欧洲风能供应链现状-56页VIP专享VIP免费

April 2023
The State of the European Wind
Energy Supply Chain
A «what-would-it-take» analysis of the European supply chain’s ability
to support ambitious capacity targets towards 2030
A Rystad Energy report in cooperation with WindEurope
April 2023
2
About this report
Rystad Energy The State of the European Wind Energy Supply Chain April 2023
This report has been produced by Rystad Energy in
cooperation with WindEurope. It is focused on Europe’s wind
supply chain and its ability to support ambitious capacity
targets for 2030.
The outset of the report is based on WindEurope’s capacity
outlook for wind power in Europe in its “2030 Targets
Scenario” presented in the “Wind energy in Europe 2022
Statistics and the outlook for 2023-2027” report published in
February 2023.
Using this capacity outlook as an exogenous factor, Rystad
Energy has applied its models and industry knowledge to
estimate the resulting demand for components, services and
materials along the value chain towards 2030.
Through extensive research on the current and announced
supply capacities, Rystad Energy aims to identify potential
supply chain risks and bottlenecks as well as assess the
urgency of the necessary expansions. As such, all analysis in
this report has been done by Rystad Energy, if not explicitly
mentioned otherwise.
Rystad Energy has also contributed to the background
material in this report, describing the current status of the
European wind market and its supply chain, in addition to
describing the components and materials that are essential
for the wind industry.
Based on the findings in this report, WindEurope has
provided its policy recommendations.
55
Contacts
Rystad Energy The State of the European Wind Energy Supply Chain April 2023
Appendix
Alexander Dobrowen Fløtre
VP & Head of Offshore Wind Research, Rystad Energy
alexander.flotre@rystadenergy.com
Glenn Buchan
Partner & Commercial Director EMEA, Rystad Energy
glenn.buchan@rystadenergy.com
Philip Cole
Director of Industrial Affairs
Phil.Cole@windeurope.org
Joachim Kjendlie
VP & Head of Copenhagen Office, Rystad Energy
joachim.kjendlie@rystadenergy.com
2
3
Europe’s energy mix is set to see a significant
transformation towards 2030 as the climate emergency
and the energy crisis in the wake of Russia’s invasion of
Ukraine are pressuring the region’s ability to secure
reliable, affordable, and clean energy supply a
challenge set to continue for the years to come.
The energy transition initiatives in Europe were
accelerated during the Covid-19 pandemic, as means of
rebooting economies while simultaneously taking steps
towards reaching climate targets. As the markets
gradually recovered post-pandemic from high
inflationary pressure, Russia’s invasion of Ukraine in
February 2022 shifted the focus of European policy
makers from energy transition to energy security.
Policy makers responded to the need to reduce
dependency on Russian gas by increasing domestic
supply, building new import terminals for LNG to shift
import routes, and significantly lifting renewable
targets. For the latter, wind energy in Europe was
identified as a key energy source required to reach
European renewable capacity ambitions. The
REPowerEU plan was laid out last year, which
WindEurope concluded would require 440 GW of
operational wind capacity by 2030 and an average
installation rate of 30 GW annually towards 2030. In
addition, countries established national targets for
onshore wind and offshore wind and kicked off
cooperation initiatives such as the Esbjerg and
Marienborg Declarations for offshore wind.
Some of the main policy initiatives for wind in 2022
were aimed at raising targets and supporting them by
shortening permitting procedures, which was identified
as the key bottleneck in reaching new ambitions. In
recent months, we have also seen several European
nations making new areas available for wind energy,
which is aimed at backing the massive build-out needed.
However, focus has now been shifted towards the
supply chain’s ability to support such a rapid ramp-up in
activity levels. Moreover, European energy
independence has broadened to include the supply
chain and critical raw materials, which adds to the
challenge not only will activity levels spike to new
heights, but the growing demand should primarily be
met by domestic supply, and not an increase in imports.
For the European wind supply chain, the challenge may
seem too large to handle. Wind turbine manufacturers
have reported low margins and poor financial results for
several years, along with many other companies along
the value chain. Also, the more established onshore
wind market in Europe needs to grow to reach
European ambitions, while the younger offshore wind
industry will see activity accelerate this decade.
For offshore wind, cost reductions observed over the
past 5-10 years have been driven by the rapid
development in turbine sizes. Larger turbines improve
total lifecycle economics, and developers’ natural
affinity towards the largest models in the market led to
a race between OEMs to provide the biggest and most
efficient turbines. This has come at the cost of
significant R&D budgets among the turbine
manufacturers.
At the same time, the demand for offshore wind
acreage has increased substantially in recent years,
exacerbated by legacy oil and gas majors moving into
the sector with deep pockets and a high willingness to
pay. Higher acreage bids and lower strike prices
increased the need for further cost reductions, and the
cost cutting pressure has trickled down through the
supply chain. On top of this, inflation in the wake of the
pandemic and Russia’s invasion of Ukraine continue to
challenge the already pressured margins.
The turbine trend creates ripple effects for the entire
value chain. Other components such as foundations and
inter-array cables must be changed to handle the larger
turbines, and handling and lifting capabilities must be
scaled up to accommodate growing component sizes.
This adds to the challenge of the sheer activity growth.
While the demand outlook seems increasingly strong
and certain, the supply chain is lagging. One reason is
suppliers’ ability to expand in a high-inflation, low-
margin environment where capital costs are growing.
Another source of uncertainty is the pace at which
demand is changing. When faced with a potential
expansion, suppliers must ask themselves how future-
proof this is. The risk of scaling up and quickly becoming
obsolete adds uncertainty for decision makers and
pushes final investment decisions out in time.
Our analysis shows that time may not be something that
Europe has in abundance if ambitious capacity targets
are to be met. The rapid activity growth needed to
reach targets will in certain segments require large
supply chain expansions, and if not, bottlenecks may
occur already by 2024/2025. To avoid this, suppliers
must make decisions to expand either this year (2023),
or the next. This means that for those suppliers, a strong
investment signal must be given today, and that the
time for action is now. Consequently, European policy
makers will face the difficult balancing act of reaching
targets and securing a domestic supply.
Alexander Dobrowen Fløtre
Head of Offshore Wind Research, Rystad Energy
Foreword
Rystad Energy The State of the European Wind Energy Supply Chain April 2023
55
Contacts
Rystad Energy The State of the European Wind Energy Supply Chain April 2023
Appendix
Alexander Dobrowen Fløtre
VP & Head of Offshore Wind Research, Rystad Energy
alexander.flotre@rystadenergy.com
Glenn Buchan
Partner & Commercial Director EMEA, Rystad Energy
glenn.buchan@rystadenergy.com
Philip Cole
Director of Industrial Affairs
Phil.Cole@windeurope.org
Joachim Kjendlie
VP & Head of Copenhagen Office, Rystad Energy
joachim.kjendlie@rystadenergy.com
55
Contacts
Rystad Energy The State of the European Wind Energy Supply Chain April 2023
Appendix
Alexander Dobrowen Fløtre
VP & Head of Offshore Wind Research, Rystad Energy
alexander.flotre@rystadenergy.com
Glenn Buchan
Partner & Commercial Director EMEA, Rystad Energy
glenn.buchan@rystadenergy.com
Philip Cole
Director of Industrial Affairs
Phil.Cole@windeurope.org
Joachim Kjendlie
VP & Head of Copenhagen Office, Rystad Energy
joachim.kjendlie@rystadenergy.com
3
April2023TheStateoftheEuropeanWindEnergySupplyChainA«what-would-it-take»analysisoftheEuropeansupplychain’sabilitytosupportambitiouscapacitytargetstowards2030ARystadEnergyreportincooperationwithWindEuropeApril20232AboutthisreportRystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023ThisreporthasbeenproducedbyRystadEnergyincooperationwithWindEurope.ItisfocusedonEurope’swindsupplychainanditsabilitytosupportambitiouscapacitytargetsfor2030.TheoutsetofthereportisbasedonWindEurope’scapacityoutlookforwindpowerinEuropeinits“2030TargetsScenario”presentedinthe“WindenergyinEurope2022–Statisticsandtheoutlookfor2023-2027”reportpublishedinFebruary2023.Usingthiscapacityoutlookasanexogenousfactor,RystadEnergyhasapplieditsmodelsandindustryknowledgetoestimatetheresultingdemandforcomponents,servicesandmaterialsalongthevaluechaintowards2030.Throughextensiveresearchonthecurrentandannouncedsupplycapacities,RystadEnergyaimstoidentifypotentialsupplychainrisksandbottlenecksaswellasassesstheurgencyofthenecessaryexpansions.Assuch,allanalysisinthisreporthasbeendonebyRystadEnergy,ifnotexplicitlymentionedotherwise.RystadEnergyhasalsocontributedtothebackgroundmaterialinthisreport,describingthecurrentstatusoftheEuropeanwindmarketanditssupplychain,inadditiontodescribingthecomponentsandmaterialsthatareessentialforthewindindustry.Basedonthefindingsinthisreport,WindEuropehasprovideditspolicyrecommendations.55ContactsRystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023AppendixAlexanderDobrowenFløtreVP&HeadofOffshoreWindResearch,RystadEnergyalexander.flotre@rystadenergy.comGlennBuchanPartner&CommercialDirectorEMEA,RystadEnergyglenn.buchan@rystadenergy.comPhilipColeDirectorofIndustrialAffairsPhil.Cole@windeurope.orgJoachimKjendlieVP&HeadofCopenhagenOffice,RystadEnergyjoachim.kjendlie@rystadenergy.com23Europe’senergymixissettoseeasignificanttransformationtowards2030astheclimateemergencyandtheenergycrisisinthewakeofRussia’sinvasionofUkrainearepressuringtheregion’sabilitytosecurereliable,affordable,andcleanenergysupply–achallengesettocontinuefortheyearstocome.TheenergytransitioninitiativesinEuropewereacceleratedduringtheCovid-19pandemic,asmeansofrebootingeconomieswhilesimultaneouslytakingstepstowardsreachingclimatetargets.Asthemarketsgraduallyrecoveredpost-pandemicfromhighinflationarypressure,Russia’sinvasionofUkraineinFebruary2022shiftedthefocusofEuropeanpolicymakersfromenergytransitiontoenergysecurity.PolicymakersrespondedtotheneedtoreducedependencyonRussiangasbyincreasingdomesticsupply,buildingnewimportterminalsforLNGtoshiftimportroutes,andsignificantlyliftingrenewabletargets.Forthelatter,windenergyinEuropewasidentifiedasakeyenergysourcerequiredtoreachEuropeanrenewablecapacityambitions.TheREPowerEUplanwaslaidoutlastyear,whichWindEuropeconcludedwouldrequire440GWofoperationalwindcapacityby2030andanaverageinstallationrateof30GWannuallytowards2030.Inaddition,countriesestablishednationaltargetsforonshorewindandoffshorewindandkickedoffcooperationinitiatives–suchastheEsbjergandMarienborgDeclarationsforoffshorewind.Someofthemainpolicyinitiativesforwindin2022wereaimedatraisingtargetsandsupportingthembyshorteningpermittingprocedures,whichwasidentifiedasthekeybottleneckinreachingnewambitions.Inrecentmonths,wehavealsoseenseveralEuropeannationsmakingnewareasavailableforwindenergy,whichisaimedatbackingthemassivebuild-outneeded.However,focushasnowbeenshiftedtowardsthesupplychain’sabilitytosupportsucharapidramp-upinactivitylevels.Moreover,Europeanenergyindependencehasbroadenedtoincludethesupplychainandcriticalrawmaterials,whichaddstothechallenge–notonlywillactivitylevelsspiketonewheights,butthegrowingdemandshouldprimarilybemetbydomesticsupply,andnotanincreaseinimports.FortheEuropeanwindsupplychain,thechallengemayseemtoolargetohandle.Windturbinemanufacturershavereportedlowmarginsandpoorfinancialresultsforseveralyears,alongwithmanyothercompaniesalongthevaluechain.Also,themoreestablishedonshorewindmarketinEuropeneedstogrowtoreachEuropeanambitions,whiletheyoungeroffshorewindindustrywillseeactivityacceleratethisdecade.Foroffshorewind,costreductionsobservedoverthepast5-10yearshavebeendrivenbytherapiddevelopmentinturbinesizes.Largerturbinesimprovetotallifecycleeconomics,anddevelopers’naturalaffinitytowardsthelargestmodelsinthemarketledtoaracebetweenOEMstoprovidethebiggestandmostefficientturbines.ThishascomeatthecostofsignificantR&Dbudgetsamongtheturbinemanufacturers.Atthesametime,thedemandforoffshorewindacreagehasincreasedsubstantiallyinrecentyears,exacerbatedbylegacyoilandgasmajorsmovingintothesectorwithdeeppocketsandahighwillingnesstopay.Higheracreagebidsandlowerstrikepricesincreasedtheneedforfurthercostreductions,andthecostcuttingpressurehastrickleddownthroughthesupplychain.Ontopofthis,inflationinthewakeofthepandemicandRussia’sinvasionofUkrainecontinuetochallengethealreadypressuredmargins.Theturbinetrendcreatesrippleeffectsfortheentirevaluechain.Othercomponentssuchasfoundationsandinter-arraycablesmustbechangedtohandlethelargerturbines,andhandlingandliftingcapabilitiesmustbescaleduptoaccommodategrowingcomponentsizes.Thisaddstothechallengeofthesheeractivitygrowth.Whilethedemandoutlookseemsincreasinglystrongandcertain,thesupplychainislagging.Onereasonissuppliers’abilitytoexpandinahigh-inflation,low-marginenvironmentwherecapitalcostsaregrowing.Anothersourceofuncertaintyisthepaceatwhichdemandischanging.Whenfacedwithapotentialexpansion,suppliersmustaskthemselveshowfuture-proofthisis.Theriskofscalingupandquicklybecomingobsoleteaddsuncertaintyfordecisionmakersandpushesfinalinvestmentdecisionsoutintime.OuranalysisshowsthattimemaynotbesomethingthatEuropehasinabundance–ifambitiouscapacitytargetsaretobemet.Therapidactivitygrowthneededtoreachtargetswillincertainsegmentsrequirelargesupplychainexpansions,andifnot,bottlenecksmayoccuralreadyby2024/2025.Toavoidthis,suppliersmustmakedecisionstoexpandeitherthisyear(2023),orthenext.Thismeansthatforthosesuppliers,astronginvestmentsignalmustbegiventoday,andthatthetimeforactionisnow.Consequently,Europeanpolicymakerswillfacethedifficultbalancingactofreachingtargetsandsecuringadomesticsupply.AlexanderDobrowenFløtreHeadofOffshoreWindResearch,RystadEnergyForewordRystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023RystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023dEnergydEnergyPhilipColeDirectorofIndustrialAffairsPhil.Cole@windeurope.orgrgy34TableofcontentsRystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023Executivesummary5Keyfindings6Introduction7Scopeofthereportandapproach7WindmanufacturingfacilitiesinEurope9WindEuropescenariosandoutlooks11Part1–Currentstatusofthemarket13PoliciesasthemaindriverofrenewableenergyinEurope13Powerprices,inflationandsupplierfinancials15REPowerEUandtheGreenDealIndustrialPlan19Europe’smaterialproductionandimportdependency22Part2–Futuresupplychainrisks24Turbines25Towers33Cables35DemanddriversforEuropeanoffshorewind36Foundations37Windturbineinstallationvessels39Otherpartsofthewiderwindsupplychain40Materials41Part3–Policyrecommendations50Appendix5155ContactsRystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023AppendixAlexanderDobrowenFløtreVP&HeadofOffshoreWindResearch,RystadEnergyalexander.flotre@rystadenergy.comGlennBuchanPartner&CommercialDirectorEMEA,RystadEnergyglenn.buchan@rystadenergy.comPhilipColeDirectorofIndustrialAffairsPhil.Cole@windeurope.orgJoachimKjendlieVP&HeadofCopenhagenOffice,RystadEnergyjoachim.kjendlie@rystadenergy.com45TheaimofthisreportistoassessthestateoftheEuropeanwindsupplychainanditsabilitytosupportambitiouscapacitytargetstowards2030.TheoutsetoftheanalysisisWindEurope’s2030TargetsScenariopresentedinitsreport“WindenergyinEurope2022–Statisticsandtheoutlookfor2023-2027”publishedinFebruary2023.ThescenariodescribesthenecessaryEuropeanUnionwindcapacityadditionstowards2030toreachthetargetssetintheREPowerEUplan,andthoserequiredfornon-EUEuropeancountriestoreachtheircapacityandclimatetargets.RystadEnergyhasusedthiscapacityoutlooktoestimatethedemandforcomponents,servicesandmaterialsalongthewindsupplychainandcomparethistoexistingsupplycapacitiesinEuropetoidentifypotentialbottlenecks,expansionneeds,andtheurgencyofthepotentiallynecessaryexpansions.AnotherimportantbackdropisthefocusonboostingEuropeanindependence,notonlyinenergy,butalsofromasupplychainandmaterialsourcingperspective.Assuch,thefocusinthisreportisprimarilyonEuropeansupplyanditsramp-upneeds,andtoalesserextentontheneedtoincreaseimports.Thereportintroducesatrilemmaframework,describingthebalancebetweenreliability,affordabilityandsustainability,andthisisreferencedwhereapplicablethroughoutthereport.Part1describesthecurrentstatusoftheglobalandEuropeanenergymarketsandtheEuropeanwindindustry.Itprovidesasummaryofthecurrentpoliciesaimedatsupportingashifttowardsincreasingwindenergy(andotherrenewables)inthepowermixandincreasingEuropeanenergy,supplychainandrawmaterialindependence.Thepastyearhasbeenmarkedbyabalanceofrecordrenewableenergydevelopmentactivityandmajorchallengesforthebroaderenergytransitionindustry.Russia'sinvasionofUkraineledtoaglobalenergycrisisthathitconsumershardbutunderlinedthekeyroleofrenewableenergyinEurope'senergysecurity–andnotonlysustainability.Whiletheenergycrisisandpost-Covid-19recoveryspurredrenewableenergycommissioning,materialsandcomponentspriceinflationhasputthewindenergysupplychainunderseverefinancialpressure.AlthoughEuropehasmanagedtoovercomethewinterseasonandtheinflationcrisishasstartedtoease,manychallengesremain.Therefore,theenergytopichaskepttheEuropeanCommissionbusy,withmanyenergypoliciesannouncedduringtheyear.TheREPowerEUplansetoutaEuropeanenergyroadmapto2030,andtheongoingGreenDealIndustrialPlanaimstoprovidethehighlynecessarysupporttoachievetheseambitions.Part2considersthecurrentandfuturesupplycapacitiesintheEuropeanwindindustry,andthedemandforcomponents,servicesandmaterialsestimatedbyRystadEnergy,basedonWindEurope’s2030TargetsScenario.Theestimatedsupply-demandbalanceshowsthatforwindenergycapacitytargetstobemetby2030,therewouldbeaneedtorapidlyexpandcapacitiesacrossthesupplychainuniquetowind,includingturbines,towers,foundations,windturbineinstallationvessels(WTIVs),andmore.ThekeyfindingsofthequantitativeassessmentofselectedpartsoftheEuropeanwindsupplychaincanbeseeninTableAonthenextpage.WhiletheambitiouswindenergycapacitytargetswouldrequirenearlyallpartsoftheEuropeanwindsupplychaintoberamped-up,ouranalysisshowsthatthoserelatedtooffshorewindwouldbemostcritical.Comparedtoonshorewind,whereactivitylevelsneedtoberampedupfromalreadyhighlevelsandwithlimitedgrowthinturbinesizes,offshorewindisforecasttoseeasteeperincreasetowards2030,withturbinesizesexpectedtogrowrapidly.Thisisexpectedtoputsignificantpressureonthemanufacturingofturbineslargerthan12MW,large-diametermonopiles,andfloatingfoundations.Forthesamereason,expansionsareexpectedtoberequiredfornext-generationWTIVs.Theseexpansionsareextremelytime-sensitiveasanundersupplyisexpectedaroundmid-decade,withexpansionsinneedofbeinginitiatedasearlyas2023-2024duetolead-times.Onshorewindisalsoexpectedtodrivemanufacturingexpansionneeds,especiallyontheturbineside,drivenbythesheeractivityincreaserequiredtoreachtargets.Severalotherpartsofthewidersupplychainwouldbepressurediftargetsaretobereached:transmissionandgridinfrastructureisexpectedtobesqueezedbyanincreaseinwind,inadditiontoagrowthinrenewables,andageneralelectrificationoftheenergysystem;skilledlabormayserveasabottleneckforspecializedpartsofthewindsupplychain;othervesselsegmentssuchasfoundationandcableinstallation,serviceoperationvessels(SOVs)andanchorhandlingtugsupply(AHTS)vesselsforfloatingwindareexpectedtoneedfleetexpansions;portsneedupgradingtosupportthelarge-scalebuild-outofoffshorewindandtheindustrializationoffloatingwind;andfloatingwindwouldrequiremooringlinemanufacturingtoberampedupsignificantly.Materialdemandisexpectedtogrownearlyfour-foldtowards2030iftargetsaretobereached.Assessedaccordingtotheirrelativeimportanceinwind,theexpectedgrowthtrajectorytowards2030andrelativescoreonreliability,affordabilityandsustainability,steel,copperandrareearthmineralsareseenasmoststrategicallyimportant.Thelattertwoareassessedasatmostrisk,duetotheirrapiddemandgrowth,Europe’srelativelyhighimportrelianceforthesematerials,andtheircriticalroleincablesandturbines,respectively.WhatwouldittakeforEurope’ssupplychaintodeliveronwindenergyambitions?RystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023ExecutivesummarySource:RystadEnergyresearchandanalysisRystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023dEnergydEnergyPhilipColeDirectorofIndustrialAffairsPhil.Cole@windeurope.orgrgy56KeyfindingsRystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023ExecutivesummaryEstimatedEuropeandemandbasedon2030TargetsScenario.Timetoactionreferstotheestimatedyearwhensupplyexpansionsneedtobeinitiatedtoavoidapotentialbottleneck.Formoreinformation,seePart2.Source:RystadEnergyresearchandanalysisSegmentIndustrySub-segment2022-2030demandgrowthTimetoactionUrgencyassessmentCommentTurbinesOnshore&OffshorewindTotalmarket~3XCapacity(MW)2024-2025•Highinflation,lowmarginsandanR&DracetosupplythelargestturbinesonthemarkethasputpressureonwesternOEM’sabilitytoexpandmanufacturingcapacitiesorrepurposefacilitiestoaccommodateachangingdemand.