支持清洁能源转型的能源效率政策的演变(英)--IEAVIP专享VIP免费

The Evolution
of Energy Eiciency
Policy to Support
Clean Energy
Transitions
The IEA examines the
full spectrum
of energy issues
including oil, gas and
coal supply and
demand, renewable
energy technologies,
electricity markets,
energy efficiency,
access to energy,
demand side
management and
much more. Through
its work, the IEA
advocates policies that
will enhance the
reliability, affordability
and sustainability of
energy in its
31 member countries,
11 association countries
and beyond.
This publication and any
map included herein are
without prejudice to the
status of or sovereignty over
any territory, to the
delimitation of international
frontiers and boundaries and
to the name of any territory,
city or area.
Source: IEA.
International Energy Agency
Website: www.iea.org
IEA member
countries:
Australia
Austria
Belgium
Canada
Czech Republic
Denmark
Estonia
Finland
France
Germany
Greece
Hungary
Ireland
Italy
Japan
Korea
Lithuania
Luxembourg
Mexico
Netherlands
New Zealand
Norway
Poland
Portugal
Slovak Republic
Spain
Sweden
Switzerland
Republic of Türkiye
United Kingdom
United States
The European
Commission also
participates in the
work of the IEA
IEA association
countries:
Argentina
Brazil
China
Egypt
India
Indonesia
Morocco
Singapore
South Africa
Thailand
Ukraine
INTERNATIONAL ENERGY
AGENCY
The evolution of energy efficiency policy to support clean energy transitions
PAGE | 3
I EA. CC BY 4.0.
Introduction
Using energy more efficiently has proven to be an extremely successful and cost-
effective way to reduce energy demand. Highly developed and well proven policy
instruments already exist to deliver increased energy efficiency, such as
Ecodesign in Europe and Japan’s Top Runner. These policy tools can also support
fuel switching and better demand management, helping to integrate higher
volumes of variable electricity supply.
Japan’s Ministry of Economy, Trade and Industry, as part of Japan’s Presidency
of the G7, asked the International Energy Agency (IEA) to examine the evolution
of energy efficiency policy in the context of clean energy transitions. The aim is to
support discussions among G7 countries to provide insights and direction for the
G7 energy and climate agenda.
This brochure outlines how traditional energy efficiency policy is evolving to
address system-wide energy efficiency aspects such as grid flexibility and
decarbonisation.
It provides insights into policy developments in major economies and presents the
possible impacts from transforming energy efficiency regulations, with examples
in three main sectors:
Demand flexibility in appliances and buildings.
Vehicle fuel economy standards.
Industrial energy and carbon reporting.
This brochure is a draft for comment, and intended as a precursor to a longer
report that will be published by the IEA later in 2023.
TheEvolutionofEnergyEfficiencyPolicytoSupportCleanEnergyTransitionsTheIEAexaminesthefullspectrumofenergyissuesincludingoil,gasandcoalsupplyanddemand,renewableenergytechnologies,electricitymarkets,energyefficiency,accesstoenergy,demandsidemanagementandmuchmore.Throughitswork,theIEAadvocatespoliciesthatwillenhancethereliability,affordabilityandsustainabilityofenergyinits31membercountries,11associationcountriesandbeyond.Thispublicationandanymapincludedhereinarewithoutprejudicetothestatusoforsovereigntyoveranyterritory,tothedelimitationofinternationalfrontiersandboundariesandtothenameofanyterritory,cityorarea.Source:IEA.InternationalEnergyAgencyWebsite:www.iea.orgIEAmembercountries:AustraliaAustriaBelgiumCanadaCzechRepublicDenmarkEstoniaFinlandFranceGermanyGreeceHungaryIrelandItalyJapanKoreaLithuaniaLuxembourgMexicoNetherlandsNewZealandNorwayPolandPortugalSlovakRepublicSpainSwedenSwitzerlandRepublicofTürkiyeUnitedKingdomUnitedStatesTheEuropeanCommissionalsoparticipatesintheworkoftheIEAIEAassociationcountries:ArgentinaBrazilChinaEgyptIndiaIndonesiaMoroccoSingaporeSouthAfricaThailandUkraineINTERNATIONALENERGYAGENCYTheevolutionofenergyefficiencypolicytosupportcleanenergytransitionsPAGE3IEA.CCBY4.0.IntroductionUsingenergymoreefficientlyhasproventobeanextremelysuccessfulandcost-effectivewaytoreduceenergydemand.Highlydevelopedandwellprovenpolicyinstrumentsalreadyexisttodeliverincreasedenergyefficiency,suchasEcodesigninEuropeandJapan’sTopRunner.Thesepolicytoolscanalsosupportfuelswitchingandbetterdemandmanagement,helpingtointegratehighervolumesofvariableelectricitysupply.Japan’sMinistryofEconomy,TradeandIndustry,aspartofJapan’sPresidencyoftheG7,askedtheInternationalEnergyAgency(IEA)toexaminetheevolutionofenergyefficiencypolicyinthecontextofcleanenergytransitions.TheaimistosupportdiscussionsamongG7countriestoprovideinsightsanddirectionfortheG7energyandclimateagenda.Thisbrochureoutlineshowtraditionalenergyefficiencypolicyisevolvingtoaddresssystem-wideenergyefficiencyaspectssuchasgridflexibilityanddecarbonisation.Itprovidesinsightsintopolicydevelopmentsinmajoreconomiesandpresentsthepossibleimpactsfromtransformingenergyefficiencyregulations,withexamplesinthreemainsectors:•Demandflexibilityinappliancesandbuildings.•Vehiclefueleconomystandards.•Industrialenergyandcarbonreporting.Thisbrochureisadraftforcomment,andintendedasaprecursortoalongerreportthatwillbepublishedbytheIEAlaterin2023.TheevolutionofenergyefficiencypolicytosupportcleanenergytransitionsPAGE4IEA.CCBY4.0.ThechangingenergysystemOverthepastfewyears,theglobalenergysystemhasseendramaticchangesasitrespondstothereboundfromCovid-19andincreasedsupplypressuresfollowingRussia’sinvasionofUkraine.Atthesametime,energysystemsareundertakingsubstantialtransformationstofulfilgovernmentandsocietyNetZeroclimateambitions.UndertheIEA’sNetZeroEmissionsby2050Scenario–whichprovidesarealisticyetchallengingpathwaytoclimategoals-increasingtheenergyefficiencyofend-usesisakeycomponent.Inthisscenario,energyefficiencyeffortsarefrontloaded,astheyarebasedonproventechnologiesreadytobeimplementedatlowcost.DemandsidemeasuresplayasignificantroleintheIEANetZeroScenario,2021-2050IEA.CCBY4.0.Source:IEA(2021)NetZeroby2050.Otherdemandsidemeasuresarealsokeytocleanenergytransitions,especiallythosethatelectrifyend-uses,particularlyvehiclesandheatpumpsforspaceandindustrialprocessheating.Inadditiontomitigatingclimatechange,reducedenergydemandimprovesenergysecurityandlowersbillsforenergyconsumers.Cleanenergytransitionsalsoinvolvetheprogressivereplacementoffossilfuelsbyrenewableelectricity.Solarandwindenergyarepredictedtobecomethelargestinstalledcapacitysourceforglobalelectricitygridswithin5years.By2050,-60-40-200202021-252026-302031-352036-402041-452046-50GtCO₂ActivityBehaviourandavoideddemandEnergysupplyefficiencyBuildingsefficiencyIndustryefficiencyTransportefficiencyElectricvehiclesOtherelectrificationHydrogenWindandsolarTransportbiofuelsOtherrenewablesOtherpowerCCUSindustryCCUSpowerandfuelsupplyNetemissionsreductionDemandsidemeasuresNon-fossilrequirementonlargeenergyusersTheevolutionofenergyefficiencypolicytosupportcleanenergytransitionsPAGE5IEA.CCBY4.0.undertheNetZeroScenario,thesetwotechnologies,drivenbymuchlowerinstallationandrunningcosts,willbetheworldwidedominantsourceofelectricity.Changesinworldelectricitysources,IEANetZeroScenario,2010-2050IEA.CCBY4.0.Source:IEA(2022),WorldEnergyOutlook.However,increaseddeploymentofsuchrenewableformsofenergywillmakeelectricitysupplymorevariable,andthereforeincreasedflexibilitywillberequiredtokeepthegridoperatingeffectively.Thisflexibilitywillbepartlyprovidedbyreservegenerationandstorage;forexample,batterieswillprovideclosetoaquarteroftheflexibilityneededin2050inadvancedeconomiesandonlyslightlylessinemergingmarketanddevelopingeconomies.However,demandresponsewillprovidethegreatestproportionofflexibilityneededtoensurethegridoperateseffectivelyandefficiently.Demandresponseflexibilitycanbeimplementedmorerapidlyandatalowercostthanmostotherflexibilityoptions.Insummary,demandsidepolicy,whichincludesenergyefficiencypolicy,needstoevolvetohelpdelivercleanenergytransitions,throughthepromotionof:•Fuelswitching,especiallyfromfossilfuel-basedend-usestoelectricity-basedalternatives,withtechnologiessuchasEVsandheatpumps.•Increasedflexibilityofelectricitydemandtobettermatchvariablesupply.Beingabletoshiftdemandintime,withoutlossofservice,willbeavaluablecontributiontoenergysystemefficiency.Withoutdemandresponse,cleanenergytransitionscouldadverselyaffecttheintegrityandstabilityoftheelectricitygrid.However,traditionalenergyefficiencypoliciesareevolvingtosupportfuelswitchingandmakedemandmoreflexible.0%20%40%60%80%100%202020302050OilUnabatednaturalgasUnabatedcoalFossilfuelswithCCUSHydrogenbasedNuclearOtherrenewablesHydropowerWindSolarPV051015202520102020203020402050ThousandTWhTheevolutionofenergyefficiencypolicytosupportcleanenergytransitionsPAGE6IEA.CCBY4.0.Regulationsthatwerepreviouslybasedonminimisingenergyusehavechangedovertimetofocusonreducingcarbonemissions.Forexample,fueleconomystandardsareincreasinglybasedon(tailpipe)greenhousegas(GHG)emissionsratherthanvehicleenergyefficiency,providingincentivesforelectricvehicles(EVs).Similarly,energyefficiencypoliciesarebeginningtoincludeandaddressflexibilityandgridconsiderations.Forinstance,someUSstateshavepeakdemandtargetsaspartoftheirenergyefficiencyobligations.EvolutionofenergyefficiencypoliciestosupportfuelswitchinganddemandresponseRegulationIncentivesInformationBuildingsBuildingcodes↪SolarPV↪Demandresponse↪SmartEVchargingMEPSforappliances↪DemandresponseEnergyEfficiencyObligations↪Carbon-basedobligations↪PeakdemandtargetsEnergyPerformanceCertificates↪FueltoGHGTransportFueleconomystandards↪FueltoGHG↪ICEphase-out↪EVbonus↪EVtoGridbonusDemandincentiveschemes↪SubsidiesdirectedtoEVs↪EVchargersubsidiesEnergylabel↪FueltoGHG↪EVtoGridbonusIndustryIndustryagreements↪EnergytoGHG↪Electrification(e.g.,heatpumps)↪DRrequirementsSubsidies,grants↪Carbon-reductionbasedEnergyandcarbonreporting↪AddingGHGreporting↪DRreportingThefollowingsectionsshowexamplesinthreeareas:demandresponserequirementstoimprovegridflexibilityforbuildings,vehiclefueleconomy-relatedregulationsintransport,andreportingsystemsinindustry.TheevolutionofenergyefficiencypolicytosupportcleanenergytransitionsPAGE7IEA.CCBY4.0.DemandresponserequirementsinbuildingsandequipmentRegulatorsinagrowingnumberofcountriesarecontendingwithhowbesttoincludedemandresponsefunctionalrequirementsintopoliciesforproductsandbuildings.Flexibledemand,wherecustomerend-usesarecontrollableandshiftableovertime,makesthegridmoresecureandimprovessystem-wideenergyefficiency.Tounlockthispotentialfromflexibledemand,appliancesandbuildingsneedtoenabledemandresponse.Whetherautomatedorremotelycontrolled,opencommunicationprotocolsarenecessarytoallowdifferentactors(suchasdistributionoperators,suppliers,andenergyservicecompanies)toexchangeinformation.Whilesomesimpleapproaches,suchasradioteleswitchestocontrolwaterheaters,havebeencommonforsometime,improvedcommunicationprotocolsandprocessesarenowcreatingsignificantnewopportunitiesateverlowercosts.Utilitiesoraggregatorscancommunicateinrealtimewithappliances,throughanintermediatecontroldevicesuchashomeenergymanagementsystemsorsmartmeters,eitherdirectlymodifyingitsoperation,orsendinginformation(pricesignal,powercarbonintensity)topromptanactionbytheappliance.Ideally,demand-responsereadyequipmentshouldbeabletosendandreceivedatausingastandardisedprotocol,enablinginteractionbetweendifferenttechnologiesandmanufacturers.Thiswouldallowconsumerstochoosecontroldevices,connectthemtoeachothereasilyandchangethemifneeded.Severalcountrieshavealreadybegunintroducingpoliciestopromotesuchcontrol,bothforenergy-usingproductsandbuildings.Examplesarelistedbelow,includingcountriesthatareattheforefrontofexploringthisissue,includingAustralia,EuropeanUnion,theUnitedKingdomandtheUnitedStates.TheevolutionofenergyefficiencypolicytosupportcleanenergytransitionsPAGE8IEA.CCBY4.0.ExampleofpolicymeasurestopromotedemandresponseCountryEnd-usePolicy,descriptionStatusTypeEuropeanUnionBuildingEPBD-SmartReadinessIndicator.Quantifyingtheenergyflexibilitycapabilityofbuildingsandrepresentingitinameaningfulwayforstakeholders.PlannedInformationUnitedStates,CaliforniaBuilding2022BuildingEnergyEfficiencyStandardsRequirementstoinstalldemandresponseautomatedsystemsforheatingandcooling,aswellhaslightingusingOpenADR,acommonopenstandardfortwo-waycommunicationInforceRegulationUnitedKingdomAllappliancesSmartSystemsandFlexibilityPlan.Mandateforlargedomestic-scaleappliancestobeinteroperablewithDSRserviceproviders.PlannedRegulationEuropeanUnionAllappliancesCodeofConductfortheenergysmartappliancesmanufacturers.AimingatdevelopingofInteroperabilityrequirements.PlannedRegulationAustraliaAirconditionersGEMS.Requirementsforroomairconditionerstopubliclyregisteriftheyare“demandresponseready”.Separately,fromJuly2023,onlyairconditionersthatmeetthedemandresponsecapabilityrequirementscanbeconnectedtotheSouthAustralianelectricitydistributionnetwork.InforceRegulationAustraliaAirconditionersPeakSmartAirConditioning.ElectricitydistributionnetworkoperatorsinQueenslandofferrebatesforcustomerswhoinstallanairconditionerwithdigitaldemandresponsecontrols.InforceIncentiveSouthKoreaBuildingsandappliancesEnergyPauseprogrammeforresidentialdemandresponseforsmallconsumersandindividualhouseholdsbelow200kW.Variousresourcessuchassmartlightingandsmartapplianceshavebeenparticipatingin2022.InforceIncentiveTheevolutionofenergyefficiencypolicytosupportcleanenergytransitionsPAGE9IEA.CCBY4.0.Policydevelopmentswhichpromoteautomateddemandresponse,suchastheexamplesabove,aredependentonunderlyingcommunicationprotocolsandrules.Aselectionofkeynormsandstandardstosupportcontrolanddemandresponseislistedbelow.Thedevelopmentofsuchstandardsiskeytotheuptakeanddeploymentofflexibledemand.ExamplesofstandardsandnormstocontrolandmonitorequipmentRegionNameDescriptionTypeEuropeanUnionNormEN50631-1:2020:EuropeanNormDescribesthenecessarycontrolandmonitoringforhouseholdappliances.NormUnitedKingdomPAS1878:2021Requirementsandcriteriaforelectricalappliancetobeclassifiedasenergysmart.NormAustraliaAS4755–DemandResponseStandardDemandresponsecapabilityandmodesofappliancesandsmartdevice.StandardUnitedStatesANSI/CTA-2045Specifiesamodularcommunicationsinterfacetofacilitatecommunicationswithresidentialdevicesforapplicationssuchasenergymanagement.StandardInternationalIEC62746-10-1Openautomateddemandresponsesysteminterfacebetweenthesmartappliance,system,orenergymanagementsystemandthecontrollingentity.InternationalStandardUnitedStates,CaliforniaSenateBill49–TheFlexibleDemandApplianceStandardsAuthorisestheEnergyCommissiontoadoptstandardsforappliancestofacilitatethedeploymentofflexibledemandtechnologies.BillTheevolutionofenergyefficiencypolicytosupportcleanenergytransitionsPAGE10IEA.CCBY4.0.Vehiclefueleconomy-relatedregulationsThetransportsectorplaysitsroleinmovingtowardsNetZerothroughimprovedefficiency,decarbonisedfuelandgreaterelectrification.IntheIEA’sNetZeroscenario,electriccarsmakeup20%ofallcarsontheroadin2030comparedwith1%today.Theadoptionofelectriccarsisalreadyrapidlyincreasing.In2022,nearlyoneineighteverycarssoldgloballywaselectric,withunitsalesdoublingbetween2020and2021.Currently,fueleconomystandardsforcarsexistinoverfortycountries,coveringmorethan80%ofnewvehiclesalesworldwide.Fueleconomystandards,whichhavedevelopedovertime,haveincreasinglyincludedprovisionstofacilitatetheuptakeofEVsandvehiclesusingotheralternativefuelsources.Regulatoryapproacheshaveincluded:•Zeroemissionaccounting–EVs/hydrogenvehiclesaretreatedashavingzero(tailpipe)emissions.•Additionalcounting–eachEV/hydrogenvehiclecanbecounted‘morethanonce’usingmultipliers/supercredits(withterminologydifferingbycountry).Combiningthesetwoprovisionsincreasestheircontributiontooverallcompliance,astheimpactofanEVbeingcountedaszeroemissionsismultiplied.Ineffect,theproductionofelectricity/hydrogenvehiclesthereforemakescompliancewithregulationrelativelyeasier.Thetablebelowsummarisestheapproachesusedinselectedcountries.Themechanismsofzeroemissionaccountingandadditionalcounting(multipliers/supercredits)havebeenusedinsixoutofthesevenG7countries,withadditionalcounting,beingphasedoutovertime.Increasingly,thereisamovetophaseoutconventionalvehicles,andrequirethatallnewsalesbezeroemissionvehicles.Broaderaccounting,forexamplerecognisingupstreamelectricityemissions(well-to-wheel)isusedbytwooftheG7countries.”LifeCycleAnalysis(LCA)’’isawaytoassesstheenvironmentalimpactofallstagesofavehicle’slife.Increasedunderstandingofupstreamanddownstreamimpactsofproductsandfuelshelpsensurethatemissionsavingsareoptimisedthroughoutthelifecycle.LCAwillincreaseinimportanceasvehiclesandthefuelmixchange.Whileevermorestringentregulationshaveresultedinvehiclesbecomingmoreefficient,gainshavebeenoffsetbyvehiclesbecominglargerandmorepowerful.Globally,theseshiftshaveerodedupto40%ofimprovementsinfueleconomybetween2010and2019.Forelectricvehicles,theincreasingsizeofvehicleshasimplicationsforbatteries,withaveragebatterysizesincreasingby60%between2015and2021,havingknock-onimplicationssuchasincreaseddemandformetalsusedinbatteries