IMF-风暴眼:气候冲击对通货膨胀和增长的影响-33页VIP专享VIP免费

2023
APR
Eye of the Storm: The
Impact of Climate
Shocks on Inflation
and Growth
Serhan Cevik and João Tovar Jalles
WP/23/87
© 2023 International Monetary Fund WP/23/87
IMF Working Paper
European Department
Eye of the Storm: The Impact of Climate Shocks on Inflation and Growth
Prepared by Serhan Cevik and João Tovar Jalles1
Authorized for distribution by Bernardin Akitoby
April 2023
IMF Working Papers describe research in progress by the author(s) and are published to elicit comments
and to encourage debate. The views expressed in IMF Working Papers are those of the author(s) and do
not necessarily represent the views of the IMF, its Executive Board, or IMF management.
Abstract
What is the impact of climate change on inflation and growth dynamics? This is not a simple
question to answer as climate shocks tend to be ubiquitous, but with opposing effects
simultaneously on demand and supply. The extent of which climate-related shocks affect inflation
and economic growth also depends on long-run scarring in the economy and the country’s fiscal
and institutional capacity to support recovery. In this paper, we use the local projection method to
empirically investigate how climate shocks, as measured by climate-induced natural disasters,
influence inflation and economic growth in a large panel of countries over the period 19702020.
The results shows that both inflation and real GDP growth respond significantly but also differently
in terms of direction and magnitude to different types of disasters caused by climate change. We
split the full sample of countries into income groupsadvanced economies and developing
countriesand find a striking contrast in the impact of climate shocks on inflation and growth
according to income level, state of the economy, and fiscal space when the shock hits.
JEL Classification Numbers:
E31; E32; E62; N10
Keywords:
Climate change; natural disasters; inflation; growth; local
projections; panel data
Author’s E-Mail Address:
scevik@imf.org; joaojalles@gmail.com
1 The authors would like to thank Helge Berger, Romain Duval, Gianluigi Ferrucci, Zeina Hasna, Florence
Jaumotte, Emanuele Massetti, Christine Richmond, Axel Schimmelpfennig, Glebs Starovoits, Alice Tianbo
Zhang, and the participants of a seminar at the European Department of the International Monetary Fund (IMF)
for helpful comments and suggestions.
I. INTRODUCTION
Climate change is a multifaceted and evolving phenomenon and a major source of uncertainty
for the global economy and financial markets.
2
The global surface temperature has already
jumped more than 1.1 degrees Celsius (°C) compared with the preindustrial average, escalating
the frequency and severity of weather-related natural disasters. Projections show that
accelerating climate change will elevate the risk of droughts, extreme temperatures, and severe
storms and cause greater damage to the environment, lives, and livelihoods, as the global mean
temperature increases by as much as 4°C over the next century (Stern 2007; IPCC 2007, 2014,
2019; 2021). Every country will experience the consequences of climate change, but the extent of
vulnerability depends on the size and composition of economies, the resilience of institutions
and physical infrastructure, and the capacity for mitigation and adaption to climate change.
What is the impact of climate change on inflation and growth dynamics? This is not a simple
question to answer as climate shocks tend to be ubiquitous, but with opposing effects
simultaneously on demand and supply. The magnitude and pattern of the impact on inflation
and growth also depends on long-run scarring in the economy and the country’s fiscal and
institutional capacity to support recovery. In this paper, we use the local projection (LP) method
proposed by Jordà (2005) to investigate how climate shocksmeasured by a binary variable for
the occurrence of a climate-induced natural disaster or the number of deaths caused by such an
event per population in a given yearinfluence alternative measures of inflation and economic
growth in a large panel of 173 countries during the period 19702020. We also explore the
possibility of nonlinear effects of large-scale climate shocks on inflation and real GDP growth by
looking at two dimensions: (i) the position of a given economy in the business cycle and (ii) the
level of public debt as a proxy of fiscal space when a weather-related disaster occurs.
Using data on 173 countries over the period from 1970 to 2020, the empirical analysis shows that
inflation and growth respond significantly to disasters caused by climate change, but the impact
varies in terms of direction and magnitude. While extreme temperatures result in lower inflation,
droughts and storms lead to higher levels of inflation. We also develop a more granular analysis
by focusing on alternative measures of inflation and identify that the impact of weather-related
shocks on core and food inflation shows significant variation in magnitude and pattern across
country groups. With regards to economic growth, we find that the initial response is negative to
all types of climate shocks, but the magnitude and pattern of response show variation over the
long run. When we split the sample of countries by income group, we observe a striking contrast
in the impact of climate shocks on inflation and growth in advanced and developing countries.
Finally, we find that the impact of climate disasters on inflation and growth varies in a nonlinear
fashion depending on the state of the economy and the level of fiscal space when the shock hits.
These results suggest that climate-induced natural disaster have differential and opposing effects
on inflation and growth through multiple channels, such as (i) increasing or lowering agricultural
production and food prices (ii) dampening economic activity and lowering labor productivity, (iii)
2
Climate refers to a distribution of weather outcomes for a given location, and climate change describes
environmental shifts in the distribution of weather outcomes toward extremes.
2023APREyeoftheStorm:TheImpactofClimateShocksonInflationandGrowthSerhanCevikandJoãoTovarJallesWP/23/87©2023InternationalMonetaryFundWP/23/87IMFWorkingPaperEuropeanDepartmentEyeoftheStorm:TheImpactofClimateShocksonInflationandGrowthPreparedbySerhanCevikandJoãoTovarJalles1AuthorizedfordistributionbyBernardinAkitobyApril2023IMFWorkingPapersdescriberesearchinprogressbytheauthor(s)andarepublishedtoelicitcommentsandtoencouragedebate.TheviewsexpressedinIMFWorkingPapersarethoseoftheauthor(s)anddonotnecessarilyrepresenttheviewsoftheIMF,itsExecutiveBoard,orIMFmanagement.AbstractWhatistheimpactofclimatechangeoninflationandgrowthdynamics?Thisisnotasimplequestiontoanswerasclimateshockstendtobeubiquitous,butwithopposingeffectssimultaneouslyondemandandsupply.Theextentofwhichclimate-relatedshocksaffectinflationandeconomicgrowthalsodependsonlong-runscarringintheeconomyandthecountry’sfiscalandinstitutionalcapacitytosupportrecovery.Inthispaper,weusethelocalprojectionmethodtoempiricallyinvestigatehowclimateshocks,asmeasuredbyclimate-inducednaturaldisasters,influenceinflationandeconomicgrowthinalargepanelofcountriesovertheperiod1970–2020.TheresultsshowsthatbothinflationandrealGDPgrowthrespondsignificantlybutalsodifferentlyintermsofdirectionandmagnitudetodifferenttypesofdisasterscausedbyclimatechange.Wesplitthefullsampleofcountriesintoincomegroups—advancedeconomiesanddevelopingcountries—andfindastrikingcontrastintheimpactofclimateshocksoninflationandgrowthaccordingtoincomelevel,stateoftheeconomy,andfiscalspacewhentheshockhits.JELClassificationNumbers:E31;E32;E62;N10Keywords:Climatechange;naturaldisasters;inflation;growth;localprojections;paneldataAuthor’sE-MailAddress:scevik@imf.org;joaojalles@gmail.com1TheauthorswouldliketothankHelgeBerger,RomainDuval,GianluigiFerrucci,ZeinaHasna,FlorenceJaumotte,EmanueleMassetti,ChristineRichmond,AxelSchimmelpfennig,GlebsStarovoits,AliceTianboZhang,andtheparticipantsofaseminarattheEuropeanDepartmentoftheInternationalMonetaryFund(IMF)forhelpfulcommentsandsuggestions.I.INTRODUCTIONClimatechangeisamultifacetedandevolvingphenomenonandamajorsourceofuncertaintyfortheglobaleconomyandfinancialmarkets.2Theglobalsurfacetemperaturehasalreadyjumpedmorethan1.1degreesCelsius(°C)comparedwiththepreindustrialaverage,escalatingthefrequencyandseverityofweather-relatednaturaldisasters.Projectionsshowthatacceleratingclimatechangewillelevatetheriskofdroughts,extremetemperatures,andseverestormsandcausegreaterdamagetotheenvironment,lives,andlivelihoods,astheglobalmeantemperatureincreasesbyasmuchas4°Coverthenextcentury(Stern2007;IPCC2007,2014,2019;2021).Everycountrywillexperiencetheconsequencesofclimatechange,buttheextentofvulnerabilitydependsonthesizeandcompositionofeconomies,theresilienceofinstitutionsandphysicalinfrastructure,andthecapacityformitigationandadaptiontoclimatechange.Whatistheimpactofclimatechangeoninflationandgrowthdynamics?Thisisnotasimplequestiontoanswerasclimateshockstendtobeubiquitous,butwithopposingeffectssimultaneouslyondemandandsupply.Themagnitudeandpatternoftheimpactoninflationandgrowthalsodependsonlong-runscarringintheeconomyandthecountry’sfiscalandinstitutionalcapacitytosupportrecovery.Inthispaper,weusethelocalprojection(LP)methodproposedbyJordà(2005)toinvestigatehowclimateshocks—measuredbyabinaryvariablefortheoccurrenceofaclimate-inducednaturaldisasterorthenumberofdeathscausedbysuchaneventperpopulationinagivenyear—influencealternativemeasuresofinflationandeconomicgrowthinalargepanelof173countriesduringtheperiod1970–2020.Wealsoexplorethepossibilityofnonlineareffectsoflarge-scaleclimateshocksoninflationandrealGDPgrowthbylookingattwodimensions:(i)thepositionofagiveneconomyinthebusinesscycleand(ii)thelevelofpublicdebtasaproxyoffiscalspacewhenaweather-relateddisasteroccurs.Usingdataon173countriesovertheperiodfrom1970to2020,theempiricalanalysisshowsthatinflationandgrowthrespondsignificantlytodisasterscausedbyclimatechange,buttheimpactvariesintermsofdirectionandmagnitude.Whileextremetemperaturesresultinlowerinflation,droughtsandstormsleadtohigherlevelsofinflation.Wealsodevelopamoregranularanalysisbyfocusingonalternativemeasuresofinflationandidentifythattheimpactofweather-relatedshocksoncoreandfoodinflationshowssignificantvariationinmagnitudeandpatternacrosscountrygroups.Withregardstoeconomicgrowth,wefindthattheinitialresponseisnegativetoalltypesofclimateshocks,butthemagnitudeandpatternofresponseshowvariationoverthelongrun.Whenwesplitthesampleofcountriesbyincomegroup,weobserveastrikingcontrastintheimpactofclimateshocksoninflationandgrowthinadvancedanddevelopingcountries.Finally,wefindthattheimpactofclimatedisastersoninflationandgrowthvariesinanonlinearfashiondependingonthestateoftheeconomyandtheleveloffiscalspacewhentheshockhits.Theseresultssuggestthatclimate-inducednaturaldisasterhavedifferentialandopposingeffectsoninflationandgrowththroughmultiplechannels,suchas(i)increasingorloweringagriculturalproductionandfoodprices(ii)dampeningeconomicactivityandloweringlaborproductivity,(iii)2Climatereferstoadistributionofweatheroutcomesforagivenlocation,andclimatechangedescribesenvironmentalshiftsinthedistributionofweatheroutcomestowardextremes.4reducingwealthandincomeandtherebyconsumptionandinvestment;(iv)affectingtransportationinfrastructureanddistributioncosts.Furthermore,thesetransmissionchannelsvarysignificantlywiththelevelofeconomicdevelopmentanddiversificationacrosscountries.Empiricalfindingspresentedinthispapershouldbetreatedasalowerboundontheimpactofweather-relateddisastersinthewakeofacceleratingclimatechange.Accordingly,thereareseveralimportantimplicationsforeconomicpolicy.First,thiswillmakeinflationandgrowthdynamicsmorevolatile,withpotentialfeedbackeffectsacrossallsectorsoftheeconomy.Second,thedifferingpatternsinhowinflationandgrowthresponsetoclimateshockswillleadtogreaterheterogeneityinthelevelofinflationandincomegrowthexperiencedbydifferentsegmentsofthesocietywithinacountry.Inotherwords,householdswhoseconsumptionbasketconsistsofgoodsandservicesthataremorelikelytoexperienceanincreaseininflationandlossofincomeintheaftermathofnaturaldisasterswillbemoreadverselyaffectedcomparedtohouseholdswhoseconsumptionisproportionatelylessdependentonsuchproductsandincomeisnotsubjecttoanegativeshock.Theseresults,inourview,reflectdemographicandstructuraldifferencesandweakerfiscalandinstitutionalcapacityindevelopingcountiestoadapttoandmitigatetheconsequencesofclimateshocks.Lookingforward,itisalsoimportantforpolicymakerstoconsiderhowthegreentransitionawayfromfossilfuels,asanimportantpartofclimatechangemitigationefforts,willaffectinflationandgrowthdynamics.Theremainderofthispaperisorganizedasfollows.SectionIIprovidesanoverviewoftherelatedliterature.SectionIIIdescribesthedatausedintheempiricalanalysis.SectionIVintroducesthesalientfeaturesofoureconometricstrategy.SectionVpresentstheempiricalresults,includingaseriesofrobustnesschecks.Finally,SectionVIoffersconcludingremarkswithpolicyimplications.II.ABRIEFOVERVIEWOFTHELITERATUREWepulltogetherdifferentstrandsoftheliteratureoninflation,growthandclimatechange.First,inflationisshowntobedeterminedbyarangeoffactorsincludingpolicypreferences(Rogoff,1985)macroeconomicdevelopmentssuchasthelevelofincome,tradeandfinancialopenness,andfiscaldeficits(Végh,1989;Romer,1993;CampilloandMiron,1997;Lane1997;GalíandGertler,1999;GrubenandMcLeod,2002;CataoandTerrones,2005;ClarkandMcCracken,2006;Gupta,2008,Badinger,2009;Binicietal.,2022),labormarketinstitutions(CukiermanandLippi,1999),exchangerateregimes(Levy-YeyatiandSturzenegger,2001;Husainetal.,2005),andinstitutionalandpoliticalfeatures(Cukierman,1992;AisenandVeiga,2007).Thereisalsoabroadcollectionofstudiesfocusingontherelationshipbetweencentralbankindependenceandinflation.BuildingonKydlandandPrescott(1977)andBarroandGordon(1993),thisstrandoftheliteraturedemonstratesthatgreatercentralbankindependencebringsaboutlowandstableinflation,butnotalwaysinaconsistentandstatisticallysignificantway(Cukiermanetal.,1992;AlesinaandSummers,1993;CampilloandMiron,1997;LouganiandSheets,1997;Cottarellietal.,1998;Posen,1998;Arnoneetal.,2006;Brumm,2006;Walsh,2008;CevikandZhu,2020).Second,thereissignificantvariationineconomicgrowthacrosscountriesandovertime,drivenbyaplethoraofcultural,demographic,economic,financial,institutional,politicalandsocial5factors.Neoclassicalandendogenousgrowththeoriesexplainthesedifferencesingrowthperformancemainlybytheaccumulationofphysicalandhumancapitalandtechnologicaladvancements(Solow,1956;Romer,1986,1990;Lucas,1988).Usingcross-countryanalysis,EasterlyandWetzel(1989),Barro(1991;2003),BarroandSala-i-Martin(1992),Mankiwetal.(1992),EasterlyandRebelo(1993),KingandLevine(1993),Islam(1995),KnackandKeefer(1995),EasterlyandLevine,(1997),SachsandWarner(1997),BurnsideandDollar(2000),Acemogluetal.(2002),Sala-i-Martinetal.(2004),amongothers,showthatthedifferencesinincomegrowthratesaresystematicallyrelatedtoasetofquantifiablevariables,includingtheinitiallevelofrealGDPpercapita,theamountofhumancapitalintermsofeducationalattainmentsandhealthconditions,publicandprivateinvestment,theextentofinternationalopennessandterms-of-tradeshocks,alongwiththeinfluenceofgeography,institutionsandpolitics.Otherstudiesreachsimilarresults,evenwithdifferentsamplesandmethodologies(CicconeandJarocinski,2010).Third,thereisafast-developingliteratureontheeconomicandfinancialeffectsofclimatechange.3StartingwithNordhaus(1991;1992)andCline(1992),aggregatedamagefunctionsarewidelyusedtoanalyzetheclimate-economynexus.Whiletheidentificationofmacroeconomiceffectsofannualvariationinclimaticconditionsisadifficultempiricalundertaking,Gallupetal.(1999),Nordhaus(2006),andDelletal.(2012)observethathighertemperaturesresultinasignificantreductionineconomicgrowthindevelopingcountries.Burkeetal.(2015)corroboratethisfindinganddeterminethathighertemperatureswouldhaveagreaterdamageincountriesthatareconcentratedingeographicareaswithhotterclimates.Usinglargedatasets,Acevedoetal.(2018),BurkeandTanutama(2019),Kahnetal.(2021),andAkyapi,Bellon,andMassetti(2022)showthatthelong-termeconomicimpactofweatheranomalies,suchaspersistentchangesinthetemperatureaboveorbelowthehistoricalnorm,isnothomogenousacrosscountriesandthateconomicgrowthrespondsnonlinearlytoextremetemperature.Furthermore,CevikandJalles(2023)findthatanincreaseinclimatechangevulnerabilityispositivelyassociatedwithrisingincomeinequality,especiallyindevelopingcountriesduelargelytoweakercapacityforclimatechangeadaptationandmitigation.Itisalsowelldocumentedthatincreasingfrequencyandseverityofclimate-relatednaturaldisastersaffecteconomicdevelopment(Loyazaetal.,2012;Noy,2009;Raddatz,2009;SkidmoreandToya,2002;Rasmussen,2004),reducetheaccumulationofhumancapital(Cuaresma,2010)andworsenexternalbalances(Gassebneretal.,2010).Morerecently,CevikandJalles(2020;2021;2022)showthatclimatechangevulnerabilityhassignificanteffectsongovernmentbondyieldsandspreads,theprobabilityofsovereigndebtdefaultandsovereigncreditratings,especiallyindevelopingcountries.Similarly,Bansaletal.(2016)andIMF(2020)findthatrisksassociatedwithclimatechange—asproxiedbytemperatureincreases—haveanegativeeffectonassetvaluations,whileBernsteinetal.