoavoidunderminingthecarbonreductionsachievedfromenergy-savingmeasures.Photocredit:JohnMark712022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTIONMaterialsusedintheconstructionofbuildingsrepresentanestimated9percentofoverallenergy-relatedCO2emissions(seesection5).Materialefficiencystrategiescouldsignificantlyreducegreenhousegasemissionsintheconstructionmaterialcycle.However,therearestillconsiderablechallengesincomparingtheenvironmentalimpactsofmaterialsandsystems,thoughmeasurementandqualityofdataontheenvironmentalimpactsofconstructionmaterialscontinuetoimprove.Asakeysolution,thelongevityofbuildingsinfrastructureneedstobeincentivizedbyfinancialandlegislativemeans.Measuresshouldencouragelow-carbonadaptationandrefurbishmentthatextendsbuildinglifespanswithoutlockinginoperationalenergyinefficiencies.Builtenvironmentcarbonratingsystemsneedtoincludebetterrewardsfortheavoidanceofnewconstructionwherepossible,fortheshifttolow-carbonbiobasedsolutions,andfortheimprovementofproductionmethodsforconventionalmaterials.7.1.BUILDINGMATERIALSANDTHECLIMATE:STATUSANDSOLUTIONSAccordingtoa2019OECDreport,theglobalconsumptionofrawmaterialswillalmostdoubleby2060astheworldeconomygrowsandlivingstandardsrise,exacerbatingtheenvironmentaloverloadingweareexperiencingtoday(OECD2019).Thereportestimatesthatthebiggestincreaseinresourceconsumptionby2060willbeinminerals,includingconstructionmaterialsandmetals,particularlyinfast-growing,developingeconomies(OECD2019).Manycurrentconstructionmaterialsrelyonenergy-intensive,mineral-basedextractiveprocesseswhichcausedeleteriousenvironmentalimpactsacrossthemateriallifecycle,suchasbiodiversitylossandwaterscarcityaswellascontributingtobothembodiedandoperationalcarbonemissions.Additionally,attheend-of-usephaseofbuildingsystemsandinfrastructure,materialsareoftenwasted,exacerbatingtheenvironmentalimpactsassociatedwithcurrent‘take-make-waste’linearmaterialproductionpractices.Globally,approximately100billiontonnesofconstruction,renovationanddemolitionwasteisgeneratedannually.About35percentofthatwasteissenttolandfills(Chenetal.2022)whereasitcouldberecoveredandupcycled.Transitioningtoafutureoflow-carbonbuiltenvironmentsrequiresthedesignofmulti-beneficialmaterialstrategiesthattakeawholebuildinglifecycleandsystems-thinkingapproach.TheInternationalResourcePanelunderlinedthemassivegreenhousegasemissionsreductionpotentialfrommaterialefficiencystrategiesappliedinresidentialbuildings(Hertwichetal.2020).0102030405060Sand,gravelandcrushedrockConstructionmaterialsdominateresourceconsumptionConsumptioningigatonnesMetalsCoalLimestoneWoodCrudeoilCerealsFruits&vegetables20172060Figure25.Constructionmaterialsaresettodominateresourceconsumptioninfast-growingdevelopingeconomies,withbuildingmaterial-relatedemissionsprojectedtoincreaseby3.5to4.6GtCO2eq/yearby2060Source:OECD2019.Adaptedfrom‘GlobalMaterialResourcesOutlookto2060:EconomicDriversandEvironmentalConsequences’(OECD2019).722022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTIONInG7countries,materialefficiencystrategies,includingtheuseofrecycledmaterials,couldreducegreenhousegasemissionsinthematerialcycleofresidentialbuildingsby80–100percentin2050.Potentialreductionscouldamountto80–100percentinChinaand50–70percentinIndiaby2050.However,thereisagrowinggapbetweentheavailablesupplyanddemandforrecycledmaterials,especiallyforhigh-carbonmetalssuchassteel,whichisalreadybeingrecycledincertainmarketsatover90percent.Cumulativemeasuresmustthereforebetakenacrossthesector,withawhole-lifeandsystems-thinkingapproachtoenablemulti-stakeholderengagementandcross-industrycollaboration.Thesiloedapproachthatcurrentlypredominatesacrossthebuiltenvironmentprocesshampersthenecessarycollectiveactiontodecarbonizethesector.Thebuiltenvironmentprocessinvolvesenergy,materialandinformationflowsateachofitsphasesfrominitialextractionofmaterialtofinaldismantlinganddeconstruction.HOWTOREDUCEEMBODIEDANDOPERATIONALCARBONAVOIDSHIFTIMPROVEADAPTDESIGNBETTERBUILDWITHLESSUSEALTERNATIVEBUILDINGMATERIALSDECARBONISECONVENTIONALMATERIALSREDUCEOPERATIONALCARBON•Life-cycleanalysis•Localvaluechains•Durabilityandrecycling•Circularapproaches•Resource-efficiency•Developsupplychains•Mainstreamalternativematerialsinconventionalconstruction•Standardizeandcertifyproducts•Energy-efficiency•Processinnovation•ReduceCarbonisedenergy•Substitutewithmaterialsandnaturalfibers•Minimizeheatingandcoolingloadsbyusingnaturallyinsulatingpassivematerialsfrombio-basedfibersand/orclay•Incorporateon-siteenergycollectingandstoringmaterialsintobuildingenvelopes•DesignmaterialcomponentsfordisassemblyandreuseFigure26.Whole-lifeandsystems-thinkingapproachtoenablemultiplestakeholdersateachdecisionpointSource:AdaptedfromProgrammeforEnergyEfficiencyinBuildings2022.7.2.TOWARDSTHEADOPTIONOFAWHOLE-LIFE-CYCLEANDSYSTEMS-THINKINGAPPROACHDespiteitssubstantialcontributiontoglobalgreenhousegasemissions,embodiedcarbonhaspreviouslybeenunder-addressedinstrategiestoreducebuildingsemissions.Mostbuildingcodesandregulationsaddressoperationalcarbon,thatis,fromtheenergyrequiredtoheat,lightorcooltheindoorenvironment,butdonottypicallyrequireanaccountingofembodiedcarbon,whichreferstoemissionsfromtheextraction,manufacturing,construction,maintenanceanddisposalofmaterials.Asmunicipalgridsmovetowardselectrificationandbuildingoperationsbecomeevermoreefficient,therelativecontributionofembodiedcarboninmaterialsissettodramaticallyincrease(Architecture20302018).Embodiedemissionsinbuildingsneedtobetackledsoon,andrelatedactionsandtargetsshouldbeintroducedinNDCstoavoidunderminingthecarbonreductionsachievedfromenergy-savingmeasures.Globalindustryleadersareemergingwithpledges,internalbenchmarksandnovelmethodstoreducecarbonimpactsofconstructionmaterialsandmethods.Onthematerialsprocurementside,60oftheglobe’slargestarchitecture,engineeringandconstructionfirmsandorganizationssignedthe1.5ºCCOP26Communiqué,anopenlettertoworldgovernmentsdemonstratingtheircommitmenttoreachtheParisAgreementclimategoals.Onthesupplyside,oneexampleistheGlobalCementandConcreteAssociation(GCCA)whichdeclareditscommitmenttocutcarbonemissionsby25percentby2030andreachcarbonneutralityby2050.TheGCCA,madeupof80percentofcementandconcretemanufacturersoutsideChina,withsomeChinesemanufacturers,hasunveiledplansformeetingthegoals,includingalternativestoclinker,usingmorerenewableenergy,andfurtherdevelopingmethodsforat-plantcarboncaptureandsequestration.Majorcompaniesareincreasinglycommittingtonetzeroforscope1and2emissionsby2030(e.g.AIA2030),andothersarepledgingnetzeroembodiedcarbongoalsby2050(e.g.SE2050challenge.).732022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTIONEarliertheWorldGBClauncheditsNetZeroCarbonBuildingsCommitment,whiletheScienceBasedTargetsInitiativeisdevelopingasectoraldecarbonizationapproachforthebuildingssector,includingGHGbothoperationalandembeddedCO2emissions.However,firmercommitmentsandassociatedregulationneedtobemadeacrosstheglobalindustryandpolicyneedstomovetowardsmorepertinentstandardsandmetricsforactuallydecarbonizingbuildingmaterials.Strategiestosimultaneouslyaddressembodiedandoperationalcarboncanbeclusteredinthreecategories–“avoid”,“shift”and“improve”–allofwhichleadto“adaptability”.“Avoid”strategiesrangefrombuildingless,tocircularapproaches,requiringlessmaterialorusinglow-carbonmaterials,toimproveddesignsthathavealongerlifetimeandloweroperationalemissionsduringbuildinguse.Fortheselectionandimplementationofnewbuildingmaterials,innovatorsinthefieldareworkingontwomajorfrontsto(i)reducetheemissionsofconventionalbuildingmaterials,suchassteel-reinforcedconcrete,aluminium,plasticandglass(the“improve”strategy),and(ii)increasethemarketshareofalternativebuildingmaterials,suchaslocallow-carbonsolutionsandhybridandbiobasedmaterials(the“shift”strategy).Inthebelowfigure(27),assumingamedium-sizedofficebuilding,themajorityofembodiedcarbonisreleasedupfrontduringtheproductandconstructionstages,butselectionofmaterialsandsystemsisalsocriticaltowardscreatingahigh-performancebuildingwithlowoperationalcarbonovertime.Forexample,whendesigningmaterialsforbothnewandretrofitconstructionsites,swappingaconcrete-basedexteriorwallsystemwithabiobasedstructure(suchastimberorbamboo)couldgreatlyreducetheupfrontembodiedcarbon,aswellastheongoingemissionsfrommaintainingcoolingsystemsinatropicalclimate.7.3.CHALLENGE:PROCUREMENTANDIMPLEMENTATIONOFMATERIALS–FROMDATATOACTIONABLEKNOWLEDGETodecarbonizethebuildingmaterialssector,stakeholdersfromacrossthebuiltenvironmentprocessmusttakeresponsibilitytounderstandtheenvironmentalimpactoftheirdecisionsregardingmaterialselectionsacrossthelifecycle.Duetothecomplexityofsupplychainsforbuildingmaterialsandsystems,emergingcomputationaltoolsanddatavisualizationframeworksarekeytoenablingdecisionmakerstocomparetheprosandconsofdifferentmaterialsintermsoftheirembodied,operationalandend-of-lifeclimateimpact.Datamanagementandvisualizationtoolsarecriticallyimportantinengagingmultiplestakeholdersinthedecision-makingprocessandoffering“at-a-glance”scenariostosupportdecision-makinginrealtime.Althoughthetransparentmeasurementandqualityofdataontheenvironmentalimpactsofconstructionmaterialscontinuestoimprove,therearestillconsiderablechallengesincomparingtheenvironmentalimpactsofmaterialsandsystemsthroughtheuseofthird-partycertifications,suchasEnvironmentalProductDeclarations.Thesehavebeendevelopedasverifiablelifecycleassessment-basedreportingmechanisms,butarehamperedastoolsformakingprocurementdecisionsduetoissuesofvariabilityindataquality,methods,functionalequivalenciesandproductcategoryrules.Photocredit:AvelChuklanov742022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTIONThechallengeacrossallglobalsectors,frominformaltoformalconstruction,istogettherightdatatotherightstakeholdersattheconsequentialstagesofdecision-making(seeFigure28).Onlylimitedinformationflowsfromonelife-cyclestagetothenextoronlyapartoftheinformationgeneratedthroughoutthebuildinglifecycleisavailabletostakeholdersonthedemandside(buildingowners,tenants,investors,financinginstitutions,buyersoroperators).Noneoftheaboverepresentsentirelynewinsights.Theissueofdatacollectionandmanagementhasbeenatthecentreofdiscussionwithintheconstructionandrealestatemarketforyears.Theissueofharmonizationandstandardizationisandremainsoneofthemajortasksforthesectorandrelatedpolicymakinginthefuture.Potentialpracticalsolutionstoimprovedataaccessandinformationflowacrossthelifecycle,suchasbuildinglogbooksandmaterialpassports,willalsoneedtoberolledoutconsistentlyacrosstheglobe.7.4.AVOIDINGCARBONEMISSIONSBYBUILDINGBETTER,AND(WITH)LESSIncreasingthelongevityofexistingandnewbuildingstockandreusingexistingcomponentswheneverpossibleareurgentpriorities.Yetthelifespanofbuildingsandinfrastructureisnotsolelydeterminedbyphysicaldurability,butalsobysocial,culturalandeconomicfactors(Caoetal.2021).Materialsarefundamentalinestablishingtheperceptionofdurablevalueovertime,andtheimpactthatmaterialshaveonoccupants’emotionalandculturalconnectiontoaplacetranscendsmerefunctionaluse.Thisisacriticalaspectofsustainabilitythatistypicallyunderacknowledged.Currently,theaveragelifetimeofbuildingsofalltypesisapproximately78yearsintheUnitedStatesofAmerica(Mülleretal.2006;Kapuretal.2008),32yearsinChina(Hongetal.2016)and31yearsinIndia(Liuetal.2013;Pauliuketal.2013;Caoetal.2021).However,evenwiththecurrentmethodsinhigh-carbonmaterialssuchasreinforcedconcrete,thesenumberscouldbesignificantlyextended(Caoetal.2021).Onatechnicallevel,oneofthemostpromisingapproachestowardsextendingmateriallifespanisthecirculareconomy,whichprovidessignificantopportunitiestoreducethegreenhousegasemissionsassociatedwithconstructionmaterials.Acirculareconomyenvisionsafuturewherematerialwasteisdesignedoutofthebuiltenvironmentbykeepingconstructionmaterialsinuseandextendingthelifeofabuildingforaslongaspossible(Haasetal.2015).Inotherwords,thelongerabuildinganditselementslast,throughmaintenanceandupkeep,thelessembodiedcarbonisexpendedoverthelifeofthebuilding(HistoricBuildingMaterials,EmbodiedandOperationalCarbon+Annualemissions(KgCO2/m2/year)ProjectedImpactofEmbodiedCarbonrelativetoOperationalCarbon2020-2050EmbodiedCarbonScenario1:StandardPerformanceBuildingScenario2:High-performancebuildingUpfrontembodiedcarbon(product+construction)AnnualoperationalcarbonOperationalcarbondecreasesasgriddecarbonizesby2050Fig:AdaptedfromCarbonLeadershipForumSources:EmbodiedCarbonBencharkStudyandCBECSYearofbuildinglifeEmbodiedcarbonfromrenovation/maintainance(~15yrs)001002003002030205040012345