能源转型中的区块链解决方案:验证据和政策建议(英)-欧盟委员会VIP专享VIP免费

Blockchain solutions
for the energy transition
Experimental evidence and
policy recommendations
Fulli G., Nai Fovino I.
Andreadou N., Geneiatakis D., Giuliani R.,
Joanny G., Kotsakis V., Kounelis I.,
Lucas A., Martin T., O'Neill G., Sachy M.,
Soupionis Y., Steri G.
2022
EUR 31008 EN
ABOUT JRC
This publication is a Science for Policy report by the Joint Research Centre (JRC), the European Commission’s
science and knowledge service. It aims to provide evidence-based scientic support to the European policymaking
process. The scientic output expressed does not imply a policy position of the European Commission. Neither
the European Commission nor any person acting on behalf of the Commission is responsible for the use that
might be made of this publication. For information on the methodology and quality underlying the data used
in this publication for which the source is neither Eurostat nor other Commission services, users should contact
the referenced source. The designations employed and the presentation of material on the maps do not imply
the expression of any opinion whatsoever on the part of the European Union concerning the legal status of any
country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.
Contact information: jrc-e3-secretariat@ec.europa.eu
EU Science Hub: https://joint-research-centre.ec.europa.eu/
JRC128651
EUR 31008 EN
PDF ISBN 978-92-76-49089-0 ISSN 1831-9424 doi:10.2760/62246
Luxembourg: Publications Oce of the European Union, 2022
© European Union, 2022
The reuse policy of the European Commission is implemented by the Commission Decision 2011/833/EU of
12 December 2011 on the reuse of Commission documents (OJ L 330, 14.12.2011, p. 39). Except otherwise
noted, the reuse of this document is authorised under the Creative Commons Attribution 4.0 International
(CC BY 4.0) licence (https://creativecommons.org/licenses/by/4.0/). This means that reuse is allowed provided
appropriate credit is given and any changes are indicated. For any use or reproduction of photos or other
material that is not owned by the EU, permission must be sought directly from the copyright holders.
All content © European Union, 2022
How to cite this report: Fulli G., Nai Fovino I. Andreadou N., Geneiatakis D., Giuliani R., Joanny G., Kotsakis V.,
Kounelis I., Lucas A., Martin T., O'Neill G., Sachy M., Soupionis Y., Steri G., Blockchain solutions for the energy
transition: experimental evidence and policy recommendations, EUR 31008 EN, Publications Oce of the
European Union, Luxembourg, 2022, ISBN 978-92-76-49089-0, doi:10.2760/62246, JRC128651.
TABLE OF CONTENTS
ACKNOWLEDGEMENTS 1
ABSTRACT 2
EXECUTIVE SUMMARY 3
1. INTRODUCTION 6
2. WHAT IS ENERGY DIGITALISATION AND WHY IS IT IMPORTANT? 7
2.1 Impact of digitalisation on energy demand 8
2.2 Impact of digitalisation on power supply 9
2.3 Impact of full digital interconnection of energy systems 9
3. BLOCKCHAIN TECHNOLOGIES, DIGITAL DECADE AND GREEN DEAL 10
4. HOW BLOCKCHAIN CAN SUPPORT ENERGY DIGITALISATION 14
5. ENERGY INDUSTRY BLOCKCHAIN PILOTING LANDSCAPE 15
6. MOST PROMISING USE-CASES AND EXPERIMENTAL RESULTS 19
6.1 Smart metering, billing and security 20
6.2 Fostering of energy communities 20
6.3 Certication of origin of energy production 22
6.4 Support the implementation of exibility services 23
6.5 Electro mobility scenarios 24
6.6 Use-Case deployment and results 25
7. CONCLUSIONS 28
7.1 Trends, issues and lessons learned 28
7.2 Policy and regulatory recommendations 30
7.3 Final remarks 33
REFERENCES 34
List of abbreviations 36
List of gures 37
I
BlockchainsolutionsfortheenergytransitionExperimentalevidenceandpolicyrecommendationsFulliG.,NaiFovinoI.AndreadouN.,GeneiatakisD.,GiulianiR.,JoannyG.,KotsakisV.,KounelisI.,LucasA.,MartinT.,O'NeillG.,SachyM.,SoupionisY.,SteriG.2022EUR31008ENABOUTJRCThispublicationisaScienceforPolicyreportbytheJointResearchCentre(JRC),theEuropeanCommission’sscienceandknowledgeservice.Itaimstoprovideevidence-basedscientificsupporttotheEuropeanpolicymakingprocess.ThescientificoutputexpresseddoesnotimplyapolicypositionoftheEuropeanCommission.NeithertheEuropeanCommissionnoranypersonactingonbehalfoftheCommissionisresponsiblefortheusethatmightbemadeofthispublication.ForinformationonthemethodologyandqualityunderlyingthedatausedinthispublicationforwhichthesourceisneitherEurostatnorotherCommissionservices,usersshouldcontactthereferencedsource.ThedesignationsemployedandthepresentationofmaterialonthemapsdonotimplytheexpressionofanyopinionwhatsoeveronthepartoftheEuropeanUnionconcerningthelegalstatusofanycountry,territory,cityorareaorofitsauthorities,orconcerningthedelimitationofitsfrontiersorboundaries.Contactinformation:jrc-e3-secretariat@ec.europa.euEUScienceHub:https://joint-research-centre.ec.europa.eu/JRC128651EUR31008ENPDFISBN978-92-76-49089-0ISSN1831-9424doi:10.2760/62246Luxembourg:PublicationsOfficeoftheEuropeanUnion,2022©EuropeanUnion,2022ThereusepolicyoftheEuropeanCommissionisimplementedbytheCommissionDecision2011/833/EUof12December2011onthereuseofCommissiondocuments(OJL330,14.12.2011,p.39).Exceptotherwisenoted,thereuseofthisdocumentisauthorisedundertheCreativeCommonsAttribution4.0International(CCBY4.0)licence(https://creativecommons.org/licenses/by/4.0/).Thismeansthatreuseisallowedprovidedappropriatecreditisgivenandanychangesareindicated.ForanyuseorreproductionofphotosorothermaterialthatisnotownedbytheEU,permissionmustbesoughtdirectlyfromthecopyrightholders.Allcontent©EuropeanUnion,2022Howtocitethisreport:FulliG.,NaiFovinoI.AndreadouN.,GeneiatakisD.,GiulianiR.,JoannyG.,KotsakisV.,KounelisI.,LucasA.,MartinT.,O'NeillG.,SachyM.,SoupionisY.,SteriG.,Blockchainsolutionsfortheenergytransition:experimentalevidenceandpolicyrecommendations,EUR31008EN,PublicationsOfficeoftheEuropeanUnion,Luxembourg,2022,ISBN978-92-76-49089-0,doi:10.2760/62246,JRC128651.TABLEOFCONTENTSACKNOWLEDGEMENTS1ABSTRACT2EXECUTIVESUMMARY31.INTRODUCTION62.WHATISENERGYDIGITALISATIONANDWHYISITIMPORTANT?72.1Impactofdigitalisationonenergydemand82.2Impactofdigitalisationonpowersupply92.3Impactoffulldigitalinterconnectionofenergysystems93.BLOCKCHAINTECHNOLOGIES,DIGITALDECADEANDGREENDEAL104.HOWBLOCKCHAINCANSUPPORTENERGYDIGITALISATION145.ENERGYINDUSTRYBLOCKCHAINPILOTINGLANDSCAPE156.MOSTPROMISINGUSE-CASESANDEXPERIMENTALRESULTS196.1Smartmetering,billingandsecurity206.2Fosteringofenergycommunities206.3Certificationoforiginofenergyproduction226.4Supporttheimplementationofflexibilityservices236.5Electromobilityscenarios246.6Use-Casedeploymentandresults257.CONCLUSIONS287.1Trends,issuesandlessonslearned287.2Policyandregulatoryrecommendations307.3Finalremarks33REFERENCES34Listofabbreviations36Listoffigures37I11ACKNOWLEDGEMENTSWewouldliketothankourDGENERcolleagues,ManuelSanchezJimenezandConstantinaFiliou,forinvitingustoundertakethisinterestingandchallengingproject.WealsowishtothankourECcolleaguesCharlesCleretdeLangavant(ENER),LukasRepa(CNECT),EnriqueArestiGutierrezandLuisMiguelVegaFidalgo(GROW),HelenaHernnas(ECFIN),AlexandruCiungu(ECFIN)andAsaLindenOhannesson(ECFIN)fortheircommentsandfeedbackprovidedatdifferentstagesofdraftingofthisdocument.OurgratitudegoesalsotoMarceloMaseraandJean-PierreNordvik(JRC)fortheircontinuoussupportthroughoutthewholeprojectexecution.Finally,thankstootherJRCcolleaguesCarineNieuweling,DimitriosThomasandAnnaMengolinifortheirassistance,commentsandinsights,andMassimilianoGusminiforhisgraphicdesignsupport.AuthorsEditingteam:IgorNaiFovino,GianlucaFulli,GillianO'NeillProjectteam:NikoletaAndreadou,DimitriosGeneiatakis,RaimondoGiuliani,GeraldineJoanny,VangelisKotsakis,IoannisKounelis,AlexandreLucas,TaniaMartin,MarcoSachy,YannisSoupionis,GarySteri,22ABSTRACTThisreportsummarisesthemainoutcomesofseveralexperimentalstudiescarriedoutbytheJointResearchCentreonblockchainsolutionsforenergysystems.ItpresentsconsiderationsandrecommendationsforEuropeanpolicymakersregardingblockchaindeploymentacrosstheenergyvaluechain.Theoutcomesofthisreportcomefromamulti-yearprojectfundedthroughanexplicitrequestoftheEuropeanParliamenttotheEuropeanCommission,withexperimentsconductedintheJointResearchCentresmartgridsandcybersecuritylaboratories.33Europe’sfuturewillbestronglyinfluencedbythesuccessfulachievementofthetwindigitalandgreentransitions.TheCovid-19pandemiccrisishasclearlymagnifiedtherolethatdigitalandenergytechnologieshaveonpeople,businessesandtheeconomy.Wesawhowheavilywerelyondigitalandenergysolutionstoenableustotelework,heatourhomes,manageourhospitals,andrunourbusinesses.MonitoringtheevolutionofdigitaltechnologiestoidentifythemostpromisinganddisruptiveonesisofprimaryimportanceintheefforttosupportandspeeduptheraceoftheEuropeanUniontowardsagreenerandmoresustainablefuture.AnemergingtechnologytosupportthetwindigitalandgreentransitionsAmongthemanydigitaltechnologiesinuseandindevelopment,blockchaintechnologies¹areprovingthattheyhavealottoofferinsupportingandstreamliningevidence-baseddecision-makinginthefieldsofclimateandsustainableenergy.Blockchaincanbeimaginedasanelectronicregisterdistributedoveramyriadofcomputersandnodes,whereeachnodecanupdateandstoreacopyoftheregister.Somereasonswhyblockchainisappealingforapplicationsintheclimateandenergysectorsare:•Disintermediation:Currentlymostoftheworlds’financial,energyandotheroperationsareenabledbyintermediariessuchasbanksandmarketoperators.Blockchainremovestheneedforsuchtrustedthirdpartiestooverseeandvalidateinformation/valueexchanges.•Transparencyandverifiability:transactionsre-cordedonablockchainareabletobecheckedindependently.Illicittransactionsaredetectedandexcludedfromtheblockchain,renderingitimpossibleforthepartiesinvolvedtoperformmaliciousoperations.•Immutabilityandsecurity:itisalmostimpos-sibletomodifyortamperwithinformationrecordedonablockchain(evenwhenmanynodesareattackedatthesametime).State-of-playofblockchainintheenergysectorIn2018,theEuropeanParliamentrequestedtheCommissiontoinvestigatetheimpactofblockchainontheenergysector.TheJointResearchCentre(theEuropeanCommission’sscienceandknowledgeservice)consequentlyconductedadesktopandexperimentalprojectanalysisofhowblockchaincanenable,andpotentiallyrevolutionise,theenergymarketandsystemoperations.Thestudyfoundthat:•thereisaclearinterestamongenergyanddigitalindustriestoexploitthepo-tentialofblockchain.Pilotsanduse-cas-esarealreadyflourishingallaroundEurope.In-housetestsontechnologicalperformanc-esandscalabilityconfirmedthepotentialfortheseindustriestouseblockchain.However,consumersarenotyetfullyengagedindigitalenergyprojectsandindependentaggregatorsstillfaceentrybarrierstoparticipateinelectricitymarkets.•Thesustainabilityandtheenergyfoot-printofblockchainisaheavilydebated,butnotalwayswell-analysed,issue.•Blockchainapplicationsforhigher-levelenergysystemfunctionalities(i.e.appli-cationsrunningonlayersnotdealingwithphysicalpowergridoperations)aremorenumerousandmature.•Blockchainapplicationslinkedtoenergysys-temoperations(i.e.directlyimpactingphys-icalpowergridsoperations,suchaspowerdispatching)areinsteadlessdeveloped.EXECUTIVESUMMARY¹Throughoutthisreport,weusethesub-setterm‘blockchain’insteadofthemorecomprehensiveterm‘DistributedLedgerTechnology’,DLT.Ablockchainisachainofdatablocksseriallyinterconnectedoneaftertheother,whereasDLTincludesotherdataarchitecturesbeyondthechainofblocks,suchasgraphsandothersolutions.WeusethissimplificationbecausemostoftheDLTapplications,alsointheenergysector,arebasedonblockchain.NOTES44Security,privacy&identity•Requirementstoensurethatblockchainappli-cationsmaintainadequatecybersecurityandelectricitysupplysecuritylevelsshouldbede-fined.•Mechanismstosafeguarddatasecurityandintegrityshouldbefurtherdeveloped.•Datashouldbeprotected‘bydesign’andsharedonlyasneededtoactivateconsentedblockchain-enabledservices.•Effectiveintegrationstrategiesbetweendataprotectionandcybersecurityinitiativesareneeded.•Theresilienceandsecurityofmoderntele-communicationnetworksandtheInternetshouldbeassessed,fromacybersecurityper-spective,fortheimpactofenergydigitalisa-tion.