•Whileonshorewindturbinesizedemandisrelativelymorestable,expansionofmanufacturingisneededtomatchgrowthinactivitylevelsinthe2030TargetsScenario.•Offshorewindservesasthekeychallenge,withalargegapbetweencurrentmanufacturingcapacityandprojecteddemandforthelargestmodels.•RotorblademanufacturingrepresentsthecurrentbottleneckforEuropeanturbinesupply,butbothneedarapidexpansiontomeetdemandinthisscenario.Offshorewind>12MWturbines0-29GW2024TowersOnshore&OffshorewindAll~2.5XMetrictons2025•Centralizedtowersupplyforalargerrangeofturbineshasenabledthesupplychaintoexpandwithgrowingactivity.•Towerdemandwillbedrivenbyarelativelyhighnumberofonshorewindturbines(comparedtooffshorewind)andincreasingoffshorewindactivityandsizes.•Growthisexpectedtoaccelerateinthesecondhalfofthedecade,creatinganadditionalneedforexpansion.FoundationsOffshorewindMonopiles~12XMetrictons2024-2025•MonopileswillremainthemostpopularconceptinEurope,andwithrapidgrowthinactivityandturbinesizesinoffshorewind,manufacturingmustbescaledupquicklywithinthelargestmonopilesegments.•JacketmanufacturingcapacitylessconstrainedthankstoO&Gindustry.•Floatingfoundationmanufacturingmustbeindustrialized.Today,itischaracterizedbypilots,demosandpre-commercialprojectswithone-offmanufacturingandfewunits.Fromthissmallbasis,manufacturingcapacitymustgrowsubstantiallytowardstheendofthedecade.Othergrounded~7XMetrictonsNoneFloating~23XMetrictons2024WTIVsOffshorewindTotalmarket~7.5XVesselyears2024-2025•Strongfleetadditionsinrecentyearshaveputsupplyinastrongpositiontocoverdemandinthenexttwotothreeyears.Increaseddemandinthesecondhalfofthedecade,primarilyinthelargestturbinesizerangeswillputpressureonsupply.•AglobalfleetandincreasingdemandoutsideEuropewilllikelypullsupplyoutofEurope,worseningthesupply-demandbalance,withnewunitsforecasttobeneeded.•Anincreasingshareofdemandinthe15-20MWrangetowards2030willalsodriveaneedfornewunits,asthefleetofvesselscapableofinstallingtheseunitsiscurrentlylimited.>12MWturbines0-25vesselyearsTableA:Keyfindingssummary,selectedpartsofthesupplychainuniquetothewindindustry55ContactsRystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023AppendixAlexanderDobrowenFløtreVP&HeadofOffshoreWindResearch,RystadEnergyalexander.flotre@rystadenergy.comGlennBuchanPartner&CommercialDirectorEMEA,RystadEnergyglenn.buchan@rystadenergy.comPhilipColeDirectorofIndustrialAffairsPhil.Cole@windeurope.orgJoachimKjendlieVP&HeadofCopenhagenOffice,RystadEnergyjoachim.kjendlie@rystadenergy.com67ScopeofthereportandapproachRystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023IntroductionSource:RystadEnergyresearchandanalysisScopeTheaimofthisreportistoassessthestateoftheEuropeanwindsupplychainanditsabilitytosupportambitiousEuropeanwindenergycapacitytargetstowards2030.TheoutsetoftheanalysisisWindEurope’s2030TargetsScenariopresentedinitsreport“WindenergyinEurope2022–Statisticsandtheoutlookfor2023-2027”publishedinFebruary2023.ThescenariodescribesthenecessaryEUwindcapacityadditionstowards2030toreachthetargetssetintheREPowerEUplan,andthoserequiredfornon-EUEuropeancountriestoreachtheircapacityandclimatetargets.RystadEnergyhasusedthiscapacityoutlooktoestimatethedemandforcomponents,servicesandmaterialsalongthewindsupplychainandcomparethistoexistingsupplycapacitiesinEuropetoidentifypotentialbottlenecks,expansionneeds,andtheurgencyofthenecessaryexpansions.Assuch,thereportcanberegardedasa“what-would-it-take”analysisoftheEuropeansupplychain’sabilitytosupportEurope’swindenergyambitionstowards2030.Itisimportanttonotethatthe2030TargetsScenarioisatheoreticalone,assumingagradualincreaseininstalledcapacityperEuropeancountry,accordingtotheir2030ambitionsforonshoreandoffshorewind,respectively.Itdoesnotconsideractualprojectsinthepipeline,orwhethertheleadtimesforeachcountry’scapacityadditionsarefeasible.Thus,forsomecountriesthecapacityadditionsmayinrealitybehigherorlowerintheshort-term,andviceversainthelongerterm.Onaverage,RystadEnergyseesitlikelythatactualshort-to-mediumtermcapacityadditionsfallshortofthetheoreticalforecastinthisscenario,especiallyforoffshorewind,duetolonglead-times.Thiscouldpotentiallyaddpressuretotherequiredcapacityadditionsinthelongertermiftargetsaretobereached,whichwouldaddtotheneededsupplychaincapacitiesduringthesecondhalfofthe2020s.AnotherimportantbackdropisthefocustoincreaseEuropeanindependence,notonlyinenergy,butalsofromasupplychainandmaterialsourcingperspective.Assuch,thefocusinthisreportisprimarilyonEuropeansupplyanditsramp-upneeds,andtoalesserextentontheneed,orability,tosolvebottlenecksthroughcontinued,orincreased,imports.Consideringthechallengingtaskofbalancingrenewableenergytargetsandapredominantlydomesticsupplyofcomponents,servicesandmaterials,weintroduceatrilemmaframework,describingthebalancebetweenreliability,affordabilityandsustainability.Thisisreferencedthroughoutthisreport,whereapplicable.Part1describesthecurrentstatusoftheEuropeanwindmarket,globalenergyandcommoditymarketsandthegeneralsupplychain.Recentpolicies,trademeasuresandtheirimpactsarediscussed,settingthesceneforquantifyingEurope’sabilitytoreachitsambitiouswindenergytargets.Part2providesanoverviewofthefuturesupplyanddemandbalanceforthemaincomponentsandrawmaterialsinthewindenergysector.Wequantifysupply-demandbalancesbasedonthe2030TargetsScenarioforkeypartsoftheuniquewindsupplychain,includingturbines,towers,foundations,andwindturbineinstallationvessels(WTIVs).Inaddition,wediscussthestatusofotherpartsofthewidervaluechain,includingcables,transmissionandgridinfrastructure,labor,othervesselsegments,ports,andfloatingwind.Lastly,weanalyzethematerialsusedinwindenergy,theexpectedEuropeandemandinthe2030TargetsScenario,andassessthestatusandsupplyofselectedcriticalorstrategicallyimportantmaterials.Part3includesWindEurope’spolicyrecommendations,basedonRystadEnergy’sfindingsinthisreport.ApproachWeuseWindEurope’s2030TargetsScenarioasanexogenousfactor,servingastheoutsetofouranalysis.Throughoutouranalysis,RystadEnergyleveragesitsbroadportfolioofdatabases,coveringonshoreandoffshorewindfarms,manufacturingfacilitiesforturbines,foundations,towersandcables,vesseldemandandsupplyfromoilandgasandoffshorewind,energymaterials,andmuchmore.Demandforcomponentsandservicesismodelledbasedonanalysisofexistingprojectdata,leveragingRystadEnergy’sin-houseproject-by-projectdatabasesforonshoreandoffshorewindfarms;industryknowledge;andexpectedtechnologytrendsforonshoreandoffshorewind.Supplyforcomponentsandservicesisbasedonourbottom-up,facility-by-facilityresearch.Weuseannouncedmanufacturingcapacitiesbyfacilitiesandmanufacturers,andfiguresreportedbysuppliersregardingcapacitiesbytechnology,geography,andmore.Supplyismeasuredbasedonbothcurrentcapacitiesandannouncedexpansions.Supply-demandbalancesaredeterminedbasedonthemodeleddemandandidentifiedsupplyfromthetwoapproachesabove.MaterialdemandisestimatedbasedonRystadEnergy’sextensiveenergymaterialmodels,applyingmaterialintensitiespercomponentsandgigawattstoWindEurope’s2030TargetsScenariocapacityoutlookandtheresultingcomponentdemandmodeledbyRystadEnergy.RystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023dEnergydEnergyPhilipColeDirectorofIndustrialAffairsPhil.Cole@windeurope.orgrgy78Theenergytrilemmareferstofindingabalancebetweentheoften-conflictingchallenges:ensuringenergyreliability,affordabilityandsustainability.Reliabilityreferstowhetheracountryorentityhasanuninterruptedavailabilityofe.g.,energy.Shortterm,thiscouldmeananenergysystemthatcandeliverenergytosuddenchangesindemandorpartofthesupply.Longterm,thismeansenergysecurityintermsofenergyresources.Affordabilitymeansaffordableenergythatisaccessibletoeveryone.Sustainabilityreferstoenergyproductionthatdoesnothaveanegativeeffectontheplanetforfuturegenerations,bothintermsofemissionsandhumanencroachment.Theelementsintheenergytrilemmaareuniversalandwillberelevantforthedevelopmentofothercommoditiesaswell.Historically,thefocusbetweentheelementsofaffordability,sustainabilityandreliabilityhasshifteddependingontheenergyclimate.Aftertheoilmarketdownturnin2014,thefocuswasoncuttingcostinthecorrectedenergymarket.Afterthis,thefocusonenergytransitionanddecarbonizationofenergygainedmomentum.Theenergyindustryisstillundergoingfundamentalchangewithanincreasedemphasisonrenewableenergysources,efficiencyandemissionreduction.TheCovid-19pandemicandRussia’sinvasionofUkrainehaveservedasareminderoftheimportanceofreliablesourcesofenergysupply.Thefocusonenergysecurityhaslednationstoformnewenergypartnershipsandreplacetraditionalsuppliers.InEuropethishasacceleratedtheenergytransitionleadingtheregiontobecomingindependentofRussiangas.Thisisadevelopmentthatisexpectedonthecomponentmanufacturingandmaterialssideaswell,especiallyconnectedtotheenergytransition.Thedevelopmentsofthesupplychainandmaterialsisexpectedtohappenwithintheframeofthetrilemma.Theaffordability,sustainabilityandreliabilityofacomponent,serviceormaterialdecidestheirrespectiverelevance.Ifapartofthesupplychainisnotbalancedacrosstheelementsofthetrilemma,itislikelyitwillbereplacedasnewtechnologies,componentsandmaterialsareintroducedtothemarket.Thetrilemmabetweenreliability,affordabilityandsustainabilityRystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023IntroductionSource:RystadEnergyresearchandanalysisSustainableAffordableReliableWhereweshouldbeEnergytransitionfocusfrom~2018Costfocusinrepricedmarkets2015Ukraineinvasion2022ThesamethreeelementsareasimportantfromasupplychaindevelopmentandmaterialperspectiveTheenergytrilemmaillustratesthebalancebetweenaffordability,sustainabilityandreliabilityinthegeneralenergysystem……andliketheenergysystem,itshouldbeaffordable,sustainableandreliable…Whereweshouldbe…soshouldthesupplyofcomponentsandmaterialsSustainableAffordableSustainableAffordableReliableReliableFigure1:Illustrationofthetrilemmaframework55ContactsRystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023AppendixAlexanderDobrowenFløtreVP&HeadofOffshoreWindResearch,RystadEnergyalexander.flotre@rystadenergy.comGlennBuchanPartner&CommercialDirectorEMEA,RystadEnergyglenn.buchan@rystadenergy.comPhilipColeDirectorofIndustrialAffairsPhil.Cole@windeurope.orgJoachimKjendlieVP&HeadofCopenhagenOffice,RystadEnergyjoachim.kjendlie@rystadenergy.com89Figure2:ManufacturingfacilitiesformainwindpowercomponentsinEuropeWindmanufacturingfacilitiesinEuropeRystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023IntroductionFoundationinFigure2referstooffshorewindfoundationbasesonly,onshorewindfoundationbasesarenotincludedinthismap.Source:RystadEnergyresearchandanalysisEuropeisoneoftheregionsintheworldwiththelargestmanufacturingcapacityforwindpowercomponents.Europehasaninterconnectedsupplychain,astheEuropeanUnionFreeTradeAgreementhelpsthemovementofgoodsacrossmemberstates’borders.NoteworthyEuropeancountriesinthewindsupplychainincludeGermany,SpainandDenmark,allofwhichhavesignificantactivitylinkedtoproducingthemaincomponentsofwindturbines–blades,nacelles,andtowers.Inrecentyears,Francehasalsoemergedasoneofthekeycountries,withnewbladeandnacellemanufacturingplants.Foroffshorewindfoundations,keyproducersincludetheNetherlands,Germany,andDenmark.Unsurprisingly,thesecountriesarealsoamongtheleadersintermsofinstalledcapacityforoffshorewindinEurope.Mostofthesefacilitiesareinportcities,facilitatingseatransport.Weexpectthistrendtocontinueasmoremanufacturingfacilitiesproducingoffshorewindcomponentswillbeadded.Forcablemanufacturing–mediumvoltageand(extra)highvoltage–activityisquitedistributed,withcontributingcountriesincludingItaly,France,theUK,Poland,Norway,andSweden.Notably,thecableproductionfacilitiesinFigure2mayalsoproducecablesforHVDCinterconnectorsandoilandgaselectrification.Figure3onthenextpageillustratesthecomplexityaprojectmightencounterwhengettingallthesupplychaincomponentsinplace,shownusingtheBeatriceoffshorewindprojectasanexample.Theconstructionofthewindfarminvolved10suppliersand6countriessupplyingthemaincomponents.Onehighlightisthatittook6suppliersjusttodeliverthefoundations,andthemainpartsoftheturbines,thebladesandnacelles,weremanufacturedindifferentcountries.Theillustrationalsoshowstheimportanceofanefficientshippingsystemtodeliverthousandsofcomponentsandsub-components.RystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023dEnergydEnergyPhilipColeDirectorofIndustrialAffairsPhil.Cole@windeurope.orgrgy910Figure3:SupplychainsystemillustrationfortheBeatriceoffshorewindfarmintheUKRystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023IntroductionSource:RystadEnergyresearchandanalysisSifRotterdam,NetherlandsSifdeliveredashareofthepilesforthejack-upfoundations.SiemensGamesaCuxhaven,GermanySiemensGamesaproducedthenacellesfortheBeatriceprojectattheCuxhavennacelleplant.BladtIndustriesLindø,DenmarkBladtprovided30ofthe84jacketsfortheproject.ThesewereproducedandassembledattheirfacilityinLindø,andthentransportedbybargestotheBeatricewindsite.EEWRostock,GermanyEEWdeliveredashareofthepilesforthejack-upfoundations.TheyweretransportedtoVlissingenbeforefurthershipmenttothesite.NexansHalden,NorwayNexansprovidedtheoffshoreexportcablesfortheproject.TheyweretransportedfromHalden,Norway,tothesitebyvesselCSNexansSkagerrak.SmuldersNewcastle,UKSmuldersbuilttheupperpartsoftheir28contractedjacketsinHobokenandshippedthemtoitsfactoryinNewcastleforassembly.SiemensGamesaHull,UKSiemensGamesaproducedallthewindturbinebladesatitsfacilityinHull.ThebladesweretransportedtoNiggPort.PortofNiggNigg,UKTheportofNiggwasusedasmarshallingportduringtheturbineinstallationphase.Allturbinecomponentsweredeliveredherebeforetheinstallationforassemblyorstorage.TheT&IvesselPacificOrcacouldtakefiveturbinesatatimeoutofthemarshallingport.CSWindUKMachrihanish,UKThewindturbinetowerswereproducedbyCSWindUKoncontractforSiemensGamesa.TheywerethenshippedtoNiggmarshallingportforassembly.SiemensDresden,GermanySiemenswonthecontractforthegridaccesssolution,includingtwooffshoretransformermodules.ThesewereproducedinDresdenbeforefurtherassemblyinRotterdam.SmuldersHoboken,BelgiumSmuldersbuilttheupperpartsoftheir28contractedjacketsinHobokenandshippedthemtoitsfactoryinNewcastleforassembly.BiFabMethil,UKBiFabproduced26ofthe84jacketsfortheproject.18ofthelowerpartofthefoundationsweresentfromSmulders’yardinNewcastle.Beatrice,a588MWoffshorewindfarmcommissionedin2019.55ContactsRystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023AppendixAlexanderDobrowenFløtreVP&HeadofOffshoreWindResearch,RystadEnergyalexander.flotre@rystadenergy.comGlennBuchanPartner&CommercialDirectorEMEA,RystadEnergyglenn.buchan@rystadenergy.comPhilipColeDirectorofIndustrialAffairsPhil.Cole@windeurope.orgJoachimKjendlieVP&HeadofCopenhagenOffice,RystadEnergyjoachim.kjendlie@rystadenergy.com1011051015202530354045502018201920202021202220232024202520262027OnshorewindOffshorewindCentralScenario2030TargetsScenarioWindEuropescenariointroductionandcomparisonNote:ScenariosdonotconsideranywindcapacityinstalledinUkraine,BosniaandHerzegovina,Montenegro,Kosovo,NorthMacedonia,RussiaandAlbaniabetween2022and2030.Source:WindEuropeRystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023IntroductionFigure4:AnnualwindinstalledcapacityinEuropebyWindEuropescenario,2018-2027Gigawatts(GWAC)ThedemandscenariousedinthisreportreferstoWindEurope’s2030TargetsScenario,presentedinthe“WindenergyinEurope2022–Statisticsandtheoutlookfor2023-2027”reportpublishedinFebruary2023.Inthisoutlook,WindEuropepresentstwoscenariosofdevelopmentforthewindpowercapacityinEurope:•WindEurope2030TargetsScenario:thisisthedemandscenariousedinthisreport.ItrepresentsatheoreticalinstallationraterequiredtomeettheREPowerEUtargetandthe2030targetsofnon-EUcountries,namelytheUK,Turkey,Norway,SwitzerlandandSerbia.Theinstallationratebeginsattheinstallationslevelfrom2022andincreasestoapeakgrowthratebetween2026and2027,showingtheexpectedramp-upininstallationsoverthenextfewyears.Annualinstallationscontinuetoincreaseafter2027,albeitataslowerrate(includinganallowanceforexpecteddecommissioning),leadingtothe2030targetsbeingmet.Inthisscenario,Europeneedstoinstall145GWoverthenextfiveyearstostayontarget.IntheEU,117GWwouldneedtobeinstalledfrom2023-27tostayontracktomeetingtheREPowerEUtargetsfor2030.