为能源转型提供资源,让世界运转(英文版)-毕马威VIP专享VIP免费

Resourcing the
Energy Transition:
Making the World
Go Round
Geographical and geopolitical constraints
to the supply of resources critical to
the energy transition call for a circular
economy solution.
March 2021
KPMG International
home.kpmg/IMPACT
2
© 2021 Copyright owned by one or more of the KPMG International entities. KPMG International entities provide no services to clients. All rights reserved.
-
From OPEC to ‘OMEC’1: the new global
energy ecosystem
An energy transition is occurring that relies upon new sources of power and will drastically
redraw the global energy and minerals market – with economic, environmental and
geopolitical consequences.
Energy is, once again, at the center of the new
economy and geopolitical landscape. With the
past five years the warmest on record2, countries are
scrambling to meet the ambitious targets established
at the Paris Climate Agreement in 2015. The widely
accepted target is to limit the increase in global
temperatures to 1.5 degrees or 2 degrees at most;
nine of the top 10 global economies today have either
announced net zero plans or committed to doing so.
Global firms and financial institutions are setting their
own similarly ambitious goals - KPMG among many
others, has pledged to become a net-zero carbon
organization within the next decade.
Meeting these targets means decarbonizing3 the
energy sector – quickly. The necessary reduction in
greenhouse gas emissions (GHGs) implied by these
targets can only be met through the transition of the
global economy from one based on fossil fuels, to
one largely powered by renewable and low or zero-
carbon production and consumption of energy. Net zero
agendas adopted by energy-intensive economies will
necessarily require large-scale roll-outs of renewable
energy technologies to eliminate emissions from power
generation and decarbonize the world’s manufacturing
and transport sectors that currently rely on coal, oil
and gas.
But there is an underappreciated risk to the energy
transition: the supply of clean energy depends on
mined natural resources, which are steeped in
geological, geopolitical and governance challenges.
The world’s attention has been focused on the costs of
renewable technologies themselves and comparatively
little attention has been paid to the supply chain that
make those technologies possible. The very beginning
of that supply chain – the sourcing of metals, minerals
and abiotic materials (‘resources’) – could turn out to be
the weakest link.
Somewhat counter-intuitively, the core issue is not
necessarily one of quantity of the minerals; global
known reserves are in fact sufficient to meet current
projections of demand for many of these resources.
Nearly three-quarters of total global GHGs
(73.2%) come from the energy sector
(electricity, heat and transport)4 .
Essential, but not critical? Demand for
graphite (used to build anodes in automotive,
grid and decentralized batteries) is predicted by
the World Bank to grow the most in percentage
terms as a result of the energy transition (by
nearly 500%5) – but demand could theoretically
be met through existing reserves (sitting at
440% of anticipated demand).
4.5 million
tons annually or
68.8 million
tons in cumulative
demand by 20507
1.1 million 320 million8
tons produced Reserves
in 20206
1Freshly minted acronym for ‘Organisation of Mineral Exporting Countries’ – this grouping may not yet exist, but the point remains: geopolitical power could shift
from oil-dominated countries to critical metal-dominated countries.
2Climate change: 2020 was the joint hottest year on record (2021) New Scientist.
3Reduction of carbon emissions.
42016 figures based on carbon dioxide equivalents. Emissions by sector (2020) Our World in Data.
5From 2018 production levels.
6Graphite data sheet – mineral commodities summaries (2021) USGS.
7A conservative estimate based on energy technologies only. Minerals for Climate Action: The Mineral Intensity of the Clean Energy Transition (2020) The World
Bank (‘World Bank Report 2020).
8An equally conservative estimate based on global mine production and reserves; inferred resources of recoverable graphite exceed 800 million tons. Graphite data
sheet – mineral commodities summaries (2021) USGS.
3
© 2021 Copyright owned by one or more of the KPMG International entities. KPMG International entities provide no services to clients. All rights reserved.
Refractories
Electronics
Despite this, future supply faces two key risks:
Extraction and production will face
increasing scrutiny from downstream
industries, investors and the public over
environmental, social and governance
(ESG) issues; and
Even as the political agenda impacts
the ‘steepness’ of demand (in pace and
volume), access to these ‘strategic
resources’ will be politicized in the name
of national security given the centrality of
their use to broader economic development
and technological innovation, as well as the
energy transition.
Given the material intensity of low-carbon technologies,
any potential demand-supply gaps or constraints
could impact the speed and scale at which certain
technologies are able to be deployed9. As such, a broad
range of industries will be exposed to the terrestrial,
oceanic and economic risks associated with the
production and use of these resources.
Sectors dependent on green technologies and energy
storage solutions, such as infrastructure, transport
and automotive, or on the alternate application of
cross-cutting critical resources, such as industrial
manufacturing and life sciences, will need to manage
and assess these risks to ensure supply chain resiliency.
In the following pages, we explore specific geographic
and geopolitical factors that can influence comparative
demand, availability and production of these resources –
turning them from ‘essential’ to the energy transition to
‘critical’ for business operations.
But unlike the old’ energy sector, there is a circular
solution; the redesign of products alongside the reuse,
recycling and repurposing of these resources can relieve
the pressure on commodity supplies to meet demand –
ensuring the rapid pace of the energy transition,
transformation of related industries, and reduction in
temperature rises globally.
Geographic dominance of supply
2020 Production (% total) Estimated demand (% total)
Lithium
Cobalt
Graphite
Indium
Batteries
Steel
Other
DR Congo
Japan
Mozambique
Russia
South Africa
South Korea
United States
Other
Australia
Brazil
Chile
China
Lithium
Cobalt
Graphite
Vanadium
Indium
Demand breakdowns are estimates only based on publicly available information and may not be representative of 2020 figures. Sources: KPMG;
USGS; NREL; GEMC; Roskill; CSA Global; DERA.
“The circular economy and climate change mitigation are intrinsically linked. While greater circularity will reduce
emissions, it’s also critical to ensure that the rapidly expanding renewable energy grid is designed, installed and
deployed using regenerative principles. We must avoid creating an energy infrastructure waste crisis in 20 years
while solving today’s climate emergency.
– Federico Merlo, Managing Director, World Business Council for Sustainable Development
9World Bank Report (2020).
