NETZEROCARBONVILLAGEPLANNINGGUIDELINESYANGTZERIVERDELTAREGION,CHINANETZEROCARBONVILLAGEPLANNINGGUIDELINESYANGTZERIVERDELTAREGION,CHINADisclaimerThedesignationsemployedandthepresentationofmaterialinthisreportdonotimplytheexpressionofanyopinionwhatsoeveronthepartoftheSecretariatoftheUnitedNationsconcerningthelegalstatusofanycountry,territory,cityorareaorofitsauthorities,orconcerningthedelimitationofitsfrontiersorboundaries,orregardingitseconomicsystemordegreeofdevelopment.TheanalysisconclusionsandrecommendationsofthispublicationdonotnecessarilyreflecttheviewsoftheUnitedNationsHumanSettlementsProgrammeoritsGoverningCounciloritsmemberstates.Referenceinthispublicationofanyspecificcommercialproducts,brandnames,processes,orservices,ortheuseofanytrade,firm,orcorporationnamedoesnotconstituteendorsement,recommendation,orfavouringbyUN-Habitatoritsofficers,nordoessuchareferenceconstituteanendorsementofUN-Habitat.AcknowledgmentsProjectsupervisorsPrincipalauthorsUN-HabitatCo-authorsContributorsTongjiUniversityCo-authorsAdditionalauthorsContributorsConsorzioARCACo-authorGraphicDesignandLayoutVincentKitio,SalvatoreFundaroJiangWu,TongjiUniversityFedericoM.Butera,PolitecnicodiMilanoUN-HabitatLab:HelenYu,LinMorong,AntaraTandonLauraPetrella,ZhenshanZhan,SheguftaNewaz,JonathanWeaverXinWang,YuexiaGao,JingHuJieDai,FengtingLi,YingLi,XingbenLiu,ZhengweiLi,QianJia,GuoRu,HongtaoWang,YimingWang,ZidiWang,GuoshuYang,JianrongYang,ChenjieZhang,GaijingZhang,MinZhao,HanZhouXiaFan,XiaGong,BinchaoHou,JingsiLiao,WeiXia,GaoxiangYang,GuiqingYang,WeiYu,JiayinZhi,JianjunZhouFabioMontagninoUN-HabitatLab:SheguftaNewazNetZeroCarbonVillagePlanningGuidelinesFortheYangtzeRiverDeltaRegioninChina1stEditionAllrightsreserved©2019UnitedNationsHumanSettlementsProgramme(UN-Habitat)P.O.Box3003000100NairobiGPOKENYATel:+254-020-7623120(CentralOffice)www.unhabitat.orgHSNumber:HS/009/19EISBNNumber:978-92-1-132835-6ThisreporthasbeenpreparedbyUN-Habitat’sUrbanLabincollaborationwithTongjiUniversity.TheLabisUN-Habitat’smultidisciplinaryfacilitysupportingcitiesandMemberStateswithinnovativemethodologiesandmulti-stakeholderprocesses.TheLabaimstoachievesustainableurbanizationthroughintegratedandtransformativeurbaninterventionsthatcontributetotheimplementationofthe2030AgendaforSustainableDevelopment.ContentsContentsvForewordviINTRODUCTION3Objectives4Context:theYangtzeRiverDeltaregion,pastandpresent6Background6ZEROCARBONVILLAGEASAPROTOTYPEOFFUTURESUSTAINABLERURALSETTLEMENTS11TheplanetaryboundariesandtheSDGs12Fromlineartocircularmetabolism16TENKEYPRINCIPLESFORZEROCARBONRURALVILLAGESDESIGN19ImplementationofzerocarbonvillagesintheYangtzeRiverDelta21The10principles23Sustainablevillagedesign:conceptualpillarsPrinciple1:ClimatedataandgreenhousegasinventoryPrinciple2:Well-connectedmixed-usenodesPrinciple3:HeatingandCoolingPrinciple4:GHGemissionsPrinciple5:RenewableenergysourcesPrinciple6:WatercyclePrinciple7:SolidPrinciple8:Energy,water,foodandwastecyclesPrinciple9:EmploymentopportunitiesandleisurePrinciple10:EcologicalawarenessraisingCasestudies67CONTEXTUALIZINGTHEPRINCIPLES79ShatanVillage,Taizhou80XinjianCommunity,Zhoushan92MeilinVillage,Changzhou104VILLAGEPLANNINGANDDESIGNMETHODOLOGY:XIEBEIVILLAGE115Villageplanninganddesignprocess:NortheastXiebeiVillageconceptualplanasanexample116Issues127Actions139ENDNOTES150viForewordInrecentyears,theYangtzeRiverDelta(YRD)regionineasternChinahasbecomeastrategicfocusofenvironmentalprotectionandeco-developmentefforts.Theregionisfacingunprecedentedrisktoitsnaturalandurbanenvironments.Theinherentvulnerabilityofthishighlyvaluedeco-systemandagriculturalareaduetothelargeconcentrationofneighbouringmetropolitanareas,economicallystrategicpositionalongmajorshippinglanesandmanufacturinghubsaswellastheinterlinkedconflictbetweensocialandeconomicdevelopmentandenvironmentalconservation,needstobeaddressed.Theseconditionsmakeit,withtime,increasinglyhardertogovernurbanandruralsettlementsresultinginlostopportunitiesforsoundeconomicgrowththatrespectsstrongecologicalbalance.ThischallengingcontextisnotonlyrelevanttotheYRDregionbutalsotootherChineseandinternationalregionswhereconnectivitycouldbeenhancedthroughruralandurbanlinkages.Thisisespeciallypertinentsince2007,whenmorethanhalfoftheworld’spopulationlivesincities,andinrelationtoChina’ssubstantialworkinpromotingeco-cities.Inadditiontothis,followingmorethantwodecadesofurbanexpansion,thereisarenewedfocusinChinatoaddressthestatusquowhererapideconomicgrowthwasprioritisedattheexpenseoflandandenvironmentalresourcesandagrowinginequalitybetweenruralandurbanareas.Itisunderthisperspectivethatthereisagrowingneedtoproposemethodologiestoestablishamorebalancedurban-ruralrelationship.The2030AgendaforSustainableDevelopmentoutlinessustainabledevelopmentasaprocessinharmonywithpeople,planet,prosperity,peaceandpartnership,notdrivenbyisolatedactions.ThisiswellreflectedintheNewUrbanAgenda(NUA)whichtranslatestheSustainableDevelopmentGoals(SDGs)intopracticeregardingareasofhumansettlements,urbanplanning,atitsmanylevelsandscalesincludingplanningofperi-urbanandurban/ruralsettlements.Thisisavitaltoolthatcanintegratemultiplecomplexitiestoguidesettlementgrowthinawaythatpromotesinclusive,integratedandsustainabledevelopment.Formorethanfortyyears,UN-Habitathassupportedcountriesworldwidetodevelopurbanplanningmethodologiesandstrategiestoaddresscurrenturbanizationchallengessuchaspopulationgrowth,urbansprawl,poverty,inequality,pollution,andclimatechangeatnational,cityandneighbourhoodlevel,includingurban-rurallinkages.ItisforthisreasonthatUN-HabitatandTongjiUniversityhavecollaboratedtoproduceguidelinesonnet-zerocarbonstrategiesforthedevelopmentofvillagesintheYangtzeRiverDelta.TheresearchispartofawiderprojectinpartnershipwiththeShanghaiMunicipalGovernmentaswellasShanghaiResearchInstituteofBuildingSciencesandShanghaiAcademyofEnvironmentalSciencesworkingontechnologicalandscientificdimensionsofzerocarbonsolutionsandcoordinatedbyTongjiUniversity.Theoverallprojectanalyzesanddefinesthestructuringelementsofzerocarbonsettlements,illustratingdevelopmentstrategiesforplanning,implementingandmanagingenergyandresourceefficienturban-ruralareas.Theprojectaimstodevelopaholisticapproachwhereurbanplanningwillbethetoolthatbringstogetherclimaticconditions,landuse,localeconomies,renewableuseofenergy,zero-waste,watercycles,biodiversity,andtransport,toachieveasustainablelowcarbonsettlementsystem.Theseguidelineshaveatwo-foldobjective.Ontheonehand,theguidelinescanbeusedtohelpstandardizeandcodifyecologicalplanningprinciplesforvillagesintheYangtzeRiverDeltaandontheothertheycansetanexampleofzerocarbonplanningstrategiesthatcanbeescalatedandreplicatedinotherrelevanttownsatthenationalandinternationallevel.TheprojectrespondstoUN-Habitat’smandateofpromotingsociallyandenvironmentallysustainableviitownsandcities,whileaddressingtheNewUrbanAgendathroughtheimplementationofthe2030SustainableDevelopmentGoals(SDGs).TheprojectprimarilycontributestotheprogressiveachievementofTargetGoal11“SustainableCitiesandCommunities”,andTargetGoal13on“ClimateAction”,Goal6”Ensureavailabilityandsustainablemanagementofwaterandsanitationforall”andGoal7“Ensureaccesstoaffordable,reliable,sustainableandmodernenergyforall”,withreferencetothefollowing:7.2:By2030,increasesubstantiallytheshareofrenewableenergyintheglobalenergymix;7.3:By2030,doubletheglobalrateofimprovementinenergyefficiency;11.6:By2030,reducetheadversepercapitaenvironmentalimpactofcities,includingbypayingspecialattentiontoairqualityandmunicipalandotherwastemanagement;11.A:Supportpositiveeconomic,socialandenvironmentallinksbetweenurban,per-urbanandruralareasbystrengtheningnationalandregionaldevelopmentplanning;13.2:Integrateclimatechangemeasuresintonationalpolicies,strategiesandplanning;13.3:Improveeducation,awareness-raisingandhumanandinstitutionalcapacityonclimatechangemitigation,adaptation,impactreductionandearlywarning.MaimunahModhSharifUNHumanSettlementsProgramme,ExecutiveDirector1Net-ZeroCarbonVillagePlanningGuidelinesfortheYangtzeRiverDeltaRegioninChinaXinjianCommunity,Zhoushan2Introduction0Introduction3Net-ZeroCarbonVillagePlanningGuidelinesfortheYangtzeRiverDeltaRegioninChinaObjectivesTheGuidelinesfocusonthecurrentsituationoftheYangtzeRiverDelta(YRD)region,developinganapproachthataimstobuilduponnormativeresearchonclimateresilient,energyandresourceefficientplanningprinciplestodeveloptoolsforthedevelopmentofnet-zerocarbonvillageguidelines.Chapteroneexaminesthenet-zerocarbonvillagefromaglobalperspective,shiftingthenotionofzerocarbonplanningfromafocusoncarbonaccounting,toafocusoncircularmetabolismsandeconomies.Chaptertwooutlinesguidingprinciplesforvillagesandtheprivatesectortoadopttodirectdevelopmenttowardssustainableoutcomes.TheguidelinesbuildonthecurrentsituationintheYangtzeRiverDeltaregion—whichincludesShanghai,northernZhejiangProvince,southernJiangsuProvince,andeasternAnhuiProvince—andaimtolookbeyondmerelythegreenandlowcarbonfeaturesofasinglebuilding,extendinglowcarbonprinciplestovillagesandtheirsurroundings.Chapterthreepresentscasestudies,includingdesignrecommendations,todemonstratehownet-zerocarbonprinciplescanbeimplementedinthreevillagesselectedfromShanghai,ZhejiangandJiangsu.ChapterfourfocusesonXiebeiVillage—adjacenttoShanghaionChongmingIsland—andpresentsamoredetailedmethodologyforhownet-zerocarbonvillagedevelopmentprinciplescanbespatiallyintegratedintoavillagethroughthedevelopmentofaconceptualplan.Collectively,thefourchaptersintroducetheglobalandhistoricalrelevanceofnet-zerocarbonplanning,setguidelinesforitsapplicationintheYRDregioninChina,anddemonstratehowthoseguidelinescouldbeintegratedintoexistingvillagecontexts.Inordertoaccomplishtheaforementionedgoalsofthisdocument,thefollowinguniversalprinciplesandconceptshavebeentakenintoaccount.NET-ZEROCARBONEMISSIONSNet-zerocarbonemissions,orcarbonneutrality,referstoachievingabalanceofcarbonemissionsandcarbonremoval.AsoneofthemostdevelopedregionsinChina,theYangtzeRiverDeltaisacarbonemissionsintensiveregionduetorapidindustrializationandurbanization.ENERGYThetotalenergyconsumptionofShanghaiMunicipalityin2016was117milliontonsstandardcoalequivalent(SCE)1,InZhejiangProvinceitwas202.76milliontonsSCE,inJiangsuProvinceitwas310milliontonsSCE2,andinAnhuiProvinceitwas127milliontonsSCE3.ChongmingIsland,whichhassetagoalofbecominganet-zerocarbonisland,emphasizedasustainableenergystrategyinits2016-2040Masterplan.Thisstrategyincludespromotingcleanandrenewableenergysources.Naturalgaswillreplacetraditionalfossilenergysuchascoalandkeroseneandwind,solarandbiomasswillmeet60-80%ofenergyneedsbytheendof2040.ThestabilityofthepowergridandtheitsabilitytoabsorbnewenergyarealsoemphasizedintheChongmingIslandMasterplan,asistheconstructionofamicro-gridsystembasedonrenewableenergy,solar,wind,andbiomassresourcesinChongmingIsland.Thesegmentedconstructionofanenergygeneratorisalsoplanned,whileasegmentalnaturalgasenergysystemisplannedinaregionalenergycenter.Rooftopsofindustrialandpublicbuildingsaredemarcatedforsolarenergygeneration.SOUNDPLANNINGPRINCIPLESThebasisforanylowcarbonstrategyneedstobeunderpinnedbysoundurbanplanningprinciples,focusingonhowtoachieveenergyandresourceefficiencythroughurbanformandsystemsdesign.Forexample,transport-orienteddevelopment,theadoptionofmixed-useplanningzones,andtheachievementofadequatesettlementdensitiesallcontributetothelong-termde-carbonizationofasettlement,aswellasrepresentingsoundsettlementplanning.Thishighlightsitspotentialastheleadingtoolinpromotingstrongandintegratedlow-carbondevelopmentstrategies,andmitigatingclimatechange.Azerocarbonplanningapproachthatdoesnotalsotakeintoaccountadaptationtoclimatechangeisfutile:climateprojectionsmustbetakenintoaccountinsettlementdesigntoenablesocial,economicandenvironmentalresilienceinthefaceofexpectedfutureclimatechanges.InthecaseofruralareasoftheYRDregion,anabsenceoflong-termplanninghasledtoinefficientresourceuseandpoorlivingconditions,whereplanningguidelinesareinurgentneedinordertooptimizecarbonperformanceandachievesustainabledevelopment.Forthisreason,UN-HabitatandTongjiUniversityhavepartneredtoproducetheseguidelinesfornet-zerocarbonvillagesintheYangtzeRiverDeltainChina.ThisguidanceaddressesthespecificruralcontextofYangtzeRiverDelta,usingvillageplanningandsustainabletechnologyasatooltoachievethegoalofnet-zerocarbondevelopment.4IntroductionFig.0.1LocationoftheYangtzeRiverDeltaregioninChinaFig.0.2MapoftheYangtzeRiverDeltaregionandcasestudiesselectedinChapter3ChinaYangtzeRiverDeltaRegionEastChinaSeaEastChinaSeaPlanningpolicyshouldbothincentivizeandregulateforanintegratedlow-carboninfrastructureapproach;whichpromotesenergyefficiency,renewableenergy,sustainabletransport,wastereductionandmanagement,waterefficiency,andlow-carboneconomicandindustrialactivitiesatthebuilding,neighbourhoodandvillage,town,orcityscale.Amultitudeofplanningprinciples,incentives,technologicalinvestments,businesscodesandbehaviourchangeinterventionscansupportthedeliveryofthelow-carbonsettlement,thatinthiscasecanbetailoredtointeractwiththeoverallislandsettlementandfarmingpattern.Specialcarecanbegiventotheenergyandhumanflowsbetweenurbanandruralareasontheisland,includingflowsoffood,energy,goodsandservices.URBAN-RURALLINKAGESEnhancingruralandurbanlinkagesisvitalfortheefficiencyofsustainablehumansettlementsgrowthplanning.Priorityissuessurroundingurban-rurallinkagesareoftenaddressedwithinthecontextofspatialplanning,withaprimaryfocusonimprovedintegrationofdifferentsectors(suchashousing,energy,transportandindustry),territorialcohesion,urban-ruralcooperation,improvedsystemsofdevelopmentandenvironmentalsustainability.TheSDG’sandtheNUAhavebothidentifiedUrban-Rurallinkagesaspotentialtransformativeinterventionsthatpromoteruralurbanizationthroughthestrengtheningofintermediatetownsandestablishmentofruralservicecentresforintegratedterritorialdevelopment.SENSITIVESOCIO-ECONOMICPRINCIPLESInorderforlowcarbonstrategiestohavepositiveoutcomesforall,theyshouldtakeintoconsiderationeconomic,environmentalandsocialcontexts,suchastheurban/ruralagriculturallivelihoodpatternsofChongmingIslandaswellastheinherentvalueintermsofheritageandsocialstructures.Socialequityisanimportantcomponentthatindirectlyaffectshabitsandconsumptionpatternsandislinkedtoadequateallocationofbasicpublicfacilities.Thisisparticularlyimportantintermsoftheenhancementofqualityofproduction/livingandtheequalizationofbasicservicesbasedondevelopmentdemandsalongsideprotectionoftraditionaltypologiesandsystemswhererelevant.Fromaperspectiveofvillageplanning,thedirectionofeconomicdevelopmentisinextricablyboundtothisandneedstobesupportedbywell-plannedlandandeconomicsystemstosupportcontinuedeconomicdevelopment.5Net-ZeroCarbonVillagePlanningGuidelinesfortheYangtzeRiverDeltaRegioninChinaContext:theYangtzeRiverDeltaregion,pastandpresentNATIONALANDLOCALPOLICIESInadditiontotheglobalpolicyframeworksoftheSDGsandtheNUA,theguidelinesarebuiltuponandalignedwithnationalandlocalpolicies.In2015thePeople’sRepublicofChinasubmitteditsclimatechangeactionplantotheUNFrameworkConventiononClimateChangewhichwasfollowedbyChina’sratificationoftheParisAgreement.Thefollowingyear,China’s13thfive-yearplanwasreleased,outliningtargetsandmeasurestoaddresssustainabilitychallengesincludingclimatechange,airpollution,urbanization,ecosystemsandtheenvironment,andpublicwellbeing.In2016,theNationalDevelopmentandReformCommissionandtheMinistryofHousingandUrban-RuralDevelopmentissuedareporton“RegionalPlanningoftheYangtzeRiverDelta2016-2020”,prioritizingtheconstructionof“greencities”particularlythroughacceleratingtheconstructionof“spongecities”,“forestcities”and“low-carboneco-cities”.Meanwhile,theCityofShanghai’sstrategicplan(2015-2040)hasalsosetoutalong-termlow-carbongoalwhichaimstoreducecarbonemissionsaswellasprotectcarbonsinkspacesandtopeakcarbonemissionsinthecityby2025.By2040,totalcarbonemissionsareexpectedtobereducedfrompeakcarbonbyatleast25%.GEOGRAPHYTheYangtzeRiverDeltaisthelargestalluvialdeltainChina.Ithasamarinemonsoonsubtropicalclimatewithfourdistinctseasons,hotandhumidsummers,coolanddrywinters,andwarmspringandautumnmonths.Wintertemperaturescandropaslowas-10°C(recordedminimum);however,largetemperaturefluctuationscanoccur.AbundantfreshwaterresourcesandacentrallocationwithintheAsia-PacificEconomicZonehaveenabledthedevelopmentofarobustwatertransportsystemincludingthelargestshippingportintheworld,thePortofShanghai4,whichsawathroughputof82.24millionTEU(twenty-footequivalentunit)in20175.Theworld’sthirdlargestcontainerport(alsointheYRDregion),NingboZhoushanPort,hadathroughputof50.96millionTEU.In2017,thewholeYRDregionhadathroughputof4.514billiontons,accountingfor35.7%ofnationalcargo—anincreaseof8.1%fromthepreviousyear.Fig.0.3PopulationgrowthshiftofcitiesChangjiangRiverDeltasince1980DEMOGRAPHYSince2000,thepopulationoftheDeltahascontinuedtoshowstronggrowthdespiteagradualshiftfromhighbirthrate/lowdeathratetolowbirthrate/lowdeathrate.Aftertwopopulationboomsintheearly-to-mid-20thCentury,recentyearshaveseenlownaturalpopulationgrowthratesinJiangsuandZhejiangprovincesandnegativegrowthratesinShanghai.However,evenwithalownaturalpopulationgrowthrate,between2000and2010,thetotalpopulationoftheYangtzeRiverDeltaincreasedfrom87.43millionto107.63million,anincreaseof23.11%,primarilyduetomigrationfromotherregionsofChina6.TheYRDregionasawholeisoneofthemostdenselypopulatedareasinChina.Itincludes26citiesinShanghai,Jiangsu,ZhejiangandAnhuiprovincesandaccountsfor217,700km2,approximately2.2%ofthecountry’slandmass7.However,despiteitsrelativelysmalllandmass,theregionaccommodated150millionpeopleandgenerated12.67trillionRMBin2014,whichisroughly11.0%China’stotalpopulationand18.5%ofitsGDP.In2020,theYRDregionislikelytocontain11.8%oftheChinesepopulationandproduce21%ofChina’sGDP.6IntroductionAstrongshiftintheregion’s“centreofgravity”intermsofpopulationdensity,fromnortheasttosouthwest,hasalsobecomeclear.InadditiontothegrowthofShanghai,whichincreasedindensitybynearly1,000people/km2,theCityofSuzhouhasalsoexperiencedrapidgrowth,withanincreaseindensityofnearly600people/km28.Theresultingagglomerationswhichhavedevelopedaroundcoreareasofeachcityindicatesthatthecitiesarestillinastageofcentripetalurbanization.Inthefuture,small-to-mid-sizedcitiesandtownsintheDeltawillbeencouragedtodevelopfurtheralongsidethemulti-centretrendwherebyShanghaiisnolongerafulcrumofeconomicpower,buteconomicopportunitiesandpopulationbecomemorediffusedaroundSuzhou,Wuixi,Changzhou,Ningbo,NanjingandHangzhou.URBANIZATIONANDINFRASTRUCTUREOverthepast30years,China’srateofurbanization—asmeasuredbytheproportionofthepopulationdwellinginanurbanarea—hasnearlytripled,increasingfrom17.9%in1978to58.5%in2017.TheurbanizationrateofpermanentresidentsintheYangtzeRiverDeltaurbanagglomerationrosefrom50%in2000to68%in20169.Thisrateprovidesasolidfoundationfortheregiontobecomeaworld-classurbanagglomeration.ShanghaihasmadeacleargoalofbuildingaglobalcityandhasaprominentpositionintheYangtzeRiverDeltaregion.MajorcitiessuchasNanjing,Suzhou,Wuxi,Hangzhou,andNingbooccupyanimportantpositionintheregionandcountry.Accordingtothenational‘YangtzeRiverDeltaRegionalPlan(2009-2020)’,by2020,theurbanizationleveloftheYangtzeRiverDeltaregionwillreach72%,percapitaGDPwillreachRMB110,000,andtheproportionofserviceindustrywillreach53%.‘TheYangtzeRiverRegionalPlan’alsorequiresextendingurbaninfrastructuretoruralareasandtheintegrationofurbanandruralinfrastructure;coordinatingtheconstructionofmajorinfrastructuresuchasurbanandruralwatersupplyanddrainage,gassupply,powersupply,communication,garbageandsewagetreatment,regionalfloodcontrolanddrainage,andpollutioncontrolprojects;andpromotingtheconstructionofnewenergyinfrastructuresuchaswindpower,tides,andoceancurrents.Accordingtothenationalplan,theproportionofnewenergyinthetotalenergystructureneedstoexceed4%.LANDOWNERSHIPINCHINAInruralareas,developmentlandandnon-developmentlandarethemajortwolandcategorizations.Developmentlandincludes“constructionland”,“trafficland”,“infrastructureland”and“speciallandreserves”.“Constructionland”referstobothlandthatcanbedevelopedforresidentialusebyvillagers(agriculturalresidents)andasadministrativespaceforgovernmentaloffices.“Trafficland”islandoccupiedbytransitwayssuchasrailways,roads,harboursandairports;whereaslandusedforenergyand/orwaterfacilitiesandcommunicationnetworksiszonedas“infrastructureland”.“Speciallandreserves”pertainsspecificallytolandusedformilitary,religious,anddiplomaticpurposes.Non-developmentlandincludes“agriculturalland”,“permanentbasicfarmland”,“waterbodies”and“specialland”.“Agriculturalland”ismanagedbyvillagerswithagriculturalcitizenship,allowingthemownershiprightsoverlandoccupiedbygardens(whichcaninclude,butisnotlimitedtothegrowthofediblefoodstuff),forests,andgrasslands.“Permanentbasicfarmland”ispreservedspecificallyforthecultivationofediblefoodstuffandissubjecttostricterprotectionsagainstconversiontodevelopmentlandthangeneral“agriculturalland”.“Waterbodies”includerivers,lakes,waterreservoirs,canals,tidallandandwetlands.“Specialland”referstolandtypicallyexploitedforrawmineralusesuchaslandusedforsaltfields,mines,butalsoincludesnaturereserves.LANDUSECHANGESOverthepast50years,theamountofcultivatedlandintheYangtzeRiverDeltaregionhasfluctuatedsignificantlywithurbanencroachmentoncroplandasthedominantlandusechange.SinceChina’sreformandopeningupattheturnofthe20thCentury,theareaofcultivatedlandintheYangtzeRiverDeltahasbeenrapidlydeclining.From1980to1998,thetotalareaofcultivatedlandwasreducedby25,600km2,andtheannualaveragerateofdeclinereached0.48%10.From1995to2000,thedecreaseofarablelandintheYRDregionwasconspicuous;2300km2ofcroplandwastransformedtourbanusewhiletheconversionnearlydoubledbetween2000-2005and2005-201011.In2013,thetotalconstructionlandintheYangtzeRiverDeltaurbanagglomerationreached36,153km2,increasingfrom600km2in1989andreaching17.1%ofthetotalareaoftheYRDregion12.Themostdramaticexpansion7Net-ZeroCarbonVillagePlanningGuidelinesfortheYangtzeRiverDeltaRegioninChinaFig.0.4ConstructionlandintheYangtzeRiverDeltaRegionofurbanlandoccurredintheNanjing-ShanghaicorridorandtheHangzhouBayarea,whicharealsothemostdevelopedcommercialandbusinesszones.From1995-2000,tomakeupforboththeconversionofforestandwaterbodiestocroplandandthelossofcroplandoverall,theChinesegovernmentconverted900km2ofcroplandintoforest,andbetween2000-2010,1300km2ofwaterwasreclaimedtoprovideadditionallandforagriculture.Changesinlandusehavesignificantlyalteredthestructureandpatternofregionalecosystems,andmanyecologicalandenvironmentalrisksrelatedtowaterandclimateregulationshavebecomeincreasinglygrave.RapidindustrializationandurbanizationhavealsocausedsignificantreductionsintheareaandvolumeoffreshwatersourcesintheYRDregion.Thishasresultedinareducedstoragecapacityofreclamationareasaroundthelakes,whichhasledtoasharpriseinwaterlevels,thelong-lastingeffectofwhichincludesincreasingpressureonregionalfloodcontrolmeasures.Moreover,increasinglivingstandardsandeconomicandsocialdevelopmentcoupledwiththerequiredexpansionofurbanecosystemservicesandthedeclineinurbanresourceandenvironmentalcarryingcapacityduetoincreasingurbanizationrateswillcontinuetoexist.Despiteitsformerabundanceofcropland,theYangtzeRiverDeltaregioniscurrentlyconsideredafood-deficientregion,unabletomeettheincreasingdemandsofitspopulation.Thistrendwillcontinuetodevelopinthenext15years13.Finally,conflictsbetweenthehugedemandforlandandlimitedlandresourcesarecurrentlyintenseandwilllikelybecomeevenmoresointhefuture.SOCIO-ECONOMICTRENDSTheYangtzeRiverDeltaisthelargestestuarydeltainChina;assuch,theclimateisidealforagricultureandpeoplebegancultivatingthelandforrice7000yearsago14.Duetoitsaccommodatingclimate,diversenaturalresources,andstrategicgeographicpositionalongtheEastChinaSea,theYRDisoneofthecradlesofChineseagricultureandcivilization,consequentlydevelopingasthemostpopulousandeconomicallyprosperousregioninChina15.AfterChina’sopening-up,manysocietal,politicalandeconomicchangestookplaceintheYangtzeRiverDeltaregionandhaveresultedintherapiddevelopmentofruralareas.From1960to1978,duringthe“CulturalRevolution”(1966-1976)andthe“DowntotheCountrysideMovement”(1968-1978),economicdevelopmentwassignificantlyhindered,andcitizenswereorganizedtoworkandliveinruralareas.Consequently,theurbanpopulationsharplydecreasedandurbangrowthdrasticallyslowed.Aftertheeconomicreformof1978,urbanizationintheYRDbeganaccelerating(1978-1989).Thereformofthehouseholdregistrationsystemin1984allowedmoreruralinhabitantstomoveintocitiesandwork.Since1993,YRDasaNewEconomicDevelopmentZonehasenteredanacceleratedstageofurbanization.Startinginthe1970sinruralareasoftheYRD,“fivesmallindustries”,wereallowedtooperate.Thus,small-scalesteel,machinery,chemicalfertilizer,coal,andcementindustries,begantoreplacetraditionallyagriculturalareas,offeringamorelucrativealternativetofarmingformanyvillagers.Theindustrialization8IntroductionFig.0.5UrbanizationprocessofYRD(athree-stagedtrajectoryofpopulationurbanizationintheworldcontext)Fig.0.6Coordinationbetweenurbanizationandeconomicdevelopment19ofzonesinruralareascombinedwithurbanizationpressuresonsmalltownsledtotheemergenceofRuralEconomicDevelopmentZonesintheYRDregion.Thesezonesencouragedtheswitchfromextensivetointensivefarmingpractices,whichsimultaneouslylessenedtheincomegapbetweenurbanandruralareas,whilecontributingtohigherGHGemissions,waterandsoilpollution.However,inthelongrun,intensivepracticeshavereducedtheamountofnecessaryhumanlabour,leadingtoalackofjobsinvillagesandtheirsurroundingenvirons.Atthesametime,Shanghai,Nanjing,Suzhou,Wuxi,Hangzhou,andNingbohaveattractedincreasingnumbersofjob-seekers,furtherdrainingthedemographicbalanceofruralregionsandmakingthepreservationofdistinctivecharacteristicsofruralculture—whosepreservationhasbeenaccountedforintheStrategicPlanforRuralRevitalization(2018-2022)16,issuedbytheCentralCommitteeoftheChineseCommunistParty—moredifficult.WhiletheYangtzeRiverDeltaregioncurrentlyleadsthecountryintermsofpercapitaresidentincomegrowthrate17,accesstothelabourforceandlackofcoordinatedvillageplanningpracticescreatelargeinconsistenciesbetweenruralandurbanareas.Urbanareashavealsosufferedfromgrowingpains.Althoughtherateofeconomicdevelopmentintheregionisimpressive,broadsocialchangesanddrasticimprovementstoqualityoflifehaveincreasedtheanthropicpressureonnaturalandagriculturalecosystems,stressingthecapacityofnaturalresourceregenerationaswellastheprovisionofbasicservices.Thepresentworkshouldbeconsideredamongthepolicyactionsaimedtorevamptheattractivenessofruralvillagesandachieveamorebalancedqualityoflifebetweenurbanandruralcommunities.CLIMATECHANGETheYangtzeRiverDeltaregionhasexperiencedsignificantimpactsfromclimatechangeoverthepastfewdecades,affectingtheregion’senvironmentanddevelopment.Typhoons:TyphoonsareendemictotheeastcoastofChina,frequentingtheareaonceortwiceayearinthefloodseason.In2018,SuperTyphoonMariacausedadirecteconomylossofUS$38.5millionandaffected340,000people.Flooding:TheregionexperiencesarainyseasoneachyeararoundMay.Minorfloodstypicallyhittheregionaroundthesametimeonasemi-annualbasis.Majorfloodsoccurredin1870,1931,1954,1998,2010and2016.Thefloodin2016alone,whichwasthebiggestintwodecades,affected56millionpeopleandcausedUS$25.15billionloss18.Hightemperatures:In2018,thepeaktemperatureintheYRDregionreached41˚C(Jiangsu),with50daysover35˚C(Htd).BothpeaktemperatureandHtdareonanupwardtrend.9Net-ZeroCarbonVillagePlanningGuidelinesfortheYangtzeRiverDeltaRegioninChinaCanalonChongmingIsland10Zerocarbonvillageasaprototypeoffuturesustainableruralsettlements1Zerocarbonvillageasaprototypeoffuturesustainableruralsettlements11Net-ZeroCarbonVillagePlanningGuidelinesfortheYangtzeRiverDeltaRegioninChinaAzerocarbonruralvillageisaprototypeoffuturesustainableruralsettlements.Assuch,ithastofulfilalltherequirementsofsustainability.Inatransitionpathitwillfulfilsomeofthembutwiththeawarenessofwhatisstilllackingandofthegaptobridgeforthefullimplementationofasustainabledevelopmentmodel.Thefollowingparagraphdealswiththeconceptofsustainabledevelopment,onwhichanydesignprocessofazerocarbonvillageshouldbebased.TheplanetaryboundariesandtheSDGsTheconceptofplanetaryboundariesinvolvesEarthsystemprocesseswhichcontainenvironmentalboundaries,proposedin2009byagroupofEarthsystemandenvironmentalscientists20.Thescientistsproposedquantitativeplanetaryboundarieswithinwhichhumanitycancontinuetodevelopandthriveforgenerationstocome.Crossingtheseboundariesincreasestheriskofgeneratinglarge-scaleabruptorirreversibleenvironmentalchanges.Thegroupwantedtodefinea“safeoperatingspaceforhumanity”asapreconditionforsustainabledevelopment.TheframeworkisbasedonscientificevidencethathumanactionssincetheIndustrialRevolutionhavebecomethemaindriverofglobalenvironmentalchangeNineplanetaryboundarieswereidentified(Figure1.1),mostlymutuallyinterconnected:1.Stratosphericozonedepletion2.Lossofbiosphereintegrity(biodiversitylossandextinctions)3.Chemicalpollutionandthereleaseofnovelentities4.ClimateChange5.Oceanacidification6.Freshwaterconsumptionandtheglobalhydrologicalcycle7.Landsystemchange8.Nitrogenandphosphorusflowstothebiosphereandoceans9.AtmosphericaerosolloadingAtpresentfoursafeboundarieshavebeentransgressed21:climatechange,biodiversityloss,shiftsinnutrientcycles(nitrogenandphosphorus),andlanduse.Threeoftheseboundaries,whichwehavealreadytransgressedorweareclosetotransgressingarerelatedtofourplanetarycyclesonwhichthestabilityofthebiosphereisbased:thewater,nitrogen,phosphorousandCO2cycles(Figure1.2).Itisnotbychance:man,Fig.1.1ThePlanetaryBoundaries2812ZerocarbonvillageasaprototypeoffuturesustainableruralsettlementsfromIndustrialRevolutiononwards,hasbeingalteringthesecyclesbyintroducingnewflowsintothem:anewCO2flowduetotheburningoffossilfuels;anewnitrogencompoundsflowasitisduetothespreadingofartificialnitrogenfertilisers;anewphosphorousflowminedandspreadasafertiliser;anewwaterflowduetothewithdrawalofundergroundwateranditsdistributionontheearth’ssurface.Thebreakingofthenitrogenandphosphorousflows,withtheinjectionofexcessmaterial,hascausedthealterationofecosystems,thuscontributingtothetransgressionofafourthplanetaryboundary,thebiosphereintegrity,throughthereductionofbiodiversitycausedbytheeutrophicationofwaterbodiesandthemodificationofthesoilmicrobiome,inadditiontothealterationduetotemperatureincreaseandthechangeintheland-systeminducedbyhumanactivities.Allthisconsidered,andbeingawarethatanotherplanetaryboundary,oceanacidification,isduetoclimatechangeandtothealterationofbiochemicalflowsandthatthisacidificationcausesfurtherbiodiversitylossintheseas,itisclearthatsustainabledevelopmenthastotacklemorethanjusttheproblemofclimatechange.Sustainabledevelopmententailsrestoring,inadditiontotheCO2cycle,alltheothercyclesthatwehavealtered.Ifwedonottakeactiontodothis,notonlywillwehavetofacemorefrequentandextremefloods,droughts,heatwaves,illnesses,reductionoftheagriculturalproduction,etc.,butalsofastaccelerationinthe-usuallyunperceived-rateofbiodiversityloss.Biodiversityisfundamentaltotheoperationofecosystems.Byalteringit,werisklosingalargenumberoffreeservicescrucialforoursurvival,rangingfrompollinationtowaterpurification,fromrawmaterialstomedicineandfoodprovision,justtomentionafew(Figure1.3).Whendealingwithsustainabledevelopmentweshouldalsobeawareofthefactthatagricultureisamajordriverofthetransgressionofplanetaryboundaries.Twoplanetaryboundarieshavebeencompletelytransgressed,biosphereintegrityandbiogeochemicalflows,andagriculturehasbeenthemajordriverofthesetransgressions.Threeareinazoneofuncertaintyi.e.,atincreasingrisk,withagriculturethemajordriveroftwoofthese,land-systemchangeandfreshwateruse,andisasignificantcontributortothethird,climatechange.Agricultureisalsoasignificantormajorcontributortochangeformanyoftheplanetaryboundariesthatarestillinthesafezone.Therefore,asignificantmodificationofagriculturalprocesses–towardsagro-ecology–isthenecessaryconditionforrespectingtheplanetaryboundaries.Thuszerocarbonruralvillageshaveacriticalroletoplayinthepathtowardsasustainablefuture,astheycanbeashowcaseofhowasettlementshouldbeandshouldworkinordertobesustainableandofhowfoodshouldbeproduced,andwhatkindoffood.Fig.1.2Howbiosphereandecosystemswork.Matteriscontinuouslyrecycledandreused;thesunprovidestheenergytofeedtheprocessFig.1.3Ecosystemservices2913Net-ZeroCarbonVillagePlanningGuidelinesfortheYangtzeRiverDeltaRegioninChinaInfact,thedesignandtheimplementationofzerocarbonvillagesinvolvesmostoftheplanetaryboundaries.Thefirst,mostevident,isthecontributiontoclimatechangemitigation,becauseoftheirhavingzeroemissions.Butotherplanetaryboundaries,nolesscritical,areinvolved.Thefirstisland-usecontrol,whichisrelatedtotwootherplanetaryboundaries:theamountofcarbonabsorbedbyvegetationandbiodiversityloss.Thesecondboundaryistheflowofindustriallyproducednitrogenandminedphosphorus,theamountofwhichcanbereducedinagricultureifthenutrientscontainedinthefoodconsumedinthesettlementarereturnedtothesoilInwhichthefoodwasgrown;thisboundaryisalsolinkeda)toclimatechange,becauseoftheCO2releasedintheproductionofnitrogenfertilisersandbecauseofthenitrousoxidereleasedintotheatmosphere,andb)tobiodiversityloss,duetotheexcessofnitrogenandphosphorousinwaterbodies.Theshiftfromindustrialagriculturetoagro-ecology,whichshouldcharacterisethenewlifeofzerocarbonruralvillages,willpermitareductionintheuseofchemicalssuchaspesticides,herbicides,etc.,whichhaveanegativeimpactonbiodiversity.Evenifmostcarbonemissionsareproducedincities,whentheshareduetoagriculture(almost25%)andtheimpactofagricultureonplanetaryboundariesareconsidered,zerocarbonvillagescouldbeamilestoneinChinesepolicymitigatingglobalwarming22andintheconservation23ofbiodiversity.Ontheotherhand,notonlytheplanetbutalsohumansocietiesneedtobebroughtbacktohealth,aswellastheindividualswhomakethemup.Toomanypeoplestillliveinunacceptableconditionsorareunabletofulfilsomebasicneeds,sometimesbecauseofthetransgressionofplanetaryboundaries,butthatisnottheonlyreason.The17SustainableDevelopmentGoals(SDGs),launchedbytheUnitedNations(Figure1.4)stemfromtheseconsiderationsThus,theaimshouldbetofulfiltheSDGsandatthesametimekeephumankindwithintheplanetaryboundaries,theSafeOperatingSpace(Figure1.5).FormostoftheSDGsthereisalsoaboundarybelowwhichthequalityoflifeisunacceptable,thusaJustandSafeSpacebetweenthesetwoboundariescanbedefined24,asinFigure1.6,wheretheSDGsaretranslatedinto11needs,elementswhichcharacterisethequalityoflife,whichconstitutethesocialfoundation,andforwhichaminimumthresholdhasbeenidentified.Thesesocialfoundationsmustalsobemetinzerocarbonvillages.Thisisafurtherchallengethatimpliestheimplementationofpoliciesaimingtorevitalizethesevillagesthroughecologicallysoundandinnovation-basedeconomicdevelopment25.Fig.1.4TheUNSustainableDevelopmentGoals14ZerocarbonvillageasaprototypeoffuturesustainableruralsettlementsFig.1.5CombinationofSDGsandPlanetaryBoundaries30Fig.1.6TheJustandSafeSpace3115Net-ZeroCarbonVillagePlanningGuidelinesfortheYangtzeRiverDeltaRegioninChinaFromlineartocircularmetabolism“Thenotionofurbanmetabolismislooselybasedonananalogywiththemetabolismoforganisms,althoughinotherrespectsparallelscanalsobemadebetweencitiesandecosystems.Citiesaresimilartoorganismsinthattheyconsumeresourcesfromtheirsurroundingsandexcretewastes.Thus,thenotionthatcitiesarelikeecosystemsisalsoappropriate.Indeed,themodelofanaturalecosystemisinsomerespectstheobjectivefordevelopingsustainablecities.Naturalecosystemsaregenerallyenergyself-sufficient,oraresubsidizedbysustainableinputs,andoftenconservemass,throughrecyclingbydetritivores.Werecitiestohavesuchtraits,theywouldbefarmoresustainable”26.Notjustcities,butanyhumansettlement,howeversmall,inordertolive,growandprosper,needstobefedwithenergy,goods,foodandwater.Theseflowsareprocessedandconsumed,i.e.metabolisedinit,andtheproductsofthemetabolismareGHGemissions,heat,inorganicandorganicwastes,andwastewater(Figure1.7,top).Themetabolismoftoday’ssettlementsisgenerallylinear,i.e.theinputscrossingtheirbordersaredistributedinsidethesettlementandusedtokeepallthefunctionsworking;then,aftertheiruse,theyaredisposedofaswaste(inorganic,organicandemissions)outsidetheborders;inthismodel,thedevelopmentandthegrowthofsettlementsisaccompaniedbyacorrespondingincreaseoftheinputsand,consequently,ofwaste.Thislinearproductionpathofinputsandoutputsisnotsustainableassettlementscontinuetogrow.Thelinear“Take-Make–Dispose”lifestyleweareusedtoincreasinglydepletesfinitenaturalreservesproducingwastesinquantitiesthattheenvironmentisnotcapableofabsorbingwithoutdamage.Anewmodelofmetabolismisneededforsettlements,reducingresourceconsumptionandwasteproductionsimultaneously.Asustainablesettlementshouldreducetoaminimumthedependenceontheinputflowsbymaximisingdependenceonlocal,smallscale,reliableproductionofenergyandfood,andbymaximisingreuse/recyclingofwaterandgoods(Figure1.7,bottom).Thisentails:(i)decentralizedenergyproductionmainlyfromrenewableenergysourcescoupledwithenergyefficientbuildingsandappliances;(ii)improvedefficiencyofthetransportsystemforgoodsandpeople,substitutingprivate-car-basedmobilitywithamobilitybasedonpublictransport,carsharing,bicyclesandwalking(supportedbya“mixeduse”planningpolicy);(iii)localfoodconsumptionFig.1.7Fromlineartocircularmetabolism16Zerocarbonvillageasaprototypeoffuturesustainableruralsettlementsconnectedtoaproperreturnoforganicwasteinthesoil;(iv)optimisedwatercyclecoupledwithenergyproductionfromwastewater;(v)reductionoftheflowofgoodsandrelatedwastethroughtheirmaintenance,repairandreuse,accordingtotheconceptofacirculareconomy-withtheconsequentreductionofwaste.Theadoptionoftheconceptofcirculareconomyiscrucial.Thetransitiontoacirculareconomy,wherethevalueofproducts,materialsandresourcesismaintainedintheeconomyforaslongaspossible,andthegenerationofwasteminimized,shouldbethedrivingprincipleinthedesignofazerocarbonvillage,inordertobesustainable.AccordingtothedefinitionofacirculareconomygivenbytheEuropeanUnion,recyclingisonlyapart,importantbutonlyapart,ofitsimplementation(Figure1.8).Circulareconomyapproaches‘designout’wasteandtypicallyinvolveinnovationthroughoutthevaluechain,ratherthanrelyingsolelyonsolutionsattheendofthelifeofaproduct.Forexample,theymayinclude27:•reducingthequantityofmaterialsrequiredtodeliveraparticularservice(lightweighting);•lengtheningtheusefullifeofproducts(durability);•reducingtheuseofenergyandmaterialsinproductionandusephases(efficiency);•reducingtheuseofmaterialsthatarehazardousordifficulttorecyclebothinproductsandproductionprocesses(substitution);•creatingmarketsforsecondaryrawmaterials(recyclates)(basedonstandards,publicprocurement,etc.);•designingproductsthatareeasiertomaintain,repair,upgrade,remanufactureorrecycle(ecodesign);•developingthenecessaryservicesforconsumersinthisregard(maintenance/repairservices,etc.);•incentivizingseparationandsupportingwastereductionandhigh-qualityseparationbyconsumers;•incentivizingseparation,andcollectionsystemsthatminimizethecostsofrecycling,andreuse;•facilitatingtheclusteringofactivitiestopreventby-productsfrombecomingwastes(industrialsymbiosis);and•encouragingwiderandbetterconsumerchoicethroughrenting,lendingorsharingservicesasanalternativetoowningproducts,whilesafeguardingconsumerinterests(intermsofcosts,protection,information,contractterms,insuranceaspects,etc).Fromtheabovelistitisclearthatthedesignofazerocarbonvillageisstrictlyinterconnectedwithrulesanddecisionsthatmustbetakenatprovincialornationalscale,butalsothat–combiningappropriatetechnologicalsolutionswithappropriategovernance–muchcanbedoneatvillagescale,ifallthestakeholdersareinvolvedintheprocessfromthebeginningandawarenessraisingonenvironmentalissuesisputatthecentreofthepoliticalaction.Fig.1.8Theconceptofcirculareconomy17Net-ZeroCarbonVillagePlanningGuidelinesfortheYangtzeRiverDeltaRegioninChina“Youpick”farmonChongmingIsland18Tenkeyprinciplesforzero-carbonruralvillagedesign2Tenkeyprinciplesforzerocarbonruralvillagedesign19Net-ZeroCarbonVillagePlanningGuidelinesfortheYangtzeRiverDeltaRegioninChinaEconomicdevelopmentthroughindustrializationcausestheabandonmentofthecountrysideandaflowofworkersmovingfromruralvillagesandsmalltownstobigcities,becauseofthecombinedeffectsofthemechanisationofagriculture,whichreducestheneedformanpower,andthejobopportunitiesofferedbythecities.Nowallindustrializedcountriesaretryingtoreversetheflow,andeventheindustrializingcountriesaretryingtomitigatethisprocess.Thus,theissueofrevitalizingruralvillageshasbecomeapoliticalpriorityallovertheworld,fromtheUnitedStatestoJapan,fromEuropetoChina32.Theproblemisthatruralareas,tobecomeattractive,mustchangetheirpresentcharacteristics.Anopportunityispresentedbyboththeinescapableneedtoshiftfromthecurrentmodelofindustrializedagriculturetoanew,sustainableone,andfromthegrowingawarenessoftheneedtoreconcilehumansandnaturethroughaharmoniousinteraction.Theshiftfromindustrializedtosustainableagriculturewhilemaintainingthesameproductivity,impliestheinjectionofinnovationintotradition.Aseamlesscombinationofmodernscienceandtechnologywithinheritedculturalvaluesandwisdomshouldbepursued.Youngmotivatedandskilledpeoplecouldbeattractedbysuchatask,anewgenerationofnew-styleprofessionalpeasantswholovenatureandagriculture,understandscienceandtechnologyandatthesametimeareopentoapeerdialoguewitholderfarmers.Thesearchforreconciliationbetweenhumansandnatureimpliestheexistenceofaplacewhereasustainablelifestylecanbepursued.Abeautifulplacewheretheprinciplesofsustainabilityareappliedtothebuiltenvironment.Abeautifulandvibrantplace,aruralvillageorsmalltown,providingmultiplebenefitssuchasecologicalconservation,leisureandsightseeing,culturalexperience,andhealthyfood.Theseconditionswouldattractpeopletomoveandworkthereandwouldalsobeattractivetotouristsandretiredpeople,whocouldmovetothevillagetolive.Apositivedemographicdriftwouldarisefromtheactivitiesthatwouldderivefromthepracticeofsustainable,advancedagriculture,fromsmallscalefoodprocessing,andfromtourism,whichwouldmitigateorevenreversetheflowofmigrationtowardscitiesduetothelackoflocaljobs.Therefore,ruralrevitalizationandecologicalliveabilitywouldbethekeyandtwinfeaturesofazerocarbonvillage.Atpresent,ruralvillagesarequitesmall,becauseoftheexodusoftheyoungergenerationandbecausetheyweresmalltostartwith.Theirrevitalizationwouldmakethevillagesgrow,andnewbuildings,roads,infrastructurewouldbeneeded,besidestherefurbishmentoftheexistingones.Itiscrucialtoplanthisgrowthinsuchawayastoavoidanydrawbacksforthemodelofazerocarbonvillage,thatshouldbearesilientexample,achampion,ofanecologicallyliveableandbeautifulsettlementthatisalsocapableofattractingeconomicactivities,developinginnovationandcreatingemploymentforalltheskilllevels,inafullybalancedprocess.Therefore,theurbandesignprocessisacrucialpartofthefoundationofarenewedruraldevelopmentstrategy.Currentmodelsofhumansettlementsdonotaddresstheenvironmentalchallengesandarenotsensitivetotherapidtechnologicaladvancementsfromwhichourbuiltenvironmentcouldbenefit.Anecologicallysoundnewdevelopmentshouldbedesignedforminimizingenergyandresourceconsumption,beingasfaraspossibleself-sufficientinenergy,relyingonrenewablesourcesandimplementingtheprinciplesofacirculareconomy.Aparadigmshiftisrequired,i.e.adifferent,holisticdesignapproach,whichaffectsasettlement’sform,textureandlanduse,andthewaythebasicservices,suchasenergy,water,foodandwastetreatment,aredesignedandprovided.20Tenkeyprinciplesforzero-carbonruralvillagedesignImplementationofzerocarbonvillagesintheYangtzeRiverDeltaTheimplementationofthegeneralmodelofazerocarbonvillagedescribedaboveneedstobeadaptedtospecificgeographic,socialandculturalconditionswhichmayleadtodifferentplanningactions.Inthefollowing,theimplementationofthegeneralmodelistranslatedintospecificplanningguidelinesfortheYangtzeRiverDeltacontext.TheYRDwaschosenbecauseofitssignificancefortheissueoftherural-urbanrelationship:anareaofstrongeconomicdevelopmentrichinlargecitiesthathavebeenattractingpeoplefromruralvillages,emptyingthemoftheyoungerpopulation.SomeadditionalinformationontheYangtzeRiverDeltaareaisgivenintheboxbelow.THEYANGTZERIVERDELTAREGIONALCONTEXTGeneralgeographicalcontextLocatedontheeasterncoastofmainlandChina,theYangtzeRiverDeltaisanalluvialplainformedbyYangtzeRiverbeforeitflowsintotheEastChinasea.Itisquiteawidearea,rangingroughlyfrom28to32degreeslatitudenorth.TheareaincludesShanghai,JiangsuProvinceandZhejiangProvince,witharegionalareaof217,700squarekilometres,accountingfor2.19%ofthecountry’slandarea.Thelandareais186,802.8squarekilometresandthewatersurfaceareais23,937.2squarekilometres33.TheYangtzeRiverDeltahasadevelopedwatersystem,abundantfreshwaterresources,mostlyflatterrain,fertilesoil,richportresourcesalongtheshorelineandalongthebeach,andnaturalconditionssuitableforurbanandeconomicdevelopment.Inaddition,duetoitslocationinthecentralareaoftheAsia-PacificEconomicZoneandthePacificWestCoast,theYangtzeRiverDeltaregionisalsoanimportantgatewayfortheAsia-Pacificregion.ClimateTheYangtzeDeltahasamarinemonsoonsubtropicalclimate;ithasfourdistinctseasonswithhotandhumidsummers,coolanddrywinters,andwarmspringsandfalls.Wintertemperaturescandropaslowas-10°C(therecordedminimum),however,andeveninspringtime,largetemperaturefluctuationscanoccur34.DemographyAccordingtothesixthnationalcensusofpopulationcarriedoutin2010,theresidentpopulationinJiangsuprovince,Zhejiangprovince,andShanghaihasreached156.1million35.AftertwobabyboomsfollowingthefoundingofthePeople’sRepublicofChina,thepopulationreproductionratesofthetwoprovincesandonecityintheYangtzeRiverDeltahavegraduallyshiftedfrom‘highbirthrate,lowdeathrate,andhighgrowthspeed’to‘lowbirthrate,lowdeathrate,andlowgrowthspeed’.ThenaturalpopulationgrowthrateofJiangsuandZhejiangprovinceshasbeenmaintainedatalowlevelinrecentyears,whilethenaturalpopulationchangeinShanghaicontinuestomaintainnegativegrowth.ThemostobvioustrendinthecompositionofthepopulationintheYangtzeRiverDeltaregionistheagingofthepopulation.Duetothestrictimplementationofthefamilyplanningpolicy,aswellastheimprovementoflivingstandardsandmedicalconditions,theproportionofchildreninthepopulationisdeclining,whiletheratioofagingpeopleisgrowingfast.ThistrendleadstotheformationofanagingsocietyandhasacceleratedintheYangtzeRiverDelta.UrbanizationandinfrastructuresAtpresent,theurbanizationrateofthecentralareaofYangtzeRiverDeltaisover60%36.Thisrateprovidesasolidfoundationfortheregiontobecomeaworld-classurbanagglomeration.ShanghaihasmadeacleargoalofbuildingaglobalcityandhasaprominentcorepositionintheYangtzeRiverDeltaregion.MajorcitiessuchasNanjing,Suzhou,Wuxi,Hangzhou,andNingbooccupyanimportantpositionintheregionandindeedthewholecountry.ThesecitiesandtownshavemadetheYangtzeRiverDeltaregionanareawithdensecitieswithdistinctivecharacteristicsandstrongdevelopmentvitality.Accordingtothenational‘YangtzeRiverDeltaRegionalPlan(2009-2020)’,by2020,theurbanizationleveloftheYangtzeRiverDeltaregionwillreach72%(about75%inthecorearea),andthepercapitaGDPwillreach110,000yuan(130,000Yuaninthecorearea),andthe21Net-ZeroCarbonVillagePlanningGuidelinesfortheYangtzeRiverDeltaRegioninChinaproportionofserviceindustrywillreach53%(55%inthecorearea).‘TheYangtzeRiverRegionalPlan’alsorequiresextendingurbaninfrastructuretoruralareasandtheintegrationofurbanandruralinfrastructure;coordinatingtheconstructionofmajorinfrastructuresuchasurbanandruralwatersupplyanddrainage,gassupply,powersupply,communication,garbageandsewagetreatment,regionalfloodcontrolanddrainage,andpollutioncontrolprojects;andpromotingtheconstructionofnewenergyinfrastructuresuchaswindpower,tides,andoceancurrents.Accordingtothenationalplan,theproportionofnewenergyinthetotalenergystructureneedstoexceed4%.AgricultureTheYangtzeRiverDeltacontainsthemostfertilesoilsinallofChina.Riceisthedominantcropofthedelta.Inaddition,theYangtzeRiverDeltaregionisalsorichincotton,wheat,rapeseed,peanuts,silk,fishandshrimp.Fromtheperspectiveofindustrialstructure,thevalueoftheagriculturaloutputoftheYangtzeRiverDeltaregionaccountsforabout10%ofthenationaltotal.IntheYangtzeRiverDeltaregion,theproportionofagriculturalindustryaccountsforabout5%ofthetotalproportionoftheprimary,secondaryandtertiaryindustries37EnvironmentalchallengesThedevelopment,orientationanddivisionoflabouramongdifferentcitiesintheYangtzeRiverDeltaregionarenotequitable.Theoveralladvantagesoftheregionhavenotbeenfullyutilized.Meanwhile,someimportantinfrastructuressuchastransportation,energy,andcommunicationshavenotyetformedaneffectivesupportingandconnectingsystem.Theinstitutionalenvironmentandmarketsystemforpromotingtherationalflowofcapital,labourandknowledgestillneedsfurtherimprovement.Whatismore,thelevelofindustrialdevelopmentisnothighenough.Thedevelopmentofamodernserviceindustryisrelativelyslow,whiletheindustrializationlevelandservicefunctionsalsoneedtobefurtherimproved.Thedependenceonforeigntradeistoohigh.Thetradestructureneedstobeoptimised.Thecapacityforindependentinnovationisnotstrongenough,andinternationalcompetitivenessstillneedstobeimproved.Landandenergyarerelativelyscarce.ConstraintstodevelopmentfromresourcesandtheenvironmentareincreasinglyobviousintheYangtzeRiverDelta.Besides,socialwelfareisnotbeingdevelopedinabalancedway,and,whenitcomestopublicservices,thereisstillalargegapbetweenurbanandruralareasintheregion.Reformsinadministrativemanagementandsocialmanagementsystemsarestillnotwellestablished.Therefore,reformandfurtherdevelopmentarestillarduoustasksforthedeltaregion.Asanimportanteconomicarea,theYangtzeRiverDeltaisthemostprosperousregioninChinaandisresponsibleforalargeproportionofenergyconsumptionandcarbonemissions38SocialandculturaltrendsTheYangtzeRiverDeltaregionischaracterizedbyapositivesocialenvironment,whichisbuiltuponarational,open,innovativeandinclusiveculture.TheJiangsueconomyhasbeendevelopingforalongtimeundertheinfluenceofaspiritofoptimism,whichhasbeendrivingtheso-called“SouthernJiangsumodel”,whichresultedinamiracleofeconomicgrowth.Inthiseraofrapidtransformations,thepeopleintheYangtzeRiverDeltaregionareagaincombining“entrepreneurship,innovation,andexcellence”toovercomethedeficienciesintraditionaleconomicmodelsandtoadapttheirsocietytothemodernmarketeconomy,whichhasbeenestablishedasthereferencesystemforeconomicdevelopment.Thisnewcourseisenhancingsomeofthecharacteristicsofthepeopleintheregion:freedom,equality,openness,entrepreneurship,honestyandcreditability,pioneeringandinnovationhavebecomeevenmoredistinctivefeatures.Thankstothisdynamism,theregionispresentlyleadingthecountryintermsofpercapitaresidentincomegrowthrate39.Ofcourse,theimpressiverateofeconomicdevelopment,aswellasthefundamentalsocialchanges,areincreasingtheanthropicpressureonnaturalandagriculturalecosystems,stressingthecapacityforregenerationofthenaturalresourcesandservices.Atthesametime,theattractivenessofurbanizedareas,becauseoftheavailabilityofjobsandservices,isthreateningthedemographicbalanceoftheruralregions,aswellasthepreservationofthedistinctivecharacteristicsoftheruralculture,whosepreservationhasbeenincludedintheStrategicplanfortheruralrevitalization(2018-2022)40,issuedbytheCentralCommitteeof22Tenkeyprinciplesforzero-carbonruralvillagedesignSUSTAINABLEVILLAGEDESIGN:CONCEPTUALPILLARSWhendesigningasustainablevillagedevelopment,thedesignershouldbearinmindthat:1.aprerequisiteforreachingthegoaloflimitingglobaltemperatureincreaseto1.5°Cbytheyear2050isthatnewdevelopmentsshouldaimforzeroemissions;2.keydriversofGHGemissionsaredensity,urbanlayoutandtexture,landusemix,energy,waterandwastemanagementsystems,foodproduction;3.formandinfrastructuresignificantlyaffectnotonlydirect(operational),butalsoindirect(embodied)GHGemissions;4.thecirculareconomyprinciplesshouldbeimplemented5.asystemsperspectivemustbeadopted,asallthesefactorsareinterrelatedandinterdependent.theChineseCommunistParty.Thepresentworkcanbecountedamongthepolicyactionsaimedatrevampingtheattractivenessoftheruralvillages,targetingamorebalancedequilibriumbetweenurbanandruralsocieties.The10principlesTocreatezerocarbonvillagesintheYangtzeRiverDelta,firstofallasharperfocusontherelationshipbetweenthephysicalaspectsofnewdevelopments(structure,texture,volumes,layout),andclimateandtheenergydemandisrequired.Secondly,theinfrastructuresnecessarytoensuretheclosureoftheenergy,water,wasteandfoodcycles,aimingforahighlevelofself-sufficiency,mustbeidentifiedandintegrated–creatingarelationshipbetweenthephysicalstructureandformofthebuiltenvironmentandthevitalfluxesfeedingitandmetabolisedfromit.Finally,thesocialandeconomicdimensionsshouldbetakenintoaccountandharmonizedwiththeurbandesignmethodologiesandgoals,validatingtheresilienceofthemodelagainstthepossibletransformationsthatwillbeinducedbythedesiredgrowthanddevelopment.Fig.2.1Integrateddesigncomponentsofasustainablesettlement23Net-ZeroCarbonVillagePlanningGuidelinesfortheYangtzeRiverDeltaRegioninChinaPRINCIPLE1–CLIMATEDATAANDGREENHOUSEGASINVENTORYThefirst,essential,stepinthedesignprocesstowardsthecreationofazerocarbonvillageisknowledgeofthestartingpoint.Themostimportantinformation,tothisend,isrelatedtotheclimateandtothepresentenvironmentalimpactofthevillage’sactivities,i.e.climatedataandgreenhousegasemissions.ClimatecharacterizationTheclimateofasitegreatlyaffectsboththeenergyconsumptionofbuildingsforheatingandcoolingandthepotentialforharnessingrenewableenergy.Moreover,thelocalclimateaffectsthetypeofmeasurestobeundertakenbythesettlements’designersformitigatingoutdoorcomfortconditionsandalsoaffectspeople’swillingnesstowalkorcyclethat,inturn,affectstheemissionsduetomotorisedtransport.TheareaoftheYangtzeRiverDeltaischaracterizedbywhatclimatologistsdefineasa“marinemonsoonsubtropicalclimate”.Withinthisdefinition,however,differentclimatesarepresent,accordingtothedistancefromthecoast,theheightabovethesealevelandotherlocaltopographicpeculiarities.Thisimpliesthatamoredetailedanalysisoftheclimaticdataofeachexaminedvillagemustbecarriedout.Animportantparameteraffectinglocalclimateisthelatitude,onwhichdependsthehourly,dailyandseasonalpatternsofsolarenergyavailability,andthustherangeofclimates-fromtropicalaroundtheequatortopolaratthehigherlatitudes.However,itshouldbeborneinmindthatthesamelatitudedoesnotmeanthesameclimate,asotherfactorssuchasseasonalwindsliketradewindsandmonsoons,oroceanandcontinentalmasseshaveagreateffectonthelocalclimate.Evenifdifferentclimatescanbefoundatthesamelatitude,thesun’spositionintheskyisacommonfeature,andthesun’spositiondictatestheshadepatterninthebuiltenvironment.Thesun’spositioninthesky,ateachhourofeachmonthisusuallyrepresented,foreachlatitude,bysuncharts,suchastheoneinFigure2.2,topleft,plottedfor30Nlatitude,themeanvaluefortheYDRarea.Themainclimaticparameters,inagivenplace,influencingtheenergyperformanceofabuildingandthequalityoftheoutdoorenvironmentare:•solarradiation;•airtemperature;•relativehumidity;•wind.Theissueofsustainablesettlementdesignisnotnew,andalargeamountofauthoritativeliteraturehasbeenproducedaboutit,mostlyfocussingonsocio-economicandtransportissues,thelatterbecauseoftheirimpactonenergyconsumptionandairpollution,butusuallyoverlookingtheinteractionswithenergy,water,foodandmaterialflows,whichareasubstantialpartofthesettlement’smetabolism.Tocompletethepicture,featuresrelatedtoenergyandmaterials,towaterandwastemustalsobeadded(Figure2.1),toencompassthewholemetabolismofthesettlement.Theinteractionsbetweenstructure(layout,form,landuse,materials,greenery),energy,waterandwastecanbeusedtominimizetheflowofresourcesneededfortheoperationofasettlementand–atthesametime–canmakeitmoreresilient,thusmorecapableofcopingwiththechallengesofclimatechange.Theconceptualframeworkdepictedabovecanbesummarisedin10principles,whichshouldbefollowedfordesigningzerocarbonvillages:1.Climatedataandgreenhousegasinventory2.Well-connectedmixed-usenodes3.Heatingandcooling4.GHGemissions5.Renewableenergysources6.Watercycle7.Solidwaste8.Energy,water,foodandwastecycles9.Employmentopportunitiesandleisure10.Ecologicalawareness24Tenkeyprinciplesforzero-carbonruralvillagedesignFig.2.2ClimaticdataforZhoushancity.Topleft:sunchart:topright:monthlysolarradiation;middleleft:monthlytemperature(average,meanmaxandmin)andprecipitation;middleright:monthlymaximumtemperaturefrequency;bottomleft:monthlyrelativehumidity;bottomright:windrose74.Theaveragedailyshortwavesolarenergyreachingthegroundpersquaremeter(orangeline),with25thto75thand10thto90thpercentilebandsThepercentageoftimespentatvarioushumiditycomfortleels,categorizedbydewpoint25Net-ZeroCarbonVillagePlanningGuidelinesfortheYangtzeRiverDeltaRegioninChinaThefiguresfortheseareusuallyavailableinthevisualformshowninFigure2.2,orastables,orboth.Solarradiation,airtemperatureandwindvelocityaffectthethermalbalanceofabuildinginwinter,thusaffectingitsenergydemand.Insummer,relativehumidityalsoplaysacriticalrole,becauseenergyisrequiredforreducingittoacomfortablelevel41,butatthesametimeairmovementcanbecomebeneficialbecauseitimprovescomfortconditions.Solarradiationandwindare,inturn,valuablesourcesofrenewableenergythatcanbeusedtofulfilthebuilding’senergyneeds.Adesigner’staskistodesignbuildingsandoutdoorspacesinsuchawayastominimizeenergydemandand–atthesametime–maximisethermalandvisualcomfort.Toreachthisgoalclimaticdataneedtobecarefullyanalysedandpossiblyusedasinputinappropriatesimulationmodels.Eveninapparentlysimilarclimaticconditions,atechnicalortechnologicalsolutionoptimisedforoneplacemaynotbetheoptimumforanother.GreenhousegasinventoryThefirststepforasettlementaimingtoachievezerocarbonstatusistohaveapictureoftheinitialconditions,whichimpliestheimplementationofagreenhousegasinventory.ThisisalsotheveryfirstactionrequiredbytheEUCovenantofMayorsinitiative42,theworld’slargestmovementforlocalclimateandenergyactionsnowgathering7,000+localandregionalauthoritiesacross57countries.AccordingtotheguidelinesprovidedbytheCovenantofMayorsinitiative43andbytheGreenhouseGasProtocol44,aftertheboundarieswithinwhichcarryingouttheinventory45havebeendefined,apreliminarydecisiontobetakeniswhether“carbon”refersjusttoCO2emissionsortoCO2equivalent(CO2-eq)emissions.Inthefirstcase,onlyapartoftheGHGemissionsareaccountedfor;inthesecondtheyareallconsidered;i.e.besidescarbondioxide46,alsonitrousoxide,methaneandF-gases.AseconddecisiontobetakenbeforestartingtheGHGemissionsinventoryistochoose“whattocount”,i.e.whichemissionstoincludeintheinventory.BoththeCovenantofMayorsinitiativeandtheGreenhouseGasProtocolconsiderthreelevelsofinventory:Level1:averybasiconeincludingonlytheCO2emissionsduetoheating,hotwaterproduction,cooking,transportandanyotherCO2emissionsproducedinbuildings,industriesorservices(privateandmunicipal)duetothecombustionoffossilfuel,includingthoseCO2emissionsduetotheproductionoftheelectricityandtheheatusedwithintheboundariesofthesettlement,eveniftheproductiontakesplaceelsewhere;Level2:amorecompleteone,whichincludesalltheGHGgases,i.e.methane,nitrousoxides,F-gas,plustheeffectsoflandusechange(e.g.,forestedlandbeingclearedforcroplandorsettlements,orafforestation).GHGemissionsotherthanCO2are,forexample:landfillandlivestockmethaneemissions(thelatterderivingfromentericfermentationandmanuremanagement),nitrouscombustionproducts,fertilisersnitrousemissions,ricepaddymethaneemissions,etc.;Level3:averycomprehensiveone,whichincludes:a)theindirectemissionsduetoactivities,takingplaceoutthesettlement’sboundaries,butcarriedoutbysettlement’sresidents,suchasair,trainorcartravel,b)treatmentofwastetransportedoutsidetheboundariesofthesettlement,c)watertreatment(potabilizationandwastewaterprocessing)takingplaceoutsidethesettlement,d)embodiedemissionsofthematerialsandgoodsenteringthesettlements,i.e.theemissionsderivingfromtheproductionandtransportofsuchmaterialsandgoods(thisisthemostdifficult,oftenimpossibletasktofulfilformanygoods).Tothisend,theGreenhouseGasProtocolclassifiestheemissionsintothreecategories,namely(seealsoFigure2.3):Scope1-theGHGemissionsfromsourceslocatedwithinthesettlement’sboundariesScope2-theGHGemissionsoccurringoutsidethesettlement’sboundariesasaconsequenceoftheuseofgrid-suppliedelectricity,heat,steamand/orcoolingwithinthesettlement’sboundariesScope3-allotherGHGemissionsoccurringoutsidethesettlement’sboundariesasaresultofactivitiestakingplaceswithinthesettlement’sboundaries.Ingreaterdetail,scope1includes:•emissionsfromthecombustionoffuelinresidential,commercialandinstitutionalbuildingsandfacilitiesandmanufacturingindustriesandconstruction,aswellasinpowerplantstogenerategrid-suppliedenergyand,ingeneral,generatorsusedasback-uportosubstitutegridprovidedelectricity•Emissionsfromtransportation,thatcovers–forbothpeopleandgoods–alljourneysbymotorisedvehicleswithintheboundariesofthesettlement•Emissionsfromwastedisposalandtreatmentthroughaerobicoranaerobicdecomposition,orincineration.Ifmethaneisrecoveredfromsolidwasteorwastewatertreatmentfacilitiesasanenergysource,theseshouldbecalculated26Tenkeyprinciplesforzero-carbonruralvillagedesignFig.2.3ClassificationofGHGemissionsaccordingtotheGreenhouseGasProtocol75asnegativeemissions;similarly,emissionsfromincinerationwithenergyrecovery.•Emissionsfromagriculturalactivities,i.e.nitrousoxidesfromfertilisers,methaneformlivestockandfromricepaddies•EmissionsduetolandusechangeScope2emissionsdependontheamountofgridelectricitythatisconsumedwithinthesettlement’sboundaries,plusthedistributionlosses,andonthestructureofthenationalsupplysystem,i.e.itsfuelmix.ThelargerthecontributionofhighCO2emitterssuchasthecoal-firedpowerstation,thehighertheamountofscope2emissions.Asalreadynoted,tocalculatealltheemissionsincludedinscope3isverydifficultandinsomecasesatpresentimpossible.However,itwouldbefairtoincludeatleastsomeofthem,suchastheonesduetothejourneysbyroad,railorairattributabletosettlement’sresidentsandtheemissionsembodiedinconstructionmaterials,primarilycement,becauseofitshighcontributiontotheoverallGHGemissions.Renewableenergyproductionandincreaseofforestorwetlandareasshouldbecountedasnegativeemissions.TheGHGinventorylevel1isthemostpopular,but–especiallybecausewearedealingwithruralvillages–thesecondlevelofinventoryshouldbecarriedout,asthefirstlevelwouldgivealargelyincompletepictureofthestartingpoint,makingitverydifficulttoidentifyallthemeasurestobetakentoleadthesettlementtowardsarealzerocarbonstatus(agriculturalactivitiesareimportantandcontributemainlywithGHGemissionsotherthanCO2).BoththeCovenantofMayorsInitiativeandtheGreenhouseGasProtocolprovideadetailedmethodologyandtoolsforcarryingoutthegreenhousegasinventory,thelatteralsobeingspecificallydevelopedforChinesesettlements.Themethodologyincludessettingupmilestonesandamonitoringsystemtocheckthecomplianceoftheactualstatuswiththeplannedone.Designsuggestions◊Build-upabaselineemissionsinventorytouseasastartingpointintheprocesstowardsachievingzerocarbonstatus.Inordertocarryoutthistask:•Definecarefullythephysicalboundariesofthesettlement,i.e.oftheareacoveredbytheinventory,astheinclusionorexclusionofagriculturalorindustrialactivities,andofforestareascansignificantlymodifytheamountofGHGgasesemissionsattributedtothevillage27Net-ZeroCarbonVillagePlanningGuidelinesfortheYangtzeRiverDeltaRegioninChina•DecidewhethertheinventoryislimitedtoCO2orifitincludesallthemainGHGgases(nitrousoxide,methaneandF-gases.).Thissecondoptionisstronglyrecommended,especiallyinaruralvillagewherenitrousoxideandmethaneemissionsmaybesignificantlyhigh;•Decidewhethertheinventoryshouldbelevel1orlevel2.Thelatterisstronglyrecommended,possiblyincludingsomepartsoflevel3,suchaswasteandwatertreatmentiftheytakeplaceoutsidethesettlementbordersand–ifthesettlement’sdevelopmentplanincludesasignificantnumberofnewbuildings–theembodiedemissionsofconstructionmaterials.◊Setupapathfromthebaselinetothezerocarbonstatus,withmilestonestobereachedperiodically◊Createastructurewiththetaskofmonitoringtheemissionsinventoryonaregularbasis(CovenantofMayorssuggesteveryfouryears),checkingcompliancewithmilestonesandhighlightingpossiblecriticalissues.PRINCIPLE2:WELL-CONNECTEDMIXED-USENODESIngeneral,twomain,interconnected,designprinciplesarecrucialifwearetorespondtothemultipledimensionsofsustainability:i)diversityofbothlanduseandtypesofenvironmentandii)adequatelyconnectedandeasilyaccessibleplaces.Bothofthesearerelatedtothesettlement’sdensity.Provisionatvillagescaleforfacilitatingcyclingandcollectiveandindividualhighefficiencytransportarealsokeytoreducingenergydemandandconsumption.DensityDensityisacriticalbutcontroversialsettlementplanningparameter,astheissueofitsimpactonGHGemissionsisacomplexone.Ithasbeenwidelyexploredandisconsideredtobemostimportantatcityscale,butatruralvillagescaleitaffectsonlysomeaspectsofdevelopment,namely:•extentofinfrastructures—suchaswater,sewer,andelectricityfacilities—toservetheinhabitants,affectingeconomicsandenergyconsumption:thedenserthesettlementthelessextensivethenetworksandthegrid.•landuse,asmixedlanduse(work,homeandservicesclosetoeachother)reducesbothtransport-relatedenergyconsumption,andsoilconsumption,whichalsoaffectsCO2emissions(greenareaswipedout).Giventhenumberofparametersinvolvedandthecomplexityofthesystem,however,theoptimumdensityofavillageshouldalsobebasedontraditionalandculturallyrelevantdwellingpatterns.Moreover,inchoosingadensitythatisconsistentwiththegoalofachievinganet-zerocarbonvillage,humancomfortandculturalheritagealsoneedtobeprioritized.Designsuggestions◊Aimtoaccommodateatabout50-70people/hainthemedium-longterm.ConnectivityTraditionally,villagesintheYangtzeRiverDeltafollowedsimilarspatialconfigurationswithminordifferencestypicallyattributedtogeographic,ecological,political,andculturalnuances.Suchspatialconfigurations,includinglanduseandbuildingtypologieshavedevelopedoverhundreds,andinsomecasesthousandsofyears,contributingtoaculturalheritagethatshouldberespected.Forexample,whereasstrip-styledevelopmentmaybeamorerecentphenomenonthatdiscouragesnon-motorizedtransportandconsumeslargetractsoflandfordevelopment,examinationofvillagelayoutsdatingbackcenturiesrevealsamoresustainablesystem.28Tenkeyprinciplesforzero-carbonruralvillagedesignFig.2.4Conceptualdescriptionoftheconnectivityindex.Fromlefttoright:increasingconnectivityindex.Awell-connectedroadorpathnetworkhasmanyshortlinks,numerousintersections,andminimaldead-ends.Asconnectivityincreases,traveldistancesdecreaseandrouteoptionsincreaseTraditionallayoutsandamenitiesprovidedbytraditionalvillagespromotedamoresustainablemodelwherebyvillagerswereabletomeetmostoftheirdailyneedslocally,withservicesbeingwellconnectedbetweeneachotherandwiththedwellings,insuchawayastobereachablewithinashortwalk.MixedlanduseAmixofusesandservices,besidesbeingconsistentwithtradition,isthekeyforasuccessfulstrategyaimingtocreateazerocarbonsettlement,anditiscloselyconnectedtomobilitypatterns.Ifthemostfrequentlyaccessedservicesareappropriatelydistributedaroundthehouseholdsandareeasilyaccessiblebecauseofanappropriatestreetnetwork,theuseofmotorisedtransportissignificantlyreducedbecauseitwillbesubstitutedbywalkingandcycling,healthisimprovedandmeetingpeoplebecomeseasier,withgreatadvantagesforenhancinghumaninteractions,whichimprovesthequalityofthevillagelife.Walkability:thefive-minute-walkshedDensity,connectivityandmixeduse,appropriatelybalanced,makeazerocarbonvillagewalkable,i.e.aplacewheremotorisedtransportisminimized,asservicesandamenitiesareatawalkabledistance,astheywereintraditionalvillages:dailyneedsshouldbemetwithina5-10minutewalk,yetshouldstillrespectruralvalues-particularlyvillagers’connectiontotheland.Thus,walkabilityisthefirstandthemostimportantprincipletoconsiderwhendesigningazerocarbonvillage.Allthedailyservices,includingretailandaccesstotransit,havetobeprovidedwithinfivetotenminutes’walk(400-800m)fromhome(Figure2.4–Mixeduseinawalkablesettlement),inordertomakecartravelunnecessaryinnormalconditions;forspecialservicesorcity-scalefunctions(hospital,theatres)thatarerarelyused,travelbudgettimecanbehigher.Walkabilityisameasureoftheconditionsofanareathatpromotewalking,andtheped-shed(shortforfive-minute-walkshedorpedestrianshed),evenifitisthemostimportant,cannotgiveacompletepictureofasettlement’swalkability,asthefollowingfactorsshouldbealsoconsidered,namely:•Residentialdensity;anindicatorofthedensityoftheneighbourhood.•Commercialdensity;anindicatoroftheamountofbusinesses,restaurants,retailshopsandothercommercialusesthatarelocatedinthearea.•Intersectiondensity;theconnectivityofthestreetnetwork,anindicatorofthedensityofconnectionsinpathorroadnetworksandthedirectnessoflinks(Figure2.5).•Landusemix,orentropyscore;thedegreetowhichadiversityoflandusetypesispresentinablockgroup.29Net-ZeroCarbonVillagePlanningGuidelinesfortheYangtzeRiverDeltaRegioninChinaFoodorRetailSupermarketOtherfoodstorewithproduceCommunity-servingretailClothingstoreordepartmentstoresellingclothesConveniencestoreFarmer’smarketHardwarestorePharmacyOtherrentalServicesBankGym,healthclub,exercisestudioHairCareLaundry,drycleanerRestaurant,cafe,dinerCivicandcommunityfacilitiesAdultorseniorcare(licensed)ChildcareCommunityorrecreationcentreCulturalartsfacility(museum,performingarts)EducationalfacilityFamilyentertainmentvenue(theatre,sports)Governmentofficethatservespublicon-siteplaceofworshipMedicalclinicorofficethattreatspatientsPoliceorfirestationPostofficePublicLibraryPublicParkSocialservicecentreCaraccessibilityInthenearfuture,newdistrictswillexperiencearadicalchangeinmobilitypatterns.Theuseoftheprivatecarwillbedrasticallyreduced(oravoidedincaseswherecarownershipisstillnotdominant)thankstothreemainreasons,namely:theemergenceofsharingprinciplesappliedtomotorised(carsharing)andnon-motorisedvehicles(bikesharing);theincreasedavailabilityofpublictransportandsustainablemobilitysystems;andthedemandforimprovedoverallurbanenvironmentalquality.Attractivezerocarbonvillagestreetsarenotflankedbyparkedcarsandgaragedoors.Thenewtrendsinmobility,characterizedbyanexpandeduseofelectricvehicles,thesharingofdifferentmeansoftransport,andtheintegrationofadvancedICTsolutions,areleadingtoasignificantreductioninthenumberofvehiclescirculatingand,thus,asignificantreductionintheparkingareas.Besides,carsharing(or,infuture,driverlesscars)willcallforanumberofsmallerparkingareas.Designsuggestions◊Avoidputtingcarparkinginthegroundfloorsofbuildings.◊Takeintoaccountthepossibilityofcreatingcar-freeresidentialareasatthebordersofwhichareanumberofparkinglots.◊Lookahead,makingprovisionsforthenewtrendsinmobility,basedonelectriccarsharing(conventionalorself-driving),whichimpliesanumberofsmallparkinglotsdistributedwithinthevillage,atwalkingdistancefromresidencesandservices,andprovidedwithchargingstations.◊ProvideshadedandrainshelteredpedestrianandcyclingpathstopromotelowenergymobilityDesignsuggestions◊Ensurethatatleast50%ofavillage’sdwellingunitsarewithina400-800mwalkfromatleastoneusefromeachofthefourcategoriesofdiverselanduseslistedinthetablebelow47.◊Providespaceforlocalfoodmarkets◊Placethecommunitycorewithservicesatthecentreofthesettlement,closetopublictransportnodes.◊Providecomfortablestreetlandscapes◊Increasesustainablemobilityopportunitiesbycreatingspaceforbikelanesorbike-friendlystreetsandsafeandenclosedstorageplacesforeachbuilding.◊Countthetotallinearextensionofbikelanesandbike-friendlystreetsandcompareittothetotalmotorisedlinearextension.Theyshouldbeatleastequal.Fig.2.5Fromlefttoright:increasingconnectivityindex.Awell-connectedroadorpathnetworkhasmanyshortlinks,numerousintersections,andminimaldead-ends.Asconnectivityincreases,traveldistancesdecreaseandrouteoptions15230Tenkeyprinciplesforzero-carbonruralvillagedesign1.51.561.21.51.21.511523321.2Fig.2.6AccessStreetFig.2.7LocalStreetFig.2.8FootpathStreettypesThreemainroadtypologiesshouldbeconsideredintraditionalvillagesintheYRDregion:transit,accessandlocalstreets.Itshouldbeclear,however,that,incontrasttowhatpresentlyhappens,streetdesignshouldnotbedictatedonlybytherequirementsofcars,andthusbethesamedesigneverywhere,butshouldalsoconsiderotherfunctionsandtheclimatic,socio-culturalandeconomiccontext.Hence,thehierarchylevelofeachstreettypeshouldexpressthecharacterofthehostedfunctions.Consideringthelocalcharacterofavillage,wemainly31Net-ZeroCarbonVillagePlanningGuidelinesfortheYangtzeRiverDeltaRegioninChinarefertoaccessstreetswithahighaccessratio(Figure2.6),localroads(Figure2.7)andfootpaths(Figure2.8).Designsuggestions◊Whendefiningthewidthofvillagestreets,considerthatstreetsshouldaccommodatepedestriansandcyclists,andthattheyshouldhavepriorityoveralltheotherformsofmobility.◊Considerthatinawalkablesettlementsidewalksizeisofforemostimportance,anddependsontheactivitiesplannedonthesidewalk,inadditiontothepedestrianflow.CarbonsinksGreenareas,wherenature’spowerandbeautycanexpressitselfandbiodiversityisenhanced,areofparamountimportanceforseveralreasons:ecological,climatic,aestheticandrecreational.Theseareasmayfulfilalltheserequisitesoronlysomeofthemaccordingtotheirscale(regional,village,household)andtheirdesign.Parksandnaturereservesarethebackboneofapolicyaimingtoenhanceaharmoniousinteractionbetweenhumansandnature.Theyhaveahighecologicalvalueand–atthesametime–canhaveahigheducationalandrecreationalvalue.Mostimportant,amongthenaturereserves,areforestsandwetlands,whoseroleascarbonsinksisalsofundamental,besidestheirbiodiversity.GreenareasatvillagescaleAtvillagescalegreenareasarenecessarilyanthropized,andthusmore“artificial”.Thenatureofavillagegreenspot,whateversizeitis,isartificial,inthesamewaythatcultivatedlandisartificial.Theessentialconditionforfulfillingtheaimofaharmoniousinteractionhuman-nature,however,istomanagetheseartificialgreenareasaccordingtonature’slaws,basedoncyclesofmatterpoweredbysolarenergy.Fig.2.9Multiplebenefitsofurbantrees7632Tenkeyprinciplesforzero-carbonruralvillagedesignAgricultureAsshowninChapter1,agricultureisamajordriverofthetransgressionofplanetaryboundaries,thusmanagementofthelandcultivatedbyvillagefarmersiscrucialforazerocarbonvillage.Thechallengeistotransformagriculturalproductionfromcarbonemittertonetcarbonsink,oratleasttomakeitneutral.Thiscanbeachievedbycombiningtheprinciplesoftraditional(beforeartificialfertiliserswereavailable)farmingpracticeswiththemostadvancedscientificandtechnologicalmethodsavailablenowadays.Suchaformofagricultureisnotonlyecologicallysoundbutisalsoalivingexampleofrestoredharmonybetweenhumansandnaturethatcanbeenjoyedbytouristsandresidents,aswellasfarmers:itisawaytoaddeducational,recreationalandecologicalvaluetoaproductiveactivity.Householdscale:kitchengardensInruralvillageshouseholdshavetheiradjacentsmallplotoflandwheretheygrowvegetablesandfruit,andraiseafewanimals(poultry,mainly)forpersonaluseandoftenalsoforlocalsale.Thesegreenpatchescontributetothegeneralbenefitsofgreeningandusuallyprovidegood,healthyfood.Inazerocarbonvillagesustainablekitchengardensshouldbepromoted,byeducating–whenevernecessary–householdstosustainableagriculturalpractices,byminimizingtheuseofartificialfertilisers,pesticidesandherbicidesthroughappropriatefarmingtechniques.Designsuggestions◊Makesureyoursettlementprovides:•Asmall-mediumsizedpark•Treelinedstreets•Pocketparkswithdiffusedsmallgreeninterventions(pottedgreenplants,greenshelters,roofsandwalls)◊Considerlocaltraditionsandspeciesindesigninggreenspotsandareas.◊Usetreesextensively,whereverpossible:alongthestreets,inthesquares,inparkingareas,etc.