•WindEuropeCentralScenario:thisscenariolaysoutWindEurope’sbestestimateforinstalledcapacityinEuropeoverthenextfiveyears,includinganylikelypoliticaloreconomicdevelopmentswhichcouldaffectinstallations.ItconsidersthelatestdevelopmentsinEUregulation,nationalpolicies,announcementsofsignedpowerpurchaseagreements,projectdevelopmenttimelinesandtheabilityofwinddeveloperstosecurefurthercapacityinupcomingauctionsandtenders.Inthisscenario,Europewillinstall129GWfrom2023to2027,withanaverageinstallationrateof25.8GWperyear.IntheEU,installationsof98GWbetween2023and2027areexpected,atanaveragerateof19.6GWayear.Thisissignificantlylessthantheaverageinstallationrateof31GWperyearbetween2023and2030,whichisrequiredtomeetEurope’senergyandclimatetargets.RystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023dEnergydEnergyPhilipColeDirectorofIndustrialAffairsPhil.Cole@windeurope.orgrgy1112010203040506070202220232024202520262027202820292030OnshorewindOffshorewindWindEurope2030TargetsScenarioNote:ExcludesUkraine,BosniaandHerzegovina,Montenegro,Kosovo,NorthMacedonia,RussiaandAlbania.Source:WindEuropeRystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023IntroductionFigure5:AnnualwindinstalledcapacityinEurope,WindEurope2030TargetsScenarioGigawatts(GWAC)AsthisreportaimstoassessEurope'sabilitytomeetits2030targets,theWindEurope2030TargetsScenarioisusedastheoutsetofsupplychainconsiderations,withatheoricalinstallationrateneededtomeetthedifferentambitions.WindEuropereports255GWofinstalledwindpowercapacityinEuropeattheendof2022,including205GWintheEU.TheWindEurope2030TargetsScenariocombinesboththeambitionssetinREPowerEUanddifferentnationaltargetsforcountriesoutsidetheEU.UnderREPowerEU,theEU'sbindingrenewableenergytargetwouldbeincreasedto45%oftotalenergydemand.AccordingtotheEuropeanCommission'sassessments,thiswouldmeanarevisedtargetof510GWofwindpowerby2030.However,WindEuropeestimatesthat440GWwouldbesufficientfortheEUtomeetitstarget.WhiletheCommission'sassessmentisbasedoncapacityfactorsreflectingcurrentlyoperatingwindfarms(27%foronshorewindand32%foroffshorewind),WindEuropeusescapacityfactorsreflectingrecenttechnologicalimprovements(35%foronshorewindand45%foroffshorewind).ThisallowsWindEuropetodevelopascenariofor2030aimingataninstalledcapacityof440GW.Tomeetthistarget,theEUneedstoinstallonaverage31GWperyeartowards2030.RegardingtherestofEurope,thescenarioconsiderstheotherEuropeancountrieshavingmade2030commitmentsforwindenergy.ThisincludestheUK,whichhasa2030targetof50GWforoffshorewindand22GWforonshorewind.Also,Turkeyhassetawindenergytargetof18.1GWby2030,assumedtobeonlyonshore.WhileNorwayhasnotyetseta2030target,WindEuropeestimates12GWofinstalledcapacityby2030.Serbiahassetatargettoincreaseinstalledwindpowercapacitytenfoldby2030whichwouldsuggestatargetof3.5GW,accordingtoWindEurope.Finally,WindEuropeestimatesthatSwitzerlandwouldneedtohavereached240MWofinstalledcapacityby2030tobeontrackwithits2035target.55ContactsRystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023AppendixAlexanderDobrowenFløtreVP&HeadofOffshoreWindResearch,RystadEnergyalexander.flotre@rystadenergy.comGlennBuchanPartner&CommercialDirectorEMEA,RystadEnergyglenn.buchan@rystadenergy.comPhilipColeDirectorofIndustrialAffairsPhil.Cole@windeurope.orgJoachimKjendlieVP&HeadofCopenhagenOffice,RystadEnergyjoachim.kjendlie@rystadenergy.com1213PolicyhasalwaysbeenthedrivingforcebehindthedevelopmentofrenewableenergyinEurope,fromtheincentiveschemesthatkick-startedthefirstplanttothemostrecentchallengestobemetthroughpublicsupport.Since2019,whentheEUpresentedtheEuropeanGreenDealasits2050roadmaptocarbonneutrality,renewableenergyhasbeenattheheartofitspolicydiscussions.TheEUthenintroducedtheFitfor55packagein2021,whichincludedasetofmeasurestoachievetheambitiousGreenDeal.OneofthekeyproposalsofthepackagewastheEU-widetargetofatleast40%renewableenergysourcesintheoverallenergymixby2030.Later,whentheongoingenergycrisishitEurope,theEuropeanCommissionpublishedtheREPowerEUplan,whichaimstoreducetheEU'sdependencyonRussianfossilfuelsandacceleratetheenergytransition.ThemaintakeawaysfromtheMay2022packageforrenewablesincludedtheincreased2030targetfrom40%to45%oftotalenergysupply,doublingsolarPVcapacityby2025andreaching600GWofinstalledcapacityby2030,andsimplifyingthepermittingprocessesforrenewableenergyprojects.Exhaustivebureaucraticpermittingprocessesmeansthatnewprojectscantaketimetobeapproved.InmostEUcountries,ittakesfiveyearsonaverageforarenewableenergyprojecttosecureallnecessarypermits.Thus,speedinguptheprocessiscrucial.However,thesenewcommitmentscanonlymoveforwardoncetheupdatedRenewableEnergyDirective(RED)isapprovedbyallmemberstates.AstheupdatedREDapprovalcouldtakemorethanayear,theindustrycontinuedover2022tocallforconcretemeasurestosolvepermittingbottlenecks.Ontheheelsofaneventfulyear,theEUmadeitaprioritytoaddressrisingelectricitypricesinSeptember2022whenitannouncedanemergencymarketinterventionthatintroducedarevenuecapforrenewableenergyproducers.Facedwiththeurgentneedtoacceleraterenewableenergydeployment,theEUfinallyhailedon9Novembershort-termmeasurestoaddressthewell-knownpermittingchallengeswithyetanotherregulation.TheEUadoptedtheassociatedCouncilRegulationon22December2022tospeedupthepermittingprocessforrenewableenergyprojectsacrosstheEU,asatemporaryandshort-termresponsetotheenergycrisis.Morerecently,theEUpresentedonFebruary2023theGreenDealIndustrialPlan(GDIP),aimingtotackletheremainingchallengesfortheenergytransition.InMarch,theEuropeanCommissionreleasedthefirststepsofitsplanaimingtofinallyaddresstheenergytrilemmaofreliable,affordable,andsustainableenergy.TheGDIPisseenasthefinalpieceofEuropeancleantechnologypolicies,followingalongseriesofplans,newtargets,andemergencymeasures.Theannouncedpoliciescameintheformofthreemainproposals:theEUelectricitymarketdesignreform,theCriticalRawMaterialsAct,andtheNetZeroIndustryAct.TheEUisnotaloneintacklingtheenergycrisis:nationalinitiativeshavealsobeenannouncedacrossEurope.GermanypassedanewOnshoreWindLawin2022,settingacommissioningtargetof10GWperyearfrom2025andaimingtosolvepermittingissues.Franceapproveditsso-calledRenewableAccelerationLawin2023,whichaddressesadministrativebottlenecks.Norway,whichisbettingonoffshorewindduetosocialoppositiontoonshorewind,setatargetlastyearof30GWofawardedoffshorewindleasesby2040.TheEsbjergandMarienborgDeclarationsunderlinedtheambitionoftheNorthSeaandBalticSeacountriestodeveloptheirinstalledoffshorewindcapacitymorerapidlybysettingtargetsandstrengtheningpoliticalcollaboration.Additionally,severalcountriesarestilldevelopingroadmaps,conduciveregulationsortargetstoacceleratetheirnationalrenewableenergydevelopment.WhileEuropehasmadesignificantprogressinrecognizingchallenges,settingambitions,andcallingforrelevantpolicypackages,muchmoreneedstobedonetoaddresssupplychainchallengesandthelackoftargetedfinancialsupport.RystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023CurrentstatusofthemarketSource:RystadEnergyresearchandanalysisPoliciesasthemaindriverofrenewableenergyinEuropeRystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023dEnergydEnergyPhilipColeDirectorofIndustrialAffairsPhil.Cole@windeurope.orgrgy1314Source:RystadEnergyresearchandanalysisRystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023CurrentstatusofthemarketFigure6:TimelineofEUpoliciesforrenewableenergydevelopmentGreenDealCarbonneutralityintheEUby2050Fitfor55Targetingatleast40%renewableenergyintheoverallenergymixby2030REPowerEUIncreasethetargetfor2030from40%to45%EmergencymarketinterventionRevenuecaponinframarginalpowerproducersEmergencyCouncilregulationShort-termlawtosimplifypermittingNov2019July2021May2022Sept2022Dec2022March20232H2023ElectricitymarketdesignreformCriticalRawMaterialsActNetZeroIndustryActEuropeanSovereigntyFundGreenDealIndustrialPlanUkraineinvasionbyRussiaUSInflationReductionActPermittingbottleneckInflationcrisisSupplychaindisruptionsEnergycrisis55ContactsRystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023AppendixAlexanderDobrowenFløtreVP&HeadofOffshoreWindResearch,RystadEnergyalexander.flotre@rystadenergy.comGlennBuchanPartner&CommercialDirectorEMEA,RystadEnergyglenn.buchan@rystadenergy.comPhilipColeDirectorofIndustrialAffairsPhil.Cole@windeurope.orgJoachimKjendlieVP&HeadofCopenhagenOffice,RystadEnergyjoachim.kjendlie@rystadenergy.com14150100200300400500600Feb-21Apr-21Jun-21Aug-21Oct-21Dec-21Feb-22Apr-22Jun-22Aug-22Oct-22Dec-22Feb-23FranceSpainItaly(IT-NORTH)UnitedKingdomGermanyNordicsystemTheenergycrisisinEuropeSource:RystadEnergyPowerCubeRystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023CurrentstatusofthemarketFigure7:MonthlyaveragespotpriceinselectedEuropeanmarketsEUR/MWhTherecordpowerpricesoverthepastyearclearlyemphasizetheenergycrisis.InAugust2022,powerpricesreachedrecord-highlevels,averagingover€500/MWh,andrecorddailyandweeklypricesexceeding€700/MWh.Morerecently,thepricesinEuropehaveeased,comingbacktopre-crisislevels.Thishasbeenenabledbysoftfundamentals,includinggoodweatherconditions:lowerdemandduetomildweather,andhighrenewableenergyoutput.Fundamentally,thelowavailabilityoftheFrenchnuclearfleetcombinedwiththelowlevelofhydropowerreservoirsputpressureonthecapacityofproducerstoswitchtocoalpowergeneration.Asaresult,gashasbeenthemarginalpricesetterformostofthepastyear,andthehighgaspricescausedbythewarinUkrainehaveresultedinrecordenergybillsandincreasedfinancialstressforconsumers.Manytimes,highrenewableenergypowergenerationhasbroughtrelieftotheenergysystemandtotheconsumers.ThishashighlightedasignificantshiftinthewaytounderstandtheroleofrenewablesintheEuropeanpowersystem:notonlyarewindandsolarPVrequiredtoachievetheEuropeandecarbonizationtargets,butalsotosecureareliablepowersupplyforconsumersandtoeaseenergybills.TheEuropeanindustryhasalsobeenaffectedbyrisingenergyprices–whileinflationhasputwindturbinesuppliersunderseverepressure,risingenergybillshavealsocontributedtolowermargins.RystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023dEnergydEnergyPhilipColeDirectorofIndustrialAffairsPhil.Cole@windeurope.orgrgy151605010015020025030035040045020192020202120222023CobaltCopperLithiumNickelRareearthelementsRawmaterialinflationSources:RystadEnergyresearchandanalysis;InternationalMonetaryFund,January2023RystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023CurrentstatusofthemarketFigure8:Globalpricesforselectedcriticalmaterialsinlow-carbonindustriesIndexed2019=100Europedidnotonlyfaceanenergycrisisin2022,butalsotheglobalinflationcrisis,affectingcriticalmaterialsfortheenergytransition.Themaindriverwasacombinationofdifferenteconomicandgeopoliticaleventsacrosstheglobe.TheendoftheCovid-19crisisinmostregionsledtoastrongactivityrecoveryinkeysectorssuchastheenergytransitionrelatedindustries,andthusincreaseddemandforcriticalrawmaterials.Whilemostregionswererecoveringfromthecrisis,Chinafacedanothermajorwave,resultinginrestrictionsonitseconomy.AsChinaremainstheworld'slargestsupplierofmostofthesematerials,theslowdowninitseconomyhadasignificantimpactonglobaltradeflowsofmaterialsandledtoproductionshortages.Russia’sinvasionofUkrainecreatedanenergycrisis,puttingfurtherpressureonmaterialproducers.AnotherconsequencehasbeensanctionsonexportsofkeymaterialsproducedbyRussia.Asaresult,sharppriceincreaseshavebeenrecordedformaterialscriticaltotherenewableenergyindustry,suchascobalt,nickelandrareearthelements.Overall,thepastyearhashighlightedaworryingscenarioforcriticalrawmaterialssupply–duetothelackofgeographicdiversificationintheproductionofeachmaterial,theirreliabilityandaffordabilityareconstantlythreatenedbyanyeconomic,politicalorgeopoliticaluncertainty.ThisvulnerabilityisevenmoretrueforEurope,whichisheavilydependentonimportedrawmaterials,oftenfromquasi-monopolisticsuppliersinthirdcountries.Inthisregard,rawmaterialsaretheoilandgasoftheenergytransition,andinthecontextofthecurrentwarinUkraine,therecouldbeasimilaritybetweenRussia'suseofenergyasaweaponandtheblockingofrawmaterialsuppliespotentiallyusedtoimpedeEurope'senergytransition.Mitigatingtherisksassociatedwithaccesstocriticalrawmaterialsthereforebecomescrucial.55ContactsRystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023AppendixAlexanderDobrowenFløtreVP&HeadofOffshoreWindResearch,RystadEnergyalexander.flotre@rystadenergy.comGlennBuchanPartner&CommercialDirectorEMEA,RystadEnergyglenn.buchan@rystadenergy.comPhilipColeDirectorofIndustrialAffairsPhil.Cole@windeurope.orgJoachimKjendlieVP&HeadofCopenhagenOffice,RystadEnergyjoachim.kjendlie@rystadenergy.com161770809010011012013020192020202120222023TurbineNacelleTurbineRotorTurbineTowerArrayCableExportCableFoundationGravityBaseJacketSteelMonopilesOffshoreSubstationOnshoreSubstationInflationinthewindindustrySource:RystadEnergyServicePriceInflation–LowCarbondatabaseRystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023CurrentstatusofthemarketFigure9:GlobalservicepriceinflationforselectedwindindustrysegmentsIndexed2019=100Lastyear’spriceinflationinenergyandrawmaterialsledtoasignificantincreaseinpricetagsforkeycomponentsinthewindindustry,asshownthroughindicesinFigure9,derivedfromRystadEnergy’sdatabaseofdiscreteprices,industryspecificdata,supplierperformanceandmarketresearch.Withinthewindenergyindustry,allsectorshavebeenstronglyaffectedbyinflation:turbines,cables,foundations,andsubstations.Windequipmentmanufacturershavehadtocontendwithrisingrawmaterialpricesandvolatileenergyprices,butalsohighshippingratesoverthepastyear.Turbinecomponentswereamongthemostaffectedbyinflation,followedbythesharpincreaseincableandmonopilecosts.Inaddition,inflationhasnotonlyaffectedkeymaterialsandcomponents,butalsolaborratesandinstallationcosts.Thelabormarkethasbeguntoshowitslimitationsinitsabilitytosustainthepaceofthenecessaryenergytransition,eveninmaturemarketslikeoffshorewindinEurope.Aslabor-intensivesectorsrequirespecifictraining,thelaborshortagecouldbecomeamajorbottleneckforthewindindustryinthecomingyears.Pricesaregenerallyexpectedtodeclinein2023formostlow-carbontechnologiesasglobalsupplychainsnormalizeafterthedisruptionscausedbypreviouslymentionedfactors.Inrecentmonths,freightratesandlowercommoditypriceshaveeasedglobalinflationarypressures,bringinginputcostinflationformanykeymanufacturersinEuropetoitslowestlevelinovertwoyears.However,uncertaintyremainsregardingtheupcomingevolutionofmaterialpricesaslaborshortagespersist,powerpricesremainvolatile,andthereboundinChinesedemandaftertheendofthezero-covidpolicycouldputadditionalpressureontheglobalmarket.Inaddition,whilecostsforinputssuchassteelhavesurpassedtheirpeaksandmostcommoditypricesareexpectedtodeclinefrompastlevels,theremaynotbeequivalentreliefforcomponentpricesastheeffectsofcostinflationpersistandstrugglingsuppliersattempttorecoupprofitmarginsthroughpriceincreases.RystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023dEnergydEnergyPhilipColeDirectorofIndustrialAffairsPhil.Cole@windeurope.orgrgy1718Windequipmentsuppliers'earningshavebeenseverelyaffectedbycostinflationandsupplychaininstability.Afterasluggishyearwithanemptyorderbookin2020,lastyearbroughtrespiteintermsofneworders.However,theupwardspiralinrawmaterialpriceshasleftwindturbinesuppliersstrugglingtomaintaintheirprofitmargins.Thegrowingsizeofturbinesaddstothematerialusageperturbine,makingrawmaterialinflationevenmoreimpactful.LookingatthecumulativerevenuesofthethreelistedEuropeanturbinesuppliers(VestasWindSystems,NordexSEandSiemensGamesa),an11%year-on-yeardeclineintheirrevenuesin2Q2022anda16%dropin3Q2022canbeobserved.Theonshorewindsectorrevenueshaveprovenmoreresilientthantheoffshorewindsectorinrecentmonths.Inaddition,suppliers’marginshavealsobeenseverelyhitbytheinflationandsupplychaininstability.Fundamentally,asinputpricesskyrocketed,EBITDAmarginssufferedinthefaceoflocked-inpricesforfinalgoods.ThecombinedEBITDAofthethreeEuropeanwindturbinesuppliersturnednegativeinthefirstthreequartersof2022,resultinginanegativemarginof6%inthefirstquarter.Duringthelastquarteroftheyear,supplierrevenuesandmarginsstartedtoreturntopositivelevels.However,allannouncednegativefinancialresultsforthefullyear.Aswindturbinemanufacturersbegintoshedtheirlocked-inpricecontracts,mostarealreadybeginningtoraisetheiraveragesellingpricestoshoreupprofitmarginsandshiftthecostpressureontodevelopers.SiemensGamesa,forexample,hasannouncedanincreaseinitsaveragesellingpriceforonshoreturbinesfrom€0.83millionperMWinthefourthquarterof2022to€0.95millionperMWinthefirstquarterof2023.Despitethesoaringwindpowerdemand,itisnotyetclearwhatcostsituationdeveloperswillfaceincomingyears.Windenergysuppliers'financialresultsRystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023CurrentstatusofthemarketTheselectedpeergroupincludesVestasWindSystems,NordexSE,andSiemensGamesa.Sources:RystadEnergyresearchandanalysis;Companiesfinancialreporting.Figure10:RevenuechangesforselectedwindturbinesuppliersPercentagechangeFigure11:AdjustedEBITDAandEBITDAmarginforselectedwindturbinesuppliersMillionEURPercentage-60%-40%-20%0%20%40%1Q2Q3Q4Q1Q2Q3Q4Q1Q2Q3Q4Q202020212022QuarterlychangeYearlychange-8%-4%0%4%8%12%-400-20002004006008001Q2Q3Q4Q1Q2Q3Q4Q1Q2Q3Q4Q202020212022AdjustedEBITDAAdjustedEBITDAmargin55ContactsRystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023AppendixAlexanderDobrowenFløtreVP&HeadofOffshoreWindResearch,RystadEnergyalexander.flotre@rystadenergy.comGlennBuchanPartner&CommercialDirectorEMEA,RystadEnergyglenn.buchan@rystadenergy.comPhilipColeDirectorofIndustrialAffairsPhil.Cole@windeurope.orgJoachimKjendlieVP&HeadofCopenhagenOffice,RystadEnergyjoachim.kjendlie@rystadenergy.com1819InMay2022,theEuropeanCommissionreleasedtheREPowerEUplantoaddresstheenergycrisis.Theplan,nowwellknown,aimstoreducetheEU'sdependenceonRussianfossilfuelsandacceleratethetransitiontocarbon-intensiveenergysources.Theplanfocusesmainlyonsettingnewtargets,especiallyforthedevelopmentofsolarPVanddiversificationofgassupply.Windpowerwasbarelymentioned,withinitiallynoofficialtargetfor2030despiteanewambitionforthewideshareofrenewablesintheenergymix.REPowerEUdefinesthefollowingtargetsfortherenewableenergyindustry:•Increasethetargetforrenewablesto45%oftotalenergysupplyby2030•DoubleinstalledcapacityofsolarPVby2025,andreach600GWby2030•Eliminateredtapeforrenewableenergyprojectpermitting•Produce10millionmetrictonsofrenewablehydrogenandimportanadditional10millionmetrictonsby2030AccordingtotheWindEurope2030TargetsScenario,anestimated440GWofwindinstalledcapacitywouldbeneededtodelivertheREPowerEUtarget,combinedwiththetargeted600GWofsolarPV.Basedonforward-lookingcostassumptionsandWindEurope’sestimatesontheadditionalcapacityneeded,RystadEnergyestimatesthatatotalinvestmentof$960billionwouldberequiredbetween2023and2030tomeetthetarget.Whilethecostassumptionsconsidersalearningcurvefordifferenttechnologies,thelargeupcomingdemandfornewcapacitycouldputadditionalpressureontherelatedsupplychainsandleadtofurthercostincreasesandadditionalspendingneeds.Incontrast,theEuropeanCommissionhasestimatedanadditionalinvestmentof€210billionbetweenMay2022and2027toachieveREPowerEUandphaseoutRussianfossilfuelimports.Whilethisamountdoesnotsuggestfundingtheentirerenewableenergydevelopment,itisintendedtosupportthevariouschannelsoftheplan,includingrenewableenergy,hydrogeninfrastructure,griddevelopmentorenergyefficiency.REPowerEUhasestimatedthatabout€584billionwillbeneededtobeinvestedintheelectricitynetworkbetween2020and2030.Inadditiontoourpreviousestimate,thiscallsintoquestiontheactualcapacityoftheEUtosupportitsownambitions.Overall,theplanwascriticizedforitslackofdetailsonthepathwaytoachievingthenewlyannouncedambitiousgoals.REPowerEUprimarilyannouncedtargetsandacknowledgedchallengesbutdidnottakeconcretestepstowardsaddressingtheongoingadministrativeandsupplychainissues.AnoteonREPowerEURystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023CurrentstatusofthemarketSources:RystadEnergyresearchandanalysis;RystadEnergyRenewableCubeFigure12:REPowerEUpillarsFigure13:ExistingandestimatedneedforsolarPVandwindcapacityGigawatts(GWAC)PhaseoutdependencyonRussianfossilfuelsDiversifyfossilfuelssuppliesAcceleraterenewableenergydevelopmentReduceenergyconsumption01002003004005006007002022203020222030SolarPVWind~$430billioninvestmentneeded~$530billioninvestmentneededRystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023dEnergydEnergyPhilipColeDirectorofIndustrialAffairsPhil.Cole@windeurope.orgrgy1920TheEUentered2023workingtotackletheongoingriskstoitsenergytransitionbylaunchingtheGreenDealIndustrialPlan(GDIP).AlthoughEuropehasmanagedtoovercomewinterdespitetheenergyandinflationcrisis,newchallengesneedtobeaddressed.Europe'smainconcernatpresentissecuringaccesstocriticalrawmaterials,developingitsdomesticproductionandretainingitscleantechindustry.TherearethreemainleversfortheEUtomeetthesechallenges:de-riskingdisruptionsfromothermarkets,solvinghistoricalbottlenecksthroughaconduciveregulatoryframework,anddedicatingfinancialsupport.WhiletheUSInflationReductionActcoulddisrupttransatlantictradeandinvestment,theEUaimstoallowitsdomesticindustrytobenefitandenhanceEU-UScollaboration.ItisunclearatpresenthowEuropeanfirmscouldpotentiallybeexemptfromtheInflationReductionActregulationsintheUS,butifitweretohappen,itwouldonlybeatemporarysolutionascompanieswouldeventuallyhavetorelocatetotheUSafter2025tomeettheconditionssetundertheregulations.And,inthecaseofChina,theEUseesitasessentialtoreducetherisksofunfairpracticesagainstEUcompaniesthroughmeanssuchasForeignSubsidiesRegulations,butwithoutbreakingtieswithakeypartner.Toaddressregulatorybottlenecksandsupplychainchallenges,whichhaveremainedthelargesthold-uptorenewablesdevelopmentinEuropeforyears,theEUproposedtheGDIP.Aspartofit,theimplementationofcentralized‘one-stop-shops’forpermittinghasbeenannounced,whichcouldhelptostreamlinetheprocessifadequateadministrativecapacityisavailable.Whenitcomestosupplychainbottlenecks,Europeisfacinggrowingchallenges.ChinaisdominatingtheentiresolarPVvaluechain,frompolysiliconproductiontocellandmodulemanufacturing.Inaddition,thewindindustrysupplychainneedssimilarsupporttorecoversuppliermarginsandcompetitiveness.ItwouldberelevantfortheGDIPtosetanti-relocationmeasuresfortherenewableenergysupplychainsectorintheformofdirectfinancialsupport,simpletaxbreakmodels,taxcreditsorevenaccelerateddepreciations.TheEuropeanCommissionreleasedon16March2023thefirststepsoftheGDIP.Therecentpoliciescameintheformofthreemainproposals:theEUelectricitymarketdesignreform,theCriticalRawMaterialsAct,andtheNetZeroIndustryAct.TheproposalsstillneedtobeapprovedbytheEuropeanCouncilandParliament,whichcouldresultinchangesandaddresssomeoftheconcernsraisedbytheindustry.Detailsofthepackagesarelistedonthenextpage.GreenDealIndustrialPlan–EU’ssteptowardscleantechsovereigntyRystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023CurrentstatusofthemarketSources:RystadEnergyresearchandanalysis;EUCommissionFigure14:ThefourpillarsoftheEUGreenDealIndustrialPlan55ContactsRystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023AppendixAlexanderDobrowenFløtreVP&HeadofOffshoreWindResearch,RystadEnergyalexander.flotre@rystadenergy.comGlennBuchanPartner&CommercialDirectorEMEA,RystadEnergyglenn.buchan@rystadenergy.comPhilipColeDirectorofIndustrialAffairsPhil.Cole@windeurope.orgJoachimKjendlieVP&HeadofCopenhagenOffice,RystadEnergyjoachim.kjendlie@rystadenergy.com2021Figure15:KeymeasuresoftheMarch2023policypackagescommunicatedbytheEURystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023CurrentstatusofthemarketNote:Offshorewindfarmsthathavegridconnectionstotwoormorecountries.Sources:RystadEnergyresearchandanalysis;EUCommissionGDIPfirstpillar–ConduciveregulationfacilitationNetZeroIndustryAct•ImplementationbyeachMemberStateofanationalauthorityactingasacentralized‘one-stop-shop’forpermitting•PermittingdelayscappedinaccordancewiththepreviousCouncilRegulation•Definitionof‘Net-zerostrategicprojects’tobegrantedprioritystatusinthepermittingprocessandpotentiallygiventheoverridingpublicintereststatus•Frameworkforaccountingsustainabilityandresiliencecriteriawhenawardingprojectsthroughauctions•Implementationof‘Net-ZeroIndustryAcademies’todesigncoursestoensureaproperlyskilledworkforcePolicypackagesRelevantmeasuresfortherenewablesindustryCriticalRawMaterialsAct•DefinitionbyeachMemberStateofanationalauthorityactingasacentralized"one-stopshop"forthepermittingprocessofnet-zerotechnologymanufacturingprojects.Thenationalauthoritywilloverseethecoordination,facilitationanddigitizationofthepermittingprocess•Cappingofthepermittingprocessforthoseprojectsat12monthsforanannualproductioncapacityoflessthan1GW,18monthsformorethan1GW•‘Net-zerostrategicprojects’tobegrantedprioritystatusforpermitting,reduceddelays,andpotentially,theoverridingpublicintereststatus•Frameworkforaccountingsustainabilityandresiliencecriteriawhenawardingprojectsthroughauctions•Implementationof‘Net-ZeroIndustryAcademies’todesigncoursestoensureaproperlyskilledworkforce•IdentificationbytheEUofalistofcriticalandstrategicrawmaterialsforwhichdomesticcapacitiesshouldbeby2030ofatleast(asashareofannualEUconsumption):10%forextraction,40%forprocessing,15%forrecycling•Cappingofeachstrategicrawmaterialdependanceonasinglethirdcountryat65%ofitsannualconsumption,atanyrelevantprocessingstage•PermittingproceduressimplificationforcriticalrawmaterialssupplychainprojectsintheEU•Selectedstrategicprojectswillbenefitfromsupporttoaccessfinanceandshorterpermittingtimeframes(24monthsifinvolvingextractionand12monthsifinvolvingprocessingandrecycling)ElectricityMarketDesignReform•Facilitationofpower-purchaseagreement(PPA)deploymentthroughpublicsupport,suchasgovernmentalfinancialguaranteesforofftakers•Commonframeworkfordirectsupportschemesthroughthetwo-waycontractsfordifference(CfD)mechanism•CombinationofCfDsandPPAsisallowed,andelectricityproducerskeeptherighttoselltheirelectricityonthemerchantmarket•Incentivesfordemandresponseandstoragedeployment•Non-applicationoftheinframarginalelectricityrevenuecapasamarketlong-termfeature•IntroductionofTransmissionAccessGuaranteesforhybridoffshorewindfarmsRystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023dEnergydEnergyPhilipColeDirectorofIndustrialAffairsPhil.Cole@windeurope.orgrgy21220%10%20%30%40%50%60%70%80%90%100%UnidentifiedAustraliaNorthAmericaSouthAmericaAfricaMiddleEastChinaAsiaPacificRussiaEuropeEurope’splaceinglobalmaterialproductionRystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023CurrentstatusofthemarketFigure16:Globalmaterialproductionbyregion,2019Share(%)RecentEuropeanpolicieshaveacknowledgedthatrawmaterialdependenceisamajorrisktoEUsovereigntyintheenergytransition.GlobalsupplyremainsheavilydominatedbyChina,whichistheleadingglobalsupplierfornineofthematerialsanalyzed.Europeremainsunderrepresentedintheglobalmaterialssupplyduetoacombinationoflowreservesandpastmininginvestments.Theeventsofthepastyear–combiningpost-Covid-19shortagesandseveralimpactsofRussia'sinvasionofUkraine–havehighlightedtheneedforEuropetomitigatetherisksofsuchstrategicdependencies.Onaverage,China'sshareofglobalmaterialsproductionisthreetimestheshareofChinesereserves,illustratingbothChina'srapideconomicgrowthandinvestmentinitsminingsector,aswellasthepotentialforgreaterdiversificationintheglobalsupplychain.Chinacontrolsmorethanhalfofthewindproductionprocess,includingrawmaterialproductionandindividualcomponentmanufacturing.ThisdominancecanbenuancedasChinesedomesticdemandmeetsmostofChina'swindproductioncapacity.However,whileChina’spolysiliconsupplydominancehasbeenofmostconcernsofarduetothehugeglobaldemandforsolarPV,potentialgeopoliticalissuesinChinacouldalsostronglyaffecttheglobalwindenergysupplychainbalance.Russiaremainsasignificantproducerofsomeofthematerialsanalyzed,suchassteel,aluminum,nickelorsilicon.Russia'sinvasionofUkrainehasthereforesignificantlyimpactedmaterials’tradeflows.Inresponsetotheinvasion,roughly45countriesaddedtargetedsanctionsagainstRussiaorcommittedtoacombinationofUSandEuropeansanctions.Amongthesanctionedmaterialsrelevanttothewindindustrywerefossilfuels,steel,cement,andplastics.Additionally,afurther35%tariffwasaddedbytheUSonimportsofmetalsincludingcopper,aluminum,lead,silver,iron,andsteel.Thesesanctionsillustratethepotentialdisruptionsthatcouldaffectthecurrentpictureofglobalmaterialsupply.Note:Unidentifiedsupplyreferstoproductionthatisunknownorspreadovertoomanycountries.Steelsupplyincludesprimaryandsecondaryproduction.Zinc,manganeseandnickelincludeprimaryproductiononly.Aluminum,copperandleaddonotincludeproductionfromrecycledmaterials.Source:RystadEnergyresearchandanalysis55ContactsRystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023AppendixAlexanderDobrowenFløtreVP&HeadofOffshoreWindResearch,RystadEnergyalexander.flotre@rystadenergy.comGlennBuchanPartner&CommercialDirectorEMEA,RystadEnergyglenn.buchan@rystadenergy.comPhilipColeDirectorofIndustrialAffairsPhil.Cole@windeurope.orgJoachimKjendlieVP&HeadofCopenhagenOffice,RystadEnergyjoachim.kjendlie@rystadenergy.com2223EuropeanmaterialimportdependencyRystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023CurrentstatusofthemarketFigure17:EU’sprimarysupplyofselectedcriticalrawmaterialsbyregionoforigin,2023Share(%)AstheEUaimstoreduceitsdependencyonthird-countrysuppliersforitscleantechsectors,itbecomescriticaltoincreaseitsmanufacturingcapacityalongtheentirevaluechain,i.e.,fromrawmaterialextractionandprocessingtocomponentproduction.Indeed,evenifEuropeincreasesitsturbinemanufacturingcapacitybutstilldependsonathirdcountryforrawmaterialsinputs,thebottleneckisonlyshifted.WhiletheNetZeroIndustryActaimstosupportcomponentsupplychainsovereignty,theCriticalRawMaterialsActaimstoensuretheEU'saccesstoasecure,diverse,affordableandsustainablesupplyofcriticalrawmaterials.Inthatsense,theEUhassubmittedanupdatedlistofrawmaterialsidentifiedascriticalorstrategicforEurope'sgreenanddigitaltransition.Thedomesticcapacitiesforthosematerialswillhavetomeetthefollowingobjectives:•Extraction,atleast10%oftheEU'sannualconsumption•Processing,atleast40%oftheEU'sannualconsumption•Recycling,atleast15%oftheEU'sannualconsumption•Capofeachstrategicrawmaterialdependanceonasinglethirdcountryat65%ofEU’sannualconsumption,atanyrelevantprocessingstageFigure17illustratessomeoftherawmaterialsimpactingthewindindustryandconsideredbytheEUascriticalorstrategic.Formostofthesematerials,theimportreliancerateisabove50%,whichdefinesthesupplyriskfortheEU.AlthoughChinaistheworld'slargestsupplierofmostcriticalrawmaterials,analysisoftheEU'sprimarysupply(i.e.,domesticproductionplusimports)tellsadifferentstory.Theselectedrawmaterialscomefromawiderangeofcountries,butformostofthem,Europeisheavilydependentonimports,oftenfromnear-monopolisticthird-countrysuppliers.0%10%20%30%40%50%60%70%80%90%100%AluminiumextractionCokingcoalextractionCopperextractionManganeseextractionNickelextractionSiliconmetalprocessingHeavyRareearthprocessingLightrareearthprocessingUnidentifiedAustraliaNorthAmericaSouthAmericaAfricaMiddleEastChinaAsiaPacificRussiaEurope55%66%48%96%75%64%100%100%EUimportrelianceratesNote:Unidentifiedsupplyreferstoproductionthatisunknownorspreadovertoomanycountries.ImportReliancerate=(Import–Export)/(Domesticproduction+Import–Export)Sources:RystadEnergyresearchandanalysis;EuropeanCommission,StudyontheCriticalRawMaterialsfortheEU2023–FinalReportRystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023dEnergydEnergyPhilipColeDirectorofIndustrialAffairsPhil.Cole@windeurope.orgrgy2324KeyfindingsRystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023FuturesupplychainrisksEstimatedEuropeandemandbasedon2030TargetsScenario.Timetoactionreferstotheestimatedyearwhensupplyexpansionsneedtobeinitiatedtoavoidapotentialbottleneck.Source:RystadEnergyresearchandanalysisSegmentIndustrySub-segment2022-2030demandgrowthTimetoactionUrgencyassessmentCommentTurbinesOnshore&OffshorewindTotalmarket~3XCapacity(MW)2024-2025•Highinflation,lowmarginsandanR&DracetosupplythelargestturbinesonthemarkethasputpressureonwesternOEM’sabilitytoexpandmanufacturingcapacitiesorrepurposefacilitiestoaccommodateachangingdemand.•Whileonshorewindturbinesizedemandisrelativelymorestable,expansionofmanufacturingisneededtomatchgrowthinactivitylevelsinthe2030TargetsScenario.•Offshorewindservesasthekeychallenge,withalargegapbetweencurrentmanufacturingcapacityandprojecteddemandforthelargestmodels.•RotorblademanufacturingrepresentsthecurrentbottleneckforEuropeanturbinesupply,butbothneedarapidexpansiontomeetdemandinthisscenario.Offshorewind>12MWturbines0-29GW2024TowersOnshore&OffshorewindAll~2.5XMetrictons2025•Centralizedtowersupplyforalargerrangeofturbineshasenabledthesupplychaintoexpandwithgrowingactivity.•Towerdemandwillbedrivenbyarelativelyhighnumberofonshorewindturbines(comparedtooffshorewind)andincreasingoffshorewindactivityandsizes.•Growthisexpectedtoaccelerateinthesecondhalfofthedecade,creatinganadditionalneedforexpansion.FoundationsOffshorewindMonopiles~12XMetrictons2024-2025•MonopileswillremainthemostpopularconceptinEurope,andwithrapidgrowthinactivityandturbinesizesinoffshorewind,manufacturingmustbescaledupquicklywithinthelargestmonopilesegments.•JacketmanufacturingcapacitylessconstrainedthankstoO&Gindustry.•Floatingfoundationmanufacturingmustbeindustrialized.Today,itischaracterizedbypilots,demosandpre-commercialprojectswithone-offmanufacturingandfewunits.Fromthissmallbasis,manufacturingcapacitymustgrowsubstantiallytowardstheendofthedecade.Othergrounded~7XMetrictonsNoneFloating~23XMetrictons2024WTIVsOffshorewindTotalmarket~7.5XVesselyears2024-2025•Strongfleetadditionsinrecentyearshaveputsupplyinastrongpositiontocoverdemandinthenexttwotothreeyears.Increaseddemandinthesecondhalfofthedecade,primarilyinthelargestturbinesizerangeswillputpressureonsupply.•AglobalfleetandincreasingdemandoutsideEuropewilllikelypullsupplyoutofEurope,worseningthesupply-demandbalance,withnewunitsforecasttobeneeded.•Anincreasingshareofdemandinthe15-20MWrangetowards2030willalsodriveaneedfornewunits,asthefleetofvesselscapableofinstallingtheseunitsiscurrentlylimited.>12MWturbines0-25vesselyearsTable1:Keyfindingssummary,selectedpartsofthesupplychainuniquetothewindindustry55ContactsRystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023AppendixAlexanderDobrowenFløtreVP&HeadofOffshoreWindResearch,RystadEnergyalexander.flotre@rystadenergy.comGlennBuchanPartner&CommercialDirectorEMEA,RystadEnergyglenn.buchan@rystadenergy.comPhilipColeDirectorofIndustrialAffairsPhil.Cole@windeurope.orgJoachimKjendlieVP&HeadofCopenhagenOffice,RystadEnergyjoachim.kjendlie@rystadenergy.com2425Figure18:Windturbinemanufacturingcapacityforecastupto2024Gigawatts(GW)GlobalwindturbinemanufacturingandshipmentsRystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023FuturesupplychainrisksSources:RystadEnergyresearchandanalysis;Companies’annualreportsandwebsites.1091241571541661711750204060801001201401601802002018201920202021202220232024Manufacturingcapacity(GW)Shipment(GW)Weestimatethattheglobalwindturbinemanufacturingcapacityisapproximately166GW,about8%highercomparedto2021’stally.Europecontributedforabout16%oftheglobalmanufacturingcapacityin2022.Europe’sturbinemanufacturingcapacityisdiscussedindetailonpages28to31.ExpansionslastyearwereseeninEuropeandChina,withmultipleChinesesuppliersunveilingtheircapabilitytomakeoffshorewindturbinesintherangeof12to16MW.InEurope,SiemensGamesaopeneditsFrenchturbinemanufacturingbaseinLeHavreinMarch2022.Meanwhile,multiplecompaniesinChina,suchasEnvision,CSSCHaizhuangWindpower,ShanghaiElectric,MingYangandWindey,expandedtheirmanufacturingcapacitieswithnewfacilities,totalingmorethan8GW.MostoftheseChineseexpansionsareforoffshorewindturbines,withturbinecapacitiesrangingfrom10to13MW.Themanufacturingcapacityin2021sawadeclinecomparedto2020assomeplantscapableofmaking2MWturbineswereshutdownduetoalackoforders.Ontheotherhand,thesteepramp-upinmanufacturingcapacityobservedin2018-2020wasmainlydrivenbyasignificantwindinstallationramp-upinChina,whereabout65GWofonshorewindwasinstalledin2020andabout14GWofoffshorewindcapacitywasdeployedinthecountryin2021.Weforecastthatbytheendofthisyear,globalwindturbinemanufacturingcapacitywillstandat171GW,withfurtherexpansionsledbyChina.Thistallyisenvisagedtoincreaseto175GWnextyear,withturbinemanufacturingforoffshorewinddrivingexpansions.In2022,theutilizationratedroppedtoabout55%,asslowpermittingandinflationaffectedturbinemanufacturers’salesanddeliveries.Thistallyislowercomparedto2021’sutilizationrateofmorethan65%,whenglobalwindshipmentsreachedmorethan100GWforbothonshoreandoffshorewindturbines.RystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023dEnergydEnergyPhilipColeDirectorofIndustrialAffairsPhil.Cole@windeurope.orgrgy2526Turbinemanufacturerssupplycapacityin2022Vestas13%Goldwind11%GE10%SiemensGamesa9%Envision8%NordexGroup5%MingYang5%Others39%RystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023FuturesupplychainrisksChineseOEMs’shipmentsareestimatedbasedonannualinstalledcapacity.Sources:RystadEnergyresearchandanalysis;RystadEnergyRenewableCube;Vestasannualreport2022;SiemensGamesaactivityreportQ1-Q42022;GEannualreport2022;Companies’annualreportsandwebsites.Figure19:Windturbinemanufacturers’capacityin2022Gigawatts(GW)166GigawattsThetopfivewindturbinemanufacturersaccountformorethanhalfoftheglobalwindturbinemanufacturingcapacity.Vestasleadswithmorethan20GWofmanufacturingcapacity,whileChina’slargestwindturbinemakerGoldwindsitsonthesecondpositionwithabout18GW.Vestas’Westerncompetitors,includingGeneralElectricandSiemensGamesa,standinthethirdandfourthplace,respectively,withacombinedmanufacturingcapacityofmorethan30GW.AnotherChinesemanufacturer,Envision,holdsthefifthpositionwithalmost14GW.WiththerisinginstallationdemandinrecentyearsinChina,manyotherChineseOEMsrampeduptheirmanufacturingcapacity.OutsideofGoldwindandEnvision,otherChineseOEMssuchasMingYangandWindeyarewithinthetoptenrankofglobalwindturbinemanufacturers.Regardingshipments,Vestasleadswithmorethan13GWofturbinesshippedlastyear,followedbyGoldwindandEnvision,whichshippedmorethan20GWofturbinescombinedlastyear.SiemensGamesadeliveredmorethan8GWofturbines,whileGEdeliveredonlyabout7.5GWofturbineslastyear,a45%dropcomparedtoitspreviousyear’sturbineshipmentsofalmost12GW.13.311.88.58.27.5VestasGoldwindEnvisionSiemensGamesaGEFigure20:Topfiveturbinemanufacturers’shipmentin2022Gigawatts(GW)55ContactsRystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023AppendixAlexanderDobrowenFløtreVP&HeadofOffshoreWindResearch,RystadEnergyalexander.flotre@rystadenergy.comGlennBuchanPartner&CommercialDirectorEMEA,RystadEnergyglenn.buchan@rystadenergy.comPhilipColeDirectorofIndustrialAffairsPhil.Cole@windeurope.orgJoachimKjendlieVP&HeadofCopenhagenOffice,RystadEnergyjoachim.kjendlie@rystadenergy.com2627China62%Europe15%India12%UnitedStates6%Others5%TPIComposites12%Vestas11%SiemensGamesa11%GE10%LZBlades7%ZhuzhouTimesNewMaterial7%Sinoma6%Others36%GlobalbladeandnacellemanufacturingcapacityRystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023FuturesupplychainrisksSources:RystadEnergyresearchandanalysis;Companies’annualreportsandwebsites;Chinesewindprojects’turbinebidresultsin2022.Figure21:Blademanufacturingcapacitybyregionandmanufacturer,2022Gigawatts(GW)peryearWeestimatethatglobalblademanufacturingcapacitystoodat166GWbytheendoflastyear.Chinaholdsmostofblademanufacturing,accountingformorethan60%,whileEuropefollowswithabout15%.IndiaandtheUShavealsocontributedsignificantlytoglobalwindturbinemanufacturing,althoughbothmainlyproducesmaller,onshorewindturbines.Thewindblademarketlargelydependsonindependentbladeproducers,suchasTPICompositesandotherprominentChineseblademanufacturers,includingLZBlades,ZhuzhouTimesNewMaterialandSinoma.WeestimatethatTPIisthelargestblademanufacturerglobally,withmanyWesternmanufacturerssourcingbladesfromit.Bladesarecurrentlythebottleneckamongthemainwindturbinecomponents,withslightlylessglobalmanufacturingcapacitythanthatfornacelles.Chinaalsoleadsthenacellemarket,accountingforalmost60%oftheglobalmanufacturingcapacity.RystadEnergyestimatesthatEurope’scontributiontoglobalnacellemanufacturingwasabout17%in2022.Vestas,Goldwind,andEnvisionareestimatedtobethetopthreenacellemanufacturersglobally.BasedonRystadEnergyresearch,mostoftheprominentmanufacturersproducenacellesin-houseratherthanoutsourcingthem.StrongdomesticdemandandastrategytobuildupitsdomesticwindsupplychainarethemainreasonsforChina’sleadinwindmanufacturing.Inaddition,amplerawmaterialsuppliesandcheaplaborrateshavemadeChineseturbinescompetitiveontheglobalmarket.InChina,theestimatedpricerangein2022wasaround$350to$450perkWforonshorewindturbinesand$560to$700perkWforoffshorewindturbines.ThisissignificantlylowerthanEurope’srangeof$800to$1,100perkWforonshoreand$1,000to$1,600USD/kWforoffshoreturbines.166Gigawatts166GigawattsVestas13%Goldwind13%Envision10%SiemensGamesa9%GE8%Nordex5%MingYang5%Others37%China57%Europe17%UnitedStates8%India7%Others11%168Gigawatts168GigawattsFigure22:Nacellemanufacturingcapacitybyregionandmanufacturer,2022Gigawatts(GW)peryearRystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023dEnergydEnergyPhilipColeDirectorofIndustrialAffairsPhil.Cole@windeurope.orgrgy2728Figure23:Manufacturingbasesforblade(topchart)andnacelle(bottomchart)inEurope,2022BladeandnacellemanufacturingfacilitiesinEuropeRystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023Futuresupplychainrisks19%15%15%14%12%Others25%40%23%15%14%Others8%25Gigawatts28GigawattsBladeNacelleRystadEnergyestimatesthatthemanufacturingcapacityforbladesandnacellesinEuropeisaround25GWand28GWasof2022year-end,respectively.Spain,Germany,Denmark,andFranceleadEurope'snacelleandbladeproduction.Thesecountriesaccountformorethan60%oftheblademanufacturingcapacityandmorethan90%ofthenacellemanufacturingcapacityinEurope.MostofthebladefacilitiesinSpainservetheonshorewindmarket.NordexandVestashaveastrongpresenceofblademanufacturinginSpain,withmajorbasesinLumbierandDaimiel,producingbladesmainlyintherangeof4MWandabove.USmanufacturerGEisalsowell-establishedinSpainwithtwobladeplantsinPonferradaandCastellon,whichbelongtoitssubsidiaryLMWindPower.Meanwhile,Spanish-GermanmanufacturerSiemensGamesacloseditsSpanishbladeplantinAsSomozasin2020duetoCovid-19andalackofdemandforthe2MWclassturbines.However,itkeptitsblademaintenancebasesinthecountry.FranceandDenmarkarethetwocountrieswithsignificantoffshorewindbladeproduction.WeestimatethatGE’sCherbourgbaseandSiemensGamesa’sLeHavrebasecontributemorethan4GWtoEurope’soffshoreblademanufacturingcapacity.Denmarkalsohastwobases,SiemensGamesa’sAalborgandVestas’Nakskovfacilities,capableofmanufacturingbladesforturbineslargerthan12MW.OtherEuropeancountriesknowntoproducebladesincludetheUK,Turkey,andPortugal.Meanwhile,EuropeannacelleproductionisdominatedbyGermany,witheachofthetopwesternmanufacturers,includingVestas,GE,SiemensGamesa,Nordex,andEnercon,havingatleastabaseinthecountry.DenmarkalsocontributesquitesignificantlytoEurope’snacellemanufacturingportfolio,withSiemensGamesaandVestashavingfactoriesinBrande,Ringkobing,andLindo.Facilitieswithoutknownlatitudesandlongitudesarenotincludedinthemap.Sources:RystadEnergyresearchandanalysis;Companies’annualreportsandwebsites.55ContactsRystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023AppendixAlexanderDobrowenFløtreVP&HeadofOffshoreWindResearch,RystadEnergyalexander.flotre@rystadenergy.comGlennBuchanPartner&CommercialDirectorEMEA,RystadEnergyglenn.buchan@rystadenergy.comPhilipColeDirectorofIndustrialAffairsPhil.Cole@windeurope.orgJoachimKjendlieVP&HeadofCopenhagenOffice,RystadEnergyjoachim.kjendlie@rystadenergy.com28290510152025303540455055606570202220232024202520262027202820292030OffshorewinddemandOnshorewinddemandBlademanufacturingcapacityNacellemanufacturingcapacityRystadEnergyestimatesthatEurope’swindmarketmayfaceasupplychainbottleneckforwindturbinemanufacturingasearlyas2026.BasedonWindEurope’s2030TargetsScenario,annualwindcapacityadditionsin2026standat34GW,about5GWhigherthanEurope’sexpectednacelleandblademanufacturingcapacityinthesameyear.InascenariowhereEuropeandemandistobemetbyonlyEuropeansupply,demandisexpectedtooutpacesupplyby2026,particularlyforblades.Asweapproach2030,thecurrentsupplycapacitylevelsareroughlyhalfofEurope’sforecastdemand,withtheoffshorewindsectorcontributingmostofthedemandin2030.However,itisalsoimportanttonotethattopWesternturbinemanufacturers,suchasVestas,SiemensGamesa,GE,NordexandEnercon,holdsignificantmanufacturingcapacitiesoutsideofEurope,includingSoutheastAsia,China,India,andtheUS,whichcouldprovideroomforextrasupplytoEuropefromthesebases.Nevertheless,thismaybechallengingastheseregionsalsoareexpectedtoseeincreasingdomesticdemand,pullingontheirrespectivedomesticsupplybases.FromanoverallEuropeanturbinesupply-demandbalanceperspective,thepotentialbottleneckin2026suggeststhatworktoexpandcurrentcapacitieswouldneedtobeinitiatedby2024or2025tobeabletorampupintimetomeetforecastdemand.Europeansupply-demandbalanceforturbinesRystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023FuturesupplychainrisksTopmanufacturersincludeVestas,SiemensGamesa,GE,Nordex,andEnercon.Sources:RystadEnergyresearchandanalysis;Companies’annualreportsandwebsites.Europe33%OutsideEurope67%TopmanufacturerscapacitybyregionGWperyear68GigawattsFigure24:WindturbinemanufacturingcapacityanddemandinEuropeGigawatts(GW)RystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023dEnergydEnergyPhilipColeDirectorofIndustrialAffairsPhil.Cole@windeurope.orgrgy2930Oneimportantaspecttolookatisthesupplycapacityfordifferentsizesofturbines.Ontheglobalorregionallevel,turbinesupplymaybehigherthantheoverallinstallationdemandinacertainyear,butthestorycanbedifferentwhenonedivesintocertainturbinesizegroups.Figure25presentsRystadEnergy’sanalysisofsupplycapacitiesfordifferentturbinesizegroups.Thelargestshareofsupplycapacityforbladeandnacelleisestimatedtobeforthe4-6MWsizegroup,primarilyservingtheonshorewindmarket.Thissizegrouphasanoticeabledifferenceinitsbladeandnacellemanufacturing,asNordexcloseditsbladeplantinRostock,Germany,in2022.Meanwhile,the<4MWsizegroupaccountsforaboutaquarterofthetotalsupplycapacityforbladesandnacelles,contributingquitesignificantlytothemix.Inthelargerturbinesizegroupsservingtheoffshorewindmarket,mostofthesupplycapacityisestimatedtoservethe8-10MWgroup.Forbothbladesandnacelles,themanufacturingcapacityinthisgroupreachedmorethan3GWbytheendof2022.Thisfindingalignswiththeaverageoffshoreturbinesizeinstalledin2022andexpectedtobeinstalledin2023inEurope,approximately8.3MWand9.7MW,respectively.Bytheendof2022,Europeanmanufacturingofbladesandnacellesforturbinesof10MWandabovewaslimited,totalingabout4GWforbothsegments,onaverage.Nevertheless,whenSiemensGamesa’sextensionofitsHullfacilityisfullyupandrunningthisyear,the>12MWturbinesizegroupisexpectedtoseeaboostofatleast1.5GW.Meanwhile,Europeannacellemanufacturingcapacityisexpectedtoincreasebyabout1.5GWin2023asVestasisconstructingitsbaseinSzczecin,Poland,toproducenacellesforits15MWturbines.Typically,amajorbladeornacellemanufacturingfacilityhasamanufacturingcapacityintherangeof1.5-2GW.Sources:RystadEnergyresearchandanalysis;Companies’annualreportsandwebsites.25262829051015202530352022202320222023>12MW10-12MW6-8MW4-6MW<=4MWFigure25:BladeandnacellemanufacturingcapacityinEuropebyturbinesizegroup,2022-2023Gigawatts(GW)EuropeanbladeandnacellemanufacturingcapacitybyturbinesizeRystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023FuturesupplychainrisksBladeNacelle55ContactsRystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023AppendixAlexanderDobrowenFløtreVP&HeadofOffshoreWindResearch,RystadEnergyalexander.flotre@rystadenergy.comGlennBuchanPartner&CommercialDirectorEMEA,RystadEnergyglenn.buchan@rystadenergy.comPhilipColeDirectorofIndustrialAffairsPhil.Cole@windeurope.orgJoachimKjendlieVP&HeadofCopenhagenOffice,RystadEnergyjoachim.kjendlie@rystadenergy.com3031Figure26:EuropeanwindturbinemanufacturingcapacityanddemandbysizegroupGigawatts(GW)Europeansupply-demandbalancefordifferentturbinesizesRystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023FuturesupplychainrisksSources:RystadEnergyresearchandanalysis;Companies’annualreportsandwebsites.Figure26comparesthecurrentEuropeanturbinemanufacturingcapacityandtheforecastdemandfordifferentturbinesizegroups.Intheonshorewindsector,whichincludesthe<=4MW,4-6MW,and6-8MWgroups,moderatebottlenecksareexpectedtooccurforthefirsttwogroups.Mostturbinesforonshorewindduringthe2020sareexpectedtobebelow6MW,andtheactivitygrowthforecastinthe2030TargetsScenariowilldrivedemandtolevelsabovecurrentsupply.However,the6-8MWgroupiswellsuppliedasmanyEuropeanfacilitiesproducethisturbinesizeforoffshorewinddevelopmenttoday.Weexpectthedemandforonshorewindinthisgrouptoputsomepressureonsupplyby2030,fromalimitednumberin2026.Foroffshorewind,supplyofturbinesbetween6MWand12MWlookswell-positionedtocovertheforecastdemandin2026and2030.However,asignificantundersupplyisimminentinthe>12MWgroup,asmostoffshorewindprojectsareexpectedtooptforthelargestturbinesavailableinthemarketduringthesecondhalfofthedecade.OnlyafewEuropeanbasescancurrentlyproduceturbineslargerthan12MW,includingGE’sCherbourg,SiemensGamesa’sAalborgandHullfacilities,andVestas’Nakskov–thelatterthreehavenotyetgoneintoserialproduction.Weestimatethatthecurrentmanufacturingcapacityforthe>12MWgroupinEuropeislessthan2GW,significantlylowerthanthedemandin2026and2030ofabout12GWand29GW,respectively.Sinceittakes2-3yearstoconstructamajormanufacturingbaseand1-2yearstorepurposeabase,expansionsarenecessarytobeinitiatedasearlyas2024toavoidundersupplyfortheselargeturbinesin2026,assumingthatEuropeandemandwillonlybesatisfiedbyEuropeansupply.Thisnotionconsidersthatmanufacturersneedtostartproducingtheseturbinesatleastoneyearbeforeawindprojectcommencesturbineinstallationactivities.05101520253035202220232024202520262027202820292030EuropeandemandEuropeansupplyNon-Europeansupply051015202530<=4MW4-6MW6-8MW8-10MW10-12MW>12MW2022supply2026demand2030demandFigure27:Windturbinemanufacturingcapacityanddemandfor>12MWturbinesGigawatts(GW)RystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023dEnergydEnergyPhilipColeDirectorofIndustrialAffairsPhil.Cole@windeurope.orgrgy3132China44%Europe44%Americas12%China58%Europe25%Asiaex.China17%Announcedexpansionsfor>12MWbladesandnacellesRystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023FuturesupplychainrisksIncludeannouncementsuntil30thMarch2023.WeassumedthatTPI’splannedoffshorebaseinTurkeywillsupply>12MWblades.Capacityrelatedtotheseannouncementsisnotincludedtotheanalysis.Sources:RystadEnergyresearchandanalysis;Companies’annualreportsandwebsites.Figure28:Blademanufacturingexpansionsfor>12MWturbines,2023-2026Gigawatts(GW)peryearAsdemandformega-sizeturbinesincreases,manyexpansionplanshavebeenannounced.In2022,ChinaannouncedmanufacturingcapacityexpansionsforthelargestturbinesizeswithmultipleChineseOEMsaimingfornewfacilitiestobeoperationalby2023and2024.Inaddition,blademanufacturingexpansionswerealsoannouncedintheUS,asSiemensGamesaplanstobuildanoffshorebladefacilityinVirginiatosupporttheCoastalVirginiaOffshoreWindproject,estimatedbythemanufacturertocomeonlineby2024.InEurope,about1.5GWofblademanufacturingcapacityisexpectedtocomeintooperationbytheendof2023,includingSiemensGamesa’sextensionofitsHullfacilityandVestas’Tarantobasewhichisplannedtoberepurposedtosupplybladesforits15MWturbines.TPICompositesisalsoplanningtobuildanewoffshorebladefactoryinTurkey,withaplannedcapacityofatleast2GW.Inthenacellemarket,SiemensGamesahasannouncedanexpansionofitsnacellefacilityinTaichung,Taiwan,capableofmakingnacellesforits14MWturbines.Thisplantextensionisenvisagedtobedoneby2024,liftingthebase’scapacityto2GW.ChineseOEMsarealsoexpandingtheirnacellemanufacturingcapacitytoaccompanytheirexpansionsfor>12MWoffshoreblades.IntheEuropeannacellemarket,VestasissettoopenitsPolishplanttosupplynacellesforits15MWturbines.IntheUS,GE,throughitssubsidiaryLMWindPower,isalsoeyeingtheconstructionofbasesabletoproduceoffshorenacellesandbladesinNewYork,butthesearesubjecttotheresultofNewYork’sthirdoffshorewindsolicitationround,duetobeannouncedinthesecondquarterof2023.SiemensGamesaalsoplansanacellefacilityinNewYork,dependingonthethirdoffshorewindsolicitationresultoftheEmpireState.Thesecompanieswillcontinuewiththeplansonlyiftheirturbinesareselectedinsaidsolicitationround.Figure29:Nacellemanufacturingexpansionsfor>12MWturbines,2023-24Gigawatts(GW)peryear8Gigawatts6Gigawatts55ContactsRystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023AppendixAlexanderDobrowenFløtreVP&HeadofOffshoreWindResearch,RystadEnergyalexander.flotre@rystadenergy.comGlennBuchanPartner&CommercialDirectorEMEA,RystadEnergyglenn.buchan@rystadenergy.comPhilipColeDirectorofIndustrialAffairsPhil.Cole@windeurope.orgJoachimKjendlieVP&HeadofCopenhagenOffice,RystadEnergyjoachim.kjendlie@rystadenergy.com3233Figure30:Manufacturingbasesfortowers(topchart)andfoundations(bottomchart)inEurope,2022TowerandoffshorewindfoundationmanufacturingfacilitiesinEuropeRystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023Futuresupplychainrisks51%17%14%8%Others10%30%19%17%12%22%2.1Millionmetrictons2.6MillionmetrictonsTowerOffshorewindfoundationOthersRystadEnergy’sanalysisshowsthattheEuropeantowermanufacturingcapacityin2022stoodat2.1millionmetrictonsofsteel.SignificanttowermanufacturingcapacityliesinSpain,accountingforapproximatelyhalfofEurope’stowermanufacturingcapacity.Threemajorturbinetowerproducers,includingGRIRenewableIndustries,WindarRenovables,andHaizeaWindGroup,havemultiplefactoriesinSpain,withacumulativeannualmanufacturingcapacityofover900,000metrictonsofsteel.OthertowermanufacturinglocationswithsignificantcapacitiesincludeDenmark,Germany,andTurkey.WelconisthemostprominentinDenmark,whileMaxBoglisestimatedtobetheleadingproducerinGermany.Inaddition,GRIRenewableIndustrieshasamanufacturingbaseinTurkey,liftingthemanufacturingcapacityinthecountry.Fortheoffshorewindfoundationsector,manufacturingcapacityforEuropeisestimatedatabout2.6millionmetrictonsbyyear-end2022,withSpain,Denmark,Germany,andtheNetherlandsleadingtheway.Mostofthiscapacityisformonopiles,whichisthemostpopularfoundationtypeusedforoffshorewind,givenitssimplicityforserialproductionandlowcostcomparedtoalternativesolutions.Navantia’sSpanishbaseshaveatotalmanufacturingcapacityof550,000metrictonsforoffshorewindfoundations,55%ofwhichisforjacketfoundation.TheNetherlands’SifandGermany’sEEWleadintermsofmonopilemanufacturingcapacity,withacombinedannualpotentialthroughputof500,000metrictons.Facilitieswithoutknownlatitudesandlongitudesarenotincludedinthemap.Wedonotincludemanufacturingfacilitiesforonshorewindfoundations.Sources:RystadEnergyresearchandanalysis;GRIRenewableIndustries;HaizeaWindGroup;WindarRenovables;Companies’annualreportsandwebsites.RystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023dEnergydEnergyPhilipColeDirectorofIndustrialAffairsPhil.Cole@windeurope.orgrgy33340.00.51.01.52.02.53.03.54.04.5202220232024202520262027202820292030OnshorewindtowerdemandOffshorewindtowerdemandSteeltowersupplyFigure31:TowermanufacturingcapacityanddemandinEuropeMillionmetrictonsofsteelperyearEuropeansupply-demandbalancefortowersRystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023FuturesupplychainrisksThisestimationexcludestheEuropeanconcretetowersupplyofaround200thousandmetrictons.Sources:RystadEnergyresearchandanalysis;Towermanufacturers’annualreportsandwebsites.Besidesthebladeandnacelle,thetowerisanothercriticalwindturbinecomponent.However,unlikeitstwocounterparts,thetowerisnotascomplicatedtomanufacture,asitisnotamovingpartandisnotconnectedtoelectricalsystems.Astowersaremanufacturedusingsteelpredominantly,andbecausetowerheightsvarygreatlyfordifferentturbinesizes,metrictonsofsteelisusedtomeasurethemanufacturingcapacitylevels.Bytheendof2022,theEuropeantowermanufacturingcapacitywasestimatedtohavereachedabout2.1millionmetrictonsofsteel.Announcedexpansionsareexpectedtoliftthistallytoalmost2.3millionmetrictonsby2024.Withthecurrentsupplycapacityoutlook,thesteeldemandfortowersisenvisagedtosurpassthesupplyin2026,asthecumulativeannualsteeldemandforonshoreandoffshorewindisexpectedtoexceed2.5millionmetrictons.Weexpectthistallytogrowtomorethan4millionmetrictonsbydecade-endinthe2030TargetsScenario.Thesteelusagegoingintowindtowersdependsonseveralkeyfactors,includinghubheightandturbinesize.Thehubheightusedforanonshorewindprojectistypicallylessthanforanoffshorewindprojectasitusessmallerturbines.Althoughrequiringlesssteelonaper-unitbasis,onshorewindisexpectedtodrivedemand,asitwillrequireahighernumberofturbinescomparedtooffshorewind.Foroffshorewind,therapidgrowthinturbinesizeswillincreasethetowersteelintensityperunitbutisexpectedtoreducetowersteelusagepermegawattinstalled,thankstofewerunitsandthefactthathubheightsdonotgrowlinearlywithturbinesizes.55ContactsRystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023AppendixAlexanderDobrowenFløtreVP&HeadofOffshoreWindResearch,RystadEnergyalexander.flotre@rystadenergy.comGlennBuchanPartner&CommercialDirectorEMEA,RystadEnergyglenn.buchan@rystadenergy.comPhilipColeDirectorofIndustrialAffairsPhil.Cole@windeurope.orgJoachimKjendlieVP&HeadofCopenhagenOffice,RystadEnergyjoachim.kjendlie@rystadenergy.com3435EuropeancablesupplyanddemandLV=lowvoltage,<33kV;MV=mediumvoltage,33-