能效2021(英)-IEAVIP专享VIP免费

Energy Eiciency
2021
The IEA examines the
full spectrum
of energy issues
including oil, gas and
coal supply and
demand, renewable
energy technologies,
electricity markets,
energy efficiency,
access to energy,
demand side
management and
much more. Through
its work, the IEA
advocates policies that
will enhance the
reliability, affordability
and sustainability of
energy in its
30 member countries,
8 association countries
and beyond.
Please note that this
publication is subject to
specific restrictions that limit
its use and distribution. The
terms and conditions are
available online at
www.iea.org/t&c/
This publication and any
map included herein are
without prejudice to the
status of or sovereignty over
any territory, to the
delimitation of international
frontiers and boundaries and
to the name of any territory,
city or area.
Source: IEA. All rights
reserved.
International Energy Agency
Website: www.iea.org
IEA member
countries:
Australia
Austria
Belgium
Canada
Czech Republic
Denmark
Estonia
Finland
France
Germany
Greece
Hungary
Ireland
Italy
Japan
Korea
Luxembourg
Mexico
Netherlands
New Zealand
Norway
Poland
Portugal
Slovak Republic
Spain
Sweden
Switzerland
Turkey
United Kingdom
United States
The European
Commission also
participates in the
work of the IEA
IEA association
countries:
Brazil
China
India
Indonesia
Morocco
Singapore
South Africa
Thailand
INTERNATIONAL ENERGY
AGENCY
Energy Efficiency 2021 Abstract
PAGE | 3
IEA. All rights reserved.
Abstract
Energy Efficiency 2021 is the IEA’s annual update on global developments in
energy efficiency. This year’s edition explores recent trends in energy efficiency
markets at the economy-wide and sectoral levels, including developments in
policy and investment.
The report also focuses on the role of energy efficiency in achieving net zero
emissions in the energy sector by 2050, including an examination of the crucial
role of efficient appliances and equipment, as well as all major energy efficiency
net zero milestones in buildings, transport and industry.
In addition, the report analyses recent trends in digital innovation, examining how
digitalisation is expanding the scale and scope of energy efficiency markets and
how business models are evolving to take advantage of these opportunities.
EnergyEfficiency2021TheIEAexaminesthefullspectrumofenergyissuesincludingoil,gasandcoalsupplyanddemand,renewableenergytechnologies,electricitymarkets,energyefficiency,accesstoenergy,demandsidemanagementandmuchmore.Throughitswork,theIEAadvocatespoliciesthatwillenhancethereliability,affordabilityandsustainabilityofenergyinits30membercountries,8associationcountriesandbeyond.Pleasenotethatthispublicationissubjecttospecificrestrictionsthatlimititsuseanddistribution.Thetermsandconditionsareavailableonlineatwww.iea.org/t&c/Thispublicationandanymapincludedhereinarewithoutprejudicetothestatusoforsovereigntyoveranyterritory,tothedelimitationofinternationalfrontiersandboundariesandtothenameofanyterritory,cityorarea.Source:IEA.Allrightsreserved.InternationalEnergyAgencyWebsite:www.iea.orgIEAmembercountries:AustraliaAustriaBelgiumCanadaCzechRepublicDenmarkEstoniaFinlandFranceGermanyGreeceHungaryIrelandItalyJapanKoreaLuxembourgMexicoNetherlandsNewZealandNorwayPolandPortugalSlovakRepublicSpainSwedenSwitzerlandTurkeyUnitedKingdomUnitedStatesTheEuropeanCommissionalsoparticipatesintheworkoftheIEAIEAassociationcountries:BrazilChinaIndiaIndonesiaMoroccoSingaporeSouthAfricaThailandINTERNATIONALENERGYAGENCYEnergyEfficiency2021AbstractPAGE3IEA.Allrightsreserved.AbstractEnergyEfficiency2021istheIEA’sannualupdateonglobaldevelopmentsinenergyefficiency.Thisyear’seditionexploresrecenttrendsinenergyefficiencymarketsattheeconomy-wideandsectorallevels,includingdevelopmentsinpolicyandinvestment.Thereportalsofocusesontheroleofenergyefficiencyinachievingnetzeroemissionsintheenergysectorby2050,includinganexaminationofthecrucialroleofefficientappliancesandequipment,aswellasallmajorenergyefficiencynetzeromilestonesinbuildings,transportandindustry.Inaddition,thereportanalysesrecenttrendsindigitalinnovation,examininghowdigitalisationisexpandingthescaleandscopeofenergyefficiencymarketsandhowbusinessmodelsareevolvingtotakeadvantageoftheseopportunities.EnergyEfficiency2021AcknowledgementsPAGE4IEA.Allrightsreserved.Acknowledgements,contributorsandcreditsThispublicationhasbeenpreparedbytheEnergyEfficiencyDivision(EEfD)oftheInternationalEnergyAgency(IEA).Theanalysiswasledandco-ordinatedbyNicholasHowarth.ThemaincontributorswereAhmadAlMugharbil,MinnieAshdown,EmiBertoli,RamitDebnath,IanHamilton,PaulineHenriot,DoyobKim,KevinLane,JihyunLee,JackMiller,YannickMonschauer,MichaelOppermann,AleksandraPaciorek,AlisonPridmore,BrendanReidenbach,VidaRozite,HugoSalamanca,MelSlade,MonicaTroilo,andFabianVoswinkel.KeisukeSadamori,DirectoroftheIEAEnergyMarketsandSecurity(EMS)DirectorateandBrianMotherway,HeadoftheEnergyEfficiencyDivision,providedstrategicguidanceandinputtothiswork.Valuablecomments,feedbackandguidancewereprovidedbyotherseniormanagementwithintheIEA,inparticular,LauraCozzi,MechthildWorsdorfer,andTimurGuel.OtherIEAcolleaguesprovidedimportantcontributions,including:ThibautAbergel,BlandineBarreau,SimonBennett,SylviaBeyer,StéphanieBrouckaert,OliviaChen,JoelCouse,DanielCrow,TanguyDeBienassis,ChiaraDelmastro,AraceliFernandezPales,PeterFraser,TimothyGoodson,CraigHart,ShaiHassid,AlejandroCesarHernandez,Jean-BaptisteLeMarois,PeterLevi,RüdigerLohse,ApostolosPetropouls,RobertaQuadrelli,GabrielSaive,DishaSharma,JacopoTattini,JacobTeter,PeerapatVithayasrichareon,MichaelWaldron,andDanielWetzel.MitsidiProjetosprovidedhelpfulresearchandstatisticalsupportandLushomoprovidedvaluablesupportwithvisualisations.TheIEACommunicationandDigitalOfficeprovidedproductionandlaunchsupport.ParticularthankstoJadMouawadandhisteam:AstridDumond,TanyaDyhin,JethroMullen,IsabelleNonain-Semelin,JuliePuech,RobStone,GregoryViscusiandThereseWalsh.AndrewJohnstoneditedthereport.ThereportwasmadepossiblebyassistancefromtheMinistryofEconomy,TradeandIndustry,Japan.TheIEAwouldliketothankthefollowingexpertswhoreviewedthereportandprovidedvaluablecontributions:EnergyEfficiency2021AcknowledgementsPAGE5IEA.Allrightsreserved.AlexAblaza(Asia-PacificESCOIndustryAlliance),HeidelindeAdensam(AustrianEnergyAgency),MarleneArens(HeidelbergCement),ChristianArtelt(HeidelbergCement),PeterBach(DanishEnergyAgency),RonitaBardhan(UniversityofCambridge),HerbertoBarriosCastillo(MinistryofEnergyofMexico),KemalBayraktar(InternationalSolarEnergySociety),StevenBeletich(4ETCPEDNA),CarmenBest(Recurve),MarBlazquezGomez(MinistryfortheEcologicalTransitionandtheDemographicChallenge,Spain),JefersonBorghettiSoares(EnergyResearchOffice,Brazil),MartinBornholdt(DENEFF),OdondeBuenRodriguez(MinistryofEnergyofMexico),VictoriaCharmet(NaturalResourcesCanada),ChiaraDallaChiesa(EnelX),ShubhashisDay(ShaktiSustainableEnergyFoundation),RobertDeegan,(DepartmentoftheEnvironment,ClimateandCommunications,Ireland),PierreDelforge(NaturalResourcesCanada),KatherineDelves(NaturalResourcesCanada),ThomasDeuts(FederalMinistryforClimateAction,Environment,Energy,Mobility,InnovationandTechnology,Austria),ShivrajDhaka(ConfederationofIndianIndustry),MichaelDonn(VictoriaUniversityofWellington),LesleyDowling(DepartmentofIndustry,Science,EnergyandResources,Australia),BilalDüzgün(MinistryofEnergyandNaturalResources),LynetteDray(UniversityCollegeLondon),Chae-EunHwang(MinistryofTradeEnergyandIndustryKorea),ChristineEgan(CLASP),MarkEllis(MarkEllis&Associates),StevenFawkes(EnergyPro),AlessandroFederici(ItalianNationalAgencyforNewTechnologies,EnergyandSustainableEconomicDevelopment),AlessandroFiorini(ItalianNationalAgencyforNewTechnologies,EnergyandSustainableEconomicDevelopment),BrianFitzgerald(EnergyEfficiencyandConservationAuthority,NewZealand),S.P.Garnaik(EnergyEfficiencyServicesLimited),JessicaGlicker(BuildingsPerformanceInstituteEurope),MattGolden(Recurve),ShuliGoodman,(LFenergy),SuneGrollov(Velux),LukasGutzwiller(SwissFederalOfficeofEnergy),TakashiHongo(Mitsui&Co.GlobalStrategicStudiesInstitute),HuminHu(ClimateworksFoundation),JamieHulan(NaturalResourcesCanada),GerbenHieminga(INGNederlands),RodJansen(EnergyinDemand),NigelJollands(EBRD),DeviLaksmiZafilus(MinistryofEnergyandMineralResources,Indonesia),SkipLaitner(AssociationforEnvironmentalStudiesandSciences),FranciscoLaverónSimavilla(Iberdrola),RobMurray-Leach(EnergyEfficiencyCouncil),BenoitLebot(FrenchMinistryfortheEcologicalandInclusiveTransition),AmoryLovins(PrecourtInstituteforEnergy,StanfordUniversity),ZhengMa(SDUHealthInformaticsandTechnology),CatherineMarchand(NaturalResourcesCanada),EricMasanet(UCSantaBarbara),TomMathiasson(NorwegianMinistryofPetroleumandEnergy),SangeetaMathew(AEEE),AlanMeier(LBNL),VincentMinier(SchneiderElectric),SteveNadel(AmericanCouncilforanEnergy-EfficientEconomy),StephenPantano(CLASP),AlanPears(RMITUniversity),RalfEnergyEfficiency2021AcknowledgementsPAGE6IEA.Allrightsreserved.Preussner(KfW),OliverRapf(BuildingsPerformanceInstituteEurope),MarcRingel(NuertingenGeislingenUniversityofAppliedSciences),ChandanaSasidharan(AEEE),AshokSakar(WorldBank),Hans-PaulSiderius(NetherlandsEnterpriseAgency),KoichiSasaki(InstituteofEnergyEconomics,Japan),SanjaySeth(TERI),JeremySung(DepartmentofEnvironment,Land,WaterandPlanning,Victoria),PeterSweatman(ClimateStrategy&Partners),DeepakTewari(AEEE),HarryVerhaar(Signify),andMatthiasZilbauer(KfW).EnergyEfficiency2021TableofcontentsPAGE7IEA.Allrightsreserved.TableofcontentsExecutivesummary..................................................................................................................8Chapter1.Recenttrends.......................................................................................................201.1Energyintensitytrends.......................................................................................................201.2Energyefficiencyfinanceandinvestment..........................................................................241.3Energyefficiencypolicyupdates........................................................................................311.4Othermarkettrends...........................................................................................................44Chapter2.Energyefficiencyandnetzeroby2050............................................................522.1Theroleofenergyefficiencyinnetzero............................................................................522.2Appliances..........................................................................................................................572.3Buildings.............................................................................................................................612.4Transport............................................................................................................................662.5Industry...............................................................................................................................71Chapter3.Digitalenergyefficiencymarkets......................................................................783.1Expandingtheenergyefficiencyresource.........................................................................783.2Widersystemlevelbenefits...............................................................................................833.3Digitally-enabledbusinessmodels.....................................................................................903.4Energyefficiencyindigitalstrategies.................................................................................95Generalannex.......................................................................................................................101Abbreviationsandacronyms..................................................................................................101Units.......................................................................................................................................101EnergyEfficiency2021ExecutivesummaryPAGE8IEA.Allrightsreserved.ExecutivesummaryEnergyefficiencyprogressrecoversin2021butneedstodoublefornetzeroby2050Energyefficiencytrendsareexpectedtoreturntotheirtenyearaverageaftertheworstyearinadecade.However,therateofimprovementneedstodoublefromcurrentlevelstomatchthegainoutlinedintheIEANetZeroEmissionsby2050Scenario.In2021,globalenergyintensity–akeymeasureoftheeconomy’senergyefficiency–isexpectedtoimprove(thatis,tofall)by1.9%afterimprovingbyonly0.5%in2020.Overthepastfiveyears,energyintensityhasimprovedonaverageby1.3%ayear,downfrom2.3%between2011and2016,andwellbelowthe4%describedintheNetZeroEmissionsby2050Scenarioover2020-2030.Primaryenergyintensityimprovement,2011-2021IEA.Allrightsreserved.Notes:2011-2016five-yearaverage.2021estimatebasedonWorldEnergyOutlook2021.NetZeroEmissionsScenario=IEANetZeroEmissionsby2050Scenario,2020-2030intensityimprovements,tenyearaverage.Globalenergydemandisexpectedtoincreasebyabout4%in2021,returningtopre-pandemiclevelsaseconomicactivityrebounds.Thepreviousyearwasone0%1%2%3%4%5%2011-201620172018201920202021ENetZeroScenario2020-2030EnergyintensityimprovementEnergyEfficiency2021ExecutivesummaryPAGE9IEA.Allrightsreserved.oftheworsteverforefficiencyimprovement,asenergydemandandpricesfell,technicalefficiencyenhancementsslowedandthebalanceofeconomicactivityshiftedawayfromlessenergy-intensiveservices,suchashospitalityandtourism.WithdisruptionsduetoCovid-19shapingglobalenergyandeconomictrendsin2020and2021,itisstillunclearwhetherthisyear’simprovedenergyintensitywillsignalthestartofasustainedrecovery.However,increasedinvestmenttrends,risinggovernmentspendingonefficiency-inlargepartrelatedtorecoveryplansenactedinresponsetoCovid-19crisis,newannouncementsofhigherclimateambitionandotherpolicymeasuresoffersomeencouragingsignals.GovernmentpolicieshavehelpedliftefficiencyinvestmentinthebuildingssectorGovernmentpoliciesareexpectedtohelpenergyefficiencyinvestmentriseby10%in2021toalmostUSD300billion.However,tobeconsistentwithlevelsforeseenintheIEANetZeroEmissionsby2050Scenario,overallannualinvestmentwouldneedtotripleby2030.RecentinvestmentgrowthhasbeenconcentratedlargelyinEurope,suggestingpolicesareneededinotherregionstoachieveglobalclimategoals.Energyefficiencyinvestment,2015-2021IEA.Allrightsreserved.Note:Anenergyefficiencyinvestmentisdefinedastheincrementalspendingonnewenergy-efficientequipmentorthefullcostofrefurbishmentsthatreduceenergyuse.0501001502002503003502015201620172018201920202021EUSDBillion(2019)IndustryTransportBuildingsEnergyEfficiency2021ExecutivesummaryPAGE10IEA.Allrightsreserved.In2020,strongerbuildingsefficiencyprogrammesinEuropecompensatedfortransport,whereCovid-19pusheddowntotalspending.Transportefficiencyinvestmentsarenowrecoveringwhilebuildingsinvestmentsarereachingrecordhighs.Additionalandstricterstandardsandregulations,higherpublicspending,incentivestructures,andstreamlinedplanninglawsandprocedurescanallhelpliftinvestmentandmakeefficiencyprojectsmoreattractivetoprivatefinance.Forexample,theenergyservicesmarketinthePeople’sRepublicofChina(hereafter“China”)increaseditsdeploymentofdigitaltechnologiesandexpandedby12%in2020,assistedbytaxincentives.Efficiency-relatedspendingmakesuptwo-thirdsofgovernmentcleanenergyandsustainablerecoverymeasuresApprovedenergyefficiencyspendingbygovernmentsisregionallyunbalanced,withthemajorityofspendingcomingfromadvancedeconomies.Thereremainsconsiderablepotentialforgovernmentselsewheretouserecoverypackagestoboostspending,whichwouldcreatejobsandpromoteeconomicgrowth.Annualenergyefficiencyandcleanenergysustainableeconomicrecoveryspending,2021-2023IEA.Allrightsreserved.Notes:“Governmentspending”includesgovernmentmeasureshighlightedintheIEASustainableRecoveryPlan.“Mobilisedspending”includesallotherpublicandprivatespendingonmeasureshighlightedintheIEASustainableRecoveryPlanmobilisedbygovernmentspending.“Energyefficiency-related”includesspendingonlow-carbonandefficienttransportandenergy-efficientbuildingsandindustry.“Othercleanenergyandsustainablerecovery”includeslow-carbonelectricity,electricitynetworksandfuels,technologyinnovationandpeoplecentredtransitions.Source:IEA(2021),SustainableRecoveryTracker.69%62%31%38%050100150200250300350GovernmentspendingMobilisedspendingUSDBillionperyearEnergyefficiency-relatedOthercleanenergyandsustainablerecoveryEnergyEfficiency2021ExecutivesummaryPAGE11IEA.Allrightsreserved.Energyefficiency-relatedspendingmakesuparoundtwo-thirdsofthetotalUSD400billionayearmobilisedbygovernmentswiththeirrecoverymeasuresoverthenextthreeyears,asmonitoredbytheAutumn2021updateoftheIEASustainableRecoveryTracker.Thiscomprisesbothgovernmentspendingandassociatedmobilisedprivateandotherpublicsectorspendingbetween2021and2023.MeasuresthathavebeenannouncedbutyettobeconfirmedoftheendofOctober2021,arenotincludedandmayliftefficiencyspendingevenhigher.Enhancedinvestmentcanaddfourmillionmoreefficiencyjobsby2030IntheIEANetZeroEmissionsby2050Scenario,anearlypolicyfocusonenergyefficiencywouldtriplethenumberofjobscreatedby2030throughincreasedspendingonbuildingretrofits,moreefficientappliancesandothermeasures.Thisincludesmanyjobsinconstruction,aswellasinstallationofheating,coolingandhotwatersystems.Whilemanyofthesejobsmatchexistingskillsets,governmentscanplayarolebysponsoringtrainingprogrammestohelpprovidewideraccesstoopportunitiesandavoidskillsshortages.NewworkersincleanenergyandrelatedsectorsandsharesbysectorandjobtypeintheNetZeroEmissionsby2050Scenario(NZE)andtheStatedPoliciesScenario(STEPS)in2030IEA.Allrightsreserved.Source:IEAanalysisbasedonIEA(2021),WorldEnergyOutlook,2021.051015202530STEPSBysectorSTEPSByjobtypeNZEBysectorNZEByjobtypemillionjobsEnergyefficiencyGridsElectricvehiclesPowergenerationEnd-userenewablesBioenergyInnovativetechnologiesSeries11Series10Retrained/repurposedjobsNewjobsSectors:Jobtypes:EnergyEfficiency2021ExecutivesummaryPAGE12IEA.Allrightsreserved.SupplychainpressuresneedtobewatchedcloselyTheeconomicrecoveryin2021hasincreaseddemandforcommodities,puttingpressureonsupplychains,andcreatingshortagesandbottlenecksforgoodsandservicesessentialforenergyefficiencyinvestment.Thishaspusheduppricesforeverythingfrombasicconstructionmaterialstosemiconductorsusedinelectronicsandvehicles.Ithasalsosloweddownbuildingcompletionsinsomecountriesduetolackofkeysupplies.Forexample,inthesecondquarterof2021lumberpricesintheUnitedStateswere120%higherthaninJanuary2019,thoughhavesincecooledoff.SteelpricesinAugust2021werealsomorethan60%higherthaninJanuary2019.IntheUnitedKingdom,asurveyofcontractorsindicatedsupplyconstraintsforcement,electricalcomponents,timber,steelandpaints.Wagesintheconstructionsectorrosebyupto13%intheyeartoMay2021insomemarkets,addingtoprojectcosts.Priceindicesforkeycommoditieslinkedtoconstructionandefficientequipment,January2019-August2021IEA.Allrightsreserved.Sources:Cement,lumber,steel:BureauofLaborStatistics(DatafortheUSmarket);copper,nickel,cobalt:IMFPrimaryCommodityPrices(Datafortheglobalmarket);lithium:BloombergLithiumCarbonate99%MinChina(Datafortheglobalmarket).-60%-40%-20%0%20%40%60%80%100%120%140%Costpriceindex(%;Jan2019=0%)LumberCopperCementSteelLithiumNickelCobaltEnergyEfficiency2021ExecutivesummaryPAGE13IEA.Allrightsreserved.Energyefficiencyofferssomeofthefastestandmostcost-effectiveactionstoreduceCO2emissionsIntheNetZeroEmissionsby2050Scenario,theenergyintensityoftheglobaleconomyimproves(thatis,falls)by35%by2030.Thisisdrivenbyenergyefficiencycombinedwithrelatedmeasuressuchaselectrificationandbehaviouralchange.Thisenablesgrowthincleanenergysources,suchaswindandsolargeneration,tooutpaceoveralldemandforenergyservices.Inthisscenario,theglobaleconomygrowsby40%by2030,drivenbyhigherpopulationsandincomelevels,butuses7%lessenergy.MacroeconomicandenergyindicatorsintheIEANetZeroEmissionsby2050Scenario,2020-2030IEA.Allrightsreserved.Notes:GDP=USD2019billionatpurchasingpowerparity;electricity=electricitygeneration);Sectoralenergyuse=finalenergyconsumption;CO2=energy-relatedCO2emissions;energyintensity=TES/GDP.Source:IEAanalysisbasedonIEA(2021),NetZeroby2050report.Around80%oftheadditionalenergyefficiencygainsinthescenariooverthenextdecaderesultinoverallnetcostsavingstoconsumers,afteraccountingforboththeinitialcostofmeasuresandloweroperatingcosts.Thishelpslowerenergybillsandcushiontheeffectsofpricevolatility.Thatisonereasonwhyenergyefficiencyisfront-loadedintothepolicymixintheNetZeroEmissionsby2050Scenario.Theelectrificationoftransport,spaceandwaterheatingandmanyindustrialapplicationsresultsinincreasedefficiencyandloweremissions,butcontributesto-80%-60%-40%-20%0%20%40%60%GDPElectricitygenerationIndustryenergyuseTransportenergyuseTotalenergysupplyBuildingsenergyuseEnergyintensityCO2CO2intensityofelectricitygenerationPercentagechange2020-2030EnergyEfficiency2021ExecutivesummaryPAGE14IEA.Allrightsreserved.electricitygenerationrisingby40%by2030intheNetZeroEmissionsby2050Scenario.Electricequipmentismuchmoreefficientthantheirequivalentspowereddirectlybyfossilfuels,withelectricheatpumps,forexample,beingthreetofourtimesmoreefficientthanburningfossilfuelsforheat.Electricitycanalsobegeneratedfromrenewablesources.Behaviouralchangeisalsoanimportantpartofthescenario.Theseincludeadjustingtemperaturesforheatingandcooling,switchingtransportmodes,andincreasingrecycling.Theroadtonetzeroinvolvesover40energyefficiencymilestonesTheNetZeroEmissionsby2050Scenarioinvolvesmorethan40energyefficiencymilestoneswithoutwhichtotalfinalenergyconsumptionwouldbearound30%higherby2030.Mostoftheseincorporatetechnologicallymaturesolutionsthatcanbescaledupveryquickly.Inthescenario,energyefficiencyactionsinthebuildingssectordeliversomeofthegreatestenergysavingsthroughto2030.Increasingtheshareofexistingbuildingsthatarezerocarbonreadyfromlessthan1%todaytoaround20%by2030isakeymilestone,asismovingtononewsalesofcoalandoilboilersgloballyfrom2025.Salesofgasboilersarealsobannedby2025,exceptwheregassupplyissettobedecarbonisedandboilerscapableofburning100%hydrogenoranotherlow-carbongasareclassedaszerocarbonready.Fortransport,increasingfuelefficiencystandardsofallvehicletypesisimportantasevenintheNetZeroEmissionsby2050Scenario,80%ofpassengercarsontheroadin2030arestillpoweredwithinternalcombustionengines.Salesofheavier,lessefficientSUVsreachedmorethan40%ofglobalsalesin2020,whileelectricvehicleswerejust5%.Morethan20countrieshaverecentlyannouncedplanstophaseoutsalesofinternalcombustionenginevehicles,with2035setasthemilestoneforthisinthescenario.Onlyindustrialenergyconsumptionrisesby2030intheNetZeroEmissionsby2050Scenario,increasingbyaround8%.Evenso,substantialprogressismadeinmaterialandenergyefficiencytoenabletheglobaleconomytoproduce9%moresteel,21%morechemicalsand5%morecementperyearby2030.EnergyEfficiency2021ExecutivesummaryPAGE15IEA.Allrightsreserved.EnergyefficiencymilestonesintheNetZeroEmissionsby2050Scenario,2020-2050IEA.Allrightsreserved.Notes:EV=electricvehicle.ICE=internalcombustionenginevehicle.Source:IEAanalysisbasedonIEA(2021),NetZeroby2050report.EnergyEfficiency2021ExecutivesummaryPAGE16IEA.Allrightsreserved.Standardshavehelpedhalvetheenergyconsumptionofkeyappliancesinthelongest-runningprogrammesOver120countrieshaveimplementedoraredevelopingmandatorystandardsandlabelsforkeyappliances.Suchapplianceefficiencypolicieshavehelpedmorethanhalvetheenergyconsumptionofmajorappliancesincountrieswiththelongest-runningprogrammes.Thisincludesairconditioners,refrigerators,lighting,televisions,washingmachinesandcookingappliances.Thesehugegainshavebeenachievedevenasthepurchasepriceofsuchappliancesfellbyanaverageof2-3%peryear.Thusconsumershavebenefitedfrombothlowerappliancepurchasecostsandloweroperatingcosts.However,reachingtheseresultstakestime,becauseoncenewstandardsareputinplaceitcanbemanyyearsbeforetheexistinginefficientstockisreplaced.Thishighlightstheroleofincentivesandreplacementprogrammestoremoveold,lessefficientequipmentfromusefaster,especiallyincountrieswithlessmatureprogrammes.EnergysavingsfromenergyefficiencystandardsandlabelsoverlifeofprogrammesIEA.Allrightsreserved.Notes:Longer-runningprogrammes(morethan20years)withstrongerstandardsdelivermoresavingsasthereismoretimeforinefficientappliancesandequipmenttobereplacedandforprogrammestosignificantlylowertheaveragestockenergyconsumptionofthatapplianceclass.Electronicdevicesinclude:externalpowersupplyunits,monitors,DVD/VCRunitsandotherpersonalelectronics.Source:IEAand4ETCP,basedonreviewsofover400publishedreportscoveringenergyefficiencystandardandlabelprogrammesinawiderangeofcountries.0%10%20%30%40%50%60%70%80%90%100%MotorsRoomairconditionersSpaceheatingCookingappliancesWetappliancesWaterheatersTransformersLampsResidentialrefrigeratorsPumpsTelevisionsElectronicsEnergysavingoftheaverageapplianceinuseWorldaverageprogrammeperformanceLongestrunningprogrammesEnergyEfficiency2021ExecutivesummaryPAGE17IEA.Allrightsreserved.EfficiencyprogrammeshaveavoidedconsumptionequaltototalwindandsolarpowergenerationAnanalysisofninelargecountriesandregions,includingChina,theEuropeanUnionandtheUnitedStates,showsthatefficiencystandardshelpedsaveabout1500TWhofelectricityperyearin2018,equivalenttothatyear’stotalgenerationfromwindandsolarinthosecountries.Inthecountrieswiththelongest-runningprogrammestheeffectissolargethataround15%oftotalelectricitygenerationisbeingsavedthroughapplianceprogrammes.Ifasimilar15%improvementhadbeenachievedbyallcountries,electricityconsumptioncouldhavebeenreducedby3500TWh–roughlyequivalenttocuttingChina’scurrentelectricityconsumptioninhalf.Impactofenergyefficiencystandardsandlabellingprogrammesinselectedcountries,2018IEA.Allrightsreserved.Notes:Electricityconsumptionsavingsarecalculatedrelativetothecommencementofprogrammesinthosecountries.Longer-runningprogrammesyieldhigherenergysavingsasagreaterproportionofappliancesinusearecovered.Source:IEAand4ETCP.InNovember2021,theIEAandtheCOP26presidencylaunchedtheCOP26ProductEfficiencyCalltoActiontodoubletheefficiencyofkeyappliancesandhelpmakeitquicker,easier,andcheapertoraiseclimateambition.G7leadershadpreviouslywelcomedtheCalltoActionatthe2021G7SummitinCornwall,focusingonlighting,refrigerators,airconditionersandindustrialmotorsystems0%2%4%6%8%10%12%14%16%18%MalaysiaSouthAfricaBrazilIndiaChinaMexicoAustraliaEuropeanUnionUnitedStatesContributionofappliancestoreducingtotalelectricityconsumptionEnergyEfficiency2021ExecutivesummaryPAGE18IEA.Allrightsreserved.whichtogetheraccountforover40%ofglobalelectricitydemandandover5GtofglobalCO2emissionsayear.ThisisroughlyequaltotheUnitedStates’currenttotalCO2emissions.AnewlevelofenergyefficiencyisbeingenabledthroughrapiddigitaltechnologydeploymentIn2021,thestockofconnectedappliances,devicesandsensorsisexpectedtoovertakethenumberofpeopleontheplanet.Overthelastfiveyearsthestockofconnectedappliances,devicesandsensorshasgrownbyanaverageofaround33%peryearandisexpectedtoreach9billionin2021.Mostofthesearemeasuringdevices,suchassensorsandsmartmeters,withotherdevicesachievingmarkettake-offmorerecently.Forexample,deploymentofsmartappliancesisexpectedtodoublefrom2020-2021andthenumberofsmartlightingdevicesisapproaching1billion.Stockofdigitallyenabledautomationdevices,2010-2021IEA.Allrightsreserved.Note:2020and2021areestimates.IoT=Internetofthings.Source:IEA4EEDNATotalEnergyModel.Thesetrendsarehelpingexpandthebenefitsofenergyefficiencythroughimprovedmeasurementandenhancedcontroltoenablegreaterparticipationindemandresponse.IntheNetZeroEmissionsby2050Scenario,morethan500GWofdemandresponseisbroughttomarketby2030tosupportgridstabilityandtomatchdemandtotimeswhenrenewablesourcesisatitshighest.01234567891020102011201220132014201520162017201820192020E2021EBillionconnecteddevicesCookingStreetlightsWaterheatingSpaceconditioningAppliancesAudioLightingSmartmeters,sensorsandotherIoTEnergyEfficiency2021ExecutivesummaryPAGE19IEA.Allrightsreserved.Examplesinclude,efficienthotwatersystems,smartchargingofelectricvehiclesandotherequipmentincorporatedintoconnectedbuildingenergysystems.Buildingenergymanagementsystemshavebeenshowntobeabletodeliverenergysavingsof20%to30%,arisingfrominstallingappliancesthataremoreefficientandofferenhancedmonitoringandcontrolofenergyuse.Technologyinnovationisalsopromptingpolicyinnovationinseveraljurisdictions.Forexample,in2021California’sPublicUtilityCommissionmovedtointroduceanewmetriccalledtotalsystembenefittoprovideincentivesthatrecognisethewidersystembenefitsfromenergyefficiencyviaitsutilityenergyefficiencyprogrammes.Severalcountrieshavealsorecentlylauncheddigitalstrategieswhichlooktoaddressriskssuchasincreaseddeviceenergyconsumption,alackofinteroperability,cybersecurity,andsocialinequalityduetounequalaccesstodigitalservices.TheIEADigitalDemand-DrivenElectricityNetworksInitiativeisprovidingaplatformforgovernmentstolearnfromoneanotherandapplybestpracticesintheseareas.EnergyEfficiency2021Chapter1.RecenttrendsPAGE20IEA.Allrightsreserved.Chapter1.Recenttrends1.1EnergyintensitytrendsEfficiencyprogressrecoversin2021butneedstodoublebefore2030toreachnetzerogoalsby2050Primaryintensityimprovement–thepercentagedecreaseintheratioofglobaltotalenergysupplyperunitofGDP–isexpectedtoreturntoits10-yearaverageof1.9%in2021afteritsworstyearinadecade.However,thismeasureofenergyefficiencystillneedstodoubletomatchthelevelsoutlinedintheIEANetZeroEmissionsby2050Scenario.Theaverageannualenergyintensityimprovementforthelastfiveyearswas1.3%,downfrom2.3%between2011and2016andwellbelowthe4.2%annualrisebetween2020and2030describedintheNetZeroEmissionsby2050Scenario.Primaryenergyintensityimprovement,2011-2021Notes:2011-2016five-yearcompoundannualgrowthrate.2021estimatebasedonWorldEnergyOutlook2021.NetZeroScenario=IEANetZeroEmissionsby2050Scenario,2020-2030intensityimprovement,tenyearaverage.Primaryenergyintensity=totalenergysupply(formerlytotalprimaryenergysupply)perUSdollaratpurchasingpowerparity.0%1%2%3%4%5%2011-201620172018201920202021ENetZeroScenario2020-2030EnergyintensityimprovementEnergyEfficiency2021Chapter1.RecenttrendsPAGE21IEA.Allrightsreserved.Globalenergydemandisexpectedtoincreaseby4%in2021,returningtopre-pandemiclevelsascountriesgraduallyemergefromlockdownsandeconomicactivitypicksup.Thissupportedtheimprovementinenergyintensityperformancein2021aslessenergy-intensiveservicesectorsoftheeconomyreopened,energypricesrose,andpolicymakersrampedupenergyefficiencyprogrammesandspendinginrecoverymeasures.In2020energydemandfellby4%which,whencombinedwitha3.5%fallinglobalGDPinthatyear,contributedtomakeoneoftheworstyearsofenergyintensityimprovementinrecenthistory,atjust0.5%.Arangeoffactorscontributedtothisresult,includingahighershareofenergy-intensiveactivitiesintheeconomy,aslowdownintechnicalenergyefficiencyimprovementsandlowerenergyprices.However,evenbeforethepandemic,energyintensityimprovementhadslowed.Thisslowdownwasinfluencedbystrongdemandforenergyservicesandashiftineconomicstructuretowardsmoreenergy-intensiveindustrialproduction,combinedwithonlymodestavoideddemandfromfuelswitchingtowardselectricityandslowerratesoftechnicalefficiencyimprovements.Forexample,energydemandwouldhavebeen5%higherin2019iftechnicalefficiencyimprovementsbetween2015and2019hadbeenaslowasin2020.Decompositionofchangeinglobaltotalfinalenergyconsumption,2015-2020Note:TFC=totalfinalenergyconsumptionintheindustry,buildingsandtransportsectors.Source:IEA(2021),WorldEnergyModel.Asitwas,energyefficiencyhelpedavoidnearlytwo-thirdsofthepotentialincreaseinenergydemandthatcouldhaveoccurredbetween2015and2019duetoeconomicgrowth.Therehasalsobeenasteadydeclineintheshareofcoal,oilandnaturalgasboilersinglobalheatingequipmentsales,whichfellbelow50%oftotalsalesforthefirsttimein2020.Salesofmoreefficientelectricheatpumpsandrenewableheatingequipmentsuchassolarhotwatersystemsmadeupmorethan20%ofoverallinstallationsin2020.360370380390400410420430440450460201520192020Finalenergyconsumption(EJ)EconomicstructureActivityEnergyefficiencyFuelswitchingTFCline1line2line3line4line5line6EnergyEfficiency2021Chapter1.RecenttrendsPAGE22IEA.Allrightsreserved.Animportantcontributortochangesineconomicstructurewhichaddedtoenergydemandwasstrongdemandforenergy-intensiveproductsinChina.Thisgrowthhasrecentlyledthegovernmenttoincreaseeffortstocontainelectricityconsumptionbyrestrictingoutputofsteel,aluminiumandcement.RecordsteelproductioninChinaputspressureonenergyintensityimprovementsConstitutingaround14%ofnationalCO2emissions,steeloutputisamajorfocusofChina’splanstoachievenetzeroemissionsby2060.Energy-intensiveprimaryproduction,asopposedtoproductionfromscrapmetal,accountsforaround80%ofChinesecrudesteelproduction,comparedwitharound60%fortherestoftheworld.Only10%ofthecountry’scrudesteelproductioninvolveselectricfurnaces,whicharetypicallyusedwhenthesolemetallicinputisscrap.Steelproduction,whichmeetsexportaswellasdomesticdemand,increasedby7%toarecord1.1billiontonnesin2020,accountingforaround60%ofglobaloutput.FromJanuarytoApril2021,increasingdemandpushedupprofitsintheChinesesteelindustry,liftingdemandforironoretorecordlevelsandelevatingtheindustrytothetopoftheeconomicagenda.Demandwasledbythebuildingssector,infrastructureandmanufacturing.Aspartofitsemissionsreductionstrategy,Beijinghaspledgedtolimitcrudesteeloutputtotheapproximately1billiontonnesproducedin2020.However,inthefirsthalfof2021itranasmuchas12%abovethisbaseline,promptingoutputrestrictionsinthesecondhalfof2021.China’sIronandSteelAssociationhasproposedlimitingexportstoprioritisedomesticsupply.China’sleadingsteelproducershavealsosettargetstoachieveapeakinemissionsin2022-2023withBaowuSteel,AnsteelGroupandBaotousteeltargetingcarbonneutralityby2050.Beforethepandemic,globalfinalenergyconsumptionincreasedatanaverageannualrateof1.5%between2015and2019.Thiswasledbythetransportsectorwithannualgrowthof2%followedbybuildingswith1.5%andindustrywith1%.In2020,transportwasthesectorthatexperiencedthelargestdropinenergyconsumption,fallingby14%.Loweroccupancyratesinplanes,trainsandpublictransportresultedinalessefficientuseofenergyinthesector.Electricvehiclesalesperformedwellin2020,with3millionvehiclessold,accountingfor5%ofcarsalesworldwide.Toputthisincontext,however,SUVsalesnowconstitutearoundEnergyEfficiency2021Chapter1.RecenttrendsPAGE23IEA.Allrightsreserved.40%ofallpassengersales,upfromjust20%tenyearsearlier.Suchvehiclesaretypicallyheavierandlessefficient,consumingaround20%moreenergythanmedium-sizedvehicles.RestrictionstopreventthespreadofCovid-19alsoparticularlyaffectedGDPinlessenergy-intensiveservicessectors,suchasrestaurants,hospitalityandrecreation,liftingtherelativeshareofmoreenergy-intensiveactivitiesintheeconomy.FinalenergydemandinthebuildingssectorwastheleastaffectedbyCovid-19restrictionsin2020,fallingbyjust2%.However,thisisataleoftwodifferentsectors–residentialandcommercial.IntheUnitedStates,residentialelectricitydemandrosebynearly2%in2020whilecommercialdemandfellby6%aspeopleworkingfromhomebecamethenewnorm,alongwithvideoconferencinginlieuofbusinesstravel.Changeintotalfinalenergyconsumptionbysector,2016-2020IEA.Allrightsreserved.Source:IEA(2021),WorldEnergyModel.Industrialenergyconsumptionfellby3%in2020,cushionedfromtheimpactofrestrictionsbytherisingshareofenergy-intensiveactivitiesandactivityinChina,whichnavigatedtheyearwithfewerrestrictions.-15%-10%-5%0%5%20162017201820192020IndustryBuildingsTransportTotalfinalconsumptionEnergyEfficiency2021Chapter1.RecenttrendsPAGE24IEA.Allrightsreserved.1.2EnergyefficiencyfinanceandinvestmentInthelasttwoyears,energyefficiencyinvestmentinbuildingsreachedrecordlevelsIn2021,totalenergyefficiencyinvestmentsareexpectedtoincreaseby10%tojustaboveUSD290billion,boostedbythescalingupofexistinggovernmentefficiencyprogrammes,recoverymeasuresandeconomicrecoveryinthetransportandbuildingssector.Investmentinenergyefficiencymeasuresinbuildingsisexpectedtorisein2021by20%comparedwith2019,tojustoverUSD190billion.Transportenergyefficiencyinvestmentisestimatedtobestill9%below2019levelsataroundUSD60billion,whileindustrialefficiencyinvestmentisexpectedtoremainsteadyataroundUSD40billion.DespitetheCovid-19crisis,overallenergyefficiencyinvestmentwasstablein2020atnearlyUSD270billion,buttrendsdifferedwidelyacrosssectorsandregions.Unprecedentedgrowthinthebuildingssectoroutweighedaheavydecreaseintransportefficiencyinvestments,whilespendingintheindustrysectorremainedlargelyunchanged.Globalinvestmentinenergyefficiencybysector,2015-2021IEA.Allrightsreserved.Notes:Anenergyefficiencyinvestmentisdefinedastheincrementalspendingonnewenergy-efficientequipmentorthefullcostofrefurbishmentsthatreduceenergyuse.Theintentionistocapturespendingthatreducesenergyconsumption.Underconventionalaccounting,partofthisiscategorisedasconsumptionratherthaninvestment.0501001502002503003502015201620172018201920202021EUSDBillion(2019)IndustryTransportBuildingsEnergyEfficiency2021Chapter1.RecenttrendsPAGE25IEA.Allrightsreserved.Whileglobalbuildingactivitycontractedovermuchof2020,buildingsenergyefficiencyinvestmentsinEuropeincreasedstronglyenoughtoboostglobalinvestmentsinthisareaby11%tonearlyUSD180billion.Mostofthisincreasewasduetothescalingupofefficiencypoliciesputinplacebefore2020.InGermany,forexample,thebuildingsprogrammesofthestate-owneddevelopmentbankKfWdoubledinvolume.Covid-19-relatedgovernmentrecoverymeasuressuchastheSuperbonusprogrammeinItalyortheFranceRelancerecoveryplanalsohelpedtoincreaseinvestmentlevels.ScalingupenergyefficiencyinvestmentsinGermanyGermany’sspendingonenergyefficiencyinbuildingsgrewstronglyin2020mainlybecausethestate-owneddevelopmentbankKfWdoubleditsefficientconstructionandrenovationinvestmentstoEUR30billion,accountingforasixthoftheyear’sglobalbuildings-relatedenergyefficiencyspending.Whilesomeofthisinvestmentwasrecoveryspending,themajoritywasduetomajorchangesagreedin2019tomakeenergyefficiencyprogrammesforbuildingsmoreattractive.Keychangesincludedincreasedmaximumfundingamountsforresidentialbuildings,aswellashigherinvestmentandloanrepaymentgrants,whichinmostcasesledtonegativeinterestratesonloans.Theenhancedpoliciesresultedinparticularlystronggrowthratesforconstructionofenergy-efficientnewbuildings,whichnowmakesuptwo-thirdsofKfW’sbuildingsfinancingvolume,upfrom40%in2018.Additionalchangesincludingincreasestomaximumloanamounts,financialsupport,simplifiedprocessesandgreatersupportfortheuseofefficientprefabricatedbuildingelementscameintoeffectin2021.Asingleapplicationnowcoversfinancingrequestsforseveralenergyefficiencymeasuresandsmarthomeimprovements,includingrenewableenergy-basedheatingsystemswithenergyefficiencyguidingbuildingownersthroughprojects.InvestorscannowchoosebetweenreducedinterestloansfromKfWanddirectgrantsprovidedthroughtheFederalOfficeforEconomicAffairsandExportControl(BAFA).Inbothcases,financialsupportincreaseswiththeefficiencylevelofthebuildingorheatingsystem.Repaymentgrantsrangefrom15%to25%ofthetotalsupport,dependingontheefficiencyclassofthebuilding,andreachupto50%forrenewables-basedheatingsystems.Forexample,investmentgrantsuptoEUR37500areavailableforthemostefficientnewbuildings,whichrequire60%lessenergythanreferencebuildingsandincludesolarPV,batteryandheatrecoveryventilationsystems.ForEnergyEfficiency2021Chapter1.RecenttrendsPAGE26IEA.Allrightsreserved.retrofitsreachingthehigheststandard,homeownerscanreceiveuptoEUR75000inrepaymentorinvestmentgrants.However,someprojectsthatreceivedfundingin2020and2021havefacedmaterialsupplyshortagesandfinancialdifficultiesamonghomeownersbecauseoftheCovid-19crisis.Asaresult,efficiencyupgradesmaybelessambitiousthaninitiallyplanned.Otherchallengesincludereachingmorelow-incomehouseholds,whoseuseofheatpumpshasbeenlimited.Inotherregions,however,efficiencyspendinginbuildingshasfallen,orgrownmoreslowly.IntheUnitedStates,noadditionalfundingwasdirectedtowardsenergyefficiencyinvestmentin2020beyondexistingprogrammes,althoughrecoverymeasuresincludedlargeelementsofefficiency-relatedspendingin2021.InAsia,growthinbuildingsefficiencyspendinginChina,JapanandKoreabalancedoutdeclinesinothercountries.InIndia,constructionactivitydecreasedbyaround15%in2020ascorporateandhouseholdbudgetscameundersevereconstraints.TransportefficiencyinvestmentswerearoundUSD50billionin2020,a26%dropfrom2019,influencedbyaslowdowninglobalcarsales.ThisfallwascushionedbyariseinelectricvehiclesalesinChinaandEurope,supportedbyrecoveryspendingsuchastheEuropeanUnion’sRecoveryandResilienceFacilityandelectricvehiclepurchasesubsidiesinFrance,Germany,SpainandtheUnitedKingdom.Forthefirsttimesince2015,electricvehiclesalesinEuropeoutpacedthoseinChina.Efficiency-relatedspendingmakesuptwo-thirdsofnewcleanenergyrecoveryfinancingInJuly2021,theIEAreleaseditsSustainableRecoveryTrackertoassessnationalrecoverymeasuresagainstthecategoriesdepictedintheIEASustainableRecoveryPlan.ThetrackerfoundthatasoftheendofOctober2021annualaverageinvestment–includinggovernmentspendingandtotalpublicandprivateinvestmentmobilisedbythatspending–islikelytoincreasecleanenergyandsustainablerecoveryspendingbyaroundUSD400billionperyearbetween2021and2023.Initialgovernmentspendingrepresents28%ofthisthree-yearaverage.OfthisanticipatedUSD400billioninannualinvestmentoverthenextthreeyears,almostUSD260billionperyearisexpectedforenergyefficiencymeasuresinbuildings,industryandlow-carbontransport,includingrelatedareassuchaselectricvehiclechargingandurbantransitinfrastructure.ThiscomprisesaroundEnergyEfficiency2021Chapter1.RecenttrendsPAGE27IEA.Allrightsreserved.USD70billioninannualdirectgovernmentspendingandalmostUSD190billioninprivatemobilisedspendingandconstitutesaroundtwo-thirdsofthetotalextracleanenergyrecoveryinvestmentexpectedtobespentbetween2021and2023.Annualenergyefficiencyandcleanenergyeconomicrecoveryspending,2021-2023IEA.Allrightsreserved.Notes:“Governmentspending”includesgovernmentmeasureshighlightedintheIEASustainableRecoveryPlan.“Mobilisedspending”includesallotherpublicandprivatespendingonmeasureshighlightedintheIEASustainableRecoveryPlanmobilisedbygovernmentspending.“Energyefficiency-related”includesspendingonlow-carbonandefficienttransportandenergy-efficientbuildingsandindustry.“Othercleanenergyandsustainablerecovery”includeslow-carbonelectricity,electricitynetworksandfuels,technologyinnovationandpeoplecentredtransitions.Source:IEA(2021),SustainableRecoveryTracker.Totalapprovedgovernmentenergyefficiency-relatedspendinginthe2021-23periodandbeyondcomprisesoverUSD310toUSD315billioninthemeasuresapprovedasoftheendofOctober2021.EuropeanUnioncountriesaccountforaround65%ofthistotal.Examiningthesectoralbreakdownoftheglobaltotal,transport-relatedspendingcomprises55%,buildings30%andindustry10%andotherefficiency-relatedmeasures5%.AroundUSD170toUSD175billionoftotalgovernmentinvestmenthasbeencommittedtowardstransport-focusedenergyefficiency.Low-carbonandenergy-efficientvehiclesandcharginginfrastructuremakeupalmosttwofifthsofthis.Railandurbantransitprojects(suchasbus,lightrailandmetros)makeupjustoverhalfoftransport-relatedenergyefficiencyspending.69%62%31%38%050100150200250300350GovernmentspendingMobilisedspendingUSDBillionperyearEnergyefficiency-relatedOthercleanenergyandsustainablerecoveryEnergyEfficiency2021Chapter1.RecenttrendsPAGE28IEA.Allrightsreserved.AroundUSD95billionofglobalgovernmentinvestmentistargetedforenergy-efficientbuildingsandappliances,especiallybuildingretrofits.RecoverymeasuresfromEuropehavedominatedthisspendingrepresentingaroundfour-fifthsoftotalannouncedglobalpublicinvestment.Totalenergyefficiency-relatedgovernmentcleanenergyrecoveryspending,2021-onwardsIEA.Allrightsreserved.Note:Thisfigureandsectionincludegovernmentrecoveryspendingfrom2021andbeyond,andannouncedtotheendofOctober2021,basedonmeasureshighlightedintheIEASustainableRecoveryTracker.Source:IEA(2021),SustainableRecoveryTracker.ConsiderablegovernmentspendingannouncedbutyettobeapprovedasoftheendofOctober2021havenotbeenincludedinthistotal,notablyinFrance,India,JapanandtheUnitedStates.TheUSInfrastructureInvestmentandJobsAct,approvedsince,containsUSD550billioninnewinvestments,ofwhichthecleanenergycomponentsarealsonotincludedinthistotal.Thesewouldincreasegovernmentspendingonenergyefficiencyevenfurther.ThisrecoveryspendingcouldbringadvancedeconomiesquiteclosetothelevelsenvisagedintheIEASustainableRecoveryPlan;however,atagloballevelasignificantgapremains.Forexample,basedoncurrentapprovedspendingforenergyefficiency-relatedactivities,thereisstillagapofabout60%tomeetthelevelsoffundingoutlinedintheSustainableRecoveryPlan.Additionaleconomicrecoveryinvestmentatthesubnationalormunicipallevelsisnotcapturedinthisanalysis.Forexample,theTokyoMetropolitanGovernment’s2021budgethasallocatedUSD350millionforzero-emissionsupport,includingLEDlightingpromotion,energyconservationandelectricvehiclesupport.0102030405060708090100Energy-efficientbuildingretrofitsLow-carbonandefficientvehiclesRailUrbantransitIndustrialenergyefficiencyOtherenergyefficiencyVehiclecharginginfrastructureEnergy-efficientnewbuildingsAircraftWalkwaysandbikelanesFreight(trucksandshipping)HeatpumpsandappliancesUSDbillionEnergyEfficiency2021Chapter1.RecenttrendsPAGE29IEA.Allrightsreserved.Government-relatedenergyefficiencyRD&DspendingfocusesontransportandindustrysectorsGovernmentsandstate-ownedenterpriseshavesignificantlyincreasedtheirspendinginresearch,developmentanddemonstration(RD&D)inenergyefficiency.InIEAmembercountries,investmentsreachedUSD5.5billionin2020,anincreaseoftwo-thirdscomparedto2015andatriplingsince2000,ledbyspendinginthetransportandindustrialsectors.Notsincestimulusmeasuresfollowingtheglobalfinancialcrisisof2008hasgovernmentefficiencyRD&Dspendingreachedtheselevels.EnergyefficiencyhasalsorisenasashareoftotalgovernmentenergyRD&Dspending,increasingtoaround27%in2020,up7%fromfiveyearsearlier.GovernmentenergyefficiencyRD&DspendinginIEAmembercountries,2000-2020IEA.Allrightsreserved.ChineseenergyservicecompaniesexperiencestronggrowthEnergyservicecompanies(ESCOs)provideenergysolutionsrangingfromgenerationandsupplytoenergyefficiencyandretrofittingprojects.ESCOshelpconsumersidentify,financeandimplementprojects,therebymakingiteasiertoinvest.Inparticular,theycanreducetheburdenofmakingupfrontcapitalexpendituresandfacilitateaccesstocommercialfinancing.TheglobalESCOmarketasawholeincreasedbyaround6%in2020toUSD33billion.ThisgrowthwasmainlycentredinChina,whereinvestmentroseby12%despitethepandemic.OthermajorESCOmarkets,includingtheUnited0%5%10%15%20%25%30%05001000150020002500300035004000450050005500600020002002200420062008201020122014201620182020EEshareintotalenergyRD&DinvestmentRD&Dinvestment(millionUSD)IndustryBuildingsTransportOtherUnallocatedEEshareintotalinvestment(rightaxis)EnergyEfficiency2021Chapter1.RecenttrendsPAGE30IEA.Allrightsreserved.States,Europeanmarketsandemergingmarketsanddevelopingeconomies,eitherremainedflatorcontracted.During2020,theESCOmarketbecameincreasinglydisruptedduetophysicallockdownrestrictions.ESCOsinMiddleEastcountriessuchasSaudiArabiaandtheUnitedArabEmiratesreportedincreasedawarenessoftheneedforefficientventilationandcooling,andassociatedbenefitsforindoorcomfortandhealth,whichboostedbusiness.GlobalESCOmarketgrowth,2015-2020IEA.Allrightsreserved.Source:IEAAnnualESCOmarketsurveys.TheChineseESCOassociationEMCAreportedthatESCOsquicklyturnedtousingonlinetoolsandremotecontrolstokeeptheirclientsengagedandtheirbusinessoperationsasrobustaspossible.ChineseESCOsused2020asanopportunitytoupdatetheirbusinessmodelsthroughgreateruseofsmarttoolsandtechnologies.TheChinesegovernmentalsointroducedadditionaltaxincentivesinMay2020toencourageESCObusinessdevelopmentandinnovation.EnergyEfficiencyServicesLimited–theIndianSuperESCOIn2009,theIndiangovernmentsetupEnergyEfficiencyServicesLtdundertheNationalMissiononEnhancedEnergyEfficiency.EnergyEfficiencyServicesLtd52%55%55%55%56%59%25%23%25%25%21%20%18%16%15%14%16%14%5%6%6%6%8%7%05101520253035201520162017201820192020USDBillionsOtherEuropeUnitedStatesChinaEnergyEfficiency2021Chapter1.RecenttrendsPAGE31IEA.Allrightsreserved.hasimplementedlarge-scaleenergyefficiencyprojectsthroughfinancingmodelslikebulkprocurementforlowerprices,revenuesharingandpublicsubsidies.TheflagshipprogrammesincludeUJALAfordomesticLEDs,StreetLightNationalProgramme,BuildingEnergyEfficiencyProgramme,SmartMeterNationalProgramme,E-VehicleProgrammesanddecentralisedsolarprogrammes.Theseprogrammeshaveresultedinover50000GWhofannualelectricitysavings,aswellascreatingjobsandboostinglivingstandards.EnergyEfficiencyServicesLtdhasdistributedover360millionLEDbulbstodomesticconsumersandinstalledover12millionLEDstreetlightsinIndianmunicipalitiesinthelastfiveyearsTheBuildingEnergyEfficiencyProgrammewaslaunchedin2017topromoteefficientretrofitsofcommercialbuildingsinindustry,governmentandotherinstitutions,includinglargepublicbuildingslikerailwaystations.Theprogrammeemploysdemandaggregationofefficientequipmentpurchasingtonegotiatelowerpricesforitsprojects,loweringcostsforthepublicbudget.BySeptember2021theprogrammehadcompletedprojectsinalmost7000buildings,withanother4000underway.Completedprojectsaresaving224GWhinenergyperyearandemissionsof184ktCO2-eq.InvestmentvolumeswereUSD270millionbetween2017andMarch2020.1.3EnergyefficiencypolicyupdatesAsmorecountriesraisedclimatepolicyambitioninadvanceofthe2021UNClimateChangeConference(COP26),energyefficiencypoliciesgatheredpace.EU“Fit-for-55”packagetargetsmilestonesonpathto2050TheEuropeanUnionreviseditsEnergyEfficiencyDirectiveinJuly2021aspartofthe“Fit-for-55”Package,whichaimstoreducegreenhousegasemissionsby55%by2030.Thepackageincludesasetofconcretepolicymeasuresforthemedium-termtomeettheEuropeanUnion’snetzeroby2050pledgeaspartoftheEuropeanGreenDeal.TheEuropeanCommissionisaimingtoreducefinalenergyconsumptionby36%andprimaryenergyconsumptionby39%by2030comparedwith2007.Memberstatesnowmustachievenewsavingsof1.5%offinalenergyconsumptionayearbetween2024and2030,twicethecurrentrateof0.8%.TheincreasedprimaryenergyconsumptiontargetstranslateintoenergyintensityEnergyEfficiency2021Chapter1.RecenttrendsPAGE32IEA.Allrightsreserved.improvementsof3.2%peryearby2030.BuildingontheRenovationWaveStrategy,theaimistorenovateatleast3%ofthetotalfloorareaofallpublicbuildingsannuallyandusehighersharesofrenewableenergy.Furtherreformswillcomebytheendof2021withtherevisedEnergyPerformanceofBuildingsDirective.ChilepassesnewwiderangingenergyefficiencylegislationChilepassednewenergyefficiencylegislationinJanuary2021,creatingtheoverarchinginstitutionalstructuretoaccelerateprogressonenergyefficiencyacrosskeysectorsoftheeconomy.TheEnergyEfficiencyLaw’sheadlinetargetisa10%reductionineconomy-wideenergyintensityby2030comparedwith2019,deliveredthroughaseriesofstatutoryfive-yearenergyefficiencyplans.Thelawsetsnewrequirementsforstandardsandlabelling,buildings,transport,efficientandsmartcities,industrialefficiency,andpublicsectorleadership.KeypoliciesenshrinedwithinthelawincludeamandateforlargeenergyconsumerstoimplementpowermanagementsystemsandreporttheirconsumptiontotheEnergyMinistry;newenergyefficiencystandardsforvehiclestradedwithinthecountry;andenergyperformancelabellingonnewhouses.Thelawestablishesagovernancestructuretodriveambition,andmonitorandevaluateprogressStandardsandlabelsareakeystoneofenergyefficiencypolicyInrecognitionoftheirsubstantialcost-effectiveenergysavingspotentialandotherbenefits,morethan100countriesnowusemandatoryenergyefficiencyperformancestandardsand/orenergylabelsforairconditioners,refrigeration,lighting,industrialmotorsandpassengercars.However,policiesarestillabsentinarangeofmarketswheregrowthinownershipofappliancesisfastest.Additionalorexpandedstandardsandlabellingschemesareunderdevelopmentinover20countries,mainlyinAsiaandEastandSouthernAfrica.Whilethissectionfocusesonpoliciescoveringthekeyendusesoutlinedabove,performancestandardsandlabelsapplytomorethan100typesofappliancesandequipmentinthecommercial,industrialandresidentialsectors.However,policycoverageislowerformostoftheseproducts.Forexample,only40-50countrieshaveimplementedminimumperformancestandardsforwashingmachines,dishwashersorTVs.Asaresult,expandingprogrammesincountrieswithexistingpoliciesforonlyalimitednumberofproductstocoversuchappliancesofferssignificantscopefordrivingfurtherefficiencygains.EnergyEfficiency2021Chapter1.RecenttrendsPAGE33IEA.Allrightsreserved.SuchpolicieswereadoptedearlyinEuropeandNorthAmerica,andnowcoverahighproportionofkeyenergy-consumingendusesintheseregions.However,thereisawiderangeofvariationinthecoverageandstrengthofprogrammesindifferentcountries.Significantscopeexistsforenhancedinternationalco-operationinthisareatohelpgovernmentsbringinnewstandards,learnfrompastexperienceandadoptbestpractices.Ifambitionlevelsareregularlyadjustedtoreflectlatesttechnologicalprogress,performancestandardsandlabelscanachievesubstantialreductionsinenergyconsumption,aslong-establishedprogrammeshaveprovenoverrecentdecades.Furthermore,oncetheprogrammesaresuccessful,comparativeenergylabelswillneedtoberegraded.ThishasrecentlyhappenedintheEuropeanUnion,wherethemandatoryenergylabelwasregradedtoanA-Gscaleforarangeofproducts.TheupgradetothelabelwasalsoaccompaniedbytheintroductionofQRcodeslinkingtotheEuropeanProductRegistryforEnergyLabelling.Globalenergyusecoverageofmandatorystandardsorcomparativelabelsforkeyenduses,1990-2021IEA.Allrightsreserved.Note:Coverageforspacecooling,refrigerationandlightingisshownforresidentialsectors.Source:IEAanalysisbasedonCLASPPolicyResourceCenterandothersources.SpacecoolingMandatoryairconditionerstandardsnowcover85%ofglobalspacecoolingenergyconsumption,upfromtwo-thirdsin2010.Additionalminimumenergyperformancestandardsareunderdevelopmentinmorethan20countries.StandardsandlabelshaverecentlybeenstrengthenedinAustralia,Brazil,ChinaandIndia.Indiaalsointroducedvoluntarylabelsforlightcommercialairconditionersin2020.Benin(2020)andRwanda(2021)introducedmandatory0%10%20%30%40%50%60%70%80%90%100%SpacecoolingRefrigerationLightingIndustrialmotorsRoadtransport1990200020102021EnergyEfficiency2021Chapter1.RecenttrendsPAGE34IEA.Allrightsreserved.policies,bringingtheglobalcountofcountrieswithminimumenergyperformancestandardsto83andcomparativelabelsto75.RecentcoolingpolicyandtechnologyhighlightsIndia’sEnergyEfficiencyServicesLtdrecentlylaunchedaSuper-efficientAirConditioningprogrammetomakemoreefficientdevicesaffordableforthegeneralpopulationthroughbulkprocurement.Thishelpedbringtothemarketanairconditionerthatisaround20%moreenergy-efficientthantheaveragefive-starratedairconditioneravailableonthemarketthatusesLowGlobalWarmingPotentialrefrigerants.EnergyEfficiencyServicesLtdhasdeployedover10000unitsafterprocuringabulkorderof50000units.Internationalprogressonclimate-friendlyrefrigerantsIn2016,197countriesagreed,throughtheKigaliAmendmenttotheMontrealProtocolonSubstancesthatDepletetheOzoneLayer,tophasedowntheproductionanduseofhydrofluorocarbons(HFCs).TheAmendmentcameintoforcein2019andregulatesHFCsusedasrefrigerantsinspacecooling,refrigerationandotherairconditioningtechnologies.TheKigaliAmendmentcontinuestogathermomentumwith127countrieshavingratifiedinthesecondhalfof2021,upfromaround100inJuly2020.ThishasbeenachievedwiththesupportoftheKigaliCoolingEfficiencyProgram(K-CEP),nowknownasCleanCoolingCollaborativeandtheEfficientCoolingInitiative.Thisworkincludesafacilitytohelpgovernmentsscale-upclimate-friendlycoolingsolutionsaspartofNationallyDeterminedContributions(NDCs)submittedatCOP26inGlasgow.Todate55countrieshavecommittedtoreducecoolingemissionsineithertheirNDCsorlong-termclimateplans.ThewinnersoftheGlobalCoolingPrizewereannouncedin2021aspartofamulti-yearinternationalinitiativespearheadedbytheRockyMountainInstitute,thegovernmentofIndiaandMissionInnovation.Theprizewasaimedatencouragingandrecognisinggame-changingtechnologies,withatotalofUSD3millioninprizemoneyonoffer.139participantsfrom31countriescompetedfortheprize,rangingfromsmallstart-upstolargecompanies.Participantswereevaluatedbasedontheoverallclimateimpactoftheirprojects,includingenergyuseandrefrigerantused,maximumEnergyEfficiency2021Chapter1.RecenttrendsPAGE35IEA.Allrightsreserved.powerconsumptionoftheunitsandtheirproductioncosts.Eightfinalistswereselectedtotesttheirprojectsunderreal-worldconditions.Thisincludedassessingperformanceunderdifferenthumidityconditions,aconsiderationnotoftenreflectedintestingandratingstandards.Afterthetestingphaseinthefinal,inApril2021twoparticipantswereawardedtheprize.Gree,theworld’slargestmanufacturerofresidentialairconditioners,inpartnershipwithTsinghuaUniversity,wasselectedasawinnerwithanentrywhichutilisesrenewablephotovoltaicdirect-driventechnologytopoweraunitwiththree“climatesmart”modes.Thesemakeuseofvapourcompressionrefrigeration,evaporativecoolingandventilation–thatcanoperateindividuallyorinparallel,dependingontheoutsideweatherconditions.Daikin,incollaborationwithNikkenSekkei,wasselectedastheotherjointwinnerwithanentrythatusedamulti-splitmethodtoconnecttwoindoorunitswithoneoutdoorunit.Thistakesadvantageofcontrolsensorstohelpoptimiserefrigerantflowratesdependingonoperatingconditionsandtakesadvantageofevaporativecoolingtoimprovethesystem’sefficiency.TheMillionCoolRoofsChallengeisanotherglobalcooling-relatedcompetitionunderwayin2021lookingtoawardUSD2milliontoassistandrecognisetechnologiesthatenabletherapid,scale-upofhighlysolar-reflective“cool”roofs.ItisparticularlyfocusedondevelopingcountriesthatsufferheatstressandlackaccesstocoolingservicesandisaprojectoftheKigaliCoolingEfficiencyProgram(K-CEP)incollaborationwiththeGlobalCoolCitiesAlliance,SustainableEnergyforAllandNestaChallenges.Theprizecomesamidstgrowingrecognitionoftheimportanceof“cool”roofsandmovesin2021insomejurisdictionstobandarkroofsthatcontributetoheatislandeffects.RefrigerationPolicycoverageofminimumenergyperformancestandardsandcomparativelabelsforresidentialrefrigeratorsandfreezershasremainedrelativelystableinrecentyears.However,SriLankaintroducedmandatoryminimumenergyperformancestandardsandlabelsin2020.Atthemoment,76countrieshavesuchpoliciesinplace,coveringover80%ofglobalrefrigerationenergyconsumption,upfromtwo-thirdsin2010.Inonerecentupdate,MexicoharmoniseditsminimumenergyperformancestandardsandlabelsforrefrigeratorsandfreezerswiththoseintheUnitedStatesandCanada.EnergyEfficiency2021Chapter1.RecenttrendsPAGE36IEA.Allrightsreserved.Tokeepupwithevolvingtechnology,theEuropeanUnionimplementedmajorupdatesofperformancerequirementsandlabelsinMarch2021.Newrefrigeratorsnowhavetobe75%moreefficientthan10yearsago,whilelabelshavebeenrescaledtoallowconsumerstoidentifytop-performingproductsmoreeasily.Thelabellingrequirementshavealsobeenextendedtorefrigerationappliancesusedinshopsandvendingmachines.WhenthepreviousEuropeanlabellingregulationenteredintoforcein2010,nomodelsqualifiedfortheA+++class,andtheshareofA++modelswaslessthan10%.However,by2017,over50%ofrefrigeratormodelswereinthetoptwolabelcategories.LightingEighty-ninecountrieshaveminimumefficiencyrequirementsforlightingproductsand61countriesusecomparativelabels.Minimumenergyperformancestandardsnowcoverjustover75%ofglobalenergyuseforlighting,animprovementofmorethan30percentagepointssince2010.AdditionalmandatorylightingpoliciesareunderdevelopmentinseveralcountriesinAsia,EastAfrica,LatinAmericaandtheCaribbean.MinimumenergyperformancestandardsandlabelshaverecentlybeenupdatedintheEuropeanUnion,wherenewthresholdscameintoforceinSeptember2021.Furtherscheduledupdatesin2023willphaseoutmosthalogenlampsandthetraditionalfluorescenttubelighting,whicharecommoninoffices.Aswithrefrigeratorsandotherproducts,EUlabelswillberescaledtoanewscalefromAtoGandincludeaQR-codewhichallowconsumerstoquicklyaccessadditionalefficiencyinformationviaasmartphone.BuildingcodesBuildingenergycodescanbeaneffectivepolicytooltopromoteenergyefficiencyimprovementsinresidentialandnon-residentialbuildingsalike.Suchcodessetminimumenergyperformancestandardsfornewbuildings,andmanyalsohavepolicytriggerstoensurethatmajorrefurbishmentsorrenovationsbringbuildingsuptocode.Buildingenergycodestypicallycovertheoperationalenergyuseofbuildings,butembodiedemissionsfromtheconstructionofbuildingsarebeginningtobecoveredinsomecodestomeetzerocarbonreadystandards.EnergyEfficiency2021Chapter1.RecenttrendsPAGE37IEA.Allrightsreserved.TrackingenergycodesfornewbuildingsRegionsMandatoryVoluntaryIndevelopmentNoknowncodeTotalAfrica4383954Americas62121535Asia21661346Europe351743Oceania331016Total69113084194AsofNovember2021,80countrieshadmandatoryorvoluntarybuildingenergycodesonthenationalorsubnationallevel,outofwhich54countrieshadmandatorycodesonthenationallevelforbothresidentialandnon-residentialbuildings.Coverageofenergycodesfornewbuildings,2021IEA.Allrightsreserved.Note:Buildingcodesrelatingtospecificcitiesarenotshown.EnergyEfficiency2021Chapter1.RecenttrendsPAGE38IEA.Allrightsreserved.Aroundtwo-thirdsofcountriesstilllackmandatorybuildingcodes,meaningthatmorethan3billionm2werebuiltin2020withoutmandatoryenergyperformancerequirements,anareaequivalenttoKorea’sentirebuildingstock.Towardsanenergy-efficientmortgagestandardforbuildingsintheEuropeanUnionEuropeanresidentialbuildingsareworthEUR17trillionandrepresentaroundhalfofEuropeanwealth,aswellasbeinghometo220millionhouseholds.However,roughly75%ofbuildingsintheEuropeanUnionarenotenergy-efficient,witharound90%expectedtostillbeinusein2050.TheEuropeanEnergyPerformanceofBuildingsDirectiveaimstosupporttherenovationofexistingbuildingstobeenergy-efficientanddecarbonisedby2050withnewbuildingstobenearly-zeroenergybuildingsfromJanuary2021.IntheEuropeanUnionbanksholdaroundEUR7trillionofmortgagesoverthebuildingstockandarestartingtosetdatesforupgradingthehomestheylendagainsttotheEuropeanUnionEnergyPerformanceCertificategradeA.ToassistwiththistasktheideaofaMortgagePortfolioStandardhasbeenproposedtorequiretheenergyperformanceofabank’sportfoliooffinancedbuildingstomeetstrongerbuildingstandardsbyspecificdatesandhelpdelivertheEuropeanUnion’srenovationwavepolicy.Source:ClimateStrategyandPartners,UnderwritingtheRenovationWavewithMortgagePortfolioStandardsforEnergyEfficiency,June2021.RoadtransportUnlikeappliancesandindustrialmotors,therearemorecountrieswithcomparativelabellingschemes(45)thanefficiencyperformance/fueleconomystandards(40)fornewpassengerlight-dutyvehicles.However,nonewschemeshaveappearedsince2017.Eventhoughthenumberofcountrieswherestandardsareinoperationissmall,becausethemainvehiclemarketsarecoverednearly90%ofnewsalesofpassengerlight-dutyand80%ofnewsalesofheavy-dutyvehiclesaregovernedbyfueleconomystandards.Thisiskeyprogress,particularlyfortheheavy-dutyvehiclesector,wherecoveragewasonly50%in2016.NewstandardsfortrucksareunderdevelopmentinseveralemergingeconomiesandKorea.EnergyEfficiency2021Chapter1.RecenttrendsPAGE39IEA.Allrightsreserved.However,ittakestimefornewpoliciestoaffectthetotalvehiclestock,asonlyasmallshareofvehiclesarereplacedbynewmodelseachyear.Standardsforpassengercars,forexample,nowcovernearlytwo-thirdsoftheirglobalenergyuse,upfrom50%adecadeago.Forsomedevelopingcountrieswhichareyettoputstandardsinplacetheimportofsecond-handvehiclesisamajorfeatureoftheirmarketwithmanyoftheseimportsnolongercomplyingwiththestandardsoftheexportingcountry.Phase-outsofinternalcombustionenginevehiclesTofacilitatetakeupofelectricvehicles,morethan20countrieshaveannouncedthefullphaseoutofinternalcombustionenginevehiclesales,rangingfromasearlyas2025inNorwayto2050inCostaRica.TheEuropeanUniontargetsabanofinternalcombustionenginecarsalesby2035aspartofthenew“Fit-for-55”Package.Inaddition,around13oftheworld’stopinternalcombustionenginevehiclemanufacturershaveannouncedplanstoonlysellelectriccarsinthefuturewithsomephasingoutinternalcombustionengineproductionassoonas2025.Labelsandstandardsarealsobeingmorewidelyadoptedfortwo-andthree-wheeledvehicles.VietNamhasmandatedfuelconsumptionlabellingformotorbikesfrom2020onwards,oneofthefirstcountriestodoso.Chinaalreadymandatesfuelconsumptionstandardsfortwoandthree-wheeledvehicles,withnewstandardscomingintoeffectinJuly2020.Onceinplace,standardscanbegraduallystrengthened.Newtargetsforpassengerlight-dutyvehicleshavebeensetinrecentyearsinkeymarketsincludingChina,Japan,Korea,theEuropeanUnionandtheUnitedStates.Requiredannualimprovementratestomeettargetsoverthecomingyearsrangefrom2.9%inJapanandover4%intheEuropeanUnionto4.4%inChinaand5.5%intheUnitedStates,wherefinalruleswillbeestablishedinDecember2021.However,baselineperformancelevelsdifferwidely.IntheEuropeanUnion,forexample,standardsarethemoststringentandplayasignificantroleinpromotingelectriccarsales.IndustrialelectricmotorsAround40%ofenergyuseofindustrialmotorsisnowcoveredbymandatoryperformancestandards,upfrom15%tenyearsago.Three-quartersofthe57EnergyEfficiency2021Chapter1.RecenttrendsPAGE40IEA.Allrightsreserved.countrieswithminimumenergyperformancestandardsforindustrialelectricmotorsimplementedtheirstandardsinthe2010s.Ukraineisthemostrecentcountrytoimplementstandards,whichcameintooperationinSeptember2021.Pakistanwasthefirstcountrytointroduceminimumenergyperformancestandardsandlabelsforrefurbishedsecondhand-motorsin2021.ThoughinitiallyavoluntaryprogrammeitwilleventuallytransitiontocompulsoryregistrationandIE3minimumperformancerequirementsin2023.Currentlyonly11countriesmakeuseofmandatorycomparativelabelstoencouragesalesofmoreefficientindustrialmotors.Eightadditionalcountriesoffervoluntarycomparativeorendorsementlabelling.Theuseofenergylabellingshouldnotprecludetheuseofnameplatesbeingaffixedtomotors.Ideally,suchnameplateswouldbeIEC60034-30-1conformant.Incontrasttomanyotherkeyenduses,minimumenergyperformancestandardsforindustrialelectricmotorsrelyoninternationallyharmonisedefficiencylevels,theIE1toIE4classesgovernedbytheInternationalElectrotechnicalCommission.Thisapproachprovidesmanybenefitsformanufacturersandindustrialfacilities.Manycountrieshaverecentlystrengthenedstandardsandextendedscopes.InChina,Colombia,theEuropeanUnionandcountriesapplyingEUrules,forexample,newmotorsonsaleinthemostimportantproductcategorieshavehadtomeetatleasttheIE3efficiencylevelsincemid-2021,whichisnowamandatoryrequirementin45countries.From2023onwards,somemotortypeswillhavetomeetIE4requirementsintheEuropeanUnion,Norway,Switzerland,TurkeyandtheUnitedKingdom.SeizingopportunitiestoboostindustrialenergyefficiencyEnergymanagementsystems,whichhelpbusinessesidentifyopportunitiestoadoptandimproveenergy-efficienttechnologies,havebeensuccessfullyimplementedinawiderangeofcountries.However,thereisonlyasmallnumberofmandatoryenergyefficiencypoliciestargetingtheindustrysectorbeyondsuchmanagementsystems,mandatoryenergyauditsandminimumenergyperformancestandardsforindustrialelectricmotors.MandatoryauditsandenergymanagementsystemsExamplesofmandatoryauditrequirementscanbefoundbothinemergingmarketssuchasinTunisiaandMoroccoandinadvancedeconomiessuchastheEnergyEfficiency2021Chapter1.RecenttrendsPAGE41IEA.Allrightsreserved.EuropeanUnion.Althoughnecessary,suchmeasuresareonlythefirststepstowardsaclearer,moredefinedpathtoimproveenergyefficiencyintheindustrysector.Toenablethenextsteps,itisimportanttodevelopsub-sectoraltargetsandcreateanenvironmentthatfostersenergyefficiencythroughapolicypackagecombiningregulation,informationmeasuresandincentives.India’sPerform,AchieveandTradeschemeThePerform,AchieveandTrade(PAT)schemesetsmandatoryenergyintensityimprovementtargetsforlargeenergyusersinenergy-intensivesectors.Theschemeprovidesincentivesforoverachievementbyallowingthetradingofenergy-savingcertificates.Thefirstcycleofthescheme(2012-2015)targetedlargeenergy-intensiveindustriessuchasironandsteel,aluminiumandcement.Itmanagedtoreducetheenergyconsumptionofmorethan400coveredentitiesby5.3%,abovetheinitialtargetof4.1%.Subsequentcyclesextendedtheschemetofurthersectorsandcoveredadditionalentitiessuchassmallerenergyusers.China’s“100,1000,10000”industrialenterprisesprogrammeFirstintroducedin2006andextendedin2011and2017,theKeyEnergy-Consuming100,1000,10000OrganisationsActionsetsmandatoryenergy-intensityimprovementtargetsforthelargestenergy-consumingenterprisesinChina,mostofwhichareintheindustrysector.Targetshavebeensetatthenationallevelandthenpasseddowntolocallevelsforactionbyindividualcompanies.Theprogramme,oneofthelargestintheworldintermsofimpact,islinkedtostrongpoliciestosupportthedevelopmentofenergyservicecompanies.Thepreviousprogrammes–theTop1000EnterprisesEnergySavingProgrammeandtheTop10000Programme–bothsurpassedtheirenergyreductiongoals,whilethecurrent“100,1000,10000”programmeisstillinitsearlyphase.EnergyefficiencyobligationschemesnowcoverafifthofglobalenergyuseEnergyefficiencyobligationprogrammes,knownasenergyefficiencyresourcestandardsintheUnitedStates,aremarket-basedschemesthatrequireenergycompaniestoachieveanenergyefficiencytarget.Typicallythistargetisdefinedasasetamountofenergysavingsbutschemesvarywidelyintermsofprimarypolicygoals,designandimplementation.Twenty-fourcountriesuseenergyefficiencyobligationschemestodriveenergyefficiencyimprovements,including14inEUcountriesandsubnationalEnergyEfficiency2021Chapter1.RecenttrendsPAGE42IEA.Allrightsreserved.programmesinAustralia,CanadaandtheUnitedStates.Togethertheseprogrammescovernearlyafifthofglobalenergyuse.Thelongest-runningschemeshaveprovidedsubstantialreductionsinenergyconsumptionovertheirlifetimes.TheEuropeanUnionintroducedenergyefficiencyobligationsasthedefaultpolicyinstrumentoftheEnergyEfficiencyDirective,whichcameintoforcein2014.However,memberstatescanoptforalternativemeasures.IntheobligationperiodoftherevisedEnergyEfficiencyDirective,from2021to2030,theenergyefficiencyobligationhasbeenmaintainedasthedefaultinstrument,buildinguponpositiveexperiencesfrom2014to2020.Denmark,however,replaceditsenergyefficiencyobligationin2021withatender-basedschemeforenergyefficiencyimprovementsinindustry,servicebusinessesandbuildings.RecentdevelopmentsinAustraliansubnationalenergyefficiencyobligationsincludenewtargetsfortheschemeinVictoriaandtheintroductionofapeakdemandreductionschemeinNewSouthWales.Countrieswithenergyefficiencyobligationschemes,2000-2021IEA.Allrightsreserved.InternationalenergyefficiencycooperationreceivesaboostNewEnergyEfficiencyHubtofosterstrongerengagementTheEnergyEfficiencyHubwasestablishedin2019asavehicleforinternationalcollaborationonenergyefficiency.TheHubSecretariatishostedbytheIEA.ThemembersoftheHubareArgentina,Australia,Brazil,Canada,China,Denmark,theEuropeanUnion,France,Germany,Japan,Korea,Luxembourg,Russia,0510152025302000200520102015201620172018201920202021No.ofcountriesOther-SubnationalOther-NationalEU-NationalEnergyEfficiency2021Chapter1.RecenttrendsPAGE43IEA.Allrightsreserved.SaudiArabia,theUnitedKingdomandtheUnitedStates.TheHubwillworkthroughtaskgroupsfocusedontopicsofinteresttothemembers,sharingdata,researchandbestpractice.In2021,theHubestablisheditsfirsttaskgroups,includingtheDigitalisationWorkingGroupandtheTopTensTaskGroup,whichworkstoidentifybestavailabletechnologiesandpractices.ItalsoincorporatedtheSuper-EfficientEquipmentandApplianceDeploymentInitiative(alsoaninitiativeoftheCleanEnergyMinisterial,andco-ordinatedbytheIEA,whichwillplayamajorroleinprogressingtheCOP26ProductEfficiencyCalltoAction,discussedfurtherinChapter2.G7andG20countriesemphasiseenergyefficiencyanddigitalisationinsupportingenergysecurityandnetzerogoalsTheG7achievedamilestoneatits2021summitbycollectivelycommittingtoreachnetzeroemissionsby2050.Inthesummitcommuniqué,theG7notedtheIEANetZeroby2050Roadmapandpledgedtoincreaseeffortsonenergyefficiencyaswellasothercleanenergytechnologies.ThisincludedwelcomingthegoaloftheIEASuper-EfficientApplianceDeploymentInitiativetodoubletheefficiencyoflighting,cooling,refrigerationandmotorsystemssoldby2030,whichisfeaturedinaspecialfocusinChapter2ofthisreport.ForthefirsttimeinG20history,thegroup’sEnergyTransitionsandClimateSustainabilityWorkingGroupMeetingswereheldjointly,underlyingthepressingneedtoacturgentlytoacceleratecleanenergytransitionstoreachnetzeroemissions,whilealsoensuringenergysecurity.CitieswereoneofthemainprioritiesoftheItalianPresidencyoftheG20.Tosupportthispriority,theIEAprovidedanalysisonhownationalgovernmentscanhelpcitiesacceleratecleanenergytransitionsbyusingenergyefficiencyanddigitalisation,initsspecialreportEmpoweringCitiesforaNetZeroFuture:Unlockingresilient,smart,sustainableurbanenergysystems.Thereportidentifieshigh-levelrecommendationsthatnationalpolicymakerscanconsidertoacceleratenetzerotransitionsandleveragecities’fullpotentialtoreduceemissions,regardlessoflocalcontexts.AnothermajorpriorityoftheItalianPresidencyofG20wasenergysecurityinthecontextofcleanenergytransitionsandnetzeroemissionspathways.TheIEAsupportedthisprocessbyupdatingtheG20energycollaborationprinciplesendorsedattheG20BrisbaneLeaders’Summitin2014.TheIEAreportG20EnergySecurityofCleanEnergyTransitionsrecognisesenergyefficiencyasthe“firstfuel”toachievesecurecleanenergytransitions.ThereportemphasisestheEnergyEfficiency2021Chapter1.RecenttrendsPAGE44IEA.Allrightsreserved.importanceofacceleratingtheuptakeofefficienttechnologiesandpractices,whilerecognisingthecentralroleofpeopleforthesuccessofcleanenergytransitions.G20membersrecognisedthekeyroleofenergyefficiencyincleanenergytransitionsandtheroleoftheIEAinitiativeDigitalDemand-DrivenElectricityNetworks,supportedbyItaly.TheG20alsoendorsedtheSmart,ResilientandSustainableCitiesActionPlan,whichwillsupportenergyefficiencyactionsandmeasuresincities.1.4OthermarkettrendsGrowthinenergyefficiencystart-upshelpsdriveinnovationDespitetheCovid-19pandemic,venturecapitalinvestmentsincleanenergystart-upsremainedstrongin2020,andcontinuedthismomentuminthefirsthalfof2021.Whileventurecapitalinvestmentsinenergyefficiencystart-upsremainsmallrelativetothemuchlargersumsmobilisedinotherefficiencyareas,suchasforbuildingretrofits,theyarecriticaltosupporttheentrepreneursdevelopingnewinnovativeproductsandservicesneededtomeetnetzeroambitions.In2020,early-stageinvestmentsincompaniesdevelopingtechnologiesrelevanttoenergyefficiency–suchasinbuildings,industry,thepowersectorandsmartgrids,transportandvehicleelectrification–increasedby7%toaboutUSD1.9billion,anewhighforthelasttenyears.Theincreasewasmostlyduetogreaterinvestmentsinelectricmobilitystart-ups,whichattractedaboutUSD900million,illustratinginvestorinterestinthissector.Buildingefficiencystart-upsalsoattractedstrongfunding,accountingforaboutUSD500million.Althoughindustrialefficiencyattractedlessmoneythanotherend-usesectors,asinpreviousyears–aboutUSD125millionin2020–investmentshavenearlydoubledrelativeto2019.Companiesdevelopingtechnologiesforpowerandsmartgridsraisedmuchlessmoneyin2020thanin2019,withinvestmentsfallingbackto2017-2018levelsataboutUSD300million.Early-stageventurecapitalinvestmentsinenergyefficiencystart-upsareconcentratedinjustafewplaces.Between2018and2020,companiesheadquarteredintheUnitedStatesattracted50%ofsuchfinancingrounds,followedbyEuropean(30%)andChinesecompanies(7%).Start-upsoftenseektoexpandtheirbusinesstooverseasmarketsastheygrow,butthisprocessisuncertainandlengthy.Asaresult,therearestillsignificantEnergyEfficiency2021Chapter1.RecenttrendsPAGE45IEA.Allrightsreserved.opportunitiesforentrepreneursinmanycountrieswherefewinnovativeenergyefficiencycompaniesexist,especiallyinemerginganddevelopingeconomies.Insomeinstances,companiesmayseektoreplicateoradaptsuccessfultechnologyconceptsorbusinessmodelsdevelopedelsewhere.Provenconceptsandbusinessmodelstypicallylowertheperceivedriskforinvestors,especiallywhenemergingproductsorsolutionsarereadilyavailablethroughinternationaltrade.Globalearly-stageventurecapitalinvestmentsincleanenergystart-upsactiveinfieldsofenergyefficiency,bytechnologyarea,2010-2021IEA.Allrightsreserved.Notes:Buildingsenergyefficiencyincludesbuildingenvelopes,heatingandcooling,energymanagementsystems,lightingandsmartdevicesforresidentialandcommercialbuildings.ICTreferstoinformationandcommunicationtechnologyproductsnototherwiseincludedinbuildings-relatedtechnologies.Early-stageinvestmentsincludeseed,seriesAandBfinancingrounds.ThefigureexcludesoutlierinvestmentsofaboveUSD150millioninasingledealthatdistortannualtrends.TheseaggregatedtoaboutUSD400millionin2010,USD2.2billionin2016,USD850millionin2017,USD5.7billionin2018,USD1.0billionin2019,USD350millionin2020andUSD3.3billionin2021,thebulkofwhichtookplaceintransportelectrification.Theshareofinvestmentsindigitalcompaniesiscalculatedexcludingtransportcompanies,assharedmobilityandotherdigital-basedtechnologiesandsolutionsaretypicallyexcludedfromthesample.2021:Preliminarydatatomid-July2021areincluded.Source:IEAanalysisbasedonCleantechGroup,i3database.Covid-19ischangingenergyuseinbuildingsThewaybuildingandenergyusepatternshavechangedduringCovid-19hasbeengreatlyaffectedbythetimingoflocallockdowns,restrictionsonin-personactivitiesandthenumberofoccupantsallowedinbuildings.Thetrendtoworkathome–requiringenergyfordaytimecomfortinhomes–continues.Forcountriesreopeningworkplacesthereislikelyagrowthinenergydemandinofficebuildingsbutnotnecessarilyacorrespondingreductioninresidentialdemand.Reopeningstrategiesvarygreatlyacrosstheworldandglobalbuildingenergydemandwillcontinuetobeshapedbylocalconditions.InKorea,non-residential25%50%75%100%0.51.01.52.0201020112012201320142015201620172018201920202021USD(2019)billionOtherenergyefficiencyTransportelectrificationandfuelefficiencyPowerandsmartgridsIndustrialefficiencyElectronics,ICTanddatacentresBuildingsenergyefficiencyShareofinvestmentsincompanieswithdigitalproducts(right)EnergyEfficiency2021Chapter1.RecenttrendsPAGE46IEA.Allrightsreserved.energydemandfellby5%forelectricityand11%forgas.InSpain,electricityconsumptiondecreasedduringlockdownby13.5%(comparedwiththepreviousthreeyears),withlargermiddayplateaus.InBrazil,publicadministrativebuildingsshoweda38%reductioninenergyuseduringlockdown,andelementaryandnurseryschoolsshoweda50%reduction.Manyemployeesexpectthathybridandremoteworkingarrangementswillbecomemorenormal.Forexample,44%ofUKemployeesexpecttoworkintheofficethreedaysorfewer,withthisexpectationstrongestamongyoungeremployees.ArecentlyreleasedstudybytheBuildingOwnersandManagersAssociationInternationalshowedthatbuildingusersexpectthattheaveragenumberoffull-timeofficeworkerswilldecreasefrom70%beforethepandemicto43%overthenext12-18months,butthatonlyaquarteroftheworkforcewillseektoteleworkfull-timeormostofthetime.Italsofoundthatonly37%ofbuildingandbusinessmanagersexpectedtoneedtoreassesstheirneedforspace,despitetheuncertaintyinworkplacerequirements.Addingtofutureworkingpatterns,expectationsaroundsafetyprotocolsandventilationwillseebuildingsrequiringpotentiallylongerhoursforcleaningschedulesandmoreenergydedicatedtofacilitatinghighlevelsofairexchangeandthermalcomfortexpectations.Otherissuesincludemoresegmentedworkshiftsandbreaks,demandformorespaceforworkareasandcongregationspace,andnewcirculationprotocols.TheventilationrateinabuildingisnowseenasakeyparameterinmanagingandmitigatingtheriskofCovid-19transmissioninindoorspaces.Differentbuildingsrequirearangeoftreatmentsandairflowratestoreflecttheirvaryingrequirementsforfreshairandthermalcomfort.Publicspacesandhigh-riskenvironmentsrequiregreaterlevelsoffreshairflowandairconditioning.Increasedventilationraisesbuildings’energyconsumptionGuidancetobuildingmanagersthattheyshouldimprovetheirventilationtoreduceCovid-19transmissiondoesnotonthewholespecifyexpectedventilationrates.Typically,officeventilationsystemshavebeendesignedtodeliveraventilationrateof10litrespersecondperperson(l/s/person).Ahighinternalairqualityscenariois15l/s/person.Movingfrom10l/sto15l/swouldincreasethesensibleheatneededtomaintainathermallyacceptableenvironmentby50%,or240kWhperperson.GiventhattheEuropeanUnionestimatesthatnon-residentialbuildingsuse250kWh/m2,thisadditionalenergyuserepresents10%increaseinthetotalEnergyEfficiency2021Chapter1.RecenttrendsPAGE47IEA.Allrightsreserved.energyconsumptionofarepresentativenon-residentialbuildinginacitysuchasLondon.However,somehavesuggestedthatinresponsetotheCovid-19threattheairchangerateshouldincreasebyuptotentimes,whichwouldhavesubstantiallylargerimplicationsforthethermalloadandenergyconsumptionofabuildingthanthe10%increaseestimatedabove.AswellasprotectingagainstCovid-19,increasedventilationrateshavearangeofotherbenefits.Forexample,pre-pandemic,itwasshownthatincreasingofficeventilationratesfrom8l/s/personto15l/s/personcouldprovideaUSD37billioneconomicbenefitintheUnitedStatesduetofactorssuchasincreasedproductivityandlowerincidenceofsickbuildingsyndrome.TheUSCentersforDiseaseControlandPreventionrecommendopeningwindows,usingfanstoincreaseairflow,andreducingoreliminatingrecirculationofairthroughheating,coolingandairconditioningsystems.TheUK-basedCharteredInstitutionofBuildingServiceEngineersrecommendsthatmechanicalventilationsystemsshouldberunatahighervolumeflow-rate,withrecirculationavoidedasmuchaspossible,andidentifiespoorlyventilatedspacesasarouteforairbornetransmission.TheAmericanSocietyofHeating,RefrigeratingandAir-ConditioningEngineersrecommendsrunningheating,coolingandairconditioningsystemsforlonger,evencontinuously,andincreasingfiltration.Heatpumpdeploymentisrampingup,supportedbyelectrificationpoliciesHeatpumpsareakeytechnologytoincreaseefficiencyandphaseouttheuseoffossilfuelsforspaceheatingandotherenduses.Thenumberofinstalledheatpumpshasgrownby10%peryearoverthelastfiveyearstoreach180millioninusein2020.IntheNetZeroEmissionsby2050Scenario,thestockofinstalledheatpumpsreaches600millionby2030.Nearly20millionhouseholdspurchasedheatpumpsin2019,withdemandcentredinthemajorheatingmarketsofEurope,NorthAmericaandthecolderpartsofAsia.InEurope,heatpumpsalesincreasedbyaround7%to1.7millionunitsin2020,andheatpumpsnowheat6%ofallbuildings.In2020,heatpumpsovertookgastobecomethemostcommonheatingtechnologyinnewlybuilthomesinGermany.ThisbroughttheestimatedstockofheatpumpsinEuropetonearly14.86millionunits.EnergyEfficiency2021Chapter1.RecenttrendsPAGE48IEA.Allrightsreserved.IntheUnitedStates,spendingonresidentialheatpumpsincreasedby7%from2019toUSD16.5billionwithheatpumpsrepresentingaround40%ofheatingsystemsinstalledinnewsingle-familyhousescompletedbetween2014and2020.Innewmulti-familyhomes,heatpumpsarethemostcommontechnologyused.IntheAsia-Pacificregion,investmentinheatpumpsroseby8%in2020.Thepushtomakeheatpumpsthestandardheatingapplianceinbuildingenergycodesisanimportantpartofacceleratingtechnologyadoption.Forexample:TheCaliforniabuildingenergycodewillmakehighlyefficientelectricheatpumpsthebaselinetechnologyforcodecompliancefrom2023,withnewhomebuildersfacingmorestringentenergyperformancemeasuresifaheatpumpisnotinstalled.Massachusettshasalsoadoptedahigherperformanceandall-electricstandardforitsStretchCode,acknowledgingthecriticalroleofheatpumpsinmeetingadvancedenergyefficiencylevels.ManyjurisdictionsintheUnitedStatescontinuetofocusonelectrificationusingbuildingcodes.Forexample,Seattlehasannouncedawidespreadbanonfossilfuelheatingfornewconstruction,alongwithrequirementsforelectrification,throughtheSeattleEnergyCode.Ireland’splantoinstall600000heatpumpsby2030includesaninstallationgrantofupto30%oftheeligiblecostsandongoingsupport,includingagoaltoreplace400000oldandinefficientboilers.TheUnitedKingdomhasputforwardaHeatandBuildingsStrategyandaimstoinstallmorethan600000heatpumpsperyearby2028–anambitioustargetthatwillrelyonbothfiscalincentivesandregulatoryphase-outoffossilfuelboilers.NewYorkStatehasalsocommittedUSD454millionthroughto2025toincreasetheuptakeofheatpumpsforresidentialandcommercialpropertiestosupportitstargetofachievingnetzeroby2050.BritishColumbiaoffers0%interestloansforswitchingfromfossilfuelheatingsystemstoheatpumps.Utility-basedprogrammesthattargetcustomerswithinformationandincentiveshavealsobeeneffectiveatincreasingadoption.Forexample:TheEfficiencyMaineTrusthasinstalledmorethan60000unitssince2013assistedbyheatpumpprogrammesandarecentdoublingofdemandduringtheCovid-19pandemicaspeoplesoughttoimproveboththermalcomfortandsystemperformanceathome.InCanada,theNewBrunswickutilityÉnergieNBPowerhasalsorecentlysetitsstandardfortheNewHomeEnergySavingsProgrammeasrequiringtobeelectricallyheatedbyelectricheatpumps,boilersorfurnaces.EnergyEfficiency2021Chapter1.RecenttrendsPAGE49IEA.Allrightsreserved.SinceJanuary2020,theVictorianEnergyUpgradesprogrammeinAustraliahassupportedover20000upgradestoreplaceelectricresistancewaterheaterswithefficientheatpumps.Despitetheseimprovementsinmajormarkets,heatpumpsonlymeet7%ofglobalbuildingheatingdemand.Toscale-uptheadoptionofheatpumps,policiescouldencouragetheavailabilityofqualityproductsandsupportthecapacityofskilledlabourtoinstallsystems.Improvingtheenergyefficiencyofbuildingenvelopesisalsoamajorfactortoconsideralongsideheatpumpinstallationtoensurethatsystemsareeffectiveatheatinghomesandarenotoversized.Aseconomyrecovers,supplychainpressuresthreatentodiluteenergyefficiencyimpactTheeconomicrecoveryin2021hasincreaseddemandforcommoditiesandputpressureonsupplychains,creatingshortagesandbottlenecksineverythingfrombasicconstructionmaterialsthroughtosemiconductorchipsusedinelectronicsandvehicles.Shortageshavepushedupprices,increasingthecostsofconstructionprojectsandappliancesthatarecriticalforimprovingenergyefficiency,andpotentiallydilutingtheenergyefficiencyimpactofeverydollarspent.WhilelowinterestratesandgovernmentrecoveryspendinghelpedtoaverttheworsteffectsoftheCovid-19economicdownturn,concernsareemergingthattheywillexacerbatesupplyconstraintsintheeconomy.Thereisalsostrongdebateoverthedegreetowhichcostpressuresrepresentatemporarypost-Covid-19bumpininflationoramorelong-termstructuralphenomenon.Oneofthemostaffectedsectorsisofsupremeimportanceforenergyefficiencyprogress:construction.Whilelockdownrestrictionshavecurbedconstructionactivityinsomejurisdictions,elsewhereconstructionhasbeendeemedanessentialsector.Asoneoftheworld’slargestemployers,constructiondirectlyaccountsforaround8%ofglobaljobsandhasstronglinkswithothersectors.Forexample,thereturntogrowthinglobalconstructionhasputpressureonsupplychainsinsomemarketsasrisingcostsandshortagesofsomematerials,labourandskillsconstrainactivity.Asinvestmentrampsup,suchpressureswillneedtobewatchedcloselytoensurequalityismaintainedandbuildingcodeimplementationrigorouslyenforced.TheimpactofCovid-19onthesupplyanddemandofconstructiongoodsandservicesisgreatlyaffectedbylocalmarketconditions.Theseincludeabackloginconstructionprojects,restrictedavailabilityandincreasingcostsofcontractorsandskilledlabour,traderestrictionsandborderclosures,andshiftinghealthandsafetyEnergyEfficiency2021Chapter1.RecenttrendsPAGE50IEA.Allrightsreserved.protocolsandlawsforconstructionsites.Adivergencehasalsoappearedbetweenresidentialconstructiondemand,whichhasrecoveredinmanymarkets,andnon-residentialdemand,whichisstilldepressed.Forexample,inthesecondquarterof2021lumberpricesintheUnitedStateswere120%higherthaninJanuary2019duetosawmilldisruptions,bushfiresandanincreaseddemandforhomerenovationandhomeconstruction.Whiletheyhavesincefallen,thehighcostoflumberpurchasedduringthisperiodofhighpriceswillcontinuetobepassedontoconstructionprojectsforsometime.SteelpricesinAugust2021were63%higherthaninJanuary2019.Cementhasrisenmoremoderately,by7%frompre-Covid-19levels.InSweden,theconstructioncostindexformaterialstransportandcontractors’costsinMay2021increasedbyanaverageof7%fromayearearlier,whilelabourandwagesincreasedby12.6%.IntheUnitedKingdom,theconstructionindustryisexpandingatthefastestpacein24years.Asurveyofcontractorsshowedcontinuedsupplyconstraintsforcement,electricalcomponents,timber,steelandpaintsandseveralUKfirmscitedshortagesofmaterialsandcomponentsastheirprimaryconstraintoverthenextyear.Copperisanimportantcomponentofelectricmotors.Afterfalling15%atthestartoftheCovid-19crisisinApril2020,priceshadrisen71%byMay2021.Priceindicesforkeycommoditieslinkedtoconstructionandefficientequipment,January2019-August2021IEA.Allrightsreserved.Sources:Cement,lumber,steel:BureauofLaborStatistics(DatafortheUSmarket);copper,nickel,cobalt:IMFPrimaryCommodityPrices(Datafortheglobalmarket);lithium:BloombergLithiumCarbonate99%MinChina(Datafortheglobalmarket).-60%-40%-20%0%20%40%60%80%100%120%140%Costpriceindex(%;Jan2019=0%)LumberCopperCementSteelLithiumNickelCobaltEnergyEfficiency2021Chapter1.RecenttrendsPAGE51IEA.Allrightsreserved.Initsreportoncriticalminerals,theIEAhashighlightedthepotentialofamismatchemergingbetweentheworld’sstrengthenedclimateambitionsandtheavailabilityofmineralsessentialtorealisingthoseambitions.Batteriesrequirethreemainmetals–lithium,nickelandcobalt–whichmakeupover30%ofelectricvehiclecosts.Anindicatorforapotentialmismatcharepricesforthosecommodities.Forexample,betweenJanuary2021andAugust2021pricesroseby66%forlithiumand27%forcobalt.Thepriceofnickelwasalsoupby66%betweenMay2020andAugust2021.Anotherkeysupplychainpressurehasbeenthesemiconductorchipmarket,withfactoriesstrugglingtomeetdemandsincetheendof2020.Thesedevicesareusedwidelyinelectricalvehiclesandarangeofelectricalappliances.Year-on-yearpriceincreasesrangedupto50%forsometypesofchipsinAugust2021.Thesupplyshortagehascausedcarmakersaroundtheworldtodecreaseproduction.Itisestimatedthatthechipshortagewillleadtoareductionof7.7millioncarsalesin2021,withrevenuelossesofUSD210billion.Anotherindicatorofsupplychainpressureshasbeenshippingcosts,whichhaverisenalmost400%overthelastyearbecauseofCovid-19restrictionsandotherdisruptions.Theincreaseincontainerfreightratesispushingupproductpricesforbulkcommoditiesandmanufacturedgoodsusedinconstruction.Risingshippingcostsarealsoanindicatorofthesupplychainstressexperiencedinsomemarketsingettingaccesstomaterialsandequipmentneededtocompleteconstructionprojectsontime.EnergyEfficiency2021Chapter2.Energyefficiencyandnetzeroby2050PAGE52IEA.Allrightsreserved.Chapter2.Energyefficiencyandnetzeroby20502.1TheroleofenergyefficiencyinnetzeroTheworldcouldbeone-thirdmoreefficientby2030IntheIEANetZeroEmissionsby2050Scenario,energyefficiencyisthekeyfactorthatenablesgrowthincleanenergysourcestooutpacegrowingdemandforenergyservices.Inthescenario,theglobaleconomygrowsby40%by2030,drivenbyhigherpopulationsandrisingincomes,yetituses7%lessprimaryenergy.Inthescenario,theworldbecomesone-thirdmoreenergy-efficient,withprimaryenergyintensityfallingby35%,equivalenttoanannualimprovementof4%peryearto2030.Todeliverthisresult,amassiveandunprecedentedtransitiontowardsgreaterenergyefficiencyinbuildings,transportandindustryisneeded.MacroeconomicandenergyindicatorsintheIEANetZeroEmissionsby2050Scenario,2020-2030IEA.Allrightsreserved.Notes:GDP=USD2019billion,purchasingpowerparity;buildings,transportandindustryenergyuse:totalfinalenergyconsumption;energyintensity=totalenergysupply/GDP.CO2=emissionsfromfuelcombustionandindustrialprocesses.Source:AnalysisbasedonIEA(2021),NetZeroby2050.