揭示影响:工业软件如何推进净零目标(英)--CapgeminiVIP专享VIP免费

1©2023 Capgemini Invent
UNVEILING
IMPACT
How Industrial Software
Advances Net-Zero Ambitions
Table of Contents
2©2023 Capgemini Invent
Forward by Lisa Wee
Global Head of Sustainability, AVEVA ........................................................................................................
3
Executive Summary by Nicolas Clinckx
Head of Manufacturing, Capgemini Invent ..................................................................................................
4
1.0. Opening Two Doors with One Key ............................................................................................... 7
1.1. Software as a Win-Win for Sustainable and Profitable Business ................................................... 8
1.2. Sustainability Use Cases for Industrial Software ............................................................................. 9
2.0. The Chemical Industry ..................................................................................................................... 11
2.1. The Acid Test for Sustainability ......................................................................................................... 12
2.2. Modeling the Low-carbon Reality ..................................................................................................... 13
3.0. The Manufacturing Industry ............................................................................................................. 15
3.1. Manufacturing a Sustainable World .................................................................................................. 16
3.2. Production Management to Reduce Waste and Energy Consumption .......................................... 17
4.0. The Oil and Gas Industry ................................................................................................................. 19
4.1. Purifying Processes with Optimization ............................................................................................ 20
4.2. Rigorous Models for Process and Utilities Optimization ................................................................ 21
4.3. Predictive Analytics for Reliability and Energy Efficiency ............................................................... 25
Conclusion ...................................................................................................................................................... 27
Appendix and Methodology Note ................................................................................................................ 29
References ..................................................................................................................................................... 32
The pathway to achieving net-
zero emissions by 2050 is narrow:
it requires unprecedented
transformation of the industrial
sector, which currently accounts
for more than 25%
1
of emissions
worldwide. As a global software
pioneer, AVEVA is determined to
lead by example to combat climate
change. We are proud to have
been amongst the rst 50 global
companies to have our net-zero
commitment validated by the
Science-based Targets Initiative
(SBTi). In parallel to working
towards ambitious interim targets,
which include halving our Scope 3
emissions by 2030, we strive to help
our industrial customers deliver their
own sustainability commitments.
AVEVA software is uniquely
positioned at the nexus of the
digital transformation and the
energy transition. The combination
of recent tensions in the energy
market, post-Covid shortages in
supply, and an increasing focus on
sustainable production have created
a challenging environment for many
industries. Business continuity and
commercial agility both demand
the rapid identication of eciency
and sustainability measures, plus
the widespread implementation
of associated plans across all
operational assets. Such an approach
enables companies to meet their
short-term needs while progressing
towards long-term net-zero goals.
AVEVAs software can support and
help accelerate these achievements.
In an eort to build a quantitative
understanding of the impact of
industrial software and how it
empowers our customers, AVEVA
has partnered with Capgemini Invent
to engage selected companies across
three key industrial sectors. Our
objective is to lay the foundation
for a new sustainability impact
assessment methodology. Aimed
at facilitating the quantication
potential for digital solutions to
unlock combined sustainability and
economic KPI gains, we expect to
continue to rene this new model
over time. We are excited to work
with the customers who have
already joined us on this journey and
whose stories are detailed in this
paper. We hope that you will nd
their success stories of interest and
welcome opportunities for further
dialogue and collaboration on this
topic. Together, we are committed
to helping accelerate the overall
positive impact of digitalization for
industries worldwide.
Lisa Wee
Global Head of Sustainability, AVEVA
Foreword
Our objective is to lay the foundation for a new sustainability
impact assessment methodology, aimed at facilitating the
quantification potential for digital solutions to unlock combined
sustainability and economic KPI gains.
3©2023 Capgemini Invent
1©2023CapgeminiInventUNVEILINGIMPACTHowIndustrialSoftwareAdvancesNet-ZeroAmbitionsTableofContents2©2023CapgeminiInventForwardbyLisaWeeGlobalHeadofSustainability,AVEVA........................................................................................................3ExecutiveSummarybyNicolasClinckxHeadofManufacturing,CapgeminiInvent..................................................................................................41.0.OpeningTwoDoorswithOneKey...............................................................................................71.1.SoftwareasaWin-WinforSustainableandProfitableBusiness...................................................81.2.SustainabilityUseCasesforIndustrialSoftware.............................................................................92.0.TheChemicalIndustry.....................................................................................................................112.1.TheAcidTestforSustainability.........................................................................................................122.2.ModelingtheLow-carbonReality.....................................................................................................133.0.TheManufacturingIndustry.............................................................................................................153.1.ManufacturingaSustainableWorld..................................................................................................163.2.ProductionManagementtoReduceWasteandEnergyConsumption..........................................174.0.TheOilandGasIndustry.................................................................................................................194.1.PurifyingProcesseswithOptimization............................................................................................204.2.RigorousModelsforProcessandUtilitiesOptimization................................................................214.3.PredictiveAnalyticsforReliabilityandEnergyEfficiency...............................................................25Conclusion......................................................................................................................................................27AppendixandMethodologyNote................................................