ZEROEMISSIONBUILDINGSINCHINAASino-SwissCollaborationforClimateResponsiveBuildingandDistrictDevelopment中国零碳建筑中瑞合作促进有利气候保护的建筑和社区发展TheSwissdecarbonizationroadmapfor2050andrelatedpoliciesforthebuildingsector瑞士2050年脱碳路径及建筑行业的相关政策OilGasComparisonwithBusinessasusualGHGemissions:温室气体排放:天然气石油与常规情况下相比AprojectfinancedbyImplementedbyThegenerousinnercourtyardofLokstadtinWinterthur,Switzerlandwillcontainlushislandsofgreen.位于瑞士温特图尔的Lokstadt宽敞的内部庭院里有着郁郁葱葱的绿色岛屿©InaInvest/ImpleniaWeb:bit.ly/3xQ61oKordwz.date/fvPzVersion1.0TheSwissdecarbonizationroadmapfor2050andrelatedpoliciesforthebuildingsectorZurich,SwitzerlandAllrightsreserved©2022AprojectfinancedbytheSwissAgencyforDevelopmentandCooperation(SDC)andtheChineseMinistryofHousingandUrban-RuralDevelopment(MoHURD)andimplementedbyintepandSkat.LeadAuthorStefanKessler,GabrielleSiegrist(ItoIV)MatthiasSulzerandChristofKnoeri(V)ContributorsRolandStulz,DanielWyss,FengLu-PagenkopfDesignandLayout:intepandSkatFrontcoverphoto:DevelopmentofGHGemissionsbyenergysourceinservice-buildings(seep.16)Translation:intepChinaTeam版本1.0瑞士2050年脱碳路径及建筑行业的相关政策瑞士,苏黎世保留所有权利©2022本项目由瑞士发展与合作署(简称SDC,为瑞士联邦外交部下属机构)与中华人民共和国住房和城乡建设部资助,由intep和Skat联合团队共同实施主编StefanKessler,GabrielleSiegrist(ItoIV)MatthiasSulzerandChristofKnoeri(V)联合编辑RolandStulz,DanielWyss,路枫版面设计和排版:intep和skat封面照片:服务类建筑中与能耗相关温室气体排放的发展状况(见第16页)中文翻译:茵态中国团队Page1of6601TheSwissnationalroadmaptodecarbonizethebuildingsectorby2050“EnergyStrategy2050”forSwitzerlandFollowingthereactormeltdowninFukushimain2011,theSwissFederalCouncilandParliamentdecidedtophaseoutSwitzerland'suseofnuclearenergy.Thisdecision,aswellasotherfar-reachingchangesintheinternationalenergyenvironment,requirearestructuringoftheSwissenergysystem.ThemilestonesoftheprocesstowardstheEnergyStrategy20501were:•March2011:AsaresultoftheFukushimadisaster,theFederalCouncilinstructstheFederalDepartmentoftheEnvironment,Transport,EnergyandCommunications(DETEC)toreviewtheexistingenergystrategy2007andupdatetheexistingEnergyPerspectives2035.•2012:AdoptionofafirstpackageofmeasuresfortheEnergyStrategy2050whichaimsto1Source:bit.ly/3VnFAB0increaseenergyefficiencyandpromoterenewableenergies•2013:Adoptionoftheactionplan"CoordinatedEnergyResearchSwitzerland",afirstroundofadjustmentstoEnergyActisdecidedandproposalsforfurtherrevisionoftheenergyactarecirculated•2014-2016:TechnicalworkandparliamentaryprocessforintegralrevisionoftheEnergyAct•2017:AcceptanceofrevisedEnergyActthroughapublicvote•2018-2022:UpdatingoftheoutdatedEnergyPerspectives2035•2022:PublicationoftheDocumentationonEnergyPerspectives2050+2,analysingdifferentscenariosforanenergysystemthatiscompatiblewiththelong-termclimategoalofnet-zerogreenhousegasemissionsby2050and,atthesametime,ensuresasecureenergysupply.2Source:bit.ly/3gBq45PPage2of66一瑞士2050年建筑行业脱碳国家路线图瑞士的“2050年能源战略”2011年福岛反应堆熔毁后,瑞士联邦委员会和议会决定逐步取消瑞士的核能使用。这一决定以及国际能源环境中其他意义深远的变化,将导致需要对瑞士能源系统进行重建。瑞士迈向“2050年能源战略”3的里程碑如下:•2011年3月:由于福岛核事故,联邦委员会指示联邦环境、运输、能源和通信部(DETEC)审查已有的2007年能源战略,并更新已有的2035年能源展望•2012:通过《2050年能源战略》的第一套措施,旨在提高能源效率和促进可再生能源的发展3来源:dwz.date/fvP2•2013:通过"瑞士协调能源研究"行动计划,决定对能源法进行第一轮调整,并分发进一步修订能源法的提案•2014-2016:对能源法进行整体修订的技术工作和议会程序•2017:修订后的能源法通过了公投程序•2018-2022:更新原有的2035年能源展望•2022:出版《2050+能源展望》4,分析能源系统的不同发展情景,确保其与2050年温室气体净零排放的长期气候目标相一致,同时确保安全的能源供应4来源:dwz.date/fvP3Page3of66ThecoreelementsoftheEnergyStrategy2050areasfollows:•Phasingoutnuclearenergy•Actionplan"CoordinatedEnergyResearchSwitzerland"-SwissCompetenceCentersforEnergyResearch•Innovationpromotion:oPromotionofpilot,demonstration,andlighthouseprojectsbytheSwissFederalOfficeforEnergy(SFOE).oSupportformarketintroductionofinnovativetechnologiesthroughtheactionprogramSwissEnergyoCompetitivetenderingforenergyefficientuseofelectricity.•Parliamentaryinitiative12.400oIncreaseofgridsurchargeforpromotionofrenewableenergiesto1.5Rp./kWhoPartialtofullreimbursementofgridsurchargeforelectricity-intensivecompaniesoRegulationofself-consumptionofPhotovoltaicon-siteelectricityproduction,providingtherighttouseon-siteproducedelectricityforself-consumptionwithoutattractinggridcharges.•Newenergylaw:oMeasurestoincreaseenergyefficiencyBuildingsMobilityIndustryAppliancesoMeasurestoexpandrenewableenergy:SubsidyschemeforpromotionofPVsystemsandreplacementoffossilheatingsystemImprovementoflegalframework,e.g.providingleanerandfasterapprovalprocessesoNuclearphase-out:NorenewalofgenerallicensesGradualphase-outofexistingnuclearpowerplantswithsafetyassolecriterionfortheshutdown-dateoMeasurestoadapttheelectricitygridstocaterformorerenewablepowerproduction.Image:DinaTschumi.KonsortiumPrognosAG,TEPEnergyGmbH,InfrasAG,EcoplanAG;图片出处:DinaTschumi.KonsortiumPrognosAG,TEPEnergyGmbH,InfrasAG,EcoplanAG;©BFEenergyperspectives2050+:bit.ly/3kF2oMtordwz.date/fvP3在垃圾焚烧推广碳捕捉和储存(每年3.6百万吨二氧化碳)径流站点制氢(7拍焦)150万套热泵(现今30万套)风能、地热能发电潜力生物质能用于工艺热能扩大城市热网在水泥和化工厂推广碳捕捉和储存(每年2.9百万吨二氧化碳)低供暖需求、隔热良好的建筑34太瓦时来自于光伏系统,电力生产的40%(现今2太瓦时)工业生产更高效45太瓦时水电(电力生产的53%)360万辆电动汽车负排放技术:碳储存(每年3百万吨二氧化碳)重型运输使用铁路、生物能和氢能Page4of662050年能源战略的核心内容如下:•逐步淘汰核能•行动计划"协调瑞士能源研究"-瑞士能源研究能力中心•促进创新:o由瑞士联邦能源办公室(SFOE)推动试点、示范和灯塔项目o通过行动方案支持创新技术的市场引进o启动能源瑞士计划o为电能的高效利用开展招标竞赛•议会倡议12.400:o为促进可再生能源而将电网附加费提高到1.5生丁/千瓦时o为电力密集型公司减免电网附加费•规范光伏现场发电自用,允许现场发电自用并免收电网费用•新能源法:o引入措施提高以下领域能源效率建筑交通工业设备o扩大可再生能源的措施:推广光伏系统和替换化石能源供暖系统的补贴方案改善法律框架,例如提供更精简和更快速的审批程序o淘汰核电:不得延长一般许可证逐步淘汰现有的核电站,将安全作为关闭日期的唯一标准o采取措施调整电网,以提升可再生能源的消纳能力Image:DinaTschumi.KonsortiumPrognosAG,TEPEnergyGmbH,InfrasAG,EcoplanAG;图片出处:DinaTschumi.KonsortiumPrognosAG,TEPEnergyGmbH,InfrasAG,EcoplanAG;©BFEenergyperspectives2050+:bit.ly/3kF2oMtordwz.date/fvP3能源展望2050+Page5of66Long-termscenario“EnergyPerspectives2050+”BackgroundTheEnergyPerspectivesrepresentacentralquantitativebasisfortheenergypolicyinSwitzerlandsincethe1970ies.Theyhavebeencompletelyupdatedin2007andadaptedandexpandedin2012fortheSwissEnergyStrategy20505.In2020themostcurrentEnergyPerspectives2050+(EP2050+)werepublished,usingthelatestframeworkdataandtechnologydevelopments.TheEnergyPerspectives2050+analyzewithdifferentscenarios(“ZERO”)howtodevelopanenergysystemthatisononehandcompatiblewithnet-zerogreenhousegasemissionsby2050andontheotherhand,ensureasecureenergysupply.Thescenariosarenotprophecies,buttheyshowconsistentpossibilitiesofhowtheenergysystem–i.e.energydemandandsupply–coulddevelopunderplausibleconditionsthatareassumedtobeprobabletoday.Thenet-zeroscenariosdifferintheircombinationoftechnologiesandthespeedoftherenewableenergytransitionintheelectricitysector.However,thevariantsofthenet-zeroscenariosdonotfundamentallydifferintheassumptionsappliedforthetechnologytypesandefficiencymeasures.TheEnergyPerspectives2050+focusonthescenario“ZEROBasis”asthekeyvariant6.WhiletheEP2050+coverallsectorsrelevantfortheenergydomain,ourreportfocusesonthebuildingsectorcontainingbuildingsofprivatehouseholdsaswellastheservicesector.WelookatthemaindriversreducingenergyconsumptionandgreenhousegasemissionsinbuildingsaccordingtotheEP2050+includingspaceheating/cooling,warmwaterheatingaswellasinstallationssuchasventilationsystems,lightingorairconditioning.Moreover,asintheEP2050+itself,wemainlyfocusonthe“ZEROBasis”7scenarioforsummarizingthemainresultsoftheEnergyPerspectives2050+forthebuildingsector.5ThethreemainpillarsoftheSwissEnergyStrategy2050consistofanuclearphase-out(followingtheFukushimareactoraccidentin2011),theexpansionofrenewableenergiesandtheincreaseofenergyefficiency.6Differencesofothernet-zeroscenariosincomparisontoZEROBasis:-ScenarioZEROA:moreelectrification,wellthermalnetworks-ScenarioZEROB:lesselectrificationandmorerelevantroleofgas(biogasandelectricity-basedmethane-ScenarioZEROC:lesselectrification,higherimportanceofthermalnetworks,restwithelectricity-basedfuels7TheZEROBasisvariantscenariodevelopstoday'sforeseeabletrendsintechnologicaldevelopmentfurtherintothefuture.Itassumesahighandasearlyaspossibleincreaseinenergyefficiencyandasignificantelectrification.Heatgridsaregainingimportanceinurbanareas.Syntheticfuelsandhydrogenplayasubordinaterole.CarboncaptureandstorageisusedinwasteincinerationplantsandcementproductiontoreducefossilCO2emissions.RemainingGHGemissionsareoffsetbysinksorbynegativeemissiontechnologies,whichremoveCO2fromtheatmosphereandstoringit,therebygeneratingon-balancenegativeCO2emissions.ThisincludestechnicalremovalmethodssuchasthecaptureandstorageofCO2fromtheatmosphereorbiomassCCS,butalsonaturalremovalmethodssuchastheafforestationofforests.Page6of66长期愿景"能源展望2050+"背景自1970年以来,能源展望是瑞士能源政策的核心量化基础。2007年对其进行了全面更新,并在2012年对《2050年瑞士能源战略》8进行了调整和扩展。2020年,采用了最新框架数据和技术发展的最新能源展望2050+(EP2050+)发布。能源展望2050+通过不同的规划情景("零")分析了如何开发一个能源系统,一方面与2050年的温室气体净零排放相适应,另一方面确保安全的能源供应。这些情景不是预言,但它们显示了能源系统——即能源需求和供应——在今天可能出现的合理框架下未来发展的一致可能性。8瑞士能源战略2050的三大支柱包括逐步淘汰核能(继2011年福岛反应堆事故之后),扩大可再生能源和提高能源效率。9其他净零情景与零基区别:-净零情景A:更高的电气化水平,良好的供热网络-净零情景B:电气化水平降低,天然气(沼气和基于电力的甲烷)角色变得更加重要-净零情景C:电气化水平降低,供热网络重要性提高,其余使用基于电力生产的燃料净零情景在电力部门的技术组合和可再生能源转型速度方面的假设有所不同。然而,在技术类型和能效措施的假设方面,不同路径的净零情景并没有根本的不同。能源展望2050+作为关键的路径,则重点关注"零基"方案9。虽然能源展望2050+涵盖了与能源领域相关的所有部门,但该报告侧重于建筑部门,包括居住建筑以及公共服务建筑。根据能源展望2050+,该报告研究了减少建筑能耗和温室气体排放的主要驱动因素,包括供暖(冷)、生活热水以及通风系统、照明或空调等设备安装。此外,与能源展望2050+本身一样,该报告主要关注"零基"10方案,以总结能源展望2050+在建筑领域的主要成果。10零基情景把可预期的当今技术发展趋势延伸到未来。它假设了尽早且尽可能高水平提高能效和电气化的重要性。热网将在城市领域变得越来越重要。合成燃料和氢气则起到辅助作用。碳捕获和储存措施在垃圾焚烧厂和水泥生产中的推广能减少化石燃料二氧化碳的排放。剩余的温室气体排放则通过碳汇和负排放技术来抵消,这些技术可以从大气中去除二氧化碳并将其储存,从而用来平衡二氧化碳排放。这包括了技术清除法,例如从大气中捕获和储存二氧化碳以及生物质CCS,也包括自然清除法,如植树造林。Page7of66RelevanceofthebuildingsectorinSwitzerlandBuildingsarehighlyrelevantintermsofenergydemandandgreenhousegasemissions:•Finalenergyconsumption:In2020,approximately45%ofthefinalenergyconsumptioninSwitzerlandtookplaceinthebuildingsector(includingspaceheating,warmwater,lighting,buildingservices,ventilationetc.).Onlyconsideringspaceheating–thelargestenergyconsumerinbuildings–thefinalenergydemandamountsto30%.•Greenhousegasemissions:Intermsofgreenhousegasemissionsthebuildingsectoraccountsfor1/3ofenergyrelatedemissionsrespectivelyfor1/4ofthetotalemissionsinSwitzerland.BackgroundaboutelectricityinSwitzerlandElectricityinSwitzerlandismainlygeneratedbyhydropowerandnuclearpower,andwithsmallproportionsalsowithrenewable(e.g.PV,wind)andfossilenergysources.Today’selectricitymixtureisthereforeconsiderednearlyfreefromgreenhousegasemissions.Accordingtotheenergystrategy2050ofSwitzerlandelectricityfromnuclearpowerplantswillfullybereplacedbyrenewableenergies,particularlyPV.Thus,alsothefutureelectricitymixwillbenearlyfreefromfossilenergysources.Nevertheless,itisstillcrucialtoreduceelectricitydemandasmuchaspossiblethroughefficiencymeasures,inordertosucceedinthetransformationfromfossilfuelstoelectrificationoftheenergysystem.MaindriversofreducinggreenhousegasemissionsinthebuildingsectorAccordingtotheenergyperspectives2050+thefollowingthreemainmeasureswillleadtoareductionofgreenhousegasemissionsuptonetzeroby2050inthebuildingsector:•Increaseofenergyefficiency(electricalappliances,installationsandbuildingenvelope)•Strongelectrificationoftheheatingsystemwithdecentralizedelectricheatpumps•ExpansionofthermalnetworksWhilethefirstmeasurecontributestoareductionofenergyconsumption,theothertwomeasuresincludetheuseofrenewableenergysourcesleadingtothedecarbonizationoftheHVACsystem.Figure1:BreakdownofCO2emissionsinSwitzerland图1:瑞士各部门的二氧化碳排放量明细表©GraphbyINFRAS.Source:BAFU2022EmissionenvonTreibhausgasennachCO2-GesetzundKyoto-Protokoll,2.Verpflichtungsperiode(2013–2020),Table8:bit.ly/3XuIPbKordwz.date/fvP424%32%25%20%BuildingsMobilityIndustryOther建筑交通工业其他Page8of66瑞士建筑行业的相关性建筑行业占总能源需求和温室气体排放的比例较高:•终端能源消耗:2020年,瑞士约45%的终端能源消耗发生在建筑行业(包括供暖、生活热水、照明、建筑服务、通风等)。