678910111213141516171819202122232425262728293031AVOIDSHIFTFigure27.MaterialsselectionandimplementationaffectsthecarbonfootprintofabuildingoveritslifecycleSource:AdaptedbyauthorsfromCarbonLeadershipForum(2022)anddatafromEmbodiedCarbonBenchmarkStudyandCommercialBuildingsEnergyConsumptionSurvey(CBECS2022).752022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTIONEngland2019).Materialreuseandrecoveryoffersonepathtowardscircularproductionandconsumptionofbuildingmaterials,whileatthesametimeimprovingtheoperationalperformanceofbuildings(suchastheenvironmentalimpactofmaintainingheating,cooling,lighting,plugloads,etc.).PRODUCTIONEXTRACTIONTRANSPORTATIONMANUFACTURING+++AVOIDSHIFTIMPROVEADAPTWORKOFTHEGEO-BIOSPHEREFOSSILFUELSSOILSMANAGEMENTAGRICULTUREMANAGEMENTRAWMATERIALS▪Minerals(Metals,Ceramics)▪PolimersandFossil-Based▪NaturalMaterialsEARTH+ECO-SCIENCEPROFESSIONALSARCHITECTUREFIRMSCONSTRUCTIONFIRMS+CONTRACTORSBUILDINGOCCUPANTSWASTEMANAGEMENTSERVICESEXTRACTION,AGRICULTURE+FORESTRYINDUSTRIESENGINEERINGFIRMSDEVELOPERSCOMMUNITIESSECONDARYPRODUCTIONSPECIALISTSCONSTRUCTIONINITIATIONPLANNINGIMPLEMENTATIONPERFORMANCECLOSINGUSEMAINTENANCEREPAIRREFURBISHMENTREPLACEMENTWATERUSEENDOFXUSEREUSEREDESIGNRECYCLINGINCINERATIONLANDFILLTRANSITIONBUILDINGLIFECYCLE(LCAPHASES)STAKEHOLDERSRESEARCHPOLICYFINANCEFigure28.Fromdatatoactionableknowledge:HowtogettherightinformationtostakeholdersattherightphaseofthebuiltenvironmentprocessCredits:NaomiKeena,DanielRondinel,AlejandraAcevedo,SethEmbry,AnnaDysonThechoiceofconstructionmaterialsaffectseveryaspectofabuilding’scarbonfootprint.Theironandsteelindustryaloneaccountsfor7.2percentofglobalgreenhousegasemissions,ofwhich55percentgoesintothebuiltenvironmentsector,with33percentintobuildingsand22percentintoinfrastructure.Historically,theconcreteandcementsectorshavegrowntenfoldoverthepast65years,incomparisonwithathreefoldincreaseinsteelproductionandnearlystagnantgrowthinlow-carbontimberproductionpercapita(Monteiroetal.2017).Additionally,designfor“circular”materialrecyclingandreuseofconcreteandcementmaterialshaslaggedbehindothersectors,whilethesematerialshavedisproportionateimpactsonoperationalcarbonacrossmanyclimates.Reducingtheuseofhigh-volume,carbon-intensivematerialssuchasconcrete,steelandplastics,andreplacingthemwithlow-carbonandcircularalternatives,shouldbethemainapproach.Butalthoughfacilitatingashifttowardslow-carbonandbiobasedmaterialsiscritical,therapidincreaseinurbandensificationandinfrastructurewithintheglobalsouthmeansthathigh-carbonsectorssuchascement,concreteandsteelwillcontinuetosoar.ItisthereforeessentialthatincentivessupportfarmoreambitiouspathwaysformultiplestakeholderstomitigateCO2productionacrossthelifecycleofhigh-carbonsectors,withdifferentpriorityleversinvariousmarkets,particularlyamongthemajorproducerssuchasIndia,ChinaandtheUnitedStatesofAmerica.762022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTIONIncreasedfundingisurgentlyrequiredforpublic–privateresearchpartnershipstoacceleratedevelopment,demonstrationandcommercializationtoprioritizeimprovementsinthefollowingpathways:1.Chemicalcarbonreductionofconcreteandcementproductiontechniques;2.Carboncaptureandsequestrationatplantmanufacturing;3.CO2mineralizationtechniques;4.Design-for-disassemblyandreuseofcomponents;5.Novel(biobased)concretemixturestoreducebinderrequirements;6.Computer-assistedandadditivemanufacturingtoreducecarbonfromtransportandon-siteconstructionwaste.7.5.ADAPTANDSHIFTBYUSINGBIOBASEDPROCESSESTOREDUCECARBONEMISSIONSUsinglocal,low-embodied-carbonmaterialslikewood,bamboo,clay,stoneandfarmwastesuchasstrawcanhaveahugeimpactonreducingtheembodiedcarbonemissionsofconstruction.Localsourcingisimportant,becauseotherwisecarbonemissionsfromtransportationcansignificantlydriveuptheembodiedemissions.Biomaterialsderivedfromplants,includingwoodandagriculturalby-products,alsosequestercarbonoverthecourseoftheirlifetime,asthecarbonthatthelivingplantsabsorbedfromtheatmospherecontinuestobestoredinthebuilding,untilthematerialsbiodegradeorareburnedatend-of-life.7.6.REDUCINGTHECARBONEMISSIONSANDURBANHEATISLANDEFFECTOFCONCRETESURFACESTHROUGHBIOMATERIALS(GREENROOFS,FACADESANDWALLS)Globalcitiesareunderincreasingpressuretoreducetheirdisproportionateimpactonglobalgreenhousegasemissions.Thereareabundantopportunitiestotransformthenegativeeffectsofconcretesurfacesandtransitionurbanareasfromnetcarbonemittersintocarbonsinksthatabsorbgreenhousegasemissions.Themultiplepotentialbenefitsofbiomaterialsystems(greenroofs,livingfacades,indoorlivingwalls,etc.)havebeenrecognizedbynumerousmunicipalities(Liberalessoetal.2020).Thebenefitsarebothpublicandprivate,includingenergysavingsfromheating,coolingandventilationrequirements;improvementsinairandwaterquality;reductionsinurbanheatislandeffects;andstormwaterreduction(KosareoandRies2007;Shafiqueetal.2018;KoroxenidisandTheodosiou2021;Mansoetal.2021).OnestudyestimatedthecarbonsequestrationpotentialofcoveringallexposedconcreteroofareaswithinthecityofDetroit,USAwithinexpensivelightweightgreenroofsasbeingequivalenttotheremovalof10,000SUVsfromtheroad(Getteretal.2009).Photocredit:MarkusWinkle772022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTIONThefigureaboveshowsanassessmentofbiomassmaterialsystems(greenroofs,livingfacadesandindoorlivingwalls).Thepotentialforaddedupfrontembodiedcarboncostsofadditionalassembliesandstructuresmustbeweighedagainstthepotentialopportunitiesforoperationalcarbonsavingsfromreducedbuildingcoolingand/orheatingloads,reducedurbanheatislandeffects,improvedairqualityandbiodiversityatboththebuildingandtheurbanscale.However,tofurtherquantifyandqualifythesebenefitstowardsenablingwidespreadadoption,holisticassessmentsofthecarbonimpactsoflivingmaterialsacrossthelifecycleareneeded.Whilehighlydependentonclimatetype,systemdesignandcomparativebuildinginsulationrequirements(Susca2019;Bevilacqua2021),livingwallsystemshavebeenshowntoreduceenergyforcoolingbyasmuchas58.9percentcomparedtoexposedconcretewallsystems,particularlyinareasofhighsolarirradiance(Comaetal.2017).Thetypeofsystemandthediversityofplantspeciesalsosignificantlyaffectcarbonsequestrationpotential;somesystemspaybacktheembodiedcarbonwithinonlythreeyearsafterwhichtheybecomeacarbonsink.(Whittinghilletal.2014).Building-integratedgreeninfrastructuremayrequireadditionalstructures,sotherearepotentialtrade-offswiththeembodiedenergythesecontain.However,theaddedbiomaterialsshowpotentialtooffsettheoperationalcarbonemissionsfromincreasedbuildingcoolingloadsandurbanheatislandeffectscausedbyexposedconcretematerials,withaddedbenefitsforhumanhealthandwell-beingandbiodiversity.Althoughtheenergyandcostpaybackperiodsarerelativelymodestformostclimatetypes,farmorepolicysupportandencouragementisneededintheformofincentivesandmunicipalbuildingcodestoovercometheaddedinitialcostsandconcernsregardingongoingmaintenancecosts.USEOFRECYCLEDORBIPRODUCTMATERIALSINASSEMBLYDESIGNUSEOFCARBONSEQUESTERINGMATERIALSINASSEMBLYCOSTSOFMAINTENANCECOSTSOFWATERANDFERTILIZERREDUCTIONINHEATINGANDCOOLINGLOADSREDUCTIONINENERGYOFVENTILATIONREDUCTIONINURBANHEATISLANDREDUCTIONINSTORMWATERINFRASTRUCTUREONGOINGCARBONSEQUESTRATIONFROMLIVINGSYSTEMCARBONOFFSETSFROMURBANAGRICULTUREEXTENDEDLIFEOFWALL/ROOFMATERIALSADDITIONALSUBSTRATEANDMATERIALSADDITIONALSTRUCTURETOCARRYWEIGHTOFSOILANDWATEREMISSIONSFROMLAMDFILL/INCINERATIONEMBODIEDCARBONOPERATIONALCARBONFigure29.GreeninfrastructureandbiomaterialsystemsSource:CiardulloandDyson,YaleCenterforEcosystemsandArchitecture2022.782022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTION7.7.SUMMARYOFINDUSTRYTRENDSANDIMPEDIMENTSTOGLOBALDECARBONIZATIONOFBUILDINGMATERIALSEmbodiedcarbonlabelling:Thereisincreasingsupportfortheestablishmentofaninternationalstandardscommitteeforembodiedcarbonlabellingofbuildingmaterialstoaddressthewidediscrepanciesinmethodsandquality.However,forcertificationtosupportatransitiontolow-carbonmaterials,moredevelopmentisrequiredformethodsthataddressthe“carbonloophole”,sothattheconsumersandspecifiersofmaterialsincountrieswithstrictpollutioncontrolsshareaccountabilitywithproducersfromregionswithlaxcontrols.ExamplesincludeEnvironmentalProductDeclarationsandProductEnvironmentalFootprint.CO2footprintassessmentscanbedividedintotwocategories:(i)expertassessments,whichmayincludesophisticatedsimulations,andwhichtendtobetime-consumingandexpensive,and(ii)assessmentsconductedwitheasy-to-usetoolsthatprovideusefulfeedbackfortypicaldevelopments.Bothareneeded.Expertassessmentscontinuetoaddtothebodyknowledgeonthecomplexitiesofmaterialsimpactsongreenhousegasemissions,ecosystemsandenergyflows.Expertassessmentsalsofacilitatethedevelopmentofeasy-to-usetools.Easy-to-usetools,ontheotherhand,canprovidetheopportunityformultiplestakeholdersacrossthespectrumtoapplyandtrackgreenhousegasassessmentsofmaterialschoices.Easilyaccessibletoolshavethepotentialtotransformtheindustry,buttheyareintheirinfancy,andshouldonlybeexpectedtoprovideroughframeworks,nothigh-fidelityanalyses.Accountingtoolsarebeingdevelopedtobetterrepresentthepotentialwhole-life-cyclecarbonimpactsofbothtraditionalconstructionmaterialsandprefabricatedassemblies.Thesearecriticalcomparisons,inwhichcompaniescancapturethebenefitsofdigitizedproductionmethods,fromefficienciesinmaterialsandstructures,toreductionsinon-siteemissionsandtheimprovedabilitywithinfactoriestodesignfordisassemblyandcircularreuse.However,anticipatingtheimpactofmaterialsonabuilding’soperationalperformanceiscomplexandneedstotakeintoaccountanarrayoffactorsthatincludelocalbioclimate,buildingtypologies,systemsintegration,andhumanbehaviourandpatternsofoccupation,allofwhichcancausegreatvariabilityintheoperatingperformanceofabuildingmaterialanditssystem.ExamplesofCO2footprintandlife-cycleassessmenttoolsincludeEC3CarbonCalculator,WoodWorksCarbonCalculator,AthenaImpactEstimatorforBuildings,OpenLCA,GLAD.Shiftfromprescriptivetoperformance-basedbuildingcodes:Emergingeconomieswithoutmandatoryorvoluntarybuildingenergycodeshaveatremendousopportunitytoleapfrogprescriptivebuildingcodes.Thefirstwaveofenvironmentalbuildingstandardswerelargelybasedonbestpracticecasestudies.However,withtheemergenceoflow-costtrackingandaccesstouse-sidemetricssuchasenergyandwaterconsumption,performance-basedbuildingcodeshaveagreaterchancetoconnecttoarangeofstakeholders,fromglobalcompaniestoowner-buildersininformalsettings.ExampletoolsincludeEnergyPlus,ZeroTool,BuildingEnergyModelling,PVCalculator,DSIREEfficiency/EnergyIncentivesDatabase22Low-carbonpublicprocurementpractices:Policyandaggressivetargetsfrommunicipalandnationalgovernmentsareestablishingleadingindustryprecedentsforintegrateddecarbonizationacrossmultiplescalesofinfrastructureandbuildings.Publicprocurementexpenditure,orthepurchaseofmaterials,productsandservicesbygovernments,comprisesupto13percentofGDPinOECDcountries,withanevenhighershareamongemerginganddevelopingeconomies(Baron2016).TheimpactofpublicprocurementingeneratingmoresustainablegrowthisoutlinedintheSustainableDevelopmentGoals(SDG12.7).However,policygoalsfordecarbonizationmustbeformallylinkedtothepurchasingofmaterials,withadditionalbudgetsintheplanningphasesforrigorouswholelife-cycleassessmentsforpublicprojectsinordertoimprovethequalityandquantityofdataontheimpactofmaterialchoices.Requirementsforwholelife-cycleassessmentscanalsospurthedevelopmentofeffectivesolutionsacrossspecificlocalclimatetypesandbuildingtraditionswherethevastmajorityofbuildersandpropertyownershaveneitherthemeansnortheinclinationtoconductsuchanalyses.1.2.3.4.22OCDE(2019),GlobalMaterialResourcesOutlookto2060:EconomicDriversandEnvironmentalConsequences,OCDEEditions,Paris.792022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTIONDesigningforcircularityisgainingtractionacrosseducationandpractice.However,farmoreinvestmentisrequiredforresearchanddevelopmentandequipmenttorecoverandprocessconstruction,renovationanddemolitionwaste,particularlyforcement-basedmaterials.Forexample,design-for-disassemblyandmodularconstructioncanenhancelongevity,whileenablingdismantlingattheendoflifetoretainthebuildingelements’valueandpotentialforreuse(KeenaandDyson2017).Coupledwiththis,digitalizationintheconstructionprocessenablesmoreprefabricationandmodularconstruction,whichhasbeenshowntoreducematerialwasteby23-100percent(Jaillonetal.2009;LuandYuan2013;Chenetal.2022).Additionally,eveninindustrieswithveryhighreuseofsecondarymaterials,avoidanceshouldbetheprimarystrategy:intheironandsteelsector,forexample,wherematerialreuseisover90percent,thereisagrowinggapbetweenincreasingdemandandthescarcityofsecondary(scrapsteel)supplies.Coordinationacrosstheconstruction,forestryandagriculturesectors:Modelsareemergingforenhancedcooperationaroundlandusethroughthedevelopmentofsupplychainsandbuildingproductsfromearth-basedmaterials,forestryandagriculturalby-products(seeGhanaandSenegalcasestudies).Thiscandramaticallyreducecarbonemissionsfromforestfiresandcropburning.Decarbonizationofthecementsectorandothermajoremittersisbeingenhancedthroughreplacingtraditionalmethodswithhybridbiomaterialsandotherlow-carbonalternatives.However,theseemergingmethodsarenotyetcostcompetitive,andtherearewidespreadbiasesthatprotectentrenchedmethods.Substantialresearchanddevelopmentinvestmentalongsideincentivesand/orenforceablebuildingcodesareneededtoscaleuptheseapproaches.Economicsofcarbonoffsets:Demandforcarbonoffsetswillincreaseasnet-zerodeadlinesapproach.Thereisariskthatanescalatingcarbonoffseteconomymayhampertheactualdecarbonizationofbuildingmaterialsandtheirproductionprocesses,asindustriesmarket“net-zero”productsbasedoncarbonoffsetsofvaryingquality.Thistrendrequiresmoreseriousregulationinthecertificationofdecarbonizationoftheactualprocessesofmaterialproduction.6.7.8.5.802022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTION7.8.CASESTUDY:SHIFT–LOW-CARBONBUILDINGALTERNATIVESINWESTAFRICAThereisrecognitionintheSub-SaharanAfricanregionthatusinglocallysourced,low-carbonmaterialsintheprivatesectorhasanessentialroleinscalingbuildingdecarbonizationefforts.However,innationalbuildingcodesandgreencertificationprogrammes,thenarrowfocusonenergyefficiencydoesnotdirectlyaddresstheneedtoreducedependencyonimported,high-carbonbuildingmaterials.ThebuildingmaterialssectorinWestAfricaiscurrentlyfollowinganentrenchedhigh-carbondevelopmentpathway.Thereisahighdependenceonimportedmaterials(80percentinGhana)andanincreasingdependenceonfossil-fuel-basedelectricityforproduction,atroughly86percentinSenegaland66percentinGhana(Ritchieetal.2020).In2019,cementalonecontributedto10percentofGhana’sand17percentofSenegal’stotalcarbondioxideemissions(AndrewandPeters2021;Friedlingsteinetal.2022).Theuseofcementinexternalenvelopeconstructionhasrisenfrom39percentto64percentinGhana(GhanaStatisticalService2021)andcloseto70percentinSenegal(ARSO2018).Theuptakeofcementhasbeenevenmorerapidinurbancontexts,reaching82percentinurbanGhanaand86percentinurbanSenegal.01m2m3m4m5m6mCementSandandGravelStoneLimeIronandsteelCopperAluminumLumbersawnwoodBoardandplywoodtonnageofbuildingmaterial(millions)LimeCementSandandGravelStoneIronandsteelCopperAluminumLumbersawnwoodBoardandplywoodCementExports(ton)GHANA0.55tCO2/capitaSENEGAL0.69tCO2/capitacementcementImports(ton)Figure30.AnnualbuildingmaterialstradeforGhana(2020)andSenegal(2019)andcorrespondingCO2emissionsfromcementbuildingmaterialproduction,basedondatafromChathamHouse(2021)andGlobalCarbonAtlas2019Source:Lokko,WillowTechnologies2022.812022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTIONRecentpoliciesaddressingdecarbonizationthroughlocalbuildingcodeshavelargelyconcentratedonimprovedenergyefficienciesofmechanicalsystemsandappliances,payinglessattentiontotheperformanceoflocallysourced,low-carbonbuildingmaterials.BuildingonlongstandingtraditionsofearthconstructionacrossAfrica,akeyopportunityfordecarbonizationinnationalandregionalbuildingsectorsisthroughthescale-upofcompressedstabilizedearthblocksmadefrompredominantlylocalmaterials.In2018,theAfricanStandardforcompressedstabilizedearthblockswasratifiedtoaddressthequality,productionandperformanceofearth-basedblocksforgeneralbuildingconstruction(ARSO2018).ThereisgrowinginterestfromprivatecommercialandresidentialdeveloperstoachievegreencertificationinAfricancities.Since2017,asmallportfolioofbuildingsinGhanahasachievedEDGE(ExcellenceinDesignforGreaterEfficiencies)certification.AninitiativeoftheInternationalFinanceCorporation(IFC),theEDGEprogrammeisgearedtowardscarbonfootprintreductionthroughreducingembodiedenergyinmaterialsalongsideenergyandwaterefficiency(Ampratwumetal.2021;EdgeBuildings2022).In2021,ReallandtheAfrehGroupreceivedEDGEcertificationforadevelopmentof100affordablehousingunitsinnorthernGhana,demonstratinga50percentreductioninembodiedenergyfromtheuseofcompressedearthblocks(Agboklu2022).Larger-scaleprojectsintheregionhavebeencriticalforsupportingbiobasedmaterialcommercialization.InDiamniadio,theSenegalMinistryoftheEnvironmentcompletedatechnology-transferdemonstration“ecopavilion”in2019,showcasingtheuseofadobeandnaturalfibreproductsmadefromtypha,alocalaquaticweed(Dieyeetal.2017;Niangetal.2017).Architecturalapproachesusinglocallyadaptedmaterialsanddesignsthatfurthersustainability,valorisetraditionalapproachesandsupportlocalsupplychainsandcommunities’arereceivingincreasedrecognition,withe.g.ArchitectFrancisKerefromBurkinaFasoreceivingthe2022PritzkerPrizeasthefirstArchitectfromtheAfricancontinent.7.9.CASESTUDY:ADAPT–CARBONFOOTPRINTOFBUILDINGMATERIALSANDHOUSINGTYPOLOGIESINRAPIDLYDEVELOPINGURBANINDIATransitioningtoalow-carbonhousingsectorinIndiarequiresacomprehensiveanalysisoftheimpactofmaterialchoicesonbothembodiedandoperationalcarbonwithindifferentinformalandformalhousingtypes.IndiahaspledgedtoreduceitsemissionsintensityrelativetoGDPto33-35percentbelow2005levelsby2030(Rahimanetal.2019).Whilevariousgoalshavebeendefinedforthepowersector,othersectorssuchasthebuiltenvironmentlackdetailedplanstoreduceemissions.Againstthebackgroundofburgeoningdemand,theresidentialsectorisemergingasapromisingplacetotargetemissionsreductionswithatransitiontowardssustainablematerialchoices.Theurbanpopulationisexpectedtorisetowellabove55percentin2030,andIndia’surbancentresareonapathtobecomingsignificantlymoreenergyintensive.Withplanstobuild“smart”citiesinthefuturetoaccommodatethisgrowingurbanpopulation,coordinatedmaterialandenergypracticesareurgentlyneeded(Rahimanetal.2019).Althoughtheconstructionphasecurrentlyaccountsfor20-30percentofthetotallifecycleenergyofatypicalbuildinginIndia,itisarguablythemostinfluentialphase,asdecisionsmadeintheearlystagesofaprojectimpactallthesubsequentphasesandtheirenergydemand.Intheglobalsouth,mostcountrieshavehighcoolingneeds,andIndiaisoneofthemostvulnerabletoglobalwarming,withthetransitionfromtraditionaltomodernmaterialsexacerbatingthisvulnerability(Mastruccietal.2019).Ecopavilion2019,Diamniadio.MinistryoftheEnvironmentofSenegalbyCraTerre,ElementerreandWorofilaPhotocredit:Worofila.822022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTIONTheimpactofmaterialchoicesonbothembodiedcarbonandcoolingrequirementsisakeyingredienttoreducethecarbonfootprintofIndia.Itisnecessarytoassesstherangeofvernacularandemergingtechnicalmaterials,whileconsideringtherangeofhousingtypologies.Use-phaseenergyhasbeenwellresearchedwithspecificfocusoncooling(Rathoreetal.2022).However,thesestudiesprimarilyfocusonurbanformalhousing,withlittleconsiderationofothertypologiesthatrelyonthepassiveperformanceofmaterialsandlayouts.Currently,operationalcoolingformsonlyasmallpart(~3–10percent)ofthetotalresidentialenergyconsumptioninIndia(Chunekaretal.2016)duetothelowpenetrationratesofairconditioninginIndia.However,themarketpressuresformechanicalcoolingdevicesisprojectedtogrowdramatically(IEA2017),stressingtheneedforgoodmaterialchoicesanddesign(Mastruccietal.2019).Thusfar,effortshavebeenhamperedbyalackofdata(Vermaetal.2012).Amappingofthebuildingstockwillhelptocreatefutureprojectionsforenergyexpendituresandunderstandthefutureflowofmaterialsintotheresidentialbuildingsector.7.10.CASESTUDY:SHIFTNEIGHBOURHOOD-LEVELLIFE-CYCLECARBONFOOTPRINTINFINLANDFuturedevelopmentoflow-carbonbuildingsandcitieswillrequiredatavisualizationtoolsthatgivedecisionmakersan“at-a-glance”holisticunderstandingofalltheenvironmentalimpactsofmaterialsandsystemschoicesforbothnewconstructionandrenovationofbuildingsandinfrastructure.Whilebuilding-levelcarbonfootprintassessmentsarebecomingincreasinglyavailableinmanypartsoftheEU,neighbourhood-levelassessmentsarestillrare–eventhoughthisisacriticalscaleformunicipalitiesandcountriestoplanandimplementthelow-carboncitiesofthefuture.AFinnishprojecthascreatedandcontinuestodevelopatoolthataimstobringneighbourhood-levelassessmentstothemainstream.Thiscouldsubstantiallybolstereffortstolayoutlow-carboninfrastructurethatoptimizesresourceefficiency(avoid),alternativematerials(shift)andtheuseofconventionalmaterials(improve)acrossthelifecycle.Althoughthequantity,qualityandaccessibilityofdatarelatingtothelifecycleofthebuiltenvironmentprocessisextremelyvariableacrossregions,Finlandwillrequiremandatorylife-cyclecarbonfootprintassessmentsfornewbuildingsandmajorrenovationsby2025.ThecityofHelsinkiistestingnewtoolstoassessthelife-cycleimpactsofurbandevelopment.Thesewillincludeemissionsrelatedtositepreparation(e.g.earthmovingandsoilstabilization),infrastructureconstructionandmaintenance,traffic,andsoilandvegetationcarbonsinks.Thiswillenableinformationwhichisoftencompletelyignoredtobeincludedinroutinecalculationsofaholisticcarbonfootprintassessment.Thisdevelopmenttacklesthemainbarriersforassessingneighbourhood-levelplans,whichincludealackofcoordination,expertiseandtime.Theneighbourhood-levelcarbonfootprintassessmenttoolinuseinHelsinkiiscurrentlybeingdevelopedintoanassessmentmethodsuitableforallpartsofFinlandandcaneventuallybeadoptedaroundtheworldindifferentclimates.Buildingtypesandurbanclustersofinformal,semi-formalandformalbuildingsinIndiaPhotocredit:Ayer,AishwaryaV.2022832022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTION8.ROADMAPSFORBUILDINGSANDCONSTRUCTIONAgrowingnumberofcountriesandregionsareusingtheGlobalABCbuildingdecarbonizationroadmapsprocessorcategoriesforchartingthepathtoasustainablebuildingsandconstructionsector.Atleasteightroadmapshavealreadybeenpublishedandthereareplansformanymore.TheseincludetheGlobalABCandIEA’sjointlypublishedGlobal,Asia,AfricaandLatinAmericaroadmaps,alongwithpublishedroadmapsfortheASEANregionandemergingroadmapsformorethan30countries.Photocredit:KyleGlenn842022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTION8.1.GLOBALABCSUPPORTANDCOORDINATIONONROADMAPSTheGlobalABCprovidessupportthroughtheRoadmapCoordinationHub,whichisagroupofcountryandnon-statestakeholdersworkingtogethertobuildsynergiesbetweeninitiativesandextendthelifespanoftheroadmapswellbeyondtheprojectsthroughlocalengagementandimplementation.Throughexpertisesharingandthepoolingofdata,theseorganizationsareworkingtogethertolaythefoundationsfor2050sectoralvisionsandtobridgeroadmapstohigher-levelpoliticalprocesseslikeNDCsandtheMarrakechPartnershipforGlobalClimateActionPathways.8.2.ASEANROADMAPFORENERGY-EFFICIENTBUILDINGSANDCONSTRUCTIONIntheAssociationofSoutheastAsianNations(ASEAN),buildingsaccountforclosetoaquarteroftotalfinalenergyconsumptionandenergy-relatedCO2emissions.Withcontinuedeconomicdevelopment,urbanizationandpopulationgrowthacrosstheregion,IEAanalysisshowsthatbothfinalenergyconsumptionandCO2emissionsinbuildingswillcontinuetogrowwithoutambitiouspolicyactions.Improvingtheenergyefficiencyofbuildingenvelopesandsystems,increasingrenewableenergyutilization,phasingouttheuseoftraditionalbiomassandswitchingtocleancookingandelectricity,whileenhancingenergyaccessforvulnerablehouseholdsacrosstheregion,canresultinmorethana60percentreductioninCO2emissionsfrombuildingsby2040inrelationto2020,andprovidemanyotherbenefitstohouseholds,societyandgovernments.TheRoadmapforEnergy-EfficientBuildingsandConstructionintheAssociationofSoutheastAsianNations(ASEAN)(IEA2022e)focusesonthepolicytoolsavailableforASEANMemberStatestodriveenergyefficiencyimprovementsinthebuildingssectortohelpmeetgrowingneedsforresidentialandnon-residentialfloorspaceandenergyservices,whilelimitingthegrowthinenergydemandandrelatedemissions.Itidentifieskeyenergy-efficientandlow-carbonactionsandactivitiesthatgovernmentscouldconsiderforimplementationby2025,2030andbeyond,movingtowardsnetzero-carbonbuildings.8.3.DANISHNATIONALSTRATEGYFORSUSTAINABLECONSTRUCTIONIn2019theDanishgovernmentandmostofthepoliticalpartiesdecidedanambitiousplantoreduceCO2emissionsby70percentby2030,equalto28.7megatonnesofCO2/year.Atthesametimethegovernmentasked14sectorstosetupclimatepartnershipstoidentifyhowtheirsectorcouldcontributetothereductions.Theclimatepartnershipforthebuildingsandconstructionssectoridentifiedmorethan60areaswithpotentialreductionsandsuggestedsolutionsthatcouldreduceCO2emissionsby5.6megatonnesperyearin2030orcloseto20percentoftheoverallambitioninDenmark(Denmark,MinistryofInteriorandHousing