—ResourcingtheEnergyTransition:MakingtheWorldGoRoundGeographicalandgeopoliticalconstraintstothesupplyofresourcescriticaltotheenergytransitioncallforacirculareconomysolution.March2021KPMGInternational—home.kpmg/IMPACT2©2021CopyrightownedbyoneormoreoftheKPMGInternationalentities.KPMGInternationalentitiesprovidenoservicestoclients.Allrightsreserved.-FromOPECto‘OMEC’1:thenewglobalenergyecosystemAnenergytransitionisoccurringthatreliesuponnewsourcesofpowerandwilldrasticallyredrawtheglobalenergyandmineralsmarket–witheconomic,environmentalandgeopoliticalconsequences.Energyis,onceagain,atthecenteroftheneweconomyandgeopoliticallandscape.Withthepastfiveyearsthewarmestonrecord2,countriesarescramblingtomeettheambitioustargetsestablishedattheParisClimateAgreementin2015.Thewidelyacceptedtargetistolimittheincreaseinglobaltemperaturesto1.5degreesor2degreesatmost;nineofthetop10globaleconomiestodayhaveeitherannouncednetzeroplansorcommittedtodoingso.Globalfirmsandfinancialinstitutionsaresettingtheirownsimilarlyambitiousgoals-KPMGamongmanyothers,haspledgedtobecomeanet-zerocarbonorganizationwithinthenextdecade.Meetingthesetargetsmeansdecarbonizing3theenergysector–quickly.Thenecessaryreductioningreenhousegasemissions(GHGs)impliedbythesetargetscanonlybemetthroughthetransitionoftheglobaleconomyfromonebasedonfossilfuels,toonelargelypoweredbyrenewableandloworzero-carbonproductionandconsumptionofenergy.Netzeroagendasadoptedbyenergy-intensiveeconomieswillnecessarilyrequirelarge-scaleroll-outsofrenewableenergytechnologiestoeliminateemissionsfrompowergenerationanddecarbonizetheworld’smanufacturingandtransportsectorsthatcurrentlyrelyoncoal,oilandgas.Butthereisanunderappreciatedrisktotheenergytransition:thesupplyofcleanenergydependsonminednaturalresources,whicharesteepedingeological,geopoliticalandgovernancechallenges.Theworld’sattentionhasbeenfocusedonthecostsofrenewabletechnologiesthemselvesandcomparativelylittleattentionhasbeenpaidtothesupplychainthatmakethosetechnologiespossible.Theverybeginningofthatsupplychain–thesourcingofmetals,mineralsandabioticmaterials(‘resources’)–couldturnouttobetheweakestlink.Somewhatcounter-intuitively,thecoreissueisnotnecessarilyoneofquantityoftheminerals;globalknownreservesareinfactsufficienttomeetcurrentprojectionsofdemandformanyoftheseresources.Nearlythree-quartersoftotalglobalGHGs(73.2%)comefromtheenergysector(electricity,heatandtransport)4.Essential,butnotcritical?Demandforgraphite(usedtobuildanodesinautomotive,gridanddecentralizedbatteries)ispredictedbytheWorldBanktogrowthemostinpercentagetermsasaresultoftheenergytransition(bynearly500%5)–butdemandcouldtheoreticallybemetthroughexistingreserves(sittingat440%ofanticipateddemand).4.5milliontonsannuallyor68.8milliontonsincumulativedemandby205071.1million320million8tonsproducedReservesin202061Freshlymintedacronymfor‘OrganisationofMineralExportingCountries’–thisgroupingmaynotyetexist,butthepointremains:geopoliticalpowercouldshiftfromoil-dominatedcountriestocriticalmetal-dominatedcountries.2Climatechange:2020wasthejointhottestyearonrecord(2021)NewScientist.3Reductionofcarbonemissions.42016figuresbasedoncarbondioxideequivalents.Emissionsbysector(2020)OurWorldinData.5From2018productionlevels.6Graphitedatasheet–mineralcommoditiessummaries(2021)USGS.7Aconservativeestimatebasedonenergytechnologiesonly.MineralsforClimateAction:TheMineralIntensityoftheCleanEnergyTransition(2020)TheWorldBank(‘WorldBankReport2020’).8Anequallyconservativeestimatebasedonglobalmineproductionandreserves;inferredresourcesofrecoverablegraphiteexceed800milliontons.Graphitedatasheet–mineralcommoditiessummaries(2021)USGS.3©2021CopyrightownedbyoneormoreoftheKPMGInternationalentities.KPMGInternationalentitiesprovidenoservicestoclients.Allrightsreserved.RefractoriesElectronicsDespitethis,futuresupplyfacestwokeyrisks:Extractionandproductionwillfaceincreasingscrutinyfromdownstreamindustries,investorsandthepublicoverenvironmental,socialandgovernance(ESG)issues;andEvenasthepoliticalagendaimpactsthe‘steepness’ofdemand(inpaceandvolume),accesstothese‘strategicresources’willbepoliticizedinthenameofnationalsecuritygiventhecentralityoftheirusetobroadereconomicdevelopmentandtechnologicalinnovation,aswellastheenergytransition.Giventhematerialintensityoflow-carbontechnologies,anypotentialdemand-supplygapsorconstraintscouldimpactthespeedandscaleatwhichcertaintechnologiesareabletobedeployed9.Assuch,abroadrangeofindustrieswillbeexposedtotheterrestrial,oceanicandeconomicrisksassociatedwiththeproductionanduseoftheseresources.Sectorsdependentongreentechnologiesandenergystoragesolutions,suchasinfrastructure,transportandautomotive,oronthealternateapplicationofcross-cuttingcriticalresources,suchasindustrialmanufacturingandlifesciences,willneedtomanageandassesstheseriskstoensuresupplychainresiliency.Inthefollowingpages,weexplorespecificgeographicandgeopoliticalfactorsthatcaninfluencecomparativedemand,availabilityandproductionoftheseresources–turningthemfrom‘essential’totheenergytransitionto‘critical’forbusinessoperations.Butunlikethe‘old’energysector,thereisacircularsolution;theredesignofproductsalongsidethereuse,recyclingandrepurposingoftheseresourcescanrelievethepressureoncommoditysuppliestomeetdemand–ensuringtherapidpaceoftheenergytransition,transformationofrelatedindustries,andreductionintemperaturerisesglobally.Geographicdominanceofsupply2020Production(%total)Estimateddemand(%total)LithiumCobaltGraphiteVanadiumIndiumBatteriesSteelOtherDRCongoJapanMozambiqueRussiaSouthAfricaSouthKoreaUnitedStatesOtherAustraliaBrazilChileChinaLithiumCobaltGraphiteVanadiumIndiumDemandbreakdownsareestimatesonlybasedonpubliclyavailableinformationandmaynotberepresentativeof2020figures.Sources:KPMG;USGS;NREL;GEMC;Roskill;CSAGlobal;DERA.“Thecirculareconomyandclimatechangemitigationareintrinsicallylinked.Whilegreatercircularitywillreduceemissions,it’salsocriticaltoensurethattherapidlyexpandingrenewableenergygridisdesigned,installedanddeployedusingregenerativeprinciples.Wemustavoidcreatinganenergyinfrastructurewastecrisisin20yearswhilesolvingtoday’sclimateemergency.”–FedericoMerlo,ManagingDirector,WorldBusinessCouncilforSustainableDevelopment9WorldBankReport(2020).4©2021CopyrightownedbyoneormoreoftheKPMGInternationalentities.KPMGInternationalentitiesprovidenoservicestoclients.Allrightsreserved.From‘essential’totheenergytransition…Lowcarbontechnologies,includingthoseenablingrenewablepowergenerationnetworks,requiregreatermineralsuppliescomparedtotraditionalfossil-fueldrivensystems10.Thereareanumberofcomponentstorenewablesystemsthatrequirearangeofmineralinputs,including,forexample:Energycaptureandoutputofrenewableenergysourcesisdependentoncertainresourcesusedtobuildtheirstructures,orascomponentsinthegenerationofelectricity,suchastheuseofindiumasatransparentelectrodeinsolarpanels.Energystorageiscurrentlyreliantongraphite,cobaltandlithium(lithium-ionbatteries),orvanadium(vanadiumredoxflowbatteries[VRFBs]).