20221011世界气象组织《2022年气候服务状况:能源》VIP专享VIP免费

2022 STATE OF
CLIMATE SERVICES
ENERGY
Contributors / Publishing details
Report Editorial Board (WMO): Johannes Cullmann, Maxx Dilley, Paul Egerton, Veronica F. Grasso, Cyrille Honoré,
Filipe Lúcio, Jürg Luterbacher, Clare Nullis, Brigitte Perrin, Mary Power, Anthony Rea, Johan Stander
Scientic review: WMO Study Group on Integrated Energy Services (SG-ENE)
Scientic editors: Maxx Dilley, Veronica F. Grasso, Tom Idle, Nakiete Msemo
Project coordination team (WMO): Veronica F. Grasso, Roberta Boscolo, Maxx Dilley, Hamid Bastani, Nakiete Msemo;
DWD: Tobias Fuchs; ENEL Foundation: Carlo Papa, Claudio Pregagnoli, Luca Spinosa; WEMC: Alberto Troccoli
Agence Francaise de Développement (AFD): Julie Bompas, Marie-Noelle Woillez
Adaptation Fund (AF): Alyssa Maria Gomes, Saliha Dobardzic, Claudia Lasprilla Pina
Barcelona Supercomputing Center (BSC): Albert Soret, Ilaria Vigo
Climate Investment Funds (CIF): Abhishek Bhaskar, Xianfu Lu, Loreta Rufo
Climate Policy Initiative (CPI): Baysa Naran, Morgan Richmond
Copernicus Climate Change Service, European Centre for Medium-Range Weather Forecasts
(C3S, ECMWF): Chiara Cagnazzo
Deutscher Wetterdienst (DWD): Tobias Fuchs, Frank Kaspar
Electric Power Research Institute (EPRI): Delavane Diaz, Laura Fischer, Rachel Gantz, Mike Howard, Morgan Scott
Électricité de France (EDF): Sylvie Parey
ENEL Foundation: Carlo Papa, Claudio Pregagnoli, Luca Spinosa
Energy Sector Management Assistance Program of the World Bank (ESMAP): Elisa Portale, Jiyun Park, Stephen Halloway
Global Energy Interconnection Development and Cooperation Organization (GEIDCO): Han Huang, Changyi Liu, Xian Tan,
Zijian Zhao, Fang Yang, Jinyu Xiao, Zhanghua Zheng
Graduate Institute of International and Development Studies: Isha Bhasin, rôme Duberry, Medha Manish, Emma
Leonarda Magdalena Nijssen, Sekela Salome Ombura
Green Climate Fund (GCF): Monica Gullberg, Edson Hlatshwayo, Joseph Intsiful, Carol Litwin
Global Environment Facility (GEF): Aloke Barnwal, Fareeha Iqbal
Group on Earth Observations (GEO): Hesham M. El-Askary (Chapman University), Stelios Kazadzis (Physics and Meteor.
Obs. Davos/World Radiation Center), Charalampos (Haris) Kontoes (National Observatory of Athens), Thierry Ranchin
(MINES Paris), Sara Venturini
International Atomic Energy Agency (IAEA): Bertrand Magne, Henri Paillere
International Energy Agency (IEA): Jinsun Lim, Chiara D’Adamo
International Hydropower Association (IHA): Alex Campbell, Debbie Gray
International Renewable Energy Agency (IRENA): Claire Kiss, Imen Gherboudj, Elizabeth Press
Open Hydro: Maria Ubierna, Cristina Diez
seau de Transport d’Electricité (RTE): Laurent Dubus
Sustainable Energy for All (SE4ALL): Alvin Jose
UN-Energy: Bahareh Seyedi, Minoru Takada
World Energy & Meteorology Council (WEMC): Alberto Troccoli
Graphic Design: Design Plus
WMO-No. 1301
© World Meteorological Organization, 2022
The right of publication in print, electronic and any other form and in any language is reserved by WMO. Short extracts
from WMO publications may be reproduced without authorization, provided that the complete source is clearly indicated.
Editorial correspondence and requests to publish, reproduce or translate this publication in part or in whole should be
addressed to:
Chair, Publications Board
World Meteorological Organization (WMO)
7 bis, avenue de la Paix Tel.: +41 (0) 22 730 84 03
P.O. Box 2300 Fax: +41 (0) 22 730 81 17
CH-1211 Geneva 2, Switzerland Email: publications@wmo.int
ISBN 978-92-63-11301-6
NOTE
The designations employed in WMO publications and the presentation of material in this publication do not imply the
expression of any opinion whatsoever on the part of WMO concerning the legal status of any country, territory, city or
area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specic companies
or products does not imply that they are endorsed or recommended by WMO in preference to others of a similar nature
which are not mentioned or advertised. The ndings, interpretations and conclusions expressed in WMO publications
with named authors are those of the authors alone and do not necessarily reect those of WMO or its Members.
Photo: Appolinary Kalashnikova/Unsplash
Contents
Foreword 4
Executive summary 5
Data and methods 8
Value 9
Global status 11
Priorities and needs 21
Investment 24
Regional overview 26
Gaps 30
Recommendations 31
Case studies 33
Case study 1: Climate services to support long-term energy planning for climate change impacts on European
power systems 33
Case study 2: EDF is coordinating climate adaptation at a group level 34
Case study 3: Climate proofing of local development and investment plans in the Dolomites 35
Case study 4: Integrated weather services for offshore wind power production in China 36
Case study 5: Early weather warnings to safeguard electricity supply for Beijing 37
Case study 6: A solar atlas to guide energy management and planning in Egypt 38
Case study 7: Earth observation-based services to support long-term planning for European energy systems 39
Case study 8: Rural solar electrification in Mali 40
Case study 9: Climate services supporting renewable energy applications in Germany’s transport infrastructure 41
Case study 10: Sector-specific localized wind resource information to aid wind industry decision-making process 42
Case study 11: Supporting climate-resilient hydropower operations with hydrometeorological data analytics in Tajikistan 43
Case study 12: Supporting the uptake of hybrid renewable energy systems in South Africa 44
Case study 13: A global platform assessing the potential installed capacity of hydrology, wind and solar energy 45
Case study 14: Sub-seasonal and seasonal forecasting helps clean-energy companies make better decisions 46
Case study 15: An energy interconnection is promoting climate mitigation and sustainable development in Africa 47
Case study 16: Weather information and services helped the Beijing Winter Olympics achieve a 100% green
electricity supply 48
Case study 17: Enhancing adaptive capacity of Andean communities in Chile, Peru and Colombia 49
2022STATEOFCLIMATESERVICESENERGYContributors/PublishingdetailsReportEditorialBoard(WMO):JohannesCullmann,MaxxDilley,PaulEgerton,VeronicaF.Grasso,CyrilleHonoré,FilipeLúcio,JürgLuterbacher,ClareNullis,BrigittePerrin,MaryPower,AnthonyRea,JohanStanderScientificreview:WMOStudyGrouponIntegratedEnergyServices(SG-ENE)Scientificeditors:MaxxDilley,VeronicaF.Grasso,TomIdle,NakieteMsemoProjectcoordinationteam(WMO):VeronicaF.Grasso,RobertaBoscolo,MaxxDilley,HamidBastani,NakieteMsemo;DWD:TobiasFuchs;ENELFoundation:CarloPapa,ClaudioPregagnoli,LucaSpinosa;WEMC:AlbertoTroccoliAgenceFrancaisedeDéveloppement(AFD):JulieBompas,Marie-NoelleWoillezAdaptationFund(AF):AlyssaMariaGomes,SalihaDobardzic,ClaudiaLasprillaPinaBarcelonaSupercomputingCenter(BSC):AlbertSoret,IlariaVigoClimateInvestmentFunds(CIF):AbhishekBhaskar,XianfuLu,LoretaRufoClimatePolicyInitiative(CPI):BaysaNaran,MorganRichmondCopernicusClimateChangeService,EuropeanCentreforMedium-RangeWeatherForecasts(C3S,ECMWF):ChiaraCagnazzoDeutscherWetterdienst(DWD):TobiasFuchs,FrankKasparElectricPowerResearchInstitute(EPRI):DelavaneDiaz,LauraFischer,RachelGantz,MikeHoward,MorganScottÉlectricitédeFrance(EDF):SylviePareyENELFoundation:CarloPapa,ClaudioPregagnoli,LucaSpinosaEnergySectorManagementAssistanceProgramoftheWorldBank(ESMAP):ElisaPortale,JiyunPark,StephenHallowayGlobalEnergyInterconnectionDevelopmentandCooperationOrganization(GEIDCO):HanHuang,ChangyiLiu,XianTan,ZijianZhao,FangYang,JinyuXiao,ZhanghuaZhengGraduateInstituteofInternationalandDevelopmentStudies:IshaBhasin,JérômeDuberry,MedhaManish,EmmaLeonardaMagdalenaNijssen,SekelaSalomeOmburaGreenClimateFund(GCF):MonicaGullberg,EdsonHlatshwayo,JosephIntsiful,CarolLitwinGlobalEnvironmentFacility(GEF):AlokeBarnwal,FareehaIqbalGrouponEarthObservations(GEO):HeshamM.El-Askary(ChapmanUniversity),SteliosKazadzis(PhysicsandMeteor.Obs.Davos/WorldRadiationCenter),Charalampos(Haris)Kontoes(NationalObservatoryofAthens),ThierryRanchin(MINESParis),SaraVenturiniInternationalAtomicEnergyAgency(IAEA):BertrandMagne,HenriPaillereInternationalEnergyAgency(IEA):JinsunLim,ChiaraD’AdamoInternationalHydropowerAssociation(IHA):AlexCampbell,DebbieGrayInternationalRenewableEnergyAgency(IRENA):ClaireKiss,ImenGherboudj,ElizabethPressOpenHydro:MariaUbierna,CristinaDiezRéseaudeTransportd’Electricité(RTE):LaurentDubusSustainableEnergyforAll(SE4ALL):AlvinJoseUN-Energy:BaharehSeyedi,MinoruTakadaWorldEnergy&MeteorologyCouncil(WEMC):AlbertoTroccoliGraphicDesign:DesignPlusWMO-No.1301©WorldMeteorologicalOrganization,2022Therightofpublicationinprint,electronicandanyotherformandinanylanguageisreservedbyWMO.ShortextractsfromWMOpublicationsmaybereproducedwithoutauthorization,providedthatthecompletesourceisclearlyindicated.Editorialcorrespondenceandrequeststopublish,reproduceortranslatethispublicationinpartorinwholeshouldbeaddressedto:Chair,PublicationsBoardWorldMeteorologicalOrganization(WMO)7bis,avenuedelaPaixTel.:+41(0)227308403P.O.Box2300Fax:+41(0)227308117CH-1211Geneva2,SwitzerlandEmail:publications@wmo.intISBN978-92-63-11301-6NOTEThedesignationsemployedinWMOpublicationsandthepresentationofmaterialinthispublicationdonotimplytheexpressionofanyopinionwhatsoeveronthepartofWMOconcerningthelegalstatusofanycountry,territory,cityorarea,orofitsauthorities,orconcerningthedelimitationofitsfrontiersorboundaries.ThementionofspecificcompaniesorproductsdoesnotimplythattheyareendorsedorrecommendedbyWMOinpreferencetoothersofasimilarnaturewhicharenotmentionedoradvertised.Thefindings,interpretationsandconclusionsexpressedinWMOpublicationswithnamedauthorsarethoseoftheauthorsaloneanddonotnecessarilyreflectthoseofWMOoritsMembers.Photo:AppolinaryKalashnikova/UnsplashContentsForeword4Executivesummary5Dataandmethods8Value9Globalstatus11Prioritiesandneeds21Investment24Regionaloverview26Gaps30Recommendations31Casestudies33Casestudy1:Climateservicestosupportlong-termenergyplanningforclimatechangeimpactsonEuropeanpowersystems33Casestudy2:EDFiscoordinatingclimateadaptationatagrouplevel34Casestudy3:ClimateproofingoflocaldevelopmentandinvestmentplansintheDolomites35Casestudy4:IntegratedweatherservicesforoffshorewindpowerproductioninChina36Casestudy5:EarlyweatherwarningstosafeguardelectricitysupplyforBeijing37Casestudy6:AsolaratlastoguideenergymanagementandplanninginEgypt38Casestudy7:Earthobservation-basedservicestosupportlong-termplanningforEuropeanenergysystems39Casestudy8:RuralsolarelectrificationinMali40Casestudy9:ClimateservicessupportingrenewableenergyapplicationsinGermany’stransportinfrastructure41Casestudy10:Sector-specificlocalizedwindresourceinformationtoaidwindindustrydecision-makingprocess42Casestudy11:Supportingclimate-resilienthydropoweroperationswithhydrometeorologicaldataanalyticsinTajikistan43Casestudy12:SupportingtheuptakeofhybridrenewableenergysystemsinSouthAfrica44Casestudy13:Aglobalplatformassessingthepotentialinstalledcapacityofhydrology,windandsolarenergy45Casestudy14:Sub-seasonalandseasonalforecastinghelpsclean-energycompaniesmakebetterdecisions46Casestudy15:AnenergyinterconnectionispromotingclimatemitigationandsustainabledevelopmentinAfrica47Casestudy16:WeatherinformationandserviceshelpedtheBeijingWinterOlympicsachievea100%greenelectricitysupply48Casestudy17:EnhancingadaptivecapacityofAndeancommunitiesinChile,PeruandColombia49Photo:AppolinaryKalashnikova/UnsplashPhoto:ZbynekBurival/UnsplashWMOhasissuedannualreportsonthestateofclimateservicessince2019inordertoprovidescientifically-basedinformationtosupportclimateadaptationandmitigation.This2022editionoftheWMOStateofClimateServicesreportfocusesontheissueofenergy,asubjectthatcontinuestodominatediscussionanddebateasitaffectseverysinglecommunity,business,sectorandeconomicsector,inallpartsoftheworld.Energyisattheveryheartofourresponsetothe2030AgendaforSustainableDevelopmentandtheParisAgreementonclimatechange.Giventhattheenergysectorcontributesaroundthreequartersofglobalgreenhousegasemissions,switchingtocleanformsofenergygeneration,suchassolar,windandhydropower–andimprovingenergyefficiency–isabsolutelyvitalifwearetothriveinthetwenty-firstcentury.Netzeroistheaim.Butwewillonlygetthereifwedoublethesupplyoflow-emissionselectricitywithinthenexteightyears.Aswehighlightinthisreport,weather,waterandclimateserviceswillbeincreasinglyimportantastheworldtransitionstonetzero.Asweexplore–throughdata,analysisandaseriesofcasestudies–countriesareabletoimprovetheirenergyinfrastructure,resilienceandsecuritythroughbetterclimateservices–supportedbysustainableinvestments.EarlyweatherwarningsaresafeguardingenergysupplyinBeijing,China.ClimatestresstestsareensuringelectricityissuitablydistributedintheItalianDolomites.WarningsystemsinTajikistanareprovidingadvancenoticeofdryconditionsforhydropoweroperationsplanning.Buttherearehugeopportunitiestogofurtherandfaster,investinginclimateservicestoscaleupourresiliencetoclimatechange,increasecleanenergygenerationandsafeguardasustainablefuture.Timeisnotonoursideandourclimateischangingbeforeoureyes.Sustainableenergysecurityandreachingnetzeroby2050willmeanacompletetransformationoftheglobalenergysystem–andweather,waterandclimateserviceswillplayacrucialrole.Prof.PetteriTaalas,Secretary-General,WMO4Photo:GustavoQuepon/UnsplashExecutivesummary12021oneofthesevenwarmestyearsonrecord,WMOconsolidateddatashows2IPCCAR6WorkingGroupIIpressrelease3GlobalEnergyReview:CO2Emissionsin20214RenewableEnergyandClimateChange5ClimateResilience6IAEA,ClimateChangeandNuclearPower,SecuringCleanEnergyforClimateResilience(inpress)7ClimateResilience8WorldEnergyOutlook20219WorldEnergyOutlook202110WaterStressThreatensNearlyHalftheWorld’sThermalPowerPlantCapacity11UsingtheWWFWaterRiskFiltertoScreenExistingandProjectedHydropowerProjectsforClimateandBiodiversityRisks12GlobalLandscapeofClimateFinance202113GlobalEnergyReview:CO2Emissionsin202114WMOGreenhouseGasBulletin,No.1715NetZeroby2050:ARoadmapfortheGlobalEnergySector16WorldEnergyTransitionsOutlook17COP26climatepledgescouldhelplimitglobalwarmingto1.8°C,butimplementingthemwillbethekeyThepastsevenyearshavebeenthewarmestonrecord.1AccordingtotheIntergovernmentalPanelonClimateChange(IPCC),human-inducedclimatechangeiscausingdangerousandwidespreaddisruptioninnatureandaffectingthelivesofbillionsofpeoplearoundtheworld.2Thereisnowconsensusthatwithoutimmediateandstrongreductionsingreenhousegas(GHG)emissions,limitingglobalwarmingto2°Cisbeyondreach.AsitaccountsforalmostthreequartersofglobalGHGemissions,majortransitionsarerequiredintheenergysector.3Energyisattheheartofthechallengesofachievingboththe2030AgendaforSustainableDevelopmentandtheParisAgreementonclimatechange.Renewableenergysourcesandenergyefficiencyplayakeyroleinprovidingenergyservicesinasustainablemannerand,inparticular,inmitigatingagainstandadaptingtoclimatechange.4CLIMATECHANGEISPUTTINGENERGYSECURITYATRISKGLOBALLYInthemidstoftheracetonetzeroemissions(NZE),theimpactofglobaltemperatureincreasecontinuestoraiseconcernsaboutenergysecurity.Changesinclimateposesignificantriskstotheenergysector,directlyaffectingfuelsupply,energyproduction,physicalresilienceofcurrentandfutureenergyinfrastructure,andenergydemand.5Heatwavesanddroughtsassociatedwithanthropogenicclimatechangearealreadyputtingexistingenergygenerationunderstress,makingthenetzerotransitionevenmoreurgent.6In2020,87%ofglobalelectricitygeneratedfromthermal,nuclearandhydroelectricsystemsdirectlydependedonwateravailability.7Meanwhile,33%ofthethermalpowerplantsthatrelyonfreshwateravailabilityforcoolingarealreadylocatedinhighwaterstressareas.8Thisisalsothecasefor15%ofexistingnuclearpowerplants,ashareexpectedtoincreaseto25%inthenext20years.9Elevenpercentofhydroelectriccapacityisalsolocatedinhighlywater-stressedareas.10Andapproximately26%ofexistinghydropowerdamsand23%ofprojecteddamsarewithinriverbasinsthatcurrentlyhaveamediumtoveryhighriskofwaterscarcity.11Mostcountriesarelikelytoexperiencemorefrequentorintenseextremeweather,waterandclimateevents.Thisalsoaffectsnuclearpowerplants,whichnotonlydependonwaterforcoolingbutarealsooftenlocatedinlow-lyingcoastalareasandhencearevulnerabletosea-levelriseandweather-relatedflooding.Forexample,theTurkeyPointnuclearplantinFlorida(UnitedStatesofAmerica),whichsitsrightatsealevel,willbethreatenedinthecomingdecades.InJanuary2022,massivepoweroutagescausedbyahistoricheatwaveinBuenosAires,Argentinaaffectedaround700000people.InNovember2020,freezingraincoatedpowerlinesintheFarEastoftheRussianFederation,leavinghundredsofthousandsofhomeswithoutelectricityforseveraldays.Despitetheserisks,energysecurityisalowpriorityforadaptation.Just40%ofnationallydeterminedcontributions(NDCs)submittedbyPartiestotheUnitedNationsFrameworkConventiononClimateChange(UNFCCC)prioritizeadaptationintheenergysector.Thelackofrecognitionoftheimportanceofclimateserviceshasledtoalackofdemandandfinance.Climateadaptation-focusedinvestmentsintheenergysectorremainverylow,atjustoverUS$300million,trackedperyearin2019–2020.12RENEWABLEENERGYWILLCONTRIBUTETOASUSTAINABLEFUTUREAllcountriesshouldbemakingaconcertedefforttotransitiontolow-carbonenergy.TheenergysectoristhelargestsourceofGHGemissions,accountingforalmostthreequartersofglobalemissions.13In2020,CO2concentrationsreached149%ofpre-industriallevels.14Supplyfromlow-emissionssourcesneedstodoubleby2030iftheworldistoreachnetzeroby2050,accordingtotheInternationalEnergyAgency(IEA).15Totalenergysupplywillfallbyaround7%,andaround50%(upto65%)16oftotalenergysupplywillcomefromlow-emissionsenergysourcesby2030,presentingsignificantgrowthfromthecurrentlevelofaround25%,accordingtoIEA.175Thetransitionisallthemoreimportantwhenconsideringthewater–energynexus.Thetotallifecyclewaterusedtogenerateelectricitybysolarandwindissubstantiallylowerthanformoretraditionaltechnologies,suchasthermoelectricpowerplants,eitherfossil-fuel-ornuclear-based.18Atransitiontorenewableenergythereforeconstitutesanessentialcontributiontoalleviatinggrowingglobalwaterstresses.CurrentpledgesmadebycountriesfallwellshortofwhatisneededtomeettheobjectivessetbytheParisAgreement–limitingglobalwarmingtowellbelow2°C–leavinga70%gapintheamountofemissionsreductionsneededby2030.19The3.7TWfromrenewablesin2030pledgedinthe56%ofNDCswithquantifiedrenewablepowertargets,ifimplemented,representlessthanhalfofwhatisneededtokeepthe2°Cgoalalive.ThepathwaytoreachtheParisAgreementlong-termglobalgoalontemperaturerequires7.1TWofcleanenergycapacitytobeinstalledby2030.20ThenecessarypoliciesandregulationstoenabledecarbonizationintheenergysectorarestillparticularlyweakinAfrica,SouthAmericaandAsia,accordingtotheWorldBank.21Andtherecognitionoftheneedforservicestosupportrenewableenergyisparticularlylow–just6%ofNDCsmentionclimateservicesforenergyformitigation.WEATHER,WATERANDCLIMATESERVICESARECRUCIALFORENERGYSECURITYANDTHEGLOBALENERGYTRANSITIONTOACHIEVENETZERORenewableenergysystemsareweatherandclimatedependent,sothetransitiontocleanenergycallsforimprovedclimateinformationandservicesfortheenergysector.Climateservicesareneededtoensuretheresilienceofenergysystemstoclimate-relatedshocksandtoinformmeasurestoincreaseenergyefficiency.Riskassessmentsaddressingplanningandearlywarningofadverseeventsaffectingenergysupplyanddemandcanhelppopulationstoanticipate,absorb,accommodateandrecoverfromadverseimpacts.Forexample,earlyweatherwarningscansafeguardenergysupplyinBeijing(China),climatestresstestscanensureeffectiveelectricitydistributionintheDolomitesregionofItaly,andsevereweatherwarningscanprotectoffshorewindpowerproductioninChina.Climateservicesarealsoessentialforrenewableenergy,includingfor:siteselection,resourceassessmentandfinancing;operations,maintenanceandmanagementofenergysystems;electricityintegrationintothegrid;andimpactassessmentofenergysystems.Forexample,climate18LifeCycleWaterUseforElectricityGeneration:AReviewandHarmonizationofLiteratureEstimates19COP26climatepledgescouldhelplimitglobalwarmingto1.8°C,butimplementingthemwillbethekey20IRENA,basedonanalysisofNDCs.21RegulatoryIndicatorsforSustainableEnergy22WorldEnergyOutlook202123RenewableEnergyMarketAnalysis:AfricaanditsRegions24SDG72022reportservicesareprovidingwarningsaheadofdryconditionsforhydropoweroperationsplanninginTajikistan;localizedwind-resourceinformationisaidingfull-value-chainwindindustrydecision-making;andclimateservicesaresupportingtheplacementofsolarpanelsonnoisebarriersinGermany.Seventy-ninepercentofWMOMembersprovideclimateservicesforenergy,includingsomeparticularlynotableexamples.However,lessthan50%ofMembersprovidetailoredproductsfortheenergysector,whichshowstheuntappedpotentialofNationalMeteorologicalandHydrologicalServices(NMHSs)andtheeffortsrequiredtoaddresstheemergingneedsofthissector.Specializedservicesforrenewableenergyaresub-optimal.Just25Membersmaintainadedicatedobservingnetworkforenergyservices,andonly18Membershaveaccesstoobservationalorsimulateddataonenergyfromothernationalpublic,privateand/oracademicsectorentities.Existingclimateservicesforenergysystemsneedtobeexpanded,andclimateservicesfortheenergysystemtransition,inparticular,needstrengthening.INVESTMENTSINRENEWABLEENERGYNEEDTOTRIPLEBY2050,INCLUDINGFORCLIMATESERVICESFORENERGYTheradicaltransformationoftheglobalenergysystemrequiresasignificantincreaseinannualinvestmentinenergyfromjustoverUS$2trilliongloballytoalmostUS$5trillionby2030.22Currentlevelsofinvestmentinrenewableenergyneedtoatleasttripletoputtheworldonanetzerotrajectoryby2050,accordingtotheClimatePolicyInitiative(CPI),includingforclimateservices.In2019–2020,themajorityofrenewableenergyinvestmentsweremadeintheEastAsiaandPacificregion(mainlyChinaandJapan),followedbyWesternEurope,andNorthAmerica,mainlytheUnitedStatesandCanada,accordingtoCPI.AccordingtotheInternationalRenewableEnergyAgency(IRENA)andCPI,developingandemergingeconomiescontinuetoremainunderrepresentedwhenitcomestoaccessingcleanenergyfinance.Further,only2%ofsuchinvestmentinthelasttwodecadeswasmadeinAfrica.23Internationalpublicfinancialflowstodevelopingcountriesinsupportofcleanenergydecreasedin2019forthesecondyearinarow,fallingtoUS$10.9billion.Thislevelofsupportwas23%lowerthantheUS$14.2billionprovidedin2018,25%lowerthanthe2010–2019average,andlessthanhalfofthepeakofUS$24.7billionin2017.246THEREISAHUGEOPPORTUNITYFORAFRICATOHELPCLOSETHEGAPINTHENEEDFORRENEWABLEENERGYAfricaisalreadyfacingsevereeffectsfromclimatechange,includingmassivedroughts,despitebearingtheleastresponsibilityfortheproblem.Africaaccountsforlessthan3%oftheworld’senergy-relatedCO2emissionstodateandhasthelowestemissionspercapitaofanyregion.GlobalambitionsforcuttingemissionswithdecliningcleantechnologycostsholdnewpromiseforAfrica’sfuture,withincreasingflowsofclimatefinance.AchievingAfrica’senergyandclimategoalsmeansmorethandoublingenergyinvestmentthisdecade,withahugeincreaseinadaptationaswell.25Africancountrieshostthelowestpercentageofmodernrenewablesystems(just7.6%offinalenergyconsumption),26andonly2%ofglobalinvestmentsinrenewableenergyinthelasttwodecadesweremadeinAfrica.27Yet,thecontinenthasahugeresourcepotential,particularlyforsolar28energysystems,butalsowind29andhydropower.30Theregionhashugepotentialtodeploysolarenergysystems:Africaishometo60%ofthebestsolarresourcesglobally,yetonly1%ofinstalledphotovoltaic(PV)capacity.3125AfricaEnergyOutlook202226SEforALLAnalysisofSDG7Progress-202127RenewableEnergyMarketAnalysis:AfricaanditsRegions28IRENAestimatesthecontinent’ssolartechnicalpotentialat7900GW(assuminga1%land-utilizationfactor),indicatingvastpotentialforthegenerationofsolarpower.29IRENAestimatesthetechnicalpotentialofwindpowergenerationinAfricaatanimmense461GW(assuminga1%land-utilizationfactor),withAlgeria,Ethiopia,NamibiaandMauritaniapossessingthegreatestpotential.30TheDelftUniversityofTechnologyestimatesthecontinent’sunexploitedhydropowerpotentialtobe1753GW(GlobalPotentialHydropowerLocations),withAngola,theDemocraticRepublicoftheCongo,Ethiopia,Madagascar,MozambiqueandZambialeading.31AfricaEnergyOutlook202232AfricaEnergyOutlook202233NetZeroEmissionsby2050Scenario(NZE)AccordingtoIEA,bringingaccesstomodernenergyforallAfricanscallsforinvestmentofUS$25billionperyear,whichisaround1%ofglobalenergyinvestmenttoday.32By2050,globalelectricityneedswillmainlybemetwithrenewableenergy,withsolarthesinglelargestsourceofsupply(intermsofinstalledcapacity),accordingtoIEA’sNetZeroEmissionsby2050Scenario(NZE).33Africancountrieshaveanopportunitytobemajorplayerswithinthemarket.ENERGYPOLICIESANDCOMMITMENTSNEEDTOBETTERADDRESSENERGYSECURITYINACHANGINGCLIMATEANDPROMOTETHETRANSITIONTONETZERO,INCLUDINGBYSCALINGUPCLIMATESERVICESMoreeffectiveclimateserviceswillnotonlycontributetocreatingattractivemarketconditionstoscaleuprenewableenergyinfrastructure,buttheywillalsopromotecleanenergysystemefficiencyandclimateresilience.Increased,sustainedinvestmentsinsuchservices,supportedbyrecognitionoftheneedforsuchservicesthroughenhancedpolicies,arerequiredtoachievethis.7Photo:Firmbee.com/UnsplashDataandmethods34WMOClimateServicesDashboard35GlobalSolarAtlasandGlobalWindAtlasWMOcollectsdatafromitsMembersbasedonaframeworkdevelopedbyWMOinter-governmentallyappointedexperts.ThepresentreportassessestheprogressofWMOMemberNMHSsinprovidingclimateservicesforadaptationandmitigationintheenergysectorbasedondata34currentlyavailablefor164(85%)WMOMembers,including89%oftheworld’sleastdevelopedcountries(LDCs)and56%ofsmallislanddevelopingStates(SIDS)asofMay2022.Inaddition,datafrom87WMOMembersbasedonasurveyofNMHSsconductedbytheWMOCommissionforWeather,Climate,WaterandRelatedEnvironmentalServicesandApplications(ServicesCommission)areanalysedinthePrioritiesandneedssection.Theresultspresentedinthepresentreportreflecttheprofilesofthecountrieswhichhaveprovidedthesedata.TheanalysisofclimatepolicyprioritiesisbasedonNDCssubmittedtodate(194asofMarch2022).TheanalysisisfurthercomplementedbytheUNFCCCsynthesisreportsandIRENANDCreports.ThedataforUnitedNationsSustainableDevelopmentGoal7(SDG7)arefromtheWorldBank,IEA,IRENA,theUnitedNationsStatisticsDivision(UNSD)andtheWorldHealthOrganization(WHO).ThesolarandwindresourcemapsarefromtheEnergySectorManagementAssistanceProgram(ESMAP).35DataonprivatesectordeliveryofclimateservicesfortheenergysectorarefromtheWorldEnergy&MeteorologyCouncil(WEMC).TheInvestmentsectionofthereportpresentsinformationfromtheGreenClimateFund(GCF),AdaptationFund(AF),FrenchDevelopmentAgency(AFD),ClimatePolicyInitiative(CPI)andGlobalEnvironmentFacility(GEF).Casestudiesprovidedbypartnershighlighthowclimateinformationservicesandearlywarningscontributetoimprovedclimate-relatedenergysectoroutcomes.Eachcasestudyhighlightssuccessfulapproachestoachievingsocioeconomicbenefitsthroughclimateservicesfortheenergysectoratthenational,regionalorgloballevel.SomeoftheincludedcasestudiesweresupportedbyresearchbystudentsfromtheGraduateInstituteofInternationalandDevelopmentStudies.Theresearchfocusedoncollectingdataonthesocioeconomicbenefitsofclimateservicesforenergy,throughthecollectionofinformationviadesktopreviewandstructuredcallswithserviceprovidersandusers.8Photo:Rawfilm/UnsplashValueEnergysystemsarethedrivingforceforeconomicandsocialdevelopment,andassociatedinvestmentscanrepresentasizeableportionofacountry’sGDP36Practices,NeedsandImpedimentsintheUseofWeather/ClimateInformationintheElectricitySector37EnelIntegratedAnnualReport202138EnergyExemplartotheUserInterfacePlatformoftheGlobalFrameworkforClimateServices39EnergyExemplartotheUserInterfacePlatformoftheGlobalFrameworkforClimateServices40Weiher,R.;Houston,L.;Adams,R.Socio-economicBenefitsofClimatologicalServices(Draft).UnitedStatesofAmericaContributiontotheUpdateofWMONo.424;NationalOceanicandAtmosphericAdministrationandOregonStateUniversity,2005.41EconomicValueofLong-leadStreamflowForecastsforColumbiaRiverHydropower42TailoringSeasonalClimateForecastsforHydropowerOperations43InteractionswithaWeather-sensitiveDecisionMakerEnergyisessentialtoallaspectsofhumanwelfare,includingaccesstowater,agriculturalproductivity,healthcare,education,jobcreationandenvironmentalsustainability.GHGs,suchascarbondioxide(CO2)methane(CH4)andnitrousoxide(N2O)fromtheenergysector,however,accountforthelargestshareofglobalanthropogenicGHGemissions.EmissionreductiontargetsunderUNFCCCareexpectedtosignificantlyincreasedemandforenergyfromrenewablesources,which,inturn,arehighlysensitivetoclimate,aswellastoleadtorequirementsforenergy-efficiencymeasures.Energy-sectorplanningandoperationsaremarkedlyaffectedbyweatherandclimatevariabilityandchange.Withanever-growingannualglobalenergydemand–whichsawanincreaseofabout30%inthepasttenyears–expandingenergysystemsareincreasinglyexposedtothevagariesofweatherandclimate.Electricaldistributionandtransmissionsystems,includingfortraditionalenergysources,arealsoseverelyaffectedbyextremeweather,waterandclimateevents.Improveddecision-makingthatconsidersweatherandclimateinformationcanconsiderablyincreasetheresilienceofenergysystems.Thepowersectorroutinelyusesweatherforecastsupto15days.36Beyondthistimehorizon,climatologicaldata(waterandclimatevariablestypicallycoveringalongerreferenceperiod)arecommonlyused.Relyingonclimatologyassumesthatfutureconditionswillbesimilartopastconditions.Becauseclimatechangeinvalidatesthisassumption,theenergysectoriswitnessingtheuseofincreasinglysophisticatedclimateservicesapplications,accordingtoBarcelonaSupercomputingCenter.Inthesenewnormaloperatingconditions,companiessuchasENEL37aredevelopingholisticscenarioswhichtakeintoaccounttraditionalindustrialandeconomicconsiderationsandfactorinfuturetrendsinclimatevariablesbasedontheuseofmultipleregionalclimatemodels.Suchclimateservicescanhelptosupportincreaseddevelopmentanduseofrenewableenergysourcesdistributedefficientlybysmartresilientgrids.38ThedevelopmentandapplicationoftargetedclimateproductsandservicesthroughtheGlobalFrameworkforClimateServicescansupportbothadaptationandmitigation:ÎAdaptation:•Greaterclimateresilienceandadaptationacrossthesector,duetoitsfundamentalimportanceforeconomicandsocialdevelopment.ÎMitigation:•Efficiencyandreductionofenergyconsumptionwithconsequentemissionsreductioninsupportofmitigationtargets;•Supportforthegrowingrenewablessubsector,giventheapparentclimatesensitivityofrenewablesontheonehandandthepolicypriorityaffordedtothemduetotheirGHGemissionsreductionbenefitsontheother.39Intheenergysector,studieshavedemonstratedthevalueofveryshort-term,sub-seasonalandseasonalforecasts(e.g.fortemperature,windspeed,streamflow)forfuelpurchasingdecisions,demandandgenerationforecasting,andsystemplanning.Temperatureforecastsallowmanagerstoforecastpeakloadsmoreaccuratelyandoptimallyschedulepowergenerationplantstomeetdemandsatalowercost.40Hydropoweroperationsbenefitfromdaily,weeklyandseasonalprecipitationandstreamflowforecasts,whichcanhelptooptimizeoperations.Forexample,theuseofstreamflowforecastsincreasesenergyproductionfrommajorColumbiaRiver(UnitedStates)hydropowerdamsby5.5TWh/year,resultinginanaverageincreaseinannualrevenueofapproximatelyUS$153millionperyear.41Similarly,theuseofforecaststomanagehydropoweroperationsinEthiopiaproducescumulativedecadalbenefitsrangingfromUS$1toUS$6.5billion,comparedtoaclimatological(noforecast)approach.42Inanotherexample,theuseofanElNinoSouthernOscillation(ENSO)forecastbyaheatingplantmanagerresultedinmorethanUS$500000insavingsinnaturalgaspurchasesoverthecourseofthe1997/1998northernhemispherewinterseason(basedonpredictionsofawarmwinter,theplantmanagerchosetopurchasenaturalgasonthespotmarket,ratherthanlockinaprice).439Whatareclimateservicesforenergy?44Specificallyintermsofforecastingfromamonthaheadandbeyond.45Thesearethemostrecentscientificdevelopmentintermsofforecasting.Theydifferfrom(multi-decadal)climateprojectionsmainlyintermsofthewaytheinitialconditionsoftheclimatearedefined,withdecadalforecastingstartingfromabetterdescriptionofthestateoftheclimate.46TheValueofClimateServicesacrossEconomicandPublicSectorsClimateservicesrelyontheproductionanddeliveryofrelevant,credibleandusableclimateinformation.Theenergyindustryhasextensiveexperienceusingweatherservicesbutlessexperiencewithclimateservices,44thelatterbeingamorerecentendeavour.However,inthecontextofthechangingclimateandtheenergytransition,newapproachesbasedonclimateinformationarerequired.Asenergysystemsbecomeincreasinglydependentonweathervariations,itisapparentthattheinformationflowfromweatherandclimatedataandforecastsneedstobeproperlyincorporatedintothedecisionsupportsystems(Figure1).Fromtheperspectiveofanenergysectoruser(e.g.gridoperator),severalareasbenefitfromweatherandclimateservices(seealsoFigure1):•Characterizationofpastweather/climateeventsusinghistoricaldata.Thisisperhapsthemostimportantelement,asitprovidesabaseline,orfirst-orderapproximation,ofthecurrentrisksandopportunities,andthusitiskeytomanagingenergyproductionanddistributionatpresent(especiallyconsideringtheincreasingfractionofrenewablesintheenergymixandthechangingpatternsinenergyconsumption).•Nowcasting/short-termweatherforecastsforloadbalancingbymaximizingtheusablecomponentofthegeneratedpower(e.g.byoptimizingpowergenerationbothtemporallyandspatiallyorbyreducingcurtailmentthroughuseofdynamiclinerating).•Sub-seasonaltoseasonalclimateforecastingformaintenanceofinfrastructureandresourceandriskmanagementpurposes(e.g.toensuresufficientwaterreservesareavailableforhydropowerproduction).•Decadalclimateforecasting45formulti-yearresourceriskmanagement.Theseforecastseffectivelyextendtheseasonalforecastrange,typicallytotenyearsahead,thusallowingalongerriskassessmenthorizon.•Multi-decadalclimateprojectionsforinfrastructureriskassessment,planninganddesignpurposes.Thisincludesprovidingauthoritativedataonpossibleevolutionofclimateconsideringdifferentemissionscenarios,includingthosealignedwithpolicies.Projectionsrelatedtopolicytargetsarenaturallycriticalastheyinformplanningandsupportsystemdesignincludingunderstandingtheimplicationsofunlikelybutimpactfulevents.46EXAMPLESOFAPPLICATIONSOFCLIMATESERVICESFORENERGYINCLUDE:•Planningpurchasesofgasandelectricpower;•Managingresponsesinemergencysituations;•Managingcapacityandresources(e.g.grid/distributionmanagement,electricityproduction/pricing);•Optimizingrenewablepowerplantoperation,especiallyreservoirsandhydropoweroperations;•Commercial/residentialconsumptiondecisions.46Figure1:Pastandfutureweatherandclimatedata(lowerrow)andtheirtypicaluseintheenergysector(toprow)Source:WMOBestPracticesforIntegratedWeatherandClimateServicesinSupporttoNetZeroEnergyTransition(inpress)10GlobalstatusClimatechangeisputtingenergysecurityatriskglobally47IAEA,ClimateChangeandNuclearPower,SecuringCleanEnergyforClimateResilience(inpress)48WorldEnergyOutlook202149WorldEnergyOutlook202150WaterStressThreatensNearlyHalftheWorld’sThermalPowerPlantCapacity51UsingtheWWFWaterRiskFiltertoScreenExistingandProjectedHydropowerProjectsforClimateandBiodiversityRisks52IAEA,ClimateChangeandNuclearPower,SecuringCleanEnergyforClimateResilience(inpress)InthemidstoftheracetoNZE,theimpactofrisingatmosphericGHGconcentrationsandaccompanyingchangesinotherindicators,suchasglobaltemperature,changeinextremes(frequency,duration,intensity),precipitation,sealevelandglaciermassbalance,continuestoraiseconcernsaboutenergysecurity.Climatechangesposesignificantchallengestotheenergysector,directlyaffectingfuelsupply,electricitygeneration,energyinfrastructureandenergydemand,accordingtoIEA.In2020,87%ofglobalelectricitygeneratedfromthermal,nuclearandhydroelectricsystemsdirectlydependedonwateravailability.47Meanwhile,33%ofthethermalpowerplantsthatrelyonfreshwateravailabilityforcoolingarealreadylocatedinhighwaterstressareas.48Thisisalsothecasefor15%ofexistingnuclearpowerplants,ashareexpectedtoincreaseto25%inthenext20years(Figures2and3).49Elevenpercentofhydroelectriccapacityisalsolocatedinhighlywater-stressedareas.50Andapproximately26%ofexistinghydropowerdamsand23%ofprojecteddamsarewithinriverbasinsthatcurrentlyhaveamediumtoveryhighriskofwaterscarcity.51Nuclearpowerplantsnotonlydependonwaterforcoolingbutarealsooftenlocatedinlow-lyingcoastalareasandhencearevulnerabletosea-levelriseandweather-relatedflooding.52Figure2:Locationofselectedenergy-relatedinfrastructureandwaterstresslevels,2020Source:WorldEnergyOutlook2021;IEAanalysisbasedonWRIAqueduct3.0(2019)andS&PGlobal(2021)Photo:NASA/Unsplash11Mostcountriesarelikelytoexperiencemorefrequentorintenseextremeweather,waterandclimateevents.Forexample,TurkeyPointnuclearplantinFlorida(UnitedStates),whichsitsrightatsealevel,willbethreatenedinthecomingdecades.InJanuary2022,massivepoweroutagescausedbyahistoricheatwaveinBuenosAires,Argentinaaffectedaround700000people.InNovember2020,freezingraincoatedpowerlinesintheFarEastoftheRussianFederation,leavinghundredsofthousandsofhomeswithoutelectricityforseveraldays(Figure4).Figure3:Locationofexistingnuclearsites,aswellasthoseunderconstructionandplannedSource:InternationalAtomicEnergyAgency(IAEA)analysisbasedondatafromIAEAPowerReactorInformationSystem(PRIS)database.Note:thecontoursofclimaticzonesareindicative;theirbordersarelikelytoevolvewiththechangingglobalclimate.Figure4:Impactsofextremeeventsonenergyinfrastructure12BecauseofpastandfutureGHGemissions,agradualandirreversibleriseofthesealevelwilloccurthroughoutthecenturyandwellbeyond,irrespectiveofthefuturestateoftheclimate,withconsequencesforthedesignandsitingofcurrentandfuturefacilitieslocatedoncoastlines.53Afurtherincreaseofglobalsealeveliscertain,causedbyicelossonlandandthermalexpansionfromdeepoceanwarming,withsizeablevariationsatthelocalandregionalscale.54However,increasedsealevelscouldexacerbatetheimpactsofotherunpredictablebutmorefrequentextremeweathermanifestationsunderpinninghigh-emissionsscenarios,suchaslargestormscausingcoastalflooding,stormsurges,high-watereventsaswellascoastalerosionandlandslides.Tenpercentofdispatchablegenerationfacilitiesarealreadyexposedtoseverecoastalflooding.55Over70%ofinstalledcapacitiesinoperationorunderconstructionareinthreeregions–EasternNorthAmerica,WesternandCentralEuropeandEastAsia–whichwillfaceawidevarietyofclimatehazardsinthefuture,includingextremeheatconditions,heavyprecipitation,coastalandriverfloods,andtropicalcyclones.Onthesupplyside,renewablesaredirectlydependentonthewindspeedforwindpower,onradiationandtemperatureforsolar,andonwateravailabilityforhydropower.Biomassandbiofuelavailabilityissensitivetotheclimate.Thermal53IAEA,ClimateChangeandNuclearPower,SecuringCleanEnergyforClimateResilience(inpress)54SeaLevelRiseandImplicationsforLow-LyingIslands,CoastsandCommunities,inTheOceanandCryosphereinaChangingClimate:SpecialReportoftheIntergovernmentalPanelonClimateChange;ForcingFactorsAffectingSeaLevelChangesattheCoast55WorldEnergyOutlook202156ImpactsofClimateChangeonEnergySystemsinGlobalandRegionalScenarios57ImpactsofClimateChangeonEnergySystemsinGlobalandRegionalScenarios58IAEAanalysisbasedonIAEAPRISdatabase.powerplantsrelyonwateramountandtemperaturefortheircoolingsystems.Onthedemandside,heatingandcoolingdemandsaremostlydrivenbythetemperature.Anddistributionisaffectedbyhazardssuchasstorms,heavyrainfall,strongwind,wetsnoworfrost,hightemperatures,lightningorwildfires.Thecumulativeimpactsofweather,waterandclimateonallaspectsofenergygenerationandusearethereforeconsiderable(Figure5).56Bythreateningthefunctioningoftraditionalenergysystems,morepronouncedandsevereheatwavesanddroughtsarepotentiallyamongthemostconsequentialextremeclimateconditionsforenergy.Heatwavesalterpowergenerationandtransmissionefficienciesandescalatecoolingdemand.57IAEAreportsthatoccurrencesofsevereweatherdisruptingtheoperationofnuclearpowerplantsincreasedfive-foldinthreedecades,between1990and2019(Figure6),withanotableaccelerationsince2009.58However,theresultingimpactsintermofproductionlossesdiminishedappreciablyinmanycountriesthankstoregularimprovementsinoperationalpracticesandevolvingregulatoryobligations.Figure5:Conceptualframeworkofclimateimpactsontheenergysector.CDD–coolingdegreedays;HDD–heatingdegreedays.Source:ImpactsofClimateChangeonEnergySystemsinGlobalandRegionalScenariosHydroSolarBioenergyWindThermalp-plantsTransportBuildingsSupplyDemandClimatechangeDirectdriversEnergysystemsRunoffWatertemperatureBiomassyieldCloudinessWinddensityAirtemperaturePrecipitationSolarradiationWindspeedAirpressureHumidityPrimaryenergyOtherrenewablesFossilfuelsIndustry/otherHDD/heatpatternCDD/coldpatternNuclearpowerEnergyconversionCoolingdemandHeatingdemandAirtemperatureOtherfuelplantsOtherp-plantsHydroSolarBioenergyWindThermalp-plantsTransportBuildingsSupplyDemandClimatechangeDirectdriversEnergysystemsRunoffWatertemperatureBiomassyieldCloudinessWinddensityAirtemperaturePrecipitationSolarradiationWindspeedAirpressureHumidityPrimaryenergyOtherrenewablesFossilfuelsIndustry/otherHDD/heatpatternCDD/coldpatternNuclearpowerEnergyconversionCoolingdemandHeatingdemandAirtemperatureOtherfuelplantsOtherp-plantsHydroSolarBioenergyWindThermalp-plantsTransportBuildingsSupplyDemandClimatechangeDirectdriversEnergysystemsRunoffWatertemperatureBiomassyieldCloudinessWinddensityAirtemperaturePrecipitationSolarradiationWindspeedAirpressureHumidityPrimaryenergyOtherrenewablesFossilfuelsIndustry/otherHDD/heatpatternCDD/coldpatternNuclearpowerEnergyconversionCoolingdemandHeatingdemandAirtemperatureOtherfuelplantsOtherp-plants1359HydropowerSectorClimateResilienceGuide60MoreinformationaboutClimateREADiisavailableatwww.epri.com/READi.Figure6:Reportedglobalpoweroutagesduetoweatherevents,1990–2019Source:IAEAanalysisbasedonIAEAPRISdatabaseHYDROPOWERSECTORCLIMATERESILIENCEGUIDEHydropowerfacilitiesprovideessentialadaptationservicesthatreducetheimpactsofhazardsexacerbatedbyclimatechangesuchasfloodsanddrought.Likeallinfrastructure,theymaybevulnerabletonaturaldisasters,andtheyhaveaparticulardependencyonprecipitation.Toaddressthisfact,theInternationalHydropowerAssociation(IHA)launchedtheHydropowerSectorClimateResilienceGuide59in2019.Thisguideoffersamethodologyandinter-nationalgoodpracticeguidancetohelpprojectoperatorsanddevelopersidentify,assessandmanageclimateriskstoenhancetheresilienceofproposedandexistinghydropowerprojects.Itwasdevelopedoverathree-yearperiodinconsultationwithmajorhydropowerdevelopers,ownersandoperators,intergovernmentalandnot-for-profitorganizations,internationalconsultanciesandindependentexperts.Itsupportslenders,operators,developersandpolicymakerstomakeinformeddecisionsabouthowtoplan,build,upgradeandoperatehydropowerassetsinthefaceofincreasinglyvariablehydrologicalconditions.CLIMATEREADi:ACOMMONFRAMEWORKFORPOWERCOMPANIESTOASSESSCLIMATERISKAsextremeweathereventsincreaseinfrequencyandintensity,alongwithsociety’sdependenceonelectricity,thereisanincreasingneedforacomprehensiveandconsistentapproachtophysicalclimateriskassessment.InApril,theElectricPowerResearchInstitute(EPRI)launchedanew,three-yearinitiative,ClimateREADi(PowerREsilienceandADaptationinitiative),aimingtobringmorethan50powercompaniestogetherwithglobalthoughtleadersandindustrystakeholderstodevelopacommonframeworktoaddressthischallenge.TheClimateREADiframeworkproducedfromthiseffortwillembodyacomprehensive,integratedapproachtophysicalclimateriskassessmentforthesector.Theframeworkwillprovideclimatedataguidance,directionforassessingexposureandvulnerabilityacrosstheentiretyofthepowersystem,andmethodsforprioritizinginvestmentdecisions.Itwillenableenergycompanies,regulatorsandotherstakeholderstousescience-informedinsightsinamoreconsistentwaytobetterunderstand,planfor,anddisclosefutureglobalpowersystemchallengesarisingfromthechangingenvironment.Eachofthethreeinitiativeworkstreamswillbeadvancedinparallel,scheduledtobecompletedin2025.6014Renewableenergywillcontributetoasustainablefuture61NetZeroby205062WMOGreenhouseGasBulletin,No.1763NetZeroby2050:ARoadmapfortheGlobalEnergySector64WorldEnergyTransitionsOutlook65WorldEnergyTransitionsOutlook66Consumptionoffossilfuelsinfacilitieswithoutcarboncapture,utilizationandstorage(CCUS).67WorldEnergyTransitionsOutlook68NetZeroby2050:ARoadmapfortheGlobalEnergySector69GCF’sIndonesiaGeothermalResourceRiskMitigationProjectprovidesausefulexample.70WorldEnergyTransitionsOutlook71LifeCycleWaterUseforElectricityGeneration:AReviewandHarmonizationofLiteratureEstimatesCarbondioxideemissionsfromenergycombustionandindustrialprocesseshavesteadilyincreasedfrom1900to2021(Figure7).61In2020,atmosphericCO2concentrationsreached149%ofpre-industriallevels.62ThenextdecadewillbedecisiveifthegoalsoftheParisAgreementandtheSDGsaretobeachieved.Anydelaywillleadtofurtherwarming,withprofoundandirreversibleeconomicandhumanitarianconsequences.Atransitiontolow-carbon,cleanenergyshouldbeattheheartofclimateactioninallcountries.Phasingoutunabatedcoal,limitinginvestmentsinoilandgastofacilitateaswiftdeclineandamanagedtransitionaswellasembracingtechnology,policyandmarketsolutionswillputtheglobalenergysystemontrackforanetzeropathway.AccordingtoIEA,theenergysectoristhelargestsourceofGHGemissions,accountingforalmostthreequartersofglobalemissions.Figure7:TotalCO2emissionsfromenergycombustionandindustrialprocessesandtheirannualchange,1900–2021Source:GlobalEnergyReview:CO2Emissionsin2021AmassivetransitioninthewayweproduceandconsumeenergyisrequiredtoreachNZEby2050,accordingtoIEAandIRENA.IEA’sNZEby2050roadmapprovidesapathwaytoreachthisformidableandcriticalgoal,settingoutmorethan400milestonesforwhatneedstobedone,andbywhen,todecarbonizetheglobaleconomyinjustthreedecades.63IRENA’sWorldEnergyTransitionsOutlookoutlinespriorityareasandactionsbasedonavailabletechnologiesthatmustberealizedby2030toachieveNZEbymid-century.64OnanNZEby2050pathway,theworldeconomyin2030issome40%largerthantodaybutuses7%lessenergy,duetoamajorworldwidepushtoincreaseenergyefficiency.Aroundhalfoftotalenergysupplycomesfromlow-emissionsenergysourcesby2030,whichrepresentssignificantgrowthfromthecurrentlevelofaroundonequarter.Theshareofrenewablescouldbeashighas65%by2030.65Atthesametime,energysupplyfromunabatedfossilfuels66declinesby30%between2020and2030,leadingtononewoilandgasfielddevelopmentandnonewcoalmines(Figure8).By2050,almost90%ofelectricitygenerationcomesfromrenewablesources,upfrom25%in2018,67withwindandsolarPValoneaccountingforalmost70%.Mostoftheremaindercomesfromnuclear68andnaturalgas.Othermaturerenewabletechnologies(e.g.hydropower,bioenergy,geothermal69)andemergingrenewabletechnologies(e.g.concentratingsolarpower,oceanenergy)alsoplayimportantrolesindecarbonizingtheworld’selectricitysupply.70Thetransitionisallthemoreimportantwhenconsideringthewater–energynexus.Thetotallifecyclewaterusedtogenerateelectricitybysolarandwindissubstantiallylowerthanformoretraditionaltechnologies,suchasthermoelectricgenerationtechnologies.71Atransitiontorenewableenergythereforeconstitutesanessentialcontributiontoalleviatinggrowingglobalwaterstresses.15Figure8:Transitioninglobaltotalenergysupplybysourceto2030intheNZEby2050scenario.Notes:EJ–exajoules.Otherrenewablesincludemarineandgeothermalenergy.Modernbioenergyincludesmodernsolidbiomass,liquidbiofuelsandbiogasesderivedfromsustainablesources;itexcludesthetraditionaluseofbiomass.Low-emissionscoal,oilandnaturalgasincludefuelcombustionequippedwithcarboncapture,utilizationandstorage(CCUS),aswellasfossilfuelusedinnon‐energypurposes.Non‐renewablewasteuseisnotreported.Source:WorldEnergyOutlook2021CLIMATESERVICESMINIMIZINGEMISSIONSFROMHYDROPOWERSTORAGEPROJECTSWaterstorage,whichisoftencitedasaproxyforwatersecurity,becomesevenmorerelevantunderclimatechangescenarios.72In2018,2.3billionpeoplewerelivingincountriesunderwaterstressand3.6billionpeoplefacedinadequateaccesstowateratleastonemonthperyear.By2050,thelatternumberisexpectedtoincreasetomorethan5billion.73StudiesshowthatregionswithsignificanthydrologicalvariabilityhavelowerpercapitaGDP.Waterstorageisessentialforbufferingintra-annualandinter-annualvariationsinrainfallthatotherwisesignificantlyimpacteconomicgrowth.Hydropowerstorageprojectscandelivermultiplebenefits,includingalleviatingwaterscarcity.Yet,theymustnotcontributetotheproblemofclimatechange,whichisexacerbatingwaterinsecurity.BiogenicGHGemissionscausedbytheimpoundmentofareservoircanbesignificantinsomecases.Althoughthisfacthasraisedconcernsabouthydropowerasasourceofcleanenergy,studiesconfirmthatthemedianlifecycleemissionsforhydropowerfacilitiesareaslowasforotherrenewabletechnologies.74WhilecertainhydropowerreservoirscanprovideconsiderablereductioninGHGemissionsbecauseofthedisplace-mentoffossil-fuel-basedgeneration,itisessentialtoidentifyanddefinestrategiestotackletheGHGemissionsfromhigh-emittingreservoirs.Modellingtoolscanidentifybetterlocationstominimisetheimpactofemissionsafterimpoundment.75Observationsandmonitoringarecrucialforunderstandingtheemissionspathwaysandtheeffectivenessofactionstoreducethem.Measurescanincludevegetationclearancebeforeimpoundment,sedimentinflowmanagementandvariablewaterintakes.Moderntechnologiescanevencapturemethaneemissions.ClimateservicescansupportminimizingfluctuationsinwaterlevelstoavoidincreasingGHGfluxfromthedrawdownareas.72MakingWateraPartofEconomicDevelopment:TheEconomicBenefitsofImprovedWaterManagementandServices732021StateofClimateServices:Water(WMONo.1278)74WaterSecurityandClimateChange:HydropowerReservoirGreenhouseGasEmissions75Thecarboncalculatorforreservoirs16Commitmentsfromcountriesarefallingshortofwhatisneeded76COP26climatepledgescouldhelplimitglobalwarmingto1.8°C,butimplementingthemwillbethekey77NDCsandRenewableEnergyTargetsin202178UNReportsFindUpdatedClimateCommitments“FallFarShort”ofParisGoal79Thisquantificationisbasedontargetsinnationalpolicydocuments(includingpolicies,roadmaps,plans,energystrategies,etc.),accordingtoIRENA.80IRENA,basedonanalysisofNDCs.81NDCsandRenewableEnergyTargetsin202182NDCsandRenewableEnergyTargetsin2021832019StateofClimateServices:AgricultureandFoodSecurity(WMONo.1242)842020StateofClimateServices:RiskInformationandEarlyWarningSystems(WMONo.1252)85BasedonupdatedNDCssubmittedasofAugust2021.862021StateofClimateServices:Water(WMONo.1278)CurrentpledgesmadebycountriesfallwellshortofwhatisneedtomeettheobjectivessetbytheParisAgreement–limitingglobalwarmingtowellbelow2°C–leavinga70%gapintheamountofemissionsreductionsneededby2030.76AccordingtoIRENA,74%ofcountrieshaveaquantifiedrenewableenergytargetintheirNDCs.77Butitisnotenough.Anincreaseofabout16%inglobalGHGemissionsin2030,comparedto2010,isexpectedfortheaggregateNDCsofall194Parties.Thistranslatestoaglobalaveragetemperatureriseofabout2.7°Cbytheendofthecentury.78Just56%ofNDCs(Figure9)includequantifiedrenewablepowertargetstocollectivelyreach3.7TW79ofcleanenergyprovisionby2030.ThepathwaytoreachtheParisAgreementdemandsanadditional7.1TWofcleanenergyby2030.80Mostofthecountriesthathavecommittedto100%renewablesintheirelectricitymixby2030areSIDS.81Althoughclimateisamajordriverforrenewablesdeploymentinthesecountries,increasedambitionisalsodrivenbyenergysecurityandothersocioeconomicbenefits,whichareadverselyaffectedbyimportingfossilfuels.However,thesetargetsremainconditionaloninternationalsupportintheformoffinancing,technologytransferandtechnicalassistance.AmongtheG20andotherhighemitters,onlysevenPartiesincludedtargetsrelatedtoincreasedpowersupplyfromrenewables.Ofthese,onlytwopresentedthemasashareofelectricitymix,andthoseshareswerelessthan25%.82Althoughrenewableenergysystemsareweatherandclimatedependent,whichcallsforimprovedclimateinformationandservicesfortheenergysector,thevalueofclimateservicesformitigationisonlyrecognizedby6%ofNDCs(Figure10).Thisisinsharpcontrasttothefrequencywithwhichclimateservicesarerecognizedasapriorityforsupportingadaptationinagricultureandfoodsecurity(85%),83disasterriskreduction(88%)84andwaterresourcemanagement(50%)85,86inParties’NDCs.Figure9:2030renewableenergytargetsintheNDCsSource:IRENA’sEnergyTransitionSupporttoStrengthenClimateAction17Figure10:SectorscoveredbyNDCmitigationtargets,innumberofPartiesfrom2016toMarch2022.LULUCF–landuse,land-usechangeandforestry.Figure11:RISEscoresreflectingasnapshotofcountries’policiesandregulationsintheenergysector,organizedbythefourpillarsofsustainableenergy:electricityaccess,cleancooking,energyefficiencyandrenewableenergy(asofJune2022)87RISEAdoptionofthepoliciesandregulationsnecessarytoenabledecarbonizationintheenergysectorisstillparticularlyweakinAfrica,SouthAmericaandAsia;however,therearedisparitiesbetweendifferentcountriesinthoseregions,accordingtotheWorldBank’sRegulatoryIndicatorsforSustainableEnergy(RISE)(Figure11).RISEscoresreflectasnapshotofacountry’spoliciesandregulationsintheenergysector,organizedbythefourpillarsofsustainableenergy:electricityaccess,cleancooking,energyefficiencyandrenewableenergy.87Despitetheexposureandvulnerabilityofthesectortoclimatevariability,extremesandchange,ofthe194NDCssubmittedbyPartiestothesecretariatoftheUNFCCC(asofMarch2022),just40%ofNDCsprioritizeadaptationintheenergysector,failingtorecognizethatclimatechangeisputtingtheenergysectoratrisk.EnergyisonlytheninthmostfrequentadaptationpriorityinParties’NDCs,withmostPartiesidentifyingagricultureandfoodsecurity,water,health,andecosystemsandbiodiversityasthetopadaptationpriorities(Figure12).OftheminorityofPartiesthatdoprioritizeenergyforadaption,only64%mentiontheclimateservicesthatwillbeneededforthatpurpose18(Figure12),withmostclimate-services-relatedactivitiesnotdirectlymentionedundertheenergysector,butrathermentionedincross-cuttingactivities.Forexample,EquatorialGuineahighlightedtheneedtoidentifythelocationsofraingaugestationsinhydroelectricplantstomonitorthechangesinprecipitation.Therefore,althoughthegapisnotasstarkasinthecaseoftheexceedinglylowlevelofrecognitionoftheneedforclimateservicestosupportrenewableenergyasamitigationmeasurereviewedearlier,thereisclearlyalowlevelofrecognitionintheNDCsofboththeneedforadaptationintheenergysectorandoftheneedforclimateservicesprovidingthenecessarysupport.88TrackingSDG7:TheEnergyProgressReport202289Shareofrenewableenergyintotalfinalenergyconsumption.90SEforALLAnalysisofSDG7Progress–202191SEforALLAnalysisofSDG7Progress–202192Revisionsofunderlyingstatisticaldataandmethodologicalimprovementsexplaintheslightchangesinhistoricalgrowthratesfrompreviouseditions.TheSDG7.3targetofimprovingenergyintensityby2.6%peryearin2010–2030remainsthesame,however.93NetZeroEmissionsby2050Scenario(NZE)TherelativelylowprioritygiventoadaptationintheenergysectorisparticularlystrikinggiventhegenerallyhighrecognitionbyPartiesofenergyasanunderpinning,cross-cuttingsectorsupportingtheachievementofadaptationinotherclimate-sensitivesectors,suchaswater(51%),infrastructure(36%)andagriculture(26%)(Figure13).Forexample,CaboVerdehighlightedinitsNDC,inthewater-associatedmeasures,theneedtoincreaseitsinstalledrenewablecapacityasanenergysourcefortheproductionofdesalinatedwater.Theimportanceofenergyinthisregardstrengthensthecaseforensuringthatadaptationinthesectorisadequatelysupported.ENERGY51%36%26%11%10%9%WaterInfrastructureAgriculture&foodsecurityDisasterriskreductionHealthForestryFigure13:OverviewoftheinteractionbetweenenergyandtheothersectorsindicatedintheNDCsof70PartieswhichmentionedenergyinrelationtoothersectorsAgriculture&foodsecurityWaterHealthEcosystems&biodiverityDRRInfrastructure/cities/urbanizationForestryCoastalzonesEnergyTourismEducationFigure12:Sectorsidentifiedasprioritiesforadaptationinthe194NDCssubmittedfrom2016toMarch2022PROGRESSINACHIEVINGSDG7ONENERGY88Theworldissettofallshortofachievingthegoalofuniversalaccesstoaffordable,reliable,sustainableandmodernenergyby2030,assetoutinSDGNo.7,byawidemargin.Basedoncurrenttrends,theworldisnotontracktoachieveSDGTarget7.1(Figure14).Projectionsshowanincreaseintheshareofrenewablesintheenergymix89tobetween18%and22%by2030.90Theseexpectedmoderategainsintheshareofrenewablesintheenergymixby2030notwithstanding,renewableenergysystemsneedtobeexpandedtomeettheseneeds.In2019,theshareofrenewableenergysourcesintotalfinalenergyconsumption(TFEC)amountedto17.7%–only0.4%pointshigherthantheyearbefore.Renewableenergyconsumptionincreasedby2.8%fromtheyearbefore,asTFECexpandedby0.7%.AfricahasthehighestshareofrenewablesinitsTFECoverall,at54.2%;ofthat,only7.6%91isfrommodernrenew-ables–thelowestpercentageamongallregions.EnergyefficiencyimprovementscontinuetoremainbelowthetargetsetundertheSDGsfor2030.Between2010and2019,theaverageannualrateofimprovementinglobalenergyefficiencywas1.9%.Althoughbetterthantherateof1.2%between1990and2010,itwaswellbelowthelevelof2.6%specifiedinSDGTarget7.3.92Theaverageannualrateofimprovementnowhastoreach3.2%tomakeupforlostground.Thisratewouldneedtobeevenhigher–consistentlyover4%fortherestofthisdecade–iftheworldistoreachNZEfromtheenergysectorby2050,asenvisionedinIEA’sNetZeroEmissionsby2050Scenario.9319Figure14:PrimaryindicatorsofglobalprogresstowardtheSDG7targetsSource:IEA,IRENA,UNSD,WorldBank,WHO.TrackingSDG7:TheEnergyProgressReport.WorldBank,WashingtonDC.