•Cybersecuritycertificationschemesshouldincreasinglycoverboththedomainofblock-chaincoreinfrastructureandthedomainofenduserapplicationsanddevices(e.g.Inter-netofThings).•Strongauthenticationschemesshouldbeem-beddedinthedesignofblockchainsolutions.Thisismainlyduetolackofadequateguar-anteesintermsofsafety,certification,andstandardisation.•Blockchainshowshighpotentialforuseasthedistributeddrivingbrainofanener-gycommunity.Blockchainappearssuitedtosupportthefinancialsettlementofenergytransactions,energytradinginlocalorwidermarkets,energymanagementandflexibilityservicesprovisioning,andseveralcertificationandbillingprocesses.•Adequateandinteroperablesmartmeter-inginfrastructureisindispensablefortheactivationofblockchainservicesforenergycommunitiesandpeer-to-peerenergytrading.RecommendationspresentedbyclusterDuringthestudy,itbecameclearthatseveralaspectsandinterfacesmuststillbeclarifiedtosuccessfullygoverntheintroductionofblockchain-basedelectricitydeliveryoptionsandservices.Tothisend,drawinguponthedesktopandexperimentalresearchconducted,thefollowingclustersofrecommendationstoaddressemergingtrendsandissueswereidentified:RecommendationsbyclustertowardsblockchaindeploymentforenergytransitionSource:EC55technologies,includingblockchain,intheenergysector.WhiletheDigitalTransformationisakeyenablertoreachtheGreenDealobjectives,aconsistentapproachintheregulationofseveralcross-cuttingsectors(energy,transport,financeetc.)isequallyneeded.Itremainstobeseentowhatextentblockchaincansupportorsubvertbusinessmodelsinthetransitioningelectricitysystemsandmarkets.Indeed,blockchainrepresentsonlyoneoftheenablingtechnologiesofpowersysteminnovation,tobecombinedwithotherdigitaltechnologies,suchasincludingArtificialIntelligence,bigdata,andInternetofThings,toachievetheclimate-neutralityandsustainabilitytargets.TheJointResearchCentresmartgridsandcybersecuritylaboratoriesstandreadytoscale-uptheirresearchactivitiesinsupportofpolicydecisionmakingandidentifyingcriticalissuesinthedeploymentofblockchainandotheremergingdigitalandenergytechnologies.Dataaccess,liabilityandmarkets•Robustenergydatahubs/platforms,withagreedrulesfordataaccessanduse,shouldbedesigned.•Marketrulesshouldbeadaptedtotakeintoaccounttheemergenceofnew‘automatedagent’actors.•Decentralisedresponsibilitiesofelectricitysupplyanddeliveryshouldbeclearlydefinedandallocated.Fairnessandacceptance•Fairnessshouldbeaguidingprincipleforde-signingmoredecentralisedenergymarketsnotdiscriminatinganyplayer,betheypeopleorbusinesses.•Consumersshouldbefurtherinvolvedandin-centivisedtoinvestinblockchainprojects.•Abalanceshouldbefoundbetweenconsumerempowermentandprotection.Scalabilityandsustainability•TheEUandnationallegislatorsshouldkeepdevelopingacomprehensivepro-innovationlegalframeworkfordigitalapplications.•Regulatoryexperimentationsshouldbefur-theradopted.•Analysesontheenergyfootprintoftheblock-chainsolutionsundertesting/deploymentshouldalwaysaccompanythestudiesonthescalabilityandperformancerequirements.Interoperabilityandstandards•TheEUandMemberStatesstakeholdersshouldcontinuetheirinvolvementintheworkofinternationalstandardorganisations.•Properstandardsandinteroperabilityofblockchain-enableddevices(includingmeters,sensors,andappliances)shouldbepromoted.NextstepsfortheEUtoexploitblockchainforenergyTheEUandnationallegislatorsareencouragedtokeepdevelopingacomprehensivepro-innovationlegalframeworkfordigitalapplications,alsobetterregulatingblockchain-enableddigitalassetsandsmartcontracts.TheECDigitalisationofEnergyActionPlanrepresentsapowerfultoolboxtoimplementactionsforawiderdeploymentofdigitalBlockchaintechnologycanenable,andpotentiallyrevolutionise,theenergymarket66Thisreportisasummaryofthein-depthtwoyearstudy.Itdoesnotpresentthedetailsofthescientificexperimentsandresultsobtained,forwhichtherelatedtechnicalreports[1][2][3][24]canbeconsulted.Instead,itoffersahigh-levelviewofthepossibleuseofblockchaintechnologiesintheenergysector,reflectingonpotentialadvantagesandpolicyneeds.Europe’sfuturewillbestronglyinfluencedbythesuccessfulachievementofthetwindigitalandgreentransitions.IdentifyingandembracingpotentialnewtechnologiescanhelpeveryEuropeancitizentobenefitfromdigitalopportunities.Inaddition,thesetransitionswillincreasetheEU’sresiliencebyreducingdependencyonthirdcountries,influencetheEU’sglobalpositioningontheglobalstage,andhelptheEUtoreachtargetedsustainabilitygoals.Blockchain(asubsetofdistributedledgertechnologies,seealsofootnote1intheExecutiveSummary)hasbeenidentifiedasbeingpotentiallydisruptivebuthighlyrelevantforboostingthedigitalisationofEuropeansociety.Ononehand,theycouldheraldaneweraofdigitalservices,but,ontheotherhand,theirrobustness,security,scalabilityandsustainabilityarenotyetassured.Blockchaintechnologyallowsentitiessuchaspeopleandorganisations,butalsomachinesandsoftware,toestablishsecureoperationalagreementsandtransactions.Thepossibilityofeliminatingtheuseofintermediariesbetweenproducersandconsumershasthepotentialtorevolutionisehowdigitalservicesarebuiltanddelivered.In2018,theIndustry,ResearchandEnergyCommittee(ITRE)oftheEuropeanParliamenttaskedtheEuropeanCommissiontoconductastudyonthepotentialadvantagesanddisadvantagesrelatedtotheuseofblockchaintechnologiesintheenergyfield.TheJointResearchCentre,theEuropeanCommission’sscienceandknowledgeservice,conductedthestudywhichincludedthedeploymentofblockchain-basedenergydistributiontest-bedsanduse-cases.Theresultsnotonlyconfirmedtheenormouspotentialofthistechnologyfortheenergysector,butalsomagnifiedtheneedforblockchainplatformstobegovernedbymorematureandstandardisedapproaches.Thiswouldenhancesafety,scalabilityandsecurityaspects,whicharekeyfactorswhendealingwithcriticalinfrastructures.1.INTRODUCTIONCHAPTER177DigitaltransformationiskeytoreachtheEU’sclimate-neutralitytargetsandisalreadyimpactingtheenergysystemdesignandoperation.TheEuropeanUnionrecentlyembracedambitiousoverarchingpoliticalinitiativesinthegreenanddigitalfields,whichhavestrongsynergies:•TheEuropeanGreenDealistheEU’splanforsustainablegrowth.ItaimstocontributetoachievingtheParisAgreementobjectiveofkeepingtheglobaltemperatureincreasetobelow2°C[4]comparedtopre-industriallev-els.•TheEUDigitalStrategyaddressescrucialdig-italisationissuesrelatingtoprivacy,security,safetyandethicalstandardsandpromotesthedeploymentofaninfrastructurefitforthefuture[5].Theseambitionsplansincludenewactstoreinforce/complementdigitalenergy-relevantlegislativeactions–suchastheEnergyUnion/CleanEnergyPackage,theGeneralDataProtectionregulation,theDirectiveonsecurityofnetworkandinformationsystems,andmostrecentlytheDigitalisationofEnergyActionPlan(seealsoFigure1)[4][5][22].Digitalisationintheenergysectorincludesthecreationanduseofcomputerisedinformationandprocessingofhugeamountsofdata,whichisgeneratedatallstagesoftheenergysupplychain.Therearegreatexpectationsforeverysegmentoftheenergyecosystem:households,prosumers,distribution,transmission,generationandretail,andisoftenstatedaslikelytoleadtoanenergysystemtransformation.Digitalisationoffersthepotentialtoincreaseenergyefficiencythroughtechnologiesthat2.WHATISENERGYDIGITALISATIONANDWHYISITIMPORTANT?CHAPTER2RecentEUlegislativeinitiativesonenergydigitalisation[6]Source:ECFIGURE188gatherandanalysedatabeforeusingittomakechangestothephysicalenvironment(eitherautomatically,orthroughhumanintervention).Itisfrequentlylinkedwith‘smart’energy,theInternetofThings(IoT)andBlockchaintechnology.Themaingoalofdigitalisationistoimproveefficiencythroughenablingbetter,cheaperandfastermonitoring,recoveryandmaintenanceoftheassetsandcomponentsthrough‘smarter’grids.Forinstance,smarthouseholdswillfacilitateownsolarenergyproduction,theInternetofThings(IoT)willintegratesmartappliancesforsavings,ancillarygridservices,andsmartchargingofElectricVehicles.Thespeedofdigitalisationinenergyisincreasing.Investmentindigitaltechnologiesbyenergycompanieshasgrownsharplyoverthelastyears.Forinstance,accordingtotheInternationalEnergyAgency[16],globalinvestmentindigitalelectricityinfrastructureandsoftwarehasrisenbyover20%annuallysince2014,reachingUSD47billionin2016(Figure2).Thisdigitalinvestmentin2016wasalmost40%higherthaninvestmentingas-firedpowergenerationworldwide(USD34billion)andalmostequaltototalinvestmentinIndia’selectricitysector(USD55billion).2.1ImpactofdigitalisationonenergydemandTheimpactofdigitalisationontransport,buildingsandindustryisanundeniablefact.TheavailabilityofconnectivityeverywhereandtheriseofartificialintelligencetechnologiesaremakingtheTransportsectorsmarter,withenormousadvantagesinrelationtosafetyandefficiency.Inroadtransport,connectivityisenablingnewmobilitysharingservices.Incombinationwithadvancementsinvehicleautomationandelectrification,digitalisationcouldresultinconsiderablebutuncertainenergyandemissionsimpacts.Inthelongterm,underabest-casescenarioofimprovedefficiencythroughautomationandride-sharing,andwithapositiveinterplaybetweentechnology,policyandbehaviour,roadtransportenergyusecouldpotentiallydropbyabouthalf[17].Conversely,ifefficiencyimprovementsdonotmaterialiseandreboundeffectsfromautomationresultinsubstantiallymoretravel,energyusecouldmorethandouble.Inbuildings,digitalisationcoulddecreaseenergyusebyabout10%byusingreal-timeCHAPTER2Investmentsindigitalelectricityinfrastructureandsoftware[16]Source:EC¹Digitalisation&Energy,InternationalEnergyAgency,2018,https://www.iea.org/reports/digitalisation-and-energy²Arbib,J.andSeba,T.(2017).RethinkingTransportation2020-2030.www.rethinkx.com/transportation.FIGURE2NOTES99datatoimproveoperationalefficiency.Smartenergysystemsandthermostatscananticipatethebehaviourofoccupants(basedonpriorexperience)andusereal-timeweatherforecaststobetterpredictheatingandcoolingneeds[18].Smartlightingcandelivermorethanjustlightwhenandwhereitisneeded;light-emittingdiodescanalsocontainsensorslinkedtoothersystems–forexample,helpingtotailorheatingandcoolingservices.However,itisimportanttobecarefulwithdigitalisation:theproliferationofnewservicesandcomforts(forexample,theuseofstandbypowerbyidledevices)couldoffsetpotentialsavings.Inindustry,manycompanieshavealonghistoryofusingdigitaltechnologiestoimprovesafetyandincreaseproduction.Furthercost-effectiveenergysavingscanberealisedthroughadvancedprocesscontrols,andbycouplingsmartsensorsanddataanalyticstopredictequipmentfailure[20].2.2ImpactofdigitalisationonpowersupplyEnergycompanieshavebeenusingdigitaltechnologiesforyears,helpingtoincreasetherecoveryoffossilresources,improveproductionprocesses,reducecostsandimprovesafety.Anoptimiseduseofdigitaltechnologiescoulddecreaseproductioncostsbetween10%and20%,whilerecoverableoilandgasresourcescouldbeboostedbyaround5%globally,withthegreatestgainsexpectedinshalegas[16].Inthecoalindustry,digitaltechnologiesarebeingusedonasideingeologicalmodelling,andontheotherinmoreclassical'industrialprocesses'suchasautomationandpredictivemaintenance.Inthepowersector,digitalisationhasthepotentialtosavearound$80billionperyear,orabout5%oftotalannualpowergenerationcosts[16],basedonthecurrentsystemdesignandenhancedglobaldeploymentofavailabledigitaltechnologiestoallpowerplantsandnetworkinfrastructure.Thiscanbeattainedbydroppingoperationandmaintenancecosts,improvingpowerplantandnetworkefficiency,reducingunplannedoutagesanddowntime,andextendingtheoperationallifetimeofassets[19].2.3ImpactoffulldigitalinterconnectionofenergysystemsThemostimportanttransformationalprospectivefordigitalisationisitsabilitytobreakdowntheboundariesbetweenenergysectors,increasingflexibilityandenablingintegrationacrossentiresystems.Attheheartofthistransformationistheelectricitysector,wheredigitalisationmakesthedistinctionbetweengenerationandconsumptionblurring,enablinganumberofinterrelatedopportunities.AsreportedbyInternationalEnergyAgency(IEA)[16],smartdemandresponsecouldprovide185GWofsystemflexibility,theequivalentofthecombinedelectricitysupplycapacityofAustraliaandItaly.StillaccordingtotheIEA,“thiscouldsave$270billionofinvestmentsinnewelectricityinfrastructure”.Theimpactispotentiallysohugethatsomestudies[16]estimatethepotentialinvolvementofonebillionhouseholdsand11billionsmartappliancesinanewparadigmofinterconnectedelectricitysystems.Digitalisationcanfacilitatetheintegrationofintermittingrenewablescontributingtooptimisationandsynchronisationofenergydemandwithweatherforecasts.IntheEuropeanUnionalone,increasedstorageanddigitallyenableddemandresponsecouldreducecurtailmentofsolarPVandwindpowerfrom7%to1.6%in2040,avoiding30milliontonnesofcarbondioxideemissionsin2040[16].Similarly,thesamedigitalandAItechnologies,ifappliedtothevehiclesmart-chargingdomaincouldprovidefurtherflexibilitytothegridwhilesavingbetween$100billionand$280billioninavoidedinvestmentinnewelectricityinfrastructurebetween2016and2040[16].Itisclearhow,inthiscontext,newtoolssuchasblockchaincouldhelptofacilitatepeer-to-peerelectricitytrade,butalsoaggregationandflexibilitymanagement.CHAPTER21010CHAPTER33.BLOCKCHAINTECHNOLOGIES,DIGITALDECADEANDGREENDEALInMarch2021,theEuropeanCommissionpresentedavisionandavenuesforEurope’sdigitaltransformationby2030[25].TheCommissionproposesaDigitalCompassfortheEU'sdigitaldecadethatevolvesaroundfourcardinalpoints:infrastructures,business,government,skills.Inthisvision,blockchaintechnologiesarementionedamongthosetechnologiespromisingtoboostandmoderniseEuropeaninfrastructures.TheEUrecognisesthepotentialofblockchainandsupportstheuseofblockchaintechnologyinfosteringsustainableeconomicdevelopment,addressingclimatechange,andsupportingtheEuropeanGreenNewDeal.TheEuropeanCommission'sstrategyconcerningblockchaintechnologieswantstosupporta'goldstandard'forblockchaintechnologyinEuropethatembracesEuropeanvaluesandidealsinitslegalandregulatoryframework.This'goldstandard'forblockchainincludes:•Environmentalsustainability:Blockchaintech-nologyshouldbesustainableandenergy-effi-cient.