全球可再生能源现状报告2023(第一模块:能源需求)(英文版)--REN21VIP专享VIP免费

RENEWABLES 2023
GLOBAL STATUS REPORT
ENERGY
DEMAND


   
  
MODUL OVERVIEW
POLICY
INVESTMENT
MARKET DEVELOPMENTS
CHALLENGES AND OPPORTUNITIES
 
   


   
  
MODUL OVERVIEW
POLICY
INVESTMENT
MARKET DEVELOPMENTS
CHALLENGES AND OPPORTUNITIES
 
   


   
  
MODUL OVERVIEW
POLICY
INVESTMENT
MARKET DEVELOPMENTS
CHALLENGES AND OPPORTUNITIES
 
   


   
  
MODUL OVERVIEW
POLICY
INVESTMENT
MARKET DEVELOPMENTS
CHALLENGES AND OPPORTUNITIES
 
   
COLLECTION
2023
EXECUTIVE DIRECTOR
Rana Adib
REN21
PRESIDENT
Arthouros Zervos
REN21 MEMBERS
MEMBERS AT LARGE
Michael Eckhart
David Hales
Kirsty Hamilton
Peter Rae
Arthouros Zervos
GOVERNMENTS
Afghanistan
Australia
Austria
Brazil
Denmark
Dominican Republic
Germany
India
Mexico
Norway
Republic of Korea
South Africa
South Australia
Spain
United Arab Emirates
United States of America
SCIENCE AND ACADEMIA
AEE – Institute for Sustainable
Technologies (AEE-INTEC)
Council on Energy, Environment and
Water (CEEW)
Fundación Bariloche (FB)
International Institute for Applied
Systems Analysis (IIASA)
International Solar Energy Society
(ISES)
National Renewable Energy Laboratory
(NREL)
National Research University Higher
School of Economics Russia (HSE)
South African National Energy
Development Institute (SANEDI)
The Energy and Resources Institute
(TERI)
University of Technology – Institute for
Sustainable Futures (UTS)
World Resources Institute (WRI)
INDUSTRY ASSOCIATIONS
Africa Minigrids Developers Association
(AMDA)
Alliance for Rural Electrification (ARE)
American Council on Renewable Energy
(ACORE)
Associação Lusófona de Energias
Renováveis (ALER)
Associação Portuguesa de Energias
Renováveis ((APREN)
Chinese Renewable Energy Industries
Association (CREIA)
Clean Energy Council (CEC)
Euroheat & Power (EHP)
European Heat Pump Association
(EHPA)
European Renewable Energies
Federation (EREF)
Global O-Grid Lighting Association
(GOGLA)
Global Solar Council (GSC)
Global Wind Energy Council (GWEC)
Indian Renewable Energy Federation
(IREF)
International Geothermal Association
(IGA)
International Hydropower Association
(IHA)
RE100/Climate Group
RES4Africa Foundation
SolarPower Europe (SPE)
Union International de Transport
Publique (UITP)
World Bioenergy Association (WBA)
World Wind Energy Association (WWEA)
INTER-GOVERNMENTAL
ORGANISATIONS
Asia Pacific Energy Research Center
(APERC)
Asian Development Bank (ADB)
ECOWAS Centre for Renewable
Energy and Energy Eciency
(ECREEE)
Electric Power Council of the
Commonwealth of Independent
States (EPC)
European Commission (EC)
Global Environment Facility (GEF)
International Energy Agency (IEA)
International Renewable Energy
Agency (IRENA)
Islamic Development Bank (IsDB)
Organización Latinoamericana de
Energía (OLADE)
Regional Center for Renewable
Energy and Energy Eciency
(RCREEE)
United Nations Development
Programme (UNDP)
United Nations Environment
Programme (UNEP)
United Nations Industrial
Development Organization (UNIDO)
World Bank (WB)
NGOS
Association Africaine pour
l'Electrification Rurale (Club-ER)
CDP
CLASP
Clean Cooking Alliance (CCA)
Climate Action Network International
(CAN-I)
Coalition de Ciudades Capitales de las
Americas (CC35)
Energy Cities
European Youth Energy Network
(EYEN)
Fundación Renovables (FER)
Global Forum on Sustainable Energy
(GFSE)
Global Women’s Network for the
Energy Transition (GWNET)
Greenpeace International
ICLEI – Local Governments for
Sustainability
Institute for Sustainable Energy Policies
(ISEP)
International Electrotechnical
Commission (IEC)
Jeune Volontaires pour l'Environne-
ment (JVE)
Mali Folkecenter (MFC)
Power for All
Renewable Energy and Energy
Eciency Partnership (REEEP)
Renewable Energy Institute (REI)
Renewables Grid Initiative (RGI)
SLOCAT Partnership on Sustainable,
Low Carbon Transport
Solar Cookers International (SCI)
Sustainable Energy for All (SEforAll)
The Global 100% Renewable Energy
Platform (Global 100%RE)
World Council for Renewable Energy
(WCRE)
World Future Council (WFC)
World Wide Fund for Nature (WWF)
RENEWABLES IN ENERGY DEMAND
FOREWORD
A lot has changed in a decade.
The past ten years have brought significant shifts in the renewable energy landscape. Renewables, once an emerging
trend, have become a global necessity. Decision makers are finally acknowledging that a world fully energised by
renewables is not only desirable but essential to bringing about prosperous economies, sustainable societies and
equitable human development.
This report presents the first modules of the eight-piece Renewables 2023 Global Status Report (GSR) Collection.
The Energy Demand modules on Buildings, Industry, Transport and Agriculture are a testament to the crucial role
that energy-consuming sectors play in driving the transition to renewable energy. They underscore the importance of
looking beyond the supply side and installed capacities, and recognising that accelerating the demand for renewables
across these four sectors is critical. Without substantive progress on the demand side, it will be impossible to achieve
the structural transformations needed to shift to a renewables-based energy system, economy and society.
With this report, REN21 continues to play a pivotal role in shaping the transition to sustainable energy sources and
in bridging the gap between (renewable) energy supply and demand. The findings presented in the GSR Energy
Demand modules represent an important step forward in understanding the full potential of renewables in meeting
the world's energy needs, as well as the persisting barriers.
Renewables are the only energy sources compatible with the vision to “leave no one behind”. Demand sectors are
steadily discovering that clean, aordable, secure and accessible energy is key to leveraging for impact. For the first
time, the world is using renewable energy solutions to overcome multiple global challenges simultaneously: economic
instability, unprecedented energy crises, threats to peace and democracy, and the devastating socio-economic
consequences of a global pandemic. We need to harness the political momentum to accelerate this transition.
We must build on each other to ensure that renewables are never left out from sustainable development conversations.
We must make 2023 the year of renewables.
REN21, in its role as knowledge broker for the renewable energy sector, is ambitiously spearheading this global wave
of change. Our goal is to amplify the voices of the multi-stakeholder community that we proudly represent. The GSR
Energy Demand modules represent a collective eort of hundreds of collaborators who have worked meticulously to
paint an accurate picture of renewables today.
I extend heartfelt thanks to the REN21 team, authors, special advisors and contributors who have brought their
knowledge, time and dedication to producing this report. Your insights, passion and commitment have been
instrumental in making the GSR Energy Demand modules a reality. I am confident that this report will serve as a
valuable resource for policy makers, industry leaders and other stakeholders to inform decision making and drive the
transition to a sustainable future for all a future powered by renewable energy.
Sincerely,
Rana Adib
Executive Director, REN21
3
RENEWABLES2023GLOBALSTATUSREPORTENERGYDEMANDMODUPOLICINVESMARKMODULOVERVIEWPOLICYMODULOVERVIEWPOLICYINVESTMENTMODULOVERVIEWCOLLECTION2023EXECUTIVEDIRECTORRanaAdibREN21PRESIDENTArthourosZervosREN21MEMBERSMEMBERSATLARGEMichaelEckhartDavidHalesKirstyHamiltonPeterRaeArthourosZervosGOVERNMENTSAfghanistanAustraliaAustriaBrazilDenmarkDominicanRepublicGermanyIndiaMexicoNorwayRepublicofKoreaSouthAfricaSouthAustraliaSpainUnitedArabEmiratesUnitedStatesofAmericaSCIENCEANDACADEMIAAEE–InstituteforSustainableTechnologies(AEE-INTEC)CouncilonEnergy,EnvironmentandWater(CEEW)FundaciónBariloche(FB)InternationalInstituteforAppliedSystemsAnalysis(IIASA)InternationalSolarEnergySociety(ISES)NationalRenewableEnergyLaboratory(NREL)NationalResearchUniversityHigherSchoolofEconomicsRussia(HSE)SouthAfricanNationalEnergyDevelopmentInstitute(SANEDI)TheEnergyandResourcesInstitute(TERI)UniversityofTechnology–InstituteforSustainableFutures(UTS)WorldResourcesInstitute(WRI)INDUSTRYASSOCIATIONSAfricaMinigridsDevelopersAssociation(AMDA)AllianceforRuralElectrification(ARE)AmericanCouncilonRenewableEnergy(ACORE)AssociaçãoLusófonadeEnergiasRenováveis(ALER)AssociaçãoPortuguesadeEnergiasRenováveis((APREN)ChineseRenewableEnergyIndustriesAssociation(CREIA)CleanEnergyCouncil(CEC)Euroheat&Power(EHP)EuropeanHeatPumpAssociation(EHPA)EuropeanRenewableEnergiesFederation(EREF)GlobalOff-GridLightingAssociation(GOGLA)GlobalSolarCouncil(GSC)GlobalWindEnergyCouncil(GWEC)IndianRenewableEnergyFederation(IREF)InternationalGeothermalAssociation(IGA)InternationalHydropowerAssociation(IHA)RE100/ClimateGroupRES4AfricaFoundationSolarPowerEurope(SPE)UnionInternationaldeTransportPublique(UITP)WorldBioenergyAssociation(WBA)WorldWindEnergyAssociation(WWEA)INTER-GOVERNMENTALORGANISATIONSAsiaPacificEnergyResearchCenter(APERC)AsianDevelopmentBank(ADB)ECOWASCentreforRenewableEnergyandEnergyEfficiency(ECREEE)ElectricPowerCounciloftheCommonwealthofIndependentStates(EPC)EuropeanCommission(EC)GlobalEnvironmentFacility(GEF)InternationalEnergyAgency(IEA)InternationalRenewableEnergyAgency(IRENA)IslamicDevelopmentBank(IsDB)OrganizaciónLatinoamericanadeEnergía(OLADE)RegionalCenterforRenewableEnergyandEnergyEfficiency(RCREEE)UnitedNationsDevelopmentProgramme(UNDP)UnitedNationsEnvironmentProgramme(UNEP)UnitedNationsIndustrialDevelopmentOrganization(UNIDO)WorldBank(WB)NGOSAssociationAfricainepourl'ElectrificationRurale(Club-ER)CDPCLASPCleanCookingAlliance(CCA)ClimateActionNetworkInternational(CAN-I)CoalitiondeCiudadesCapitalesdelasAmericas(CC35)EnergyCitiesEuropeanYouthEnergyNetwork(EYEN)FundaciónRenovables(FER)GlobalForumonSustainableEnergy(GFSE)GlobalWomen’sNetworkfortheEnergyTransition(GWNET)GreenpeaceInternationalICLEI–LocalGovernmentsforSustainabilityInstituteforSustainableEnergyPolicies(ISEP)InternationalElectrotechnicalCommission(IEC)JeuneVolontairespourl'Environne-ment(JVE)MaliFolkecenter(MFC)PowerforAllRenewableEnergyandEnergyEfficiencyPartnership(REEEP)RenewableEnergyInstitute(REI)RenewablesGridInitiative(RGI)SLOCATPartnershiponSustainable,LowCarbonTransportSolarCookersInternational(SCI)SustainableEnergyforAll(SEforAll)TheGlobal100%RenewableEnergyPlatform(Global100%RE)WorldCouncilforRenewableEnergy(WCRE)WorldFutureCouncil(WFC)WorldWideFundforNature(WWF)RENEWABLESINENERGYDEMANDFOREWORDAlothaschangedinadecade.Thepasttenyearshavebroughtsignificantshiftsintherenewableenergylandscape.Renewables,onceanemergingtrend,havebecomeaglobalnecessity.Decisionmakersarefinallyacknowledgingthataworldfullyenergisedbyrenewablesisnotonlydesirablebutessentialtobringingaboutprosperouseconomies,sustainablesocietiesandequitablehumandevelopment.Thisreportpresentsthefirstmodulesoftheeight-pieceRenewables2023GlobalStatusReport(GSR)Collection.TheEnergyDemandmodulesonBuildings,Industry,TransportandAgricultureareatestamenttothecrucialrolethatenergy-consumingsectorsplayindrivingthetransitiontorenewableenergy.Theyunderscoretheimportanceoflookingbeyondthesupplysideandinstalledcapacities,andrecognisingthatacceleratingthedemandforrenewablesacrossthesefoursectorsiscritical.Withoutsubstantiveprogressonthedemandside,itwillbeimpossibletoachievethestructuraltransformationsneededtoshifttoarenewables-basedenergysystem,economyandsociety.Withthisreport,REN21continuestoplayapivotalroleinshapingthetransitiontosustainableenergysourcesandinbridgingthegapbetween(renewable)energysupplyanddemand.ThefindingspresentedintheGSREnergyDemandmodulesrepresentanimportantstepforwardinunderstandingthefullpotentialofrenewablesinmeetingtheworld'senergyneeds,aswellasthepersistingbarriers.Renewablesaretheonlyenergysourcescompatiblewiththevisionto“leavenoonebehind”.Demandsectorsaresteadilydiscoveringthatclean,affordable,secureandaccessibleenergyiskeytoleveragingforimpact.Forthefirsttime,theworldisusingrenewableenergysolutionstoovercomemultipleglobalchallengessimultaneously:economicinstability,unprecedentedenergycrises,threatstopeaceanddemocracy,andthedevastatingsocio-economicconsequencesofaglobalpandemic.Weneedtoharnessthepoliticalmomentumtoacceleratethistransition.Wemustbuildoneachothertoensurethatrenewablesareneverleftoutfromsustainabledevelopmentconversations.Wemustmake2023theyearofrenewables.REN21,initsroleasknowledgebrokerfortherenewableenergysector,isambitiouslyspearheadingthisglobalwaveofchange.Ourgoalistoamplifythevoicesofthemulti-stakeholdercommunitythatweproudlyrepresent.TheGSREnergyDemandmodulesrepresentacollectiveeffortofhundredsofcollaboratorswhohaveworkedmeticulouslytopaintanaccuratepictureofrenewablestoday.IextendheartfeltthankstotheREN21team,authors,specialadvisorsandcontributorswhohavebroughttheirknowledge,timeanddedicationtoproducingthisreport.Yourinsights,passionandcommitmenthavebeeninstrumentalinmakingtheGSREnergyDemandmodulesareality.Iamconfidentthatthisreportwillserveasavaluableresourceforpolicymakers,industryleadersandotherstakeholderstoinformdecisionmakinganddrivethetransitiontoasustainablefutureforallafuturepoweredbyrenewableenergy.Sincerely,RanaAdibExecutiveDirector,REN213RENEWABLES2023GLOBALSTATUSREPORT-RENEWABLESINENERGYDEMANDModuleOverview.........................................17Policy...................................................20Investment..............................................24MarketDevelopments....................................25ChallengesandOpportunities............................27ModuleOverview........................................29Policy...................................................31Investment..............................................32MarketDevelopments....................................32ChallengesandOpportunities............................37ModuleOverview........................................39Policy....................................................41Investment..............................................44MarketDevelopments....................................46ChallengesandOpportunities............................49ModuleOverview.........................................51Policy...................................................53Investment..............................................54MarketDevelopments....................................55ChallengesandOpportunities............................57Foreword................................................03Acknowledgements......................................08RENEWABLESINENERGYDEMAND:GLOBALTRENDS..................................10BUILDINGSINFOCUSAGRICULTUREINFOCUS1650MODULOVERVIEWPOLICYINVESTMENTMARKETDEVELOPMENTSCHALLENGESANDOPPORTUNITIESMODULOVERVIEWPOLICYINVESTMENTTABLEOFCONTENTSTRANSPORTINFOCUS38MODULOVERVIEWPOLICYINVESTMENTMARKETDEVELOPMENTSCHALLENGESANDOPPORTUNITIESINDUSTRYINFOCUS28MODULOVERVIEWPOLICYINVESTMENT4REnergyUnitsandConversionFactorsRDataCollectionandValidationRMethodologicalNotesRGlossaryRListofAbbreviationsReferenceTablescanbeaccessedthroughtheGSR2023EnergyDemandDataPackatRhttp://www.ren21.net/gsr2023-data-pack.Commentsandquestionsarewelcomeandcanbesenttogsr@ren21.net.DISCLAIMER:REN21releasesissuepapersandreportstoemphasisetheimportanceofrenewableenergyandtogeneratediscussiononissuescentraltothepromotionofrenewableenergy.WhileREN21papersandreportshavebenefitedfromtheconsiderationsandinputfromtheREN21community,theydonotnecessarilyrepresentaconsensusamongnetworkparticipantsonanygivenpoint.Althoughtheinformationgiveninthisreportisthebestavailabletotheauthorsatthetime,REN21anditsparticipantscannotbeheldliableforitsaccuracyandcorrectness.Thedesignationsemployedandthepresentationofmaterialinthemapsinthisreportdonotimplytheexpressionofanyopinionwhatsoeverconcerningthelegalstatusofanyregion,country,territory,cityorareaorofitsauthorities,andiswithoutprejudicetothestatusoforsovereigntyoveranyterritory,tothedelimitationofinternationalfrontiersorboundariesandtothenameofanyterritory,cityorarea.REPORTCITATIONREN21.2023.Renewables2023GlobalStatusReportcollection,RenewablesinEnergyDemand(Paris:REN21Secretariat).ISBN978-3-948393-07-6Endnotes................................................58PhotoCreditsandImpressum............................73FIGURESSNAPSHOTSLINKSTOMICROSITEFigure1.RenewablesinEnergyDemand..............10Figure2.NumberofCountrieswithRenewableEnergyRegulatoryPolicies,byDemandSector,2012–2022...........................15Figure3.RenewableShareofTotalFinalEnergyConsumptioninBuildings,2010,2019and2020.........................18Figure4.EnergyConsumptioninBuildingsbyMajorCountry/Region,2020.................18Figure5.EnergyConsumptionforHeatinginBuildings,bySource,2011and2021....................19Figure6.RegulatoryPoliciesinBuildings,byBuildingType,asofEnd-2022.............22Figure7.RenewableShareofTotalFinalEnergyConsumptioninIndustry,2010,2019and2020.........................30Figure8.RenewableEnergyShareandElectrificationRatesinSelectedIndustrySub-Sectors,2020.33Figure9.RenewableShareofTotalFinalEnergyConsumptioninTransport,2010,2019and2020.........................40Figure10.NationalandSub-NationalRenewableBiofuelMandatesandTargets,asofEnd-2022.......41Figure11.TargetsforRenewablePowerandElectricVehicles,asofEnd-2022.............42Figure12.InvestmentinElectricVehicles,byMajorCountry,2018-2022................45Figure13.RenewablesinTransportbyRegion,2010-2019..................................46Figure14.RenewableShareofTotalFinalEnergyConsumptioninAgriculture,2010,2019and2020.........................52Figure15.NationalandSub-NationalRenewableEnergyTargetsandFiscal/FinancialPoliciesintheAgricultureSector,asofEnd-2022............53Europe.................................................21China..................................................23SouthAfrica...........................................34Pakistan...............................................36US-China............................................44Spain.................................................48India....................................................56TABLEOFCONTENTSMODULOVERVIEWPOLICYINVESTMENTMARKETDEVELOPMENTSCHALLENGESANDOPPORTUNITIESGLOBALSTATUSREPORT2023COLLECTIONRenewablesinENERGYDEMAND5RENEWABLES2023GLOBALSTATUSREPORT-RENEWABLESINENERGYDEMANDREN21istheonlyglobalcommunityofactorsfromscience,governments,NGOsandindustryworkingcollectivelytodrivetherapiduptakeofrenewables–now!RENEWABLEENERGYPOLICYNETWORKFORTHE21stCENTURYREN21workstobuildknowledge,shapedialogueanddebate,andcommunicatetheseresultstoinformdecisionmakerstostrategicallydrivethedeeptransformationsneededtomakerenewablesthenorm.Wedothisincloseco-operationwiththecommunity,providingaplatformforthesestakeholderstoengageandcollaborate.REN21alsoconnectswithnon-energyplayerstogrowtheenergydiscourse,giventheeconomicandsocialsignificanceofenergy.Themostsuccessfulorganisms,suchasanoctopus,haveadecentralisedintelligenceand"sensing"function.Thisincreasesresponsivenesstoachangingenvironment.REN21incarnatesthisapproach.Ourmorethan4,000communitymembersguideourco-operativework.Theyreflectthevastarrayofbackgroundsandperspectivesinsociety.AsREN21’seyesandears,theycollectinformation,shareintelligenceandmaketherenewablevoiceheard.REN21takesallthisinformationtobetterunderstandthecurrentthinkingaroundrenewablesandchangenorms.Ourpublicationsareprobablytheworld’smostcomprehensivecrowd-sourcedreportsonrenewables.Eachisatrulycollaborativeprocessofco-authoring,datacollectionandpeerreviewing.6RENEWABLES2023GLOBALSTATUSREPORTENERGYDEMANDMODULOVERVIEWPOLICYINVESTMENTMARKETDEVELOPMENTSCHALLENGESANDOPPORTUNITIESMODULOVERVIEWPOLICYINVESTMENTMARKETDEVELOPMENTSCHALLENGESANDOPPORTUNITIESMODULOVERVIEWPOLICYINVESTMENTMARKETDEVELOPMENTSCHALLENGESANDOPPORTUNITIESMODULOVERVIEWPOLICYINVESTMENTMARKETDEVELOPMENTSCHALLENGESANDOPPORTUNITIESCOLLECTION2023CROWD-SOURCEDDATAANDKNOWLEDGERENEWABLESGLOBALSTATUSREPORT2023COLLECTIONCROWDSOURCEDDATAANDKNOWLEDGESince2005,REN21'sRenewablesGlobalStatusReport(GSR)hasspotlightedongoingdevelopmentsandemergingtrendsthatshapethefutureofrenewables.Itisacollaborativeeffortinvolvinghundredsofexperts.Thisyear’sedition(18th)hasevolvedindesignandstructuretoreflectthefundamentalchangesintheglobalenergylandscape.Thenewstructureisintheformofacollectionoffivepublications.Inadditiontopresentingthetrendsinrenewableenergysupply,italsodivesintotheenergydemandsectors,withdedicatedmodulesonbuildings,industry,transportandagriculture.Itincludesapublicationonenergysystemsandinfrastructurewithrenewables,aswellasapublicationonrenewablesforeconomicandsocialvaluecreation,acknowledgingthekeyrolethatenergyplaysacrosseconomiesandsocieties.Collectivelythesefivepublicationsofferreadersasystemicglobaloverviewofthecurrentuptakeofrenewables.ThisnewstructuremakestheGSRakeytoolinexpandingtherenewableenergydiscussionintokeysectorsandecosystems,developingasharedlanguageanddrivingastrongerintegrationofsupply,demand,infrastructure,marketandinvestment.Formoreinformation,seetheMethodologicalNotessectionondatacollectionandvalidation.REN21'sdataandknowledgecollectionmethodisbuiltonaglobalmulti-stakeholdercommunityofexperts.Itisvalidatedinacollaborativeandtransparentopenpeer-reviewprocess.Itismadeopenlyavailabletodevelopasharedlanguagethatshapesthesectoral,regionalandglobaldebateontheenergytransition.7RENEWABLES2023GLOBALSTATUSREPORT-RENEWABLESINENERGYDEMANDACKNOWLEDGEMENTSREN21DATAANDKNOWLEDGETEAMJadBabaTomažCigutYukoKomazawaNathalieLedanoisHendYaqoobSPECIALADVISORSAdamBrownJanetL.SawinCHAPTERAUTHORSHindCouzinLydiaElBouazzatiDuncanGibbFannyJoubertPalomaRuizKristinSeybothRESEARCHANDPROJECTSUPPORT(REN21SECRETARIAT)ThomasAndréFayrouzAtrakoutiTaliaContrerasAnaDíazVidalStefanieGicquelVibhushreeHamirwasiaChigozieNweke-EzeJonasReolonKremerBoranaResulajAndreaWainerLauraE.WilliamsonCOMMUNICATIONSSUPPORT(REN21SECRETARIAT)YasmineAbd-El-AzizElizabethCanavanMarielaLopezHidalgoHalaKilaniShiyaoZhangEDITING,DESIGNANDLAYOUTLisaMastny(Editor)weeks.deWerbeagenturGmbH(Design)PRODUCTIONREN21Secretariat,Paris,FranceDATAANDPYTHONPROGRAMMINGNicolasAchury(independentconsultant)LEADTOPICALCONTRIBUTORSAGRICULTUREPaulineHecker,IriniMaltsoglou,ManasPuri(FoodandAgricultureOrganizationoftheUnitedNations–FAO)BUILDINGSFemkedeJong(EuropeanClimateFoundation);ChiaraDelmastro(InternationalEnergyAgency–IEA);AdrienHiel(EnergyCities);TakeshiMiyamori,Ji-SooYoon(OrganisationforEconomicCo-operationandDevelopment)INDUSTRYTareqEmtairah,NurzatMyrsalieva(UnitedNationsIndustrialDevelopmentOrganization);TomasKåberger(RenewableEnergyInstitute)INVESTMENTElizabethHolley,JordyLee(ColoradoSchoolofMines);MuniraRaji(UniversityofPlymouth)POLICYValerieBennett(OntarioEnergyBoard);RichardCarlson(PollutionProbe);JuliaLevin(EnvironmentalDefense)TRANSPORTStefanBakker(NetherlandsInstituteforTransportPolicyAnalysis);CornieHuizenga(ClimateandEnvironmentServiceGroup,Shanghai);EmilieMartin(WuppertalInstitute);NikolaMedimorec,KarlPeet(SLOCATPartnershiponSustainableLowCarbonTransport);LeonardoPaoli,PerAndersWidell(IEA);MarionVieweg(CurrentFuture)Note:Someindividualshavecontributedinmorethanonewaytothisreport.Toavoidlistingcontributorsmultipletimes,theyhavebeenaddedtothegroupwheretheyprovidedthemostinformation.Inmostcases,theleadtopicalcontributorsalsoparticipatedintheGlobalStatusReport(GSR)reviewandvalidationprocess.MODULOVERVIEW8PEERREVIEWERSANDOTHERCONTRIBUTORSMussaAbbasiMussa(MinistryofEnergy,Tanzania);MohammedAbdalghafoor(UnitedNationsFrameworkConventiononClimateChange);AbdenourAchour(ChalmersUniversityofTechnology);DamilolaAdeyanju(EnelFoundation);SanchitSaranAgarwal(TheEnergyandResourcesInstitute);ShakirAli(MehranUET);AkramAlmohamadi(RegionalCenterforRenewableEnergyandEnergyEfficiency–RCREEE);SamiAlnabulsi(Beta-Blockers);MohammadAlnajideen(CardiffUniversity);PatrickAtoudaBeyala(SOASUniversityofLondon);RicardoBaitelo(InstitutodeEnergiaeMeioAmbiente–IEMA);PadmasaiLakshmiBhamidipati(UnitedNationsEnvironmentProgrammeCopenhagenClimateCentre);FaizBhutta(ETRCcontributor);UdochukwuBolaAkuru(TshwaneUniversityofTechnology);WemogarElijahBorweh(UniversityofLiberia);ElinaBosch(BecquerelInstitute);BernardoCarrillo;MyriamCastanié(REScoop.eu);SammyJamarChemengich(CLASP);DavidClark(KineticEnergyGenerationSystems);LanvinConcessao(WorldResourcesInstitute);PenelopeCrossley(UniversityofSydney);AshishDhankhar(DeutscheGesellschaftfürInternationaleZusammenarbeit–GIZ);PedroDias(SolarHeatEurope);NorbertEdomah(Pan-AtlanticUniversity);AhmedElsayed(EgyptianElectricityHoldingCompany);GeorgyErmolenko(CISElectricPowerCouncil);ManuelJoséEspinosa(ThePhoenixGroup);ChiomaEwurum(RenewableEnergyAssociationofNigeria);AndréFerreira(IEMA);MindyFox(SolarCookersInternational);EduardoGarcia(Energy-W);RosaGarcia(SustainableEnergyforAll–SEforALL);GeniceGrande-Acosta(InstituteofRenewableEnergy,NationalAutonomousUniversityofMexico);JennyGregory(RACEfor2030CooperativeResearchCentres);FüsunHaklıdır(IstanbulBilgiUniversity);IanHamilton(UniversityCollegeLondon);FihiimaMohamedHassan(Energyspecialist);FrankHaugwitz(AsiaEuropeCleanEnergy(Solar)AdvisoryCo.Ltd.);RainerHinrichs-Rahlwes(EuropeanRenewableEnergiesFederation);CatharinaHorn(NOWGmbH);AbdulwahabIbrahim(UniversityofIlorin,Nigeria);NeerajJoshi(IPCGmBH);JózsefKádár(AravaInstituteforEnvironmentalStudies);MaisarahKadir(InternationalRenewableEnergyAgency);BrianKawuma(PowerforAll);MohamedahmedKhalifa(KhartoumRefineryCompanyLtd);NazarI.Khan(JamiaMilliaIslamia);ShigekiKobayashi(TransportInstituteofCentralJapan);BharadwajKummamuru(WorldBioenergyAssociation);YounessLebtar(MohamedtheFirstUniversity);LucaLorenzoni(IEA);DetlefLoy(LoyEnergyConsulting);JuanRobertoLozano-Maya(NationalEnergyControlCenter–CENACE);JaideepMalaviya(MalaviyaSolarEnergyConsultancy);VincentMartinez(Architecture2030);GonçaloMartins(PortugueseAssociationofRenewableEnergy–APREN);LeopoldoMico(SolarHeatEurope/EuropeanSolarThermalIndustryFederation);NyashaMilanzi(AshesiUniversity);EmiMizuno(SEforALL);LawalMohammed(EnergyCommissionofNigeria);AntonioMoreno-Munoz(UniversityofCordoba);SabathaMthwecu(SolarRais);ChuckChuanNg(XiamenUniversityMalaysia);DianaCarolineNjama(ClimateTracker);JesseNyokabi(QuaiseEnergyAfrica);MarisaOlano(IDAE);ViniciusOliveira(IEMA);IsmailOwoseni(Innov8systemsVenture);GiorgiaPasqualetto(SEforALL);LebeauPemhaThina(InternationalAssociationforPartnershipandEmergence);TranPhuongDong(TransportationSustainabilityResearchCenter);JoanaPortugalPereira(FederalUniversityofRiodeJaneiro);PallavPurohit(InternationalInstituteforAppliedSystemsAnalysis);ShayanRazaghy(CircuitEnergyInc.);AriReeves(CLASP);YaseminErboyRuff(CLASP);KhalidSalmi(RCREEE);HebaSharaf(CairoUniversity);UroojSheikh(HalcrowPakistan);IreneSkoula(C40);EmilioSoberónBravo(SFAOxford/UniversityofEdinburgh);DosseSossouga(AmisdesEtrangersauTogo);WilliamW.Steiner(HawaiiOilSeedProducers);SatrioSwandikoPrillianto(GIZ);JinTanaka(UNISCInternational);YaelTaranto(SHURAEnergyTransitionCenter);HannibalTesfahunegn(PowerforAll);CostasTravasaros(PrimeLaserTechnology);UlricTrotz(formerCaribbeanClimateChangeCentre);GalynaTrypolska(SOInstituteforEconomicsandForecasting,UkraineNationalAcademyofSciences);LoannisTsipouridis(REDPROConsultants);PrachiUgle(ESDW2021);PeterYang(CaseWesternReserveUniversity);XiaZuzhang(FAO)ThisreportwascommissionedbyREN21andproducedincollaborationwithaglobalnetworkofresearchpartners.FinancingwasprovidedbytheGermanFederalMinistryforEconomicCooperationandDevelopment(BMZ),theGermanFederalMinistryforEconomicAffairesandClimateAction(BMWK)andtheUNEnvironmentProgramme.Alargeshareoftheresearchforthisreportwasconductedonavoluntarybasis.ACKNOWLEDGEMENTS9IndustryBuildingsTransportAgri-culture33%33%30%3%16.8%Renewableenergy15.5%Renewableenergy15.5%Renewableenergy4.1%RenewableenergyTotalFinalEnergyConsumptionandTotalModernRenewableEnergyConsumption,bySector,2020ElectricityandRenewableElectricitySharesofTFECbySector,2010and2020RENEWABLESINENERGYDEMANDTotalrenewableenergydemandgrew4.7%peryearonaveragebetween2010and2020Theshareofre-newableelectricityinTFECgrew3%inthelastdecadetoreach7%in2020Agricultureandtransporthavethefastestyearlygrowthratesofrenewableenergyadoptionwithmorethan7%Asof2022,94countrieshadeitherarenewableenergypolicyortargetinatleastonedemandsectorAsof2022,3countrieshadrenewableenergytargetsorpoliciesinallfourdemandsectorsPercentoftotal(%)3020100ElectricityshareRenewableelectricityshareCompoundannualgrowthrate201020102020201020202010201020202020201020102020202020102010202020202020201020201.6%5.4%2.5%4.3%6.1%7.9%7.0%3.5%IndustryBuildingsAgricultureTransportIndustryngsTransportAgri-culture33%33%30%3%16.8%Renewableenergy15.5%Renewableenergy15.5%Renewableenergy4.1%RenewableenergylEnergyConsumptionandTotalModernRenewableEnergyConsumption,bySector,2020andRenewableElectricitySharesofTFECbySector,2010and2020RENEWABLESINENERGYDEMANDnewableemand7%onbetweend2020Theshareofre-newableelectricityinTFECgrew3%inthelastdecadetoreach7%in2020Agricultureandtransporthavethefastestyearlygrowthratesofrenewableenergyadoptionwithmorethan7%Asof2022,94countrieshadeitherarenewableenergypolicyortargetinatleastonedemandsectorAsof2022,3countrieshadrenewableenergytargetsorpoliciesinallfourdemandsectorsotal(%)ElectricityshareRenewableelectricityshareCompoundannualgrowthrate20102020201020201.6%5.4%2.5%4.3%6.1%7.9%3.5%IndustryBuildingsTransportAgri-culture33%33%30%3%16.8%Renewableenergy15.5%Renewableenergy15.5%Renewableenergy4.1%RenewableenergyalFinalEnergyConsumptionandTotalModernRenewableEnergyConsumption,bySector,2020ctricityandRenewableElectricitySharesofTFECbySector,2010and2020RENEWABLESINENERGYDEMANDotalrenewablenergydemandrew4.7%eryearonveragebetween010and2020Theshareofre-newableelectricityinTFECgrew3%inthelastdecadetoreach7%in2020Agricultureandtransporthavethefastestyearlygrowthratesofrenewableenergyadoptionwithmorethan7%Asof2022,94countrieshadeitherarenewableenergypolicyortargetinatleastonedemandsectorAsof2022,3countrieshadrenewableenergytargetsorpoliciesinallfourdemandsectorsentoftotal(%)ElectricityshareRenewableelectricityshareCompoundannualgrowthrate201020102020201020202010201020202020201020102020202020102010202020202020201020201.6%5.4%2.5%4.3%6.1%7.9%7.0%3.5%FIGURE1.RENEWABLES2023GLOBALSTATUSREPORT-RENEWABLESINENERGYDEMANDSource:Seeendnote1inRenewableinEnergyDemand:GlobalTrends.Note:TFEC=TotalFinalEnergyConsumption10ustryTransportAgri-cultur33%30%3%16.8%Renewableenergy15.5%Renewabenergy4.1%RenewableenergyModernRenewableEnergyConsumption,bySector,2020ABLESINENERGYDEMANDTheshareofre-newableelectricityinTFECgrew3%inthelastdecadetoreachAgricultureandtransporthavethefastestyearlygrowthratesofrenewableenergyadoptionAsof2022,3countrieshadrenewableenergytargetsorpoliciesinGLOBALTRENDSRENEWABLESINENERGYDEMAND:GLOBALTRENDSEnergyCrisisandInflationStartinginOctober2021,theworldexperiencedtheimpactsofasevereglobalenergycrisis.2RapideconomicreboundfollowingtheslowingoftheCOVID-19pandemicledtotightermarkets,andtheenergycrisiswasfurtherexacerbatedinFebruary2022aftertheRussianFederation’sinvasionofUkraine.3Throughout2022,energypricesinEuropeandelsewhereskyrocketedtotheirhighestlevelssince2008.4TheInternationalEnergyAgencyestimatesthathigherfossilfuelpricesaccountedfor90%oftheincreaseinelectricitypricesin2022,andthatfossilgaspricesaloneaccountedformorethanhalfthisrise.5Theriseinenergypriceshadstronginflationaryimpactsonallenergy-consumingsectors–insomecasespushingfamiliesintopoverty,forcingfactoriestocutproductionandslowingeconomicgrowthacrosssectors.6Becauseenergyfuelsalleconomicactivity,itcanaffectthepricesofgoodsfromfoodtoclothingtosmartphones.7Highinflationbecameaglobalphenomenonduring2022,eveniftheeffectswerelessvisibleinsomepartsoftheworld,suchasAsia.8Inmanycountries,governmentssoughtalternativefossilfuelsourcestorestoredisruptionstotheenergysupplyoroptedtoheavilysubsidisefossilfuelstoshieldconsumersfrompricehikes;despitethis,theuptakeofrenewablesincreasedinalldemandsectors.9Overall,2022wasayearmarkedbyenergycrisisresultinginhighinflationglobally,butitalsowasayearofaccelerateddeploymentofrenewablesasdifferentsectorsfoundrenewableenergysourcestobereliable,stableandaffordable.Indirectresponsetorisinginflationandenergycosts,twomajorpolicypackageswereintroducedduringtheyear:theEuropeanCommission’sREPowerEUplanandtheInflationReductionAct(IRA)intheUnitedStates.10BothpackagesaimtostimulateEnergypricesreachedtheirhighestlevelssince2008,impactingallenergy-consumingsectors.11RENEWABLES2023GLOBALSTATUSREPORT-RENEWABLESINENERGYDEMANDeconomicgrowthviasubsidypackagesthattarget,amongothers,renewableenergyproductionandusewhileboostinglocalindustry.TheREPowerEUplanwasdesignedtocurtailtheeffectsofenergymarketdisruptioncausedbythewarinUkraine.11Ittacklesenergysavingsinallend-usesectorsaswellasdiversificationoftheenergysupply,whileaimingtoincreasetheproductionofrenewableenergyto45%fromthecurrent40%;theplanalsoincludesanobligationtoinstallrooftopsolaroneverypublicbuildingby2025.12TheplancommitsatotalinvestmentofUSD222billionduring2023-2027tophaseoutfossilfuelimports,includingphasingoutfossilgasinindustrialanddomesticusesand,overthelongterm,expandingrenewablehydrogeninthesteelindustry.13TheIRAallocatesUSD370billioninnewspendingandtaxcreditsandaddressesallmainenergydemandsectors.14Inbuildingsandtransport,itprovidestaxcreditsforelectricvehicles,energy-efficientappliances,rooftopsolar,geothermalheatingandhomebatteries,andfortheindustryandagriculturesectorsitprovidestaxincentivesforprivateinvestmentinrenewables.15Alsoin2022,Chinapublishedits14thFive-YearPlan,andthecountryisexpectedtocontributenearlyhalfofallnewrenewablepowercapacityadditionsgloballyduring2022-2027.16Inearly2023,Indiaannouncedoneoftheworld’smostcomprehensiveplansforrenewablehydrogen,includingaUSD2.3billionsubsidyprogrammeaimedatbenefitingfromcheaprenewableenergypricestoproducerenewablehydrogenforindustryandtransport.17Renewableenergyistheforefrontofpolicyresponsestothetwincrisesofrisingenergycostsandinflation.12GLOBALTRENDSPolicyTrendsOntheclimatepolicyside,climatecommitmentsexpandedin2022andhavetargetedmoreambitiouseffortstodecarboniseenergyuseintheend-usesectors,withprogressvaryingacrosssectorsandregions.Duringtheyear,10countriesrevisedupwardstheirNationallyDeterminedContributions(NDCs)towardsreducingemissionsundertheParisAgreement.18However,ofthe193countriesthathavesignedtheagreementandsubmittedNDCs,only25havesettargetsfornet-zeroemissions.19Climatepoliciesneedtotranslateintoconcreteenablingpoliciesandmandatesinallsectors.Onthedemandside,around80newrenewableenergypolicies(mostlyintheformoffiscal/financialincentives)wereannouncedin2022,whileregulatorypolicyannouncementsstagnated,bringingthetotalto454policiesacrosssectors.20Theseannouncementsweremadein49countries,withmorethanhalfofthecountriesinEurope,8inLatinAmericaandtheCaribbean,7inAsia,4inAfrica,2inOceaniaandonly1eachinNorthAmericaandintheMiddleEastandNorthAfrica.21Thisamountstoatotalof94countriesthathadeitherpoliciesortargetsinatleastoneend-usesectorbyyear'send(pseeFigure1);however,only3countries(Spain,PortugalandTürkiye)hadtargetsorpoliciesinallfourend-usesectors.22Inthebuildingsisector(commercial,residentialandpublicfacilities),52countrieshadpoliciessupportingtheuptakeofrenewablesasoftheendof2022.23Suchpoliciesincludeincentivesfortheinstallationofrenewabletechnologies(suchasrooftopsolar,solarwaterheaters,biomassboilersandgeothermalheatpumps)aswellasmandatesandtargetsbanningtheuseoffossilfuelsforheatinginnewandexistingbuildings.Policiesweremostlyintheformoffiscal/financialpolicies(45countries),followedbyregulatorypolicies(21countries),although14countrieshadbothregulatoryandfiscal/financialpoliciesforrenewablesinbuildings.24(pSeeFigure2.)Intheindustrysector,nonewpoliciesforrenewableshavebeenannouncedsince2019.Bytheendof2022,19countrieshadpoliciesthatincentiviseormandatetheuseofrenewablesinindustry.25Ninecountrieshadrenewableenergymandatesenforcingtheinstallationofrenewablesinspecificindustrysub-sectors,12countrieshadfiscal/financialincentives,and2countries(SpainandTürkiye)hadboth.26Amajorpolicyannouncementin2022wastheEuropeanUnion’s(EU)CarbonBorderAdjustmentAgreement(CBAM),whichincludesacarbontaxonimportstoEUmembercountries.27Theaimistoimposecarbontaxesstartingin2026onimportsrelatedtoelectricity,hydrogen,steel,cement,fertilisersandaluminium.28TheCBAMwilllikelyhaveadverseeffectsonEurope’stradepartnersandisexpectedtospeeddecarbonisationoftheindustrialsectorglobally.29Intransport,despitehavingthelowestshareofrenewableenergyacrossdemandsectors,61countrieshadrenewableenergymandatesorenablingpoliciesasoftheendof2022.30Mostofthesewerebiofuelblendingmandates(56countries)andeitherelectricvehicletargetsor100%bansoninternalcombustionenginevehicles(23countries).31Onlyfivecountries–Chile,Denmark,NewZealand,SwedenandtheUnitedKingdom–hadboth100%renewableenergytargetsand100%bansoninternalcombustionenginevehicles.32Meanwhile,10countrieswerepushedtoreduceorsuspendtheirbiofuelblendingmandatesin2022,mostlyinEuropebutalsoinLatinAmericaandtheCaribbean.33Intheagriculturesector,14countrieshadtargetsandpoliciesforrenewablesasoftheendof2022,with7ofthesecountriesannouncingthemduringtheyear.34Allofthepoliciescomprisedeitherinvestments,subsidies,grantsortaxdeductions,mostlyforsolar-poweredirrigationandagrivoltaics.Noneworexistingregulatorypoliciesforrenewablesinagriculturewereobserved.35iThenumberofcountrieswithpoliciesinbuildingsisnotcomparabletopreviouseditionsoftheGSRbecauseofachangeinmethodology.Inpreviouseditions,buildingsincludedindustries.IntheGSR2023,thesearetreatedseparately.13RENEWABLES2023GLOBALSTATUSREPORT-RENEWABLESINENERGYDEMANDMarketDevelopmentsandTrendsTheriskofsupplydisruptions,aswellashighfossilfuelpricevolatility,promptedmoreenergyconsumersworldwidetoadopton-siterenewableenergysystemsandtoswitchtoelectrifiedtechnologiesacrosstheend-usesectors.36Inthebuildingssector,2022wasarecordyearforheatpumps,withinstallationsincreasingarecord10%over2021.37ThiswasmostnotableinEurope,with38%growthin2022,ashouseholdsincreasinglysoughtoutefficientandreliablealternativestofossilfuelheating.38Rooftopsolaralsobecamemoreaffordableandattractivetoend-usersfollowingtheincreasesinfossilfuelprices.39(pSeeSnapshot:Europe,intheBuildingsmodule.)AcrossEurope,energy-intensiveindustrieswerehithardestbytheenergycrisis,withsomeindustriescuttingproductionandothersconsideringrelocationtoreduceenergycostsandboostsecurity.40Thesesameconcernsdrovea21%increaseinthenumberofcorporatepowerpurchaseagreements(PPAs)in2022,tosurpasstheinstalledcapacityofutilityPPAsbyarecordsixtimes.41Renewable-poweredindustrialparksalsobecamemoreattractive,astheyallowhedgingfromenergypricevolatilityandtherisksofsupplydisruption.42(pSeeSnapshot:SouthAfrica,intheIndustrymodule.)Inthetransportsector,energycostsincreasedforvehicleowners,freightoperatorsandpublictransportservices.43InEurope,theenergybillsformostpublictransportoperatorsdoubledin2022.44However,afewoperatorsthathadsignedPPAsinpreviousyearsbenefitedfromthestabilisingeffectthattheseagreementshadonenergycosts.45Astheelectrificationofroadtransportcontinued,2022wasanotherrecordyearforspendingonelectricvehiclesandassociatedcharginginfrastructure,withinvestmentintheseareasrising54%.46MostofthisgrowthwasinAsia,withIndiadoublingitselectricvehiclespendingduringtheyear.47Asiaishometo93oftheworld’s100mostpollutedcitiesand6ofthetop10countriesmostaffectedbyclimaterisks,makingelectricvehiclesanappealingoption.48SeveralAsiancountrieshaveadoptedbansonvehicleswithinternalcombustionengines,includingtheRepublicofKorea(targetyear2025),India(2030),ChinaandJapan(2035)andthePhilippines(anewbanin2022withatargetof2040).49Inagriculture,thetrendhasbeentowardsself-relianceandadditionalincomegeneration,withagrivoltaics,geothermalandbioenergytakinggrowingsharesofthesector’stotalfinalenergyconsumption.50InAfrica,Asia,andtheCaribbean,decentralisedrenewableshavebecomeago-tosolutioninagriculturetoboostenergyaccess,reducefuelcostsandsaveenergy.51Advancementsrangefromtechnologicaldevelopmentsinfishingvessels,gearandoperationstotheuseofrenewablesinfoodproductionandforaffordablecoolingandrefrigeration.52(pSeeSnapshot:India,intheAgriculturemodule.)Solarwaterpumpshavehelpedfarmersboostproductivity,withtheAsia-Pacificregiondominatingthismarket.53Renewableenergysharesinalldemandsectorssawrecordgrowthin2022asenergyuserslookedforaffordableandsecureenergysources.14GLOBALTRENDSElectrificationandOtherTrendsRenewableenergysharesincreasedinallfourdemandsectorsin2020,toreach16.8%ofenergyconsumptioninindustry,15.5%eachinbuildingsandagriculture,and4.1%intransport.54However,overallenergyuseinthesesectorshasrisenaswell,withthisgrowthstilllargelymetbyfossilfuels.55(pSeeFigure1.)Whiletotalfinalenergyconsumptiongrew16%overallduring2010-2020,itgrew18%inthetransportsector,followedbyagriculture(16%),industry(9%)andbuildings(8%).56Atthesametime,therisingshareofelectricityinthetotalfinalenergyconsumptionofend-usesectorshasenabledthehigherintegrationofrenewables.57(pSeeFigure1.)Theelectrificationofend-usesgrewfroma15.3%sharein2010to17.7%in2020.58Agricultureisthemostelectrifiedsector,at26.7%,followedbyindustry(25.3%)andbuildings(23.6%),withtransporttrailingwellbehind(only1.4%).However,totalelectricitydemandisstilloutpacingrenewableelectricitysupply.Inthelastdecade(2010-2020),60%oftheincreaseinelectricitydemandwasmetbymodernrenewables.59Therisingintensityandfrequencyofheatwavespresentsadditionalchallengestorapidelectrification.60BothIndiaandChinasufferedsignificantheatwavesinthesummerof2022thatledtospikesinelectricitydemand,resultinginweeks-longblackoutsandforcingsomeindustriestocutproduction.61Coolingissettobecomeatopdriverofelectricitydemandinthecomingyears,especiallyinlightofmore-frequentheatwavesandrisinghouseholdincomesinemergingeconomies.62Threecountries–Barbados,CambodiaandNigeria–publishedNationalCoolingActionPlansin2022,bringingto14thetotalnumberofcountrieswithsuchplans.63Note:PolandannouncedaplanforaSocialContractfortheMiningIndustryin2022,settingoutaspecifictimetablefordiscontinuinghardcoalminingateachproductionunitbytheendof2049.Thispolicyisnotinforceyetandisincludedinthefigure.Thefiguredoesnotshowallpolicytypesinuse.Inmanycases,countrieshaveenactedadditionalfiscalincentivesorpublicfinancemechanismstosupportrenewables.Acountryisconsideredtohaveapolicy(andiscountedasingletime)whenithasatleastonenational-levelpolicyinplace.Policiesforrenewablesinbuildingsapplyforpower,heatingandcooling,ortransport(forexample,installingsolarpanelsonparkingstructuresorvehiclecharginginfrastructureinnewbuildings).Otherpoliciesforbuildingsincludemandatesforwaterheatingorrenewableenergytechnologyinstallation.Buildingtypesforwhichpoliciesapplyareresidential,commercialandpublicfacilities.Fossilfuelbansinbuildingsareexcludedfromthisfigure.Policiesforrenewablesintransportincludebiofuelmandates(biodiesel,ethanol,undspecifiedandadvancedbiofuels)forroadtransport,aviation,railandshipping.Formoreinformation,seeReferenceTablesR1-R4intheGSR2023DataPack.Source:Seeendnote23forthismodule.6050403020100NumberofCountries20202022201820162014201256countries21countries9countries0countriesFIGURE2.NumberofCountrieswithRenewableEnergyRegulatoryPoliciesandMandates,byDemandSector,2012-202215Electricitymet35%ofenergyneedsinbuildingsin202175%offinalenergyconsumedinbuildingsisusedforspaceheatingandhotwaterRenewableelectricityuseinbuildingsgrewfrom6%to10%between2010and2020Around15%oftheenergyusedintheworld’sbuildingscomesfrommodernrenewablesAround25millionhouseholdsworldwidehavedistributed(rooftop)solarPVElectricitymet35%ofenergyneedsinbuildingsin202175%offinalenergyconsumedinbuildingsisusedforspaceheatingandhotwaterRenewableelectricityuseinbuildingsgrewfrom6%to10%between2010and2020Around15%oftheenergyusedintheworld’sbuildingscomesfrommodernrenewablesAround25millionhouseholdsworldwidehavedistributed(rooftop)solarPVMODULEOVERVIEWPOLICYINVESTMENTMARKETDEVELOPMENTSCHALLENGESANDOPPORTUNITIESBUILDINGSINFOCUSBUILDINGSINFOCUSEnergyuseinbuildingsaccountedforaround30%ofglobalfinalenergyconsumptionin2021,oraround132exajoules(EJ).1Assuch,buildingscontributegreatlytogreenhousegasemissions.Burningfossilfuelsdirectlyiforheatinbuildings–includingfossilgasinboilers,andoilandcoalinfurnaces–generated8%ofenergy-relatedcarbondioxide(CO2)emissionsin2021.2Meanwhile,indirectlyproducingtheelectricityandheatusedtoprovidehotwaterandthermalcomfort,andtopowerappliancesandotherdevicesinbuildings,contributed19%ofemissions.3Together,thesedirectandindirectemissionsgrew2%between2019and2021.4Energyuseinbuildingsalsoresultsinlocalairpollution,withtheresidentialsectorreleasingmorethanathirdofallemissionsofparticulatematter2.5.5Theuseofrenewableelectricityinbuildingsisprovidedmainlythroughthepowergrid,butagrowingnumberofbuildingsarepoweredusingon-sitesystems,includingrooftopsolarphotovoltaics(PV).Renewableheatforspaceandwaterheatingandforcookingcanbeprovidedbyon-siterenewableenergysystemssuchassolarthermalorbydistrictenergynetworksorrenewableelectricity.Around75%ofthefinalenergyconsumedinbuildings,andtheassociatedemissions,arerelatedtospaceandwaterheating.6Theremaining25%iselectricityusedtopowerappliances,lightingandotherelectricity-basedservices(excludingheatingandcooling).7In2021,thedemandforspacecoolingincreased6.5%over2020levels,representingthelargestgrowthindemandamongend-uses.8Electricityusegrewfrom30%ofthetotalenergyuseinbuildingsin2011to35%in2021.9Modernrenewablespro-videdaround15.5%oftheenergyusedintheworld’sbuildingsin2020,upfrom11.1%in2010.10(pSeeFigure3.)However,theshareofrenewablesinbuildingshasgrownmoreslowlythantherenewableenergyshareoverall.Forexample,theshareofrenewablesintotalelectricitygenerationworldwideincreasedatanannualrateof0.8%between2010and2021(risingfrom19.5%to28.2%),yettheshareofrenewablesusedinbuildingsincreasedonly0.4%annually.11Energyconsumptioninbuildingsvariesgreatlyaroundtheworld,includingamongthetoptenenergy-consumingcountries.12(pSeeFigure4.)In2021,energyconsumptioninbuildingsreboundedabove2019levels,followingadropin2020relatedtoCOVID-19restrictions.13Thecountrieswiththehighestrenewablesharesinbuildingsin2021wereBrazil(whereModuleOverviewPolicyInvestmentMarketDevelopmentsChallenges&OpportunitiesiThismodulefocusesonthedirectuseofenergyinbuildingoperations,excludingenergyusedinthebuildingconstructionindustryandinthepowerandheatsectorthatsuppliesenergytobuildings.In2020,renewablesprovidedaround15.5%oftheenergyusedinbuildings.17RENEWABLES2023GLOBALSTATUSREPORT-RENEWABLESINENERGYDEMANDRenewableelectricity4.1%6.2%Solarandgeothermalheat0.8%Modernbio-heatRenewableelectricity3.9%9.1%Solarandgeothermalheat1.8%Modernbio-heatRenewableelectricity3.8%9.8%Solarandgeothermalheat1.9%Modernbio-heatShareofrenewableenergyinthebuildingsector20102019202011.1%14.7%15.5%88.9%Non-renewableenergy85.3%Non-renewableenergy84.5%Non-renewableenergyExajoules(EJ)14012010080604020011.1%88.9%Non-renewableenergyNon-renewableenergyNon-renewableenergy85.3%84.5%14.7%15.5%201920202010ShareofrenewablesinbuildingsSolarandgeothermalheat9.8%RenewableelectricityModernbioenergy1.9%3.8%200150100500TraditionalbiomassShareofmodernrenewablesFossilfuelsandotherEnergyConsumptioninBuildings(EJ)20151050TraditionalbiomassModernrenewablesShareofmodernrenewablesinbuildingsFossilfuelsandotherUnitedStatesChinaEU-27IndiaRussiaJapan20%30%5%5%13%20%13%X%30%5%5%13%40%15%5%7%20%14%UnitedStatesChinaEU-27IndiaRussianFederationJapanCanadaUnitedKingdomRepublicofKoreaIndonesiaRenewableelectricityModernbioenergyModernheatSource:Seeendnote10forthismodule.Source:IEA.Seeendnote12forthismodule.FIGURE3.RenewableShareofTotalFinalEnergyConsumptioninBuildings,2010,2019and2020FIGURE4.EnergyConsumptioninBuildingsbyMajorCountry/Region,2020Thetoptencountriesrepresent67%oftheglobalenergyconsumptioninbuildings.18BUILDINGSINFOCUSbioenergyisusedforheatingandcooking,andhydropowersupplieslargesharesofelectricity)andCanada(whichreliesheavilyonelectricityforheatingandalsohasahighshareofhydropower).14France,ItalyandGermanyalsohadabove-averagerenewablesharesinbuildings,duemainlytorelianceonbiomassforheatand,toalesserextent,on(renewable)electricity.15Thelowestsharesofrenewablesinbuildings(lessthan5%each)inthetoptenconsumingcountrieswereinIndia,theRussianFederationandtheRepublicofKorea.16Notallbuildingsoroccupantshavereliableaccesstoenergy.Asof2020,around733millionpeopleworldwidestilllackedaccesstoelectricity,mainlyinSub-SaharanAfricaandSoutheastAsia.17Meanwhile,around2.4billionpeoplewerewithoutaccesstocleanfuelsormoderncookingtechnologies.18Toprovideheatorcookmeals,manyhouseholdsindevelopingandemergingcountriescontinuetoburnwood,charcoalorprocessedoilinsimple,inefficientdevices,contributingtoindoorairpollution.InthewakeoftheCOVID-19pandemicandtherecentriseinenergyprices,thenumberofpeoplewithoutaccesstoenergyhaslikelyincreased,leadingresidentsincountriessuchasBraziltoresorttofuelwoodinsteadofcleaner-burningalternativesforheatingandcooking.19Ingeneral,increasingtheuptakeofrenewablesforheatingandcoolingapplicationsinbuildingsismorechallengingthandeployingrenewablesforelectricity.20In2021,fossilfuelscontributednearlytwo-thirdsoftheenergyusedtoheatbuildings,ashareonlyslightlylowerthanin2011.21(pSeeFigure5.)Akeybarriertotheexpansionofrenewableshasbeentheriseinthedirectuseoffossilgasforheating,whichgrew17%from2011to2021,duelargelytoitsaffordabilityandtoasupplyboomintheUnitedStates;by2021,fossilgascontributedmorethan40%ofthetotalenergyusedtoheatbuildingsglobally.22Thedirectuseofmodernbioenergytoheatbuildings–forexample,throughsolidbiomasspelletsorbriquettes,orgaseousfuelssuchasbiogasandbiomethane–isthelargestend-useofrenewablesinbuildings.Heatfrombioenergyalsocanbeproducedcentrally–suchasatacombinedheat-and-powerplant–anddistributedthroughadistrictheatingnetwork.Theuseofbioenergyforheatingremainedrelativelystableduring2011-2021,althoughitwasexpectedtoincreasein2022becauseofafossilgasshortfall.23Modernbioenergyaccountsforslightlylessthanhalf(42%)ofthetotalenergyconsumptionforheatingandcoolingthatisderivedfrommodernrenewablesources.24Electricityissupplyingagrowingshareofheatintheworld’sbuildings,estimatedat14%oftotalheatingneedsin2021.25Asrenewablescontributealargershareoftheworld’selectricityoverall,thecontributionofrenewableelectricheatinghasriseninturn.Whenelectricityisusedtopowerheatpumps(foreitherheatingorcooling),thesedevicesharnessambientenergy–typicallyfromtheoutsideair,butalsofromgroundandwatersources.Globaluseofambientenergyfromheatpumpsgrew26%between2011and2021,providingaround4%ofheatinginbuildingsin2021.26Solarandgeothermalheatsupplyasmallbutrisingshareofbuildings’heatingneeds.Overall,districtheatingmeets7%ofheatingneedsinbuildings,withrenewablescontributingagrowingshareofdistrictheat.27Totalheatconsumptionfromdistrictsystemsincreased12%between2011and2021,whiletherenewableshareofheatindistrictsystemsgrew68%.28Improvingtheenergyefficiencyofbuildingenvelopescanhelprenewablesmeetahighershareofheatingloads.Morerapidprogresscanbemadeifeachunitofheatfromrenewableenergy2021201114.2%Shareofrenewableenergyforheatinginbuildings23%Traditionalbiomass63%FossilfuelsandotherModernbioenergySolarheat4.6%3.6%3.0%1.5%1.0%0.6%RenewableelectricityAmbientheatRenewabledistrictheatGeothermalheat26%Traditionalbiomass63%Fossilfuelsandother11.1%RenewableenergySource:Seeendnote21forthismodule.FIGURE5.EnergyConsumptionforHeatinginBuildings,bySource,2011and202119RENEWABLES2023GLOBALSTATUSREPORT-ENERGYDEMANDdoesnotneedtodirectlyreplacethesameunitofheatfromfossilfuels.Despiteeffortstoimproveefficiency,energydemandinbuildingshascontinuedtorise–up4%in2021followingthepandemic-relatedslowdown,andup2%overallbetween2019and2021.29Investmentinenergyefficiencyigrew15%in2021toUSD211billion,suggestingthatconsumersmaybeturningtheirattentiontowardsreducingenergydemand.30Governmentshavesoughttolegislateimprovedefficiencyaswell.(pSeeInvestmentsection.)By2021,morethan80%ofthefinalenergyusefromairconditionersoccurredincountriesthathadadoptedminimumenergyperformancestandards,upfromtwo-thirdsin2010.31Asmorehouseholdsandbusinessesturnedtorenewablesin2022,akeydriverwasfavourableeconomics.Highfossilfuelprices,spurredinpartbytheRussianinvasionofUkraine(pseeSnapshot:Europe),madetechnologiessuchasrooftopsolarPVandheatpumpsmorecosteffective.32In2022,recorddemandforrenewablessavedtheEuropeanUnion(EU)billionsofeurosinfossilgasimportsthatlikelywouldhavedrivenhouseholdenergypricesevenhigher.33Theoveralldeclinesinthecostsofsolarandwindpower–notwithstandingslightincreasesin2022duetohighercommodityprices–havefurtherdriveninvestmentinrenewablepowerplants(nowtheleast-costoptioninmanycountries)andinhouseholdrenewableenergysolutions.34Governmentpolicyalsowasakeydriverofrenewablesinbuildingsin2022.Governmenttargetsandregulation,aswellasgrowingpolicysupporttoreduceenergycosts,havebolsteredconsumerinterestinrenewables,particularlydistributedsolarPV.35Concernsaboutclimatechangeandlocalairpollutionhavesimilarlyencouragedconsumerstoadoptrenewabletechnologies.Spurredbythesedrivers,morecountrieshavesoughttoincreasetheuptakeofrenewablesinheatingandcoolingforbuildings.In2021,ChileandtheUnitedKingdomreleasednationalheatingstrategies,andin2022Irelandreleasedanationalheatstudytargetinganetzeroheatingsectorandlayingouttheoptionsavailabletoreachit.36TheNetherlandsalsoannouncedplanstophaseoutfossilgasfromitsheatingsupply.37Inanefforttoincludeequityconsiderationsinpolicydesign,somemeasuresseektoensurethatlow-incomehouseholdsbenefitthemostfromrevisedheatingpoliciesandavoidbearingthecostburden,particularlyduringtimesofhighenergyprices.38Policyactiontoboosttheuptakeofrenewableheatingandcoolinginbuildingstypicallytakestheformofeithernationaltarget-setting–suchaspursuingadefinedshareofrenewableheatingandcoolingbyacertaindate–orspecificsupportpolicies,suchasfinancialincentivesorregulatorypolicies.Bytheendof2022,80nationalandsub-nationaljurisdictionshadinplacerenewableenergyregulatory(43jurisdictions)orfiscal/financial(57jurisdictions)policiesforbuildings.19jurisdictionshadboth.Globally,onlyafewoverarchingtargetsexistfortheuseofrenewablesinbuildings,and/orforrenewablestosupplyarisingshareofheatingandcoolingneeds.TheEU’sRenewableEnergyDirectivesetsanindicativetargetforMemberStatestoincreasetheshareofrenewablesinheatingandcooling(ofwhichbuildingsisalargeshare)by1.1%annuallyby2030,or1.3%whenwasteheatisinvolved.39Inlate2022,theEuropeanParliamentsuggestedraisingthisshareto2.5%.40Anincreasingnumberofcountrieshavetechnology-basedtargetsforrenewablesinbuildings.InadditiontotheEU’sregionalheatpumptarget,severalindividualEuropeancountries,suchasGermany,Ireland,andtheUnitedKingdom,haveannouncednationaltargetsforannualheatpumpinstallationsthatareupto10timesgreaterthantheannualinstallationscompletedin2021.41InApril2022,China’sBuildingEnergyEfficiencyandGreenBuildingDevelopmentPlanenteredintoforce,targetingmorethan50gigawatts(GW)ofsolarPVonbuildingsandgeothermalheatcoverageof100millionsquaremetres.42Thespreadofnetzeroemissionpledgesaroundtheworldhasthepotentialtoacceleratetheuptakeofrenewablesinbuildings.However,recentpledgeshavenotnecessarilybeentransformedintoactionablepolicy,norhavetheyresultedinadecreaseinfossilfuelinvestmentinthecountriesmakingthem.43Manycountrieshaveprovidedfinancialincentivesforrenewablesinbuildings.Themostcommonformofsupportissubsidies,butincentivesalsoincludetaxcredits,rebatesandloans.During2022,17nationalandsub-nationaljurisdictions–mainlyinEuropebutalsoinAustralia,India,JapanandtheUnitedStates–introducednewfinancialsupportpoliciesforrenewablesinbuildings,bringingthetotalnumberofcountriesandsub-nationaljurisdictionsofferingsuchsupportto57.44InEurope,FranceremovedfinancialsupportforfossilgasboilersandincreaseditsfundingforrenewableheatingsolutionsbyEUR1,000(USD1,067)perapplication.45GermanyearmarkedEUR3billion(USD3.2billion)toexpanditsdistrictheatingandcoolingsectorandtransitionittorenewables,fundingupto40%ofthecostofnewgridsthatrelyonatleast75%renewableenergy.46SpainmadeavailablearoundEUR660million(USD705million)forinstallingrenewableheatingandcoolingsystemsandenergystoragesystemsinresidentialbuildings,aswellasEUR100million(USD107million)forrenewabledistrictheatingandcoolingnetworks–Spain’sfirstexplicitsubsidyforthattechnology.47MODULEOVERVIEWPOLICYINVESTMENTMARKETDEVELOPMENTSCHALLENGESANDOPPORTUNITIESiBecausemostenergyefficiencyinvestmentsinbuildingsarecomponentsoflargerprojects,theyaredifficulttoextractfromtheoverallprojectcost.Energyefficiencyinvestmentsleadtoadecreaseinenergyusecomparedtoabaselineandaretherebyincrementalinnature.Alackofcleardefinitions,standardsandbenchmarksforassessingtheenergyefficiencyperformanceofbuildingsmakestrackingtheseinvestmentschallenging.Seeendnote30forthismodule.20StrategiestoPhaseOutRussianFossilGasinEuropeanBuildingsviaRenewablesTheRussianFederation’sinvasionofUkraineinearly2022andthecoincidingEuropeanenergycrisisturnedtheregion’sattentiontotheroleoffossilgas.TheEUhasdependedheavilyonRussiangasimports,whichsuppliedaround40%ofregionalgasdemandin2021(155outofthe389billioncubicmetresconsumed).Theseimportsdroppeddramaticallyin2022:inJulyandAugust,theEUimportednearly70%lessRussiangasthanduringthesameperiodin2021.Fossilgascontributesnearly40%oftheenergyusedforspaceheatinginEuropeanbuildingsandaccountsforaround33%oftheregion’stotalenergyuse.InresponsetotheeventsinUkraine,inMay2022theEuropeanCommissionannouncedtheREPowerEUplanto“rapidlyreduceourdependenceonRussianfossilfuelsbyfast-forwardingthecleantransition”.TheplantargetsreducingtheEU’sfossilgasuseby124billioncubicmetresby2030.Toachievethisgoal,REPowerEUrecommendsincreasingtheEU-widerenewableenergytargetto45%oftotalfinalenergyconsumptionby2030(upfrom38%)andboostingtheenergysavingstargetto13%(upfrom9%).Italsoincludesmeasuresthatcouldfurtherswapfossilgasdemandinbuildingsforrenewables:doublingthedeploymentrateofheatpumps,doublingthedeploymentofsolarPV(morethan320GW,by2025)andproposingasolarrooftopobligationforsometypesofbuildings.AlthoughREPowerEUisnotlaw,ithasfedintoongoingnegotiationsbetweentheEuropeanParliamentandCouncilupdatingsomekeydirectives.AnotherkeypolicyplankforphasingoutfossilgasistheEnergyPerformanceinBuildingsDirective(EPBD),theEU’smainleverforrenovatinganddecarbonisingbuildings.ThepoliciesproposedintheEPBDareintendedtodoubletheannualrenovationrateofbuildings.However,thereareconcernsthattheproposedchangestotheEPBDmayfallshortofthedepthandraterequiredtoreachtheEU’s2030climatetargets.Source:Seeendnote32forthismodule.SNAPSHOTEUROPE21TheUnitedKingdomlaunchedaprogrammethatprovidesGBP450million(USD543million),oruptoGBP5,000(USD6,029)perinstallation,toreplacefossilheatingsystemswithheatpumps.48Denmarkalsoincreaseditsavailablesubsidiesforheatpumpsandsolarthermal.49TheEuropeanBankforReconstructionandDevelopmentprovidedEUR65million(USD69million)tobuildsolardistrictheatingsystemsinPristina,Kosovo.50IntheUnitedStates,theInflationReductionActof2022allocatedUSD4.5billioninrebatesforelectricappliances(includingheatpumps),USD4.3billionforhomeenergyefficiencyrebatesanda30%investmenttaxcreditforpurchasesofground-sourceheatpumpsandofresidentialandcommercialsolar.51UttarPradesh,Indiaannouncedrebatestofarmersandcitizensofupto100%fordistributedsolardeployment.52Insomecases,thefinancialincentivesvarybasedonhouseholdincome,providingextrabenefitsforlow-incomehomeowners.WithintheUSInflationReductionAct,theHighEfficiencyElectricHomeRebateActofferspoint-of-salerebatesforelectrificationprojects–includingpurchasesofheatpumps–andlow-incomehouseholdscanbereimbursedfor100%oftheprojectcosts(uptoUSD14,000).53InPoland,subsidiesforrenewableheatingsolutionsvarybasedonhouseholdincome.54France’sMaPrimeRénovprogrammeprovidesfundingforrenewableheatinstallationsandenergyefficiencymeasures,withamountsincreasingforlower-incomehouseholds.55Regulationscanhaveagreatimpactonhowrenewableenergyisusedinbuildings.Regulatorypoliciesincludethosethatmandatecleantechnologydeployment,restricttheuseoffossilfuels,andsetstandardsforbuildingperformanceormandatoryelectrification.Atleast21national(and22sub-national)jurisdictionshadsuchregulationsbytheendof2022.56(pSeeFigure6.)Chinaintroduceditsfirstbindingnationalenergyefficiencystandardthatpromotestheuseofrenewablesinbuildings,aimingforan8%shareby2025–upfromaround4%in2020,excludingbiomass.57(pSeeSnapshot:China.)Thecountry’s2022WorkPlanonEnergySavingandEnvironmentProtectioninGovernmentandPublicBuildingsrequiresinstallingheatpumpstomeettheheatingneedsof2millionsquaremetresofpublicandgovernmentbuildings.58Numberofsectorscovered3sectorsResidential,commercialandpublicfacilities1sector2sectorsZerosectorsornodataNew/revisedin2022fossilfuelbansinbuildingsExistingandtargetedfossilfuelbansinbuildingsNotes:In2021,67countrieshadmandatorybuildingenergycodesatthenationallevel.Thisnumberhasnotbeenupdatedin2022.PoliciesalsoexistforIndustrialbuildings.Bytheendof2022,ninecountries(China,Indonesia,Japan,Morocco,NewZealand,Philippines,theSlovakRepublic,SpainandTürkiye)hadregulatorypoliciesforindustrialbuildings.Formoreinformation,seetheIndustryinFocusmodule.Source:Seeendnote56forthismodule.FIGURE6.RegulatoryPoliciesinBuildings,byBuildingType,asofEnd-2022RENEWABLES2023GLOBALSTATUSREPORT-ENERGYDEMAND22BUILDINGSINFOCUSDecarbonisingBuildingsWithRenewablesEnergyuseinbuildingsisresponsiblefor21%ofChina’senergy-relatedCO2emissions.Indirectemissionsfromtheburningoffossilfuelstoproduceelectricityandheatmakeupmostofthis,buton-sitefuelcombustionisresponsibleforaround600megatonnesofCO2emissionsperyear,oraround6%ofChina’senergy-relatedemissions.Chinafacesvariouschallengesindecarbonisingitsbuildings,includingalackofpublicawarenessandofasufficientworkforcetoinstallandmaintainrenewableheatingandcoolingtechnologies.Additionally,China’sRenewableEnergyLawdoesnotrecognisetheambientheatprovidedbyheatpumpsasa“renewable”resource.Energytariffsalsodonotencourageelectrification,ascoalandgasretainaneconomicadvantage.AsChina’spopulationhasurbanised,greatdifferencesremainbetweenruralandurbanareas.Inruralareas,coal-firedstovessupplyaround42%ofheatinginhouseholds.Inurbansettings,however,districtenergynetworkssupplymorethan85%ofspaceheating.Thesearebasedlargelyonfossilfuels,witharound72%ofdistrictheatingaloneprovidedbycoal,intheformofcoalboilersandcombinedheat-and-powerplants.In2017,Chinalaunchedacampaigntophaseoutcoalandgasinitspredominantlyruralnorthernprovinces.Thegoalwastouse“cleansources”tosupply70%oftheregion’sheatingneedsby2021(ashareof65%wasachievedby2020,basedonthelatestdataavailable)andtoinstallheatpumpstocover500millionsquaremetres.ChinaprovideduptoCNY1billion(USD140million)toeachof62pilotcitiestoreplacecoalboilerswithcleaneralternatives,andsomejurisdictions,suchasBeijing,setmandatorysolarthermalordinances.Goingforward,China’s14thFive-YearBuildingEnergyEfficiencyandGreenBuildingDevelopmentPlanaimstorapidlyincreasethedeploymentofrenewablesinbuildings.Asthecountry’sfirstbindingnationalenergyefficiencystandard,theplanappliestoallnewbuildings.Ittargetsatleast350millionsquaremetresofenergy-savingrenovationandstipulatesthaton-siterenewablesprovide8%oftheenergydemandinurbanbuildings.Thelawprovidesastrongincentiveforelectrification,especiallyofnewbuildings,byrequiringthattheshareofelectricityinbuildings’energydemandshouldexceed55%by2025.Chinaalsoplanstoinstall50GWofsolarPVonallnewpublicbuildingsandfactoriesby2025andtoinstallheatpumpsfor2millionsquaremetresofpublicandgovernmentbuildings.Source:Seeendnote57forthismodule.SNAPSHOTCHINA23Germany’scoalitionagreementlaidoutanobligation,expectedtoapplyinJanuary2024,thatallnewheatingsystemsmustrunon65%renewableenergy,effectivelyrulingouttheuseofstand-aloneoilfurnacesandgasboilers.59TheNetherlands,whichin2018prohibitedtheconnectionofnewbuildingstothegasgrid,announcedadditionalmeasuresin2022tomakeheatpumpsmandatoryforallnewbuildingsasof2022andtobanallfossilheatingby2026.60AsofFebruary2023,atleast100USjurisdictions(covering11states)hadintroducedbindingordinancesforzero-emissionbuildings.61Althoughmostmeasurestargetnewconstruction,somealsoincluderenovationsandequipmentreplacement,asincitiesinCalifornia,UtahandWashingtonstate.62Overall,around31millionpeopleintheUnitedStatesliveinajurisdictionwithabuildingelectrificationpolicy.63Californiahasbannedthesaleoffossilgasheatingsystemsby2030,andaprogrammeinNewYorkstateprovidesmorethanUSD500millionforelectrifyingspaceandwaterheating.64However,backlashtosuchmeasureshasresultedinmorethan20USstates–coveringaround30%ofthecountry’sgasdemandinbuildings–prohibitingeffortstobanfossilgasuse.65ObligationstoinstallrooftopsolarPVonbuildingsalsohaveproliferated.TheREPowerEUproposalincludesanobligationtoinstallrooftopsolaroneverypublicbuildingby2025.66In2022,theUSstateofCaliforniaintroducedasolar-plus-storagemandatethatallnewbuildingsthatarerequiredtoinstallsolarmustalsohaveabatterystoragesystem.67Thestatealsorolledoutanewcommunitysolarsubscriptionmodel.68However,Californiahasstruggledtoreformitsnetmeteringpolicies,afterdroppingaproposaltochargeownersofrooftopPVamonthlyfee.69Likewise,NovaScotia,Canadascrappedaplantochargeamonthlyfeetobuildingownerswhosellsolarelectricitybacktothegrid.70Buildingenergycodesareanotherregulatorylevertoincreasethepenetrationofrenewables.Byreducingtheenergyintensityofbuildings,suchcodescanenablehighersharesofrenewableenergyuse.Additionally,buildingenergycodesincreasinglymandatethedeploymentofrenewables.However,asof2022only80countrieshadbuildingenergycodes(upfrom79in2021),mostofwhichwerevoluntary.71Asoflate2022,only40%ofcountrieshadmandatorybuildingenergycodes.72China’snewbuildingslaw,whichincludesthecountry’sfirstbindingnationalenergyefficiencystandard,setsnewconstructionstandardsforgreenbuildingsthatapplytoallnewbuildings;italsotargetsatleast250millionsquaremetresofenergy-savingrenovation.73SouthAfricahasmandatedthatallnewbuildingsbedesignedandconstructedtobenetzeroenergyby2030;Kenyahasasimilarmandatefor2035andNigeriafor2050.74India’s2022energyconservationactappliesitsmandatorybuildingenergycodetoresidentialbuildings.75Japaninitiatedaprogrammethatgraduallyincreasesmandatoryperformancestandardsforbuildings.76IntheUnitedStates,theCaliforniaBuildingEnergyCode,updatedin2022,includesrequirementstoinstalldemandresponsetechnologiesforheatingsystemstoenabletheirautomatedcontrol.77Dataoninvestmentinrenewablesspecificallyinthebuildingssectorarelimited,bothforpowerandforheat.However,assumingthatthebuildingssectorconsumedaroundhalfofallpowergeneratedworldwidein2022,thenroughlyUSD244.8billionoftheglobalnewinvestmentinrenewablepowercapacitythatyearwouldhavegonetobuildings.78InfluencedinlargepartbytheRussianFederation’sinvasionofUkraineandbythetransitionawayfromRussiangas,Europeaninvestmentinheatpumpsrosesharplyin2022,particularlyinAustria,Finland,Germany,Italy,theNetherlandsandPoland.79Globally,heatpumpinvestmentsincreased9.6%duringtheyear,toUSD64.3billion,withthestrongestmarketgrowthinEurope,JapanandtheUnitedStates.80ManyUSconsumersweredrawntoheatpumpstoalleviatehigherutilitybillsrelatedtoinflation.81Investmentsalsooccurredinrenewable-feddistrictheatingsystemsforbuildings.InGroningen,theNetherlands,a“specialpurposevehicle”comprisingtheprojectdeveloper,aninvestorandaturnkeyproviderofthesolarfieldinvestedEUR23million(USD25million)intheworld’sfourthlargestsolardistrictheatingplant.82InMarkham,Canada,aCAD270million(USD199million)investmentwasdedicatedtoexpandingthecity’slow-carbondistrictenergysystem.83GermanyannouncedaEUR3billion(USD3.2billion)programmetofinancetheconstructionofheatingnetworkssuppliedbyatleast75%renewableorwasteheat,aswellasthedecarbonisationofexistingnetworks,tofurtherreduceCO2emissionsandthecountry’sdependenceonRussianenergy.84Althoughmarketsforsolarthermaltechnologies(includingsolarwaterandspaceheatinginbuildings)remainedbroadlystableduring2021-2022,risinginflationandinterestratesaffectedinvestmentsinsomeregions.85InEurope,someenergyutilitiesandenergy-intensiveindustriesfacedhigherenergycosts,whichledmanycompaniestoputonholdnewinvestmentdecisions.86Investmentinenergyefficiencyinbuildingssurgedin2021butwasexpectedtoslowin2022duetohigherconstruction,materialandfinancingcostsaswellaslowerspendinginemerginganddevelopingmarkets.87Europeancountries,theUnitedStatesandChinahavedominatedenergyefficiencyinvestmentinrecentyears,reflectingtherecoveryofconstructioninvestmentinWesternEuropeandongoingconstructiongrowthinChina,GermanyandtheUnitedStates.88EnergyefficiencyinvestmentinSoutheastAsiaandAfricahasstruggledduetopandemic-relateddis-ruptionstoconstructionaswellaslimitedpublicprogrammesforinvestment.89MODULEOVERVIEWPOLICYINVESTMENTMARKETDEVELOPMENTSCHALLENGESANDOPPORTUNITIESAsoflate2022,only40%ofcountrieshadmandatorybuildingenergycodes.RENEWABLES2023GLOBALSTATUSREPORT-ENERGYDEMAND24BUILDINGSINFOCUSPOLICYINVESTMENTMARKETDEVELOPMENTSCHALLENGESANDOPPORTUNITIESMarketsforrenewableenergytechnologiesinbuildingshavebeenontheupswing,duelargelytofavourableeconomics,supportivegovernmentpolicyandtheneedtoaddressclimatechange.Theuseofon-siteandcommunity-generatedrenewableelectricity,aswellasmarketsforrenewableheatingandcoolingtechnologies(especiallyheatpumps),grewstronglyduring2021and2022.DistributedsolarPVsuppliedelectricitytoaround25millionhouseholdsworldwidein2021.90Distributedsolaraccountedfornearlyhalfoftheglobalsolarmarketthatyear,itshighestsharesince2012.91(CentralisedsolarPVgenerationovertookdistributedgenerationin2015andhassinceaccountedforthemajorityofPVinstallationsworldwide,at56%,asharethathasremainedroughlystable.92)Oftheestimated78GWofdistributedsolarPVinstalledin2021,around60%wasresidentialand40%commercial.93EuropehadthehighestregionalshareofdistributedsolarPVin2021,butChina,withitsoverallmarketlead,wastheworld’stopinstaller.94ChinaalsowasoneofthefewtopmarketstoinstallmoredistributedsolarPV(29GW)thancentralisedsolarPV(26GW),joinedbyGermany(3.75GWversus2GW),Australia(3.2GWversus1.7GW)andJapan(3.6GWversus3.0GW).95Countriesthatinstalledmoreutility-scaleplantsthandistributedcapacityincludedtheUnitedStates(20GWcentralisedversus6.6GWdistributed)andIndia(11.6GWversus2GW).96RooftopsolaralsopickedupinnascentmarketssuchasIsraelandJordan.97Globaltechnologycompanieshavelaunchedseveralprojectstousewasteheatfromdatacentresfordistrictheatingandotherpurposes.Forexample,thewasteheatfromanAmazondatacentreinDublin(Ireland)isheatinglocalhomesandoffices;MicrosoftlaunchedasimilarprojectinHelsinki(Finland)inearly2022;andanInterxiondatacentreaimstoprovideheattoahospitalinVienna(Austria).98Heatingforspaceandwateristhelargestenergyuseinbuildingsandtheonemostheavilybasedonfossilfuels.In2022,marketsformanyrenewableheatingandcoolingtechnologiesgrewinresponsetotheenergycrisis.Theuseofbioenergytoprovideheatingservicesisthelargestrenewableenergyend-useinbuildings.Muchofthiscomesfromthetraditionaluseofbiomassi,whichincreasedfrom24.3EJin2019to24.5EJin2021.99Europeconsumesmorethanthree-quartersoftheworld’sbiomasspellets,manyofthemimportedfromtheUnitedStatesandCanada.100SalesofbiomassstovessurgedinEuropeduring2022,notablyinGermany,andwoodpelletsinEuropeandtheUnitedStatesfacedasupplycrunchasmorehouseholdsturnedtobiomassheat.101Chinaalsoisanemergingmarketforbiomassheat.102Solarheatprovidedaround10.5%ofmodernrenewableheatingconsumptionin2021.103In2021,theglobalmarketforsolarcollectorsgrew3%toreachacumulative522gigawatts-thermal,continuingitsreboundfroma2019low.104China’ssolarheatmarket,theworld’slargest,grewmodestlyduring2021,andstronggrowthalsooccurredinBrazil,Greece,India,Italy,PolandandtheUnitedStates.105InAfrica,asolarthermalprojectinNamibiaprovideswaterheatingtoatleast58socialhousingresidences,andsouthernAfricancountriessuchasBotswana,Lesotho,Namibia,SouthAfricaandZimbabwehavepublishedroadmapsonthepotentialtoincreasesolarthermaluptake.106TheEuropeansolarthermalindustrystruggledin2022duetotheaftershocksoftheCOVID-19pandemicandthewarinUkraine.107Solarheatincreasinglyprovidesspaceheatingthroughlarge-scaleinstallationsanddistrictheatingnetworks.In2021,44newlarge-scalesolarheatsystemscameonline–mainlyinChinaandEuropebutalsoinMexico(3systems)–andgrowthcontinuedin2022withthestartofconstructionofasolardistrictheatingplantintheNetherlands,amongotherprojects.108TheuseofhybridsolarPV-thermal(PVT)panelsgrew13%in2021,withmorethan6,000systemsbroughtonlineforatotalcapacityof751megawatts-thermal(MWth).109iThetraditionaluseofbiomassincludestheburningofwoodybiomassorcharcoal,aswellasdungandotheragriculturalresidues,insimpleandinefficientdevicestoprovideenergyforresidentialcookingandheatingindevelopingandemergingeconomies.25Directuseofgeothermalheatalsoprovidesspaceandwaterheatingservices.Around39%ofgeothermaldirectuseisforspaceheating.110Intotal,theglobalinstalledgeothermalheatingcapacitygrewaround9%annuallyfrom2014to2019.111TheworldleadersingeothermaldirectuseforheatingandcoolingareChina,theUnitedStates,Sweden,TürkiyeandJapan;onapercapitabasis,theleadersareIceland,Sweden,FinlandandNorway.112During2022,Chinalaunchedgeothermalheatingservicescoveringmillionsofhouseholdsinmorethan60citiesandcounties.113IntheUnitedStates,constructionstartedonNewYorkCity’slargestdistrictheatingandcoolingsystem;workprogressedonprojectsinMassachusettsandTexas;andtheDepartmentofEnergyannouncedaUSD13millionfundtodevelopgeothermaldistrictheat.114Intotal,theUnitedStateshas23geothermaldistrictheatingsystems,withthefirstinstalledin1892.115CanadaallottedCAD1.3million(USD960,000)todevelopgeothermalheatprojectsinNovaScotia.116InEurope,13newgeothermaldistrictheatingandcoolingprojectswerebroughtonlinein2021,providingmorethan154MWthofnewcapacity.117Three-quartersofthisgrowthwasinFrance,PolandandIceland.118During2022,morethan20projectswereindevelopment,includinginthesethreecountries.119ThefirstgeothermaldistrictheatingplantinVienna(Austria)alsowasgiventhegreenlight.120Policiesthatsupportbuildingelectrificationcontinuedtoboostmarketsforelectricheattechnologies,notablyelectricheatpumps.Heatpumpmarketssetgrowthrecordsinmanycountriesin2022,includingintheEUandtheUnitedStates.121Year-on-yeargrowthoverthefirsthalfoftheyearexceeded10%insixcountries:Italy(up114%),theNetherlands(100%),Poland(96%),Finland(80%),Germany(25%)andNorway(11%).122TheUSmarketgrew7.3%inthefirsthalfof2022comparedtothesameperiodin2021.123InfluencedbythewarinUkraineandbyREPowerEU,severalheatpumpmanufacturersannouncedormadesignificantinvestmentsinproductionfacilitiesduringtheyear.ViessmannplanstospendEUR1billion(USD1,067million)overthreeyears;DaikinannouncedaEUR1.2billion(USD1,281million)investmentinheatpumpmanufacturingto2025inEurope,aimingtotripleitsmanufacturingcapacity;andBosch,Panasonicandmanyothermanufacturersmadesimilarannouncements.124Districtheatingnetworksmetarisingshareofheatingdemandinbuildingsin2022.Theuseofrenewableenergyindistrictheatinggrewfrom0.4EJin2011to0.6EJin2021.125Overall,theshareofrenewablesindistrictheatingsystemsgrewfrom4.1%toanestimated5.6%duringthedecade.126MostdistrictheatingactivityisinEurope,althoughmuchofthisentailsconvertingexistingnetworkstorenewablesources(biomass,solarandgeothermalheat,andlarge-scaleheatpumps),ratherthanbuildingnewnetworks.127Moreprojectsareintegratingwasteheatintodistrictnetworks,suchasintheNetherlandsandSweden.128InanovelexampleinFinland,ambientheatfromtheBalticSeaisfedintoadistrictheatnetworktoheathomesinplaceofcoalandfossilgas.129Marketsforcoolingtechnologiesarechangingquickly.Globally,1.2billionpeopleareatriskduetolackofaccesstocooling,anddemandforairconditioningandothercoolingserviceshasbeenthefastestgrowingenergyuseinbuildings.130Theaverageefficiencyofcoolingapplianceshasbeenincreasing,helpingtomitigatethegrowthinelectricitydemandfromcooling.131However,themostefficientmodelshavenotnecessarilyhadthehighestuptake.132Examplesofrenewablecoolingapplicationsin2022includedthedrillingofthefirstwellsforageothermalcoolingsysteminIndiaandplansforgeothermalcoolinginBali,Indonesia.133WoodpelletsinEuropeandtheUnitedStatesfacedasupplycrunchin2022asmorehouseholdsturnedtobiomassheat.RENEWABLES2023GLOBALSTATUSREPORT-ENERGYDEMAND26BUILDINGSINFOCUSRBecausemanyheatingsystemsarestand-aloneunits(e.g.,individualfossilgasboilersoroilfurnaces),replacingthemwouldrequiresignificantinvestment,timeandworkforce,especiallyinthecaseofmulti-dwellinghousingsuchaslargeapartmentbuildings.RImplementingrenewable-baseddistrictheatingsystemsrequireshighupfrontinvestment,whichisoftennotfeasibleforresidentswithoutgovernmentsupportandincentives.RThenumberofengineersandinstallerscurrentlyavailabletoreplacehouseholdenergysystemswithnewsystemsisinsufficienttomeettheworkforcelevelsneededtoachieveclimategoals.RModern“cleancooking”stilldependslargelyontheuseoftraditionalbioenergyandfossilgasfuels,andapplicationsofelectrifiedtechnologiesarelimitedmostlytodevelopedcountries.RIncumbentfossilfuelcompaniescontinuetoinvestheavilyinpublicrelationscampaignsdesignedtoslowthetransitiontorenewablesinbuildings.RTheuseofrenewablesinbuildingswouldhelpreduceheatingandotherenergycosts–especiallyforlow-incomehouseholds–andlimitthevulnerabilityofhouseholdstofossilfuelpriceswings.RGreaterelectrificationofbuildingswouldcontributetodemandresponseandsystemflexibility,helpingtoachievehigherlevelsofrenewableenergyintegration.RInregionswithhighlevelsofnewconstruction,designingefficientandrenewableheatingsystems(andbuildings)wouldhelptoavoidcostlyrenovationsorupgradesatalaterstage.RInregionswithhighsharesofexistingbuildingstock,thereisanopportunitytogreatlyimprovetheefficiencyofthesebuildingsandtolowerenergybillsforconsumers.RLeapfroggingviarenewablesisawaytoprovideenergyaccesstothosecurrentlywithoutaccesstomodernenergysources.RNewbusinessmodels(suchasheat-as-a-service)provideanopportunityforconsumerstoavoidupfrontexpensesassociatedwithchangingtheirheatingsystems.MARKETDEVELOPMENTSCHALLENGESANDOPPORTUNITIESMARKETDEVELOPMENTSCHALLENGESANDOPPORTUNITIESMARKETDEVELOPMENTSCHALLENGESANDOPPORTUNITIESfortheUptakeofRenewablesinBuildingsCHALLENGESOPPORTUNITIES27Industryhadthehighestshareofrenewablesinfinalenergyusein2020,at16.8%Pulp&paperandfood&tobaccohadthehighestsharesofmodernrenewablesin202019countrieshadrenewableenergymandatesorfiscal/financialpoliciesforindustrybyend-2022Sevencountrieshadindustryroadmapsorrecoveryplansforrenewablehydrogenbyend-2022Modernbiomassrepresented8.2%ofindustryTFECH246%32%Industryhadthehighestshareofrenewablesinfinalenergyusein2020,at16.8%Pulp&paperandfood&tobaccohadthehighestsharesofmodernrenewablesin202019countrieshadrenewableenergymandatesorfiscal/financialpoliciesforindustrybyend-2022Sevencountrieshadindustryroadmapsorrecoveryplansforrenewablehydrogenbyend-2022Modernbiomassrepresented8.2%ofindustryTFECH246%32%Note:TFEC=Totalfinalenergyconsumption.MODULEOVERVIEWPOLICYINVESTMENTMARKETDEVELOPMENTSCHALLENGESANDOPPORTUNITIESINDUSTRYINFOCUSINDUSTRYINFOCUSIndustrialenterprisesgeneratearoundaquarteroftheworld’sgrossdomesticproductandemployment.1Industryisalsothelargestenergy-consumingsector,accountingfor33%ofglobaltotalfinalenergyconsumptionin2021.2DespitetheimpactsoftheCOVID-19pandemic,energyuseinindustrygrew9%between2010and2020,duemainlytorisingdemandforindustrialgoods,particularlyinenergy-intensivesectors.3Twokeyindustries–ironandsteelandchemicals–togetheraccountedfornearlyathird(32%)ofindustrialenergydemandin2020,whilefoodandtobacco,pulpandpaper,andminingconsumedaround5%each.4Industrialactivityproducedaround9.4gigatonnesofcarbondioxide(CO2)in2021,orroughlyaquarterofglobalemissions.5Around70%ofemissionscamefromthreesectors:cementandconcrete,ironandsteel,andchemicalsandpetrochemicals.6Since2010,theenergymixoftheindustrysectorhasremainedrelativelystable,withaheavyrelianceonfossilfuels.However,theshareoffossilfuelusefellfrom87%in2010to83%in2020,(pseeFigure7)duemainlytotheongoingelectrificationofindustrialheatcoupledwithrenewableelectricityuse,whichgrew80%duringthedecade.7Thedirectuseofrenewablesforprocessheataccountedforlessthan9%ofindustrialenergyusein2020,withmodernbioenergysupplyingmostofthis(8%)followedbysolarandgeothermalheat(lessthan0.1%).8Bioenergyuseismostcommoninbiomass-basedindustriesthatgenerateenergyfromtheirownwaste:forexample,inthepulpandpaperindustry43%ofthetotalfinalenergyconsumptionin2021wasbioenergy(mainlyblackliquorfrompulping).9FollowingtheRussianFederation’sinvasionofUkraineinearly2022,energypricesinEuropeandelsewhereskyrocketed.10Inthiscontext,companieshaveincreasedtheirinterestinenergyefficiencyandtheuseofrenewablesasawaytocutenergycostsandincreasethesecurityofsupply.11Indevelopingcountriesandforindustrieslocatedinremoteareas,suchasmining,theneedforsecure,reliableandaffordableenergyisakeydriveroftheuptakeofrenewables.ModuleOverviewPolicyInvestmentMarketDevelopmentsChallenges&OpportunitiesIn2020,thedirectuseofrenewablesforprocessheataccountedforlessthan9%ofindustrialenergyuse.29RENEWABLES2023GLOBALSTATUSREPORT-RENEWABLESINENERGYDEMANDMorecompaniesareannouncingnetzerocommitmentsi,bothtomaintainapositivecorporateimageandinresponsetorisingpressurefromregulators,suchasthroughtheEuropeanUnion(EU)Taxonomy,theUnitedKingdom’smandatoryclimatedisclosuresandtheUSBidenadministration’scomprehensiveclimateplan.12Althoughmostcompaniesstilllackconcreteandcredibleactionstrategies,someindustrialfirmshavecommittedtoshiftingto100%renewablesandtoreducingtheenergydemandoftheirproductionprocessesviaheatrecoveryandmaterialsrecycling.13Inthecementsector,solutionshaveincludedreducingtheclinker-to-cementratioiiandusingwasteasanalternativefueliii;otherindustriesareusingheatpumpstocaptureandreusewasteheat.14In2022,theFrenchmanufacturerSaintGobainwasabletoproducetheworld’sfirstzero-carbonglassbyusingbiogasand100%recycledglass.15Renewablehydrogen,createdusingrenewableelectricity,alsoadvancedduring2021-2022andisconsideredkeytodecarbonisingenergy-intensivesectors.16ShareofrenewablesinindustryExajoules(EJ)1201008060402002019202020108.5%Renewableelectricity8.2%ModernbioenergyRenewableheat0.1%87.7%Non-renewableenergyNon-renewableenergyNon-renewableenergy83.9%83.2%12.3%16.1%16.8%Note:Modernbioenergyincludesheatsuppliedbydistrictenergynetworks.Source:Seeendnote7forthismodule.FIGURE7.RenewableShareofTotalFinalEnergyConsumptioninIndustry,2010,2019and2020iAsofJune2022,morethanone-thirdoftheworld’slargestpubliclytradedcompanieshadtargetsfornetzerocarbonemissions,up60%sinceDecember2020.However,65%ofcorporatetargetsdonotyetmeetminimumproceduralreportingstandards.Seeendnote12forthismodule.iiBecauseclinkerproductionisthemostenergy-intensiveandCO2-emittingstepofthecement-makingprocess,reductionsintheclinker-to-cementratio(throughtheuseofclinkersubstitutes)reduceenergyuseandprocessCO2emissions.iiiOnlyaportionofwasteusedasanalternativefuelinthecementindustryisconsideredrenewable.30INDUSTRYINFOCUSPoliciesrelatedtoindustrytypicallyhavenotincludedrenewableenergyrequirements,reflectingtheverydiverseenergyneedsofindustrialsectors(forheating,electricity,etc.);however,someprogresshasbeenmadeonenergyefficiencyandenergymanagement.Policiessupportingrenewableheatoftenmentionindustrialuses,andmanycarbonpricingmechanismsencouragetheuseofrenewablesinlargeindustrysectors.Renewablehydrogenalsohasgainedpolicyattention.Otherfactorsdrivingindustrialpoliciesandregulationsrelatedtorenewablesincludetheongoingenergycrisis,concernsaboutenergysecurity,growingnetzerocommitmentsbycountriesandcompanies,andtheemergenceofthehydrogeneconomy.17However,alackofrobustnational-leveldatahashinderedthemappingofenergyneedsintheindustrysectorandthedesignofeffectivepoliciesonrenewables.In2022,nonewjurisdictionsadoptedregulatorypoliciesforrenewablesinindustry,andonlyonecountry,Poland,announcedplansforanewrenewableenergymandateforindustry,fortheminingsector.18Inaddition,theEU’sREPowerEUplan(yettobeapprovedasofthetimeofwriting)setatargetof10milliontonnesofdomesticrenewablehydrogenproductionand10milliontonnesofhydrogenimportsby2030forheavyindustries,andalsoincludesatargetforrenewableenergyuseinindustry.19Thisbringsthetotalnumberofcountrieswithroadmapsthatincludehydrogenintheindustrysectorto10,fiveofwhich(Australia,Brazil,SouthAfrica,SpainandSweden)areforrenewablehydrogen.20TheREPowerEUplanalsomentionstheelectrificationofindustrialprocessesandtheuseofalternativebio-basedorrenewableinputs,alongwithenergyefficiency,wastevalorisationandcircularuseofmaterials.21Inaddition,itaimstoexpandtheEU’smanufacturingcapacityforcleanenergytechnology,includingthroughindustrialalliancessuchastheSolarindustrialAlliancetopushthesolarpanelmanufacturingsector,andtheBiomethaneIndustrialPartnership.22Financialincentivesremainthemostcommonpolicysupportforpromotingtheuserenewablesinindustry,with12countrieshavingsuchpoliciesbytheendof2022.Overall,nonewpoliciesforrenewablesinindustryhavebeenannouncedsince2019.Asoftheendof2022,atotalof19countrieshadrenewableenergymandatesand/orfiscal/financialpoliciesforindustry;only9countrieshadrenewableenergymandatesthatenforcetheinstallationofrenewables,and2countries(SpainandTürkiye)hadbothregulatoryandfiscal/financialincentives.23Themostcommonfinancingframeworkforrenewablesintheindustrysectorisdirectcontractingthroughpowerpurchaseagreements(PPAs)orenvironmentalattributecertificates.However,nationalutilitieshavebeenreluctanttosupportindustry’stransitiontoindependentelectricitysources,andincountrieswherethegridisunreliable,fossilfuelback-upsystemsremainthenorm.24Thelackofenablingpoliciesforrenewableenergycaptivemarketshaspushedtheprivatesectortobeinnovativewithbusinessmodels,suchaslease-to-ownsolarparks.25Themomentumtowardsnetzerocarbonemissionscontinuestodrivepolicies.AsofNovember2022,atotalof140countries,representing90%ofglobalemissions,hadcommittedtonetzeropathways;thiswasupfrom130countriesrepresenting70%ofemissionsinMay2021.26Asgovernmentsandindustrieslooktorenewablesasapotentialsolutionformitigatingemissions,countrieshavebegunbridgingthesilosbetweenrenewableenergypoliciesandindustrypolicies.AkeyUSpolicyadvancementintheindustrysectorin2022wastheadoptionoftheInflationReductionAct,whichallotsUSD370billion(outofatotalUSD433billion)toenergyandclimatechange,puttingtheUnitedStatesontracktoreachits2050emissionreductiontarget.27Thelawhighlightsdomesticmanufacturingofbothrenewableenergytechnologiesandelectricvehiclesandinfrastructure.28Forenergy-intensiveindustriessuchassteelandcement,twoaspectsofthelawarenoteworthy:1)cleanelectricitytaxcreditsaretechnology-neutralandincludeenergystorageandgreenhydrogenstartingin2025,and2)thecreditswillbeinplaceforatleastadecade,givingindustrialusersampletimeandconfidencetodeveloprenewablesupplyoptionsfortheirownenergyneeds.29SouthAfrica’sJustEnergyTransitionInvestmentPlan2023-2027mentionsdecarbonisingtheindustrysectorthroughincreasedinvestmentinrenewablepower.30Italsohighlightsrenewablehydrogenasawaytodecarbonisehard-to-abatesectors(suchastransport,petrochemicals,ironandsteel,andcement)aswellastheautomotiveindustryandSpecialDevelopmentZones(industrialparks).31DuringtheUnitedNationsclimatetalksinEgyptinNovember2022,severalpolicyannouncementssupportedtheuptakeofrenewablesinindustry;forexample,Indiaintroducedamandatorygreenhydrogenpurchaseobligationforindustrialusers.32Thepreviousmonth,attheGroupofTwenty(G20)meetingsinIndonesia,theInternationalRenewableEnergyAgencyandindustryleadersestablishedtheAllianceforIndustryDecarbonizationtoencouragewiderindustryadoptionofrenewables.33Intheareaofrenewablehydrogen,EgyptannouncedanewNationalHydrogenStrategyin2022thatincludesbuildingtheinfrastructuretosupportindustrialusersofbothconventionalandrenewablehydrogen.34Alsoduringtheyear,SouthAfricapublisheditsHydrogenSocietyRoadmap,whichfocusesonrenewablehydrogen,includinglargeprojectsaimedatindustrialusers,suchastheBoegoebaaiGreenHydrogendevelopmentintheNorthernCape.35However,mostindustryleadersgloballycontinuetoconsiderbothfossil-basedandrenewablehydrogeninthepushtowardsnetzeroemissions.36Sofar,onlyafewpolicieshavefocusedontheuseoflandforindustrialrenewableenergyprojects.Thisincludes,forexample,developingindustrialclusterswherediverseindustriesshareenergygenerationprocesses;industrialparksorspecialeconomiczones;andindustrycommunityrenewableenergy.37Chilelaunchedaplanin2022tofacilitaterenewablehydrogenconcessionsonpubliclandstomeettheneedsoftheminingindustry.38MODULEOVERVIEWPOLICYINVESTMENTMARKETDEVELOPMENTSCHALLENGESANDOPPORTUNITIESTheInflationReductionActisakeyUSpolicyforindustrythatallotsUSD370billiontoenergyandclimatechange.31RENEWABLES2023GLOBALSTATUSREPORT-RENEWABLESINENERGYDEMANDAlthoughnocomprehensivedatasetscoverinvestmentinrenewablesintheindustrysector,severalexamplesexistofkeyindustrialinvestmentsinsolarthermal,geothermalheatandrenewablehydrogentechnologies.Thechemicalmanufacturing,mining,andpulpandpaperindustries,inparticular,haveinvestedinsolarindustrialheat.39Projectsoverthepastdecadeincludedasolar-poweredsteamboilerforchemicalevaporationanddistillationinTianjin,China;asolarthermalprojecttodrypigmentsinVellore,India;andtheuseofasolarthermalcollectortoheatwaterforcleaningprocessesinMaharashtra,India.40Intheminingindustry,theHellenicCopperMineinCyprusinvestedinasolarthermalsystemtoheataprocessmedium,andamineinDurango,Mexicoinvestedinasystemtoheatmake-upwater.41InKingseyFalls,Canada,aconcentratingsolarpowerplantwasbuilttoprovidehotwaterforindustrialprocessesinthepulpandpaperindustry.42InGermany,recentinvestmentshavesupportedtheexpansionofgeothermalheatforpaperdryinginthepulpandpaperindustry,withsupportfromtheEUandthestateofNorthRhineWestphalia.43InNewZealand,anAUD15million(USD10.2million)investment,fundedinpartbytheGovernmentInvestmentinDecarbonisingIndustryFund,aimstoestablishtheworld’sfirsttissuemachinerunningafullygeothermalsteamdryingprocess.44Since2020,asurgeofannouncementshavebeenmadereportinginvestmentinnetzerotechnologiesinthesteelindustry,someofwhichincludetheuseofrenewables.45Investingindecarbonisedsteelneitherlowerscostsnorincreasesproductquality,sotheprimarymotivationoftenistheopportunitytocaptureincipientmarketsfor“greensteel”andtoavoidstrandedassetsinanticipationofmorestringentclimatepolicies.46In2021,theSwedishcompanyH2GreenSteelallocatedaninitialUSD3billionforaplantthatwilluserenewablehydrogenforsteelproductionstartingin2024.47Inaddition,thenewFinancingSteelDecarbonizationinstrumentaimstomobiliseprivatefinanceforlow-carbontechnologiestodecarbonisesteel,includingthroughrenewablesandrenewablehydrogen.48Althoughmanyindustries,suchasthepulpandpaperandcementindustries,usebiomasstogenerateheat,fewspecificdataareavailableonindustrialinvestmentsinbiomassprojects.49Mostoftheenergyusedinindustry(around75%)isforprocessheat,withtherestgoingtoelectricaloperations(suchascoolingandpoweringmotors)andnon-processactivities(suchaslighting).50Akeytrendiselectrificationviarenewables,whichisgenerallyeasiertoachieveforindustrialprocessesthatrequirelow-ormedium-temperatureheat(below400degreesCelsius,°C).Renewableelectrificationoccursmainlyinthefoodandbeverage,transportequipment,machinery,andpulpandpaperindustries,althoughithasgreatpotentialinchemicals,pharmaceuticalsandtextiles,notablythroughtheinstallationofheatpumps.51Industrieswithhighertemperaturerequirementsforprocessheat–suchascement,chemicals,andironandsteel–arehardertoelectrify;however,theuseofelectricarcfurnacesinsteelmakingnowrepresentsaround25%ofglobalproduction.52Inparallel,manyindustriesthatalreadyusehighsharesofelectricityintheiroperationsareswitchingtorenewableelectricitysupply.Steelandcementcompanies,drivenbynetzerocommitments,areincreasinglyusingPPAstoprocurerenewablepowerfortheiroperations.53In2022,thesteelmanufacturerArcelorMittalinvestedinwindandsolarplantsinArgentinaandIndia,andGermansteelmakerssuchastheGMHGroupandSalzgittersignedPPAswithrenewableproviderstopowertheirelectricarcfurnaces.54CementmanufacturersthatsignedrenewablePPAsincludedCemexinSpain,SuezCementinEgypt,OpterrainGermanyandLafargeinHungary.55Inthechemicalsector,theglobalmanufacturerBASFcommittedtoPPAsatvariousEuropeanandUSlocations.56Inaddition,miningcompanieshavedevelopeddecentralisedrenewableenergyprojectsinAustralia,MadagascarandMalithatprovidereliableandaffordableenergyforbothminesitesandlocalcommunities.57POLICYINVESTMENTMARKETDEVELOPMENTSCHALLENGESANDOPPORTUNITIESMODULEOVERVIEWPOLICYINVESTMENTMARKETDEVELOPMENTSCHALLENGESANDOPPORTUNITIESEco-industrialparksarebecomingmoreattractiveforinvestorsastheyofferbettercostcompetitivenessandriskresiliency.32INDUSTRYINFOCUSGlobally,thenumberofeco-industrialparkshasgrownrapidly,withtheaimofcreatingresource-efficientindustrialparksthataremorecompetitive,risk-resilientandattractiveforinvestment.58Byintegratingprocesseswithinacluster–suchasgeneratinglow-costrenewablepowerandheaton-site–industriescanshareenergyandmaterialstreams.59Vietnam’sDecree35reliesonpoliciesandincentivestoboosttheeco-transitionoflocalindustrialparkstoattractglobalmanufacturers.60In2022,fourindustrialclustersinBelgium,theNetherlandsandtheUSstatesofOhioandTexasjoinedtheWorldEconomicForum’s“TransitioningIndustrialClustersTowardsNetZero”initiative.61Eco-industrialparksalsoarebeingdevelopedinColombia,Egypt,Indonesia,Peru,SouthAfrica,UkraineandVietnam,withsupportfromtheUnitedNationsIndustrialDevelopmentOrganization(UNIDO).62(pSeeSnapshot:SouthAfrica.)Becauseofalackoffinancing,theadoptionofrenewableelectricitybysmallandmedium-sizedindustriesrepresentsalargelyuntappedsolutionareaforlow-carbonindustrialisation,particularlyindevelopingcountries.63(pSeeSnapshot:Pakistan.)However,insomecountriessmaller-scalebusinesseshavebeenabletoaccessco-financingforenergyefficiencyandself-consumptionofrenewables.Chileexpandeditspilotprogramme“PutyourenergytoyourSME”in2021,andFrance’snewclimateactionloansupportstheenergytransitionofsmallandmedium-sizedbusinesses.64Ingeneral,theuptakeofrenewablesandelectrificationinindustryvariesgreatlydependingonthespecificsub-sectorandontheprocessesandtechnologiesbeingused.65(pSeeFigure8.)Source:Seeendnote65forthismodule.FIGURE8.RenewableEnergyShareandElectrificationRatesinSelectedIndustrySub-Sectors,2020HighpotentialHighpotentialHighpotentialMiningandquarryingIronandsteelChemicalsandpetro-chemicalsFoodandtobaccoPulpandpaperTFECExajoules(EJ)Electrificationrate2520151050RenewableenergyNon-renewableenergy22%24%28%25%44%6.7%7.3%32%46%14%33ClusteringDevelopmenttoMeetEnergyDemandandDecarbonisationCommitmentsMpumalangaprovinceineasternSouthAfricaisusingaclusterdevelopmentmodeltoencouragethegrowthofrenewableenergymanufacturing.Theregionaleconomydependsheavilyoncoalexploitation,accountingforaround80%ofSouthAfrica’scoalproductionandhostingmostofthecountry’scoal-firedpowerplantsandcoalminingactivities.Mpumalangaalsoisrichinwindandsolarresourcesi,withacombinedgridcapacityof6,520megawatts(MW).Theseassetsmaketheprovinceanideallocationforlarge-scalerenewableenergyprojectsthattakeadvantageofformercoalminingsitesandtheexistingtransmissioninfrastructure.InMay2022,theMpumalangaDepartmentofEconomicDevelopmentandTourism,incollaborationwithGreenCape,UKPACTandGermany’stechnicalco-operationagencyGIZ,launchedtheMpumalangaGreenClusterAgency,anindependententitythatseekstoovercomeinvestmentbarriersandunlockneweconomicopportunities,includinginrenewables.TheGreenClusteralignswithrecentpoliciesandlegislationaimedatdecarbonisingSouthAfrica’seconomy,suchasthenationalRenewableEnergyMasterplan,whichenvisionsopportunitiestodeveloprenewablemanufacturingvalueinkeyregionslikeMpumalanga.InJuly2022,SouthAfricaremovedthe100MWcaponself-generationofelectricitywithoutalicence.Asaresult,energy-intensiveuserssuchasindustrialandminingcompaniescannowgenerateorbuyelectricityfromindependentpowerproducersonalargerscale.Miningcompaniesalreadyhavecommittedtodeveloping4gigawatts(GW)ofrenewablesnationally,andasofJulytheyhadregistered73self-generationprojectstotalling295MW.InMpumalanga,themarketisexpectedtogrowtoaround2GWby2030.Additionally,SouthAfrica’sstate-ownedutilityEskomissettodecommissionupto11GWofcoal-firedgenerationby2030.Thispresentsanopportunitytore-purposeandre-powercoalplantsandadjacentland.EskomissuedtendersinApril2022toleaselandforrenewableenergyprojects,andinJunetheutilityannouncedthatithadselected18companiestolease4,000hectarestodeveloprenewableprojectstotalling1.8GW.iWindspeedsintheprovincearebetween4and7metrespersecondat100metresabovegroundlevel,whichissufficientforcommerciallyviablewindfarms.Thelong-termaverageglobalhorizontalirradiationinMpumalangarangesbetween1,752and2,044kilowattspersquaremetreannually(onlyaround16%lowerthanintheNorthernCape).Source:Seeendnote62forthismodule.SNAPSHOTSOUTHAFRICA34INDUSTRYINFOCUSTheuseofmodernsolidbioenergyinindustryincreased46%between2011and2021,risingfrom8.2exajoules(EJ)to12.0EJ.66However,theshareofthisbioenergyuserelativetototalfinalenergyconsumptionincreasedbyonly15%.67Drivenbynetzerocommitments,variouspulpandpapercompaniesadoptedbioenergyduring2022.Forexample,SouthAfrica’sSappireplacedcoalboilerswithbiomass,Finno-SwedishStoraEnsoannouncedthereplacementoffueloilwithrenewablepitchoil,andFinland’sMetsäinvestedinbiomasselectricitygenerationtohelpachieveits2030fossil-freeenergytarget.68Examplesofbiogasuseinindustryarefoundmainlyinthefoodsector,whereseveralleadingmanufacturersoperateanaerobicdigestionfacilitiestogenerateheatandelectricityforfactories.69In2022,Danone(France)committedtoincreaseitsuseofbiogas(aswellassolarandbiomass)aspartofitsdecarbonisationplan,andin2021bothUnilever(UK)andStarbucks(US)joinedtheUSBiogasAlliance.70Theuseofbiomassasanindustryfeedstockremainslimited.In2021,globalproductionofbiomass-basedplasticaccountedforlessthan1%ofglobalplasticproduction.71Bio-basedchemicalssuchasmethanolicouldbeusedaskeysubstitutesforoilindecarbonisingthechemicalindustry.72Solarthermalcanbeanefficientmeansofprovidingzero-carbonheatandacost-effectivealternativetotheelectrificationofheat.Althoughsolarthermalhasbeenusedmainlyforlow-temperatureapplications,newdesignsserveapplicationswithtemperaturerequirementsofupto400°C.73However,highinitialcapitalcostsandlowdeploymentrateshavelimiteduptake,eveninsectorswithsignificanttechnicalandeconomicpotential,suchastextilesandfood.74Asof2022,therewereanestimated136solarheatprojectsinindustry,mostoftheminthefoodandbeveragesector,includinglarge-scaleprojectsatmaltingplantsinCroatia,FranceandSpain.75Arecenttechnicaldevelopmentisthecommercialisationofaversatilesolarhotwatersolutioncapableofgeneratinghighoperatingtemperatures,includingforindustrialheatingprocesses.76High-temperaturegeothermalenergycanbeusedtogenerateelectricityoracombinationofheatandpower.77Directgeothermaluseaccountedforonly1.6%ofthetotalthermalenergyuseinindustryin2019,mainlyinminingandfoodmanufacturing.78Barrierstowiderapplicationincluderesourceavailabilityandhighupfrontcosts.79TheInternationalGeothermalAssociationhassoughttoscaledirectindustrialapplicationsintheagri-foodsectorinSouthAmericaandtheCaribbean.80InEurope,theoil,gasandchemicalscompanyOMVstartedtwogeothermalprojectsin2022:oneinAustriausingheatasadirectcarrierandoneinGermanyforelectricitygeneration.81IntheUnitedStates,aresearchprogrammeaimstoreplacedieselfuelwithgeothermaltopowerminingoperations,particularlyinremoteareas.82Meanwhile,start-upsintheUnitedKingdomaredevelopingtechnologiestoextractlithiumusinggeothermalwaters,toreplacetheenergy-intensiveextractionpracticeofheatingseawaterbrinetohightemperatures;twopilotsiteswereexpectedbyspring2023.83Heatpumpsareanenergy-efficientalternativetotraditionalheatingandcoolingsystemsandakeytechnologyforelectrifyingindustry.84Thegrowingfocusonefficiency,combinedwiththerecentriseinfossilgasprices(especiallyinEurope),coulddrivemarketuptakeamongthethreemainindustrialusersofheatpumps:thepulpandpaper,foodandbeverage,andchemicalssectors.85However,technicalbarriersandhighinitialcostscontinuetoimpedemoregeneraliseduse.86Asof2022,commercialtrialsofheatpumpsoperatingat160°Cwereongoing,withprototypesalsoavailableforheatpumpstoachieve200°C.87InthecontextoftheEU-fundedPUSH2HEATproject,launchedinOctober2022,technologiesforprocessesof90°Cto160°Cwillbedemonstratedatfourindustrialsitesinthefood,paperandchemicalssub-sectors,withtheaimofincreasingthedeploymentofheatpumptechnologiesforheatupgrade.88Onthedemandside,interestisrisinginheatpumpsthathaveadditionalperformanceandenergy-savingfeatures,suchasre-usinglow-temperaturewasteheat(forexample,fromrefrigerationprocesses).89Renewablehydrogenisbeingdiscussedmainlyinthecontextofdecarbonisingenergy-intensiveprocesses,inparticularinpetrochemicalsandsteelmaking.Despitegrowingmomentumforrenewablehydrogen,applicationsremainlimitedduetohighproductioncostsandtheneedforrelatedinfrastructure.90In2022,twoImportantProjectsofCommonEuropeanInterestwereapprovedinthecontextofREPowerEU,aimingtointegrategreenhydrogenintoindustrialsteel,cementandglassprocesses.91Producinghigh-value-addedproductssuchasrenewableammonia(orsteel)fordomesticproductionorforexporttotheEUisseenasawaytosustainablyindustrialisecountriesandboostrenewablehydrogenuptakeinAfrica,particularlyinSouthAfricaandothermembersoftheAfricaGreenHydrogenAlliance(Egypt,Kenya,Mauritania,MoroccoandNamibia).92iMethanolisakeychemicalproduct,contributingto10%oftotalgreenhousegasemissionsfromchemicals.Itisproducedmainlyfromoiltodaybutalsocanbeproducedfrombiomassfeedstocks,includingforestryandagriculturalwasteandby-products;biogasfromlandfills,sewageandmunicipalsolidwaste;andblackliquorfromthepulpandpaperindustry.35RENEWABLES2023GLOBALSTATUSREPORT-RENEWABLESINENERGYDEMANDSNAPSHOTPAKISTANMakingProgressinDecarbonisingIndustrywithRenewablesPakistan,whichexperienceddevastatingfloodsin2022,facesanurgentneedtodecarboniseitsindustrysectorandmitigatetherisksofclimatechange.Thecountryaimstohalveitsemissionsby2030whilealsoexpandingenergyaccess.Aquarterofthepopulation,mainlyinruralareas,stilllacksaccesstoelectricity.In2022,severalrenewableenergyinitiativeswereundertakentopromoteeconomicdevelopmentwhiledevelopinglocalindustry.Forexample,theNationallyAppropriateMitigationActions(NAMA)facilityprovidedfundingandadvisorysupporttohelpsmallandmedium-sizedbusinessesinvestinenergyefficiencyandrenewablesinthetextileindustry,whichisPakistan’slargestindustrialemployerandcontributesaround6%ofnationalgreenhousegasemissions.Inthesugarindustry,theEUsupportedaprogrammetohelpsugarmillsproducetheirownelectricityfromsugarcanebagasseandfeedsurpluspowertothegrid.Inaddition,UNIDOhasprovidedsmallbusinessesandmicro-enterprisesinPakistanwithinterest-freeloanstoprocureandinstallrenewables.Underthisscheme,thecountryadded1.3MWofsolarphotovoltaics(PV)in2022,generating1,825megawatt-hoursofelectricityperyear.Thesolarpowerenabledbusinessestoimprovetheirproductivityandincreaseincomes25%onaverage,whilereducingtheirvulnerabilitytopoweroutagesandeliminatingmorethan827tonnesofCO2emissionsannually.Inaddition,theUKgovernment,throughtheClimateFinanceAccelerator,announcedaprogrammetoinstall150MWofdistributedsolarPVatcommercialandindustrialsitesunderapay-as-you-gomodel.Source:Seeendnote63forthischapter.36INDUSTRYINFOCUSSteelmakingusingrenewablehydrogenhasexperiencedstrongmomentumglobally,withmorethan70projectsunderdevelopmentand10newprojectsannouncedin2022.93MajorEuropeanmanufacturerssuchasArcelorMittalandThyssenKrupphavedevelopedatleast19pilotandlarge-scaleprojectsinEurope,includinginFrance,Germany,theNetherlands,SpainandSweden.94InChina,whichproducesoverhalftheworld’ssteel,hydrogen-basedprojectsarebeingdevelopedinHebei,GuangdongandInnerMongolia.95Tangshancityannouncedaplanin2022tobecomeahydrogenproductionhubandtosupportlocalsteelmakersinusinghydrogen-baseddirect-reducediron(DRI).96Mostofthehydrogenwillbeproducedusingcokeovengas,butsolarpowerplantswillalsobebuilttoproducerenewablehydrogen.97Overall,however,hydrogen-runDRIplantsremainlimited.98AkeyfactorimpedingtheconversiontoDRIplantsinAsiaistherelativelyyoungageoftheconventionalequipmentinsteelplants,whichmakesitfinanciallydifficulttojustifytheirconversion.99Theproductionofammonia–akeyproductinthefertiliserandchemicalindustries–usingrenewablehydrogenisstillintheearlystagesofdevelopmentandcommercialisation,andfurthereffortsareneededtoimproveitscostefficiencyandscalability.100Around54projectsexistcurrently,notablyinAustralia,MauritaniaandOman,althoughprojectsalsohavebeenannouncedinLatinAmerica,particularlyinChile,whichisrichinwindandsolarenergy.101Thefirstrenewablehydrogen-basedammoniaplantbecameoperationalin2021inSpain,whilethefirstgigawatt-scalerenewableammoniaplantisbeingbuiltinSaudiArabiaandsettobeginoperationsin2025.102In2022,theZeroCarbonCertificationSchemepre-certifiedYaraInternational’sgreenammoniaplantinWesternAustraliainrecognitionofthecompany’scommitmenttousingenergyfromon-sitesolarPV.103RAlthoughseveralrenewableheattechnologiesforlow-to-mediumtemperatureprocessesareonthemarket,fossilfuel-basedheatingtechnologiesgenerallyremainmorecosteffective,hinderingtheadoptionofrenewablesolutions.RRenewabletechnologiesfordecarbonisinghigh-temperatureindustrialprocessesremainlimited,andfurthertechnologicaldevelopmentisneeded.RManyindustrysectorsarecapitalintensive,withlong-livedcapitalassets.Switchingtorenewabletechnologiesisexpensiveduetothelonglifetimesofindustrialequipmentandplants.RTailoringpolicytotheneedsandcharacteristicsofdifferentindustriesischallenging,astheheterogeneityamongsub-sectors,includinginenergyuseandintensity,impedeshavingacomprehensivepolicy.RThepotentialforusingindustrialheatpumpsinlow-temperatureheatapplicationsishigh;thishastheadvantageofbothreducingcoststhroughenergyefficiencyandprovidinglow-carbonenergy.RRenewablehydrogencanbeusedinmanyenergy-intensiveindustries,whereitischallengingtouse100%renewabletechnologies.RSmallandmedium-sizedbusinesseshavesignificantuntappedpotentialforuptakeofrenewables,whilesimultaneouslyincreasingtheircompetitivenessthroughcostsavingsandimprovedsustainabilitypractices.RInvestmentsindecarbonisedsteel,whichmayincludetheuseofrenewables,aredrivenbythewishtocaptureopportunitiesinincipientgreensteelmarketsandtoavoidstrandedassetsinanticipationofmorestringentclimatepolicies.MODULEOVERVIEWPOLICYINVESTMENTMARKETDEVELOPMENTSCHALLENGESANDOPPORTUNITIESMODULEOVERVIEWPOLICYINVESTMENTMARKETDEVELOPMENTSCHALLENGESANDOPPORTUNITIESMODULEOVERVIEWPOLICYINVESTMENTMARKETDEVELOPMENTSCHALLENGESANDOPPORTUNITIESfortheUptakeofRenewablesinIndustryCHALLENGESOPPORTUNITIES37Transportisthefastestgrowingenergy-consumingsector,atanaveragerateof2%peryear6countriesandsub-nationaljurisdictionsannouncedorup-datedrenewabletargetsfortransportin2022Investmentinelectricvehiclesandcharginginfrastructurewasup54%in202210countriesandsub-nationaljurisdictionsreducedorsuspendedtheirbiofuelblendingmandatesin2022In2022,totalinvestmentinelectrictransportwasequivalentto80%ofthetotalinvestmentinrenewableenergyBreakdownoftransportdemandin2021Aviation8%Maritimetransport11%Rail3%Roadtransport78%Transportisthefastestgrowingenergy-consumingsector,atanaveragerateof2%peryear6countriesandsub-nationaljurisdictionsannouncedorup-datedrenewabletargetsfortransportin2022Investmentinelectricvehiclesandcharginginfrastructurewasup54%in202210countriesandsub-nationaljurisdictionsreducedorsuspendedtheirbiofuelblendingmandatesin2022In2022,totalinvestmentinelectrictransportwasequivalentto80%ofthetotalinvestmentinrenewableenergyBreakdownoftransportdemandin2021Aviation8%Maritimetransport11%Rail3%Roadtransport78%MODULEOVERVIEWPOLICYINVESTMENTMARKETDEVELOPMENTSCHALLENGESANDOPPORTUNITIESTRANSPORTINFOCUSTRANSPORTINFOCUSOverthepastcentury,globaleconomicgrowthhasbeentightlylinkedwiththetransportsector,coincidingwiththesurgeandexpansionofglobalisation.Moderntransporthasenabledexponentialgrowthintheconnectionsbetweenproducersandconsumers,andbetweenpeopleandopportunities.In2021,thetransportsectorcontributedanestimated7%oftheglobalgrossdomesticproduct–someUSD6.8trillion–andemployed5.6%oftheworkforce,or193millionpeople.1Thetransportsectorconsumed113.4exajoules(EJ)ofenergyin2021,representingaroundathirdofthetotalenergydemandforend-uses.2Transportenergydemandincreased7.8%duringtheyearbutwasstill6.6%belowpre-pandemiclevels.3Thiswasduemostlytoa7.7%declineintransport-relatedoilconsumptionbetween2019and2021,evenasdemandroseforelectricity,biofuelsandfossilgas.4Roadtransportconsumedthevastmajorityoftransport-relatedenergy(nearly78%)in2021,followedbymarinetransport(11%)andaviation(8%),whereasrailtransportconsumedfarless(3%).5Energyuseinroadtransportisdominatedbypassengertravel,primarilyinlight-dutyvehicles.Passengeraviationrepresentednearly7%ofthetransportsector’stotalenergyconsumptionin2021,fivetimesmorethanairtransportforfreight.6Intherailwaysector,however,freighttransportconsumedfourtimesmoreenergythanpassengerrail.7Transporthasthelowestpenetrationofrenewableenergyamongthemainend-usesectors(buildings,industryandagriculture).ModuleOverviewPolicyInvestmentMarketDevelopmentsChallenges&OpportunitiesThetransportsectorcontributesUSD6.8trillionofglobalGDPandemploys5.6%oftheworkforce.39RENEWABLES2023GLOBALSTATUSREPORT-RENEWABLESINENERGYDEMANDIn2020,thetransportsectorcontinuedtorelyheavilyonfossilfuels,dominatedbyoil(90%)andalsoincludingfossilgas(nearly5%).8(pSeeFigure9.)Renewablesaccountedforonly4.1%ofthesector’stotalenergyconsumption,comprising3.6%biofuelsand0.4%renewableelectricity.9Althoughthedemandforbiofuelsintransportfellin2020,duemainlytotheCOVID-19pandemic,itincreasedagainin2021(by7.8%)tosurpasspre-pandemiclevelsby2.5%.10Theuseofrenewableelectricityintransportalsogrew,rising7.1%in2021andexceedingpre-pandemiclevelsby11.9%.11Transportcontinuestocontributegreatlytogreenhousegasemissions.12Between2009andthestartoftheCOVID-19pandemic(2019),emissionsfromaviationandroadtransportweregrowingataverageannualratesofaround4%and2%,respectively.13By2021,emissionsfromroadtransportnearlyresumedtheir2019level,whileaviationemissionswerestill31.7%belowthepre-pandemicpeak.14Overall,thetransportsectorreleased7.7gigatonnes(Gt)ofcarbondioxide(CO2)emissionsin2021,oraround20%oftheglobaltotal.15Transport-relatedemissionswereup7.8%relativeto2020butstill7.2percentagepointsbelowpre-pandemiclevels.16Roadtransportalonereleasedmorethanthree-quartersoftransportemissionsin2021(76.6%,or5.9GtofCO2),followedbymarinetransport(11%)andaviation(9.2%).17Passengerroadtransport,aviationandtrucksaretheleast-efficientmodesoftransport,usingaround2,000kilojoulesofenergyperpassenger-kilometreortonne-kilometrecarried.18During2000-2019,theenergyintensityoffreightroadtransportincreased11%,indicatingreducedefficiency,whereastheenergyintensityofcarsandairplanesdeclined,reflectingimprovementsinefficiency.19Acommonlensforaddressingefficiencyintransportisthe“avoid-shift-improve”framework,whichfocusesonboostingtheefficiencyof:1)thetransportsectorasawhole(by“avoiding”travelingwherepossible),2)individualtrips(by“shifting”transportmodes)and3)vehicles(by“improving”technologies).20Forexample,asthedemandforenergygrows,publicpolicyandlandmanagementstrategiescanhelpreducetheneedformotorisedtransport,especiallyinurbanareas.21Inaddition,incentivesandinvestmentscanshiftuserstowardslessenergy-intensivemodessuchascycling,walkingandrail.22Finally,improvingvehicletechnologiesandincreasingtheshareofrenewablesiscriticaltoreducingbothenergyuseandemissions,thusenablinglargeefficiencygains.Exajoules(EJ)1201008060402002.6%97.4%Non-renewableenergyNon-renewableenergyNon-renewableenergy96.4%95.9%Renewableenergy3.6%Renewableenergy4.1%Renewableenergy2019202020103.6%BiofuelsRenewableelectricity0.4%Source:Seeendnote8forthismodule.FIGURE9.RenewableShareofTotalFinalEnergyConsumptioninTransport,2010,2019and202040TRANSPORTINFOCUSPoliciestoencouragetheuseofrenewableenergyinthetransportsectorincludetargets,incentivesandmandatesaimedatincreasingtheuseofbiofuelsandatboostingvehicleelectrificationthroughtheintegrationofrenewables.Theglobalmomentumtowardsnetzeroemissionpathwaysalsohasdrivenpolicychangeinthetransportsector,althoughwithastrongerfocusondecarbonisationthanonthepenetrationofrenewables.23During2022,nonewnationaltargetsforrenewableenergyshareswereadoptedinthetransportsector,however,afewcountriesrevisedtheirtargets.Twocountriesraisedtheirtargetsfortheshareofrenewablesintransportby2030:Portugalfrom20%to29%,andtheNetherlandsfrom14%to28%.24Incontrast,Italyreviseditstargetdownwardfrom22%to16%.25Atthecitylevel,Curitiba(Brazil)setatargettopower100%ofpassengertransportwithrenewablesby2050.26IntheUnitedStates,KingCounty(Washingtonstate)committedtoachievingazero-emissionpublictransportfleetby2040.27RoadTransportTheglobalenergycrisisresultingfromthewarinUkraine,aswellashighfuelpricesatthepump,havemotivatedpolicymakerstoenactmorelow-carbonpoliciesforroadtransport.28Althoughbiofuelshavebeenakeyfocusfordecades,thenumberofnewbiofuelpolicieshasflattenedinrecentyears.Meanwhile,policiestargetingtheelectrificationofroadtransporthavereceivedgrowinginterest.However,incentivesforelectricvehiclesdonotnecessarilyleadtogreaterrenewableenergyuptakeunlesstheyarealignedspecificallywitheffortstoincreaserenewablesintheelectricitymix.Biofuelblendingmandatesremainthemostcommonpolicyforadvancingrenewablefuelsintransport.Asoftheendof2022,atotalof56countriesand30sub-nationaljurisdictionshadinplacebiofuelblendingmandates(pseeFigure10);thiswasdownfrom65countriesin2021,duetotemporarysuspensionsofmandatesinsomecountries.29Somecountriesupdatedtheirpolicies.Fourcountries–Argentina,India,IndonesiaandtheRepublicofKorea–increasedtheirbiofuelmandatesortargetsin2022.Toreducerelianceonoilimports,Indiaamendeditsnationalbiofuelpolicybyincreasingtheethanolblendinpetrolto20%by2025-2026(fiveyearsaheadofschedule)andallowingforadditionalfeedstocksinbiofuelproduction.30TheRepublicofKorearaiseditsbiofuelblendmandateforroadtransportfrom3%to3.5%,andintheUnitedStatestheEnvironmentalProtectionAgencyproposedupdatingthenationalrenewablefuelpolicytomandatehighervolumes.31During2022,10nationalandsub-nationaljurisdictionseithertemporarilyreducedtheirbiofuelblendingmandates(Brazil,Colombia,Finland,MexicoandThailand)orsuspendedthem(CzechRepublic,Latvia,Peru,ZimbabweandtheUSstateofNewMexico).32Insomecases,countriesscaledbacktheirmandatesMODULEOVERVIEWPOLICYINVESTMENTMARKETDEVELOPMENTSCHALLENGESANDOPPORTUNITIESFIGURE10.NationalandSub-NationalRenewableBiofuelMandatesandTargets,asofEnd-2022Nationalbiofuelblendmandate,10%oraboveNationalbiofuelblendmandate,below10%Sub-nationalbiofuelblendmandateonlyNopolicyCountrieswithexistingadvancedbiofuelmandatesCountrieswithnewandrevisedbiofuelmandatesandtargetsin20224countries(Argentina,India,IndonesiaandtheRepublicofKorea)increasedtheirbiofuelmandatesortargetsin2022.Source:Seeendnote29forthismodule.41RENEWABLES2023GLOBALSTATUSREPORT-RENEWABLESINENERGYDEMANDbecauseofrisingpricesforvegetableoil.Brazil’sNationalEnergyPolicyCounciloptedtoextendtheexistingmandateof10%foralongertimeperiod,ratherthanincreasingit.33Momentumfortheelectrificationofvehiclesisgrowing,withsupportpoliciesrangingfromtaxincentivesandstimuluspackagestospecifictargetsforelectricvehicles.Bytheendof2022,atotalof23nationaland17sub-nationaljurisdictionshad100%bansoninternalcombustionenginevehicles.34(pSeeFigure11.)Earlyintheyear,Thailandrolledoutasetofexemptionsorreductionsofimportdutyandexcisetax,aswellasconditionalsubsidies,forimportedelectricvehicles;thesemeasuresbuildonthetargetsetin2021toproducedomestically250,000electricvehicles,3,000electricpublicbuses,and53,000electricmotorcyclesby2025,and1.2millionelectricvehiclesby2036.35InthePhilippines,theElectricVehicleIndustryDevelopmentActenteredintolaw,offeringfiscalincentivesforthemanufactureofelectricvehicles.36TheUSEnvironmentalProtectionAgencyamendeditsrenewablefuelpolicytoinclude,forthefirsttime,apathwayforelectricvehiclemanufacturers.37AssupportforCOVID-19stimuluspackagescontinuedin2022,somecountriesprovidedongoingincentivesforelectricvehiclepurchases.FranceandGermany,amongothers,nowofferconsumersanenvironmentalbonusforbuyinganelectricvehicle,oftenfinancedthroughataxcollectedonthesaleofinternalcombustionenginevehicles.38AfewcountriesrevisedSource:Seeendnote34forthismodule.FIGURE11.TargetsforRenewablePowerandElectricVehicles,asofEnd-2022+EUbanoninternalcombustionenginevehiclesLevelofnational/sub-nationalrenewablepowersharetargetedforjurisdictionswithelectricvehicletargets1-30%31-60%61-90%91-100%Sub-nationalrenewablepowertargetNewelectricvehicletargetin2022Norenewablepowertarget100%electricvehicletargetortargetedbanoninternalcombustionenginevehicles5countries(Chile,Denmark,NewZealand,SwedenandtheUnitedKingdom)hadbotha100%ICEbananda100%renewablepowertarget.42TRANSPORTINFOCUSdowntheirvehicleelectrificationtargets.Forexample,Germanyadjusteditsinitialtargetofhaving15millionexclusivelybatteryelectricvehiclesontheroadby2030,sothatitalsoincludesplug-inhybrids.39Policiesforcharginginfrastructurealsogainedattentionduringtheyear.TheUSDepartmentofTransportationproposedstandardsforaNationalElectricVehicleChargingNetworkthatincludesusingrenewableelectricityforcharging.40InFrance,newlegislationmakesitmandatoryforparkinglotsthathave80spotsormoretoinstallsolarphotovoltaic(PV)systemsforelectricvehiclechargingwithinthreetofiveyears.41Hydrogenproductionforroadtransportisseenassuitableforuseinheavy-dutyvehiclesthatdrivelongdistances.IndialaunchedaGreenHydrogenandGreenAmmoniaPolicyinFebruary2022andalsoannouncedaNationalHydrogenMission,withspecificmentionofthetransportsector.42Bansoninternalcombustionenginevehiclesprovideindirectpolicysupportforrenewables.In2022,17newandrevisedelectricvehicletargetsandpolicieswereannounced,covering16countriesand1sub-nationaljurisdiction(theUSstateofMinnesota),with6ofthecountries(Canada,Chile,ChineseTaipei,Mexico,NewZealandandthePhilippines)announcing100%bansoninternalcombustionenginevehiclesbyaspecifiedyear.43ChileandNewZealandalsohavetargetsfor100%renewablepower(acrossallsectors).44TheEuropeanUnion(EU)approvedabanonthesaleofallnewpetrolanddieselcarsfrom2035.45Aviation,RailandShippingDespitegrowingeffortstoincorporaterenewablesintoaviation,railandshipping–suchasbyusingbiofuelsinaviationanddevelopingelectricandhydrogen-poweredtrains–policiessupportingtheseinitiativesremainnascentandfacesignificantchallenges.Theuseofrenewablesalsohasbeenlimitedbytheheavyrelianceonfossilfuelsinthesesectors.Insomecases,policieshaveimpededthedevelopmentoflow-carbonalternatives:forexample,theEUcontinuestoprovidetaxexemptionsforkerosenefuelusedinaviation.46In2022,therewasgrowingemphasisonpoliciessupportingsustainableaviationfuel,orSAF,definedasfuelsproducedfromsustainablefeedstocksthathavesimilarpropertiestoconventionalaviationfuel.Withmorecountriesandairlinescommittingtonetzeroemissions,SAFisincreasinglyseenasthewayforwardfordecarbonisingaviation.47TheEUandtheUnitedStateshaveledthewayinSAFpolicies.InDecember2022,theEU'stheReFuelEUAviationpackageoflegislativeproposalsincludesablendingmandateforaviationfuelsuppliersstartingin2025.48TheUnitedStatesadoptedlegislationinAugustthatincludesatwo-yearblendertaxcreditandatwo-yearproductiontaxcreditforSAF,alongwithagrantprogrammeofUSD290million.49Subsequently,theUSDepartmentofEnergyissuedtheSAFgrandchallengeroadmap,whichdetailsthecountry’sstrategytoreachitsSAFtargets.50Denmarkannouncedplanstomakealldomesticflightsfossilfuel-freeby2030andisconsideringarangeoftechnologicaloptionstoachievethis,includingsyntheticparaffin,battery-electricandfuelcell-electricaircraft.51Inasimilarpushtoreduceemissions,Francebannedallshort-haulflightsifthereisanexistingrailalternativeoflessthan2.5hours’duration.52Concurrently,theFrenchnationalrailwaycompanysigneda25-yearpowerpurchaseagreement(PPA)tosecureenoughsolarPVpowertocover3.6%ofitsannualenergyuse;thisbringstoseventhetotalnumberofsolarPPAsthecompanyhassignedinrecentyears.53Therailcompanyisaimingfora40-50%renewableenergymixby2026.54Intheshippingsector,severalgreenshippingcorridors–wherezero-emissionsolutionsareinplacealongkeymaritimetraderoutes–wereannouncedin2022.TheseincludetheLosAngeles-LongBeach-SingaporeGreenandDigitalShippingCorridor,theRepublicofKorea-USGreenCorridor,theRotterdam-SingaporeGreenCorridorand,notably,theShanghai-LosAngelescorridor.55(pSeeSnapshot:US-China.)TheseareamongseveralworldwideinitiativesandcommitmentsmadeintheshippingindustryfollowingthesigningoftheClydebankDeclaration(ontheestablishmentofgreenshippingcorridors)attheUnitedNationsclimateconferenceinGlasgow,Scotlandin2021.5643Globalinvestmentinbiofuelsireachedanall-timehighin2021thenfellslightlyin2022,toUSD5.84billion.57Biofuelinvestmenthasbeenhamperedbyrisingpricesanddecliningdemand,dueinparttodisruptionsrelatedtotheCOVID-19pandemic,risingenergyefficiency,surgingelectricvehiclesales,behaviouralchangeandsuspensionsinbiofuelmandates.58However,investorinteresthasincreasedinBrazil,aleadingbiofuel-producingcountry,duetohigherethanolpricesandthepossibilityofmergingoracquiringstrugglingsmallercompaniestoharnessthecountry’sidlecapacity.59World'sFirstTrans-PacificGreenShippingCorridorBetweenLosAngelesandShanghaiIn2022,thePortofLosAngelesintheUnitedStatesandthePortofShanghaiinChinaannouncedastrategicpartnershiptocreateagreentransportcorridortoreduceemissionsfromoneoftheworld’sbusiestcontainershippingroutes.Theallianceaimstophaseinlow-carbonfuelsinordertoachievezero-carboncontainershipsby2030.ItwasfacilitatedbytheC40CitiesClimateLeadershipGroupandinvolvesauthoritiesfrombothcitiesaswellasindustrypartners,includingshippingcompaniesandanetworkofcargoowners.Thisalliancerepresentsastepforwardinpromotinglong-termdecarbonisationsolutionsforshipping.Theshippingsectorisresponsibleforupto3%ofglobalgreenhousegasemissions,andemissionsfromthesectorareexpectedtodoubleby2050.In2020,anestimated21%ofthetotalof31.2millioncontainersmovedbyshipacrossthePacificOceantravelledalongtheTrans-Pacificcorridor.Introducinglow-andzero-carbonfuelshipsonthisbusytransportroutecanpotentiallyreducealargeshareofthesector’semissions.Inadditiontophasinginlow-andultra-low-carbonfuelshipsinthe2020sandoperatingthefirstzero-carboncontainershipsby2030,theLosAngelesandShanghaiGreenShippingCorridorAssociationaimstodevelopbestmanagementpracticestoimprovetheefficiencyofallshipsthatusethecorridorandtoreduceemissionsfromtheportoperationssupplychaintoimproveairquality.Source:Seeendnote55forthismodule.SNAPSHOTUS-CHINAiDataarefromBloombergNEFandincludeallbiofuelprojects(bioethanol,biodiesel,renewabledieselandsustainableaviationfuel)withanannualproductioncapacityof1millionlitresormore.MODULEOVERVIEWPOLICYINVESTMENTMARKETDEVELOPMENTSCHALLENGESANDOPPORTUNITIES44TRANSPORTINFOCUSInvestmentinbillionUSD20202019201820212022010020030040059%China14%UnitedStates10%Germany5%UnitedKingdom4%FranceRepublicofKorea3%Italy2%Japan1%Spain1%India1%Source:Seeendnote64forthismodule.FIGURE12.InvestmentinElectricVehiclesbyMajorCountry,2018-2022Agrowingnumberofrefineriesthatproducerenewablediesel,alsoknownashydrotreatedvegetableoilorHVO,receivedinvestmentinrecentyears,particularlyintheUSstatesofCaliforniaandOregon.60In2022,Phillips66announcedaUSD850millioninvestmenttoconvertitscrudeoilrefineryinRodeo,Californiatoonethatprocessesrenewablediesel,biofuelsandSAF.61Twostate-levelpolicies–theCaliforniaLowCarbonFuelStandardandOregon’sCleanFuelProgram–havefuelledthisUSgrowth.62Alsoin2022,BrazilBiofuelsannouncedaBRL2.2billion(USD410million)investmentinabiorefinerythatwillusepalmoilharvestedintheAmazonregionitoproduceHVO,withsupportfromtheBancoNacionaldeDesenbvolvimentoEconomicoeSocial(BNDES).63Globalinvestmentinelectricvehiclesandrelatedcharginginfrastructuresurged53.6%in2022toreachUSD466.1billion.ThelargestinvestmentwasinChina,totalingUSD234billion,followedbytheUnitedStateswithUSD57billion.64(pSeeFigure12.)Thisrapidgrowthreflectsamixofpolicysupportforelectrificationincoreautomarkets,improvementsinbatterytechnologies,theexpansionofcharginginfrastructureandnewcompellingvehiclemodelsfromautomakers.65Theinvestmentsurgeoccurreddespiteasharpincreaseinthepricesofelectricvehiclebatteriesduetohigherrawmaterialandcomponentcostsandsoaringinflation.66InvestmentinSAF,althoughintheearlystages,alsoattractedgrowingattention,drivenbynetzerocommitmentsandrelatedpolicysupportfortheaviationindustry.Neste,oneoftheworld’slargestSAFproducers,issueditsfirstseven-yeargreenbondin2021,allocatingEUR16million(USD17million)forarefineryinRotterdam(Netherlands)andEUR278million(USD297million)foroneinSingapore.67In2022,SaudiArabia’sAlfanarGroupannouncedthatitwouldinvestUSD1.3billioninaprojectinTeesside(UnitedKingdom)thatwouldeventuallyproduce180millionlitresofSAF.68Airlinesalsoareinvestinginmorenoveltechnologiesandfeedstocksii,eitherontheirownorasapartofanairlinealliance.69Financeforelectricaircraftisalsoontherise,althoughitiscomparativelynascent.In2021,UnitedAirlinesannouncedthepurchaseof100electricplanes.70In2022,AirCanadaannouncedthepurchaseof30electricaircraft,plusaUSD5millionequitystakeinthemanufacturerHeartAerospace.71Intherailsector,investmentsinrenewableshavefocusedmainlyonelectric-basedsystems.In2022,theAustrianFederalRailway(ÖBB)announcedaEUR1billion(USD1.07billion)investmentinhydropower,windpowerandsolarPVprojectstosupplementitsexistingrenewableenergysystems.72Althoughsomeeffortsareunderwaytopushrenewableoptionsintheshippingsector(forexample,wind-poweredvessels),investmenthasbeenhamperedbythelock-inofinvestmentinexisting,fossilfuel-basedshippingfleets.73iThisprojectconformswiththeBrazilianlawstatingthatpalmoilcanonlybecultivatedinareasthatweredeforestedbefore2007;however,environmentalistshavecriticisedtheinvestmentanddescribeoilpalmasaprovenpredatorycropthatleadstoenormousbiodiversityloss.Seeendnote63forthismodule.iiGasificationFischer-Tropschandotherprocessesthatusebiomass,landfillwasteandethanol-to-jetareemergingasalternatives.Investmentinbiofuelsfellslightlyin2022toUSD5.84billion,afterreachinganall-timehighin2021.45RENEWABLES2023GLOBALSTATUSREPORT-RENEWABLESINENERGYDEMANDPOLICYINVESTMENTMARKETDEVELOPMENTSCHALLENGESANDOPPORTUNITIESThetransportsectormovesanestimated60trillionpassenger-kilometresofpeopleandnearly150trilliontonne-kilometresoffreightannually.74Thesevolumesareexpectedtomorethandoubleby2050.75Asia(inparticularChina)isthemaindriveroftransportdemandforbothpassengersandfreight,followedbyNorthAmericaandEurope.76Transportdemandinsub-SaharanAfricaisexpectedtoincreasesharply,withpassenger-kilometresrisingfromaround2trillionin2015to10trillionin2050,andfreighttonne-kilometresrisingfromaround1trillionin2015tomorethan3trillionin2050.77Transportaccountedforaround29%ofglobalenergyusein2020,andinmostcountriesitiseitherthefirstorsecondlargestenergy-consumingsector.78TheAsia-PacificregionandNorthAmericatogetheraccountedformorethanhalfofalltransportenergyusein2022.79TheUnitedStatesconsumedanestimated23.3EJ,followedbyChina(15.2EJ)andIndia(4.4EJ).80TheAsia-Pacificregionexperiencedthehighestaverageannualgrowthintransportenergydemandbetween2011and2019,at4.7%,drivenlargelybyIndiaandChina(wheregrowthexceeded6%).81AfricaandLatinAmericaandtheCaribbeanhadthelowestdemand,althoughAfricawitnessedthesecondhighestgrowth,at3.7%.82TheAsia-Pacificregionalsohasthefastestgrowinguseofrenewablesintransport,withdemandincreasing13.9%annuallyonaveragebetween2010and2019.83(pSeeFigure13.)In2019,theleadingcountriesinAsiawereIndonesia(around0.17EJofrenewables)andChina(around0.12EJ).84TheUnitedStates,thelargestconsumerofrenewablesfortransport,representedaround40%ofglobaldemand,or1.6EJ.85ThesecondlargestconsumerwasBrazil,with0.9EJ,whileinEurope,threecountries–France,GermanyandSpain–togetheraccountedfor44%oftheregionalconsumption.86RoadtransportcontributesnearlyafifthofglobalCO2emissions,withautomobiles,vansandtwo-andthree-wheelerstogetheraccountingfor68%ofthatshare.87Byusingexistingdataontheproduction,saleanduseoftheselight-dutyvehicles,itispossibletoapproximatetheevolutionofenergyuseintransportandtheoveralltargetstobepursued.Globally,nearly60millionnewcarsweresoldin2022.88TheAsia-Pacificregionledthemarketwitha61%share,followedbyEuropeat25%.89Bycountry,Chinasoldthelargestshareofnewcarsworldwide(38%,ormorethan21million)in2021(latestdataavailable),followedbyJapan,theUnitedStates,IndiaandGermany,atbetween4%and6%each.90ThehighestratesofvehicleownershipareintheUnitedStates,NewZealand,Canada,Australia,JapanandEuropeancountries,atbetween600and900vehiclesper1,000inhabitants,suggestingthatascountriesdevelop,vehicleownershipworldwidewillonlySource:Seeendnote83forthismodule.FIGURE13.RenewablesinTransport,byRegion,2010-2019NorthAmericaShareofTotalin2019RestofWorldEuropeLatinAmericaandtheCaribbeanAsia-Pacific42%25%18%13%2%05001,0001,5002,0002,5003,0003,5004,000201920182016201420122010Petajoules(PJ)46TRANSPORTINFOCUScontinuetorise.91Thispointstotheneedtotargetmorepolicyandinvestmentatdeliveringaccessible,good-qualitypublictransportinfrastructureandservicestohelpdecoupleeconomicgrowthandvehicleownershipandreduceemissions.Biofuelsaccountforaround90%oftherenewableenergyuseintransport,withaverageannualgrowthof5%between2010and2020.92Biofuelconsumptionfell4%in2020butisexpectedtogrowsignificantlyinthecomingdecade(potentiallyfour-fold,bysomeestimates).93Muchofthisrisewilllikelybedrivenbyblendingmandatesandregulationsthatincreasetheshareofbiofuelsinblends.Transportfuelsproducedfromadvancedbiomassfeedstocksprovideashort-termoptiontowardsdecarbonisingaviationandmaritimetransportaswellasheavy-dutytrucksandpublicbuses.94(pSeeSnapshot:Spain.)TheEU’sReFuelEUAviationinitiativeproposesraisingtherequiredshareofSAFusedinflightsdepartingfromtheEUto2%in2025and63%in2050,whichcouldacceleratechangesglobally.95Moreambitioustargetscouldbesetinthefuture,followingsuccessfultestflightsin2022ofcommercialaircraftrunningentirelyonSAF,resultinginlife-cycleemissionreductionsof80%.96Renewableelectricityaccountsfor10%oftherenewableenergyusedintransport,withaverageannualgrowthof7%between2010and2020.97Overallelectricitydemandinthesectorgrewatanaveragerateof3.6%peryear.98In2020,despitetheslowdowninelectricityuseintransport(down3%comparedto2019),thedemandforrenewableelectricityinthesectorgrew5.4%.99Electriccarsaccountedfor15-18%ofallnewautomobilessoldin2022,reflectingthesteepsalesgrowthinrecentyears.100Chinaaloneregisteredaroundhalfoftheestimated10millionelectricvehiclessoldgloballyin2022.101Injustafive-yearperiod,electriccarsalesgrew10-foldinChinaand18-foldintheRepublicofKorea.102InEurope,around17%ofallautomobilesaleswereelectricin2022,withthissharereaching86%inNorway.103InGermany,theelectriccarfleetgrewnearly30-foldbetween2016and2021,atanaverageannualrateof109%.104Althoughelectricvehiclesaleshavefocusedmainlyonlight-dutypassengervehicles,annualsalesofelectricbusesareprojectedtotripleby2025,andelectrictruckstogrow13-fold,toreachacombined468,000units.105Bytheendof2022,thenumberofelectrictwo-andthree-wheelersexceededanestimated250millionworldwide,dominatedbytheAsianmarket;Chinaalonehasaround195millionelectrictwo-wheelers,whileinIndianearly40%ofthree-wheelersareelectric.106Theseincreasesaredrivenmostlybybatteryelectricvehicles,whereasplug-inhybridshaveshownonlymodestgrowth.107Concernsaboutcosts,range,prolongedchargingtimesandalackofdensechargingnetworkshaveallhamperedgreateradoptionofelectricvehicles.108Thisisespeciallytrueforelectrictrucks,whicharecrucialtocuttingtransportemissionsbecausetrucksaretheleast-efficienttransportmodeinenergyusepertonne-kilometre.109Inthemediumterm,promisingadvancementsincludegreatergovernmentinvestmentinchargingnetworks,aswellastechnologyinnovationsthatpointtomuchfasterchargingtimes.110Prototypevehicle-integratedsolarPVmodulesarebeingtestedtoimproveelectricvehiclerangesby800kilometresperyearandelectrictrucksrangesby10,000kilometresperyear.111Inanotherindustrydevelopment,theEuropeanISO15118-20standardforvehicle-to-gridtechnologywaspublishedin2022,supportingcommunicationbetweenelectricvehiclebatteriesandthepowergrid.Suchcommunicationwillenableefficiencygainsinchargingoperationsaswellastheuseofelectricvehiclesasdistributedenergysourcesthatsupplypowertotheelectricitygrid,contributingtogridstability.112In2021,thestockofhydrogen-poweredfuelcellelectricvehicleswasstillverysmall,at51,600units,with82%ofthesebeingautomobilesandtherestbeingtrucksandbuses.113Althoughfuelcellelectricvehiclesarelessefficientthanbatteryelectricvehicles,theyareaplausibleoptionforcuttingemissionsfromheavyroadtransportinthemediumterm.114Advancementsinfuelcelltechnologyhaveenabledrangesofupto1,500kilometresandfastertankfill-up,andeffortsareprogressingtogreentheproductionofhydrogenandmakeitmoreefficient.115Chinahasledtheway,withbusesandtruckscomprisingmostofitshydrogenfleet,andanetworkof146chargingstationsin2021.116Globally,however,lessthan1%ofthehydrogenthatiscurrentlysuppliedacrosssectorsislow-emission–producedmainlyfrombioenergyandfromfossilfuelsusingcarboncapture,utilisationandstoragetechnology.117Tomeetfuturedemand,thehydrogenobtainedfromthesetwosources,andespeciallyzero-emissionhydrogen,mustincreasesignificantly,alongsideeffortstoproducerenewablehydrogenthroughelectrolysis.Thiswillrequireaddinguptoanestimated700gigawattsofelectrolysercapacityby2030.118Ifachievable,theshifttorenewablehydrogencouldplayanimportantroleinreducingemissionsinmaritimetransportandaviationinthecomingdecade.119Asia-Pacifichasthefastestgrowinguseofrenewablesintransport,witha13.9%annualincreasebetween2010and2019.47TransitioningfromPollutingCompressedFossilGastoBiogasIn2022,MadridCityCouncilinSpainannouncedaprojecttopowercitybuseswithbiomethanegeneratedbytheValdemingómezTechnologyPark,oneofthelargestwastetreatmentplantsinEurope.Sincethe2000s,MadridMunicipalTransportCompany(EMT)hasusedcompressednaturalgas(CNG)busestoreplaceitsdieselunits.AlthoughCNGimprovesurbanairqualitybyreducingnitrogenoxidepollutants,itdoesnotreduceCO2emissions.Theuseofbiomethane,abiofuelobtainedfromorganicwastetransformedthroughanaerobicdigestionprocesses,contributestoreducedemissionswhileperformingsimilarlytofossilgas.During2023,theValdemingómezTechnologyParkwillsupplyatleast6gigawatt-hours(GWh)ofbiomethanetoafleetof20CNGbusesfortheC1circularline,oneofthenetwork’sbusiest.In2021,theC1linecoveredmorethan1millionkilometresandtransportedaround4.4millionpassengers.TheParkwasrecentlyrenovatedtoincreaseitsbiomethaneproductioncapacityto180GWhperyear,equivalenttothefossilgasconsumptionof20,000Spanishhomesor500EMTbuses.Theplant’swastetreatmentservicesrepresentanestimatedreductionofmorethan43,500tonnesofCO2-equivalentemissionsannually.TheinitiativeismadepossiblethroughanagreementbetweenEMTandtheValdemingómezTechnologyPark,withtheparticipationofprivategroupssuchasPreZero(thecompanyinchargeofthebiogastreatmentplantatthePark)andthetradingcompanyAxpo.TheprojecthassecuredEUR285,000(USD305,000)ingrantfinancingfromtheMadridBusinessForum,apublic-privateplatformforbusinessdevelopment.TheinitiativeispartoftheMadridCityCouncil’sCircularMobilityProjectandEMT’sStrategicPlan,andisalsoalignedwiththeMadrid360EnvironmentalSustainabilityStrategy,whichaimstoreducethecity’semissionsthroughprogrammessuchassustainablemobility.Source:Seeendnote94forthismodule.SNAPSHOTSPAIN48TRANSPORTINFOCUSRCurrentrenewableenergyproductionisnotkeepingpacewiththerapidgrowthinenergydemandfortransport,especiallyinemergingregions.RDespitethesharpriseinelectricvehiclesalesworldwide,mostoftheelectricityusedtopowerbatteryelectricvehiclesandtoproducehydrogenforfuelcellvehiclesstillcomesfromfossilfuels.RTheincreaseduseofbatteryelectricvehiclesremainstaintedbyconcernsabouthumanrightsabusesandthesustainabilityofminingforrawmaterials,whileinterestincrop-basedbiofuelsismarredbythepotentialcompetitionwithotherlanduses.120RSolutionsarestilllackingtosubstantiallydecarbonisethelong-haultruck,aviationandmaritimetransportindustries.RFuelsubsidiesremainoneofthebiggestbarrierstotheuptakeofrenewablesintransport,andongoingtaxexemptionsforkerosenearehinderingthedevelopmentofalternativefuelsinaviation.RTherisingpriceofoilanditsintrinsicvolatility–alongwithgovernmenteffortstoboostenergyindependence–canencourageadramaticincreaseinrenewableenergygeneration.RRisingfossilfuelpricesanddecliningpricesforelectricalternativescouldfurtherincentiviseconsumerstoshifttoelectricvehicles.RBecausetheelectricvehiclemarketisincreasinglyconsumer-drivenandlessdependentonregulation,thesevehiclescouldbeafinanciallyviableoptionincountrieswherepublicsectorsupportislimitedornon-existent.121RConcernsaboutthesustainabilityofminingandhydrogenproductionforelectrifiedtransportcouldincentiviseindustryandgovernmenttoincreaserecyclinganddevelopcircularity-basedbusinessmodels.122RBroaderacknowledgementofdevelopingcountries’limitedresourcestoaddressclimatechangeisdrivinginternationalorganisationsanddonorstoincreasefundingforenergytransitionprojects,includingpotentiallyrenewables-basedtransportprojects.123MARKETDEVELOPMENTSCHALLENGESANDOPPORTUNITIESMARKETDEVELOPMENTSCHALLENGESANDOPPORTUNITIESINVESTMENTMARKETDEVELOPMENTSCHALLENGESANDOPPORTUNITIESfortheUptakeofRenewablesinTransportCHALLENGESOPPORTUNITIESMostoftheelectricityusedtopowerelectricvehiclesandtoproducehydrogenfuelcellsstillcomesfromfossilfuels.4914countrieshadrenewableenergytargetsorpoliciesforagriculturein2022Theuseofbiogasinagriculturedoubledduring2010-20,whiletheuseofliquidbiofuelsgrew9.4times7countrieshadfinancialincentivesfortheuseofrenewablesforirrigationasofend-2022TheEUlaunchedatenderin2022fortheincorporationofrenewablesinagricultureandforestryByend-2022,around15countrieswereusinggeothermalgreenhouseheatingtogrowvegetables,fruitsandflowers15countrieshadrenewableenergytargetsorpoliciesinagriculturein2022Theuseofliquidbiofuelsinagriculturegrew840%during2010-2020,whilebiogasgrew126%7countrieshadfinancialincentivesfortheuseofrenewablesforirrigationasofend-2022TheEUlaunchedatenderin2022fortheincorporationofrenewablesinagricultureandforestry30%ofenergyuseinagriculturewasforelectricity,ofwhich30%wasrenewableelectricity14countrieshadrenewableenergytargetsorpoliciesforagriculturein2022Theuseofbiogasinagriculturedoubledduring2010-20,whiletheuseofliquidbiofuelsgrew9.4times7countrieshadfinancialincentivesfortheuseofrenewablesforirrigationasofend-2022TheEUlaunchedatenderin2022fortheincorporationofrenewablesinagricultureandforestryByend-2022,around15countrieswereusinggeothermalgreenhouseheatingtogrowvegetables,fruitsandflowers15countrieshadrenewableenergytargetsorpoliciesinagriculturein2022Theuseofliquidbiofuelsinagriculturegrew840%during2010-2020,whilebiogasgrew126%7countrieshadfinancialincentivesfortheuseofrenewablesforirrigationasofend-2022TheEUlaunchedatenderin2022fortheincorporationofrenewablesinagricultureandforestry30%ofenergyuseinagriculturewasforelectricity,ofwhich30%wasrenewableelectricityMODULEOVERVIEWPOLICYINVESTMENTMARKETDEVELOPMENTSCHALLENGESANDOPPORTUNITIESAGRICULTUREINFOCUSAGRICULTUREINFOCUSAgriculture,forestry,fisheriesandaquacultureicontributedaround4.3%oftheworld’sgrossdomesticproductin2021.1Theagriculturesectoriiemployedjustoveraquarter(26.6%)ofthetotalglobalworkingpopulationthatyear.2ThehighestsharesofagriculturalemploymentwereinAfrica(51.8%)andSouthAsia(41.5%),followedbySoutheastAsiaandthePacific(27.8%),NorthAfrica(23.7%),EastAsia(22.2%)andCentralandWestAsia(20%).3Employmentinagriculturewasbelow15%ineachoftheremainingworldregions:LatinAmericaandtheCaribbean(14.5%),theArabStates(9.5%),EasternEurope(8.2%),Northern,SouthernandWesternEurope(3.1%)andNorthAmerica(1.6%).4In2020,agricultureandforestryaccountedforaround3%oftheworld’stotalfinalenergyconsumption,andfisheriesrepresentedaround0.07%.5Ofthetotalenergyuseinagriculture,around73.3%wasintheformofheat.6Meanwhile,fishingisoneoftheworld’smostenergy-intensivefoodproductionmethods,relyingalmostentirelyonfossilfuels.7In2022,theannualfuelconsumptionoftheEuropeanUnion’s(EU)fishingfleetalonewasnearly2billionlitres.8Energyuseinagriculture,fisheriesandaquaculturecontributedaround1gigatonneofcarbondioxide(CO2)-equivalentemissionsin2020,includingdirectemissionsfromburningfossilfuelsandindirectemissionsfromelectricitygeneration.9Nearly94%ofthesetotalemissionswereCO2,andnearlyhalfwerefromelectricityuse.10Emissionsfromthesesectorshaveincreasedoverthepasttwodecades.11ModuleOverviewPolicyInvestmentMarketDevelopmentsChallenges&OpportunitiesiWhenthismodulepresentscombinedfiguresformorethanoneofthesesub-sectors,thiswaseithertheonlyinformationavailable,orthemostaccurate.“Agriculture”includeson-farmcropandlivestockproductionandon-sitesmall-scaleprocessingactivities.Energyuseinagricultureincludesfuelstoope-ratemachineryandtractors.Energyusein“agriculture”doesnotincludeenergyusedformanufacturingofmachinery,pesticides,orfertilisers,nordoesitincludeenergyusedforfoodpackaging,processingortransport.Forestrydoesnotincludethemanufactureofwoodandwoodproductsandthepulpandpaperindustry.Energyusedforfisheriesincludesallformsofenergyusedonboardfishingvessels,includingthefuelstooperatethevessels.ThesefuelsarenotincludedintheGSR2023Transportmodule.iiPercentageoftotalworkingglobalpopulationinagricultureasdefinedbytheInternationalLabourOrganization,whichmaydifferfromthedefinitionofagriculture(agriculture,forestry,fisheriesandaquaculture)aspresentedintheGSR2023.51RENEWABLES2023GLOBALSTATUSREPORT-RENEWABLESINENERGYDEMANDTheshareofrenewableenergyusedintheagriculturesectorgrewfrom10.2%in2010to15.4%in2020.12(pSeeFigure14.)Oftherenewablesharein2020,59%wasrenewableelectricity,7%wassolarthermalandgeothermalheat,and34%wasmodernbioenergy.13Theuseofmodernbioenergyinagriculturehasremainednearlyflat,risingfrom5.2%in2010to5.4%in2020.14Withinthebioenergysegment,theshareofsolidbiofuelsfellsharply,from94.3%to78.7%,whiletheshareofbiogasincreasedfrom4.06%tonearly8%andtheshareofliquidbiofuelssurgedfrom1.6%to13.4%.15Overall,therenewableelectricityshareinagricultureincreasedfrom4.7%to9.0%ofthesector’stotalfinalenergyconsumption,andtheuseofsolarandgeothermalheatrosefrom0.2%to1%.16Keydriversoftechnologicaldevelopmentsintheagricultureandfisherysectorshaveincludedthedesirestoreducefuelcostsandsaveenergy,aswellastoincreaseaccesstoenergyforfarmersandfishers.17Inthefisheriessector,technologicaldevelopmentsinvessels,gearandoperations–suchastheuseofLEDlightingfornightfishing–havebroughtcostsavingstofishersinAsia,SouthernAfricaandtheCaribbean,amongotherplaces.18Additionalkeytopicsofdiscussionin2022includedtheneedtodecouplefoodproductionfromfossilfuelsandtheneedtoscaleupinvestmentinrenewablesintheagri-foodsectortoreachlast-milefarmersandsupporttheirenergytransition.19Inruralareas,thelackofaccesstoareliablepowergridhasdrivenfarmerstoembracerenewablealternatives.20Off-gridrenewablecoolingtechnologieshavehelpedreducemassivepost-harvestlossesofagriculturalproducts,allowingfarmerstoexpandtheirmarketreachandgainpowerinpricenegotiations,astheyarelessconstrainedbytime.21Renewabletechnologiesalsoallowruralpopulationstoadopttime-savingrevenue-generatingsolutions,suchassmall-scalesolarmillinginplaceoflarge-scalediesel-poweredmills.22Throughtheuseofgeothermalheatingforgreenhouses–forexample,inIceland–farmerscangrowproducelocally,helpingtoavoiddomesticrelianceoncostlyimports.23Thesedrivers,manyofthemeconomic,haveledfarmers,fishers,multilateralorganisationsanddonorstotakegreaterinterestinenergyefficiencyandrenewableenergytechnologiesforagricultureandtosupporttheirdeploymentacrosstheglobe.TheagriculturesectorcontributestoUSD4.2trillionofglobalGDPandemploys26%oftheworkforce.Exajoules(EJ)10080604020020192020201089.8%Non-renewableenergyNon-renewableenergyNon-renewableenergy85%84.6%10.2%15.0%15.4%ShareofrenewablesinagricultureSolarandgeothermalheat1.0%9.0%Renewableelectricity5.4%ModernbioenergySource:Seeendnote12forthismodule.FIGURE14.RenewableShareofTotalFinalEnergyConsumptioninAgriculture,2010,2019and202052AGRICULTUREINFOCUSAgriculturalandrenewableenergypoliciesoftenoperateinsilosandcansometimesbeinconflict.24Policiesrelatedtorenewablesinagriculturetargetawiderangeoftechnologies,includingrenewableelectricitygenerationforagriculturalprocesses,solarwaterpumping,renewablefuelstorunagriculturalequipment,renewableheatforfoodprocessingandsolarthermalenergytoheatgreenhouses.Netzeropathwaysandthepushfordecarbonisationhavedrivenhowpoliciesaredesignedintheagri-energyspace,alongwithenergyefficiencymeasures,especiallyinfoodprocessingandthecoldchain.25Wateravailabilityalsoisessentialinthedesignofevidence-basedpolicies(policiesbasedonandinformedbyrigorouslyestablishedevidencefortheagri-water-foodnexus).26Overall,policiesaimedattheuptakeofrenewablesinagriculturehaveincreased.27Insomecases,governmentshaveusedrenewableenergymandatesandtargetstorequirethatacertainshareofenergyusedinthesectorbegeneratedfromrenewables.In2022,Indiaannouncedatargetforzerodieseluseinagricultureby2024,withthegoalofreplacingdieselgeneratorsforpumpingandfoodprocessing,aswellasotherdieseluses,withrenewables.28Asoftheendof2022,fourcountries–Bangladesh,India,theRepublicofKoreaandZambia–hadtargetsforrenewablesinagriculture.29Themostpopularpoliciesforrenewablesintheagriculturesectorarefinancialincentivessuchassubsidiesandtaxcredits,inadditiontofundingprogrammes.Bytheendof2022,atotalof25nationalandsub-nationaljurisdictionshadrenewableenergypoliciesforagriculture,ledbyeffortsintheUnitedStates,IndiaandBangladesh.30(pSeeFigure15.)Thistotalincluded14nationaland2sub-nationaljurisdictions(theUSstatesofMassachusettsandMissouri)withfiscalandfinancialpoliciesfortheuseofrenewablesinagriculture,aswellas7nationaland2sub-nationaljurisdictions(theIndianstatesofMaharashtraandPunjab)withotherrelatedenablingpoliciesandprogrammes.31Indiahasbeenaleaderinthedevelopmentofrenewableenergypoliciestailoredtotheagriculturalsector.Thegovernment’sPM-KUSUMscheme,launchedin2019andextendedtoMarch2026,hasencouragedfarmerstoswitchfromfossilfuel-basedirrigationsystemstogrid-connectedsolarpumpsbyofferingaperformance-basedincentiveforexportingpump-generatedelectricitytothegrid.32InNovember2022,IndiaalsoannouncedthatitwouldextenditsNationalBioenergyProgrammeto2026andincludeabiogasprogramme,awaste-to-energyprogrammethatcoversindustrialwaste,andabiomassprogrammetosupportco-generationinindustriesandthemanufacturingofbriquettesandpellets.33Inaddition,Indiareleasedadraftframeworkfordistributedrenewableenergyapplications,includingaddressingtheenergyneedsoftheagri-foodchain.34Greecereviseditsgriddistributiontoallocateupto30%ofitsgridavailabilitytonetmeteringforfarmers.35Türkiyerevisedits2019-2023strategicplantoeasetherulesforsmall-scalesolarsystems,includingexemptingsolarirrigationprojectsfromapermittingrequirementforsystemsunder125squaremetres.36InNigeria,theRuralElectrificationAgency’sEnergisingAgricultureProgrampromotesrenewablesforirrigationandalsolinksmini-gridsandagriculturalproduction.37MODULEOVERVIEWPOLICYINVESTMENTMARKETDEVELOPMENTSCHALLENGESANDOPPORTUNITIESRenewableenergytargetsNationalfiscal/financialpolicySub-nationalfiscal/financialpolicyMassachusettsMassachusettsMissouriMissouriOnly4countrieshaverenewableenergytargetsintheagriculturesectorSource:Seeendnote30forthismodule.FIGURE15.NationalandSub-NationalRenewableEnergyTargetsandFiscal/FinancialPoliciesintheAgricultureSector,asofEnd-202253RENEWABLES2023GLOBALSTATUSREPORT-RENEWABLESINENERGYDEMANDThedebateovercompetinglandusesforagricultureandsolargenerationhaseasedascountriesincreasinglydevelopregulatoryframeworksforagrivoltaicsi.38In2022,ItalylaunchedaUSD1.5billionschemeforagrivoltaicsusingfundingfromtheEURecoveryandResilienceFacility.39BothItalyandFrancealsoreleasednewstandardsforagrivoltaics,andanItaliancourtruledthatregionalauthoritiescouldnotdenypermitstosolarprojectsonagriculturallandwithoutconsideringthepotentialforagrivoltaics.40TheUnitedStatesallocatedaUSD8milliongrantforthedevelopmentofagrivoltaics.41Germanyhasmodifieditsregulationstoencompassagrivoltaicsandtheuseofrenewablesinagriculture.42InJanuary2022,itpassedamendmentstonolongerexcludeagrivoltaicsfromEUsubsidies,giventhatatleast85%ofthelandareausedforagrivoltaicscanbecultivated.43AmendmentstotheGermanRenewableEnergySourceActalsorecognisedualland-usesolarprojects,includingagrivoltaicsandfloatingphotovoltaics(PV),andsupporttheconstructionofsolarsitestorestoredegradedmoorlandsusedforagriculture.44Startingin2022,innovationtendersundertheActincludedprovisionsforagrivoltaics.45Incontrast,theUnitedKingdomhasbackeddownfromagrivoltaicsbyplanningtoreclassifythemajorityofagriculturallandsothatsolarenergydevelopmentisnolongerallowed,withtheviewthatsuchactivityimpedesfoodproductionobjectives.46Ingeneral,dataonrenewableenergyinvestmentsintheagriculturesectorarelimited.Thisincludesnotonlyglobalinvestmentdata,butalsolocal-leveldataonenergyflowsacrossagri-foodvaluechains,aswellasgranulardataonspendingforfarmsandnon-farmenterprises.47Forsmallandmedium-sizedactorsinagri-foodchains,affordabilityisasignificantbarriertotheuptakeofrenewablesduetothecapital-intensivestructureofmostrenewableenergyinvestmentsandtotheseasonalityoffarmerincomes.48Avarietyofprogrammesprovidefinancingforrenewableinstallationsintheagriculturesector.49In2022,theimpactinvestmentfundAcumenlaunchedthefive-year,USD25millionPoweringLivelihoodsUsingSolar(PEII+)initiativetoprovidemicro-entrepreneursandsmallholderfarmersinIndiaandAfricawithsolar-poweredappliancessuchasmillsandirrigationpumps.50PEGAfrica,apay-as-you-gooperatorinCôted’Ivoire,Ghana,Mali,andSenegal,alsooffersfinancingforsolarpumps.51InRomania,theNationalRuralDevelopmentProgramme,launchedin2021,offersfundingtosupportbiomassfuelsandtheuseofrenewablesinagriculturalprocessing.52IntheUnitedKingdom,programmesthatprovidededicatedfundingforrenewablesinagricultureincludetheRenewableEnergyInvestmentScheme,theCountrysideProductivityScheme,theRenewableHeatIncentiveandtheEnergyCropsScheme.53IntheUnitedStates,theRenewableEnergyforAmericaProgramoffersrenewableenergygrantsofbetweenUSD2,500andUSD1million,aswellasloanstoagriculturalproducersandruralsmallbusinessesforinvestmentsinrenewables.54Farmersandagriculturalsuppliersareinvestinginsolarthermalandotherrenewableenergyprojects,inparttoalleviatetheeffectsofrisingfossilfuelpricesandsupplyshocks.55InGuanajuato,Mexico,aMXN9.5million(USD0.5million)parabolictroughMODULEOVERVIEWPOLICYINVESTMENTMARKETDEVELOPMENTSCHALLENGESANDOPPORTUNITIESGreecereviseditsgriddistributiontoallocateupto30%ofitsgridavailabilitytonetmeteringforfarmers.iAgrivoltaicsentailstheuseofagriculturallandsimultaneouslyforcropproductionorgrazingandforelectricitygenerationfromsolarPV,thusincreasingland-useefficiency.Amongotherbenefits,agrivoltaicscanreducetheneedforirrigationbyretainingmoistureinsoilsandprotectingsoilsfromhail,frostanddrought.Seeendnote38forthismodule.54AGRICULTUREINFOCUSsolarsystembeganprovidingsteamforfoodprocessingin2021throughaninnovativefinancingmodelinwhichtheclientpaysmonthlypertonneofsteamused,therebyavoidingtheupfrontcostofthesystem.56InArgentina,wherefossilgaspricesarehighlysubsidised,multinationalcorporationsmotivatedbystrictCO2reductiontargetsareprovidingaroundUSD10millioninfinancingtosupportfourconcentratingsolarheatprojects,tobeusedmainlyfordryingcereals.57InEurope,solartechnologiessupplyheattotheagriculturalproductionvaluechain.In2021,aEUR6million(USD6.4million)solarheatplantwasinauguratedinFrancetoproviderenewableheatforthedryingofgrainstoproducemalt.58InCroatia,EUR7.5million(USD8million)wasinvestedinanindustrialsolarheatsystemtopre-heatairusedfordryingmalt,withmorethanhalfofthefundingcomingfromtheEuropeanCommission’sInnovationFund.59InSpain,solartechnologyprovidersofferheatpurchaseagreements,whichtheglobalbeerproducerHeinekenutilisedatitssiteinSeville.60Investmentsinagrivoltaicsalsohaveincreased,buildingondemonstrationprojectsstartedin2004.61InNewSouthWales,Australia,theCleanEnergyFinanceCorporationprovidedAUD5million(USD3.5million)tofinancea350megawatt(MW)solarPVparkoncattleandsheepgrazingland.62Investmentsingeothermalsystemshavesupporteddiverseapplicationsincludinggreenhouseandsoilheating,aquaculture,fooddryingandmilkpasteurisation.63InTürkiye,during2021-2022,USD10millionwasinvestedingeothermalenergytosupportadryingfacilityandsoil-lessgreenhousesinthewest,andUSD190,000wasawardedtobuildgeothermalgreenhousesinthecityofEskisehir.64Globally,theagriculture,fisheriesandaquaculturesectorshaveadoptedawiderangeofenergyefficiencyandrenewableenergytechnologies,includingsolarPVandsolarthermal,geothermal,hydropowerandbioenergy.SolarPVapplicationsoffersomeofthemostdevelopedoff-gridsolutionsforproductiveusesofenergy,frombothatechnicalandabusinessperspective.65Solarwaterpumpsforirrigationhavehugepotentialforsmallholderoperations,andmostfarmersthathaveadoptedthemreportanincreaseinproductivity.66In2021,solarpumpingcapacitytotalled654MW,ledbyIndia(588MW)andBangladesh(48MW)followedbyRwanda(3.3MW)andYemen(2.3MW).67InNiger,aprojectlaunchedinOctober2021ishelpingfarmersinstallatotalof4.6MWofsolarwaterpumpingcapacitytoimproveirrigationsystems.68Developmentpartnersanddonorshavesupportedrenewablecoolingtechnologiesforthecoldchaintokeepproducefresh,helpingtoreducepost-harvestlossesandexpandthemarketreachoffarmers.69InSub-SaharanAfricaandSouthAsia,farmersinIndia,Kenya,NigeriaandRwandahavestartedusinglarge-scale,solar-poweredcoldrooms,whichhelpmakecoolingmoreaffordable.70(pSeeSnapshot:India.)Expandingaccesstosolarwaterpumpsandcoldstoragetechnologiescouldimprovethelivelihoodsofaround22millionsmallholderfarmersacrossIndiaandsub-SaharanAfrica.71Theuseofsolarthermalforcooling,refrigerationandfooddryinginagriculturehasremainedlimited.72Electricitygeneratedfromagrivoltaicshasbeenusedtodirectlypowerirrigationpumpsandrefrigerationaswellasprocessingequipmentforagriculturalproducts.73Theglobalinstalledagrivoltaicpowercapacitysurgedfromaround5MWpeakin2012tomorethan14GWpeakin2021,supportedinpartbynationalfundingprogrammesinJapan(since2013),China(since2014),France(since2017),theUnitedStates(since2018)andmostrecentlytheRepublicofKorea.74Pilotprojectsareongoingtodeterminetheoptimaluseoftheelectricitygenerated.75Infisheriesandaquaculture,solarPVsystemsarebeingusedtochargevesselmotors,poweraquacultureequipment(suchasfeeders,pumps,aeratorsandsecuritylighting)andrunprocessing,ice-making,refrigerationandcoldstorageappliances,includingduringtransportandretail.76GermanandVietnamesepartnershavedevelopedanaquaculturephotovoltaics(aqua-PV)projecttoinstallPVpanelsaboveshrimpfarmingpondsinVietnam,usingtheelectricitygeneratedon-sitetopowertheaquaculturesystems.77Theaimistoassessthetechnicalandeconomicfeasibilityoftheconceptafterstudiesshowedthataqua-PVnearlydoublesland-useefficiency.78InNorway,twonewcommercial-scalefloatingsolarPVprojectsaregeneratingelectricitytopowerfishfarmsoffthecoast.79Geothermalenergyallowsfarmerstogrowcropsindifficultenvironmentsandtoincreasefoodavailabilityandyieldsthroughgreenhouseandsoilheating,fooddrying,sterilisation,refrigeration,milkpasteurisationandirrigation.80Bytheendof2022,aroundPOLICYINVESTMENTMARKETDEVELOPMENTSCHALLENGESANDOPPORTUNITIES55Solar-poweredColdStoragetoReduceFoodWasteFoodwastehasbeenamajorissueinIndiaduetothelackofcoldstorageandfoodprocessingfacilities.Asof2022,anestimated40%ofthefoodproducedinthecountrywaswasted.Ruralfarmersoftenareforcedtosellperishableitemsasquicklyaspossiblebeforetheybecomeoverripe.Extremeweathercausedbyclimatechangeisputtingfarmersinanevenmoredifficultsituation.AsolarcoldstorageprojectimplementedbytheScience,Technology&InnovationCouncilinIndia’sMizoramstatehasbenefitedfarmersinthevillageofKawnzar.TheprojectusessolarPVandicebatterytechnologytoconvertwaterintoicewithinsixhours.Thecoldstorageallowsfarmerstostockupto10tonnesoffood,enablingthemtostoretheirharvestforlongertimeperiodsinsteadofbeingforcedtosellitcheaplyordiscardit.TheUSD27,100project,fundedbyIndia’sDepartmentofScience&Technology,hashelpedincreasetheincomesofsmall-scalefarmerswhilealsosupportingtheadoptionofrenewablesintheagriculturesector.Theprojectfallsinlinewiththecountry'stargettoinstall500gigawatts(GW)ofrenewableenergycapacityby2030.SimilarcoldstoragesystemshavebeeninstalledthroughoutIndiabydifferentcompanies,includingEcozen,InficoldandOorjaDevelopmentSolutions.Thisactivityisexpectedtoscaleupfurther,andsolarenergyalsoisbeingusedinfoodprocessingsuchasdryingperishablegoods,therebyimprovingthelivesoflocalfarmers.Source:Seeendnote70forthismodule.SNAPSHOTINDIA56AGRICULTUREINFOCUS31countries–includingIcelandandtheNetherlandsaswellasemergingeconomiessuchasAlgeriaandTunisia–wereusinggeothermalgreenhouseheatingtogrowvegetablesandfruitsaswellasflowers,houseplantsandtreeseedlings.81Inaddition,some21countriesusegeothermalenergytoheatwaterinaquaculturepondsandtosupportfishdrying.82In2019,around2%ofthegeothermalenergyusedgloballywasforaquaculture.83Inagricultureandaquaculture,farmersusehydropowermainlyatthemicroscaleasanalternativetodieseltopoweragro-processingactivities.84InSierraLeone,a250kilowatthydro-basedmini-gridprovideselectricitytorunapalmoilpressingplant,andinNepalmicro-hydropowerplantspowerlocalmills,replacinglabour-intensivemanualprocessingandallowingotherincome-generatingactivities.85Micro-hydropowersystemsalsoareusedtoprovidecleanelectricityforaquaculture.86Bioenergyaccountsfor5.4%ofthetotalenergyconsumptioninagriculture,whereitisusedtoproduceheatandelectricityforfarmuse,processingandstorage.87Between2010and2020,theuseofbiogasinagriculturedoubled,whiletheuseofliquidbiofuelsgrew9.4times.88InVietnam,thousandsofbiogasdigesterstransformlivestockmanureintobiogastopowerincome-generatingfoodproductionactivities.89InAfrica,farmershaveadoptedbiogasdigestersinBurkinaFaso,Ethiopia,Kenya,Rwanda,Senegal,TanzaniaandUganda,amongothercountries.90Improvingtheenergyefficiencyoffoodcoldchains–includingthroughtheuseoffridgeinsulation,efficientcompressorsandbettercontrollers–hashelpedreduceenergyuse.91Additionally,somecompanieshavedevelopedandintroducedmodelsfor“cooling-as-a-service”.92InAfrica,aprojectlaunchedinTheGambiain2022aimstoprovidevulnerablefishingcommunitieswithfuel-efficientbiomassovensforfishsmoking,tohelpreduceairpollutionanditshealthimpactsamongfishers.93Insomefisheries,intermediatefueloilsiarebeingsubstitutedformarinedieseloiltoreducefuelcosts.94RThelackofrobustdataonenergyusesinagricultureandfisheries,especiallyforsmall-scaleactors,makesitdifficulttotrackprogressinrenewableenergyadoptionandtounderstandthepolicygapsthatneedtobefilled.95RTheseasonalnatureofagriculturalincome,coupledwiththecapital-intensivestructureofmostrenewableenergyinvestments,makesaffordabilityachallengeforsmallandmedium-sizedactorsinagri-foodchains.96RAgriculturalpoliciesandenergypoliciestendtooperateinsilos,andpolicyframeworksandincentivestoencouragetheadoptionofrenewablesinagricultureremainlimitedandinsufficient.RFarmerscanincreasetheirincomesbyaddingvaluethroughtheuseofrenewabletechnologiesintheirproductionprocesses.RTheuseofrenewablesofferstheopportunitytoreducerelianceonfossilfuelsandprotectfarmersfrompricevolatilityandsupplyshocks.ROpportunitiesexisttoimproveco-ordinationamonggovernmentministriesandotherstakeholdersinsettingpoliciesandcollectingdata.MODULEOVERVIEWPOLICYINVESTMENTMARKETDEVELOPMENTSCHALLENGESANDOPPORTUNITIESMODULEOVERVIEWPOLICYINVESTMENTMARKETDEVELOPMENTSCHALLENGESANDOPPORTUNITIESMODULEOVERVIEWPOLICYINVESTMENTMARKETDEVELOPMENTSCHALLENGESANDOPPORTUNITIESfortheUptakeofRenewablesinAgricultureCHALLENGESOPPORTUNITIES21countriesusegeothermalenergytoheatwaterinaquaculturepondsandtosupportfishdrying.iThesefueloilsareclassifiedandnamedaccordingtotheirviscosityandtypicallyreducefuelconsumptioncosts.ThemostcommonoilsusedforinboardfishingvesselenginesareIFO180andIFO380.Seeendnote94forthismodule.57ENDNOTES·RENEWABLESINENERGYDEMAND2023ENDNOTESIGLOBALTRENDSENDNOTES-RENEWABLESINENERGYDEMAND:GLOBALTRENDS1IEA,“WorldEnergyBalances2020:ExtendedEnergyBalances”,August2022,https://www.iea.org/data-and-statistics/data-prod-uct/world-energy-balances,allrightsreserved,asmodifiedbytheRenewableEnergyPolicyNetworkforthe21stCentury(REN21);REN21PolicyDatabase.SeeGSR2023DataPack,availableatwww.ren21.net/gsr2023-data-pack.2InternationalEnergyAgency(IEA),“GlobalEnergyCrisis,”https://www.iea.org/topics/global-energy-crisis,accessedMarch8,2023.3Ibid.4R.Rapier,“TheYearinEnergyPrices,”Forbes,December31,2022,https://www.forbes.com/sites/rrapier/2022/12/31/the-year-in-energy-prices.5IEA,“WorldEnergyOutlook2022,”October2022,https://iea.blob.core.windows.net/assets/830fe099-5530-48f2-a7c1-11f35d510983/WorldEnergyOutlook2022.pdf.6Ibid.7WorldEconomicForum,“Inflation:HowAreRisingFoodandEnergyPricesAffectingtheEconomy?”September7,2022,https://www.weforum.org/agenda/2022/09/inflation-rising-food-energy-prices-economy.8V.RomeiandA.Smith,“GlobalInflationTracker:SeeHowYourCountryComparesonRisingPrices,”March6,2022,https://www.ft.com/content/088d3368-bb8b-4ff3-9df7-a7680d4d81b2.9EuropeanCommission,“DiversificationofGasSupplySourcesandRoutes,”https://energy.ec.europa.eu/topics/energy-se-curity/diversification-gas-supply-sources-and-routes_en,accessedMarch8,2023;IEA,“FossilFuelsConsumptionSubsidies2022,”February2023,https://www.iea.org/reports/fossil-fuels-consumption-subsidies-2022.10EuropeanCommission,“REPowerEU:Affordable,SecureandSustainableEnergyforEurope,”https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal/repowereu-affordable-secure-and-sustainable-energy-europe_en,accessedMarch1,2023,McKinsey,“TheInflationReductionAct:Here’sWhat’sinIt,”October24,2022,https://www.mckinsey.com/industries/public-and-social-sector/our-insights/the-inflation-reduction-act-heres-whats-in-it.11EuropeanCommission,op.cit.note10.12lbid.13lbid.14SenateDemocrats,“Summary:TheInflationReductionActof2022,”https://www.democrats.senate.gov/imo/media/doc/infla-tion_reduction_act_one_page_summary.pdf,accessedMarch20,2023.15McKinsey,op.cit.note9.16IEA,op.cit.note1.17GovernmentofIndia,MinistryofNewandRenewableEnergy,“NationalGreenHydrogenMission,”January2023,https://mnre.gov.in/img/documents/uploads/file_f-1673581748609.pdf.18ClimateWatch,“NDCEnhancementTracker,”https://www.cli-matewatchdata.org/2020-ndctracker,accessedOctober3,2022.19Ibid.20REN21PolicyDatabase,op.cit.note1.21Ibid.22IEA,op.cit.note1;REN21PolicyDatabase,op.cit.note1.23REN21PolicyDatabase,op.cit.note1.24Figure2fromIbid.25REN21PolicyDatabase.SeeReferenceTableR2intheGSR2023DataPack,availableatwww.ren21.net/gsr2023-data-pack.26lbid.27EuropeanCommission,“CarbonBorderAdjustmentMechanism,”December13,2022,https://taxation-customs.ec.europa.eu/green-taxation-0/carbon-border-adjustment-mechanism_en.28Ibid.29Ibid.30REN21PolicyDatabase.SeeReferenceTablesR3aandR3bintheGSR2023DataPack,availableatwww.ren21.net/gsr2023-data-pack.31Ibid.32REN21PolicyDatabase.SeeFigure11datatableintheGSR2023DataPack,availableatwww.ren21.net/gsr2023-data-pack.33REN21PolicyDatabase.SeeReferenceTableR3aintheGSR2023DataPack,availableatwww.ren21.net/gsr2023-data-pack.34REN21PolicyDatabase.SeeReferenceTableR4intheGSR2023DataPack,availableatwww.ren21.net/gsr2023-data-pack.35lbid.36IEA,“RenewablePower’sGrowthIsBeingTurbochargedasCountriesSeektoStrengthenEnergySecurity,”December6,2022,https://www.iea.org/news/renewable-power-s-growth-is-being-turbocharged-as-countries-seek-to-strengthen-energy-security.37BloombergNEF,“EnergyTransitionInvestmentTrends2023,”January2023,https://about.bnef.com/energy-transition-investment.38K.Abnett,“HeatPumpSalesinEuropeJumptoRecordHigh,”Reuters,February20,2023,https://www.reuters.com/business/energy/heat-pump-sales-europe-jump-record-high-2023-02-20.39J.Psaropoulos,“IsUkraineWarSpeedingEurope’sTransitiontoRenewableEnergy?”AlJazeera,November6,2022,https://www.aljazeera.com/news/2022/11/6/is-ukraine-war-speeding-eu-ropes-transition-to-renewableenergy;IEA,“ExecutiveDirectorRebutsThreeMythsAboutToday’sGlobalEnergyCrisis,”September7,2022,https://www.iea.org/news/executive-direc-tor-rebuts-three-myths-about-today-s-global-energy-crisis.40Bloomberg,“SteelPlantsAcrossEuropeCutProductionasPowerPricesSoar,”March9,2022,https://www.bloomberg.com/news/articles/2022-03-09/spanish-steel-production-curbed-as-power-costs-soar-to-a-record;E.Albertetal.,“Europe’sEnergyCrisisRisksForcingFactoriesAcrosstheContinenttoRelocateorCloseDown,”LeMonde,October12,2022,https://www.lemonde.fr/en/europe/article/2022/10/12/europe-s-energy-crisis-risks-forcing-factories-across-the-continent-to-relocate-shut-down_6000015_143.html;M.Burton,“EuropeLosesAnotherSmelterasEnergyCrisisLeavesDeepScars,”Bloomberg,March9,2023,https://