◊Considerthelife-cyclecostofagreenroofsystemwhenmeasuringthetotalbenefits,especiallyifcomparedtothelifecyclecostsofawell-insulatedroof,whichalsoreducesheatlossesinwinterandheatgainsinsummer.Publicspace:villageparks,playgrounds,andrestareasGreening,i.e.extensiveroadsidetreeplanting,greenspaces,parksandgardens,areveryefficientandeffectivemeansofimprovingoutdoorandindoorthermalcomfortinsummerandofreducingenergyconsumptionforcoolingbuildings.Airandsurfacetemperatureinparksmaybesignificantlylowerthaninthesurroundingbuilt-uparea,creatingwhatiscalleda“parkcoolisland”.Asettlementfullofgreenareasisalsoapleasantandhealthyplacetolivein.Greeningrequireswater:providingwaterfortrees,parks,smallgreenareasmaybeachallengingtask,becauseofthelargeamountrequiredanditscost,especiallywhenpotablewaterisused,whosequalityisfarhigherthanthatneededforwateringplants.Theissueofvegetation,then,intersectstheissueofthesettlement’swatercycle:decentralizedwatermanagement,basedontheexploitationofrainwaterandontherecyclingofwastewateriscloselyconnectedwiththeavailabilityandcostofwaterforirrigation,andisaprerequisiteforasustainableintegrationofgreenareasintonewandexistingsettlements.Greenareasareimportantbecausetheyarecarbonsinks.Trees,greenroofsTreesprovidemultiplebenefits(Figure2.9).Theyprovideshade,whichisbeneficialbothforoutdoorcomfortandforbuildings'energydemandforcooling.Anotherqualityoftreesistheirabilitytosequesterandstorecarbonintheirtrunks,leaves,androots,actingascarbonsinks,socontributingtoareductioninGHGemissions.Agreenroofisavegetativelayergrownonarooftop.Vegetationonagreenroofshadessurfacesandremovesheatfromtheairthroughevapotranspiration.Thesetwomechanismsreducethetemperaturesoftheroof’ssurfaceandthesurroundingair,whichisbeneficialinsummer.Inwinterthebenefitislinkedtotheincreasedthermalmassandinsulationoftheroof.Nevertheless,theirlifecyclecostmaybehigh,ifcomparedwithotherinsulatingsystems.Greenroofsactalsoasabufferforwaterrunoffincaseofheavyrains.33Net-ZeroCarbonVillagePlanningGuidelinesfortheYangtzeRiverDeltaRegioninChinaPRINCIPLE3-HEATINGANDCOOLINGZerocarbonbuildingsaretheprerequisiteforazerocarbonvillage.AlthoughvillagesintheYangtzeRiverDeltaRegionshowlowenergyconsumptionforspaceheatingandcooling,whenplanningforanincreaseinpopulation(residentsand/ortourists)andanimprovementineconomicconditions,asignificantriseinenergyrequiredforheatingandcoolingcanbeexpectedandshouldbemitigated48.Thisphenomenonhasbeencommontoallcountriesasaconsequenceoftheireconomicdevelopment,whichchangedtheexpectationsofcomfort.Asignificantincreaseinpercapitaenergyconsumptionforspaceheatinghasbeenwitnessed,forexample,inalltheEuropeancountrieswhoseeconomicdevelopmenttookplaceaftertheSecondWorldWar,andisalsobeingwitnessedinChina,wheretodayurbanresidents,whoarewealthierthanthoseinruralareas,use1.5–5timestheenergyofruralresidentsonapercapitabasis49.Localclimateisthemaindriverofenergyconsumptionforheatingorcooling,andthereforeCO2emissions.Thepathtoazerocarbonvillage,thus,startsfromclimaticallyresponsivebuildingdesigntominimizeenergydemand.Theeffectivenessofaclimateresponsivebuildingdesign,ontheotherhand,isalsoaffectedbythewaybuildingsarearrangedinasettlement,asthisplaysasignificantroleindeterminingtheamountofenergyneeded,fortworeasons:a)theorientationofabuildingiscrucialfortheexploitationofsolargainsinwinterandforsunprotectioninsummer,andb)thesettlement’stextureaffectsthelocalclimate.ClimateresponsivebuildingdesignEnergyisrequiredinbuildingstoprovideheatingorcoolingforshiftingfromindoorconditionsintheabsenceofanyheatingorcoolingsystem,tocomfortableconditions.Thegreaterthedistancebetweenthesetwoconditionsthegreatertheamountofenergyrequired.Thisdistancederivesprimarilyfromtheoutdoorclimaticconditions:themoreextremetheyare,i.e.thelesscomfortable,thewiderthegaptofilltomaketheindoorenvironmentcomfortableand,thus,thehighertheamountofenergyrequiredtofillthisgapbymeansofsometechnologicaldevice.Thewidthofthegap,however,alsodepends–toagreatextent–onthewaythebuildingisdesigned,anditisminimalwhenthebuildingisclimateresponsive.Abuildingisclimateresponsivewhenitiscapableofinteractingwithitsenvironmentinsuchawayastominimizetheoccupants’discomfortinwinterbymeansof:•appropriatebalancebetweensolargainsandheatlossesinallseasons•effectiveexploitationofitsthermalmass•capabilitytoexploitthebeneficialeffectexertedonsummercomfortbytheairmovement.Aclimateresponsivebuildingiscapableofminimizingtheheatflowneededtoaddorsubtractheatinordertoreachthecomfortconditions,nottobringittozero.Thus,anotherissueregardingzerocarbonbuildingsistheenergyconversiontechnologyusedforprovidingthisflow.Notalltechnologiesareequallyefficient,andheatingandcoolingsystems,inazerocarbonbuilding,shouldbechosenaccordingtotheirefficiencyandtotheirappropriatenesstothebuilding’sthermalcharacteristics.InordertofulfiltherequirementsofthebaseofthetriangleinFigure2.10,thedesignershouldfollowsomebasicrules.Buildingshapeandorientationarethefirstchoicesinthedesignprocess.Theyarealsothemostcriticalbecausetheyhavethemostimpactonboththermalandvisualcomfortandonenergyconsumption.Buildingshapeisimportantbecausethehigherthebuilding’ssurfacetovolumeratio,thegreaterthethermallosses(andgains).Orientationisimportantbecausetheamountofsolarenergyincidentonwindows,andthustheireffectivenessassolarcollectorsdependsonit.ThisFig.2.10Towardszerocarbon,highcomfortbuildings:designstrategy34Tenkeyprinciplesforzero-carbonruralvillagedesignisbyprovidingsunspacesonthesouthfacingfaçade.Toavoidoverheatinginsummer,thesesunspacesshouldbefullyopenable.Incasesofretrofit,theeffectivenessofsunspacescanbeimprovedbysubstitutingtheexistingglazingwithamoreefficientone(low-eglazing)(Figure2.11).Ofcourse,incaseofexistingbuildingstorenovateformakingthemmoreenergyefficient,shapeandorientationcannotbemodified,butitcouldbepossibletointerveneonthermalmassandwindowssizeandtype,andcertainlysomeinsulationcanbeadded.Windowsizeandtypedoesnotaffectonlythewinterperformanceofabuilding,butalsothesummerperformance,throughnaturalventilation,i.e.theintentionalairflowthroughwindows,doorsorotheropeningsdesignedforthepurpose,obtainedwithouttheuseoffans.Naturalventilationaffectsboththeenergybalanceofthebuildingandthethermalcomfort.Itaffectstheenergybalanceofbuildingsbecausetheflowofexternalairsubtractsoraddsheattotheinternalspace,accordingtotheoutdoor-indoortemperaturedifference.Itdirectlyaffectsthermalcomfortbecauseairvelocityaffectsthebody’senergybalancethroughconvectiveexchangeandevaporation:thehighertheairvelocitythehigherFig.2.11Retrofittedsunspaceonasouthfacingbalconyamountismaximumwhenafaçade,andthuswindows,facesouth;thisimpliesthatthebuildingshouldbeelongatedeast-west.Thisorientationisalsotheonethatmakesiteasiertoprotectwindowswithshadinginsummer.Afterabuilding’sshapeandorientation,thethirdmostimportantdecisionisrelatedtothethermalmassandtheinsulationoftheenvelope,togetherwiththesizingoftheopenings.Thus,itistheappropriateinterplaybetweensolargains,envelopelossesandthethermalinertiaofthefabricthatmakesabuildingclimateresponsive,andtheoptimumsolutionisaconsequenceofthecharacteristicsofthelocalclimate.Thisiswhytheavailabilityofclimaticdataisacrucialissue.Theprerequisiteforachievingazerocarbonvillageisthatexistingbuildingsshouldbeasfaraspossibleenergyefficientandnewbuildingsshouldbezerocarbon.Thisimpliesthatnotonlyshouldtheybedesignedtomaximisesolargainsinwinterandtominimizetheminsummerbymeansofappropriatewindowsizeandoverhangs,buttheyshouldalsobedesignedtominimizeheatlossesinwinterandheatgainsinsummerthroughtheenvelope,whichisobtainedbymeansofappropriateinsulationandlight-colouredwalls.Anotherwaytoimprovethethermalperformanceofabuildinginwinter35Net-ZeroCarbonVillagePlanningGuidelinesfortheYangtzeRiverDeltaRegioninChinaofspacingtodepthofoverhangsh/wis<3.3.Inthiswaythesouthfacingfaçadeisshadedduringthesummermonths,butwindowsremainexposedtothesunduringthewintermonths.◊Avoidtheuseoftintedglass◊Optimisethermalmass,envelopecolourandinsulation,windowsizeandglazingtypetreatingthebuildingasasystemandevaluatingitsenergyandcomfortperformancebymeansofcomputersimulations.◊Consider,inexistingbuildings,thepossibilityofcreatingsunspacesonsouthfacingbalconiesortosubstitutesingleglazingwithdoubleglazing,ifthesunspacealreadyexists.ClimateresponsivesettlementdesignThegrowthofazerocarbonvillagewouldbetheconsequenceofitssuccessfuldevelopment,andthisgrowthneedstomanagedinordertominimizeenergydemand.Inordertocontributetominimizingtheenergydemandofbuildings,thelayoutofthenewdevelopmentshouldbedesignedinsuchawayastoletbuildings,andthespacearoundthem,receiveasmuchsolarradiationinwinteraspossibleand,insummer,tocreateasmuchshadeaspossibleandtofavourairmovements.AccordingtoPrinciple2’ssuggestionsaboutdensityandmixeduse,andbecauseoftheneedtohavesouthfacingbuildings,partofthevillage’snewdevelopmentsshouldbecharacterizedbyeast-westrunningstreetsdelimitedbybuildings.Inthiscase,tomaximisethesolarexposureofsouthfacingfacadesinwinter,thedistancebetweenbuildingsalongthenorth-southlineshouldbesuchthatreciprocalshadowingisavoided.Inthisway,bycombiningappropriatewindowsizing,envelopeinsulationandthermalmass,itispossibletooffset–partiallyortotally-heatlosseswiththesolargains,wheneverthesunisshining.Theroleofsettlementdesigninminimizingenergyconsumptionforcoolingismoremultifacetedandchallenging.Thisisaverycriticalissue,asenergyconsumptionforcoolinghasbeengrowingverysteeply(Figure2.12,top),and–accordingtotheInternationalEnergyAgency–willcontinuetogrow,sustainedbyclimatechangeandthegrowingper-capitaincome(Figure2.12,bottom).ThisisespeciallytruefortheYRDarea,becauseofitsclimate.Insummer,hightemperaturesarecombinedwithhighrelativehumidity,creatingveryuncomfortableconditionsandmakingnaturalventilationlesseffective,becauseabody’sheatlossalsodependsontherelativehumidity:thehigherthehumiditythelowertheamountofheatsubtractedbytheairflow;thisisoneofthethebody’sheatloss,thusaffectingcomfortinsummer.Insummer,aclimateresponsivebuildingmustbecapableofprotectingitsenvelope,andespeciallyitswindows,fromthedirectsun.Shadingisastrategythat–whenwellimplemented–significantlyimprovestheoccupants’comfortandreducestheenergydemandsforcooling.Thus,anappropriateshadingstrategyisanothertypicalfeatureofaclimateresponsivebuilding.Theeasiestsolutionistoprotectsouthfacingwindowsbymeansofoverhangsoneachfloor,protrudingasmuchasnecessarytoshadethefaçadeduringthehottestpartofsummer,i.e.July-August.Inmanycases,valuablesuggestionsaboutdesignstrategiesaimingtocreateclimateresponsivebuildingsandabouttheappropriateuseofmaterialsmaycomefromtraditional,orvernacular,architecture:veryoftenitdemonstratesthebestresponsetothelocalclimate,takingintoaccounttheavailabilityoflocalresourcesforminimizingenergydemandsforheatinginwinterandmaximizingcomfortinsummerbynaturalmeans.ItisworthmentioningthatprescriptionsforawiseorientationandclimaticdesignofbuildingsanddwellingswerefullyembeddedinhistoricalChinesebuildingdesignpractices,andwereaconsequenceoftheattitudeofobservingandunderstandingNature,underpinnedbytraditionalChinesephilosophy50.Becauseofthis,mosttraditionalruralbuildingsshowgoodorientationandsolargainsolutions,whichishelpfulforimprovingtheenergyefficiencyofexistingbuildings.Designsuggestions◊Optimisethesouthfacingfaçade’swindowtowallratio(0.3<Wwr<0.5Asfirstguess)aimingtominimizeenergydemandforheating,takingprofitofsolargains,buttakingintoaccountthermalmassandinsulationforavoidingwastefulanduncomfortableoverheating◊Minimizethenorthfacingfaçade’swwr,providedthatdaylightingstandardsaremet,forreducingheatlossesandinfiltrationsduetocoldwindsblowingfromthenorthinwinter;◊Insulatetheenvelopeappropriately,consideringthatenergysavingswilloffsetthecostofinsulation,bothinnewbuildingsandintheretrofitofexistingbuildings◊Designfullyopenablewindowstoexploitnaturalventilationinsummer.◊Protectsouthfacingwindowswithappropriateshadingdevices.Forthelatitudeoftheyangtzeriverdelta,withexactlysouthfacingfacades,overhangsspacedverticallyby3mshouldprotrudebyabout0.9M.Thesameeffectcanbeobtainedwithdifferentspacingordepth,providedthattheratio36Tenkeyprinciplesforzero-carbonruralvillagedesignFig.2.12Worldairconditioningenergyconsumptiongrowth.In2050ChinawillbesecondonlytoIndia77.Fig.2.13Sunlitsouthfacingcanyon’swallConstructedcanyonsarecharacterizedbytheirheight/width(H/W)andlength/width(L/W)ratiosandbytheirorientation.Inordertomaximisesolargainsinwinter,i.e.minimizeenergydemandforheating,canyonsshouldbeeast-westorientedandhaveaH/Wratiosuchastohavethesouthfacingbuilding’sfaçadefullyexposedtothesunformostofthedayonDecember21st(Figure2.13),whenthesunislowestatnoon.Thiscondition,forlatitudesaround30N,ismetwithlowH/Wratio,nothigherthan1forfullexposurefrom10:00hrsto14:00hrs51.Ifthegroundfloorofthebuildingisusedtohostshopsorworkshops,andtheotherfloorsforapartments,thenfullexposuretosuncanstartfromthefirstfloor.Inthiscasethecanyon’sH/Wratiocanbehigher,infunctionofthestreetwidth,accordingtothegraphinFigure2.14.Toevaluatetheexposuretothesunoffaçadeswithanorientationdifferentfromthatofduesouth,thesimpleproceduredescribedinAppendices3and4ofUN-Habitat’sEnergyandResourceEfficientUrbanNeighbourhoodDesignPrinciplesforTropicalCountries-APractitioner'sGuidebookcanbeused.Inconclusion,sincetomeettherequirementofminimizingenergydemandsinanewsettlement,buildingsshouldbesouthfacing,canyonsshouldbeeast-westrunning.This,ofcourse,hasconsequencesonthelayoutandonthedensityofthesettlement:alayoutmatchingthetraditionalChineseurbanlayout.reasonswhy,intheYRD,wheresummerhumidityisgenerallyhigh,thedemandforairconditioningalsotendstobehigh.StreetwidthandorientationThedesignofconstructedcanyons,heredefinedasstreetsdelimitedbybuildings,isamostcriticalissueinaclimatewherewintersarecoldenoughtorequirespaceheatingandsummersarehotandhumidenoughtorequirespacecooling.Itisacriticalissuebecauseithastofacetwoconflictingrequirements:buildingsandstreetsshouldbeexposedtothesunasmuchaspossibleinwinterandshadedasmuchaspossibleinsummer.Takingintoaccountthesun’spathatthislatitude,consideredintheseguidelines(around30°N),combiningthetworequirementsentailscarefuldesignofthebuildings’orientationandfacades,ofthematerials’albedo,andofgreening.37Net-ZeroCarbonVillagePlanningGuidelinesfortheYangtzeRiverDeltaRegioninChinaSomerulesofthumb,however,canbeused,suchastheonesrelatedtotheeffectofwinddirectiononairmovementincanyons.Thedeeperthecanyonthelesseffectivetheventilation,whichisgreatlyreducedwhentheaspectratioH/Wisgreaterthan2.Also,themaximumattenuationofwindspeedoccurswhenitblowsperpendiculartothecanyon’saxisandtheminimumwhenparallel.Anotherruleofthumbstatesthattheoptimumincidenceangleofwindthroughawindow,forindoorventilation,isbetween0°(perpendicular)and45°.PuttingtogethertheserulesandconsideringtheclimaticcontextofYangtzeRiverDelta,itappearsthattheoptimumorientationandspacingofbuildingsforsolarexposureisalsooptimumforventilationinsummer,consideringthattheprevailingwindsblowfromSE(Figure2.16).Asettlement’sgridnorth-south/east-west,infact,favourbothwindflowthroughnorth-southstreets(soimprovingoutdoorcomfortconditions)andnaturalventilationindoors.Designsuggestions◊Donotdesigncanyonswithaspectratioh/w>,toavoidpoorventilationinsummer,besidespoorsolargainsbecauseoftheshadowing.PavementsAlargeproportionofthegroundsurfaceofasettlementiscoveredwithpavements,whichareusuallymadeofasphaltorconcrete.However,becauseofthelowalbedoofsuchmaterials,onclearsummercleardays,whenthesunishighinthesky,theirsurfacecanreachpeaktemperaturesofupto60-70°C,astheyabsorbFig.2.15ShadowedwalkwaysFig.2.14CanyonH/Wratiotoachievefullsunexposureon21Decemberbetween10:00hrsand14:00hrsfrom1stfloorupwardsasafunctionofstreetwidth,atthelatitudeofYangtzeriverdelta(30-31°NlatitudeCanyonsrunningeast-westarethebestforminimizingthewinterenergydemandofbuildings,iftheyareappropriatelydesigned,buttheyarenotidealforsummer,becausethestreetisexposedtothesunformostofthetime,thustheoutdoorcomfortconditionsarenotacceptableunlesssomeappropriateshadingdevicesareprovided,suchastheonesshowninFigure2.15.Designsuggestions◊Designanorth-south/east-weststreetgrid.◊Useeast-westcanyonswithh/w<1tohostcomfortablepedestrianpathways,shops,coffeehouses,smallartisanworkshops,asonesidewalkissunlitinwinterandbothsidewalkscanbeshadedifthestreetistreelined.Theupperfloorsshouldhostresidences,astheheightabovethestreetlevelfavourssunexposureinwinterandventilationinsummer.◊Considerusingnorth-southstreetsmainlyforvehiculartrafficandleavetheeast-westorientedstreetsmainlyforpedestrians,astheyaremoreliveableinwinterandalsoinsummerifappropriatelyshaded.AirmovementAirmovementplaysanimportantroleintheenergybalanceofthebuiltenvironment,greatlyaffectingoutdoorandindoorthermalcomfort,aswellastheenergyexchangesofthebuildings.Itisnoteasytopredictairmovementsinanareawithmanybuildings,andreliablepredictionscanbeobtainedonlybymeansofcomputersimulationsorwindtunnels.38Tenkeyprinciplesforzero-carbonruralvillagedesign65to95%ofthesolarradiationreachingthem.Theycontributesignificantlytooutdoordiscomfortinsummerandtoenergyconsumptionforcoolingbuildings,whosewallsarehitbyanadditionalfluxoflongwaveradiantheat.Duringtherainyperiods,ontheotherhand,theycollectrainwaterand,whenthereisheavyrain,therunoffcancontributetofloodinginstreetsandsquares.Thefirst,mosteffectivewaytoreducetheheatingeffectandtheircontributiontostreetfloodingistoreducetheneedtopave.Thesecondistohavepavementswithhighalbedoandwaterpermeability.Onesimplepossibilityistouse,forpedestrianreservedspacesorforparkingareas,thekindofpermeablepavementsthatallowvegetationtogrowbetweenthespaces,withadoubledividend:attenuatebothrunoffandheatingeffect.Designsuggestions◊Usetreestoshadepavements.◊Reduceparkingspacerequirements,connectingparkingandmasstransitservicesandallowingfornarrowerstreets.◊Increasethepavements’albedo,bymixingthebinderwithlightcolouredaggregatesorbyusingpermeablepavementswithvegetationgrowingbetweenspaces◊Makepavementpervious.Fig.2.16WindpatterninthemonthofJuly.WinddataofPudongAirport(Shanghai)78.WaterbodiesWaterbodiesarewidelydistributedintheYDRascanalsandsmallwaterponds.Theyhaveseveralpotentialadvantagesforcoolingthelocalenvironmentduetotheirthermalandopticalproperties:•Theevaporationofwaterrequiresahighamountofenergy,whichisextractedfromtheair,thusloweringitstemperature.•Thehighspecificheatofwaterdelaysandbuffersthemaximumtemperature.Combiningtheseeffects,awaterbodycanbealittlecoolerthanthesurroundingurbanenvironmentinsummer,andalittlewarmerinwinter.Thus,waterbodiescouldhaveapositiveeffectuponthemicroclimateofthesurroundings;inaddition,theymayplayacrucialroleinthelocalecosystem.Ontheotherhand,waterbodiesincreaselocalrelativehumidity,worseningthecomfortconditionsinsummer.Moreover,waterbodiesmayreducethebeneficialnightcoolinginsummer,becauseoftheirhighthermalinertia.Itshouldalsobeconsideredthatwaterbodies,ifnotproperlymanaged,couldactasmosquitoandotherpestbreeders.Designsuggestions◊Consideringthemultiplefunctionthatawaterbodycanhave(fromleisuretoproductive,toenvironmental)analysetheirfunctionscarefully,inconsultationwithbiologists,ecologists,agriculturalexperts,watertreatmentexpertsandhydrologists39Net-ZeroCarbonVillagePlanningGuidelinesfortheYangtzeRiverDeltaRegioninChinaFig.2.17Embodiedenergyforselectedbuildingmaterials79PRINCIPLE4:GHGEMISSIONSAcompleteanalysisofasettlement’sGHGemissions,i.e.includingscope3emissionsoftheGHGProtocol,showsthatalargeproportionisduetothoseembodiedinthematerialflow,i.e.theonesassociatedwiththeextraction,production,andtransportationofproductsorservicesenteringthesettlement.Partoftheseembodiedemissions(alsocalledindirectemissions,todistinguishthemfromthedirectones,theonesderivingfromtheoperationofthesettlement)canbecontrolledbythesettlement’sdesign,astheyareaffectedbythedesignchoices.Thelargestproportionofembodiedemissionsconsequenttothedesignchoicesisthatderivingfromtheproductionofconcrete,steel,glass,aluminiumandfiredbricks,whicharethebasicbuildingmaterialsformostmodernconstructions,andforinfrastructures.Thesematerialshaveveryhighenvironmentalimpact,consumeasignificantamountofenergyandcausemostoftheGHGemissionsoftheconstructionsector52.Figure2.17givessomeideaoftheenvironmentalimpactofdifferentconstructionmaterials,onthebasisoftheirembodiedenergy,theamountofwhichisgenerallyproportionaltotheirCO2emissions.Asinmanyothercontexts,andalsoinruralChina,adramaticchangeoccurredinthebuildingindustry,withtheintroductionofindustrialmaterials,whichbecamedominantovertraditional,place-basedsolutions53.Thistrendshouldbereversedandbuildingmaterialslikestone,timber,bamboo,stabilisedcompressedbricks,etc.,whichhavelowembodiedemissions,shouldbefavoured.Theyareconsistentwiththeculturalheritageandcanalsobeproducedlocally,reducingtheneedfortransportenergyandreinforcingthelocaleconomy.Asignificantreductionintheindirectemissionsduetobuildingmaterialscanalsobeobtainedbyminimizingthequantityofresourcesused.Thereisaninverserelationship,forexample,betweenurbandensityandindirectGHGemissions,duetothefactthatthelowerthesurfacetovolume(S/V)ratioofbuildings,thelowertheamountofmaterialrequiredforprovidingagivenusefulfloorarea(Figure2.18),andthelowertheamountofembodiedGHGemissions.Acarefulchoiceofbuildingmaterialsandofbuildingshapeisonlyoneofthestepstowardssustainablebuildingdesign,asitisnecessarytoevaluatetheentirebuilding’slifecycle(Figure2.19),accordingtotheprinciplesofcirculareconomy.Thus,theuseofmaterialsandcomponentsthatcanbereusedorrecycledshouldbeprioritised:theafter-usephaseofabuildingcanhaveasignificantimpactonitstotalemissionsbudget,asdepictedinFigure2.20,showingthecomponentsoftheoverallGHGemissionsofabuildingduringitscompletelife-cycle,fromemissionsrelatedtothebefore-usephaseofthebuildings,e.g.rawmaterialextraction,transport,manufacturingandinstallation,toafter-useactivitiessuchdemolitionorre-use,recyclingandwastedisposal.Itshouldbenotedthat,astheaimofazerocarbonvillageistoreducetozero,ornearlyzero,theamountoffossilenergyneededfortheoperationofthebuildings,themainimpactofthebuildingstockonglobalwarmingwouldbeduetotheembodiedemissions,andtheircontrolbecomesofparamountimportance.40Tenkeyprinciplesforzero-carbonruralvillagedesignFig.2.18Variationofsurfacetovolumeratio(S/V))forincreasingvolumeofacube.Fig.2.19Buildinglife-cycle41Net-ZeroCarbonVillagePlanningGuidelinesfortheYangtzeRiverDeltaRegioninChinaThewayurbanmobilityisdesignedalsoaffectsembodiedemissions.Infact,themorelimitedtheuseofprivatevehicles,becauseofanappropriatemixoffunctions,thelesstheneedforprivatecarsandthusthelowertheoverallamountofGHGemissionsembodiedinthevillage’sfleetofcars.Moreover,areducednumberofcarsreducestheroadinfrastructureneeded,withaconsequentreductioninthematerialsused,thusinindirectemissions.Inamorecompleteapproach,eventheenergyembodiedindurablegoods(i.e.furniture,appliances,etc.)andlesslastingitems(i.e.garments,crockeryandcutlery,etc.)shouldbeconsidered,astheattitudetorepair,recycleandreuse,willgreatlycontributetothereductionofembodiedemissions.Atthesametime,opportunitiesforeconomicdiversificationandnewjobswillbegeneratedatalocallevel.Designsuggestions◊Considerthefulllifecycleofthebuildingwhenchoosingtheconstructionmaterials◊Minimizetheuseofconstructionmaterials,consideringthecompactnessofbuildingsthroughthesurfacetovolumeratio(s/v)indicator,tryingtominimizeit.◊Makechoicesthatensurereductionofscrapmaterials;thisisverysignificantparticularlyforhighembodiedenergymaterials;◊Selectlowembodiedenergymaterialsandlowenergyconstructionsystems.Forexample,usedomestic,certifiedtimberinplaceofconcreteforbeams,lime-pozzolanamortarsinplaceofcementmortars,soilorstabilizedsoilblocksorsand-limeblocksoverburntclaybricks,gypsumandplastersovercementplasters.Uselow-energystructuralsystemslikeload-bearingmasonryinplaceofsteelframes;Fig.2.20GHGemissionsofbuildingsacrosstheirlife-cycle80◊Usenaturallyavailablematerials,especiallyorganicrenewablematerialsliketimber,trees,straw,grass,bambooetc.Evennon-renewableinorganicmaterialslikestoneandclayareuseful,sincetheycanbereusedorrecycled;◊Usedurablematerialsandcomponents.Theutilisationofstructuralandfunctionaldurablecomponentsandmaterialsallowlong-termuseaswellasthereductionofmaintenanceandrenovationandrefurbishmentcostsduringthelifetimeofbuildings;◊Uselocallyavailablematerialsandtechnologies,employinglocalworkforce;◊Usematerialswithmorereusableandrecyclablepotential;puremateriallikebricks,wood,concrete,stone,metalsheetsarethemostsuitableforthispurpose.Compositematerialslikeprefabricatedsolidfoam-metalorfoam-plasterelementsaredifficulttoseparateandtorecycle;◊Plantherecyclingorsalvagingofatleast50%ofconstructionwaste54.◊Useindustrialwaste-basedbricks/blocksfornon-structuralorinfillwallsystem;◊Reuse/recycleconstructiondebris;◊Useproductsandmaterialswithreducedpackaging.42Tenkeyprinciplesforzero-carbonruralvillagedesignvillage,buteventuallytheywillhavetobeprogressivelyreplacedbytheheatpumpwaterheaterspoweredwithrenewableelectricity.Electricresistancewaterheatersshouldhavenoplaceatall.Energyefficiencyalsoappliestomeansoftransport.Electricvehiclesarethemostefficient,becausetheelectricmotorisfarmoreefficientthananinternalcombustionone.Moreover,whileacombustionengineemitsGHGgases(CO2andNOx),theelectricmotoremitsnone.However,thesameconsiderationasforheatpumpsappliestoelectricvehicles:theirGHGemissionsarelowerorhigherthanthoseproducedbyinternalcombustionvehiclesinrelationtothefuelmixusedtoproducetheelectricitysuppliedbythemaingrid.Inazerocarbonvillage,wherealltheelectricityused,includingthatusedforchargingthebatteriesofelectriccars,isproducedwithrenewableenergysources,onlyelectricvehiclesshouldbeallowed.Theproductionofelectricitybyburningafuelathightemperature,withathermodynamiccycle,necessarilyimpliestheproductionofheatatlowtemperatures(70-90°C).Ifthisheatisusedforspaceheatingand/orhotwaterproduction,insteadofreleasingitintotheatmosphereorwaterbodies,theoverallefficiencyofthesystemissignificantlyimproved.Thistechnologicalapproachisnamedcogeneration,orCHP(CombinedHeat&Power),andcouldbeappropriateforhotelsorforindustrialprocessesrequiringlow-mediumtemperatures,suchastheonestypicalofagro-industry.Inazerocarbonvillagethefuelusedforfuellingacogenerationplantmustberenewable,i.e.biomass.Thebiomasscanbetransformedintobiogasorsyngassuppliedtoaninternalcombustionengineoragasmini-turbine.BiomassfuelledCHPsystemscouldbeappropriateforindustrialprocessesrequiringlow-mediumtemperatures,suchastheonestypicalofagro-industry,andforbuildingsrequiringheatinginwinterandcoolinginsummer,suchashotelsandofficebuildings,becausethelowtemperatureheatcanproducecoolingbyfeedingabsorptionchillers.Alternatively,duringmid-seasonsandinsummeronlyorduringthewholeyear,wasteheatcanbeusedforproducingpotablewaterfromtreatedwastewaterbymeansofdistillation.Inconclusion,themaximisationofenergyconversiontechnologiesforsupplyingazerocarbonvillagenecessarilyleadstoashifttowardstheelectricityfuelledonesand,wheneverpossibleandappropriate,toCHP(Figure2.21).PRINCIPLE5:RENEWABLEENERGYSOURCESEnergyefficientconversiontechnologiesareaprerequisitefortheextensiveuseofrenewableenergysourcesbecause,inordertohaveacost-effectivevillageenergysystem,themoreefficientandappropriatetheenergyconversiontechnologies,thelesstheenergyrequiredtofulfilagiventaskandthesmaller(andcheaper)theproductionsystemprovidingthenecessaryrenewableenergy.EfficientEnergyconversiontechnologiesIntheclimateoftheYangtzeRiverDelta,giventheneedforbothheatinginwinterandcoolinginsummer,themostefficienttechnologyforprovidingindoorcomfortistheheatpump,exchangingheatwithwaterbodiesorgroundwater.Ifanearbywaterbodyisnotavailable,andundergroundwaterisnoteasilyreachable,ambientaircanbeusedasaheatsinkinsummerandaheatsourceinwinter,andstillgivegoodefficiency.Evenifwaterthatcanbeusedasheatsink/sourceisavailable,acost-effectivenesscomparisonbetweenthewater-to-waterandtheair-to-watersystemsisrecommended.Airtoairheatpumpsmaybeespeciallysuitableinbuildingsordwellingsoccupiedoccasionallyoronlyforsomepartoftheyear,suchashotelsandaccommodationfortourists.Heatpumpsshouldalsobeusedforhotwaterproduction,eitheraspartoftheheating/coolingsystemorwithindependentdevices.Theseconsiderations,however,donotgivethecompletepicture,astheefficiencyandtheemissionsofthenationalelectricityproductionanddistributionsystemalsohavetobeconsidered.Ifelectricityisproducedmainlywithcoal,forexample,heatingwithgasboilerswouldproducelessemissionsthanelectricityfuelledheatpumps.Thiswouldnotbethecaseforzerocarbonvillages,astheelectricitytheyuseshouldderiveonlyfromrenewableenergysources.Anotherpossibledrawbackofheatpumpsistheleakageoftherefrigerantgasintotheatmosphere.Asrefrigerantgaseshaveaveryhighgreenhouseeffect,theirmanagementalongthewholelifecycleoftheheatpumpmustbeassured.Insuchacontext-wheregasoroilisnolongerusedforheating,theheatpumpbeingmoreefficient-cookingshouldalsoshifttoelectricity,butnotwithresistanceelectricstovesandcookers,butwiththemoreadvancedandmoreefficientinductionstovetopandrange,whichisalsomoreefficientthanthegascooker.Solarthermaldomesticwaterheaters,whichhavebeenwidelyinstalledintheYangtzeRiverDeltaregion,maystillhavetheirplaceinthetransitiontothezerocarbon43Net-ZeroCarbonVillagePlanningGuidelinesfortheYangtzeRiverDeltaRegioninChinaDesignsuggestions◊Considerthatinthemedium-longruntheonlyenergyvectorinthevillagewillbeelectricity,possiblycomplementedwithheatproducedbyabiogasorsyngasfuelledCHPsystem,thusanaturalgasnetworkwouldbecomeobsoleteRenewableenergysourcesTheuseofefficientenergyconversiontechnologies,inazerocarbonvillage,isanecessaryconditionbutisnottheonlyone.Theotherconditionistheproductionoftherenewableenergythathastofeedthem.Thus,thenextstepistoidentifytherenewableenergysourcesavailablewithinthebordersofthevillage,whethertheadministrativeorphysicalborders–aspreviouslypointedout–includingthenon-builtareassurroundingit.Thepotentialforrenewableenergysourcesdependsonthetechnologiesused(Figure2.22),onclimate,onthedesignofthevillageandonthecharacteristicsofthesurroundingland.Thepotentialforsolarandwindenergydependsontheavailabilityofsolarradiationandwind,butalsoonthenumberofsuitablesurfacesthatcanbecoveredwithsolarpanelsandonthetextureofthesettlement,asthisaffectswindvelocity.Biomasspotentialdependsonthevillagedesign,asitmayincludewoodandleavesfromthepruningoftreesinthegreenareas,andinthestreets,andfromkitchengardens.Italsodependsonthetypeofwastewatertreatmentsystem.Thesurroundingland(useandtopography)couldcontributetotherenewableenergypotentialnotonlythroughtheagricultureresiduals,butalsothroughbiomassderivingfromthemanagementofnearbyforests(silviculture)andthroughthehydropowerifpermanentorseasonalwaterflowsarepresentortherearewaterreservoirs.Agricultureresidualsandlivestockwastescanalsobeusedasrenewableenergysources.Theuseofrenewableenergytechnologiesisaverychallengingissueforthedesignofazerocarbonvillage,asitmayimposesignificantconstraintsonthedesignofnewdevelopments.PVsystems,forexample,maylimittheheightofzeroenergybuildings(seeBOX–Maximumheightofazero-energybuilding);thereasonisthatthereisarelationshipbetweenthebuilding’senergydemand,thesizeofthePVsystemrequiredtosupplyit,andtheroofareaavailabletoinstallit.Thisrelationshipmayaffectthedensityofthesettlement.PVsystemscouldbeusedforsupplyingelectricitytofleetsofelectriccars,andtheidealwouldbetoparkthesecarsindedicatedoutdoorparkingplotsequippedwithPVcanopies;inthiscasethechallengeistooptimisethesizeandthepositionoftheparkinglotsinrelationtothenumberofcarsandofthePVareaneededtochargethem.Fig.2.21ShifttowardselectricitydrivenenergyconversiontechnologiesandCHP.44Tenkeyprinciplesforzero-carbonruralvillagedesignFig.2.22Renewableenergytechnologysuitabletosupplyazerocarbonvillage:SolarPV,solarthermal,miniandmicrowindturbines,minihydroplants,biomassgasificationunitcombinedwithaninternalcombustionenginedrivinganalternatorforprovidingelectricityandheat,biomassdigestersforbiogasproductionfromsewagewaterandfoodwaste,tobeusedalsoinaCHPsystem.Fig.2.23Relationshipbetweenannualelectricityconsumptionofanaveragedwellinginabuildingandthemaximumnumberoffloorsinthesamebuildingforbalancingtheannualconsumptionofalldwellings,fordifferentdwellingsizes.CalculationforShanghai(PudongAirport)solarradiationdata.MAXIMUMHEIGHTOFAZEROENERGYBUILDINGINAVILLAGEWITHTHESAMECLIMATEASSHANGHAIExample:a)highlyefficientbuilding(EuropeanClassAstandard)with100m2apartments,b)householdelectricityconsumption(plugloadsonly)asintheEuropeanbestpractices(GermanyandItaly),c)electricityforcarsnotproducedinthevillage,thentheoverall(plugloads+heatpumpsforheating,coolingandhotwater+cookingwithinductioncooktop)householdelectricityconsumptionwouldbebetween4,500and5,000kWh/year.Figure2.23showsthatthemaximumnumberoffloorscompatiblewiththeconditionofzerocarbonbuildingsis5.Ifalsotheelectricityconsumptionofelectricvehiclesisincluded,themaximumnumberoffloorsis4orless.Incaseofsmallerareadwellings,themaximumnumberoffloorsdecreases.45Net-ZeroCarbonVillagePlanningGuidelinesfortheYangtzeRiverDeltaRegioninChinaBiogasproductionfromliquidorganicwasterequiresappropriatedesignofthesewerageandprovisionforthenecessaryspacetoaccommodatetheanaerobicdigestionplantor,alternatively,individualdigestersforeachbuilding.Syngasproductionrequiresspacetobeallocatednotonlyforthegasifier,butalsoforwoodstorageandpre-processing.Electricityproductionfromsolarandwindenergyisnotprogrammable,asPVsystemscannotproduceatnightandbothPVandwindsystemsproducemoreorlesselectricityaccordingtothemeteorologicalconditions;itisveryunlikely,thus,thatinstantaneousdemandandpowersupplymatch.Thisisthemainlimitingfactorofself-consumption,definedastheamountofrenewableelectricityconsumedwhileitisbeingproduced.Eveniftheannualamountofrenewableenergyproducedequalstheannualconsumption,itisnecessarytostoreenergywhenproductionexceedsconsumptionandtorecoverthisenergywhenconsumptionexceedsproduction.Theeasiestsolutionistobeconnectedtothemaingrid,whichprovidespowerwhentherenewableproductionisinsufficientandabsorbspowerwhenproductionexceedsdemand.Thenaneconomicprobleminmanagingthesystemarises:usually–unlessthePVproducedistemporarilyincentivized–therenewableelectricitygiventothegridispaidforatfarlessthantheelectricitytakenfromthegrid.Inordertominimizethisimbalance,self-consumptionmustbemaximisedbymeansofstoragesystems.Ifaconnectiontothemaingridisnotavailableorthepowersupplyisunreliable,therearetwooptions,whichcanbeusedincombination.Thefirstoptionisthestorageofelectricitybymeansofbatteries,orothertechnology,suchaspumpedhydroelectricstorage,orflywheels,orcompressedair;thisstoragecanbeeitherconcentratedordistributed,i.e.withindividualbatteriesineachhouseandconnectingelectriccarbatteriestothemini-grid,usingthemasenergysourcewhenthecarisidle.Thesecondistohaveabackupprovidedbyageneratorsuppliedwithprogrammableenergysources,suchasfossilfuelsorbiomass,whichintervenesasthemaingridwoulddo.Acontrolsystemisnecessaryforthemanagementofboththestorageoptionandthegenerator,toregulatetheiroutputsothatinstantaneouspowerdemandismetbythecorrespondinginstantaneouspowerproduction.Thesameoptionscanbeusefullyadoptedformaximisingself-consumptionwhentheconnectiontothemaingridisavailableandreliable.Fig.2.24Conceptofamini-grid46Tenkeyprinciplesforzero-carbonruralvillagedesignSmartgridAlltheseoptionsshouldbecomplementedbyasystemcapableofcontrollingtheelectricitydemand,creatingasortofvirtualstoragebyinterruptingthepowertoheatingorcoolingsystems,forexample,forafewminutes.Inthiswaynochangecanbeperceivedbyfinalusersintermsofthermalcomfort,butforthesameperiodsomeextrapowerismadeavailableforotherloadsofthegrid,avoidingthepurchaseofpowerfromthemaingridorthedischargeofthestorage.Mini-grids,ormicro-grids,andsmartgridsderivefromthisapproach,andtheyaredefinedaslocalenergysystemsofdistributedenergyresources,distributedconsumersandstorage.Amicrogriddesignedforazerocarbonvillageincludesprogrammableandnon-programmablerenewablegeneration,energystoragefacilitiesandloadcontrol(Figure2.24).Thissystemisscalable,whichmeansthatgrowingloadsmayrequiretheinstallationofadditionalgeneratorswithoutanynegativeeffectonthestableandreliableoperationoftheexistingmicrogrid.Diversityofbuildingfunctions(mixedlanduse)andsocio-economicdiversitymakeapositive,veryimportant,contributiontothedevelopmentofcost-effectiveminiandmicrogridsandtotheirresilience.Theincreasedcost-effectivenessisduetothefactthatsuchdiversityallowsthedailyelectricityloadpatternstobesmoothed,thusreducingthesizeofthestorageneeded,astheloadmovesfromproductive/servicesusestoresidentialuses,whenpeoplegohomefromwork.Socio-economicdiversityalsohelps,asitmeansthereisavarietyofbehaviours.Theincreasedresilienceofthelocalenergysystemderivesfromthevarietyofrenewableenergysourcesandtechnologiesused.Forthisreason,relianceonasinglerenewableenergysourceisnotawiseoption,andaresilientsettlement’senergysystemshouldbedesignedincludingasmanysourcesandtechnologiesaspossible,andtheprovisionofsomeexcessinstalledpowerisrecommended.Designsuggestions◊Minimizedependenceonagreatermunicipalgridfortheenergyneedsofthecommunity.Takeadvantageofonsiterenewableresourcestogeneratetheenergyrequiredtomakethevillageoperate◊Considerthatsmallscale(microandmini)windturbines,iflocalwindpotentialissufficientlyhigh,areagreatopportunityifcoupledwithpvpanels,becausetheycomplementsolarproductionwhenthesunisnotavailableandtheyreduceback-uppowerneeds.◊ConsiderbiomassfuelledCHPproductionbasedongasificationprocesswithwoodcomingfromsurroundingforestmanagementand/orcomplementedbystreetandparktreepruning.◊Considerbiogasproduction.Bio-digestersusingorganicwasteproductsareanotherfrontierforachievinglocalself-sufficiencybyusingthegasforfuellingachpsystem◊Considerthepossibilityofestablishingasmart-gridsystematthevillagescale.Smart-gridsormicro-gridsareagreatoptionnotonlywhenareliablecentralizedenergynetworkislackingorunreliable,butinanycase,becauseitistheprerequisiteforazerocarbonvillage.◊Considerthatbiomassfuelledchpsystems,beingapotentiallyprogrammableenergysource,couldhavethefunctionofenergystorage,reducingtheneedforbatteryorotherkindsofenergystorage.47Net-ZeroCarbonVillagePlanningGuidelinesfortheYangtzeRiverDeltaRegioninChinaPRINCIPLE6:WATERCYCLEAllthroughthelastcenturywaterhasusuallybeensubjecttoalinearprocess:(i)catchment,(ii)transporttothesettlement,(iii)treatmenttomakeitpotable,(iv)capillarydistributiontoeachapartmentviaanetwork,(v)disposalofwastewaterthroughindividualcollectionsystemsconnectedtothesettlement’sseweragenetwork,(vi)conveyancetoacentralizedwastewatertreatmentplant,fromwhichtwoproductsderive:watercleanenoughtobeacceptablefordischargeintothesea,alakeorariver,andasludgethat,dehydrated,canbedisposedofinalandfillorburnedinanincinerator.Withagrowingpopulation,thedemandforwaterhasbeenrisingandmoreandmoreoftenwatershortagesarebeingexperienced,becauseofthelinearapproachusedinsettlements’watermanagement:themorepeople,thehigherthedemand,thehigherthesupplyfromaqueductsorwells.Inturn,thegrowingdemandisnotsatisfiedbecauseofthenaturallimitsofthesource,thecapabilitiesoftheinfrastructureandtheeffectsofclimatechange,whichhasmadetheusualsupplysystemsunreliable,becauseofchangesinboththeprecipitationpatternandriverflowwhichaffectswaterreservoirs.Thislinearapproachisnotconsistentwithazerocarbonvillage,notonlybecauseoftheabovementionedreasons,butalsobecausetheusualwatersystemFig.2.25Theidealwatercycleofasettlementrequiresenergyforpumping,distributingpotablewaterandtreatingwastewater,butitisnotcapableofrecoveringtheenergypotentialofwastewater.Instead,acircularapproach,instead,shouldbeadopted.Wemustviewwateraspartofacirculareconomy,whereitretainsfullvalueaftereachuseandeventuallyreturnstothesystem:asysteminwhichwatercirculatesinclosedloops,allowingrepeateduse.Asafe,sustainableandresilientvillageshouldbeabletorelymainlyonrainwaterandtreatedwastewaterforproviding,atdifferentqualitylevels,allthewaternecessarytofulfilthecommunities’needs,basedonthecycledepictedinFigure2.25.Sustainablewatermanagementembraces:•conservationofwatersources;•useofmultiplewatersourcesincludingrainwaterharvesting,stormwatermanagementandwastewaterreuse;•treatmentofwatertotheextentitisneeded,exploitingtheenergythatwastewatercanproduceforthebenefitofthevillageandthenutrientpotentialofwastewaterforthebenefitofagriculture.48Tenkeyprinciplesforzero-carbonruralvillagedesignFig.2.26RooftoprainwaterharvestingsystemFig.2.27Rainwaterharvesting:processdiagramfordrinkingwaterRainwaterharvestingRainwaterisafreesourceofnearlypurewater,andcanbeharvestedfrom:•rooftops.•pavedandunpavedareas,i.e.stormwaterdrains,roadsandpavementsandotheropenareas.Rainwaterharvestingisanimportantwatersourceatthebuildinglevel,andinmanycasescouldmeetallthewaterneedsofabuilding,oravillage;partoftherainwaterharvestedcanbeconveyedtowellsforgroundwaterrecharge(Figure2.26).Iftheentiredemandforwaterofabuildingistobemetwithrainwater,thereisalimittothemaximumbuildingheight–inthesamewaythereisforenergyself-sufficiency-derivingfromthebalancebetweenwaterdemandandwatercollection;high-riseresidentialbuildingsprovideasmallroofarea/waterdemandratio,sothattheamountharvestedisinsufficienttomeetthedemand.Withafewexceptions,rainwatercollectedcontainsimpurities.Onceraincomesintocontactwitharooforcollectionsurface,itcanwashmanytypesofbacteriaandothercontaminantsintothecisternorstoragetank.Ifrainwaterisforpotableuse,itneedstobetreated(Figure2.27).49Net-ZeroCarbonVillagePlanningGuidelinesfortheYangtzeRiverDeltaRegioninChinaAtvillagescalearooftoprainwatercollectionsystemwithasinglelargecommonstoragetankshouldbeconsidered,aspartofthevillage’sinfrastructure,aswellasafiltering/disinfectionsystemformakingstoredrainwaterpotable.Theadvantages,comparedwithindividualstoragetanks,couldbeinthelowercostofstorageandmaintenance,andinthepossibilityofobtainingsaferwaterquality,asskilledoperatorscanmanagethewatertreatmentsystem.Ifpotablewaterisavailablethroughanexistingcentralizednetwork,rainwatershouldbeconsideredfornon-potableuses,soreducingtheflowofpotablewaterthatneedstobeprovidedtothesettlement,withtheconsequenteconomicbenefitsderivingfromsmallerpiping.Thisuseofrainwaterimpliestheneedforseparatepipingfornon-potablewateruses,whosecostcouldbeentirelyorpartiallyoffsetbythesavingsderivingfromthesmallersizeofthepipingrequiredforthepotablewaternetwork.RunoffRunoffisthatcomponentofrainwaterwhichflowsoverasurfaceandoutofthecatchmentarea:itisgeneratedwhentheintensityoftherainfallreachingthegroundexceedstheinfiltrationrateofthesoil.Runoffinruralareasorinparksisaverylimitedpartoftherainfall,astheinfiltrationrateishigh;theoppositeoccursinbuilt-upcontexts,duetothelargeextentofimpervioussurfaces(Figure2.28).Usually,stormwaterconveyancesystemsaredesignedtoconveytherainwaterthatfallsinthecatchmentareastotheneareststormwaterdrainortothesewerage.Inordertoreusethiswaterlateronandtoavoidoverloadingthesewerage,collectedrainwatershouldinsteadbedirectedtoarechargestructure,torestoreaquiferextractionpotential.Alternatively,orinconjunction,aquiferscanberechargedbycollectinginterceptedstormwater,slowingitdown,Fig.2.28Runoffpercentageinurban(left)andrural(right)context.Thevaluesareindicativeandrepresenttheoppositeextremes.Fig.2.29Microbasins,swalesandporouspavements50Tenkeyprinciplesforzero-carbonruralvillagedesignFig.2.30ConceptofspongevillageFig.2.31Conceptofspongevillageandretainingorroutingitthroughthesite’slandscapeusingmicrobasins,swalesandotherwaterharvestingstructures,suchasporouspavements(Figure2.29).Capturingandusingstormwaterrunoffalsoreducessitedischargeanderosion.Avillageappropriatelyimplementingtheabovetechniquesformanagingstormwaterandrunofffulfilstheprinciplesoftheurbanwatermanagementprogrammecalled“SpongeCity”putforwardinChinain2014.Aspongecity,oringeneralaspongesettlement,isdesignedinsuchawayastomakesustainabledrainagesystemspossible(Figure2.30).Theaimofsustainabledrainagesystemsistorelievetheloadonthesewersystem,reuse/recyclestormwaterasacontributiontotheclosureofthewatercycle,withtheaddedadvantageofreducingtheriskoffloodsandwaterdamage.DecentralizedwastewatermanagementWastewaterproducedbyhouseholdsisusuallysubdividedintoblackwater,greywaterandstormwater(Figure2.31).Blackwateristhewastewaterfromthetoiletandthekitchensink;greywaterconsistsofthewastewaterfromwashing/bathingandthewashingofclothes.Whatusuallyhappens,whenasewagenetworkexists,isthatthethreesourcesofwaterareallconveyedtothesewage,mixed,andthensenttothecentralizedwastewaterplant.Itwouldbefarbettertocollectrainwaterseparatelyandtotreatgreywaterlocally,whichrequiresasimpleprocessbecauseofitslowlevelofcontamination,andreuseitlocallyfornon-potableusessuchastoiletflushing,laundrywashing,plantwatering,etc.Thereuseofbothrainandgreywaterhasthepotentialtoreducethedemandforanewwatersupply,reduceboththecarbonandthewaterfootprintofwaterservices,andmeetawiderangeofsocialandeconomicneeds.Inparticular,itcanhelpreducethedemandformorecostlyhigh-qualitypotablewater.Ontheotherhand,thereuseofgreywaterand/orthedirectuseofrainwaterrequiresdedicatedpiping,otherthantheusualoneforpotablewater.Adualpipingsystem,ofcourse,ismoreexpensivethanasingleone.Thetreatmentofblackwater,mixedornotwithgreywater,isamorecomplexissue,becausetherearealsohealthhazardimplications.Thecurrenttrendistocentralizethetreatmentsystems:whenmanysmallvillagesarescatteredinaterritory,usuallytheirwastewaterisconveyedtoasingletreatmentplant.Conventionalwastewatertreatmentplantsrequireasignificantamountofenergy.Asustainablealternativetocentralizedwastewatertreatmentplantsisadecentralized,villagescale,watertreatmentsystemsuchastheDEWATS(DecentralizedWastewaterTreatmentSystem),orothersystemsbasedonthesamebasicprinciples.DEWATSisamodularsystemapproachwhichensuresefficientperformanceinwastewatertreatmentandallowstheon-siteclosureofthewatercycle.Inaddition,itisanapproachthatdoesnotnecessarilyhavehighlyskilledmanpowerandmaintenancerequirements(buthashighqualitystandardsinplanningandconstruction)anditsenergydemandisfarlessthanconventionaltreatmentsystems.Anindirectadvantageofthesystem,thus,isthatitcreatesemploymentopportunitiesforlowskilledworkers,whichisconsistentwiththerequirementofmixedincome,thathasbeenhighlightedinPrinciples51Net-ZeroCarbonVillagePlanningGuidelinesfortheYangtzeRiverDeltaRegioninChina2and5andthatwillbefurtherdiscussedinPrinciples9and10.TypicalDEWATSapplicationssuitableforwastewatertreatmentatvillagescalearebasedonthreebasicmodules,whicharecombinedaccordingtodemand(Figure2.32):•primarytreatmentinseptictanks,Imhofftanks,orbio-digesters(thebenefitsofanaerobicdigestionofsewagesludgearewidelyrecognisedandthetechnologyiswellestablished)•secondaryanaerobictreatmentinbaffledreactors(baffledseptictanks)andfixed-bedfilters•tertiaryaerobictreatmentinsub-surfaceflowfiltersconstructedwetlands(horizontalgravelfilters)Apost-treatmentinaerobicpolishingpondsmaybeconsideredaccordingtothefinalconditionsofeffluentsandtheirintendeduse.DEWATSisjustanexample.Other,technologicallyadvancedsystemsfordecentralizedwastewatertreatmentareavailable,andshouldalsobeconsidered,providedthattheyproducebiogas,allowtheuseofdigestateforagriculturepurposes,allowthereuseoftreatedwateranddonotrequiremuchenergytobeoperated.Sludgederivedfromwastewatertreatmentisrichinnutrientsandcanbeusedasfertiliserintheformofasolidproduct,afterithasbeendewatered,driedand/orcomposted.Treateddomesticorcommunitywastewaterissuitableforirrigatingparks,flowerFig.2.32DEWATSconfigurationschemesuitableforsmall-scaledecentralizedwastewatertreatment8152Tenkeyprinciplesforzero-carbonruralvillagedesigngardensandagricultureplotsaroundthevillage,thusreducingdependenceonpotablewater,providedthatcompatibilitybetweenthepathogencontentandthekindofagriculturalproductsbeingfertilisedcanbeguaranteed,i.e.thatnohealthhazardderivesfromthispractice.Irrigationwaterpercolatesthroughthesoil,contributingtoaquiferreplenishment.Rechargeofgroundwaterisprobablythebestwaytoreusewastewater,asgroundwatertablestendtobeloweredalmosteverywhere.Wastewaterwasoncefreshwater,andfreshwaterdrawnfromwellshaspreviouslybeengroundwater.Sustainabledevelopmentisdirectlyrelatedtotheavailabilityofwaterfromtheground.Thus,therechargingofthissourcebecomesabsolutelyvital.Themainquestionistowhatextentthewastewaterneedstreatmentbeforeitcanbedischargedintotheground.Duetothehighriskofgroundwaterpollution,thistopicisverydelicateandneedstobehandledwiththegreatestprecaution.Inasustainablewatercycleatvillagescalethefollowingwaterflowshavetobeconsideredandcombined:1.Potablewaterflowfromacentralizednetwork,ifany2.Potablewaterflowfromcommonvillagewells3.Roofrainwaterflowtostorage4.Rainwaterflow,fromstoragetodomesticuses,i.e.WCflushing,washingmachine,irrigation5.Rainwaterflowfromstorage,filteredanddisinfectedtomakeitpotable,fordomesticuses,i.e.kitchenandbathroomtaps6.Roofrainwaterflowdivertedforrecharginggroundwateraquifers7.Stormwaterflowcollectedfromimpervioussurfacestostorageorforrecharginggroundwateraquifers8.Wastewaterflowfromhouseholdstothetreatmentsystem(couldbetwoseparateflows,ifblackwaterandgreywaterarenotmixed).9.Treatedwastewaterflowtogreenareas(parks,streetgreening,around-the-villageagricultureetc.)10.Treatedwastewaterflowtorechargewellsorrechargebasins11.Treatedwastewaterflowtowaterbodies(alternativetoflows9and10)Flows2,3,4and5couldbeusedasasubstitute,partialortotal,totheconventionalpotablewaternetwork.Theextracostduetothepipingtoandfromthestorageandthepipingfornon-potablewater(dualwatersystem),plustheextracostoffiltering/disinfectiondevices,couldbecounterbalancedbythesavingsobtainablebynothavingtheconnectiontothecentralizedwaternetworkor,ifconnected,becauseoftheaveragesmallerpipingdiameteroftheconnection.Suchadistributed,localprovisionofwaterwouldalsobefarmoreresilientthantheusual,centralizedsystem.Theextracostofrechargingtheaquiferwithboththeexcessroofrainwaterandstormwateriscounterbalancedbytheconsequenthighreliabilityofthewatersystemandbytheeffectivedefenceagainstflooding.Designsuggestions◊Minimizedependenceoncentralizednetworkforthewaterneedsofthevillage.Collectrainwateronrooftopsandstoreitfornon-potableusessuchasflushingtoiletsandonsiteirrigation;usebio-swalesandsurfacesystemsinsteadofstormdrainswheneverpossible.◊Considerthecommunityself-sufficiencychanceofferedbyrainwaterharvestingandlocalvillagescaletreatmenttomakeitpotable◊Thelocationanddesignofpublicopenspace,whereitincorporateswatermanagementmeasures,shouldpromotethedetentionofrun-offthroughtheuseofswales,depressions,contourbanks,rockchannels,pebblepaths,reedbedsorothersuitablemeasureswithoutcompromisingtheprincipalfunctionofthepublicopenspace◊Streetsshouldallincluderunoffmitigationsystemssuchasswalesorotherpervioussurfacescapabletoabsorbandstorestormwater.Hence,provideenoughextraspaceforhostingsustainableurbandrainagesystems◊Trytohavethelargestperviousareaspossible,astheyreducerunoff,andthusthefloodingdanger◊Considertheimportanceofthepotentialcontributionofbiogasproductionfromwastewatertotherenewableenergysystem,notmuchfortheamountbutmainlyforitscapabilitytoproduceelectricityondemand,thusimprovingthemicro-gridself-consumptionshare◊Considerdecentralizedwastewatertreatmentasasustainableoptionincreasingthecommunityresilienceandofferingemploymentopportunities,becausewastewaterisaresource,intermsofenergy,soilnutrients,irrigationandwatertablesreplenishmentviapercolationandthisresourceisbestexploitedatlocallevel.◊Considertheneedforclosingnutrientscycle,i.e.Thattheonescontainedinthewastewatershouldalwaysbereturnedtothesoilusedforprovidingfood◊Treatandreuseatleast50%ofwastewateron-site55.◊Evaluatethethreattohealththatmayderivebythepossiblecontaminationofwatertablecausedbyincompletelytreatedwastewater.Involvehydro-geologyandwater-bornediseasesexperts.53Net-ZeroCarbonVillagePlanningGuidelinesfortheYangtzeRiverDeltaRegioninChinaPRINCIPLE7:SOLIDWASTEModernsocietiesaresufferingfromtheproblemofwastemoreandmore.Wastemanagementconstitutesahugecost,botheconomicandenvironmental.Wastecanbesubdividedintotwomainstreams,accordingtotheirnature:inorganicandorganicwaste.InorganicwastemanagementPercapita,inorganicsolidwaste,hasbeengrowingasaconsequenceoffourfactors:a)improvedeconomicconditions,b)asharpincreaseingoodsavailableonthemarketwhicharemostlyfashionable,uselessafterashorttimeandthusdiscarded,c)singleusegoodsandd)packaging.Theveryfirstactionaboutwastemanagementshouldbe–accordingtotheprinciplesofcirculareconomy–areductionintheinflowofgoods,whichistheprimarycauseofthewasteflow.Azerocarbonvillage,tobesustainableandcapableofshowinghowaharmoniouscoexistencebetweenhumansandnaturecanbeachievedintheprocessofimprovingthequalityoflife,shouldimplementseveralactionswiththeaimofreducinginorganicwaste.Forexample,packagingcanbereducedbyencouragingthesaleofproductsinbulk;reusecanbeencouragedbyimplementingabottleandcandepositreturnscheme;therepairofappliancesandclothingcanbeencouragedinseveralways,atthesametimecreatingnewemployment;singleusegoodscanbebanned;andsoon.Insuchavillage,theamountofinorganicsolidwastewouldbesignificantlyreduced.Itwouldbeseparatedatorigin(i.e.bycitizensbeforetheircollection)intothemaintypes,suchasglass,metals,paperandplasticandother.Alternatively,thesortingcanbedonelater,inaspecialfacility,thusreducingthecitizens’commitmentandeffort,astheywouldonlyberequiredtoseparateorganicandinorganicwaste.OrganicwastemanagementToreduceorganicwaste,thefirstpriorityshouldbetoreducefoodwaste(inEuropeandNorth-Americathepercapitaconsumers’foodwastecanreach95-115kg/year56).Thisrequirestwocombinedactions:a)reductionoftheexcessfoodpurchased,whichimpliesbehaviouralchangeb)increasethenumberandproximityofshopswherefoodcanbeboughteveryday,insteadofdrivingtoasupermarketeveryweek,whichimpliesappropriatevillagedesignandgovernance.Aftermeasureshavebeentakentoreduceorganicwaste,itshouldbereintroducedintothewidernutrientcycleandexploitedforitsenergypotential.DomesticandserviceswastemanagementatvillagescaleTosumup,thebestpracticeinwastemanagementconsistsoftheimplementationofthecirculareconomyprinciples,i.e.:theorganicwastetransformedintoenergy(biogas,viaanaerobicdigestion)andfertiliser(oronlyfertiliser,viacomposting);thereusableandtherecyclablematerialssortedout,pre-processedandsentbackintotheproductioncycle;thepartthatisleftconveyedtolandfillor,better,incineratedinaCHPplant.Thisapproach,alreadypracticedinthemostadvancedandenvironmentallysensitivesettlements,isbestimplementedatvillagescale,fortworeasons.Thefirstisthatsortingandpre-processingtheinorganicwastelocallyandprocessingtheorganicpartlocallyreducesthedistancetravelledbywaste,thusreducingtheemissionsofthewastemanagementsystem;moreover,thedistancetravelledbytheorganicfertiliserfromtheproductionsitetothefieldsisalsoshortened,withfurtherenvironmentaladvantages(besidestheeconomicone).Segregationatsourceprovidesrecyclablesthathavetheleastdegreeofcontamination,butitrequiresthecooperationofcitizens.Thiscooperationcanbemoreeasilyobtainedifthebenefitsofawell-managedsegregationareclearlyvisibletothevillage’sinhabitantsandifthestakeholdersintheprocess,fromcollectiontotherecycledproduct,arelocal,i.e.theyliveandworkinthesamevillage.ThisrequirementfitsperfectlyintothemixedincomerequirementwhichhasbeenpointedoutinPrinciples2and5andwillbefurtherdiscussedinPrinciples9and10.Inawastemanagementsystematvillagescalewherecitizensarerequestedtoseparateonlyorganicandinorganicfractions(Figure2.33),sortedsolid,non-organic,wasteisbroughttoafacilitywheretherecyclablematerialsarefurthersorted,andcleanedifnecessary,andfromtherearehandedovertothedealerswhowillbuythem.Non-recyclablematerialsaresentfromthefacilitytolandfillortotheincinerator.Theadvantages,botheconomicandecological,ofthisapproacharemany.Plasticitemssuchasbottles,oringeneralcontainers,oncesortedinrelationtotheirchemicalconstituents,canbecompressedwithverysimpleandinexpensivemachines.Inthiswayplasticwasteacquiresaneconomicvalue,insteadofbeingacostforthecitizen.Therearealsoadvantagesformetals:copperwiring,forexample,onceseparatedfromtheprotectivematerials,canbesoldatagoodprice,54Tenkeyprinciplesforzero-carbonruralvillagedesigninsteadofpayingforitsdeliverytoacentralizedwastemanagementcentre;thesameappliestoaluminiumandothermetals.Similarly,electronicwaste,cangainvalueifalreadyseparatedintoitsmostvaluablecomponentsreadyforrecycling.Smallscaleentrepreneurialinitiativescanbetriggered,andemploymentopportunitiesenhanced.Organicwastefollowsadifferentpattern,asitisfoodwastecontainingnutrientsthatcomefromthesoilandthatshouldreturntothesoiltoclosethenutrientscycle.Returningthefoodwastetothesoil,afterappropriatetreatment,hasadoubleadvantageintermsofemissionsreduction.Oneadvantagederivesfromthefactthatfoodwastecanbeusedtofeedananaerobicdigester,thusproducingbiogasandaslurrythatcanbeusedasfertiliserdirectlyorafterappropriateprocessing(thesecondoptionissaferfromtheheathpointofview).Theproblemwiththeslurryisthatfoodwastemaycontainnotonlynaturalnutrients,butalsocontaminantsderivingfromtheagriculturalproductionprocess.Iffoodwastecomesfromindustrialagriculture,andpesticides,herbicidesandotherchemicalcomponentshavebeenusedinlargeamounts,tracesofthemwillbefoundinfoodwasteandthederivingslurrywouldcontaincontaminantsthatwouldreachthesoil.Othercontaminantsmayderivefrommeatwaste,whenitisthemeatofanimalsfromintensivebreeding,whichthuscontainsantibiotics,hormonesorotherbiologicalcomponents.Thisisaproblemaffectingmanycountries,whereinsomecases,forthisreason,theuseofslurryasfertiliserisnotallowed.Inazerocarbonruralvillage,however,thisproblemshouldnotarise,asitsfarmsshouldadoptorganicfarming,intensivebreedingshouldnotexistandvillage’sinhabitantsshouldeatprimarilylocallyproducedfood,thisbeingoneofthemostdistinctivefeaturesofazerocarbonvillage’seconomy.Anotherproblem,however,mayarisefrominappropriatebehaviourofthevillage’sinhabitants,iftheyincludeanythingotherthanfoodwasteintotheorganicbag(suchasresidualmedicines,forexample,ornon-organicFig.2.33Decentralizedsolidwastemanagement55Net-ZeroCarbonVillagePlanningGuidelinesfortheYangtzeRiverDeltaRegioninChinawaste),thuscontaminatingtheorganicwaste.Thesecontaminantswouldeitherhampertheanaerobicfermentationprocessormaketheslurryunsuitableasfertilisertoreturntothesoil.Inazero-carbonvillage,whichshouldbeashowroomofsustainability,theinhabitants’awarenessshouldbesuchthatthisproblemdoesnotarise.Initially,duringtheprocessofawarenessraising,itmaybewisetouseonlyfoodwastefromrestaurants,thisbeingmoreeasilycontrollable.Lesseffectiveforfightingclimatechange,butstillapracticefulfillingtheprinciplesofacirculareconomyisconveyingorganicwastetothevillage’scompostingplant.Thefertiliserfromthecompostingplantorfromthedigestercanbeusedeitherintheruralareassurroundingthevillageorinthevillage’sgreenspaces.OtherorganicwastemanagementOtherorganicwaste,suchaslandscapingwaste(parks,lawns,streettreesresiduals)and,ifavailable,around-the-villageagricultureresidualsorlivestockmanurecanalsofeedthebiogasdigester;alternatively,allthevegetalwastecanbesenttoacompostingunit.Aspreviouslymentionedinrelationtodomesticorganicwaste,aproblemmayariseifagricultureresidualsarecontaminatedbychemicals(pesticides,herbicides,artificialfertilisers)and/orlivestockmanurecontainsantibiotics,hormonesorchemicalcontaminantsderivingfromthebreedingprocess:inbothcasestheanaerobicfermentationcouldbeimpairedand/ortheslurrymaybecomeunusableasfertiliser.Tocompletetheclosureofthevillage’sorganicwastecycle,branchesfromtreepruningcouldfeedavillage’sgasifier,alsoproducingbiocharwhichcanbeusedasasoilimprover.Finally,aseparateroutemustbeprovidedforthefractionofhazardouswastethatmayderivefromindustrialprocesses,ifany,ormayberelatedtochemicalsusedinagriculture.Forthiskindofwaste,theusualprocedures,regulatedbylaw,havetobefollowed.Designsuggestions◊Considerincludingintheplanarecyclingorreusefacility,dedicatedtothecollection,separation,pre-treatmentandstorageofmaterialsforrecycling.◊Considerthepossibilityofreusinglocallyboththeorganicpartofsolidwasteandthevegetationresiduals(liketreesleaves)toproduceenergyandfertilizersthroughbio-digestion,orfertilisersonlythroughcomposting;thisimpliestoprovidethenecessaryspace.Fig.2.34Theoptimisedurban-ruralnexus56Tenkeyprinciplesforzero-carbonruralvillagedesignPRINCIPLE8:ENERGY,WATER,FOODANDWASTECYCLES"Atthebeginningofthecentralisedwastewatertreatmentpractice,thesystemwasalsoconceivedasameanstohelpfarmerscapturethenutrientsinthesewagepouringoutofrapidlygrowingcities;butbytheendofthecenturythewidespreadavailabilityofinexpensivesyntheticfertilizershadtakenawaytheeconomicincentivesforsewagefarming.Withoutamarketforthenutrients,itwashardtojustifydoinganythingotherthandischargingsewagedirectlytosurfacewaters57."Thus,thelong-establishedrelationshipofmutualexchangeofnutrientsbetweenthesettlementanditssurroundingruralareaswasbroken,withtwoeffects:wasteofthenutrientscontainedinwastewater,oftenproducingenvironmentaldamage,andatthesametimeproductionofnutrientsartificially,alsowithenvironmentaldamage.ThenutrientcycleAsustainablesettlementneeds,withmoremodernandeffectivetechnologiesandtechniques,torecovertheoldprinciple(Figure2.34).Thiscanbeeasierforsmallsettlementsiftheyarefedmainlybyfoodproducedinthesurroundingruralarea.Itismoredifficultforextensivefoodchains,wherethefoodisproducedbyhighlyspecializedagro-industriesanddistributedtowideanddistantmarkets:inthismodel,itisafarmorechallengingtasktoclosethenutrientcycle.Fig.2.35Thewater-energy-foodnexusThewater-energy-foodnexus:linearvs.circularmetabolismWater,energyandfoodarerelated.Waterisusedintheproductionofelectricity(forcoolinginthermodynamicpowerplantsandasenergyvectorinhydro-electricplants),andenergyisusedtopump,treatanddistributewater(Figure2.35).Waterrequiresenergyforirrigationtoproducefood,whichinturnalsorequiresenergyformakingfertilisers,forharvesting,tillage,processing,storageandtransport.Foodwaste,inturn,canproduceenergyviaanaerobicdigestion.Thewater-food-energynexusiscentraltosustainabledevelopment.Demandforallthreeisincreasing,drivenbyarisingglobalpopulation,rapidurbanization,changingdietsandeconomicgrowth.Agricultureisthelargestconsumeroftheworld’sfreshwater,nitrogenandphosphorousflowsandmorethanone-quarteroftheenergyusedgloballyisexpendedonfoodproductionandsupply.Theseglobalchallengesneedtobefacedfirstofallatlocalscale,andzerocarbonvillagesaretheplacestodoit,theplacestotakeadvantageoftheenergy-water-foodinterconnections,movingfromthepresentlinearmetabolismtoacircularone.Thestartingpointshouldbethatazerocarbonvillagerejectstheideaofwaste,beitofenergy,water,foodormaterials;instead,itshouldseektominimizewasteandtransformitintobeneficialuses.Insodoing,itshouldseektoreduceinputsofwaterandenergyfromafarandtoreducetheflowofmaterials.Thisconceptleadstoeffortstodecentralizetheproductionofenergyandfood.Italsopowersthethree“R’s”(Reduce,Reuse,Recycle)ofdecentralizedsolidwastemanagement.57Net-ZeroCarbonVillagePlanningGuidelinesfortheYangtzeRiverDeltaRegioninChinaInthemetabolismofconventional,centralized,linear,settlements,theconnectionsareone-way:thehigherthestandardforprovidingwatertohouseholds,thehigherthewaterinput,andthehighertheenergyconsumptionforwaterpurificationandforpumping;thehigherthestandardofsanitation,thehighertheenergyconsumptionforwastewatertreatment;thebetterthesolidwastecollectionanddisposalsystem,thehighertheenergyconsumptionfortransport;thehigherthewealth,thehigherthefoodinputandwaste.Inthemetabolismofconventional,centralized,linear,settlements,theconnectionsareone-way:thehigherthestandardforprovidingwatertohouseholds,thehigherthewaterinput,andthehighertheenergyconsumptionforwaterpurificationandforpumping;thehigherthestandardofsanitation,thehighertheenergyconsumptionforwastewatertreatment;thebetterthesolidwastecollectionanddisposalsystem,thehighertheenergyconsumptionfortransport;thehigherthewealth,thehigherthefoodinputandwasteInthecircularmetabolism,ontheotherhand,energy,water,wasteandfoodarelinkedinotherways(Figure2.36):•theuseoftreatedwastewaterforvegetatedareasmakesthemflourish,whichisalsobeneficialforbothoutdoorandindoorcomfort,reducingtheneedforairconditioning•theavailabilityofnaturalfertilisersandwatermeansthatpartofthenutrientsneededbythesurroundingagriculturalproductioncanbesuppliedbythevillage’smetabolism,andtheuseoflocallyproducedfoodalsoreducestheenergyconsumedforsupplyingitfromdistantlocations•organicwasteandwastewatercanproducebiogas,which,amongotheruses,canbeusedinacogenerationsystemwhosewasteheatcanmakepotablewaterfromtreatedwastewaterviavacuumdistillation,orcanfeedagro-industrialprocesses•organicwastefromagricultureproductionaroundthevillageandresidualsfrommaintenanceofgreenspacescanprovideenergy,viadigestersand/orgasifiers.•Biogasandsyngascanbeexploitedforprovidingextrastoragecapacityforthevillage’ssmartgridMoreover:•theuseofrainwaterandtreatedwastewaterforreplenishingwatertablesstopsthemfromgettinglowerandlesspumpingpowerisrequired•thereductionoftheneedforprivatetransportderivingfrommixedlandusereducesenergyconsumptionand-becauseofthereducedtraffic-thenecessarystreetwidth,withaconsequentreductionintheimperviousareas,infavourofpervioussurfaceswhichallowstormwatertopercolateandreplenishthewatertablesInazerocarbonvillage,conventionallinearprocessesaresubstitutedbycircularones;eachindividualbuildingisintegratedintoasystemwhererenewableenergy,rainwater,wastewater,organicwaste,foodandnutrientsforplantsareallinterconnectedandthecyclesFig.2.36Theidealwasteandwastewatersystem,producingenergy58Tenkeyprinciplesforzero-carbonruralvillagedesignFig.2.37Schematicofabuildingintegratedintothezerocarbonvillage’swater,wasteandenergysystemsofbiologicalmatterare,asfaraspossible,closed,incloseconnectionwiththesurroundingruralarea(Figure2.37).BeyondzerocarbonAzerocarbonvillageiscapableofcopingwiththethreatsofclimatechangebetterthanaconventionalone,becauseofitshigherresilience.Thisimprovedresiliencederivesmainlyfromthediversityofboththeenergysupply(sun,biomass,waterandwind,accordingtotheiravailability)andofthewatersupply(rainwater,wastewater,wellwaterpluswaterfromthecentralizeddistributionsystem,ifavailable).Furtherresilienceiscreatedbythereducedflooddanger,whichistheresultofamorecontrolledrunoff,becauseofthelargepercolatingareas,i.e.thegreenspaces.Moreover,azerocarbonvillageisnotonlymoreresilient,butalsomoresecure,aspoliticaloreconomiccriseswillhavelesseffectontheavailabilityofenergy,waterandfood.Thecombinationofdemandmanagementandefficientsupplyofenergyandwater,basedondecentralizedsystemsandaclosedcycleapproachappliedtobothmunicipalwasteandfoodistheonlywaytodrivesettlementstowardstheiraimofzerocarbon,butthatisnottheonlygoal.Infact,“zerocarbon”isthenecessaryconditionforcopingwithfuturechallenges,butbyitselfitisnotsufficient,asthesechallengesalsoincludetheneedforcopingwiththeothernaturalmaterialandbiologicalcyclesthatmankindhasbroken,i.e.theneedtokeepourdevelopmentwithintheplanetaryboundaries.Itisespeciallyimportantthatthethreattobiodiversityshouldbemitigatedasthemainpressureonendangeredspeciescomesfromthedestructionofnaturalhabitatsbythechangeofthenaturallandscapeintofarmedfields.Designsuggestions◊Considerthatorganicwastefromhouseholdsandsurroundingruralareascanbeusedforbiogasandfertiliserproduction,aloneorincombinationwiththeorganicwastefromthelocalseweragenetwork.Bio-digestionisconvenientatlocalscaleasitoptimizestheclosingofcyclesandreduceswasteproduction.◊Consideralwaystheprinciplesofcirculareconomywhendesigningthewater,energyandwastesystems:thesesystemsarethebackboneofasustainablevillage.◊Considerinvolving,fromthebeginningofthedesignprocess,expertsinenergy,waterandwasteenergy,enablinginteractionbetweenthem,togetherwithbiologists,ecologistsandmedicaldoctors:energy,waterandwastesystemsareintegratedandaffecttheenvironmentaswellashumanhealth.◊Preparetheexpansionofthezerocarbonapproachtoabroaderconsiderationofalltheplanetaryboundaries,i.e.Startreducingpressureonbiodiversitybyfarmingactivities.59Net-ZeroCarbonVillagePlanningGuidelinesfortheYangtzeRiverDeltaRegioninChinaPRINCIPLE9:EMPLOYMENTOPPORTUNITIESANDLEISUREThezerocarbonvillageshouldimplementanintegratedsocio-economicmodelforleveragingtheecologicaltransitionintermsofsustainablejobsandimprovedqualityoflife.Ruralcommunitieshavebeenprogressivelyagingbecauseofthelackofemploymentopportunities,whichisforcingtheyoungergenerationstomovetowardsurbanizedareas.Theavailabilityofjobsisanecessaryconditionfortheresilienceoftheruralsettlement,butthisisnotsufficient,asthejobsmustalsobeappealingandpromising,frombothpersonalsatisfactionandcareerperspectives.Tobesuccessfulinmakingthezerocarbonvillageagoodplacetolive,systemicattentionshouldbepaidtotheenablingfactorsofbothemploymentopportunitiesanddesirablelifestyle.Socialinnovationshouldbecombinedwiththeimplementationofzerocarbonsolutionsandcirculareconomymodelsbothinagricultureandtourism.Positionsininnovativeandadvancedactivitiesshouldbemadeavailableinordertobringbackyoungskilledpeople,thosewhowereforcedtomovetothecitytofindajob,andtopreventmoreyoungpeopleleavinginthefuture.Theseinnovativeactivitiesshouldbelinkedtothetransitiontowardsamodernised,sustainableagriculture,enrichedbytheuseofnewtechnologiesandtechniques.Farmingshouldbepromotedasahighlyregardedprofession,whichbringstogethertraditionandinnovation.Thecriticalroleofecologicallymindedfarmersinthepreservationoftheenvironmentalequilibriumshouldbesociallyrecognized.Thankstodigitaltechnologies,thezerocarbonvillagecanhost“light”companies,whichofferqualifiedjobswithaminimumenvironmentalfootprint:•decentralizedR&D,designandproductdevelopmentoffices•softwaredevelopment•callcentres•onlineprofessionalservices•digitalmediaproduction(webseries,cartoons,videogames)•onlineeducationalservices.Thelocalizationofsuchservicecompaniesshouldbeincentivized,throughattractivepoliciesandsupporttostart-ups.Asettlementisalsomademoreattractivebythepleasantnessofthebuiltareaanditssurroundingsandbytheservicesandleisureopportunitiesoffered.Finally,asettlementcanbemoreappealingthanothersFig.2.38Themainfeaturesofasuccessfulzerocarbonruralvillage.60Tenkeyprinciplesforzero-carbonruralvillagedesignbecauseitgivestoitsinhabitantsboththeadvantagesoflivinginabeautiful,healthycontextandtheprideofexperiencingtheanticipationofasustainablefuture.Thesecharacteristicswouldalsoattracttourismandwealthyretiredpeoplewhowouldchoosetomovetothezerocarbonvillagefromthecongestedcityareas.Inaddition,digitalnomads,whocanestablishtheirworkingplacewithoutspecificconstraints,couldbepersuadedtoconsiderthezerocarbonvillageasanoptionfortheirmovetoabetterplacetolive.Bycombiningallthesustainabilitymeasuressuggestedinthepreviousprinciples,andtheaboveconsiderations,azerocarbonruralvillagecanbedepicted,inshort,asinFigure2.38.Recommendationsforsocio-economicpolicies•Localsocio-economicpoliciesshouldconsiderthefollowingrecommendations:•Promotethecombinationofhigh-qualityagriculturalproductionwiththecontextualpreservationofnaturallandscapesandnaturalbiodiversity.•Magnifythehealth-foodnexus,promotingthequalitiesoflocal,highqualityfoodinhealthydiets.Thisapproachshouldalsoinvolveprimaryfoodbrandsthatshouldbeencouragedtointroducesuchtraceableingredientsintotheirsupplychain.•Promoteandimplementthecirculareconomyprinciples;startconnectingthevillage’smetabolismwiththeagriculturalproductionsystembytreatingandreusingwastewaterandfoodwasteinordertoclosethenutrientscycleasstatedinPrinciple8.•Usesustainableagriculturefortriggeringindirecteconomicactivities,suchasthesaleoflocallyproducedfood,handicrafts,farmhousesmallscaleagro-industry,rentalactivities,buildingmaintenance,butalsohigh-techstart-upsrelatedtosustainablefarmingpractices,precisionagriculture,ITapplicationsforcropandsoilmonitoring,e-commerce,etc.•Expanddigitalconnectivityandfavourinnovationinfrastructuresinthevillage,suchasfab-labs58andhubswherecitizenscanmeetanddevelopsolutionsforimprovingthecommunity.•Promotethecultureofthe3Rs,reduce,repair,recycle59.•Introducepositionsforhighlyskilledaswellasmediumandlowskilledworkersinthemanagementandmaintenanceoftheadvanced,integratedvillageservicesystems(water,energy,waste).•Introduceattractiveprojectsforcreativeyoungpeopleinordertodevelopalocalcreativeclass(artists’residencies,smallgrantsforstart-ups,theofferofspacestoberegenerated,projectsmatchingolderlocalpeopleandyoungurbaninnovators60).•Supportservicecompaniesinopeningdecentralizedofficesemployinglocalpeople.•Improvethescienceandtechnologysupportsystemtoruralareas.Promotethecooperationofindustry,academiaandresearch,highlightingthescientificconnotationofruralrevitalization.•Favourthelocalprocessingofagriculturalproducts.•Developecotourism,ecologicalbreedingandotherindustries,andbuildaruralecologicalindustrialchain.•Promotethevillageasadesirableresidenceforretiredpeople.Specificattentionshouldbepaidtothosewhoaresociallyactiveandcouldcontributewiththeirtimeandconnectionstothedevelopmentofthecommunity.•Supportthe“senseofcommunity”asadistinctivecharacteristicofruralvillagesincontrasttoamoreindividualisticurbanlifestyle.•Givethevillagethebrandofasustainableandvibrantplacewherelifeiscomfortable,pleasantandslow:theidealplaceforchildrentogrowupin,foradultstoworkin,andfortheelderlytospendtheirtime.TowardsamixedincomepopulationTobereallyattractive,thevillageshouldbebeautiful,withwell-maintainedbuildings,greenspacesandaclearidentityderivingfromitsculturalheritage,whichisvisibleinitslayoutandinitsbuildings.Aprerequisiteforcreatingsuchapleasantcontext,istoachievenotonlyamixedlandusebutalsoamixedincomepopulation.Thisisdesirableformanyreasons:•Evidencesuggeststhatwalkable(i.e.,denser,mixed-useandmoreconnected)environmentsandthepresenceofavarietyofdestinationsandhousingtypesandpopulationsub-groupsenhanceasenseofcommunitybyencouragingandfacilitatingsocialtiesorcommunityconnectionsthroughopportunitiesforresidentstomeet,interactandengage61.•Mixedincomehousingisalsocrucialforsocialequityandforsupportingtheoperationofdecentralizedenergy,waterwastewaterandsolidwastesystems.Theprovisionofseveralbuildingtypologiesanddwellingunittypesenablesaneffectivesocialmixandthecreationofvariedplaceswheredifferentenvironmentalqualitiescansatisfydifferentpeople’sneeds.•Asocio-economicmixleadstoamixofenergydemandpatterns:themorediversifiedinquality,quantityandtimedistributiontheenergydemand,thesmallerthephysicalenergystoragerequired,thelargerthe“virtual”energystoragethatcanbecontrolledwiththesmartgridandthelowerthecostofthesystem.•Inadecentralizedvision,theavailabilityoflow/mediumskilledmanpowerwillallowthepossibilityoflocalsortingandtreatmentofsolidwaste.This61Net-ZeroCarbonVillagePlanningGuidelinesfortheYangtzeRiverDeltaRegioninChinaDeciduoustreestoshadethestreetandbuildingwallsoversummerSolarLampGreenspacesascarbonsinkNon-potableirrigationShadingofmin.90cmtodecreaseheatgainduringsummerElectricityGroundwaterrechargePorousPathwayFig.2.39Illustrationofsustainabletechnologiesonaneighborhoodscale62Tenkeyprinciplesforzero-carbonruralvillagedesignRegionalgridOrganicwasteInorganicwasteRecyclingcentreBlackwaterSmartcommunitygridElectricityPVenergyusedforwaterheatingandelectricityRainwatertankMunicipalwatersupplyGreywaterfromshower,washingma-chineandsinkcanbepurifiedandreusedPotablewaterElctricitygenerationfromorganicwasteHouseholdwasteseparation63Net-ZeroCarbonVillagePlanningGuidelinesfortheYangtzeRiverDeltaRegioninChinawouldcreateemploymentforthepoorerlocalresidents,andwoulddealwiththewasteissueinasustainableandinclusiveway.•Therepairofproducts,whichacirculareconomypromotes,wouldalsorequireawiderangeofskills,ofdiversecraftsmenandprofessionals.Theissuesofsocialinclusion,highemploymentandattractivenessarethuscloselyconnectedtoacirculareconomyandsustainableenergymanagementinazerocarbonvillage.Inordertoobtainsuchasocialmix,theprerequisiteistheavailabilityofaffordablehousingforthedifferentcomponentsofthedesiredsocialmix(i.e.pre-existingpopulation,incomingretiredwealthypeople,newlow-incomeworkers,mid-high-incomeprofessionals,youngcreativeworkersandentrepreneurs).Inordertomakethevillageattractive,andgeneratesuchasocialmix,thefollowingconditionsshouldbemet,wheneverpossible:•Surroundingsarepleasantandallowtheinhabitantstoliveincontactwithbothwildandagriculturallandscapes.Easyaccess(bikelanes,walkablepaths)isprovidedforpeopletoexplorethelandscape.•Allservicesareeasytoreachatawalkabledistance,whichisespeciallyimportantforelderlypeople.Movingaroundinthevillageispleasantinwinter(arcadesofferingprotectionfromrain)andinsummer(shadedwalkways).•Cyclelanesareshadedwithtreesinsummer.•Connectionswithurbanareasandservicesareefficientandreliable.•Highqualitydigitalinfrastructureisavailable.CreatingacostadvantagefortheresidentsandinvestorsThecapitalinvestmentofazerocarbonvillageisgenerallyhigherthanthatofaconventionalone,butinevaluatingitseconomicsthefollowingissuesshouldbeconsidered:•Theattractivenessfortourismorretirementcreatesapotentialmultiplerevenuestreamsuchasthereturnonrealestateinvestmentsinthevillage.•Organicagriculturalpracticesmakethesurroundinglandmorevaluableasitwon’tbecontaminatedwithpesticidesorsuper-strainsofbacteria;itwillalsoreducecostoffertilizersandpesticidesandrelianceonGMOs.•There-introductionofheritagecropvarietiesisapointofattraction/uniquenessnotonlytoenhancetheprideinandthecultureofthevillage,butalsotoattracttouristsandincreasetheworthofvalue-addedproducts.•Asthebuildingsareveryefficient,thecostofheatingandcoolingislower,electricityislargelyself-generated,thustheextracostisoffsetinashortperiodoftime.•Mixeduseswithshorttraveldistancesandcloseproximitytowork,childcareandschools,theextensiveavailabilityofstoresandservices,safepedestrianenvironmentsandfrequentandeasilyaccessiblepublictransportationsystemsallowsboththecapitalandoperationalexpensesofprivatevehiclestobeavoided,thusmakinglivingcheaper.•Thehealthsystemhasacostforboththeindividualsandthecommunity;thevillageishealthierthanaveragevillages,forseveralreasons:•Awell-designedsustainablevillageiscoolerinsummerthanaconventionallydesignedone,becauseoftheUHIcontrol,reducingthenumberofillnessesanddeathsduetoheatwaves,especiallyfortheelderly,infantsandchildren,whoarethemostvulnerable.•Aconnectedstreetnetworkpattern,combinedwithmixed-useandhigher-densitydevelopment,promoteswalkingandcyclingfortransport,asopposedtocar-basedmobility,andphysicalactivityhasseveralbeneficialconsequencesonhealth,suchas:lessheartdisease,lungcancer,andbothchronicandacuterespiratorydiseases62;fewerroadtrafficinjuriesanddeaths;lessexposuretoroadtrafficnois,whichinfluencesphysicalhealthoutcomessuchascardiovasculardisease,hypertensionandmentalhealth;lessriskofmajornon-communicablediseases,aswellasincreasinglifeexpectancy63.•Thehighvaluegiventogreenareasisbeneficialbecausescientificevidenceshowsthatgreenspacesandparksareassociatedwithimprovementsinphysicalandmentalhealth64.