2021).Akeyelementofthestrategyistouselife-cycleassessmentsrequirementwithaviewtointroducingtheseintothenationalbuildingcodeasarequirementforallbuildingsby1January2023.Inaddition,thestrategyintroducesathresholdof12kgCO2/m2/yearfornewbuildingsofmorethan1,000m2by1January2023–effectivelysettingamaximumlimitforCO2emissionsfromnewbuildings.Suchrequirementshelptoreducetheclimatefootprintofconstructionandsupporttheindustryanddevelopersintheiraimtobuildmoresustainablyandpromoteclimate-friendlyconstructionsolutions.Theindustrysupportstheimplementation.ThelevelformaximumCO2emissionsinthebuildingregulationwilldecreasegradually.In2025athresholdof10.5kgCO2/m2/yearwillbeintroducedforallnewconstruction,nomatterthesize.Thelevelwillbefollowedbyfurtherstrengtheningin2027and2029,bringingtheleveldownto7kgCO2/m2/yearby2029.Thephasinginoflife-cycleassessmentrequirementsandthresholdsisexpectedtomotivatetheconstructionsectortoreduceCO2emissionsfromconstructiondramaticallyandtocreatehugeinnovationduringthedecade.8.4.COLOMBIANETZEROCARBONBUILDINGROADMAPColombia’sNationalRoadmapforNetZeroCarbonBuilding(Colombia,MinistryofEnvironmentandSustainableDevelopmentetal.2022)establishesareferenceframeworkbythenationalgovernment,throughtheMinistryofEnvironmentandSustainableDevelopment,tosupportthebuildingssector’scontributiontoachievingthetargetofcarbonneutralityby2050.Theroadmapestablishesshort-,medium-andlong-termactionsacrosstheconstructionsector,includingurbanplanning,materials,transportand852022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTIONdistribution,designandlabelling,andtheirinclusioninthecirculareconomy.TheroadmapcomplementsColombia’sNDC,whichsetsagoalof51percentreductioningreenhousegasemissionsby2030andwhichincludesdifferentmeasuresaimedatsustainableconstruction.Theroadmapsetsoutagradualimplementationfornewandexistingbuildings.By2030,newbuildingsandlargebuildingrenovationsaretoachievea40percentreductioninoperationalcarbonand30percentreductioninembeddedcarbon.By2040,80percentofnewbuildingsandmajorrenovationsinurbanareasaretobenetzerooperationalcarbonandachievea70percentreductioninembeddedcarbon.Andby2050100percentofnewbuildingsandmajorrenovationsaretobenetzeroattheoperationalandembeddedcarbonlevel.Forexistingbuildings,theroadmapsetsouttargetsforaminimumreductionof30percentofoperationalcarbonby2030,70percentby2040and100percentby2050.Theroadmapdefinesanetzerocarbonbuildingasabuildingthatisenergyefficientandincludesrenewableenergy,andwhichtakesintoaccounttheinteractionofthebuildingwiththeenvironmentandthusgenerateswell-beingforpeople.Itmustincludetheparametersofitslifecycleanditsmaterialstoensurelowimpactsinitsconstructionaswellasitsoperation.Amonitoringprocessisincorporatedtoevaluatehowtheemissionsreductionisbeingachieved.Theroadmapalsoplanstoraiseawareness,educationandcapacityforitsimplementation,notonlyintheconstructionsectorbutthroughoutallthecomponentsandinstitutionsinthevaluechain.8.5.ROADMAPFORANENERGYEFFICIENT,LOW-CARBONBUILDINGSANDCONSTRUCTIONSECTORININDONESIATheRoadmapforanEnergyEfficient,Low-CarbonBuildingsandConstructionSectorinIndonesia(Svendsen2022)wasdevelopedbytheDanishEnergyAgencyinclosecooperationwiththeIndonesianMinistryofEnergyandMineralResourcesandthereportauthorsfrombothDenmarkandIndonesia.TheIndonesiabuildingsroadmap“providesorientationandguidancetopublicandprivatekeystakeholdersintheIndonesianbuildingsandconstructionsectoraswellasnon-governmentalorganizationsandcivilsocietytoleadthetransitiontowardstrategicimplementationoflowgreenhousegasemission,energyefficientandenvironmentallyfriendlybuildingsandconstructioninIndonesia.”Theroadmapcovereightthemes:planning,newbuildings,buildingretrofits,buildingoperations,buildingsystems,materials,buildingresilienceandrenewableenergy.Itsetstargetsforachievingnetzeroenergyby2050,andbythatdateforallnewbuildingstobeconstructedtoanearlyzero-energybuildingstandardandexistingbuildingstoachieveanearlyzero-energybuildingoperationalstandard.8.6.EUPOLICYWHOLELIFECARBONROADMAPFORBUILDINGSInMay2022,theWorldGreenBuildingCouncillaunchedtheEUPolicyWholeLifeCarbonRoadmapforbuildings(Nugentetal.2022).TheroadmapaimstocatalysetransformationinthebuildingssectorintheEUinthreeareas:well-beingandhealth,climatechange,andresourcesandcircularity.Itsetsoutatimelineofrecommendations,withthegreatestnumberofactionstooccurbefore2030.Fourmainthematicareasarefocusedon:buildingregulations,wasteandcircularity,sustainableprocurement,andsustainablefinance.Furtheractionsaregiveninthesethematicareasupto2050.ThetimelineseekstoestablishaclearvisionofhowtheEUcanachievenetzerowhole-lifecarbonby2050.Between2022and2024,amongotheractions,itrecommendstheharmonizationandupdatingofEUenergyperformancecertificatestoimprovetheirreliabilityandmakeuseofmeasuredbuildingperformance.ItalsosuggeststhatEUMemberStatesdevelopopen-sourcedatabaseswhichcovermeasuredandmodelledenergyperformanceandgreenhousegasemissionsoftheirbuildingstock(Nugentetal.2022).8.7.EMERGINGROADMAPACTIVITIESAnemergingsetofcountriesandregionsaredevelopingroadmaps,highlightingtheimportanceofnationalgovernmentsandregionalcooperationandpartnershipsineffortstodecarbonizethebuildingsector.862022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTION8.7.1.UNAGENCIESWORKINGTOGETHERONBUILDINGSANDCONSTRUCTIONROADMAPSUN-Habitat,UNEPandUnitedNationsOfficeforProjectServices(UNOPS)joinedforcesforthedevelopmentofnationalbuildingsandconstructionroadmapsstartingwithBurkinaFasoandSriLankaincollaborationwiththeBurkinaFasoMinistryofUrbanPlanning,LandAffairsandHousingandtheSriLankaMinistryofUrbanDevelopmentandHousing.Theseroadmapsarebeingdevelopedundertheprogramme“SDG12ResourceEfficientHousing”oftheOnePlanetMulti-partnerTrustFundonSDG12,andwillbefinalizedbytheendof2022.In2023,thethreeagencieswillcontinuetheircollaborationforthedevelopmentofadditionalnationalbuildingsandconstructionroadmapsforBangladesh,SenegalandGhanaintheframeworkoftheUNEP-led,BMZ-fundedproject“TransformingtheBuiltEnvironmentthroughSustainableMaterials”,aswellasastate-levelroadmapinIndiaincollaborationwithDevelopmentAlternatives.Aspartoftheseefforts,thethreeagenciesareworkingonaprocessguideandtooltosupporttheelaborationofbuildingsandconstructionroadmaps.ThisbuildsontheUNOPSCapacityAssessmentToolforInfrastructure(CAT-I)andthelearningsfromexperiencetodateincascadingtheGlobalABCroadmapstonationalandsubnationallevels.8.7.2.BUILDINGSROADMAPSFOR22COUNTRIESANDTERRITORIESINTHEARABLEAGUETheUAEMinistryofEnergyandInfrastructure,incoordinationwithGuidehouseandRCREEE,isleadingthedevelopmentofbuildingdecarbonizationroadmapsforthe22countriesandterritoriesintheArabLeague(Algeria,Bahrain,Comoros,Djibouti,Egypt,Iraq,Jordan,Kuwait,Lebanon,Libya,Mauritania,Morocco,GazaandWestBank,Oman,Qatar,SaudiArabia,Somalia,Sudan,Syria,Tunisia,UAE,Yemen.)Basedonanassessmentoftheircurrentsituationintermsofgeneralsocio-economicindicators,high-levelsustainabilityindicatorsandefficientbuildingsindicators,these22countriesandterritorieshavebeenclassifiedintothreegroups(early,mediumandadvanced).Asub-roadmapisbeingdevelopedforeachgroup,allowingeachcountry/territorytobuilditsownnationalroadmap.Theseroadmaps,whichfollowtheGlobalABCroadmapmodel,willbelaunchedatCOP27.8.7.3.NDCROADMAPFORLOW-CARBON,CLIMATE-RESILIENTBUILDINGSANDCONSTRUCTION2050INCAMBODIATheconstructionindustryinCambodiahasexperiencedstronggrowthanditsbuildingstockcontinuestoincreaseinallmarketsegments.Buildingsareresponsiblefor45percentofthecountry’sprimaryenergydemandandareamajorsourceofgreenhousegasemissions.TheNDCRoadmapaimstohelpthegovernmentofCambodiaanditsstakeholderstotransformtheindustrytowardszero-emission,efficientandresilientbuildingsandconstructioninordertosupportthecountry’scommitmentsundertheParisAgreement.TheNDCRoadmapsuggestsanumberofactionsinkeyareas,withtargetsfor2030,2040and2050basedonacomprehensivesectoranalysisandmulti-stakeholderconsultationsconductedinearly2021.8.7.4.CHINA’SGREATERBAYAREA(GUANGDONG–HONGKONG–MACAU)TheGermanEnergyAgency(dena),togetherwiththeChinaAcademyofBuildingResearchandtheICLEIEastAsiaSecretariat,isdevelopingaRegionalRoadmapforBuildingsandConstructionforChina’sGuagdong–HongKong–MacauGreaterBayArea,insupportoftheregion’sdecarbonizationefforts.Despiteaccountingforlessthan1percentofChina’soverallterritory,thisvibrantmegalopolisgeneratesnearly12percentofthecountry’sGDP.Theroadmapstrategyincludesregionalworkshopsandthelaunchofalivingdocumentin2023.8.7.5.NDCROADMAPFORALOW-CARBON,CLIMATE-RESILIENTBUILDINGSECTORINVIETNAMTheNDCRoadmapforalow-carbon,climate-resilientbuildingsandconstructionsectorinVietNamwasdevelopedbasedonthemethodologyoftheRegionalRoadmapsforBuildingsandConstruction2020-2050forAsiaandthePacificbytheGlobalABCandIEAin2018.DevelopedbytheProgrammeforEnergyEfficiencyinBuildingsincooperationwiththeMinistryofConstruction,thisNDCRoadmapshowsthepathwayfortheshort-,medium-andlong-termcontributionofthebuildingsandconstructionsectortotheachievementoftheNDCtargetsofVietNamandbeyond.Itprovidesatoolforformulatingsector/subsectortransitionpoliciestowardsustainabledevelopment.Itidentifiescommongoals,targetsandtimelinesforkeyactionsacrosseightactivities,andprovidesorientationandguidancetostakeholdersinthebuildingsandconstructionsectorandauthoritiesinurbanmanagement,non-residentialandresidentialbuildingsubsectors.872022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTION9.KEYRECOMMENDATIONSFORPOLICYANDDECISIONMAKERSThebuildingssectorwillcontinuetogrowtomeetcitizens’needsforsafehousingandworkplaces,butitsgrowthmustbeinalignmentwiththeParisAgreement.Policymakersonallgovernancelevelsmustthereforeimplementeffectivepolicyinstrumentsandtoolswhichdelivertheneededemissionreductionswhileachievingtheobjectivesofasustainableandresilientbuildingsandconstructionsector.Decisionmakersinindustryandthefinancesectormustembracethetransformationoftheirsectorandinvestininnovation,productsandserviceswhichacceleratedecarbonisation.Civilsocietyparticipationwillbecrucialtosupportthenecessarychange.Photocredit:HansjorgKeller882022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTIONTheimpactoftheglobalCOVID-19pandemiconthebuildingsandconstructionsectorsawenergyusereduceasworkplaceswereshuttered,homeworkingincreased,andvulnerablehouseholdsfellintofuelpoverty.Thisprecipitatedthelargestemissionsdropexperiencedinthebuildingssectorinthelastdecade.Butthisdropinemissionswasshort-livedaseconomiesreopenedandareboundintheuseofbuildingsoccurredalongsideanincreaseddemandforenergyamongworkplacesandhouseholds.Duringthisperiod,morecountrieshaveplacedbuildingswithintheircommitmentsforactiontoreduceemissions.Thisisawelcomeupdategiventhattheuseofbuildingsisresponsibleforaround27percentofglobalbuildingoperationsenergy-relatedemissions.Duringthisperiodinvestmentsinenergyefficiencyinbuildingsincreasedbyaround16percent,thelargestincreaseininvestmentinthelast10years.Whatisclearfromthesepasttwoyearsisthatthestructuralchangesneededinthebuildingsandconstructionsectorarenotyethappening.Whiletheincreaseininvestmentinenergyefficiencyinexistingbuildingsandagreaternumberofnewbuildingsbeingconstructedtohigherenergyperformancestandardsarewelcometrends,theimpactonenergyuseandenergyintensityisnotyetshowing,noristhereanysignofemissionsfromthebuildingssectorbeingdecoupledfromenergyuseorconstructionactivities.ThewarinUkraineandtheensuingenergycrisisbeingfeltinsomeregionsunderlinetheurgencyofsuchastructuralchange.ToachievetheemissionstargetsneededforallbuildingstobealignedtotheParisAgreementgoaloftheglobaleconomybeingnetzeroCO2emissionsby2050,emissionsfromthebuildingssectorwillneedtohalveby2030(from10GtCO2to5GtCO2).Thiswillrequireanannualemissionreductionrateof-8percentperyear,equivalenttotheimpactofthepandemiceachyear.Policymakersanddecisionmakersmusturgentlyputinplaceconcretenear-termactionsthatcanbegintodelivertheneededemissionsreductions,whileachievingtheobjectivesofasustainableandresilientbuildingsandconstructionsectorthatwillcontinuetogrowandmeetscitizens’needforsafe,healthyandaffordablehousingandworkplaces.Photocredit:FredericKöberl892022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTIONCoalitionsofnationalstakeholdersshouldbedevelopedtosettargetsandstrategytowardsazero-emission,efficientandresilientbuildingsandconstructionsectorthroughbuildingdecarbonizationandresilienceroadmapsandinlinewiththeMarrakechPartnershipforGlobalClimateActionHumanSettlementsPathway.Nationalandsub-nationalgovernmentsmustputinplacemandatorybuildingenergycodesandsetoutapathwayfortheirnewbuildingcodesandstandardstobeperformancebasedandtoachievezerocarbonacrossabuilding’slifecycleasquicklyaspossible.Forjurisdictionswithoutbuildingenergycodes,theseneedtobeformulatedandadopted.CodesshouldconsidertheGuidelinesforEnergyEfficiencyStandardsinBuildings(UNECE2020).Governmentsandnon-stateactorsmustincreasetheirinvestmentinenergyefficiency.Thisinvestmentneedstotargetallbusinessesandhouseholds.Governmentswillneedtousefinancialandnon-financialincentivestoencourageinvestmentandprovidesupportforvulnerablehouseholds.Theconstructionandrealestateindustriesmustdevelopandimplementzero-carbonstrategiesfornewandexistingbuildingsinalljurisdictions,inordertoeffectivelysupportgovernmentpolicies.ThebuildingmaterialsandconstructionindustriesmustcommittoreducingtheirCO2emissionsthroughouttheirvaluechaininlinewiththeParisAgreement,supportinggovernmentpoliciestowardsacarbonneutralbuildingstock.Thefollowingrecommendationsaredesignedtorespondtothesechallenges:Increasedfundingisurgentlyrequiredforpublic–privateresearchpartnershipstoacceleratethedevelopment,demonstrationandcommercializationofinnovationstoreduceembodiedcarboninbuildingmaterials.Forgovernmentsaimingtoachieveanet-zero-carbonbuiltenvironment,regulationsandassessmentofemissionsneedtotakealifecycleapproachthatconsidersbothmaterials’embodiedcarbonemissionsandoperationalemissions.Governments,especiallycities,needtoimplementpoliciesthatpromotetheshifttocirculareconomiesthatreplacelinear,non-renewable,toxicmaterialprocesseswithsustainablerenewablematerialsthatcansequestercarbonandbemanagedsustainablyovertheirlifecycles.Inparallel,formaterialsthatcannot(yet)bereplaced,theiruseandtheircarbonfootprintshouldbereducedasmuchaspossible.Fast-growingcountriesandeconomies,includinginAfricaandSoutheastAsia,needinvestmenttobuildcapacity,resourcesandsupplychainstopromoteenergy-efficientdesignsandlow-carbonandsustainableconstruction.3.4.5.6.7.8.9.2.1.902022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTIONREFERENCESAdshead,D.etal.(2022).Ghana:RoadmapforResilientIn-frastructureinaChangingClimate.Accra:GhanaMinistryofEnvironment,Science,Technology&Innovation.AfricanDevelopmentBank(2018).SenegalNationalClimateChangeProfile.Abidjan.Availableat:https://www.afdb.org/en/documents/senegal-national-climate-change-profile.AfricanDevelopmentBank(2019).HumanDevelopment.Availableat:https://www.afdb.org/en/knowledge/publica-tions/tracking-africa%E2%80%99s-progress-in-figures/hu-man-development[Accessed:9August2022].AfricanDevelopmentBank(2022).AfricanEconomicOutlook:SupportingClimateResilienceandaJustEnergyTransitioninAfrica.Availableat:https://www.afdb.org/en/knowledge/publications/african-economic-outlook.Agboklu,G.(2022).CombattingClimateChange:Tamalegetsgreen,affordablehousing.GhanaNewsAgency.Availableat:https://www.gna.org.gh/1.21451813[Accessed:11August2022].Ampratwum,G.,Agyekum,K.,Adinyira,E.andDuah,D.(2021).AframeworkfortheimplementationofgreencertificationofbuildingsinGhana.InternationalJournalofConstructionManagement21(12),pp.1263–1277.Andrew,R.andPeters,G.(2021).TheGlobalCarbonProject’sfossilCO2emissionsdataset.Zenodo:Geneva,Switzerland.Availableat:https://figshare.com/articles/preprint/The_Glob-al_Carbon_Project_s_fossil_CO2_emissions_dataset/16729084/1.Accessed30June2022.Architecture2030(2018).ZEROCode:TheFutureHasAr-rived.Availableat:https://architecture2030.org/zero-code/[Accessed:15August2022].ARSO(2018).Compressedstabilizedearthblocks—Require-ments,productionandconstruction.Nairobi:TheAfricanOrganizationforStandardization.Availableat:https://www.arso-oran.org/wp-content/uploads/2014/09/WD-ARS-1333-2017-Compressed-stabilized-earth-blocks-Requirements-production-and-construction.pdf.ASEAN(2016).ASEANSHINE.Availableat:https://www.switch-asia.eu/project/asean-shine/[Accessed:26October2022].Awada,M.etal.(2021).Occupanthealthinbuildings:Im-pactoftheCOVID-19pandemicontheopinionsofbuildingprofessionalsandimplicationsonresearch.BuildEnvironJan(207).doi:10.1016/j.buildenv.2021.108440.Baron,R.(2016).Theroleofpublicprocurementinlow-car-boninnovation.Paris,France:OECD.Beer,M.(2022).NewModelBuildingCodeShowsStepstoNet-ZeroReadyBuildingsby2030.Availableat:https://www.theenergymix.com/2022/03/30/new-model-building-code-shows-steps-to-net-zero-ready-buildings-by-2030/[Ac-cessed:15August2022].Bevilacqua,P.(2021).Theeffectivenessofgreenroofsinreducingbuildingenergyconsumptionsacrossdifferentclimates.Asummaryofliteratureresults.RenewableandSustainableEnergyReviews151,p.111523.Availableat:https://www.sciencedirect.com/science/article/pii/S1364032121008017[Accessed:14July2022].Bloomberg(2022).GermanyApproves$180BillionFund-ingtoAccelerateEnergyShift,27July2022.https://www.bloomberg.com/news/articles/2022-07-27/germany-ap-proves-180-billion-funding-to-accelerate-energy-shift[Accessed:26October2022].Germany,FederalMinistryforEconomicAffairsandClimateAc-tion(2022).177.5billionEurosforclimateaction,energysecurityandhelpwithenergycosts.Availableat:https://www.bmwk.de/Redaktion/EN/Pressemitteilungen/2022/07/20220727-177.5-bil-lion-Euros-for-climate-action-energy-securi-ty-and-help-with-energy-costs.html.BozorgChenani,S.,Lehvävirta,S.andHäkkinen,T.(2015).Lifecycleassessmentoflayersofgreenroofs.Jour-nalofCleanerProduction90,pp.153–162.Availableat:https://www.sciencedirect.com/science/article/pii/S0959652614012773[Accessed:14July2022].Broer,R.,Simjanovic,J.andToth,Z.(2022).Implement-ingTheParisAgreementandReducingGreenhouseGasEmissionsThroughouttheLifeCycleofBuildings:EuropeanPublicPolicies,ToolsandMarketInitiatives.BPIE.Availableat:https://www.bpie.eu/publication/implementing-the-par-is-agreement-and-reducing-greenhouse-gas-emissions-throughout-the-life-cycle-of-buildings-european-public-pol-icies-tools-and-market-initiatives/BuildingsPerformanceInstituteEurope(2020).AMethodol-ogyforTrackingDecarbonisationActionandImpactoftheBuildingsandConstructionSectorGlobally.Brussels.https://www.bpie.eu/wp-content/uploads/2020/12/GABT-methodol-ogy-paper-final.pdf.BuildingPerformanceInstituteEurope(2022).REPowerEUEnergySavingsPlan:timetoswitchtoaction.Brussels:BuildingPerformanceInstituteEurope.Availableat:https://https://www.bpie.eu/publication/repowereu-energy-saving-plan-time-to-switch-to-action/.Cabeza,L.F.etal.(2022).Buildings.In:ClimateChange2022:MitigationofClimateChange.ContributionofWorkingGroupIIItotheSixthAssessmentReportoftheIntergovernmentalPanelonClimateChange.AR6WGIII.CambridgeUniversityPress.Availableat:https://www.ipcc.ch/report/sixth-assess-ment-report-working-group-3/.Cabeza,L.F.,Q.Bai,P.etal.(2022):Buildings.InIPCC,2022:ClimateChange2022:MitigationofClimateChange.Contri-butionofWorkingGroupIIItotheSixthAssessmentReportoftheIntergovernmentalPanelonClimateChange[P.R.Shukla,J.Skea,etal.(eds.)].CambridgeUniversityPress,Cambridge,UKandNewYork,NY,USA.doi:10.1017/9781009157926.011.CaliforniaEnergyCommission(2020).JA13HeatPumpWaterHeaterDemandManagementSystemsCaliforniaEn-ergyCommission.Availableat:https://www.energy.ca.gov/rules-and-regulations/building-energy-efficiency/manufac-turer-certification-building-equipment/ja13.912022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTIONCaliforniaEnergyCommission(2021).EnergyCommissionAdoptsUpdatedBuildingStandardstoImproveEfficiency,ReduceEmissionsFromHomesandBusinesses.CaliforniaEnergyCommission11August.Availableat:https://www.en-ergy.ca.gov/news/2021-08/energy-commission-adopts-up-dated-building-standards-improve-efficiency-reduce-0[Accessed:15August2022].CambridgeDepartmentofEngineering(2022).Cambridgeengineersinventworld’sfirstzeroemissionscement.Depart-mentofEngineering23May.Availableat:http://www.eng.cam.ac.uk/news/cambridge-engineers-invent-world-s-first-zero-emissions-cement[Accessed:18August2022].Cao,Z.,Masanet,E.,Tiwari,A.andAkolawala,S.(2021).DecarbonizingConcrete:DeepdecarbonizationpathwaysforthecementandconcretecycleintheUnitedStates,India,andChina.IndustrialSustainabilityAnalysisLaboratory,North-westernUniversity,Evanston,IL.CarbonLeadershipForum(2020).EmbodiedCarbon101.Seattle.https://carbonleadershipforum.org/embodied-car-bon-101/[Accessed:8July2022].CarbonMonitor(2022).CarbonMonitorCO2emissionsvaria-tionJan-May(2020)vsJan-May(2019).Availableat:https://carbonmonitor.org[Accessed:9July2022].CentreforAffordableHousingFinanceinAfrica(2021b).HousingFinanceinAfrica:areviewofAfrica’shousingfi-nancemarkets.Johannesburg:CentreforAffordableHousingFinanceinAfrica.Chàfer,M.,Pérez,G.,Coma,J.andCabeza,L.F.(2021).AcomparativelifecycleassessmentbetweengreenwallsandgreenfacadesintheMediterraneancontinentalclimate.En-ergyandBuildings249,p.111236.Availableat:https://www.sciencedirect.com/science/article/pii/S037877882100520X[Accessed:8July2022].Chen,Z.etal.(2022).Construction,renovation,anddemoli-tionwasteinlandfill:areviewofwastecharacteristics,envi-ronmentalimpacts,andmitigationmeasures.EnvironmentalScienceandPollutionResearch29(31),pp.46509–46526.doi:10.1007/s11356-022-20479-5.Cheong,C.,Kabore,M.andAsiimwe,G.(2021).CircularBuiltEnvironmentHighlightsfromAfricaPolicies,CasestudiesandUN2030AgendaIndicatorsBurkinaFaso,Malawi,Mo-rocco,Nigeria,Rwanda,Senegal,SouthAfricaandUganda.GlobalGreenGrowthInstitute.Chunekar,A.,Varshney,S.andDixit,S.(2016).ResidentialelectricityconsumptioninIndia:whatdoweknow.Prayas(EnergyGroup),Pune.CitiesAlliance(2021).InformalLandMarkets–Citygovern-mentinterventionsforenhancinglandaccessandtenuresecurity.Brussels:CitiesAlliance.Availableat:https://www.citiesalliance.org/sites/default/files/2022-03/Cities%20Alli-ance_Informality%20Papers%20Series_Informal%20Land%20Markets.pdf.CleantechMalawi(2022).EcoKilnTechnology.Availableat:http://www.cleantechmalawi.com/EcoKilnTechnology.aspx.Climate&CleanAirCoalition(2015).Mitigatingblackcarbonandotherpollutantsfrombrickproduction.Climate&CleanAirCoalition,Paris.ClimateBondsInitiative(2022).AligningBuildingswiththeParisClimateAgreement:InsightsandDevelopmentsfromtheGreenBondMarket.London.Colombia,MinistryofEnvironmentandSustainableDevelop-ment,CCCS,UNEP,GEF,andWRI(2022).NationalRoadmapforNetZeroCarbonBuilding.Bogota,Colombia.Availableat:https://drive.google.com/file/d/1P4XKXmH9dGk9A-O03xnKM8sL2Lrxs3RF9/view.Coma,J.,Pérez,G.,deGracia,A.,Burés,S.,Urrestarazu,M.andCabeza,L.F.(2017).Verticalgreenerysystemsforenergysavingsinbuildings:Acomparativestudybetweengreenwallsandgreenfacades.BuildingandEnvironment111,pp.228–237.Availableat:https://www.sciencedirect.com/science/article/pii/S0360132316304383[Accessed:8July2022].Cooke,L.(2016).Egypt’sfirstsolar-poweredvillagerisesfromthedesertinBahariyaOasis.Inhabitat-GreenDesign,Innovation,Architecture,GreenBuildingGreendesignandinnovationforabetterworld.Availableat:https://inhabitat.com/egypts-first-solar-powered-village-rises-from-the-des-ert-in-bahariya-oasis/[Accessed:11July2022].Couture,P.(2016).Descriptiondelavillaécologique‘AssieGaye’.Availableat:https://docplayer.fr/9800120-Description-de-la-villa-ecologique-assie-gaye.html.Davis,S.J.etal.(2022).EmissionsreboundfromtheCOVID-19pandemic.NatureClimateChange12(5),pp.412–414.doi:10.1038/s41558-022-01332-6.DelawareGovernment(2010).Title16Chapter76.CountyorMunicipalBuilding,Plumbing,ElectricalandOtherCodes.Availableat:https://delcode.delaware.gov/title16/c076/in-dex.html[Accessed:15August2022].Denmark,MinistryofInteriorandHousing(2021).NationalStrategyforSustainableConstruction.Copenhagen.Availableat:https://im.dk/Media/637602217765946554/National_Strategy_for_Sustainable_Construktion.pdf.Dieye,Y.,Sambou,V.,Faye,M.,Thiam,A.,Adj,M.andAzilinon,D.(2017).Thermo-mechanicalcharacterizationofabuildingmaterialbasedonTyphaAustralis.JournalofBuildingEngineering9,pp.142–146.Doppler,K.andMpahlwa,L.(2021).Architecturecanchangeurbanlivingen-vironments,butneverforgetthatpeopleareparamount.DailyMaverick.Availableat:https://www.dailymaverick.co.za/article/2021-08-22-architecture-can-change-urban-living-environments-but-never-forget-that-people-are-paramount/[Accessed:17August2022].Dosumu,O.andAigbavboa,C.(2019).AninvestigationofthebarrierstotheuptakeoflocalmaterialsinAfrica:Aliteraturereviewapproach.AfricanJournalofScience,Technology,InnovationandDevelopment12(4).EasyHousing(2022).EasyHousingSolutionsforsustain-ablehousing.Availableat:https://www.easyhousing.org/[Accessed:11July2022].922022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTIONEDGEBuildings(2022).EDGEBuildingsGhana.Availableat:https://edgebuildings.com/project_countries/ghana/[Ac-cessed:11August2022].ElCongresodeColombia(2021).Ley2169.Bogota:ElCon-gresodeColombia.Availableat:https://dapre.presidencia.gov.co/normativa/normativa/LEY%202169%20DEL%2022%20DE%20DICIEMBRE%20DE%202021.pdf.EnergyStepCodeCouncil(2018).HowtheBCEnergyStepCodeworks.Availableat:http://www.energystepcode.ca/how-it-works/[Accessed:2June2022].EpropertyNews(2016).GreenBuildingCouncilofSouthAfricacelebratesmilestone200GreenStarSAcertifications.Availableat:https://eprop.co.za/commercial-property-news/item/20183-green-building-council-of-south-africa-cel-ebrates-milestone-200-green-star-sa-certifications[Ac-cessed:10July2022].EuropeanCommission(2020).ARenovationWaveforEurope-greeningourbuildings,creatingjobs,improvinglives.Brussels:EuropeanCommission.Availableat:https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020DC0662.EuropeanCommission(2021a).France’srecoveryandresilienceplan.Availableat:https://ec.europa.eu/info/business-economy-euro/recovery-coronavirus/recov-ery-and-resilience-facility/frances-recovery-and-resil-ience-plan_en.EuropeanCommission(2021b).Nearlyzero-energybuildings.Availableat:https://energy.ec.europa.eu/topics/energy-effi-ciency/energy-efficient-buildings/nearly-zero-energy-build-ings_en[Accessed:15August2022].EuropeanCommission(2021c).NewEUenergylabelsappli-cablefrom1March2021.Availableat:https://ec.europa.eu/commission/presscorner/detail/en/ip_21_818[Accessed:15August2022].EuropeanCommission(2022d).REPowerEUPlan.Availableat:https://eur-lex.europa.eu/legal-con-tent/EN/TXT/?uri=COM%3A2022%3A230%3AF-IN&qid=1653033742483.EuropeanParliament(2010).Directive2010/31/EUoftheEuropeanParliamentandoftheCouncilof19May2010ontheenergyperformanceofbuildings.Strasbourg:Europe-anParliament.Availableat:https://eur-lex.europa.eu/le-gal-content/EN/TXT/?uri=CELEX%3A02010L0031-20210101[Accessed:15August2022].EuropeanStandards(2021).BSEN197-5:2021CementPortland-compositecementCEMII/C-MandCompositecementCEMVI.Availableat:https://www.en-standard.eu/bs-en-197-5-2021-cement-portland-composite-cement-cem-ii-c-m-and-composite-cement-cem-vi/[Accessed:18August2022].Feindouno,S.,Guillaumont,P.andSimonet,C.(2020).ThePhysicalVulnerabilitytoClimateChangeIndex:AnIndextoBeUsedforInternationalPolicy.EcologicalEconomics176,p.106752.doi:10.1016/j.ecolecon.2020.106752.France,MinistryofEcology(2022).Réglementationenvi-ronnementaleRE2020.Availableat:https://www.ecologie.gouv.fr/reglementation-environnementale-re2020.Freightos(2022).FreightosBalticIndex(FBX):GlobalContainerFreightIndex.Availableat:https://fbx.freightos.com/#https://fbx.freightos.com.Friedlingstein,P.etal.(2022).Globalcarbonbudget2021.EarthSystemScienceData14(4),pp.1917–2005.GreenBuildingCouncilofSouthAfrica(2017).GreenStar-Africa.GreenBuildingCouncilSouthAfrica.Availableat:https://gbcsa.org.za/certify/green-star-sa/green-star-africa/[Accessed:10July2022].GeothermalRising(2022).NewYorkApprovesLandmarkThermalNetworkLegislationGeothermalRising:UsingtheEarthtoSavetheEarth.Availableat:https://geothermal.org/our-impact/blog/new-york-approves-landmark-thermal-net-work-legislation[Accessed:15August2022].Germany,FederalMinistryforEconomicAffairsandClimateAction(2022).177.5billionEurosforclimateaction,energysecurityandhelpwithenergycosts.Availableat:https://www.bmwk.de/Redaktion/EN/Pressemitteilungen/2022/07/20220727-177.5-billion-Euros-for-climate-action-energy-security-and-help-with-energy-costs.html.Getter,K.L.,Rowe,D.B.,Robertson,G.P.,Cregg,B.M.andAndresen,J.A.(2009).CarbonSequestrationPotentialofEx-tensiveGreenRoofs.EnvironmentalScienceandTechnology43(19),pp.7564–7570.Availableat:https://pubs.acs.org/doi/10.1021/es901539x[Accessed:14July2022].GettingtoZeroForum(2022).CodesandPolicyResources-GettingtoZeroForum.Availableat:https://gettingtozerofo-rum.org/policy-resources/[Accessed:15August2022].GhanaStatisticalService(2021).Ghana2021PopulationandHousingCensus:GeneralReportVolume3N.GlobalIndustryAnalysts,Inc(2021).ConcreteBlockandBrickManufacturing-GlobalMarketTrajectory&Ana-lytics.Dublin:GlobalIndustryAnalysts,Inc.Availableat:https://www.researchandmarkets.com/reports/5141059/concrete-block-and-brick-manufacturing-global?utm_source=BW&utm_medium=PressRelease&utm_code=qr5m-4n&utm_campaign=1549012+-+Global+Concrete+-Block+and+Brick+Manufacturing+Report+2021&utm_ex-ec=chdo54prd.GlobalABC,IEA,andUNEP(2020).GlobalABCRoadmapforBuildingsandConstruction2020-2050.Paris:InternationalEnergyAgency.Availableat:https://www.iea.org/reports/globalabc-roadmap-for-buildings-and-construc-tion-2020-2050.Gonzalez,A.(2018).Breakingnewgroundforsustainablear-chitectureinCentralAfrica.Availableat:https://forestsnews.cifor.org/57614/breaking-new-ground-for-sustainable-archi-tecture-in-central-africa?fnl=en[Accessed:10July2022].GovernmentoftheDistrictofColumbia(2017).2017DCEn-ergyCode.Availableat:https://eservices.dcra.dc.gov/Docu-mentManagementSystem/Home/retrieve?id=2017%20DC%20Energy%20Code.pdf.932022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTIONHaas,W.,Krausmann,F.,Wiedenhofer,D.andHeinz,M.(2015).HowCircularistheGlobalEconomy?:AnAssessmentofMa-terialFlows,WasteProduction,andRecyclingintheEuropeanUnionandtheWorldin2005.JournalofIndustrialEcology19(5),pp.765–777.Availableat:https://onlinelibrary.wiley.com/doi/abs/10.1111/jiec.12244[Accessed:12August2022].Hertwich,E.,Lifset,R.andHeeren,N.(2020).ResourceEffi-ciencyandClimateChange:MaterialEfficiencyStrategiesforaLow-CarbonFuture.Nairobi:UnitedNationsEnvironmentProgramme.Availableat:https://www.resourcepanel.org/reports/resource-efficiency-and-climate-change[Accessed:19August2022].HawaiianIslandsPublicWorks(2021).BuildingCodeChangesEffectiveSeptember1,2021HawaiiCounty,HIPublicWorks.Availableat:https://www.dpw.hawaiicounty.gov/divisions/building/building-code-amendments-information/build-ing-code-changes-effective-september-1-2021[Accessed:15August2022].HistoricEngland(2019).HeritageCounts2019-There’sNoPlaceLikeHome.HistoricEngland,London.Availableat:https://historicengland.org.uk/research/heritage-counts/2019-car-bon-in-built-environment/carbon-in-built-historic-environ-ment/[Accessed:27October2022]Hoffmann,G.(2022).Cleanenergyframeworkwillbein-troduced.Availableat:https://www.wispolitics.com/2022/gregg-hoffmann-clean-energy-framework-will-be-intro-duced/[Accessed:15August2022].Hogarth,J.R.,Haywood,C.andWhitley,S.(2015).Low-carbondevelopmentinsub-SaharanAfrica.London:ODI.,p.88.Avail-ableat:https://odi.org/en/publications/low-carbon-develop-ment-in-sub-saharan-africa-20-cross-sector-transitions/.Hong,L.,Zhou,N.,Feng,W.,Khanna,N.,Fridley,D.,Zhao,Y.andSandholt,K.(2016).Buildingstockdynamicsanditsim-pactsonmaterialsandenergydemandinChina.EnergyPol-icy94,pp.47–55.Availableat:https://www.sciencedirect.com/science/article/pii/S0301421516301276[Accessed:12August2022].IntergovernmentalPanelonClimateChange(2022):ClimateChange2022:MitigationofClimateChange.ContributionofWorkingGroupIIItotheSixthAssessmentReportoftheIntergovernmentalPanelonClimateChange[P.R.Shukla,J.Skea,R.Slade,A.AlKhourdajie,R.vanDiemen,D.McCol-lum,M.Pathak,S.Some,P.Vyas,R.Fradera,M.Belkacemi,A.Hasija,G.Lisboa,S.Luz,J.Malley,(eds.)].CambridgeUniversityPress,Cambridge,UKandNewYork,NY,USA.doi:10.1017/9781009157926InternationalCentreforIntegratedMountainDevelopment(2019a).BricksectorinIndia.Katmandu:InternationalCentreforIntegratedMountainDevelopment.InternationalCentreforIntegratedMountainDevelopment(2019b).BricksectorinNepal.Katmandu:InternationalCentreforIntegratedMountainDevelopment.InternationalCentreforIntegratedMountainDevelopment(2019c).BricksectorinPakistan.Katmandu:InternationalCentreforIntegratedMountainDevelopment.InternationalEnergyAgency(2013).PolicyPathway-Mod-ernisingBuildingEnergyCodes.Paris:InternationalEner-gyAgency.Availableat:https://www.iea.org/reports/poli-cy-pathway-modernising-building-energy-codes-2013.InternationalEnergyAgency(2017).EnhancementstoMini-mumEnergyPerformanceStandards(MEPS)–Policies.Par-is:InternationalEnergyAgency.Availableat:https://www.iea.org/policies/8401-enhancements-to-minimum-energy-per-formance-standards-meps[Accessed:15August2022].InternationalEnergyAgency(2019).AfricaEnergyOutlook2019.Paris:InternationalEnergyAgency.Availableat:https://www.iea.org/reports/africa-energy-outlook-2019[Accessed:3July2022].InternationalEnergyAgency(2020a).EnergyTechnologyPer-spectives2020.Paris:InternationalEnergyAgency.Availableat:https://www.iea.org/reports/energy-technology-perspec-tives-2020.InternationalEnergyAgency(2020b).UpdatedMEPS-Cen-tralAirConditionersandHeatPumps–Policies.Paris:In-ternationalEnergyAgency.Availableat:https://www.iea.org/policies/11456-updated-meps-central-air-condition-ers-and-heat-pumps[Accessed:15August2022].InternationalEnergyAgency(2021a).Cement.Paris:Inter-nationalEnergyAgency.Availableat:https://www.iea.org/reports/cement.InternationalEnergyAgency(2021b).NetZeroby2050.Par-is:InternationalEnergyAgency.Availableat:https://www.iea.org/reports/net-zero-by-2050.InternationalEnergyAgency(2021c).TrackingCleanEnergyProgress.Paris:InternationalEnergyAgency.Availableat:https://www.iea.org/reports/tracking-buildings-2021.InternationalEnergyAgency(2021d).WorldEnergyOutlook2021.Paris:InternationalEnergyAgency.Availableat:https://www.iea.org/reports/world-energy-outlook-2021[Accessed:16June2022].InternationalEnergyAgency(2022a).A10-PointPlantoRe-ducetheEuropeanUnion’sRelianceonRussianNaturalGas.Paris:InternationalEnergyAgency.Availableat:https://www.iea.org/reports/a-10-point-plan-to-reduce-the-european-unions-reliance-on-russian-natural-gas.InternationalEnergyAgency(2022b).AfricaEnergyOutlook2022.Paris:InternationalEnergyAgency.Availableat:https://www.iea.org/reports/africa-energy-outlook-2022.InternationalEnergyAgency(2022c).IEAEnergyCountryPro-files:OECDEurope.Paris:InternationalEnergyAgency.Avail-ableat:https://www.iea.org/regions/europe.InternationalEnergyAgency(2022d).Minimumenergyper-formancestandardsforairconditionersover65kWincapaci-ty–Policies.Paris:InternationalEnergyAgency.Availableat:https://www.iea.org/policies/13819-minimum-energy-per-formance-standards-for-air-conditioners-over-65kw-in-ca-pacity[Accessed:15August2022].942022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTIONInternationalEnergyAgency(2022e).RoadmapforEner-gy-EfficientBuildingsandConstructionintheAssociationofSoutheastAsianNations.Paris:InternationalEnergyAgency.Availableat:https://www.iea.org/reports/roadmap-for-en-ergy-efficient-buildings-and-construction-in-the-associa-tion-of-southeast-asian-nations.InternationalEnergyAgency(2022f).TrackingBuildings2022.Paris:InternationalEnergyAgency.Availableat:https://www.iea.org/reports/tracking-buildings-2021.InternationalEnergyAgency(2022g).WorldEnergyIn-vestment2022.Paris:InternationalEnergyAgency.Avail-ableat:https://www.iea.org/reports/world-energy-invest-ment-2022.InternationalEnergyAgency,InternationalRenewableEnergyAgency,UnitedNationsStatisticsDivision,WordBank,andWorldHealthOrganisation(2022).TrackingSDG7-TheEner-gyProgressReport.Washington,D.C.:WorldBank.Availableat:https://trackingsdg7.esmap.org/data/files/download-doc-uments/sdg7-report2022-full_report.pdf.InternationalEnergyConservationCode(2022).2021Interna-tionalEnergyConservationCode.Availableat:https://shop.iccsafe.org/2021-international-energy-conservation-coder.html[Accessed:15August2022].InternationalLabourOrganisation(2021).ILOSectoralBrief:ImpactofCOVID-19ontheconstructionsector.Turin:Inter-nationalLabourOrganisation.Availableat:https://www.ilo.org/wcmsp5/groups/public/---ed_dialogue/---sector/docu-ments/briefingnote/wcms_767303.pdf.InternationalRenewableEnergyAgencyandAfricanDe-velopmentBank(2022).RenewableEnergyMarketAnaly-sis:AfricaanditsRegions.AbuDhabiandAbidjan.Avail-ableat:https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2022/Jan/IRENA_Market_Africa_2022.pdf?la=en&hash=BC8DEB8130CF9CC1C28FFE87EC-BA519B32076013.Jaillon,L.,Poon,C.-S.andChiang,Y.H.(2009).Quantifyingthewastereductionpotentialofusingprefabricationinbuild-ingconstructioninHongKong.Wastemanagement29(1),pp.309–320.Kapur,A.,Keoleian,G.,Kendall,A.andKesler,S.E.(2008).Dy-namicModelingofIn-UseCementStocksintheUnitedStates.JournalofIndustrialEcology12(4),pp.539–556.Availableat:https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1530-9290.2008.00055.x[Accessed:12August2022].Keena,N.andDyson,A.(2017).QualifyingtheQuantitativeintheConstructionofBuiltEcologies.In:EmbodiedEnergyandDesign.NewYork:ColumbiaUniversity,pp.196–205.Kelsch,V.