•Dataprotection:Blockchaintechnologyshouldbecompatiblewith,andwherepossiblesup-port,Europe’sstrongdataprotectionandpri-vacyregulations.AninternalviewofablockchainstructureinacryptocurrencyusecaseSource:ECFIGURE31111•DigitalIdentity:BlockchaintechnologyshouldrespectandenhanceEurope’sevolvingDigitalIdentityframework.Thisincludesbeingcom-patiblewithe-signatureregulations,suchaselectronicIdentification,AuthenticationandTrustServices(eIDAS),andsupportingasen-sible,pragmaticdecentralisedandself-sover-eignidentityframework.•Cybersecurity:Blockchaintechnologyshouldbeabletoprovidehighlevelsofcybersecurity.•Interoperability:Blockchainsshouldbeinter-operablebetweenthemselvesandwithlega-cysystemsintheoutsideworld.ApplicationofblockchaintechnologiesfollowingtheseprinciplescouldpavethewaytoadigitalrevolutioninmanykeysectorsoftheEuropeaneconomyandindustry.However,itisimportanttounderlinethatblockchainsarenotthesolutionforeveryproblem,andacarefulevaluationofusecasesapplicationsneedstobeperformed,toavoidwastingresourcesandsecurityrisks.Forthisreason,beforeenteringadiscussionaboutthepotentialuseofblockchainintheenergysector,itisimportanttorecallthebasicprinciples,anddispelrecurrentmythsandmisunderstandings.Blockchaintechnologyallowspeopleandorganisations,whomaynotknowortrusteachother,tocollectivelyagreeonandpermanentlyrecordinformationwithoutathird-partyauthority.Bycreatingtrustindatainwaysthatwerenotpossiblebefore,blockchainhasthepotentialtorevolutionisehowweshareinformationandcarryouttransactionsonline.Blockchainsystemsarespecificdatastructuresthatrecordandsynchronisedatainchainsofblockswiththesupportofcryptographictechniquesenablingdataconsistency,integrityandimmutability.Figure3illustratesanabstractionofablockchaindatastructure.End-usertransactionsaresubmittedtothenetworkandtransmittedtoalltheparticipants(nodes)overapeer-to-peernetwork.Thetransactions,oncevalidatedbyaparticulartypeofnodes,arestoredinablockanddistributedtoallnetworkentities.Eachtransactionisdigitallysigned³bytheend-user’sprivatecryptographickey⁴sonootherentitycanclaimtobethetransaction’soriginator.Infact,alltheparticipantsinablockchainnetworkindependentlyholdtheirowncopyofthedata,andcanthusindependentlycalculatethecurrentknown‘state’ofthesystem.Asaresult,thereisnosinglepointoffailure(astheledgerisstoredinseveralnodes),incontrasttocentraliseddata(storage)relatedservices.Duetoasynchronisationmechanismthatthenetworksupportsincaseofaparticipant’sfailure,thelateststateofthesystemcanberesumed.So,alltheparticipants,atanytime,shareacommongroundtruth.Anothercharacteristicoftheblockchainsystemsisthekindofaccessonehasforreading,sendingandvalidatingtransactions(seeFigure4).Ifanyonecanreadandaccesstheblockchain,thisiscategorisedaspublic,meaningthatanyonecanfetchthewholeblockchainandreaditscontents.Incontrasttothepublicblockchain,onlyauthorisedentitiescanhaveaccessaprivateblockchain.Similarly,dependingonwhocansendandvalidatetransactions,ablockchainiscalledpermission-lessorpermissioned.Whenmakingthedecisiontoadoptablockchainsolutionforasystem,severalparametersneedtobetakenintoconsideration.Dependingonthedevelopedsystemneeds,differentchoicescanbemade.Themostimportantcharacteristicsthatinfluencethechoicearebrieflydiscussedbelow.ConsensusMechanismsandEnergyConsumptionProbablythemostimportantcharacteristicinablockchain,theconsensusmechanismisthewaythesystemagreesonwhichtransactionsshouldbeconsideredvalidandaddedtotheledger.Consensusmechanismsareusedtoensurehonestbehaviourbythepartiesinvolved.BitcoinusestheProofofWork(PoW),CHAPTER3³Adigitalsignatureisamathematicalschemeforverifyingtheauthenticityofdigitalmessagesordocuments[8].⁴Public-keycryptographyisacryptographicsystemthatusespairsofkeys:publickeyswhichmaybedisseminatedwidely,andprivatekeyswhichareknownonlytotheowner.Effectivesecurityonlyrequireskeepingtheprivatekeyprivate;thepublickeycanbeopenlydistributedwithoutcompromisingsecurity[9].NOTES1212CHAPTER3whichbasicallyconsistsinassigningadifficultcomputationaltasktothenetworknodestohavethetransactionproposedbyanodestoredonablockoftheblockchain.ProofofworkinBitcoinisalsothebasisoftheminingprocess.Nowadaysmining,especiallyincryptocurrenciesthatarewidelyused,isincreasinglyconsideredasanunsustainableenergy-intensiveprocess.Asaresult,thereisatendencytoswitchtoothermoreenergyfriendlyconsensusmechanisms,suchasProofofStake(PoS).Ethereum,thesecondmostcapitalisedblockchainandthecurrentlymostdeployedblockchaintechnologyforenergyapplications,istransitioningfromPoWtoPoS⁵.TheelectricityconsumptionassociatedwithPoWcryptomininghasincreasedthroughout2021andshowsnosignofdecreasing.AlongwithEthereum,otherblockchainnetworksplantoswitchto-oralreadyfeature-ProofofStakeorotherlessenergyintensiveconsensusmechanisms.ThereareseveralotherconsensusalgorithmsbesidesPoWandPoS,suchasproofofactivity,proofofburn,proofofcapacityetc.Thisreportdoesnotaimtoprovideafulloverviewofalltheexistingconsensusmechanisms.However,itisimportanttounderlineherethat,contrarytocommonbelief,lessenergy-intensiveconsensusmechanismsdoexistandareverymature[23].SmartContractsOneofthemostintriguingfeaturesthathavebeenaddedinnewgenerationblockchainsisthenotionofsmartcontracts.Asmartcontractisacomputerprogramthatiscapableofexecuting/enforcingapredefinedaction/agreementusingablockchain,whenandifspecificconditionsaremet.ItsmaingoalistoenabletwoormorepartiestoperformBlockchainattributesforthedifferenttypesofaccessSource:ECFIGURE4⁵TheelectricityconsumptionassociatedwithPoWcryptomininghasincreasedthroughout2021andshowsnosignofdecreasing.AlongwithEthereum,otherblockchainnetworksplantoswitchto-oralreadyfeature-ProofofStakeorotherlessenergyintensiveconsensusmechanisms.NOTES1313atrustedtransactionwithouttheneedforintermediaries.Moreover,smartcontractsinheritthecharacteristicsofblockchainsandthushavenodowntime,censorshiporthird-partyinterference.PerformanceDifferentuse-casesmightrequiredifferentlevelsofperformanceinordertobeeffectiveanddelivertheirservice.Henceitisimportant,whenconsideringtheuseofblockchaintechnologies,toevaluateiftheirperformanceisadequatetowhatisneededbytheuse-case.Theperformancesofblockchainsaretypicallyinfluencedbyafewkeyparameters,suchasthesizeoftheblock(whichdetermineshowmanytransactionscanbevalidatedinoneshot)andtheexecutiontime(thetimelapsebetweenthemomentatransactionissentfromtheclientuntilitisinsertedintheblockchain).Differentblockchainsystemshaveverydifferentapproachestovalidationandblocksizedefinition.Asaresult,executiontimesmayvaryfromafewsecondstoseveralminutes.Followingthisbasicoverviewofblockchaintechnologies,inthefollowingsectiondescribeshowblockchaintechnologiescouldspeed-upthedigitalisationoftheenergysector.CHAPTER31414CHAPTER44.HOWBLOCKCHAINCANSUPPORTENERGYDIGITALISATIONAlthoughblockchainseemstobegeneratingthemostbuzzinfinancialservices,thenetworkedinfrastructureoftheenergyindustrymakesitparticularlysuitedforblockchaintechnologyapplications.AndwiththeriseofInternetofThings,theentireenergyindustrymaysoonfinditsoperationstransformedintoavastglobalnetworkofconnecteddevicesallfeedingdigitaldataintoblockchain-enabledplatformsthatcancaptureandshareinformationinrealtime.Blockchaincouldplayaninnovativeroleincontributingtotheimplementationoftheseaspects.Forinstance,blockchainhasfeaturesthatpromisetoinnovatetheenergysectorthroughthedeploymentofnewgridmanagementandbusinessmodelsleveragingondecentralisation,transparency,integrityanddisintermediation.TheexpectedresultisthecreationofabetterperforminggridmanagementinfrastructureandnewbusinessprocessingapplicationsattheserviceofEuropeanindustryplayersandconsumersoperatingacrosscentralisedanddecentralisedgridframeworks.Moreover,blockchainappliedtotheenergysectorhasthetransformativepotentialtoreducebothoperationalandtransactioncostswhilesimultaneouslyincreasingtrustlevelsamongstakeholdersbyofferingasinglesourceoftruth.Forinstance,thereisongoingexperimentationtotestBlockchainsforimprovingtheproceduresfornetworkmanagementandsecurityrelatedtoactorssuchasTransmissionSystemOperators(TSO)⁶,DistributionSystemOperators(DSO)⁷inchargeofelectricalenergyproductionanddistributionandinthecontextofDistributedEnergyResources(DERs)⁸.Nevertheless,acoordinatedapproachtomanagesecurityriskisnecessaryinordertobesurethatnewgridmanagementandbusinessapplicationsarebuiltandmarketedfollowingsecurity-by-designprinciplesandrelatedincentivestructures.Blockchain,whichinvolvesdecentralisedtransactionverification,willpotentiallyempowerindividualcustomerstotradepowerandmakepaymentsinaseamlessway.Digitalisationcanhelpwithimprovednetworkandcongestionmanagement,assistingwiththerenewablegenerationintermittencyproblem,allowingmoreeffectivenetworkmonitoringandmoreefficientnetworkoperation.Italsoprovidesdigitalplatformsfordemandresponse,andPeer-to-Peer(P2P)energyandcarboncredittrading[21].⁶TSOsareentitiesentrustedwithtransportingenergyintheformofnaturalgasorelectricalpoweronanationalorregionallevel,usingfixedinfrastructure.SeeChapterIIIoftheElectricityandGasDirectives(2009):https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32009L0073&from=EN⁷DSOslinkbulkelectricityproductionandtransmissiontoendconsumers-https://ec.europa.eu/jrc/en/publication/eur-scientific-and-technical-research-reports/distribution-system-operators-observatory-2018⁸Conventionalpowerstations,suchascoal-fired,gas,andnuclearpoweredplants,aswellashydroelectricdamsandlarge-scalesolarpowerstations,arecentralisedandoftenrequireelectricenergytobetransmittedoverlongdistances.Bycontrast,DERsystemsaredecentralised,modular,andmoreflexibletechnologies,thatarelocatedclosetotheloadtheyserve,albeithavingcapacitiesofonly10megawatts(MW)orless.NOTES15155.ENERGYINDUSTRYBLOCKCHAINPILOTINGLANDSCAPETounderstandthemagnitudeoftheblockchainpotentialintheenergysector,theJointResearchCentreoftheEuropeanCommissionperformedalandscapeanalysisoftherelatedindustrialinitiativesintheenergysector.Thisanalysisclearlyshowedthatindustrialactorsintheenergydomainareseriouslyinvestinginblockchaintechnologypilotsandtests.Theprimarygoaloftheanalysiswastodefineataxonomyofusecasesinthisfield.Fourmainclassesofuse-casesonBlockchainsfortheenergysectorhavebeenidentifiedandaredescribedinthenextsubsections.Thetaxonomycomprisesvarioustypesofuse-casestotalling117initiatives(seeFigure5)concentratedmainlyintheEuropeanUnion(65),theUSA(14),andSwitzerland(9),withtherestscatteredaroundtheworld.Morethanhalfofthem,i.e.67aredeployedatleastattheproof-of-conceptlevel.Inparticular,thereare16researchinitiativesandmulti-purposeblockchainplatformsfortheenergysector.Further,thereare17companiesoperatinginthefieldofblockchainwholesaleenergytradingwhile11operateinthesectorofblockchainwholesaleenergysupplyandsomedoboth.6companiesofferflexibilityservicesand4offerimbalancesettlementproducts.Moreover,13companiesareactiveintheblockchain-basedsmartmeteringdomainand9offerInternetofThingsandsmartdevicessolutions.However,themajorityofthecompaniesandinitiatives(40ofthem,athirdofthetotalworldwide)arefocusedonP2Penergysupplyandtrading.Theiraimistotestandmarketnewgridmanagementandbusinessapplicationsthatblockchainpromisestooffer.Forinstance,11companiesofferblockchainbasedbillingservices.Asanotherexample,businessmodelsandinvestmentvehiclessuchasInitialCoinOfferings,theissuanceofdigitaltokensredeemablebyinvestorsinnewcrowdfundedventures,arefindingapplicationsalsointheenergysector.Thereare25initiativesinthisdomain.Finally,therearenichemarketssuchasblockchainfore-Mobility(7companies)andforassetmanagementwithinenvironmentalattributesmarkets.Inparticular,thereare5companiesworkingwithinthecertificationofownershipandtheproofoforiginmarketsegments,while10offerblockchainbasedsolutionstomanagegreencertificatesandcarboncredits.Intermsoftheplatformsused(asFigure7.illustrates),andaccordingtotheavailabledata,almosthalfoftheinitiativesaretestedandoperatedontheEthereumblockchain(50),followedbyHyperledger(8),Tendermint(4),Tolabla,(3),MultichainandPylonCoin(2),nativeblockchains(4)andmanyoptingforoneEnergyblockchainsinitiativesdistributionpercountrySource:ECFIGURE5CHAPTER51616CHAPTER5ofthemyriadofblockchainsolutionspopulatingtheindustry.Thisbird’seyeviewonthestateoftheblockchainindustryintheenergysectorprovidesapreliminarysetofobservationstotakeintoaccountwhilereadingthefollowingsubsections.Althoughthereisnotaone-size-fits-allblockchainavailabletosupporttherequirementsofdifferentuse-cases,thereisnothoweveranydirectcorrelationbetweenthetypesofuse-casesandtheplatformselectedtodeploythembydifferentinitiativesandsectors.Inparticular,thereisnoevidencesuggestingthatacertaintypeofblockchainplatformismoreorlesstechnicallyadequateandperforminginordertoservetheneedsofaparticularuse-caseorsetsofuse-casesinsteadofanother.Nevertheless,Ethereum[7]istheplatformselectedbymorethanhalfoftheuse-cases.ThiscanbeexplainedbythefactthatEthereumisthesecondmostacknowledgedcryptocurrencybymarketcapitalisationafterBitcoin[8].Moreover,Hyperledger[9]followsEthereumarguablybecauseitcancountonIBMandthentheLinuxFoundationtogainwidespreadcredibilityandusageasanenterpriseorientedblockchainecosystem.Fortherestoftheplatformslistedabove,therationaleforselectionmostprobablydependsonsubjectivefactorsandnon-linearindustrialdynamicsinfluencingdecision-makingprocessesbyuse-caseproponents.Indeed,theglobalblockchainindustrydoesnotcurrentlyofferreferencestandardssupportinganobjectiveselectionofablockchainsolutioninsteadofanotherinthatthereisnotadominantblockchaindesignintheindustry(seesection7formoredetailsonthistopic).Intheanalysisconducted,itemergedhowblockchainisseenbyindustryasapotentialmeanstoenhanceTSOsandDSOsnetworkmanagementcapabilitiesbyautomaticallymaintainingverifiabledataonnetworkassetsthatcanautonomouslytransactwitheachother.Inthiscontext,blockchaincouldhelpdis-intermediatetheindustrybytransformingTransmissionSystemOperator(TSO)andDistributionSystemOperator(DSO)rolesoftop-downenergyproviders–andpossiblesinglepointsoftrustandfailureintheenergysupplychain–intopeersoperatinginahorizontalnetworkwherealsoproducersfromDistributedEnergyResources(DER)couldfreelyinteractwithbothindustryandretailplayers.Inturn,blockchaincouldbedeployedtosolvenewproblemscreatedbytheinteractionamongtraditionalenergysuppliersandproducersfromdistributedandrenewableenergysources.Theactorsintheindustryareconductingresearchonblockchainpropertiestoimproveconfidentiality,integrity,andavailabilityinthegridmanagementservicesdelivery.Oneofthemaindomainsofgridmanagement,wheretestsarebeingcarried-out,issmartmetering,i.e.theincreaseofsoftwareBlockchainprojecttypesinenergysectorSource:ECFIGURE61717implementationstogiveintelligencetoelectricitymeters.blockchainisoneoftheimplementationsthatmanyindustryplayersareexploringsinceitcouldofferdataauthenticity,integrityandasynchronoustimestampingtooptimisegridoperations.Anothergridmanagementnichewhereinblockchainhasbeenprototypediselectricmobility,ore-Mobility.AlongsideArtificialIntelligence,blockchainsmartcontractsimplementationshavethepotentialtorevolutionisetheautomotiveindustrytogetherwiththebusinessenvironmentsofmanyotherconnectedindustries,e.g.publicadministrationandinsurance.ExpandingthelandscapeanalysistakingintoconsiderationthenexusbetweenInternetofThingsandblockchain,thisprojecthighlightedanotherpotentiallydisruptiveaspect:intheenergydomain,blockchainmighthave,forexample,thepotentialtoreformulatetherelationshipsamonghumansandmachineswiththemediationofautomatedtransactionsofadifferentkind:energetic(energyavailability),economic(energypricing),environmental(weatherforecasting),etc.Onacompletelydifferentlevel,manyenergyplayersareexploringblockchainattheleveloffinancialandbusinessapplications.Inthisdomain,manyofthebusinesscases,typicaloftheFinTechworld,aretranslatedinapplicationsforinvestmentandvaluetransferbackedbyelectricity.Asmeteringisacentralcomponentingridmanagement,thesameappliestobillingasitcanbethoughtofasitsbusinesscounterpart.Infact,cryptocurrencytransferisapropertyofblockchainthatisleveragedbybothutilitiesandproponentsofcustomer-centredbusinessmodelsintheenergysector,bothinadvancedeconomiesandlessdevelopedcountries.Asasubsetofbilling,afewactorsinthepowersystemindustryareexploringthepotentialofblockchaintoaddressthewidespreadproblemofimbalancesettlement.Itcouldindeedhelptomanagetrustandenergyvalueflowintime,byaddressinginefficientandsuboptimalapproachestoreservedimensioning,whileincreasingconsumerprotection,andoptimiseconsumptionandcashflowcapabilitiesofallstakeholdersinvolved.Theseconsiderationscanapplyalsotowholesaleenergytradingpractices.Inthiscase,blockchaintechnologiescandisrupttheindustrybyofferinghigherlevelofautomationanddisintermediationinanuntrustedenvironmentwheretheboundarybetweenwholesalersandretailerwouldblur.Proponentsofblockchaininthesetypesofusecasesadvocateforthedeploymentofblockchainforthereductionofbothtransactionandoperationalcostsinthetransferofenergyandeconomicvalueintheindustry.Moreover,accordingtothevastmajorityofinitiativesanalysed,thedivisionamongBlockchainplatformsusedindifferentenergyprojectsSource:ECFIGURE7CHAPTER51818CHAPTER5wholesalersandretailers,producersandconsumerswouldfurtherdecrease.Indeed,thecaseforblockchainappliedtothephysicalexchangeofelectricityandmoneypeer-to-peerisconsideredasthemostchallenging,whilepotentiallymostdisruptivefortheindustry.Thereareagoodnumberofinitiativesthatprovideblockchaininvestmentvehicles,suchasInitialCoinOfferings,toexperimentespeciallyintheDistributedEnergyResources(DER)andrenewablesdomains.Finally,thelandscapeanalysisexaminedproposalsforblockchainapplicationsforassetmanagement(ofe.g.renewablegeneration,fossilbasedplantsandotherclimate-friendlyor-alteringassets).Inthesecases,theblockchaininherentproperties,suchasdistributedarchitecture,time-stamped,cryptographicallysecuredandtamper-prooftransactionhistory,canoffertoolsforassetcertification,proofoforiginofenergyproductionandgreencertificatesandcarboncreditstrading.Toourknowledge,thereisnotastandardisedandsolidframeworkforthedeploymentofblockchainatthegridmanagementandbusinessapplicationlevels.Securitypropertiesdonotyetoffermissioncriticallevelsofperformance,especiallytotakeproductsfromtheprototypingstagetorealworldinproductionenvironmentsatamassscale.However,asitemergedfromthelandscapeanalysisandsurveydata,moreresearchanddevelopmentisunderway.Nevertheless,thesurveyconductedamongenergystakeholdersconfirmedtheinterestinblockchainapplicationwithintheenergysector,inparticulartosupportusescasesin(a)localenergycommunities(microgrids)andP2Pmarketplaces(b)decentralisedexchange,(c)retailelectricitymarkets,(d)flexibilityservicesandproofoforiginofsupplyordemand.19196.MOSTPROMISINGUSE-CASESANDEXPERIMENTALRESULTSOnthebasisofthelandscapeanalysispresentedabove,andtakingintoconsiderationthetechnicalconstraintsofblockchaintechnologies,itwaspossibletodeterminethemostrelevantdomainsofapplicationofblockchainintheenergysectorfromapolicymakingperspective.Theseuse-cases,weredeployedandvalidatedinthelaboratoriesoftheJointResearchCentreoftheEuropeanCommission.Theemergingconsiderationsandevaluationsarereportedinthefollowingpartofthissection.Inparticular,fivedifferentusecaseswereselectedforimplementation,testingandanalysis:•Smartmetering,billingandsecurityFosteringofenergycommunities•Certificationoforiginofenergyproduction•Supporttheimplementationofflexibilityservices•ElectromobilityscenariosIngeneral,theseusecasesarethemosttechnicallymeaningfulforappropriatelytestingandexploitingthepotentialofblockchainintheirrespectivecontext.Inaddition,someofthemrepresenteitherthevastmajorityofcasesinthelandscapeanalysis(Energycommunities,with40projects),orcancountonanappropriateregulatoryframeworkforcompliance(Flexibilityservices),ortheywereexaminedinordertoprovidescientificevidencetofurtherinformpolicymaking(Certificationoforigin,Smartmetering,Electromobility).Thislargespectrumofuse-casescouldbeintegratedintoafuturesinglesystembytheuseofblockchainfamilyoftechnologiesasshowninFigure7.Inordertodemonstratetheconcept,weoptedtousethesameblockchaintechnology,i.e.HyperledgerFabric,forallofourexperiments.BlockchainintegrationofsmartenergyusecasesSource:ECFIGURE8CHAPTER62020CHAPTER6Below,theselectionconsiderationsforthefiveusecasesandthesocietalchallengesthattheyaddressaredescribed.Then,thetechnicalimplementationdetailsoftheloadflexibilityservices,thee-mobilitygridintegrationandtheenergycommunitiesuse-casesarepresented.TheseusecaseswereimplementedinJRClaboratoriesinordertoprovetheirlogicalandtechnicalfeasibility.Basedontheresultsofthevarioustestsperformedinallimplementations,howablockchainimplementationaffectstheselecteduse-casesisevaluated.Thedifficultiesfacedareexplainedalongwithpotentialissuestotakeintoaccountforfuturedevelopments.Moreover,asavitalpartofsuchusecasesissecurity,possibleattacksandmeasurestodefendagainstthemareanalysedindetail.Finally,togetherwithsmartmetering,thecertificationoforiginuse-casewerenottestedinisolation,becausetheyshouldbothbeseenasconditionsofpossibilityofthethreetestedcasesonflexibilityservices,electromobilityandenergycommunities.Eachoftheseuse-casesarepresentedbelow.6.1Smartmetering,billingandsecurityOneofthemostcriticalenablercomponentsofasmartgridarethesmartmeters,whichareelectronicdevicesthatregisterreal-timeconsumptionandgenerationofelectricity,inahouseholdoranindustry,andsendthedatatotheelectricityretailerformonitoringandbilling.Smartmetersplayakeyroleinthesmartgrid,sincetheycanprovideusefulinformationabouttheconsumptionandtheconsumerprofile,whichcanleadtoloadpredictionandloadpeakreduction.Smartmeteringisconsideredacoreserviceforanyuse-casetobesupportedbyblockchaintechnologies,assmartmetersdatawouldbedistributedtoalltheinvolvedparties.Whenintegratedwithmeteringinfrastructure,blockchainsprovidetheopportunityforautomatedbillinginenergyservicesforconsumersanddistributedgenerators,whichcomeswiththepotentialofadministrativecostreduction.Blockchainofferstraceabilityofenergyproducedandconsumedateachendpointinformingconsumersabouttheoriginsandcostoftheirenergysupply,makingenergychargesmoretransparent[15].Blockchain,bydesign,providesdataauthenticity,integrityandimmutabilitysatisfyingthecorrespondingrequirements.However,users’privacyisplatform-independentconsideringthatthesmartmeterdatafrequencycollectioncouldbeadapted.Oneofthemostchallengingaspectsforsmartmeteringiscommunicationtechnologiesinteroperabilitysupportedbysmartmeters.EnforcingInternetProtocol(IP)overtheunderlyingcommunicationsystemofsmartmeterscouldfacilitatetheirblockchainintegration.Consideringthepolicy-relatedrequirementsblockchainsystemscansupporttheprovisionofbothnon-validatednearrealtimeandhistoricalconsumptiontoconsumersandfulfilthiswaythecorrespondingrequirement.Finally,asfarasthedataportabilityisconcernedthoughdefinitionsoftheproperdatastructuresaretechnologyneutral,blockchaincansupportdataintegrityandauthenticityonthetransferreddata,providinganeasywaytoproviderstovalidateconsumers’data.6.2FosteringofenergycommunitiesToday’senergydistributionnetworkhastraditionallybeenconsideredasa‘naturalmonopoly’becausetheinfrastructurerequiredtocarryelectricenergytothefinaluserissuchalargeandcomplexinvestmentthatisnotconsideredeconomicaltoreplicate.Thesameusedtoapplytoenergyproduction.Fewlargepowerplantswereoperationalandthetechnologyandinvestmentneededtooperatesuchinfrastructurewasoff-limitsformostcitizensandcompanies.Asaresult,theelectricbusinesswasinitiallyconceivedasaverticallyintegratedsystem.AsingleoperatorwouldtakecareofalltheaspectsoftheenergyvaluechainandtheconsumerwouldhavetocomplywiththerulessetforwardbythemonopolisticoperatorandlateronbythelegalregulationsputinplacebyMemberStatesandlocaladministrations.Marketliberalisationhoweverhasstartedtode-coupletheproductionofenergyfromitstransport,transformationanddelivery.TheIoTrevolutionhasmadenetworkconnectedenergymeteringeconomicalfortheaveragehouseholdandsmallbusinesstypes.Anotherimportantfactoristheavailabilityofsmall-scaleenergygenerators(photovoltaic,windturbines,renewablethermal,co-generationetc.)whichoperateacrossEurope.Thefinaland2121mostrecentenablingfactoristheavailabilityofmorepowerfulandaffordableenergystorage.Lithium-IonandLithium-Polymerbatterieshaverecentlybecomeverypopularduetotheirdecreasingcostandincreasingcapabilitiesintermsofenergydensity,powerdensity,durabilityandreliability.Moreover,therecentboomofelectricpoweredvehicleshasbroughtasaby-producttheavailabilityofamplestoragecapacitytothehousehold.Thistechnologicaladvancehasledtothecreationofanewactorintheenergydomain,theso-called‘prosumer’.Theprosumerconceptcombinesthetraditionalroleofenergyconsumerwiththatofenergyproducer,frequentlyendowedwithstoragecapability.Inorderfortheprosumertoreapthebenefitsofindependence,flexibilityandeconomicalgainspromisedbythecurrenttechnologicalrevolution,aparadigmshiftisneededbothtechnicallyandmostimportantlyfromthepolicyandregulatoryviewpoints.Tothisend,energycommunitieshavebeenproposedinseveralresearchandinnovationprojects(seee.g.[10]),suggestingalternativeapproachesforenergyexchangeandtrading.Anenergycommunity(seealsoFigure9)canbedefinedasagroupofusers(consumers,producersand/orprosumers)whoagreetolocallyexchangeenergyviaphysicalordigitalinfrastructures.Thoseuserscanalsodirectlyoperate(portionsof)suchcyber-physicalinfrastructure.Dependingontheneeds,differentarchitecturescanbedeployed:•peer-to-peerenergyexchange,•communitysharedbalancestorage,•peer-to-gridparadigms.Afundamentaldifferencebetweenanindependentpeer-to-peercommunityandapeer-togridconfigurationisthat,intheformer,thereisnoinstitutionalisedthirdpartymandatedtoguaranteeproperlevelsofreliabilityandqualityofsupply(e.g.viasynchronisationservices,voltage/frequencycontrol,loadbalancing,etc.).Thesharedstorageconceptisaparticularcaseofpeer-to-peerwhereoneormorestorageunitsactaspeersandcontributetodispatchingandtradingenergywithinthecommunitymembers.GenericstructureofanenergycommunitySource:ECFIGURE9CHAPTER62222CHAPTER6Threesocietalchallenges,emerginginthecontextofenergycommunities,aredescribedbelow:•Technologyacceptance:theuserscouldper-ceivetheICTsystemsastoocomplextouse.•Trustintheenergycommunity:theuserscouldhavealackoftrustintheenergycom-munityinfrastructureandactorsingeneral.•Costofinfrastructure:theupfronttechnolog-icalinvestmentneededtoparticipateinthecommunity(in-houseelectricitygeneration,ITinfrastructurefornodecontroller,smartme-ters,andenergystoragetechnology)couldbeconsideredtoohigh,especiallywhencom-paredtobenefitswhichwillmaterialiseatfu-turetimes.Theaboveissuesrepresententrybarriersformanypeople,whomightstillprefertorelyontraditionalenergysupplyschemes.Blockchaintechnologiescouldpartiallyaddressthosechallenges,ononesidesimplifyingtheICTinfrastructureneededtoautomatesuchasystem,and,ontheotherside,enhancingtheleveloftrust,thankstotheirintrinsicdisintermediationandsecurityfeatures.Thereisnonethelesstheneedtopromoteandhighlighttheactualbenefitsofbuildinginnovativetechnologiesintheenergysector-especiallyintheenergycommunitycase-,inordertoincreasetrust,anditisfundamentalthatthewholesystemisuser-friendly.Aremarkableadvantageofblockchain(thankstoitstokenisationandsmartcontractfeatures),isthepossibilitytoextendtoamuchlargeruserbasisthepossibilitytoinvestinandtraderenewableenergy.Severalprojectsshowhowblockchaincanbeusedasamethodto‘tokenise’renewableenergyassets,servicesandproducts,thuscreatingnewmarketsorbusinessmodelsbasedonco-ownershipandsharing.Byallowingcitizenstotradetheelectricityfreelyandmakerevenuesfromit,blockchaincanbeakeyenablertopeer-to-peertrading,and,assuch,drivescitizens’interestininvestinginrenewableenergyproductionassets.Asfarasthecostofinfrastructureisconcerned,sinceblockchainisatotallydistributedsystem,partofthecomputationalpowerinvestmentwillneedtobesharedamongtheenergysystemstakeholders(includingenergyoperatorsandfinalusers).Suchupfrontdesignandinvestmenteffortsmightbecompensatedbyloweroperationalcosts.Inanycase,thecostofinfrastructurereduced,deferredand/orcoveredbyblockchainshallbesubjectedtocarefulcost-benefitanalysis.Moregenerally,inordertoevaluatetheimpactofsuchparadigmshiftfortheelectricitysystem,newassessmentmethodologiesshallbedevelopedtoproperlycapturetheinteractionsbetweenthedifferentactorsandtechnologiestovalueandallocatethecostsandbenefits.Afairallocationof(predominantly)shortertermcostsand(generally)longertermbenefitsamongthedifferentplayerscouldhelpreduceuncertaintiesandincentiviseinvestments.6.3CertificationoforiginofenergyproductionAccordingtotheEU-wideenergyframework[11],energyproductionfromrenewablesourcesneedstocoveratleast32%ofthefinalenergyneedsoftheconsumersby2030.Althoughtheshareofrenewablesintheenergymixisincreasing,itisnotcleartotheenduserwhetherthisenergyoriginatesfromrenewablesourcesornot.Thetraceabilityofenergyinjectionsfromenergyproducersbeingthemrenewableornotisanimportantaspectfortheelectricitytransmissionanddistribution.Currentmarketstructuresforrenewablecertificates,carboncreditsorgeneralenvironmentalattributesarefragmentedandcomplex.Smallenergyproducersare,inpractice,excludedfromclaimingcarboncreditsduetothehighcostsassociatedwiththeprocedure.Inaddition,auditprocessesareoftenperformedmanuallybyacentralauthority,thereforearepronetoerrorsandevenfraud.Blockchainsystemscanautomategreencertificatesissuance(includingforlowvolumesofenergy)andreducetransactioncosts.Theycouldcreateaglobalmarketforsuchassets,increasetransparencyinthemarketandpreventdoublespending.Certificateoforiginreliesmainlyonsmartmeteringfunctionalitythatcanenableconsumer’s/prosumer’senergymeteringinnearrealtime,andattributethesereadingstotherelevantactorsfortheissuanceofcertificateoforigin.Thistypeofdata-sharingcanbeaccomplishedwiththeuseofblockchainsolutions.Thegeneratedcertificateoforigin2323shouldbeprotectedagainstpossibleforgeriesandalltheinvolvedpartiesmustbeabletoconfirmitsvalidity.Inprinciple,blockchainsystemscansupportprotectionagainstpossibleforgeriesastheintegrityandauthenticityofthestoreddataareguaranteedandthroughitsconsensusmechanismalltheparticipantnodescanconfirmthevalidityofthestoreddata,withtheimmutabilityoftheblockchain.6.4SupporttheimplementationofflexibilityservicesTwocustomermarketintermediaries,namelyaggregatorsandcitizenenergycommunities,aredefinedinthe2019CleanEnergyPackage(CEP)[12],withprovisionsontheirregulatoryframework,roles,anddutiesaimingtogrouptheenergygenerationorconsumptionofseveralconsumers.Inthiscontext,anaggregatorisactingasanenergyserviceproviderwhichhasthecapacitytomanageconsumers’electricityneedsandprovidedemand-sideflexibilitytothegrid.Aggregationcanbecarriedouteitherbytraditionalenergyserviceproviderssuchassuppliersorbynewentrantssuchasindependentaggregators.Inpractice,whenconsumersengagewithanindependentaggregator,theyhaveonecontractwiththesupplierandanotheronewiththeaggregator.ThetestingandprocurementofDemandResponse(DR)servicesarebecomingarealitythroughoutEuropeandseveralactorsareinvolvedinDemandSideManagement(DSM)researchandinnovationprojects,asillustratedinFigure10.Thesystemoperatorscurrentlyrequestflexibilityservicestolargeunits(mainlyindustrialactors)tovarytheirloadsaccordingtoanidentifiedneed.Thiscanbedonedirectlyormosttypicallythroughanaggregatoractorthathasalargeportfolioofassetsandcoordinatestheevents,loadtriggeringandsettlementsbytakingasmallfeefortheservice.Untilnow,thetaskofmanagingafewhundredloadshasbeenmanageablewithtraditionaltools,suchasSupervisoryControlAndDataAcquisitionSystems(SCADAs),directmeterreadingandtransparentaccessofportalsorplatformsbetweenaggregatorsandTransmissionSystemOperators(TSOs).InEuropeanmarkets,therearefewexamplesofindependentelectricityaggregatorsengagingwithcommercialorresidentialconsumers.However,withtheemergenceofconsumerempowering,newtechnologiesandtheadequateregulatoryframework,residentialflexibleelectricityconsumptionwillbecomeShareofDemandSideManagement(DSM)investmentbyorganisationtypeSource:ECFIGURE10CHAPTER62424CHAPTER6morecommerciallyattractiveforaggregatorsandvice-versa.Thiswillmeanahigherorderofmagnitudewhenitcomestocontractmanagement,dataexchangeandsettlementsbetweenallparticipants.TSOsaretypicallytheentitiessupposedtorequestDRservices,astheyareinchargeofassuringthegridstability.TheCleanEnergyPackagedefinestheconditionsunderwhichDSOsmayacquireflexibilityserviceswithoutdistortingthemarketsforsuchservices.ItincludesclearprovisionsthatwillenableDSOstomanagelocalgridissuesandenhancethesecurityofsupply(SoS)throughflexibilityprocurement.Atthelevelofsocietalchallengesforflexibilityservices,specialemphasisisputontheinvolvementofprosumersandcitizensintheelectricitymarket,whichcouldunleashatrendofefficiencyandasmarteruseofenergy.EventhoughnomajorchangestopersonallifewouldbemadewithlargescaleexplicitDemandResponse,sometechnologicaladaptationswouldhavetobecarriedout.Thesystemtotriggeraloadadjustmentwouldhavetobeinstalled,forexample.Closetorealtimereadingswouldberequired,aswellasinformationdisclosed,whichcouldbeseenasintrusive,showingindividual’sbehaviourandconsumptionpatterns.Acceptedlevelsofcomfortwouldhavetobeagreeduponwiththeaggregatorandthecostoftherequiredinfrastructureisunclearsofar.Moreover,thefinancialcompensationforsuchservicesisexpectedtobenegligibleandsomedoubtsexistsonhowcitizenscouldbeengagedwithout‘significant’incentives.Socialplatformswithscoringmechanisms,offeringcomplementarydiscountsinservicescouldbeintroducedtopromotetheparticipation.Mainchallengesenablinglargescaledemandresponsereferalsotoestablishingreliablecontrolstrategiesandmarketframeworkssothatthedemandresponseresourcescanbeusedoptimally.Inthecontextofflexibilityservices,opportunitiesforblockchainemergesuchthatblockchain-enableddistributedtradingplatformsmightdisruptmarketoperationssuchaswholesalemarketmanagement,localtradingwithinenergycommunitiesandflexibilityserviceexchangewithindistributiongridsorwithtransmissiongrids.Theuseofblockchaintechnology,withalltransactionsrecordedinadecentralisedledger,canexpediteandcondensetradingandsettlementtonearlyreal-time[14].Moreover,blockchainscouldassist(orevenreplace)humandecision-makinginrunningdecentralisednetworks,providingflexibilityservicesormanagingpowersystemassets.Bycontrast,barriersforapplicationofthisusecaserangefromdataaccessanduserestrictionstolackofinteroperabilityandcommonstandardstogetherwithlegaluncertainty,governanceanddecentralisedresponsibilities.6.5ElectromobilityscenariosTransportaccountsforaquarteroftheEU’sgreenhousegasemissions,andstillgrowing.ToachievetheclimateneutralityambitionsstatedintheEuropeanGreenDeal,a90%reductionintransportemissionsisneededby2050.Road,rail,aviation,andwaterbornetransportwillallhavetocontributetothereduction.Achievingsustainabletransportmeansputtingusersfirstandprovidingthemwithmoreaffordable,accessible,healthierandcleaneralternativestotheircurrentmobilityhabits.Automatedandconnectedmultimodalmobilitywillplayanincreasinglyimportantrole,togetherwithsmarttrafficmanagementsystemsenabledbydigitalisation.TheEUtransportsystemandinfrastructurewillbemadefittosupportnewsustainablemobilityservicesthatcanreducecongestionandpollution,especiallyinurbanareas.TheCommissionwillhelpdevelopsmartsystemsfortrafficmanagementand‘MobilityasaService’solutions,throughitsfundinginstruments,suchastheConnectedEuropeFacility.Thedemandfordatacapturingbyautomotivemanufacturersiscreatingashiftinthetraditionalmobilitybusinessmodel.Tocapturethisdata,vehiclesarestartingtohavetheirowndigitalidentity.Forinstance,thetransactionaldatafromre-fuellingatagasstationiscurrentlyonacreditcard,butsoonwillbehousedonadigitalwalletownedandoperatedbyacar.Thiscarcouldgenerateitsownincomethroughaservicemodelandpayforitsownfuel,maintenance,andotherservices.Anexampleapplicationscenarioforthisuse-caseissummarisedasfollows:weassumethattheDSOfacesanissueinitsdistributiongrid,wherethechargerisconnected.Theissuecouldbe,forexample,congestionorover/under-voltage.Tomitigatethisissue,theDSO2525canusetheflexibilityofaVehicle-2-Grid(V2G)connectedelectricvehicle(EV)bysendingapricesignal(orapowerprofile)thatwilltriggerthecartoeitherchargeordischargeataspecificpowerlevel.AssumingthattheV2Gchargingstationisinstalledinanofficebuilding’scarpark,thesignalfromtheDSOhastogothroughtheEnergyManagementSystemofthebuildingoranaggregator,whichalongwiththebuildingenergyconsumptionmightoperatemultiplechargingstationsinthecarpark,towardsthespecificchargingstationthattheEVisconnectedto.IftheEVcharges,apaymentwillbedonetotheaggregator/retailer,whileiftheEVdischarges,theaggregatorwillreimbursetheEVowner.Forthepayment,adigitalwalletisusedandablockchainholdstherecordsofbalancingtransactions.Otherexamplesofuse-casesonblockchainappliedtoe-MobilityareFleetManagement&EnergyOptimisation,AutonomousVehicles,PredictiveMaintenanceandfeatures,andSmartInsurance.Asshowninthenextsection,inourexperiment,anEVwasselectedtoperformachargingeventwithanintegrateddigitalwalletorwalletapp,whichenabledthevehicletomakepaymentsonitsown.Withblockchain,paymentsconcerningeveryaspectofthecar’smobilitycanbeexecutedquickly,securelyandautomatically.Similarlytotheflexibilityuse-case,theenergyflowcanbefromandtothecar.6.6Use-CasedeploymentandresultsTobetterunderstandthepotentialsoftheuse-casesjustdescribed,theyweredeployedusingthefacilitiesoftheEuropeanPlatformforInternetContingenciesandBlockchainAnalysis(EPIC-BA)andtheSmartGridInteroperabilityLaboratory(SGI-Lab).Thedetailedresultsofthetestcampaignsarereportedinthespecificreports.[1][2][3]AlltestswereimplementedoveraHyperledgerFabricinfrastructure,leveragingonthescalabilitycapabilityoftheEPIC-BAinfrastructuretotestthecapabilityofthesystemtomanagehighnumbersofnodesandcustomersandonthestresstheworkingboundariesuptohigh,onaNissanelectricvehicle(EV)witha24-kWhbatteryconnectedtoatype2charger(<22kW)andastoragesystemwith225kWand450-kWhcapacity,whichallowsabi-flowofpowerfromandtowardsthegrid.Figure5illustratestheenergydataflowsfortheEnergyflexibilityuse-case.Highlevelarchitectureofflexibilityuse-caseSource:ECFIGURE11CHAPTER62626CHAPTER6Figure12providesapictureoftheEnergyCommunitysetting(whichincludesalsothesmart-meteringuse-case)andtherelatedblockchainimplementation:electricityproductionnodesconnectwitheachotherthroughacommonelectricitybus.Exchangestoandfromthebusarerecordedbyasmartmeterthatisplacedattheinterfacesofeachnode’sinfrastructure(household,farm,factoryetc.)totherestofthenetwork.Commonmetersownedbythecommunitymightbeinstalledonthemainlineforverificationpurposes.Special-purposenodesareintroducedasgatewaystotherestoftheworldandbalancersforinsuringstabilityandreliabilityofthegrid.Thesebalancersarebasicallyflexibilityproviders.Experimentalresultsunderlaboratory,showedarobustandstraightforwardimplementationoftheblockchainsolutionforflexibilityuse-casescenario(whichincludesalsothee-mobilitysub-case)aswellasforenergycommunityscenarios(includingthesmart-meteringandsourceoforiginuse-cases).Thesimulationsprovedthatthesesolutionscaneasilyscaletothousandsofassets.Thetestsontheenergyflexibilityuse-casedemonstratedthatblockchaintechnologiescanfacilitatethefinancialsettlementandshortenthetimeofthesettlementprocessincomparisontowhatisdonepresently.Moreover,itwillalsoallowforacommunicationofdatabetweentheTSOandDSOwhichisincentivisedintheCleanEnergyPackage.Theadoptionofsmartcontractsandfacilitationofflexibilityeventtracingwouldenablelargescaleserviceprovision,includingmediumandlargeassets,pavingthewaytocitizenengagementandinvolvementintheenergymarket.Furthermore,itshouldbementionedthatassetpowerfromthesameaggregatorwillbeaggregatedinthefuture,thereforedecreasingtheeffortrequestedtotheblockchain.TheseconditionssuggestthattheuseofblockchainismorethancapableofbeingimplementedinarealworldscenarioforDemand-Responseuse.Forthetestsconductedwiththee-mobilityscenario,theuseofblockchains,notonlyallowstheverificationofenergyprovidedtoortakenfromthegrid,butimplicitlyallowsaEnergycommunitytestbedSource:ECFIGURE122727financialsettlementofthesimplechargingactivity.Givenadigitalidentityoftheuser,anintegratedrecordofallchargingactivitiescanbeperformedregardlessofthechargingpointoperator,regionorchargingtype.Thiswouldnotonlyfacilitatethepaymentfortheuser,butalsoallowanaccesstoallthedatageneratedbythechargingactivityofelectricvehiclesbothfortheusers,chargingoperatorsandotherserviceproviders.Givenatrustedenvironmentofthechargingactivity,thefinancialsettlementdoesnotneedtobesubjectedtoaconsensusmechanismconstantly.Afteradeterminednumberofexchanges,thenetworkwouldcommunicatetheresultofthegivennumberoftransactionsasone,similartolightningnetworksorsidechains.Anotheraspecttoconsideristhatmanyofthetransactions(financialandnon-financialsuchasdata)areexpectedtobemicro-transactions.Forthisreason,micro-paymentsareoneofthecharacteristicsenabledbyblockchains,thatarealreadyavailablealreadybysomepublicprojectssuchasIOTAorNANOblockchains,promotingafeelessmachine-to-machineeconomy.Vehiclesperformingchargingisjustoneuse,butitcanbeappliedtoparking,tolls,sharedvehicles,etc.Intheflexibilityande-mobilityusecasestesting,highthroughput,intermsofnumberoftransactionspersecond,hasbeeneasilyreached,whichhasmuchhigherperformancethanneeded,especiallyconsideringthatarealworldflexibilityeventsperformstransactionsinasettlementperiodtypicallylasting15minutes.Thehardware’sresources,i.e.CPUandmemory,showednormalusageduringtheexperimentation,whileanimportantfactortoconsideristhenetworktopologyandthenetworkbandwidth,especiallyinmorecomplicatedarchitectures.Moreover,withourimplementationitwasdemonstratedthatfinancialsettlementscanbefacilitatedinashorterperiodcomparedtotheactualsituation.WealsoforesawacommunicationbetweentheTSOandtheDSO,asisincentivisedintheCleanEnergyPackage.Thepurposeoftheenergycommunityistooffertheendusermaximumflexibilityinsourcingitsenergyneeds.Thus,anodeinthecommunitycandecidetobuy/sellenergylocallywithinthecommunityortohaveaccessviaagatewaytoexternalspotenergymarkets.Thecommunityitselfcandecidewhichcompetitivegatewayandbalancingservicesprovidertouse.Intermofperformancesandscalability,thetestsconfirmedthesamegoodresultsobtainedintheflexibilityande-mobilityuse-casesandthatitispossibletouselow-enddevices(smart-meters)tocommunicateandsendtransactionstotheblockchainsystem.Thebiggestchallengeinsuchuse-cases,ishowtotrustthemeasurementsandthe‘digitaltwin’ofaphysicalobject,inthiscaseenergy.Statisticalnoiseestimationandmodelling,advancedautomatedinstrumentcalibration,profilingofsensoroutputwithartificialintelligence,arealltechniquesthatmightneedtobeappliedinareal-worldimplementation.Thereareofcoursesomeconsiderationswhichshouldbeexpressed.Weenvisionthatinalargerscaleexperimentofthistype,somearchitecturaldesignissuesmayarise.Themostimportant,iswhereandhowtheactualblockchainsystemwillbedeployed.Sincesmartmetersareusuallynotcomputationallypowerful,itwouldseeminappropriateforthemtohostthebackboneoftheblockchain.Apotentialsolutionwouldbeforhouseholdsparticipatinginthecommunity,tohostablockchainnodeeach.Thiswouldalsoprovidetotaltransparencytotheoperationsofthenetwork,andinthemeantimedividetheoperationworkload.Ingeneral,alltheon-fieldtestsdeployeddemonstratedanoverallrobustnessofthesystem,resiliencetocyber-threats,capacitytoscaleandadequatematurity..CHAPTER62828CHAPTER77.CONCLUSIONSThischaptersummarisesthemainissuesandoutcomesstemmingfromtheseriesofstudiesconductedbytheJointResearchCentre.Recommendationsaremadeforaddressingtheissuesofawideruseofblockchainintheenergysector.Inconclusion,sometake-awaymessagesarehighlighted.7.1Trends,issuesandlessonslearnedThemainlessonsdistilledfromthereview,modellingandexperimentalactivitiescarriedoutinthisproject,areasfollows:•Blockchainisconfirmedtobeaversatilemeanstosupportevidence-baseddeci-sion-makingintheclimate-neutralityandenergyfields.Forexample,blockchaincanenablecarboncreditandguaranteesoforiginschemesorhelpcitizenstosellsolarenergyinthemarkets.Clearly,blockchainalsoneedstodemonstratethattheaccruedsustainabilitybenefitsoutweightheenviron-mentalfootprint,especiallywhendeployedatawide-scale(seealsotheenergyefficiencyconsiderationsbelow).TheEU’sResearchandInnovationprogrammesallocatesignificantbudgettotestblockchainsolutionsinsever-alsectors,includingtheclimateandenergyones.•Withinthewholeenergysystem,theelec-tricitysectorisincreasinglyresearchinginnovativeblockchainsolutionsaimingtostreamlinesystemandmarketoperationsandproposenewservices.ThecurrentlymostdeployedsolutionsrelyonEthereum-derivedtechnologies,althougheffortstointroduceotherblockchainsolutions(e.g.basedonSolana,Hyperledger,IOTAandothers)areontherise.•Severalactors,involvedinenergy/digitalbusinessesoremergingfromothersocio-eco-nomicsectors,showappetiteforexperi-mentingwithblockchainsolutionsacrosstheenergyvaluechain.Pilotsanduse-cas-esareflourishinginEurope(andbeyond).Thisisparticularlytrue,wherenewactors-suchastheaggregatorsofseveralenergyusers/prosumersandautomatedsoftwareagents-wishtoentertheenergybusinessormanystakeholders(e.g.inthecaseofenergycom-munities),withdifferentlevelsofsecurity/trust,havetointeract.•Consumersarenotyetfullyengagedindigitalenergyprojects(manystepawayfrompilotsafteraninitialphaseofinterest)andindependentaggregatorsstillfaceentrybarrierstoparticipateinelectricitymarkets(regulationsandpracticespreventingcus-tomerstocontractagreementswithemergingactorsarestillpresent).Theupfronttechno-logical,knowledgeandeducationinvestmentsneededtoparticipateinenergycommunities-andthusreaptheirbenefits-,stillhampercitizens’involvementandengagement.•Newerblockchainsolutionshaveim-provedtheirtechnicalperformancescomparedtoolderones.In-housetestsconfirmtheadequatelygrowingperformancesofblockchain,intermsofthroughput(speed,transactionspersecond),scalability(numberofnodesmanaged)andend-to-enddelay,inawiderangeofusecases(from,forexam-ple,payingforanelectricvehiclerechargeonamotorwaytousinghomedevicestotradeenergy).Theblockchainpermissionpolicies(linkedtothereadingandwritingrightsoftheactorsinteractingwiththeblockchain)emergeasanothercrucialfactorforthede-signofblockchainsolutions.Underadequatetechno-economicandregulatoryconditions,selectedblockchainsolutionsseemtoconfirmtheirpotentialtoscaleuptoreal-worldsce-narios.Nevertheless,solvingtheso-calledblockchaintrilemma,i.e.concurrentlyopti-misingthethreekeyaspectsofdecentralisa-tion,securityandscalability,remainsabigchallengebeforemovingtolarge-scaleapplications.•Thesustainabilityandenergy-footprintofblockchainremainamongthemostde-bated–butnotalwayswell-analysed/com-municated–issues,evenifnewblockchainsolutionsandconsensusmechanisms(i.e.thealgorithmsneededtorunablockchain,largelyresponsiblefortheblockchainenergy-intensi-ty)donotdisplayenergyperformancesworse2929thanthoseofcomparableICTsystemsanddatacentres.