DecarbonizingAviation:AllAboardREPORTJANUARY2022DecarbonizingAviation:AllAboardREPORT–JANUARY2022InstitutMontaigneisanonprofit,independentthinktankbasedinParis,France.OurmissionistocraftpublicpolicyproposalsaimedatshapingpoliticaldebatesanddecisionmakinginFranceandEurope.Webringtogetherleadersfromadiverserangeofbackgrounds–government,civilsociety,corporationsandacademia–toproducebalancedanalyses,internationalbenchmarkingandevidence-basedresearch.Wepromoteabalancedvisionofsociety,inwhichopenandcompetitivemarketsgohandinhandwithequalityofopportunityandsocialcohesion.Ourstrongcommitmenttorepresentativedemocracyandcitizenparticipation,ontheonehand,andEuropeansovereigntyandintegration,ontheother,formtheintellectualbasisforourwork.InstitutMontaigneisfundedbycorporationsandindividuals,noneofwhomcontributetomorethan3%ofitsannualbudget.54TABLEOFCONTENTSTableofrecommendations�������������������������������������������������������������������������������������������������������������������������������������8Glossary�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������12I–Massivelyweakenedbythecrisis,theairtransportsectorremainscrucialforEurope’seconomy,tourismandstrategicfuture������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������141.AirtransportisanessentialsectorforEurope’sstrategicsovereignty,themobilityofpeopleand,morebroadly,economicandhumandevelopment����������������������������������������������������������������������������������������������������������������������������142.DomesticandinternationalairtraffichasbeenstronglyimpactedbytheCOVID-19Crisis,puttingpressureonthesectoranditsstrategicscopewhichmustbesupported����������������������������������������������������������������173.Asaresult,2050trafficforecastshavebeenreduced��������������������������������������21II–Sectorplayershavedrawnupanambitiousplanfordecarbonization��������������������������������������������������������������������������������������������������������������������������������������������241.Despitesteadygrowthinairtrafficsince1990(~5%peryear),thesector’slevelofCO2emissionshasbeencontainedthankstoaircraftimprovements��������������������������������������������������������������������������������������������������������������������������242.Growingenvironmentaldemandsonairtransportarepromptingthemainplayerstocommittoanambitiousplanaimedatachievingcarbonneutralityby2050����������������������������������������������������������������������������������������������������������������������283.EnvironmentalimpactgoesbeyondtheissueofCO2��������������������������������������������29Thereisnodesiremorenaturalthanthedesireforknowledge67DECARBONIZINGAVIATION:ALLABOARDConclusion�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������150Appendix:Overviewofvariousrelatedstudies���������������������������������������������������������������152Acknowledgments�������������������������������������������������������������������������������������������������������������������������������������������������������155Bibliography�������������������������������������������������������������������������������������������������������������������������������������������������������������������������160TABLEOFCONTENTSIII–Decarbonizationleversexistandmustallbeactivatedtoenabletheaviationindustrytomakeitstransition����������������������������������351.Implementationofdisruptivetechnologicalinnovationsisessentialtoreduceaircraftconsumption����������������������������������������������������������������������392.Equipmentrenewalisashort-termlever,easilyactivated,benefitingquicklyfromtechnologicalevolutions������������������������������������������������������������583.Leversforoptimizingconsumptionin-flightandon-groundmustbeactivatedintheshortandmediumterm������������������������������������������������������������������������644.Usinglargeamountsofsustainableaviationfuelsisnecessaryfordecarbonization,asitcontributesmorethan50%toachievingthetarget������������������������������������������������������������������������������������������������������������������������������������������������������������������������865.Existingmitigatingsystemsmustbeexpandedandamplified����������������121IV–Decarbonizingairtransportispartofawiderenergytransitionthatinvolvesamassiveproductionofdecarbonizedelectricitytoreplacefossilfuels���������������������������������������������������������������������������������������������1281.Energyrequirementsmustbeconsideredforallmodesoftransportation����������������������������������������������������������������������������������������������������������������������������������������������1282.Syntheticfuelshaveanessentialroletoplayinachievingdecarbonization��������������������������������������������������������������������������������������������������������������������������������������������������1313.Energyneedsassociatedwithdecarbonizationarevastandrequireunprecedentedinvestments������������������������������������������������������������������������������13798RECOMMENDATIONN°1(World)Acceleratethedevelopmentofdisruptivetechnologiesandincreasetheincre-mentalreductioninaircraftenergyconsumption.a.Accelerateincrementalchangesinconsumptionreduction;b.Maintaininvestmentdynamicsfordisruptivetechnologies,especiallyfor:newaircraftshapes,newengines(includingelectrification),hydrogen-powe-redaircraft;c.Preparethecertificationmodelfordisruptiveinnovations;d.Establishmechanismstoensurecompetitivecostsforlower-emittingequip-ment(financingnewinfrastructure,compensatingfortheadditionalcostsassociatedwithnewequipment,etc.).RECOMMENDATIONN°2(France/EU/World)Facilitatefinancingforthereplacementofoldequipmentwithnewer,lower-emittingequipmentwithintheframeworkoftheEUTaxonomyand/orusingsurchargemechanisms.RECOMMENDATIONN°3(France/EU/World)Implementmeansofreducingenergyconsumptionforaircraftoperations.•Flight:acceleratetheimplementationoftheSingleEuropeanSky,thedigi-talizationofairtrafficcontrol,theuseofsatellitetrackingfortransatlanticflights,andthedevelopmentofflightformationstoboostwakeenergyrecovery.•Ground:limittheuseofAPUwhenconnectedtotheterminal,optimizetaxiingandtowingwhenrelevant.TABLEOFRECOMMENDATIONSTABLEOFRECOMMENDATIONSRECOMMENDATIONN°4(France/EU/World)Promoteintermodalityforthestart/endoftrips,notablybyensuringconnec-tionsbetweenthemainrailstationsandtheterminalstofacilitatetransitions,andbyimplementingintegratedpassengertransportpathways.RECOMMANDATIONn°5ClarifythedefinitionofSAFandensuretheirusetoachieveemissionreductiongoals.a.(World)EstablishSAFsustainabilitycriteriasharedbyallcountriesanddefinedbyICAO,bothintermsofthereductionoftheirlifecycleemissionlevels,andthetypeoffeedstockused.b.(France/EU)IncludehydrogeninthedefinitionofSAFtoallowthedeve-lopmentofallsectorscontributingtothedecarbonizationofairtransport.c.(EU/World)ExpandtheSAFblendingmandatetoallgeographicalregions,basedontheEuropeanRefuelEUmodel;inEurope,bemoreambitiousthanthe63%targetfor2050providedbyRefuelEUAviation,dependingontheactivationrateandtheefficiencyofthevariousdecarbonizationlevers.RECOMMANDATIONn°6SupportsupplytocreateacompetitiveSAFmarketinEurope.a.(France/EU)Financefunctionalprototypeprojectsforvarioustechnolo-gies,includingbiofuelsandsynfuels,usingEUETSfunds.b.(France/EU)SetupCallsforProposals(guaranteedprice)andensurethecompetitivenessofSAFproducedinEuropeduringthefirstyears(subsi-dies),inordertoboostsectordevelopmentinEuropeandsecurethelaunchofthefirstproductionunits.c.(EU)DynamicallyadapttheSAFblendingtrajectoryasdefinedintheframeworkofRefuelEUAviation,inordertoavoidplateaueffectsandtobeconsistentwiththeindustrialenvironment;inthisrespect,anincreaseinthe2030targetcouldbeconsidered.1011DECARBONIZINGAVIATION:ALLABOARDd.(EU)Maximizeproductionvolumes,provideincentives(e.g.,taxcredits)tooffsetthecostpremiumbetweenSAFandkeroseneforblendsabovebaserequirements.RECOMMANDATIONn°7(EU/World)Limitdistortionsofcompetitionbetweenhubs/airlines.a.Intheshortterm,setupaEuropeancompensationmechanismapplicabletoalljourneysdepartingfromtheEU.ItshouldbeproportionaltothedistancetraveledbyeachpassengertosubsidizetheSAFblendingatnoadditionalcostcomparedtokerosene,thusavoidingcompetitivedistortionsandlimitingrisksofcarbonleakageforjourneysoutsidetheEUnotsubjecttothesameSAFblendrequirements.b.Inthemediumterm,allowfordifferentspeedsofimplementationofSAFblendratiorequirementsbetweencountries/geographicalregionswithoutdistortingcompetitionbetweenhubs/airlines;backSAFblendingmandatesatthepointofdepartureforeachpassengerandthroughouttheirjourney.c.Inthelongterm,implementhomogeneousSAFblendratiosatICAOlevel.RECOMMANDATIONn°8(France/EU)Promotesyntheticfueltostimulatethedevelopmentofalarge-scalehydrogenproductionchain:•Synfuelopensupalargevolumemarketforhydrogenproductionintheshorttermandallowsfortheimplementationoflarge-scaleproductionfacilities,whichareessentialforloweringcosts;•Synfuelsmakeitpossibletobypasstheproblemsoftransportingandstoringhydrogenwhentherearenodedicatedinfrastructures;•Thesyntheticfuelmanufacturingprocesscircumventstheissueoffeedstockavailabilitybecauseitusesonlyair,waterandelectricity;•Investmentscouldthenbeusedforthedistributionofhydrogentoairportswhenhydrogen-poweredaircraftareenteredintoservice;•TheproductionofsyntheticfuelalsoallowsforthedevelopmentofCO2capturetechnology.RECOMMANDATIONn°9(EU)Intheshortterm,setupamechanismtolimitthedistortionofcompetitionrelatedtoconnectingtrafficbetweenEuropeandtherestoftheworldsubjecttotheEUETS,forexamplebymaintainingafractionoffreeallowancestoensurebalancedcompetitionwithflightssubjecttotheCORSIAsystem.RECOMMANDATIONn°10(World)Strengthenexistingcarbonquotasystemsanddevelopnewmechanismstoextendtheircoveragetoairtrafficemissionsnotcoveredasofyet:a.EncouragetheimplementationofETS-typemarketmechanismsfordomes-ticemissionsincountriesandregionsoutsideEurope;b.Inthemediumterm,ensurethealignmentofcarbonallowancesystemswitheachotherandwiththeindustry’s“NetZero”objective.RECOMMANDATIONn°11(World)Implementamassiveinvestmentpolicyfordecarbonizedenergiesthatgoesbeyondthereplacementofproductionmethodscurrentlyused,inordertomeetthenewneedsoftransportplayersby2050.TABLEOFRECOMMENDATIONS1312ACI:AirportsCouncilInternationalADEME:FrenchEnvironmentandEnergyManagementAgencyIEA:InternationalEnergyAgencyASD:AeroSpace&DefenseIndustriesAssociationofEuropeATAG:AirTransportActionGroupATM:AirTrafficManagementA4E:AirlinesForEuropeBPI:PublicInvestmentBank(alsoknownasBpifrance)CANSO:CivilAirNavigationServicesOrganizationCDO:ContinuousDescentOperationsCII:FrenchInnovationTaxCreditCIR:FrenchResearchTaxCreditCOP:ConferenceofthePartiesCORAC:FrenchCivilAeronauticsResearchCouncilCORSIA:CarbonOffsettingandReductionSchemeforInternationalAviationEASA:EuropeanUnionAviationSafetyAgencyEEA:EuropeanEconomicAreaERA:EuropeanRegionsAirlineAssociationEREA:EuropeanResearchEstablishmentsinAeronauticsEUETS:EuropeanUnionEmissionTradingSchemeFAB:FunctionalAirspaceBlockFABEC:FunctionalAirspaceBlockEuropeanCentralFEGP:FixedElectricalGroundPowerGIFAS:FrenchAerospaceIndustryGroupingGPU:GroundPowerUnitGLOSSARYGLOSSARYHEFA:HydroprocessedEstersandFattyAcids(Oilprocessingindustry)HEP:HybridElectricPropulsionIAEA:InternationalAtomicEnergyAgencyIATA:InternationalAirTransportAssociationICCT:InternationalCouncilonCleanTransportationIRENA:InternationalRenewableEnergyAgencyICAO:InternationalCivilAviationOrganizationPAC:FuelCell(=PileàCombustible)PBN/RNP(improvednavigation):PerformanceBasedNavigation/RequiredNavigationPerformanceProjectNextGen:NextGenerationAirTransportationSystemPCA:Pre-ConditionedAirunitANSP:AirNavigationServiceProvidersPtL:PowertoLiquidRISE:RevolutionaryInnovationforSustainableEnginesRPK:RevenuePassengerKilometerSAF:SustainableAviationFuelsEUETS:EuropeanUnionEmissionTradingSchemeSESAR:SingleEuropeanSkyAirTrafficManagementSETI:SingleEngineTaxiIn(landingprocedure)SETO:SingleEngineTaxiOut(take-offprocedure)TRL:TechnologyReadinessLevelVTOL:VerticalTake-OffandLandingWEF:WorldEconomicForum1514I1.AirtransportisanessentialsectorforEurope’sstrategicsovereignty,themobilityofpeopleand,morebroadly,economicandhumandevelopmentThefirstcharacteristicofairtransport,comparedwithothertransportmodes,isthatitessentiallycannotbereplacedbyalternativemeansoftransportationforlongandverylong-distancetravel.Thedevelopmentofairtravelhasmadeitpossibletoconnectanypointsintheworldinlessthanaday,whereasthesamejourneywouldhavetakenseveraldaysorevenweeksatthebeginningofthe20thcentury.Inthissense,thedevelopmentofairtransporthasrevo-lutionizedthemobilitymodelofWesternsocietiesandhasbeenoneoftheelementswhichfosteredtheimportantglobalizationmovementthatcharacte-rizedthesecondhalfofthe20thcentury.Inadditiontointercontinentallinks,foranumberofgeographicalregions–particularlyislands–airroutesarenowanear-vitalneed.Forexample,Indonesia,whichisaveryinsularterritory,carrieseachyearanumberofpassengers(indomesticflights)equivalentto15%ofitspopulation.MASSIVELYWEAKENEDBYTHECRISIS,THEAIRTRANSPORTSECTORREMAINSCRUCIALFOREUROPE’SECONOMY,TOURISMANDSTRATEGICFUTURE1AirTransportActionGroup:acoalitionoforganizationsandcompaniesintheairtransportsector,withsome40members,includingthemainaircraftmanufacturers(Airbus;Boeing;Comac),enginemanufacturers(GE;Pratt&Whitney;Rolls-Royce;Safran)andairlinerepresentatives.OneofATAG’sgoalsistoaddresssustainabilityissuesintheindustry.Itshouldbementionedthatairtravelisnotexclusivelyusedforbusinesstrips,andfamilytravelaccountsforasignificantportionofflights(approximately20%beforethecrisis).ForFrance,besidestourism,airtransportisessentialtomaintainacloseconnectionwiththe2.5millionFrenchpeoplelivingabroad,andwiththe2.7millionFrenchpeoplelivingintheoverseasterritoriesanddepartments.Airtransportthereforeplaysanessentialroleinthemobilitymodelofmodernsocieties,andmoregenerallyinthefunctioningofoursocietiesandtheireconomies.Itisacatalystandgaspedalforconnectivity,innovationandproductivity.ATAGindicatesthata10%increaseinairtrafficwouldimplya0.5%growthinGDPpercapitalongterm.1Oneeconomicsectortowhichairtransportmakesthegreatestcontributionistourism.Itaccountsforseveralhundredmillionjobsworldwideandabout10%ofglobalGDP.Thelevelandgrowthofthetourismsectorisdirectlydependentonpeople’sabilitytotravel,andmorespecificallytofly.AccordingtoATAG,thebulk(58%)ofinternationaltransittouristsuseairtravel,whileaviationsupportsanestimated44.8milliontourismjobsworldwide,contributingapproximately$1trilliontoglobalGDP.Moreover,theimportanceofairfreightshouldnotbeoverlooked:whileitrepresentsonly1%oftheoverallvolumeoffreightworldwide,itaccountsfor35%ofthevalueoffreightinstrategicsectorssuchasthepharmaceuticalindustry.TheaviationindustryisoneofthelargestinEurope.AccordingtoATAG,in2018thesectordirectlyemployedaround2.7millionpeopleinEurope–themajorityofwhomareemployedatairports.Tothesedirectjobsmustbeaddedindirectandinducedjobs,aswellasjobsinthetourismsectorforwhichMASSIVELYWEAKENEDBYTHECRISIS,THEAIRTRANSPORTSECTORREMAINSCRUCIALFOREUROPE’SECONOMY,TOURISMANDSTRATEGICFUTURE1617DECARBONIZINGAVIATION:ALLABOARDairtransportislargelynecessary.Overall,thecontributionofairtransportrepresented13.5millionjobsin2018attheEuropeanlevelandcontributed$991billiontoGDP.AeronauticsisoneofthemainindustrialsectorsinFrance.GIFASestimatesthat194,000peopleworkinitsmembercompanies(mainlyintheParisregionandtheSouthwest).InadditiontoGIFASmembercompanies,thereareanestimated350,000directindustrialjobsintheaerospaceindustryinFrance.2Hence,Franceishometoalargenumberofplayersandthissectorisoneofthecountry’smainindustries.Withsalesofaround€74billionin2019,ofwhichtwo-thirdsareexports,theaeronauticsindustryisoneofthemaincontributorstotheFrenchtradebalance.Directnon-industrialjobsmustalsobeaddedtothedirectindustrialjobcount–indirectandinducedjobsaswellastourismjobs,whichisaparticularlyimportantsectorinFrance.TakingATAGdataintoaccount,wecanestimatethatthepositiveimpactofairtransportinFrancerepresentsseveralmillionjobsandseveralhundredbillioneuros.Moreover,oneofthemostspectaculardevelopmentsofthesecondhalfofthe20thcenturyisthestrongdemocratizationofairtransport,madepossiblebythesignificantdropinticketprices.Since1950,ticketpriceshavebeendividedby7andbyhalfsince1980.In2019,4.5billionpassengerswerethustransportedbyair(ofwhich58.4%weredomesticpassengers).Asmentioned,thesharpdropinticketpriceshasmadeairtravelmoreaccessible:thevastmajorityofpeopleindevelopedcountrieshaveflownatleastonceintheirlives,andnearlyhalfhaveflowninthelast12months(USandUKdata).Finally,itshouldbepointedoutthatthecostreductionforairtravelhasbeenimple-mentedatatimewhentheindustryisbearingthecostofitsinfrastructure,unlikemostothermodesoftransport.2.DomesticandinternationalairtraffichasbeenstronglyimpactedbytheCOVID-19Crisis,puttingpressureonthesectoranditsstrategicscopewhichmustbesupportedTheaviationindustryhasbeenparticularlyaffectedbytheCOVID-19heathcrisis.Thefirstconsequenceswerefeltassoonasthevarioussocialdistan-cingmeasuresandepidemicpreventionruleswereputinplace,notablythelockdownsimplementedaroundtheworld.InApril2020,morethan64%oftheglobalfleethadbeengrounded,andtrafficwasreducedby94.4%comparedtoApril2019.Overthecourseoftheyear,passenger-kilometersweredown64.5%.Thefirstplayerstobeaffectedbythedeclineintrafficwereairportsandairlines:thelattersufferedheavylossesin2020,estimatedat$137.7bil-lionbyIATA(comparedwithanaverageannualprofitofaround$30billionbeforethehealthcrisis).However,therepercussionsofthecrisishavebeenmitigatedthankstostrongpublicsupport.IATAestimatesthatbetweenthebeginningof2020andAugust2021,governmentshavegranted$243billiontocompaniestobolstertheirliquidity.Thishashelpedlimitthenumberofairlinebankruptcies,whichin2020wererathersimilartothepre-crisisperiod(~45bankruptciesperyear).Governmentshaveusedvarioustoolstosupportcompanies(capitalincrease,subsidies,loans,etc.),someofwhichwillhavetoberepaidafterthecrisis.Moreover,airlinecompaniesborrowedheavilytocopewiththecashflowhemorrhagecausedbythedeclineinactivity.Asaresult,theirdebthasincreasedbyabout50%,from$430billionin2019to$650billionin2021.Airportshavealsoseentheireconomicmodellargelychallengedbythecrisis,insofarastheyarehighlydependentonairtraffic(airlinefees,parking,shops,etc.).InFrance,thegovernmenthasimplementedsignificantmeasurestosupporttheentireeconomy,includingtheairtransportsector(government-backedloans,furlough),aswellasspecificmeasures(suchasacceleratedmilitaryorders)anddirectsupporttoAirFrance-KLM.Onthewhole,theStatehas2GroupementdesIndustriesFrançaisesAéronautiquesetSpatiales(GIFAS),website(Observatory/Employment&Training).MASSIVELYWEAKENEDBYTHECRISIS,THEAIRTRANSPORTSECTORREMAINSCRUCIALFOREUROPE’SECONOMY,TOURISMANDSTRATEGICFUTURE1819DECARBONIZINGAVIATION:ALLABOARDmobilizedsome€20billionfortheindustry,whichhaslimitedthenumberofcompanybankruptciesinthesectorandmaintainedskills.Atthesametime,themodernizationanddiversificationfundhasmobilizednearlyonebillioneurosandhashelpedtopartiallymaintaininvestmentdynamics.Overallandworldwide,theshareofeconomicactivitylinkedtoairtransportthreatenedbythehealthcrisisisestimatedat$1,700billionbyATAG.Seve-ralmillionjobshavebeenimpactedinthesector(2.3millionaccordingtoATAG),a21%decreasecomparedtothepre-healthcrisissituation.Airlineshaveplanstoreducetheirworkforceandmakesavings.Fromanindustrialstandpoint,thecrisiswasalsoheavilyfeltin2020,withanotable55%dropinaircraftdeliveriescomparedto2018(alsoduetothe737MAXcrisis).Theordervolumehasalsobeenaffected,mainlyforlong-haulaircraft.Asaresult,manufacturershavelargelyreducedproductionrates(byaround40%),withsignificantconsequencesfortheindustry’sentiresubcontractingchain.Whilewide-spreadvaccinationagainstCOVID-19seemstoofferawayoutofthecrisis,afullreturntonormalcyisyettocomefollowingtheappearanceofnewvariantsofthevirus,andtheimplementationofnewrestrictivemeasuresbygovernmentstofacethenewwavesofcontamination.AsrepresentedinthegraphbelowpublishedbyIATA,thesituationismixed:Itshowsthat(i)thehealthcrisishashadalmostnoimpactonfreightvolumes,(ii)domestictrafficisshowingagradualbutpartialrecoveryandwas22%lowerinOctober2021thaninJanuary2020,and(iii)internationaltransportisstillheavilysloweddown,at65%belowtheJanuary2020level.Therealsoremainsastrongdisparityintermsoftrafficrecoverydependingonthegeographicalregionsconsidered,asshowninthegraphbelow.GlobalCTKsDomesticRPKsInternationalRPKsAirtraffictrendsasofearly2020(Unit:revenuepassengerkilometerorcargotonkilometerforfreight)February2020January2020March2020April2020May2020June2020July2020August2020September2020October2020November2020December2020January2021February2021March2021April2021May2021June2021July2021August2021September2021October2021-100%-80%-60%-40%-20%0%9%-22%-65%20%Source:IATA.MASSIVELYWEAKENEDBYTHECRISIS,THEAIRTRANSPORTSECTORREMAINSCRUCIALFOREUROPE’SECONOMY,TOURISMANDSTRATEGICFUTURE2021DECARBONIZINGAVIATION:ALLABOARDAsiaseeminglycontinuestobethecontinentmostaffectedbythedeclineintraffic–whiletrafficlevelsinEuropeandtheUnitedStatesareclosertothoseobservedpre-crisis.Twofactorsexplainthesedynamics:thefirstisthedifferenceinsanitarymeasuresimplementedinvariouscountries,makingtheflowofpassengersmorecomplex;thesecondistheimplementationof“Zero-Covid”policiesinseveralAsiancountries,makingtravelparticularlydifficult.Finally,airtrafficrecoveryprospectsalsodifferaccordingtothetypeoftravelconsidered.Whilefamilytravel(visitingrelatives)willbethefirsttorecover,businesstravelismoreatrisk,especiallyduetothedevelopmentoftelewor-kingandcorporatebudgetcuts.Thisunevensituationisnoticeableinairlines’financialresults.Whilenotachie-vingpre-healthcrisisprofits,theindustryoverallreturnedtoprofitabilityinthethirdquarterof2021,forthefirsttimesincethelastquarterof2019,anddespitethegeneralincreaseincostsrelatedtoinflationandrisingoilprices.Therefore,theextentofthecrisiscombinedwiththeuncertaintyoffulltrafficrecoveryareveryweakeningfactorsforthesector,anditisdifficulttoassesstheextentofthecrisis’longtermeffects.Thechallengeofdecarbonizationisthusallthemoredaunting,insofarasitwillrequire–asdetailedintherestofthisreport–verysignificantinvestments.3.Asaresult,2050trafficforecastshavebeenreducedIntheseuncertaintimes,forecastingisparticularlydifficult.Atthebeginningofthesummerof2020,consensusintheindustrywasthattrafficwouldreturnto2019levelsby2023.Today,thisobjectivehasbeenpostponedbyoneyearandareturntothepre-crisissituationisnotexpectedbefore2024.Inthelongerterm,ATAGhasrevisedtheoutlookforairtrafficgrowth,withitscentraltrafficforecastusedfortheWaypoint2050reportbeingabout8%lowerin2050thaninaworldwithoutCovid.Thisforecast(seechartbelow),withsignificantmarginsofuncertainty,pointstoanaverageannualincreaseinairtrafficof3.1%,comparedwith5.3%growthperyearsince1990.Thisforecastimpliesadecreaseof8%intheleveloftrafficby2050comparedwiththeforecastmadebeforethehealthcrisis.Nth–Ctr’l.AmWithinEuropeEurope–Nth.AmEurope–AsiaAsia–Nth.AmWithinAsiaAirtraffictrendsasofearly2020bygeographicalconnection(Unit:inpassengerkilometers)February2020January2020March2020April2020May2020June2020July2020August2020September2020October2020November2020December2020January2021February2021March2021April2021May2021June2021July2021August2021September2021October2021-100%-80%-60%-40%-20%0%20%Source:IATA.MASSIVELYWEAKENEDBYTHECRISIS,THEAIRTRANSPORTSECTORREMAINSCRUCIALFOREUROPE’SECONOMY,TOURISMANDSTRATEGICFUTURE2223DECARBONIZINGAVIATION:ALLABOARDTrafficrecoverydynamicsandmedium-termgrowthinglobalairtransportwilldependonseveralstilluncertainfactors,including(i)theactualdateofrecoveryfromthehealthcrisis,whenairtrafficwillreturntoitspre-healthcrisislevel,(ii)theoveralleconomicsituationandthelong-termimpactofthehealthcrisisonGDPgrowthineconomiesaroundtheworld,(iii)apossiblereductioninleisuretrafficduetoconcernsaboutthehealthstatusofdestinationsandthepotentialdownsideofquarantines,and(iv)areductioninbusiness/intra-cor-poratetrafficinthemediumterm,duetonewwaysofoperating(remotemeetings,teleworking)andbudgetcuts.Waypoint2050trafficforecast:highNote:8%reductionin2050trafficforcentralforecastPre-covid-19forecastWaypoint2050trafficforecast:centralPost-covid-19forecastWaypoint2050trafficforecast:lowHistoricalATAGforecastsforworldairpassengertrafficrecovery(Revenuepassengerkilometers(RPKS))2015202020252030203520402045205005101520253035Source:Waypoint2050,p17.HCLHCLMASSIVELYWEAKENEDBYTHECRISIS,THEAIRTRANSPORTSECTORREMAINSCRUCIALFOREUROPE’SECONOMY,TOURISMANDSTRATEGICFUTURE2524II1.Despitesteadygrowthinairtrafficsince1990(~5%peryear),thesector’slevelofCO2emissionshasbeencontainedthankstoaircraftimprovementsFirst,theimportanceofairtransportdecarbonizationshouldbeputintoperspectivebyrecalling(i)theshareofairtransportemissionsintotalglobalemissionsand(ii)thepasttrajectoryofemissionsgrowth.AccordingtoATAG,in2019airtransportconsumed363millionlitersofkerosene,whichproduced914milliontonsofCO2.Thesector’semissionsthusrepresent2-3%oftotalglobalemissions,and10%ofthetransportsec-tor’semissions–alevellowerthanshipping.Approximately80%ofemissionscomefromflightstravelingmorethan1,500km(mediumandlong-haul).SECTORPLAYERSHAVEDRAWNUPANAMBITIOUSPLANFORDECARBONIZATIONSECTORPLAYERSHAVEDRAWNUPANAMBITIOUSPLANFORDECARBONIZATIONNote:Airtransportaccountsfor2%to3%ogglobalCO2emissions(~10%ofthetransportsector’sCO2emissions).25%18%6%41%16%4%6%GlobalCO2emissionssharebysectorOtherResidentialTransportationIndustryandconstructionEnergysectorexcludingelectricityPowergenerationSource:MinistryoftheEcologicalTransition,Keyclimatefigures,2018.2627DECARBONIZINGAVIATION:ALLABOARDSECTORPLAYERSHAVEDRAWNUPANAMBITIOUSPLANFORDECARBONIZATION3Averageoccupancyofcarsisaround1.5.Thesefiguresdonotincludeembeddedemissionsfromconstructionandmaintenanceofinfrastructure,wicharelessimportantforaviation.Comparedtoothertransportmodes,itseemsclearthatairtransportisveryefficientinitsuseoffuel,andthusinthecarbonintensityassociatedwithitsconsumption:perpassenger-kilometer,airtransportemitsquantitiesofCO2comparabletoautomobiletransport.However,thiscomparisonhasitslimitsinsofaraseachmodeoftransportrespondstomobilityneedsthatmaybeverydifferent.Theenergyefficiencyofairtransporthasbeenmadepossiblebycontinuousprogressinaviationtechnology.Upgradesinaircraftandenginedesignhavereducedfuelconsumptionperseatby82%since1960.Combinedwithimpro-vementsinoperationsandinfrastructure,thiscontinuedprogresshashalvedCO2emissionsperpassenger-kilometersince1990,andhaspreventedtheemissionof11GtofCO2since1990.ComparingCO2emissionsbetweendifferentmodesoftransport(GramsofCO2perpassengerkilometre)Passengerrail(assumenuclearorrenewableelectricity)with4passengers(petrol/gaz)Europeanaverage1.5passenger3BusSmallcarAirtravelLargecarSource:Waypoint.144210858281049615868Europeanfleataverage(2014)with4passengers(petrol/gaz)Europeanfleataverage(2018)1,5passengers3Althoughthiswasmainlydrivenbyadesiretolowercosts,particularlyforkerosene,thisongoingworkintheindustryhasledtoareductioninitscarbonfootprint,despitethesignificantgrowthinthenumberofpassengerscarried.Today,aviationisaveryefficientmeansoftransportation,withemissionsperpassenger-kilometercomparabletothoseofprivatecars.Worldfleetenergyperformancetrends(Unit:CO2/RevenueTonne-Kilometer,base100in1990)19901995200020052010201520200203040506070809010010Source:IATA,fuelfactsheet,2019.887464544947-27%-27%Aparticularlyrevealingobservationregardingtheeffortsalreadymadebytheindustrytoreduceitsenvironmentalimpactisthedecouplingoftheincreaseinpassengernumbersfromtheincreaseinemissions.Since1990,thesector’sCO2emissionshaveincreasedannuallyby2.49%,whileairtraffichasgrownby5.33%.2829DECARBONIZINGAVIATION:ALLABOARDTherefore,thechallengefortheindustryistotakeafurtherstepindecouplingthevolumeofpassengerscarriedfromCO2emissions.Intheabsenceofadditionalefforts,itislikelythatairtransportwillcontinuetoincreaseitsemissions,inlinewiththeincreaseinairtraffic.2.Growingenvironmentaldemandsonairtransportarepromptingthemainplayerstocommittoanambitiousplanaimedatachievingcarbonneutralityby2050Environmentalpressureplacedonairtransporthasacceleratedconsiderablyinrecentyears.Theindustryisunderattackforbothitsemissionsanditsimage,andthepublic’sassessmentoftheindustry’semissionsisoftengreatlyoverestimated.Thispressurehasimportantconsequencesonthesector’simage.Forinstance,thesurveysconductedannuallybyADEMEindicatethat51%ofFrenchpeoplesaytheyaregivingupflyingforleisure,comparedwithonly36%in2018.Inadditiontotheseshiftsattheindividuallevel,callingforincreasedeffortsfromtheindustry,themajorgroupsarealsofacedwithgrowingrestrictiveclimatemeasurementandreportingobligations,andareunderpressurefrombothgovernmentsandinvestors.Acceleratingthereductionofaeronautics’environmentalimpactsisamajorchallengefortheindustry,particularlyinsofaras(i)thehighlevelofmaturityoftechnologiesimpliesahighcostforfutureincrementalinnovations,(ii)theintroductionofdisruptivetechnologiesalsorequiresignificantinvestments,and(iii)theindustry’sinvestmentandprofitabilitycyclesextendoverseveraldecades,whichimplieslimitedfleetrenewal.Theindustryhasrecentlycommittedtoachievingcarbonneutralityby2050.Thepurposeofthisreportistoidentifyandreviewtheleversforachievingthistarget.Inaddition,someindividualplayershavemadecommitmentsinthecontextoftheircarbontrajectory(AirFrancehasindicatedthatitisaimingforawellbelow2°CtrajectoryaspartoftheSciencebasestargetmodel,andAirbushasannouncedthedevelopmentofahydrogenaircraftby2035).3.EnvironmentalimpactgoesbeyondtheissueofCO2ItshouldbenotedthatwhilethisreportfocusesonreducingaviationCO2emissions,aviationalsoproducesothertypesofgreenhousegasessuchasnitrogenoxides(NOx).Althoughnotallgaseshavethesameimpactontheclimate,CO2isthemostnotablegreenhousegasbecauseofitslengthylifespan(~100years)comparedtoothergreenhousegases(e.g.,about1dayforNOx,or10yearsformethaneproducedbyagriculture).WorldairtransportCO2emissiontrajectories(CO2millionsoftonnes)Source:Waypoint2050p14.199020002010202020302040205002,0003,0004,0005,0001,000Emissionsreductionalreadyachieved:over11GtofCO2avoidedthroughinvestmentintechnologyandoperationalimprovementssince19905,200MtNet-zeroCO2emissionsCarbon-neutralgrowthFrozen1990efficiency2050emissionsbyprojectingthecurrentenergyperformancetrajectorySECTORPLAYERSHAVEDRAWNUPANAMBITIOUSPLANFORDECARBONIZATION3031DECARBONIZINGAVIATION:ALLABOARDWhenairplanesflythroughcertainareasoftheatmosphere,theyleavecontrailsbehind.Theimpactofthesecontrails(andthehazycirruscloudstheysometimesgenerate)onclimatechangeisstillveryuncertain.Moreresearchisneededtoassesstheexactimpactofcontrailsonthegreenhouseeffect.Similarly,othergasesemittedbyaviationmayhaveapositiveornegativeimpactonthegreenhouseeffect.Overall,thenon-CO2impactsonglobalwarming–whicharesubjecttoahigherlevelofuncertaintytodate–couldbemoreimportantthantheCO2impacts.However,thereisamethodologicaladvantageinfavoringtheanalysisofCO2impactsovernon-CO2impacts,duetotheprecisionof(i)themeasurementsofCO2emissionsandtheirimpactsand(ii)theforecastsoffutureemissionsaccordingtotheleversactivatedineachscenario.Inaddition,certainmeasuresimplementedtoaddressCO2emissionscanbeconsideredtoalsohaveanimpacton“non-CO2aviation”emissions(e.g.,reductionoffuelconsumption,optimizationofflightandgroundoperations).Inthisrespect,thealternativefuelspresentedlaterinthisreportcontainfeweraromaticsthanfossilfuels(kerosene),whichhelpstolimittheformationofcondensationtrails.Furthermore,thereareothermeasurescurrentlybeingstudiedtoreducenon-CO2impacts,whicharenotaddressedinthisstudy.Withregardtocontrails,theoptimizationofflightplanstoavoidformationzones(horizontaland/orverticaltrajectorydeviation)arebeingstudied.RegardingNOx,researchisunderwaytooptimizeflightlevelstolimitNOxemissions.Itshouldalsobenotedthatglobalwarming,andtheresultingchangesintemperature,humidityandwind,caninducepositiveornegativefeedbacksonalltheenvironmentalimpactsofaviation.Finally,somemeasuresthathaveapositiveimpactonagivenenvironmentalfactormayalsohaveanegativeimpactonanother,highlightinganeedforaglobalapproach:evenifthisstudyfocusesonthesector’sCO2emissionsforreasonsofmethodologicalefficiency,allenvironmentalexternalitieswillhavetobetakenintoaccountandmitigated,includingothergreenhouseSECTORPLAYERSHAVEDRAWNUPANAMBITIOUSPLANFORDECARBONIZATIONImpactofaviationproductsintermsofeffectiveradiativeforcing(Unit:mW/m2)InducedcontrailsandcirruscloudsCO2NOx4SootWatervaporSulphatesSource:AtmosphericEnvironment,Volume244,Thecontributionofglobalaviationtoanthropogenicclimateforcingfor2000to20185.ArcheryStrategyConsultinganalysis.8198124013-31728282941-16-19Nearcertainimpact(mW/m2)Possibleimpact(mW/m2)4NeteffectofNOxemissions,partofwichareabsorbedbythereactionwithmethaneandwatervaporintheupperatmosphere.5AtmosphericEnvironment,Volume244(D.S.Lee,D.W.Fahey,A.Skowron,M.R.Allen,U.Burkhardt,Q.Chen,S.J.Doherty,S.Freeman,P.M.Forster,J.Fuglestvedt,A.Gettelman,R.R.DeLeon,L.L.Lim,M.T.Lund,R.J.Millar,B.Owen,J.E.Penner,G.Pitari,M.J.Prather,R.Sausen,L.J.Wilcox).3233DECARBONIZINGAVIATION:ALLABOARDgasesaswellaspotentiallynegativeimpactsonairquality,waterqualityandbiodiversity.Thisanalysisalsoappliestoallmodesofmobilityandtheirinfrastructures.Forinstance,thefigurebelowpresentsacomparativeanalysisoftheimpactsassociatedwiththecreationofanewrailline(projectcost:14.3billioneuros)6andtheuseofexistingmeansoftransport–airandcar–toconnectParistoToulouse.Thisanalysisshowstheimportanceoftakingallenvironmentalconsequencesintoaccountforeachmodeoftransport,andcanbecom-pellinglyreworkedaccordingtothegeographic,demographicandeconomiccontextofaproject.SECTORPLAYERSHAVEDRAWNUPANAMBITIOUSPLANFORDECARBONIZATION6LaTribune,LGVBordeaux-Toulouse:L’empreinteenvironnementaleduGPSOscrutéeàlaloupe(november2021).ImpactHSR(GreatSouthWestRailwayProject)AirplaneAutomobileCreationofinfrastruc-ture~3MteqCO2•327kmofHSR(Bor-deaux-ToulousesectionandBordeaux-Daxsec-tion,with55kmshared)•DevelopmentSouthofBordeaux•DevelopmentNorthofToulouse•Newstations(Agen,Mon-tauban,Mont-de-Marsan)Pre-existingattheairportsofBordeauxandToulousePre-existingHighwayA10(Paris-Bordeaux)Highway162(Bordeaux-Tou-louse)Replacingpartoftheairtrafficwithrailtrafficwouldsave~0,3MteqCO2/year,equivalenttoanemissionsamortizationperiodforthe~10yeartran-sitionprocessOperatingpassengerlines4kgCO2/passenger(Paris-ToulouseemissionsbyTGV)130kgCO2/passenger(Paris-Toulouseemissionsbyplane)40kgCO2/passenger(Paris-Toulouseemissionsbyautomobile)Groundsurfacearea4,830hectaresofwhich:•1,230haofagriculturalland•2,850haofsilviculturalareas(forests)Pre-existingattheairportsofBordeauxandToulousePre-existingHighwaysA10/A62Biodiver-sityImportant,subjecttocompensationmeasuresLimitedImportantNoiseemissionsImportant(moderateleveloveralongdistance)Important(mainlynearairports)Important(Moderateoveralongdistance)Comparingtheenvironmentalimpactsofrailtransport(HSR)andairtransportSource:Rapportdelacommissiond’enquêtepréalableàladéclarationd’utilitépubliqueduGrandProjetFerroviaireduSud-Ouest7;ArcheryStrategyConsultinganalysis.7GPSO/LNInquiryCommissionReport(March2015).CO2emissionsOthereffects3435DECARBONIZINGAVIATION:ALLABOARDMoreover,thesecomparativeanalysesbetweenmodesoftransportmustbecarriedoutinaprospectivemanner.Indeed,ittakesmorethan15yearstodevelopanewhigh-speedline,whichwillrequireverylargeinvestmentsandhaveastrongimpactonsoilandbiodiversity.However,bythistime(2035),“Zerocarbon”airalternativesshouldbeavailable(e.g.,hydrogenaircraft),whichcallsintoquestionthetrade-offbetweenthecreationofanewhigh-speedlineandtheuseofairtransport.Lastly,emissionscausedbythesector(e.g.,inthetourismsector,whichisverydependentonairtransporteconomically)mustbesubjecttospecificactionsinordertoreducetheirenvironmentalimpact.IIIInordertofulfillitscommitmenttoachievecarbonneutralityby2050–acommitmentreiteratedinGlasgowatCOP26inNovember20218–theairlineindustry,undertheaegisofATAG,hasconsideredseveraldecarbonizationscenariosinitsWaypoint2050study.9DECARBONIZATIONLEVERSEXISTANDMUSTALLBEACTIVATEDTOENABLETHEAVIATIONINDUSTRYTOMAKEITSTRANSITION8COP:theConferenceofthePartiesisaninternationalclimateconferencethatbringstogethereachyearthesignatorycountriesoftheUnitedNationsFrameworkConventiononClimateChange(UNFCCC).The2015edition(COP21),hostedbyFrance,adoptedtheParisAgreement,whichcommitsallcountriesintheworldtoreducetheirgreenhousegasemissionsandkeepglobalwarmingbelow2°Cby2100.Whilesignificantprogresswasmadeatthe2021edition(COP26)organizedbytheUnitedKingdom(e.g.,globalcommitmentonmethane),additionaleffortswillbeneededinthecomingyearstocomplywiththeParisAgreement(e.g.,coalphase-out).9ATAG,Waypoint2050-Avisionofnet-zeroaviationbymid-century(2ndedition,September2021).3637DECARBONIZINGAVIATION:ALLABOARDFourmainleversforimprovementareidentifiedtoachievethedecarbonizationgoals:•Technologicaldevelopments(e.g.,aircraftaerodynamics,engines)andtheirintegrationintothefleet;•Optimizationofflightandgroundoperations(e.g.,flightpath,aircraftmain-tenance);•TheuseofSustainableAviationFuels(SAF)(e.g.,biofuelproducedfromforestresiduesormicroalgae);•Theuseofcompensationmeasures(e.g.,forestry,naturalcarbonsinks,CO2capture/storage).Thescenariosdifferintheiruseofthevariousimprovementlevers:•Thebaselinescenario(scenario0)isacontinuationofcurrentefficiencytrendsintechnologywithoutacceleratingimprovements;regardlessofthelevelofSAFblendingconsidered(5%to31%),successinmeetingtheneu-tralityobjectivesmostlyreliesonCO2captureorcarbonmitigationmeasures(49%to76%);•Inscenario1,technologicalimprovementsareboostedbytheintegrationofdisruptivetechnologies(22%),inparticularwiththefleettransitioningtohybrid/electricaircraftandusinginnovativearchitecturesfrom2035/40;theobjectiveofcarbonneutralityisachievedthroughtheuseoflargequan-titiesofSAF(61%);•Inscenario2,technologicalimprovementsincludenewaircraftconfigura-tionsbutnosignificantswitchtoelectricorhybridengines;theobjectiveofcarbonneutralityisonceagainachievedthroughtheuseofSAFinverylargequantities(71%);•Inscenario3,useoftechnologicaldevelopmentsismoresignificant(34%),withelectricaircraftupto100seats(regional),zeroemissionaircraft(powe-redbydecarbonizedhydrogen)11forthe100-200seatsegment(shortandmediumhaul),andnon-conventionalaircraftwithhybrid-electricpropulsionforlargeraircraft;theweightofSAFremainsthedrivingforceinthisscenariotoachievecarbonneutrality(53%).DECARBONIZATIONLEVERSEXISTANDMUSTALLBEACTIVATEDTOENABLETHEAVIATIONINDUSTRYTOMAKEITSTRANSITIONWorldairtransportdecarbonizationscenariosScenario3–Waypoint2050OtherscenariosconsideredCO2emissions(millionsoftonnes)Source:Waypoint2050p26,ATAG,IATA10,FlyNetZerop5àp8.ArcheryStrategyConsultinganalysis.2015202020252030203520402045205001,0001,5002,0002500500TechnologyOperationsandinfrastructures(includingefficiencyimprovementsfromloadfactor)Sustainableaviationfuel(SAF)Offsettingmechanismsand/orcarboncaptureTOFM6%53%7%34%Emissionsreductioncontributionin2050Net-zeroWaypoint2050Scenario0LowSAFWaypoint2050Scenario0HighSAFWaypoint2050Scenario1Waypoint2050Scenario2Waypoint2050Scenario3SelectedScenarioIATANetzeroResolution202176%49%7%8%6%19%5%31%61%71%53%65%9%9%10%9%7%3%10%10%22%12%34%13%10InternationalAirTransportAssociation,FlyNetZero–AirlinecommitmenttoNetZero2050(octobre2021).11Decarbonatedhydrogenisdefinedasthatcreatedbyrenewable(e.g.,wind)orlow-carbon(e.g.,nuclear)meansofproduction.3839DECARBONIZINGAVIATION:ALLABOARDThisreportthereforeincludestheconclusionsofthedetailedWaypoint2050analysis:itchosestofocusonscenario3.Thedecarbonizationtrajectoryselectedisthereforebasedonthefollowingmixofimprovementlevers:•~34%ontechnologicaldevelopments;•~7%ontheoptimizationofflightandgroundoperations;•~53%ontheuseofalternativefuels(SAF);•~6%onmitigationmeasures.Thisscenarioisthemostproactiveintermsoftechnologicalprogressandisinlinewithrecentannouncementsbyaircraftandenginemanufacturers:•Hydrogen-poweredaircraftprojectannouncedbyAirbustobeputintoser-viceby2035;•TheRISE(RevolutionaryInnovationforSustainableEngines)functionalprototypeannouncedbyCFMInternationaloffersa20%reductioninfuelconsumptioncomparedtotheLEAPenginesusedontheAirbusA320neoandBoeing737MAX;combinedwithchangestootheraircraftcomponents,a30%reductioninfuelconsumptionispossibleformedium-haulaircraft;•UltrafanfunctionalprototypeannouncedbyRolls-Roycewitha25%fuelsavingcomparedtothefirstgenerationTrentengines.Moreover,thisscenarioappearstoofferthebestbalancedbetweenthetwomainlevers(technologicaldevelopmentsandSAF):ittakesintoaccounttheinherentlimitationsofSAFproductionby2050:limitedavailabilityofeconomi-callyexploitableinputsforbiofuels,andsignificantgenerationofdecarbonizedelectricityfortheproductionofsyntheticfuels.12TheTRL(TechnologyReadinessLevel)measurementsystemisusedtoassessthematuritylevelofatechnology.Thescalehas9maturitylevels(from1to9–lowtohigh):thehigherthelevel(closeto9),themorematurethetechnologyistobemarketed.TechnologicalcontributionstotheemissionsreductiontargetEmissionreductiontargetsMainleversSource:Waypoint2050;ArcheryStrategyConsultinganalysis.Waypoint2050Scenario3Detailsoftechnologicallevers6%24%53%7%34%10%TechnologyOperationsandinfrastructures(includingefficiencyimprovementsfromloadfactor)Sustainableaviationfuel(SAF)Offsettingmechanismsand/orcarboncaptureIncrementalinnovationsDisruptiveinnovations•Newaircraftarchitecture(e.g.,flyingwing)•Propulsion:Propfan/Openrotor•Electricpropulsion:hybridelectric,electric•Hydrogen-poweredaircraft•Improvingengineefficiency(gearedreducer,highpressure,highdillutionrate…)•Aircraftweightreduction(composite,reductionofstressonthestructure…)•Digitalization…1.ImplementationofdisruptivetechnologicalinnovationsisessentialtoreduceaircraftconsumptionTechnologicaldevelopmentsincludetwotypesofevolution:incrementalanddisruptive.Theyaredistinguishedessentiallybytheirleveloftechnolo-gicalmaturity(TRL)12todateandthedepthofthechangecomparedtothehistorical10architectureoftheaircraft.DECARBONIZATIONLEVERSEXISTANDMUSTALLBEACTIVATEDTOENABLETHEAVIATIONINDUSTRYTOMAKEITSTRANSITION4041DECARBONIZINGAVIATION:ALLABOARD1.1.IncrementalinnovationsRECOMMANDATION1A(World)Accelerateincrementalchangesinconsumptionreduction.Incrementaldevelopmentsarebasedonmasteredarchitecturesandtech-nologiesthatwillcontributetotheachievementoftheemissionreductiontargets(~10%ofthe~34%):•Optimizeengineefficiency(useofgearedengines,enginesoperatingathigherpressure,installationoflargerrotors…);13•Improveaircraftstructure(compositematerials,winglets,adaptableflaps…),inordertoimproveaerodynamicsorlightenweight;•Increaseuseofdigitalization(deploymentofsensors,calculations…),allowinganoptimizeduseofaircraft.Theconceptofthesedevelopmentsisnowwellunderstoodandtheirimple-mentationinnewaircraftisonlyamatteroftime.Theearliertheycanbeimplementedinfleets,thegreatertheirimpactonemissions.Therefore,itisessentialtomaintaineffortsinincrementalinnovationsinordertosecuretheirearlyroll-out.13Avisiblemoduleattheinletoftheturbojetengine,consistingofbladesorvanesthatsuckinandcompresstheairwithintheengine,andwhosesizestronglyimpactsitsfuelconsumption.Overviewofincrementalinnovations…/…TechnologyDescriptionMaturityPerimeterIllustrationGearboxmotorsUsingagearboxtoseparatethespeedsoftheturbojetenginecomponents:optimizesengineefficiencyInprogress:thePratt&WhitneyengineCompositestructuresforwingsandfuselageIncreasingtheuseofcompositema-terialsthatarelighterthanthemetalscurrentlyused:reducestheweightoftheaircraftandthereforefuelconsumptionAlreadyusedtovaryingdegreesWingletsModifyingthewingtipstoreducethedraginducedbythewingtipvortices:improvesaircraftaerodynamicsWidespreadexceptonsomeoldermodelsLighterloadsonthewingsUsingadaptiveflapstolimitthelevelofstressonthewingsandthusreducingtheweightoftheaircraft:lightenstheaircraftandreducesfuelconsumptionIntegratedAircraftHealthMonitoringUsingsensorstodetectdamagetothestructureandidentifymainte-nance/repairneedsmorequickly:reducesstructuresandthereforeweightthankstotailoredmaintenancecyclesAdvanceddi-gitalizationofflightcontrolsIncreasingandimprovingon-boardcomputers:optimizescommands&controlsandnavigationwhichreducesfuelconsumptionHighpressurereactorsOperatingenginesathigherpres-surestoimproveengineperformance:reducesaircraftweightandimprovesturbojetefficiencyTRL8ESHSHSHSHSHSHMHMHMHMHMHMHLHLHLHLHLHLHSHMHLHEGearboxDECARBONIZATIONLEVERSEXISTANDMUSTALLBEACTIVATEDTOENABLETHEAVIATIONINDUSTRYTOMAKEITSTRANSITION4243DECARBONIZINGAVIATION:ALLABOARD1.2.DisruptiveinnovationsOthermoreradicaldevelopments,ordisruptiveinnovations,areessentialtoachievetheCO2reductionobjectives(~24%ofthe~34%).Theseinnovationswilltackletheengineontheonehand,andthestructureoftheaircraftontheother.MotorizationFirst,regardingtheengine,technologicaldevelopmentscanbemadeinthreemainareas:design,hybrid/electricmotorizationanduseofhydrogenasfuel.TechnologyDescriptionMaturityPerimeterIllustrationRibletsCreatinggroovesonaircraftwalls:reducesfrictionaldrag,thusincreasestheefficiencyoftheaircraftandreducesfuelconsumptionTRL8FuelcellsforauxiliarysystemsReplacingauxiliarypowerunits(supplyingelectricitytovariousaircraftsystems)runningonkerosenewithahydrogen-poweredfuelcell:reduceskeroseneconsumptionTRL8–testsspécifiquesàprévoirpouraviationUltraHighBypassRatioengines(UHBR)Installinglargerrotors:increasesdilutionratesandthereforedecreasesfuelconsumptionTRL5OverviewofincrementalinnovationsSHSHSHMHMHMHLHLHLHESource:Waypoint2050;ArcheryStrategyConsultinganalysis.Short-haulEnginetechnologyTRLlevel[1;3]:ResearchTRLlevel[4;6]:UnderdevelopmentTRL:TechnologyReadinessLevel=MaturityofthetechnologyTRLlevel[7;9]:BeingdeployedCommercialized;Canbemorewidespread/improvedMedium-haulLong-haulSHEMHLHTechnologyDescriptionMaturityPerimeterIllustrationOpenrotorPlacingtherotoroutsidethenacelle:increasesdilutionratesandreduceconsumptionHybridelectricpropulsionCombiningand/oralternatingelec-tricandthermalpropulsion:reducesfuelconsumptionamplifiedbyapossiblereductioninthesizeofcombustionenginesandthereforeinweightElectricpropulsionUsingelectricmotorstoactivatetra-ditionalthrusters(oraseriesofsmallrotors)poweredbybatteriesorfuelcells:eliminatesfossilfuelconsumptionHydrogenAircraftUsinghydrogenasfuel(eitherinathermalreactiontopowertraditionalen-gines,orinachemicalreactiontopowerafuelcellthatpowersanelectricmotor):eliminatesfossilfuelconsumptionReactorsintegratedinthefuselageBoundaryLayerIngestionPlacingtheenginesatthebackofthefuselagesothatthefanabsorbstheairpassingthroughthefuselage:reducespartofthedragTBDOverviewofdisruptiveinnovationsinmotorizationSHSHSHSHMHMHMHMHLHLHLHLHSource:Waypoint2050;ArcheryStrategyConsultinganalysis.DECARBONIZATIONLEVERSEXISTANDMUSTALLBEACTIVATEDTOENABLETHEAVIATIONINDUSTRYTOMAKEITSTRANSITION4445DECARBONIZINGAVIATION:ALLABOARDEnginedesignThedesignobjectiveistobreakwithtraditionalreactorsanddevelopnewarchitectures.Oneofthemostadvancedprojectsfocusesontheuseofapropfan(Openrotor).CFMInternationalhasofficiallylaunchedtheCFMRISEtechnologydevelopmentprogramin2021,whichwillfeatureanOpenrotor.14/15ThenewdesignisexpectedtoreducefuelburnandCO2emissionsbymorethan20%comparedwiththecurrentgenerationofLEAPengines,16whilemaintainingcomparablecruisespeed(~0km/h95)andnoiseperformance.LEAPhasalreadyachievedfuelburnandCO2emissionsreductionsofabout15%comparedwiththepreviousgenerationofengines(CFM56).17Hybrid/electricaircraftNumeroushybridorelectricaircraftconceptsareunderdevelopment,someofwhichareintendedforcommercial-scaleoperation.ThisisthecaseforseveralFrenchstartupssuchasVoltAero(Cassio1hybridelectric4-seater),Mauboussin(AlerionM1Hhybridelectrictwo-seater)orAscendanceFlight(VTOLhybridelectric4-5-seater),18butalsoforlargegroupssuchasAirbus(VTOLCityAirbusNextgenelectric4-seater).Giventhismomentum,electricpropulsioncouldbegintoenterthesmallaircraftmarket(2to6passengers)by2025.Theseaircraftcouldbeviablealternativesincertainareas,suchasflyingcabsormedicaltransportationincongestedcities.AlthoughtheseaircraftarenotincludedinthescopeoftheWaypoint2050analysis,theyareanecessarysteptosubsequentlydevelopingthesetechnologiesforcommercial-sizedaircraft(forregionaltransport).However,scalingupelectrictechnologiesforshort-range(upto~90minutes,100seatsorso),all-electricorhybridcivilaircraftcurrentlyposesanumberofchallenges:•Althoughbatterytechnologyhasevolvedrapidlyinrecentyears,inpartduetoanaccelerateddeploymentintheroadvehiclemarket,theenergydensityofaconventionallithium-ionbattery(~250Wh/kg)isstillinsufficienttopoweranaircrafteventhoughitisreachingthelevelsrequiredbysmallaircraft(750to2,000Wh/kg).Whetherthroughadvancesinthistechnologyorthroughalternativetechnologies(e.g.,lithium-sulfur),itisreasonabletoexpectthatanenergydensityof800Wh/kgcouldbeachievedby2050;•Whileliquidfuelallowstheaircrafttogetlighterasitfliesandburnsfuel,batteriesdonotgetlighterasenergyisconsumed:thislimitingfactorfurtherrestrictstheaircraft’srangeandrestrictstheuseofbatteriestoveryshorttrips;•Althoughthefiresafetyoflithiumbatterieshasimprovedsignificantlyinrecentyears,itwillstillbeessentialtohavestringenttestingandcertificationprocessesinplacetoensurethatelectricaircraftmeettheveryhighsafetystandardsofcommercialaviation.Asanalternativetoelectricbatteries,fuelcellscanproduceelectricityonboardfromhydrogen.Buthereagain,theirlowenergydensity(1to2kW/kg)currentlylimitstheirapplicationtofunctionalprototypesforverysmallaircraft.Therearemanyprojects,includingonebyCaliforniancompanyZeroAvia,whichhasflownasmallaircraft(PiperMalibuM)equippedwithanelectricmotorandafuelcell.Giventhesignificantchallengestiedtothedevelopmentoflargerall-electricaircraft,hybridelectricaircraftmaybeatechnicallyfeasibleintermediatesteptowardsfullelectrification.Thishybridelectricpropulsioncanbeachievedbycombiningaturbojetengine(orturboprop)withanelectricpropulsionchain(seriesorparallel).Thisconcepthasalreadybeenusedforover20yearsintheautomotiveindustry.1914JointventurebetweentheAmericanenginemanufacturerGEandtheFrenchenginemanufacturerSafran(SafranAircraftEngines).15RevolutionaryInnovationforSustainableEngines.16SuccessortotheCFM56enginethatpowersthelatestgenerationofshort-haulprograms(A320neo,B737max,C919).17Safran,LEAP-1A:anewgenerationenginefortheA320neofamily(website).18VerticalTake-OffandLanding:verticaltake-offandlandingaircraft,designedtobypasstheneedforrunways.DECARBONIZATIONLEVERSEXISTANDMUSTALLBEACTIVATEDTOENABLETHEAVIATIONINDUSTRYTOMAKEITSTRANSITION19Thefirstmass-marketedhybridcarwastheToyotaPrius,whichwasintroducedin1997.4647DECARBONIZINGAVIATION:ALLABOARDInthisoverviewoftechnologicalsolutionsaimedatreplacingconventionalkerosene,afundamentalissueremainstheimpactofweightandvolumecar-riedintheaircraft:todate,onlythereplacementofkerosenebyanalternativefuel(biofuelorsynfuel)isneutralintermsofaircraftweightattake-offorvolumeoccupiedbythefuel,allotherthingsbeingequal.TheuseofH2-fuelimpactsthevolumeavailableintheaircraftandlimitsaircraftrange,andtheuseofhydrogenfuelcellsorbatteriesaddsconsiderablytotheweightoftheaircraft.Inaddition,batteryvolumeismuchgreaterthankerosenevolume.Basedoncurrentknowledge,itseemsunlikelythatfullyelectricaircraftwithmorethanaround100seatswillbetechnicallyfeasibleandenterserviceby2050.Whilethetechnicalchallengesremainforthe50-100seatsegment,activityisgrowinginthesub-19seatsegment,whichaccountsforlessthan1%oftotalfuelconsumption(CO2emissions)inglobalaviation.Forthemedium-andlong-haulaircraftsegments,onlyhydrogenandsyntheticfuelsareaccessibletechnologies.HydrogenaircraftUnlikethefuelcell,wherehydrogen(H2)isusedasfuelandcoupledwiththecombustiveO2togenerateelectricity,theobjectivehereistouseH2asadirectfuelforaturbojetengine.Intermsoffuel,hydrogenappearstobeoneofthebestcandidatestodecar-bonizefutureaircraftandisoneofthesolutionsfavoredbyaircraftmanufac-turersfor2035,becauseitprovidesmoreenergythanmostcommonfuelsand,unlikecarbon-basedfuels,itonlyproduceswaterduringcombustion.Furthermore,whiletheinfrastructurenetwork(transportationandstorage)doesnotexisttoday,aviationfueldistributionishighlycentralizedandcaneasilysupplyasmallnumberofairportswhilecoveringasignificantportionofglobalairtraffic(in2017,thetop100airportsgeneratednearlyhalfoftheworld’sairpassengertraffic).21Thisconfigurationrequirestechnologicaldevelopments,themainchallengebeingthetransportationofhydrogenonboardanaircraftinsufficientquantity,becausealthoughitisaboutthreetimeslighterthankerosene,H2isaboutfourtimesbulkierforthesameon-boardenergyuse.Tocreatethisspace,theindustryisconsideringplacingtanksintherearfuselage,whichwouldbelengthened.Thiswouldnotonlyaffecttheaerodynamicperformanceofthe20CleanSky2andFuelCellsandHydrogenarepublic-privatepartnerships,theformertodeveloptechnologiestoreducenoiseandCO2emissionsandothergasesinaviation,andthelattertodevelopfuelcellandhydrogentechnologies.BotharefundedbytheEuropeanCommission,industryandresearchcenters/universities.21AirportsCouncilInternational(ACI).Aircraftpropulsionsystemimpactbyvolumeandmass(fora200passengeraircrafttravelingadistanceof2,000km)Source:CleanSky2,FuelCellsandHydrogen20,analysesArcheryStrategyConsulting.050100150200250300350400450500550040608010012014016018020022024020Massand/orvolumeimpactifsubstitutedtokerosene:NoneLimitedStrongFuelvolume[m]3Weightoftheaircraftattake-off[t].H2fuel(hydrogenaircraft)Hydrogenfuelcell(electricaircraft)Battery(electricaircraft)BiofuelSyntheticfuelKeroseneDECARBONIZATIONLEVERSEXISTANDMUSTALLBEACTIVATEDTOENABLETHEAVIATIONINDUSTRYTOMAKEITSTRANSITION4849DECARBONIZINGAVIATION:ALLABOARDplane,butitwouldalsobenecessarytostoreH2inliquidformtogainspace(at-253°C).However,storingsuchavolumeofH2at-253°Candmaintainingitatthistemperaturewillrequiretheuseofacryogenicsystemandaspecifictankstructure,whichgivesrisetoseveralchallenges:thermalinsulation,resis-tancetovibrationsandshocks,containedweight,tightnesstoavoidhydrogenleakage(transience),etc.22Ifthesepropertiesaremasteredindividually,thechallengeistocombinethemwithinasinglesolution.Undertheseconditionsandwiththeclassicalfirstgenerationaircraftarchi-tecture,arangeofabout2,000kmseemspossible.Beyondthat,alternativearchitectures(storingH2abovethefuselage)orevendisruptivearchitectures(flyingwing)willhavetobeconsidered.Thisrangewouldbesufficienttocover~42%ofaviationemissions(largelyregionalandsingle-aisleaircraft).22Propertyofhydrogenwhich,atthistemperature,passesthroughmaterials.Distance(km)HydrogenvolumeneededaccordingtodistancetraveledSource:ArcheryStrategyConsultinganalysis.01,0002,0003,0004,0005,0006,0007,0008,0009,00010,000010152025303540455055605VolumeofH2fuel/Totalvolumeavailableintraditionalaircraftarchitecture(%)AlternativearchitectureH2storageabovethefuselageTraditionalarchitectureCircularfuselage+thinwingsH2storageinthefuselageorunderthewingsDisruptivearchitectureFlyingwingNarrow-body(singleaisle)Wide-body(twinaisle)DECARBONIZATIONLEVERSEXISTANDMUSTALLBEACTIVATEDTOENABLETHEAVIATIONINDUSTRYTOMAKEITSTRANSITION23InternationalCouncilonCleanTransportation:anon-profitorganizationdedicatedtoproducingimpartialtechnicalandscientificreportsforenvironmentalregulators.AircraftCO2emissionlevelsaccordingtorangeworldwideSource:ICCT23,CO2emissionsfromcommercialaviation;ArcheryStrategyConsultinganalysis.0-500501-1,0001,001-1,5001,501-2,0002,001-2,5002,501-3,0003,001-3,5003,501-4,0004,001-4,5004,501-5,0005,001-5,5005,501-6,0006,001-6,5006,501-7,0007,001-7,5007,501-8,0008,001-8,5008,501-9,0009,001-9,5009,501-10,00010,001-10,50010,501-11,00011,001-11,50011,501-12,00012,001-12,50012,501-13,00013,001-13,50013,501-14,00014,001-14,50011010510095908580757065605550454035302520151050Short-haulRegionalaircraftMedium-haulSingleaisleaircraftLong-haulTwin-aisleaircraftCO2emissionsforpassengertransport[Mt]Flyingrange[km]Projectedrangeforfirstgenerationhydrogenaircraft5051DECARBONIZINGAVIATION:ALLABOARDTechnologicalleversfocusedonshort-andmedium-haulaircraftThedecarbonizationtrajectorywilldiffergreatlydependingonthepassengersegmentconsidered.WhiletheuseofSAFisnowpossibleforallsegments,theuseoftheaforementionedtechnologies(batteryelectric,hydrogenfuelcells,hydrogenfuel)isveryuneven.•Regionalflights(9-10and50-100seats),whichaccountfor~3-4%ofthesector’sCO2emissions(worldwide),couldrelyon(hybrid)electricpropulsionandhydrogenfuelcellstograduallydecarbonize;•Short-andmedium-haulflights(100-250seats),whichaccountfor~67%ofCO2emissions(worldwide),couldbenefitfromakerosenealternativewithhydrogenpropulsion,andfromsignificantperformanceimprovements;•Finally,long-haulflights(250+seats),whichaccountfortheremainder(~30%ofglobalCO2emissions),willhavenoalternativebuttorelyentirelyonSAF.Consequently,whiletheaviationindustryismobilizingtomakeincreasinglyefficientandlow-carbonaircraftviable,averylargeproportionofcommercialaircraft(>80%)willcontinuetobepoweredbyconventionalengines,fueledbyconventional(kerosene)oralternative(SAF)fuels.Thisisparticularlytrueforlong-haulflights,forwhichnoalternativeseemstobeavailableby2050.DECARBONIZATIONLEVERSEXISTANDMUSTALLBEACTIVATEDTOENABLETHEAVIATIONINDUSTRYTOMAKEITSTRANSITION100202020352050Trendsbetween2020and2035Trendsbetween2035and2050Expectedreductioninkeroseneconsumptionbyaircraftclass(Keroseneconsuption–base100in2020)RegionalMedium-haulH2Thesector’sCO2emissions(2020)Medium-haulLong-haulSource:Destination2050;Waypoint2050;WorkingGroup;ArcheryStrategyConsultingProjection.-20to-30%-20to-30%-5to-15%3–4%30%67%-100%-45to-55%-20to-30%-15to-25%5253DECARBONIZINGAVIATION:ALLABOARDAircraftstructureThemaintechnologicaldevelopmentsinaircraftstructureaimtoimproveaerodynamicsandlift.Theconsideredmodificationstargetboththewings(size,curvature,number,etc.)andthebodyoftheaircraft(connectionofthewingstoeachother,integrationofthewingsintothefuselage,etc.).~15%>83%16%<2%Breakdownofglobalaviationenergydemandbyfueltypein2050Globalaviationenergydemandin2050:~600MtoeFuel(keroseneorSAF)ElecricityHydrogenSource:Waypoint2050;ArcheryStrategyConsultinganalysis.DECARBONIZATIONLEVERSEXISTANDMUSTALLBEACTIVATEDTOENABLETHEAVIATIONINDUSTRYTOMAKEITSTRANSITIONTechnologyDescriptionMaturityPerimeterIllustrationLaminarflowcontrolModifyingtheaircraftskintooptimizeairflow:maintainsefficiencyovertimeandthereforereducesfuelconsumptionTRL7Improvementofwingcur-vatureOptimizingthecurvatureofthewingsduringflighttoimprovetheefficiencyoftheaircraft:improvesliftandthusaircraftefficiencyTRL6Strut-Bracedwing/Truss-BracedwingIncreasingwingspansupportedbymasts:reducesdragandincreasesefficiencyTheCanardconfigurationInstallingliftingsurfacesatthefrontoftheaircraft(infrontofthewings):eliminatestaildrag(liftingsurfaceattheback)andimprovesefficiencyAdvancedformilitaryuse,notciviluseBlendedWingBodyChangingthebodyoftheaircrafttointegratethewingstothefuselage(nocleardifferentiationbetweenthetwo):improvesthelift/dragratioandthustheaircraft’sefficiencyBoxWingChangingthebodyoftheaircrafttoconnectthewingstogetherandencompassthefuselage:reducesdragandthereforefuelconsumptionOverviewofdisruptivestructureinnovationsSHSHSHSHSHSHMHMHMHMHMHMHLHLHLHLHLHLHSource:Waypoint2050;ArcheryStrategyConsultinganalysis.Short-haulTRLlevel[1;3]:ResearchTRLlevel[4;6]:UnderdevelopmentTRL:TechnologyReadinessLevel=MaturityofthetechnologyTRLlevel[7;9]:BeingdeployedCommercialized;Canbemorewidespread/improvedMedium-haulLong-haulSHMHLH5455DECARBONIZINGAVIATION:ALLABOARDFundinginnovationRECOMMANDATION1B(World)Maintaininvestmentdynamicsfordisruptivetechnologies,especiallyfor:newaircraftshapes,newengines(includingelectrification),hydrogen-poweredaircraft.Thesector’smanufacturersaremassivelyinvestinginR&Dusingtheirownfunds.Forexample,aircraftmanufacturersAirbusandBoeinginvestedmorethan€3billioninequityin2019,whileenginemanufacturersSafranandRolls-Royceself-financedmorethan€1billioninR&Dthesameyear.24Companiesintheaeronauticssectoralsohaveaccesstoseveralformsofpublicsubsidiestofinanceinnovation.TheEuropeanUnionlaunchedanaviationresearchandinnovationprogram,CleanAviation,attheendof2021,aspartoftheEuropeanGreenDealpresentedin2019(theoverallgoalistoreducegreenhousegasemissionsinEuropetozeroby2050).Theprogramfocusesonthreemainareasofresearch:hybridandfullyelectricconcepts,ultra-efficientaircraftarchitectures,anddisruptivetechnologiestorunaircraftonhydrogen.Runningfrom2021to2031,thispublic-privatepartnershipbetweentheEUandtheEuropeanaviationsectorwillhaveatotalbudgetofmorethan€4.1billion,ofwhich€1.7billionwillbefundedbytheEU.25CleanAviationisthesuccessortotheCleanSky1and2PPPs(launchedin2008and2014,respectively),whichsupportedresearchandinnovationtoreduceCO2,NOxandnoiseemissions.24Airbus:2019AnnualReportBoeing:2019AnnualReportandwebsiteInnovationtabSafran:2020AnnualReportRolls-Royce:2019AnnualReport;LevelofR&DinvestmentreportedatGrouplevel.25EuropeanUnion,CleanAviation,CleanAviationseeksscientificadvice(23November2021).DECARBONIZATIONLEVERSEXISTANDMUSTALLBEACTIVATEDTOENABLETHEAVIATIONINDUSTRYTOMAKEITSTRANSITIONInFrance,themainmechanismsare:corporatetaxcreditthroughtheresearchtaxcredit(CIR)ortheinnovationtaxcredit(CII);thepossibilityofrepayableadvancesandsubsidiesgrantedbyvariousorganizations,suchasBpifranceorregionalfunds.26In2008,theFrenchgovernmentcreatedCORAC,27anorganizationtooverseeinnovationintheaerospaceindustry.ThisbodyischairedbytheMinisterofTransportandbringstogetheralltheplayersinthesector(aircraftmanufacturers,enginemanufacturers,systemsmanufacturers,equipmentmanufacturers,specializedSMEs),inordertodefinethesector’sresearchprograminlinewithobjectivesbasedonthemajorenvironmentalthemes,safetyandcompetitiveness(e.g.,digitalizationofthesupplychain).Practicallyspeaking,CORACprovidesfinancialsupportforfunctionalprototypeprojectsaimedatreducingemissions(atmosphe-ricpollutants,noise),improvingsafetyinthefaceofgrowingairtraffic,orsupportingtheemergenceofnewformsofmobility(e.g.,flyingcabs).Forinstance,theEcoPulsehybridaircraftprojectledbyAirbus,DaherandSafranreceived€11millioninfundingin2019.28WhileCORACpreviouslyhadanannualbudgetof€135million,ithasbeenentrustedwiththemanagementofanexceptionalbudgetthroughthe“France2030”plan,whichprovides€4billioninsupportfortheautomotiveandaeronauticalindustries.29Withthisunprecedentedbudget,theGovernmentisdemonstratingitsdeterminationtosucceedindevelopinglow-carbonaircraftby2035.ItshouldbenotedthatalltheseinnovationsupportmeasuresareseparatefromtheAceAéroPartenairesfund(AceCapitalPartners,asubsidiaryofTikehauCapital).Thisfund,launchedin2020anddedicatedtotherescueandrestructuringoftheFrenchaeronauticsindustry,shouldenabletheemer-genceofastrongerecosystemofsubcontractorsinanindustrythatstillhasalargenumberofhyper-specializedSMEs.Thisecosystemwillbeessentialtoguaranteetheproductionofnewgenerationaircraft.Bytheendof2021,26PublicInvestmentBank.27FrenchCivilAeronauticsResearchCouncil.28Thefirstflightplannedfor2022.29Government,France2030Plan:€30billioninvestmentinadvancedtechnologies(October2021).5657DECARBONIZINGAVIATION:ALLABOARDthefundwillhaveinvested€200-250millionofthe€750millionraisedfromtheFrenchgovernment(€200million)andprimecontractors(Airbus,Safran,Dassault,Thales).30CertificationRECOMMANDATION1C(World)Preparethecertificationmodelfordisruptiveinnovations.Certificationisalongandhighlystandardizedprocess(individualtestingofthevariouspartsmakinguptheaircraft,testsonthegroundoronotheraircraft,windtunneltests,simulatortests,useofprototypesfortests,etc.),inwhichthetestsarecarriedoutbythemanufacturersunderthecontrolofthecertificationauthorities.Forsomefunctions,alargepartofthecertificationisbasedontheexpe-rienceacquiredbythemanufacturerthroughlargevolumesofpastflightswithaircraftusingsaidfunctions.Thiswillnotbepossibleforcertaindisruptiveinnovationsforwhichitwillbeimportanttodetermineveryearlyonintheaircraftdefinitionprocesswhichdemonstrationelementsareexpectedtoensurethecertificationofthesenewaircraft.Theseexpecteddemonstrationelementswillalsohavetobesharedbetweenallthecertificationagenciesworldwide,attheriskofseeinganaircraftcer-tifiedinonlyonepartoftheworld.Furthermore,thereisnodoubtthatinthecaseofadisruptiveinnovation,agenciesindifferentgeographicalareaswillrequestanindependentanalysisoftheaircraft.30GIFAS,Consolidationstrengthensinaeronautics(October2021).DECARBONIZATIONLEVERSEXISTANDMUSTALLBEACTIVATEDTOENABLETHEAVIATIONINDUSTRYTOMAKEITSTRANSITIONMechanismensuringthecompetitivenessofloweremissionequipmentRECOMMANDATION1D(World)Establishmechanismstoensurecompetitivecostsforlower-emittingequipment(financingnewinfrastructure,compensatingfortheaddi-tionalcostsassociatedwithnewequipment,etc.).Tosupportsomeoftheanticipatedinnovations,suchashybrid/electricorhydrogenaircraft,therewillbeaneedtoadaptexistingairportinfrastructuretoprovidehighpowerelectricityorhydrogen.Futurelow-emissionaircraftmaythereforefacebarrierstodeploymentduetotheinvestmentsrequiredtoadaptinfrastructure,asisthecaseinotherindustries(e.g.,electriccars).ThisisespeciallytruesincethenumberofH2aircraftflightsfromthesameairportonwhichtoamortizethisadditionalcostislikelytobeverylimitedwhentheseaircraftarelaunched:itisnotpossibletopassonthefullcostofthenewinfrastructuretothesefewdailyflights,attheriskofheavilyimpactingtheiroperatingcosts.Moreover,theeconomicmodelofthesenewaircraftcouldbeaffected:abatterychargingtimeorH2refuelingtimelongerthanforkeroseneaircraftrefuelingwillreducethenumberofdailyrotationsthattheycanbeperform.Itwillthereforebenecessarytoanticipatethesepotentialpitfallsalongsidethedevelopmentofthesenewgenerationsofaircraft,andtosetupmechanismstoensuretheircompetitivenessassoonastheyenterservice(e.g.,airports,airlines,etc.).5859DECARBONIZINGAVIATION:ALLABOARD2.Equipmentrenewalisashort-termlever,easilyactivated,benefitingquicklyfromtechnologicalevolutionsRECOMMANDATION2(France/EU/World)Facilitatefinancingforthereplacementofoldequipmentwithnewer,lower-emittingequipmentwithintheframeworkoftheEUTaxonomyand/orusingsurchargemechanisms.2.1.TheequipmentrenewalchallengeTheaveragefuelconsumptionpercommercialflightistrendingdownwardthankstonew,moreefficientaircraft(from4.4L/100RPKin2005to3.4L/100RPKin2017).31TherenewalofaircraftthusmakesitpossibletoharnessthebeneficialeffectsoftechnologicaldevelopmentsinfavorofreducingfuelconsumptionandbyextensionCO2.Theolderthefleetinservice,thegreaterthepotentialforloweringCO2emissions.Inpracticalterms,aircraftmanufacturersrenewtheirmodelsevery15to20years,eachgenerationresultsinanincreaseinfuelefficiency.Overthepast50years,theBoeing737familyhassignificantlyimproveditsoperationalefficiency,withfuelsavingsestimatedataround50%forthe737MAX(4thgeneration,launchedin2017)comparedtothe“Original”B737(launchedin1968).31RevenuePassenger-kilometer(RPK):industrymetricthatcalculatesthenumberofkilometerstraveledbypayingpassengers.32EEA,EASA,andEurocontrol,EuropeanAviationEnvironmentalReport2019(January2019).Averagefuelconsumptiontrendspercommercialflight200520142017Source:EuropeanAviationEnvironmentalReport2019,p732.-16%4,4L/100PRK3,7L/100PRK3,4L/100PRK-8%DECARBONIZATIONLEVERSEXISTANDMUSTALLBEACTIVATEDTOENABLETHEAVIATIONINDUSTRYTOMAKEITSTRANSITIONOverviewofthefourgenerationsofBoeing737andtheestimatedfuelsavingsbetweeneachgeneration1970198019902000201020201960Source:Boeing,JapanAirlines,CFMInternational,ArcheryStrategyConsultinganalysis.-24%-15%NewCFM56-3enginefortheB737-500reducesfuelneedsReductionfortheB737-800vs.pastgenerationsaccordingtoJapanAirlinesReductioncomparedtoB737NGaccordingtoBoeing-[14-20]%737Original737Classic737NextGeneration«NG»737Max1968198419972017YearofcommissionFuelconsumption(base100)6061DECARBONIZINGAVIATION:ALLABOARDOnaverage,airlinesreplacetheiraircraft22.5yearsafterdeliverytothefirstcustomer.33Moreover,mostairlinesdepreciatetheiraircraftoveraperiodof20years(or25yearsforsomeaircraft).34Thus,itiscommontoseeaircraftinairlinefleetsthataremorethanagene-rationbehindthenewestmodels.Theseaccountedforabout5%ofthefleetinservicein2019.areductioninemissionsofover10%.Theissueofaircraftwithdrawnfromthefleetremainstobedefinedonacase-by-casebasis:theycouldeitherbedecommissionedorputbackonthesecond-handmarket,thusfuelingthewithdrawalofevenolderandthereforehigherCO2-emittingaircraft.Byacquiring100newA320neoaircraftattheendof2021(forKLMandTransavia),theAirFrance-KLMGrouphasreaffirmedthatrenewalisthe“firstlevertocutCO2emissions,withimmediateeffect.”35AstheimpactofCO2emissionsiscumulative(emissionsemittedinyearNremaininyearN+1),theimpactonglobalwarmingmustbeaddressedoverthewholeperiodandnotonlyin2050.Aregularrenewalofthefleet,compa-tiblewiththeeconomicmodeloftheindustry(whilemaintainingtheircapacitytoinvestininnovations),shouldmakeitpossibletocontainemissionsovertheperiod2020-2050.Thismeasuremustbebalancedwiththechallengesfacingmanufacturers,particularlyintheenginesector,whereasignificantportionofprofitabilitycomesfrommaintenanceoperations,whicharelessimportantforrecentfleetsthanforolderfleets.Theprofitabilityfortheseplayersiskeytofinancinginvestmentsinnewtechnologies.Toencourageairlinestoinvestinlower-emissionaircraft,governmentsshouldconsiderimplementingincentivemechanismssuchastaxincentivestoacce-leratetheinvestmentreplacementrate:tothisend,theFrenchFinanceBillfor2022proposesto“introduceataxincentivemechanismforinvestmentsmadebyairlinesrenewingtheirfleetbyoptingforaircraftthatallowforareductionofatleast15%ofcarbondioxideemissionscomparedtotheaircrafttheyreplace.”36Suchasystemhadalreadybeenconsideredfor2021withanadditionaldepreciationrateof30%.3733Destination2050.34AirFrance(2014AnnualReport)Lufthansa(2014AnnualReport)easyJetplc(2014AnnualReport).ShareofvariousaircraftgenerationscurrentlypartoftheglobalfleetNumberofpassengeraircraft(×1,000)Source:Airbus,GlobalMarketForecast2021-2040p13.2005200020102015201905101520253035404550Firstgenerationaircraft(ex:e.g.,727)2ndgenerationaircraft(ex:e.g.,MD80)Previousgenerationaircraft(ex:A320ceo)Newgenerationaircraft(ex:A320neo,737max,A350…)13%DECARBONIZATIONLEVERSEXISTANDMUSTALLBEACTIVATEDTOENABLETHEAVIATIONINDUSTRYTOMAKEITSTRANSITION35AirFrance-KLM,AirFrance-KLMorders100A320neoaircraftforKLMandTransavia(December2021).36Senate,BudgetBill2022(November2021).37Senate,BudgetBill2021.Aircraftrenewalisaveryefficientandimmediatelever.Forexample,atheo-reticalimmediaterenewalofthe87%ofoldgenerationaircraftwouldleadto6263DECARBONIZINGAVIATION:ALLABOARDFinancinganadditionaldepreciationtaxratemechanismPrinciple:theadditionaldepreciationallowsacompanytodeductfromitstaxableincomeanamount(%)ofthepurchasevalueofanasset.Thededuction,spreadovertheperiodofuse,isaddedtotheaccountingdepreciation.Scope:thisprovisionisapplicableinthecountrywherethecompanyisfiscallydomiciled(e.g.,France).Itcanbeextendedtoseveralgeo-graphicalareas(e.g.,EUMemberStates).Cost:65M€inyear1andupto1.3M€peryearonaEuropeanscaleatcruisingspeed,startingat20years.Assumptions:•Authorizedadditionaldepreciation:30%(fortheexampleconsideredinFrance)•Corporateincometax:25%(asof2022inFrance)•Valueofanaircraft:70M€(catalogcost–beforerebategrantedbytheaircraftmanufacturer–whichcanvaryfrom~100M€forasingle-aisleaircraftto~400M€forasuperjumbo)•Amortizationperiod:20years•Aircraftfleetin2040inEurope(vs.2019):9,140(5,220)–Aircraftdeliveries(2021-2040):8,7052.2.EuropeantaxonomyEuropeanregulationsareevolvingwhileEuropeisintentonachievingcarbonneutralityby2050.Variouslevershavebeenputinplacethroughacom-prehensiveplan,theEuropeanGreenDeal,38announcedbytheEuropeanCommissionin2019.Oneofthepillars,theSustainableFinanceActionPlan,aimstoredirectcapitalinvestmentstowardsso-calledsustainableactivities.Inthiscontext,thetaxonomymakesitpossibletoestablishaEuropeanclassi-ficationsystemforsustainableactivities.Itaimstoclassifyeconomicactivitiesaccordingtotheirimpactontheenvironment,i.e.,theirlevelofsustainability,definedaccordingtothecontributionoftheactivitytooneoftheEU’ssixenvironmentalobjectives,includingclimatechangemitigation.Fourtypesofactivitiesarederivedfromthisclassification:Sustainable,Transitional(ifnolow-carbonalternativeexistsbutemissionsmatchthesector’sbestperfor-mances),Enabling(activityproducinghighemissionsbutnecessaryforthedevelopmentofsustainableactivities),Other.ThepurposeofthistaxonomyistolabelfinancialproductsintendedforSustainable,TransitionalorEnablingactivities,inordertomakethemvisiblebycontrasttoOthers.Inordertoallowthereplacementofolderaircraft,theEuropeantaxonomymustensurethatitdoesnotlimitthefinancingoffleetrenewalbyimpactingallaircraftinthesameway.Todothis,itisimportantthatthetaxonomydistinguishbetweentwocases:•Theacquisitionofneweraircrafttoreplaceolder,morepollutingmodels(forexample,replacingtheA320ceowiththeA320neo),withinastablefleet,whichwillhelpreduceCO2.•Theacquisitionofnewaircrafttoexpandthefleet,whichdoesnotcontributetoreducingCO2.Thestakesofthetaxonomyarecolossal:ifaviationobtainstheEuropeanlabelforpartofitsactivities,thenaircraftowners(airlines,leasingcompa-nies)wouldbeabletofinancethemselvesmoreeasilyonthemarkets.Ifnot,financingwouldbemuchmoredifficultandthesector’sstrategyforachievingcarbonneutralitywouldbeaffected.38GreenPactforEurope.DECARBONIZATIONLEVERSEXISTANDMUSTALLBEACTIVATEDTOENABLETHEAVIATIONINDUSTRYTOMAKEITSTRANSITION6465DECARBONIZINGAVIATION:ALLABOARD3.Leversforoptimizingconsumptionin-flightandon-groundmustbeactivatedintheshortandmediumterm3.1.FlightandgroundoperationsoptimizationreductioninEuropeof11MtCO2in2030(~60%ofpotential)and18MtCO2in2050(~100%ofpotential).40Pactevertpourl’Europe.OperationalimprovementsaimedatreducingCO2emissionsSource:Waypoint2050.Waypoint2050Scenario36%53%7%34%TechnologyOperationsandinfrastructures(includingefficiencyimprovementsfromloadfactor)Sustainableaviationfuel(SAF)Offsettingmechanismsand/orcarboncapture•Optimizationofairtrafficandairspacemanagement•Flightandtrajectoryoptimization•Improvementsintheperformanceofgroundoperationsandtheinstallationofassociatedequipment•Improvementsinoperations,equipmentselectionandmaintenanceDECARBONIZATIONLEVERSEXISTANDMUSTALLBEACTIVATEDTOENABLETHEAVIATIONINDUSTRYTOMAKEITSTRANSITIONImprovingoperationalefficiencycanhelpreduceCO2emissionsandachievethegoalofcarbonneutralityby2050.Whilethisalonewillnotbesufficienttoachievethegoal,theresultingpracticescanoftenbeimplementedmorequicklythanaircrafttechnologydevelopments,whicharelimitedbytherateatwhichnewaircraftenterthefleet.TheirimplementationcouldcontributetoaRECOMMANDATION3(France/EU/World)Implementmeansofreducingenergyconsumptionforaircraftope-rations.•Flight:acceleratetheimplementationoftheSingleEuropeanSky,thedigitalizationofairtrafficcontrol,theuseofsatellitetrackingfortransatlanticflights,andthedevelopmentofflightformationstoboostwakeenergyrecovery.•Ground:limittheuseofAPUwhenconnectedtotheterminal,opti-mizetaxiingandtowingwhenrelevant.Inahighlyregulated,complexandoftenlocallyorganizedairtransportope-ratingenvironment,alargenumberofplayersarecollectivelyresponsibleforFourcontributionstotheCO2reductiontarget201820302050HighImpactMediumImpactModeratImpactSource:Destination2050p8.11MtCO2(60%ofthepotentialinEurope)18MtCO2(100%ofthepotentialinEurope)TimehorizonTRAFFICANDAIRSPACEOPTIMIZATIONFLIGHTOPTIMIZATIONGROUNDOPERATIONSOPTIMIZATIONIMPROVEDOPERATIONS/OPERATINGPRACTICESCO2reduction6667DECARBONIZINGAVIATION:ALLABOARDthesafetyandefficiencyofairtransportandinfluenceairtransportoperations,theefficiencyoftheoperationalprocessand,consequently,theenvironmentalperformanceoftheaviationsector:airlines,airnavigationserviceproviders(ANSPs),airports,groundhandlingagents,aircraftmanufacturers,etc.Thereductionaimofthis2ndleverwillbeimplementedthrough4categoriesofpractices,contributinginaheterogeneouswaytothetargetedobjective:•Trafficandairspaceoptimization;•Flightandtrajectoryoptimization;•Groundoperationsoptimization;•Improvedoperationsandoperatingpractices.TrafficandairspaceoptimizationAirtrafficandairspacemanagementaimstoensuresafeandefficientflights,balancethedemandforflightswithavailableairspacecapacity,andprovideaeronauticalinformationforairspaceusers.Improvementsinthiscategoryprimarilyinvolveconfigurationsanduseoftheairspaceinwhichairlinesope-rate.ThiscategoryofpracticescouldhaveahighimpactonreducingCO2emissions.DECARBONIZATIONLEVERSEXISTANDMUSTALLBEACTIVATEDTOENABLETHEAVIATIONINDUSTRYTOMAKEITSTRANSITIONOverviewofairtrafficandairspaceoptimizationpractices…/…PracticeDescriptionAccessibilityCarriersAirportCollaborativeDecision-Making(A-CDM)Centralizingandsharingopera-tionalinformation(viadigitaltools)betweenairlines,airtrafficcontrol,groundhandlingservices:limitstaxiingtime,waitingtimeandassociatedfuelconsumptionAirports/ANSP/AirlinesContinuousDescent/ClimbDeployingcontinuousclimbanddescentpracticesthankstomoretailoredtrafficmanagementavoidstieredflightphaseswhichputmorestrainontheengines:reducesfuelconsumptionAirlines/Airports/ANSPFlexibleuseofmilitaryairspaceMakingmilitaryairspaceavai-lable,whennotinuse,inordertoallowcivilianaircrafttonavigateinitwhenneeded:optimizestrajec-toriesandthereforereducesfuelconsumptionState/ANSPSingleEuropeanSkyReducingthefragmentationofEuropeanairspacebyharmoni-zingpracticesandsystems(orbymakingtheminteroperablesothattheycancommunicatewitheachother)andbycreatingairspaceswhichreflecttravelflowsratherborders:optimizesroutesandthere-forereducesconsumptionStates/ANSP/EuropeanUnionSESARSingleEuropeanSkyATM(AirTrafficManagement)Research,thetechnologicalandindustrialcounterpartoftheSingleEuro-peanSky:aimstodevelopadapted,harmonizedand/orinteroperablemanagementsystemsStates/ANSP/EuropeanUnion6869DECARBONIZINGAVIATION:ALLABOARDPracticeDescriptionAccessibilityCarriersReducingthelapsbetweenaircraftattakeoffOptimizingaircraftseparationrulestoincreaserunwaycapacityandoperationalflexibilitywhilemaintainingappropriatesafetylevels:reducesfuelconsumptionpriortotakeoffESA/DGAC(FrenchCivilAviationAuthority)Initiativestoim-proveairtrafficoutsidetheEUModernizingairtrafficmanage-ment,particularlyintheUnitedStateswiththeNextGenproject,whichmakesextensiveuseofsatelliteandreal-timeroutedata:optimizestrafficUnitedStates/ANSP/Airlines/AirportsPerfor-mance-basedNavigation(PBN)Usingsatellitetechnologyforlandingtrajectoriestooptimizelandingandairwaysused,especiallyincaseofairportcongestion:reducesfuelconsumptionduringlandingBlueprintbycountryAirlines/Airports/ANSPRequiredNaviga-tionPerformance(RNP)ReinforcingPerformanceBasedNavigation(PBN)byadoptingtheRequiredNavigationPerformance(RNP)specification,whichismorespecificandallowsthecontrollertobringtheairwaysclosertogetherbecauseitissafer:optimizestrajectoriesBlueprintbycountryAirlines/Airports/ANSPMoreflexibletracksTakingadvantageofmoreaccuratenavigationsystems(PBN/RNP)toestablishanewroutewithairtrafficcontrolincaseofweatherchanges:optimizestrajectoriesandthereforereducesfuelconsumptionAirlines/ANSP/Airports…/…DECARBONIZATIONLEVERSEXISTANDMUSTALLBEACTIVATEDTOENABLETHEAVIATIONINDUSTRYTOMAKEITSTRANSITIONSource:Waypoint2050,Destination2050;ArcheryStrategyConsultinganalysis.Long-termdevelopmentand/ordeploymentMedium-termdeploymentand/orretrofitCancurrentlybedeployedANSP:AirNavigationServiceProvidersPracticeDescriptionAccessibilityCarriersAirportconges-tionmanagementDeployingtools(sensorsandsoftware)tovisualizeandanalyzeboardings,departures,regionalairtraffic…allowingdepartureswhentherunwayisaccessible≠currentlydepartureshappenwhentheaircraftisready:limitstaxiingandassociatedfuelconsumptionAirlines/ANSP/AirportsTrajectory-basedOperations(TBO)Projectingaircrafttrajectoriesaheadoftimeinordertopredictandplanoptimizedapproachintervals(basedonPBNsystems;time-basedtrafficmanagementsystems;informationexchangesystemsbetweeninfrastruc-turesandaircraft):optimizesrouteswhichreducesfuelconsumptionAirlines/Airports/Manufacturers/ANSPImplementingtheSingleSkyInresponsetotheeverincreasingairtrafficinEuropeandtotheairtrafficcontrolinefficienciesidentifiedbyEurocontrol,theEUlaunchedtheSingleEuropeanSkyprogram,whichaimstoenableEuropeanairspacetoaccommo-datemoretraffic,whilereducingcostsandimprovingperformance.Theimplementationisbasedonasetofmeasures:41•Thedevelopmentandapplicationofairtrafficmanagementregulations,particularlyintermsofsafety,interoperabilityofsystemsandprocedures,andfees.41MinistryoftheEcologicalTransition(2017).7071DECARBONIZINGAVIATION:ALLABOARD•Theestablishmentoffunctionalairspaceblocks(FABs)formedthroughagreementsbetweenStates,aimedatmanagingairspaceaccordingtotrafficflowsratherthanborders:therearecurrently9FABsinEurope.TheFABEC(FunctionalAirspaceBlockEuropeanCentral),whichaccountsfor~55%offlightsinEuropeanairspace,includesFrance,Germany,Belgium,Luxembourg,theNetherlandsandSwitzerland.FABEChas,forinstance,enabledthecreationofshorterroutesinmajorcities,resultinginfuelsavings.