(2019)showthatrealestateexposedtotheriskofsealevelriseispricedatadiscountrelativetootherwisesimilarunexposedhouses.FocusingontheU.S.,Painter(2020)findsthatcountiesmorelikelytobeaffectedbyclimatechangepaymorein3Tol(2018)providesarecentoverviewofthisexpandingliterature.6underwritingfeesandinitialyieldstoissuelong-termmunicipalbondscomparedtocountiesunlikelytobeaffectedbyclimatechange.Withregardstotheimpactofclimatechangeonconsumerpriceinflation,thereisasmallbutgrowingliterature.Afewstudieslookattheimpactofnaturalhazardsonprices(Parker,2018;Heinenetal.,2019),whilethereisalmostnoresearchontheeffectofextremeweathereventsincludingtemperaturedeviations,apartfromstudiesfocusingonspecificsectorsofactivity(DeWinneandPeersman,2018;2021).Inarecentpaper,Facciaetal.(2021)investigatehowextremetemperaturesaffectvariousmeasuresofinflationin48advancedandemergingeconomiesduringtheperiod1951–1980andfindthathighertemperaturesplayedanon-negligibleroleindrivingpricedevelopments,especiallyforemergingmarketeconomies.Similarly,Kabundietal.(2022)analyzehowclimateshocksaffectconsumerpricesandfindthattheimpactdependsonthetypeandintensityofshocks,countryincomelevel,andmonetarypolicyregime.III.DATAOVERVIEWWeconstructapaneldatasetofannualobservationscovering173countriesovertheperiod1970–2020.Ourdependentvariablesareconsumerpriceinflationandeconomicgrowth.Inflationiscomputedonanannualbasisastheyear-on-yearpercentagechangeintheCPIasfollows:𝜋𝑐,𝑡=(𝐶𝑃𝐼𝑐,𝑡𝐶𝑃𝐼𝑐,𝑡−12)∗100where𝜋𝑐,𝑡denotesinflationincountrycattimetbasedonheadlineCPI,coreCPIandfoodcomponentoftheCPI,drawnfromtheWorldBank’sglobaldatabaseofinflation(Haetal.,2021).WemeasureeconomicgrowthusingtheannualrateofchangeinrealGDP,whichisobtainedfromtheWorldBank’sWorldDevelopmentIndicatorsdatabase.Themainexplanatoryvariablesofinterestareclimateshocksasmeasuredbytheoccurrenceofweather-relatednaturaldisastersfromtheEmergencyEventsDatabase(EM-DAT).TheEM-DATdatabaseonnaturaldisasters—compiledbytheCentreforResearchontheEpidemiologyofDisasters(CRED)attheUniversitéCatholiquedeLouvaininBelgium—providesdataontheoccurrenceandeffectsofover22,000large-scalenaturaldisastersacrosstheworldsince1900andoffersinformationondifferentcategoriesfromwhichwefocusonclimate-inducedeventsincludingdroughts,extremetemperatures,andstorms.4TheEM-DATdefinesdroughtsas“anextendedperiodofunusuallylowprecipitationthatproducesashortageofwaterforpeople,animalsandplants”,extremetemperaturesas“ageneraltermfortemperaturevariationsabove(extremeheat)orbelow(extremecold)normalconditions”,andstormsasmeteorologicaleventsincludingextra-tropical,tropicalandconvectivestorms.Theseshockstakethevalueof1whenaclimate-relateddisasteroccursinacountryinagivenyearandzerootherwise.However,to4Thedifferencebetweenextremetemperaturesanddroughtsisthattheformeristheresultofashort-livedmeteorologicalhazard,whilethelatteristheresultofalong-livedclimatologicalhazard.7developamoregranularanalysis,wealsousetheintensityofclimate-relatednaturaldisastersasmeasuredbythenumberofdeathsscaledbypopulation.FollowingtheliteratureassummarizedinBotzenetal.(2019),weintroduceanumberofcontrolvariablesinourregressionanalysis,includingrealGDPpercapita,theoutputgap,tradeopenness(definedasthesumofexportsandimportsoverGDP),moneysupplygrowth,urbanization,theterms-of-tradeindex,theoutputgap5,broadmoneygrowth,andthefinancialopennessindexdevelopedbyChinnandIto(2006).6WeobtainthedataseriesfromtheIMFWorldEconomicOutlook,theWorldBank´sWorldDevelopmentIndicatorsandtheChinn-Itodatabases.AppendixTableA1reportssummarystatisticsacrossallcountriesinthesample.IV.ECONOMETRICMETHODOLOGYInthispaper,weapplytheLPmethodtoestimatetheimpactofclimateshocksoninflationandeconomicgrowthandderiveimpulseresponsefunctions(IRFs)inapanelsetting.Thisapproachestimatesasequenceofregressionsofthedependentvariableshiftedseveralperiodsaheadinsteadofrecursiveuseoftheinitialsetofestimatedcoefficients.Asaresult,theLPtechniquedoesnotconstraintheshapeofIRFsandthereforebecomelesssensitivetopotentialmisspecificationcomparedtoconventionalVARmodels(AuerbachandGorodnichenko,2013;JordàandTaylor,2016).Sinceitisespeciallyusefulinestimatingnonlineardynamicresponses,theLPframeworkiswidelyadoptedintherecentliteraturetoanalyzetheeffectsofmonetarypolicyshocks(Jeenas,2018)andfiscalpolicyshocks(RameyandZubairy,2018;RomerandRomer,2019).Accordingly,wedefinethebaselinespecificationinthefollowingform:𝑦𝑡+𝑘,𝑖−𝑦𝑡−1,𝑖=𝛼𝑖+𝜏𝑡+β𝑘𝐶𝑆𝑖,𝑡+𝜃𝑋𝑖,𝑡+ε𝑖,𝑡(1)where𝑦isameasureofconsumerpriceinflationoreconomicgrowth,whicharewinsorizedat5thand95thpercentilestomitigatetheeffectsofextremeoutliers;thecoefficients𝛼𝑖and𝜏𝑡arecountryandtimefixedeffects,respectively,accountingforcross-countryheterogeneityandglobalshocks;𝛽𝑘denotesthecumulativeresponseofinflationorgrowthineachkyearaftertheclimateshock;and𝐶𝑆𝑖,𝑡denotestheclimateshockvariable,whichismeasuredbyeitherabinaryvariableorthenumberofdeathsscaledbypopulationandtreatedasanexogenouseventthatcannotbeanticipatednorcorrelatedwithpastchangesineconomicactivity.Large-scaleclimateeventsfeaturedinouranalysisareconsideredtobecountry-wideshocksfortworeasons:eitherbecausetheshockitselfiswidespreadorbecauseeconomicrelationshipsrelatedtotradeand/ormarketintegrationeventuallypropagatetheshockthroughoutthecountry.𝑋𝑖,𝑡isasetaof5TheoutputgapforeachcountryisobtainedbyapplyingtheHodrick-Prescott(HP)filter.Alternatively,andforrobustness,theoutputgapisalsoobtainedusingtheapproachofHamilton(2018)todecomposetimeseries´trendandcycle.6TheChinn-Itoindexisnormalizedbetween0and1,withhighervaluesindicatingthatacountryismoreopentocross-bordercapitaltransactions.8controlvariablesincludinguptotwolagsofclimateshocks,oftherelevantdependentvariableandtwolagsoftheoutputgapobtainedviatheHPfilter.7Thisequationisestimatedforthreedifferentmeasuresofinflation—headlineCPI,coreCPI,andfoodprices—andrealGDPgrowth.Intermsofthemainvariableofinterest(𝐶𝑆𝑖,𝑡),weconsiderthreealternativeclimateshocks:drought,extremetemperatures,andstorms.Equation(1)isestimatedusingtheOrdinaryLeastSquares(OLS)methodwithSpatialCorrelationConsistent(SCC)standarderrorsasproposedbyDriscollandKraay(1998).8Impulseresponsefunctions(IRFs)arethenobtainedbyplottingtheestimated𝛽𝑘for𝑘=0,1,…,5with90(68)percentconfidencebandscomputedusingthestandarderrorsassociatedwiththeestimatedcoefficients𝛽𝑘overafive-yearperiod.9AccordingtoSimsandZha(1999),“theconventionalpointwisebandscommonintheliteratureshouldbesupplementedwithmeasuresofshapeuncertainty.”Hence,forcharacterizingthelikelihoodshape,bandsthatcorrespondtoa68percentposteriorprobability—oronestandarddeviationshock—provideamorepreciseestimateofthetrueprobability.10Wealsoexplorewhetherinitialmacro-fiscalconditionsatthetimeoftheshockinfluencetheimpactofclimateshocksoninflationandgrowth.TheLPestimationofnonlineareffectsissimilartothesmoothtransitionautoregressive(STAR)modelproposedbyGrangerandTerasvirta(1993).11Accordingly,theaugmentedLPmodeltakesthefollowingform:𝑦𝑖,𝑡+𝑘−𝑦𝑖,𝑡−1=𝛼𝑖+𝜏𝑡+𝛽𝑘𝐿𝐹(𝑧𝑖,𝑡)𝐶𝑆𝑖,𝑡+𝛽𝑘𝐻(1−𝐹(𝑧𝑖,𝑡))𝐶𝑆𝑖,𝑡+θ𝑋𝑖,𝑡+𝜀𝑖,𝑡(2)with𝐹(𝑧𝑖𝑡)=exp(−𝛾𝑧𝑖𝑡)1+exp(−𝛾𝑧𝑖𝑡),𝛾>0inwhich𝑧𝑖𝑡thestateoftheeconomyasmeasuredbytheoutputgaporthepublicdebt-to-GDPratiothatisnormalizedtohavezeromeanandunitvariance.12Thecoefficients𝛽𝐿𝑘and𝛽𝐻𝑘capturetheimpactofclimateshocksateachhorizonkincasesofrecessions(𝐹(𝑧𝑖𝑡)≈1whenzgoestominusinfinity)andexpansions(1−𝐹(𝑧𝑖𝑡)≈1whenzgoestoplusinfinity),respectively.7Alternatively,wealsoemployedtheoutputgapobtainedviaHamilton(2018)approachandresultshardlychange.8Thisisanonparametrictechniqueassumingtheerrorstructuretobeheteroskedastic,autocorrelateduptosomelag,andpossiblycorrelatedacrosscountries.9AnotheradvantageoftheLPmethodcomparedtovectorautoregression(autoregressivedistributedlag)specificationsisthatthecomputationofconfidencebandsdoesnotrequireMonteCarlosimulationsorasymptoticapproximations.Onelimitation,however,isthatconfidencebandsatlongerhorizonstendtobewiderthanthoseestimatedinvectorautoregressionspecifications.10OtherpapersthathaveemployedonestandarddeviationbandsincludeGiordanoetal.(2007),RomerandRomer(2010)andBachmannandSims(2012),amongothers.11UsingsuchaSTARfunctioninsuchempiricalsetupsisnotnew.AuerbachandGorodnichenko(2013)andAbiadetal.(2016)employedasimilarapproachtolookatnonlineareffectsofmonetaryandfiscalshocks.12Theweightsassignedtoeachregimevarybetween0and1accordingtotheweightingfunction𝐹(.),sothat𝐹(𝑧𝑖𝑡)canbeinterpretedastheprobabilityofbeinginagivenspacestate.9Wechoose𝛾=1.5.13ThisapproachpermitsadirecttestofwhethertheeffectofclimateshocksvariesacrossdifferentregimessuchasrecessionsandexpansionsandallowstheeffectofclimateshockstochangesmoothlybetweenrecessionsandexpansionsbyconsideringacontinuumofstatestocomputeIRFs,thusmakingtheresponsemorestableandprecise.Weusefiscalspaceasanalternativeconditioningvariabletoassesswhetheragovernment’sfiscalcapacitytorespondtoaclimateshockaffectsitsinflationaryimpact.V.EMPIRICALRESULTSA.ClimateShocksandInflationThestartingpointofourempiricalanalysisistheestimationoftheimpactofclimateshocksoninflationinthewholesampleof173countriesovertheperiod1970-2020.Figure1presentstheIRFsofheadlineinflationtothreetypesofclimate-relatednaturaldisastershocks,togetherwith90percentconfidenceintervals.Wefindthatheadlineinflationrespondssignificantlybutalsodifferentlyintermsofdirectionandmagnitudetoclimateshocksasmeasuredbyabinaryvariablefortheoccurrenceofalarge-scaleweather-relatednaturaldisasterinagivenyear.Whileextremetemperaturesresultinlowerinflation,droughtsandstormsleadtohigherinflation.Inthecaseofatemperatureshock,wefindthatheadlineinflationdeclinessignificantlybelowitsinitiallevelinthefirstyearandoverthelongrun.14Thisfallreachesitstroughafterabout4yearsFigure1.BaselineImpactofClimateShocksonHeadlineInflation:GlobalSampleNote:ThechartsshowIRFsusingtheLPmethod.x-axisinyears;t=0istheyearprecedingtheclimateshock;t=1isthefirstyearofimpact.Thesolidblacklinedenotestheresponsetoaclimateshock,andthedarkgreyareadenotes90-percentconfidencebandsandthelightgreyareadenotes68-percentconfidencebandsbasedonstandarderrorsclusteredatthecountrylevel.13Ourresultshardlychangewhenusingalternativevaluesoftheparameter𝛾,between1and4.WealsoattemptedusingalternativelytheoutputgapcomputedviatheHamilton(2018)approach,whichyieldsqualitativelysimilarresults.14Theseresultsarebroadlyconsistentwiththosereportedinotherstudies,suchasParker(2018)andKabundietal.(2022).-6-4-20012345yeartemperatureshock-2024012345yeardroughtshock-2-1.5-1-.50.5012345yearstormshockImpactonHCPIfromalternativeshocks10sincetheshock,atwhichpointheadlineinflationis3.5percentagepointslowerthanifthetemperatureshockhadnothappened.Adroughtshock,ontheotherhand,resultsinanimmediateincreaseinheadlineinflationaboveitsinitiallevel,whichlastsoverthelongtermandamountstoabout1.5percentagepointscomparedtoiftheshockhadnotoccurred.Theimpactpatternofstorms,however,isdifferentthanotherweather-relateddisasters.Wefindthatheadlineinflationincreasesbyabout0.2percentagepointsinthefirstyearafterthestormshock,butthenendsup1percentagepointsloweroverthelongtermiftheshockhadnothappened.TableA2intheAppendixshowsallthecoefficientestimates,associatedstandarderrorsandbasicdiagnosticstatisticsbehindtheIRFsdepictedinFigure1.Wesplitthefullsampleofcountriesintoincomegroups—advancedeconomiesanddevelopingcountries—andpresenttheseIRFsinFigure2.Thisdisaggregationrevealsastrikingcontrastintheimpactofclimateshocksonheadlineinflationineconomieswithvaryinglevelsofeconomicdevelopment.Whileatemperatureshockleadstosustainedincreaseinheadlineinflationinadvancedeconomies,ithastheoppositeeffectindevelopingcountries.Inthecaseofadroughtshock,wefindthatheadlineinflationincreasesaboveitsinitiallevelacrossinthefirstyearandoverthelongrun,butthiseffectissmallanddissipatesfastinadvancedeconomiescomparedtodevelopingcountrieswhereitislong-lasting.Likewise,theinitialimpactofastormshockisdifferentinadvancedeconomies(lowerheadlineinflation)comparedtodevelopingcountries(higherheadlineinflation)butdoesnotpersistoverthelongruninbothincomegroups.Theseresultsmayreflectstructuralanddemographicdifferencesandweakerfiscalandinstitutionalcapacityindevelopingcountiestoadapttoandmitigatetheconsequencesofclimateshocks.WedevelopamoregranularanalysisbyfocusingonalternativemeasuresofinflationandpresenttheseIRFsofcoreandfoodinflationtoclimateshocksforthesub-samplesofadvancedeconomicanddevelopingcountriesinFigure3.Theimpactofweather-relatedshocksoncoreFigure2.ImpactofClimateShocksonHeadlineInflation:IncomeGroupAdvancedEconomiesDevelopingCountriesThechartsshowIRFsusingtheLPmethod.x-axisinyears;t=0istheyearprecedingtheclimateshock;t=1isthefirstyearofimpact.Thesolidblacklinedenotestheresponsetoaclimateshock,thedarkgreyareadenotes90-percentconfidencebandsandthelightgreyareadenotes68-percentconfidencebandsbasedonstandarderrorsclusteredatthecountrylevel.01234012345yeartemperatureshock-4-202012345yeardroughtshock-1.5-1-.50.51012345yearstormshockImpactonHCPIfromalternativeshocks-15-10-50012345yeartemperatureshock-2024012345yeardroughtshock-2-101012345yearstormshockImpactonHCPIfromalternativeshocks11andfoodinflationshowssignificantvariationinmagnitudeandpatternacrosscountrygroups.Extremetemperaturesleadtohigherandmorevolatilecoreandfoodinflationinadvancedeconomies,whereasithastheoppositeandsustainedimpactindevelopingcountries.Adroughtshockappearstobedisinflationarywithavolatilepatterninadvancedeconomiesbutexhibitsasustainedinflationaryeffectindevelopingcountries.Theinflationaryimpactofdroughtsonfoodprices,however,issimilaracrossallcountrygroups,albeitsignificantlygreaterindevelopingcountries.Finally,astormshockleadstoasmallimmediateincreaseincoreinflationinadvancedeconomies,butthiseffectdissipatesoverthelongrun,whereasweobserveadownwardadjustmentincoreinflationinthefirstyearafterastormshockthatremainsintactoverthelongFigure3.ImpactofClimateShocksonInflation:CoreandFoodInflationAdvancedEconomiesDevelopingCountriesCoreInflationFoodInflationNote:ThechartsshowIRFsusingtheLPmethod.x-axisinyears;t=0istheyearprecedingtheclimateshock;t=1isthefirstyearofimpact.Thesolidblacklinedenotestheresponsetoaclimateshock,thedarkgreyareadenotes90-percentconfidencebandsandthelightgreyareadenotes68-percentconfidencebandsbasedonstandarderrorsclusteredatthecountrylevel.-101234012345yeartemperatureshock-4-2024012345yeardroughtshock-1.5-1-.50.51012345yearstormshockImpactonCoreinflationfromalternativeshocks-8-6-4-202012345yeartemperatureshock-20246012345yeardroughtshock-6-4-20012345yearstormshockImpactonCoreinflationfromalternativeshocks012345012345yeartemperatureshock-20246012345yeardroughtshock-1.5-1-.50.51012345yearstormshockImpactonFoodinflationfromalternativeshocks-10-8-6-4-20012345yeartemperatureshock02468012345yeardroughtshock-2024012345yearstormshockImpactonFoodinflationfromalternativeshocks12runinthecaseofdevelopingcountries.Theimpactofstormsonfoodinflation,ontheotherhand,exhibitsanoppositepatterninadvancedeconomies(declining)anddevelopingcountries(increasing),butconvergestoinsignificanceoverthelongruninbothcountrygroups.Figure4.ImpactofClimateShocksonCoreInflation:RoleoftheBusinessCycleAdvancedEconomiesDevelopingCountriesNote:ThechartspresentIRFsbasedonEquation[2].x-axisinyears;t=0istheyearoftheclimateshock;t=1isthefirstyearofimpact.Thesolidblacklinedenotestheresponsetoaclimateshock;thedarkandlightgreyareadenotes90and68-percentconfidencebands,respectively,basedonstandarderrorsclusteredatcountrylevel;thedottedbluelinedenotestheunconditionalbaselineresultobtainedfromEquation[1].-50510012345yeardroughtshockinrecessions-15-10-505012345yeardroughtshockinexpansionsImpactonCCPI-5051015012345yeardroughtshockinrecessions-10-50510012345yeardroughtshockinexpansionsImpactonCCPI051015012345yeartemperatureshockinrecessions-505012345yeartemperatureshockinexpansionsImpactonHCPI-50510012345yeartemperatureshockinrecessions-20-15-10-505012345yeartemperatureshockinexpansionsImpactonHCPI-4-2024012345yearstormshockinrecessions-4-202012345yearstormshockinexpansionsImpactonHCPI-5051015012345yearstormshockinrecessions-20-15-10-50012345yearstormshockinexpansionsImpactonHCPI13Wealsoexplorethepossibilityofnonlineareffectsofclimateshocksoninflationbylookingattwoparticulardimensions:(i)thepositionofagiveneconomyinthebusinesscycleatthetimetheclimateshockhits;and(ii)thelevelofpublicdebtasaproxyoffiscalspacetocushiontheimpactofclimateshocks.First,aspresentedinFigure4,wefindthatthestateoftheeconomyFigure5.ImpactofClimateShocksonCoreInflation:RoleoftheFiscalSpaceAdvancedEconomiesDevelopingCountriesNote:ThechartspresentIRFsbasedonEquation[2].x-axisinyears;t=0istheyearoftheclimateshock;t=1isthefirstyearofimpact.Thesolidblacklinedenotestheresponsetoaclimateshock;thedarkandlightgreyareadenotes90and68-percentconfidencebands,respectively,basedonstandarderrorsclusteredatthecountrylevel;thedottedbluelinedenotestheunconditionalbaselineresultobtainedfromEquation[1].