‘Rechargeable’solutionsarecriticalforvariableandintermittentformsofrenewableenergysupply(suchassolarorwind)and‘cleaner’technologieslikeelectricvehicles(EVs).Energyefficiency,withconversion,transmissionanddistributionincreasinglyfulfilledbyelectroniccomponentsdrivinglowerenergyuseacrossarangeofelectronicequipment,includingdatacenters,smartgrids,industrialapplicationsandintelligentbuildings.TherecentWorldBankreportestimatesthatoverthreebilliontonsofmineralsintotalarerequiredtomatchtheenergyproductionandstoragedemandsofatwo-degreefuture(2DS)by205011.Significanteveninabsoluteterms,thisrepresentsanincreaseindemandofuptonearly500%forcertainmineralsfromcurrentlevels,suchaslithium,graphiteandcobaltwhichareutilizedinenergystoragetechnologies.Otherestimatesplacedemandforspecificresources,likeindium,atover12timescurrentproductionlevelsby205012.Notably,theseestimatesoftenexcludeotherindustrialapplicationsthatplacefurtherupwardspressureondemand–liketheend-useoftungstenindrillingandcuttingwithinmanufacturing,integrationofgallium,silicon,indiumandgermaniuminotherdigitaltechnologies,relianceoncobaltandvanadiumin3Dprinting,andtheuseofcobaltinsteelproduction13.Despitethepervasivemyth14,eventhissignificantuptickindemandforessentialresourcescouldbemetbyminingresourcedepositsinmanycases15.Formostresources,knownreserves(andas-yetunexploreddeposits)wouldofferadequatesupplytomeetglobalproductionrequirements,particularlyinthemediumterm–and,likeoilandgas,offersasignificantopportunityforresource-richcountriesandterritories.Asextraction,refinementandmanufacturingtechnologiesalsoimprove,fewermineralsarelikelytoberequiredtoachievethesameendoutput–conservingthesesupplies.EstimatedcumulativedemandagainstknownreservesThousandmetrictons200000180000160000140000120000100000800006000040000200000IronGraphiteZincNickelLeadCopperAluminiumCobaltManganeseLithiumChromiumVanadiumMolybdenumTitaniumSilverIndium232%22%12%31%18%2%14%113%1%27%1%11%2%22%11%228%Cumulativedemandasapercentageofknownreservesin2020Cumulativedemandthrough2050(forenergyapplications)Knownreserves(2020)Sources:WorldBankReport;USGS;EuropeanCommissionJointResearchCentre(Indiumreservesonly);KPMG16.Ofcourse,whengeopoliticsisatplay,thingsareneverthatsimple.10WorldBankReport(2020).11Ibid.Thisisindependentoftheassociatedinfrastructurerequiredtodeployorutilizethesetechnologies(suchastransmissionlinesorchassisofEVs)andincludes17in-scopeminerals.12MetalDemandforRenewableElectricityGenerationintheNetherlands(2018)UniversiteitLeiden.13TheWorldBankReport(2020);CriticalRawMaterialsforStrategicTechnologiesandSectorsintheEU(2020)EuropeanCommission(‘CriticalRawMaterialsReport’).14Mineralresources:Exhaustionisjustamyth,sayscientists(2017)UniversityofGeneva.15Albeitnotall,suchasiron,indiumandcobalt,whereestimateddemandforenergyapplicationsexceedsknownreserves.16NeodymiumistheonlyresourceidentifiedintheWorldBankreportthathasnotbeenincludedhere;unliketheothers,reservesofneodymiumarenotreportedbytheUSGSorEUJRC.5©2021CopyrightownedbyoneormoreoftheKPMGInternationalentities.KPMGInternationalentitiesprovidenoservicestoclients.Allrightsreserved.…to‘critical’forbusinessSimilartotheoilandgasindustry,anumberofpoliticalandgeographicfactorscouldinfluencethecomparativedemandandsupplyoftheseresources,creatingsupplyrisksforbusinessandultimatelychallengingthepaceandscaleoftheenergytransition.Thesetrendshavethepotentialtoturn‘essential’materialsintoa‘critical’componentforbusinesses,notjustwithincleantechnologybutacrossmultiplesectors,includingindustrialmanufacturing,lifesciencesandautomotive.Demand:youcan’tpredictwinnersAlthoughdepositsareanticipatedtobeabletomeetglobaldemandinmanycases,unanticipatedupwardsswingsindemand(andresultantlagsinsupply)havethepotentialtoresultinshorter-termpricevolatilityandshortagesintheproductionofseveralcriticalmetals.#1PoliticsandpolicyGeopoliticsfeaturesinbothsidesofthedemand-supplyequation.Here,domesticpoliticsandappetitefora‘green’agendawilllikelyinfluencethe‘steepness’(involumeandpace)indemandforcertainresources.Specifically,politicalagendaswillchange:1.‘Who’youcompetewith:settingthedomesticambitiononclimatechange.Resourcedemandisanticipatedtosignificantlyincrease(andquickly)undera2DSscenario,comparedtoa‘businessasusual’fourdegrees.Althoughglobalcollaborationwillbeneededtoachievethesetargets,thepaceandappetitetosupportthedisruptivetransformationwillvarybetweencountries,impactingpolicysupport(fromsubsidiestocarbonborderadjustmentmechanisms)anddemandforgreentechnologiesandassociatedresources.2.‘What’youcompetefor:influencingthemixofrenewabletechnologiesadopted.Forexample,theroleofnuclearpowerintheenergytransitionremainsuncertainforpoliticalandsocialreasons-despiteprovidingmorethan10%ofglobalelectricityatoneofthelowestlevelsofGHGemissionsinthecombinedlifecycleofpower-generatingtechnologies17.Unanticipatedlimitsorrestrictionstothistechnologymaycausedemandforsolar,windandhydroelectricpower(andtheirassociatedresourcedependencies)torise.#2TechnologyandinnovationEfficiencyimprovementsandtechnologicialadvancements,includingtheapplicationtonewindustries,couldplaceupwardspressureonthedemandforindividualresources,dependingonthesubtechnologies(greenorotherwise)thatarethemostwidelydeployedinthelonger-term.Forexample,growthinoff-shorewindfarmsmayspurdemandforneodymiumanddysprosium(usedinthemagnetsofturbines).Theroleofhydrogenasamediumforenergyportability(i.e.storageofexcessrenewableenergyandtransportationtoregionswithlessrenewableresources)increasedemandforiridiumandplatinum(inelectrolysers).Theuseofrheniumasacatalystincarboncaptureandstoragesolutionsforharder-to-decarbonizeindustriescouldcauseshortagesfortheaerospaceindustry(asacomponentofturbinebladesinengines).HeliumwasrecentlyremovedfromtheEU’scriticalrawmaterialslistgivenadeclineineconomicimportance,butmaybere-addedgivenitsrelevancetoarangeofemergingdigitalapplications18.AsidentifiedbytheWorldBankReport,concentratedmaterialsthatareonlyneededforoneortwotechnologiesmaybemorepronetodemandfluctuationsstemmingfromtechnologicaldisruptioninthelonger-term;however,itistherecognizedversatilityofcross-cuttingmaterialsthatmayalsoexposethemto(unanticipated)demandfromnewinnovationsandcompetitionfromdifferentindustries.“Technologyandsubtechnologychoice,materialsubstitution,andtechnologicalimprovementswillshiftthedemandforindividualmineralsunderdifferentlow-carbonscenarios...Thetechnologypathwaythatwillemergetodecarbonizeelectricityproductionwillshapethemineralsthatwillexperiencethelargestincreasesindemand.Itispossiblethatnewtechnologiessuchasfloatingoffshorewind,greenhydrogen,orsolid-statebatteriesmaychangetheshapeofthefutureenergysystem.Thesetechnologiesrequiredifferentmineralsandcarrydifferentmineraldemandimplications.”