仅供暖能耗(建筑中最大的能源消耗),就占了终端能源需求的30%。•温室气体排放:在温室气体排放方面,建筑行业占能源相关排放的1/3,占瑞士总排放量的1/4。瑞士电力的背景信息瑞士的电力主要来自于水电和核电,也有小部分来自于可再生能源(如光伏、风能)和化石能源。因此,今天的电力结构被认为几乎不存在温室气体排放。根据瑞士2050年的能源战略,来自核电站的电力将完全被可再生能源取代,尤其是光伏。因此,未来的电力结构也将几乎不含化石能源。然而,为了成功实现从化石燃料到能源系统电气化的转变,通过高能效的措施来尽可能地减少电力需求仍然是至关重要的。减少建筑行业温室气体排放的主要措施根据能源展望2050+,以下三项主要措施将使建筑行业的温室气体排放量在2050年前减少到净零。•提高能源效率(电器、装置和建筑围护结构)•利用分布式电热泵实现供暖系统的高度电气化•扩大热力网络第一项措施有助于减少能源消耗,其他两项措施包括使用可再生能源,进而实现暖通空调系统脱碳。“thethreemaindriversofreducinggreenhousegasemissionsinthebuildingsectorare:increaseofenergyefficiency,electrificationoftheheatingsystem,expansionofthermalnetworks.”“建筑领域三个减少温室气体排放的驱动器是:提高能效,供热系统电气化,扩大热网。“右图:瑞士温特图尔住宅区的火箭楼是当前世界上规划的最高的木结构住宅楼。©InaInvest/ImpleniaWeb:bit.ly/3xQ61oKordwz.date/fvPzPage9of66Energyefficiency:ReductionofenergyconsumptionSpaceheatingaccountsforapproximately30%ofthefinalenergyconsumptionofSwitzerlandandforabout70%oftheenergyconsumptioninbuildings.Infuture,thespaceheatingconsumptionwillbereducedduetodifferentmeasuresconsistingofenergy-savingrenovationsofexistingbuildings,replacementofoldbuildingstonewones,constructionofnewbuildingswithhighenergyefficiencyandlastbutnotleastmoreefficientheatingsystems.Thedevelopmentofefficiencyofbuildingenvelopesisthusmainlydeterminedby:•ratesofenergy-savingrenovationsofexistingbuildings•qualityofenergy-savingrenovationsofexistingbuildings•standardsofnewbuildingsToday,therenovationratesrangefrom0.8-1%peryear.TheEP2050+assumethattheywillin-creaseinfuture,reachingapeakofabout1.3%in2040andsteadilydecreasingagaintobelow1%.Limitingfactorsforasharpscalingupofrenovationratesaretheamountofinvestmentrequired,thenaturalinvestmentcycles(avoidanceofstrandedinvestments)andthelimitedavailabilityofskilledworkforce.Ontheotherside,technologicalandeconomicprogressisexpectedforthebuildingandinsulationmaterialsleadingtoahigherrenovationquality.Therefore,thethermalconductivityoftheusedbuildingcomponentsisreducedbytime(U-values=Heattransfercoefficient)andthus,theenergyconsumptionofrenovatedbuildingsdecreases(Figure2a).Forexample,thermalinsulationmaterialswithcurrentU-valuesof0.35-0.4W/m2Kareexpectedtobeimprovedinfuturetoabout0.1-0.05W/m2K.Windowglazing(today’sU-valuesmostlyaround1W/m2K)willmoreandmorereachU-valuesof0.5W/m2Kthankstotripleglazingwithcoatedglassesandinertgasfilling.TheenergystandardsappliedintheEP2050+forrenovatedandnewbuildingsarederivedfromtheMuKEn2014.FornewbuildingsthestandardsarebasedonthenormSIA380/1.AccordingtotheMuKEn2014thelimitfortheheatingrequirementofrenovationsisabout50%higherthantherequirementsfornewbuildings.Figure2bshowstheexpecteddevelopmentofspecificheatingrequirementafterfullrenovation11andofnewlyconstructedresidentialbuildings.Fortheaveragespecificspaceheatconsumptionofbuildingstockofservicesectorbuildingsasimilardynamicisexpected,butatalowerconsumptionlevelifcomparedtoresidentialbuildings.Moreover,inSwitzerlandspace-heatingdemandwillbereducedduetofewerheatingdegreedayscausedbyclimatechange.InhotclimateregionssuchasChinabutalsoinSwitzerland,thiswillresultinincreasingcoolingdemand.11Fromatechnicalpointofview,itwouldbepossibletoachievelowerconsumptionvaluesthanthoseshowninFigures2aand2b.However,thiswouldresultinhighermaterialinvestmentcosts.Figure2a:Evolutionofspecificheatingdemandofresidentialbuildings(ScenarioZEROBasis)–fullrenovation;ValuesareinkWhpersquaremeterofenergyreferencearea(EBF)/图2a:住宅建筑单位面积供暖需求的演变(零基情景)-全面翻新;单位为每平方米(用能面积)千瓦时©PrognosAG,TEPEnergyGmbH,INFRASAG.Source:BFEenergyperspectives2050+:bit.ly/3kF2oMtordwz.date/fvP3Fullrenovation全面翻新MultipleFamilyHomes多户住宅SingleFamilyHomes单户住宅Page10of66能源效率:降低能耗建筑供暖约占瑞士终端能源消耗的30%,约占建筑能源消耗的70%。未来,由于采取不同的措施,包括对现有建筑进行节能改造,建造高能效的新建筑以及安装高能效的供暖系统等,供暖能耗将会降低。因此,建筑围护结构效率的发展主要取决于:•既有建筑的节能改造率•既有建筑节能改造的质量•新建建筑的标准如今,瑞士每年的建筑翻新率在0.8-1%之间。能源展望2050+假设未来这个数值将会增加,并在2040年达到约1.3%的峰值,然后再稳步下降到1%以下。限制翻新率大幅扩大的因素包括所需的投资额、自然投资周期(避免搁浅的投资)和熟练技术工人数量的不足。此外,建造和绝热材料的技术和经济性能的提高预计将促进建筑达到更高的翻新质量。因此,所使用的建筑构件的传热系数(U值)随时间的变化会逐步降低,从而降低翻新建筑的能耗(图2a)。目前U值为0.35-0.4W/m2K的保温材料,未来有望提高到约0.1-0.05W/m2K。窗户玻璃(今天的U值大多在1W/m2K左右)将会越来越多地达到0.5W/m2K,这得益于带涂层玻璃和惰性气体填充的三层玻璃的推广。能源展望2050+中用于翻新和新建建筑的能源标准源自MuKEn2014。对新建筑的标准则基于SIA380/1规范。根据MuKEn2014的规定,对翻新建筑供暖要求的限值比新建筑的要求高50%左右。图2b显示了全面翻新后的建筑12和新建住宅建筑单位面积供热需求的预期发展情况。公共服务建筑的单位面积供暖能耗,预计会有类似的发展趋势,但如果与住宅建筑相比,其能耗水平则较低。此外,在瑞士,由于气候变化导致的采暖度日数减少,供暖需求也将降低。但在中国和瑞士的炎热气候区,气候变化将导致未来供冷需求的增加。12从技术角度来看,可以实现比图2a和2b所示更低的消耗值。然而,这将导致更高的材料投资成本。MultipleFamilyHomes多户住宅SingleFamilyHomes单户住宅NewConstruction新建筑Figure2b:Evolutionofspecificheatingdemandofresidentialbuildings(ScenarioZEROBasis)–newconstructions;ValuesareinkWhpersquaremeterofenergyreferencearea(EBF)/图2b:住宅建筑单位面积供暖需求的演变(零基情景)-新建筑;单位为每平方米(用能面积)千瓦时©PrognosAG,TEPEnergyGmbH,INFRASAG.Source:BFEenergyperspectives2050+:bit.ly/3kF2oMtordwz.date/fvP3Page11of66Overall,theenergyconsumptionforspaceheatinginbuildingswilldecreaseovertime(intotalandpercapita).Besidesspaceheating,buildingscontainotherenergyconsumers:•Warmwater:Energyfortheheatingofwaterisexpectedtodecreasebyabout10%until2050.Inmostbuildingswarmwaterwillbeprovidedoverthecentralheatingsystembecomingmoreefficientwiththeincreaseduseofheatpumps.Furthermore,watersavinginstallationswillmoreoftenbeapplied.•Lighting:Energyforlightingisexpectedtodecreaseby70%until2050thankstoincreasedefficiencyandinstallationofLED.•Airconditioning,ventilationandbuildingservices:Whileventilationandbuildingservicesgetmoreefficient,thedemandforcoolinginsummerwillincrease.Thenumberofventilationsystemswillincreasewhichwillbecompensatedbytechnicaldevelopmentandincreasedshareofheatrecovery.Overall,thisleadstoasmallreductionofenergyconsumptionuntil2050.Decarbonizationoftheheatingsystem:HeatpumpsandthermalnetworksBesidestheefficiencyofabuildingenvelope,thedecarbonizationoftheheatingsystemisakeyareafortransformingthebuildingsectortowardsnetzerogreenhousegasemissions.AccordingtotheEP2050+themostrelevanttechnologiescompriseofheatpumpsaswellasthermalnetworks.Theheatingstructureofthebuildingstockarisesfrominstalledheatingsystemsinnewbuildingsandfromheatingreplacementsinexistingbuildings.In2017about80%and10%ofthein-stalledheatingsystemsinnewresidentialbuildingswereheatpumpsandthermalnetworks,respectively.AccordingtothescenarioZEROBasisgasandoilheatingsystemsarenolongerin-stalledinnewresidentialbuildingsafter2025.Infuture,newlyinstalledheatingsystemswillal-mostonlyconsistofheatpumps(about70%)andthermalnetworks(about30%)(Figure3).Alsofortheheatingreplacementsinexistingresidentialbuildingsheatpumpsandthermalnetworkswillbecomethemostimportanttechnologies.Moreover,asmallproportionofsolarheatwillbeusedascomplementarymeasuretootherheatingsystemsandespeciallyfortheheatingofwarmwater.Whileoilheatingsystemswillnotbereplacedbyoilanymorefrom2025-2030on,onetoonereplacementsofgasheatingsystemswillgraduallydecrease,reachingbelow5%after2040.Intheremaininggasheatingsystemsbiogaswillbeused.Asthebuildingsectorrequiresrelativelylowtemperaturescomparedtotheindustrysector,woodwillmainlybeappliedtoproduceprocessheatinindustry.Forsomebuildingsthatcannotbeconnectedtothermalnetworks(e.g.duetoinsulationrestrictions)heatingwithwoodwillalsobeusedinthelong-term.“(…)thedecarbonizationoftheheatingsystemisakeyareafortransformingthebuildingsectortowardsnetzerogreenhousegasemissions.”“(…)供热系统脱碳是建筑行业走向净零温室气体排放的关键点”Ontheleft:theinterioroftheinnovativewoodenconstructionoftheRockettower.左图:瑞士温特图尔市火箭楼的室内创新木构造©InaInvest/ImpleniaWeb:bit.ly/3xQ61oKordwz.date/fvPzPage12of66总的来说,建筑供暖的能源消耗(总量和人均)将随着时间的推移而减少。除了供暖,建筑还有其他能源消耗:•热水:到2050年,用于生产热水的能源消耗预计将减少约10%。在大多数建筑中,热水将通过中央供暖系统提供,而随着热泵使用的增加,效率会越来越高。此外,更多的节水装置也将被使用。•照明:由于LED灯具广泛的应用和效率的提高和安装,照明的能源消耗预计在2050年前预计将减少70%。•空调、通风和建筑服务:虽然通风效率和建筑服务变得更加高效,但夏季的制冷需求将会增加。技术的和热回收比例的增加可以抵消通风系统数量增加导致的能耗变化。总的来说,这将导致2050年之前能源消耗的小幅下降。供暖系统的去碳化:热泵和热网除了建筑围护结构的效率外,供热系统的脱碳也是建筑行业向温室气体净零排放转变的一个关键领域。根据能源展望2050+,最相关的技术包括热泵和热网。建筑行业的供暖体系意味着在新建筑中安装供暖系统和更换既有建筑的供暖系统。2017年,新建住宅建筑中安装的供暖系统中,约80%和10%分别来自于热泵和热网。根据"零基"方案,2025年后,新建住宅建筑将不再安装天然气和燃油供暖系统。未来,新安装的供暖系统几乎只包括热泵(约70%)和热网(约30%)(图3)。同时,对于既有住宅建筑供暖系统的替换,热泵和热网也将成为最重要的技术。此外,一小部分太阳能供热将作为其他供热系统的补充措施,特别是用于提供热水。从2025-2030年开始,燃油供暖系统将禁止一对一替换,且天然气供暖系统的一对一替换也将逐渐减少,2040年后将达到5%以下。剩余的燃气供暖系统将使用沼气。建筑部门与工业部门相比需要相对较低的供热温度,木材将主要被用于工业生产过程。对于一些不能连接到热力网络的建筑(例如受保温的限制),将长期使用木材进行供暖。Figure3:ShareofheatingsystemsinnewlybuiltMultipleFamilyHomes(ScenarioZEROBasis)图3:新建的多户家庭住宅中供暖系统的比例(零基情景)©PrognosAG,TEPEnergyGmbH,INFRASAG.Source:BFEenergyperspectives2050+:bit.ly/3kF2oMtordwz.date/fvP3OilGasWoodHeatpumpsElectricityThermalnetworks石油天然气木材热泵电力热网Page13of66Figure4a:Developmentofspaceheatingconsumptionbyenergysourceinservicebuildings(ScenarioZEROBasis);EnvironmentalheatandElectricityareusedinheatpumps/图4a:公共服务类建筑用于供暖的不同能源类型的发展趋势(零基情景);用于热泵的环境能和电力©PrognosAG,TEPEnergyGmbH,INFRASAG.Source:BFEenergyperspectives2050+:bit.ly/3kF2oMtordwz.date/fvP3Withanannualrateofabout1.3%oftheexistingfloorareatheshareofnewresidentialbuildingsislowinrelationtothetotalstock13.Incombinationwiththeassumedlifetimeof25yearsforgasandoilheatingsystemstheheatingstructureforthebuildingstockisonlychangingslowly(Figure4a).Thecombinationofefficiencymeasures(reductionofheatenergyconsumption)anddecarbonizationoftheheatingsystemleadstothegreenhousegasemissionreductionpathwaytonearlyzeroby2050inresidentialbuildings(Figure4b).SpecificinformationandcomparisonwithservicebuildingsThetrendsdescribedforresidentialbuildingsapplyforservicebuildingsaswell.Thesetrendsbasicallycontain:•Decarbonizationofheatingsystem:analogoustoresidentialbuildingsthekey13In2017newbuildingscomprised1.3%ofthebuildingstock.Inthelong-termtheproportionwillbecomesmaller(below1%).technologiesusedfortheheatingofservicebuildingswillbeheatpumpsandthermalnetworks.However,forservicebuildingsthermalnetworks,woodbiomassandgas/biogasheatingsystemsareofrelativelyhigherimportancethanforresidentialbuildings(Figure4a).•Improvedbuildingefficiency:likeinresidentialbuildings,therenovationofservicebuildingswillleadtoalowerheatingdemand.However,therenovationratesandreplacementsofservicebuildingsareexpectedtocontinuetobehigherthaninresidentialbuildings.Moreover,thewidespreaduseofventilationsystemsincreasestheenergyefficiencyofheating.Bothfactorsareleadingtoastrongerreductionofheatenergydemand.AccordingtotheEP2050+thespecificheatdemandinservicebuildingswillbehalvedby2050(Figure5).Energyconsumption:EnvironmentalheatElectricityThermalnetworksSolarheatingpgggOilproductsGasBiomass(e.g.wood)Biogas,sewagegaspggg能源消耗沼气热网石油产品环境热天然气太阳能木材电力Page14of66GHG=greenhousegases温室气体Figure4b:DevelopmentofGHGemissionsbyenergysourceinservicebuildings(ScenarioZEROBasis)图4b:公共服务类建筑不同能源类型温室气体排放的发展趋势(零基情形)©PrognosAG,TEPEnergyGmbH,INFRASAG.Source:BFEenergyperspectives2050+:bit.ly/3kF2oMtordwz.date/fvP3新建住宅楼的年增长率约为既有建筑面积的1.3%,相对于总的建筑存量来说比例是很低的14。假定燃气和燃油供热系统的使用周期为25年,既有建筑存量的供热结构只会缓慢变化(图4a)。如果将高能效改造措施(减少热能消耗)和供热系统的脱碳相结合,到2050年可使住宅建筑的温室气体排放达到几乎为零(图4b)。具体信息和与公共服务类建筑的比较住宅建筑呈现的趋势也适用于公共服务类建筑。这些趋势大体包括:142017年新建建筑占建筑存量的1.3%。长远来看这个占比会减小(低于1%)。•供暖系统的脱碳:与住宅建筑类似,公共服务建筑供暖的关键技术将是热泵和热网。然而,对于公共服务类建筑来说,热网、基于木材的生物质燃料和燃气/沼气供热系统的重要性相对高于住宅建筑(图4a)。•提高建筑效率:与住宅建筑一样,公共服务建筑的改造将促进供暖需求降低,且公共服务类建筑的翻新率和替代率预计将持续高于住宅建筑。此外,通风系统的广泛使用提高了供暖的能源效率。这两个因素OilGasComparisonwithBusinessasusualGHGemissions:温室气体排放天然气石油制品与正常情况下的比较都将导致了用于供暖的能源需求的大幅下降。根据能源展望2050+,到2050年,公共服务类建筑的供暖需求将减少一半(图5)。