-80%-60%-40%-20%0%20%40%60%GDPElectricitygenerationIndustryenergyuseTransportenergyuseTotalenergysupplyBuildingsenergyuseEnergyintensityCO₂CO₂intensityofelectricitygenerationPercentagechange2020-2030EnergyEfficiency2021Chapter2.Energyefficiencyandnetzeroby2050PAGE53IEA.Allrightsreserved.Thistransitionwillalsorequireabroadeningofenergyefficiency’srolethroughdigitallyenabled,grid-integratedtechnologiessuchassmartmeters,appliancesanddevices.Suchadvancesareessentialtoprovidethepowersystemflexibilityneededtosupporthigherdeploymentofvariablerenewableenergysources.Toenablethetransition,theelectrificationoftransport,buildingheatandlower-temperatureheatinindustrywillbeimportant.Electricalequipmentisnotonlygenerallymuchmoreefficientbutalsooffersthepotentialtobepoweredwithrenewableenergysources.Forexample,electricheatpumpsarethreetofourtimesmoreefficientthanfossilfuel-poweredboilersandelectricvehiclescanbemoreefficientonawell-to-wheelbasis,ifpoweredwithrenewableenergy.TheelectricitysectoriscurrentlythelargestsourceofCO2emissions,accountingfor41%ofthe34GtCO2emittedworldwidein2020,withabout70%oftheseemissionscomingfromcoal-firedpowerstations.IntheNetZeroEmissionsby2050Scenario,electricitygenerationrisesbyalmost40%toaccountforincreasingelectrificationofendusessuchastransportandheat.Inthescenario,thislargeincreaseinpowergenerationtakesplaceasfinalenergyconsumptionslowlydeclinesby6%overthedecadethenfrom2030stabilisesatthatlevel.Thisresultisachievedthroughefficiencymeasures,theelectrificationoftransportandheat,andbehaviouralchange.Thescenarioenvisagesthatpolicyandtechnologymeasuresinthebuildingssectorwillenableimmediateandrapidimprovementsintheenergyefficiencyofbuildings,particularlyfromlarge-scaleretrofitprogrammesthatcomplywithzerocarbonreadybuildingstandards.Asaresult,totalfinalenergyconsumptionfallsinthebuildingssectorby22%by2030evenasthenumberofhouseholdsgloballyrisesby15%andtheaveragefloorareaexpandsby22%forhouseholdsand18%forcommercialbuildings.Fortransport,energyefficiency,electrificationandbehaviourchangemeasuresenablefinalenergyconsumptiontofallby3%by2030.Thisoccurseventhough11%morecarpassengerkilometresand26%moreplanepassengerkilometresaretravelledand48%moretonnekilometresaremovedbytruckand43%byship.Onlyindustrialenergyconsumptionrisesby2030intheIEANetZeroEmissionsby2050Scenario,byaround8%.Evenso,substantialprogressinmaterialandenergyefficiencyenablestheglobaleconomytoproduceanextra9%ofsteel,21%ofpetrochemicalsand5%ofcementperyearintheyear2030comparedwith2020.EnergyEfficiency2021Chapter2.Energyefficiencyandnetzeroby2050PAGE54IEA.Allrightsreserved.Withoutthecontributionofenergyefficiency,electrificationandbehaviouralchange,totalfinalenergyconsumptionwouldbearound30%higherin2030.Energyefficiencyandbehaviouralchangeinbuildingsandtransportprovidearoundtwo-thirdsofthesesavingsto2030.Enhancedinvestmentinenergyefficiencycancreatenearly6millionjobsby2030AmajorbenefitofamoreefficientenergysystemintheIEANetZeroEmissionsby2050Scenarioisthejobcreationpotentialofincreasedspendingonmoreefficientappliances,vehicles,buildingretrofitsandnewconstruction.Whentakingintoaccountannouncedpoliciescurrentlybeingimplemented,energyefficiencyprovidesmorethan2millionadditionaljobsby2030,morethananyothercleanenergytechnology.IntheNetZeroEmissionsby2050Scenarioemploymentopportunitiesarealmostthreetimeslargerat6millionadditionaljobs.NewworkersincleanenergyandrelatedsectorsandsharesbysectorandjobtypeintheNetZeroEmissionsby2050Scenario(NZE)andtheStatedPoliciesScenario(STEPS)in2030IEA.Allrightsreserved.Source:AnalysisbasedonIEA(2021),WorldEnergyOutlook.Manyofthesejobswillbebasedintheconstructionandmanufacturingsectorsandwillbeabletodrawonapoolofalreadyskilledlabour.However,thescaleoftheinvestmentrequiredwilllikelyrequireexpandedparticipationinthelabourforcetomeettheincreaseddemandsofnewbuildingandmanufacturingactivity.Somespecifictrainingislikelytoberequiredformorecomplextaskssuchasinstallingheatpumpinsteadofconventionalboilers.Governmentscanhelpthe051015202530STEPSBysectorSTEPSByjobtypeNZEBysectorNZEByjobtypemillionjobsEnergyefficiencyGridsElectricvehiclesPowergenerationEnd-userenewablesBioenergyInnovativetechnologiesSeries11Series10Retrained/repurposedjobsNewjobsSectors:Jobtypes:EnergyEfficiency2021Chapter2.Energyefficiencyandnetzeroby2050PAGE55IEA.Allrightsreserved.labourforcegainsuchskillsbyfacilitatingtrainingorsponsoringenergyefficiencyprogrammesthatprovidereskillingandupskillingopportunities.Over40energyefficiencymilestonesidentifiedTheNetZeroEmissionsby2050Scenarioinvolvesmorethan40energyefficiencymilestonesthatincorporatetechnologicallymaturesolutionsthatcanbeputintoeffecttodayandscaledupveryquickly.Around80%oftheadditionalenergyefficiencygainsinthescenariooverthenextdecaderesultincostsavingstoconsumers,loweringenergybillsandhelpingtocushiontheeffectsofunexpectedspikesinsometimesvolatileenergyprices.Becauseofthis,energyefficiencyisfrontloadedintothepolicymixintheNetZeroEmissionsby2050Scenario.ThecontributionofenergyefficiencyandassociatedmeasurestoavoidedenergydemandintheNetZeroEmissionsby2050ScenarioiswellwithinthescopeofcomparablescenariosfromtheIntergovernmentalPanelonClimateChange(IPCC).Thesescenarios,intheIPCC’sspecialreportGlobalWarmingof1.5°C,haveatleasta50%chanceoflimitingtheaverageriseofglobaltemperaturesin2100to1.5°C,andachievenetzeroenergysectorandindustrialprocessCO2emissionsby2050.Totalfinalenergyconsumptionin2050intheIPCCscenariosrangesfrom300exajoules(EJ)to550EJ,comparedwitharound410EJin2020.TheNetZeroEmissionsby2050Scenarioforeseesfinalenergyconsumptionof340EJin2050.WhilegovernmentscouldstillachieveclimatetargetswithlessenergyefficiencythanintheNetZeroEmissionsby2050Scenario,theywouldneedtoensuremuchwiderdeploymentofothercleanenergysolutionsthataremoreexpensive.EnergyEfficiency2021Chapter2.Energyefficiencyandnetzeroby2050PAGE56IEA.Allrightsreserved.EnergyEfficiencyNetZeroEmissionsby2050Scenariomilestones,2020-2050IEA.Allrightsreserved.Notes:EV=electricvehicle.ICE=internalcombustionenginevehicle.Source:AnalysisbasedonIEA(2021),NetZeroby2050.EnergyEfficiency2021Chapter2.Energyefficiencyandnetzeroby2050PAGE57IEA.Allrightsreserved.2.2AppliancesStandardshavehelpedhalvetheenergyconsumptionofkeyappliancesinthelongest-runningprogrammesElectricitygenerationiscurrentlythelargestsourceofenergy-relatedCO2emissions,accountingfor41%ofthe34GtCO2emittedworldwidein2020.In2021,globalelectricitydemandissettoincreasebycloseto5%.Ariseofthismagnitudemeansthat,despiterecordadditions,renewableenergysupplycannotkeepup.ThishasresultedinincreasingcallsonfossilfuelsandrisingCO2emissionsfromtheelectricitysector,whicharesettoriseby3.5%in2021.Morethan40%ofthiselectricityenergyconsumptionisforjustfourenduses–industrialelectricmotorsystems,airconditioners,refrigerationandlighting.Thesefourusesalsocontributeover5GtofCO2emissionsayear–roughlyequaltotheUnitedStates’currenttotalCO2emissions.Thisunderscoresjusthowimportantenergyefficiencystandardsandlabelscanbetoslowelectricitydemandgrowthandallowrenewableenergytoreplacefossilfuels,ratherthanjustgoingtowardsmeetingtheneedforhigherelectricitydemand.Levelsofownershipanduseofsuchappliancesaresettogrowastheworldgetswealthier,warmer,moreurbanisedandpopulous.Forexample,globalenergydemandforcoolingcouldtriplebetween2020and2050asairconditioningbecomesmoreaffordabletogreaternumbersofpeopleinemergingeconomies.Long-runningapplianceefficiencypolicieshavehelpedtohalvetheaverageenergyconsumptionofmanycommonappliancesinusesuchasrefrigerators,airconditioners,lighting,televisions,washingmachinesandcookingappliances.Thesehugegainshavebeenachievedevenasthepriceoftheseapplianceshasfallenbyanaverageof2%to3%peryear,suggestingthatmorestringentpolicysettingscouldcurbCO2emissionsfurtherwhilestillbenefitingconsumers.Forexample,intheUnitedStatestheenergy-efficientstandardsandlabelsprogrammeisproducingnetannualfuelsavingsofaroundUSD40billionin2020orareductionintheaverageannualhouseholdfuelbillofUSD320.Minimumenergyperformancestandards,forexample,setathresholdforenergyefficiencyforspecificproductssoldinamarket.Energylabels,meanwhile,helpconsumerstochoosemoreefficientproducts.IntheNetZeroEmissionsby2050Scenario,by2025around80%ofallappliancesandairconditionerssoldinadvancedeconomiesareusingtoday’sbestavailabletechnologies,withemergingeconomiesmeetingthismilestonein2030.EnergyEfficiency2021Chapter2.Energyefficiencyandnetzeroby2050PAGE58IEA.Allrightsreserved.EnergysavingsfromenergyefficiencystandardsandlabelsoverlifeofprogrammesIEA.Allrightsreserved.Notes:Longer-runningprogrammes(morethan20years)withstrongerstandardsdelivermoresavingsasthereismoretimeforinefficientappliancesandequipmenttobereplacedandforprogrammestosignificantlylowertheaveragestockenergyconsumptionofthatapplianceclass.Electronicdevicesinclude:externalpowersupplyunits,monitors,DVD/VCRunitsandotherpersonalelectronics.Source:IEAand4ETCP.Together,energyefficiencystandardsandlabellingprogrammeshavebeencornerstonesofmanycountries’energyefficiencypolicyforseveraldecades.Morethan100countriescurrentlyusemandatoryenergyefficiencystandardsorlabelsforairconditioners,refrigeration,lightingorindustrialmotorswithanother20countrieshavingsuchprogrammescurrentlyunderdevelopment.Whileaconsiderablenumberofcountriesacrossallregionshaveimplementedmandatoryappliancestandardsandlabels,significantlyfewerindustrialelectricmotorsarecoveredbyminimumenergyperformancestandards.Forexample,over80%ofglobalenergyuseforairconditionersandrefrigeratorsiscurrentlycoveredbyminimumenergyperformancestandards,comparedwithlessthanhalfoftheenergyuseforindustrialmotors.Arangeofadditionalstandardsandlabellingschemesarecurrentlyunderdevelopment,forexampleinEastandSouthernAfrica,butstandardsarestillabsentinarangeofmarketswheregrowthinownershipofairconditionersandotherappliancesisfastest.0%10%20%30%40%50%60%70%80%90%100%MotorsRoomairconditionersSpaceheatingCookingappliancesWetappliancesWaterheatersTransformersLampsResidentialrefrigeratorsPumpsTelevisionsElectronicsEnergysavingoftheaverageapplianceinuseWorldaverageprogrammeperformanceLongest-runningprogrammesEnergyEfficiency2021Chapter2.Energyefficiencyandnetzeroby2050PAGE59IEA.Allrightsreserved.Globalcoverageofmandatoryminimumenergyperformancestandardsandmandatorycomparativelabels,2021IEA.Allrightsreserved.Notes:Coverageforspacecooling,refrigerationandlightingisshownforresidentialsectors.Globalelectricityusecoverageisshownbyend-use.MEPS=Minimumenergyperformancestandards.MCL=Mandatorycomparativelabels.AvoidingelectricityconsumptionequivalenttototalwindandsolarpowergenerationWhendesignedandimplementedwell,standardsandlabellingprogrammesincreaseefficiencyinhighlycost-effectiveways.ArecentassessmentbytheIEAand4ETechnologyCollaborationProgrammeshowedthatin2018,intheninecountriesorregionsforwhichthereweredata,includingChina,theEuropeanUnionandtheUnitedStates,standardsandlabellingsavedover1500TWhofelectricityconsumption.Thisisequivalenttothetotalelectricitygenerationofwindandsolarenergyinthosejurisdictionsduringthatyear.Becausetheseproductsaccountforasignificantproportionoftotalelectricityuse,makingthemmoreefficientcanreinintotalelectricitydemand.Thecountrieswiththelongesthistoryofapplyingminimumenergyperformancestandardshaveachievedelectricitysavingsofaround15%oftotalelectricityconsumptionperyearandreducednationalenergy-relatedCO2emissionsby7-10%.Savingsincreaseeachyearasolder,lessefficientstockisreplacedwithequipmentthatmeetshigherefficiencystandards.Ifasimilar15%improvementhadbeenachievedbyallcountries,areductionofcurrentelectricityconsumptionintheorderof3500TWhperyearcouldhavebeenachievedin2020–roughlyequivalenttocuttingChina’scurrenttotalelectricityconsumptioninhalf.0%20%40%60%80%100%020406080100MEPSMCLMEPSMCLMEPSMCLMEPSMCLSpacecoolingRefrigerationLightingIndustrialmotorsGlobalenergyusecoverageNo.ofcountriesPoliciesunderdevelopment(No.ofcountries,leftaxis)Policiesinforce(No.ofcountries,leftaxis)Electricityusecoverageofpoliciesinforce(%,rightaxis)EnergyEfficiency2021Chapter2.Energyefficiencyandnetzeroby2050PAGE60IEA.Allrightsreserved.Impactofenergyefficiencystandardsandlabellingprogrammesinselectedcountriesandregions,2018IEA.Allrightsreserved.Notes:Electricityconsumptionsavingsarecalculatedrelativetothecommencementofprogrammesinthosecountries.Longer-runningprogrammesyieldhigherenergysavingsasagreaterproportionofappliancesinusearecovered.DataforJapanandIndiaunderdevelopment.Source:IEAand4ETCP.CountriesarecomingtogethertodeliverhigherambitionTheSuper-EfficientEquipmentandApplianceDeployment(SEAD)Initiativeisacollaborationbetweenover20governments,theIEAandotherpartnerstoaccelerateandstrengthenthedesignandimplementationofenergyefficiencypoliciesforappliancesandequipment–particularlylighting,industrialmotorsystems,airconditioningandrefrigeration.SEADisworkingwithmembercountriesandpartnerstoprovideknowledgeandtoolstoimprovepolicy,raiseawarenessabouttheimportanceofhigh-efficiencyappliances,identifyenergy-savingtechnologiesandoffertechnicalexpertise.InNovember2021,theIEAandtheCOP26presidencylaunchedtheCOP26ProductEfficiencyCalltoActiontodoubletheefficiencyofkeyappliancesandhelpcountriesraiseambitionmorequickly,moreeasilyandatlowercost.G7leadershadpreviouslywelcomedtheCalltoActionatthe2021G7SummitinCornwall.TheobjectivesoftheCalltoActionareto:1.Setcountriesonatrajectorytodoubletheefficiencyofkeyproductssoldgloballyby2030–industrialmotorsystems,generallightingservicelamps,residentialairconditionersandresidentialrefrigerator/freezers.0%2%4%6%8%10%12%14%16%18%MalaysiaSouthAfricaBrazilIndiaChinaMexicoAustraliaEuropeanUnionUnitedStatesContributionofappliancestoreducingtotalnationalelectricityconsumptionEnergyEfficiency2021Chapter2.Energyefficiencyandnetzeroby2050PAGE61IEA.Allrightsreserved.2.Supportthedeliveryofnationalclimatechangetargets.3.Provideconsumersandbusinesseswithmoreefficientproductsthatareaffordableandcost-effectivetoownandoperate.4.Stimulateinnovationandprovidebusinesseswithexportopportunities.5.Promoteadualcourseofactionmakingproductsbothenergy-efficientandclimate-friendlybyreducingtheuseofrefrigerantsincoolingappliancesTheIEAisdevelopingasimpletooltohelpcountriesimprovetheambitionofapplianceefficiencypolicy:theenergyperformanceladder.Theladderbringstogetherdifferentapplianceefficiencypoliciesunderasingleconsistentsetofperformancethresholds.SEADisworkingwithmembercountriestosupporttheuseoftheladdertoincreaseefficiencyambitionacrossagreaternumberofmarkets.Theinitiativealsoaimstopromotenewdigitaltoolsandbusinessmodelstoimprovetheefficiencyofkeyappliancesandunlockthewidersystembenefitstheypresent.2.3BuildingsEfficiencyinbuildingscandeliverthelargestshareofavoidedenergyconsumptionto2030IntheIEANetZeroEmissionsby2050Scenario,itisexpectedthatbuildingfloorareaequivalenttothatofthecityofParisisaddedeveryweekgloballybetween2020and2050,80%ofwhichisinemergingmarketanddevelopingeconomies.Inadvancedeconomiesamoredevelopedbuildingstockmeansthatfewernewbuildingsareneededwithhalfofallexistingbuildingsexpectedtostillbestandingin2050.Inthescenario,retrofitratesforbuildingstoa“zerocarbonready”standard–thatwillbefullydecarbonisedby2050withoutanyfurtherchangestothebuildingoritsequipment–reachabout2.5%ayearby2030inadvancedeconomiesand2%ayearby2030inemergingeconomies.Inaddition,thescenarioincludesamilestonethatallnewbuildingsconstructedfrom2030arezerocarbonready.Buildingenergycodesarethecentralpolicymechanismtomeetthisgoal.However,only5%ofnewbuildingsconstructedgloballycurrentlymeetthisstandard.Basedonanalysisoffourjurisdictions,shownbelow,ithassometimestakenfromsixto22yearsfromtheannouncementofsuchagoaltodevelopandimplementtherelevantbuildingenergycode.Thissuggeststhattodevelopazerocarbonreadybuildingcodethatcomesintoforceby2030–andthenecessarysupportingpolicies,toolsandcapacitybuildingmeasures–aone-tothree-yearwindowEnergyEfficiency2021Chapter2.Energyefficiencyandnetzeroby2050PAGE62IEA.Allrightsreserved.currentlyexists.Existingpolicycyclesforbuildingcodeupdatesarealsoanimportantfactor;theycanrangefromtwotofiveyears.Selectedtimelinesforzerocarbonreadybuildingcodes,fromtargetannouncementtocodescomingintoforceIEA.AllrightsreservedEnergyEfficiency2021Chapter2.Energyefficiencyandnetzeroby2050PAGE63IEA.Allrightsreserved.Jurisdictionswithoutmandatorybuildingenergycodesfaceagreaterchallenge,astheyneednotonlytodevelopcodesbutalsotoestablishthenecessarytools,trainingandcompliancesystems,andmaterialsupplychainsacrossthebuildingsandconstructionsector.Electrificationofspaceandwaterheating:thevitalroleofheatpumpsOneofthemostimportantwaystoenhanceefficiencyanddecarbonisebuildingsistoswitchwaterandspaceheatingfromusingfossilfuel-firedboilersandfurnacestousingelectricity.Heatpumps,directelectricheatersandelectricboilersarealreadyinuseinseveralcountries,thoughareoftenmoreexpensivethanusingnaturalgas.HeatpumpsarethekeystonetechnologyforelectrifyingspaceheatingintheNetZeroEmissionsby2050Scenario,withglobalsalesaveragingover3millionunitspermonthby2030inthescenario,upfromaround1.6milliontoday.TheUnitedKingdomplanstophaseoutthesaleofgas-firedboilersaspartofplansforimplementingzerocarbonreadybuildingstandards.InmanycountriesintheEuropeanUnion,includingFrance,bansonsalesofoilandgasboilerswillcomeintoforceinthecomingyears.InIreland,installationofoilboilersinnewbuildingswillbebannedfrom2022,andgasboilersfrom2025.SuchpoliciesarebeingsupportedinmanycountrieswithfundingforbuildingretrofitsinCovid-19recoveryplans.TheNetherlandshasintroducedplanstodeployupto2millionheatpumpsby2030andwillincludesubsidiestoencourageinstallationof100000heatpumpsperyearfrom2024.In2020,NorwaydistributedsubsidiesthroughtheENOVAprogrammetoover2300householdsandisfocusingonincreasingthemarketforhigh-temperatureheatpumpsfordistrictheatingsystems.Tosupporttheadoptionofheatpumps,animportantconsiderationistoensurethebuildingenvelopeisasefficientaspossiblebyupgradinginsulationandinstallingefficientwindows.Thesemeasureshelpavoidunnecessarilyoversizingheatpumpsystems,improvingtheireffectivenessatheatinghomesandreducingenergydemandrequiredaswellastheirupfrontandoperationalcosts.Effectivepoliciestodeployheatpumpscantakeintoaccountfactorssuchas:incentivesthroughpublicgrantsandenergypricing,standardsforbuildingstorequirenetzeroemissionsandregulatorytargetsforphasingoutinstallationoffossilfuelheatingsystems.EnergyEfficiency2021Chapter2.Energyefficiencyandnetzeroby2050PAGE64IEA.Allrightsreserved.Targetingtechnologyadvancesinheatpumpdevelopment,suchasincreasingavailabilityandreducingcostofplug-and-playheatpumpsonstandardresidentialvoltageandlow-amperagesystems,isalsoanimportantconsideration.Reducingthesizeofcompressorsandimprovingperformanceinverycoldclimatesareareasfordevelopment.BehaviouralchangeinbuildingusealsoplaysanimportantroleinachievingmilestonesintheNetZeroEmissionsby2050Scenario.Theseincludechangingheatingsetpointsto19-20°Candcoolingsetpointsto24-25°Candreducingwaterheatingsetpointsby10°Ctoavoidexcessivetemperatures.SuchmeasurescontributetohelpreduceCO2emissionsbyalmost250MtCO2by2030intheNetZeroEmissionsby2050Scenario.Shiftingtozerocarbonreadybuildings,asintheNetZeroEmissionsby2050Scenario,bringsnumerousbenefits.Suchbuildingscanboostcomfort,healthandproductivity.Enhancinginsulation,glazing,weatherproofingandventilationprovidesmajorimprovementstothermalcomfort,humiditylevels,noiselevelsandairquality.Forexample,educationalperformancehasbeenshowntoimproveby2.9%forevery100luxofbetterlightingandby2.3%forevery1ºCreductioninoverheating(above28ºC).Inhealthcaresettings,renovationsandenergyefficiencyupgradestohospitalsandcareroomshelpedcontributetoan11%reductioninaveragelengthofstay.Inemergingeconomies,loweringfinancingcostscanadvanceaccess,cleanenergyandefficiencyInemerginganddevelopingeconomies,thepopulationofurbanareasisexpectedtogrowbyalmost2billionby2050.Atthesametimearound790millionpeopleworldwidestilldidnothaveaccesstoelectricityin2020,mostofthemlivinginsub-SaharanAfricaanddevelopingAsia.Around2.6billionpeopledonothaveaccesstocleancookingoptionssuchaselectriccookers.TosupporttheNetZeroEmissionsby2050Scenario,specialattentiontoovercomebarrierstoinvestmentinmanyemergingcountriesisanimportantconsideration.Suchcountriesarealsooftenmorereliantonpublicsourcestofinanceenergyefficiencyandprojectspromotingenergyaccess.Financingcostsaresignificantlyhigherinemerginganddevelopingeconomiesthaninadvancedeconomies,withnominalfinancingcostsuptoseventimeshigherthanintheUnitedStatesandEurope.Thiscanbeabarrierforcleanenergyprojectsseekingtoraisedebtfinanceandsupportsustainabledevelopmentgoals.EnergyEfficiency2021Chapter2.Energyefficiencyandnetzeroby2050PAGE65IEA.Allrightsreserved.Theconstructionindustryisoftencomposedofsmallandmedium-sizedenterprisesforwhichaccesstofinancecanbecostlyandrestricted,especiallyinemergingcountries.Fortenants,theupfrontcostofnewandmoreefficientequipmentcanoftenbeasignificantbarrier.Additionally,paymentoptionssuchason-billfinancingschemeswithutilitiesarelessavailablethaninadvancedeconomies.InIndia,theEnergyConservationBuildingCodewasupdatedin2017andisprogressivelybecomingmandatoryacrossthecountry.Sincetheupdate,energyintensityhasfallenby7%innewcommercialbuildingsand8%inresidentialbuildings.TheIndianGreenBuildingCouncilalsodevelopedaNetZeroEnergyBuildingRatingsystemin2018.InColombia,theadoptionofanewbuildingcodein2015andtheendorsementofEDGEcertificationbythechamberofcommerceenabledlocalbankstoraisefundsforgreenbuildings.ThiswasassistedbytheExcellenceinDesignforGreaterEfficienciescertificationprogramme(EDGE)devisedbytheInternationalFinanceCorporation,apartoftheWorldBankGroup.LocalbankshaveissuedaroundUSD260millioningreenbondstofundtheconstructionofEDGE-certifiedgreenhousingdevelopmentsandtwogreenofficebuildings.Thegreenbondissuancewasdesignedtohelpchannelfundsintotheprojectsshowedhowsuchinvestmentcanbesecuritisedandmarketedtointernationalinvestors.Technicalandfinancialsupportfrominternationalorganisationscanhelpemerginganddevelopingeconomiesmakethenecessaryreformsintheirfinancialandenergysystemstofacilitatecleanenergyfinancing.Forexample,theWorldBankhasplayedanimportantroleinpromotingChina’senergyservicecompanymarketsince1998byprovidingfundingandtechnicalassistance,includingthesetupofaloanguaranteeprogramme.In2015,theMexicangovernmentworkedwiththeInter-AmericanDevelopmentBankandtheCleanTechnologyFundtolaunchEnergySavingsInsurance(ESI),thefirstprogrammetouseinsurancemechanismstoaddressenergyefficiencyprojectrisks.TheMexicangovernmentanticipatedthatESIwouldstimulateUSD25millionofinvestmentin190energyefficiencyprojectsthrough2020.ESIisbeingdemonstratedinsevenotherLatinAmericancountries,includingBrazil,ColombiaandPeru.Iffullyimplementedinthesesevencountries,ESIcoulddriveuptoUSD100billionininvestmentandreduceemissionsbyupto234MtCO2ayearby2030.EnergyEfficiency2021Chapter2.Energyefficiencyandnetzeroby2050PAGE66IEA.Allrightsreserved.2.4TransportEfficiencyofallvehicletypesneedstobeincreasedaselectrificationgatherspaceThetransportsectoraccountedfor25%oftotalfinalenergyconsumptionin2020,withemissionsdown10%atjustover7GtCO2,comparedwith2019levels,beforetheCovid-19pandemic.Oilcomprises90%oftransportenergydemand.Roadtransportmakesupabout75%oftransportdemandandemissions.IntheNetZeroEmissionsby2050Scenario,transportsectorenergyconsumptionfallby3%andemissionsby20%by2030.Thisoccursasoil’sshareoftransportdemandfallstoaround80%by2030,duetoanincreaseinefficiencyacrosstransportmodes,includingwidespreadelectrification,aswellasbehaviouralchanges.Thedifferenttransportmodesdonotdecarboniseatthesameratebecausetechnologymaturityvariesmarkedlybetweenthem.CO2emissionsfromtwo-andthree‐wheelersalmostceaseby2040,followedbycarsandvans(light-dutyvehicles)andrailinthelate2040s.Emissionsfromheavytrucks,shippingandaviationfallbyanannualaverageof6%between2020and2050andcollectivelyamounttoabout0.5GtCO2in2050.EvenintheNetZeroEmissionsby2050Scenario80%ofpassengercarstockremainsconventionallypoweredby2030,underscoringtheimportanceofcontinuingtoimprovefuelefficiencyofinternalcombustionenginevehicles.Nearly90%ofnewlight-dutyand80%ofnewheavy-dutyvehiclessalesarecurrentlycoveredbyfueleconomystandards,thoughundertheNetZeroEmissionsby2050Scenariotheybecomemorestringent,helpingfacilitatetheshifttoelectricvehicles.IntheNetZeroby2050scenario,energyefficiencyplaysthedominantroleindeliveringenergysavingsthroughto2030,responsibleforapproximately50%ofavoideddemandinthescenario,followedbyelectrificationandbehaviouralchangethatcontributearoundaquarterofavoidedenergyeach.After2030electrificationplaysasteadilygreaterrole,withitscontributionrisingtoaroundhalfofavoidedenergydemandby2050,withefficiencyaround40%andbehaviouraround10%.EnergyEfficiency2021Chapter2.Energyefficiencyandnetzeroby2050PAGE67IEA.Allrightsreserved.ShifttowardslargervehiclesbluntsfueleconomygainsProgressonenergyefficiencyhasslowedforcarsandvans,withglobalaveragefuelconsumptionimprovingonly0.9%between2017and2019,comparedwithanaverageof2.6%peryearbetween2010and2015.Theslowingofimprovementsisduetoacombinationoflarger,heavierandhigher-poweredvehicles,especiallySUVs,andsloweradoptionofmorefuelefficientpowertrains.Increasingvehicleweight,powerandfootprinthasoffsetupto40%oftechnicalefficiencyimprovementstofueleconomyintheUnitedStates,EuropeandChina,and17%ofthetechnicalefficiencyimprovementsmadeinIndia.Globally,theSUVfleetwasoncoursetoexceed280millionvehiclesin2020,upfromlessthan50millionin2010.SUVsconsumeonaverageover20%moreenergythanamedium-sizedcarforthesamedistancetravelled.TomeettheNetZeroEmissionsby2020Scenario,globalaveragefuelconsumptionofnewlight-dutyvehiclesneedstobenearlyhalfthe2020levelby2030.Tohelpachievethisresult,undertheNetZeroEmissionsby2050Scenario,20%ofthepassengercarstockwillbeelectricin2030andhaveamarketshareof64%ofnewcarsalesand30%ofnewtrucksales.Financialandothermeasurescanbeusedtoencourageconsumerstochooselighter,smallervehiclesoverheavier,largerones.TolimittheriseofSUVs,countriessuchasFranceandNorwayhaveimplementedweight-basedtaxesonheaviercars.InJapan,incentivesthatincludesloweracquisitionandinsurancetaxeshavepromotedverysmall,lightweightvehiclesknownaskei-cars.TaxratesundertheIndonesia'snewLow-CarbonEmissionVehicleprogrammearenolongerbasedonenginecapacityalone,butalsotakeengineefficiencyandemissionsintoaccount.InBerlin,cityauthoritiesarecurrentlyconsideringproposalstochargeSUVownersasmuchasUSD590forannualparkingpermits,fivetimesmorethansmallercars.SimilarproposalsarebeingconsideredinVancouver.Tophaseoutnewconventionalvehiclesby2035,targetsforelectriccarsandvansmountElectrificationoftransportplaysacentralroleintheNetZeroEmissionsby2050Scenariowithnewsalesofinternalcombustionlightvehiclesphasedoutby2035.Salesofplug-inhybrid,battery-electricandfuelcellelectriclight-dutyvehiclesrise,with350millionsuchcarsandvansontheroadin2030,upfrom11millionin2020.EnergyEfficiency2021Chapter2.Energyefficiencyandnetzeroby2050PAGE68IEA.Allrightsreserved.Two-andthree-wheelersleaddeploymentofelectricvehicles,withatargetof85%ofnewsalesby2030,includingwidespreaddeploymentinemerginganddevelopingeconomies.Asonly35%ofnewtwo-andthree-wheelerssalesarecurrentlycoveredbyfueleconomystandards,increasingattentiontothefueleconomyofthesevehiclesisanimportantareaforpolicy.Otherbenefitsofincreasingtheefficiencyofthesevehiclesincludesimprovinglocalairqualityandreducingnoise.Specificpolicymeasurestofacilitateadoptionofelectricvehiclesarebecomingmorewidelyused.Forexample,theUnitedKingdomaimstobanthesaleofnewinternalcombustionenginecarsby2030.CanadaandtheEuropeanUnionhavesimilartargetsfor2035,whicharealignedwithIEANetZeroEmissionsby2050Scenariomilestones.Tocomplementfueleconomystandards,countriescanrequiremanufacturerstosellacertainnumberofelectricvehiclesaswellassettingadoptiontargetsmorebroadly.Localisedschemesalsohavearoletoplay,includingprovisionofcharginginfrastructureandpreferentialaccessschemessuchaslow-orzero-emissionzones.Tobetterunderstandthesystemefficiencyandgreenhousegasemissionsimpactsofdifferentvehiclepowertrainsitisnecessarytolookbeyondvehicleoperationatthetailpipeorenginelevel.Thisisbecauseelectricvehicles,whilemoreefficienttooperate,stillrelyonelectricitygeneratedbysystemspredominantlypoweredbyfossilfuels.Forthisreasonamorecompleteperspectiveisprovidedbywell-to-wheelanalysis,whichassessestheCO2emissionsincurredinfuelsupplyandoperatingthevehicle.Globalaveragewell-to-wheelgreenhousegasemissionsintensity,2019and2030PowertrainCO2-eqperkilometre2019STEPSCO2-eqperkilometre2030APSGasolineinternalcombustionenginevehicle205130Dieselinternalcombustionenginevehicle180130Compressednaturalgasinternalcombustionenginevehicle180140Hybridelectricvehicle135100Plug-inhybridelectricvehicle10540EnergyEfficiency2021Chapter2.Energyefficiencyandnetzeroby2050PAGE69IEA.Allrightsreserved.PowertrainCO2-eqperkilometre2019STEPSCO2-eqperkilometre2030APSBattery-electricvehicle7030Fuelcellelectricvehicle13040Notes:2019basedonIEAWorldEnergyOutlookStatedPoliciesScenario(STEPS),2030basedonAnnouncedPledgesScenario(APS).RangesarebasedontheWLTCratedperformance.Well-to-wheelgreenhousegascarbonintensityacrossallpassengerlight-dutyvehicles,valuesroundedforsimplicity.Carbonintensityvaluesforfuelcellvehiclesreportedherearearangebetweenvaluesusingelectrolytichydrogenandnaturalgassteammethanereformingpathways.Carbonintensityvaluesforinternalcombustionenginevehicles,hybridsandplug-inhybridsincludebiofuelblending.Sources:IEAanalysisbasedonIEA(2021),GlobalFuelEconomyInitiative.Heavytruckssettobecomemainsourceoftransportemissionsby2035HeavytrucksareexpectedtobecomethemainsourceofCO2emissionsfrom2035onwards.IntheNetZeroEmissionsby2050Scenario,theaveragefuelconsumptionofinternalcombustionengineheavytrucksdecreasesby19%by2030and37%by2050.Forheavytrucks,energysavingscanbeachievedthroughengineefficiencyimprovements,hybridisationandlightweighting.Electrictrucksarecomingtomarket,butthelackoffast-charginginfrastructurealonglongdistancefreightcorridorscanbeanobstacleforregionalandlong-haultruckingoperations.Aswithpassengerlight-dutyvehicles,morestringenttargetswillbeimportanttoachieveclimategoals.Significantscopealsoexiststointroducestandards,fiscalmeasuresandincentivesincountrieswheretheyareyettobeimplemented.Forexample,Switzerland’sroadtaxondieseltruckoperationshasledtofuelcelltruckdeployment.Incities,zero-andlow-emissionzonescanalsoencouragetheuseofzeroemissionstrucks.RailandbehaviouralchangeleadothertransportactionsRailisoneofthemostenergy-efficientandleastcarbonproducingtransportmodesofferingsignificantenergysavingsthroughmodalshift.IntheNetZeroEmissionsby2050Scenario,regionalflightsarereplacedbyhigh-speedrailjourneyswherefeasiblesuchasiscurrentlybeingpursuedinFranceandAustria.Electrificationofrailcanfurtherimproveefficiencyanddecarbonisation.Railcurrentlyhasanelectricityshareofaround43%intermsoftotalenergyconsumption.IntheNetZeroEmissionsby2050Scenario,theshareofelectricityincreasesto65%by2030and96%by2050,withasmallamountofhydrogenEnergyEfficiency2021Chapter2.Energyefficiencyandnetzeroby2050PAGE70IEA.Allrightsreserved.alsoincluded.InIndia,“electrifyeverything”hasbecomeaguidingprincipleforrailways,with71%or48000kilometresofrouteinitsnetworkconnectedtoelectricity.AccordingtotheIndianMinistryofRailways,alltrackswillbefullyelectrifiedbytheendof2023tohelpreducerelianceonimportedpetroleumproducts,liftenergyefficiencyandhelpwiththegreentransition.UndertheNetZeroEmissionsby2050Scenario,aviationandshippingCO2emissionsincreasetothemid-2020sandthenstarttofall,thoughmuchmoreslowlythaninpassengerlight-dutyvehicles.Aswithheavy-dutyvehicles,efficiencymeasuresareparticularlyimportantintheshorttomedium-term.AsaresultofCovid-19restrictions,CO2emissionsfromaviationhavefallenbyaroundone-thirdtojustover600Mtin2020,levelslastseenin1997.Aviationefficiencymeasureswillprovideanimportantwaytohelpreduceenergyconsumptionasflightactivityreturns.Theseincludefuelefficiencytechnologiesforairframesandenginesaswellasoperationalimprovementssuchasairtrafficmanagement.Forshipping,efficiencyapproachesincludeslowsteamingandwindassistancetechnologies.Shippingcurrentlyaccountsforaround12%oftotaltransportCO2emissions,or3%oftotalglobalenergy-relatedemissions.IntheNetZeroEmissionsby2050Scenario,behaviouralchangeisanimportantcomponentofdecarbonisingtransport,helpingreducetotaltransportemissionsby12%by2030.Behaviouralchangecoversallmodes,withaparticularemphasisonpassengertransportandmodalshifttolessenergy-intensivemodes.Behaviouralchangesonroadsinadvancedeconomiesreducepassengervehiclekilometresby22%by2030,facilitatedbymodalshifttopublictransportandincreasedcaroccupancy,whileinemerginganddevelopingeconomiesactivitygrowsby35%.Forexample,fueleconomycanbesubstantiallyimprovedbyrevisingspeedlimitsandthrougheco-driving.TheUSDepartmentofEnergyfoundthataround22.7billionlitresiswastedannuallybyheavy-dutyandlight-dutyvehiclesidlingunnecessarily.Addressingexcessiveidlingforlight-dutyvehiclesalonecouldavoidaround30milliontonnesofCO2annually,equivalenttoremovingaround5millioncarsfromtheroad.InNewYorkCity,“warmingup”ofvehiclesisnowoutlawed.CitizensareabletoreportunnecessaryidlingoffendersundertheCitizensAirComplaintProgram.ThisissuehasgainedsomeprominenceinNorthAmericasupportedbyincreasingpublicawarenessactivitiesincludingtheBillyNeverIdlescampaign,inspiredbythe1980srocker.EnergyEfficiency2021Chapter2.Energyefficiencyandnetzeroby2050PAGE71IEA.Allrightsreserved.2.5IndustryIndustryisthesecondlargestsourceofCO2emissionsafterthepowersector,withtotalemissionsofaround8.7GtCO2in2020.Threeheavyindustries–chemicals,steelandcement–accountfornearly60%ofindustrialenergyconsumptionandaround70%ofCO2emissions.Inthelasttwodecadesglobaldemandfortheseproductshasgrownsignificantly,risingby2.1timesforsteel,2.4timesforcementand1.9timesforplastics,themajorproductofthechemicalssector.Emerginganddevelopingcountriesaccountfor70-90%ofthecombinedoutputofthesecommodities,withChinaaloneresponsibleforalmost60%ofglobalsteelandcementproductionin2020.IntheNetZeroEmissionsby2050Scenario,outputofincreasesby9%forsteel,21%forchemicalsand5%forcementby2030,thenmostlylevelsout.Energyconsumptionfollowsasimilarpathto2030thenstabilisesorfallsslightlyduetogainsinmaterialandenergyefficiency.WithoutthegainsfromenergyefficiencyincorporatedintheNetZeroEmissionsby2050Scenario,industrialenergyconsumptionwouldincreaseby16%by2030insteadof8%.Inthescenariogoals,theenergyintensityofindustryimprovesfrom4.1MJ/USDofvalueaddedtodayto3.1MJ/USDby2030and1.8MJ/USDby2050.HeavyindustryenergyconsumptionandactivityintheNetZeroEmissionsby2050Scenario,2020-2050IEA.Allrightsreserved.Sources:IEA(2021),NetZeroby2050.IEA(2021),WorldEnergyOutlook.0501001500510152025303540202020302040205020202030204020502020203020402050IronandsteelChemicalsCementActivityindex(2020=100)EJEnergyEfficiency2021Chapter2.Energyefficiencyandnetzeroby2050PAGE72IEA.Allrightsreserved.CementsectorlookstoreduceclinkerandfavouralternativefuelsTheaverageenergyintensityofproducingconventionalcementisaround3.3GJ/tandeachtonneresultsinemissionsofaround0.7tCO2,ofwhich50-60%comesfromclinkerproduction.Theremainingemissionsoriginatefromcombustionoffuelssuchascoal,gas,oilandpetroleumcoke.Theproductionofclinker,abindingagent,isthemostenergy-intensiveandemissions-intensivecomponentofcementmanufacturing,soakeyNetZeroEmissionsby2050Scenariomilestoneisareductionintheclinker-to-cementratioby8%,from0.71in2020to0.65in2030.Dependingontheelectricityenergymixemployed,cementmanufacturingalsoincursindirectemissionsfromelectricityproduction.Whilecementkilnsareconventionallyfuelledbyfossilfuels,alternativefuelsbecomemoreandmoreimportantintheNetZeroEmissionsby2050Scenario.Thesearetypicallyfrommunicipalandindustrialwastestreamsandcancontainbiomass.Alternativefuelscanserveadualpurposeincementproduction.Notonlydotheydeliverenergy,buttheresidualashcanbedirectlyaddedtothecementoutputasanorganiccomponent.Arangeofmaterialscanalsobeusedtoreplaceclinkerincement.Theseincludefinelygroundlimestoneandby-productsfromotherindustries,suchasgranulatedblastfurnaceslagfromsteelproductionorflyashfromcoal-firedpowerplants.Suchby-productswilldecline,however,ascoal-firedpowergenerationisphasedoutandalternativeproductionmethodsandrecyclingratesofsteelprogress.Countriescanincludeintheirbuildingcodesstandardsforconcretethatfavourcementswithlowerclinkercontent,withoutcompromisingsafetyandperformance.Commonshort-tomedium-termmethodsforreducingemissionsincludechangingfromwettodryproductionprocessesandusingrecoveredwasteheattopreheatmaterials.Increasingthelifespanofbuildingscanalsoreducedemandforcement,notablybyinvestingmoreheavilyinbuildingretrofitsandenergy-efficientconstruction.Concreteiswidely“downcycled”foruseinroadorfoundationbedsbutcouldberecycledmuchmore.Uniformconcretestructuralcomponentscouldbedesignedforreuse,forexample.Processingusedconcretetoseparatethecementportionfromthesandandaggregatescanenableitsreuseasalow-carbonrawmaterialforcementproduction.EnergyEfficiency2021Chapter2.Energyefficiencyandnetzeroby2050PAGE73IEA.Allrightsreserved.CementproductioninIndiaAsof2020,Indiaistheworld’ssecondlargestcementmarket,bothinproductionandconsumption,with7-8%ofglobalinstalledcapacity.Inthethirdquarterofthe2021financialyear,IndiancementcompanieswerereportinghealthygrowthinearningsanddemandasconstructionactivitiesresumedaftertheCovid-19lockdown.SalesofcementinIndiastoodataroundUSD9.05billioninthe2020financialyear.India'scementproductionandconsumptionhasbeengrowingatanannualrateofaround6%inrecentyears,pushedupbydemandforroads,urbaninfrastructureandbuildings,includingfornewaffordablehouses.Cementproductionreached329Mtinthe2020financialyearandisexpectedtoincreasebyover10%to381Mtinthe2022financialyearandreach550-600Mtby2025.Thecementindustryhasaninstalledcapacityof545Mt.AccordingtotheIndianCementManufacturers’AssociationtheIndiancementsectorisonparwithJapan’sinenergyconsumptionandadoptionofgreenpractices.Itisthelargestconsumerofflyashproducedfromthermalpowerplantsandconsumes100%oftheslagproducedbythesteelindustry,whichhelpsbringdownitsclinker-to-cementratio.Theindustryhasimproveditsuseofalternativefuelsandrawmaterials,andhaspromotedpowergenerationbasedonwasteheatrecovery.HeidelbergCement’sNarsingarhplanthasstartedgeneratingpowerusingwasteheatfromitskilnalreadyin2016.Theinstalledcapacityofthefacilityamountsto12MW.Another22MWwasteheatrecoveryunitisplannedtobebuiltattheYerraguntlaplant.Moreover,alternativefuelsarebeingusedatseveralofHeidelbergCement’splantsinIndiaandinvestmentsareunderwaytofurtherincreasetheuseoflocalwastestreams.AspartofitsnetzeroroadmapHolcim,oneoftheworld’slargestcementcompanies,aimstoreduceitsscopetwoemissions–indirectemissionsassociatedwiththepurchaseofelectricity,steam,andheatorcooling–by65%by2030relativeto2018.ThecompanyisinvestingUSD108millioninwasteheatrecoveryatsixsitesinIndiatoreduceemissionsby500000tCO2peryear.Theuseofwasteheatfromcementkilnstoproduceelectricityalsohelpsreduceelectricaldemandfromthegrid.Holcim’sIndianoperationsACCandAmbujaCementhavebeenreplacingclinkerwithby-productrawmaterialslikeflyashfrompowerplantsandslagfromsteelproduction.Theiroperationshaveacombinedclinkerfactorof63%,withtwoACCcementplantsachievingaclinkerfactoraslowas44%.CementproductioninTurkeyTheTurkishcementsectoroutputdecreasedby29%from2019to2020duetotheCovid-19pandemic.In2020itrecoveredsomewhatreporting27%growth,andEnergyEfficiency2021Chapter2.Energyefficiencyandnetzeroby2050PAGE74IEA.Allrightsreserved.totalcementproductionof76.5milliontonnes.In2020Turkeyalsobecametheworld'ssecondlargestcementexporter.Approximately18%ofindustrialenergyconsumptioninTurkeytakesplaceinthecementsector.Between2011and2020,awasteheatrecoveryfacilitywithaninstalledpowerof141.5MWwascommissioned.However,thegovernmentestimatesthatthereisstill128.5MWofsuchcapacitytobedeveloped.AlternativematerialsCementconsumptioncanalsobereducedbyusingalternativebuildingmaterialsliketimber.Timberisoneoftheoldestconstructionmaterials.Thetechnologyhasalsoprogressedwithsmallertimberpiecesanddifferentgluesenablinghigherstabilityandmoderncoatingsincreasingfiresafety.Theheattransmissioncapabilitiesofwoodaresignificantlybetterforenergyefficiencythanconcrete.Duetothecarbonbindingpropertiesofwood,increasedtimberusagecanturnbuildingsintocarbonsinks.However,withdeforestationbeingaconcern,atransformationofconstructiontowardsmoretimberusagerequirescarefulgovernance.TimberusedasasustainablematerialintheTokyoOlympicsIntheTokyoOlympics2020,heldin2021,buildingdesignusingtimberwasshowcased.Japanhaslonghistoryofusingwoodforconstruction.Italsohasthesecondlargestpercentageofforestarearelativetoitslandmassintheworld.ThecommunalbuildingattheOlympicvillagewasbuiltentirelyoutoftimbersourcedfromdifferentareasofJapan.TheJapanNationalStadiumusestimberfortheentirefacadeaswellasitsinteriordesign,withitsfoundationbasedonconcreteandsteel.Touselessenergy,ironandsteelsectorseeksgreatershareofscrapSteel,akeymaterialfoundationforeconomiesaroundtheworld,isalsoresponsiblefor7%oftotalenergy-relatedCO2emissionsand8%ofglobalfinalEnergyEfficiency2021Chapter2.Energyefficiencyandnetzeroby2050PAGE75IEA.Allrightsreserved.energydemand.Therearetwomainproductionprocess–primaryproductionusingironoreasitsmainsourceofmetallicinputandsecondaryproduction,whichisbasedonscrap.Conventionalsteelproductioninvolvesacoke-poweredblastfurnacetoprocesstheironore.Theblastfurnaceproducesmolteniron,whichisthenfedintoabasicoxygenfurnace,ofteninconjunctionwithsomescrap,whichoxygenininjectedtolowerthecarboncontenttoproducesteel.Thisconventionalprocessmakesuparound90%ofprimarysteelproductionand70%ofoverallglobalsteelproduction.Withthehighestavailableefficiency,thisprocessemits1.8tCO2pertonneofsteel.Aneweralternativeprocessisdirectreductionelectricarcfurnaceproductionwherehigherqualityironoreismeltedinanelectricarcfurnacewithoxygenandlimetomakesteel.Emissionsfromthismethodare0.7tCO2pertonneofsteel,lessthanhalfofcurrentbestavailableconventionalproductionemissions,whentheelectricityusedis100%renewable.Thisprocessmakesuparound28%ofglobalsteelproduction.Secondarysteelproductionavoidstheinitialrefiningstepwhereoxygenneedstoberemovedfromtheironore,andasaresultrequiresabout80-90%lessenergytoproduceatonneofsteel.However,akeyconstrainttothismethodistheavailabilityofscrapproducedfromtherecyclingprocess.IntheNetZeroEmissionsby2050Scenario,currenttechnologiesprovidearound85%oftheemissionsreductionsfromsteelproductionby2030.Oneofthekeymeasuresisamajorincreaseinrecyclingandreusingscrapmetalinelectricarcfurnaces.In2019,around30%ofthemetallicrawmaterialforsteelmakinggloballywasfromrecycledsteelscrap.Thesectorhasarelativelyhighrecyclingratewithapproximately80-90%ofsteelrecycledglobally.Amajorsourceforrecyclingisthebuildingssectorwherearound86%ofexistingsteelfrombuildingdestructionisrecycled.Overall,however,demandforsteelfarexceedstheavailabilityofscrap.IntheNetZeroEmissionsby2050Scenario,theuseofcoalforironandsteelproductionisreplacedbyelectricityviathedirectreductionelectricarcfurnacerouteusingnaturalgasorelectrolysishydrogen.Toenablethischange,itisparticularlyimportanttoincreasethescraprecyclingratesothattheshareofscrapinmetalinputreaches40%by2030.Thismeansrecoveringmoresteelfromoldcars,machineryandappliances.EnergyEfficiency2021Chapter2.Energyefficiencyandnetzeroby2050PAGE76IEA.Allrightsreserved.Apilotproject,HYBRITinSweden,produceditsfirstbatchofemission-freeprimarysteelinAugust2021withagoaltomakethetechnologyreadyformassproductionby2026.Asinthecementindustry,steelcansometimesbereplacedbyalternativematerials,likecarbonfibre.Whilecarbonfibreproductionisnotlessenergy-intensivethansteelproduction,theamountofcarbonfibrenecessaryforthesamestabilityoftheendproductcanbesignificantlylower.Inthechemicalssector,recyclingplasticsiskeytoefficiencyMorethanoneineveryeightbarrelsofoilgoestothepetrochemicalssector,toproducemorethan173milliontonnesofprimaryplastics,whicharethebiggestend-useproductinthechemicalsubsector.Plasticsmanufacturinghasdoubleditscapacitysince2000andusesenergyforheatandtorunmachinery,inadditiontothenon-energyuseofoilandgasasfeedstock.Materialandenergyefficiencyareimportantactionstoreduceemissionsthroughto2030inthechemicalindustry.Thiscanbeachievedthroughincreasedrecycling,replacingplasticswithbiomaterialsandusingnitrogenfertilisersmoreefficiently.Aswitchtoproducingplasticsbyusingelectricsteamcrackersorelectrolysis-basedchemicalreactionsalsooffersenergyefficiencygainsandcouldbepoweredbyrenewableenergyratherthanfossilfuels.However,onlyabout14to18%ofplasticiscurrentlyrecycledatagloballevel.Theremainderisincinerated(24%)ordisposedofinlandfillsorillegallyreleasedintotheenvironmentincludingtheoceans.Therecyclingofplasticalsorequiresenergyandtransportation.Onestudyrecentlysuggestedthatvirginplasticrequiresabout83MJ/kgofenergywhilerecycledplasticincludingtransportneedsrequiresonly11MJ/kg.Inlightindustry,boostingenergyefficiencyhasmanybenefitsLightindustryincludesthemanufactureofvehicles,machinery,food,timber,textilesandotherconsumergoods,togetherwiththeconstructionandminingsector.Incontrasttoheavyindustries,mosttechnologiesthatcandecarboniselightindustryarereadytodeploy.Thisisbecausemorethan90%ofheatdemandinlightindustryislow-andmedium-temperature,whichcanbemoreeasilyswitchedfromfossilfuelstomoreefficientelectricprocesses,especiallyheatpumps.EnergyEfficiency2021Chapter2.Energyefficiencyandnetzeroby2050PAGE77IEA.Allrightsreserved.Asaresult,despitehavingalowerenergyfootprint,lightindustryhasahigherenergy-savingpotentialthanheavyindustry,accountingfor70%oftotalenergysavingsoftheindustrialsector.Thesesavingscouldhelpmanufacturersproducetwiceasmuchvalueforeveryunitofenergyconsumed,alongwithmanyotherbenefits,includingincreasingcompetitiveness.Lightindustriesaremajorsectorsoftheeconomythatsupportasignificantproportionofemploymentopportunities.Forexample,thetextilesectoristhesecondemployerinIndia,behindagriculture,andemploysmainlywomen.Improvingitscompetitivenesswithenergyefficiencycantriggerjobcreationbyincreasingtheprofitabilityofthesector.Jobcreationinturncanempowerwomenandhelptolowerwomen’sunemployment.Boostingenergyefficiencyhasnumerousotherbenefits,includingreducingdemandforotherresources,suchaswater.TextilesinIndiaIn2020,theIEAthroughitsEnergyEfficiencyinEmergingEconomiesprogrammeworkedwiththeIndiangovernmenttodevelopanenergyefficiencypolicypackageformedium-sizedtextilecompanies.CarriedoutinpartnershipwiththeBureauofEnergyEfficiency,thisworkidentifiedprocesseswiththelargestenergy-savingpotentialatnationallevelthroughcomprehensivereviews,surveys,interviewsandauditsofthespinning(yarnmanufacture),weaving(powerloom)andwetprocessing(dyeing)industry.TheIndianspinningindustrycountsabout52millionspindles.Electricityaccountsfor12to15%oftheoverallcost.Themainenergyconsumeristheringframemachine.Thehighestenergysavingspotentialwasidentifiedforhigh-speedringframemachines;invertorsforsuctionmotors;andenergy-efficientmotors.Theweavingindustrycountsabout2.8millionpowerlooms,mostlysmallscalewhiletheprocessingindustry(dyeing)ishighlyenergyandwaterintensive.Energycomprisesaround16%to20%ofoverallcosts.Theprojectidentifiedkeypoliciestoovercomebarrierstowardstheimplementationofenergy-efficienttechnologiesintheseindustries,developedincooperationwithstakeholdersandgovernment.EnergyEfficiency2021Chapter3.DigitalenergyefficiencymarketsPAGE78IEA.Allrightsreserved.Chapter3.Digitalenergyefficiencymarkets3.1ExpandingtheenergyefficiencyresourceTheextentofdigitaldeploymentisnowreshapingthescaleofenergyefficiencypossibilitiesIn2021thenumberofconnecteddeviceswithautomatedcontrols–appliances,devicesandsensors–isexpectedtoovertakethenumberofpeopleontheplanet.Overthelastfiveyearsthedeploymentofsuchdevicesgrewbyaround33%peryeartoreach