CRTEM HBEFA中国道路运输排放模型(英)--GIZVIP专享VIP免费

CRTEM / HBEFA China Road Transport
Emission Model
Supported by
based on a decision of the German Bundestag
Imprint
As a federally owned enterprise, GIZ supports the German Government
in achieving its objectives in the field of international cooperation for
sustainable development.
Published by:
Deutsche Gesellschaft für
Internationale Zusammenarbeit (GIZ) GmbH
Registered offices
Bonn and Eschborn, Germany
Address
Tayuan Diplomatic Office Building 2-5
14 Liangmahe South Street, Chaoyang District
100600, Beijing, PR China
T +86-(0)10-8527 5589
F +86-(0)10-8527 5591
E transition-china@giz.de
I www.mobility.transition-china.org
Responsible
GIZ/Sebastian Ibold
E transition-china@giz.de
I www.mobility.transition-china.org
Author
Dr. Benedikt Notter (INFRAS), Sebastian Ibold (GIZ),
Dr. Ling Xuan (GIZ), Dr. Marie Peters (GIZ),
Wu Yingjie (GIZ), Yuting Huang (SUTPC)
Editor:
Kriz, Jakob
Disclaimer:
Findings, interpretations and conclusions expressed in this document are
based on information gathered by GIZ and its consultants, partners and contributors.
GIZ does not, however, guarantee the accuracy or completeness of information
in this document, and cannot be held responsible for any errors, omissions
or losses which emerge from its use.
Acknowledgements
This report is a product of knowledge and experiences from many
experts who contribute to the discussion of methodology development,
data collection and process, and results evaluations.
We would like to extend our special thanks to Beijing Transportation Research Centre,
Shenzhen Urban Transport Planning Centre, Harbin Transport Bureau
and MK Consulting GmbH.
Layout
GIZ/Xin Hu, GIZ/Lang Liu
Photo credits
Shutterstock / gguy (Cover page)
Maps
The maps printed here are intended only for information
purposes and in no way constitute recognition under international
law of boundaries and territories. GIZ accepts no responsibility for
these maps being entirely up to date, correct or complete. All liability for
any damage, direct or indirect, resulting from their use is excluded.
URL links
Responsibility for the content of external websites linked
in this publication always lies with their respective publishers.
GIZ expressly dissociates itself from such content.
Beijing, 2021
Contents
Summary
1
1
Background
3
2
Requirements for emission calculation tools from a policy
5
2.1
Basic approaches: Top-down vs. bottom-up
5
2.2
Model requirements for policy impact assessments
7
2.3
Requirements meet data availability with HBEFA
8
3
Development of CRTEM/HBEFA China
10
3.1
History of the European HBEFA
10
3.2
CRTEM/HBEFA China, Version 3.2
10
3.3
CRTEM/HBEFA China, Version 4.1
12
4
Overview of CRTEM/HBEFA China
13
4.1
Features
13
4.2
Limitations
16
5
Application in Shenzhen, China
18
5.1
Approach
18
5.2
Application Scenario 1: Transportation Policy Evaluation
20
5.3
Application Scenario 2: High-resolution real-time monitoring in the
Shenzhen International Low Carbon City 22
5.4
Summary
24
6
Outlook
25
REFERENCES
26
CRTEM/HBEFAChinaRoadTransportEmissionModelSupportedbybasedonadecisionoftheGermanBundestagImprintAsafederallyownedenterprise,GIZsupportstheGermanGovernmentinachievingitsobjectivesinthefieldofinternationalcooperationforsustainabledevelopment.Publishedby:DeutscheGesellschaftfürInternationaleZusammenarbeit(GIZ)GmbHRegisteredofficesBonnandEschborn,GermanyAddressTayuanDiplomaticOfficeBuilding2-514LiangmaheSouthStreet,ChaoyangDistrict100600,Beijing,PRChinaT+86-(0)10-85275589F+86-(0)10-85275591Etransition-china@giz.deIwww.mobility.transition-china.orgResponsibleGIZ/SebastianIboldEtransition-china@giz.deIwww.mobility.transition-china.orgAuthorDr.BenediktNotter(INFRAS),SebastianIbold(GIZ),Dr.LingXuan(GIZ),Dr.MariePeters(GIZ),WuYingjie(GIZ),YutingHuang(SUTPC)Editor:Kriz,JakobDisclaimer:Findings,interpretationsandconclusionsexpressedinthisdocumentarebasedoninformationgatheredbyGIZanditsconsultants,partnersandcontributors.GIZdoesnot,however,guaranteetheaccuracyorcompletenessofinformationinthisdocument,andcannotbeheldresponsibleforanyerrors,omissionsorlosseswhichemergefromitsuse.AcknowledgementsThisreportisaproductofknowledgeandexperiencesfrommanyexpertswhocontributetothediscussionofmethodologydevelopment,datacollectionandprocess,andresultsevaluations.WewouldliketoextendourspecialthankstoBeijingTransportationResearchCentre,ShenzhenUrbanTransportPlanningCentre,HarbinTransportBureauandMKConsultingGmbH.LayoutGIZ/XinHu,GIZ/LangLiuPhotocreditsShutterstock/gguy(Coverpage)MapsThemapsprintedhereareintendedonlyforinformationpurposesandinnowayconstituterecognitionunderinternationallawofboundariesandterritories.GIZacceptsnoresponsibilityforthesemapsbeingentirelyuptodate,correctorcomplete.Allliabilityforanydamage,directorindirect,resultingfromtheiruseisexcluded.URLlinksResponsibilityforthecontentofexternalwebsiteslinkedinthispublicationalwayslieswiththeirrespectivepublishers.GIZexpresslydissociatesitselffromsuchcontent.Beijing,2021ContentsSummary11Background32Requirementsforemissioncalculationtoolsfromapolicy52.1Basicapproaches:Top-downvs.bottom-up52.2Modelrequirementsforpolicyimpactassessments72.3RequirementsmeetdataavailabilitywithHBEFA83DevelopmentofCRTEM/HBEFAChina103.1HistoryoftheEuropeanHBEFA103.2CRTEM/HBEFAChina,Version3.2103.3CRTEM/HBEFAChina,Version4.1124OverviewofCRTEM/HBEFAChina134.1Features134.2Limitations165ApplicationinShenzhen,China185.1Approach185.2ApplicationScenario1:TransportationPolicyEvaluation205.3ApplicationScenario2:High-resolutionreal-timemonitoringintheShenzhenInternationalLowCarbonCity225.4Summary246Outlook25REFERENCES261SummaryTherapideconomicdevelopmentinChinahasledtoasubstantialincreaseinmotorisedtransport.Decision-makersarefacedwiththequestionwhichpoliciesmaymostefficientlyandeffectivelylowergreenhousegas(GHG)andairpollutantemissions.The“ChinaRoadTransportEmissionModel”(CRTEM)presentedinthispaper–alsoknownas“HBEFAChina”–isamodelforbottom-upemissionscalculationsforroadtransportthatallowsestimatingtheemissionimpactofdifferenttypesofpolicies.Top-downmethodsmayofferasimpleapproachtocalculatefuelconsumptionandCO2emissionsforentirecountries,butcannotbeusedforcities,anddonotallowdistinguishingdifferentemissionsources(suchasvehicletypesorroadnetworklinks).Bottom-upmethods,ontheotherhand,permitassessmentsatthedesireddegreeofdetail,butrequiremodelsbasedonup-to-datemeasurementsandmethodology.Furthermore,policyimpactassessmentsmayrequire:■Fleetturnovermodellinginordertoassesstheimpactofpoliciesaimedatpromotingrestrictingcertainvehicletypes;■Spatialdifferentiationinordertoassessinterventionsaffectingthespatialflowoftraffic,andinordertoenablesubsequentairquality(immission)modelling;■Differentiationoftrafficsituationsinordertoevaluateimpactsoftrafficdensity;■OutputofbothGHGandairpollutantemissions,inordertocompareimpactsincaseofconflictingoutcomes.CRTEM/HBEFAChinafulfilstheserequirements,anditsinputdatarequirementscorrespondtodataavailabilityinmostsettings.The“European”HBEFAisdevelopedbytheEnvironmentalProtectionAgenciesofGermany,SwitzerlandandAustria,Sweden,NorwayandFrance.Thefirstversiondatesfrom1995.Sincethen,updateshavebeenpublishedin2-to5-yearintervals.ThefirstversionofCRTEM/HBEFAChinawasdevelopedasanadaptationofHBEFAVersion3.2toChinesecitiesin2012-2014bytheDeutscheGesellschaftfürInternationaleZusammenarbeit(GIZ)GmbHincooperationwiththeShenzhenUrbanTransportationPlanningCenter(SUTPC).TheChinaversionincludesanewtrafficsituationschemetailoredtoChinesecitiesdevelopedbasedonhundredsofhoursofGPSdataondrivingbehaviourcollectedinBeijingandShenzhen.2ThelatestversionofCRTEM/HBEFAChinacorrespondstotheEuropeanVersion4.1andincludesmoderntechnologies(i.e.battery-electric,plug-inhybrid,fuel-cell,orgasvehicles).ThesoftwareisimplementedinMicrosoft(MS)Accessandfeatures:■Adatabaseofemissionfactorscoveringallcurrentlyrelevantroadvehiclecategories,technologies,andemissionstandards;■Aninterfaceforqueryingtheemissionfactorsatvariousaggregationlevels;■Amoduleforfleetturnovermodelling;■Utilitiestoimportandprocessinputtrafficactivitydata;■Amoduleforemissionmodelling;■Autilityfortop-downcalculationofCO2emissionsbasedonfuelsales.■UtilitiesforresultstransfertoGISsoftware.LimitationsincludethefactthatairpollutantemissionfactorsarebasedonEuropeanmeasurements,withvalidationinChinesesettingsstillongoing,andthefactthatformicro-scaleemissioncalculations,detailedvehicleemissionmodelssuchasPHEMorMOVESaremoreappropriate.CRTEM/HBEFAChinahasbeenpracticallyappliedinthecitiesofShenzhen,BeijingandHarbinsofar.ThispaperpresentstwoapplicationcasesinShenzhen:■SUTPCevaluatedtheenvironmentalimpactoftheparkingchargepolicy,includingtwoschemeplans.Itwasfoundthattrafficemissionsaftertheimplementationofbothplansdecreaseby21.5%–22.3%.Theevaluationsupportedtheselectionoftheparkingchargepolicy.Withthepolicyitwaspossibletoimproveparkingresourcesandtrafficefficiency,andtoreducethetrafficemissionsofthewholecity.■CRTEM/HBEFAChinahasbeenintegratedintoChina'sfirstsub-districtresolutionroadtrafficemissionmonitoringplatforminLonggangInternationalLowCarbonCityintheNorthofShenzhen.ByintegratingGPSdatawiththemonitoringdatafromsmartlamppostsandelectromagneticgrounddetectors,theplatformobtainsreal-timetrafficdataandusesCRTEM/HBEFAChinatocalculatehigh-resolutionemissionoutputs.ActivitydataforfurthercitiescanbeincludedinCRTEM/HBEFAChina.Thiswillenablethesecitiestocarryoutfuturescenarioanalysesandimpactassessmentsofpoliciessuchasthosedescribedinthisreport,andmakeroadtransportemission-relatedinterventionsmoretargetedandeffective.31.BackgroundTherapideconomicdevelopmentinChinainthelastdecadeshasledtoasubstantialincreaseinvehiclepopulationandmotorisedtransport.Between1990and2018,China’sgreenhousegas(GHG)emissionsgrewby312%(from3.65billiontonsofCO2equivalentsto13.44billiontonsperyear)(CAT2019).About10%oftheseemissionsarecausedbytransport.Regardingambientairquality,significantchallengesremaininspiteofrecentdecreasesintheconcentrationsofsomeairpollutants(Zengetal.2019,Zhangetal.2020).Inrecentyears,ambitiouspolicieswereputinplaceandmeasuresweretakentoreduceairpollution.Theemissionstandardofairpollutantsforsinteringandpelletizingofironandsteelindustrywasupdatedin2018,andpoliciessuchastheThree-YearActionPlantoFightAirPollutionhavebeenbroughtforward.However,stillparticularlyduringwinter,smogperiodswithhighairpollutionaffectlargepartsofChina,accordingtomonthlyreportsonairqualityreleasedbytheMinistryofEcologyandEnvironment(MEE)ofthePeople’sRepublicofChina.Electrificationandefficiencyimprovementsintheroadtransportsectorwillgraduallyloweremissionsinthefuture,butthisstronglydependsontheincreaseofrenewableenergyshareintheoverallenergymix.Besidesemissions,thegrowthofmotorisedtransportcontributestocongestion,noise,andtrafficaccidents.Therefore,thenegativeside-effectsofroadtransportaredeterioratinglifequalityandhealthconditionsofthepopulationlivingmainlyinmetropolitanareas(Sunetal.2014).Decision-makersfromlocaltonationallevelsarethereforefacedwiththequestionwhichpoliciesmaymostefficientlyandmosteffectivelyservetolowerGHGandairpollutantemissions,inordertoachieveclimatetargets(suchasChina’stargetsofreachingtheCO2emissionpeakbefore2030andclimateneutralitybefore2060)andcomplywithairpollutantlimitvalues.Atthesametime,suchpoliciesshouldbecompatiblewithsocietalandeconomicobjectives,andtheyshouldnotshifttheproblemelsewhere.Thismeansthattheymustbewell-targeted,andtheirimpactsmustbeestimatedasaccuratelyaspossiblebeforetheyareimplemented.InChina,modellinghasbeenusedforscientificmeasureplanning,e.g.measures’outcomesbeingmodelled,verified,andimprovedinthecourseofthepolicydraftingprocess.Forexample,theStateCouncilofChinapublishedtheThree-YearActionPlantoFightAirPollutionin2018(StateCouncil2018).ThispolicyaimedtoreduceairpollutantsandGHG4emissions,andachievedsignificantimprovements,especiallyinwinterairquality,bytheendof2020.Similarly,theShenzhengovernmenthasalsoputforwardpoliciestoreducethePM2.5concentration,suchastheShenzhenBlueSustainableActionPlan,whichstartedin2018andisstillyearlyupdated(ShenzhenMunicipalGovernment).Thisshowsthepotentialofmodellinginsupportingpolicymakingandmeasuredesigninginspecificsectors,suchastransportation.The“ChinaRoadTransportEmissionModel”(CRTEM)–alsoknownas“HBEFAChina”basedonitsEuropeancounterpart,the“HandbookofEmissionFactorsforRoadTransport”1(HBEFA)–isamodelforbottom-upemissionscalculationsforroadtransport.Byitsapproachthatdifferentiatestrafficsituationswithinroadnetworksandconsidersthedynamiccompositionofvehiclefleetsovertime,itallowsestimatingtheemissionimpactofdifferenttypesofpolicies.Thesecanincludee.g.policiesaimedatimprovingthefleetpenetrationwithcleanervehicles,transportplanningpoliciesshiftingtraffictoothermodesorotherlocations,orspatialplanningpoliciesaimedatminimizingdemandformobilityaltogether.CRTEM/HBEFAChinahasbeendevelopedundertheumbrellaofthe“Sino-GermanCooperationonLowCarbonTransport”,which,onbehalfoftheGermanFederalMinistryfortheEnvironment,NatureConservationandNuclearSafety(BMU)isimplementedbytheDeutscheGesellschaftfürInternationaleZusammenarbeit(GIZ)GmbH.Thisreportoutlinestheapproach,thedevelopmentandthestatusquoofCRTEM/HBEFAChinaandillustratespresentandpossiblefutureusecases.1Formoreinformation,seehttps://www.hbefa.net52.Requirementsforemissioncalculationtoolsfromapolicyperspective2.1.Basicapproaches:Top-downvs.bottom-upEmissionsfrommobilesourcessuchasvehiclefleetscannotbecomprehensivelymeasuredasitisnotfeasibletocarryoutmeasurementsatthetailpipesofallvehiclesallthetime.Instead,therearetwobasicapproaches.Inthiscontext,itisimportanttodifferentiatebetweenfuelconsumptionandCO2emissionsononehand,andairpollutantemissionsontheotherhand.ForfuelconsumptionandCO2emissions,aso-calledtop-downapproachcanbeused.Sincethecarboninfossilfuelsisalmostcompletelytransformedintocarbondioxide(CO2)duringcombustion,theCO2emissionsaredirectlyproportionaltotheconsumptionofeachfueltype,i.e.canbederivedfromfuelconsumptionbymultiplicationwithaconstantfactorperfueltype.Therefore,nomeasurementisrequired–onlyfuelsalesfiguresarenecessaryinordertoobtainaquiteaccurateoverallCO2emissionestimate.However,thetop-downapproachhasthefollowinglimitations:■Thefuelconsumption/CO2emissionestimateisonlydifferentiatedbyfueltype–thismeanstheemissioncannotbeattributedmorespecificallytoasource.Forexample,fordieselfuel,itwillnotbeknownwhichshareisconsumedbyheavygoodstransport,bypassengercarsorbynon-roadmobilemachinery;thereforeitwillnotbepossibletoestimatetheemissionimpactofapolicytargetingoneofthesecategories(ortheirsub-categories).■Thefuelconsumption/CO2emissionestimatecorrespondstotheamountoffuelsoldthatisreflectedinthesalesstatistic,andnottoanygeographicalarea.Roadvehiclesaremobileandmaybefuelledinoneplace,butthenmoveelsewhereandcauseemissionsthere.Iftheareainfocusislargeenoughandtransportacrossitsboundariesisratherinsignificantcomparedtotransportwithinitsboundaries,thiseffectmaybeignored.Thisisthecaseforratherlargecountries.Incaseofsmallercountriesorcities,however,fueltransportsinthetanksofvehiclesacrosstheboundariescannotbeignored.Therefore,thetop-downapproachisnotsuitableforthecalculationofterritorialemissionswithinsmallerareas.Thebottom-upapproachcanbeusedforairpollutantsaswellasfuel6consumptionandCO2.Underthisapproach,detailedactivities(e.g.vehiclekilometres,vehiclestock,numberofstarts,etc.)differentiatedbymode,vehicletype,technology/fueltype,emissionstandard,roadtype,perhapsevenbyroadsegmentortrippurpose,aremultipliedbycorrespondingemissionfactors.Thisapproachprovidesthedifferentiationrequiredforimpactassessments.However,thechallengewiththebottom-upapproachliesintheavailabilityandtheaccuracyofinputdataintherequireddegreeofdetail.Thisincludesthevehicledata,activitydataandtheemissionfactors.Typicaldatasourcesforvehicle/activitydataincluderegistrationdatabases(forthenumberofvehiclesandtheirtechnicalcharacteristics;sometimestheyincludemileagesfromperiodicaltechnicalinspections),transportstatistics(formileages;basedontrafficcountsandtrafficmodels,whicharealsouseddirectly,sinceoftenthestatisticsaretooaggregated)orenergystatisticsorfuelsalesfigures(forthecalibrationandvalidationoffuelconsumption).Datasourcesforemissionfactorsincludelaboratorymeasurements,on-roadmeasurementsusingPEMS(PortableEmissionMeasurementSystems),andremote-sensingmeasurements.Theefforttocarryoutabottom-upcalculationistherefore,inmostcases,largerthanwiththesimpletop-downapproach.Ofcourse,thedegreeofdetailandtheassociatedeffortcanvarydependingonthemodelchosen.Butthehighereffortofthebottom-upcalculationdoesnotguaranteetheaccuracyofthetotalemissionresult.InordertoevaluateoverallaccuracyoffuelconsumptionandCO2emissions,thereisthepossibilitytovalidateorevencalibrateabottom-upcalculationwithatop-downcalculation.Thispossibilitydoesnotexistforairpollutants–theonlywayforindependentvalidationwouldbetousespatiallydifferentiatedoutputsofabottom-upemissioncalculationasinputsforanimmission(dispersion)modelandcomparetheresultingconcentrationsofairpollutantstoconcentrationmeasurements;however,theuncertaintiesinimmissionmodellingaresolargethatthisusuallydoesnotpermittodrawconclusionsabouttheemissioninput.Therefore,forairpollutants,abottom-upemissionmodelhastobe“trustworthy”inthesensethatitsemissionfactorsarederivedbasedonup-to-datemeasurementsandastate-of-theartmethodology,anddepictreal-worldemissions(asopposedtoemissionsinatestcycle,forwhichvehiclesmaybeoptimizedbutarethennotabletomeetthesamestandardsontheroad)CRTEM/HBEFAChinaisabottom-upmodel,butitincludesautilityfortop-7downcalculationofCO2emissionsbasedonfuelsales.2.2.ModelrequirementsforpolicyimpactassessmentsFromthepreviouschapteritbecomesclearthattoanswermostquestionsonimpactassessmentsforpolicies,abottom-upmodelwillberequiredthatallowspredictingtheeffectoffinelytargetedmeasures.Examplesofsuchmeasuresandassociatedmodelrequirementsinclude:■Policiesaimedatimprovingfuturefleetcompositionsrequireassessmenttoolsthatallowmodellingfleetturnover.Forexample,ifapolicypromotesanewtechnology–suchasbattery-electricvehicles(BEVs)orfuel-cellelectricvehicles(FCEV)–withincentives,oneneedstoknowhowquicklyitwillpenetratethefleet;orifanoldtechnologyistobephased-outorbanned,oneneedstoknowwhichshareofthetotalmileageofthefleetwillactuallybeaffected.■Forassessingfuturefleets,itisimportantforamodeltobeup-to-datewiththecurrentknowledgeonnewtechnologies(suchasreal-worldenergyconsumptionofhybrid,gasorelectricvehicles),estimatesregardingtechnologiesforwhichlittleornoempiricinformationexistsyet(suchasfuelcellelectricvehicles),andreal-worldmeasurementsofvehiclesofrecentlyintroducedemissionstandards(suchasthecurrentEuro-6dpassengercarsinEuropethathavetopassanon-roademissiontestforthefirsttime).■Fleetcompositionsmayneedtobedifferentiatedspatially:Ifapolicyormeasuretargetsalong-haulgoodstransportcorridor(e.g.ifarailwaylineisbuilttopartiallyshifttransportontheaffectedcorridortorail),thiswillaffectadifferentcompositionofvehiclesthanifittargetsroadsmostlyusedbylocal/short-haultraffic(suchaslorryrestrictionsincities).■Transportplanningmeasuresthatshifttraffictodifferentroutesoraimtoreducecongestionneedtobeevaluatedwithanemissionmodelsensitivetodifferentdrivingpatternsindifferenttrafficsituations:Evenifthetotalmileageremainsthesamebeforeandafterthemeasure,theemissionsmaydifferduetodifferentdrivingpatternsondifferentroadtypesorindifferentcongestionlevels.■Policiesaimedatimprovingairqualitywillgenerallyneedtobeassessedusingspatiallydifferentiatedemissionmodels,i.e.differentiatingroadnetworklinks,sotheirresultscanbeusedasaninput8fordispersionmodelsthatwillallowestimatingtheimpactonairquality.■Policiesforcombattingclimateandimprovingairqualitycansometimesconflict.Forexample,dieselcarsaregenerallymorefuel-efficientthanpetrolcars,whichisgoodfortheclimate,buttheytendtoemitmoreNOxandparticles.Particlefiltersreduceparticleemissionsbutcausehigherfuelconsumption.SuchconflictinggoalscanbeoptimizedbyusingmodelsthatcancalculatebothGHGandairpollutantemissions,andcomparingtheoutcomeofdifferentmeasuremixes.2.3.RequirementsmeetdataavailabilitywithHBEFACRTEM/HBEFAChinafulfilstherequirementsforemissionmodelsfromapolicyperspectiveoutlinedinthepreviouschapter.Moreover,theinputdatarequiredbyCRTEM/HBEFAChinacorrespondtowhatisavailableinmostcases.TheactivitydataneededtorunCRTEM/HBEFAChinaatroadnetworklinklevelcanbeobtainedfromtheoutputsofmosttrafficmodels-CRTEM/HBEFAChinaevenincludesafeatureforeasyimportoftrafficmodeldata(seealsoChapter4.1).Butmoreimportantly,thetrafficsituationapproachusedbyHBEFAallowstakingintoaccountthedifferentdrivingpatternsofdifferentvehiclecategoriesindifferentcontexts(roadtypes,surroundingareatypes,speedlimits,levelsofcongestion)withoutrequiringextensiveinputdataforeachmodelrun,becausetypicaldrivingpatternsforallrelevanttrafficsituationshavebeendistilledfromhundredsofhoursofreal-worldGPSdataandarestoredinHBEFAalongwiththeassociatedemissionfactors.Eachtrafficsituationischaracterisedbyatypicaldrivingpattern,aseriesofsecond-by-seconddatapointsrepresentingthespeedofavehicleversustime.Figure1presentsthetypicaltrafficsituationsformotorwayswithaspeedlimitof130km/hand120km/hinfree-flowingandsaturatedtrafficrespectively,aswellasforanurbancollector(arterial)withaspeedlimitof50km/hinfree-flowingandstop-and-gotraffic.9Figure1:ExampleoftrafficsituationsinHBEFA(Source:INFRAS2014)ThetrafficsituationapproachrepresentsanadvantageofCRTEM/HBEFAChinaoverotherwell-knownemissionmodelssuchasCOPERT(ComputerProgrammetocalculateEmissionsfromRoadTransport,Ntziachristosetal.2009,EMEP/EEA2018)orMOVES(MotorVehicleEmissionSimulator,EPA2019):WithCOPERT,theinputdatarequirementsarequitelowanditiswell-suitedfornationalscaleemissioninventories,butitoperatesatatoogeneralizedlevelforcity-scaleassessments:Sinceemissionfactorsareonlydependentonthreeroadtypes(motorway,rural,andurbanroads)andaveragespeed,e.g.effectsofreducingcongestioncannotbedepictedadequately.InMOVES,ontheotherhand,activitiesandemissionfactorsaredifferentiatedby23VehicleSpecificPower(VSP)binscontainingdifferentdegreesofacceleration/deceleration;thispermitsassessmentsatadegreeofdetailequalorhigherthanHBEFA,buttheresultingcomplexityinthepreparationofinputdatacanactasadeterrentinpracticalapplicationcases.ThetrafficsituationapproachinCRTEM/HBEFAChinarepresentsawayinbetweenthedata/effortrequirementsofCOPERTandMOVESthatissuitablefromcityscaleuptonationalscale.103.DevelopmentofCRTEM/HBEFAChina3.1.HistoryoftheEuropeanHBEFAHBEFAwasoriginallydevelopedonbehalfoftheEnvironmentalProtectionAgenciesofGermany,SwitzerlandandAustria.Currentlyothercountries(Sweden,NorwayandFrance)aswellastheJRC(JointResearchCentreoftheEuropeanCommission)supportHBEFA.Todeveloptheemissionfactors,theoriginaldatafromvarioustestlaboratoriesarecollectedandprocessedwiththePassengerCarandHeavy-DutyEmissionModel(PHEM)bytheTechnicalUniversityofGraz(HausbergerandRexeis2018).Thefirstversion(HBEFA1.1)waspublishedinDecember1995.Sincethen,updatesfollowedinintervalsof2-5years,basedontheavailablenewmeasurementdata(andotherinputs).Thefirstupdate(HBEFA1.2)datedfromJanuary1999.VersionHBEFA2.1wasavailableinFebruary2004.VersionHBEFA3.2,onwhichthefirstCRTEM/HBEFAChinaVersionisbased(seebelow)datesfromJanuary2014.WithVersion3.3,onlytheemission2Alreadybeforethedieselscandal,HBEFAhadpublishedNOxemissionfactorsofdieselpassengercarsthatwereaboutfivetimeshigherthanthelimitvalue–whichwereconfirmedbythedieselscandal.TheHBEFA3.3updatewasfactorsofdieselpassengercarswereupdatedinthewakeoftheVWdieselscandal2.ThelatestVersion4.1datesfromSeptember2019,withitsnewfeaturesfocusingonelectricmobilityandalternativefuels.3.2.CRTEM/HBEFAChina,Version3.2Intheframeworkofacooperationprojectconductedbetween2012and2014withtheShenzhenUrbanTransportationPlanningCenter(SUTPC)implementedbytheDeutscheGesellschaftfürInternationaleZusammenarbeit(GIZ)GmbH,theEuropeanHBEFAwasadaptedtoChinesecities.ThedevelopmentofCRTEM/HBEFAChinaVersion3.2isdescribedingreatdetailinSunetal.(2014).WhileanalyseshadshownthatthepassengercarsusedinChinesecitiesareverysimilartothoseinEuroperegardingenginecharacteristics,thetrafficsituationsdiffer:■Insteadofsix,onlyfourroadtypesarerelevantforChinesecities.Theseare:expressways(includingprimarilyaresponsetothecommunicationneedsoftheGermangovernment,whichneededtobebasedonthemostrecentmeasurementsandfindings.11highways),majorarterials,minorarterialsandbranches.■Essentially,inChinesecities,speedlimitsarelinkedtotheroadtypeanddonothavetobeconsideredseparately.■ItwasshownthatthelevelsofserviceinChinesecitiesaresimilartoEuropeforfree-flow,heavyandsaturatedtrafficconditions.However,basedonthecongestionlevelsusedinBeijingandShenzhen(seeTable1),itwasnecessarytodistinguishtwotypesofstop-and-go-traffic-afirststop-and-gosituationsimilartotheEuropeanone,andasecondonewithhighersharesofstoptimeandlowerspeeds,whichsofarhadnotbeennecessaryforEurope,butoftenoccursinlargeAsiancities.Therefore,fivelevelsofserviceweredefinedforChinesecitiestocoveralldrivingsituations(comparedtothefourinthecorrespondingEuropeanHBEFAversion),includingtheadditionalheavystop-and-gotraffic.SincethedevelopmentofCRTEM/HBEFAChinaisprimarilyfocusedonurbanareas,forthetimebeingitissufficienttoconsiderthe20differenttrafficsituationsintotal(resultingfrom4roadtypestimes5levelsofservice).Trafficsituationsonhighwayandinruralareasmightbedifferent.Table1liststhedefinitionsofthetrafficsituationsforChinesecitiesinCRTEM/HBEFAChina.Levelofservice(LOS)LOS1:FreeflowLOS2:HeavytrafficLOS3:SaturatedtrafficLOS4:Stop-and-goLOS5:Heavystop-and-goCongestionlevelUnimpededBasicallyunimpededMildcongestedModeratecongestedSeverecongestedExpressway>55km/h>40-55km/h>30-40km/h>20-30km/h≤20km/hMajorarterial>40km/h>30-40km/h>20-30km/h>15-20km/h≤15km/hMinorarterial>35km/h>25-35km/h>15-25km/h>10-15km/h≤10km/hBranch>35km/h>25-35km/h>15-25km/h>10-15km/h≤10km/hTable1:Definitionoflevelofservicesbasedoncongestionlevels,roadtypesandrangesofaveragespeedinkm/hinChina123.3.CRTEM/HBEFAChina,Version4.1AsmentionedinChapter3.1,thenewfeaturesintheEuropeanHBEFAVersion4.1focusedonelectricmobilityandalternativefuels.ThisledtotheintegrationofnewvehicletypessuchasBEV(battery-electricvehicles),PHEV(Plugin-hybridelectricvehicles),FCEV(fuel-cellelectricvehicles),orCNG(compressednaturalgas)andLNG(liquidnaturalgas)vehicles