www.bloomberg.com/news/articles/2023-03-09/speira-to-shut-down-german-aluminum-smelter-on-energy-costs.41Pexapark,“EuropeanMarketOutlook2023,”January2023,https://storage.pardot.com/891233/1675852816rjodUGY4/European_PPA_Market_Outlook_2023_V9.pdf.42GlobalEco-IndustrialParksProgramme(GEIPP),“BusinessOpportunities.ResourceEfficientandCleanerProduction(RECP),”May2021,https://open.unido.org/api/docu-ments/22033480/download/GEIPP-Factsheet%20IPs%204%20Final.pdf.43W.Beguerie,“2022ReviewofRoadFreightTransportinEurope,"Upply,December6,2022,https://market-insights.upply.com/en/2022-review-of-road-freight-transport-in-europe.44InternationalAssociationofPublicTransport(UITP),“UITPEuropeStatementSupportLocalPublicTransportintheEnergyCrisis,”October2022,https://cms.uitp.org/wp/wp-content/uploads/2022/10/UITP-Europe-Statement-on-the-Energy-Crisis-2.pdf.45Ibid.46BloombergNEF,op.cit.note37.47Ibid.48IQair,“AirQualityandPollutionCityRanking,”February28,2023,https://www.iqair.com/world-air-quality-ranking.;D.Eckstein,V.KünzelandL.Schäfer,“GlobalClimateRiskIndex2021,”GermanWatch,January21,2021,https://reliefweb.int/report/world/global-climate-risk-index-2021.49REN21PolicyDatabase.SeeReferenceTableR3bintheGSR2023DataPack,www.ren21.net/gsr2023-data-pack.50IEA,op.cit.note1.51D.Mohapatraetal.,“DecentralisedRenewableEnergyInnovationstoBoostAgri-SectorProductivity&AddressGlobalFoodSystemChallenges,”AllianceforRuralElectrification,January2021,https://www.ruralelec.org/publications/decentral-ised-renewable-energy-innovations-boost-agri-sector-productiv-ity-address.52R.VanAnrooyetal.,“ReviewoftheTechno-EconomicPerformanceoftheMainGlobalFishingFleets,”FoodandAgricultureOrganizationoftheUnitedNations(FAO),2021,https://www.fao.org/3/cb4900en/cb4900en.pdf;InternationalRenewableEnergyAgencyandFAO,“RenewableEnergyandAgri-FoodSystems:AdvancingEnergyandFoodSecurityTowardsSustainableDevelopmentGoals,”2021,http://www.fao.org/3/cb7433en/cb7433en.pdf.53EnergySectorManagementAssistanceProgram,“Off-GridSolarMarketTrendsReport2022:Outlook,”October17,2022,https://esmap.org/Off-Grid_Solar_Market_Trends_Report_2022_Outlook.58BACKENDNOTES·RENEWABLESINENERGYDEMAND2023ENDNOTESIGLOBALTRENDS54IEA,op.cit.note1.55Ibid.56Ibid.57Ibid.58Ibid.59Ibid.60WorldEconomicForum,“Here’sHowThisYear’sHeatwavesAreImpactingtheWorld,andHowWeCanPreparefortheFuture,”July22,2022,https://www.weforum.org/agenda/2022/07/heat-waves-climate-change-europe-northern-hemisphere.61“Explained:WhyIndiaIsFacingLongestPowerCutsin6Years,”TimesofIndia,April30,2022,https://timesofindia.indiatimes.com/india/explained-why-india-is-facing-longest-power-cuts-in-6-years/articleshow/91198487.cms;Bloomberg,“China’sFactoriesStillStrugglingasPowerCutsCurbOutput,”August31,2022,https://www.bloomberg.com/news/articles/2022-08-31/china-factory-activity-falls-again-as-power-outages-curb-output;S-L.Tan,“ChinaIsFacingAnotherPowerCrunch.ButThisTimeIt’sLikelytoBeDifferent,”CNBC,August23,2022,https://epthinktank.eu/2023/01/12/how-will-increasing-fuel-prices-im-pact-transport-ten-issues-to-watch-in-2023.62IEA,“TheFutureofCooling,”May2018,https://www.iea.org/reports/the-future-of-cooling.63SustainableEnergyforAll,“ChillingProspects2022,”May17,2022,https://www.seforall.org/system/files/2022-07/seforall-chilling-prospects-2022.pdf;UnitedNationsEconomicandSocialCommissionforAsiaandthePacific,“CambodiaAnnouncesItsNationalCoolingActionPlan,”November17,2022,https://www.unescap.org/news/cambodia-announces-its-na-tional-cooling-action-plan;CoolCoalition,“OnWorldOzoneDay2022,BarbadosandNigeriaReleaseNationalCoolingActionsPlans,”September16,2022,https://coolcoalition.org/on-world-ozone-day-2022-barbados-and-nigeria-release-national-cooling-actions-plans.59BACKENDNOTES·RENEWABLESINENERGYDEMAND2023ENDNOTESIBUILDINGSINFOCUSENDNOTES-BUILDINGSINFOCUS1InternationalEnergyAgency(IEA),“WorldEnergyBalances2020:ExtendedEnergyBalances,”August2022,https://www.iea.org/data-and-statistics/data-product/world-energy-balances,allrightsreserved,asmodifiedbytheRenewableEnergyPolicyNetworkforthe21stCentury(REN21).2Ibid.3Ibid.4Ibid.5OrganisationforEconomicCo-operationandDevelopment(OECD),“DecarbonisingBuildingsinCitiesandRegions,”June2022,https://read.oecd-il-ibrary.org/urban-rural-and-regional-development/decarbonising-buildings-in-cities-and-regions_a48ce566-en.6IEA,op.cit.note1.7Ibid.8IEA,“Buildings–Analysis,”September2022,https://www.iea.org/reports/buildings.9Ibid.10Figure3fromIEA,op.cit.note1.11Ibid.12Figure4fromIbid.13IEA,op.cit.note1.14Ibid.15Ibid.16Ibid.17IEAetal.,“TrackingSDG7:TheEnergyProgressReport2022,”2022,https://trackingsdg7.esmap.org/data/files/download-doc-uments/sdg7-report2022-full_report.pdf;L.Cozzietal.,“FortheFirstTimeinDecades,theNumberofPeopleWithoutAccesstoElectricityIsSettoIncreasein2022–Analysis,”IEA,November3,2022,https://www.iea.org/commentaries/for-the-first-time-in-decades-the-number-of-people-without-access-to-electricity-is-set-to-increase-in-2022.18IEAetal.,op.cit.note17.19Cozzietal.,op.cit.note17;EmpresadePesquisaEnergética,“BrazilianEnergyBalance–Year2021,”2022,https://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-675/topico-638/BEN2022.pdf.20SeeBox2in“GlobalOverview”inREN21,“Renewables2022GlobalStatusReport,”2022,www.ren21.net/gsr-2022.21Figure5fromIEA,“Heating–Analysis,”2022,https://www.iea.org/reports/heating.22IEA,op.cit.note1.23IEA,“Renewables2022–Analysis,”2022,https://www.iea.org/reports/renewables-2022.24IEA,op.cit.note1.25IEA,op.cit.note21.26IEA,“HeatPumps–Analysis,”2022,https://www.iea.org/reports/heat-pumps;IEA,op.cit.note1.27IEA,op.cit.note1.28IEA,op.cit.note1;IEA,op.cit.note21.29IEA,“EnergyEfficiency2022–Analysis,”2022,https://www.iea.org/reports/energy-efficiency-2022.30IEA,op.cit.note1;B.Naran,R.PadmanabhiandP.Rosane,“TrackingIncrementalEnergyEfficiencyInvestmentsinCertifiedGreenBuildings,”ClimatePolicyInitiative,December16,2021,https://www.climatepolicyinitiative.org/publication/incremental-investments-in-energy-efficiency-in-green-buildings.31Ibid.32J.Psaropoulos,“IsUkraineWarSpeedingEurope’sTransitiontoRenewableEnergy?”AlJazeera,November6,2022,https://www.aljazeera.com/news/2022/11/6/is-ukraine-war-speed-ing-europes-transition-to-renewable-energy;IEA,“ExecutiveDirectorRebutsThreeMythsAboutToday’sGlobalEnergyCrisis,”September7,2022,https://www.iea.org/news/execu-tive-director-rebuts-three-myths-about-today-s-global-ener-gy-crisis.Snapshot:Europebasedonthefollowingsources:Eurostat,“EnergyBalanceVisualisationTool,”https://ec.europa.eu/eurostat/cache/infographs/energy_balances/enbal.html,accessedNovember14,2022;IEA,“A10-PointPlantoReducetheEuropeanUnion’sRelianceonRussianNaturalGas–Analysis,”March2022,https://www.iea.org/reports/a-10-point-plan-to-reduce-the-european-unions-reliance-on-russian-natural-gas;G.Zachmann,G.SgaravattiandB.McWilliams,“EuropeanNaturalGasImports,”Bruegel,https://www.bruegel.org/dataset/european-natural-gas-imports,accessedNovember14,2022;EuropeanCommission,“REPowerEU:JointEuropeanActionforMoreAffordable,SecureandSustainableEnergy,”May18,2022,https://eur-lex.europa.eu/resource.html?uri=cellar:fc930f14-d7ae-11ec-a95f-01aa75ed71a1.0001.02/DOC_1&format=PDF;B.Claeys,J.RosenowandM.Anderson,“IsREPowerEUtheRightEnergyPolicyRecipetoMoveAwayfromRussianGas?”Euractiv,June27,2022,https://www.euractiv.com/section/energy/opinion/is-repowereu-the-right-energy-policy-recipe-to-move-away-from-russian-gas;Odyssee-Mure,“EUHeatingEnergyHeatingEnergyConsumptionbyEnergySource,”https://www.odyssee-mure.eu/publications/efficiency-by-sector/households/heating-energy-consumption-by-energy-sources.html,accessedNovember14,2022;D.Gibbetal.,“TurningOfftheGas:StrongerandCoherentEUPolicytoAcceleratetheFossilGasPhaseout,”RegulatoryAssistanceProject,October18,2022,https://www.raponline.org/knowledge-center/turning-off-gas-stronger-co-herent-eu-policy-accelerate-fossil-gas-phaseout;BuildingsPerformanceInstituteofEurope,“EPBDRecast:NewProvisionsNeedSharpeningtoHitClimateTargets,”January20,2022,https://www.bpie.eu/publication/epbd-recast-new-provisions-need-sharpening-to-hit-climate-targets.33Ember,“EU’sRecordGrowthinWindandSolarAvoids€11bninGasCostsDuringWar,”October18,2022,https://ember-climate.org/press-releases/eus-record-growth-in-wind-and-solar-avoids-e11bn-in-gas-costs-during-war.34IEA,op.cit.note23;BloombergNEF,“EnergyTransitionFactbook2022,”September2022,https://assets.bbhub.io/professional/sites/24/BloombergNEF-CEM-2022-Factbook.pdf.35IEA,op.cit.note23.36Bnamericas,“MinistryofEnergyLaunchesNationalHeatandColdStrategy,”June24,2021,https://www.bnamericas.com/en/news/ministry-of-energy-launches-national-heat-and-cold-strat-egy;GovernmentoftheUK,“HeatandBuildingsStrategy,”October29,2021,https://www.gov.uk/government/publications/heat-and-buildings-strategy;SustainableEnergyAuthorityofIreland,“NationalHeatStudy,”https://www.seai.ie/data-and-insights/national-heat-study,accessedOctober29,2022.37N.Kurmayer,“NetherlandstoBanFossilHeatingfrom2026,MakeHeatPumpsMandatory,”Euractiv,May17,2022,https://www.euractiv.com/section/energy-environment/news/netherlands-to-ban-fossil-heating-by-2026-make-heat-pumps-mandatory.38L.SunderlandandD.Gibb,“TakingtheBurnOutofHeatingforLow-IncomeHouseholds,”RegulatoryAssistanceProject,December1,2022,https://www.raponline.org/knowledge-center/taking-burn-out-of-heating-low-income-households.39D.Gibb,S.ThomasandJ.Rosenow,“MetricsMatter:EfficientRenewableHeatingandCoolingintheRenewableEnergyDirective,”RegulatoryAssistanceProject,September6,2022,https://www.raponline.org/knowledge-center/metrics-matter-ef-ficient-renewable-heating-cooling-renewable-energy-directive.40EuropeanParliament,“RenewableEnergyDirective–AmendmentsAdoptedinSept2022,”September14,2022,https://www.europarl.europa.eu/doceo/document/TA-9-2022-0317_EN.pdf.41R.Lowesetal.,“APolicyToolkitforGlobalMassHeatPumpDeployment,”RegulatoryAssistanceProject,November14,2022,https://www.raponline.org/knowledge-center/policy-toolkit-global-mass-heat-pump-deployment.42ChineseMinistryofHousingandUrban-RuralDevelopment,“14thFive-Year’BuildingEnergyEfficiencyandGreenBuildingDevelopmentPlan,”2021,www.mohurd.gov.cn/gongkai/fdzdgknr/zfhcxjsbwj/202203/20220311_765109.html.43IEA,“WorldEnergyOutlook2022,”October2022,https://www.iea.org/reports/world-energy-outlook-2022.44REN21PolicyDatabase.SeeReferenceTableR1intheGSR2023DataPack,www.ren21.net/gsr2023-data-pack.60BACKENDNOTES·RENEWABLESINENERGYDEMAND2023ENDNOTESIBUILDINGSINFOCUS45G.DeClercq,“FranceEndsGasHeatersSubsidies,BoostsHeatPumpsinBidtoCutRussiaReliance,”Reuters,March16,2022,https://www.reuters.com/world/europe/france-ends-gas-heaters-subsidies-boosts-heat-pumps-bid-cut-russia-reli-ance-2022-03-16.46B.Epp,“FundofEUR3BillionforDecarbonisingGermanDistrictHeating,”SolarThermalWorld,August30,2022,https://solarthermalworld.org/news/fund-of-eur-3-billion-for-decarbonising-german-district-heating.47MinisterioparalaTransiciónEcológicayelRetoDemográfico,“RealDecreto477/2021,de29dejunio,porelqueseapruebalaconcesióndirectaalascomunidadesautónomasyalasciudadesdeceutaymelilladeayudasparalaejecucióndediversosprogramasdeincentivosligadosalautoconsumoyalalmacenamiento,confuentesdeenergíarenovable,asícomoalaimplantacióndesistemastérmicosrenovablesenelsectorresidencial,enelmarcodelplanderecuperación,transformaciónyresiliencia,”2021,https://www.boe.es/eli/es/rd/2021/06/29/477;A.Rosell,“MoreThanEUR1BillionofIncentivesAvailableinSpain,”SolarThermalWorld,October12,2022,https://solarthermalworld.org/news/more-than-eur-1-billion-of-incentives-available-in-spain.48GovernmentoftheUK,“DitchingCostlyGasandOilIsCheaperThankstoHeatPumpScheme,”May23,2022,https://www.gov.uk/government/news/ditching-costly-gas-and-oil-is-cheaper-thanks-to-heat-pump-scheme.49E.Hougaard,“Energistyrelsenåbnerforansøgningertiltilskudsordningforetableringafeldrevnevarmepumperogsolvarmeanlægtilproduktionaffjernvarme,”Energistyrelsen,July12,2022,https://ens.dk/presse/energistyrelsen-aabner-ansoeg-ninger-til-tilskudsordning-etablering-af-eldrevne-varmepump-er-og.50B.Epp,“EUR65MillionProvidedforSolarDistrictHeatinginKosovo,”SolarThermalWorld,July7,2022,https://solarthermalworld.org/news/eur-65-million-provided-for-solar-district-heating-in-kosovo.51cking,“Whatthe‘InflationReductionActof2022’MeansforSolar,”SolarEnergyInternational,August22,2022,https://www.solarenergy.org/what-the-inflation-reduction-act-of-2022-means-for-solar.52UnitedNewsofIndia,“UPTargetstoGenerate22kMWSolarEnergyinNext5Yrs,”November16,2022,http://www.uniindia.com/~/up-targets-to-generate-22k-mw-solar-energy-in-next-5-yrs/BusinessEconomy/news/2861956.htm.53R.Desmornes,“TheInflationReductionAct‘PumpsUp’HeatPumps,”HVACSolutions,November4,2022,https://www.hvac.com/resources/inflation-reduction-act-heat-pump-rebates;RewiringAmerica,“High-EfficiencyElectricHomeRebateAct,”2022,https://www.rewiringamerica.org/policy/high-efficiency-electric-home-rebate-act.54D.GibbandM.Morawiecka,“CleaningUpHeat:TheChangingEconomicsforHeatPumpsinPoland,”RegulatoryAssistanceProject,November7,2022,https://www.raponline.org/knowl-edge-center/cleaning-up-heat-the-changing-economics-for-heat-pumps-in-poland.55BercyInfos,“MaPrimeRénov’:laprimepourlarénovationénergétique,”December30,2022,https://www.economie.gouv.fr/particuliers/prime-renovation-energetique.56Figure6fromREN21PolicyDatabase,op.cit.note44.57J.Cheng,“ImportanceofEnergyStandardsinSupportingAffordableGrowthoftheHighEfficiencyHeatPumpMarketinChina,”8thIEA-TsinghuaJointWorkshop:MakingBuildingsZero-CarbonReadyby2030–Near-termSolutionsforHeatingSystems,27October,2022,https://www.iea.org/events/the-8th-iea-tsinghua-joint-workshop-making-buildings-zero-carbon-ready-by-2030-near-term-solutions-for-heating-systems.Snapshot:Chinabasedonthefollowingsources:EnergyFoundationChina,“SynthesisReport2022onChina’sCarbonNeutrality:ElectrificationinChina’sCarbonNeutralityPathways,”13November,2022,https://www.efchina.org/Reports-en/report-lceg-20221104-en;IEA,“CleanWinterHeatingPlaninNorthernChina(2017-2021)–Policies,”May17,2021,https://www.iea.org/policies/7906-clean-winter-heating-plan-in-northern-china-2017-2021;65%fromEnergyFoundationChina,“ResearchontheControlStrategyofScatteredCoalPollutioninthe‘14thFive-YearPlan’Period,”November9,2021,https://www.efchina.org/Attachments/Report/report-cemp-20220305-7/%E6%89%A7%E8%A1%8C%E6%91%98%E8%A6%81-%E5%8D%81%E5%9B%9B%E4%BA%94-%E5%9B%BD%E5%AE%B6%E6%95%A3%E7%85%A4%E6%B1%A1%E6%9F%93%E6%8E%A7%E5%88%B6%E7%AD%96%E7%95%A5%E7%A0%94%E7%A9%B6.pdf(usingGoogleTranslate);B.Epp,“China:BeijingMandatesSolarHotWaterSystems,”SolarThermalWorld,March23,2012,https://solarthermalworld.org/news/china-beijing-mandates-solar-hot-water-systems;ChineseMinistryofHousingandUrban-RuralDevelopment,“‘14thFive-Year’BuildingEnergyEfficiencyandGreenBuildingDevelopmentPlan,”2022,https://www.ndrc.gov.cn/xwdt/tzgg/202206/P020220602315650388122.pdf;C.Farand,“China’sAmbitiousRooftopSolarPilotHelpsDrive‘Blistering’CapacityGrowth,”ClimateHomeNews,July14,2022,https://www.climatechan-genews.com/2022/07/14/chinas-ambitious-rooftop-solar-pi-lot-helps-drive-blistering-capacity-growth;GovernmentofChina,“’The14thFive-YearPlan’BuildingEnergyConservationandGreenBuildingDevelopmentPlan’wasissuedtocompletetheenergy-savingrenovationofexistingbuildingswithanareaof​​morethan350millionsquaremetersby2025,”March22,2022,http://www.gov.cn/xinwen/2022-03/22/content_5680355.htm.58EnergyFoundationChina,op.cit.note57.59D.GibbandA.Jahn,“‘GameOn’forGermany’sHeatPumpTransformation,”RegulatoryAssistanceProject,July20,2022,https://www.raponline.org/blog/game-on-germany-heat-pump-transformation.60N.Kurmayer,“NetherlandstoBanFossilHeatingfrom2026,MakeHeatPumpsMandatory,”Euractiv,May17,2022,https://www.euractiv.com/section/energy-environment/news/netherlands-to-ban-fossil-heating-by-2026-make-heat-pumps-mandatory.61Dataasof9February2023,fromBuildingDecarbonizationCoalition,“ZeroEmissionsBuildingOrdinances,”2022,https://www.buildingdecarb.org/zeb-ordinances.html.62Ibid.63L.Louis-PrescottandR.Golden,“HowLocalGovernmentsandCommunitiesAreTakingActiontoGetFossilFuelsOutofBuildings,”RMI,August9,2022,https://rmi.org/taking-action-to-get-fossil-fuels-out-of-buildings.64E.Pontecorvo,“California’s2030BanonGasHeatersOpensaNewFrontintheWaronFossilFuels,”Grist,September26,2022,https://grist.org/buildings/californias-2030-ban-on-gas-heaters-opens-a-new-front-in-the-war-on-fossil-fuels;NewYorkStatePublicServiceCommission,“PSCBreathesNewLifeintoPopularConEdisonCleanHeatProgram,”November8,2022,https://ar.dps.ny.gov/system/files/documents/2022/10/psc-breathes-new-life-into-popular-con-edison-clean-heat-program.pdf.65T.DiChristopherandA.Duquiatan,“StatesThatOutlawGasBansAccountfor31%ofUSResidential/CommercialGasUse,”S&PGlobalCommodityInsights,June9,2022,https://www.spglobal.com/marketintelligence/en/news-insights/latest-news-head-lines/states-that-outlaw-gas-bans-account-for-31-of-us-residen-tial-commercial-gas-use-70749584.66EuropeanCommission,op.cit.note32.67E.Christensen,“California’sNewBuildingEnergyEfficiencyStandards,MandatingSolar+Storage,AreSettoGointoEffectonJanuary1,2023,”August1,2022,https://www.energytoolbase.com/newsroom/blog/californias-new-building-energy-efficien-cy-standards-mandating-solar-storage.68J.Spector,“CaliforniaIsFinallyUnlockingCommunitySolarfortheMasses,”CanaryMedia,September8,2022,https://www.canarymedia.com/articles/solar/california-is-finally-unlocking-community-solar-for-the-masses.69J.John,“NewCaliforniaRooftop-SolarPlanDrops‘SolarTax,’ButFearsRemain,”CanaryMedia,November10,2022,https://www.canarymedia.com/articles/solar/new-california-rooftop-solar-plan-drops-solar-tax-but-fears-remain.70CTVNews,“N.S.GovernmentKillsElectricUtility’sBidtoImpose‘Net-Metering’ChargeonSolar,”Atlantic,February2,2022,https://atlantic.ctvnews.ca/n-s-government-kills-electric-utility-s-bid-to-impose-net-metering-charge-on-solar-1.5764723.71IEA,op.cit.note1.72GlobalAllianceforBuildingsandConstruction,“2022GlobalStatusReportforBuildingsandConstruction,”2022,http://glo-balabc.org/our-work/tracking-progress-global-status-report.61BACKENDNOTES·RENEWABLESINENERGYDEMAND2023ENDNOTESIBUILDINGSINFOCUS73ChineseMinistryofHousingandUrban-RuralDevelopment,op.cit.note57.74GlobalAllianceforBuildingsandConstruction,op.cit.note72.75D.Rajeev,“EnergyConservationBill2022:ImplicationsandNextSteps,”TheEconomicTimes,December28,2022,https://economictimes.indiatimes.com/industry/renewables/ener-gy-conservation-bill-2022-implications-and-next-steps/article-show/96562493.cms.76T.Sawachi,“ContextforBuildingHeatingSystemsandHowTheirEnergyEfficienciesAreEvaluatedinaBuildingEnergyCodeofJapan,”8thIEA-TsinghuaJointWorkshop:MakingBuildingsZero-CarbonReadyby2030–Near-termSolutionsforHeatingSystems,October2022,https://iea.blob.core.windows.net/assets/9820c21f-47dc-431d-8b11-28b99dfab44c/Session1Presentation4TakaoSawachiContextforbuildingheatingsystemsinJapan.pdf.77IEA,op.cit.note21.78BasedonUSD489.6billionglobalnewinvestmentinrenewablepowercapacityin2022(notincludinghydropowerprojectslargerthan50MW),fromBloombergNEF,“EnergyTransitionInvestmentTrends2023,”2023,https://about.bnef.com/energy-transition-in-vestment;50%fromM.SantamourisandK.Vasilakopoulou,“PresentandFutureEnergyConsumptionofBuildings:ChallengesandOpportunitiesTowardsDecarbonisation,”E-Prime–AdvancesinElectricalEngineering,ElectronicsandEnergy,Vol.1(January1,2021):100002,https://doi.org/10.1016/j.prime.2021.100002.79K.Mathiesenetal.,“Putin’sWarAcceleratestheEU’sFossilFuelDetox,”Politico,October12,2022,https://www.politico.eu/article/vladimir-putin-war-ukraine-accelerates-eu-fossil-fuel-detox.80BloombergNEF,op.cit.note78;IEA,“WorldEnergyInvestment2022,”2022,https://iea.blob.core.windows.net/assets/b0beda65-8a1d-46ae-87a2-f95947ec2714/WorldEnergyInvestment2022.pdf.81IEA,op.cit.note80.82B.Epp,“37MWSolarDistrictHeatingPlantintheNetherlandswithOutstandingFeatures,”SolarThermalWorld,November11,2022,https://solarthermalworld.org/news/37-mw-solar-district-heating-plant-in-the-netherlands-with-outstanding-features.83InternationalDistrictEnergyAssociation,“CanadaInfrastructureBank,CIBCandMarkhamDistrictEnergyClose$270MillionDistrictEnergyInfrastructureInvestment,”November25,2022,https://www.districtenergy.org/blogs/district-energy/2022/11/25/canada-infrastructure-bank-cibc-and-markham-distri.84B.Epp,“FundofEUR3BillionforDecarbonisingGermanDistrictHeating,”SolarThermalWorld,August30,2022,https://solarthermalworld.org/news/fund-of-eur-3-billion-for-decarbonising-german-district-heating;A.Walstad,“GermanyPloughs€3bnintoPhasingoutDistrictHeatingGas,”GasOutlook,August18,2022,https://gasoutlook.com/analysis/germany-ploughs-e3bn-into-phasing-out-district-heating-gas.85IEA,op.cit.note80;SolarHeatEurope,“SolarHeatMarketReport2021,”December2022,http://solarheateurope.eu/wp-content/uploads/2022/12/Solar_Heat_Market_Report-2021.pdf.86SolarHeatEurope,op.cit.note85.87IEA,“EnergyEfficiency2022,”2022,https://iea.blob.core.windows.net/assets/7741739e-8e7f-4afa-a77f-49dadd51cb52/EnergyEfficiency2022.pdf.88IEA,op.cit.note80.89Ibid.90IEA,“Approximately100MillionHouseholdsRelyonRooftopSolarPVby2030–Analysis,”September2022,https://www.iea.org/reports/approximately-100-million-households-rely-on-roof-top-solar-pv-by-2030.91IEA,“SolarPV–Analysis,”September2022,https://www.iea.org/reports/solar-pv.92Ibid.93IEAPhotovoltaicPowerSystemsProgramme(PVPS),“TrendsinPVApplications2022,”2022,https://iea-pvps.org/trends_reports/trends-2022;IEA,op.cit.note91.94IEAPVPS,op.cit.note93.95Ibid.96Ibid.97Ibid.98Fortum,“FortumandMicrosoftAnnounceWorld’sLargestCollaborationtoHeatHomes,ServicesandBusinesseswithSustainableWasteHeatfromNewDataCentreRegion,”March17,2022,https://www.fortum.com/media/2022/03/fortum-and-mi-crosoft-announce-worlds-largest-collaboration-heat-homes-ser-vices-and-businesses-sustainable-waste-heat-new-data-cen-tre-region;IrishCentral,“HeatCreatedbyAmazonDataCenterinDublintoBeUsedinLocalHousing,”September22,2021,https://www.irishcentral.com/news/amazon-data-center-dub-lin-heat-local-housing;WorldEconomicForum,“YourDataCouldWarmYouUpThisWinter,Here’sHow,”August8,2022,https://www.weforum.org/agenda/2022/08/sustainable-da-ta-centre-heating;P.Judge,“ViennaHospitaltoGetWasteHeatfromInterxionDataCenter,”DataCenterDynamics,April27,2022,https://www.datacenterdynamics.com/en/news/vienna-hospital-to-get-waste-heat-from-interxion-data-center.99IEA,op.cit.note1.100InternationalRenewableEnergyAgency(IRENA),“BioenergyfortheTransition:EnsuringSustainabilityandOvercomingBarriers,”August2022,https://www.irena.org/publications/2022/Aug/Bioenergy-for-the-Transition.101N.Kurmayer,“AsWinterLooms,GermansIncreasinglyTurntoWoodforHeating,”Euractiv,September23,2022,https://www.euractiv.com/section/energy/news/as-winter-looms-germans-increasingly-turn-to-wood-for-heating;Euronews,“EnergyCrisis:GermansTurntoWoodBurningStovestoSaveonGas,”November11,2022,https://www.euronews.com/green/2022/11/11/energy-crisis-in-germany-rising-trend-in-wood-burning-stoves-to-save-on-gas;H.Thompson,“WoodPelletShortagesinFranceCausePricestoSoar,”Connexionfrance,15September,2022,https://www.connexion-france.com/article/French-news/Wood-pellet-shortages-in-France-cause-prices-to-soar;D.Brooks,“WoodPelletsMayBeScarcer,andMoreCostly,ThisWinter,”NHBusinessReview,October21,2022,https://www.nhbr.com/wood-pellets-may-be-scarcer-and-more-costly-this-winter;UnitedNationsEconomicCommissionforEurope,“WoodEnergyontheRiseinEurope,”November4,2022,https://unece.org/climate-change/press/wood-energy-rise-europe.102IRENA,op.cit.note100.103IEA,op.cit.note21.104W.WeissandM.Spörk-Dür,“SolarHeatWorldwide:Edition2022,”May2022,https://www.iea-shc.org/Data/Sites/1/publica-tions/Solar-Heat-Worldwide-2022.pdf.105Ibid.106B.Epp,“IEASHCSolarAwardWinner:SocialHousingProjectinNamibia,”SolarThermalWorld,October18,2022,https://solarthermalworld.org/news/iea-shc-solar-award-winner-social-housing-project-in-namibia;SouthernAfricanSolarThermalDemonstrationandTrainingInitiative(SOLTRAIN),“SolarThermalRoadmaps,”https://soltrain.org/assets/roadmaps,accessedNovember20,2022.107J.Meyer,“StronglyDownsized,ButCrisis-RiddenSolarCollectorIndustryinGermany,”SolarThermalWorld,August2,2022,https://solarthermalworld.org/news/strongly-downsized-but-cri-sis-ridden-solar-collector-industry-in-germany;J.Meyer,“SurveyofGermanSolarCollectorIndustry:‘DailyStruggletoProcureMaterials,’”SolarThermalWorld,August4,2022,https://solarthermalworld.org/news/survey-of-german-solar-collec-tor-industry-daily-struggle-to-procure-materials;E.Gerden,“RussianSolarThermalIndustryinDeepCrisis,”SolarThermalWorld,September18,2022,https://solarthermalworld.org/news/russian-solar-thermal-industry-in-deep-crisis.108WeissandSpörk-Dür,op.cit.note104;B.Epp,“37MWsolardistrictheatingplantintheNetherlandswithoutstandingfeatures,”SolarThermalWorld,November11,2022,https://solarthermalworld.org/news/37-mw-solar-district-heating-plant-in-the-netherlands-with-outstanding-features.109WeissandSpörk-Dür,op.cit.note104.110J.LundandA.Toth,“DirectUtilizationofGeothermalEnergy2020WorldwideReview,”Geothermics,Vol.90(February2021):101915,https://www.sciencedirect.com/science/article/pii/S0375650520302078.111Ibid.62BACKENDNOTES·RENEWABLESINENERGYDEMAND2023ENDNOTESIBUILDINGSINFOCUS112Ibid.113C.Cariaga,“SinopecLaunchesExpandedGeothermalHeatinginChinaforWinter,”ThinkGeoEnergy,November17,2022,https://www.thinkgeoenergy.com/sinopec-launches-expanded-geothermal-heating-for-winter.114Ibid.;D.Olick,“Largest-EverGeothermalGridUnderThisTexasHousingDevelopmentIsSavingHomeownersSeriousMoney,”CNBC,2022,https://www.cnbc.com/2022/09/01/geothermal-powered-housing-development-saves-homeown-ers-big-bucks.html;USDepartmentofEnergy,“CommunityGeothermalHeatingandCoolingDesignandDeployment,”July12,2022,https://www.energy.gov/eere/geothermal/articles/community-geothermal-heating-and-cooling-design-and-de-ployment.115IEAGeothermal,“2021AnnualReport,”October2022,https://iea-gia.org/publications-2/annual-reports.116C.Cariaga,“CanadatoInvestinGeothermalProjectsinNovaScotia,”ThinkGeoEnergy,November10,2022,https://www.thinkgeoenergy.com/canada-to-invest-on-geothermal-projects-in-nova-scotia.117C.Cariaga,“EGECMarketReport2021HighlightsPost-COVIDResurgenceofGeothermal,”ThinkGeoEnergy,June14,2022,https://www.thinkgeoenergy.com/egec-market-report-2021-high-lights-post-covid-resurgence-of-geothermal.118Ibid.119C.Cariaga,“Meudon,FranceTargetsGeothermalDistrictHeatingby2026,”ThinkGeoEnergy,November7,2022,https://www.thinkgeoenergy.com/meudon-france-targets-geother-mal-district-heating-by-2026;C.Cariaga,“GermanyAimsfor100NewGeothermalProjectsby2030,”ThinkGeoEnergy,November11,2022,https://www.thinkgeoenergy.com/germany-aims-for-100-new-geothermal-projects-by-2030;C.Cariaga,“GeothermalHeatingPlantinTorun,PolandOfficiallyOpens,”ThinkGeoEnergy,October13,2022,https://www.thinkgeoenergy.com/geothermal-heating-plant-in-torun-poland-officially-opens.120C.Cariaga,“WienEnergietoBuildFirstGeothermalHeatingPlantinVienna,Austria,”ThinkGeoEnergy,November15,2022,https://www.thinkgeoenergy.com/wien-energie-to-build-first-geother-mal-heating-plant-in-vienna-austria.121J.Rosenowetal.,“HeatingUptheGlobalHeatPumpMarket,”NatureEnergy(September7,2022):1-4,https://doi.org/10.1038/s41560-022-01104-8;IEA,op.cit.note26.122InstallatoreProfessionale,“Climatizzazione:incrementiatrecifreperlepompedicaloreidronichenelprimosemestre2022,”July29,2022,https://www.installatoreprofessionale.it/news/905-cli-matizzazione-incrementi-a-tre-cifre-per-le-pompe-di-ca-lore-idroniche-nel-primo-semestre-2022.html;M.Beerling,“ReactieVerenigingWarmtepompenopGasmonitor2022,”VerenigingWarmtepompen,September5,2022,https://warm-te-pompen.nl/reactie-vereniging-warmtepompen-op-gasmon-itor-2022;PORTPC,“Ponaddwukrotnywzrostsprzedażypow-ietrznychpompciepławIpoł.2022roku!,”PolskaOrganizacjaRozwojuTechnologiiPompCiepła,August17,2022,https://portpc.pl/ponad-dwukrotny-wzrost-sprzedazy-powietrznych-pomp-ciepla-w-i-pol-2022-roku;J.Hirvonen,“RecordHighSalesGrowthof80%RecordedforHeatPumpsintheFirstSixMonthsoftheYearinFinland,”SULPU,July19,2022,https://www.sulpu.fi/record-high-sales-growth-of-80-recorded-for-heat-pumps-in-the-first-six-months-of-the-year-in-finland;BundesverbandderDeutschenHeizungsindustrie,“Heizungsindustrie:SoliderMarktinDynamischemUmfeld,”August12,2022,https://www.bdh-industrie.de/presse/pressemeldungen/artikel/heizungsindustrie-solider-markt-in-dynamischem-umfeld;NorskVarmepumpeforening,“Boligeiereharskjøntdet-nårkommerbedriftene?Varmepumpeforeningen,”2022,https://www.novap.no/artikler/boligeiere-vil-spare-strom-hvor-blir-det-av-bedriftene.123AirConditioning,Heating&RefrigerationInstitute,“AHRIReleasesJune2022U.S.HeatingandCoolingEquipmentShipmentData,”August12,2022,https://www.ahrinet.org/sites/default/files/2022-09/June2022StatisticalRelease.pdf.124IEA,op.cit.note21;T.Nowak,“LinkedInPostonHeatPumpManufacturerAnnouncements,”2022,https://www.linkedin.com/posts/thomasnowakeu_conversation-activi-ty-6970985100586950657-VNc1.125IEA,op.cit.note21.126IEA,op.cit.note1.127C.Delmastro,IEA,personalcommunicationwithREN21,October25,2022.128EuropeanCommission,“InnovativeWasteHeatRecoveryExperimentinSweden,”https://cordis.europa.eu/article/id/436169-innovative-waste-heat-recovery-experiment-in-swe-den,accessedNovember20,2022;Delmastro,op.cit.note127;J.Yoon,OECD,personalcommunicationwithREN21,November15,2022.129T.GualtieriandK.Pohjanpalo,“HowColdSeawaterCanHeatHelsinki’sHomes,”Bloomberg,October18,2022,https://www.bloomberg.com/news/articles/2022-10-18/helsinki-utility-finds-a-surprising-heat-source-icy-seawater.130SustainableEnergyforAll,“ChillingProspects:TrackingSustainableCoolingforAll,”2022,https://www.seforall.org/chilling-prospects-2022;IEA,“SpaceCooling–Analysis,”2022,https://www.iea.org/reports/space-cooling.131IEA,op.cit.note130.132Delmastro,op.cit.note127.133K.Cromartie,“GEGSuccessfullyBreaksGroundonGeothermalCoolingProjectinIndia,”September6,2022,http://gegpower.is/geg-successfully-breaks-ground-on-geothermal-cooling-project-in-india;A.Richter,“USFirmPlansGeothermalDeepClosed-LoopCoolingSysteminBali,Indonesia,”ThinkGeoEnergy,March19,2022,https://www.thinkgeoenergy.com/us-firm-plans-geo-thermal-deep-closed-loop-cooling-system-in-bali-indonesia.63BACKENDNOTES·RENEWABLESINENERGYDEMAND2023ENDNOTESIINDUSTRYINFOCUSINDUSTRYINFOCUS1WorldBank,“Industry(IncludingConstruction),ValueAdded(%ofGDP),”2021,https://data.worldbank.org/indicator/NV.IND.TOTL.ZS;A.Peeetal.,“DecarbonizationofIndustrialSectors:TheNextFrontier,”McKinsey,July13,2018,https://www.mckinsey.com/capabilities/sustainability/our-insights/how-industry-can-move-toward-a-low-carbon-future.2InternationalEnergyAgency(IEA),WorldEnergyStatisticsDatabase,2022,www.iea.org/statistics,allrightsreserved,asmodifiedbytheRenewableEnergyPolicyNetworkforthe21stCentury(REN21).3Ibid.4Ibid.5IEA,“Industry–Analysis,”September2022,https://www.iea.org/reports/industry.6Ibid.7IEA,op.cit.note2.Figure7fromidem.8IEA,op.cit.note2.9InternationalRenewableEnergyAgency(IRENA),“BioenergyfortheEnergyTransition:EnsuringSustainabilityandOvercomingBarriers,”2022,https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2022/Aug/IRENA_Bioenergy_for_the_transition_2022.pdf;IEA,“PulpandPaper,”September2022,https://www.iea.org/reports/pulp-and-paper.10IEA,“WorldEnergyOutlook2022,”2022,https://iea.blob.core.windows.net/assets/830fe099-5530-48f2-a7c1-11f35d510983/WorldEnergyOutlook2022.pdf.11ViennaEnergyForum,“SummaryoftheViennaEnergyForum2021:5-7July,”2021,https://www.viennaenergyforum.org/wp-content/uploads/2021/08/Report.pdf;WorldEconomicForum,“TheNet-ZeroIndustryTracker:AnInteractiveGuideforExecutives,”July28,2022,https://www.weforum.org/reports/the-net-zero-industry-tracker.12Accenture,“AcceleratingGlobalCompaniesTowardNetZeroby2050,”November2,2022,https://www.accenture.com/us-en/insights/sustainability/reaching-net-zero-by-2050;NetZeroTracker,“NetZeroStocktake2022,”June13,2022,https://zerotracker.net/insights/pr-net-zero-stocktake-2022.13IEA,op.cit.note2;NetZeroTracker,op.cit.note12.14ClimateTechnologyCentre&Network,“ClinkerReplacement,”November8,2016,https://www.ctc-n.org/technologies/clinker-replacement;WorldEconomicForum,op.cit.note11;C.Barnstedt,“HowWasteHeatRecoveryWillChangetheLandscapes,”Etekina,March17,2022,https://www.etekina.eu/how-waste-heat-recovery-will-change-the-landscapes;AsterFab,“IndustrialWasteHeatRecovery:TechnologiesandApplications,”November16,2022,https://aster-fab.com/industrial-waste-heat-recovery-technologies-and-applications;Tenova,“TheUseofWaste-HeatRecoverytoGenerateHighQualityEnergy,”InsideEnergyTransition,May5,2022,http://energytransition.techint.com/en/may-2022/the-use-of-waste-heat-recovery-to-generate-high-quality-energy/35.15WorldEconomicForum,op