2022EUR31261ENCLEANENERGYOUTLOOKS:ANALYSISANDCRITICALREVIEWISSN1831-9424ThispublicationisaTechnicalreportbytheJointResearchCentre(JRC),theEuropeanCommission’sscienceandknowledgeservice.Itaimstoprovideevidence-basedscientificsupporttotheEuropeanpolicymakingprocess.ThescientificoutputexpresseddoesnotimplyapolicypositionoftheEuropeanCommission.NeithertheEuropeanCommissionnoranypersonactingonbehalfoftheCommissionisresponsiblefortheusethatmightbemadeofthispublication.ForinformationonthemethodologyandqualityunderlyingthedatausedinthispublicationforwhichthesourceisneitherEurostatnorotherCommissionservices,usersshouldcontactthereferencedsource.ThedesignationsemployedandthepresentationofmaterialonthemapsdonotimplytheexpressionofanyopinionwhatsoeveronthepartoftheEuropeanUnionconcerningthelegalstatusofanycountry,territory,cityorareaorofitsauthorities,orconcerningthedelimitationofitsfrontiersorboundaries.ContactinformationName:TarvydasD.Email:Dalius.TARVYDAS@ec.europa.euTel.:+3122456-513EUScienceHubhttps://joint-research-centre.ec.europa.euJRC130719EUR31261ENPDFISBN978-92-76-57878-9ISSN1831-9424doi:10.2760/309952KJ-NA-31-261-EN-NLuxembourg:PublicationsOfficeoftheEuropeanUnion,2022©EuropeanUnion,2022ThereusepolicyoftheEuropeanCommissiondocumentsisimplementedbytheCommissionDecision2011/833/EUof12December2011onthereuseofCommissiondocuments(OJL330,14.12.2011,p.39).Unlessotherwisenoted,thereuseofthisdocumentisauthorisedundertheCreativeCommonsAttribution4.0International(CCBY4.0)licence(https://creativecommons.org/licenses/by/4.0/).Thismeansthatreuseisallowedprovidedappropriatecreditisgivenandanychangesareindicated.TheEuropeanUnion/EuropeanAtomicEnergyCommunitydoesnotownthecopyrightinrelationtothefollowingelements:Coverpageillustration-©stock.adobe.comHowtocitethisreport:TarvydasD.,CleanEnergyTechnologyObservatory:CleanEnergyOutlooks:AnalysisandCriticalReview–2022StatusReportonTechnologyDevelopment,Trends,ValueChainsandMarkets,PublicationsOfficeoftheEuropeanUnion,Luxembourg,2022,doi:10.2760/309952,JRC130719.iContentsAbstract.......................................................................................................................................................................................................................................................................1Foreword.....................................................................................................................................................................................................................................................................2Acknowledgements..........................................................................................................................................................................................................................................3ExecutiveSummary.........................................................................................................................................................................................................................................41Introduction.....................................................................................................................................................................................................................................................62Energyscenarios........................................................................................................................................................................................................................................82.1Background........................................................................................................................................................................................................................................82.2Selectioncriteria...........................................................................................................................................................................................................................82.3Methodologicalapproach.................................................................................................................................................................................................123Energysystemdevelopmentsinlowcarbonfutures..........................................................................................................................................133.1Primaryenergy...........................................................................................................................................................................................................................133.2Energyuseinsectors............................................................................................................................................................................................................143.3Greenhousegasemissions.............................................................................................................................................................................................173.4Macro-economics.....................................................................................................................................................................................................................193.5Investmentinrenewablegenerationcapacities.........................................................................................................................................214Lowcarbonenergytechnologyoutlooks.........................................................................................................................................................................234.1Bioenergy.........................................................................................................................................................................................................................................234.2Solarenergy..................................................................................................................................................................................................................................284.3Geothermal.....................................................................................................................................................................................................................................324.4Heatpumps....................................................................................................................................................................................................................................354.5Hydrogen..........................................................................................................................................................................................................................................364.6Hydro....................................................................................................................................................................................................................................................404.7Ocean...................................................................................................................................................................................................................................................434.8Wind......................................................................................................................................................................................................................................................465Conclusions..................................................................................................................................................................................................................................................50References.............................................................................................................................................................................................................................................................53Listofabbreviationsanddefinitions...........................................................................................................................................................................................56Listoffigures.....................................................................................................................................................................................................................................................57.1AbstractThereportassessesenergyscenariostudiespublishedbymajorintergovernmentalorganisations,industry,academiaandNGOsbetweenthebeginningof2019andtheendof2021.Itprovidesanaggregatedviewofpossiblefuturedevelopmenttrendsonselectedlowcarbonenergytechnologygroups:bioenergy,solarenergy,geothermalenergy,ambientheat,hydrogen,hydropower,oceanenergyandwindenergy.IthighlightsthepossibleroleofthesetechnologiesintheenergymixgloballyandintheEU,aswellastheEUshareindeploymentofthesetechnologies.Acomparisonofenergyscenarioscreatedbydifferentactorscanfacilitateabetterunderstandingoftherolethatthesetechnologiescouldplayinfutureenergysystems,howtheymightinteractwitheachother,whatisneededtointegratethemintoexistingsystemsandhowtheycouldbeaffectedbysocialandbehaviouralchanges.Thereportdistilsviewsonthemaintechnologiesdrivingthedecarbonisationeffort,asseenbyenergyscenariostudiesinamediumterm(2030)andlongterm(2050)timeframe,averagingtheeffortneededanddiscussingthepossibleassumptionsbehindtheoutliers.2ForewordThisreportisanoutputoftheCleanEnergyTechnologyObservatory(CETO).CETO’sobjectiveistoprovideanevidence-basedanalysisfeedingthepolicymakingprocessandhenceincreasingtheeffectivenessofR&Ipoliciesforcleanenergytechnologiesandsolutions.ItmonitorsEUresearchandinnovationactivitiesoncleanenergytechnologiesneededforthedeliveryoftheEuropeanGreenDeal;andassessesthecompetitivenessoftheEUcleanenergysectoranditspositioningintheglobalenergymarket.CETOisbeingimplementedbytheJointResearchCentreforDGResearchandInnovationEnergy,incoordinationwithDGEnergy.3AcknowledgementsTheauthorisparticularlygratefulforthecommentsandcontributionsreceivedfromthefollowingcolleagues:JoseMOYA(JRC),CatrionaBLACK(JRC)fortheirvaluableinputthathelpedtoshapethereport.GRANATAStefanoNicola(DGCLIMA),POPONIDaniele(DGRTD),KITOUSAlban(DGCLIMA),DOSREISPieroCarlo(DGCLIMA)andPEKARFerenc(JRC)fortheirreviewandcomments.JRCcolleaguesNigelTAYLOR(CETOprojectleader),AndreasSCHMITZandAnaVAZQUEZDIAZ(CETOdeputyprojectleaders)fortheirsupport,reviewandcomments.AuthorsTarvydas,Dalius4ExecutiveSummaryDespitetheParisagreement,globalgreenhousegasemissionscontinuetorise.TheCOVID-19pandemicwasabletocauseaslightreductionin2020,butthisdidnotlast.In2021,CO2emissionsroseagain,and2022isexpectedtochalkupanewworldrecord.WiththeEuropeanGreenDealandtherecentREPowerEUplan,theEuropeanUnionisacceleratingeffortstodecarboniseitseconomyandreducegreenhousegasemissionsbyatleast55%by2030,achievingcarbonneutralityby2050.Russia'sinvasionofUkrainetriggeredvastglobalenergymarketdisruption.Manyscenariostudies,relayingonnaturalgasastransitionfuel,losttheyrelevance.ThisreportisbasedonthescenariostudiespublishedbeforeRussianinvasion(exceptREPowerEU)anddonottakeintoaccountgeopoliticalupheavalandinstabilityofenergyprices.Nevertheless,insidesprovidedarestillusefulinunderstandingchallengesenergyofenergysectortransitiontocarbonneutrality.Therearemanyenergyscenariostudieswhichfocusonnet-zeroorParis-compatiblefutures.Thisreportlooksintothirteenstudiesandfocusesoneightgroupsoftechnologiesthatcouldfacilitatethetransitiontoacarbon-neutraleconomy.Fromeachstudy,onescenariowasselected,lookingintodeepdecarbonisationpathways.Acrossthesestudies,thereisonecommonunderstanding:thefuturebelongstoelectricity.Despitedifferencesinlevelsofambition,methodologicalapproachesandtransformationspeeds,allstudiesseeelectronsdrivingboththeglobalandtheEuropeaneconomies.Theremaybedisagreementsonhowelectricitywillbegeneratedandused,butconsensusisclear:toreduceemissions,aconsiderableincreaseinelectrificationinallend-usesectorsisneeded.Itcanbedoneeitherdirectlyorviaenablingintermediatetechnologies,likegreenhydrogenandsyntheticfuels.By2030,electricityandelectricity-basedfuelscouldsatisfyabove40%oftotalfinaldemandintheEU.Accordingtosomeenergyscenariostudies,by2050,electricityandelectricity-basedfuelscouldsatisfyupto90%oftotalfinaldemandintheEU.Globally,electrificationreacheslowerlevels,ataround30%oftotalfinaldemandin2030andapproaching70%onaverageby2050.Whilethejuryisoutonthefutureenergymix,twomaintechnologiesaresettodominatethepowersector:wind(bothonshoreandoffshore)andsolar(mostlyPV).Inthemajorityofscenarios,thesetwotechnologiesprovidearound70-80%ofallelectricitygeneratedin2050.Insomeextremecases,theshareofwindandsolarcanreachashighas90%.Scenariostudiesdonotagreeonwhethersolarorwindwillbemoreimportant.Solarenergyandwindarecurrentlythefastestevolvingelectricityproductiontechnologiesand,accordingtoscenariostudies,theywilldominatethemarketby2050.Inthenext10years,globalinstalledsolarcapacitywillgrowsevenfoldonaverage,reachingaround5000GWoftotalinstalledsolarpower.Inthesameperiod,globalwindinstalledcapacitywillgrowto3000GWonaverage(withsomeoutliersseeingalmost6000GW),withgenerationincreasingalmostsixfoldcomparedto2019.After2030,growthcontinues:by2050installedsolarcapacitywillreach10000-15000GWglobally,providing22-40%oftotalelectricitygeneration.By2050,globalwindinstallationscouldreach7000-8000GWand,onaverage,generateover30%oftheworld’selectricity.Inmostofthestudiesreviewed,around80%ofglobalpowerisproducedusingwindandsolarinstallationsbythemiddleofthecentury.IntheEU,solarpowergrowthisslower–with‘only’athreefoldincreaseovertenyears,averagingaround370GWofinstalledpowercapacityin2030.Afterwards,thetrendcontinues,reachingaround1000GWonaverageandproviding13-22%oftheEU’selectricityin2050.IntheEUinstallcapacityofwindwillbesimilartosolarin2030(averagingaround365GW),butlowerin2050(averagingaround670TGW)Inthefuture,mosthydrogenwillbeproducedbyintermittentrenewableelectricity.By2030,hydrogendemandforenergyisnegligible,bothgloballyandintheEU.Studiesdonotagreeonwhichsectorswilldriveitstransformation,butbetween2030and2050,hydrogenconsumptionincreases,ledbytransportandindustry.Themajorityofbioenergy,bothgloballyandintheEU,isusedinfinaldemandsectors.Inthemediumterm(2030),itshowsaslightincreaseoncurrentlevels.Despitesmallchangesinbioenergyconsumptionlevels,thereareshiftsinsectoraldemand.Studiesseeadecreasingdemandforsolidbiomassinthebuildingssector,whilemorebioenergywillbeusedintheindustryandtransportsectors.In2050,globaltrendsdiverge:somescenariosseegrowthafter2030,whileothersseeadecrease.IntheEU,bioenergyutilisationwillbelowerin2050comparedto2030,withthebuildingssectorleadingthereduction.5Geothermalpowerinstallationsarestilllowinnumberandstatisticallycomparabletoemergingtechnologies.In2020,therewasonly14GWofgeothermalpowercapacityinstalledglobally,whichcouldreacharound200GWin2050.IntheEU,studiesanticipatenosignificantadditionstogeothermalcapacity,resultinginanegligibleshareevenin2050.Hydropoweriscurrentlythemainrenewableenergysourceusedforpowerproduction,accountingfor50%renewablepowercapacitiesand63%generation.By2030,noneoftheglobalorEUenergyscenariosseeanymajordevelopmentinhydropower.By2050,hydropowercouldreacharound2000GWoftotalinstalledcapacitygloballyprovidinglessthan10%oftotalelectricitysupplyinmoststudies.Oceanenergyisanemergingtechnologywithonly0.5GWcurrentlyinstalledglobally,halfofwhichisintheEU.Itcanbeconcludedthatevenwithhighgrowthpotential,oceanenergywillnotplayasignificantroleby2050.Heatpumps(ambientheat)arenotusuallydirectlyincludedinenergyscenariostudiesresults.Nevertheless,energyscenariostudiesstresstheimportanceofambientheatinthefutureenduseenergymix.Heatpumpscouldcoverheatingdemandinthebuildingssectorandlowandmediumtemperatureheatinindustry.In2030,thenumberofheatpumpscouldvarybetween200millionand600millionglobally,reachingupto1800millionby2050.IntheEU,heatpumpscouldprovide530TWhoffinalenergyin2050.61IntroductionDuringthesixyearsafterthesignatureofTheParisAgreement,194countriessubmittedNationallyDeterminedContributions(UNFCCC,2022b).However,theworldisevenfurtherawayfromtheclimatetargetsnowthanin2015.TheCOVID-19crisisresultedinaslightreductionofglobalCO2emissionsin2020,butnotforlong–in2021therewasareturntopre-pandemiclevels,tocontinuetonewheightsonitsCO2emissionsjourney.InAugust2021,theofficialTheIntergovernmentalPanelonClimateChange(IPCC)announcementofthefirstinstalmentofitsSixthAssessmentReport(AR6)wasentitled,“Climatechangewidespread,rapid,andintensifying”(IPCC,2021).TheIPCCessentiallyconcludedthatclimateiswarmingupatafasterpacethanpreviouslyanticipatedandtherefore,immediateactionshouldbetaken.Ontheotherhand,therearepositivesignsofchange–theEUcanbeseenasashowcaseforeffortstoreduceCO2emissions:despiteitsgrowingeconomicoutput,greenhousegasemissionsintheEuropeanUnionhavesteadilydecreasedsince2015.Nevertheless,inordertominimiseclimatechange,decarbonisationeffortsshouldbestrengthenedglobally.Thereisacommonunderstandingthatclimatechangeshouldbestopped,andthatthetimeframefordoingsoisclosing.Thereisabroadsetofwaysinwhichtheeconomycanbedecarbonised.Everybodyagreesthatpartofthesolutionshould(atleastpartially)betechnologybased:inordertoreducetheCO2footprintoftheeconomy,weshouldreplacefossilfuelswithrenewableenergyresources.Thisstillleavesthequestionofwhichrenewabletechnologiesshouldbeusedandtowhatextent.Anotheropenquestionishowmuchenergywewillactuallyneedinthefuture.Consumptionwhichdoesnotstopgrowingmayhithardplanetarylimits(ClubOfRome,2022).Increasingenergyefficiencyispartofthesolution,butbehaviouralandsocialchangesmayalsobenecessary.Technologyinnovationanddeployment,aswellastheavailabilityofresources,economicgrowth,changesinsocietyandevendietarypreferences,nottomentionunpredictableeventslikethepandemics,extremeweathereventsorgeopoliticalupheavals,willaffecthowhumansproduce,transformandconsumeenergyandthedegreetowhichtheenergysystemisenvironmentallysustainable.TheglobalenergymarketdisruptioncausedbyRussia'sinvasionofUkrainetriggeredparadigmchangeinenergyscenariostudies(e.g.REPowerEUplan(EuropeanCommission,2022d)amendedFitfor55(EuropeanCommission,2019b)).Thereisobviouslyuncertaintyonthedegreetowhichthesefactorswillaffecttheenergysystemstransformation.Thelongerthetimehorizon,thewidertheuncertaintyrangeis.Thatiswhythereisamultitudeofenergyscenarioslookingintothemediumterm(2030)andlongterm(2050andbeyond),whichincorporatebroadersocietalandmacroeconomictrendsimpactingtheenergysystem.Usingdifferentassumptions,scopesandtools,scenariostudiesprovideawiderangeofviewsofhowtheenergysystemcouldevolveinthefuture.Anin-depthreviewofarangeofenergyscenarioscreatedbyavarietyofactorsisneededtobetterunderstandtherolethatselectedtechnologiescouldplayinfutureenergysystems,howtheyinteractwitheachother,whatisneededtointegratethemintoexistingsystemsandhowtheywillbeaffectedbysocialchanges.Scenarioscreatedbydifferentactors–suchasnationalandinternationalorganisations,privatecorporations,non-governmentalorganisations(NGOs),researchinstitutesandacademia–allowustoseethebroaderpicture,representingawiderangeofstakeholderviewsoutsideanysingleprofessionalbubble.Thecomparativeassessmentofenergyscenariosisuseful,becauseontheonehanditmayidentifythebasicsetoftechnologiesdominatingthemajorityofenergyscenarioprojections.Ontheotherhand,themost‘extreme’scenarioswouldallowunderstandingtheboundaryconditionsunderwhichtheenergysystemcouldevolve.Whileinherentlyuncertain,suchinformationcouldformthebasisfordeveloping“noregret”solutions,basedoncommonalitiesobservedinscenarioresults.Differencesamongscenarioresultsmayindicatehigheruncertainty(risk)areaswheremoreresearchmaybeneededanddecisionsshouldbemademorecarefully.Thisreportisbasedonthirteenenergyscenariostudiespublishedbydifferentstakeholders,focusingonNet-ZeroorParis-comparablepathways.Welookintoeightgroupsoftechnologythatcoulddrivethetransitiontoacarbon-neutraleconomy(bioenergy,solarenergy,geothermalenergy,ambientheat,hydropower,ocean,windandhydrogen).Thelattergroup,hydrogen,includetechnologiesfortheproduction,storageandtransportofhydrogenwhichcouldhavemultipleapplications.Hydrogencouldbeusedforpowergenerationorinenduses(transport,buildings,industry),whileactingasdemand-sidemanagementorstoragetechnologythatwouldenabletheintegrationofintermittentrenewableenergysourceslikesolarandwind.Itcanalsobeusedasanintermediatestepindecarbonisinghard-to-abatesectorsintheformofsyntheticfuels.Fromeachstudy,onescenariowasselected,lookingintodeepdecarbonisationpathwaysfortheglobaland/orEuropeanenergysystems.Thisreportfocusesoninsightsderivedfromaquantitativecomparisonofselectedenergyscenarioresults,distillingpossibledeploymentrangesoftheseeighttechnologygroupsinthemid-andlong-termfuture.Their7rolesareassessedinpowergenerationandfinaldemandbothgloballyandintheEU.Lookingintofutureglobalmarkets,thepossibleroleoftheEUisdiscussed.82Energyscenarios2.1BackgroundScenariostudiesexaminearangeofpossiblefutures,drivenbyunderlyingassumptions.Energyscenariosareoutlooksthatdescribehowenergysupplyanddemandmaydevelopinthefuture,basedonacoherentsetofassumptions.Wideutilisationofenergyscenarioswastriggeredbytheenergycrisisofthe1970s(Shell,2008),andtodaytheyareusedbyawiderangeactors,includingoilcompanies(Shell,2021)(BP,2020),governmentsandintergovernmentalorganisations(EuropeanCommission,2020),andareanindispensabletoolfordecision-makersinparticularandpublicdiscourseingeneral(CAN,2022).Energyscenariosarealsoanindispensabletoolforthebetterunderstandingpathwaystomitigateclimatechange.Theycanhelpustounderstandcomplexrelationsbetweenfactorssuchaschangesinenergydemand,lifestylesanddietarypreference.Scenariosareinstrumentalinthestruggletofightclimatechange(UNFCCC,2022a).Inthepast,energyscenariosweretechnology-drivenandbasedonsimulationoroptimisationmodels,butwitheverincreasingdataavailabilityandcomputationalpower,themodelsbehindenergyscenarioshaveevolved.Insomecases,energyscenariosaretheresultsofintegratedmodellingframeworkslinkingtogetherdifferentspecialisedmodelscoveringnotonlyenergyproductionandconsumptiontechnologies,butalsolanduse,behaviouralchanges,socioeconomicaspects,etc.Thisapproachallowsforabetterunderstandingoflinksandthefeedbackloopsofdifferentcomponents.AprominentexampleofthelinkingofdifferentmodelsistheintegratedassessmentmodelsusedbytheIPCC.TheUnitedNationsFrameworkConventiononClimateChange(UNFCCC)ParisAgreement(UNFCCC,2015)triggeredthedevelopmentofamultitudeofenergyscenariosdrivenbyclimategoals.Theserangefromglobalstudiesconsideringthepossibilityofreachingcarbonneutralitybyasetdate(inthelateststudiesusually2050orearlier)orstayingwithinacarbonbudget(TheGlobalCarbonProject,2022)(withorwithoutoffset),tonationalorregionalstudiesintowaystobecomezero-carbon(EuropeanCommission,2019b).Thisreportispredominantlybasedonnormative1energyscenariostudiesbasedonoptimisationorsimulationmodelsormodellingsuites2.Themajorityofenergyscenariostudiesusedinthisreporthaveanormativegoalofreachingnet-zeroemissionsby2050.Despitetheircommongoalofdecarbonisation,thesescenariostudiesseeverydifferentpathwaystoachievingit:drivenbydifferentassumptionsontechnologydevelopment,theeconomyandbehaviouralchanges,resultingindifferentlevelsofdemandandwaystoachieveit.Comparingdifferentstudieshelpsustounderstandthecomplexinteractionsbetweenfuturetechnologiesanddrivers,prioritisingonesetofsolutionsoveranother.2.2SelectioncriteriaInthepreparationofthisreport,47scenariostudiesweretakenintoconsideration,publishedfromJanuary2019toFebruary2022.Ourselectionwasbasedoncoverage(intermsofgeographicaldisaggregationandthesetoftechnologiesreported),relevance(includingpublishinginstitution,assumptionsandlevelofambition)andtheavailabilityofdatasets.Basedontheseconsiderations,13studieswereselected.Themajorityofthesehavescenariosinlinewithfastglobaldecarbonisation,reachingclosetozeroemissionsby2050.Foreachstudy,onlyonescenariowasused.Inthecaseofseveralscenariosperstudy,selectionwasbasedonthelevelofambition,andhowcloseassumptionsand/orresultsweretotheEUGreenDeal(EuropeanCommission,2019b).InFigure1andFigure2,asummaryofscenariocoverageispresented.Inthesetables,“Yes”indicatesthatinformationisavailableeitherinthestudyitselforintheaccompanyingmaterials,and“No”,thatinformationisnotreadilyavailable.“Detailed”indicatesthatthescenarioprovidesadisaggregationofselectedvariables,forexampleinthecaseofwind,informationisavailableforbothonshoreandoffshore.Insomecases,studiesprovideevenhigherlevelsofdisaggregation,forexampleoffshorewind,fixedorfloating.Inthecase1Normativescenarios(explorativeortarget-seekingscenariosinothersources)strivetoachieveanormativelydefinedfuture,withaclearvisiononthestateofasetofelementsorvariablesatagivenpointoftimeinthefuture.Normativescenariosareusuallytargetdriven(forexampleachievingnet-zeroGHGemissionsorabandoningallfossilfuelbyacertainpointintime).Normativescenariosmayalsohaveotherconstraints(forexamplealimitedsetofpossiblefuturetechnologies:nonewnuclearpowerplants).2Whilehistorically,energysectorstudieswereusuallybasedonasinglemodellookingonlyattheenergysector,modelscenariostudiesareoftenbasedonseveral(oftensoftly)interlinkedmodels,dealingwithdifferentareas.Forexample,JRCGECO(Keramidas,etal.,2021)usesthePOLES-JRC(JRC,2018)modeloftheworldenergysystemfortheenergysectorandgreenhousegas(GHG)emissionforecasting,andJRC-GEM-E3(JRC,2022)isusedtoevaluatetheeconomicimpactsofeachscenariodeveloped.UTS/ISF(Teske,2019)usedanevenmorecomplexmodellingsuiteofsixmodelsdealingwiththeenergysystem,transport,renewabletechnologyassessment,thepowersystemandseveralmodelstoassessemissionpathways(UTS/ISF,2017).9ofhydrogen,“Split”meansthatinformationonfinaldemandisavailableforpurehydrogenandsyntheticfuels.“Partial”indicatesthatinformationisavailable,butnotsufficienttofullycovertheselectedtechnology.Forexample,hydrogenandsyntheticfuelsarecombined.InthecaseoftheEU,itindicatesdataavailabilityinthegeographicalcoverageclosesttotheEU27.IfthereportcoversboththeEU27andEurope,EU27valueswereused.Inothercases(EU28,OECDEurope,andEurope),originaldata,whenpossible,werescaleddowntoEU27levelinordertomakethemcomparable.Itisworthnotingthat“NotAvail.”doesnotindicatethattheselectedtechnologyorparameterwasnotused/availableintheanalysiscoveredbytheselectedscenariostudy.Inmostcasesitonlyindicatesthattheselectedvariablewasnotprovidedinthedatatablesorgraphsforthisscenarioorwasreportedinanaggregatedway,notsuitableforthetechnologydisaggregationlevelusedinthisreport.Figure1.CoverageofselectedscenariosSource:JRCanalysisFigure2.TechnologiesrepresentedinselectedscenariosSource:JRCanalysisTheJointResearchCentre(JRC)annualreport,“GlobalEnergyandClimateOutlook”,(GECO)publishedin2021(Keramidas,etal.,2021),focusedonglobalpathwaystoclimateneutrality.Itcoversfourdistinctscenarios,twoofwhich(CurPolandNDC-LTS)donotachieveclimateneutrality(inthiscasea1.5°Ctarget).Theremainingtwo1.5°C-Uniformand1.5°C-DifferentiatedareinlinewiththeParisAgreementlong-termgoalofatemperatureriseoverpre-industrialtimesofwellbelow2°Cattheendofthecenturywith50%probabilityofnotexceeding1.5°Cofwarming.Themainnormativedifferencebetweenthesescenariosisthecarbonprice:in1.5°C-Uniform,thecarbonpriceisuniformforallregions(distributingtheburdenofclimateactionequallyamongtheregions),whilein1.5°C-Differentiated,thecarbonpricevariesbyregion(distributingthemitigationeffortsbasedonpercapitaincomeratherthanjustenergyusage).Inthisreportweuseddatafromthe1.5°C-Differentiatedscenario,referredtohenceforthasJRCGECO.JRCGECOhasveryhighdataavailability,intheformofexceltablesandanonlinedatavisualisationtool(EuropeanCommission,2022).TheInternationalRenewableEnergyAgency(IRENA)annualreport,WorldEnergyTransitionOutlook(WETO)(IRENA,2021),focusesonthe1.5°Cpathway.ItstwomainscenariosarethePlannedEnergyScenario(aScenarioEUWorldGDPPopulationInvestmentsPrimaryCapacityGenerationFinalEmissionsJRCGECOEU27YesYesYesNotAvail.YesYesYesYesYesIRENANotAvail.YesNotAvail.NotAvail.PartialNotAvail.YesYesYesYesIEAWEOEU27/PartialYesYesYesPartialYesYesYesYesYesECFit55YesNotAvailableYesyesPartialYesYesYesYesYesDNVEuropeNotAvailableYesYesPartialYesYesYesYesYesShellNoYesYesYesNotAvail.YesYesFuelInputPartialyYesMcKinseyEU27NotAvailableNotAvail.NotAvail.NotAvail.NotAvail.YesYesPartialYesEUCalcEU28NotAvailableNotAvail.NotAvail.NotAvail.YesNotAvail.YesYesYesCANEU28NotAvailableNotAvail.NotAvail.NotAvail.YesYesYesYesTesBPEU28/PartialPartialYesYesNotAvail.PartialNotAvail.YesPartialYesJRCTIMESEU27NotAvailableNotAvail.NotAvail.NotAvail.YesYesYesYesYesIFSOECDEuropeYesYesYesNotAvail.YesYesYesYesYesBNEFNotAvail.YesNotAvail.NotAvail.YesYesTesYesYesYesScenarioYearBioenergySolarGeothermalHeatPumpsHydrogenHydroOceanWindJRCGECO2021YesYesYesNotAvail.YesYesYesYesIRENA2021YesYesYesNotAvail.YesYesYesYesIEAWEO2021DetailedDetailedYesNotAvail.YesYesYesDetailedECFit552021DetailedDetailedYesNotAvail.yesYesNotAvail.YesDNV2021YesYesYesNotAvail.YesYesNotAvail.DetailedShell2021YesyesYesNotAvail.YesYesDetailedDetailedMcKinsey2020YesDetailedYesNotAvail.YesYesNotAvail.YesEUCalc2020YesYesNotAvail.NotAvail.YesYesYesDetailedCAN2020DetailedDetailedYesYesYesYesYesDetailedBP2020DetailedDetailedYesYesYesYesNotAvail.DetailedJRCTIMES2019DetailedYesYesNotAvail.YesYesDetailedYesIFS2019DetailedDetailedYesYesYesYesDetailedYesBNEF2021DetailedDetailedYesNotAvail.YesYesNotAvail.Detailed10referencescenariobasedonnationalenergyplansandtargetsastheynowstand)andthe1.5°CScenario,basedoncurrentlyreadilyavailabletechnologies,scaledupatthenecessarypaceandratetomeetthe1.5°Cclimateambition.Thisstudyusesthe1.5°CScenario,whichwillhenceforthbereferredtoasIRENA.TheavailabilityofdataforWETOismoderate:themajorityofthedatausedinthisreportcomesfromthedatatablesprovidedinitsannexes.TheInternationalEnergyAgency(IEA)annualreport,WorldEnergyOutlook(IEA,2021e),coversfourdistinctscenarios:StatedPoliciesScenario(STEPS),AnnouncedPledgesScenario(APS),SustainableDevelopmentScenario(SDS)andNetZeroEmissionsby2050scenario(NZE).Onlyoneofthesescenariosisalignedwiththelong-termParisAgreementgoalofreducingemissionstokeepthetemperaturerisebelow2.0°C,essentiallyensuringglobalcarbonneutralityby2050.IEAWEONZEisalsopublishedasaseparatereportontheglobalnetzerotarget.BoththeIEAWEONZEscenarioandtheIEAreport,“NetZeroby2050”(IEA,2021a),arebasedonthesamedataset,withonlyonedifference:theDataAnnexofIEAWEOismoreprecise(toonemoredecimalplace,whichmakesahugedifferenceinenergyflowsexpressedinPJ).AllthedatausedinthegraphscomesfromtheIEAWEOreport,butinsightsaredrawnfromboth.Ofthescenariostudiesreviewedinthisreport,IEAWEOisamongstthosewiththehighestdataavailability:inadditiontothescenarioresultsprovidedintheexceltables,theunderlyingassumptions,suchastechnologyandfuelcosts,arealsopubliclyavailable(IEA,2022).InthisreportweusetheIEAWEONZEscenario,referringtoitasIEA.InJuly2021,withintheframeworkoftheEuropeanGreenDeal(EuropeanCommission,2019b)theEuropeanCommission(EC)proposedthepackageforDeliveringtheGreenDeal,‘Fitfor55’(EuropeanCommission,2021c),designedtoreducetheEuropeanUnion’sgreenhousegasemissionsby55%by2030.Itbuildsuponthedecarbonisationpathwaysdefinedinthe2050long-termstrategyvision(EuropeanCommission,2019a)andthe2030ClimateTargetPlan(Commission,European,2020c).TherewerethreecorepolicyscenariosbehindtheFitfor55(EuropeanCommission,2021a)package:REG–relyingonhighintensificationofenergyandtransportpoliciesintheabsenceofcarbonpricingforroadtransportandbuildingssectors;MIX–relyingonboththeextensionofcarbonpricingtoroadtransportandbuildingsandthehighintensificationofenergyandtransportpolicies;andMIX-CP–representingamorecarbonprice-drivenpolicymix,withrevisedenergyefficiencyandrenewablesdirectives,lowerintensificationofcurrentpolicies,andtheextensionofthecarbonpricesignaltonewsectors.Despitesignificantimprovementsindataavailability,officialECscenariosdonotprovidethefulldatasetsneededforthisreport,asthismodellingexercisefocusedonpoliciesfortheachievementofthe2030target(andnot2050).Whilemediumterm(2030)modellingresultsareavailable(EuropeanCommission,2021d),thedatasetforalongertimehorizon(2050)isnotdirectlyavailable.TheOnlineEnergyScenarioTool(EuropeanCommission,2021a)onlyprovideshighlyaggregatednumbersforfinaldemand.InthisreportwewillbeusingresultsfromtheMIXscenario.InMay2020TheEuropeanCommissionpresentedtheREPowerEUPlan(EuropeanCommission,2022d)inresponsetotheglobalenergymarketdisruptioncausedbyRussia'sinvasionofUkraine.Whenavailable,insightsfromREPowerEU(notscenariospecific)willbeused.TheDNVannual‘Energytransitionoutlook’(ETO)reportisoneoftwoenergyscenariostudiesincludedinthisanalysisthatdonotreachzerocarbonemissionsby2050andarenotinlinewiththeParisAgreement(DNV,2021a).DNValsopublishedanotherreport(DNV,2021b)detailingtheadditionaleffortneededtoreachclimateneutralityby2050,butduelimiteddataavailability(i.e.intheformofanexcelfile),TheETOreportwasselectedforanalysisanditsmainscenariowasusedinthisreportwhichwillhenceforthbereferredtoasDNV.Shell,inlinewithotheroilmajors,regularlypublishesscenario-basedstudieslookingintopossibleevolutionofenergysystemsinthefuture.In2021,Shellpublished‘TheEnergyTransformationScenarios’report(Shell,2021),updatingthreescenariosoriginallyintroducedintheinfluential‘Sky:MeetingthegoalsoftheParisAgreement’report,publishedin2018(Shell,2018),takingintoaccountrecentdevelopmentsinsocioeconomicsandtechnology.IntheWavesscenario,economicperformanceisprioritised(themainmeasureofsuccessisGDPgrowth),withatrade-offonenvironmentalsustainability(e.g.,carbonemissionreductionsandlowerairpollution).Despitethis,renewablesbecomecost-competitiveby2030,buttheParistargetismissed.TheIslandsscenariofocusesonself-sufficiency,withincreasinggapsbetweennationsintermsofeconomicgrowthandclimatemitigation,leavingtheParisAgreementoutofreach.Thethirdscenario,Sky1.5,seescooperationbetweencountriesandsocialgroupsinsidethem,withtheenvironmentasakeypriority,pushingCO2emissionsbelowzeroafter2050andreachingtheParistargetbytheendofthecentury.Shellreportshavehighdataavailability(Excelfiles),butthedataaggregationdiffersfromotherscenariostudies,makingcomparisonsdifficultattimes.InthisreporttheSky1.5scenarioisusedandwillhenceforthbereferredtoasSHELL.11In2020,McKinsey&Companypublished‘Net-ZeroEurope:decarbonisationpathwaysandsocioeconomicimplications’(McKinsey&Company,2020),basedontheNet-ZeroenergyscenarioforEU27,whereallsectorsreachnetzero(orclosetonetzero)by2050,exceptagriculture(offsetbyLULUCF).Whiledataavailabilityislimitedtothegraphsonly,itprovidesinterestinginsightsonhow,ledbythepowersector,theEUcouldreachclimateneutralitybymid-century.In2020aconsortium3,partiallyfundedbytheEUHorizon2020programme,publishedaseriesofreportsandanonlinetool,‘TransitionpathwaystoacarbonneutralEU28’,whichmakesitpossibleforthegeneralpublictoproducetheirownscenarios.Theprojectdeveloped16predefinedscenarios(EUCALC,2020),someofwhichreachclimateneutralitybefore2045.TheTechscenario,whichisassessedinthisreportassumesthatthedecarbonisationoftheeconomywouldbedrivenbytechnology,andthattherewouldbeminimalchangesinthebehaviourofcitizens(inlinewiththeLTSbaseline).Thedataavailabilityishigh(alldataisavailableintheformofcsvorexcelfiles).Inthisreport,thescenariowillbecalledEUCalc.In2020,aconsortiumofClimateActionNetwork(CAN)Europe,theEuropeanEnvironmentalBureau(EEB),RenewablesGridInitiative(RGI)andREN21published‘ParisAgreementCompatibleScenariosforEnergyInfrastructure’(PAC)(PACproject,2020)alignedwiththeParisAgreement’sobjectivetolimitglobalwarmingto1.5°Candwhichembodiesthepolicydemandsofcivilsociety.DrivenbyNGOs(membersofCANandEEB),thescenariosrepresentabroaderviewofhowclimateneutralitycouldbeachieved.Thereporthashighdataavailability(Excelfile)andinthisreportwillbecalledCAN.In2020,BPpublishedits‘EnergyOutlook2020edition’(BP,2020),coveringthreemainscenarios:Business-as-usual–assumingthatgovernmentpolicies,technologiesandsocialpreferenceswillcontinuetheircurrenttrendanddecarbonisationwillnotbeachievedby2050;Rapid–relyingonpolicymeasurestoincreasecarbonpricesandsector-specificmeasuresresultingina70%CO2reductionby2050;Net-Zero–basedontheRapidscenariomeasures,complementedwithbehaviouralchanges,resultingina95%reductioninCO2emissionsby2050.Thedataavailabilityishigh(Excelfiles).TheNet-Zeroscenario,henceforthreferredtoasBPisusedinthisreport.TheJRCEUTIMESmodelandaccompanyingdatasetwerecreatedattheJointResearchCentreoftheEuropeanCommissioninsupportofvariousactivities,includingaseriesofLowCarbonEnergyObservatory(LCEO)4reports(Nijs,P.,D.,I.,&A.,2018).In2021,JRCEUTIMES(withslightlymodifieddatasets)wasreleasedintothepublicdomain(ECJRC,2021).Fromthisdataset,theNetZeroscenario,reachingcarbonneutralityinEU27by2050,isused.Ithashighdataavailabilityandtechnologydisaggregation.ThiswillbecalledJRCTIMES.In2019,teamsfromtheUniversityofTechnology(UTS)/InstituteforSustainableFutures(ISF),UniversityofMelbourneandGermanAerospaceCentrepublishedthebook,‘AchievingtheParisClimateAgreementGoals’,(Teske,2019),andaccompaniedbythepublicdataset(UTS,2019).Basedonthemostrestrictiveassumptionamongallscenariostudiesanalysed,thestudyenvisionedanetzeroglobalenergysystemby2050,withouttheuseofanyfossilfuels,nuclearpowerorCCS.Thestudyhashighdataavailability(excelfiles)andisreferredtohereasIFS.TheBloombergNEFannualreport,NewEnergyOutlook(BloombergNEF,2021),isbasedonthreescenarioswithdistinctpathwaystonetzeroemissions.Allthreescenariosrelystronglyonelectrificationandrenewableenergy.TheGreenScenarioisbasedonfastdeploymentofgreenhydrogen,usedtoprovidebothstorageandbalancingforallenergyneeds.TheGrayScenarioreliesonfossilfuels(withCCS)andbluehydrogen(hydrogenproducedfromnaturalgasandsupportedbycarboncaptureandstorage)forhard-to-decarbonisesectorswhileintheRedScenario,renewablesarecomplementedwithanincreasingshareofnuclearforbothpowergenerationandtheproductionofredhydrogen(generatedthroughelectrolysispoweredbynuclearenergy).Thereporthashighdataavailability(exceltables).TheGreenScenarioreferredtoasBNEF,isassessedinthecontextofthisreport.3EUCalculator:trade-offsandpathwaystowardssustainableandlow-carbonEuropeanSocieties-EUCalc4TheLCEOanalysesthestateofplayinEUresearchandinnovationtrendsandthepolicymeasuresforelevenlow-carbontechnologies.122.3MethodologicalapproachAlldatabehindthisreportarecompiledbasedonlyoninformationfrompubliclyavailablesourcesonenergyscenarios5.Foreachindicator,datawasconvertedintoasingleunit.ConversionfactorsareavailableinAnnex1.Thefollowingindicatorswereconsidered:●Netinstalledcapacityofpowergenerationtechnologies(GW);●Primaryenergy(Mtoe);●Finalenergy(persectorifapplicable,Mtoe);●Grosselectricitygeneration,expressedinterawatthours(TWh);●CO2emissionsorGHGemissions(GtCO2orGtCO2eq);●Population(millionpeople);●GrossDomesticProductEuros(€2015).Primaryenergyvaluesareharmonisedbetweenstudies(whenpossible),alignedtotheEurostatdefinitionofGrossInlandConsumption(forEurope).Harmonisationisdetailedinthefirstinstanceused.Thefiguresonfinalenergyuseexcludenon-energyuses.TheassessedstudiesusedifferentdefinitionsofEurope(Europe,EU27,EU28,andOECDEurope).Inordertomaketheresultscomparable,theywereharmonisedtoEU27,basedon2019sharesofEU27intheselectedregion.Fortherepresentationofhistoricdataandgeographicalnormalisations(2019/2020),datafromEurostat,IEAandIRENAwereused.Energyscenariodataispresentedonlyforthemilestoneyearsof2030and2050(whenavailable).Thebaseyear(2019/2020)isestablishedbasedonavailablestatisticalinformationfortheworldandtheEU.Morespecifically:•Grossinstalledcapacityofrenewableenergytechnologies,andenergyfromrenewablesources(generation)arebasedonIRENA(IRENA,2022c)•Energyfromfossilfuelsandnuclearsources(primaryenergy,finalenergy,generation),primaryandfinalenergyfromrenewablesourcesarebasedonIEA(IEA,2021c);•CO2emissionsfromfuelcombustionarebasedonIEA(IEA,2021c);•GDPandPopulationgrowthratesareestablishedbasedonthehistoricalyearsofeachscenariostudy(whenavailable).Theassessedstudiesfollowdifferentsectoraldefinitionsandboundarieswhenreportingresultsforfinalenergy.Someprovideverydetaileddatadowntosubsectors,whileothersaggregateseveralsectors.Inthisreport,allfinalenergywasaggregatedto4mainsectors(whenavailable):Industry,Transport,BuildingsandOther6.Duetothedifferencesinboundariesinsectoraldefinitions,aggregatedsectorsmayvaryslightlyinscope(forexampleindustrytoincludeagriculturesector).Wenamescenariosbasedonthepublishingorganisation.Onlywhereseveralstudiesfromthesameorganisationareuseddowealsousethestudyname.Forexample,therearethreeEuropeanCommissionstudiesused:ECFIT55,JRCGECOandJRCTIMES.5Allscenariostudiesanddatasetsarepubliclyavailableanddownloadablefreeofcharge,exceptBNEFNEO,whichwasspecificallymentionedinthetermsofreferenceforthisreport.6Dependingonthestudy,OthersectorscouldincludeAgricultureandFisheries.Insomecases,theenergyindustryisalsoreportedundertheOthersector.Thisisindicatedintheaffectedgraphs.133Energysystemdevelopmentsinlowcarbonfutures3.1PrimaryenergyAtthegloballevelIn2019,almost14500Mtoe(OECD,2022)ofprimaryenergywasconsumedglobally,thehighestamountinrecordedhistory.Whileslowingitsgrowthfroma2.5%compoundannualgrowthrate(CAGR)in2000-2010downto1.4%intheperiod2010-2019,nevertheless,intwodecades,onlyoneslightdropinglobalprimaryenergywasobservedin2009(duetotheglobaleconomicdownturn).IncreasingprimaryenergydemanddoesnotnecessarilytranslateintohigherCO2emissions,but,eveninthebestcaseitmeansbiggerdecarbonisationefforts.Inthemediumterm(2020-2030),themajorityofenergyscenariosreviewedseeareductioninprimaryenergydemand(orincreaseinprimaryenergyefficiency),leadingtoprimaryenergydemandbetween10000Mtoeand15000Mtoe.Twoscenarios,BPandDNV,projectasimilarenergyconsumptiontotoday’slevel.Thereareclearoutliers(Figure3):atthehighend,theoilmajor,Shell,anticipatesanincreaseofover10%,withnet-zeroachievedonlyafter2050.Shellalsohasthehighestfossilfueldemandinboth2030and2050.Atthelowerend,IFSseesadecreaseof25%,withverystrongdecarbonisationnormativeassumptionsdrivingenergyefficiencyfast,earlyintheprocess,inordertoavoidtheneedofCCS.Whilebetween2020-2030,themajorityofglobalenergyscenariostudiesreviewedseeasignificantincreaseinprimaryenergyefficiency,inthelongtermnotallofthemseeacontinuationofthetrend.Shelldepictsacontinuationoftheupwardtrend(by23%),reachingalmost20000Mtoein2050(Figure3).Attheotherextreme,BPandIEAprojectprimaryenergydemandremainingstable(withchangesoflessthan1.5%).Allotherstudiesseeareductioninprimaryenergydemand,butataconsiderablylowerratecomparedtotheperiod2020-2030,reachingonly4-8%.Ontopofincreasingenergyefficiency,atransformationinthecompositionofprimaryenergyisevident,shiftingfromfossilfuelstorenewableandnuclear.Whilein2019,80%ofprimaryenergysupplywasfossilfuel-based,in2030thisshiftsto65%onaverage(inIFSitdropsbelow50%).By2050,thesituationchanges,droppingdownto25%(below10%inBNEFandIFS).Whilefossilfuelsremainanimportantpartoftheprimaryenergysupplymixevenin2050,windandsolarbecomethedominantenergysourcesinmostoftheglobalscenariosanalysed.Figure3.GlobalprimaryenergyconsumptionSource:JRCanalysisbasedonscenariostudies14AtEUlevelPrimaryenergydemandintheEUpeakedin2006at1600Mtoe,afterwardsslowlydecreasingto1402Mtoein2019(OECD,2022).Intheperiod2013-2019therewerenonoteworthychanges–primaryenergydemandfluctuatedaround1400Mtoe.Contrarytotheconclusionsofglobalscenariostudies,thereismoredivergenceintheEUonfutureprimaryenergy.By2030thereisalreadya40%differencebetweenthehighestandlowestprojections.Atthehighend,BPandDNVseeprimaryenergydemandatsimilarlevelstocurrentconsumption.StudiesoriginatingfromtheEuropeanCommission(ECFit55,JRCGECOandJRCTIMES)seeareductionofaround15%inthenexttenyears,whilethemostambitiousstudies(CAN,EUCalcandIFS)seeareductionofaround35%.By2050thesituationdivergesevenmore,andtwomaingroupsofscenarioscanbeidentified.Thefirstismadeupofscenarioswhichprojecta(relatively)highprimaryenergydemandfortheEU(between1000Mtoeand1300Mtoe),includingsignificantdemandforhydrogenande-fuels.ThesecondgroupofscenariosischaracterisedbylowerprimaryenergydemandintheEUrangingbetween600Mtoeand800Mtoe,underlyinghigherlevelsofdirectelectrificationalongwithbehaviouralchanges.In2019,70%oftheEUprimaryenergysupplywasprovidedbyfossilfuels.Basedonenergyscenarioresults,thissharewillalreadydropsignificantlyin2030–tobelow50%onaverage(32%inthecaseofCAN).By2050,theroleoffossilfuelsinprimaryenergysupplywillgodownto16%onaverage,withIFSandCANseeingitdropbelow10%.In2050,basedontheresultsofthemajorityofthescenariostudies,windandbioenergyareprojectedtobethetwomajorfuelsintheEU,whilesolarandnuclearalsoplayanimportantpart.Figure4.PrimaryenergyconsumptionintheEUSource:JRCanalysisbasedonscenariostudies3.2EnergyuseinsectorsAtthegloballevelAccordingtoscenariosanalysedthetotalamountofenergyusedinendusesectorswouldnotchangedrasticallybothinthemediumterm(upto2030)andthelongterm(from2030to2050).Despitepopulationandeconomicgrowth(discussedinchapter3.4),totalfinaldemandisprojectedtodeclinebyaround1%annuallyintheperiodtill2030,andreachanaverageof10000Mtoeannually(Figure5).Between2030and2050thedeclinecontinues,ataslowerpace(around0.5%peryearonaverage).Thereisonlyoneoutlier–IFSseesadrasticreductioninenergydemand,droppingbyaround40%by2050.However,althoughthechangesintotalenergydemandaresmall,theyaredrasticattheleveloffuelsandsectors.Whilein2019,fossilfuelscontributed66%ofthetotalenergydemandinendusesectors,complementedby20%electricityand10%bioenergy,in2030,themajorityofscenariosseeadeclineinfossilfuelstoaround55%andanincreaseofelectrificationtoaround30%.InthecaseofIFS,thechangesareevenmorestriking:fossilfuels15decreaseto31%andelectricityincreasesto38%.By2050,thechangesareevenbigger:inthemajorityofscenarios,fossilfuelsplayonlyamarginalrole(ifany),whileelectricitybecomesdominantinendusesectors,rangingbetween50%and60%.Bioenergyprovides10-20%,andinmostscenarios,hydrogenandsyntheticfuelsstartplayingarole,stayingbelow10%,exceptinBNEF,wheretheyreach26%.Atsectorallevel,decarbonisationhappensatdifferentpaces.Itisachievedfaster,viaelectrification,inthebuildingssector.By2030,around45%oftotalfinaldemandinthebuildingssectorisprovidedbyelectricity(upfrom34%in2019)andfossilfuelusageisreducedtobelow30%(from34%).By2050,onlytwoofthesixglobalstudiesseefossilfuelsstillusedinbuildings.Electricitywillcovermorethan60%oftotalfinaldemandinbuildings,supplementedbybioenergy.Someofthestudiesalsoseearolefordirectsolarheating.Incontrastwiththebuildingssector,changesintransportwilltakemuchlonger.By2030,morethan80%ofenergyisstillbeprovidedbyfossilfuels,supplementedbybioenergyandelectricity.Itisworthnotingthatsomescenariostudiesseeadrasticdecreaseinfutureenergydemandintransport;accordingtoIFS,finaldemandinthetransportsectordropsbymorethan40%,resultingindroptoathirdoffossilfueldemand(comparedtocurrentconsumption),althoughitstillcontributesaround65%.By2050,fossilsnolongerplayamajorroleinthetransportsector:uptoahalfofenergyfortransportcouldcomefromelectricity.Bioenergyandhydrogen-basedfuelsalsoplayanimportantroleaccordingtoallthescenariostudiesanalysed.Inindustry,thepaceofchangeisfasterthantransport,butslowerthanthebuildingssector.In2030,themajorityofscenariostudiesstillprojectthatmorethanhalfofitsenergywillcomefromfossilfuels.Evenin2050,onlytwoofthesixstudiesdepictafullydecarbonisedindustry:around20%oftotalenergyisprovidedbyfossilfuels7.Electricitybecomesthemainindustrialsourceofenergy,followedbybioenergyandfossilfuels.Scenariostudiesdonotagreeontheroleofhydrogenandsyntheticfuelsinindustry:accordingtoBNEFtheycontributearoundonethird,butotherstudies,suchasJRCGECO,seealessprominentroleforhydrogen.Figure5.Globalfinalenergydemandbyfuel2030and20508Source:JRCanalysisbasedonscenariostudiesAtEUlevelOverthemediumterm(until2030),projectionsontotalfinalenergydemandfromtheenergyscenariosassessedshowtheEUfollowingasimilartrajectorytoglobaltrends(Figure6),withonly1%annualreductioninenergyconsumedinendusesectors.Despiteaveragevaluesbeingsimilar,thereiswiderdisagreementamongstudiesthosewithstrongnormativedecarbonisation(CANandIFS)seeasignificantreductionofdemandalreadyin2030.Differencesinfutureenergydemandbecomeevenmoreevidentin2050,wheresomeofthestudiesreviewedseeareductioninenergydemandreachingaround40%compared7InmostcasesemissionsareoffsetbyCCS/CCUSorBECCSinindustryorothersectors.8IRENAalsoincludesnon-energy16to2019,drivenbydecarbonisationacrossalldimensions:changesareseennotonlyintechnology,butalsoinbehaviourandsocialdimensions.DecarbonisationintheEUishappeningslightlyfaster.Iftoday(2020)around65%offinaldemandismetbyfossilfuels,by2030thissharedropstoaround50%onaverage(inIFSitdropsbelow30%).Electrificationisincreasingfromaround20%todaytoabove30%onaverage(43%inIFS).By2050,electricitybecomesthedominantfuel,providingonaveragearound50%oftotalfinaldemand(61%inCAN),whilefossilfuelsprovidelessthan15%,andarecompletelyeliminatedfromthefinaldemandofspecificsectors.Itisworthnotingthatallstudiesreviewedseeanincreaseinhydrogen-basedfuelconsumptionafter2030,providingaround15%offinaldemandonaverage,whiletheroleofbioenergydecreasesto10%onaverage.Atsectorallevel,decarbonisationtakesplaceatdifferentpaces.Thebuildingssectordecarbonisesthefastest,thankstoelectrification.By2030,around45%oftotalfinaldemandinthebuildingssectorisprovidedbyelectricity(upfromjustabove30%in2020)andfossilfuelusageisdownto33%(fromabove45%).By2050,onlyhalfofthescenariosanalysedseeacontinueduseoffossilfuelsinthebuildingssector(below10%offinalenergy).Electricityisusedtomeetaround65%oftotalfinaldemandinbuildings(85%inCAN),supplementedbydistrictheat(10%onaverage).By2050,bioenergyintheEUbuildingssectordropstoaround6%.Unlikethebuildingssector,decarbonisationofthetransporttakesplaceatmuchslowerpace.By2030,morethan70%ofenergywouldstillbeprovidedbyfossilfuels(comparedtoover90%today),supplementedwithbioenergyandelectricity.Itisworthnotingthatsomescenariostudiesseeadrasticdecreaseinfutureenergydemandintransport.AccordingtoIFS,finaldemandinthetransportsectorwilldropbymorethan50%,resultinginadroptoaquarteroffossilfueldemand(comparedtocurrentconsumption),thoughitstillcontributesaround40%.By2050,fossilfuelsnolongerplayamajorroleinthetransportsector,accountingfor12%orless,accordingtothemajorityofstudies.Electricity,togetherwithhydrogen-basedfuels,becomesthemainenergycarrier.Onaverage,electricityprovidesaround43%offinaldemandintransport(inCANandIFS,over60%).Hydrogen-basedfuelsprovidearound32%,andaccordingtoJRCTIMES,almost50%.Figure6.FinalenergydemandbyfuelintheEUin2030and20509Source:JRCanalysisbasedonscenariostudiesInlinewiththeglobalpicture,industryintheEUtransitionsfasterthantransport,butslowerthanbuildings.In2030,onaverage,scenariostudiesprojectthatover41%ofenergyismetbyfossilfuels(comparedtoalmost65%today).Evenin2050,onlytwoofthesevenstudieswithaEuropeanscopepredictafullydecarbonisedindustry:around15%oftotalenergyisprovidedbyfossilfuels.Allstudiesseeanincreaseinelectrification:onaverage40%ofthetotalfinaldemandinindustryismetbyelectricity(comparedtolessthan25%today).By2050,onaverage,theelectricitysharerisestoalmost50%.Scenariostudiesdonotagreeontheroleofhydrogenandsyntheticfuelsinindustry:themajorityanticipatesashareofaround20%,9BPdoesnotcoverallenduseenergy17whileothersalsoseeahighrateofbioenergyutilisation:inJRCGECOandJRCTIMES,bioenergyprovidesaround23%offinaldemandinindustry.OnlyIFSgivescommercialheatasignificantrole(ataround10%),andothersplaceitataround5%.3.3GreenhousegasemissionsIn2020,globalCO2emissionsfromfuelcombustionshrankabout6%comparedtothepreviousyear,butinperiodbetween1990and2019therewasanincreaseinglobalCO2emissionsbyalmost64%(IEA,2021),Figure7.Moreover,thelatestdata(IEA,2022a)showthatthe2020emissionsreductionwastemporary,likelyconditionedbytheglobalCOVID-19pandemic,andin2021,CO2emissionsreturnedtosimilarlevelsasthoseobservedin2018and2019.DespiteincreasingglobalCO2emissions,theEUhasshownaclearemissionsreductiontrendsince2007(Figure7),resultingin24%lessCO2emittedin2019thanin199010,andareducingtheEUshareofglobalCO2emissions,from17%in1990to8%in2019.DrivenbyCOIVD-19pandemic,in2020theEUCO2emissionsdroppedby7%.Basedonthehistoricaltrendobservedsince1990,itislikelythattheEUshareinglobalCO2emissionswillcontinuetodecreaseinthefuture.In2019,CO2emissionsfromfuelcombustionintheEUwasmorethan30%lowerthanthoseof1990(IEA,2021).Inthemediumterm(by2030),themajorityofenergyscenariosanalysedinthisreportseeanaveragereductioninglobalCO2emissionsfromfuelcombustionofmorethan30%comparedtotoday(Figure8),butthiswillstillbeover13%morethan1990levels.Shellistheoneclearoutlier,showingemissionscloseto2019levels,andanother–IFS–seesaglobalCO2reductionofover61%comparedto2019and37%lowerthan1990.IRENA,whilereportingsimilaremissionslevelstoIFS,doesnotincludetheemissionsfromenergysector,andthereforeshouldhavetotalCO2emissionsclosetoIEAresults.By2050,themajorityofthestudiesanalysedinthisreportprojectglobalCO2emissionsfromfuelcombustionatorclosetozero.Theonlytwothatdon’tareDNVandShell,whichdon’treachclimateneutralitybymid-century.OtherstudiesstillhavenetpositiveCO2emissionsfromfuelcombustion.Theseemissionsareoffsetbyothermeans,forexampleLULUCFinthecaseofJRC.GECOFigure7.EU(left)andGlobal(right)CO2emissionsfromfuelcombustionfrom1990Source:(IEA,2021)10Intheperiodbetween1990and2007EUCO2emissionsremainedalmoststable(-0.2%CAGR).TheEUnoticeabledecreaseinCO2emissionstartedin2007,decreasingannually(CAGR)by2%,despiteslightgrowthinperiod2014-2018(0.21%CAGR).18Figure8.GlobalCO2emissionsfromfuelcombustionin2030and2050Source:JRCanalysisbasedonscenariostudiesThereissignificantvariationsamongstscenariosonprojecteddirectCO2emissionsinEurope(Figure9).In2030thereisathreefolddifferencebetweenthehighestandlowestemittingscenarios.By2030,someofthestudiesdonotseeasignificantreductioninCO2emissions,whileothersseeitcutinhalf.Atthelowend,CANandIFSrelyheavilyonbehaviouralchanges(reducingfinalenergydemand)alongsideaspeedytransitiontocarbon-freefuels.CANdoesthismainlyviagreenelectricity,whileIFSpositstheuseofawiderrangeoftechnologiesinendusesectors.By2050,allscenariosexceptDNVreachcarbonneutrality.TheremainingCO2emissionsfromdirectfuelcombustionareoffsetbychangesinlanduse(LULUCF)anddirectaircapture(DAC).Figure9.CO2emissionsfromfuelcombustionintheEUin2030and2050Source:JRCanalysisbasedonscenariostudies193.4Macro-economicsAtthegloballevelThemainsocio-economicindicatorsreportedbyenergyscenariopublicationsarepopulationsizeandGDP(orGDPgrowth).Intheenergyscenariostudiesreviewed,theglobalpopulationgrowsfromaround7.7billionin2020to8.3billionin2030(onaveragebetweenscenarioswithastandarddeviationofonly0.45)andto9.6billionin2050(onaverage,withanevenlowerstandarddeviationofonly0.16,Figure10).Essentially,inthelongrun,allscenariospositasimilarpopulationsize,sothedifferencesinenergyuse(discussedinsections3.1and3.2)aremainlyduetodifferingassumptionsontechnologyandsocio-economicdevelopment,andlifestylechangesdrivenbypoliticalconstraints.Whileglobaltrendsshowamodestpopulationgrowth(lessthan1%CAGRbetween2020and2050),theEuropeanpopulationwillremainstable.AccordingtoEC(EuropeanCommission,2020),theEUpopulationwilldecreasefrom447millionin2020to445millionin2050.Otherstudies,withawiderdefinitionofEurope,alsoseenomajorchanges:theCAGRintheperiod2020-2050isbetween-0.1%and0.1%.ComparingtheGDPforecastsofscenariostudiesislessstraightforward.Mostoftheglobalstudies(butnotall)measureGDPinUSD,recalculatedbasedonPurchasingPowerParity(PPP),whileothersdonotadjustforPPP.Evenwhencomparinghistoricalornear-futureresultsbetweendifferentstudies,numbersdonotalwaysalign.Forexample,JRCGECOreportsglobalGDPat118trillionUSD2015/PPPin2020,whileIEAputsitat129trillionUSD2015PPPin2018,Shellat134trillionUSD2015PPPin2019,andDNVatUSD105trillion.ForEurope,thecomparisonisevenmorecomplicated:somestudiesprovidedatainUSD,andothersinEUR,meaningthateffortstoconvertdatafromdifferentenergyscenariosintoonesingle,comparablemeasurementinvolvesadjustmentsbasedonthreeparameters:inflation,changesofPPPintheselectedregionandcurrencyconversion(inthecaseofEurope).Thismakestheexercisepronetohighuncertaintyandmisleadingresults,andthereforeinthisreport,percentagechanges(CAGR)areusedinsteadofabsolutevalues(TsiropoulosI.T.D.,2019),thuseliminatingdifferencesincurrencyconversionandinflationandreducingtheeffectsofPPP.InthecaseofEurope,differentgeographicalscopesareusedindifferentscenariostudies,rangingfromEU27toOECDEurope11.Figure10.Globalpopulationin2030and2050Source:JRCanalysisbasedonscenariostudiesAccordingtoglobalscenariosassessed,intheperiod2020-2030,theglobaleconomyisprojectedtogrowby3.6-4.0%annually(Figure11).Differencesacrossthestudiesbetweenassumedeconomicgrowthprojectionsareinsignificant(fourofthefiveusethefigures3.6%or3.7%).Intheperiod2030-2050,energy11OECDEuropedoesnotincludesomeEU27countries(forexampleBulgaria)butdoesincludeTurkey.WhilethesedifferencesingeographicaldefinitionsinfluenceGDPgrowthrates(forexampleTurkeytendstogrowfastercomparedtoEU27),duetothesizeoftheeconomies,theeffectofdifferinggeographicalscopesisnotsignificant.20scenariostudiesconvergeonprojectingslowereconomicgrowthcomparedto2020-2030,butdivergeontheextentofit,witharangeof2.3%and2.9%.Itisworthnotingthatifbothperiodsarecombined,allstudiesarealignedonverysimilarglobaleconomygrowthratesbetween2.8%and3.1%intheperiod2020-2050.AttheEUlevelTheGDPgrowthprojectionsfortheEuropeanUnionarelowerinallscenariostudies,rangingfrom1.4%to2.2%in2020-2030,andslowingdownin2030-2050to0.9-1.5%peryear(Figure12).Thereisalsoconsiderablylessconvergence(alsoinfluencedbydifferencesingeographicalscope)betweenscenariostudies:GDPgrowthisalmost50%higherinShellthaninJRCTIMES.Aswiththeglobalscenarios,GDPgrowthforecastsin2020-2050aremoreuniform,rangingonlybetween1.3%and1.7%.Figure11.GlobalGDPgrowthSource:JRCanalysisbasedonscenariostudiesFigure12.GDPgrowthinEurope12Source:JRCanalysisbasedonscenariostudies12Regionaldefinitionsdifferperscenariostudy:ECFIT55andJRCTIMES–EU27,DNVandShell–Europe,IFS–OECDEurope213.5InvestmentinrenewablegenerationcapacitiesGlobalinvestmentinrenewableenergyintheperiod2013-2018rangedbetweenEUR210billionandEUR310billion(IRENAandCPI,2020)peryear,peakingin2017.Ofthat,72-78%wasdedicatedtoinstallationsofsolarPV(43-49%)andonshorewind(26-31%).Forexamplein2018,46%oftotalinvestmentinrenewableswenttosolarandanother31%toonshorewind(Figure14)overthe2013-2018timeframeannualinvestmentsinsolarPVrangedfromEUR95billiontoEUR150billionperyear,andinonshorewindfromEUR58billiontoEUR93billionperyear(Figure13).Whileinvestmentinthesetwotechnologiesis,ingeneral,followinganupwardtrend,investmentinrenewableenergytendstofollowglobaleconomiccycles(orregionalforChina).Adrastic25%dropininvestmentwasobservedin2016,forexample,anda10%reductionin2018.Otherrenewabletechnologieshaveattractedmuchlessinvestment.Solarthermalhasseenanever-decreasingamountofinvestment(withtheexceptionof2015),fromEUR17billionin2013toEUR12billionin2018.Thesamepatterncanalsobeobservedforbiomass,whichdecreasedfromEUR8billionin2013toEUR3billionin2017,withaslightrecoveryin2018.TherewasanenormousdropininvestmentforbiofuelswhichdecreasedfromEUR1.7billionin2013toEUR0.2billionin2016.Thisissignificantcontractionrelativetothepeakininvestmentsobservedin2007ofoverEUR20billion.Bycontrast,in2013-2018,therewasanupwardtrendininvestmentforgeothermal(fromEUR0.8toEUR4billion)andoffshorewind(fromEUR6toEUR25billion).Theinvestmentinoceanpowerwasnegligibleduringthisperiod.Basedonthedataavailable,itcanbeconcludedthatinvestmentinrenewableenergycorrelatescloselywitheconomiccycles;duringthemarketslowdownsof2015-2016and2018,investmentinrenewablesdipped.IRENAandCPI2020report(IRENAandCPI,2020)donotprovideregionaldatadisaggregationattheEUlevel,butatthelevelprovided,itisclearthattheleadersinrenewableenergyinvestmentarewesternEurope(withadownwardtrendofglobalinvestmentfrom22%to18%),eastAsiaandPacific(investmentsrangingfromlowsof27%in2013and2018to36%in2015)andOECDAmericas,withanupwardtrend(from16%ofglobalinvestmentin2013to25%in2018).Figure13.GlobalinvestmentinrenewableenergySource:(IRENAandCPI,2020)ItisworthnotingthatoftheEUR290billionspentondeployingrenewableenergyin2018,onlyEUR16billioncamefrompublicfunds(IRENA,2022b),withthehighestintensityofpublicsectorinvestmentsobservedinhydropower(wherealmostEUR6billionwaspublicfundingoutofatotalofEUR13billion).OftheEUR16billionspentinpublicfunding,EUR4billionwereinvestedintheEU.Inthelastdecade(2011-2022),themajorityofpublicsupportcameintheformofloans:80%fromstandardloansand12%concessionalloans.22Figure14.Globaldistributionofinvestmentinrenewableenergyin2018Source:(IRENAandCPI,2020)Othersources(IEA,2021d),(BNEF,2022)and(FrankfurtSchool-UNEPCentre/BNEF,2020),providemorerecentdatapointsandinsightsintoEuropeandevelopments,butdonothaveahightechnologyaggregationlevel,essentiallyprovidingdataonlyontwomaintechnologies:solarandwind.(IEA,2021d)showsthecontinuationofinvestmentpatternsobservedin(IRENAandCPI,2020).ThemajorityofrenewablepowerinvestmentgoestosolarPVandonshorewind,togethertotallingaroundEUR250billionin2020anddistributedalongthesamelinesasin2018:about15-20%moreforsolarPVthanforonshorewind.Itisworthnotingthat,despiteanincreaseininvestmentinthesetechnologiesofonlyaround25%comparedto2015,newcapacityproducedmorethandoubletheelectricity,signallingbothanincreaseinefficiency(capacityfactor)andadecreaseininvestmentcosts.Accordingto(IEA,2021d),inordertoreachtheglobalnetzerogoalby2050,annualinvestmentinrenewablepowergenerationwillhavetoincreasemorethanthreefold(themajoritygoingtoonshoreandoffshorewindandsolarPV).Accordingto(BNEF,2022),thelatestdatarevealamoderatepreferenceforwindpowerinvestment(fromEUR143billionin2019downtoEUR131billionin2021)andtherapidgrowthofsolarPV:fromEUR120billionin2019uptoEUR183billionin2021.InEurope13,investmentsinbothsolarandwindgrewinthisperiod(fromEUR30billiontoEUR35billionforsolar,andfromEUR32billiontoEUR42billionforwind).ItisworthnotingthatEurope’sshareinglobalwindandsolarinvestmentisconstantlydecreasing.In2005,83%ofglobalsolarinvestmentand62%ofglobalwindinvestmenttookplaceinEurope,butin2021,despiteanincreaseinabsolutenumbers,Europe’ssharedroppedto19%and30%respectively.Basedonthescenariostudiesanalysedinthisreport(resultsforlow-carbontechnologiesareprovidedinChapter4),investmentinrenewableenergycapacitieswillhavetoincreaseconsiderablyinthecomingdecades.Thestudiesadoptvariousviewsonhowthegenerationmixwilldevelop,buteveryoneagreesthatsolar(PV)andwind(bothonshoreandoffshore)willbethetwomainpowergenerationtechnologiesin2050.Nevertheless,therearesignificantdifferencesintermsofforesight.Forexample,themajorityofthestudiesincreasetheannualrateofwindpowerinstallationsfromthreefoldtofivefold,butBNEFseestheinstallationrateincreaseovertenfold,drivenbytherapiddevelopmentofthehydrogeneconomy.Thesameistrueforothertechnologies.Forexample,mostofthestudies(thatprovidedata)ongeothermalpowerseearound10MWofnewinstallationsperyear,butIFSputsthefigurethreetimeshigher.13TheBNEFdefinitionofEuropeiswiderandontopofEU28italsoincludesneighbouringcountries.234Lowcarbonenergytechnologyoutlooks4.1BioenergyIntheenergyscenarios,bioenergyisoneofthemostdifficulttechnologiestoassess.Itcanbeusedinbothpowerandheatgeneration,aswellasinthemajorityofendusesectors,butthemainissueisthatthedefinitionandscopeofbioenergyusedinenergyscenariostudiesvariesgreatly.Insomescenariosstudies,allbioenergycanbeaggregatedinjustonevariable(includingsolidbiomass,biogas,biomethane,allbioliquids,andrenewablefractionofwasteand,insomecases,totalwaste).Globalscenarioscanalsodifferentiatebetweentraditionalandcommercialbiomass.Whiletheunderlyingmodelsforenergyscenariosusuallyhavealowerlevelofaggregationofbioenergy,reportingisoftendonebyaggregatingliquidandgaseousbioenergy,orliquid,solidandwaste.Othercombinationsarealsopossible.Inthischapter,wesplitbioenergyintothreedistinctpartswheredataallows:•Biofuels–liquidbioenergy.Inthetransportsector(ifnotspecifiedotherwise),allbioenergyisconsideredtobeliquid.•Biomass–solidbioenergy.Commercialandtraditionalbiomassaremerged,andrenewablewasteisincluded.•Biogas–gaseousbioenergy,includingbiomethane.Whenaclearsplitisimpossible,weaggregateallinformationunderthetermbioenergy,assumingthatsolid(includingwaste)and/orgaseousbioenergycanbeusedinpower/heating,buildingsandindustry,andliquidbioenergyintransport.In2020,globally,over127GWofbioenergy-basedpowergenerationcapacitywasinstalled.Themajorityofit(104GW)wassolidbiofuels-based(mainlybiomass).Only20GWwasbiogas.In2019,bioenergy-basedgenerationaccountedforalmost560TWhofelectricity.Inthelastfiveyears,globalbioenergy-basedinstalledcapacityhasgrownbyaround7%annually,mainlydrivenbythegrowthofsolidbiomassgenerationcapacities.Biogashasgrownataslowerrateofonly5%annually.In2020,intheEU,therewasover34GWofbioenergy-basedpowergenerationcapacity,21GWofwhichusedsolidbioenergy(biomass,renewablewaste,etc.).AroundathirdoftotalinstalledcapacityintheEUwasbiogas-based(12GW).In2019,160TWhofelectricitywasgeneratedusingbioenergy(55TWhofwhichwasproducedusingbiogas).Incontrastwithglobaltrends,thegrowthintheEUofsolidbioenergy-basedcapacityhasbeenconsiderablyslowerinthelastfiveyears,atonly3%annually,comparedtobiogas-basedgenerationwithanannualgrowthrateofalmost9%.Globalenergyscenariosareunclearontheroleofbioenergyinfutureenergysystems.Inthenextdecade,allenergyscenariosanalysedseeaglobalgrowthofbioenergy-basedpowergenerationcapacity(Figure15),butdisagreeonthegrowthrateandimportanceinthegenerationmix.Onaverage,thecompoundannualgrowthrate(CAGR)is7-8%,butsomescenariosseegrowthratesaslowas2-3%(drivenmainlybymarket-basedassumptions),andothersashighas15%(reachingalmost500GWofinstalledcapacityglobally),drivenbynormativetargetstofullyabandonfossilfuelsandnuclearpower,withoutdeployingCCS,by2050.Inallscenariosthatprovideinformationonbioenergywithcarboncaptureandstorage(BECCS),therearenomajordevelopmentsuntil2030:verylittlebioenergycapacityisinstalledwithCCS.Inpowergeneration,solidbiomassremainsthedominantbiofuel(somescenariosreportsmallamountsofbiogas).Followinginstalledcapacitytrends,themajorityofscenariosseeanincreaseofbioenergy-basedpowergeneration,ledbyIFS(15%CAGR),reaching2407TWhin2030.Otherscenariosalsoseeagrowthofgenerationinlinewiththecapacityincrease,withonlyoneexception.Despiteaslightgrowthininstalledcapacity,BNEFanticipatesaslightdecreaseinpowergeneration(-2%CAGR).Adecreaseinloadfactorisdrivenbytheincreasedgenerationfromintermittentenergysources(solarandwind)(Figure16).Whileglobally,allscenariosseeagrowthininstalledcapacity,thisisnotthecasefortheEU,wheresomescenariosarestagnant(DNV)orslightlydecreasing(McKinsey).Someofthescenariosanalysedprovidegenerationdatawithoutincludinginstalledcapacity.Threeoftheselatterscenariosseeacontractioninbioenergypowergeneration(CAN,EUCalcandMcKinsey).24Figure15.GlobalinstalledbioenergypowercapacitySource:JRCanalysisbasedonscenariostudiesFigure16.GlobalelectricitygenerationfrombioenergySource:JRCanalysisbasedonscenariostudiesMostEUscenariosalsoseeamoderategrowthininstalledbioenergypowercapacity(thoughnoticeablylowerthaninglobalscenarios),reachingaround5%CAGR,onaverage,withIFSoutfront,growing10%annuallyandreaching90GWofinstalledpowercapacityby2030(Figure17).Takingintoaccountadditionalscenariosthatprovideonlyelectricitygenerationdata,therearethreescenariosthatanticipateacontractioninbioenergypowergeneration(CAN,EUCalcandMcKinsey).TheCAGRofbioenergy-basedgenerationoverallscenariosisonly1%.Intermsofcapacityinstallationtrends,IFSremainsaclearleader,with9%CAGRand135TWhofelectricitygeneratedfrombiomass(Figure18).In2030,somescenariosseeanincreasinglyimportantroleforbiogas(inCANamountingtomorethan60%oftheelectricitygeneratedfrombioenergy),butnevertheless,themajorityofscenariosintheEUgivepreferencetosolidbiomasswithoutCCS.By2030,anaverageofabout6%ofelectricitygeneratedintheEUcomesfrombioenergy,rangingfrom1%inCAN(withadownwardtrendinbioenergyutilisationforpowerproduction)to9%inIFS(relyingonlyonrenewablesin2050).25Figure17.InstalledbioenergypowercapacityintheEUSource:JRCanalysisbasedonscenariostudiesFigure18.ElectricitygenerationfrombioenergyintheEUSource:JRCanalysisbasedonscenariostudiesBy2050,installedcapacityinbioenergyshowsalotofvariability.Someglobalstudiesseeastagnationordownwardtrend(BNEFandDNV),whereasmostdepictamoderategrowth(6-7%CAGR,slowerthan2020-2030).Thereisonlyoneclearoutlieropposingthistrend–JRCGECOseesalmost10%CAGRand1530GWofinstalledcapacityin2050.Biomassdominatesbioenergy-basedpowergeneration,andthedeploymentofCCSplayanoticeableroleinsomestudiesin2050:inthecaseofIEA,almostaquarterofallbiopowerinstallationscomewithCCS(10%inGECO).Afterthefastdeploymentofnewcapacityin2020-2030,IFSprojectsaslowergrowthrate,droppingfrom15%to2.4%peryear.Globalgenerationfollowstheinstalledcapacitypathway,withhighestgrowthinthescenariosdeployingbioenergywithCCS(IEAandJRCGECO).BNEFandDNV,bothmarket-drivenscenarios,seeareductioninbioenergy-basedpowergeneration,withitsshareintotalelectricityproductiondroppingbelow1%in2050.Othermoreoptimisticscenariosestimateabioenergyshareinpowergenerationrangingfrom4.6%to6.2%.Theglobalmarketforinstalledbioenergycapacitywillbelimitedandcouldrangefrom2GWupto37GWofnewinstallationsperyearinadditiontoabout6GWofrefurbishmentofexistingpowerplants.Inthemost26ambitiousstudies,itcouldreachupto37GWofinstalledcapacityperyear,butthisisstillafractionofthenewinstallationsseeninwindandsolar.After2030,theglobalmarketsizeofbioenergypowerinstallationsismoreuncertain.Somescenariostudiesseenonewcapacityadditions,whileothersseelimitedmarketgrowth,reachingupto65GWperyearofnewinstallations(including5GWofBECCSaccordingtoJRCGECO).IntheEUintheperiod2020-2030,bioenergypowermarketswillrangefrom0GWto5.5GWperyear(refurbishmentofexistingcapacitieswilladdanadditional1.5GWperyear).Afterthat,thetotalEUbioenergypowermarketcouldrangefrom1GW(wheretherearenonewinstallationsofbioenergy-basedpowerplantsandonlylimitedend-of-liferefurbishmentsofexistingcapacities)to8.5GW(wherebioenergyisprojectedtogrowintheEU).SomenewbioenergygenerationcapacityintheEUwillbebundledwithCCS(2.5GWperyearaccordingtoJRCTIMESand1.4GWinJRCGECO).Mostofthebioenergyisusedinfinalsectors,bothgloballyandintheEU.Althoughpowergenerationisanimportantareaforbioenergy,itconsumesonlyafractionofthebioenergyusedforenergy.Globally,thebuildingssectorconsumesaroundfourtimesmorebioenergythanpowergeneration,andbioenergyconsumptioninindustryiscomparabletopowergeneration.Althoughtransportconsumesconsiderablylessbioenergy,duringthelastdecadeithasshownasteadyincreaseindemand(mainlydrivenbydecarbonisationpolicies).Mostofthestudiesprovideinsightsonthebioenergyusedinfinaldemandsectors,butnotallofthemprovidedisaggregatedinformationonthetypeofbioenergyused.Inthegraphs(Figure19,Figure20)weusethebioenergydefinitionsandaggregationlevelsoftheoriginalstudy,butinordertocompareresultsfromdifferentscenarios,weassumeinthetextthatthebioenergyusedinthetransportsectorisintheformofbiofuels(liquidbioenergy).Until2030,globally,bioenergyconsumptionasaproportionoffinaldemandstayscomparabletocurrentlevels,withaslightupwardtrend.OnlytheIEAscenarioshowsaslightdecrease(ofaround5%)inbioenergyconsumptionbetween2020and2030.Allotherstudiesshowaslightanincreaseofupto7%over10years,exceptIFS–wherethehighestincreaseofaround21%canbeobserved(Figure19).Inadditiontohighbioenergydemandinfinalsectors,IFSalsoforeseesthemostambitioususeofbioenergyinpowergeneration.Althoughthedifferencesintotalfinalbioenergyconsumptionaresmall,scenariostudiesdisagreeonthesectoralconsumptionandtypesofbioenergyused.Forexample,IEAseesa67%dropinbioenergyconsumptioninthebuildingssector,triggeredbyacompleteabandonmentoftraditionalbiomassby2030.Thisdecreaseispartlycompensatedinthebuildingssectorbyadoublingoftheuseofcommercialbiomass.Althoughotherstudiesalsodepictdownwardtrends,theydonotforeseeadrasticreductioninbiomassuse.Solidbiomassremainsthemainbioenergyusedinthebuildingssector,whilesomescenariosalsoshowagrowthinbiogasconsumption.Allstudiesagreeonanincreaseinbioenergydemandinindustry,butgreatlydisagreeonthegrowthrate,rangingfrom16%to78%.ThehighestincreaseisobservedintheIEAstudy,wherebothbiomassandbiogasconsumptioninindustrygrow.Theincreaseinbioenergyconsumptionisevenhigherinthetransportsector,rangingfrom76%inBNEF(whereelectrificationandhydrogen/e-fuelsplayanimportantrole)toapotentialquadruplinginIEA,whichreliesonbiofuelstodecarbonisethetransportsector.In2030theglobalbiofuelconsumptioncouldrangefrom1200TWhto3500TWh.Whilescenariostudiesareingeneralagreementonglobaltrendsforbioenergyuseinfinaldemand,theycompletelydisagreeonbioenergy'sroleintheEUuntil2030.Atthelowerend,CANandIFSseeadecreaseinbioenergyconsumptionofabout30%,whileDNVandJRCGECOseebioenergyconsumptionatsimilarlevelstotoday.JRCTIMESexpectsanincreaseof30%andinEUCalc,consumptionmorethandoubles.ThisisnotclearlyevidentinFigure20becauseDNVandIFScoverconsiderablylargerregions,whichcanexplainpartofthedivergences.Themajorityofstudiesseeanaveragereductionofbiomassconsumptioninthebuildingssectorofabout20%,whileIFSseesanevenhigherreductionofover40%.Mostseeaslightincreaseinbioenergyconsumptioninindustry:around15%onaverage,andover50%inEUCalc.However,studiesdonotagreeonthetransportsector.Atthelowerend,CANseesareductionofaround80%inbiofueluseby2030,drivenbyhighelectrification,thedeploymentofsyntheticfuelsandtheabandonmentoffirstgenerationbiofuels.IFSseesa10%reduction.Otherstudiesforeseeagrowthofaround50%onaverage,andEUCalcbymorethan800%(mainlydrivenbybiodieselconsumption).By2050,theglobaltrendsdivergeevenmore.Fourscenariostudiesseeaslightgrowthinbioenergyuseinfinaldemandsectors(1-2%peryear).InBNF,bioenergyconsumptionremainsconstantuntil2030,andanotherthreescenariosseeareduction(of1-3%peryear).Mostscenariosseeacontractionofdirectbiomassuse(IRENAappearstobetheonlyexception)andanincreaseintheuseofbiofuels/biogas(forscenariosthatdoprovidedisaggregateddata).Allscenariosagreethatby2050,bioenergywillprovide27around6-18%offinaldemand.Intheperiod2030-2050,bioenergy(mainlybiomass)consumptioninthebuildingssectordecreasesby25%onaverage(IFSforeseesareductionof40%;IRENAanincreaseof15%).Intheindustrialsector,allscenariosseeanincreaseinbioenergyconsumptionbyanaverageofaround40%,exceptIFS,witha30%reduction.Intransport,wecanobserveasimilarsituation:allscenariosseeanincreaseintheuseofbiofuelsofabout50%onaverageoverthe20-yearperiod,exceptIFS,withareductionofalmost40%.Itisworthnotingthatinallendusesectors,IFSisaclearoutlier,seeingareductioninbioenergyconsumptionwhereallotherstudiesanticipategrowth.TheIFStrendisdrivenbytwomaindrivers:anincreaseofefficiencyinenduse(decreasingfinaldemand)andmorewide-scaleelectrification(especiallyinthetransportsector).TheIFSscenarioalsoseesmoredirectuseofsolarandgeothermalheatintheindustryandbuildingssectors,leavingmorebioenergyforpowergeneration.InEurope,allstudiesseeadecreaseinbioenergyutilisationattheleveloffinaldemand(withonlyoneexception–JRCGECOseesasmall0.4%annualgrowth),butwithdifferentreductionrates,rangingfrom5.6%inCANtojust0.3%inBP.Mostofthestudiesseetheconsumptionofbioenergyinbuildingscontractingbyaround50%onaverage.Thereareoutliersatbothendsofthespectrum:atthehigherend,CANseesareductionofaround95%,andatthelowerend,EUCalcseesareductionofonly25%.Onotherhand,themajorityofscenariosseeanincreaseinbioenergyutilisationinindustry(15%onaverage).JRCGECOhasthemostambitiousincreaseinbioenergyconsumption,doublingitintwentyyears.Ontheotherhand,DNVseesa75%reductionbetween2030and2050(aftera33%growthby2030).Inthetransportsector,themajorityofthestudiesseeadecreaseinbioenergyconsumptionduetotherapidtransitiontoelectricmobilityandtherolloutofhydrogen-basedsyntheticfuels.CANseesonly9TWhofbiofuelsused(acontinueddownwardtrendfrom2030)whileMcKinseyseesover1000TWhofbiofuelsusedintransportby2050.ItisworthnotingthatmanyscenariosstudiesseebiofuelconsumptionintheEUpeakingin2030andthenfollowingadownwardtrend.Figure19.GlobalfinalbioenergydemandSource:JRCanalysisbasedonscenariostudiesFollowingRussia’swaragainstUkraineandtheurgentneedtoreduceenergydependenceonfossilhydrocarbonscomingfromRussia,theEuropeanCommissionpublishedtheREPowerEUPlan(EuropeanCommission,2022)on18May2022,detailingupdatedhydrogenandbiomethanetargets(EuropeanCommission,2022).InordertoreducenaturalgasconsumptioninMemberStates,35billioncubicmeters(bcm)ofbiomethane(equaltoabout30Mtoe)couldbeproducedintheEUby2030.28Figure20.Finalbioenergydemand14intheEUSource:JRCanalysisbasedonscenariostudies4.2SolarenergySolarenergyisusedforproducingelectricityinthepowersector(centralised)orinendusesectors(distributed).Forpowergenerationtherearetwomainsetsoftechnologies:photovoltaic(PV),usedbothinthepowergenerationsectorandinenduse(mainlyinbuildingsandindustry)andconcentratedsolarpowerplants(CSP),usedonlyinthepowersector.Globally,therewasaninstalledcapacityof578GWofPVand6GWofCSPin2019.IntheEU,therewas116GWofPVand2GWofCSP(IRENA,2022c).ThesolarpowergenerationmarketiscurrentlydominatedbyPV:globally