–WorldBankReport(2020)17Nuclearpowerhasabigroletoplayintheenergytransition.Here’swhy.(2020)WorldEconomicForum.18CriticalRawMaterials(2020)EuropeanCommission.6©2021CopyrightownedbyoneormoreoftheKPMGInternationalentities.KPMGInternationalentitiesprovidenoservicestoclients.Allrightsreserved.‘Critical’energystorageMassadoptionofEVsacrosstheUS,EuropeandChinaisbeingacceleratedbypoliciestoincreaseEVuptake,includingnewregulationsbanningthesaleofnewInternalCombustionEnginesandsubsidiesforEVmanufacturers.AnumberofvehiclemanufacturershaverecentlybeenforcedtotemporarilyhaltproductionofEVsduetobatterysupplybottlenecks–specifically,theunavailabilityofthekeyresources19.Lithium,graphite,andcobaltarecurrentlyprimarilyusedinenergystorage,includingbatteriesforEVs,andhavethehighestdemandfiguresrelativeto2018productionlevels20.Buttheseresourcesalsohavethehighestlevelofdemandrisk:thereareanumberofenergystoragesubtechnologiescurrentlyunderresearchanddevelopment(R&D).Likesodium-ionbatteries,foruseinEVs,smartphonesandlaptops;unlikelithium,sodiumisalreadywidelyandcheaplyavailable21.OrVRFBs–longer-lifebatterytechnologywithalmostunlimitedenergycapacityandwell-suitedtoindustrialapplications.Uptakehasbeencurrentlyconstrainedbythehighcostsofitsbasemineral,vanadium.Supply:youcan’tdiversifyawaySimilartotheoilandgasindustry,supplychainsofthesematerialsarecomplexandlargelylinearinnature.Diversificationislimitedineveryaspect:theseresourcesoriginatefromasmallsetofcountries,refiningisconcentratedinevenfewercountries,andoftenthereareveryfewresourcesthatcanactasasubstitute22.#3GeopoliticsClimatechangeisa2021entranttothelistofdriversofa‘G-Zero’world,definedbynocountryorgroupofcountrieshavingthepoliticalandeconomicleveragetodriveaninternationalagenda.Majoremittersandmarketmoverswilllikelypressaheadwithclimateaction,butweakgeopoliticalconnectivetissuehavethepotentialtoturntheseintosourcesofconflict.Meaning,unlikeotherresourcesinshortsupply,oneofthemostlikelyconstraintson‘critical’resourcesareinherentlygeopoliticalinnature:strategiccompetitionovertheseresourceshasthepotentialtoupsetexistingregionalpowerbalancesandsignificantlydisruptsupply.Ofparticularimportanceisthespeedatwhichthesegeopoliticalconstraintscouldhit.Inrecognitionofthepotentialforresource-richorganizationsandcountriestotakecontrolofmineralsupplychains,theUS,UK,EU,JapanandAustraliahaveallpublishedGeopoliticalpowercouldshiftfromoil-dominatedcountriestocriticalmetal-dominatedcountries.ThesourcingofcriticalmineralsanddiversificationawayfromhostiletradingpartnershasrepositionedanumberofcountriesinastrategicpositiontoengagewiththeUSandlike-mindedcountries.listsof‘critical’rawmaterialsthatareconsidered“vitalto…securityandeconomicprosperity”23.Aspartofabroaderstrategytoreducerelianceandminimizesupplychainrisks,theselistsconsiderthecentralityoftheseresourcestocontinuedeconomicdevelopment,technologicalinnovationandtheenergytransition,balancedagainstpotentialreservesandrelianceonimports.Withglobalmomentumaroundtheenergytransitionaccelerating,competitionforsecuresourceswillcatalyzeaninternationalefforttominethesemineralsathome(wherepossible)andtosourcethemsustainably.“Chinaprovides98%oftheEU’ssupplyofrareearthelements(REE),Turkeyprovides98%oftheEU’ssupplyofborate,andSouthAfricaprovides71%oftheEU’sneedsforplatinumandanevenhighershareoftheplatinumgroupmetalsiridium,rhodium,andruthenium.TheEUreliesonsingleEUcompaniesforitssupplyofhafniumandstrontium.”–EuropeanCommission98%19ManufacturersAreStrugglingToSupplyElectricVehiclesWithBatteries(2020)Forbes.20WorldBankReport(2020).21Thebatteriesofthefuture(2020)DW.22Notably,twoofthethreepillarsofR&DinvestmentsbeingcoordinatedbytheUSDepartmentofEnergytoaddresssupplychainriskfocusonthediversificationofsupplyanddevelopmentofsubstitutes.Thethirdisdrivingrecycling,reuse,andmoreefficientuseofcriticalmaterials.CriticalMaterialsRareEarthsSupplyChain:ASituationalWhitePaper(2020)USDepartmentofEnergy.23FinalListofCriticalMinerals(2018)USDepartmentoftheInterior.7©2021CopyrightownedbyoneormoreoftheKPMGInternationalentities.KPMGInternationalentitiesprovidenoservicestoclients.Allrightsreserved.—#4ExplorationAbsoluteproductionnumbersandrelativeincreasesindemandforeachmineralwillplayaroleintheirabilitytomeetsupply,particularlyifadditionalexplorationisnecessary.Notalltheoreticalreservesaretechnicallyoreconomicallyextractable.Criticalmetalproductionscalesslowly:historywouldsuggestthatitwouldtakearound10yearsfromdiscoverytomining(althoughpendingonsize,thiscouldfluctuatebetweensevento13years).Italsorequireslargecapitalinvestments.Inanageofadisjointedglobalpublicpolicylandscaperelatedtotheenergytransition,mixedmarketsignalsandvaryingdegreesofnaturalresourcedepositsandindustrialdemandbuildouthaveforestalledafeverpitchofmineralsourcing–untilnow.Onthesupplysideof#1PoliticsandPolicy,arapidincreaseinglobaldemandwillthereforebehardtomeetwitharapidincreaseinglobalsupply.Asnotedpreviously,useofmineralresourceswillvarydependinguponclimatepoliciesadoptedacrosstheworld.Ultimately,resultantpricehikesfromdemand,orsubsidiesfromgovernment,couldopenupreservesthatwerenotpreviouslycommercialoraccessiblevianewtechnologies.However,companiesindifferentpartsoftherelevantvaluechainsathand,aswellasinvestorsortradeandcommodityfinanciers,requireaglobal,long-terminvestmentassurancetobeabletofundthesupplyside–atthepacenecessarytomeetclimateambitions.#5AccessExtractionofdepositsalsocomewitharangeofclimateandenvironmentalimplications.Thesematerialsmaynotberare,buttheyareprecious,requiringhugeamountsofenergy,labourandefforttoextract,refineandconsume.“Thescaleofassociatedgreenhousegasemissionsisafractionofthatoffossilfueltechnologies.However,thecarbonandmaterialfootprintscannotbeoverlooked.”