•Greateravailabilityoflocallyproducedfreshandhealthyfoodisalsoassociatedwithalowerprevalenceofdiet-relateddiseases65.Along-term“durable”communityAdditionally,itshouldbeconsideredthatazerocarbonvillagemustalsoaimtoencompassothersustainabilityissuesbesidesGHGemissions,asoutlinedinChapter1,andthatsustainabilityiscloselyconnectedtotheissueoftime.Itisnotbychancethattheword“sustainable”inotherlanguagessuchasFrenchistranslatedas“durable”andthatdurabilityshouldbeakeycharacteristicofproductsinacirculareconomy.Thishasagreatimpactoneconomicevaluationsorthecosteffectivenessofinvestmentsthataimtoimprovethesustainabilityofavillage,asthereturntimeofmost“green”investmentscannotbeachievedintheshortterm,butinthemedium-longrun.Moreover,itshouldbeconsideredthatmanybenefitsderivingfromsustainabilitymeasuresareverydifficultorsometimesimpossibletoquantifyinmonetaryterms,suchas:•costsavoidedduetoincreasedresilience(lowerimpactofcatastrophicevents,suchasfloodingor64Tenkeyprinciplesforzero-carbonruralvillagedesignwaterorfoodshortages)•overalleconomicimpactofincreasedentrepreneurialactivityandemploymentrate•qualityoflife,derivingfromtheavailabilityofparksandbythereliabilityofbasicservices,suchasenergy,waterandsanitationandfromareasonableincome•improvementofthelocaleconomyduetotheattractionofwealthyresidentsandneweconomicactivities.GovernanceAparticipatorymodelofgovernanceshouldbeestablishedatthevillagelevel.QuantitativeandqualitativeKeyPerformanceIndicators(KPIs)shouldbeintroducedtoevaluatethelevelofimplementationofthezerocarbonmodelthathasbeenachieved.KPIscanbederivedfromthedesignsuggestionsandtargetsshouldbemodulatedaccordingtotheex-anteanalysisandareasonableactionplan.Aradarvisualizationoftheconformityprofileofthe10principlesissuggestedbyFigure2.39,whereascaleof0to5inthelevelofimplementationhasbeenusedasanexample.Thedegreeofimplementationofthe10principlesshouldbeperiodicallymonitoredtogetherwiththeamountofemissions.Fig.2.40Radargraphshowingthelevelofimplementationofeachprinciple,inascalefrom0(notimplementedatall)to5(fullyimplemented)Keystakeholdersshouldbeinvolvedintheplanningphaseinordertosharebothvisionandenvisagedactions.Some“flagship”projectsshouldbeestablished,whichaimtoattractwideparticipationofthepopulationandtocreateprideintheachievementoftheecologicalgoals.Examplesofflagshipinitiativescouldbetheintroductionofa“plasticfree”area,thebanningofsingleuseproducts,theswitchto100%recyclablepackaging,theregenerationofapollutedfieldtocreateapublicleisurespace.Appropriategovernanceshouldalsobedevelopedfortheapprovalofregulationswhichareconsistentwiththe10principlesandformonitoringtheirimplementation.Themixedincomeandthemixedusegoalsespecially,whicharesocio-economicmid-longtermtargets,suggesttheimplementationofanobservatorypanelandaperiodicconsultationprocess.Thepromotionofinnovationandsustainablebusinessesshouldhaveaclearlyestablishedgovernancestructure(i.e.adelegate/committee/office),soastosupportthecharacteristicallylong-termtargets.65Net-ZeroCarbonVillagePlanningGuidelinesfortheYangtzeRiverDeltaRegioninChinaDesignsuggestions◊20to50%oftheresidentialfloorareashouldbeforlowcosthousing;andeachtenuretypeshouldbenotmorethan50percentofthetotal66.◊Communityhubsandguesthousesshouldbeavailableforsocialinnovationactions.Schoolsandexistingcommunityhousescouldbetherightplacestohostthesocialinnovationhubs.◊Intheeconomicevaluationofinfrastructuresforsustainabledevelopment,consideralwaystheentirelifecycle67.◊Discover,regenerateandenhancethelocalculturalheritageasanidentitymarkandageneratorofeconomicactivities◊Putsustainableagricultureatthecoreofthedevelopmentprocess◊Experimentadvancedagriculturalpractices◊Usebiodiversitypreservationasanattractorandalandmark◊Inviterepresentativeofcreativeclass(digitalnomads,artists,designers)toexperiencethevillageandcontributetothecommunitydesignprocess◊Inviteserviceandlightmanufacturingcompaniestoestablishbranchesinthevillage,employinglocalpeople◊Promotelocalurbanservicefirms,possiblycooperativesofvillage’sdwellers,providingurbanservices:energy,water,wastewatertreatment,solidwastemanagementandtransport.Thesewillbesttackleresiliencestrategiesandfindthesuitablelocalsolutions.Adecentralizedapproachtoenergyproductionandenvironmentalservicesprovisionarepotentialsourcesforlocaljobproduction,accordingtocirculareconomyprinciples◊Provideanappropriateamountandsizeofspacesforhandicraftbusiness:itcouldbecomethespineofthevillage’seconomy.◊Provideanappropriateamountandsizeofspacesforactivitiesrelatedtothesharedandcirculareconomy.Villagefablabsshouldbeestablishedtosupporthightechhandcraftingandcultureofreparationandreuseofgoods.PRINCIPLE10:ECOLOGICALAWARENESSCreationofthezerocarbonvillageisanimportantsteptowardsfuturesustainable,harmonious,settlements:itimplementsamodelthatwillcharacteriseallthehumancommunitiesofthepost-carbonsociety.Itisasettlementthataims,interalia,torestoreandgivenewmomentumtoruralactivitiesandtorurallife,inacontextoftechnologicalandtechnicalinnovation,re-establishingthe“ancientalliance”68betweenhumansandnature.Accordingtothisprinciple,itshouldbecomealivingexampleforeducatingvisitors,supportinglearningandreplicationactions.Asashowcaseoftherenewedharmony,azerocarbonvillagewilldemonstrateitsrelationshipwiththesurroundingruralareaandwiththewilderness,showingasortofsymbiosis,insteadofthepresentrelationshipofparasitism.Thezerocarbonvillage:ademonstrationprojectofresiliencethroughdiversityTheestablishmentofthenewnexusimpliesnotonlytheuseofemergingtechnologiesandtechniques,butmainlynewwaysofinterconnectingwiththeexistingones,inaholisticandsystemicapproach.Peopleare,bytheirnature,alwaysreluctanttochangetheirhabits,uses,andviews,andthebestwaytoinducethemtochangeistoshow,withclearlyvisibleexamples,thatthenewhabits,uses,andviewsarebetterthantheoldones.Thisisthemainfunctionofthedemonstrationprojects.Theyarelivingexamplesofhowanewproductorsystem,asettlementinourcase,works,andhowitisbetterthanthepreviousone.Thisisnotaneasytask,asazerocarbonvillageisnewnotonlyintermsofappliedtechnologies,butalsobecauseofthebehaviouralchangesrequiredofthepeoplelivinginit:changesthatareadirectconsequenceoftheadoptionoftheconceptofacirculareconomy.Thenovelapproachcanalsobeseeninthedifferenttrendsthatthedevelopmentofacommunityhastofollowwithrespecttothepast,trendsemphasizingtheconceptofdiversitybothbiologicalandproductiveandsocial.Theneedtonurturediversityarisesfromtherequirementtoachievegreaterresilience,whichismandatoryforfacingtheanticipatedeffectsofclimatechange,suchasfloods,typhoons,droughts,pests,etc.Anappropriatelydesignedzerocarbonvillagecanmeettheneedfordiversityandresilience,bothsocialandtechnological/technical,asmixeduseandmixedincomemeandiversity,asdoestheuseofmultiplerenewableenergysourcesinthemicrogrid.Diversityshouldalsogovernthepreservationofthe66Tenkeyprinciplesforzero-carbonruralvillagedesignforms,structuresandpracticesthatcomefromthepast,whendiversityandresiliencewerepartoftheculture.Theymustbepreservednotonlyasinanimaterecords,culturalfossilsofapastthatnolongerexists,butasprecious,livingmessagesfromwhichwecanlearn.Thisisparticularlytrueinbuildings(seePrinciple3and4),andinagriculturalproduction.AlivingeducationfacilitytowardsthebehaviouralchangeByanticipatingallthefuturepost-carbonsettlements,thezerocarbonvillageshowcasesthetechniques,technologies,lifestyles,socialorganisationandindividualbehavioursthatacommunityshouldhaveinordertocopewithclimatechangeandbesustainable.Policiesarebuiltaroundthelong-termperspectiveofahappier,self-awarehumancommunity,consciousofitsconnectionwithNatureandperfectlysituatedwithintheplanetaryboundaries.Tothisend,thevillagehasapowerfuleducationalvalue,forraisingecologicalawareness–whichisthecoreofapost-carbonsociety.Itisashowcaseforsystemicbehaviouralchange,whichshouldbepromotedonabroaderscale,especiallyinurbanizedareas.Inthissense,theproposedmodelredefinesrural-urbanrelationships,offeringanewperspectiveintermsofmutualdependenciesandculturaldialogue,wheretheruralvillagestaketheleadinthefundamentalecologicaltransitionandshowthewaybyexample.Thesimplelifeofthezerocarbonvillagersshouldbecomeanenlighteningeducationalparadigmtobeemulatedbydirectexperienceandappropriatenarrativesandstudies.Thezerocarbonvillage,asashowcaseofanewlifestyle,mustmakeitspositiveandhopefulmessageexplicit.Forpeoplelivinginit,theattractivenessofthezerocarbonvillageisself-explanatory.Nevertheless,thiswouldnotbethecaseforpeoplevisitingthevillageonlyoccasionally,andarethusnotabletofullyunderstandthewaythevillageworks,itsrelationshipswiththeruralandthenaturalsurroundings(forest,wetland,pastureland,etc.),orthewaypeopleinsuchavillagelive,inharmonywithnature.Tomakethevillagealivingeducationalfacilityforecologicalawarenessraisingitisnecessarytoprovidetheappropriatemeansofpresentingthenarrativepaths,rangingfromappealingexperientiallocations,tothegeneralattitudeofthevillagerswhoshouldbeeagertodescribetheireffortstoadvanceinthetransitiontosustainability.Well-designedevents,cross-mediaproductions,socialchannels,postersandleafletsshouldbepartofacoordinatedcommunicationplan,capableofattractingattentionandatthesametimetransferringknowledgeandsuggestingreplicablesolutions.Itmeansthat,inordertomakethediffusionoftheecologicalmessageeffectiveandfastenough,zerocarbonvillagesshouldinvestsomeresourcesinthiscommunicationprocess.Thiswouldalsoimprovetheeconomyofthevillage,encouragingmorepeopletocome,visitandlearn.Activitiesconsistentwithasustainableeconomycouldbegeneratedbythisflow,inapositiveinteractionwithprinciple9.Thereisadanger,however,thatshouldnotbeunderestimated:theexcessofshort-termtourists(theso-calledhit-and-runtourists),whoseactionisusuallydisruptive,astheyaremainlywastemakersandhavelittleinteractionwiththevillageandalsoleavelittleineconomicterms.Itisaproblemthatariseswhenatouristvenuebecomesverypopular,anditisalreadyaproblemthatinmanyplacesisverydifficulttomanage,becauseitcreatessignificantenvironmentaldamage,whichcomestobeacceptedasanunavoidabledrawbackoftouristicdevelopment.Specificactionshouldbetakentotacklethisproblemthrougheducationalactivitiesdirectedatimprovingthebehaviourofthetourists,whoshouldbeurgedtobehaveasiftheyweremembersofthevillagecommunity.The“showcasemodel”,asstatedinPrinciple10,shouldbeembeddedinthegovernancemodel,asdescribedinPrinciple9.Itissuggestedthattheeducationalactionsshouldbesubjectedtothesamelevelofscrutinyastheinnovationactions.Designsuggestions◊Trytodesignthesystemsservicingthevillage(water,energy,waste,transport)havinginmindthattheyshouldnotcompletelybehidden,butleavevisiblesomeparts,toshowhowtheywork◊Co-designthevisitingpathsandnarrativematerialswiththelocalcommunitybuiltaccordingtoprinciple9◊Involvethecommunityactorsinthenarrativeprocess,everybodyshouldbeinvolvedinthestorytelling,showingher/hiscontributiontothezerocarbonmodel◊Considerdesigningan“environmentalawarenessraisingcentre”,wheretrainingonenvironmentallysoundpracticescanbeprovidedbyexperienceandaccessibleexhibits.Inthislocationresidentsandvisitorscanbeinformednotonlyabouttheattractivenessofthevillageandofitssurroundings,butalsoaboutitssustainabilityfeatures,explaining:•Whybuildingsaredesignedinthewaytheyaredesigned,showingtheenergyefficiencyfeaturesandthesavingsobtained•Howsustainabilitywasaddressedconsideringalsotraditionalpracticesandsolutions•Whyshops,bars,restaurants,hotelsand67Net-ZeroCarbonVillagePlanningGuidelinesfortheYangtzeRiverDeltaRegioninChinaresidencesaredistributedthewaytheyaredistributedandwhythestreetsaredesignedthewaytheyaredesignedemphasizingthatthereisnoneedforowingacar,andthatmobilityisbasedonhealthywalkingandcycling•Howtheenergysystemworks,withitsmicrogrid,renewableenergysourceandstorage•Howsolidwasteistreatedforrecycling•Howfoodwasteandwastewaterbecomebiogasandnutrientforthesoilproducingthefood,soclosingthecycleandavoidingorreducingtheneedforartificialfertilisers,emphasizingtheconsumptionoflocallyproducedfood•Howthewatercycleworks,rainwaterharvesting,waterrecyclingfornon-potableuses,runoffcontrol,spongecityconcept,etc.•Behaviouralgoodpracticesforenergyconservationandforwastereduction•Howsustainableagriculturalpracticesworkandtheiradvantage•Therelationshipbetweenfoodproduction,dietandhealth•Howthecirculareconomyconceptsareapplied•Howallthesystemsmutuallyinteract68Tenkeyprinciplesforzero-carbonruralvillagedesignCaseStudiesInthissectionfoursignificantcasestudiesarereported.Theserepresentbestpracticesintermsofplanning,developmentandmanagementofsustainablesettlements,wheretheconceptsexpressedbythe10Principlescanbeseen.HAMMARBYSJOSTAD69(STOCKOLM,SWEDEN)ThetotalenergysupplyforthecommunitywhichlivesandworksinHammarbySjostadisbasedmainlyonrenewablesources(Figure2.41):electricityisprovidedbyphotovoltaic,hydropowerandbio-fueltechnology,thermalenergyisprovidedbydistrictheatingplants(Principle5).Thewatercycle(Figure2.42)isclosedasmuchaspossible(Principle6).InordertoreducetheamountofrunoffenteringthedrainagesystemofHammarbySjostad,surfacewateriscleanedlocally.Therainwaterfromsurroundinghousesandgardensischannelledbyanopendrainsystemthatdrainsouttoanattractivechannel.Thewaterthenrunsintoaseriesofbasins,knownasequalizers,wherethewaterispurifiedandfilteredthroughsandfiltersorintheartificiallyestablishedwetlandsofthearea.Afterthispurificationprocess,thewaterthentravelsoutintoLakeHammarbySjo,re-energizingthewaterlevelsinthelakes.Fig.2.41Conceptoftheclosed-loopurbanmetabolism69Net-ZeroCarbonVillagePlanningGuidelinesfortheYangtzeRiverDeltaRegioninChinaRoofgardensalsoservetoreduceroofrun-offduringstorms,byallowingthewatertobeabsorbed,storedandpurifiedthroughthesoilandpartiallybythetranspirationoftheplants.Insuchway,therainwaterthatwouldotherwisedrainintothesewersisabsorbedbytheroofgardens.Tofurtherenhancethetraditionalwaysofrecyclingandreuse,thedistricthasopened(in2003)itsownpilotsewagetreatmentcentre.Thewastewatertreatmentplantistestingnewtechnologiesforrecyclingwaste.Thesystemrecyclesnutrientsfromsewage,whicharethenusedasfertilizerinagriculturalland,andcreatesmethane,whichisusedasbiogastosupplyenergynotonlyforhomes,butalsoforcarsandbuses.Wasteisseparatedandthenreusedandrecycledclosingthewastecycle(Principle7)asmuchaspossible(Figure2.43).HammarbySjostadusesavacuumsystemtosortsolidwasteandrefuse.Theheaviestandbulkiestwasteportionsaresortedandcollectedviaanundergroundwastecollectionsystem.Thewasteissuckeddownthroughpipesintoablock-basedrecyclingroom,oneportionatatime.Thecontainersarethencollectedfromtheroombyrefusecollectiontrucks.Fig.2.42Theenergycycle70Tenkeyprinciplesforzero-carbonruralvillagedesignFig.2.43ThewatercycleFig.2.44Thewastecycle71Net-ZeroCarbonVillagePlanningGuidelinesfortheYangtzeRiverDeltaRegioninChinaREGENVILLAGE(THENETHERLANDS)70,71ReGenVillageswerefoundedin2015.TheReGenVillagewillhouse100familiesonabout50acres.Between300to400residentsareexpectedtoliveinthecommunity(whichmeansabout3to4personsperhouse)andmorethan1,000peopleareonthewaitinglist.TheReGenvillagesaredesignedtogivepeopleanenvironmentallyfriendlyalternativetourbanlifeandtohelpmakeagriculturemoresustainableandlesswasteful.Thevillageaddsnotonlyenvironmentalandfinancialvalue,butalsosocialvalue,bycreatingaframeworkforempoweringfamiliesanddevelopingasenseofcommunity,wherepeoplebecomepartofasharedlocalecosystem.Thus,thevillageisreconnectingpeoplewithnatureandconsumptionwithproduction(Principle9).Theconceptofthisvisionaryrealestateprojectistodevelopavillagewheretheresourceswillbeusedinaclosedloop.Theoutputsofonesystemwillbetheinputsofanother.ReGenstandsindeedfor“regenerative”.Inthisvillageitwillbepossibletorecyclewasteandwater,togrowfoodandtoproduceenergythatwillbesmartlyredistributedineachhousehold.Fig.2.45TheRegensystem.Households’blackwaterandpartoffoodwastefeedthebiogasfacility,integratedintothewastewatertreatmentsystem;outputsarebiogasfeedingtheenergysystemandwaterthatisstored.Themainpartofhouseholds’foodwasteisusedtofeedlivestockandsoldierflies.Fliesareusedasfoodforfishesintheirpond;waterwithfishes’excretaisusedinthehydroponicsfacilityforgrowingvegetables;purifiedwaterissentbacktothefishpond.Livestockmanureisusedasfertiliserinthegarden,togetherwiththetreatedwaterfromblackandgreywater,thatwasstored;thegardenprovidesfoodforRegenhouseholds.LivestockandfishistheproteinbasescomplementtotheRegenVillagedwellersdiet.Electricity,producedbyPVsystemsandabiogasgeneratorisfeedsthesmartgrid.TheReGenvillagereliesonfivepillars:•Water,wasteandnutrientrecycling(Principles6,7and8)•Door-stephigh-yieldorganicfoodproduction(Principle8)•Mixedrenewableenergyandstorage(Principle5)•Energypositivehomes(Principle3)•Empowermentoflocalcommunities(Principle9).Alreadyexistingtechnologieswillbeappliedtoanintegratedcommunitydesign,providingcleanenergy,waterandfood.Alltheurbanagriculturetechnologiessuchasaquaponics,aeroponicsorpermaculturewillbeusedintheReGenvillage.Theconstructionofthevillageshouldstartin2019.TechnologiesReGenVillagesareallaboutappliedtechnology.AReGenVillageisaTech-IntegratedandRegenerativeResidentialRealEstateDevelopment(Figure2.44andFigure2.45).Alreadyexistingtechnologieswillbeappliedtoanintegratedcommunitydesign,providingcleanenergy,waterandfood.Alltheurbanagriculturetechnologiessuchasaquaponics,aeroponicsorpermaculturewillbeusedintheReGenvillage.72Tenkeyprinciplesforzero-carbonruralvillagedesignFig.2.46ViewofRegenVillageWatermanagementTheseinnovativetechnologiesarethoughttouselesswaterandlesslandthantraditionalagricultureandtoproducemore.Infact,theagriculturalsystemsputinplaceintheReGenVillage,makeitpossibletoproduce10timesmoreproductsthaninasimilarareawithtraditionalagriculture,andaboveall,with90%lesswater,thankstotheuseoftheurbanagriculturaltechnologies.TheReGensystemisbasedonthecollectionofrainwaterfromtheroofsofthehomes.Thiscollectedrainwaterwillbestoredanddistributedafterwards,inresponsetotheneedsofthecommunity.Itwillbethemainwaterresourceofthevillage.Anothersourceofwaterwillbethebiogasfacility(whichispartofthewatertreatmentsystem).Bothwaterresources(rainwaterandwaterproducedfromthebiogasfacility)willbestored.Thecleanwaterfromthewaterstoragewillbedistributedtotheaquaponicssystem,whichisawaterfarmingtechniqueinwhichfishfaecesserveasfertilizerforthevegetables.Inadditiontotheaquaticecosystem,aeroponicsisanothertechniqueallowingfruitandvegetablestobegrownintheReGenvillage.Aeroponicsisasoilfreeculturesysteminwhichplantsgrowinanairormistenvironment.Inaddition,greywaterwillbeseparatedandfilteredtobereusedforirrigationoftheseasonalgardens.FoodproductionThepurposeoftheReGenVillageistoofferfoodsecurity.Indeed,thewholeReGensystemwillbebuilttogroworganicfoodinabundance:fruit,vegetables,oleaginousandleguminousplantsbutalsoproteinfoods,suchasfish,eggs,chickensandothersmallanimalsrichinlipidsandproteins.Foodwillbepermanentlyproduced,insidetheverticalcultivationsasacomplementtotheseasonalgardensandthefarms(Figure2.46).Moreover,familieswillbeabletogrowtheirownvegetablesandfruit,allyearroundinconnectedgreenhouses.Infact,eachfamily’shousewillhaveanattachedgreenhouseforgrowingpersonalcrops.Together,theReGenhouseswillforma“sharedlocalecosystem.”Thevillagewillproduceenoughfreshfoodtotakecareof50-100%oftheneedsofitsresidents.WasterecyclingTheReGensystem,isbasedonwaste-to-resourcesystems.Thewasteresultingfromthehouseholdswillbesortedintodifferentcategoriesinordertobereusedformultiplepurposes.Theorganicwastewillbecomefoodforthelivestockandthesoldierflies.Theflieswillbecome,intheirturn,foodforthefish,andthefishfaeceswillbeusedtofertilisetheplantsintheaquaponicssystem.Manure73Net-ZeroCarbonVillagePlanningGuidelinesfortheYangtzeRiverDeltaRegioninChinafromthelivestockwillbecomefertiliserfortheseasonalgardens.Theorganicwasteaswellasthepotentialunconsumedfoodwillbetransformedintobiogasorusedtofeedtheanimals.RenewableenergiesInadditiontotheproductionoffood,theRegenVillagewillproduceitsownenergy,thankstosolarcellsontheroofsofthehomes.Thelatterwillbelinkedtoasmartgrid,whichwillprovideenergyforthehomesandallowtheinhabitantstofeedstoredelectricitybackontothegridwhennotneeded.Thissurplusofenergyinthesmartgridwillbeusedtochargeelectriccars.Furthermore,theenergyproducedbythebiogasfacilitywillbeaddedtothesmartgrid.HomesTheReGenvillageinvolvesnotonlytheconstructionofhousing,butalsotheachievementofacompletesystemincludingwaste,food,waterandenergyorganization.Inthiscompletesystem,homeswillobviouslybedesignedfortotallysustainableliving(Figure2.47).Theywillbeenergypositivehomes.Theywillbepoweredbyphotovoltaicsolarpanels,andpassiveheatingandcoolingsystemswilltakethepressureofftheuseofelectricityineachhouse.Infact,thehouseswillbeadjustable.Homeswillbeextendableinordertotakeadvantageofthesunnyweatherinthesummerandtopreheattheairinwinter.Thankstothesetechniquesalongwiththesystemofwatercollectionandsolarenergy,homeswillproducemoreenergythantheyconsume.Fig.2.47Verticalcultivation74Tenkeyprinciplesforzero-carbonruralvillagedesignFig.2.48RegenVillagehouses75Net-ZeroCarbonVillagePlanningGuidelinesfortheYangtzeRiverDeltaRegioninChinaQINGDAOECOBLOCK(CHINA)72Inrecentyears,Chinahasbeendeveloping“superblocks”,whichareroughly1squarekilometreareasthatcontain2,000-10,000residentialunitswithinthem.Thecityprovidesthearterialstreetsandthedeveloperbuystherightstobuildeverythinginsidetheblocks.HarrisonFrakerandateamofstudentsatUCBerkeleydesignedtheQindaoEcoBlockProject,analternativetothesuperblocksystem.TheEcoBlockprototypecanbemassreplicated,butiscompletelyoffthegrid,generatesitsownelectricityandprocessesitsownwaterandwaste.Theprojecthasnotbeenimplemented.Theplanproposedanintegratedsystemofenergygeneration,waterconservationandsupply,andwastetreatment(Principles5,6,7).Withvariousdesignfeatures(Figure2.48)suchasbuildingshading,high-performanceglazing,passivesolarheating,shadedwalkways,andenergyefficientequipment,theenergyconsumptionwasexpectedtobe40%lowerthanFig.2.49EcoBlock’stechnicalsystemconventionaldevelopment(Principle3).Theremainingdemandshouldbecoveredbytheenergysupplygeneratedinternallythroughacomprehensivesystemofbuildingintegratedwindturbines(53%),photovoltaics(40%),andanaerobicdigesters(7%)whichconvertwastefromsewagesludge,kitchensandgreenwaste,intogas(Figure2.49).Electricstoragesystemsarepartofthesystem,togivetheEcoblockthechanceofbeingentirelyself-sufficient,withnoneedfortheconnectiontotheregionalgrid.EcoBlocksarealsosemiautonomouswatermanagement/drainageunitsthatreceivewater,implementwaterconservationinsidethestructuralcomponentsthroughoutthecluster,captureandstorerainfallandstormwater,reclaimsewageforreuse,recoverbiogasfromorganicsolids.Waterandwastereclamationandreusearecarriedoutinadoubleloopconsistingofgreyandblackwaterreclamation(Figure2.50).Suchasystemaccomplishesthefollowingobjectives(partialapplicationofPrinciple8):76Tenkeyprinciplesforzero-carbonruralvillagedesignFig.2.50IntegratedenergygenerationsystemadoptedintheprojectFig.2.51ThewatercycleFig.2.52ConceptoftheEcoBlock’sstrategy(source:Fraker2008)(1)itcollectsrainwater,makesitpotableandmixesitwithsomepotablewaterfromthemunicipalnetwork,tobeusedforkitchen,bathroomsinksandforshowers(2)ittreatsgreyandblackwatertoalmostpotablewaterqualityforseveralin-houseusesalthoughdirectpotableuseisnotcontemplated,makinguseofa“LivingMachine™”system:(3)itreusestreatedwaterforWCflushingandwashingmachines(4)inadditiontoprovidingwatertoinhabitants,thedoubleloopsystemalsoprovidessomewaterflowtothesurfacewaterbodieswithinthecityandforgardenirrigation(5)itrecoverssomeenergyintheformofbiogasandheat.Heatrecoveryisanimportantpartoftheprojectbecausehouseholdwaterheatingforwashing,showers,laundryanddishwashingrepresentsthelargestdomesticenergyexpenditurerelatedtowaterand,consequently,thelargestenergyrecoverywhichcanbedoneefficiently(e.g.,byaheatpump)byalocalhouseholdorcluster.Furthermore,atlocalcluster/ecoblockscale,aquiferrechargewillbeaccomplishedbyinfiltrationofcapturedstormwaterbymeansofperviouspavements,ponds,wetlandsandgardens(Figure2.51).Thesynergicoperationofallmentionedsystems,arecombinedtomakeQingdaoaclosedcycleneighbourhood.77Net-ZeroCarbonVillagePlanningGuidelinesfortheYangtzeRiverDeltaRegioninChinaGÜSSING(AUSTRIA):ANENERGYSELF-SUFFICIENTCOMMUNITY73Güssing,amajortowninsouthBurgenland(Austria),adistrictcomprisingaround27,000inhabitants,isthefirstcommunityintheEuropeanUniontoproduceitswholeenergydemand–electricity,heating/cooling,fuels–fromrenewableresources,alltheresourcesarefoundwithintheregion.Intheearly1990s,agroupoffamiliesspontaneouslystartedtousesharedbiomassheaterstoreducetheconsumptionoffuels.Afterthesuccessofthisinitiative,apolicywasproposedwhichcalledforacompleteabandonmentoffossil-fuel-basedenergy(Principle5).Theobjectivewastosupply,asafirststep,thetownofGüssingandsubsequentlythewholedistrictwithregionallyavailablerenewableenergysources.Thefirststeptakenwastoorderthatallpublicbuildingsinthetownshouldstopusingfossilfuels.Fig.2.53GüssingenergysystemAsresultoftheenergyoptimisationofbuildingsinthetown,expenditureonenergywasreducedbyalmost50%.Thenawoodburningplantthatprovidedheatingfor27houseswasbuilt.Furthermore,afacilitywasconstructedwhichturnedrapeseedintocarfuel.In1998apilotprojectwasimplementedforgasifyingwoodchipsunderhightemperatureconditions.Gasfuelsanenginethatproduceselectricityandthe“by-product”heatisusedtoproducewarmwaterforthedistrictheatingsystem.Therenewable-energyprojectexpandedtoothersources,asshowninFigure2.52Thetransitiontoalocalbiomass-basedeconomyboostedthenetincomeofthecitizens(Principle9).Güssingwasrecognizedasasuccessfulcaseoflocalenergysovereigntyandalotofmediaattentionwasfocussedonit,othercommunities,evenfromabroad,startedtovisitandimitatethemodel(Principle10).Anincreasingnumberofspecializedcompanieswereattractedbythe“Güssingshowcase”,creatingnewandemploymentopportunitiesforqualifiedpeople.Inaddition,ecologicaltourismisnowcontributingtoasustainablelocaleconomy.78Tenkeyprinciplesforzero-carbonruralvillagedesignBird’s-eyeviewofMeilinVillage,Changzhou79Net-ZeroCarbonVillagePlanningGuidelinesfortheYangtzeRiverDeltaRegioninChina80Casestudies3Contextualizingtheprinciples81Net-ZeroCarbonVillagePlanningGuidelinesfortheYangtzeRiverDeltaRegioninChinaShatanVillage,TaizhouShatanVillage’sagricultureismainlygrainproduction(mostlyrice,supplementedbywheat),fruitplanting(Chinesebayberryandloquat)andlivestockbreeding(pigs,cattle,sheep,chickensandducks).Thesecondaryindustryistheprocessingofagriculturalproducts.Thetertiaryindustryismainlybasedonsmallscaleretail.Inrecentyears,increasingnumbersoftouristshavebroughtagradualincreaseinthenumberoftourism-supportingservicessuchashomestayhotels.AccordingtothestatisticsofthegovernmentofYutouTownship,thereare11existingenterprisesinShatanvillage,employingnearly200people,creatinganannualoutputvalueof100millionRMB,andlayinganeconomicfoundationforthedevelopmentofthevillage.Meanwhile,thevillagehascloselinkswithsurroundingurbanareas.Itisabout35kilometresfromthecentreofTaizhouCity.Context-specificchallenges/opportunitiesare:Challenges•Socialandenvironmentalimpactofnewresidentialsettlements,includingstrategiesforintegrationwiththelocalsandengagementinthecommunity;•Impactoftouristicdevelopmentonthetraditionallifestyle;•Spatialplanningofthegrowingvillagesupportingthepreservationofarchitecturalheritageandpromotingaharmoniousexpansion;•Riskoffloodinginrainyseason.Opportunities•Attractionofdifferentkindsofnewresidents(retiredpeople,youngprofessionalsandfamiliesattractedbytheruralarea)•Public-privatepartnershipsforbusinessopportunities•Creationofa“showcase”forsustainablespatialplanningandclosureofthewater-energy-waste-foodcycleswithoptimalperformanceintermsofenvironmentalimpactandenergygeneration•Developmentofanewenergysystem,basedonalltherenewableenergysourcesexploitableinthearea,aimingforcompleteself-sufficiency,whichcanattractcompaniesandprofessionalstoimplementandoperateit•IntegrationofinformationtechnologyintoFig.3.1Shatanvillagesituation82CasestudiesFig.3.2GeographicalLocationofShatanVillageFig.3.3ShatanVillageinthemapofHuangyanDistrictofTaizhou(topright)agriculturalproductioninordertoshiftfromcurrentagriculturalpracticestoagro-ecology•Regenerationoftraditionalfabricationactivitiesfornewresidentsandtourists•Assumptionofakeyroleinpreservingtheculturalheritage•ReductionoffloodrisksthroughimprovedlandmanagementandurbanstructureAPPLICATIONOFTHE10PRINCIPLESInsuggestingfurtheractionsforimplementation,theapproachfollowedwasthatofconsideringallthepotentiallyexploitedrenewableenergysources,andcombiningthemwithcurrentlyavailableconversiontechnologies,whicharealreadyrecognizedasviableandcost-effective(ornearlyso).Theaimwastofulfiltheconditionsforazerocarbonsettlement.Theotherapproachfollowedwasthatoftryingtocloseallthepossiblecycles:water,waste,food,includinggivingbacktothesoilthenutrientscontainedinfood.Principle1:ClimatedataandgreenhousegasinventoryShatanvillageisactivelyandeffectivelyutilisingthecollectivebuildingsandlandavailablefromthe1960sand1970s,transformingabandonedbuildingsandlandresourcesintoanimportantopportunityforcreatinga‘beautifulvillage’,whichwouldreflecttheideasofsustainabledevelopment,energyconservationandlandsaving.TheaverageannualtemperatureofShatanvillagerangesfrom14~15Celsiusdegree(theaveragetemperatureinJanuaryis4.8Celsiusdegree,andtheaveragetemperatureinJulyis26.3Celsiusdegree).Theclimateispleasant.Shatanvillage’sgreenhousegasinventoryincludesthedirectenergyconsumptionandindirectenergyofbuildings,transportation,solidwaste,industry,etc.Villagershaveastrongsenseofenergyconservationbecauseoftheeconomicbenefitsinvolved.Theseenergyconsumptiondataarebasedonhouseholdmeasurements.Thesedataprovidetechnicalsupportfortheestablishmentofgreenhousegasinventoriesinthevillage.Principle2:Well-connectedmixed-usenodesToachievezerocarbonemissions,thelayoutofthestreetsmustbeproperlydefinedattheurbandesignlevel.TheaimofthepresentmasterplanforShatanVillageistobuilda‘beautifulvillage’.Inparticular,itistryingtorenovateShatan’sOldStreetwiththeaimoftransformingitintoaculturalstreetfortouristsattractedbythehistoricbuildingsofTaiweiTemple,RouchuanCollege,andanoldperformancestage.IntheOldStreet,theexistingbuildingswererenovatedand,somewhere,rebuilt.AhomestaywasprovidedtobringsometouristsfromShishitanVillage,asmallvillagenearby.Theeasternsideofthevillageisdesignatedtobethemainresidentialareaandthelocationofthegovernmentadministrativeoffices.Publicservicefacilitiessuchashospitalsandvegetablemarketswillalsobeplacedmainlyintheeasternpartofthevillage(Figure3.3).HangzhouNingboZhoushanYutouTownZhoushanShantanVillageJinhuaQuzhouLishuiWenzhou83Net-ZeroCarbonVillagePlanningGuidelinesfortheYangtzeRiverDeltaRegioninChinaThelayoutofthestreetsisarrangedinanorganicformtoechothecontourlineofthemountainandtheoriginalstreettexture(Figure3.4).Inthisway,excavationintothemountaincanbereducedandthenaturalenvironmentcanbebetterpreserved.Theterraininthecentralandeasternpartsofthevillageisflatter.Buildingsandstreetsinthosepartsarealmostallinanorth-southorientationtomaximisethesunlighttheycanreceiveduringtheday.Localgovernmentandotheradministrationandservicefacilitiessuchasgovernmentoffices,vegetablemarkets,andhospitalsarealsoplacedintheeasternpartofthevillagetoreduceinterferencewiththeOldStreet,whichisthemaintouristicattraction.Inthedevelopmentplan,themainstreetsareapproximately14metreswideandarenorth-southoriented.Theinnerroadsystemismainly5to8metreswide(Figure3.5).AcentralizedparkinglotisarrangedaroundthelargepublicfacilitiesnearthenorthpartoftheOldStreet.Thereisacroptradingmarketwithanareaofabout400squaremetreslocatedneartheYutoutowngovernmentofficeintheeasternpartofthevillage.Fig.3.4NewdevelopmentplanofShatanVillageFig.3.5LayoutofbuildingsandstreetsinthedevelopmentplanRuralresidentiallandAdministrationlandEducationalInstituteCultureandtechnologyMedicallandCommercialandbusinessFirsttypelandforindustrialusageStreetandtransportationlandPublicsquarelandPublicfacilitieslandSanitationfacilitieslandPublicgreenspaceProtectivegreenspaceAnciettreeWaterbodyAgriculturalandforestrylandVillageconstructionlandboundaryUrbanresidentiallandResidential/Commercialmixedland84CasestudiesThewidthandorientationofthestreetsinthevillagehavealsobeendesignedinsuchawaythatenergyconsumptioninbuildingscanbereducedbyexploitingsolargains.Themainlocalstreets,whichareapproximately14metrewide,areinastreetgridorientednorth-south/east-west.Inthedevelopmentplan,landscapedcanalshavebeenaddedinthemiddleFig.3.6RoadnetworkofShatanVillageinthedevelopmentplanFig.3.7SectionofthenewlyplannedroadsinShatanvillageofthemainstreets.Thebanksofthecanalsarepiledupwithlargestones,pavedwithslateandpebblesonbothsides,andplantedwithdeciduoustreesandtreeswithcolouredleaves(Figure3.6).Onthesemainstreets,pedestriansandvehiclesareseparated,andtheroadwaysonbothsidesofthecanalsareone-waystreets.CountyroadCountyroadSecondayroadSidewalkParkinglotBusstationVillageconstructionlandboundary85Net-ZeroCarbonVillagePlanningGuidelinesfortheYangtzeRiverDeltaRegioninChinaPrinciple3:HeatingandcoolingClimateisthemaindriverofenergyconsumptionforheatingorcooling,andthewaythebuildingsarearrangedinasettlementplaysasignificantroleindeterminingtheamountofenergyneeded,becausetheirorientationisacrucialissuefortheexploitationofsolargainsinwinterandforprotectionfromthesuninsummer.Intheenergy-savingdesignofthevillagebuildings,thecoefficientofthebuildingheightandshapeismainlycontrolled.Thebuildingheightisgenerallycontrolledatthreestoreys,andthebuildingshapecoefficientisgenerallylimitedtobelow0.3(Figure3.7).Thevillageismountainousandhasasubtropicalmonsoonclimatewithsuperiorclimaticconditions.Theperennialdominantwindsarethesoutheastwindandthenortheastwind.Thebuildingsshouldbeorientednorth-south,andthemainfacadeshouldavoidthedominantwinddirectioninwinter,soastoreduceenergyconsumptionforheatinginwinter.Architecturalwindowsaredesignedinserieswithnorth-southpenetration,whichformsa"cross-hallwind"insummerandreducesenergyconsumptionforairconditioningandrefrigerationinsummer.Three-dimensionalgreeningisadoptedinthedesignofbuilding’sfacades.Plantscanreducetheabsorptionofsolarradiationinsummer,andplayanenergy-savingandcoolingrole.Inwinter,insulationandheatpreservationcanbeachievedbyshieldingthebuilding’smainfacadefromthewind.Inoldbuildings,renovationsincludeareasonablenumberofskylights,andnaturaldaylightingisintroducedthroughroofskylightstoachieveuniformandsoftindoordaylighting.IftheskylightisopenedattheappropriatetimeitcanachievethenaturalFig.3.8EnergysavingdesignFig.3.9The‘Liangsu’buildingunderconstructionventilationeffectofverticalpermeabilityandimprovetheindoorairquality.Low-eglazingshouldbeusedforskylights,becauseitprovidesgoodthermalinsulationandcaneffectivelyreduceenergylossfromabuilding.Someexistingbuildingsinthevillagehavealreadybeenretrofittedasenergyefficientbuildings.AtypicalcaseistherenovationprojectofahouselocatedintheShatanOldStreet(Figure3.8).Thisbuilding,called‘Liangsu’,wasaformergranary.Figure3.9illustratesallthenewtechnologiesusedinthisbuildingtotransformitintoanenergyefficientbuilding.Generallyspeaking,anewbuildingenvelopeandenergy-savingequipmenthavebeenused.Theenvelope’sheatlosseswerereducedbyinsulatingtheroof,wallsandfoundation,andusingappropriatelyinsulateddoorsandwindows.•Rooftechnology:Theoriginalslopingroofhasbeenrenovated.Inordertoretaintheskeletonoftheoriginalslopingroof,therottenwoodenbeamswereremovedandsomenewwoodenbeamsareaddedaccordingtothenewloadbearingrequirements.Theproblemsofwaterleakageandpoorperformanceinheatpreservationhavebeensolved.•Walltechnology:Restorationiscarriedoutwiththeaimofprotectingthestyleandhistoricalfeaturesofthebuilding.Sprayingacolourlessprotectiveagentontheconcretemasonryontheoutsideofthewallhasagoodprotectiveeffectontheoriginalstoneandbrickwall.Whileresolvingtheproblemsofprotectionofthestyleoftheexteriorfaçade,insulationoftheexteriorwallandmoistureprotection,italsosolvestheproblemarisingfromthefactthatthesunnywallofresidentialhousesinmountainousareasispronetodewduetothetemperaturedifferencebetweenthewallandtheindoorair,andthisthenbreedsmould.•Doorandwindowtechnology:Double-decklow-radiationaluminiumalloydoorsandwindows86CasestudiesFig.3.10Energyefficienttechnologiesusedintheadaptivereuseof‘Liangsu’withhollowbrokenbridgesareusedinconstruction.Thesecaneffectivelyreducethefrequentexchangeofindoorandoutdoorheatcausedbythecoldandheatconductionofdoorsandwindows,andsoreduceenergyconsumption.Atthesametime,thedoorsandwindowshavehighsoundinsulationperformanceandimproveindoorcomfort.