Page15of66DecentralizedelectricheatpumpsAlreadyfrom2025ondecentralizedheatpumps(air/water,brine/water,andgroundwater)willbecomethemostimportantheatingsystemtoproducespaceheatinbuildings.Thenumberofinstalledheatpumpswillincreasebyafactoroffivefromtodayto2050.Furthermore,theheatefficiencyofheatpumpswillincreasebytimeduetohighersourcetemperatures(e.g.regenerationofgeothermalprobes),lowersupplytemperaturesneededinnewandrenovatedbuildingsaswellasimprovedpowersystemefficiencyoftheheatpumpitself.Dependingontheenergysourceused,theheatefficiencyofheatpumpsisexpectedtoincreasefromabout2.8–4(in2020)to3.5–6(in2050).ThermalnetworksforheatingandcoolingatdistrictlevelThermalnetworksthatuserenewableenergysourcesandprovideheating(andcooling)tobuildingsarealsoakeytechnologyforacomprehensivegreenhousegasreductioninthebuildingsector.Especiallyindensesettlementareastheywillplayasignificantrole,asbuildingstherecanoftenonlybesuppliedwithrenewableenergiesbymeansofthermalnetworks.Thermalnetworksareparticularlyimportantforlargerapartmenthouses(coveringabout30%oftheheatingsystemsin2050comparedto10%insinglefamilyhouses)aswellasservicebuildings.AccordingtotheEP2050+thedemandfordistrictheatingsystemsinresidentialandservicebuildingswilldoublefrom2019to2050.Theenergysourcesusedinthermalnetworkstodaymainlyconsistofheatfromwastein-cinerationplants,industrialwasteheat,woodandgas.Infuture,largeheatpumps(mainlyuseofgroundwater,lakesandrivers),butalsogeothermalenergyandbiogaswillgainofimportanceforthegenerationofdistrictheating(Figure6).BusinessasusualSpecificheatdemand[kWh/m2]StatisticsZEROBasisFigure5:Evolutionofspecificheatingdemandofservicebuildings;valuesareinkWhpersquaremeterofenergyreferencearea图5:公共服务类建筑单位面积采暖需求的趋势图;单位为每平方米(用能面积)千瓦时©PrognosAG,TEPEnergyGmbH,INFRASAG.Source:BFEenergyperspectives2050+:bit.ly/3kF2oMtordwz.date/fvP3统计数据零基情景正常情况下Page16of66分散式电热泵从2025年开始,分散式热泵(空气源、水源、地源热泵)将成为建筑行业最重要的供暖系统。从今天到2050年,热泵的安装数量将增加五倍。此外,由于热源温度的提高(如地源热泵技术的革新),新建和翻新的建筑所需的供应温度降低,以及热泵本身电力系统效率的提高,热泵的效率将随着时间的推移而提高。根据热源的不同,热泵的热效率预计将从大约2.8-4(2020年)增加到3.5-6(2050年)。区域供暖及供冷管网使用可再生能源并为建筑供暖(冷)的热网也是使建筑全面减少温室气体排放的一项关键技术。特别是在人口密集的居住区,它们将发挥重要作用,因为那里的建筑往往只能通过热力网络来获得可再生能源的供应。热网对于大型公寓住宅(2050年覆盖约30%的供暖系统,而单户住宅为10%)以及公共服务类建筑尤为重要。根据能源展望2050+,从2019年到2050年,住宅和公共服务建筑对区域供暖系统的需求将增加一倍。目前,热网使用的能源主要来自垃圾焚烧厂的余热、工业废热、木材和天然气。未来,大型热泵(主要利用地下水、湖泊和河流),以及地热能和沼气将在区域供热中占有重要地位(图6)。others=nuclearenergy,wasteheat,otherrenewableenergies其他=核能、废热、其他可再生能源Figure6:Thermalnetworks:Developmentofenergysourcesusedinthermalnetworks(ScenarioZEROBasis)图6:热网:热网中不同能源供应量趋势图(零基方案)©PrognosAG,TEPEnergyGmbH,INFRASAG.Source:BFEenergyperspectives2050+:bit.ly/3kF2oMtordwz.date/fvP3垃圾焚烧厂地热能天然气WasteincinerationplantGeothermalenergyGasOthersBiomass(e.g.wood)Averagegrossproduction其他生物质(木材)平均总产值HeatpumpsBiogas热泵沼气Page17of66ConclusionfromtheEP2050+AccordingtotheEP2050+itispossibletoreachnearlynetzerogreenhousegasemissionsby2050inthebuildingsector.Allthenecessarytechnologiesarealreadyavailabletoday.ThebiggestchallengelieswithscalinguptheNET.Scalingupofthemarketsandresearchwillleadtotechnicalprogressandinnovation.Residualemissionscomefromfewremaininggasheatingsystems.TheEP2050+applyrobusttechnologies–i.e.mainlyheatpumpsandheatgrids–thatexistalreadyandwillbefurtherimprovedandbecomemoreefficient.Electricheatpumpsbecomethemostrelevantsystemforthegenerationofspaceheatinbuildings,whiledistrictheatingsystemsareanimportantsupplement,particularlyindenselybuilt-upareasandforlargerbuildings.Electricity-basedenergysources(e.g.power-to-gas)arenotappliedinthebuildingsector.Moreover,efficiencymeasuresinbuildingsplayacrucialrole.Theseconsistofincreasedenergyefficiencyforelectricaldevices,equipmentandbuildingenvelope.Overall,theenergyconsumptionandspaceheatinginbuildingswilldecreaseovertime(intotalandpercapita).Electricityconsumptionwillstayconstantintotalrespectivelyslightlydecreasepercapita(moreelectricityisneededfortheheatpumps,however,thisisnearlycompensatedwiththeincreasedefficiencyoftheheatingsystemsandthebuildingenvelope).Theprincipaltrendsofusedtechnologiesandefficiencyincreasealsoappliesforservicebuildings.Incontrasttoresidentialbuildings,servicebuildingswillusemorethermalnetworksandbiomassandtheefficiencyoftheirbuildingenvelopesareexpectedtoincreasefaster.“(…)itispossibletoreachnearlynetzerogreenhousegasemissionsby2050”“(…)2050年达到近净零温室气体排放是可能的”Ontheleft:thetimberstructureoftheRockettower.左图:瑞士温特图尔市火箭楼的木结构©InaInvest/ImpleniaWeb:bit.ly/3xQ61oKordwz.date/fvPzPage18of66结论根据能源展望2050+,到2050年,建筑行业的温室气体排放量有可能几乎净零。所有必要的技术如今都已经存在。最大的挑战在于扩大净零排放的规模。市场和研究的扩大将促进技术的进步和创新。剩余的排放将来自于少数的燃气供热系统。能源展望2050+应用了性能稳定的技术(主要是热泵和热网),其已经存在,并将进一步改进,变得更加高效。电热泵成为建筑供暖最普遍的系统,而区域供热系统是一个重要的补充,特别是对于高密度开发的区域和大型建筑。在能源展望2050+中,基于电力的能源(如电转气)并没有应用于建筑领域。此外,建筑的节能策略也发挥了关键作用。这些措施包括提高电气设备、暖通设备和建筑围护结构的能源效率。总的来说,建筑的能源消耗和空间供暖将随着时间的推移而减少(总量和人均)。电力消耗将保持不变,人均消耗将略有下降(热泵需要更多的电力,然而,这几乎被供暖系统和建筑围护结构的效率提高所补偿)。所用技术和效率提高的主要趋势也适用于公共服务类建筑。与住宅建筑相比,公共服务类建筑将使用更多的热力管网和生物质能,其建筑围护结构的效率预计将更快地提高。“(…)itispossibletoreachnearlynetzerogreenhousegasemissionsby2050”“(…)2050年达到近净零温室气体排放是可能的”Ontheright:decarbonizationpathway右图:脱碳路径©InaInvest/ImpleniaWeb:bit.ly/3xQ61oordwz.date/fwnYPage19of66BuildingrelatedkeyfeaturesoftheSwissCO2act2021In2020theSwissParliamentagreedonarevisedFederalActontheReductionofGreenhouseGasEmissions(hereafterCO2act)whichwouldhavestrengthenedtheSwissclimatepolicyandbroughtthepolicyinstrumentsinlinewiththeinternationalcommitmentsoftheParisAgreement.However,theactwasputunderapublicreferendumandwasrejectedbytheSwisselectorateinthepublicvoteon13June2021.AstheplannedelementsintheproposedactstillcanbeofinterestfortheChinesecounterparts,asummaryisgivenbelow.Thefocusisonthebuildingsectorrelatedinstruments.InstrumentDescriptionRelevanceforsectorMandatoryCO2limitsforbuildings(new)NewbuildingsmaynolongeremitCO2fromfossilfuels,whichisalreadystandardtoday.ExistingbuildingsareallowedtocontinuetoemitCO2unlesstheheatingsystemisreplaced.Inthiscaseanupperlimitof20kgofCO2emissionspersquaremeteroflivingspaceperyearhastoberespectedfrom.ThevalueisreducedbyfivekgofCO2infive-yearsteps.TheinstrumentincludesamandatoryupperlimitforCO2-emissionsofexistingbuildingswhichbecomeseffective,whenevertheheatingsystemisreplaced.Inwellinsulatedbuildingsorbuildingswithrenewablebasedheatingsystems,theupperlimitisanyhowrespected.Inallothercases,efficiencymeasuresorconversiontoarenewablebasedheatingsystemorconnectiontoadistrictheatingsystemisrequired.Ifmeasuressuchastheinstallationofaheatpumparerequiredforcompliance,theownerscanapplyforfinancialsupportfromtheclimatefund.NationalCO2tax(continuedandstrengthened)Since2008,thefederalgovernmentleviesaCO2taxonfossilfuelssuchasheatingoil,naturalgasandcoalinformofanincentivetax.Thosewhocauseanabove-averageamountofCO2paymore,othersless.WiththerevisedlawtheFederalCounselwouldhavebeenauthorizedtoraisethelevytoamaximumof210CHFpertonneofCO2(approx.0.5CHFperlitreofheatingoil,approx.0.042CHFperkWhofnaturalgas).However,anincreasefromtoday’staxlevelof120CHFpertonneonlyismadeifCO2emissionsdonotdecreasesufficiently.Twothirdsofthemoneyisbeingdistributedbacktothepopulationandtheeconomy.Therestflowsintotheclimatefundforfinancingclimatemitigationactions.Thelevymakesitfinanciallyworthwhileforbuildingownersandtenantstouselessheatingoilortoheatwithaheatpump,woodorsolarenergy.HouseholdsthatdonotheatwithoilornaturalgaspaynoCO2taxatall.Page20of662021年瑞士二氧化碳法案中与建筑相关的主要特点2020年,瑞士议会就修订后的《联邦减少温室气体排放法》(以下简称《二氧化碳法案》)达成一致,该法案将加强瑞士的气候政策,使政策工具与《巴黎协定》的国际承诺保持一致。然而,该法案在2021年6月13日的公众投票中被瑞士选民拒绝。由于拟议法案中的计划内容仍能引起中国同仁的兴趣,下文将重点对与建筑行业有关的工具进行总结。工具描述行业相关性对建筑采取强制性的二氧化碳排放限制(新)现有的标准是:新建建筑不得再因使用化石燃料而排放二氧化碳,而既有建筑则允许继续排放二氧化碳,除非更换了供暖系统。在这种情况下,也必须遵守每平方米每年20公斤二氧化碳的排放上限。该值将以每五年为时间单位,每次减少5公斤的二氧化碳排放。该文件包括对既有建筑二氧化碳排放的强制上限,只要其更换了供暖系统则即刻生效。对于隔热性能良好的建筑或采用可再生供暖系统的建筑,无论如何都要遵守该上限。在所有其他情况下,需要采取能效措施或转换为可再生的供热系统或连接到区域供热系统。如果需要安装热泵等措施,业主可以向气候基金申请资金支持。国家二氧化碳税法(继续并强化)自2008年以来,联邦政府以税收的形式对取暖燃油、天然气和煤炭等化石燃料征收二氧化碳税。超过平均二氧化碳排放量的人要支付更多的钱,而其他人则少付。根据修订后的法律,联邦委员会将被授权将征税额度提高到每吨二氧化碳最高210瑞士法郎(每升取暖燃油约0.5瑞士法郎,每千瓦时天然气约0.042瑞士法郎)。然而,只有在二氧化碳排放量没有充分减少的情况下,才会从现在每吨120瑞士法郎的税收基础上增加。三分之二的税收重新分配给人民和用于经济,其余的则分配给气候补贴,用于资助缓解气候变化的活动。征税使业主和租户减少使用燃油取暖,进而使用热泵、木材或太阳能取暖,这在经济性方面是有益的。不使用石油或天然气取暖的家庭基本上不需要支付二氧化碳税。Page21of66Climatefund(new,encompassingalsovariousexistinginstruments)Theproposedclimatefundpromotesclimate-friendlyinvestmentssuchasfinancingofdistrictheatingnetworksorchargingstationsforelectriccarsortheprocurementofelectricbuses.Inthecaseofbuildings,thefundwastosupportbuildingrefurbishmentforloweringenergyconsumptionandinstallationofCO2-freeheatingsystems.TheClimateFundensuredthecontinuationofthetriedandtestedfederalandcantonalbuildingsprogrammeandtheexistingtechnologyfund.TheSwissbuildingsprogrammeistodayamajordriverinthemarketforbuildingrefurbishmentandrenewableenergybasedretrofitofheatingsystems.Thesubsidygrantedistypicallybetween20to50%ofthetotalinvestmentcost.(www.dasgebaeudeprogramm.ch).Compensationobligationoffuelimporters(continuedandstrengthened)ImportersofpetrolanddieselmustoffsetpartoftheCO2emissionsoftheimportedfuelswithclimatemitigationmeasures.From2025,atleast20percentofCO2emissionsmustbeoffsetbyprojectsinSwitzerland.TherulesetfortheoffsetprojectsissimilartotherulesforprojectsundertheCleanDevelopmentMechanism(CDM)undertheMontrealProtocol.Therevisedlawsetsanupperlimitforthesurchargetoconsumerswhichwouldhavebeenraisedfrom0.05CHFperliterofpetrolordieseltodaytoamaximumof0.12CHFperliter.Inthebuildingsector,existingoffsetprojectsandprogrammesunderthecompensationobligationprovidefinancefore.g.replacementofexistingfossilfuelbasedheatingsystemwithrenewablebasedones,thesetuporextensionofdistrictheatingsystems,enduserefficiencymeasuressuchasefficientwatertaps,orintelligentcontrollersforheatingsystems.Thesubsidygrantedistypicallybetween20to60%ofthetotalinvestmentcost.Table1:InstrumentsofSwissCO2actrelatedtothebuildingsector(Status2021)©TableINFRAS.Source:INFRAS,basedoninformationfromBAFUWeb:bit.ly/3tSAh11Page22of66气候补贴(新,也包括各种现有的工具)拟议的气候补贴是为了促进气候友好型投资,如资助区域供热网络或电动汽车的充电站或采购电动巴士。就建筑而言,该补贴是为了支持建筑翻新以降低能源消耗和安装无二氧化碳排放的供热系统。气候补贴确保继续执行经过试验和测试的联邦和州层面的建筑项目,以及现有的技术型补贴。如今,瑞士的建筑项目已经成为市场上进行建筑翻新和实施基于可再生能源的供暖系统改造的主要驱动力。所提供的补贴通常为总投资成本的20%至50%。(www.dasgebaeudeprogramm.ch)燃料进口商的补偿义务(继续并强化)汽油和柴油的进口商必须用气候减缓措施抵消部分进口燃料引发的二氧化碳排放。从2025年起,至少有20%的二氧化碳排放必须由瑞士的项目来抵消。为抵消项目设定的规则与《蒙特利尔议定书》框架下的清洁发展机制(CDM)的项目规则类似。修订后的法律为消费者的附加费设定了上限,将从现在每升汽油或柴油0.05瑞士法郎提高到最高每升0.12瑞士法郎。在建筑部门,根据补偿义务为现有的抵消项目和方案提供资金,例如用可再生的供暖系统替换现有的化石能源供暖系统,建立或扩大区域供暖系统,提高终端用户的能源效率,如高效水龙头,供暖系统的智能控制等。给予的补贴通常在总投资成本的20-60%之间。表1:瑞士二氧化碳法案中与建筑行业相关的工具(2021年状况)©TableINFRAS.Source:INFRAS,basedoninformationfromBAFUWeb:dwz.date/fvP6Page23of6602TheSwisslegal,economic,educationalandinformationinstrumentsfortheimplementationoftheenergystrategyinthebuildingsectorNationallevelLegalThenationallevelisoflesserimportanceregardinglegalrequirementsforenergyinbuildings.InSwitzerland,thisismainlytheresponsibilityoftheCantonal(State)level.InstrumentRegulatorSummaryConstitutionn.a.Art89BV,Abs.4delegatesregulationforenergyconsumptionofbuildingstotheCantonsMinimumEnergyPerformanceStandardsandenergylabelsforelectricaldevicesandtechnicalinstallationsinbuildings15SFOEMEPSandenergylabelsforawiderangeofapplications(e.g.lights,householdappliances,electronicequipment,electricalmachines)MEPSforwaterheaters,hotwaterstorageappliances,ventilationsystemsCompensationobligationforimportersoffossiltransportfuels16SFOEAcertainshareiftheemissionsfromburningimportedfossiltransportfuelshastobecompensatedthroughprojectsimplementedinSwitzerland.Thisalsoincludesbuildingefficiencymeasuresandheatingsystemretrofit.Table2:Legalinstrumentsatnationallevel©TableINFRAS.Source:varioussub-pagesofSFOEandFOENWeb:bit.ly/3OvrJq6(SFOE)andbit.ly/3V3VIb8(FOEN)15Source:dwz.date/fvP916Source:dwz.date/fvPAPage24of66二瑞士实施建筑领域能源战略的法律、经济、教育和信息方面的工具国家层面法律在瑞士,国家层面上的建筑能源相关法律要求的重要性比较低,这主要是地方上,如各联邦(州)层面的责任。