(2018).ISOCALM:Thermalinsulationboardsmadeofelephantgrass.Availableat:https://www.biooe-konomie-bw.de/en/articles/news/isocalm-thermal-insula-tion-boards-made-of-elephant-grass[Accessed:11July2022].KenyanStateDepartmentforPublicWorks(2022).TheDraftNationalBuildingCode(2020).Availableat:https://publicworkskenya.com/?wpdmpro=the-draft-national-build-ing-code-2020[Accessed:15August2022].KingdomofSaudiArabia(2021).SaudiGreenInitiative.Avail-ableat:https://www.saudigreeninitiative.org.KnightFrank(2022).GlobalHousePriceIndex-Q12022.London:KnightFrank.Availableat:https://www.knight-frank.com/research/report-library/global-house-price-in-dex-q1-2022-9098.aspx.Koroxenidis,E.andTheodosiou,T.(2021).Comparativeen-vironmentalandeconomicevaluationofgreenroofsunderMediterraneanclimateconditions–Extensivegreenroofsapotentiallypreferablesolution.JournalofCleanerProduction311,p.127563.Availableat:https://linkinghub.elsevier.com/retrieve/pii/S0959652621017819[Accessed:12July2022].Kosareo,L.andRies,R.(2007).Comparativeenvironmentallifecycleassessmentofgreenroofs.BuildingandEnviron-ment42(7),pp.2606–2613.Availableat:https://www.sci-encedirect.com/science/article/pii/S0360132306001648[Ac-cessed:12July2022].Kwatra,S.,Madan,P.andKorsh,J.(2021).ConstructingChangewithBuildingEnergyCodesinIndia.NRDC26August.Availableat:https://www.nrdc.org/experts/sameer-kwa-tra/constructing-change-building-energy-codes-india[Ac-cessed:15August2022].LimstoneCalcinedClayClement(2022).LimestoneCalcifedClayCement.Availableat:https://lc3.ch/.Legese,A.M.,Kenate,T.G.andFeyessa,F.F.(2021).TermiteMoundSoilsforSustainableProductionofBricks.StudiaGeotechnicaetMechanica43(2),pp.142–154.doi:10.2478/sgem-2021-0006.Liberalesso,T.,OliveiraCruz,C.,MatosSilva,C.andManso,M.(2020).Greeninfrastructureandpublicpolicies:Aninternationalreviewofgreenroofsandgreenwallsincentives.LandUsePol-icy96,p.104693.Availableat:https://linkinghub.elsevier.com/retrieve/pii/S0264837719310543[Accessed:12July2022].Liu,G.,Bangs,C.E.andMüller,D.B.(2013).Stockdynamicsandemissionpathwaysoftheglobalaluminiumcycle.NatureClimateChange3(4),pp.338–342.Lu,W.andYuan,H.(2013).Investigatingwastereductionpo-tentialintheupstreamprocessesofoffshoreprefabricationconstruction.RenewableandSustainableEnergyReviews28,pp.804–811.Magoum,I.(2021).GBCSAcertifiedarecord140‘green’build-ingsin2021.Afrik21.Availableat:https://www.afrik21.africa/en/south-africa-gbcsa-certified-a-record-140-green-build-ings-in-2021/[Accessed:11July2022].Manso,M.,Teotónio,I.,Silva,C.M.andCruz,C.O.(2021).Greenroofandgreenwallbenefitsandcosts:Areviewofthequan-titativeevidence.RenewableandSustainableEnergyReviews135,p.110111.Availableat:https://linkinghub.elsevier.com/retrieve/pii/S1364032120304020[Accessed:11July2022].Mastrucci,A.,Byers,E.,Pachauri,S.andRao,N.D.(2019).Im-provingtheSDGenergypovertytargets:ResidentialcoolingneedsintheGlobalSouth.EnergyandBuildings186,pp.405–415.Availableat:https://www.sciencedirect.com/science/ar-ticle/pii/S0378778818323958[Accessed:12August2022].952022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTIONMemmott,T.,Carley,S.,Graff,M.andKonisky,D.M.(2021).Socio-demographicdisparitiesinenergyinsecurityamonglow-incomehouseholdsbeforeandduringtheCOVID-19pandemic.NatureEnergy6(2),pp.186–193.doi:10.1038/s41560-020-00763-9.Microsoft(2022).2022WorkTrendIndex:AnnualReport-GreatExpectations:MakingHybridWorkWork.Availableat:https://ms-worklab.azureedge.net/files/reports/2022/pdf/2022_Work_Trend_Index_Annual_Report.pdf.MMAArchitects(2008).Sand-baghousesbyMMAArchitects3.Dezeen.Availableat:https://www.dezeen.com/2008/03/02/sand-bag-houses-by-mma-architects-3/[Accessed:11July2022].Monteiro,P.J.M.,Miller,S.A.andHorvath,A.(2017).Towardssustainableconcrete.NatureMaterials16(7),pp.698–699.Availableat:https://www.nature.com/articles/nmat4930[Ac-cessed:12August2022].Moussa,R.R.(2019).ThereasonsfornotimplementingGreenPyramidRatingSysteminEgyptianbuildings.AinShamsEngi-neeringJournal10(4),pp.917–927.Availableat:https://www.sciencedirect.com/science/article/pii/S2090447919300978[Accessed:10July2022].MarrakechPartnershipforGlobalClimateAction(2021).HumanSettlements-ClimateActionPathway.Availableat:https://unfccc.int/sites/default/files/resource/HS_Vision%-26Summary_2.1_0.pdf.Muggah,R.andHill,K.(2018).Africancitieswilldoubleinpopulationby2050.Hereare4waystomakesuretheythrive.WorldEconomicForum27June.Availableat:https://www.weforum.org/agenda/2018/06/Africa-urbanization-cit-ies-double-population-2050-4%20ways-thrive/[Accessed:10July2022].Müller,D.B.,Wang,T.,Duval,B.andGraedel,T.E.(2006).Exploringtheengineofanthropogenicironcycles.Pro-ceedingsoftheNationalAcademyofSciences103(44),pp.16111–16116.Availableat:https://pnas.org/doi/full/10.1073/pnas.0603375103[Accessed:12August2022].Myers,J.(2016).TheseareAfrica’sfastest-growingcities.WorldEconomicForum.Availableat:https://www.weforum.org/agenda/2016/05/these-are-africa-s-fastest-growing-cit-ies/[Accessed:16July2022].Natarajan,M.,Rahimi,M.,Sen,S.,Mackenzie,N.andIman-bayev,Y.(2015).Livingwallsystems:evaluatinglife-cycleenergy,waterandcarbonimpacts.UrbanEcosystems18(1),pp.1–11.Availableat:https://doi.org/10.1007/s11252-014-0378-8[Accessed:14July2022].NaturalResourcesCanada(2022).CanadaGreenerHomesInitiative.Availableat:https://www.nrcan.gc.ca/energy-effi-ciency/homes/canada-greener-homes-grant/23441.Nature(2021).Concreteneedstoloseitscolossalcar-bonfootprint.Nature597(7878),pp.593–594.doi:10.1038/d41586-021-02612-5.NewBuildingsInstituteandRMI(2021).CodesforClimate.Availableat:https://www.codesforclimate.org[Accessed:15August2022].NewYorkState(2019).NYStretchEnergyCode:(2020)Outreach,TrainingandResources.Availableat:https://www.nyserda.ny.gov/All-Programs/Energy-Code-Training/NYStretch-Energy-Code-2020[Accessed:15August2022].NewYorkState(2022).ClimateActionCouncilDraftScopingPlan.Availableat:https://climate.ny.gov/Our-Climate-Act/Draft-Scoping-Plan[Accessed:15August2022].Niang,I.etal.(2017).Typhabio-basedaggregatemixedwithnaturalclaytoformcomposites:thecompressivestrength,thehygricperformanceandthefirereactionofcompositesarestudied.AcademicJournalofCivilEngineering35(2),pp.181–187.Nugent,A.,Montano-Owen,C.,Pallares,L.,Richardson,S.andRowland,M.(2022).EUPolicyWholeLifeCarbonRoadmap.London:WorldGreenBuildingCouncil.Availableat:https://viewer.ipaper.io/worldgbc/eu-roadmap/?page=1.Nwamarah,U.,vanDijk,N.,Parker,J.andRoss,P.(2018a).Road-mapandWorkProgramme.Abidjan:AfricanDevelopmentBank.Nwamarah,U.,Dunham,J.andHinojosa,G.(2018b).GapAnalysisReport:AfricanNationallyDeterminedContribu-tions(NDCs)AfricanDevelopmentBank.Abidjan.Availableat:https://www.afdb.org/fileadmin/uploads/afdb/Docu-ments/Generic-Documents/African_NDCs_Gap_Analysis_Report.pdf.OrganisationforEconomicCo-operationandDevelopment(2019).GlobalMaterialResources.Outlookto2060EconomicDriversandEnvironmentalConsequences.Paris:Organisa-tionforEconomicCo-operationandDevelopment.OrganisationforEconomicCo-operationandDevelopment(2022).Inflation(CPI)(indicator).Paris:OrganisationforEco-nomicCo-operationandDevelopment.Availableat:https://data.oecd.org/price/inflation-cpi.htm[Accessed:28May2022].OrganisationforEconomicCo-operationandDevelopment(2022).Valueaddedbyactivity(indicator).doi:10.1787/a8b2bd2b-en[Accessedon26October2022].OrganisationforEconomicCo-operationandDevelop-mentandtheInternationalPartnershipforEnergyEffi-ciencyCooperation(2018).Zeroenergybuildingdefini-tionsandpolicyactivity-aninternationalreview.Paris:OrganisationforEconomicCo-operationandDevelopment.Availableat:https://globalabc.org/resources/publications/zero-energy-building-definitions-and-policy-activity-inter-national-reviewOregonHomeBuildersAssociation(2021).MajorchangestotheBuildingCodearecomingonOct.1,MakeSureYou’reReady.Availableat:https://oregonhba.com/major-chang-es-to-the-building-code-are-coming-on-oct-1-make-sure-youre-ready/[Accessed:15August2022].Ottelé,M.,Perini,K.,Fraaij,A.L.A.,Haas,E.M.andRaiteri,R.(2011).Comparativelifecycleanalysisforgreenfaçadesandlivingwallsystems.EnergyandBuildings43(12),pp.3419–3429.Availableat:https://linkinghub.elsevier.com/retrieve/pii/S0378778811003987[Accessed:7July2022].962022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTIONPauliuk,S.,Milford,R.L.,Müller,D.B.andAllwood,J.M.(2013).TheSteelScrapAge.EnvironmentalScience&Technolo-gy47(7),pp.3448–3454.Availableat:https://pubs.acs.org/doi/10.1021/es303149z[Accessed:12August2022].ProgrammeforEnergyEfficiencyinBuildingsSecretariat(2021).BâtimenteténergieauSénégal.Paris:PEEB.Availableat:https://www.peeb.build/imglib/downloads/B%C3%A2timent_et_%C3%A9nergie_au_S%C3%A9n%C3%A9gal_%E2%80%93_Analyse_PEEB.pdf[Accessed:11August2022].Rahiman,R.,Yenneti,K.andPanda,A.(2019).MakingIndianCitiesEnergySmart,TERI-UNSWPolicyBrief.NewDelhi:TheEnergyandResourcesInstitute.Rajarathnam,U.etal.(2014).Assessmentofairpollutantemissionsfrombrickkilns.AtmosphericEnvironment98,pp.549–553.doi:10.1016/j.atmosenv.2014.08.075.Raji,B.,Tenpierik,M.J.andvandenDobbelsteen,A.(2015).Theimpactofgreeningsystemsonbuildingenergyperfor-mance:Aliteraturereview.RenewableandSustainableEner-gyReviews45,pp.610–623.Availableat:https://linkinghub.elsevier.com/retrieve/pii/S1364032115000994[Accessed:7July2022].Rathore,P.K.S.,Gupta,N.K.,Yadav,D.,Shukla,S.K.andKaul,S.(2022).Thermalperformanceofthebuildingenvelopein-tegratedwithphasechangematerialforthermalenergystor-age:anupdatedreview.SustainableCitiesandSociety79,p.103690.doi:10.1016/j.scs.2022.103690.REN21(2022).Renewables2022GlobalStatusReport.Nairo-bi:UnitedNationsEnvironmentProgramme.RoyalInstitutionofCharteredSurveyors(2022).Q12022:GlobalConstructionMonitor.London:RoyalInstitutionofCharteredSurveyors.Availableat:https://www.rics.org/globalassets/rics-website/media/knowledge/research/mar-ket-surveys/construction-monitor/q1-2022-global-construc-tion-monitor.pdf.Rincón,L.,Coma,J.,Pérez,G.,Castell,A.,Boer,D.andCabe-za,L.F.(2014).Environmentalperformanceofrecycledrubberasdrainagelayerinextensivegreenroofs.AcomparativeLifeCycleAssessment.BuildingandEnvironment74,pp.22–30.Availableat:https://linkinghub.elsevier.com/retrieve/pii/S0360132314000043[Accessed:12July2022].Ritchie,H.,Roser,M.andRosado,P.(2020).Energy.OurWorld-InData.org.Availableat:https://ourworldindata.org/energy.Schlegel,L.(2022).TheRoleofBuildingsinthe2022IPCCReport.InstituteforMarketTransformation8April.Availableat:https://www.imt.org/news/the-role-of-buildings-in-the-2022-ipcc-report/.Scrivener,K.andHafez,H.(2022).Globalbrick,concreteandaluminumanalysis.Lausanne:ÉcolepolytechniquefédéraledeLausanne.SustainableEnergyforAll(2022).ChillingProspects:Trackingsustainablecoolingforall.Vienna:SustainableEnergyforAll.Shafique,M.,Kim,R.andRafiq,M.(2018).Greenroofbenefits,opportunitiesandchallenges–Areview.RenewableandSus-tainableEnergyReviews90,pp.757–773.Availableat:https://linkinghub.elsevier.com/retrieve/pii/S136403211830217X[Accessed:12July2022].SierraClub(2022).WashingtonStateTakesStrongestCleanCommercialBuildingActionintheNation.SanFrancis-co:SierraClub.Availableat:https://www.sierraclub.org/press-releases/2022/04/washington-state-takes-stron-gest-clean-commercial-building-action-nation.Simonen,K.,Rodriguez,B.,Barrera,S.,Huang,M.,McDade,E.,Strain,L.(2017)EmbodiedCarbonBenchmarkStudy.CarbonLeadershipForum.Seattle.https://carbonleadershipforum.org/lca-benchmark-database/[Accessed8July2022].Simson,K.(2022).OpeningremarksbyCommissionerSim-sonattheEnergyCouncilpressconferenceof27June2022.Availableat:https://ec.europa.eu/commission/presscorner/detail/en/SPEECH_22_4162[Accessed:9July2022].SouthAfricaToday(2019).SustainablearchitectureinSouthAfrica.SouthAfricaToday26February.Availableat:https://southafricatoday.net/business/sustainable-architec-ture-in-south-africa/[Accessed:10July2022].S&PGlobal(2022).Washingtonstatetorequireelectricheat-inginbuildingcodeupdate.NewYork:S&PGlobal.Avail-ableat:https://www.spglobal.com/marketintelligence/en/news-insights/latest-news-headlines/washington-state-to-require-electric-heating-in-building-code-update-69960737[Accessed:27October2022]Steele,M.2021.TheRiseofReachCodes.Availableat:https://epicenergyblog.com/2021/08/16/the-rise-of-reach-codes/[Accessed:15August2022].Susca,T.(2019).Greenroofstoreducebuildingenergyuse?Areviewonkeystructuralfactorsofgreenroofsandtheireffectsonurbanclimate.BuildingandEnvironment162,p.106273.Availableat:https://www.sciencedirect.com/science/article/pii/S0360132319304834[Accessed:14July2022].SustainableEnergyAfrica(2018).GreenBuildinggoesNet-Ze-roCarbonSustainableEnergyAfrica.CapeTown:SustainableEnergyAfrica.Availableat:https://www.sustainable.org.za/resource.php?id=65.Svendsen,A.