9billionin2021,upfrom7billiontheyearbefore.Stockofconnectedappliances,devicesandsensors,2010-2021IEA.Allrightsreserved.Notes:Estimatefrom2020onwards.IoT=internetofthings.Thisfiguredoesnotincludeinformationandcommunicationstechnologiessuchaspersonalcomputersandmobilephones,entertainmentdevicessuchassmartTVsandspeakers,orsecuritysensorsandcontrols.Source:EDNATotalEnergyModel,Totalautomateddevices.Mostofthesedevicesaredevicesmeasuringandcollectingdata,suchassensorsandsmartmeters.In2020theseaccountedfor87%ofdevicesintheautomationsub-categoryofdevicestrackedbytheTotalEnergyModeldevelopedbythe012345678910201020112012201320142015201620172018201920202021BillionconnecteddevicesCookingStreetlightsWaterheatingSpaceconditioningAppliancesAudioLightingSmartmetersandsensorsandotherIoTEnergyEfficiency2021Chapter3.DigitalenergyefficiencymarketsPAGE79IEA.Allrightsreserved.ElectronicDevicesandNetworksAnnexoftheIEATechnologyCollaborationProgrammeonEnergy-EfficientEnd-useEquipment(4E).Manydevicescloselyrelatedtoautomationandend-useenergyefficiencyachievedmarkettake-offin2018andarenowexpandingrapidly.Forexample,thedeploymentofconnectedappliancesisexpectedtodoublefrom2020to2021andthenumberofsmartlightingdevicesisapproaching1billion.Notonlyarenewsmartappliancesandsystemsusuallymoreefficientthantheolder,lessefficientappliancesthattheyreplace,theyalsoofferthepossibilityofimprovedcontrolbothatthedeviceandpowersystemlevels.Thishasexpandedboththepotentialenergysavingspossiblefromefficientequipmentandthevaluetheybringintermsofdemandresponse,flexibilityandoptimisationprovidedtothepowersystem.Therapiduptakeofsmartmetershashelpedutilitiesandotherenergyefficiency-relatedbusinessestodevelopnewbusinessmodels.Ifframeworksareinplacetoaccessandutilisedata,thesedevicesallowmarketparticipantstoaccessmeter-baseddataonelectricityconsumptionfrommanydifferentlocationsinrealtimeorclosetorealtime.Whenlinkedtodisplaysorhomeenergymanagementsystems,smartmeterscanprovideuserswithvaluableinformationandcontroloverenergyconsumptionthatcanhelpthemreduceenergywaste.Smartmeterdeploymentisexpectedtoreachnearly1.3billionby2025fromaninstalledbaseof1billionin2019,withanestimatedmarketsizeofUSD17billionby2025.Deploymentisreturningtopre-pandemiclevels.In2021Enelstartedrollingout300000smartmetersinSãoPauloandIndiaannouncedearmarkedfundingtoinstall25millionprepaidsmartmetersbetween2021and2023.InApril2021SaudiArabiacompletedtheinstallationandreplacementofmorethan10millionsmartmetersinlessthan13months.Homeenergymanagementsystemsandcommercialbuildingenergymanagementsystemsinvolveavarietyofsmartautomatedappliances,equipment,sensors,controlsandsoftwarethatallowbuildingusersorfacilitymanagerstomonitorandcontrolenergyusage.Technologiesthatcanbeintegratedwithsuchsystemsincludesmartthermostats,rooftopsolarPV,batterystorage,electricvehiclechargers,smartmeters,smartappliances,smartplugsandconnectedlighting.ThehomeenergymanagementsystemsmarketisexpectedtobevaluedatUSD7.7billionby2025,withsmarthomedeviceshipmentsexpectedtoincreasebyaround100millionoverthenextdecade.EnergyEfficiency2021Chapter3.DigitalenergyefficiencymarketsPAGE80IEA.Allrightsreserved.On-the-groundcasestudiesinarangeofcontextsshowthatenergymanagementsystemsandrelatedtechnologiescanhelpreduceenergyconsumptionsignificantly.Whileresultsvarydependingonthecontext,thesecasestudieshighlighthowuseofsuchtechnologiesisincreasing.ExpandingthescaleofenergyefficiencywithdigitaldevicesIEA.Allrightsreserved.Note:HVAC=heating,ventilationandairconditioning.Source:IEAanalysisbasedoncasestudies.StudiesintheUnitedStatessuggestthatmedianenergysavingsof11%to22%arepossibleinthesecondyearafterinstallationofbuildingenergymanagementsystemsincommercialbuildings.IntheUSGovernmentServicesAdministration,20%ofbuildingoperatingcostscouldbecutbymakingthebuildingsgrid-interactiveandefficient.IntheUnitedKingdom,energysavingsofupto33%wererecordedinfamilyhouseholdsandpossiblereductionsinenergyuseof20%to30%wereestimatedbytheIEA4ETechnologyCollaborationProgramme.InIndia,energysavingsofover55%wereachievedinanofficebuildingbyintroducingdynamicchilledwaterbalancingandsmartlightingsolutions.InGreece,smartzoningofthermostatloadsledtoenergysavingsofmorethan15%andimprovedcomfortbymorethan25%.Atthedevicelevel,manysmarttechnologiesenablesignificantchangesinenergyconsumptionandcosts.Smartwaterheatinghasbeenshowntoreduceenergyconsumptionby12%andenergycostsby35%.Smartlightingincommercialbuildingscanreducelightingenergyconsumptionbyupto65%inlargeopenplanSmartLEDlightingSmartwindows&HVACConsumptionSmartelectricmotorsSmartwaterheatingSmartthermostats&HVACconsumptionFullyintegratedwithefficientsmartappliancesMonitorigandmanagingautomationBehaviourchangefromfeedbackFullyintegratedwithefficientsmartappliancesMonitoringandmanagingautomationSmartzoningthermostatsBehaviourchangefromfeedbackFaultdetectionanddiagnosis0%10%20%30%40%50%60%70%EnergysavingsDeviceleveltechnologiesHomeenergymanagementsystemsCommercialbuildingenergymanagementsystemsSystemleveltechnologiesLikelihoodofsavingsperformanceEnergyEfficiency2021Chapter3.DigitalenergyefficiencymarketsPAGE81IEA.Allrightsreserved.offices.Smartwindowsreducedcoolingenergyconsumptionbyupto45%inSingapore.Othersmartdeviceswithsignificantenergysavingspotentialincludedishwashers,refrigeratorsandfreezers,clotheswashersanddryers,poolpumps,coolingfansandelectricvehiclesupplyequipment.SmartLEDstreetlightingSmartLEDstreetlighting,whichadjustsoutputaccordingtolightlevels,dimmingorbrighteningasneededtoadapttoconditionsandvehicleflow,canreduceelectricityuseby40%to80%.Forexample,ifnovehiclepassesformorethan10minutesastreetlightcandimby50%,savingaround15%inlightingelectricitydemand.Theworld’s320millionstreetlightingpolesconsumeelectricityequivalenttothepowerconsumptionofGermany,andlessthan3%isdigitallyenabled,sothepotentialforsavingsislarge.Forcities,streetlightingcanrepresentaround40%ofmunicipalenergyconsumptionandupto65%ofbudgets.IntheUnitedKingdom,streetlightsarealsobeingusedtodevelopelectricvehiclecharginginfrastructureformotoristswhodonothaveaccesstooff-streetparking.Energymanagementsystemscanalsoprovideextravaluetogridoperationbyreducingpeakdemandandhelpingconsumerstobetteralignconsumptionwithtimesofvariablerenewableenergysupply.IntheEuropeanUnion,startingfrom2025,buildingautomatedcontrolsystemswillbecompulsoryinnon-residentialbuildingsusingcoolingorheatingequipmentconsumingover290kWatpeak,wheretechnicallyandeconomicallyfeasible.Thismeasureisestimatedtoofferenergysavingsofupto20%inthecommercialsector.TheinvestmentisestimatedtohaveapaybackperiodoftwotothreeyearswithacapitalcostofaroundEUR30/m2.TheUnitedStateshassetatargettotripleenergyefficiencyandflexibilityinresidentialandcommercialbuildingsby2030from2020levels,andinMay2021elaboratedaroadmapforgrid-interactiveefficientbuildings.Overthenexttwodecades,grid-interactiveefficientbuildingscouldsavetheUSpowersystemUSD100-200billionandhelpreduceCO2emissionsby80milliontonnesperyear.EnergyEfficiency2021Chapter3.DigitalenergyefficiencymarketsPAGE82IEA.Allrightsreserved.ENERGYSTARcertificationofconnecteddevicesTheUnitedStatesEnvironmentalProtectionAgency’sENERGYSTARisavoluntaryprogrammethatpromotesenergyefficiencyusingstandardisedtestmethodsandquantificationcriteriathathelpconsumersidentifydeviceswithsuperiorefficiency.ENERGYSTARincludescertificationforproductswithconnectedfunctionalityandinteroperabilitythatofferlowenergyuse,energyusereportingandconsumerownershipofalldata.TheEnvironmentalProtectionAgencymonitorsthesmartproductmarketandprovidesdataandoperabilitysecurityspecificationstoreducerisks,guidemanufacturerstocommonstandardsandinformconsumerchoice.AppliancescertifiedbyENERGYSTARcantypicallyprovidealertsforenergywastingconditionsforinstancearefrigeratordoorleftopen.Theycanalsoprovideanabilitytocommunicatewithlocalutilitiesthroughademandresponseprogramme(withthepermissiononconsumer)andensureultimatecontrolovertheproductoftheconsumer,includingabilitytooverrideutilityrequests.Inordertosupportmarketdevelopment,itiskeytoensurethathomeenergymanagementsystemsenhanceuserexperienceandtrustinregardtonewtechnologies.AstudybytheIEAUsersTCPand4ETCP,basedonevidencereview,focusesonissuesrelatedtopoorusabilityandstepstoaddressthis.Akeyissueforcreatingmarketvalueisinteroperability,ortheabilityofdevicestocommunicatewitheachotherandworkinanintegratedsystem.InternationalagencieswithinitiativestopromoteinteroperabilityofconnecteddevicesincludetheInternationalElectrotechnicalCommission,InternationalOrganizationforStandardizationandInternationalTelecommunicationsUnion.MeasurestoovercomeinteroperabilitychallengesarealsobeingexploredbytheIEATCPInternationalSmartGridActionNetwork.Manyjurisdictions,includingtheEuropeanUnion,theUnitedKingdomandtheUnitedStates,aredevelopingguidelinesforconnecteddeviceswithcommonfeaturessuchastheabilitytoallowdevicestoparticipateindemandflexibility.However,thetreatmentofotherfeatures,suchasstatusreportingandopencommunicationprotocols,isnotalwaysincluded.TheElectronicDevicesandNetworksAnnexoftheIEA4ETechnologyCollaborationProgrammeisprovidingpolicyguidanceinthisareatoworktowardscommondefinitionstosupportsmoothadoption.EnergyEfficiency2021Chapter3.DigitalenergyefficiencymarketsPAGE83IEA.Allrightsreserved.3.2WidersystemlevelbenefitsEnhancingpowersystemflexibilityandoptimisationwithnewlevelsofcontrolAstheshareofpowerprovidedbycoalandgasdiminishessodoestheflexibilitycapacitytheyprovidetothegrid.Whencombinedwithascale-upinvariablerenewableenergy,thismeansbatteriesanddemandresponsefromefficientconnecteddevicesmustprovideagreatershareofflexibility.In2019,globalcapacityofallformsofdemand-sideflexibilityexpanded5%year-on-year.IntheNetZeroEmissionsby2050Scenario,morethan500GWofdemandresponseisbroughttomarketby2030tosupportthepowersystem.DemandresponseavailabilityattimesofhighestflexibilityneedsandshareintotalflexibilityprovisionintheNetZeroEmissionsby2050Scenario,2020and203010%20%30%40%50%10020030040050020202030GWOtherHydrogenproductionTransportIndustryBuildingsShareintotalflexibility(rightaxis)IEA.Allrightsreserved.Note:DSRavailabilityin2020isestimatedbasedonareviewofDSRcapacitycontractedfordeploymentin2020acrosscapacity,balancing,frequencyresponseandothermarkets.Source:IEA(2021),WorldEnergyOutlook.IntheNetZeroEmissionsby2050Scenario,by2030allnewbuildingsbecomeflexibleresourcesfortheenergysystem,usingconnectivityandautomationtomanageelectricitydemandandtheoperationofenergystoragedevices,includingelectricvehicles.Inaddition,20%ofexistingbuildingsareretrofittedby2030and85%by2050withefficientandgrid-interactiveappliances.Thishighlightstheimportanceofbroadeningenergyefficiencypoliciestofocusondemandflexibilityandintelligentefficiency.EnergyEfficiency2021Chapter3.DigitalenergyefficiencymarketsPAGE84IEA.Allrightsreserved.DigitalenergyefficiencyiskeytosupportintegrationofmorevariablerenewableenergyIn2020,annualrenewableenergycapacityadditionsincreased45%toalmost280GWcomparedwith2019,includingarecord-breaking162GWofsolarPV.IntheNetZeroEmissionsby2050Scenario,solarPVmorethanquadruplestoreach630GWby2030.Thisgrowingshareofvariablerenewableenergy,coupledwithelectrificationofheatandtransport,increasetheneedforsystemflexibility.Withsomegridsnowalmostwhollysuppliedbyutility-scalevariablerenewableandresidentialdistributedsolarenergyresourcesinthemiddleoftheday,hourlychangesinnetloadandthegapbetweenminimumandpeaknetloadareincreasing.Thismeansthevaluefromsavingelectricityatpeaktimesorshiftingdemandfrompeaktooff-peaktimesisbecominggreater.Digitallyenabledenergy-efficientdevicesandsystemshaveacrucialroletoplayfacilitatingthesesavingsandshifts.Forexample,energyefficiencyisbecomingmorevaluablewhenitcomestoreducingpeakloadsintheearlyeveninginCalifornia.Asagreateramountofdistributedsolarenergyisaddedwithgenerationcomingonlineinthemiddleoftheday,thedrop-offinwhathashistoricallybeentermeda“duckcurve”hassteepenedconsiderably.HourlynetloadinCalifornia,April2018and2021IEA.Allrightsreserved.Note:Netload=systemdemandminuswindandsolargeneration.Source:CaliforniaISO(2021),NetDemandTrend,www.caiso.com/TodaysOutlook.05101520253012am6am12pm6pm11pmGW10April201813April2021EnergyEfficiency2021Chapter3.DigitalenergyefficiencymarketsPAGE85IEA.Allrightsreserved.Thehighestnetloadon13April2021was21.6GW,at7pm.Fivehoursbefore,thenetloadwasatitslowestat5.1GW.Thismeansa16.6GWramp-up.Onasimilardaythreeyearsbefore,thedifferencewasonly12.6GW,meaningtherehasbeena32%increaseintheramp-up.Whentheshareofvariablerenewablesreacheshighlevels,availableelectricitysupplyatamarginalcostofzerocanexceedelectricitydemand.Suchanegativenetloadcanresultinwholesalepricesofelectricitythatarezeroorevennegativeaspowergenerationmustbematchedwithdemand.Withoutpowersystemflexibilityandstoragecapabilities,renewableenergysupplycanbeforcedtoworkbelowitsmaximumcapacitytoavoidexcesssupplythatcannotbemetbydemand,orcurtailed.Thiscanbeasignificantsourceofoverallsysteminefficiencywhichcanincreasecostsforconsumers.ThetimingofenergysavingsfromefficientdevicesalsobecomesmoreimportantasrenewableenergypenetrationincreasesbecausetheCO2intensityofelectricitygenerationchangesatdifferenttimesoftheday.Forexample,thelowestCO2intensityofelectricitygenerationintheUnitedKingdominApril2021occurredinthemiddleoftheday,at206gCO2/kWh,increasingto264gCO2/kWhintheeveningoncefossilfuelgeneratorsreplacedsolar.Half-hourlycarbonintensityintheUnitedKingdom,April2018andApril2021IEA.Allrightsreserved.Source:NationalGridESO(2021),CarbonIntensityAPI.030609012015018021024027030033012am6am12pm6pm11pmgCO2/kWh12April201815April2021EnergyEfficiency2021Chapter3.DigitalenergyefficiencymarketsPAGE86IEA.Allrightsreserved.IncreasingtheenergyefficiencyofactivitiesthatuseelectricitywhenCO2intensityishighandrenewableslowcanthuscontributemoretoreducingcarbonemissions.Inaddition,anydemandshiftedwithdigitalflexibilitytomiddayreducesemissions,evenwithoutreducingenergyconsumption.WithUKcarbonpricesofaroundGBP50pertonneintheUnitedKingdom’snewcarbontradingscheme,andrecentlyreachingEUR60pertonneintheEuropeanUnionEmissionsTradingSystem,itbecomesmoreimportanttoreflecttemporalchangestovalueofenergyefficiencybystrengtheningincentivestosaveenergyintheevening.Policiesthatencouragealevellingofthenetloadcurvecanhelpreduceenergycostsandgreenhousegasemissionsbymaximisingtheuseofvariablerenewableenergy.Suchpoliciescanalsooptimiseexistinggeneration,transmissionanddistributioncapacity,helpingpostponeoravoidcostlygridreinforcement.AnanalysisbytheRockyMountainInstituteinvolvingelectricwaterheaters,electricvehiclecharging,spaceheatingandcooling,andsmartplugloads,foundthatdemandresponsecouldnotonlyeliminatetheso-called“duckcurve”butalsohalvethedailyloadrange.Inaddition,itcouldsaveafourthofnon-renewablecapacity,makerenewablesone-thirdmorevaluableandpaybackinvestmentcostsinfivemonths.BenefitsfromlevellingthenetloadcurvewithdigitallyenableddemandresponseIEA.Allrightsreserved.Note:Highsolarloadprofile=netload(systemdemandminuswindandsolar).EnergyEfficiency2021Chapter3.DigitalenergyefficiencymarketsPAGE87IEA.Allrightsreserved.A2021demand-sidemanagementstudyoftheNgurdotosolarmicrogridinthecityofArushainTanzaniaexploredthesystembenefitsofdemandflexibilityonoff-gridsystems.Thestudycoupleddatafromsmartmetersonthemicrogridwithmathematicalmodellingbasedontime-of-usetariffs.Itshowedthatthedemand-responsestrategiesofloadshiftingandloadreductionresultedincostsavingsofupto15%forthecustomer,31%inpeakload,and5%inoverallenergysavings.RecentsimulationsforNewYorkCityshowthatsmartbuildingflexibilitycouldreduceemissionsfromthepowersectorby3%giventhecurrentenergymixofrenewableenergy.Withrenewableenergyexpectedtoincreaseto36%by2030,emissionscouldbereducedby10%.AsimilarstudyinEuropeshowedthat2%to18%ofresidentialsectorelectricitycouldbeshifted,helpingtoreduceCO2emissionsby1%to8%,dependingontheenergymixinthecountriesincluded.FirstmoversarechangingtheirregulatoryapproachtocapturethetotalsystembenefitsfromefficiencyInrecognitionofthewiderscopeofthebenefitsthatdigitallyenabledenergyefficiencyisproviding,policymakersinsomecountriesarebeginningtodevelopnewenergyefficiencyregulations.Theseincludeevaluationmetricsthatsupporttime-targetedplanningandoperationaswellasincentivisingflexibleresourcessuchasdemandresponse.In2021,California’sPublicUtilityCommissionmovedtointroduceanewmetriccalledtotalsystembenefittoprovideincentivesviaitsutilityenergyefficiencyprogrammes.Insteadoffocusingoncost-effectiveenergysavingsmeasuredinkWh,thetotalsystembenefittargetsthehighesttotalsystemvalueofthosesavingsindollarterms.ThisrecognisesthatakWhsavedatdifferenttimesandindifferentlocationscanhaveverydifferentvaluestotheelectricitysystemintermsoflifecycleenergy,capacityandemissionsreductionbenefits.ThetotalsystembenefitofefficientsmartheatpumpwaterheatersAheatpumpwaterheatercanprovidemoreenergythanitdrawsfromthenetworkandcanmanageitspowerdemandwhenequippedwithasmartcontroller.Asmartheatpumpwaterheaterisbothenergy-efficientandflexible,andisanexampleofan“embedded”integratedapproach.Replacinganinefficientelectricresistancewaterheaterwithaheatpumpwaterheatercanthusprovideseveralbenefitstothepowersystem.EnergyEfficiency2021Chapter3.DigitalenergyefficiencymarketsPAGE88IEA.Allrightsreserved.Heatpumpwaterheaterscansaveasubstantialamountofwaterheatingloadintheearlymorningandeveningpeakperiods,reducingconsumerenergybillsandgridstress.Whenequippedwithasmartcontroller,theheatpumpwaterheatercanpreheatwaterandshiftitseveningpowerdemandtomatchsolargeneration,reducingadditionalpeakload.Intermsoftotalsystemvalue,anunmanagedheatpumpwaterheatercanprovideuptoUSD132peryearforitsusefullifeof13yearswhenitreplacesanelectricresistancewaterheaterin2021.ThisismostlymadeupofUSD33ofavoidedgenerationandnetworkcapacitycosts,USD30ofavoidedcarbonemissioncostandUSD67ofavoidedenergycost.AheatpumpwaterheatermanagedbyasmartcontrollercansaveUSD21moreeachyearbyprovidingflexibilitytoenablebettermanagementofpeakgeneratorsandassistancewithgridservices.LevelisedannualtotalsystembenefitsofaheatpumpwaterheaterIEA.Allrightsreserved.Notes:HPWH=heatpumpwaterheater.Energy=avoidedgenerationenergyandgridlossescosts.Generationcapacity=avoidedgenerationcapacitycost.Networkcapacity=avoidedtransmissionanddistributioncapacitycosts.Carbonemission=avoidedcapandtradeandgreenhousegasadderandrebalancingcosts.Others=avoidedancillaryservicesandmethaneleakagecosts.Flexibilitybenefits=additionalavoidedcostsofthemanagedHPWH.TheannualtotalsystembenefitswerelevelisedovertheusefullifeofanHPWH,13years,from2021.TheavoidedcostcalculationwasbasedoninputvariablesofPacificGasandElectricCompany,ontheserviceterritoryofwhichthemodelledwaterheaterswerelocated.Thecalculationdidnotincludetheincrementalcostsofreplacinganelectricresistancewaterheaterwithaheatpumpwaterheater.Sources:CalculationsbasedonCaliforniaPublicUtilityCommission(2021),2021AvoidedCostCalculatorElectricModel;datafromNRDC,andEcotope(2018),HeatPumpWaterHeaterElectricLoadingShifting:AModellingStudy.67231030313221153020406080100120140160EnergyGenerationcapacityNetworkcapacityCarbonemissionOthersTotalFlexibilitybenefitsTotalUnmanagedHPWHManagedHPWHUSDEnergyEfficiency2021Chapter3.DigitalenergyefficiencymarketsPAGE89IEA.Allrightsreserved.VermontEnergyInvestmentCorporationintheUnitedStatesimplementedenergyefficiencymeasures“time-targeted”topeakhours.Amongthemeasures,LEDlightsprovidedbenefitsthatmostcloselymatchedVermont’swinterdemandcurvebysavingboththemorningandeveningpeakdemandsinwinterwithoutsignificantlyreducingoff-peakload.LEDshelpedreducesteepdailyramp-upneedsandflattenedVermont’sloadprofile.Energy-efficientpoolpumpsservedasimilarfunctioninthesummer.TheUnitedStateselaboratedaroadmapforgrid-interactiveefficientbuildingsinMay2021.Overthenexttwodecades,grid-interactiveefficientbuildingscouldsavetheUSpowersystemUSD100-200billionandhelpreduceCO2emissionsby80milliontonnesperyear.IntheEuropeanUnion,theEnergyPerformanceofBuildingsDirectiveintroducedtheSmartReadinessIndicatortoassessthecapabilityofbuildingstointeractdigitallywithoccupantsandthegrid,andtorespondtotheirneedsorsignals.Morebroadly,in2020theEuropeanUnionlaunchedastrategyonenergysystemintegration.InMarch2021,theSouthAustraliangovernmentintroducednewdemandresponsecapabilityrequirementsforelectricwaterheaters,airconditioners,poolpumpcontrollersandelectricvehiclechargers.Theintroductionofdemandresponsereadinessrequirementswasfoundtohavebenefit-costratiosof2.7forpoolpumpcontrollers,1.5forelectricvehiclechargers,and2.6forwaterheatersandairconditioners.InTurkey,a2021studyestimatedthatdigitallyenabledsmartheating,coolingandelectricvehiclechargingcouldreducepeakdemandbyupto10GWin2030,including6GWflexibilityfromsmartspaceheatingandelectricvehiclechargingalone(forabaselinepeakdemandof73GW).Thiscouldprovideanettotalsystembenefit,includingoperationalsavingsandavoidedcapacity,ofEUR550millionperyearby2030.Aspartofitsoverallstrategytoreduceprimaryenergyconsumptionby14%,theTurkishgovernmenthasintroducedActionE10oftheNationalEnergyEfficiencyActionPlantoencourageflexibilityinthepowersystem.InChinathedemandresponsemarketislessmaturethaninsomeothercountries,butthereisgreatpotentialfollowingtherolloutof500millionfirst-generationsmartmeters,thelargestdeploymentofanycountry.EnergyEfficiency2021Chapter3.DigitalenergyefficiencymarketsPAGE90IEA.Allrightsreserved.3.3Digitally-enabledbusinessmodelsNewbusinessmodelshaveemergedtoprovideenhancedservicesWiththerapiddiffusionofdigitaltechnologiesexpandingboththescaleandscopeofenergyefficiencybenefits,newbusinessmodelsareevolvingtotapintotheselargermarketsbyfindingnewwaystodelivervaluetoconsumersandenergysystemoperators.Oneindicatorofthisisthenumberofdigitalenergystart-ups,whichhasbeensteadilyrising,reachingupto64%oftotalglobalenergystart-upsin2020.Inthepast,energyefficiencybusinessmodelshavetypicallyrevolvedaroundaproduct-orsupply-ledfocus.Asenergysupplyshiftsfromcentralisedsystemstodecentralisedsourcesofsupplywithhigherelectrificationandconnectivity,businessmodelsarenowfocusingonmoreuser-centredenergyservices.Traditionalutilities,networkoperatorsandthirdpartiesareseekingwaystotakeadvantageofthesetrends.Forexample,onerecentanalysisfoundthatenergybusinessmodelsrelatedtodistributedenergyresourcesandelectricmobilitycouldyieldUSD8.5milliontoUSD10.4billion(EUR7.2milliontoEUR8.8billion)by2030acrossFrance,Germany,Italy,theNetherlands,SpainandtheUnitedKingdom.DespitetheCovid-19pandemic,early-stageventurecapitalinvestmentsincleanenergystart-upsincreasedin2020.Whenfocusingonenergyefficiencystart-upsthatfeatureneworinnovativebusinessmodels,early-stageventurecapitalinvestmentshavesteadilyincreasedsince2016.In2020,suchinvestmentstotalledUSD900million,up20%from2019andnearlythreetimesmorethanin2016.Preliminaryanalysisforthefirsthalfof2021indicatesinvestmentwillcomeinatasimilarlevelas2020.Start-upsareparticularlywellsuitedtodevelopnewdigitaltoolsandservicesbasedonsoftwareandadvancedtechniquesincludingartificialintelligenceandbigdatamanagementduetheirrelativelylimitedcapitalcosts.Drawingonhighlyskilledgraduatesfromaroundtheworld,theycanbringtomarketdigitalproductsquicklybeforeexpandingoverseas.Inthelastdecade,excludingtransportelectrificationfromthesample,over75%oftheearly-stageVCinvestmentsinenergyefficiencyweremadeincompaniesdevelopingsomedigitaltoolsorservicesaspartoftheirproductsorsolutions.AnEnergyEfficiency2021Chapter3.DigitalenergyefficiencymarketsPAGE91IEA.Allrightsreserved.increasingnumberoflargedigitalcompaniessuchasGoogleandTencentarealsoinvestingincleanenergystart-ups.Energyasaservice(EaaS)schemesinbuildingsaccountforthebulkofinvestmentsinearly-stagecompanies.Countriesthathaveputinplacemoreambitiousenergyefficiencycodeshaveattractedmoreofthisfunding.Chargingasaservicemodelsforelectricvehiclesarealsogainingmomentum.Forexample,theUS-basedcompanyVoltaCharginghasquicklyscaledupwithsupportfromadozeninvestorsincludingSchneiderElectric.Between2018and2021,itraisedoverUSD170millioningrowthequity.Early-stageventurecapitalinvestmentsincompaniesdevelopingsolutionsfordistributedenergyresourcesandgridmanagementhavemorethandoubledsince2015.Theyaccountforasmallershareofstart-upactivitythanbuildingsorelectricvehiclecharging,however.OneexampleisGridwiz,aKoreanaggregatorofflexibilityresourcesthatraisedaboutUSD15millioninearly-stagefinancingin2017,andanotherUSD40millioningrowthequityin2021.Globalearly-stageventurecapitalinvestmentsinenergyefficiencystart-ups,bytypeofnewbusinessmodel,2015-2021(H1)IEA.Allrightsreserved.Notes:Thisclassificationconsidersstart-upsdevelopingenergytechnologies,servicesandsolutionsincludingbothhardwareandsoftwareandthatareengagingwithendusersdirectly.Start-upsthatfocusonmanufacturingordistributinghardwareonlyareexcluded.Energyasaserviceinbuildingsincludessmartheatingandcooling,energymanagementsystems,lightingandsmartdevicesforresidentialandcommercialbuildings,aswellas“payasyougo”businessmodels.Distributedenergyresourcesandgridmanagementincludesvirtualpowerplants,energytradingschemesincludingpeertopeer,energyasaserviceforpowergrids,andoff-gridaccesssolutions.Early-stageinvestmentsincludeseed,seriesAandBfinancingrounds.ThefigureexcludesoutlierinvestmentsofaboveUSD150millioninasingledealthatdistortannualtrends.TheseaggregatedtoaboutUSD350millionin2020.Preliminarydatauptomid-July2021areincluded.Source:IEAanalysisbasedonCleantechGroup,i3database.Valueisbeingcreatedviadigitaltoolsbyaggregatingenergyefficiencybenefits,improvingintegrationofelectricitydemandandsupply,andmeetingtheneedtoserviceprosumerandvehicle-to-gridinteractions.Asnewbusinessmodels025050075010002015201620172018201920202021USD(2019)millionOtherEnergyasaserviceinindustryDistributedenergyresourcesandgridmanagementChargingasaserviceEnergyasaserviceinbuildingsEnergyEfficiency2021Chapter3.DigitalenergyefficiencymarketsPAGE92IEA.Allrightsreserved.transformtherolesofcustomers,utilitiesandgridoperators,itisimportantthatregulationsareadaptedtoprovideaclearlegalframeworkforthisnewtechnologicalenvironment.EnergyasaservicebusinessmodelsarehelpingovercometraditionalbarrierstoefficiencyinvestmentAwidespectrumofenergyasaservicebusinessmodelsisofferingcustomerspackagesofenergyservicesinreturnforsubscription-likeperiodicpayments.Thismarketisexpandingrapidly.Itscompoundannualgrowthrateoverthenextfiveyearsisexpectedtobe21%,movingtowardsamarketvaluedatUSD19billion.Energyserviceprovidersoftenuseperformance-basedpaymentcontracts,alsoknownaspayforperformance,tomanagerisksandprovideincentivestooptimiseoperations.Forexample,intheUnitedStates,RedaptiveInc,inpartnershipwithAT&T,offersretrofitsofbuildingsandimplementsInternetofThingssolutionsbyemployingenergyasaservicecoupledwithpayforperformancesothatcustomerspayforenergysavingsasverifiedbymeters.By2019,thepartnershiphadretrofitted650commercialbuildings,savingUSD20millionofenergycostsperyear.Across15Europeancountries,57%ofpayforperformancecompaniesthatparticipatedinasurveyreportedgrowthintheirnationalpayforperformancemarkets,boostedbyenergysavingsguaranteesandthepublicsector.However,aroundhalfofsurveyrespondentsreportedthatthecomplexityofcontractsandalackoftrustinserviceprovidersweremajorbarrierspreventingclientsfromengaginginpayforperformanceschemes.Anenablingregulatoryenvironmentisvitaltofosterenergyasaservicemodels.UndertheEuropeanUnion’s2019electricitymarketdirective,forexample,energyuserscanallowthirdpartiestomanagetheenergysystems“requiredfortheiractivities,includinginstallation,operation,datahandlingandmaintenance”.Energyasaservicemodelsarealsoattractingtheinterestofheatingproviders.Arecentstudyshowedthatalthoughnewheatingasaserviceschemescanenhancetheenergyefficiencyofheatingsystems,customerscanlacktrustintheireffectivenessandthereisaneedforsupportivepoliciesandsubsidies.InOntario,Cascarahasfurtherdevelopedtheheatingasaserviceconceptbycouplingitwithelectricityservices,aimingtoincreaseitscustomers’aggregateenergyefficiencyby80%.EnergyEfficiency2021Chapter3.DigitalenergyefficiencymarketsPAGE93IEA.Allrightsreserved.Payasyougoisabusinessmodelthattransferstheownershipofsolarandefficientapplianceskits,aswellascleancookingsolutions,tocustomersovertimethroughsmallperiodicfees.Suchschemesarereachingruralcommunitieswithlimitedenergyaccessandfinancialresources,helpingtoimprovetheirstandardoflivingandfosteringeconomicgrowth.Payasyougoprogrammeshavealsobeenamajorcontributortothegrowthoftheoff-gridsolarsectorinrecentyears.Forexample,insub-SaharanAfrica,morethan53%oflighting-solarproductsweresoldthiswayinthesecondhalfof2020.Onecompany,FenixIntlhasprovidedmorethan600000householdswithcleanenergy,helpingtocreate3300localjobsandenablingpeopletoreplacekerosenelampswithsafer,moreefficientLEDlights.VirtualpowerplantsareofferinganewsourceofflexibilitytopowersystemsAvirtualpowerplantisadigitallyenablednetworkthatlinks,aggregatesandcentrallycontrolsdistributedenergyresourceslikebatteriesandrooftopsolarPVpanels,aswellasdemand-sideflexibilityandutility-scalepowerplants.Theaggregationcreatesrevenueforthevirtualpowerplantoperatorandunitownersbyofferingflexibilityandancillaryservicestothegridandbytradingpowerinwholesaleorretailmarkets.Distributedenergyresources’shareofworldvirtualpowerplantcapacitywas51%in2020andisexpectedtoreach83%in2029.Onerecentstudysuggeststhatglobalvirtualpowerplantaggregationsaregrowingfasterthantraditionaldemandresponsewhichtypicallyinvolvesutilitiescontactinglargepowerconsumerstoreducedemand.Whilethecapacityofdemand-responseprogrammesisexpectedtodoubleby2029,virtualpowerplantcapacityisexpectedtorisefrom4.5GWin2020to43.7GWin2029.Revenuesfromvirtualpowerplantbusinessesarealsoanticipatedtogrowfasterthanthoseofdemandresponseandovertakethemby2027.Regulationisakeyenablerforsuchinvestments.InSeptember2020,forexample,theUSFederalEnergyRegulatoryCommissionimplementedanorderenablingdistributedenergyresourceaggregationstocompeteinwholesalepowermarkets.Inthefollowingweeks,investorscommittedtomorethanUSD1.2billiontovirtualpowerplantinstallations.Anotherorder,settledinaJuly2020courtdecision,openedaggregationsforenergystoragefacilities.IntheEuropeanUnion,customershavetherighttojoinaggregationsandparticipateincross-bordercompetitionthroughthe2019electricitymarketdirective.EnergyEfficiency2021Chapter3.DigitalenergyefficiencymarketsPAGE94IEA.Allrightsreserved.InSouthAustralia,TeslaisdevelopingalargevirtualpowerplanttoaggregatetheresidentialbatteriesandrooftopPVsof3000households.Theplantwillcarry20MWofgenerationcapacityand54MWhofenergystorage.Thereareplansforthisschemetobeextendedtoencompass50000units,equivalenttoacapacityof350MW.Itearnsrevenuefromsellingpowertothegridandactingasabackupforthegridoperatorwhenneeded.TheAustralianEnergyMarketOperatorestimatesthatbetween6to19GWofdispatchableresourcesarerequiredby2040tosupportVREgeneration.Innovativedigitally-enabledbusinessmodelsindecentralisedenergysystemsIEA.AllrightsReserved.InChina,Shanghai’sElectricPowerDemandResponseCentredevelopedavirtualpowerplantprojectthatintegratesmorethan10000electricityusers,includingindustrialplants,buildingheatingandcoolingsystems,andelectricvehiclechargingstations.Thevirtualpowerplant’sdecentralisedenergyreservescanraiseupto1GWofcapacitytomeetpeakdemand.EnergyEfficiency2021Chapter3.DigitalenergyefficiencymarketsPAGE95IEA.Allrightsreserved.Aggregationscanalsolinkelectricvehiclefleetsthroughsmartchargingthatenablesabidirectionalflowofpowerbetweenelectricvehiclesandthegrid.Thesevehicle-to-gridconnectionscanchargeelectricvehicleswhendemandislowanddispatchpowerbacktothegridduringpeakhours–NuvveinDenmarkbeinganexampleofsuccessfulfive-yearvehicle-to-gridinaction.Thecompanyhasrecentlyannounced,withBYD,ajointdeploymentofelectricvehiclesacrosstheUnitedStatespoweredwithvehicle-to-gridtechnologies.ThismarketcouldreachUSD860millionby2027,withgrowthcentresinEurope,theAsia-PacificregionandNorthAmerica3.4EnergyefficiencyindigitalstrategiesMarketinnovationdemandspolicyinnovationThedigitalisationofenergyefficiencymarketspresentsbothopportunitiesandrisksthatpolicymakerswillneedtonavigate.Toreflectthenewtechnologicallandscape,manyjurisdictionsareevolvingtheirregulatoryapproachestoincludethenewenergyparadigmsofdemandflexibilityandintelligentefficiency.Commonissuesinvolvetheneedsforresearchanddevelopment,infrastructuredevelopment,interoperabilitystandards,cybersecurityandprivacymeasures,aswellasincreasing“digitalliteracy”.Forexample,governmentsareworkingwithmanufacturersandmarketplayerstosupporttheadoptionofstandardised,opencommunicationsprotocols.Thisisnecessaryinorderencouragetheproductionof“energy-smartdigitaldevices”thatcandeliverdemandflexibility,intelligentefficiencyorstatusreportingofenergyconsumptionandfaultconditions.Otherdesirablerequirementsincludethatdevicesareeasytoinstall,configureandoperate,andallowconsumerstooverrideanyautonomousdevicefunctions.Tohavelastingimpact,regulationsmustnotonlyfacilitatedigitaltechnologydeploymentbutalsoensureareadinesstoharnessdigitalisationatitsbest,aspartofacoherentstrategy.In2019,theIEAintroducedtheDigitalEnergyEfficiencyPolicyReadinessFrameworktosupportthisprocess.Thishasnowbeenupdatedtoreflectthegrowingfocusondeployment.Policiesandregulationsalsoneedtoensuredigitalisationbenefitseveryonebyconsideringitssocialandeconomicimpacts,aswellaspeople’sconcerns.Thatmeanstakingintoaccountreskilling,socialimpacts,dataprivacyandcybersecurity,andtheenergyefficiencyofdigitalsolutions.EnergyEfficiency2021Chapter3.DigitalenergyefficiencymarketsPAGE96IEA.Allrightsreserved.StrategiesfordigitalenergyefficiencydeploymentIEA.Allrightsreserved.AddressingbroadersocialconsiderationsisanimportantpolicyfocusWhiledigitalisationisexpandingthepotentialforbusinesstoharnessenergyefficiencygains,deliberatepolicysupportcanhelpensurethatsuchgainscontributetoimportantsocialgoalssuchascombattingenergypoverty.Forexample,inCaliforniatheenergyefficiencymarketissupportedbyaroundUSD1billionrate-payerfundedprogrammes.Animportantshifthasbeentosegmentprogrammeswhichmaximisethesizeandeconomicvalueoftheenergyefficiencyresourcefromotherprogrammesaimedatachievingequityortechnologyspecificmarkettransformationgoals.Thishelpsensurethatthebenefitsofenergyefficiencyareprovidedtohard-to-reachorunderservedcommunities,whoordinarilywouldnotberecipientsofinterventionsifapuremaximisationofresourcevaluewastaken.SegmentationhasalsobeenfoundtoInstitutionalarrangementsandplatformsfordatasharinganddatamanagementCybersecurityframeworksandguidelinesDataprotectionframeworksFinanceforpilotanddemonstrationprojects,fundingforstart-ups,removalofbarriersfornewmarketentrantsMeasurestoimprovetheefficiencyofdigitalsolutions,promotionofcirculareconomyforICTproductsStakeholderawarenessraising,removalofinteroperabilitybarriersRe-skillingandup-skillingprogrammes,inclusionofdigitalskillsintraining,educationandacademiccurriculaMethodologiesforvalorisingenergyefficiencyandflexibilityProgrammesfocusingondigitalsolutionstobenefitdisadvantagedgroupsandcommunitiesDigitalEnergyEfficiencyDeployment$EnergyEfficiency2021Chapter3.DigitalenergyefficiencymarketsPAGE97IEA.Allrightsreserved.bettersupportspecificmarkettransformationgoals,suchastheinstillationofheatpumpswherethemarketisnotmatureenoughforeasydeployment.Digitaltechnologycanbeakeypartofboostingenergyaccess.TheLightingAfricaprogramme,forexample,hasprovidedwithaccesstoenergy,includingmini-gridsthatsupplysolarelectricityforisolatedcommunities.Measuresthatpromoteaffordabilityforvulnerablegroupsincludesubsidies,improvedaccesstofinancing,prepaidmetersandpayasyougosystems.InKenya,M-Pesa,adigitalserviceprovider,hashelpedhouseholdsfacingextremepovertybyprovidingaccesstofinancialservices.InSouthAustralia,thestate’svirtualpowerplantwasalsoabletosupportlow-incomeconsumers.Oftheprojectfinance,AUD61millionwascoveredbytheCleanEnergyFinanceCorporation,theSouthAustraliangovernmentandTesla,sothattherewasnoupfrontcostforthe3000socialhousingresidencesparticipating.In2020theItalianMinistryforTechnologicalInnovationandDigitalisationlaunchedtheNationalCoalitionforDigitalSkillsandJobs.ThecoalitionbuildsonRepubblicaDigitale,aninitiativethatpromotesdigitalskillsatalllevelsoftheeconomyandsociety.Thecoalitionhaslaunchedmorethan100initiatives,mostofwhichareaimedatimprovingtheskillsofresidentsandcounteractingthedigitaldivide.Inaddition,Italy’sNationalRecoveryandResiliencePlantargets27%oftotalfundingatdigitaltransitionmeasures.AndthestrategyDigitalItaly2026,aimstoimproveskillsandenableaccesstodigitalsolutions.InSouthAfrica,the2020NationalDigitalandFutureSkillsStrategysetsoutaseriesofinitiativesintendedtohelpSouthAfricansmeetthechallengesarisingfromthedeploymentofdigitaltechnologies.Thestrategyfocusesonclosingexistingskillsgapsandbuildingworkers’digitalskillsforjobareassuchasadditivemanufacturing,appdevelopmentanddataanalytics.Itpaysparticularattentiontothoseatriskofatechnology-relatedjobloss.SupportingequitableaccesstodigitalresourcesandsolutionsWhiledigitaltechnologiesarebringingbenefitstomanypartsoftheworld,thereisariskthattheyincreasetheconsequencesofthedigitaldivide,furtherimpedingthosewithoutaccesstotheinternetandrelateddigitalservices.TheunconnectedpopulationincludespeoplewholiveinareasnotcoveredbymobileinternetandthoseinareascoveredbymobileinternetwhodonotuseEnergyEfficiency2021Chapter3.DigitalenergyefficiencymarketsPAGE98IEA.Allrightsreserved.mobileinternetservices.Insub-SaharanAfrica,forexample,thereis75%geographicalcoverageofmobileinternetnetworks,butonly26%ofthepopulationisusingmobileinternetservices,withlackofconnectivitydisproportionatelyaffectingolderpeople.Evenwhenconsumershaveaccesstotheinternet,alackofdigitalskillsmayimpedetheiruseofdigitalservices.Globally,51%ofthepopulationisstillnotusingmobileinternet.Ifpeopledonothaveaccesstotheinternet,theycannottakeadvantageofbasicdigitalenergyservicessuchaspayingbillsonline,prepaid-rechargeandenergyconsumptionmonitoring.Lackofconnectivitycancausesystemicinefficienciesthatwidentheenergyaccessandaffordabilitygapinlow-incomecommunities,makingenergyefficiencymeasureslesseffective.Directingefforttowardslow-incomecommunitiesorgroupswithlessaccesstodigitaltechnologies,suchasolderpeople,canincreasethereachofdigitalenergyefficiencyprogrammes.However,targetingcommunitieswithlessaccesstodigitalisnotonlyaboutofferingthemstateofthearttechnology.AstudyintheUnitedStatesshowedthatwhileinstallingsmartthermostatsgeneratedenergysavingsonaverage,thegainswerelowerwhenhouseholdersdidnothaveinternetaccess,stayedhomemostoftheday,ordidnothaveagoodunderstandingofhowthedeviceworked.Thismadethedeviceslessusefulforsomeolderandpoorerhouseholds,highlightingtheneedtotailordigitalefficiencyprogrammestotheneedsofhouseholds.ManagingdataandcybersecurityrisksDigitaltechnologiesaredramaticallyincreasingnotonlythequantityandspeedofenergydatathatisbeingshared,butalsoconcernsaboutprivacy.Alleviatingtheseconcernsiscrucialtoenablewidespreaddeploymentofdigitaltechnologiessuchassmartmetersandconnecteddevices.India’sapproachtotheseconcerns,aspartofitsDataSmartCitiesstrategy,istoconsiderthedatacollectedasopenbydefaultandtobesharedpubliclyinananonymisedwayunlessclassifiedotherwise.Thestrategyaddressesdatasecurityandprivacyconcernsviaa“privacyfirst”policyapproach,whichallowsmunicipalitiestoregulatedataownership,collection,sharinganduseinaclearway.Withgrowingnumbersofelectricitysystemassetsconnectedtonetworks,vulnerabilitiesareincreasing,especiallyinelectricitydistributionandonthegridedge.Whilefullpreventionofcyberattacksisnotpossible,electricitysystemscanEnergyEfficiency2021Chapter3.DigitalenergyefficiencymarketsPAGE99IEA.Allrightsreserved.becomebetterabletowithstand,adapttoandrapidlyrecoverfromincidentsandattacks,whilepreservingthecontinuityofcriticalinfrastructureoperations.Policymakers,regulators,utilitiesandequipmentprovidershavekeyrolestoplayinsupportingthecyberresilienceoftheentireelectricityvaluechain.Policymeasurescanrangefromgeneralframeworkstomoreprescriptiveregulation,andcanconsidersupplychainsecurity,includingthroughinternationalstandardsandcertifications.TheIEAreportPowerSystemsinTransition–CyberResilienceprovidesguidanceonthistopic.Canefficiencyadvanceskeepdigitaltechnologyenergyconsumptioncontained?Energyefficiencyandoperationalimprovementshavebeendrivingadecouplingofdatause,internettrafficandassociatedelectricityuseoverthepastdecade.Overallenergyusebyconnecteddevices,includingPCs,laptops,tablets,smartphonesandInternetofThingsdevices,andexcludingTVsandotherconsumerelectronics,hasdecreasedmoderatelyoverthepastdecade.Thedeclineisduetoincreasinglyenergy-efficientdevicesandscreens,andashifttowardssmallerandmoreefficientdevices(e.g.fromdesktopPCstolaptops,tabletsandsmartphones).However,therapidgrowthinconnecteddevicesanddataflowsdemandsmoreandmoredigitalinfrastructure,includingnewdatacentresandnetworksthatconsumesignificantamountsofenergy.Enhancingtheirefficiencyiscrucial,sothatthebenefitsfromdigitalisationarenotoffsetbyincreasedenergyconsumption.Policyeffortsandtechnologysolutionstoreducenetworkstandbyenergyusewillalsobeincreasinglyimportanttoreducetheoverallenergyuseofanincreasingnumberofconnecteddevices.Despitealargeincreaseinactivity,datacentreenergyuseisestimatedtohaverisenonlymodestlyfrom2010to2018,andcurrentlycomprisesaround1%ofglobalfinalelectricitydemand.Thisfigureexcludescryptocurrencymining.Demandfordatacentreservicesisexpectedtogrowstronglyoverthenextdecade,pushedupbycloudservicesandemergingtechnologiessuchasartificialintelligence,virtualreality,blockchainandincreaseddataconsumptionfuelledby5G.Justbecausetheefficiencyofdatacentreshasbeenabletokeepupwithrisingactivitydoesnotmeanthistrendwillcontinue.Researchdevelopmentanddemonstrationofmoreefficienttechnologiesareimportantsothatefficiencycankeeppacewithgrowingdatademand.EnergyEfficiency2021Chapter3.DigitalenergyefficiencymarketsPAGE100IEA.Allrightsreserved.Dataontheenergyuseofdatacentresandnetworksisgenerallyverypoorglobally,soakeypolicypriorityforunderstandingenergyefficiencyofdigitalinfrastructureistoimproveefficiencymetricsanddatareporting.Ratingsystemsfordatacentresaretraditionallybasedonpowerusageeffectiveness,whichmeasurestherateofenergyusedforcoolingandpowerprovisioncomparedwithenergyusedforITequipment.TheNationalAustralianBuiltEnvironmentRatingSystemandUSEnergyStarScoreforDataCentres,whichiscurrentlybeingupdated,usepowerusageeffectiveness.Anewgenerationofratingsystemsisbeingdevelopedthat,inadditiontopowerusageeffectiveness,takeintoaccountthelevelofutilisationofITinfrastructure,datacentreenergyrecyclingcapabilitiesandcarbonemissions.Suchsystemsarenowbeingdeployedandcouldincreaseefficiency.OneleadingexampleistheSwissDatacentresEmissionLabel,launchedin2020.Policymakerscanalsoencourageothersustainablepracticesbydatacentres,includingimprovingequipmentlife,reusingandrecyclingcomponentsandcriticalrawmaterials,optimisingwateruseforcoolingandrecoveringwasteheatfordistrictheating.Forexample,in2018theEuropeanUnionlaunchedaprojectonacirculareconomyforthedatacentreindustry.In2020,SouthDublinCouncilcreatedadistrictheatingcompanythatrecoverswasteheatfromdatacentres.Andin2021Norwayannouncedthatdatacentreswillberequiredtoinvestigateopportunitiestousewasteheat.Datatransmissionnetworksareanotherlargecontributortoenergyconsumptioninthedigitalworld.Theyaccountedforjustover1%ofglobalelectricityusein2019.Despitea40%to50%increaseindatatrafficin2020,somenetworkoperators,includingTelefónicaandCogent,reportedflatordecreasingenergyuse.Mobilenetworks,whichaccountforagrowingshareofnetworkenergyuse,areshiftingtowards5G,buttheoverallenergyimplicationsof5Gremainuncertain.OnTMobileUSA’slarge5Gnetwork,whichitbeganbuildingin2019,energyusehasrisenbutenergyintensityperunitofdatatransferredhasfallen.InFebruary2021,FrancepublishedaDigitalandEnvironmentalRoadmap,whichsetsout15measurestobringtogetherdigitalandecologicaltransitionobjectives.Theroadmapincludesstepstoreducetheenvironmentalimpactsofdigitalisation,aswellastoutilisedigitaltoolsandadvancedanalyticstoacceleratethetransition.Beyondcountryefforts,internationalinitiativestominimisethenegativeenvironmentalimpactsrelatedtodigitalisation.Forinstance,theInternationalTelecommunicationsUnionisencouragingtheITindustrytoreduceemissionsby45%between2020and2030.EnergyEfficiency2021AnnexPAGE101IEA.Allrightsreserved.GeneralannexAbbreviationsandacronymsAPSAnnouncedPledgesScenarioDSRDemand-sideresponseEaaSEnergyasaserviceEDNAIEAElectricityDevicesandNetworksAnnexESCOEnergyservicecompaniesESIEnergySavingsInsuranceGDPGrossdomesticproductHFCHydrofluorocarbonICTInformationandcommunicationstechnologiesIEAInternationalEnergyAgencyIMFInternationalMonetaryAgencyIPCCIntergovernmentalPanelonClimateChangeITInformationtechnologyMEPSMinimumenergyperformancestandardsNDCNationallyDeterminedContributionsNRDCChineseNationalDevelopmentandReformCommissionPATPerform,AchieveandTradePVPhotovoltaicsQRQuickresponseRD&DResearch,developmentanddemonstrationSEADSuper-EfficientEquipmentandApplianceDeploymentSTEPSStatedPoliciesScenarioTCPTechnologyCollaborationProgrammeVCVenturecapitalVREVariablerenewableenergyUnitsbblbarrelEJexajouleGJgigajouleGWgigawattGWhgigawatthourKWhkilowatthourTWhterawatthourThispublicationreflectstheviewsoftheIEASecretariatbutdoesnotnecessarilyreflectthoseofindividualIEAmembercountries.TheIEAmakesnorepresentationorwarranty,expressorimplied,inrespectofthepublication’scontents(includingitscompletenessoraccuracy)andshallnotberesponsibleforanyuseof,orrelianceon,thepublication.Unlessotherwiseindicated,allmaterialpresentedinfiguresandtablesisderivedfromIEAdataandanalysis.Thispublicationandanymapincludedhereinarewithoutprejudicetothestatusoforsovereigntyoveranyterritory,tothedelimitationofinternationalfrontiersandboundariesandtothenameofanyterritory,cityorarea.IEA.Allrightsreserved.IEAPublicationsInternationalEnergyAgencyWebsite:www.iea.orgContactinformation:www.iea.org/about/contactTypesetinFrancebyIEA-November2021Coverdesign:IEAPhotocredits:©Shutterstock

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

碳中和
已认证
内容提供者

碳中和

确认删除?
回到顶部
微信客服
  • 管理员微信
QQ客服
  • QQ客服点击这里给我发消息
客服邮箱