•Anairnavigationservicesperformancesystem,eitherEuropeanwithbindingobjectivessetbytheEuropeanCommission,orlocalatStateorFABlevel.•ThedesignationofEurocontrolasNetworkManager.•TheSESARtechnologyprogramtomodernizeEurope’sairtrafficmanage-mentsystem(ATM),42includingdigitizationandautomationofassociatedactivities;investmentinSESARovertheperiod2015-2024isexpectedtobenearly€3billion,43andisexpectedtosave540thousandmetrictonsofjetfueland1.7millionmetrictonsofCO2by2030.TheSESARprojectistheEuropeanequivalentoftheNextGenprojectintheUnitedStates.44AllofthesemeasuresshouldoptimizetheorganizationanduseofEuropeanairspace,resultinginfuelsavingsandthusreducingCO2emissions.SinceDecember2021,aircraftflyingatanaltitudeofnearly6,000metersinairspacemanagedbytheBordeaux,BrestandPariscenters(i.e.,nearlyhalfofFrenchairspace)havebeenabletofly“freeroute”:thispractice,whichallowsairlinestochoosethebestrouteforeachflightbybypassinghistoricalairroutes,shouldhelpreduceCO2.CentralizingandsharingoperationalinformationThispractice,betterknownasA-CDM,45aimstooptimizeairportoperationsandensurefluidandefficienttraffic.Itreliesonthesharingofreliableandaccuratedata(aircraftdepartureandarrivaltimes,runwaysinuseandassociatedcapacities,weather,etc.)toenablepartnerstomakethemostappropriatedecisions(airline,airtrafficcontrol,groundservices,etc.).Informationsharingprovidesseveralbenefits:theoptimizationofairtrafficcontrolcapacities,theimprovementofflightforecastsundernormalanddete-rioratedweatherconditions,theimprovementofpunctuality,theimprovementoftrafficflowontheground,theimprovementofgroundassistance,etc.Thisreducesaircraftwaitingtimeatthethresholdoftherunwaythusreducingfuelconsumptionand,ultimately,CO2emissions.IntroducedandsupportedbyEurocontrol,46theA-CDMconcepthasbeengra-duallyimplementedandisnowfullyintegratedandusedintheoperationsofnearly30majorEuropeanairports(ParisCDG,Amsterdam,Frankfurt,Madrid,Rome,etc.).Eurocontrolreportsseveralbenefitsfromthispractice:47averagetaxiingtimesavedbetween0.25and3minutesperdeparture;averageimprovementinscheduleadherenceofbetween0.5and2minutesperflight;increasedtimeslotadherencedespiteincreasedtrafficdemand;betteruseofgroundhandlingresources;decreaseinthenumberoflatestandandgatechanges.Theconceptalsoexistsinvariousformsinotherpartsoftheworld,notablyintheUnitedStates,knownasSurface-CDM.42SingleEuropeanSkyAirTrafficManagement.43InternationalAirportReview,SESARdeploymentdrivesefficient,modernATM(November2021).44NextGenerationAirTransportationSystem.DECARBONIZATIONLEVERSEXISTANDMUSTALLBEACTIVATEDTOENABLETHEAVIATIONINDUSTRYTOMAKEITSTRANSITION45AirportCollaborativeDecision-Making.46OEuropeanOrganizationfortheSafetyofAirNavigation.47Eurocontrol,A-CDMImpactAssessment(2016).7273DECARBONIZINGAVIATION:ALLABOARDDeploymentofcontinuousapproachpracticesTraditionally,inatypicaldescent,thepilotproceedsinsteps,atlowaltitude.Thesestepsrequiresignificantthrustfromtheenginesandtheuseofhighliftdevices(leading-edgeslats,trailing-edgeflaps)toimprovetheaircraftlifeatlowspeeds.Thecontinuousdescent(orclimb)approachisatechniquewhichallowstheaircrafttoland(ortakeoff)whileavoidingtieredflightphasesasmuchaspossible,thusreducingtheengineload,whichinturnlimitsnoisepollutionandsavesfuel.Thistechnique,whichmeetsflightsafetyrequirements,necessitatesasui-tableairspaceconfiguration,thedefinitionofaspecificoperationalprocedureandappropriatecontrolactionsinrealtime.Studiessuggestthatthebenefitsofimprovingcontinuousclimbsanddescentscanbesignificant:•TheSafetyLinestartuphasdevelopedanoptimizationtool(OptiClimb),whichonlyappliestothetake-offphase:anexperimentwithTransaviahasshownthatitsavesnearly80kgofkeroseneeachclimb;48•TheOpenAirlinesstartupdevelopedasoftware(SkyBreathe)whichpromoteseco-drivingforaircraftpilots.Thesolutionprovidestargetedrecommenda-tionsforairlinestoimplementthemostfuel-efficientproceduresandreducetheirconsumptionbyupto5%;49•InSeptember2021,AirFrancetesteda“perfectflight”betweenParisandToulouse(acollaborationincludingAirbusandtheDSNA,theFrenchAirNavigationServices).Thechallengewastoreducefuelconsumptionbycombiningseveraltechnicalandoperationalinnovations.Duringtheflight,theA320optimizeditslandingtrajectorybychoosingacontinuousdescent,asaresult,AirFrancestatedthatbyachieving100%continuousdescentatParisCDGairport,theairlinecouldpotentiallysave10,000tonsoffuel.50However,theapplicationofthistechniqueremainslimitedatbusyairportsandduringpeakperiodsbecauseoftheneedfortacticalinterventionbyairtrafficcontrollerstosafelymanagearrivalanddepartureflows.51MakingmilitaryairspaceavailableAirspacehastraditionallyhadtwomainusers:civilaviationandmilitaryaviation.However,thesetwoaviationbranchesgenerallycannotoperatesimultaneouslyinthesameairspaceblock,requiringtheestablishmentofboundariesorsegregations.Whiletheexistenceofmilitaryairspaceforcescivilianaircrafttoflyaround,someStateshavebeenabletoimplementaflexibleuseofthisairspace,turningitovertocivilianairtrafficmanagementwhenitisnotbeingusedformilitarypurposes.Thisallowsformuchmoredirectroutingofcivilianaircraftandthussavesfuel.Limitingthetake-offgapSeparationrulesbetweenaircraftareputinplacetominimizetheriskofwaketurbulence.Inpracticalterms,anaircraftwishingtotakeoffafteranotheraircraftmustwait,eventhoughwaitingwiththeenginesrunningconsumeskerosene.AdditionalinformationWaketurbulenceisaerodynamicturbulencethatformsbehindanaircraft.Allaircraftinflightgeneratewaketurbulence,whichessen-tiallyformstwovortices.Theriskincreasesaccordingthesizeofbothaircraft,thelargertheleadingaircraft(i.e.,thehighertheintensityoftheturbulence)andthesmallerthefollowingaircraft,themoresubjectitistowaketurbulence.…/…48Transavia(avril2021).49AirFrance(juillet2020).50LaurentLafontan(DirectorofDevelopmentforAirOperations).DECARBONIZATIONLEVERSEXISTANDMUSTALLBEACTIVATEDTOENABLETHEAVIATIONINDUSTRYTOMAKEITSTRANSITION51Rateofcompletionofcontinuousdescentproceduresin2020:ParisCDG~27%,NiceCôted’Azur~33%,ParisOrly~41%,ToulouseBlagnac~51%(Source:MinistryoftheEcologicalTransition).7475DECARBONIZINGAVIATION:ALLABOARDDuringtakeoffandlanding,waketurbulenceextendstotherearoftheaircraft,butalsoaroundtherunwaywhenthewindislight.Whenthewindisblowing,thewaketurbulencemovestoonesideoftherunway,ormayevenreachanadjacentorparallelrunway.Inadequateassessmentofwaketurbulencehasledtoseveralaccidentsinthepast(AmericanAirlinesflight587).Theoptimizationofdistancesbetweenrunwayscanincreaserunwaycapacity,limitthewaitingtimeofaircraftabouttotakeoffandwaitingonthetarmacwiththeirenginesrunning,thusreducingfuelconsumption.FlightandtrajectoryoptimizationFlightandtrajectoryoptimizationtacklesthewayaircraftareusedin-flightbyairlines.ThiscategoryofpracticescouldhaveamediumimpactonreducingCO2.Whileseveralpracticescanbeimplementedtocontributetothisobjective,onlyoneiscurrentlyavailable:thedeploymentofnewplanningsoftware.DECARBONIZATIONLEVERSEXISTANDMUSTALLBEACTIVATEDTOENABLETHEAVIATIONINDUSTRYTOMAKEITSTRANSITIONPracticeDescriptionAccessibilityCarriersOptimizationofaircrafttrajectoriesOptimizingaircrafttrajectoriestoimprovefuelconsumption:reducesthedistanceflown,adaptsto(un)favorableweatherconditionsoradoptsamorenaturalflightprofileAirlines/ANSP/AirportsFlightplanningDeployingnewversionsofflightandtrajectoryplanningsoftwaretooptimizefuelconsumptionAirlinecompaniesOverviewofflightandtrajectoryoptimizationpractices…/…PracticeDescriptionAccessibilityCarriersExpansionof“perfectflight”partnershipsCarryingoutflightdemonstrationstooptimizealltheinterventionsandphasesduringaflightinvolvingairtrafficcontrol,thecompany,groundhandlingservices,andmanufacturerre-commendations:identifies/constructsgoodpracticesleadingtolessfuelconsumptionAirlines/Manu-facturers/ANSP/AirportsFormationflightDevelopingsoftwaretocoordinatecloserflightsbetweenaircraftsothatafollowingaircraftmaybenefitfromthewakeenergyofaleadingaircraft:leadstoenergyrecoveryandthereforereducesunnecessaryfuelconsumptionAirlines/Manu-facturers/ANSP/AirportsSpace-basednavigationUsingtheaircraft’sonboardequip-menttotransmitdatatosatellitesorgroundstationsthatpassitontoairtrafficcontrol,allowingforprecisepositionsinisolatedareas/oceans,reducingsafetymarginsandop-timizingtheroutestaken:reducesfuelconsumptionAirlines/Airports/ANSPSource:Waypoint2050;Destination2050;ArcheryStrategyConsultinganalysis.Long-termdevelopmentand/ordeploymentMedium-termdeploymentand/orretrofitCancurrentlybedeployedANSP:AirNavigationServiceProvidersDirectoroptimizedtrajectoriesTraditionally,aircrafttravelinaircorridors–whicharesimilartohighwayswithapredefinedroute–tooptimizethemanagementofaircraftflows.However,theseaircorridorslimittheoptimizationofaircrafttrajectoriesbecausetheydonotallowfor:•thereductionofthedistancebetweenthedepartureandarrivalpoints;7677DECARBONIZINGAVIATION:ALLABOARD•theaircrafttobenefitfromfavorablewinds;•thenaturaltrajectoryoftheaircraft,which,byconsumingfuel,shouldnatu-rallygainaltitude–inactualfact,thepilotmaintainstheplannedtrajectoryintheaircorridor,whichtendstoincreasefuelconsumption.Thesetrajectories,whichcontributeto“perfectflights,”allowsignificantemissionreductions:theonecarriedoutbyAirFranceinSeptember2021,wheretheaircraftflewfromParistoToulouseinastraightline,reducedCO2emissionsby7to8%.52Thereareseveralwaystooptimizeaircrafttrajectories:•Intheshortterm,technologicalsolutionsareemergingtoallowpilotstorequestchangestotheirflightplanduringtheirjourneytobenefitfromamoredirecttrajectorybasedonrequestsalreadygrantedbyairtrafficcontrollersinthepast.TransaviausedSafetyLine’sOptiClimandOptiDirecttoolsin2019whichsavednearly5000tonsofCO2;53•Inthemediumterm,thedigitizationofairtrafficmanagementwillbeessentialtoimplementoptimizedtrajectoryprofileswhilemaintainingthenecessarysafetymeasures.PlanningThepurposeofplanningistoselectthebestflightpathtakingallrelevantfactorsintoaccount.Aplanningsoftwareprogramperformsthecalculationsbyintegratingimposedroutes,windsataltitude,thepossibilityofturbulenceorthunderstormsenroute,temperatures,restrictedairspace,fuelefficiency,aircraftweightandaltitude,etc.Theflightplanisthentransmittedtothepilotsanddownloadedintothenavigationcomputerafewhoursbeforedeparture.Itmaybeupdatedagainwiththelatestdata(windandexactweightoftheaircraft).Airlinesadaptoptimizationalgorithmsandprioritiestotheirownneeds,androutesmaychangedailyandhourly(e.g.,aflightfromTorontotoVancouvermayflythroughCanadianairspace,oroverthenorthernUnitedStates).Whileothercriteriamaybetakenintoaccount(e.g.,punctuality),airlineswillgenerallyseektoofferthecheapestflightoptions.OthernotablepracticesInadditiontothepracticesdescribedabove,others,whicharemoreorlessaccessible,haveinterestingdecarbonizationpotential.Theseincludedevelo-pingthepossibilityforaircrafttoflyinformationtotakeadvantageofwakeenergy.Anotherpracticeconsistsofusingtheaircraft’sdatatotransmitmorepreciseinformationregardingitsposition,thusreducingsafetymarginsinisolatedareasandoptimizingtrajectories.GroundoperationsoptimizationGroundoperationsoptimizationcoversemissionsrelatedtoaircraftopera-tions,andinparticularemissionsrelatedtogateparkingandrelatedmove-mentsbetweenthegateandtherunway.Furthermore,thiscategorytakesintoaccountemissionsgenerated,bygroundsupportequipment(e.g.,tractors)forexample.ItshouldbenotedthatinadditiontoreducingCO2emissions,themeasureslistedoftenalsoreducenoiseandotheremissions,thuscontri-butingtoimprovedlocalairquality.ThiscategoryofpracticesmayhaveamoremoderateimpactonreducingCO2emissions.DECARBONIZATIONLEVERSEXISTANDMUSTALLBEACTIVATEDTOENABLETHEAVIATIONINDUSTRYTOMAKEITSTRANSITION52L’UsineNouvelle,InterviewwithYannickAssouad–Thalesavionics(December2021).53CommunicationontheSafetyLinewebsite:https://www.safety-line.fr/optiflight/7879DECARBONIZINGAVIATION:ALLABOARDLimitreactorusewhendrivingAtthebeginningandendofeachflight,theaircraftmustmovefromthetarmactotherunwayviathetaxiwaysandviceversa.Thisiscalledtaxiingwhentheaircraftismovingusingitsownpowerandtowingwhenanothervehicleisused.Althoughtheamountoffuelconsumedduringtaxiingislimitedcomparedwiththatconsumedduringflight,thereareseveralwaystoreducethisfuelconsumption.Acommonoptiontodayisreducedenginetaxiing,inwhichoneormoreoftheaircraft’senginesareshutdownforpartofthetaxiing,withthepilotstartingupallengineswhenapproachigtherunway.Ontwin-engineaircraft,thepossibilityofusingasingleenginedependsnotonlyontheexistenceofaprocedureissuedbytheairline,54butalsoonthespecificitiesoftheairportterrain(slope,turn,etc.):•Single-enginetaxiingisnowstandardprocedureontheBritishAirwaysA320fleet,savinganaverageof70kgoffuelpertaxiatHeathrow(or4,100tonnesoffuelin2014).55•Otherairlines,suchasCorsairInternational,uselow-enginetaxiing,thankstotheuseofsoftware(suchasOpenAirlines’SkyBreathe,mentionedabove)whichimprovesknowledgeoftheairport’sphysiognomy.56DrivingwithonlyoneenginehasapositiveimpactnotonlyonfuelconsumptionandthusonCO2emissions,butalsoonthenoisefootprintandenginelife.LimitAPUusagewhentheaircraftisconnectedtotheterminalAlotofairplaneequipmentconsumeselectricityandthisneedisconstantlyincreasing:navigationinstruments,computers,flightcontrols,lighting,airconditioning,commercialloads(e.g.,ovenstoheatupmealtrays).Theelec-tricalcircuitsofanaircraftoperateat400Hz,57inordertolimittheweightofthetransformersrequired.Theoperationoftheenginesinflightpowersageneratortoproduceelectri-city.However,whenparked,theaircraftcanuseanotherpieceofequipment:theAPU.Itisasmallengine,generallylocatedatthebackofthefuselage,designedtogenerateelectricity(voltageof115Vwith400Hz)andtocom-presstheairinordertosupplythevariouson-boardsystemsontheground,inparticulartheair-conditioning,whenthemainenginesareoff(theAPUcanalsobeusedinflight).Whiletheuseofthissmallenginesavesfuel,itdoesconsumekerosene.58DECARBONIZATIONLEVERSEXISTANDMUSTALLBEACTIVATEDTOENABLETHEAVIATIONINDUSTRYTOMAKEITSTRANSITIONPracticeDescriptionAccessibilityCarriersReduceduseofengineswhendrivingNotusingalltheenginesfortaxiingbutonlysomeofthemwhentheaircraftisnottowedbyavehicleontheground:reducesfuelconsumptiononthegroundAirlinecompaniesInstallingelectri-calterminalsforairplaneswhenboardingPromotingtheuseofelectricalandairconditioningconnectionsonthegroundtolimittheuseoftheAPU:reducesassociatedfuelconsumptionAirportsConvertingthegroundfleettoelectricand/orhydrogenConvertingthegroundfleettore-placethermaltractorsfortowingonrunwaysatslowspeeds(forlongperiodsforverylargeairports):eli-minatesfuelconsumptionassociatedwiththetaxiingphaseAirportsOverviewofgroundoperationoptimizationpracticesSource:Waypoint2050;Destination2050;ArcheryStrategyConsultinganalysis.Long-termdevelopmentand/ordeploymentMedium-termdeploymentand/orretrofitCancurrentlybedeployed54SingleEngineTaxiOut(take-offprocedure),SingleEngineTaxiIn(arrivalprocedure).55AviationBenefitsBeyondBorders.56CorsairInternational,OpenAirlines.57Thefrequencyis50HzinEuropeand60HzintheUSA.5880kgofkeroseneforashort-haulflightwitha45-minutestopoverand300kgforalong-haulflightwitha75-minutestopover(DGAC,2007).8081DECARBONIZINGAVIATION:ALLABOARDTheAPUisneededtohelpstartthemainengines,butitcanbeturnedonjustbeforetheaircraftleaves,remainingoffformostoftheground-time:•TosupplytheaircraftwithelectricalpowerwithoutusinganAPU,agroundpowersupplysystemcanbeused,eithermobile(GPU)59orfixed(FEGP).60WhiletheGPUisusuallyadieselfueledgenerator(althoughitemitslessCO2thantheAPUbecauseithasabetteroutput),itcansometimesbeusedasasimpleconverter.Inthelattercase,aswiththeFEPG,thesystemisdirectlyconnectedtothelocalairport’selectricalnetwork,andcanemitnoCO2ifadecarbonatedelectricalsupplyisused.•Tocompresstheair,aground-basedpre-conditionedairsystem(PCA)61alsooffersaninterestingalternativetotheAPU:poweredbytheelectricalgrid,thePCAunitdrasticallyreducesCO2emissions(andnoisepollution).andhybrid-electricsolutionsarenowbeingmarketedforbaggagecarts,fueltrucksandaircrafttowingtractors.Thistransitionisunderwayatmanyairportswiththeinitialobjectiveofreducinglocalpollution.Forlargeairportswithlargedistancesbetweentheterminalandtherunway,emissionsreductionwillbeevengreater.In2020,SchipholAirporthascommittedtoequippingitselfwithTaxiBots,62reducinggroundemissionsby50to65%dependingontheairport.Fiveyearsearlier,thetechnologywasadoptedbyLufthansaatFrankfurtAirport,afteraperiodoftestingandcertificationbyEASA.Forfueltrucks,GaussinhasdevelopedtheARTFullElec,inpartnershipwithSAFT,whichiscapableoftowingtwo30ttanksthankstoits100kWhbat-teries.ImprovedoperationsandoperatingpracticesInadditiontohowaflightisplannedandexecuted,airlineshavesomecontroloveroperationalparametersthataffectaircraftweightinparticular.Becauseeachkilogramrequiresadditionalfueltobecarried,reducingweightcanresultinsignificantsavingsinfuelconsumptionandCO2emissions.Thisiswhattheleverforimprovingoperationsandoperatingpracticesaimstodo.ThiscategoryofpracticescouldhaveamoremoderateimpactonreducingCO2.Itincludes,forexample,thefollowingimprovements:limitingtankingpracticesbyadjustingfuelandwatersupplytoexactneeds,morefrequentcleaningoftheaircraftandenginestoeliminateallparticleslikelytodegradeaircraftperformance,andreducingtheweightofcabinequipment(e.g.,flightcrewcarts,passengerseats).DECARBONIZATIONLEVERSEXISTANDMUSTALLBEACTIVATEDTOENABLETHEAVIATIONINDUSTRYTOMAKEITSTRANSITION59GroundPowerUnit.60FixedElectricalGroundPower.61Pre-ConditionedAirunit.62TaxiBotsaresemi-roboticvehicleswithahybridengine(dieselandelectric)controlledbytheaircraftpilotandintowhichtheaircraft’snosewheelisinsertedinordertopullitalongthetaxiwayswiththeengineswitchedoff.Taxiwaysrefertothepathsfromtheterminaltotherunwayandfromtherunwaytotheterminal.AlternativesystemstotheAPUSource:AviationBenefitsBeyondBorders:https://aviationbenefits.org/case-studies/fixed-electrical-ground-power/ElectricityprovidedbyairportpowersupplyAircraftairconditioningsystemAPUcanremainswitchedoffformostofthetimetheplaneisonthegroundPre-conditionedairdeliveredtoaircraftConvertingtheairportfleettoelectricorhydrogenConvertingtheairportfleetfrominternalcombustionenginestoelectricand/orhydrogenhasgreatpotentialtodecarbonizegroundoperations.Electric8283DECARBONIZINGAVIATION:ALLABOARDDECARBONIZATIONLEVERSEXISTANDMUSTALLBEACTIVATEDTOENABLETHEAVIATIONINDUSTRYTOMAKEITSTRANSITIONPracticeDescriptionAccessibilityCarriersAdjustfuelandwatersupplyusageSupplyingfuelandwateraccordingtotheactualweightofpassengers,luggageandthepredictedflightconditions(especiallywinds)andstoptankingpractices:reducestheweightonboardAirlinesMaintainexteriorpaintinoptimalconditionLimitingexteriorpaintdeterio-rationwhichcanleadtolossesincriticalareasthroughmoreregularchecks/maintenance:maintainstheaircraft’sefficiencyandthusoptmizefuelconsumptionlevelsAirlinesExteriorcleaningLimitingtheaccumulationofparticlesontheexternalwallsthroughmoreregularcleaning:maintainstheaircraft’sefficiencyandthusensuringoptimalfuelconsump-tionlevelAirlinesEnginecleaningGeneralizetheuseofmodernsystemstorefinethecleaningofengines(removemorepollutants):limitstheincreaseofengineoperatingtemperaturesthusreducingfuelconsumptionAirlinesCabin/passenger/cargoareascleaningLimitingtheaccumulationofpar-ticlesinsidetheaircraft(alsolimitsthedamageandcostsassociatedwithobjectsleftbehind):maintainstheweightoftheaircraftandtheassociatedfuelconsumptionlevelAirlinesOverviewofoperationalimprovementpractices…/…PracticeDescriptionAccessibilityCarriersReplacemanualswithtabletsReplaceheavypapermagazines,manuals…withtablets:weightreductionAirlinesLightenequip-mentusedbytheflightcrewReplacetheequipmentusedbythecrewsuchascarts,cabi-nets,…withlighterequipment:weightreductionAirlinesLighterseatsReplaceseatswithlighterequiva-lents:weightreductionAirlinesLightercontainerReplacethecurrentcontainersusedbyairlineswithlighterequi-valents:weightreductionAirlinesSource:Waypoint2050;Destination2050;ArcheryStrategyConsultinganalysis.Long-termdevelopmentand/ordeploymentMedium-termdeploymentand/orretrofitCancurrentlybedeployed8485DECARBONIZINGAVIATION:ALLABOARD3.2.Train-airplaneintermodalityRECOMMANDATION4(France/EU/World)Promoteintermodalityforthestart/endoftrips,notablybyensuringconnectionsbetweenthemainrailstationsandtheterminalstofacili-tatetransitions,andbyimplementingintegratedpassengertransportpathways.Train-airplaneintermodalityreferstothepossibilityforapassengertravelingbyplanetomakethebeginningand/orendoftheirjourneybytrain(e.g.,Bordeaux-ParistripbyTGVtoreachtheRoissyhubforaninternationalflight):63sincetheplaneemitsmuchmoreCO2thanthetrain(especiallyifthelatterispoweredbyalow-carbonelectricalnetwork),train-airplaneintermodalityminimizestheenvironmentalimpactcomparedtothesametripusingadoubleairplaneitinerary.Train-airplaneintermodalitymakessense,especiallyincountrieswheretherailnetworkcoverstheentirecountry,asisalreadythecaseinsomeEuropeancountries(e.g.,France,Germany)andinAsia(e.g.,SouthKorea,Japan).Infact,thisintermodalityisalreadyhappeninginFrancethankstotheexistenceofa“Train+Air”offer,providedbyapartnershipbetweentheSNCFandadozenairlines(e.g.,AirCaraïbes,AirFrance,Emirates,etc.):inpracticalterms,thisserviceallowspassengerstohaveacombinedtickettoleavefrom~20provincialcitiesbytrain(e.g.,Avignon,Bordeaux,Lille)andtakealong-haulflightfromtheParisairports(RoissyandOrly).Whilesatisfactionsurveysshowthatintermodaltravelersaresatisfiedwiththetrain-airplanecombination,therearestillrelativelyfewoftheminFrance,althoughtheirnumbersareincreasing.IntermodalityatParisCDGhasgonefromnearly2%in1999toabout5%inDECARBONIZATIONLEVERSEXISTANDMUSTALLBEACTIVATEDTOENABLETHEAVIATIONINDUSTRYTOMAKEITSTRANSITION63Intermodalityreferstotheabilityofatransportsystemtoallowthesuccessiveuseofatleasttwomodesoftransport(e.g.,air,rail,car),combinedinonetravelchain.64DGAC,Enquêtecomplémentaritémodaleaviontrain(2014).2014(3.3Mpassengersoutofatotalof61.4M).64ProjectsareunderwaytoimproveintermodalityinFrance(e.g.,CDGexpress,postponedto2027),butsomemajormetropolitanairportsdonotyethaveadirectraillink(e.g.,Toulouse-Blagnacairport,Bordeaux-Mérignac,Marseille-Provence-Marignane).Themaincriteriafortravelersoptingforacombinedtrain-airplaneticket,ratherthanadoubleairplaneticket,aremainlythetrip’scostandduration(totaltraveltime,connectiontime).Tobecomemoreattractivebeyondthesecriteria,thetrain-airplanejourneymustbebetterintegratedbothintermsofthejourney(singlecheck-in/check-out,end-to-endbaggagetracking,syn-chronizedandconsistentintegratedTravelerInformation,etc.)andcustomerservice(e.g.,multimodaltravelinsurance),onthesamemodelasthedoubleairplanejourney.Train-aircraftintermodalitySource:ArcheryStrategyConsultinganalysis.DepartureSinglecheck-inTrainStationAAirportAAirportBIntegratedPAXrouteFacilitatingtransit(e.g.,queue-cutting)FinaldestinationSinglecheck-out8687DECARBONIZINGAVIATION:ALLABOARD4.Usinglargeamountsofsustainableaviationfuelsisnecessaryfordecarbonization,asitcontributesmorethan50%toachievingthetarget4.1.Interestin,andmanufactureof,SustainableAviationFuelsIntroductionThetermSAFreferstofuelswiththreeessentialcharacteristics:•Theymeetthetechnicalandcertificationrequirementsforuseasfuelincommercialaircraft;66•Theyarederivedfromalternativefeedstocksratherthancrudeoil;thisincludesanyrenewablematerialorsubstancethatcanbeusedasfuel(cookingoil,vegetableoils,agriculturalresidues,etc.)orCO2capture.