工具监管机构总结宪法n.a.第89.4条将建筑能源消耗的规定下放给各州。建筑内电气设备和技术安装的最低能效标准及能源标签17瑞士联邦能源办公室最低能效标准和能源标签的应用范围很广(如灯、家用电器、电子设备、电机)。用于热水器、热水储存设备、通风系统的最低能效标准。对化石运输燃料进口商的补偿义务18瑞士联邦能源办公室如果是燃烧进口化石运输燃料所产生的排放量,必须在瑞士实施的项目予以补偿(见2.1.2节中的补偿项目)。这一要求也包括在建筑能效措施和供暖系统改造中。表2:国家层面上的法律工具©TableINFRAS.Source资料来源:varioussub-pagesofSFOEandFOENWeb:dwz.date/fvP8(SFOE)anddwz.date/fvP7(FOEN)17来源:dwz.date/fvP918来源:dwz.date/fvPAPage25of66EconomicInSwitzerland,thenationallevelisimportantwhenitcomestofinancingofenergyandclimaterelatedactivitiesforbuildings.Thereasonbeingthatleviesandtaxesonenergyareregulatedatthenationallevel.ThereareCantonswhichcollectadditionaltaxesonelectricity(e.g.Basel-Stadt).Oneshareofthefundsisredistributedtothehouseholdsandindustries,theothershareisusedforinvestmentsupporttorenewableheatingsystemsandefficiencymeasuresinbuildings.InstrumentImplementerSummaryCO2levy19FOENCO2-intensitiyrelatedlevyonfossilheatingfuels.Atdate,thelevyisat120CHFperTonneofCO2eq.Buildingsubsidyprogram20FOEN/CantonsSubsidiesforefficiencyimprovementandrenewableheatingsystems.In2020,theequivalentamountof40CHFpercapitawaspaidout.ThefundingisthroughtheCO2taxandtheCantons.Compensationprojects21FOENPerformancebasedfundingsystemforprojectreducingGHGemissionsinSwitzerland.Thereisawiderangeofapplicableprojecttypes.ThemethodologyusediscloselyrelatedtoapproachforCleanDevelopmentMechanism(CDM)projects,withadaptationandsimplificationfortheSwisscompensationmarket.Gridsurchargeforthepromotionofelectricityfromrenewableenergies22SFOE/PronovoAlevyof0.023CHF/kWhisappliedonelectricity.Thefundsareusedforpromotingrenewableelectricitygeneration.One-offinvestmentgrantforPhotovoltaicsystems23SFOE/PronovoForPVsystemsonbuildingsaone-offpaymentisgranted,coveringupto30%oftotalinvestmentcost.Fundingsourceisthenationalgridsurcharge(seeabove).ProgramProKilowatt24SFOE/ProKilowattForuneconomicalelectricitysavingprojectsorprograms,agrantisgivenwhichcoversupto30%oftotalinvestmentcost.Everyyeartherearethreetofourcompetitiveauctioningroundswhereprojects/programscanapply.Selectionofprojects/programsisbasedontherequestedfundinglevelinCHFperkWhofsavings.Fundingsourceisthenationalgridsurcharge(seeabove).Table3:Economicinstrumentsatnationallevel©TableINFRAS.Source:varioussub-pagesofSFOEandFOENWeb:bit.ly/3OvrJq6(SFOE)andbit.ly/3V3VIb8(FOEN)19Source:dwz.date/fvPB20Source:dwz.date/fvPC21Source:dwz.date/fvPD22Source:pronovo.ch/de/foerderung/evs/herkunft-foerdergelder/23Source:pronovo.ch/de/foerderung/einmalverguetung-eiv/24Source:www.prokw.ch/de/Page26of66经济对于瑞士而言,国家在建筑领域的能源和气候相关活动的融资起着非常重要的作用。因为能源方面的征税和纳税是由国家层面进行管理的,其中有些州对电力征收附加税(如巴塞尔州)。税收所得的一部分资金被重新分配给家庭和工业,另一部分则用于投资支持可再生能源供暖系统和建筑的节能措施。工具执行机构总结征收二氧化碳税25瑞士联邦环境署(FOEN)对化石供热燃料征收与二氧化碳强度相关的税。目前,每吨CO2当量征收120瑞士法郎。建筑补贴项目26瑞士联邦和州环境署(FOEN/Cantons)为提高建筑能源效率和推广可再生能源供暖系统提供补贴。2020年,人均支付了相当于40瑞士法郎的金额。该资金是通过二氧化碳税和各州提供的。补偿项目27瑞士联邦环境署(FOEN)对瑞士减少温室气体排放的项目实行基于绩效的资助制度。适用的项目类型很广泛。使用的方法与清洁发展机制(CDM)项目的方法密切相关,并针对瑞士的补偿市场进行了调整和简化。为促进可再生能源发电而征收的电网附加费28瑞士联邦能源办公室(SFOE)/Pronovo(Pronovo是被认证的机构,负责处理联邦政府的可再生能源支持计划。)对电力征收0.023瑞士法郎/千瓦时的税。这些资金将用于促进可再生能源发电。光伏系统的一次性投资补助29瑞士联邦能源办公室(SFOE)/Pronovo对建筑用光伏系统给予一次性补贴,最高可覆盖总投资成本的30%。资金来源是电网附加费(见上文)。“每千瓦”项目30瑞士联邦能源办公室/“每千瓦”项目组(SFOE/ProKilowatt)对于经济性较差的节能项目或计划,给予补贴,最高可涵盖总投资成本的30%。每年有三到四轮项目竞赛,项目/计划可以申请。项目/计划的选择是基于节电每千瓦时所需的资金水平,以瑞士法郎计算。资金来源是电网附加费(见上文)。表3:国家层面的经济工具©TableINFRAS.Source:varioussub-pagesofSFOEandFOENWeb:dwz.date/fvP8(SFOE)anddwz.date/fvP7(FOEN)25来源:dwz.date/fvPB26来源:dwz.date/fvPC27来源:dwz.date/fvPD28来源:pronovo.ch/de/foerderung/evs/herkunft-foerdergelder/29来源:pronovo.ch/de/foerderung/einmalverguetung-eiv/30来源:www.prokw.ch/de/Page27of66EducationandinformationThedevelopmentoftheentireenergysectorisproceedingrapidlyandthereisalsoagreatneedforbuildingrenovation.Thesechallengesrequireasufficientnumberofcompetentspecialistswhoareactivelyinvolvedinthisdynamicfield.Highqualityandeasilyaccessibleprimaryandcontinuedvocationaltrainingarethereforeofparamountimportanceforreachingazero-emissionbuildingstock.ThenationalprogramSwissEnergyintegrates,coordinatesandpartlyfundsthesector-wideactivities.Experiencehasshown,thatforachievingarelevantimpacttheactivitiesneedtobewellcoordinatedandintegratedwithactivitiesofotherrelevantstakeholdersinthesectorliketradeandprofessionalassociations,lobbyinggroupsortraininginstitutions.Onlyamulti-stakeholderapproachcanensurethattheknow-howreachesdowntothelevelofconstructionandrenovationofbuildingsandeffortsofthedifferentlevelsareinlineandformsynergies.Asenergyuseinbuildingshighlydependsontheindividualbehaviourofthebuildingusersandinvestmentdecisionsareultimatelymadebythebuildingowners,informationandawarenessraisingforthepublicandspecificallyforthebuildingownershasahighrelevance.InSwitzerlandtheseactivitiesarealsosupportedbytheprogram“SwissEnergy”.InstrumentImplementerSummaryNationalinformationwebsiteonprimaryandcontinuedvocationaltraininginthebuildingsector31SwissEnergy,SFOEProvideslinkstotrainingopportunitiesforbuildingspecialistsandprofessionals.Program“Educationcampaignforbuildings”32SwissEnergy,SFOEInordertosuccessfullyimplementtheenergyandclimatestrategyinthebuildingsector,morecompetentspecialistsareneeded.Withtheeducationcampaign,theindustrywantstoensurethatsufficientqualifiedspecialistswillbeavailableinthefuture.Inabroadstakeholderdialoguetogetherwiththeindustryandeducationalinstitutionsaroadmapandspecificmeasurestobeimplementedwasdeveloped.Program“RenewableHeating”33SwissEnergy,SFOEPlatformforinformationonheatingretrofit.Aspartoftheprogramafreeofcoston-siteconsultancyisprovidedtobuildingowners.Theconsultancyprovidesabroadoverviewonavailabletechnologyoptionsandcostsaswellasanoptimizedintegralapproachforbuildingretrofit,basedontheobjectspecificsituation.Schoolteachingaids34SwissEnergy,SFOEProvisionofschoollevelteachingaidsandinformationonenergyandclimateasateachingtopic.Nationalenergynewspaper,factsheetsandsuccessstoriesonenergyuseinbuildings35SwissEnergy,SFOETheprogramSwissEnergyprovidesawiderangeofinformationmaterialforbuildingownersandtenants.ThisalsoincludesaprintednewspaperwithinformationandsuccessstorieswhichtwiceayearissenttoallbuildingownersinSwitzerland.Coordinationofbuildinglabelsonenergyandenvironmental(Zeroemissionbuildings)36SwissEnergy,SFOEInstitutionsforgreenbuildinglabelsreceivefundingthroughSwissEnergy.TheSwissFederalofficeofEnergyiscoordinatingthedifferentlabelsavailableatthenationalscale.Thelabelfamilyincludesdifferentiatedlabelswithfocusonenergyandclimate,indoorqualityandintegralsustainability.Table4:Educationalandinformationinstrumentsatnationallevel(non-exhaustive)©TableINFRAS.Source:varioussub-pagesofSFOEWeb:bit.ly/3OvrJq631Source:www.energieschweiz.ch/bildung/weiterbildungsangebote/32Source:www.energieschweiz.ch/bildung/bildungsoffensive-gebaeude/33Source:erneuerbarheizen.ch/34Source:www.energieschweiz.ch/bildung/unterrichtsthema/35Source:www.energieschweiz.ch/pub/36Source:www.energieschweiz.ch/gebaeude/gebaeudelabels/Page28of66教育和信息整个能源行业正在迅速发展,并对建筑的翻新有很大的需求。这些挑战需要有足够数量的、有专业能力的人员积极参与到这个充满活力的领域中。因此,高质量的、容易获得的初级和持续的职业培训对于实现建筑领域的零排放是至关重要的。国家项目SwissEnergy(瑞士能源)旨在整合、协调并部分资助整个行业的活动。经验表明,为了实现对整个行业的影响,这些活动需要与该行业的其他利益相关方(如贸易和专业协会、游说团体、培训机构)的活动进行充分协调和整合。只有一个多利益相关方的模式才能确保技术知识深入到建筑的建造和翻新过程中,不同层面的奋斗目标是一致的,且可以形成协同效应。由于建筑的能源使用在很大程度上取决于建筑使用者的个人行为,且投资决定最终是由建筑所有者提出,因此对公众,特别是对建筑所有者的信息和意识的提高具有很大的意义。在瑞士,这些活动也得到了"SwissEnergy"项目的支持。工具执行机构总结关于建筑行业初级和继续职业培训的国家信息网站37瑞士能源,瑞士联邦能源办公室为建筑专家和专业人士提供培训机会的平台。“建筑教育倡议”项目38瑞士能源,瑞士联邦能源办公室为了在建筑领域成功实施能源和气候战略,需要更多有能力的专家。通过教育倡议项目,行业希望确保在未来有足够的合格专家。在与工业界和教育机构一起进行的广泛的利益相关方对话中,制定了路线图和要实施的具体措施。“可再生能源供暖”项目39瑞士能源,瑞士联邦能源办公室供暖改造的信息平台。作为该计划的一部分,向建筑业主提供免费的现场咨询。该咨询提供了关于可用技术选择和成本的广泛概述,以及根据业主的具体情况,为建筑改造提供优化的整体方案。学校教育协助40瑞士能源,瑞士联邦能源办公室提供学校层面的教具和信息,将能源和气候作为一个教学主题。国家能源报纸,关于建筑能源使用的概况介绍和成功案例41瑞士能源,瑞士联邦能源办公室瑞士能源项目为建筑业主和租户提供了广泛的信息材料。这也包括一份印有信息和成功案例的报纸,每年两次寄给瑞士的所有建筑业主。协调能源和环境方面的建筑标签(零排放建筑)42瑞士能源,瑞士联邦能源办公室绿色建筑标签的机构通过SwissEnergy获得资金。瑞士联邦能源办公室正在协调全国范围内的不同标签。该系列标签包括专注于能源和气候、室内质量和整体可持续性的差异化标签。表4:国家层面的教育和信息措工具(待完善)©TableINFRAS.Source:varioussub-pagesofSFOEWeb:dwz.date/fvP837来源:www.energieschweiz.ch/bildung/weiterbildungsangebote/38来源:www.energieschweiz.ch/bildung/bildungsoffensive-gebaeude/39来源:erneuerbarheizen.ch/40来源:www.energieschweiz.ch/bildung/unterrichtsthema/41来源:www.energieschweiz.ch/pub/42来源:www.energieschweiz.ch/gebaeude/gebaeudelabels/Page29of66CantonallevelLegalInSwitzerland,regulationandenforcementofbuildingconstructionliesmainlywiththeCantons.InstrumentRegulatorSummaryTechnicalregulationonenergyuseandCO2-emissionsofbuildingsBuildingdepartmentsofthecantonaladministrationEachCantonisresponsibleforissuingitstechnicalregulationonenergyandemissions.Awidereachingbutnotfullharmonizationisachievedthroughthe“SampleregulationsoftheCantonsonenergyinbuildings”(MuKEn43)whichareissuedbytheassemblyoftheenergydirectorsoftheCantons(EnDK44).AccreditationofprivatebuildingcontrolstaffCantonsSomecantonsmakeuseofaccreditedprivatesectorstafffordesignandconstructioncompliancechecks.Thepersonsmustbeaccreditedbythecantonalbuildingauthority.Table5:Legalinstrumentsatcantonallevel©TableINFRAS.Source:Web:bit.ly/3Ynf4Kd43Source:www.endk.ch/de/energiepolitik-der-kantone/muken44Source:www.endk.ch/dePage30of66联邦州层面法律在瑞士,建筑施工的监管和执法工作主要由各州负责。工具监管机构总结建筑能源使用和二氧化碳排放的技术法规各州政府的建筑部门各州政府的建筑部门负责发布其能源和排放的技术法规。通过各州能源主管部门(EnDK45)发布的"各州建筑能源条例样本"(MuKEn46),实现了各州之间广泛但不完全的协调统一。建筑质量监控人员的认证联邦州一些联邦州利用经认证的企业人员进行设计和施工的检查。这些人员必须得到州建筑当局的认可。表5:州层面上的法律工具©TableINFRAS.Source:Web:https://dwz.date/fwnZ45来源:www.endk.ch/de/energiepolitik-der-kantone/muken46来源:www.endk.ch/dePage31of66EconomicInco-ordinationandco-financingwiththenationalgovernment,alltwenty-sixCantonsinSwitzerlandimplementtaxdiscountsforinvestmentsinenergyperformanceofbuildingsaswellassubsidyschemesforenergyefficientandlowcarbonemissionbuildings.Thesubsidymainlyaddressesretrofitofexistingbuildings,asnewbuildingsareadequatelycoveredthroughthetechnicalregulationandtheavailablelabelswhichprovidemarketincentives.Thefinancialsupportprovidesstrongincentivestobuildingownerstogobeyondthelegallyrequiredandmarketstandardambitionlevelformakingtheirbuildingenergyefficientandlowemission.Thelevelofsubsidyprovidedistypicallyintheorderof20–50%ofthetotalinvestmentcost,dependingontheCantonandthespecificmeasure.InstrumentImplementerSummaryBuildingsubsidyprogram47Cantons/FOENSubsidiesforefficiencyimprovementandrenewableheatingsystems.In2020,theequivalentamountof40CHFpercapitawaspaidout.TheCantonsareresponsibleforadministeringthesubsidies.ThefundingisthroughthenationalCO2taxandtheCantons.EachCantonputsanindividualfocusforthesupportedmeasuresdependingontheirlocalpriorities.SomeCantonsprovideadditionalfundingformeasureswhicharenotsupportedatthenationallevel.TaxdiscountsoninvestmentsforenergyperformanceofbuildingsCantons/NationalTaxAuthorityInmostCantons,investmentsrelatedtodecarbonizationandenergyefficiencyofbuildingsbenefitfromataxdiscount.Thetaxrulesallowtodeducttheinvestmentamountfromtheincomeonannualbasis.Recently,effortshavestartedtorevisethetaxrules,sothatitwillbepossibletospreaddeductionoftheinvestmentsfromaspecificyeartomultipletaxperiods.Thiswillensurethatalsolargeinvestments(higherthanthetotalannualincomeoftheinvestor)stillreceivethefullincentive.Table6:Economicinstrumentsatcantonallevel©TableINFRAS.Source:INFRAS47Source:www.dasgebaeudeprogramm.ch/Page32of66经济在与中央政府的协同和共同资助下,瑞士26个联邦州都对建筑能效投资以及节能和低碳排放建筑的补贴计划实施税收优惠制度。补贴主要针对既有建筑的改造,因为新建筑通过技术法规和提供市场激励的可用标签已充分覆盖。财政支持有力地激励建筑业主实现高于法律要求和市场标准的能效水平,使建筑更加节能,更加低碳。