-5051015012345yeardroughtshock-lowdebt-8-6-4-202012345yeardroughtshock-highdebtImpactonHCPI-15-10-50510012345yeardroughtshock-lowdebt-505101520012345yeardroughtshock-highdebtImpactonHCPI-4-20246012345yeartemperatureshock-lowdebt-2024012345yeartemperatureshock-highdebtImpactonHCPI-50510012345yeartemperatureshock-lowdebt-20-15-10-50012345yeartemperatureshock-highdebtImpactonHCPI-6-4-2024012345yearstormshock-lowdebt-4-2024012345yearstormshock-highdebtImpactonHCPI-15-10-505012345yearstormshock-lowdebt-50510012345yearstormshock-highdebtImpactonHCPI14playsanimportantroleinshapingtheimpactofweather-relateddisastersoncoreinflation,butmagnitudeandlong-runpatterndependontheexactnatureoftheshock.Second,aspresentedinFigure5,wefindthatclimateshockshaveadifferentiatedeffectoncoreinflationdependingontheleveloffiscalspaceasmeasuredbylowlevelsofpublicdebtasaratioofGDP.Theinflationaryimpactofweather-relateddisastersinlowerincountrieswithgreaterfiscalspacecomparedtocountriesthatarefiscallyconstrained.Weconductseveralsensitivitycheckstoensuretherobustnessofourbaselineresults.First,wecontrolforthepotentialomittedvariablebiasbyincludinguptotwolagsofadditionalvariablesthatcouldcontributetoinflationdynamics,suchasameasureoffinancialopenness,theterms-of-tradeindex,urbanization,andmoneysupplygrowth.Second,weestimatethemodelsbyexcludingcountryfixedeffects,whichcouldbiastheresultssincetheerrortermmayhaveanon-zeroexpectedvalueduetotheinteractionoffixedeffectsandcountryspecificdevelopments(TeulingsandZubanov,2014).Third,wesplitthesampleintotwoperiods(1970–1995and1996–2020)toexaminewhethertheinflationaryimpactofclimateshockshasbecomemorepronouncedovertime.Theseestimations,presentedinFigure6-8,yieldsimilarresultswithnosignificantqualitativechange.Finally,todevelopamoregranularanalysis,weestimateameasureofdisasterintensity(thenumberofdeathsscaledbypopulation)andfindthattheimpactofclimateshocksoninflationbecomesmorepronouncedandturnspositiveeveninthecaseofextremetemperatures(Figure9).Figure6.ImpactofClimateShocksonHeadlineInflation:AdditionalControlsControlset1Controlset2Note:ThechartsshowIRFsusingtheLPmethod.x-axisinyears;t=0istheyearprecedingtheclimateshock;t=1isthefirstyearofimpact.Thesolidblacklinedenotestheresponsetoaclimateshock,thedarkgreyareadenotes90-percentconfidencebandsandthelightgreyareadenotes68-percentconfidencebandsbasedonstandarderrorsclusteredatthecountrylevel.Controlset1includesinadditiontotheoutputgap(alsoincludedinthebaseline),tradeopennessandthelogofrealGDPpercapita.Control2includescontrol1variablesplusbroadmoneygrowth,financialopenness,urbanization,termsoftrade.-5-4-3-2-10012345yeartemperatureshock-101234012345yeardroughtshock-1012012345yearstormshockImpactonHCPIfromalternativeshocks15Figure7.ImpactofClimateShocksonHeadlineInflation:ExcludingCountryFixedEffectsNote:ThechartsshowIRFsusingtheLPmethod.x-axisinyears;t=0istheyearprecedingtheclimateshock;t=1isthefirstyearofimpact.Thesolidblacklinedenotestheresponsetoaclimateshock,thedarkgreyareadenotes90-percentconfidencebandsandthelightgreyareadenotes68-percentconfidencebandsbasedonstandarderrorsclusteredatthecountrylevel.Figure8.ImpactofClimateShocksonHeadlineInflation:Sub-PeriodEstimations1970-19951996-2020Note:ThechartsshowIRFsusingtheLPmethod.x-axisinyears;t=0istheyearprecedingtheclimateshock;t=1isthefirstyearofimpact.Thesolidblacklinedenotestheresponsetoaclimateshock,thedarkgreyareadenotes90-percentconfidencebandsandthelightgreyareadenotes68-percentconfidencebandsbasedonstandarderrorsclusteredatthecountrylevel.-8-6-4-20012345yeartemperatureshock0246012345yeardroughtshock-5-4-3-2-10012345yearstormshockImpactonHCPIfromalternativeshocks-10-505012345yeartemperatureshock-505012345yeardroughtshock-50510012345yearstormshockImpactonHCPIfromalternativeshocks-3-2-101012345yeartemperatureshock012345012345yeardroughtshock-2-1012012345yearstormshockImpactonHCPIfromalternativeshocks16Figure9.ImpactofClimateShocksonHeadlineInflation:DisasterIntensityNote:ThechartsshowIRFsusingtheLPmethod.x-axisinyears;t=0istheyearprecedingtheclimateshock;t=1isthefirstyearofimpact.Thesolidblacklinedenotestheresponsetoaclimateshock,thedarkgreyareadenotes90-percentconfidencebandsandthelightgreyareadenotes68-percentconfidencebandsbasedonstandarderrorsclusteredatthecountrylevel.B.ClimateShocksandGrowthFigure10presentstheIRFsofrealGDPgrowthtothreetypesofweather-relatednaturaldisasters,togetherwith90percentconfidenceintervals.Wefindthattheinitialgrowthresponsetoalltypesofclimateshocksisnegative,butthemagnitudeandpatternofresponseshowvariationoverthelongrun.WhileatemperatureshockappearstoleadtoalastingreductioninrealGDPgrowth,theimpactofdroughtsandstormsismorevolatileandlesspersistentoverthelongrun.Inthecaseofatemperatureshock,thegrowthdecelerationreachesatthroughafter5yearssincetheshock,atwhichpointrealGDPgrowthisabout1.5percentagepointslowerthanifthetemperatureshockhadnothappened.Bothdroughtsandstormscauseasteeperfallingrowthinthefirstyearaftertheshock,butthemagnitudeoftheimpactisvolatileandlesspersistentovertime.TableA3intheAppendixshowsallthecoefficientestimates,associatedstandarderrorsandbasicdiagnosticstatisticsbehindtheIRFsdepictedinFigure10.Tobetterdiscernthegrowthimpactofclimateshocks,wesplitthefullsampleofcountriesintoincomegroups—advancedeconomiesanddevelopingcountries—andpresenttheseIRFsinFigure11.ThisdisaggregationconfirmsrevealsastrikingcontrastintheimpactofclimateshocksonrealGDPgrowthincountriesatdifferentlevelsofdevelopment.Whileweather-relatednaturaldisastersleadtoasignificantandpersistentdeclineineconomicgrowthindevelopingcountries,thereisnosuchimpactinadvancedeconomies.Nevertheless,whenweusetheintensityofclimateshocks(measuredbythenumberofdeathsscaledbypopulation)insteadofadummyvariablefordisasters,thegrowthimpactissignificantlynegativeforalltypesofclimateshocksacrossallcountriesinoursample(Figure12).-.50.51012345yeartemperatureshock-50510012345yeardroughtshock-3-2-101012345yearstormshockImpactonHCPIfromalternativeshocks17Wealsoexplorethenonlineareffectsofweather-relatednaturaldisastersoneconomicgrowthbytakingintoaccountthestateoftheeconomyandthelevelofpublicdebtasaproxyoffiscalspaceatthetimetheclimateshockhits.Theseresults,presentedinFigure13-14,showthatboththestateoftheeconomyandavailablefiscalspaceplaycriticalrolesindetermininghowclimateshocksaffecteconomicgrowthintermsofmagnitudeandpersistenceoverthelongrun,whichalsovarieswiththelevelofincomeacrosscountries.Theseresults,inourview,reflectdemographicandstructuraldifferencesandweakerfiscalandinstitutionalcapacityindevelopingcountiestoadapttoandmitigatetheconsequencesofclimateshocks.Inparticular,weshouldalsonotethattheoverallimpactofweather-relatednaturaldisastersonrealGDPgrowthislikelytoconcealsignificantdifferencesacrosssectors,asshownbythevaryinggrowthresponseinadvancedanddevelopingeconomies.Figure10.ImpactofClimateShocksonGrowth:GlobalSampleNote:ThechartsshowIRFsusingtheLPmethod.x-axisinyears;t=0istheyearprecedingtheclimateshock;t=1isthefirstyearofimpact.Thesolidblacklinedenotestheresponsetoaclimateshock,thedarkgreyareadenotes90-percentconfidencebandsandthelightgreyareadenotes68-percentconfidencebandsbasedonstandarderrorsclusteredatthecountrylevel.-2.5-2-1.5-1-.50012345yeartemperatureshock-1-.50.51012345yeardroughtshock-1-.50.51012345yearstormshockImpactonrealGDPfromalternativeshocks18Figure11.ImpactofClimateShocksonGrowth:IncomeGroupAdvancedEconomiesDevelopingCountriesNote:ThechartsshowIRFsusingtheLPmethod.x-axisinyears;t=0istheyearprecedingtheclimateshock;t=1isthefirstyearofimpact.Thesolidblacklinedenotestheresponsetoaclimateshock,thedarkgreyareadenotes90-percentconfidencebandsandthelightgreyareadenotes68-percentconfidencebandsbasedonstandarderrorsclusteredatthecountrylevel.Figure12.ImpactofClimateShocksonGrowth:DisasterIntensityNote:ThechartsshowIRFsusingtheLPmethod.x-axisinyears;t=0istheyearprecedingtheclimateshock;t=1isthefirstyearofimpact.Thesolidblacklinedenotestheresponsetoaclimateshock,thedarkgreyareadenotes90-percentconfidencebandsandthelightgreyareadenotes68-percentconfidencebandsbasedonstandarderrorsclusteredatthecountrylevel.-1-.8-.6-.4-.20012345yeartemperatureshock-8-6-4-20012345yeardroughtshock0.2.4.6012345yearstormshockImpactonrealGDPfromalternativeshocks-1-.50.51012345yeartemperatureshock-1-.50.511.5012345yeardroughtshock-1.5-1-.50.51012345yearstormshockImpactonrealGDPfromalternativeshocks-3-2-101012345yeartemperatureshock-1-.50.51012345yeardroughtshock-1-.50.51012345yearstormshockImpactonrealGDPfromalternativeshocks19Figure13.ImpactofClimateShocksonGrowth:RoleoftheBusinessCycleAdvancedEconomiesDevelopingCountriesNote:ThechartspresentIRFsbasedonEquation[2].x-axisinyears;t=0istheyearoftheclimateshock;t=1isthefirstyearofimpact.Thesolidblacklinedenotestheresponsetoaclimateshock;thedarkandlightgreyareadenotes90and68-percentconfidencebandsrespectivelybasedonstandarderrorsclusteredatcountrylevel;thedottedbluelinedenotestheunconditionalbaselineresultobtainedfromEquation[1].-3-2-1012012345yeardroughtshockinrecessions-3-2-1012012345yeardroughtshockinexpansionsImpactonrealGDP-2-10123012345yeardroughtshockinrecessions-2-1012012345yeardroughtshockinexpansionsImpactonrealGDP-1012012345yeartemperatureshockinrecessions-2-1012012345yeartemperatureshockinexpansionsImpactonrealGDP-6-4-202012345yeartemperatureshockinrecessions-4-2024012345yeartemperatureshockinexpansionsImpactonrealGDP-2-1012012345yearstormshockinrecessions-1-.50.511.5012345yearstormshockinexpansionsImpactonrealGDP-5-4-3-2-10012345yearstormshockinrecessions-20246012345yearstormshockinexpansionsImpactonrealGDP20Figure14.ImpactofClimateShocksonGrowth:RoleofFiscalSpaceAdvancedEconomiesDevelopingCountriesNote:ThechartspresentIRFsbasedonEquation[2].x-axisinyears;t=0istheyearoftheclimateshock;t=1isthefirstyearofimpact.Thesolidblacklinedenotestheresponsetoaclimateshock;thedarkandlightgreyareadenotes90and68-percentconfidencebandsrespectivelybasedonstandarderrorsclusteredatcountrylevel;thedottedbluelinedenotestheunconditionalbaselineresultobtainedfromEquation[1].