................................................................29References.....................................................................................................................................................32Thepathwaytoachievingnet-zeroemissionsby2050isnarrow:itrequiresunprecedentedtransformationoftheindustrialsector,whichcurrentlyaccountsformorethan25%1ofemissionsworldwide.Asaglobalsoftwarepioneer,AVEVAisdeterminedtoleadbyexampletocombatclimatechange.Weareproudtohavebeenamongstthefirst50globalcompaniestohaveournet-zerocommitmentvalidatedbytheScience-basedTargetsInitiative(SBTi).Inparalleltoworkingtowardsambitiousinterimtargets,whichincludehalvingourScope3emissionsby2030,westrivetohelpourindustrialcustomersdelivertheirownsustainabilitycommitments.AVEVAsoftwareisuniquelypositionedatthenexusofthedigitaltransformationandtheenergytransition.Thecombinationofrecenttensionsintheenergymarket,post-Covidshortagesinsupply,andanincreasingfocusonsustainableproductionhavecreatedachallengingenvironmentformanyindustries.Businesscontinuityandcommercialagilitybothdemandtherapididentificationofefficiencyandsustainabilitymeasures,plusthewidespreadimplementationofassociatedplansacrossalloperationalassets.Suchanapproachenablescompaniestomeettheirshort-termneedswhileprogressingtowardslong-termnet-zerogoals.AVEVA’ssoftwarecansupportandhelpacceleratetheseachievements.Inanefforttobuildaquantitativeunderstandingoftheimpactofindustrialsoftwareandhowitempowersourcustomers,AVEVAhaspartneredwithCapgeminiInventtoengageselectedcompaniesacrossthreekeyindustrialsectors.Ourobjectiveistolaythefoundationforanewsustainabilityimpactassessmentmethodology.AimedatfacilitatingthequantificationpotentialfordigitalsolutionstounlockcombinedsustainabilityandeconomicKPIgains,weexpecttocontinuetorefinethisnewmodelovertime.Weareexcitedtoworkwiththecustomerswhohavealreadyjoinedusonthisjourneyandwhosestoriesaredetailedinthispaper.Wehopethatyouwillfindtheirsuccessstoriesofinterestandwelcomeopportunitiesforfurtherdialogueandcollaborationonthistopic.Together,wearecommittedtohelpingacceleratetheoverallpositiveimpactofdigitalizationforindustriesworldwide.LisaWeeGlobalHeadofSustainability,AVEVAForewordOurobjectiveistolaythefoundationforanewsustainabilityimpactassessmentmethodology,aimedatfacilitatingthequantificationpotentialfordigitalsolutionstounlockcombinedsustainabilityandeconomicKPIgains.3©2023CapgeminiInventAtamomentdefinedasa“polycrisis”withacceleratingenergycosts,geopoliticaldisruption,andsystemicclimatechange,industriesarefacingadilemma:theymustdrivecommercialagilitywhilemovingtowardsnetzero.Meetingthesetwinrequirementsisfarfromeasy–ensuringgrowthwhileradicallyacceleratingthedecarbonizationoffacilitiesinlinewitha1.5°Cfuturescenariocanappeartobeaconflict.Achievingambitiousemissionreductiongoalsisevenmorechallengingwhenfacedwithtighteningeconomicmarginsandenergyinsecurity.Inthiscomplexenvironment,industryleadersarelookingforwin-winsolutionsthatunlockbothenvironmentalandperformancebenefits.Byoptimizingoperationalefficiency,manyindustrieshaveidentifiedwaystoimprovetheirenvironmentalperformance.Efficientandreliablefacilities,traceable,high-qualityproduction;andoptimizedprocessesleadtolowerenergyconsumption,lesswaste,andmoreefficientsupplychainsandmaterialsuse.Together,suchoperationalefficiencyalsomeanslowergreenhousegas(GHG)emissions,moreresponsibleuseofnaturalresources,andfinancialsavingsontop.Industrialsoftwarecanhelpcompaniesoptimizeoperationsandboostefficiency,reducingtheirenvironmentalimpactanddrivingenterprisesustainabilitygoals.Byunifyingdatafromacrossanenterpriseorvaluechain,andcombiningitwithsector-specificAI,industrialsoftwarecantrack,analyze,andmodeloperations.Subjectmatterexpertscanthenbuildmoreaccuratemodels,indicators,andtargets,andmakemoreaccuratedecisionsinrealtime.Insomesectors,thisAI-enhanced,data-centricapproachisalsofacilitatingthedevelopmentofnewcircularitymodelsanddrivingefficiencythroughoutglobalsupplychains.Despitenumerousindividualexamples,thereisnoagreedbenchmarkformeasuringcarbonreductionsassociatedwithindustrialsoftwareacrossindustries.Inpart,thisisbecausewhileindustrialsoftwareiskeytoenablingsustainabilitystrategies,itispartoftheoverallsolution,whichencompassesnewworkingpractices,differentprocesses,andoftennewhardware.Despitethissystemicnetwork,theaimofthispaperistomakeastartoncalculatingandprovidingabenchmarkoryardsticktomeasuresoftware’ssustainabilityimpact.NicolasClinckxHeadofManufacturing,CapgeminiInvent,FranceExecutivesummaryIndustrialsoftwarecanhelpcompaniesoptimizeoperationsandboostefficiency,reducingtheirenvironmentalimpactanddrivingenterprisesustainabilitygoals.4©2023CapgeminiInvent5©2023CapgeminiInventTohelporganizationsbetterunderstandthepotentialofindustrialsoftwaretoadvancetheirsustainabilityKPIs,AVEVApartneredwithCapgeminiInventtobuildaninnovativemodelingmethodologyforimpactanalysisinformedbyusecasesfromthreeindustries.Theindustrieswereselectedbasedonthepotentialimprovementinenergyefficiencyanddecarbonization:Chemicals,OilandGas,andManufacturing(includingFoodandBeverageandLifeSciences).TheworkleveragesstandardindustrialKPIs(e.g.,OverallEquipmentEffectiveness/OEE,failurerateandyield)andavailablegreenhousegasaccountingguidelines.Itisthereforeadaptedtotheindustrialsoftwaredeploymentcontext.Moredetailsonthismethodologyareavailableintheappendixofthispaperandkeyfindingsfromthethreefocusindustriesaresummarizedbelow:•Chemicals:Withthesupportofnewprocesses,thechemicalsindustryisstrivingtoevolveinawaythatenablescircularity.Inthiscontext,severalcompaniesareusingprocesssimulationandintegratedplantdatacombinedindigitaltwins,whicharedigitalrepresentationsofareal-worldscenario.Theinitialpurposeofthedigitaltwinistoenableengineerstoevaluatedifferentdesignoptionsfaster.Usingthecloud-basedsimulationplatform,processandcontrolengineerscancollaboratebetterandbenefitfromacompleteviewofoperationsandemissions.Together,theycanmodelscenariosandevaluatetheoverallemissionsimpact,enablingthemtoselectthedesignwiththelowestcarbonoutput.Usingthisapproach,wefoundorganizationshaveachievedreductionsofbetween19-30%indistillationcolumndesign,with30%lowerflaring.Thebenefitsofthisdigitalapproachextendbeyondthedesignphase.Processsimulationinsightscanbeusedtotroubleshootoperationsandimproveenergyandmaterialefficiencieswhiletheplantisoperating.Evensmalloperationaladjustmentscanleadtosignificantsavings.AcasestudyoftheDimethylEtherprocessmodel(presentedlaterinthispaper)suggeststhatfine-tuningdistillationrefluxratioscansaveup14,000tonsofCO2equivalent(tCO2e)peryearand56GWhofenergyconsumption.