©2022WorldBank.License:CreativeCommonsAttribution–Non-Commercial3.0IGO(CCBY-NC3.0IGO).94UN-EnergyPlanofActionTowards202595TheUN-EnergyPledge96EnergyCompactActionNetworkBrochureUN-ENERGYCOMMITTEDTOTRANSLATECOMMITMENTSINTOIMPACTUN-EnergyistheUnitedNationsmechanismforinter-agencycollaborationinthefieldofenergy.TheUN-EnergyPlanofActionTowards2025,94launchedinMay2022,setsoutaframeworkforcollectiveactionbynearly30UnitedNationsandinternationalorganizations,inordertoachievethegoalsoftheUN-Energypledge.95Totackletheselarge-scalechallenges,thePlanidentifiessevenworkareas,includingcatalysingmulti-stakeholderpartnershipsbyscalingup‘EnergyCompacts’.Bymobilizingvoluntarycommitmentsfromallstakeholdersandprovidinganeffectivetoolfordrivingholisticandinclusiveaction,theEnergyCompactsareakeyvehicletotrans-latetheGlobalRoadmapforAcceleratedSDG7Action–deliveredbytheUnitedNationsSecretary-GeneralasanoutcomeoftheHigh-levelDialogueonEnergyheldinSeptember2021undertheauspicesoftheGeneralAssembly–intoconcreteactionsandpartnerships.Todate,over200EnergyCompactshavebeenannouncedthatamounttoinvestmentcommitmentsofoverUS$600billionbygovernmentsandtheprivatesectoralone.SupportedbyUN-Energy,anEnergyCompactActionNetwork96hasalsobeenestablishedtomatchthosegovernmentsseekingsupportfortheircleanenergygoalswithgovernmentsandbusinessesthathavepledgedtosupportimplementationofthesecommitments.Anumberofcoalitionshavealreadybeenformed,includingtosupportenergyaccessandtransitioninNigeriaandthecityofSantiago,Chile,showcasingtheNetwork’spotential,aswellastoadvanceorexpandcoalitionssupportinggreenhydrogenandastrongerroleforwomeninleadingandbenefitingfromtheenergytransition.20Photo:AlexeiScutari/UnsplashPrioritiesandneeds97Weather&ClimateServicesfortheEnergyIndustry98Sixlevelsofsophisticationofclimateservicestotheenergysector:1=initialengagementwithsector;2=definitionofneeds;3=co-designofproducts;4=tailoredproductsaccessibleforuse;5=climateservicesguidepolicydecisionsandinvestmentplansinsectors;6=documentationofsocioeconomicbenefits.99Basedon193WMOMembers.100OftheMembersthatresponded,36%arehigh-income,26%upper-middle-income,25%lower-middle-income,and13%low-income.Weather,waterandclimateservicesarecrucialforenergysecurityandtheglobalenergytransitiontoachievenetzeroMeetingtheworld’sever-growingenergydemand,coupledwithanimperativetotransitiontogreener,andrenewable,sourcesandmoresustainableandresilientenergysystems,createsnewneeds.Aswithtraditionalenergygeneration,renewableenergysystemsareweatherandclimatedependent,sothetransitiontocleanenergycallsforimprovedclimateinformationandservicesfortheenergysector.Climateservicesareneededtoensuretheresilienceofenergysystemstoclimate-relatedshocksandtoinformmeasurestoincreaseenergyefficiency.Riskassessmentsaddressingplanningforandearlywarningofadverseeventsaffectingenergysupplyanddemandcanhelppopulationstoanticipate,absorb,accommodateandrecoverfromadverseimpacts.Forexample,earlyweatherwarningscansafeguardenergysupplyinBeijing,China,climatestresstestscanensureeffectiveelectricitydistributionintheDolomitesregionofItaly,andsevereweatherwarningscanprotectoffshorewindpowerproductioninChina.Climateservicesarealsoessentialforrenewableenergy,includingfor:siteselection,resourceassessmentandfinancing;operations,maintenanceandmanagementofenergysystems;electricityintegrationintothegrid;andimpactassessmentofenergysystems.Forexample,climateservicesareprovidingwarningsaheadofdryconditionsforhydropoweroperationsplanninginTajikistan;localizedwind-resourceinformationisaidingfull-value-chainwindindustrydecision-making;andclimateservicesaresupportingtheplacementofsolarpanelsonnoisebarriersinGermany.Giventheneedforanunprecedentedlyrapidtransitionofthesector,andthecurrentverylowlevelsofrecognitionofwhatwillberequiredtoachievethatrapidtransitionintermsofclimateservicescomparedtoothersectors–suchasagriculture,waterresourcemanagementanddisasterriskreduction–wheretheroleofclimateservicesiswellestablishedandunderstood,thetransitiontocleanenergyalsorequiresanewparadigmforamoreeffectiveexchangeofinformationbetweenweather,waterandclimatespecialistsandenergy-sectorstakeholders.Andspecifically,theenergytransitionwillrequireimprovedcommunicationandcollaborationbetweenclimateservicesprovidersandenergyindustries.97AccordingtoasurveyofNMHSsconductedbytheWMOStudyGrouponIntegratedEnergyServices,79%ofWMOMembersprovideclimateservicesforenergy,includingsomeparticularlynotableexamples.Also,lessthan50%ofMembersprovidetailoredproductsfortheenergysector(Figure15),whichshowstheuntappedpotentialofNMHSsandtheeffortsrequiredtoaddresstheemergingneedsofthissector.Figure15:PercentageofWMOMemberNMHSsprovidingclimateservicestotheenergysectorgloballyandbytypeofproductEnergyDataservicesEnergyClimatemonitoringEnergyClimateanalysisanddiagnosticsEnergyClimatepredictionsEnergyClimatechangeprojectionsEnergyTailoredproductsOverall,WMOfoundthatclimateservicesforenergyarenotperformingwell.TheglobalaverageratinggivenbyMembersisjustthreeoutofsix98potentiallevelsofservicerepresentingincreasinguserengagement.Futureactivitiesshouldfocusonbetteraddressingtheneedsofendusers,accordingtoClimateInvestmentFunds(CIF).Only16%99ofMembersreportedhavinganationalworkinggroupfortheenergysector.Thirty-sixMembershighlightedadequateorganizationalstructureswithinNMHSsasoneofthetopthreeenablingfactorstoimproveuptakeofclimateservicesforenergytransitiontowardsNZE.Specializedservicesforrenewableenergyaresub-optimal.FurtherincreasesareneededinthedensityofmeteorologicalobservationstoaddresssignificantmonitoringgapsandimprovedatacoverageaccordingtoCIF,aconclusionconfirmedbyWMOdata.Asof14July2022,87WMOMembershadrespondedtotheNMHSenergy-sectorsurvey.100Themajority(69)reportednothavingaccesstoenergyobservationalorsimulateddataonenergyfromothernationalpublic,privateand/oracademicsectorentities,whileonly18Membersreportedhavingaccess,withthemajorityofthese(10Members)beingfromEurope.Additionally,62Members(Figure16)reportednotmaintainingadedicated21observingnetworkforenergyservices.Installationofweatherstationsnearenergyassetswasidentifiedastoppriorityby60Members(Figure17).Fifty-eightMembersreportedprovidingclimatehazardearlywarningstotheenergysector.Figure16:WMOMemberNMHSsmaintainingdedicatedobservingnetworksforenergyservices(top)anddetailsofnetworksbeingmaintained(bottom)Source:WMOBestPracticesforIntegratedWeatherandClimateServicesinSupportofNetZeroEnergyTransition(inpress)Figure17:InfrastructureequipmentandservicesneedshighlightedbyWMOMemberNMHSsSource:WMOBestPracticesforIntegratedWeatherandClimateServicesinSupportofNetZeroEnergyTransition(inpress)22THEROLEOFPUBLIC–PRIVATEPARTNERSHIPSINENHANCINGCLIMATESERVICESThepublicsectorplaysaprominentroleinthedevelopmentofclimateservicesfortheenergysector(Figure18).Theprivatesectorisrapidlydevelopingsuchservices,however,resultinginahealthymixofpublicandprivateclimateserviceproviders.Thenumbersoforganizationsprovidingclimateservicestotheenergysectorthatrespondedtoa2015/2016surveybyWEMC,101bytype,wereasfollows:•Public:21(includinggovernmentandresearchinstitutes);•Private:10(includingprivateandconsultancy);•Other:4;•Internationalorganizations:2.Theclimateservicesmarketisrapidlygrowing,attractingprivateplayers102ofdifferentsizes–fromthelargestcorporationstostart-ups–invaryingsegmentsofthevaluechain–frommodellingtosmartsensors–withtheprivatesectorgenerallyreadytorespondtoclients’needsmorequicklythanpublicinstitutions.Privatecompaniescanlowertherisksassociatedwithinnovationbypartneringwithresearchinstitutions.Bilateralcollaborationsandcontracts(inthecontextofpublic–privatepartnerships)areasolutiontolimittheserisksandrespondtospecificuserneedsinatimelyfashion,ashighlightedby52WMOMemberNMHSs.Strength-eningpartnershipsandcollaborationthroughdemand-ledandco-createdprojectdesignprocessesacrossregions,governmentagencies,keysectors,theprivatesectorandvulnerablecommunities,topromotebuy-inandcollab-oration,emergesasasolutionfromthe2021LearningReviewofCIF-SupportedHydrometandClimateServicesProjects.102Thesepartnershipshaveanaddedvaluelaterinresearchandinnovationprojectsthataspiretoproduceclimateservices,accordingtotheBarcelonaSupercomputingCenter.Byworkingcloselywithindustrialpartners,researchersbetterunderstanduserneeds,languageandwaysofworking.Thisinteractionenablesresearcherstoaddressmoreambitiousandrelevantsocietalchallengesbyinvolvingusersaspartners.Thisengagementbenefitsallpartners,includingbyproducingrelevantresultsandbylimitingriskstotheprivatesector,asmentionedpreviously.101Weather&ClimateServicesfortheEnergyIndustry102SystematicAnalysisofEU-basedClimateServiceProviders103LearningReviewofCIF-SupportedHydrometandClimateServicesProjectsFigure18:ScopeofactivitiesinorganisationsoperatinginmeteorologyandclimatethatrespondedtotheWEMCsurveySource:Weather&ClimateServicesfortheEnergyIndustry23Photo:Towfiqubarbhuiya/UnsplashInvestmentInvestmentsinrenewableenergyneedtotripleby2050,includingforclimateservicesforenergy104GlobalLandscapeofClimateFinance2021105ThePowertoChange:SolarandWindCostReductionPotentialto2025106GlobalLandscapeofRenewableEnergyFinance2020107RenewableEnergyMarketAnalysis:AfricaanditsRegionsGlobalclimatefinancereachedUS$632billionayearin2019–2020,increasingjust10%comparedto2017–2018.AnalysiscarriedoutbyCPIindicatesthatcurrentlevelsarefallingfarshortofestimatedneeds.MitigationfinancetotalledUS$571billionin2019–2020,whileadaptationfinancecommitmentswereUS$46billion.AfurtherUS$15billionwenttoprojectswithdualbenefits(bothmitigationandadaptation).ClimateinvestmentsinenergysupplyreachedanaverageofUS$334billionayearin2019–2020,representing58%oftotalmitigationfinanceand53%oftotalclimatefinance.AtUS$324billion,renewableenergyrepresented57%oftotalmitigationfinancein2019–2020.104DespitetheimpactoftheCovid-19pandemicontheglobaleconomy,averageannualrenewableenergyinvestmentsremainedstablein2019–2020comparedto2017–2018(Figure19).Theaveragecostsforelectricitygeneratedbysolarandwindtechnologiescoulddecreasebybetween26%and59%by2025,accordingtoIRENA.Withtherightregulatoryandpolicyframeworksinplace,costreductionscancontinuetoberealizedinsolarandwindtechnologiesuntil2025andbeyond.105PVandwind(bothonshoreandoffshore)attracted91%oftotalrenewableenergyinvestmentsin2019–2020.Othertechnologies,suchasbioenergy,hydropowerandgeothermalaccountedformuchsmallershares,between0.3%and3%.Inlinewithoverallmitigationfinanceflows,in2019–2020,themajorityofrenewableenergyinvestmentsweremadeintheEastAsiaandPacificregion,mainlyChinaandJapan,followedbyWesternEurope,andNorthAmerica,mainlytheUnitedStatesandCanada.Since2013,thesethreeregionshaveconsistentlyattracted65%–75%ofglobalinvestments,whiledevelopingandemergingeconomiescontinuetoremainunderrepresented.106Whilerenewableenergyinvestmentshaveincreasedovertime,thecurrentlevelofinvestmentneedstoatleasttripletoputtheworldonanetzerotrajectoryby2050.Developingandemergingeconomiescontinuetoremainunderrepresentedwhenitcomestoaccessingcleanenergyfinance,accordingtoIRENAandCPI.Only2%ofsuchinvestmentsinthelasttwodecadesweremadeinAfrica.107Climate-adaptation-focusedinvestmentsintheenergysectorremainverylow,atjustoverUS$300million,trackedperyearin2019–2020.Investmentsindualbenefitsprojectsfortheenergysector–targetingbothmitigationandadaptation–weresomewhathigheratUS$1.5billionayearin2019–2020.BNEFGreenScenarioIEANZEScenarioIRENA1.5CScenario(USDbillion)2,0001,8001,6001,4001,2001,00080060040020002015/162017/182019/2020212025203020352040204520502953243241.9tn/yr1.2tn/yr1.1tn/yrFigure19:Annualrenewableenergyinvestments(2015–2020)versusaverageinvestmentneedsthrough2050Source:GlobalLandscapeofClimateFinance202124FINANCINGTOSUPPORTACHIEVINGSDG7INDEVELOPINGCOUNTRIES108InternationalpublicfinancingcommitmentsforenergyprojectsthatsupportachievingSDG7indevelopingcountriesarestillinsufficienttomobilizethelargervolumesofinvestmentrequiredtomeetthetarget.Internationalpublicfinancialflowstodevelopingcountriesinsupportofcleanenergydecreasedin2019forthesecondyearinarow,fallingtoUS$10.9billionat2019pricesandexchangerates.Thislevelofsupportwas23%lessthantheUS$14.2billionprovidedin2018,25%lessthanthe2010–2019average,andlessthanhalfofthepeakofUS$24.7billionin2017.CLIMATEFINANCEINSTITUTIONSSUPPORTINGCLIMATESERVICESFORENERGYTheAdaptationFundhasinvestedoverUS$65millionofitsUS$908millionportfolioinclimateinformationservices.Thefundingsupportscreationofinfrastructureforclimateinformationservices,aswellascapacity-buildingactivitiesforkeygovernmentinstitutionsandotherrelevantactors,andassuch,generatesthepotentialtobuildresilienceintheenergysectoraswell.However,duetolowcountrydemandto-date,thenumberoffundingrequestsreceivedbytheAdaptationFundsofarintheenergysectorhasbeensmall.CIFhasinvestedoverUS$220millionofitsUS$1.2billionofclimate-resiliencefundinginactivitiestostrengthenhydrometeorologyandclimateservicesinselectedcountries.109Thisinvestmentaddressesthefullweatherandclimateinformationservicesvaluechain,including:observationsandmonitoring;dataandinformationmanagement;research,forecastingandmodelling;andthedevelopmentandprovisionofimprovedservices,aswellasthetrainingandcapacitybuildingunderpinningallfourcomponents.GEF,throughtheLeastDevelopedCountriesFund(LDCF)andtheSpecialClimateFund(SCCF),hasprovidedmorethanUS$850millioningrantfinancetodateforprojectsthatincludeclimateinformationservices.Thesystemiccapacitybuildinginkeyinstitutionsandcreationofinfrastructureforclimateinformationservicesundertheseprojectswillbenefitmultiplesectors,includinginsomecasestheenergysector.SomeLDCF-andSCCF-financedprojectsincludeaspecificfocusonenhancingtheclimateresilienceoftheenergysector.TheGCFwasestablishedundertheCancúnAgreementsin2010asafinancialmechanismoftheParisAgreementandUNFCCC.Thetotalcurrent(May2021)GCFportfolioamountstoUS$10.1billion110incommittedfunding,ofwhichenergy-accessandpower-generationprojectsconstitute25%(US$2.5billion).Energyefficiencyandlow-emissiontransportaccountforUS$1.3billionandUS$0.5billion,respectively.Theareaofcities,buildingsandurbansystemsalsotoalargedegreeincludesenergyoptimization,andthisresultareaamountstoUS$0.9billion.Hence,halfoftheGCFcommitmentsareallocatedtoprojectsintheenergysector.Thebulkofenergy-sector-relatedcommitmentsaredevotedtotheAsia–Pacificregion(US$2billion(39%))andAfrica(US$2billion(38%)).Commitmentstoenergy-sectorprojectsinLatinAmericaandtheCaribbeanamounttoUS$0.8billion(16%),andUS$0.3billion(6%)isdevotedtoEasternEurope.111108TrackingSDG7:TheEnergyProgressReport2022109LearningReviewofCIF-SupportedHydrometandClimateServicesProjects110US$39billion,whenbothGCFandnon-GCFco-financingareincluded.111Theinformationontheclimateservicesforenergyportfolioisnotavailable.25Photo:KyleGlenn/UnsplashRegionaloverviewSDG7overview112112ThisisanadaptationofanoriginalworkbyIEA,IRENA,UNSD,WorldBankandWHO.ViewsandopinionsexpressedintheadaptationarethesoleresponsibilityoftheauthororauthorsoftheadaptationandarenotendorsedbyIEA,IRENA,UNSD,WorldBankandWHO.113Modernrenewablesincludeallusesofrenewableenergywiththeexceptionoftraditionaluseofsolidbiomass.114EnergyintensityistheratiooftotalenergysupplytotheannualGDPcreated–inessence,theamountofenergyusedperunitofwealthcreated.Itdropsasenergyefficiencyimproves.115GlobalLandscapeofRenewableEnergyFinance2020116AfricaPowerSector:PlanningandProspectsforRenewableEnergy117ScalingUpRenewableEnergyDeploymentinAfrica:ImpactofIRENA’sEngagementIn2019,theshareofrenewableenergysourcesinTFECamountedto17.7%–only0.4%higherthantheyearbefore.Significantregionaldisparitiesliebehindtheseglobalimprovements(Figure20).Africahasthelargestshareofrenewablesourcesinitsenergysupply,thoughmodernrenewablesrepresentonly7.6%oftherenewabletotal.Excludingtraditionalusesofbiomass,SouthAmericaistheregionwiththelargestshareofmodernrenewablesinTFEC,thankstosignificanthydropowergeneration,theconsumptionofbioenergyinindustrialprocessesandtheuseofbiofuelsfortransport.In2019,44%oftheglobalyear-on-yearincreaseinmodernrenewableenergyconsumptiontookplaceinEasternAsia,wherehydropower,solarPVandwinddominatedgrowth.Figure20:Percentageshareofmodernrenewableenergysystems112andotherrenewablesystems,byregionSource:SDG7.2dataaresourcedfromIEA,IRENAandUNSDandanalysedbyWMOtofititsregionalclassification.Therateofimprovementinglobalprimaryenergyintensity114hasslowedinrecentyears,anddifferencesareobservableacrossregions(Figure21).EasternAsiaandSouth-EastAsiasurpassedtheSDG7.3targetbetween2010and2019,withenergyintensityimprovingbyanannualaveragerateof2.7%,drivenbystrongeconomicgrowth.AverageannualimprovementratesinOceania(2.2%),NorthernAmericaandEurope(2%),andCentralAsiaandSouthernAsia(2%)werealsoabovetheglobalaverageandhistoricaltrends.EnergyintensityinAfricaisthehighestamongallotherregions,highlightingdifferencesineconomicstructure,energysupplyandaccessratherthanenergyefficiency.Figure21:Energyintensitylevelofprimaryenergy(MJ/$2017purchasingpowerparity(PPP)GDP)byWMOregionincludingSIDSandLDCsSource:SDG7.3dataaresourcedfromIEAandUNSDandanalysedbyWMOtofititsregionalclassification.InvestmentInlinewithoverallmitigationfinanceflows,in2019–2020themajorityofrenewableenergyinvestmentsweremadeintheEastAsiaandPacificregion,mainlyChinaandJapan,followedbyWesternEurope,andNorthAmerica,mainlytheUnitedStatesandCanada.Since2013,thesethreeregionshaveconsistentlyattracted65%–75%ofglobalinvestments,whiledevelopingandemergingeconomiescontinuetoremainunderrepresented,115despitetheirpotentialrenewableenergyresources(Figures22–24).RenewableenergypotentialThepowersectorpresentsasignificantopportunityfortransformationthroughtheincreaseddeploymentofrenewableenergytechnologies.RenewableenergyresourcesareplentifulinAfrica,especiallysolar,butalsowind,biomass,geothermalandhydropower.116Africacouldmeetnearlyaquarterofitsenergyneedsfromindigenousandcleanrenewableenergyby2030.Modernrenewablesamountingto310GWcouldprovidehalfthecontinent’stotalelectricitygenerationcapacity.Thiscorrespondstoasixfoldincreasefromthecapacityavailablein2021,whichamountedto56GW.11726AccordingtoIRENA,theshareofrenewablesinthegenerationmixcouldgrowto50%by2030inAfrica.Thetotalinstalledrenewableenergygenerationcapacitywouldreach310GW.Hydropowerandwindcapacitycouldreach100GWeach,andsolarcapacitycouldreachover90GW.Thiswouldbeanoveralltenfoldrenewableenergycapacityincreasefrom2013levelsforthepowersectorinAfrica.118AccordingtoIEA,South-EastAsiahasconsiderablepotentialforrenewableenergy,but(excludingthetraditionaluseofsolidbiomass)renewablescurrentlymeetonlyaround15%oftheregion’senergydemand.Hydropoweroutputhasquadrupledsince2000,andthemodernuseofbioenergyinheatingandtransporthasalsoincreasedrapidly.119ArecentstudyassessedthenationalpotentialofwindandPVtohelpChinaachieveitsgoalofcarbonneutralityby2060.120Theresultsshowedthat,underthecurrenttechnologicallevel,thewindandPVinstalledcapacitypotentialofChinaisapproximatelyninetimesthatrequiredunderthecarbon-neutralscenario.LatinAmericaisaregionofrapidgrowthforrenewableenergy,withinterestindevelopingthoseresourcesgrowingevenfaster.121Additionally,accordingtoIRENA,theregionhostssomeoftheworld’smostdynamicrenewableenergymarkets,buildingonthehistoricalroleofhydropower–thecornerstoneoftheregion’spowersectordevelopment–andliquidbiofuels,drivenbyBrazil’searlydeterminationtodiversifyitstransportfuelmix.122NorthAmericafeaturessomeoftheworld’srichestwind,solar,geothermal,hydropowerandbiomassresources.123Theregionreliesonrenewableenergyforlarge-scalepowergeneration,particularlyintheformofhydropower.124TheSouth-WestPacificregionisrichinrenewableenergyresources,withpotentialforhydropowerinFiji,PapuaNewGuinea,Samoa,SolomonIslands,theFederatedStatesofMicronesiaandVanuatu,andstrongpotentialforsolarand,toalesserextent,windthroughouttheregion.125ThePacificislandsareendowedwitharichvarietyofrenewableenergyresources,providingaviableandattractivealternativetofossilfuelimports.ThepeopleofthePacificislandsarecognizantofthefactthatuniversalaccesstosecure,robust,sustainableandaffordableelectricity,transportfuelandhouseholdenergyservicesiscrucialfortheirsustainabledevelopmenteffortsandthatenergysuppliesmustberesilienttoclimatechangeandnaturaldisastersandincreasinglysuppliedbyrenewableresources,with118Africa2030:RoadmapforaRenewableEnergyFuture119SoutheastAsiaEnergyOutlook2019120AssessmentofWindandPhotovoltaicPowerPotentialinChina121RenewableEnergyinLatinAmerica2015:AnOverviewofPolicies122RenewableEnergyMarketAnalysis:LatinAmerica123NorthAmerica124NorthAmerica125ThePacificIslands:ThePushforRenewableEnergy126FrameworkforEnergySecurityandResilienceinthePacific(FESRIP)2021–2030127RenewableEnergyStatistics128TransformingSmall-islandPowerSystems:TechnicalPlanningStudiesfortheIntegrationofVariableRenewables129RenewablesandEnergyTransitionsinSmallIslandStates130SIDSLighthousesinitiative131LDCREEEIFramework132LDC-ProgressinLeastDevelopedCountriesHingesonAccesstoModernEnergy,newUnitedNationsReportSays133High-levelBriefingtoLDCsGrouponAcceleratingSustainableRecoverywithRenewableEnergyimprovedenergyefficiency,upgradedenergyinfrastructureandimprovedtechnologies.IntheirresolvetocontributetoachievingtheParisAgreementgoal,PacificislandsenergyMinistershavereaffirmedtheircommitmentto100%renewableenergygenerationforthePacificislandsregion.126InEurope,theshareofrenewableenergymorethandoubledbetween2004and2020,reaching22.1%ofgrossfinalenergyconsumptionin2020.Windandhydropowereachaccountedformorethantwothirdsofthetotalelectricitygeneratedfromrenewablesources(36%and33%,respectively).Theremainingthirdwasgeneratedfromsolarpower(14%),solidbiofuels(8%)andotherrenewablesources(8%).Solarpowerhasbeenthefastest-growingsourcesince2008.127SIDSfacearangeofpressingchallenges,fromcopingwiththeeffectsofclimatechangetodependenceoncostlyfuelimportstomeettheirenergyneeds.Toaddressthesechallenges,SIDShaveresolvedtoharnesstheirvastrenewableenergypotential,withaviewtostrengtheningclimateresilienceandimprovingenergysecurity.128MostSIDSarewellplacedgeographicallyandgeomorphologicallytobenefitfromsolarandwindpotentials,tidalandoceanicenergysources,andsometimesgeothermalandhydropower.129ThroughtheSIDSLighthousesinitiative(LHI),mostofthetargetsfor2020and2023havebeenmetorexceededaheadofschedule.Takingintoaccountthesuccessinsurpassingtheprevioustargets,theSIDSLHIhasreviseditstargetto10GWoftotalrenewableenergyinstalledcapacityinallSIDSby2030.ThisnewtargethasformedthebasisoftheIRENA-AOSISEnergyCompactandtheAmbitiousSIDSClimateActionSummitPackage,whichareoperationalizedbytheSIDSLHI.130AccordingtotheLeastDevelopedCountriesRenewableEnergyandEnergyEfficiencyInitiativeforSustainableDevelopment,whilemostLDCsareendowedwithsignificantrenewableenergyresourcepotentials,themajorityoftheirpeople,productivesectorsanddevelopmenteffortssufferfromenergydeficits.131Renewableenergysources,suchassolarandwindpower,couldhavearevolutionaryeffectinruralareas,hometo82%ofthosewithoutpowerinLDCs,andhelptoovercomethehistoricalobstaclestoruralelectrification.132AccesstoenergyintheLDCsremainsamajorchallengedespitetheextraordinarygrowthpotentialforenergytransformationinthesecountries.Appropriatefinancingisneededmorethanevertotransformlivelihoodsandeconomiestobuildafuturebasedonclimate-resilient,low-emissiondevelopment.13327Figure22:Long-termaveragedaily/yearlysumofelectricityproductionfroma1kWpeakgrid-connectedsolarPVpowerplantSource:GlobalSolarAtlas2.0;Solarresourcedata:Solargis,from1994to2018forsomeregionsFigure23:Anestimateofmeanpowerdensityat100mabovesurfacelevelglobally.Powerdensityindicateswind-powerpotential,partofwhichcanbeextractedbywindturbines.Themapisderivedfromhigh-resolutionwind-speeddistributionsbasedonachainofmodels,whichdownscalewindsfromglobalmodels(~30km)tomesoscale(3km)andtomicroscale(250m).TheWeatherResearchandForecasting(WRF)mesoscalemodelusesdatafromtheEuropeanCentreforMedium-RangeWeatherForecastsECMWFReanalysisv5(ECMWFERA5)reanalysisdataforatmosphericforcing,samplingfromtheperiod1998–2017.Source:GlobalWindAtlas,v.3,from1998to201728Figure24:Anestimateofpotentialhydropowerplantlocations(formicrohydropowertolarge-sizedplants)basedontheGlobalMulti-resolutionTerrainElevationData2010(GMTED2010)breaklinedatasets(elevation)andrunoffdatafromtheGlobalRunoffDataCentreSource:GlobalPotentialHydropowerLocationsResearchDatasetOVERVIEWOFCLIMATESERVICESFORENERGYWithregardtotheprovisionofclimateservices,datashowthatallregionshaveahighnumberofMemberNMHSsprovidingthoseservicestotheenergysector.Regionaldisparitiesexistwhenitcomestotheprovisionofthedifferentproducts,withclimateprojectionsprovidedbythelowestpercentageofNMHSsacrossallregions,exceptEurope(Figure25).Figure25:PercentageofWMOMemberNMHSsineachregionprovidingclimateservices(CS)forenergy,bytypeofproduct.Informationcollectedfrom2020toMay2022.29Photo:MatthewHenry/UnsplashGaps134WorldEnergyOutlook2021135WaterStressThreatensNearlyHalftheWorld’sThermalPowerPlantCapacity136UsingtheWWFWaterRiskFiltertoScreenExistingandProjectedHydropowerProjectsforClimateandBiodiversityRisks137IAEA,ClimateChangeandNuclearPower,SecuringCleanEnergyforClimateResilience(inpress)138IAEA,ClimateChangeandNuclearPower,SecuringCleanEnergyforClimateResilience(inpress)139Sixlevelsofsophisticationofclimateservicestotheenergysector:1=initialengagementwithsector;2=definitionofneeds;3=co-designofproducts;4=tailoredproductsaccessibleforuse;5=climateservicesguidepolicydecisionsandinvestmentplansinsectors;6=documentationofsocioeconomicbenefits.140RenewableEnergyMarketAnalysis:AfricaanditsRegions1.THEIMPACTOFINCREASINGCONCENTRATIONSOFGHGsINTHEATMOSPHERECONTINUESTORAISECONCERNSABOUTENERGYSECURITY.Heatwavesanddroughtsassociatedwithanthropogenicclimatechangearemajorhazardsforenergysystems.Systemsdominatedbyrenewableenergyarehighlyclimatesensitive,yetrecognitionoftheneedforclimateservicestosupportexpansionofrenewableenergyandotherformsofmitigationremainsextremelylowcomparedwithotherclimate-sensitivesectors.2.JUST40%OFNDCsSUBMITTEDBYPARTIESTOTHEUNFCCCPRIORITIZEADAPTATIONINTHEENERGYSECTOR.Thisisdespitethefactthatin2020,87%ofglobalelectricitygenerationprovidedbynuclear,thermalandhydroelectricsystemsdirectlydependedonwateravailability.Athirdofthethermalpowerplantsthatrelyonfreshwateravailabilityforcoolingarealreadylocatedinhighwaterstressareas.Thisisalsothecasefor15%ofexistingnuclearpowerplants,ashareexpectedtoincreaseto25%inthenext20years.134Elevenpercentofhydroelectriccapacityislocatedinhighlywater-stressedareas.135Andapproximately26%ofexistinghydropowerdamsand23%ofprojecteddamsarewithinriverbasinsthatcurrentlyhaveamediumtoveryhighriskofwaterscarcity.136Heatwavesanddroughtsassociatedwithclimatechangearealreadyputtingexistingenergygenerationunderstress.137Becauseofpastandfuturegreen-housegasemissions,agradualandirreversibleriseofthesealevelwilloccurthroughoutthecenturyandwellbeyond,irrespectiveofthefuturestateoftheclimate,withconsequencesforthedesignandsitingofcurrentandfuturefacilitieslocatedoncoastlines.138Seventy-threenuclearpowerplantsarelocatedneartheseacoast,accordingtoIAEA.3.CURRENTGHGREDUCTIONCOMMITMENTSMADEBYCOUNTRIESARESTILLWELLSHORTOFWHATISNEEDEDTOACHIEVETHELONG-TERMTEMPERATUREGOALOFTHEPARISAGREEMENT.Supplyfromlow-emissionsenergysourcesneedstodouble,accordingtoIEA.Just56%ofNDCsincludequantifiedtargetsforrenewablepowertocollectivelyreach3.7TWofcleanenergyprovisionby2030.ThepathwaytoreachtheParisAgreementgoal,limitingtemperaturerisetowellbelow2°C,demands7.1TWofcleanenergyby2030,accordingtoIRENA.4.MORETHAN70%OFWMOMEMBERNMHSsPROVIDECLIMATESERVICESFORENERGY.CURRENTCLIMATESERVICESARENOTPERFORMINGWELLANDTHEREISASIGNIFICANTMISMATCHBETWEENTHEPOTENTIALFORSERVICEDELIVERYANDTHEACTUALDEMANDFORSUCHSERVICES.Climateservicesarecrucialinenablingtheglobalenergytransition,ensuringtheresilienceofenergysystemstoclimate-relatedshocksandtoinformmeasurestoincreaseenergyefficiency.TheglobalaverageratinggivenbyMembersisjustthreeoutofsix139potentiallevelsofservicerepresentingincreasinguserengagement.Moreover,just6%ofNDCsmentionclimateservicesforenergyformitigation,versus64%foradaptation,indicatingunder-recognitionoftheneedforsuchservicestosupporttheenergytransition.5.DEVELOPINGANDEMERGINGECONOMIESCONTINUETOREMAINUNDERREPRESENTEDWHENITCOMESTOACCESSINGCLEANENERGYFINANCE.ThemajorityofrenewableenergyinvestmentsarebeingmadeintheEastAsiaandPacificregion–mainlyChinaandJapan,followedbyWesternEurope,andNorthAmerica,mainlytheUnitedStatesandCanada,accordingtoCPI.Leastdevelopedcountriesreceiveonlyafractionofinternationalfinancingforrenewableenergy,andonly2%ofsuchinvestmentsinthelasttwodecadesweremadeinAfrica.14030Photo:SethDoyle/UnsplashRecommendationsTHEREISAHUGEOPPORTUNITYFORAFRICATOHELPCLOSETHEGAPINTHENEEDFORRENEWABLEENERGY.141Ascomparedtoannualrenewableenergyinvestments(2019–2020),accordingtoCPI.142RenewableEnergyMarketAnalysis:AfricaanditsRegions143AfricaEnergyOutlook,IEA,2022144AfricaEnergyOutlook,IEA,2022145NetZeroEmissionsby2050Scenario(NZE)ToputtheworldonatrajectorytoreachNZEby2050,currentlevelsofinvestmentinrenewableenergy,includinginassociatedclimateservices,needtoatleasttriple.141GivencurrentlowlevelsofinvestmentinAfrica,thereisgreatpotentialforcleanenergyinvestmentsinthatregion.Africannationshostthelowestpercentageofmodernrenewablesystems(just7.6%offinalenergyconsumption),andonly2%ofglobalinvestmentsinrenewableenergyinthelasttwodecadesweremadeinAfrica.142Theregionhashugepotentialtodeploysolarenergysystems;Africaishometo60%ofthebestsolarresourcesglobally,yetonly1%ofinstalledsolarPVcapacity.143Italsohaslargeresourcepotentialinwindandhydropower.AccordingtoIEA,bringingaccesstomodernenergyforallAfricanscallsforinvestmentofUS$25billionperyear.144By2050,theglobalpowersectorwillconsistmainlyofrenewableenergy,withsolarthesinglelargestsourceofsupply,accordingtoIEA’sNetZeroEmissionsby2050Scenario.145Africancountrieshaveanopportunitytobemajorplayerswithinthemarket.Figure26:RenewableenergypotentialandcapacityinstalledinAfrica,forwind,solarandhydropowerSource:IRENA,2022ENERGYPOLICIESANDCOMMITMENTSNEEDTOBETTERADDRESSENERGYSECURITYINACHANGINGCLIMATEANDPROMOTETHETRANSITIONTONETZERO,INCLUDINGBYSCALINGUPCLIMATE,WATERANDWEATHERSERVICES.Moreeffectiveclimateservicesforenergywillnotonlycreateattractivemarketconditionstoscaleuprenewableenergyinfrastructure,buttheywillalsoensurethatcleanenergysystemsareefficientandresilienttoclimatechange.Increased,sustainedinvestmentsandenhancedpoliciesarerequiredtoachievethisgoal.ThereiscurrentlylittlerecognitionoftheneedforsuchservicesinNDCs,inwhichtheneedforadaptationintheenergysectorisunder-recognizedinrelationtotheexposureandvulnerabilityofthesector,alongwithitsimportanceforothersectors,andinwhichtherecognitionoftheneedforclimateservicesformitigation,includingforenergy,isalmostabsent.31SPECIALIZEDSERVICESFORRENEWABLEENERGYARESUB-OPTIMAL.GIVENTHEINCREASINGRATEOFNEWRENEWABLEGENERATION,THEREISANEEDTOCONSIDERABLYSTRENGTHENTHESESERVICES.146LearningReviewofCIF-SupportedHydrometandClimateServicesProjectsFutureactivitiesshouldfocusonbetteraddressingtheneedsofendusers,accordingtoCIF.Strengtheningpartnershipsandcollaborationthroughdemand-ledandco-createdprojectdesignprocessesacrossregions,governmentagencies,keysectors,theprivatesectorandvulnerablecommunities,topromotebuy-inandcollaboration,emergesasasolutionfromthe2021LearningReviewofCIF-SupportedHydrometandClimateServicesProjects.146ThisisfurtherconfirmedbyWMOdatafrom52Members.Furthermore,increasesareneededinthedensityofmeteorologicalobservationstoaddresssignificantmonitoringgapsandimprovedatacoverageaccordingtoCIF,aconclusionconfirmedbyWMOdata.Fifty-sixWMOMemberNMHSsconfirmedtheneedfortrainingcoursesandworkshoptostrengthentheircapacitytoimprovedeliveryofclimateservicestotheenergysector.32CLIMATESERVICESFORENERGYSECURITYCASESTUDY1Climateservicestosupportlong-termenergyplanningforclimatechangeimpactsonEuropeanpowersystemsRéseaudeTransportd’Électricité(RTE),theelectricitytransmissionsystemoperatorofFrance,usesclimateinformationandenergyconversionmodelstocalculateelectricitydemandandhowitwillbemetbydifferentgenerationmeans,includingrenewablesforitslong-termprospectivestudies.CHALLENGELong-termplanningforthetransitiontogeneratingahigherpercentageofenergyfromrenewablesourcesisparticularlydependentonclimateinformation.Climatechangeobviouslyhassignificantimpacts.Amajorconcernistemperature,whichinFrancemayincreaseonaveragefrom12.0°Cin2000to13.6°Cin2050undertheRCP4.5climatechangescenario(14.0°CunderRCP8.5).Accordingtoclimateprojections,wintercoldwaveswillbecomelessintenseandlessfrequent.Asignificantincreaseinthenumberanddurationofsummerheatwavesisalsoexpected.Windspeedandsolarirradianceshowlightchanges,howevertheseareanorderofmagnitudelowerthanthecurrentinterannualvariability.Precipitation,riverflowandconsequentlyhydropowergenerationcapacityshowamoderateannualdecrease,whichhindersastrongerseasonalchange,withincreasedgenerationinwinteranddecreasedgenerationinsummerandearlyautumn.IncompliancewithitslegalobligationsandattherequestoftheGovernmentofFrance,RTEinitiatedatwo-yearstudyontheevolutionofthepowersystem,EnergyPathways2050,publishedinFebruary2022.Thisprojectwasundertakenatacrucialpointinthepublicdebateaboutenergyandtheclimate,shapingthestrategiesthatwillbeadoptedtomoveawayfromfossilfuelsandachievecarbonneutralityin2050,asperthelong-termglobalgoaloftheParisAgreement.APPROACHThisstudyassessedclimatechangethroughhigh-resolutiontimeseriesforseveralvariables(airtemperature,precipitation,riverdischarge,windspeedandsolarirradiance),forthecurrentandprojectedfutureclimate,athourlyand20kmresolution,overthewholeofEurope.Thestudyincludedclimatesimulationsdesignedbuildingonalong-termcollaborationwithMétéo-France,France’sNationalMeteorologicalService.Theresultingdatasetconsistsofthreesetsof200climateyears.Thefirstonerepresentstheclimateofthe2000s,whiletheothertworepresenttheclimateofthe2050sunderRCP4.5andRCP8.5,respectively.Thesesimulationswerecomparedtoothersourcesofdata,includingEUROCORDEX,CopernicusandsomeCMIP6simulations,whichestablishedthattheyareinlinewithotherclimatesimulations.RTEthendesignedenergyconversionmodelstocalculatethecorrespondingtimeseriesofelectricitydemand,andgenerationfromwind,solarandhydropower,aswellasnuclearpowerplantavailabilitybasedoncoolingsystemconstraints.AllthesedatafedRTE’spowersystemmodelthatprovidesresultsrelatedtotechnical,economic,environmentalandsocietalaspects.RESULTAsexpected,themajorchangeisrelatedtotheincreaseintemperature.Whilecurrentlythepowersystemisverysensitivetoextremecold,thefutureenergymixwillbemoresensitivetocold(butnotextreme)eventsassociatedwithwinddrought,thatis,reducedwindenergygeneration.However,theanalysisshowedthatmostextremecoldeventsarenotassociatedwiththelowestwindspeeds.Ontheotherhand,summerstresstestsshowedthatlate-summerhydrologicaldroughtandheatwavesmightbecomemoreproblematicforriversidethermalgenerationplants.Futureactivitieswillincludeconsiderationofupgradingtheclimatedatabasetotakeintoaccountmorerecentclimateprojections,additionalRCPscenariosandadditionalclimatemodels.Amoredynamicrepresentationwillalsobeexplored,byconsideringthemodels’outputsthroughoutthetwenty-firstcentury.WhilecurrentlythepowersysteminFranceisverysensitivetoextremecold,thefutureenergymixwillbemoresensitivetocoldeventsassociatedwithwinddroughtandresultingreducedproductionofwindenergy.PARTNERSRTE,Météo-FranceandInstitutPierre-SimonLaplace(IPSL).