提供的补贴通常为总投资成本的20-50%,具体取决于所在州和措施本身。工具执行机构总结建筑补贴计划48瑞士联邦及州环境署为提高建筑效率和可再生能源供暖系统提供补贴。2020年,人均补贴额度为40瑞士法郎。各州负责管理这些补贴,资金来源于国家二氧化碳税和各州。每个州都会根据当地的优先事项,重点支持若干措施。此外,一些州会为那些没有得到国家支持的措施提供额外的补贴。建筑能源性能投资的税收折扣国家和州税务局在大多数州,与建筑脱碳和节能有关的投资可以享受税收优惠。税收政策允许每年从收入中扣除投资金额。最近,税收规则已经开始修改,以便能够将投资的扣除从一个特定的年份扩展到多个税收期。这将确保大额投资(高于投资者的年收入总额)也能得到充分的激励。表6:州层面上的法律工具©TableINFRAS.Source:INFRAS48来源:www.dasgebaeudeprogramm.ch/Page33of66EducationandinformationTheCantonsplayanimportantroleininformingbuildingownersandthepubliconenergyissuesinbuildings.Thisisprimarilythroughtargetedenergyconsultancy,informationalongthebuildingapprovalprocess,afterworkinformationeventsandspecifictrainingcoursesontechnicalissuesandcorrectimplementationofstandards.InstrumentImplementerSummaryVocationaltrainingschoolsVariousVocationaltrainingschoolsareoperatedbytheCantonstoprovideprimaryandcontinuedvocationaltraininginvariousfieldsrelatedtobuildingsandrenewableenergies.PublicenergyconsultancyCantonsEachCantonhasanenergyofficeorenergyagencywhichprovidesbasicinformationandlowlevelandindustryindependentconsultancyforbuildingowners.LargerangeofdifferentinformationandawarenesseventVariousTheCantonsrundifferentformatsforprovidingenergyandsustainabilityrelatedinformationtobuildingownersandbuildingsectorspecialists.Table7:Educationalandinformationinstrumentsatcantonallevel(non-exhaustive)©TableINFRAS.Source:INFRASPage34of66教育与信息各州在向建筑业主和公众宣传建筑能源问题方面发挥了重要作用。这主要是通过有针对性的能源咨询,建筑审批过程中的信息,工作后的信息活动以及在技术方面和标准执行层面具体的培训课程。工具执行机构总结职业培训学校多方职业培训学校由各州开办,针对建筑和可再生能源有关的各个领域提供初级和继续职业培训。公共能源咨询州每个州都有一个能源办公室或能源机构,为建筑业主提供基本信息和基本的、独立的行业咨询。大范围的信息和宣传活动多方各州以不同的形式向建筑业主和建筑行业专家提供能源和可持续发展的相关信息。表7:国家层面的教育和信息措施(待完善)©TableINFRAS.Source:INFRASPage35of6603TheSwisskeystakeholdersfortheimplementationoftheenergystrategyinthebuildingsectorNationallevelStakeholdersatthenationallevelincludeGovernmentAuthoritiesaswellasprivateorganizations.Thekeystakeholdersandtheirrespectiverolearesummarizedintable8.Thereiscloseinteractionbetweenthenational,cantonal(State),municipallevelaswellaswiththeprivatesectorstakeholders.Page36of66三瑞士在建筑领域实施能源战略的主要利益相关方国家层面国家层面的利益相关方包括政府主管部门和私营组织。主要的利益相关方和他们各自的作用如下表8总结所示国家、联邦(州)、城市层面与私营领域利益相关方之间存在着密切的互动。Page37of66StakeholderRoleSwissFederalOfficeforEnergy49SFOE•Energyrelatedactsandordinances•NationalsupportprogramEnergieSchweiz(EnergySwitzerland)•Statisticaldataandreportingonenergyuseandproduction•Publicinformationrelatedtoe.g.energyinbuildings•Coordinationofbuildingrelatednationalresearchprograms•Coordinationofinternationalactivities,e.g.withInternationalEnergyAgencyIEA•Long-termenergyscenarios(e.g.EP2050+)•Studiesonspecificenergyrelatedtopics•Coordinationofbuildinglabels•Coordinationofsubsidyprogramsforbuildings(inco-operationwithFOEN).FederalOfficeforEnvironment50FOEN•Climaterelatedactsandordinances•Statisticaldataandreportingongreenhousegasemissions•Studiesonspecificclimaterelatedtopics•EmissionrelatedenergytaxesAssociation“Energiestadt”51(EnergyCities)•CompetencecenterforlocalenergyandclimatepolicyinSwitzerland,bringingtogetherSwissmunicipalities,fromlargecitiestosmallmountainvillagesforinformationsharingandcollectiveactionthroughcontinuouscommitment.•ContinuousdevelopmentandadministrationoftheLabel“EnergyCity”52•Information,practicalguidelinesandsupporttoactivitiesatcityandmunicipallevelCoordinationoffice“2000-Watt-Society”53•Methodologicalworkonmethodologiesandtoolsforlong-termsustainability•continuousdevelopmentandadministrationoftheLabel“2000-Watt-District”•ProgramSmartCities•Program“SustainableEnergyRegions”AssociationMINERGIE54•DevelopmentandcertificationoftheLabelfamilyMINERGIE•ThedifferentambitionlevelsoftheMINERGIElabelcoveroperationalenergyandembodiedemissionsofbuildingsaswellascomfortandindoorclimateaspectsfornear-zeroandzeroemissionbuildings.SustainableConstructionNetworkSwitzerland55(NNBS)•DevelopmentandcertificationoftheLabelSNBS(StandardSustainableBuildingSwitzerland)•TheSNBSlabelintegratesnotonlyenergyandclimaterelatedcriteria,butcoverssustainabilityinanintegrativeformandprovidesguidancefornear-zeroandzeroemissionbuildingsTable8:Keystakeholderatnationallevel©TableINFRAS.Source:INFRAS49Source:www.bfe.admin.ch/bfe/en/home.html50Source:www.bafu.admin.ch/bafu/en/home.html51Source:www.energiestadt.ch/de/startseite-2.html52seealsoSino-SwissprojectcapaCITIES:www.econcept.ch/media/projects/downloads/2018/01/Brochure_Dec2016.pdf53Source:www.local-energy.swiss/programme/2000-watt-gesellschaft.html#/54Source:www.minergie.com/55Source:www.nnbs.ch/uber-unsPage38of66利益相关方角色瑞士联邦能源办公室56•与能源相关的法案和条例•国家支持计划“EnergieSchweiz”(能源瑞士)•关于能源消费和生产的统计数据和报告•与建筑能源有关的公共信息•协调与建筑有关的国家研究计划•协调国际活动,例如与国际能源署IEA的活动•长期能源发展情景(如能源展望2050+)•与能源有关的具体议题的研究•协调建筑认证•协调建筑的补贴计划(与FOEN合作)瑞士联邦环境署57•与气候有关的法案和条例•温室气体排放的统计数据和报告•与气候有关的具体议题的研究•与排放有关的能源税“能源城市”协会58•瑞士地方能源和气候政策的能力中心,汇集了瑞士各市镇,从大城市到小山村,通过持续的努力,分享信息和集体行动•持续发展和管理"能源城市"59标签•为城市和市镇级的活动提供信息、实用指南和支持"2000瓦社会"协调办公室60•为实现长期可持续性进行的方法学和工具方面的工作•持续发展和管理"2000瓦社区"标签•智慧城市计划•"可持续能源区域"计划MINERGIE协会61•MINERGIE标签的开发和认证•MINERGIE认证体系的不同级别涵盖了近零和零排放建筑的运行能耗、隐含碳排放,以及建筑的舒适度和室内气候等方面的要求瑞士可持续建筑网络(NNBS)62•开发和认证SNBS标签(瑞士可持续建筑标准)•SNBS标签不仅整合了能源和气候相关的标准,而且以综合的形式涵盖了可持续性,并为近零和零排放建筑提供了指导表8:国家层面的主要利益相关方©TableINFRAS.Source:INFRAS56来源:www.bfe.admin.ch/bfe/en/home.html57来源:www.bafu.admin.ch/bafu/en/home.html58来源:www.energiestadt.ch/de/startseite-2.html59参见中瑞项目capaCITIES:www.econcept.ch/media/projects/downloads/2018/01/Brochure_Dec2016.pdf60来源:www.local-energy.swiss/programme/2000-watt-gesellschaft.html#/61来源:www.minergie.com/62来源:www.nnbs.ch/uber-unsPage39of66CantonallevelAsmentionedabove,inSwitzerlandthecantonallevel(couldbecomparedtoStatelevelinChina)isofhighimportanceforthebuildingsectorastheregulatorypowerforenergyuseinbuildingsiswiththe26Cantons.Eachofthecantonsoperatesit’sownEnergyOffice(Energiefachstelle).Table9liststhemostrelevantstakeholdersatthecantonallevel.Municipal/locallevelInSwitzerlandtheimportanceofthemunicipalleveldependsontheCanton.InsomeCantonstheauthorityforbuildingapprovalsandcompliancecheckingisdelegatedtothemunicipallevel,inothersitiswithcantonalauthorities.Themunicipalandlocallevelisimportantbecausethereiscontinuous(notonlybuildingrelated)interactionbetweentheMunicipalityand/orlocalstakeholderssuchastheUtilitiesandthebuildingowners.Thegeographicalproximityprovidesagoodentrypointforinformationandtargetorientedinteractionwithbuildingowners.StakeholderRoleEnergyOffice63•Technicaldesignofregulationonenergyuseandproductioninbuildings•Enforcementofthetechnicalregulationonenergyuseandproductioninbuildingsatthecantonallevel(buildingapproval)•Monitoringandevaluationofenforcementquality•Toolsandformsforbuildingdesignandapproval•Coordinationofbuildingapprovalprocessesatcantonalormunicipallevel•Energyrelatedconsultancyandinformationforbuildingsectorprofessionalsandthepublic•EducationandtrainingofbuildingsectorprofessionalsEnergyAgencies•SomeCantonsoperateseparateenergyagencieswhichdealwithinformation,consultancyandeducation.TheregulatorytasksremainwiththeEnergyOfficewhilethedaytodayroutineworkissourcedouttotheEnergyAgency.BuildingOwnersAssociations64HEV•Energyrelatedinformationtoprivatesectorbuildingowners•Advocacyandpoliticallobbyingforinterestsofbuildingowners•Legalandadministrativesupportforbuildingoperationandbuildingtransactions•ListsoflocalandregionalbuildingprofessionalsandserviceprovidersTable9:Keystakeholderatcantonallevel©TableINFRAS.Source:INFRAS63Source:www.endk.ch/de/endk/die-energiefachstellenkonferenz-enfk64Source:www.hev-schweiz.ch/Page40of66StakeholderRolebuildingauthorityofthemunicipality•Enforcementofthetechnicalregulationonenergyuseandproductioninbuildings(ifdelegatetothemunicipallevel),buildingapprovalandcompliancechecking•Informationandconsultancytobuildingowners.Veryoften,thetechnicalknow-howandstaffcapacityatthemunicipallevelishoweverrestrictedandthemunicipalauthorityactsmerelyasanintermediaryforlinkingtotherightaddresses.Utilities(Electricity,Gas)•Customersupportandinformation•TechnicalConsultancyonheatingsystemsandbuildingefficiencymeasures•SomeUtilitiesoperatemunicipallevelsubsidyschemesforenergyefficiencyandGHGmitigationHeatingSystemSuppliers•Typically,theyarethefirstcontactandinformationpointforbuildingownersforreplacementofheatingsystem.Therefore,itisofhighestimportancethattheyaretrainedandmotivatedtopromotesustainabletechnologiesandnotjustthewell-known“fossile”technologies.Tablel10:Keystakeholderatmunicipal/locallevel©TableINFRAS.Source:INFRASPage41of66联邦州层面如上所述,在瑞士,州一级(可与中国的省级相比较)的管理对建筑行业非常重要,因为建筑能源使用的监管权属于26个联邦州。每个州都有自己的能源办公室(Energiefachstelle)。表9列出了各州最相关的利益相关方。城市层面/地方层面在瑞士,市镇一级的重要性取决于各州。在一些州,建筑审批和合规性检查的权力被下放至市级,而在其他州,则由州政府负责。因为市政当局和/或地方利益相关方,如公共事业部门和建筑业主之间有持续的(不仅仅是建筑有关的)互动,所以市政和地方层面非常重要。地理上的接近为信息提供了一个很好的切入点,也为与建筑业主进行目标导向的互动提供了机会。利益相关方角色能源办公室65•建筑能源使用和生产条例的技术设计•在州一级执行有关建筑能源使用和生产的技术法规(建筑审批)•对执法质量的监测和评估•建筑设计和审批的工具和表格•协调州或市一级的建筑审批程序•为建筑行业的专业人士和公众提供与能源有关的咨询和信息•建筑部门专业人员的教育和培训能源机构•一些州设有独立的能源机构,负责提供信息、咨询和教育工作。监管任务仍由能源办公室负责,而日常工作则由能源机构负责建筑业主协会66•向私营部门的建筑业主提供能源相关信息•为建筑业主的利益进行宣传和政治游说•为建筑运营和建筑交易提供法律和行政支持•地方和区域建筑专业人员和服务供应商的名单表9:州层面的主要利益相关方©TableINFRAS.Source:INFRAS65来源:www.endk.ch/de/endk/die-energiefachstellenkonferenz-enfk66来源:www.hev-schweiz.ch/Page42of66利益相关方角色城市层面的建筑部门•执行关于建筑能源使用和生产的技术法规(如果授权给城市层面),建筑审批和合规性检查•为建筑业主提供信息和咨询。然而,城市层面的技术知识和人员能力往往是有限的,市级机构往往作为一个联系沟通的桥梁城市管理服务行业(电、气)•客户支持和提供信息•供暖系统和建筑节能措施的技术咨询•一些城市管理服务行业的单位为提高能源效率和减少温室气体排放实施城市层面的补贴计划供暖系统的供应商•通常情况下,他们是建筑业主更换供暖系统的第一个联系人和信息点。因此,对他们进行培训并激励他们推广可持续技术而不仅仅是众所周知的传统技术,是最重要的表10:城市层面/地方层面上的主要利益相关方©TableINFRAS.Source:INFRASPage43of66ProfessionalAssociationsIntheSwissbuildingsector,anumberofprofessionalassociationsareactive.Associationsarehighlyrelevantinprovidingthemarketwiththerequirednumberofqualifiedprofessionalswhichcandrivethebuildingsectortowardszeroemissions.Associationsdonotonlyprovidebasictechnicalinformationandpracticalguidelines;theyalsoofferbasicandadvancededucationcoursesintheirspecificfieldsofprofession.Sotheyarekeystakeholdersforthetransitionprocessforreachingthenet-zeroemissiontarget.However,theyalsomustrepresenttheinterestoftheirmembers.Theseareoftennotinfavourofarapidtransitionasthisputstheirtraditionalfieldofknow-howandcommerceatrisk(e.g.oil-basedheatingsystems).Therefore,theoppositionofassociationstopolicyprocessescanalsoformasubstantialbarrierforneededtransformationofthesector.StakeholderRoleSwisssocietyofEngineersandArchitects67SIA•Switzerland’sleadingprofessionalassociationforconstruction,technologyandenvironmentspecialists.Withover16’000membersfromthefieldsofengineeringandarchitecture,theSIAisaprofessionalandinterdisciplinarynetworkwhosecentralaimistopromotesustainableandhigh-qualitydesignofthebuiltenvironmentinSwitzerland•Develop,updateandpublishstandards,regulations,guidelines,recommendationsanddocumentation,whichisofvitalimportancefortheSwissconstructionindustry•Typically,thetechnicalregulationbythecantonalandnationalAuthoritiesmakesreferencetoSIAstandardsBuildingEnvelopeSwitzerland68(GebäudehülleSchweiz)•Basicandadvancedtrainingcoursesinallaspectsofthebuildingenvelopeprofessions•Developinnovative,forward-lookingsolutionsandproductsincooperationwithproductmanufacturers,specialistsinthebuildingenvelope,science,research,technologyaswellasarchitectureandplanningBuildingServicesAssociation69(Suissetec)•High-qualityservicesformanufacturers/suppliers,plannersandinstallersintheheating,ventilation,sanitary,water,gasandplumbingsectors•Education,networking,politicallobbyingSwissAssociationforRefrigeration70SVK•Tradeassociationforcommercialrefrigeration,industrialrefrigeration,airconditioningandheatpumps•Provideinformationandtrainingaids•Basicandadvancededucation•GuidelinesandpolicydevelopmentforthecoolingsectorincooperationwithFOENSchweizerischerVereinvonWärme-undKlima-Ingenieuren71SWKI•Networkofbuildingtechnologyprofessionals•Education,training,guidelinesSwissRealEstateAssociation72SVIT•Education,networking,politicalcommitment,know-howandinnovativeservicesfortherealestateindustryTable11:Shortlistofprofessionalassociations©TableINFRAS.Source:INFRAS67Source:www.sia.ch/en/the-sia/68Source:xn--gebudehlle-s5a60a.swiss/69Source:suissetec.ch/de/home.html70Source:www.svk.ch/de/71Source:die-planer.ch/72Source:www.svit.ch/dePage44of66专业协会在瑞士建筑行业,有许多活跃的专业协会。