•Floortechnology:Cleantheoriginalindoorfloorandlaymoisture-proofandwaterprooflayersontheconcretebasetosolvetheproblemofindoorfloodingcausedbyraininsomemountainareas.Geothermalheatpumps,rainwatercollectionandutilizationtechnologyhavebeenappliedinthisproject,resultinginlowerenergyconsumptionandacomprehensiveeconomicbenefit.Therenovationofthe“Liangsu”buildinghasapositivesocialimpact,too.Inthissense,theprojectshowshowtheapplicationofenergyefficiencytechnologiescangenerateagoodeconomic,socialandenvironmentalimpact.Principle4:GHGemissionsAsmentionedinthe‘Liangsu’buildingrenovationcase,bamboo,woodandothernaturalmaterialswerealsousedinsomeresidentialbuildingsandroads.Local,environmentallyfriendlymaterialshavebeenusedforbuildingconstructionandrenovationinShatanVillage.IntheprojecttorenovatetheLocalVillagers’ActivityCentre(Figure3.10),theroofofthebuildingwasrebuilt.Basedonitsoriginalslopingskeleton,thedecayingwoodenbeamswereremoved,andsomenewwoodenbeamswereaddedaccordingtothenewloadbearingrequirements.Inaddition,double-layer30mmwoodfibreboard,fullycast30mmfinesandconcrete,Fig.3.11Extensionofresidentscentreusinglocalmaterialsandmethods.ExternalInsulationSystemPVpanelsEnergy-savingdoorsandwindowsEnergy-savingdoorsandwindowsPermeablefloorPermeablelawnandecologicallandscapeRainwatercollectionNaturallighting:skylightVernaculararchitec-turestyledesignPassivecoolinggreenscreenUndergroundspaceutilization:ventilationandwatercirculation87Net-ZeroCarbonVillagePlanningGuidelinesfortheYangtzeRiverDeltaRegioninChinabrushweatherresistantwaterproofcoating,anadhesiveplasteringinsulationlayerandlocaltileshavebeenaddedtothebuilding.Inaddition,walltechnologyhasalsobeenusedintherenovationproject.Asmentioned,ShatanVillagehaswindyweatherandmanytyphoonsoccurattheturnofthesummerandautumn.Consideringtheweatherconditions,alayerofacolourlessprotectiveagentdesignedforconcretemasonryhasbeensprayedontheoutsideofthewallstobetterprotecttheoriginalstoneandbrick.Meanwhile,ontheinnersideofthewall,theoriginalmasonrywallhasbeenrepaired,theoriginalbrickshavebeencleanedandstonejointshavebeenfilledwithcementmortar.Inaccordancewiththelocalweatherconditions,athinlayerofinsulationhasbeenaddedtotheinnersurfaceofthewall.Inaddition,inthenewdevelopmentplan,thenewlypavedroadsareallmadeoflocalpavingstones,whicharesourcedlocallytoreduceenergyconsumptionfortransport(Figure3.11).Buildingandroadmaterialslikestone,timber,bamboo,stabilisedcompressedbricks,etc.,whichhavelowFig.3.12NewroadusingexistinglocalrocksFig.3.13Utilizationoftimberembodiedemissions,shouldbefavoured.Theyareconsistentwiththeculturalheritageandcanalsobeproducedlocally,reducingtheneedfortransportenergyandreinforcingthelocaleconomy(Figure3.12).Principle5:RenewableenergysourcesAsmentionedinthe‘Liangsu’buildingrenovationcase,insomeresidentialbuildingsandhotels,geothermalheatpumptechnologyhasbeenadoptedtoprovideheatinginwinter.Thistechnologyutilisestheeffectiveheatstorageandcoldstoragecapacityoftheundergroundsoil,providingasuitableindoortemperaturebothinwinterandsummer.Inthevillage,theexistingrenovated"Liangsu"roofisequippedwithphotovoltaicpanels,whichhavebeendistributedtothehouseholds.Thesedirectlyconvertsolarenergyintoelectricityandgiveaccesstotheuser-sidepowergridtorealize"self-use,residualpowergrid"ofphotovoltaicpowergeneration.SomebuildingsinShatanVillagehavesolarwaterheatersandwaterstoragetanksontheirroofs.Convertingsolarenergyintoheatenergytoheatcoldwatercanprovide88CasestudiesFig.3.14eco-pooldesignedforrainwaterstorageFig.3.15Thepermeablesurfaceofawalkwaytoanecologicalpublicrestroomsapartofresidentialhotwaterdemand.Localagriculturalwastesandorganicwastesareusedforenergyproductionandcomposting.OntheeastsideofShatanVillage,anorganicwastecompost/reusefacilityandasmallwastecompressiontransferstationwereestablished.Throughthecompostingofagriculturalstrawanddomesticrefuse,theefficientutilizationofbiomassenergycanberealized.Thevillageisclosetotheriverandhaspermanentrivers,whichprovideabasisfortheconversionofwaterenergyintoelectricity.Inordertoutilizenaturalresourceofwater,sixhydropowerstationshavebeeninstalledinthevillage.Thevillageroadlightingfacilitiesusesolarphotovoltaicstreetlamps,whichcanreducethecostofroadlightingandpollutantemissionsbyconvertingsolarenergyintoelectricenergy.Principle6:WatercycleRainwaterharvestingtechnologyhasbeenusedinShatanVillage.Arainwatercollectingpipelinehasbeeninstalledontheroofsofresidentialandcommercialbuildingstochannelrainwaterintotheundergroundreservoir.Whenitcomestowatersupply,anecologicalreservoirhasbeenbuiltaroundthevillage'sresidentialarea,andvarioushouseholdsareconnectedtothetapwaterpipelinethroughpurificationsystems.Adrainagesystemhasalsobeeninstalledwithrainandsewagediversion.Thetreatedwastewaterisusedforirrigationandplanting.Inaddition,incombinationwithexistingcanals,anecologicalpoolhasbeensetuptoincreasethecapacityforrainwaterstorageduringperiodsofheavyrainfall(Figure3.13).Twoecologicalpublicrestrooms(Figure3.14)havebeenbuilttoreducethereleaseofhumanorganicwasteinthelocalenvironment.Incombinationwithaspongecityconstruction,permeablepavementshavebeenadoptedtoreduceroadrainwaterrunoffonrainydays.89Net-ZeroCarbonVillagePlanningGuidelinesfortheYangtzeRiverDeltaRegioninChinaPrinciple7:SolidwasteThevillagehasimproveditsgarbagesortingandcollectionmethods.Solidwasteisdividedintotwotypes:organicandnon-organic.Meanwhile,along-termmechanismforgarbagecleaning,transportandrecyclinghasbeenestablishedinthevillage.Areusefacilityoforganicgarbagecompostandasmallgarbagecompressiontransferstationhavebeenbuiltontheeastsideofthevillage.Awastesortingtreatmentstationhasalsobeenbuiltinthetown.Principle8:Energy,water,foodandwastecyclesOrganicwastehasbeenusedforenergyproductioninShatanVillage.Localagriculturalproductionwasteandorganicwaste,forexample,areusedforenergyproductionandirrigation.Thetypicalwastefromagriculturalproduction——cornstrawiscollectedandanaerobicallydigested.Thebiogasslurryisreycledandreused.Thegeneratedbiogasisstoredinthegasstoragecabinetandthentransportedtothefarmer'shousethroughthepipelinefordailyenergyuse.Thegeneratedbiogasresiduemainlyflowstothenearbyfarmlandandvegetablebase.Sinceitisallbiogasresidue,itisalsoconvenienttotransportittootherplaceswhereitisneededasafertilizer.Meanwhile,inthevillage,rainwaterhasalsobeenreused.Familieshavealreadybeguntocollectrainwaterforflushingtoilets,washingclothes,cleaningfloorsandplantirrigation.Besides,theuseofsolarandbiomassenergyhasbeenpiloted.Principle9:EmploymentopportunitiesandleisureThevillagehasconvenientexternaltrafficconnections,awell-developedtourismserviceindustry,andalargenumberofhomestaysandcountryhotels,sothevillageattractsalargenumberoftouristsfromTaizhouandthesurroundingareasonweekendsandholidays.During2017-2018,theaverageannualnumberofshort-termvisitorstothevillagewasover440,000.Theyaremainlyweekendvisitors.Thosevisitorsresultinalargenumberoffamilyfarmhousesinthevillage,especiallyintheShatanOldStreet,beingleasedoutasone-ortwo-daybedandbreakfasthotels.Theseprojectscreateeconomicactivitiesandemploymentforabout2,000peopleandtheypromoteinnovation,whichattractsyoungpeoplefromcitiestoliveandworkinthevillage.Principle10:EcologicalawarenessThevillagehassomehistoricalandculturalheritagesitessuchastheTaimiaoTemple(Figure3.15),anoldperformancestageandtheSongyunCulturalPark.Thoseheritageshavebeenpreservedtosupportlocaltourism,whichcanbeaneco-friendlyindustryforthevillage.Inthedevelopmentplan,theareasinfrontoftheTaimiaoTempleandtheoldperformancestagehavebeenpreservedandredevelopedintoamajorpublicspacenotonlyforlocalresidentsbutalsotoattracttourists(Figure3.16).Thesespaces,inthisway,promotethelocaleconomyandprovidepublicactivitiesforthepublicinanecologicalway.Fig.3.16TaiweiTemple90CasestudiesSUGGESTEDFURTHERIMPLEMENTATIONACTIONS1.Developanenergyandcarbonaudit,andestablishacomprehensivemonitoringplatformforenergyresourcesinvillages.2.Indesigningthenewresidentialdevelopmentintheeasternpartofthevillage,avarietyofhousingtypesshouldbeprovided,creatingasocio-economicmix.Thisalsohelpstofulfiltheneedsofdifferentfamilytypes.Thesameapproachshouldpossiblybefollowedwhenrefurbishingbuildings,whenthereisachangeofownership,toavoidgentrification.Thegroundfloorofbuildingsshouldhostshopsandotherservices,topromotemixeduse.AcentralizedparkinglotshouldprovidePVcanopiesande-car,e-bicycleande-scooterchargingpoints;itspavementshouldbepervious.3.Themostimportantaimbothinrefurbishingexistingbuildingsandbuildingnewonesistominimizetheirenergydemandbyoptimisingtheenvelope’sthermalinsulation,thewindowsizeandtheglazing’sthermalandopticalcharacteristics.Thisisbestobtainedbymeansofcomputersimulations.Asminimumrequirements,however,wallandroofinsulationshouldbenotlessthan10cmthickwithathermalconductivity=0.03W/mK(orequivalentthicknessfordifferentconductivityvalue).Forsouthfacingfacades,theWindowtoWallratio(WWR)shouldrangebetween0.3and0.5,whiletheWWRofnorthfacingfaçadesshouldbetheminimumallowedbylightingandhealthstandards.Low-eglazingshouldbeused.Wheneverpossibleorapplicable,bothinneworexistingbuildings,operablesunspacesonsouthfacingbalconiesshouldbeconsidered,aswellasappropriatelysizedoverhangs(thesecouldbetheroof’seavesorbalconies)protectingsouthfacingwindowsfromthesuninsummer.RoofsshouldbedesignedwithPVpanelareasufficienttoprovidetheelectricityneededforbothheating,cooling,hotwaterandalltheplugelectricityconsumption.Thus,themaximumheightofnewbuildingsshouldbelimitedaccordingly.Indesigningthenewresidentialandcommercialdevelopmentsintheeasternpartofthevillages,ensurethattheheighttowidthratioH/Woftheeast-westcanyonsis<or=1,calculatedaccordingtothedeviationfromtruesouthofthebuildings’façade,andthatthebuildings’mainfaçadesfacesouth.InofficeandhospitalbuildingsWWRshouldnotexceed0.5.Thenewresidentialapartmentbuildingsapartmentintheeasternpartofthevillageshouldbedesignedinsuchawayastoallowcrossventilation,inordertofavourtheexploitation,insummer,ofthecoolingeffectofdominantwinds.Thiscanbeobtainedwithapartmentsfacingbothsouthandnorthandbylimitingthethicknessofthebuildings.Fig.3.17Newpublicspaceinfrontofoldperformancestage91Net-ZeroCarbonVillagePlanningGuidelinesfortheYangtzeRiverDeltaRegioninChina4.Insulatingmaterialsmadeofnaturalfibressuchassheep’swool,paper,cotton,coconutfibreandwoodfibreshouldbeconsideredassustainablealternativestofiberglassorPolyurethaneFoamorPolystyrene(EPS).TheneworrenovatedfarmhouseandroadprojectsofShatanvillage,reducetheconsumptionofbuildingmaterialsbyoptimizingdesign.Makechoicesthatensurereductionofscrapmaterials,thisisverysignificantparticularlyforhighembodiedenergymaterials.Reuseconstructiondebrisanduseproductsormaterialswithreducedpackaging.5.Undergroundwater,orriverwater,shouldbeconsideredasheatwell/sinkforheatpumpsforheatingandcoolinginbothresidentialandcommercialbuildingsinthenewdevelopmentintheeasternpartofthevillage.Thereasonforthisisthatwatersourceheatpumpsareveryefficientandgenerallylessexpensivethangroundsourceheatpumps.Intheexistingbuildingsair-to-airorair-towaterheatpumpsaremoresuitable,becauseofthecostofretrofitting.Inhotels,hotwatershouldbeproducedwithheatpumps.Biomasscogenerationshouldbeconsidered(seePrinciple4),withitswasteheatusedforheatingandcoolinggovernmentbuildingsorforindustrialprocessesrequiringlowtemperatureheat,suchasprocessesinthefoodindustry.Theoccupiersofnewresidentialbuildingsespecially,butingeneralallthevillage’sfamilies,shouldbeincentivizedtouseinductioncookersinsteadofgascookers.Concentratedparkinglotsinthevillagesuggestthatmeasurescouldbetakentosetupshadingmeasures,combiningtheshadingofparkinglotswithsolarphotovoltaicpanels,alleviatingpowershortagesandimprovingtheurban"heatisland"effect.Accordingtothedemandsofagriculturalplanting,a"photovoltaicagriculturalgreenhouse"shouldbesetup,andtheroofoftheagriculturalgreenhouseroofcouldbeusedtomeetthedemandforagriculturalelectricity.Solarphotovoltaicstreetlampsorwind-solarcomplementarystreetlampscouldbeusedinvillageroadlightingfacilitiestoreduceroadlightingcostsandemissionsofpollutants.Theenergyresourcesofthevillagearesignificantanddiverseandshouldbeexploitedasmuchaspossible.Besidessolarphotovoltaicsystemsontherooftopsofallbuildingsandascanopiesintheparkingareas,threemoresourcesofrenewableenergycanbeused:wind,waterandbiomass.PVonrooftopsshouldbesizedtofulfilthefullelectricitydemandofthebuildingitisinstalledon.Hydropowerisalreadybeingused,butopportunitiesforfurtherexploitationshouldbeevaluated.Windenergy,givenitsalmostconstantavailability,isanoptiontoevaluateforbothmicroandminiturbines.Microturbinescouldbeinstalledbothontopofthepubliclightingpoles,topowerthelamps,inconjunctionwithasolarpaneloralone,andalsoontheroofsofbuildings.Miniturbinescouldbeinstalledintheparkingareas,alongtheriverandinotherplaceswhereanopenspaceisavailable.Biomasshassignificantpotentialasasourceofenergy.Forexample,itcouldderivefromthemanagementofthesurroundingforests.Thisbiomass,chipped,couldfeedagasifierandthegasusedtopoweracogenerationunit.Thebiocharproducedbythegasifiercanbeusedbyfarmersforimprovingsoils,soldforotheruses,orspreadontheforestfromwhichitcomes,closingacycle.Anothersourceofbiomassderivesfromwastewater(seePrinciple5)andfromfoodwastefromrestaurantsbyfeedingadigester.Thebiogasproducedcouldalsopoweracogenerationunit,whosewasteheatcouldbeusedforheating,coolingandhotwaterproductioningovernmentbuildingsorinhotels,asanalternativetotheheatpump,orforindustrialprocesses.Theslurry,aby-productoftheanaerobicdigestiontakingplaceinthedigester,canbeused,afterappropriatetreatment,asafertiliser,helpingtoclosethenutrientscycle.Suchalargerelianceonrenewableenergysourcescallsforappropriatestoragesystemsintegratedintoasmartgrid.Usuallyelectricitystorageisprovidedbymeansofbatteries,butinShatanVillageothersolutionsshouldbeconsidered,suchas:1.Creatingawaterreservoirontopofthenearesthill(orinanotherconvenientplaceprovidingthesamehydraulichead)anduseittocontainwaterpumpedfromthealreadyexistingrainwaterreservoirinthevillageduringtheperiodsofthedayinwhichthereisexcessproductionofrenewableelectricity.Whenelectricitydemandishigherthantheelectricitysupplyfromrenewablesources,waterfromtheupperreservoirflowstowardsthelowerone,whereaturbine(orthesamepump,actingasaturbine)connectedtoageneratorconvertsthewaterenergyintoelectricity,feedingtheminigrid.2.Storingthegasproducedbythegasifierand/orthedigesterinagasholder,andthenusingthegastofeedthecogenerationunitaccordingtotheneedsofthegrid.3.Settingupasmartgridsysteminordertomanageelectricitydemandandsupply.6.Considerthepossibilityofmodifyingandupgradingthewastewatertreatmentplantforbiogasproduction.Thiswouldallowreuseofnotonlythetreatedwastewaterforirrigation,butalsotheslurry(afterappropriatetreatment),thusnearlyclosingthenutrientcycle.92CasestudiesBiogasproduction,feedingaCHPsystemorsimplyanelectricitygenerator,couldbeusedasasupplementalstoragesystem(seePrinciple4).7.Considerusingthefoodwasteproducedbyrestaurantsforfeedingabiogasdigester(mightbethesameasthatusedforwastewatertreatment).Insteadofdividingthesolidwastesimplyintoorganicandinorganicsolidwastecanbeclassifiedmorethoroughlyintohazardouswaste(i.e.,wastebatteries,wastemedicine,wastepaintbuckets),recyclables(i.e.,wasteglass,wastemetal,wasteplastic,andwastepaper),wetgarbage(i.e.,leftovers,expiredfood,peelsandkernels)anddrygarbage(domesticwasteotherthanhazardouswaste,recyclablesandwetgarbage).Thereshouldbeareasonablelayoutofrecyclingstations.Furthermore,theawarenessandknowledgeofthevillagersshouldbeimprovedthrougheducationalprogrammes.8.Theimplementationofavarietyofrenewableenergysystems(PV,wind,biomass,water)requireslocalcapacityfortheirconstructionandmaintenance,thuscreatingnewjobsatdifferentskilllevels.Otheremploymentopportunitieswillarisefromtheimplementationofsustainabilityactionsasappropriateforestmanagement,thetreatmentandmanagementofwastewaterandlocalwaste,andtheimplementationofthevillagesmartgrid.Considercost-effectiveness;anactionplanforthepromotionofmoreadvancedeconomicactivitiescouldbeenvisagedinShatanVillage,whichshould:•Implementatransitionalpathtowardsorganicproductioninthelocalagriculturalvaluechain.Deliveryoflocal,healthyandorganicfoodshouldbeconsideredakeyfactorofthetouristicoffer;•Identifyandpromotetraditionalvegetables,fruits,andanimalbreedsastheuniqueidentityofthelocalagro-foodoffer;•Planguidedvisitstothesmallagro-foodindustriestogetherwiththeimplementationofinformativespacesandcompanyshops;•Introduceacomprehensivevillagebrand,bringingtogetherfoodproduction,hospitality,andculture;•Launchadditionalservices(culturalweeksandfestivals,gastronomictours,natureexcursions,revitalizationpaths,family-orientedoffers)inordertoexpandtheaveragenumberofnightsspentbythetourists;•Promotecirculareconomyactivitiesinconnectionwiththewastecycle,suchastheimplementationof3Rlabs(reuse,recycleandrepair)withtheintroductionofnewtechnologiesengagingyoungpeople(3Dprintinganddigitalmanufacturing);•Implementapilotactiononprecisionagriculture,bringingtogetherlocalfarmers,youngdigitalmakers,andacademicresearchersforinnovativelocalagriculture.•Theimplementationofadigitalcommunityhubaccessibletoallthevillagersissuggested,whereapositionofcommunityinnovationmanagershouldbecreatedformanagingtheinnovationprocesstowardsthemedium-longtermgoals9.Startingfromheritagesites,anovelnarrativeofthevillageshouldbecreated.Writers,poets,video-makersandartistscouldbeinvitedtocollectandpublishmemoriesofthevillagers,remarkablenaturalfacts,qualityoflifestyle,storiesofwilderness,etc.Thetraditionalstageofferstheopportunityforpromotingaculturalfestival.Thiscanbedoneinitiallythroughresidentialgrants,sponsorships,andvolunteersupport,thereafterastart-upcouldbecreatedtosupporttheself-sustainabilityofthisevent.Thevaluesadoptedbythevillageshouldbepresentedtoallthevisitors.Amodernmultimediavisitorcentreshouldbeestablished.Itcouldbeinthesameplaceasthedigitalcommunityhub(seePrinciple9),possiblyinanenergyefficientrestoredbuildinganditshouldrepresentamust-seepointwherethesustainableapproachembracedbythecommunityisexplained,thewayoflivingofthevillageisrepresented,localproductsareintroducedandsold,andtheenergysystemandtheclosureofcyclesbeingimplementedaredescribed.Inthevisitorcentre,touristsshouldalsobeinformedabouttherulestheyareaskedtorespectinordertohelpthecommunitytofulfilitscommitmenttowardssustainability:appropriatewastemanagement,avoidanceofchemicaldetergents,respectforthenaturalandculturalheritage,respectforfaunaandflora,andthepositiveimpactofbuyinglocalproducts,couldbeamongtheadvicegiven.Touristsshouldbecomeambassadorsofthecommunity;theappropriateuseofsocialnetworkingchannelsshouldsupportthisprocessoffollow-upandtheirmanagementshouldbepartofthetaskappointedtothecommunityinnovationmanager(seePrinciple9).Digitalguidingequipmentcouldbesetupinculturalandtouristattractions,andamobileappcouldbedesignedtoenabletouriststovisitscenicspotsmoreeasily.Thevisitorcentrecouldalsorecruitvolunteerstodisseminateculturalvaluesandtheconceptofsustainablevillageconstruction.93Net-ZeroCarbonVillagePlanningGuidelinesfortheYangtzeRiverDeltaRegioninChinaXinjianCommunity,ZhoushanLocatedinthesouthofGanlanTown,DinghaiDistrictofZhoushancity,ZhejiangProvince(Figure3.17),XinjianCommunityconsistsofthreevillages,namelyHuangsha,LichenandNandong(SouthCave).Itsitsinashallowvalleyinthemountainswith450haofadministrationarea,and28.52haofbuiltareaatpresent.In2015,thepopulationwas1,563in578households,797ofwhomaremaleand766arefemale.Over500ofthemareover60yearsold.AsitislocatedinthesubtropicaleastofthePacificOcean,borderingEurasia,itiscoldinwinterandhotinsummer,withabundantrainfall,windandlightthroughouttheyear.Ithastheoverallclimaticcharacteristicsofthesubtropicalmonsoonhumidclimate.Winterhasmorenorthwinds,whilesummerhasmoresouthwinds,springandautumnarethemonsoontransitionperiods(Figure3.18).Accordingtothecommunityplan(2015-2030),by2030,thepopulationoftheXinjiancommunitywillbearound2600,themaximumnumberofvisitorsisexpectedtobearound1,000peopleperday.ConsideringthelandsupplyconditionsofXinjiancommunityandthedevelopmentofruraltourism,thetotalconstructionlandareais39.13hectares,andtheconstructionlandareapercapitais145.78squaremeters(Figure3.19&3.20).Communityincomemainlycomesfromagriculture,aquaculture,tourismandmigrantworkers’incomefromothercities.Thecommunityismovingfromprimarytotertiaryindustry,andthereisachangeinemploymentdirectiontoindependententrepreneurship.Inrecentyears,withthedevelopmentoftourism,XinjianCommunityhasincreaseditscapacityforthereceivingtourists.Thecommunityoperatesoldarmybarracksandhomestayswithmorethan100rooms.Bytheendof2014,tourismintheXinjianCommunitiesaccountedfor57.6%ofthewholetertiarysectoroutput.Context-specificchallenges/opportunitiesare:Fig.3.18LocationofXinjianCommunity94CasestudiesFig.3.19Bird'seyeviewofthecommunityFig.3.20XinjianCommunity2030MasterPlan95Net-ZeroCarbonVillagePlanningGuidelinesfortheYangtzeRiverDeltaRegioninChinaFig.3.21XinjianCommunity2030MasterPlan,infrastructurefacilityplanChallenges•Sustainablemanagementofthetouristicflow,minimizingthematerialandculturalimpactontheexistingcommunity•Spatialplanningofthegrowingvillageandpreservationofthearchitecturalheritage•Appropriatemanagementofrelevantwaterresources•Preservationofsmall-scalefarmingmodelsOpportunities•Revitalizationofthevillagewithneweconomicactivitiesattractingyoungpeoplebackfromthenearbyurbanareas,viatourism,innovativeagriculturalproduction,creativeindustries,ICTrelatedproductionandservices•Closingtheenergy-water-waste-foodcycles•Developmentofanewenergysystem,basedonrenewableenergysources,aimingforcompleteself-sufficiency,whichcouldattractcompaniesandprofessionalsforitsimplementationandoperation•Improvementoftheattractivenessofthevillagethroughtheappropriatepromotionofthezerocarbonmodel.APPLICATIONOFTHE10PRINCIPLESTheXinjiancasestudyisidealforshowinghownaturalresourcesandpre-existinginfrastructurescanbecombinedforoutliningapathtowardsazerocarbonvillage.Theaimofthe10principles’suggestedfurtherimplementationactionsistoshowhowtheconceptofazerocarbonvillageiscloselylinkedtotheconceptofasmartgridandhowthesmartgridishighlydependantonthestoragecapabilityoftheenergysystem.Atthesametimetheimplementationoftheenergysystemandtheclosureofthewater,foodandwastecyclesareshowntobeabletotriggeremployment,tourismandeconomicdevelopment.Principle1:ClimatedataandgreenhousegasinventoryXinjianCommunityischaracterizedbywhatclimatologistsdefineas“marinemonsoonsubtropicalclimate”.Thesummersareshort,warm,oppressive,andmostlycloudy;thewintersarecoldandpartlycloudy;anditiswetandwindyallyearround.Overthecourseoftheyear,thetemperaturetypicallyvariesfrom3.9to30.6°Candisrarelybelow0.6°Forabove33.3°F.WatersupplyplantSewagetreatment10kvsubstationSignalstationDistributionboxPublicwashroomWastecollectionpointCityroadVillagemainroadVillagesecondaryroadVillageroadBusstationParkingSiteboundaryPublicbuildingboundaryTemporaryParking96CasestudiesFig.3.22RoadsysteminXinjiancommunitySolarEnergyTheaveragedailyincidentshortwavesolarenergyrangesfromthebrighterperiodoftheyear,fromApril21toJune18,withanaveragedailyincidentshortwaveenergypersquaremeterabove5.3kWh,tothedarkerperiodoftheyear,fromNovember8toFebruary5,withanaveragedailyincidentshortwaveenergypersquaremeterbelow3.5kWh.HumidityThemorehumidperiodoftheyearlastsfor5.4months,fromMay9toOctober22,duringwhichtimethecomfortlevelislowbecausetheweatherismuggy,oppressive,ormiserableforatleast25%ofthetime.WindThewindypartoftheyearlastsfor6.7months,fromSeptember1toMarch22,withaveragewindspeedsofmorethan12.0milesperhour.Thecalmertimeofyearlastsfor5.3months,fromMarch22toSeptember1.Principle2:Well-connectedmixed-usenodesXinjianCommunityis15kmfromDinghaiDistrict.Theroadandtransportationfacilitiesincludeonebusstopand3parkinglotsoccupying5ha.Theroadwidthis4-7meters.Ittakesamaximumof15minstowalktotheonlybusstop(Figure3.21).WithaUS$150,000investmentin2016,thevillageroadshavebeenimprovedandarenowmorepedestrianfriendly.Another114,000millionyuanwereinvestedforlandscapingoftheroadsandthefarmhouses(Figure3.22).TheDinghaiChangchunReservoirtotheSouthCaveRoad(Figure3.23),whichconnectsthenewcommunitywiththenortherntrafficroad,hasbeeninoperationsince2017.Thedistrict'sfirstmainscenicroadwith"ecologicalleisure"characteristics,itstotallengthis4.239kilometers.Theroadiswinding,likeacharmingribbonfloatingbetweenthegreenmountainsandrivers.Alongtheroad,bikelanesandviewpointshavebeenadded.Non-motorizedtransitnetworkshavebeenestablishedinXinjianCommunity,includingpedestrianandcyclingroads.Acharacteristicgreen,non-motorizedtransitroadhasbeenbuilttoconnecttheWuLeishanhikingtrailwithlocalbeautyspotsliketheWuleitemple,aswellastheEastChinaSeaGrandCanyon.Specialtouristsiteshavebeendesignedandconstructedtoprovidethenecessaryservicestotourists.97Net-ZeroCarbonVillagePlanningGuidelinesfortheYangtzeRiverDeltaRegioninChinaFig.3.23Roadrenovation(beforeandafter)Principle3:HeatingandcoolingNohigherthan3floors,localhousesaresouth-facingwithgoodsolarexposureandairmovement.Specificenergysavingrequirementshavebeenemphasizedduringtheplanningphase,includingtheshapecoefficientofbuildings,themainfacade,thearearatioofwindowtowall,thethermalperformanceofthebuildingenvelopes(walls,floors,roofs,doors,windows,etc).Smartdesignofthecoolingandheatingsystemwithinthecommunity,andbetterdesignofthemunicipalpipelinenetworkwithbetterinsulationmeasurestakencanhelpsavemoreenergy.Forthelightingsystem,highlyefficientfluorescentlightsandsmallcapacitygasdischargelampshavebeeninstalledwithmultiplecontrolmodesconfiguredwithbothrelativelycentralizedcontrol,anddecentralizedcontrol.Outdoorlightingiscontrolledbothbytimingandactualsunlightinteraction,forbetterperformanceinenergysaving.Principle4:GHGemissionsIntheplanningprocessforconstructionandrenovationinXinjiancommunity,preservationofthevillage’snaturalgeographictextureaswellaslocalhistoricalandculturalheritages,folkcustomsandlivinghabitsareemphasized.Thedevelopmentplanninghasbeenincorporatedintothenatural,historicalandculturalbackgroundwiththeaimofbetterruralrejuvenation.Cleardirectionsandsmallgreenlandscapeshavebeendesignedatthevillageentrance,andonthemainconnectingroads,withspecialindigenousplantsselectedtoemphasizethelocalnaturalenvironmentaswellasbetterprotectionofthelocalspecies.Basicdesignprinciplesforlocalresidentialhousescanbesummarizedas“economicandpractical,obtainingbuildingmaterialslocally,andbeingwell-spacedwithanartisticlayout”withaZhoushanstyleofislanddwellings.Theexistingstoneprocessingplantwillberetainedandupgradedtofurtherpromotethelocalbrandof“SouthCaveArtValley”,featuringhigh-endstoneprocessing,andproductexhibitionsetc.98CasestudiesFig.3.24TheroadconnectingDinghaiChangchunReservoirtotheSouthCaveRoad2Principle5:RenewableenergysourcesTherearethreemainsourcesforhouseholdwaterheating,with30%fromsolar,40%fromelectricityand30%fromgas.Theaverageconsumptionperhouseholdonelectricityis70-80Kwhpermonth,andonliquefiedgasis15kg.Thetotalannualradiationis4126-4598MJ/m2,andthecommunityisplanningtoinstallsolarPVpanelsontheroofofthecommunityartmuseumforthedailyuseofelectricityincommunityservicecentresandsurroundingpublicbuildings.Itisestimatedthatwithatotalareaof523.8m2PVpanels,aroundUN$11,900inelectricitycostscanbesaved.TheecoparkinglotalsoinstalledPVof250m3andbatteriestoutilizesolarenergytochargeelectriccars.Allfamilieshaveatleastoneelectricbikeforvillageortown-widetransportation,intotaltherearearound600bikes.Inthefuture,agriculturalactivitieswillbeconcentratedinafewdevelopmentzones,andscaledoperationandmanagementwillbeadoptedinsteadofthetraditionalindividualfarmingoperations,inordertoenhanceFig.3.25TheroadconnectingDinghaiChangchunReservoirtotheSouthCaveRoad82Fig.3.26Ecoparkinglot(beforeandafter)energyefficiencyaswellasfarmingprofitability.Meanwhileanotherknownplannedstepistheshiftfrompresentenergysourcestonaturalgas,whoseadvantage,incomparisonwithotherfossilfuels,isitslowerGHGemissionsperenergyunitprovided.Principle6:WatercycleBy2030,itisestimatedthatwithresidentsandtourists,waterconsumptionwillbearound584m3/day.Currentlythecommunityhas1reservoirand4ponds.TheSouthCaveReservoirhasacapacityofover1millioncubicmetres.Rainwateriscollectedbythesewaterstoragesystemsaswellasaseparatedrainagesystemandisreusedforfarmlandirrigation.Accordingtoquestionnairesurveyofthevillagersin2015,amongtheimportantproblemstobesolved,theimprovementofsewagefacilitiesistheissueofmostconcerntotheresidents,followedbythedemolitionofdangeroushousesandroadrenovation.LichenandSouthCaveVillagehaveinstalledsewageParkingLotDesign99Net-ZeroCarbonVillagePlanningGuidelinesfortheYangtzeRiverDeltaRegioninChinaFig.3.27WastewatersystemplanFig.3.28Flooddischargechannel,rainchannelandfloodcuttingditchExistingsewersonduitPlannedsewersonduitExistingseweragetreatmentPlannedseweragetreatmentPipesizeSiteboundaryFloodinterceptingtrenchStromdrainRainwateroutletSiteboundary100Casestudiespipelines,andawastewatertreatmentplantwith150m3/daycapacity.Butmostlyduetothediameterofthepipesnotbeinglargeenough,causingblockagesandotherproblems,whichhasresultedinsewagespills,thenumberofrespondentsexpressingdissatisfactionreached88.78%and91.97%.HuangshaVillagehasnotinstalledsewagepipes,andnearly90%residentsarenotsatisfiedwiththestatusquo.Arainwaterandsewagediversionsystemwillbebuiltaccordingtothedevelopmentplan.Anexistingsewagetreatmentstation,whichisusedforthetreatmentofSouthCavevillagehouseholdsewage,will,afterthepipelinenetworkiscompleted,treattheallthesewageoftheSouthCavearea..ChencunVillage,HuangshavillageinthelowerterrainwillsetupaPKAsewageecologicaltreatmentwetlandtotreatsewageinthearea.Aftertreatment,thesewagewillbedischargedtothewaterbodyorforfarmlandirrigation(seeFigure3.26&3.27).Theoriginalvillageswimmingpoolhasbeenconvertedintoanecologicalswimmingpool.Thecurrentsizeis15m×25mwith6lanes.thewaterdepthintheshallowendis0.7m,andinthedeependis1.5m.Themostdistinctivefeatureoftheswimmingpoolistheuseofanaturalfiltrationsystemdesignedtocreateanareaofaquaticplantsinthesurroundingarea.Thisareaisusedfornaturalfiltrationandpurification.Theswimmingpoolusesacompletelyecologicalwaterpurificationsystemtoachieveanewfusionofhumansandnature.Makinguseofthedropfromthewaterreservoir,stoneshavebeenpiledinthefloodwaytoslowthewatervelocity,createmoreoxygenandpurifywater(Figure3.28).ThesystemofpondchaintechnologyhasbeenusedinthemainjunctionsandflowingareasofthemainfloodchanneloftheDaxiReservoir,thebottomoftheriverchannelofDaxiPithasbeenspeciallytreated,andthewaterflowoftheriverbedhasbeendirectedalongthesectiondescendingfromtheverticalheightoftheterrain(Figure3.29).Thishasincreasedtheoxygencontentofthewaterbodyandbeautiestheriverlandscape.Thetwonewtpublicrestrooms,builtin2017,haveadoptedtechnologytoseparateurinefromfaecesinordertoconservewaterandreducewaste(Figure3.30).Stormwaterconveyancesystemswillbebuiltalongwithnewlyconstructedroads,whilerunoffinruralareaswillbedirectedtolocalcatchmentareasbeforeflowingintoriversthroughopendrainsorclosedconduitsFig.3.31Eco-friendlyrestroomsFig.3.29waterpurificationpoolsystemFig.3.30pondchainsysteminthefloodway101Net-ZeroCarbonVillagePlanningGuidelinesfortheYangtzeRiverDeltaRegioninChinaPrinciple7:SolidwasteThecommunityhasestablishedtwonewwastecollectionpoints.Garbageisdividedintocompostableandnon-compostablewaste,andhouseholdsareequippedwiththecorrespondingclassifiedgarbagecollectionbinsandgarbagecollectionbags.Thecommunityhassetuprubbishbinsataradiusof60metresfromservices.However,compostablegarbageiscollectedandtransportedtothenearbytownforcentralizedtreatment,insteadofbeingtreatedlocally.Aseriesofeducationalcampaignshasbeenorganizedonmunicipalsolidwasteclassificationinthecommunitytobetterenhancethereuseandrecyclingoflocalwaste.Principle8:Energy,water,foodandwastecyclesTherearetwocentralizedagriculturalzonesandsomeprimefarmlands,mostoftheproductsofwhichareforlocalconsumption.Acommunitywatersupplyplantprovidesdrinkingwaterforlocaluse.Rainwaterwillbedirectedtolocalcatchmentareasthroughexistingopendrainsorclosedconduits,whichwillalsobeusedasagriculturalirrigation.Principle9:EmploymentopportunitiesandleisureApublicparticipationmechanismhasbeenestablishedtoinvitedifferentstakeholderstotakepartinthedecision-makingprocessforthecommunity’sdevelopmentplanning,construction,andoperation.Localcommunitiesthrivealongwiththerejuvenationofrurallife,throughsharingresponsibilitiesinlocalbusinessoperationsaswellassharingtheeconomicbenefits.Thereare105householdswhichhavestartedprivatebusinessoperationsorworkshopswiththesupportofthelocalcommunity,andthelocalauthorityalsoencourageslocalbusiness-ownerstostrengthenself-managementandself-discipline.Thecommunityreliesonagriculture(mainlyforself-consumption)andtourism.Touristsmainlycomeattheweekendsoronpublicholidays.Touristswhocomeonweekdaysareusuallyretiredpeople.ThecommunitypercapitanetincomereachedUS$4360in2018,anincreasedofover20%fromthepreviousyear.Employmentopportunitiesarenowcreatedthrough“Internet+tourism”mechanism.Thehomestayhotelshaveamaximum400-bedcapacity.Bytheendof2014,tourismaccountedfor57.6%ofthecommunity’seconomy.Therenovationoftraincarriages,traditionalMongolianmusic,trainthemedrestaurants(Figure3.31),traincinemasandotherplaceswerebuiltandopenedduringthe2018NationalDayholiday.In2018,theXinjiancommunity’simprovedtourismfacilitiesandothermeasurestoattracttourists,receivedatotalofmorethan300,000visitorsfromallovertheworld,a600%increasefromthepreviousyear.Xinjiancommunitypromotedtheconstructionofartcollegesbasedonstudentinternships.In2018TheNationalAcademyofSciencesandtheZhejiangAcademyofVocationalArtsestablishedteachingpracticebasesinthecommunity,andtherearenow38institutionscollaboratingwiththecommunity.Aculturalandcreativebase,alongwiththeprovincialCityPhotographersAssociation,includes20literaryandartisticunitswhichencourageexchangesandcooperation,andateamsupportingfishermen'spaintingandotherfolk-artcreations,hasbeenestablished,withsuccessfuldevelopmentofcushions,lacquerplates,silkscarvesandothermerchandise(Figure3.32).In2017,XinjianCommunityinvestedUS$150,000inmuralsdepictingmarinecultureformorethan60houses.Afterthecompletionofthemurals,thevillagehadamoreculturalandartisticatmosphere(Figure3.33).Principle10:EcologicalawarenessOntheafternoonofMay25,2015,PresidentXiJinpingvisitedXinjiancommunity,pointingoutthat“lucidwatersandlushmountainsareinvaluableassets”.WiththecontinuousinfluxoftouristsintotheXinjiancommunity,manypeoplewillchooseaclassicroute,theroadthatPresidentXitookwhenhevisitedtheXinjiancommunity.Inthecommunityculturalauditorium,thereisaTVscreen,whichcontinuouslybroadcaststhevideoabouttheGeneralSecretary'scommitmenttobuildamorebeautifulvillageandlandscape.SUGGESTEDFURTHERIMPLEMENTATIONACTIONSOFTHE10PRINCIPLES1.Build-upabaselineemissionsinventorytouseasastartingpointintheprocesstowardsthezerocarbonstatus.Setupapathfromthebaselinetothezerocarbonstatus,withmilestonestobeperiodicallyreached.Createastructurewiththetaskofmonitoringoftheemissionsinventory,carryingitoutonaregularbasis(everyfouryears),tocheckcompliancewiththemilestonesandforhighlightingpossiblecriticalissues.2.IneachofthethreehamletscomprisingXinjianCommunitymixeduseshouldbepromoted,avoidingtheneedtomovefromonehamlettoanotherorfromonehamlettothenearestcitytosatisfybasicdailyneeds.Thisimpliesthateachhamletshouldhostthemost102CasestudiesFig.3.32ThemedrestaurantsonthetrainFig.3.33Cultureactivitiesfrequentlyusedservices,suchasgroceries,shops,cafesandrestaurants,atwalkabledistancesfromhousing,inordertoreducetheneedfortransportation.Streetscanhaveshopsandservicesonthegroundfloorsandresidencesontheupperfloors.Ifanynewdevelopmentisplanned,oranexistingareaisbeingrefurbished,itshouldhostamixedincomesocialstructure;theaffordabilityofhousingshouldpermitthisrequirement.3.Sincemanyhouseswillbeprogressivelyrefurbishedtocopewiththetourists’demandforaccommodation,itiscrucialtomakethemasenergyefficientaspossible.Therefore,greatattentionshouldbepaidtothethermalinsulationoftheenvelope,whichshouldbeatleast10cmthickwiththermalconductivity=0.03W/mK(orequivalentthicknessfordifferentconductivityvalue);low-eglazingshouldbeused.Ifanychangeinthesizeofthewindowsisintended,thesouthfacingonesshouldnotexceedaWindowtoWallRatioWWRhigherthan0.5.Balconiesonsouthfacingfaçadescanbetransformedintoopenablesunspaces.Lightcolouredplastershouldbeusedforexternalwallstoreduceheatgainsinsummer.Innewbuildingsthesamerulesshouldbefollowed,anditisrecommendedthat,intheabsenceofbalconies,overhangsshouldbeusedforshadingwindowsandwallsinsummertime.Wheneverpossible,streetswithshouldbelinedwithdeciduoustreesandprovidedwithlightcolouredandperviouspavements.Ifanynewdevelopmentisplanned,thenorth-south/east/westgridshouldbemaintainedandtheheightofbuildingstostreetwidthratioH/Wshouldbe<1;greatattentionshouldbepaidtothedesignofthestreets.4.Innewandretrofittedbuildingstimber,stonesandotherlocallyavailablematerialsshouldhavepriorityoverotherconstructionmaterials.Naturalfibreinsulationmaterialsshouldbeused.5.MaximiseefficiencyofenergyconversiontechnologiesHeatingandcoolingcanbeprovidedbyheatpumps,andafeasibilitystudyshouldbecarriedouttofindoutwhichoneofthethreeoptions,ground,waterorairsource,isthemostcost-effectiveintheXinjianclimateandinrelationtotheforeseenusagepattern.Hotwaterproductionshouldalsoshift,progressively,fromsolar103Net-ZeroCarbonVillagePlanningGuidelinesfortheYangtzeRiverDeltaRegioninChinaFig.3.34Wallpaintingonvillagehouses(beforeandafter)waterheaterstoheatpumpwaterheaters.CHPunitscouldbeplannedtobepoweredbybiogasandsyngas(seenextsection).XinjianCommunitycanrelyonquitegoodrenewableenergypotential:solarandwindenergy,hydropowerandbiomass.Tobestexploitthesolarenergypotential,allbuildings–excepttheonesthathavetobepreservedbecauseoftheirhistoricalvalue–shouldhostPVpanelsontheirroofs;thesameroofscouldhostwindmicroturbines,whichcouldalsobeusedforpubliclightingbyinstallingthematthetopofthelamppoststogetherwithaPVpanel.BuildingIntegratedPV(BIPV)systemsaretobepreferredtogroundPVinstallationsinordertopreservethefarmingland.Hydropowerisavailablebyexploitingthehead(heightdifference)betweenthebiggerreservoircreatedbythedamandthesmalleroneatthevillagelevel:aturbineconnectedtoanelectricitygeneratorcouldbeinstalledatthelevelofthelowerreservoir,producingelectricitywhenwaterisflowingfromtheuppertothelowerbasin.Moreover,theexistenceofthetwowaterreservoirsmakesitpossibletopumpwaterfromthelowertotheupperonewhenexcesselectricityisavailablefromsolarandwindsystemsandreturnitbacktothelowerone–activatingtheturbineandproducingelectricity–whensolarandwindenergyisnotavailableorinsufficient.Inotherwords,thetwobasinscanactasaveryefficientandrelativelyinexpensive(comparedwithbatteries)storagesystem.Biomasscanhavetwosources:wasteandforest.Thefirstsourceiswastewaterthatcouldbetreatedatindividualhamletscale,withatreatmentsystemallowingtheuseofabiogasdigester.Thebiogasproductioncanbeincreasedifthedigesterisalsofedbythefoodwastesoftherestaurants.BiogascanbeusedtopoweraCHPunit,providingelectricityandheat,orsimplyanelectricitygenerator.Thesecondsourceisthewoodderivingfromforestmanagement;woodshouldbechipped,thenconveyedtoagasifier;thesyngasproducedcanbeusedforpoweringaCHPunitoragenerator.Thewasteheatproducedcouldbepartiallyusedfordryingthewood-chips.6.Sponge-citydesignshouldbeappliedintherenovationofroadsandotherfacilities,andmorepermeablepavementsshouldbeconstructedinsteadofhardsurfaces.Rainwatercouldbecollectedfromroofs,storedbyindividualbuildingsorathamletscale,andusedforallnon-potableusesand/orforwatertablerecharge.104CasestudiesInordertorecoverenergyandnutrients,thewastewatertreatmentsystemshouldbetransformed,whereitexists,anddesignedwhenitdoesnotyetexist,insuchawayastoallowtheexploitationofthewastewater’senergypotentialbymeansoftheanaerobicdigestionprocess.ThisimpliestheuseofawastewatertreatmentsuchasDEWATSorsimilar,whereabiogasdigesteristhefirststageorwheredecantedsludgeisconveyedtoabiogasdigester.Toclosethewatercycle,treatedwastewatershouldbeusedforirrigation.Theslurrymadeavailableaftertheanaerobicdigestionprocess,inturn,shouldbereturned–asitisorafterfurthertreatment,suchasdryingorcomposting–totheagriculturalland.7.Organicwasteshouldbeconveyedtoalocalcompostingplant,andtheresultingcompostusedasfertiliserforthefarmsaroundthevillage,thuspartiallyclosingthenutrientscycle.Foodwastefromrestaurants,whichismorecontrollablethandomesticfoodwaste,shouldgotoananaerobicdigester,possiblythesameonethatisfedbythewastewater,forproducingbiogastobeusedfortheproductionofelectricityandheat;theslurrycanthenbeusedasfertiliser,closinganotherpartofthenutrientcycle.Disposablegoodsshouldbegraduallyphasedoutinlocalrestaurantsandaccommodation.8.Energy,water,wasteandfoodcyclescouldbeclosedandintegratedbymeansof:•usingforestwoodtofeedagasifierpoweringaCHPunitoragenerator,withresultingbiocharreturningtotheforestorusedassoilimproverinfarms•usingwastewaterandrestaurants’foodwastetofeedadigesterproducingbiogas,andreturningnutrientstothesoilviatheproducedslurry•usingtreatedwastewaterforirrigation•usingthewaterheadbetweenthetworeservoirstoproduceelectricityandprovidingstorage•rainwaterharvestingfornon-potabledomesticuse9.Economicinitiatives,complementingthehospitalityindustry,shouldbepromoted.Inparticular,smallactivitiesfortheproductionandprocessingoftraditional,organicfoodshouldbeimplemented.Asharedfoodprocessinglabcouldbeimplementedintheciviccentreandmadeavailabletofamilies,andespeciallytowomen,whocouldgenerateadditionalincomefortheirfamilies.Thepresenceofartistsshouldbeincreasedandconsolidated,byresidenciesandfestivals.Artists,designersandcraftspeoplewhomaybeattractedbytherurallifestyle,shouldbepromotedbyidentifyinga“craftstreet”.Thedigitalandcreativecapacitiesofthevillagersshouldbeenhancedwithtrainingandtheopeningofadigitalvillagehub,wheredigitaltechnologiescouldbeaccessed,aswellasthecreativeactivitiestobeappliedindailylifeandespeciallytotheimprovementofthefarmingandtouristicactivities.Theopportunitytonominateacommunityinnovationmanagershouldbeconsidered.10.ThevisitofPresidentXihasfocussedtheattentionofthecountryonthecommunity,attractingagrowingnumberofvisitors.Thisopportunityshouldbecapitalizedonbyacomprehensiveinformativesystem,explainingtherelevanceofinternalruralareasinmaintainingtheenvironmentalandspiritualequilibrium.Acommunityculturalauditoriumshouldbedesignedinordertohostmultimediainstallations,explanatorypanels,andlocalproducts.Visitorsshouldbeinvitedintothecentreforashortwelcome,withanintroductiontolocalproductsandculture.Anexplanationoftheintegrateduseofresources,showinghowtheprinciplesofzerocarbonvillageandcirculareconomyarebeingimplemented,shouldcomefromthevillageleaders.Thiswillbeanopportunitytointroducethevisitorstotheappropriatebehaviouralrulesforresponsibletourism.105Net-ZeroCarbonVillagePlanningGuidelinesfortheYangtzeRiverDeltaRegioninChinaMeilinVillage,ChangzhouMeilinVillageislocatedinXixiashuTown,XinbeiDistrict,ChangzhouCity.Itis11kmtothesouthoftheYangtzeRiver.MeilinVillageis22kmfromChangzhou,thenearestcity.Meilinisconnectedwiththecentralareaofthecitybybuses.Changzhouisaprefecture-levelcityinsouthernJiangsuprovince,China.LocatedonthesouthernbankoftheYangtzeRiver,ChangzhouborderstheprovincialcapitalofNanjingtothewest,Zhenjiangtothenorthwest,Wuxitotheeast,andtheprovinceofZhejiangtothesouth.ChangzhouislocatedinthehighlydevelopedYangtzeDeltaregionofChinaextendingfromShanghaitothenorthwest.ThepopulationofChangzhoucitywas4,710,000inthe2017census.Thetotalareaofthevillageis9.17squarekilometres.Itcovers35naturalvillagesmadeupof60groupsofvillagers,2245householdswithatotalpopulationofnearly7800.Amongthem,8naturalvillageswith578householdsand2020peopleandatotalareaofabout3squarekilometreshavebeenincludedinthe‘beautifulvillage’project.ThestudyareaofthiscaseisthesouthernpartofMeilinVillage,separatedfromotherpartofthevillagebyroadNo.122(Figure3.34).Thispartconsistsof3naturalvillages:LongwangTemple,XiangliandYanjia(Figure3.35).Thisareahas194householdswithapopulationof783.40.25millionyuanhasbeeninvestedintheconstructionofthefirstphaseofthe‘beautifulvillage’project.Fromthis,7.11millionyuanwasusedfortheconstructionofruralroadsandbridges,1.52millionyuanwasinvestedintheconstructionofawatersystem,7.18millionyuanwasusedfornewhouses,7.18millionFig.3.35LocationofMeilinFig.3.36ThesouthernpartofMeilinadministrativevillageinclude3naturalvillage:Longwangmiao,Xiangli,Yanjiayuanwasinvestedinfrontandrearhousearrangement,4.46millionyuanwasinvestedintheconstructionofasewagepipenetwork,15.18millionyuanwasusedforgreeningthelandscape,2.8millionyuanwasusedforhousingstorageandrenovation,and2millionyuanwasusedforthird-partyserviceagencies.Thelandis65%agricultural,atotalof24.75hectares.Paddyfieldsarethemaintypeofagriculturalland,accountingforhalfofallagriculturalland(landclassification,includinggrasslandandothercroptypes).Theriverandlakesystemis15.44%.Thebuilt-upareais19.56%,totalling6.87hectares.Thebuildingsinthevillagearemainlycomposedofonetothreestoreysandarebrickstructures(seeFigure3.36andTable3.1).Thevillageswerebuiltalongrivers,withwhitewallsandgreytiles,thecharacteristicsofthesouthoftheYangtzeRiver,andarewellcombinedwiththedistributionofriversystem(Figure3.37).Accordingtothequestionnaireinterviewswithvillagersin2017,theincomeoffarmersinthisvillageismainlyincomefromwages,supplementedbyfinancialandoperationalincomesuchasfarming.Theaveragemonthlyincomeofthevillagersis3,000-4,000yuan.Villagersaged50or60aregenerallyengagedinturffarmingneartheirvillagesfor100yuanperday,withanannualworkingdayof300daysorso.Financialrevenueismainlyfromlandtransfer,householdsgenerallyhaveabout3muofarableland(contractedland),mostlytransferredtoturfplantinghouseholdsorvillagecollectives,eachmuofcontractedlandcanearnabout106Casestudies1000yuanintransfercosts,bringingabout3,000yuanofincomeforeachhousehold.Ingeneral,avillager’spercapitaincomeinMeilinis20,551yuanin2017whichstilllagsbehindtheaverageincomeofChangzhoupeasants.ComparedwiththeincomeofurbanresidentsinChangzhoucity,whichinthesameperiodis46,000yuan,thegapisevenbigger.Thepillarindustryisturfplanting,theplantingareais10.67hectares,accountingfornearly70%ofthetotalcultivatedland,1/3oftheMeilinVillageadministrativearea.Vegetablesandricegrowninthelandaremainlyconsumedlocally.Grassesforturfareplantedinsuccessionwithabottompavingofyellowsandandsprinklerirrigationfacilities.Thefarmersengagedinturfplantingaccountfor70%ofallfarmers.Largeturfplantingareashaveformeduniquerurallandscapes,whichprovidesupportforthedevelopmentofruraltourism.Tourismcontributessignificantlytothelocaleconomy.Themaintouristtypesaredayvisitors.LongwangTempleisaplaceofTaoismandthelocalpeoplebelievedinharmonyduringtheNorthernandSouthernDynasties.OnimportantdayssuchastheNewYear'sFestival,theTempleisnotonlyaplacetodisplayreligiousculturebutisalsoanimportantcarrierfortraditionalculture.Therecentimprovementworkcarriedoutin2018aimstomakeMeilinamodelcountrysidevillage,including:betterecologyandenvironment,beautifullandscapeandbuildings,upgradedagriculture,incomegrowththroughtourismandtheserviceindustry,astrongervillagefiscaleconomy,anattractiveandharmoniouscultureFig.3.37Landuseplan2018Fig.3.38AnimationofcharacteristicvillageplanforMeilinVillage2018LandusecodeLandusetypeArea(ha)percentageVConstructionland8.926.65%includeresidential5.3716.08%publicfacility3.199.55%industrial0.290.87%infrastructure0.050.45%NConstructionlandforexternaltransportationfacilities1.023.05%ENon-constructionland23.4870.30%includewatersurface6.3519.01%Farmandwoodland17.1350.99%total33.4100%Fig.12018landuseplanbalancesheetVillageresidentiallandVillageindustriallandVillageinfrastructurelandVillagestreetandtransportationlandWaterbodyAgriculturaladnforestrylandBasicfarmlandVillagemunicipalutilities107Net-ZeroCarbonVillagePlanningGuidelinesfortheYangtzeRiverDeltaRegioninChinaAPPLICATIONOFTHE10PRINCIPLESPrinciple1:ClimatedataandgreenhousegasinventoryAsMeilinVillageispartofChangzhoucity,inthiscasestudyweusetheclimatedataofChangzhoutoreflecttheclimatesituationinMeilinVillage.Changzhouislocatedinthetransitionalclimateareafromthenorthsubtropicalzonetothewarmtemperatezone.Themonsoonhasasignificantimpactontheclimateandbelongstothehumidmonsoonclimateofthenorthsubtropicalzone.ItisaMmildandhumidclimatewithabundantrainfall,abundantsunshine,alongfrost-freeperiod,year-rounddominantwindfromtheeast-southeast,andfourdistinctseasons,spring,summer,autumnandwinter,fourdistinct.ThefourseasonsinChangzhouareshortspringandautumn,longwinterandsummer,ofwhichwinteristhelongest,followedbysummer,springisthesecond,andautumnistheshortest.Winteriscold,summerishot,springandautumnaremild.Duetothesignificantinfluenceofthemonsoon,precipitationandtemperatureriseandfallsimultaneously.Whenthetemperatureislowinwinter,theprecipitationisless;whenthetemperaturerisesinspring,theprecipitationgraduallyincreases;whenthetemperatureisatitshighestinsummer,theJanFebMarAprMayJunJulAugSepOctNovDecAverageTemperature3.14.58.714.920.324.328.027.623.217.811.55.5AverageMaximumTemperature7.18.612.919.625.128.331.831.627.122.216.010.0ExtremeMaximumTemperature21.226.730.633.635.237.839.438.238.232.129.422.2AverageMinimumTemperature0.01.45.210.916.320.925.024.720.114.37.92.0ExtremeMinimumTemperature-12.8-8.8-4.2-1.06.813.317.017.810.42.9-4.2-11.2AveragePrecipitation(mm)44.653.789.281.2102.4189.3171.7116.192.268.752.729.6DaysofPrecipitation8.79.813.011.411.712.812.811.39.58.77.06.1AverageWindSpeed(m/s)2.42.62.92.92.92.72.72.82.52.32.32.2Fig.2BasicclimatedatainChangzhoucity(Celsiusdegree)precipitationbroughtbytheplumrain,thelocalnamefortherainyseason,rainstormsandtyphoonsisatitsgreatest;whenthetemperaturedropsinautumn,theprecipitationdecreasessignificantly.Table3.2belowshowsmajorclimatedatainChangzhoucity.EnergyinMeilinVillageisrelativelycheap.Theunitpriceofelectricityinthisvillageis0.52yuan/kw,liquefiedgasis95yuanperbottle(15kgnetweight).Electricwaterheatersarealsousedinthevillage.Theaveragehouseholdelectricitycostinthisvillageis115yuanpermonth.Gascosts50yuanpermonth,and95%householdsinthevillagehaveasolarenergywaterheatingsystem,whichservesasanotherwaytoprovidecheapdailyenergy.Asaresultofthecheapenergycosts,80%dailyenergyneedssuchasboilingwater,cookingandheatingaremetbyusingelectricity,and20%suchneedsaremetbyusinggas.Table3.3belowshowsenergyconsumptionofthe3naturalvillagesinthestudyarea.108CasestudiesFig.3EnergyConsumptioninthe3naturalvillagesinstudyareaNaturalvillageHouseholdsPopulationElectricityconsumptionkw.h/monthElectricitycost(yuan)Bottledgas/month/bottle(15kg/bottle)Gascost(yuan)LongwangTemple66198145207550.4333135Yanjia58230127606635.2292755Xiangli70355154008008353325Total1947834268022193.6979215Principle2:Well-connectedmixed-usenodesInMeilinVillage,thewidthoftheruralroadsislessthan4m,andtheyrunnorth-southandeast-west.Basedontheexistingvillageroadsandridgeroads,therecentworkidentifiedthetouristroutesandcombinedthemwiththetextureofexistingvillagehousesandfarmland.Roadpavementsaremainlymadeof"soft”materials,ratherthan“hard”ones.Priorityshouldbegiventotheuseofsoilorsimplepavements,soasnottoemphasizethesettingofhardpavements.Thevillagesigns,recyclingfacilitiesanddrainagefacilitiesalladoptsimpleandecologicaldesignmethodsandintegratethemintothesurroundinglocalenvironment.Inordertoencouragewalkingandreducecarusage,asystemofpathwayshasbeenplannedwithinvillages,connectingvarioustypesoflandscapenodesinseries.In2018twotypesofpathwaywerebuilt,thewoodpathandthestoneone.Thepavingofwalkwayswithcrushedyellowstonewithitswidthcontrolledat1.5Fig.3.39Walkwaysplanmetersformedalocalwalkway(Figure3.38).Thewaterfrontspacehasbeenlaidwithawoodentrestleroadtoprovideamorehydrophilicenvironment.Largeareasoftallplantsandherbshavebeenplantedonbothsidesofthewoodentrestleroadtocreateafeelingofbeingintegratedwithnature.Principle3:HeatingandcoolingHousesinthesouthernpartofMeilinVillageareof3heights(Figure3.39).Thesinglefloorhousesmainlyconsistofhouses(mostlyauxiliaryhousesorlivestockhouses)andtherestoredLongwangTemple.Thetwoandthreestoreybuildingsareresidentialorpublicservicefacilities.Localhousesarenohigherthan3floorsandaremostlysouth-facingwithgoodsolarexposureandairmovement.Therearemoreoneandthree-storey-thantwo-storeybuildings.Mostbuildingswerebuiltinthe1980s,afewwerebuiltafter2000.Fig.3.40Yearofconstructionofexistingbuildings109Net-ZeroCarbonVillagePlanningGuidelinesfortheYangtzeRiverDeltaRegioninChinaThevillagehasinvestedover2.1milliontodevelopassemblybuildings.Lightsteelassemblybuildingdesigncanreducepollutionoftheenvironment.Comparedwithotherbuildings,itusesfewerbuildingmaterialsandconsumeslessenergy,anditsperformanceisfarsuperiortothatoftraditionalbuildings.Thewallsoftheassembledbuildingcanberepeatedlydisassembledandreused,andconstructionwastewillnotbegeneratedduetowalldisassembly.LocallyMeilinJuisoneexampleofalightsteelassemblybuildings(Figure3.40).Itwasbuiltbythevillagegovernmentasatouristreceptionfacilityandalsoasademonstrationofagreenbuilding.Itisaprefabricatedbuilding,usinganinsulatedenvelopetoreduceenergyconsumption.Thetotalinvestmentis1.5millionyuan.Principle4:GHGemissionsIn2018,withthedesigner’shelp,localvillagersutilizedbuildingwastetoconstructwalkwayswithpastoralviewpointswiththestronglocalcultureofreducingenergyconsumptionfortransportationofresources.Villagerslaidwastebricksandadoptedthelocalstyletoformanidyllictrail,wasterooftileswerereusedtobuildsmallretainingwalls.Recyclingthebuildingwastelocallyhasgreatlyreducedthepurchasingandshippingofgraniteforpavementfromoutside.Localvillagersalsogetpaid150RMB/daywhentheyworkedontheconstructionthemselves(Figure3.41).Someoftheexistingoldhouseswithalonghistoryandregionalcharacteristicshavebeentransformedandrepurposedwithnewfunctionssuchasresidentialaccommodationandtearooms.Therenovationworkactivelyuseslocalmaterials,adoptslocalconstructiontechnology,excavatesthecharacteristicsoftheexistinggreentilegreywallofresidentialhouses,continuesandproperlystrengthenstherenovationofresidentialhouses,reflectsthecontinuationofcharacteristicelements,andformsacoherentspatialrelationship(Figure3.42).Reusehassavedalargenumberofbuildingmaterials.58,000brickshavebeenreused,including15,000piecesforpavingpastoralroads,35,000piecesforlayinghalfwallsroundvegetablegardensand8,000piecesforotherpurposes.12,000abandonedbambooscaffoldingpoleshavebeenusedduringtheprocess,including11,000forbamboofencesand1,000forotherpurposes.Oldtiles,tanks,cylindersandfarmtoolshaveFig.3.41Heightofexistingbuildings110CasestudiesFig.3.42RecyclebuildingwasteforpavementandlandscapeelementsFig.3.43Localworkersrecyclebuildingwasteforlandscapeelements111Net-ZeroCarbonVillagePlanningGuidelinesfortheYangtzeRiverDeltaRegioninChinawidthofabout5-10meters,showingaT-shapedstructure.Pitandpondwatersystemsintersecteachother,coveringanareaof4.48hectares.Thetotalwatercoverageratewas18.5%.The2018improvementstrategyistoupgradethehomesteadsalongtheriver,leavingecologicalcorridorsandpassages,vacatingtheopenspaces,revitalizingthestockassets,andlayingthefoundationforresourceactivation.Thebigstepforwardtakenin2018wastoconnecttherivers,thepitsandtheponds,formingthewatersystemnetwork.Meilinvillagehasalsoimprovedtheshorelineinthevillage.Separatedwatershavebeenintegratedintothewholewatersystem,theirrigationanddrainagechannelsoffarmlandhavebeendredged,andamulti-levelwatergridof"canal-lake-ditch"asawholehasbeenformed.ResidentialbuildingsonbothsidesofDongfengRiverhavebeencontrolled,dilapidatedhousesandself-constructioninviolationofregulationshavebeendemolishedtocreateecologicalrivercorridorsandpromotethemutualpenetrationofriverbank,villageandfarmlandlandscapes.Recentworkhasalsoprotectedtheplantsontheopenwatersurfaces,tryingtoretaintheoriginalvegetation,andusereeds,calamus,scallions,bananasandothernativeaquaticplantstopurifywater,improvewaterquality,reduceagriculturalnon-pointsourcepollutionwhileformingtheoriginalecologicallandscapeandincreasinghydrophilicity.TherewasnoruralsewagetreatmentfacilityinMeilinvillagebefore2018.ThedecentralizedsewagetreatmentFig.3.44LongwangTempleCulturalSquareanimationFig.3.45Touristroutandactivitiesalsobeenreused.155villagersparticipatedinthereuseprocessandhelpedtotake40%ofthetotalworkload.Processing,labourandtransportationfortheutilisationofwastematerialscost1.1millionyuan.Principle5:RenewableenergysourcesSolarenergyasasustainableenergysourcehasbeenwidelyusedinthesouthernpartofMeilinVillage.By2018,95%offarmhousesinthevillagehaveinstalledsolarwaterheaters.Theaveragecostofasolarwaterheateris2500yuan.Inordertograduallyreplacebottledgas,in2018,Meilinvillagedecidedtobuildalow-pressuregaspipenetwork.TheprojectwilllayDN100pipesalongtheroadintoaringarrangement;gaspipelinesgenerallyuseHDPEpipes.ThegassourceisWest-to-EastgastransmissionandSichuan-to-Eastgastransmission.Gasissuppliedbymunicipalmedium-pressurepipelines,andlow-pressuresurgestationsorboxesaresetupinvillagestosupplygasbylow-pressurepipelinenetworks.Theserviceradiusofmediumandlowvoltagesurgestationsorboxesrangesfrom500to1000m.Principle6:WatercycleInMeilinvillageadministrativearea,thenaturalriversincludetheYan'anRiverandtheDongfengRiver.ThetotallengthoftheDongfengRiveris7070mofwhich630.74mrunthroughMeilin.ThetotallengthoftheYan'anRiveris2550mofwhich343.78mareinMeilin.Thechannelisnarrow,withanaveragecross-section112Casestudiessystemisusedtosolvetheproblemfor200householdsorso.TheeffluentqualityreachestheB1standardandisdischargedintotheriver.Combinedwithdecentralizedsewagetreatmentfacilities,smallwetlandshavebeenconstructedtorealizereclaimedwaterrecyclingandcreateadiverselandscapeexperience.InvestmentinequipmentandconstructionofsewagetreatmentfacilitiesinMeilinwas7.29millionyuan,thefacilitycoveringanareaof660squaremeters.Themonthlyoperationalinputofthesewagetreatmentfacilities,suchaselectricitycost2000yuan,includingmaintenancepersonnel,monthlymaintenancetimesandmainwork:2times,equipmentmaintenance,greeningmaintenance.Thenumberofpipenetworkconnectionstohouseholdsoftreatmentfacilitiesis578,withanaveragedailysewagetreatmentcapacityof275tonsperday.Principle7&8:Solidwasteandenergy,water,foodandwastecyclesInMeilinVillage,discardedconstructionmaterialisrecycledformakingwalkwaysandfences.Thekitchenwaste,mostlyfromthe3majorfarmhouserestaurants,isconvertedintoorganicfertilizerandreturnedtothefieldsforuseinorganicvegetablegardens.MeilinVillagehasinvested800,000yuaninkitchenwastetreatmentfacilities,whichoccupy50squaremetresofland.Themaximumcapacityofthetreatmentfacilityis1ton/day,andthetreatmentcycleis3days.Twotothreetimesaweek,atotalof10tonsofkitchenwastecanbecollected.Aftertreatment,everytonofkitchenwastecanbeconvertedinto0.1tonfertilizer.Thefertilizeroutputisequivalenttothesameweightoffertilizerpurchasedfromoutside,sothereisnolongeranyneedtopurchase.Thetreatmentof1tonkitchenwastewillproduce0.2-0.3tonsofwastewater.Thequalityofthewastewaterisinlinewiththenationalstandard.Themonthlyoperationalcostofelectricityofthekitchenwastetreatmentfacilitiesis2550yuan/month(0.85yuan/kw,unitpowerconsumption0.1kw/kg/day).,withwhich6tonsoforganicwastecanbesortedout.Theconvertedfertilizercanmeetthedemandsof50mu(1mu=667sqm)oforganicvegetablegardens.Thevillage'sother25muofvegetablegardensforoutsidebuyershavealsousedtheconvertedorganicfertilizer.Itsannualoutputis300,000yuan.Torentthefarmland,theannualcostis30,000yuan,andtomanagethegarden,thelabourcostis105,000yuan.Thecostofusingecologicalequipment,suchasinsecttraplamps,is30,000yuanperyear.Principle9:EmploymentopportunitiesandleisureThemainhistoricalandculturalresourceoftheareaistheLongwangTemple,aTaoistspiritualplace.TheLongwangTempleisaplacewhereTaoismandlocalresidentsexpressedtheirbeliefinharmonyduringtheNorthernandSouthernDynasties.Ontheimportantdaysoftheholidays,theLongwangTempleisafocalpointfordisplayingreligiouscultureandisanimportantcarrierfortheinheritanceoftraditionalculture.TheLongwangTempleisthecoreofthesurroundingupgradedpublicvenueswhichcarryforwardtheregionalcultureandthespiritofthetimes.RelyingonthetemplefaironMarch3rdandtraditionalfestivals,thevillagers'collectiveactivitiesareorganizedtoencouragetheinheritanceoftraditionalactivitiesandtraditionalskills.TherecentconstructionaroundtheMuseumofAgriculturalFolkCustomspromotedfarmingculture.Combinedwiththevegetablegardensaroundthefarmhouse,itprovidedpersonalexperienceoffarming.Throughthedevelopmentoffamilyfarms,vegetablegardensandotherleisureandsightseeingagriculture,therecentworkhasstimulatedthevillagerstopaykeenattentiontothemicro-environment,suchasthefrontsandbacksoftheirhousesandthepublicenvironmentofthevillage,andthiscontinuestoimprovespontaneously,enhancingthevillagers'participationandsenseofownershipofthedevelopmentofthevillage,andatthesametimecreatingagoodbasiclandscapeforruraltourism.Tostrengthentheexistingturfplantingindustry,MeilinVillagehascarriedoutstrategiccooperationwithprovincialagriculturalresearchinstitutes,andresearchanddevelopmentofturfproductshasintensified,focusingonthecultivationofcoldanddrought-resistantvarietiesofturf.Fig.3.46Usegrasslandtoattractmoreactivitiessuchasfootball,kiting,ect113Net-ZeroCarbonVillagePlanningGuidelinesfortheYangtzeRiverDeltaRegioninChinaSUGGESTEDFURTHERIMPLEMENTATIONACTIONSOFTHE10PRINCIPLES1.MeilinVillageneedstomonitoritsenergyusageandestablishacomprehensivemonitoringplatformforenergyresourcesinvillages.Basedontheenergydata,itneedstosetupitscarboninventory.2.Toreducecarbonemissions,mixedlanduseshouldbefurtherpromoted,wheremostfrequentlyusedservicessuchasgroceries,shopsandrestaurantsshouldbelocated,veryclose–atwalkabledistance-tohousing–inordertoavoidtheneedforusingacar.Streetscouldhaveshopsandservicesonthegroundfloorandresidencesorofficesontheupperfloors.3Theuseofenergycouldbemoreefficient.ParkingspacesshouldbeminimizedandequippedwithPVcanopiesandwithchargingpointsforelectricvehicles.Inbothnewlybuiltandexistingbuildings,theuseoftimberisrecommendedasastructuralmaterialandfortheenvelope,aswellasstones,andnaturalfibreinsulationmaterials.Wheneverpossibleorapplicable,bothinnewandexistingbuildings,operablesunspacesonsouthfacingbalconiesshouldbeconsidered,aswellasappropriatelysizedoverhangsprotectingsouthfacingwindowsfromthesuninsummer.Toincreasecarbonsinks,afruittreeclaimsystemcanbeestablished.Thesystemmeansthecollectivepurchaseoffruittreeseedlingsbythevillage,thevillagerscanclaimseedlings,areresponsibleforplantingandmaintenance,butthefruittreesbelongtothevillagecollectiveownership,andthefruitbelongstothevillagers.4.Buildingstrategiessuchasreusingthewastebricksandtilesofdemolishedhouses,usingbambooscaffoldingandmakingbamboofencesafteruse,shouldbeencouragedandfurtherpromotedbythelocalgovernment.Thefarmer’shousesshouldbefurtherupgraded.Thecurrentfarmers'housesdonotmeettherequirementsforearthquakeresistance,havepoorenergy-savingperformance,inadequateanti-seepagefunctionandtherearepotentialsafetyhazards,buttheyalsoinvisiblyincreaseenergyconsumption.5.Thereissignificantpotentialforsourcingbiomass.Onecouldderivefromthemanagementofthesurroundingforests.Thisbiomass,chipped,couldfeedagasifierandthegasusedtopoweracogenerationunit.Thebiocharproducedbythegasifiercanbeusedbyfarmersforimprovingsoils,soldforotheruses,orspreadontheforestfromwhichitcomes,closingacycle.Anotherbiomasssourcederivesfromwastewater(seePrinciple5)andfromthefoodwastefromrestaurants,whichcouldbeusedtofeedadigester.Thebiogasproducedcouldalsopoweracogenerationunit,whosewasteheatcouldbeusedforheating,coolingandhotwaterproductioninthegovernmentbuildingsorinhotels,Combinedwithturfplanting,MeilinVillagehaspromotedruralasightseeingandleisureindustry.Incombinationwiththecurrentlandtransferworkofthetwocommitteesofthevillage,thevillagehasopenedupspecialexperienceareasforrecreationalactivities,suchaskiteflying,footballandsoon.ThemaintouristprojectsincludeMeilinjuHomestay,theLongmenYuxiangEcologicalParkbuiltbesidetheborrowingpit,andthetraditionalB&B(LongmenInn)builtbytheMeilinVillageCommittee,whichhas26beds.Theyhavereconstructedthetraditionalculturalcarriersofthevillage-theLongwangTemple,andtheAgriculturalCultureMuseum,whichwastransformedfromthedisusedfactorybuildingofthevillageoffice.TherecentlybuiltLongwangTempleCulturalSquare(Figure3.43)includestheoriginalbasketballcourt,echoingtheLongwangTemple,rebuildingofthethestage,reproducingthesceneofthetemplefair,refiningthepavement,softeningandhardeningthesite,plantinglocalvegetation,makingitintoaplaceforfestivalactivitiesandvillagers'leisureandentertainment.Specialculturalactivitieshavebeencarefullyorganizedforeachseason.Thereare2-3specialthematicactivitiesineachseason,andtheroutefortheculturalactivitiestourwasbuilt.MeilinVillagehasformedanorganizationalmechanismfortheparticipationofallvillagers,takingvillagecollectivesasthemainbodyfororganizingfolkloreandculturalactivities,mobilizingtalentedpeople,bigfamilies,jointventuresandschoolsinthevillages,encouragingthefullparticipationofeveryone.LongwangTempleandthePlazaCulturalSquareareusedasthemainvenuesandcarryoutcolourfulfolkloreandculturalactivitiesinconjunctionwiththeculturaltours(Figure3.44&3.45).Principle10:EcologicalawarenessMeanwhile,MeilinVillageplaysanimportantroleineducatinglocalprofessionalsandgovernmentofficials.ChaoBin,amemberoftheChangzhou‘BeautifulVillage’project’sgroupofexperts,wastrainedintheMeilinBeautifulVillageProject.TheconstructionteamwhichhaspractisedinMeilinhasaccumulated50experiencedconstructorsandteamleaders.Moreover,morethan7800peoplehavebeeninvitedtostudy,includingmorethan2000studentsofallages,inMeilinVillage.IthasalsobeenarrangedforstudentstostudyvegetableplantingandfarmingknowledgeinsmallvegetablegardenswhentheyvisitMeilin114Casestudiesasanalternativetotheheatpump,orforindustrialprocesses.ThecaseofMeilinVillageofferssomevaluablelessons.Thereismixedlanduseandtheuseofmultipleenergysources.Farmershavealreadyusedenergyaccordingtotheprincipleofminimumcostintheirdailylife.Onthisbasis,theycanoptimizeandadvocatethecomprehensiveuseofenergy.Atthesametime,therecyclingofbiomassinfarmlandisnotgoodenough,andthesourceoforganicmatterisinsufficientintheprocessofbiogasproduction(thereislesskitchenwasteinruralareas).Shouldtheimprovementofcombustionefficiency,forexamplebypromotinghighcombustionefficiencystovesbeconsidered?6.Thepossibilityofmodifyingandupgradingthewastewatertreatmentplantforbiogasproductionshouldbeconsidered.Thiswouldallowthereuseofnotonlythetreatedwastewaterforirrigation,butalsooftheslurry(afterappropriatetreatment),thusnearlyclosingthenutrientcycle.Biogasproduction,feedingaCHPsystemorsimplyanelectricitygenerator,couldbeusedasasupplementalstoragesystem(seePrinciple4).7.Asforgarbagedisposal,inthesmallvegetablegardenproject,organicgarbageistransformedintofertilizerbyequipmentdesignedforsuchtreatmentandreturnedtothesmallvegetablegarden,basicallyachievingeconomicbalance.Moreofthistypeoforganicfoodproductionshouldbepromoted.8.Ruralconstructionneedsappropriatedesignandagoodsystemofconstruction.Itshouldnotcopythesystemandexperienceofthecitydirectlyintothecountryside.Itshouldconsiderthelifestylecharacteristicsofthecountrysideandthedifferencesbetweenitandthecity.9.Atpresent,themechanizationofruralareasinChinaisrelativelylow,especiallyasregardsthepopularizationofsmallagriculturalmachinery.WithastrongmanufacturechainnearbyinChangzhoucity,Meilinmaybeatestinggroundforadvancedsmallagriculturalmachinery,whichcancreatemorejobsandattractmoretourists.10.Ruraleducationisgearedtourbanstudents;intheprocessofconstruction,villagersandvillagecadresarealsoeducatedandtrained,andvillagers'ideasarepromotedbyarrangingforthetheirparticipation(alongwithscatteredworkersinconstruction);atthesametime,specialskillsaretaughtduringtheprocessofconstruction,cadresfamiliarwithruralconstructionaretrainedtospreadtheskillstootherplaces,andconstructionteamscapableofruralconstructionarealsotrained.115Net-ZeroCarbonVillagePlanningGuidelinesfortheYangtzeRiverDeltaRegioninChinaShanxingTown,ChongmingIsland116Villageplanninganddesignmethodology:XiebeiVillage4Villageplanninganddesignmethodology:XiebeiVillage117Net-ZeroCarbonVillagePlanningGuidelinesfortheYangtzeRiverDeltaRegioninChinaVillageplanninganddesignprocess:NortheastXiebeiVillageconceptualplanasanexampleINTRODUCTIONTOMETHODOLOGYInordertobettercontextualizenet-zerocarbonvillageplanningintheYangtzeRiverDelta,XiebeiVillageonChongmingIslandisgivenhereasanexample.Ananalysisofgovernmentplansaswellasexistingconnections,landuse,naturalresources,ecologicalandpublicspaces,andsettlementtypologiesonChongmingIslandwasconducted.Fromthispreliminarystudy,aclearerpictureofXiebeiVillage’ssituationinGangxiTownandontheIslandasawholewasformed,whichallowedformoreculturallyandgeographicallyinformedrecommendationsintheconceptualplansfortheplanningzonewithintheVillage.Theprocessfordevelopingaseriesofplansisillustratedinthefollowingsection,whichprecedesmoreoutcome-orientedrecommendationsforfivevillagesintheYangtzeRiverDelta(includingXiebeiVillage).Itshouldbenoted,however,thatwhiletheultimateaimofTheGuidelinesiscarbonneutrality,theplanninganddesignprocessundertakenforthenortheastquadrantofXiebeiVillageismeanttosetaprecedentforhowsocial,cultural,heritage,andeconomicvaluescanandshouldalsobeconsideredwhenpromotingsustainableplanningprinciples.Theproposalincludes:1)asettlementtypologybasedonahybridbetweentraditionalregional(YRD)settlementpatternsandamorecompactmodelofdevelopmentwherebydailyneedscanbemetwithinwalkingdistanceofallhomes;2)anincrementaldevelopmentmodelwhichincludestheinfillandrenovationofbuildingsincentralnodesandphasingemptybuildingsandstrip-styledevelopmentstowardsagriculturalandecologicallands(carbonsinks);3)theconversionofemptyorunderutilizedbuildingsintopublicandsocialamenities;4)transportationnetworksthatencourageprimarilynon-motorizedtransit,withoptionsforelectricvehiclesandpublictransportationfordisabledpersonsandforlonger-distancetravel;and5)newsocialandeconomicopportunitiesforresidentsandvisitorstotheVillage.Theproposedsetofplansaimstoalignwithlocalplanningdocuments,includingtheChongmingIslandMasterPlan(2016-2040)andShanghai’s13thFive-YearPlan,butitiscriticalthatelectedofficials,villageresidents,andotherstakeholdergroupsthatmightbeaffectedbythedevelopmentoftheVillagearealsoconsultedbeforeimplementinganyofthesuggestionsthatfollow.CHONGMINGISLANDCONTEXTChongmingIslandoccupiesanareaof1,267km2,sandwichedbetweentheYangtzeRiver’snorthernandsouthernbranchesasitemptyintotheEastChinaSea.ItisthethirdlargestislandinChinaandthelargestalluvialislandintheworld.FormedthroughthedepositofsedimentfromtheYangtzeRiver,ithasfertilesoilandamoderateclimateforagriculture,abundantwetlandsandbotanicresources,whichcontributetoitsdiverseecology.ChongmingIslandhasatypicalmildandhumidmaritimeclimatewithanaveragetemperatureof15.20˚C,anaveragerainfallof1.025mmperyearandarelativeairhumidityofaround80%.TheIslandisbothphysio-geographicallyandsociologicallyuniqueduetoitsphysicalformationanddistinctmixtureofrural-urbanadministrativeboundariesandeconomicbases,whichhasresultedinacomplexadministratesystemunderwhichrapidchangesandlandusehaveledtopoorlycoordinatedvillageplanning.TheIsland,togetherwithChangxingandHengshaIslands,formChongmingCounty,thenorthernmostareaoftheprovincial-levelmunicipalityofShanghai.Atthetimeofthe6thChineseCensus(2010),theCountyhadapopulationof660,000.ChongmingIsland’s2016-2040Masterplanoutlinesanoverallstrategywhichemphasizesachievingabalancedpopulation,economy,society,resourcesandenvironmentthroughsustainabledevelopment.Italsoprioritizesecologicalprotectionandrestorationtopreservenaturalresourcesforfuturedevelopment.Alongsidethepromotionofacirculareconomy,low-carbondevelopmentisalsoreferencedintheIsland’smasterplan,whoseplansincludesupportinglow-carboneco-industriesandpositivelyandeffectivelycontrollingcarbonintensityviatechnologicalinnovation118Fig.4.1ChongmingIslandregionalcontextQidongNanmenPortChenjiaChangxingHuaiHanYanChengYangZhouNanJingZhenJiangChangZhouWuXiTaiZhouNanTongSuZhouLianYunGangSuQianJIANGSUANHUIZHEJIANGSHANGHAICHONGMINGISLANDShidongkouBaoyangWharfWusongWharfPierXinhePort3570km140RegionalcapitalProvincialcapitalLakeAirportMilitaryairportFerryterminalRegionalbusterminalRailwayExpresswayFerrylineProvincialborderVillageplanninganddesignmethodology:XiebeiVillage119Net-ZeroCarbonVillagePlanningGuidelinesfortheYangtzeRiverDeltaRegioninChinaHHFig.4.2ChongmingCountytransportationnetwork510km20JiangsuProvinceHengshaIslandChangxingIslandChongmingIslandMunicipalityofShanghaiHExpresswayExpressway(planned)MainroadMainroad(planned)GeneralroadIntercityrailline(planned)Tramline(planned)BusterminalRailstation(planned)FerryterminalOfficialferryterminalHeliportRegionaltransportationhubCitytransportationhubChongmingCountyboundaryGangxiTownboundaryXiebeiVillageboundaryMingzhuLakeGelongPortTramline1DongpingChengqiaoXinheChangxingBaoYuejiangTunnelHu-ChongLineS7Hu-ChongExpresswayShanghai-ChangjiangBridgeChongmingLineDongtanPortG40Shanghai-ShanxiExpresswaytodowntownShanghaiChenjiaIslandtoShanghaiwhiletheChongmingLinewillrunparalleltotheShanghai-ChangjiangTunnelandBridge,providingpublictransportationbetweenChenjiaTownonChongmingIsland,ChangxingTownonChangxingIslandandShanghai.A“onehorizontalandonevertical”tramlinenetworkisalsoproposedintheMasterPlan.“Onehorizontal”,TramLine1,willmainlyserveasaneast-westconnectionbetweenthesoutherntowns(Chenjia,Baozhen,Xinhe)onChongmingIsland,andlinktheChengqiaoTownHubwiththeChenjiaTownHub.“Onevertical”,TramLine2,willmainlyservetoalleviateinboundandoutboundtrafficandtouristtrafficfromChengqiaototheDongpingeco-tourismdevelopmentareas.ChenjiaTownandChangxingIslandwillbeestablishedasthetwomainregional-levelpassengertransithubs.CentraltransporthubsareintendedforBao,XimenandXinhetooptimizetheexistingconventionalbusnetwork,supportanintegratedurban-ruralbusnetwork,andincreasepublictransportationservicesacrosstheIslandandbetweenChongmingandShanghai.AccordingtoChongming’smasterplan,busroutesandsmallertransporthubsshouldbeplannedinconjunctionwithresidentialareas,commercialcentres,industrialzones,TransportplanningChongmingIsland’smasterplanpromotesthediversificationofpublictransportationmodesandgreenandlow-carbondevelopmentmodelsthroughtheestablishmentofamulti-modalpublictransportdevelopmentmodelwithrailtransitasits“backbone”,bustransitasits“mainbody”andaferrysystemwhichsupplementslandtransport.AstrategictrunkroadnetworkisintendedtoenhanceconnectionsbetweenChongmingIslandandShanghai.A“twovertical”expresswaysystemwillconnectChongmingtobothJiangsutothenorthandShanghaitothesouth.TheG40Shanghai-ShaanxiExpresswayalreadyconnectsChongmingtoJiangsuinthenorthandChongmingIslandtoShanghaiviaChangjiangBridge,ChangxingIsland,andtheShanghai-ChangjiangTunneltothesouth.TheS7HuchongExpresswayiscurrentlyunderconstructionandwillconnectChongmingIslandtoShanghai.ParalleltotheexpresswaysconnectingChongmingIslandtoShanghai,twointercityraillinesareplanned.TheHuChongQiLinewillserveasthewestboundpassageconnectingChengqiaoCityonChongming120LanduseFig.4.3ChongmingCountylanduse510km20JiangsuProvinceHengshaIslandChangxingIslandChongmingIslandMunicipalityofShanghaiGangxiTownboundaryXiebeiVillageboundaryDongpingNationalForestParkChongmingIslandNationalGeoParkDongtanBirdNationalNatureReservoirGangxiEco-ZoneXishaReservoirFarmlandWoodlandLakeMaincanalConstructionlandBeachCountryfieldBeltCentralRuralBeltWaterfrontTownBeltMingzhuLakeVillageplanninganddesignmethodology:XiebeiVillagepublicandrecreationalspacesandtouristdestinations.Tenportareasandterminalsarealsodesignatedforconstructioninthemasterplan.Intermsofelectricvehicles,bytheendof2018,allbusesintheCountyareintendedtobeelectric-powered.Withover200electricvehiclerentalsconstructedinChongming–coveringtransporthubs,touristattractions,mainresidentialareas,schoolsandhospitals—electriccarshavebecomeamainstayintheCounty83.BicycletouringispromotedontheIsland,with…raceand256kmofcyclingroutesacrosstheCounty.BikerouteslinkDongtanNationalBirdReserve,DongtanWetlandPark,ChongmingIslandNationalGeopark,MingzhuLake,XishaWetlandandtheInternationalRiverandIslandCulturalMuseum,amongothers.Withinvillages,bicyclesareoftenusedbyseniorcitizens,althoughdedicatedlanesarescarce.Similarly,walkingiscommonamongstolderresidentswithinvillages,butthelackofsidewalksandoftensprawlingsettlementtypologiesmakethefutureprospectsfornon-motorizedtransportamongsttouristsandyoungergenerationsaccustomedtodriving,slim.LanduseandnaturalresourcesAgriculturallandaccountsfor74%oflanduseandprovidesmostofthefoodsupplyinChongmingCounty.Otherimportantlandusesincludewaterbodies,riversandcanals(11.9%),residentialareas(9.7%)andshoals(5.9%)84.(MasterPlanandGeneralLandusePlanofChongmingDistrict,Shanghai,2016–2040)LanduseonChongmingIslandishorizontallystratifiedfromnorthtosouth.Thenorthern“CountryfieldBelt”iscomposedmainlyofmodernfarmsthatareoperatedonalargescale;the“CentralRuralBelt”makesupmostoftheIslandanditsruralareas;thesouthern“WaterfrontTownBelt”isdividedintoseveralriversidetowns,includingSanxing,Chengqiao,Xinwan,andChenjia.EcologicalSpacesWithanextensivewatersystem,Chongmingboastsbeautifulscenery,includingMingzhuLake,BeiLake,andnearly20,000rivers,whichatotallengthofmorethan10,000kilometres.Naturalwetlandecosystemsarewidelydistributedalongthecoastlineandprovidevitalhabitatsformanywildlifespecies.TheIslandhasatotaltidalflatareaof132km2and121Net-ZeroCarbonVillagePlanningGuidelinesfortheYangtzeRiverDeltaRegioninChinaFig.4.4DesignatedecologicalspacesinChongmingCountyType1EcologicalSpaceType2EcologicalSpaceType3EcologicalSpaceType4EcologicalSpaceLakeMaincanalDongpingNationalForestParkChongmingIslandNationalGeoParkGangxiEco-ZoneLaoxiaoPortBeiLakeSanshahongQingcaoshaReservoirDonfengXishaReservoirMingzhuLakeJiangsuProvinceHengshaIslandChangxingIslandChongmingIslandGangxiTownboundaryXiebeiVillageboundary510km20MunicipalityofShanghaiDongtanNationalBirdReserveBaoPortXinhethreemajorriverbeaches—Chongxi,ChongbeiandChongdong.Xisha-MingzhuLakeandWetlandinthewest,DongpingForestParkandBeiLakeinthenorth,andDongtanWetlandintheeast,recognizedasawetlandofinternationalimportanceundertheRamsarConvention,arealsoimportantecologicalzonesandhavepromptedthedevelopmentofmanysmallandmedium-sizedtourismprojectsandfeaturedfarm/guesthouses.AccordingtoChongming’smasterplan,1401.1km2isplannedasopenspaceintheCounty.Shanghai’smunicipalecologicalspacerequirementsdefineType1-4EcologicalSpacesasfollows:Type1EcologicalSpaceTheFirstTypeofEcologicalSpaceiscomprisedofthecoreareaofChongmingDongtanBirdNationalNatureReserve(locatedwithintheboundaryofChongmingDistrict),whichencompassesatotalareaofabout102.4.km2(includingtheoffshoreareaoftheYangtzeRiverEstuary).Type2EcologicalSpaceTheSecondTypeofEcologicalSpaceincludesthenon-coreareaofChongmingDongtanBirdNationalNatureReserveandtheYangtzeRiverestuary,ChinaHuayuNatureReserve,DongfengXishaReservoir,theprimaryprotectionzoneofQingcaoshaReservoir,andthecoreareaofDongpingNationalForestPark.ImportantwetlandspacesuchasBeiLake,withatotalareaofabout157.0km2isalsoincludedintheType2delineation.Type3EcologicalSpaceTheThirdTypeofEcologicalSpaceincludesanareaof1137.8km2(includingtheYangtzeRiverestuaryandoffshorewaters)andincorporatestheDongfengXishaReservoir,thesecondaryprotectionzoneoftheQingcaoshaReservoir,permanentbasicfarmland,significantforestland,ecologicalrestorationareassuchaswetlands,lakesandrivers,andsignificantnaturepaths.Type4EcologicalSpaceTheFourthTypeofEcologicalSpaceincludesSanshahongandLaoxiaoPort,spacealongtheXinhePortinXinheTown,andspacearoundBaoTown’sBaoPort.Type4EcologicalSpaceamountstoatotalareaofabout3.9km2.122Fig.4.5ChongmingCountypublicspacenetworkNationalparkRegionalparkCityparkCommunitypark‘Themedvillage’LakeMaincanalExpresswayMainroadGeneralroadDongpingNationalForestParkChongmingIslandNationalGeoParkDongtanWetlandParkGaojiazhuangEcoGardenJinaoShanParkYinzhouParkXishaReservoirJiangsuProvinceHengshaIslandChangxingIslandChongmingIslandMunicipalityofShanghaiGangxiTownboundaryXiebeiVillageboundary510km20Villageplanninganddesignmethodology:XiebeiVillagePublicSpaceNetworkAsof2016,over500m2ofgreenparkspacewasservicedbyChongmingCounty,whichequalsapproximately20m2percapita.By2020,theamountofpublicopenspaceisoutlinedinChongming’sMasterplanas8m2percapita;by2040,3000km2isaimedforwithinthedevelopmentboundaryofthewholedistrict.By2040,publicopenspace(greenspaces,squares,etc.)shouldbeaccessiblewithina5-minutewalkof100%ofthepopulationintheurbanareasofChongmingIsland.Itisalsostatedthatcommercialandentertainmentfunctionsaretobeencouragedinpublicopenspacestoboostthevitalityofthoseareas.Recreationalsportsvenues,includingtrackandfieldfacilities,footballfields,basketballcourts,tabletenniscourts,tenniscourts,etc.shouldalsobeavailabletoresidentsinChongmingCounty85.DespitetheMasterPlan’sgoalfor80%ofthepopulationtobewithina5-minutewalkofpublicopenspaceby2040,thecurrentnumberofpublicopenspacesinruralareasisminimal.Tograduallyimprovetheirdistributioninsmalltownsandagriculturalvillages,theycanbecombinedwithtraditionalmarketplacestoservedifferentagegroupsatdifferenttimesofthedayorweek.PlansforasystemofpublicspacesonChongmingIslandincludethedevelopmentofandinvestmentinmultiplesizesofparksorganizedatthenational,county,cityandcommunitylevel.