—WorldBankReport(2020)Outsideofcostconsiderations,accessibilitytoreservescanberestrictedbyfactorsthatopencompaniestoESG-relatedregulatory,ethicalandreputationalexposure,suchas:Physicaldamage:theenvironmentalimpactsofminingcanoccuratlocal,regional,andglobalscalesthroughdirectandindirectminingpractices.Miningcanresultinsinkholes,erosionorthecontaminationofsoil,groundwater,andsurface(includingdrinking)watertonameafew.Humancost:insomeregionssuchastheDemocraticRepublicoftheCongo(DRC),thehumancostofextractingrareearthscanbesevere,withthequalityoflifeoftheminersdetrimentallyimpacted.Supplychainsareatriskofconflictissuesandhumanrightsabuses,unsafeworkingconditions,andchildlabour,aswellassocialimpactsfromeco-toxicity24.Extractionalsoconsumesalargeamountofresourceswhichincidentallydivertsawayormakesitharderforlocalstoaccessthesameresources.Biodiversitycost:majorrisksincludehabitatlossandfragmentation,disturbanceofmigratoryspecies,introductionofinvasivespeciesandinsomecasesregion-widedeclinesinrareandthreatenedspeciesandecosystems(suchastheinfluenceofcoltanminingonGrauer’sgorillasintheDRC)25.Deepseaminingisoftencitedtohavingthepotentialtoaddressterrestrialsupplyconstraints,howeversimilarchallengesexist.Scientistsarewarningthatdeep-seaminingcanwipeoutentirespecies–manyyettobediscovered26.Thescrapingoftheoceanfloorbymachinescanalterordestroydeep-seahabitats,leadingtothelossofspeciesandfragmentationorlossofecosystemstructureandfunction.Manyspecieslivinginthedeepseaareendemic–meaningtheydonotoccuranywhereelseontheplanet–andphysicaldisturbancesinjustoneminingsitecanpossiblywipeoutanentirespecies(forexample,85%ofthewildlifelivingaroundhydrothermalventsarefoundnowhereelseintheoceans).Sedimentplumesandpollution(noise,lightandvibrations)canalsohavesignificantimpactuponwildlifepopulations27.Importantly,noneofthesefactorsoperateinisolation–forexample,politicalconcernsaroundaccesstocobaltsuppliescouldleadtoindustrialpolicieschampioningtheprimacyofVRFBtechnologies,changingthedemandmixfor(andcontinuedinvestmentin)certainminerals.24Thehighhumancostofcobaltmining(2019)MiningReviewAfrica.25Agriculture,mining,huntingpushcriticallyendangeredgorillastothebrink(2019)Mongabay;Miningandbiodiversity:keyissuesandresearchneedsinconservationscience(2018)TheRoyalSocietyPublishing.26DeepSeaMining(2018)IUCN.27Ibid.©2021CopyrightownedbyoneormoreoftheKPMGInternationalentities.KPMGInternationalentitiesprovidenoservicestoclients.Allrightsreserved.-’ThefiveresourcestorulethemallToillustrate,wehavefocusedonfivemetalsandmaterialsthatareconsideredintegraltothesmoothoperationoffutureglobalenergysupplychainsandrelatedmanufacturing.Thesearecertainlynottheonlyresourcesthatfacetheseissues;forexample,copper,aluminumandnickelfacesimilarchallengesaroundincreasesindemandandcriticalityacrosssectors.However,lithium,cobalt,vanadium,indiumandgraphitehavebeenchosenastheyareexpectedtoexperiencethegreatestgrowthindemand(inpercentageterms)fromenergytechnologiesby205028-andgeographicalandgeopoliticalconstraintshavethepotentialtobottlenecksupplychains.Lithium:what’syourcompetitiondoing?5.6mtons(27%ofknownreserves)Cumulativedemandby2050Alightsilvermetalthatishighlyreactiveandflammable,itisoneofthemaincross-cuttingresourcesintermsofitsapplications.Itisacriticalcomponentforenergystorage(EVbatteries,consumerelectronicsandgridscaleenergystorage),butalsoarangeofotherproductsincluding:aircraft;glassceramics;aluminumalloys;andpharmaceuticals.Themaindriverofdemand(lithium-ionbattery)facessignificantdemandpressurefromnewenergystoragetechnologies;however,itisanticipatedtoremaintheprimarysub-technologyusedinautomotive,decentralizedandgrid-scaleenergystorageby205030.Productionhasalreadyskyrocketedtomeetdemandinrecentyears,nearlydoublingbetween2017and201831andcausingashort-termdropinlithiumprices.However,therearetwolonger-termpotentialcriticalconstraintsonextractionandaccesstolithiumdeposits.Cobalt:howreliantareyou?8mtons(113%ofknownreserves)Cumulativedemandby20507.1mtonsReservesin2020Cobalthasvariousapplicationsinindustrialprocesses(asanalloy),animalfeed,biotechnologyprocessesandpharmaceuticals,aswellasbatteries,laptopsandsmartphones.Despiteaforementionedsupplyconcerns,itisanabundantmetalelement;identifiedterrestrialresourcesofcobaltstandaround25milliontonnes,withafurther120milliontonnesexistinginmanganesenodulesandcrustsontheflooroftheAtlantic,IndianandPacificOceans35.Itispredominantlyextractedasaco-andby-productofcopperandnickel,soisalsodependentonthedemandconditionsfortheseothermetals.However,itisperhapsthemostoften-citedmineralexampleforsupplychainriskstemmingfromgeopoliticalchokepointsandresponsiblesourcingissues;thishasledtosignificantR&D21mtonsReservesin202050%29IndicativerecyclingratesThoughminedacrosssixcontinents,thetopfourglobalproducersareAustralia,China,ArgentinaandChile.Boliviaholdsnearlyaquarterofallidentifiedlithiumresourcesglobally(21mtonnesof86mestimatedtotal)32,howeverstatecontrolandlimitedmininginfrastructuremeanthatproductionislargelyuntapped.Growthinsupplywillthusbeheavilylinkedtogeopoliticalconditionsandaccessibilitytothesereservesinalandlockedcountry.EurasiaGrouppredictsthattheUSmayexperienceparticulargeopoliticalheadachesrelatingtosupply–ofthecountrieswiththetopfivelargestreserves,onlyAustraliacanbeconsideredaparticularlyfriendlynation.TherearealsoESGconcernsassociatedwithextraction.InChile,lithiumusesapproximately500,000gallonsofwaterpertonneextracted,whichdivertsaway65%ofavailablewaterinsomeregions,causingadverseimpactsonlocalfarmersgrowingproduceandrearinglivestock33.68%34Indicativerecyclingrateseffortstominimizetheamountofcobaltrequiredinenergystorage.Specifically,thereiscurrentlyahighconcentrationofcobaltsupplyinonecountry–theDRC,whereapproximately70%oftotalproductionissourced36.Economicandpoliticalinstability,alongsidelaborandcorruptionconcerns,meanscobaltsupplyishighlyunpredictable.Responsibleinvestmentprinciplesincludingtransparencyandaccountabilityguidelineshavethepotentialtocurtailcapitalawayfromtheseoperations,howeveralackofalternativeslimitsthisasameaningfulsolution.Geographicdominanceoftheupstreamsupplychain,withtwothirdsofrefinementcapabilitylocatedinChina37,alsocreatespotentialsupplychainchokepoints-whichassumeparticularimportanceduringtimesofincreasedgeopoliticaltension.28WorldBankReport(2020).29Innovationboostslithium(2019)PVMagazine.30WorldBankReport(2020).31Ibid.32Lithiumdatasheet-mineralcommoditiessummaries(2021)USGS.33Thespirallingeconomiccostofourlithiumbatteryaddiction(2018)Wired.342011figure;RecyclingperspectivesforcobaltintheHague(2018)UniversiteitLeiden.3525mtonnesterrestrialreservesincludeidentifieddepositsthathavenotbeenleasedtotheminingsector(acrosstheDRC,Zambia,Australia,Cuba,Canada,RussiaandtheUS).SomeoftheoceanicreservesarelocatedinExclusiveEconomicZonesandsovereignterritories,othersininternationalwaters.Cobaltdatasheet-mineralcommoditiessummaries(2021)USGS.36Ibid.37Cobaltcrunch?Dealingwiththebatteryindustry'sloomingsupplychallengesforcobalt(2018)Apricum.©2021CopyrightownedbyoneormoreoftheKPMGInternationalentities.KPMGInternationalentitiesprovidenoservicestoclients.Allrightsreserved.88©2021CopyrightownedbyoneormoreoftheKPMGInternationalentities.KPMGInternationalentitiesprovidenoservicestoclients.Allrightsreserved.