这些协会在为市场提供所需数量的合格专业人士方面有很大的作用,这一贡献可以推动建筑行业实现零排放。专业协会不仅能提供基本的技术信息和实用指南;他们还提供其特定专业领域的基础和高级培训课程。因此,可以说专业协会是实现净零排放转型过程中的关键利益相关方。与此同时,专业协会也必须代表其成员的利益,而相关人群通常不赞成快速转型,因为这会使他们的传统专业知识和商业领域面临风险(例如燃油供暖系统)。因此,专业协会对政策进程的反对也可能构成该领域实施转型的重大障碍。利益相关方角色瑞士工程师和建筑师协会(SIA)73•SIA是瑞士最具权威性的建筑、技术和环境专家专业协会。SIA拥有来自工程和建筑领域的16,000多名成员,是一个专业的跨学科网络,其核心目标是促进瑞士建筑环境的可持续和高质量设计•制定、发布和更新标准、法规、指南、建议和文件,对瑞士建筑业起到了至关重要的作用•通常,在编制国家和州层面的技术法规时会参考SIA标准瑞士建筑围护结构协会74•提供建筑围护结构专业各个方面的基础和高级培训课程•与产品制造商以及建筑围护结构相关的科学、研究、技术以及建筑和规划方面的专家合作,开发创新、前瞻性的解决方案和产品建筑服务协会(Suissetec)75•为供暖、通风、卫生、水、燃气和管道行业的制造商/供应商、规划师和安装人员提供高质量的服务•教育、网络、政治游说瑞士制冷协会(SVK)76•商业制冷、工业制冷、空调和热泵行业协会•提供信息和培训•基础教育和高等教育•与FOEN合作,为制冷部门制定指导方针和政策瑞士热能和气候工程师协会(SWKI)77•建筑技术专业人员网络•教育、培训、指导方针瑞士房地产协会78•房地产行业的教育、网络、政策参与、专业知识和创新服务表11:专业协会名单表©TableINFRAS.Source:INFRAS73来源:www.sia.ch/en/the-sia/74来源:xn--gebudehlle-s5a60a.swiss/75来源:suissetec.ch/de/home.html76来源:www.svk.ch/de/77来源:die-planer.ch/78来源:www.svit.ch/dePage45of6604TheroleofResearchInstitutesanddatafordraftingconceptsforregulationsofthenextgenerationAsperArt.89Abs.4oftheSwissConstitution,thedevelopmentoftechnicalregulationsinthebuildingsectoriswithintheresponsibilityofthe26Cantons(i.e.Statelevel).Asanoverarchingframework,themodelregulationsoftheCantonsonenergyuseinbuildings(MuKEn)define“buildingblocks”fortheregulationsatthecantonallevelinformofmandatoryandvoluntarymodules.TheMuKEnareperiodically(each4-5years)updated(seealsoZEBChina2022formoredetails)andcoordinatedwithactivitiesandGHGemissiontargetsatthenationallevel.AnyrevisionoftheMuKEnintegrateslatestresearchfindings,fielddata,technicalandeconomicprogresssincelastrevision,andpoliticalpriorities.Theavailabilityofrepresentativeanduptodatedataisofutmostimportanceforupdatingtheregulations.Whileresearchcaninteraliaprovidetechnicalsoundandeconomicallyoptimalsolutionaswellasbehavioraleconomictheorymodels,thedesignofthelegislationalsomustbeeffective“ontheground”.Thisincludeseffectiveenforcementsystem,financialsupportschemesandmuchmore.Thebasisofeffectivepolicydesignisevidence-baseddecisions.Thisrequiresspecificanduptodatedata.SomeofthemainsourcesofdataforbuildingsectorpolicydesigninSwitzerlandinclude:•Periodicfieldmonitoringofperformanceofbuildings(samplebased,e.g.toidentifyperformancegapsbetweendesignperformanceandfieldperformance)•Samplebasedevaluationofeffectivenessofconstructionpermitprocesses(e.g.qualityofprivatecontrolsofenergyrelatedbuildingpermitapplications)•Costdatagatheredfromsubsidyprograms(e.g.formonitoringcostoftechnologies)•Surveysandinterviewswithbuildingowners(e.g.onbarriersforimplementationofmeasures)•Informationgatheredfromenergyconsultingactivitiesforbuildingowners(e.g.ondecisionprocessesandinformationsourcesofbuildingowners).•Comparisonandanalysisofinternationalexperienceandpractices(e.g.technicalconceptsforbuildingcodes).Page46of66四研究机构和数据在起草下一代法规方案中的作用根据《瑞士宪法》第89条第4款的规定,建筑领域技术法规的制定由26个州(即州一级)负责。作为一个总体框架,各州制定的建筑能源使用的示范条例(MuKEn)以强制性和自愿性模块的形式为各州层面的法规奠定了"基石"。示范条例会定期更新(每4-5年)(更多细节见ZEBChina),并与国家层面的活动和温室气体排放目标相协调。MuKEn的修订整合了最新的研究成果、现场数据、自上次修订以来的技术和经济进展以及政治优先事项。具有代表性和最新数据的可用性对于更新法规来说至关重要。虽然研究可以提供技术上合理且经济上最优的解决方案以及行为经济理论模型,但立法的设计也必须“在真实场景中”有效。这包括有效的执法系统、财政支持计划等。有效政策设计的基础是循证决策。这需要特定的和最新的数据。瑞士建筑行业政策设计的主要数据来源包括:•建筑性能的定期现场监测(基于样本,例如,确定设计性能和实际性能之间的差距)•基于样本的建筑许可程序有效性评估(例如,对建筑能源相关进行质量控制的私人许可申请)•从补贴计划中收集的成本数据(例如,用于监测技术成本)•对业主的调查和访谈(例如关于实施措施的障碍)•从建筑业主的能源咨询活动中收集的信息(例如关于建筑业主的决策过程和信息来源)•国际经验和实践的比较与分析(例如建筑规范的技术概念)Page47of66InSwitzerlanddifferentinstitutionsandnetworksareactiveinresearchforthebuildingsector.Inthefollowinganon-exhaustivelistisprovided:Institution/NetworkfocusofactivitiesrelatedtobuildingsNationalResearchProgramBuildingsandCities79•Sustainabilitystrategiesforsitesanddistricts,Optimisedinteractionofproductionofenergy,storage,distributionandconsumption•Buildingsandsitesasenergyserviceproviderslong-termreductionoftheenergyconsumptionofoldbuildings•BIMinlifecycleassessment•Embodiedenergy,minimisationofmaterialflows,useofenergy,materialandbuildingdataatplanningandoperationstages•Coolinginviewofthefutureclimate•Buildingautomation,monitoringandsystemoptimisation•HeatingsystemswithlowCO2emissionsandlowelectricityconsumptioninthewinter.•ResearchonConsumers,market,policy•Feedbacksystems•Incentivesystemsforsufficiency•Acceptanceofbuildingautomationsolutions:influenceofprivacyandsecurity,flexibilityofuse,userinterfaces.SwissFederalLaboratoriesforMaterialsScienceandTechnology(EMPA)80•SustainablebuiltEnvironment(Materials&Processes,Structures&Systems,Integration&Demonstration,CircularEconomy,DataScience)•Energy(EnergySupply,ConversionandStorage,EnergyDemand,SystemIntegration)•ResourcesandPollutants(rawmaterialsavailabilityandcriticality,resilientsupplychains,reductionofgreenhousegasemissions,circulareconomyandrecyclingofbuildingmaterials)SwissCompetenceCentersforEnergyResearch(SCCERs)81•FutureEnergy-EfficientBuildings&Districts(SCCERFEEB&D)•Heat&ElectricityStorage(SCCERHaE)•CompetenceCentreforResearchinEnergy,Society,andTransition(SCCERCREST)FederalInstitutesofTechnology(ETH)ZurichandLausanne,UniversitiesofAppliedSciences82(HSLU,ZHAW,FHNW,OST,BFH)•WiderangeofactivitiesPrivatesectorConsultants•Regulatorydesign,socio-economicresearch,behaviouraleconomics,subsidyprograms,policyevaluation,etc.Table12:Buildingrelatedresearchinstitutionsandnetworks(non-exhaustive)©TableINFRAS.Source:INFRAS79Source:dwz.date/fvPE80Source:www.empa.ch/web/empa/81Source:dwz.date/fvPF82Source:dwz.date/fvPGPage48of66在瑞士,不同的机构和网络都在积极参与建筑行业的研究。以下是部分清单:研究机构/网络与建筑有关的活动重点国家建筑与城市研究项目83•社区和城区的可持续发展战略,优化协调能源生产、储存、分配和消费•作为能源服务提供者的建筑和场地,长期降低老旧建筑的能源消耗•生命周期评估中运用BIM•规划和运营阶段的隐含能耗,物质流最小化,能源、材料和建筑数据的使用•考虑到未来气候变化的的建筑制冷•楼宇自动化、监控和系统优化•低二氧化碳排放和冬季低耗电量的供暖系统•消费者、市场、政策研究•反馈机制•充足的激励制度•建筑自动化解决方案的接受度:隐私和安全性、使用灵活性、用户界面的影响瑞士联邦材料科学与技术实验室84•可持续建筑环境(材料与工艺、结构与系统、集成与示范、循环经济、数据科学)•能源(能源供应、转换和储存、能源需求、系统集成)•资源和污染物(原材料的可用性和重要性、弹性供应链、减少温室气体排放、循环经济和建筑材料的回收利用)瑞士能源研究中心85•未来的节能建筑和区域节能(SCCERFEEB&D)•热量和电力储存(SCCERHaE)•能源、社会和转型研究能力中心(SCCERCREST)苏黎世联邦理工学院,洛桑联邦理工学院,应用科学大学86(HSLU,ZHAW,FHNW,OST,BFH)•多方面的活动私营咨询部门•监管设计、社会经济研究、行为经济学、补贴计划、政策评估等表12:建筑相关的研究机构和关系网络(待完善)©TableINFRAS.Source:INFRAS83来源:dwz.date/fvPE84来源:www.empa.ch/web/empa/85来源:dwz.date/fvPF86来源:dwz.date/fvPGPage49of6605NextgenerationoftechnicalregulationforbuildingsIntroductionEnergydemandandcarbonemissionfrombuildingscanbedrasticallyreducedbyapplyingtoday’sbestpracticeandemergingtechnologies[Ürge-Vorsatzetal.,2012].However,manyoftheseopportunitiesarenotrealized,althoughbeingalreadycost-effective,duetospecificmarketandbehaviouralfailures.Literaturehaslongrecognizedthatimplementingpolicies—individuallytailoredinform,magnitudeandtimedtoaddressthesefailures—canhelptoclosethisso-called“energyefficiencygap”[Schwarzetal.,2020;Moweryetal.,2010].Mosteffectivelythevarietyofinstruments(e.g.controlandregulatorymechanisms,economicandmarket-basedinstruments,fiscalinstrumentsandincentives,andsupport,informationandvoluntaryaction)workinsynergyinaso-calledpolicymix[Kernetal.,2017;Rogge,K.S.,Reichardt,K.,2016].87alsoreferredtoasBuildingEnergyCodes(BEC)inliterature:bit.ly/3i5oGc7Inaddition,policiesfromoutsidetheenergydomainoftenhaveasignificantimpactonthebuildingstocktransformation[Ivalinetal.,2021].Nevertheless,TechnicalEnergyRegulations(TERs87)-controlandregulatorymechanismsthattraditionallysetminimumrequirementsforenergyuseandgenerationinbuildings-areseenasoneofthemostcost-effectivepoliciesforclosingtheenergyefficiencygap[Luconetal.,2014],andarethusanessentialpartofsuchapolicymix.Inthefollowing,wefirstoutlinethestate-of-the-artofTERsbasedonaninternationalreviewandderivepolicydesignprinciplesfornext-generationTERs.Second,weoutlinethechallengesandproposethreeTERsideas.ThelastsectionprovidesabriefoutlookforembeddingTERsinacomprehensiveregulatoryframework.Page50of66五下一代建筑技术法规介绍通过应用当今最佳的实践和新兴的技术,建筑的能源需求和碳排放可以大幅减少[Ürge-Vorsatzetal.,2012]。然而,由于特定的市场和行动失误,许多机会在已有的成本效益下仍没有实现。通过研究了解到,政策实施——在形式、规模和时间上针对这些问题进行个性化定制,有助于缩小这种所谓的“能源效率差距”[Schwarzetal.,2020;Moweryetal.,2010]。最有效的是,各种工具(例如控制和监管机制、经济和基于市场的工具、财政工具和激励措施,以及支持、信息和自愿行动)在所谓的政策组合中协同工作[Kernetal.,2017;Rogge,K.S.,Reichardt,K.,2016]。88文献中也称作建筑能源规范(BEC):dwz.date/fvPH此外,能源领域以外的政策往往对建筑领域的转型有重大影响[Ivalinetal.,2021]。尽管如此,能源技术法规(TERs88)-传统上为建筑中的能源使用和发电设定最低要求的控制和监管机制-被视为缩小能源效率差距的最具成本效益的政策之一[Luconetal.,2014],因此被视为政策组合的重要组成部分。下文首先根据国际审查概述了制定建筑技术法规的最新技术,归纳了下一代建筑技术法规设计原则。其次,概述了可能遇到的挑战并提出了三个关于建筑技术法规的想法。最后一节则简要介绍将建筑技术法规嵌入综合监管框架的前景。Page51of66InternationalOverviewHistorically,TERshaveproveneffectiveandefficientforadvancingbuildingdecarbonization.However,researchersincreasinglyrecognizethelimitationsofprevalentTERdesignsandhavethusbeguntodiscussthedevelopmentandimplementationofTERsthatovercometheselimitations.Schwarzetal.(2020)provideadetailedoverviewofthestate-of-the-art,leveragepoints,andinnovativeapproachesinTERs,andderivepolicydesignprinciplesfromfiveEuropeancasestudies(i.e.,Denmark,France,England,Switzerland,Sweden).ThefollowingfivechallengesofcurrentTERdesignorleveragepointshavebeenoutlinedinliterature:(i)furtherincreaseinenergyefficiency,(ii)consider"embodiedenergy",(iii)increasetheshareofrenewableenergies,(iv)closethe"performancegap",and(v)acceleratetherenovationrate.Besidesconsideringembodiedenergy,alloftheoutlinedleveragepointsabovehavebeenconsideredinstatusquoTERsoftheselectedfiveEuropeancountriesalbeittovariousdecrees.Thetablebelowpresentsanoverviewonthestate-of-the-artoftheTERsineachofthefiveidentifiedcountries,andsketchesthestatusofthefivemostimportantleverage-points.DenmarkFranceEnglandSwitzer-landSwedenEnergyEfficiencyPerformanceYesYesYesYesYesPrescriptiveYesYesYesYesYesCapacity---YesYesEmbodiedEnergy&CarbonPerformance-Yes(pilot)---RenewableEnergyPerformanceYesYesYesYes-Prescriptive(direct)YesYes-Yes-Prescriptive(indirect)Yes-Yes--Prescriptive(ban)Yes--Yes-PerformanceGapComplianceCheckYesYesYesYesYesAccelerateRetrofitRequirementswhenretrofittingYesYesYesYesYesRequirementstoretrofit-Yes---Performancerequirementsdefineametriconasystemic(i.e.building)level(e.g.kWh/m2orCO2/m2),prescriptiverequirementsincontrastdefinespecificmetricsforindividualbuildingparts(e.g.U-ValueinkW/m2K)orrenewableheatingsystemsforheatingre-placements,capacityrequirementsdefinemaximalallowedpeakvalues(e.g.W/m2forheatingdemand).Table13:OverviewofkeyleveragepointsforbuildingdecarbonizationandrelatedBECdesignoptions©Source:Innovativedesignsofbuildingenergycodesforbuildingdecarbonizationandtheirimplementationchallenges;M.Schwarzetal./JournalofCleanerProduction248(2020);Link:https://bit.ly/3y44hJ8Page52of66国际概况从历史上看,建筑技术法规在推进建筑脱碳方面已被证明是有效且高效的。然而,研究人员越来越意识到当前存在的建筑技术法规设计上的局限性,因此开始讨论克服这些局限性的建筑技术法规的发展和实施。Schwarz等人(2020年)详细概述了建筑技术法规的最新技术、杠杆点和创新方法,并从五个欧洲案例研究(即丹麦、法国、英国、瑞士、瑞典)中得出了政策设计原则。文献中概述了目前TER设计的五个挑战或关键点:(1)进一步提高能源效率,(2)考虑"隐含能源",(3)增加可再生能源的份额,(4)缩小"性能差距",以及(5)加快翻新率。除了隐含能源外,上述所有的挑战都在上述五个欧洲国家现行的建筑技术法规中得到了考虑,尽管分布在不同的法规中。