-8-6-4-202012345yeardroughtshock-lowdebt02468012345yeardroughtshock-highdebtImpactonrealGDP-20246012345yeardroughtshock-lowdebt-6-4-202012345yeardroughtshock-highdebtImpactonrealGDP-2-1012012345yeartemperatureshock-lowdebt-1012012345yeartemperatureshock-highdebtImpactonrealGDP-6-4-202012345yeartemperatureshock-lowdebt-4-2024012345yeartemperatureshock-highdebtImpactonrealGDP-3-2-1012012345yearstormshock-lowdebt01234012345yearstormshock-highdebtImpactonrealGDP-3-2-1012012345yearstormshock-lowdebt-2-1012012345yearstormshock-highdebtImpactonrealGDP21VI.CONCLUSIONClimatechangeisthedefiningchallengeofourtime.Inthispaper,weempiricallyinvestigatetheimpactofweather-relatednaturaldisastersonconsumerpriceinflationandeconomicgrowth,usingalargepanelof173countriesduringtheperiod1970–2020.TheanalysisbasedontheLPmethodshowsthatinflationandgrowthrespondsignificantlybutalsodifferentlyintermsofdirectionandmagnitudetoclimateshocks.oTemperatureshocksresultinlowerinflation,butdroughtsandstormsleadtohigherinflation.Wesplitthefullsampleofcountriesintoincomegroups—advancedeconomiesanddevelopingcountries—andfindastrikingcontrastintheimpactofclimate-inducednaturaldisastersonheadlineinflationaccordingtothelevelofeconomicdevelopment.Wealsodevelopamoregranularanalysisbyfocusingonalternativemeasuresofinflationandidentifythattheimpactofweather-relatedshocksoncoreandfoodinflationshowssignificantvariationinmagnitudeandpatternacrosscountrygroups.Finally,wefindthattheinflationaryimpactofclimatedisastersvariesinanonlinearfashiondependingonthestateoftheeconomyandtheleveloffiscalspacewhentheshockhits.oAlltypesofclimateshockshaveanegativeimpactoneconomicgrowth,butthemagnitudeandpatternofresponseshowvariationoverthelongrun.WhileatemperatureshockappearstoleadtoalastingreductioninrealGDPgrowth,theimpactofdroughtsandstormsismorevolatileandlesspersistent.Tobetterdiscernthegrowthimpactofclimateshocks,wesplitthefullsampleofcountriesintoincomegroupsandfindastrikingcontrastintheimpactofclimateshocksonrealGDPgrowthincountriesatdifferentlevelsofdevelopment.Whileweather-relatednaturaldisastersleadtoasignificantandpersistentdeclineineconomicgrowthindevelopingcountries,thereisnosuchimpactinadvancedeconomies.Wealsoexplorethenonlineareffectsofweather-relatednaturaldisastersoneconomicgrowthandobservethatboththestateoftheeconomyandavailablefiscalspaceplaycriticalrolesindetermininghowclimateshocksaffectgrowthintermsofmagnitudeandpersistenceoverthelongrun,whichalsovarieswiththelevelofincomeacrosscountries.Overall,theempiricalanalysispresentedinthispaperindicatesthatclimate-inducednaturaldisastershavedifferentialandopposingeffectsoninflationandgrowththroughmultiplechannels,suchas(i)increasingorloweringagriculturalproductionandfoodprices(ii)dampeningeconomicactivityandloweringlaborproductivity,(iii)reducingwealthandincomeandtherebyconsumptionandinvestment;(iv)affectingtransportationinfrastructureanddistributioncosts.Furthermore,thesetransmissionchannelsvarysignificantlywiththelevelofeconomicdevelopmentanddiversificationacrosscountries.Theseresults,inourview,alsoreflectdemographicandstructuraldifferencesandweakerfiscalandinstitutionalcapacityindevelopingcountiestoadapttoandmitigatetheconsequencesofclimateshocks.Accordingly,thereareseveralimportantimplicationsforeconomicpolicyinthewakeofacceleratingclimatechange.First,thiswillmakeinflationandgrowthdynamicsmorevolatile,withpotentialfeedbackeffectsacrossallsectorsoftheeconomy.Second,thedifferingpatternsofinflationandgrowthresponsetoclimateshockswillleadtogreaterheterogeneityinthelevelofinflationandincomegrowthexperiencedbydifferentsegmentsofthesocietywithinacountry.Inotherwords,22householdswhoseconsumptionbasketconsistsofgoodsandservicesthataremorelikelytoexperienceanincreaseininflationandlossofincomeintheaftermathofnaturaldisasterswillbemoreadverselyaffectedcomparedtohouseholdswhoseconsumptionisproportionatelylessdependentonsuchproductsandincomeisnotsubjecttoanegativeshock.Lookingforward,itisalsoimportantforpolicymakerstoconsiderhowthegreentransitionawayfromfossilfuels,asanimportantpartofclimatechangemitigationefforts,willaffectinflationandgrowthdynamics.23REFERENCESAbiad,A.,D.Furceri,andP.Topalova,2016,”TheMacroeconomicEffectsofPublicInvestment:EvidencefromAdvancedEconomies,”JournalofMacroeconomics,Vol.50,pp.224–240.Acemoglu,D.,S.Johnson,andJ.Robinson,2002,“ReversalofFortune:GeographyandInstitutionsintheMakingoftheModernWorldIncomeDistribution,”QuarterlyJournalofEconomics,Vol.117,pp.1231–1294.Acevedo,S.,M.Mrkaic,N.Novta,E.Pugacheva,andP.Topalova,2018,“TheEffectsofWeatherShocksonEconomicActivity:WhatAretheChannelsofImpact?”IMFWorkingPaperNo.18/144(Washington,DC:InternationalMonetaryFund).Akyapi,B.,M.Bellon,andE.Massetti,2022,“EstimatingMacro-FiscalEffectsofClimateShocksFromBillionsofGeospatialWeatherObservations,”IMFWorkingPaperNo.22/156(Washington,DC:InternationalMonetaryFund).Aisen,A.,andF.Veiga,2006,“DoesPoliticalInstabilityLeadtoHigherInflation?APanelDataAnalysis,”JournalofMoneyCreditandBanking,Vol.38,pp.1379–1390.Aizenman,J.,M.Chinn,andH.Ito,2010,“TheEmergingGlobalFinancialArchitecture:TracingandEvaluatingtheNewPatternsoftheTrilemma’sConfigurations,”JournalofInternationalMoneyandFinance,Vol.29,pp.615–641.Aizenman,J.,M.Chinn,andH.Ito,2008,“AssessingtheEmergingGlobalFinancialArchitecture:MeasuringtheTrilemma’sConfigurationsOverTime,”NBERWorkingPaperNo.14533(Cambridge,MA:NationalBureauofEconomicResearch).Alesina,A.,andL.Summers,1993,“CentralBankIndependenceandMacroeconomicPerformance:SomeComparativeEvidence,”JournalofMoney,Credit,andBanking,Vol.25,pp.151–162.Arellano,M.,andS.Bond,1991,“SomeTestsofSpecificationforPanelData:MonteCarloEvidenceandAnApplicationtoEmploymentEquations,”ReviewofEconomicStudies,Vol.58,pp.277–297.Arellano,M.,andO.Bover,1995,“AnotherLookattheInstrumentalVariableEstimationofError-ComponentsModels,”JournalofEconometrics,Vol.68,pp.29–51.Arnone,M.,B.Laurens,andJ.Segalotto,2006,“MeasuresofCentralBankAutonomy:EmpiricalEvidenceforOECD,DevelopingCountries,andEmergingMarkets,”IMFWorkingPaperNo.06/228(Washington,DC:InternationalMonetaryFund).Auerbach,A.,andY.Gorodnichenko,2013,“OutputSpilloversfromFiscalPolicy,”AmericanEconomicReview,Vol.103,pp.141–146.Bachmann,R.,andE.Sims,2012,"ConfidenceandtheTransmissionofGovernmentSpendingShocks,"JournalofMonetaryEconomics,Vol.59,pp.235–249.Badinger,H.,2009,“Globalization,theOutput–InflationTradeoffandInflation,”EuropeanEconomicReview,Vol.53,pp.888–907.24Bansal,R.,D.Kiku,andM.Ochoa,2016,“PriceofLong-RunTemperatureShiftsinCapitalMarkets,”NBERWorkingPaperNo.22529(Cambridge,MA:NationalBureauofEconomicResearch).Barro,R.,1991,“EconomicGrowthinaCross-SectionofCountries,”QuarterlyJournalofEconomics,Vol.106,pp.407–443.Barro,R.,2003,“DeterminantsofEconomicGrowthinaPanelofCountries,”AnnalsofEconomicsandFinance,Vol.4,pp.231–274.Barro,R.,andX.Sala-i-Martin,1992,“PublicFinanceinModelsofEconomicGrowth,”ReviewofEconomicStudies,Vol.59,pp.645–661.Barro,R.,andD.Gordon,1993,“Rules,DiscretionandreputationinaModelofMonetaryPolicy,”JournalofMonetaryEconomics,Vol.12,pp.101–121.Baxter,M.,andR.King,1999,“MeasuringBusinessCycles:ApproximateBand-PassFiltersforEconomicTimeSeries,”ReviewofEconomicsandStatistics,Vol.81,pp.575–593.Bernstein,A.,M.Gustafson,andR.Lewis,2019,“DisasterontheHorizon:ThePriceEffectofSeaLevelRise,”JournalofFinancialEconomics,Vol.134,pp.253–272.Binici,M.,S.Centorrino,S.Cevik,andG.Gwon,2022,“HereComestheChange:TheRoleofGlobalandDomesticFactorsinPost-PandemicInflationinEurope,”IMFWorkingPaperNo.22/241(Washington,DC:InternationalMonetaryFund).Blundell,R.,andS.Bond,1998,“InitialConditionsandMomentRestrictionsinDynamicPanelDataModels,”JournalofEconometrics,Vol.87,pp.115–143.Borio,C.,andA.Filardo,2007,“GlobalizationandInflation:NewCross-CountryEvidenceontheGlobalDeterminantsofDomesticInflation,”BISWorkingPaperNo.227(Basel:BankforInternationalSettlements).Botzen,W.,O.Deschenes,andM.Sanders,2019,“TheEconomicImpactsofNaturalDisasters:AReviewofModelsandEmpiricalStudies”.ReviewofEnvironmentalEconomicsandPolicy,Vol.13:2,pp.167-188Brumm,H.,2006,“TheEffectofCentralBankIndependenceonInflationinDevelopingCountries,”EconomicsLetters,Vol.90,pp.189–193.Buchanan,M.,S.Kulp,L.Cushing,R.Morello-Frosch,T.Nedwick,andB.Strauss,2020,“SeaLevelRiseandCoastalFloodingThreatenAffordableHousing,”EnvironmentalResearchLettersVol.15,pp.124020.Burke,M.,andV.Tanutama,2019,“ClimaticConstraintsonAggregateEconomicOutput,”NBERWorkingPaperNo.25779(Cambridge,MA:NationalBureauofEconomicResearch).Burke,M.,S.Hsiang,andE.Miguel,2015,“GlobalNonlinearEffectofTemperatureonEconomicProduction,”Nature,Vol.527,pp.235–239.Burke,M.,S.Hsiang,andE.Miguel,2015,"ClimateandConflict."AnnualReviewofEconomics,Vol.7,pp.577–617.Burnside,C.,andD.Dollar,2000,“Aid,Policies,andGrowth,”AmericanEconomicReview,Vol.90,pp.847–868.25Campillo,M.,andJ.Miron,1997,“WhyDoesInflationDifferAcrossCountries?”NBERWorkingPaperNo.5540(Cambridge,MA:NationalBureauofEconomicResearch).Catao,L.,andM.Terrones,2005,“FiscalDeficitsandInflation,”JournalofMonetaryEconomics,Vol.52,pp.529–554.Cecchetti,S.,andS.Krause,2002,“CentralBankStructure,PolicyEfficiency,andMacroeconomicPerformance:ExploringEmpiricalRelationships,”FederalReserveBankofSt.LouisReview,Vol.84,pp.47–60.Cevik,S.,andJ.Jalles,2020,“FeelingtheHeat:ClimateShocksandCreditRatings,”IMFWorkingPaperNo.20/286(Washington,DC:InternationalMonetaryFund).Cevik,S.,andJ.Jalles,2021,“AnApocalypseForetold:ClimateShocksandSovereignDefaults,”OpenEconomiesReview,Vol.3,pp89–108.Cevik,S.,andJ.Jalles,2022,“ThisChangesEverything:ClimateShocksandSovereignBonds,”EnergyEconomics,Vol.107,105856.Cevik,S.,andJ.Jalles(2023).