(2022).Roadmapforanenergyefficient,low-carbonbuildingsandconstructionsectorinIndonesia.Jakarta.Availableat:https://globalabc.org/sites/default/files/2022-08/Roadmap%20for%20an%20Energy%20Effi-cient%2C%20Low-Carbon%20Buildings%20and%20Construc-tion%20Sector%20in%20Indonesia.pdfTams,L.,Nehls,T.andCalheiros,C.S.C.(2022).Rethinkinggreenroofs-naturalandrecycledmaterialsimprovetheircarbonfootprint.BuildingandEnvironment219,p.109122.Availableat:https://linkinghub.elsevier.com/retrieve/pii/S0360132322003596[Accessed:8July2022].972022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTIONTheCommonwealth(2022).DeclarationonSustainableUr-banism.London:TheCommonwealth.Availableat:https://production-new-commonwealth-files.s3.eu-west-2.ama-zonaws.com/s3fs-public/2022-06/Declaration%20on%20Sustainable%20Urbanisation.pdf?VersionId=ysAebS4bd3N-hgPsbua6PDQg84Mb8DIYf.TradingEconomics(2022a).Crudeoilfutures.Availableat:https://tradingeconomics.com/commodity/crude-oil.TradingEconomics(2022b).Naturalgasfutures.Availableat:https://tradingeconomics.com/commodity/natural-gas[Ac-cessed:28May2022].TradingEconomics(2022c).Worldinflationrates.Availableat:https://tradingeconomics.com/country-list/inflation-rate?-continent=world[Accessed:28May2022].TrinidadandTobagoBureauofStandards(2022).DraftNa-tionalStandardforPublicComment.Macoya:TrinidadandTobegoBureauofStandards.Availableat:https://gottbs.com/2022/01/25/draft-national-standard-for-public-com-ment-trinidad-and-tobago-energy-efficiency-building-code/[Accessed:15August2022].Ulbrich,C.andvanOostrom,C.(2021).GreenBuildingPrinci-ples:TheActionPlanforNet-ZeroCarbonBuildings.Geneva:WorldEconomicFoundation.nUnitedKingdom,DepartmentforBusiness,Energy&Indus-trialStrategy(2022a).MonthlyStatisticsofBuildingMate-rialsandComponents.London:DepartmentofBusiness,En-ergy,andIndustrialStrategy.Availableat:https://www.data.gov.uk/dataset/75ee36ed-21f7-4d7b-9e7c-f5bf4546145d/monthly-statistics-of-building-materials-and-components.UnitedKingdom,DepartmentforBusiness,Energy&In-dustrialStrategy(2022b).PublicSectorDecarbonisationScheme.London:DepartmentofBusiness,Energy,andIndustrialStrategy.Availableat:https://www.gov.uk/govern-ment/collections/public-sector-decarbonisation-scheme.UnitedNationsEconomicCommissionforEurope(2020).Up-datedFrameworkGuidelinesforEnergyEfficiencyStandardsinBuildings.Geneva:UnitedNationsEconomicCommissionforEurope.Availableat:https://unece.org/documents/2020/12/updated-framework-guidelines-energy-efficiency-stan-dards-buildings[Accessed:15August2022].UnitedNationsFrameworkConventiononClimateChange(2015).AdoptionoftheParisAgreement,21stConferenceoftheParties.Bonn:UnitedNationsFrameworkConventiononCli-mateChange..Availableat:https://unfccc.int/process/confer-ences/pastconferences/paris-climate-change-conference-no-vember-2015/paris-agreement[Accessed:1September2022].UnitedNationsFrameworkConventiononClimateChange(2021).NationallyDeterminedContributionsundertheParisAgreement.SynthesisReportbytheSecretariat.Bonn:UnitedNationsFrameworkConventiononClimateChange.Availableat:https://unfccc.int/documents/306848.UnitedNationsFrameworkConventiononClimateChange(2022a).GlasgowClimatePact.Bonn:UnitedNationsFrame-workConventiononClimateChange.Availableat:https://unf-ccc.int/sites/default/files/resource/cma2021_10_add1_adv.pdf.UnitedNationsFrameworkConventiononClimateChange(2022b).NDCRegistry.Bonn:UnitedNationsFrameworkCon-ventiononClimateChange.Availableat:https://unfccc.int/NDCREG[Accessed:28June2022].UnitedNationsFrameworkConventiononClimateChange,GlobalClimateAction,andMarrakechPartnership(2021).Cli-mateActionPathway:HumanSettlementsActionTable.Bonn:UnitedNationsFrameworkConventiononClimateChange.Availableat:https://unfccc.int/sites/default/files/resource/HS_ActionTable_2.1.pdf.UnitedNationsChildren'sFund(2021).UNICEFlaunchesgloballyaUSUSD9.4billionemergencyfundingappealforchildrenaffectedbyconflict,theclimatecrisisandCOVID-19.7December.Availableat:https://www.unicef.org/iraq/press-releases/unicef-launches-globally-us94-billion-emer-gency-funding-appeal-children-affected.UnitedNationsEnvironmentProgramme(2021).2021GlobalStatusReportforBuildingsandConstruction:TowardsaZe-ro-emission,EfficientandResilientBuildingsandConstruc-tionSector.Nairobi:UnitedNationsEnvironmentProgramme.Availableat:https://globalabc.org/resources/publica-tions/2021-global-status-report-buildings-and-construction.UnitedStatesofAmerica,EnergyInformationAdministra-tion(2016).Consumptionandgrossenergyintensitybybuildingsizeforsumofmajorfuels,2012.Availableat:https://www.eia.gov/consumption/commercial/data/2012/c&e/cfm/c11.phpUnitedStatesofAmerica,OfficeoftheChiefFinancialOffi-cer(2020).FY2020BudgetJustification.OfficeoftheChiefFinancialOfficer.Availableat:https://www.energy.gov/cfo/articles/fy-2021-budget-justification.UnitedStatesofAmerica,TheWhiteHouse(2022a).Biden-Har-risAdministrationLaunchesInitiativetoModernizeBuildingCodes,ImproveClimateResilience,andReduceEnergyCosts.Availableat:https://www.whitehouse.gov/briefing-room/statements-releases/2022/06/01/fact-sheet-biden-har-ris-administration-launches-initiative-to-modernize-build-ing-codes-improve-climate-resilience-and-reduce-ener-gy-costs/[Accessed:15August2022].UnitedStatesofAmerica,TheWhiteHouse(2022b).Bythenumbers:TheInflationReductionAct.Washington,D.C:TheWhiteHouse.Availableat:https://www.whitehouse.gov/brief-ing-room/statements-releases/2022/08/15/by-the-num-bers-the-inflation-reduction-act/.Verdinez,D.(2022).USGBCAnnouncesMorethan23MillionSquareFeetofLEEDCertifiedNetZeroSpace.Washington,DC:U.S.GreenBuildingCouncil.Availableat:https://www.usgbc.org/articles/usgbc-announces-more-23-million-square-feet-leed-certified-net-zero-space[Accessed:10July2022].Verma,A.,Jaiswal,Y.K.andWani,K.A.(2012).EnergyCon-sumptionBehaviourofanUrbanResidentialSectorintheNorthernProvinceofMadhyaPradesh(India).IndoorandBuiltEnvironment21(5),pp.703–709.Availableat:http://journals.sagepub.com/doi/10.1177/1420326X11425964[Ac-cessed:12August2022].982022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTIONVidal,J.(2018).The100millioncity:is21stcenturyurban-isationoutofcontrol?TheGuardian19March.Availableat:https://www.theguardian.com/cities/2018/mar/19/urban-ex-plosion-kinshasa-el-alto-growth-mexico-city-bangalore-la-gos[Accessed:2July2022].Wasser,M.(2022).Mass.isdraftinganewclimate-friend-lybuildingcode.Here’swhatyouneedtoknow.wbur.org17March.Availableat:https://www.wbur.org/news/2022/03/17/massachusetts-energy-environmental-building-code-pro-posal-explainer[Accessed:15August2022].Whittinghill,L.J.,Rowe,D.B.,Schutzki,R.andCregg,B.M.(2014).Quantifyingcarbonsequestrationofvariousgreenroofandornamentallandscapesystems.LandscapeandUr-banPlanning123,pp.41–48.Availableat:https://linkinghub.elsevier.com/retrieve/pii/S0169204613002296[Accessed:8July2022].WorldBank(2018).Populationlivinginslums(%ofurbanpopulation)-Sub-SaharanAfricaData.Availableat:https://data.worldbank.org/indicator/EN.POP.SLUM.UR.ZS?loca-tions=ZG[Accessed:9August2022].WorldBusinessCouncilforSustainableDevelopment(2021).ReflectionsfromCOP26:Howwecantransformthebuilten-vironmenttonetzero.Availableat:https://www.wbcsd.org/Overview/News-Insights/WBCSD-insights/Reflections-from-COP26-How-we-can-transform-the-built-environment-to-net-zero.WorldEconomicForum,J.(2022).GreenBuildingPrinciples:TheActionPlanforNet-ZeroCarbonBuildings.Availableat:https://www.weforum.org/nzcc/building-value-framework/[Accessed:3July2022].Yang,W.andLi,J.(2021).WhatChina’sCarbonNeutralityMeansforitsBuildingStock.Availableat:https://www.build-ingsandcities.org/insights/commentaries/cop26-china.html[Accessed:15August2022].Yemeli,F.(2021).OneAirportSquare,anUltra-GreenOfficeBuildinginGhanabyMarioCucinellaArchitects.GhanaAr-chitectureNews.Availableat:https://worldarchitecture.org/article-links/evmfz/one-airport-square-an-ultra-green-of-fice-building-in-ghana-by-mario-cucinella-architects.html[Accessed:10July2022].Zero-Code(2022).AbouttheZeroCode.Availableat:https://zero-code.org/about/[Accessed:15August2022].Zeufack,A.G.,Calderon,C.,Kambou,G.,Djiofack,C.Z.,Kubota,M.,Korman,V.andCantuCanales,C.(2020).Africa’sPulse,No.21,Spring2020:AnAnalysisofIssuesShapingAfrica’sEconomicFuture.Washington,DC:WorldBank.Availableat:https://openknowledge.worldbank.org/handle/10986/33541[Accessed:16August2022].Zhang,Z.1997.EnergyefficiencyandenvironmentalpollutionofbrickmakinginChina.Energy22(1),pp.33–42.doi:10.1016/S0360-5442(96)00078-3.Zourabichvili,S.(2020).LawofGeorgiaonEnergyEfficiencyofBuildings.Tblisi:GovernmentofGeorgia.,p.No5900-.Availableat:http://www.matsne.gov.ge.992022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTIONANNEX:GLOBALBUILDINGSCLIMATETRACKERTheobjectiveoftheGlobalBuildingsClimateTracker(GBCT)istoshowtheworldwidedecarbonizationprogressofbuildings.ThetrackerisdesignedasacompositeindicatorbasedontheOECDapproach(OECDandJointResearchCommission2008)andisthereforereferredtoasa“decarbonizationindex”forbuildingsandconstruction.TheGBCT’sdevelopmentisbasedonextensivedataresearchusingglobaldatasetsthatarecriticallyevaluatedtoensuretheirquality(fordetails,seeBPIE2020a).Theidentifieddatasourcesarecheckedformeasurability,sourceofdata,geographiccoverageand,since2021,sensitivitytochangeanddatacontinuity.Thedecarbonizationindexiscomposedofsevenindicators:1.Globalbuildingssectorenergy-relatedemissions(GtCO2/year)2.Globalbuildingssectorenergyintensity(kWh/m2/year)3.Renewableenergyshareinfinalenergyinbuildings,globally(percent)4.Buildingcodesandregulations(cumulativegrowth)5.Incrementalenergyefficiencyinvestmentsinbuildings,globally(billiondollars/year)6.NDCswithbuildingssectoraction(numberofcountries)7.Greenbuildingcertifications(cumulativegrowth).Theseindicatorsmeasurethe“impacts”and“actions”ofdecarbonizationefforts.DecarbonizationimpactisdefinedasanoutcomeoftheeffortsthatinfluenceCO2emissions,finalenergydemandortheshareofrenewableenergysourcesusedinbuildings.DecarbonizationactionisdefinedasthoseeffortsthataimtocontributetoorenablethereductionofCO2emissionssuchaspolicyandindustryactions.Toformthedecarbonizationindex,allindicatorsareaggregated.Aweightingforeachindicatorisfactoredintotheindexcompositionandrepresentstherelativeimportanceofeachindicatorintheindex.Theindicatorsarealsonormalizedusingthedefinitionofthebase-year(2015)valuesandthetarget(2050)valuesthatrepresentfulldecarbonization.ForafulldescriptionanddiscussionoftheGBCTapproachandmethods,seetheseparatemethodologypaperinBPIE(2020a).Updatedindicatorsinthedecarbonizationindexinthe2022GlobalStatusReportforBuildingsandConstruction:GREENBUILDINGCERTIFICATIONInadditiontocertificationschemespreviouslyusedintheindicatorcomposition,severalnewoneshavebeenaddedtoimproveglobalrepresentation.Therisingtrendofgreenbuildingcertificationinthebuildingssectorwouldbebettercapturedifdatawereavailableandtransparentfrommostofthelargestschemesworldwide.However,thisisnotthecase.Despiteindividualresearch,theannualnumberofnewcertificationswasnotavailableforanumberofschemes.Theindicatorcurrentlyincludesatotalof14datasets.Theseincludethesixglobalfrontrunners–LEED,BREEAM,DGNB,PassiveHouse,WELLandEDGE–aswellassixrelativelydevelopednationalschemes:MINERGIE(Switzerland),IGBC(India),Miljöbyggnad(Sweden),BEAMPlus(HongKong),GREENSTAR(Australia)andCASBEE(Japan).Theyalsoincludetwomorelocallyadoptedschemes:SGBF(SaudiArabia)andGRIHA(India).Toaccountforthisdiversity,theindicatorwascalculatedconsideringboththeschemes’geographiccoverage,andtheirnumberofcertifications.BUILDINGCODESANDREGULATIONSThisyear’sversionoftheindicator“Buildingenergycodesandstandards”considersonlythenumberofcountrieswithbuildingenergycodesandstandardsinplace.Thiscountprovidesanapproximateassessmentofthebuildingssectoreffortstowardsdecarbonization.Lastyearanadditionalelement,“Qualitycontrolbefore,afterandduringconstruction”,wasaddedtotrackregulatorymeasuresinplaceinacountrythatensurequalitymanagementinconstruction.However,asannouncedlastyear,thedataonthiselementwasdiscontinuedbyitssourceindefinitely,soithasbeenexcludedfromtheindicatorcalculationsthisyear.1002022GLOBALSTATUSREPORTFORBUILDINGSANDCONSTRUCTIONUnitedNationsAvenue,GigiriP.O.Box30552,00100Nairobi,KenyaTel.+254207621234unep-publications@un.orgwww.unep.orgPhotocredit:PawelCzerwinski