-----’Indium:what’sthealternative?34,000tons(228%ofknownreserves)Cumulativedemandby205015,000tonsReservesin20200-1%38IndicativerecyclingratesIndiumtinoxide(ITO)remainsthebestmaterialtofillthegrowingneedforLCDs(liquidcrystaldisplays)intouchscreens,flatscreenTVsandsolarpanels.Innature,indiumisquiterareandnearlyalwaysfoundasatraceelementinotherminerals—particularlyinzincandlead—fromwhichitistypicallyobtainedasaby-product.Lowlevelsofextractionfromindiumresultsinloweravailabilityandresourceinefficiency;overallextractionefficiencyfromminetoproductisbetween23%and28%,althoughmuchofthatindiumdoesnotenterthemarket.Chinaisthemajorproducerofindium,representing56%ofglobalrefineryproductionin202039.Inlate2020,ChinaproposedanewExportControlLawthatenablesthecountrytolimitexportsofdual-useitemsrelatedtonationalsecurityandinterests,includingrareearthelements.Thecurrentgeographicconcentrationofsupply,combinedwiththecriticalityofthismineraltotechnologiesbeyondtheenergytransition,offersasizableopportunityfor‘Western‘alliedcountriestodeveloprawandurbanmining.TakeCanada:ofthe35criticalmetalsidentifiedbytheUS,itisasizablesupplierof13ofsuchminerals,includingindium.EurasiaGroupsuggeststhatthisadvantagehasopeneduptheopportunityforabroaderbilateralpartnershiponindustrialcooperation,defensepriorities,andcollaborationontheinternationalstage.Thistrendislikelytocontinue:securingareliablestreamofresourceswhiledrivingaclubofallynationsthatexploiteachcountry’snetworkofgeopoliticalties.Vanadium:where’syournextsupplier?2.4mtons(11%ofknownreserves)Cumulativedemandby205022mtonsReservesin202030%40IndicativerecyclingratesVanadiumisasilvermetallicelementthatthathasavarietyofavarietyoflarge-scaleandhigh-techuses,suchasspacevehicles,nuclearreactorsandsuperconductingmagnets.ItisalsothekeymaterialinVRFBs,analternativetolithium-basedbatteriesinsomeapplicationsthatcanbechargedthousandsoftimeswithoutdegrading41.Substitutingvanadiumisnotcurrentlyeconomicalortechnicallyeasy.AlongsidetheUSandCanada,theEuropeanCommissionidentifiedandformallyregisteredthismetalonthe2017listofCriticalRawMaterials;thelistseekstoincreaseawarenessofpotentialsupplyrisks,informtradeagreements,andstimulatetheproductionofidentifiedresourcesbysteeringnewminingandrecyclingactivitieswithintheEU.Aspreviouslymentioned,productionhasbeenlimitedbyhighcosts;extractionofadditionalmineralsfromvanadium-richindustrialwasteproducts,suchasnickelandtitanium,hasbeensubsidizingvanadiumextraction42.ProductionislargelyconcentratedinfourcountrieswithChinaowningthemajoritymarketshareat62%in2020,followedbyRussia,SouthAfricaandBrazil.However,manyminingcompaniesinNorthAmericahaverevealedplanstoinvestinexplorationorreopenclosedvanadiumminesintheUS,CanadaandAustralia43.Graphite:whowantsitthemost?68.8mtons(22%ofknownreserves)Cumulativedemandby2050320mtonsReservesin2020<1%44IndicativerecyclingratesThemainapplicationforgraphiteisasarefractorymaterialsuchasinsteelmaking,butitisalsoessentialintheproductionoflithium-ionbatteriesusedinEVs.EurasiaGrouphighlightsgraphiteasanotableexampleoftheriskofcountry-dominatedsupplychains:Chinaisthesourceofmorethan60%oftheglobalsupplyofamorphousgraphite,andabouttwothirdsofthisisflakegraphite(100%ofglobalprocessingofwhichoccursinChina)45.Thegovernmenthasintroducedpolicycontrolstorestrictnewentrants,regionallyintegrateoperations,andgrowthepercentageofthemarkettouchedbystateownershiporinvestment.Thedominanceofonecountryacrossthischainhasthepotentialtojeopardizeothercountries’accesstothemineralandtheeconomicactivityassociatedwithitsproductionanduse.However,thismaychangeinthecomingyears,asanincreasedglobaldemandforgraphiteuseinbatterieshassparkedexplorationeffortsacrosstheglobe;Mozambique,FinlandandSwedenallhaveexplorationprojectsunderway.38Thepromiseandlimitsofurbanmining(2020)FraunhoferISI.39Methodstoincreaseindiumsuppliesforthemanufactureofthin-filmsolarcells(2015)EuropeanCommission;Indiumdatasheet–mineralcommoditiessummaries(2021)USGS.40Mineralprocessingandmetallurgicaltreatmentofleadvanadateores(2020)MDPI.41Vanadium:themetalthatmaysoonbepoweringyourneighbourhood(2014)BBC.42CanVanadiumFlowBatteriesbeatLi-ionforutility-scalestorage?(2019)EnergyPostEU.43VanadiumOutlook2021:StrongChineseDemandExpected,butUncertaintyRemains(2020)InvestingNewsNetwork.44Thesuccessstoryofgraphiteasalithium-ionanodematerial(2020)SustainableEnergy&Fuels.45Li-IonBatteries:AReviewofaKeyTechnologyforTransportDecarbonization(2020)Energies.©2021CopyrightownedbyoneormoreoftheKPMGInternationalentities.KPMGInternationalentitiesprovidenoservicestoclients.Allrightsreserved.9910©2021CopyrightownedbyoneormoreoftheKPMGInternationalentities.KPMGInternationalentitiesprovidenoservicestoclients.Allrightsreserved.Renewableenergyrequires‘renewable’inputsThepaceandscaleoftheenergytransitionnecessarytomeeta2DSscenariorequiresthewidespreaddeploymentofcirculareconomysolutions46-andnotjustintheenergysector.Sohowdoyoumanagesupplychainriskswheregeographicdiversificationofsourcesislimitedandinputsmaynotbeabletobesubstituted?Thecirculareconomy.Asmorecleantechnologiesarerequiredtomeetlowertemperaturetargets,greaterquantitiesofthesemineralswillbeneeded.Reducingtheneedtoextractfromterrestrialandoceansites,andstillgrowavailablematerialsinthemarket,willrequireexistingmaterialtobeutilizedinnew,circularways.Whatisthecirculareconomy47?Acirculareconomyisa‘regenerative’modelthatlookstoretainthevalueof‘circulating’resources,products,partsandmaterials.Itseekstodesignoutwasteandpollution,keepproductsandmaterialsinuse,increaseproductivityandregeneratenaturalsystems.ExplorationDesignProductionDisposalWasteMiningWasteProcessingWasteRawMaterialWasteWasteWasteUseWasteWasteReprocessRecycleReproduceRe-useSubstitutionofrawmaterialPrimaryresources-fromlineartocircularInrecentyears,thecirculareconomyhasgainedincreasingmomentumasaconceptamongbusiness,policymakersandconsumers,astheurgencytoactagainstclimatechangeintensifies.However,politicalpressuretoeliminatetheuseoffossilfuelsandincreasetheshareofrenewableenergyhasfocusedR&Dpredominantlyonmorecost-effectivegenerationandtransportationofrenewableenergy,withlessfocusontheneedforcircularitywithintheenergysector.Redesign,recycling,reusingandrepurposingacrosstheresourcelifecyclewillplayakeyroleaddressinggeopoliticalandgeographicconstraints-mitigatingpotentialpricevolatilityandsupplyshortages,particularlyforresourcesunabletobesubstituted(likevanadium),andreducingtheneedfortheextractionandemissions.Suretyofsupplyhasalreadybeenimprovedbyexistingcirculareconomystrategies;forexample,JapanandSouthKoreahavemadesignificantinvestmentsintotherecyclingofindium48.Butexistingrecyclingeffortswillnotbeenough.Ironically,themoreambitiousourclimateambitions,thegreaterthepotentialrelianceon‘non-renewable’minedmaterials,possiblynegatingthepositiveenvironmentalimpactofmanufacturingthesegreentechnologiesinthefirstplace.46CircularEconomy:AKeyLeverinBridgingtheEmissionsGaptoa1.5°CPathway(2016)CircleEconomy.47‘CircularTransitionIndicators’Framework(2021)WBCSD,poweredbyKPMG.48Indiumdatasheet(2020)USGS.11©2021CopyrightownedbyoneormoreoftheKPMGInternationalentities.KPMGInternationalentitiesprovidenoservicestoclients.Allrightsreserved.CircularinflowCircularoutflowCOMPANYBOUNDARYLinearinflownon-renewablevirginresourceLinearoutflowNon