“ForWhomtheBellTolls:ClimateChangeandIncomeInequality,”EnergyPolicy,Vol.174,113475.Cevik,S.,andT.Zhu,2020,“TrinityStrikesBack:MonetaryIndependenceandInflationintheCaribbean,”JournalofInternationalDevelopment,Vol.32,pp.375–388.Chen,C.,I.Noble,J.Hellmann,J.Coffee,M.Murillo,andN.Chawla,2015,UniversityofNotreDameGlobalAdaptationIndexTechnicalReport(NotreDame,IN:UniversityofNotreDame).Chinn,M.,andH.Ito,2006,“WhatMattersforFinancialDevelopment?CapitalControls,Institutions,andInteractions,”JournalofDevelopmentEconomics,Vol.81,pp.163–192.Ciccone,A.,andM.Jarocinski,2010,“DeterminantsofEconomicGrowth:WillDataTell?”AmericanEconomicJournal:Macroeconomics,Vol.2,pp.222–246.Clark,T.,andM.McCracken,2006,“ThePredictiveContentoftheOutputGapforInflation:ResolvingIn-SampleandOut-of-SampleEvidence,”JournalofMoney,Credit,andBanking,Vol.38,pp.1127–1148.Cline,W.,1992,TheEconomicsofGlobalWarming(NewYork:NewYorkUniversityPress).Cottarelli,C.,M.Griffiths,andR.Moghadam,1998,“TheNon-MonetaryDeterminantsofInflation:APanelDataStudy,”IMFWorkingPaperNo.98/23(Washington,DC:InternationalMonetaryFund).Cukierman,A.,1992,CentralBankStrategy,Credibility,andIndependence:TheoryandEvidence(Cambridge,MA:TheMITPress)Cukierman,A.,S.Webb,andB.Neyapti,1992,“MeasuringtheIndependenceofCentralbanksandItsEffectonPolicyOutcomes,”WorldBankEconomicReview,Vol.6,pp.353–398.Cukierman,A.,andF.Lippi,1999,“CentralBankIndependence,CentralizationofWageBargaining,InflationandUnemployment:TheoryandSomeEvidence,”EuropeanEconomicReview,Vol.43,pp.1395–1434.26Dell,M.,B.Jones,andB.Olken,2012,“TemperatureShocksandEconomicGrowth:EvidencefromtheLastHalfCentury,”AmericanEconomicJournal:Macroeconomics,Vol.4,pp.66–95.DeWinne,J.,andG.Peersman,2018,“Agriculturalpriceshocksandbusinesscycles:aglobalwarningforadvancedeconomies,”GhentUniversityWorkingPaperNo.18/945.DeWinne,J.,andG.Peersman,2021,“Theadverseconsequencesofglobalharvestandweatherdisruptionsoneconomicactivity,”NatureClimateChange,Vol.11,pp.665–672.Driscoll,J.,andA.Kraay(1998).“ConsistentCovarianceMatrixEstimationwithSpatiallyDependentPanelData,”ReviewofEconomicsandStatistics,Vol.80,pp.549–560.Easterly,W.,andD.Wetzel,1989,“PolicyDeterminantsofGrowth:SurveyofTheoryandEvidence,”Policy,PlanningandResearchWorkingPapersNo.343(Washington,DC:WorldBank).Easterly,W.,andS.Rebelo,1993,“FiscalPolicyandEconomicGrowth:AnEmpiricalInvestigation,”JournalofMonetaryEconomics,Vol.32,pp.417–458.Easterly,W.,andR.Levine,1997,“Africa’sGrowthTragedy:PoliciesandEthnicDivisions,”QuarterlyJournalofEconomics,Vol.112,pp.1203–1250Faccia,D.,M.Parker,andL.Stracca,2021,“FeelingtheHeat:ExtremeTemperaturesandPriceStability”,ECBWorkingPaperNo.2626(Frankfurt:EuropeanCentralBank).Frankel,J.,S.Schmukler,andL.Serven,2004,“GlobalTransmissionofInterestRates:MonetaryIndependenceandCurrencyRegime,”JournalofInternationalMoneyandFinance,Vol.23,pp.701–733.Galí,J.,andM.Gertler,1999,“InflationDynamics:AStructuralEconometricAnalysis,”JournalofMonetaryEconomics,Vol.44,pp.195-222.Gallup,J.,J.Sachs,andA.Mellinger,1999,“GeographyandEconomicDevelopment,”InternationalRegionalScienceReview,Vol.22,pp.179–232.Gassebner,M.,A.Keck,andR.The,2006,“Shaken,NotStirred:TheImpactofDisastersonInternationalTrade,”ReviewofInternationalEconomics.Vol.18,pp.351–368.Giordano,R.,S.Momigliano,S.Neri,andR.Perotti,2007.“TheEffectsofFiscalPolicyinItaly:EvidencefromaVARmodel,”EuropeanJournalofPoliticalEconomy,Vol.23,pp.707–733.Granger,C.,andT.Teräsvirta,1993,ModellingNonlinearRelationships(NewYork:OxfordUniversityPress).Gruben,W.,andD.McLeod,2002,“CapitalAccountLiberalizationandInflation,”EconomicLetters,Vol.77,pp.221–225.Gupta,A.,2008,“DoesCapitalAccountOpennessLowerInflation,”InternationalEconomicJournal,Vol.22,pp.471–487.Ha,J.,A.Kose,andF.Ohnsorge,2019,InflationinEmergingandDevelopingEconomies:Evolution,Drivers,andPolicies(Washington,DC:WorldBank).Ha,J.,A.Kose,andF.Ohnsorge,2021,"One-StopSource:AGlobalDatabaseofInflation,"WBPolicyResearchWorkingPaperNo.9737(Washington,DC:WorldBank).27Hamilton,J.(2018),“WhyYouShouldNeverUsetheHodrick-PrescottFilter,”ReviewofEconomicsandStatistics,Vol.100(5),pp.831-843.Hausmann,R.,M.Gavin,C.Pages,andE.Stein,1999,“FinancialTurmoilandChoiceofExchangeRateRegime,”IDBWorkingPaperNo.331(Washington,DC:Inter-AmericanDevelopmentBank).Heinen,A.,J.Khadan,andE.Strobl,2019,“ThePriceImpactofExtremeWeatherinDevelopingCountries”,EconomicJournal,Vol.129,pp.1327–1342.Henry,M.,N.Spencer,andE.Strobl,2019,“TheImpactofTropicalStormsonHouseholds:EvidencefromPanelDataonConsumption,”OxfordBulletinofEconomicsandStatistics,Vol.22,pp.179–232.Hodrick,R.,andE.Prescott,1997,“PostwarU.S.BusinessCycles:AnEmpiricalInvestigation,”JournalofMoney,Credit,andBanking,Vol.29,pp.1–16.Husain,A.,A.Mody,andK.Rogoff,2005,“ExchangeRateRegimeDurabilityandPerformanceinDevelopingvs.AdvancedEconomies,”JournalofMonetaryEconomics,Vol.52,pp.35–64.Im,K.,M.Pesaran,andY.Shin,2003,“TestingforUnitRootsinHeterogeneousPanels,”JournalofEconometrics,Vol.115,pp.53–74.IntergovernmentalPanelonClimateChange(IPCC),2007,FourthAssessmentReport,IntergovernmentalPanelonClimateChange(NewYork:CambridgeUniversityPress).IntergovernmentalPanelonClimateChange(IPCC),2014,ClimateChangein2014:MitigationofClimateChange.WorkingGroupIIIContributiontotheFifthAssessmentReportoftheIntergovernmentalPanelonClimateChange(NewYork:CambridgeUniversityPress).IntergovernmentalPanelonClimateChange(IPCC),2021,ClimateChange2021:ThePhysicalScienceBasis.ContributionofWorkingGroupItotheSixthAssessmentReportoftheIntergovernmentalPanelonClimateChange[Masson-Delmotte,V.,P.Zhai,A.Pirani,S.L.Connors,C.Péan,S.Berger,N.Caud,Y.Chen,L.Goldfarb,M.I.Gomis,M.Huang,K.Leitzell,E.Lonnoy,J.B.R.Matthews,T.K.Maycock,T.Waterfield,O.Yelekçi,R.YuandB.Zhou(eds.)].(NewYork:CambridgeUniversityPress).InPress.InternationalMonetaryFund,2020,“PhysicalRiskandEquityPrices,”GlobalFinancialStabilityReport,Chapter5(Washington,DC:InternationalMonetaryFund).Jeenas,P.,2018,“MonetaryPolicyShocks,FinancialStructure,andFirmActivity:APanelApproach,”DepartmentofEconomicsandBusinessWorkingPaper(Barcelona:UniversitatPompeuFabra).Jordà,O.,2005,“EstimationandInferenceofImpulseResponsesbyLocalProjections,”AmericanEconomicReview,Vol.95,pp.161–182.Jordà,O.,andA.Taylor,2016,“EstimationandInferenceofImpulseResponsesbyLocalProjections,”EconomicJournal,Vol.126,pp.219–255.Kabundi,A.,M.Mlachila,andJ.Yao,2022,“HowPersistentAreClimate-RelatedPriceShocks?ImplicationsforMonetaryPolicy,”IMFWorkingPaperNo.22/207(Washington,DC:InternationalMonetaryFund).28Kahn,M.,K.Mohaddes,R.Ng,M.Pesaran,M.Raissi,andJ-C.Yang,2021,“Long-TermMacroeconomicEffectsofClimateChange:ACross-CountryAnalysis,”EnergyEconomics,105624.King,R.,andR.Levine,1993,“Finance,Entrepreneurship,andGrowth:TheoryandEvidence,”JournalofMonetaryEconomics,Vol.32,pp.513–542.Knack,S.,andP.Keefer,1995,“InstitutionsandEconomicPerformance:Cross-CountryTestsUsingAlternativeInstitutionalMeasures,”Economics&Politics,Vol.7,pp.207–227.Kydland,F.,andE.Prescott,1977,“RulesRatherThanDiscretion:TheInconsistencyofOptimalPlans,”JournalofPoliticalEconomy,Vol.85,pp.473–492.Lane,P.,1997,“InflationinOpenEconomies,”JournalofInternationalEconomics,Vol.42,pp.327–347.LevyYeyati,E.,andF.Sturzenegger,2001,“ExchangeRateRegimesandEconomicPerformance,”IMFStaffPapers,Vol.47,pp.62–98.Lougani,P.,andN.Sheets,1997,“CentralBankIndependence,InflationandGrowthinTransitionEconomies,”JournalofMoney,CreditandBanking,Vol.29,pp.381–399.Lucas,R.,1988,“OntheMechanicsofEconomicDevelopment,”JournalofMonetaryEconomics,Vol.2,pp.3–42.Im,K.,M.Pesaran,andY.Shin,2003,“TestingforUnitRootsinHeterogeneousPanels,”JournalofEconometrics,Vol.115,pp.53–74.Islam,N.,1995,“GrowthEmpirics:APanelDataApproach,”QuarterlyJournalofEconomics,Vol.110,pp.1127–1170.Mankiw,G.,D.Romer,andD.Weil,1992,“AContributiontotheEmpiricsofEconomicGrowth,”QuarterlyJournalofEconomics,Vol.107,pp.407–437.Morris,S.,andothers,(2002,“HurricaneMitchandtheLivelihoodsoftheRuralPoorinHonduras,”WorldDevelopment,Vol.30,pp.49–60.Nordhaus,W.