.Actually,someofthesevehicletypeshadalreadybeenavailableinpreviousHBEFAversions,buttheiremissionfactorshadonlybeenbasedonfewmeasurementsandroughexpertestimates.InHBEFA4.1,theseemissionfactorsarebasedondetailedmeasurementsandsimulationforalltrafficsituationswithPHEM.Allnewmeasurementdataavailablesince2014wereintegratedinHBEFA4.1.Duetothefactthaton-roadmeasurementswithPortableEmissionMeasurementSystems(PEMS)becamewidespreadinthisperiodandthatmethodshadbeendevelopedtousesuchmeasurementsinPHEM(Matzeretal.2019),HBEFA4.1isbasedonasignificantlylargeramountofmeasurementdatathanpreviousversions.Furthermore,newtrafficsituationswereaddedtotheEuropeantrafficsituationscheme;namelythefifthlevelofservice,heavystop-and-go,firstintroducedinHBEFAChina3.2(seeChapter3.2),wasalsomadeavailableforEurope.CRTEM/HBEFAChinaVersion4.1,developedafterthepublicationoftheEuropeanHBEFA4.1in2019,combinestheimprovementsintheEuropeanVersion4.1withtheChinesetrafficsituationschemedescribedinthepreviousChapter.134.OverviewofCRTEM/HBEFAChina4.1.FeaturesCRTEM/HBEFAChinaisadatabaseapplicationimplementedinMicrosoft(MS)Access.Version3.2wasbasedonMSAccess2010andVersion4.1isbasedonMSAccess2016.Theapplicationisdistributedasaself-containedinstallerforWindows.IfMSAccessisnotalreadypresentonthetargetcomputer,theinstallerinstallsthefreeMSAccessRuntime2016thatCRTEM/HBEFAChinawillrunon.CRTEM/HBEFAChinacontainsthefollowingfeatures:■ThecoreofCRTEM/HBEFAChinaisitsdatabaseofemissionfactors,differentiatedbyvehicletypes(“subsegments”)andtrafficsituations.TheemissionfactorshavebeendevelopedusingthePHEMmodelforthedrivingcyclesassignedtoeachtrafficsituationforeachvehiclecategory.Theyrepresentreal-worldemissions(asopposedtooptimisedemissionratesunderidealtestingconditions).■Auser-friendlyinterfaceforqueryingtheemissionfactorsatvariousaggregationlevels(Figure2).Allpreviouslyexecutedqueries(called“cases”)arestoredandcanberetrieved,editedifnecessary,andre-runifdesired.TheresultsarestoredinanopenMSAccess“user”databaseandcanbeanalysedinMSAccess.TheycanalsobeexportedinExcelformat.■AselectionoftrafficsituationstailoredtoChinesecities(seeTable1).■CRTEM/HBEFAChinacoversallrelevantroadvehiclecategories,technologies,andemissionstandards;Version4.1alsocontainsemissionandenergyconsumptionfactorsfornewtechnologiessuchasBEV(battery-electricvehicles),PHEV(Plugin-hybridelectricvehicles),FCEV(fuel-cellelectricvehicles),orCNGandLNGvehicles.■Amoduleforfleetmodelling:Itallowsbuildingafleetmodelfrominputdataonvehiclestock(forhistoricalperiods)ornewregistrations(forfutureperiods),trafficactivity,emissionstandardintroductionschemes,fuelefficiencydevelopmentovertime,andseveralspecialisedinputssuchasthepercentageofvehiclewithdieselparticlefilters(requiredforemissionstandardswithoptionaldieselparticlefiltersorDPF),themileagesharedrivenwithelectricityorcombustionforPlug-inHybrids,orgas/petrolforbiofuelvehicles.The14resultofthismoduleisatablecontainingthesharesofstockandmileagebyvehicletypeandreferenceyear,whicharerequiredasweightsfortheaggregationofemissionfactors,aswellasthecumulativemileagesrequiredforthemileage-dependingcorrectionfactors.Thelatteraccountforthedeteriorationofcatalystswithage.■Amodulefortrafficdatasets,containingfeaturestoimportandprocesstrafficactivitydata,i.e.vehiclestock,mileage(aggregated,orastrafficvolumeperroadnetworklink),andallinputsrequiredbythefleetmodel.■Amoduleforemissionmodelling,i.e.carryingoutthemultiplicationofactivitydata(preparedviathemodulementionedabove)andtheemissionfactorsfromthecoredatabase.■Autilityfortop-downcalculationofCO2emissionsbasedonfuelsales.■UtilitiesfordatatransfertoGISsoftware.ResultscanbeeitherexportedinESRIPersonalGeodatabaseformat,orastabularexportbyroad/zonelinkthatcanbelinkedtoanygeospatialdataformatviauniquelink/zoneIDs.SeveralfeaturesavailableinCRTEM/HBEFAChinaarenotavailableintheHBEFA“PublicVersion”distributedinEurope;theycorrespondtofeaturesintheEuropean“ExpertVersion”thatisnotdistributedpublicly.TheseincludetheFleetmodel,Trafficdatasets,andEmissionmodelmodules.Figure2:UserinterfaceforqueryingemissionfactorsinCRTEM/HBEFAChina(Source:HBEFA,Version4.1)15Outofthebox,withthefeaturesdescribedabove,CRTEM/HBEFAChinacanbeusedtoqueryemissionfactorsatthemostdetailedlevel,i.e.atthelevelof“subsegment”(vehicletypedefinedbyvehiclecategory,technology,emissionstandardandoptionallysizeclass)andtrafficsituation.Thisisalreadysufficientforapplicationslikethereal-timeEmissionMonitoringSysteminShenzhen(Figure3)inwhichindividualvehiclescanbeassignedtotheir“subsegment”vialicenseplaterecognitionandautomaticonlinequeryoftheregistrationsdatabase,andthestreetlinktheyarepresentlymovingonviatheirGPSposition.Inaddition,userscancreatefleetcompositions(usingthefleetmodellingmodule)oraggregatedtrafficsituations(distributionofmileageamongindividualtrafficsituations),iftheywishtoqueryemissionfactorsatmoreaggregatedlevels,calibratethefuelconsumptionfactorstolocalpassengercarfleets,orcalculateownfuturescenarios.Figure3:ScreenshotoftheEmissionMonitoringSysteminShenzhen(Source:Sunetal.2014).164.2.LimitationsUsersshouldbeawareofthefollowinglimitationsofCRTEM/HBEFAChina:■TheemissionfactorsofairpollutantsarebasedonEuropeanmeasurements.SincetheChinaemissionstandardsaresimilartotheEuroemissionstandards,andthevehicletypescirculatinginChinaaresimilartotheirEuropeancounterparts,itcanbeassumedthatthedifferencesshouldnotbetoolarge.InvestigationsoftheTechnicalUniversityofGrazwithinthisprojecthaveconfirmedthisassumptioninprinciple.However,theemissionfactorsofairpollutantsshouldstillbevalidatedwithlocalmeasurements.SuchvalidationsarecurrentlycarriedoutbytheShenzhenUrbanTransportationPlanningCenter(SUTPC)usinganon-roadplumechasingandanalysissystem(OPCAS)(Figures4and5).Figure4:OPCASemissionmeasurementsinaction.Figure5:EmissionfactorscalculatedbyOPCASandHBEFA(Source:SUTPC)17■Atthemicro-scalelevel,i.e.formodellingtheeffectoftrafficlightsatajunction,ortheeffectofindividualdifferencesindrivingbehaviour–i.e.beyondthelevelofdetailofatrafficsituationonaroadlinkwithatypicaldrivingprofile(thatalreadyincludesstopsatjunctions,decelerationandaccelerationduetoobstaclesetc.)–CRTEM/HBEFAChinaisnottheappropriatetool.Forsuchmicro-scaleanalyses,detailedmodelssuchasPHEMorMOVESaremoresuitable.185.ApplicationinShenzhen,China5.1.ApproachBasedontheHBEFAmodel,transportmileagesinShenzhenwereclassifiedbytrafficsituationandattributedthecorrespondingemissionfactorsinordertocalculateemissions.Byusinghigh-precisionequipmenttocollectGPSdataeverysecond,theaveragespeedV,stoppingtimeratioSP,relativepositiveaccelerationRPA,andotherindicatorsoftheworkingconditionswereobtained.ThelocalworkingconditionsinShenzhenwereextractedandclassified,andthe20candidatetrafficsituationsforeachroadtypeandtrafficconditionwerescreened.Alocalizedemissionfactordatabasecoveringenergyconsumption,CO2,CO,NOx,andotherairpollutantshasbeenestablishedinShenzhenfor4roadtypes,5servicelevels,5vehicletypes,4energytypes,and5emissionstandards,withatotalof5,400emissionfactors.UsingtheHBEFAmodellingmethod,therefinedemissionmodelisestablished"frombottomtotop".Basedonthetrafficdemand,operationcharacteristics,andemissionfactors,thetrafficemissionsarecalculated.Basedontheemissionsofasingleroadsectionandasinglevehicletype,thetrafficemissionsofaregionandacityarecalculatedtorealizethebottom-upemissioncalculation.19Figure6:ThevalidationandupdatingofpollutantemissionfactorsofHBEFAmodelbySUTPC(Source:SUTPC)ShenzhenTrafficEmissionMonitoringPlatformTheHBEFAmodelisalsointegratedintoShenzhen’semissionmonitoringplatformthatmonitorsemissionsfrommainroadsandtransporthubs,suchasairports,andports.ThetotalemissionscouldbecalculatedandinterpretedinthetwoFiguresbelow.Figure7showsthepollutionconcentrationdistributionofroademissiondiffusionsimulationforeachsub-district.Figure8showstheemissionsbyroadsection.Figure7:RoademissionsinShenzhen’ssub-districts(Source:SUTPC)20Figure8:RoademissionsinShenzhen(Source:SUTPC)5.2.ApplicationScenario1:TransportationPolicyEvaluationAquantitativeanddetailedcalculationofurbantrafficemissionscansupporttheassessmentoftheimpactoftrafficpoliciesontheenvironmentandcanfunctionasanimportantbasisforevaluatingtheimplementationeffectofpoliciesandmeasures.UsingtheHBEFAmodel,SUTPCevaluatedtheenvironmentalimpactoftheparkingchargepolicyinShenzhen,includingtwoschemeplans(plan1and2,seeTable2below).Bycomparingthecurrenttrafficemissiondensityofeachsub-districtinShenzhenwiththesimulatedtrafficemissiondensityaftertheimplementationofthetwoplans,theexpectedimprovementeffectofthetwoplanscanbeobtained.Itwasfoundthattrafficemissionsaftertheimplementationofplan1decreaseby22.30%,whiletheemissionsdecreaseafterimplementationofplan2is21.50%.TheevaluationresultssupportedtheselectionoftheparkingchargepolicyinShenzhen.Withthepolicyitwaspossibletoimproveparkingresources,improvetrafficefficiency,andreducethetrafficemissionsofthewholecity(seeFigure9and10).21Plan1Plan2BillablehoursChargestandard(CNY/30min)BillablehoursChargestandard(CNY/30min)Type1regionType2regionType3regionType1regionType2regionType3regionWorkingdays(7:00–21:00)642Workingdays(7:00–21:00)532Nonworkingdays(7:00–21:00)321Non-workingdays(7:00–21:00)321CarbonemissiontestingReducedby22.3%thanthestatusquoCarbonemissiontestingReducedby21.5%thanthestatusquoTable2:DetailedmeasuresplannedunderthetwoplansFigure9:Currenttrafficemissiondensityofeachsub-districtofShenzhen(Source:SUTPC)Figure10:Modelledtrafficemissiondensityofeachsub-districtofShenzhenaftertheimplementationofthepolicyplan1(Source:SUTPC)225.3.ApplicationScenario2:High-resolutionreal-timemonitoringintheShenzhenInternationalLowCarbonCityBasedonthetrafficemissionmodelandmonitoringplatform,ShenzhenhasbuiltChina'sfirstsub-districtresolutionroadtrafficemissionmonitoringplatformwithinthefivesquarekilometresoftheLonggangInternationalLowCarbonCityintheNorthofShenzhentoevaluatethearea’strafficplanning.Thepurposeoftheplatformistosupporttheevaluationofenvironmentalbenefitsoftrafficmanagementpoliciesandtofacilitatetheirimplementation.ByintegratingGPSdatawiththemonitoringdatafrom8smartlampposts(seeFigure13)and304electromagneticgrounddetectorsinstalledontheroad,theplatformcanobtainreal-timedataonvehicledistribution,speed,flow,andotherparameters.ByusingthetrafficemissioninventoryCRTEM/HBEFA,thefleetcompositionandthedynamictrafficdemanddata,theapplyingauthoritycanextractthehigh-resolutiontrafficemissiondata.Figure11:CarbonEmissionMonitoringPlatforminLonggangInternationalLowCarbonCity(Source:SUTPC)23Figure12:MonitoringInstrumentLayoutinShenzhen’sLonggangInternationalLowCarbonCity(Source:SUTPC)Figure13:Exampleofsmartlamppostswithvehiclerecognitiondevice(Source:SUTPC)片区排放监测范围及设备布设ShenzhenInternationalLowCarbonCity(LonggangDistrict)245.4.SummarySince2014,CRTEM/HBEFAChinahasbeenestablishedandfurtherdevelopedinShenzhen.IthasbeendeeplyadaptedintothecitytrafficemissionadministrationplatformoperatedatShenzhenTrafficCarbonEmissionEngineeringLab.Basedonthebigdataderivedfromtheplatform,ithasdirectlysupportedthetrafficcontrolplanning,andenvironmentalmitigationpolicy/measuredevelopmentinShenzhen.256.OutlookCRTEM/HBEFAChinahasbeenappliedinthecitiesofBeijing,ShenzhenandHarbin.GIZChinaplanstofurtherpromoteandsupporttheuseofCRTEM/HBEFAChinainChinesecitiesforimpactassessmentsofpolicyoptionsregardingtransport,rangingfromurbantransportplanningorairqualitymonitoringtodecarbonisation.AsshownintheapplicationcaseofShenzhen,existinguserssuchasSUTPChaveintegratedCRTEM/HBEFAChinaintoexistingemissionadministrationplatformsandwillcontinueongoingeffortstovalidatetheairpollutantemissionfactorsintheChinesecontextusingCRTEM/HBEFAChina.Asanextstep,itisplannedtoemploymoreintelligentandportableenvironmentalmonitoringinstrumentsintotheplatformtorealizetheverificationandvalidationfunctionbetweenmodellingandmonitoringdata.Theoutcomeofthisworkisexpectedtoenrichthetrafficscenariobuildingtofurthertrafficflowandthusdecreaseemissions,andtosupporttheenvironmentaldepartmentandotherauthoritiestoachievethecarboncapasearlyaspossibleActivitydataforfurthercitiescanbeincludedinCRTEM/HBEFAChina,andthetimeseriesofactivitydatacanbeextended.Thus,themodelcanbeusedintherespectivecitiesforfuturescenarioanalysisandimpactassessmentsofpoliciessuchasthosedescribedinthisreport,inordertomakethesepoliciesmoretargetedandeffective.ReferencesCAA2013:ChinatoTackleAirPollutionwithaNewActionPlan.CAA(CleanAirAsia).http://cleanairinitiative.org/portal/node/12066[Accessed17.February2020].CAT2019:Chinacountrysummary.ClimateActionTracker(CAT).https://climateactiontracker.org/countries/china/[Accessed17.February2020].EMEP/EEA2018:EMEP/EEAemissioninventoryguidebook2016.Technicalguidancetopreparenationalemissioninventories.1.A.3.b.i-ivRoadtransport(2018update).EuropeanMonitoringandEvaluationProgramme(EMEP),EuropeanEnvironmentAgency(EEA),Luxembourg.https://www.eea.europa.eu/publications/emep-eea-guidebook-2016/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-3-b-i/view[Accessed21.November2016].EPA2019:MOVESandOtherMobileSourceEmissionsModels.UnitedStatesEnvironmentalProtectionAgency(EPA).https://www.epa.gov/moves[Accessed17.February2020].Hausberger,S.,Rexeis,M.2018:PHEM.PassengercarandHeavydutyEmissionModel.Instituteforinternalcombustionenginesandthermodynamics,TechnicalUniversityofGraz,Graz,Austria.https://www.ivt.tugraz.at/images/stories/Files/Emissionen/PHEM_en.pdf[Accessed4.June2018].INFRAS2014:HBEFA3.2.HandbookofEmissionFactorsforRoadTransport;imAuftragdesBundesamtsfürUmwelt,desUmweltbundesamtesBerlin,desUmweltbundesamtsÖsterreich,derschwedischenRoadAdministration,demnorwegischenUmweltbundesamtsowieADEME(Agencedel’EnvironmentetdelaMaîtrisedel’Energie,Paris.INFRAS,Bern.www.hbefa.net[Accessed15.June2015].Matzer,C.,Weller,K.,Dippold,M.,Lipp,S.,Röck,M.,Rexeis,M.,Hausberger,S.2019:UpdateofEmissionfactorsforHBEFA4.1.FinalreportDRAFT-V1,I-05/19/CMEM-I-16/26/679from12.04.2019.TechnischeUniversität(TU)Graz,Graz,Austria.Ntziachristos,L.,Gkatzoflias,D.,Kouridis,C.,Samaras,Z.2009:“COPERT:AEuropeanRoadTransportEmissionInventoryModel”inI.N.Athanasiadis,A.E.Rizzoli,P.A.Mitkas,andJ.M.Gómez(eds.),InformationTechnologiesinEnvironmentalEngineering.SpringerBerlinHeidelberg,Berlin,Heidelberg,491–504.http://link.springer.com/10.1007/978-3-540-88351-7_37[Accessed28.September2015].ShenzhenMunicipalGovernment2018:ShenzhenBlueSustainableActionPlan2018.http://www.sz.gov.cn/gkmlpt/content/7/7786/post_7786646.html#749Song,J.2014:ShenzhenTransportEmissionMonitoringPlatformandApplication.PresentationattheExpertPanelMeetingoftheShenzhenUrbanTransportPlanningCentreon2014-07-22.Shenzhen.StateCouncilofP.RChina2018:Three-YearActionPlantoFightAirPollution.http://www.gov.cn/zhengce/content/2018-07/03/content_5303158.htmSun,S.,Schmied,M.,Bongardt,D.,Wüthrich,P.,Eichhorst,U.2014:ModellingEnergyConsumptionandGHGEmissionsofRoadTransportinChina.TechnicalPaperontheCRTEM/HBEFAChinaModel.https://transition-china.org/wp-content/uploads/2021/02/81-Modelling-GHG-Emissions-of-Road-Transport-in-China_Final_WF-1.pdf[Accessed30.March2021].Zeng,Y.,Cao,Y.,Qiao,X.,Seyler,B.C.,Tang,Y.2019:AirpollutionreductioninChina:Recentsuccessbutgreatchallengeforthefuture.ScienceofTheTotalEnvironment663,329–337.Zhang,F.,Shi,Y.,Fang,D.,Ma,G.,Nie,C.,Krafft,T.,He,L.,Wang,Y.2020:MonitoringhistoryandchangetrendsofambientairqualityinChinaduringthepastfourdecades.JournalofEnvironmentalManagement260,110031.DeutscheGesellschaftfürInternationaleZusammenarbeit(GIZ)GmbHSitzderGesellschaftBonnundEschbornFriedrich-Ebert-Allee32+3653113Bonn,DeutschlandT+492284460-0F+492284460-1766Einfo@giz.deIwww.giz.deDag-Hammarskjöld-Weg1-565760Eschborn,DeutschlandT+49619679-0F+49619679-1115

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

碳中和
已认证
内容提供者

碳中和

确认删除?
回到顶部
微信客服
  • 管理员微信
QQ客服
  • QQ客服点击这里给我发消息
客服邮箱