UnitedNationsFrameworkConventiononClimateChangeChapternameXxxzz,SampleTextSecontLineLoremIpsumDoloreCDMMethodologyBookletDecember2021(uptoEB112)CDMMETHODOLOGYBOOKLETCLEANDEVELOPMENTMECHANISMFourteentheditionInformationupdatedasofEB116December2022UnitedNationsFrameworkConventiononClimateChangeUnitedNationsFrameworkConventiononClimateChangeCDMMethodologyBookletDecember2022(uptoEB116)TABLEOFCONTENTSForeword2Introduction31.1.MethodologiesandtheBooklet41.2.Categorizationbymitigaionactivitytype(methodologycategorizationtable)61.3.Categorizationbyappliedtechnologytype/measure(methodologyfamilytrees)121.4.Programmesofactivities211.5.Standardizedbaselines221.6.Methodologiesaddressingsuppresseddemand231.7.Methodologieshavingbenefitsforwomenandchildren241.8.Methodologiesforurbansectors251.8.1.CDMmethodologiesapplicabletocity-basedmitigationprogrammes251.8.2.Standardizationofparameters271.9.IntroductiontomethodologySummarysheets28Icons,abbreviationsandglossary312.1.Iconsusedinthisbooklet322.2.Abbreviationsusedinthisbooklet362.3.Glossary38MethodologiesforCDMProjectactivities423.1.IntroductiontoMethodologiesforCDMprojectactivities433.2.MethodologicaltoolsforCDMprojectactivities443.3.Methodologiesforlarge-scaleCDMprojectactivities503.4.Methodologiesforsmall-scaleCDMprojectactivities169Methodologiesforafforestationandreforestation(A/R)CDMprojectActivities2744.1.IntroductiontomethodologiesforA/RCDMprojectactivities2754.2.MethodologicaltoolsforA/RCDMprojectactivities2764.3.Methodologiesforlarge-scaleA/RCDMprojectactivities2784.4.Methodologiesforsmall-scaleA/RCDMprojectactivities281Acknowledgement284Disclaimer2852UnitedNationsFrameworkConventiononClimateChangeTheinternationalcommunityachievedaresoundingsuccesswiththenew,universalclimatechangeagreementadoptedatCOP21inParisinDecember2015.TheParisAgreementmarksahistoricturningpointinourcommonjourneytowardsasecureandsustainableworld.TheParisAgreementwillshapeinternationalclimatepolicyforthenextdecades.Itholdsgreatchallenges,butalsoexciting,transformationalopportunitiesdrivenbyambitiousnationalactionandincreasedinternationalcooperation.TheParisAgreementisacatalystforpoliciesandactionforlow-carbondevelopment,climatefinance,technologytransfer,capacitybuildingandmaret-drivenapproaches.Formarket-basedapproaches,differenttypesofcontributionsandunitsareavailablefortransfer.Compatibility,comparabilityandfungibilityamongtheseunitsensuresthereisnodoublecountingandsafeguardsenvironmentalintegrity.Internationallyrecognizedstandardstoquantifyemissionreductionsiskeyforenvironmentalintegrity.EnvironmentalintegrityiscrucialfortheCleanDevelopmentMechanism,orCDM,andmethodologiesformthefoundationforintegrity.Methodologieshelpestablishaproject’semissionsbaseline,oranticipatedemissionsiftheprojectdoesnotmoveforward.Theyalsohelpmonitor,quantifyandaccuratelyestimateemissionsonceaprojectisbuilt.Eligiblecertifiedemissionreductionunitsaedeterminedbythedifferencebetweenthebaselineandactualemissions.Methodologiesareessentialtoquantifyrealandaccurateemissionreductions.Standardizedbaselinesallowmethodologiesalsotocoversector-wideemissions.Whilethenecessityofmethodologiesiseasytounderstand,howtheyareconstructedisquitecomplex.Tomakestandardsapplicabletoprojectsfromdiversesectors,techno-economicsituationsandgeographicalregions,theymustbediverseincompositionandapplication.ThispublicationisdesignedtoguideusersthroughthecomplexworldofCDMmethodologies.ThisbookletclearlysummarizesmitigationmethodologiesavailableundertheCDM.Thiscanhelpmarketactorschoosetherightmethodtoestimatetheiremissionreductions.Itismyfirmbeliefandthatoftheteamthatdeveopedthiswork,thatthiswillcontributetomoreCDMprojectswherethereislargerimpactonsustainabledevelopment.Thisholdsgreatpotentialtoimprovethelivelihoodsofpeople,reducepoverty,promotebetterhealth,directlybenefitwomenandchilrenandenhancetheregionaldistributionofprojects,whichisakeydesireofPartiestotheKyotoProtocol,theCDMExecutiveBoardandthissecretariat.CDMhasplayedacriticalroleinpromotingclimateactiononthegroundinmorethanonehundreddevelopingcountriesandremainsoneofthemostsuccessfulrunninginternationalmarketmechanisms.ItisclearfromtheParisAgreementthattheCDMwillcontinuetobeanimportanttoolinmeetingtheclimatechangechallenge,andthisreporthelpsaccomplishthatvision.FOREWORDJamesGrabert,DirectorMitigationDivisionUnitedNationsFrameworkConventiononClimateChangeUnitedNationsFrameworkConventiononClimateChangeCDMMethodologyBookletDecember2022(uptoEB116)ChapternameXxxzz,SampleTextSecontLineLoremIpsumDoloreINTRODUCTIONChapterICDMMethodologyBooklet4UnitedNationsFrameworkConventiononClimateChangeCDMMethodologyBookletDecember2022(uptoEB116)1.1.METHODOLOGIESANDTHEBOOKLETBASELINEANDMONITORINGMETHODOLOGIESTheCleanDevelopmentMechanism(CDM)requirestheapplicationofabaselineandmonitoringmethodologyinordertodeterminetheamountofCertifiedEmissionReductions(CERs)generatedbyamitigationCDMprojectactivityinahostcountry.Methodologiesareclassifiedintofivecategories•Methodologiesforlarge-scaleCDMprojectactivities;•Methodologiesforsmall-scaleCDMprojectactivities;•Methodologiesforlarge-scaleafforestationandreforestation(A/R)CDMprojectactivities;•Methodologiesforsmall-scaleA/RCDMprojectactivities;•Methodologiesforcarboncaptureandstorage(CCS)projectactivities.1Methodologiesoftenrefertomethodologicaltools,whichaddressspecificaspectsoftheprojectactivity,e.g.tocalculateGreenhouseGas(GHG)emissionsfromspecificsources.PURPOSEOFTHEBOOKLETThisbookletprovidesconcisesummariesofCDMmethodologiesanddescriptionofmethodologicaltools,approvedbytheCDMExecutiveBoard(Board).ItisarrangedtoassistCDMprojectdevelopersinidentifyingmethodologiesthataresuitablefortheirCDMprojectactivities.2ThegeneralpurposeofthebookletistohelpinachievingtheobjectiveoftheBoardtoraiseawarenessofCDMmethodologies.USEOFTHEBOOKLETThebookletisintendedforusebyvariedaudiencesinterestedintheCDMandinparticularpotentialCDMprojectdeveloperswhoalreadyhaveanideaofthemitigationprojectactivitiestheyintendtoimplement.Itfacilitatestheinitialselectionofpotentiallyapplicablemethodologies.However,itcannotprovidedetailedguidanceonspecificelementsofeachmethodologynorreplacetheapprovedmethodologies.Therefore,theprojectdevelopersshouldrefertotheoriginalmethodologiesavailableonUNFCCCCDMmethodologieswebsite.2022(uptoEB116).However,asmethodologiesandmethodologicaltools36maychange,usersofthebookletareencouragedtoconsultEBmeetingreportssubsequenttoEB116tofindoutwhetheranychangeshaveoccurred.CONTENTOFTHEBOOKLETEachmethodologyispresentedthroughaone-pagesummarysheet,whichprovidesthefollowinginformation:•Typicalproject(s)towhichthemethodologyisapplicable;•Type(s)ofGHGemissionmitigationaction;•Importantconditionsforapplicationofthemethodology;•Keyparametersthatneedtobedeterminedormonitored;•Visualdescriptionofbaselineandprojectscenarios.Ashorttextualdescriptionofeachmethodologicaltoolisalsocontainedinthebooklet.HOWTOFINDASUITABLEMETHODOLOGY1.CATEGORIZATIONBYMITIGATIONACTIVITYTYPEThiswayoflookingupmethodologiesisaccordingtotherelevantsectoralscopesandtypeofmitigationactivitiessuchasrenewableenergy,lowcarbonelectricitygeneration,energyefficiencymeasures,fuelandfeedstockswitch,GHdestruction,GHGemissionavoidance,displacementofamore-GHG-intensiveoutputandGHGremovalbysinks.Projectdevelopersknowingthetypeofmitigationactivitytobeimplementedintheirprojectactivitiescanthuseasilyidentifypotentiallysuitablemethodologies.2.CATEGORIZATIONBYAPPLIEDTECHNOLOGYTYPE/MEASUREThissecondwayoflookingupmethodologiesfocusesonthetechnologyappliedintheprojectactivity.Thecategorizationbytechnologytypeenablesprojectdeveloperstoidentifyasetofcomparablemethodologiesapplicabletothetechnologythatisgoingtobeimplementedintheirprojectactivities.1TherearenoapprovedmethodologiesforCCSprojectactivities.2Forthepurposeofthisbooklet,CDMprojectactivitiesalsorefertoCDMprogrammeofactivities.ThiseditionoftheBookletreflectstheeffectivestatusofmethodologiesandmethodologicaltoolsasofDecember5UnitedNationsFrameworkConventiononClimateChangeAFTERFINDINGPOTENTIALLYSUITABLEMETHODOLOGIESAfteridentifyingpotentiallyapplicablemethodologiesthroughthesummarysheet,usersshouldaccessthefulltextofthemethodologiesavailableontheUNFCCCCDMmethodologieswebsite.ItisalsoadvisabletolookatinformationaboutexistingCDMprojectactivitiesthathavealreadyappliedthemethodologies,whichisalsoavailablethroughthiswebsite.Ifthereisnoapprovedmethodologyapplicable,thenonecanproposeanewmethodologyorrequestarevisionofanapprovedmethodologyormethodologicaltool.Ingeneral,thenewmethodologyoptionshouldbepursuedifaprojectactivityrequiresmethodologicalapproachessubstantiallydifferentfromanapprovedmethodology.Therevisionoptionissuitableifanapprovedmethodologyisnotapplicabletoaprojectactivity,buttheprojectactivityisbroadlysimilartotheonetowhichtheapprovedmethodologyisapplicable.Forcaseswhereanapprovedmethodologyisapplicabletoaprojectactivitybutminorchangesinthemethodologyapplicationarerequiredduetotheproject-specificcircumstances,requestingadeviationofanapprovedmethodologycouldbeconsidered.Ifanapprovedmethodologyisunclearorambiguousinitsmethodologicalprocedures,arequestforclarificationmaybesubmitted.CDMPROJECTCYCLEOnceprojectparticipantshaveselectedanapplicableapprovedmethodology,theyapplyittotheirprojectactivityandprepareaProjectDesignDocument(PDD);thisisthefirststepintheCDMprojectcycle.ThemethodologyprovidesprovisionsforthecoreelementsofaPDD:-thedemonstrationofadditionality;-theestablishmentofthebaselinescenarioandtheestimationofemissionreductionsornetremovals;and-themonitoringplan.ThemainstepsoftheCDMprojectcycleandtheiractorsarethefollowing:-Projectdesign(ProjectParticipants);-Nationalapproval(DesignatedNationalAuthority);-Validation(DesignatedOperationalEntity);-Registration(CDMExecutiveBoard);-Monitoring(ProjectParticipant);-Verification(DesignatedOperationalEntity)-Issuance(CDMExecutiveBoard).USEFULLINKSUNFCCCCDMwebsite<https://cdm.unfccc.int/>CDMmethodologies,submissionofproposednewmethodologiesandrequestsforclarificationandrevisio<https://cdm.unfccc.int/methodologies/index.html>CDMprojectcycle<http://cdm.unfccc.int/Projects/diagram.html>CDMprojectactivities<https://cdm.unfccc.int/Projects/index.html>CDMprogrammesofactivities(PoA)<https://cdm.unfccc.int/ProgrammeOfActivities/index.html>CDMsectoralscopes<https://cdm.unfccc.int/DOE/scopes.html>CDMstandardizedBaselines<http://cdm.unfccc.int/methodologies/standard_base/index.html>UNEPRisøCDMpipelineanalysisanddatabase<http://cdmpipeline.org/>MethodologiesandtheBooklet6UnitedNationsFrameworkConventiononClimateChangeInadditiontothemethodologysectoralscopes3,methodologiesinthistablearealsocategorizedbythetypeofmitigationactivity,thesebeingrenewableenergy,lowcarbonelectricitygeneration,energyefficiencymeasures,fuelswitch,GHGdestructionGHGemissionavoidanceandGHGremovalbysinks.Sectoralscopes1to3(energysectors–generation,supplyandconsumption)arefirstdistinguishedaccordingto•Electricitygenerationandsupply;•Energyforindustries;•Energy(fuel)fortransport;•Energyforhouseholdsandbuildings.Andthencategorizedintermsoftypeofmitigationactivity:•Displacementofamore-GHG-intensiveoutput:i.Renewableenergy;ii.Lowcarbonelectricity.•Energyefficiency•Fuelandfeedstockswitch.Sectoralscopes4to15(othersectors)arecategorizedaccordingtothesemitigationactivities:•Displacementofamore-GHG-intensiveoutput;•Renewableenergy;•Energyefficiency•GHGdestruction;•GHGemissionavoidance;•Fuelswitch;•GHGremovalbysinks.DESCRIPTIONOFTYPESOFMITIGATIONACTIVITIESDISPLACEMENTOFAMORE-GHG-INTENSIVEOUTPUTThiscategoryreferstoprojectactivitieswheretheconsumptionofamore-GHG-intensiveoutputisdisplacedwiththeoutputoftheproject.Thecategoryisseparatelydefinedbecauseoftheimportanceofnotjusimplementingtheprojectactivity,butalsoensuringthatthemore-GHG-intensiveoutputisdisplacedbytheoutputoftheprojectactivity.Allrenewableenergygenerationandlowcarbonenergygenerationprojectactivitiesarepartofthiscategory.Manyothermethodologiesarealsoallocatedtothiscategorydependinguponhowtheemissionreductionsarecalculatedinthecorrespondingmethodologies.Examples:•Powergenerationfromwasteenergyrecoveryandsupplytoarecipientwhowasreceivingmore-GHG-intensivepower;•Powergenerationusingrenewableorlowcarbonenergysourcesandexportofpowertoagridwithcombinedmarginemissionfactorofmorethanzeroand/ortoarecipientusingfossilfuelbasedpowerintheabsenceofprojectactivity.1.2.CATEGORIZATIONBYMITIGAIONACTIVITYTYPE(METHODOLOGYCATEGORIZATIONTABLE)Therearetwowaysthebookletcategorizesmethodologies.Thefirstapproach–themethodologycategorizationtable–isbasedonthesectoralscopesdefinedbytheUNFCCC(see<https://cdm.unfccc.int/DOE/scopes.html>).Thistableallocatesthemethodologytogenericmitigationactivitytypes.ThisapproachisusefulforprojectdeveloperswhohavenotyetmadeatechnologychoiceorCDMstakeholderswhoareinterestedinatypeofmitigationactivity.Itstructuresmethodologiesaccordingtotechnologyandthehistoryofmethodologydevelopmentthathasledtoseveral“families”ofmethodologiesallrelatingtoaspecifictechnology.Itisappropriateforprojectdeveloperswhohavealreadydecidedonaparticulartechnologyfortheirproject.Findingapplicablemethodologies—twocategorizationapproaches3TheMethodologycategorizationtableallocatesthemethodologytothesectoralscope(s)thathavebeenformallydefinedforit,whichareprimarilyusedashebasisofDOEaccreditation.However,ifthereareadditionalsectoralscopesthatarealsoapplicabletothemethodology,thenthemethodologyisalsoshowninthesesectorsinthetable.Thisistomakeitpotentiallyeasiertolookupthemethodology.7UnitedNationsFrameworkConventiononClimateChangeCDMMethodologyBookletDecember2022(uptoEB116)CategorizationbyMitigationActivityType(MethodologyCategorizationTable)RENEWABLEENERGYThiscategoryincludestheuseofvariousrenewableenergysources.Examples:•Hydropowerplant;•Windpowerplant;•Solarcooker;•Biomass-firedboilerLOWCARBONELECTRICITYThisencompassesmainlyGreenfieldelectricitygenerationbasedonlesscarbonintensivefuelsuchasnaturalgas.Asnopowerplantexistsattheprojectlocationbeforeimplementationoftheproject,themitigationactivityisnotfuelswitch.Atthesametimetheappliedtechnologymightnotbebestavailabletechnology,differentiatingitfromenergyefficiencymeasures.Atypicallowcarbonelectricityprojectistheconstructionofagreenfieldnatural-gas-firedpowerplant.Alsoprojectsthatreduceemissionsduetogridextensionorconnectionareincludedunderthiscategorywhereapplicable.ENERGYEFFICIENCYThecategoryenergyefficiencyincludesallmeasuresaimingtoenhancetheenergyefficiencyofacertainsystem.Duetotheprojectactivity,aspecificoutputorservicerequireslessenergyconsumption.Wasteenergyrecoveryisalsoincludedinthiscategory.Examples:•Conversionofasinglecycletoacombinedcyclegas-firedpowerplant•Installationofamoreefficientsteamturbine•Useofhighlyefficientrefrigeratorsorcompactfluorescentlamps•Recoveryofwasteheatfromfluegases•Recoveryanduseofwastegasinaproductionprocess.FUELORFEEDSTOCKSWITCHIngeneral,fuelswitchmeasuresinthiscategorywillreplacecarbon-intensivefossilfuelwithaless-carbon-intensivefossilfuel,whereasaswitchfromfossilfueltorenewablebiomassiscategorizedas“renewableenergy”.Incaseofafeedstockswitch,nodifferentiationbetweenfossilandrenewablesourcesisapplied.Examples:•Switchfromcoaltonaturalgas;•FeedstockswitchfromfossilsourcesofCO2torenewablesourcesofCO2;•UseofdifferentrawmaterialtoavoidGHGemissions;•UseofadifferentrefrigeranttoavoidGHGemissions;•Blendingofcementinordertoreducedemandforenergyintensiveclinkerproduction.GHGDESTRUCTIONThecategoryGHGdestructioncoversactivitiesthataimatthedestructionofGHG.Inmanycases,theprojectincludescaptureorrecoveryoftheGHG.ThedestructionisachievedbycombustionorcatalyticconversionofGHGs.Examples:•Combustionofmethane(e.g.biogasorlandfillgas)•CatalyticN2Odestruction.GHGEMISSIONAVOIDANCEThiscategoryincludesvariousactivitieswherethereleaseofGHGemissionstotheatmosphereisreducedoravoided.Examples:•Avoidanceofanaerobicdecayofbiomass;•Reductionoffertiliseruse.GHGREMOVALBYSINKSAllA/Ractivitiesareallocatedtothiscategory.Throughphotosynthesisinplants,CO2fromtheatmosphereisremovedandstoredinformofbiomass.8UnitedNationsFrameworkConventiononClimateChangeCategorizationbyMitigationActivityType(MethodologyCategorizationTable)SectoralscopeTypeElectricitygenerationandsupplyEnergyforindustriesEnergy(fuel)fortransportEnergyforhouseholdsandbuildings1Energyindustries(renewable-/nonrenewablesources)Displacementofamore-GHG-intensiveoutputRenewableenergyAM0007AM0019AM0026AM0052AM0100AM0103ACM0002ACM0006ACM0018ACM0020ACM0022AMS-I.A.AMS-I.C.AMS-I.D.AMS-I.F.AMS-I.G.AMS-I.H.AMS-I.M.AM0007AM0036AM0053AM0069AM0075AM0089ACM0006ACM0020ACM0022ACM0024AMS-I.C.AMS-I.F.AMS-I.G.AMS-I.H.AM0089ACM0017AM0053AM0069AM0072AM0075AM0094ACM0022ACM0024AMS-I.A.AMS-I.B.AMS-I.C.AMS-I.E.AMS-I.F.AMS-I.G.AMS-I.H.AMS-I.I.AMS-I.J.AMS-I.K.AMS-I.L.LowcarbonelectricityAM0045AM0074AM0099AM0104AM0108ACM0025ACM0026AM0099ACM0025ACM0026EnergyefficiencyAM0048AM0049AM0061AM0062AM0076AM0084AM0107ACM0006ACM0007ACM0012ACM0013ACM0018AMS-II.B.AMS-II.H.AMS-III.AL.AM0048AM0049AM0055AM0056AM0076AM0084AM0095AM0098AM0107ACM0006ACM0012ACM0018ACM0023AM0058AM0048AM0084AM0107TableVI-1.MethodologyCategorizationintheEnergySectorMethodologiesforlarge-scaleCDMprojectactivitiesMethodologiesforsmall-scaleCDMprojectactivitiesMethodologiesforsmallandlarge-scaleaorestationandreforestation(A/R)CDMprojectactivitiesAM0000Methodologiesthathaveaparticularpotentialtodirectlyimprovethelivesofwomenandchildren9UnitedNationsFrameworkConventiononClimateChangeCategorizationbyMitigationActivityType(MethodologyCategorizationTable)TableVI-1.MethodologyCategorizationintheEnergySector(continued)SectoralscopeTypeElectricitygenerationandsupplyEnergyforindustriesEnergy(fuel)fortransportEnergyforhouseholdsandbuildings1Energyindustries(renewable-/nonrenewablesources)(continued)Fuel/feedstockswitchAM0049ACM0006ACM0011ACM0018AMS-I.M.AMS-III.AG.AMS-III.AH.AMS-III.AM.AM0049AM0056AM0069AM0081ACM0006ACM0009ACM0018AMS-III.AM.AM00812EnergydistributionRenewableenergyAMS-III.AW.AMS-III.BB.AMS-III.BL.AM0069AM0075AMS-III.AW.EnergyefficiencyAM0067AM0097AM0118AMS-II.A.AMS-II.T.AMS-III.BB.AMS-III.BL.Fuel/feedstockswitchAMS-III.BB.AMS-III.BL.AM00773EnergydemandRenewableenergyAMS-III.AE.AMS-III.AR.EnergyefficiencyAMS-III.AL.AM0017AM0018AM0020AM0044AM0060AM0068AM0088AM0105AMS-I.I.AMS-II.C.AMS-II.F.AMS-II.G.AMS-II.L.AMS-II.N.AMS-II.P.AMS-II.S.AM0020AM0044AM0046AM0060AM0086AM0091AM0113AM0117AM0120AMS-II.C.AMS-II.E.AMS-II.F.AMS-II.G.AMS-II.J.AMS-II.K.AMS-II.L.AMS-II.M.AMS-II.N.AMS-II.O.AMS-II.Q.AMS-II.R.AMS-III.AE.AMS-III.AR.AMS-III.AV.AMS-III.X.Fuel/feedstockswitchAMS-III.B.AM0121ACM0003ACM0005AMS-II.F.AMS-III.B.AMS-II.F.AMS-III.B.10UnitedNationsFrameworkConventiononClimateChangeCategorizationbyMitigationActivityType(MethodologyCategorizationTable)SectoralscopeRenewableenergyEnergyEfficiencyGHGdestructionGHGemissionavoidanceFuel/FeedstockSwitchGHGremovalbysinksDisplacementofamore-GHG-intensiveoutput4ManufacturingindustriesAM0007AM0036ACM0003AMS-III.Z.AMS-III.AS.AMS-III.BG.AM0049AM0055AM0070AM0106AM0109AM0114AM0115ACM0012AMS-II.D.AMS-II.H.AMS-II.I.AMS-III.P.AMS-III.Q.AMS-III.V.AMS-III.Z.AMS-III.AS.AMS-III.BD.AMS-III.BG.AM0078AM0096AM0111AMS-III.K.AM0057AM0065AM0092AM0121ACM0005ACM0021AMS-III.L.AM0049AM0092AM0121ACM0003ACM0005ACM0009ACM0015AMS-III.N.AMS-III.Z.AMS-III.AD.AMS-III.AM.AMS-III.AN.AMS-III.AS.AM0070AM0095AM0114AM0115ACM00125ChemicalindustriesACM0017AM0053AM0075AM0089AM0055AM0114AMS-III.AC.AMS-III.AJ.ACM0019AM0021AM0028AM0098AM0053AMS-III.M.AMS-III.AI.AM0027AM0037AM0050AM0063AM0069AMS-III.J.AMS-III.O.AM0053AM0055AM0069AM0081AM0098AM0114AM01156ConstructionAMS-III.BH.AMS-III.BH.7TransportAMS-I.M.AMS-III.T.AMS-III.AK.AMS-III.AQ.AM0031AM0090AM0101AM0110AM0116ACM0016AMS-III.C.AMS-III.S.AMS-III.U.AMS-III.AA.AMS-III.AP.AMS-III.AT.AMS-III.BC.AMS-III.BM.AMS-III.BN.AMS-III.BO.AMS-III.S.AMS-III.AY.AMS-III.BP.8Mining/mineralproductionACM0003ACM0008AM0064AMS-III.W.AM0121ACM0005ACM0015TableVI-2.MethodologyCategorizationotherSectors11UnitedNationsFrameworkConventiononClimateChangeCategorizationbyMitigationActivityType(MethodologyCategorizationTable)SectoralscopeRenewableenergyEnergyEfficiencyGHGdestructionGHGemissionavoidanceFuel/FeedstockSwitchGHGremovalbysinksDisplacementofamore-GHG-intensiveoutput9MetalproductionAM0082AM0038AM0059AM0066AM0068AM0109AMS-III.V.AM0030AM0059AM0065AM008210Fugitiveemissionsfromfuel(solid,oilandgas)AM0064AM0122ACM0008AMS-III.W.AM0023AM0043AMS-III.BI.AM0009AM0037AM0077AM0074AM0009AM007711FugitiveemissionsfromproductionandconsumptionofhalocarbonsandSF6AM0001AM0078AM0096AM0111AMS-III.X.AM0035AM0065AM0079AM0092AM0119AMS-III.X.AM0071AM0092AMS-III.AB.12Solventuse13WastehandlinganddisposalACM0022AM0112AMS-III.BJ.AMS-III.AJ.AMS-III.BA.AM0073ACM0001ACM0010ACM0014AMS-III.G.AMS-III.H.AMS-III.AX.AM0057AM0080AM0083AM0093AM0112ACM0022AMS-III.E.AMS-III.F.AMS-III.I.AMS-III.Y.AMS-III.AF.AMS-III.AO.AMS-III.BE.14AfforestationandreforestationAR-AM0014AR-ACM0003AR-AMS0003AR-AMS000715AgricultureAM0073ACM0010AMS-III.D.AMS-III.R.AMS-III.A.AMS-III.AU.AMS-III.BE.AMS-III.BF.AMS-III.BK.AMS-III.R.TableVI-2.MethodologyCategorizationotherSectors(continued)12UnitedNationsFrameworkConventiononClimateChangeTherehavebeendistinctdevelopmentphasesofmethodologiesovertime,leadingto“families”whenonemethodologycatalyzedthedevelopmentofothermethodologies.4Thefiguresbelowshowthefamiliesofmethodologiesinformoffamilytrees.Theyaredesignedasfollows:Eachmethodologyisdenotedbyaboxshowingitsuniqueidentificationnumber.Methodologiesthatcanbefoundinthesamefamilytreedealwithcomparabletechnologiesormeasures.1.3.CATEGORIZATIONBYAPPLIEDTECHNOLOGYTYPE/MEASURE(METHODOLOGYFAMILYTREES)FigureVII-1.Methodologiesforrenewableelectricity4Theconceptofmethodologyfamiliesandfamilytreeswasinitiallyadoptedinthefollowingguidebook:UnderstandingCDMMethodologies:AguidebooktoCDMRulesandProcedures,writtenbyAxelMichaelowa,FrédéricGagnon-Lebrun,DaisukeHayashi,LuisSalgadoFlores,PhlippeCrêteandMathiasKrey,commissionedbytheUKDepartmentforEnvironmentFoodandRuralAffairs(©CrownCopyright2007).Methodologiesforlarge-scaleCDMprojectactivitiesMethodologiesforsmall-scaleCDMprojectactivitiesMethodologiesforsmallandlarge-scaleaorestationandreforestation(A/R)CDMprojectactivitiesAM0000MethodologiesthathaveaparticularpotentialtodirectlyimprovethelivesofwomenandchildrenBiomasselectricityGridelectricityOffgridelectricity/isolatedgridsEnhancedgenerationCaptivepowerAM0007ACM0006AM0019ACM0002AM0103AMS-I.M.AMS-I.A.AMS-I.L.AMS-III.BL.AM0052AMS-I.F.ACM0018AM0026AMS-I.D.ACM0020AM010013UnitedNationsFrameworkConventiononClimateChangeCategorizationbyAppliedTechnologyType/Measure(MethodologyFamilyTrees)FigureVII-3.Methodologiesforefficientorless-carbon-intensivefossil-fuel-firedpowerplantsFigureVII-2.Methodologiesforrenewableenergy(thermalormechanicalenergy)RenewablethermalenergyRenewablemechanicalenergyAM0036AM0094AMS-I.I.AMS-I.B.AM0072ACM0003AMS-I.J.AMS-I.K.AM0075AM0082AMS-I.C.AMS-I.E.Co-ortrigenerationGas–newlybuiltFuelcell–newlybuiltCoal–newlybuiltLowcarbonelectricityEnergyefficiencyAM0084AMS-III.AM.ACM0013ACM0025ACM0026AMS-III.AC.ACM0013AM0074AM0061AMS-II.B.AM0062AMS-III.AL.ACM0007AM0048AM0049AM0049AM0076AMS-II.H.AMS-II.K.AM0099AM0107ACM0026AM0107AMS-III.BG.14UnitedNationsFrameworkConventiononClimateChangeCategorizationbyAppliedTechnologyType/Measure(MethodologyFamilyTrees)FigureVII-5.MethodologiesforbiofuelFigureVII-4.MethodologiesforfuelswitchCoal/oiltogasPlantoilBiodieselBio-CNGOtherlow-carbonfuelsACM0009AMS-I.G.AM0089AMS-III.AQ.AMS-III.AG.AMS-III.AN.AMS-III.AS.AM0081ACM0003AMS-III.Z.AMS-III.AM.ACM0011AMS-III.T.ACM0017AMS-III.AH.AMS-II.F.AMS-I.H.AMS-III.B.AMS-III.AK.AMS-III.AM.AMS-III.AN.15UnitedNationsFrameworkConventiononClimateChangeCategorizationbyAppliedTechnologyType/Measure(MethodologyFamilyTrees)FigureVII-6.MethodologiesforindustrialenergyefficiencySteamsystemsWaterpumpingWastegas/energyrecoveryMetalBoilersChillersDistrictheatingLightingAgricultureOther/varioustechnologiesEfficientmotorormotorappliances(pump,fans,compressor)AM0017AM0020AM0055AM0058AM0066AM0095AM0098ACM0012AM0115AMS-II.I.AMS-III.P.AM0038AM0068AM0044AM0060AM0058AMS-II.L.AMS-II.F.AMS-II.S.AMS-II.S.AMS-II.S.AM0088AMS-III.Q.AM0059AMS-III.V.AMS-III.A.AMS-II.C.AM0066AM0056AMS-II.D.AM0018AMS-II.C.AM0105AM0114AM0115AM0118AMS-II.P.AMS-II.P.AMS-III.BD.KilnsAM0106AM0109AMS-III.Z.AM0066AM0068AMS-III.BI.ACM0023AMS-III.BE.AMS-II.D.AMS-II.T.16UnitedNationsFrameworkConventiononClimateChangeCategorizationbyAppliedTechnologyType/Measure(MethodologyFamilyTrees)FigureVII-7.Methodologiesforhousehold&buildingenergyefficiencyFigureVII-8.MethodologiesforgasflaringandgasleakreductionCookstoveWaterpumpingWaterpurifierWatersavingRefrigerators/chillersLightingWholebuildingOthers/varioustechnologiesAMS-II.C.AMS-II.C.AM0086AMS-II.C.AMS-III.AV.AMS-II.M.AM0060AM0120AMS-III.X.AM0046AM0113AMS-II.N.AMS-II.J.AMS-II.L.AMS-II.N.AMS-III.AR.AM0091AM0117AMS-II.E.AMS-III.AE.AMS-II.C.AM0070AMS-II.C.AMS-II.O.AMS-II.G.OilproductionCompressorsanddistributionsystemsPipereplacementAM0009AM0023AM0043AM0037AM0077AM0122AMS-II.Q.AMS-II.R.AMS-II.S.17UnitedNationsFrameworkConventiononClimateChangeCategorizationbyAppliedTechnologyType/Measure(MethodologyFamilyTrees)FigureVII-9.MethodologiesforfeedstockswitchFigureVII-10.MethodologiesforindustrialgasesCementHFC-23CementblendingOtherHFCsInorganicN2O,adipicacidPaperN2O,nitricacidPlasticPFCOtherindustriesSF6Avoidance/decreaseofusageACM0015AM0121AM0001ACM0005AM0121AM0071AMS-III.N.AMS-III.X.AMS-III.AB.AM0027AM0021AM0050AM0057AM0028ACM0019AMS-III.M.AMS-III.AJ.AM0030AM0059AM0092AM0096AM0063AM0035AM0065AM0078AM0079AM0119AMS-III.J.AMS-III.AD.AMS-III.AI.MetalAMS-III.BA.AMS-III.BA.AM011118UnitedNationsFrameworkConventiononClimateChangeCategorizationbyAppliedTechnologyType/Measure(MethodologyFamilyTrees)FigureVII-11.MethodologiesforwastemanagementandwastewaterAlternativetreatment–compostingAlternativetreatment–othertechnologiesAlternativetreatment–aerobicLandfillgasLagoonsandbiodigester–biogasManureandcomparableanimalwasteAerobicwastewatertreatmentBiogenicmethaneACM0022AMS-III.F.AMS-III.AF.ACM0022AMS-III.E.AMS-III.L.AMS-III.R.AMS-III.R.AMS-III.Y.AM0083AM0112AM0093AMS-III.AX.ACM0001AMS-III.G.ACM0014AMS-III.H.AMS-III.AO.AM0073ACM0010AMS-III.D.AM0080AMS-III.I.AM0053AM0069AM0075AMS-III.O.AMS-III.BJ.ACM002419UnitedNationsFrameworkConventiononClimateChangeCategorizationbyAppliedTechnologyType/Measure(MethodologyFamilyTrees)FigureVII-12.MethodologiesfortransportBussystemsMassrapidtransitsystemsHighspeedrailsystemsEnergyefficiencyFuelswitchTransportationofcargoTechnologyforimproveddrivingElectrictaxiingsystemsforairplanesSolarpowerfordomesticaircraftat-gateoperationsBicycles,e-bikesandTricyclesTransportationofliquidfuelsAM0031ACM0016AMS-III.U.AM0101AMS-III.AA.AMS-III.AP.AMS-III.C.AMS-III.S.AMS-III.AQ.AMS-III.AY.AMS-III.AK.AM0090AM0110AMS-III.AT.AM0116AMS-I.M.AMS-III.BM.AMS-III.BC.AMS-III.BN.AMS-III.BO.AMS-III.BC.Shore-sideelectricitysupplyforshipsAMS-III.BP.20UnitedNationsFrameworkConventiononClimateChangeCategorizationbyAppliedTechnologyType/Measure(MethodologyFamilyTrees)FigureVII-13.OthermethodologiesMethanefromminingactivitiesCharcoalproductionElectricitygridconnectionEfficienttransmissionanddistributionAfforestationandreforestationAgricultureConstructionAM0064ACM0021ACM0008AMS-III.W.AM0045AMS-III.AW.AM0067AM0097AMS-II.A.AMS-III.K.AR-AM0014AR-AMS0003AR-AMS0007AMS-III.AU.AMS-III.BH.AM0104AMS-III.BB.AM0108AR-ACM0003AMS-III.BF.AMS-III.BK.AMS-III.BL.AMS-III.BG.21UnitedNationsFrameworkConventiononClimateChangeTHECONCEPTIntheCDM,aProgrammeofActivities(PoA)isdefinedasavoluntarycoordinatedactionbyaprivateorpublicentitythatcoordinatesandimplementsanypolicy/measureorstatedgoal,whichleadstoemissionreductionsornetremovalsthatareadditionaltoanythatwouldoccurintheabsenceofthePoA,viaanunlimitednumberofComponentProjectActivities(CPAs).ACPAisasinglemeasure,orasetofinterrelatedmeasuresunderaPoA,toreduceemissionsorresultinnetremovals,appliedwithinadesignatedarea.APoAisthereforelikean“umbrellaprogram”,whichisregisteredbytheBoard.IndividualCPAsthatcomplywiththeeligibilitycriteriaspecifiedinthePoADesignDocument(PoA-DD)oftheregisteredPoAcanbeincludedunderthis“umbrella”andactuallygenerateemissionreductionsornetremovalstobenefitfromcarbonrevenues.BENEFITSComparedtoregularCDMprojectactivities,PoAshavemanybenefits,particularlyforlessdevelopedcountriesorregions.TheprocessfortheinclusionofindividualCPAsunderaregisteredPoAisconsiderablysimplifiedandresultsinlowercostsascomparedtoregistrationofregularprojectactivities.ThemainbenefitsofPoAsare•Transactioncosts,investmentrisksanduncertaintiesforindividualCPAparticipantsarereduced;•PoAsaremanagedbyadesignatedCoordinatingandManagingEntity(CME).TheCMEisresponsibleformostoftheCDMprocess.Therefore,directengagementofindividualprojectdevelopersintheCDMprocessisnotrequired;•AccesstotheCDMisextendedtosmallerprojectactivitieswhichwouldnotbeviableasregularprojectactivities;•EmissionreductionscanbecontinuouslyscaledupafterPoAregistration,sinceanunlimitednumberofCPAscanbeaddedatalaterstage;•Manytechnologieswithhighco-benefits,e.g.householdtechnologies,aresupportedbyPoAs;•SpecificregionalpolicygoalscanbeeffectivelysupportedbyaccessingcarbonfinancethroughPoAs•Monitoring/Verificationofparametervaluesmaybeundertakenonacollectivebasisbyutilizingasamplingapproach;•NoregistrationfeeisdueforeachCPAincludedafterregistration.Registrationfeesarebasedontheexpectedaverageemissionreductionsornetremovalsofthe“actualcase”CPAssubmittedatthePoAregistration.PoAINTHECDMPIPELINEAtthetimeofpreparationofthiseditionoftheBooklet,thereweresomesectorsthathaveahigherproportionofPoAsintheCDMpipelinethanregularprojectactivities:energyefficiencydemandside(sectoralscope3),waste(sectoralscope13)andsolarenergy(sectoralscope1).Furthermore,outoftheregisteredPoAs,itwasobservedthatsomemethodologieswerecommonlyused,suchas:•ACM0002Grid-connectedelectricitygenerationfromrenewablesources•AMS-I.C.Thermalenergyproductionwithorwithoutelectricity•AMS-I.D.Gridconnectedrenewableelectricitygeneration•AMS-II.G.Energyefficiencymeasuresinthermalapplicationsofnon-renewablebiomass•AMS-II.J.Demand-sideactivitiesforefficientlightingtechnologies•AMS-III.R.Methanerecoveryinagriculturalactivitiesathousehold/smallfarm1.4.PROGRAMMESOFACTIVITIES22UnitedNationsFrameworkConventiononClimateChangeCDMMethodologyBookletDecember2022(uptoEB116)1.5.STANDARDIZEDBASELINESTHECONCEPTAstandardizedbaselineisabaselineestablishedforaPartyoragroupofPartiestofacilitatethecalculationofemissionreductionandremovalsand/orthedeterminationofadditionalityforCDMprojectactivities.Thefollowingelementsmaybestandardizedbyanapprovedstandardizedbaseline:(a)Additionality;and/or(b)Baseline(baselinescenarioand/orbaselineemissions).Astandardizedbaselinecanbeapositivelistcontainingnamesofemissionreductionactivitiesthat,ifimplementedinagivencountryorregion,wouldbeconsideredautomaticallyadditionalundercertainconditions.Itcanalsobeabaselineemissionfactortobeusedforthepurposeofestimationofbaselineemissions(e.g.gridemissionfactor).BENEFITSTheobjectiveofstandardizedbaselinesistoscaleuptheabatementofGHGemissionswhileensuringenvironmentalintegritybypotentially:•Reducingtransactioncosts;•Enhancingtransparency,objectivityandpredictability;•FacilitatingaccesstotheCDM,particularlywithregardtounderrepresentedprojecttypesandregions;•Simplifyingmeasuring,reportingandverificationAPPROVEDSTANDARDIZEDBASELINESReferenceSectorApplicablecountries/RegionFullViewandHistoryASB0005-2021PowerBelizeGridemissionfactorfortheBelizenationalpowergrid(version01.0)ASB0008-2020RicecultivationTheRepublicofthePhilippinesMethaneEmissionsfromRiceCultivationintheRepublicofthePhilippines(version01.0)ASB0011-2021WasteTheDominicanRepublicLandfillgascaptureandflaringintheDominicanRepublic(version01.0)ASB0034-2021PowerWestAfricanPowerPool(WAPP)comprisingofthefollowingcountries:Benin,BurkinaFaso,Côted’Ivoire,Ghana,Mali,Niger,Nigeria,Senegal,RepublicofTogoGridemissionfactorforWestAfricanPowerPool(version01.0)ASB0038-2021PowerRepublicofArmeniaGridemissionfactorfortheelectricitysystemoftheRepublicofArmenia(version01.0)ASB0045-2019PowerGuyanaGridemissionfactorofGuyana(version01.0)ASB0046-2019PowerMauritiusMauritiusGridEmissionFactor(version01.0)ASB0048-2020BuildingRepublicofKoreaSpecificCO2emissionsinResidentialBuildingsinRepublicofKorea(version01.0)ASB0049-2020CookstovesRepublicoftheUnionofMyanmarFractionofnon-renewablebiomassinMyanmar(version01.0)ASB0050-2020PowerRepublicofKenyaGridEmissionFactorfortheRepublicofKenya(version01.0)ASB0051-2021PowerAntiguaandBarbudaGridEmissionFactorforAntiguaandBarbuda(version01.0)ASB0052-2021PowerCapeVerdeGridemissionfactorforCapeVerde(version01.0)ASB0053-2021PowerSaintKittsandNevisGridEmissionFactorsforSaintKittsandNevis(version01.0)ASB0054-2022PowerUgandaGridemissionforthenationalpowergridofUganda(version01.0)23UnitedNationsFrameworkConventiononClimateChangeTHECONCEPTUndertheCDM,suppresseddemandisdefinedasa“Scenariowherefutureanthropogenicemissionsbysourcesareprojectedtoriseabovecurrentlevels,duetothespecificcircumstancesofthehostParty”.TheconceptofsuppresseddemandisincludedinsomeCDMmethodologiestoconsidersituationswherekeyservicessuchaslightingandheating,watersupply,wastedisposalandtransportationareonlyavailableinquantitiesthatareinsufficienttomeetbasichumanneedsbeforetheimplementationofaCDMprojectactivity.Thiscanbeduetolowincomeandlackoftechnologies/infrastructuresorresourcesforitsimplementation.Theminimumservicelevelrequiredtofulfilgenerallyacceptedbasichumanneedsisexpectedtobereachedinthefutureashostcountriesdeveloptheireconomies,henceincomesincrease,resourcesimproveandtechnologies/infrastructuresareimplemented.Forexample,beforethestartofaCDMprojectactivity,householdsmaybedevoidofaccesstoanelectricitygridandhaveonlyafewkerosenelampsinplacethatareoperatedforshorttimeperiods,orjustusecandles.Ortheymaynothaveaccesstocleandrinkingwaterandthereforeboilasmallquantityofwatermanually.TheconceptofsuppresseddemandisincludedinCDMmethodologiesforthebaselinecalculationspecifyingaminimumservicelevel.Forexample,thedailyamountofdrinkingwateravailabilityrecommendedbytheWorldHealthOrganizationisusedasbaselinewaterprovisionvolumeforthemethodologyAM0086forwaterpurification.InothermethodologiessuchasAMS-I.A.andAMS-I.L.,suppresseddemandistakenintoaccountbyapplyingdefaultemissionfactorsforhighemissiontechnologies(e.g.kerosenelamps)assumedtobeusedduetothesuppresseddemandsituation.InthemethodologyACM0022,adefaultemissionfactorforashallowlandfillcanbeusedintheabsenceofanorganizedwastecollectionanddisposalsystem.Ifsuppresseddemandwerenotincluded,baselineemissionswouldbesosmallthatprojectactivitieswouldbecomeunattractiveundertheCDMduetothesmallnumberofCERsgenerated.Methodologiesaddressingtheissueofsuppresseddemandarelabelledwithaspecificicon“Suppresseddemand”,putonthetoprightofthesummarysheet.BENEFITTheconsiderationofsuppresseddemandallowshostcountriestoimprovelifeconditionsbyimplementingCDMprojectactivities.AnotherbenefitisthereductionoftransactioncostsforCDMprojectdevelopers.DetaileddatagatheringtoestablishparametervaluesforbaselineemissioncalculationsmaynotbenecessaryasCDMmethodologiesthataddresstheissueofsuppresseddemandusuallyincludedefaultvaluesthatarerepresentativeforthespecificservicelevel,suchastheamountofkeroseneusedforlighting.1.6.METHODOLOGIESADDRESSINGSUPPRESSEDDEMANDMETHODOLOGIESADDRESSINGSUPPRESSEDDEMANDAM0086InstallationofzeroenergywaterpurifierforsafedrinkingwaterapplicationAM0091EnergyefficiencytechnologiesandfuelswitchinginnewandexistingbuildingsACM0022AlternativewastetreatmentprocessesAMS-I.A.ElectricitygenerationbytheuserAMS-I.B.MechanicalenergyfortheuserwithorwithoutelectricalenergyAMS-I.L.ElectrificationofruralcommunitiesusingrenewableenergyAMS-II.R.EnergyefficiencyspaceheatingmeasuresforresidentialbuildingsAMS-III.F.AvoidanceofmethaneemissionsthroughcompostingAMS-III.AR.SubstitutingfossilfuelbasedlightingwithLED/CFLlightingsystemsAMS-III.AV.LowgreenhousegasemittingsafedrinkingwaterproductionsystemsAMS-III.BB.Electrificationofcommunitiesthroughgridextensionorconstructionofnewmini-gridsAMS-III.BL.Integratedmethodologyforelectrificationofcommunities24UnitedNationsFrameworkConventiononClimateChangeThedualgoalsoftheCDMaretopromotesustainabledevelopmentandreduceGHGemissionsorenhanceGHGremovals.TheoutcomesofaCDMprojectactivityshouldthereforedirectlyorindirectlyimprovethelivingconditionsofallpeople.Whathasbeenhighlightedinthebookletisthatsomemethodologieshaveaparticularpotentialtodirectlyimprovethelivesofwomenandchildreneffectedbytheprojectactivity.Thesemethodologiesarelabelledwithaspecificicon“Womenandchildren”,putonthetoprightofthesummarysheet.Thecriteriausedtolabelthesemethodologiesashavingparticularbenefitsforwomenandchildrenarethepotentialto:•increaseaccesstoaffordablehouseholdfittingsandappliances(e.g.lightglobes,refrigerators);•optimizetaskstypicallyundertakenbywomenorchildren(e.g.fuelwoodgathering,cooking,watercollection);•improvethelivingenvironmentofwomenandchildren(e.g.betterairquality,heating,lighting);or•utilizecommunity-basedparticipatoryapproaches,thatgivewomenandchildrenanopportunitytolearnabouttheprojectsandcontributetodecisionmakingprocesses.InthecaseofA/RCDMprojectactivities,thisiconisalsoindicatedforprojectactivitiesthatgeneratenewlocalemploymentopportunitiesbecausethesepositionsareoftenfilledbywomenItisimportanttonotethatamethodologythathasnotbeenlabelledwiththisiconwillnotimpactadverselyonwomenandchildren.Thefollowingpublication,“CDMandWomen”,accessibleontheCDMwebsite,furtherhighlightssomewomen-friendlymethodologiesandaimstoencourageprojectdeveloperstoconsidertheCDMwhenplanningprojectstohelpempowerandimprovewomen’slives.1.7.METHODOLOGIESHAVINGBENEFITSFORWOMENANDCHILDREN25UnitedNationsFrameworkConventiononClimateChange1.8.1.CDMMETHODOLOGIESAPPLICABLETOCITY-BASEDMITIGATIONPROGRAMMES1.Inurbancentres,therearemanyopportunitiesforreducinggreenhousegas(GHG)emissions.City-basedmitigationprogrammesmaytargetvarioussectors,includingbuildings,transport,energysupplyanddemand,watersupplyandtreatment,andwastemanagement,andmaycontainarangeofmeasuresineachsectoraimedatreducingGHGemissions.2.ManyoftheseinterventionscouldresultinGHGemissionreductionsthatareadditionalandeligibleundertheCDM.However,thesemeasuresmaybedispersedandtheresultingemissionreductionfromeachindividualmeasurerelativelylow.Ontheotherhand,ifthesemeasuresareimplementedtogetheratacommunityorcitylevel,theycouldpotentiallygeneratesignificantemissionreductionswhentheindividualreductionsaresummedtogether.3.Mitigationinitiativesmayalsobeimplementedinaphasedmanner,inwhichcasetheymaybebettersuitedtobethestructureofaPoAbecausethatwouldallowastage-wiseimplementationoftheprojectsandanexpansionofthemitigationmeasuresduringthePoAperiod(i.e.28years).4.TheCDMframeworkoffersawiderangeofmethodologiesandtoolstoestimatetheemissionreductioneffectoftheseprojects.Acity-widemitigationprogrammedevelopedundertheCDMmayapplythesemethodologiesandtakeintoaccountanycrosseffectsthatmayoccurasaresultoftheirapplication.5.Thetablesbelowprovideanon-exhaustivelistofthemethodologiesapplicabletoeachsector:UrbanTransport(table1);Household&BuildingEnergyGenerationandEnergyEfficiency(table2);andWasteManagementandWastewater(table3).1.8.METHODOLOGIESFORURBANSECTORSTABLE1.LISTOFCDMMETHODOLOGIESRELEVANTTOURBANTRANSPORTMeasureCDMmethodologyBicycles,tricycles,e-bikesore-tricyclesAMS-III.BM.LightweighttwoandthreewheeledpersonaltransportationBussystemsAM0031BusrapidtransitprojectsMassrapidtransitsystemsACM0016MassRapidTransitProjectsAMS-III.U.CableCarsforMassRapidTransitSystem(MRTS)EnergyefficiencyAMS-III.C.EmissionreductionsbyelectricandhybridvehiclesAMS-III.AA.TransportationEnergyEfficiencyActivitiesusingRetrofitTechnologiesAMS-III.AP.Transportenergyefficiencyactivitiesusingpost-fitIdlingStopdeviceAMS-III.BC.EmissionreductionsthroughimprovedefficiencyofvehiclefleetsFuelswitchAMS-III.S.Introductionoflow-emissionvehicles/technologiestocommercialvehiclefleetsAMS-III.T.PlantoilproductionandusefortransportapplicationsAMS-III.AK.BiodieselproductionandusefortransportapplicationsAMS-III.AQ.IntroductionofBio-CNGintransportationapplicationsAMS-III.AY.IntroductionofLNGbusestoexistingandnewbusroutesTransportationofcargoAM0090ModalshiftintransportationofcargofromroadtransportationtowaterorrailtransportationTransportationofliquidfuelsAM0110ModalshiftintransportationofliquidfuelsTechnologyforimproveddrivingAMS-III.AT.TransportationenergyefficiencyactivitiesinstallingdigitaltachographsystemstocommercialfreighttransportfleetsAMS-III.BC.EmissionreductionsthroughimprovedefficiencyofvehiclefleetsTABLE2.LISTOFCDMMETHODOLOGIESRELEVANTTOURBANHOUSEHOLD&BUILDINGENERGYGENERATIONANDENERGYEFFICIENCYMeasureCDMmethodologyRenewableelectricity(captivepower)AMS-I.F.Renewableelectricitygenerationforcaptiveuseandmini-gridThermalenergyforcookingAMS-I.E.Switchfromnon-renewablebiomassforthermalapplicationsbytheuserAMS-I.I.Biogas/biomassthermalapplicationsforhouseholds/smallusersAMS-I.K.SolarcookersforhouseholdsAMS-II.G.Energyefficiencymeasuresinthermalapplicationsofnon-renewablebiomassSolarwaterheatingAMS-I.J.Solarwaterheatingsystems(SWH)EnergyefficiencyinwaterdeliveryAM0020BaselinemethodologyforwaterpumpingefficiencyimprovementsAMS-II.C.Demand-sideenergyefficiencyactivitiesforspecifictechnologiesAMS-II.S.EnergyefficiencyinmotorsystemsWaterpurifierAM0086DistributionofzeroenergywaterpurificationsystemsforsafedrinkingwaterAMS-III.AV.LowgreenhousegasemittingsafedrinkingwaterproductionsystemsWatersavingAMS-II.M.Demand-sideenergyefficiencyactivitiesforinstallationoflow-flowhotwatersavingsdevices26UnitedNationsFrameworkConventiononClimateChangeRefrigerators/chillersAM0060PowersavingthroughreplacementbyenergyefficientchillersAMS-II.C.Demand-sideenergyefficiencyactivitiesforspecifictechnologiesAMS-II.O.DisseminationofenergyefficienthouseholdappliancesAMS-III.X.EnergyEfficiencyandHFC-134aRecoveryinResidentialRefrigeratorsAM0120Energy-efficientrefrigeratorsandair-conditionersLightingAM0046DistributionofefficientlightbulbstohouseholdsAM0113Distributionofcompactfluorescentlamps(CFL)andlight-emittingdiode(LED)lampstohouseholdsAMS-II.C.Demand-sideenergyefficiencyactivitiesforspecifictechnologiesAMS-II.J.Demand-sideactivitiesforefficientlightingtechnologiesAMS-II.N.Demand-sideenergyefficiencyactivitiesforinstallationofenergyefficientlightingand/orcontrolsinbuildingsAMS-III.AR.Substitutingfossilfuel-basedlightingwithLED/CFLlightingsystemsStreetlightingAMS-II.L.Demand-sideactivitiesforefficientoutdoorandstreetlightingtechnologiesWholebuildingAM0091EnergyefficiencytechnologiesandfuelswitchinginnewandexistingbuildingsAMS-II.E.EnergyefficiencyandfuelswitchingmeasuresforbuildingsAMS-II.K.Installationofco-generationortri-generationsystemssupplyingenergytocommercialbuildingAMS-II.Q.Energyefficiencyand/orenergysupplyprojectsincommercialbuildingsAMS-II.R.EnergyefficiencyspaceheatingmeasuresforresidentialbuildingsAMS-III.AE.EnergyefficiencyandrenewableenergymeasuresinnewresidentialbuildingsDistrictheating/coolingAM0044Energyefficiencyimprovementprojects-boilerrehabilitationorreplacementinindustrialanddistrictheatingsectorsAM0058IntroductionofadistrictheatingsystemAM0072FossilFuelDisplacementbyGeothermalResourcesforSpaceHeatingAM0117IntroductionofanewdistrictcoolingsystemAMS-II.B.Supplysideenergyefficiencyimprovements–generationOthers/varioustechnologiesAMS-II.C.Demand-sideenergyefficiencyactivitiesforspecifictechnologiesTABLE3.LISTOFMETHODOLOGIESRELEVANTTOURBANWASTEMANAGEMENTANDWASTEWATERMeasureCDMmethodologyAlternativewaste–compostingACM0022AlternativewastetreatmentprocessesAMS-III.F.AvoidanceofmethaneemissionsthroughcompostingAMS-III.AF.Avoidanceofmethaneemissionsthroughexcavatingandcompostingofpartiallydecayedmunicipalsolidwaste(MSW)Alternativewastetreatment–othertechnologiesACM0022AlternativewastetreatmentprocessesAM0112LesscarbonintensivepowergenerationthroughcontinuousreductivedistillationofwasteAMS-III.E.Avoidanceofmethaneproductionfromdecayofbiomassthroughcontrolledcombustion,gasificationormechanical/thermaltreatmentAMS-III.L.AvoidanceofmethaneproductionfrombiomassdecaythroughcontrolledpyrolysisAMS-III.Y.MethaneavoidancethroughseparationofsolidsfromwastewaterormanuretreatmentsystemsAMS-III.BJ.DestructionofhazardouswasteusingplasmatechnologyincludingenergyrecoveryAlternativewastetreatment–aerobicAM0083Avoidanceoflandfillgasemissionsbyin-situaerationoflandfillsAM0093AvoidanceoflandfillgasemissionsbypassiveaerationoflandfillsAMS-III.AX.Methaneoxidationlayer(MOL)forsolidwastedisposalsitesLandfillgasrecoveryACM0001FlaringoruseoflandfillgasAMS-III.G.LandfillmethanerecoveryLagoonsandbiodigester–biogasACM0014TreatmentofwastewaterAMS-III.H.MethanerecoveryinwastewatertreatmentAMS-III.AO.MethanerecoverythroughcontrolledanaerobicdigestionManuretreatmentAM0073GHGemissionreductionsthroughmulti-sitemanurecollectionandtreatmentinacentralplantACM0010GHGemissionreductionsfrommanuremanagementsystemsAMS-III.D.MethanerecoveryinanimalmanuremanagementsystemsAMS-III.R.Methanerecoveryinagriculturalactivitiesathousehold/smallfarmlevelAerobicwastewatertreatmentAM0080MitigationofgreenhousegasesemissionswithtreatmentofwastewaterinaerobicwastewatertreatmentplantsAMS-III.I.AvoidanceofmethaneproductioninwastewatertreatmentthroughreplacementofanaerobicsystemsbyaerobicsystemsUtilizationofbiogenicmethaneACM0024NaturalgassubstitutionbybiogenicmethaneproducedfromtheanaerobicdigestionoforganicwasteAM0053BiogenicmethaneinjectiontoanaturalgasdistributiongridAM0069BiogenicmethaneuseasfeedstockandfuelfortowngasproductionAM0075Methodologyforcollection,processingandsupplyofbiogastoend-usersforproductionofheatAMS-III.O.HydrogenproductionusingmethaneextractedfrombiogasRecyclingAMS-III-AJ.RecoveryandrecyclingofmaterialsfromsolidwastesAMS-III-BA.RecoveryandrecyclingofmaterialsfromE-wasteTABLE2.(CONT.)27UnitedNationsFrameworkConventiononClimateChangeTABLE4.EXAMPLESOFPARAMETERSTHATMAYBESTANDARDIZEDSector/MeasureCDMmethodology/toolParametersPossibledatasourcesforstandardizationofparametersElectricitygenerationTOOL07TooltocalculatetheemissionfactorforanelectricitysystemCO2emissionfactoroftheelectricitysystemOfficialreport/statisticsEnergy-efficientrefrigeratorsandair-conditionersTOOL29Determinationofstandardizedbaselinesforenergy-efficientrefrigeratorsandair-conditionersBaselineenergyconsumptionSeerequirementsinTOOL29EnergyefficiencymeasuresinbuildingsTOOL31Determinationofstandardizedbaselinesforenergyefficiencymeasuresinresidential,commercialandinstitutionalbuildingsCO2emissionsperm2fordifferentbuildingcategoriesSurveysEnergy-efficientLightingAMS-II.C.Demand-sideenergyefficiencyactivitiesforspecifictechnologiesAMS-II.J.Demand-sideactivitiesforefficientlightingtechnologiesUtilizationhoursSurveys,peer-reviewedliterature,officialreports/statistics,etc.SolidWasteAMS-III.G.LandfillmethanerecoveryACM0001FlaringoruseoflandfillgasTOOL04EmissionsfromsolidwastedisposalsitesWastecompositionTestresults,peer-reviewedliterature,officialreports/statistics,etc.LegalrequirementstodestroymethaneaspartofregularoperationoflandfillsLocalregulations/legislationCookingAMS-I.E.Switchfromnon-renewablebiomassforthermalapplicationsbytheuserAMS-II.G.Energyefficiencymeasuresinthermalapplicationsofnon-renewablebiomassBaselinewoodybiomassconsumptionSurveys,peer-reviewedliterature,officialreports/statistics,etc.Non-renewablebiomassTOOL30Calculationofthefractionofnon-renewablebiomassFractionofnon-renewablebiomassSeerequirementsinTOOL30TransportACM0016MassRapidTransitProjectsAM0031BusrapidtransitprojectsTOOL18BaselineemissionsformodalshiftmeasuresinurbanpassengertransportSpecificCO2emissionsperpassenger-kilometertransportedinthebaselineSurveys,officialreports/statistics,etc.AMS-III.AY.IntroductionofLNGbusestoexistingandnewbusroutesSpecificfuelconsumptionofbaselinebusesOfficialreport/statisticsAMS-III.BM.LightweighttwoandthreewheeledpersonaltransportationCO2emissionfactorperpassenger-kilometercorrespondingtopublictransportation-mixinthecityPeer-reviewedliterature,officialreports/statistics1.8.2.STANDARDIZATIONOFPARAMETERS6.Inordertodeterminetheparametervaluesrequiredtoestimatebaseline,projectandleakageemissions,theapplicationofthemethodologiesidentifiedinSection1.8.1.mayrequiredatacollectionandsurveystobeundertaken,whichcanbecomplexandtimeconsuming.Inordertosimplifythisprocess,astandardizedbaselineprocesshasbeensetup,wherebyahostcountryDesignatedNationalAuthority(DNA)maysubmitproposalsforstandardizedbaselines.Awiderangeofparametersinthesemethodologiescouldbestandardizedbytakingaregion/country-specificapproachforasector.Thiscouldfacilitatethecost-effectivenessandscalabilityofCDMPoAsintheurbansector.7.Thetablebelowincludesexamplesofparametersthatcouldpotentiallybestandardized,inaccordancewiththe“Procedureforthedevelopment,revision,clarificationandupdateofstandardizedbaselines”28UnitedNationsFrameworkConventiononClimateChangeThemethodologysummarysheetsaredistinguishedasbeingforlarge-scaleandsmall-scaleCDMprojectactivities,aswellaslarge-scaleandsmall-scaleA/RCDMprojectactivities.Eachmethodologysummarysheethasthesectionsasfollows:TYPICALPROJECT(S)APPLICABLETOTHEMETHODOLOGYProjectactivitiesforwhichthemethodologyisapplicablearedescribed.PracticalexamplesarementionedforbetterunderstandingofthepurposeofthespecificmethodologyTYPE(S)OFGHGEMISSIONMITIGATIONACTIONThisreferstothetypeofmitigationactivitypresentedinthemethodologycategorizationtable(section1.2.above).Thetypeofmitigationaction,suchasfuelswitchorenergyefficiency,isbrieflydescribeIMPORTANTCONDITIONSUNDERWHICHTHEMETHODOLOGYISAPPLICABLEMethodologiesareonlyapplicableunderparticularconditionsandthemostrelevantconditionsarelistedinthissection.However,notallconditionscanbelistedanditisimportanttoconsultthefulltextofeachmethodology.IMPORTANTPARAMETERSTHATNEEDTOBEDETERMINEDORMONITOREDInordertocalculateemissionreductionsornetremovalsofaprojectactivity,certainparametershavetobedeterminedatthebeginningwhentheprojectactivityisvalidatedandvariousparametershavetobemonitoredduringtheoperationoftheprojectactivity.Thereforethissectionisdividedintoparameters“atvalidation”andparameters“monitored”.Inaddition,somemethodologiesrequirecheckingofspecificconditionsorparameterstoprovethatapplicabilityconditionsaremet.VISUALDESCRIPTIONOFBASELINEANDPROJECTSCENARIOSAnimportantfeatureofthebookletistheuseofdiagramsmadeoficonstoillustratethebaselineandprojectscenarios.Thesediagramsenablereaderstoquicklygraspthescopeofthemethodology.Thebaselinescenariorepresentsthesituationthatwouldoccurintheabsenceoftheprojectactivity.Theprojectscenarioreferstothesituationthatisachievedbytheimplementationoftheprojectactivity.Complexscenarioscannotbedisplayedbyasimplifieddiagram.Therefore,thesimplifieddiagramsfocusonthemainactivitythatresultsinemissionreductionsornetremovals.Thediagramsdonotreplacethenecessitytoconsultthefullmethodologytext.AlistoficonsusedinthebookletisgiveninchapterII.Someexemplificationsofdiagramsarepresentedbelow1.9.INTRODUCTIONTOMETHODOLOGYSUMMARYSHEETS29UnitedNationsFrameworkConventiononClimateChangeIntroductiontoMethodologySummarySheetsEXEMPLIFICATIONOFDIAGRAMSFullintensityinthebaselinescenarioisdepictedwithboldcolour.Reduced,decreasedintensityintheprojectactivityisdepictedwithpalecolour.Avoidanceandreplacementisdepictedwithcrossedicons.Acarbon-intensivefossilfuelisusedinthebaselinescenario.Insteadofthecarbon-intensivefossilfuel,aless-carbon-intensivefossilfuelisusedduetotheprojectactivity.Aless-efficienttechnologyisusedinthebaselinescenario.Amore-efficienttechnologyisusedduetotheprojectactivity.ActivitiesinthebaselinescenarioresultinGHGemissions.LessGHGemissionsareoccurringduetotheprojectactivity.EnerEnerEnerProductionProductionProductionGHGGHGGHGFossilfuelFossilfuelFossilfuelTechnoloUprdeTechnoloGHGGHG30UnitedNationsFrameworkConventiononClimateChangeIntroductiontoMethodologySummarySheetsElectricitGridPowerplntFossilfuelEXEMPLIFICATIONOFDIAGRAMSActivitiesinthebaselinescenarioresultinGHGemissions.TheseGHGemissionsareavoidedduetotheprojectactivity.Electricityiseitherproducedbypowerplantsconnectedtothegridoracaptivepowerplantusingfossilfuel.Biomassiseitherlefttodecayorburnedinanuncontrolledmanner.TheprojectboundaryencompassesallemissionsofGHGunderthecontroloftheprojectparticipantsthataresignificantandreasonablyattributabletotheCDMprojectactivity.Duetothesimplificationofthediagrams,pleaseconsulteachmethodologyforthedetaileddelineationoftheprojectboundary.DisposlBurninBiomssGHGGHGBaselinesituationProjectsituationICONS,ABBREVIATIONSANDGLOSSARYChapterIICDMMethodologyBooklet32UnitedNationsFrameworkConventiononClimateChangeA/RAfforestation/reforestationareasSmallafforestation/reforestationareas.Ar.ctivitAgriculturalactivityProductionofcropsorlivestock.AricultureAgriculturallandLandwithcropsonsolidground.Alsoplantationsnotmeetingdefinitionofforest.AirAirAirplaneAirplaneAnykindofairplane-basedtransport.GrzinAnimalgrazingGrazinglivestockinpasturelandoranyotherland.BiccleBicycleBicycles,e-bikesandTricyclesBiomssBiomassUnlessstatedotherwise,renewablebiomassisimplied.Typesofbiomassincluderesidues,plantoil,wood.BuildinsBuildingsAnykindofbuilding.BurninBurningUncontrolledburningofbiomass,flaringorventingofwastegas.BusBusAnykindofbus-basedtransport.BusrouteBusrouteAnyroutewherebusesdrive,fromtheorigintothefinalstop.CrCarAnykindofcar-basedtransport.CtlsisCatalysisCatalysisofsubstances(i.e.GHGs)inordertoconvertthemintosubstanceswithlessornoGWP.CementCementProductssuchasclinker,cement,limeorbricks.ChrcolCharcoalproductionCharcoalproductionactivity.ConsumerCommercialConsumerCommercialconsumer,e.g.industrialorinstitutionalconsumer.ConsumerConsumerResidentialorcommercialconsumer.ContmintedContaminatedlandMayindicatechemicallypollutedland(e.g.minespoils)ornaturallyhostileland(e.g.naturallyoccurringsalinityoralkalinity).Thespecifictypeisshownintheiconcaption.BurninControlledburningAnykindofcombustionordecompositioninacontrolledmannertodisposecombustiblesubstances.AlsocombustiontoproducefeedstocksuchasCO2orheat.CoolinCoolingDtcentreDatacentreDisposlDisposalAnykindofdisposal.E.g.landfilling.2.1.ICONSUSEDINTHISBOOKLET33UnitedNationsFrameworkConventiononClimateChangeFuelwoodFuelwoodcollectionCollectingfuelwoodwithoutfull-treeharvest.GsGasAnykindofcombustiblegas.E.g.naturalgas,methane,biogas,landfillgas.GsGasdistributionsystemAnykindofgasdistributionsystem.E.g.naturalgaspipelinesystem.GrsslndGrasslandGrassongroundwithoutcracks.GHGGreenhousegasemissionsEmissionsofgreenhousegases,i.e.:Carbondioxide(CO2)Hydrofluorocarbons(HFCs)Methane(CH4)Methane-richvapours(CH4&HCs)Nitrousoxide(N2O)Perfluorocarbons(PFCs)Sulphurhexafluoride(SF6).Whereapplicable,thespecificGHGispresentedintheiconcaption.HrvestinHarvestingHarvestingactivity.HetHeatAnykindofthermalenergy.E.g.steam,hotair,hotwater.HetHeatdistributionsystemAnykindofheatdistributionsystem.E.g.steamsystem,districtheatingsystem.HetHeatgenerationAnykindofplant,facilityorequipmentusedtogenerateheat.Thisincludesfossil-fuel-firedboilerstogeneratesteam,incinerators,butalsosmallapplicationssuchasradiators,cookersandovens.Hbridmini-ridHybridmini-gridDrinkinwterDrinkingwaterElectricitElectricityElectricitElectricitydistributiongridThisiconisusedtodepictanelectricitydistributionsystemandisusedwhengeneratedelectricityis/hastobesuppliedtotheelectricitygridoriftheprojectactivityoccursdirectlywithintheelectricitydistributionsystem.GridElectricitygridThisiconisusedtodepictall(fossil-fuel-fired)powerplantsconnectedandprovidingelectricitytothegrid(e.g.nationalorregionalgrid).EnerEnergyAnykindofenergy.Thisiconisused,ifdifferenttypesofenergyaredepicted.E.g.electricity,heat,steamormechanicalenergy.EnerEnergydistributionsystemAnykindofenergydistributionsystem.E.g.electricitygridorheatdistributionsystem.EnerEnergygenerationAnykindofplant,facilityorequipmentusedtogenerateenergy.Thisiconrepresentsanyco-ortri-generationsystemaswellassystemstoprovidemechanicalenergy.Theiconisalsoused,ifeitherelectricityorheatareproduced.ExploittionExploitationAnykindofexploitationactivitysuchasminingactivities,oilandgasproduction.BiomssFixationofCO2inBiomassFixationofatmosphericCO2fromtheatmosphereinbiomassthroughtheprocessofphotosynthesisFossilfuelFossilfuelAnykindoffossilfuelusedforcombustion.Canbegaseous,liquidorsolid.E.g.naturalgas,fueloil,coal.Iconsusedinthisbooklet34UnitedNationsFrameworkConventiononClimateChangeOilOilOiloffossilorigin.E.g.crudeoil.PlntinPlantingorseedingAfforestation/reforestationactivitybyplanting,seedingorothermeasures.PowerplntPowerplantAnykindofplant,facilityorequipmentusedtoproduceelectricity.Thisincludesfossil-fuel-firedpowerplants,renewablepowerplantssuchashydropowerplants,butalso(small)photovoltaicsystems.ProductionProductionTheoutputoftheproductioncanbespecifiedintheiconcaption.E.g.aluminium,iron,cement,refrigerators.RefrierntRefrigerantRefrigerantthatcontainsHFC.RefriertorRefrigeratorsandchillersAnykindofrefrigeratororchiller.ReleseReleaseAnykindofreleaseofsubstancesorenergywithoutusingthesubstanceortheenergycontentofthesubstances.RenewblesRenewablesConsumerResidentialConsumerResidentialconsumer,e.g.households.Snd/BrrenSanddunesorbarrenlandSanddunesorbarrenlandwithoutvegetation.SeedsSeedsAnytypeofseeds.MterilInputoroutputmaterialAnykindofmaterial.Canbegaseous,liquidorsolid.E.g.rawmaterials,substancesusedforproduction,productssuchasplastics.ThisiconisalsousedifaGHGsuchasCO2isusedasfeedstock.StoretnkInputoroutputmaterialstoragetankStorageofanykindofmaterial.ApplictionLandapplicationThematerial(e.g.sludge)isappliedtoland.FossilFuelLess-carbon-intensivefossilfuelAnykindofless-carbon-intensivefossilfuelusedforcombustion.E.g.naturalgas.LihtinLightingAnykindoflightingequipmentsuchasincandescentlightbulbs,compactflorescentlamps.LivestockLivestockAnykindoflivestock.LossesLossesAnykindoflossesfromleaksinpipesystemsandotherdistributionsystems.MnureManureManurefromlivestock.MechniclMechanicalenergyMilkMilkproductionMiniridMinigridMotorccleMotorcycleAnykindofmotorcycle-basedtransport.Iconsusedinthisbooklet35UnitedNationsFrameworkConventiononClimateChangeSettlementSettlementlandLandwithinsettlements(parks,lawns,etc.)oralonginfrastructure(roads,powerlines,railways,waterways,etc.).ShipShipAnykindoftransportbasedonshipsorbarges.Shrub/treesShruband/orsingletreevegetationNon-forestwoodyvegetation:shrubsandsingletreeson“solid”ground(withoutcracks).SupresseddemndSuppresseddemandMethodologiesthataddresstheissueofsuppresseddemand.TechnoloTechnologyAnykindoftechnology,equipment,appliance.TrinTrainAnykindoftrain-basedtransport.TrnsformerTransformerTrnsmissionlineTransmissionlineTretmentTreatmentAnykindoftreatmentofwasteormaterials,e.g.productionofRDFfrommunicipalwaste.TretmentTreatmentAnykindoftreatmentofwastewaterormanure,e.g.lagoons,pits,aerobictreatmentsystems.TruckTruckAnykindoftruck-basedtransport.UprdeUpgradeAnytypeofupgrade.Canberetrofittingofexistingequipmentorinstallationofmore-advancedtechnologytodisplaceexistingless-advancedequipment.E.g.replacementofincandescentlightbulbsbycompactfluorescentlamps.Alsoapplicabletoupgradeagriculturalactivityprocesses.IconsusedinthisbookletWsteWasteAnykindofwaste.Canbegaseous,liquidorsolid.Thespecificsubstancecanbespecifiedintheiconcaption.WterWaterAnykindofwater.E.g.drinkingwater,wastewater.WetlndWetlandLandswithwettomoistsoil,e.g.swamporpeatland.WomenndchildrenWomenandchildrenProjectactivitiesusingthesemethodologieshaveaparticularpotentialtodirectlyimprovethelivesofwomenandchildren.36UnitedNationsFrameworkConventiononClimateChange2.2.ABBREVIATIONSUSEDINTHISBOOKLET%Percent°CDegreeCelsiusA/RAfforestation/ReforestationABSAcrylonitrileButadieneStyreneACMApprovedConsolidatedMethodologyALAluminiumAMApprovedMethodologyAMCAlternativeRawMaterialsThatDoNotContainCarbonatesAMSApprovedMethodologyforSmall-scaleCDMprojectactivitiesAOGAmmonia-PlantOffGasAORAmmoniaOxidationReactorAPUAuxiliaryPowerUnitBCBlendedCementBEMSBuildingEnergyManagementSystemsBoardCDMExecutiveBoard(alsoreferredtoasEB)BRTBusRapidTransitBSGBaselineSampleGroupC2F6HexafluoroethaneC3F8Octafluoropropanec-C4F8OctafluorocyclobutaneCACO3CalciumCarbonateCCHPTrigeneration(CombinedCooling,HeatingandPowergeneration)CDDCoolingDegreeDaysCDMCleanDevelopmentMechanismCDRCarbonDioxideRecoveryCDRIColdDirectReducedIronCERCertifiedEmissionReduction(CF3CF2C(0)CF(CF3)2Perfluoro-2-methyl-3-pentanoneCF4TetrafluoromethaneCFCChlorofluorocarbonsCFLCompactFluorescentLampsCH2F2DifluoromethaneCH3FFluoromethaneCH4MethaneCHF3FluoroformCHPCogeneration(CombinedHeatandPowergeneration)Cl2ChlorineGasCMCombinedMarginCNGCompressedNaturalGasCO2CarbonDioxideCODChemicalOxygenDemandCOGCokeOvenGasCOPCoefficientofPerformanceCPACDMProjectActivityCRDContinuousReductiveDistillationCSPConcentratingSolarPowerCVDChemicalVapourDepositionCWPBCentreWorkedPre-BakedDCDirectCurrentDMEDimethyletherDMIDryMatterIntakeDOEDesignatedOperationalEntityDOMDeadOrganicMatterDPMDynamicPowerManagementDRIDirectReducedIronDSSDecisionSupportSystemDWWDewateredWastewaterEAFElectricArcFurnaceELTEndofLifeTyresFFFrostFreefNRBFractionofNon-RenewableBiomassGEGrossEnergyGHGGreenhouseGasGIEEGasInsulatedElectricalEquipmentGISGeographicInformationSystemGPFGasProcessingFacilitiesGWhGigawatthoursGWPGlobalWarmingPotentialH2HydrogenHClHydrogenChlorideHCsHydrocarbonsHDDHeatingDegreeDaysHDPEHighDensityPolyethyleneHDRIHotDirectReducedIronHDSHydrodesulphurizationProcessHFCHydrofluorocarbonHIPSHighImpactPolystyreneHPO(process)Hydroylamin-Phosphat-Oxim(process)HRSGHeatRecoverySteamGeneratorHSRHighSpeedRailHSSHorizontalStudSoederbergHSTsHydrocarbonstoragetanksHVACHeating,VentilationandAirConditioningHVDCHighVoltageDirectCurrentIAIInternationalAluminiumInstituteICLIncandescentLampsIECInternationalElectronicCommissionIGIntermediateGasIPCCIntergovernmentalPanelonClimateChangeISCCIntegratedSolarCombinedCycleISOInternationalOrganizationforStandardizationITSIntelligentTransportationSystemskgKilogrammekmKilometrekVKilovoltkWhKilowattHourktKilotonLCDLiquidCrystalDisplayLDPELowDensityPolyethylene37UnitedNationsFrameworkConventiononClimateChangeCDMMethodologyBookletDecember2022(uptoEB116)ChapternameXxxzz,SampleTextSecontLineLoremIpsumDoloreLEDLight-EmittingDiodeLFGLandfillgasLNGLiquefiedNaturalGasLHVLowerHeatingValueLPGLiquefiedPetroleumGasLSCLarge-scalemMetrem²Squaremetrem³CubicmetreMgCO3MagnesiumCarbonatemmMillimetreMOLMethaneOxidationLayerMRGMethaneRichGasMRTSMassRapidTransitSystemMSWMunicipalSolidWasteMWMegawattN2ONitrousOxideNCVNetCalorificValueNMHCsNon-methanehydrocarbonsNUENitrogenUseEfficientODPOzoneDepletingPotentialPDProjectDevicesPDDProjectDesignDocumentPETPolyethyleneTerephthalatePFCPerfluorocarbonPFPBPointFeederPre-BakedpkmPassenger-KilometerPoAProgrammeofActivitiesPoA-DDProgrammeofActivitiesDesignDocumentPPPolypropylenePSGProjectSampleGroupP-UPower-Voltage(characteristiccurve)PUFPolyurethaneFoamPVPhotovoltaicRDFRefuse-DerivedFuelRHFRotaryHearthFurnaceSBStabilizedBiomassSDWSafeDrinkingWaterSF6SulphurHexafluorideSiMnSilicomanganeseSMESmallandMediumEnterprisesSMMEsSmall,MediumandMicroEnterprisesSO2SulphurDioxideSOCSoilOrganicCarbonSSCSmall-scaleSTGSteamTurbineGeneratorSWDSSolidWasteDisposalSiteSWHSolarWaterHeatingSWPBSideWorkedPre-BakedTGTailgasTOCTotalOrganicCarbonTPATotalProjectAreaVAMVentilationAirMethaneVRUsVapourRecoveryUnitsVSSVerticalStudSoederbergWWatt38UnitedNationsFrameworkConventiononClimateChangeAbove-groundbiomass5Alllivingbiomassabovethesoilincludingstem,stump,branches,bark,seeds,andfoliageaswellasherbaceousvegetation.Additional/AdditionalityForaCDMprojectactivity(non-A/R)orCPA(non-A/R),theeffectoftheCDMprojectactivityorCPAtoreduceanthropogenicGHGemissionsbelowthelevelthatwouldhaveoccurredintheabsenceoftheCDMprojectactivityorCPA;orForanA/RorSSCA/RCDMprojectactivityorCPA(A/R),theeffectoftheA/RorSSCA/RCDMprojectactivityorCPA(A/R)toincreaseactualnetGHGremovalsbysinksabovethesumofthechangesincarbonstocksinthecarbonpoolswithintheprojectboundarythatwouldhaveoccurredintheabsenceoftheA/RorSSCA/RCDMprojectactivityorCPA(A/R).WhetherornotaCDMprojectactivityorCPAisadditionalisdeterminedinaccordancewiththeCDMrulesandrequirements.AfforestationThedirecthuman-inducedconversionoflandthathasnotbeenforestedforaperiodofatleast50yearstoforestedlandthroughplanting,seedingand/orthehuman-inducedpromotionofnaturalseedsources.AgroforestryGrowingofbothtreesandagricultural/horticulturalcropsonthesamepieceofland.AllometricbiomassequationsRegressionequationscalculatingbiomassbasedonmeasuredparametersofatree(orshrub),forexample,quantifyingtherelationshipbetweenabove-groundtreebiomassandthediameteratbreastheightandtreeheightofaspecifictreespecies.BaselinescenarioForaCDMprojectactivity(non-A/R)orCPA(non-A/R),thescenarioforaCDMprojectactivityorCPAthatreasonablyrepresentstheanthropogenicemissionsbysourcesofGHGthatwouldoccurintheabsenceoftheproposedCDMprojectactivityorCPA.ForanA/RorSSCA/RCDMprojectactivityorCPA(A/R),thescenarioforanA/RorSSCA/RCDMprojectactivityorCPA(A/R)thatreasonablyrepresentsthesumofthechangesincarbonstocksinthecarbonpoolswithintheprojectboundarythatwouldoccurintheabsenceoftheA/RorSSCA/RCDMprojectactivityorCPA(A/R).Below-groundbiomass5Alllivingbiomassofroots.Finerootsoflessthan(suggested)2mmdiameterareoftenexcludedbecausetheseoftencannotbedistinguishedempiricallyfromsoilorganicmatterorlitter.BiomassexpansionfactorRatiooftotalstandbiomasstostand(merchantable)volume(e.g.asderivedfromforestyieldtables).BiomassNon-fossilizedandbiodegradableorganicmaterialoriginatingfromplants,animalsandmicro-organisms,including:(a)Biomassresidue;(b)Thenon-fossilizedandbiodegradableorganicfractionsofindustrialandmunicipalwastes;and(c)Thegasesandliquidsrecoveredfromthedecompositionofnon-fossilizedandbiodegradableorganicmaterial.Biomass,non-renewableBiomassnotfulfillingtheconditionsofrenewablebiomassisconsideredasnon-renewable.Explanationsongeneralterminologiesusedinthisbookletarelistedbelow.MoredefinitionsaregivenintheGlossaryofCDMterms.Forterminologiesspecifictoacertainmethodology,pleaserefertothedefinitionsectionoftherespectivemethodologyavailableat<https://cdm.unfccc.int/methodologies/index.html>.2.3.GLOSSARY39UnitedNationsFrameworkConventiononClimateChangeBiomass,6renewableBiomasswhichmeetsoneofthefollowingconditions:(a)Thebiomassoriginatesfromlandareasthatareforestswhere:(i)Thelandarearemainsaforest;(ii)Sustainablemanagementpracticesareundertakenontheselandareastoensure,inparticular,thatthelevelofcarbonstocksontheselandareasdoesnotsystematicallydecreaseovertime(carbonstocksmaytemporarilydecreaseduetoharvesting);and(iii)Anynationalorregionalforestryandnatureconservationregulationsarecompliedwith;(b)Thebiomassiswoodybiomassandoriginatesfromcroplandsand/orgrasslandswhere:(i)Thelandarearemainscroplandand/orgrasslandsorisrevertedtoforest;and(ii)Sustainablemanagementpracticesareundertakenontheselandareastoensureinparticularthatthelevelofcarbonstocksontheselandareasdoesnotsystematicallydecreaseovertime(carbonstocksmaytemporarilydecreaseduetoharvesting);and(iii)Anynationalorregionalforestry,agricultureandnatureconservationregulationsarecompliedwith;(c)Thebiomassisnon-woodybiomassandoriginatesfromcroplandsand/orgrasslandswhere:(i)Thelandarearemainscroplandand/orgrasslandsorisrevertedtoforest;and(ii)Sustainablemanagementpracticesareundertakenontheselandareastoensureinparticularthatthelevelofcarbonstocksontheselandareasdoesnotsystematicallydecreaseovertime(carbonstocksmaytemporarilydecreaseduetoharvesting);and(iii)Anynationalorregionalforestry,agricultureandnatureconservationregulationsarecompliedwith;(d)ThebiomassisabiomassresidueandtheuseofthatbiomassresidueintheCDMprojectactivitydoesnotinvolveadecreaseofcarbonpools,inparticulardeadwood,litterorsoilorganiccarbon,onthelandareasfromwhichthebiomassresiduesoriginate;(e)Thebiomassisthenon-fossilfractionofanindustrialormunicipalwaste.Biomass,residuesNon-fossilizedandbiodegradableorganicmaterialoriginatingfromplants,animalsandmicro-organismswhichisaby-product,residueorwastestreamfromagriculture,forestryandrelatedindustries.CaptivegenerationElectricitygenerationinapowerplantthatsupplieselectricityonlytoconsumer(s)andnottotheelectricitygrid.Theconsumer(s)areeitherlocateddirectlyatthesiteofthepowerplantorareconnectedthroughdedicatedelectricitydistributionline(s)withthepowerplantbutnotviatheelectricitygrid.CarbonsequestrationCarbonsequestrationisdefinedasabiological,chemicalorphysicalprocessofremovingcarbonfromtheatmosphereanddepositingitinareservoir.CogenerationSimultaneousproductionofelectricityandusefulthermalenergyinoneprocess.Deadwood5Allnon-livingwoodybiomassnotcontainedinthelitter,eitherstanding,lyingontheground,orinthesoil.Deadwoodincludeswoodlyingonthesurface,deadroots,andstumpslargerthanorequalto10cmindiameteroranyotherdiameterusedbythecountry.EmissionfactorMeasureoftheaverageamountofGHGemittedtotheatmospherebyaspecificprocess,fuel,equipment,orsource.EnergyefficiencyEnergyefficiencyisdefinedastheimprovementintheserviceprovidedperunitpower,forexample,projectactivitieswhichincreaseunitoutputoftraction,work,electricity,heat,light(orfuel)perMWinputareenergyefficiencyprojectactivities.FeedstockGaseous,liquidorsolidrawmaterialusedinmanufacturing.ForestAminimumareaoflandof0.05–1.0hectarewithtreecrowncover(orequivalentstockinglevel)ofmorethan10–30percentwithtreeswiththepotentialtoreachaminimumheightof2–5metresatmaturityinsituandmayinclude:(a)Eitherclosedforestformationswheretreesofvariousstoreysandundergrowthcoverahighproportionofthegroundoropenforest;(b)Youngnaturalstandsandallplantationswhichhaveyettoreachacrowndensityof10–30percentortreeheightof2–5metres;(c)Areasnormallyformingpartoftheforestareawhicharetemporarilyunstockedasaresultofhumaninterventionsuchasharvestingornaturalcausesbutwhichareexpectedtoreverttoforest.ThedefinitionofforestbecomesapplicabletoaPartywhen:(a)ForanAnnexIParty,thePartyselectsasingleminimumtreecrowncovervaluebetween10and30percent,asingleminimumlandareavaluebetween0.05and1hectareandasingleminimumtreeheightvaluebetween2and5metres,asprovidedunderparagraph16oftheAnnextodecision16/CMP.1;(b)Foranon-AnnexIParty,thePartyselectsasingleminimumtreecrowncovervaluebetween10and30percent,asingleminimumlandareavaluebetween0.05and1hectareandasingleminimumtreeheightvaluebetween2and5metres,asprovidedunderparagraph8oftheAnnextodecision5/CMP.1.Glossary40UnitedNationsFrameworkConventiononClimateChangeFossilfuelFuelsformedbynaturalresourcessuchasanaerobicdecompositionofburieddeadorganisms(e.g.coal,oil,andnaturalgas).GreenfieldfacilityTheconstructionofanewfacilityatalocationwherepreviouslynofacilityexists,forexample,constructionofnewpowerplantatasitewherepreviouslynopowergenerationactivityexists.Greenhousegas(GHG)AgreenhousegaslistedinAnnexAtotheKyotoProtocol,unlessotherwisespecifiedinaparticularmethodology.GridThespatialextentofthepowerplantsthatarephysicallyconnectedthroughtransmissionanddistributionlinestotheprojectactivity(e.g.therenewablepowerplantlocationortheconsumerswhereelectricityisbeingsaved)andthatcanbedispatchedwithoutsignificanttransmissionconstraints.HarvestingCuttingandremovaloftreesfromforestsfortimberorotheruses.Insustainableforestry,harvestingisfollowedbyplantingornaturalregenerationoftheforest.IndustrialgasesGreenhousegasesoriginatingfromchemicalproductionprocessesthatarenotnaturallyoccurring.Inaddition,N2Ofromchemicalproductionprocessesisincludedinthisgroupofgreenhousegases.Landuse,land-usechangeandforestryAGHGinventorysectorthatcoversemissionsandremovalsofGHGresultingfromdirecthuman-inducedlanduse,land-usechangeandforestryactivities.LeakageForaCDMprojectactivity(non-A/R)orPoA(non-A/R),thenetchangeofanthropogenicemissionsbysourcesofGHGwhichoccursoutsidetheprojectboundary,andwhichismeasurableandattributabletotheCDMprojectactivityorPoA,asapplicable.ForanA/RorSSCA/RCDMprojectactivityorPoA(A/R),theincreaseinGHGemissionsbysourcesordecreaseincarbonstockincarbonpoolswhichoccursoutsidetheboundaryofanA/RorSSCA/RCDMprojectactivityorPoA(A/R),asapplicable,whichismeasurableandattributabletotheA/RorSSCA/RCDMprojectactivityorPoA(A/R),asapplicable.Litter5Includesallnon-livingbiomasswithadiameterlessthanaminimumdiameterchosenbythecountry(forexample10cm),lyingdead,invariousstatesofdecompositionabovethemineralororganicsoil.Thisincludesthelitter,fumic,andhumiclayers.Livefineroots(oflessthanthesuggesteddiameterlimitforbelow-groundbiomass)areincludedinlitterwheretheycannotbedistinguishedfromitempirically.Low-carbonelectricityElectricitythatisgeneratedusingaless-GHG-intensivefuelthaninthebaseline(forexample,electricitygeneratedusingnaturalgasintheprojectislowcarbonelectricity,whencoalisusedinthebaselineforelectricitygeneration).MeritorderAwayofrankingexistingpowerplantsinascendingorderoftheirshort-runmarginalcostsofelectricitygeneration,sothatthosewiththelowestmarginalcostsarethefirstonestobebroughtonlinetomeetdemandandtheplantswiththehighestmarginalcostsarethelasttobebroughtonline.ProjectboundaryForaCDMprojectactivity(non-A/R)orCPA(non-A/R),thesignificantanthropogenicGHGemissionsbysourcesunderthecontroloftheprojectparticipantthatarereasonablyattributabletotheCDMprojectactivityorCPA,asdeterminedinaccordancewiththeCDMrulesandrequirements.ForanA/RorSSCA/RCDMprojectactivityorCPA(A/R),geographicallydelineatestheA/RorSSCA/RCDMprojectactivityorCPA(A/R)underthecontroloftheprojectparticipantasdeterminedinaccordancewiththeCDMrulesandrequirements.ReforestationThedirecthuman-inducedconversionofnon-forestedlandtoforestedlandthroughplanting,seedingand/orthehuman-inducedpromotionofnaturalseedsources,onlandthatwasforestedbuthasbeenconvertedtonon-forestedland.RenewableenergyEnergythatcomesfromsolar,wind,rain,tides,geothermalheatandbiologicalsourceswhicharerenewable(naturallyreplenished)innature.SectoralscopeThecategoryofGHGsourcesectorsorgroupsofactivitiesthatapplytoCDMprojectactivitiesorPoAs.ItisbasedonthesectorsandsourcecategoriessetoutinAnnexAtotheKyotoProtocol.ACDMprojectactivityorPoAmayfallwithinmorethanonesectoralscope.Soilorganiccarbon5Organiccarboninmineralandorganicsoils(includingpeat)toaspecifieddepthchosenbythecountryandappliedconsistentlythroughthetimeseries.Livefineroots(oflessthanthesuggesteddiameterlimitforbelow-groundbiomass)areincludedwithsoilorganicmatterwheretheycannotbedistinguishedfromitempirically.Glossary41UnitedNationsFrameworkConventiononClimateChangeStandardizedbaselineAbaselinedevelopedforaPartyoragroupofParties,onasub‑national,nationalorgroup-of-countriesbasisratherthanonaprojectbasis,tofacilitatethecalculationofGHGemissionreductionsandremovalsbysinksand/orthedeterminationofadditionalityforCDMprojectactivitiesorPoAs,whileprovidingassistanceforassuringenvironmentalintegrity.SuppresseddemandAscenariowherefutureanthropogenicemissionsbysourcesareprojectedtoriseabovecurrentlevels,duetothespecificcircumstancesofthehostParty.TrigenerationSimultaneousgenerationofelectricalenergyandthermalenergyintheformofcoolingandheatinginoneprocess.WasteenergyEnergycontainedinaresidualstreamfromindustrialprocessesintheformofheat,chemicalenergyorpressure,forwhichitcanbedemonstratedthatitwouldhavebeenwastedintheabsenceoftheprojectactivity.Examplesofwasteenergyincludetheenergycontainedingasesflaredorreleasedintotheatmosphere,theheatorpressurefromaresidualstreamnotrecovered(i.e.wasted).WetlandAreaoflandwhosesoilissaturatedwithmoistureeitherpermanentlyorseasonally.Glossary5AccordingtoIntergovernmentalPanelonClimateChangeGoodPracticeGuidanceforLandUse,Land-UseChangeandForestry,table3.2.1onpage3.156InaccordancewiththeA/Rmodalitiesandprocedures.METHODOLOGIESFORCDMPROJECTACTIVITIESChapterIIICDMMethodologyBooklet43UnitedNationsFrameworkConventiononClimateChangeMethodologiesprovidetheinformationthatisrequiredinordertodeterminetheamountofCertifiedEmissionReductions(CERs)generatedbyamitigationprojectactivity.Thefollowingmainsectionscanbefoundinamethodology:•Definitionsthatarerequiredtoapplythemethodology;•Descriptionoftheapplicabilityofthemethodology;•Descriptionoftheprojectboundary;•Proceduretoestablishthebaselinescenario;•Proceduretodemonstrateandassessadditionality;•Proceduretocalculateemissionreductions;•Descriptionofthemonitoringprocedure.FurtherguidancetoprojectdevelopersisavailableinotherCDMregulatorydocuments,suchasstandards(includingmethodologicaltools),proceduresandguidelines(availablethroughtheCDMwebsite).Methodologiesforlarge-scaleprojectactivitiescanbeusedforprojectactivitiesofanysize,whereassmall-scalemethodologiescanonlybeappliediftheprojectactivityiswithincertainlimits.Small-scalemethodologiesaregroupedintothreedifferenttypes:•TypeI:Renewableenergyprojectactivitieswithamaximumoutputcapacityof15MW(oranappropriateequivalent);•TypeII:Energyefficiencyimprovementprojectactivitieswhichreduceenergyconsumption,onthesupplyand/ordemandside,withamaximumoutput(i.e.maximumsavings)of60GWhperyear(oranappropriateequivalent);•TypeIII:Otherprojectactivitiesthatresultinemissionreductionsoflessthanorequalto60ktCO2equivalentperyear.Moredetailedinformationonspecificlimitscanbefoundineachsmall-scalemethodology.3.1.INTRODUCTIONTOMETHODOLOGIESFORCDMPROJECTACTIVITIES44UnitedNationsFrameworkConventiononClimateChangeMethodologicaltoolsaregenericmodulesthatcanbereferencedinlarge-scaleandsmall-scalemethodologiesinordertodetermineaspecificcondition(e.g.additionalityofaCDMprojectactivity)ortocalculateparticularemissions(e.g.emissionsfromelectricityconsumption).Itisstatedinthemethodologyifamethodologyrequiresapplicationofacertainmethodologicaltool.Alistandashortdescriptionofcurrentmethodologicaltoolscanbefoundbelow.ThesetoolscanbeaccessedfromtheCDMwebsite.ToolsthatapplytoA/Rmethodologiesaredescribedinsection4.2.TOOL01:TOOLFORTHEDEMONSTRATIONANDASSESSMENTOFADDITIONALITYThetoolprovidesastep-wiseapproachtodemonstrateandassesstheadditionalityofaCDMprojectactivity.Thesestepsare:Step1Identificationofalternativestotheprojectactivity;Step2Investmentanalysis;Step3Barriersanalysis;andStep4Commonpracticeanalysis.Thetoolisrequiredbymanymethodologies.TOOL02:COMBINEDTOOLTOIDENTIFYTHEBASELINESCENARIOANDDEMONSTRATEADDITIONALITYThistoolprovidesastep-wiseapproachtoidentifythebaselinescenarioandsimultaneouslydemonstrateadditionalityofaCDMprojectactivityusingthefollowingsteps:Step0Demonstrationwhethertheproposedprojectactivityisthefirst-of-its-kindStep1IdentificationofalternativescenariosStep2Barrieranalysis;Step3Investmentanalysis;Step4Commonpracticeanalysis.Step3isoptionaliftheprojectactivitydemonstratesadditionalityusingbarrieranalysisorisfirst-ok-its-kind.Step4isnotrequirediftheprojectactivityisfirst-of-its-kind.Thetoolisreferredtoinmanymethodologieswhereinthepotentialalternativescenariostotheproposedprojectactivityavailabletoprojectparticipantsaremutuallyexclusivetotheproposedprojectactivity.TOOL03:TOOLTOCALCULATEPROJECTORLEAKAGECO2EMISSIONSFROMFOSSILFUELCOMBUSTIONThistoolprovidesprocedurestocalculateprojectand/orleakageCO2emissionsfromthecombustionoffossilfuels.ItcanbeusedincaseswhereCO2emissionsfromfossilfuelcombustionarecalculatedbasedonthequantityoffuelcombustedanditsproperties.Thistoolisrequiredbymethodologieswheneverfossilfuelcombustionisrelevantintheprojectscenarioorleakage.TOOL04:EMISSIONSFROMSOLIDWASTEDISPOSALSITESThistoolcalculatesemissionsofmethanefromwastedisposedofinasolidwastedisposalsites(SWDS).Emissionreductionsarecalculatedwithafirstorderdecaymodel.Thetoolisapplicabletocalculatingbaseline,projectandleakageemissionsandtobothsituationsthatthesolidwastedisposalsitecanorcannotbeclearlyidentified.Thetoolisrequiredbylandfillmethodologies(e.g.ACM0001orAMS‑III.G.),alternativewastetreatmentmethodologies(e.g.ACM0022orAMS-III.F.)andbiomassmethodologies(e.g.ACM0006orAMS-III.E.).3.2.METHODOLOGICALTOOLSFORCDMPROJECTACTIVITIES45UnitedNationsFrameworkConventiononClimateChangeMethodologicalToolsforCDMProjectActivitiesandSmall-scaleCDMProjectActivitiesTOOL05:BASELINE,PROJECTAND/ORLEAKAGEEMISSIONSFROMELECTRICITYCONSUMPTIONANDMONITORINGOFELECTRICITYGENERATIONThistoolprovidesprocedurestoestimatethebaseline,projectand/orleakageemissionsassociatedwiththeconsumptionofelectricityandprovisionsformonitoringofelectricitygenerationandconsumption.Thetoolmay,forexample,berequiredbymethodologieswhereauxiliaryelectricityisconsumedintheprojectand/orthebaselinescenario.TOOL06:PROJECTEMISSIONSFROMFLARINGThistoolprovidesprocedurestocalculateprojectemissionsfromflaringofaresidualgaswheremethaneisthecomponentwiththehighestconcentrationintheflammableresidualgas.Duetoincompleteflaringofmethaneorevennon-operationoftheflare,methaneemissionsmayoccurintheprojectscenario.Bydeterminationofaflaringefficiency,sucheffectsaretakenintoaccountTOOL07:TOOLTOCALCULATETHEEMISSIONFACTORFORANELECTRICITYSYSTEMThismethodologicaltooldeterminestheCO2emissionfactorofelectricitygeneratedbypowerplantsinanelectricitysystem,bycalculatingthe“combinedmargin”emissionfactoroftheelectricitysystem(grid).Thecombinedmarginistheresultofaweightedaverageoftwoemissionfactorsoftheelectricitysystem:the“operatingmargin”andthe“buildmargin”.Theoperatingmarginrepresentstheemissionfactoroftheexistingpowerplantsservingthegrid.Thebuildmarginrepresentstheemissionfactorofagroupofthemostrecentlybuiltpowerplants.Thistoolisrequiredwheneverelectricityconsumptionorgenerationisrelevantinthebaselineand/orprojectscenarioorintermsofleakage.Itisparticularlyrelevanttomethodologiesthatinvolveeithergrid-connectedelectricitygenerationorenergyefficiencyprojectactivitiesPoAsthatwoulddisplaceoravoidelectricitygenerationinagrid.TOOL08:TOOLTODETERMINETHEMASSFLOWOFAGREENHOUSEGASINAGASEOUSSTREAMThistoolprovidesprocedurestodeterminethemassflowofagreenhousegasinagaseousstream,basedonmeasurementsof(a)thetotalvolumeormassflowofthegasstreamand(b)thevolumetricfractionofthegasinthegasstream.Thevolumeflow,massflowandvolumetrifractionmaybemeasuredonadrybasisorwetbasis.Italsoprovidesprocedurestoaddressissuessuchasmissingdataduringthemonitoringperiodincaseofbiogas.TOOL09:DETERMININGTHEBASELINEEFFICIENCYOFTHERMALORELECTRICENERGYGENERATIONSYSTEMSThetooldescribesvariousprocedurestodeterminethebaselineefficiencyofanenergygenerationsystemsuchasapowerplant,includingaco-generationsystemoranindustrialboiler,forthepurposeofestimatingbaselineemissions.Thetoolisusedincaseofprojectactivitiesthatimprovetheenergyefficiencyofanexistingsystemthroughretrofitsorreplacementoftheexistingsystembyanewsystem.Thistoolprovidesdifferentprocedurestodeterminethebaselineefficiencyofthesystem:eithera)aload-efficiencyfunctionisdeterminedwhichestablishestheefficiencyasafunctionoftheoperatingloadofthesystemorb)theefficiencyisdeterminedconservativelyasaconstantvalue.TOOL10:TOOLTODETERMINETHEREMAININGLIFETIMEOFEQUIPMENTThetoolprovidesguidancetodeterminetheremaininglifetimeofbaselineorprojectequipment.Anapplicationofthetoolwouldbeforprojectactivitieswhichinvolvethereplacementofexistingequipmentwithnewequipmentorwhichretrofitexistingequipmentaspartofenergyefficiencyimprovementactivities.Underthistool,impactsonthelifetimeoftheequipmentduetopoliciesandregulations(e.g.environmentalregulations)orchangesintheservicesneeded(e.g.increasedenergydemand)arenotconsidered.TOOL11:ASSESSMENTOFTHEVALIDITYOFTHEORIGINAL/CURRENTBASELINEANDUPDATEOFTHEBASELINEATTHERENEWALOFTHECREDITINGPERIODThistoolprovidesaproceduretoassessthecontinuedvalidityofthebaselineandtoupdateitattherenewalofacreditingperiod.Thetoolconsistsoftwosteps.Thefirststepprovidesanapproachtoevaluatewhetherthecurrentbaselineisstillvalidforthenextcreditingperiod.Thesecondstepprovidesanapproachtoupdatethebaselineincasethatthecurrentbaselineisnotvalidanymoreforthenextcreditingperiod.Thistoolisapplicableinasituationwherethecreditingperiodneedstoberenewed.46UnitedNationsFrameworkConventiononClimateChangeMethodologicalToolsforCDMProjectActivitiesandSmall-scaleCDMProjectActivitiesTOOL12:PROJECTANDLEAKAGEEMISSIONSFROMTRANSPORTATIONOFFREIGHTThistoolprovidesprocedurestoestimateprojectand/orleakageCO2emissionsfromroadtransportationoffreightbyvehicles.Twooptionsareprovidedtodeterminetheseemissions:•OptionA:Monitoringfuelconsumption;or•OptionB:Usingconservativedefaultvalues.Thetoolalsoprovidesdefaultconservativeemissionfactorstoestimateprojectand/orleakageCO2emissionsfromfreighttransportationbyrail.Thetoolisapplicabletoprojectactivitieswhichinvolvetransportationoffreightandwheretransportationisnotthemainprojectactivity.TOOL13:PROJECTANDLEAKAGEEMISSIONSFROMCOMPOSTINGThistoolcalculatesprojectandleakageemissionsfromcompostingandco-composting.Itaccountsformethaneandnitrousoxideemissionsfromthecompostingprocess,energyrequirementstooperatethecompostingplant,treatmentofrun-offwastewaterandleakageemissionsassociatedwiththeend-useofthecompostproduct.Optionsaregiveninthetooltocalculateemissionsbasedonmonitoredparametersorconservativedefaultvalues.TOOL14:PROJECTANDLEAKAGEEMISSIONSFROMANAEROBICDIGESTERSThismethodologicaltoolprovidesprocedurestocalculateprojectandleakageemissionsassociatedwithanaerobicdigestioninananaerobicdigester.Thetoolisnotapplicabletoothersystemswherewastemaybedecomposedanaerobically,forinstancesstockpiles,SWDSorun-aeratedlagoons.ItisparticularlyrelevantforwastemanagementmethodologiessuchasACM0022.TOOL15:UPSTREAMLEAKAGEEMISSIONSASSOCIATEDWITHFOSSILFUELUSEThismethodologicaltoolprovidesmethodologicalguidancetodetermineupstreamleakageemissionsassociatedwiththeuseoffossilfuelsineitherorboththebaselinescenarioandprojectactivity.UpstreamemissionsassociatedwithfossilfueluseareemissionsfromfugitiveemissionsofCH4andCO2,CO2emissionsfromcombustionoffossilfuelandCO2emissionsduetoconsumptionofelectricity.Thefossilfuelsapplicabletothistoolarethosethatcanbecategorizedtobeeitherbasedonnaturalgas,oilorcoal.Thetoolprovidestwooptionstodetermineemissions:Option(A)providessimpledefaultemissionfactorsfordifferenttypesoffossilfuelsandOption(B)calculationofemissionfactorsbasedonemissionsforeachupstreamemissionsstage.TOOL16:PROJECTANDLEAKAGEEMISSIONSFROMBIOMASSThistoolprovidesaproceduretocalculateprojectandleakageemissionsfromcultivationofbiomass.Itcanbeusedforestimationof(i)projectandleakageemissionsresultingfromcultivationofbiomassinadedicatedplantationofaCDMprojectactivitythatusesbiomassasasourceofenergy,excludingplantationsonwetlandsandorganicsoils;(ii)projectandleakageemissionsresultingfromutilizationofbiomassresidues;(iii)leakageemissionsduetoshiftofpre-projectactivities;and(iv)leakageemissionsduetodiversionofbiomassresiduesfromotherapplications.TOOL17:BASELINEEMISSIONSFORMODALSHIFTMEASURESININTER-URBANCARGOTRANSPORTThetoolprovidesstep-wisemethodologicalguidancetoestimatebaselineemissionsfortransportprojectsimplementingmodalshiftmeasuresininter-urbancargotransport:Step1Determinerelevantcargotypes;Step2Determinethemodeshareforeachrelevantcargotype;Step3DeterminetheaveragespecificemissionfactorperTKMforcargotype;3.1Rail;3.2Domesticwater;3.3Pipeline;3.4Road;Step4Determinebaselineemissionfactor;Step5Determinebaselineemissions.ThetoolisapplicableforestimatingbaselineemissionsforindividualCDMprojectactivitiesininter-urbancargotransportthatimplementameasureoragroupofmeasuresaimedatmodalshiftfromroadtowater-borne(usingbargesordomesticships)orrailtransportation.Thistoolcanbeusedbydesignatednationalauthorities(DNAs)forestablishingstandardizedbaselinesforthesemeasures.47UnitedNationsFrameworkConventiononClimateChangeMethodologicalToolsforCDMProjectActivitiesandSmall-scaleCDMProjectActivitiesTOOL18:BASELINEEMISSIONSFORMODALSHIFTMEASURESINURBANPASSENGERTRANSPORTThetoolprovidesstep-wisemethodologicalguidancetoestimatebaselineemissionsfortransportprojectsimplementingmodalshiftmeasuresinurbanpassengertransport:Step1Determinerelevantvehiclecategories;Step2Determinetheemissionfactorperkilometreforeachrelevantvehiclecategory;Step3Determinetheemissionfactorperpassenger-kilometre;Step4Determinebaselineemissions.ThetoolisapplicableforestimatingbaselineemissionsforindividualCDMprojectactivitiesinurbanpassengertransportthatimplementameasureoragroupofmeasuresaimedatmodalshifttourbanpublictransitsuchasmetro,busrapidtransit,lightrailandtrams.ThistoolcanbeusedbyDNAsforestablishingstandardizedbaselinesforthesemeasures.TOOL19:DEMONSTRATIONOFADDITIONALITYOFMICROSCALEPROJECTACTIVITIESThistoolprovidessimplifiedapproachtodemonstratadditionalityforaCDMprojectactivityoracomponentprojectactivity(CPA)ofPoAwhichmeetsoneofthefollowingcriteria:a.Projectactivitiesinvolvingrenewableenergytechnologiesupto5MWthatemployrenewableenergyastheirprimarytechnology;b.Energyefficiencyprojectactivitiesthataimtoachievenergysavingsatascaleofnomorethan20GWhperyear;orc.Otherprojectactivities(e.g.methaneavoidance)thataimtoachieveGHGemissionsreductionsatascaleofnomorethan20ktCO2eperyear.TheCDMprojectactivityoraCPAisconsideredtobeadditionalifoneofthecriteriabelowismet:a.IflocatedinLDCs/SIDs/SUZ;b.Composedofoff-gridrenewableenergytechnologies;c.Grid-connectedrenewableenergytechnologiesthatarerecommendedbytheDNAsandapprovedbytheBoard;ord.SpecifictechnologiesaslistedintheToolforhouseholdscommunities/smallandmediumenterprises.TOOL20:ASSESSMENTOFDEBUNDLINGFORSMALL-SCALEPROJECTACTIVITIESThismethodologicaltoolisapplicabletoproposedsmall-scaleprojectactivitiesandsmall-scalecomponentprojectactivities(CPA)tocheckwhethertheyaredebundledcomponentsoflarge-scaleprojectactivitiesorprogrammeofactivities(PoAs)andprovidesastep-wiseapproachforthedeterminationoftheoccurrenceofdebundling.TOOL21:DEMONSTRATIONOFADDITIONALITYOFSMALL-SCALEPROJECTACTIVITIESThistoolprovides:Thistoolprovidesageneralsimplifiedframeworkforasmall-scaleprojectactivitytodemonstrateadditionalityusingoneofthefollowingbarriers:a.Investmentbarrier;b.Technologicalbarrier;c.Barrierduetoprevailingpractice;d.Otherbarriers(e.g.institutionalbarrier).TOOL22:LEAKAGEINBIOMASSSMALL-SCALEPROJECTACTIVITIESThistoolcanbeusedforestimationofleakageandprojectemissionsforsmall-scaleprojectactivitiesusingrenewablebiomassasasourceofenergy.Itcanbeusedforestimationofprojectemissionsresultingfromcultivationofbiomass,shiftsofpre-projectactivitiesandcompetingusesforthebiomass.TOOL23:ADDITIONALITYOFFIRST-OF-ITS-KINDPROJECTACTIVITIESThismethodologicaltoolprovidesageneralapproachforthedemonstrationofadditionalityoffirst-of-its-kindprojecactivities,asreferredtointhemethodologicaltool“Toolforthedemonstrationandassessmentofadditionality”,themethodologicaltool“Combinedtooltoidentifythebaselinescenarioanddemonstrateadditionality”,orthebaselineandmonitoringmethodologiesthatconsiderfirst-of-its-kinprojectactivitiesasadditional.TOOL24:COMMONPRACTICEThismethodologicaltoolprovidesastep-wiseapproachfortheconductionofthecommonpracticeanalysisasreferredtointhemethodologicaltool“Toolforthedemonstrationandassessmentofadditionality”,themethodologicaltool“Combinedtooltoidentifythebaselinescenarioanddemonstrateadditionality”,orthebaselineandmonitoringmethodologiesthatusethecommonpracticetestforthedemonstrationofadditionality.48UnitedNationsFrameworkConventiononClimateChangeMethodologicalToolsforCDMProjectActivitiesandSmall-scaleCDMProjectActivitiesTOOL25:APPORTIONINGEMISSIONSFROMPRODUCTIONPROCESSESBETWEENMAINPRODUCTANDCO-ANDBY-PRODUCTThismethodologicaltoolprovidescriteriaforapportioningemissionsfromaproductionprocessbetweenthemainproduct,theco-products,theby-productsandtheresidues(waste)wherethemainproductisproducedand/orconsumed/usedunderaCDMprojectactivity.ThistoolshallbeappliedinconjunctionwithAM0089andACM0017.TOOL26:ACCOUNTINGELIGIBLEHFC-23ThemethodologicaltoolprovidescriteriaforthedeterminationofthequantityofHFC-23eligibleforcreditingandshallbeapplicableforregisteredprojectactivitiesusingversion1toversion5ofAM0001.TOOL27:INVESTMENTANALYSISThismethodologicaltoolprovidesguidanceandrequirementsonhowtoconductinvestmentanalysisasreferredtointhemethodologicaltool“Toolforthedemonstrationandassessmentofadditionality”,themethodologicaltool“Combinedtooltoidentifythebaselinescenarioanddemonstrateadditionality”,theguidelines“Non-bindingbestpracticeexamplestodemonstrateadditionalityforSSCprojectactivities”,orthebaselineandmonitoringmethodologiesthatusetheinvestmentanalysisfortheidentificationofthebaselinescenarioand/odemonstrationofadditionality.TOOL28:CALCULATIONOFBASELINE,PROJECTANDLEAKAGEEMISSIONSFROMTHEUSEOFREFRIGERANTSThemethodologicaltoolprovidesprocedurestoestimatethebaseline,projectandleakageemissionsassociatedwiththeuseofrefrigerantgasesinrefrigerationandair-conditioningsystems.ItalsoclarifiesthetypesofrefrigerantseligibleforaccountingemissionreductionsundertheCDM.TOOL29:DETERMINATIONOFSTANDARDIZEDBASELINESFORENERGY-EFFICIENTREFRIGERATORSANDAIR-CONDITIONERSThismethodologicaltoolprovidesguidanceforthedevelopmentandassessmentofstandardizedbaselinesincludingadditionalitydemonstration,identificationofbaselinescenarioanddeterminingbaselineemissionsforenergy-efficientrefrigeratorsandairconditioners(RAC)forresidentialapplication.Thetoolcoversthedeterminationofbaselinefactors(forgreenfield/replacementofRACappliances)associatedwithenergyandrefrigerantusedfortheRACsector(market)oroneormoresegmentsoftheRACsector,inatown/cityoraregionofacountryoracountryoragroupofcountries.Itincludesmethodstostandardizebaselineparameterstoaccommodatediversedataformatsandsourcesencounteredinhostcountriessuchasappliancestandards,labelingdatabase,commercialmarketingdataandmanufacturers(industry)data.ThistoolshouldbeappliedinconjunctionwiththeappliedmethodologyAM0120“Energy-efficientrefrigeratorsandair-conditioners”.TOOL30:CALCULATIONOFTHEFRACTIONOFNON-RENEWABLEBIOMASSThistoolprovidesguidanceandastep-wiseprocedure/methodtocalculatevaluesoffractionofnon-renewablebiomass(fNRB).Thetoolmaybeappliedwhencalculatingbaselineemissionsinapplicablemethodologies(e.g.AMS-I.E.,AMS-II.G.,AMS-III.Z.,AMS-III.AV.,AMS-III.BG.)foraprojectactivityoraPoAthatdisplacestheuseofnon-renewablebiomass.Thistoolmaybeusedby:a.DNAstosubmitregion-orcountry-specificdefaultNRBvalues,followingtheproceduresfordevelopment,revision,clarificationandupdateofstandardizebaselines(SBprocedures);orb.Projectparticipantstocalculateproject-orPoA-specififNRBvalues.49UnitedNationsFrameworkConventiononClimateChangeCDMMethodologyBookletDecember2022(uptoEB116)MethodologicalToolsforCDMProjectActivitiesandSmall-scaleCDMProjectActivitiesTOOL31:DETERMINATIONOFSTANDARDIZEDBASELINESFORENERGYEFFICIENCYMEASURESINRESIDENTIAL,COMMERCIALANDINSTITUTIONALBUILDINGSThismethodologicaltoolprovidesguidanceforthedevelopmentandassessmentofstandardizedbaselinestodeterminethespecificC2emissionsduetotheconsumptionofelectricity,fuelandhot/chilledwaterofdifferentbuildingtypes(residential,commercialandinstitutional)intermsoftCO2/m2offloorareaofbuilding,takingintoaccountthgeographicalscopeandavailabilityofhistoricaldata.ThistoolshouldbeappliedinconjunctionwiththeapprovedmethodologiesAM0091,AMS-II.E.andAMS-III.AE.TOOL32:POSITIVELISTSOFTECHNOLOGIESThismethodologicaltoolprovideslistoftechnologiesthatconferautomaticadditionalitytoCDMprojectactivitiesandCDMprogrammesofactivities(PoAs)thatapplythem.TheapplicationofthismethodologicaltoolisnotmandatoryfortheprojectparticipantsofaCDMprojectactivityorCDMPoAfordemonstratingtheiradditionality.However,ifapplied,thismethodologicaltoolshallbeappliedinconjunctionwithasmall-scaleorlarge-scalemethodologywhichreferstothistool.Currentlyfollowingtechnologiesunderthefollowingareaareincludedinthistool:a.Landfillgasrecoveryanditsgainfuluseb.Methanerecoveryinwastewatertreatment;c.Renewableenergytechnologiesforlarge-scalegrid-connectedpowergeneration;d.Renewableenergytechnologiesforlarge-scaleisolatedgridpowergeneration;e.Renewableenergytechnologiesforsmall-scalegrid-connectedpowergeneration;f.Renewableenergytechnologiesforsmall-scaleoff-gridpowergeneration;g.Ruralelectrificationprojects;andh.Thetechnology/measureusedbyhousehold,communitiesandSMEs.TheBoardmayincludeadditionaltechnologiestothepositivelistinthistool.However,thestakeholdersmayalsoproposeadditionoftechnologiestothepositivelistinthistoolfollowingthe“Procedure:Development,revisionandclarificationofbaselineandmonitoringmethodologiesanmethodologicaltools”.TOOL33:DEFAULTVALUESFORCOMMONPARAMETERSThistoolservesasarepositoryofdefaultvaluesofcommonparameterswhichareappliedinmethodologiesthatrefertothistool.Thistoolprovidesdefaultvaluesforthefollowingparameters:a.CO2emissionfactorfordieselgeneratingsystemusedforoff-gridpowergenerationpurposes;b.CO2emissionfactorforkeroseneusedforlightingapplications;c.Wood-to-charcoalconversionfactor;d.Averageannualconsumptionofwoodybiomassperpersonforcooking;e.Fractionofnon-renewablebiomass;andf.Efficiencyofpre-projectcookingdeviceTheBoardmayincludeadditionaldefaultvaluesinthistool.However,thestakeholdersmayalsoproposeadditionofdefaultvaluesinthistoolfollowingthe“Procedure:Development,revisionandclarificationofbaselineanmonitoringmethodologiesandmethodologicaltools”.CDMMethodologyBooklet3.3.METHODOLOGIESFORLARGE-SCALECDMPROJECTACTIVITIESChapterIIICDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeAM0001Typicalproject(s)ProjectactivitieswhichcaptureanddecomposeHFC-23formedintheproductionofHCFC-22.TypeofGHGemissionsmitigationaction•GHGdestruction.DestructionofHFC-23emissions.Importantconditionsunderwhichthemethodologyisapplicable•AtleastoneHCFC-22reactionunitattheprojectactivitysitehasanoperatinghistoryofatleastthreeyearsbetween1January2000and31December2004andhasbeeninoperationfrom2005untilthestartoftheprojectactivity;•TheHFC-23decompositionand,ifapplicable,anytemporarystorageofHFC-23,occursonlyattheprojectactivitysite(i.e.nooff-sitetransportoccurs);•NoregulationrequiresthedecompositionofthetotalamountofHFC-23generated;•NoHFC-23decompositionfacilitywasinstalledpriortoimplementationoftheprojectactivity.ImportantparametersAtvalidation:•AverageannualHCFC-22equivalentproductionlevelinspecificHCFC-22productionlineinthehistoricalthreeyearperiodfrom2002to2004;•QuantitiesofcarbonandfluorinecontainedinhydrogenfluoridefedintoHCFC-22reactorunitsandintheHCFC-22producedbyspecificproductionline,requiredforfluorineandcarbonmassbalancetodeterminetheHFC-23wastegenerationrateforyearspriortotheimplementationoftheprojectactivity.Monitored:•QuantityofHFC-23generatedasaby-productinspecificHCFC-22productionlineinspecificmonitoringperiod;•QuantityofHFC-23thatisgeneratedasaby-productinHCFC-22productionlinesthatareeligibleforcreditingandthatissuppliedtotheinletoftheHFC-23decompositionfacility(ies)dinspecificmonitoringperiod.BASELINESCENARIOHFC-23isreleasedtotheatmospherefromtheproductionofHCFC-22.PROJECTSCENARIOHFC-23emittedfromtheproductionofHCFC-22isdecomposedusingfossilfuelinadecompositionfacility,resultingintoCO2emissions.AM0001Decompositionoffluoroform(HFC-23)wastestreamsHCFCHFCReleseHFCHCFCFossilfuelCOHFCReleseHFCDecompositionCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Refurbishmentandfuelswitchofrenewablebiomasscogenerationprojectsconnectedtothegridwhichoperateinseasonalmodeanduseotherfuelduringtheoff-season,whenbiomass–forinstancebagasseincaseofasugarmill–isnotbeingproduced.TypeofGHGemissionsmitigationaction•RenewableEnergy.Displacementofmore-GHG-intensivepowergenerationusingfossilfuel.Importantconditionsunderwhichthemethodologyisapplicable•Theproposedprojecthasaccesstobiomassthatisnotcurrentlyusedforenergypurposes.ImportantparametersAtvalidation:•Leakageemissionsduetobiomasstransportandcrowdingoutofbiomassforotherplants;•Baselineemissionfactorofthecogenerationplantbasedontheuseoftheleast-costfuelavailable(usuallyfossilfuel).Monitored:•Powergeneratedbytheproject;•Quantityofbiomassusedintheproject;•Electricityandfossilfuelconsumptionoftheproject.BASELINESCENARIOPowerwouldbeproducedwiththeleastcostfuel(usuallyfossilfuels)intheabsenceoftheproject.PROJECTSCENARIOUseofrenewablebiomassforpowergenerationavoidstheuseoffossilfuel.FossilfuelElectricitHetBiomssCoenertionCOFossilfuelCOElectricitHetBiomssCoenertionAM0007Analysisoftheleast-costfueloptionforseasonally-operatingbiomasscogenerationplantsAM0007CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Associatedgasfromoilfields(includinggas-liftgas)thatwaspreviouslyflaredorventedisrecoveredandutilized.TypeofGHGemissionsmitigationaction•Fuelswitch.Displacementofuseofotherfossilfuelsourcessuchasnaturalgas,drygas,LPG,condensateetc.comingfromnon-associatedgasbyutilizingassociatedgasand/orgas-liftgasfromoilfields.Importantconditionsunderwhichthemethodologyisapplicable•Therecoveredgascomesfromoilwellsthatareinoperationandareproducingoilatthetimeoftherecovery;•Therecoveredgasistransportedtoagaspipelinewithorwithoutpriorprocessing.Priorprocessingmayincludetransportationtoaprocessingplantwheretherecoveredgasisprocessedintohydrocarbonproducts(e.g.drygas,liquefiedpetroleumgas(LPG)).Thedrynaturalgasiseither:(i)transportedtoagaspipelinedirectly;or(ii)compressedtoCNGfirst,thentransportedbytrailers/trucks/carriersandthendecompressedagain.ImportantparametersMonitored:•Quantityandnetcalorificvalueofthetotalrecoveredgasmeasuredafterpre-treatmentandafterthepointwheretherecoveredgasisdirectedforon-siteuse.BASELINESCENARIOAssociatedgasfromoilwellsisflaredorventedandnon-associatedgasisextractedfromothergaswells.PROJECTSCENARIOAssociatedgasfromoilwellsisrecoveredandutilizedandnon-associatedgasisnotextractedfromothergaswells.OilNturlsOilAssocitedsCOFlrin/VentinCOConsumerNturlsOilOilAssocitedsNturlsNturlsFlrin/VentinCOCOConsumerAM0009RecoveryandutilizationofgasfromoilfieldsthatwouldotherwisebeflaredorventedAM0009CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Optimizationofsteamdistribution,end-useandcondensatereturntoincreasetheenergyefficiencyofasteamsystem.TypeofGHGemissionsmitigationaction•Energyefficiency.Reductionoffossilfueluseandcorrespondingemissionsthroughenergyefficiencyimprovements.Importantconditionsunderwhichthemethodologyisapplicable•Steamisgeneratedinaboilerfiredwithfossilfuel;•Theregularmaintenanceofsteamtrapsorthereturnofcondensateisnotcommonpracticeorrequiredunderregulationsintherespectivecountry;•Dataontheconditionofsteamtrapsandthereturnofcondensateisaccessibleinatleastfiveothersimilarplants.ImportantparametersAtvalidation:•Steamtrapfailurerateandcondensatereturnatplantandothersimilarplants.Monitored:•Steamandcondensateflow,temperatureandpressure;•Boilerefficiency;•Electricityconsumptionoftheproject.BASELINESCENARIOUseoffossilfuelinaboilertosupplysteamtoasteamsystemwithalowefficiency.PROJECTSCENARIOUseoflessfossilfuelinaboileraslesssteamisrequiredforthesteamsystemwithimprovedefficiency.FossilfuelBoilerCondensteStemLossesCOFossilfuelCOBoilerLossesCondensateSteamUpgradeAM0017SteamsystemefficiencyimprovementsbyreplacingsteamtrapsandreturningcondensateAM0017CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)More-efficientuseofsteaminaproductionprocessreducessteamconsumptionandtherebysteamgeneration.TypeofGHGemissionsmitigationaction•Energyefficiency.Reductionoffossilfueluseandcorrespondingemissionsthroughenergyefficiencyimprovements.Importantconditionsunderwhichthemethodologyisapplicable•Theprocesssuppliedbytheheatsystemproducesahomogeneousoutputanditsproductionvolumeisreasonablyconstantundersteadystateconditions;•Forcogenerationsystems,steamgenerationatboilerdecreasesbytheamountofsteamsaved;•Ifthesteamsavedisfurtherused,itshallbedemonstrateditdoesnotincreaseGHGemissions.ImportantparametersMonitored:•Outputofthemainprocessinvolvedintheproject;•Steam,feedwater,blowdownwaterflow,temperatureandpressure;•Boilerefficiency.BASELINESCENARIOUseoffossilfuelinaboilertosupplysteamtoaprocesswithhighsteamconsumption.PROJECTSCENARIOUseoflessfossilfuelinaboileraslesssteamisrequiredfortheprocesswithahigherefficiency.COFossilfuelBoilerOutputProductionStemFossilfuelCOBoilerOutputProductionUprdeStemAM0018BaselinemethodologyforsteamoptimizationsystemsAM0018CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Generationofelectricityfromthezero-emissionrenewableenergysourcessuchaswind,geothermal,solar,hydro,waveand/ortidalprojectsthatdisplaceselectricityproducedfromaspecificfossilfuelplant.TypeofGHGemissionsmitigationaction•Renewableenergy.Displacementofmore-GHG-intensivegenerationofelectricitybytheuseofrenewableenergysources.Importantconditionsunderwhichthemethodologyisapplicable•Biomassprojectsarenoteligible;•Theidentifiedbaselineplantisabletomeetanypossibleincreaseofenergydemandthatoccursduringthecreditingperiod;•Threeyearsofhistoricaldataisrequiredforthecalculationofemissionsreductions;•Hydropowerplantswithreservoirrequirepowerdensitiesgreaterthan4W/m2.ImportantparametersAtvalidation:•Carbonemissionfactorofthebaselinepowerplant.Monitored:•Quantityofelectricitysuppliedtothegridbytheproject;•Iftheprojectinvolvesgeothermalenergy:fugitiveCO2andCH4emissionsduetoreleaseofnon-condensablegasesfromtheproducedsteam.BASELINESCENARIOAspecificfossilfuelplantgenerateselectricitythatissuppliedtothegrid.PROJECTSCENARIOArenewableenergyplantpartiallyorcompletelydisplacestheelectricitythatisgeneratedbythespecificfossilfuelpowerplant.FossilfuelCOElectricitPowerplntCOElectricitRenewbleFossilfuelPowerplntAM0019Renewableenergyprojectsreplacingpartoftheelectricityproductionofonesinglefossilfuelfiredpowerplantthatstandsaloneorsuppliestoagrid,excludingbiomassprojectsAM0019CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Energyefficiencyimprovementinmunicipalwaterutilities(e.g.increasingtheenergyefficiencyofawaterpumpingsystem,reducingtechnicallossesandleaks)therebyreducingtheamountofenergyrequiredtodeliveraunitofwatertoend-users.TypeofGHGemissionsmitigationaction•Energyefficiency.Switchtomoreenergy-efficienttechnology/measure.Importantconditionsunderwhichthemethodologyisapplicable•Theprojectpumpingsystemispoweredbygridelectricity;•Noperformancerelatedcontractorpoliciesarealreadyinplacethatwouldtriggerimprovementsanyway;•Newsystem/sdevelopedtocompletelyreplacetheoldpumpingsystem/sthatwillnolongerbeused,howeverthemethodologyappliestonewsystem/sonlyuptothemeasureddeliverycapacityoftheoldsystem/s;•Thismethodologyisnotapplicabletoprojectswhereentirelynewsystem/sis/areimplementedtoaugmenttheexistingcapacity.ImportantparametersAtvalidation:•Watersuppliedandpowerconsumptioninthebaselinesituation.Monitored:•Gridemissionfactor;•Watervolumesuppliedbytheproject;•Electricalenergyrequiredtodeliverwaterwithintheboundariesofthesystem.BASELINESCENARIODeliveryofwaterfromaninefficientpumpingsystem.PROJECTSCENARIODeliveryofwaterfromapumpingsystemthathasalowerenergydemandduetoreducinglossesorleaksinthepumpingsystemand/orbyimplementingmeasurestoincreaseenergyefficiency.COElectricitPumpinGridFossilfuelElectricitGridCOUprdePumpinFossilfuelAM0020BaselinemethodologyforwaterpumpingefficiencyimprovementsAM0020CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)InstallationofacatalyticorthermalN2Odestructionfacilityatanexistingadipicacidproductionplant.TypeofGHGemissionsmitigationaction•GHGdestruction.CatalyticorthermaldestructionofN2Oemissions.Importantconditionsunderwhichthemethodologyisapplicable•Theadipicacidplantstartedthecommercialproductionnolaterthan31December2004;•EuropeanNorm14181mustbefollowedforreal-timemeasurementofN2Oconcentrationandgasvolumeflowrate.ImportantparametersAtvalidation:•Maximumamountofadipicacidproductioninthemostrecentthreeyears.Monitored:•Productionofadipicacid;•Consumptionofnitricacid;•N2Oconcentrationattheinletandoutletofthedestructionfacility;•Volumeofgasflowattheinletandoutletofthedestructionfacility.BASELINESCENARION2Oisemittedintotheatmosphereduringtheproductionofadipicacid.PROJECTSCENARION2Oisdestroyedinacatalyticorthermaldestructionunit.AdipiccidNOReleseNOAdipiccidFossilfuelCONOReleseNODecompositionAM0021BaselinemethodologyfordecompositionofN2OfromexistingadipicacidproductionplantsAM0021CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Identificationandrepairofnaturalgas(NG)andrefinerygas(RG)leaksinabove-groundprocessequipmentinnaturalgasproduction,processing,transmission,storage,distributionsystemsandinrefineryfacilities.TypeofGHGemissionsmitigationaction•GHGformationavoidance.AvoidanceofCH4emissions.Importantconditionsunderwhichthemethodologyisapplicable•Nosystemsareinplacetosystematicallyidentifyandrepairleaksinthetransmissionanddistributionsystem;•Leakscanbeidentifiedandaccuratelymeasured;•Amonitoringsystemensuresthepermanenceoftherepairs.ImportantparametersMonitored:•Leakflow;•Methaneconcentrationintheflow.BASELINESCENARIOCH4leaksfromanaturalgastransmissiondistributionsystem.PROJECTSCENARIOCH4leaksfromthenaturalgastransmissionsystemshavebeenrepaired.CHLossesNG/RGCHNG/RGLossesUprdeAM0023Leakdetectionandrepairingasproduction,processing,transmission,storageanddistributionsystemsandinrefineryfacilitiesAM0023CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Electricitycapacityadditions(eitherthroughtheinstallationofnew,orthemodificationofexisting,powerplants)thatsupplyelectricitytothegridanduserenewableenergysourcessuchashydro,wind,solar,geothermal,waveortidalpower.ThecapacityadditionshavetobeconnectedtotheChileaninterconnectedgridorotherscountries’gridsprovidingasimilarmeritorderbasedframework.TypeofGHGemissionsmitigationaction•Renewableenergy.Displacementofelectricitythatwouldbeprovidedtothegridbymore-GHG-intensivemeans.Importantconditionsunderwhichthemethodologyisapplicable•TheprojectpowerplantmusteitherbeconnectedtothegridofChileandfulfilthelegalobligationsundertheChileanElectricityRegulation,orbeimplementedinothercountriesifthecountryhasaregulatoryframeworkforelectricitygenerationanddispatchthatmeetstheconditionsdescribedinthemethodology;•Newhydroelectricpowerprojectswithreservoirsrequirepowerdensitiesgreaterthan4W/m2.ImportantparametersMonitored:•Electricitysuppliedtothegridbytheproject;•Hourlydataformeritorderbasedonmarginalcosts;•Operationaldataofthepowerplantsconnectedtothesamegridastheproject.BASELINESCENARIOPowerisprovidedtothegridusingmore-GHG-intensivepowersources.PROJECTSCENARIOInstallationofanew,ormodificationofanexisting,renewablepowerplantthatresultsinanincreaseofrenewablepoweranddisplacementofelectricitythatwouldbeprovidedtothegridbymore-GHG-intensivemeans.COGridFossilfuelElectricitElectricitCOGridFossilfuelElectricitRenewbleElectricitAM0026Methodologyforzero-emissionsgrid-connectedelectricitygenerationfromrenewablesourcesinChileorincountrieswithmeritorderbaseddispatchgridAM0026CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)IndustrialprocesseswherebiogenicresidualCO2isusedasinputintheproductionofinorganiccompoundssubstitutingCO2fromfossilormineralsources.TypeofGHGemissionsmitigationaction•Feedstockswitch.UseofabiogenicresidualsourceofCO2displacingfossil/mineralsourcesfortheproductionofinorganiccompounds.Importantconditionsunderwhichthemethodologyisapplicable•Priortotheimplementationoftheprojectactivity,thebiogenicresidualCO2wasproduced,butnotusedforanypurpose;•TheCO2usedpriortotheimplementationoftheprojectactivitywassourcedfromaprocesswhichdoesnotinvolveenergyproductionandwillnotcontinueundertheprojectscenario;•Theproductionprocessofinorganiccompoundsdoesnotundergochangesinproduct,energyrequirementorcapacityasaresultoftheimplementationoftheprojectactivity.ImportantparametersMonitored:•Amountofinorganiccompoundproduced;•Carboncontentandmolecularweightoftheinorganiccompound;•AmountofCO2usedpertonneofinorganiccompound.BASELINESCENARIOCO2isobtainedfromfossilormineralsourcestobeusedasinputfortheproductionofinorganiccompounds.PROJECTSCENARIOBiogenicresidualsourcesofCO2areusedfortheproductionofinorganiccompounds.BiomssProductionCOOutputBurninBurninFossilfuelCOReleseFossilfuelCOBurninBiomssProductionCOOutputBurninReleseAM0027SubstitutionofCO2fromfossilormineraloriginbyCO2fromrenewablesourcesintheproductionofinorganiccompoundsAM0027CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)InstallationofacatalyticreductionunittodestroyN2Oemissionsinthetailgasofcaprolactamproductionplants.TypeofGHGemissionsmitigationaction•GHGdestruction.CatalyticdestructionofN2Oemissions.Importantconditionsunderwhichthemethodologyisapplicable•Thecaprolactamplantstartedthecommercialproductionnolaterthan31December2005;•CaprolactamplantsarelimitedtothoseemployingtheRaschigorHPO®processes;•EuropeanNorm14181oranequivalentstandardmustbefollowedforreal-timemeasurementofN2Oconcentrationandgasvolumeflowrate;•ThemethodologyallowsthermalandcatalyticdestructionofN2O.ImportantparametersAtvalidation:•Normaloperatingconditionsoftheplant(oxidationtemperatureandpressure,ammoniagasflowratetoAOR,andcompositionofammoniaoxidationcatalyst).Monitored:•Productionofcaprolactam;•Volumeofgasflowattheinletandoutletofthedestructionfacility;•N2Oconcentrationattheinletandoutletofthedestructionfacility;•Updateoftheparametersfordeterminingthenormaloperatingconditionsoftheplant.BASELINESCENARION2Oisemittedintotheatmosphereduringtheproductionofcaprolactam.PROJECTSCENARION2Oisdestroyedinacatalyticdestructionunitinstalledatthetailgasstream.ProductionReleseNONOProductionNOReleseCtlsisNOAM0028N2OdestructioninthetailgasofcaprolactamproductionplantsAM0028CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Implementationofanodeeffectmitigationmeasuresataprimaryaluminiumsmelter(e.g.improvingthealgorithmoftheautomaticcontrolsystemforsmeltingpots).TypeofGHGemissionsmitigationaction•GHGemissionavoidance.AvoidanceofPFCemissionsbyanodeeffectmitigation.Importantconditionsunderwhichthemethodologyisapplicable•Thealuminiumsmeltingfacilitystartedthecommercialoperationbefore1January2009;•Minimumofthreeyearsofhistoricaldataisavailableoncurrentefficiency,anodeeffectandaluminiumproduction;•Thealuminiumsmeltingfacilityusescentreworkpre-bakecelltechnologywithbarbrake(CWPB)orpointfeedersystems(PFPB);•Thealuminiumsmeltingfacilityhasachievedan“operationalstabilityassociatedtoaPFCemissionslevel”thatallowsincreasingthealuminiumproductionbysimplyincreasingtheelectriccurrentinthepots.ImportantparametersMonitored:•Quantityofaluminiumproducedbythealuminiumsmeltingfacility;•Anodeeffectminutespercell-day.BASELINESCENARIONomitigationofPFCemissionsfromanodeeffectsatprimaryaluminiumsmeltingfacilities.PROJECTSCENARIOImplementationofanodeeffectmitigationmeasurestoreducePFCemissionsfromaluminiumsmelting.PFCAluminiumPFCRelesePFCAluminiumPFCReleseUprdeAM0030PFCemissionreductionsfromanodeeffectmitigationatprimaryaluminiumsmeltingfacilitiesAM0030CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Constructionandoperationofanewbusrapidtransitsystem(BRT)forurbantransportofpassengers.Replacement,extensionsorexpansionsofexistingbusrapidtransitsystems(addingnewroutesandlines)arealsoallowed.TypeofGHGemissionsmitigationaction•Energyefficiency.Displacementofmore-GHG-intensivetransportationmodesbyless-GHG-intensiveones.Importantconditionsunderwhichthemethodologyisapplicable•ThemethodologyisapplicableforurbanorsuburbantripsonBRTsystemwithfeederandtrunkrouteswherepassengerscanrealizetheirentiretripontheprojectsystem;•Iftheanalysisofpossiblebaselinescenarioalternativesleadstotheresultthatacontinuationoftheuseofthecurrentmodesoftransportisthebaselinescenario;•Ifbiofuelsareused,projectbusesmustusethesamebiofuelblend(samepercentageofbiofuel)ascommonlyusedbyconventionalcomparableurbanbusesinthecountry.ImportantparametersAtvalidation:•Baselinedistanceandtransportmode,whichareobtainedthroughacomprehensivesurveyinvolvingtheusersoftheprojecttransportsystem;•Occupancyratesandtravelleddistancesofdifferenttransportmodes(includingtheproject);•Policiesaffectingthebaseline(i.e.modalsplitofpassengers,fuelusageofvehicles,maximumvehicleage);•IfexpectedemissionsperpassengerkilometerforBRTsystemislessthanorequalto50gCO2/pkm,theprojectisconsideredautomaticallyadditional.Monitored:•Numberofpassengerstransportedintheproject;•Totalconsumptionoffuel/electricityintheproject.BASELINESCENARIOPassengersaretransportedusingadiversetransportsysteminvolvingbuses,trains,cars,non-motorizedtransportmodes,etc.operatingundermixedtrafficconditions.PROJECTSCENARIOPassengersaretransportedusingthenewlydevelopedbusrapidtransitsystemthatpartiallydisplacestheexistingtransportsystemoperatingundermixedtrafficconditions.AM0031BusrapidtransitprojectsCOTrinBusCrMotorccleBusTrinBusCrMotorccleCOWomenndchildrenAM0031CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Recyclingand/orleakreductionofSF6inaelectricitygrid.TypeofGHGemissionsmitigationaction•GHGemissionavoidance.AvoidanceofSF6emissionsbyrecyclingand/orleakreduction.Importantconditionsunderwhichthemethodologyisapplicable•Theprojectisimplementedeitherintheentiregridoraverifiabledistinctgeographicportionofagrid;•MinimumofthreeyearsofhistoricaldataisavailableonthetotalSF6emissionsfromthegrid.ImportantparametersAtvalidation:•NetreductioninanSF6inventoryforthegrid;•Nameplatecapacity(inkgSF6)ofequipmentretiredfromandaddedtothegrid.Monitored:•Updateoftheaboveparametersnecessaryforvalidation.BASELINESCENARIOSF6emittedfromleaksand/ornon-recyclingofSF6duringrepairandmaintenanceofelectricitytransmissionanddistributionsystems.PROJECTSCENARIORecyclingand/orleak-reductionofSF6duringrepairandmaintenanceofelectricitytransmissionanddistributionsystems.ElectricitReleseSFSFUpgradeElectricitySFReleaseSFAM0035SF6emissionreductionsinelectricalgridsAM0035CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Fuelswitchfromfossilfuelstobiomassinthegenerationofheat.Applicableactivitiesareretrofitorreplacementofexistingheatgenerationequipmentandinstallationofnewheatgenerationequipment.TypeofGHGemissionsmitigationaction•Renewableenergy.Displacementofmore-GHG-intensiveheatgenerationusingfossilfuelandavoidanceofCH4emissionsfromanaerobicdecayofbiomassresidues.Importantconditionsunderwhichthemethodologyisapplicable•Heatgeneratedintheprojectcanonlybeusedforpowergenerationifpowergenerationequipmentwaspreviouslyinstalledandismaintainedthroughoutthecreditingperiod;•Biomasstypesusedbytheprojectactivityarelimitedtobiomassresidues,biogas,RefuseDerivedFuel(RDF)and/orbiomassfromdedicatedplantations;•Incaseofexistingfacilities,threeyearsofhistoricaldataisrequiredforthecalculationofemissionsreductions.ImportantparametersAtvalidation:•Historicalannualheatgenerationandbiomassconsumptionattheprojectsite.Monitored:•Heatgeneratedbytheprojectactivity;•Quantitiesofbiomassusedintheprojectplant;•Electricityandfossilfuelconsumptionbytheprojectactivity;•Parametersrelatedtoprojectandleakageemissionsfrombiomass.BASELINESCENARIOHeatwouldbeproducedbytheuseoffossilfuels.Biomassresiduescouldpartiallydecayunderanaerobicconditions,generatingCH4emissions.PROJECTSCENARIOUseofbiomassforheatgenerationavoidsfossilfueluseanditsassociatedGHGemissions.AM0036UseofbiomassinheatgenerationequipmentBiomssCOCHBurninDisposlFossilfuelHetHetBiomssHetRenewbleCOCHBurninDisposlHetFossilfuelAM0036CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Associatedgasfromoilwellsthatwaspreviouslyflaredorventedisrecoveredandutilizedasafeedstocktoproduceachemicalproduct.TypeofGHGemissionsmitigationaction•Feedstockswitch.AvoidanceofGHGemissionsthatwouldhaveoccurredbyflaring/ventingtheassociatedgas.Importantconditionsunderwhichthemethodologyisapplicable•Theassociatedgasfromtheoilwell,whichisusedintheproject,wasflaredorventedforthelastthreeyearspriortothestartoftheproject;•Undertheproject,thepreviouslyflared(orvented)associatedgasisusedasfeedstockand,whereapplicable,partlyasenergysourceinachemicalprocesstoproduceausefulproduct(e.g.methanol,ethyleneorammonia).ImportantparametersMonitored:•Massfractionofmethaneintheassociatedgas;•Quantityofproduct(s)producedintheend-usefacilityintheproject;•Quantityandcarboncontentofassociatedgasutilizedintheproject,i.e.thequantityofassociatedgasenteringthepipelinefortransporttotheend-usefacility.BASELINESCENARIOAssociatedgasfromoilwellsisflaredorventedandotherfeedstockisusedtoproduceachemicalproduct.PROJECTSCENARIOAssociatedgasfromoilwellsisrecoveredandutilizedasfeedstocktoproduceachemicalproduct.OilOilAssocitedsFeedstockProductionFossilfuelCOFlrin/VentinOilOilAssocitedsFlrin/VentinCOFossilfuelFeedstockProductionAM0037Flare(orvent)reductionandutilizationofgasfromoilwellsasafeedstockAM0037CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Retrofittingofexistingfurnacesfortheproductionofsiliconandferryalloysincludingcontrolandperipheralsystemswithamoreefficientsystem.TypeofGHGemissionsmitigationaction•Energyefficiency.Switchtomoreenergy-efficienttechnology.Importantconditionsunderwhichthemethodologyisapplicable•Theelectricityconsumedissuppliedbythegrid;•Thequalityoftherawmaterialandproductsremainsunchanged;•Dataforatleastthreeyearsprecedingtheimplementingtheprojectisavailabletoestimatethebaselineemission.ImportantparametersAtvalidation:•Gridemissionfactor(canalsobemonitoredexpost).Monitored:•Alloysproductionandconsumptionofelectricity,reductantsandelectrodepaste;•Project-specificqualityandemissionfactorsforreductantsandelectrodepaste.BASELINESCENARIOConsumptionofgridelectricityinthesubmergedarcfurnacesresultsinCO2emissionsfromthecombustionoffossilfuelusedtoproduceelectricity.PROJECTSCENARIOThemore-efficientsubmergedarcfurnacesconsumelesselectricity,andthereby,emissionsfromthecombustionoffossilfuelusedtoproduceelectricityarereduced.COElectricitGridAlloFossilfuelCOElectricitGridAlloFossilfuelUprdeAM0038MethodologyforimprovedelectricalenergyefficiencyofanexistingsubmergedelectricarcfurnaceusedfortheproductionofsiliconandferryalloysAM0038CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Installationofpolyethylenepipesfortheearlyreplacementofleakingcastironpipesorsteelpipeswithoutcathodicprotectioninanaturalgasdistributionnetwork.TypeofGHGemissionsmitigationaction•GHGemissionsavoidance.AvoidanceofCH4emissionsfromleaksinnaturalgastransportation.Importantconditionsunderwhichthemethodologyisapplicable•Theprojectreplaceseithercastironpipesorsteelpipeswithoutcathodicprotectionthathavebeeninusefor30yearswithpolyethylenepipeswithoutalteringthepatternandsupplycapacityofthesystem;•Thereplacementisnotpartofnormalrepairandmaintenance,plannedreplacement,orduetointerruptionsorshortagesoraswitchfromservicingothergases;•Thedistributionsystemdoesnotincludegastransmissionpipelinesorstoragefacilities.ImportantparametersAtvalidation:•Lengthofpipesandnumberofleaks(alternative:leakagerateofthesection).Monitored:•Lengthofnewpipelineduetobothprojectandproceduralreplacement;•Fractionofmethaneinthenaturalgas;•Pressureofnaturalgasinthenetwork.BASELINESCENARIOMethaneleaksfromanaturalgasnetwork.PROJECTSCENARIONoleaksorfewerleaksinthenaturalgasnetwork.CHLossesNturlsUprdeCHLossesNturlsAM0043LeakreductionfromanaturalgasdistributiongridbyreplacingoldcastironpipesorsteelpipeswithoutcathodicprotectionwithpolyethylenepipesAM0043CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Projectsthatresultsinthermalenergyefficiencyimprovementoffossil-fuel-firedboilers,atmultiplelocations,throughrehabilitationorreplacementoftheboilersimplementedbytheprojectparticipant,whomaybetheownerofboilersorownerofallthesitesorpartofthesiteswheretheboilersaretobeinstalledorathirdpartythatownsalltheprojectboilersduringtheprojectperiod.TypeofGHGemissionsmitigationaction•Energyefficiency.Switchtomoreenergy-efficienttechnology.Importantconditionsunderwhichthemethodologyisapplicable•Theboilersthatarerehabilitatedorreplacedundertheprojectshouldhavesomeremaininglifetime;•Onlyonetypeoffuelisusedbyeachoftheboilersincludedintheprojectboundaryandnofuelswitchingisundertakenwithintheprojectboundary,asapartofproject;•Theinstalledcapacityofeachboilershallbedeterminedusingaperformancetestinaccordancewithwell-recognizedinternationalstandards.ImportantparametersMonitored•Amountoffossilfuelconsumed,netcalorificvalueoffossilfuel,emissionfactoroffossilfuel,oxidationfactoroffossilfuelineachboilerintheproject;•Totalthermaloutputofeachboilerintheproject.BASELINESCENARIOBoiler(s)withlowerefficiencywillcontinuetooperateatmultiplelocations,therebyconsuminghighamountsoffossilfuel.PROJECTSCENARIOTheefficiencyofboiler(s)isimprovedthroughtheirrehabilitationorreplacement,resultinginareductionoffossilfuelconsumptionandrelatedCO2emissions.FossilfuelHetBoilerCOFossilfuelHetBoilerUprdeCOAM0044Energyefficiencyimprovementprojects-boilerrehabilitationorreplacementinindustrialanddistrictheatingsectorsAM0044CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Expansionofaninterconnectedgridtosupplyelectricitygeneratedbymore-efficient,less-carbon-intensivemeanstoanisolatedelectricpowersystem.TypeofGHGemissionsmitigationaction•Displacementofamore-GHG-intensiveoutput.Displacementofelectricitythatwouldbeprovidedbymore-GHG-intensivemeans.Importantconditionsunderwhichthemethodologyisapplicable•Renewableenergy-basedelectricitygenerationintheisolatedsystemsisnotdisplacedanditsoperationisnotsignificantlyaffected;•Allfossil-fuel-firedpowerplantsintheisolatedsystemare100%displaced.ImportantparametersAtvalidation:•Gridemissionfactorofisolatedsystembeforestartoftheproject;•Electricitysuppliedtoisolatedsystembeforestartoftheproject(threeyearsofhistoricdatarequired).Monitored:•Quantityofelectricitysuppliedtothepreviouslyisolatedsystembytheinterconnectedgrid;•Gridemissionfactoroftheinterconnectedgrid.BASELINESCENARIOPowergenerationbasedonfossilfuelapplyingless-efficienttechnologiesinisolatedelectricitysystems.PROJECTSCENARIODisplacementoffossil-fuel-firedpowerplantsintheisolatedgridbyexpansionofaninterconnectedgridtotheisolatedelectricitysystem.ElectricitCOPowerplntFossilfuelIsoltedridElectricitCOPowerplntCOGridFossilfuelFossilfuelConnectedridAM0045GridconnectionofisolatedelectricitysystemsAM0045CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Compactfluorescentlamps(CFLs)aresoldatareducedprice,ordonatedtohouseholdstoreplaceincandescentlamps(ICL).TypeofGHGemissionsmitigationaction•Energyefficiency.Displacementofless-efficientlightingbymore-efficienttechnology.Importantconditionsunderwhichthemethodologyisapplicable•ThehouseholdsarewithinadistinctgeographicalareaandareconnectedtotheelectricitygridandnootherCDMprojectthatmayaffecttheenergyefficiencyoflightinginhouseholdslocatedwithinthetotalprojectareahasbeenregistered;•AmaximumoffourCFLscanbedistributedorsoldtoeachhouseholdandtheseCFLshavetobemoreefficientandhavethesameoralowerlumenoutputasthepreviouslyusedICL;•Thedisplacedlightbulbshaveamaximumratedpowerof100Wandarereturnedtotheprojectcoordinator,whoensuresdestructionofthelightbulbs;•Electricityconsumptionfromlightinghastobemonitoredinabaselinesamplegroup(BSG)andaprojectsamplegroup(PSG).TheprojectcoordinatorimplementsasociallotterysystemasanincentiveamongallhouseholdsincludedintheBSGandthePSG.ImportantparametersAtvalidation:•Theaveragegridvoltageinthelow-voltagepartofthegrid,thepowerratingandtheP-Ucharacteristiccurveofthedistributedlightaredeterminedbeforethestartoftheproject;•Gridemissionfactor(alternativelymonitored).Monitored:•Electricityconsumedtoprovidelighting(orutilizationhoursandpowerratingoflightingappliance)forhouseholdwithintheBSGandPSG;•NumberofprojectICLandscrappedlightbulbs;•Technicaldistributionlossesinthegrid.BASELINESCENARIOLess-energy-efficientlightbulbsareusedinhouseholdsresultinginhigherelectricitydemand.PROJECTSCENARIOMore-energy-efficientCFLsareusedinhouseholdssavingelectricityandthusreducingGHGemissions.AM0046DistributionofefficientlightbulbstohouseholdsCOElectricitFossilfuelGridLihtinElectricitFossilfuelGridLihtinCOUprdeWomenndchildrenAM0046CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Fossil-fuel-firedcogenerationprojectsupplyingheatandelectricitytomultipleprojectcustomers.TypeofGHGemissionsmitigationaction•Energyefficiency.Switchtocogenerationofsteamandelectricity.Importantconditionsunderwhichthemethodologyisapplicable•Installationofanewfossilfuelfiredcogenerationfacility(ies)thatsupplyheatandelectricityto:(i)existingornewrecipients;(ii)supplyelectricitytogrid;and/or(iii)supplyheattoheatnetworks;•Thebaselinescenariofortheprojectactivityisaconstructionofanewfossilfuelbasedelectricitygenerationfacilityandaconstructionofanewfossil-fuelbasedheatgenerationfacility.ImportantparametersMonitored:•Quantityofelectricitygeneratedbytheprojectandsuppliedtorecipientfacility(ies)and/orthepowergrid;•Quantityofsteamorhotwatergenerationbytheprojectandsuppliedtorecipientfacility(ies)and/orheatnetworks.BASELINESCENARIOSeparateheatandelectricityproduction.PROJECTSCENARIOCogenerationofelectricityandheat.AM0048NewcogenerationprojectactivitiessupplyingelectricityandheattomultiplecustomersPowerplntConsumerStemElectricitFossilfuelFossilfuelHetGridCOFossilfuelConsumerFossilfuelCoenertionCOCOStemElectricitHetPowerplntGridFossilfuelAM0048CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Installationofgas-basedenergygenerationsystems,eitherseparateorcogeneration,atanexistingindustrialfacilitytomeetitsownelectricityand/orsteam/heatdemand.TypeofGHGemissionsmitigationaction•Fuelswitch;•Energyefficiency.Displacementofmore-carbon-intensivefuelwithless-carbon-intensivefuel.Importantconditionsunderwhichthemethodologyisapplicable•Priortotheprojectimplementation,theexistingindustrialfacilityproducesitsownthermalenergyandmaybeelectricity,buttheelectricitysupplyisnotenoughtomeetitsowndemand;•Coaloroilisreplacedbynaturalgasormethane-richgas,whichshallbesufficientlyavailableintheregionorcountry;•Therearenoregulatoryrequirementsforfuelswitchortechnologyupgrade;•Theprojectdoesnotchangethequalityrequirementofsteam/heat;•Electricityexporttothepowergrid,ifany,isonad-hocbasisandconsistsoflessthan10%ofthetotalelectricityproducedbytheprojectpowerplant.ImportantparametersAtvalidation:•Gridemissionfactor.Monitored:•Electricitygenerationandexportoftheprojectpowerplant;•Efficiencyofthebaselineandprojectfuelcombustionsystems;•Flowrate,pressureandtemperatureofheatcarrieratinletandoutletofwasteheatgenerationsources;•Fuelconsumptionbytheprojectplant.BASELINESCENARIOOn-sitegenerationofheatusingcoaloroilandimportofelectricityfromthegrid.PROJECTSCENARIOInstallationofenergygenerationsystems,eitherseparateorcogeneration,tosupplyelectricityand/orsteam/heatusingnaturalgasormethane-richgas.AM0049MethodologyforgasbasedenergygenerationinanindustrialfacilityConsumerHetElectricitFossilfuelFossilfuelHetGridCOConsumerFossilfuelCoenertionCOCOGridFossilfuelHetElectricitHetNturlsAM0049CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Feedswitchfromexistinghydrocarbonfeedstock(i.e.naphtha,heavyoils,coal,ligniteandcoke)tonaturalgas,eithercompletelyorpartially,inanexistingintegratedammonia-ureamanufacturingfacility,withoptionalimplementationofaCO2recoveryplantwithinthemanufacturingfacility.TypeofGHGemissionsmitigationaction•Feedstockswitch.Displacementofmore-GHG-intensivefeedstock(naphtha,heavyoils,coal,ligniteandcoke)withless-GHG-intensivefeedstock(naturalgas).Importantconditionsunderwhichthemethodologyisapplicable•Theprojectactivityshouldnotresultintheincreaseoftheproductioncapacitybeyond10%oftheexistingcapacity,andchangeinproductionprocess;•Naturalgasissufficientlyavailableintheregionorcountry;•Theintegratedammonia-ureamanufacturingfacilityisanexistingplantwithahistoricaloperationofatleastthreeyearspriortotheimplementationoftheproject;•Priortotheimplementationoftheproject,nonaturalgashasbeenusedintheintegratedammonia-ureamanufacturingfacility.ImportantparametersAtvalidation:•Ureaproductioninthemostrecentthreeyears;•Quantityofeachexistingfeedstockusedasfeedinthemostrecentthreeyears;•Quantityoffuelconsumedinfurnacesinthemostrecentthreeyears.Monitored:•Ureaproductionintheproject;•Quantityofnaturalgasusedasfeedintheproject;•Quantityoffuelconsumedinfurnacesintheproject;•QuantityandCO2emissionfactorofelectricityconsumedbytheCO2recoveryplant.BASELINESCENARIOTheintegratedammonia-ureamanufacturingfacilitycontinuestouseexistinghydrocarbonfeedstockasthefeedemittingexcessCO2,notusedbytheureaplant,intoatmosphere.PROJECTSCENARIOThefeedtotheintegratedammonia-ureamanufacturingfacilityisswitchedfromexistinghydrocarbonfeedstocktonaturalgas,ifrequiredincombinationwiththeimplementationofaCO2recovery,toreducetheemissionofexcessCO2.AM0050Feedswitchinintegratedammonia-ureamanufacturingindustryHdrocrbonfeedstockAmmoni-ureCOCONturlsAmmoni-ureHdrocrbonfeedstockAM0050CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)IncreasedannualgenerationofelectricitythroughtheintroductionofaDecisionSupportSystem(DSS)thatoptimizestheoperationoftheexistinghydropowerfacility/ies,bothrun-of-the-riverandreservoir-basedtype,connectedtoagrid.TypeofGHGemissionsmitigationaction•Renewableenergy.Displacementofelectricitythatwouldhavebeenprovidedbymore-GHG-intensivemeans.Importantconditionsunderwhichthemethodologyisapplicable•Recordeddataisavailableforaminimumofthreeyearstoestablishthebaselinerelationshipbetweenwaterflowandpowergeneration;•Hydropowerunits,coveredundertheproject,havenotundergoneandwillnotundergosignificantupgradesbeyondbasicmaintenance(e.g.replacementofrunners)thataffectthegenerationcapacityand/orexpectedoperationalefficiencylevelsduringthecreditingperiod;•Nomajorchangesinthereservoirsize(e.g.increaseofdamheight)ortootherkeyphysicalsystemelements(e.g.canals,spillways)thatwouldaffectwaterflowswithintheprojectboundary,havebeenimplementedduringthebaselinedataperiodorwillbeimplementedduringthecreditingperiod.ImportantparametersAtvalidation:•Gridemissionfactor(canalsobemonitoredexpost);•Measurementdataofheadwaterlevel,verticalopeningofspillway,poweroutputetc.frompreviousyearbeforeprojectimplementationaswellaspowerpolynomialcoefficients(hilldiagram).Monitored:•Quantityofelectricitygeneratedbyeachhydropowerunitintheproject.BASELINESCENARIOAdditionalelectricitywouldbeproducedbymore-GHG-intensivepowerplantsconnectedtothegrid.PROJECTSCENARIOIntroductionofaDecisionSupportSystem(DSS)increasesthesupplyofelectricitygeneratedbyexistinghydropowerunitstothegrid,therebyreducingtheamountofmore-GHG-intensiveelectricityinthegrid.AM0052IncreasedelectricitygenerationfromexistinghydropowerstationsthroughdecisionsupportsystemoptimizationElectricitGridElectricitHdropowerFossilfuelElectricitCOElectricitGridElectricitHdropowerUprdeCOFossilfuelElectricitAM0052CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Recoveringofbiogasgeneratedbyanaerobicdecompositionoforganicmatterinwastewatertreatmentsystems,animalwastemanagementsystems,etc.,processingandupgradingthebiogastothequalityofnaturalgasanddistributingitasenergysourceviaanaturalgasdistributiongrid.TypeofGHGemissionsmitigationaction•Renewableenergy;•GHGemissionavoidance.AvoidanceofCH4emissionsanddisplacementofuseofnaturalgasinanaturalgasdistributiongrid.Importantconditionsunderwhichthemethodologyisapplicable•Thebiogaswaseitherventedorflaredpriortoimplementationoftheprojectactivityandwouldcontinuetobeeitherventedorflaredintheabsenceoftheprojectactivity;•Thegeographicalextentofthenaturalgasdistributiongridiswithinthehostcountry;•Oneorseveralofthefollowingtechnologiesareusedtoupgradebiogastonaturalgasquality:pressureswingadsorption;absorptionwith/withoutwatercirculation;absorptionwithwater,withorwithoutwaterrecirculation;membraneCO2removaltechnology.ImportantparametersMonitored:•Quantityandnetcalorificvalueofupgradedbiogasinjectedtothenaturalgasdistributiongrid;•Quantityofbiogascapturedatthesourceofbiogasgeneration;•Concentrationofmethaneinbiogasatthesourceofbiogasgeneration.BASELINESCENARIOBiogasisventedorflaredandnaturalgasdistributiongridissuppliedbynaturalgasextractedfromgaswells.PROJECTSCENARIOBiogasisrecovered,processed,upgradedandsuppliedtothenaturalgasdistributiongridandreplacesadditionalnaturalgasfromgaswells.AM0053BiogenicmethaneinjectiontoanaturalgasdistributiongridBiosDisposlWsteWstewterMnureLoonCHReleseBiosCHProcessinDisposlWsteWstewterCHNturlsReleseMnureLoonAM0053CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Theprojectactivityisimplementedinexistingrefineryfacilitiesorgasplantstorecoverwastegas,whichischaracterizedbyitslowpressureoralowheatingvalueandthatiscurrentlybeingflaredtogenerateprocessheatinelementprocess(es)(e.g.forthepurposeofsteamgenerationbyaboilerorhotairgenerationbyafurnace).Recoveredwastegasisaby-productgeneratedinseveralprocessingunitsoftherefineryorgasplant.TypeofGHGemissionsmitigationaction•Energyefficiency.Displacementoffossilfuelusedforheatproductionbyrecoveredwastegas.Importantconditionsunderwhichthemethodologyisapplicable•Wastegasesfromtherefineryorgasplant,usedundertheprojectactivity,wereflared(notvented)forthelastthreeyearspriortotheimplementationoftheprojectactivity;•Thewastegasrecoverydeviceisplacedjustbeforetheflareheader(withnopossibilityofdiversionsoftherecoveredgasflow)andafterallthewastegasgenerationdevices;•Therecoveredwastegasreplacesfossilfuelthatisusedforgeneratingheatforprocesseswithinthesamerefineryorgasplant;•Thecomposition,densityandflowofwastegasaremeasurable.ImportantparametersAtvalidation:•Historicalannualaverageamountofwastegassenttoflaresbeforetheprojectimplementation.Monitored:•Parameterstocalculatetheemissionfactorforconsumedelectricity;•Amountandcompositionofrecoveredwastegas(e.g.density,LHV)anddataneededtocalculatetheemissionfactoroffossilfuelusedforprocessheatingandsteamgenerationwithintherefineryorgasplant.BASELINESCENARIOUseoffossilfueltogenerateprocessheat.Wastegasisflared.PROJECTSCENARIOUseofrecoveredwastegastogenerateprocessheat.Thereby,fossilfuelusageisreducedandwastegasisnotflaredanymore.AM0055RecoveryandutilizationofwastegasinrefineryorgasplantCOCOFossilfuelWstesRenerFlrinHetHetFlrinCOCOFossilfuelWstesRenerHetHetAM0055CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Completereplacementofexistingboilersbynewboilerswithahigherefficiencyinanexistingfacilitywithsteamdemandsorretrofittingofexistingboilersinordertoincreasetheirefficiency;oracombinationwithoneorbothactivitiesdescribedaboveandaswitchinthetypeoffossilfuelusedtofuelboilers.TypeofGHGemissionsmitigationaction•Energyefficiency.Technologyswitchresultinginanincreaseinenergyefficiency.Importantconditionsunderwhichthemethodologyisapplicable•Theprojectboilersutilizefossilfuelstoproducesteam;•Thecompliancewithnational/localregulationsarenotthecauseofthedevelopmentoftheproject;•Steamquality(i.e.steampressureandtemperature)isthesamepriorandaftertheimplementationoftheproject;•Onlyonetypeoffossilfuelisusedinallboilersincludedintheprojectboundary.ImportantparametersMonitored:•Quantityoffuelusedintheboilers;•Quantityofsteamproduced;•Temperatureandpressureofthesteamproduced.BASELINESCENARIOContinuationofthecurrentsituation,i.e.useoftheexistingboilerswithoutfossilfuelswitch,replacementofretrofitoftheboilers.PROJECTSCENARIOCompletereplacementofboilers,and/orretrofittingofanexistingsteamgeneratingsystemresultsinhigherefficiencyandlessconsumptionoffossilfuel(fuelswitchmayalsobeanelementoftheprojectscenario).FossilfuelStemBoilerCOFossilfuelStemBoilerUprdeCOAM0056Efficiencyimprovementbyboilerreplacementorrehabilitationandoptionalfuelswitchinfossilfuel-firedsteamboilersystemsAM0056CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Agriculturalwastesareusedasfeedstockforpulp,paper,cardboard,fibreboardorbio-oilproductioninanewfacility,wheretheendproductissimilarincharacteristicsandqualitytoexistinghighqualityproductsinthemarketanddoesnotrequirespecialuseordisposalmethods.TypeofGHGemissionsmitigationaction•GHGemissionavoidance.AvoidanceofCH4emissions.Importantconditionsunderwhichthemethodologyisapplicable•Anewproductionfacilityisbeingconstructed;•Wasteisnotstoredinconditionsthatwouldgeneratemethane;•Productiondoesnotinvolveprocessesthatemitsignificantadditionalgreenhousegasemissionsexceptfromthosearisingdirectlyfrompyrolysis(bio-oilonly)processesthatwerealsousedinthebaselineorassociatedwithelectricityorfossilfuelconsumption;•Ifbiomassiscombustedforthepurposeofprovidingheatorelectricitytotheplant,thenthebiomassfuelisderivedfrombiomassresidues;•Inthecaseofbio-oil,thepyrolyzedresidues(char)willbefurthercombustedandtheenergyderivedthereofusedintheproject.ImportantparametersMonitored:•Quantityofwasteusedasfeedstock;•Fossilfuelandelectricityconsumption;•Transportationparameter–distance,fueltypeandloaddetails;•Agriculturalwasteresidues–producedintheregion,usedinandoutsidetheprojectandsurplus.BASELINESCENARIOAgriculturalresiduesarelefttodecayanaerobically.PROJECTSCENARIOAgriculturalresiduesareusedasfeedstockinanewfacilityforproducingpaper,pulp,cardboard,fibreboardorbio-oil.AM0057Avoidedemissionsfrombiomasswastesthroughuseasfeedstockinpulpandpaper,cardboard,fibreboardorbio-oilproductionBiomssDisposlBiosCHRelesePulp/pperCHBiomssFeedstockDisposlBiosReleseAM0057CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Introductionofadistrictheatingsystemsupplyingheatfromafossilfuel-firedpowerplantand/orbynewcentralisedboilers.Itreplacesdecentralisedfossilfuelfiredheatonlyboilers.TypeofGHGemissionsmitigationaction•Energyefficiency.Displacementoffossil-fuel-basedheatgenerationbyutilizationofheatextractedfromapowerplantand/orbyamoreefficientcentralizedfossilfuelfiredboiler.ImportantconditionsunderwhichthemethodologyisapplicableTheheatsuppliedbytheprojectiseitherfrom:•Existinggridconnectedthermalpowerplantwithnosteamextractionforheatingpurposes,otherthanthatrequiredfortheoperationofthepowerplantauxiliarysystems,priortotheprojectactivity;or•Anewcentralisedheatonlyboiler(s);or•Acombinationofboth(a)and(b).ImportantparametersAtvalidation:•Efficiencyoftheheatsupplyandfueltypesinthebaseline;•Minimumandmaximumpowergenerationduringthelastthreeyears.Monitored:•Quantityofheatfromthecogenerationplantandfromallheatonly/peakloadboilersintheproject;•Quantityofheatsuppliedfromeachsub-stationtothebuildings.BASELINESCENARIOFossilfuelisusedinapowerplantthatonlysuppliesgridelectricity;fossilfuelisusedinindividualboilersthatsupplyheattousers.PROJECTSCENARIOAnewdistrictheatingnetworkissuppliedbyheatprovidedbyapowerplantand/orcentralizedboilers.AM0058IntroductionofanewprimarydistrictheatingsystemCOHetFossilfuelPowerplntElectricitConsumerHetCOFossilfuelHetReleseCOCOHetFossilfuelFossilfuelPowerplntHetElectricitHetCOHetFossilfuelConsumerReleseHetWomenndchildrenAM0058CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Technologyimprovementataprimaryaluminiumsmelter(PFPB,CWPB,SWPB,VSSorHSS)usingcomputerizedcontrolsorimprovedoperatingpractices,toreducePFCemissionsand/ortoimproveelectricalenergyefficiency.TypeofGHGemissionsmitigationaction•Energyefficiency;•GHGemissionavoidance.AvoidanceofPFCemissionsandelectricitysavingsleadingtolessGHGemissions.Importantconditionsunderwhichthemethodologyisapplicable•Theprojectislimitedtochangesofthesmeltingtechnology;•Atleastthreeyearsofhistoricaldataforestimatingbaselineemissionsareavailable.ImportantparametersAtvalidation:•Iflessthan95%oftheanodeeffectsaremanuallyterminated,numberanddurationofanodeeffectoranodeeffectover-voltage,andcurrentefficiency;•PFCemissions;•Ifapplicable:gridemissionfactor(canalsobemonitoredexpost).Monitored:•Quantityofaluminiumproducedintheproject;•Quantityofelectricityimportedfromcaptiveplantsandthegrid;•PFCemissions;•Ifapplicable:electricityfactorforcaptivegeneratedelectricity.BASELINESCENARIOElectricityisconsumedtoproducealuminiumandtheproductionprocessleadstoPFCemissions.PROJECTSCENARIOLesselectricityisconsumedtoproducealuminiumandtheproductionprocessleadstolessPFCemissions.AM0059ReductioninGHGsemissionfromprimaryaluminiumsmeltersCOPFCGridAluminiumPowerplntElectricitFossilfuelCOGridPFCAluminiumPowerplntElectricitUprdeFossilfuelAM0059CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Theone-to-onereplacementofexistingelectricity-drivenchillersbymore-energy-efficientnewchillerswithsimilarratedoutputcapacitytotheexistingones.TypeofGHGemissionsmitigationaction•Energyefficiency.Electricitysavingsthroughenergyefficiencyimprovement.Importantconditionsunderwhichthemethodologyisapplicable•Foreachchillerreplacement,theratedoutputcapacityofthenewchillerisnotsignificantlylargerorsmaller(maximum±5%)thantheexistingchiller;•Thechillerisusedtogeneratechilledwaterorawater/antifreezemixture(e.g.waterwithadditionofglycol)forprocesscoolingorairconditioning;•Theexistingandnewchillersaredrivenbyelectricalenergy;•Theexistingchillersarefunctioningandfullyoperationalandcancontinuetooperateforseveralyearsifregularmaintenanceisundertaken;•Theexistingchillersaredestroyed,andtherefrigerantcontainedintheexistingchillerwillberecoveredanddestroyed,orstoredinsuitablecontainers.ImportantparametersAtvalidation:•Powerconsumptionfunctionoftheexistingchillers;•Gridemissionfactor(canalsobemonitoredexpost).Monitored:•Averagechilleroutputofthenewchillers;•Averageinlettemperatureofcondensingwaterofthenewchillers;•Averageinletandoutlettemperatureofchilledwatersuppliedbythenewchillers.BASELINESCENARIOContinuedoperationoftheexisting,less-energy-efficientchillers.PROJECTSCENARIOOperationofenergy-efficientchillers,resultinginlowerCO2emissions.AM0060PowersavingthroughreplacementbyenergyefficientchillersElectricitChillerGridElectricitFossilfuelCOGHGGridElectricitFossilfuelCOUprdeElectricitChillerGHGAM0060CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Implementationofmeasurestoincreasetheenergyefficiencyofexistingpowerplantsthatsupplyelectricitytothegrid.Examplesofthesemeasuresare:thereplacementofwornbladesofaturbinebynewones;theimplementationofnewcontrolsystems;replacementofdeficientheatexchangersinaboilerbynewones,ortheinstallationofadditionalheatrecoveryunitsinanexistingboiler.TypeofGHGemissionsmitigationaction•Energyefficiency.Technologyswitchresultinginanincreaseinenergyefficiencyinanexistingpowerplant.Importantconditionsunderwhichthemethodologyisapplicable•Theprojectdoesnotinvolvetheinstallationandcommissioningofnewelectricitygenerationunits;•Thedesignedpowergenerationcapacityofeachunitmayincreaseasaresultoftheprojectbutthisincreaseislimitedto15%oftheformerdesignpowergenerationcapacityofthewholeplant;•Theexistingpowerplanthasanoperationhistoryofatleast10yearsanddataonfuelconsumptionandelectricitygenerationforthemostrecentfiveyearspriortotheimplementationoftheprojectareavailable;•Onlymeasuresthatrequirecapitalinvestmentcanbeincluded.Consequently,regularmaintenanceandhousekeepingmeasurescannotbeincludedintheproject.ImportantparametersMonitored:•Energyefficiencyoftheprojectpowerplant;•Quantityoffuelusedintheprojectpowerplant;•Calorificvalueandemissionfactorofthefuelusedintheprojectpowerplant;•Electricitysuppliedtothegridbytheprojectpowerplant.BASELINESCENARIOContinuationoftheoperationofthepowerplant,usingallpowergenerationequipmentalreadyusedpriortotheimplementationoftheproject,andundertakingbusinessasusualmaintenance.PROJECTSCENARIOImplementationofenergyefficiencyimprovementmeasuresortherehabilitationofanexistingfossil-fuel-firedpowerplant.Asaresult,lessfossilfuelisconsumedtogenerateelectricity.AM0061Methodologyforrehabilitationand/orenergyefficiencyimprovementinexistingpowerplantsCOFossilfuelElectricitPowerplntElectricitFossilfuelUprdeCOElectricitPowerplntElectricitAM0061CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Implementationofmeasurestoincreasetheenergyefficiencyofsteamorgasturbinesinexistingpowerplantsthatsupplyelectricitytothegrid.Examplesofthesemeasuresare:replacementofwornbladesofaturbinebynewones;implementationofrefinedsealingtoreduceleakage;replacementofcompleteinnerblocks(steampath,rotor,innercasing,inletnozzles).TypeofGHGemissionsmitigationaction•Energyefficiency.Technologyswitchresultinginanincreaseinenergyefficiencyatanexistingpowerplant.Importantconditionsunderwhichthemethodologyisapplicable•Theprojectpowerplantutilizesfossilfueltooperate;•Measuresrelatedtorecommendedregularorpreventivemaintenanceactivities(includingreplacementsandoverhauling)asprovidedbythemanufacturerofturbine,orsuperiorpracticesofpreventivemaintenance(e.g.sophisticatedcleaningsystemsresultinginimprovedefficiency)arenotapplicable;•Theoperationalparametersthataffecttheenergyefficiencyoftheturbine(e.g.steampressureandtemperature,qualityofsteaminthecaseofasaturatedsteamturbine;condenservacuum,andcombustiontemperatureforgasturbine)remainthesame,subjecttoavariationof±5%,inthebaselineandtheprojectscenario;•Themethodologyisapplicableuptotheendofthelifetimeoftheexistingturbine,ifshorterthanthecreditingperiod.ImportantparametersMonitored:•Quantity,calorificvalueandemissionfactoroffuelusedintheprojectpowerplant;•Electricitysuppliedtothegridbytheprojectpowerplant;•Enthalpyofthesteamsuppliedtotheturbine,incaseofsteamturbines.BASELINESCENARIOContinuationofthecurrentpractice,i.e.theturbinecontinuestobeoperatedwithoutretrofitting.PROJECTSCENARIORetrofittingofsteamturbinesandgasturbineswithcomponentsofimproveddesigntoincreasetheenergyefficiencyinanexistingfossilfuelpowerplant.Thus,fossilfuelconsumptionisreduced.AM0062EnergyefficiencyimprovementsofapowerplantthroughretrofittingturbinesCOFossilfuelElectricitPowerplntElectricitUprdeFossilfuelCOElectricitPowerplntElectricitAM0062CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)RecoveryofCO2fromthetailgas(TG)generatedbyanexistingindustrialfacilitytosubstitutethecombustionoffossilfuelsatanexistingconventionalCO2productionfacilityoranewCO2productionplant;anduseofintermediategas(IG)ofanewproductionfacility,forrecoveryofCO2inanewCO2productionplant,establishedaspartoftheprojectactivity.TypeofGHGemissionsmitigationaction•Feedstockswitch.Displacementofmore-GHG-intensivefeedstockwithCO2recoveredfromthetailgasorintermediategas.Importantconditionsunderwhichthemethodologyisapplicable•Thetailgasfromtheexistingindustrialfacilityhasbeenproducedforaslongastheindustrialfacilityhasbeeninoperation;•Thereexistatleastthreeyearsofhistoricalrecordsrelatedtotheoperationoftheindustrialfacilityfromwhichthetailgasisextracted;•Priortotheprojectimplementation,thetailgashaseitherbeenusedasfuelintheindustrialfacilitywithoutextractionoftheCO2orhasbeenflared;•ThetotalamountofCO2producedattheprojectfacilityshallnotbeconsumedattheprojectfacility(e.g.formanufacturingofchemicals)andhastobesoldwithinthehostcountry;•TheindustrialfacilitydoesnotutilizeCO2intheintermediategasforanyotherpurposeintheproductionprocess.ImportantparametersAtvalidation:•QuantityofCO2producedattheexistingCO2productionfacility;•ElectricityandfuelconsumptionattheexistingCO2productionfacility.Monitored:•Averagecarboncontentandvolumeofthetailgasand/orintermediategasdeliveredtotheprojectCO2productionfacility;•QuantityofCO2producedattheprojectCO2productionfacility;•Averagecarboncontentandvolumeoftheoffgascombustedattheindustrialfacility;•AmountandenduseofCO2purchasedbycustomersanddateofdelivery;•Quantityorvolumeofmainproductactuallyproducedinyear;•Quantityorvolumeofmainproductactuallysoldanddeliveredtocustomers.BASELINESCENARIOCombustionoffossilfuelataconventionalCO2productionfacility.PROJECTSCENARIORecoveryofCO2fromthetailgas/intermediategasgeneratedbyanexistingindustrialfacilityforuseattheprojectCO2productionfacility.AM0063RecoveryofCO2fromtailgasinindustrialfacilitiestosubstitutetheuseoffossilfuelsforproductionofCO2COProductionProductionFossilfuelCOBurninTG/IGBurninFossilfuelCOProductionProductionBurninCOTG/IGBurninAM0063CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Captureandutilizationordestructionofmethanefromanoperatingmine,excludingmineswherecoalisextracted;captureandutilizationordestructionofmethanereleasedfromgeologicalstructures,e.g.methanereleaseddirectlyfromholesdrilledingeologicalformationsspecificallyformineralexplorationandprospectingactivities.TypeofGHGemissionsmitigationaction•GHGdestruction.AvoidanceofGHGemissionsfromunderground,hardrock,preciousandbasemetalmines.Importantconditionsunderwhichthemethodologyisapplicable•Incasetheprojectiscaptureandutilizationordestructionofmethanefromanoperatingmine,thecapturedmethaneisutilizedtoproduceelectricity,motivepowerand/orthermalenergyand/ordestroyedthroughflaring.Priortothestartoftheprojectallmethanewasreleasedintotheatmosphereorpartiallyusedforheatgeneration;•Incasetheprojectiscaptureandutilizationordestructionofmethanereleasedfromgeologicalstructures,abandonedordecommissionedmines,aswellasopencastminesareexcluded.Coalextractionminesoroilshale,aswellasboreholesorwellsopenedforgas/oilexplorationorextractiondonotqualify;•Maximumoutsidediameteroftheboreholesshouldnotexceed134mm.ImportantparametersMonitored:•Concentrationofmethaneinextractedgas;•Quantityofmethanesenttopowerplant,boilerandgasgridforendusers;•Quantityofelectricityandheatgeneratedbytheproject.BASELINESCENARIOMethaneisemittedfromoperatingminesandgeologicalstructuresintotheatmosphere.PROJECTSCENARIOMethaneiscapturedanddestroyedorutilizedforenergygeneration.CHMininCHReleseEnerCOMininCHFlrinReleseCHAM0064Captureandutilisationordestructionofminemethane(excludingcoalmines)ornonminemethaneAM0064CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)FullorpartialreplacementoftheuseofcovergasSF6,aninertgasusedtoavoidoxidationofmoltenmagnesiumincastingandalloyingprocesses,byalternatecovergas(HFC134a,Perfluoro-2-methyl-3-pentanone(CF3CF2C(O)CF(CF3)2)orSO2usingleanSO2technology),inexistingfacilitiesofmagnesiummetalcastindustry.TypeofGHGemissionsmitigationaction•GHGemissionavoidance.AvoidanceofSF6emissionsbytheuseofalternatecovergas.Importantconditionsunderwhichthemethodologyisapplicable•ProjectofSF6replacementcanbeimplementedinallsegmentsofthemagnesiummetalcastindustry,asdefinedinthemethodology;•Themagnesiummetalcastfacilityhasanoperatinghistoryofatleastthreeyearspriortotheprojectimplementation;•IfSO2isusedascovergasintheproject,only“diluteSO2”technologyisusedthatmeetsthespecificationsprovidedinmethodology;•LocalregulationsinthehostcountryregardingSO2emissionsintheexhaustingsystemshouldbecompliedwith.Ifsuchregulationsarenotinplace,thevaluesofSO2emissionsgiveninthemethodologyshouldbecompliedwith.ImportantparametersAtvalidation:•Amountofmagnesiummanufacturedinthemostrecentthreeyears;•SF6consumptioninthemagnesiumcastfacilityinthemostrecentthreeyearspriortotheprojectimplementation.Monitored:•Amountofmagnesiummanufacturedintheproject;•Consumptionofalternatecovergasintheproject;•ConsumptionofSF6orCO2intheproject,ifany.BASELINESCENARIOSF6continuestobeusedascovergasinmagnesiummetalcastindustry,leadingtoitsemissionfromtheprocesses.PROJECTSCENARIOSF6isreplacedwithalternatecovergas,resultinginavoidanceofSF6emissions.AM0065ReplacementofSF6withalternatecovergasinthemagnesiumindustryMnesiumSFSFSFReleseMnesiumSFAlterntiveSFSFGHGReleseAM0065CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Wasteheatreleasedfromfurnace(s)/kiln(s)isutilizedtopreheatrawmaterial(s)inanexistingorGreenfieldspongeironmanufacturingfacility.TypeofGHGemissionsmitigationaction•Energyefficiency.Energyefficiencyimprovementleadingtoreducedspecificheatconsumption.Importantconditionsunderwhichthemethodologyisapplicable•Theprojectisimplementedeitherforanindividualfurnace/kilnoragroupoffurnaces/kilnsproducingthesametypeofoutput;•Wasteheattobeutilizedisgeneratedintheprojectfurnace(s)/kiln(s);•Onlysolidmatterwithoutscrap/productrejectsisusedasrawmaterial;•Intheproject,therawmaterialisfeddirectlyfromthepreheatertothefurnace/kiln.However,thepossibilitytobypassthepreheaterequipmentremains.ImportantparametersAtvalidation:•Historicalproductionandfossilfuelconsumption.Monitored:•Quantity,chemicalcompositionandphysicalstate(includingthepercentageofthemetallization)ofrawmaterialsandfinalproduct;•Typeandquantitiesoffossilfuel;•Quantityofthermalandelectrical(fromthegridandfromthecaptivepowerplant,respectively)energyconsumed.BASELINESCENARIOFossilfuelisfiredfortheprocess.Theresultingheatfromfurnace(s)/kiln(s)isnotutilizedandinsteadvented.PROJECTSCENARIOLessfossilfuelisfiredintheprocess.Theheatfromfurnace(s)/kiln(s)isusedtopreheatrawmaterial(s)beforefeedingitintothefurnace(s)/kiln(s).COFossilfuelIronHetReleseFossilfuelIronCOHetReleseAM0066GHGemissionreductionsthroughwasteheatutilisationforpre-heatingofrawmaterialsinspongeironmanufacturingprocessAM0066CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Replacementofexistingless-efficienttransformerswithmore-efficienttransformersinanexistingdistributiongridortheinstallationofnewhigh-efficienttransformersinnewareasthatarecurrentlynotconnectedtoadistributiongrid.TypeofGHGemissionsmitigationaction•Energyefficiency.Implementationofhigh-efficienttransformersreduceslossesinthegridandtherebyGHGemissions.Importantconditionsunderwhichthemethodologyisapplicable•Emissionreductionsduetoreductioninno-loadlossesaloneareclaimed;•Loadlosses,atratedload,ofthetransformersimplementedundertheprojectaredemonstratedtobeequalorlowerthantheloadlossesintransformersthatwouldhavebeeninstalledinabsenceoftheproject;•Projectproponentimplementsascrappingsystemtoensurethatthereplacedtransformersarenotusedinotherpartsofthedistributiongridorinanotherdistributiongrid.ImportantparametersAtvalidation:•Averageofno-loadlossrateprovidedbythemanufacturersofalltypeoftransformers;•Gridemissionfactor(canalsobemonitoredexpost).Monitored:•Cumulativenumberoftransformersinstalledbytheprojectaswellasrelatedload-lossratesandtheblackoutrate.BASELINESCENARIOLess-efficienttransformersareinstalledinexistingdistributiongridsorwillbeinstalledinnewdistributiongrids.PROJECTSCENARIOHigh-efficienttransformersareinstalledinexistingdistributiongridsorwillbeinstalledinnewdistributiongridsresultinginlowerelectricitygenerationrequirementsandtherebyareductionofGHGemissions.COElectricitElectricitGridElectricitConsumerFossilfuelCOElectricitElectricitGridElectricitConsumerUprdeFossilfuelAM0067MethodologyforinstallationofenergyefficienttransformersinapowerdistributiongridAM0067CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Theprojectisimplementedtoimproveenergyefficiencyofanexistingferroalloyproductionfacility.Improvementincludesmodificationofexistingsubmergedelectricarcsmeltingfurnace(s)intoopenslagbathsmeltingfurnace(s)ormodificationofexistingco-currentrotarykilnsintocounter-currentrotarykilns.Theexistingfacilityislimitedtothesubmergedelectricarcsmeltingfurnace(s)androtarykilnsproducingonlyonetypeofferroalloy,asdefinedbythecompositionofitsingredients.TypeofGHGemissionsmitigationaction•Energyefficiency.Switchtomore-efficienttechnology.Importantconditionsunderwhichthemethodologyisapplicable•Theprojectincludesatleastthemodificationof“submergedbathelectricfurnaces”to“openslagbathmeltingfurnaces”andcanalsoincludeamodificationof“co-currentrotarykilns”to“counter-currentrotarykilns”;•Onlyonetypeofferroalloyisproducedatthefacilityanditstypeandqualityisnotaffectedbytheprojectandremainsunchangedthroughoutthecreditingperiod;•Dataforatleastthethreeyearsprecedingtheimplementationoftheprojectisavailabletoestimatethebaselineemissions.ImportantparametersAtvalidation:•Quantityandqualityofferroalloysproduced;•Consumptionofelectricityandfossilfuelsinrotarykilnsandsmeltingfurnaces;•Gridemissionfactor(canalsobemonitoredexpost).Monitored:•Quantityandqualityofferroalloyproduced;•Consumptionofelectricityandfossilfuelsinrotarykilnsandsmeltingfurnaces;•Nonenergy-relatedcarbonstreams(quantitiesandcarboncontentofreducingagentsanditsvolatiles,ore,slagformingmaterial,nonproductstream,etc.).BASELINESCENARIOEnergy(fossilfuelandelectricity)isusedinaferroalloyproductionfacility,leadingtoCO2emissions.PROJECTSCENARIOLessenergy(fossilfuelandelectricity)isusedinaferroalloyproductionprocess,leadingtolowerCO2emissions.AM0068MethodologyforimprovedenergyefficiencybymodifyingferroalloyproductionfacilityCOFossilfuelFerrolloElectricitPowerplntGridFossilfuelCOFossilfuelFerrolloElectricitPowerplntGridUprdeFossilfuelAM0068CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Captureofbiogasatawastewatertreatmentfacilityoralandfillanduseofthebiogastofullyorpartiallysubstitutenaturalgasorotherfossilfuelsasfeedstockandfuelfortheproductionoftowngas.TypeofGHGemissionsmitigationaction•GHGdestruction;•Renewableenergy;•Feedstockswitch.CH4emissionsareavoidedandfossilfuelisreplaced.Importantconditionsunderwhichthemethodologyisapplicable•Thereisnochangeinthequalityoftheproducedtowngas;•Towngasconsumerand/ordistributiongridarewithinthehostcountryboundaries;•Biogasiscapturedatanexistinglandfillsiteorwastewatertreatmentfacilitythathasatleastathree-yearrecordofventingorflaringofbiogas.Biogaswouldcontinuetobeventedorflaredintheabsenceoftheproject;•Projectisimplementedinanexistingtowngasfactorythatusedonlyfossilfuels,nobiogas,foratleastthreeyearspriortothestartoftheproject.ImportantparametersMonitored:•Quantityandcalorificvalueoftowngasproduced;•Quantityandcalorificvalueofthebiogasandfossilfuelusedasfeedstock.BASELINESCENARIOVentingorflaringofbiogasatthesitewhereitiscapturedanduseoffossilfuelasfeedstockfortowngasproduction.PROJECTSCENARIOCaptureofbiogasfromlandfillsand/orwastetreatmentplantsanduseofittoreplacefossilfuel.GHGCOReleseFlrinFossilfuelTownsTownsBiosLndllBurninLoonCOFossilfuelTownsTownsBiosLndllGHGFlrinReleseBurninLoonAM0069BiogenicmethaneuseasfeedstockandfuelfortowngasproductionAM0069CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Increaseintheenergyefficiencyofmanufacturedrefrigerators.TypeofGHGemissionsmitigationaction•Energyefficiency.Increaseinenergyefficiencytoreduceelectricityconsumedperunitofserviceprovided.Importantconditionsunderwhichthemethodologyisapplicable•Refrigeratorsareusedbyhouseholdsonacontinuousbasis;•NoincreaseintheGWPofrefrigerantsandfoamblowingagentsused;•Nochangeinthegeneraltypeofrefrigerators;•Ifalabellingschemeisusedtodeterminetheratedelectricityconsumptionofrefrigerators,thenitmustcover30%ofthemarketshareandincludethemostefficientrefrigeratorsinthehostcountry.ImportantparametersAtvalidation:•Autonomousimprovementratio;•Informationonhistoricalsales(quantity,storagevolumes,ratedelectricityconsumption);•Gridemissionfactor(canalsobemonitoredexpost).Monitored:•Quantityofrefrigeratorssold;•Specifications(model,designtypeandvolumeclass)ofrefrigeratorssold;•Electricityconsumptionofrefrigeratorsinthemonitoringsamplegroup.BASELINESCENARIOHighelectricityconsumptionbyinefficientdomesticrefrigeratorsresultsinhighCO2emissionsfromgenerationofelectricity.PROJECTSCENARIOLowerelectricityconsumptionbymore-efficientdomesticrefrigeratorsresultsinlessCO2emissionsfromgenerationofelectricity.COElectricitGridRefriertorsFossilfuelUprdeCOElectricitGridRefriertorsFossilfuelAM0070ManufacturingofenergyefficientdomesticrefrigeratorsWomenndchildrenAM0070CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)SwitchingfromahighGWPtolowGWPrefrigerantwhilemanufacturingandrefillingdomesticand/orsmallcommercialrefrigerationappliances.TypeofGHGemissionsmitigationaction•Feedstockswitch.AvoidanceofGHGemissionbyswitchingfromhigh-GWPrefrigeranttolow-GWPrefrigerant.Importantconditionsunderwhichthemethodologyisapplicable•ThemanufacturerhasbeenproducingrefrigerationappliancesusingHFC-134aforatleastthreeyearsandhasnotbeenusinglow-GWPrefrigerantspriortothestartoftheproject;•Onlyonelow-GWPrefrigerantisusedinmanufacturingandrefillingofrefrigerationappliances;•Theprojectdoesnotleadtoadecreaseinenergyefficiency;•Importedrefrigerationappliancesshallnotbeincludedintheproject;•Lessthan50%ofthedomesticrefrigerantproductionuselowGWPrefrigerants.ImportantparametersAtvalidation:•Historicalproductionofrefrigeratorssoldinhostcountrywithinitialcharge.Monitored:•Initialrefrigerantchargeintheprojectanditsdistributionlosses;•Quantitiesandmodelsofappliancesmanufacturedandexported;•Numberofrejectunitsofrefrigerationappliancemodel;•Failurerateinvolvingrefrigerantrecharge.BASELINESCENARIOProductionofrefrigerationapplianceswithhigh-GWPrefrigerant.PROJECTSCENARIOProductionofrefrigerationapplianceswithlow-GWPrefrigerant.HFCHFCRefriertorsRefriertorsRefrierntGHGRefriertorsRefrierntRefrierntRefriertorsHFCHFCRefriertorsAM0071Manufacturingandservicingofdomesticand/orsmallcommercialrefrigerationappliancesusingalowGWPrefrigerantWomenndchildrenAM0071CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Introductionofacentralizedgeothermalheatsupplysystemforspaceheatinginbuildings.Thegeothermalheatsupplysystemcanbeanewsysteminnewbuildings,thereplacementofexistingfossilfuelsystemsortheadditionofextrageothermalwellstoanexistingsystem.TypeofGHGemissionsmitigationaction•Renewableenergy.Displacementofmore-GHG-intensivethermalenergygeneration.Importantconditionsunderwhichthemethodologyisapplicable•Usegeothermalresourcesforcentralizedspace-heatingsysteminresidential,commercialand/orindustrialareas;•UseofGHG-emittingrefrigerantsisnotpermitted;•Theheatdrawnfromthegeothermalwaterreplaces,partiallyorcompletely,theuseoffossilfuelinthebaselinesituationwhereasamaximumincreaseofthepreviouscapacityof10%iseligible(otherwiseanewbaselinescenariohastobedeveloped).ImportantparametersAtvalidation:•Ifapplicable:threeyearsofhistoricaldataforfossilfuelsystem,e.g.averagethermalenergyoutputorfuelconsumption.Monitored:•Temperaturedifferencebetweeninletandoutlettemperaturesaswellasflowrateatthedownstreamofthegeothermalheatexchangerandthenetheatingareaofthebuildingsincludedintheprojectboundary;•Geothermalnon-condensablegas(CO2andCH4)producedaftertheimplementationoftheproject.BASELINESCENARIOFossilfuelisusedasenergysourceforspaceheatingPROJECTSCENARIOInstallationofanewgeothermalsysteminnewbuilding(s),replacementofexistingfossilfuelheatingsystemsorexpansionofcapacityofanexistinggeothermalsysteminsteadofusingfossilfuel.AM0072FossilfueldisplacementbygeothermalresourcesforspaceheatingFossilfuelConsumerHetCOHetHetFossilfuelGeothermlHetCOConsumerHetHetAM0072CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Manureiscollectedbytanktrucks,canalizedand/orpumpedfrommultiplelivestockfarmsandthentreatedinasinglecentraltreatmentplant.TypeofGHGemissionsmitigationaction•GHGdestruction.ReleaseofCH4emissionsisavoidedbycombustionofmethane.Importantconditionsunderwhichthemethodologyisapplicable•Livestockfarmpopulationsaremanagedunderconfinedconditions;•Manureisnotdischargedintonaturalwaterresources(e.g.riversorestuaries);•Animalresiduesaretreatedunderanaerobicconditionsinthebaselinesituation(conditionsforthistreatmentprocessarespecified);•Iftreatedresidueisusedasfertilizerinthebaseline,thenthisendusecontinuesundertheproject;•Sludgeproducedduringtheprojectisstabilizedthroughthermaldryingorcomposting,priortoitsfinaldisposition/application.ImportantparametersMonitored:•Volume,volatilesolidsandtotalnitrogenoftheeffluentandresiduesbeingtreatedorproducedatthecentraltreatmentplant;•Auxiliaryenergyusedtorunprojecttreatmentsteps;•Electricityorheatgeneratedbytheuseofbiogas.BASELINESCENARIOAnaerobicmanuretreatmentsystemswithoutmethanerecoveryresultinCH4emissions.PROJECTSCENARIOManurefromfarmsiscollectedandprocessesinacentraltreatmentplant.Methaneiscapturedandflaredorused.Incaseofenergeticuseofbiogas,displacementofmore-GHG-intensiveenergygeneration.MnureLivestockBiosCHReleseTretmentTretmentBiosTretmentBiosReleseCHMnureLivestockFlrinEnerAM0073GHGemissionreductionsthroughmulti-sitemanurecollectionandtreatmentinacentralplantAM0073CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Constructionandoperationofapowerplantthatsupplieselectricitytothegridandusespermeategas,lowheatingvalueoff-gasresultantfromtheprocessingofnaturalgas,asfueltooperatethepowerplant.TypeofGHGemissionsmitigationaction•Lowcarbonelectricity.Displacementofelectricitythatwouldbeprovidedbymore-carbon-intensivemeans.Importantconditionsunderwhichthemethodologyisapplicable•Thetotalamountofpermeategasfromthegasprocessingfacilitywasflaredand/orventedforatleastthreeyearspriortothestartoftheproject;•Thetransportationofthepermeategasfromthenaturalgasprocessingfacilitytothenewpowerplantoccursthroughadedicatedpipelinethatisestablishedaspartoftheprojectandnotusedforthetransportationofanyothergases;•Allpowerproducedbytheprojectpowerplantisexportedtothegrid.ImportantparametersAtvalidation:•FugitiveCH4emissionfactorofallrelevantequipmenttypesusedtotransportthepermeategas;•Lowheatingvalueofpermeategas;•Annualaveragequantityofpermeategasflaredand/orventedinthreeyearspriortothestartoftheprojectactivity.Monitored:•Electricitysuppliedtothegridbytheprojectpowerplant;•Averagemassfractionofmethaneinthepermeategas;•Operationtimeofequipmentusedtotransportthepermeategas;•Baselineemissionfactorforprojectelectricitysystem;•Quantityofpermeategasusedforelectricitygeneration.BASELINESCENARIOPermeategasisflaredand/orvented.Electricityisgeneratedusingprocessednaturalgasorotherenergysourcesthanpermeategas,orelectricityisprovidedbythegrid.PROJECTSCENARIOPermeategas,previouslyflaredand/orventedattheexistingnaturalgasprocessingfacility,isusedasfuelinanewgrid-connectedpowerplant.AM0074Newgridconnectedpowerplantsusingpermeategaspreviouslyflaredand/orventedCOFossilfuelPowerplntGridFlrin/VentinCOElectricitProductionPermetesElectricitCOElectricitPowerplntProductionPowerplntGridPermetesFlrin/VentinFossilfuelElectricitCOAM0074CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeAM0075Methodologyforcollection,processingandsupplyofbiogastoend-usersforproductionofheatTypicalproject(s)Processingandupgradingthebiogascollectedfrombiogasproducingsite(s)inanewbiogasprocessingfacilityandsupplyingittoexistingend-user(s)toproduceheatinheatgenerationequipmentsforon-siteuse.TypeofGHGemissionsmitigationaction•GHGdestruction;•Renewableenergy.Switchingfrommore-carbon-intensivefueltobiogasthatwaspreviouslyflaredorvented.Importantconditionsunderwhichthemethodologyisapplicable•Thebiogasisobtainedfromoneorseveralexistingbiogasproducingsite(s)thathavetobeidentifiedexante;•Thebiogaswaseitherventedorflaredpriortoimplementationoftheproject;•Allheatgenerationequipmentsincludedintheprojecthavetobeidentifiedexante,andithastobedemonstratedthatthesewereusingonlyfossilfuelpriortoimplementationoftheproject;•Anytransportationofbiogasorprocessedbiogasoccursonlythroughdedicatedpipelinesorbyroadvehicles.ImportantparametersMonitored:•Amountandnetcalorificvalueofprocessedbiogassuppliedtotheboilerorheatgenerationequipment(s);•Amountofthesteamorheatproducedintheboilerorheatgenerationequipment(s);•Amountandnetcalorificvalueoffossilfuelusedintheboilerorheatgenerationequipment.BASELINESCENARIOUseoffossilfuelinheatgenerationequipmentsandbiogasisflaredorvented.PROJECTSCENARIOUpgradedbiogasburnedintheheatgenerationequipmentsavoidingtheuseoffossilfuel.COBiosHetHetDisposlConsumerLoonFossilfuelFlrin/VentinBiosFlrin/VentinFossilfuelHetHetDisposlCOConsumerLoonAM0075CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeAM0076ImplementationoffossilfueltrigenerationsystemsinexistingindustrialfacilitiesTypicalproject(s)Installationofanon-sitefossil-fuel-basedtrigenerationplanttosupplyelectricity,steamandchilledwatertoanindustrialfacility.TypeofGHGemissionsmitigationaction•Energyefficiency.Displacementofelectricity,heatandcoolingthatwouldbeprovidedbymore-carbon-intensivemeans.Importantconditionsunderwhichthemethodologyisapplicable•Thebaselineistheseparatesupplyofelectricityfromthegrid,heatsuppliedbyanon-sitefossilfuelfiredboilerandchilledwaterfromon-siteelectricalcompressionchillers;•Therehavebeennocogeneration(CHP)ortrigeneration(CCHP)systemsoperatingintheindustrialfacilitypriortotheproject;•Nosteamorchilledwaterisexportedintheproject;•Chillersintheprojectareheatdriven(absorptionchillers).ImportantparametersAtvalidation:•Outputefficiencyofthebaselineboiler;•Powerconsumptionfunctionofthebaselinechiller.Monitored:•Electricityproduced/purchased/soldbythetrigenerationplant;•Quantityoffuelsusedinthetrigenerationplant;•Quantity,temperatureandpressureofsteamproducedbythetrigenerationplant;•Quantityandtemperatureofchilledwaterproducedbythetrigenerationplant.BASELINESCENARIOSeparatesupplyofelectricityfromthegrid,chilledwaterusinggridelectricityandsteambyafossil-fuel-firedboiler.PROJECTSCENARIOAfossilfuel-firedtrigenerationplantgeneratesdirectlyattheindustrialfacilityelectricity,steamandchilledwaterresultinginoveralllowerCO2emissions.HetElectricitConsumerCoolinCOFossilfuelHetGridHetElectricitConsumerCoolinFossilfuelTrienertionCOHetCOGridFossilfuelAM0076CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Associatedgasfromoilwellsthatwaspreviouslyflaredorvented,isrecoveredandprocessedinanewgasprocessingplantalongwith,optionally,non-associatedgas.Theprocessedgasisdeliveredtoclearlyidentifiablespecificend-user(s)bymeansofCNGmobileunitsand/ordeliveredintoanexistingnaturalgaspipeline.TypeofGHGemissionsmitigationaction•Fuelswitch.Recoveryofassociatedgasfromoilwellsthatwouldotherwisebeflaredorventedfordisplacementofnon-associatedgasinanewgasprocessingplant.Importantconditionsunderwhichthemethodologyisapplicable•Therecoveredgascomesfromoilwellsthatareinoperationandproducingoilatthetime.Recordsofflaringorventingoftheassociatedgasareavailableforatleastthreeyears;•Theprocessedgasisconsumedinthehostcountry(ies)only;•Iftheprojectoilwellsincludegas-liftsystems,thegas-liftgashastobeassociatedgasfromtheoilwellswithintheprojectboundary;•Thenaturalgascanbeusedonlyinheatgeneratingequipment.ImportantparametersMonitored:•Quantityandcarboncontentofgasmeasuredatvariouspoints,i.e.recoveredassociatedgas,non-associatedgasfromnaturalgaswells,gasorotherfossilfuelconsumedonsite,gasdeliveredtoend-user(s),gasdeliveredtonaturalgaspipeline;•Ifapplicable:quantityandnetcalorificvalueoffuelconsumedinvehiclesfortransportationofCNG.BASELINESCENARIOAssociatedgasfromoilwellsisflaredorventedandendusersmeettheirenergydemandusingotherfossilfuel.PROJECTSCENARIOAssociatedgasfromoilwellsisrecoveredinsteadofflaredorventedanddisplacestheuseofotherfossilfuelbytheend-users.OilNturlsOilAssocitedsNturlsCOCOFlrin/VentinHetHetConsumerNturlsNturlsFlrin/VentinCOOilOilAssocitedsCOHetHetConsumerAM0077Recoveryofgasfromoilwellsthatwouldotherwisebeventedorflaredanditsdeliverytospecificend-usersAM0077CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)InstallationofacombustionorthermalabatementdevicetodestroySF6emissionsfromanLCDetchingplant.TypeofGHGemissionsmitigationaction•GHGdestruction.CombustionorthermaldestructionofSF6emissions.Importantconditionsunderwhichthemethodologyisapplicable•ProductionlineswithatleastthreeyearsofinformationaboutSF6purchaseandconsumptionandproductionofLCDsubstrateby31.january,2009;•Thereisnolocallaworregulationthatmandatesdecomposition,destruction,recyclingorsubstitutionofSF6oranycomponentofexhaustgasescontainingSF6;•TheSF6destructionshouldoccuratthesameindustrialsitewhereSF6isused,andtheSF6destroyedisnotimportedfromotherfacilities.ImportantparametersAtvalidation:•SF6consumptioninthemostrecentthreeyears;•ProductionofLCDsubstrateinthemostrecentthreeyears.Monitored:•MassofSF6gasenteringandexistingtheabatementdevice;•SF6consumptionintheproject;•ProductionofLCDsubstrate;•Electricityand/orfuelconsumptionfortheoperationoftheabatementdevice.BASELINESCENARIOSF6isreleasedtotheatmosphereafterbeingusedintheetchingofLCDunits.PROJECTSCENARIOSF6isrecoveredanddestroyedinanabatementunitlocatedaftertheetchingunit.SFLCDSFSFReleseCOLCDFossilfuelSFElectricitSFSFReleseDecompositionAM0078PointofuseabatementdevicetoreduceSF6emissionsinLCDmanufacturingoperationsAM0078CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeAM0079RecoveryofSF6fromgasinsulatedelectricalequipmentintestingfacilitiesTypicalproject(s)InstallationofarecoverysystemforusedSF6gasthatwouldbeventedafterthetestingofgas-insulatedelectricalequipmentatatestingfacility,andthenreclamationoftherecoveredSF6gasatanSF6productionfacility.TypeofGHGemissionsmitigationaction•GHGformationavoidance.AvoidanceofSF6emissionsbyrecoveryandreclamationoftheSF6emissions.Importantconditionsunderwhichthemethodologyisapplicable•TheSF6recoverysiteusesSF6inthetestingofgas-insulatedelectricalequipment,whichareperformedaspartofaratingprocess,orduringdevelopmentorproductionofnewelectricalequipment;•TherecoveredgasisreclaimedbyusingitasafeedstockintheproductionofnewSF6onthepremisesofanexistingSF6productionfacility;•Thetestingconsideredfortheprojectiselectricaltestsofmediumandhighvoltageratedequipment(>1kV);•Beforetheprojectimplementation,SF6gasusedintheequipmentforthetestsisventedaftertesting.ImportantparametersAtvalidation:•MassofSF6thatisventedduringtestingforatleastoneyearofhistoricaldata;•ConcentrationofSF6inarecoverycylinderforatleastoneyearofhistoricaldata.Monitored:•MassofSF6thatisfilledintoeachgas-insulatedelectricalequipment;•MassofSF6recoveredattherecoverysiteandusedasfeedstockatthereclamationsite;•ConcentrationofSF6inarecoverycylinder.BASELINESCENARIOSF6isreleasedtotheatmosphereafterthecompletionofthetestofagas-insulatedelectricalequipment.PROJECTSCENARIOSF6usedduringthetestisrecoveredandtransportedtoareclamationfacilitywheretherecoveredgaswillbere-injectedinthestreamtoproducenewSF6.SFTestinSFSFReleseRecclinSFSFSFReleseTestinSFAM0079CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Implementinganewaerobicwastewatertreatmentplantforthetreatmentofdomesticand/orindustrialwastewater,withsludgetreatedeitherinthesamemannerasthebaseline,orinanewanaerobicdigesterwithbiogascapture.Thebiogasiseitherflaredand/orusedtogenerateelectricityand/orheat.TypeofGHGemissionsmitigationaction•GHGemissionavoidance.AvoidanceofCH4emissionsfromwastewatertreatment.Importantconditionsunderwhichthemethodologyisapplicable•Theprojecteitherreplacesanexistinganaerobicopenlagoonsystem,withorwithoutconversionofthesludgetreatmentsystem,orisanalternativetoanewtobebuiltanaerobicopenlagoonsystem;•Loadinginthewastewaterstreamshastobehighenoughtoensurethatalgaloxygenproductioncanberuledoutinthebaseline;•Theaveragedepthoftheexistingornewtobebuiltanaerobicopenlagoonssystemisatleastonemetreandresidencetimeoftheorganicmatterisatleast30days.ImportantparametersMonitored:•Quantityandaveragechemicaloxygendemandofthewastewaterthatistreated;•Electricityandheatgeneratedwithbiogasfromthenewanaerobicdigester,ifapplicable;•Quantityofproducedsludge;•Fossilfuel,electricityandtransportationneededtooperatetheproject.BASELINESCENARIOWastewaterwouldhavebeentreatedinananaerobicopenlagoonsystemwithoutmethanerecoveryandflaring.Sludgewouldhavebeendumpedorlefttodecay,ordriedundercontrolledandaerobicconditionsandthendisposedtoalandfillwithmethanerecoveryorusedinsoilapplication.PROJECTSCENARIOInstallationofanewaerobicwastewatertreatmentplant.Sludgeistreatedeitherthesamewayasthebaselineorinanewanaerobicdigesterwiththebiogascapture.CHWstewterLoonBiosReleseCHWstewterBiosReleseLoonTretmentAirAM0080MitigationofgreenhousegasesemissionswithtreatmentofwastewaterinaerobicwastewatertreatmentplantsAM0080CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Constructionofanewdimethylether(DME)facilitytoutilizeapreviouslyventedorflaredstreamofCokeOvenGas(COG).TypeofGHGemissionsmitigationaction•Fuelswitch.UseofapreviouslyventedsourceofcarbonfortheproductionofDMEanduseofDMEforLPGblending.Importantconditionsunderwhichthemethodologyisapplicable•TheprojectisanewlybuiltDMEplantwhichwillsupplyDMEtoLPGprocessingfacilitiesforblendingpurposes;•ThehistoryofthecokeplantistheventingorflaringofCOGforatleastthreeyears;•Bituminouscoalremainsthesolecokingcoalforthecokeplant;•COGistheonlycarbonsourceusedforDMEproduction.ImportantparametersAtvalidation:•Historicalcoalconsumptionandcokeproductionincokeplants.Monitored:•Thetypeandamountofcoalconsumedineachcokeplant(forprocessandfuel);•Thequantityoffossilfuelscombustedasaresultoftheproject(i.e.intheoperationoftheDMEproductionfacilityorpowerplant);•ElectricityconsumptioninDMRplant.BASELINESCENARIOVentingorflaringofCOG.UseofunblendedLPGfuelresultinginhighCO2emissions.PROJECTSCENARIOUseofallorpartofthewastedCOGtoproduceDME.ThisDMEissuppliedtoLPGprocessingfacilitiesforblendingpurpose.Thus,useofLPGisreduced.FossilfuelFlrin/VentinLPGLPGConsumerCOGColCokeCOCOCOFossilfuelLPGBlendedLPGConsumerCOGFlrin/VentinColCokeCOCOCOAM0081FlareorventreductionatcokeplantsthroughtheconversionoftheirwastegasintodimethyletherforuseasafuelAM0081CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeAM0082UseofcharcoalfromplantedrenewablebiomassintheironorereductionprocessthroughtheestablishmentofanewironorereductionsystemTypicalproject(s)Useofcharcoalfromplantedbiomassinsteadoffossilfuelbasedreducingagents,intheironorereductionprocessusingblastfurnacetechnology.TypeofGHGemissionsmitigationaction•Renewableenergy.Switchtoarenewablesourceofcarbonforthereductionofironinblastfurnaces.Importantconditionsunderwhichthemethodologyisapplicable•Therenewablebiomassthatisusedforcharcoalproductionoriginatesfromadedicatedplantation,locatedwithintheboundariesoftheprojectactivity;•Thededicatedplantationsareunderthecontrolofprojectparticipantseitherdirectlyownedorthroughalongtermcontract;•Theprojectdoesnotrelyonimportedmineralcoke.ImportantparametersAtvalidation:•Amountofreducingagent(i.e.coalcoke)requiredtoproduceonetonneofhotmetal.Monitored:•Productionofhotmetalbytheprojectactivity;•Parametersrelatedtoemissionsfromreducingagentsproduction(carbonizationandcoaldistillation);•Parametersrelatedtoironorereductionfacilitysuchasfuel/reducingagentconsumption,theiremissionfactors,hotmetalproducedanditscarboncontentetc.BASELINESCENARIOThehotmetalinironandsteelplantisproducedusingreducingagentsoffossilfuelorigin,resultingintohighamountofCO2emissions.PROJECTSCENARIOThenewironorereductionsystempartiallyorfullyreplacesfossil-fuel-basedreducingagentwithcharcoalofrenewableorigin,resultingintoreductionofCO2emissions.FossilfuelIronCOBiomssPlnttionFossilfuelCOChrcolIronAM0082CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Landfilledwasteistreatedaerobicallyon-sitebymeansofairventing(overdrawing)orlowpressureaerationwiththeobjectiveofavoidinganaerobicdegradationprocesses.TypeofGHGemissionsmitigationaction•GHGemissionavoidance.TheprojectavoidsCH4emissionsfromlandfills.Importantconditionsunderwhichthemethodologyisapplicable•Aerationtechniquesusedareeitherairventing(overdrawing)orlowpressureaeration;•Treatmentoflandfilledwasteisinclosedlandfillsorclosedlandfillcells;•Ifmandatoryenvironmentalregulationsrequirethecollectionandflaringoflandfillgas,thecorrespondingcompliancerateisbelow50%inthehostcountry;•Closedcellsofoperatingorclosedlandfillsmightbeeligibleaslongastheyarephysicallydistinctfromtheremainingpartsofthelandfill.ImportantparametersMonitored:•Amountofdegradablewastedisposedinthelandfill;•Potentialmethanegenerationcapacity;•Ventedandsurfaceemissions:volumeandmethaneandnitrousoxidecontent.BASELINESCENARIOPartialortotalreleaseoflandfillgasfromtheclosedlandfillortheclosedlandfillcell.PROJECTSCENARIOIn-situaerationoftheclosedlandfillortheclosedlandfillcellreducesGHGemissions.LndllCHLndllsReleseCHLndllsReleseLndllAirAM0083Avoidanceoflandfillgasemissionsbyin-situaerationoflandfillsAM0083CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Installationofanewcogenerationplantproducingchilledwaterandelectricity.TypeofGHGemissionsmitigationaction•Energyefficiency.Displacementofelectricityandcoolingthatwouldbeprovidedbymore-carbon-intensivemeans.Importantconditionsunderwhichthemethodologyisapplicable•Thechilledwaterissuppliedbyvapourcompressionchillersinthebaselineandinthecaseofexistingbaselinefacilitiesonlyusedon-sitebycustomers;•Aftertheimplementationoftheproject,thecogenerationfacilitycannotsupplyservicestofacilitiesthatareoutsidetheprojectboundary;•Thedemandofelectricityandwaterataconsumercannotexceed110%ofitshistoricallevelforacumulativeperiodlongerthanthreemonths.ImportantparametersAtvalidation:•Powerconsumptionofthebaselinevapourcompressionchiller(s).Monitored:•Electricitygeneratedandconsumedbytheproject;•Chilledwatergeneratedbytheproject.BASELINESCENARIOConsumersuseelectricityprovidedbyanon-sitepowerplantorbythegrid.Consumptionofelectricityfortheproductionofchilledwaterbytheuseofelectricalchillers(vapourcompressionchillers).PROJECTSCENARIOConsumersuseelectricityprovidedbyafossil-fuel-firedcogenerationsystem.Thecogenerationsystemprovideselectricityandchilledwater.COElectricitGridPowerplntFossilfuelConsumerCoolinElectricitFossilfuelConsumerCoolinCoenertionCOPowerplntGridCOFossilfuelAM0084InstallationofcogenerationsystemsupplyingelectricityandchilledwatertonewandexistingconsumersAM0084CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeAM0086DistributionoflowGHGemittingwaterpurificationsystemsforsafedrinkingwaterTypicalproject(s)LowGHGemittingwaterpurificationsystemsaredistributedtoconsumerstoprovidesafedrinkingwater(SDW).TypeofGHGemissionsmitigationaction•Energyefficiency.DisplacementofmoreGHGintensivetechnologiestoprovideSDW.Importantconditionsunderwhichthemethodologyisapplicable•NopublicdistributionnetworksupplyingSDWexistswithintheprojectboundary;•Projecttechnology/equipmentprovidesSDWbasedonlaboratorytestingorofficialnotifications;•Endusersmusthaveaccesstoreplacementpurificationsystems;•Onlyforwaterpurifierssoldordistributedwithinthefirstcreditingperiodareeligibleforclaimingemissionsreductions.ImportantparametersAtvalidation:•FractionofpopulationservedbylowGHGemittingwaterpurificationtechnologies;•Volumeofdrinkingwaterperperson;•Fractionofpopulationwhichwoulduseelectricityorfueltypeitoboilwater.Monitored:•Quantityofpurifiedwaterconsumed;•Failurerateoftheprojectwaterpurificationsystems;•Numberofprojectwaterpurificationsystems;•Populationthatconsumesthepurifiedwaterservicedbytheprojectactivity;•Safedrinkingwaterquality.BASELINESCENARIOEnergyconsumingapplicationstoproducesafedrinkingwaterwillcontinuetobeusedinthehouseholdsofaspecificgeographicalarea.PROJECTSCENARIOThelowGHGemittingpurifierdisplacesthecurrenttechnologies/techniquesforgenerationofsafedrinkingwaterinthehouseholdsofaspecificgeographicalarea.ElectricitFossilfuelWterpurierCOWterConsumerDrinkinwterElectricitCOFossilfuelFossilfuelWterpurierWterpurierElectricitCOWterConsumerDrinkinwterWterpurierSupresseddemndAM0086WomenndchildrenCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeAM0088AirseparationusingcryogenicenergyrecoveredfromthevaporizationofLNGTypicalproject(s)TheconstructionandoperationofanewairseparationplantthatutilizesthecryogenicenergyrecoveredfromaneworexistingLNGvaporizationplantfortheairseparationprocess.TypeofGHGemissionsmitigationaction•Energyefficiency.ReductioninheatconsumptionforLNGvaporizationandfuels/electricityuseinairseparationplants.Importantconditionsunderwhichthemethodologyisapplicable•Thepurityoftheoxygenandnitrogenproducedbythenewairseparationplantisequaltoorhigherthan99.5%;•ThenewairseparationplantislocatedatthesamesiteastheLNGvaporizationplant;•ThecryogenicenergyfromexistingLNGvaporizationplantwasnotutilizedforusefulpurposesandwasbeingwastedpriortotheimplementationoftheproject.ImportantparametersAtvalidation:•Electricityemissionfactor(canalsobemonitoredexpost);•QuantityoffossilfuelsandelectricityconsumedbytheairseparationandtheLNGVaporizationfacilities;•AmountandphysicalpropertiesofLNGvaporized.Monitored:•QuantityoffossilfuelsandelectricityconsumedbytheAirSeparationandtheLNGVaporizationfacilities;•AmountandphysicalpropertiesofLNGvaporizedandgasproducedattheseparationplant.BASELINESCENARIOTheairseparationprocesswouldusefossilfuelsorelectricityforcooling.PROJECTSCENARIOTheairseparationprocessusecryogenicenergyrecoveredfromaLNGvaporizationplantforcooling.FossilfuelElectricitLNGAirseprtionCOCOCroenicFossilfuelElectricitLNGAirseprtionCOCroenicCOAM0088CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Productionofpetro/renewabledieselbyswitchingthefeedstockofhydrodesulphurizationprocess(HDS)unitfrom100%gasoiltoamixtureofgasoilandvegetableoilinanexistingrefinery,wherethevegetableoilcomesfromoilseedsfromplantsthatarecultivatedondedicatedplantationsestablishedonlandsthataredegradedordegradingatthestartoftheproject.TypeofGHGemissionsmitigationaction•Renewableenergy;•Feedstockswitch.Displacementofmore-GHG-intensivefeedstockfortheproductionofdiesel.Importantconditionsunderwhichthemethodologyisapplicable•ThreeyearsofhistoricaldataarerequiredfortheHDSunit;•EnergyconsumptionintheHDSunitundertheprojectislowerorequaltothebaselinescenarioandanycombustiblegasesandoff-gasesformedduringthehydrogenationofvegetableoilhavetobeflaredorusedintherefineryasfuel;•Thepetro/renewabledieselisnotexportedtoanAnnexIcountry.ImportantparametersAtvalidation:•RatiobetweentheamountofrenewabledieselproducedandvegetableoilfedintoHDSunit,densityofrenewablediesel.Monitored:•AmountofvegetableoilfedtoHDSunit,volumeofH2consumedintheHDSunitandamountofpetro/renewabledieselproducedbytheproject;•Projectemissionsfromtransportofoilseedsand/orvegetableoilifdistancesmorethan50kmarecovered;fossilfuelandelectricityconsumptionofthevegetableoilproductionplant;•Leakageemissionsrelatedtotheupstreamemissionsofexcessnaturalgasandpositiveleakageassociatedwiththeavoidedproductionofpetrodiesel;•Destinationofexportedpetro/renewabledieselproducedbytheproject.BASELINESCENARIODieselisproducedfromgasoil.PROJECTSCENARIODieselisproducedfrommixtureofgasoilandvegetableoil.HdroenHDSunitGsoilPetrodieselConsumerNturlsCOHdroenHDSunitGsoilCOBlendedfuelConsumerVeetbleoilNturlsAM0089ProductionofdieselusingamixedfeedstockofgasoilandvegetableoilAM0089CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Transportationofcargousingbarges,shipsortrains.TypeofGHGemissionsmitigationaction•Energyefficiency.Displacementofamore-carbon-intensivetransportationmode.Importantconditionsunderwhichthemethodologyisapplicable•Theownerofthecargoisoneoftheprojectparticipants.Iftheentityinvestingintheprojectisnottheownerofthecargo,itshouldalsobeaprojectparticipant;•Theprojectshouldhavemadeatleastoneofthefollowingnewinvestments:directinvestmentinnewinfrastructureforwatertransportationorforrailtransportation,orrefurbishment/replacementofexistingwaterandrailtransportationinfrastructureorequipments,withtransportcapacityexpansion;•Thecargotype,transportationmode,andtransportationroutesoftheprojectaredefinedatthevalidationoftheprojectandnochangeisallowedthereafter;•Bothinthebaselineandproject,onlyonetypeofcargoistransportedandnomixofcargoispermitted.ImportantparametersAtvalidation:•Distanceofthebaselinetriproute(bothforwardandreturntrips).Monitored:•Fueland/orelectricityconsumptionbytheprojecttransportationmode;•Amountofcargotransportedbytheprojecttransportationmode(bothforwardandreturntrips).BASELINESCENARIOThecargoistransportedusingtrucks.PROJECTSCENARIOThecargoistransportedusingbarges,shipsortrains.COTruckCOTrinTruckShipAM0090ModalshiftintransportationofcargofromroadtransportationtowaterorrailtransportationAM0090CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Projectactivitiesimplementingenergyefficiencymeasuresand/orfuelswitchinginnewandexistingbuildingunits(residential,commercial,and/orinstitutionalbuildingunits).Examplesofthemeasuresincludeefficientappliances,efficientthermalenvelope,efficientlightingsystems,efficientheating,ventilationandairconditioning(HVAC)systems,passivesolardesign,optimalshading,buildingenergymanagementsystems(BEMS),andintelligentenergymetering.TypeofGHGemissionsmitigationaction•EnergyEfficiency.Electricityand/orfuelsavingsthroughenergyefficiencyimprovement.Useofless-carbon-intensivefuel.Importantconditionsunderwhichthemethodologyisapplicable•Buildingunitsshouldbelongtoresidential,commercialandinstitutionalcategoriesasdefinedinmethodology;•Eligiblesourcesofemissionsincludeconsumptionofelectricity,fossilfuel,andchilledwateraswellasleakageofrefrigerantusedinthebuildingunits;•Biogas,biomassorcogenerationsystemsshouldnotbethesourceofthermalorelectricalenergyforprojectbuildingunitsandchilled/hotwatersystemsusedforprojectbuildingunits;•Alltheprojectbuildingunitsmustcomplywithallapplicablenationalenergystandards(e.g.buildingcodes)iftheyexistandareenforced.ImportantparametersAtvalidation:•Emissionfactorsoffuelusedinbaselinebuildings;•Historicalaverageretailpriceofthefuelmostcommonlyusedinthebaselinebuildingunits.Monitored:•TotalnumberofefficientappliancesoftypenthatareusedinregisteredCDMproject(s)inthehostcountry;•Grossfloorareaofprojectbuildings;•Fuelconsumption,quantityandenergycontentofhot/chilledwaterconsumedandelectricityconsumptioninprojectbuildings;•Emissionfactorsandcalorificvaluesoffuels.BASELINESCENARIOResidential,commercialandinstitutionalbuildingunits(similartothoseconstructedandthenoccupiedintheprojectactivity)willresultinhigheremissionsduetofuel,electricityandchilled/hotwaterconsumption.PROJECTSCENARIOEnergyefficientresidential,commercialandinstitutionalprojectbuildingunitswillresultinloweremissionsduetolowerconsumptionoffuel,electricityandchilled/hotwater.COBuildinsFossilfuelElectricitChilled/hotFossilfuelCOElectricitChilled/hotBuildinsEfficiencCOBuildinsAM0091EnergyefficiencytechnologiesandfuelswitchinginnewandexistingbuildingsWomenndchildrenAM0091SupresseddemndCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)ProjectsactivitiesthatreducePFCemissionsthroughreplacementofC2F6withc-C4F8(octa-fluoro-cyclo-butane)asagasforin-situcleaningofCVDreactorsinthesemiconductorindustry.TypeofGHGemissionsmitigationaction•Fuelorfeedstockswitch.DisplacementofC2F6withc-C4F8.Importantconditionsunderwhichthemethodologyisapplicable•Productionlinesincludedintheprojectboundarystartedcommercialoperationbefore1January2010andhaveanoperationalhistoryofatleastthreeyearspriortotheimplementationoftheprojectactivity,duringwhichtheoriginalPFCgaswasC2F6;•ThesubstitutePFCgasisnottemporarilystoredforsubsequentdestruction.ImportantparametersAtvalidation:•ConsumptionofC2F6inthebaseline;•Productionofsubstrateinthebaseline.Monitored:•Consumptionofc-C4F8;•Productionofsubstrate.BASELINESCENARIOThebaselinescenarioisthecontinuationofthecurrentsituation,i.e.thecontinuationofthesamebaselinefeedstock(i.e.CVDreactorscleanedwithC2F6).PROJECTSCENARIOTheprojectscenarioisCVDreactorscleanedwithc-C4F8.SFCFSemiconductorsRelesec-CFSemiconductorsCFSFSFReleseReleseAM0092SubstitutionofPFCgasesforcleaningChemicalVapourDeposition(CVD)reactorsinthesemiconductorindustryAM0092CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Landfilledwasteistreatedaerobicallyon-sitebymeansofpassiveaerationwiththeobjectiveofavoidinganaerobicdegradationprocesses.TypeofGHGemissionsmitigationaction•GHGemissionavoidance.TheprojectavoidsCH4emissionsfromlandfills.Importantconditionsunderwhichthemethodologyisapplicable•Treatmentoflandfilledwasteisinclosedlandfillsorclosedlandfillcells;•Ifmandatoryenvironmentalregulationsrequirethecollectionandflaringoflandfillgas,thecorrespondingcompliancerateisbelow50%inthehostcountry;•Closedcellsofoperatinglandfillsmightbeeligibleaslongastheyarephysicallydistinctfromtheremainingpartsofthelandfill;•Distancebetweenverticalventingwellsshouldnotbemorethan40m.ImportantparametersAtvalidation:•Amountofbiodegradablewastedisposedinthelandfill.Monitored:•Potentialmethanegenerationcapacity;•Ventedandsurfaceemissions:volumeandmethaneandnitrousoxidecontent.BASELINESCENARIOPartialortotalreleaseoflandfillgasfromtheclosedlandfillortheclosedlandfillcell.PROJECTSCENARIOIn-situpassiveaerationoftheclosedlandfillortheclosedlandfillcellreducesGHGemissions.LndllCHLndllsReleseCHLndllsReleseLndllAirAM0093AvoidanceoflandfillgasemissionsbypassiveaerationoflandfillsAM0093CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Distributionofbiomassbasedstovesand/orheatersandthesupplyofbiomassbriquettesforhouseholdorinstitutionaluse.TypeofGHGemissionsmitigationaction•Renewableenergy.Displacementofmore-GHG-intensivethermalenergyproductionbyintroducingrenewableenergytechnologies.Importantconditionsunderwhichthemethodologyisapplicable•Thetotalprojectarea(TPA)isdefinedpriortothestartoftheprojectactivityandwillnotbechangedlater;•BiomasspenetrationrateintheTPAis≤10%;•Thebiomassbasedstoveorheatershallhavearatedcapacityofnotmorethan150kWthermal;•AcontractualagreementbetweentheprojectconsumersandtheprojectparticipantsshallensurethattheprojectconsumersdonotclaimanyCERsfromtheuseofstoveand/orheaterandbiomassbriquettes.ImportantparametersAtvalidation:•Percentageofbiomassusedasafuelforcookingpurposesorheatingpurposes,onenergybasis,inprojectarea(s);•Proportionoffuel(s)usedinthestovesorheatersinprojectarea(s)inthebaseline;•Proportionofstoveorheatertype(s)usedinprojectarea(s)inthebaseline.Monitored:•Dryweightofbiomassbriquettesconsumedbyprojectconsumer(s)inprojectarea(s);•NCVofbiomassbriquettes;•Proportionofprojectstoveorheatertype(s)inuseinprojectarea(s).BASELINESCENARIOContinuationoftheuseofexistingstoveorheatertechnologiesandfossilfuelsforthermalapplication.PROJECTSCENARIOUseofbiomassbasedstovesand/orheatersandthesupplyofbiomassbriquettesforthermalapplication.COFossilfuelHetHetConsumerHetHetConsumerFossilfuelBiomssCOAM0094Distributionofbiomassbasedstoveand/orheaterforhouseholdorinstitutionaluseAM0094WomenndchildrenCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Projectactivitiesthatconstructandoperateacaptiveorgrid-connectedcombinedcycleelectricitygenerationpowerplantinaGreenfieldironandsteelplant,usingwastegassuchasblastfurnacegas,cokeovengas,andconvertergassourcedfromthesamefacility.TypeofGHGemissionsmitigationaction•Energyefficiency.Wasteenergyrecoveryinordertodisplacemore-carbon-intensivesourceofenergy.Importantconditionsunderwhichthemethodologyisapplicable•Specificationsofcokeovenandironandsteelplanthasbeendeterminedbeforetheprojectactivityisconsidered;•TheprojectparticipantshavetodemonstratethatthelevelofuseofwastegasforpowerproductionintheironandsteelplantisthesameinabsenceofandaftertheimplementationoftheCDMprojectactivity.ImportantparametersAtvalidation:•Dataonwastegasbasedelectricitygenerationintop20%Rankinecyclebasedpowerplantinotherironandsteelplants;•EnergyEfficiencyofwastegasbasedRankinecyclebasedpowerplantsiniron&steelplantusingmanufacturer’sdata.Monitored:•Datarequiredtocalculategridemissionfactor;•NetCalorificValueofwastegas,andsupplementaryandauxiliaryfuels;•Quantityofsupplementaryandauxiliaryfuelfiredandquantityofwastegasconsumedbyprojectpowerplant;•Netelectricitygeneratedbyprojectpowerplant.BASELINESCENARIOConstructionofRankinecyclebasedpowerplantusingthesamewastegastypeandquantityasusedintheprojectpowerplant.PROJECTSCENARIOEnergyefficientcombinedcyclebasedpowerplantrecoveringenergyfromwastegasinagreenfieldironandsteelplant.COElectricitElectricitGridFossilfuelIron/SteelRnkineWsteenerCOElectricitElectricitGridFossilfuelIron/SteelWsteenerCombinedccleRnkineAM0095WastegasbasedcombinedcyclepowerplantinaGreenfieldironandsteelplantAM0095CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)InstallationofanabatementsysteminanexistingsemiconductormanufacturingfacilityfortheabatementofCF4fromthesemiconductoretchingprocess.TypeofGHGemissionsmitigationaction•GHGdestruction.DestructionofCF4emissions.Importantconditionsunderwhichthemethodologyisapplicable•ApplicabletoexistingproductionlineswithoutCF4abatementdeviceinstalledandwhereCF4wasbeingventedinthelastthreeyears;•CF4isnottemporarilystoredorconsumedforsubsequentabatement;•CF4abatementatthesameindustrialsitewheretheCF4isused;andCF4tobeabatedisnotimportedfromotherfacilities;•NotapplicabletoprojectactivitieswhichreduceemissionsofPFCsfromChemicalVapourDeposition(CVD)processes.ImportantparametersAtvalidation:•AmountofCF4consumedinyearspriortotheimplementationoftheprojectactivity;•Amountofsemiconductorsubstrateproducedinyearspriortotheimplementationoftheprojectactivity.Monitored:•AmountofCF4consumed;•Amountofsemiconductorsubstrateproduced;•CalibratedflowrateofHelium(He)gasaddedtoductbeforeenteringtotheabatementsystemduringamonitoringinterval;•Heconcentrationenteringtheabatementsystemandoutoftheabatementsystem;•ConcentrationofCF4inthegasenteringtheabatementsystemandinthegasleavingtheabatementsystem;•Temperatureatmassflowcontroller.BASELINESCENARIOCF4isventedtotheatmosphereafterbeingusedinthesemiconductoretchingprocess.PROJECTSCENARIOCF4isrecoveredanddestroyedinacatalyticoxidationunit(abatementsystem)locatedaftertheetchingunit.CFSemiconductorCFCFReleseCO2SemiconductorFossilfuelCF4ElectricitCF4CF4ReleseOxidtionAM0096CF4emissionreductionfrominstallationofanabatementsysteminasemiconductormanufacturingfacilityAM0096CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)InstallationofGreenfieldHighVoltageDirectCurrent(HVDC)powertransmissionline/sfortransmissionofpowerfrompointoforigin/supplytothepointofreceipt;orreplacementofexistingalternatingcurrentpowertransmissionlinebyanewHVDCpowertransmissionline.TypeofGHGemissionsmitigationaction•Energyefficiency.Energyefficientelectricitytransmissionlineinsteadofinefficientelectricitytransmissionline.Importantconditionsunderwhichthemethodologyisapplicable•ProjectparticipantsshallinvestinsettingupaHVDCpowertransmissionlineandutilizeit;•Projectparticipantshalldemonstratethroughverifiabledatathattheright-of-wayrequirementfortheprojectactivityislessthanforthebaselinescenario;•ThismethodologyisnotapplicabletoprojectactivitiesthatseektoexpandorretrofitexistinggridsbytheconstructionofanewpieceofHVDCtransmissionline.ImportantparametersAtvalidation:•Datarequiredforsimulationsoftwaretocalculatetechnicallossesofbaselinetransmissionline.Thisincludesvoltage,length,inductance,capacitance,andsub-stationspacingofbaselinetransmissionline.Monitored:•Grosselectricityevacuatedfromthepointofsupplyinprojectyearusingprojecttransmissionline;•Netelectricityreceivedatthepointofreceipt;•Right-of-wayrequirementforthetransmissionlineundertheprojectaswellasunderbaseline.BASELINESCENARIOImplementationorcontinuationofinefficientpowertransmissionline.PROJECTSCENARIOEnergyefficientHVDCtransmissionline.COElectricitElectricitElectricitPointofReceiptFossilfuelPowerplntCOElectricitElectricitElectricitPointofReceiptUprdeFossilfuelPowerplntAM0097InstallationofhighvoltagedirectcurrentpowertransmissionlineAM0097CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Utilizationofammonia-plantoffgas(AOG),whichwasbeingvented,forheatgenerationatanexistingammoniaproductionplant.TypeofGHGemissionsmitigationaction•GHGdestruction.Destructionofmethaneemissionsanddisplacementofamore-GHG-intensiveservice.Importantconditionsunderwhichthemethodologyisapplicable•AOGisonlyusedtogeneratesteamtomeetheatdemandsintheexistingammoniaproductionplantand/orinnearbyfacilitiesinthesameprojectsite;•AmountofAOGventedfromthestartofoperationsattheexistingammoniaproductionplantuntiltheimplementationoftheprojectactivityshallbedemonstrated;•RegulationsofthehostcountrydonotprohibittheventingofgaseswiththephysicalandchemicalcharacteristicsoftheAOG.ImportantparametersAtvalidation:•VolumeofAOGventedbytheexistingammoniaproductionfacilityinhistoricalyears;•Totalproductionofammoniainhistoricalyears;•AveragevolumefractionofmethaneintheAOGinhistoricalyears.Monitored:•VolumeofAOGrecoveredandusedforsteamgenerationbytheprojectactivity;•Totalproductionofammonia;•AveragevolumefractionofmethaneintheAOGrecoveredintheprojectactivity;•CarbondensityofAOG;•NetquantityofheatgeneratedfromAOGcombustion;•Volumefractionofmethaneintheexhaustoutofammoniarecoverysection;•VolumeofgaseousstreamventedtotheatmosphereoutoftheammoniarecoverysectionofAOG.BASELINESCENARIOAOGisventedtotheatmosphere.PROJECTSCENARIOAOGiscollectedandutilizedtogenerateheat.CHCOFossilfuelAmmoniHetHetAOGReleseCHAmmoniHetHetAOGReleseFossilfuelCOAM0098Utilizationofammonia-plantoffgasforsteamgenerationAM0098CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Installationanewnatural-gas-firedgasturbineatasitewherethereisanexistingcombinedheatandpower(CHP)plantandsupplyoftheelectricitytothegridoranexistingelectricityconsumingfacilityandwasteheattotheexistingCHPplant.TypeofGHGemissionsmitigationaction•Lowcarbonelectricity;•Energyefficiency.Displacementofmore-GHG-intensiveelectricitygenerationinagridorcaptivepowerplantandsupplyofheat.Importantconditionsunderwhichthemethodologyisapplicable•Thesteamfromtheheatrecoverysteamgenerator(HRSG)isnotdirectlysuppliedtofinalusers/consumers;•TheexistingCHPplantproducedelectricityandsteamforatleastthreeyearspriortotheimplementationoftheprojectactivity.ImportantparametersAtvalidation:•AmountofhistoricalsteamgenerationoftheexistingCHP;•Amount,emissionfactorandnetcalorificvalue(NCV)offuelhistoricallyusedtogeneratesteamattheexistingCHPplant.Monitored:•Electricitygeneratedbythegasturbinethatisfedintothegridand/orsuppliedtotheelectricityconsumingfacility;•Totalelectricitysuppliedtothegridbytheexistingsteamturbinegenerator(STG)attheprojectsite;•Steamgeneratedbytheprojectfacilityfromheatrecoverysteamgenerator(HRSG);•Steamgeneratedbytheexistingsteamboilers.BASELINESCENARIOElectricityisgeneratedinthegridorcaptivepowerplantusingmore-carbon-intensivefuelandsteam/heatisgeneratedinexistingsteamboilers.PROJECTSCENARIOElectricityisgeneratedusingnaturalgasandheat/steamisgeneratedfromwasteheatfromthegasturbine.AM0099InstallationofanewnaturalgasfiredgasturbinetoanexistingCHPplantHetElectricitFossilfuelFossilfuelConsumerElectricitEnerGridCOCOHetElectricitFossilfuelFossilfuelConsumerElectricitNturlsHetEnerEnerGridCOAM0099CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)ImplementationofIntegratedSolarCombinedCycle(ISCC)projects.TypeofGHGemissionsmitigationaction•RenewableEnergy.Displacementofelectricitythatwouldbeprovidedtothegridbymore-GHG-intensivemeans.Importantconditionsunderwhichthemethodologyisapplicable•Applicableto:–ConversionofanexistingCombinedCyclePowerPlantintoanISCC;or–ConversionofanexistingsinglecyclegasturbinepowerplantintoanISCC,wheretheprojectactivitycomprisesexclusivelytheSolarFieldandSupplementaryFiring;or–ConstructionofanewISCC,wheretheprojectactivitycomprisesexclusivelytheSolarFieldandSupplementaryFiring;•ElectricSolarCapacitydoesnotaccountformorethan15%oftheElectricSteamTurbineCapacityoftheISCC.ImportantparametersMonitored:•Averagetemperature,pressureandmassflowofsteamleavingthesolarsteamgenerator;•Averagetemperature,pressureandmassflowofhighpressureandlowpressuresteamenteringthesteamturbineandatthecondenseroutlet;•Grosselectricitygenerationfromgasturbine;•NetelectricitygenerationfromtheISCC;•Massorvolume,netcalorificvalue(NCV),andemissionfactorofsupplementaryfuel;•Gridemissionfactorand/oremissionfactorofsupplementaryfiring.BASELINESCENARIOElectricityisgeneratedinthegridusingmore-carbon-intensivefuel.PROJECTSCENARIOElectricityisgeneratedusingsteamgeneratedfromsolarcollectorsandreducingtheuseoffossilfuel.AM0100IntegratedSolarCombinedCycle(ISCC)projectsCOFossilfuelElectricitPowerplntGridElectricitCOFossilfuelElectricitPowerplntGridElectricitHetRenewbleAM0100CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Establishmentandoperationofanewhighspeedrailsystem.Extensionofanexistinghighspeedrailsystem.Replacementorupgradingofaconventionalrailsystemtothehighspeedrailsystem.TypeofGHGemissionsmitigationaction•Energyefficiency.DisplacementofmoreGHG-intensivetransportmodes(airplanes,buses,conventionalrail,motorcyclesandpersonalcars)byless-GHGintensiveone(highspeedrail).Importantconditionsunderwhichthemethodologyisapplicable•Theprojectestablishesanewrail-basedinfrastructureforhighspeedrail.Thenewrailinfrastructurecanbetheextensionofanexistinghighspeedrailsystem.Itcanalsobethereplacementorupgradingofanexistingconventionalrailsystemtohighspeedrailsystem;•TheaveragedesignspeedbetweentheoriginandthedestinationpointofthenewHSRshallbeatleast200km/h;•Theprojectactivityshallbeaninter-urbanpassengertransportonly;•Theentirehighspeedrailsystemmustbelocatedinthesamehostcountry;•Theaveragedistancebetweenallstationsservedbytheprojecthighspeedrailsystemisatleast20km.ImportantparametersAtvalidation:•Baselinedistanceandtransportmode,whichareobtainedthroughacomprehensivesurveyinvolvingtheusersoftheprojecttransportsystem;•Specificfuelconsumption,occupancyratesandtravelleddistancesofdifferenttransportmodes;•IfexpectedemissionsperpassengerkilometerforHSRsystemislessthanorequalto0.08kWh/pkm,theprojectisconsideredautomaticallyadditional.Monitored:•Totalnumberofpassengerstravelledbytheprojecthighspeedrailsystem;•Shareoftheprojectpassengersorthenumberofpassengerswhowouldhavetravelledbytherelevantmodesoftransportinabsenceoftheprojectactivity;•Passengertripdistances.BASELINESCENARIOPassengerstransportedbetweencitiesusingaconventionaltransportsystemincludingbuses,trains,cars,motorcyclesandairplanes.PROJECTSCENARIOPassengersaretransportedbetweencitiesbythehigh-speedpassengerrail-basedsystemthatpartiallydisplacestheexistingmodesofinter-urbantransport.AM0101HighspeedpassengerrailsystemCOAirplaneTrinBusCrMotorccleTrinBusCOTrinAirplaneCrMotorccleWomenndchildrenAM0101CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Powergenerationusingrenewableenergysourcesconnectedtoaneworanexistingisolatedgrid.TypeofGHGemissionsmitigationaction•Renewableenergy.Displacementofelectricitythatwouldbeprovidedtotheisolatedgridbymore-GHG-intensivemeans.Importantconditionsunderwhichthemethodologyisapplicable•Theprojectpowerplantisusingoneofthefollowingsources:hydro,wind,geothermal,solar,waveortidalpower.Biomass-firedpowerplantsarenotapplicable;•Incaseofhydropower:–Theprojectshallbeimplementedinanexistingreservoir,withnochangeinthevolumeofreservoir;–Theprojectshallbeimplementedinanexistingreservoir,wherethevolumeofreservoirisincreasedandthepowerdensityisgreaterthan4W/m2;–Theprojectresultsinnewreservoirsandthepowerdensityisgreaterthan4W/m2;or–Theprojectactivityisanintegratedhydropowerprojectinvolvingmultiplereservoirs;•Thefollowingtechnologiesaredeemedautomaticallyadditionaliftheirpenetrationrateofthespecifictechnologyisbelow2percentofthetotalinstalledisolatedgridconnectedpowergenerationcapacityinthehostcountryorthetotalinstalledisolatedgridpowergenerationcapacityofthespecifictechnologyinthehostcountryislessthanorequalto50MW:–Solarphotovoltaictechnologies;–SolarthermalelectricitygenerationincludingconcentratingSolarPower(CSP);–Off-shorewindtechnologies;–Marinewavetechnologies;–Marinetidaltechnologies;–Oceanthermaltechnology.ImportantparametersAtvalidation:•Emissionfactoroftheisolatedgrid.Monitored:•Electricitysuppliedtotheisolatedgridbytheproject.BASELINESCENARIOGenerationofelectricitywithfossil-fuel-firedgenerators(e.g.dieselgenerators).PROJECTSCENARIOArenewableenergypowerplantdisplacestheenergythatwasgeneratedbyfossilfuelsources.AM0103RenewableenergypowergenerationinisolatedgridsCOElectricitFossilfuelIsoltedridPowerplntCOFossilfuelElectricitRenewbleIsoltedridPowerplntAM0103CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Constructionofoneormultiplenewinterconnectionlinestoconnecttwogrids(i.e.connectionofamaingridandapreviouslyisolatedgrid).TypeofGHGemissionsmitigationaction•Displacementofamore-GHG-intensiveoutput.Displacementofelectricitythatwouldbeprovidedbymore-GHG-intensivemeans.Importantconditionsunderwhichthemethodologyisapplicable•Thetotalinstalledpowercapacityinthepreviouslyisolatedgridislessthan10%ofthetotalinstalledpowercapacityinthemaingridintheyearpriortotheimplementationoftheprojectactivity;•Previouslyisolatedgridisagridthathasnointerconnectionwithanygridpriortotheimplementationoftheprojectactivity;•Aftertheimplementationoftheprojectactivity,therewillbeonlyonedispatchcentreresponsiblefortheoperationoftheresultinggrid(previouslyisolatedandmaingrid).ImportantparametersAtvalidation:•Gridemissionfactorofthepreviouslyisolatedgrid.Monitored:•Quantityofelectricitydeliveredtothepreviouslyisolatedgrid;•TheaveragequantityofSF6emittedfromequipmentinstalledundertheprojectactivity;•Amountofelectricitytransferredfromthepreviouslyisolatedgridtothegrid(s)otherthanthemaingrid.BASELINESCENARIONointerconnectionisconstructed,andelectricitydemandoftheisolatedgridismetbypowerunitsconnectedtotheisolatedgrid.PROJECTSCENARIOInterconnectionisconstructedandelectricitydemandoftheisolatedgridispartiallymetbypowerunitsfromthemaingrid.AM0104InterconnectionofelectricitygridsincountrieswitheconomicmeritorderdispatchCOElectricitFossilfuelIsoltedridPowerplntElectricitGridFossilfuelConnectedridFossilfuelPowerplntCOCOAM0104CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Introductionofdynamicpowermanagement(DPM)inanexistingdatacentre.TypeofGHGemissionsmitigationaction•Energyefficiency.Thedatacentrewillconsumelesselectricityfortheoperationandcoolingofitsservers.Importantconditionsunderwhichthemethodologyisapplicable•Theprojectactivitymustbeimplementedindatacentresthat,priortotheimplementationoftheprojectactivity,havenoDPMsystem,nosystematicmethodtoadjustthedatacentre’stotalservercapacitytoactualdemand,andnomanualadjustmentofserver’soperationmodetoreduceelectricityconsumption.ImportantparametersAtvalidation:•Threeyearsofhistoricalloadandoperationhoursinformation;•Powerconsumptionoftheexistingserversinidlemodeandoffmode;•Transactioncapacityoftheexistingservers;•Gridemissionfactor(canalsobemonitoredexpost).Monitored:•Turnofftimeoftheservers;•Loadoftheservers;•Marketshareofthetechnology.BASELINESCENARIOServersofthedatacentreoperateat“AlwaysOn”modeindependentofdemand.PROJECTSCENARIOServersofthedatacentreareswitchedto“OffMode”whennotrequiredtoprocesstransactionload.AM0105EnergyefficiencyindatacentresthroughdynamicpowermanagementCOGridPowerplntFossilfuelElectricitCoolinDtcentreFossilfuelGridPowerplntCOElectricitCoolinUprdeDtcentreAM0105CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Replacementofexistingkilnsbynewandmoreenergy-efficientkilnsinanexistinglimeproductionfacility.TypeofGHGemissionsmitigationaction•Energyefficiency.Productionoflimeusingmoreenergy-efficienttechnology.Importantconditionsunderwhichthemethodologyisapplicable•Thelimeproductionfacilityisanexistingfacilityandhasoperationalhistoryofatleastthreeyearspriortothestartoftheprojectactivity;•Theexistingkilnsandthenewkilnsusesamefossilfuel;•Thenewkilnsshallimproveenergyefficiencyandnotcombustionefficiency;•Thereplacedkilnsshallbedecommissionedandnotbeusedinanotherfacility.ImportantparametersAtvalidation:•Amountandnetcalorificvalueofthefuelconsumedpriortothestartoftheprojectactivity;•Amountofelectricityconsumedpriortothestartoftheprojectactivity;•Amountoflimeproducedpriortothestartoftheprojectactivity.Monitored:•Quantityofusedlimestone;•Amountofproducedlime;•AmountandCO2emissionfactoroffuelandelectricity.BASELINESCENARIOLimeproductionusinginefficientkilns.PROJECTSCENARIOLimeproductionusingmoreenergy-efficientkilns.LimeFossilfuelElectricitLimeCOLimeCOFossilfuelElectricitUprdeLimeAM0106AM0106EnergyefficiencyimprovementsofalimeproductionfacilitythroughinstallationofnewkilnsCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Naturalgasbasedcogenerationprojectsupplyingheatandelectricitytomultipleprojectcustomers.TypeofGHGemissionsmitigationaction•Fuelswitch/technologyswitch/energyefficiency.Switchtocogenerationofsteamandelectricity.Importantconditionsunderwhichthemethodologyisapplicable•Theheat-to-powerratiooftheprojectcogenerationfacilityshallbehigherthan0.3duringthecreditingperiod.ImportantparametersAtvalidation:•Assumedefficiencyofheat/electricitygenerationinthebaselinecogenerationplant;•CO2emissionfactorofthefuelthatwouldhavebeenusedinthebaselinecogenerationplant.Monitored:•Quantityofelectricitygeneratedintheprojectcogenerationplant;•Quantityofheatsuppliedbytheprojectactivity;•Heatsuppliedbytheheatgenerationfacilitieswithintheheatnetwork;•Heat-to-powerratioofthecogenerationplant.BASELINESCENARIOElectricityandheatwouldbeproducedbymore-carbon-intensivecogenerationplant.PROJECTSCENARIOElectricityandheatareproducedbynaturalgasbasedcogenerationplant.AM0107NewnaturalgasbasedcogenerationplantHetElectricitFossilfuelFossilfuelPowerplntHetGridCOHetFossilfuelCoenertionCOCOGridFossilfuelPowerplntHetElectricitHetHetGsAM0107CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Constructionofoneormultiplenewinterconnectionlinestoconnecttwosystems(grids),i.e.connectionofanexportingsystemandanimportingsystem.TypeofGHGemissionsmitigationaction•Displacementofamore-GHG-intensiveoutput.Displacementofelectricitythatwouldbeprovidedbymore-GHG-intensivemeans.Importantconditionsunderwhichthemethodologyisapplicable•Theinterconnectionisthroughtheconstructionofnewtransmissionlines;•Therelationbetweenannualelectricityflowfromtheexportingsystemtotheimportingsystemandviceversashallnotfallbelow80/20;•Theexportingsystemhasmorethan15%ofreservecapacityduringthemostrecentyearpriortothestartofthecreditingperiod.ImportantparametersAtvalidation:•Historicalelectricitytransfersbetweenexporting,importingandthirdpartysystems(ifany).Monitored:•Emissionfactoroftheexportingandimportinggrids;•Amountofelectricitytransferredbetweenexportingandimportingsystems;•Amountofelectricityimportedfromthethirdpartysystemtotheexportingsystem;•Amountofelectricityexportedfromtheimportingsystemtothethirdpartysystem;•TheaveragequantityofSF6emittedfromequipmentinstalledundertheprojectactivity.BASELINESCENARIONointerconnectionisconstructed,andelectricitydemandoftheimportingsystemismetbypowerunitsintheimportingsystem.PROJECTSCENARIOInterconnectionisconstructedandelectricitydemandoftheimportingsystemispartiallymetbypowerunitsfromtheexportingsystem.AM0108InterconnectionbetweenelectricitysystemsforenergyexchangeCOElectricitFossilfuelImportinridPowerplntElectricitExportinridFossilfuelImportinridFossilfuelPowerplntCOCOAM0108CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Utilizinghotdirectreducediron(HDRI)insteadofcolddirectreducediron(CDRI)asrawmaterialinexistingornewelectricarcfurnace/s(EAFs).TypeofGHGemissionsmitigationaction•Energyefficiency.Switchtomoreenergy-efficienttechnology.Importantconditionsunderwhichthemethodologyisapplicable•Thebaselineisretrievablefortheprojectactivity;•ThequalityofoutputfromEAFinhotDRIchargingcanvaryby±5%fromthequalityofoutputfromEAFincoldDRIcharging;•TheprojectEAFunit(s)usesDRIfromanon-sitedirectreducedplant(DRP)assourceofironduringthecreditingperiod.ImportantparametersAtvalidation:•MetalproductioncapacityofEAF.Monitored:•ElectricityconsumptioninEAFandemissionfactors;•ElectricityandfuelconsumptioninEAFchargingsystem.BASELINESCENARIODuetocoldDRIcharging,highconsumptionofelectricityintheelectricarcfurnacesresultsinhighCO2emissionsfromthecombustionoffossilfuelusedtoproduceelectricity.PROJECTSCENARIODuetohotDRIcharging,electricarcfurnacesconsumelesselectricity,andthereby,CO2emissionsfromthecombustionoffossilfuelusedtoproduceelectricityarereduced.COElectricitEAFFossilfuelGridPowerplntCOElectricitEAFFossilfuelUprdeGridPowerplntAM0109IntroductionofhotsupplyofdirectreducedironinelectricarcfurnacesAM0109CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Transportationofliquidfuelsusingnewlyconstructedpipeline.TypeofGHGemissionsmitigationaction•Energyefficiency.Displacementofamore-carbon-intensivetransportationmode.Importantconditionsunderwhichthemethodologyisapplicable•Thepipelinenetworkoperatoristheprojectparticipant;•Theliquidfuelistransportedusingtwoormultiplepre-identifiednodesofpipelinenetwork;•ThetypeofliquidfueltobetransportedundertheprojectactivityisdefinedintheCDM-PDDatthevalidationoftheprojectactivityandnochangeoftypeofliquidfuelisallowedthereafter;•Operationalimprovementsofanexistingpipelinethatisinoperationarenotapplicable;•Thegeographicconditionsoftheprojectsitepermittheuseofdifferenttransportationmeans(e.g.pipeline,trucks,etc.);•ThereissufficientroadtransportationcapacitytotransporttheliquidfuelbytrucksatthetimeofimplementingtheCDMprojectactivityandforthedurationofthecreditingperiod.ImportantparametersAtvalidation:•Amountoffuelconsumedbythetrucksfortransportationofliquidfuelinroute;•Distanceofthebaselineroute;•Amountofliquidfueltransportedintrucks.Monitored:•Amountofliquidfueltransportedbythepipeline.BASELINESCENARIOLiquidfuelsaretransportedbytrucks.PROJECTSCENARIOLiquidfuelsaretransportedusinganewlyconstructedpipeline.AM0110ModalshiftintransportationofliquidfuelsAM0110LiquidfuelFossilfuelCOTruckConsumerFossilfuelCOTruckConsumerCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)InstallationofanabatementsysteminanexistingsemiconductormanufacturingfacilityfortheabatementoffluorinatedGHGs(F-GHGs)fromthesemiconductoretchingprocess.TypeofGHGemissionsmitigationaction•GHGdestruction.DestructionofvariousfluorinatedGHGs(CF4,C2F6,CHF3,CH3F,CH2F2,C3F8,c-C4F8,andSF6).Importantconditionsunderwhichthemethodologyisapplicable•ExistingproductionlinesarethosethatdonothaveF-GHG-specificabatementdevicesbeforeJanuary2012;•Atleastthreeyearsofhistoricalinformation;•F-GHGshavebeenventedinthethreeyearspriortotheprojectactivity;•Noregulationsmandateabatement,recyclingorsubstitutionoftheprojectgases.ImportantparametersAtvalidation:•Operationconditionspriortoimplementationoftheprojectactivity;•Historicalsemiconductorproduction.Monitored:•ConcentrationofF-GHGattheinletandoutletoftheabatementsystem;•Flowofthegasstreamattheinletandoutletoftheabatementsystem;•Operationconditions;•Semiconductorproduction;•Marketshareofbaselinetechnology;•MassofF-GHGattheinletandoutletoftheabatementsystem.BASELINESCENARIOF-GHGisventedtotheatmosphereafterbeingusedinthesemiconductoretchingprocess.PROJECTSCENARIOF-GHGisrecoveredanddestroyedinacatalyticoxidationunit(abatementsystem)locatedaftertheetchingunit.AM0111AbatementoffluorinatedgreenhousegasesinsemiconductormanufacturingAM0111F-GHGSemiconductorF-GHGF-GHGReleseCO2SemiconductorFossilfuelF-GHGElectricitF-GHGF-GHGReleseOxidtionCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Projectactivitieswherewasteistreatedbyapplyingcontinuousreductivedistillation(CRD)technologyandresultantoutputgasesisusedforpowergeneration.Thewastescoveredunderthismethodologyaremunicipalsolidwaste(MSW),biomassresiduesandtyres.TypeofGHGemissionsmitigationaction•GHGemissionavoidance;•Renewableenergy.CH4emissionsduetoanaerobicdecayofMSWandbiomassresiduesareavoidedbyalternativewastetreatmentprocess.Tyres,biomassresiduesandMSWaccountforrenewableenergy.Importantconditionsunderwhichthemethodologyisapplicable•TheprojectactivityinvolvestheconstructionofanewplanttoimplementCRDtechnologyforwastetreatment;•Theco-products(e.g.syngas,carbonchar,emulsionfuel,fueloilgrade2-4etc.)oftheCRDtechnologyshouldbeusedwithintheprojectboundary;•Whentyresareusedaswaste,onlyEndofLifeTyres(ELT)shouldbeused;•Neitherwastenorproductsandby-productsfromthewastetreatmentplantestablishedundertheprojectactivityarestoredon-siteunderanaerobicconditions;•Theprojectdoesnotreducetheamountofwastethatwouldberecycledintheabsenceoftheprojectactivity.ImportantparametersAtvalidation:•Sourceofendoflifetyres;•SourceofMSW.Monitored:•Weightfractionofthedifferentwastetypesinasampleandtotalamountoforganicwastepreventedfromdisposal;•Stackgasanalysis;•Electricityandfossilfuelconsumptionintheprojectsite;•Electricitygeneratedbytheprojectactivity.BASELINESCENARIODisposalofthewasteinalandfillsitewithoutcapturinglandfillgas,electricityisgeneratedbythegrid.PROJECTSCENARIOContinuousreductivedistillationtechnologyisusedtotreatthewaste.Electricityisgeneratedasfinalproduct.AM0112LesscarbonintensivepowergenerationthroughcontinuousreductivedistillationofwasteAM0112WomenndchildrenCHWasteDisposalReleaseLandllgasElectricitCOFossilfuelGridElectricitDisposlCHLndllsReleseTretmentElectricitCOWsteFossilfuelGridRenewbleElectricitCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Self-ballastedcompactfluorescentlamps(CFLs)andlight-emittingdiode(LED)lampsaresoldordistributedtohouseholdstoreplacelessefficientlamps(e.g.incandescentlamps)inhouseholds.TypeofGHGemissionsmitigationaction•Energyefficiency.Displacementofless-efficientlightingbyamore-efficienttechnology.Importantconditionsunderwhichthemethodologyisapplicable•Baselinelampsreplacedbytheprojectmeetthenational/locallightingperformancestandards;•Lumenoutputofaprojectlampshallbeequaltoormorethanthatofthebaselinelampbeingreplaced;•Projectlampsshallbemarked.ImportantparametersAtvalidation:•Ratedaveragelifeofeachtypeofprojectlamp.Monitored:•Failurerateofeachtypeoflamp;•Scrapping/destructionofreplacedbaselinelamps.BASELINESCENARIOLess-energy-efficientlightbulbsareusedinhouseholdsresultinginhigherelectricitydemand.PROJECTSCENARIOMore-energy-efficientlampsareusedinhouseholdssavingelectricityandthusreducingGHGemissions.AM0113Distributionofcompactfluorescentlamps(CFL)andlight-emittingdiode(LED)lampstohouseholdsWomenndchildrenCOElectricitFossilfuelGridLihtinElectricitFossilfuelGridLihtinCOUprdeAM0113CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Projectactivitieswhereelectrolyticprocessisreplacedbycatalyticprocessfortherecyclingofchlorine(Cl2)fromhydrogenchloride(HCl)gasinisocyanateplant.TypeofGHGemissionsmitigationaction•Energyefficiency.Reductioninelectricityconsumptionanddisplacementofproductionofelectricitybyfossilfuel.Importantconditionsunderwhichthemethodologyisapplicable•NotapplicabletoprojectactivitiestakingplaceinGreenfieldisocyanateplants;•Theisocyanateplant,theCl2plantandtheelectrolyticrecyclingfacilitieshaveoperationalhistoryofatleastthreeyearspriortothestartingdateoftheCDMprojectactivity;•ProjectactivitieswheretheproductionratioofHCltoisocyanateinthecreditingperiodshallnotchangebymorethan±10percentcomparedtothemaximumratioofthethreeyearsofthebaseline.ImportantparametersAtvalidation:•AmountandqualityofHClandisocyanateusedinthebaseline;•AmountofelectricityconsumedfortheproductionofrecycledCl2inbaseline.Monitored:•AmountandqualityofHCl,Cl2andisocyanateintheprojectscenario.BASELINESCENARIOContinuationofcurrentpractices,i.e.continueduseofelectrolyticprocesstorecycleCl2fromtheHClgasinisocyanateplant.PROJECTSCENARIOCatalyticprocessfortherecyclingofCl2fromHClgasinisocyanateplant.AM0114ShiftfromelectrolytictocatalyticprocessforrecyclingofchlorinefromhydrogenchloridegasinisocyanateplantsFossilfuelCOCtlsisIsocnteAM0114FossilfuelIsocnteCOCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)InstallationofanewLNGproductionplantproducingLNGfromrecoveredCOGinexistingcokeplant;andprojectactivitieswheresomeothercarboncontainingwastestream(i.e.exhaustfromotherchemicalplants)isusedwithCOGforLNGproduction.TypeofGHGemissionsmitigationaction•Fuelswitch.ReductionofGHGemissionsbyswitchingfromcarbon-intensivetoaless-carbon-intensivefuelfromwasteenergy.Importantconditionsunderwhichthemethodologyisapplicable•TheCOGissourcedfromexistingcokeplant(s);•TheCOGgeneratedwouldhavebeenflaredorventedtoatmosphereintheabsenceoftheprojectactivity.ImportantparametersAtvalidation:•ThehistoricalannualamountofCOGgeneratedintheexistingcokeproductionplantsandvented/flaredbeforetheproposedproject.Monitored:•ActualquantityofLNGproducedintheprojectactivity;•ThemassfractionofmethaneinLNGproducedbytheprojectactivity.BASELINESCENARIOCOGisflaredorventedtotheatmosphere.PROJECTSCENARIOCOGisrecoveredfortheproductionofLNG.AM0115RecoveryandutilizationofcokeovengasfromcokeplantsforLNGproductionLNGColCokeCOCOGCOCOFlrin/VentinNturlsNturlsConsumerAM0115ColCokeCOCOGCOCOFlrin/VentinNturlsNturlsConsumerCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Implementationandoperationofe-taxisystemsinairplanes.TypeofGHGemissionsmitigationaction•Energyefficiency.Switchtoenergy-efficienttechnology.Importantconditionsunderwhichthemethodologyisapplicable•Thepercentageshareofcommercialairplanesoperatingane-taxisystemisequaltoorlessthan20percentinthetotalnumberofcommercialairplanesregisteredinthehostcountry.ImportantparametersAtvalidation:•SpecificfuelconsumptionbyengineorAPUwithoute-taxiduringoperationalcycle.Monitored:•SpecificfuelconsumptionbyAPUwithe-taxiduringoperationalcycle;•Taxiingtimeduringoperationalcycle.BASELINESCENARIOUseoffossilfuelasanairplaneimplementsmulti-enginetaxi,single-enginewithauxiliarypowerunit(APU)runningtaxi,andsometimesamixofabove.Inaddition,tractorsarealwaysrequirediftheairplaneneedstopushbackwardsawayfromitsgate.PROJECTSCENARIOUseoflessfossilfuelasanairplaneimplementstaxiingoperationswithe-taxisystempowerbyAPU,whilemainenginesareswitchedoff.AM0116ElectrictaxiingsystemsforairplanesAM0116FossilfuelCOAirplaneTechnoloFossilfuelGHGAirplaneCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Introductionofadistrictcoolingsystemsupplyingcoolantfromanewcoolingplant(s).Itreplacesbaselinecoolingtechnologies.TypeofGHGemissionsmitigationaction•Energyefficiency.Reductionofenergyconsumptionbyutilizationofmoreefficientcentralizedcoolingtechnologies.Importantconditionsunderwhichthemethodologyisapplicable•Anewdistrictcoolingsystem(s)suppliescoolingtoresidentialandcommercialconsumersthroughaneworexistingdedicateddistributionnetwork;•Anewdistrictcoolingplant(s)areaddedtoadedicateddistributionnetwork;•Emissionreductionsthataregainedduetotheswitchoftheenergysourcesshallnotbeclaimedbyapplyingthismethodologyalone.ImportantparametersAtvalidation:•Categoriesgroupedbytypeofbuildings(new/existing).Foreachcategory,allconnectedbuildingsshouldbeclearlyidentified;•Baselinecoolingtechnologies;•Emissionfactorassociatedwiththeproductionoffreshwater;•Maximumdesignedquantityoffreshwatertobeusedintheprojectsystem.Monitored:Coolingoutputofnewdistrictcoolingplant;•Averageflowrate(integratedovertheyear)ofnewdistrictcoolingplant;•Numberoftheoperatinghoursofthenewdistrictcoolingplant.BASELINESCENARIOBaselinescenarioisthecontinuationofthecoolingenergyproductionbythebaselinecoolingtechnologies.PROJECTSCENARIOAdistrictcoolingsystemsupplyingcoolanttobuildings.Less-efficienttechnologiesarenolongerinuse.AM0117IntroductionofanewdistrictcoolingsystemAM0117GHGBuildinsBuildinsBuildinsCoolinGHGCoolinBuildinsGHGCoolinBuildinsGHGCoolinBuildinsCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Introductionofefficienthighvoltagealternatingcurrenttransmissionline.TypeofGHGemissionsmitigationaction•Energyefficiency.GHGmitigationthroughenergysavingsinpowertransmissionlines.Importantconditionsunderwhichthemethodologyisapplicable•Thereshouldnotbeanybranchinginbetweentheproposedprojecttransmissionline;•Theprojecttransmissionlinepossessesthesameorequivalentmechanicalcharacteristics,suchasouterdiameter,nominalweightandminimumtensilestrength,withavariationofnomorethan±20percentascomparedtobaselinepowertransmissionline;•(Theprojecttransmissionlineshouldhavethesametransmissionparameters,suchasvoltagelevel,transmissioncapacity,distance,powertransmissiontechnology(e.g.alternatingcurrent)ascomparedtothebaselinesystem.ImportantparametersAtvalidation:•Lengthofthepowerlineinthebaselinescenario;•Directcurrentresistanceofthebaselinepowerline;•Directcurrent(DC)resistanceoftheprojectpowerline.Monitored:•Lengthofthepowerlineintheprojectscenario;•Emissionfactorofelectricitysystemthatsupplieselectricitytothetransmissionline;•Grosselectricityevacuatedfromthepointoforigin/supplyofthepowertransmissionline;•Grosselectricityreceivedatthepointofreceiptofthepowertransmissionline.BASELINESCENARIOImplementationofpowerlinebasedonthecurrenttrends/practicesintheregionorcountryorcontinuationofpowertransmissionusingexistingalternatingcurrenttransmissionline.PROJECTSCENARIOImplementationofpowerlineusinglowresistivitycable.AM0118IntroductionoflowresistivitypowertransmissionlineAM0118COPowerplntElectricitTrnsmissionlineElectricitLossesUprdeCOPowerplntElectricitTrnsmissionlineElectricitLossesCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Introductionofnew,orreplacementofexistinggasinsulatedswitchgear(s)(GIS)withthosefilledwithlowercontentofSF6orSF6free.TypeofGHGemissionsmitigationaction•GHGemissionavoidance.AvoidanceofSF6fugitiveemissionsinswitchgears.Importantconditionsunderwhichthemethodologyisapplicable•Theprojectequipmentshallprovidethesameorbetterfunctionalresultsasthebaselineequipment;•RefillingofSF6isrequiredtothebaselineequipmentforitsproperoperationduringitslifetime;•ResidualSF6ofboth,thebaselineandtheprojectequipment,wouldhavethesamefateattheendofitslifetime(e.g.atmosphereventing);•ThetypeofbaselineGISshallbehighvoltage(>52kV),closedpressuresystemforgas;•Emissionreductionsareclaimedonlybytheprojectproponent.ImportantparametersAtvalidation:•SF6contentofbaselineequipment;•AnnualSF6lossrateoftheequipment;•AmountofSF6rechargedtobaselineequipment.Monitored:•AmountofSF6rechargedtoprojectequipment.BASELINESCENARIOSF6thatwouldhavebeenrechargedtothebaselineequipmentandemitted.PROJECTSCENARIOSF6isreducedoravoidedinSF6freeequipmentorlowervolumeSF6installationsAM0119SF6emissionreductionsingasinsulatedmetalenclosedswitchgearAM0119SFReleseSFSFReleseSFCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Installationofnewenergy-efficientrefrigeratorsandairconditioners(RACs)asreplacementornewsalesprojects.TypeofGHGemissionsmitigationaction•Energyefficiency.Displacementofmore-GHG-intensiveservicebyuseofmore-efficienttechnology.Importantconditionsunderwhichthemethodologyisapplicable•InstallationofRACsislimitedtoresidential/householdapplicationsandhouseholdsareconnectedtoanationalorregionalelectricitygrid;•ProjectunitsareRefrigeratorsandAirConditionersthatuserefrigerantsandPURfoamblowingagentswithnoozonedepletingpotential(ODP)andlowGWP(e.g.RefrigerantsandblowingagentssuchasHydrofluoroolefinsorHydrocarbonswithGWPs<10);•Refrigerantemissionsareeligibleonlywhenthepenetrationofair-conditionerswhichuserefrigerantswithnoODPandlowGWPinthehostcountryiftheshareofairconditionersusingtherefrigerantinquestionisunder20percentofallairconditioners.ImportantparametersAtvalidation:Dependingupontheapplicationoftheoptionsavailableinthemethodology:•Averageremaininglifetimeofthereplacedrefrigerators;•Emissionfactorofthegrid;•Transmissionanddistributionloss;•Baselineelectricityintensityfactor(kWh/refrigerator/yearforrefrigeratorandkWh/air-conditioner/coolingcapacity/yearforairconditioners);•BaselineEnergyEfficiencyIndex(dimensionless)byvolumeclassforrefrigerator;•AveragespecificelectricityconsumptionoftheexistingrefrigeratorsinkWh/litre/y;•Specificrefrigerantchargefactorofbaselineair-conditioners(tCO2e/kW);•Averagephysicalleakageratesofrefrigerantsinprojectairconditioners.Monitored:•NumberofRACsbymodelandbyvolumeclass(inthecaseofrefrigeratorsonly)introducedbytheprojectactivityoperatinginyeary;•Averagevolumeofrefrigeratorsbyvolumeclassintroducedinyeary;•Coolingcapacityoftheprojectairconditionersbymodeltype(kW).BASELINESCENARIOForprojectactivitiesinvolvingreplacementofexistingRACunits,thebaselinescenarioisthecontinuingoperationoftheexistingunits.Fornewinstallation,thebaselineistheperformancebenchmarkestablishedusingtop10%or20%thresholdintermsofannualelectricityconsumption(kWh/yr).PROJECTSCENARIOInstallationofnew,energy-efficientrefrigeratorsandairconditioners(RACs)forresidential/householdapplicationsasreplacementornewsalesprojects.AM0120Energy-efficientrefrigeratorsandair-conditionersAM0120COHFCFossilfuelGridElectricitRefriertors/Air-conditionersUprdeCOHFCFossilfuelGridElectricitRefriertors/Air-conditionersCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeAM0121EmissionreductionfrompartialswitchingofrawmaterialsandincreasingtheshareofadditivesintheproductionofblendedcementTypicalproject(s)Partialorfullswitchtoalternativerawmaterialsthatdonotcontaincarbonates(AMC)intheproductionofclinkerincementkilnsandproductionofblendedcement(BC)beyondcurrentpracticesinthehostcountry.TypeofGHGemissionsmitigationaction•Typeofmitigationaction:AvoidanceofCO2emissionsbyswitchingtocarbonatefreefeedstockintheproductionofclinkerandblendingcement(BC)beyondcurrentpracticesinthehostcountry.Importantconditionsunderwhichthemethodologyisapplicable•Thequalityoftheproducedclinkerisnotreduced,ascomparedtothebaselinescenario;•Applicabletodomesticallysoldblendedcement;•Noalternativerawmaterialshavebeenusedpriortotheimplementationoftheprojectactivity(exceptforanytesttrialsnotexceeding90days).ImportantparametersAtvalidation:•Clinkerratioattheprojectplant,clinkerratioatotherplantsintheregion;•Emissionfactorsforelectricityandfossilfuels;•Qualityofproducedclinker/blendedcementproduced.Monitored:•Cementandclinkerproduction;•Useofrawmaterialsandadditives;•Useofelectricityandfossilfuels.BASELINESCENARIOUseofrawmaterialsthatcontaincalciumand/ormagnesiumcarbonates(e.g.limestone)toproduceclinker.Productionofblendedcement(BC)aspercurrentpracticesinthehostcountry.PROJECTSCENARIOSwitchtoalternativerawmaterialsthatdonotcontaincarbonates(AMC)intheproductionofclinker.Productionofblendedcement(BC)beyondcurrentpracticesinthehostcountry.COFossilfuelElectricitCrbontesAMCClinkerClinkerCementBlendinCOFossilfuelElectricitCrbontesClinkerCementClinkerAM0121CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeAM0122Recoveryofmethane-richvapoursfromhydrocarbonstoragetanksTypicalproject(s)Projectactivitiesthatrecoverthemethane-richvapoursthatwerepreviouslyventedintotheatmospherefromthehydrocarbonstoragetankslocatedwithinexistingoilproductionfacilities,oilandgaspre-treatmentfacilities,gasprocessingplants,oiltreatmentfacilities,andliquidhydrocarbonstoragetanksandloadingstations.Therecoveredmethanemaybeflaredorutilizedtogenerateenergy.TypeofGHGemissionsmitigationaction•Typeofmitigationaction:GHGdestruction–combustionofmethane.Importantconditionsunderwhichthemethodologyisapplicable•Intheabsenceoftheprojectactivity,themethane-containingvapourisventedintotheatmosphere;•Thehydrocarbonfacilitiesmusthavestartedoperatingpriorto31December2020;•Stabilizationcontainersarenoteligibleunderthismethodology;•Thepressureandtemperatureofthelaststageofseparationfromwhichtheliquidsaresenttotheprojectstoragetanksremainthesamebeforeandaftertheprojectimplementation;•Forprojectsimplementedinoilproductionfacilities,theassociatedgashasbeenseparatedfromtheoilstreampriortoenteringthestoragefacilities(hydrocarbonstoragetanks).ImportantparametersAtvalidation:•Pressureandtemperatureinseparator.Monitored:•Quantityofrecoveredmethane;•Quantifyofelectricityandfossilfuelsconsumedbytheprojectactivity;•Pressureandtemperatureinseparator.BASELINESCENARIOThebaselinescenariocomprisestheemissionofmethane-richvapoursfromhydrocarbonstoragetanksincludedaspartoftheprojectactivity.PROJECTSCENARIOUndertheprojectactivity,thepreviouslyventedmethane-richvapourisrecoveredandutilizedthroughcombustion.CH&HCsHdrocrbonStoretnkReleseLiquiddropoutsElectricitmeterRecoveredsRecoverSstemCH&HCsHdrocrbonReleseStoretnkAM0122CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Captureoflandfillgas(LFG)anditsflaringand/orusetoproduceenergyand/orusetosupplyconsumersthroughnaturalgasdistributionnetworkortrucks.TypeofGHGemissionsmitigationaction•GHGdestruction.Destructionofmethaneemissionsanddisplacementofamore-GHG-intensiveservice.Importantconditionsunderwhichthemethodologyisapplicable•Capturedlandfillgasisflared,and/or;•Capturedlandfillgasisusedtoproduceenergy,andor;•Capturedgasisusedtosupplyconsumersthroughnaturalgasdistributionnetwork,trucksorthededicatedpipeline.ImportantparametersMonitored:•Amountoflandfillgascaptured;•Methanefractioninthelandfillgas;•Ifapplicable:electricitygenerationusinglandfillgas.BASELINESCENARIOLFGfromthelandfillsiteisreleasedtotheatmosphere.PROJECTSCENARIOLFGfromthelandfillsiteiscapturedandflared;and/orusedtoproduceenergy(e.g.electricity/thermalenergy);and/orusedtosupplyconsumersthroughnaturalgasdistributionnetwork,trucksorthededicatedpipeline.CHReleseWsteLndllsDisposlWsteLndllsCHDisposlReleseEnerFlrinNturlsACM0001ACM0001FlaringoruseoflandfillgasWomenndchildrenCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Retrofit,rehabilitation(orrefurbishment),replacementorcapacityadditionofanexistingpowerplantorconstructionandoperationofanewpowerplant/unitthatusesrenewableenergysourcesandsupplieselectricitytothegrid.Batteryenergystoragesystemcanbeintegratedundercertainconditions.TypeofGHGemissionsmitigationaction•Renewableenergy.Displacementofelectricitythatwouldbeprovidedtothegridbymore-GHG-intensivemeans.Importantconditionsunderwhichthemethodologyisapplicable•Theprojectpowerplantisusingoneofthefollowingsources:hydro,wind,geothermal,solar,waveortidalpower.Biomass-firedpowerplantsarenotapplicable;•Inthecaseofcapacityadditions,retrofits,rehabilitationorreplacements,theexistingpowerplantstartedcommercialoperationpriortothestartofaminimumhistoricalreferenceperiodoffiveyears,andnocapacityexpansionorretrofit,rehabilitationorreplacementoftheplanthasbeenundertakenbetweenthestartofthisminimumhistoricalreferenceperiodandtheimplementationoftheproject;•Incaseofhydropower:–Theprojecthastobeimplementedinanexistingreservoir,withnochangeinthevolumeofreservoir;–Theprojecthastobeimplementedinanexistingreservoir,wherethevolumeofreservoirisincreasedandthepowerdensityisgreaterthan4W/m2;–Theprojectresultsinnewreservoirsandthepowerdensityisgreaterthan4W/m2;or–Theprojectactivityisanintegratedhydropowerprojectinvolvingmultiplereservoirs;•IntegrationwithaBatteryEnergyStorageSystemispossibleforaGreenfieldrenewableenergygenerationtechnologyoranexistingsolarphotovoltaicorwindpowerplant.ImportantparametersAtvalidation:•Gridemissionfactor(canalsobemonitoredexpost).Monitored:•Electricitysuppliedtothegridbytheproject;•Ifapplicable:methaneemissionsoftheproject.BASELINESCENARIOElectricityprovidedtothegridbymore-GHG-intensivemeans.PROJECTSCENARIODisplacementofelectricityprovidedtothegridbymore-GHG-intensivemeansbyinstallationofanewrenewablepowerplantortheretrofit,replacementorcapacityadditionofanexistingrenewablepowerplant.ACM0002Grid-connectedelectricitygenerationfromrenewablesourcesACM0002COElectricitGridFossilfuelElectricitCOGridFossilfuelElectricitRenewbleElectricitWomenndchildrenCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Partialreplacementoffossilfuelsinanexistingclinkerorquicklimeproductionfacilitybyless-carbon-intensivefossilfueloralternativefuel(e.g.wastesorbiomassresidues).TypeofGHGemissionsmitigationaction•Fuelswitch;•Renewableenergy.ReductionofGHGemissionsbyswitchingfromcarbon-intensivefueltoless-carbon-intensiveoralternativefuel;GHGemissionavoidancebypreventingdisposaloruncontrolledburningofbiomassresidues.Importantconditionsunderwhichthemethodologyisapplicable•Noalternativefuelshavebeenusedintheprojectfacilityduringthelastthreeyearspriortothestartoftheproject;•Thebiomasstobecombustedshouldnothavebeenprocessedchemically;•Forbiomassfromdedicatedplantations,specificconditionsapply.ImportantparametersMonitored:•Quantityandnetcalorificvalueofalternativefueland/orless-carbon-intensivefossilfuelusedintheprojectplant;•Quantityofclinkerorquicklimeproduced.BASELINESCENARIOClinkerorquicklimeisproducedusingmore-carbon-intensivefueland/ordecayoruncontrolledburningofbiomassleadstoCH4emissions.PROJECTSCENARIOClinkerorquicklimeisproducedusingless-carbon-intensivefueland/oralternativefueland/orbiomassiscombusted.Cement/QuicklimeBiomssBurninDisposlCOCHFossilfuelCement/QuicklimeBiomssAlterntiveCOFossilfuelFossilfuelHDisposlBurninCHACM0003ACM0003PartialsubstitutionoffossilfuelsincementorquicklimemanufactureCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Useofblendingmaterial(e.g.flyash,gypsum,slag)todecreasetheshareofclinkerincement.TypeofGHGemissionsmitigationaction•Feedstockswitch.CO2emissionsfromclinkerproductionareavoidedduetolessuseofclinker.Importantconditionsunderwhichthemethodologyisapplicable•Applicabletodomesticallysoldblendedcement;•Notapplicableifblendingofcementoutsidethecementproductionplantiscommoninthehostcountry;•Notapplicableforgrindingonlyplants.ImportantparametersAtvalidation:•Clinkerratioattheprojectplant,clinkerratioatallotherplantsintheregionandinthefivehighestblendedcementbrandsintheregion;•Electricityemissionfactor.Monitored:•Cementandclinkerproduction;•Rawmaterials,electricitydemandandfueluseintheproductionofclinker;•Clinkerandadditivesuseintheproductionofcement.BASELINESCENARIOAvailableblendingmaterialisnotused.Cementisproducedwithhighclinkercontent,leadingtohighCO2emissions.PROJECTSCENARIOAvailableblendingmaterialisusedincementtopartiallyreplaceclinker.TherebyCO2emissionsfromclinkerproductionareavoided.ClinkerFossilfuelCementElectricitClinkerCOClinkerCOFossilfuelCementBlendinElectricitClinkerACM0005ACM0005IncreasingtheblendincementproductionCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Generationofpowerandheatinthermalpowerplants,includingcogenerationplantsusingbiomass.Typicalactivitiesarenewplant,capacityexpansion,energyefficiencyimprovementsorfuelswitchprojects.TypeofGHGemissionsmitigationaction•Renewableenergy;•Energyefficiency;•Fuelswitch;•GHGemissionavoidance.Displacementofmore-GHG-intensiveelectricitygenerationingridorheatandelectricitygenerationon-site.Avoidanceofmethaneemissionsfromanaerobicdecayofbiomassresidues.Importantconditionsunderwhichthemethodologyisapplicable•Onlypowerandheatorcogenerationplantsareapplicable;•Onlybiomassresidues,biogasandbiomassfromdedicatedplantationsareeligible;•Fossilfuelsmaybeco-firedintheprojectplant.Theamountoffossilfuelsco-firedshallnotexceed80%ofthetotalfuelfiredonanenergybasis;•Plantedbiomassiseligibleifspecificconditionselaboratedin“Projectandleakageemissionsfrombiomass”aremet.ImportantparametersAtvalidation:•Gridemissionfactor(canalsobemonitoredexpost).Monitored:•Quantityandmoisturecontentofthebiomassusedintheprojectactivity;•Electricityandheatgeneratedintheprojectactivity;•Electricityand,ifapplicable,fossilfuelconsumptionoftheprojectactivity.BASELINESCENARIOElectricityandheatwouldbeproducedbymore-carbon-intensivetechnologiesbasedonfossilfuelorless-efficientbiomasspowerandheatplants.Biomasscouldpartlydecayunderanaerobicconditions,bringingaboutmethaneemissions.PROJECTSCENARIOUseofbiomassforpowerandheatgenerationinsteadoffossilfuelorincreaseoftheefficiencyofbiomass-fuelledpowerandheatplants.Biomassisusedasfuelanddecayofbiomassisavoided.ACM0006ElectricityandheatgenerationfrombiomassACM0006BiomssCOHetElectricitCHBurninDisposlFossilfuelGridHetBiomssElectricitHetCOCHBurninDisposlFossilfuelRenewbleGridHetCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Conversionfromanopen-cyclegaspowerplanttoacombined-cyclegaspowerplant.TypeofGHGemissionsmitigationaction•Energyefficiency.Fuelsavingsthroughenergyefficiencyimprovement.Importantconditionsunderwhichthemethodologyisapplicable•Theprojectdoesnotincreasethelifetimeoftheexistinggasturbineorengineduringthecreditingperiod;•Wasteheatgeneratedontheprojectsiteisnotutilizableforanyotherpurpose.ImportantparametersAtvalidation:•Electricitygenerationoftheexistingopen-cyclegaspowerplant(canalsobemonitoredexpost);•Fuelconsumptionoftheexistingopen-cyclegaspowerplant.Monitored:•Electricitygenerationofthecombined-cyclegaspowerplant;•Fuelconsumptionofthecombined-cyclegaspowerplant;•Gridemissionfactor.BASELINESCENARIOElectricityisgeneratedbyanopen-cyclegaspowerplant.PROJECTSCENARIOTheopen-cyclegaspowerplantisconvertedtoacombined-cycleoneformore-efficientpowergeneration.FossilfuelFossilfuelPowerplntElectricitGridCOCOFossilfuelUprdeElectricitPowerplntCOFossilfuelGridCOACM0007ACM0007ConversionfromsinglecycletocombinedcyclepowergenerationCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Captureanddestructionand/oruseofcoalbedmethane,coalminemethaneorventilationairmethanefromnew,existingorabandonedcoalmine(s).TypeofGHGemissionsmitigationaction•GHGdestruction.Destructionofmethaneemissionsanddisplacementofmore-GHG-intensiveservice.Importantconditionsunderwhichthemethodologyisapplicable•Allmethanecapturedbytheprojectshouldeitherbeusedordestroyed;•Notapplicabletocapture/useofvirgincoalbedmethane,e.g.methaneextractedfromcoalseamsforwhichthereisnovalidcoalminingconcession;•Notapplicabletomethaneextractionfromabandonedminesthatarefloodedduetoregulation.ImportantparametersMonitored:•Methanedestroyedorused;•Concentrationofmethaneinextractedgas;•Ifapplicable:electricitygeneratedbyproject;BASELINESCENARIOMethanefromcoalminingactivitiesisventedintotheatmosphere.PROJECTSCENARIOMethanefromcoalminingactivitiesiscapturedanddestroyedusingoxidationorusedforpowerorheatgeneration.CHColCHReleseEnerCOColCHFlrinReleseCHACM0008ACM0008AbatementofmethanefromcoalminesCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Switchingfromcoalorpetroleumfueltonaturalgasinthegenerationofheatforindustrialprocesses.TypeofGHGemissionsmitigationaction•Fuelswitch.ReductionofGHGemissionsbyswitchingfromcarbon-intensivetoaless-carbon-intensivefuelinthegenerationofheat.Importantconditionsunderwhichthemethodologyisapplicable•Nonaturalgashaspreviouslybeenused;•Thefuelisneitherusedforcogenerationofelectricitynorasanoxidantbutgeneratesheatfordistrictheatingoranindustrialoutputotherthanheat;•Theprojectdoesnotincreasethecapacityofthermaloutputorlifetimeoftheelementprocessesordoesnotresultinintegratedprocesschange.ImportantparametersAtvalidation:•Quantity,netcalorificvalueandCO2emissionfactorofbaselinefuels;•Energyefficiencyoftheelementprocess(es)firedwithcoalorpetroleumfuel.Monitored:•Quantity,netcalorificvalueandCO2emissionfactorofnaturalgascombustedintheelementprocess(es)intheproject;•Energyefficiencyoftheelementprocess(es)iffiredwithnaturalgas.BASELINESCENARIOCoalorpetroleumfuelisusedtogenerateheat.PROJECTSCENARIONaturalgasreplacescoalorpetroleumfuel.HetCOFossilfuelCHetProductionCOHetNturlsHFossilfuelHetProductionACM0009ACM0009FuelswitchingfromcoalorpetroleumfueltonaturalgasCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Manuremanagementonlivestockfarms(cattle,buffalo,swine,sheep,goats,and/orpoultry)wheretheexistinganaerobicmanuretreatmentsystemisreplacedby,oranewsystemisconstructedas,oneoracombinationofmorethanoneanimalwastemanagementsystemsthatresultinlessGHGemissions.TypeofGHGemissionsmitigationaction•GHGdestruction.Destructionofmethaneemissionsanddisplacementofamore-GHG-intensiveservice.Importantconditionsunderwhichthemethodologyisapplicable•Farmswherelivestockpopulationsaremanagedunderconfinedconditions;•Farmswheremanureisnotdischargedintonaturalwaterresources(e.g.riversorestuaries);•Incaseofanaerobiclagoontreatmentsystems,thedepthofthelagoonsusedformanuremanagementunderthebaselinescenarioshouldbeatleast1m;•Theannualaverageambienttemperatureatthetreatmentsiteishigherthan5°C;•Inthebaselinecase,theminimumretentiontimeofmanurewasteintheanaerobictreatmentsystemisgreaterthanonemonth.ImportantparametersMonitored:•Numberofheadsofeachpopulationandtheaverageanimalweightineachpopulation;•Ifdietaryintakemethodisused,dailyaveragegrossenergyintakehastobemonitored;•Electricityandfossilfuelconsumption.BASELINESCENARIOExistingmanuremanagementsystemorsystemtobeinstalledintheabsenceoftheprojectactivityresultsinreleaseofmethaneintotheatmosphere.PROJECTSCENARIOCaptureofmethaneintheanimalwastemanagementsystemsresultsinlessGHGemissions.Incaseofenergeticuseofmethane,displacementofmore-GHG-intensiveenergygeneration.ACM0010GHGemissionreductionsfrommanuremanagementsystemsACM0010CHBiosMnureLivestockTretmentReleseBiosCHMnureLivestockFlrinEnerTretmentReleseCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Switchfromcoalorpetroleumderivedfueltonaturalgasatanexistingpowerplant.TypeofGHGemissionsmitigationaction•Fuelswitch.Switchfromcoalorpetroleumfueltonaturalgas.Importantconditionsunderwhichthemethodologyisapplicable•Atleastthreeyearsofoperationhistoryareavailable;•Thefuelswitchisfromonlycoaland/orpetroleumfuelstoonlynaturalgas;•Onlypowerisgenerated,foreitheronlythegridoronlyacaptiveconsumer;•Theprojectdoesnotinvolvemajorretrofits/modificationsofthepowerplant.ImportantparametersAtvalidation:•Historicalfuelconsumptionandpowergeneration;•Electricityemissionfactor(canalsobemonitoredexpost).Monitored:•Quantity,calorificvalueandemissionfactoroffuelsconsumedintheproject;•Electricitysuppliedtotheelectricpowergridorconsumingfacility.BASELINESCENARIOCoaland/orpetroleumfuelisusedtogenerateelectricity.PROJECTSCENARIONaturalgasisusedtogenerateelectricity.ElectricitPowerplntFossilfuelCCOConsumerElectricitCOElectricitPowerplntConsumerElectricitNturlsHFossilfuelACM0011ACM0011Fuelswitchingfromcoaland/orpetroleumfuelstonaturalgasinexistingpowerplantsforelectricitygenerationCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Energyfromwasteheat,wastegasorwastepressureinanexistingornewindustrialfacilityisrecoveredandusedforin-houseconsumptionorforexport,byinstallationofanewpowerand/orheatand/ormechanicalenergygenerationequipment,orbyinstallationofamoreefficientelectricitygenerationequipmentthanalreadyexisting,orbyupgradeofexistingequipmentbutwithbetterefficiencyofrecovery.TypeofGHGemissionsmitigationaction•Energyefficiency.Wasteenergyrecoveryinordertodisplacemore-carbon-intensiveenergy/technology.Importantconditionsunderwhichthemethodologyisapplicable•Intheabsenceoftheproject,thewasteenergycarryingmediumwouldremainunutilized(e.g.flaredorreleasedtotheatmosphere).Incaseofpartialuseofthewasteenergycarryingmediuminthebaselinesituation,theprojectincreasestheshareofusedwasteenergybymeansofenhanceorimprovedenergyrecoveryofthewasteenergycarryingmedium;•Forcapacityexpansionprojects,thenewcapacityshouldbetreatedasnewfacilityandthereforetheapplicableguidanceforbaselinescenariodetermination,cappingofbaselineemissionsanddemonstrationofuseofwasteenergyinabsenceoftheCDMproject,shouldbefollowed;•Projectactivitiescangenerateelectricityand/ormechanicalenergybeyondthemaximumcapacityofthepre-projectequipmentofexistingrecipientfacilities.ImportantparametersMonitored:•Quantityofelectricity/mechanicalenergy/heatsuppliedtotherecipientplant(s);•Quantityandparametersofwasteenergystreamsduringproject.BASELINESCENARIOCarbon-intensivesourceswillcontinuetosupplyheat/electricity/mechanicalenergytotheapplicationsoftherecipientfacilityandunrecoveredenergyfromwasteenergysourcewillcontinuetobewasted.PROJECTSCENARIOHeat/electricity/mechanicalenergyaregeneratedbyrecoveryofenergyfromawasteenergysourceandaresuppliedtothegridand/orapplicationsintherecipientfacility.ProductionElectricitHetWsteenerMechniclReleseCOProductionReleseEnerElectricitHetCOWsteenerEnerMechniclACM0012ACM0012WasteenergyrecoveryCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Constructionandoperationofanewfossilfuelfiredpowerplantthatsupplieselectricitytothegridusingmore-efficientpowergenerationtechnologythanwouldotherwisebeusedwiththegivenfossilfuel(e.g.constructionofasupercriticalcoalfiredpowerplant).TypeofGHGemissionsmitigationaction•Energyefficiency.Constructionofahighlyefficientnewgrid-connectedfossil-fuel-firedpowerplant.Importantconditionsunderwhichthemethodologyisapplicable•Onlysupplyofpowertothegridisapplicable(nocogeneration);•Theidentifiedbaselinefuelcategoryisusedasthemainfuelcategoryinmorethan50%ofthetotalratedcapacityofpowerplantswhichwerecommissionedforcommercialoperationinthemostrecentfivecalendar/fiscalyearspriortothepublicationofthePDDforglobalstakeholderconsultation,withintheelectricgridtowhichtheprojectplantwillbeconnected;•Atleastfivenewpowerplantscanbeidentifiedassimilartotheprojectplant(inthebaselineidentificationprocedure).ImportantparametersAtvalidation:•Energyefficiencyofthepowergenerationtechnologythathasbeenidentifiedasthemostlikelybaselinescenario.Monitored:•Quantity,calorificvalueandemissionfactoroffuelsconsumedintheprojectactivity;•Electricitysuppliedtotheelectricpowergrid.BASELINESCENARIOElectricityisgeneratedbyaless-efficientnewgrid-connectedpowerplantusingfossilfuel.PROJECTSCENARIOElectricityisgeneratedbyamore-efficientnewgrid-connectedpowerplantusinglessfossilfuel.COPowerplntElectricitFossilfuelPowerplntElectricitFossilfuelFossilfuelUprdePowerplntCOCOACM0013ACM0013ConstructionandoperationofnewgridconnectedfossilfuelfiredpowerplantsusingalessGHGintensivetechnologyCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeACM0014Typicalproject(s)Treatmentofwastewaterinanewanaerobicdigester,captureandflaringorutilizingofthegeneratedbiogasforelectricityorheatgeneration;dewateringofwastewaterandapplicationtoland;andtreatmentofwastewaterinthesametreatmentplantasinthebaselinesituationbuttreatmentofthesludgefromprimaryand/orsecondarysettlereitherinanewanaerobicdigesterortreatmentofsludgeunderclearlyaerobicconditions.TypeofGHGemissionsmitigationaction•GHGdestruction.Destructionofmethaneemissionsanddisplacementofmore-GHG-intensiveservice.Importantconditionsunderwhichthemethodologyisapplicable•Theaveragedepthoftheopenlagoonsorsludgepitsinthebaselinescenarioisatleast1m;•Theresidencetimeoftheorganicmatterintheopenlagoonorsludgepitsystemshouldbeatleast30days;•Inclusionofsolidmaterialsintheprojectactivityisonlyapplicablewhere:–Suchsolidmaterialsaregeneratedbytheindustrialfacilityproducingthewastewater;and–Thesolidmaterialswouldbegeneratedbothintheprojectandinthebaselinescenario;•Thesludgeproducedduringtheimplementationoftheprojectactivityisnotstoredonsitebeforelandapplicationtoavoidanypossiblemethaneemissionsfromanaerobicdegradation.ImportantparametersMonitored:•Quantityandchemicaloxygendemand(COD)ofwastewaterorsludgethatistreatedintheproject;•Quantityofbiogascollectedandconcentrationofmethaneinthebiogas;•Netquantityofelectricityorheatgeneratedintheproject;•Quantityofdewateredsludge/wastewaterappliedtoland.BASELINESCENARIOExistingwastewatertreatmentsystemresultsinreleaseofmethaneintotheatmosphere.BiosWstewterCHReleseLoonPROJECTSCENARIOCaptureofmethaneinthewastewatertreatmentsystemresultsinlessGHGemissions.Incaseofenergeticuseofmethane,displacementofmore-GHG-intensiveenergygeneration.Incaseswherewastewaterisdewatered(DWW)andtheoutputisusedforlandapplicationlessmethaneisemittedintotheatmosphere.EnerBiosFlrinCHWstewterReleseLoonDewterinDWWCHReleseApplictionACM0014TreatmentofwastewaterCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Partialorfullswitchtoalternativerawmaterialsthatdonotcontaincarbonates(AMC)intheproductionofclinkerincementkilnsinexistingandGreenfieldcementplants,withorwithoutadditionalenergyefficiencymeasures.TypeofGHGemissionsmitigationaction•Feedstockswitch;•Energyefficiency.AvoidanceofprocessCO2emissionsbyswitchingtocarbonatefreefeedstockintheproductionofclinker.Additionalenergyefficiencymeasuresmaybeimplemented.Importantconditionsunderwhichthemethodologyisapplicable•Installedcapacityofclinkerproduction,lifetimeofequipment,qualityandtypesofclinkerarenotchanged;•NoAMChavepreviouslybeenusedintheclinkerproductionattheplant;•Atleast1.5timesthequantityofAMCrequiredformeetingtheaggregatedemandoftheproposedprojectactivityandallexistingusersconsumingthesameAMCintheprojectareaisavailable.ImportantparametersAtvalidation:•Historicalrawmaterialuseandclinkerproductionandqualityforexistingplants.Monitored:•Quantityofalternativematerialsconsumedintheproject;•Quantityandqualityofclinkerproducedintheproject;•SpecificKilnCalorificConsumption;•Electricityconsumption.BASELINESCENARIORawmaterialsthatcontaincalciumand/ormagnesiumcarbonates(e.g.limestone)areusedtoproduceclinker.PROJECTSCENARIOAlternativerawmaterialsthatdonotcontaincarbonates(AMC)areusedtoproduceclinker.COClinkerFossilfuelCrbontesElectricitClinkerCOFossilfuelCrbontesAMCElectricitACM0015ACM0015EmissionreductionsfromrawmaterialswitchinclinkerproductionCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Establishmentandoperationofrail-basedorbus-basedmassrapidtransitsystemsinurbanorsuburbanregionsforpassengertransportbyreplacingatraditionalurbanbus-drivenpublictransportsystem.TypeofGHGemissionsmitigationaction•Energyefficiency.Displacementofmore-GHGand,ifgaseousfuelsareused,CH4-intensivetransportmodes(existingfleetofbusesoperatingundermixedtrafficconditions)byless-GHG-intensiveones(newlydevelopedrail-basedsystemsorsegregatedbuslanes).Importantconditionsunderwhichthemethodologyisapplicable•Theprojecteitherinstallsnewrailwaysorsegregatedbuslanesinordertoreplaceexistingbusroutes(e.g.byscrappingbuses,closingorreschedulingbusroutes).Forbusrapidtransitsystemswithfeederplustrunkroutes,methodologyAM0031isrecommended;•Theprojectactivityinvolvesurbanorsuburbantransportprojects.Itisnotapplicableforinter-urbantransport;•Themethodologyisnotapplicableforoperationalimprovements(e.g.neworlargerbuses)ofanalreadyexistingandoperatingbuslaneorrail-basedsystem.ImportantparametersAtvalidation:•Baselinedistanceandtransportmode,whichareobtainedthroughacomprehensivesurveyinvolvingtheusersoftheprojecttransportsystem;•Occupancyratesandtravelleddistancesofdifferenttransportmodes;•Ifexpectedemissionsperpassengerkilometerislessthanorequalto50gCO2/pkm(forroadbasedMRTS)and0.1kWh/pkm(forrailbasedMRTS),theprojectisconsideredautomaticallyadditional.Monitored:•Thenumberofpassengerstransportedintheproject;•Specificfuelconsumption,occupancyratesandtravelleddistancesofdifferenttransportmodesaswellasthespeedofvehiclesonaffectedroads.BASELINESCENARIOPassengersaretransportedusingadiversetransportsysteminvolvingbuses,trains,cars,non-motorizedtransportmodes,etc.operatingundermixedtrafficconditions.PROJECTSCENARIOPassengersaretransportedusingnewlydevelopedrail-basedsystemsorsegregatedbuslanesthatpartiallydisplacetheexistingbus-driventransportsystemoperatedundermixedtrafficconditions.COTrinBusCrMotorccleTrinBusBusCrMotorccleCOTrinACM0016ACM0016MassRapidTransitProjectsWomenndchildrenCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeACM0017Typicalproject(s)Constructionandoperationofabiofuelproductionplantforproductionofblendedbiofuelthatisusedasfuelinexistingstationaryinstallations(e.g.captivegenerators)and/orinvehicles.Biofuelisproducedfromwasteoil/fatseedsorcropsthatarecultivatedondedicatedplantations.TypeofGHGemissionsmitigationaction•Renewableenergy.Displacementofmore-GHG-intensivefossilfuelforcombustioninvehiclesand/orstationaryinstallations.Importantconditionsunderwhichthemethodologyisapplicable•Thealcoholusedforesterification(productionofbiodiesel)ismethanolfromfossilfuelorigin;•Nomodificationsintheconsumerstationaryinstallationsorinthevehiclesenginesarenecessarytoconsume/combustthe(blended)biofuel;•Plantedbiomassiseligibleifspecificconditionselaboratedin“Projectandleakageemissionsfrombiomass”aremet;•Consumersandproducersofthe(blended)biofuelareboundbyacontractthatallowstheproducertomonitorconsumption/sale/blendingof(blended)biofuelandthatstatesthattheconsumershallnotclaimCERsresultingfromitsconsumption.ImportantparametersMonitored:•Quantityofbiofuelfromwasteoil/fat,biomassresiduesorfeedstockfromdedicatedplantationsconsumedbyhostcountryconsumerstosubstitutefossilfuel;•Projectemissionsfromtransportofoilseeds,biomassresidues,vegetableoil,wasteoil/fats,biofuelifdistancesofmorethan50kmarecovered;fossilfuel(includingmethanol)andelectricityconsumption;•Ifapplicable,parameterstomonitorprojectemissions(CO2,CH4,N2O)associatedwiththecultivationofseedsorcrops.BASELINESCENARIOConsumptionoffossilfuel.PROJECTSCENARIOProductionofblendedbiofuelandconsumptioninexistingstationaryinstallations(e.g.captivegenerators)and/orinvehicles.ACM0017ProductionofbiodieselforuseasfuelPetroldieselCO2ConsumerWasteoilVegetableoilBiodieselBiodieselPetrodieselCO2BlendedfuelConsumerCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Generationofpowerusingbiomassasfuel,innewbiomassbasedpowerplantsatsiteswherecurrentlynopowergenerationoccurs(Greenfield),replacementorinstallationofoperationunitsnexttoexistingpowerplants(capacityexpansionprojects),energyefficiencyimprovementprojectsorreplacementoffossilfuelbybiomassinexistingpowerplants(fuelswitchprojects).Thebiomassbasedpowergenerationmaybecombinedwithsolarthermalpowergeneration.TypeofGHGemissionsmitigationaction•Renewableenergy;•Energyefficiency;•Fuelswitch.DisplacementofmoreGHG-intensiveelectricitygenerationinthegridoron-site.Avoidanceofmethaneemissionsfromanaerobicdecayofbiomassresidues.Displacementofmore-GHG-intensivefossilfuelforcombustioninstationaryinstallations.Importantconditionsunderwhichthemethodologyisapplicable•Ifbiomassfromaproductionprocessisused,theimplementationoftheprojectshallnotresultinanincreaseoftheprocessingcapacityofrawinput;•Themethodologyisapplicabletopower-onlyplants;•Plantedbiomassiseligibleifspecificconditionselaboratedin“Projectandleakageemissionsfrombiomass”aremet;•Fossilfuelsmaybeco-firedintheprojectplant.However,theamountoffossilfuelsco-firedshallnotexceed80%ofthetotalfuelfiredonanenergybasis;•Incaseofexistingfacilities,threeyearsofhistoricaldataisrequiredforthecalculationofemissionsreductions;•Projectsthatchemicallyprocessthebiomasspriortocombustion(e.g.bymeansofesterificationofwasteoils,fermentationandgasification,etc.)arenoteligibleunderthismethodology.Thebiomasscanhoweverbeprocessedphysicallysuchasbymeansofdrying,pelletization,shreddingandbriquetting.ImportantparametersAtvalidation:•Ifapplicable:gridemissionfactor(canalsobemonitoredexpost).Monitored:•Electricitygeneratedintheproject;•Quantityandmoisturecontentofthebiomassusedintheprojectandelectricityandfossilfuelconsumptionoftheproject.BASELINESCENARIOElectricitywouldbeproducedbymore-carbon-intensivetechnologiesbasedonfossilfuelorlessefficientpowerplants.Biomasscouldpartiallydecayunderanaerobicconditions,resultinginmethaneemissions.PROJECTSCENARIOUseofbiomassresiduesreplacesfossilfueluse.Decayofbiomassresiduesusedasfuelisavoided.ElectricitBiomssCOCHBurninDisposlFossilfuelGridCHFossilfuelCOElectricitBiomssBurninDisposlGridRenewbleACM0018ACM0018Electricitygenerationfrombiomassinpower-onlyplantsCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)ProjectactivitiesthatintroduceN2Oabatementmeasuresinnitricacidplants.TypeofGHGemissionsmitigationaction•DestructionofGHG.DestructionofN2Oemissionsthroughabatementmeasures.Importantconditionsunderwhichthemethodologyisapplicable•Continuousreal-timemeasurementsoftheN2OconcentrationandthetotalgasvolumeflowcanbecarriedoutinthetailgasstreamaftertheabatementofN2Oemissionsthroughoutthecreditingperiodoftheprojectactivity;•NolaworregulationisinplacemandatingthecompleteorpartialdestructionofN2Ofromnitricacidplant.ImportantparametersAtvalidation:•Nitricacidproduced.Monitored:•MassflowofN2Ointhegaseousstreamofthetailgas;•Nitricacidproduced;•Fractionoftimeduringwhichtheby-passvalveonthelinefeedingthetertiaryN2Oabatementfacilitywasopen.BASELINESCENARIOVentingofN2Ogeneratedduringtheproductionofnitricacidtotheatmosphere.PROJECTSCENARIOImplementationofdifferentabatementmeasurestodestroyN2Oemissions(i.e.installationofsecondaryortertiaryabatementsystems).NitriccidReleseNONONitriccidNOReleseAbtementNOACM0019ACM0019N2OabatementfromnitricacidproductionCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Operationofasinglepieceofbiomass-residueco-firedheatgenerationequipment.Theheatoutputoftheheatgeneratorsmaybeusedonsitetoproduceelectricpowerinpower-onlyplants,orcogenerateelectricpowerincogenerationplants.Typicalactivitiesarepartialreplacementoffossilfuelsbybiomassresiduesinexistingornewheatgenerationequipment.TypeofGHGemissionsmitigationaction•RenewableEnergy.Displacementofmore-GHG-intensiveelectricitygenerationingridorheatandelectricitygenerationon-site.Importantconditionsunderwhichthemethodologyisapplicable•Ifbiomassfromaproductionprocessisused,theimplementationoftheprojectshallnotresultinanincreaseoftheprocessingcapacityofrawinput;•Onlybiomassresidues,notbiomassingeneral,areeligible;•Theamountofbiomassresiduesco-firedshallnotexceed50%ofthetotalfuelfiredonanenergybasis;•Nobiomassisco-firedintheidentifiedbaselinescenarioandthesametypeoffossilfuelisfiredintheidentifiedbaselinescenarioasintheprojectactivity.ImportantparametersAtvalidation:•Ifapplicable:gridemissionfactor(canalsobemonitoredexpost).Monitored:•Quantityandmoisturecontentofthebiomassresiduesusedintheproject;•Electricityand/orheatgeneratedintheprojectactivity;•Electricityandfossilfuelconsumptionoftheprojectactivity.BASELINESCENARIOElectricityorheatwouldbeproducedbymore-carbon-intensivetechnologiesbasedonfossilfuel.PROJECTSCENARIOUseofbiomassresiduesforpowerorheatgenerationinsteadoffossilfuel.COHetElectricitFossilfuelGridHetHetBiomssElectricitHetCOFossilfuelRenewbleGridACM0020Co-firingofbiomassresiduesforheatgenerationand/orelectricitygenerationingridconnectedpowerplantsACM0020CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Installationofcharcoalkilnsofenhanceddesigntoreplaceexistingkilns,and/orinstallationofmethaneabatementunitsatexistingornewkilns.TypeofGHGemissionsmitigationaction•GHGemissionavoidance.AvoidanceorreductionofCH4emissionsincharcoalproductionprocess.Importantconditionsunderwhichthemethodologyisapplicable•Theprojectdoesnotchangethetypeandsourcesofinputforcharcoalproduction;•Therearenoregulationsthatpreventventingofmethanegeneratedfromcharcoalproductionfacility;•Alltheexistingkilnsaffectedbytheprojectactivityshallhavethesamemechanicaldesign.ImportantparametersMonitored:•Charcoalproductionofeachkiln;•Starttimeandendtimeofeachcarbonizationcycleofeachkiln;•Combustionstatusofeachmethaneabatementunit(ifapplicable).BASELINESCENARIOHighCH4emissionsassociatedwiththeproductionofcharcoal.PROJECTSCENARIODecreasedoravoidedCH4emissionsassociatedwithproductionofcharcoal.BiomssChrcolCHCHReleseUprdeBiomssChrcolCHCODecompositionCHReleseACM0021Reductionofemissionsfromcharcoalproductionbyimprovedkilndesignand/orabatementofmethaneACM0021CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Projectactivitiesinvolvetheinstallationandoperationofnewplantsforthetreatmentoffreshwastethroughanycombinationofthefollowingprocesses:a)Compostingprocessunderaerobicconditions;b)Gasificationprocesstoproducesyngasanditsuse;c)Anaerobicdigestionwithbiogasrecoveryandflaringand/oritsuse);d)Mechanical/thermaltreatmenttoproducerefuse-derivedfuel(RDF)/stabilizedbiomass(SB)anditsuse;e)Incinerationoffreshwastetoproducethermal/electricenergy;f)Co-composting/anaerobicdigestionofwastewaterincombinationwithsolidwaste.TypeofGHGemissionsmitigationaction•GHGemissionavoidance.CH4emissionsduetoanaerobicdecayoforganicwasteareavoidedbyalternativewastetreatmentprocesses;•Renewableenergy.Organicwasteisusedasrenewablesourceofenergy.Importantconditionsunderwhichthemethodologyisapplicable•Theprojectactivitydoesnotreducetheamountofwastethatwouldberecycledintheabsenceoftheproject;•Whenapplicableregulationsmandateanywastetreatmentprocessimplementedundertheprojectactivity,therateofcompliancewithsuchregulationsisbelow50percent;•Hazardouswastes/wastewaterarenoteligible.ImportantparametersMonitored:•Weightfractionofthedifferentwastetypesinasample(whereapplicable);•Totalamountofwastepreventedfromdisposal;•Electricityandfossilfuelconsumptionintheprojectsite.BASELINESCENARIODisposalofthewasteinalandfillsitewithoutcapturinglandfillgasorwithpartlycapturingandsubsequentlyflaringit.CHWasteDisposalReleaseLandllgasPROJECTSCENARIOAlternativewastetreatmentprocess,suchascomposting,gasification,anaerobicdigestionwithbiogascollectionandflaringand/oritsuse,mechanical/thermaltreatmentprocesstoproduceRDForSBanditsuse,orincinerationoffreshwasteforenergygeneration.DisposlCHCompostinTretmentBurninWsteLndllsReleseACM0022AlternativewastetreatmentprocessesACM0022SupresseddemndWomenndchildrenCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Improvementoftheboilerefficiencythroughintroductionofefficiencyimprovementtechnology.TypeofGHGemissionsmitigationaction•Energyefficiency.Switchtomore-energy-efficienttechnology.Importantconditionsunderwhichthemethodologyisapplicable•Theboilerhasanoperatinghistoryofatleastthreeyears;•Theefficiencyimprovementtechnologytobeusedundertheprojectactivitywasnotusedattheprojectfacilityonacommercialbasispriortotheimplementationoftheprojectactivity;•Thetypeoffossilfuelusedbytheprojectduringthecreditingperiodwasalsousedduringthemostrecentthreeyearspriortotheimplementationoftheprojectactivity;•Thetechnologiesallowedareoil/wateremulsiontechnology,firesidecleaningtechnologyandcoalcatalysttechnology.ImportantparametersAtvalidation:•Historicalfuelconsumptioninboiler.Monitored:•Fuelconsumptionintheboiler;•Energygenerationfromtheboiler.BASELINESCENARIOOperationofboilersatlowerefficiencyofcombustioninabsenceofefficiencyimprovementtechnology.PROJECTSCENARIOEfficiencyimprovementtechnologyisintroducedtoimprovetheefficiencyofboilers.ACM0023IntroductionofanefficiencyimprovementtechnologyinaboilerACM0023FossilfuelHetBoilerCOFossilfuelHetBoilerUprdeCOCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Projectactivitieswhereorganicwaste(e.g.vinasse,organicMSW,etc.)istreatedbyanaerobicdigestion.Theresultedoutputisupgradedandusedtoreplacenaturalgasinanaturalgasdistributionsystem.TypeofGHGemissionsmitigationaction•RenewableEnergy.Organicwasteisusedasrenewableenergysourcebythedisplacementofnaturalgasinanaturalgasdistributionsystem.Importantconditionsunderwhichthemethodologyisapplicable•Theprojectdoesnotreducetheamountofwastethatwouldberecycledintheabsenceoftheprojectactivity;•Resultingdigestateisfurtherstabilizedaerobically(e.g.composted),appliedtolandorsenttoasolidwastedisposalsite;•Neitherorganicwastenorproductsandby-productsfromtheanaerobicdigesterestablishedundertheprojectactivityarestoredon-siteunderanaerobicconditions.ImportantparametersMonitored:•Amountofmethaneproducedintheanaerobicdigesterbeforeupgrading;•Amountofbiogenicmethanewhichissenttothenaturalgasdistributionsystemafterupgrading.BASELINESCENARIOSupplyofnaturalgastoanaturalgasdistributionsystem.PROJECTSCENARIOOrganicwasteistreatedbyanaerobicdigestion.Theresultedoutputisupgradedandusedtoreplacenaturalgasinanaturalgasdistributionsystem.ACM0024NaturalgassubstitutionbybiogenicmethaneproducedfromtheanaerobicdigestionoforganicwasteACM0024NturlsConsumerNturlsCOBiosCHWsteNturlsTretmentProcessinNturlsConsumerCOCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Installationofanatural-gas-firedpowerplantthatsupplieselectricitytoagridand/oranexistingfacilitythatisalsoconnectedtothegrid.TypeofGHGemissionsmitigationaction•Lowcarbonintensiveelectricitygeneration.Displacementofelectricitythatwouldbeprovidedbymore-carbon-intensivemeans.Importantconditionsunderwhichthemethodologyisapplicable•Iftheprojectactivitypowerplantco-generatesheat,noemissionreductionscanbeclaimedforthegeneratedheat;•Naturalgasissufficientlyavailableintheregionorcountry;•Incaseelectricityissuppliedtoanexistingfacility:thesourcesofelectricityaswellasaveragehistoricalenergyconsumptionshouldbepresentedintheCDM-PDD,andtheelectricityissuppliedthroughadedicatedelectricline.ImportantparametersAtvalidation:•Emissionfactorofbaselineelectricity,derivedfrom:(i)Anemissionfactorofthepowergrid;(ii)Thepowergenerationtechnologythatwouldmostlikelybeusedintheabsenceoftheproject,ortheonecurrentlyusedattheexistingfacility.Monitored:•Fuelconsumptionoftheprojectpowerplant;•Electricitysuppliedtotheelectricpowergridand/oranexistingfacility.BASELINESCENARIOPowergenerationusing:1.Naturalgas,butwithdifferenttechnologiesthantheproject,2.Fossilfuelsotherthannaturalgasorrenewableenergy.PROJECTSCENARIOPowersupplytothegridand/oranexistingfacilitybyanewnatural-gas-firedpowerplant.ACM0025ConstructionofanewnaturalgaspowerplantACM0025FossilfuelGridPowerplntElectricitElectricitCOConsumerElectricitElectricitFossilfuelGridPowerplntCOCOElectricitConsumerNturlsPowerplntCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Constructionandoperationofafossilfuelcogenerationplantthatsupplieselectricityandheattoaconsumingfacility(ies).TypeofGHGemissionsmitigationaction•Energyefficiency.Technologyswitch.Importantconditionsunderwhichthemethodologyisapplicable•Theelectricityandheatrequirementofthefacilitythattheprojectcogenerationplantsuppliesto(consumingfacility)wouldbegeneratedinseparatesystemsintheabsenceoftheproject;•Allrecipientfacilities,existingandGreenfield,shallbeclearlyidentifiedpriortotheimplementationoftheprojectactivity.Wheretheprojectparticipantplanstoclaimemissionreductionsfromtheelectricitysuppliedtothegrid,thegridmaybeconsideredasonesinglerecipientfacility.ImportantparametersAtvalidation:•Fuelconsumptionforheatsupplybytheexistingheat-onlygenerationunits;•Electricitygenerationbythegridortheexistingpower-onlygenerationunits;•Emissionfactorofthegridortheexistingpower-onlygenerationunits.Monitored:•Fossilfuelconsumptionbytheprojectcogenerationplant;•Electricitysuppliedbytheprojectcogenerationplanttotheconsumingfacility;•Heatsuppliedbytheprojectcogenerationplanttotheconsumingfacility.BASELINESCENARIOTheelectricitydemandofafacility(ies)issatisfiedviaeitherpower-onlygenerationunits,orthegridandheatfromheat-onlygenerationunits.PROJECTSCENARIOTherecipientfacility(ies)issuppliedelectricityandheatfromafossilfuelbasedcogenerationplant.ACM0026Fossilfuelbasedcogenerationforidentifiedrecipientfacility(ies)ACM0026COElectricitFossilfuelFossilfuelConsumerHetHetGridPowerplntFossilfuelCElectricitConsumerHetGridPowerplntFossilfuelFossilfuelFossilfuelCHetNturlsCoenertionCOCOCDMMethodologyBooklet3.4.METHODOLOGIESFORSMALL-SCALECDMPROJECTACTIVITIESChapterIIICDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Renewableelectricitygenerationsuchassolar,hydro,windorbiomassgasificationareimplementedbytheusersasnewinstallations(Greenfield)orreplacementofexistingonsitefossil-fuel-firedgeneration.TypeofGHGemissionsmitigationaction•Renewableenergy.Displacementofmore-GHG-intensive,non-renewableelectricityapplicationsbyintroducingrenewableenergytechnologies.Importantconditionsunderwhichthemethodologyisapplicable•Usersareinoff-gridlocations,i.e.theydonothaveconnectiontoanational/regionalgrid,unlessexceptionalsituations,e.g.weakgrids;•Usersareincludedintheprojectboundary;•Conditionsapplyforreservoir-basedhydroplants.ImportantparametersAtvalidation:•Trend-adjustedprojectionofhistoricalfuelconsumptionifanexistingtechnologyisreplaced(e.g.forlighting,dailyusedurationcanbeapplied).Monitored:•Anannualcheckofallsystemsorasamplethereoftoensurethattheyarestilloperating,ormeteringofgeneratedelectricity;•Ifapplicable,consumptionofenergysources(e.g.biomass,fossilfuel);•Ifapplicable,availabilityofconnectedgrid.BASELINESCENARIOServices(e.g.lighting,refrigeration)areprovidedusingfossil-fuel-basedtechnologies(e.g.kerosenelampsanddieselgenerators).PROJECTSCENARIOElectricityisproducedbyusersusingrenewableenergytechnologies(e.g.solarhomesystemsforlighting,windbatterychargersforpoweringdomesticappliances).COElectricitFossilfuelPowerplntConsumerCOFossilfuelPowerplntElectricitRenewbleConsumerAMS-I.A.AMS-I.A.ElectricitygenerationbytheuserSupresseddemndWomenndchildrenCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Installationofrenewableenergytechnologiessuchashydropower,windpowerandothertechnologiesthatprovidemechanicalenergythatotherwisewouldhavebeensuppliedwithfossil-fuel-basedenergy.Mechanicalenergyisusedon-sitebyindividualhousehold(s)oruser(s).Typicalapplicationsarewind-poweredpumps,watermillsandwindmills.Theprojectmayalsoproduceelectricityinadditiontomechanicalenergy.TypeofGHGemissionsmitigationaction•Renewableenergy.Displacementofmore-GHG-intensivefossil-fuel-basedgenerationofmechanicalpower.Importantconditionsunderwhichthemethodologyisapplicable•Operatingcharacteristicsoftheprojectsystem(e.g.headvs.dischargeandefficiencyofirrigationpump)shouldbesimilartoorbetterthanthesystembeingreplacedorthatwouldhavebeenreplaced.ImportantparametersMonitored:•Anannualcheckofallsystemsorasamplethereoftoensurethattheyarestilloperating;•Annualhoursofoperationcanbeestimatedfromtotaloutput(e.g.tonnesofgrainmilled);•Ifapplicable:quantityofeachtypeofenergysourcesconsumed(e.g.biomass,fossilfuel).Netcalorificvalueandmoisturecontentofbiomass.BASELINESCENARIOMechanicalenergywouldbeproducedusingfossil-fuel-basedtechnologies.Underasuppresseddemandscenario,dieselbasedgenerator(s)orpump(s)isdeemedtobethebaseline.PROJECTSCENARIOMechanicalenergyisproduced(withorwithoutelectricity)usingrenewableenergytechnologies.COFossilfuelConsumerEnerMechniclCOFossilfuelConsumerRenewbleMechniclEnerAMS-I.B.AMS-I.B.MechanicalenergyfortheuserwithorwithoutelectricalenergySupresseddemndWomenndchildrenCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeAMS-I.C.Typicalproject(s)Thermalenergyproductionusingrenewableenergysourcesincludingbiomass-basedcogenerationand/ortrigeneration.Projectsthatseektoretrofitormodifyexistingfacilitiesforrenewableenergygenerationarealsoapplicable.TypeofGHGemissionsmitigationaction•Renewableenergy.Displacementofmore-GHG-intensivethermalenergyproduction,displacementofmore-GHG-intensivethermalenergyand/orelectricitygeneration.Importantconditionsunderwhichthemethodologyisapplicable•Thermalenergyand/orelectricityproductionusingbiomass-basedcogenerationandtrigenerationsystemiseligible;•Ifsolidbiomassisused,ithastobedemonstratedthatsolelyrenewablebiomassisused.Ifcharcoalorbiomassfuelisused,allprojectorleakageemissions(e.g.releaseofmethane)fromthefuelproductionhavetobeconsidered;•Ifprojectequipmentcontainsrefrigerants,thentherefrigerantusedintheprojectcaseshallhavenoozonedepletingpotential(ODP).ImportantparametersMonitored:•Themoisturecontentofbiomassofhomogeneousqualitymaybefixedexanteormonitoredforeachbatchofbiomassiftheemissionreductionsarecalculatedbasedonenergyinput;•Thermalenergy(massflow,temperature,pressureforheat/cooling)deliveredbytheprojectandtheamountofgridand/orcaptiveelectricitydisplaced;•Quantityofbiomassandfossilfuelconsumed;•Netcalorificvalueofbiomassshallbedeterminedonceinthefirstyearofthecreditingperiod;•Thechilledwatermassflow-rateforchiller(s);•Coolingoutputofbaselinechillerdisplacedasaresultoftheinstallationofprojectactivity;•Quantityofrefrigerantusedtoreplacerefrigerantthathasleaked.BASELINESCENARIOEnergygeneration(thermalheatand/orelectricity)bymore-carbon-intensivetechnologiesbasedonfossilfuel.Incaseofretrofitsorcapacityaddition,operationofexistingrenewablepowerunitswithoutretrofitandcapacityaddition.PROJECTSCENARIOEnergygenerationbyinstallationofnewrenewableenergygenerationunits,byretrofittingorreplacementofexistingrenewableenergygenerationunitsaswellasbyswitchfromfossilfueltobiomassinmodifiedexistingfacilities.AMS-I.C.ThermalenergyproductionwithorwithoutelectricityCOFossilfuelHetHetConsumerCOFossilfuelRenewbleHetHetConsumerWomenndchildrenCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Constructionandoperationofapowerplantthatusesrenewableenergysourcesandsupplieselectricitytothegrid(Greenfieldpowerplant)orretrofit,replacementorcapacityadditionofanexistingpowerplantthatusesrenewableenergysourcesandsupplieselectricitytothegrid.TypeofGHGemissionsmitigationaction•Renewableenergy.Displacementofelectricitythatwouldbeprovidedtothegridbymore-GHG-intensivemeans.Importantconditionsunderwhichthemethodologyisapplicable•Combinedheatandpowergenerationisnoteligible(AMS-I.C.canbeusedhere);•Specialconditionsapplyforreservoir-basedhydroplants.ImportantparametersAtvalidation:•Gridemissionfactor(canalsobemonitoredexpost);•Moisturecontentofbiomassofhomogeneousqualityshallbedeterminedexante.Monitored:•Quantityofnetelectricitysuppliedtothegrid;•Quantityofbiomass/fossilfuelconsumed;•Netcalorificvalueofbiomassshallbedeterminedonceinthefirstyearofthecreditingperiod.BASELINESCENARIOElectricityprovidedtothegridbymore-GHG-intensivemeans.PROJECTSCENARIOElectricityisgeneratedandsuppliedtothegridusingrenewableenergytechnologies.COFossilFuelElectricitGridGridCOFossilfuelElectricitRenewbleGridGridAMS-I.D.AMS-I.D.GridconnectedrenewableelectricitygenerationWomenndchildrenCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeAMS-I.E.Typicalproject(s)Generationofthermalenergybyintroducingrenewableenergytechnologiesforend-usersthatdisplacetheuseofnon-renewablebiomass.Examplesofthesetechnologiesinclude,butarenotlimitedto,Cookstovesusingrenewablebiomass,suchasbriquettes,pellets,andwoodchips;Biogasstoves;Bio-ethanolstoves;Electriccookstovesincludinginductioncookstovespoweredbyrenewableenergy.TypeofGHGemissionsmitigationaction•Renewableenergy.Displacementofmore-GHG-intensive,non-renewablebiomass-fueledapplicationsbyintroducingrenewableenergytechnologies.Importantconditionsunderwhichthemethodologyisapplicable•Itshallbedemonstratedthatnon-renewablebiomasshasbeenusedsince31December1989;•Projectappliancesarecontinuouslyoperatedorreplacedbyequivalentserviceappliances.ImportantparametersMonitored:•Averageannualconsumptionofwoodybiomassperhouseholdorperpersoninthepre-projectdevicesduringtheprojectactivity,ifitisfoundthatpre-projectdeviceswerenotcompletelydisplacedbutcontinuetobeusedtosomeextent;•Fractionofwoodybiomasssavedbytheprojectactivitythatcanbeestablishedasnon-renewablebiomass,asperthemethodologicaltool“calculationoffractionofnon-renewablebiomass”;•Averageconsumptionofelectricitybyelectriccookingappliance(s);•Leakage:theamountofwoodybiomasssavedundertheprojectthatisusedbynon-projecthouseholds/users(whopreviouslyusedrenewableenergysources)shallbeassessedfromsurveys.BASELINESCENARIOThermalenergywouldbeproducedbymore-GHG-intensivemeansbasedontheuseofnon-renewablebiomass.PROJECTSCENARIOUseofrenewableenergytechnologiesforthermalenergygeneration,displacingnonrenewablebiomassuse.AMS-I.E.Switchfromnon-renewablebiomassforthermalapplicationsbytheuserCOHetNon-renewbleConsumerHetCOHetRenewbleConsumerNon-renewbleHetRenewbleWomenndchildrenCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Productionofelectricityusingrenewableenergytechnologiessuchasphotovoltaic,hydro,tidal/wave,wind,geothermalandrenewablebiomassthatsupplyelectricitytouser(s).TypeofGHGemissionsmitigationaction•Renewableenergy.Displacementofelectricitythatwouldbeprovidedtotheuser(s)bymore-GHG-intensivemeans.Importantconditionsunderwhichthemethodologyisapplicable•Theprojectwilldisplaceelectricityfromanelectricitydistributionsystemthatisorwouldhavebeensuppliedbyatleastonefossilfuelfiredgeneratingunit;•Electricityisproducedbyinstallinganewpowerplant(Greenfield)orbycapacityaddition/retrofit/replacementof(an)existingplant(s);•Specialconditionsapplyforreservoir-basedhydroplants;•Cogenerationprojectsarenoteligible.ImportantparametersAtvalidation:•Ifapplicable:gridemissionfactor(canalsobemonitoredexpost).Monitored:•Netelectricitygeneration,quantityoffossilfuelandbiomassconsumption.BASELINESCENARIOElectricitywouldhavebeensuppliedbyoneormoreenergysourcessuchasanationaloraregionalgridorafossil-fuel-firedcaptivepowerplantoracarbon-intensivemini-grid.PROJECTSCENARIOElectricityissuppliedusingrenewableenergytechnologies.COFossilfuelConsumerPowerplntElectricitGridCOFossilfuelConsumerElectricitRenewblePowerplntGridAMS-I.F.AMS-I.F.Renewableelectricitygenerationforcaptiveuseandmini-gridWomenndchildrenCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeAMS-I.G.Typicalproject(s)Plantoilproductionthatisusedforgenerationofthermal,mechanicalandelectricalenergyinstationaryequipmentincludingcogeneration.Theplantoilisproducedfrompressedandfilteredoilseedsfromplantsthatarecultivatedondedicatedplantations.TypeofGHGemissionsmitigationaction•Renewableenergy.Displacementofmore-GHG-intensivefossilfuelforcombustioninstationaryinstallations.Importantconditionsunderwhichthemethodologyisapplicable•Thepureplantoilanditsblendsabove10%isusedinspeciallybuiltormodifiedequipment;•Exportofproducedplantoilisnotallowed;•Ifthebiomassfeedstockissourcedfromdedicatedplantation,thepre-projectactivitiessuchasgrazingandcollectionofbiomassmustbeaccommodatedforwithintheprojectactivity.ImportantparametersMonitored:•Energyconsumptionofthecombustionprocesses(e.g.plantoil,fossilfuel);•Parameterstoestimateprojectemissionsfromthecultivationofoilcrops;•Ifapplicable:leakageemissionsduetoashiftofpre-projectactivitiesandthecompetingusesofbiomass;•Quantityoftheelectricityproduced;ofthethermalenergy(massflow,temperature,pressureforheat/cooling)generatedbytheproject;•Projectemissionsfromfossilfuelandelectricityconsumptionaswellasfromthetransportofoilseedsifdistancesofmorethan200kmarecovered.BASELINESCENARIOServices(e.g.electricity,thermalandmechanicalenergysupply)areprovidedusingfossil-fuel-basedtechnologies.PROJECTSCENARIOOilcropsarecultivated,plantoilisproducedandusedforthegenerationofelectricity,thermalormechanicalenergydisplacingfossilfuel.AMS-I.G.PlantoilproductionanduseforenergygenerationinstationaryapplicationsFossilfuelCOEnerElectricitHetMechniclPlntoilPlnttionCOFossilfuelEnerElectricitHetMechniclWomenndchildrenCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Biofuelisproducedfrombiomassresidues,biomasscultivatedondedicatedplantationsandfromwasteoil/fatandusedtogeneratethermal;mechanicalorelectricalenergyinequipmentincludingcogeneration.TypeofGHGemissionsmitigationaction•Renewableenergy.Displacementofmore-GHG-intensivefossilfuelforcombustioninstationaryinstallations.Importantconditionsunderwhichthemethodologyisapplicable•Purebiofuelanditsblendsabove10%areusedinspeciallybuiltormodifiedequipment;•Anyalcoholusedforesterificationismethanolfromfossilfueloriginoralcoholproducedwithbiomassfromdedicatedplantations;•Exportofproducedbiofuelisnotallowed;•Ifthebiomassfeedstockissourcedfromdedicatedplantation,theprojectandleakageemissionsshallbeconsidered.ImportantparametersMonitored:•Biofuelproductionandconsumptionbytheprojectactivity;•Electricityandfuelconsumptionofthecombustionbytheprojectactivity;•Parameterstoestimateprojectemissionsfromthecultivationofbiomass;•Quantityoftheelectricityand/orthethermalenergygeneratedbytheprojectactivity.BASELINESCENARIOServices(e.g.electricity,thermalandmechanicalenergysupply)areprovidedusingfossilfuelbasedtechnologies.PROJECTSCENARIOBiofuelisproducedfrombiomassresidues,cultivatedbiomassorfromwasteoil/fatandusedforthegenerationofelectricity,thermalormechanicalenergydisplacingfossilfuel.FossilfuelCOEnerElectricitHetMechniclPlnttionCOElectricitHetMechniclWsteoilPlntoilFossilfuelEnerBiodieselBiodieselAMS-I.H.AMS-I.H.BiodieselproductionanduseforenergygenerationinstationaryapplicationsCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Activitiesforgenerationofrenewablethermalenergyusingrenewablebiomassorbiogasforuseinresidential,commercialandinstitutionalapplications.Examplesofthesetechnologiesthatdisplaceoravoidfossilfueluseinclude,butarenotlimitedto,biogascookstoves,biomassbriquettecookstoves,small-scalebakinganddryingsystems,waterheating,orspaceheatingsystems.TypeofGHGemissionsmitigationaction•Renewableenergy.Displacementofmore-GHG-intensivethermalenergygeneration.Importantconditionsunderwhichthemethodologyisapplicable•Eachunit(e.g.cookstove,heater)shallhavearatedcapacityequaltoorlessthan150kWthermal.ImportantparametersMonitored:•Numberofthermalapplicationscommissioned;•Thenetquantityofrenewablebiomassorbiogasconsumedbythethermalapplicationinyeary;•Netcalorificvalueofbiomasstype.BASELINESCENARIOThermalenergyproductionbasedonfossilfuel.PROJECTSCENARIOThermalenergygenerationbyrenewablebiomassorbiogas.Fossilfuelmaycontinuetobeused.COFossilfuelHetHetConsumerRenewbleHetConsumerFossilfuelEnerCOBiomssBiosAMS-I.I.AMS-I.I.Biogas/biomassthermalapplicationsforhouseholds/smallusersWomenndchildrenCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Theinstallationofresidentialandcommercialsolarwaterheating(SWH)systemsforhotwaterproduction.TypeofGHGemissionsmitigationaction•Renewableenergy.Displacementofelectricityorfossilfuelthatwouldotherwisehavebeenusedtoproducehotwater.Importantconditionsunderwhichthemethodologyisapplicable•Twotypesofprojectsincludedinthiscategory:retrofitsandnewconstruction;•CommercialSWHsystemsshallincludeoperationalindicatorsthatmaybeeasilyinterpretedbytheintendedusersofthesystemsandthatindicatethatwaterisbeingheatedbysolarenergy.ImportantparametersAtvalidation:•Emissionfactorofthebaselinefueland/orgrid;•Whereapplicable:–Efficiencyofthebaselineunitwhichisconsumingfossilfuelorelectricity;–Solarinsolationlevel;–Timeofhotwaterdemand.Monitored:•Whereapplicable,hotwaterconsumptionpattern,inlet/outlettemperature,characteristics/specificationsoftheprojectsystem;•Retentionrateoftheprojectsystem;•Collectingareaofthesolarpanel;•Auxiliaryfuelconsumptionbytheprojectsystem,whereapplicable.BASELINESCENARIOHotwaterproductionisbasedonfossilfuel/electricityconsumption.PROJECTSCENARIOHotwaterisproducedbysolarenergy.WterHotWterFossilfuelHetHetCOCOWterHotWterHetFossilfuelRenewbleHetAMS-I.J.AMS-I.J.Solarwaterheatingsystems(SWH)WomenndchildrenCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Projectactivitiesthatintroducesolarcookerstoindividualhouseholdstobeusedforhouseholdcookingpurpose.TypeofGHGemissionsmitigationaction•Renewableenergy.Useofsolarcookerswillreduceordisplaceuseoffossilfuelsornon-renewablebiomass.Importantconditionsunderwhichthemethodologyisapplicable•Solarcookersshallbedemonstratedtobedesignedandconstructedaccordingtotherequirementsofarelevantnationalorinternationalstandard;•Alocalorganizationshallbeinvolvedonanongoingbasistoassistinpromotingandfacilitatingthecontinueduseofthecookers.ImportantparametersAtvalidation:•Annualconsumptionofbaselinefossilfuel(canalsobemonitored).Monitored:•Numberofhouseholdsprovidedwithsolarcookers;•Proportionofprovidedsolarcookersstilloperating.BASELINESCENARIOFossilfuel(s)ornon-renewablebiomassareusedforcookingpurposes.PROJECTSCENARIOFossilfuel(s)ornonrenewablebiomassarereplacedbysolarenergy.COFossilfuelConsumerHetHetFossilfuelHetRenewbleHetCOConsumerAMS-I.K.AMS-I.K.SolarcookersforhouseholdsWomenndchildrenCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Aftertheprojectimplementation,ruralcommunitiesaresuppliedwithelectricityfromrenewable-basedsystems(e.g.solarhomesystems,renewablemini-grid).TypeofGHGemissionsmitigationaction•Renewableenergy.Displacementoffossilfueluse.Importantconditionsunderwhichthemethodologyisapplicable•75%(bynumbers)oftheend-usersshallbehouseholds;•End-userswerenotconnectedtoanational/regionalgrid;•Projectequipmentcomplieswithinternationalstandardsorcomparablenational,regionalorlocalstandards/guidelines.ImportantparametersAtvalidation:•Thenumberoffacilities(e.g.households,SMMEs,publicbuildings)suppliedwithrenewableelectricitybytheprojectactivity.Monitored:•Measureorestimatethenetamountofrenewableelectricitydeliveredtoalltheend-usefacilities;•Installedcapacityofrenewableelectricitygenerationsystems.BASELINESCENARIOIntheabsenceoftheprojectactivity,theenduserswouldhaveusedfossilfuelbasedlightingandstand-alonedieselelectricitygeneratorsforappliancesotherthanlighting(e.g.TV).PROJECTSCENARIOEndusersaresuppliedwithelectricityfromrenewablebasedenergysystems(e.g.solarhomesystemsorrenewablemini-grid).ElectricitFossilfuelFossilfuelPowerplntCOLihtinConsumerElectricitRenewbleUprdeLihtinConsumerFossilfuelFossilfuelPowerplntCOAMS-I.L.AMS-I.L.ElectrificationofruralcommunitiesusingrenewableenergySupresseddemndWomenndchildrenCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Productionofelectricityusingsolarphotovoltaictechnologythatsupplyelectricalenergyforaircraftat-gateoperationsinairports.TypeofGHGemissionsmitigationaction•Renewableenergy.Importantconditionsunderwhichthemethodologyisapplicable•Installanewsolarphotovoltaicsystem(Greenfieldplant)atanairportfacilitywherenoonsiterenewableenergypowergenerationcapacitiesexistedpriortotheimplementationoftheprojectactivitythatsuppliedpowertotheairport’sat-gateoperations;•Electricitygeneratedfromthesolarphotovoltaicsystemissuppliedtoairportsfordomesticaircraftat-gateoperations.Aircraftsthatoperateoninternationalroutesarenotincludedinthismethodology.ImportantparametersAtvalidation:•Emissionfactorofthebaselinesource(e.g.jetfuel,diesel,gridand/orcaptivegeneration)ofemissionusedbytheairporttoprovideelectricityandpre-conditionedairtoaircraftsat-gate.Monitored:•Quantityofelectricityconsumedbyaircraftelectricalcomponentsforthedomesticaircraftat-gateoperation,whichissuppliedbythesolarpowerinyeary;•Quantityofelectricityconsumedbyanaircrafttoobtainpre-conditionedairforadomesticaircraft’sat-gateoperationwhichissuppliedbythesolarpower,inyeary.BASELINESCENARIOTheenergyrequiredfortheat-gateoperationaresuppliedbyenergygeneratedfromgridand/orfossilfuels.PROJECTSCENARIOTheenergygeneratedfromthesolarsourcewouldreplacepartiallyorfullytheenergysuppliedbyfossilfueland/orgridforat-gateoperations.FossilfuelFossilfuelCOGridAirplaneRenewbleFossilfuelFossilfuelCOAirplaneGridAMS-I.M.AMS-I.M.Solarpowerfordomesticaircraftat-gateoperationsCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeAMS-II.A.Typicalproject(s)Technicalenergylossesarereducedthroughenergyefficiencymeasuressuchasupgradingthevoltageonatransmission/distributionsystem,replacingexistingtransformerswithmoreefficienttransformers(e.g.replacementofasiliconsteelcoretransformerwithanamorphousmetaltransformer)inelectricaltransmission/distributionsystemorimprovingpipeinsulationinadistrictheatingsystem.Theprojectmaybetheupgrade/replacementofanexistingdistributionsystemorbepartofanexpansionofanexistingsystem.TypeofGHGemissionsmitigationaction•Energyefficiency.TechnologywithhigherefficiencyreduceselectricalorthermalenergylossesandtherebyGHGemissions.Importantconditionsunderwhichthemethodologyisapplicable•Measuresthatreducetechnicallossessolelybyimprovingoperationsand/ormaintenancepracticesarenoteligible;•Introductionofcapacitorbanksandtapchangingtransformersforreducinglossesinanelectricitydistributionisnotcovered;•Forretrofitprojects,historicaldataisrequiredtodeterminetechnicallossesoftheexistingequipment.ImportantparametersMonitored:•Technicalenergylossesoftheprojectequipment;•Ifapplicable:forradialelectricitydistributionsystemsforwhichnoperformance-measuringstandardsareavailable,technicallossesshallbedeterminedbyapeerreviewedmethod.BASELINESCENARIOElectrical/thermalenergyistransmittedanddistributedusingless-efficientenergysystem.PROJECTSCENARIOReducingtechnicallossesandtherebyGHGemissionsthroughinstallationofanewenergy-efficientdistribution/transmissionequipment/systemand/orretrofitoftheexistingless-efficientequipment/system.AMS-II.A.Supplysideenergyefficiencyimprovements–transmissionanddistributionConsumerFossilfuelEnerEnerEnerEnerCOConsumerFossilFuelTechnoloGenertorCOEnerEnerEnerCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Introductionofmore-efficientelectricityand/orthermalenergygenerationunitsorcompletereplacementofexistingpowerstations,districtheatingplantsandcogenerationunitsbynewequipmentwithahigherefficiencyorretrofittingofexistingfossil-fuel-firedgeneratingunitsinordertoincreasetheirefficiency.TypeofGHGemissionsmitigationaction•Energyefficiency.TechnologywithhigherefficiencyreducesfossilfuelconsumptionforenergygenerationandtherebyreducesGHGemissions.Importantconditionsunderwhichthemethodologyisapplicable•Baselineandprojecttechnologiesutilizefossilfuelstoproduceenergy;•Renewableenergyprojectsarenotapplicable(typeImethodologies,e.g.AMS-I.C.orAMS-I.D.maybeexplored).ImportantparametersMonitored:•Quantityoffuelusedintheenergygeneratingequipment;•Quantityofenergyoutput.BASELINESCENARIOContinuationofthecurrentsituation,i.e.useoftheexistingfossil-fuel-firedenergygenerationequipmentwithlowerefficiency.PROJECTSCENARIOInstallationofmore-efficientenergygenerationtechnologyand/orcompletereplacementofexistingless-efficientequipmentand/orretrofittingofanexistingenergygenerationsystemreducesfossilfuelconsumptionandGHGemissions.COFossilfuelEnerEnerCOFossilfuelEnerUprdeEnerAMS-II.B.AMS-II.B.Supplysideenergyefficiencyimprovements–generationCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeAMS-II.C.Typicalproject(s)Installationofnewenergy-efficientequipment(e.g.lamps,ballasts,refrigerators,motors,fans,airconditioners,pumpingsystemsandchillers)atoneormoreprojectsites,asretrofitornewconstruction(Greenfield)projects.TypeofGHGemissionsmitigationaction•Energyefficiency.Displacementofmore-GHG-intensiveservicebyuseofmore-efficienttechnology.Importantconditionsunderwhichthemethodologyisapplicable•Theservicelevel(e.g.ratedcapacityoroutput)oftheinstalledprojectenergy-efficientequipmentisbetween90%and150%oftheservicelevelofthebaselineequipment;•Ifapplicable:refrigerantusedintheprojectactivityshallhavenoozonedepletingpotential(ODP).ImportantparametersAtvalidation:•Ifapplicable:gridemissionfactor(canalsobemonitoredexpost).Monitored:•Monitoringshallincludeannualchecksofasampleofnon-meteredsystemstoensurethattheyarestilloperating;•Recordingthe“power”oftheequipmentinstalledandmeteringasampleoftheunitsinstalledfortheiroperatinghoursusingruntimemeters;ormeteringthe“energyuse”ofanappropriatesampleoftheequipmentinstalled.BASELINESCENARIOLess-efficientequipment(e.g.lamps,refrigerators,motors,fans,airconditioners,pumpingsystems,chillers)consumemoreenergy,thusresultinginhigherGHGemissions.PROJECTSCENARIOMore-efficientequipment(e.g.lamps,refrigerators,motors,fans,airconditioners,pumpingsystems,chillers)consumelessenergy,thusresultinginlowerGHGemissions.AMS-II.C.Demand-sideenergyefficiencyactivitiesforspecifictechnologiesFossilfuelEquipmentElectricitCOGridFossilfuelEquipmentUprdeElectricitCOGridWomenndchildrenCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Processenergyefficiencyimprovement(s)affectingeitherasingleproductionstep/elementprocess(e.g.furnace,kiln)oraseriesofproductionsteps/elementprocesses(e.g.industrialprocessinvolvingmanymachines);andenergyefficiencyimprovementinenergyconversionequipment(e.g.boiler,motor)thatsuppliesthermal/electrical/mechanicalenergywithinafacility.TypeofGHGemissionsmitigationaction•Energyefficiency.Increaseinenergyefficiencywith,optionally,aswitchtoless-carbon-intensivefuel.Importantconditionsunderwhichthemethodologyisapplicable•Energyusewithintheprojectboundarycanbedirectlymeasuredorcanbedeterminedusingnational/internationalstandards;•Improvementsinefficiencybytheprojectcanbeclearlydistinguishedfromefficiencychanges/improvementsnotattributabletotheproject;•Theprojectoutputisequivalenttotheoutputproducedinthebaseline.ImportantparametersAtvalidation:•Energyconsumption,emissionintensityofenergytypes,outputservicelevelinthebaseline;·Documentingofthetechnicalspecificationoftheequipment/systems.Monitored:•Meteringtheenergyuseofequipments;•Output;•Incasetheoutputparametercannotbemeasured,thequantityofinputmaterial(feedstock).BASELINESCENARIOConsumptionofelectricity,heatand/orfossilfuelleadstoCO2emissions.PROJECTSCENARIOConsumptionoflesselectricity,heatand/orfossilfuelleadstodecreasedCO2emissions.FossilfuelCOProductionGridHetHetElectricitCOProductionFossilfuelUprdeGridHetHetElectricitAMS-II.D.AMS-II.D.EnergyefficiencyandfuelswitchingmeasuresforindustrialfacilitiesCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Implementationofenergyefficiencymeasuresinneworexistingresidential,commercialorinstitutionalbuildingunits,e.g.useofefficientappliances,betterinsulationandoptimalarrangementofequipment,BEMS(BuildingEnergyManagementSystems)andswitchingfromoiltogas.TypeofGHGemissionsmitigationaction•Energyefficiency.Electricityand/orfuelsavingsthroughenergyefficiencyimprovement.Optionally,useofless-carbon-intensivefuel.Importantconditionsunderwhichthemethodologyisapplicable•Energyusewithintheprojectboundaryshallbedirectlymeasured;•Theimpactoftheimplementedmeasures(improvementsinenergyefficiency)canbeclearlydistinguishedfromchangesinenergyuseduetoothervariablesnotinfluencedbytheproject.ImportantparametersAtvalidation:•Electricityandfuelthatwouldhavebeenconsumedbythebaselinebuildingunit;•Numberofoccupantsofresidentialbaselinebuildingunit;•Hoursofoperationofcommercialandinstitutionalbaselinebuildingunit;•HeatingDegreeDays(HDD)andCoolingDegreeDaysoftheregionwherethebuildingislocated;•SpecificCO2emissionsperoccupant;•SpecificCO2emissionsperm2(ifstandardizedbaselineisapplied).Monitored:•Electricityandfuelconsumedbythebuilding;•Numberofoccupantsofresidentialbaselinebuildingunit;•Hoursofoperationofcommercialandinstitutionalbaselinebuildingunit;•HeatingDegreeDays(HDD)andCoolingDegreeDaysoftheregionwherethebuildingislocated;•Floorareaofthebuilding.BASELINESCENARIOConsumptionofelectricityandheatdueto(i)less-efficientand/ormore-carbon-intensiveequipmentand(ii)less-efficientconstructionfeaturesinbuildings.PROJECTSCENARIOConsumptionoflesselectricityandheatdueto(i)more-efficientand/orless-carbon-intensiveequipmentand(ii)more-efficientconstructionfeaturesinbuildings.COFossilfuelBuildinsBuildinsFossilfuelUprdeCOAMS-II.E.AMS-II.E.EnergyefficiencyandfuelswitchingmeasuresforbuildingsWomenndchildrenCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeAMS-II.F.Typicalproject(s)Energyefficiencyandfuelswitchingmeasuresimplementedinagriculturalactivitiesorfacilitiesorprocesses.Examplesforsuchmeasuresareefficientirrigation(e.g.adoptionofdrip/sprinklerirrigationtosubstitutefloodirrigation),measuresleadingtoareducedrequirementoffarmpowerperunitareaofland,aswellasreducingfuelconsumptioninagriculture,suchasreducedmachineryusethrough,(e.g.eliminationoftillageoperations).TypeofGHGemissionsmitigationaction•Energyefficiency;•Fuelswitch.Displacementofmore-GHG-intensiveagriculturalservice(s).Importantconditionsunderwhichthemethodologyisapplicable•Installationofnewequipmentand/orretrofitofexistingequipmentiseligible;•Baselineandprojectscenariosoffuelconsumptionshallbedemonstratedagainstreferenceagricultureactivities,includingcultivatedaverageandcropyield.ImportantparametersMonitored:•Applicableforretrofits:theenergyuseoftheagriculturefacility,processesortheequipmentaffected;•Applicableforinstallationofnewequipment:theenergyuseoftheagriculturefacility,processesortheequipmentinstalled;•Thecharacteristicsandscaleoftheagricultureactivitiessuchasnumberofhacultivated,cropyield.BASELINESCENARIOInstallationanduseofless-efficientagriculturefacilities,processesandequipment.PROJECTSCENARIODuetoretrofittingand/ornewinstallations,more-efficientagriculturefacilities,processesandequipmentareutilizedresultinginreducedGHGemissions.AMS-II.F.EnergyefficiencyandfuelswitchingmeasuresforagriculturalfacilitiesandactivitiesCOFossilfuelAr.ctivitAricultureFossilfuelFossilfuelUprdeCOAr.ctivitAricultureWomenndchildrenCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeAMS-II.G.Typicalproject(s)Introductionofnewefficientthermalenergygenerationunits,e.g.efficientbiomassfiredcookstovesorovensordryersorretrofittingofexistingunitstoreducetheuseofnonrenewablebiomassforcombustion.TypeofGHGemissionsmitigationaction•Energyefficiency.Displacementorenergyefficiencyenhancementofexistingheatgenerationunitsresultsinsavingofnon-renewablebiomassandreductionofGHGemissions.Importantconditionsunderwhichthemethodologyisapplicable•Itshallbedemonstratedthatnon-renewablebiomasshasbeenusedsince31December1989;•Themethodologyisapplicabletosinglepotormultipotportableorin-situcookstoveswithratedefficiencyofatleast25percent.ImportantparametersMonitored:•Annualorbiennialcheckofoperationoftheprojectappliances(e.g.byrepresentativesample);•Annualcheckoftheefficiencyoftheprojectappliances(e.g.byrepresentativesample).Otheroptionstodetermineefficiencyincludeasamplesurveyofthedevicesinthefirstbatchandapplyingdefaultannualefficiencydropvalues;•Fractionofwoodybiomasssavedbytheprojectactivitythatcanbeestablishedasnon-renewablebiomass,asperthemethodologicaltool“Calculationoffractionofnon-renewablebiomass”;•Leakage:theamountofwoodybiomasssavedundertheprojectthatisusedbynon-projecthouseholds/users(whopreviouslyusedrenewableenergysources)shallbeassessedfromsurveys.BASELINESCENARIOContinuationofthecurrentsituation,i.e.useofnonrenewablebiomassasfuelfortheexisting,less-efficientthermalapplications.PROJECTSCENARIOInstallationofmore-efficientthermalenergygenerationunitsutilizingnon-renewablebiomassand/orcompletereplacementofexistingless-efficientthermalapplicationsand/orretrofittingofexistingthermalenergygeneratingappliancesreducesGHGemissionsbysavingnonrenewablebiomass.AMS-II.G.Energyefficiencymeasuresinthermalapplicationsofnon-renewablebiomassCONon-renewbleHetHetNon-renewbleHetCOUprdeHetWomenndchildrenCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Energyefficiencymeasuresimplementedthroughintegrationofanumberofutilityprovisionsintoonesingleutilitytoproducepowerandheatand/orcooling(i.e.cogeneration/trigenerationsystems)inanexistingornewindustrialfacility.TypeofGHGemissionsmitigationaction•Energyefficiency.Displacementofseveralmore-GHG-intensiveutilitiesbyasingle,centralizedutility.Importantconditionsunderwhichthemethodologyisapplicable•Displacementofcogenerationortrigenerationsystemsisnotallowed;•Forexistingsystem,threeyearsofhistoricaldataisrequired;•Definitionofnaturalgasapplies;•Projectequipmentcontainingrefrigerantsshallhavenoglobalwarmingpotentialandnoozonedepletingpotential.ImportantparametersAtvalidation:•Definitionofareferencebaselineplantthatwouldhavebeenbuiltinabsenceoftheproject;•Gridemissionfactor(canalsobemonitoredexpost).Monitored:•Amountofelectricitysuppliedtotheindustrialfacilityand/orthegrid;•Quantityoffossilfuelandgridelectricityconsumedbytheproject;•Electricalandthermalenergydeliveredbytheproject.BASELINESCENARIOProductionofpower/heat/coolinginseparateelementprocesses,e.g.gridand/orcaptivefossil-fuel-firedpowerplant,fossil-fuel-firedboilerforheatandelectricalcompressionchillersforcooling.PROJECTSCENARIOSimultaneousproductionofpower/heat/coolingenergyusingcogeneration/trigenerationsystem,thussavingenergyandreducingGHGemissions.HetElectricitConsumerCoolinCOFossilfuelHetGridHetElectricitConsumerCoolinTrienertionCOFossilfuelHetCOGridFossilfuelAMS-II.H.AMS-II.H.EnergyefficiencymeasuresthroughcentralizationofutilityprovisionsofanindustrialfacilityCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Energyefficiencyimprovementofanelectricityorthermalenergygenerationunit,whichisbasedonrecoveryofwasteenergyfromasinglesourceatanindustrial,miningormineralproductionfacility.TypeofGHGemissionsmitigationaction•Energyefficiency.Enhancementofwasteenergyrecoverytoreplacemore-GHG-intensiveservice.Importantconditionsunderwhichthemethodologyisapplicable•Productionprocessandproductionoutputsarehomogenousinthebaselineandprojectscenario;•Improvementsinefficiencyintheprojectareclearlydistinguishablefromothervariablesnotattributabletotheproject;•Thereisnoauxiliaryfueland/orco-firingforenergygeneration;•Methodologyisnotapplicabletoretrofittingofexistingfacilitiestoincreaseproductionoutputs.ImportantparametersAtvalidation:•Energygenerationratioofbaselineequipment.Monitored:•Energyproducedandconsumedbythegeneratingunit;•Productionoutputofthefacility.BASELINESCENARIOContinuationoftheuseofaless-efficientwasteenergyrecoverysystem.PROJECTSCENARIOUseofamore-efficientwasteenergyrecoverysystem,thusleadingtohigherenergygainsandtherebyreplacementofenergyprovidedbymore-GHG-intensivemeans.FossilfuelEnerEnerHetProductionElectricitCOFossilfuelUprdeCOEnerEnerHetProductionElectricitAMS-II.I.AMS-II.I.EfficientutilizationofwasteenergyinindustrialfacilitiesCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeAMS-II.J.Typicalproject(s)Activitiesforadoptionofenergyefficientlightbulbs(e.g.CFLsandLEDlamps)toreplacelessefficientlightbulbsinresidentialapplications.TypeofGHGemissionsmitigationaction•Energyefficiency.Displacementofmore-GHG-intensivelightingbytechnologyswitch.Importantconditionsunderwhichthemethodologyisapplicable•Totallightoutputoftheprojectlampshouldbeequaltoormorethanthatofthebaselinelampbeingreplacedandprojectlampsshall,inadditiontothestandardlampspecifications,bemarkedforclearuniqueidentificationfortheproject;•RatedaveragelifeoftheefficientlightbulbsshallbeknownexanteandtheCDMPDDshallcitethestandardusedbythemanufacturer;•Determinationofdailyoperatinghours:eitherdefaultvalueof3.5hoursormeasuredvalue.ImportantparametersAtvalidation:•Averagelifetimeoftheprojectlamp(canalsobemonitoredexpost);•Thenumberandpowerofthereplacedbaselinelamps;•Numberofprojectlampsdistributedundertheproject,identifiedbythetypeofprojectlampsandthedateofsupply;•Gridemissionfactor(canalsobemonitoredexpost).Monitored:•Ifapplicable:measurementofaveragedailyoperatinghours;•Lampfailureratesurveys.BASELINESCENARIOIncandescentlamps(ICLs)areusedforlightinginhouseholds.PROJECTSCENARIOEfficientlightbulbsforlightingreplacelessefficientlightbulbsthusreducingelectricityconsumptionandGHGemissions.AMS-II.J.Demand-sideactivitiesforefficientlightingtechnologiesCOElectricitFossilfuelLihtinGridElectricitFossilfuelLihtinCOUprdeGridWomenndchildrenCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeAMS-II.K.Typicalproject(s)Installationoffossil-fuel-basedcogenerationortrigenerationsystems.Generatedelectricityandcooling,and/orheatingaresuppliedtocommercial,non-industrialbuildings.TypeofGHGemissionsmitigationaction•Energyefficiency.Electricityand/orfuelsavingsthroughenergyefficiencyimprovement.Importantconditionsunderwhichthemethodologyisapplicable•Applicabletoinstallationofnewsystemsthatreplaceorsupplementexistingsystemsthatsupplyelectricity(gridoron-sitegeneration)andcooling(e.g.chillers)and/orheatingsystems(e.g.boilers)orelectricityandcoolingand/orheatingsystemsthatwouldhavebeenbuiltandutilized;•Notapplicabletothereplacementofexistingcogenerationortrigenerationsystems;•Ifitisidentifiedthatthebaselinesituationisthecontinueduseofanexistingsystemthentheexistingsystemmusthavebeeninoperationforatleasttheimmediatelypriorthreeyears;•Ifprojectequipmentcontainsrefrigerants,theserefrigerantsshallhavenoozonedepletingpotential.ImportantparametersAtvalidation:•Gridemissionfactor(canalsobemonitoredexpost)and/orbaselinecaptivepowerplants;•CoefficientofPerformance(COP)ofbaselinechillers;•Efficiencyofbaselinesteamgenerationsystems.Monitored:•Amountofgridand/orcaptivepowersuppliedbytheproject;•Amountofcoolingand/orheatingenergysuppliedbytheproject.BASELINESCENARIOSeparategenerationofpower/heat/coolingsuppliedtocommercial,non-industrialbuildings.PROJECTSCENARIOSimultaneousproductionofpower/heat/coolingusingaco-ortrigenerationsystemforsupplyingcommercial,non-industrialbuildings.AMS-II.K.Installationofco-generationortri-generationsystemssupplyingenergytocommercialbuildingsHetElectricitCoolinCOBuildinsFossilfuelHetGridHetElectricitCoolinTrienertionCOCOBuildinsFossilfuelHetGridFossilfuelCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Adoptionofenergyefficientlampsand/orfixturecombinationstoreplacelessefficientlampsand/orfixturecombinationsinpublic-orutility-ownedstreetlightingsystems.TypeofGHGemissionsmitigationaction•EnergyEfficiency.Displacementofless-efficientlightingbymore-efficienttechnology.Importantconditionsunderwhichthemethodologyisapplicable•Limitedtopublic-orutility-ownedstreetlightingsystems;•Allowsmultiple-for-multiplelampsreplacements;•Requirescontinuousreplacementoffailedlamps;•Includesnewconstruction(Greenfield)installations;•IdentifybaselinetechnologyforGreenfield,usingthedatafromtheregion•Ensurethatlightingperformancequalityofprojectlampsbeequivalentorbetterthanthebaselineorapplicablestandard;•Nomandatorydestructionofreplacedlampsrequired.ImportantparametersMonitored:•Averagetimeelapsedbetweenfailureofluminairesandtheirreplacement;•Annualfailurerate;•Averageannualoperatinghours;•Averageprojectequipmentpower;•Numberofprojectluminairesplacedinserviceandoperatingundertheprojectactivity.BASELINESCENARIOLessefficientlampsareusedinstreetlightingsystems.PROJECTSCENARIOEfficientlightingreplaceslessefficientlightingthusreducingelectricityconsumptionandGHGemissions.COElectricitFossilfuelLihtinGridElectricitFossilfuelLihtinCOUprdeGridAMS-II.L.AMS-II.L.Demand-sideactivitiesforefficientoutdoorandstreetlightingtechnologiesCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeAMS-II.M.Typicalproject(s)Activitiesfordirectinstallationoflow-flowhotwatersavingsdevicesusedinresidentialbuildings,e.g.low-flowshowerheads,kitchenfaucetsandbathroomfaucets.TypeofGHGemissionsmitigationactionEnergyEfficiency.•Fuelorelectricitysavingsthroughtheinstallationoflow-flowhotwatersavingsdevices.Importantconditionsunderwhichthemethodologyisapplicable•Theprojectdevices(PD)mustcontainintegral,non-removableflowrestrictions;•Onlyretrofitprojectsareallowable;•OneyearwarrantyofthePD;•CompliancetoapplicablestandardsofthePD;•Equivalentlevelofservice(functionalcomfortandcleaningperformance);•PDaredirectlyinstalledandtestedtobefunctional;•PDaremarkedforclearuniqueidentification;•Methodforcollection,destructionand/orrecyclingofbaselinedevices;•Procedurestoeliminatedoublecountingareexplained.ImportantparametersAtvalidation:•Measuredflowrateofbaselinedevice(litres/minute).Monitored:•Measuredflowrateofprojectdevice(litres/minute);•Measuredamountofwaterusedbyprojectdevice(litres);•Temperatureofhotwater(Maximum40°C);•Temperatureofcoldwater(Minimum10°C);•Determinethenumberoflow-flowdevicesinstalledandoperating.BASELINESCENARIOLessefficienthotwaterdevicesareusedinresidentialbuildings.Morewater,thatrequiresheatingbyelectricityorfossilfuel,isconsumed.PROJECTSCENARIOEfficient(low-flow)hotwaterdevicesreplacelessefficienthotwaterdevicesthusreducingtheamountofwaterthatrequiresheatingbyelectricityorfossilfuel.AMS-II.M.Demand-sideenergyefficiencyactivitiesforinstallationoflow-flowhotwatersavingsdevicesElectricitGridHotwterFossilfuelConsumerHotwterFossilfuelCOUprdeElectricitGridCOHotwterFossilfuelConsumerHotwterFossilfuelWomenndchildrenCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Retrofitsofexistingelectriclightingfixtures,lamps,and/orballastswithmoreenergy‑efficientfixtures,lamps,and/orballasts;andinstallationoflightingcontrols.TypeofGHGemissionsmitigationaction•Energyefficiency.Displacementofmore-GHGintensiveservice.Importantconditionsunderwhichthemethodologyisapplicable•Onlyretrofitprojectsinvolvingdirectinstallation(ordelamping)ofequipmentareallowable;•Thismethodologyisapplicabletonon-residentialandmulti-familyresidentialbuildingssuppliedwithgridelectricity;•Collection,destructionand/orrecyclingofbaselinedevicesarerequired.ImportantparametersMonitored:•Number,typeandwattageofprojectfixtures/lamps/ballasts/ballastfactorsand/orcontrolsystemsinstalledundertheprojectactivity;•Gridemissionfactor.BASELINESCENARIOElectricityisusedforinefficientcommerciallighting.PROJECTSCENARIOInstallationofenergyefficientlightingand/orcontrolsincommercialbuildings.COElectricitGridFossilfuelLihtinUprdeCOElectricitGridFossilfuelLihtinAMS-II.N.AMS-II.N.Demand-sideenergyefficiencyactivitiesforinstallationofenergyefficientlightingand/orcontrolsinbuildingsCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Projectactivitiesthatincreasesalesdisseminationofnewhouseholdappliances,specificallyrefrigeratingappliances(refrigerators)thathaveveryhighefficiencies.TypeofGHGemissionsmitigationaction•Energyefficiency.Displacementofmore-GHGintensiveservice.Importantconditionsunderwhichthemethodologyisapplicable•Onlyappliancemodelsutilisingrefrigerantsandfoamblowingagentshavingnoozonedepletingpotential(ODP)andlowglobalwarmingpotential(GWP<15);•Theprojectrefrigeratorsaredesignedtorunonelectricity;•ThemanufacturersoftheprojectrefrigeratorsareISO9001certifiedatthetimeofvalidationtoensuredatareliability.Importantparameters•Numberofrefrigeratorsofeachmodeltypedisseminated,andtheirserialandmodelnumbers;•Electricityconsumptionofeachrefrigeratormodeldisseminated;•Historicalsalesoftheprojectappliances.BASELINESCENARIOElectricityisconsumedbyinefficienthouseholdappliances.PROJECTSCENARIOInstallationofenergyefficienthouseholdappliancesinhouseholdsconsuminglesselectricity.COElectricitGridFossilfuelApplinceUprdeCOElectricitGridFossilfuelApplinceAMS-II.O.AMS-II.O.DisseminationofenergyefficienthouseholdappliancesCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Projectactivitiesthatadoptenergyefficientpump-setsthatrunongridelectricityatoneormoreagriculturalsites.TypeofGHGemissionsmitigationaction•Energyefficiency.Electricity(andfossilfuel)savingsthroughenergyefficiencyimprovement.Importantconditionsunderwhichthemethodologyisapplicable•Theprojectpump-setefficiencyshallbehigherthanthebaselinepump-setforthewholerangeofoperatingconditions;•Themethodologyisnotapplicableforretrofittingpump-sets(e.g.replacementofimpellers);•Wateroutputcorrespondingtotheinitialheadshallbehigheroratleastequaltothatofthebaselinepump-setwateroutputattheinitialhead.ImportantparametersAtvalidation:•Waterflowrateandheadofreplacedpump-sets;•Performancecurvesofreplacedpump-sets.Monitored:•Numberofpump-setsinstalledandremainoperating;•Performancecurvesofprojectpump-sets;•Operatinghoursofprojectpump-sets.BASELINESCENARIOInefficientpump-setsareusedforagriculturalirrigation.PROJECTSCENARIOIntroductionofefficientpump-setforagriculturalirrigation.COElectricitPumpinGridFossilfuelElectricitGridCOUprdePumpinFossilfuelAMS-II.P.Energyefficientpump-setforagricultureuseAMS-II.P.CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)On-sitebuildingenergysupplyandwholebuildingenergyefficiencyprojectswhoseassociatedemissionreductionscanbedeterminedwithawholebuildingcomputerizedsimulationtool.TypeofGHGemissionsmitigationaction•Energyefficiency.Electricity(andfossilfuel)savingsthroughenergyefficiencyimprovement.Importantconditionsunderwhichthemethodologyisapplicable•Themethodologyisapplicabletocommercialbuildingsonly(retrofitornewconstruction);•Thismethodologyisnotapplicabletoprojectactivitiesthataffectoff-sitedistrictheatingand/orcoolingplantsanddistributionnetworks;•Iftheenergyefficientequipmentcontainsrefrigerants,thentherefrigerantusedintheprojectcaseshallhavenoOzoneDepletingPotential(ODP);•Alltechnologies(e.g.equipmentorappliances)usedintheprojectactivityshallbenewandnottransferredfromanotherprojectactivity.ImportantparametersAtvalidation:•Exantebaselinebuildingdata;•Historicalenergyconsumption(incaseofretrofits);•Informationdocumentingthecalibrationprocess.Monitored:•Weatherdata;•Energyconsumptionoftheprojectbuilding(s)onatleastamonthlybasis;•Basebuildingsettingchangesandoccupancyortenancy-relatedsettingchange.BASELINESCENARIOInefficientbuildingconstructionandoperation.PROJECTSCENARIOOn-sitebuildingenergysupplyand/orwholebuildingenergyefficiencymeasuresarereducingconsumptionofelectricityand/orfuel.COBuildinsFossilfuelElectricitCOBuildinsEfficiencFossilfuelElectricitCOBuildinsAMS-II.Q.Energyefficiencyand/orenergysupplyprojectsincommercialbuildingsAMS-II.Q.CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Energyefficiencyandfuelswitchingmeasuresimplementedwithinresidentialbuildingstoimprovethespaceheating,forexample:improvingbuildinginsulation,enhancingglazingofwindows,improvingefficiencyofheatingequipment.TypeofGHGemissionsmitigationaction•Energyefficiency;•Fuelswitch.Reductionoffossilfueluseandcorrespondingemissionsthroughenergyefficiencyimprovements.Importantconditionsunderwhichthemethodologyisapplicable•Thismethodologyisapplicabletofuel-switchingonlywhenitresultsfromtheimplementationoftheenergyefficiencymeasures;•Technology/measuresimplementedinexistingresidentialbuildings;•Theimpactofthemeasuresimplementedbytheprojectactivitycanbeclearlydistinguishedfromchangesinenergyuseduetoothervariablesnotinfluencedbytheprojectactivity.ImportantparametersAtvalidation:•Fuelconsumptionbeforeimplementationofproject;•Conditionsforsuppresseddemandifapplicable.Monitored:•Specificationsoftheequipmentreplacedorretrofitted;•Energyuseinthebuildingsaftertheprojectimplementation;•Fuelconsumption.BASELINESCENARIOInefficientheatinginresidentialbuildings.PROJECTSCENARIOUseofmore-efficientand/orless-carbon-intensiveequipmentinbuildings.AMS-II.R.AMS-II.R.EnergyefficiencyspaceheatingmeasuresforresidentialbuildingsSupresseddemndWomenndchildrenCOFossilfuelBuildinsBuildinsFossilfuelUprdeCOCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Introductionofenergyefficientmotorormotorsystem(pumps,fans,compressor)throughretrofit/replacements.TypeofGHGemissionsmitigationaction•Energyefficiency.Displacementofmore-GHG-intensiveservicebyuseofmore-efficienttechnologyorsystem.Importantconditionsunderwhichthemethodologyisapplicable•Emissionreductionsareaccruedonlyduetothereductioninelectricityconsumptiononaccountofefficiencyimprovement;•Emissionreductionsprimarilyduetoimprovedmaintenancepractices,forexample,cleaningoffilters,repairingvalves,correctingsystemleaks,andusingnewequipmentlubricantsarenotcovered;•Projectmotorsystemprovidesoutputsorservices(e.g.mechanicalenergy,compressedair,airorliquidflow,etc.)withcomparablequality,propertiesandapplicationareasasofthebaseline.ImportantparametersAtvalidation:•Gridemissionfactor(canalsobemonitoredexpost);•Electricityconsumption,outputservicelevelinthebaseline;•Technicalspecificationofthemotor/motorsystems;•Defaultefficiencygainvalue.Monitored:•Powerinput,flowrate(forpumps/fans).BASELINESCENARIOLess-efficientmotors,fans,pumpsconsumemoreenergy,thusresultinginhigherelectricityconsumptionthereforehigherGHGemissions.PROJECTSCENARIOMore-efficientmotors,fans,pumpsconsumelessenergy,thusresultinginlowerGHGemissions.AMS-II.S.AMS-II.S.EnergyefficiencyinmotorsystemsCOFossilfuelGridElectricitEquipmentFossilfuelGridElectricitUprdeEquipmentCOCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Installationofareactivepowercompensationequipmentattransformersubstations.TypeofGHGemissionsmitigationaction•Energyefficiency.GHGmitigationthroughenergysavingsinpowerdistributionlines.Importantconditionsunderwhichthemethodologyisapplicable•TheenergylossesreductionthatcanbeclaimedareonlythoseassociatedwiththedistributionlinesfeedingdistributiontransformersubstationsorloadsatwhichRCFareinstalledandwherethereactivepowerflowisreduced;•Themethodologyisnotapplicableincasethereisanybranchinginbetweenthedistributionlinesincludedintheprojectboundary,forwhichpowerlossesarecalculated.ImportantparametersAtvalidation:•Resistancepermeterofthelines/feedersoftheprojectactivityunitnintheprojectscenario;•Lengthofthelines/feedersoftheprojectactivityunitnintheprojectscenario.Monitored:•Averageactivepowerdeliveredtothereceivingendofthedistributionnetworkunit;•Averagevoltageoftheprojectactivityunit;•CombinedmarginCO2emissionfactorforgridconnectedprojectactivity;•Powerfactorofprojectactivityunitintheprojectscenario;•Powerfactorofprojectactivityunitinthebaselinescenario.BASELINESCENARIOThecontinuationofthecurrentsituationpriortotheimplementationoftheproject.PROJECTSCENARIOAreactivepowercompensationequipmentisinstalled.AMS-II.T.AMS-II.T.EmissionreductionthroughreactivepowercompensationinpowerdistributionnetworkCOElectricitPowerplntLossesElectricitTrnsformerTrnsformerCOElectricitPowerplntLossesElectricitRCFRCFCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeAMS-III.A.AMS-III.A.Offsettingofsyntheticnitrogenfertilizersbyinoculantapplicationinlegumes-grassrotationsonacidicsoilsonexistingcroplandTypicalproject(s)Applicationofinoculantonlegumesinalegumes-grassrotationcroppingonacidicsoilsonexistingcroplandsubstitutesandreducestheproductionanduseofsyntheticnitrogenfertilizeruse.TypeofGHGemissionsmitigationaction•GHGemissionavoidance.Applicationofinoculantdisplacesmore-GHG-intensiveproductionofsyntheticnitrogenfertilizers.Importantconditionsunderwhichthemethodologyisapplicable•Thefarmersparticipatinghavegrownlegumesandgrassinalegumes-grassrotationinthepreviousthreecompleterotationswithoutusinganyinoculantasafertilizerforlegumes,buthaveusedsyntheticnitrogenfertilizerforfertilizinglegumes;•Onlythelegume-rhizobiabacteria(inoculant)combinationsspeciedinthemethodologyareeligible;•Foreachfarmertakingpartintheproject,reliableandveriabledataontheamountofsyntheticnitrogenfertilizerused,separatelyforeachcroptype,inthepreviousthreecompleterotationsoflegumesandgrasscropping,shallbeavailable;•Nochangeinthetypesofcropcultivatedtakesplace.Inboththebaselineandprojectsituationlegumesandgrassarecultivatedinrotations.Nootherchangesinfarmingpracticesaffectingfertilizerapplication,exceptthechangeinapplicationofinoculantandsyntheticnitrogenfertilizer,aretakingplaceduringthecreditingperiod.ImportantparametersMonitored:•Hectareofcropplanted;•Quantityofinoculant(numberofrhizobiabacteria),ureaandotherfertilizersapplied(chemicalfertilizersaswellasorganicfertilizers);•Cropyieldpercropperhectare;•Independentthirdpartyfieldvisitsarealsorequiredatdifferentstages(e.g.atplanting,rightbeforeoweringetc.).BASELINESCENARIOProductionanduseofsyntheticnitrogenfertilizerresultsinGHGemissions.PROJECTSCENARIOUseoflegume-rhizobiabacteria(inoculant)substitutes/reducestheuseofsyntheticnitrogenfertilizerreducingGHGemissionsinthefertilizerproductionprocess.AricultureFertilizerFertilizerCOCOUprdeAricultureFertilizerFertilizerCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Thefossilfuelswitchinginneworexistingindustrial,residential,commercial,institutionalorelectricitygenerationapplications.TypeofGHGemissionsmitigationaction•Fuelswitch.SwitchtofuelwithalowerGHGintensity(inGreenfieldorretrofitorreplacementactivities).Importantconditionsunderwhichthemethodologyisapplicable•Switchoffossilfuelusedinaprocesswithasingleoutput(e.g.electricity,steamorheat);•Projectislimitedtofuelswitchingmeasureswhichrequirecapitalinvestments;•Projectsincludingbiomassorwastegas/energyarenoteligible;•Projectsincludingderivedgases(fromcoalandcoalproducts)arenoteligible;•Switchoffossilfuelinfacilitiesconnectedtoagridoranisolatedgrid(s)systemiseligible;•Installedcapacityoftheprojectelementprocesssupplyingelectricitytothegridisuptoorequalto15MW;•Onlyenergyefficiencyincreaserelatedtothefuelswitchiseligible;•Onlyretrofittingandreplacementswithoutintegratedprocesschangeareeligible;•Forprojectactivitieswheretheestimatedannualemissionreductionsofeachelementprocessaremorethan600tCO2eperyeartheenergyuse/outputshouldbedirectlymeasured,otherwiseitisnotrequired.ImportantparametersAtvalidation:•Baselineemissionfactor;•Historicalnetenergyoutput;•Efficienciesofelementprocess.Monitored:•Quantityoffossilfueluse;•Netenergyoutputwheretheestimatedannualemissionreductionsofeachelementprocessismorethan600tCO2e;•Outputofelementprocessforelectricity/thermalenergyexportedtootherfacilitiesshallbemonitoredattherecipientend;•Efficiencyofeachelementprocessorusingsamplingapproachinthecaseforelementprocessaccruingannualemissionreductionslessthan3000tCO2e.BASELINESCENARIOContinuationofthecurrentpracticeorreferenceplantapproach,i.e.useofmore-carbon-intensivefossilfuelforenergygenerationequipment.PROJECTSCENARIOSwitchoffueltoless-carbon-intensivefossilfuelinenergygenerationequipment.COFossilfuelEnerEnerEnerEnerFossilfuelFossilfuelCOAMS-III.B.AMS-III.B.SwitchingfossilfuelsCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Operationand/orchargingofelectricandhybridvehiclesforprovidingpassengerand/orfreighttransportationservices.TypeofGHGemissionsmitigationaction•Fuelswitch.Displacementofmore-GHG-intensivevehicles.Importantconditionsunderwhichthemethodologyisapplicable•Projectandbaselinevehiclesshouldbelongtothesamevehiclecategory.Vehiclesunderacategoryhavecomparablepassenger/loadcapacityandpowerratingwithvariationofnomorethan20%;•Theprevailingregulationspertainingtobatteryuseanddisposalshallbecompliedwith;•ProcedureforavoidingdoublecountingofemissionreductionsshouldbedocumentedinthePDD.ImportantparametersAtvalidation:•Ifapplicable:gridemissionfactor(canalsobemonitoredexpost).Monitored:•Numberofelectric/hybridvehiclesoperatedundertheproject;•Quantityoffossilfuelusede.g.forhybridvehiclesandelectricityconsumptionforallelectricandhybridvehiclestodeterminespecificelectricity/fossilfuelconsumptionperkm;•Annualaveragedistancedrivenbyprojectvehicles;•Electricityconsumedbytheprojectvehicles.BASELINESCENARIOOperationofmore-GHG-emittingvehiclesforprovidingpassengerand/orfreighttransportationservices.PROJECTSCENARIOOperationofless-GHG-emittingvehicleswithelectric/hybridenginesforprovidingpassengerand/orfreighttransportationservices.CO2FossilfuelBusCrBusCrFossilfuelElectricitCOUprdeAMS-III.C.AMS-III.C.EmissionreductionsbyelectricandhybridvehiclesCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeAMS-III.D.Typicalproject(s)Replacementormodificationofexistinganaerobicmanuremanagementsystemsinlivestockfarms,ortreatmentofmanurecollectedfromseveralfarmsinacentralizedplanttoachievemethanerecoveryanddestructionbyflaring/combustionorenergeticuseoftherecoveredmethane.TypeofGHGemissionsmitigationaction•GHGdestruction.GHGdestructionanddisplacementofmore-GHG-intensiveservice.Importantconditionsunderwhichthemethodologyisapplicable•Manureorthestreamsobtainedaftertreatmentarenotdischargedintonaturalwaterresources(e.g.riverorestuaries);•Inthebaselinescenariotheretentiontimeofmanurewasteintheanaerobictreatmentsystemisgreaterthanonemonth,andincaseofanaerobiclagoonsinthebaseline,theirdepthsareatleast1m;•Finalsludgemustbehandledaerobically;•Thestoragetimeofthemanureafterremovalfromtheanimalbarns,includingtransportation,shouldnotexceed45daysbeforebeingfedintotheanaerobicdigester,unlessitcanbedemonstratedthatthedrymattercontentofthemanurewhenremovedfromtheanimalbarnsismorethan20%.ImportantparametersMonitored:•Amountofbiogasrecoveredandfuelled,flaredorusedgainfully;•Theannualamountoffossilfuelorelectricityusedtooperatethefacilityorauxiliaryequipment;•Fractionofthemanurehandledinthemanuremanagementsystem;•Propersoilapplication(notresultinginmethaneemissions)ofthefinalsludgemustbemonitored.BASELINESCENARIOAnimalmanureislefttodecayanaerobicallyandmethaneisemittedintotheatmosphere.PROJECTSCENARIOMethaneisrecoveredanddestructedorgainfullyusedduetoreplacementormodificationofexistinganaerobicmanuremanagementsystems.AMS-III.D.MethanerecoveryinanimalmanuremanagementsystemsCHBiosMnureLivestockPit/LoonReleseBiosCHMnureLivestockFlrinEnerPit/LoonReleseCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeAMS-III.E.Typicalproject(s)Decayofthewastesthatwouldhavebeenlefttodecayorarealreadydepositedinawastedisposalsiteispreventedthroughcontrolledcombustion;orgasificationtoproducesyngas/producergas;ormechanical/thermaltreatmenttoproducerefuse-derivedfuel(RDF)orstabilizedbiomass(SB).TypeofGHGemissionsmitigationaction•GHGemissionavoidance;Avoidanceofmethaneemissionsduetopreventionofanaerobicdecayofbiomassinwaste.Useofbiomassinwasteasenergysource.Importantconditionsunderwhichthemethodologyisapplicable•TheproducedRDF/SBshallbeusedforcombustioneitheronsiteoroff-site;•IncaseofRDF/SBproduction,noGHGemissionsoccurotherthanbiogenicCO2,duetochemicalreactionsduringthethermaltreatmentprocessforexamplelimitingthetemperatureofthermaltreatmenttopreventtheoccurrenceofpyrolysisand/orthestackgasanalysis;•Incaseofgasification,allsyngasproducedshallbecombustedandnotreleasedunburnedintotheatmosphere;•Duringthemechanical/thermaltreatmenttoproduceRDF/SBnochemicalorotheradditivesshallbeused.ImportantparametersMonitored:•Amountofwastecombusted,gasifiedormechanically/thermallytreatedbytheproject,aswellasitscompositionthroughrepresentativesampling;•Quantityofauxiliaryfuelusedandthenon-biomasscarboncontentofthewasteorRDF/SBcombusted;•Electricityconsumptionand/orgeneration.BASELINESCENARIOOrganicwasteislefttodecayandmethaneisemittedintotheatmosphere.PROJECTSCENARIOMethaneemissionswillbeavoidedthroughcontrolledcombustion,gasificationormechanical/thermaltreatmentofthewastes.Incaseofenergeticuseoforganicwaste,displacementofmore-GHG-intensiveenergygeneration.AMS-III.E.Avoidanceofmethaneproductionfromdecayofbiomassthroughcontrolledcombustion,gasificationormechanical/thermaltreatmentBiomssWsteDisposlCHBiosReleseBiomssTretmentDisposlWsteCHBurninGsReleseCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeAMS-III.F.Typicalproject(s)Controlledbiologicaltreatmentofbiomassorotherorganicmatterisintroducedthroughaerobictreatmentbycompostingandpropersoilapplicationofthecompost.TypeofGHGemissionsmitigationaction•GHGemissionavoidance.AvoidanceofGHGemissionsbyalternativetreatmentprocess.Importantconditionsunderwhichthemethodologyisapplicable•Recoveryandcombustionoflandfillgasisnoteligible;•Identifiedlandfill(s)shouldbeabletoaccommodatethewastetobeusedfortheprojectforthedurationofthecreditingperiod;oritiscommonpracticeintheregiontodisposeofthewasteinsolidwastedisposalsites(landfills).ImportantparametersMonitored:•Quantityofwastebiologicallytreatedanditscompositionthroughrepresentativesampling;•Whenprojectincludesco-treatingofwastewater,thevolumeofco-treatedwastewateranditsCODcontentthroughrepresentativesampling;•Annualamountoffossilfuelorelectricityusedtooperatethefacilitiesorauxiliaryequipment.BASELINESCENARIOBiomassandotherorganicmatter(includingmanurewhereapplicable)arelefttodecayandmethaneisemittedintotheatmosphere.PROJECTSCENARIOMethaneemissionsareavoidedthroughcomposting.AMS-III.F.AvoidanceofmethaneemissionsthroughcompostingWsteBiomssDisposlCHBiosReleseDisposlCHGsReleseCompostinWsteBiomssSupresseddemndWomenndchildrenCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Captureandcombustionofmethanefromlandfillsusedfordisposalofresiduesfromhumanactivitiesincludingmunicipal,industrialandothersolidwastescontainingbiodegradableorganicmatter.TypeofGHGemissionsmitigationaction•GHGdestruction.Destructionofmethaneanddisplacementofmore-GHG-intensiveenergygeneration.Importantconditionsunderwhichthemethodologyisapplicable•Theprojectactivitydoesnotreducetheamountoforganicwastethatwouldhavebeenrecycledinitsabsence;•Themanagementofthesolidwastedisposalsiteintheprojectactivityshallnotbechangeddeliberatelytoincreasemethanegenerationcomparedtothesituationpriortotheimplementationoftheprojectactivity;•Baselineemissionsshallexcludemethaneemissionsthatwouldhavetoberemovedtocomplywithnationalorlocalsafetyrequirementorlegalregulations;•Theeffectofmethaneoxidationthatispresentinthebaselineandabsentintheprojectactivityshallbetakenintoaccount.ImportantparametersMonitored:•Theamountofmethanerecoveredandgainfullyused,fuelledorflaredshallbemonitoredexpost,usingcontinuousflowmeters;•Fractionofmethaneinthelandfillgas;•Flareefficiency;•Electricitygeneration(onlyforprojectactivitiesutilizingtherecoveredmethaneforpowergeneration).BASELINESCENARIOBiomassandotherorganicmatterinwastearelefttodecayandmethaneisemittedintotheatmosphere.PROJECTSCENARIOMethaneinthelandfillgasiscapturedanddestroyedorused.Incaseofenergeticuseoflandfillgas,displacementofmore-GHG-intensiveenergygeneration.WsteLndllsBiomssDisposlCHReleseEnerWsteLndllsFlrinBiomssDisposlCHReleseAMS-III.G.AMS-III.G.LandfillmethanerecoveryWomenndchildrenCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeAMS-III.H.Typicalproject(s)Recoveryofbiogasresultingfromanaerobicdecayoforganicmatterinwastewatersthroughintroductionofanaerobictreatmentsystemforwastewaterand/orsludgetreatment.TypeofGHGemissionsmitigationaction•GHGdestruction.Destructionofmethaneemissionsanddisplacementofmore-GHG-intensiveservice.Importantconditionsunderwhichthemethodologyisapplicable•Anaerobiclagoonsshouldbedeeperthan2metres,withoutaeration,ambienttemperatureabove15°C,atleastduringpartoftheyear,onamonthlyaveragebasis.Theminimumintervalbetweentwoconsecutivesludgeremovaleventsshallbe30days;•Indeterminingbaselineemissions,historicalrecordsofatleastoneyearpriortotheprojectimplementationshallbeavailable.Otherwise,arepresentativemeasurementcampaignisrequired.ImportantparametersAtvalidation:•CODremovalefficiencyofthebaselinesystem.Monitored:•Flowofwastewater;•Chemicaloxygendemandofthewastewaterbeforeandafterthetreatmentsystem;•Amountofsludgeasdrymatterineachsludgetreatmentsystem;•Amountofbiogasrecovered,fuelled,flaredorutilized(e.g.injectedintoanaturalgasdistributiongridordistributedviaadedicatedpipednetwork).BASELINESCENARIOMethanefromthedecayoforganicmatterinwastewaterorsludgeisbeingemittedintotheatmosphere.PROJECTSCENARIOMethaneisrecoveredanddestroyedduetotheintroductionofnewormodificationofexistingwastewaterorsludgetreatmentsystem.Incaseofenergeticuseofbiogas,displacementofmore-GHG-intensiveenergygeneration.AMS-III.H.MethanerecoveryinwastewatertreatmentBiosWstewterCHReleseLoonEnerBiosFlrinCHWstewterReleseLoonCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Avoidanceofproductionofmethanefromorganicmatterinwastewaterbeingtreatedinanaerobicsystems.Duetotheproject,theanaerobicsystems(withoutmethanerecovery)aresubstitutedbyaerobicbiologicalsystems.TypeofGHGemissionsmitigationaction•GHGemissionavoidance.Avoidanceofmethaneemissionsfromanaerobicdecayoforganicmatterinwastewater.Importantconditionsunderwhichthemethodologyisapplicable•Inordertodeterminebaselineemissions,atleastoneyearofhistoricaldataisrequired.Otherwise,a10-daymeasurementcampaignshouldbecarriedout.ImportantparametersAtvalidation:•CODremovalefficiencyofthebaselinesystem.Monitored:•AmountofCODtreatedinthewastewatertreatmentplant(s),amountofwastewaterenteringand/orexitingtheproject;•Amountofsludgeproducedandsludgegenerationratio;•Amountoffossilfuelandelectricityusedbytheprojectfacilities;•Useofthefinalsludgewillbemonitoredduringthecreditingperiod.BASELINESCENARIOOrganicmatterinwastewatersisbeingtreatedinanaerobicsystemsandproducedmethaneisbeingreleasedintotheatmosphere.PROJECTSCENARIOAnaerobicwastewatertreatmentsystems,withoutmethanerecovery,aresubstitutedbyaerobictreatmentsystems.BiosWstewterCHReleseLoonCHWstewterBiosTretmentReleseAirAMS-III.I.AMS-III.I.AvoidanceofmethaneproductioninwastewatertreatmentthroughreplacementofanaerobicsystemsbyaerobicsystemsCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)SwitchfromCO2offossilorigintoasourceofCO2fromrenewableorigin.TypeofGHGemissionsmitigationaction•Feedstockswitch.AvoidanceoffossilfuelcombustiontoprovideCO2bytheuseofCO2thatisgeneratedfromrenewablesources.Importantconditionsunderwhichthemethodologyisapplicable•CO2fromcombustionofrenewablebiomasswouldhavebeenemittedintotheatmosphereandnototherwiseused;•ThegenerationofCO2fromfossilormineralsourcesinthebaselineisonlyforthepurposeofCO2productiontobeusedfortheproductionofinorganiccompounds;•CO2fromfossilormineralsourcesthatisusedfortheproductionofinorganiccompoundspriortotheprojectwillnotbeemittedintotheatmospherewhentheprojectisinplace.ImportantparametersAtvalidation:•Historicalspecificfuelconsumptionpertonneofoutput.Monitored:•Amountofthefinalproductproducedonamonthlybasis.BASELINESCENARIOFossilfuelsareusedtoproduceCO2whichisusedasrawmaterial;CO2fromarenewablesourceisventedintotheatmosphere.PROJECTSCENARIOFossilfuelsarenolongerusedtoproduceCO2.TheCO2streamfromrenewablesourcesisusedasrawmaterialforaproductionprocess.FossilfuelCOBiomssProductionCOProductReleseBurninBurninBiomssFossilfuelBiomssProductionCOProductReleseBurninCOBurninAMS-III.J.AMS-III.J.AvoidanceoffossilfuelcombustionforcarbondioxideproductiontobeusedasrawmaterialforindustrialprocessesCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Constructionofanewcharcoalproductionfacilitywithrecoveryandflaring/combustionofmethaneorretrofittingofexistingproductionfacilities.TypeofGHGemissionsmitigationaction•GHGdestruction.Useofatechnologythatdestructsorrecoversmethanegeneratedduringtheproductionofcharcoal.Importantconditionsunderwhichthemethodologyisapplicable•Lawsrestrictingmethaneemissionsfromcharcoalproductioneitherdonotexistorarenotenforced;•Norelevantchangesingreenhousegasemissionsotherthanmethaneoccurasaconsequenceoftheprojectand/orneedtobeaccountedfor;•Nochangesinthetypeandsourceofbiomassusedforcharcoalproduction.ImportantparametersAtvalidation:•Methaneemissionfactorinthebaseline.Monitored:•Quantityofrawmaterialusedanditsmoisturecontent;•Quantityofcharcoalproducedanditsmoisturecontent;•Amountofmethanegenerated,fuelledorflared;•Powerandauxiliaryfuelconsumptionofthefacility.BASELINESCENARIOBiomassistransformedintocharcoal.Methaneisemittedintheprocess.PROJECTSCENARIOBiomassistransformedintocharcoal.Methaneisrecoveredandcombusted.Incaseofenergeticuseofmethane,displacementofmore-GHG-intensiveenergygeneration.CHCHBiomssChrcolReleseEnerCHFlrinBiomssChrcolCHReleseAMS-III.K.AMS-III.K.AvoidanceofmethanereleasefromcharcoalproductionCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeAMS-III.L.AMS-III.L.AvoidanceofmethaneproductionfrombiomassdecaythroughcontrolledpyrolysisTypicalproject(s)Avoidanceoftheproductionofmethanefromorganicmatterthatwouldhaveotherwisebeenlefttodecayunderanaerobicconditionsinasolidwastedisposalsitewithoutmethanerecovery.Duetotheproject,decayispreventedthroughcontrolledpyrolysis.TypeofGHGemissionsmitigationaction•GHGemissionavoidance.GHGemissionavoidanceandreplacementofmore-GHG-intensiveservicebypyrolysisoforganicmatter.Importantconditionsunderwhichthemethodologyisapplicable•Thepyrolysedresiduesarenolongerpronetoanaerobicdecomposition;•Measuresshallincluderecoveryandcombustionofnon-COgreenhousegasesproducedduringpyrolysis;•Thelocationandcharacteristicsofthedisposalsiteinthebaselineconditionshallbeknown,insuchawayastoallowtheestimationofitsmethaneemissions.ImportantparametersMonitored:•Percentagecompositionofvolatilecarbon,fixedcarbon,ashesandmoistureinthewasteprocessedbypyrolysis(byarepresentativenumberofsamples);•Amountandcomposition(weightfractionofeachwastetype)ofwasteprocessedbypyrolysis;•Quantityofnon-biogenicwasteprocessedbypyrolysis;•Quantityofauxiliaryfuelusedandpowerconsumptionoftheprojectfacilitiesand/orpowergenerationbytheproject.BASELINESCENARIOOrganicmatterwilldecayunderclearlyanaerobicconditionsinasolidwastedisposalsiteandtheproducedmethaneisbeingreleasedintotheatmosphere.PROJECTSCENARIOMethaneproductionduetoanaerobicdecayoforganicmatterwillbeavoidedthroughcontrolledpyrolysis.Incaseofenergeticuseofproducts(e.g.pyrolysisgasoroil),displacementofmore-GHG-intensiveenergygeneration.WsteBiomssDisposlBiosCHReleseProlsisWsteEnerFlrinCHBiomssFuelDisposlReleseBiosCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Recoveryofcausticsodafromwasteblackliquorgeneratedinpapermanufacturing.TypeofGHGemissionsmitigationaction•GHGemissionavoidance.Reductionofproductionofcausticsodaandtherebyreductionofelectricityconsumptionbyrecoveryofcausticsodafromblackliquor.Importantconditionsunderwhichthemethodologyisapplicable•Theprojecttechnology/measuresconsistsofrecoveringcausticsodafromwasteblackliquorgeneratedinpapermanufacturing.ImportantparametersAtvalidation:•Historicalelectricityintensityofsodaproduction(includingimports);•Gridemissionfactor(canalsobemonitoredexpost).Monitored:•Quantityofcausticsodarecoveredperyear;•Electricityconsumption,consumptionoffossilfuelandauxiliaryfuelinthecausticsodarecoveryplant;•Quantityofresiduesproduced,portionofresidueusedfortheproductionoflimeandportionofresiduethatisdisposedinasolidwastedisposalsite.BASELINESCENARIOBlackliquorfrompaperproductioniswasted.Muchelectricityisneededtoproducecausticsodathatisconsumedinthepapermill.PROJECTSCENARIOCausticsodaisrecoveredfromblackliquortodisplaceequivalentquantityofpurchasedcausticsoda.Lesselectricityisrequiredforrecovery.PperDisposlElectricitCusticsodCusticsodBlckliquorCOCOCusticsodRecclinPperDisposlElectricitCusticsodCusticsodBlckliquorAMS-III.M.AMS-III.M.ReductioninconsumptionofelectricitybyrecoveringsodafrompapermanufacturingprocessCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Useofanon-GHGblowingagent(e.g.pentane)toreplaceHFCgasesusedasablowingagent(e.g.HFC-134a,HFC-152a,HFC-365mfcandHFC-245fa)duringtheproductionofPUFinanexistingoranewmanufacturingfacility.TypeofGHGemissionsmitigationaction•Feedstockswitch.AvoidanceoffugitiveemissionsofHFCgasesthroughtheuseofanon-GHGblowingagent.Importantconditionsunderwhichthemethodologyisapplicable•Incaseaprojectisimplementedatanexistingfacility,onlyHFCblowingagentwasusedinPUFproductionforatleastthreeyearspriortotheprojectimplementation;•TherearenolocalregulationsthatconstraintheuseofHFCandhydrocarbon(e.g.pentane)asblowingagents;•PUFproducedwithanon-GHGblowingagentwillhaveequivalentorsuperiorinsulatingpropertiesthanthePUFproducedusingaHFCblowingagent;•EmissionreductionscanbeclaimedonlyfordomesticallysoldPUFandexcludesexportofthemanufacturedPUF.ImportantparametersAtvalidation:•ThefirstyearandannuallossesofHFCblowingagent.Monitored:•TotalquantityofPUFproduction(inm)ondailybasis.BASELINESCENARIOProductionofPUFusingHFCblowingagents.PROJECTSCENARIOProductionofPUFusingpentaneblowingagents.GHGPUFBlowinentPUFGHGPUFBlowinentPUFBlowinentAMS-III.N.AMS-III.N.AvoidanceofHFCemissionsinpolyurethanefoam(PUF)manufacturingCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeAMS-III.O.AMS-III.O.HydrogenproductionusingmethaneextractedfrombiogasTypicalproject(s)InstallationofbiogaspurificationsystemtoisolatemethanefrombiogasfortheproductionofhydrogendisplacingLPGasbothfeedstockandfuelinahydrogenproductionunit.Examplesaretheprojectactivitiesthatinstall:(i)abiogaspurificationsystemtoisolatemethanefrombiogaswhichisbeingflaredinthebaselinesituationor(ii)abiogaspurificationsystemincombinationwithinstallationofnewmeasuresthatrecovermethanefromorganicmatterfromwastewatertreatmentplantsorlandfills,usingtechnologies/measurescoveredinAMS-III.H.orAMS-III.G.TypeofGHGemissionsmitigationaction•Fuelandfeedstockswitch.Fuelandfeedstockswitchtoreduceconsumptionoffossilfuel.Importantconditionsunderwhichthemethodologyisapplicable•Thismethodologyisnotapplicabletotechnologiesdisplacingtheproductionofhydrogenfromelectrolysis;•Themethodologyisapplicableifitcanbeensuredthatthereisnodiversionofbiogasthatisalreadybeingusedforthermalorelectricalenergygenerationorutilizedinanyother(chemical)processinthebaseline.ImportantparametersMonitored:•Continuousmeteringofproducedhydrogenonvolumetricbasis;•ContinuousmeteringofLPGusedasfeedstocktohydrogenproductionunit;•ContinuousmonitoringofspecificfuelconsumptionofLPGwhenbiogasisnotavailableinsufficientquantity;•Continuousmeasurementofelectricityandfuelusedbythebiogaspurificationsystem;•Continuousmeasurementofbiogasproducedbythewastewatertreatmentsystem,landfillgascapturesystemorotherprocessesproducingbiogas.BASELINESCENARIOLPGisusedasfeedstockandfuelforhydrogenproduction.PROJECTSCENARIOLPGisdisplacedbymethaneextractedfrombiogasforhydrogenproduction.FlrinBiosHdroenHdroenDisposlLoonLPGCOBiosCOLPGHdroenHdroenDisposlLoonFlrin/VentinCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeAMS-III.P.AMS-III.P.RecoveryandutilizationofwastegasinrefineryfacilitiesTypicalproject(s)Implementationofwastegasrecoveryinanexistingrefinery,wherewastegasiscurrentlybeingflared,togenerateprocessheatinelementprocess(es).TypeofGHGemissionsmitigationaction•Energyefficiency.Displacementofmore-GHG-intensiveheatproduction.Importantconditionsunderwhichthemethodologyisapplicable•Proofthattherecoveredwastegasintheabsenceoftheprojectwasflared(evidenceforthelastthreeyears).Baselineemissionsarecappedeitheratthehistoricalthree-yearaverageoritsestimation;•Wastegasisnotcombinedwithadditionalfuelgasorrefinerygasbetweenrecoveryanditsmixingwithafuel-gassystemoritsdirectuse;•Theprojectdoesnotleadtoanincreaseinproductioncapacityoftherefineryfacility;•Therecoveryofwastegasmaybeanewinitiativeoranincrementalgaininanexistingpractice.Iftheprojectisanincrementalgain,thedifferenceinthetechnologybeforeandafterimplementationoftheprojectshouldbeclearlyshown.ImportantparametersAtvalidation:•Historicalannualaverageamountofwastegassenttoflares;•Efficienciesoftheprocessheatingdeviceusingtherecoveredwastegascomparedtothatusingfossilfuel.Monitored:•Dataneededtocalculatetheemissionfactorsofelectricalenergyconsumedbytheproject,eitherfromthecaptivepowerplantorimportedfromgridaswellastheamountandcompositionofrecoveredwastegas(e.g.density,LHV)anddataneededtocalculatetheemissionfactorsfromfossilfuelsusedforprocessheatingandsteamgenerationwithintherefinery.BASELINESCENARIOElementprocess(es)willcontinuetosupplyprocessheat,usingfossilfuel.Thewastegasesfromtherefineryareflared.PROJECTSCENARIOElementprocess(es)willbefuelledwithwastegas,replacingfossilfuelusage.COCOFossilfuelWstesRenerFlrinHetHetCOFossilfuelWstesRenerHetHetFlrinCOCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Utilizationofwastegasand/orwasteheatatexistingorGreenfieldwastegenerationfacilitiesandconvertthewasteenergyintousefulenergy,whichmaybeforcogeneration,generationofelectricity,directuseasprocessheat,generationofheatinanelementprocessorgenerationofmechanicalenergy.TypeofGHGemissionsmitigationaction•Energyefficiency.ReductionofGHGemissionsbyenergyrecovery.Importantconditionsunderwhichthemethodologyisapplicable•Iftheprojectactivityisimplementedatanexistingorgreenfieldwastegenerationfacility,demonstrationoftheuseofwasteenergyintheabsenceoftheprojectactivityshallbebasedonhistoricinformation;•Itshallbedemonstratedthatthewasteenergyutilizedintheprojectactivitywouldhavebeenflaredorreleasedintotheatmosphereintheabsenceoftheprojectactivity.ImportantparametersMonitored:•Thermal/electrical/mechanicalenergyproduced;•Amountofwastegasortheamountofenergycontainedinthewasteheatorwastepressure.BASELINESCENARIOEnergyisobtainedfromGHG-intensiveenergysources(e.g.electricityisobtainedfromaspecificexistingpowerplantorfromthegrid,mechanicalenergyisobtainedbyelectricmotorsandheatfromafossil-fuel-basedelementprocess)andsomeenergyiswastedintheproductionprocessandreleased.PROJECTSCENARIOWasteenergyisutilizedtoproduceelectrical/thermal/mechanicalenergytodisplaceGHG-intensiveenergysources.ProductionElectricitHetWsteenerMechniclReleseCOProductionReleseEnerElectricitHetCOWsteenerEnerMechniclAMS-III.Q.AMS-III.Q.WasteenergyrecoveryCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeAMS-III.R.AMS-III.R.Methanerecoveryinagriculturalactivitiesathousehold/smallfarmlevelTypicalproject(s)Recoveryanddestructionofmethanefrommanureandwastesfromagriculturalactivitiesthrough:Installationofamethanerecoveryandcombustionsystemtoanexistingsourceofmethaneemissions;or,changeofthemanagementpracticeofanorganicwasteorrawmaterialinordertoachievecontrolledanaerobicdigestionthatisequippedwithmethanerecoveryandcombustionsystem.TypeofGHGemissionsmitigationaction•GHGdestruction;•Fuelswitch.Destructionofmethaneanddisplacementofmore-GHG-intensiveenergygeneration.Importantconditionsunderwhichthemethodologyisapplicable•Limitedtomeasuresatindividualhouseholdsorsmallfarms,(e.g.installationofadomesticbiogasdigester);•Thesludgeshallbehandledaerobically;•Allthemethanecollectedbytherecoverysystemshallbedestroyed;•ApplicableonlyincombinationwithAMS-I.C.,and/orAMS-I.I.and/orAMS-I.E.;•Applicableonlytotheportionofthemanure,whichwoulddecayanaerobicallyintheabsenceoftheprojectactivity.ImportantparametersMonitored:•Numberofthermalapplicationscommissioned;•Proportionofthermalapplicationsthatremainoperating;•Annualaverageanimalpopulation;•Amountofwaste/animalmanuregeneratedonthefarmandtheamountofwaste/animalmanurefedintothesystem,e.g.biogasdigester;•Propersoilapplication(notresultinginmethaneemissions)ofthefinalsludgeverifiedonasamplingbasis.BASELINESCENARIOBiomassandotherorganicmatterarelefttodecayanaerobically,andmethaneisemittedintotheatmosphere.PROJECTSCENARIOMethaneisrecoveredanddestroyedorused.Incaseofenergeticuseofbiogas,displacementofmore-GHG-intensiveenergygeneration.DisposlBiosCHMnureBiomssReleseBiosMnureBiomssDisposlBiosDiesterHetCHReleseWomenndchildrenCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeAMS-III.S.AMS-III.S.Introductionoflow-emissionvehicles/technologiestocommercialvehiclefleetsTypicalproject(s)Introductionandoperationofnewless-greenhouse-gas-emittingvehicles(e.g.CNG,LPG,electricorhybrid)forcommercialpassengersandfreighttransport,operatingonrouteswithcomparableconditions.Retrofittingofexistingvehiclesisalsoapplicable.TypeofGHGemissionsmitigationaction•Fuelswitch.Displacementofmore-GHG-intensivevehicles.Importantconditionsunderwhichthemethodologyisapplicable•Theoveralllevelofserviceprovidedoncomparableroutesbeforeprojectimplementationshallremainthesameandamodalshiftintransportisnoteligible;•Thereisnosignificantchangeintariffdiscerniblefromtheirnaturaltrend,whichcouldleadtochangeinpatternsofvehicleuse;•Thefrequencyofoperationofthevehiclesisnotdecreased;•Thecharacteristicsofthetravelroute–distance,startandendpointsandtherouteitselfand/orthecapacityintroducedbytheprojectissufficienttoservicethelevelofpassenger/freighttransportationpreviouslyprovided.ImportantparametersAtvalidation:•Efficiencyofbaselinevehicles(canalsobemonitoredexpost).Monitored:•Totalannualdistancetravelledandpassengersorgoodstransportedbyprojectandbaselinevehiclesonroute;•Annualaveragedistanceoftransportationperpersonortonneoffreightperbaselineandprojectvehicle;•Servicelevelintermsoftotalpassengersorvolumeofgoodstransportedonroutebeforeandafterprojectimplementation.BASELINESCENARIOPassengersandfreightaretransportedusingmore-GHG-intensivetransportationmodes.PROJECTSCENARIOPassengersandfreightaretransportedusingnewless-greenhouse-gas-emittingvehiclesorretrofittedexistingvehiclesonroutes.COCrFossilfuelTrnsportCrCOFossilfuelUprdeElectricitFossilfuelTrnsportCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeAMS-III.T.AMS-III.T.PlantoilproductionandusefortransportapplicationsTypicalproject(s)Plantoilproductionthatisusedfortransportationapplications,wheretheplantoilisproducedfrompressedandfilteredoilseedsfromplantsthatarecultivatedondedicatedplantations.TypeofGHGemissionsmitigationaction•Fuelswitch.Displacementofmore-GHG-intensivepetrodieselfortransport.Importantconditionsunderwhichthemethodologyisapplicable•Ifthebiomassfeedstockissourcedfromdedicatedplantation,thepre-projectactivitiessuchasgrazingandcollectionofbiomassmustbeaccommodatedforwithintheprojectactivity;•Theplantoilisusedinblendswithpurepetrodieselofupto10%byvolumeonlyoruseofpureplantoilinconvertedvehicles;•Baselinevehiclesusepetrodieselonly;•NoexportofproducedplantoiltoAnnexIcountriesallowed.ImportantparametersMonitored:•Cropharvestandoilcontentoftheoilseedsaswellasnetcalorificvalueandamountofplantoilproducedbytheprojectpercropsource;•Energyuse(electricityandfossilfuel)fortheproductionofplantoil;•Parameterstoestimateprojectemissionsfromthecultivationofoil;•Incaseofuseofpureplantoilitshallbemonitoredandverifiedbyrandomsamplingthatthevehicleshavecarriedoutengineconversions.BASELINESCENARIOPetrodieselwouldbeusedinthetransportationapplications.PROJECTSCENARIOOilcropsarecultivated,plantoilisproducedandusedinthetransportationapplicationsdisplacingpetrodiesel.PetrodieselBusCrMotorccleCOBlendedfuelPetrodieselBusCrMotorccleProductionPlnttionCOPlntoilCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeAMS-III.U.AMS-III.U.CableCarsforMassRapidTransitSystem(MRTS)Typicalproject(s)Constructionandoperationofcablecarsforurbantransportofpassengerssubstitutingtraditionalroad-basedtransporttrips.Extensionsofexistingcablecarsarenotallowed.TypeofGHGemissionsmitigationaction•Energyefficiency;•Fuelswitch.Displacementofmore-GHG-intensivevehicles.Importantconditionsunderwhichthemethodologyisapplicable•Theoriginandfinaldestinationofthecablecarsareaccessiblebyroad;•Fuelsusedinthebaselineand/ortheprojectareelectricity,gaseousorliquidfossilfuels.Ifbiofuelsareused,thebaselineandtheprojectemissionsshouldbeadjustedaccordingly;•Theanalysisofpossiblebaselinescenarioalternativesshalldemonstratethatacontinuationofthecurrentpublictransportsystemisthemostplausiblebaselinescenario.ImportantparametersAtvalidation:•Occupancyrateofvehiclescategory;•Ifapplicable:gridemissionfactor(canalsobemonitoredexpost).Monitored:•Totalpassengerstransportedbytheproject;•Bysurvey:tripdistanceofpassengersusingthebaselinemodeandthetripdistanceofpassengersusingtheprojectmodefromtheirtriporigintotheprojectentrystationandfromprojectexitstationtotheirfinaldestination;•Bysurvey:shareofthepassengersthatwouldhaveusedthebaselinemode;•Shareofthepassengersusingtheprojectmodefromtriporigintotheprojectentrystationandfromprojectexitstationtotheirfinaldestination;•Quantityofelectricityconsumedbythecablecarfortraction.BASELINESCENARIOPassengersaretransportedundermixedtrafficconditionsusingadiversetransportsysteminvolvingbuses,trains,cars,non-motorizedtransportmodes,etc.PROJECTSCENARIOPassengersaretransportedusingcablecars,thusreducingfossilfuelconsumptionandGHGemissions.COTrinBusCrMotorccleTrinBusCrMotorccleCOCblecrWomenndchildrenCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Introductionofdust/sludge-recyclingsystemsuchasRotaryHearthFurnace(RHF),Waelz,andPrimustoproduceDRIpellet,whichisfedintotheblastfurnaceofsteelworksinordertoreducecokeconsumption.TypeofGHGemissionsmitigationaction•Energyefficiency.Decreaseduseofcokeasreducingagentbyrecyclingdust/sludgeintheformofDRIpellets.Importantconditionsunderwhichthemethodologyisapplicable•Thedust/sludgeisnotcurrentlyutilizedinsidetheworksbutsoldoutsideand/orlandfilled;•“Alternativematerial”thatcanbeusedbythe“outsideuser”insteadofthedust/sludgeisabundantinthecountry/region;•OnlysteelworkscommissionedbeforeSeptember26,2008areeligible.ImportantparametersAtvalidation:•Historicalaverageofpigironproductionandcokeconsumption.Monitored:•Annualquantityofpigironproduction,cokeconsumption;•QuantityandironcontentofDRIpelletfedintotheblastfurnace;•Fuelandelectricityuse;•Fractionofcarbonincokefedintotheblastfurnace(tonnesofCpertonneofcoke).BASELINESCENARIOHighamountsofcokeareusedtoproducepigiron,thusleadingtohighCO2emissions.Dust/sludgefromsteelworksissoldtooutsideuserand/orland-filled.PROJECTSCENARIOLesscokeisusedtoproducepigiron.ThisleadstolowerCO2emissions.Dust/sludgeistransformedintoDRIpelletswhicharereusedasinputinthispigironproduction.IronCokeDust/sludeDisposlCOIronCokeDust/sludeCODRIpelletsRecclinDisposlAMS-III.V.AMS-III.V.Decreaseofcokeconsumptioninblastfurnacebyinstallingdust/sludgerecyclingsysteminsteelworksCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Thismethodologycomprisesactivitiesthatcapturedeletemethanereleasedfromholesdrilledintogeologicalformationsspecificallyformineralexplorationandprospecting.TypeofGHGemissionsmitigationaction•GHGdestruction.Captureandcombustion/utilizationofmethanereleasedfromboreholes.Importantconditionsunderwhichthemethodologyisapplicable•Abandonedordecommissionedmines,aswellasopencastminesareexcluded.Coalextractionminesoroilshale,aswellasboreholesorwellsopenedforgas/oilexplorationorextractiondonotqualifyunderthismethodology;•Thismethodologyisapplicableforstructuresinstalled,orboreholesdrilledbeforeendof2001,orforstructuresinstalled,orboreholesdrilledafter2001,whereitcanbedemonstratedthatthestructuresortheboreholeswerepartofanexplorationplan;•Maximumoutsidediameteroftheboreholesshouldnotexceed134mm;•Thismethodologyexcludesmeasuresthatwouldincreasetheamountofmethaneemissionsfromtheboreholesbeyondthenaturalreleaseaswouldoccurinthebaseline.ImportantparametersMonitored:•Vehiclefuelprovidedbytheprojectactivity;•Amountofmethaneactuallyflared;•Electricityand/orheatproducedbytheprojectactivity;•Consumptionofgridelectricityand/orfossilfuelbytheproject.BASELINESCENARIOMethaneisemittedfromboreholesintotheatmosphere.PROJECTSCENARIOCaptureanddestructionofmethanefromboreholes.BoreholeCHCHReleseCOBoreholeCHCHReleseEnerFlrinCrAMS-III.W.AMS-III.W.Methanecaptureanddestructioninnon-hydrocarbonminingactivitiesCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Replacementofexisting,functionaldomesticrefrigeratorsbymore-efficientunitsandrecovery/destructionofHFCsfromtherefrigerantandthefoam.TypeofGHGemissionsmitigationaction•Energyefficiency;•GHGemissionavoidance;•GHGdestruction.GHGemissionavoidancebyre-useofrefrigerantorGHGdestructioncombinedwithanincreaseinenergyefficiency.Importantconditionsunderwhichthemethodologyisapplicable•Projectrefrigerantsandfoam-blowingagentshavenoozonedepletingpotentialozonedepletingpotentialandaglobalwarmingpotentiallowerthan15;•Allrefrigeratorreplacementstakeplacewithinjustoneyearofprojectstart;•Projectandbaselinerefrigeratorsareelectricallydriven;•Projectrefrigeratorshaveanaveragevolumecapacityofatleast80%ofthebaselinerefrigerators.ImportantparametersMonitored:•Numberofrefrigeratorsdistributedandtheirelectricityconsumption;•QuantityofHFCreclaimed;•Specificelectricityconsumptionfromreplacedrefrigerators.BASELINESCENARIOUseoflargeamountsofelectricitybyrefrigeratorsandHFCemissionsfromtherefrigerators.PROJECTSCENARIOUseofloweramountsofelectricitybyrefrigeratorsandreducedHFCemissionsfromrefrigerators.COHFCElectricitGridRefriertorsFossilfuelUprdeCOElectricitGridRefriertorsFossilfuelHFCAMS-III.X.AMS-III.X.EnergyefficiencyandHFC-134arecoveryinresidentialrefrigeratorsWomenndchildrenCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Avoidanceorreductionofmethaneproductionfromanaerobicwastewatertreatmentssystemsandanaerobicmanuremanagementsystemswherethevolatilesolidsareremovedandtheseparatedsolidsarefurthertreated/used/disposedtoresultinlowermethaneemissions.TypeofGHGemissionsmitigationaction•GHGemissionavoidance.Avoidanceofmethaneemissions.Importantconditionsunderwhichthemethodologyisapplicable•Theprojectdoesnotrecoverorcombustbiogas;•Technologyforsolidseparationshallbeoneoracombinationofmechanicalsolid/liquidseparationtechnologiesandthermaltreatmenttechnologies,andnotbygravity;•Drymattercontentoftheseparatedsolidsshallremainhigherthan20%andseparationshallbeachievedinlessthan24hours;•Theliquidfractionfromtheprojectsolidseparationsystemshallbetreatedeitherinabaselinefacilityorinatreatmentsystemwithlowermethaneconversionfactorthanthebaselinesystem.ImportantparametersMonitored:•Formanuremanagementsystems,numberofanimals,theirtypeandtheirindividualvolatilesolidsexcretion;•Forwastewatersystems,theflowofwastewaterenteringthesystemandtheCODloadofthewastewater.BASELINESCENARIOSolidsinmanureorwastewaterwouldbetreatedinamanuremanagementsystemorwastewatertreatmentfacilitywithoutmethanerecover,andmethaneisemittedintotheatmosphere.PROJECTSCENARIOLessmethaneisemittedduetoseparationandtreatmentofsolids.CH4WstewterMnureLoonBiosReleseTretmentWstewterCHBurninWstewterMnureSolidsLoonBiosReleseAMS-III.Y.AMS-III.Y.MethaneavoidancethroughseparationofsolidsfromwastewaterormanuretreatmentsystemsCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Switchtoamore-energy-efficientbrickproductionprocessand/orswitchfromfossilfueltorenewablebiomassorless-carbon-intensivefossilfuelornon-renewablebiomass.TypeofGHGemissionsmitigationaction•Energyefficiency;•Renewableenergy;•Fuelorfeedstockswitch.Reductionofemissionsfromdecreasedenergyconsumptionperbrickproducedandfromtheuseoffuelswithlowercarbonintensity,eitheratanexistingbrickkilnoratanewfacility.Importantconditionsunderwhichthemethodologyisapplicable•Qualityoftheprojectbricksshouldbecomparabletoorbetterthanthebaselinebricks;•Norenewablebiomasshasbeenusedintheexistingprojectfacilityduringthelastthreeyearsimmediatelypriortothestartoftheprojectactivity;•Forprojectactivitiesinvolvingchangesinrawmaterials,therawmaterialstobeutilizedshallbeabundantinthecountry/region;•Forprojectactivitiesusingcropsfromrenewablebiomassoriginasfuel,thecropsshallbecultivatedatdedicatedplantations;•Exemptionofdemonstrationofdebundlingisallowedundercertainconditions.ImportantparametersAtvalidation:•Historicalbrickoutputandfuelconsumption.Monitored:•Productionoutput;•Quantityandtypeoffuelsused;•Quantityofrawandadditivematerials;•Qualityoftheprojectbricks.BASELINESCENARIOBrickproductionusingmore-carbon-intensivefuelandenergy-intensivetechnology.PROJECTSCENARIOBrickproductionusingless-carbon-intensivefuelorbiomassinamore-efficientfacility.AMS-III.Z.AMS-III.Z.Fuelswitch,processimprovementandenergyefficiencyinbrickmanufactureFossilfuelBrickCOCOUprdeFossilfuelFossilfuelBiomssBrickWomenndchildrenCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Retrofitoftheengineofexisting/usedvehiclesforcommercialpassengerstransport(e.g.buses,motorizedrickshaws,taxis)whichresultsinincreasedfuelefficiencyofthevehicles.TypeofGHGemissionsmitigationaction•Energyefficiency.EnergyefficiencymeasuresintransportationreduceGHGemissionsduetodecreasedfuelconsumption.Importantconditionsunderwhichthemethodologyisapplicable•Thevehiclesforpassengertransportationareofthesametype,usethesamefuelandsingletypeofretrofittechnology;•Themethodologyisnotapplicabletobrandnewvehicles/technologies(e.g.CNG,LPG,electricorhybridvehicles);•Thevehiclesshalloperateduringthebaselineandprojectoncomparablerouteswithsimilartrafficsituations.ImportantparametersAtvalidation:•Determinationoftheremainingtechnicallifetimeoftheretrofittedvehicles.Monitored:•Fuelefficiencyofthebaselineandprojectvehicle;•Annualaveragedistancetravelledbyprojectvehicles;•Numberoftheoreticallyoperatingprojectvehicles;•Shareofprojectvehiclesinoperation.BASELINESCENARIOPassengersaretransportedusingless-fuel-efficientvehicles.PROJECTSCENARIOPassengersaretransportedusingretrofittedmore-fuel-efficientvehicles.COBusTxiFossilfuelBusTxiCOUprdeFossilfuelAMS-III.AA.AMS-III.AA.TransportationenergyefficiencyactivitiesusingretrofittechnologiesCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Introductionofnewcommercialstandalonerefrigerationcabinetsusingrefrigerantswithlowglobalwarmingpotential(GWP).TypeofGHGemissionsmitigationaction•GHGemissionavoidance;•Feedstockswitch.AvoidanceoffugitiveemissionsofrefrigerantswithhighGWP(e.g.HFC-134a)throughtheuseofrefrigerantswithlowGWP.Importantconditionsunderwhichthemethodologyisapplicable•Cabinetsintheprojectcaseutilizeonetypeofrefrigerantsandfoamblowingagentshavingnoozonedepletingpotential(ODP)andlowGWP;•Thecabinetsintroducedbytheprojectareequallyormoreenergyefficientthanthecabinetsthatwouldhavebeenusedintheabsenceofproject;•TheprojectproponenthasbeenproducingormanagingcommercialrefrigerationcabinetschargedwithrefrigerantswithhighGWPforatleastthreeyearsandhasnotbeenusingrefrigerantswithalowGWPinsignificantquantitiespriortothestartoftheproject.ImportantparametersAtvalidation:•Nameplateinitialrefrigerantchargeforeachrefrigerationcabinetmodel;•Fugitiveemissionsofrefrigerantsduringmanufacturing,servicing/maintenance,anddisposalofrefrigerationcabinets.Monitored:•Numberofrefrigerationcabinetsthataremanufactured,putintouse,underservicing/maintenance,anddecommissionedanddisposed.BASELINESCENARIOFugitiveHFCemissionswithhighGWPduringmanufacturing,usageandservicing,anddisposalofrefrigerationcabinets.PROJECTSCENARIOFugitiveemissionsofrefrigerantswithlowGWPduringmanufacturing,usageandservicing,anddisposalofrefrigerationcabinets.AMS-III.AB.AMS-III.AB.AvoidanceofHFCemissionsinstandalonecommercialrefrigerationcabinetsHFCHFCRefriertorsRefriertorsRefrierntGHGRefriertorsRefrierntRefrierntRefriertorsHFCHFCRefriertorsCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Generationofelectricityand/orheatusingfuelcelltechnologyusingnaturalgasasfeedstocktosupplyelectricitytoexistingornewusersortoagrid.TypeofGHGemissionsmitigationaction•Energyefficiency.Displacementofmore-GHG-intensiveelectricityorelectricityandheatgeneration.Importantconditionsunderwhichthemethodologyisapplicable•Notapplicablewhereenergyproducedbyfuelcellisusedfortransportationapplication;•Electricityand/orsteam/heatdeliveredtoseveralfacilitiesrequireacontractspecifyingthatonlythefacilitygeneratingtheenergycanclaimCERs;•Naturalgasissufficientlyavailableintheregionorcountry;•Iftheprojectincludesthereplacementofthecelloranypartofit(themoltencarbonate,theelectrodes,etc.)duringthecreditingperiod,thereshallbenosignificantchangesintheefficiencyorcapacityofthefuelcelltechnologyusedintheprojectduetothereplacement.ThelifetimeofthefuelcellshallbeassessedinaccordancewiththeproceduresdescribedinGeneralGuidelinetoSSCmethodologies.ImportantparametersAtvalidation:•Ifapplicable:gridemissionfactor(canalsobemonitoredexpost).Monitored:•Monitoringofenergy(heat/power)generationandconsumptionoftheproject;•Consumptionandcompositionoffeedstock(e.g.naturalgas)usedforhydrogenproduction.BASELINESCENARIOOthertechnologiesthatwouldhavebeenusedinabsenceoftheprojectand/orgridimportsaresupplyingelectricityand/orheattonewusersortoagrid.PROJECTSCENARIONaturalgasasfeedstockisusedforhydrogenproductionwhichisthenusedinafuelcelltechnologytoproduceheat/electricitydisplacingalternativetechnologiesandthereforereducingbaselineemissions.AMS-III.AC.AMS-III.AC.Electricityand/orheatgenerationusingfuelcellElectricitHetFossilfuelHetCOGridFossilfuelFuelcellElectricitHetHetCOCONturlsGridCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Productionofalternativehydrauliclimeforconstructionpurposesbyblendingacertainamountofconventionalhydrauliclimewithalternativematerialandadditives.TypeofGHGemissionsmitigationaction•Feedstockswitch.Reductionofproductionofhydrauliclimeandtherebyreductionoffossilfueluseandelectricityconsumptionduringtheproductionprocess.Importantconditionsunderwhichthemethodologyisapplicable•Qualityofalternativehydrauliclimeisthesameorbetterthanthehydrauliclime;•Thereisnootherallocationorusefortheamountofalternativematerialusedbytheprojectandthereissufficientavailability;•Theprojectisinanexistingplant;•Thismethodologyislimitedtodomesticallysoldoutputoftheprojectplantandexcludesexportofalternativehydrauliclime.Importantparameters•Alternativehydrauliclimemeetsorexceedsthequalitystandardsofthebaselinehydrauliclime;•Totalproductionofalternativelimeandhydrauliclime(intermediateproduct)consumptionofalternativelimeandadditives;•Fuelandelectricityconsumption.BASELINESCENARIOProductionofhydrauliclimeusingconventionalprocessconsuminghighamountofenergy.PROJECTSCENARIOReducedfossilfuelinputinhydrauliclimeproductionduetoblendingwithadditives.HdruliclimeFossilfuelElectricitHdruliclimeCOHdruliclimeCOFossilfuelElectricitBlendinHdruliclimeAMS-III.AD.AMS-III.AD.EmissionreductionsinhydrauliclimeproductionCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Installationofenergyefficiencyandoptionalrenewablepowergenerationmeasuresinnew,grid-connectedresidentialbuildings.TypeofGHGemissionsmitigationaction•Energyefficiency;•Renewableenergy.Electricitysavingsthroughenergyefficiencyimprovementandoptionaluseofrenewablepower.Importantconditionsunderwhichthemethodologyisapplicable•Emissionreductionsshallonlybeclaimedforgridelectricitysavings;•Emissionreductionsthroughbiomassenergysupplycannotbeclaimed;•Projectbuildingsmustbenewlyconstructedresidentialbuildings,andshallnotusefossilorbiomassfuelsforspaceheatingorcooling;•Refrigerantusedinenergy-efficientequipmentundertheproject,ifany,shallbeCFC-free.ImportantparametersAtvalidation:•Monthlyelectricityconsumptionofbaselineandprojectresidences;•Gridemissionfactor(canalsobemonitoredexpost);•MonthlyHDDandCDDforbaselineandprojectresidences;•Baselineandprojectresidencecharacteristics.Monitored:•Updateoftheparametersprovidedforvalidation;•Annualrecordsofprojectresidenceoccupancy.BASELINESCENARIOLess-efficientuseofelectricityinbuildings.PROJECTSCENARIOMore-efficientuseofelectricityandoptionaluseofrenewablepowerinbuildings.FossilfuelElectricitBuildinsCOGridElectricitFossilfuelCOUprdeElectricitRenewbleBuildinsGridAMS-III.AE.AMS-III.AE.EnergyefficiencyandrenewableenergymeasuresinnewresidentialbuildingsWomenndchildrenCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)AvoidanceofmethaneemissionsfromMSWthatisalreadydepositedinaclosedsolidwastedisposalsite(SWDS)withoutmethanerecovery.Duetotheproject,non-inertmaterialwillbecomposedthroughpre-aeration,excavationandseparationoftheMSWintheclosedSWDS,sothatmethaneemissionswillbeavoided.TypeofGHGemissionsmitigationaction•GHGemissionavoidance.Methaneemissionsfromanaerobicdecayoforganicmatterinmunicipalsolidwasteisavoidedbyalternativewastetreatment(i.e.composting).Importantconditionsunderwhichthemethodologyisapplicable•Thismethodologyisapplicableiftheaerobicpre-treatmentisrealizedeitherthroughhighpressureairinjectionenrichedwithoxygen(20-40%vol.)orlowpressureaerationusingambientair;•TheexistingregulationsdonotrequirethecaptureandflaringoflandfillgasofclosedSWDS;•Thecompostingprocessisrealizedatenclosedchambersorroofedsites,outdoorcompostingisnotapplicable.ImportantparametersMonitored:•Quantityofrawwasteremovedandquantityofcompostproduced;•Parametersrelatedtotransport,e.g.truckcapacity;•Parametersrelatedtomethanegenerationpotentialofthenon-inertfractionofthepartiallydecayed,separatedMSW;•Amountofnon-inertwasteexcavatedandaerobicallycomposted;•Annualamountoffossilfuelorelectricityusedtooperatethefacilitiesorpowerauxiliaryequipment.BASELINESCENARIOMSWislefttodecaywithintheSWDSandmethaneisemittedintotheatmosphere.PROJECTSCENARIOMethaneemissionswillbeavoidedbyapplyingpre-aerationandexcavationofexistingSWDS,followedbyseparationandcompostingofnon-inertmaterials.AMS-III.AF.AMS-III.AF.Avoidanceofmethaneemissionsthroughexcavatingandcompostingofpartiallydecayedmunicipalsolidwaste(MSW)CHDisposlLndllsReleseCompostinDisposlCH4BiomssLndllsReleseCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Switchfromhighcarbongridelectricitytoelectricitygenerationusingless-carbon-intensivefossilfuelsuchascaptivenatural-gas-basedpowergeneration.TypeofGHGemissionsmitigationaction•Fuelswitch.Switchtoaless-carbon-intensivefuelforpowergeneration.Importantconditionsunderwhichthemethodologyisapplicable•Theprojectisprimarilytheswitchfromfossil-fuel-basedelectricitygeneration,suppliedpartlyorentirelybythegrid,toasingleormultiple,less-carbon-intensivefuelatGreenfieldorexistingfacilities;•Thesoleenergysourceoroneoftheenergysourcesinthebaselineshallbehigh-carbon-intensivegridelectricity;•Cogeneration(e.g.gasturbinewithheatrecovery)isallowedprovidedthattheemissionreductionsareclaimedonlyfortheelectricityoutput;•Multiplefossilfuelsswitchingisallowedifoneoftheenergysourcesinthebaselineishigh-carbon-intensivegridelectricity;•Exportofelectricitytoagridisnotpartoftheprojectboundary;•Projectdoesnotresultinintegratedprocesschange.ImportantparametersAtvalidation:•Historicalpowergenerationforexistingbaselineplants;•Quantityoffossilfuelsforexistingbaselineplants;•Gridemissionfactorcanalsobemonitoredexpost.Monitored:•Quantityoffossilfueluse;•Theoutputofelementprocessforelectricityexportedtootherfacilitiesshallbemonitoredintherecipientend.BASELINESCENARIOUseofcarbon-intensivefueltogenerateelectricity.PROJECTSCENARIOUseofaless-carbon-intensivefueltogenerateelectricity,whichleadstoadecreaseinGHGemissions.AMS-III.AG.AMS-III.AG.SwitchingfromhighcarbonintensivegridelectricitytolowcarbonintensivefossilfuelCOPowerplntElectricitFossilfuelConsumerGridCOElectricitPowerplntPowerplntFossilfuelFossilfuelConsumerCOGridCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Replacementorretrofitinordertoincreasetheshareofless-carbon-intensivefossilfuelsinanelementprocessofindustrial,residentialorcommercialapplications.TypeofGHGemissionsmitigationaction•Fuelswitch.Switchtoless-carbon-intensivefuelinenergyconversionprocesses.Importantconditionsunderwhichthemethodologyisapplicable•Retrofitorreplacementatexistinginstallationstoincreasetheshareofless-carbon-intensivefuelotherthanbiomassorwastegas/energy;•Energyefficiencyimprovementsrelatedtothefuelswitchareeligible;•Retrofitandreplacementswithoutcapacityexpansionand/orintegratedprocesschangeareeligible;•Projectactivitymaybephysicallyconnectedtoagridbutemissionreductioncannotbeclaimedfortheelectricityexporttothegrid.ImportantparametersAtvalidation:•Quantityoffossilfueluse;•Theoutputandefficiencyofelementprocess(e.g.heatorelectricity);•Whereoutputcannotbemeasured,theamountoffossilfuelconsumedduringtheprojectisusedasproxy;•Availabilityofallbaselinefossilfuels.Monitored:•Fossilfuelandenergyinputtotheelementprocess;•Outputoftheelementprocessandexportedtotherecipientend.BASELINESCENARIOProductionofenergyusingmore-carbon-intensivefossilfuelmix.PROJECTSCENARIOProductionofenergyusingless-carbon-intensivefossilfuelmix.COEnerEnerFossilfuelFossilfuelCOFossilfuelEnerEnerFossilfuelFossilfuelAMS-III.AH.AMS-III.AH.ShiftfromhighcarbonintensivefuelmixratiotolowcarbonintensivefuelmixratioCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Recoveryofsulphuricacidfrom‘spentsulphuricacid’wheretheneutralizationofspentacidwithhydratedlimeorlimestoneandtheassociatedCO2emissionsintheexistingfacilityareavoided.TypeofGHGemissionsmitigationaction•GHGemissionavoidance.AvoidanceofneutralizationofspentacidandofrelatedGHGemissions.Importantconditionsunderwhichthemethodologyisapplicable•Theprojectisanewsulphuricacidrecoveryfacility;•Theconcentrationofthespentsulphuricacidrangesfrom18%w/wto80%w/w(weightpercentage);•Specificspentsulphuricacidrecoveryproceduresareapplied.ImportantparametersAtvalidation:•Historicaldataonthequantityofspentsulphuricacidneutralized.Monitored:•Quantityandacidityofsulphuricacidrecovered;•Historicenergy(electricity/steam)self-generatedbyaneighbouringfacilitythatwillbereplacedbysupplyofanequivalentenergybytheproject;•Energydisplacedbytheprojectbysupplyofenergytoaneighbouringfacilitythatdisplacesanequivalentamountofenergyusageinthebaselineorsuppliedtothegrid.BASELINESCENARIOThespentsulphuricacidisneutralizedusinghydratedlime,leadingtoCO2emissions.PROJECTSCENARIONohydratedlimeisusedtoneutralizethespentsulphuricacid.TheassociatedCO2emissionsareavoided.ProductionDisposlSpentcidLimeTretmentCORecclinProductionSulphuriccidDisposlTretmentLimeSpentcidCOAMS-III.AI.AMS-III.AI.EmissionreductionsthroughrecoveryofspentsulphuricacidCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Projectsthatinvolvetherecyclingofplasticmaterials(HDPE,LDPE,PETandPP),containerglassandmetals(aluminiumandsteel)collectedfrommunicipalsolidwastes(MSW)thatareprocessedintointermediateorfinishedproducts(e.g.plasticbags,containerglassandsteel/aluminiumproducts).TypeofGHGemissionsmitigationaction•Energyefficiency.ReductionofproductionofHDPE,LDPE,PET/PP,containerglassandmetals(aluminiumandsteel)fromvirginmaterials,thusreducingrelatedenergyconsumption.Importantconditionsunderwhichthemethodologyisapplicable•Recyclingprocessmaybeaccomplishedmanuallyand/orusingmechanicalequipmentandincludeswashing,drying,compaction,shreddingandpelletizing;•Emissionreductionscanonlybeclaimedforthedifferenceinenergyusefortheproductionofmaterialsfromvirgininputsversusproductionfromrecycledmaterial.Forcontainerglass,emissionreductionscanonlybeclaimedforthedifferenceinenergyusefortheproductionofvirgincontainerglasscorrespondingtothepreparationandmixingofrawmaterialsbeforethemeltingstageversusproductionofcontainerglassfromrecycledmaterial;•ContractualagreementbetweenrecyclingfacilityandmanufacturingfacilityguaranteesthatonlyoneofthemclaimsCERs;•ThreeyearshistoricaldatashowthatdisplacedvirginmaterialisnotimportedfromanAnnexIcountryoradefaultglobalbaselinecorrectionfactorcouldbeused;•ForrecyclingofPET/PP,thechemicalequivalenceoftherecycledPET/PPtothatofPET/PPmadefromvirgininputshallbeproved;•Forrecyclingofaluminiumandsteel,themethodologycoversonlypostconsumerobsoletewastes.ImportantparametersMonitored:•Quantityofeachtypeofrecycledmaterialssoldtoamanufacturingfacility;•Electricityandfossilfuelconsumptionoftherecyclingfacility;•Percentageofplasticsproducedinthehostpartyoutoftotalplasticconsumed;•Percentageofplasticsimportedbythehostpartyoutoftotalplasticconsumed;•IntrinsicviscosityofPET/PP.BASELINESCENARIOHDPE,LDPE,PET/PP,containerglass,aluminiumandsteelareproducedfromvirginrawmaterialresultinginhighenergyconsumption.COPlstics/GlssFeedstockDisposlWsteFossilfuelElectricitPlstics/GlssProductionPROJECTSCENARIOProductionofHDPE,LDPE,PET/PP,containerglass,aluminiumandsteelbasedonvirginrawmaterialisreduced.Useofrecycledmaterialresultsinlessenergyconsumption.Plstics/GlssFeedstockDisposlWsteRecclinPlstics/GlssFossilfuelElectricitCOPlstics/GlssProductionAMS-III.AJ.AMS-III.AJ.RecoveryandrecyclingofmaterialsfromsolidwastesWomenndchildrenCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeAMS-III.AK.AMS-III.AK.BiodieselproductionandusefortransportapplicationsTypicalproject(s)Biofuelproductionandutilizationintransportationapplications,wherethebiofuelisproducedfrombiomassresidues,biomasscultivatedondedicatedplantationsandfromwasteoil/fat.TypeofGHGemissionsmitigationaction•Renewableenergy.Displacementofmore-carbon-intensivefossilfuelforcombustioninvehicles/transportationapplicationsbyuseofrenewablebiomass.Importantconditionsunderwhichthemethodologyisapplicable•Ifthebiomassfeedstockissourcedfromadedicatedplantation,associatedprojectandleakageemissionsshallbeconsidered;•Theexportofproducedbiodieselisnoteligible;•Theblendingproportionofthebiofuelshallensurethatitsperformancedoesnotdiffersignificantlyfromthatoffossilfuels;•Theconsumergroupofthebiofuelandthedistributionsystemshallbeidentified;•Anyalcoholusedforesterificationismethanoloffossilfueloriginoralcoholsproducedwithbiomassfromdedicatedplantations.ImportantparametersMonitored:•Quantityofbiofuelproducedintheprojectplantandconsumptionofbiodieselanditsblendsbythecaptiveusers;•Quantityofanyfossilfueland/orelectricityfortheoperationoftheprojectactivity;•Parameterstoestimateprojectemissionsfromthecultivationofbiomass.BASELINESCENARIOFossilfuelswouldbeusedinthetransportationapplications.PROJECTSCENARIOBiomassiscultivated,blendedbiofuelisproducedandusedinthetransportationapplications.PetrodieselCOBusCrTrnsportPlnttionBlendedfuelPetrodieselWsteoilPlntoilBiodieselBiodieselBusCrTrnsportCOCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeAMS-III.AL.AMS-III.AL.ConversionfromsinglecycletocombinedcyclepowergenerationTypicalproject(s)Conversionofanexistingsingle-cyclegasturbine(s)orinternalcombustionengine(s)withorwithoutcogenerationsystemtoacombined-cyclesystemwithorwithoutcogenerationtoproduceadditionalelectricityforcaptiveuseand/orsupplytoagrid.TypeofGHGemissionsmitigationaction•Energyefficiency.Fuelsavingsthroughenergyefficiencyimprovement.Importantconditionsunderwhichthemethodologyisapplicable•Theprojectutilizesexcessheat(e.g.gasturbine/engineexhaustheat)thatwaspreviouslyunusedforatleastthreeyearsbeforethestartoftheproject;•Usefulthermalenergyproducedinthebaselineandprojectisforcaptiveuseonly;•Theprojectdoesnotinvolveanymajoroverhaulstotheexistingsingle-cyclegasturbine/enginesystem(noincreaseofthelifetimeorcapacityofthesystem).ImportantparametersAtvalidation:•Gridemissionfactor(canalsobemonitoredexpost);•Averagenetannualelectricitygenerationoftheexistingsysteminthethreeyearsimmediatelypriortotheprojectstart;•Averageannualfuelconsumptionoftheexistingsysteminthethreeyearsimmediatelypriortotheprojectstart.Monitored:•Netelectricitygeneratedbytheproject;•Fuelandelectricityconsumedbytheproject;•Netthermalenergyconsumedbytheproject.BASELINESCENARIOElectricityisgeneratedbyasingle-cyclegasturbine(s)/engine(s)withorwithoutsimultaneousgenerationofthermalenergy(steamorhotwater).PROJECTSCENARIOTheexistingsingle-cyclegasturbine(s)isconvertedtoacombined-cyclegasturbine(s)/engine(s)formoreefficientelectricitygenerationwithorwithoutsimultaneousgenerationofthermalenergy(steamorhotwater).FossilfuelFossilfuelPowerplntElectricitGridCOCOFossilfuelUprdeElectricitPowerplntCOFossilfuelGridCOCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeAMS-III.AM.AMS-III.AM.Fossilfuelswitchinacogeneration/trigenerationsystemTypicalproject(s)Fossilfuelswitchingfromacarbon-intensivefossilfueltoalow-carbon-intensivefossilfuelinaneworexistingcogeneration/trigenerationsystem(e.g.switchingfromcoaltonaturalgasinacogeneration/trigenerationunit).TypeofGHGemissionsmitigationaction•Fuelswitch.Displacementofamore-GHG-intensiveservice.Importantconditionsunderwhichthemethodologyisapplicable•Fuelinputefficiency(thermalandelectricityoutput/fuelinput)isbetter(oratleastequal)tothebaselineone;•Specificauxiliaryenergyconsumptiondoesnotchangemorethan±10%;•Forexistingcogeneration/trigenerationsystemsatleastthreeyearsofhistoricaldatapriortothestartoftheproject(oneyeariflessthanthreeyearsoperationalhistory);•Ifinstallationsofcoolingequipmentuserefrigerants,suchrefrigerantsmusthavenoornegligibleglobalwarmingpotential(GWP)andnoornegligibleozonedepletingpotential(ODP);•Theprojectdoesnotimpactanyproductionprocessesorotherlevelofserviceprovided.Importantparameters•Amountofnetelectricityproduced;•Quantityoffossilfuelconsumed;•Thermalenergy(massflow,temperature,pressureforheat/cooling)deliveredbytheproject.BASELINESCENARIOUseofcarbon-intensivefossilfuelincogeneration/trigenerationsystemforproductionofpower/heat/cooling.PROJECTSCENARIOSwitchfromfromcarbon-intensivefossilfueltoalow-carbon-intensivefossilfuelincogeneration/trigenerationsystemforproductionofpower/heatandcooling.HetElectricitConsumerCoolinTrienertionFossilfuelCOHetElectricitConsumerCoolinTrienertionCOFossilfuelFossilfuelCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Switchingfromacarbon-intensivefossilfueltoeitheraless-carbon-intensivefossilfuelorelectricitywithlowercarbonintensity.TypeofGHGemissionsmitigationaction•Fuelswitch.Switchtoafuel/energysourcewithalowerGHGintensity.Importantconditionsunderwhichthemethodologyisapplicable•Thefuelswitchoccursatamanufacturingfacilitywiththreeyearsofhistoricaldata;•Thetypeofinputsandproductsareequivalent(outputswithsameorbetterservicelevelascomparedtothebaseline);•Thefuelswitchateachelementmanufacturingprocessisfromasinglefossilfueltoless-carbon-intensivesinglefossilfuelorgridelectricity;•Thefuelswitchdoesnotleadtoadecreaseinenergyefficiency;•Elementalprocessorotherdownstream/upstreamprocessesdonotchangeasaresultofthefossilfuelswitch.ImportantparametersAtvalidation:•Quantityoffossilfueluseoramountofthegridelectricityconsumed;•Baselinerawmaterialconsumptionandproductoutput.Monitored:•Quantityoffossilfueluseoramountofthegridelectricityconsumed;•Theannualnetprojectproductionoftheelementprocessorincaseswhereproductoutputcannotbemeasured(e.g.hot/fusedmetal)annualnetprojectrawmaterialconsumptionshouldbemonitored.BASELINESCENARIOContinueduseofacarbon-intensivefossilfuelfortheheatgenerationinamanufacturingprocess.PROJECTSCENARIOSwitchoffueltoaless-carbon-intensivefuelorlow-carbongridelectricityfortheheatgenerationinamanufacturingprocess.FossilfuelCOHetHetProductionHetHetProductionFossilfuelFossilfuelCOAMS-III.AN.AMS-III.AN.FossilfuelswitchinexistingmanufacturingindustriesCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Theprojectactivityisthecontrolledbiologicaltreatmentofbiomassorotherorganicmattersthroughanaerobicdigestioninclosedreactorsequippedwithbiogasrecoveryandacombustion/flaringsystem.TypeofGHGemissionsmitigationaction•GHGformationavoidance.Methaneformationavoidance.Importantconditionsunderwhichthemethodologyisapplicable•Ifforoneormoresourcesofsubstrates,itcannotbedemonstratedthattheorganicmatterwouldotherwisebeenlefttodecayanaerobically,baselineemissionsrelatedtosuchorganicmattershallbeaccountedforaszero;•ProjectactivitiestreatinganimalmanureassinglesourcesubstrateshallapplyAMS-III.D.,similarlyprojectsonlytreatingwastewaterand/orsludgegeneratedinthewastewatertreatmentworksshallapplyAMS-III.H.;•Theprojectactivitydoesnotrecoverorcombustlandfillgasfromthedisposalsite(unlikeAMS-III.G.),anddoesnotundertakecontrolledcombustionofthewastethatisnottreatedbiologicallyinafirststep(unlikeAMS-III.E.).ImportantparametersAtvalidation:•Thelocationandcharacteristicsofthedisposalsiteofthebiomassusedfordigestion,inthebaselinecondition.Monitored:•Quantityofsolidwaste(excludingmanure);•Parametersforcalculatingmethaneemissionsfromphysicalleakageofmethane;•Parametersrelatedtoemissionsfromelectricityand/orfuelconsumption.BASELINESCENARIOBiomassorotherorganicmatterwouldhaveotherwisebeenlefttodecayanaerobically.PROJECTSCENARIOBiologicaltreatmentofbiomassorotherorganicmattersthroughanaerobicdigestioninclosedreactorsequippedwithbiogasrecoveryandacombustion/flaringsystem.WsteBiomssDisposlCHBiosReleseDisposlCHGsReleseWsteBiosEnerFlrinBiomssDiesterAMS-III.AO.AMS-III.AO.MethanerecoverythroughcontrolledanaerobicdigestionWomenndchildrenCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Demandsideactivitiesassociatedwiththeinstallationofpost-fittypeIdlingStopdevicesinpassengervehiclesusedforpublictransport(e.g.buses).TypeofGHGemissionsmitigationaction•EnergyEfficiency.Reductionoffossilfueluseandcorrespondingemissionsthroughenergyefficiencyimprovements.Importantconditionsunderwhichthemethodologyisapplicable•Vehiclesusedforpublictransportation;•Vehiclesusinggasolineorpetrodieselasfuel;•Vehiclesinwhichitispossibletoinstallpost-fitIdlingStopdevice.ImportantparametersMonitored:•CumulativeIdlingPeriodofallvehiclesoftypeiinyeary;•TotalnumberoftimesofIdlingStopofvehicleiintheyeary.BASELINESCENARIOVehiclesusedforpublictransportationcontinueidling.PROJECTSCENARIOVehiclesusedforpublictransportationusingapost-fittypeIdlingStopdevicethatwillturnoffthevehicleengineandpreventidling.COBusFossilfuelBusCOUprdeFossilfuelAMS-III.AP.AMS-III.AP.Transportenergyefficiencyactivitiesusingpost–fitIdlingStopdeviceCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)ProductionofBiogenicCompressedNaturalGas(Bio-CNG)fromrenewablebiomassanduseintransportationapplications.TheBio-CNGisderivedfromvarioussourcessuchasbiomassfromdedicatedplantations;wastewatertreatment;manuremanagement;biomassresidues.TypeofGHGemissionsmitigationaction•RenewableEnergy.Displacementofmore-GHG-intensivefossilfuelforcombustioninvehicles.Importantconditionsunderwhichthemethodologyisapplicable•Bio-CNGisusedinCompressedNaturalGas(CNG)vehicles,modifiedgasolineand/ordieselvehicles;•MethanecontentoftheBio-CNGmeetsrelevantnationalregulationsoraminimumof96percent(byvolume);•ConditionsapplyifthefeedstockforproductionoftheBio-CNGisderivedfromdedicatedplantation;•ExportofBio-CNGisnotallowed;•OnlytheproduceroftheBio-CNGcanclaimemissionreductions.ImportantparametersAtvalidation:•Determinefractionofgasoline(onmassbasis)intheblendwherenationalregulationsrequiremandatoryblendingofthefuelswithbiofuels;•Amountofgasolineconsumptioninthebaselinevehiclesexante.Monitored:•AmountofBio-CNGproduced/distributed/sold/consumeddirectlytoretailers,fillingstations;•Parametersforcalculatingmethaneemissionsfromphysicalleakageofmethane;•Parametersfordeterminingprojectemissionsfromrenewablebiomasscultivation.BASELINESCENARIOGasolineorCNGareusedinthebaselinevehicles.PROJECTSCENARIOOnlyBio-CNGareusedintheprojectvehicles.COFossilfuelCrTrnsportCOFossilfuelUprdeCrTrnsportBiomssProductionAricultureBiosAMS-III.AQ.AMS-III.AQ.IntroductionofBio-CNGintransportationapplicationsCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Activitiesthatreplaceportablefossilfuelbasedlamps(e.g.wick-basedkerosenelanterns)withbattery-chargedLEDorCFLbasedlightingsystemsinresidentialand/ornon-residentialapplications(e.g.ambientlights,tasklights,portablelights).TypeofGHGemissionsmitigationaction•Renewableenergy;•Energyefficiency.Displacementofmore-GHG-intensiveservice(lighting).Importantconditionsunderwhichthemethodologyisapplicable•Projectlampswhosebatteriesarethrough:–Arenewableenergysystem(e.g.aphotovoltaicsystemormechanicalsystemsuchasahandcrankcharger);–Astandalonedistributedgenerationsystem(e.g.adieselgeneratorset)oramini-grid;–Agridthatisconnectedtoregional/nationalgrid;–Acombinationoftheaboveoptions;•WhentheLED/CFLlightingsystemhasmorethanoneLED/CFLlampconnectedtoasinglerechargeablebatterysystem,eachLED/CFLlampmaybeconsideredasoneprojectlamp;•Ataminimum,projectlampsshallbecertifiedbytheirmanufacturertohavearatedaverageoperationallifeofatleast:–5,000hourswhereprojectlampsareassumedtooperatefortwoyearsafterdistributiontoend-users(i.e.emissionreductionsarenotcreditedbeyondtwoyears).Underthisoption,expostmonitoringsurveystodeterminethepercentageofprojectlampsinserviceinyearyarenotrequired;–10,000hourswhereprojectlampsareassumedtooperateforuptosevenyearsafterdistributiontoend-users(i.e.emissionreductionsarenotcreditedbeyondsevenyears).Underthisoption,morestringentrequirements(e.g.testonlightoutput,expostmonitoringsurveys)arespecified;•Projectlampsshallhaveaminimumofoneyearwarranty;•Thereplacedbaselinelampsarethosethatdirectlyconsumefossilfuel.ImportantparametersMonitored:•Recordingofprojectlampdistributiondata;•Insomecases,expostmonitoringsurveystodeterminepercentageofprojectlampsdistributedtoendusersthatareoperatingandinserviceinyeary.BASELINESCENARIOUseoffossilfuelbasedlamps.PROJECTSCENARIOUseofLED/CFLbasedlightingsystems.COFossilfuelLihtinCOGridPowerplntRenewbleElectricitUprdeFossilfuelLihtinAMS-III.AR.AMS-III.AR.SubstitutingfossilfuelbasedlightingwithLED/CFLlightingsystemsSupresseddemndWomenndchildrenCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Activitiesforfuelswitching(completeorpartial)fromtheuseofcarbonintensiveenergysource(oramixofenergysources)offossilorigintorenewablebiomassoramixofrenewablebiomassandfossilfuelinexistingmanufacturingfacilities(e.g.steel,ceramics,aluminium,lime,clinkerproduction).TypeofGHGemissionsmitigationaction•FuelSwitch.Completeorpartialswitchfromfossilfueltobiomassinnon-energyapplications.Importantconditionsunderwhichthemethodologyisapplicable•Theswitchoccursatamanufacturingfacilitywiththreeyearsofhistoricaldata;•Thetypeofinputsandproductsareequivalent(outputswithsameorbetterservicelevelascomparedtothebaseline);•Ifthebiomassfeedstockissourcedfromdedicatedplantation,thepre-projectactivitiessuchasgrazingandcollectionofbiomassmustbeaccommodatedforwithintheprojectactivity;•Syngasderivedfromrenewableenergysourceiseligible;•Renewablebiomassutilizedbytheprojectactivityshallnotbechemicallyprocessed.ImportantparametersAtvalidation:•Quantityoffossilfueluse;•Baselinerawmaterialconsumptionandproductoutput.Monitored:•Theannualproductionoutputoftheprocessorincaseswhereproductoutputcannotbemeasuredannualnetprojectrawmaterialsconsumption;•Netquantityofbiomass;•Quantityoffossilfueloramountofelectricityconsumed;•Netcalorificvalue/Moisturecontentofbiomass;•Parameterstoestimateprojectemissionsfromthecultivationofbiomass.BASELINESCENARIOUseoffossilinmanufacturingproductionprocess.PROJECTSCENARIOUseofrenewablebiomassormixofbiomass/fossilfuelinmanufacturingproductionprocess.COFossilfuelHetHetProductionCOHetHetProductionBiomssFossilfuelFossilfuelAMS-III.AS.AMS-III.AS.Switchfromfossilfueltobiomassinexistingmanufacturingfacilitiesfornon-energyapplicationsCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Projectactivitiesthatinstalldigitaltachographsystemsoranotherdevicethatmonitorsvehicleanddriverperformanceandprovidesreal-timefeedbacktodriversinfreightvehiclesand/orcommercialpassengervehicles.TypeofGHGemissionsmitigationaction•EnergyEfficiency.Reductionoffossilfueluseandcorrespondingemissionsthroughenergyefficiencyimprovements.Importantconditionsunderwhichthemethodologyisapplicable•Thismethodologyappliestofreightvehiclefleetsand/orpassengervehiclefleetsthatarecentrallycontrolledandmanagedbyasingleentity;•Theprojectactivityisunlikelytochangethelevelofserviceofthevehiclefleetprovidedbeforetheprojectactivity;•Theprojectactivitydoesnotinvolveafuelswitchinexistingvehicles;•Thismethodologyisnotapplicabletoprojectactivitiesinlocationswheretheinstallationofthedeviceismandatorybylaw;•Forfreightvehiclefleets,projectparticipantsshallidentifythetraceableroutesalongwhichthevehiclesoperate,thecharacteristicsofthoseroutes,thelevelofserviceoneachroute,thevehiclesthatareinuseoneachtraceableroutebeforeandafterprojectimplementation.ImportantparametersMonitored:•Totaldistancetravelledbyeachvehicle;•Thevehiclesareidentifiedbasedontheage,characteristicsandloadcapacityandavailabilityofhistoricaldata;•Annualaveragedistanceoftransportationpertonneoffreightbyeachprojectvehicle;•Consumptionoffuelbyvehicle;•Totalannualgoodstransportedbyeachprojectvehicle;•Annualmonitoringtocheckifdeviceshavebecomeamandatorypractice,orthathighly-enforcedanti-idlingpoliciesorlegislationhavebeenputintoplace;•Monitoringtoensurethatalldeviceandfeedbacksystemsincludingfuelflowsensors(meters)areoperatingcorrectlyandhavenotbeendisabled.BASELINESCENARIOFossilfuelconsumptionduetoinefficientdriving.PROJECTSCENARIOAdigitaltachographsystemorsimilardevicereducesfossilfuelconsumptioninvehiclesbyprovidingtothedriverfeedbackagainstinefficientdriving,andthusencouragingefficientdriverbehaviourwhichresultsinimprovedvehiclefuelefficiency.COFossilfuelTrnsportBusFossilfuelCOUprdeTrnsportBusAMS-III.AT.AMS-III.AT.TransportationenergyefficiencyactivitiesinstallingdigitaltachographsystemsorsimilardevicestotransportfleetsCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Ricefarmsthatchangethewaterregimeduringthecultivationperiodfromcontinuouslytointermittentfloodedconditionsand/orashortenedperiodoffloodedconditions;alternatewettinganddryingmethodandaerobicricecultivationmethods;andricefarmsthatchangetheirricecultivationpracticefromtransplantedtodirectseededrice.TypeofGHGemissionsmitigationaction•GHGemissionavoidance.Reducedanaerobicdecompositionoforganicmatterinricecroppingsoils.Importantconditionsunderwhichthemethodologyisapplicable•Ricecultivationintheprojectareaispredominantlycharacterizedbyirrigated,floodedfieldsforanextendedperiodoftimeduringthegrowingseason;•Theprojectricefieldsareequippedwithcontrolledirrigationanddrainagefacilities;•Theprojectactivitydoesnotleadtoadecreaseinriceyield.Likewise,itdoesnotrequirethefarmtoswitchtoacultivarthathasnotbeengrownbefore;•Trainingandtechnicalsupportduringthecroppingseasonispartoftheprojectactivity;•Theintroducedcultivationpractice,includingthespecificcultivationelements,technologiesanduseofcropprotectionproducts,isnotsubjecttoanylocalregulatoryrestrictions;•Ifnotusingthedefaultvalueapproach,projectparticipantsshallhaveaccesstoinfrastructuretomeasureCH4emissionsfromreferencefieldsusingclosedchambermethodandlaboratoryanalysis.ImportantparametersMonitored:•Threeoptionsareprovided:–Option1:Fieldmeasurementstodetermineofbaselineemissionfactorandprojectemissionfactor(kgCH4/haperseasonorday);–Option2:Defaultvaluesadjustedbyregionspecificfieldmeasurementstodeterminebaselineemissionfactorandprojectemissionfactor(kgCH4/haperseasonorday);–Option3:Defaultvaluesforbaselineemissionfactorandprojectemissionfactor(kgCH4/haperseasonorday);•Aggregatedprojectarea;•Monitoringoffarmers’compliancewithprojectcultivationpractice.BASELINESCENARIOGenerationofmethaneduetoanaerobicdecompositionoforganicmatterinricecroppingsoils.CHReleseRiceeldPROJECTSCENARIOMethaneemissionavoidance,forexample,bychangingthewaterregimeduringthecultivationperiodfromcontinuouslytointermittentfloodedconditionsand/orashortenedperiodoffloodedconditions.UprdeCHMnementReleseRiceeldAMS-III.AU.AMS-III.AU.MethaneemissionreductionbyadjustedwatermanagementpracticeinricecultivationWomenndchildrenCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)ProjectactivitiesthatintroducelowGHGemittingwaterpurificationsystemstoprovidesafedrinkingwateranddisplacewaterboilingusingnon-renewablebiomassorfossilfuels.Waterkiosksthattreatwaterusingoneormoreofthefollowingtechnologies:chlorination,combinedflocculant/disinfectionpowdersandsolardisinfectionarealsoeligible.TypeofGHGemissionsmitigationactionDisplacementofamore-GHG-intensiveoutput.Importantconditionsunderwhichthemethodologyisapplicable•Priortotheimplementationoftheprojectactivity,apublicdistributionnetworksupplyingsafedrinkingwatertotheprojectboundarydoesnotexist;•Theapplicationoftheprojecttechnology/equipmentshallachievecomplianceeitherwith:(i)thecomprehensiveprotectionperformancetargetasper“Evaluatinghouseholdwatertreatmentoptions:Healthbasedtargetsandmicrobiologicalperformancespecifications”(WHO,2011);or(ii)anapplicablenationalstandardorguideline;•Incaseswherethelifespanofthewatertreatmenttechnologiesisshorterthanthecreditingperiodoftheprojectactivity,thereshallbedocumentedmeasuresinplacetoensurethatendusershaveaccesstoreplacementpurificationsystemsofcomparablequality.ImportantparametersMonitored:•Checkingofappliancestoensurethattheyarestilloperatingorarereplacedbyanequivalent;•Quantityofpurifiedwater;•Annualcheckifasafedrinkingwaterpublicdistributionnetworkisinstalled;•Safedrinkingwaterquality;•Totalelectricityandfossilfuelconsumptionbytheprojectactivity.BASELINESCENARIOFossilfuel/non-renewablebiomassconsumptionforwaterboilingasameanforwaterpurification.PROJECTSCENARIOLowgreenhousegasemittingwaterpurificationsystemensuressafedrinkingwatersupply.FossilfuelBiomssWterDrinkinwterBoilinHetCOConsumerFossilfuelRenewbleBiomssHetCOCOPurictionBoilinWterDrinkinwterConsumerAMS-III.AV.AMS-III.AV.LowgreenhousegasemittingsafedrinkingwaterproductionsystemsSupresseddemndWomenndchildrenCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Ruralcommunitieswhichwerenotconnectedtoagridpriortoprojectimplementationaresuppliedwithelectricitybyconnectiontoanationalorregionalgrid.TypeofGHGemissionsmitigationaction•Renewableenergy.Displacementofelectricitythatwouldbeprovidedbymore-GHG-intensivemeans.Importantconditionsunderwhichthemethodologyisapplicable•End-usersarenotconnectedtoagridpriortotheproject;•Existingrenewablemini-gridelectricityisnotdisplacedbytheproject;•Emissionreductionscanonlybeclaimed,iftherenewableelectricitygenerationinthegridisgreaterthanorequalto99%ofthetotalelectricitygeneration.ImportantparametersAtvalidation:•Incaseofadiesel-basedmini-grid,fuelconsumptionandelectricitygenerationofmini-gridconnectedplants(themostrecentdatafromthelastthreeyears).Monitored:•Netamountofrenewableelectricitydeliveredtotheprojectarea.BASELINESCENARIOIntheabsenceoftheprojectactivity,theenduserswouldhaveuseddieselgeneratortogenerateelectricity.PROJECTSCENARIOEndusersaresuppliedelectricitywithagridwithhighsharesofrenewablegeneration(i.e.99%).COElectricitFossilfuelPowerplntConsumerFossilfuelElectricitPowerplntRenewbleElectricitCOConsumerAMS-III.AW.AMS-III.AW.ElectrificationofruralcommunitiesbygridextensionWomenndchildrenCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Projectactivitiesinvolvingtheconstructionofamethaneoxidationlayer(MOL)ontopofamunicipalsolidwastedisposalsite(SWDS)toavoidthereleaseofmethanethroughbiologicaloxidationintheMOL.TypeofGHGemissionsmitigationaction•GHGdestruction.Avoidanceofmethaneemissionsfromsolidwastedisposalsites.Importantconditionsunderwhichthemethodologyisapplicable•Itisapplicablewherelandfillgascollectionandtreatmentisnotapplicableduetolowconcentrationoflandfillgas(lessthan4LCH4•m-2•h-1)orotherreasons;•ItisnotapplicableatSWDSwithanactivegasextractionsystem,orthatarestillreceivingwastesfordisposalorwhereaMOLisrequiredbylegalregulation.ImportantparametersMonitored:•ParametersrelatedtomethaneoxidisingmaterialqualitysuchasTOC,ammoniumandnitritehavetobeanalyzed;•ParametersrelatedtoMOLconstructionproperties,e.g.thicknessofMOLandgasdistributionlayer/balancinglayerduringapplication;•Parametersrelatedtomethaneoxidationperformance,e.g.measuredvolumefractionofmethaneinthemiddleofthedistributionlayer.BASELINESCENARIOBiomassandotherorganicmatterinwastearelefttodecayandmethaneisemittedintotheatmosphere.PROJECTSCENARIOMethanethatwouldhavebeenreleasedisoxidizedintheMOL.WsteBiomssDisposlCHLndllsReleseWsteBiomssDisposlCHLndllsReleseUprdeAMS-III.AX.AMS-III.AX.Methaneoxidationlayer(MOL)forsolidwastedisposalsitesCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)IntroductionandoperationofnewLNGbusesforpassengerstransportationtoexistingandnewroutes.TypeofGHGemissionsmitigationaction•Fuelswitch.Displacementofmore-GHG-intensivevehicles.Importantconditionsunderwhichthemethodologyisapplicable•Theexistingandnewroutesarefixed;•Oneachrouteonlyonetypeofbusandfuelareused;•Forthenewroutesitshouldbedemonstratedthatthesenewrouteshavebeenplanedpriortothestartdateoftheprojectactivityandservicedbyfossilfuelbusses;•Theprojectandbaselinefrequencyofoperationofthebusesshouldbethesame;•Theprojectandbaselinebusesshouldbewithcomparablepassengerscapacityandpowerrating.ImportantparametersAtvalidation:•Baselinefueldata(NCVandemissionfactor).Monitored:•Specificfuelconsumptionofbaselinebuses;•Totalannualdistancetravelledbybaselinebuses;•Fuelconsumptionoftheprojectbuses.BASELINESCENARIOBusesusedieselorcomparablefossilfuel.PROJECTSCENARIOBusesuseLNGonly.COPetrodieselBusCOBusBusLNGPetrodieselCOAMS-III.AY.AMS-III.AY.IntroductionofLNGbusestoexistingandnewbusroutesCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)CollectionandrecyclingactivitiesofE-waste,comprisingofend-of-life,discarded,surplus,obsolete,ordamagedelectricalandelectronicequipment,performedindedicatedfacilitieswiththeaimofrecoveringmaterialssuchasferrousmetals,non-ferrousmetals,plastics.TypeofGHGemissionsmitigationaction•Energyefficiency.Reductionofproductionofmetalsandplasticsfromvirginmaterials,thusreducingrelatedenergyconsumption.Importantconditionsunderwhichthemethodologyisapplicable•Thismethodologyappliestotherecyclingofthefollowingmaterials:aluminium,steel,copper,gold,silver,palladium,tin,lead;AcrylonitrileButadieneStyrene(ABS),HighImpactPolystyrene(HIPS);•Materialsrecycledundertheprojectactivityarerecoveredonlyfromend-of-lifeE-wastes;•ThepropertiesofthemetalsandplasticsproducedfromE-wasterecyclingarethesameasthoseofthemetalsandplasticsfromvirginmaterials;•TheexantebaselinerecyclingrateofE-wasteisequaltoorsmallerthan20%ofthetotalamountofE-waste.Wherethebaselinerecyclingratesexceed20%,theprojectactivityhastoleadtosignificantlyhigherratesofrecyclingintheregion/country.ImportantparametersMonitored:•Quantityofmaterialrecycledandsenttoaprocessingormanufacturingfacility;•Percentageofplasticsproducedinthehostpartyoutoftotalplasticconsumed;•Percentageofplasticsimportedbythehostpartyoutoftotalplasticconsumed;•Electricityandfossilfuelconsumptionattherecyclingfacility;•Evidencethatthematerialsrecycledundertheprojectactivityarerecoveredonlyfromend-of-lifeE-wastes.BASELINESCENARIOMetalsandplasticsareproducedfromvirginrawmaterialsresultinginhighenergyconsumption.COMetls/PlsticsFeedstockDisposlWsteFossilfuelElectricitMetls/PlsticsProductionPROJECTSCENARIOProductionofmetalsandplasticsbasedonvirginrawmaterialisreduced.Useofrecycledmaterialresultsinlessenergyconsumption.Metls/PlsticsFeedstockDisposlWsteRecclinMetls/PlsticsFossilfuelElectricitCOMetls/PlsticsProductionAMS-III.BA.AMS-III.BA.RecoveryandrecyclingofmaterialsfromE-wasteWomenndchildrenCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Theprojectactivitysupplieselectricitytoconsumerswho,priortoprojectimplementation,werenotconnectedtoanational/regionalgridandweresuppliedbyahigh-carbon-intensivemini-gridorstand-alonepowergenerators.Alsofuel-basedlightingsystemsmighthavebeenusedbeforetheprojectimplementation.TypeofGHGemissionsmitigationaction•Displacementofmore-GHG-intensiveoutput.Low-carbon-intensivegrid/mini-gridelectricitydisplaceshigh-carbon-intensiveelectricityorlightingservices.Importantconditionsunderwhichthemethodologyisapplicable•Limitedtocommunitieswithnoaccesstoanationalorregionalgrid;•Atleast75%oftheendusers(bynumber)shallbehouseholds.ImportantparametersAtvalidation:•Thephysicallocationofeachconsumerandtheanticipatedconnectedloadandusagehoursofeachconsumer.Monitored:•Meteringoftotalelectricitydeliveredtoconsumers(e.g.atasubstation).Prepaiddevicesforpurchaseofelectricitycanalsobeusedforthepurposeofmetering;•Meteringofelectricityconsumptionofallnon-householdendusers(e.g.commercialconsumers,SMMEs,publicinstitutions,streetlighting,irrigationpumps)andhouseholdend-usersexpectedtoconsumemorethan1000kWh/year.BASELINESCENARIOIntheabsenceoftheprojectactivity,theenduserswouldhaveusedfossilfuelbasedlighting,stand-alonedieselelectricitygeneratorsforappliancesotherthanlighting(e.g.TV)orwouldhavebeensuppliedbyfossil-fuel-basedmini-grid.PROJECTSCENARIOConsumersaresuppliedwithelectricitybyconnectiontoanationalorregionalorminigridorbyanewmini-grid.ElectricitFossilfuelFossilfuelPowerplntCOLihtinConsumerCOGridFossilfuelElectricitUprdeLihtinConsumerFossilfuelFossilfuelPowerplntCOAMS-III.BB.AMS-III.BB.Electrificationofcommunitiesthroughgridextensionorconstructionofnewmini-gridsSupresseddemndWomenndchildrenCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Improvementoftheoperationalefficiencyofvehiclefleets(e.g.fleetsoftrucks,buses,cars,taxisormotorizedtricycles).TypeofGHGemissionsmitigationaction•Energyefficiency.Fossilfuelssavingsthroughvariousequipmentand/oractivityimprovement.Importantconditionsunderwhichthemethodologyisapplicable•Implementationofidlingstopdevice,eco-drivesystems,tire-rollingresistanceimprovements,air-conditioningsystemimprovements,useoflowviscosityoils,aerodynamicdragreductionmeasuresand/ortransmissionimprovements,retrofitsthatimproveengineefficiency;•Vehiclefleetsshallbecentrallyownedandmanagedbyasingleentityanddrivenbycontractorsoremployeesofthecentralentity;•Technologiesemployedtoimprovecombustionefficiencywithoutimprovementsinengineefficiencyarenotapplicable.ImportantparametersMonitored:•Specificbaselineandprojectfuelconsumptionofthevehiclecategories;•Averagegrossweightpervehicleofthevehiclecategories;•Activitylevels(travelleddistance)oftheprojectvehiclecategories.BASELINESCENARIOFossilfuelconsumptionduetoinefficientoperationofvehiclefleets.PROJECTSCENARIOReducedfossilfuelconsumptionduetoimprovedoperationalefficiencyofvehiclefleets.COFossilfuelBusTruckCr/TxiCOUprdeFossilfuelBusTruckCr/TxiAMS-III.BC.AMS-III.BC.EmissionreductionsthroughimprovedefficiencyofvehiclefleetsCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Constructionandoperationofscrapaluminiumrecyclingunitstodirectlysupplymoltenaluminiuminsteadofingotstocastingunits,therebyreducingGHGemissionsontheaccountofavoideduseofenergytore-meltaluminiumingotsandproduceequivalentquantityofprimaryaluminiumduetometallossduringre-meltingofaluminiumingots.TypeofGHGemissionsmitigationaction•Feedstockswitch;•Energyefficiency.Displacementofamore-GHG-intensiveoutput.Savingsofenergyduetodirectsupplyofmoltenaluminiumtocastingunits.Importantconditionsunderwhichthemethodologyisapplicable•Forprojectimplementedinexistingfacilities,bothrecyclingandcastingunitshaveahistoryofoperationforatleastthreeyearspriortothestartoftheprojectactivity;•Mandatoryinvestmentanalysisforbaselinedeterminationiftheprojectsizeisgreaterthan600tCO2peryearpercastingunit;•Hotmetaltransportbetweentherecyclingfacilityandcastingunitisundertakeninclosedladle;•Contractualagreementbetweentherecyclingfacilityandcastingunittoavoiddoublecountingofemissionreductions;•Productionoutputsinbaselineandprojectscenariosremainhomogenousandwithinarangeof±10%withnochangeininstalledcapacity.ImportantparametersAtvalidation:•Percentagelossofaluminiumduetooxidationduringtheprocessofre-meltingofingots;•Efficiencyofthefurnaceatthecastingunittowhichthemoltenmetalisbeingsupplied.Monitored:•Quantityofmoltenaluminiumsupplied;•Energyconsumptionassociatedtothetransportationofmoltenmetal.BASELINESCENARIOSupplyofaluminiumingotstothecastingunitsfromthealuminiummetalrecyclingfacilities.Thecastingunitsmelttheingotsusingfossilfueland/orelectricitybeforebeingmoulded.Duringthemeltingofingots,somealuminiummetalislostbecauseofoxidation.PROJECTSCENARIODirectsupplyofmoltenaluminiumfromaluminiumrecyclingunitsavoidstheremeltingofingotsinthecastingunitsandthusreducestheenergyusefortheproductionofaluminium.CORecclinCstinInotsAluminiumFossilfuelAluminiumMetllossCOAluminiumAluminiumElectricitCORecclinCstinMoltenluminiumAluminiumFossilfuelAluminiumElectricitAluminiumAluminiumMetllossCOAMS-III.BD.AMS-III.BD.GHGemissionreductionsduetosupplyofmoltenmetalinsteadofingotsforaluminiumcastingsCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Aerobictreatmentofbiomassfromsugarcaneharvestingbymulching.TypeofGHGemissionsmitigationaction•GHGemissionavoidance.Methaneandnitrousoxideemissionsavoidancebyreplacingpre-harvestopenburningofsugarcanebiomasswithmulchingofsugarcanebiomass.Importantconditionsunderwhichthemethodologyisapplicable•Itshallbeestablishedexanteatthebeginningoftheprojectactivitythatopenburningisnotlegallyprohibitedintheprojectregionanditisthecommonpractice;•Itcanbedemonstratedthattheparticipatingfarmshavebeencultivatingonlysugarcaneor,havebeencultivatingsugarcaneaswellasothercropsonthesamelandintheimmediatethreeyearspriortothestartingdateoftheprojectactivity;•Ifsugarcanebiomassisstoredbeforethemulchingprocess,thestoragetimeshallbelessthan7days.ImportantparametersAtvalidation:•Cultivationofsugarcaneinthefarms;•Openburningstatusbeforetheimplementationofprojectactivity.Monitored:•Mulchingprocessofsugarcanebiomassresidues;•Statusofopenburningaftertheprojectactivity;•Sugarcaneyieldandrawsugarproduction.BASELINESCENARIOSugarcanebiomassresiduesareburntinopenfire.PROJECTSCENARIOSugarcanebiomassresiduesarecollectedandappliedinthefieldbymulching.AMS-III.BE.AMS-III.BE.Avoidanceofmethaneandnitrousoxideemissionsfromsugarcanepre-harvestopenburningthroughmulchingBiomssNOReleseCHBurninBiomssReleseCHNOApplictionCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Useofageneticallydistincttypeofseedforcropsthatwillutilizenitrogenmoreefficiently.TypeofGHGemissionsmitigationaction•GHGemissionavoidance.AvoidanceofN2Oemissionsfromagriculturalactivitybyreducingtheamountoffertilizerusedbythecrop.Importantconditionsunderwhichthemethodologyisapplicable•Theseedshavebeengeneticallyengineeredtomodifygenesinnitrogenassimilationandmetabolicpathwaysinwaysthatsignificantlyincreasethequantityofcropoutputperunitofnitrogenavailableforplantuse;•ThecontainersofNUEseedmustbeclearlymarkedassuchandalwaysremainsegregatedfromotherseed;•Technologies/measureswherethesavingsinsyntheticnitrogenfertilizerapplicationsareattributableintotalorinparttoenhancedbiologicalfixation(e.g.byrhizobiaactivity)arenotapplicable.ImportantparametersAtvalidation:•Historicdataforsyntheticnitrogenfertilizer,cropyield,andmanagementpractices.Monitored:•Amountofcropproducedbytheprojectactivity;•Cultivatedarea;•Totalquantityofnitrogenfertilizersutilizedbythefarms/fieldsutilizingthebaselineandprojecttechnology;•Areacultivationefficiency(productivity)intheprojectscenario.BASELINESCENARIOUseoftraditionalseedsandnitrogenfertilizerrates,inordertoachievethesamecropoutputasintheprojectscenario.PROJECTSCENARIOUseofNUEseedsandreducednitrogenfertilizerrates,inordertoachievethesamecropoutputasinthebaselinescenario.AMS-III.BF.AMS-III.BF.ReductionofN2OemissionsfromuseofNitrogenUseEfficient(NUE)seedsthatrequirelessfertilizerapplicationAricultureFertilizerNOSeedsCOAricultureSeedsCONOFertilizerUprdeCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Projectactivitiesthatdisplacetheuseofnon-renewablebiomassintheproductionofcharcoalsuppliedtoidentifiedconsumers.TypeofGHGemissionsmitigationaction•Fuelorfeedstockswitch;•Energyefficiency.DisplacementofmoreGHGintensive,non-renewablebiomassfuelledapplicationsbyintroducingmoreefficienttechnologies.Importantconditionsunderwhichthemethodologyisapplicable•Endusersofcharcoalshallbe:(i)households;or(ii)smallandmediumenterprises(SME);or(iii)agroupofhouseholdsservedbyacharcoalmarket;•Theprojectactivityshallintroduceefficientcharcoalproductiontechnologies,includingmicrogasifierstoves.ImportantparametersAtvalidation:•Kilnusedinthebaselinescenario;•Feedstockusedinthebaselinekiln.Monitored:•Producedquantityofcharcoal;•Energyconsumption;•End-userofcharcoalproducedinprojectactivities.BASELINESCENARIOProductionofcharcoalbyusingnon-renewableandrenewablebiomass.PROJECTSCENARIOProductionofcharcoalbyusingrenewablebiomassinamoreefficientway.AMS-III.BG.AMS-III.BG.EmissionreductionthroughsustainablecharcoalproductionandconsumptionWomenndchildrenCOCHRenewbleNon-renewbleChrcolConsumerHetHetRenewbleChrcolConsumerHetHetCHCOUprdeNon-renewbleCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)ReplacementofbrickworkwithlessGHGintensivegypsumconcretewallpanelsinconstructionofwalls.TypeofGHGemissionsmitigationaction•GHGemissionavoidance.DisplacementofamoreGHGintensiveconstructionmaterial.Importantconditionsunderwhichthemethodologyisapplicable•Domesticallyproducedgypsumconcretewallpanelshallbeusedforapplicationssuchasnonload-bearingwalls,load-bearingwallsandfencing(compound/securitywalls)inGreenfieldbuildingprojectsorexpansionofexistingbuildings;•Theproportionofimportedcementislessthan10%ofthecementproducedwithinthehostcountrywheretheprojectsarehosted;•AdeclarationfromthepanelbuyersandorfinalusersstatingthattheywouldnotclaimCERsforthepanelsusedbythemisrequiredtoavoiddoublecounting.ImportantparametersAtvalidation:•Typeofapplicationsofgypsumconcretewallpanels;•Gypsumconcretecomposition;•Numberofbricksandquantityofcementusedpersquaremeterofwallinthebaselinescenario.Monitored:•Areaofwallpanelsoldandusedbyfinalconsumers;•Quantityofrawmaterialconsumedintheproductionofgypsumconcretewallpanel;•End-userofcharcoalproducedinprojectactivities.BASELINESCENARIOUseoftraditionalconstructionmaterialsuchasbrickandcementinbrickworkforconstructionofwalls.PROJECTSCENARIOUseofgypsumconcretewallpanelforconstructionofwallswhichwillprovidesameorbetterserviceandperformancelevelwhencomparedwithbasescenario.AMS-III.BH.AMS-III.BH.DisplacementofproductionofbrickandcementbymanufactureandinstallationofgypsumconcretewallpanelsCementFossilfuelCOBricksFossilfuelBrickworkBuildinsFossilfuelCOWllPnelBuildinsWllPnelCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Off-specgasiscapturedandinjectedintoagassaleslinefortransportationtothemarketaftercleaning/processingandcompressingindedicatedprojectfacilities.TypeofGHGemissionsmitigationaction•Energyefficiency.Recoveringthewasteoff-specgasandutilizingforusefulapplications.Importantconditionsunderwhichthemethodologyisapplicable•Off-specgasfromgasprocessingfacilities(GPF),usedbytheprojectactivity,totallyorpartiallywasflared(notvented)foratleastthreeyears,priortothestartdateoftheproject;•Recoveredoff-specgasintheprojectactivityshouldbecaptured,compressed,andcleaned/processedintheGPFbeforebeinginjectedintoagassaleslinefortransportationtothemarket;•Off-specgasvolume,energycontentandcompositionaremeasurable;•Thereshallnotbeanyadditionoffuelgasordrygasintotheoff-specgaspipelinebetweenthepointofrecoveryandthepointwhereitisfedintotheGPF.ImportantparametersAtvalidation:•Quantityandcompositionofoff-specgases.Monitored:•Quantityandcompositionofoff-specgasesutilised;•Electricityandfuelused.BASELINESCENARIOTheoff-specgasisflared.PROJECTSCENARIOOff-specgasiscapturedandinjectedintoagassaleslinefortransportationtothemarketaftercleaning/processingandcompressingindedicatedprojectfacilities.AMS-III.BI.AMS-III.BI.FlaregasrecoveryingastreatingfacilitiesCORenerWstesFlrinNturlsCORenerWstesFlrinCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Gasificationofhazardouswaste,usingplasmatechnology,toproducesyngas.Electricityandheataregeneratedbythesyngasproduced.TypeofGHGemissionsmitigationaction•Renewableenergy.Thesyngasproducedbytheprojectactivityisusedasarenewableenergysource.Importantconditionsunderwhichthemethodologyisapplicable•Theprojectincineratesonlyhazardouswaste;•Theregulationrequiresincinerationofhazardouswaste;•Noexistinghazardouswasteincineratorsproduceheatorelectricity.ImportantparametersAtvalidation:•Historicalwasteincineration;•Fuelandelectricityconsumptionforhistoricalwasteincineration.Monitored:•Projectwasteincineration;•Projectfuelandelectricityconsumption;•Complianceratewithincinerationregulations;•Heatand/orelectricitygenerated.BASELINESCENARIOHazardouswasteisincineratedwithoutenergygeneration.PROJECTSCENARIOHazardouswasteisgasifiedusingplasmatechnologywithenergygeneration.AMS-III.BJ.AMS-III.BJ.DestructionofhazardouswasteusingplasmatechnologyincludingenergyrecoveryCOElectricitGridFossilfuelBurninWsteGridWsteCOEnerPlsmSnsGridElectricitGridFossilfuelCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Provisionofstrategicsupplementationtolargeruminants(e.g.cows),whichreducesthelevelofmethaneemissionsperunitofmilkproduced.TypeofGHGemissionsmitigationaction•Methaneavoidanceanddisplacementofamore-GHG-intensiveoutput.Methaneemissionavoidancefromlargeruminantsduetoimprovedproductivitybyusingstrategicsupplementationtoimprovedigestibility.Importantconditionsunderwhichthemethodologyisapplicable•Thepopulationoflactatinganimalsmaintainedintheparticipatingsmallholdersshallbeequalorlessthan100;•Thegrossenergy(GE)contentofthesupplementconsumeddoesnotexceed10%ofthetotalGEofthebasalration.ImportantparametersAtvalidation:•Numberoflactatinganimalsinthefarmandtheirmilkproduction.Monitored:•Numberoflactatinganimalsinthefarmandtheirmilkproduction;•Drymatterintakeoffeedstuff.BASELINESCENARIOHighspecificmethaneemissionperunitofmilkproductionduetothepoornutritionalconditionsoflactatinganimalsinthebaseline.PROJECTSCENARIOReducedspecificmethaneemissionperunitofmilkproductionduetoimprovednutritionalconditionsoflactatinganimalsintheproject.AMS-III.BK.AMS-III.BK.StrategicfeedsupplementationinsmallholderdairysectortoincreaseproductivityCHReleseLivestockCHReleseLivestockMilkMilkCHReleseCHReleseLivestockMilkMilkCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Ruralcommunitiesthataresuppliedwithelectricityeitherfromrenewableenergyorhybridenergysystems(e.g.wind-diesel)orthroughgridextensionwhichdisplacefossilfueluse,suchasfossilfuel-basedlightingsystems,stand-alonedieselgeneratorsanddiesel-basedmini-grids.TypeofGHGemissionsmitigationaction•Displacementoffossilfueluse.Low-carbon-intensivegrid/mini-gridelectricitydisplaceshigh-carbon-intensiveelectricityorlightingservices.Importantconditionsunderwhichthemethodologyisapplicable•Limitedtocommunitieswithnoaccesstoanationalorregionalgrid;•Atleast75%oftheendusers(bynumber)shallbehouseholds.ImportantparametersAtvalidation:•Thephysicallocationandconsumptionlevelofeachconsumerusingsurvey,andtheclassificationofconsumertypebytheirelectricityconsumptionandprojecttechnology/measureimplemented;•Defaultemissionfactorsasprovidedinthemethodology.Monitored:•Electricityconsumptionneedtobemonitoredusingoneofthefollowingoptions(i)Metering(standardelectricmeterorpre-paymentmeter),(ii)Samplesurvey(e.g.stratifiedrandomsampling),(iii)Distributionmeteringandconsumernumbersand(iv)Deemedconsumption;•Incaseofconsumers(e.g.commercialconsumers,small,mediumandmicroenterprises,publicinstitutions,streetlighting,irrigationpumps)havingelectricityconsumptionmorethan1000kWh/year,consumptionisnecessarilymonitoredthroughmetering.BASELINESCENARIOIntheabsenceoftheprojectactivity,theenduserswouldhaveusedfossilfuelbasedlighting,stand-alonedieselelectricitygeneratorsforappliancesotherthanlighting(e.g.TV)orwouldhavebeensuppliedbycarbon-intensivemini-grid.PROJECTSCENARIOConsumersaresuppliedwithelectricitybynewconstructionofrenewableenergysystemorhybridenergysystemorrehabilitation/refurbishmentofrenewableenergysystemorconnectiontoanationalorregionalormini-grid.AMS-III.BL.AMS-III.BL.IntegratedmethodologyforelectrificationofcommunitiesFossilfuelFossilfuelCOConsumerPowerplntMiniridElectricitLihtinFossilfuelConsumerPowerplntLihtinCOGridFossilfuelFossilfuelUprdeFossilfuelCOHbridmini-ridElectricitCORenewblesSupresseddemndWomenndchildrenCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Projectactivitiesthatshiftthemodeoftransportofurbanpassengerstomechanicalbicycles,tricycles,e-bikesore-tricycles.TypeofGHGemissionsmitigationaction•Energyefficiency.Displacementofamore-GHG-intensiveoutput.ImportantconditionsunderwhichthemethodologyisapplicableProjectactivitiesinvolveoneormoreoftheofthemeasuresbelow:•Bicyclelanes:constructionofneworextensionofexistinglanes;•Bicycleparkingareas:constructionofneworexpansionofexistingareas;•Bicyclesharingprograms(docklessorwithdockingstations):implementationofneworexpansionofexistingprograms;•Promotingtheintroductionofe-bikes;•Promotingthetransportationservicebasedontricyclesandbyintroducinge-bikesore-tricycles.ImportantparametersAtvalidation:•CO2emissionfactorperpassenger-kilometer,basedonthepublictransportation-mixinthecity;•CO2emissionfactorperpassenger-kilometer,basedonsurvey;•Numberofbicycletrips.Monitored:•Distancetravelledpertripbyusersofbicycleore-bikes;•Numberofbicycletrips;•Electricityconsumedtorechargethebatteries.BASELINESCENARIOPassengersaretransportedusingadiversetransportsysteminvolvingbuses,trains,cars,non-motorizedtransportmodes,etc.operatingundermixedtrafficconditions.PROJECTSCENARIOPassengersaretransportedusingbicycles,e-bikesore-tricyclesthatpartiallydisplacestheexistingtransportsystemoperatingundermixedtrafficconditions.AMS-III.BM.AMS-III.BM.LightweighttwoandthreewheeledpersonaltransportationCOTrinBusCrMotorccleCOMotorccleBiccleTrinCrBusCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)ImplementationofmeasuressuchasITS(IntelligentTransportationSystems)andchanges/improvementsinbusroutestoimprovetheoperationofbusesusedforpublictransportation,withoutreducingthelevelofservice.TypeofGHGemissionsmitigationaction•Energyefficiency.Reductionintheconsumptionoffossilfuelsperpassengertransported.Importantconditionsunderwhichthemethodologyisapplicable•Themethodologyinvolvestheimplementationofthefollowingmeasurestoimprovetheoperationofbuses:ITSmeasures,re-designofbusroutes,constructionstoeliminatetrafficlightsorroundabouts(suchasviaducts/tunnels),prioritybuslanes,expressbusserviceduringpeakhoursandbusqueuejumplane;•Theprojectactivityshallnotreducethenumberofpassengerstravellingontheaffectedbusroute(s),ascomparedtothebaseline;•ThemethodologyisnotapplicabletoprojectactivitiesimplementinganewBRTorexpandinganexistingBRTbycreatingnewlanes.ImportantparametersAtvalidation:•Fuelconsumedbythebusesdrivinginthebaselineroute;•Electricityconsumedbythebusesdrivinginthebaselineroute;•Passenger-kilometrestransportedinthebaselineroute;•Specificenergyconsumedperpassenger-kilometrefromthebaselineroute.Monitored:•Fuelconsumedbythebusesdrivingintheprojectroute;•Electricityconsumedbythebusesdrivingintheprojectroute;•Passengerstransportedintheprojectroute;•Averagedistancetravelledbypassengersintheprojectroute;•CO2emissionfactoroftheelectricgridsupplyingelectricitytotheelectricbuses.BASELINESCENARIOCO2emittedbythebusestravellinginthebaselineroute(s)withouttheprojectmeasures.PROJECTSCENARIOImplementationofITSmeasuresinthebaselinerouteorchangestothebaselineroute’sinfra-structureresultinginbusesconsuminglessfuel/electricitytotransportthesamenumberofpassengers.AMS-III.BN.AMS-III.BN.EfficientoperationofpublictransportationCOBusrouteBusFossilfuelGHGBusrouteFossilfuelBusBusrouteBusrouteTechnoloCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Useofnewfreighttransportationequipment(trailers,rigidtrucks,cargotricyclesandvans)builtwithlessorlightermaterialsorapplyinganewdesigntoimprovethefreightloadingandstorage.TypeofGHGemissionsmitigationaction•Energyefficiency.Reductionintheconsumptionoffossilfuelstotransportthesameamountoffreight.Importantconditionsunderwhichthemethodologyisapplicable•Measuresappliedmayinclude:(i)useoflightermaterials;(ii)useoflessmaterialintheequipmentstructure;(iii)newdesignforimprovedfreightloading,e.g.sidedoorsofthetrailerthatwouldallowmorecompactfreightloading,avoidingemptyspaces;(iv)newdesignforstorageconfigurationoffreight;•Oneormoretypesoffreightscanbetransportedprovidedthatthetypesoffreightandtheaverageratioofthedifferentfreighttypestothetotalfreightshallbethesamebetweenbaselineandtheprojectscenarios;•Themethodologyisnotapplicabletomodalshift;•Thevehiclefleetshallbecentrallyownedorcontractedbyasingleentity;•Thefreightshallbetransportedtoonesingledestination,differentdeliverypointsoffractionsofthefullfreightarenotallowed;•Theoriginanddestinationofthefreightshallremainthesamethroughoutthecreditingperiods.ImportantparametersAtvalidation:•Lengthoftherouteinthebaseline;•Amountofdifferentfreighttypestransportedinthebaseline;•Totaldistancetravelledinthebaselinetotransportthetotalfreight.Monitored:•Lengthoftherouteintheproject;•Amountofdifferentfreighttypestransportedintheproject;•Totaldistancetravelledintheprojecttotransportthetotalfreight;•Fuelconsumedbytheprojectvehiclefleets;•Electricityconsumedbytheprojectvehiclefleets.BASELINESCENARIOPassengersaretransportedusingadiversetransportsysteminvolvingbuses,trains,cars,non-motorizedtransportmodes,etc.operatingundermixedtrafficconditions.PROJECTSCENARIOPassengersaretransportedusingbicycles,e-bikesore-tricyclesthatpartiallydisplacestheexistingtransportsystemoperatingundermixedtrafficconditions.AMS-III.BO.AMS-III.BO.TripavoidancethroughequipmentimprovementoffreighttransportCOTruckFossilfuelGHGFossilfuelTruckTechnoloCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeAMS-III.BP.Emissionreductionbyshore-sideelectricitysupplysystemTypicalproject(s)Introductionofshore-sideelectricitysupplytoshipsdockedatberths,displacingelectricityproducedfromships’fossil-fuelauxiliarypowergenerator(s).TypeofGHGemissionsmitigationaction•Displacementofamore-GHG-intensiveoutput:Electricitysuppliedtoshipsdockedatberthsgeneratedform(i)aconnectedgrid,(ii)amini-grid,(iii)acaptivepowerplant(fossilorrenewable),or(iv)acombinationoftheoptions.Importantconditionsunderwhichthemethodologyisapplicable•Shipsoperatingindomesticroutes(i.e.thedepartureandarrivallocationsoftherouteoftheshipareinthesamecountry);•Intheabsenceoftheproject,electricitywouldhavebeensuppliedbytheship’sfossilfuelauxiliarypowergeneration;•Switchingfromfossilfueltoelectricityforheatproductionisnotallowed.ImportantparametersAtvalidation:•Consumptionrateoffossilfuelofauxiliarypowergeneratorinthebaselinescenario(massorvolumeunits/MWh);Monitored:•Electricityconsumedbytheshipdockedattheberth;•CO2emissionfactorofthesourcesupplyingelectricitytotheship.BASELINESCENARIOShipsdockedatberthsconsumingelectricityfromtheships’fossilfuelauxiliarypowergeneratorsystem.PROJECTSCENARIOElectricitysuppliedtotheshipbyaconnectedelectricgrid,amini-grid,acaptivepowerplant(fossilorrenewable)orabycombination.COShipElectricitShip'suxilirenertorFossilfuelFossilfuelFossilfuelShip'suxilirenertorPowerplntPowerplntElectricitShipRenewblesCOMiniridGridAMS-III.BP.UnitedNationsFrameworkConventiononClimateChangeCDMMethodologyBookletDecember2022(uptoEB116)ChapternameXxxzz,SampleTextSecontLineLoremIpsumDoloreMETHODOLOGIESFORAFFORESTATIONANDREFORESTATION(A/R)CDMPROJECTACTIVITIESChapterIVCDMMethodologyBooklet275UnitedNationsFrameworkConventiononClimateChangeThefollowingconditionsandinformationarerelevantforallA/Rmethodologiesandareapplicableinadditiontotheconditionslistedinthemethodologysummaries:•Vegetationcoveronthelandeligibleforprojectactivitiesmusthavebeenbelowtheforestthreshold7on31December1989.Thisneedstobeproven(e.g.usingsatelliteimageorparticipatoryruralappraisal(PRA));•Notreevegetationisexpectedtoemergewithouthumaninterventiontoformaforestontheprojectland;•ProjectstartdatemustbeJanuary1,2000orlater.•Inabsenceoftheprojectactivity,carbonstocksofthecarbonpoolsnotconsideredintheprojectactivityareexpectedtodecreaseorincreaselessrelativetotheprojectscenario.A/RCDMprojectactivitiesresultint-CERsandl-CERs.A/Rmethodologiescanbedistinguishedaslarge-scaleandsmall-scale.Small-scaleA/Rmethodologiesprovidesimplifiedapproachesforprojectdesignandmonitoring.Small-scaleA/Rprojectactivitiesmustfulfilthefollowingconditions:(1)NetanthropogenicGHGremovalsbysinksmustbelessthan16,000tonsofCO2peryear;and(2)Theprojectactivitiesmustbedevelopedorimplementedbylow-incomecommunitiesandindividualsasdeterminedbythehostParty.IfanA/RCDMprojectactivitydoesnotmeetthesecriteriaanA/Rlarge-scalemethodologyhastobeapplied.4.1.INTRODUCTIONTOMETHODOLOGIESFORA/RCDMPROJECTACTIVITIES7Thehostcountrydeterminestheforestdefinitionwhichlieswihinthefollowingthresholds:Asingleminimumtreecrowncovervaluebetween10and30%;andasingleminimumlandareavaluebetween0.05and1hectare;andasingleminimumtreeheightvaluebetween2and5metres276UnitedNationsFrameworkConventiononClimateChangeAshortdescriptionofmethodologicaltoolsrelevanttoA/Rmethodologiescanbefoundbelow.AR-TOOL02:COMBINEDTOOLTOIDENTIFYTHEBASELINESCENARIOANDDEMONSTRATEADDITIONALITYINA/RCDMPROJECTACTIVITIESThistoolprovidesastep-wiseapproachtoidentifythebaselinescenarioandsimultaneouslydemonstrateadditionality.Thesestepsinclude:Step0PreliminaryscreeningbasedonthestartingdateoftheA/Rprojectactivity;Step1IdentificationofalternativelandusescenariosStep2Barrieranalysis;Step3Investmentanalysis(ifneeded);Step4IdentificationofthebaselinescenarioStep5Commonpracticeanalysis.AR-TOOL03:CALCULATIONOFTHENUMBEROFSAMPLEPLOTSFORMEASUREMENTSWITHINA/RCDMPROJECTACTIVITIESThistoolcanbeusedforcalculationofnumberofsampleplotsrequiredforestimationofbiomassstocksfromsamplingbasedmeasurementsinthebaselineandprojectscenariosofanA/RCDMprojectactivity.Thetoolcalculatesthenumberofrequiredsampleplotsonthebasisofthespecifiedtargetedprecisionforbiomassstockstobeestimated.Thetoolappliesthefollowingassumptions:(a)Approximatevalueoftheareaofeachstratumwithintheprojectboundaryisknown;(b)Approximatevalueofthevarianceofbiomassstocksineachstratumisknownfromapreliminarysample,existingdatarelatedtotheprojectarea,orexistingdatarelatedtoasimilararea;(c)TheprojectareaisstratifiedintooneormorestrataAR-TOOL08:ESTIMATIONOFNON-CO2GHGEMISSIONSRESULTINGFROMBURNINGOFBIOMASSATTRIBUTABLETOANA/RCDMPROJECTACTIVITYThistoolcanbeusedforestimationofnon-CO2GHGemissionsresultingfromalloccurrenceoffirewithintheprojectboundary,i.e.burningofbiomasswhenfireisusedforsitepreparationand/ortoclearthelandofharvestresiduepriortoreplantingoftheland,orwhenaforestfireoccurswithintheboundaryofanA/RCDMprojectactivity.Forburnedareasexceedingaminimumareadescribedinthetool,itprovidesseparatestep-by-stepcalculationsandparameterestimationfornon-CO2GHGemissionsfromsitepreparationandfromforestfiresAR-TOOL12:ESTIMATIONOFCARBONSTOCKSANDCHANGEINCARBONSTOCKSINDEADWOODANDLITTERINA/RCDMPROJECTACTIVITIESThistoolcanbeusedforexpostestimationofcarbonstocksandchangeincarbonstocksindeadwoodand/orlitterinthebaselineandprojectscenariosofanA/RCDMprojectactivity.Thistoolhasnointernalapplicabilityconditions.AR-TOOL14:ESTIMATIONOFCARBONSTOCKSANDCHANGEINCARBONSTOCKSOFTREESANDSHRUBSINA/RCDMPROJECTACTIVITIESThistoolcanbeusedforestimationofcarbonstocksandchangeincarbonstocksoftreesandshrubsinthebaselineandprojectscenariosofanA/RCDMprojectactivity.Thistoolhasnospecificinternalapplicabilityconditions.AR-TOOL15:ESTIMATIONOFTHEINCREASEINGHGEMISSIONSATTRIBUTABLETODISPLACEMENTOFPRE-PROJECTAGRICULTURALACTIVITIESINA/RCDMPROJECTACTIVITYThistoolprovidesastep-by-stepmethodforestimatingincreaseinGHGemissionsresultingfromdisplacementofpre-projectagriculturalactivitiesfromtheprojectboundaryofanA/RprojectactivityundertheCDM.Thetoolestimatestheincreaseinemissionsonthebasisofchangesincarbonstocksintheaffectedcarbonpoolsinthelandreceivingthedisplacedactivities.4.2.METHODOLOGICALTOOLSFORA/RCDMPROJECTACTIVITIES277UnitedNationsFrameworkConventiononClimateChangeMethodologicalToolsforAfforestationandReforestation(A/R)CDMProjectActivitiesandSmall-scaleA/RCdmProjectActivitiesAR-TOOL16:TOOLFORESTIMATIONOFCHANGEINSOILORGANICCARBONSTOCKSDUETOTHEIMPLEMENTATIONOFA/RCDMPROJECTACTIVITIESThistoolestimatesthechange,occurringinagivenyear,insoilorganiccarbon(SOC)stocksoflandwithintheboundaryofanA/RCDMprojectactivity.ThetoolisonlyapplicableiflitterremainsonsiteduringtheA/RCDMprojectactivityandsoildisturbanceforsitepreparationandprojectactivityislimited.Itisnotapplicableonlandcontainingorganicsoilsorwetlands,andifspecificlandmanagementpracticeswithinputsareapplied.Specificmanagementpracticeslimitationsarelistedinthetoolforeachtemperature/moistureregime.AR-TOOL17:DEMONSTRATINGAPPROPRIATENESSOFALLOMETRICEQUATIONSFORESTIMATIONOFABOVEGROUNDTREEBIOMASSINA/RCDMPROJECTACTIVITIESThistoolallowsdemonstrationwhetheranallometricequationisappropriateforestimationofabovegroundtreebiomassinanA/RCDMprojectactivity.Itprovidescriteriafordirectapplicabilityofanequationforexanteandexpostcalculations,and–ifthesecriteriaarenotmet–describestheprocessrequiredforverificationofanallometricequation.Thistoolhasnointernalapplicabilityconditions.AR-TOOL18:DEMONSTRATINGAPPROPRIATENESSOFVOLUMEEQUATIONSFORESTIMATIONOFABOVEGROUNDTREEBIOMASSINA/RCDMPROJECTACTIVITIESThistoolallowsdemonstrationwhetheravolumetableorvolumeequation,incombinationwithselectedbiomassexpansionfactors(BEFs)andbasicwooddensity,isappropriateforestimationofabovegroundtreebiomassinanA/RCDMprojectactivity.Itprovidescriteriafordirectapplicabilityofanequationforexpostcalculations,and–ifthesecriteriaarenotmet–describestheprocessrequiredforverificationofavolumeequation.Thistoolhasnointernalapplicabilityconditions.AR-TOOL19:DEMONSTRATIONOFELIGIBILITYOFLANDSFORA/RCDMPROJECTACTIVITIESThistoolprovidesastep-by-stepmethodfordemonstratingeligibilityoflandforanA/RCDMprojectactivity.Thetoolalsospecifiesthetypesofinformationanddatathatarerequiredtobefurnishedfordemonstrationofeligibilityofland.Aerialphotographsorsatelliteimagerycomplementedbygroundreferencedata,land-useorland-coverinformationfrommapsordigitalspatialdatasets,anddatafromground-basedsurveysorexistingrecords(e.g.permitsorplans,cadasterorownerregisters)areallowedtobeusedfordemonstratinglandeligibility.Thetoolalsoallowsuseofawrittentestimonyresultingfromparticipatoryruralappraisal(PRA)whereotherformofdataiseithernotavailableorisinadequate.CDMMethodologyBooklet4.3.METHODOLOGIESFORLARGE-SCALEA/RCDMPROJECTACTIVITIESChapterIVCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Afforestation/reforestationofdegradedmangrovehabitats.TypeofGHGemissionsmitigationaction•GHGremovalbysinks.GHGremovalbyincreasingcarbonstocksinthefollowingpools:above-groundbiomass,below-groundbiomass,andoptionally:deadwoodandsoilorganiccarbon.Importantconditionsunderwhichthemethodologyisapplicable•Thelandsubjecttotheprojectactivityisdegradedmangrovehabitat;•Morethan90%oftheprojectareaisplantedwithmangrovespecies.Ifmorethan10%oftheprojectareaisplantedwithnon-mangrovespeciesthentheprojectactivitydoesnotleadtoalterationofhydrologyoftheprojectareaandhydrologyofconnectedup-gradientanddown-gradientwetlandarea;•SoildisturbanceattributabletotheA/RCDMprojectactivitydoesnotcovermorethan10%ofarea.ImportantparametersAtvalidation:•Treediameterincrements,allometricequationsorbiomassexpansionfactors,root-shootratiosandbasicwooddensities;•Pre-projectcrowncoveroftreesandshrubs.Monitored:•Areaforested,stratum-wiseareas,areaofsampleplots;•Diameter,andpossiblyheight,oftreesinsampleplots;•Optionally:Diametersofpiecesofdeadwood,shrubcrowncoverbystrata;areaunderagriculturalactivitiesdisplacedbytheprojectactivity,areasubjectedtoburningofbiomassforsitepreparationandclearingofharvestresidue;areaaffectedbyforestfires.BASELINESCENARIOMangrovehabitat(wetland)isdegradedbutmaycontainafewmangrovetreesofverypoorquality,somesignsofhumanactivitiesarevisible,e.g.fuelwoodcollection.PROJECTSCENARIOMangroveforestsarestandingonlands.ACTIVITIESLANDCOVERBiomssMnroveWetlndACTIVITIESLANDCOVERMnroveBiomssPlntinAR-AM0014AR-AM0014AfforestationandreforestationofdegradedmangrovehabitatsWomenndchildrenCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Afforestation/reforestationoflandsotherthanwetlands.TypeofGHGemissionsmitigationaction•GHGremovalbysinks.GHGremovalbyincreasingcarbonstocksinthefollowingpools:above-groundbiomass,below-groundbiomass,andoptionally:deadwood,litter,andsoilorganiccarbon.Importantconditionsunderwhichthemethodologyisapplicable•Thelandsubjecttotheprojectactivitydoesnotfallinwetlandcategory;•Soildisturbanceattributabletotheprojectactivitydoesnotcovermorethan10%ofareaineachofthefollowingtypesofland,whentheselandsareincludedwithintheprojectboundary:(i)Landcontainingorganicsoils;(ii)Landwhich,inthebaseline,issubjectedtoland-useandmanagementpracticesandreceivesinputslistedintheappendixofthemethodology.ImportantparametersAtvalidation:•Treediameterincrements,allometricequationsorbiomassexpansionfactors,root-shootratiosandbasicwooddensities;•Pre-projectcrowncoveroftreesandshrubs.Monitored:•Areaforested,stratum-wiseareas,areaofsampleplots;•Diameters,andpossiblyheights,oftreesinsampleplots;•Optionally:Diametersofpiecesofdeadwood,shrubcrowncoverbystrata,weightsoflitterbags;areaunderagriculturalactivitiesdisplacedbytheprojectactivity,areasubjectedtoburningofbiomassforsitepreparationandclearingofharvestresidue;areaaffectedbyforestfires.BASELINESCENARIOAnylandsotherthanwetlandsandnoforeststandsonthelands.PROJECTSCENARIOForestsareplantedonlands.AR-ACM0003AR-ACM0003AfforestationandreforestationoflandsexceptwetlandsWomenndchildrenACTIVITIESLANDCOVERBiomssForestWetlndBiomssPlntinForestACTIVITIESLANDCOVERWetlnd4.4.METHODOLOGIESFORSMALL-SCALEA/RCDMPROJECTACTIVITIESChapterIVCDMMethodologyBookletCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeAR-AMS0003Typicalproject(s)Afforestation/reforestationofwetlands.TypeofGHGemissionsmitigationaction•GHGremovalbysinks.CO2removalbyincreasingcarbonstocksinthefollowingpools:above-groundbiomass,below-groundbiomass,deadwoodandsoilorganiccarbon.Importantconditionsunderwhichthemethodologyisapplicable•Thelandsubjecttotheprojectactivityfallsunderoneofthefollowingwetlandcategories:(i)Intertidalwetlands(e.g.mangrovehabitats)withatreecrowncoverthatislessthan20%oftheminimumtreecrowncoveradoptedbythehostPartyforthepurposeofdefinitionofforestundertheCDM;(ii)Floodplainareasoninorganicsoils;(iii)Seasonallyfloodedareasonmarginofwaterbodies/reservoirs;•Theprojectactivitydoesnotleadtoalterationofthewaterregimeoftheprojectareaorareashydrologicallyconnectedtotheprojectarea;•Soildisturbanceattributabletotheprojectactivitydoesnotexceed10%oftheprojectarea;•Thelandsubjecttotheprojectactivitydoesnotcontainpeatsoils(histosols).ImportantparametersAtvalidation:•Treediameterincrements,allometricequationsorbiomassexpansionfactors,root-shootratiosandbasicwooddensities;•Pre-projectcrowncoveroftreesandshrubs.Monitored:•Areaforested,stratum-wiseareas,areaofsampleplots;•Diameter,andpossiblyheight,oftreesinsampleplots;•Optionally:Diametersofpiecesofdeadwood,shrubcrowncoverbystrata;areaunderagriculturalactivitiesdisplacedbytheprojectactivity,areasubjectedtoburningofbiomassforsitepreparationandclearingofharvestresidue;areaaffectedbyforestfires.BASELINESCENARIOLandsaredegradedwetlands.PROJECTSCENARIOForestsareplantedonthewetlands.AR-AMS0003AfforestationandreforestationprojectactivitiesimplementedonwetlandsACTIVITIESLANDCOVERBiomssForestWetlndACTIVITIESLANDCOVERBiomssForestPlntinWetlndWomenndchildrenCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeTypicalproject(s)Afforestation/reforestationoflandsotherthanwetlands.TypeofGHGemissionsmitigationaction•GHGremovalbysinks.CO2removalbyincreasingcarbonstocksinthefollowingpools:above-groundbiomass,below-groundbiomass,optionallydeadwood,litterandsoilorganiccarbon.Importantconditionsunderwhichthemethodologyisapplicable•Thelandsubjecttotheprojectactivitydoesnotfallintowetlandcategory;•SoildisturbanceattributabletotheA/RCDMprojectactivitydoesnotcovermorethan10%ofareaineachofthefollowingtypesofland,whentheselandsareincludedwithintheprojectboundary:(i)Landcontainingorganicsoils;(ii)Landwhich,inthebaseline,issubjectedtoland-useandmanagementpracticesandreceivesinputsaslistedinappendix2andappendix3ofthemethodology.ImportantparametersAtvalidation:•Treediameterincrements,allometricequationsorbiomassexpansionfactors,root-shootratiosandbasicwooddensities;•Pre-projectcrowncoveroftreesandshrubs.Monitored:•Areaforested,stratum-wiseareas,areaofsampleplots;•Diameters,andpossiblyheights,oftreesinsampleplots;•Optionally:Diametersofpiecesofdeadwood,shrubcrowncoverbystrata,weightsoflitterbags;areaunderagriculturalactivitiesdisplacedbytheprojectactivity,areasubjectedtoburningofbiomassforsitepreparationandclearingofharvestresidue;areaaffectedbyforestfires.BASELINESCENARIOAnylandsotherthanwetlandsandnoforeststandsonthelands.PROJECTSCENARIOForestsareplantedonlands.ACTIVITIESLANDCOVERBiomssForestWetlndACTIVITIESLANDCOVERForestPlntinBiomssAR-AMS0007AR-AMS0007AfforestationandreforestationprojectactivitiesimplementedonlandsotherthanwetlandsWomenndchildrenCDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChangeACKNOWLEDGEMENTFirstedition:November2010Secondedition:November2011Thirdedition:May2012Fourthedition:November2012Fifthedition:November2013Sixthedition:November2014Seventhedition:November2015Eighth:November2016Ninth:November2017Tenthedition:November2018Eleventhedition:November2019Twelfthedition:December2020Thirteenthedition:December2021Fourteenthandcurrentedition:December2022Availableonline:<https://cdm.unfccc.int/methodologies/>Theproductionofthisbookletbenefitedfromthesuggestionsofsecretariatstaffandthoughtfulcommentsfromseveralexpertsonthecontentthatwouldbemosthelpfultopeoplewishingtofindandunderstandmethodologiesandmethodologicaltoolsofinteresttothem.Inordertoenhanceitsutilityandrespondtotheneedsofstakeholdersthesecretariatwelcomescommentsandsuggestions,whichcanbeemailedto:CDM-info@unfccc.int.Thisbookletwillalsobeupdatedregularlyinordertoreflectchangesinapprovedmethodologiesandmethodologicaltools.ThelatestversionofthebookletisavailableontheUNFCCCwebsite.CDMMethodologyBookletDecember2022(uptoEB116)UnitedNationsFrameworkConventiononClimateChange©2022UNFCCCUnitedNationsFrameworkConventiononClimateChange,theKyotoProtocolandtheParisAgreementAllrightsreserved.Thispublicationisissuedsolelyforpublicinformationpurposes,includinganyreferencestotheConvention,theKyotoProtocolandtheParisAgreement,andanyrelevantdecisionswithrespectthereto.Noliabilityisassumedfortheaccuracyorusesofinformationprovided.CreativeCommonsLicenseThispublicationislicensedunderaCreativeCommonsAttribution-NonCommercial-ShareAlike4.0Interna-tionalLicense.Excerptsfromthispublicationmaybefreelyquotedandreproducedprovidedthati)thesourceisacknowledged,ii)thematerialisnotusedforcommercialpurposes,andiii)anyadaptationsofthematerialaredistributedunderthesamelicense.Allimagesremainthesolepropertyoftheirsourceandmaynotbeusedforanypurposewithoutwrittenpermissionofthesource.UNFCCCLogoUseanddisplayoftheUNFCCClogo,includingitsemblem,ishighlyrestrictedandessentiallylimitedtotheorganization’sactivities.Youmaynotuseanyofficialemblem,flagorlogooftheUNFCCC,oranyofitsothermeansofpromotionorpublicity,torepresentorimplyanassociationoraffiliationwiththeUNFCCCoritssecretariatwithouttheUNFCCCsecretariat’spriorwrittenconsent.Forfurtherinformationcontact:MainofficeUNFCCCsecretariatUNCampusPlatzderVereintenNationen153113BonnGermanyTelephone+49.228.815-1000Telefax+49.228.815-1999Emailsecretariat@unfccc.intWebsite:https://unfccc.intPhotos:CoverLiJiaCDMProject:8787:GuohuaYulinJingbian20MWpSolarPVgridconnectedpowergenerationprojectPage3JulioAlbertoPaveseCDMProject:0268:LagesMethaneAvoidanceProjectPage31ElenadeSojoCDMProject:0191:MonteRosaBagasseCogenerationProjectPage42IgnacioFuertesCDMProject5721:TacnaSolar20TS:20MWSolarPhotovoltaicPowerPlantPage50MoisesAlvarezCDMProject:2595BionersisProjectonLaDuquesaLandfillPage143LuisFredesCDMProject:1229:CatalyticN2OdestructionprojectinthetailgasofthenitricacidplantPANNA3ofEnaexS.A.Page169JaydipBhattacharyaCDMProject:0711:MysoreCementsLimitedPortlandSlagCementprojectPage183ChrisZinkCDMProject4302:SASSALowPressureSolarWaterHeaterProgramme,SouthAfricaAndreaAltorferCDMProject3224:CableCarsMetroMedellín,ColombiaBhagirathPrasadGhimireCDMproject4530:EfficientFuelWoodCookingStovesProjectinFoothillsandPlainsofCentralRegionofNepalPage257TaoKetuCDMProject2307:FederalIntertradePengyangSolarCookerProject,ChinaMengZhenbiaoCDMProject:3561ReforestationonDegradedLandsinNorthwestGuangxiEijiMatsubaraCDMProject:2694ReforestationofCroplandsandGrasslandsinLowIncomeCommunitiesofParaguarÌDepartmentPedroGuinleCDMproject0968:IncomexHydroelectricProjectArtdirectionanddesign:Blossom.itISBN978-92-9219-200-688Page231