•Theiruseiscompatiblewitheconomic,socialandenvironmentalobjectives,whilepreservinganecologicalbalancethatavoidsthedepletionofnaturalresources(sustainability).WhenusingSAF,thecarbonfootprintreductiondoesnotcomefromachangeinfueluse–sinceSAFalsocomefromacarbonchaincombustion,producingasmuchCO2aswhenusingkerosene–butfromthefuelextractionprocess.Indeed,sincekeroseneisapetroleumproductwhoseformationdatesbacksome20to350millionyears,extractionistantamounttoreleasingcarbontrappeddeepdown.Conversely,therawmaterialsnecessaryfortheproduc-tionofSAF(e.g.,algae,plants,etc.)arecarbonsinks,inthesensethattheyabsorbCO2presentintheatmosphereduringtheirlifespan(throughphoto-synthesis).ThecombustionofSAFwillthereforereleaseCO2initiallypresentintheatmosphere:asaresult,theentirelifecycleofSAFhasaconsiderablyreducedcarbonfootprint.DECARBONIZATIONLEVERSEXISTANDMUSTALLBEACTIVATEDTOENABLETHEAVIATIONINDUSTRYTOMAKEITSTRANSITIONSAFcontributiontotheCO2emissionsreductiontargetSource:Waypoint2050.Waypoint2050Scenario36%53%7%34%TechnologyOperationsandinfrastructures(includingefficiencyimprovementsfromloadfactor)Sustainableaviationfuel(SAF)Offsettingmechanismsand/orcarboncaptureSAFTheprevioussectionshighlightthatthefirsttwoimprovementlevers(tech-nology,flightandgroundoperations)alonearenotsufficienttoachievetheaviationsector’sdecarbonizationgoal.Sustainableaviationfuels(SAF)65arethemainleverfortheconsideredtra-jectory(53%).65SustainableAviationFuel.66Certificationofaviationfuelsisissuedbyaglobalstandardsbody,theAmericanSocietyforTestingMaterial(ASTM).Thiscertificationoffuelsafetyandperformanceisrequiredforuseonscheduledpassengerflights.8889DECARBONIZINGAVIATION:ALLABOARDAsareminder,theSAFstrategywillbeconsideredaccordingtotheabilitytosubstitutefossilfuelswithanelectricorhydrogenalternative:•Forregional,shortandmediumhaulflights:thesefuelsarecomplementarytohydrogenorelectrictechnologies;•Forlong-haulflights,thesefuelsrepresentthebulkofdecarbonization.TheinterchangeabilityofSAFwithexistingkerosene(knownas“drop-in”fuel)67reducestheneedformodificationstoaircraft,enginesandotherairportinfrastructure,acceleratingthepossibilityofarapidandwide-spreadsolution.Thisisakeyfeatureforaviation:anySAFthatdoesnotmeetthisrequirementcouldpresentsafetyissuesrelatedtotheriskofmishandlingandwouldrequirethedevelopmentofparallelinfrastructure.WhiletheuseofSAFinenginesiscurrentlylimitedto50%,enginemanufac-turersareaimingfor100%useforenginesenteringservicefrom2030-35.Atthecloseof2021,USenginemanufacturerPratt&WhitneypresentedanevolutionofitsGTFengine,theGTFAdvantage,68whichwillbecomethestandardofferingfortheAirbusA320neofamilystartingin2024,andwillbecompatiblewith100%SAFblending.Otherenginemanufacturers(Safran,Rolls-Royce)havealsobeguntrialstoachievethisgoal.SAFtypesTwomaincategoriesofSAFareusuallydistinguished:biofuelsandsyntheticfuels(oftencalledsynfuels,e-fuelsorPtL–PowertoLiquid).BiofuelsBiofuelsareproducedfrombiomass,andaregenerallyclassifiedaccordingto3generations:•Firstgenerationbiofuelsareproducedfromcropinputstraditionallyusedforfood:wheatorbeetrootforethanol,rapeseedorsunflowerforbiodiesel,etc.Whilefirstgenerationbiofuelsarethemostwidespreadtoday,particu-larlybecauseoflargerinputdepositsandcontainedcosts,theirusefulnessiscontroversialinsofarastheycancontributetodeforestation,competewitharableland(notablywithfoodcrops)andparticipateintheriseinfoodpricesontheworldmarket.•Secondgenerationbiofuelsareproducedfromhumanactivityresidues:woodandforestresidues,agriculturalresidues(rapeseedstalks,straw,etc.),organicwaste,cookingoil,etc.Thisgenerationusesonlyplantmaterialsthatarenotrecoveredforfoodorforthewoodindustry(paper,DECARBONIZATIONLEVERSEXISTANDMUSTALLBEACTIVATEDTOENABLETHEAVIATIONINDUSTRYTOMAKEITSTRANSITIONCarbonlifecycle,fromaircapturetoaircraftre-emissionSource:Publicdata;ArcheryStrategyConsultinganalysis.CarbonlifecycleCO2CxHyC0H2CO2BiofuelcombustionreleasesCO2intotheatmospherePreparationofinputsi.BIOFUEL:biomassvalorization(collection,treatment)ii.E-FUEL:captureofCO2presentintheairProducingsyngas…i.BIOFUEL:producedbygasificationii.E-FUEL:producedfromCO2,waterandrenewableenergyRefiningintoaircraft-compatiblebiofuelsRenewablehydrocarbonsfromsyngas67Adrop-infuelisfullycompatible/substitutablewithconventionaljetfuel.68Pratt&Whitney(pwgtf.com/advantage).9091DECARBONIZINGAVIATION:ALLABOARDfurniture,construction).Ifthisgenerationisbetteraccepted,thereservesarestillcurrentlyinsufficient,mainlyduetoalackofresiduecollectioninmostcountries.•Thirdgenerationincludesfuelsproducedfrommicro-organisms,suchasmicroalgae,orthroughphotosynthesisorfermentation.Thisgeneration,likethesecond,doesnotcompetewithfoodusesandisthefocusofmajorresearchworldwidetodemonstrateitsfeasibilityonanindustrialscale.Indeed,ifthismarinebiomassbenefitsfromunlimiteddepositsintheoceans,itisdifficulttoharvestandlaboratorycultureisgenerallyfavored,whichishowevermorecomplicated(fragilityofmicroalgae,highwaterandphosphorusrequirements,etc.).Consequently,thepathtothirdgenerationbiofueluseisstilllong:notonlywilllarge-scaleindustrializationhavetobeimproved(productivityofstrains,productiontechnologies,etc.)butsotothebottomline.Secondandthirdgenerationbiofuelsaresometimescalled“advancedbio-fuels”becausetheycompetewithfirstgenerationbiofuelsintermsoffoodresourceuse.SyntheticfuelsSyntheticfuelisproducedfromcarbondioxide(CO2)andhydrogen(H2).Toitsadvantage,theonlylimittoproductionaretheamountofelectricityandwateravailable.ToproduceSyntheticFuel,3mainstepsarenecessary:•Toproducehydrogen,throughwaterelectrolysis;69•CapturingCO2fromfactoryoutputs(ironandsteel,cement,refinery,chemi-calandpetrochemical),ordirectlyintheair(DAC).70ForDAC,membranesareusedtocapturetheCO2whichissubsequentlyextracted.DACismoreenergyintensivebecausetheconcentrationlevelsaremuchlowerthanthoseoffactoryoutputs.However,thismethodofextractionwillbeessentialinthelongrunbecauseitwillallowrealcarbonneutrality(theCO2usedisalreadypresentintheair)andbecausefactoryoutputsourceswillremainlimitedinvolumeandwilldecreaseastheindustrydecarbonizes;•SynthesizefuelfromhydrogenandCO2,themostwidelyusedprocessbeingtheFischer-Tropschprocess.DECARBONIZATIONLEVERSEXISTANDMUSTALLBEACTIVATEDTOENABLETHEAVIATIONINDUSTRYTOMAKEITSTRANSITION69Decompositionofwater(HO2)intodioxygen(O2)andhydrogen(H2)thankstoanelectriccurrent(2H2O➔2H2+O2).70DirectAirCapture:directcaptureofCO2.SyntheticfuelproductiongraphSource:Publicdata;ArcheryStrategyConsultinganalysis.PowergenerationHydrogenproductionCO2captureSynthesis/reactionFuelproductionFueldistributionElecricityAirCO2H2OH2PTLElectrolysisSynthesisCO2captureAdditionalinformation•Asanexample,Icelandstartedupaplant(Orca)attheendof2021capableofextractingCO2fromtheairandpetrifyingitintherock:using12fanswithfilters,andpoweredbyanearbyrenewablepowerplant,itcanremovenearly4,000tonsofCO2peryear(theconsumptionofnearly870cars,accordingtotheUSEnvironmentalProtectionAgency).…/…9293DECARBONIZINGAVIATION:ALLABOARD•Dihydrogencanbeproducednotonlybyawaterelectrolysispro-cess,butalsobyasteamreformingprocess:afossilfuel(e.g.,CH4naturalgas)isexposedtoveryhotsteamandreleasesH2aswellasCO2,whichcanbere-injected/trappedindepletedoilwells.Thisprocessismostwidelyusedtoday(~95%ofH2produced).Theefficiencyofthewholeprocessisrelativelylow,estimatedataround40%(energycontainedinSAFcomparedtotheelectricalenergyinput).Therefore,theamountofdecarbonizedenergyneededtoproducethistypeoffuelisextremelysignificant.Sincebiofuelproductionrequireslittleelectricityandhydrogenisnearly40%moreefficienttoproduce,thesetwomethodscouldbefavored.ProductionchainProductionprocessesWhileseveralSAFproductionprocessesarealreadycertifiedbyASTM,orarecurrentlybeingtestedforcertification,threemainprocessesarenowmoreorlessmature:•HEFA(TRL8-9):71productionofbiofuelthroughthevalorizationofoils(vege-tableoils,usedcookingoils,usedanimalfatsortallow…);thisprocessislargelydominantinthecurrentproduction.•Fischer-Tropsch(TRL7–8–“FT”):72thisprocessusesrawmaterialstopro-ducesyntheticgas,whichisthenconvertedintofuel;thisfuelcanbeeither:-Biofuelbydirectvalorization/fermentationofbiomass(forestandagricultu-ralresidues,municipalsolidwaste…);-SyntheticfuelbyapplyingadditionaltreatmentstotheliquidsyntheticfuelfromthePtLprocess.•AtJ(TRL6-7):73thisprocessisbasedonthetransformationofcertainrawmaterialsintoalcohol(isobutanolorethanol),whichisthenprocessedandupgradedintobiofuel;aswiththeFTprocess,thefuelobtainedcanbeeitherbiofuel(byfermentationofsugars,starch,etc.)orsyntheticfuel(processingofthefuelfromthePtLprocess).DECARBONIZATIONLEVERSEXISTANDMUSTALLBEACTIVATEDTOENABLETHEAVIATIONINDUSTRYTOMAKEITSTRANSITIONComparingproductionyieldsbyprocessSource:Publicdata;modeledbyArcheryStrategyConsulting.PTL(CO2captureatthefactoryexit)LiquefiedH2PTL(CO2capturefromtheair)2020205063%44%39%52%40%35%71HydroprocessedEstersandFattyAcids.72Namedafter2Germanresearchers(FranzFischerandHansTropsch),whose1stpatent(1923)aimedtovalorizecoal.73Alcohol-to-Jet.9495DECARBONIZINGAVIATION:ALLABOARDProductioncostRegardlessofthechosenprocess,scalinguptoindustriallevelsposesaseriesofchallenges,assomerawmaterialsmaybedifficulttocollectinsufficientquantities(availability,logistics),andsomeprocessesmayrequireadditionalmaturationbeforebecomingfullyoperational(R&Defforts).Thevariousestimatesofproductioncosts,regardlessoftheproductionmethod,showahighercostthanthatfossilkeroseneatcurrentprices(exclu-dingtheapplicationofacarboncostforthelatter).Moreover,someairlineshavereportedhigherfaresthanthoseadvertised:thisisthecaseforAirFrance,whichreportsacost4to8timeshigherthanthecostofjetfuel,duetothehighcostofproducingSAF,inparticularviatheHEFAprocess.75TheproductionofSAFusingtheHEFAprocess,forexample,requireslowerinitialcostsforinfrastructure(CAPEX)buthigherrecurrentcostsforrawDECARBONIZATIONLEVERSEXISTANDMUSTALLBEACTIVATEDTOENABLETHEAVIATIONINDUSTRYTOMAKEITSTRANSITIONFEEDSTOCKOils•1stgenerationbiofuels:rapeseed,soybean…•2ndgen.:usedcookingoil,usedanimalfats…•3rdgen.:algaesForestandagriculturalresidues,municipalsolidwaste(2ndgenerationbiofuels)IndustrialexhaustgasesExtractingCO2fromtheatmosphere(DAC)PRE-TREATMENTPtLASTMCERTIFIEDPROCESSHEFAATJorFTSAFproductionprocesses74Source:Publicdata;ArcheryStrategyConsultinganalysis.74AtJ=AlcoholtoJet;FT=Fischer-Tropsch;PtL=PowertoLiquid.Comparingproductioncostsbyprocess(Unit:dollarspertonofbiofuel)Source:WEF;CleanSkiesforTomorrow;Destination2050;ArcheryStrategyConsultinganalysis.20352020205005001,0001,5002,0002,5003,0003,5004,0004,5005,00055006,000HEFABiofuel:Syntheticfuel:Gasification/FTAlcohol-to-jetPower-to-liquid(PTL)×4×3×2700$/tKerosenecost~$700perton(costcalculatedat~$60/barrel)MultiplesofthecostofkeroseneCostofkerosene75AirFrancecommunicationtoAFP(January2022).9697DECARBONIZINGAVIATION:ALLABOARDmaterials(OPEX):itisthereforenotveryconducivetoeconomiesofscale.Conversely,theFTprocessrequiresconsiderableinitialinfrastructurecosts(CAPEX)butverylowrecurrentcostsforrawmaterials(OPEX).TransportanddistributionTheSAFproductionchainbringstogetherawiderangeofplayers:farmers/foodindustryforfirstgenerationinputs(e.g.,theFrenchsugarcooperativegroupTereos);wastemanagersforthesecondgenerationinputs(e.g.,VeoliaandSuez);oilcompanies(e.g.,TotalEnergiesorNeste),etc.76Forexample,TotalEnergiesproducesSAFattheLaMèdebiorefinery(Bouches-du-Rhône)andattheOudallesite(Seine-Maritime),whichspecializesinlubri-cants.77InvestmentsshouldenabletheFrenchoilcompanytoalsoproduceSAFatitsGrandpuitssite(Seine-et-Marne).TheGrouphasalsoannouncedthatallSAFwillbeproducedfromwasteandresiduesfromthecirculareconomy(animalfats,usedcookingoils,etc.).Thedistributionofaviationfuelsincludesanupstreamportiontoservicetheairportsandthenlogisticswithintheairports.Airlinesnegotiatesupplycontractswithdistributors,suchasShellAviationorAirBP,whothenpro-videtransportationfromproductionrefineriestofueldepotsattheairports.AirportssuppliedwithSAFmustsetupdistinctmanagementofthe2fuelflows(conventionalkeroseneandSAF),andensuretraceability.Furthermore,blendingfacilitiesmustbeprovidedtoinjectSAFintokerosene.In2019,fiveairportswerecontinuouslysuppliedwithSAF(Bergen,Brisbane,LosAngeles,OsloandStockholm)whileothersofferoccasionalsupply.78Withthetop100airportsaccountingformorethan50%ofglobaltraffic(intermsofpassengernumbers),79theavailabilityofSAFatalimitednumberofairportscouldalreadymeetalargeportionofthedemand.4.2.ClarifythedefinitionofSAFEstablishsharedcriteriaforSAFRECOMMANDATION5A(World)EstablishSAFsustainabilitycriteriasharedbyallcountriesanddefinedbyICAO,bothintermsofthereductionoftheirlifecycleemissionlevels,andthetypeoffeedstockused.WhilethedefinitionofSAFisclearfromatechnicalpointofview,ithasyettobedefinedfromanenvironmentalorethicalpointofview.Forexample,intheUnitedStates,afuelisconsideredSAFwhenitachievesa50%reductioninlifecycleemissions,whereasinEurope,thethresholdissetat65%.Moreover,someinputs/processesarelesseffectivethanothersinreducingCO2emissionscomparedtokerosene:whileagriculturalorforestryresiduescanreduceCO2emissionsbyupto90%,palmoilcanonlydosoupto33%undercertainconditions(especiallywhenopenpondsareusedasissome-timesthecaseinIndonesiaorMalaysia)80anditsexploitationcontributestodeforestationinsomecases.Itisthereforeessentialtobuildacommonframework,atICAOlevel,inordertolimitharmfulsideeffectswhendeployingSAFandtoensurefaircompetitionbetweentheplayersintheSAFsector.Finally,inFrance,thepredominanceofnuclearpowerintheenergymixmeansthatsyntheticfuelsandhydrogenproducedinthecountrymustbeconsideredlow-carbon.DECARBONIZATIONLEVERSEXISTANDMUSTALLBEACTIVATEDTOENABLETHEAVIATIONINDUSTRYTOMAKEITSTRANSITION76Finnishcompanyspecializedinrefining,50.1%ownedbytheFinnishState.77TotalEnergies(pressreleasedatedApril8,2021).78InternationalEnergyAgency.79AirportsCouncilInternational(2017).80Destination2050.9899DECARBONIZINGAVIATION:ALLABOARDIncludinghydrogeninthedefinitionofSAFRECOMMANDATION5B(France/EU)IncludehydrogeninthedefinitionofSAFtoallowthedevelopmentofallsectorscontributingtothedecarbonizationofairtransport.WhileSAFarelikelytoplayamajorpartindecarbonizingairtransport,theenergycarriersmentionedabove,suchashydrogen,alsohavearoletoplaywhenproducedinacleanandsustainablemanner.Inthisrespect,itwouldbeusefultogranthydrogenamassequivalentinSAF,proportionaltotheefficiencyoftheassociatedpropulsionchain.Thiswouldensureitsdevelopment–encouragedbythemeasuresmentionedinthisreport.4.3.SecuringdemandRECOMMANDATION5C(EU/World)ExpandtheSAFblendingmandatetoallgeographicalregions,basedontheEuropeanRefuelEUmodel;inEurope,bemoreambitiousthanthe63%targetfor2050providedbyRefuelEUAviation,dependingontheactivationrateandtheefficiencyofthevariousdecarbonizationlevers.ToacceleratethedevelopmentofSAF,itisnecessarytoincreasedemandvisibilityforprojectdevelopers.Tothisend,incentivesandregulationsaredefined(orarebeingdefined)atnationalandinternationallevels:•OnlythreecountriesintheworldhavemadeSAFblendingmandatorybyJanuary1er,2022:Norway(since2020),Sweden(since2021)andFrance(since2022).Inthefirsttwocountries,regulationsrequirea1%blendofSAFwithconventionalkeroseneforallaircraftrefuelingontheirterritory,withatargetof30%SAFby2030.Francehasalsodefineditsstrategyforbiofuels,whichcallsforanSAFblendingmandatefromFranceaccordingtoan“ambitiousbutrealistic”trajectory:811%in2022,2%in2025,5%in2030and50%in2050.•AttheEuropeanlevel,aproactivepathwayto2050hasbeendevelopedaspartoftheReFuelEUAviationinitiative.Thisscheme,forwhichaproposalwillsoonbepresentedtotheEuropeanCommission,willapplyonlytoflightsdepartingfromEuropeanairports.WhilethemandatorypercentageofSAFblendingisrelativelylowintheshortterm(minimum2%SAFbyvolumein2025and5%in2030),itwillgraduallyincreaseby2050(minimum63%SAFbyvolume,includingaminimum28%e-fuel).82•Finally,theUK,IndonesiaandBrazilarealsoconsideringSAFblendingmandates.Whatismore,othercountriesarecurrentlyfocusingonsubsidiesfortheproduction/useofSAF:•UnitedStates83:theUSCongressintroducedtheSustainableSkiesActinMay2021,aimedatstrengtheningincentivesforSAFuse($1.50to$2/galloncreditforblenders,basedongreenhousegasreductionperformance,withaminimumof50%),requiringeligibleSAFtousethefullsetofICAOsustainabilitycriteria,andprovidinga$1Bgrantover5yearstoincreasethenumberofSAFproductionfacilities.InSeptember2021,theUnitedStatesannouncedanewgoaltoincreaseSAFproductiontoatleast3billiongallonsperyearby2030,aswellasanincreaseinfinancialsupportof$4,3billiontosupportSAFprojects/producers.84•UnitedKingdom:85theBritishgovernmentpublisheditsNetZerostrategyinOctober2021,announcingacommitmentof£180milliontosupportthedevelopmentofSAFproduction.ItalsoconsideringanSAFblendingmandatefrom2025(1%,then3%in2030and6%in2035).DECARBONIZATIONLEVERSEXISTANDMUSTALLBEACTIVATEDTOENABLETHEAVIATIONINDUSTRYTOMAKEITSTRANSITION81Ministries,FrenchRoadmapfortheDeploymentofSustainableAviationBiofuels(2020).82EuropeanCommission,ReFuelEUAviationProject(July2021).83IATA,FactSheet:EUandUSpolicyapproachestoadvanceSAFproduction(October2021).84TheWhiteHouse,FactSheet:BidenAdministrationAdvancestheFutureofSustainableFuelsinAmericanAviation(September2021).85HMGovernment,NetZeroStrategy:BuildBackGreener(October2021).100101DECARBONIZINGAVIATION:ALLABOARDToencouragegreateruseofSAFinaviation,itwouldbebeneficialifsystemssimilartotheoneproposedbyEuropecouldbedevelopedinregionsthatdonotcurrentlyprovidethem.InEurope,althoughthetrajectorydefinedintheframeworkofRefuelEUisambitiousgivencurrentsectormaturity,bothintermsofsupplyanddemand(SAFblendingtargetof63%),thisalonedoesnotmakeitpossibletoachievethecarbonneutralitytargetby2050:thisSAFblendratewillhavetobeprogressivelyincreasedbetweennowand2050atthegloballevel.4.4.SupportingsupplytocreateacompetitiveSAFmarketinEuropeHelpSAFproductiontechnologiesreachindustrialmaturityRECOMMANDATION6A(France/EU)Financefunctionalprototypeprojectsforvarioustechnologies,inclu-dingbiofuelsandsynfuels,usingEUETSfunds.Intheshortterm,theHEFAsectorisbasedonamaturetechnology(TRL8-9),86wellmasteredandalreadydeployedonanindustrialscalethroughouttheworld.Forthisreason,theproductionofbiofuelsbythisrouteisnowpredominant.Forexample,thetransformationofitsLaMèderefineryintoabiorefineryshouldenableTotaltoproducejetfuelfromrecoveredwasteproductsusingtheHEFAprocess.However,thedevelopmentofthisprocessislimitedbythesmallquantitiesofrawmaterialsavailable.Inthelongterm,thistechnologyshouldonlyprovideasmallproportionofSAFvolumes.Inthelongerterm,theGasification/Fischer-Tropschprocess(TRL7-8)ortheAlcohol-to-Jetprocess(TRL6-7)wouldmakeitpossibletogeneratelargerDECARBONIZATIONLEVERSEXISTANDMUSTALLBEACTIVATEDTOENABLETHEAVIATIONINDUSTRYTOMAKEITSTRANSITIONOverviewofincentivesforSAFusearoundtheworldSource:Publicdata;ArcheryStrategyConsultinganalysis.Production/consumptionsubsidiesUS:SAFTaxCredit($1.5-$2/gallon)+SAFAct($4.3billionininfrastructuregrants)Brésil:“RenovaBio”policyforfueldecarbonization.FutureFuelsCommitteeconsideringotherSAFincentivesUK:RenewableTransportFuelObligation(RTFO):benefitsfortheproductionofSAFonthesamebasisasroadvehiclesEU:Refuel-EU•2%SAFin2025•5%SAFin2030•20%SAFin2035•32%SAFin2040•38%SAFin2045•63%SAFin2050France:•1%in2022•2%in2025•5%in2030•50%in2050UK:FASBlendingmandateby2025Indonésie:SAFblendingmandatefrom5%in2025Blendingmandates86Destination2050.102103DECARBONIZINGAVIATION:ALLABOARDvolumesbymobilizingothertypesofresources.Fundingprototypeprojectsshouldhelpcreatetheconditionsfortheindustrialmaturityofthesedifferentprocesses.possibletoadapttheFTprocesstoindustrialscale–withtheaimofbringingittomarketinearly2022.AnotherexampleistheFuturolproject,financedbyBpifrance(€30million),whichhasdemonstratedthetechnicalfeasibilityofalarge-scalebioethanolproductionprocess:commercializedbyAxens(anIFPENsubsidiary),afirstlicensehasbeengrantedtotheCroatianoilcompanyINAandshouldenabletheproductionof55,000tonsofbioethanol.88EUETSfundscouldalsobeusedtofinancedemonstrationprojectsforbio-fuelsandsyntheticfuels.Forexample,theEuropeanNER300(NewEntrants’Reserve)DemonstrationFund,createdin2009andfundedbytheproceedsof300millionEUETSemissionallowances(i.e.,€2.1billion),89hasfinancedseveralinnovativelow-carbonenergydemonstrationprojectsinFranceandEurope.Itssuccessor,theInnovationFund,isendowedwith450millionemissionallowances(+50%)andwillalsobenefitfromthefundsnotspentbyNER300.SupportthelaunchoftheSAFsectorinEuropeRECOMMANDATION6B(France/EU)SetupCallsforProposals(guaranteedprice)andensurethecompeti-tivenessofSAFproducedinEuropeduringthefirstyears(subsidies),inordertoboostsectordevelopmentinEuropeandsecurethelaunchofthefirstproductionunits.DECARBONIZATIONLEVERSEXISTANDMUSTALLBEACTIVATEDTOENABLETHEAVIATIONINDUSTRYTOMAKEITSTRANSITIONLowVerystrongStrongStrongHEFAIsomerizationandhydrotreatmentoffeedstockFISCHERTROPSCH(GASIFICATION)ObtainingsyngasbyFTreaction,with2keysteps:gasificationoffeedstockandelectrolysisofCO2ALCOHOLTOJETProductionofisobutenolthroughfermentation,thendehydrationofthealcoholintoolefin,oligomerizationofthisolefin,followedbyahydrotreatmentPOWERTOLIQUID(PTL)Productionofhydrogen(H2)byelectrolysisofwater(H2O)allowingtheproduc-tionofcarbonmonoxidefromcapturedCO2,thenFTreaction(mixtureofCOandH2)ComparingSAFproductionprocesses,bymaturityandexpectedbenefitsSource:ArcheryStrategyConsultinganalysis.Impactintermsofclimatefootprint(Emissionreductionfactor)SAFproductionprocessmaturityInFrance,theBioTfueLpilotprojectwaslaunchedin2010.87Itbringstogetheraconsortiumofplayers,centeredaroundTotalandfinancedinpartbyADE-ME’sresearchdemonstrationfund(upto€30million),andshouldmakeit88Greenformula,AxensmarketsitsFuturolprocessforthefirsttime(March2020).89EuropeanUnionEmissionTradingScheme:aEuropeanexchangeallowingeachcompanytobuyorsellCO2emissionallowances.90MinistèredelaTransitionécologique(2021).87Total,BioTfueL:towardsthedevelopmentof2ndgenerationbiofuels.104105DECARBONIZINGAVIATION:ALLABOARDDECARBONIZATIONLEVERSEXISTANDMUSTALLBEACTIVATEDTOENABLETHEAVIATIONINDUSTRYTOMAKEITSTRANSITIONRECOMMANDATION6C(EU)DynamicallyadapttheSAFblendingtrajectoryasdefinedintheframeworkofRefuelEUAviation,inordertoavoidplateaueffectsandtobeconsistentwiththeindustrialenvironment;inthisrespect,anincreaseinthe2030targetcouldbeconsidered.RECOMMANDATION6D(EU)Maximizeproductionvolumes,provideincentives(e.g.,taxcredits)tooffsetthecostpremiumbetweenSAFandkeroseneforblendsabovebaserequirements.Partnershipshavebeenannouncedbetweenenergycompanies,airlinesandmanufacturers.Forexample,TotalEnergiesandSafransignedastrategicpartnershipin2021toimprovecompatibilitybetweenSAFandaircraftengines,facilitatinga100%blendingrate.91Thesameyear,BoeingbeganapartnershipwithSkyNRGAmericastoimproveSAFavailability,andannounceditwasinves-tinginitspartner’sfirstdedicatedSAFproductionfacilityintheUnitedStates.Nevertheless,thecurrentSAFproductionchainisstilllargelyunderdevelopedattheinternationallevel.Aeronauticalandenergyplayersareonstandby,withnoclearvisionoftheirrespectivepositionsinthisnewsector.Globalbiofuelproductionin2021isaround100,000tons;asmentionedearlier,HEFAiscurrentlytheonlytechnologythathasbeenusedonacom-mercialscale(productionofmorethan100ktperyear).Includingtheunitsunderconstruction,andtheannouncedcapacities,thisproductioncouldreach3.6milliontonsperyear,orabout1%ofthesector’skeroseneneeds(about350Mtoein2018).HalfofthiscapacitywillbeprovidedbyNeste(inEurope91L’UsineNouvelle,SafranandTotalEnergiesjoinforcestogetsustainablefuelsofftheground(September2021).OverviewofincentivesforSAFusearoundtheworldSource:SkyNRG–WDBActionProgramme;ArcheryStrategyConsultinganalysis.UnderconstructionProductioninprogressSAFE-fuelProjectedcapacityInKtRedRock18KtGevo41KtECB148KtGevo3KtLanzaTech28KtAltAlto45KtNorskE-Fuel8KtPreem199KtSt140KtNeste100KtNeste1,000KtSkyNRG100KtSynkero50KtNeste450KtTotal170KtRepsol50KtUPM100KtPertamina105KtWastefuel90KtLanzaTech/SkyNRG30KtFulcrum15KtPhillips66386KtAemetis22KtWorldEnergy10Kt426KtAmericasEurope92Asia1310045912421,0006251,3421,0971951,19592Europe:2.3mt/yearpotentialSAFoutput,currentlyusedforotheroutputs.andMalaysia)andWorldEnergy(intheUnitedStates).Whiletherearenume-rousprojectstobuildnewunits,supplyremainswellbelowdemand.106107DECARBONIZINGAVIATION:ALLABOARDItshouldalsobementionedthatthemajorityofinstalledcapacity,orthoseunderconstruction,arelocatedontheAmericanandAsiancontinents.Inordertosecureprojectleaders’businessplans,andthereforethedeve-lopmentofnewproductioncapacities,itisessentialtogiveSAFproducersvisibilityonlong-termdemand,sothattheycanconfidentlyinvestinproductiontools:•Forvolume,theblendingmandateguaranteesandsecuresasignificantandgrowingdemandfromairlines;•Forvalue,thereisconsiderableuncertaintyabouttheexpectedpricecutsforvariousSAF,withariskoflosingcompetitivenessinthemediumterm.Inresponsetothisconstraint,CallforProposalstypeschemescanprovidegreatervisibility:manufacturerswishingtoinvestinSAFproductionunitscanseetheirincomeguaranteedoveralongperiod(e.g.,10years),whichwouldallowthemtostrengthentheirbusinessplans.Thismethodhasnotablybeenusedforthedevelopmentofrenewableenergies(solarphotovoltaic,windpower,biomethane,etc.).Inthepast,thecaseofroadbiofuelshasshowntherisksofimbalancebetweengeographicalregions,astheEuropeanUnionhashadtofaceveryaggressivecompetitionfromoutsideEurope,whetheritbeduetobioethanolfromtheUnitedStatesorbiodieselimportedfromArgentina.93SincebiodieselproducedfromsoybeansinArgentinaismorecompetitivethanEuropeanbiodieselproducedfromrapeseed,thishasledtoaninfluxofArgen-tinebiodieselinEurope,whichhasalsoheavilypenalizedEuropeanproducers,withtheFrenchleaderAvrilbeingforcedtotemporarilyreduceproductionandfurloughingemployeesatfiveplants.EuropeansubsidiesgrantedforbiodieselhaveservedtheinterestsoftheArgentineindustrymorethantheEuropeanindustry.In2019,thissituationhasledtotheintroductionofanti-subsidycountervailingdutiesonpureorblendedbiodieselfromArgentina.Moreover,themajorproducersofroadbiofuels,suchasBrazil,ArgentinaandIndonesia,havedevelopedtheirbiofuelsectorswhileconsideringnotonlytheirdomesticneeds,butalsotheprospectsoftheNorthAmericanandEuropeanmarkets,withtheintentionofexportingmassivelytotheseconsumptioncenters.Inaddition,Europehaslimitedagriculturalareacomparedtootherregions,whichmakesitnecessarytousefuelsthataremoreexpensivetoproduce(useofwasteorsyntheticfuels).Thus,ifEuropedoesnotactnowtoboostitsSAFsector,itwillbedifficulttocatchuplater,andEuropeanswillhavetoimportmassivelytomeettheindustry’sdemandforcleanfuels–withtheextracostofincorporatingSAFchargedtotheEuropeanpassengernotcontributingtotheEuropeaneconomybutgoinginsteadtotheseothercountries.InordertoensureEurope’sSAFsupplyindependence,whilewaitingforpricestobalanceoutasthevariousproductionmethodsmatureandincreaseinout-put,thesectormustbesupported.Thiscouldbedone,forinstance,throughsubsidiestobalancethecostofproductionorsaleofSAFinEuropewiththeinternationalmarket.FundinganSAFsubsidyschemeequivalenttotheoneconsideredintheUSAPrinciple:thesubsidyallowsacompanytobenefitfromgovernmentsupportandcanvary(feed-intariff,additionalremuneration,etc.).ThepropositionhereistomirrortheAmericansystem,whichontheonehandfacilitatesthecreationofnewproductionunits(investmentsub-sidy)andontheotherhandsupportsthenon-competitiveproductionofSAFproportionallytothevolumesproduced(operatingsubsidy).DECARBONIZATIONLEVERSEXISTANDMUSTALLBEACTIVATEDTOENABLETHEAVIATIONINDUSTRYTOMAKEITSTRANSITION93NationalAssembly,InformationReportonAgrofuels(January22,2020).