锂离子电池寿命模型(英文)---NRELVIP专享VIP免费

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.
Predictive Models of Li-ion
Battery Lifetime
Kandler Smith, Ph.D.
Eric Wood, Shriram Santhanagopalan, Gi-Heon Kim, Ying Shi, Ahmad Pesaran
National Renewable Energy Laboratory
Golden, Colorado
IEEE Conference on Reliability Science for Advanced Materials and Devices
Colorado School of Mines Golden, Colorado September 7-9, 2014
NREL/PR-5400-62813
2
Key Messages
Semi-empirical battery lifetime
models are generally suitable for
system design & control
oLong-term validation still needed
oStandardization would benefit industry
oCharacterization requires expensive cell
aging experiments
Physics lifetime models are needed
to reduce test time as well as guide
future cell design
oOpen questions remain how best to
model electrochemo-thermo-
mechanical processes across length- and
time-scales
Liu et al., J. Echem Soc. (2010)
NREL
Life &
MSMD
Models
3
Thermal
NREL Electrochemical/Thermal/Life Models
Multi-Scale
Multi-Domain
(MSMD) model
Inter-domain
coupling of field
variables, source
terms
Efficient, flexible
framework for
physics expansion
Leading approach
for large-cell
computer-aided
engineering models
Kim et al. (2011) “Multi-Domain Modeling of Lithium-Ion Batteries Encompassing Multi-Physics in Varied
Length Scales”, J. of Electrochemistry, Vol. 158, No. 8, pp. A955A969
Electrochemical
Current Collector (Cu)
Current Collector (Al)
p
Negative
Electrode
Separator
Positive
Electrode
NRELisanationallaboratoryoftheU.S.DepartmentofEnergy,OfficeofEnergyEfficiencyandRenewableEnergy,operatedbytheAllianceforSustainableEnergy,LLC.PredictiveModelsofLi-ionBatteryLifetimeKandlerSmith,Ph.D.EricWood,ShriramSanthanagopalan,Gi-HeonKim,YingShi,AhmadPesaranNationalRenewableEnergyLaboratoryGolden,ColoradoIEEEConferenceonReliabilityScienceforAdvancedMaterialsandDevicesColoradoSchoolofMines•Golden,Colorado•September7-9,2014NREL/PR‐5400‐628132KeyMessages•Semi-empiricalbatterylifetimemodelsaregenerallysuitableforsystemdesign&controloLong-termvalidationstillneededoStandardizationwouldbenefitindustryoCharacterizationrequiresexpensivecellagingexperiments•PhysicslifetimemodelsareneededtoreducetesttimeaswellasguidefuturecelldesignoOpenquestionsremainhowbesttomodelelectrochemo-thermo-mechanicalprocessesacrosslength-andtime-scalesLiuetal.,J.EchemSoc.(2010)NRELLife&MSMDModels3ThermalNRELElectrochemical/Thermal/LifeModelsMulti-ScaleMulti-Domain(MSMD)model•Inter-domaincouplingoffieldvariables,sourceterms•Efficient,flexibleframeworkforphysicsexpansion•Leadingapproachforlarge-cellcomputer-aidedengineeringmodelsKimetal.(2011)“Multi-DomainModelingofLithium-IonBatteriesEncompassingMulti-PhysicsinVariedLengthScales”,J.ofElectrochemistry,Vol.158,No.8,pp.A955–A969ElectrochemicalCurrentCollector(Cu)CurrentCollector(Al)pNegativeElectrodeSeparatorPositiveElectrode4Life-predictivemodel•Physics-basedsurrogatemodelstunedtoagingtestdata•Implementedinsystemdesignstudies&real-timecontrol•RegressiontoNCA,FeP,NMCchemistries15°C20°C25°C30°C10°CMinneapolisHoustonPhoenixLi-iongraphite/nickelatelife:PHEV20,1cycle/day54%∆DoDNocoolingAircoolingAircooling,lowresistancecellPhoenix,AZambientconditions33miles/daydriving,2trips/dayLiquidcooling,chilledfluidIllustrationbyJoshBauer,NRELNRELElectrochemical/Thermal/LifeModelsNCA=Nickel-Cobalt-AluminumFeP=IronPhosphateNMC=Nickel-Manganese-Cobalt5Outline•Background–Li-ionBatteriesoWorkingprinciplesoElectrochemicalwindowoDegradationmechanisms•LifePredictiveModeling•AutomotiveLifeStudies&Control6Li+VWorkingPrinciplesVNeg.ElectrodeGraphiteHardcarbonSiliconTitanateLifoilPos.ElectrodeLiXO2,X=NiMnCoCoNiCoAlLiMn2O4,LiFeP047ElectrochemicalOperatingWindowPotentialvs.Li(V)SOC(xinLixC6oryinLi1-0.6yCoO2)0%SOC100%SOCPotentialmeasuredatcellterminalschargedischargeFigurecredit:IlanGur(ARPA-E)&VenkatSrinivasan(LBNL),20078ElectrochemicalWindow–DegradationPotentialvs.Li(V)SOC(xinLixC6oryinLi1-0.6yCo)O2)Figurecredit:IlanGur(ARPA-E)&VenkatSrinivasan(LBNL)20079NegativeElectrodeDegradation(Graphite)GraphenelayerGraphiteexfoliation,cracking(gasformation,solventco-intercalation)ElectrolytedecompositionandSEIformationSEIconversion,stabilizationandgrowthSEIdissolution,precipitationPositive/negativeinteractionsLithiumplatingandsubsequentcorrosionDonorsolventSEILi+1)Manufacturingenvironment2)Applicationenvironmenti)gracefulfade(timeathighT,SOC)ii)suddenfade/damage(cyclingatlowT)Figurecredit:Vetteretal.,JournalPowerSources,2005Negative/electrolyteinteractions10PositiveElectrodeDegradation(MetalOxide)Positive/negativeinteractionsX.Xiaoetal.,EchemComm.,32(2013)31-34.Positive/electrolyteinteractionsFigurecredit:Vetteretal.,JournalPowerSources,200511MechanicalCoupledStress&Degradation•LeastunderstoodamongstECTMphysicsFigurecredit:Santhanagopalan,Smith,etal.,ArtechHouse(inpress)12MechanicalCoupledStress&Degradation•ExamplesCannarella,J.PowerSources(2014)Diercks,Packard,Smithetal.,J.EchemSoc(2014)Figurecredit:Santhanagopalan,Smith,etal.,ArtechHouse(inpress)13Outline•Background–Li-ionBatteries•LifePredictiveModelingoPhysics-basedoSemi-empirical•AutomotiveLifeStudies&Control14DegradationMechanismvs.LengthScale10-1010-810-610-410-210-0Chemistry•SEIgrowth•Liplating•Electrolytedecomposition•GasgenerationParticlescale•SEIμ-cracking•Fracture,damageoftransportpaths•Phaseevolution,voltagedroopElectrodescale•Electrodecreep,delamination,isolation•Separatorporeclosure•PorecloggingCellscale•3Delec,thermal,mech.inhomogeneities•Tabeffects•Stack/windModulescale•Thermal&mechanicalboundaryconditions15Macro-scaleStressModel10-1010-810-610-410-210-0•Stress/strainduetothermalandelectrodebulkconcentrationchanges•Coupledechem&thermalBehrou,Maute,Smith,ECSMtg.(2014)16Micro-scaleStress/DegradationModel10-1010-810-610-410-210-0DamageevolutionPerformanceimpactAn,Barai,Smith,Mukherjee,JES201417NRELLifePredictiveModel•Data:J.C.Hall,IECEC,2006.17RelativeCapacity(%)Time(years)r2=0.942Li-ionNCAchemistryArrhenius-Tafel-Wohlermodeldescribinga2(∆DOD,T,V)NCA•Correctseparationofcalendarvs.cyclingdegradationforextrapolationof½yeartestingto10+yearlife•Extensibletountesteddrivecycles,environments(stateform)RelativeResistanceRelativeCapacityQsites=c0+c2N+…R=a1tz+a2NCalendarfade•SEIgrowth•Lossofcyclablelithium•Coupledwithcycling•a1,b1=f(∆DOD,T,Voc,…)Q=min(QLi,Qsites)QLi=b0+b1tz+…Cyclingfade•Activematerialstructuredegradationandmechanicalfracture•a2,c2=f(∆DOD,T,Voc,…)NCA18KneeinFadeCriticalforPredictingEndofLifeExamplesimulation:1cycle/dayat25°C50%DOD:GracefulfadecontrolledbyLiloss~t1/280%DOD:Transitionstoelectrodesiteloss,N~2300cyclesLifeover-predictedby25%withoutaccountingfortransitionfromLiloss(~chemical)tositeloss(~mechanical)NCATime(Days)19ElectrodeSiteLoss–CellAgingData•Graphite/iron-phosphatemeta-datasetfrommultiplelabsFeP20ElectrodeSiteLoss–CellAgingData•Graphite/iron-phosphatemeta-datasetfrommultiplelabs•13of50+testconditionsshowapparent“knee”incapacityfadecurveFeP21ElectrodeSiteLossModel(graphite/ironphosphate)()()[]()()().expexp,,intercal.binder11R32111,22−+∆+−=−−refpulsepulserefrateraterefarefattCCTTETTRErefmTmDODmcc).,min(sitesLiqqq=NbtbbqzLi210++=Nccqsites20+=acceleratedpolymerfailureathighTbulkintercalationstrainbulkthermalstrainintercalationgradientstrain,acceleratedbylowtemperatureFePModelsuccessfullydescribes13agingconditionsfrom0°Cto60°C22Outline•Background–Li-ionBatteries•LifePredictiveModeling•AutomotiveLifeStudies&ControloTemperature(xEV)oChargecontrol(xEV/grid)oPrognostic/duty-cyclecontrol(xEV)23AmbientEffectsonBatteryAverageTemperature05101520253035Phoenix,AZLosAngeles,CAMinneapolis,MNTemperature(C)BEV75PassivecoolingAverageAmbientw/solareffectsw/drivingeffects05101520253035Phoenix,AZLosAngeles,CAMinneapolis,MNTemperature(C)PHEV35ChilledliquidcoolingAverageAmbientw/solareffectsw/driving+activeTMS•Ambientconditionsdominate•Thermalconnectionwithpassengercabin,parkinginshadedstructuresstronglyinfluencebatterylife•Batterytemperatureandlifetimeweaklycoupledtoambientconditions24OptimizedChargingStrategies•ReducetimespentathighSOC(delaycharging)•AvoidhighC-ratestolowerpeaktemperaturesCostfunctionCU-Boulder/Hoke(2014)25OptimizedChargingStrategies•DelayedchargingbestBeginchargeEndchargeA)Constantenergycost•Responsetopricesignals•NoV2Genergyexporteduntilelectricityprice$0.50/kWhBeginchargeEndchargeB)Variableenergycost26NRELARPA-EAMPEDProjectsinBatteryControlUtahState/FordProject:20%reductioninPHEVpackenergycontentviapowershuttlingsystemandcontrolofdisparatecellstohomogenousend-of-lifeNREL:Requirementsanalysis;lifemodelofFord/Panasoniccell;controlsvalidationofFordPHEVpacksEatonCorporationProject:DownsizedHEVpackby50%throughenablingbatteryprognostic&supervisorycontrolwhilemaintainingsameHEVperformance&lifeNREL:Lifetesting/modelingofEatoncells;controlsvalidationonEatonHEVpacksWashingtonUniv.Project:Improveavailableenergyatthecelllevelby20%basedonreal-timepredictivemodeling&adaptivetechniquesNREL:Physics-basedcell-levelmodelsforMPC;implementWUreformulatedmodelsonBMS;validateatcell&modulelevelAMPED=AdvancedManagementandProtectionofEnergyStorageDevices27NRELARPA-EAMPEDProjectsinBatteryControlUtahState/FordProject:20%reductioninPHEVpackenergycontentviapowershuttlingsystemandcontrolofdisparatecellstohomogenousend-of-lifeNREL:Requirementsanalysis;lifemodelofFord/Panasoniccell;controlsvalidationofFordPHEVpacks1CEnergy(Wh)Teardownanalysisofautomotivepackagedto70%remainingenergyshows±5.5%variationatEOL±5.5%variationatEOL•Activebalancingmostbenefitsenergyapplicationswithlargecell-to-celldisparity•Keyquestion:Howmuchdoescell-to-celldisparitygrowwithage?Extremedrivingconditions,largepackΔTcauseabnormallylargecellcapacityimbalancegrowth28Summary•MainfactorscontrollingbatterylifetimeoTimeathighT&SOC(weakcouplingwithDOD&C-rate)oCyclingathighDOD&C-rate;Low/highT&SOC•Semi-empiricalbatterylifetimemodelsaregenerallysuitableforsystemdesign&controloNRELmodelsdescribevariouscommercialchemistriesoLifeextensionsof20%to50%maybepossible•PhysicslifetimemodelstoprovidedesignfeedbackoElectrochemical/thermalprocesseswellunderstoodoMechanicscouplingunderwayatvariouslengthscales29Funding•USDept.ofEnergy–VehicleTechnologiesOffice:BrianCunningham,DavidHowell•USDept.ofEnergy–AdvancedResearchProjectsAgency:IlanGur,PatrickMcGrath,RusselRoss•USArmyTankAutomotiveResearch,Development&EngineeringCenter:YiDing,SonyaZanardelli,MattCastanierCollaborators•TexasA&MUniversity:ParthaMukherjee,PallabBarai,KaiAn•UniversityofColoradoatBoulder:KurtMaute,RezaBehrou,DraganMaksimovic,AndrewHoke•ColoradoSchoolofMines:CorinnePackard,DavidDiercks,BrianGorman•EatonCorporation:ChinmayaPatil•UtahState:ReganZane•FordMotorCompany:DycheAndersonAcknowledgements30Thankyou

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

碳中和
已认证
内容提供者

碳中和

确认删除?
回到顶部
微信客服
  • 管理员微信
QQ客服
  • QQ客服点击这里给我发消息
客服邮箱