Photo:ShaneRounce/Unsplash33CLIMATESERVICESFORENERGYSECURITYCASESTUDY2EDFiscoordinatingclimateadaptationatagrouplevelUsingtheCopernicusClimateChangeService(C3S),theglobalenergybusinessEDFhascreatedaninternalclimateservicetoaccessglobalclimateobservationsandprojectionsinaconsistentway.147FutureHigh-temperatureExtremesandStationarity148ExtremeLowFlowEstimationunderClimateChangeCHALLENGEElectricitygeneration,loadandtransmissionarehighlydependentontheweatherconditions.Therefore,EDF,oneofEurope’smajorelectricitycompanies,launchedaresearchprogrammedevotedtoclimatechangein1990.The2003heatwaveunderscoredthenecessityofadaptingtotheongoingchangesintheclimate,andaseriesofclimatechangeimpactprojectswerelaunchedstartingin2004.Becausethedemandforclimateimpactstudieskeptgrowing,comingfrommoreandmorebranchesofthegroup,itbecamenecessarytoensureconsistencybetweenthedifferentstudies,inordertoappropriatelyinformtheadaptationstrategyatthegrouplevel.APPROACHAttheEuropeanlevel,C3Sprovidesvaluableinformationonthecurrentclimatestatusanditsprojectedevolution.EDFR&Dcontributedfromthebeginningtothedevelopmentofthesectoralservicedevotedtoenergy.AtthenationalscaleinFrance,theportal‘DRIASlesfutursduclimat’makesavailableclimateinformationandprojectionsdownscaledtoFranceat8kmspatialresolution,andEDFR&Dsetupauser’sgroupwhichorientedthedevelopmentinthestartingphase.WhileFranceandEuropearethemainregionsforEDF’sbusiness,itoperatesworldwide.Therefore,theneedforconsistentaccesstoglobalclimateobservationsandprojectionstoanswervariousquestionssoonarose.Thisledin2014tothecreationofaninternalclimateserviceorganizedaroundthreepillars:thegatheringandprovisionofdata,thedevelopmentoftoolsandthedevelopmentofexpertiseinclimatechangescience.RESULTRelyingonscientificpartnersandoninternationaldataportalsliketheCopernicusClimateDataStore(CDS),asubsetofaround20modelswasselectedamongallthecontributorstotheCoupledModelIntercomparisonProjects,andthecorrespondingprojectionsweredownloadedandstoredinternally.Intermsofemissionscenarios,thelargestnumberofscenariosavailableformostofthemodelswasconsidered.Theselectionwasbasedonvariouscriteria,includingthemodeldependency,theIPCCAR6bestestimateequilibriumclimatesensitivityrangeandtheneedtobestcovertheprojectionspread.Sub-ensemblesofEUROCORDEXprojectionswerealsoretrieved.Basictoolsdevotedtothemanipulationofthedatasetshavebeenproposedandshared:calendarmanagement,searchforavailablevariables,extractionofselectedvariablesoverachosenregionorforselectedgridpoints,biasadjustmentanddownscaling.Dedicatedstudieshavebeendevotedtothecomparisonofdifferentdownscalingapproaches,aswellastotemporaldownscalingtohourlytimesteps.Fornuclearpowerplantadaptation,amethodologyhasbeenproposedtoselectfourcombinationsofaclimatemodelandanemissionscenarioprojecting,respectively,onelow-changescenario,twointermediate-changescenariosandahigh-changescenarioatthe2050horizon.Furthermore,somededicatedstudiesnecessitatethedevelopmentoftargetedmethodologies.Forexample,nuclearpowerplantsafetycontinuityinvolvestheestimationofveryrareextremelevelsintakingclimatechangeintoaccount.Originalapproacheshavebeenproposedandpublishedtoestimatefuturereturnlevelsofhightemperaturesbasedontheextremesofastandardizedvariableandthechangesinmeanandstandarddeviation,147orfutureextremelowflowsusingstochasticmodelling.148ThisallowsEDFtoregularlyupdateknowledgeaboutthesensitivityofitsassets,especiallynuclearpowerplants,andtakeadaptationmeasurestoensureresilienceorinformdecisionsonthedesignandlocationoffuturepowerplants.EDFisaglobalbusiness.Therefore,thereisaneedforconsistentaccesstoglobalclimateobservationsandprojections.PARTNERSEDFandC3S.Photo:NazrinBabashov/Unsplash34CLIMATESERVICESFORENERGYSECURITYCASESTUDY3Climate-proofingoflocaldevelopmentandinvestmentplansintheDolomitesTheSocio-EconomicRegionalRiskAssessment(SERRA)methodcanmaphistoricalandfutureclimaterisktomultiplesectorsinItaly’sBellunoProvince.149OntheInterpretationofConstrainedClimateModelEnsembles;ThePotentialtoNarrowUncertaintyinRegionalClimatePredictions;RobustAdaptationtoClimateChange150AClimateStress-testoftheFinancialSystem151TheSocio-economicDimensionofFloodRiskAssessment:InsightsofKULTURiskFrameworkCHALLENGETheuncertainevolutionofclimatichazard,relatedtodifferentfactorssuchasinternaluncertainty,modeluncertaintyandscenariouncertainty,149callsforpolicypreparedness,promptadaptationstrategiesandtheintegrationofpotentialclimaticimpactsintonationalandregionalplanning.Consideringthis,practitionersinmultipleeconomicsectors–frominfrastructuretofinance–arebecomingmoreandmoreawareoftheimportanceofclimate-proofinginstrategicplanninganddecision-making,tocopewithclimaterisk.Climatechangeisrecognizedasanewsourceofrisktofinancialandeconomicstability,negativelyaffectingproductivecapacityandsocialwell-being.APPROACHInthisregard,aclimatestresstesthasbeendevelopedtoassesshowclimateriskmightpropagatethroughthefinancialsystemandshowinghowpolicytimingmighthelpreducenegativeeffectsofhazardousevents.150ThestudyfocusedontheAlpineregion,whereclimatechangehasalreadyshownremarkableeffectsintermsoftemperaturerise(2°Coverthelast120years)atapacethatisasmuchastwicetheglobalaverage,withdramaticconsequencesinterms–forexample–ofglacierretreatanddisappearance.TheapproachadoptedderivesfromtheSERRAmethoddevelopedbytheEuropeanUnionKulturiskProject.151Itcombineshigh-resolutionregionalclimatemodel(RCM)data,custom-tailoredtothecharacteristicsofthestudiedareaandthehazardstobeanalysed,withasolidanalysisofthefourmaineconomicactivities:tourism,wintersports,theeyewearindustryandtheelectricitysupply.Thisintegratedapproachallowsestimationofthepotentialdamagesassociatedwithrisksofdifferentkindandmagnitude,offeringaconcreteapplicationoftheadoptedmethodologyandpotentiallysupportingstakeholdersandpolicymakersinfuturedecisionandinvestments.RESULTTheSERRAintegratedapproachcombinesclassicalspatialriskassessmentwithsocioeconomicanalysis,enablingestimationofthedamagesassociatedwithpotentialrisksofdifferenttypesfordifferenteconomicactivities.ByaggregatinghistoricalandfutureriskmapsoverthewholeofBellunoProvince,wefoundanincreaseofupto6.2%inthedirectclimateriskanda10.2%increaseintheindirectclimateriskforwetsnoweventsinthe2036–2065period.Aseriesofsectoralsetsofmapsandtabularsynthesesprovidesprivateandpublicdecisionmakerswithextensivedocumentationthatcanbeconsideredwhenmakingstrategicdecisionsforinvestmentsandplanningwithmediumtolong-termperspectives.Resultsshowthatsomeareashavecombinationsofmultiplerisksathigherlevels,whichshouldbecarefullyconsideredinplanning.Thisisthecaseinkeyareasforeyewearproduction(Longarone,Sedico,Agordo),whererisksforwintersportsarealsopresent.EvenmorerelevantisthecombinationofhighrisksforsummertourismwithmoderatetohighrisksforbothelectricitydistributionandwintersportsintheareaofCortina.HistoricalandfutureriskforthewholeofBellunoProvinceshowsa6.2%increaseinthedirectclimateriskforwetsnoweventsinthe2036–2065period.PARTNERSVeniceInternationalUniversity(VIU),theCMCCFoundation–Euro-MediterraneanCenteronClimateChange,Ca’FoscariUniversityofVeniceandEnelFoundation.Photo:CarrieBorden/Unsplash35CLIMATESERVICESFORENERGYSECURITYCASESTUDY4IntegratedweatherservicesforoffshorewindpowerproductioninChinaAnearlywarningsystemaimstoaddressriskstohumanlife,energystabilityandcompanyassetsviaanonlineplatformwhichissueswarningsandrecommendationsregardingweathereventsposingriskstooffshorewindfarmoperations.CHALLENGEOffshorewindfarmoperationsfacehighriskstohumanlife,aswellashighoperationalcostsandrisks.UsersdeterminedtheirneedforthisserviceduetolossesofaroundRNB100millionthatresultedfromthecuttingofanunderwaterconstructioncableinadangerousweatherevent.TheJuly2022sinkingoftheFujing001offshorewindinstallationship,locatednearfacilitiesownedbyauserofthisservice,furtherhighlightstheongoingneedforlife-savingtechnologiessuchasthis.APPROACHTheBeijingJiuTianMeteorologicalTechnologyCo.hasdevelopedapredictiveearlywarningsystemwhichintegratesvarioustypesofmeteorologicaldataintoavisualizationproductusedbydecisionmakersonoffshorewindfarmstoinformtheirpracticesinawaywhichpreserveshumanlifeandpreventsfinanciallossesduetoaccidentsharmingcompanyassets.Suchdecisionsincludewhentoremoveworkersfromplantsbeforedangerousweathersituationsoccur,andwhichperiodsaresafestforconductingmaintenance.Theserviceimprovesonexistingweatherforecastingservicesinthatitoffersrecommendationsonwhatactiontotakeforthespecificweatherevent,tailoredtothespecificsituationandneedsofeachindividualuser.Priortothedeploymentofthesystem,departuredecisionsweremademainlybycaptains,basedontheirexperienceandbestjudgment.Now,operationplansarebetterinformedbywindandwavepredictions,sothattheclientcantellexactlywhichshipsareindanger,andwhatshouldbedonetomitigatethesituation.RESULTTheserviceproviderestimatesthatitprovidesaround100earlywarningnoticesperwindfarmperyear.Warningsarereceivedbytheusersintimeforstakeholderstoreactimmediatelyandtoasufficientdegree,andwindfarmsownedbyusersofthisservicereportnolossesofhumanlifeorcompanyassetssinceitsimplementationinlate2020.Asequipmentusedfortheconstructionofnewoffshorewindfarmsisrented,accurateandreliableinformationonwhenweatherconditionswillbeidealforconstructionhelpsreducethecostsofconstruction.TheserviceuserCGNNewEnergyexperiencedareductioninconstructioncostsofRNB11million(0.5%)peryearacrossitseightwindfarms.Accuratepredictionsofwhenweatherconditionswillbeidealformaintenancealsohelpdecreasetheamountoftimethatwindturbinesareinactive(andnotgeneratingelectricity),therebyincreasingthemaximumamountofpowergeneratedperturbineperyear.Thankstotheprecisemaintenancewindowpredictionprovidedbytheservice,“trouble-freeoperationtime”ofwindturbineshasincreasedby10hoursperyear.Inturn,increasedreliabilityofwindpowergenerationallowsforgreaterpenetrationofwindpowerintothecountry’senergymix,anddecreasesenergycosts.CGNNewEnergyhasexperiencedareductioninconstructioncostsofRNB11million(0.5%)peryearacrossitseightwindfarms.PARTNERSChinaMeteorologicalAdministration.Photo:LuoLei/Unsplash36CLIMATESERVICESFORENERGYSECURITYCASESTUDY5EarlyweatherwarningstosafeguardelectricitysupplyforBeijingTobettersafeguardBeijing’selectricitysupplysecurity,theEnergyServiceTeamundertheChinaMeteorologicalAdministration(CMA)hasworkedwiththeBeijingBranchofStateGrid152tocreateapreciseearlywarningsystem.152StateGridCHALLENGEAsamegacity,Beijingrequiresacontinuousandhighlyreliablepowersupply.Extremeweatherevents,suchasrainstorms,floods,gales,hail,andcoldwaveshavecausedgreatthreatstotheoperationofBeijing’spowergrid.Inrecentyears,variousmeteorologicaldisastersandtheirderivativefactorscausedmorethan50%ofalldistributionnetworkfailures.APPROACHUsingadvancedinformationtechnologies,suchasmultisourcedataanalysisandpowergridleangeographicmodels,CMAestablishedapreciseearlywarningsystemfortargetedpreventionofmeteorologicaldisasters.Throughin-depthintegrationofmeteorologicalandpowergridconsiderationsatthedata,system,businessandorganizationlevels,thesystemhasrealizedaccuratedisasterwarningformorethan10typesofdisasters,suchaswireicing,conductorgallopingandfloodingoftransformersubstations.Theprojectteamestablishedaseriesofdifferentiatedearlywarningmodelsoralgorithmsforeachsubstationandeachbasetower.Toachieveaccuratemonitoringandforecasting,weatherinformationneedstobeupdatedevery10minutes,andamobileoperationapplicationwasalsodevelopedtorapidlytransmitmonitoring,forecastingandearlywarninginformation.Forecastsofdisastereventsandthededucedconclusionoftheirimpactonthepowergridarealsocrucial.Projectteammembersmustcomprehensivelyconsidermeteorologicalconditions,topographyandlandform,andhistoricalextremeweatherconditionstodeterminewhetherthepowergridequipmentwillbeaffectedbymountaintorrents,mudslidesandurbanwaterlogging.Thesystemhasdetailedanalysisreportsforthehistoricalclimateconditionsforeachelementofequipmentbasedontheclimatologicaldata.RESULTUsingthissystem,thepowergridhasobtainedsignificanteconomicbenefits,residentshaveenjoyedstablepowertransmission,andpowergridoperatorshavebettersafetyprotection.Thesystemhelpsachieveaccuratedisasterpreventionforthegridandflexibledispatchduringdisasters,therebyhelpingavoidorreduceseriousdisasterlossesforthegrid(equipmentlosses,poweroutagelosses,casualties,etc.).Italsoreducesthecostofemergencymanagementanddisasterprevention.Inaddition,pressureonpower-gridemployeesduringdisasterpreventionhasbeenreduced.Whileitisdifficultatpresenttoquantifytheeconomicbenefitsthesystemcreates,thesearestillincreasing.Socialbenefitsarealsosignificant.Thesystemhelpsimprovetheefficiencyofandreducecostsofdisasterprevention.Thiseffectivelysolvesthepastproblemofthecoexistenceofexcessivedisasterpreventioncostsandinsufficientpreventionofpowercuts.Ithelpstoeffectivelyimprovedependabilityofregionalpowersupply,greatlyreducingsocialandeconomicimpactsfrompoweroutages.ThesystemhasbeenfullyappliedintheBeijingBranchofStateGrid,andhasbecomeessentialforemergencymanagement,disasterpreventiondeployment,andoperationandmaintenanceofthecapital’spowergrid.PARTNERSCMAandStateGridBeijingElectricPowerCompany.Photo:JinyangLiu/Unsplash37CLIMATESERVICESFORRENEWABLEENERGYCASESTUDY6AsolaratlastoguideenergymanagementandplanninginEgyptAsolaratlasdevelopedbytheGovernmentofEgypt,withsupportfromtheGrouponEarthObservations(GEO)CRADLEinitiative,isbeingusedbytheGovernmenttoplanfuturenationalinvestmentsandtheefficientexploitationofsolarenergy.153RenewableEnergyOutlook:Egypt154RenewableEnergyOutlook:EgyptCHALLENGEEgypt’seconomicdevelopmentisheavilyreliantontheenergysector.Totacklegrowingenergydemand,theIntegratedSustainableEnergyStrategy(ISES)to2035aimstoensuresecurityandstabilityofsupplyinEgypt,emphasisingtheroleofrenewableenergyandenergyefficiency.TheGovernmentofEgypthassetrenewableenergytargetsof20%oftheelectricitymixby2022and42%by2035,tobeachievedthroughnewinvestmentsaswellasrehabilitationandmaintenanceprogrammesinthepowersector.153Thecontinuousprovisionofaccurateandtimelyinformation,throughcoordinatedandsustainedEarthobservationactivities,isconsideredakeyenablerforinformeddecision-makinginresponsetochallengessuchasincreasingaccesstoenergyinthefaceofclimatechange.Inthiscontext,largeinternationalinitiativessuchasGEOandCopernicusarepromotingtheintegrationandcoordinationofEarthobservationcapacitiesatregional,nationalandinternationallevels.Despitecontinuousprogress,furtherpotentialremainsforimprovingtheuptakeofEarthobservationsforenergyapplications,includinginNorthAfricaandtheMiddleEast.APPROACHTheGEOCRADLEpilotactivitySolarEnergyNowcastingSystEm(SENSE)wasbuiltonfreely-accessibledatafromCopernicusandCopernicusAtmosphereMonitoringService(CAMS),innovativemodellingandstate-of-the-artreal-timesolarenergycalculatingsystems,anddeliveredreliableandhigh-resolutionsolaratlasesandbroaderclimatologystudies.Thepilotaimedtostimulatetheinterestofrelevantstakeholders,decisionmakersandinvestorsfromtheprivatesector.Attheassetlevel,applicationshavebeendevelopedwithafocusonhistoricaldatasets,suchasspatiotemporalmappingofsolarresources.Nowcastingandforecastingsystemsforsolarradiation/energy,suchastheforecastingsystemNextSENSE,havebeendevelopedthroughtheEuroGEOShowcasesEUproject.Theseapplicationsprovidekeyinformationfortheoperationofsolarsystemsandfarmsinrealtimeandwithhighspatiotemporalresolution.RESULTBasedontheanalysisofEgypt’sISES,IRENArecommendedundertakingcomprehensivemeasurementcampaignsatareaswithahighpotentialforrenewableenergy,toprepareforlarge-scalesolarandwindinvestmentsinthecountry.154Subsequentlarge-scaleprojectshaveincludedtheBenbanSolarPark,whichstarteditsoperationin2018andiscurrentlythefourthlargestsolarpowerplantintheworld,withatotalcapacityof1650MWnominalpower.In2014,therewere4or5companiesworkingonsolarenergy;now,therearemorethan250.ThecollaborationbetweenGEOCRADLEandtheGovernmentofEgyptledtothedevelopmentoftheSolarAtlasofEgypt,whichhasbeenusedbytheGovernmenttoplanfuturenationalinvestmentsandtheefficientexploitationofsolarenergyfortheimplementationofISES2035.DatafromtheSolarAtlasandthewebsitehavehelpedsecurefundingforthesesolarprojectsaswell–closetoUS$2.2billioninEgypt.ThecollaborationalsoincludedthenowcastingofthesolarenergypotentialinrealtimeinordertosupporttheEgyptianenergyauthoritiestobetterplansolarenergydemand.Notably,theSolarAtlasprovidedinformationontheclimatologyofthesolarresourcesanditsapplicationformanagementofsolar-basedelectricitypowerplantsandgridintegrationstrategiesacrossthreesubregions(Cairo,AlexandriaandSouthernEgypt).