…/…108109DECARBONIZINGAVIATION:ALLABOARDScope:thisprovisionisapplicableatasupranationallevel(e.g.,EUmemberstates).Annualcost:€1billionperyearin2025andthen€2.2billionperyearin2030,attheEuropeanlevel.Assumptions:•EUaviationfuel/keroseneconsumption:Mt55,5(2025)–71,1Mt(2035);linearextrapolation:63.3Mt(2030)•SAFblendingrate(ReFuelEUAviation):2%(2025)–5%(2030)•UScapitalgrant:$4.3billion(2021-2030);operatinggrant:$1.5to$2/gallon(1gallon~3.8L)•Exchangerate(2021):€1=$1.13ThetrajectoryofSAFblendingconsideredbytheReFuelEUAviationinitia-tiveseemsveryambitious(with,forexample,afourfoldincreaseintheSAFblendingratebetween2030and2035).IftheconditionsarerighttotriggerafavorableinvestmentdynamicfortheemergenceofaSAFsector,wemustalsoaccepttheriskofgeneratinglocalovercapacity.Ifthisweretohappen,whichisofcoursehypothetical,itwouldbeuptotheStatestosetupasystemthatwouldallowthesesurplusestobeabsorbedwithoutproducerssuffering(e.g.,subsidies).DECARBONIZATIONLEVERSEXISTANDMUSTALLBEACTIVATEDTOENABLETHEAVIATIONINDUSTRYTOMAKEITSTRANSITIONEurope’splannedSAFblendingtrajectory(%blendinkerosene)Source:ReFuelEUAviation;ArcheryStrategyConsultinganalysis.202520302035204020452050BiofuelsE-fuels1%15%24%27%35%5%8%11%28%2%5%20%32%38%63%×4×1,64%InordertorespecttheambitiousblendingtrajectorysetbyRefuelEU,allavailablecapacitiesmustbemobilizedandprojectsmustnotbedelayed.Therefore,ataxcredittypeincentiveshouldbesetupforcompaniesthatblendmoreSAFthanthetargetsetbyRefuelEU.Thiswillensurethatanyadditionaloutputhasanoutlet,andwillsmooththeblendingtrajectorybyavoidingaplateaueffect.110111DECARBONIZINGAVIATION:ALLABOARD4.5LimitingdistortionsofcompetitionRECOMMANDATION7A(EU/World)Intheshortterm,setupaEuropeancompensationmechanismappli-cabletoalljourneysdepartingfromtheEU.ItshouldbeproportionaltothedistancetraveledbyeachpassengertosubsidizetheSAFblendingatnoadditionalcostcomparedtokerosene,thusavoidingcompetitivedistortionsandlimitingrisksofcarbonleakageforjour-neysoutsidetheEUnotsubjecttothesameSAFblendrequirements.RECOMMANDATION7B(EU/World)Inthemediumterm,allowfordifferentspeedsofimplementationofSAFblendratiorequirementsbetweencountries/geographicalregionswithoutdistortingcompetitionbetweenhubs/airlines;backSAFblendingmandatesatthepointofdepartureforeachpassengerandthroughouttheirjourney.RECOMMANDATION7C(EU/World)Inthelongterm,implementhomogeneousSAFblendratiosatICAOlevel.SAFcostswillremainhigherthancurrentkerosenecostsduetoveryheavyinvestments(R&D,rawmaterialsupplylogistics,constructionofnewmanufac-turingfacilities,etc.),buteconomiesofscaleandthematurationofthevarioustechnologiesshouldeventuallyleadtoasignificantdropinprices.Toillustratethispoint:withoilat~$700/ton,theproductioncostofSAFin2035willbe2to4timeshigherthanthatofkerosene.Let’sconsidertheexampleofaflightfromParistoSingapore:DECARBONIZATIONLEVERSEXISTANDMUSTALLBEACTIVATEDTOENABLETHEAVIATIONINDUSTRYTOMAKEITSTRANSITIONModelingtheimpactofSAFblendingonthepriceofaParis–Singaporeticketin2035Source:CleanSkiesforTomorrow;Destination2050;ArcheryStrategyConsultinganalysis.05001,0001,5002,0002,5003,0003,5004,0004,5005,0005,5006,000HEFABiofuel:syntheticfuel:Gasification/FTAlcohol-to-jetPower-to-liquid(PTL)×4×3×2700$/tKerosenecost~$700perton(calculatedat~$60/barrel)MultiplethecostofkeroseneKerosenecost$pertonCasestudy:Modelingticketpricesin2035NoSAFblending20%(ofwhich5%issynfuel)EU2035target530€480€Distance:~12,000km/Averageprice:~500€Assumptions:•Fuelprice=~120€(24%oftotalcost,Source:IATA−2019)•Fossilkerosenestableovertime•Improvedfleetefficiency(vs.2020):15%in2035and30%in2050•Inflationneutralized+10%20352020112113DECARBONIZINGAVIATION:ALLABOARDThisexampleshowsthat,giventhepricedifferencebetweenkeroseneandSAF,theSAFblendingmandatewillleadtoadditionaloperatingcostsforair-lines,whichwillmeanhighermarketedticketprices(inthiscase,anincreaseinticketpricesofabout10%in2035comparedtocurrentprices,allotherthingsbeingequal).Thisincreaseincostsandprices,provideditisgradual,homogeneousacrossgeographies,andifnecessaryaccompaniedbyatransitionalperiod,doesnotcallintoquestionthesector’sviability.Ontheotherhand,aheterogeneousapplicationinrelationtootherregionsoftheworldwouldbeasourceofmajordistortionsofcompetition,particularlyforcertaindestinationswherepriceelasticityissignificant.9595Priceelasticitymeasuresthesensitivityofdemandtoachangeinprice:thehighertheelasticity,themoresensitivetheconsumeristoprice.96IATA,EstimatingAirTravelDemandElasticities(December2007).ThesedistortionsofcompetitionbetweenairlineswithdifferentSAFblendingmandates(ornomandateatall)createsaphenomenonthatcouldalsohaveanimpactonthedistributionoftrafficbetweentheseairlines.AccordingtoanIATAstudy,96fora1%increaseintheunilateralpriceofoneairline,itisestimatedthatthereisa1.5to2.5%traffictransfertootherairlines.Onthepreviousexample(Paris-Singaporeflight),facedwitha10%increaseinticketpricesin2035,andaccordingtothesamestudy,Europeanairlinescouldlosearound10%oftrafficsolelyduetodistortionsofcompetitiononroutessubjecttocompetitionfrominternationalhubs.DECARBONIZATIONLEVERSEXISTANDMUSTALLBEACTIVATEDTOENABLETHEAVIATIONINDUSTRYTOMAKEITSTRANSITIONThedistortionofcompetitionphenomenonEnvironmentalmeasuresNon-EUhubcompaniesLowcostandticketpriceincreasesGainmarketsharesandtrafficIncreaseinsupply,newservicesEnvironmentalmeasurese.g.,SAFblendingmandateEuropeanhubcompaniesSharpriseincostsandticketpricesLossofmarketsharesandtrafficDecreaseinsupply,endunprofitableservicesSource:WorkingGroup.114115DECARBONIZINGAVIATION:ALLABOARDMorebroadly,ifweconsiderapassengerwishingtoflyfromMadridtoBeijing,thereareseveralpossibleitineraries,allotherthingsbeingequal(marketsituationallowingthechoicebetweenseveralitineraries/Europeanornon-Eu-ropeanairlines/stopovers,etc.):•Option(i):flydirectfromMadridtoBeijing,inwhichcasetheentireflightissubjecttotheEuropeanSAFblendingmandate(departureairportinEurope);•Option(ii):stopoverataEuropeanhub,inwhichcase,again,theentireflightissubjecttotheEuropeanSAFblendingmandate(departureandstopoverairportsinEurope);•Option(iii):stopoverinanon-EUhub,whichmeansthatthefirstpartoftheflightissubjecttotheEuropeanSAFblendingmandate(departureairportinEurope),whilethesecondpartisnot(stopoverairportoutsideEurope).Thisfirstexampleleadsustoconcludethatflyingviaanon-EuropeanhubismorecompetitivethanadirectflightoraflightwithastopoverinaEuropeanhub(allotherthingsbeingequal).Asimilardemonstration,thistimeforaMexico-Beijingtrip,wouldleadustoconcludethatinternationaltripsviaanon-EuropeanhubaremorecompetitivethantripsviaaEuropeanhub(allelsebeingequal).DECARBONIZATIONLEVERSEXISTANDMUSTALLBEACTIVATEDTOENABLETHEAVIATIONINDUSTRYTOMAKEITSTRANSITIONAstopoveroutsidetheEU:reducesthepartofthejourneysubjecttoregulation(B1vs.A1+A2)➙RouteB1+B2morecompetitivethanA1+A2AstopoverintheEU:theentirejourneyissubjecttotheregulations➙RouteD1+D2morecompetitivethanC1+C2Distorsionn°1:Goingthroughanon-EUhubismorecompetitivethanadirectflightorgoingthroughanEUhubDistorsionn°2:Goingthroughanon-EUhubismorecompetitivethangoingthroughanEUhubDistortionsofcompetitionresultingfromtheEuropeanSAFblendingmandateSource:ArcheryStrategyConsultinganalysis.FlightnotsubjecttothismandateModelUnderconstruction:AllflightsfromtheEUaresubjecttoSAFblendingmandatesontheentireamountoffuel.FlightsubjecttotheSAFblendmandateMexicoMadridParisBeijingNon-EuropeanhubC1D1C2A2B2D2B1A1116117DECARBONIZINGAVIATION:ALLABOARDPossiblemodelsInordertoensurethatthetransitionphasewhichwillleadtheairtransportindustrytocarbonneutralityisnotdetrimentaltotheplayerstowhomthestrongestobligationswillapply,inparticularEuropeanairlinesandairports,weproposethreemeasurestoavoidormitigatedistortionsofcompetition.ThesemeasurescouldbeimplementedinaniterativemannerdependingonthebalanceofSAFblendingmandatesatthegloballevelandconvergencedynamicsforsharedrulesatICAOlevel.DECARBONIZATIONLEVERSEXISTANDMUSTALLBEACTIVATEDTOENABLETHEAVIATIONINDUSTRYTOMAKEITSTRANSITIONRecommendationlong-termEstablishuniformblendingmandatesattheICAOlevel.Recommendationmedium-termAllowdifferentspeedsofimplementationforSAFblendingmandatesbetweenareas/countrieswithoutdistortingcompetitionbetweenhubs/air-lines;tietheSAFmandatetoeachpassenger’spointofdepartureandtothefullcourseoftheirjourney.Recommendationshort-termEstablishaEuropeancompensationmechanismappli-cabletoalltripsdepartingfromtheEUandproportionaltothedistancetraveledbyeachpassengertosubsidizetheblendingofSAFatnoextracostcomparedtokerosene–toavoidcompetitiondistortionsandrisksofcarbonleakageduetopreferencefornon-EUroutesnotsubjecttothesameSAFblendingmandates.Complementarityandtieredmeasureswhichwouldallowtheroll-outofSAFthroughouttheworldwhilelimitingdistortionsofcompetitionSource:WorkingGroup;ArcheryStrategyConsultinganalysis.MeasuresPerimeterWorld(ICAO)European(EU)123Short-termIntheshortterm,aninternationalmechanismseemscomplicatedtoputinplace.Inthiscontext,itisnecessarytoidentifymeasurestomitigatetheSAFblendingmandateforpassengersintransitviaaEuropeanhub.Thismitigationmechanismwouldbepaidforbytheendcustomer–whowouldpayanadditionalfeeincludedinthepriceoftheirticket,proportionaltotheextracostgeneratedbySAFblendingmandates.Theamountwouldbeproportionaltothetotaldistancetraveledbythepassenger,regardlessofstopovers,includingcode-sharingjourneys.97TheamountscollectedwouldgointoafundallowingairlinestofinancetheSAFneeded.Theproposedmechanismisself-financingandthereforerequiresnopublicfinancialsupport.AllpassengersdepartingfromtheEUwouldbeeligibleforthismechanism,whilepassengersoriginatingoutsideEuropeandtransitingthroughaEuropeanhubwouldbeexempted,regardlessoftheairline.Furthermore,inordertofinancetheblendingofSAFintheEUwithalimitedadditionalcostcomparedtokerosene,thelevelofcompensationwouldtakeintoaccounttheevolutionofthepricedifferential(SAF-kerosene),andwouldbeadjustedonanannualbasis.Thisre-assessmentwouldnotonlyaccountforchangesinthepriceofkerosene,butalsotheexpecteddeclineinthepriceofSAFovertime,aswellaschangesinblendinglevels.97Codesharingisthepracticeofallowingseveralairlinestoputtheircode(uniqueidentifier)onthesameflightor,practicallyspeaking,tohaveflightnumberscorrespondingtoseveralairlinesforthesameflight.Thispracticeallowsthecompanytobetterfillitsplanes,toofferbetterflightfrequenciesandtoserveinaccessiblemarkets(forexample,domesticflightsintheUnitedStatesbyaEuropeancompany).Inaddition,CodeShareallowspassengertobenefitfroma“one-stopshop”byusingasingleairline.118119DECARBONIZINGAVIATION:ALLABOARDDECARBONIZATIONLEVERSEXISTANDMUSTALLBEACTIVATEDTOENABLETHEAVIATIONINDUSTRYTOMAKEITSTRANSITIONFinaldestinationofPAXoriginatingintheEU(andassociateddistancetraveled)•“Automatic”SAFblendforfuelsloadedinEurope•BlendratetobeadjustedprogressivelyCompensationappliedtoallPAXdepartingfromtheEU(EUandnon-EUairlines)calculatedonthebasisofthedistancetraveledbyeach(tofinaldestination)OutsideEUOutsideEUProposal:EuropeancompensationmechanismforjourneysfromtheEU(intra-EUorinter-national).FinancingtheblendingofSAFforfuelssuppliedintheEUthroughadistance-basedticketcompensationmechanism.RegulatorypivotDepar-tureAEuropeandeparture/destina-tionEuropeanCompensationMechanismcalibratedannuallytofinancetheBLENDINGofSAFwithintheEUwithoutadditionalcostcomparedtokeroseneFinaldestinationA(includingtransit)FinaldestinationB(includingtransit)FinaldestinationC(includingtransit)FinaldestinationDMethodsofcalculatingSAFmandatesFundingthemechanismAEuropeancompensationmechanismtolimitdistortionsofcompetitionSource:WorkingGroup;ArcheryStrategyConsultinganalysis.Nocompensa-tionIntra-EUflightsEUtransitShort-haulMedium-haulCompensationlevelproportionaltothedistancetraveledbyeachPAXNocompensationLong-haul✗✗✗✗✗Medium-termTheimplementationofSAFblendingmandateswillnotoccuratthesamespeedworldwideduetodifferentdecarbonizationtrajectoriesandavailableinputvolumes.ThissituationshouldnothinderSAFroll-outandaspecificregulatoryframework,negotiatedatICAOlevel,canbeputinplacetoallowfordifferentlevelsofblendingbetweencountrieswithoutgeneratingdistortionsofcompetition.Tothisend,itwouldbenecessarytobasethelevelofSAFblendingnotoneachaircraftbutonthepointofdepartureofeachpassenger,regardlessofstopovers,includinginthecontextofcode-sharingroutes.EachairlineensuresthatSAFblendingisproportionaltothemandatesofitspassengers’countriesoforigin.Forexample,apassengerdepartingfromMexicoCityandtravelingtoBeijingwillbesubjecttoMexico’sblendingmandatefortheentiretrip,regardlessofstopovers.Inpracticalterms,itwouldbenecessarytosetupashareddatabaseatICAOlevelsothatairlinescanreportthefuelconsumptionofalltheirpassengersbycountryoforiginaswellasthevolumesofSAFblended.ThiswouldmakeitpossibletobalancetheSAFactuallyblendedandtheSAFtobeblended.Additionally,itwouldevenbepossibletolocalizeSAFblendingmandates.Thus,alloftheSAFblendingthatacompanymustincludeforpassengersfromEuropecouldbeblendedinEurope.Thiscouldavoidphenomenathatwouldpreventcountrieswithambitiousblendingmandatesfrombenefitingfromthereturnsineconomicandemploymentterms.120121DECARBONIZINGAVIATION:ALLABOARDInordertoensuretheoperationalimplementationoftheregulation,itwillbeessentialthatcountries/regionssetuptheSAFsupplyconditionsrequiredbytheirregulationswithintheirairportinfrastructure.Long-termEventually,convergenceofSAFblendingmandateswouldbepreferable,ifnotinevitable.Inpractice,thisimpliesdefining,viaICAO,98asingleSAFblendingratemandateacrosstheworld.5.ExistingmitigatingsystemsmustbeexpandedandamplifiedDECARBONIZATIONLEVERSEXISTANDMUSTALLBEACTIVATEDTOENABLETHEAVIATIONINDUSTRYTOMAKEITSTRANSITIONDepartureofeachPAXjourneyregardlessofstopoversandarrivalpoint(international)•Eachcountry’sblendingmandatesappliedtoallPAXtripsfromdeparturecountrytothefinaldestination(includingstopovers)•AlsoappliesinthecaseofcodesharingRegulatorypivotCalculationofSAFblendingmandatesAmodelforimplementingdifferentSAFblendingmandatesbygeographySource:WorkingGroup;ArcheryStrategyConsultinganalysis.MexicoParisIntraUEBeijingDohaProposal:GlobalizedmodelallowingfordifferentBLENDrequirementsbygeography.Regardlessoftheroute(withorwithoutastopover),thefuelconsumedbyPAXonallflightsissubjecttotheblendingmandatesrequiredbythecountryofdepartureBlendingmandateMEXBlendingmandateMEXBlendingmandateMEXBlendingmandateMEXBlendingmandateMEXEUBlendingmandateEUBlendingmandateEUBlendingmandateQATPAXfromMexicoCityPAXfromMexicoCityPAXfromMexicoCityPAXfromMexicoCityPAXintra-EUPAXfromParisPAXfromParisPAXfromDohaShareofPAXonwhichregulationappliesOthers98InternationalCivilAviationOrganization(ICAO):organization,partoftheUN,gathering193signatoryStates,inchargeofestablishingtheworldregulatoryframeworkforairtransport,includingenvironmentalprotection.ContributionofmarketmeasurestotheCO2emissionsreductiontargetSource:Waypoint2050.Waypoint2050Scenario36%53%7%34%TechnologyOperationsandinfrastructures(includingefficiencyimprovementsfromloadfactor)Sustainableaviationfuel(SAF)Offsettingmechanismsand/orcarboncapture122123DECARBONIZINGAVIATION:ALLABOARDthegasesallowedtobeemittedandthecreationofacarbonmarket.Emissionallowancesdeterminedbythepublicauthorityaredistributed,freeofchargeorbyauction,toauthorizedorganizations.Theycanalsobuyorselladditionalallowancesonthemarket.Currently,theschemecoversthemainemittingsectors:powerandheatgene-ration,energy-intensiveindustries(steel,paper,glass,cement,ceramics)andcommercialaviation.Nearly11,000powerplantsandlargeindustrialsites,includingairlines,arecoveredbytheEuropeancarbonmarket.Foraviation,thisschemecoversallflightswithinthezone,whichincludesnotonlyEUcountries,butalsothoseoftheEuropeanEconomicArea(EEA)–Norway,LiechtensteinandIceland–aswellasSwitzerland,whichjoinedthecarbonmarketin2020.Inordertomeetthetargetofreducingemissionsby55%between1990and2030,recentlyraisedbytheEuropeanCommissioninitsClimateTargetPlan2030(comparedwiththeprevious40%target),theemissionsofthehighestemittingorganizationswillhavetobereduced.Thiswillbeachievedbygraduallyreducingthetotalnumberofemissionallowancesavailableonthemarketand,forairlines,byphasingoutfreeallowancesby2027.Bymovingtoafullauctioningofallowancesfromthatdate,theEuropeanCommissionhopestocreateastrongerpricesignalandincreaseemissionreductions.5.2.CORSIAInternationalflights,ontheotherhand,arecoveredbyCORSIA,aprogramratifiedin2016bytheInternationalCivilAviationOrganization(ICAO).COR-SIAaimstooffsettheshareofCO2emissionsfrominternationalflightsthatexceeds2019emissionlevels.Inotherwords,theschemesetsagoalofcarbon-neutralgrowthfromthatdate.Inpracticalterms,airlinesexceeding10,000tCO2/yearoninternationalflightsmustnowreporttheiremissionsbasedontheactualconsumptionoftheirfleet.DECARBONIZATIONLEVERSEXISTANDMUSTALLBEACTIVATEDTOENABLETHEAVIATIONINDUSTRYTOMAKEITSTRANSITIONTwocarbonquotasystemscurrentlyco-existinEurope:EUETS(EuropeanUnionEmissionTradingScheme)andCORSIA(CarbonOffsettingandReduc-tionSchemeforInternationalAviation).RECOMMANDATION9(EU)Intheshortterm,setupamechanismtolimitthedistortionofcom-petitionrelatedtoconnectingtrafficbetweenEuropeandtherestoftheworldsubjecttotheEUETS,forexamplebymaintainingafractionoffreeallowancestoensurebalancedcompetitionwithflightssubjecttotheCORSIAsystem.RECOMMANDATION10A(World)EncouragetheimplementationofETS-typemarketmechanismsfordomesticemissionsincountriesandregionsoutsideEurope.RECOMMANDATION10B(World)Inthemediumterm,ensurethealignmentofcarbonallowancesys-temswitheachotherandwiththeindustry’s“NetZero”objective.5.1.EU-ETSTheEUEmissionsTradingScheme(EUETS)isamechanismfortradingCO2emissionsthathasbeeninplacesince2005toreduceglobalCO2emissionsandmeettheEU’stargetsundertheKyõtoProtocol.99Itestablishesalimiton99Theprotocol,whichwassignedin1997andcameintoeffectin2005,containsbindingandquantifiedtargetsforthelimitationandreductionofsixgreenhousegases(carbondioxideCO2,methaneCH4,nitrous2oxideNOandfluorine-basedcompoundsHFCs/PFCs/SF6).124125DECARBONIZINGAVIATION:ALLABOARD5.4.LimitationsandproposalsAvoidingdistortionsofcompetitionDECARBONIZATIONLEVERSEXISTANDMUSTALLBEACTIVATEDTOENABLETHEAVIATIONINDUSTRYTOMAKEITSTRANSITIONSignedby191countries,thismarket-basedmechanismrequiresairlinestopurchasecreditsgeneratedbyeligibleinternationallow-carbonprojects.TheCORSIAschemecameintoeffectforavoluntarytrialperiodinJanuary2021andwillthenbecomemandatoryforallairlinesworldwidein2027.In2021,88states(includingtheEU)representing77%ofinternationalavia-tionactivityhavevolunteeredtoparticipateinCORSIA.100Somehighemittingmarketsarenotparticipatinginthevoluntaryphase,andwillonlyparticipateinthemandatoryphasefrom2027.5.3.TwodifferentapproachesshareonesimilargoalBothEUETSandCORSIAarebasedonthereportingofCO2emissionsbyair-linestotheirstategovernmentseachyear,afterverificationbyanindependentexternalauditor.Whilethetwocarbonquotasystemsdifferintheirgeographiccoverage,approach,applicabilityandlevelofambition,theobjectiveoflimitingthelevelofCO2emissionsintheaviationsectoriscomparable.TheEUETSisacap-and-tradesystem:sectorscoveredbytheEuropeancarbonmarket,suchasaviation,cannotemitmorethanthecapallows.Iftherearenomoreallowances,nomoregreenhousegasescanbeemitted.Asthecapisreduced,thetotalamountofCO2emissionsisalsoreduced.CORSIA,ontheotherhand,isanoffsetsystem.ThismeansthatthereisnocaponthetotalamountofCO2emittedintotheatmosphere.Thesystemrequiresparticipants(airlines)tooffsettheamountofCO2theyemitagainstapredeterminedbaseline(the2019level).Offsettingtypicallymeansplantingtrees(sothatanequivalentamountofCO2iscapturedandstoredinbiomass)orfundingCO2reductionsinotherindustries.100Eurocontrol,CORSIAandtheEU’sEmissionsTradingSystem:howEUROCONTROLsupportsEuropeanaviationtofostersustainability(May2021).Thecoexistenceof2carbonquotasystemsSource:ArcheryStrategyConsultinganalysis.MadridParisBeijingNon-EuropeanhubFlightsubjecttoCORSIAFlightsubjecttoEUETSA2B2B1A1Firstofall,theCO2emissionreductiontargetoftheEUETSsystemismoreambitiousthantheCORSIAsystem,101andwillthereforeentailhighercosts.However,whenconsideringtheexampleofapassengerwishingtotraveltoBeijingfromMadrid,thereareseveraloptions:•Option(a):stopoverinaEuropeanhub(e.g.,Paris),inwhichcasetheintra-Europeanroute(a1)issubjecttotheEUETSsystem,whilethesecondpartoftheroutetoBeijing(a2)issubjecttotheCORSIAsystem;•Option(b):stopoverinanon-Europeanhub,inwhichcasetheentireflight(b1+b2)issubjecttotheCORSIAsystem.101Destination2050.126127DECARBONIZINGAVIATION:ALLABOARDTheticketpricewillbehigherwithoption(a)thanwithoption(b),allotherthingsbeingequal.Thisexamplehighlightsadistortionofcompetitionthatwillencouragetravelerstoprefertherouteviathenon-Europeanhub,whichwillbemuchlessaffectedbythecarbonquotasystemsinplace.ExtendthetwocarbonquotasystemstodomesticflightsExtendingthesecarbonquotasystemstodomesticflights,incountriesandregionsoftheworldotherthanEurope,willthereforebenecessarytocoverairtrafficemissionsasbestpossible.SystemsneedtobealignedwiththedecarbonizationobjectiveTheEUETSandCORSIAsystemsdonotyettakethe2050carbonneutralityobjectivefortheaviationsectorintoaccount(“NetZero”objective)andwillthereforehavetoevolveinthisdirection.DECARBONIZATIONLEVERSEXISTANDMUSTALLBEACTIVATEDTOENABLETHEAVIATIONINDUSTRYTOMAKEITSTRANSITIONShareofglobaltrafficLevelofcoverageofEU-ETSandCORSIAmechanismsbyregionandtypeofjourneyRestoftheworldEurope-WorldIntra-EuropeanEU-ETSObjectif2030:2030target:61%below2005emissions102CORSIAGoal:carbonneutralgrowthfrom2019CORSIAGoal:carbonneutralgrowthfrom2019EU-ETSObjectif2030:2030target:61%below2005emissions102N/ANotcoveredInternationalflightsDomesticFlightsSource:Publicdata;ArcheryStrategyConsultinganalysis.8%16%40%3%33%x%102OverallobjectiveforallsectorsincludedintheEU-ETSmechanism.103ICCT,CO2emissionsfromcommercialaviation(2020).Domesticflightsinnon-Europeancountries(outsidetheEU),whichtodayaccountfornearlyone-thirdofglobalairtraffic,arenotcovered:thisisparticu-larlytrueforChina(secondlargestdomesticmarketintermsofCO2emissionsin2019),India(third)andBrazil(sixth).103Theleveloftrafficintheseverydynamicregions,particularlyinAsia,couldincreaseinthefuture.1291281.EnergyrequirementsmustbeconsideredforallmodesoftransportationPetroleumisasourceoffossilenergy,widelyusedintransportationbecauseithastheadvantageofbeingveryenergydense,easilytransportableandeasytosupply.Itisalsoanirreplaceablematerialforthepetrochemicalindustry(plastics,paints,dyes,cosmetics,etc.).Itisalsousedasafuelfordomesticheatingandasaheatsourceinindustry.Theanalysispresentedinthisreportfocusesontransportation.DECARBONIZINGAIRTRANSPORTISPARTOFAWIDERENERGYTRANSITIONTHATINVOLVESAMASSIVEPRODUCTIONOFDECARBONIZEDELECTRICITYTOREPLACEFOSSILFUELSIVDECARBONIZINGAIRTRANSPORTISPARTOFAWIDERENERGYTRANSITIONTHATINVOLVESAMASSIVEPRODUCTIONOFDECARBONIZEDELECTRICITYTOREPLACEFOSSILFUELSGlobalconsumptionofpetroleum-basedfuels(gasoline,diesel,kerosene,heavyfueloil,etc.)reachedapproximately2,600Mtoein2018,104largelydrivenbyroadtransport(peopleandgoods).Withnearly350Mtoe,theavia-tionsectoraccountsfor13%ofthistotal.By2050,transportationisexpectedtocontinuetoincreaseinvolumeand,withit,fuelconsumptionwillalsoincrease.Includingareductioninconsumptionduetotechnologicalimprovements(improvedefficiency),totalconsumptioncouldreachnearly4,800Mtoe.Partofthisconsumptionwillbeenabledbyalternativetechnologiestopetroleumproducts(battery,fuelcell/hydrogen,ammonia,etc.),thelevelofTrafficandemissions2018Ballistictrajectory2050Traffic2018(Bnpassen-ger.KmorBnT.Km)Fuelconsump-tion2018(Mtoe)OfwhichbiofuelTraffic2050(Bnpassen-ger.KmorBnT.Km)30%reductioninconsump-tion(Mtoe)Roadtransportforpassengers301,2002,4%712,000Roadtransportforgoods228003%581,600Airtransport83500,1%22600Shipping852500,1%2696002,600Mtoe4,800MtoeFuelrequirementsbytransportmodein2018and2050Source:ITFTransportOutlook2019,Waypoint2050,IEA,ArcheryStrategyConsultingAnalysis.104Megatonneofoilequivalent:energymeasurementunit,correspondstothecalorificvalueofonetonneofoil.130131DECARBONIZINGAVIATION:ALLABOARDwhichwillvaryaccordingtotheiraccessibilityforallthemeansoftransportincirculation.Forexample,inacautiousscenario,theshareofelectriccarsamongallautomobilescouldrepresentnearly30%,whileitwouldbe75%inamoreoptimisticscenario.Thisrangereflectsthepotentialdifferencesinthespeedsofelectricmobilitydevelopment(replacingthermalvehicleswithelectricvehicles,deploymentofrecharginginfrastructures,incentivesinlegislativeandregulatoryframework,etc.).Thisstudyconsidersasinglescenarioofaccelerateddecarbonization(optimistic)thattakesintoaccountambitiousbenefitsfromusingalternativetechnologies.Consideringvaryinglevelsofpenetrationdependingonthetechnology,theresidualfuelrequirementcouldamounttonearly2,200Mtoeby2050.Eachmeansoftransport(roadways,airwaysandwaterways)isengagedinamoreorlessadvanceddecarbonizationtrajectory.Therefore,beyondthepenetrationlevelofsubstitutiontechnologiesspecifictoeach(forexample,ammoniaforshipping),thereisacommonappetitefortheuseofbiofuelstofacilitatetheenvironmentaltransition–withoutwhichtheuseofpetroleumproductswillremainhigh.Asaresult,biomassresourcesbeingfinite,thiswillbesubjecttocompetitionbetweensectors,sothecontributionofbiofuelstothesupplyofalternativefuelsforaviationwillremainlimited.2.SyntheticfuelshaveanessentialroletoplayinachievingdecarbonizationRECOMMANDATION8(France/EU)Promotesyntheticfueltostimulatethedevelopmentofalarge-scalehydrogenproductionchain:•Synfuelopensupalargevolumemarketforhydrogenproductionintheshorttermandallowsfortheimplementationoflarge-scaleproductionfacilities,whichareessentialforloweringcosts;•Synfuelsmakeitpossibletobypasstheproblemsoftransportingandstoringhydrogenwhentherearenodedicatedinfrastructures;•Thesyntheticfuelmanufacturingprocesscircumventstheissueoffeedstockavailabilitybecauseitusesonlyair,waterandelectricity;•Investmentscouldthenbeusedforthedistributionofhydrogentoairportswhenhydrogen-poweredaircraftareenteredintoservice;•TheproductionofsyntheticfuelalsoallowsforthedevelopmentofCO2capturetechnology.AlternativeFuels(excludingbiofuelsandPtL)MainSubstituteTargettrafficin2050Residualfuelrequire-ment(Mtoe)RoadtransportforpassengersBatteryH2/FC75%5%400RoadtransportforgoodsLH2/FCBattery30%15%900AirtransportLH215%500ShippingAmmonia40%400Accelerateddecarbonization2,200MtoeSinglescenariofordecarbonizingtransportSource:Publicdata;ArcheryStrategyConsultinganalysis.DECARBONIZINGAIRTRANSPORTISPARTOFAWIDERENERGYTRANSITIONTHATINVOLVESAMASSIVEPRODUCTIONOFDECARBONIZEDELECTRICITYTOREPLACEFOSSILFUELS132133DECARBONIZINGAVIATION:ALLABOARD2.1.BiofuelavailabilityBy2050,biofuelswillconstituteasignificantshareofSAF.Whileestimatesoftheenergypotentialofinputsby2050areveryheterogeneous,itappearsthatthebiomasspotentialisconsiderableandexceedsthebiofuelneedsforalltransportationin2050(road,air,maritime),andthereforeevenmoresoforaviationalone.Feedstockavailabilityforbiofuelproduction(Unit:Exajouleperyear105)Source:IRENA,InnovationOutlook–AdvancedLiquidbiofuelsp33;ArcheryStrategyConsultinganalysis.2010-20202010-20202010-20202010-20202010-20202010-20202025-20352025-20352025-20352025-20352025-20352025-20352040-20502040-20502040-20502040-20502040-20502040-20500.11.010.0100.01,000.010,000.0Needforalltransportationin2050Airtransportsectorneedsin2050StudydataAverageSolidbiogenicresiduesandwasteAgriculturalresiduesForestresiduesEnergyplantsAlgaeTotalEnergypotentialofinputs(EJperannum)105Theexajoule(EJ)isequalto1018joules,aunittoquantifyenergy.Kilojoules(kJ)orcaloriesareusuallyusedinnutrition.DECARBONIZINGAIRTRANSPORTISPARTOFAWIDERENERGYTRANSITIONTHATINVOLVESAMASSIVEPRODUCTIONOFDECARBONIZEDELECTRICITYTOREPLACEFOSSILFUELS134135DECARBONIZINGAVIATION:ALLABOARDWhiletheavailabilityofinputsexceedstheneedforbiofuelstodecarbonizealltransportation,therealityisthatnotalloftheseinputscanbeusedforthispurposeforseveralreasons:•Liquidbiofuelsaremoresuitablefortransport,especiallyairtransport,thangaseousbiofuelsobtained,forexample,bymethanation(decompositionoforganicmatterbymicro-organisms,producingbiogasinparticular),ofwhichonlyamoderatefraction(about12%)isretainedforuseintransport;•Thelogisticalchallengesofcapturingdiffusedeposits(residues,waste,etc.)andconcentratingbiomasstolimittheneedfortransportationareconsiderable;•Resourceavailabilityvariesseasonallyanditisnecessarytoidentifyavarietyofinputsthatarecompatiblewitheachotherandwiththeindustrialfacilityinthesamegeographicareatoensureyear-roundoperation.Itisthereforewidelyacceptedthatthesustainablebioenergypotentialin2050wouldbelimited.Accordingtoseveralkeyplayersintheenergysector,thispotentialcouldamounttonearly450Mtoe.2.2.Competitionbetweentransportationsectorsandpenetrationofalternativefuelsrequiringe-fuelsAccountingforallthedifferentmodesoftransport,these450Mtoeonlymakeup20%oftheresidualfuelrequirementaftertakingintoaccountalternativetechnologies.Estimatedliquidbiofuelproductionin2030/2050accordingtodifferentplayersSource:IEA,NetZeroby2050&EnergyTechnologyPerspectives;CleanSkiesTomorrow;BP,EnergyOutlook2020Edition;ArcheryStrategyConsultinganalysis.WEF:CleanSkiesTomorrow(2030)GaseousbiofuelsnotevaluatedIEA:EnergyTechnologyPerspectives(2050)IEA:NetZeroby2050(2050)BP:EnergyOutlook2020(2050)LiquidbiofuelsGaseousbiofuelsforothersectorsGaseousbiofuelsfortransport358Mtoe349Mtoe466Mtoe680Mtoe43Mtoe41Mtoe51Mtoe172Mtoe286Mtoe368Mtoe450DECARBONIZINGAIRTRANSPORTISPARTOFAWIDERENERGYTRANSITIONTHATINVOLVESAMASSIVEPRODUCTIONOFDECARBONIZEDELECTRICITYTOREPLACEFOSSILFUELS136137DECARBONIZINGAVIATION:ALLABOARDToovercometheproblemoffeedstockavailability,particularlyinthefaceofcompetitionfromothertransportsectorsthatarealsokeentodecarbonize,andtoproduceSAFinsufficientquantity,theuseofsyntheticfuelsisthusessential.ThedevelopmentofthePtL(Power-to-Liquid)sectorisallthemorerelevantasitwouldconstituteashort-termoutletfortheH2sector,whichisnotexpectedtobeusedasa“direct”fuelbefore2035:•HydrogenisanessentialinputforthePtLprocess,whichopensupavastvolumemarketforhydrogenconsumptionintheshort-term,allowingtheimplementationoflarge-scaleinstallationsandtheincreaseinmaturityofinstallationstooptimizeproductioncosts.•ThePtLprocessmakesitpossibletofreeoneselffromtheoperationalconstraintsofhydrogentransportandstorage.•Theproductionofsyntheticfuelalsomakesitpossibletodeveloptechnolo-giesforcapturingCO2.3.EnergyneedsassociatedwithdecarbonizationarevastandrequireunprecedentedinvestmentsRECOMMENDATION11(World)Implementamassiveinvestmentpolicyfordecarbonizedenergiesthatgoesbeyondthereplacementofproductionmethodscurrentlyused,inordertomeetthenewneedsoftransportplayersby2050.3.1.DecarbonizedelectricityproductionneedsTheproductionofsyntheticfuelshasmanyadvantages:unlimitedinputs(water,air)andaCO2impactclosetozero.However,thisprocessrequiresasignificantamountofelectricalenergytoproducedecarbonizedhydrogenandcaptureCO2presentintheairoremittedbyindustrialplants.Toensureanetreductioninemissions,thisenergymustbeproducedusinglowCO2emittingunits,suchasrenewableenergies(wind,solar,hydraulic)ornuclear.By2050,theenergyneedsofallthetransportsectorscouldamounttonearly550,00TWh(i.e.,~4,800Mtoe).Intheselectedscenario(“accelerateddecar-bonization”),thepenetrationofalternativetechnologies(electricbatteries,hydrogen)issignificant.Withtheavailabilityofbiofuelsestimatedat450Mtoe,theresidualfuelneedscanbemeteitherbyconventionalkeroseneorbysyntheticfuels(PtL).Wechoosetotakeintoaccountanincompressiblerateofabout6%oftheenergyneedscoveredbyfossilfuels(whichcanbecom-pensated).Theremainingenergyneedsarethereforecoveredbysyntheticfuels(i.e.,17,000TWh).Comparingtheenergypotentialofbiofuelswithresidualfuelneedsin2050Source:ArcheryStrategyConsultinganalysis.Fuelneeds(2050)(“accelerateddecarbonization”scenario)Biofuelpotential(2050)450Mtoe2,200MtoeDECARBONIZINGAIRTRANSPORTISPARTOFAWIDERENERGYTRANSITIONTHATINVOLVESAMASSIVEPRODUCTIONOFDECARBONIZEDELECTRICITYTOREPLACEFOSSILFUELS138139DECARBONIZINGAVIATION:ALLABOARDTheproposedenergyblendallowsfor90%decarbonizationofalltransporta-tion,whichisconsistentwiththeATAGproposalinthescenarioconsideredhere(Waypoint–scenario3),andwhichrequiresoffsettingmeasurestoachievecarbonneutrality.Theelectricityrequirementsfortheproductionofsyntheticfuelsareaddedtothosefortheimplementationofotherdecarbonizedalternativetechnologies(electricitytoproduceH2andtopowerbatteries).Inordertoassesstherequiredelectricityproduction,itisalsonecessarytotakeintoaccounttheefficiencyofthedifferentmeansconsideredassubstitutesforfossilfuels:•Theelectricpropulsionofaroadvehicleisparticularlyefficientandrequiresnearly50%lessprimaryenergythantheenergycontainedingasoline;Breakdownoftransportenergyneedsin2050byfueltype/solutionSource:ArcheryStrategyConsultinganalysis.2050205020187,100TWh10,000TWhH2/AmmoniainsteadoffossilfuelsBatteriesinsteadoffossilfuelsSyntheticfuele-fuelinsteadoffossilfuelsBiofuelsratherthanfossilfuelsResidual“usual”fuels3,200ShippingAerialRoadfreightgoodsRoadPAX7,300TWh20,000TWh3,90018,100TWh17,000TWh9,600TWh22,600TWh5,000TWh(~450Mtoe)3,000TWh(~270Mtoe)~55,000TWh~4,800Mtoe~55,000TWh13,600TWh~30,000TWh~4,600MtoeEvolutionofpetroleumproductneedsfortransportation(2018–2050)Alternativeenergycarrierscomparedtofossilfuelsin2050EnergyblendsaccordingtoexpectedlevelofdecarbonizationinthetransportsectorcomparedtotodaySource:ArcheryStrategyConsultinganalysis.-60%-50%-40%-70%-80%-90%-100%FossilfuelHydrogen/AmmoniaBiofuelBatterySyntheticfuel35%35%35%35%35%35%35%19%19%19%19%19%19%19%9%9%9%9%9%9%33%28%22%17%11%6%9%3%9%14%20%25%31%36%RelatedenergyblendLevelofdecarbonizationinthetransportsectorcomparedwith2018(%)Selectedscenarioincluding6%compensationDECARBONIZINGAIRTRANSPORTISPARTOFAWIDERENERGYTRANSITIONTHATINVOLVESAMASSIVEPRODUCTIONOFDECARBONIZEDELECTRICITYTOREPLACEFOSSILFUELS140141DECARBONIZINGAVIATION:ALLABOARD•H2/ammoniapropulsionformaritimetransportisoverallequivalentintermsofenergy(alittlemoreifusingdirectH2combustion,asisthecaseforairtransport,alittlelessifusingafuelcell);•Syntheticfuelsareusedinthesameenginesasfossilfuels,sothereisnoadvantageintermsofcombustion,butproductionisveryenergy-intensive,withproductionefficiencyaround40%.Thus,nearly56000TWhwillbeneededin2050toprovidealternativetech-nologiestofossilfuelsandsupplythesameenergy.Consideringthattheworld’selectricityproductioncurrentlyamountstonearly27,000TWh,mainlyfortheresidential,tertiaryandindustrialsectors,thisisequivalenttotriplingthecurrentannualworldelectricityproduction(allotherthingsbeingequal).Selectedscenarioincluding6%compensationPowergenerationrequiredtoactivatealternativefossilfueltechnologies,dependingontheexpectedlevelofdecarbonizationintransportcomparedtotoday(powergeneration(inTWh))Source:ArcheryStrategyConsultinganalysis.-60%-50%-40%-70%-80%-90%-100%Hydrogen/AmmoniaBatterySyntheticfuel5,0005,0005,0005,0005,0005,0005,00049,00042,00034,00027,00019,00011,0004,00063,00056,00048,00041,00033,00025,00018,0009,0009,0009,0009,0009,0009,0009,000Annualproduction2019=27,000TWhLevelofdecarbonizationinthetransportsectorcomparedwith2018(%)DECARBONIZINGAIRTRANSPORTISPARTOFAWIDERENERGYTRANSITIONTHATINVOLVESAMASSIVEPRODUCTIONOFDECARBONIZEDELECTRICITYTOREPLACEFOSSILFUELSPowergenerationrequiredtoobtaintheenergyassociatedwithalternativetechnologiesSource:ArcheryStrategyConsultinganalysis.Fossilenergyneedsin2050substitutedbyotherenergiesElectricityImprovedoverallperformance(electricalproductionneedsarelowerthanthesubstitutedfossilenergy)Perfor-manceoveralldegradedH2/AmmoniaE-FuelElectricityproductionneedsin205011,0009,000H2/AmmoniaBatterySyntheticfuel20,0005,00017,00015,0001,00025,00042,000~55,000TWh47,000TWh~56,000TWh5,0003,000142143DECARBONIZINGAVIATION:ALLABOARDInsummation,theuseofsyntheticfuelstoaccompanythesupplyofalter-nativetechnologies(battery,H2)andbiofuelsisparticularlyenergyintensive,accountingfornearly75%ofnewelectricityneeds(~42,000TWhoutof~56,000TWh).Moreover,thedecarbonizationofairtransportwouldbemoreenergyintensivecomparedtoothertransportsectors(roadinparticular).Effortstodevelopsyntheticfuels(viathePtLprocess)asasolutiontothedecarbonizationofaviationcouldthereforebeconsideredeitherasanaddedreasontoaccelerateinvestmentsinadditionalelectricitygenerationcapacity(renewableorlow-carbon),orasalesssignificantuserofthisresourcecom-paredwithothertransportmodesandusers.3.2.MeansofproductionProducingabout56,000TWhofadditionalelectricityin2050todecarbonizealltransportationintheworldusingSAFandalternativetechnologies(battery,H2)isequivalenttotheelectricityproductionofnearly15millionwindturbines,or10,000nuclearunitsofpowercommensuratewiththeaverageinstalledbasein2019.Forairtransportalone,thiswouldmeannearly3.3millionwindturbinesor2,100newnuclearunits.Dependingonthechosentechnologyandassumingadecreaseinproductioncosts,thecostoftheelectricalsystemrequiredtoproduce56,000TWhvariesimmensely.106Estimatesbasedon2019installedbaseproduction.21%38%20%21%12,000Twh21,000Twh12,000Twh11,000TwhNeedforadditionalelectricityproductionfortransportin2050~56,000TWhAdditionalpowergenerationrequiredforthedecarbonizationoftransportRoadTransportPAXRoadFreightTransportAirTransportShippingSource:ArcheryStrategyConsultinganalysis.AllmodesProductionequivalentby2050106~15,000,000~3,300,000~10,000~2,100ououAerialDECARBONIZINGAIRTRANSPORTISPARTOFAWIDERENERGYTRANSITIONTHATINVOLVESAMASSIVEPRODUCTIONOFDECARBONIZEDELECTRICITYTOREPLACEFOSSILFUELS144145DECARBONIZINGAVIATION:ALLABOARD…/…Ourpowergenerationsystemshouldbere-examinedinlightofthisenergychallengeandinvestmentsshouldbemadeaccordingly,bearinginmindfutureneeds.Therequiredinvestmentsarehuge,about$1trillionperyear.However,comparedtothehistoricallevelofinvestmentintheoilsector(closeto$500billionperyear),thisamountdoesseemachievableifveryproactivepoliciesareputinplace.ComparisonwithRTEforecastsInitsstudyonthefutureoftheelectricitysystemtitled“EnergyFutures2050,”publishedin2021,theFrenchelectricitytransmissionsystemoperatorRTEassessesFrance’senergyneedsfor2050.ThisanalysisisnotablybasedontheforecastsoftheNationalLow-CarbonStrategy(SNBC),France’sroadmapforfightingclimatechange.107Costofcapitalnottakenintoaccount(higherinthecaseofnuclearvs.renewableenergies).108L’UsineNouvelle,Whytheworld’snuclearpowercapacityfellin2019…99butnotproduction(June2020).109IRENA,WindandsolarPV–whatweneedby2050(January2020).110SustainableEnergyHandbook,Module6.1:simplifiedfinancialsmodels(February2016).DECARBONIZINGAIRTRANSPORTISPARTOFAWIDERENERGYTRANSITIONTHATINVOLVESAMASSIVEPRODUCTIONOFDECARBONIZEDELECTRICITYTOREPLACEFOSSILFUELSHypotheses:Nuclearpower107•4,000$/kWe•3750$/kWe•3250$/kWeWind•$1,800$/kWe•1360$/kWe•800$/kWeSolar•$1,300$/kWe•500$/kWe•200$/kWeAverage20202050ConservativeScenario2050OptimisticScenarioSource:UsineNouvelle108,IRENA109,SustainableEnergyHandbook110,ArcheryStrategyConsultinganalysis.ComparinginvestmentneedswiththelevelofinvestmentinthepetroleumsectorAnnualandaverageCAPEXinvestmentsover2020-2050Estimated2020-2050CAPEXinvestmentstoproducepowerfortransportdecarbonizationWindWindNuclearpower107Nuclearpower107SolarSolar~$9,000billion~$310billion~$21,000billion~$690billion~$27,000billion~$910billion~$23,000billion~$780billion~$35,000billion~$1,170billion~$32,000billion~$1,050billion~$61,000billion~$2,030billion~$46,000billion~$1,540billion~$34,000billion~$1,120billionAnnualCAPEXforthepetroleumsector:~$500billion146147DECARBONIZINGAVIATION:ALLABOARDWeaimtoidentifythedifferencesbetweentheanalysisconductedforthisreportandtheconsumptiontrajectoriespresentedbyRTE.Thus,theassessmentofenergyneedsintheRTEreferencescenariodifferson4keypoints:1.Theassumptionsforairtrafficgrowth(0.4%peryearatthenationallevel)aresignificantlylowerthanthoseusedbytheairtransportindustry,andarebasedonadifferentscope(approximately3%peryearonaglobalscale);2.RTE,likeSNBC(NationalLow-CarbonStrategy),estimatesthatairandseatransportwillnotbetotallydecarbonizedby2050,with50%ofenergyneedsstillcoveredbyfossilfuels,whoseemissionswillbecompensatedbynaturalcarbonsinks(e.g.,forests):forairtransport,theremaining50%isbasedsolelyonsustainableaviationfuels(biofuelsandsynfuels),withhydrogenaircraftnotbeingconsidered(technologicallever);3.RTE,likeSNBC,doesnottakeintoaccountinternationalbunkers,theenergyneedsofairandmaritimetrafficwhosefinaldestina-tionisoutsideFrance(metropolitanFranceandFrenchoverseasdepartmentsandterritories);4.Finally,theuseofhydrogenandsynfuelsislow;moreover,theyarenotnecessarilyproducedinFrance.Fuelrequirementsbytransportmodein2019and2050,RTEreferencescenarioFranceconsumption(2019)MtoeProjectedgrowthrateSNBC(NationalLow-CarbonStrategy)AAGR2015-2050Residualfuelrequirement,biofuelorsynfuel(incl.consumptionoptimizationandsubstitution)2050Roadtransportforpassen-gers26Mtoe-0.1%p.a.0.4MtoeADEMEexpectsabout8MtoeofliquidbiofuelinFranceby2050andabout7Mtoeofbiogas,mainlyusedfornon-trans-portpurposes(assuming20%ofbiogasisusedinbioCNG)Thismeans9.5MtoecouldbeusedfortransportRoadtransportforgoods16Mtoe+0.3%p.a.8.1MtoeAirtrans-portNational1.7Mtoe+0.4%p.a.1.3Mtoe111Interna-tional6.1MtoeNotmentioned:ISOFrancehypothesis4.8Mtoe111ShippingNational0.2Mtoe+1%p.a.0.2Mtoe111Interna-tional1.7MtoeNotmentioned:ISOFrancehypothesis1.6Mtoe11152Mtoe16.5MtoeSource:RTE“EnergyFutures2050”;ArcheryStrategyConsultinganalysis.111HypothesisoflowerconsumptionnotmentionedintheSNBC,valueof30%takenintoconsideration.…/……/…IntheRTEreferencescenario,consideringconsumptiontrendsanti-cipatedbySNBCandtakenintoaccountinitsanalysis,aswellastheavailabilityofbiofuels(liquidandbioGNV)by2050predictedbyADEME,aresidualfuelneedofabout7Mtoein2050isclear.ThiswillDECARBONIZINGAIRTRANSPORTISPARTOFAWIDERENERGYTRANSITIONTHATINVOLVESAMASSIVEPRODUCTIONOFDECARBONIZEDELECTRICITYTOREPLACEFOSSILFUELS148149DECARBONIZINGAVIATION:ALLABOARDbecoveredbyfossilfuels,leadingtoadecarbonizationlevelofabout85%comparedwith2019(largelydrivenbyroadtransport).Inanalternativescenariotitled“Hydrogen+”,RTEexpectsamoreadvanceddecarbonizationofairandmaritimetransport,withelectri-calproductiondedicatedtotheproductionofsyntheticfuels.Thispro-ductionincreasesfrom9TWhinthereferencescenarioto72TWhinthe“Hydrogen+”scenario,whichwouldallowtheproductionofabout2.5Mtoeofadditionalsynfuel,andwouldreachadecarbonizationlevelofabout90%comparedwith2019.ThisscenarioalsoimpliesanincreaseinelectricityconsumptioninFrance(754TWhinsteadof645TWhinthereferencescenario).3.3.SensitivitytochangesintrafficEnergyrequirementsareverystronglycorrelatedtotheevolutionoftraffic,soadecreaseintrafficofabout30%comparedtothelevelsexpectedin2050wouldreducetheneedfordecarbonizedenergybyaround40%andanincreaseintrafficofabout30%wouldrequireanincreaseof35%.Eveniftrafficremainsveryclosetocurrentlevels,itwillbeessentialtohaveanelectricityproductioncapacityofaround10,000TWhtoensuretherepla-cementofcurrentfossilfueluse.Sensitivityofenergyneedstochangesintrafficforadecarbonizationoftransportat-90%comparedto2018Source:ArcheryStrategyConsultinganalysis.10%0%-10%-20%-30%-40%-50%-60%20%30%71,00077,00064,00056,00048,0004000033,00025,00018,00010,000Energyrequirement(TWh)Evolutionoftrafficin2050comparedtoreferencevalueRoadtransportforpassengers-0.2%0.5%1.1%1.6%2.0%2.4%2.7%3.1%3.3%3.6%Roadtransportforgoods0.2%0.9%1.5%2.0%2.4%2.8%3.1%3.4%3.7%4.0%Airtransport0.2%0.9%1.5%2.0%2.4%2.8%3.1%3.4%3.7%3.9%Shipping0.7%1.4%2.0%2.5%2.9%3.3%3.7%4.0%4.3%4.5%CAGR2018-2050Waypoint2050ScenarioDECARBONIZINGAIRTRANSPORTISPARTOFAWIDERENERGYTRANSITIONTHATINVOLVESAMASSIVEPRODUCTIONOFDECARBONIZEDELECTRICITYTOREPLACEFOSSILFUELS151150Thisstudyhasaddressedalltheleversthatwouldenableairtransporttoreachitscarbonneutralityobjectivesby2050,aswellasthevariousrecommen-dationsthatwebelieveshouldrapidlybeimplementtostepupthesector’sdecarbonizationprocess.Whilethetrajectorypresentedseemsambitiousandconstitutesamajorchallengeforboththeaviationandenergysectors,itisnonethelessachievableunderthefollowingconditions:•Incrementalchangesandoperationalimprovementsshouldbeimplementedassoonaspossible;•Disruptiveinnovationsareessentialtodrasticallyreduceaircraftconsump-tion;•TherenewalofaircraftfleetsmustbeoptimizedinordertogaintheexpectedbenefitsintermsofCO2emissions,whethertheyresultfromincrementalordisruptiveinnovations;•Biofuelproductionmustbemaximizedtolimittheneedforelectricity;•Theproductionofsyntheticfuels–whichwilllikelyconstitutethemajorityoffuelssubstitutedforfossilfuelsby2050–requiresanunprecedentedlevelofinvestmentinpowergenerationinfrastructure,entailingatwo-foldincreaseintheinvestmentscurrentlymadeinthepetroleumsector.Historically,whileairtransporthasmanagedtocontainitsemissionsinacontextofincreasingtraffic,withoutrelyingonalternativeenergies,thissituationisnolongercompatiblewiththesector’sdecarbonizationtarget.Itisthereforebecomingessentialtoimplementcoordinatedactionbetweentheaviationsector,electricityproducersandenergycompaniesthatproducealternativefuels(biofuels,hydrogen,syntheticfuels),whilemaintainingoverallconsistencybetweenthemeasuresimplementedtodecarbonizethevariousmodesoftransport.Statesthereforeplayacentralroleinsupportingthissector’stransition,especiallyinordertosupporttheimplementationofnewmeansofelectricityproductionandsustainablefuels.CONCLUSIONMoreover,itiscertainthatdecarbonizationwillbeachievedatdifferentspeedsdependingongeographicalregions(hingingonthesituationandambitionsofeachState).Institutionswillhavetoremainvigilanttoensurethatmeasurestakenlocallydonotdistortcompetitionwiththemostproactivegeographicalareas–aviationbeingaglobalizedsectorbynature.Nottoengageinthedynamicspresentedinthisstudywouldconstituteatripleriskofseeing(i)thegrowthdynamicsofairtrafficbeingcalledintoquestion,(ii)theaviationsectorbeingdowngraded(iii)theemergenceofanewdependenceoncountriesexportingsustainableaviationfuels.Therefore,therecommendationsmadeinthisreportshouldbepursuedastheyconstitutethebestchancetoachieveadecarbonizedairmobilitymodel.CONCLUSION153152Numerouspublicationshaveattemptedtooutlinescenariosforairtransportdecarbonizationby2050,assessingtheimplicationsforthepowergenerationsystem.Someweretakenintoaccountinthewritingofthisreport,otherswerenot,thoughtheirinsightswerenolessinteresting.Thestudiesreferredtointhisreport–CleanSkiesforTomorrow;Waypoint2050;Destination2050–emphasizethekeyroleofSAFintheirairtransportdecarbonizationscenarios,inparticulartheroleofsyntheticfuels(PowertoLiquids)tosupplementthesupplyofbiofuelsgiventheirlimitedbioenergypotentialby2050(nearly400Mtoein2050).WhileallagreethataccesstosustainablesourcesofCO2,greenhydrogen,andrenewableelectricityatcompetitivecostsisthemainbarriertoachievingthedesiredgoal,therearepointsofdissentnonetheless:•TheCleanSkiesforTomorrowreportassumesthatbiofuelswillbeusedpri-marilyforairtransport,112whichisconsideredmoredifficulttodecarbonizegiventhelowtechnologicalmaturityofelectricorhydrogenpropulsionforairplanescomparedtocarsforexample(thesameistrueforelectricitypro-ductionorhomeheating).Thereportproposestoacceleratethedeploymentofpetroleumalternativesfortransportation.APPENDIXOVERVIEWOFVARIOUSRELATEDSTUDIES112CleanSkiesforTomorrow,GuidelinesforaSustainableAviationFuelBlendingMandateinEurope(July2021).OVERVIEWOFVARIOUSRELATEDSTUDIES•TheDestination2050andWaypoint2050reportsemphasizethatdecarbo-nizedelectricitygenerationmustbesteppedupintheEU.WhereastheShiftProjectsuggestsestablishingacarbonbudgettomeetthetargetofcontainingglobalwarmingto2°Cby2100(ParisAgreements),takingintoaccountthereturnofairtraffictoits2019(pre-crisis)levelin2024,withasubsequentgrowthof4%/yearuntil2050.113Itconcludesitsanalysisbyemphasizingthatonlyare-examinationofairtrafficgrowthwouldmakeitpossibletomeettheinitialobjective.Itnotablydistinguishestwomoreorlessambitiousdecarbonizationscenariostoabidebythecarbonbudget:•A“veryoptimistic”scenario:technologicalroadmapinlinewiththemostoptimisticforecastsinthesector(short/mediumhaulhydrogenandlonghaulenginesrunningon100%SAFin2035…),fleetrenewalevery15years,100%ofSAFproductiongoingtoaviation,etc.•An“optimistic”scenario:technologicalroadmaphappening5yearslatercomparedtothepreviousscenario,fleetrenewalevery25years,50%ofSAFproductionallocatedtoaviation(theresttoothertransportsectors).113Thinktankwhosemissionistoinformandinfluencethedebateontheenergytransition,financedinpartbyindustrialsponsorship.FromthebriefingpaperFlyingin2050:whataviationinaconstrainedworld?(March2021).154155DECARBONIZINGAVIATION:ALLABOARDItshouldbementionedthatthehypothesisinthisreportisbasedontheWaypointscenario,withairtrafficgrowthof3.1%peryearbetween2019and2050.Airpassengertrafficassumptionsbysource(Unit:CAGR114)Source:Waypoint2050,Destination2050;CleanSkiesforTomorrow,AirbusGlobalMarketForecast2021-2040,ShiftProject,ArcheryStrategyConsultinganalysis.-1%0%1%2%3%4%ShiftProjectoptimisticscenario(2025-2050)ShiftProjectveryoptimisticscenario(2025-2050)CleanSkiesforTomorrow(trafficextrapolatedbasedonenergydemand;2019-2050)Destination2050(2020-2050;limitedtoEurope)Waypoint(2019-2050)AirbusGMF2021-2040(trajectory2019-2040)CAGRairpassengertrafficACKNOWLEDGMENTSInstitutMontaignewouldliketoexpressitssinceregratitudetothefollowingpeoplefortheircontributiontothiswork:Chairmenofthereflexiongroup•GuillaumeFaury,CEOAirbus•BenjaminSmith,CEO,AirFrance-KLMRapporteurs•StéphaneAlbernhe,President,ArcheryStrategyConsulting•RémyBonnery,SeniorProjectManager,ArcheryStrategyConsulting•GuillaumeHue,Partner,ArcheryStrategyConsulting•LudovicPlantéWorkteam•GaëtanArpin,Analyst,ArcheryStrategyConsulting•ClémentBordet,AssociateProjectManager,ArcheryStrategyConsulting•MaximilienChaperon,AssistantResearcher,InstitutMontaigne•ThomasFeugier,AssistantResearcher,InstitutMontaigne•LucasHennequart,Consultant,ArcheryStrategyConsulting•IonaLefebvre,Researcher,InstitutMontaigne•NicolasLéonard,Consultant,ArcheryStrategyConsulting•EmmanuelMiremont,AssociateProjectManager,ArcheryStrategyConsulting•CamilleMonvoisin,Consultant,ArcheryStrategyConsulting•MatteoSpezzaferri,SeniorConsultant,ArcheryStrategyConsulting•AdrienVasse,SeniorConsultant,ArcheryStrategyConsulting114AAGR=averageannualgrowthrate.156157DECARBONIZINGAVIATION:ALLABOARDACKNOWLEDGMENTS•RégisleDrezen,Headofdepartment-Innovation&Developmente-Mobility,Enedis•ÈveDufosse,HeadofR&DforRenewableEnergyandStoragePrograms,EDF•JulienEinaudi,ExecutiveVicePresident,OrtecGroup•EneaFracassi,ChiefOperatingOfficer,CorsairInternational•ThibaudFrossard,StrategicProcurement,Digital,InnovationandTransportAdvisortotheMinisterDelegateforIndustry•LaurentGaltier,ActivityLeaderforOrganics,SUEZ•JacquesGhisgant,HeadofTerritorialActions,InnovationFinancing,EDFÎle-de-France•HervéGilibert,ChiefTechnicalOfficer,ArianeGroup•Pierre-ÉtienneGirardot,Innovation,TransportandDigitalIndustriesAdvisortotheMinisterDelegateforIndustry•JeanGouadain,ChiefofStaffoftheCEOofCivilAviation,DGAC•MichelGuilbaud,partner,BatoutGuilbaud•MarcHamy,VicePresident,CorporateAffairs,SustainabilityandEnvironment,Airbus•JeanChristopheHenoux,VPFuturePrograms,ArianeGroup•OlivierHouvenagel,DeputyDirectorofPowerSystemEconomics,RTE•LaurentJoly,DeputyDirectorofResearchandEducationalResources,ISAE-SUPAERO,DirectoroftheInstitutforSustainableAviation•MarionLacombe,HydrogenBusinessDeveloper,GRTgaz•DominiqueLagarde,StrategyDirector,Enedis•MarwanLahoud,ExecutiveChairman,ACECapitalPartners,MemberoftheInstitutMontaigneSteeringCommittee•MatthieuLandon,TechnicalAdvisorforIndustryandResearchintheEconomic,FinancialandIndustrialDivisionofthePrimeMinister’sOffice•Anne-SophieLeLay,GeneralSecretary,AirFrance-KLM•StevenLemoing,ManagerforSustainableAviationFuels,Airbus•AntoineMaguin,CEO,AlvestGroup•JoffreyMai,DirectorofEnvironmentandSustainableDevelopment,VinciConcessionsWewouldalsoliketothankthefollowingpeoplefortheircontributiontothiswork•YannickAssouad,ExecutiveVicePresident,Avionics,Thales•WassimBallout,EnergyAnalyst,CorporateStrategyDepartment,EDF•JerômeBatout,Partner,Batout-Guilbaud•Anne-SophiedelaBigne,HeadofCivilAffairsinthePublicAffairsDivisions,Airbus•AnneBondiouClergerie,DirectorofR&D,SpaceandEnvironment,GIFAS(FrenchAerospaceIndustryGrouping)andExecutiveSecretaryoftheFrenchCouncilforCivilAeronauticsResearch(CORAC)•RémiBorel,ProjectManager,PublicAffairsDepartment,EDF•AntoineBouvier,HeadofStrategy,Airbus•OlivierDelBucchia,memberofAérodécarbo,Co-authorofthereport“Howwillweflyin2050?”