,98%ofsolarpowerisgeneratedbyPV,andintheEU,96%.Inthepast,powergenerationfrombothPVandCSPdemonstratedremarkablegrowth:inthelasteightyears,theglobalcompoundannualgrowthrate(CAGR)forPVwas43%andforCSP28%(intheEU,theCAGRwas22%forPVand26%forCSP).In2010,theEUwasthegloballeader,generating70%ofglobalPVelectricity,butitiscurrentlyrapidlylosingitsposition.TheEUshareofglobalPVgenerationin2018droppeddownto20%.Trendsininstalledcapacityaresimilar:theEUsharedroppedfrom47%in2010downto21%in2018(PV)andfrom51%downto41%(CSP).In2020,thebiggestmarketforsolarPVwasChina,growingitssharefrom20%in2015upto36%in2020.TheEUremainsinsecondplace,halvingitsshareof38%in2015to19%in2020.Itisworthnotingthatinsomescenarios,theresultsdonotincludebehind-the-metersolarPVinstallationandpowergenerationandinsomeothers,itisnotclearifbehind-the-metersolarPVisincludedornot.Whendataisavailable,bothcentral(connectedtothetransmissionnetwork)anddistributedPVareaddedtogether.Infuture,behind-the-metersolarPVcouldmakeupasubstantialshareofsolarPVinstalledcapacityandgeneration:forexample,in2030,theShell1.5scenarioconcludesthat50%ofglobalsolarPVcapacityisinstalledinendusesectors(in2050thissharedropsslightlybelow40%).Anotherpossibleissuecomparingresultsfromdifferentscenariosisrelatedtohydrogengeneration.Dependingonthemodellingapproach,sometimessolar/windcapacities/generationdedicatedtohydrogenproductionarebundledtogetherwithelectrolysersanddonotappearinthepowersector,butratherarereportedintheenergytransformationsector.Ifinformationisavailable,PVinstallation/generationforpowerandhydrogenproductionareaddedtogether.Forexample,inthecaseofBNEF,in2030,25%ofutility-scalePVinstallations15arealreadydedicatedexclusivelytohydrogenproduction.By2050,dedicatedPVinstallationforhydrogenproductionaccountsfor42%ofsolarPVinstallations.By2030,themajorityofscenariosseeanaverageglobalsolarcapacitygrowthofuptoaround5000GW(Figure21),constitutingasevenfoldincreasein10years.ScenariosthatsplitresultsintoPVandCSP14Notadjustedforthedifferencesingeographicalscope.15SolarPVpowerplantsconnected(usually)totransmissiongrid(mediumvoltage)anddispatchedcentrally.29confirmacontinuationofcurrenttrends–themajorityofnewinstallationsonlydevelopPV,withCSPhavinganegligibleshareevenin2050.Therearetwostudies(JRCGECOandShell)thatseeslowergrowthratesforsolarenergy.Bothofthemalsohavesmallerpowersectorsingeneral,andtendtopostponethetransitiontowardnet-zeroenergysectortolaterstages(after2030).InthecaseofShell,naturalgaspowerplantsstillhavethehighestinstalledcapacity.InGECO,thewindandsolarpowerinstalledcapacityalreadyexceedsnaturalgasin2030.Thegenerationpatternin2030isdefinedbytheinstalledcapacity.Themajorityofscenariosanalysedprojectaround6000-7000TWhgenerated(Figure22),almostatenfoldincreasecomparedto2019.Therearesomenoticeableoutliers–IFS,onthehighside,pushesoutallfossilfuelsandnuclearby2050,andthereforehastorelyonrenewablesintheearlystages,includingtherapidgrowthofCSP(tooffsettheintermittenceofPVandwind).Onthelowerside,BPandJRCGECOseeaslowertransitionintheearlystagesandanincreasingroleforCCSinthefuture.IntheEU,allscenariosagreethatby2030,thegrowthofinstalledsolarpowercapacityisslowerthantheglobaltrend.Capacityslightlylessthantriplesonaverage,comparedwithatenfoldincreasegloballyinthesameperiod.ThereisacontinuouslydecreasingtrendintheEUshareofglobalinstalledcapacity.Onaverage,by2030,thetotalInstalledcapacityintheEUofsolarenergycouldreacharound350GW,anditshowsahighervariabilitythanglobalresults.Onthelowerside,JRCTIMES,atonly250GW)depictsaslowertransitionandreliesonCCSinthefuture,whereasonthehigherside,IFSshowsaveryrapidtransition(540GWofsolarinstalled),completelyphrasingoutfossilfuelsandnuclearby2050.REPowerEUmentionevenhighersolarinstalledcapacity:592GWofPVin2030.Intermsofgeneration,thereisaclearoutlier(Figure23)–CAN(whichdoesnotprovidecapacitydata),drivenbyambitiousassumptionsondecarbonisation,morethandoublesthesolar-basedgenerationofallotherstudiesandshowsatenfoldincreasecomparedto2019(similartoglobaltrends).Allotherstudiesseeonlyatwo-tofivefoldincrease.Accordingtothescenariosthatprovidedataoninstalledcapacity,CSPwillnotplayanoticeableroleinEurope.Figure21.GlobalinstalledsolarpowercapacitySource:JRCanalysisbasedonscenariostudiesBy2050,solar,togetherwithwind,willbecomethedominantsourceofenergyinthepowersector,providing22-40%ofelectricityinallscenariostudies.Mostglobalscenariossee20000-25000TWhofelectricitygeneratedbysolar(Figure22).Thisismorethanathirtyfoldincreasecomparedwithcurrentgeneration.Itisworthnotingthatglobally,uptohalfofthisgenerationmaybedistributed.SolarPVwilldominatethemarket,whileCSPstillplaysonlyanicherole,amountingtolessthan10%ofglobalsolargenerationinallthescenariosthatprovidedata,exceptforone–IFS–whereittotalsalmost30%.Globalinstalledcapacityseesasimilartrend:solarcanamountfrom35%to65%ofglobalinstalledcapacity.Themajorityofscenariosseesolarinstalledcapacityrangingbetween10000GWand15000GW,withBNEFasaclearoutlierreachingalmost20000GW–itsmarket-drivenscenariosshowaquadruplingofinstalledsolarcapacityglobally.IFS30seesthemostpotentialforCSPwitharound15%oftotalglobalsolarcapacity.Allotherstudiesputitatbelow5%oftotalsolarcapacity.Figure22.GlobalelectricitygenerationfromsolarSource:JRCanalysisbasedonscenariostudiesIn2050,scenariostudiesdonotagreeonthesolarroleinEurope(Figure24).Thehighestvaluesarefourtimesthelowest.Atthelowerend,EUCalc(whichmainlyreliesonwindforpowergeneration)projectsnomorethanacontinuationofcurrenttrendsforPV.CSPgrowsfaster,butwithlownumberstostartwith,itsshareofEUsolargenerationdoesnotincreasehugely.Atthehigherend,CANandMcKinseyseeover2000TWhgeneratedbysolarenergy.InCANthismeansadoublingofthefiguresfor2030,butforMcKinseythismeanstheyquadruplein20years.ThereisalsonoconsensusonfuturesolarcapacityintheEU.Thehighestcapacity(1400GW)andhighestgrowth(560%in20years)areobservedinJRCTIMES.Solarcontributes15%oftotalinstalledcapacity,mainlydrivenbyhydrogenandsyntheticfuelsdemand.Otherstudiesseeashareof13-22%solarinthetotalgenerationportfolio.Solargenerationvariesbetween18%and34%(excludingCAN,witha12%solarshare).TheCSPsharereachesupto15%(excludingEUCalc,with32%ofsolargeneration).In2030-2050,theEUshareoftheglobalsolarpowermarketisstillshrinking,droppingbelow8%oftotalinstalledsolargenerationcapacity.Itisworthnotingthatalmostallstudiesseeanincreasingcapacityfactor(theelectricityproducedagainstthetotalthatwouldhavebeenproducedatfullcapacityperyear)forsolarpowerplantsinthefuture.Thecurrentglobalcapacityfactoris13%(12%intheEU).Similarnumberscanbeobservedinhistoricaldatafromenergyscenarios,butinthefuture,thecapacityfactorcouldincreaseto16-18%in2030and20%in2050.Thisincreasecanbeattributedtotechnologicalimprovement,betterlocationsandbundledstorage.IntheEU,thesenumbersareslightlylower:onaverage,around15%in2030and14%in2050,withoneoutlier(McKinsey)showingacapacityfactorofabove20%in2050.Theglobalsolarpowermarketcouldgrowinthenextdecadefromthecurrent120-130GWnewinstalledcapacityperyearupto300-500GW(moreincaseofBNEF)peryearuntil2030.From2030,globalmarketincreasescouldreach400-700GWperyear.Ontopofnewinstallations,therewillalsobearound250-350GWperyearofreplacementsolarpowerinstallationsattheendoftheeconomiclifetime,movingthetotalmarketgrowthupto1000GWofinstalledcapacityperyear.TheEUsolarmarketwillnotshowsomuchgrowth.Inthenextdecade,therateofnewsolarpowerinstallationwillremainsteady:from20GWperyeartoday,to20-40GWperyearuntil2030(median24GW/year).IncaseofREPowerEUitcouldreach45GWperyear.From2030,theinstallationofnewsolarpowerplantswillslightlyincreasetoabove35GWperyear.Another20GWperyearcouldcomefromreplacementsolarpowerinstallationsatendoflife.31Figure23.InstalledsolarpowercapacityintheEUSource:JRCanalysisbasedonscenariostudiesThemajorityofscenariosassessedinthisreportdonotprovidesufficientinformationonsolarthermalutilisationinendusesectors.OnlyDNV,IFSandIRENAmakeglobaldataavailable,reportingonsolarthermalusageinbuildingsandindustry.Duetonoticeabledifferences,eveninhistoricaldata,wecanconcludethattheassumptionsbehindtechnologicalandsectoralboundariesdiffersignificantly.IFSandIRENAseearapiddevelopmentinsolarthermalinstallationsinendusesectors.Industrygrowsfasterthanbuildings,reachingathermalconsumptionof3000TWh(industry)and3500TWh(buildings)in2050.IRENAputsthisat1700TWhand1350TWhrespectively.DNVseessolarthermalslowlydiminishinginthefuture,providingonly125TWhofthermalenergyin2050.Figure24.ElectricitygenerationfromsolarintheEUSource:JRCanalysisbasedonscenariostudiesForEuropetherearemoredatapointsavailable,butduetovariationsingeographicalscopeandthelackofhistoricaldatatonormalise,itisdifficulttoprovideacomparableassessmentinabsolutenumbers.CANandEUCalcprojectamoderategrowthforsolarthermal.DNV,aswiththeglobalpicture,seesarapidreduction.OnlyIFSreportsanoteworthygrowthofsolarthermalinbothindustryandresidentialsectors,butthiscould32betriggeredbythewidergeographicalscope:IFScoversOECDEurope,andthereforealsoincludesTurkeywithitssubstantialsolarpotential.4.3GeothermalGeothermalenergyisusedforelectricitygenerationinthepowersectorandasadirectsourceofthermalenergyinendusesectors(mainlyinbuildingsandindustry).Despitebeingtechnologicallymature(itusestechnologiesfromotherwelldevelopedareaslikeoildrillingandsteamturbines),thedeploymentratesofgeothermalpowerinstallationsarestilllowandcomparabletoemergingtechnologies.In2020,therewasonly14GWofgeothermalpowerinstalledglobally(IRENA,2022c)–lessthan0.2%oftotalrenewablepowerinstallations.Thegrowthrateofnewgeothermalpowerinstallationsisoneofthelowestofallthecleanenergytechnologiesinthisreport,totallingabout4%CAGRoverthelast10years(onlyhydrohasalowerCAGR).TheEUsituationisevenlessencouraging:lessthan1GWofgeothermalpowerwasinstalledby2020(6%ofglobalinstallations).WithaCAGRofaround2%,theEUshareofgeothermalintheglobalcontextisdecreasing.Geothermalpowergenerationisstillniche:only92TWhwasgeneratedgloballyin2019(7TWhintheEU),accountingforlessthan1.3%oftotalrenewablegenerationgloballyandlessthan0.7%intheEU.Eventhoughgeothermalenergyhasahighcapacityfactor(comparabletocoalandnuclearpowerplants)of90%intheEUand76%globally,itstillfailstocaptureasignificantshareoftheglobalrenewableenergymarket.Geographically,theutilisationofgeothermalenergyforpowerproductionisdistributedveryunevenly.Marketleadersrepresentamajorshareofanyselectedregion.ForexampleIndonesiaandPhilippinesrepresent90%oftotalinstalledcapacityinAsia.ItalsomakeslessaccuratethecomparisonwiththeEUofscenarioresults.CountrieswiththehighestinstalledcapacityinEuropeareTurkey,with1613MWandIceland,with756MW,whilethewholeEU27hasonly857MWofgeothermalpowercapacityinstalled.Basedon2020data,geothermalinstalledcapacityintheEU27wasonly28%ofOECDEurope.Inthisreport,geographicaladjustment,scalingdowntheEU28andOECDEuropetoEU27,isdonebasedonhistoricaldata.Inthiscase,geothermalpowerresultsmaybedistortedduetomorefavourableconditionsinEuropeancountriesoutsidetheEU27.Thereisalsosomediscrepancybetweenstatisticaldataprovidedby(IRENA,2022c)andhistoricaldataprovidedbyscenariosstudies.Thereisacommonunderstandingbetweenscenariostudies,thattherewasaround15GWofgeothermalpowerinstalledgloballyby2019,butaccordingto(IRENA,2022c)itwasonly13.9GW.Forthederivednumbersinthischapter,15GWfor2020wasused.Figure25.GlobalinstalledgeothermalpowercapacitySource:JRCanalysisbasedonscenariostudiesThemajorityofscenariostudiesanalyseddonotprovidedisaggregateddataontheinstalledcapacityofgeothermalpowerplants.Fromtheavailabledatapointsitcanbeconcludedthat,globallyby2030,thereisagrowthofgeothermalpowercapacity(Figure25).Twostudiesseeamoderategrowthofabout1GWof33installedcapacityperyearcomparedtoabout150MWinstalledin2020.IEAseesagrowthof3.7GWperyear.IFSisaclearoutlier,seeingaboomingeothermalinstallationofabout14GWperyear(2020-2030)comparedto14GWoftotalinstalledcapacityofthermalpowerplantsin2020.Thisgrowthisfuelledbymodelassumptionswhichabandonallfossilfuelsandnuclearby2050andseelimiteduptakeofthehydrogeneconomy.Powergenerationfollowsasimilarpattern:themajorityofstudiesseeamoderategrowth(multipliedby2-4comparedwith2020)withaclearoutlier–IFS,whichseesatenfoldincreaseingeothermalpowerproductionovernextdecade(Figure26).Eveninthiscase,geothermalenergyconstitutesonly2.5%ofthetotalpowergeneratedinthisscenario.Inotherscenarios,thegeothermalelectricityshareisbelow1%oftotalgeneration.Figure26.GlobalelectricitygenerationfromgeothermalSource:JRCanalysisbasedonscenariostudiesIntheEU,themajorityofscenariostudiesdonotseeanysubstantialgrowthpotentialingeothermalpower.By2030,allscenariosseeinstalledcapacityatalevelsimilartotoday,exceptIFS,aswasthecasewiththeglobal.Buteveninthiscase,thegrowthisrathermoderate–onlytriplingcomparedtoatenfoldincreaseglobally.Morestudiesprovidegeothermalpowergenerationresultsthanthoseprovidinginstalledcapacity(Figure28).Fromtheresults,itisevidentthatstudiesusingaclassicaloptimisationmodellingapproachseealowergeothermalpotential(exceptIFS),butstudieswithasimulationapproachseeaconsiderablegeothermaluptakeinthenextdecade.Inthiscasewehavethreescenariostudies(allofthemoptimisationmodelling)withgenerationclosetocurrentlevelsandanotherthreescenariostudies(twosimulationandoneoptimisationmodelling)thatseeathreetosix-foldgrowthofgeothermalgenerationbetween2020and2030.Moreover,inthiscase,EUCalchasthehighestgrowth,butevenwithsixfoldincrease,geothermalprovideslessthan0.5%ofthetotalpowergeneratedinEurope.By2050,themajorityofglobalstudiesseeamoderategrowthingeothermalpowerinstallations,increasingby4-7GWofinstalledcapacityeveryyear.Therearetwooutliers–DNV,thatdoesnotseechangesininstalledcapacityatall,andIFS,thatseesacontinuationofrapiddevelopment,installingalmost20GWperyearin2030-2050,thusreaching525GWinstalledcapacityby2050.Bywayofcomparison,thenexthighestinstalledcapacityisrecordedinIEA,atonly126GW.Powergenerationfollowsthegrowthofinstalledcapacity,rangingfrom125TWhinDNVto3300TWhinIFS,butevenhereitamountstoonly5%oftotalpowergeneration.Inmostotherscenarios,theshareofgeothermalpowergenerationisbetween1%and2%.34Figure27.InstalledgeothermalpowercapacityintheEUSource:JRCanalysisbasedonscenariostudiesFigure28.ElectricitygenerationfromgeothermalintheEUSource:JRCanalysisbasedonscenariostudiesEUstudiesdonotforeseeanoticeablegrowthofgeothermalpowergenerationcapacity:twooutofthreeseeanincreaseoflessthan10MWperyearintheperiod2030-2050.Followingglobaltrends,IFSseesthehighestgrowthatabout400MWperyear(thisalsocouldbeaffectedbythescalingdownofOECDEuropeinthisreport)andreaches11GWin2050(comparedtoabout1GWinotherstudies).Onthegenerationside,duetodifferentsetsofstudies,weseeadifferentpicture.Studiesthatdonotseeanygrowthininstalledcapacity(DNVandJRCTIMES)alsoshowthelowestgeneration(5-6TWhin2050),oneofwhich(JRCTIMES)seesapeakofgeothermalgenerationin2040(7TWh)andthendropsbackto2030levels.Threeotherstudiesshowaremarkablegrowth,reachingupto120TWhin2050(EUCalc).Drivenbyexternalassumptionsontheeconomicpotential,geothermalpowerprovidesalmost3%oftotalpowergenerationintheEU(EUCalc).Inotherstudies(CANandIFS),thisshareisonly1.5%.ItisworthnotingthatallscenarioswhichseeabiggerroleforgeothermalinEUpowermarketsprojectalowergrowthin2030-2050thanin2020-2030.Inadditiontopowergeneration,geothermalenergycouldbeusedtogenerateheatforendusesectors,butveryfewenergyscenariostudiesprovidesufficientdatatoproperlyanalysetrendsindirectgeothermal35energyuse.Moreover,basedonthedataavailable,itisevidentthatdifferentstudiesusedifferentscopesfortheirdefinitionofgeothermalenergy.Forexample,atgloballevel,thereareonlythreestudiesinourselectionthatprovidesomeinsightsondirectgeothermalusageinendusesectors,butbasedonthehistoricaldatainthesestudies,itisevidentthateachofthemhasdifferentboundaries(historicalresultsvarywidely).In2019,DNVseesonly3.5TWhofgeothermalenergyusedinindustry,whileIFSsees97TWhin2018andIRENAsees305TWhinthesameyear.Basedonthiswidevariationofdefinitionsitmakesnosensetocompareresultsofdifferentstudies,andthereforeonlytrendsareanalysed.DNVdoesnotseeanypotentialforgeothermalenergyglobally.Inlinewithgeothermalpower,thereisnogeothermalendusegrowtheither.Geothermaluseinbuildingsdropsbymorethanhalfbetween2019and2050(from111downto41).Geothermaluseinindustrydisappearsbefore2030.Onlyothersectorsseeasmallincrease(from28TWin2019to44TWhin2050).Intermsofgeothermalenergyforenduses,IFSfollowspowergenerationtrends,withaconstantincreasebothinindustryandbuildings:from4and96TWhin2015,upto747TWhand832TWhin2030,and2001TWhand2271TWhin2050,respectively.AccordingtoIRENA,therewillbeanincreaseingeothermalusein2030andthenadecreasetowards2050.InEurope,mostscenariosthatprovidedata(CAN,EUCalcandIFS)agreethatbuildingswillbethemainareaofgeothermalheatapplicationinendusesectors,withverylimiteddeploymentinindustry,buteventhemostambitiousscenariosdonotseeitasanoteworthysourceofenduseenergy,supplyingbelow1%inmostcases.OnlyDNVseesnoroleatallforgeothermalheat:in2030itdropsbelow1TWhandthencompletelydisappearsin2050.4.4HeatpumpsUntilrecently,neitherheatpumpsnorambientheat(harnessedfromambientairbyheatpumps)wasnotusuallyincludedinenergyscenariostudyresults.Anumberofscenariostudiesconsiderambientheataspartoftheend-usemix,butitisusuallyreportedonlyaspartofelectricityconsumption(justthepartconsumedbyheatpumps)andnotseparatedinanyway.Whileinthedevelopedworld(andintheEUinparticular)theincreaseinelectricityconsumptioncouldbeusedasaproxyforelectricityusedbyheatpumps(Nijs,Tarvydas,&Toleikyte,2021),thatisnotthecasefortheglobalnumbers16.Currently,therearenoenergystatisticsontheutilisationofambientheat,eitheratgloballeveloratcountrylevel(IEA,2021b).OnlyEurostat(from2019)includesambientheatforEUMemberStates(Eurostat,2019)intheenergybalances.Noneoftheglobalscenariostudiesanalysedinthisreportprovidesdataonambientheatdemandinenergybalances,andonlythreeprovidequantitativedataatEuropeanlevel.Nevertheless,anumberofstudiesmentionheatpumps(orambientheat)asanimportantcontributortodecarbonisingtheeconomy,especiallythebuildingssector,providingquantitativedataonheatpumpinstallations,eitherbymillionunitsorGWinstalled.By2030,IRENAsees182millionheatpumpsinstalled(142millioninbuildings,equalto2800GW,another35millioninindustry)BNEFalsoseesasimilarnumber(186millionhouseholdswithheatpumpsinstalledgloballyby2030),whiletheIEAisconsiderablymoreambitious,with600millionheatpumpsinstalledgloballyby2030,providing20%oftotalheatingsupply,in400milliondwellings.By2050,thenumberofheatpumpsinstalledgloballycouldrangebetween400million(IRENA;290millioninbuildings,equalto5800GW,and80millionunitsinindustry)to1800millionheatpumps(IEA).IEAprojectsthat1200millionhouseswillhaveheatpumpsinstalled(providingaround55%oftotalheatdemand)whileBNEFforeseesinstallationsin1400millionhouseholds.Arapiddeploymentofheatpumpscouldaccountforaround74%ofemissionabatementinthebuildingssectorby2050(BNEF).Heatpumps(singleormulti-stagecascading)couldalsoprovideupto30%lowtolow/mediumtemperatureheatintheindustrialsector(IEA).Otherstudiesalsoemphasisetheimportanceofheatpumps:accordingtoDNV,heatpumpswillprovide42%ofspaceheatinbuildingsin2050,whileconsumingonly15%oftheenergyusedforspaceheating.Inindustry,whentemperaturerequirementsaremoderate,heatpumpswillincreasinglybecommerciallycompetitiveastheirhighcoefficientofperformancewillincreasebyafactorof6.Accordingto16Theglobalincreaseofelectricityconsumptionisdrivenbyanumberoffactors,includingincreasedaccesstoelectricityand/oruseofwhite/brownappliancesinthedevelopingworld.Inthedevelopedworld,includingtheEU,theincreaseduseofelectricityinthehouseholdsectorisdrivenmainlybynewusesofelectricity(heatingdirectlyorusingheatpumps),butthisapproachgivesonlyveryapproximateresultsbecauseofbehaviourchanges(somescenariosforeseeadrasticreductioninenduseenergyinthebuildingssector),andduetoapossibleincreaseinelectricityconsumptionforcooling(notconsideredasambientheatbydefinition).36IFS,globalinstalledcapacityofheatpumpswillgrowtenfoldbetween2015and2030(from89GWto967GW)andanother2.5timesbetween2030and2050(to2430GW).InEurope,scenariostudiesdonotagreeonthetake-offspeedofheatpumpinstallation(Figure29):thehighestfigurefor2030(CAN)isalmostsixtimesthelowest(JRCTIMES),butfor2050,theresultsareverysimilar:inthebuildingssector,from470TWh(JRCTIMES)to580TWh(CAN)ofambientheatcouldbeutilised.Ontopofthat,CANalsoforeseestheuseofaround35TWhofambientheatinothersectors,mainlyindustry.AccordingtoMcKinsey,9%ofresidentialandcommercialbuildingswilluseheatpumpsforspaceandwaterheatingby2030,reaching40%by2050(comparedto2%now).AccordingtoIFS,theinstalledcapacityofheatpumpsinOECDEuropewillgrowsix-foldbetween2015and2030(from29GWto183GW)andanother2.5timesbetween2030and2050(to444GW).Globalenergyscenariostudiesagreethattheheatpumpmarketwillgrowinnextdecadeandtill2050.WithaCAGRrangingfrom8%(IRENA)uptoalmost20%(BNEF),by2030theglobalmarketcouldreachatleastEUR120billion,doublingby2050.Inlinewithotherdevelopingworld,theEUgrowthratecouldbehigherthantheglobalaverage.Figure29.AmbientheatconsumptioninEU17Source:JRCanalysisbasedonscenariostudies4.5HydrogenHydrogenistheonlyintermediate(secondary)energycarriercoveredindetailinthisreport(allothersarerenewableenergysources).Whilehydrogenisthemostabundantelementinnature,itusuallyformspartofanothercompound(themostrelevanttohydrogenproductionarewater,H20,andmethane,CH4).Inordertousehydrogenasanenergysource(orasfeedstockinindustry),ithastobeproducedfromothersourcesofenergy.Today,globally,hydrogenismainlyproducedfromfossilfuels(around60MtwithoutCCSand8MtwithCCS)andasaby-productinrefineries(about18.6Mt).Only0.5Mtwasproducedusingelectrolysers(notnecessarilybasedonrenewableelectricity)(IEA,2022c).Inthelastfewyears,drivenbyflexibledecarbonisationneeds,hydrogenhasbecomeoneofthetechnologieswidelycoveredbyscenariostudies.Whilein2019therewereonlyahandfulofscenariostudiescoveringhydrogeninthecontextofdecarbonisationpathways(JRC,2019),inthisreview,themajorityofscenariosselectedincludehydrogenusage.Inthefuture,hydrogenusedasanenergycarrierwillmostlikelybeproducedfromelectricity(themajorityofthestudiesseearoleonlyforgreenhydrogen,especiallyafter2030).Wecanalsoobserveacorrelationbetweenhydrogenproductionandtheinstalledcapacityofwindandsolarpowerplants.Therearejustafewstudiesthatseearoleforhydrogeninpowerproduction.Hydrogencouldbeconsideredasameansforboth17CANandEUCalcprovidedataonEU28,whileJRCTIMEScoversEU27.AmbientheatconsumptioncouldbeusedasaproxytounderstandheatpumpdeploymentinEurope.37longandshorttermenergystorage,butduetosignificantlosses,itisnotwidelyadoptedassuchinthemajorityofenergyscenariostudies.Globally,onlythreestudies18seededicatedhydrogenpowergenerationcapacityinstalledbefore2030.IEAandIFSonlyseearound100GWofhydrogencapacityinstalled,whileBNEFsees900GW.Withasignificantincreaseinintermittentgeneration,BNEF(Figure30)alreadyseeshydrogenasaflexibility/storageproviderin2030.Thereismorevariationinhydrogenpowergenerationthanininstalledcapacity(Figure31).WhileIFSandIEAhavesimilarinstalledcapacities,theelectricityproduceddifferssignificantly.BothBNEFandIFShavecapacityfactorsofaround30%,indicatingregularpeaking/flexibilityusageofsuchcapacities,whileIEAshowscapacityfactorsofover70%.Itisunlikelythatinthiscase,hydrogenpowerplantsareusedasbaseload,butit(probably)indicatesthathydrogenisusedinmixeswithnaturalgas.Accordingtoscenariostudies,in2030therewillbebetween16Mtand150Mtofhydrogenusedforpowergenerationglobally.In2030,onlyonescenariostudyseesaroleforhydrogeninpowergenerationinEurope.By2030,IFSseeslessthan7GWofhydrogeninstalled(inOECDEurope),producingalmost20TWhofelectricity,meetingthepeaking/flexibilityunitprofile.By2050thesituationwillnotchangemuch.Globally,thereareonlyfourscenariostudieswithdedicatedhydrogenpowerproductioncapacity(Figure30).BNEFstillseesthehighestpotentialforhydrogenpowergeneration,butotherstudiesarecatchingup.WhileBNEFhasonly9%CAGRin2030-2050,IFSwillreach19%.Globalhydrogen-basedpowergenerationwillgrowlessrapidlythaninstalledcapacity,withaCAGRrangingfrom3%inIEAto13%inIFS.Thattranslatestolowercapacityfactorsofaround20%.AllstudiesexceptIRENA(aclearoutlierwithacapacityfactorof38%)seepowerhydrogengenerationmovingevenmoretowardspeaking/flexibility.By2050inEurope,onlyonestudy(IFS)providesinstalledcapacityofhydrogengeneration,witha19%CAGR(inperiod2030-2050),inlinewithIFSglobaltrends.Onthegenerationside,inadditiontoIFS’shydrogen-basedpowergenerationof300TWh,McKinseyseesagenerationofaround120TWh,providingabout2%oftotalgeneration.Thepowersectorisnotthemainmarketforhydrogen(althoughhydrogen-basedpowergenerationcapacityevolvesfastintheperiod2030-2050).Mostofthescenariosseethatthemajorityofhydrogenisusedintheendusesector.Forexample,about90Mtofhydrogeniscurrentlyusedinindustry(non-energy)globally.Incomparison,onaverage,only70Mtisusedforpowergenerationin2030(rangingfrom20Mtto140Mt).Figure30.GlobalinstalledhydrogenpowercapacitySource:JRCanalysisbasedonscenariostudies18Hydrogencanalsobeused(invariousmixeswithnaturalgas)ingasturbines,whethercurrentlyoperational(withorwithoutupgrade)ornew.Thesecapacitiesmaynotbereportedashydrogen-basedinenergystudies.38Themajorityofscenariostudiesreviewedinthisreportforesee(andprovidedataon)hydrogenuseinendusesectors,butthesectoralscopeandfueldefinitionboundariesofthesestudiesdiffersignificantly.Somescenariostudiesprovidehydrogenandsyntheticfuelconsumption(sometimescallede-fuels)separately,whileothersbundlethemtogether.Inpreviousreports(TsiropoulosI.N.W.,2020),syntheticfuelswereconvertedbacktohydrogenusingreversedproductionefficiencies,butinordertoalignwithreportsthatdonotseparatehydrogenfromsyntheticfuels,thisreportusesfacevalues.Moststudiesdonotincludenon-energyinfinalenergydemand,butIRENAincludeshydrogenasafeedstockinindustry.Thisischieflywhy,ofallthescenarios,IRENAseesthehighesthydrogendemandin2030.InIEA,notallsyntheticfuelsareattributedtoafinaldemandsector,thereforethisenergyisreportedasconsumedinothersectors(inlinewithearlierIEAWEOpublications).ForEuropeanscenarios,wherepossible,hydrogenande-fuelsusageisalsosplitintobunkersandnon-energy.Figure31.GlobalhydrogenpowergenerationSource:JRCanalysisbasedonscenariostudiesIn2020,about90Mt(around3000TWh)ofhydrogenwasusedinindustry(IEA,2022c):50Mtinthechemicalindustryand40Mtinrefineries,butnoneofthiswasusedasanenergysource,butratherasafeedstock,andisthereforenotalwaysincludedinscenariostudyresults.Inendusesectorsin2020,onlyaround3TWh(or90kt)ofhydrogenwasusedforenergyinthetransportsector.In2030,themajorityofglobalenergyscenariostudiesseehydrogenstartingtoappearinallendusesectors(Figure32).Butstudiesdonotagreeonwhichsectorwillleadtheadoptionofhydrogen.Threeoutofsevenstudiesseebuildingsasthemainearlyadopter(BNEF,JRCGECOandIRENA(ifadjustedforindustrialfeedstock)).AccordingtoDNVandIEA,industrywillbethemainconsumerofhydrogen,whileIFSandShellseetransportasanearlyadopter.Despitebeingadoptedinallendusesectors,hydrogenremainsanicheenergyformin2030,providinglessthan1000TWhofenergygloballyonaverage(rangingfromlessthan4MtinShellto65MtinIEA.Puttingendusetogetherwithfeedstock,IRENAseesaround162Mtofhydrogenusedby2030(comparedto90Mtasfeedstocktoday).LookingatEurope19,energyscenariostudiesaremorecoherent:themajorityanticipatethatthetransportsectorwillbefirsttoimplementthehydrogenoption(Figure33):sixoutofninestudiesseethehighestconsumptionoccurintransport.Twostudies(DNVandBP)seeindustryasanearlyadopter,andonlyJRCGECOseesbuildingsasthepreferredsectortoimplementhydrogenfirst.Despitegenerallyagreeingonthemainsectorstoimplementhydrogentechnologies,thespeedofadoptiondifferssignificantly:hydrogenusagevariesbetween15TWhand208TWhamongthestudiesthatputtransportfirst.Totalhydrogenusagealsodifferssignificantly:fiveoftheninestudiesputitatlessthan2Mtofhydrogenperyear,whiletwoputitataround10Mt(CANandJRCTIMES).19Datanotadjustedforgeographicaldifferencesbetweenthestudies.39By2050,globalhydrogenusageinendusesectorschangessignificantly:noneofthescenariostudiesseesbuildingsasthemainsourceofhydrogendemand.Fouroutofsevenstudiesseeindustryasthemainhydrogenmarket,whiletheremainingthreegivethathonourtotransport.Anotherareawherestudiesdonotagreeisthetotalamountofhydrogenusedinendusesectors,varyingfromonly70MtinJRCGECOandShell,toover700MtinBNEF,averagingaround260Mtperyear.Thesedifferencescanbetranslatedintoa15%CAGRinthecaseofBNEF,downto5-7%inIEA,IRENAandIFS.InBNEF,hydrogenwillprovideaboutaquarteroffinalenergydemand,whiletheaverageacrossthescenariosisonly10%.InEurope,thetransportsectorremainsthemainmarketforhydrogen.Sixoutofninestudiesseetransportasthesectorwithhighesthydrogendemand.Theotherthreeputindustryfirst.Noneofthestudiesbelievesthatbuildingswillhaveanysubstantialdemandforhydrogen.Thegrowthofdemandvariesamongscenarios,fromonly3%inCANtomorethan25%inMcKinsey(includingnon-energy)andECFIT55(includingtheenergysector).HydrogendemandinEuropecouldvarybetween6Mtand60Mtin2050.Figure32.GlobalfinalhydrogendemandpersectorSource:JRCanalysisbasedonscenariostudiesFigure33.HydrogenfinaldemandinEuropepersectorSource:JRCanalysisbasedonscenariostudies40Thereissignificantdisagreementamongenergyscenariostudiesonthefuturehydrogenmarket.In2030,theglobalmarketcouldvarybetween6Mtand70Mtinendusesectors,plusnon-energyofatleast90Mt(currentlevels).Addedtothat,upto140Mtcouldbeusedforpowergeneration,averagingoutacrossthescenariosatabout200Mtperyear.TheEUmarketcouldreachupto10Mt(withoutfeedstock).By2050,theglobalhydrogenmarketcouldvaryfrom70Mt(JRCGECO)to700Mt(BNEF).Non-energyusewillprobablyamounttomorethan100Mt.Powergenerationcouldaddanother100-600Mt,reachingover1400MtaccordingtoBNEF.IntheEU,hydrogendemandcouldreach60Mt(ECFIT55,includingtheenergysectorandnon-energy).Itisworthnotingthatinstudiesthatseeahighgrowthrateofhydrogenutilisation,hydrogenismostlyproducedfromintermittentrenewablesources.Itispartlydrivenbytheneedtobalancethepowersysteminazeroemissionsworldin2050,butalsoaffectedbyscenarioselection.Forexample,inthecaseofBNEF,theGreenscenariowasselected,tocorrelatebetterwiththeEuropeanGreenDealandECFit55scenarioresults.FollowingRussia’swaragainstUkraineandtheurgentneedtoreduceenergydependenceonfossilhydrocarbonscomingfromRussia,theEuropeanCommissionpublishedtheREPowerEUPlan(EuropeanCommission,2022c)on18May2022,detailinghydrogenandbiomethanetargets(EuropeanCommission,2022e)inordertoreducenaturalgasconsumption.BuildingontheFit-for-55ambitions,REPowerEUacceleratedthemedium-termprojectionsforhydrogenutilisationinMembersStates,fromslightlyabove6Mtto16MTin2030(Figure34),notincludinganadditional4Mttoreplaceimportsofammoniaandrelatedproducts.REPowerEUforeseesarapidincreaseofhydrogenusageintransport(directandassyntheticfuels),theindustrialsectorwillexperiencemajorchanges(bothinhightemperatureindustrialheatandindustrialprocesses)andinthebuildingssector,hydrogenblendingwillbeused.Figure34.HydrogenconsumptioninREPowerEUandECFitfor55in2030Source:EuropeanCommission,20224.6HydroHydroenergyisthefirstrenewableenergysourceusedatscaleforelectricityproduction.In2000,therewasalreadyover750GWofhydropowerplantsinstalledandin2020,thisnumberreached1333GW,providingaround50%ofglobalrenewablecapacitiesand63%ofelectricitygeneration).Therearetwomaintypesofhydropowerplant,bothbasedonwell-establishedtechnology:hydropowerplantswhichuseonlynaturalinflows(usuallywithadamforoutputregulation)andPumpedStorageHydropower(PSH)thatpumpwaterupstreamtoreuseforpowergeneration.Thesetwotypesoftechnologycanbeusedseparatelyorcombinedintomixedpowerplantswithnaturalinflowsandpumpingcapabilities.In2020,therewas1212GWofinstalledcapacitygloballyofpurehydroandmixedplants,alongwithafurther121GWofpurePSH,totalling1333GWofhydropowercapacity.IntheEU,purehydroandmixedpowerplantsmadeup129GWofinstalledcapacity,plusanother23GWofpurePSH,totalling151GW024681012141618REPowerEUFit-for-55MtH2PowerBlendingSyntheticfuelsTransportIndustrialHeatBlastfurnacesPetrochemicalsRefineries41(IRENA,2022c).Asanestablishedtechnology,hydropowerdoesnotenjoythesamerapidgrowthasotherrenewabletechnologieslikewindandsolar:inthelastdecade,theglobalCAGRofhydrotechnologywasaround2%andintheEU,only1%.In2020,only11%ofglobalinstalledcapacitywasintheEU.Althoughhydropowerisawell-establishedtechnology,thecomparisonofscenarioresultsisnotstraightforward:whilethemajorityofthescenariostudiescombineallhydropowerplantstogether,some(likeBNEF)consideronlypurehydroandmixedpowerplants,leavingpurePSHaspartofthestoragetechnologymix.Inothercases(likeShell),itisnotclearifpurePSHisincluded.Forthisreport,thesumofallhydrotechnologiesisusedasthemainindicator.Figure35.GlobalinstalledhydropowercapacitySource:JRCanalysisbasedonscenariostudiesBy2030,noneofthescenariosseesanymajordevelopmentininstalledcapacityofhydropowerplants.Globally,onlybetween8GWand50GWofinstalledcapacityisaddedyearly.ThattranslatestoaCAGRoflessthan3.5%.Thelargestgrowthcanbeobservedinscenariosrelyingonafullsetoftechnologies(DNV,IEA).IFSshowsoneofthelowestgrowths,relyingmainlyonintermittentrenewableenergyin2050(Figure21).SHELLonlyseesamarginalgrowthofabout5GWayear,comparedtoitsownbaseline,butduetodifferenttechnologyboundaryassumptions20(Figure35),SHELLdataseemsloweronthegraph.Themajorityofscenariosanalysedseehydroproductionofaround5500-6000TWh(Figure36),agrowthofabout3%CAGR,inlinewiththegrowthofinstalledcapacity.Theonlyclearoutlier,IFS,anticipatesaCAGRoflessthan2%.In2030,hydropowergenerationwillprovide13-17%ofallelectricitygeneratedintheworld.IntheEU,thesituationisverysimilar.Duetolimitedpotentialandenvironmentalregulations,thereisverylittlegrowthofnewhydroinstallationstobeseeninthemajorityofscenariostudies–arateofbelow0.5GWperyear(comparedtothestudies’ownbaselines)(Figure37)21.Thisisconsiderablyslowerthanthatofthemajorityofotherrenewabletechnologies.Thereismoreinformationgiveninthestudiesongenerationthanoncapacity,buteachpaintsaverysimilarpicture:hydropotentialisalmostexhaustedandthereisnoroomformeaningfulexpansion(Figure38).Allstudiesshowamoderateannualgrowth,comparedtotheirownbaselines,of1-3%.20HistoricalyearsdonotcorrespondtoIRENAstatisticaldata.21Inthegraph,theboundariesofhydrotechnologywerenotaligned.Themajorityofscenariosusehydro,mixandpurestoragedefinitions,andothers(ECFIT55)useonlypureandmix.ForJRCTIMESandJRCGECO,theboundariesareunclear(JRCTIMEShasalowerhistoricalvaluethanpurehydroandmix,andJRCGECOahighervaluethanmixpluspurehydro).42Figure36.GlobalelectricitygenerationfromhydroSource:JRCanalysisbasedonscenariostudiesThesituationremainssimilartowards2050.Globally,themajorityofscenariosseeaslowgrowthof5-40GWperyear.OnlyShellshowsasmalldeclineinglobalinstalledcapacityofhydropowerplants.IEAhasthehighestinstalledcapacityofaround2600GW,andShellthesmallestat1203GW,followedbyIFSat1523GW,butinallcases,duetotherapiddevelopmentofotherrenewablesources,theroleofhydrodiminishes:globally,only5-9%oftotalinstalledcapacityismadeupofhydropowerplants.By2050,hydrocouldprovideabout5000-10000TWhofelectricity(IFSatthelowendandIRENAestimatinghigh),providing8-13%oftotalelectricitygeneration.Thestudywithhighestglobalcapacity(BNEF)doesnotprovideinformationabouthydrogeneration,lumpingitinwithotherrenewablestotallingonly5600TWhandprovidinglessthan5%oftotalelectricitygeneration.Figure37.InstalledhydropowercapacityintheEUSource:JRCanalysisbasedonscenariostudies43Figure38.HydropowergenerationintheEUSource:JRCanalysisbasedonscenariostudiesIntheperiod2030-2050,theEUfollowsglobaltrends.Theinstalledcapacitystaysalmostunchanged:in20years,onaverage,therewillonlybe3GWbuilt,andoneofthestudiesevenseesadecreaseof3.6GWbytheendof2050.Hydromakesuponly3%to6%oftotalinstalledcapacityintheEU.Studiesthatprovidebothgenerationandcapacityseesimilargenerationresults(ofabout350-420TWh).Therearetwooutliers(bothwithoutdataoncapacity):CANseesonly300TWhgeneratedin2050(downfrom320TWhin2030)andEUCalcseesagenerationof500TWh(upfrom430TWhin2030).In2050,hydrocouldprovideabout7%ofallelectricitygeneratedintheEU.By2030theglobalhydropowermarketcouldtotalaround20GWperyear(includingnewinstallationsandrefurbishments).Afterthat,thehydropowermarketcoulddeclineto15GWperyear.TheEUhydropowermarketwillbenegligible,ataround0.5GWadditionsperyear,andlessinsomescenarios,whichseenogrowthatall.4.7OceanOceanenergy(knowninsomeliteratureasmarineenergy)isanemergingtechnology,usedforproducingelectricityonlyinthepowersector(centralised).Forpowergenerationtherearetwomaingroupsoftechnologies:onetidalandtheotherusingwaves.Statistics(IRENA,2022c),aswellasthosescenariostudieswhichprovidedataonoceanenergy,usuallybundletidalandwavetechnologyunderoneheading.Globally,thereisonly0.5GWofoceanenergyinstalled,almosthalfofit(0.22GW)intheEU.Inthelastdecade,therehasbeennoprogressofnoteinoceanenergydeployment.Since2011,only24MW(0.024GW)ofoceanenergyhasbeeninstalledglobally(mostofitintheUK).TheCAGRofoceanenergyintheperiod2010-2020wasonly0.5%,andonlybecausein2011,theglobalcapacitywasdoubledbynewinstallationsintheRepublicofKorea.Moreover,intheEUin2020,therewaslessinstalledcapacitythanin2016(221MW,downfrom227MW).In2019,globally,therewasonly1TWhofoceanenergygenerated,whichtranslatesintoabout0.01%oftotalrenewableelectricitygeneratedin2019.Energyscenariosstillrarelyprovidequantifiableinformationonoceanenergy.Onlyfouroutof13scenariostudiesincludedinthisreportprovideglobaldatapointsforoceanenergy.ForEurope,thereareonlystudieswithquantitativedata.Moreover,onlytwoofthemsplitthedataintowaveandtidal(ShellandJRCTIMES).Itisverylikelythatsomeotherscenariostudiesalsoconsideroceanenergywithoutprovidingdisaggregatedresults(forexampleECFIT55),thereforethesestudiesarenotincludedingraphsandfutureanalysis.By2030,thescenariostudiesthatreportoceanenergydataseeagrowthintheglobalinstalledcapacityofoceanenergyofaround11-80GW(Figure39).Inabsolutenumbers,thisisnegligible(comparedtoabout5000GWofsolarinstalledin2030),butitcouldsignalakick-offinthedeploymentofoceanenergy:ittranslatestoatleast1GWofinstalledcapacityperyear,doublingthecurrenttotalinstalledcapacity,and44showsa20-150foldincreasein10years.Scenariosthatsplitresultsintotidalandwaveseeamajordevelopmentoftidalenergy(over73%ofnewcapacity).Inthescenariostudiesselected,thereareonlytwoprovidinggenerationdataonoceanenergyin2030.Rangingfrom27TWhto168TWh,itprovideslessthan0.5%oftotalpowergeneration(Figure40).Andwitha24%capacityfactorandgenerationwhichisnotdispatchable,itdoesnotcontributetosecurityofsupplyeither.Figure39.GlobalinstalledoceanpowercapacitySource:JRCanalysisbasedonscenariostudiesFigure40.GlobalelectricitygenerationfromoceanenergySource:JRCbasedonscenariostudiesIntheEU,thereareonlytwoscenariosthatprovidecapacitydatafor2030Figure41.IFSsees16GWofoceangenerationcapacityinstalled(growingroughly70fold),translatinginto1.5GWofnewinstallationsperyear(comparedtothecurrent0.22GWoftotalinstalledcapacityofoceanpower)orabout20%ofglobalinstallation,makingtheEUoneoftheleadersinthedevelopmentofoceanpowerplants.Anotherstudy(JRC-TIMES)doesnotseeanyoceanenergyinstallationbefore2030.Onthegenerationside,therearesomestudieswithnumericaldataonoceanenergy.IFSseesthehighestgrowthpotential,reaching34TWhin2030.Theremainingstudiesarelessoptimistic–oceanenergygeneratesbelow10TWh(Figure42).Despiteits45remarkablegrowthinthemostoptimisticscenario(70foldinIFS),oceanenergystillgenerateslessthan1%ofalltheelectricitygeneratedintheEUin2030.By2050,acontinuationoftherapiddeploymentofoceanenergycanbeobserved.Globalinstallationmorethandoubles,reaching450GWofinstalledcapacity,butstillonlyreaching1.5%oftotalinstalledcapacityinthemostambitiousscenario(IFS).ShellandIEAseeanoceanenergycontributionoflessthan0.5%oftotalglobalinstalledcapacity.Themostambitiousscenariopositsfiguresfivetimesthesizeoftheleastambitious.BasedonShellresults(theonlyscenariostudythatprovidesasplitbetweentidalandwavein2050),tidalcontributes98%oftotalinstalledoceanenergycapacity.Globaloceanenergygenerationcouldvaryfrom132TWh(IEA)to1200TWh(IFS),butinanycase,itdoesnotcontributesignificantlytoelectricitysupply:eveninthemostoptimisticscenarioitaccountsforlessthan2%oftotalelectricitygeneration.ThereareonlytwoscenariostudiesthatquantifyoceancapacitydeploymentinEuropein2050.IFSprojectsaninstalledcapacityofoceanenergyof53GW.JRCTIMESismorespecificwith21GWoftidalinstallations(nowaveenergyinstallationsarereported).TheIFSprojectionmeansatriplingofthe2030capacityandaround2GWofnewinstalledcapacityperyear.Eveninthismostoptimisticcase,thetotalinstalledcapacityofoceanenergyisbelow1%oftotalinstalledpowergenerationcapacityintheEU(and0.3%inJRCTIMES).Valuesaregivenforoceanenergypowergenerationinthreestudies,rangingfrom10TWh(CAN)to155TWh(IFS),providingfrom0.2%to2.6%oftotalpowergeneration.Therearecurrentlynoestablishedoceanenergymarkets.Inthelastdecade,only277MWofoceanpowerwasinstalledglobally(mostofitexperimentalorresearch-driven),comparedto126GWofPVinstalledin2020alone.Moreover,92%(255MW)wasinstalledin2011intheRepublicofKorea(onepowerplant).Basedonthelimiteddatafromenergyscenarios,itcanbeconcludedthatinthenextdecadebetween1GWand8GWofoceanenergygeneratorscouldbeinstalledperyear.Afterthat,therateofinstallationscouldriseupto18GWayear(other,lessoptimistic,studiesseeonlyaround2GWofnewinstallationsperyear),anegligiblenumber,evenwhencomparedtocurrentinstallationsofwindorsolarpowerplants.TheEUshareofoceanenergycouldbearound10%-rangingfrom1.6GWintheperiod2020-2030,andincreasingto1.9GWafterwards.Noscenariostudiesthatprovidedataonoceanenergygiveitasignificantroleinelectricitygeneration.EvenIFS,aclearleaderinoceancapacitydevelopment,seesonlyamarginalroleforoceanpowerupto2050,providinglessthan2%ofglobalelectricity.Figure41.InstalledoceanpowercapacityintheEUSource:JRCanalysisbasedonscenariostudies46Figure42.ElectricitygenerationfromoceanenergyintheEUSource:JRCbasedonscenariostudies4.8WindCurrently,windenergyisprimarilyusedforproducingelectricityinthepowersector(centralised).Distributedwindgenerationstillremainsanichemarket(dominatedbyindividualsandSMEs)anddoesnotplayasignificantrole.Themarketisdominatedbyhorizontalaxis,three-bladewindturbines.Althoughthewindturbinesaresimilar,statistically,windpowerplantsareoftensplitintoonshoreandoffshore.Thelocation(onshoreoroffshore)andforoffshoreturbines,thetypeoffoundation(monopole,jacketandfloating,justtonameafew)significantlyaffectstheinstallationcostsandthereforeeconomicefficiency.Globally,therewas698GWofonshorewindcapacityand34GWofoffshorewindinstalledin2019.IntheEU,therewas162GWofonshoreand15GWofoffshore(IRENA,2022c).Thewindpowergenerationmarketisdominatedbyonshorewind:globally,94%ofwindpowerisgeneratedbyonshore(89%intheEU).Powergenerationfrombothonshoreandoffshorewindexperiencedremarkablegrowthinthelasteightyears:theglobalCAGRforonshorewas17%andforoffshore32%(intheEUthesewere10%and29%respectively).In2010,theEUwasthegloballeader,generating40%ofglobalonshoreand56%ofoffshorewindelectricity,butitiscurrentlyrapidlylosingitslead,withitsonshoresharedroppingtobelow24%in2018.However,theEUisstillleadinginoffshorewindpowergeneration,providingaround47%ofglobaloffshorewindgeneration.Trendsininstalledcapacityaresimilar:theEUshareinonshoredroppedfrom33%in2010to27%in2018,andinoffshore,theEUsharedroppedfrom52%to45%.In2020,thebiggestmarketforwindenergywasChina,adding72.5GWofwindgenerationinoneyear,comparedtolessthan10GWinstalledintheEUand14GWintheUSA.Eveninoffshorewindinstallations,wheretheEUtraditionallyhadtheleadingrole,itwasbypassedbyChinain2020when3GWwereinstalledinChinaasagainst2.9GWintheEU.Windtechnologiesareamongthebestrepresentedinenergyscenariosofalltherenewablegenerationtechnologies.Allscenariostudiesanalysedhaveinformationonwind(eitheronlygenerationorgenerationandinstalledcapacities).Moreover,themajorityofstudiesprovidedataseparatelyononshoreandoffshoretechnologies.Onestudy(DNV)splitoffshorewindintotwosubcategoriesbasedonfoundation:fixedandfloating.Aswithsolarpowergeneration,thesplitisnotalwaysclearbetweenpowergenerationforend-useandpowerdedicatedasaninputforgreenhydrogenproduction.Dependingonthemodellingapproach,solar/windcapacities/generationdedicatedtohydrogenproductionarebundledtogetherwithelectrolysersanddonotappearinthepowersector,butratherarereportedintheenergytransformationsector.Forexample,inthecaseofBNEF,in2030,over70%ofoffshorewindand30%ofonshorewindinstallationsarealreadydedicatedtohydrogenproduction.By2050,dedicatedinstallationsforhydrogenproductionaccountfor80%ofoffshorewindand55%ofonshorewindinstallations.Inthisreportwesumup(whendataallows)allwindinstallations,bothforpowerandhydrogenproduction.47By2030,themajorityofscenariosseeaglobalwindcapacitygrowthofaround3000GW(Figure43),withclearoutliersinbothdirections.Shelldoesnotseeanymajordevelopmentsinglobalwindcapacities(inthisscenario,gaspowerplantsstillplayamajorrole),andattheotherextreme,BNEFseesalmost6000GWinstalledby2030(drivenbyhydrogenproduction)–analmosteightfoldincreasein10years.Scenariosthatsplitresultsintoonshoreandoffshorewindconfirmcurrenttrends–themajorityofnewinstallationsareforonshorewind,withtheoffshoresharevaryingbetween15%and30%.Thegenerationpatternin2030issimilartotheinstalledcapacity.Themajorityofscenariosanalysedseeawind-basedgenerationofaround5000-8000TWh(Figure44),analmostsixfoldincreasecomparedto2019.Therearesomenoticeableoutliers–BNEFhasalmost17000TWhofelectricityproduced,40%ofwhichisusedforhydrogenproduction.Thereisnoclearoutlieratthelowerextreme.Severalstudies(JRCGECO,DNVandBP)seegenerationofaround6000TWh,stillpartiallyrelyingonfossilfuels,mainlycoalandgas.Figure43.GlobalinstalledwindpowercapacitySource:JRCanalysisbasedonscenariostudiesFigure44.GlobalelectricitygenerationfromwindSource:JRCanalysisbasedonscenariostudies48Allscenariosagreethatby2030,theEUgrowthrateofinstalledcapacityinwindpowerisslowerthanglobaltrends(partlyduetohigherbase).In2030,theEUaccountsforonly11-16%ofglobalwindinstalledcapacities,comparedtoalmost25%in2020.Nevertheless,thisdoesnotmeanthereisnogrowth:intheperiod2020-2030,scenariossee11-25GWofcapacityinstalledperyearcomparedtolessthan10GWin2020(Figure45).By2030,whenexcludingaclearoutlier(BNEF),thetotalinstalledcapacityofwindenergyintheEUisonaveragearound300-400GW,withahighervariabilitythanglobalresults.Inthescenariosanalysed,ECFIT55hasthehighestwindcapacity(427GW),drivenbydecarbonisationgoals.REPowerEUmentionevenhigherwindinstalledcapacity:510GWin2030.DNVhasthelowestcapacityduetoalowertransitionandthestillhighutilisationoffossilfuels.Onthegenerationside,CANisaclearoutlierintheEU(Figure46)–CAN(butdoesnotprovideinstalledcapacitydata).Drivenbyambitiousassumptionsondecarbonisation,CANseesmorethandoublethewind-basedgenerationofalltheotherstudiesandafivefoldincreasecomparedto2019.Allotherstudiesseeonlyatwotothreefoldincrease.Allstudiesthatprovideasplitbetweenonshoreandoffshoreseeaverysimilarroleforoffshorewindgenerationtechnology,rangingbetween170GWand280GW,whileonshorerangesbetween470GWand1660GW.Figure45.InstalledwindpowercapacityintheEUSource:JRCanalysisbasedonscenariostudiesBy2050,wind,togetherwithsolar,willbecomethedominantsourceofenergyinthepowersector.Windwillprovideover30%ofglobalelectricityforfinaldemandinthescenariostudiesanalysed(generatingfrom20000TWhto25000TWhperyear).Thisismorethanatenfoldincreasecomparedwithtoday’sgeneration.Themajorityofscenariosseearound7000-8000GWofwindpowerplantsinstalled.By2050,theroleofoffshorewindwillbeevenmorecrucialandcouldamounttoathirdor,insomecases,uptoahalfoftotalwindcapacityinstalled.Ofallthescenariosassessed,therewasaclearoutlier:BNEF,whichisdrivenbymarketforceslinkedtothedecarbonisationgoalsandanticipatesafasttransitiontoahydrogeneconomy.Thisscenarioseesadeploymentrateofwindcapacitythreetimeshigherthanallotherstudies.By2050,almost80%ofoffshoreand56%ofonshorewindcapacitiesarededicatedtohydrogenproduction.In2050,allscenariostudiesagreeonanincreasingroleforwindinEurope(Figure45).In2050,theinstalledcapacityofwindpowerplantscouldrangefrom650GWto870GW,withoneclearoutlier–JRCTIMESat1400GW.Themaindriversbehindthisincreasearetherapiddeploymentofhydrogentechnologiesandtheuseofsyntheticfuelinindustryandtransportdecarbonisationefforts.Atthelowerextreme,JRCGECOforeseesonly635GWofinstalledwindpowerduetolowerelectricitydemandandarelianceonCCS.Scenariosdonotagreeontherolewindoffshorewillplayin2050.CANseesEuropeanoffshorewindprovidingonly16%oftotalwindgeneration,whileDNVandEUCalcputthatcloserto50%.In2050,windenergycouldsatisfymorethan30%oftheEU’selectricitydemand;asubstantialgrowthcomparedtoabout20%in2030.49Figure46.ElectricitygenerationfromwindintheEUSource:JRCanalysisbasedonscenariostudiesItisworthnotingthatalmostallstudiesseeagrowingcapacityfactorforoffshorewindpowerplantsin2030andbeyond.Basedonstatisticaldata,thecapacityfactorofonshorewindturbinesiscurrentlyaround26%globally(and34%foroffshore).TheEUhassimilarnumbers(24%and36%).In2030,theonshorewindcapacityfactorremainsaround26%,andoffshorecouldreach40%.In2050,thesefigureswillriseto30%and41-48%respectively.Thisincreasecouldbeattributedtotechnologicalimprovementandsolvedcurtailmentproblems(forexamplebyusinghydrogenand/orstorage).TheEUnumbersareagainverysimilar.Inthenextdecade,theglobalwindpowermarketcouldrisefromthecurrent111GWinstalledcapacityperyearto230GWperyearonaverageuntil2030(withBNEFseeingtwiceasmuch).From2030,theglobalmarketcouldbecomesaturated,withabout250GWofnewandrefurbishedcapacityperyear(excludingBNEFwithalmost1000GWofannualinstallations).In2020-2030,theshareofoffshorewindcouldbearound15-20%,increasingtoalmost30%in2050.IntheEU,thewindmarketwillshowlowergrowthrates,increasingfromaround10GWin2020toalmost20GWperyearintheperiod2020-2030andbeyond.OnlyJRCTIMESseesarapidincreaseofwindinstallations,reachingover50GWofnewcapacityperyear.Offshorewindcouldamounttoabout20-30%oftotalwindinstallations.IntheEU,from2030,another20GWperyearcouldcomefromreplacement/refurbishmentofwindpowerinstallationsatendoflife(comparedtoabout250GWofrefurbishmentsglobally).505ConclusionsThisreportreviewedtheresultsof13energyscenariostudies(selectedfrom47workspublishedfromJanuary2019tillJanuary2022).Fromeachstudy,onescenariowasselected,outliningdeepdecarbonisationpathwaysfortheglobaland/orEuropeanenergysystems.Thestudiesselectedwereauthoredbyavarietyofstakeholders,rangingfromindustry,internationalandintergovernmentalorganisationstoacademia,consultantsandNGOs.Basedondifferentnarratives,assumptionsandmodellingtools,theresultscoverawiderangeofpossiblepathwaystoreachanet-zerofuture,givinginsightsintopossiblezero-carbonenergytechnologydeploymentandwaystoensureasecureandsustainablesupplytomeetenergydemand.Theanalysisfocusedonoverallenergysystemdevelopmentsandonthedeploymentofsevenrenewabletechnologygroups:bioenergy,solarenergy,geothermal,ambientheat,hydropowerandoceanandwindenergy,someofwhichweredividedintoseveraldistinctsub-technologies.Inadditiontothesevenmainrenewabletechnologygroups,oneoftheenablingtechnologies-hydrogen–wasalsoassessed.Acrossallthescenariostudiesreviewedinthisreport,thereisonecommonunderstanding:electrificationplaysastrategicroleinthepathwaystodecarbonisation.Despitedifferencesinlevelsofambition,methodologicalapproachesandtransformationspeeds,inthefuture,electronswouldfuelboththeglobalandtheEuropeaneconomies.Therearedifferingviewsonhowelectricitywouldbegeneratedandused,butallthestudiesreviewedseeaconsiderableincreaseinelectrificationinallend-usesectors,eitherdirectlyorviaenablingintermediatetechnologies,likegreenhydrogenandsyntheticfuels.By2030,electricityandelectricity-basedfuelsareprojectedtomeetabove40%oftotalfinaldemandintheEU.Accordingtosomeenergyscenariostudies,by2050,electricityandelectricity-basedfuelscouldsatisfyupto90%oftotalfinaldemandintheEU.Ataglobalscale,electrificationreachesslightlylowerlevels.Electricityandelectricity-basedfuelswouldmeet,onaveragearound30%oftotalfinaldemandby2030andalmost70%(onaverage)by2050.Inatransitiontoafullhydrogeneconomy,BNEFprojectsthat82%ofglobalfinaldemandwouldbemetbyrenewableelectricityorhydrogen-basedfuels.Whiletheenergyscenariosassessedseedifferentfutureenergymixes,twomaintechnologiesdominatethepowersector:wind(bothonshoreandoffshore)andsolar(mostlyPVandsomeCSP).Inmostscenarios,theseprovidearound70-80%ofallelectricitygenerated.Insomeextremecases,theycanreachashighas90%.Scenariostudiesnotnecessarilyagreewhethersolarorwindwillbemoreimportant.Inthemajorityofstudies,theproductionlevelsofthesetechnologygroupsarecomparable,withsomedifferenceingeographicalscope:globally,thereisatendencytoprefersolar,andinEurope,windispreferred,butitdependsonthestudyandthedifferencesarenotsignificant.Themajorityofbioenergy,bothgloballyandintheEU,isusedinfinaldemandsectors,and(onaverage)inthemediumterm,itshowsaslightincreaseoncurrentlevels.Despitesmallchangesinglobalbioenergyconsumptioninthenextdecade,therearenoticeableshiftsinsectoraldemand:studiesseeadecreasingdemandforsolidbiomassinthebuildingssector(reductionratesvaryacrossstudies),replacedbyanincreaseindemandfromtheindustryandtransportsectors.In2050,globaltrendsdiverge:somescenariosseeagrowthafter2030,whileothersseeadecrease(drivenbyelectrificationofthebuildingssector).ThereissignificantvariationinbioenergyprojectionsintheEUby2030:studiesseebothupwardanddownwardmovementbetween2021-2030.Overthelongerterm,themajorityofthestudiesreviewedprojectthatbiomassutilisationintheEUwouldbelowerin2050than2030,withthemostsignificantdecreaseindemandtakingplaceinthebuildingssector.Whilemosttheenergyscenariosassessedseeagrowingroleforbioenergyinpowergenerationby2030,theydivergeonthegrowthrateandtheoverallimportanceofbioenergyinthepowermix,settlingataCAGRofaround7-8%onaverage.Solidbiomassremainsthemaincomponentinpowerproduction.IntheEU,thegrowthisevenslower,ataround5%CAGR.By2050,moststudiesseeelectricitygenerationfrombioenergycontinuingtogrow,butataslowerrate.By2050,bioenergycouldprovidearound5%ofglobalpowergeneration.Solarenergyandwindarecurrentlythefastestevolvingelectricitygenerationtechnologies.Accordingtoallscenariosassessed,solarandwindwoulddominatethemarketby2050.Between2021and2050,globalinstalledsolarpowercapacityprojectedtogrowsevenfoldonaverage,reachingaround5000GWby2030.IntheEU,growthisprojectedtobeslowerthangloballevels–with‘only’athreefoldincreaseovertenyears,averagingaround370GWofinstalledpowerby2030.Installedcapacityofsolarpowercontinuestogrowafter2030,reaching10000-15000GWoftotalinstalledpowergloballyby2050,providing22-40%oftotalelectricitygeneration.IntheEU,solargrowsmoreslowly,reachingonlyaround1000GWonaverageby2050,andproviding13-22%oftotalpowergenerationintheEUin2050.PVremainsthemainsolar51technology,accountingformorethan90%ofsolarpowerinstalledcapacityinmostscenariosanalysed.Besidesprovidingelectricity,solarenergycanalsobeusedtoproduceheatforbuildingsandindustry,butscenariostudiesdonotusuallyprovidesufficientdatatoassessthecontributionofsolartechnologytoheatdemandinendusesectors.Moreover,studiesdivergeontheimportanceofsolarthermalinthefuture,withresultsrangingfromalmostzeroto6500TWhgloballyin2050,whichisconsiderablylowerthansolarpowergeneration,reaching20000TWhonaveragein2050.Geothermalenergyisusedbothforelectricitygenerationinthepowersectorandasadirectsourceofthermalenergyinendusesectors.Geothermalpowerinstallationsarestilllowinnumberandcomparabletoemergingtechnologies.In2020,therewasonly14GWofgeothermalpowercapacityinstalledglobally.Themajorityofthescenariostudiesanalyseddonotprovidedisaggregateddataforinstalledcapacityofgeothermalpowerplants.Globally,geothermalannualpowerinstallationsareprojectedtogrowfrom1GWto14GWperyear,reachingaround140GWofinstalledcapacityin2050.Despiteatenfoldgrowthininstalledcapacity,energyscenariostudiesseegeothermalprovidingonly1-2%oftotalglobalelectricitygenerationby2050.IntheEU,scenariosassesseddonotseesignificantadditionstocapacity.Geothermalenergyforthermalusefollowssimilartrendstopowergeneration,withanegligibleshareevenin2050(inthescenariostudiesthatprovidedata).Upuntilrecently,whilepresentinunderlyingmathematicalmodels,heatpumps(ambientheat)wasnotusuallydirectlyincludedinenergyscenariostudiesresults:onlyelectricityusedforheatpumpswasaddedaspartoftheelectricityconsumption.Thatmakesproperquantitativeanalysisimpossible.Nevertheless,energyscenariostudiesstresstheimportanceofambientheatinthefutureendusemix,mainlytocoverheatingdemandinthebuildingssector,butsomealsoincludeheatpumpsasasourceoflowandmediumtemperatureheatinindustry.In2030,theprojectednumberofheatpumpsvariesbetween200millionand600millionglobally(providingupto20%offinaldemandinthebuildingssector),reachingupto1800millionby2050.Scenariosprojectionsdivergeonthetake-offspeedofheatpumpsintheEU(therearesix-folddifferencesinfiguresfor2030),butby2050,resultsconvergeataround530TWhofambientheatdemand.RapiddeploymentofheatpumpsintheEUisessentialtoachievingREPowerEUtargets,requiringatleast30millionheatpumpstobeaddedby203022.Hydrogenistheonlyintermediate(secondary)energycarriercoveredindetailinthisreport.Accordingtoscenarioprojections,inthefuture,hydrogenwouldmainlybeproducedbyintermittentrenewableelectricity(windandsolar)andusedinhard-to-abatesubsectorsofindustryandtransport.By2030,globalhydrogen23demandisnegligible,accountingforlessthan1000TWh.Scenarioresultsdivergeonthesectoraldistributionofconsumption,butbuildingsandtransportwilllikelybeearlyadopters.Between2030and2050,globalhydrogendemandskyrockets,withtransportandindustryasthemainmarkets.Onlythreestudiesseearoleforhydrogeninpowergeneration(actingasflexibilityandstorageprovider).IntheEU,scenariostudiessee,onaverage,150TWhofhydrogenconsumedforenergyneedsby2030,withtransportastheclearearlyadopter.By2050,hydrogendemandinendusesectorswouldriseto1050TWhonaverage,withtransportstillthebiggestconsumerinthemajorityofstudies,andindustryfollowingcloselybehind.REPowerEUanditssupportinglegislationcouldatleastdoublegreenhydrogendemandinthemediumterm,comparedwithpreviousprojections.Hydropoweriscurrentlythemainrenewableenergysourceusedforpowerproduction,accountingfor50%renewablepowercapacityand63%ofgenerationglobally.Takingintoaccountlowgrowthrates(observedintherecentpastandprojectedinthefuture),itsrelativeimportancewillreduce:by2030,noneoftheglobalenergyscenariosseeanymajordevelopmentinhydropower,onaveragegrowingonly3.5%peryearbetween2021-2030andreachingaround1500GWofinstalledcapacity(comparedto1333GWtoday)andfallingbehindbothwindandsolar.After2030,hydropowerisprojectedtocontinuetheslowgrowth,whereinmostscenariositreachesonlyaround2000GWoftotalinstalledcapacitygloballyandlessthan10%oftotalelectricitysupplyinmoststudiesby2050.EnergyscenariostudiesseenosignificanthydropowergrowthpotentialintheEUin2030or2050.Oceanenergyistheonlyemergingtechnologygroupincludedinthisreport,consistingoftwotechnologies:waveandtidal.Withonly0.5GWinstalledglobally,halfofitintheEU,itdoesnotcurrentlyplayanyroleinthepowersector.Duetolowshares,energyscenariosrarelyprovidequantifiabledataonoceanenergy,butfromthelimitedinformationavailable,itcanbeconcludedthatevenwithhighgrowthpotential(150-fold22TheEuropeanHeatPumpassociationtranslatesREPowerEUnumbersto60millionheatpumpsinstalledintheEUby2030(EPHA,2022)23Byhydrogenwemeanhydrogenandhydrogen-basedsyntheticfuels.52increaseinsomescenariostudiesby2050),duetoitsverylowbase,oceanenergywillnotplayasignificantroleby2050eithergloballyorintheEU.WindenergyandsolararecurrentlythefastestgrowingelectricityproductiontechnologiesbothgloballyandintheEU.Accordingtoallthelow-carbonscenariostudiesreviewed,solarandwindwoulddominatethepowermarketinthefuture.By2030,globalwindinstalledcapacitygrowsto3000GWonaverage(withsomeoutliersprojectingalmost6000GW)andwithanalmostsixfoldincreaseingenerationcomparedto2019.By2050,globalwindinstallationsreach7000-8000GWand,onaverage,generateover30%oftheworld’selectricity.WinddeploymenttrendsintheEUwouldbeslower,addingbelow20GWonaverageofnewcapacityperyear,reaching300-400GWin2030andaround800GWin2050.Theshareofinstalledcapacityofoffshorewindremainslowinthefuture,butinsomescenariositreaches30%,whilegenerationisprojectedtoreachcloseto50%oftotalwindgenerationduetothehigheraveragecapacityfactor.Itisworthnotingthatinthefuture,almostallthescenariostudiesanalysedseeagrowthinthecapacityfactorofoffshorewind.53ReferencesBloombergNEF.