表13列出了这五个国家的建筑技术法规的最新情况,并概述了五个最重要方面的情况。丹麦法国英国瑞士瑞典能效性能有有有有有规范有有有有有容量---有有隐含能源和隐含碳性能-有(示范)---可再生能源性能有有有有-规范(直接)有有-有-规范(间接)有-有--规范(禁止)有--有-性能差距合规性检查有有有有有加快建筑改造改造过程中的要求有有有有有对于改造的要求-有---性能要求定义了整个系统(即建筑)层面的指标要求(例如kWh/m2或CO2/m2),规定性要求则定义了单个建筑部件的特定指标(例如U值,以kW/m2K为单位)或用于更换的可再生供暖系统,容量要求定义了最大允许值(例如供暖需求的峰值W/m²)。表13:建筑脱碳和相关建筑能源法规设计方案的关键杠杆点概述©来源:建筑脱碳建筑能源法规的创新设计及其实施挑战;M.Schwarz等人/清洁生产杂志248(2020);链接:https://dwz.date/fwrZPage53of66Belowweoutlinethestatusquoandinnovativeexamplesaddressingtheseleveragepoints.i)Allcountriesshiftedtowardsperformancemetricsfortheentirebuilding'senergyusetofurtherincreaseenergyefficiencybutretainedprescriptiverequirementsforenvelopeefficiencyorindividualbuildingtechnologies.Asaninnovativeexample,Denmarkincreasedenergyefficiencybyintroducingvoluntarylow-energyclassesandannouncingfarinadvancewhentheywouldbecomemandatory,thusprovidinglong-termtargetsfortheconstructionindustry.ii)Despitetheincreasingimportanceofembodiedimpacts,historicalandcurrentTERs,however,concentrateonenergyuseduringtheoperationalphase,anddonotsetrequirementsforembodiedenergy.However,Francewillbegintoreduceembodiedenergybytakingalifecycleperspectiveforperformancemetricsandadoptingrequirementsfortheconstructionphaseinthenextupdateofitsthermalregulationsforbuilding.iii)IncontrasttothehistoricTERsetting,thecurrentstatusquoincreasinglyregulatesrenewableenergyinbuildings,throughmorestringentperformance-basedrenewablerequirementsandspecificprescriptiveregulationsorbansofcertaintechnologies.England,inaddition,introducedcarbonemissionsasthekeyperformancemetricinitsbuildingregulation.Switzerlandincontrastadoptedtwoprescriptiverequirementsthataimtoincreaserenewableenergyinbuildings.First,theystipulatethatnewbuildingsmustproduceacertainamountofelectricityon-site.Second,theyrequirethe1.1millionSwissbuildingsthathaveanoilorgasboilertoinstallaheatingsystembasedonatleast10%renewableenergyincaseofaboilerreplacementorachieveanatleastequivalentamountofenergyefficiencygains.iv)theperformancegap-thedifferencebetweencalculatedandmeasuredenergyuse-isonlyaddressedinmostcurrentTERs,throughcompliancechecksofplanningandconstruction.Incontrasttothestatusquo,theSwedishbuildingregulationaimstoclosetheperformancegapbycheckingcompliancebasedonmeasuredbuildingperformance.v)Toaddressanotoriouslylowretrofittingratemostanalyzedcountriesdistinguishbetweenregulationsfornewbuildingsandretrofitsandforexampleallowthelattertocomplywithpurelyprescriptiverequirementsonly.Franceistryingtoacceleratethebuildingstocktransformationthroughretrofitobligationsaddressingthemostenergy-demandingbuildings.TheMuKEn:2014takesakeyroleinSwitzerland’stransitiontowardsacarbon-freebuildingsector.Itisastate-of-the-artregulationandbeyondthattakesapioneeringrolethroughmandatoryon-siteelectricitygenerationandrenewablesforheating.However,thesuccessoroftheMuKEn:2014couldlearnfrominnovativeapproachesofTERsofotherfrontrunnercountries.Inthefollowing,wetransfertheinsightswegainedfromanalysinginternationalandinnovativeTERtoSwitzerland.i)Toincreaseenergyefficiency,thenextTERcouldreducethenumberofindividualregulationsandinsteadfocusontwocentralperformancemetrics,namelythetotalenergydemandandtheprimaryenergydemandincludingon-siteelectricityproduction.ii)Toconsiderembodiedenergy,takingalifecycleperspectiveand,first,includeadditionalenergyandcarbonsourcesintheperformancemetricor,second,addanewperformancemetricforembodiedenergyonlywouldbepotentialwaysforward.iii)Toincreasetheshareofrenewables,aMuKEn:20XXcould,first,acceleratethephase-outofoilandgasboilersinbuildingsand,second,extendthesystemboundariesofenergyregulationsfrombuildingstoneighbourhoods.ACO2emissionperformancemetricwouldbeanotherpotentialwaytoincreasetheshareofrenewablesinthebuildingsector.iv)Toclosetheperformancegap,thenextTERinSwitzerlandcould,first,adjustthecurrentcompliancecheckor,second,switchtoacompliancecheckbasedonmeasureddata.v)Toaccelerateretrofits,SwitzerlandcouldfollowtheFrenchexampleandincluderequirementsthatenforcetheretrofittingoflowenergy-efficiencybuildings.Page54of66接下来,报告概述了解决这些挑战的现有方法和创新案例。i)所有国家都在采用了用于规范整个建筑能源使用的性能指标,以进一步提高能源效率,但保留了对围护结构或个别建筑技术的规范性要求。其中一个创新的例子是,丹麦通过引入自愿的低能耗等级并提前宣布何时成为强制性标准,来提高能源效率,这一举措为建筑行业提供了长期目标。ii)尽管“隐含能源”的影响越来越大,但是过去和当前的建筑技术法规仅着眼于运营阶段的能源使用,并没有对隐含能源设定要求。法国将开始通过从生命周期的角度来衡量建筑性能指标,并在其建筑热工性能法规的下一次更新中对施工阶段提出要求,以此来减少隐含能耗。iii)与过去的建筑技术法规相比,目前的现状是通过更严格的基于性能的可再生要求和具体的规范性规定或禁止某些技术,对建筑领域的可再生能源应用进行越来越多的监管。此外,英国在其建筑法规中引入了碳排放作为关键的性能指标。相比之下,瑞士采取了两项规范性要求,旨在增加建筑领域的可再生能源份额。首先,规定新建筑必须现场生产一定数量的可再生电力。其次,瑞士要求110万拥有燃油或燃气锅炉的建筑,在更换锅炉时,必须安装使用至少10%可再生能源的供热系统,或实现至少同等数量的能源效率提升。iv)性能差距-计算的能源使用量和测量的能源使用量之间的差异-在目前大多数的建筑技术法规中只通过规划和施工的合规性检查来解决。与之相反,瑞典的建筑法规旨在通过检查基于测量的建筑性能的合规性来缩小性能差距。v)为了解决众所周知的低改造率问题,大多数被分析的国家对新建筑和建筑改造的法规进行了区分,例如,允许后者只遵守纯粹的规范性要求。法国正试图通过为能源需求较高的建筑设定改造义务来加速既有建筑的节能改造。MuKEn:2014在瑞士建筑行业向零碳转型过渡中发挥了关键作用。可以说,它是一项最先进的法规,通过强制现场可再生发电和可再生能源供暖,发挥了引领作用。但MuKEn:2014的后续更新版本仍可以从其他领先国家的建筑技术法规的创新方法中学习。接下来,该报告将从分析国际上创新的建筑技术法规中获得的见解引入到瑞士。i)为了提高能源效率,可以减少对于独立指标数量的要求,转而专注于两个核心绩效指标,即总能源需求和包括现场电力生产在内的一次能源需求。ii)从生命周期的角度考虑隐含能源。首先,在性能指标中添加额外的能源消耗和碳排放指标,其次,为隐含能源添加一个新的性能指标要求。iii)为了增加可再生能源的份额,MuKEn:20XX可以首先加速淘汰建筑中的燃油和燃气锅炉,其次将能源法规的系统边界从建筑扩展到社区。二氧化碳排放性能指标将是增加可再生能源在建筑行业份额的另一种潜在方式。iv)为了缩小性能差距,瑞士的下一个建筑技术法规可以首先调整当前的合规性检查,或者基于测量数据调整合规性检查。v)为加快建筑改造,瑞士可以效仿法国的做法,如强制改造高能耗建筑。Page55of66Bysynthesizingtheimplementationchallengesfortheinnovativeexamplesacrossourfivecasestudies,wederivesixpolicydesignprinciplesforTERs.ThesearegenerallyapplicableandensureTERsfunctioneffectively–thusoftenseparatingthesuccessfulTERimplementationsfromthefailures.WerecommendthatpolicymakersapplytheseprincipleswhenimplementinginnovativeTERdesignstoensurebroadacceptanceacrossallactorsintheconstructionsector–particularlyimportantinviewofTERsmandatorynature.Table14providesanoverviewofoursixTERdesignprinciplesandoutlinesexamplesillustratinghowtofollowthem.TERdesignprincipleTERdesignexamplesKeepadditionalburdensforbuildingownerslight•Includetechnicalfeasibilityandcost-effectivenesstests•CombineTERswithadditionalpoliciessuchaszero-interestfinancingtolightentheburdenofupfrontinvestmentCreatelong-termregulatorycertainty•AlignTERswithnationalenergyandclimatetargets•Pre-announceupcomingTERs•IntegratecontinuousimprovementprocessesBewaretechnology-specificrequirements•EnsurethatmultipletechnologyoptionsareavailableAnticipatetheimpactofnewregulationsonsmalleractors•Supportsmallfirmsbyreducingunnecessarysoftcosts•Helpsmallauthoritiesbyremovingtheburdenofcapacity-intensivecompliancecontrolPromoteknowledgeofinnovativedesign•Pre-announceupcomingTERs•Conducttestprograms•Builduponvoluntarylabels•LearnfromfrontrunnerlegislationIntegrateTERsinthelocalcontext•Leveragetheexistinginfrastructure•Considerthelevelandpaceofongoinggriddecarbonisation•Leveragedomesticresources•Considerthequalityofthedomesticconstructionindustry•CheckpoliticalfeasibilityTable14:OverviewofBECdesignprinciplesanddesignexamples©Source:Innovativedesignsofbuildingenergycodesforbuildingdecarbonizationandtheirimplementationchallenges;M.Schwarzetal./JournalofCleanerProduction248(2020);Link:https://bit.ly/3y44hJ8Page56of66通过综合分析五个案例中的创新措施的实施挑战,报告得出了六个关于建筑技术法规的政策设计原则。这些原则是普遍适用的,并且能够确保建筑技术法规的有效运转,因此,建议政策制定者在实施创新的建筑技术法规设计时考虑这些原则,并确保建筑行业的所有利益相关方广泛参与进来,鉴于建筑技术法规的强制性,这一点尤为重要。表14概述了这六项建筑技术法规设计原则,并概括说明了如何遵循这些原则。建筑技术法规设计原则建筑技术法规设计示例减轻业主的额外负担•包括技术可行性和成本效益测试•将建筑技术法规与零息融资等附加政策相结合,以减轻前期投资的负担创造长期监管的确定性•使建筑技术法规与国家能源和气候目标保持一致•预先宣布即将到来的建筑能源法规•整合持续改进流程注意特定技术的要求•确保有多种技术可供选择预测新法规对小规模参与者的影响•通过减少不必要的软成本来支持小公司•通过消除能力密集型合规控制的负担来帮助小机构推广创新设计知识•提前公示之后的建筑能源法规•开展试点项目•开发自愿获取的标签•向先进的法规学习根据当地环境整合建筑能源法规•充分利用现有的基础设施•考虑正在进行的电网去碳化的水平和速度•充分利用国内资源•考虑到国内建筑行业的质量•检查政治可行性表14:建筑能源法规设计原则和设计示例概述©来源:建筑脱碳建筑能源法规的创新设计及其实施挑战;M.Schwarz等人/清洁生产杂志248(2020);链接:https://dwz.date/fwrZPage57of66ChallengesofnewTERAccordingtotheinternationalcomparison,MuKEN:2014isastate-of-the-artTER.However,impactanalysisconfirmsthateveniftheMuKEn:2014isfullyimplementedalloverSwitzerland,theSwissCO2targetofnet-zerowillstillfallshortbyapproximately30%[DOI:10.13140/RG.2.2.12307.22568].Throughtechno-economicoptimization,retrofitsolutionsfortheSwissbuildingstockcouldbeidentifiedwhichachievespecificCO2emissionsbelow10kgCO2/m2-typicallyatCO2avoidancecostsof200-400CHF/tCO2comparedtocost-optimalsolutions.Thetechnicallyandeconomicallyoptimizedsolutionsarecharacterizedbythreemeasuresatthebuildinglevel:i)partiallyimprovethebuildingenvelopeintermsofenergyefficiency,ii)replaceoilandgasheatingsystemsasfaraspossiblewithrenewableheatingsystemsandiii)usephotovoltaicsand,whereappropriate,installbatterystoragesystems.AnalyzingtheParetofrontsinmoredetail,theidealretrofitmeasuresandsystemselectionaretrade-offsalongthemulticriteriaoptimization.Aretrofitoptionandaheatingsystemareselectedand,ifapplicable,asolarsystemisdefined.Sinceaheatingsystemisalreadyinstalledinthebuilding,theoptimisationprocesscaneitherkeeptheexistingsystem(oilorgas-firedboilers,biomass,electricordistrictheating)orselectanewandmoreefficientsystem(airsourceheatpump,groundsourceheatpump,biomass,cogenerationheatandpowersystemorgasboiler).Figures7and8showtheoptimalcombinationofbuildingenvelopeandsystemsforallsingleandmultiplefamilydwellingsarchetypes.Thesizeoftheindividualmarkersrepresentstherelevantbuildingfloorareainm2.Thegraphicshowsthatroofrenovationsarethemostfrequentlyperformedupgradeinsingle-familyhousessincethisusuallyrepresentsthemostcost-effectiveaction.Themostpromisingheatingsystemsarewoodpelletsystemsorairsourceheatpumps.Incertaincases,theoptimisationshowsthatelectricheatingsystemsmayberetainedafterrenovation,thoughthisoccursinlessthan5%ofalloptimisedsolutionsforsinglefamilyhouses.Figure7:AverageParetofrontforsinglefamily,multi-familyandnon-residentialbuildings,representingtheSwissbuildingstock.Thelife-cycleemissionsrepresentannualizedCO2emissionsoverthelifetimeofthecomponentsusedandtheiroperation.图7:单户住宅、多户住宅以及代表瑞士建筑存量的非住宅建筑类型的平均帕累托最优的集合。生命周期排放量是指所用组件及其运行生命周期内的年二氧化碳排放量。©Source:Optimaltransformationstrategiesforbuildings,neighbourhoodsanddistrictstoreachCO2emissionreductiontargets,EnergyandBuildings,PortiaMurrayetal.,Volume207,2020;Link:bit.ly/3Zca2QS©来源:为实现二氧化碳减排目标,建筑物、街区和地区的最佳改造策略,《能源与建筑》,PortiaMurray等人,第207卷,2020年;链接:dwz.date/fwsb独户住宅多户住宅办公建筑医院餐饮建筑学校建筑商店建筑例如:二氧化碳减排成本(单户住宅)=增加的成本/二氧化碳排放减少量=10瑞郎/平方米/26公斤二氧化碳/平方米1000公斤二氧化碳/吨二氧化碳Page58of66新建筑能源法规面临的挑战通过与国际相关法规进行比较,MuKEN:2014是一个相对而言最先进的建筑技术法规。然而,影响性的分析证实,即使MuKEn:2014在瑞士各地得到全面实施,离瑞士的二氧化碳净零排放目标仍相差约30%[DOI:10.13140/RG.2.2.12307.22568]。通过技术经济优化,可以确定瑞士建筑行业的改造方案,通过这些方案可以实现低于10kgCO2/m2排放量。与成本最优方案相比,通常的CO2减排成本为200-400瑞士法郎/tCO2。技术上和经济上最优化的解决方案是在建筑层面采取以下三项措施:i)在能效方面,部分改善建筑围护结构ii)尽可能用可再生供暖系统取代燃油和燃气供暖系统iii)使用光伏,并在适当情况下安装电池存储系统通过更详细地分析帕累托最优曲线,理想的改造措施和系统选择是多准则优化的权衡。选择一个改造方案和一个加热系统,如果适用的话,还可以考虑太阳能系统。对于已有供热系统,在优化过程可以保留现有系统(燃油或燃气锅炉、生物质、电力或区域供热)或选择新的更有效的系统(如:空气源热泵、地源热泵、生物质、热电联供系统或燃气锅炉)。图7和图8显示了所有单户和多户住宅原型的建筑围护结构和系统的最佳组合。各个图标的大小代表相关的建筑面积,以平方米为单位。该图显示,屋顶翻新是单户住宅中最常见的改造措施,这通常也是最具成本效益的措施。最有前景的供暖系统是木制颗粒燃烧系统或空气源热泵。在某些情况下,优化方案显示电加热系统在翻新后可能会保留,但这种情况在所有针对单户住宅的优化解决方案中占比不到5%。Figure8:ComparisonofdeterministicParetofrontwithmultiplestochasticParetofrontsresultingfromtheRobustnessanalysis.图8:确定性帕累托最优与鲁棒性分析得出的多个随机帕累托最优的比较。