.TheevolutionofenergyefficiencypolicytosupportcleanenergytransitionsPAGE11IEA.CCBY4.0.Vehiclefueleconomy-relatedregulationsapproachesusedinselectedcountriesMeasurestoachieveEVtargetsZEVmandatesormandatestyleapproachesFuture✓Statelevel✓✓✓StatelevelCurrent/HistoricMeasurestocaptureimpactsAccountingof(upstream)electricityrelatedGHGemissionsFuture✓✓Current/Historic✓oncecapreached✓oncecapreachedMeasurestofacilitateEVsInclusionofEVshasadditionalweightingFuture✓(revision)Current/Historic✓✓✓✓✓EVsaretreatedaszeroemissions/zeroenergyuseFuture✓limit✓✓✓limitCurrent/Historic✓✓✓✓StandardtypeGHGemissionlimitsCO2emissionsFuelefficiencystandardstoprunnerapproachCO2emissionsFueleconomystandardsandGHGemissionlimitsElectricvehicleinclusioninregulationCanadaEU(inc.FranceGernamyItaly)JapanUnitedKingdomUnitedStatesSource:IEAanalysisbasedonICCT(2018),Modernizingvehicleregulationsforelectrification.TheevolutionofenergyefficiencypolicytosupportcleanenergytransitionsPAGE12IEA.CCBY4.0.Thegreatestefficiencygainsareachievedbypolicypackagesthatcombineregulation,informationandincentives.•InFrance,fiscalincentiveshavecontributedtoCO2emissionsofnewpassengercarssoldbeingaround9%lowerthantheEUaverage.Thebonus-malusschemewasstrengthenedfurtherin2020,withthemaximum‘penalty’forconsumersofnewhighemittingvehiclesbeingdoubledtoEUR20000.•InGermany,from2020vehicleswithhighCO2emissionshavebeentaxedmoreheavily.•InKenya,acombinationofregulations(suchasagelimitsonvehicleimports)andfinancialincentiveshasresultedinaveragevehicleefficiencybeing25%highercomparedtocomparablecountries.•InNewZealand,registrationsharesofelectricvehiclesincreasedtohighsof5%to15%aftertheintroductionofabonus-malusscheme.•InNorwaynearly90%ofvehiclesalesarenowelectric,reflectingtheuseofbroadrangeofincentivesalongsideregulatoryandinformationapproaches.•InFrance,advertisingofthemostpollutingvehicleswillbebannedfrom2028.TheevolutionofenergyefficiencypolicytosupportcleanenergytransitionsPAGE13IEA.CCBY4.0.IndustryreportingsystemsTheindustrialsectorischallengingtodecarbonise,withprocessesasdiverseastheeconomyitselfandeachcompanyguardingitsproprietarymethods.Solutionsforenergyefficiencyanddecarbonisationaresubsequentlyhighlyindividual.Thechallengeforpolicymakersisthereforetoincentiviseindustrialdecisionsthatsetapathtowardshigherenergyefficiencyanddecarbonisationwithouthurtingcompetitivenessandinnovation.Acorerequirementforanysuccessfulpolicydecision-makingisreliableinformation.Aslargeindustriesareamongthebiggestenergyconsumersinmosteconomies,theinfluenceandimpactofindustrialpolicydecisionsissignificant.Forseveraldecades,G7countrieshavebeenusingreportingsystemswhereindustriesaboveacertainthresholdmustregularlyreporttheirenergyconsumptiontoagovernmentbody.Thisinformationhelpsensureconsistency,accuracy,andreliabilityofnationalenergybalances,andisusedbygovernmentstomakeinformeddecisionsonpolicy.Inthecontextofincreasinglystringentmeasurestomitigateclimatechange,industryreportinghasputastrongerfocusonGHGemissionsaccountingtomonitorimprovementovertime.Furthermore,progressivelymoregovernmentsareputtinginplacepublicdisclosureobligationsthatcanincreasetransparencyincompanyactivities.Finally,thedatacollectedcanbeusedinawiderscopeofpolicydesignanddecisionmaking.Forexample,intheareasofenergysecurityandclimateimpactwhereenergydemandmanagementandefficientuseofenergy,enabledthroughdataleddecisions,playacrucialrole.Industrialreportingpolicescanincludemeasuresforcapacitybuildinginenergyandemissionsreporting,alongwiththereportingframeworkitself.Thiscanhelpincreasethereliabilityofthedatacollectionandreporting,benefitingboththeorganisation,atsiteperformancelevel,andtheoverallindustrialsector,intermsofassessment,benchmarkingandcompetitiveness.Japanisintheprocessofdevelopinganupdatedindustrialreportingschemethatfeaturesdemandresponseprovisions,explicitlyaddressingthechallengesofpeakelectricitydemandinindustrialenergyconsumption.ThefollowingtableprovidesanoverviewofmajorindustrialreportingschemesinG7countriesandbeyond.TheevolutionofenergyefficiencypolicytosupportcleanenergytransitionsPAGE14IEA.CCBY4.0.OverviewofindustryreportingschemesinG7countriesandfurtherexamplesCountryShortnameStartyearStatusReportingthresholdlevelThresholdmetricMetricreportedDemandResponseProvisionPublicDisclosureSiteOrganisation(National)Organisation.(Global)CO₂Energycons.Energyprod.CO₂Energycons.Energyprod.AustraliaNGER2007Inforce✓✓✓✓✓✓✓✓✓NoYesCanadaGHGRP2004Inforce✓✓✓NoYesJapanECA1993Inforce✓✓✓✓✓Yes(revision)YesKoreaGHG-ES2011Inforce✓✓✓✓✓NoYesECR1980Inforce✓✓✓NoNoUnitedKingdomSECR2019Inforce✓✓✓✓NoYesUnitedStatesGHGRP2009Inforce✓✓✓✓✓NoYesCaliforniaCA-GWSA2006Inforce✓✓✓NoYesSouthAfricaNGERs2011Inforce✓✓✓NoNo:ThestartyearofJapansECAreferstothepreviouslegislation.Japan’supdatedindustrialreportingschemeiscurrentlyunderdevelopmentandwillfeatureademandresponseprovision.:Thethresholddefinesthelevelatwhichanorganisationbeginstobeobligatedbythereportingscheme.TheevolutionofenergyefficiencypolicytosupportcleanenergytransitionsPAGE15IEA.CCBY4.0.FromBrochuretoFullReportThisbrochureprovidessomeexamplesofhowenergyefficiencypolicyisalreadyevolvingtosupportcleanenergytransitions.ItwasdraftedinadvanceoftheG7ministerialdiscussionsinApril2023-alongerreportwillbedevelopedandpublishedlaterin2023,whichwill:•providefurtherexamples,withsuggestionsastowhichapproachesareworkingwellwithinitscontext,andwithinapolicypackageframework.•summarisethebenefitsoffurtheradoptiononsuchpolicieswhichareincreasinglyoptimisingsystem-wideefficiency,beyondend-useefficiency.ThislongerreportwillalsoincludedirectcommentsandfeedbackfromtheG7members.Forfurtherdetailsandtoprovidecomments,pleasecontactenergy.efficiency@iea.org.InternationalEnergyAgency(IEA).ThisworkreflectstheviewsoftheIEASecretariatbutdoesnotnecessarilyreflectthoseoftheIEA’sindividualMembercountriesorofanyparticularfunderorcollaborator.Theworkdoesnotconstituteprofessionaladviceonanyspecificissueorsituation.TheIEAmakesnorepresentationorwarranty,expressorimplied,inrespectofthework’scontents(includingitscompletenessoraccuracy)andshallnotberesponsibleforanyuseof,orrelianceon,thework.SubjecttotheIEA’sNoticeforCC-licencedContent,thisworkislicencedunderaCreativeCommonsAttribution4.0InternationalLicence.Thisdocumentandanymapincludedhereinarewithoutprejudicetothestatusoforsovereigntyoveranyterritory,tothedelimitationofinternationalfrontiersandboundariesandtothenameofanyterritory,cityorarea.Unlessotherwiseindicated,allmaterialpresentedinfiguresandtablesisderivedfromIEAdataandanalysis.IEAPublicationsInternationalEnergyAgencyWebsite:www.iea.orgContactinformation:www.iea.org/contactTypesetinFrancebyIEA-April2023Coverdesign:IEAPhotocredits:©ShutterStock

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

碳中和
已认证
内容提供者

碳中和

确认删除?
回到顶部
微信客服
  • 管理员微信
QQ客服
  • QQ客服点击这里给我发消息
客服邮箱