(2021).NewEnergyOutlook2021.BloombergFinance.BNEF.(2022).RenewableEnergyInvestmentTracker.BNEF.BP.(2020).BPEnergyOutlook2020Edittion.BPp.l.c.CAN.(2022,0514).BuildingaParisAgreementCompatible(PAC)energyscenario.RetrievedfromCANEurope:https://caneurope.org/building-a-paris-agreement-compatible-pac-energy-scenario/ClubOfRome.(2022,0213).Clubofrome.RetrievedfromClubofrome:https://www.clubofrome.org/Commission,European.(2020c,0917).ClimateAction.RetrievedfromCommission,European:https://ec.europa.eu/clima/eu-action/european-green-deal/2030-climate-target-plan_enDNV.(2021a).EnergyTransitionOutlook2021.Høvik:DNV.DNV.(2021b).PathwayToNetZeroEmissions.Høvik:DNV.ECJRC.(2021).TheJRCEuropeanTIMESEnergySystemModel.RetrievedfromJointResearchCentreDataCatalogue:https://data.jrc.ec.europa.eu/collection/id-00287EPHA.(2022).REPowerEU:heatpumpstrategyrequiredtohelpsectordeliver.RetrievedfromEuropeanHeatPumpAssociation:https://www.ehpa.org/fileadmin/user_upload/REPowerEU-_heat_pump_strategy_required_to_help_sector_deliver.pdfEUCALC.(2020).TheEuropeanCalculator.RetrievedfromTheEuropeanCalculator:http://tool.european-calculator.eu/EuropeanCommission.(2019a).2050long-termstrategy.RetrievedfromEuropeanCommission:https://ec.europa.eu/clima/eu-action/climate-strategies-targets/2050-long-term-strategy_enEuropeanCommission.(2019b).AEuropeanGreenDeal.Retrievedfromhttps://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_enEuropeanCommission.(2020).EUReferenceScenario2020.DGENER.EuropeanCommission.(2021a).Energyscenarios-ExplorethefutureofEuropeanenergy.RetrievedfromJRCDigitalMediaHub:https://visitors-centre.jrc.ec.europa.eu/en/media/tools/energy-scenarios-explore-future-european-energyEuropeanCommission.(2021c).EuropeanGreenDeal:CommissionproposestransformationofEUeconomyandsocietytomeetclimateambitions.Retrievedfromhttps://ec.europa.eu/commission/presscorner/detail/en/IP_21_3541EuropeanCommission.(2021d).PolicyscenariosfordeliveringtheEuropeanGreenDeal.RetrievedfromEuropeanCommission:https://energy.ec.europa.eu/data-and-analysis/energy-modelling/policy-scenarios-delivering-european-green-deal_enEuropeanCommission.(2022,0913).GlobalEnergyandClimateOutlook2021:Advancingtowardsclimateneutrality.RetrievedfromEUScienceHub:https://joint-research-centre.ec.europa.eu/geco-2021_enEuropeanCommission.(2022c).REPowerEUPlan{COM(2022)230final}.Brussels:EuropeanCommission.EuropeanCommission.(2022d).REPowerEU:AplantorapidlyreducedependenceonRussianfossilfuelsandfastforwardthegreentransition.RetrievedfromEuropeanCommission:https://ec.europa.eu/commission/presscorner/detail/en/IP_22_3131EuropeanCommission.(2022e).SWD(2022)230finalIMPLEMENTINGTHEREPOWEREUACTIONPLAN:INVESTMENTNEEDS,HYDROGENACCELERATORANDACHIEVINGTHEBIO-METHANETARGETS.Brussels:EuropeanCommission.Eurostat.(2019).Energybalanceguide.Eurostat.Retrievedfromhttps://ec.europa.eu/eurostat/documents/38154/4956218/ENERGY-BALANCE-GUIDE-DRAFT-31JANUARY2019.pdfFrankfurtSchool-UNEPCentre/BNEF.(2020).GlobalTrendsinRenewableEnergyInvestment2020.Frankfurt:FrankfurtSchoolofFinance&ManagementgGmbH20.54IEA.(2021).IEACO2EmissionsfromFuelCombustionStatistics:GreenhouseGasEmissionsfromEnergy.Paris:IEA.doi:10.1787IEA.(2021a).NetZeroby2050ARiadnaofortheGlobalEnergySector.Paris:IEAPublishing.IEA.(2021b).Renewables2021.IEAPublications.Retrieved0407,2022,fromhttps://iea.blob.core.windows.net/assets/5ae32253-7409-4f9a-a91d-1493ffb9777a/Renewables2021-Analysisandforecastto2026.pdfIEA.(2021c).WorldEenergyBalances2021.Paris:Cedex.IEA.(2021d).WorldEnergyInvestment2021.Paris:IEAPublications.IEA.(2021e).WorldEnergyOutlook.Paris:IEAPublications.IEA.(2022,0913).Techno-economicinputs.RetrievedfromIEA:https://www.iea.org/reports/world-energy-model/techno-economic-inputsIEA.(2022a).CO2emissions.Retrieved0530,2022,fromGlobalEnergyReview2021:https://www.iea.org/reports/global-energy-review-2021/co2-emissionsIEA.(2022c,0405).Hydrogen.Trackingreport—November2021.RetrievedfromIEA:https://www.iea.org/reports/hydrogenIPCC.(2021,0809).Newsroom.RetrievedfromIPCC:https://www.ipcc.ch/2021/08/09/ar6-wg1-20210809-pr/IRENA.(2021).WorldEnergyTransitionsOutlook.AbuDhabi:IRENA.IRENA.(2022b,0503).RenewableEnergyFinanceFlows.RetrievedfromIRENA:https://www.irena.org/Statistics/View-Data-by-Topic/Finance-and-Investment/Renewable-Energy-Finance-FlowsIRENA.(2022c,0210).StatisticsTimeSeries.RetrievedfromIRENA:https://www.irena.org/Statistics/View-Data-by-Topic/Capacity-and-Generation/Statistics-Time-SeriesIRENAandCPI.(2020).GlobalLandscapeofRenewableEnergyFinance2020.AbuDhabi.:InternationalRenewableEnergyAgency,.JRC.(2018).POLES.RetrievedfromEUScienceHub:https://joint-research-centre.ec.europa.eu/poles_enJRC.(2019).HydrogenuseinEUdecarbonisationscenarios.JRC.(2022).GEM-E3.RetrievedfromEUScienceHub:https://joint-research-centre.ec.europa.eu/gem-e3_enKeramidas,K.,Fosse,F.,DíazVázquez,A.,Dowling,P.,Garaffa,R.,Després,J.,...SoriaRamirez,A.V.-M.(2021).GlobalEnergyandClimateOutlook.Luxembourg:PublicationsOfficeoftheEuropeanUnio.doi:10.2760/41061McKinsey&Company.(2020).Net-ZeroEuropeDecarbonizationpathwaysandsocioeconomicimplications.McKinsey&Company.Nijs,W.,P.,R.C.,D.,T.,I.,T.,&A.,Z.(2018).DeploymentScenariosforLowCarbonEnergyTechnologies.Luxembourg:PublicationsOfficeoftheEuropeanUnion.Nijs,W.,Tarvydas,D.,&Toleikyte,A.(2021).EUchallengesofreducingfossilfueluseinbuildings.Luxemburg:PublicationsOfficeoftheEuropeanUnion.doi:10.2760/85088OECD.(2022,0621)."Primaryenergysupply"(indicator).Retrievedfromhttps://doi.org/10.1787/1b33c15a-enPACproject.(2020).RetrievedfromParisAgreementCompatibleScenariosforEnergyInfrastructure:https://www.pac-scenarios.eu/pac-scenario.htmlShell.(2008).Scenarios:AnExplorer’sGuide.TheHague:ShellInternationalBV.Shell.(2018).Sky.MeetingthegoalsoftheParisAgreement.ShellInternationalB.V.Shell.(2021).TheEnergyTransformationScenarios.ShellInternationalB.V.Teske,S.(2019).AchievingtheParisClimateAgreementGoals.Cham:Springer.TheGlobalCarbonProject.(2022,0412).TheGlobalCarbonProject.Retrievedfromhttps://www.globalcarbonproject.org/55TsiropoulosI.,N.W.(2020).Towardsnet-zeroemissionsintheEUenergysystemby2050.Luxembour:PublicationsOfficeoftheEuropeanUnion.doi:10.2760/081488TsiropoulosI.,T.D.(2019).Lowcarbonenergytechnologiesindeepdecarbonisationscenarios.Petten:EUpublications.UNFCCC.(2015).ReportoftheConferenceofthePartiesonitstwenty-firstsession,heldinParisfrom30Novemberto13December2015,.Paris:UNFCCC.UNFCCC.(2022a,0310).IntegratedAssessmentModels(IAMs)andEnergy-Environment-Economy(E3)models.RetrievedfromUnitedNationsClimateChange:https://unfccc.int/topics/mitigation/workstreams/response-measures/integrated-assessment-models-iams-and-energy-environment-economy-e3-modelsUNFCCC.(2022b,0615).NationallyDeterminedContributions(NDCs.RetrievedfromUNFCCC:https://unfccc.int/process-and-meetings/the-paris-agreement/nationally-determined-contributions-ndcs/nationally-determined-contributions-ndcsUTS.(2019).OneEarthClimateModel.RetrievedfromOneEarthClimateModel:https://oneearth.uts.edu.au/UTS/ISF.(2017).Approach.RetrievedfromOneEarthClimateModel:https://oneearth.uts.edu.au/approach56ListofabbreviationsanddefinitionsPVPhotovoltaicCSPConcentratedSolarPowerCAGRCompoundAnnualGrowthRateEUEuropeanUnionasofFebruary12020(27memberstates)alsoEU27EU27EuropeanUnionasofFebruary12020alsoEUEU28EuropeanUnionasofbeforeFebruary12020PSHPumpedStorageHydropowerBECCSBioenergywithCarbonCaptureandStorageOECDEuropeOECDmembersfromEurope(Austria,Belgium,CzechRepublic,Denmark,Estonia,Finland,France,Germany,Greece,Hungary,Iceland,Ireland,Italy,Latvia,Lithuania,Luxembourg,Netherlands,Norway,Poland,Portugal,SlovakRepublic,Slovenia,Spain,Sweden,Switzerland,andtheUnitedKingdom)E-FuelsElectricfuels.Hydrogenfromelectrolysersanditsderivatives.IRENAInternationalRenewableEnergyAgencyIEAInternationalEnergyAgencyBNEFBloombergNewEnergyFinanceNEOBNEFNewEnergyOutlookLCOELowCarbonEnergyObservatoryCETOCleanEnergyTechnologyObservatoryDGENEREuropeanCommissionDirectorateGeneralEnergyDGRTDEuropeanCommissionDirectorateGeneralResearchandInnovationJRCEuropeanCommissionDirectorateGeneralJointResearchCentreDGCLIMAEuropeanCommissionDirectorateGeneralClimateAction57ListoffiguresFigure1.Coverageofselectedscenarios..........................................................................................................................................................9Figure2.Technologiesrepresentedinselectedscenarios......................................................................................................................9Figure3.Globalprimaryenergyconsumption...........................................................................................................................................13Figure4.PrimaryenergyconsumptionintheEU.....................................................................................................................................14Figure5.Globalfinalenergydemandbyfuel2030and2050......................................................................................................15Figure6.FinalenergydemandbyfuelintheEUin2030and2050..........................................................................................16Figure7.EU(left)andGlobal(right)CO2emissionsfromfuelcombustionfrom1990.................................................17Figure8.GlobalCO2emissionsfromfuelcombustionin2030and2050..............................................................................18Figure9.CO2emissionsfromfuelcombustionintheEUin2030and2050........................................................................18Figure10.Globalpopulationin2030and2050......................................................................................................................................19Figure11.GlobalGDPgrowth..............................................................................................................................................................................20Figure12.GDPgrowthinEurope.......................................................................................................................................................................20Figure13.Globalinvestmentinrenewableenergy................................................................................................................................21Figure14.Globaldistributionofinvestmentinrenewableenergyin2018...........................................................................22Figure15.Globalinstalledbioenergypowercapacity..........................................................................................................................24Figure16.Globalelectricitygenerationfrombioenergy.....................................................................................................................24Figure17.InstalledbioenergypowercapacityintheEU....................................................................................................................25Figure18.ElectricitygenerationfrombioenergyintheEU...............................................................................................................25Figure19.Globalfinalbioenergydemand...................................................................................................................................................27Figure20.FinalbioenergydemandintheEU............................................................................................................................................28Figure21.Globalinstalledsolarpowercapacity......................................................................................................................................29Figure22.Globalelectricitygenerationfromsolar................................................................................................................................30Figure23.InstalledsolarpowercapacityintheEU...............................................................................................................................31Figure24.ElectricitygenerationfromsolarintheEU..........................................................................................................................31Figure25.Globalinstalledgeothermalpowercapacity.......................................................................................................................32Figure26.Globalelectricitygenerationfromgeothermal.................................................................................................................33Figure27.InstalledgeothermalpowercapacityintheEU................................................................................................................34Figure28.ElectricitygenerationfromgeothermalintheEU...........................................................................................................34Figure29.AmbientheatconsumptioninEU...............................................................................................................................................36Figure30.Globalinstalledhydrogenpowercapacity............................................................................................................................37Figure31.Globalhydrogenpowergeneration...........................................................................................................................................38Figure32.Globalfinalhydrogendemandpersector............................................................................................................................39Figure33.HydrogenfinaldemandinEuropepersector.....................................................................................................................39Figure34.HydrogenconsumptioninREPowerEUandECFitfor55in2030........................................................................40Figure35.Globalinstalledhydropowercapacity.....................................................................................................................................41Figure36.Globalelectricitygenerationfromhydro..............................................................................................................................4258Figure37.InstalledhydropowercapacityintheEU...............................................................................................................................42Figure38.HydropowergenerationintheEU..............................................................................................................................................43Figure39.Globalinstalledoceanpowercapacity...................................................................................................................................44Figure40.Globalelectricitygenerationfromoceanenergy.............................................................................................................44Figure41.InstalledoceanpowercapacityintheEU.............................................................................................................................45Figure42.ElectricitygenerationfromoceanenergyintheEU.......................................................................................................46Figure43.Globalinstalledwindpowercapacity......................................................................................................................................47Figure44.Globalelectricitygenerationfromwind.................................................................................................................................47Figure45.InstalledwindpowercapacityintheEU................................................................................................................................48Figure46.ElectricitygenerationfromwindintheEU..........................................................................................................................49GETTINGINTOUCHWITHTHEEUInpersonAllovertheEuropeanUniontherearehundredsofEuropeDirectcentres.Youcanfindtheaddressofthecentrenearestyouonline(european-union.europa.eu/contact-eu/meet-us_en).OnthephoneorinwritingEuropeDirectisaservicethatanswersyourquestionsabouttheEuropeanUnion.Youcancontactthisservice:—byfreephone:0080067891011(certainoperatorsmaychargeforthesecalls),—atthefollowingstandardnumber:+3222999696,—viathefollowingform:european-union.europa.eu/contact-eu/write-us_en.FINDINGINFORMATIONABOUTTHEEUOnlineInformationabouttheEuropeanUnioninalltheofficiallanguagesoftheEUisavailableontheEuropawebsite(european-union.europa.eu).EUpublicationsYoucanviewororderEUpublicationsatop.europa.eu/en/publications.MultiplecopiesoffreepublicationscanbeobtainedbycontactingEuropeDirectoryourlocaldocumentationcentre(european-union.europa.eu/contact-eu/meet-us_en).EUlawandrelateddocumentsForaccesstolegalinformationfromtheEU,includingallEUlawsince1951inalltheofficiallanguageversions,gotoEUR-Lex(eur-lex.europa.eu).OpendatafromtheEUTheportaldata.europa.euprovidesaccesstoopendatasetsfromtheEUinstitutions,bodiesandagencies.Thesecanbedownloadedandreusedforfree,forbothcommercialandnon-commercialpurposes.TheportalalsoprovidesaccesstoawealthofdatasetsfromEuropeancountries.