•Manufacturing:Leadingmanufacturingcompaniesneedtoadvanceefficiencywhiledeliveringonsustainabilitypromisestotheircustomersandkeepingcostslow.Here,combiningdataacrosstheproductionandsupplychaininanAI-enhancedmanufacturingexecutionsystemisproventoimprovequalityandproducttraceabilitywhiledrivingmaterialsefficiency.Additionally,thisapproachcandriveeco-efficiency,bothintermsofenergyusedintheplantaspartofproductionexecutionprocesses,andyieldandresourceallocation.Bytrackingproductsfromrawmaterialstofinishedgoodsandoptimizingequipmentefficiency,teamshavecutenergyusebyupto20%.Thisishighlightedinalifesciencesplantcasestudypresentedinthispaper:itsuggestssavingsof10gCO2eperunitproduction.IndustriesLeadingtheWaytoaSustainableFutureAutomotiveOEM262TWh/year0.08GtCO2e/yearEnergyEfficiencyIndex:0.48Oil&GasRefineries3200TWh/year1GtCO2e/yearEnergyEfficiencyIndex:TbdFood&Beverage1500TWh/year0.5GtCO2e/yearEnergyEfficiencyIndex:0.36Metals9800TWh/year2.4GtCO2e/yearEnergyEfficiencyIndex:0.43Chemicals5900TWh/year1.2GtCO2e/yearEnergyEfficiencyIndex:0.33Figure1:Energyefficiencyandemissionlevelsbysector26©2023CapgeminiInvent•OilandGasRefining:Forenergycompanies,decarbonizationandenergysecurityarepressingprioritiesthatmustbehandledintandem.Severalusecasesarepresentedinthispaperthatrelatetoovercomingthistwo-prongedchallenge,eachonewithitsownindividualmodelingapproach.Firstly,rigorousoptimizationthroughoutthevaluechaincancutenergyandwateruse,reduceemissionsandensurethroughput.Toensurepositiveimpact,theoptimizationmodelmustbebasedonfirst-principlesrigorousmodelsandspanacrossprocessesandutilitiesoperations.Analysisperformedinthisstudysuggests12kilotons(Kt)ofCO2einannualsavingscouldbeachievedbyoptimizingtheenergy-intensivecrackinganddistillationunitsina120kbdrefinery.Secondly,companiescanuseMachineLearning(ML)tobetterleverageassetperformancedataanddevelopagilepredictivemaintenancestrategiesthatavoidfailureofcriticalequipment.Foroilandgasfacilities,equipmentfailurescanresultinsomeofthemostsignificant,negativeenergyandemissionsimpactscenarios.AcasestudywithanAsianrefinerysuggeststhatavoidedcompressorfailurescouldreduceemissionsbyasmuchas199tCO2eatequipmentlevel.FinalThoughtsThefindingsinthisreportareexciting,yettheyrepresentonlyastarttoadeeperprocessofenquiryandanalysis.Pleasecontactsustainability@aveva.comifyouareinterestedinparticipatinginfurthersustainabilityimpactanalysisworkorwouldliketoshareyourownlearningsinthisarea.Weseeongoingresearchandcollaborationinthisdomainaskeytocontinuouslyenhancingthesustainabilitybenefitsoftheindustrialsoftwareecosystem.Overtime,wealsoexpectmorestandardstobeestablishedtoregulaterelatedmeasurement,analysis,andreporting.Astrongerdialoguebetweensoftwareprovidersandtheindustrialcommunityoncredibleapproachestosustainabilityimpactcalculationswillbekeytostayingahead.7©2023CapgeminiInvent1.0.OPENINGTWODOORSWITHONEKEY8©2023CapgeminiInvent1.1.SoftwareasaWin-WinforSustainableandProfitableBusinessEfficiencyisallaboutdoingthesameormorewithless.Forindustrialcompanies,thismeansmaintainingandevenimprovingoutputwithlessrawmaterials,energy,andwaste.Naturally,suchoptimizedperformanceisinextricablylinkedwithenvironmentalbenefits.Thisiswhatmakesindustrialsoftwaresolutionssoexcitingforchampionsofsustainability.Byoptimizingperformance,suchsoftwarecanprofoundlyimproveanindustry’srelationshipwiththenaturalworld.Efficientequipment,betterproductionquality,andimprovedequipmentreliabilitytriggerleanmethodstoreducewaste,consumelessenergy,anduselessrawmaterials.SoftwareNeedsNoHardSellTraditionally,criticsofindustrialpracticeshavefocusedonthemachinery.Foralongtime,thiswasajustifiablecriticism.However,advancesinhardwarehavefurnishedplantswithnext-generationequipmentthatisbothmorereliableandmuchlessenergy-intensive.Yet,thereisstillmuchtodotoensureindustriesmaintaintheirtrajectoryfornetzero.Thisiswheresoftwarecomesin.Itpicksupwherehardwareleavesoff,becomingakeylevertoconnectinsightsandaugmentdecisions.Asaresult,companiescanoptimizeoperationsandboostefficiency,thusreducingenvironmentalimpactsofindustrialactivitiesanddrivingenterprisesustainabilitygoals.Industrialsoftwarecanbeleveragedtotrack,analyze,andactonemissionintensityandresourceutilization,whichisafirststepinthesustainabilityjourney.Acomprehensiveviewofoperationsfacilitatesindicatordefinition,standardsetting,andtargetmaking.Thisthree-stepapproachispivotaltosustainabletransformation.Onlyadata-drivenholisticviewcaninformsounddecision-making,empoweringleaderstoimproveefficiency,optimizeresourceconsumption,andreduceemissionsandwasteinrealtime.Moreover,newtechnologiesareessentialfortheimplementationofcircularpractices(e.g.,productdesignandsupplychaintransformation).Figure2:IndustrialSoftwarecapabilitiesandtheirinterconnectedeffectsontheenvironmentandperformanceIncreasedEnvironmentalPerformanceIncreasedOperationalPerformanceIndustrialsoftwarebringssustainabilitygainsbyreducingwasteandwaterconsumptions,risingenergyefficiencyandreducingGHGemissionsIndustrialsoftwareimprovesoperationalindicatorssuchasagility,efficiency,reliability,qualityetc.IndustrialSoftwareCapabilities:•Process&assetinformationsystemsforeffectivedatamanagement•Modelsandanalyticsforprocessandsupplychainoptimization•Enterprisevisualisationforcollaborationanddecision-making9©2023CapgeminiInvent1.2SustainabilityUseCasesforIndustrialSoftwareReprogrammingOperationswithEaseThisreportwillestimatetheimpactindustrialsoftwarehasoneffortstounlockthebenefitsofsustainability,focusingonseveralusecasesinvolvingAVEVAsoftwareintheindustrialcontext.Usecaseshavebeenselectedaccordingtotheirpotentialenvironmentalimpact,businesscriticality,anddataaccessibility.ThefocusisonhowtheyareleveragedbyuserstoimprovesustainabilityperformancesinProcessDesign,OperationsExecutions,andAssetPerformancePrediction.AccordingtorecentbusinessandITenergyefficiencyprojects,itisbestpracticetoalwaysstartwitharobustdatainfrastructure.Fromhere,companiescansystematicallyandcontinuouslygatherreal-timedatathatreflectsthepulseoftheiroperations.Next,variousapplicationsandsystemsareaggregatedtoprovideanoverviewofcross-functionalvaluechainperformanceandoutcomes.Thisaggregationcanbeshowninaunifiedoperationscenter,whichiswhereenterprisevisualizationhelpscustomerscollaboratemoreeffectively.Keyusecasesexploredinthisstudy:•ProcessDesignProcessSimulationisusedtobuilddigitaltwinsofprocessesfortheindustrialplant.Thismodelcanbeusedtofacilitatedesignoptimization.Moreover,itcanbeusedonlinewithaconnectiontoreal-timedata,turningthedesignintoa“livingtwin”andoptimizingtheoperation.•OperationsExecutionManufacturingindustryOperationalexcellencedependsonthemanufacturingsystem’slinktoreal-timedatafromtheproductionlines.OEEisthemostimportantKPItodriveimprovementacrossavailability,utilization,andquality.ProcessIndustryOptimizationbasedonrigorousfirst-principlesmodelsstartsbyreconcilingthesnapshotsofreal-timeoperationaldata.Andthen,itgeneratestheoptimumoperatingconditions,whichaugmentsoperators’decisionwiththebesteconomicandenvironmentalbalance.•AssetPerformancePredictionAssethealthiskeytoensuringefficiencyandreliability.Potentialfailuresareidentifiedwaybeforetheyoccurwithhistoricaldatagatheredandanalyzedbyadvancedanalytics.Throughearlynotificationsgeneratedbypredictiveanalytics,themaintenanceteamcantakeactioninadvancetoavoidunplannedshutdownsandtherespectiveimpactstotheenvironment:additionalemissions,reworkandwaste,pluspotentialaccidentsthatcouldleadtohigherdamages.Figure3:Usecasesselection.Detailedusecasesareanalyzedinthefollowingsectionswithanillustrationofimpactanalysisbasedonindustrialcontextandactualcustomerreferenceorindustrialexpertexperiences.VISUALIZATIONANDCOLLABORATIONOptimizevisibilityintoindustrialassetoperationsandexpeditetocriticalproductionevents,enhancingenergyefficiency.DESIGNProcessSimulationforlowcarbontransitionSimulateandoptimizecomplexprocessesduringdesign,andmonitorandimprovetheirperformanceduringoperations.EXECUTIONProductionManagementtoreducewaste&energyconsumptionMonitorandoptimizeprocessexecutionatoperationslevel,improvingproductivity&qualityaccuracy.RigorousModelsforprocessandutilityoptimizationAutomaticallyoptimizeprocessandutilitiesoperatingconditionstomeettheproductionspecificationswithlessutilitiesconsumption.PREDICTIONPredictiveAnalyticsforreliabilityandenergyefficiencyProvideearlywarningnotificationanddiagnosisofequipmentissuesbeforefailure,reducingtheenrivonmentalcostsrelatedtofailures.DATAINFRASTRUCTUREAnindustrialdatabackbone,purpose-builttocollect,enrich,visualize,andshareonsiteoperationsdata.OEEImpactReliabilityImpactScrapImpact10©2023CapgeminiInventEXAMININGTHEINDUSTRIES11©2023CapgeminiInvent2.0.THECHEMICALINDUSTRY12©2023CapgeminiInvent2.1.TheAcidTestforSustainabilityThechemicalindustryfindsitselfatthewrongendoftheenergy-efficiencyscale,onlyslightlybetterpositionedthanthemetalsindustry.Iftheindustryistoalignitselfwithmoreefficientsectors,suchasfoodandbeverageandautomotive,itmustfirsttacklethreesizablechallenges:waterconsumption,airemissionsandwastegeneration.Thesearethethreekeysustainabilitymetricsforthechemicalindustry.Themainchallengeliesinoptimizingtheperformanceofenergy-intensiveequipmentinbasicchemicalprocesses(e.g.,incrackersandcompressors).Toovercomethischallenge,chemicalcompaniesmustbegindesigningforcircularandmoreenergy-efficientspecialprocesses.Chemicalproductionisenergy-intensiveandleadstosignificantemissions,mainlyofCO2.Thereasonforthisisthatmanychemicalprocessesrequirehightemperatures,whicharecurrentlyachievedviafossilfuelcombustion.Gasandelectricityaccountfornearlytwo-thirdsoftotalenergyconsumption.In2017,thefuelandpowerconsumptionoftheEUchemicalindustry,includinglifesciences,amountedto52.7milliontonsofoilequivalent.Tocutemissions,industrialchemicalcompaniesnowimplementtwotypesofsystems:process-integratedtechniques(suchaswaterreuse,heatrecovery,steamleakagecontrols,watersavings,materialsrecycling,andpollutionprevention)andend-of-pipetreatment.Here,integrationisthemainchallenge,sinceitgeneratesmorecomplexityandrequiressimulationandoptimizationtools.However,thesetoolsempowerstakeholderswiththeabilitytomakebetteroperationanddesigndecisions.3KeyFactsThechemicalindustryaccountedfor5900terawattsperhour(TWh)ofenergyconsumptionandfor1.2Gigatons(Gt)CO2egloballyin2020.From1990to2009,energyconsumptionfellbynearly27%inthechemicalsindustry.Emissionsaresettodecreaseby9.1%,accordingtotheNetZeroEmissionsby2050Scenario(from1.2GtCO2eto66MtCO2e).13©2023CapgeminiInvent2.2.ModelingtheLow-carbonRealityThesustainabilitybenefitsofcomputermodelsandalgorithmscannotbeoverstated.Inthepast,thereal-worldimpactofaproductorprocesscouldonlybedeterminedbycreatingthatproductorrunningtheprocess.Ofcourse,themanufacturerswouldlearnalotfromthismethod,butthatknowledgewouldcomeattheexpenseoftheenvironment.Thesameistrueoftheefficiencyoftheprocessfromacostanalysisperspective,whichoftenfailstoidentifyhiddencosts.Buttoday,manufacturershaveaneffectivewaytodeterminetheviabilityofaproductorprocessinadvance:ProcessSimulation.Whileprocesssimulatorsarenotnewtothechemicalindustry,thelatestadvancementsinthisareaallowProcessSimulationtofacilitatethecreationofdigitaltwins,whichenablecompaniestoenvisagethephysicalimpactofaproductontheenvironmentinafasterandmorerigorousway.Thisisdonebystudyingarepresentationofthereal-wordartefactwithalargeamountofvariables(operational,economicandenvironmental)inacomputer-generatedenvironmentdesignedtomimicreality.Engineersandoperatorscanusedigitaltwinstoidentifyinefficienciesintheirproductsandprocessesandmakethenecessaryadjustmentsthatresultinreducedenergyconsumptionandwastegenerationinbothdesignandoperationsphases.Thismeansmanufacturerscanpinpointweaknessesandinefficienciesbeforetheybecomedamageandloss.ThereareseveralkeysustainabilityapplicationsofProcessSimulation,including:•TheabilitytotrackandcalculateGHGemissions,makingitpossibletooptimizeCO2eagainstutilitiescostandplantcapitalcostduringdesign,andmonitoremissionsduringoperationsusingreal-timedata.•Thedevelopmentofcarbon-capturetechnologyandthepredictionofhowwellitperforms,usingnewaminesandothersolventsthatcanstripCO2fromfluegasstreamsordirectlyoutoftheatmosphere.•Theabilitytomodelnewprocessesthatcanscaleuprenewablesandgreenhydrogenproductionbyintegratingsteady-stateanddynamicmodelswithweatherpredictions.•Enoughdatatodesignnewprocessesforthecirculareconomythatusebiomassorrecycledplasticstobecarbonneutral.ModernProcessSimulationtechnologymakesitpossibletoconcentratealltherequiredmodelsfortheprojectcycleinasinglesimulationplatform.Thisleadstodesigninnovationatanunprecedentedrate.Workingdesignsarebroughttomarketsoonerwithlowerrisksandevenunderbudget,thankstotheintegrationofthesemodelswithengineeringtoolsinadigitalenvironment.14©2023CapgeminiInventToday,ourProcessSimulationisalreadyanimportanttooltoimproveourenergyefficiencyandtherebyoursustainabilityKPIsforourbrownfieldplantsinGermany.Wewilldefinitelyexpandthesoftwaredeploymentinthefuture,notonlyforGermany,butalsoworldwide,asweseethebenefitsofProcessSimulation.CovestroHyundaiusesAVEVAProcessSimulationtoevaluatetheenergyintensityandinefficiencyofadirectsequencedistillationcolumnandadivided-wallcolumn.Forakerosenepre-fractionationcolumn,adividing-wallcolumnprovidesenergysavingsof19%overaconventionalcolumn;30%forade-ethanizer/de-propanizer.HyundaiEngineeringWhatClientsSayATheoreticalCaseStudyofaDimethylEther(DME)ProductionProcess.Theprocesssimulationmodelissetupwithembeddedmodulestocalculateoverallutilityconsumptionandequivalentemission.Anoptimizerisconfiguredtotunethemodelparameters,suchasdistillationcolumnrefluxratio.Thisisdonetominimizeoverallutilitiesconsumptionandreachthedesiredspecifications.Inthisexample,upto14ktCO2eand56GWhofenergyconsumptionwerereducedyearlyusingProcessSimulationcombinedwiththeoptimizationfeatures.Figure4:ExtractfromAVEVAProcessSimulationCASESTUDY15©2023CapgeminiInvent3.0.THEMANUFACTURINGINDUSTRY16©2023CapgeminiInvent3.1.ManufacturingaSustainableWorldThesustainabilityofthemanufacturingindustryisparamounttoachievinga1.5°Cfuture.Thereismuchtoconsider,eachaspectisacriticalcomponentofglobalnet-zerotargets.Forinstance,foodwasteisthedirectlossofvaluableresources,whichcontributestogreenhousegasemissionsandclimatechange.TheUnitedNationsFoodandAgricultureOrganizationestimatesthatapproximatelyonethirdofallfoodproducedforhumanconsumptioniswastedeveryyear,whichamountsto1.3billiontons.4Thiswastenotonlygeneratessignificantemissions,butitisalsoaprofoundwasteofwater,energy,andothernaturalresources.Anotherexampleisthelifesciencessector.Asisthecaseforothermanufacturingsectors,energyconsumptionisbecomingamajorconcerntoensureminimalemissionsandcompliancewithregulations.Thelifesciencessectorisactivelyworkingonsustainableenergymanagementsolutions.Thisincludestheimplementationofenergy-efficienttechnologiesandtheadoptionofrenewableenergysources.Technologicaladvancementsandcleanerenergysourcescanhelptheindustrytoreachitsnet-zeroobjectives.Whentwinnedwithsustainablewasteandenergymanagementpractices,thelifesciencesindustrycanminimizeitsimpactontheenvironmentandcontributetoamoresustainablefuture.Withthisinmind,itisimperativethattheindustrytakesstepstoreducewastethroughbettersupplychainmanagementandsustainablepractices.Perhapsoneofthebestplacestostartiswaterusage.Manysectorsinthemanufacturingindustryareenergy-andwater-intensive:thelesswatertheindustryuses,thelessenergyitneedstoheatorcoolthewateritdoesuse.Conservationherewouldbeinstantlyeffective.Forexample,twothirdsofenergyuseintheEUisconsumedasheat,andthelastthirdisusedforelectricity.Thiselectricityismainlyusedforindustrialcooling.Butdecarbonizingheatthatisconsumedviatheproductionofhightemperaturesisachallenge.Thefood,drink,andmilksectorsaccountforapproximately10%ofthefinalindustrialenergyconsumptionintheEU-28,with20%ofthefreshextractedwaterofthefoodproductionsectorbeingusedfortheproductionandprocessingindustries.5KeyFactsFoodandbeverageaccountsfor37%ofGHGglobalemissionsFoodandbeveragemanufacturingemissionsareestimatedat94Metrictons(Mt)CO2e/yearintheEU(equaltothetotalemissionsofBelgium).Inthe1.5°Cscenario,theEuropeanfoodandbeveragesectorcouldreduceGHGemissionsby92%comparedto1990levels.Thepharmaceuticalsindustryisresponsiblefor4.4%ofglobalemissions,andtheCO2emissionsaresettotripleby2050.In2019,thepharmaceuticalsectorproduced48.55tCO2eforevery$1mitgenerated–or55%morethantheautomotiveindustry,whichemitted31.4tonsper$1mgeneratedinthesameyear.617©2023CapgeminiInventAmongthebiggestchallengesformanufacturingcompanieswithmulti-siteoperationsisenforcingstandardsfordatacollectionandbestpractices.However,itisthekeytounlockingvalue,enablingmanufacturerstotrackbothenergyconsumptionandthetypesandquantitiesofwastegenerated.Adigitalproductionmanagementfootprintreliesonahigh-qualityoperationalinformationmanagementsystem,planningandschedulingcapabilities,followedbyarobustmanufactureexecutionsystem(MES).Thisdigitalapproachcanhelpmanufacturerstoidentifypotentialwaste-to-energyopportunitiesandtracktheprogressofwaste-to-energyprojects.Whendoneeffectively,itenablesmanufacturerstoalignpeopleandprocesseswithadvancedmanufacturingexecutionsystems.Thismarriageprovidesmanufacturerswithconsistentandcost-effectiveoperationalexcellence,compliance,transparency,andagility.Byconnectingmultipleplantstoonedigitalbackbone,itiseasierandcheapertoimplementthesamestandardsateveryplant.Thistechnologycontextualizesdata,optimizesthescheduleforminimumwaste,andthenmonitorsanddrivesoperationsexecutionattheoperationslevel.Itfacilitatesthedigitalmanagementofbusinessrules,informationcaptureforalloperationalactivities,andreal-timedataofplantevents.Bycapturinginformationforalloperationalactivities,thisdigitalapproachcanhelpincreaseavailability,usability,andquality.Aspreviouslymentioned,thevolumesofwaterandtheenergyconsumedbymachineryareamajorbarriertoplantsustainability.Digitalproductionmanagementtechnologyboostsproductivitybyincreasingthelaborandmachineefficiencyby~10%.Thisinturnoptimizestheenergyandwaterconsumptionoftheequipmentperunitproduced.Meanwhile,thedescribedtechnologyenablesimprovementsofscraprate(upto20%improvement),directlyreducingwasteandindirectlywaterandenergyconsumptions.Theknock-oneffectofthisimprovementisthatitcontributestothereductionofqualitydeviations,thuscuttingwastegeneration.Circularityisavitalpartoftheoverallnet-zeromission,especiallyforthemanufacturingindustry.Itisimperativeformanufacturerstoreducewastegenerationanddivertmaterialsfromlandfills.Thistechnologycanalsohelpimprovethereworkandrecyclingrate,therebyimprovingmaterialconsumption.Lastly,aspreviouslyoutlined,thestart-stopphenomenonisanongoingchallengeonthemanufacturingindustry.Theenergyandresourcesconsumedwhenevermachineryneedstobebroughtbackonlineisasignificanthurdleforcompaniesworldwide.Productionmanagementtechnologyhelpstoimprovethereliabilityrateinthesefacilities(upto15%to20%improvements),optimizingmaintenancequalityandfrequency,whichleadstoadditionalmaterialandenergysavings.73.2.ProductionManagementtoReduceWasteandEnergyConsumption18©2023CapgeminiInventUseoftheAVEVAPISystemenabledamultinationallifesciencescompanytoreduceelectricity,naturalgas,hotwater,andwaterconsumptionperunitofproductionbetween2019and2022.Sincethe2018implementationofadatainfrastructureplatformtocollectdataintheCzechRepublicsite,thecompanyexperiencedacontinuousdropinelectricity,heat,andwaterconsumptionsperunitofproductionforitsproductionsite.Theplatformcreateddata-driveninsightstohelpplantstaffmanagetheirproductionlineswhileenhancingrequiredelectricity,naturalgas,heat,andwaterutilization,managinginanefficientwayHVAC,boilers,compressors,chillersorprocessequipmentforblending,granulationortabletpressandcoating.Thedatainfrastructureplatformcontributedtotheenvironmentalperformancealongwithseveralotherexternalfactors,suchaspeopleawareness,processreengineering,qualityinitiatives.Ithasyieldeduptoa2.6%dropinelectricityconsumptionperunitofproduction,from0.169kWhto0.156kWh;a1.8%reductioninheatfromnaturalgascombustionandexternalheatsupply,from0.163kWhto0.155kWhperunitofproduction;anda5%cutinwaterconsumption,from0.907Lto0.778Lperunitofproduction.Thiscorrespondstoareductionof10gofCO2eperunitofproduction.MESperformancecoupledwithourcompany’scontinuousimprovementstrategyhasincreasedourpackaginglineefficiencyby30%,savingusmorethan$400,000annuallyinpreviouslyplannedlabourexpenditures.OEEincreasedfrom45%to65%injustover2years.ANorthAmericanBrewingCompanySincetheimplementationofEnergyMonitoringSystem(EMS)atoneofourplants,wewereabletodetectwateroverconsumptionsinmilksterilizersandotherequipment,whichledtoover630m3ofwatersavingsperweek.Ontheotherhand,bymonitoringourenergyconsumptions,wewereabletotakedecisionstochangetheprocesstoreduceenergyconsumption,leadingtoenergycostsavingsof~€50000peryearfor3differentplants.Weareonourwaytorollingoutthissolutionin10othersitesin2023.AEuropeanDairyProductCompanyCASESTUDYWhatClientsSay19©2023CapgeminiInvent4.0.THEOILANDGASREFININGINDUSTRY20©2023CapgeminiInvent4.1.PurifyingProcesseswithOptimizationRefineriesareintensiveconsumersofenergyandwater.Theygeneratehugeemissionsthatescapeintotheair.Refineriesalsogeneratewaterandpotentiallysoilpollution,mainlythroughtherefiningandstorageprocesses.Dischargedrefinerywatercancontainpollutants,suchasheavymetals,oil,andchemicals.Leaks,spills,orwastedisposalmakesoilunsuitableforagriculture,harmaquaticlife,andmakewaterunsafeforhumanconsumption.Inshort,itcanerodehealthyecosystems.Otherprocesses,suchasboiling,heating,andcatalyticcrackingproduceevengreatervolumesofemissions.Levelsofcarbondioxideareofparticularconcernsincethisgashasbeenproventosignificantlycontributetorisingsealevelsandextremeweatherevents.Theindustryoccupiesthemedianlevelofenergyefficiencyoverallsectors.However,thereisstillmuchthatcanbedonetoaligntheindustrywiththemoreefficientsectors.Asamatureindustry,pollutionabatementprogramsarewellestablishedinmanyrefineries,thoughtodifferentextentsineach.Asaresult,theemissionsgeneratedbyrefinerieshavedeclinedpertonofcrudeprocessed.Forinstance,emissionsfromUSrefineriesdeclinedby9.7%from2011to2020.ThistrendisexpectedtocontinuewithsuchpoliciesastheUS45Qcredittax,whichprovidesincentivesforCarbonCapture,Utilization,andStorage(CCUS)projects.Refinersarealsoincreasinglyusingvegetableoilstoproducebiofuelsandtherebyminimizetheirfootprint.Operationalefficiencyimprovementiskeytominimizingthetotalfootprintandconsequentlymaximizingthetotalemissionabatementeffort.8KeyFactsOilrefiningemissionsstoodfor1GtCO2eglobally,147MtCO2eacrosstheEuropeanUnionin2019and160.9MtCO2eintheUSin2020.-3%ofpotentialreductionofGHGemissionsacrosstheUSthroughdecarbonizationofrefineries,mainlyfromreductionofon-siteheatgenerationandrefiningprocesses.Copyright©2022Capgemini.Allrights21©2023CapgeminiInvent4.2.RigorousModelsforProcessandUtilityOptimizationRigorousoptimizationtechnologyusesprocessandeconomicreal-timedatatoimprovetheperformanceofindustrialoperations.Whenutilitiesandprocessoptimizationsareintegrated,sustainabilityandoperationalKPIscanbemoreeffectivelycombined.Thisresultsintheabilitytominimizeutilitiesconsumptionwhileensuringproductspecifications.Rigorousoptimizationtechnologycanalsoimprovemarginsandthroughput.Occasionally,theutilitiesvariablesarenotdirectlyaddedtothemodel,butotherprocessvariablesleadtosustainabilityimprovementsaswell.ProcessOptimizationInrefineries,processoptimizationismainlyusedtooptimizeenergy-intensivecomplexprocesses,suchasCrudeOilDistillationUnit/VacuumDistillationUnit(CDU/VDU)andFluidCatalyticCracking(FCC).Thisisdonebyadjustingoperationscontrolparameters,accordingtoprocessconditions,whichincludealargeamountofvariables,suchastemperatures,pressures,andoperationscosts.Whenvariablesrelatedtotheutilitiessystemsareincorporated(directlyorindirectly)intheoptimizationmodel,processoptimizationenablessustainabilityimprovements.Refinersneedsupportastheystrivetomeetproductionspecificationswithlessenergyconsumption.Processoptimizationfacilitatesthisby,amongotheractivities,optimizingutilitiesconsumption,suchassteam.Theresultisdecreasedwaterconsumptionandwastewater.Ofcourse,thisreductioninsteamconsumptioncanalsoreducetherefiner’senergyrequirement.Thisisparticularlynoteworthy,sinceanyreductionintheconsumptionoffuelgaswillmitigateGHGemissionsproducedbycombustion(scope1).Forinstance,fora120kbdrefinery,upto8GWhofenergyand7,200m3ofwatercanbesavedperyearusingAVEVAProcessOptimizationinbothFCCandCDU/VDUunits.Thiscorrespondstoareductionof12ktCO2eperyear.Tohelpindustryactorsmeetsustainabilitygoals,itisnecessarytointegratebothCO2andeconomicdatatoimproveboththeoperationalandenvironmentalperformanceofoilandgasrefiners.922©2023CapgeminiInventCASESTUDY12ktCO2e(-0.3%)ofemissionsavingsperyearthroughreductioninfuelgasconsumption8GWh(-0.5%)ofenergysavingsperyearthroughreductioninfuelgasconsumption7,200m3(-0.01%)ofwaterconsumptionavoidedperyearthroughreductioninsteamconsumption2,552k€ofyearlycostsavingsthroughsavingsinfuelgasandcarbonpermitpurchaseAnonymousrefineryoptimizingbothFCCandCDU/VDUunit.SavingsforanonymousAVEVAcustomerperyear(bestcasescenario).CO2Inthisexample,theFCCunitisusingAVEVAProcessOptimizationtomanagecertainproducts(fuelgas,ethylene,propylene,propane,C4BB,lightcycleoil,andcoke)whilereducingothers(gasoline,benzene,anddecantoil).Thereisacalculatedreductioninfuelgasconsumption(-2.3%)andinsteamconsumption(-0.5%)inthecoreprocess.Itisestimatedthatreducingsteamconsumptionleadstoanadditionalreductioninfuelgasconsumption(-0.8%),whichinturnleadstolessairpollutionandwaterconsumption.Asaresult,GHGemissionscanbereducedby11ktCO2e(-0.4%),energyconsumptionby3.8GWh(-0.6%),andwaterconsumptionby2700m3.IntheCDU/VDUunitexample,steamconsumptioncanbereducedby3%,thusreducingfuelgasconsumptionintheboilers(-4%).ThishasadirecteffectonGHGemissions,whichcanbereducedby1ktCO2e(-0.05%)Additionally,energyconsumptiondeclinedby4.2GWh(-0.5%)andwaterconsumptionby4500m3.Thecalculationsrelyontheassumptionthatsteamreductionisduetolowersteamgenerationinboilers.Steamisusuallylosttowastewaterandtotheatmosphere.Severaltechniquescanbeimplementedforoptimizingtheuseofsteam,includingreducingtheamountofsteamstripping,managingdemandoverboilercapacity,optimizingyieldforboilers,optimizingsuchprocessparametersastemperature,pressure,andqualityofwater;recoveringheatandcondensate,andminimizinglossesonthesteamnetwork.AVEVAProcessOptimizationcanhelpcustomersachievethiscomplexgoal.23©2023CapgeminiInventMonitoringheatexchangerperformanceiscrucialtoprofitabilityandsustainabilityastheinefficienciesintroducedbyfoulingmayresultinincreasedenergyconsumption,GHGemissions,and/orproductionloss.Amongstotherparameters,processduty,overallheattransfercoefficient,orfoulingresistancecanbeusedtomonitorfoulinginheatexchangers.AVEVAProcessOptimizationisbeingusedtocontinuallycollectrawfielddataandtransformtheobtainedrawdatatoabovementionedengineeringmetrics.Calculatedvaluesarethenhistoricisedandusedforfurtheranalysistodeterminetheoptimumcleaningtime.ANorthAmericanOilandGasCompanyWhatClientsSay24©2023CapgeminiInventInthisexample,therefineryisusingutilityoptimizationtoreduceoverallenergyandwaterconsumption.Theimplementationofthistechnologyhasbeenanunmitigatedsuccess.Itwasresponsiblefor20%ofallannualCO2emissionreductionsintherefinery.Inthisspecificexample,utilityoptimizationfacilitatedbetteruseofsteamproductionfromprocessunits,improvedtheuseofpropane/butaneovernaturalgasasmarginalfuel,andachievedoptimumprocessingofhydrogenconsumptionfeeds.Thetechnologyisresponsibleforthefollowingresults:•Adecreaseindirectemissions,from656ktonsofCO2eto648ktonsofCO2e(-1.1%),mainlyduetoreducedemissionsintheinternalhydrogenplant,andtheoptimizationofpropaneandnaturalgascombustion.•Indirectemissionsfellby0.08%,largelyduetothedecreaseinfuelgasimports.Fuelgasconsumptiondecreasedby2%,from1592GWhto1555GWh.•Waterconsumptiondeclinedby1%,duetolowerboilerfeedwaterconsumption.Utilityoptimizationprovidedindirectbenefits:•TheUtilitiesShiftManagerlearnedaboutbeneficialoperationsneverbeforeconsidered.•Differentoperationalstrategiesforenergy,utilities,andemissionswereevaluated.•Itbecamepossibletore-evaluateutilitycontracts.8.7ktCO2e(-0.4%)ofemissionsavingsperyearthroughreductioninfuelgasconsumption37GWh(-2%)ofenergysavingsperyearthrough18,200m3(-1.1%)ofwaterconsumptionaviodedperyear7,525k€ofyearlycostsavingsthroughsavingsinfuelgasandcarbonpermitpurchaseCO2CASESTUDYAEuropeanrefineryoptimizingfuelgasandwaterconsumptionwithopen-looputilityoptimization.SavingsforanonymousAVEVAcustomerperyear.UtilityOptimizationIntheUS,refiningactivitiesaccountfor28%oftheenergyconsumedbyindustry,mainlyincombustionsystemsandprocessunits.Waterandsteamareusedforvariousprocesses,includingdistillation,cleaning,steamgenerationasafeedstocktoboilers,andincoolingsystems.Utilityoptimizationtechnologyautomaticallyoptimizesutilitiessystemstoproducereliableguidanceforoptimaloperation.Refinersoftenusethistechnologytooptimizeenergy,water,andsteamconsumption.Forinstance,aEuropeanrefineryusedAVEVA’ssolutionsforutilityoptimizationfortheirwholerefinery.Theresultsspeakforthemselves.Therefineryachievedannualsavingsof37GWhofenergy,primarilyfromfuelgas,and18,200m3ofwater,whichcorrespondstoanullified8,700tCO2eperyear.Inthisexample,fuelgasconsumptiondecreasedby2%.Thisisadirectresultofhavingusedpropaneinsteadofnaturalgasasamarginalfuel.Moreover,waterconsumptiondecreasedby1%,dueboilersconsumingless.ThenetresultwaslowerGHGemissions.Withtheuncertaintiesinenergysupplyduringthecurrentenergycrisis,itisevenmorecriticalforcustomerstooptimizetheirenergyconsumption.1025©2023CapgeminiInvent4.3.PredictiveAnalyticsforReliabilityandEnergyEfficiencyPredictiveanalyticstechnologyprovidesearlywarningnotificationanddiagnosisofequipmentissuesbeforefailure.Thisreducesequipmentunplanneddowntime,increasesreliability,andimprovesperformancewhilereducingoperationsandmaintenanceexpenditures.Inoilandgasfacilities,predictiveanalyticsisusedmainlyincriticalassets,bothprocessandutilitiesequipment,suchascompressors,turbines,boilers,heatexchangers,pumps,expanders,etc.Withthistechnology,facilitiescanpreventmoderate,catastrophic,andtotallossofperformance.Thismarkedlydecreasesthefollowingenvironmentalcosts:1.Theenergycostofanincidentconsistsoftheenergyrequiredforshuttingdownandrestartingtheequipment/plant,aswellastheenergyrequiredforresponselogistics(laborandequipmentshifts).2.Thematerialcostisthequantityofrawmaterialsusedtoreplaceorrepairtheequipmentandthescraprelatedtothemaintenanceactivity.Thescrapcouldbereducedifthematerialsarerecycled.3.Watercostreferstoflushingwaterusedduringmaintenance.Pollutionofwatercanalsobeconsideredasacriticalenvironmentalcost,particularlyduringacatastrophicincident.4.DirectandindirectGHGemissionsrefertoemissionsdirectlyreleasedduringtheincident(e.g.,flaredgas).Inrefineries,unplannedshutdownscouldleadtoanaverageof10ktCO2eperyear.Reducingtheoccurrenceofincidentsiscrucialtopreventtheconsequentenvironmentalandfinancialdamage.Predictivemaintenancetechnologyalsoenhancesequipmentefficiency(e.g.,byindicatingtheperfecttimetocleanequipmentoutsidethepreventivecleaningcycle,optimizingefficiencyandselectingthemomentwhentheefficiencyissolowthatoperatingcostsandemissionsarehigherthandesired,i.e.,aninefficientmomentthatdoesnotrepresentasignificantproductivityloss)andhelpspredictpossibleleakages,(e.g.,bymonitoringasteamnetwork).11CASESTUDY1EarlycatchesofcompressorincidentsattheFormosaPetrochemicalCorporation(FPCC)Refineryledto199tonsofCO2esavingsperyear.Reciprocatingcompressorsareusedinrefineriesandchemicalplantstoincreasesystempressuretothelevelmeetingthedemand.Asthecompressors’outlettemperatureincreases,theoutletvalvesealmightfail.Whenthisoccurs,productionisdisturbedattheprocessunitlevelandthedamagedcompressorrequiresrepairs.ByusingAVEVAPredictiveAnalytics,since2019,14anomaliesweredetectedbeforeanythecompressorcouldbedamaged,leadingtobetterequipmentperformanceandlowerenvironmentalcosts.Morespecificallysmoothloadshiftingtothestandbycompressormadeitwaspossibletoavoidanydisturbancetotheprocessunit.Theequipmentwaslessdamaged,whichledtolessmaterialconsumptionusedtorepairtheequipment(120kg/yrofplasticssaved).Eachincidentcouldhavereleased4tonsofhydrogenflaringdirectlyintotheatmosphere.Forthistypeofincidentalone,predictiveanalyticscontributedtoannualsavingsof199tonsofCO2e,and120kgofmaterialsconsumedattherefinery.26©2023CapgeminiInventWhatClientsSayAVEVAPredictiveAnalyticsisleveragedasanonlineplatformtomonitorandoptimizetheoperation.Bycatchingacompressoranomalyearly,maintenanceteamsdiscoveredfueloverconsumptioncausedbycompressedadditionalrecyclegasthatstoodforhiddenloss.Thisearlycatchalsowarnedmaintenanceteamsofamajorfailurethatcouldhavecausedamajorloss.ItreducedenergyoverconsumptionandtherelatedadditionalGHGemissions(scope1)anditpreventedsignificantimpactonairpollution.AnAsianOilandGasCompanyCASESTUDY2EarlycatchesofpumpincidentsattheFormosaPetrochemicalCorporation(FPCC)Refineryledto13tonsofCO2esavings,11MWhofenergysavings,and10tonsofmaterialsavingsperyear.Highpressurecentrifugalpumps(280/12segment)withabatchprocess(frequentstart-upandshutdown)couldeasilyresultinhighvibrationandcausedistortionattherotor.Therotorneedstobereplaced,whichaffectsthenormaloperationoftheunit.Thisincidentisrare,butitcouldleadtoenvironmentaldamage.ByusingAVEVAPredictiveAnalytics,Formosadetectedtheanomalybeforetheincidentoccurred,avoidingtheenvironmentalcostrelatedtothisincident.Morespecifically,theearlycatchmadeitpossibletoavoidshuttingdowntheprocessunit,thusloweringtheenergyconsumptionneededtorestartit(-1MWh).Therotorswerelessdamaged,meaningtheycouldberepairedandreusedinsteadofscrapped.Thismeanslessmaterialisusedtorepairtheequipment(-10tonsofstainlesssteel).Forthisincidentalone,predictiveanalyticscontributedtoannualsavingsof13tonsofCO2e,1MWhofenergyconsumptionand10tonsofmaterialsconsumption.27©2023CapgeminiInventCONCLUSION28©2023CapgeminiInventConclusionHavinganalyzedtheselectedindustriesforthisreport,itisevidentthatindustrialsoftwarecanprofoundlyacceleratereductionsinwateruse,energyconsumption,andtotalemissions.Thisresultsinasignificanttwinbenefit:expenditureoptimizationandenvironmentpreservation.Bydrivingefficiencyandconnectingpeoplewithtrustedinformationyandinsights,industrialsoftwarecanhelpturnsustainabilityintoacompetitiveadvantageforforward-lookingindustries.Completingthisstudyhasalsoreinforcedacommonlyheldperception:oneofthereasonstherearenoreadilyavailablestandardsforimpactanalysisofindustrialsoftwareisthatsoftwareisoftenpartofanoverallsystemofsolutionsandactivities.Thisoverallsystemincludesexternalvariables,suchashardware,people,environment,andprocess.Sincesoftwareissointricatelylinkedwithotherfactors,modeledsustainabilitybenefitsshouldcontinuetobeframedascontributingtooverallimpacts,ratherthanasstandaloneachievements.Nonetheless,thispaperhasdemonstratedthatitispossibletocollaboratewithcustomersandindustrialexpertstodevelopandsetparametersofimpactfordifferenttypesofsolutionandtostarttomodelthisimpactbasedonindustry-specificcontexts.High-qualitydataiscriticalforaccuratequantificationofimpact.Amongthefinaltakeawaysfromthispaperisnotonlythatthishigh-qualitydatacanonlybegeneratedbyworkingcloselywithindustrialcompaniesbutthatthisengagementprocessitselfcanunlockadditionalvaluefrominvestmentsindigitalsolutions.Specifically,itcansupportindustrialenterprisesinfindingfurtheropportunitiesforeconomicandenvironmentalimpactreductionsassociatedwithindustrialsoftwareinexistingapplications.Thedialoguecanalsoopenthedoortobroadersharedlearnings,helpingtodrivecollaborationonsustainabilityimprovementsthatcanholisticallyacceleratetheevolutionofindustry.Giventhepressingneedtomovefasteronglobaldecarbonization,AVEVAiscommittedtocontinuingtheseconversationsandworkingtogetherwithourcustomerstoensureweachievethepaceofdigitalandsustainabletransformationweneedtomakeamorejust,net-zerofuturearealitynolaterthan2050.29©2023CapgeminiInventAppendixandMethodologyNoteThispaperlookedatsavedemissionsofindustrialsoftwarecomparedtoareferencesituation.Inthatsense,thescopeofthisstudyshouldnotbecomparedtosoftwarevendors’footprint(scope1,2,and3emissions).Thispaperadoptedabottom-upapproachandmodelingmethodology,whichisinspiredbytheCO2eProjectAccountingmethodologydevelopedbytheFrenchAgencyforEcologicalTransition(ADEME),12whichiscloselyconnectedwiththeEuropeanLCAanalysisstandards(ISO14040–14044).KeyGuidingPrinciplesTheCO2eImpactMethodologyisapplicableforallsoftwareoffers.1.ThesustainabilitypotentialofAVEVAsoftwareisassumedtobecorrelatedtothepotentialinfluenceofAVEVAsoftwareonindustrialKPIs(OEE/performance,reliability/failurerate,scraprate/yield).2.TheimpactofeachoperationalKPIonsustainabilityKPIsisidentified.3.Thesustainabilityimpactisderivedbyevaluatingtheoperationalperformanceofindustrialplantsbeforeandaftersolutionintegration.Thedatacollectionperiodisconsistentwiththestandardoperationalperiodinwhichtheplantoperatesatitsnominalbehavior,ideallyforoneyear.Figure5:LinkbetweenIndustrialandSustainabilityKPIsEnergyperproductoptimizedatconstantcapacityWastereductionthroughqualityimprovementReworkrateoptimizationInventoryimprovementEnergyperproductoptimizedatconstantcapacityScraprateimprovementlinkedto:•Reductionofamountofmaterialusedduringbreakdownofthesystem•SparepartsreductionInventoryimprovementMaterialreductionWatersavingsduetoscrapreductionEnergysavingsduetoscrapreductionDefectreductiononcustomersideInventoryimprovementOEE/PERFORMANCERELIABILITY/FAILURERATESCRAPRATE/YIELD30©2023CapgeminiInventGreenhouseGasesAccordingtotheGHGProtocolStandard,resultsarereportedinCO2equivalent(CO2e).GHGemissionscalculationcoversscope1(directemissionsfromindustrialplants),scope2(energyconsumption),andscope3upstream(feedstocksupply).Scope3downstreamwillnotbeconsideredwhenindustrialsoftwarehasnoimpactontheuseofitscustomers’finishedproducts.Inthecaseofassetreliabilityandmaintenance,emissionscalculationswillcoverscope3downstreamemissionsrelatedtothetreatmentordisposalofscrap.EmissionFactorsEmissionfactorsarecollectedfrompublicdatabases,suchasADEMEandGHGProtocol.TheyarepresentedinmetrictonsofCO2equivalent(MtCO2e)andmustbefrequentlyupdated.Electricityemissionfactorsarelocation-based,meaningtheycorrespondtotheaveragecountryelectricityemissionfactor,asreferredtobyADEME.13TheseemissionfactorsoriginallycomefromapublicationbytheInternationalEnergyAgency(IEA).Inthispublication,thevaluestakeintoaccounttheelectricandthermalkWhsupplies.Ontheotherhand,cross-bordertradeisnotconsidered,asthisconcernsonlydirectemissionsfrompowerplants.MethodologyLimitationsTheresultsareconditionedbydataavailabilityandaccessibilityfromorganizationstoaddressthefollowingchallenges:•Dataisanaggregatefrommultiplesources.Amulti-functionteamisinvolvedfordatagathering.•Dataisnotstandard.Industryexperts’intelligenceisleveragedtoscope,interpret,cleanse,andformat.•Dataisoftenconsideredsensitive.CapgeminiInventworkedcloselywithcustomerstoprovideaccreditationsandbusinessjustificationtobesharedoutsideoperationalteams.Nevertheless,thechallengesgoagainstagrowingneedfortransparencydemandedbymarkets(investorsinparticular)andstakeholders.Themethodologyofsustainabilityimpactcalculationisdisclosedintheanalysisforeachindustrialusecase.Uncertaintiesofresultscouldbeoftheorderofmagnitudeof+/-30%.Uncertaintyistheresultofacombinationoffactors:•Datasharedbyorganizationsareestimated.•EmissionfactorsrelyonIEAcalculationsfrom2011.•Reboundeffectsarenotconsideredinthecalculations.