•Jean-PierreBurzynski,DirectoroftheProcessesEngineeringDivision,IFPEN•GrégoireCarpentier,memberofAérodécarbo,Co-authorofthereport“Howwillweflyin2050?”•DamienCazé,CEOofCivilAviation(DGAC)•Pierre-FranckChevet,ChairmanoftheBoardofDirectors,IFPÉnergiesnouvelles•LucasColson,ProjectManager,DirectionGénéraledesEntreprises(DGE)•MarcCottignies,ExpertEngineer,ADEME•PhilippeCoq,DirectorofPublicAffairs,Airbus•ÉricDalbies,SeniorExecutiveVicePresidentR&TandInnovation,Safran•FrançoisDelabre,HeadofThinkTankRelationsandEconomicStudies,InstitutionalAffairs,AirFrance-KLMGroup•StephanDenner,ManagingDirector,AVIAPARTNERFrance•MurielDoucet,DirectorofPublicAffairs,Innovation,Technologies(DeepTech:Space,BigScience/QuantumComputing,Aerospace),Digital&Healthcare,AirLiquideGroup•NicolasDisle,KeyAccountManagerfortheaeronauticalindustry,EDFCommerce158159DECARBONIZINGAVIATION:ALLABOARD•DenisMercier,DeputyManagingDirector,FIVES•DominiqueMockly,PresidentandCEO,Terega•SamuelMorillon,SeniorVicePresident,AsiaPacific–GeneralManager,SiemensEnergy(atthetimeofdiscussion)?•PierreMoschetti,DeputyDirectorofAeronauticalConstruction,DGAC•ThibaudNormand,VPClimateStrategyDepartment,Safran•NicolasNotebaert,CEO,VinciConcessions,andPresidentofVINCIAirports•XavierPons,CEOofSonovision,ORTECGroup•OlivierReuther,HydrogenProjectLeader,ArianeGroup•AnneRigail,CEO,AirFrance•FrançoisRobert,memberofAérodécarbo,Co-authorofthereport“Howwillweflyin2050?”•MarcRohfritsch,DirectoroftheIndustryandServicesProgram,GeneralSecretariatforInvestment•DelphineRoma,VPMarketing–GlobalMarkets&Technologies,AirLiquideGroup•AugustindeRomanet,ChairmanandCEO,AéroportsDeParisGroup•AndréHubertRoussel,CEO,ArianeGroup•MarianneSiegdeMaintenant,DirectorofInstitutionalandInternationalAffairs,AirFrance-KLMGroup•StéphaneThion,HeadofSustainableAviationFuels,TotalEnergiesAviation–Strategy/Development&Sustainability•YannTréméac,DeputyHeadoftheTransportandMobilityDepartment,ADEME•LucasViolon,StrategyandPublicAffaires,BatoutGuilbaud•XavierVigor,VPTechnologiesandIndustrialManagement–WorldBusinessLineHydrogen,AirLiquideGroup•Jean-ChristopheViguie,ProgramManagerBiofuels&PlasticRecycling,IFPÉnergiesnouvelles•DavidZiegler,VPIndustryAerospaceandDefense,DassaultSystèmesTheviewsexpressedinthisreportarenotbindingfortheindividualsnamedaboveorfortheinstitutionstheyrepresent.BIBLIOGRAPHYStudiesandReports•InternationalEnergyAgency(IEA),NetZeroby2050(May2021),availableathttps://www.iea.org/reports/net-zero-by-2050•InternationalEnergyAgency(IEA),EnergyTechnologyPerspectives2020(September2020),availableathttps://www.iea.org/reports/energy-technology-perspectives-2020•InternationalEnergyAgency(IEA),Carmarketsharebypowertraininselectedcountriesandglobally,intheStatedPoliciesScenarioandtheSustainableDevelopmentScenario,2019,2030and2050(April2021),availableathttps://www.iea.org/data-and-statistics/charts/car-market-share-by-powertrain-in-selected-countries-and-globally-in-the-stated-policies-scenario-and-the-sustainable-development-scenario-2019-2030-and-2050,lastaccessed12/15/2021)•InternationalEnergyAgency(IEA),GlobalEVOutlook2021,Prospectsforelectricvehicledeployment,(2021),availableathttps://www.iea.org/reports/global-ev-outlook-2021•AirTransportActionGroup(ATAG),Waypoint2050-avisionofnet-zeroaviationbymid-century(2ndedition,September2021),availableathttps://aviationbenefits.org/media/167417/w2050_v2021_27sept_full.pdf•Airbus,GlobalMarketForecast2021–2040(2021),availableathttps://www.airbus.com/en/products-services/commercial-aircraft/market/global-market-forecast•AirlinesForEurope(A4E),AirportsCouncilInternational(ACI),AeroSpace&DefenseIndustriesAssociationofEurope(ASD),CivilAirNavigationServicesOrganization(CANSO)andEuropeanRegionsAirlineAssociation(ERA),NRLRoyalNetherlandsAerospaceCentreandSEOAmsterdamEconomics,Destination2050-AroutetoNetZeroEuropeanAviation(February2021),availableathttps://www.destination2050.eu/wp-content/uploads/2021/03/Destination2050_Report.pdf•NationalAssembly,Informationmissiononagrofuels(January2020),availableathttps://www.assemblee-nationale.fr/dyn/15/rapports/cion-dvp/l15b2609_rapport-information#160161DECARBONIZINGAVIATION:ALLABOARD•BP,BPEnergyOutlook2020(2020),availableathttps://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/energy-outlook/bp-energy-outlook-2020.pdf•Carbone4,MurzeauVictor,TheEuropeanTaxonomy:CentralPieceoftheEuropeanRegulatoryStrategyforSustainableFinance(July2021),availableathttps://www.carbone4.com/analyse-taxonomie-europeenne•CleanSky2&FuelCellsHydrogen2,Hydrogen-poweredaviation,Afact-studyofhydrogentechnology,economics,andclimateimpactby2050(June2020),availableathttps://www.fch.europa.eu/publications/hydrogen-powered-aviation•EuropeanResearchEstablishmentsinAeronautics(EREA),FromAirTransportSystem2050VisiontoPanningforResearchandInnovation(May2012),availableathttps://www.onera.fr/sites/default/files/recherche/ats_2050-phase2_en.pdf•Eurocontrol,A-CDMImpactAssessment(March2016),availableathttps://www.eurocontrol.int/sites/default/files/2019-04/a-cdm-impact-assessment-2016.pdf•Eurocontrol,DataSnapshot#4onCO2emissionsbyflightdistance(February2021),availableathttps://www.eurocontrol.int/publication/eurocontrol-data-snapshot-co2-emissions-flight-distance•Eurocontrol,CORSIAandtheEU’sEmissionsTradingSystem:howEUROCONTROLsupportsEuropeanaviationtofostersustainability(May2021),availableathttps://www.eurocontrol.int/article/corsia-and-eus-emissions-trading-system-how-eurocontrol-supports-european-aviation-foster•Eurocontrol,Continuousclimbanddescentoperations,availableathttps://www.eurocontrol.int/concept/continuous-climb-and-descent-operations,lastconsultedon15/12/2021•EuropeanEnvironmentAgency(EEA),EuropeanUnionAviationSafetyAgency(EASA)andEurocontrol,EuropeanAviationEnvironmentalReport2019(January2019),availableathttps://www.easa.europa.eu/eaer/downloads•HydrogenCouncil,Hydrogenscalingup(November2017),availableathttps://hydrogencouncil.com/wp-content/uploads/2017/11/Hydrogen-scaling-up-Hydrogen-Council.pdfBIBLIOGRAPHY•InternationalAirTransportAssociation(IATA),FlyNetZero-AirlinecommitmenttoNetZero2050(October2021)availableat:https://www.iata.org/en/iata-repository/pressroom/presentations/environment-net-zero-carbon-at-iata-agm-2021/•InternationalAirTransportAssociation(IATA),FactSheet:EUandUSpolicyapproachestoadvanceSAFproduction(October2021)availableat:https://www.iata.org/contentassets/d13875e9ed784f75bac90f000760e998/fact-sheet---us-and-eu-saf-policies.pdf•InternationalAirTransportAssociation(IATA),EstimatingAirTravelDemandElasticities(December2007),availableathttps://www.iata.org/en/iata-repository/publications/economic-reports/estimating-air-travel-demand-elasticities---by-intervistas/•InternationalAirTransportAssociation(IATA),AircraftTechnologyRoadmapto2050(2019),availableathttps://www.iata.org/contentassets/8d19e716636a47c184e7221c77563c93/technology20roadmap20to20205020no20foreword.pdf•InternationalCouncilonCleanTransportation(ICCT),CO2emissionsfromcommercialaviation(September2019),availableathttps://theicct.org/publications/co2-emissions-commercial-aviation-2018•InternationalRenewableEnergyAgency(IRENA),InnovationOutlook–AdvancedLiquidbiofuels(October2016),availableathttps://www.irena.org/publications/2016/Oct/Innovation-Outlook-Advanced-Liquid-Biofuels•DNVGL,MaritimeForecastto2050,EnergyTransitionOutlook2020(September2020),availableathttps://www.isesassociation.com/wp-content/uploads/2020/09/DNVGL_2020_Maritime_Forecast_to_2050_WEB.pdf•KhadilkarH.andBalakrishnanH.,NetworkCongestionControlofAirportSurfaceOperations(April25,2014),JournalofGuidance,Control,andDynamics,availableathttps://doi.org/10.2514/1.57850•Ministèredel’EcologiexDirectionGénéraledel’AviationCivile(DGAC),Guideméthodologiquepourladéterminationdesémissionsdansl’atmosphèredesAPU(July2007),availableathttps://www.ecologie.gouv.fr/sites/default/files/Guide_CITEPA__APU_180707.pdf162163DECARBONIZINGAVIATION:ALLABOARD•MinistryofEcologyxDirectorateGeneralofCivilAviation(DGAC),Enquêtecomplémentaritémodaleaviontrain–Résultats2014(June2015),availableathttps://www.ecologie.gouv.fr/sites/default/files/Presentation_enquete_complementarite_modale_avril_2015.pdf•MinistryofEcology,PBNFrancePlan,FrenchImplementationPlanforPerformance-BasedNavigation(March2012),availableathttps://www.ecologie.gouv.fr/sites/default/files/PNB_francais.pdf•RTE,EnergyFutures2050–Mainresults(October2021),availableathttps://assets.rte-france.com/prod/public/2021-10/Futurs-Energetiques-2050-principaux-resultats_0.pdf•RTE,FutureEnergyReport2050-Consumption(November2021),availableathttps://assets.rte-france.com/prod/public/2021-11/BP2050_rapport-complet_chapitre3_consommation.pdf•SkyNRG,WDBSAFActionProgramme(March2021),availableathttps://skynrg.com/wp-content/uploads/2021/03/WDB-Action-programme_EN_Final-version3.pdf•TheShiftProject,Beingabletoflyin2050:whataviationinaconstrainedworld?(March2021),availableathttps://theshiftproject.org/article/quelle-aviation-dans-un-monde-contraint-nouveau-rapport-du-shift/Legislation/PublicPolicy•EuropeanCommission,RegulationoftheEuropeanParliamentandoftheCouncilonensuringalevelplayingfieldforsustaibableairtransport(14July2021),availableathttps://ec.europa.eu/info/sites/default/files/refueleu_aviation_-_sustainable_aviation_fuels.pdf•EuropeanCommission,Cordis,Boxwingdesignformoreefficientaircraft(14July2021),availableathttps://cordis.europa.eu/article/id/428904-box-wing-design-for-more-efficient-aircraft•HMGovernment,NetZeroStrategy:BuildBackGreener(October2021),availableathttps://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1033990/net-zero-strategy-beis.pdf•MinistryofEcologicalTransition,SingleEuropeanSky(September20,2017),availableathttps://www.ecologie.gouv.fr/ciel-unique-europeen•MinistryofEcologicalTransition,CarbonMarkets(Nov.12,2021),availableathttps://www.ecologie.gouv.fr/marches-du-carbone•MinistryofEcologicalTransition,ImplementationofcontinuousdescentproceduresatmajorairportsinFrance(Sept.29,2021),availableathttps://www.ecologie.gouv.fr/mise-en-oeuvre-procedures-descente-continue-sur-grands-aeroports-en-france•EuropeanParliament,FactSheet–AirTransport:TheSingleEuropeanSky,(May2021),availableathttps://www.europarl.europa.eu/factsheets/fr/sheet/133/transport-aerien-le-ciel-unique-europeen•Senate,FinanceBill2022(November2021),availableathttps://www.senat.fr/enseance/2020-2021/137/Amdt_I-499.html•TheWhiteHouse,FactSheet:BidenAdministrationAdvancestheFutureofSustainableFuelsinAmericanAviation(September9,2021),availableathttps://www.whitehouse.gov/briefing-room/statements-releases/2021/09/09/fact-sheet-biden-administration-advances-the-future-of-sustainable-fuels-in-american-aviation/•EuropeanUnion,RegulationNo552/2004oftheEuropeanParliamentandoftheCouncilof10March2004ontheinteroperabilityoftheEuropeanAirTrafficManagementnetwork(2004),availableathttps://eur-lex.europa.eu/legal-content/FR/TXT/?qid=1540462729790&uri=CELEX:32004R0552•WorldEconomicForum(WEF),CleanSkiesforTomorrow:SustainableAviationFuelsasaPathwaytoNet-ZeroAviation(November2021),availableathttps://www.weforum.org/reports/clean-skies-for-tomorrow-sustainable-aviation-fuels-as-a-pathway-to-net-zero-aviationAnnualreports•AirFrance,AnnualReport2014(May2015),availableathttps://www.airfranceklm.com/sites/default/files/publications/annual_report_2014.pdf•Airbus,AnnualReport2019(February2020),availableathttps://www.airbus.com/en/investors/financial-results-annual-reports•Boeing,2019AnnualReport(2020),availableathttps://investors.boeing.com/investors/financial-reports/default.aspx•EasyJetplc,AnnualReport2014(2015),availableathttps://www.annualreports.com/Company/easyjet-plcBIBLIOGRAPHY164165DECARBONIZINGAVIATION:ALLABOARD•Lufthansa,AnnualReport2014(2015),availableat:https://investor-relations.lufthansagroup.com/fileadmin/downloads/en/financial-reports/financial-statements/LH-FS-2014-e.pdf•Rolls-RoyceHoldingsplc,AnnualReport2019(2020),availableathttps://www.rolls-royce.com/~/media/Files/R/Rolls-Royce/documents/annual-report/2019/2019-full-annual-report.pdf•Safran,AnnualReport2020(February2021),availableathttps://www.safran-group.com/finance/publications-resultsPress/Websites•InternationalEnergyAgency(IEA),WorldAirPassengerTrafficTrends,1980-2020(December2020),availableathttps://www.iea.org/data-and-statistics/charts/world-air-passenger-traffic-evolution-1980-2020•AirFrance,AirFrancechoosesSkyBreathe®eco-pilotsolutiontoreducefuelconsumptionandCO2emissions(July9,2020),availableonhttps://corporate.airfrance.com/fr/communique-de-presse/air-france-choisit-la-solution-deco-pilotage-skybreather-pour-reduire-sa•Airbus,Maintain–Ensuringsafeefficientmaintenanceacrosstheentireaircraftlifecycle,availableathttps://aircraft.airbus.com/en/services/maintain,lastaccessed12/15/2021•Airbus,E-FanX,availableonhttps://www.airbus.com/en/innovation/zero-emission/electric-flight/e-fan-x,lastconsultationon15/12/2021•Airbus,AirbusandRolls-RoycesignUltraFanengineintegrationagreement(Apr.2018),availableathttps://www.airbus.com/en/newsroom/press-releases/2018-04-airbus-and-rolls-royce-sign-ultrafan-engine-integration•AviationBenefitsBeyondBorders,Firstclassfuelefficiencycasestudy,availableathttps://aviationbenefits.org/case-studies/first-class-fuel-efficiency/,lastaccessed12/14/2021•AviationBenefitsBeyondBorders,Fixedelectricalgroundpowercasestudy,availableathttps://aviationbenefits.org/case-studies/fixed-electrical-ground-power/,lastaccessed12/14/2021•AviationBenefitsBeyondBorders,Space-basednavigationcasestudy,availableathttps://aviationbenefits.org/case-studies/space-based-navigation/,lastaccessedon12/14/2021•Boeing,InnovationTab,availableathttps://www.boeing.com/innovation/,lastaccessed12/14/2021•Boeing,BoeingandSKyNRGPartnertoScaleSustainableAviationFuelsGlobally(July14,2021),availableathttps://investors.boeing.com/investors/investor-news/press-release-details/2021/Boeing-and-SkyNRG-Partner-to-Scale-Sustainable-Aviation-Fuels-Globally/default.aspx•CFMInternational,Innovationtab,availableathttps://www.cfmaeroengines.com/sustainability/,lastaccessedon15/12/2021•CleanAviation,Gowiththeflow:CleanSky’sHybridLaminarFlowControlDemo(2018),availableathttps://www.cleansky.eu/go-with-the-flow-clean-skys-hybrid-laminar-flow-control-demo•DefenseIndustryDaily,EmbraerAndPratt&WhitneyPartnerOn100%SAF(Dec.2021),availableathttps://www.defenseindustrydaily.com/embraer-and-pratt-whitney-partner-on-100-saf-egypt-might-purchase-k-9-netherlands-gets-mq-9-update-046290/,lastaccessed12/15/2021•Gaussin,ART,availableathttps://www.gaussin.com/art,lastaccessedon15/12/2021•Industrie&Technologies,NippertAline,SafranandGEAviationlaunchthedevelopmentofabreakthroughenginetoreducefuelconsumptionby20%(June2021),availableonhttps://www.industrie-techno.com/article/safran-et-ge-aviation-lancent-le-developpement-d-un-moteur-de-rupture-pour-reduire-la-consommation-de-carburant-de-20.65799,lastconsultationon15/12/2021•InternationalAirportReview,SESARdeploymentdrivesefficient,modernATM(November2021),availableathttps://www.internationalairportreview.com/article/171718/sesar-deployment-drives-efficient-modern-atm/•JapanAirlines,JAL’sFirstBoeing737-800NextGenerationArrivesinJapan(November21,2006),availableathttp://www.jal.com/en/press/0000773/773.html•LeJournaldel’Aviation,TaxiBotinserviceatLufthansa(Feb.23,2015),availableathttps://www.journal-aviation.com/actualites/28992-le-taxibot-en-service-chez-lufthansa-reportage-videoBIBLIOGRAPHY166167DECARBONIZINGAVIATION:ALLABOARD•LeJournaldel’Aviation,DrabEmilie,TransaviasignswithSafetyLine(Dec.18,2017),availableathttps://www.journal-aviation.com/actualites/39081-transavia-signe-avec-safety-line,lastaccessed12/14/2021•LesEchos,invest,Reuters,FEATURE-Water-basedpaintfortheA350(March15,2013),availableathttps://investir.lesechos.fr/actions/actualites/feature-de-la-peinture-a-l-eau-pour-l-a350-880047.php,lastaccessed12/15/2021•L’UsineNouvelle,JamesOlivier,“Thechipshortageisadailybattle”,forYannickAssouad,headofavionicsatThales(9December2021),availableathttps://www.usinenouvelle.com/article/la-penurie-de-puces-est-un-combat-de-tous-les-jours-pour-yannick-assouad-patronne-de-l-avionique-de-thales.N1167377,lastaccessedon14/12/2021•OpenAirlines[blog],[Interview]HowCorsairInternationalimproveditsfuelefficiencyusingbigdataanalytics(Sept.28,2021),availableathttps://blog.openairlines.com/interview-how-corsair-international-improved-its-fuel-efficiency-using-big-data-analytics•InternationalCivilAviationOrganization(ICAO),ICAOCouncilAdoptsNewCO2EmissionsWeaponforAircraft(Mar.6,2017),availableathttps://www.icao.int/Newsroom/Pages/FR/ICAO-Council-adopts-new-CO2-emissions-standard-for-aircraft.aspx•InternationalCivilAviationOrganization(ICAO),AircraftCO2emissionsstandardmetricsystem(2017),availableathttps://www.icao.int/environmental-protection/Documents/CO2%20Metric%20System%20-%20Information%20Sheet.pdf•Pratt&Whitney,Pratt&WhitneyGTFAdvantage™Engine,availableathttps://pwgtf.com/advantage,lastaccessed12/14/2021•Safran,WhatfuturefortheOpenRotor?(March28,2019),availableathttps://www.safran-group.com/fr/actualite/quel-avenir-lopen-rotor-2019-03-28•SchipholAirport,Sustainabletaxiing:Taxibottrial,availableathttps://www.schiphol.nl/en/innovation/page/sustainable-taxiing-taxibot-trial/lastaccessedon15/12/2021•TheGuardianxAFP,World’sbiggestmachinecapturingcarbonfromairturnedoninIceland(9September2021),availableathttps://www.theguardian.com/environment/2021/sep/09/worlds-biggest-plant-to-turn-carbon-dioxide-into-rock-opens-in-iceland-orca,lastaccessed14/12/2021•TheGuardian,TophamGwyn,Boeing’s737Maxwooedairlineswithitscost-savingfueleconomy(March2019),availableathttps://www.theguardian.com/business/2019/mar/12/boeings-737-max-wooed-airlines-cost-saving-fuel-economy,lastaccessed12/15/2021•TotalEnergies,TotalstartsproducingsustainableaerialbiofuelsatitsFrenchsites(April8,2021),availableathttps://totalenergies.com/fr/medias/actualite/communiques-presse/total-demarre-production-biocarburants-aeriens-durables,lastaccessedon12/14/2021•TotalEnergies,BioTfueL:towardsthedevelopmentof2ndgenerationbiofuels(April8,2021),availableathttps://totalenergies.com/fr/expertise-energies/projets/bioenergies/biotfuel-convertir-residus-vegetaux-carburant,lastconsultedon12/14/2021•EuropeanUnion,CleanAviationJointUndertaking,CleanAviationseeksscientificadvice(November23,2021),availableathttps://clean-aviation.eu/members-of-the-scientific-advisory-body-of-the-clean-aviation-joint-undertakingBIBLIOGRAPHY169168•ChinaTrends#11China’sSelectiveOpeningUp:theCaseofForeignDirectInvestment(December2021)•TheEurope-IndiaBalanceSheet:Trade,Like-MindednessandStrategicInterests(December2021)•ReinventingtheEuropeanBankingSector(November2021)•ChinaTrends#10–HowAIWillTransformChina(November2021)•Innovation:France’sGotTalent(October2021)•Europe’sEnergyTransition:ACommonChallenge(September2021)•ChinaTrends#9–QuestioningChina’sEmissionPledges(July2021)•China’sEconomicRebound:ViewsfromBeijing(June2021)•StabilityintheMaghreb:anImperativeforEurope(May2021)•China’sFinTech:theEndoftheWildWest(April2021)•State-backedInformationManipulation:TheFrenchNode(February2021)•RethinkingourDefenseintheFaceof21stCenturyCrisiss(February2021)•China’sFinTech:TheEndoftheWildWest(April2021)•State-backedInformationManipulation:TheFrenchNode(February2021)•RethinkingourDefenseintheFaceof21stCenturyCrisiss(February2021)•ChinaTrends#8–MilitaryOptionsforXi’sStrategicAmbitions(January2021)•WinsandLossesintheEU-ChinaInvestmentAgreement(CAI)(January2021)•TheWeakLinksinChina’sDriveforSemiconductors(January2021)•PromotingaEuropeanChinaPolicy–FranceandGermanyTogether(December2020)•ChinaTrends#7-Theshrinkingmarginsfordebate(October2020)TrumporBiden:RebuildingtheTransatlanticRelationship(October2020)•ResponsibleCapitalism:AnOpportunityForEurope(September2020)•InformationManipulationsAroundCovid-19:FranceUnderAttack(July2020)•TheCarbonDividend:Europe’sWinningCard(June2020)•TransatlanticTrends2020(June2020)•Covid-19theClarifier:TheImpactoftheVirusonFrance’sForeignPolicy(June2020)•Europe’sPushbackonChina(June2020)OURPREVIOUSPUBLICATIONS•Seine-Saint-Denis:AFrenchSuburb’sQuestforEmploymentandInclusion(May2020)•FrenchYouth:OnlineandExposed(April2020)•FightingCovid-19:EastAsianResponsestothePandemic(April2020)•Algorithms:PleaseMindtheBias!(March2020)•Space:WillEuropeAwaken?(February2020)•BrightPerspectivesforSolarPowerinAfrica?(January2020)•DigitalPrivacy:HowCanWeWintheBattle?(December2019)•Europe-Africa:ASpecialPartnership(July2019)•Europeand5G:theHuaweiCase–part2(June2019)•5GinEurope:TimetoChangeGear!–part1(May2019)•MediaPolarization“àlafrançaise”?(May2019)•FacesofFrance-TheBarometerofTerritories2019(February2019)•SavingtheRighttoAsylum(October2018)•TheUK-FranceDefenceandSecurityRelationship:HowtoImproveCooperation(December2018)•TheIslamistFactory(September2018)•TheDemographicChallenge:MythsandRealities(July2018)•Space:WillEuropeStrikeBack?(December2017)•Justice:GetDigital(December2017)•ReadyforToday’sAfrica?(September2017)•ANewStrategyforFranceinaNewArabWorld(August2017)•DigitalandHigherEducation:StayConnected!(June2017)•Syria:toEndaNever-EndingWar(June2017)•Energy:PuttingClimateFirst(June2017)•WhatRoleforCarsinTomorrow’sWorld?(June2017)•TheEuropeWeNeed(March2017)•TheCircularEconomy:ReconcilingEconomicGrowthwiththeEnvironment(December2016)•AFrenchIslamisPossible(September2016)•RebuildingFrance’sNationalSecurity(September2016)•ReligiousDiscriminationinAccesstoEmployment:aReality(October2015)Forpreviouspublications,seeourwebsite:www.institutmontaigne.org/enOURPREVIOUSPUBLICATIONS170171CORPORATEMEMBERSCORPORATEMEMBERSABBFRANCEABBVIEACCENTUREACCURACYACTIVEOADECCOADEOADITADVANCYAIRFRANCE-KLMAIRLIQUIDEAIRBUSALLEN&OVERYALLIANZALVAREZ&MARCHALFRANCEAMAZONAMBERCAPITALAMUNDIANTININFRASTRUCTUREPARTNERSARCHERYSTRATEGYCONSULTINGARCHIMEDARDIANASTRAZENECAAUGUSTDEBOUZYAVRILAXABAKER&MCKENZIEBEARINGPOINTBESSÉBGGROUPBNPPARIBASBOLLORÉBONAFIDÉBOUYGUESBROUSSEVERGEZBRUNSWICKCANDRIAMCAPGEMINICAPITALGROUPCAREITASSETETPROPERTYMANAGEMENTCARREFOURCASINOCHUBBCISCISCOSYSTEMSFRANCECLUBTOP20CMACGMCNPASSURANCESCOHENAMIR-ASLANICOMPAGNIEPLASTICOMNIUMCONSEILSUPÉRIEURDUNOTARIATCORRÈZE&ZAMBÈZECRÉDITAGRICOLED’ANGELIN&CO.LTDDASSAULTSYSTÈMESDEPARDIEUBROCASMAFFEIDOCTOLIBECLGROUPEDENREDEDFEDHECBUSINESSSCHOOLEDWARDSLIFESCIENCESELSANENEDISENGIEEQTESL&NETWORKEUROGROUPCONSULTINGFIVESFONCIÈREINEAGALILEOGLOBALEDUCATIONGETLINKGIDELOYRETTENOUELGOJOBGOOGLEGRASSAVOYEGROUPAMAGROUPEBEL172173CORPORATEMEMBERSCORPORATEMEMBERSGROUPEEDMONDDEROTHSCHILDGROUPEM6GROUPEORANGEHAMEURETCIEHENNERHSBCCONTINENTALEUROPEIBMFRANCEIFPASSINGBANKFRANCEINKARNINSTITUTMÉRIEUXINTERNATIONALSOSINTERPARFUMSINTUITIVESURGICALIONISEDUCATIONGROUPISRPIZIWORKJEANTETASSOCIÉSJOLTCAPITALKANTARKATALYSEKEARNEYKEDGEBUSINESSSCHOOLKKRKPMGS.A.LABANQUEPOSTALELACOMPAGNIEFRUITIÈRELINEDATASERVICESLIVANOVAL’ORÉALLOXAMLVMH-MOËT-HENNESSY-LOUISVUITTONM.CHARRAIREMACSFMALAKOFFHUMANISMAREMMAMAZARSMCKINSEY&COMPANYFRANCEMÉDIA-PARTICIPATIONSMEDIOBANCAMERCERMERIDIAMMICHELINMICROSOFTFRANCEMITSUBISHIFRANCES.A.SMOELIS&COMPANYMOODY’SFRANCENATIXISNESTLÉNEXITYODDOBHFOLIVERWYMANONDRAPARTNERSONEPOINTONETOPTIGESTIONORANOORTECGROUPOWKINPAIPARTNERSPERGAMONPOLYTANEPRODWAREPRUDENTIACAPITALPWCFRANCE&MAGHREBRAISERAMSAYGÉNÉRALEDESANTÉRANDSTADRATPRELXGROUPRENAULTREXELRICOLLASTEYRIERIVOLIERROCHEROLANDBERGERROTHSCHILD&CORTE174CORPORATEMEMBERSImpriméenFranceDépôtlégal:janvier2022ISSN:1771-6764Coverpicture©MathieuOdin.BOARDOFDIRECTORSCHAIRMANHenrideCastriesChairman,InstitutMontaigneMEMBERSOFTHEBOARDDavidAzémaPartner,PerellaWeinbergPartnersEmmanuelleBarbaraSeniorPartner,AugustDebouzyMargueriteBérardHeadofFrenchRetailBanking,BNPParibasJean-PierreClamadieuChairmanoftheBoardofDirectors,ENGIEPaulHermelinChairmanoftheBoardofDirectors,CapgeminiMarwanLahoudExecutiveChairmanandManagingDirector,ACECapitalPartnersNatalieRastoinPresident,Polytane;SeniorAdvisor,WPPRenéRicolPresident,RicolLasteyrieJean-DominiqueSenardChairmanoftheBoardofDirectors,GroupeRenaultArnaudVaissiéChairmanandCEO,InternationalSOSNatachaVallaEconomist;DeanofSciencesPo’sSchoolofManagementandInnovationFlorenceVerzelenExecutiveVicePresident,DassaultSystèmesPhilippeWahlChairmanandCEO,LeGroupeLaPosteHONORARYCHAIRMANClaudeBébéarFounderandHonoraryChairman,AXASAFRANSANOFISAPFRANCESCHNEIDERELECTRICSERVIERSGSSIAPARTNERSSIACISAINTHONORÉSIEMENSSIEMENSENERGYSIERCONSTRUCTEURSNCFSNCFRÉSEAUSODEXOSNEFSPRINKLRSPVIESTANSUEZSYSTEMISTALANTECNETPARTICIPATIONSSARLTEREGATHEBOSTONCONSULTINGGROUPTILDERTOFANETOTALENERGIESUBSFRANCEVEOLIAVERLINGUEVINCIVIVENDIWAKAMWAVESTONEWENDELWILLISTOWERSWATSONWORDAPPEALZURICHTHEREISNODESIREMORENATURALTHANTHEDESIREFORKNOWLEDGEInstitutMontaigne59,rueLaBoétie-75008ParisTél.+33(0)153890560www.institutmontaigne.org/enISSN1771-6764JANUARY2022Signupforourweeklynewsletteron:www.institutmontaigne.org/enFollowuson:DecarbonizingAviation:AllAboardIn2021,theairlineindustrymadeaformalcommitmenttotakeafurtherstepinitsdecarbonizationtrajectorybyannouncingacarbonneutralitytargetfor2050atthegloballevel,inlinewiththeParisAgreement.Thisgoalmustbetransposedintoanactionableroadmap,combiningasetofambitiousandproactivemeasures.AirtransportCO2emissionsmakeup2to3%oftotalworldemissions,and10%ofthetransportsector’semissions.Itisamajorcomponentofthemobilitysystemofourmodernsocieties,with4.5billionpassengersin2019andplaysakey-roleinthewayoursocietiesandeconomieswork.TheaeronauticsindustryisstrategicforbothFranceandEurope:asuccessfultransitionisessentialtoreaffirmitsstatusasaworld-classplayerintermsofcompetitivenessandtechnology,whileenablingFrenchandEuropeancitizenstocontinuetobenefitfromthemajorcontributionsofaviationtooursociety.Inthisreport,InstitutMontaignetakesuptheissueofdecarbonizationoftheaviationindustryandoffersadetailedaccountofalltheleversrequiredtoachievethecarbonneutralitytargetatthegloballevelin2050whilemeasuringthelevelofinvestmentsthiswillrequire.