.cit.note11;IEA,“IronandSteel–Analysis,”September2022,https://www.iea.org/reports/iron-and-steel;R.Walton,“Saint-GobainAchievesCarbon-ZeroMilestoneUsingRecyclingandBiogasatGlassPlant,”EnergyTech,May18,2022,https://www.energytech.com/energy-efficiency/article/21242064/saintgobain-achieve-carbonzero-milestone-using-recycling-and-biogas-at-glass-plant;Saint-Gobain,“PremièreProductionZeroCarbonedeVerre,”https://befr.saint-gobain-building-glass.com/fr-BE/premiere-production-zero-carbone-de-verre,accessedDecember15,2022.16ViennaEnergyForum,op.cit.note11;IRENA,“Industry,”https://www.irena.org/Energy-Transition/Technology/Industry#strategy,accessedDecember28,2022.17IEA,op.cit.note10.18IEA,“SocialContractfortheMiningIndustry–Policies,”May2,2022,https://www.iea.org/policies/14222-social-contract-for-the-mining-industry.19EuropeanCommission,“REPowerEU:APlantoRapidlyReduceDependenceonRussia,”May18,2022,https://ec.europa.eu/commission/presscorner/detail/en/ip_22_3131;EuropeanCouncil,“EURecoveryPlan:ProvisionalAgreementReachedonREPowerEU,”December14,2022,https://www.consilium.europa.eu/en/press/press-releases/2022/12/14/eu-recovery-plan-provisional-agreement-reached-on-repowereu.20REN21PolicyDatabase.SeeReferenceTableR2intheGSR2023DataPack,www.ren21.net/gsr2023-data-pack.21EuropeanCommission,“REPowerEU:Affordable,SecureandSustainableEnergyforEurope,”https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal/repowereu-affordable-secure-and-sustainable-energy-europe_en,accessedDecember17,2022.22EuropeanCommission,“REPowerEUCleanIndustryFactsheet,”May2022,https://ec.europa.eu/commission/presscorner/api/files/attachment/872554/REPowerEU%20Clean%20Industry_EN.pdf.pdf;F.Derewenda,“EuropeanSolarPVIndustryAllianceLaunchedasPartofREPowerEU,”CEENERGYNEWS,December13,2022,https://ceenergynews.com/renewables/european-solar-pv-industry-alliance-launched-as-part-of-repowereu.23REN21PolicyDatabase,op.cit.note20.24UnitedNationsEnvironmentProgramme(UNEP),“CleanCaptiveInstallationsforIndustrialClientsinSub-SaharanAfrica–KenyaCountryStudy,”2021,https://www.captiverenewables-africa.org/wp-content/uploads/2021/03/Kenya-Country-Report.pdf;InternationalFinanceCorporation,“TheDirtyFootprintoftheBrokenGrid,”2019,https://www.ifc.org/wps/wcm/connect/2cd3d83d-4f00-4d42-9bdc-4afdc2f5dbc7/20190919-Full-Report-The-Dirty-Footprint-of-the-Broken-Grid.pdf?MOD=AJPERES&CVID=mR9UpXC.25UNEP,op.cit.note24.26CarbonActionTracker,“NetZeroEvaluation,”November2022,https://climateactiontracker.org/global/cat-net-zero-target-evaluations.27M.Barbanell,“ABriefSummaryoftheClimateandEnergyProvisionsoftheInflationReductionActof2022,”October28,2022,https://www.wri.org/update/brief-summary-climate-and-energy-provisions-inflation-reduction-act-2022.28TheWhiteHouse,“BuildingaCleanEnergyEconomy:AGuidebooktotheInfrationReductionAct'sInvestmentinCleanEnergyandClimateAction,”January2023,https://www.whitehouse.gov/wp-content/uploads/2022/12/Inflation-Reduction-Act-Guidebook.pdf.29N.PeabodyLLP,“TheInflationReductionAct,aBigDealforGreenSteel,”September12,2022,https://www.nixonpeabody.com/insights/articles/2022/09/12/the-inflation-reduction-act-is-a-big-deal-for-green-steel;M.Barbanell,“ABriefSummaryoftheClimateandEnergyProvisionsoftheInflationReductionActof2022,”October28,2022,https://www.wri.org/update/brief-summary-climate-and-energy-provisions-inflation-reduction-act-2022.30ThePresidencyoftheRepublicofSouthAfrica,“SouthAfricaJustEnergyTransitionInvestmentPlan(2023-2027),”November2022,https://www.thepresidency.gov.za/content/south-africa%27s-just-energy-transition-investment-plan-jet-ip-2023-2027.31Ibid.32MinistryofNewandRenewableEnergyofIndia,“NationalGreenHydrogenMission,”January2023,https://mnre.gov.in/img/documents/uploads/file_f-1673581748609.pdf.33IRENA,“IRENAandIndustryLeadersLaunchtheAllianceforIndustryDecarbonization,”September1,2022,https://www.irena.org/news/pressreleases/2022/Sep/IRENA-and-Industry-Leaders-Launch-the-Alliance-for-Industry-Decarbonization.34F.Salah,“EgyptplanstobethemainsourceofhydrogenforEuropeby2030:StrategicFramework,”DailyNewsEgypt,November28,2022,https://dailynewsegypt.com/2022/11/28/egypt-plans-to-be-the-main-source-of-hydrogen-for-europe-by-2030-strategic-framework;A.Lewis,“EgyptSignsFrameworkDealsinBidtoLaunchHydrogenIndustry,”Reuters,November15,2022,https://www.reuters.com/world/middle-east/egypt-signs-framework-deals-bid-launch-hydrogen-industry-2022-11-15.35DepartmentofScienceandInnovationoftheRepublicofSouthAfrica,“SouthAfricaHydrogenSocietyRoadmap,”February2022,https://www.dst.gov.za/images/South_African_Hydrogen_Society_RoadmapV1.pdf;BakerMcKenzie,“SouthAfrica:HydrogenRoadmap–ACrucialStepintheEnergyTransitionJourney,”2022,https://www.bakermckenzie.com/en/insight/publications/2022/06/south-africa-hydrogen-roadmap.36IEA,op.cit.note10.37S.Eslamizadehetal.,“IndustrialCommunityEnergySystems:64BACKENDNOTES·RENEWABLESINENERGYDEMAND2023ENDNOTESIINDUSTRYINFOCUSSimulatingtheRoleofFinancialIncentivesandSocietalAttributes,”FrontiersinEnvironmentalScience,Vol.10(2022),https://www.frontiersin.org/articles/10.3389/fenvs.2022.924509.38MinisteriodeBienesNacionales,“HidrógenoVerdeenTerrenosFiscales,”https://www.bienesnacionales.cl/?page_id=41049,accessedFebruary14,2023.39SolarHeatforIndustrialProcesses(SHIP)PlantsDatabase,“Report:InvestmentCostsbyProject,”http://ship-plants.info/reports/investments/overview?industry_sector=23,accessedFebruary2,2023;SHIPPlantsDatabase,“Report:InvestmentCostsbyProject,”http://ship-plants.info/reports/investments/overview?industry_sector=20,accessedFebruary2,2023.40SHIPPlantsDatabase,“SolarSteamBoilerforProcter&Gamble(Tianjin),”http://ship-plants.info/solar-thermal-plants/221-solar-steam-boiler-for-procter-gamble-tianjin-china,accessedFebruary2,2023;SHIPPlantsDatabase,“UltramarinePigments,”http://ship-plants.info/solar-thermal-plants/299-ultramarine-pigments-india,accessedFebruary2,2023;SHIPPlantsDatabase,“L’OrealPune,”http://ship-plants.info/solar-thermal-plants/119-l-oreal-pune-india,accessedFebruary2,2023.41SHIPPlantsDatabase,“HellenicCopperMines,”http://ship-plants.info/solar-thermal-plants/118-hellenic-copper-mines-cyprus,accessedFebruary2,2023;SHIPPlantsDatabase,“MineraElRobPeñoles,”http://ship-plants.info/solar-thermal-plants/295-minera-el-rob-penoles-mexico,accessedFebruary2,2023.42SHIPPlantsDatabase,“ParcSolaireAlainLemaire,”http://ship-plants.info/solar-thermal-plants/321-parc-solaire-alain-lemaire-canada,accessedFebruary2,2023.43A.Richter,“GermanPaperandPulpCompanyExploringGeothermalforEnergyNeeds,”ThinkGeoEnergy,July24,2020,https://www.thinkgeoenergy.com/german-paper-and-pulp-company-exploring-geothermal-for-energy-needs.44Papnews,“EssityInvestsinWorld’sFirstTissueMachineRunningonGeothermalSteam,”October6,2021,https://www.papnews.com/essity-invests-in-worlds-first-tissue-machine-running-on-geothermal-steam.45L.Hermwilleetal.,“AClimateClubtoDecarbonizetheGlobalSteelIndustry,”NatureClimateChange,Vol.12,No.6(June2022):494-96,https://doi.org/10.1038/s41558-022-01383-9.46Ibid.47O.Ali,“GreenHydrogenforSteelProduction,”AZoCleantech,July27,2022,https://www.azocleantech.com/article.aspx?ArticleID=1606;L.Blain,“World’sLargestHydrogen‘GreenSteel’PlanttoOpeninSwedenby2024,”NewAtlas,February26,2021,https://newatlas.com/energy/h2gs-green-hydrogen-steel.48Y.KashyapandV.Sen,“FinancingSteelDecarbonization,”ClimatePolicyInitiative,September29,2022,https://www.climatepolicyinitiative.org/publication/financing-steel-decarbonization.49IEA,“Cement,”September2022,https://www.iea.org/reports/cement.50BloombergNEFandWorldBusinessCouncilonSustainableDevelopment(WBCSD),“HotSpotsforRenewableHeat.DecarbonizingLow-toMedium-TemperatureIndustrialHeatAcrosstheG-20,”September13,2021,https://www.wbcsd.org/contentwbc/download/12957/190622/1.51IEA,“TheFutureofHeatPumps–Analysis,”November2022,https://www.iea.org/reports/the-future-of-heat-pumps;A.Hasanbeigi,etal.,“ElectrifyingU.S.Industry:ATechnology-andProcess-BasedApproachtoDecarbonization,”GlobalEfficiencyIntelligence,2021,https://www.globalefficiencyintel.com/electrifying-us-industry;BloombergNEFandWBCSD,op.cit.note50.52IEA,op.cit.note15;EuropeanSteelTechnologyPlatform,“ImprovetheEAFScrapRouteforaSustainableValueChainintheEUCircularEconomyScenario,”June2021,https://www.estep.eu/assets/Uploads/Improve-the-EAF-scrap-route-Roadmap-Final-V2-3.pdf.53A.Chauhan,S&PGlobal,“GlobalCorporateCleanEnergyProcurementDealsof21GWintheFirstHalfof2022,”September27,2022,https://www.spglobal.com/esg/s1/research-analysis/global-corporate-clean-energy-procurement-deals-of-21-gw.html;K.Lee,“ThePowerofthePPA:CorporateRenewableProcurementSetsaNewRecordinAsiaPacific,”WoodMackenzie,November8,2022,https://www.woodmac.com/news/opinion/the-power-of-the-ppa-corporate-renewable-procurement-sets-a-new-record-in-asia-pacific.54ArcelorMittal,“ArcelorMittalEstablishesStrategicRenewableEnergyPartnershipwithGreenkoGroupinIndia,”March22,2022,https://corporate.arcelormittal.com/media/press-releases/arcelormittal-establishes-strategic-renewable-energy-partnership-with-greenko-group-in-india;S.Djunisic,“ArcelorMittal,PCRAnnounceNewInvestmentsinRenewablesinArgentina,”RenewablesNow,September15,2022,https://renewablesnow.com/news/arcelormittal-pcr-announce-new-investments-in-renewables-in-argentina-798056;C.Consigny,IJGlobal,“EWE,GMHInkSolarPPAforSteelIndustry,”September22,2022,https://www.ijglobal.com/articles/167284/ewe-gmh-ink-solar-ppa-for-steel-industry;SalzgitterAG,“SteelGroupSalzgitterAGandEnergyCompanyENGIEConcludePowerPurchaseAgreement,”December6,2022,https://www.salzgitter-ag.com/en/newsroom/press-releases/details/translate-to-englisch-stahlkonzern-salzgitter-ag-und-energieunternehmen-engie-schliessen-power-purchase-agreement-ab-20350.html.55L.Morais,“CemexSecuresRenewablePowerforCementOpsinSpain,”RenewablesNow,July25,2022,https://renewablesnow.com/news/cemex-secures-renewable-power-for-cement-ops-in-spain-792592;A.Anyango,“Intro,SuezCementInkPPADealfor20MWpSolarPowerPlant,”PumpsAfrica,November9,2022,https://pumps-africa.com/intro-suez-cement-ink-ppa-deal-for-20-mwp-solar-power-plant;Statkraft,“StatkraftSuppliesaFurther300GWhofGreenPowertoOPTERRASinceBeginningofApril,”April20,2022,https://www.statkraft.com/newsroom/news-and-stories/2022/statkraft-supplies-Opterra-with-renewable-energy;CEENERGYNEWS,“IDEnergyGroupandLAFARGESignCorporatePPAof26MWpSolarPVCapacityinHungary,”March17,2022,https://ceenergynews.com/renewables/id-energy-group-and-lafarge-sign-corporate-ppa-of-26-mwp-solar-pv-capacity-in-hungary.56BASFCorporation,“BASFEntersPowerAgreementsforCleanEnergySupplyofMorethan20BASFSitesAcrosstheUnitedStates,”August3,2022,https://www.globenewswire.com/en/news-release/2022/08/03/2491349/0/en/BASF-enters-power-agreements-for-clean-energy-supply-of-more-than-20-BASF-sites-across-the-United-States.html;ENGIE,“ENGIEandBASF:AnExtraordinaryGreenPPAwithFourKeyAdvantages,”January4,2022,https://www.engie.com/en/news/ppa-basf-decarbonisation-industry;BASF,“Projects,”https://www.basf.com/global/en/who-we-are/organization/group-companies/BASF_Renewable-Energy-GmbH/projects.html,accessedJanuary5,2023.57UnitedNationsIndustrialDevelopmentOrganization(UNIDO),AllianceforRuralElectrificationandInvestmentandTechnologyPromotionOffice,“DecentralisedRenewableEnergySolutionsforInclusiveandSustainableMining.DecarbonisingtheMinesandPoweringUptheCommunities,”December2021,https://itpo-germany.org/PDF/DRE-for-Inclusive-Sustainable-Mining_Web-Publication.pdf.58GlobalEco-IndustrialParksProgramme(GEIPP),“BusinessOpportunities.ResourceEfficientandCleanerProduction(RECP),”May2021,https://open.unido.org/api/documents/22033480/download/GEIPP-Factsheet%20IPs%204%20Final.pdf.59WorldEconomicForum,“UnderliningtheNeedforanIntegratedApproachtoEstablishaNetZeroCluster,”https://initiatives.weforum.org/transitioning-industrial-clusters/about,accessedJanuary8,2023;GEIPP,op.cit.note58;UNIDOKnowledgeHub,“Environment,”https://hub.unido.org/section/environment,accessedJanuary8,2023.60AuroraIP,“Socio-EcologicalIndustrialParkstoBecomeanInevitableTrendforRealEstateDevelopers,”November30,2022,https://www.globenewswire.com/news-release/2022/11/30/2564583/0/en/Socio-ecological-industrial-parks-to-become-an-inevitable-trend-for-real-estate-developers.html;AuroraIP,“AuroraStronglyContributestotheSustainableFutureofVietnam’sTextileIndustrywithanEcoIndustrialParkOrientation,”December26,2022,https://www.globenewswire.com/news-release/2022/12/26/2579420/0/en/Aurora-strongly-contributes-to-the-sustainable-future-of-Vietnam-s-textile-industry-with-an-eco-industrial-park-orientation.html;Eco-IndustrialParkVietnam,http://eip-vietnam.org,accessedJanuary9,2023;VietnamInvestmentReview,“InterestinEco-IndustrialZonesGatherCapitalPace,”January2,2022,https://vir.com.vn/interest-in-eco-industrial-zones-gather-capital-pace-90360.html.65BACKENDNOTES·RENEWABLESINENERGYDEMAND2023ENDNOTESIINDUSTRYINFOCUS61WorldEconomicForum,“MoreIndustrialHubstoAccelerateTheirNet-ZeroTransition,”May24,2022,https://www.weforum.org/press/2022/05/more-industrial-hubs-to-accelerate-their-net-zero-transition.62UNIDOOpenDataPlatform,“GlobalEco-IndustrialParksProgramme–Colombia:CountryLevelIntervention,”https://open.unido.org/projects/CO/projects/180319,accessedJanuary9,2023;UNIDOOpenDataPlatform,“GlobalEco-IndustrialParksProgramme–Indonesia:CountryLevelIntervention,”https://open.unido.org/projects/ID/projects/190324,accessedJanuary9,2023;UNIDOOpenDataPlatform,“GlobalEco-IndustrialParksProgramme–Egypt:CountryLevelIntervention,”https://open.unido.org/projects/EG/projects/190088,accessedJanuary9,2023;UNIDOOpenDataPlatform,“GlobalEco-IndustrialParksProgramme–Peru:CountryLevelIntervention,”https://open.unido.org/projects/PE/projects/180318,accessedJanuary9,2023;UNIDOOpenDataPlatform,“GlobalEco-IndustrialParksProgramme–Ukraine:CountryLevelIntervention,”https://open.unido.org/projects/UA/projects/180320,accessedJanuary9,2023;UNIDOOpenDataPlatform,“GlobalEco-IndustrialParksProgramme–VietNam:CountryLevelIntervention,”https://open.unido.org/projects/VN/projects/180321,accessedJanuary9,2023.Snapshot:SouthAfricabasedonthefollowingsources:R.M.AndrewandG.P.Peters,“TheGlobalCarbonProject’sFossilCO2EmissionsDataset,”Zenodo,October17,2022,https://doi.org/10.5281/ZENODO.5569234;MpumalangaGreenClusterAgency,“MpumalangaRenewableEnergyandElectricMobilityMarketIntelligence.OpportunityBrief,”2022,https://mpumalangagreencluster.co.za/wp-content/uploads/2022/09/MPUMALANGA_ENERGY_MIR_22.pdf;InstituteforAdvancedSustainabilityStudies,InternationalEnergyTransitionGmbHandCouncilforScientificandIndustrialResearch,“FromCoaltoRenewablesinMpumalanga:EmploymentEffects,OpportunitiesforLocalValueCreation,SkillsRequirements,andGender-Inclusiveness,”January1,2022,https://publications.iass-potsdam.de/rest/items/item_6001449_5/component/file_6001450/content;GreenCape,“MpumalangaGreenEconomyCluster,”September20,2020,https://green-cape.co.za/archives/mpumalanga-green-economy-cluster;UKPACT,“SupportingtheEstablishmentoftheMpumalangaGreenClusterAgencytoMaximisetheContributionoftheRenewableEnergyValueChaintoSouthAfrica’sJustTransition,”https://www.ukpact.co.uk/greencape-south-africa-project-page,accessedJanuary6,2023;C.Volkwyn,“MpumalangaMitigatingLossesfromtheTransitionAwayfromCoal,”ESI-Africa,January31,2022,https://www.esi-africa.com/industry-sectors/finance-and-policy/mpumalanga-mitigating-losses-from-the-transition-away-from-coal.63ViennaEnergyForum,op.cit.note11.Snapshot:Pakistanbasedonthefollowingsources:UnitedNationsDevelopmentProgrammeClimatePromise,“Pakistan,”November18,2022,https://climatepromise.undp.org/what-we-do/where-we-work/pakistan;TradingEconomics,“Pakistan–AccesstoElectricity(%ofPopulation)–2023Data2024Forecast1990-2020Historical,”https://tradingeconomics.com/pakistan/access-to-electricity-percent-of-population-wb-data.html,accessedJanuary4,2023;NAMAFacility,“Pakistan–DecarbonisingTextileManufacturing,”https://nama-facility.org/projects/pakistan-decarbonising-textile-manufacturing,accessedJanuary5,2023;DelegationoftheEuropeanUniontoPakistan,“ImplementationofResourceandEnergyEfficientTechnologies(IREET)intheSugarSectorofPakistan,”August26,2020,https://www.eeas.europa.eu/delegations/pakistan/implementation-resource-and-energy-efficient-technologies-ireet-sugar-sector_en;GlobalEnvironmentFacilityandUNIDO,“SustainableEnergyInitiativeforIndustriesinPakistan,”2022,https://www.thegef.org/projects-operations/projects/4753;“UKAnnouncesFirstProjectsforPakistan’s‘ClimateFinanceAccelerator’Initiative,”PakistanToday,February11,2022,https://www.pakistantoday.com.pk/2022/11/02/uk-announces-first-projects-for-pakistans-climate-finance-accelerator-initiative.64ChileanMinistryofEnergy,“MinisteriodeEnergíaLanzaConcursoPonleEnergíaaTuPyme,”August3,2021,https://energia.gob.cl/noticias/nacional/ministerio-de-energia-lanza-concurso-ponle-energia-tu-pyme;Les-Aides.Fr,“ClimateActionLoan,”https://les-aides.fr/aide/aFCf3w/bpifrance/pret-action-climat.html,accessedFebruary13,2023;MinistryoftheEconomy,FinanceandIndustrialandDigitalSovereigntyofFrance,“Aidesauxentreprisespourfavoriserleurtransitionécologique,”https://www.economie.gouv.fr/cedef/aides-entreprises-transition-ecologique,accessedFebruary13,2023.65IEA,op.it.note9;IEA,op.cit.note15;IEA,“Chemicals–Analysis,”September2022,https://www.iea.org/reports/chemicals;Accenture,“IndustrialClusters.WorkingTogethertoAchieveNetZero,”2021,https://www.accenture.com/_acnmedia/PDF-147/Accenture-WEF-Industrial-Clusters-Report.pdf.Figure8fromIEA,op.cit.note2.66IEA,op.cit.note2.67IEA,“BioenergyUsebySectorandShareofModernBioenergyinTotalFinalConsumptionintheNetZeroScenario,2010-2030,”October26,2022,https://www.iea.org/data-and-statistics/charts/bioenergy-use-by-sector-and-share-of-modern-bioenergy-in-total-final-consumption-in-the-net-zero-scenario-2010-2030.68SappiGlobal,“Co-creatingaShiftfromCoaltoRenewablesatGratkornMill,”https://www.sappi.com/fr/decarbonisation-at-gratkorn-mill-in-austria,accessedFebruary13,2023;SappiGlobal,“TransitioningtoBioenergyatKirkniemiMill,”https://www.sappi.com/fr/transitioning-to-bioenergy-at-kirkniemi-mill,accessedFebruary13,2023;BioenergyInternational,“StoraEnsotoReplaceHeavyFuelOilatEnocell,”May1,2022,https://bioenergyinternational.com/stora-enso-to-replace-heavy-fuel-oil-at-enocell;MetsäGroup,“Renewableenergyfuelsthemajorityofourmills,”https://www.metsagroup.com/metsafibre/sustainability/sustainability-targets-and-progress/#:~:text=Our%20goal%20is%20,accessedFebruary13,2023;Afry,“ShifttowardBiomassBasedElectricityatMetsäBoardHusum,Sweden,”https://afry.com/en/project/shift-toward-biomass-based-electricity-metsa-board-husum-sweden,accessedFebruary13,2023.69S.deGrootetal.,“TheGrowingCompetitionBetweentheBioenergyIndustryandtheFeedIndustry,”WageningenUniversity&Research,June29,2022,https://fefac.eu/wp-content/uploads/2022/07/22_DOC_106.pdf.70Danone,“DanoneAnnouncesRe-FuelDanone:AGlobalEnergyExcellenceProgrammetoDriveEnergyEfficiency,ResilienceandDecarbonisationJourney,”November17,2022,https://www.danone.com/media/press-releases-list/danone-announces-re-fuel-danone.html;G.Fuh,“DanoneBuildsBioenergyPlanttoMitigateClimateChangeandEndorseCircularity,”BECIS,June17,2022,https://be-cis.com/danone-builds-bioenergy-plant-to-mitigate-climate-change-and-endorse-circularity;J.Hughes,“UnileverandStarbucksJoinBiogasAlliance,”WorldBiogasAssociation,January22,2021,https://www.worldbiogasassociation.org/unilever-and-starbucks-join-biogas-alliance.71IRENA,op.cit.note9.72IRENA,“InnovationOutlook:RenewableMethanol,”January2021,https://www.irena.org/publications/2021/Jan/Innovation-Outlook-Renewable-Methanol.73KeepItGreen,“HowManufacturersAreDevelopingandUsingRenewableEnergy,”SmartCitiesDive,https://www.smartcitiesdive.com/ex/sustainablecitiescollective/how-manufacturers-are-developing-and-using-renewable-energy/1175001,accessedDecember15,2022.74Ibid.75SHIPPlantsDatabase,“WorldMapofSolarThermalPlants,”http://ship-plants.info/solar-thermal-plants-map?industry_sector=4,accessedDecember23,2022;B.Epp,“10MWSolarPlantHeatsAirforMaltingPlantinFrance,”SolarThermalWorld,September28,2021,https://solarthermalworld.org/news/10-mw-solar-plant-heats-air-malting-plant-france;A.Rosell,“HeatPurchaseAgreementsontheRiseinSpain,”SolarThermalWorld,August10,2022,https://solarthermalworld.org/news/heat-purchase-agreements-on-the-rise-in-spain;B.Epp,“InnovationFundApprovesEUR4.5MillionforCroatianSHIPPlant,”SolarThermalWorld,September16,2021,https://solarthermalworld.org/news/innovation-fund-approves-eur-45-million-croatian-ship-plant.76C.Erber,“ClimAcceleratorStart-upNakedEnergyTapsintoSolarThermal,”ClimAccelerator,June3,2022,https://climaccelerator.climate-kic.org/news/solar-thermal-energy-an-industry-with-untapped-potential.77PlanèteÉnergies,“UsingHigh-TemperatureGeothermalEnergytoGenerateElectricity,”April28,2021,https://www.planete-energies.com/en/medias/close/using-high-temperature-geothermal-energy-generate-electricity.66BACKENDNOTES·RENEWABLESINENERGYDEMAND2023ENDNOTESIINDUSTRYINFOCUS78J.LundandA.Toth,“DirectUtilizationofGeothermalEnergy2020WorldwideReview,”Geothermics,Vol.90(February1,2021):101915,https://doi.org/10.1016/j.geothermics.2020.101915.79BloombergNEFandWBCSD,op.cit.note50.80InternationalGeothermalAssociation,“Webinar:Scaling-upGeothermalDirectUseforIndustrialApplicationsinLatinAmerica,”August8,2021,https://www.lovegeothermal.org/webinar-scaling-up-geothermal-direct-use-for-industrial-applications-in-latin-america;InternationalGeothermalAssociation,“CallforGeothermalDirectUseProjectsinLatinAmericaandCaribbean,”November22,2022,https://www.lovegeothermal.org/call-for-geothermal-direct-use-projects-in-latin-america-and-caribbean.81OMV,“OMVStartsTwoGeothermalProjects,”October3,2022,https://www.omv.com/en/news/221003-omv-starts-two-geothermal-projects.82A.Levineetal.,“MiningG.O.L.D.(GeothermalOpportunitiesLeveragedThroughData):ExploringSynergiesBetweentheGeothermalandMiningIndustries,”USNationalRenewableEnergyLaboratory,2022,https://www.nrel.gov/docs/fy22osti/81946.pdf.83CornishLithiumPlc,“DirectLithiumExtraction,”https://cornishlithium.com/projects/lithium-in-geothermal-waters/direct-lithium-extraction,accessedDecember23,2022;JelenaTemunovic,“CornishLithiumSetforaMomentous2023FollowingSignificantProgressin2022,”CornishLithiumPlc,December20,2022,https://cornishlithium.com/company-announcements/cornish-lithium-set-for-a-momentous-2023-following-significant-progress-in-2022.84IEA,op.cit.note51;GEA,“DecarbonizingIndustry,OneHeatPumpInstallationataTime,”September21,2022,https://www.gea.com/en/stories/decarbonizing-industry-one-heat-pump-installation.jsp.85“SmartIntegrationofHPwithEnergyStorageandSolarPhotoVoltaics,”HPTMagazine,Vol.40,No.3(2022),https://issuu.com/hptmagazine/docs/hpt_magazine_no3_2022;Technavio,“IndustrialHeatPumpsMarketbyEnd-User,TypeandGeography–ForecastandAnalysis2023-2027,”December2022,https://www.technavio.com/report/industrial-heat-pumps-market-industry-analysis;“GlobalIndustrialHeatPumpsMarket2017-2021:IndustryAnalysisandForecastsbyTechnavio,”July12,2017,https://www.businesswire.com/news/home/20170712006252/en/Global-Industrial-Heat-Pumps-Market-2017-2021-Industry-Analysis-and-Forecasts-by-Technavio;IEA,op.cit.note51.86IEA,op.cit.note51;Technavio,op.cit.note85.87BronswerkHeatTransfer,“Industry–Pulp&Paper,”https://www.bronswerk.com/industry-pulp-paper,accessedDecember21,2022;IEA,op.cit.note51.88EuropeanHeatPumpAssociation,“PUSH2HEAT:PushingForwardtheMarketPotentialofHeatUpgradeTechnologies,”November4,2022,https://www.ehpa.org/press_releases/push2heat-pushing-forward-the-market-potential-of-heat-upgrade-technologies.89WBCSD,“IndustrialHeatPumps:It’sTimetoGoElectric,”September2022,https://www.wbcsd.org/contentwbc/download/14846/211001/1;GEA,op.cit.note84;BronswerkHeatTransfer,op.cit.note87;Technavio,op.cit.note85;gCaptain,“ClimeonLaunchesNewWasteHeatRecoveryTechnology,”September13,2022,https://gcaptain.com/climeon-launches-new-waste-heat-recovery-technology.90IEA,op.cit.note15;ViennaEnergyForum,op.cit.note11.91EuropeanCommission,“StateAid:CommissionApprovesUpto€5.2BillionofPublicSupportbyThirteenMemberStatesfortheSecondImportantProjectofCommonEuropeanInterestintheHydrogenValueChain,”September21,2022,https://ec.europa.eu/commission/presscorner/detail/en/ip_22_5676;EuropeanCommission,“Hydrogen,”https://energy.ec.europa.eu/topics/energy-systems-integration/hydrogen_en,accessedDecember13,2022.92L.Gómez,“NaturalGasandRenewableHydrogeninAfricaandCooperationOpportunitieswiththeEU,”GlobalForumonSustainableEnergy,https://www.gfse.at/fileadmin/user_upload/gfse_policy_brief_gas_africa_v7_clean.pdf,accessedDecember19,2022;C.Owen-Burge,“GreenHydrogenCouldSustainablyIndustrialiseAfricaandBoostGDPby6to12%inSixKeyCountries–NewReport,”ClimateChampions,November15,2022,https://climatechampions.unfccc.int/unlocking-africas-green-hydrogen-potential;G.Müller,“GreenHydrogen:TheEnergyOpportunityforDecarbonizationandDevelopingCountries,”IndustrialAnalyticsPlatform,November2022,https://iap.unido.org/articles/green-hydrogen-energy-opportunity-decarbonization-and-developing-countries.93WorldEconomicForum,op.cit.note11;LeadershipGroupforIndustryTransition,“GreenSteelTracker,”https://www.industrytransition.org/green-steel-tracker,accessedDecember22,2022.94O.Wallach,VisualCapitalist,,“GreenSteel:DecarbonisingwithHydrogen-FueledProduction,”September28,2022,https://www.visualcapitalist.com/sp/green-steel-decarbonising-with-hydrogen-fueled-production.95J.Zhang,“ForSteelSector,China’sDecarbonizationIsaCostlyQuest,”S&PGlobal,May19,2022,https://www.spglobal.com/commodityinsights/en/market-insights/blogs/metals/051922-green-steel-china-decarbonization-dri.96WorldEconomicForum,op.cit.note11;ChinaDialogue,“China’sSteelCapitaltoTurnItselfintoaHydrogenHub,”July7,2022,https://chinadialogue.net/en/digest/chinas-steel-capital-to-turn-itself-into-a-hydrogen-hub.97WorldEconomicForum,op.cit.note11;ChinaDialogue,op.cit.note96.98Zhang,op.cit.note95.99E.Ng,“Asia’sSteelIndustryWillTakeDecadestoGoGreen,SaysMiningGiantBHP,”SouthChinaMorningPost,December1,2022,https://www.scmp.com/business/article/3201543/green-steel-still-decades-away-asia-hydrogen-struggles-replace-coal-fired-furnaces-says-mining-giant.100IRENA,“InnovationOutlook:RenewableAmmonia,”2022,https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2022/May/IRENA_Innovation_Outlook_Ammonia_2022.pdf;WorldEconomicForum,op.cit.note11.101IRENA,op.cit.note100;InvestChile,“ChiletoAttractUS$1BillioninGreenHydrogenInvestments,”December29,2021,http://blog.investchile.gob.cl/chile-attracts-us1-billion-green-hydrogen-investments.102IRENA,op.cit.note100;IberdrolaCorporativa,“IberdrolaBuildstheLargestGreenHydrogenPlantforIndustrialUseinEurope,”https://www.iberdrola.com/about-us/what-we-do/green-hydrogen/puertollano-green-hydrogen-plant,accessedDecember23,2022.103BureauVeritas,“YaraPre-CertificationAnnouncement,”September19,2022,https://www.bureauveritas.com.au/newsroom/yara-pre-certification-announcement.67BACKENDNOTES·RENEWABLESINENERGYDEMAND2023ENDNOTESITRANSPORTINFOCUSENDNOTESINTRANSPORT1GlobalGDPfromtransportcalculatedbyapplyingtransportshareofGDPtoglobalGDP,fromWorldBank,“GDP(currentUS$),”https://data.worldbank.org/indicator/NY.GDP.MKTP.CD,accessedJanuary12,2023.TransportshareofGDPestimatedusingasampleof94countries,basedonthefollowingsources:TradingEconomics,“GDPfromTransport,”https://tradingeconomics.com/country-list/gdp-from-transport,and“GDP,”https://tradingeconomics.com/country-list/gdp,bothaccessedJanuary12,2023;GovernmentofCanada,“TransportationEnablingEconomyGrowth,”https://tc.can-ada.ca/en/corporate-services/transparency/corporate-manage-ment-reporting/transportation-canada-annual-reports/transporta-tion-enabling-economy-growth,accessedJanuary12,2023;GambiaDataPortal,“GrossDomesticProductofGambia,”https://gambia.opendataforafrica.org/lmljwvg/gross-domestic-product-of-gam-bia?indicator=1000140-transport-storage-communication,accessedJanuary12,2023.AsthevalueforSpainincludedhostelry,toestimateitmoreaccuratelythefigurecorrespondingtotourismactivityduring2021wasdiscounted,basedonINE,“TourismSatelliteAccountofSpain.Year2021,”https://www.ine.es/dyngs/INEbase/en/operacion.htm?c=Estadistica_C&cid=1254736169169&menu=ulti-Datos&idp=1254735576863,accessedJanuary12,2023.ForJamaicaandNamibia,itwasassumedthatthevaluesonTradingEconomicswereprovidedinlocalcurrencyratherthanUSdollars.Globaltransportworkforcecalculatedbyapplyingtransportshareofworkforcetoglobalworkforce,fromWorldBank,“LaborForce,Total,”https://data.worldbank.org/indicator/SL.TLF.TOTL.IN?end=2021&start=1990&view=chart,accessedJanuary12,2023.Transportshareofworkforceestimatedbasedonasampleof53countries,fromInternationalLabourOrganization,“IndicatorCatalogue,”https://ilostat.ilo.org/data,accessedJanuary12,2023.2InternationalEnergyAgency(IEA),“WorldEnergyOutlook2022,”October2022,https://iea.blob.core.windows.net/assets/830fe099-5530-48f2-a7c1-11f35d510983/WorldEnergyOutlook2022.pdf;growthestimatesbasedondatasetsinIEA,“WorldEnergyBalancesHighlights,”October2022,https://www.iea.org/data-and-statistics/data-product/world-energy-balances-highlights#data-sets,allrightsreserved,asmodifiedbytheRenewableEnergyPolicyNetworkforthe21stCentury(REN21).3IEA,“WorldEnergyBalances,”op.cit.note2.4Ibid.5Ibid.6Ibid.7Ibid.8EstimatesbasedonIEA,“EnergyConsumptioninTransportbyFuelintheNetZeroScenario,2000-2030,”October26,2022,https://www.iea.org/data-and-statistics/charts/energy-consumption-in-transport-by-fuel-in-the-net-zero-scenario-2000-2030,andonREN21PolicyDatabase.SeeReferenceTableR3aintheGSR2023DataPack,www.ren21.net/gsr2023-data-pack.9EstimatesbasedonIEA,op.cit.note8,andonREN21PolicyDatabase,op.cit.note8.10REN21estimatesthedropinbiofueldemandat4.4%,basedondatasetsinIEA,“WorldEnergyBalances,”op.cit.note2.11IEA,op.cit.note8.12H.RitchieandM.Roser,“EmissionsbySector,”OurWorldinData,https://ourworldindata.org/emissions-by-sector,accessedJanuary3,2023.13IEA,“Transport,”September2022,https://www.iea.org/reports/transport.14Ibid.15IEA,“GlobalCO2EmissionsfromTransportbySub-sectorintheNetZeroScenario,2000-2030,”October26,2022,https://www.iea.org/data-and-statistics/charts/global-co2-emissions-from-transport-by-sub-sector-in-the-net-zero-scenario-2000-2030.TotalvalueofCO2emissionsfor2021fromEuropeanCommissionJointResearchCentre,“GlobalCO2EmissionsReboundin2021AfterTemporaryReductionDuringCOVIDLockdown,”October14,2022,https://joint-research-centre.ec.europa.eu/jrc-news/global-co2-emissions-rebound-2021-after-temporary-reduction-during-covid19-lock-down-2022-10-14_en.16IEA,op.cit.note15.17Ibid.18IEA,“EnergyEfficiencyIndicatorsDataExplorer,”December2,2022,https://www.iea.org/data-and-statistics/data-tools/energy-efficiency-indicators-data-explorer.19Ibid.20TransformativeUrbanMobilityInitiative(TUMI),“SustainableUrbanTransport:AvoidShiftImprove(ASI),”March2019,https://www.transformative-mobility.org/assets/publications/ASI_TUMI_SUTP_iNUA_No-9_April-2019.pdf.21Ibid.22Ibid.23IEA,“GlobalEVOutlook2022,”May2022,https://www.iea.org/reports/global-ev-outlook-2022.24M.Vitorino,“PortugalSetsNewGoalsforRenewableEnergyConsumption,”Lexology,December12,2022,https://www.lexology.com/library/detail.aspx?g=fe7c9067-8562-475a-bcb9-399b9a6fe73c;DutchEmissionsAuthority,“RenewableEnergyforTransport2022-2030,”https://www.emissionsauthority.nl/topics/general---renewable-energy-for-transport,accessedFebruary7,2023.25EuropeanRenewableEthanol,“OverviewofBiofuelsPoliciesandMarketsAcrosstheEU,”October2022,https://www.epure.org/wp-content/uploads/2022/10/221011-DEF-REP-Overview-of-biofu-els-policies-and-markets-across-the-EU-October-2022.pdf.26TUMI,“Curitiba,”April6,2022,https://www.transformative-mobility.org/campaigns/curitiba.27KingCounty,“TransitioningtoaZero-EmissionsFleet,”https://kingcounty.gov/depts/transportation/metro/programs-projects/innovation-technology/zero-emission-fleet.aspx,accessedFebruary14,2023.28C.Isidore,“WhyUSGasPricesAreataRecord,andWhyThey’llStayHighforaLongTime,”CNNBusiness,June6,2022,https://www.cnn.com/2022/06/06/energy/record-gas-prices-causes/index.html;IEA,“WorldEnergyOutlook2022,”op.cit.note2.29Figure10fromREN21PolicyDatabase,op.cit.note8.30“CabinetAmendsBiofuelsPolicy,AdvancesEthanolBlendingTargetto2025-26,”EconomicTimes,May18,2022,https://economictimes.indiatimes.com/industry/renewables/cabinet-amends-biofu-els-policy-advances-ethanol-blending-target-to-2025-26/article-show/91637676.cms.31A.Parmar,“Viewpoint:AsianBiofuelsBreakingAwayfromEurope,”ArgusMedia,December15,2022,https://www.argusmedia.com/en/news/2400935-viewpoint-asian-biofuels-breaking-away-from-eu-rope;S.KellyandJ.Renshaw,“U.S.EPAProposesRevampofBiofuelProgramtoIncludeElectricVehicles,”Reuters,December