“ThemeVillages”—designedandconstructedwithattractionsunderaspecifictheme—arealsocharacteristicofsemi-publicspacesontheIsland.NationalparksKeyecologicalprotectionzones,DongtanandBeihu,willberenovatedandupgradedinaccordancewithnationalparkstandardsRegionalparksTwentyregionalparkscoveranareaofover4haonChongmingIsland,butarerelativelysparselydistributedinthenortheastCityparksBridgeCityParkcoversanareaofover100haandistheonlycity-levelparkontheIslandCommunityparksCommunityparksofapproximately1km2areplannedforinclusioninvillageandtownplanningmeasuresbothinruralandurbanareasoftheIsland123Net-ZeroCarbonVillagePlanningGuidelinesfortheYangtzeRiverDeltaRegioninChinaThemedvillagesEight‘themedvillages’,includingYueqi,Yuejin,Luhua,Changzheng,BeiLake,Dongping,QianjinandQianshao,provideoutdoorrecreationspacesmainlyinthenorthwesternpartoftheIsland,butcouldbeexpandedformoreevendistributionacrossChongmingCountyGANGXITOWN:LOCALCONTEXTANDCONNECTIVITYGangxiTownGangxiTownisoneofthe18township-leveladministrativeunitsunderthejurisdictionofChongmingDistrict,Shanghai,China.ItislocatedjustwestofcentralChongmingIsland,totheeastofDongpingNationalForestPark,and8kmfromChongming’smainport.GangdongHighwayrunsfromnorthtosouthontheeasternedgeofGangxi.Withasurfaceareaof49.39km2,GangxiTownhas12villagesunderitsjurisdiction,andapopulationof9.7kmGangxiMiao52min21min4.4kmMiaoSubMiao24min8minHealthclinicRetailMarketKindergartenPrimaryschoolMiddleschoolPlaygroundGovernmentofficeParkHomeElderlycareSportshallMallFig.4.6LocationofGangxiTownOnChongmingIslandFig.4.7‘Distancetoamenities’outlinedinChongmingIslandMasterplanFig.4.8DistributionofSocialamenities94MiaoTownSubcentreMiaoTownsubcentreservesasasocialhubfor5surroundingvillages,provid-ingpublicamenitiesincludingretail,primaryandmiddleschools,healthcarecentres,elderlycare,andrecreationalfacilities.AlargeindustrialareaisalsolocatedinMiaonSubcentre,withtextileandmetalfactories,packingfacilities,andbio-chemicalplants.MiaoTownCentreMiaoTowncentreprovidespub-licamenitiesincludingretail,aprimaryandmiddleschool,medicalclinic,elderlycare,andrecreationalfacilities.AlargeindustrialareaisalsolocatedinMiaoTownCentre,withtextileandmetalfactories,packingfa-cilities,andbio-chemicalplants.TheTownCentreservesthewholeMiaoarea(24villages).JiefangRiverJiefangRivNanhengRiver0.51km2MainroadLocalroadLocalroadCanalBusrouteBusstopVillagecentreTowncentreBicyclerouteBusrouteRestaurantElderlycareSupermarketFarmers’marketHealthcarecentreCinemaChurchParkSchoolGovernmentoffice124Villageplanninganddesignmethodology:XiebeiVillage10.9kmXiebeiDongping52min21min7.4kmGangxiGelong40min14min9.7kmngxiMiao52min21min6.3kmXiebeiGangxi33min15min6.2kmXiebeiMiaoSub32min12minDongpingNationalParkCentreThepreservationofDongpingNationalParkhassparkedtheconstructionofanewtowncentrebasedontourism.TheCentreincludesvacationhomes,hotels,restaurantsandentertain-mentsuchatheaterandeduca-tion-basedfarming.GelongPortCentreGelongPortCentreisoneofthemostdevelopedsocialcoresonChongmingIsland,providinginfrastructurelikeparks,markets,restaurants,commercialcentresandhotels.GangxiTownCentreGangxiTownCentreprovidespublicamenitiessuchasretail,aprimaryandmiddleschool,ahealthcarecentre,andrecrea-tionalfacilities.TheTownCentreservesthewholeGangxiarea(10villages,includingXiebei).PlanningZoneXiaoshuRiverNanhengRiververXiaozhenRiverPailaoRiverSanshuanghongRiverLaoyaoRiverGovernmentOfficeChunhuiSchoolChongfengFoodCourt125Net-ZeroCarbonVillagePlanningGuidelinesfortheYangtzeRiverDeltaRegioninChina23,416atthetimeoftheSixthNationalCensusin2010.ChongmingIsland’sMasterplan(2016-2040)outlinesastrategyforthe“socialcore”oftownswithpopulationsbetween3000-10000.Thisstrategyoutlinesthedispersalofpublicandsocialamenitieswithin6-10kmofthetowncentre.However,thedistributionofamenitiesinsmallertownsandvillagesisunclearhintingatuncertaintyaboutfuturedemographictrendsinprototypicalruraltownsandvillages.XIEBEIVILLAGEIntroductiontoXiebeiVillageandthenortheastplanningzoneXiebeiVillagehasapopulationof2432(998households)andoccupies483ha.Thenortheastquarter(planningzone)hasbeenidentifiedforthepurposesoftheserecommendationsduetoitstypicalagriculturalandresidentialtypologiesandchallengingdevelopmentdemands,includingpressurefromadevelopertobuildresidentialandtouristblocksinthequarter,Xiebei’snegativepopulationgrowthand“ghosttown”phenomenoninrecentyears,andrapidregionaleconomicexpansion.Theplanningzoneincludes113haandapopulationof533(304households).ThecurrentdensityoftheVillageisbetween13-17people/ha.Mostresidentsholdagriculturalcitizenship,meaningtheyhavetherighttodevelopand/orleasetheirresidentialplotforresidentialuseanddevelopand/orleasetheiragriculturalplotforagriculturaluse.Privatedevelopersarecurrentlyworkingwiththelocalgovernmenttodevelopthenortheastplanningzone.ApprovedplansincludewideningXiebei’straditionalcanalsystem.Plansstillundergoingdiscussionandawaitingapprovalincludetheconversionof4.93haoffarmlandintocommercialandresidentialland,theconstructionof90residentialunitsintownhouse-stylebuildingsandafive-starhotelona2.43haplot,andtheerectionofanagriculturalmuseum,conferencehallandlibrary.AsinotheragriculturalvillagesinChongmingCounty,thedistributionoflanduseinXiebeiVillageisdividedbetweenagriculturallandanddevelopmentland.Twenty-nineper-centofXiebeiVillageisdesignatedasconstructionland,while27%iswoodland,21%isgeneralfarmland,19%isagriculturalforest(mainlyfruittrees)and4%isusedforvegetablefields.However,thetotalfarmacreageisdecliningduetotheexpansionofconstructionlanddespiteeffortsbyChongmingCountytopreservefarmlandontheisland.Fig.4.9XiebeiVillage:generalcontextXiaoxingRoadBeiyanRoadYuancunbeiRiverJiafangRoadXiaoshuRiver125250m500MainroadLocalroadLocalroadCanalBusrouteBusstopDeveloper’sland126Villageplanninganddesignmethodology:XiebeiVillagePailaoRiverXiebeiVillagenortheastplanningareaGovernmentHouseChunhuiPrimarySchoolChongfengFoodcourtBeiyanRoadBeiyanRoadSanshuangHighwaySanshuangRiverChangzhenHighway127Net-ZeroCarbonVillagePlanningGuidelinesfortheYangtzeRiverDeltaRegioninChinaISSUESXiebeiVillagehasmultiplechallengesatthescaleofthespatialplanwhichwillneedtobeaddressedinordertoreachnet-zero-carbon.ThefollowingfourissueshavebeenidentifiedinthenortheastplanningzoneofXiebeiVillageandarelikelytobeareasdeservingattentioninothervillagesonChongmingIsland,intheYangtzeRiverDeltaregion,andpotentiallyonamoreglobalscale.•Sprawlresultingfromalackofcoordinatedplanninganddesignatthetownandvillagelevel•Theunder-utilizationofbuildingswhichhavebeenabandonedorleftemptyforyears•Adearthofpublicspace,bothoutdoorsandindoorswhichcanbeusedforcommunitygatheringsandforstrengtheningsocialcohesionamongstvillagersandvisitors•Alimitednetworkofinternalandexternalmulti-modaltransitconnections•InthesectionfollowingIssues,Actionswillbeproposedtoaddressthesechallengesfromaspatialperspective.128Villageplanninganddesignmethodology:XiebeiVillageUNPLANNEDSPRAWLUNDER-UTILIZEDBUILDINGSLACKOFPUBLICSPACELIMITEDALTERNATIVETRANSPORTATIONNETWORK129Net-ZeroCarbonVillagePlanningGuidelinesfortheYangtzeRiverDeltaRegioninChinaExistingsettlementtypologiesWithrapidurbanizationandpopulationincreaseintheYRDregionoverthelastfewdecades,cooperativesinruralareashavealsoseendrasticdevelopmentchanges.Thepopulationintheregionalonehasgrownfrom0.15billionin2010to0.22billionin2018.AstudyconductedontheexpansionoftheYangtzeRiverDeltaUrbanAgglomeration,showedthatbetween1993and2007,urbanexpansionmainlyoccurredthroughinfillwithinalreadyestablishedvillages.After2007,sprawlandsuburbanizationoutsidetraditionalvillagesbecamethedominantmeansofurbanexpansion.InruralvillagesacrossChongmingIsland,cooperativesandtheareaofdevelopedlandalsobegantogrow.Acomparativeanalysisofsatelliteimageryatdifferentpointsintimeshowsthemushroomingof“isolated”(seefigure4.14)modelsofdevelopmentacrosstheYRDregion,particularlyintheearly2000s.Withoutsustainableplanningmechanismsinplace,cooperativeshavegrowninanuncoordinatedway,leadingto“linear”FarmercooperativesandtraditionalsettlementintheYRDregionAsillustratedinFigure4.12,traditionalvillagesintheYangtzeRiverDeltaregionweretypicallysituatedattheintersectionofroadsandcanalswhichconnectedtoothervillagesintheregion.Thesevillagesbeganasfarmercooperativescomposedofthreetofourhouseholds.Farmercooperativesaresmallgroupsofruralresidentswhoworkonagriculturallandcollectively.Usually,ruralresidentsjointlyownthelandthattheyworkonandindividuallyownhousesthatarealsobuiltonthisland,withpropertylinesdelimitingthespacetheyareallowedtobuildon,butwithsharedagriculturallandzonedasanon-developmentarea.Sincefarmersliveinthesameneighbourhoodthattheyworkin,andthereforesharethesamepublicandsocialinfrastructureandservices,cooperativesalsoservesocial,economicandpoliticalfunctions.UnplannedsprawlFig.4.10TraditionalfarmercooperativesasinitialimprintforsettlementtypologiesFig.4.11DiagrammaticrepresentationofthetraditionalfarmercooperativesLocalroadCanalTraditionalfarmercooperative/villagecoresExpandeddevelopmenttypologyIsolateddevelopmenttypologyIndustrialZoneFarmlandClustereddevelopmenttypologyLineardevelopmenttypology130Villageplanninganddesignmethodology:XiebeiVillage1.FarmHouse2.LinearHouseandAgro-forestFig.4.12“Linear”settlementtypologyinGangxiTownFig.4.13“Clustered”settlementtypologyinGangxiTownFig.4.14“Expanded”settlementtypologyinGangxiTownFig.4.15“Isolated”(developer-driven)settlementtypologyinGangxiTownLinearsettlementtypologiesarecharacteristicofruralareasinChinatoday,wheresettlementssprawlalongstreetsandgraduallylinefarmlandwithsingle-familyhousesthat,becauseofthelow-costtheyrequiretobuild,areoftenabandonedwhenresidentsmovetourbanareas,die,orupgradetheirdwelling.Typically,thisistheorganicgrowthofresidentialareaswheresingle-familyhousesarebuiltinarow-likeformationparalleltohousesbuiltalongmainaccessroads.Expandedsettlementtypologiesaredenser,morebuilt-outversionofclusteredhousing,commonlyformingthecoreoftownsandvillagesintheYRDregion.Isolatedsettlementtypologiesarelarge-scaleresidentialareasthatoftenlackmixed-uses,socialamenities,andnon-automotiveconnectionstootherareas.131Net-ZeroCarbonVillagePlanningGuidelinesfortheYangtzeRiverDeltaRegioninChinaFig.4.16SchematicidentificationoftraditionalfarmercooperativesinGangxiTownMainRoadLocalroadLocalroadCanalTraditionalfarmercooperative/villagecoresExpandeddevelopmenttypologyClustereddevelopmenttypologyLineardevelopmenttypologyand“clustered”developmenttypologiesandassociatedunrestrictedsprawl,low-densitybuilding,insufficientsocialamenitiesandservices,andinconvenient,car-dependenttransportation.Unfortunately,theconstructionofphysicalandsocialinfrastructureinruralvillageshasnotcaughtupwiththerapidconstructionofhouses,leavingthenumberofservicesavailabletoresidentsdisproportionatetothenumberofresidentslivinginruralvillages.Althoughthe“fivesmallindustries”86operateontheIsland,futureeconomicplansfocusprimarilyonChongming’snicheineco-andagri-tourism.Forthisreason,alongwithfactthatthebuiltenvironmentisprimarilycomposedofresidentialareaswhichlackmanyofthecoreservicesthatplannedneighbourhoodsincitiesprovide,settlementtypologiesremainthefocusoftheanalysis.InthenortheastplanningzoneofXiebeiVillage,therearesevenexistingcooperatives(workinggroups),whichhaveformedorganicallyformedalongthecanalsystemcharacteristicoftotheregion.Duetolaxcoordinationandformalizationofzoningandbuildingpermits,overtime,constructionlandoccupiedbythesecooperativeshasexpandedunsustainably.Ruralstripdevelopments,or“linear”settlementtypologies,thattypifytheregiongenerallyhaveahighercarbonfootprintandenvironmentalimpactduetothedecentralizationofservicesandthehighlevelofenergyneededtodeliverutilities.Assuch,giventhecriticalimportanceoftheregion’secologicalassetsandthegrowingriskstoitssecurity,thereisaneedtoworkforfurtherworktocreateonpotentialurbanplanningstrategiesthatfullyconsiderecologicallysensitiveplanning,watermanagementandlow-carbondevelopmentthatcansupportinleadingtheYRDregiontowardsasustainablefutureinawaythatbuildsupontherelevanceofitsexistingdevelopmentpatterns.132Fig.4.17Schematicexpansionofcooperativesin“linear”and“clustered”develpmenttypologiesinGangxiTownFig.4.18Existing“linear”,“clustered”and“expanded”developmenttypologiesinGangxiTownVillageplanninganddesignmethodology:XiebeiVillage133Net-ZeroCarbonVillagePlanningGuidelinesfortheYangtzeRiverDeltaRegioninChina19900135390.814914716022824450100150200250199520002005201020155001990013582.561138.693182123236.9148317.9139390.816014914716022824450100150200250199520002005201020151990010020030040050019952000200520102015Fig.4.19Surfaceareaofbuiltdistrictspercapitaovertime95Fig.4.20Constructionland(blue)inrelationtopopulation(pink)overtime96Surfaceareaofbuilddistrictspercapita(squaremeterperperson)Surfaceareaofbuilddistricts(10,000ha)Population(100millionpersons)Nearly90%ofthe3.4billionpeoplelivinginruralareasresideinAfricaandAsia.In2014,Chinaalonewashometo635millionruralresidents87.However,by2050approximatelyhalfofChina’scurrentruralpopulationwillbecomeurban,anetlossofaround300millionpeopleinruralareas88.Atthesametime,China’sStateCouncilapprovedaplanthataimstotransformtheYangtzeRiverDeltaregion—alongsidethePearlRiverDeltaandtheBeijing-Tianjin-Hebeiregion—intoa“world-classcitycluster”by2030.Theaimisfortheseworld-classclusters,incontrastto16medium-andsmall-sizedclusters,tobetheeconomicpower-housesofChina,capitalizingoninnovativeandinternationallycompetitiveindustries89.ItisproposedthattheYRDcityclusterspecifically,willbealinktotheSilkRoadEconomicBelt,which,underChina’sBeltandRoadInitiativeconnectsChinatoCentralandSouthAsiaandonwardstowardsEuropeoverland.TheYRDcityclusteralsoharbourstheworld’slargestshippingportsandservesasagatewayformaritimetradebetweenChinaandtheworld.Whenfullyconnected,primarilythroughbullettrains,theYRDcityclusterisprojectedtobehometo150millionpeople–almostfourtimesthepopulationofTokyo(40million),whichiscurrentlythelargesturbanagglomerationintheworld90.What’smore,asetofplansforHangzhouBay—connectingZhoushantoNingbo,NingbotoShanghai,ShanghaitoaprimarilyartificialarchipelagoofislandsintheEastChinaSeawhichthenconnectbacktoNingboviaover-seabridges—willbelikelytofurtherincreasedevelopmentpressuresacrosstheYRDregion.ThisdemographicparadoxleavesthefateofvillagesintheYangtzeRiverDeltasomewhatunknown.Perhapsfastertransportationbetweenruralareasandurbaneconomiccenterswillcatalyzecitizens’interestinlivinginecologicalvillages91.Orperhapsthecentraland/orprovincialgovernmentswillinvestinthedevelopmentoftheseareas.Alternatively,itisalsopossiblethattechnologyandintensiveagriculturalprocesseswillcontinuetoreplacetheneedforagriculturalworkersandasruralpopulationsage,villagesintheYRDregionwillshrinkordisappear(facilitatedbythedisplacementofthoseresidentsleftbehind).Regardlessoffuturespeculation,whatiscurrentlyknownisthat40%ofhomesinNanjing,JiangsuarevacantanditcanbeinferredthatsimiliarnumbersexistelsewhereintheYRDregion92.Thisisduetoabraindraincoupledwiththeupwardmobilityofvillageresidentswhochoosetoconstructnewhomesinsteadofrenovatingtheiroldones.These“hollowedvillages”,composedofaconstellationof“ghosthouses”andlow-densitysettlementsnotonlydiminishtheareaoflandavailableforagriculture,butalsoprohibitsustainabletransportationoptionsandsocialmixingduetothelongdistancesresidentsarerequiredtotraveltoaccessservicesandamenities.Under-utilizedbuildings134HealthclinicRetailMarketKindergartenPrimaryschoolMiddleschoolPlaygroundGovernmentofficeParkHomeElderlycareSportshallMallFig.4.21Retailamenitieswithina5-,10-and15-minutewalkinGangxiTownFig.4.22Recreationalamenitieswithina5-,10-and15-minutewalkinGangxiTownSCHOOLSFOOD/RETAILHEALTHCARERECREATIONFig.4.23Schoolswithina5-,10-and15-minutewalkinGangxiTownFig.4.24Healthcarefacilitieswithina5-,10-and15-minutewalkinGangxiTownFig.4.25Socialamenitiesdistribution97MainRoadLocalroadLocalroadCanalDevelopedlandExpandeddevelopmenttypologyClustereddevelopmenttypologyLineardevelopmenttypologyVillageplanninganddesignmethodology:XiebeiVillageWhileGangxiTown’scentralcoreoffersmanyofthesocialservicesandpublicamenitiesdescribedintheChongmingIslandMasterplan(seeFigure4.25),theprovisionofandaccesstoservicesandamenitiesneedstobere-conceptualizedforvillageslikeXiebei,especiallygiventherecentinterestinconvertingagriculturallandintoconstructionlandforadditionalresidents.Currently,theonlyexistingsocialamenitiesavailableintheplanningareaareaprimaryschool,alocaladministrativeoffice,andafoodcourt,whichalsoservesasapublicgatheringspaceforeventssuchastheannualcherryfestivalandelectionsforlocalgovernmentrepresentatives.However,iftheareaisdevelopedforadditionalresidentialunitsandhotelrooms,thenumberandscaleofamenitiesthatprovidetheopportunitytolearn,play,exercise,socializeandenjoythenaturalenvironmentshouldbeincreasedandalignedwithnet-zerocarbongoals.Lackofpublicspace135Net-ZeroCarbonVillagePlanningGuidelinesfortheYangtzeRiverDeltaRegioninChinaNumberofamenitiesrecommendedinTheMasterplanNumberofexistingamenitiesKindergarten203Retail204Market206Governmentoffice1212Sportshall100Park302Healthcarecentre101Playground300Primaryschool201Middleschool101Elderlycare304NumberofamenitiesrecommendedinTheMasterplanNumberofexistingamenitiesKindergarten30Retail31Market30Governmentoffice11Sportshall20Park30Healthcarecentre11Playground30Primaryschool21Middleschool10ElderlyCare30Fig.4.26Educationalamenitieswithin5-,10-and15-minutewalkinXiebeiVillageFig.4.27Healthcareamenitieswithin5-,10-and15-minutewalkinXiebeiVillageFig.4.28Retailamenitieswithin5-,10-and15-minutewalkinXiebeiVillageFig.4.29Recreationalamenitieswithin5-,10-and15-minutewalkinXiebeiVillageSCHOOLSFOOD/RETAILHEALTHCARERECREATIONFig.4.30AmenitiesinGangxiTownFig.4.31AmenitiesinXiebeiVillage136Villageplanninganddesignmethodology:XiebeiVillageThreetypologiesofroutesexistinthenortheastplanningzone.BeiyanRoadisaone-laneroadwithspaceformotorvehiclesandasidewalkforpedestrians.Itisonthesouthernborderoftheplanningzone,andconnectsXiebeitoothervillagesacrossChongmingIslandintheeast-westdirection.TwobuslinespassthroughBeiyanRoad,andtherearetwostops.Mostoftheotherpavedstreetsintheplanningzonearesingle-lane,one-waystreetswithoutseparationbetweenautomobile,bicycle,andpedestrianlanes.Allthepathsthatconnectagriculturalplotstoresidentiallandareunpavedandprimarilyusedbypedestriansandscooters.Inherently,thesetypologiesarenotproblematic;however,ifthenumberofresidentsintheareagrowsasplanned,improvementsshouldbemadetorenovateexistingroutestoencouragealternativetransportationandincorporategreentechnologiesintothepubliclifeoftheVillage.LimitedalternativetransportationnetworkFig.4.32ExistingfootpathtypologyFig.4.33ExisitingstreettypologyFig.4.34Existingmainroadtypology1:1501.6m1:2501:2503.5m1.516m121137Net-ZeroCarbonVillagePlanningGuidelinesfortheYangtzeRiverDeltaRegioninChinaFig.4.35LimitedconnectivityinXiebeiVillageFig.4.36LimitedconnectivityinGangxiTownFig.4.37ExistingtransportationnetworkMainroadSingle-laneone-waystreetFootpathFive-minutewalktobusMissinglinkageMainroadLocalroadLocalroadCanalDevelopedland138Villageplanninganddesignmethodology:XiebeiVillage139Net-ZeroCarbonVillagePlanningGuidelinesfortheYangtzeRiverDeltaRegioninChinaACTIONSSincethesechallengesarenotuniquetoXiebeiVillage’snortheastplanningarea,thecasehasbeenapproachedasanexampleofhowvillagesintheregioncouldevolveintosustainableexamplesforotherruralaswellasurbanareasthroughspatialplanning.TheACTIONSthatfollowguidereadersthroughrecommendationsatthevillageplanningscale,whichcouldhelpshapeanet-zerocarbonvillage.140UNDER-UTILIZEDBUILDINGSUNPLANNEDSPRAWLUNPLANNEDSPRAWLLACKOFPUBLICSPACELIMITEDALTERNATIVETRANSPORTATIONNETWORKCONSOLIDATEDEVELOPMENTBOUNDARYTRANSFERCONSTRUCTIONLANDUSEINFILLANDRENOVATESOCIALAMENITIES+PUBLICSPACEENHANCEALTERNATIVETRANSPORTATIONNETWORKLIMITEDALTERNATIVETRANSPORTATIONNETWORKVillageplanninganddesignmethodology:XiebeiVillage141Net-ZeroCarbonVillagePlanningGuidelinesfortheYangtzeRiverDeltaRegioninChinaFig.4.38XiebeiVillage:currenttypologyFig.4.39XiebeiVillage:proposedtypology–‘condensedcluster’CURRENTTYPOLOGYPROPOSEDCONDENSEDTYPOLOGYMainroadLocalroadLocalroadCanalTraditionalfarmercooperative/villagecoresExpandeddevelopmenttypologyIsolateddevelopmenttypologyIndustrialzoneFarmlandClustereddevelopmenttypologyLineardevelopmenttypologyConsolidatethedevelopmentboundaryA“condensedcooperative”developmenttypologyisproposedforthenortheastplanningareaofXiebeiVillage.Residential,aswellascommercialandpublicbuildingsandpublicspaces,shouldbeconcentratedwithinacompactdevelopmentboundarystrategicallycenteredaroundwell-connectedroadsandtransithubs.Thisdevelopmentboundaryshouldbeclearlycommunicatedtoresidentstohelppreventencroachment,butthebenefitstoresidentsshouldalsobecomeclear.Limitingtheareaoflandavailablefordevelopmentwillhelpdensifyresidentialland,promotingmoresustainablelanduseandday-to-dayaccesstokeysocialandculturalamenitiesandpublicspace.Overtime,residentialareaswillbeconcentratedattheintersectionofwell-connectedtransportationroutesformingawalkable,mixed-usecommunitywherepeopleareabletomeettheirdailyneedseitheronfoot,bybicycle,orviapublictransportation.142Fig.4.40CurrentspreadofdevelopmentinthenortheastplanningareaofXiebeiVillageFig.4.41ProposedcondensedmodelofdevelopmentinthenortheastplanningareaofXiebeiVillageCURRENTDEVELOPMENTBOUNDARIESPROPOSEDDEVELOPMENTBOUNDARIESCanalForestProtectedfarmlandFarmlandConstructionlandSettlementInfillHouse-phasedintofarmlandVillageplanninganddesignmethodology:XiebeiVillage143Net-ZeroCarbonVillagePlanningGuidelinesfortheYangtzeRiverDeltaRegioninChinaTransferconstructionlanduse•Re-zonelandformixed-useandagricultureSingle-useland(residential)coversanareaof2.4hainXiebeiVillage’snortheastplanningzone.Inthenewplan,2.1haareproposedformixedresidentialandcommercialuse.Thisnumberincludessomehaforthenewdevelopmentproposedbyprivatedevelopers(butisstructureddifferently),therecoveryof0.7haofemptylandtobeconvertedintoconstructionland,and1haofexistingconstructionlandtobephasedintofarmland,whichcouldalsobeseenasaninvestmentinagri-tourism.There-appropriationoflanduseisproposedthroughaphasedapproachtoencourageownershipinboththeprocessofreclaiminglandforagricultureandresidents’involvementinthecreationofasustainablevillagemodel,aswellastoavoidrelocatingvillagers.•IdentifyunoccupiedbuildingsoutsidethedevelopmentboundaryBuildingsthathavebeenabandonedorareusedasvacationhomesoutsidethedevelopmentboundarycouldbeconsideredforphasingbackintofarmlandwithanoptionfortheirownerstotime-sharevacationhomeswithinthedevelopmentboundary.•IncentivizemovinginsidethedevelopmentboundaryToreducesprawlandincreaseagriculturalland,whichcontributestoruraleconomiesandcarbonsinks,residentslivinginhousesoutsideofthedevelopmentboundarycouldbeincentivizedtomoveinsidethedevelopmentboundary.DEVELOPER’SPROPOSALRECOMMENDEDPROPOSALFig.4.42ConceptualdiagramsofcurrentandproposeddevelopmenttypologiesinXiebeiVillageMainroadLocalroadLocalroadCanalTraditionalfarmercooperative/villagecoresExpandeddevelopmenttypologyIsolateddevelopmenttypologyIndustrialzoneFarmlandClustereddevelopmenttypologyLineardevelopmenttypology144Fig.4.43CurrentbuildingfootprintsinthenortheastplanningareaofXiebeiVillageFig.4.44ProposedbuildingfootprintsinthenortheastplanningareaofXiebeiVillageCURRENTBUILDINGFOOTPRINTPROPOSEDBUILDINGFOOTPRINTCanalForestProtectedfarmlandFarmlandConstructionlandSettlementInfillHouse-phasedintofarmlandVillageplanninganddesignmethodology:XiebeiVillage145Net-ZeroCarbonVillagePlanningGuidelinesfortheYangtzeRiverDeltaRegioninChinaInfillandrenovatesocialamenitiesandpublicspaceShouldtherebeadditionalneedforhousing,unoccupiedbuildingswithinthedevelopmentboundarythathavenotbeenidentifiedforsocialandpublicamenitiesshouldberenovatedforresidentialuse.Oncethesehavebeenoccupied,infillcouldprovideadditionalhousingwithinthedevelopmentboundary.Thisisproposedasamoresustainableandheritage-mindedsolutiontotheneedforadditionalhousingandshouldbeconsideredbeforenewdevelopmentsarebuilt.Unoccupiedbuildingslocatedwithintheidentifieddevelopmentboundary,particularlythoseincentrallocationsalongmainroadsandcanals,shouldreceiveinvestmentfortheirrenovationandre-purposingassocialandpublicamenities.Investmentinkeyamenitieswouldnotonlyenhancethelivabilityandsocialconnectionsinandamongstcooperatives,butalsopromotewalkabilityandadecreasedrelianceonfossilfuelswiththeirsubsequentemissionstomeetdailyneeds.Foranareawithapopulationof75093,thefollowingusesaresuggested:Fig.4.45MarketplaceFig.4.46GardencafeFig.4.47GuesthouseFig.4.48PlaygroundFig.4.49Education-basedfarmFig.4.50Healthclinic1465min-within/inneighborcoorperativesGovernmentOceHealthcareFacilityPharmacyBusStopBikeRentalCommunityCenter10min-invillagecenter15min-intowncenterSuperMarketFoodCourtElderCareParkPlaygroundSportsHallSchoolLibraryConvenienceStoreElderCareElderCareMunicipalFacilityMunicipalFacilityTracHubTracHubCommercialCommercialYouthCareYouthCareCulture&EducationCulture&EducationFig.4.51Proposedwalking,bicycling,andbusdistancesfromsocialamenitiesFig.4.52Schoolswithin5-and10-minutewalkinXiebeiVillageFig.4.53Healthcarefacilitieswithin5-and10-minutewalkinXiebeiVillageFig.4.54Retailamenitieswithin5-and10-minutewalkinXiebeiVillageFig.4.55Recreationalamenitieswithin5-and10-minutewalkinXiebeiVillageMainRoadLocalroadLocalroadCanalDevelopedlandExpandeddevelopmenttypologyClustereddevelopmenttypologyLineardevelopmenttypologyVillageplanninganddesignmethodology:XiebeiVillage147Net-ZeroCarbonVillagePlanningGuidelinesfortheYangtzeRiverDeltaRegioninChinaPrioritizealternativetransportationnetworkInmanyruralareasinEurope,NorthAmerica,andAustralia,peopledependonprivatemotorvehiclestomeettheirdailyneeds.However,intheYangtzeRiverDeltaregion,seniorcitizens,whoformthemajorityofthepopulation,commutebyfootorbus.ThreehierarchiesofstreetsarethusproposednotonlyasawaytoaccommodatethedemographiclivinginYRDvillages,butalsotosupportmodesoftransitthatdonotrelyonfossilfuels,insteadpromotinghealthier(i.e.walkingandcycling)andmorepublic-good-oriented(i.e.masstransit)formsoftransportation.Minitransit-hubsarealsoproposedatthecentreofeachcooperative(condensed-cluster).Suchhubscouldincludebusstops,bicycleservices(suchasbikepumps,sharedtools,andparking),andelectric-vehiclechargingstations,andwouldfurtherservetoencourageresidentstomovewithinthedevelopmentboundaries.‘Accessroad’‘Localroad’‘Scenicfootpath’FootpathBoatroute1:2501:250Fig.4.56ExistingmainroadtypologyFig.4.57ExisitingstreettypologyFig.4.58Proposedtransportationnetwork148Villageplanninganddesignmethodology:XiebeiVillageSOLARLAMPSINGLELANEBIOSWALEAGRICULTURESEMI-PERMEABLEBIKELANE+FOOTPATH331.222151.22.5110SOLARLAMPBIOSWALESEMI-PERMEABLEBIKELANE+FOOTPATH61.51.51.51.51.21.21215SOLARLAMPSEMI-PERMEABLEBIKELANE+FOOTPATHDOUBLELANEBIOSWALEAGRICULTUREFig.4.59ScenicfootpathFig.4.60LocalroadFig.4.61Accessroad1:2501:2501:250149Net-ZeroCarbonVillagePlanningGuidelinesfortheYangtzeRiverDeltaRegioninChinaBeizhaCanalJinluCanal80m1:6000160m320mAccessroadCanalLegendLocalroadScenicfootpathFootpathBoatrouteForestProtectedfarmFarmlandConstructionlandSettlementsPublicamenitiesHousephasedintofarmlandBusstopShuttlebusrouteBikerentalandchargingstationBoatstopMarketRestaurantCommunitycentreSupermarketPlaygroundElderlycareHealthcareParkGuesthouseAgritourismFig.4.62ProposedMasterplanforXiebeiVillage150Villageplanninganddesignmethodology:XiebeiVillageBEIYANROADSanShanHongRiverXiaHongRiverYuancunnanCanalJinmanCanalSANSHUANGROAD151Net-ZeroCarbonVillagePlanningGuidelinesfortheYangtzeRiverDeltaRegioninChinaENDNOTES1ShanghaiStatisticalYearbook2018,ChinaStatisticsPress2ZhejiangStatisticalYearbook2018,ChinaStatisticsPress3AnhuiStatisticalYearbook2018,ChinaStatisticsPress4TopTenWorldContainerPorts.Retrievedfromhttps://www.forbes.com/pictures/eglg45hdkjd/americas-largest-container-port/#23df9b0351685ChinaShippingDatabase.Retrievedfromhttp://www.shippingdata.cn/free/rf/lmid_B1F402BCDA4C44228604F2359F22BD30/type_16Tabulationofthe2010PopulationCensusofthePeople’sRepublicofChina.Retrievedfromhttp://www.stats.gov.cn/tjsj/pcsj/rkpc/6rp/indexch.htm7RegionalPlanoftheYangtzeRiverDelta2016-2020.NationalDevelopmentandReformCommissionandtheMinistryofHousingandUrban-RuralDevelopment.8ChangesinthepopulationdistributionintheYangtzeRiverDeltaRegionsince2007.WuW.(2017).NorthwestPopulation.9Thetimespacedistributionofcityclustersandeco-spaces.HungYB,LiGL.(2018)TaiwanAgricultureExploration.10RegionalPlanoftheYangtzeRiverDelta2016-2020.NationalDevelopmentandReformCommissionandtheMinistryofHousingandUrban-RuralDevelopment.11Ibid12Ibid13Impactofland-usechangesonthevalueofecosystemsintheYangtzeRiverDeltaRegion.LiuG,ZhangLC,ZhangQ.(2014).SinicaEcologicalAct.14LiuKB,SunS,JiangX.EnvironmentalChangeintheYangtzeRiverDeltaSince12,000YearsB.P.[J].QuaternaryResearch,1992,38(1):32-4515RegionalPlanoftheYangtzeRiverDelta2016-2020.NationalDevelopmentandReformCommissionandtheMinistryofHousingandUrban-RuralDevelopment16Retrievedfromhttp://www.gov.cn/zhengce/2018-09/26/content_5325534.htm17RegionalPlanoftheYangtzeRiverDelta2016-2020.NationalDevelopmentandReformCommissionandtheMinistryofHousingandUrban-RuralDevelopment18http://rpubs.com/angelamhkim/YRD19Ibid20J.Rockströmetal.(2009),PlanetaryBoundaries:ExploringtheSafeOperatingSpaceforHumanity,Ecology&Society,vol.14,no.2-art.3221W.Steffenetal.,Planetaryboundaries:Guidinghumandevelopmentonachangingplanet,Science13February2015,Vol347Issue622322L.Macdonald.(2018)ChinaReaffirmsParisCommitmentsAheadofGlobalClimateActionSummit,WorldresourceInstitute.Retrievedfromhttps://www.wri.org/blog/2018/07/china-reaffirms-paris-commitments-ahead-global-climate-action-summit23ChinaNationalBiodiversityConservationStrategyandActionPlan(2011-2030).Retrievedfromhttps://www.cbd.int/doc/world/cn/cn-nbsap-v2-en.pdf24K.Raworth(2017),DoughnutEconomic,ChelseaGreenPubCo.25The13thFive-YearPlanforEconomicandSocialDevelopmentofthePeople’sRepublicofChina(2016–2020).Retrievedfromhttp://en.ndrc.gov.cn/newsrelease/201612/P020161207645765233498.pdf26Kennedy,C.,Pincetlb,S.,BunjebP.(2010),Thestudyofurbanmetabolismanditsapplicationstourbanplanninganddesign,EnvironmentalPollution.27EuropeanCommission,CommunicationfromtheCommissiontotheEuropeanParliament,theCouncil,theEuropeanEconomicandSocialCommitteeandtheCommitteeoftheRegions,Towardsacirculareconomy:AzerowasteprogrammeforEurope,Brussels,25.9.2014COM(2014)398final/228(sourceofthefigure:https://www.stockholmresilience.org/research/planetary-boundaries/152Villageplanninganddesignmethodology:XiebeiVillageplanetary-boundaries/about-the-research/the-nine-\planetary-boundaries.html)29WWF–LivingPlanetReport201830Sourceofthefigure:J.Rockström,TheHumanQuestAttainingtheSDGswithinPlanetaryBoundaries,presentationdeliveredatthe50thanniversaryoftheClubofRome,October17-18,2018,Rome31Sourceofthefigure:WorldEconomicForum,Howtodobusinesswithdoughnuts,Jan2018-https://www.weforum.org/agenda/2018/01/how-to-do-business-with-doughnuts/32InthisparagraphandinPrinciples8and9conceptsderivedfromtheRuralRevitalizationStrategicPlan(2018-2022)issuedbytheCentralCommitteeoftheCommunistPartyofChinawereintegrated.33UrbanAgglomerationDevelopmentPlanoftheYangtzeRiverDeltaRegion,2016-2030.Retrievedfrom:http://www.ndrc.gov.cn/zcfb/zcfbghwb/201606/W020160715545638297734.pdf34ShanghaiMeteorologicalBureau.Retrievedfromhttp://www.smb.gov.cn/index.html35Tabulationofthe2010PopulationCensusofthePeople’sRepublicofChina.Retrievedfromhttp://www.stats.gov.cn/tjsj/pcsj/rkpc/6rp/indexch.htm36RegionalPlanoftheYangtzeRiverDelta2016-2020.NationalDevelopmentandReformCommissionandtheMinistryofHousingandUrban-RuralDevelopment.37Source:CarbonEmissionsDecompositionAnalysisofYangtzeRiverDeltaAreainChina:2001-2012.Availablefrom:Âhttps://www.researchgate.net/publication/301448566_Carbon_Emissions_Decomposition_Analysis_of_Yangtze_River_Delta_Area_in_China_2001-2012.38Source:RegionalDevelopmentPlanoftheYangtzeRiverDelta,2009-2020,TheStateCouncilofP.R.China,2010.39Source:http://www.gov.cn/zhengce/2018-09/26/content_5325534.htm40Source:YearbookofYangtzeRiverDeltaRegion,LocalChroniclesofJiangsuProvince,2015.41Exceptinhotdryclimates,wherethereisnoneedtoreducehumidity.42CovenantofMayors.Retrievedfromhttps://www.covenantofmayors.eu/about/covenant-initiative/origins-and-development.html43EuropeanCommission-JRC,Guidebook‘HowtodevelopaSustainableEnergyandClimateActionPlan(SECAP)’-PART2–BaselineEmissionInventory(BEI)andRiskandVulnerabilityAssessment(RVA),2018-http://publications.jrc.ec.europa.eu/repository/bitstream/JRC112986/jrc112986_kj-nb-29412-en-n.pdf44GreenhouseGasProtocol(2014),GlobalProtocolforCommunity-ScaleGreenhouseGasEmissionInventories,WorldResourcesInstitute,C40Cities,ICLEI45Theboundarycanbephysical(hydrographical,forexample)oradministrative.46CO2canalsobeemittedfromdirecthuman-inducedimpactsonforestryandotherlanduse,suchasthroughdeforestation,landclearingforagriculture,anddegradationofsoils.Likewise,landcanalsoremoveCO2fromtheatmospherethroughreforestation,improvementofsoils,andotheractivities.47USGBC(2016),LEEDv4forNeighborhoodDevelopment-http://www.usgbc.org/sites/default/files/LEED%20v4%20ND_04.05.16_current.pdf48Thisphenomenonhasbeencommontoallcountriesasaconsequenceoftheeconomicdevelopment,whichchangedthecomfortexpectations.Asignificantincreaseinpercapitaenergyconsumptionforspaceheatinghasbeenwitnessed,forexample,inalltheEuropeancountrieswhoseeconomicdevelopmenttookplaceafterthesSecondWorldWar,andisalsobeingwitnessedalsoinChina,wheretodayurbanresidents,whoicharewealthierthanthoseinruralareas,use1.5–5timestheenergyofruralresidentsonapercapitabasis.T.YangandX.Zhang(2016)Benchmarkingthebuildingenergyconsumptionandsolarenergytrade-offsofresidentialneighborhoodsonChongmingEco-Island,China,AppliedEnergy180792–79949T.YangandX.Zhang,Benchmarkingthebuildingenergyconsumptionandsolarenergytrade-offsofresidentialneighborhoodsonChongmingEco-Island,China,AppliedEnergy180(2016)792–79950Almodovar-MelendoJ.M.andCabeza-LainezJ.M.EnvironmentalFeaturesofChineseArchitecturalHeritage:TheStandardizationofForminthePursuitofEquilibriumwithNature.Sustainability2018,10,2443;doi:10.3390/su1007244351The21stDecemberdayisexposedfromsunrisetosunsetifH/W<0.8153Net-ZeroCarbonVillagePlanningGuidelinesfortheYangtzeRiverDeltaRegioninChina52CIB(2002).Agenda21forSustainableConstructioninDevelopingCountries.CIB,UNEP–IETC,SouthAfrica200253KnappR.G.(2000),China’solddwellings.UniversityofHawaiiPress54USGBC(2016),LEEDv4forNeighborhoodDevelopment-http://www.usgbc.org/sites/default/files/LEED%20v4%20ND_04.05.16_current.pdf55USGBC(2016),LEEDv4forNeighborhoodDevelopment-http://www.usgbc.org/sites/default/files/LEED%20v4%20ND_04.05.16_current.pdf56FAO.2011.Globalfoodlossesandfoodwaste–Extent,causesandprevention.Rome57DavidSedlak,Water4.0,YaleUniversityPress,201458Afablab(fabricationlaboratory)isasmall-scaleworkshopoffering(personal)digitalfabrication.Afablabistypicallyequippedwithanarrayofflexiblecomputer-controlledtoolsthatcoverseveraldifferentlengthscalesandvariousmaterials,withtheaimtomake,orrepair,“almostanything”.Thisincludestechnology-enabledproductsgenerallyperceivedaslimitedtomassproduction.59MovementoftheRepairCafèathttps://repaircafe.org/en/60BabaResidenceprogramathttps://ideasfactorybg.org/en/baba-residence/61HeartFoundation(2017),HealthyActivebyDesign-http://www.healthyactivebydesign.com.au-Accessedon30Jan2017http://www.eng.mcmaster.ca/civil/sustain/designparam/dparameters2.htm62WHO(2016).Ambient(outdoor)airqualityandhealth.Retrievedfromhttp://www.who.int/mediacentre/factsheets/fs313/en/63Giles-CortiB.etal.(2016).Cityplanningandpopulationhealth:aglobalchallenge,www.thelancet.comVol388December10,201664Ibid65ActiveDesignGuidelinesPromotingPhysicalActivityandHealthinDesign(2010),CityofNewYork-https://centerforactivedesign.org/dl/guidelines.pdf66UN-Habitat(2013).ANewStrategyofSustainableNeighbourhoodPlanning:FivePrinciples–UrbanPlanningDiscussionNote3-http://unhabitat.org/a-new-strategy-of-sustainable-neighbourhood-planning-five-principles/67SeePrinciple868AsJacquesMonod,theFrenchbiologist/philosopher,callsit69CityofStockholm,2007.HammarbySjöstad–auniqueenvironmentalprojectinStockholmhttp://carbonn.org/uploads/tx_carbonndata/HS-en_unik_engelska11.pdf-accessed12.04.201970https://inhabitat.com/utopian-off-grid-village-grows-own-food-in-shared-local-eco-system/71M.Robert,S.Zarzah,TheReGenVillage,InstitutUniversitairedeTechnologie;Marseille,2018-https://iut.univ-amu.fr/sites/iut.univ-amu.fr/files/marine_robert_-sonia_zarzah_2017.pdf72Chinagreenbuildings.n.d.,http://chinagreenbuildings.blogspot.it/2009/02/ecoblocks.html;TheEcoBlock.2008.ChinaSustainableNeighborhoodProjecthttp://www.raia.com.au/i-cms_file?page=13538/nicole-avril-ecoblock-qingdao-presentation.pdf73TheDevelopmentofRenewableEnergyinGüssinganditsramifications-http://lgddlawarmii.pl/data/documents/Rozwoj-Energii-Odnawialnej-w-Gussing.pdf74GreenhouseGasProtocol(2014),GlobalProtocolforCommunity-ScaleGreenhouseGasEmissionInventories75SourceFAO–http://www.fao.org/resources/infographics/infographics-details/en/c/411348/76Sources:WeatherSpark,https://weatherspark.com/y/138468/Average-Weather-in-Zhoushan-China-Year-Round;Meteoblue,https://www.meteoblue.com/en/weather/forecast/modelclimate/zhoushan_china_188676277IEA2018,TheFutureofCooling78Windfinder.com79UN-Habitat(2014),SustainableBuildingDesignforTropicalClimates.Retrievedfromhttps://unhabitat.org/books/sustainable-building-design-for-tropical-climates/80(Adaptedfrom:WEDC2010)81https://www.toutiao.com/i6420690428655305218/154Villageplanninganddesignmethodology:XiebeiVillage82(adaptedfrom:UNEP,CommonCarbonMetric-formeasuringEnergyUse&reportingGreenhouseGasEmissionsfrombuildingoperations,http://www.unep.org/sbci/pdfs/UNEPSBCICarbonMetric.pdf)83Retrievedfromwww.china-qiche.com84STCSM.(2011)85ChongmingIslandMasterPlan.86Small-scalesteel,machinery,chemicalfertilizer,coal,andcementindustries-permittedtooperateinruralareasoftheYangtzeRiverDeltaRegionbeginninginthe1970s.87TheWorldBank.(2018).Retrievedfromhttps://data.worldbank.org/indicator/SP.RUR.TOTL.ZS?locations=CN88TheWorldBank.(2018).Retrievedfromhttps://data.worldbank.org/indicator/SP.RUR.TOTL.ZS?locations=CN89MarkPreen.(2018).China’sCityClusters:ThePlantoDevelop19Super-regions.Retrievedfromhttps://www.china-briefing.com/news/chinas-city-clusters-plan-to-transform-into-19-super-regions/90MarkPreen.(2018).China’sCityClusters:ThePlantoDevelop19Super-regions.Retrievedfromhttps://www.china-briefing.com/news/chinas-city-clusters-plan-to-transform-into-19-super-regions/91Policychangeatthenationallevelwouldlikelyneedtogranturbanresidentstherighttoleaselandinagriculturalareasinordertofacilitatethismove.StephenPGroff,StefanRau.(2018).CityclusterscansucceedinChina.Retrievedfromhttps://www.telegraph.co.uk/china-watch/society/urban-planning/92SongG.Explorationofdevelopingmoedinurbancoreandsurroundings(2019)NanjingDaily93Estimatedbasedonasumofthecurrentpopulation,533,and90plannednewresidentialunitswith2-3(averageof2.5)peopleperunit.94ChongmingIslandMasterPlan.95StatisticYearbook1990-2015,MinistryofHousingandUrban-RuralDevelopmentofPeople’sRepublicofChina,96Ibid97Ibid