•Regulatorysandboxestestingblockchainsolutionsarebeginningtoappearinthedigitalenergyfield.Thesearespecificspac-eswithrelaxedregulatoryconditionswherenewproducts,servicesandbusinessmodelscanbetrialledinareal-worldenvironment.•Blockchainapplicationsforhigher-lev-elenergysystemfunctionalities(i.e.ap-plicationsrunningonlayers‘far’fromthephysicalpowergrid)aremorenumerousandmature.Blockchainappearswellsuitedtosupportthefinancialsettlementofener-gytransactions,theenergytradinginlocalorwidermarkets,theenergymanagementandflexibilityservicesprovisioning,andseveralcertificationandbillingprocesses.Asanex-ample,theexperimentsweexecutedintheenergyflexibilityusecase–i.e.matchingthepowergenerationfluctuationswithelectricitydemandinjectionsorwithdrawals–canbein-ferredtobescalabletothousandsofassets/nodes.Thisisbecausethesimulationswereconductedonapersecondbasis,whereasthedemandresponsesettlementperiodtypical-lyreferstoseveral(e.g.15)minutes.Similarconsiderationsapplytotheelectricvehicle’scharginganddischargingtransactionsasthee-mobilityusecasedefactoextendsthede-mandresponseusecase.•Blockchainapplicationsmorelinkedtoenergysystemoperations(i.e.‘closer’toanddirectlyimpactingthephysicalpowergrids,suchaspowerdispatching)areinsteadlessdeveloped.Thisismainlyduetolackofadequateguaranteesintermsofsafety,cer-tification,andstandardisation,whicharethedrivingrequirementsfortheoperationofcrit-icalinfrastructures.Todate,justafewblock-chain-enabledpilotstriedtotakeintoaccountthewholespectrumofphysicalconstraintsinvolvedinpowersystemmanagement.•Blockchain-enableddistributedtradingplatformsmightdisruptmarketoper-ationssuchaswholesalemarketmanage-ment,localtradingwithinenergycommunitiesandflexibilityserviceexchangeindistributionortransmissiongrids.Theuseofblockchain,withalltransactionsrecordedinadecentral-isedregister,canexpediteandcondensetrad-ingandsettlement.Suchautomatedtradingmayallowforpushingtradingoperationstoreal-time,thusshorteningthebiddinginter-valsrelativetocurrentpractices.Thismighthoweveralsobringaboutmarketconcentra-tionanddistortionissues,whenautomatedagentsadoptinstantaneousstrategiestoco-operateorcompetewithotheragents.•Anadequateandinteroperablesmartmeteringinfrastructureemergesasin-dispensablefortheactivationofblock-chainservicesforenergycommunitiesandpeer-to-peerenergytrading.Thesmartme-teringuse-caseis,inaway,thefoundation-allayeroftheEnergyCommunityuse-case,representingthemoststraightforwardblock-chainuseonecouldthinkof(regardingcon-sumptionsmeasurement,notarisationandbilling).Howevertheblockchain-readinessofsmartmeters,eventhoseofthenewestgen-erations,appearsomewhatlimited.AccesstosmartmeterdataisalsoapotentialbarrierasblockchainsusethemostclassicalInternetprotocols,andnotallthemeterssupportIn-ternetconnections.•Blockchainshowshighpotentialtobedeployedasthe‘distributeddrivingbrain’ofanenergycommunity.Theen-ergycommunityuse-case,withdistributedsmartmetersvalidatingtransactionsandsmartcontractscontrollingtheneighbour-hoodenergymarket,wasthemostcomplextoimplement.Nonethelesstheset-uptrialledintheJRClabs,evenwithin-housebuiltcon-trollersanddevices,weredemonstratedtoberesilient,stableandscalable.•Datasecurityandintegrityremainsvul-nerablebeforereachingtheblockchain.Data–oncestoredontheblockchain–isre-silienttotampering,thedatatransferfromthephysicalworldtotheblockchainremainspronetovulnerability.Howtobesurethatacertificateoforiginforacertainamountofrenewableenergywewanttotradeisactuallyproducedbyaspecificwindfarmataspecifictime?Or,asanotherexample,howdowetoverifythatsmartmetersandin-homedevicesaccuratelyrecordtheamountsofenergypro-ducedorconsumed?•Someauthenticationandprotectionrulesarehardtointerpretinblockchainecosystems,owingtotheradicaldecentral-isationofdatastorageandprocessing.Asanexample,onceauseridentityiscreatedontheexistingblockchain,thereislittleguaran-teethattheuserrequestingthatidentityistherealidentity’sownerandnotamaliciousone.ThisproblemoccurstovariousdegreesinCHAPTER73030CHAPTER7everydigitalplatformaccessedvia‘soft-iden-tity’schemes.•Blockchainarchitecturescanfacilitatedataexchangeamongincumbents(e.g.TransmissionandDistributionSystemOper-ators)and/orwithemergingactors(e.g.ag-gregators),ascalledforbytheCleanEn-ergyPackage.Currentlythereareseverallimitationsandconstraintsonthelegalpos-sibilityofexploitingdatainablockchaine.g.toactivatesmartcontracts.Blockchainpilotsshowedthepotentialadvantagesofauto-maticallygeneratinginvoicesandtriggeringsmartcontracts,providedthatenergydataiseffectivelyaccessedandused.Thestillem-bryonicstageofblockchainplatforms–andinparticular,ofsmartcontracts–isanotherobstacletothedeploymentofcomplexau-tomatismsandservices.•Severalpilotshaveshowntheurgentneedforensuringtheinteroperabilityofdif-ferentblockchainsolutions,ofon-chainandoff-chainsystems,ofIoTdevicesandcloud-basedsolutionswithblockchainnet-works.Theblockchainsolutionsintegrationandinteroperabilitywithexistinglegacysys-tems,particularlytogatherreadingsandsys-temdata,stillconstitutesabigchallenge.•Withthegrowingdigitalisationoftheenergysystem,andequallysoforthedeploymentofblockchainsolutions,areliableInternetinfrastructureappearsasacrucialrequire-mentandacriticalservicetooperatethedig-italenergygrids.7.2PolicyandregulatoryrecommendationsSeveralaspectsandinterfacesstillmustbeproperlyunderstoodtogoverntheintroductionofblockchain-basedelectricitydeliveryoptionsandservices[6][26].Tothisend,asetofrecommendationswereidentifiedtoaddressissuesemergingfromthedesktopandexperimentalresearchconducted.SECURITY,PRIVACY&IDENTITY•Requirementsforblockchainapplicationsmaintainingadequatecybersecurityandelectricitysupplysecuritylevelsshouldbedefined.ThisisparticularlyimportantinthecontextoftheNetworkCodeforcyberse-curityaspectsofcross-borderelectricityflows,asrequestedbytheElectricityMarketRegula-tion.Thiswouldallowtotimelyidentifytheactualcybersecuritytechnologicallimitationsandtheirimprovementopportunities,particu-larlyinthecontextofcriticalinfrastructures.•Mechanismstosafeguarddatasecurityandintegrityshouldbefurtherdevel-oped.Abigchallengeishowtotrusttheen-ergymeasurementsandthe‘digitaltwin’ofphysicalobjects,especiallybeforetheyaresavedontheblockchain.Asanexample,inthecaseoftheenergymeteredandtradedinalocalenergycommunity,redundancymecha-nismscouldbeadoptedinthesmartmeteringmeasurements(i.e.deployingacommonsetofsmartmetersmeasuringenergyexchangesindependentlyofthehousehold’ssmartme-ters).•Datashouldbeprotectedbydesignandsharedonlyinsofarasneededtoac-tivateconsentedblockchain-enabledservices.Transacteddataareatthecoreofblockchain(ablockchainis,indeed,alongchainofdata).Thedefinitionofthebound-ariesbetweendatasharingandprotectionshouldfollowthestringentruleslaiddownintheEUGeneralDataProtectionRegulation(GDPR),whichaimstosafeguardcitizens’per-sonaldataandstrengthentheirfundamentalrights.•Effectiveintegrationstrategiesbetweendataprotectionandcybersecurityinitia-tivesshouldbeputforward,toensurethatpersonaldataarewell-protected,notmisusedandthatcitizensultimatelyareincontroloftheirpersonaldata.Blockchain–adistribut-edinfrastructureabletoensuretrustamongpartiesinplaceofacentralisedparty-offersanewperspectiveonthewaytoenforcecy-bersecuritymeasuresinthedigitalisedenergysystem.•Theenergydigitalisationphenomenonpos-es,fromacybersecurityperspective,aques-tionontheresilienceandsecurityofthemoderntelecommunicationnetworkandInternet.Fromastrategicautonomyper-spective,Internetgovernanceanddevelop-mentarecurrentlyoutsidethecontrolofEurope.IfEuropewantstoleadthedigitaldevelopment(relyingalsouponblockchaintechnologies),itisofutmostimportancetostartadeepreflectiononhowEuropecouldsecurethestabilityandsecurityofits‘portionofInternet’,andonthewaywecanchange3131ittosecureourcyber-physicalcriticalinfra-structures⁹.•Cybersecuritycertificationschemesshouldincreasinglycoverboththedo-mainofblockchaincoreinfrastructureandthedomainofenduserapplicationsanddevices(e.g.IoT).WithinthecontextoftheCybersecurityActandthecybersecuritycer-tificationrollingplan,theCommissioncouldpushforwardanitemconcerningblockchaintechnologies,todefineacybersecuritycerti-ficationscheme.Thiswouldallowforanade-quatecybersecurityassurancelevelforwhatconcernstheblockchainimplementationsinthedifferentsectors.•Strongauthenticationschemesshouldbeembeddedinthedesignofblockchainsolutions.Questionsrelatedtodeliveringuserexperiencewhilerespectingindividu-alprivacyandidentityshouldbeaddresseddrawingupontheprovisionsoftheeIDAS(electronicIdentificationAuthenticationandSignature)Regulation.Inparticular,theau-thenticationproblemof‘soft-identity’couldbesolvedwithStrongIDenrolmentproce-duresorlinkingsoft-idtostrong-id(e.g.veri-fiableelectronicIDdocuments).DATAACCESS,LIABILITYANDMARKETS•Robustenergydatahubs/platforms–withconsentedrulesfordataaccessanduse–shouldbedesigned.Thisisessentialforgoverningtheinteractionswithinanener-gysystemhostinganincreasingnumberofdecentralisedactorsandresources.Asanex-ample,onlybyproperlyaccessingdata(par-ticularlythoselinkedtosmartmeters)canelectricitycustomersfullybenefitfromcom-petitionintheretailmarketsandcontributetoinnovativeflexibilityservicesprovision.Energydigitalisationshouldberegulatedby:gener-atingtheappropriatelygranular(spatialandtime)dataontheelectricitysystem;makingdataaccessible,interoperableandsecureforcurrentandpotentialmarketparticipants.•Marketrulesshouldbeadaptedtocon-templatetheemergenceofnewactorsintheformofautomatedagents.Theincreasedautomateddecision-makingandtradingonelectricityorflexibilitymarketsenabledbyblockchaintechnologiesshouldbecarefullystudiedtoanticipateitsmarketefficiency,competitionandsecurityofsupplyimplications.•Decentralisedresponsibilitiesofelec-tricitysupplyanddeliveryshouldbeclearlydefinedandallocated.Disinterme-diationanddistributedarchitecturearetwoofthemostpeculiarcharacteristicsofblock-chaintechnologies.Whilethesefeaturesareinfactkeyenablersinthetrustedintegrationofdifferentactorsinthesmart-gridecosys-tem,theycanpotentiallycreateconfusionintermsofresponsibilitiesandliability.Forthatreason,areflectionisneededtoestablishclearrules,rolesanddutiesinthisnewenergyparadigm.FAIRNESSANDACCEPTANCE•Fairnessshouldbeaguidingprinciplefordesigningmoredecentralisedenergymarketsnotdiscriminatinganyplayer,betheypeopleorbusinesses.Associatingtheappropriateblockchainsolutiontothedif-ferentusecasesiscrucialtoenabledifferentelectricitymarketgovernanceschemesandroletypesforconsumers.Mostoftheblock-chain-enabledenergyprojectsrelyonEthere-um–inpermission-lessorpermissionedcon-figurations–orotheremergingtechnologiessuchasHyperledger–withpermissionedschemes.Thepermission-lessdesigngeneral-lyentailsthateveryusercontributestoman-agetheblockchaininatrust-lessenviron-ment.However,thiscomesatacostofamoreexpensivevalidationprocess.Permissionedapplicationsneedinsteadasmallgroupofnodestovalidatetransactions.Thisallowsforreducingthevalidationcosts,asonlyafew-ernumberofnodesinteracttomaintaintheblockchain,butalsorequiresfulltrustonthevalidators.•Consumersshouldbefurtherinvolvedandincentivisedtoinvestinblockchainprojects.Regulatoryinitiativeswouldbeneededtoincreasinglymakeblockchainad-CHAPTER7⁹OtherrelevantEClegislativeinitiativesonprivacyanddataprotectionaimatstrengtheningthesecurityofinternet-connecteddevices,mostofwhichareexpectedtobepartoftheInternetofThings,andofwearableradioequipment.NOTES3232CHAPTER7vantageousforconsumers,toenlargethecommunitybasisofthoseparticipatingintheenergyflexibilityserviceprovisioningandintheCitizen/RenewableEnergyCommunities,asdefinedintheCleanEnergyPackage.Theadoptionofsmartcontractscanfacilitatesuchcitizenengagementintheenergymar-ket.Puttingthecustomeratthecentreoftheenergysystem,requiresefforttoidentifyandexploitthepossibleinterfacesandsynergiesbetweendifferentenergysystems(e.g.elec-tricity,heat,gas,…)andeconomicsectors(e.g.transport,health,…).