•FinancialestimationsrelyonEuropeandata.31©2023CapgeminiInventUSECASETYPEOFDATACOLLECTEDProcessSimulationTobeassessedcasebycasetoverifytotalimpactonenergy,water,andwaste.ProductionManagement•OEE/performanceratio•Scraprate/yield•Reliability/failurerate•Feedstockquantities•Energy/waterconsumptionProcessandUtilityOptimizationUtilitiesconsumption:•Electricity•Fuelgas•Fueloil•Hydrogen•Water(coolingwater)•SteamPredictiveAnalyticsDatarelatedtoenvironmentalcostperincident:Energycost•Energytorestarttheplant/processunit/equipment•Energyrequiredformaintenanceteamtransportation•Energyusedformaintenanceequipment(drone,crane,weldingstations…)Materialcost•Equipmentscrap•Processscrap•Sparepartstoreplace/repairequipment•Otherresourcesconsumptionformaintenanceusage•Watercost(flushingwaterandothermaintenancewater)GHGemissions•Directemissionsoccurringduringanincident(e.g.,flaredgas)References1.IEA(2021)NetZeroby2050:ARoadmapfortheGlobalEnergySector.Availablefrom:https://www.iea.org/reports/net-zero-by-2050[Accessedonthe28thof2023]2.Hypotheses:1)Theyearlyresultsareglobalresults.2)DataonenergyconsumptionandCO2eemissionscomefromglobalreportsorfromextrapolatedresultsfromselectedkeycompaniesinthesector.3)CO2equivalentemissionscoverscope1andscope2emissions,exceptprocessandCH4emissions.4)ThehigherthevalueoftheEnergyEfficiencyIndex(EEI),thegreaterthesector’simprovementtowardsenergyefficiency.Sources:Capgeminianalysis;WorldEnergyOutlook2021,IEA,(2021;BestAvailableTechniques(BAT)ReferenceDocumentfortherefiningofMineralOilandGas,EuropeanCommission,(2015);BestAvailableTechniques(BAT)ReferenceDocumentfortheProductionofLargeVolumeOrganicChemicals,EuropeanCommission,(2019);BestAvailableTechniques(BAT)ReferenceDocumentfortheFood,DrinkandMilkindustries,EuropeanCommission,(2019);Compositeindexforenergyefficiencyevaluationofindustrialsector:sub-sectoralcomparison,ScienceDirect,(2020)3.Sources:2020Facts&FiguresoftheEuropeanchemicalindustry,CEFIC,(2020);BestAvailableTechniques(BAT)ReferenceDocumentforCommonWastewaterandWasteGasTreatment/ManagementSystemsintheChemicalsector,EuropeanCommission,(2016);WorldEnergyOutlook,IEA,(2021)4.FoodandAgricultureOrganizationoftheUnitedNations(2011)GlobalFoodLossesandFoodWasteExtent:CausesandPrevention.Availablefrom:https://www.fao.org/3/i2697e/i2697e.pdf[Accessedonthe20thofMarch2023]5.Sources:BestAvailableTechniques(BAT)ReferenceDocumentfortheFood,DrinkandMilkIndustries,EuropeanCommission(2019);ClimateChangeandLand:anIPCCSpecialReportonclimatechange,desertification,landdegradation,sustainablelandmanagement,foodsecurity,andgreenhousegasfluxesinterrestrialecosystems,IPCC,(2019);DecarbonizationroadmapfortheEuropeanfoodanddrinkmanufacturingsector,Ricardo,(2021)6.Iyer,J.K.(2022).6waysthepharmaceuticalindustrycanreduceitsclimateimpact.WorldEconomicForum(WEF).Availablefrom:https://www.weforum.org/agenda/2022/11/pharmaceutical-industry-reduce-climate-impact/[Accessedonthe15thofMarch2023]7.Sources:Capgeminiinternalbenchmark;AVEVAbrochure8.Sources:BestAvailableTechniques(BAT)ReferenceDocumentfortherefiningofMineralOilandGas,EuropeanCommission,(2015);TechnologicalPathwaysforDecarbonizingPetroleumRefining,WorldResourcesInstitute,(2021);WorldEnergyOutlook,IEA,20189.Sources:Capgeminicalculations;AVEVAaveragevalues;BestAvailableTechniques(BAT)ReferenceDocumentfortherefiningofMineralOilandGas,EuropeanCommission,(2015)10.Sources:Capgeminicalculations;AVEVAaveragevalues;BestAvailableTechniques(BAT)ReferenceDocumentfortherefiningofMineralOilandGas,EuropeanCommission,(2015);BPEnergyOutlook,BP(2022)11.AVEVAbrochure12.ADEME(2021).Empreinteprojet:évaluerl’empreinteenvironnementaled’unprojet(Projectfootprint:assessingtheenvironmentalfootprintofaproject).Availablefrom:https://librairie.ademe.fr/produire-autrement/5040-empreinte-projet-evaluer-l-empreinte-environnementale-d-un-projet.html#:~:text=La%20m%C3%A9thode%20Empreinte%20Projet%20est,de%20projets%20pour%20leur%20%C3%A9valuation[Accessedonthe15thofMarch2023]13.ADEME,BilansGes.(2023).BienvenuesurBilansGES.Availablefrom:https://bilans-ges.ademe.fr/documentation/UPLOAD_DOC_FR/index.htm?moyenne_par_pays.htm[Accessedonthe15thofMarch2023]©2023CapgeminiInventCopyright©2023Capgemini.Allrightsreserved.ContributiorsAVEVAandCapgeminiInventwouldliketothankthefollowingcontributors:JarrettCampbellRobertKambachVishalMahnaIlariaMichelizziRyanBradleyLucaBruniTedCombsDanielCrispCindyCrowBorisDemarrezCalDepewSatyendraDubeyGregorFernholzCaueFontanaFreddyGarcesMichaelGravesSreeHameedCraigHarclerodeJoeKovachJosephMcMullenRainerMuhmJesusFranciscoPalacinMiguelForneasStuartParkerErikPhilippsChristian-MarcPouyezStephenReynoldsCharlesRiebRomualdRoyerRishabhSinghalChloeSmithToluSodeindeTomTroyJamesWadeByungsuckLeeSeanGregsonMichaelReedElaineChouQiongLiuJasonTanRobMcGreevyKimCusteauFormosaPetrochemicalCorporationCapgeminiNicolasClinckxHeadofManufacturing,CapgeminiInventFranceAmiraTantaouiElArakiDirectorofIntelligentIndustryandSustainability,CapgeminiInventHélèneChanelDirector,EnergyTransition,Decarbonization,andLow-carbonProductsandServices,CapgeminiInventAlainChardonDirector,NewSustainabilityPlatforms,CapgeminiAmineGhafforDirectorofIntelligentIndustry,CapgeminiInventIbtihalKarfiaSeniorConsultant,EnergyandUtilities,CapgeminiInventLouisFesquetConsultant,Strategy,Innovation,andDigitalTransformation:Energy,Utilities,andChemicals,CapgeminiInventAuthorsAVEVALisaWeeVPofSustainability,AVEVAWentingZhuProgramManagerofSustainability,AVEVAFernandaMartinsMarketingDirectorforEnergyandSustainability,AVEVACatherineEdmundsVPofBrandandCommunications,AVEVAAboutAVEVAAVEVAisagloballeaderinindustrialsoftware,sparkingingenuitytodriveresponsibleuseoftheworld’sresources.Thecompany’ssecureindustrialcloudplatformandapplicationsenablebusinessestoharnessthepoweroftheirinformationandimprovecollaborationwithcustomers,suppliersandpartners.Over20,000enterprisesinover100countriesrelyonAVEVAtohelpthemdeliverlife’sessentials:safeandreliableenergy,food,medicines,infrastructureandmore.ByconnectingpeoplewithtrustedinformationandAI-enrichedinsights,AVEVAenablesteamstoengineerefficientlyandoptimizeoperations,drivinggrowthandsustainability.Namedasoneoftheworld’smostinnovativecompanies,AVEVAsupportscustomerswithopensolutionsandtheexpertiseofmorethan6,400employees,5,000partnersand5,700certifieddevelopers.Withoperationsaroundtheglobe,AVEVAisheadquarteredinCambridge,UK.AboutCapgeminiInventAsthedigitalinnovation,designandtransformationbrandoftheCapgeminiGroup,CapgeminiInventenablesCxOstoenvisionandshapethefutureoftheirbusinesses.Locatedinnearly40studiosandmorethan60officesaroundtheworld,itcomprisesa10,000+strongteamofstrategists,datascientists,productandexperiencedesigners,brandexpertsandtechnologistswhodevelopnewdigitalservices,products,experiencesandbusinessmodelsforsustainablegrowth.CapgeminiInventisanintegralpartofCapgemini,agloballeaderinpartneringwithcompaniestotransformandmanagetheirbusinessbyharnessingthepoweroftechnology.TheGroupisguidedeverydaybyitspurposeofunleashinghumanenergythroughtechnologyforaninclusiveandsustainablefuture.Itisaresponsibleanddiverseorganizationofover350,000teammembersinmorethan50countries.Withitsstrong55-yearheritageanddeepindustryexpertise,Capgeminiistrustedbyitsclientstoaddresstheentirebreadthoftheirbusinessneeds,fromstrategyanddesigntooperations,fueledbythefastevolvingandinnovativeworldofcloud,data,AI,connectivity,software,digitalengineeringandplatforms.TheGroupreportedin2022globalrevenuesof€22billion.GettheFutureYouWantwww.capgemini.comCopyright©2023CapgeminiInvent.MACS_2023Theinformationcontainedinthisdocumentisproprietary.©2023CapgeminiInvent.Allrightsreserved.

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

碳中和
已认证
内容提供者

碳中和

确认删除?
回到顶部
微信客服
  • 管理员微信
QQ客服
  • QQ客服点击这里给我发消息
客服邮箱