1,2022,https://www.reuters.com/business/energy/us-epa-proposes-high-er-biofuel-blending-volumes-ev-program-2022-12-01.32REN21PolicyDatabase,op.cit.note8.33“BraziltoKeep10%BiodieselMandateUntilMarch–CNPE,”Reuters,November22,2022,https://www.reuters.com/business/energy/brazil-keep-10-biodiesel-mandate-until-march-cnpe-2022-11-21.34Figure11fromREN21PolicyDatabase.SeeReferenceTableR3bintheGSR2023DataPack,www.ren21.net/gsr2023-data-pack.35J.Amir,“ThaiGovernmentAnnouncesEVRoadmap,”S&PGlobal,March16,2020,https://www.spglobal.com/mobility/en/research-analysis/thai-government-announces-ev-roadmap.html;36BakerMckenzie,“Philippines:TheElectricVehicleIndustryDevelopmentAct(EVIDA),RepublicActNo.11697,LapsesintoLaw,”May10,2022,https://insightplus.bakermckenzie.com/bm/tax/philippines-the-electric-vehicle-industry-development-act-evida-re-public-act-no-11697-lapses-into-law.37KellyandRenshaw,op.cit.note31.38REN21PolicyDatabase,op.cit.note34.39“GermanyIncludesPlug-inHybridstoAchieveTargetof15MillionEVsby2030,”PowerTechnology,February25,2022,https://www.power-technology.com/comment/germany-target-15-million-evs.40TheWhiteHouse,“FACTSHEET:Biden-HarrisAdministrationProposesNewStandardsforNationalElectricVehicleChargingNetwork,”June9,2022,https://www.whitehouse.gov/briefing-room/statements-releases/2022/06/09/fact-sheet-biden-harris-ad-ministration-proposes-new-standards-for-national-electric-vehi-cle-charging-network.68BACKENDNOTES·RENEWABLESINENERGYDEMAND2023ENDNOTESITRANSPORTINFOCUS41G.Jacquot,“L’obligationdeposedepanneauxphotovoltaïquessurlesgrandsparkingsextérieursadoptéeauSénat,”PublicSenat,November4,2022,https://www.publicsenat.fr/article/parlementaire/l-obligation-de-pose-de-panneaux-photovol-taiques-sur-les-grands-parkingshttps://www.publicsenat.fr/article/parlementaire/l-obligation-de-pose-de-panneaux-photovoltaiques-sur-les-grands-parkings.42MinistryofNew&RenewableEnergyofIndia,“IndiaNationalHydrogenMission,”March2022,https://static.pib.gov.in/WriteReadData/specificdocs/documents/2023/jan/doc2023110150801.pdf.43REN21PolicyDatabase.SeeReferenceTableR3bintheGSR2023DataPack,www.ren21.net/gsr2023-data-pack.44Ibid.45“EUParliamentVotestoBanSaleofPetrolCarby2035,”LeMonde,February14,2023,https://www.lemonde.fr/en/european-union/article/2023/02/14/eu-parliament-votes-to-ban-petrol-car-sales-by-2035_6015745_156.html.46TransportEnvironment,“KeroseneTaxation:HowtoImplementItinEuropeToday,”June2020,https://www.transportenvironment.org/wp-content/uploads/2021/07/2020_06_Kerosene_taxation_brief-ing.pdf.47InternationalAirTransportAssociation,“FactSheet:EUandUSPolicyApproachestoAdvanceSAFProduction,”2021,https://www.iata.org/contentassets/d13875e9ed784f75bac90f000760e998/fact-sheet---us-and-eu-saf-policies.pdf.48EuropeanCouncil,“ETSAviation:CouncilandParliamentStrikeProvisionalDealtoReduceFlightEmissions,”December7,2022,https://www.consilium.europa.eu/en/press/press-re-leases/2022/12/07/ets-aviation-council-and-parliament-strike-provi-sional-deal-to-reduce-flight-emissions.49D.Shepardson,“U.S.OutlinesRoadmaptoBoostSustainableAviationFuel,”Reuters,September23,2022,https://www.reuters.com/business/energy/us-outlines-roadmap-boost-sustainable-avia-tion-fuel-use-2022-09-23.50USDepartmentofEnergy,“SAFGrandChallengeRoadmap–FlightPlanforSustainableAviationFuel,”September2022,https://www.energy.gov/sites/default/files/2022-09/beto-saf-gc-roadmap-re-port-sept-2022.pdf.51D.Larsen,“DenmarkAimsforFossil-FuelFreeInlandFlightsby2030,”Electrive,January4,2022,https://www.electrive.com/2022/01/04/denmark-aims-for-fossil-fuel-free-inland-flights-by-2030.52L.Limb,“It’sOfficial:FranceBansShortHaulDomesticFlightsinFavourofTrainTravel,”euronews,December5,2022,https://www.euronews.com/green/2022/12/02/is-france-banning-private-jets-everything-we-know-from-a-week-of-green-transport-proposals.53SNCF,“Uncontratrecordpourfaireroulervostrainsgrâceauphotovoltaïque,”https://www.sncf.com/fr/groupe/fournisseurs/contrat-ppa-photovoltaique-sncf-energie-reden,accessedDecember18,2022.54Ibid.55P.Gururaja,“ABigFirstStepTowardGreenShippingCorridors,”ClimateWorksFoundation,February2,2022,https://www.climateworks.org/blog/green-shipping-corridors;MissionInnovation,“GreenShippingCorridorRouteTracker,”2023,http://mission-innovation.net/missions/shipping/green-shipping-cor-ridors/route-tracker;C40Cities,“MaritimeandPortAuthorityofSingapore,PortofLosAngeles,PortofLongBeachandC40CitiestoEstablishaGreenandDigitalShippingCorridor,”November7,2022,https://www.c40.org/news/maritime-and-port-authority-of-singapore-port-of-los-angeles-port-of-long-beach-and-c40-cities-to-establish-a-green-and-digital-shipping-corridor.Snapshot:US-ChinabasedonC40Cities,“PortofLosAngeles,PortofShanghai,andC40CitiesAnnouncePartnershiptoCreateWorld’sFirstTranspacificGreenShippingCorridorBetweenPortsintheUnitedStatesandChina,”January28,2022,https://www.c40.org/news/la-shanghai-green-shipping-corridor.56UNClimateChangeConferenceUK2021,“ClydebankDeclarationforGreenShippingCorridors,”November10,2021,https://ukcop26.org/cop-26-clydebank-declaration-for-green-shipping-corridors.57BloombergNEF,“EnergyTransitionInvestmentTrends2023,”January2023,https://about.bnef.com/energy-transition-investment.58IEA,“Biofuels–Renewables2021–Analysis,”2021,https://www.iea.org/reports/renewables-2021/biofuels?mode=transport&re-gion=World&publication=2021&flow=Consumption&product=Eth-anol.SeealsoReferenceTableR3aintheGSR2023DataPack,www.ren21.net/gsr2023-data-pack.59M.Teixeira,“HighEnergyPricesFuelInvestorInterestinBrazil’sIdleBiofuelCapacity,”Reuters,June8,2022,https://www.reuters.com/markets/commodities/high-energy-prices-fuel-investor-interest-bra-zils-idle-biofuel-capacity-2022-06-08.60S&PGlobalCommodityInsights,“TopBiofuelsMarketTrendsin2022andBeyond,”2022,https://www.spglobal.com/commodityin-sights/en/ci/info/0322/top-biofuels-market-trends-2022-beyond.html;glpautogas.info,“HVO100StationsinUSA,MapandUpdatedListing,”https://www.glpautogas.info/en/hvo100-stations-united-states.html,accessedJanuary31,2023.61Phillips66,“Phillips66MakesFinalInvestmentDecisiontoConvertSanFranciscoRefinerytoaRenewableFuelsFacility,”May11,2022,https://investor.phillips66.com/financial-information/news-releases/news-release-details/2022/Phillips-66-Makes-Final-Investment-Decision-to-Convert-San-Francisco-Refinery-to-a-Renewable-Fuels-Facility.62S&PGlobalCommodityInsights,op.cit.note60;glpautogas.info,op.cit.note60.63BloombergNEF,op.cit.note57;M.Prestes,“PalmOilforBiodieselintheAmazon:SustainableFuelorDeforestationRisk?”GlobalIssues,May4,2022,https://www.globalissues.org/news/2022/04/04/30517.64Figure12fromBloombergNEF,op.cit.note57.65BloombergNEF,“ElectricVehicleOutlook2022,”2022,https://about.bnef.com/electric-vehicle-outlook.66BloombergNEF,“Lithium-IonBatteryPackPricesRiseforFirstTimetoanAverageof$151/kWh,”December6,2022,https://about.bnef.com/blog/lithium-ion-battery-pack-prices-rise-for-first-time-to-an-average-of-151-kwh.67Neste,“GreenFinanceReport2021,”2022,https://www.neste.com/investors.68P.Tisheva,“SaudiArabia’sAlfanartoInvestGBP1bninUKSAFProject,”RenewablesNow,March17,2022,https://renewablesnow.com/news/saudi-arabias-alfanar-to-invest-gbp-1bn-in-uk-saf-project-777358.69S&PGlobalCommodityInsights,op.cit.note60.70I.Thomas,“UnitedAirlinesIsAimingtoHaveElectricPlanesFlyingby2030,”CNBC,October10,2022,https://www.cnbc.com/2022/10/06/united-airlines-is-aiming-to-have-electric-planes-flying-by-2030.html.71“AirCanadatoBuy30ElectricPlanesfromHeartAerospace,”Reuters,September15,2022,https://www.reuters.com/business/aerospace-defense/air-canada-buy-30-electric-planes-heart-aerospace-2022-09-15;W.BellamyIII,“AirCanadaSignsPurchaseAgreementforHeart’sUpdatedES-30ElectricAircraft,”AviationToday,September20,2022,https://www.aviationtoday.com/2022/09/20/air-canada-signs-purchase-agreement-hearts-updated-es-30-electric-aircraft.72D.Burroughs,“ÖBBtoInvest€1bninRenewableEnergyby2030,”InternationalRailwayJournal,May13,2022,https://www.railjournal.com/financial/obb-to-invest-e1bn-in-renewable-energy-by-2030.73InternationalRenewableEnergyAgency,“TechnologyBrief:RenewableEnergyOptionsforShipping,”January2015,https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2015/IRENA_Tech_Brief_RE_for-Shipping_2015.pdf.74InternationalTransportForum,“ITFTransportOutlook2021,”May17,https://www.oecd-ilibrary.org/transport/itf-transport-outlook-2021_16826a30-en.75Ibid.76Ibid.77BasedonrecoverscenarioinIbid.78EstimatesbasedondatasetsinIEA,“WorldEnergyBalances,”op.cit.note2.79Ibid.80Ibid.81Ibid.Growthratescalculatedusingaveragespre-COVID-19.82Ibid.69BACKENDNOTES·RENEWABLESINENERGYDEMAND2023ENDNOTESITRANSPORTINFOCUS83Figure13fromIbid.Growthratescalculatedusingaveragespre-COVID-19.84Ibid.85Ibid.86Ibid.87Roadtransport’sshareofemissionsbasedonIEA,“EnergyStatisticsDataBrowser,”https://www.iea.org/data-and-statistics/data-tools/energy-statistics-data-browser?country=WORLD&fuel=En-ergy%20supply&indicator=TESbySource,August18,2022;globalemissionsfromM.Crippaetal.,“CO2emissionsofallworldcountries–2022Report,”EuropeanCommissionJointResearchCentre,2022,https://publications.jrc.ec.europa.eu/repository/handle/JRC130363;sharesoflightvehiclesbasedon2019valuesfromIEA,op.cit.note13,andonInternationalCouncilforCleanTransportation,“LightVehicles,”https://theicct.org/sector/light-vehicles,accessedDecember15,2022.88EstimatesbasedonInternationalOrganizationofMotorVehicleManufacturers(OICA),“GlobalSalesStatistics2019-2021,”https://www.oica.net/category/sales-statistics,accessedDecember16,2022,andonIEA,“AstheCovid-19CrisisHammerstheAutoIndustry,ElectricCarsRemainaBrightSpot,”May18,2020,https://www.iea.org/commentaries/as-the-covid-19-crisis-hammers-the-auto-industry-electric-cars-remain-a-bright-spot.EuropeincludestheRussianFederationandTürkiye.89IEA,op.cit.note88.90Ibid.91EuropeanAutomobileManufacturers’Association(ACEA),“VehiclesinUseEurope2022,”January2022,https://www.acea.auto/files/ACEA-report-vehicles-in-use-europe-2022.pdf;Wikipedia,“ListofCountriesbyVehiclesperCapita,”https://en.wikipedia.org/wiki/List_of_countries_by_vehicles_per_capita,accessedJanuary10,2022.92REN21PolicyDatabase,op.cit.note8.93EstimatesbasedonIbid.andonIEA,op.cit.note8;IEA,“Biofuels,”September2022,https://www.iea.org/reports/biofuels.94Snapshot:Spainbasedonthefollowingsources:EnergíasRenovables,“Bioenergía–UnaveintenadeautobusesurbanosdeMadridabandonanelgasnaturalylosustituyenporbiometanodevertedero,”September8,2022,https://www.energias-renovables.com/bioenergia/los-autobuses-urbanos-de-madrid-aban-donan-el-20220908;ForodeEmpresasporMadrid,“Losautobusesmadrileñossemoveránconbiometano,”August9,2022,https://www.forodeempresaspormadrid.es/actualidad/foro/los-autobus-es-madrilenos-se-moveran-con-biometano;NGVJournal,“MadridExpandsPTVBiogasPlant,WillBeAbletoSupply500EMTBuses,”April21,2022,http://www.ngvjournal.com/s1-news/c4-stations/madrid-expands-valdemingomez-biogas-plant-will-be-able-to-supply-500-buses;AyuntamientodeMadrid,“MadridutilizaráelbiometanodeValdemingómezparamoverlosautobusesdeEMT,”July9,2022,https://www.madrid.es/portales/munimadrid/es/Inicio/Actualidad/Noticias/Madrid-utilizara-el-biometano-de-Valdemingomez-para-mover-los-autobuses-de-EMT.95EuropeanCommission,“MobilityandTransport,Biofuels,”https://transport.ec.europa.eu/transport-modes/air/environment/biofu-els_en,accessedJanuary9,2023;G.Squadrin,B.O’KellyandS.Barthel,“Viewpoint:HVO,SAFDemandtoOutstripSupplyin2022,”ArgusMedia,December22,2021,https://www.argusmedia.com/en/news/2285785-viewpoint-hvo-saf-demand-to-outstrip-sup-ply-in-2022.96Airbus,“AirbusA330MRTTCompletesFirst100%SAFTestFlightonBothEngines,”November18,2022,https://www.airbus.com/en/newsroom/press-releases/2022-11-airbus-a330mrtt-completes-first-100-saf-test-flight-on-both-engines;Neste,“FirstFlightinHistorywith100%SustainableAviationFuelonaRegionalCommercialAircraft,”June21,2022,https://www.neste.com/releases-and-news/renewable-solutions/first-flight-history-100-sustainable-aviation-fu-el-regional-commercial-aircraft.97IEA,“WorldEnergyBalances,”op.cit.note2.98Ibid.99Ibid.100OICA,op.cit.note88;IEA,“ElectricVehicles,”September2022,https://www.iea.org/reports/electric-vehicles;IEA,“GlobalEVDataExplorer,”May23,2022,https://www.iea.org/data-and-statistics/data-tools/global-ev-data-explorer.101Here“vehicles”referstoautomobiles,trucks,vansandbuses.EstimatedbasedonIEA,“GlobalEVDataExplorer,”op.cit.note100.102IEA,“ElectricVehicles,”op.cit.note100.103Ibid.104Ibid.105IEA,“GlobalEVDataExplorer,”op.cit.note100.106BloombergNEF,“ElectricVehicleOutlook2022,ExecutiveSummary,NearTermOutlook,”2022,https://bnef.turtl.co/story/evo-2022/page/3/2.107IEA,“GlobalEVDataExplorer,”op.cit.note100.108IEA,op.cit.note18.109Ibid.110J.Biba,“WillCharginganElectricCarEverBeQuickandEasy?”Builtin,November1,2022,https://builtin.com/transportation-tech/electric-vehicle-charging.111INES,“ITEINES.2SMettredusolairedansvotrevéhicule(électrique),”September15,2022,https://www.ines-solaire.org/news/ite-ines.2s-mettre-du-solaire-dans-votre-vehicule-electrique;E.Bellini“Vehicle-integratedPVforHeavy-dutyTrucks,”pvmaga-zine,October21,2021,https://www.pv-magazine.com/2021/10/25/vehicle-integrated-pv-for-heavy-duty-trucks.112InternationalOrganizationforStandardization,“ISO15118-20:2022(en)Roadvehicles—Vehicletogridcommunicationinterface—Part20:2ndgenerationnetworklayerandapplicationlayerrequirements,”2022,https://www.iso.org/obp/ui/#iso:st-d:iso:15118:-20:ed-1:v1:en;Virta,“Vehicle-to-Grid(V2G):EverythingYouNeedtoKnow,”https://www.virta.global/vehicle-to-grid-v2g,accessedJanuary4,2022.113IEA,“FuelCellElectricVehicleStockbyRegionandbyMode,2021,”October26,2022,https://www.iea.org/data-and-statistics/charts/fuel-cell-electric-vehicle-stock-by-region-and-by-mode-2021.114USDepartmentofEnergy,“Hydrogen’sRoleinTransportation,”February25,2022,https://www.energy.gov/eere/vehicles/articles/hydrogens-role-transportation.115IEA,“Hydrogen,”September2022,https://www.iea.org/reports/hydrogen;HydrogenCentral,“QuantronHydrogen-PoweredTruckHasaRangeof1500Km,”September27,2022,https://hydrogen-central.com/quantron-hydrogen-powered-truck-range-1500-km.116IEA,“FuelCellElectricVehicleStockandHydrogenRefuellingStationsbyRegion,2021,”October26,2022,https://www.iea.org/data-and-statistics/charts/fuel-cell-electric-vehicle-stock-and-hy-drogen-refuelling-stations-by-region-2021.117IEA,op.cit.note115.118Ibid.119Ibid.120Business&HumanRightsResourceCentre,“HumanRightsintheMineralSupplyChainsofElectricVehicles,”https://www.business-humanrights.org/en/from-us/briefings/transition-min-erals-sector-case-studies/human-rights-in-the-mineral-supply-chains-of-electric-vehicles,accessedMarch8,2023.121BloombergNEF,op.cit.note106.122BloombergNEF,“ElectricVehicleOutlook2022,ExecutiveSummary,BatteriesandChargingInfrastructure,”2022,https://bnef.turtl.co/story/evo-2022/page/6/2.123GreenClimateFund,“B.33/11LaunchoftheSecondReplenishmentoftheGCF,”August9,2022,https://www.greenclimate.fund/decision/b33-11;UnitedNationsFrameworkConventiononClimateChange,“COP27ReachesBreakthroughAgreementonNew‘LossandDamage’FundforVulnerableCountries,”November20,2022,https://unfccc.int/news/cop27-reaches-breakthrough-agreement-on-new-loss-and-damage-fund-for-vulnerable-countries;RockefellerFoundation“GlobalPhilanthropiesCreateNewMultilateralDevelopmentBanksChallengeFundtoIncreaseInvestmentinDevelopingCountries,”December10,2022,https://www.rockefellerfoundation.org/news/global-philanthropies-cre-ate-new-multilateral-development-banks-challenge-fund-to-in-crease-investment-in-developing-countries.70BACKENDNOTES·RENEWABLESINENERGYDEMAND2023ENDNOTESIAGRICULTUREINFOCUSENDNOTES-AGRICULTUREINFOCUS1WorldBank,“Agriculture,Forestry,andFishing,ValueAdded(%ofGDP),”https://data.worldbank.org/indicator/NV.AGR.TOTL.ZS,accessedDecember16,2022.2InternationalLabourOrganisation(ILO),“EmploymentRateinAgriculture,World,”DataFinder–WorldEmploymentandSocialOutlook,https://www.ilo.org/wesodata/?chart=Z2VuZGVyPV-siVG90YWwiXSZ1bml0PSJSYXRlIiZzZWN0b3I9WyJBZ3JpY3VsdH-VyZSJdJnllYXJGcm9tPTIwMTAmaW5jb21lPVtdJmluZGljYXRvcj1bIm-VtcGxveW1lbnREaXN0cmlidXRpb24iXSZzdGF0dXM9W10mcm-VnaW9uPVsiV29ybGQiXSZjb3VudHJ5PVtdJndvcmtpbmdQb3Zlcn-R5PVtdJnllYXJUbz0yMDIzJnZpZXdGb3JtYXQ9IkNoYXJ0IiZhZ2U-9WyJBZ2UxNXBsdXMiXSZsYW5ndWFnZT0iZW4i,accessedDecember16,2022.3ILO,“EmploymentRateinAgriculture,byRegion,”DataFinder–WorldEmploymentandSocialOutlook,https://www.ilo.org/wesodata/chart/J45qDX-tp,accessedDecember16,2022.4Ibid.5InternationalEnergyAgency(IEA),“WorldEnergyBalances2020:ExtendedEnergyBalances,”August2022,https://www.iea.org/data-and-statistics/data-product/world-energy-balances,allrightsreserved,asmodifiedbytheRenewableEnergyPolicyNetworkforthe21stCentury(REN21).6BasedonIEAdata,op.cit.note5.7EuropeanCommission,Directorate-GeneralforMaritimeAffairsandFisheries,“EnergyEfficiency,”https://stecf.jrc.ec.europa.eu/web/ee,accessedDecember23,2022.8EuropeanCommission,Directorate-GeneralforMaritimeAffairsandFisheries,“2022AnnualEconomicReportontheEUFishingFleet:TheSectorIsAffectedbyHighFuelPricesintheWakeoftheWarinUkraine,”October11,2022,https://oceans-and-fisheries.ec.europa.eu/news/2022-annual-econom-ic-report-eu-fishing-fleet-sector-affected-high-fuel-prices-wake-war-ukraine-2022-10-11_en.9FoodandAgricultureOrganizationoftheUnitedNations(FAO),“FAOSTAT,”https://www.fao.org/faostat/en/#data/GN,accessedJanuary10,2023.10Ibid.Thedimensionlessconversionfactorsusedare:GWP-CH4=21andGWP-N2O=310(100-yeartimehorizonglobalwarmingpotential),fromIntergovernmentalPanelonClimateChange,“SARClimateChange1995:TheScienceofClimateChange,”1995,Table4,https://www.ipcc.ch/report/ar2/wg1.11Ibid.12Figure14fromIEAdata,op.cit.note5.13Ibid.14Ibid.15Ibid.16Ibid.17InternationalRenewableEnergyAgency(IRENA)andFAO,“RenewableEnergyforAgri-FoodSystems:TowardstheSustainableDevelopmentGoalsandtheParisAgreement,”2021,http://www.fao.org/3/cb7433en/cb7433en.pdf.18R.VanAnrooyetal.,“ReviewoftheTechno-EconomicPerformanceoftheMainGlobalFishingFleets,”FAO,2021,https://www.fao.org/3/cb4900en/cb4900en.pdf.19IRENA,“RenewableEnergyforAgri-FoodSystems:HowCross-SectorPartnershipsAreDrivingActionandInvestments,”November12,2022,https://www.irena.org/News/articles/2022/Nov/Renewable-Energy-for-Agri-food-Systems.20IRENAandFAO,“RenewableEnergyandAgri-FoodSystems:AdvancingEnergyandFoodSecurityTowardsSustainableDevelopmentGoals,”2021,http://www.fao.org/3/cb7433en/cb7433en.pdf.21Ibid..22LightingGlobal,“MarketResearchonProductiveUseLeveragingSolarEnergy(PULSE),”September23,2019,https://www.lightingglobal.org/resource/pulse-market-opportunity.23IRENA,“AcceleratingGeothermalHeatAdoptionintheAgri-FoodSector,”January2019,https://www.irena.org/publications/2019/Jan/Accelerating-geothermal-heat-adoption-in-the-agri-food-sector.24IRENAandFAO,op.cit.note17.25EuropeanEnvironmentalBureau,“BeyondNet-ZeroEmissioninAgriculture:CreatinganEnablingClimateGovernanceforAgriculture,”July5,2021,https://eeb.org/library/beyond-net-zero-emission-in-agriculture.26IRENAandFAO,op.cit.note17.27REN21PolicyDatabase.SeeReferenceTableR4intheGSR2023DataPack,www.ren21.net/gsr2023-data-pack.28Mint,“RenewableEnergytoReplaceDieselinAgricultureby2024,SaysGovt,”February12,2022,https://www.livemint.com/news/india/renewable-energy-to-replace-diesel-in-agriculture-by-2024-says-govt-11644592411948.html.29REN21PolicyDatabase,op.cit.note27.30Figure15fromIbid.31Ibid.32Outlook,“GovernmentExtendsPM-KUSUMSchemeTillMarch2026asCovidAffectsImplementation,”February2,2023,https://www.outlookindia.com/business/government-extends-pm-ku-sum-scheme-till-march-2026-as-covid-affects-implementation-news-258895;N.Pasupalatietal.,“LearningsforTamilNadufromGrid-ConnectedAgriculturalSolarPhotovoltaicSchemesinIndia,”WorldResourcesInstitute,February15,2022,https://www.wri.org/research/learnings-tamil-nadu-grid-connected-agricul-tural-solar-photovoltaic-schemes-india.33A.KumarandD.Mohapatra,“FuellingIndia’sFuturewithBioenergy,”PwC,January25,2023,https://www.pwc.in/research-and-insights-hub/fuelling-indias-future-with-bioenergy.html.34L.ConcessaoandH.Meenawat,“DistributedRenewableEnergyApplicationsHaveaNewandEncouragingFramework;ApplyingItonGroundIsCrucialforSuccess,”ETEnergyWorld,May9,2022,https://energy.economictimes.indiatimes.com/news/renewable/opinion-distributed-renewable-energy-ap-plications-have-a-new-and-encouraging-framework-apply-ing-it-on-ground-is-crucial-for-success/91434372;IRENAandFAO,op.cit.note20.35FraunhoferInstituteforSolarEnergySystems(ISE),“Agrivoltaics:OpportunitiesforAgricultureandtheEnergyTransition,”April2022,https://www.ise.fraunhofer.de/content/dam/ise/en/doc-uments/publications/studies/APV-Guideline.pdf;H.Aposporis,“GreecePassesRenewablesLawTargeting15GWinNewCapacityby2030,”BalkanGreenEnergyNews,June30,2022,https://balkangreenenergynews.com/greece-passes-renew-ables-law-targeting-15-gw-in-new-capacity-by-2030.36A.Bhambhani,“TurkeyFacilitatesSolarforIrrigationSystems,”TaiyangNews,August3,2022,https://taiyangnews.info/markets/turkey-facilitates-solar-for-irrigation-systems.37RockefellerFoundation,“REALaunchesNewProgramtoBoostGDP,AccelerateRenewableEnergyandUnlockAgriculturalProductivityinNigeria,”March31,2022,https://www.rockefellerfoundation.org/news/rea-launches-new-pro-gram-to-boost-gdp-accelerate-renewable-energy-and-un-lock-agricultural-productivity-in-nigeria.38FraunhoferISE,“Agrivoltaics,”https://www.ise.fraunhofer.de/en/key-topics/integrated-photovoltaics/agrivoltaics.html,accessedJanuary3,2023..39J.Jacobo,“ItalytoAllocateUS$1.5Billionfor375MWofAgrivoltaics,”PVTech,August29,2022,https://www.pv-tech.org/italy-to-allocate-us1-5-billion-for-375mw-of-agrivoltaics.40ItalianMinistryforEcologicalTransition,“GuidelinesforAgrivoltaics,”June2022,https://www.mase.gov.it/sites/default/files/archivio/allegati/PNRR/linee_guida_impianti_agrivoltaici.pdf;E.Bellini,“FranceDefinesStandardsforAgrivoltaics,”pvmagazine,April28,2022,https://www.pv-magazine.com/2022/04/28/france-defines-standards-for-agrivoltaics;E.Bellini,“HistoricalCourtRulingforAgrivoltaicsinItaly,”pvmaga-zine,June27,2022,https://www.pv-magazine.com/2022/06/27/historical-court-ruling-for-agrivoltaics-in-italy.41A.Fischer,“USGovernmentAllocates$8MilliontoSupportAgrivoltaics,”pvmagazine,December15,2022,https://www.pv-magazine.com/2022/12/15/us-government-allocates-8-million-to-support-agrivoltaics.42FraunhoferISE,op.cit.note38;USNationalRenewableEnergyLaboratory(NREL),“Agrivoltaics,”https://www.nrel.gov/solar/market-research-analysis/agrivoltaics.html,accessedJanuary3,2023;NREL,“BenefitsofAgrivoltaicsAcrosstheFood-Energy-WaterNexus,”September11,2019,https://www.nrel.gov/news/program/2019/benefits-of-agrivoltaics-across-the-food-ener-gy-water-nexus.html.43FraunhoferISE,op.cit.note35.71BACKENDNOTES·RENEWABLESINENERGYDEMAND2023ENDNOTESIAGRICULTUREINFOCUS44J.DahmandN.Kurmayer,“GermanytoBoostRenewablesinAgriculture,LinkMoorlandswithSolarPanels,”Euractiv,February11,2022,https://www.euractiv.com/section/agriculture-food/news/germany-to-boost-renewables-in-agriculture-link-moor-lands-with-solar-panels.45FranhauferISE,op.cit.note35.46H.Horton,“MinistersHopetoBanSolarProjectsfromMostEnglishFarms,”TheGuardian(UK),October10,2022,https://www.theguardian.com/environment/2022/oct/10/ministers-hope-to-ban-solar-projects-from-most-english-farms.47IRENAandFAO,op.cit.note20.48Ibid.49Ibid.50Acumen,“AcumenLaunchesa$25MillionInvestmentInitiativetoPowerLivelihoodswithCleanEnergy,”July12,2022,https://acumen.org/blog/acumen-launches-a-25-million-investment-initiative-to-power-livelihoods-with-clean-energy.51F.Agbejule,M.MatternandJ.Mensah,“SavingsatthePump:FinancingSolarIrrigationtoSupportRuralWomen,”CGAP,March22,2022,https://www.cgap.org/blog/savings-pump-financing-solar-irrigation-to-support-rural-women.52InterregEurope,“Romania:NewFinancingforRenewablesinAgriculture,”April15,2021,https://projects2014-2020.interregeurope.eu/agrores/news/news-article/11786/romania-new-financing-for-renewables-in-agriculture.53M.Raji,personalcommunicationwithREN21,February1,2023.54USDepartmentofAgriculture,RuralDevelopment,“RuralEnergyforAmericaProgramRenewableEnergySystems&EnergyEfficiencyImprovementGuaranteedLoans&Grants,”January5,2015,https://www.rd.usda.gov/programs-services/energy-pro-grams/rural-energy-america-program-renewable-energy-sys-tems-energy-efficiency-improvement-guaranteed-loans.55IRENA,op.cit.note19.56A.Rosell,“ZeroCAPEXSolarHeatforMexicanIndustry,”SolarThermalWorld,March18,2022,https://solarthermalworld.org/news/zero-capex-solar-heat-for-mexican-industry.57A.Rosell,“SolarHeatforMultinationalAgribusinessesUnderWay,”SolarThermalWorld,November10,2022,https://solarthermalworld.org/news/solar-heat-for-multinational-agribusinesses-under-way.58B.Epp,“10MWSolarPlantHeatsAirforMaltingPlantinFrance,”SolarThermalWorld,September28,2021,https://solarthermalworld.org/news/10-mw-solar-plant-heats-air-malting-plant-france.59B.Epp,“InnovationFundApprovesEUR4.5MillionforCroatianSHIPPlant,”SolarThermalWorld,September16,2021,https://solarthermalworld.org/news/innovation-fund-approves-eur-45-million-croatian-ship-plant.60A.Rosell,“HeatPurchaseAgreementsontheRiseinSpain,”SolarThermalWorld,August10,2022,https://solarthermalworld.org/news/heat-purchase-agreements-on-the-rise-in-spain.61S.Schindeleetal.,“ImplementationofAgrophotovoltaics:Techno-EconomicAnalysisofthePrice-PerformanceRatioandItsPolicyImplications,”AppliedEnergy,Vol.265,1May2020,p.114737,https://www.sciencedirect.com/science/article/pii/S030626192030249X.62BlindCreekSolarFarm,“AboutBlindCreekSolarFarm,”https://www.blindcreeksolarfarm.com.au/about-blind-creek-solar-farm,accessedFebruary12,2023;CleanEnergyFinanceCorporation,“NSWRegenerativeAgricultureBoostedwithSolarandStorage,”July2022,https://www.cefc.com.au/where-we-invest/case-studies/nsw-regenerative-agriculture-boosted-with-solar-and-storage.63M.VanNguyenetal.,“UsesofGeothermalEnergyinFoodandAgriculture:OpportunitiesforDevelopingCountries,”FAO,January1,2014,https://www.fao.org/publications/card/fr/c/045ca001-4849-43b7-8dc6-e99635ddb5ea.64R.McRae,“$10mInvestmentinGeothermalDirectUseinBalikesir,Sindirgi,Turkey,”ThinkGeoEnergy,December8,2021,https://www.thinkgeoenergy.com/10m-investment-in-geother-mal-direct-use-in-balikesir-sindirgi-turkey;C.Cariaga,“GrantAwardedforGeothermalGreenhouseInstallationinEskisehir,Turkiye,”ThinkGeoEnergy,October14,2022,https://www.thinkgeoenergy.com/grant-awarded-for-geothermal-green-house-installation-in-eskisehir-turkiye.65USDepartmentofEnergy,OfficeofScientificandTechnicalInformation,“2013MarketTrendsReport,”January1,2014,https://www.osti.gov/servlets/purl/1220825.66EnergySectorManagementAssistanceProgram(ESMAP),“Off-GridSolarMarketTrendsReport2022:Outlook,”October17,2022,https://esmap.org/Off-Grid_Solar_Market_Trends_Report_2022_Outlook.67IRENA,“Off-GridRenewableEnergyStatistics2022,”December2022,https://www.irena.org/Publications/2022/Dec/Off-grid-renewable-energy-statistics-2022.68GreenClimateFund,“Hydro-AgriculturalDevelopmentwithSmartAgriculturePracticesResilienttoClimateChangeinNiger,”October7,2021,https://www.greenclimate.fund/project/fp176.69ESMAP,op.cit.note66;IRENAandFAO,op.cit.note20.70EfficiencyforAccess,“SolarApplianceTechnologyBrief:Walk-inColdRooms,”July2021,https://storage.googleapis.com/e4a-website-assets/EforA_Solar_Technology_Brief_WalkInColdRooms_July-2021.pdf;ESMAP,op.cit.note66.Snapshot:Indiabasedonthefollowingsources:B.Moushumi,“IndianFarmersTurntoSolar-PoweredFridgestoReduceFoodWaste,”Scroll.in,December5,2022,https://scroll.in/article/1038916/indian-farmers-turn-to-solar-powered-fridges-to-reduce-food-waste;“FoodWastageinIndia:AConcern,”EasternMirror,October25,2022,https://easternmirrornaga-land.com/food-wastage-in-india-a-concern;F.BirolandA.Kant,“India’sCleanEnergyTransitionIsRapidlyUnderway,BenefitingtheEntireWorld,”IEA,January10,2022,https://www.iea.org/commentaries/india-s-clean-energy-transi-tion-is-rapidly-underway-benefiting-the-entire-world;H.Lalramenga,“DeputyCMHmalaknainKhawzawlahSolarColdStorageBunDt.21.12.2021,”DCKhawzawl,December22,2021,https://dckhawzawl.mizoram.gov.in/post/deputy-cm-hmalaknain-khawzawlah-solar-cold-storage-bun.71ESMAP,op.cit.note66.72BasedonIEAdata,op.cit.note5.73FraunhoferISE,op.cit.note35.74FraunhoferISE,op.cit.note38.75FraunhoferISE,op.cit.note35.76FAO,“TheStateofWorldFisheriesandAquaculture2022.TowardsBlueTransformation,”2022,http://www.fao.org/3/cc0461en/cc0461en.pdf.77CLIENTII,“SHRIMPS–Solar-AquacultureHabitatsasResource-EfficientandIntegratedMultilayerProductionSystems,”https://www.bmbf-client.de/en/projects/shrimps,accessedJanuary4,2023.78Ibid.79B.Santos,“FloatingSolarTechforAquaculture,”pvmagazine,January4,2023,https://www.pv-magazine.com/2023/01/04/floating-solar-tech-for-aquaculture.80IRENA,“AcceleratingGeothermalHeatAdoptionintheAgri-FoodSector,”January2019,https://www.irena.org/publications/2019/Jan/Accelerating-geothermal-heat-adoption-in-the-agri-food-sector.81Ibid.82Ibid;FAO,op.cit.note76.83IRENA,op.cit.note80.84IRENAandFAO,op.cit.note20.85Ibid.86FAO,op.cit.note76.87BasedonIEAdata,op.cit.note5.88Ibid.89IRENAandFAO,op.cit.note20.90Ibid.91Ibid.92Ibid.93GreenClimateFund,“ClimateResilientFisheryInitiativeforLivelihoodImprovementintheGambia(PROREFISHGambia),”July20,2022,https://www.greenclimate.fund/project/fp188.94R.VanAnrooyetal.,op.cit.note18.95C.Carletto,“BetterData,HigherImpact:ImprovingAgriculturalDataSystemsforSocietalChange,”EuropeanReviewofAgriculturalEconomics,Vol.48,No.4,September2021,719-740,https://doi.org/10.1093/erae/jbab030.96D.Mohapatraetal.,“DecentralisedRenewableEnergyInnovationstoBoostAgri-SectorProductivity&AddressGlobalFoodSystemChallenges,”AllianceforRuralElectrification,January2021,https://www.ruralelec.org/publications/decentral-ised-renewable-energy-innovations-boost-agri-sector-productiv-ity-address.72BACKPHOTOCREDITSpage11©Hadrian/TheEuropeanParliamentbuildinginStrasbourgpage12©NavinTar/Thailandpage12©FOTOGRIN/Hydrogenfactorypage12©DavidBuzzard/BellinghamWA,USApage13©DarrylBrooks/PortofLosAngeles,CA,USApage14©JackHong/ShalunSmartGreenEnergyScienceCityinTainan,Taiwanpage14©PradeepGaurs/ElectricbusontheroadinConnaught,NewDelhi,Indiapage15©Photo_apisak/LoeiProvince,Thailandpage16©LeonardoIkeda/GreenRoofinSãoPaulo,Brazilpage21©ninopavisic/BuildingrenovationinPari,Francepage23©MaciejBledowski/RoofsofresidentialbuildingsinKunming,Yunnan,Chinapage25©DrDavidSing/SengkangGreenPrimarySchool,Singaporepage25©mundoview/SolarpanelsontopofaecofriendlybuildinginIndiapage26©Scarc/GeothermalPowerPlantinBuharkent,Turkeypage27©BermixStudio/Insulationthefacadeofcommercialbuildingpage27©RimgaudasBudrys/Modernhousepage27©Serato/Belgrade,Serbiapage27©oksana.perkins/ResidentialdistrictinBeijing,Chinapage28©zhangsheng/Jiangyin,Jiangsu/Chinapage29©BananaRepublicimages/Cementproductionfactoryonminingquarrypage30©engineerstory/Biomasspowerplantwithindustrialenergyconceptpage32©metamorworks/Japanpage34©FelixLipov/Mpumalanga,SouthAfricapage34©MukurukuruMedia/ThetownshipofPholanearOgiesinMpumalangapage35©engineerstory/BiomassPowerPlantpage36©Raabia.Irfan/FactoryinMultan,Punajb,Pakistanpage38©BjornBeheydt/Brecht,Belgiumpage39©PradeepGaurs/Kolkata,WestBengal,Indiapage40©EddieCloud/MotorwayinGreatBritainpage43©MarkusMainka/Frankfurt,Germanypage43©AllardOne/NatureEnergyBiogasplantinEsbjerg,Denmarkpage44©AunPhotographer/InternationalContainerCargoShippage44©QualityStockArts/Portraitpage47©PradeepGaurs/PiaggioApeelectricthree-wheelervehicle,Chandigarh,Indiapage47©PradeepGaurs/IndianparliamenthouseinNewDelhipage48©AngelL/Madrid,Spainpage48©OscarMSanchez/Portrait,Madridpage49©OwlieProductions/EVcaratpublicchargingstationpage50©RedStock/FieldirrigatedwithsolarenergyinTurkeypage51©rherecoach/Fishfarming,Thailandpage54©pjhpix/Farmland,UKpage55©PradeepGaurs/VillagenearNewDelhi,Indiapage56©PradeepGaurs/Baghpat,UttarPradesh,Indiapage56©ParikhMahendraN/Mahabaleshwar,Maharashtra,IndiaCOPYRIGHT&IMPRINTRenewableEnergyPolicyNetworkREN21Secretariatforthe21stCenturyc/oUNEnvironmentProgramme1rueMiollis,BuildingVII75015ParisFranceREN21Secretariatc/oUNEnvironmentProgramme1rueMiollisBuildingVII75015ParisFrancewww.ren21.netISBN978-3-948393-07-6RENEWABLES2023GLOBALSTATUSREPORTCOLLECTION2023RENEWABLESINENERGYDEMANDMODULOVERVIEWPOLICYINVESTMENTMARKETDEVELOPMENTSCHALLENGESANDOPPORTUNITIESMODULOVERVIEWPOLICYINVESTMENTMARKETDEVELOPMENTSCHALLENGESANDOPPORTUNITIESMODULOVERVIEWPOLICYINVESTMENTMARKETDEVELOPMENTSCHALLENGESANDOPPORTUNITIESLOVERVIEWYSTMENTKETDEVELOPMENTSLENGESANDOPPORTUNITIESRENEWABLES2023GLOBALSTATUSREPORTENERGYDEMANDMODUPOLICINVESMARKMODULOVERVIEWPOLICYMODULOVERVIEWPOLICYINVESTMENTMODULOVERVIEWCOLLECTION2023

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

碳中和
已认证
内容提供者

碳中和

确认删除?
回到顶部
微信客服
  • 管理员微信
QQ客服
  • QQ客服点击这里给我发消息
客服邮箱