•Abalanceshouldbefoundbetweencon-sumerempowermentandprotection.ThiswouldbeinlinewiththeEuropeanGreenDealprovisionscallingforasociallyjusttransitionwheretheriskofenergypovertyisaddressedandusersmostvulnerabletotheenergytran-sitionareprotected.SCALABILITYANDSUSTAINABILITY•TheEUandnationallegislatorsshouldkeepdevelopingacomprehensivepro-in-novationlegalframeworkfordigitalapplications,alsobetterregulatingblock-chain-enableddigitalassetsandsmartcon-tracts.Amajorregulatorychallengeistorec-oncilethestabilityofthelegalframeworkwiththerapiditytoreacttoinnovationpace.TheEUshouldkeepprovidingfundingforblock-chainresearchandinnovation,bothintheformofgrantsandbysupportinginvestmentinstart-ups.Large-scaleandmultidisciplinarypilotsthattargetintegratedarchitectures,interoperableapplications,andharmonisedstandardsarestillneededtotestthemeritsandchallengesofblockchainuse-casesandapplications.•Regulatoryexperimentationsshouldbefurtheradoptedtoaddresstheblockchaintechnologicaltrilemma(i.e.optimisingblock-chaindecentralisation,securityandscalabil-ity)andensuretheadoptionofapproachesfitforpurposeandfuture-proof.Supportingre-sponsibleinnovationviapilotregimesandregulatorysandboxingmighthelpremov-ingobstaclestotheapplicationofnewtech-nologiesandpromotingtechnologyuptake.Reportingmechanismsonblockchainpilots–includingcost-benefitandriskanalyses-wouldbesharingknowledgeandbestpractic-es.TheECandtheEuropeanBlockchainPartnershiparesettingupapan-Europe-anregulatorysandboxtacklingdataspac-es,smartcontracts,anddigitalidentity,andcoveringalsotheenergysector(amongothersectorssuchasfinance,health,environmentetc).•Analysesontheenergyfootprintoftheblockchainsolutionsundertesting/deploy-ment–bothintermsofabsoluteconsump-tionandenergymix(renewables,fossil,etc…)anticipatedtocoversuchconsumption–shouldalwaysaccompanythestudiesonthescalabilityandperformancerequire-ments.Faircost-benefitanalysesweigh-ingthebenefitswiththecostsandadequatecommunicationcampaignsmayhelptobetterunderstandopportunitiesandthreats.INTEROPERABILITYANDSTANDARDS•TheEUandMemberStatesstakehold-ersshouldcontinuebeinginvolvedintheworkofinternationalstandardorganisa-tionssuchasISO,ETSI,CEN-CENELEC,IEEEandITUT,andshouldcontinueengagingwithotherrelevantbodiesgloballysuchasINATBA(InternationalAssociationforTrustedBlock-chainApplications),coveringsolutionsforen-ergydigitalisationingeneralandblockchainintegrationinparticular.•Properstandardsandinteroperabilityofblockchain-enableddevices(includ-ingmeters,sensors,appliances)shouldbepromoted,asthismighthelpdevelopingmarketsfordemandresponse,distributeden-ergyresourcesandflexibilityservices.Guar-anteeinginteroperability,standardisationandblockchain-readinessofthesmartmeteringinfrastructureisparticularlyimportantassmartmetersenablevirtuallyalltheservicesputforwardbyblockchaintechnologies.TheECimplementingactsoninteroperabilityre-quirementsandtransparentproceduresforaccesstodata(ascalledforbytheElectricityMarketDirective)mighttacklesomeoftheaboveaspects.Standardisationwouldalsobeextremelyimportanttoensureacommonminimumlevelofcybersecurityofblockchainplatforms.Standardisationinitiativeswouldpavethewaytowardinteroperabilitywhich,inmissioncriticalinfrastructures,isakeyfactortoensuretechnologydiversityandresilienceagainstcyber-attacks.Establishingstandardsforinteroperabilityacrossindustrieswillalsobepivotalasthepowersectorbecomesmorecoupledwithadjacentsectorssuchasthetransportation,heating,andothers.33337.3FinalremarksTheECDigitalisationofEnergyActionPlanrepresentsapowerfultoolboxtoimplementactionsforawiderdeploymentofdigitaltechnologies–includingblockchain–intheenergysector.TheActionPlanaimstodevelopacompetitivemarketfordigitalenergyservicesthatensuresdataprivacyandsovereigntyandsupportsinvestmentindigitalenergyinfrastructure.ThisPlancouldacceleratetheimplementationofdigitalsolutions,buildingontheCommonEuropeanenergydataspaceaimedtopromoteastrongeravailabilityandcross-sectorsharingofdata,inacustomer-centric,secureandtrustworthymanner.Whilethedigitaltransformationisakeyenablertoreachtheclimate-neutralityobjectives,aconsistentapproachintheregulationofseveralcross-cuttingsectors(energy,transport,financeetc.)isequallyneeded.Recentlyissuedregulationproposalsinthedigitalfinance/crypto-assetsectorscontaininterestingapproachesandsolutions,whichcouldbeapplicabletoorofinspirationfortheenergysectoraswell.Itremainstobeseentowhatextentblockchaincansupportorsubvertbusinessmodelsinthetransitioningelectricitysystemsandmarkets.Indeed,blockchainrepresentsonlyoneofthetechnologiesenablingpowersysteminnovation,tobecombinedwithotherdigitaltechnologies(includingArtificialIntelligence,bigdata,IoT),toachievetheclimate-neutralityandsustainabilitytargets.Inthiscontext,oneofthemainchallengesforpolicydecisionmakers,istostrikeabalancebetweensupportinginnovation,protectingconsumersandupholdingmarketintegrity.TheJointResearchCentre(JRC)smartgridsandcybersecuritylaboratoriesstandreadytoscaleuptheirresearchactivitiesinsupportofpolicydecisionmaking,withaviewatidentifyingcriticalissuesinthedeploymentofblockchain-enabledsustainableenergysolutions..CHAPTER73434CHAPTER7[1]NaiFovino,I.,Geneiatakis,D.,Giuliani,R.,Kounelis,I.,Lucas,A.,Martin,T.,Steri,G.,BlockchainintheEnergySectorWP4–Onfielddeploymentandanalysisofexperimentalusecases,WP5–Use-CaselabtestingonEnergy-MobilityintegrationusingDLT,EUR30780EN,PublicationsOfficeoftheEuropeanUnion,Luxembourg,2021,ISBN978-92-76-40550-4,doi:10.2760/55525,JRC125217.[2]NaiFovino,I.,Andreadou,N.,Geneiatakis,D.,Giuliani,R.,Kounelis,I.,Lucas,A.,Marinopoulos,A.,Martin,T.,Poursanidis,I.,Soupionis,I.,Steri,G.,BlockchainintheEnergySector,WP3–Usecasesidentificationandanalysis,EUR30782EN,PublicationsOfficeoftheEuropeanUnion,Luxembourg,2021,ISBN978-92-76-40552-8,doi:10.2760/061600,JRC125521.[3]NaiFovino,I.,Sachy,M.,GeneiatakisD.,KounelisI.,SoupionisI.,PoursanidisI.,LucasA.,KotsakisE.,JoannyG.,BlockchainintheEnergySector–Landscapeanalysis,PublicationsOfficeoftheEuropeanUnion,Luxembourg,2021,JRC125222[4]COMMUNICATIONFROMTHECOMMISSIONTOTHEEUROPEANPARLIAMENT,THEEUROPEANCOUNCIL,THECOUNCIL,THEEUROPEANECONOMICANDSOCIALCOMMITTEEANDTHECOMMITTEEOFTHEREGIONSTheEuropeanGreenDealCOM/2019/640final,https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM:2019:640:FIN[5]EuropeanCommission,ShapingEurope’sdigitalfuture,2020,https://ec.europa.eu/info/sites/info/files/communication-shaping-europes-digital-future-feb2020_en_4.pdf[6]G.Fulli,Lecturesonelectricitysectordigitalisationandblockchains,SmartGridscourse,“ICTforSmartSocieties”MasterProgram,PolitecnicodiTorino,20/21,https://ses.jrc.ec.europa.eu/[7]A.M.AntonopoulosandG.A.Wood,MasteringEthereum:buildingsmartcontractsandDapps.[8]A.M.Antonopoulos,Masteringbitcoin,Firstedition.SebastopolCA:O’Reilly,2015.[9]“BlockchainTechnologyProjects,”Hyperledger.[Online].Available:https://www.hyperledger.org/projects.[Accessed:13-Jun-2019].[10]S.Moroni,V.Alberti,V.Antoniucci,andA.Bisello,‘Energycommunitiesinthetransitiontoalow-carbonfuture:Ataxonomicalapproachandsomepolicydilemmas’,JournalofEnvironmentalManagement,vol.236,pp.45–53,Apr.2019,doi:10.1016/j.jenvman.2019.01.095.[11]EuropeanCommission,‘2030climate&energyframework’,ClimateAction-EuropeanCommission,Nov.23,2016.https://ec.europa.eu/clima/policies/strategies/2030_en(accessedFeb.26,2020).[12]EuropeanCommission,‘CleanenergyforallEuropeanspackage’,Energy-EuropeanCommission,Oct.20,2017.https://ec.europa.eu/energy/en/topics/energy-strategy/clean-energy-all-europeans(accessedFeb.26,2020).[13]Vasiljevska,J.,Gangale,F.,Covrig,L.andMengolini,A.M.,SmartGridsandBeyond–AnEUresearchandinnovationperspective,EUR30786EN,PublicationsOfficeoftheEuropeanUnion,Luxembourg,2021,ISBN978-92-76-36194-7,doi:10.2760/705655,JRC125980.[14]ProposalforaREGULATIONOFTHEEUROPEANPARLIAMENTANDOFTHECOUNCILonapilotregimeformarketinfrastructuresbasedondistributedledgertechnology,COM(2020)594final,https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52020PC0594REFERENCES3535[15]Andoni,M.,Robu,V.,Flynn,D.,Abram,S.,Geach,D.,Jenkins,D.,McCallum,P.andPeacock,A.,2019.Blockchaintechnologyintheenergysector:Asystematicreviewofchallengesandopportunities.RenewableandSustainableEnergyReviews,100,pp.143-174.[16]Digitalization&EnergyReport,OECD/IEA,2017,InternationalEnergyAgency,Website:www.iea.org[17]Arbib,J.andSeba,T.(2017).RethinkingTransportation2020-2030.www.rethinkx.com/transportation.[18]Nest(2015).“EnergySavingsfromtheNextLearningThermostat:EnergyBillAnalysisResults”.NestLabs,February2015,https://storage.googleapis.com/nest-public-downloads/press/documents/energy-savings-white-paper.pdf[19]LaCommare,K.H.,&Eto,J.H.(2006).CostofpowerinterruptionstoelectricityconsumersintheUnitedStates(US).Energy,31(12),1845-1855[20]IAC(IndustrialAssessmentCenters)(2017).IACDatabase(database),https://iac.university/download[21]DigitalisationandNewBusinessModelsinEnergySector,Küfeoğluet.al,UniversityofCambridge,2019,https://www.eprg.group.cam.ac.uk/[22]https://ec.europa.eu/info/law/better-regulation/have-your-say/initiatives/13141-Digitalising-the-energy-sector-EU-action-plan_en[23]EUBlockchainObservatoryandForum,EnergyEfficiencyofBlockchainTechnologies,2021,https://www.eublockchainforum.eu/sites/default/files/reports/Energy%20Efficiency%20of%20Blockchain%20Technologies_1_0.pdf[24]Lucas,Alexandre,DimitriosGeneiatakis,YannisSoupionis,IgorNai-Fovino,andEvangelosKotsakis.2021."BlockchainTechnologyAppliedtoEnergyDemandResponseServiceTrackingandDataSharing"Energies14,no.7:1881.https://doi.org/10.3390/en14071881[25]COM(2021)118final,COMMUNICATIONFROMTHECOMMISSIONTOTHEEUROPEANPARLIAMENT,THECOUNCIL,THEEUROPEANECONOMICANDSOCIALCOMMITTEEANDTHECOMMITTEEOFTHEREGIONS2030DigitalCompass:theEuropeanwayfortheDigitalDecade[26]Fulli,G.,Kotsakis,E.,NaiFovino,I.,Policyandregulatorychallengesforthedeploymentofblockchainsintheenergyfield,EUR30781EN,PublicationsOfficeoftheEuropeanUnion,Luxembourg,2021,ISBN978-92-76-40551-1,doi:10.2760/416731,JRC125216.3636ListofabbreviationsDERDistributedEnergyResourcesDLTDistributedLedgerTechnologyDSMDemandSideManagementDSODistributionSystemOperatorDRDemandResponseECEuropeanCommissionEPIC-BAEuropeanPlatformforInternetContingenciesandBlockchainAnalysisEUEuropeanUnionEVElectricVehicleIEAInternationalEnergyAgencyITREIndustry,ResearchandEnergyCommitteeoftheEuropeanParliamentJRCJointResearchCentreP2PPeer-to-PeerPVPhotovoltaicSCADASupervisoryControlAndDataAcquisitionSGILABSmartGridInteroperabilityLabTSOTransmissionSystemOperatorV2GVehicle-to-Grid3737ListoffiguresFigure1RecentEUlegislativeinitiativesonenergydigitalisation7Figure2Investmentsindigitalelectricityinfrastructureandsoftware8Figure3.Aninternalviewofablockchainstructureinacryptocurrencyusecase10Figure4.Blockchainattributesforthedifferenttypesofaccess12Figure5.Energyblockchainsinitiativesdistributionpercountry15Figure6.Blockchainprojecttypesinenergysector16Figure7.Blockchainplatformsusedindifferentenergyprojects17Figure8.Blockchainintegrationofsmartenergyusecases19Figure9.Genericstructureofanenergycommunity21Figure10:ShareofDemandSideManagement(DSM)investmentbyorganisationtype23Figure11.Highlevelarchitectureofflexibilityuse-case25Figure12.Energycommunitytestbed26GETTINGINTOUCHWITHTHEEUInpersonAllovertheEuropeanUniontherearehundredsofEuropeDirectinformationcentres.Youcanfindtheaddressofthecentrenearestyouat:https://europa.eu/european-union/contact_enOnthephoneorbyemailEuropeDirectisaservicethatanswersyourquestionsabouttheEuropeanUnion.Youcancontactthisservice:-byfreephone:0080067891011(certainoperatorsmaychargeforthesecalls),-atthefollowingstandardnumber:+3222999696,or-byelectronicmailvia:https://europa.eu/european-union/contact_enFINDINGINFORMATIONABOUTTHEEUOnlineInformationabouttheEuropeanUnioninalltheofficiallanguagesoftheEUisavailableontheEuropawebsiteat:https://europa.eu/european-union/index_enEUpublicationsYoucandownloadororderfreeandpricedEUpublicationsfromEUBookshopat:https://publications.europa.eu/en/publications.MultiplecopiesoffreepublicationsmaybeobtainedbycontactingEuropeDirectoryourlocalinformationcentre(seehttps://europa.eu/european-union/contact_en).KJ-NA-31008-EN-Ndoi:10.2760/62246ISBN978-92-76-49089-0

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

碳中和
已认证
内容提供者

碳中和

确认删除?
回到顶部
微信客服
  • 管理员微信
QQ客服
  • QQ客服点击这里给我发消息
客服邮箱