(1991)“ToSloworNottoSlow:TheEconomicsoftheGreenhouseEffect,”EconomicJournal,Vol.101,pp.920–937.Nordhaus,W.,1992,“AnOptimalTransitionPathforControllingGreenhouseGases,”Science,Vol.258,pp.1315–1319.Nordhaus,W.,2006,“GeographyandMacroeconomics:NewDataandNewFindings,”ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica,103,3510–3517.Noy,I.,2009,“TheMacroeconomicConsequencesofDisasters,”JournalofDevelopmentEconomics,Vol.88,pp.221–231.Obstfeld,M.,andA.Taylor,2004,GlobalCapitalMarkets:Integration,Crisis,andGrowth(Cambridge:CambridgeUniversityPress).Obstfeld,M.,J.Shambaugh,andA.Taylor,2005,“TheTrilemmainHistory:TradeoffsAmongExchangerRates,MonetaryPoliciesandCapitalMobility,”ReviewofEconomicsandStatistics,Vol.87,pp.423-438.29Painter,M.,2020,“AnInconvenientCost:TheEffectsofClimateChangeonMunicipalBonds,”JournalofFinancialEconomics,Vol.135,pp.468–482.Parker,M.,2018,“TheImpactofDisastersonInflation,”EconomicsofDisastersandClimateChange,Vol.2,pp.21–48.Posen,A.,1998,“CentralBankIndependenceandDisinflationCredibility:AMissingLink?”OxfordEconomicPapers,Vol.50,pp.335–359.Raddatz,C.,2009,“TheWrathofGod:MacroeconomicCostsofNaturalDisasters,”PolicyResearchWorkingPaperNo.5039(Washington,DC:WorldBank).Ramey,V.,andS.Zubairy,2018,“GovernmentSpendingMultipliersinGoodTimesandinBad:EvidencefromUSHistoricalData,”JournalofPoliticalEconomy,Vol.126,pp.850–901.Rasmussen,T.,2004,“MacroeconomicImplicationsofNaturalDisastersintheCaribbean,”IMFWorkingPaperNo.04/224(Washington,DC:InternationalMonetaryFund).Ravn,M.,andH.Uhlig,2002,“OnAdjustingtheHodrick-PrescottFilterfortheFrequencyofObservations,”ReviewofEconomicsandStatistics,Vol.85,pp.235–243.Rentschler,J.,2013,“WhyResilienceMatters:ThePovertyImpactsofDisasters,”PolicyResearchWorkingPaperNo.6699(Washington,DC:WorldBank).Romer,D.,1993,“OpennessandInflation:TheoryandEvidence,”QuarterlyJournalofEconomics,Vol.108,pp.869–903.Romer,C.,andD.Romer,2010,“TheMacroeconomicEffectsofTaxChanges:EstimatesBasedonaNewMeasureofFiscalShocks,”AmericanEconomicReview,Vol.100,pp.763–801.Rogoff,K.,1985,“TheOptimalDegreeofCommitmenttoanIntermediateMonetaryTarget,”QuarterlyJournalofEconomics,Vol.100,pp.1169–1189.Rogoff,K.,2003,“GlobalizationandGlobalDisinflation,”FederalReserveBankofKansasCityEconomicReview,Vol.88,pp.45–78.Romer,P.,1986,“IncreasingReturnsandLong-RunGrowth,”JournalofPoliticalEconomy,Vol.94,pp.1002–1037.Romer,P.,1990,“EndogenousTechnologicalChange,”JournalofPoliticalEconomy,Vol.98,pp.S71–S102.Sachs,J.,andA.Warner,1997,“FundamentalSourcesofLong-RunGrowth,”AmericanEconomicReview,Vol.87,pp.184–188.Sala-i-Martin,X.,G.Doppelhofer,andR.Miller,2004,“DeterminantsofLong-TermGrowth:ABayesianAveragingofClassicalEstimatesApproach,”AmericanEconomicReview,Vol.94,pp.813–835.Shambaugh,J.,2004,“TheEffectsofFixedExchangeRatesonMonetaryPolicy,”QuarterlyJournalofEconomics,Vol.119,pp.301–352.Sims,C.,andT.Zha,1999,“ErrorBandsforImpulseResponses,”Econometrica,Vol.67,pp.1113–1156.30Skidmore,M.,andH.Toya,2002,“DoNaturalDisastersPromoteLong-RunGrowth?”EconomicInquiry,Vol.40,pp.664–687.Solow,R.,1956,“AContributiontotheTheoryofEconomicGrowth,”OxfordReviewofEconomicPolicy,Vol.23,pp.3–14.Stern,N.,2007,TheEconomicsofClimateChange:TheSternReview(Cambridge:CambridgeUniversityPress).Tol,R.,2018,“TheEconomicImpactsofClimateChange,”ReviewofEnvironmentalEconomicsandPolicy,Vol.12,pp.4–25.Végh,C.,1989,“GovernmentSpendingandInflationaryFinance:APublicFinanceApproach,”IMFStaffPapers,Vol.36,pp.657–77.Walsh,C.,2008,“CentralBankIndependence,”inS.DurlaufandL.Blume,eds.,TheNewPalgraveDictionaryofEconomics(NewYork:PalgraveMacmillan).31APPENDIXTableA1.SummaryStatisticsVariableobservationsmeanStandarddeviationminimummaximumRealGDPgrowth(notinpercent)68900.0320.057-1.020.802Inflationrate(headline)(notinpercent)61290.990.25-0.3705.223Publicdebt(%GDP)586557.1947.170.002677.18RealGDPpercapita(log)695911.142.375.4518.68Outputgap(%potentialGDP)7033-0.4636.09-2122.07827.09Tradeopenness(%GDP)649177.1048.540.021442.62Urban(%)741749.8023.643.82100Financialopennessindex62970.4410.35601Termsoftrade49764.6920.2943.066.58Broadmoneygrowth(%)603133.28274.82-99.8612513.14Temperaturenaturaldisaster79450.06140.2401Droughtnaturaldisaster79450.0810.2701Stormnaturaldisaster79450.2230.4201TableA2.CoefficientEstimatesunderlyingFigure1Horizonk(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)ShocktypeExtremetemperatureDroughtStormshock-0.0025-0.0089-0.0192-0.0297-0.03200.00510.01010.00880.00950.00560.0016-0.0017-0.0026-0.0039-0.0081(0.003)(0.005)(0.008)(0.012)(0.016)(0.003)(0.004)(0.007)(0.010)(0.018)(0.002)(0.003)(0.005)(0.006)(0.007)L.shock-0.0053-0.0099-0.0194-0.0230-0.03370.00150.0004-0.0008-0.0069-0.0065-0.0023-0.0024-0.0048-0.0075-0.0074(0.002)(0.005)(0.009)(0.013)(0.020)(0.002)(0.004)(0.006)(0.011)(0.016)(0.002)(0.004)(0.005)(0.008)(0.010)L2.shock-0.0004-0.0035-0.0058-0.0040-0.0152-0.00310.0012-0.00030.0034-0.00690.00060.00280.00530.00780.0102(0.002)(0.005)(0.008)(0.014)(0.014)(0.002)(0.004)(0.006)(0.009)(0.013)(0.002)(0.004)(0.008)(0.009)(0.010)L.hcpi10.14780.30180.46900.65940.79250.14760.30140.46880.65950.79320.14800.30200.46960.66000.7936(0.030)(0.047)(0.090)(0.147)(0.197)(0.030)(0.048)(0.090)(0.147)(0.198)(0.030)(0.047)(0.090)(0.147)(0.197)L2.hcpi10.01140.03350.06870.08840.09750.01150.03380.06880.08880.09810.01120.03320.06820.08830.0974(0.010)(0.025)(0.056)(0.079)(0.104)(0.010)(0.025)(0.055)(0.080)(0.105)(0.010)(0.025)(0.055)(0.079)(0.105)L.outputgap0.00000.00000.00000.00000.00000.00000.00000.00000.00000.0000-0.00000.00000.00000.00000.0000(0.000)(0.000)(0.000)(0.000)(0.000)(0.000)(0.000)(0.000)(0.000)(0.000)(0.000)(0.000)(0.000)(0.000)(0.000)L2.outputgap0.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.0000(0.000)(0.000)(0.000)(0.000)(0.000)(0.000)(0.000)(0.000)(0.000)(0.000)(0.000)(0.000)(0.000)(0.000)(0.000)Observations5,1805,0544,9164,7634,6065,1805,0544,9164,7634,6065,1805,0544,9164,7634,606R-squared0.36860.36040.35100.34360.30620.36890.36010.34970.34240.30490.36830.35970.34970.34250.3051Numberofcountries172172172172171172172172172171172172172172171Note:LPestimationofequation[1].Headlineinflationasdependentvariable.Standarderrorsinparenthesis.,,denotestatisticalsignificanceatthe10,5and1percentlevels,respectively.Constantomittedforreasonsofparsimony.33TableA3.CoefficientEstimatesunderlyingFigure10Horizonk(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)ShocktypeExtremetemperatureDroughtStormshock-0.0011-0.0026-0.0057-0.0108-0.0137-0.0025-0.0011-0.00160.00020.0012-0.00110.00160.0009-0.00030.0018(0.002)(0.003)(0.004)(0.005)(0.006)(0.002)(0.003)(0.003)(0.005)(0.006)(0.001)(0.003)(0.004)(0.004)(0.004)L.shock-0.0014-0.0058-0.0101-0.0130-0.01610.00380.00300.00630.00500.00370.00290.00240.00240.00240.0022(0.001)(0.003)(0.004)(0.005)(0.006)(0.002)(0.003)(0.004)(0.006)(0.007)(0.001)(0.003)(0.003)(0.004)(0.004)L2.shock-0.0040-0.0077-0.0106-0.0139-0.0142-0.00040.00180.0005-0.00040.0025-0.0016-0.0017-0.0021-0.0026-0.0013(0.001)(0.003)(0.003)(0.005)(0.005)(0.002)(0.003)(0.004)(0.006)(0.007)(0.001)(0.002)(0.003)(0.004)(0.004)L.gdp10.18140.20040.23910.23480.26360.18190.20110.24080.23730.26600.18230.20130.24100.23780.2663(0.043)(0.059)(0.070)(0.073)(0.073)(0.043)(0.059)(0.070)(0.073)(0.073)(0.043)(0.059)(0.070)(0.073)(0.073)L2.gdp10.03310.09300.08020.08340.00480.03340.09410.08160.08480.00640.03330.09330.08110.08460.0054(0.025)(0.053)(0.069)(0.070)(0.049)(0.026)(0.053)(0.069)(0.070)(0.049)(0.026)(0.053)(0.069)(0.070)(0.049)L.outputgap-0.0000-0.0000-0.0000-0.0001-0.0001-0.0000-0.0000-0.0000-0.0001-0.0001-0.0000-0.0000-0.0000-0.0001-0.0001(0.000)(0.000)(0.000)(0.000)(0.000)(0.000)(0.000)(0.000)(0.000)(0.000)(0.000)(0.000)(0.000)(0.000)(0.000)L2.outputgap-0.0000-0.0000-0.0000-0.0001-0.0001-0.0000-0.0000-0.0000-0.0001-0.0001-0.0000-0.0000-0.0000-0.0001-0.0001(0.000)(0.000)(0.000)(0.000)(0.000)(0.000)(0.000)(0.000)(0.000)(0.000)(0.000)(0.000)(0.000)(0.000)(0.000)Observations5,1055,0114,8844,7394,5865,1055,0114,8844,7394,5865,1055,0114,8844,7394,586R-squared0.16680.14900.13940.12960.11750.16710.14790.13780.12710.11480.16700.14810.13760.12710.1148Numberofcountries173173173173172173173173173172173173173173172Note:LPestimationofequation[1].Headlineinflationasdependentvariable.Standarderrorsinparenthesis.,,denotestatisticalsignificanceatthe10,5and1percentlevels,respectively.Constantomittedforreasonsofparsimony.

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

碳中和
已认证
内容提供者

碳中和

确认删除?
回到顶部
微信客服
  • 管理员微信
QQ客服
  • QQ客服点击这里给我发消息
客服邮箱