66kilovolts(kV);HV=highvoltage,66-320kV;EV=extra-highvoltage,>320kV.Usingforecastnumberofturbinesasaproxy.Sources:RystadEnergyresearchandanalysis;RystadEnergySubseaHVDCInterconnectordatabase;Companies’annualreportsandwebsites.RystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023FuturesupplychainrisksFigure32:EstimatedMV,HVandEHVcablemanufacturingcapacityinEurope,2022KilometersperyearCablesupplyinEuropeisnotonlydedicatedtothewindindustry.Cablesforelectrificationofotheroffshoreinfrastructure,onshoreandoffshoreinterconnectorcables,andcablesforgridexpansionsaretypicallysuppliedbycompaniesactivewithintheoffshorewindsector,suchasPrysmian,TFKable,NKT,NexansandHellenicCables.In2022,theannualEuropeanmanufacturingcapacityofcables(excludingvoltagesbelow33kV)wasestimatedtobe15-20thousandkilometers.MostofEurope’scablesuppliershavemanufacturingbasesinPolandandSweden,withFranceandtheUKalsobeingproductioncentersforLVtoMVinter-arraycablesmadebyPrysmian,NexansandTFKable.FacilitiesinItalyandGreeceproducesignificantlengthsofMV,HVandEHVcablesandarelocatedclosetotheMediterraneanandAdriatic,makingforefficientcabletransportationforoffshorewindandsubseainterconnectorprojects.Measuredusingforecastturbinedemandasaproxy,demandforonshorewindinter-arraycablesisexpectedtogrowby45%towards2030inthe2030TargetsScenario,fromalreadyhighlevels.Onshoretransmissiondemandishighlydependentonawindprojects’proximitytothegridandisthereforedifficulttoquantify.Demandforoffshorewindinter-arraycablesisexpectedtogrownearlyseven-fold,asactivityforoffshorewindisforecasttoincreasemorerapidlycomparedtoonshorewind.Whilelargerturbinesreducethenumberofturbines(andarraycables)neededtoreachtargets,thedistancebetweenturbineswillalsoincrease,somewhatoffsettingthiseffect.Exportcabledemandforoffshorewindisforecasttogrowmorethan14timestowards2030,drivenbytherapidactivitygrowth,andfurtherhelpedbygrowingdistancestoshore.ThedemandforcablesfromEuropeanwindwillhavetocompetewithothersectorsmentionedabove,andtheexpectedlargegrowthinEuropeanrenewablesandtheelectrificationofenergysystemsareexpectedtoputupwardspressureondemand.Poland18%Sweden16%France11%UK10%Italy9%Greece8%Norway6%Finland6%DE5%DK4%Others7%15-20thousandkilometersFigure33:Indexeddemandgrowthforinter-arraycablesandoffshorewindexportcablesIndex,2022=1001456781,42902004006008001,0001,2001,4001,600202220262030Onshorewindinter-arraycablesOffshorewindinter-arraycablesOffshorewindexportcablesRystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023dEnergydEnergyPhilipColeDirectorofIndustrialAffairsPhil.Cole@windeurope.orgrgy3536Unlikeonshorewind,wherethemainmarketdriverisexpectedtobethegeneralgrowthinactivitylevelsandtoalesserextentrapidlygrowingturbinesizes,Europeanoffshorewindisforecasttoexperienceamoredynamicandrapidlychangingdemand.Largerturbineshavebeenthekeydriverforthecostreductionsobservedwithinoffshorewindovertherecentdecade.Thishasnaturallydrivendeveloperstopreferthelargestturbinesonthemarketandresultedinaracebetweenturbinemanufacturerstosupplythem.Figure34showstheturbineandprojectsizesforEuropeanoffshorewindfarmsexpectedtowards2030,accordingtoRystadEnergy’sproject-by-projectdatabase.Currentprojectannouncementsandplansshowacleartrend:projectsarebecominglargerandlarger,usinggraduallybiggerturbines.Turbinesizesareexpectedtoapproachthe18-20MWrangetowards2030,withtheaverageturbinesizeexpectedtoclimbtoaround15MWby2030.Therapidlygrowingturbinesizesmeansincreasinghubheightsandlargerturbinetowers,andaneedforlargerfoundations,suchasmonopileswithwiderdiameters.Thelargercomponentswillinturnrequireimprovedhandlingequipment,suchasinstallationvesselswithbiggercranesandlargerliftingcapacity.Inestablishedoffshorewindregions,areasclosetoshoreandwithshallowwatersarebeginningtogetpopulated,whichmeansthatnewdevelopmentswillneedtomovefurtherfromshoreandpotentiallyintodeeperwaters.Thisisexpectedtodrivetheneedforlongerexportcablesandashifttowidermonopiles,orjacketsorfloatingsolutions.The2030TargetsScenarioalsoincludescountrieswithcommunicatedoffshorewindambitionsandprimarilywaterdepthssuitabletofloatingwindsolutions.CountriessuchasPortugal,Spain,NorwayandItaly,amongothers,areexpectedtodriveincreasingdemandforfloatingfoundations,asshowninFigure35.DemanddriversforEuropeanoffshorewindBasedonRystadEnergy’sproject-by-projectdatabase.Weightedaverageturbinesize.Accordingto2030TargetsScenario.RystadEnergyanalysisbasedoncountry-by-countrytargets,projectpipelinesandwaterdepthsinrelevantdevelopmentareas.Sources:RystadEnergyresearchandanalysis;RystadEnergyOffshoreWindCubeRystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023FuturesupplychainrisksFigure34:Europeanoffshorewindfarmsbystart-upyear,turbinesizeandcapacityMegawatts(MW)Figure35:ForecastoffshorewindcapacityadditionsbyfoundationtypeGigawatts(GW)1,000500250024681012141618202000201020202030Turbinesize(MW)EuropeanoffshorewindfarmsAverageturbine&projectsize(MW)Windfarmsizeindicatebybubblesize(MW):05101520253035202220232024202520262027202820292030MonopileOthergroundedFloating55ContactsRystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023AppendixAlexanderDobrowenFløtreVP&HeadofOffshoreWindResearch,RystadEnergyalexander.flotre@rystadenergy.comGlennBuchanPartner&CommercialDirectorEMEA,RystadEnergyglenn.buchan@rystadenergy.comPhilipColeDirectorofIndustrialAffairsPhil.Cole@windeurope.orgJoachimKjendlieVP&HeadofCopenhagenOffice,RystadEnergyjoachim.kjendlie@rystadenergy.com3637Demandformonopilesisexpectedtoincreaserapidlywiththeacceleratedgrowthinoffshorewindtowards2030,asforecastinthe2030TargetsScenario.Floatingwindisexpectedtoseeanincreasingshareofturbineinstallationtowards2030,astheforecastincludescountrieswherewatersaretoodeepforbottom-fixedsolutions.Nevertheless,monopilehasbeen,andisforecasttocontinuetobe,thepreferredoptioninEuropethisdecade.Growingturbinesizesareexpectedtodampentherequirednumberofturbinesand,therefore,foundationstoreachcapacitytargets.However,thelargerturbinesandgraduallydeeperwaterswillalsodrivedemandforlongerandwidermonopiles.Whilethemajorityofmonopiledemandin2022wasinthe“RegularandXL”segment,suppliershavealreadystartedtoscaleupcapacitiestomeetthedemandforXXLandXXXLmonopilestosupportthistrend.MostoftheannouncedexpansionsofmanufacturingcapacitywillcomeintheXXXLsegment,asshowninFigure36.By2027,demandisexpectedtooutpacetheannouncedsupplyofmonopilemanufacturingfromatonnageperspective.Giventhatfoundationsmustbedeliveredearlyintheconstructionstagesofanoffshorewindproject,manufacturingcapacitylikelyshouldbeexpandedby2025,andfacilityexpansionsmayneedtobeinitiatedasearlyas2024.By2030,foundationdemandisforecasttosurpass3millionmetrictons.ThistallyismorethandoublethecurrentandplannedcapacityofXXLandXXXLmonopiles.Assumingthatmostdemandwillcomefromthelargestsegments,thensupplymustbedoubledfrom2026(thelastyearofplannedexpansions)to2030tomeetdemand.EuropeanmonopilesupplyanddemandSources:RystadEnergyresearchandanalysis;Foundationmanufacturers’annualreportsandwebsites.RystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023FuturesupplychainrisksFigure36:MonopilemanufacturingcapacityanddemandinEuropeMillionmetrictonsofsteelperyear0.00.51.01.52.02.53.03.5202220232024202520262027202820292030RegularandXLXXLXXXLMonopiledemandEstimatedEuropeanmanufacturingcapacityTable2:MonopilesizeoverviewTypeTypicaldiameterTypicalturbinesizesupportedRegular5-6m<6MWXL6-8m6-10MWXXL8-11m10-14MWXXXL>11m>14MWRystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023dEnergydEnergyPhilipColeDirectorofIndustrialAffairsPhil.Cole@windeurope.orgrgy3738Europeansupplyanddemandofnon-monopileandfloatingfoundationsSources:RystadEnergyresearchandanalysis;Foundationmanufacturers’annualreportsandwebsites.RystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023FuturesupplychainrisksFigure37:Europeanmanufacturingcapacityanddemandofnon-monopilegroundedfoundationsThousandmetrictonsofsteelperyearDemandfornon-monopilegroundedfoundationsisexpectedtoincreaserapidlyduringthe2020s.However,thelevelsaremodest,asmonopileshavebeenthemostpopularchoiceoffoundationsinEuropeanoffshorewind,atrendthatisexpectedtocontinue.Mostofthedemandgrowthfornon-monopilegroundedsolutionsisexpectedtocomefromjackets,asoffshorewindfarmsinEuropehavegraduallymovedintodeeperwaters,onaverage.Inaddition,jacketsareexpectedtobeusedinsomeareasinEurope,forexampleinFrance,wheretheseabedcomplicatesmonopileusage,despiteoftenotherwisesuitablewaterdepths.Thegradualmovefurtheroutfromthecoastandintodeeperwatersalsolimitstheneedforothershallow-watersolutions,suchase.g.,gravity-basedstructures(GBS).Afewexemptionsexist,however,liketheFécampprojectinFrance.JacketsupplyinEuropeisrelativelyabundant,thankstoitsregularuseintheoilandgasindustry.Assuch,supplyisexpectedtoremainhigherthanforecastdemandforthedecade,withlimitedriskofbecomingabottleneck,showninFigure37.Floatingfoundationmanufacturing,ontheotherhand,isonlyinitsinfancy.Astrongdemandforecasttowardstheendofthe2020swillputpressureonthesupplychaintoexpand,withanexpectedundersupplyfrom2025onwards,asshowninFigure38.Fromthecurrentandannouncedfloatingfoundationmanufacturinglevels,capacitiesmustgrowfivetosixfoldtowards2030tomeettheprojecteddemand.Forfloatingfoundationmanufacturing,alotofupsidepotentialexistsamongthetraditionalyards,wherepartoftheareascouldberepurposedforfloatingwind.However,spacerequirementsforbothwetanddrystoragearehighforfloatingwindandwouldrequirelargecapitalinvestments.Coupledwithastilluncertainoutlookforalarge-scalefloatingwindbuild-out,theinvestmentsignalmaystillbemissingfortheseyards.4008001,2001,6002,000202220232024202520262027202820292030JacketsupplyOthergroundedfoundationsupplyNon-monopilegroundeddemand2004006008001,0001,2001,400202220232024202520262027202820292030FloatingfoundationsupplyFloatingfoundationdemandFigure38:FloatingfoundationmanufacturingcapacityanddemandinEuropeThousandmetrictonsofsteelperyear55ContactsRystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023AppendixAlexanderDobrowenFløtreVP&HeadofOffshoreWindResearch,RystadEnergyalexander.flotre@rystadenergy.comGlennBuchanPartner&CommercialDirectorEMEA,RystadEnergyglenn.buchan@rystadenergy.comPhilipColeDirectorofIndustrialAffairsPhil.Cole@windeurope.orgJoachimKjendlieVP&HeadofCopenhagenOffice,RystadEnergyjoachim.kjendlie@rystadenergy.com3839Globaldemandforwindturbineinstallationvessels(WTIVs)isexpectedtogrowmorethanfive-foldtowards2030inthe2030TargetsScenario.Therapidlyincreasingturbinesizeswilllimitthenumberofturbinesneededtobeinstalledbutisexpectedtoaddpressureonthefleetofnext-generationWTIVscapableofinstallingthelargestturbinemodels.Figure39showstheforecastannualdemandforWTIVsinEuropetowards2030invesselyears,splitbyturbinesizes.ThisiscoupledwiththecurrentandfuturesupplyofspecializedWTIVscapableofinstallingturbineslargerthan10MW.Theassessmentofcapablevesselsaremadeonavessel-by-vesselbasis,consideringliftingheightsandcranecapacities.ExcludingChineseWTIVs,theglobalnumberofoperatingvesselsisexpectedtogrowfrom13in2022to25by2026,basedonconfirmednewbuildorders(1).Amongthese,twoWTIVsaremadespecificallyfortheUSmarket,makingitunlikelythattheywillbeavailabletosupportEuropeaninstallation(2).Europeandeveloperswillhavetocompetefortheremaining23vessels.Ifweassumethatatotalof6unitsareneededintheUSby2030,theremainingsupplyisonparwithEuropeandemandin2027(3).Further,ifweassumethatothermarkets,suchasVietnam,Taiwan,SouthKorea,Japan,andpotentiallymorewillrequirethesametypeofvessels,theremainingsupplymayfallbelow2027-demand.Thisisexpectedtoworsentowards2030,asdemandinbothEuropeandothermarketsincreases(4).Itisimportanttonotethatdemandisshowninworkingyears(aggregateofvesseldaysneededforturbineinstallation,loading,mobilization),andnotnumberofunitsneeded.Limitedweatherwindowsforturbineinstallationlowerutilizationrates,whichmeansthatdemandintermsofunitsneededwillbesignificantlyhigher.Assuch,themarketisexpectedtobetightaround2026inthe2030TargetsScenario,creatinganeedforinitiatingnewbuildworkby2024-2025.Themarketmaybeeventighterinthelargestsegmentsasagrowingportionofthe12-20MWdemandwillmovetowardstheupperlimitsoftherange,wherethefleetofcapablevesselsiscurrentlylimited.SupplyanddemandofwindturbineinstallationvesselsSources:RystadEnergyresearchandanalysis;RystadEnergyVesselCube.NREL’s“ASupplyChainRoadMapforOffshoreWindEnergyintheUnitedStates”(2023)estimatesaneedof4to6WTIVsperyeartoreachtheUS’30-GWtargetby2030,inlinewithRystadEnergybasecase.RystadEnergybasecase.RystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023FuturesupplychainrisksFigure39:Europeandemandandglobal(ex.China)supplyofwindturbineinstallationvessels(WTIVs)Vesselyears0510152025302022202320242025202620272028202920300-6MW6-10MW10-12MW12-20MWGlobalex.Chinasupplyof10MW+capableWTIVs1ExcludingUSpurpose-builtWTIVs2Excluding4othervesselsforadditionalUSpullonsupply3Excl.additionalpullof10+MWvesselsfromrestofworld(ex.MainlandChina)4IncrementalreductionsDemandbyturbinesizeSupplyavailabletoEuropeandeveloperslikelytobeinthisrange,dependingontheirwillingnesstopayandtheirsuccessinsecuringsupply.RystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023dEnergydEnergyPhilipColeDirectorofIndustrialAffairsPhil.Cole@windeurope.orgrgy3940OtherpartsofthewiderwindsupplychainRystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023FuturesupplychainrisksHVAC=HighVoltageAlternatingCurrent,HVDC=HighVoltageDirectCurrentSource:RystadEnergyresearchandanalysisAsshownthroughoutthischapter,ascenariowhereEuropereachesitsambitioustargetsforwindenergywouldrequirearapidramp-upalongnearlyallpartsofthesupplychainthatareuniquetothewindindustry.Inaddition,theforecastbuild-outwouldalsoputpressureonseveralpartsofthewidersupplychain.Forthese,aclear-cutsupply-demandbalanceisdifficulttoforecastwithoutcoveringdemandfromallrelevantsectors.Thiswasexemplifiedonpage35forcables,wheredemandforsubseaexportcablesforoffshorewindandhigh-voltagetransmissionforonshorewindmustcompetewithdemandfromlarge-scaleinterconnectorprojectsandgeneralgridexpansions.Inthissection,someoftheotherpartsofthewidersupplychainwillbedescribed.HVAC&HVDCWiththegeneralexpansionofrenewables,interconnectorsandelectricitygrids,addedpressureonthesupplyofHVACandHVDCsolutionsisexpected.Suppliersarereportingincreasinglead-timesforHVACsolutions,posingariskforlarge-scaleprojectssuchasoffshorewindfarms.WorsearereportsofHVDClead-times,challengingtimelinesfordistantoffshorewindfarms,largerenewableexpansionsinareaslocatedfarfromdemandcenters,andinterconnectorprojects.LaborAlthoughalargeportionofthewindsupplychainiscapital-intensive,thedemandforlaborwillgrowinlinewiththeforecastactivitylevels.Severalpartsofthemanufacturingprocessesthatarelesscomplexareexpectedtoexperiencearelativelyeasyexpansionoftheworkforce,asworkersshiftfromhigh-tolow-carbonsectorsaspartofthebroaderenergytransition.However,skilledlaborisexpectedtobeachallengeforthemanyspecializedworkstreamsalongthewindsupplychain.Thismaybeespeciallytrueforoffshorewind,whereactivityisforecasttogrowfaster,andoffshore-specifictrainingisrequired.OthervesselsegmentsWTIVsarenottheonlyvesselsegmentthatwillseeincreasingdemand:vesselsforfoundation,cableandoffshoresubstationinstallationwillbeneededfortherapidcapacitydeployment;serviceoperationvessels(SOVs)willberequiredtosupportconstructionandtotendtothegrowingoperationalbaseofoffshorewindfarms;andforfloatingwindthetow-outandmooringofnumerouslarge-scalefloatingfoundationsisexpectedtoputpressureonthefleetofanchorhandlingtugsupply(AHTS)vesselswithsufficientdeckspace,chainlockercapacityandbollardpull.Forfoundationinstallationvessels,asmall,globalfleetofspecializedunitsexists.Inaddition,alonglistofheavy-liftvesselsthatarenotpurpose-builtforfoundationinstallationhasatrackrecordwithinthesegment.Asignificantfleetofadditional,potentialsupplyexistswithintheoilandgassector.Manyofthesevesselshavetypicallybeenconsideredtoolarge(andtooexpensive)forfoundationinstallation,withsomehavingatrackrecordofinstallingoffshoresubstationtopsides.Thesamegoesforcablingvessels,withafleetofspecializedunitsandasignificantpotentialsupplyfromothersectors.Whilethenon-specializedvesselscoulddothejobwithnoorafewadjustmentstotheirspecifications,theefficiencyislowerthanforthepurpose-builtfleet.Additionally,theincreaseinoffshoreoilandgasproductioninEuropefollowingRussia’sinvasionofUkraine,especiallyintheshort-to-mediumterm,islikelytoreducetheavailabilityofthesenon-specializedvesselsforcable,foundationandoffshoresubstationinstallation.ForSOVs,thesupplyisexpectedtobelessconstrained.Thesevesselsarelesscomplextoconstructandconstitutesmallercapitalinvestmentscomparedtoe.g.,largeandspecializedWTIVs.Furthermore,theSOVsareoftenpurpose-builtfortheoffshorewindfarm(s)theywillserve,withlong-termcontracts(typically15+years)alreadyinplaceforthevessels.PortsFabrication,assemblyandmarshalling/stagingactivitieswillrequiresignificantportinfrastructureinadditiontooperationsandmaintenance(O&M)bases.AvailableareasarelimitedtocertainpartsofEurope,andtheincreasingcomponentsizesaddchallengesasincreasingspaceandairdraftareneeded.Forfloatingwind,theneedforspecializedandintegratedportsisespeciallyhigh,giventheamountofsteelandconcretegoingintothefoundations,theirsheersizedrivingadditionalspacerequirements,andtheneedforsignificantwet-storageareasbeforedock-sideturbineinstallationandtow-out.FloatingoffshorewindAnexpansionneedforfoundationmanufacturing,AHTSvesselsandspecializedportsforfloatingwindhasalreadybeenidentifiedonpage38,andinprevioussectionsonthispage.Inaddition,demandformooringlines(chain,fiberropeandwire)isquicklyexpectedtooutpacecurrentsupply.Mooringlineshavehistoricallybeensuppliedtooilandgas,withafew,largefloatingoffshoreunitsinstalledperyear.Withthegrowthinfloatingwind,thevolumeofseparateunitsinneedtobemooredwillgrowexponentially,drivinganeedforamassivesupplyexpansion.MaterialsMaterialdemandfromonshoreandoffshorewindmanufacturingisexpectedtoincreaserapidly.Someofthekeypartsofthematerialvaluechainwillbeexplainedinthefollowingsections.55ContactsRystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023AppendixAlexanderDobrowenFløtreVP&HeadofOffshoreWindResearch,RystadEnergyalexander.flotre@rystadenergy.comGlennBuchanPartner&CommercialDirectorEMEA,RystadEnergyglenn.buchan@rystadenergy.comPhilipColeDirectorofIndustrialAffairsPhil.Cole@windeurope.orgJoachimKjendlieVP&HeadofCopenhagenOffice,RystadEnergyjoachim.kjendlie@rystadenergy.com4041MaterialsusedinwindturbinesSource:RystadEnergyresearchandanalysisRystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023FuturesupplychainrisksMaterialsusedinthemanufacturingofthemaincomponentsofawindturbinearelistedtotheright.Additionally,copper,manganese,silicon,nickelandleadhavealsobeenincludedinthematerialsassessmentduetotheirimportanceforotherpartsofthewindturbinesuchaselectricalequipment,bearings,shaftsandhydrauliccomponents.FoundationCementSteelZincTowerThetowerbringstheturbinetoanelevatedheighttocapturethebestwindconditions.Itthereforeneedstobestrong,durableandabletowithstandpotentiallyharshweatherconditions.Steel,concrete,zincandhybridmaterialsaremostlythematerialsused.SteelCementZincMostnacellesaremadefromsteel,aluminum,compositesandhybridmaterialstobestronganddurableinordertoprotectthecriticalcomponentsinside,suchastheturbine’sgenerator,gearboxandelectricalequipment.NacelleBladesaretypicallymadefromsturdy,lightweightmaterialsthatareflexibleanddurableenoughtowithstandenvironmentalelementsandwindforcesforanextendedperiod.Fiberglass-reinforcedplasticandcarbonfiber-reinforcedplasticarecompositematerialsmostlyused.BladesFiberglassPolymersSteelAluminumZincRareearthsIronFiberglassPolymersOnshoreMaterialisselectedbasedonstrength,durabilityandabilitytowithstandharshenvironmentalconditions.Mostusedmaterialiscement,steelandgravel.OffshoreThefoundationneedtowithstandharshmarineenvironmentssuchasstrongwaves,currentsandwinds.Foundationtypescommonlyused:monopiles,jackets,gravity-basedandfloatingstructures.Zinccoatingisusedtoresistcorrosion.MaterialsRystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023dEnergydEnergyPhilipColeDirectorofIndustrialAffairsPhil.Cole@windeurope.orgrgy4142Anoffshorewindturbineisusedinthisexample.66kVcableisusedfortheinter-arrayexample,and132-220kV(average)fortheexportcable.Source:RystadEnergyresearchandanalysisTurbineandcablematerialbreakdownRystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023FuturesupplychainrisksFigure40showsthematerialcompositionofan8-MWanda15-MWoffshorewindturbine.Smallerturbinestypicallycontainmoreglassfibersintheblades,asthebladeweightrequirementsarenotasstrictasthelargerturbines.TheyalsousemoreplasticssuchasPVC,thermosetsandPET.Ontheotherhand,largerturbinesaremoresteel-intensiveduetotheincreaseintowerheight.Furthermore,plasticslikethermosetsandcarbonfibersplayamoreimportantroleastheindustrytriestodesignlighterblades.Theincreasingturbinesizemeansthatthebladesgetlonger,increasingtheimportanceoflightweightanddurablematerialssuchascarbonfibers.Figure41showsthetypicalmaterialdemandfor1kilometerofinter-arrayandexportcableusedinoffshorewind,andthematerialbreakdownoftheexportcable.Inter-arraycablesaretypicallylow-to-mediumvoltagecables(33to66kV)thatconnectwindturbinestosubstations.Asturbinesizesincrease,developersareexpectedtooptprimarilyfor66kVcables,whichusemorematerialpercablethanlowervoltagecables.Inoffshorewind,exportcablesconnecttheoffshoresubstationtotheonshorepowerinfrastructure.Inmanyways,theyaresimilartointer-arraycables,butwithhighervoltages,suchas132kVand220kV,reducingthepowerlosswhencarryinghugeamperagetotheshore.Anexportcablehasaboutsixtimesbiggeramperagethanitscounterpart.Asoffshorewindfarmsaredeployedincreasinglyfurtherfromshore,theexportcablesbecomelongerandabsorbmorepowerloss.Thus,HVDC(high-voltagedirectcurrent)exportcablesareexpectedtogainpopularity,sinceHVDCisknowntohavelesslossthanthereigningHVAC(high-voltagealternatingcurrent)exportcable.Growingprojectsizeswillalsodrivetheneedforhighervoltagecables,increasingmaterialdemand.Figure40:Materialcompositionfor8-MWwindturbine(left)and15-MWwindturbine(right)MetrictonsFigure41:Materialdemandperkilometerofoffshorewindinter-arraycable(left)andexportcable(right)MetrictonsIronandsteel,77%ZincPVCFiberglassThermosetsPETCarbonfiberRareEarthsOtherIronandsteel,81%ZincThermosetsFiberglassCarbonfiberRareEarthsOther~750-800Metrictons~1,500MetrictonsSteelCopperXLPEOtherpolymersLeadTapesAnticorrosionagentsOpticalcables25150ArraycableExportcable55ContactsRystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023AppendixAlexanderDobrowenFløtreVP&HeadofOffshoreWindResearch,RystadEnergyalexander.flotre@rystadenergy.comGlennBuchanPartner&CommercialDirectorEMEA,RystadEnergyglenn.buchan@rystadenergy.comPhilipColeDirectorofIndustrialAffairsPhil.Cole@windeurope.orgJoachimKjendlieVP&HeadofCopenhagenOffice,RystadEnergyjoachim.kjendlie@rystadenergy.com4243DemandformaterialsfromEuropeanwindmanufacturingtowards2030REE=RareEarthMineralSource:RystadEnergyresearchandanalysisRystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023FuturesupplychainrisksFigure42:DemandformaterialsfromEuropeanonshoreandoffshorewindMillionmetrictonsFortheEuropeanwindindustrytobeabletodeliveronitstargetsanddeploytheprojectedwindcapacity,accesstomaterialsformanufacturingisessential.RystadEnergyhasassessedtheincreaseddemandforthesematerialsbasedonthecapacityoutlookinWindEurope’s2030TargetsScenario,andtheresultingcomponentdemandoutlookestimatedbyRystadEnergy.Ironandsteelmakeupthelargestshareofthematerialsusedinwindmanufacturing,beingakeypartinfoundations,towersandturbines.In2022,ironandsteelisestimatedtocontributenearly65%ofthetotalmaterialdemandfromEuropeanwind.Thisshareisforecasttogrowtoaround75%by2030,drivenbyoffshorewindmakingupanincreasinglylargeshareoftheinstalledcapacity,requiringlarge-scalefoundations.Thegrowthoffloatingwindisexpectedtoaddtoaddtothistrend,assteel-basedfoundationsrequirelargeamountofthematerial.Althoughsmallerintermsoftheircontributiontototaldemand,manganese,siliconandnickelwillfollowthesametrendassteeldemand,beingimportantmaterialsinironandsteelalloys,usedtoincreasestrengthandwearresistance.Cementisthesecondlargestcontributorwitharound20%oftotalmaterialdemandintermsofweightandexpectedtostandforaround10%ofdemandin2030.Cementisthemainmaterialinconcretefoundationsusedinonshorewind,andsinceonshorewind’sshareofcapacityadditionsisexpectedtodecreaserelativetooffshorewind,cement’sshareoftotaldemandfalls.Amongthematerialsexpectedtoseethelargestrelativedemandgrowthtowards2030arelead,copperandrareearthelements,drivenprimarilybytheforecastgrowthinoffshorewind.WithdemandformaterialsfromEuropeanwindmanufacturingexpectedtoincreaserapidlyifEuropeistoreachitsambitioustargets,anassessmentofthesupply-demandstatusofthesematerialsisimportant.Theseconsiderationswillbepresentedinthefollowingpages.0246810121416202220262030Thousands3.8XCementPlasticsZincCopperFiberglassAluminumManganeseLeadSiliconNickelREEsIronandsteelRystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023dEnergydEnergyPhilipColeDirectorofIndustrialAffairsPhil.Cole@windeurope.orgrgy4344AssessmentofcriticalmaterialsintheEuropeanwindindustrySource:RystadEnergyresearchandanalysisRystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023FuturesupplychainrisksTable3:ResultsoftheassessmentofcriticalmaterialsfortheEuropeanwindindustryTable3showsanassessmentofthematerialsusedinwindmanufacturing,includingturbines,foundations,cablesandtransmissioninfrastructure.Thematerials,rankedbyestimateddemandinEuropein2022,havebeenassessedalongthethreedimensionsofthetrilemmaacrossreliability,affordabilityandsustainability.Reliability:Wherethematerialisproduced/sourced.IsthematerialbeingproducedinEurope?Andifnot,isproductionwelldiversified?IsEuropeansupplyresilienttopotentialdisruptions?Europe’srelationshipwiththeproducingcountriesandthealignmentofEurope’sgeneralvaluesandstandardswiththematerialproducingcountries.Affordability:Price,pricefluctuationsandpricedependencies(ifthematerialisproducedmainlybyasinglecountry).Sustainability:Generalimpactontheenvironmentandrelatedgreenhousegasemissionsaswellashumanrightsandworkingconditionsrelatedtotheproductionofthematerial.Eachmaterialhasbeengivenascorefrom1to3foreachpartofthetrilemma.Theoverallstatusassessmentincludestheresultsfromthetrilemmascores,inadditiontoanassessmentofeachmaterial’srelativeimportanceinwindmanufacturing,anditsgrowthtrajectorytowards2030.Ironandsteel,fiberglass,copper,silicon,nickelandrareearthelementsarethematerialswhichaccordingtothisassessmenthavesubstantialrisksassociatedwiththem,whichtheEuropeanwindindustryshouldbeawareof.Threeofthesematerialsarehighlightedlaterinthisreport–copperandrareearthelements,duetotheircriticalityandstrategicimportance,andsteelbecauseofitswidespreadusageinwindcomponentmanufacturing.MaterialEstimatedEuropeanwinddemand2022(thousandmetrictons)2022-2030growthfromEuropeanwindReliabilityscoreAffordabilityscoreSustainabilityscoreOverallstatusassessmentIronandsteel4.5X322Cement1.7X333Plastics3.3X333Zinc3.1X233Fiberglass2.7X223Aluminum2.8X233Copper7.2X212Manganese4.5X233Silicon4.5X122Nickel4.5X221Lead13.9X333RareEarthElements6.7X1122,37874830210570554427533155ContactsRystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023AppendixAlexanderDobrowenFløtreVP&HeadofOffshoreWindResearch,RystadEnergyalexander.flotre@rystadenergy.comGlennBuchanPartner&CommercialDirectorEMEA,RystadEnergyglenn.buchan@rystadenergy.comPhilipColeDirectorofIndustrialAffairsPhil.Cole@windeurope.orgJoachimKjendlieVP&HeadofCopenhagenOffice,RystadEnergyjoachim.kjendlie@rystadenergy.com4445Steel–EuropeansupplyanddemandSources:RystadEnergyresearchandanalysis;RystadEnergySteelSolution.RystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023FuturesupplychainrisksFigure43:IronandsteeldemandfromEuropeanonshoreandoffshorewindMillionmetrictonsOffshorewindOnshorewind02468101220222026203022.5millionmetrictonsEuropeanmanufacturingcapacityofplatesasof20214-5XSteelisanalloymadefromironandothermaterials.Accesstosteel,andtherightqualityofsteel,isimportanttothewindindustrysincemostofthematerialneededfortheconstructionofawindturbine,andoffshorewindfoundations,issteel.Oneofthemostcommontypesofsteelusedinthewindindustryisintheformofplates,andoftenthickor“heavy”platesmainlyusedformonopilesinoffshorewind.ThetopsteelproducingcontinentintheworldisAsia,specificallyChina.However,steelproductionisconsideredwelldiversified,andtheEUwasthesecondlargestproducerin2022afterAsia,closelyfollowedbyNorthAmerica.Forsteelplates,Ukrainehasbeenasignificantproducerandin2021,thecountrysuppliedcloseto50%oftheEU’splateimports.DuetotheRussianinvasionofUkraineinFebruarylastyear,thelargestUkrainianplateproducerMetinvestlostcontrolofitstwoplatemillsinMariupol,resultinginaplateproductiondropofover70%in2022.Consequently,countrieslikeIndia,Indonesia,JapanandevenTurkey,withonlyoneplant,drasticallyincreasedtheirplateexportstotheEU.RussiaandUkrainehaveuntilnowalsobeenthelargestslabproviderstotheEU,exporting93%ofEU’simportedslabsin2021.ThisissignificantforEuropeanplateproductionseeingthatvariousfacilitiesintheregion,especiallyinItaly,areentirelydependentonslabfeed.Thesupplydisruptioncontinuedthroughout2022,wheninSeptemberSouthKorea,alargeproducerofheavysteelplates,wasstruckbyatyphooncausinglargedamagestoseveralmanufacturingfacilitiesbelongingtothecountry’slargeststeelproducerPOSCO.ThecompanyannouncedthatthesteelmillswerefullyrestoredandbacktooriginaloperationalcapacityaslateasinJanuary2023.Themarketisnowsettlingaftercontinuousdisruptionsandunlessothernon-predictablesituationsshouldarise,thesteelmakersshouldbeabletosufficientlysupplythemarket.RystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023dEnergydEnergyPhilipColeDirectorofIndustrialAffairsPhil.Cole@windeurope.orgrgy454650%54%52%52%54%56%51%46%53%0%20%40%60%80%100%0510152025201320142015201620172018201920202021CapacityUtilizationFigure44:UtilizationofEuropeanplatemanufacturingcapacityMillionmetrictonsPercentageSteelplateproductioncapacityandpricePricefortheS235structuralsteel.Carbonsteelplateupto40mmthickness.EuropeanplatemanufacturingcapacityisreferringtoEU27countries,NorthMacedoniaandUK.Sources:Rystadenergyresearchandanalysis;RystadEnergySteelSolution.RystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023FuturesupplychainrisksAutilizationrateslightlyabove50%hasbeenthegeneraltrendformostoftheplatemakersinEuropeoverthepast10years,meaningtheyarenotproducingattheirmaximumcapacity.Thisisdueinparttothecompetitivethreatsfrominternationalplatesupply,specificallyfromAsia.However,UkraineisnotincludedinFigure44,wheresteelmakers,untilthebeginningof2022,exportedclosetohalfoftheirsteeltotheEU.Traditionally,Europeanplateproducersareexport-marketdependentandcontrarytothepatternsinmoststeels,theEUremainsanetexporterofplates,buttypicallyforhigherquality,heavierplates.Forlargevolume,lowervalue(so-calledcommercial)plates,theregionhasincreasinglybeendependentonplatesproducedincountrieswithtypicallylowerproductioncosts.ManyplatesinEuropearealsoproducedbysteelprocessorsor“re-rollers”ratherthansteelproducers,meaningthatforexampleinItalyandtheUK,steelisimported,intheformofslab,andsubsequentlyconvertedintoplates.Asstatedbefore,thisslabtraditionallycomesfromplantsinUkraineandRussia,whichareatriskofbeingpermanentlydisrupted.However,platesforthewindindustryareunlikelytobedisruptedgiventhegreencredentialsrenewableenergyprovidesthesteelmakersthatareeagertoreducetheirexposuretomorecarbon-intenseapplicationssuchastheoilandgasindustry.Sincesteelisanalloyandnotarawmaterial,thereisnotaglobalsteelmarketinthesamewayasothercriticalmaterialssuchaszincandcopper.Thequalitiesofsteelcanbefoundindifferentregionsandoftenwithsignificantlydifferentpricetags.Marketsgearedforexport,suchasEuropeandAsia,areoftenmorecompetitivethanimportmarketssuchastheUS.Ingeneral,platepriceswereunusuallyhighin2022,giventhesupply-sideconstraintsemanatingfromUkraine,butasregionalsuppliesadjust,RystadEnergyexpectsthepricestodeclineyear-on-yearwith2023beingayearofcorrections.Thepotentialcorrectionsforsteelplatescouldinfactbegreaterthanforothersteelssuchascoilsandbars,giventheunusualpremiumsthatplatepricesachievedlastyear.WithEurope’sfocusonreducingemissions,windmanufacturerswithagoalofreducingtheircarbonfootprintmighthavesomeoptionstoprocuregreen(er)steelinthelatterpartofthisdecade.Currently,IndusteelinFranceandBelgiumaretheonlysteelmakersinEuropethatoperatewithelectricarcfurnaces(EAF).Dillingerwillfollowin2027whenitisscheduledtocommissionitsfirstEAF.Figure45:PlatesteelpriceEURpermetricton(nominal)05001,0001,5002,0002,50055ContactsRystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023AppendixAlexanderDobrowenFløtreVP&HeadofOffshoreWindResearch,RystadEnergyalexander.flotre@rystadenergy.comGlennBuchanPartner&CommercialDirectorEMEA,RystadEnergyglenn.buchan@rystadenergy.comPhilipColeDirectorofIndustrialAffairsPhil.Cole@windeurope.orgJoachimKjendlieVP&HeadofCopenhagenOffice,RystadEnergyjoachim.kjendlie@rystadenergy.com4647Copperisthe25thmostabundantmetalintheearth’scrust.Itismalleable,ductile,corrosion-resistantand,perhapsmostimportantly,hasstrongconductivepropertieswhichmakeitextensivelyusableinelectricalequipmentsuchaswiringandmotors.Thisisalsothecaseforthewindsectorwhichneedscopperforitselectricalcomponents.Mostofthecopperisusedforcablesbutitisalsoneededforpowergeneratorsandtransformers.Copperdemandmainlycomesfromthreesectors:transportation,constructionandrenewableenergy.Long-termcopperdemandisexpectedtoincreasesignificantlyduetotheenergytransitionandthegeneralelectrificationofoursocieties.Electricvehicles(EVs)needthreetofourtimesasmuchcopperasstandardvehicleswithinternalcombustionengines.Withpassengervehiclesexpectedtogrowsixtimesandcommercialvehiclestogrowninetimesby2030,asignificantincreaseincopperdemandisexpectedtocomefromthissector.Withtheexpansionofrenewableenergy,gridandnetworkinfrastructurewillbothgrowandimprove,furtherincreasingdemandforcopper.FromEuropeanwind,theexpectedincreaseindemandbasedonWindEurope’s2030TargetsScenariowillbeseventimeshigherthanin2022.Lastyear,totalcopperproductiongloballywasaround22millionmetrictons,accordingtotheUSGeologicalSurvey,withChile,PeruandChinaasthethreelargestproducers.Europeproducesapproximately1.8millionmetrictons(asof2021)excludingrecycling,whereRussiastandsforcloseto50%ofthis.AlthoughmostoftheglobalproductionisoutsideEurope,copperproductioniswelldiversifiedgloballywhichisthereasonwhythemetaldoesnotmakethethresholdoftheEuropeanCommission’slistofcriticalrawmaterials.However,ithasbeendeemedaStrategicRawMaterialandisthereforeincludedinthefifthandmostrecentassessmentofEU’scriticalrawmaterialsasof2023.Lately,largecopperminesinPeruhaveeitherbeenhaltedorshutdownduetopoliticalunrestand,togetherwithChina’slockdownin2022duetoCovid-19,copperproductionfellsignificantly.Additionally,stockpilesareatverylowlevelswhichresultsinacurrentlytightglobalcoppermarket.Thelockdownsaroundtheglobeinearly2020becauseofCovid-19limitedglobalsupplydrasticallyandpushedcopperpricesthroughtheroof.Thecurrentshort-termsupplytightnesscoupledwiththelong-termenergytransitionrelateddemandcanpotentiallypushpricesevenhigherinthefuture.Atthesametime,withcopperpricessustainedatrelativelyhighlevelssincetheeffectsofCovid-19,copperproducerswilllikelyseektoexpandtheirproduction.AccordingtotheInternationalCopperStudyGroup,Europerecyclesabout50%ofitsusedcopper.Thisgreatlyreducesthedependencyonproductionexpansionsandiftheshareofrecycledcopperincreases,itwillgreatlyaidtheregiontosecurecopperforfutureproducts–includingthewindindustry.Copperisproducedinmanydevelopingcountriesandhumanrightsorganizationshaveissuedwarningsaboutillegalworkingpractices,particularlyinAfricancountries.Copperworkersofmulti-nationalfirmsareforcedintodangerousconditionswithlittlesafetyprecautionsandlowwages.EnsuringthewindindustrysupportsafairandjustcopperindustrywithproperworkerrightscanthereforemeanutilizingasmuchEuropeancopperaspossible.Aluminumandfiberaretwopotentialcopperalternatives.Withtheincreasedcopperprice,thepricegapbetweenfiberandcopperhasbecomesmaller,makingfibermorecostcompetitive.Fiberisespeciallyapplicablefornetworktransmissionasithastheadvantageofgreaterbandwidthandhenceincreasedtransmissionspeed.Aluminumisalsoalowercostalternativetocopper,anddespitehavinginferiorconductivity,itisexpectedtoseeanincreasingshareincablesusedinthewindindustryinthelongerterm.Copper–EuropeansupplyanddemandSource:Rystadenergyresearchandanalysis.RystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023FuturesupplychainrisksFigure46:CopperdemandfromEuropeanonshoreandoffshorewindThousandmetrictonsOffshorewindOnshorewind050100150200250300350202220262030Europeancopperproductionasof20211.8millionmetrictons~7XRystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023dEnergydEnergyPhilipColeDirectorofIndustrialAffairsPhil.Cole@windeurope.orgrgy4748Thereare17definedRareEarthElements(REE)intheworld,and,despitetheirname,thesearefoundinrelativeabundancearoundtheworld.Inthewindindustry,theREEsareimportantforthemanufacturingofpermanent-magnetgenerators,locatedinsidethenacelle.REEsarecrucialcomponentsindirectdrivewindturbineswhichdonotrequiregearboxes.ThethreemostimportantREEsforthewindindustryareNeodymium,Dysprosiumand(althoughinrelativelysmallamounts)Praseodymium.DemandforREEscomingfromthewindindustry,mainlyoffshorewind,isforecasttogrowaboutseven-foldby2030ifEuropeistoreachitswindenergytargets.REEsarealsousedinthetractionmotorsofEVs,andtheelectrificationofthetransportsectorgloballywillsignificantlyincreasethedemandforREEs.AccordingtotheEuropeanCommission,Europecurrentlyimports98%ofitsREEsfromChina.Assuch,thereareconcernsfordirectsupplychainbottlenecks,alsointermsofgeopoliticaltensions.ThebiggestthreatforthesupplyofREEsfortheEuropeanwindindustryisthedependenceonChinaforproduction.Consequently,toalargeextent,ChinaalsocontrolsthepricesforREEs.REEsaregenerallyfoundasamixofmultipleelementsandduetotheirsimilarcharacteristics,theprocessofseparatingthemiscomplex.Inadditiontoextractingmostoftheore,Chinaalsohasthemostprocessandrefiningfacilities,meaningthatevenifEuropeandtherestoftheworldwouldexpandtheirminingcapacity,processingwillstilllikelytakeplaceinChina.Europeisthereforeforcedtobuildouttheentirevaluechaintoreduceitsdependency.TheEuropeanCommissionstarteditsfirstworkmappingcriticalrawmaterialsformultipleindustriesin2011,andrareearthsmadethelist.TheCommissionexclusivelymentionstheimportanceofREEsforthewindindustry.Togetherwiththerareearthcrisisin2010-2011,theneedtodiversifyglobalproductionforREEshasforsometimenowbeenonthemindoftheglobalcommunityandin2020,theEuropeanCommissionlaunchedtheEuropeanRawMaterialsAlliance.ThefirstfocusofthealliancehasbeentoincreaseEU’sresilienceintherareearthandmagnets’valuechain.ThelargestproduceroutsideChinaisLynasRareEarthsinAustralia.TheyalsoownaseparationandprocessingfacilityinMalaysia,andtheUSsupportedthecompanywithfundingtobuildtwoadditionalprocessingfacilitiesintheUS(bothinTexas).TheEU-fundedEURAREprojectfrom2013wastaskedwithmappingoutpotentialREEdepositsinEuropeandidentifiedseveralpotentialsitesinGreenland(Denmark),Sweden,GreeceandSpain.However,themainchallengewithproducingREEsinEuropedoesnotseemtobethediscovery,buttheextractionprocessandimprovingthetechniquesandextractingmineralsinanenvironmentally-friendlyway.CanadiancompanyNeoPerformanceMaterialsownstheonlyrareearthprocessingfacilityinEurope(inEstonia)andhasannouncedplannedupgradestotheplant.Ithasalsoannouncedplanstoestablishanewmagnetfactory,whichwillbeavertically-integratedrareearthproductionfacility.Additionally,SwedishminingcompanyLKABdiscoveredalargedepositofrareearthsinSwedenatthebeginningofthisyear.ThisissofarthelargestknowndepositinEuropeandcouldpotentiallygreatlyaidtheEuropeanproductionofREEs.SinceChinacontrolsmostproduction,italsoeffectivelycontroltheprices.CurrentpricesarereflectedinlowminingandproductioncostsinChinatogetherwithlowerenvironmentalstandardscomparedtoEuropeandNorthAmerica.Atthesametime,globaldemandispushingpricesupwards.Therearedifferentpricesforvariousproducts,andmixedproductsaregenerallycheapercomparedtoindividualrareearths.Europecouldthereforeobtainlowerpricesshoulditinvestinprocessingandrefiningplants.Rareearthelements–supplyanddemandSource:Rystadenergyresearchandanalysis.RystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023FuturesupplychainrisksFigure47:DemandforrareearthelementsfromEuropeanonshoreandoffshorewindThousandmetrictonsOffshorewindOnshorewind0123456202220262030NoproductionofrareearthmineralsinEurope~7X55ContactsRystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023AppendixAlexanderDobrowenFløtreVP&HeadofOffshoreWindResearch,RystadEnergyalexander.flotre@rystadenergy.comGlennBuchanPartner&CommercialDirectorEMEA,RystadEnergyglenn.buchan@rystadenergy.comPhilipColeDirectorofIndustrialAffairsPhil.Cole@windeurope.orgJoachimKjendlieVP&HeadofCopenhagenOffice,RystadEnergyjoachim.kjendlie@rystadenergy.com4849RecyclingAstrongpositiveforsteelisthatitisinfinitelyrecyclable.Attheendofitslifecycle,ifthesteelcannotbedirectlyusedforotherapplications,itcanreturntothesteelmakingprocesstobereprocessedintonewproducts.Thevalueofthesteelscrapwillthereforebecomeasignificantcostforplateproducersinthefuture,especiallyinEuropeandAsiawhicharethelargestplateproducingregionsthatcurrentlydependonironoreandcoke,eitherpurchasedorproducedbytheplatemillsthemselves.Theprocessofextracting,refiningandproducingcopperiscarbon-intensive.Theminingprocessemits2.3-2.5metrictonsofCO2permetrictonofmetal.Ifsmeltingandfurtherproductionisincluded,1.65metrictonsofCO2permetrictonsofthemetalcanbeadded.However,copperisrecyclableandcurrentlyaround30%oftotalcopperconsumptioniscoveredbyrecycling,thusreducingemissionsby65%comparedtoprimaryproduction.Copperretains90%ofitsvaluewhenrecycledandisthereforeintheinterestoftheproducerstorecycleit.Lastyear,UScompanyCarbonRiverscommercializeditsrecyclingtechnologywhichupcyclesallcomponentsofthewindturbineblade,includingthesteel,fiberglassandcarbonfiber.Glass-fibermaterialsarealsoessentialcomponentsofwindturbineblades,andcurrentlyEuropeanmanufacturersareheavilydependentonimports.In2021,WindEuropecalledforaEurope-widebanonlandfillsfordecommissionedturbinebladesby2025andwithrecyclingtechnologiesimproving,re-usingbladematerialscanbecomemorewidespread.Denmark-basedcompanyContinuumisplanningtobuildsixrecyclingfactoriesacrossEurope,withthefirstexpectedtobecomeoperationalbytheendof2024andstarttakinginend-of-lifebladesbytheendofthisyear.GreensteelOverthepastdecade,therelationshipbetweensteelproductionandcarbonemissionsappearstohavebeenintensifyingastraditionalblastfurnacetechnologieshavebecomemorepopular,especiallyinChina.Moreenvironmentally-friendlyelectricarcfurnaces(EAFs)dependonscrap,whichhastraditionallyonlybeenabundantinfullyindustrializedmarkets,unlikegrowing,developingsteelmarketslikeChinaorIndia.Lastyearwasanunusualyearassteelproductionfell,andwithit,CO2emissions.However,thedemandoutlooksuggestsproductionwillsoonreachnewheights.TostopCO2emissionsrisingatthesametime,theconceptof‘greensteel’isgainingattention,mostnotablyinEuropewherecarbontaxesarewellestablished,andclimateandnetzerogoalsareinfocus.Greensteelproductionistheconceptofusingrenewableenergysourcestoatleastpowerthesteelproduction,notablyamongEAFs,andcarboncapturetocollectemissions,notablyfromblastfurnaces(BFs)andbasicoxygenfurnaces(BOFs).TherearealsoplanstousegreenhydrogeninplaceofnaturalgasorcoalatDirectReducedIron(DRI)facilities,andcoalandcokeatBFfacilitiestoreduceironore,giventhatscrapsuppliesmaystruggletomeetalltherawmaterialdemandfromsteelproducers.CompaniessuchasH2GreenSteelaredevelopingthistechnologyandhaveenteredpartnershipswithrenewableenergyandminingplayers.Theindustrycanexpecttoseeatleastahandfulofsteelplantstryingtorunongreenhydrogenpriorto2030,butthistechnologywouldnotmakeupasignificantpartoftheEuropeansteelproductionwithinthisdecade,asitisstillinanascentstage.EuropeisprimarilyfocusedonreplacingblastfurnaceswithDRI/EAFalternatives,whereasAsiaismoreinterestedinacombinationofcleanoptions.Fromasustainabilitypointofview,Europeanwindfarmownersshouldfirstandforemostmakesurethattheend-of-lifeturbinebladesarebeingrecycled,andsecondly,companiesmanufacturingwindturbinecomponentsshouldseektousesteelmadefromelectricarcfurnacesbeforethegreensteeltechnologyismadecommerciallyavailableforthemarket.RecyclingandemissionreductionSources:Rystadenergyresearchandanalysis;RystadEnergySteelSolutionRystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023FuturesupplychainrisksFigure48:IronandsteelemissionintensityTonofCO2pertonofsteel(tCO2/t)1.881.850.4000.20.40.60.811.21.41.61.8220002022GreensteelRystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023dEnergydEnergyPhilipColeDirectorofIndustrialAffairsPhil.Cole@windeurope.orgrgy4950Source:WindEuropeRystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023PolicyrecommendationsTheEUhascommittedtobecomingclimateneutralby2050.Thismeansacceleratingtherenewables-basedelectrificationofEurope’senergymix.ThewarinUkrainehasonlyunderscoredtheneedforEuropetoshiftawayfromvolatilefossilfuelimportsandacceleratetherolloutofhome-grownenergy.Tothisend,EuropeanlegislatorshavenowagreedthattheEUmustmeeta42.5%targetforrenewablesinitsenergymixby2030.ThismeanstheEUmustinstall28.5GWofwindenergyeachyearbetween2023and2030.Averysignificantincreaseonthe16GWinstalledin2022.Thisisatatimewhere80GWofwindenergyprojectsarestuckatvariousstagesofpermittingproceduresacrossEurope.TheEuropeanwindsupplychainwillneedtoexpandtodeliveronthosevolumesandhavingahealthyEuropeansupplychainisvital.Butallindicatorscurrentlypointinthewrongdirection.With€17bninvestedinnewwindfarmsinEuropein2022,windinvestmentnumbersarethelowestsince2009.Theyonlyrepresenttheequivalentof12GWfinanced,lessthanhalfoftherequiredannualdeploymentvolume.Withturbineordersdown47%comparedto2021,Europeneedstosignificantlyincreaseinvestorconfidencetoensurethatitsrenewableenergygoalscanbemet.TheEUmustalsosticktoatargetedreformoftheelectricitymarketdesignandremoverevenuecapswhichholdbackinvestments.InMarch2023theEUpresenteditslegislativeresponsetothegrowingissuesfacedbytheindustryintheformoftheGreenDealIndustrialPlan.IncludedinthisplanaretheNetZeroIndustryActandtheCriticalRawMaterialsAct.Theseaimtocreateamorepredictableandsimplifiedregulatoryenvironment,offerfasteraccesstofunding,developopentradeforresilientsupplychainsandtoensurethatEuropehastheskillsbaseneededfortheincreaseddeploymentofrenewables.Theplanalsocallsfor36GWofannualEuropeanwindturbinemanufacturingcapacityby2030.Tofinancethis,theEUisproposingtoinitiallyutilisetheInnovationFundbeforetransitioningtotheyettobeconfirmedEUSovereigntyFund.However,focusingoninnovationratherthanvolumesdoesnotsendtherightsignaltothemarketandsoadedicatedandfitforpurposefundingandfinancinginstrumentisrequired.WhilsttheGreenDealIndustrialPlanisastepintherightdirection,theplanfallsshortofdeliveringthesupportneededtomaintainandgrowEurope’swindenergysupplychainandtoultimatelyallowustomeetour2030targets.Inparallel,in2022theUSagreeditsInflationReductionAct,earmarkingUSD$369bnforitscleantechnologysupplychains,andChinacontinuedtoapplyveryrobusttarget-drivenindustrialpolicies.UnlessEuropewantsitsambitiousclimateobjectivestobemetbynon-Europeantechnology,itneedstosetoutveryclearFinancingandRegulatorymeasurestopreserveandexpanditscleantechnologysupplychains.Thisrequiresnationalgovernmentstoacceleraterenewablespermittingsothatnationalcommitmentsonrenewablestranslateintoactualprojects.Havingtherightwindauctiondesign,supportingtheexpansionofthewindsupplychainandensuringrenewablesinvestorshavetherightmarketsignalstoacceleratewinddeploymentarecrucial.ToachieveEurope’srenewableenergyambitions,therearethreesetsofpolicyrecommendationsthatwillmakethedifference.1)NationalGovernmentsmustapplytherulesnowagreedatEUleveltoacceleraterenewablespermittingby:•Reflectingintheirpermittingprocessesthatrenewablesareinthe‘overridingpublicinterest’•Applyingapopulation-basedapproachtobiodiversityprotection•Meetingtheirbinding2-yearpermittingdeadlineincludingthegridconnectionpermitandevaluationoftheenvironmentalimpactassessment.2)NationalGovernmentsmustensuretheirwindauctiondesignaddressesthechallengesofthesupplychainby:•Indexingauctiontariffstoreflectpossibleincreasesincommodityprices.•Avoidingnegativebiddingwheretheindustrypaysforthe‘privilege’ofbuildingawindfarm.•Usingnon-pricecriteriainauctionstorewardtheaddedvaluethatEuropeanmanufacturersbringintermsofenergysystemintegration,sustainability,Europeanjobsandcommunityengagement.3)TheEUandNationalGovernmentmustsupporttheexpansionofthewindsupplychainby:•MakinguseoftheflexibilityintheStateaidguidelinesthatallownationalGovernmentstogiveCAPEXsupporttoproduction.•ImprovingtheNetZeroIndustryactsothatitdeliversthesupportthattheindustryneed.•Developingfit-for-purposeFundingandFinancinginstrumentsatEUlevelthroughreformingtheInnovationFundtofocusonscalingupcleantechsupplychainsandfocusingthenewEUSovereigntyFundonthetechnologiesthatdelivernetzeroandenergysecurity.•EstablishingnewtradingroutesfortherawmaterialsthatweneedthroughtheCriticalRawMaterialsAct.Thisincludessourcingfromreliablethirdcountries,recyclingandmininginEurope.Tosupportthis,theEUmustcoordinatetradedefencemeasurestoensurethatEuropeanmanufacturersremaincompetitiveglobally.Withonly7yearstogountil2030,thetimeisnowtomakethenecessaryimprovementssothatEurope’senergytransitioncanbebuiltathome.WeneedtoseethequickadoptionofsupportingmeasurethataremanufacturerfriendlyandforpermittingprocessesthattoworkinEurope’sfavourratherthanagainstit.Onlythenwillweseethesignificantlevelsofinvestmentneededathome.55ContactsRystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023AppendixAlexanderDobrowenFløtreVP&HeadofOffshoreWindResearch,RystadEnergyalexander.flotre@rystadenergy.comGlennBuchanPartner&CommercialDirectorEMEA,RystadEnergyglenn.buchan@rystadenergy.comPhilipColeDirectorofIndustrialAffairsPhil.Cole@windeurope.orgJoachimKjendlieVP&HeadofCopenhagenOffice,RystadEnergyjoachim.kjendlie@rystadenergy.com5051AboutRystadEnergyRystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023AppendixWeareaglobalindependentenergyresearchandbusinessintelligencecompanycoveringallenergysourcesandenergymarketsgloballyWeprovidereliabledata,analyticsandadvisorytoenableourclientstonavigatethefutureofenergyOurgoalistoprovidetransparencyintheglobalenergymarketsandtocontributetoaresponsibleenergytransitionRystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023dEnergydEnergyPhilipColeDirectorofIndustrialAffairsPhil.Cole@windeurope.orgrgy5153RystadEnergycoversmorethan100,000utility-scalerenewableassetsgloballyRystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023Appendix55ContactsRystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023AppendixAlexanderDobrowenFløtreVP&HeadofOffshoreWindResearch,RystadEnergyalexander.flotre@rystadenergy.comGlennBuchanPartner&CommercialDirectorEMEA,RystadEnergyglenn.buchan@rystadenergy.comPhilipColeDirectorofIndustrialAffairsPhil.Cole@windeurope.orgJoachimKjendlieVP&HeadofCopenhagenOffice,RystadEnergyjoachim.kjendlie@rystadenergy.com5254RystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023MethodologyoverviewOnlyusedformaterialmodelingpurposesAppendixWindEurope2030TargetsScenarioCapacityoutlookWindTurbineInstallationVesselsTurbinedemandFoundationdemandTowerdemandFigure49:Component/servicedemandmodeloverviewHubheightanalysisFoundationtypeanalysisCountrytargetsWaterdepthsSeabedTurbinesizeanalysisProjectannouncementsTurbinesizetrendsVesseldemandDaysperturbineMobilizationTurbinesizeNumberoftripsFigure50:MaterialdemandmodeloverviewTurbinedemandFoundationdemandTowerdemandWindEurope2030TargetsScenarioExportcabledemandMaterialdemandCapacity(MW)Towerheights,onshore/offshoreTurbinesize,onshore/offshore,rotordiametersTurbinesize,foundationtypeCablelengths,projectsize,voltageMaterialintensitiesWindEuropecontributionRystadEnergycontributionModelparameters(RystadEnergy)RystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023dEnergydEnergyPhilipColeDirectorofIndustrialAffairsPhil.Cole@windeurope.orgrgy5355ContactsRystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023AppendixAlexanderDobrowenFløtreVP&HeadofOffshoreWindResearch,RystadEnergyalexander.flotre@rystadenergy.comGlennBuchanPartner&CommercialDirectorEMEA,RystadEnergyglenn.buchan@rystadenergy.comPhilipColeDirectorofIndustrialAffairsPhil.Cole@windeurope.orgJoachimKjendlieVP&HeadofCopenhagenOffice,RystadEnergyjoachim.kjendlie@rystadenergy.com55ContactsRystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023AppendixAlexanderDobrowenFløtreVP&HeadofOffshoreWindResearch,RystadEnergyalexander.flotre@rystadenergy.comGlennBuchanPartner&CommercialDirectorEMEA,RystadEnergyglenn.buchan@rystadenergy.comPhilipColeDirectorofIndustrialAffairsPhil.Cole@windeurope.orgJoachimKjendlieVP&HeadofCopenhagenOffice,RystadEnergyjoachim.kjendlie@rystadenergy.com5456DisclaimerThisreporthasbeenpreparedbyRystadEnergy(the“Company”).Allmaterials,contentandformscontainedinthisreportaretheintellectualpropertyoftheCompanyandmaynotbecopied,reproduced,distributedordisplayedwithouttheCompany’spermissiontodoso.TheinformationcontainedinthisdocumentisbasedontheCompany’sglobalenergydatabasesandtools,publicinformation,industryreports,andothergeneralresearchandknowledgeheldbytheCompany.TheCompanydoesnotwarrant,eitherexpresslyorimplied,theaccuracy,completenessortimelinessoftheinformationcontainedinthisreport.Thedocumentissubjecttorevisions.TheCompanydisclaimsanyresponsibilityforcontenterror.TheCompanyisnotresponsibleforanyactionstakenbythe“Recipient”oranythird-partybasedoninformationcontainedinthisdocument.Thispresentationmaycontain“forward-lookinginformation”,including“futureorientedfinancialinformation”and“financialoutlook”,underapplicablesecuritieslaws(collectivelyreferredtohereinasforward-lookingstatements).Forward-lookingstatementsinclude,butarenotlimitedto,(i)projectedfinancialperformanceoftheRecipientorotherorganizations;(ii)theexpecteddevelopmentoftheRecipient’sorotherorganizations’business,projectsandjointventures;(iii)executionoftheRecipient’sorotherorganizations’visionandgrowthstrategy,includingfutureM&Aactivityandglobalgrowth;(iv)sourcesandavailabilityofthird-partyfinancingfortheRecipient’sorotherorganizations’projects;(v)completionoftheRecipient’sorotherorganizations’projectsthatarecurrentlyunderway,underdevelopmentorotherwiseunderconsideration;(vi)renewaloftheRecipient’sorotherorganizations’currentcustomer,supplierandothermaterialagreements;and(vii)futureliquidity,workingcapital,andcapitalrequirements.Forward-lookingstatementsareprovidedtoallowstakeholderstheopportunitytounderstandtheCompany’sbeliefsandopinionsinrespectofthefuturesothattheymayusesuchbeliefsandopinionsasafactorintheirassessment,e.g.whenevaluatinganinvestment.Thesestatementsarenotguaranteesoffutureperformanceandunduerelianceshouldnotbeplacedonthem.Suchforward-lookingstatementsnecessarilyinvolveknownandunknownrisksanduncertainties,whichmaycauseactualperformanceandfinancialresultsinfutureperiodstodiffermateriallyfromanyprojectionsoffutureperformanceorresultexpressedorimpliedbysuchforward-lookingstatements.Allforward-lookingstatementsaresubjecttoanumberofuncertainties,risksandothersourcesofinfluence,manyofwhichareoutsidethecontroloftheCompanyandcannotbepredictedwithanydegreeofaccuracy.Inlightofthesignificantuncertaintiesinherentinsuchforward-lookingstatementsmadeinthispresentation,theinclusionofsuchstatementsshouldnotberegardedasarepresentationbytheCompanyoranyotherpersonthattheforward-lookingstatementswillbeachieved.TheCompanyundertakesnoobligationtoupdateforward-lookingstatementsifcircumstanceschange,exceptasrequiredbyapplicablesecuritieslaws.Thereaderiscautionednottoplaceunduerelianceonforward-lookingstatements.UndernocircumstancesshalltheCompany,oritsaffiliates,beliableforanyindirect,incidental,consequential,specialorexemplarydamagesarisingoutoforinconnectionwithaccesstotheinformationcontainedinthispresentation,whetherornotthedamageswereforeseeableandwhetherornottheCompanywasadvisedofthepossibilityofsuchdamages.©RystadEnergy.AllRightsReserved.RystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023RystadEnergy–TheStateoftheEuropeanWindEnergySupplyChain–April2023dEnergydEnergyPhilipColeDirectorofIndustrialAffairsPhil.Cole@windeurope.orgrgy55RystadEnergyisanindependentenergyconsultingservicesandbusinessintelligencedatafirmofferingglobaldatabases,strategicadvisoryandresearchproductsforenergycompaniesandsuppliers,investors,investmentbanks,organizations,andgovernments.Headquarters:RystadEnergy,Fjordalléen16,0250Oslo,NorwayAmericas+1(281)-231-2600EMEA+4790887700AsiaPacific+6569093715Email:support@rystadenergy.com©Copyright.Allrightsreserved.

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

碳中和
已认证
内容提供者

碳中和

确认删除?
回到顶部
微信客服
  • 管理员微信
QQ客服
  • QQ客服点击这里给我发消息
客服邮箱