©Source:Optimaltransformationstrategiesforbuildings,neighbourhoodsanddistrictstoreachCO2emissionreductiontargets,EnergyandBuildings,PortiaMurrayetal.,Volume207,2020;Link:bit.ly/3Zca2QS©来源:为实现二氧化碳减排目标,建筑物、街区和地区的最佳改造策略,《能源与建筑》,PortiaMurray等人,第207卷,2020年;链接:dwz.date/fwsb燃油锅炉燃气锅炉生物质能锅炉电锅炉空气源热泵地源热泵热电联产区域供热无翻新屋顶楼板立面窗户幕墙完全翻新平均成本平均CO2排放建筑面积(百万㎡)改造成本50个典型单户住宅的改造选择50个典型多户住宅的改造选择改造成本Page59of66Generallyspeaking,toreachthetargetof<10kgCO2/m2bothapartialretrofitofthebuildingenvelopeandachangeoftheheatingsystemarerecommended.Replacingfossil-fuelledheatingsystemsismandatoryfornearlyallbuildingstoreachthenet-zerogoal.Furtherresultsindicatethatadistrictsolutionwiththermalnetworksincitieswouldbeappropriatefor50-80%ofmoredenselypopulatedneighbourhoods.Theinvestmentcostsofsuchdistrictsolutionsarebetween20and25%lowerthanstandalonebuildingsolutions[Murray,P.etal,2020].Byscalingthetechnicallyandeconomicallyoptimalsolutionstotheentirebuildingstock,CO2emissionscouldbereducedbyupto80%.Theremaining20%CO2directemissionoftheSwissbuildingstockmustbesolvedattheregionalornationallevel.Transformingtheenergysupplyinfrastructure(electricityandgas)intoacarbon-freesystemisaprerequisiteforachievingthenet-zerotarget.Theaboveanalysisshowsthatachievingthenet-zerotargetfortheSwissbuildingstockistechnicallyandeconomicallyfeasible.Figure9:Typicalsolutionsunder10kgCO2,eq/𝑚𝑚2annually,rankedinbybuildingage(Photovoltaicsarethemostpopularchoiceinthesolarsystemcategory.图9:每年10kgCO2/㎡以下的典型解决方案,按建筑建成年份排名,光伏是最常用的太阳能利用方式©Source:Optimaltransformationstrategiesforbuildings,neighbourhoodsanddistrictstoreachCO2emissionreductiontargets,EnergyandBuildings,PortiaMurrayetal.,Volume207,2020;Link:bit.ly/3Zca2QS©来源:为实现二氧化碳减排目标,建筑物、街区和地区的最佳改造策略,《能源与建筑》,PortiaMurray等人,第207卷,2020年;链接:dwz.date/fwsb窗户和墙体屋顶全部窗户无墙体空气源热泵,太阳能,储存生物质燃炉,太阳能,储存燃气锅炉,太阳能,储存电热,太阳能区域供热,太阳能,储存地源热泵,太阳能,储存燃油锅炉,太阳能,储存其它系统采用建筑围护结构分布式可再生能源系统Page60of66一般来说,要达到碳排放小于10kgCO2/m2的目标,需要对建筑围护结构进行部分改造,同时升级供暖系统。几乎所有建筑都必须更换化石燃料供暖系统才能达到净零排放目标。进一步的结果表明,在城市中采用热力网络的区域解决方案适用于50-80%的人口密集社区,这种区域解决方案的投资成本比单户建筑解决方案低20%到25%[Murray,P.etal,2020]通过将技术上和经济上的最佳解决方案推广到整个建筑行业,二氧化碳排放量可减少80%。瑞士建筑行业剩余的20%的二氧化碳直接排放需要在地区或国家层面解决。将能源供应基础设施(电力和天然气)转变为无碳系统是实现净零排放目标的先决条件。综上所述,实现瑞士建筑行业的净零排放目标在技术上和经济上是可行的。一般来说,要达到碳排放小于10kgCO2/m2的目标,需要对建筑围护结构进行部分改造,同时升级供暖系统©InaUnsplashWeb:bit.ly/3HctcA5ordwz.date/fwpaPage61of66NextgenerationofTERToprovidethebestpossibleregulatoryenvironmentforencouragingstakeholderstodevelopthebuildingstockintheintendeddirection,thefollowingTERideashavebeendevelopedtodiscussthenextgenerationofTER.NewTERsshouldbebuiltonperformancecriteria,whichdirectlyaddresstargets,e.g.CO2emissions.Prescriptiveregulationswhichdescribeconstructions,e.g.wallinsulationandhopeofCO2reductions,areneithereffectivenorstraightforwardintheirapplication.Becauseofthis,weproposethreeperformancecriteria:Capacitylimits,shareofrenewableenergyandembodiedCO2emissions.RegulationofCapacityLimitsThe«CapacityLimit»TERtargetsthedesignandconstructionphaseofabuilding.Theevaluationofthebuildingenergycalculationsshowedthatthemaximumsystemcapacitycouldrepresenttheenergyefficiencyofabuildinginamarginallyworsewaythantheadvancedcalculationoftheannualenergydemand.However,withaTER“CapacityLimit”,thecertificationcanbesimplifiedandtheimpactextended:i)Simplification:Thecalculationofthesystemcapacityisbasedexclusivelyonthechosenconstructionandtheselectionofmaterialsandequipment.Operationalassumptionssuchassolargains,internalloads,occupancy,etc.canbeneglected.ImplementingsuchaTERcanbeperformedsimilarlytothepredecessorbyverifyingcompliancewithlimitvaluesduringtheplanningphase.Oreasierduringtheconstructionphasebyinspectingthecapacitydataoftheinstalledsystems.ii)Extension:Theswitchtorenewableenergysources(seealsobelow)isamajorchallengefortheelectricity,gasandheatinfrastructures.Theirmagnitudeandtheircorrespondingsupplycapacityarelimitedbytheinstallednetworks.Bylimitingthecapacityofabuilding,theTERinfluencesinfrastructurerequirementsdirectlybyregulatingthenecessarynetworkandreservecapacitiesandincentivisingstoragecapacitiesatthebuildinglevel.RegulationoftheRenewableShareThe«EnergyMix»TERtargetstheoperationphaseofabuilding.Energyconsumptionandgreenhousegasemissionsaresignificantlyimpactedduringbuildingusage.TheproposedTERlimitstheamountofcausedCO2emissionsbythesuppliedenergy.ThebuildingownerortenantcancomplywiththeCO2limitsbyreducinghisconsumption,choosinglow-orzero-CO2energyproductsand/orincreasingitson-siterenewableenergyproduction.(e.g.photovoltaics,biomassboilers,etc.).TheenforcementofsuchaTERcouldbeperformedbySmartMetersandDigitalDataPlatforms.NewTERsshouldbebuiltonperformancecriteria,whichdirectlyaddresstargets,e.g.CO2emissions.©InaUnsplashWeb:bit.ly/3E45sf3ordwz.date/fwpbPage62of66新一代建筑技术法规为了提供最佳的监管环境,鼓励利益相关方按照预期方向开发建筑,报告为新建建筑技术法规提出了如下建议。新的建筑技术法规应以性能目标为导向,例如二氧化碳排放量。建筑的规定性指标,例如墙体保温参数和二氧化碳减少的程度,在实际应用过程中既不有效也不够直截了当。因此,报告提出了三个性能指标:容量限制、可再生能源利用率和隐含碳排放。容量限制的规定技术法规中“容量限制”针对的是建筑的设计和施工阶段。对建筑能源计算的评估表明,最大的系统容量可以代表建筑的能源效率,其精准度略差于全年能源需求的详细计算方式,但是,使用“容量限制”,可以简化认证并扩大影响:i)简化:系统容量的计算完全基于所选结构、材料和设备。太阳能收益、内部负荷、入住率等因素可以忽略不计。实施这样的建筑设计法规与之前的法规类似,在规划阶段验证是否满足极限值,或者在施工阶段,通过检查已安装系统的容量数据进行验证。ii)扩展:向可再生能源的转换(另见下文)是电力、天然气和热力基础设施面临的主要挑战。它们的规模和相应的供应能力都受到现有网络的限制。通过限制建筑的容量,建筑技术法规通过调节必要的网络和储备容量以及激励建筑行业的存储容量来直接影响基础设施的要求。可再生能源利用率的规定技术法规中“能源结构”针对的是建筑的运行阶段。建筑使用过程中的能源消耗和温室气体排放影响巨大。这里建议的技术法规中限制了化石能源的比例。建筑业主或租户可以通过减少消费、选择低二氧化碳或零二氧化碳排放的能源产品和/或增加可再生能源生产来遵守二氧化碳的限制(例如,光伏发电、生物质锅炉等)。该法规的执行可以通过智能电表和数字数据平台来实现。新的技术法规应建立在能直接确定目标的性能标准之上,如碳排放量等。©UnsplashWeb:bit.ly/3ussS8Gordwz.date/fwpcPage63of66RegulationsoftheEmbodiedEmissionsThe«EmbodiedEmissions»TERtargetsthedesignphasesandupstreammaterialproductionofthebuildingindustry.AnincreasingproportionoftheenvironmentalimpactinSwitzerland'sbuildingstocknolongercomesfromtheusephase,butfromthe"ecologicalrucksack"thatbuildingmaterialsbringwiththem,i.e.,fromtheemissionsthatoccurduringtheproductionphase(embodiedemissions).Approximatelyhalfofthoseemissionswillcomefromnewbuildingswhiletheotherhalforiginatesfromretrofittingtheexistingbuildingstock,whiletheimpactfromdemolitionanddecommissioningonlyaccountsforaminorshare89.Thereforeitiscriticaltoinvestigateandimplementthesolutionsaimedatreducingsuchembodiedimpacts.Circulareconomyprovidesaframeworkofhowtoreduceenvironmentalimpactsarisingthroughoutthelifecycleofmaterialsthroughvariouscircularstrategies(e.g.rethink,reduce,refurbish,recycle)[Potting,J.etal.,2017].Implementingsuchcircularstrategiesinthebuildingindustrycomeswithasetofspecificchallengesduetotheuniquelayoutoftheconstructionsector.i)Thecurrentmaterialflowsintheconstructionsectorarehighlyimbalancedastheinputflowsaremuchhigherthanpotentialsecondaryresourcescomingoutofthesystem.ii)Longandverydiverselifetimesinthebuildingsectormakebusinessmodelsdealingwithsecondaryresourcesfrombuildingscomplex.iii)Thebroaddiversityandincreasingcomplexityofmaterialsrequiredifferentcircularstrategiesdependingonthevariousmaterialsused.iv)Constructionprojectsarehighlycustomizedandthemultitudeofstakeholdersinvolvedcomplicatesstandardsolutions.89Source:onlinelibrary.wiley.com/doi/10.1111/jiec.12739v)Besidessomepromisingpilots,alargeknowledgegapaboutwhichmaterialsareinthebuildingstock,andwhenwilltheycomeoutwhere,andinwhichquality,exists.Insum,theseaspectsalsoaffecthowfutureTERcouldaddressincorporatingembodiedemissionsintheirregulations.Labels,materialpassports,buildingmaterialdatabasesandpilotprojectsforindividualmaterialsaswellasforentirebuildingsarepromisingsignsoftheindustrymovingintothisdirection.However,giventhelargeuncertaintyaboutwhichcircularstrategieswillbemosteffective,currentregulationslargelyconcentrateonprescriptiverequirementsregardingthedeconstructionphaseandwastedisposal.ThenewTERsalsoallowthetechnicalandeconomicpotentialsoflarger-scalesolutionstobeexploited.Thesuggestedperformance-basedmeasuresforbuildings,namely“CapacityLimiting”and“EnergyMix”,canalsobeappliedanalogouslyattheneighbourhoodanddistrictscale.Spatialplanning,includingenergyplanning,couldcreatesupplementaryincentivestoemphasiselarger-scalesolutions.AfurtherconsiderationforaneffectiveTERcouldbebindingreductionpathsforlimitsortargetvalues.Thelegislaturetherebycommitsitselfoverthelong-termandconstrainsitsnegotiatingscopewhileenablingbuildingownerstopreparethemselvesfortheupcominglimitsandallowingthemtochoosetheoptimaltimetoconductrenovationwork.Atthesametime,thebuildingindustrygainssecurityforitsproductandservicedevelopmentsincethesewouldcomplywithfutureregulations,therebyencouraginginnovation.Page64of66隐含碳排放的规定技术法规中“隐含碳排放”针对建筑的设计阶段和上游材料生产。瑞士建筑行业越来越多的环境影响评价不再仅仅关注使用阶段,同时也关注生产建筑材料带来的"生态负担",即来自于建材生产阶段的排放(隐含排放)。这些排放中约有一半来自新建建筑,另一半来自既有建筑改造,而拆除和退役的影响只占很小一部分90。因此,调查和实施旨在减少这种隐含碳排放的解决方案是至关重要的。循环经济提供了一个说明如何通过各种循环策略(例如重新思考、减少、翻新、回收)来减少材料整个生命周期中产生的环境影响的框架。由于建筑行业的独特布局,在建筑行业实施这种循环战略会带来一系列具体挑战。i)由于新输入流量远高于来自系统本身的潜在二次资源,建筑部门当前的材料流量高度不平衡。ii)建筑漫长而多样的生命周期使得处理来自建筑行业的二次资源的商业模式变得复杂。iii)材料的多样性和日益复杂的材料需要不同的循环策略,具体取决于所使用的各种材料。iv)建设项目是高度定制化的,众多利益相关方使标准解决方案变得复杂。90来源:onlinelibrary.wiley.com/doi/10.1111/jiec.12739v)除了一些有前景的试点之外,在存量建筑中哪些材料可以得到利用以及它们何时可以被利用以及材料质量如何等方面都存在巨大的知识差距。这些方面也会影响未来的建筑技术法规如何将隐含碳排放纳入进来。标签、材料通行证、建筑材料数据库以及针对个别材料和整个建筑的试点项目都是行业向这个方向发展的良好迹象,但针对哪种循环策略最有效仍存在很大的不确定性。目前的法规主要集中在关于拆除阶段和废物处理的规范要求上。新的建筑法规还应允许探索更大规模的解决方案的技术和经济潜力。建议对采取以性能为导向的措施,即“热功率限值”和“能源结构限值”,也可以将其应用在社区和城区层面。空间规划,包括能源规划,可以提供一些补充激励措施,以促进更大规模的解决方案。关于有效的建筑技术法规的另一个考虑是如何减少限制或目标值的约束性。立法机构应为此做出长期承诺,并限制其谈判范围,使建筑业主能够为即将到来的限制做好准备,允许他们选择最佳时间进行翻新工作。此外,因为这些产品和服务符合未来的法规,建筑行业产品和服务的发展也获得了保障,进一步鼓励了创新。Page65of66OutlookonfutureTERTheproposedTERsaffecttheentirelifecycle(construction,operationanddecommissioning)ofabuilding.BysubdividingthecomplexCO2regulationproblemofbuildingsintointerrelatedbutconsistentmeasures,aregulationframeworkcanbebuiltwhichconsistoftransparentandcomprehensiblepartsthatcanbeeasilyandeffectivelyenforced.Moreover,eachTER,whichcoversaparticularpartoftheframework,willtargettherelevantdecision-makers,e.g.TER‚capacitylimit‘influencetheworkofarchitects,TER‚renewableshare‘influencesthebehaviouroftheownerandTER‚embodiedemissions‘canbereducedbythebuildingmaterialindustry.SuchtailoredTERs,coordinatedbytheframework,couldachievethegreatestimpactofreducingCO2emissions.Thepresentedworkfocusesontechnicalenergyregulations,whichhaveincreasedenergyefficiencyinthepastandwilleffectivelydecreaseCO2emissionsinthefuture.However,weacknowledgethatsuchcontrolandregulatoryinstrumentsworkbestifembeddedandcoordinatedinamorecomprehensivepolicymix[Rogge,K.S.,&Reichardt,K.,2016;Kernetal.2017],asnosingleTERcanaddressallthemarketandbehaviouralfailures[Lee,W.L.,Yik,F.W.H.,2004].Thecoordinationwithotherpolicyinstruments,eithereconomicandmarket-based(e.g.subsidies)orfiscal(i.e.taxes)instruments,orsupport,informationandvoluntaryaction,althoughnotthefocusofthiswork,willbeessentialtoachievethemostsignificantpossibleimpact.Furthermore,determiningincomeandpolicycosteffectsofthevariousmixesofregulatoryinstrumentsshouldalsobeexaminedand,ifnecessary,coordinated.Thiswillestablishholisticconditionsforachievingthenationalobjectives,likethenet-zerogoalsofSwitzerland.TERsetaminimumallowablestandardfortheenergyperformanceofabuildingandmeasurethembasedontheyearlyCO2-emissions.©UnsplashWeb:bit.ly/3ilx3ukordwz.date/fwpdPage66of66对未来建筑技术法规的展望拟议的建筑技术法规应贯穿建筑的整个生命周期(建造、运营和停用)。通过将复杂的建筑二氧化碳监管问题细分为相互关联且一致的措施,可以建立一个由透明且易于理解的内容组成的监管框架,这些内容可以轻松有效地执行。此外,法规的每一个框架中特定部分都会针对相关的决策者,如“热功率极限”影响建筑师的工作,“可再生能源占比”影响业主的行为,“隐含碳排放”可以通过建筑材料行业来减少。这种多方面协调,“量身定制”的法规可以实现最程度的减排。该报告所展示的工作侧重于技术性能源法规,这些法规在过去提高了能源效率,并将在未来有效减少二氧化碳排放。如果将这种控制和监管手段嵌入到更全面的政策组合中并与之合作,则效果最佳[Rogge,K.S.,&Reichardt,K.,2016;Kernetal.2017],因为没有一个单一的技术规范可以解决所有的市场和行为失误[Lee,W.L.,Yik,F.W.H.,2004]。虽然与其他政策工具,如经济和基于市场的(例如补贴)或财政(例如税收)工具,以及支持信息和自愿行动等的协调不是本项工作的重点,但这可能起到非常重要的影响。此外,应检查各种组合监管工具对收入和政策成本的影响,并在必要时进行协调。这些举措将为实现国家目标,例如瑞士的净零排放目标,创造整体条件。技术法规为建筑能耗确定一个最低标准并用年碳排放量来进行测量。©InaUnsplashWeb:bit.ly/3K1ME3Sordwz.date/fwpe