“TheMinistryofElectricityandRenewableEnergytogetherwiththeNewandRenewableEnergyAuthorityofEgyptconsidersthisSolarAtlasasanexcellentaddition,complementingtheGovernment’seffortsinfindingothervenuesofelectricityproduction.”MohamedShakerEl-Markabi,MinisterofElectricityandRenewableEnergyPARTNERSWMO,GEO,GEOCRADLE,EuroGEO,e-shape,Copernicus,EUMETSAT,MinistryofElectricityandRenewableEnergyofEgypt,NREA,NationalObser-vatoryofAthens(NOA),PhysicalMeteorologicalObservatoryinDavos/WorldRadiationCenter,andCenterforEnvironmentandDevelopmentfortheArabRegionandEurope.Photo:Solimpeks/Unsplash38CLIMATESERVICESFORRENEWABLEENERGYCASESTUDY7Earthobservation-basedservicestosupportlong-termplanningforEuropeanenergysystemsAstudycommissionedbytheGovernmentofFrancetosupportthecountry’scommitmenttoa40%reductionofnationalenergyconsumptionby2050,therevitalizationofthenuclearsector,investmentsingreenhydrogen,andthedevelopmentofsolarandonshoreandoffshorewindhasidentifiedapathwaytocarbonneutralityfor447millionEuropeancitizens.CHALLENGEThetransitiontocleanenergyrequiresclimateservicestodemonstratethebenefitsofrenewablesforCO2reductionandtoimprovetheefficiencyofrenewableenergysystemsbyoptimizingtheirperformance.Suchservicesalsohelpwithplanningthedevelopmentandintegrationofrenewablesatlocal,nationalandregionalscales,today,tomorrowandforfuturedecades.APPROACHAnational-levelcollaborationwasinitiatedfollowingarequestbytheGovernmentofFrancetothecountry’stransmissionsystemoperator(RTE)toidentifypathwaystowardscarbonneutralityin2050.Acomprehensivestudywascarriedoutin2019–2021,coveringthefollowing:•Technicalaspects,suchasdifferentclimaticscenariosandthedescriptionoftheelectricitynetworkanditsevolution;•Economicaspects,suchascosttosociety,sensitivityanalysis,andthecostofrelocationandre-industrializationforeachscenario;•Environmentalaspects,suchasthecarbonfootprintincludinglifecycleanalysis,materialbalanceforeachscenario,landuseforthenetworkandproduction,andvolumeofwasteandpollutants;•Societalaspects,suchasimpactonlifestyleandscenariovalidityconditionsincludingelectricmobility,telework,flexibilityofusage.Thestudyalsocoveredtheproductionofenergyandelectricity,consumptionandevolutionofnetworksandinsitudataforconsumption,anddemography.Theendusersofitsfindingsincludestate-ownedandprivateenergytransmissionsystemoperators(TSOs)anddistributionsystemoperators(DSOs),nationalministries,decision-andpolicy-makersatregionalandlocallevel,households,individualcitizensandresearchersdealingwithrenewableenergytechnologies.MethodsandtoolsusedforthestudyweredrawnfromtheGEOVisionforEnergy(GEOVENER)initiative,notablytheEuropeanClimateEnergyMixes(ECEM)demonstratorformodellingofrenewableenergyproductioninclimatescenariosimplementedbyC3S.GEOVENERaimstoservealargevarietyofuserswithEarthobservationdatatoinformdecisionsintendedtosubstantiallyincreasetheshareofrenewableenergies.Historicaldatasets,aswellasnowcastedandforecastedsolarradiationandenergydata,madeavailablethroughtheSENSEandNextSENSEforecastingsystems,developedthroughthee-shapeprojectfundedbytheEuropeanUnion’sHorizon2020programme,providedkeyinformationfortheoperationofsolarsystemsandfarmsinrealtimeandwithhighspatiotemporalresolution.E-shapealsoincludesadedicatedserviceforsupportingthelarge-scaledeploymentofPVsystemsinurbanareas.Thee-shapetoolsbuildonsolarcadastresdevelopedbyMINESParisincollaborationwithInSunWeTrust.ThesetoolssimulatespatialandtemporalvariabilityoftheelectricenergyloadandtheyieldproductionsofrooftopPVsystems.Basedonthesetools,anadditionalservicewasdevelopedtoprovidebusiness-orientedinformationaboutPVself-consumptionandmanagementandplanningofgridsourcepointsfordistributionoperators.RESULTThefindingsofthefeasibilitystudywereendorsedbytheMinistryofEcologicalTransitionofFrance.Thestudy,andasimilarstudyundertakenatEuropeanlevelthroughtheEuropeanNetworkofTransmissionSystemOperatorsforElectricity(ENTSO-E),setthesceneforfuturecarbonneutralityfor447millionEuropeancitizens,andmanymoreifmarketinterconnectionsaretakenintoaccount.“Thankstothisveryimportantwork,wehaveforthefirsttimeobjectivescientificandtechnicalbasestodecideonourenergyfutureuntilthemiddleofthecentury.”BarbaraPompili,MinisteroftheEcologicalTransitionofFrancePARTNERSWMO,GEO,GEOVENER,EuroGEO,e-shape,C3S,MINESParis,andRTE.Photo:LucaBravo/Unsplash39CLIMATESERVICESFORRENEWABLEENERGYCASESTUDY8RuralsolarelectrificationinMaliApartnershipbetweentheWestAfricanDevelopmentBank(BOAD)andtheGovernmentofMaliwilluseclimateservicestoscaleupruralelectrificationthroughsolarPVmini-grids.155EstimatingtheRenewableEnergyPotentialinAfrica:AGIS-basedApproachCHALLENGEInMali,70%ofthepopulationlivesinruralareas,and80%oftheruralpopulationlackselectricity.Thesolarpotential(PVandconcentratedsolarpower(CSP))ofthewholeofAfricawasanalysedbyIRENAin2014.155Accordingtothisstudy,Maliissituatedinaregionwithhighsolarpotential,andthecountryisconsideredtohaveresourcesparticularlyconducivetothedevelopmentofsolartechnologies.Despitetheimmensepotentialofthecountry,only3%ofelectricityisproducedfromrenewablesources(excludinghydroelectricproduction).ThoughMalihasahighpotentialforsolarenergy,gridextensiontoalliscurrentlynotfeasibleduetomyriadtechnicalandfinancialchallenges.Thus,mini-gridshavethepotentialtobridgetheenergyaccessgapwhilegreeningMali’selectricitysupply.UndertheParisAgreement,Malicommittedtoreduceemissionsinitsenergysectorbyupto31%.ItsNationalAdaptationPlanofAction(NAPA)and2011nationalclimatechangepolicyandstrategyfeaturerenewableenergyasakeycomponentforachievingitsclimatetargets.APPROACHMalihaslimitedplanningprocesses,domesticfinancialinstitutionsandframeworksforpublic–privatepartnerships.Renewableenergytechnologyhasahighup-frontcostandconsumerscannotaffordmodernrenewableswithoutsubsidies.Thereislimitedhumanresourcecapacityinthesector,andalackofresearchonimpactsandmarketconditionschallengestheabilitytocreateastandardizedprogrammaticapproachtoenergy.ToaddressthesechallengestheGovernmentofMaliandBOADinitiatedaproject,fundedbyGCF,withthefollowingcomponents:•Capacitybuildingandtechnicalassistance.Theprojectwillsupportruralelectrificationinstitutionsthroughtrainingandsharinglessonslearned.Itwillprovidetechnicalassistancetooperationsandmaintenancecompaniesthatwilloperatethemini-grids.•Installingsolarmini-grids.Thiscomponentwillinstallmini-gridsin70differentlocalities,chosenbasedonengineeringstudiesandspecificenvironmentalandsocialanalysisforeachsite.Withamixofgrantsandhighlyconcessionalloans,theprojecttakesapublic–privatepartnershipapproachwhereinthegovernmentownsthemini-grids,whileacompetitivebiddingprocesswilldeterminetheprivate-sectoractorsresponsiblefortheirconstruction,maintenanceandoperation.•Providingmicrofinanceforproductiveuseofelectricity.Theprojectwillpartnerwithlocalfinancialinstitutionstoprovidesmallloanstoconsumerswhowishtopurchasetoolsandappliancesthatuseelectricitytoimproveeconomicproductivity,suchasrefrigeration,processingofagriculturalproducts,orpowertoolsforsmallindustry.RESULTTheprojectisexpectedtoinstall3.78MWofpowerinitsfirsttranche,providingemissionsreductionsof821.8ktofCO2equivalentoveritslifetime.Itwillimproveaccesstoelectricityfor28300householdsandencourageinvestmentintoolsandappliancesthatimproveeconomicproductivity.Beyondincreasingenergyaccess,theproject’spublic–privatepartnershipmodelallowsforthede-riskingofenergyaccessbyimprovingcommercialviabilitywhileencouragingtheparticipationoftheprivatesector.Theproject’stechnicalassistancecomponentwillstrengthenthecapacityofinstitutionstoengagewithprivatesectorstakeholdersinthefuture.WithfundingfromGCF,theprojectwillimproveaccesstoelectricityfor28300householdsandencourageinvestmentintoolsandappliancesthatimprovetheeconomy.PARTNERSBOADandtheGovernmentofMali.Photo:CurtCarnemark,WB40CLIMATESERVICESFORRENEWABLEENERGYCASESTUDY9ClimateservicessupportingrenewableenergyapplicationsinGermany’stransportinfrastructureClimatedataprovidedevidenceinsupportofapotentialsignificantexpansionofsolarpowergenerationcapacity.CHALLENGEOnelimitingfactorfortheextensionofrenewableenergiescanbetheavailablelandforinstallationofeitherPVorwindenergysystems,especiallyindenselypopulatedregions.Theidentificationoffurthersuitableareasandstructurescanthereforepromotetheexpansionofrenewableenergies.APPROACHThe‘NetworkofExperts’ofGermany’sMinistryforDigitalandTransport(BMDV)isanetworkofGermangovernmentagenciescoveringavarietyofresearchtopicsrelatedtoGermany’stransportinfrastructure.OnetopicareafocusesontheidentificationofpotentialcontributionsofinfrastructuretothereductionofGHGemissions.Inordertodevelopsuitablesuggestionsfortheministry,thenetworkbringstogethertheexpertiseoftheGermanmeteorologicalservice(DeutscherWetterdienst(DWD))asaclimateserviceproviderandthespecializedauthoritiesforroad,railandwaterways.AspecificcasestudywastheelectricitygenerationpotentialfromPVsystemsthatcouldbeinstalledonexistingnoisebarriersandnoise-protectionwallsalongroadsandrailwaysinGermany.Informationonpossiblelocationsandtechnicalassumptions,forexampleonoccupiablesurfacesandorientationofthenoiseprotectionfacilities,wasprovidedbythepartnerauthorities.RESULTUsinghigh-qualityclimatedata,thepotentialinstallationofPVpanelsonnoisebarrierswasinvestigated.Thisrevealedanannualgenerationpotentialofmorethan1400GWh,enoughtocovertheaverageannualelectricitydemandof450000householdsinGermany.InordertoestimatethepotentialenergyyieldandtheassociatedGHGreduction,thesedatawerelinkedwithDWDclimatologicalinformation.Theyieldmainlydependsonsolarradiation,buttheefficiencyofPVmodulesalsodependsontheirtemperature,whichisnotonlyinfluencedbytheambienttemperature,butalsobythewindspeed.Therefore,amodelthattakesthesedependenciesintoaccountisusedtoestimatetheyield.Itwasdrivenbyhigh-resolutionclimatologicaldatainordertomakeareliableoverallassessmenttakingintoaccountlong-termsite-specificdetails.High-resolutionsurfaceradiationdataarenowavailablefromsatellitesforseveraldecades,includingtheSARAH2dataset(secondeditionoftheSurfaceSolarRadiationDataSet–Heliosat)usedinthestudy.SARAH2isprovidedbyEUMETSAT’sSatelliteApplicationFacilityonClimateMonitoring(CMSAF)andbasedondatafromtheMETEOSATsatellites.Itprovidessolarsurfaceirradiancedatafortheperiodfrom1983onwardsatatemporalresolutionof30minutes.OthermeteorologicalparametersderivefromtheregionalreanalysisCOSMOREA6.Thequalityofbothdatasetshasbeenextensivelyevaluatedinpreviousstudiesandtheyareopenlyavailableforsimilarapplications.Thehightemporalresolutionofthedatawasalsohelpfultoinvestigatefurtherdetails,forexamplewhethertheenergycanbeprovidedtoconsumersintheinfrastructureinademand-orientedmanner.Inparticular,thetemporalprofileofpumpingrequirementsofthewaterwayswasconsidered.Theregionalreanalysisalsoprovidesseveralotherparameters,forexample,includingwindspeedathubheightofwindenergyconverters,whichisalsousedinfurtheractivitiesofDWDinsupportofwindenergyextensioninGermany’soffshoreregionsintheNorthSeaandBalticSea.Usinghigh-qualityclimatedata,thepotentialinstallationofPVpanelsonnoisebarrierswasinvestigated,showinganannualgenerationpotentialofover1400GWh.PARTNERSDWD,FederalRailwayAuthority,FederalHighwayResearchInstitute,FederalInstituteofHydrologyandCMSAF.Photo:AndreasGücklhorn/Unsplash41CLIMATESERVICESFORRENEWABLEENERGYCASESTUDY10Sector-specificlocalizedwindresourceinformationtoaidwindindustrydecision-makingprocessUsingreanalysisdata,Vortex,aprivatesectorentityservingthewind-powersector,hasreducedtheerrorinwindproductsby3%–4%.A1%reductionoftheerrorinthewind,foratypicalprojectof100MWwitha35%capacityfactorforaninstalledwindpowercapacityof50GWperyear,impliessavingsofapproximatelyUS$100millionperyear.CHALLENGEWindpowergenerationisakeytechnologyintheglobalpathwaytowardtheNZEobjectivesoftheEuropeanclimatestrategyandforEuropeanUnionenergyindependence,withdemandexpectedtoleadtotherampingupofbothonshoreandoffshoreproductionsystemsby2050.Thewindenergyindustryrequiresclimate-derivedinformationatdifferenttimescales,dependingonthespecificprojectandapplication.High-resolution,high-qualityinformationaboutthepastclimateiscrucialtoassesstheviabilityofwindsitesfordevelopment,and/ortomonitorsitesunderconstructionorexpansion.Energytraders,independentpowerproducersandwind-farmoperatorsusepredictionsofwindspeed,directionandpowerproduction.Theyalsousedownscaledpredictionsofwindresourcesatdifferentstagesoftheirwindfarmprojectdevelopment.Thoseusersalsoneeddatatosafeguardandmaintaintheirassetsandmonitorenergyproduction.APPROACHAnewgenerationofprivateclimateserviceshasemergedtoaddressthewindindustrydemandforhigh-fidelitywindresourcedataneededtofacilitateenergysupplypredictionandprojectdesign.Suchprivatesectorentitiesareprovidingvalue-addedproducts,buildingonpubliclyavailabledata,tailoredtomeetwind-energyentities’requirementsforclimateinformationandservices.Vortexisanatmosphericmodellingtechnologycompanyfocusedonprovidinghigh-resolutionwindresourcedataupto100mheightforwindindustryuserstosupportdecision-makingthroughoutthelifecycleofawindfarmproject.VortexdownscalingtechnologyreliesheavilyontheuseofC3SERA5reanalysis.Vortexoperatesacloud-basedfullyautomateddownscalingchainbasedonamultiscaleweathermodelthatusesERA5reanalysisasakeyinputtoreconstructsite-specifictimeseriesandmapsofthewindresourceparametersrequiredforenergyresourceanalysisandprojectdesign.ThelatestversionoftheGlobalWindAtlasusesagloballayerofERA5-basedatmosphericdataat3kmresolutiondevelopedusingVortexdownscalingtechnology.TheAtlasisafreeonlineweb-basedresource,builttohelppolicymakers,planners,andinvestorsidentifyhigh-windareasforwindpowergenerationvirtuallyanywhereintheworld.ClimateScale,aspinoffprojectofVortex,provideson-demandhigh-resolutionclimatechangeprojectionsforanywhereintheworldtohelparangeofsectors,includingthewindenergyindustry,toevaluateandmanagethephysicalrisksofclimatechange.Lautechasbuiltweb-basedtools(ESOXandthemorepowerfulversionESOX+)forsupportingoffshorewindpowergenerationprojects,basedontheC3SERA5reanalysis.Thetoolprovidesinformationonmeanwindspeedat10mand100mheight,significantwaveheightandpeakwaveperiod.Basedonpreviousproofsofconcept,C3Shasbuiltanoperationalenergyservicedesignedtoaddresstheneedsofuserswhowanttoassesstheimpactofclimateonenergyoperations,managementandplanning,andforenergymodelersneedingdatasetsfortheirassessmentstudies.RESULTReanalysisproductsarenowpartofthewindresourcetoolkit,usedforearly-stagesitescreeningaswellasforfinanceclose/duediligenceenergyandsiteassessmentfinalanalysis.SolutionsliketheoneofferedbyVortexarecrucialasthewindenergymarketexpandsintonewregionsandoffshorewinddevelopmentapproachesglobalscale.UsingERA5data,Vortexhasimprovedwindproductsbyreducingtheerrorby3%–4%.Aroughestimationoftheimpactofa1%reductionoftheerrorinthewind,foratypicalprojectof100MWwitha35%capacityfactorforaninstalledwindpowercapacityof50GWperyear,impliessavingsofaroundUS$100millionperyear.High-resolution,high-qualityinformationaboutthepastclimateiscrucialtoassesstheviabilityofwindsitesfordevelopment.PARTNERSC3S,Vortex,ClimateScaleandLautec.Photo:Arteum.ro/Unsplash42CLIMATESERVICESFORRENEWABLEENERGYCASESTUDY11Supportingclimate-resilienthydropoweroperationswithhydrometeorologicaldataanalyticsinTajikistanByenhancingthecapabilitiesandcapacityofTajikHydromet,andprovidinganessentialupgradetoobservationsandmonitoring,thecountryaimstoreduceitsvulnerabilitytoclimatechange.CHALLENGEOverthepastdecade,Tajikistanhasmadesteadyprogressinreducingpovertyandgrowingitseconomy.However,itshighvulnerabilitytoclimatechangeandrecurringdisasterscontinuetochallengetosustainableeconomicgrowth.Between1992and2016,almostsevenmillionpeoplewereaffectedandUS$1.8billion,equivalenttoaround1%ofGDP,waslost.APPROACHTheEuropeanBankforReconstructionandDevelopment,CIFandtheGovernmentofTajikistanhavecooperatedtostrengthentheNMHSofTajikistan,TajikHydromet,toensureithastheinfrastructureandcapabilitytoobserve,forecastanddeliverweather,waterandclimateservicesthatmeetthecountry’sidentifiedeconomicandsocietalneeds.Theprojectsupportedmodernizationofobservationsandmonitoring,enhancedinstitutionalcapacity,andimproveddeliveryofweatherandclimateservices.Itaimedtoshiftthefocustowardsthedevelopmentofimprovedserviceswhileprovidinganessentialupgradetoobservationsandmonitoring.TheprojectwasthefirstfocusedspecificallyonimprovinghydrometeorologicalservicesinTajikistan,previousprojectshavingprovidedpiecemealsupport.Thus,theprojectprovidedthecountryitsfirstopportunitytoupgradeitsobservationsandmonitoringnetwork.Thisaspectformedthelargestpartoftheproject,althoughitalsoaddresseddataandinformationmanagement,alongwiththedevelopmentofimprovedservices,particularlyinthewatersector.RESULTFullyrecognizingtheimportanceoftimelyandaccuratehydrometeorologicaldataandforecastanalyticsforthesafeandefficientoperationofhydropowerplants,oneoftheproject’saccomplishmentswastohelpdevelopproceduresforusinghydrometeorologicalinformationandforecastsindamoperationsandfloodmanagementplans.TajikHydromethasappliednewtechniquestoprovidemoretargetedinformationtoBarqiTojik,astate-ownedpowerutility,whilethelatteroffersadditionalhydrologicaldatabacktoTajikHydromettofurtherimproveforecasts.ThepowerofdataandanalyticswasevidentwhenTajikHydrometgaveadvancewarningofadryyeartoBarqiTojik,whichaffordedprecioustimetoenablethecompanytoplanahead.Overall,theprojectraisedtheawarenessoftheimportanceofweatherandclimateservicesinTajikistananddeliveredamajorupgradetotheobservationandmonitoringnetwork,layingthefoundationsforfurtherimprovementsinservicedelivery.Inadditiontoupgradingtheobservationsnetwork,theprojectincreasedthesustainabilityandperformanceofTajikHydromet,aswellasincreasedthecapacityofstakeholdersinthehydrometeorologicalvaluecycle,includingthroughtheprovisionoftechnicalassistancefromadvancedNMHSs,suchastheFinnishMeteorologicalInstitute(FMI).Moreover,onaregionalleveltheprojectpromotedgreatercooperationbetweenthefiveNMHSsinCentralAsia.TheseagenciespossessawiderangeofcapabilitiesandareallRussianspeaking,whichprovidedtheopportunityforknowledgesharingamongcountries.Forexample,colleaguesinKazakhstanwereabletosupporttraininginTajikistanandtheHydrometeorologicalCentreofRussiawasalsoabletoprovidesometechnicalassistance.ThepowerofdataandanalyticswasevidentwhenTajikHydrometgaveadvancewarningofadryyeartoBarqiTojik,astate-ownedhydropoweroperator,enablingthecompanytoplanahead.PARTNERSEuropeanBankforReconstructionandDevelop-mentandCIF.Photo:Marusia/Unsplash43CLIMATESERVICESFORRENEWABLEENERGYCASESTUDY12SupportingtheuptakeofhybridrenewableenergysystemsinSouthAfrica156ThankstodecentralizationoftheenergysystemintheEasternCapeProvince,poorercommunitiescanaccesscleanenergy,reducetheirrelianceonfossilfuelsandsavemoney.156WMOBestPracticesforIntegratedWeatherandClimateServicesinSupporttoNetZeroEnergyTransition(inpress)157TheUpperBlinkwaterMinigridCHALLENGETheEasternCapeProvinceinSouthAfricahasbeenengaginginseveralrenewable-energyinitiativestoimproveaccesstoelectricity,createjobsandalleviatepoverty.OneoftheinitiativesistheUpperBlinkwaterSmartProject,developedtoprovideadecentralized,sustainableandhybridmini-gridsystem.157Thesystemisbasedonrenewableenergiesanddieselbackup.Itprovideselectricityaccessforpoorruralhouseholds,whicharealsovulnerabletoextremeweatherevents.Theprovisionofrenewableenergyhasfacilitatedcommunitydevelopment,increasedjobopportunitieswithinthecommunityandreducedbeneficiaries’consumptionoffossilfuels.APPROACHTheprojectwasmadepossiblebycollaborationbetweentheEasternCapeProvince,DeutscheGesellschaftfürInternationaleZusammenarbeit(GIZ)GmbHandtheGermanfederalstateofSaxony.Otherkeypartnersincluded:thecommunityofUpperBlinkwater;SouthAfrica’sDepartmentofMineralResourcesandEnergy;theprovincialDepartmentofEconomicDevelopment,EnvironmentalAffairsandTourism;SouthAfrica’sCouncilforScientificandIndustrialResearch;theSouthAfricanNationalEnergyDevelopmentInstituteandtheUniversitiesofFortHareandNelsonMandela.Co-productionwithusersisakeysuccessfactorintheimplementationofrenewableenergysystems.Inthisinstance,communitiesintheUpperBlinkwaterwereengagedbeforeandduringtheprocesstoensuretheirbuy-inthroughtheuseofquestionnairesandworkshopsaswellascontinuousmonitoringofsystemperformancetoprovidefeedbackandsupport.Theprojectdemonstratesthatrenewabletechnologiescanplayanimportantroleinenablingenergyaccesstooff-gridcommunities,improvinglivingconditionsandeconomicopportunities,andslowingrural-to-urbanmigration.Challengesencounteredduringtheprojectincludeddelaysduetoadministrativeandprocurementprocesses,aswellaspolicyrequirementstoobtainlicencesasdeterminedbytheNationalEnergyRegulatorofSouthAfrica.Cooperationandparticipationofvariousstakeholdersinprojectdesignandimplementationwerecriticalsuccessfactorsthathelpedovercomethesebarriers.RESULTBenefitsfromthehybridenergysystemincludedcommunityaccesstocleanandaffordableenergythatisusedforeconomicactivitiessuchasgoatcheeseproductionandprocessingoffruitsandvegetables.Thiswaspossiblebecausetherenewableenergysystemassistedwiththeproductionofwaterthatwasthenutilizedinfarmingactivities.HouseholdssavedbetweenR30andR800(US$2andUS$49)permonth,whichwaspreviouslyusedtopurchaseparaffinandcandles.Otherbenefitsincludereduceddeforestationandhealthrisksassociatedwiththeuseoffirewood.TheuseofrenewableenergyalsocontributedtoachievingSDGGoal4oneducation,asitrelieveswomenandchildrenfromtheburdenofspendingvaluabletimecollectingfirewood,whichcanthenbeusedforotherproductiveactivitiesandeducation.Thehybridenergysystemalsocreatedopportunitiesforthecommunitymemberstoenhancetheirtechnicalskills,astheyreceivedtrainingonhowtoattendtoelectricalissueswithinthehouseholds.Renewabletechnologiescanhelptoenableenergyaccessforoff-gridcommunities,improvelivingconditionsandslowrural-to-urbanmigration.PARTNERSGIZ,DeutscheZusammenarbeit,ProvinceoftheEasternCapeandRaymondMhlabaMunicipality.Photo:LolliePop/Unsplash44CLIMATESERVICESFORRENEWABLEENERGYCASESTUDY13Aglobalplatformassessingthepotentialinstalledcapacityofhydrology,windandsolarenergyTheGlobalRenewable-energyExploitationAnalysis(GREAN)platformaimstoalleviatetheproblemofinconsistentandincomprehensivedataonandevaluationofcleanenergypotential.CHALLENGETransformationstowardslow-carbonandgreengrowthareacceleratinginenergyindustriesallovertheworld.Someinternationalorganizationshaveassessedthetheoreticalpotentialofwind,solarandhydropower.However,theassessmentapproachesshowdisadvantagessuchasincomprehensivedata,inconsistentevaluativecriteriaandlackofinvestmentcostforecast.Theseassessmentscanhardlyprovidepracticalsolutionsforrenewableenergybasesiteselectionorpowertransmissionplanning.APPROACHGlobalEnergyInterconnectionDevelopmentandCooperationOrganization(GEIDCO)establishedtheGREANplatformtocarryoutthesystematiccalculationandquantitativeanalysisofthetheoretical,technicalandeconomicpotentialinstalledcapacityofwind,solarandhydropowerfromaglobalperspective.Thecomprehensivedatabaseofrenewableenergyassessmentscutsacross32categoriesand20types,includinggeographicandhumanactivityeconomicdata,withhour-leveltimeresolutionand100-meter-levelspatialresolution.GREANalsoprovidesglobalpower-griddata,coveringbackbonetransmissiongridswithvoltageabove110kVin147countries.Quantitativeassessmentsofwind,solarandhydropowerresourcesareanalysedintermsoftheirtheoretical,technicalandeconomicpotential,providingaseriesofscientific,systematicandcomprehensiveassessmentresults.Theplatformincludesanaccuratequantitativemodelandharmonizedparameters,integratingwithgeographicalinformationsystem(GIS)andengineeringsurveydata.Aparallelcomputingframeworkandantcolonyandneuralnetworkalgorithmsareadoptedinnovatively.Assessmentandcalculationonthenationalscalecouldbecompletedonline.GEIDCOdevelopedsoftwareforrenewableenergybasesiteselection,proposingdigitalsolutionsfordevelopmentofhydropower,windandPVpowerstations.RESULTTheoretical,technicalandeconomicpotentialforglobalrenewableenergyarebeingevaluated.Sofar,siteselectionfor35hydropowerbases,94windpowerbasesand90PVbases,basedondevelopmentpotentialandresourcecharacteranalysis,hasbeendeveloped,providingguidanceforlarge-scaledevelopmentandutilizationofglobalrenewableenergy.Powertransmissionschemesformajorglobalrenewableenergybasesarebeingputforward,basedonthedevelopmentofpowersupplyanddemandaroundtheworld.Consideringthedistributionoflarge-scaleenergybasesandmajorpowerconsumptioncentres,thegridplanningrealizestheambitionofmulti-energyinter-regionaloutboundtransmission,mutualcomplementarityacrosstimezones,andcross-seasonalandglobalallocation.TheGREANplatformprovidessystematicinformationaboutlocations,potential,priceandefficientutilizationapproachesforrenewableenergydevelopment.PARTNERGEIDCO.Photo:GaryYost/Unsplash45CLIMATESERVICESFORRENEWABLEENERGYCASESTUDY14Sub-seasonalandseasonalforecastinghelpsclean-energycompaniesmakebetterdecisionsTheS2S4EDecisionSupportTool(DST)wasdevelopedincollaborationwiththreeenergycompaniestoprovidethemwithscientifically-basedinformationonweatherandclimateconditionsaffectingwind,solarandhydropowergenerationcapacityandenergydemandexpectedoverthecomingweeksandmonths.CHALLENGEThefutureenergysystemisenvisagedtorelyprimarilyonrenewableenergy.Renewableenergysupplyanddemandoperationsareaffectedbytheevolutionofatmosphericconditionsatdifferenttimescales.Increasingintegrationofrenewablesintothepowermixismakingtheelectricitysupplymorevulnerabletoclimatevariability.Toaddressanincreaseinrenewableenergydemanditisimportanttohaveflexibilityinthesystemandsmarttechnologiestoanticipateandbettermanagechangesinenergygeneration.Scientistsandoperationalcentresandserviceshavebeeninvestingconsiderableeffortandresourcestoimprovesub-seasonalandseasonalforecastsoverthepastdecadeandhavemadesubstantialprogress.Suchforecastsarenowabletopredicttheevolutionofsomelarge-scaleextremeweathereventsseveralweeksinadvanceandtoshowwhethertheupcomingseasonislikelytobedrierorwetter,orhotterorcolder,thannormal.Yetitremainschallengingtolinkthecomplexprobabilisticinformationtheseforecastsprovidetoindustry-specificapplications.APPROACHTheenergysystemencompassesmanydifferentactorswhichhavetomakespecificdecisionsandhavespecificneeds.Whensub-seasonalandseasonalforecastsareskilfulandaccurate,theycanhelpproducersofwind,solarandhydropowergetbetter-informedestimatesofhowmuchelectricitytheirplantsarelikelytogenerateintheweeksandmonthsahead.Improvedestimatesoffuturepoweroutputcanenablethemtomakebetterdecisionsonissuessuchaswhentosellelectricitytothemarket,howmuchtosell,whatpricelevelstoexpect,andwhentoschedulemaintenanceofpowerplants.Sub-seasonalandseasonalforecastscanthereforecontributetoreducingtherisksinvolvedininvestinginrenewableenergyandhelpcompaniestoimprovetheirriskmanagementandproductionplanningactivities.TheS2S4EDSTisaclimateservicethatfeaturesscientifically-basedclimateinformationintendedtoenhanceenergyusers’knowledgeoftheweatherconditionsexpectedoverthecomingweeksandmonths.ThetoolwasdevelopedbytheS2S4EClimateServicesforCleanEnergyproject,whichhasbeenfundedbytheEuropeanUnion’sresearchandinnovationprogrammeHorizon2020andcoordinatedbytheBarcelonaSupercomputingCenter.Thefirsthalfoftheprojectwasdedicatedtotheco-designofthetool,withthekeycollaborationofthreeenergycompaniesandthecontributionofotherenergyactors.Duringtheoperationalphase,thesecondhalfoftheproject,theDSTwasmodifiedbasedonusers’feedback.TheDSTwasopenlyaccessibleduringthesecondhalfoftheprojectprovidingupdatedsub-seasonalandseasonalclimatepredictionstailoredfortheenergysector,includingnotonlythepredictionofweathervariables(suchastemperatureorwindspeed)butalsoenergyindicators(e.g.windandsolarcapacityfactors,electricitydemandandhydropowerindicators).RESULTAnanalysisverifyingtheusefulnessofthetoolwasconductedbyregularlyassessingusers’applicationsandchallenges.Economicevaluationsofpasteventsandassessmentsunderreal-timeforecastconditionsdocumenteduserbenefitsandpotentialrisks.Throughthesecollaborativeefforts,theDSThasshowedthatitcandelivertailoredserviceswithdemonstratedbenefits.Sub-seasonalandseasonalforecastscancontributetoreducingtherisksinvolvedinoperatingrenewableenergysystemsandinvestinginrenewableenergy.PARTNERSS2S4EClimateServicesforCleanEnergyHorizon2020project:BarcelonaSupercomputingCenter,CenterforInternationalClimateResearch(CICERO),UniversityofReading,SwedishMeteor-ologicalandHydrologicalInstitute(SMHI),Agenzianazionaleperlenuovetecnologie,l’energiaelosviluppoeconomicosostenibile(ENEA),EDF,EDPRenewables(EDPR),EnergieBaden-Württemberg(EnBW),TheClimateDataFactory(TCDF),LGI,NnergixandCapgemini.Photo:VictorSilvis/Unsplash46CLIMATESERVICESFORRENEWABLEENERGYCASESTUDY15AnenergyinterconnectionschemeispromotingclimatemitigationandsustainabledevelopmentinAfricaAnenergyinterconnectionschemewillhelpbothinreducingenergypovertyacrossthecontinentandinpreparingfortheworstimpactsofachangingclimate.158Accesstoelectricity(%ofpopulation)-Sub-SaharanAfrica159ThisisthestateofrenewableenergyinAfricarightnow160Keyfindings:Renewablepowergenerationcostsin2019161Accesstoelectricity–SDG7:DataandProjectionsCHALLENGEAtpresent,Africafacesenergypovertyandclimaterisks.ThepercentageofpeoplewithaccesstoelectricityinAfricawas48.4%in2020.158TheaverageelectricitypriceinAfricancountriesisashighasUS$0.14/kWh,whichistwotothreetimestheworldwideaveragecostindevelopingcountries.Inaddition,70%ofenergyforhouseholdheatingandcookingandotherbasicdomesticusecomesfromtraditionalbiomass,suchasfirewood,charcoalandanimalmanure,resultinginseriousindoorairpollutionandGHGemissions.Hence,itisnecessarytoconsidertheenergy–climatenexusandprovidecleanenergyaswellassustainabledevelopmentforAfrica.APPROACHGEIDCO’senergyinterconnectionschemeaimstoreduceenergypovertyandpromoteclimatemitigationinAfrica.First,theschemeaimsatacceleratinglarge-scaledevelopmentofrenewableenergy,suchassolarandwind,mainlyinNorthAfrica,aswellashydropowerinthebasinsoftheCongo,NileandZambezirivers.Second,foroptimalallocationofgreenpower,itisessentialtoimprovethebackbonepowergridinfrastructureandachievegridinterconnectionsinAfrica.Third,topromoteelectricitytradingbetweencountries,itisnecessarytoestablishaunifiedelectricitymarketandtradingmechanismforregionalpowerpoolsinAfrica.Fourth,thepowergrids,andconcentratedanddistributedpowersourcessuchasPV,windandhydropower,needtobedevelopedtoimproveelectricityaccess.Finally,toachieverobustpowersystemsinAfrica,thepowersourcesandgridinfrastructureshouldbedesignedandimprovedaccordingtoclimateresiliencestandards.Real-timemeteorologicalservicesshouldbeappliedtoprovideaccuraterenewableanddisasterforecasts,soastoimprovetheelectricitytrading,dispatchingandclimateresilienceofthepowersystem.RESULTTheschemehelpsaccelerateelectricityaccessandenergytransition,soastoachievemultipleSDGsinAfrica.RegionalpowerpoolsinAfricaareimprovingthepowersystemsunderthescheme.ThetotalinstalledrenewableenergycapacityinAfricahasgrownbyover24GWsince2013.159Solar,windandhydropowercapacityincreasedbyover10%annually.ThecostsofsolarPVandwindelectricityfell82%and55%,respectively,between2010and2019.160Asaresult,thenumberofpeoplewithoutaccesstoelectricityinAfricadecreasedfrom613millionin2013toaround572millionin2019.161Theenergyinterconnectionschemecanhelpincreaseaccesstoelectricity,reducepovertyandachievecarbonneutralityinAfrica.PARTNERSGEIDCO,InternationalInstituteforAppliedSystemsAnalysis(IIASA).Photo:RiccardoAnnandale/Unsplash47CLIMATESERVICESFORRENEWABLEENERGYANDENERGYSECURITYCASESTUDY16WeatherinformationandserviceshelpedtheBeijingWinterOlympicGamesachievea100%greenelectricitysupplyAnintelligent,panoramicmonitoringplatformforpowertransmission,andascalingupoftechnologyinnovation,helpeddeliverahistoricfirstfortheGamesinChina.CHALLENGEThephrase‘100%greenpower’referstoallvenuesoftheBeijingWinterOlympicsachievingreliablesupplyofgreenpowerthroughouttheirentirelifecycle.However,renewableenergyresourcesaregreatlyaffectedbynaturalconditions,andthereareuncontrollablefactorssuchasrandomness,volatilityandintermittency.Thesafeandstableoperationofthepowergridfacesthreemajorchallenges:lowgreenelectricitypredictionaccuracy,difficultyinloadpeakregulationandhighriskofmeteorologicaldisasters.Itisurgenttoprovidereliablesupportfrommeteorologicalservices.APPROACHTheapproachtakenwasthree-pronged.Thefirststepfocusedonpromotingrenewableenergydispatchtechnologyinnovation.Thisincludedresearchingkeytechnologiesanddevelopingkeysystemssuchasmultiscalerenewableenergyresourceforecasting,powerforecastingandschedulingstrategyoptimizationthatconsidermeteorologicalfactorstoensurerenewableenergyschedulingandconsumption.Theresourceforecastingsystemintegratinglarge-scaleclimateeffectsandsmall-scalelocaleffectscanachieveaforecastdurationof72hours,atemporalresolutionof15minutesandalocalspatialresolutionof30m×30m,withtheforecasterrorreducedfrom25%to10%.Thenextstepwastobuildanintelligentpanoramicplatformforpowertransmission.ThisinvolvedaddressingthemicrotopographyandmicrometeorologicalinformationaroundtheimportantpowerlinesattheBeijingWinterOlympics,usingobservationinformationfromsourcessuchasmeteorologicalsatellites,weatherradarandgroundmeteorologicalstationformonitoringandearlywarning,andbuildinganearlywarningplatformtowarnofshort-termrisksofmeteorologicaldisastersthatcouldaffectpowerlines.Theplatformachievesfullcoverageof118Olympic-relatedtransmissionlines,andtheintelligentvisualizationdevicetakessnapshotsattimeintervalsrangingfrom5minutesto20minutes,perceivesequipmentabnormalitiesinrealtimeanddiscoverspotentialexternalrisksbeforetheycanimpactthesystem.Thefinalstepwastoestablishapowersecuritysystemandstrengthenthecoordinationandcommunicationbetweenthepowerindustryandthemeteorologicaldepartment.ThismeantestablishingameteorologicalsecuritysystemspecificallyforOlympic-relatedequipment,andfocusingonprovidingfinemeteorologicalanalysis,earlywarningandinformationsharinginthecorearea,providingaccurateguidanceforequipmentoperationandmaintenance,andproposingcorrespondingoperationandinspectionstrategiesbasedonthemeteorologicalwarninginformation.RESULTTheBeijingWinterOlympicsbecamethefirstOlympicGamesinhistorythatachieve100%greenelectricitysupply.About400millionkWhofgreenelectricitywasconsumedduringtheGames,whichisequivalenttoavoidingthecombustionof128000tonsofstandardcoaland320000tonsofcarbondioxideemissions.Throughthein-depthintegrationofpowerandmeteorologysystems,supportedbymeteorologicalinformationandservices,a100%greenelectricitysupplywasguaranteedfortheGames.PARTNERSStateGridCorporationofChinaandStateGridJibeiElectricPowerCo.Photo:DarmauLee/Unsplash48CLIMATESERVICESFORRENEWABLEENERGYANDENERGYSECURITYCASESTUDY17EnhancingadaptivecapacityofAndeancommunitiesinChile,PeruandColombiaTheENANDESprojectaimstobuildcapacitytorespondtoclimatevariabilitybysupportingvulnerablecommunitiesandclimate-sensitivesectorsacrossthreecountries.CHALLENGETheimpactsofclimatevariabilityandchange,growingeconomiesandincreasingurbanizationinChile,PeruandColombiaisposingsystemicriskstoagriculture,waterandenergysecurity.Agriculturalproductionisanimportantsourceofemploymentforvulnerableruralpopulations.Theavailabilityofwaterisfundamentalforagriculturalproductionoftheregion,fromsubsistencefarmingintheAndeanhighlandsofPeruandColombiatoexport-orientedproductionincentralChile.Mostimportantly,hydroelectricpoweriskeyforallthreecountries.Mountainglaciers,steepalpinevalleysandlongriversofferidealconditionsfordevelopinghydroelectricity.Nevertheless,climatechangeandvariability(includingbothrainfalldeficitsandexcesses)arehavingseriousimplicationsforpowergenerationcapacity,managementofpeaksupplyanddemand,anddamsafety.APPROACHTheapproachoftheEnhancingAdaptiveCapacityofAndeanCommunitiesthroughClimateServices(ENANDES)project,aUS$7.4millionprojectfinancedbytheAdaptationFund,istoimplementandassessdemonstrationadaptationactivitiesinvarioussitesthroughoutthethreecountrieswhereclimate-sensitiveactivities(agriculture,hydropowergeneration,watersupply)andvulnerablecommunitiesandgroups(farmers,indigenouspopulation,womenandelderlypeople)arelocated.TheintegrativeapproachproposedbyENANDEScontrastswiththesiloedapproachtowater,energyandfoodthatistypicalofmanynationalpolicies,plansandstrategiesthatsetoutthevisionofgovernmentsovera10–30yearhorizon.Effectiveuseofclimateinformationandknowledgetosupportadaptationnotonlyrequiresrelevantandactionableinformationaboutclimatetrendsandfluctuationsandtheirlikelysectoralimpacts,butalsoacorrespondingunderstandingofthelocalcontextsthatdeterminewhetheradaptationpracticestomanagerisksandmitigateclimateimpactsonagriculture,waterandenergyareculturallyappropriateandeconomically,environmentallyandsociallyviable.Consequently,theENANDESprojectisexploringmultipleadaptationactivitiesinthreedemonstrationsitestogainfirst-handexperienceabouthowtosuccessfullycombineactionableandrelevantclimateserviceswithregionalandlocaladaptation,copingandex-antepreparednesspracticescreatedthroughtheengagementofpeopleandinstitutionswithlocalauthorityandresponsibility.AspartofthedemonstrationactivitiesinChile,theprojectisexploringhowoperationscouldbeimprovedbyaccesstoweatherandclimateinformationonscalesfromdaystoseasons.InColombia,thefeasibilityofPVinstallationsforruralareasthatdonothaveaccesstothecountry’sinterconnectedelectricitygridisbeingexploredinthedemonstrationsites,toprovidecost-effectiveelectricitythroughsmallPVinstallations(capableofsupplyingpowertosmallhamletsof8–12households).InPeru,thefocusisonprovidingclimateservicesthatinformthemanagementofwatersupplytometropolitanLima,withapopulationofalmost9millionpeople,andenhancedmanagementoffloodingandlandsliderisksfromtheRímacRiver,whichdescendsfromanelevationof5500meterstothePacificOceanatCallao,Lima.RESULTTheprojectisexpectedtodeliversocioeconomicbenefitsto11.5milliondirectandindirectbeneficiaries.Theparticipatingcountrieswillgetgender-sensitiveweather,hydrologicalandclimateservices,sixearlywarningsystemsandseasonalforecastsdownscaledfordemonstrationadaptationareas.Theprojectwillalsoincreasethenumberofacademia/researchinstitutionscollaboratingwithNMHSsonforecastingsystemsby33%.InPeru,thefocusisonprovidingclimateservicesthatinformthemanagementofwatersupplytometropolitanLima,withalmost9millionpeople.PARTNERSDirecciónMeteorológicadeChile(DMC),ServicioNacionaldeMeteorologíaeHidrologíadelPerú(SENAMHI)andtheWMORegionalClimateCentreforWesternSouthAmerica(InternationalResearchCentreonElNiño(CIIFEN)).Photo:AntonioGarcia/Unsplash49JN22782Photo:ValentinaBarretoFormoreinformation,pleasecontact:WorldMeteorologicalOrganization7bis,avenuedelaPaix–P.O.Box2300CH1211Geneva2–SwitzerlandStrategicCommunicationsOfficeTel.:+41(0)227307308314Fax:+41(0)227308027Email:communications@wmo.intpublic.wmo.int

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

碳中和
已认证
内容提供者

碳中和

确认删除?
回到顶部
微信客服
  • 管理员微信
QQ客服
  • QQ客服点击这里给我发消息
客服邮箱