-recoverableproductandwastestreamsLandfillIncinerationLandfillIncinerationPotentialforcircularitycanbeassessedagainstthreepillars:%%%circularrecoveryactualinflowpotentialrecoveryInflow,ormovementtowardssecondaryresourcesandsubstitutionof‘critical’resourceswithnon-criticalalternatives;thiscouldbeconstrainedbytheavailabilityofsecondaryfeedstockandsuitablesubstitutesforvirgincriticalresources.Recoverypotential:improveddesigntofocusonmodularity,disassemblyandrecyclability(suchastheuseofmono-materials),whichwillrelyonnewformsoftechnologicalinnovation.Actualrecovery:addressingcurrentcollectionconstraintsthroughnewbusinessmodels(incentivizingrecoverythroughproduct-as-a-serviceandbuy-backschemes),morematurereturnlogistics(toenhancecollection),andinnovationinnewrecyclingtechnologies(toimproverecyclingyield,whichmaybeconstrainedduetothelimitedamountsofresourcesabletobeharvested).Source:WBCSD;KPMG.Super-chargingcirculareconomysolutionswillbeessentialtoaddressingthegeographic,geopoliticalandeconomicconstraintsofthefuture,ensuringasmoothershort-termsupply-demandequilibriumandthelonger-termviabilityoftheenergytransition.Thiscanonlybeachievedifglobalandnationalclimateandenergytransitionpolicygoeshand-in-handwithcirculareconomystrategiestoreducecriticalmetalrisksanddependence49.Acoupleofcaveats:somelevelofnewresourceextractionwillbeagiven,asexistinglevelsofsomeoftheseresourcesalreadyincirculationcannotmeetfuturedemandontheirown.Challengestotheexpansionofthesecirculareconomystrategiesalsoremain,includingcosts,designandtechnicalissues50.Theselimitations(suchasthethermodynamicmanufacturingprocessoftheseproducts,thedesignforrecyclabilityconstraintsandalignmentacrossstakeholdersinthevaluechain)willneedtobeaddressed.Governments,investors,mineralproducers,corporatesandenduserseachhaveaparttoplayaspartofaholisticresponsetotheshiftinenergymixandresourceavailability:#1ConsumersEndusersandcivilsocietyhavesofarproventobeoneofthestrongestagentsofchangeforsustainableandresponsiblesourcingofcriticalminerals.Thepublic’simaginationhasbeencapturedbytheideaoftheirostensibly‘green’productslikeEVscausinghiddenanduntoldharmtotheenvironmentandtocommunities.Thisgivessuchpublicinterestgroupstheopportunitytocontinuetoapplypressureandexertscrutinyonminingpracticestoensurefairandequitableoutcomes.However,italsocomeswitharesponsibilitytoacceptandworkwithintheconstraintsposedbytechnologyandpolicyfactorswhichlimitthe‘artofthepossible’fortheproducersandprocessorsoftheseminerals.LithiumpricesinChinaareexperiencingsignificantvolatilityasaresultofdemandforenergystoragesolutions.Comingcloseto$25,000atonnein2018andinsteadydeclinesince,themidpointpriceforbatterygradelithiumcarbonatehasnowincreasedbyover40%comparedtoJanuary202051.Despitebeingalmostfullyrecyclable,only5%oflithiumbatteriesarerecycled52.Why?Batterydesign–challengesaroundtheseparationofthemetalcomponentpartscurrentlylimitsrecyclingopportunities.49LinearRisks(2018)WBCSDinpartnershipwithKPMG.50WorldBankReport(2020).51LithiumpriceinChinasurges40%to18-monthhigh(2021)Mining.com52Thebatteryparadox:howtheelectricvehicleboomisdrainingcommunitiesandtheplanet(2020)SOMO.12©2021CopyrightownedbyoneormoreoftheKPMGInternationalentities.KPMGInternationalentitiesprovidenoservicestoclients.Allrightsreserved.#2GovernmentsBeing‘openforbusiness’isafarcryfromtheproactiveriskassessmentandmitigationrequiredtodevelopresourcesupplychainsinahighlycompetitiveglobalenvironment.Governmentshaveamultifacetedobligationtoaddresseachoftheissueshighlightedpreviously,andpromotetheseresourcesasapermanentmaterialtomaximizetheiruseinafuturecirculareconomy.Firstandforemost,greaterclarityonclimateambitionandenergymixexpectationswillberequiredtodrivemarketsignals–forexample,‘ina2DSdecarbonizationpathway,globaldemandforrelevantmineralsinelectricstoragebatteriesisexpectedtoincreasebyover1,000percent’.Detailedpathwaysontheembeddedcostsincleantechwillallowgovernmentstobolstertheirpolicyframeworkstodriveinvestment,secureagainstsupplyrisks,andachievetheirpolicyambitionswithcriticalmineralsattheheartofindustrial,trade,environment,naturalresource,andsecuritypolicy.Governmentsmayalsoconsiderincentivizingurbanminingfromusedproducts(suchase-waste),particularlyinEurope.Europeisalmostcompletelydependentonsupplyofcriticalmetalsfromoutsideofitsborders,althoughthecontinenthassomereserves.MininginEuropewillbeconfrontedwithhurdles,buthigh-techsolutionsandcircularfocusedincentivescanhelpovercomethese.#3InvestorsDivestmentwillremaintheeasywayoutforinvestorslookingtosafeguardagainstESG-relatedrisks.However,toensurethestableaccessofglobalmarketstocriticalmineralinputsandtoenabletheindustrialtransformationrequiredforasmoothenergytransition,aholisticapproachtoportfoliomanagement,withabetterunderstandingtherisksandopportunitiesofmining,sourcing,using,andrecyclingthesematerials,willberequired.Centraltothiseffortisfocusingonwhatcertainvaluechainplayerscandotoimprovemetaluseefficiency(forexample,productdesignersandproducerswithrespecttoeaseofmetalseparation),aswellasthegeopoliticalpinchpointscoveredhere,whentheyareexpectedtomanifest,andthedegreetowhichgovernmentpolicyhedgesmaysolveforthem.Whataboutfinancing?Thereareseveralfundingchallengesspecifictoinvestmentincriticalresourceprojects,including:01Technology&process:theneworcommerciallyunproventechnologyandprocessesrequiredtoproducemineralsincreasetheriskofcostoverrunsorproductionbeingbelowexpectations.02Markets&pricing:itcanbemoredifficulttoassessmarketsupplyanddemandandpricingisnotastransparentasothermoreestablishedcommodities.03Customers&offtake:itcanbechallengingtoidentifyandengagewithendusercustomersandthenprogresstoofftakeagreementswithtermsrequiredtoobtaindebtfinancing.04Equity&sponsors:equityrequirementstofundconstructioncanbesignificantforsmallerdevelopmentcompaniesanddifficulttoattracttheinvestortypepreferredbydebtfinanciers.05Infrastructure&supplychain:remotelocationsandlimitedsuppliers/processingmeansacrediblestrategytoensurelongtermaccesstoinfrastructureandsupplychainsisneeded.Thesechallengesmakeitmoredifficulttoattractdebtfundingatrequiredvolumeandonappropriateterms.Governmentsaroundtheworldhaverespondedtothesechallengeswithvariousgrantsandloanprogramsinorderto“crowdin”othercommercialsourcesoffinance.However,morecouldbedonetofillmarketgapsandencouragecommercialsourcesofcapitaltofundtheinvestmentneeded.#4ResourceproducersThevaluechainofcriticalmetalsisextremelycomplex53.Inlightofaforementionedchallenges,producersofcriticalmineralswillbefacingscarcityandthereforeincreasingpriceandpricevolatility,atthesametimeasconsumersarelookingformorecircularandsustainablepractices.Asafirststep,miningisoftenassociatedwithsignificantenvironmentalandsocialnegativeimpacts;gettingagriponthecompany’s‘ESGfootprint’andlevelofthe‘circulartransition’isnecessarytomapabaseline.Limitingthecarbonfootprintofmineralsneededforthecleanenergytransitionmayoffer53CriticalRawMaterials(2014)KPMG.—13doublewins,helpingtoboosteconomicgrowthandreduceenvironmentalrisksinresource-richdevelopingcountries.Itwillalsoenablethetransitiontoa2DSinlinewiththeParisAgreement,SustainableDevelopmentGoal(SDG)7“accesstoaffordable,reliable,sustainableandmodernenergyforall”,andSDG13,taking“urgentactiontocombatclimatechangeanditsimpacts”.Thesupplychainwillonlybecomemorecomplexwhenfactoringinrecoveredmetalsandtheirreintegrationintothevaluechain;thiswilllikelyneedtobeintegratedintopricingandinvestmentdecisionsforproducers.Thereareanumberofnewandexpandedbusinessmodelsthatcanbeexplored,includingretentionofownershiptoenableurbanmining.“Everyminingcompanyunderstandstheuniquecomplexityandchallengestoconsistentlyfind,mineanddeliverproducttomarket.Asocietykeentoacceleratetheenergytransitionmustnowprioritizeworkingwiththesectortohelpitdeliver.”—TrevorHart,GlobalHeadofMiningCorporates#5Acrossthethreepillarsofcircularity,businessesacrossexposedindustries,inparticularindustrialmanufacturing,willhavearangeofoptionstohelpenableacirculartransition.Forexample:1.Inflow:companiesacrossarangeofsectorscouldlooktoreducecriticalmetalusebyincreasingalternativeeffortstoproducecleanenergyorotherproductswithasmallerneedforcriticalmetals.Substitutionaloneisnotenoughandmightshiftthisburdentoothermetals.TherecyclingpotentialofITOscrapisaprovenwayofreturningasignificantamountofindiumtotheglobalmarket,withefficienttechnologyandafastprocesstime;theworld’ssecondaryrefinedindiumproductionresultedalmostexclusivelyfromtherecyclingofmanufacturingscrapratherthanrecoveryfromend-of-life.However,thisonlyrepresentsaverysmallamountoftotalindiumcurrentlyused,duetolackofrecyclinginfrastructuresandvolatilepricesofthemetal.2.Recoverypotential:theautomotiveandenergysectorcouldlooktoincreasecircularproductdesignandclosedloopeffortsbyincludingcirculardesignprinciplesintheproductionofenergyassetssuchaswindturbinesandPVpanels,butalsoEVstoenablefuturereuseofcomponentsandmaterialsafterthetechnicalusecycle.Forexample,thefirstsolarpanelsarenearingtheendoftheirlifespan(approximately25years)and,withinvestmentintonecessaryinfrastructure,couldtheoreticallybecomeasourceofmanyvaluablematerials,includingsilicone,silver,glassandaluminum.3.Actualrecovery:thoseintheindustrialmanufacturingvaluechaincanfinanciallyincentivizemetalreusethroughleasingandrefurbishmentcontracts,effectivelytaggingafinancialbenefittokeepmetalsinuseandallowing,forexample,forthecollectionandrecyclingofpreciousmetalsfromdiscardedbatteriesandelectronics.Byanalyzingtherisksandopportunitiesofnewbusinessmodelsandbettercircularmetricsassociatedwiththelifecycleofresources,businesseswillnotonlybeabletoavoidpotentialsupplychokepointsandrealizecostsavings,butalsocapturenewopportunities,asconsumers,employeesandprivateandpublicfinancialstakeholdersgravitatetowardsindustryleadersinthisspace.InimplementingtheParisAgreement,globaleffortsbygovernmentandtheprivatesectorareneededtomovetowardsarenewableenergysystem.Closingtheloopwillnotbeeasy-developmentofthesecirculareconomystrategiesmayencounterlegal,financial,organizationalandoperationalbarriers,thatrequirecollaborationbetweendifferentstakeholders,andpotentiallynewskills(technological,environmentalandeconomic)toovercome.However,astechnologyadvances,opportunitiestoembracecirculareconomyprincipleswillonlyincrease,andtheirapplicationtotheresourcesrequiredforthisenergysystemandothertechnologicalinnovationsshouldbehigherontheagendaofbusinessesacrossabroadspectrumofsectors.Movingtoarenewableenergysystemandthetransitiontowardsamorecirculareconomyarepartofthesameagenda.©2021CopyrightownedbyoneormoreoftheKPMGInternationalentities.KPMGInternationalentitiesprovidenoservicestoclients.Allrightsreserved.AbouttheKPMGandEurasiaGroupAllianceKPMGInternationalhasformedanalliancewithEurasiaGroup,oneoftheworld’sleadingglobalpoliticalriskresearchandconsultingfirms,todevelopsolutionsthathelpbusinessesdealwithgeopoliticalchallenges.Throughouralliance,KPMGprofessionalscanbringthepoliticalinsightsofEurasiaGroup’sanalystsacross100+countriesandterritoriestogetherwithKPMGfirms’nutsandboltsunderstandingofyourbusinesscoveringthemacrotothemostgranularofanalysis.AboutKPMGIMPACTKPMGfirmsareworkingwithclientsacrosstheworldtosupportthemindecarbonizingtheirbusinessesandsupplychains,andembeddingESGineverythingtheydo.KPMGIMPACTbringstogetherKPMGfirms’expertiseinsupportingclientstoaddressthebiggestchallengesfacingourplanet,withtheaimofdeliveringgrowthwithpurposeandachievingprogressagainsttheUnitedNationsSustainableDevelopmentGoals(SDGs).AuthorsSophieHeadingGlobalGeopoliticsLeadKPMGE:sophie.heading@kpmg.co.ukRohiteshDhawanMacroStrategistandHeadofPartnershipsEurasiaGroupE:dhawan@eurasiagroup.netArnoudWalrechtCircularEconomyLeadKPMGintheNetherlandsE:Walrecht.Arnoud@kpmg.nlJoshHasdellESGStrategyKPMGintheUKE:josh.hasdell@kpmg.co.ukContactsTrevorHartGlobalHeadofMining,KPMGE:thart@kpmg.com.auUgoPlataniaGlobalHeadofSteelandMetals,KPMGE:Ugo.PLATANIA@kpmg.luMikeHayesGlobalHeadofClimateChange&Decarbonization,KPMGE:michael.hayes@kpmg.ieWiththanksto:AbdulHassan(KPMGintheUK);ColemanSabbithi(KPMGinIndia);CraigJones(KPMGinAustralia);DanGinger(KPMGinAustralia);GeorgeMowles-VanDerGaag(KPMGintheUK);RiyaAneja(KPMGinIndia);RohitSabharwal(KPMGinIndia);SuzanneKuiper(KPMGintheNetherlands).ConnectwithaKPMGIMPACTleadernearyou–kpmg.com/impactcontactshome.kpmghome.kpmg/socialmediaTheinformationcontainedhereinisofageneralnatureandisnotintendedtoaddressthecircumstancesofanyparticularindividualorentity.Althoughweendeavortoprovideaccurateandtimelyinformation,therecanbenoguaranteethatsuchinformationisaccurateasofthedateitisreceivedorthatitwillcontinuetobeaccurateinthefuture.Nooneshouldactonsuchinformationwithoutappropriateprofessionaladviceafterathoroughexaminationoftheparticularsituation.Throughoutthisdocument,“we”,“KPMG”,“us”and“our”referstotheglobalorganizationortooneormoreofthememberfirmsofKPMGInternationalLimited(“KPMGInternational”),eachofwhichisaseparatelegalentity.TheKPMGnameandlogoaretrademarksusedunderlicensebytheindependentmemberfirmsoftheKPMGglobalorganization.KPMGreferstotheglobalorganizationortooneormoreofthememberfirmsofKPMGInternationalLimited(“KPMGInternational”),eachofwhichisaseparatelegalentity.KPMGInternationalLimitedisaprivateEnglishcompanylimitedbyguaranteeanddoesnotprovideservicestoclients.Formoredetailaboutourstructurepleasevisithome.kpmg/governance.©2021CopyrightownedbyoneormoreoftheKPMGInternationalentities.KPMGInternationalentitiesprovidenoservicestoclients.Allrightsreserved.

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

碳中和
已认证
内容提供者

碳中和

确认删除?
回到顶部
微信客服
  • 管理员微信
QQ客服
  • QQ客服点击这里给我发消息
客服邮箱